
HAL Id: tel-04389290
https://hal.science/tel-04389290

Submitted on 11 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Control-based runtime management of HPC systems
with support for reproducible experiments

Quentin Guilloteau

To cite this version:
Quentin Guilloteau. Control-based runtime management of HPC systems with support for repro-
ducible experiments. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Grenoble
Alpes, 2023. English. �NNT : �. �tel-04389290�

https://hal.science/tel-04389290
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Remerciements
(Acknowledgments)

J’aimerais commencer par remercier les membres du jury pour leurs retours, et en
particulier Alessandro Papadopoulos et Alexandru Costan pour avoir lu ce document
de bout en bout.

Un immense merci à Eric et Olivier pour m’avoir accueilli dès le stage de M2, et de
m’avoir supporté pendant presque 4 ans. Deux encadrants, deux styles et domaines
d’expertise bien différents, mais tout de même très complémentaires ! Vous m’avez
tous les deux tant appris, scientifiquement et humainement. Merci aux équipes CtrlA,
DataMove, Polaris pour cet environnement de recherche si sain et stimulant. Merci
à Imma, Annie, Maud, sans qui je ne serais pas allé bien loin (géographiquement
et administrativement). Merci aux post-docs, ingénieurs, et jeunes chercheuses et
chercheurs pour vos connaissances et pour avoir montré la voie à suivre avec autant
de bienveillance. Je pense notamment à Raphaël, Sophie, Millian, Danilo, Adrien,
Jonathan. Merci à tous les thésard.e.s avec qui j’ai partagé ces trois années et tous
ces moments de convivialité autour d’un verre et/ou avec des cartes. Merci à tous
les résidents du bureau 443, pour leur sympathie, et avoir supporté toutes mes
tentatives au basket. Merci aux brésiliens pour m’avoir fait découvrir vos coutumes
culinaires (parfois douteuses). Merci à Grid’5000 sans qui cette thèse aurait été bien
fade expérimentalement parlant. Merci à tous les enseignants qui m’ont laissé une
marque pendant mon parcours scolaire. Merci à Frédéric et Thomas pour m’avoir
fait découvrir la beauté du parallélisme et du distribué, et Arnaud et Jean-Marc pour
m’avoir sensibilisé aux subtilités de l’évaluation expérimentale et des statistiques.

Merci à ma famille pour tout leur soutien (Luky, c’est à ton tour maintenant !).

Et enfin, merci infiniment à Sofi pour son support quotidien inconditionnel, et sans
qui ces derniers mois de stress auraient été bien plus difficiles à vivre.

iii

Abstract / Résumé

Abstract

High-Performance Computing (HPC) systems have become increasingly more com-
plex, and their performance and power consumption make them less predictable.
This unpredictability requires cautious runtime management to guarantee an ac-
ceptable Quality-of-Service to the end users. Such a regulation problem arises in
the context of the computing grid middleware CiGri that aims at harvesting the
idle computing resources of a set of cluster by injection low priority jobs. A too
aggressive harvesting strategy can lead to the degradation of the performance for all
the users of the clusters, while a too shy harvesting will leave resources idle and thus
lose computing power. There is thus a tradeoff between the amount of resources
that can be harvested and the resulting degradation of users jobs, which can evolve
at runtime based on Service Level Agreements and the current load of the system.

We claim that such regulation challenges can be addressed with tools from Auto-
nomic Computing, and in particular when coupled with Control Theory. This thesis
investigates several regulation problems in the context of CiGri with such tools. We
will focus on regulating the harvesting based on the load of a shared distributed
file-system, and improving the overall usage of the computing resources. We will
also evaluate and compare the reusability of the proposed control-based solutions in
the context of HPC systems.

The experiments done in this thesis also led us to investigate new tools and tech-
niques to improve the cost and reproducibility of the experiments. We will present a
tool named NixOS-compose able to generate and deploy reproducible distributed
software environments. We will also investigate techniques to reduce the number
of machines needed to deploy experiments on grid or cluster middlewares, such as
CiGri, while ensuring an acceptable level of realism for the final deployed system.

v

Résumé

Les systèmes de calcul haute performance (HPC) sont devenus de plus en plus
complexes, et leurs performances ainsi que leur consommation d’énergie les rendent
de moins en moins prévisibles. Cette imprévisibilité nécessite une gestion en ligne
et prudente, afin garantir une qualité de service acceptable aux utilisateurs. Un tel
problème de régulation se pose dans le contexte de l’intergiciel de grille de calcul
CiGri qui vise à récolter les ressources inutilisées d’un ensemble de grappes via
l’injection de tâches faiblement prioritaires. Une stratégie de récolte trop agressive
peut conduire à la dégradation des performances pour tous les utilisateurs des
grappes, tandis qu’une récolte trop timide laissera des ressources inutilisées et donc
une perte de puissance de calcul. Il existe ainsi un compromis entre la quantité de
ressources pouvant être récoltées et la dégradation des performances pour les tâches
des utilisateurs qui en résulte. Ce compromis peut évoluer au cours de l’exécution
en fonction des accords de niveau de service et de la charge du système.

Nous affirmons que de tels défis de régulation peuvent être résolus avec des outils
issus de l’informatique autonomique, et en particulier lorsqu’ils sont couplés à la
théorie du contrôle. Cette thèse étudie plusieurs problèmes de régulation dans le
contexte de CiGri avec de tels outils. Nous nous concentrerons sur la régulation
de la récolte de ressources libres en fonction de la charge d’un système de fichiers
distribué partagé et sur l’amélioration de l’utilisation globale des ressources de calcul.
Nous évaluerons et comparerons également la réutilisabilité des solutions proposées
dans le contexte des systèmes HPC.

Les expériences réalisées dans cette thèse nous ont par ailleurs amené à rechercher
de nouveaux outils et techniques pour améliorer le coût et la reproductibilité des ex-
périences. Nous présenterons un outil nommé NixOS-compose capable de générer et
de déployer des environnements logiciels distribués reproductibles. Nous étudierons
de plus des techniques permettant de réduire le nombre de machines nécessaires
pour expérimenter sur des intergiciels de grappe, tels que CiGri, tout en garantissant
un niveau de réalisme acceptable pour le système final déployé.

vi

Contents

Acknowledgments iii

Abstract / Résumé v

Contents vii

Introduction 1

Background . 1

This Thesis . 4

Work dissemination . 6

I. Control-based Dynamic Harvesting of Idle HPC Resources 9

1. Discussion & State-of-the-Art 11

1.1. Harvesting . 11

1.1.1. Personal Computers . 11

1.1.2. In the Cloud . 12

1.1.3. On High-Performance Computing Clusters 12

1.2. Autonomic Computing . 14

1.3. Control Theory . 17

1.3.1. Identify the goals . 18

1.3.2. Identify the knobs . 18

1.3.3. Devise the model . 19

1.3.4. Design the controller . 19

1.3.5. Trustable properties of the closed-loop system 22

1.4. The CiGri Middleware & its need for regulation 22

1.4.1. The Gricad Computing Center 22

1.4.2. The CiGri middleware . 23

1.4.3. CiGri jobs . 23

vii

1.4.4. The Need for Regulation . 24

1.5. Hypotheses of this thesis . 26

1.6. Conclusion & Research Questions . 27

2. Analyzing the characteristics of CiGri jobs 29

2.1. Global Study of the CiGri Jobs . 29

2.2. Study of the CiGri Projects . 32

2.3. Study of the CiGri Campaigns . 36

2.4. Job and Campaign model used in this Thesis 38

3. A Proportional-Integral Controller to harvest idle resources 39

3.1. Goals, Control Objectives, and Sensors 39

3.1.1. Sensor on the File-System . 39

3.1.2. Sensors on the Cluster . 41

3.2. Actuators . 41

3.3. Model of the system . 42

3.3.1. Identification Experiments . 43

3.3.2. Modelling . 46

3.4. Design of the Controller . 49

3.5. Choice of the Closed-Loop Behavior 50

3.6. Example of Perturbation . 52

3.7. Limitations and Improvements . 53

3.7.1. Dynamic Reference Value . 53

3.7.2. Tagging I/O intensive campaigns 56

4. Reusability of Autonomic Controllers for HPC Systems 61

4.1. Criteria for comparison . 61

4.1.1. Nominal Performance . 62

4.1.2. Portability . 63

4.1.3. Setup complexity . 63

4.1.4. Support Guarantees . 64

4.1.5. Competence required . 64

4.1.6. Theoretical trade-offs between criteria 65

viii

4.2. Considered Controllers . 66

4.2.1. Proportional-Integral Controller 66

4.2.2. Adaptive PI . 66

4.2.3. Model-Free Controller . 68

4.3. Evaluation and Comparison . 69

4.3.1. Experimental setup . 69

4.3.2. Controller configurations . 70

4.3.3. Experimental protocol . 70

4.3.4. Performance-related comparison 71

4.3.5. Methodology and Implementation-related comparison 75

4.4. Conclusion . 78

5. A Control Theory Approach to Reduce Wasted Computing Power in HPC 81

5.1. Introduction . 81

5.2. Towards a better usage of the resources 81

5.2.1. Problem Definition . 81

5.2.2. Control Formulation . 82

5.2.3. System Analysis . 83

5.2.4. Model & Control Design . 85

5.2.5. Taking the future into account with help from the scheduler . 86

5.3. Evaluation . 87

5.3.1. Experimental Setup . 87

5.3.2. Experimental Protocol . 88

5.3.3. Constant Injection taking into account the future 88

5.3.4. PI Controller taking into account the future 89

5.3.5. Global Comparison . 92

5.4. Conclusion and Future Work . 94

6. Conclusion and Perspectives 97

6.1. Perspectives on CiGri . 97

6.2. Potential Regulation Problems of Interest 100

II. Improving the Reproducibility and Cost of Distributed Experiments103

7. Discussion and State-of-the-Art 105

ix

7.1. Reproducibility . 106

7.1.1. Context & Motivation . 108

7.1.2. Frequent Traps of the reproducibility of software environments109

7.1.3. Functional Package Managers 113

7.1.4. Limits of Functional Package Managers 115

7.1.5. Conclusion . 116

7.2. Research Questions . 117

8. Reproducible Distributed Environments 119

8.1. Introduction . 119

8.2. Presentation of NixOS Compose . 121

8.2.1. Workflow . 124

8.3. Technical Details . 125

8.3.1. Details on the g5k-ramdisk Flavour 127

8.4. A Complex Example: Melissa . 127

8.4.1. Presentation of Melissa . 129

8.4.2. Key difficulties . 130

8.4.3. Melissa Images Content Comparison 132

8.5. Evaluation . 132

8.5.1. Experimental Setup . 132

8.5.2. Comparison to Kameleon . 134

8.5.3. Comparison to EnOSlib . 136

8.6. Conclusion . 138

9. Reducing the Cost of Experimenting with Distributed File-System 141

9.1. Introduction . 141

9.2. Definitions & Concepts . 143

9.3. Methodology . 143

9.3.1. Experimental Setup . 144

9.3.2. Benchmark application . 144

9.3.3. Distributed File-Systems . 144

9.4. Evaluation . 146

9.4.1. Evaluation of NFS . 146

9.4.2. Evaluation of OrangeFS . 151

9.5. Conclusion . 154

x

10.Towards Simulating CiGri and its Control Loop 157

10.1.Introduction . 157

10.2.BatCiGri . 158
10.2.1. Expected Properties of the Simulation 158
10.2.2. Hypotheses . 158
10.2.3. Batsim in a Nutshell . 159
10.2.4. Two Schedulers . 159
10.2.5. Broker . 161
10.2.6. The CiGri Submission Loop 161
10.2.7. Workload Adjustments . 162

10.3.Evaluation . 164

10.4.Conclusion . 166

11.Conclusion and Perspectives 169

11.1.Perspectives and open questions . 169

12.General Conclusion 173

Bibliography A3

List of Figures A21

List of Tables A28

xi

Introduction

Background

As calculations started to be too complex to be carried out by hand by slow and
error-prone humans, scientists developed machines able to help them perform
computations. These machines improved though history, from the Abacus, the
Pascal’s calculator, the Thomas de Colmar’s Arithmometer, the tabulating machine
for punched cards from Herman Hollerith, or the famous Turing machine.

As every field of Science continued to go forward, and challenges to grow larger
and more complex, the amount of computation needed to perform experiments
kept increasing, and required the machines to also improve. These improvements
were possible with the reduction in size of transistors and circuit boards, as well
as the improvements of the raw components (processors, memory, buses, etc.). As
computers reached Moore’s law, but problem sizes were still increasing, a single
machine could not manage the entire copmutational workload. The solution was
to link several machines together and distribute the workload on this network of
nodes, creating a computing cluster. To keep up with the computing demands, these
clusters have to add more machines and/or change for newer and more powerful
computers. Figure 1 shows the evolution of the numbers of cores, CPU frequency
and performance of the clusters of the Top500 list. Even if the CPU frequency has
stayed stable for close to 20 years, the performance keeps improving thanks to the
increase of parallelism.

Building computing clusters is very expensive, and is usually a cooperative effort
between several actors (laboratories, research institutes, universities, etc.). This
cooperation leads to shared access to the resulting cluster for the members of the
different contributing entities. To ensure fair access to the machines, a reservation
mechanism is set up. Users have to submit their computations alongside the number
of machines, also called nodes, required and the estimated duration to the Resource
and Job Management System (RJMS). The RJMS, whose architecture is depicted
in Figure 2, is responsible for managing the users computations, scheduling them
onto the resources (machines, CPU, or even cores), and managing the resources

1

Number of Cores CPU Frequency [MHz] Performance [GFlop/s]

2000 2010 2020 2000 2010 2020 2000 2010 2020

1e+02

1e+05

1e+08

10

100

1000

1e+01

1e+03

1e+05

1e+07

Year

Figure 1.: Evolution of the number of cores, CPU frequency, and the maximum performance
of the Top500 machines. The solid line represents the median, and the ribbons
the 5% and 95%. Updated from [Cor21] with the data from [Len21].

(deploying and starting the computations, as well as cleaning the environment when
they completed).

This reservation process is not perfect, and can lead to the idling of some resources
due to the requirements on the resources. While machines are idle, they still
consume energy, which is around half of a machine used at full power [Hei+17].
This idling can represent a significant loss of energy and thus money. Turning them
on and off is possible but introduces new energetic costs, and degradation of the
Quality-of-Service (QoS) if users need the resources. As HPC jobs are large and

computing nodes file system

res. managerschedulerjob manager

RJMSusers

job submission

Figure 2.: Illustration of a Resource and Job Management System (RJMS) [Ble17]

2 Contents

rigid in the number of resources they require, it makes it difficult to improve the
use of the idle CPU time. A lot of effort has been put on the research of better
scheduling algorithms for the RJMS, meaning how to map computation to physical
machines. However, they often require the users to estimate correctly the duration
of their computation, which is notoriously difficult for humans to do correctly [CB01;
MF01]. In practice, despite all this work, and because of the conservative behavior
of the HPC community, the majority of HPC centers use the same, or a variation
of, scheduling policy: EASY Backfilling. This scheduling technique is simple to
implement, to understand, and with good enough performance, which eases its
adoption in HPC centers.

The idle computing power can be harvested by executing smaller and interruptible
jobs seen as second-class citizens. However, those jobs can introduce perturbations
in the system and degrade the performances of the premium users jobs (e.g., via an
overload of the distributed file-system). As the jobs harvesting the idle resources are
interruptible, it is tempting to kill them when the system is about to get overloaded.
However, this killing also represent a lost of computing power as these jobs do not
usually implement any check-pointing mechanism and will thus need to be restarted
from the beginning later on.

In general, HPC systems are very unpredictable [Bha+13; SK05; Dor+14]. The
performance of an HPC application can be affected by many exterior factors: network
contention, file-system load, temperature in the rack, etc. All of these factors are
near impossible to predict correctly, and computational costly to solve optimally, and
thus impossible to incorporate into the decision process of the RJMS.

To deal with such runtime variations of computing systems, the field of Autonomic
Computing proposes a feedback loop point-of-view to regulate the under control
system and to steer it towards a desired behavior/state. The feedback loop of the
Autonomic Computing can be interpreted and implemented in various fashions. One
particularly interesting way is to use tools from the Control Theory field. Control
Theory is usually applied to physical dynamical systems, but very rarely to computing
systems. However, it provides mathematically proven properties on the controlled
system, which makes it quite appealing compared to more black boxes such as
Machine Learning approaches, or to simpler rule based strategies.

Experimenting on distributed systems, such as grid or cluster middlewares, is com-
plex. To realistic evaluate a new solution, researchers need to deploy their own
cluster, with a RJMS, a parallel file-system, etc. In practice, such deployments are
rarely done, as they require a lot of machines, and because the software environment
to deploy is deep, fragile, and complex. The fragility of the software environment

Contents 3

is a crucial reproducibility issue, as it means that an experiment done today could
not be reproduced in the future. To still perform the experiment, one might use
simulation techniques. But even state-of-the-art simulators fail to fully reproduce
the behavior of experiment in real conditions.

This Thesis

We believe that the harvesting of idle resources represents a regulation problem
which can be tackled via an Autonomic Computing approach. To provide a runtime
behavior with guarantees, we claim that using tools and methods from Control
Theory will help in terms of performance and adoption. However, controllers are
usually tuned for a specific system, which might reduce their reusability on different
systems.

When designing and implementing feedback loops, especially using Control Theory
tools, the quality and robustness of the experimental setup is crucial. Reproducible
experiments are a must to ensure the validity of the resulting controller. Moreover,
distributed experiments involving computing cluster middlewares (e.g., batch sched-
uler, Parallel File-Systems) are especially tricky. Faithful and realistic experiments
with such middlewares would require deploying clusters at full scale, which cost
is excessive. Simulation techniques can be used but require correct and proven
models. Intermediate strategies to reduce the number of machines to deploy the
experiments and keeping a full scale behavior of the system would allow to reduce
the experimental costs while performing meaningful experiments.

From the above two observations, the work of this thesis will be organized in two
parts: In Part I, we investigate an Autonomic Controller using Control Theory tools
to regulate the harvesting of idle HPC cluster resources.

• In Chapter 1, we give some context to this work, and present the CiGri middle-
ware which will be the central piece of this thesis.

• Chapter 2 studies the statistical characteristics of the CiGri jobs.

• Chapter 3 presents a controller regulating the CiGri injection speed based on
the load of the distributed file-system to reduce the overhead for premium
users jobs.

• We discuss the reusability of autonomic controllers using control theory tools
from one system to another in Chapter 4.

4 Contents

Introduction

1. SotA Harvesting

7. SotA Distributed Expes.2. CiGri Jobs

3. PI Controller

5. Interaction w/ Scheduler

10. BatCiGri

4. Reusability

6. Conclusion Harvesting

12. General Conclusion

8. NixOS Compose 9. Folding

11. Conclusion Expes.

Figure 3.: Dependencies between the different chapters of this thesis.

• In Chapter 5, we present a controller reducing the wasted computing time of a
cluster with CiGri by also considering the killed low priority jobs.

• We conclude Part I and give perspectives in Chapter 6.

In Part II, we discuss distributed experiments and their reproducibility.

• Chapter 7 gives context to the state of distributed experiments and their
reproducibility.

• In Chapter 8, we present NixOS Compose, a new tool to create and deploy
reproducible distributed software environments.

• Chapter 9 investigates the reduction of deployment of a distributed experiment
involving a distributed file-system while keeping a realistic full scale behavior.

• Chapter 10 presents the first step towards a simulator of CiGri and our auto-
nomic controllers of Part I using Batsim.

• We conclude Part II and give perspectives in Chapter 11.

Chapter 12 wraps up the entire work done in this thesis.

Some chapters can be read independently. Figure 3 depicts the dependency graph of
the chapters of this thesis.

Contents 5

Work dissemination

The following are the communications resulting from this thesis.

International conferences

• Quentin Guilloteau, Jonathan Bleuzen, Millian Poquet, and Olivier Richard.
“Painless Transposition of Reproducible Distributed Environments with NixOS
Compose”. CLUSTER 2022 [Gui+22b]

• Quentin Guilloteau, Bogdan Robu, Cédric Join, Michel Flies and Eric Rut-
ten. “Model-free control for resource harvesting in computing grids”. CCTA
2022 [Gui+22d]

• Quentin Guilloteau, Olivier Richard, Bogdan Robu, and Eric Rutten. “Con-
trolling the Injection of Best-Effort Tasks to Harvest Idle Computing Grid
Resources”. ICSTCC 2021 [Gui+21a]

National conferences

• Quentin Guilloteau, Adrien Faure, Millian Poquet, and Olivier Richard. “Com-
ment rater la reproductibilité de ses expériences ?” COMPAS 2023 [Gui+23a].

• Quentin Guilloteau, Jonathan Bleuzen, Millian Poquet, and Olivier Richard.
“Transposition d’environnements distribués reproductibles avec NixOS Com-
pose”. COMPAS 2022 [Gui+22c]

• Quentin Guilloteau, Olivier Richard, and Éric Rutten. “Étude des applications
Bag-of-Tasks du méso-centre Gricad”. COMPAS 2022 [GRR22a]

• Quentin Guilloteau, Olivier Richard, Eric Rutten, and Bogdan Robu. “Collecte
de ressources libres dans une grille en préservant le système de fichiers : une
approche autonomique”. COMPAS 2021 [Gui+21b]

Working papers

• Quentin Guilloteau, Olivier Richard, Raphaël Bleuse, and Eric Rutten. “Folding
a Cluster containing a Distributed File-System”. 2023 [Gui+23d]

• Quentin Guilloteau. “Simulating a Multi-Layered Grid Middleware”. 2023 [Gui23d]

6 Contents

Tutorials

• Quentin Guilloteau, Jonathan Bleuzen, Millian Poquet, and Olivier Richard.
Initiation to NixOS Compose. [Gui+a]

• Quentin Guilloteau, Sophie Cerf, Eric Rutten, Raphaël Bleuse, and Bogdan
Robu. Introduction to Control Theory for Computer Scientists. [Gui+b]

Contents 7

Part I

Control-based Dynamic Harvesting of Idle
HPC Resources

Discussion & State-of-the-Art 1
The first part of this Thesis is related to three areas: the harvesting of idle comput-
ing resources in High Performance Computing systems (Section 1.1), Autonomic
Computing (Section 1.2), and Control Theory (Section 1.3). Section 1.4 presents
CiGri, the case-study of this thesis.

1.1 Harvesting

The motivation for harvesting idle computing resources is two-fold. First, as comput-
ers are expensive and are powered on, it would be a waste of energy and money to
leave them idle. Second, sparse idle machines represent a cheap way to expand the
computing power available to users.

In this Section, we present various techniques from the literature to harvest idle
resources of a set of machines in different contexts.

1.1.1 Personal Computers

Volunteer Computing [MC19] frameworks such as BOINC [And04] provide a way
for anyone to lend their idle CPU times to community scientific projects. These
scientific project range from extraterrestrial intelligence search with SETI@HOME
[And+02], climate prediction [Sta+04], or simulating protein dynamics [Lar+09]
which was helpful in the fight against Covid-19 [For+21]. The computation done
by these projects are embarrassingly parallel, meaning that it is easy to separate the
problem into smaller and independent sub-problems which can then be sent to the
users. This characteristic make them a good candidate to exploit idle computing
resources. Users install the framework on their machine and decide how many idle
CPU time to donate to which project. When the machine is about to go idle, the
volunteer computing framework pulls some work (i.e., a piece of computation) from
the server of the community project. The user machine then executes this work. If it
finishes the previous task, and is still idle (i.e., not used by the user), it requests a

11

new task. In the case where the computer is no more idle during the execution of a
task, the task is killed and the CPU resources given back to the user.

A different approach is to push computation onto idle personal machines as with
Condor [LLM87] for example. Users register their machines onto the Condor
network, making their idle time available. Users can submit their computations to
Condor, which will then find available machines on the network to execute these
computations. The goal is to create a single computing cluster out of idle machines
and make the machines available thought a scheduling mechanism. If a machine is
no longer available while a Condor job is executing, the job is killed and put back
in the Condor queue. The difference between Condor and Volunteer Computing is
the nature of the workloads executed on the machines. Condor’s workload is not
necessarily embarrassingly parallel, but might be a big single job that is simply too
resource demanding to be executed on a single machine.

1.1.2 In the Cloud

The cloud is also interested in using idle resources as every idle CPU tick is money
lost. Amazon Web Services (AWS) introduced a 90% cheaper deal to use the idle
resources of its EC2 cloud [Amaa; Amab]. Users submit their computations, and AWS
will schedule them on appropriated available idle resources. Those computations
are seen as second class citizens and will be interrupted when EC2 reclaims the
resources. In [SRI16], the authors propose a pricing for idle cloud resources based
on a probabilistic model of the potential revocation of the resources. The goal is
to encourage the usage of the idle resources thanks to a fair pricing based on the
offered guarantees. [Liu+20] approaches the problem with a game-theory strategy
to dynamically define the price of cloud resources. The model the problem as a
non-cooperative game between the cloud provider and the customers. The authors
of [Wan+21] use online learning to predict the demand of users and compute the
amount of resource that second class virtual machines can safely harvest.

1.1.3 On High-Performance Computing Clusters

HPC systems are also victims of idle resources. One solution to reduce the idle time
would be to have finer, more precise, scheduling algorithm. But as smart as the
scheduling algorithm could be, humans are still submitting the jobs. In particular,
humans are giving the estimation of the duration of their computation (i.e., the job
walltime), and we are notoriously bad at it [CB01; MF01]. Work has been done to

12 Chapter 1 Discussion & State-of-the-Art

improve the quality of the walltime estimations for the schedulers, but they forget
other sources of variations (e.g., network contention, file-system load, etc.). HPC
systems are too dynamic and variable for scheduling to be the only solution. This
section presents different approaches to harvest the idle resources HPC clusters.

OurGrid [Cir+06] aims to connect several geographically distributed clusters to a
common grid interface. Users then have more available machines, and can make use
during the day of currently idle machines in an opposing time-zone. This approach
relies heavily on trust, as people from different laboratories can access any clusters,
which raises some security questions. The harvesting of the idle resources is thus
done manually by scientists that need more machines.

The work on the HPC/Big-Data convergence led to some solutions using Big-Data
workloads to make use of the idle HPC resources.

In [Sou+19], the authors propose a co-scheduling approach based on the Slurm
[YJG03] and Mesos resources managers [Hin+11]. The solution profiles the running
application, and adapts the Linux control groups (cgroup) limits, i.e., the amount of
given resources at the operating system level, to fit the available resources to the
actually needed resources. The remaining resources (from the cgroup point-of-view)
are then available to the scheduler. This solution managed to reduce the overall
resource usage and makespan, but does require a change of architecture for systems
administrators, as well as setting up profiling.

Bebida [Mer+17] is another approach coupling HPC jobs and Big-Data workflows.
The authors slightly modified the prologue and epilogue scripts of the OAR batch
scheduler [Cap+05] to start and stop Hadoop [Shv+10] workers on the HPC
resources when an HPC job finishes or starts. The idle HPC resources are then
seen as a dynamic resource pool from the point-of-view of the Big-Data resource
manager. Authors showed that Bebida improved the total usage of the machines,
but degraded the mean waiting time of HPC jobs (due to the longer prologue and
epilogue scripts).

Similarly to Bebida, the authors of [Prz+22] propose a solution to use the idle
resource of a cluster using FaaS (Function as a Service), or Serverless, workloads.
The jobs from such workloads last a few seconds, which make them good candidates
to exploit the “holes” in the schedule. The solution couples the resources managers
Slurm and OpenWhisk [Ope]. One limitation of the approach is the actual usage of
FaaS for scientific workflows. The HPC community is conservative and the adoption
of such complementary tools might be long [SMM18].

1.1 Harvesting 13

CiGri [GRC07] is the approach that we will focus on in this thesis. CiGri is a
grid middleware that runs on top of several computing clusters managed by the
OAR resources manager. It harvests the idle resources of the grid’s clusters by
periodically submitting jobs to the different resources managers with the lowest
priority (Best-Effort). Those jobs come from Bag-of-Tasks applications, which are
composed of numerous, small, independent, and similar jobs. Contrary to the
previous solutions, the jobs submitted to CiGri are HPC jobs (just with different
“shapes”), and there is a single scheduler decision at the cluster level. The limitation
of CiGri is its submission algorithm which does not take into account the state of the
cluster. This lack of feedback can lead to suboptimal resource usage and contention
on shared resources of the clusters. A more detailed presentation of CiGri is done in
Section 1.4.

Take away 1.1: Harvesting

HPC systems are victim to idle resources. Those resources are usually har-
vested by executing smaller, interruptible jobs. Solutions from the literature
usually involve two levels of scheduling and jobs from two different natures.

1.2 Autonomic Computing

To deal with the increasing variability of computing systems and the error-prone
manual management, IBM introduced in the early 2000s the notion of Autonomic
Computing (AC) [KC03; HM08]. The main idea is to have systems that can self-adapt
to the variations of their environment. This self-adaptation can take several forms
based on the domain of the application.

• self-configuration: the system reconfigures itself automatically following high-
level policies.

• self-healing: the system seeks opportunities to improve its performance.

• self-optimization: the system detects and repairs software or hardware prob-
lems.

• self-protection: the system defends itself against malicious attacks and cascad-
ing failures.

14 Chapter 1 Discussion & State-of-the-Art

Figure 1.1.: Representation of the main tool of Autonomic Computing: the MAPE-K Loop
[KC03].

To implement this vision onto a system, the latter needs to have a way to interact with
the autonomic controller. Namely, the system must have a sensor and an actuator
(or knob), which correspond to the interface between the autonomic controller and
the managed element.

The main tool of AC is the MAPE-K loop, displayed in Figure 1.1. The acronym
MAPE-K stands for the names of the different phases of the loop:

• Monitor: during this phase, the autonomic manager queries the sensor on the
managed element.

• Analyze: the value of the sensor is then analyzed by the manager to check if a
change of direction is needed.

• Plan: if there is the need for a new trajectory, the “Plan” phase is responsible
to define this trajectory.

• Execute: finally, the new trajectory is translated into the action to execute on
the knobs of the managed element.

• Knowledge: the knowledge is information shared among all the phases. It
could be the feasible range of the knobs, previous sensor values, etc.

The MAPE-K loop is actually a framework to design feedback loops on computing
systems, and it leaves room for interpretation, especially for the Analyze and Plan
phases. Porter et al. [PRD20] surveyed the papers accepted to three autonomic and
self-adaptive systems conferences (ICAC, SASO, and SEAMS) on how the MAPE-K
loops present in the papers were implemented. They showed that over the 210

1.2 Autonomic Computing 15

N/A

Learning

Protocol

Policy

MAS

Control theory

Multiple

0 25 50 75
Number of papers

Year 2019 2018 2017

Approach used to implement an Autonomic Controller

Figure 1.2.: Approaches used to implement an autonomic controller in 210 surveyed papers
of three autonomic computing conferences. Regenerated from [PRD20].

surveyed papers, 63 were implementing their autonomic controller with rule-based
strategies (Policy and Protocol categories in Figure 1.2), 46 were using Machine
Learning strategies, 5 used multi-agents systems (MAS), and only 3 used Control
Theory. The N/A category covers papers where no other approach fits.

The advantage of rule-based strategies is the simplicity of implementation and of
understanding. It requires experts of the managed element to convert all their
knowledge into rules or policies. The threshold controller depicted in Algorithm 1,
is a type of such strategy.

Algorithm 1: Simple algorithm representing a rule-based autonomic controller.
If the value of the sensor is greater than an upper bound, the action is decreased.
If the sensor is lower than the lower bound, the action is increased. Otherwise,
the current action satisfies the desired trajectory and is kept.

if Sensor > ThresholdMax then
NextAction = PreviousAction − 1

else
if Sensor < ThresholdMin then

NextAction = PreviousAction + 1
else

NextAction = PreviousAction

16 Chapter 1 Discussion & State-of-the-Art

Rule-based strategies do not give any guarantee on the behavior of the closed-loop
system. The rules might also not cover all the accessible state-space, the system
might oscillate, or maybe not even reach acceptable state [CDR14].

Using Machine Learning techniques is also very popular for implementing an auto-
nomic controller. But it raises several difficult questions. How to be sure that the
model has seen all the possible behaviors during its training to know how to react
accordingly? How to actually be sure that the model will react accordingly? And let
us not forget the computational cost of training the model, especially if the system is
complex and has multiple inputs and outputs. The explainability of a solution is also
a crucial factor for its adoption, and Machine Learning models lack in this aspect as
they can be seen as total black boxes.

The proportion of Control Theory based autonomic controller in the Autonomic
Computing literature can appear anecdotal, as seen on Figure 1.2, but they have a
lot to offer. As opposed to rule-based and learning approaches, Control Theory is
backed up by centuries of methods, theorems, proofs, protocols, etc., making it an
interesting way to implement an autonomic controller. Control Theory has also been
applied on distributed systems (HPC and Cloud) [CR23; Cer+21; MC20] with good
results.

Take away 1.2: Autonomic Computing

Autonomic Computing deals with the runtime regulation of dynamical systems.
The feedback loop can use different techniques (AI, rules, control theory, etc.).
Control Theory represents a small fraction of the implemented solutions, but
has a lot of potential.

1.3 Control Theory

This Section summaries the classical methodology of applying tools from Control
Theory to computing systems [Fil+17; Lit+17; RMS17].

For the sake of clarity, we will use the following example. Imagine you have a brand-
new CPU which is quite powerful, but can become very hot. High temperatures can
damage the CPU, and you do not want to buy a new one (it was very expensive).
In this example, we will go through the methodology to set up a controller on your
CPU to avoid breaking it.

1.3 Control Theory 17

Define the objectives

 Characterize the
constraints

Identify a knob

Identify a
performance metric

Analyze signals
properties and
dependencies

Choose a controller
form

Identify an
appropriate model

Design the controller

Evaluate the
controlled system
w.r.t. objectives

1.
Problem

Definition

2.
Control

Formulation

3.
System

Analysis

4.
Model & Control

Design

5.
Evaluation

update

update

Figure 1.3.: Workflow of the Control Theory methodology [Cer+21].

Figure 1.3 presents the workflow for design a controller. Note that there can be
cycles in the workflow where the objectives, knobs, sensors, etc., can be updated.

1.3.1 Identify the goals

The first step is to define what are the objectives of the closed-loop system. What
are the metrics, available sensors on the system, states what we want to regulate,
to control? What are the desired guarantees on the closed-loop system? Should
the system be fast? Should it be allowed to oscillate, or to go over a certain limit?
What about disturbances? What are the nature of the disturbances? Can they be
modelled? Can they be anticipated? In Control Theory jargon, the desired state of
the system is called setpoint or reference value.

In our simple example, the objective is to regulate the temperature. Lucky you, you
have a thermometer on your board! So your sensor will be the value returned by
this thermometer. There do not seem to be a lot of disturbances. You can imagine
that your fan could break at some point and thus the temperature would increase.

1.3.2 Identify the knobs

Once the goals are described, one needs to identify the knobs of action, also called
actuators. This means finding parts of the system whose variations impact the output
of the system, positively or negatively. There might be several knobs of actions,
or even some indirect knobs. Knowing the range of action of your knob is quite
important in order not to ask for impossible inputs.

18 Chapter 1 Discussion & State-of-the-Art

In our example, we can think of several knobs of action. The first one would be the
amount of work given to the CPU. Another knob would be the frequency of the CPU
itself. And this is much easier because you have a DVFS1 mechanism on your CPU!
Your knob will thus be the frequency of the CPU. The range of this knob is between
the minimum and the maximum frequencies given on the CPU box.

1.3.3 Devise the model

This phase consists in identifying the relation between the change in the knobs and
the next value of the sensors. In Control Theory terms, a model is a mathematical
relation between the current state of the system (sensors) and the current input
(knobs) to the next state of the system. If you already have knowledge of the
system you can come up with such a relation. In physical systems, such knowledge
could be physical laws (e.g., Maxwell’s equations, heat equation, etc.). Otherwise,
identification experiments are required. During those experiments, the system is put
under different types of inputs, and the output is observed. One kind of input is a
stair function where the value of the knob is constant for some time, then changes
to a new value (lesser or greater), stays constants for some time, etc. Then, with
classical tools, such as linear regression, one is able to extract a model from those
identification experiments.

For our CPU, we might be able to derive a model from thermodynamic equations,
but we can also perform identification experiments. We can perform stair-shaped
inputs, where the frequency would increase and then decrease and log the value of
the temperature. What we might observe is that there might be a delay between the
action taken on the system, inertia, and its visible reaction. This behavior can be
taken into account in the model.

1.3.4 Design the controller

Once the model has been established, one can use the tools from Control Theory to
design the controller adapted to the problem. There are plenty of controllers in the
literature, all with their pros and cons. They can usually be derived from the model
found previously, either by inserting the model into equations, or by using toolboxes
like Matlab. During this phase, and based on the chosen controller, it might be
possible to choose the closed-loop behavior of the system. The main properties,
illustrated in Figure 1.4, are the following:

1Dynamic Voltage Frequency Scaling

1.3 Control Theory 19

Figure 1.4.: Graphical explanation of the different properties of a controlled system (stabil-
ity, settling time, overshoot) [She+17].

• Stability: the system reaches an equilibrium point regardless of the initial
conditions.

• Absence of overshooting: the system does not exceed the desired state (set-
point/reference value).

• Settling time: the system reaches the equilibrium point in a guaranteed time.

• Robustness: the system converges to the setpoint despite the imprecision of the
underlying model.

In the case of our CPU example, a “simple” Proportional-Integral controller seems
more than good enough to be robust to potential disturbances and to converge to
the desired state. Concerning the closed loop behavior, we really want to avoid
overshooting as it could greatly damage the CPU. We would also like to have a
decent settling time (maybe in the order of the second) and robustness.

In the following, we present the most common controllers of Control-Theory. Their
description will be given in discrete time as we are in the context of computing
systems.

20 Chapter 1 Discussion & State-of-the-Art

Proportional Controller

The Proportional controller, or P controller, is the simplest controller of Control
Theory. The idea of this controller is to react proportionally to the current error,
i.e., the different between the desired state (setpoint) and the current state (sensor).
Note that the sign of the error is important as it helps the controller to steer the
system towards the desired state. It is defined by a single gain Kp.

u(k + 1) = Kp × e(k) = Kp × (yref − y(k)) (1.1)

where u is the value to apply to the knob, y the value of the sensor, and yref the
reference value.

The issue of the P controller is its imprecision. When designing a P controller,
the experimenter must deal with some trade-off between all the desired closed-
loop properties (stability, overshoot, settling time, precision, etc.). Increasing the
precision might come at the cost to increase the maximum overshoot and increase
settling time. In practice, P controllers are not often used due to these trade-offs.

Proportional-Integral Controller

One solution to improve the imprecision of the P controller is to add an Integral
term on the past errors. The role of the integral term is to compensate the past
errors and thus cancel out the steady state error. The integral part of the controller
is parametrized by a gain noted Ki.

u(k + 1) = Kp × e(k) + Ki ×
k∑

j=0
e(j) (1.2)

The PI controller is the most popular one as it remains simple but offers good
guarantees.

Proportional-Integral-Derivative Controller

The P reacts on the current error, the PI also on the past error, and it is possible to
add a component to react on the future. By adding a derivative term on the error
to a PI, we get a PID controller. The idea of the derivative, is to detect changes

1.3 Control Theory 21

of trajectory. The derivative part of the controller is parametrized by a gain noted
Kd.

u(k + 1) = Kp × e(k) + Ki ×
k∑

j=0
e(j) + Kd × e(k) − e(k − 1)

∆t
(1.3)

When a system is noisy, the computation of the derivative can lead to undesired
behavior. A solution would be to add a filter after the sensor to smooth out the
value and thus compute the derivative. But this defeats the purpose of the derivative
term as the filter will slow down the reaction to the changes in trajectory. Thus, in
practice, the derivative term is rarely used.

1.3.5 Trustable properties of the closed-loop system

After implementing the controller on the system, one should validate experimentally
its closed-loop behavior compared to the expected ones of the design phase. This
usually requires performing experiments where a set-point is given to the controller,
and then observe its behavior.

Take away 1.3: Control Theory

Control Theory provides clear methodologies which yield controllers with
proven guarantees for exact models, and trustable behavior for inexact ones.
These controllers can also be robust to disturbances, and converge to the
desired state within a desired time.

1.4 The CiGri Middleware & its need for regulation

This section gives more details about CiGri, the middleware of interest in this
thesis.

1.4.1 The Gricad Computing Center

The Gricad computing center2 provides computing and storing infrastructures to the
researchers of the region of Grenoble, France. The center is composed of several

2https://gricad.univ-grenoble-alpes.fr

22 Chapter 1 Discussion & State-of-the-Art

https://gricad.univ-grenoble-alpes.fr

computing clusters, each with a focus (e.g., luke for data processing, froggy for
HPC, or dahu for HPCDA3). These clusters are linked together to form a computing
grid. This grid is also impacted by the issue of unused resources explained above.

1.4.2 The CiGri middleware

CiGri [GRC07; oar23a] is a computing grid middleware set up in the Gricad comput-
ing center. It interacts with the OAR schedulers [Cap+05; oar23b] of each cluster.
The goal of CiGri is to use the idle resources of the entire computing grid. Originally,
CiGri was designed to reduce the stress on the different RJMSs of the grid when
users had to execute large campaigns (tens of thousand of jobs or more).

Users of CiGri submit Bag-of-Tasks applications to the middleware. These applica-
tions are composed of numerous small, identical, and independent tasks making
them perfect candidates for the harvesting the idle resources. An example of such
application is Monte-Carlo simulations, where the user will execute a large batch of
random independent experiments to conclude on the aggregated results.

Once the application submitted to the middleware, CiGri will submit batches of
jobs to the clusters of the grid. The jobs are submitted to the schedulers with
the lowest priority (Best-Effort), which allows OAR to kill those Best-Effort job if a
normal/premium user needs the resources. Figure 1.5a summarizes the interaction
between CiGri and the different schedulers of the computing grid.

1.4.3 CiGri jobs

The hierarchy of CiGri jobs is as follows: a job belongs to a campaign, and a
campaign belongs to a project. From the point-of-view of CiGri, a campaign is a Bag-
of-Tasks application. One example of project is the processing of massive GPS data
for the deformation of the Earth surface [Dép+18]. There are several geographic
stations, with a lot of GPS data. The processing of each station can be grouped as a
campaign, where the processing of a subregion is a job. Chapter 2 will present in
more details the statistical characteristics CiGri jobs.

3High Performance Computing and Data Analysis

1.4 The CiGri Middleware & its need for regulation 23

OAR

Cigri

OAR

Cluster 1 Cluster 2

Compute
Nodes

Bag-of-Tasks

Local
Users

(a) Graphical representation of the system with
CiGri and the different OAR schedulers of a
computing grid.

CiGri

submit
campaign

OAR

submit n jobs

jobs still running?

Yes

jobs still running?

No

submit m jobs

(b) Graphical representation of the interaction be-
tween CiGri and a OAR scheduler.

Figure 1.5.: Interactions between CiGri and the different RJSMs of the grid.

1.4.4 The Need for Regulation

The current submission algorithm of CiGri works as a “tap”. CiGri first submits a
batch of Best-Effort jobs to the cluster scheduler, and then waits for all the submitted
jobs to terminate before submitting again. Figure 1.5b represents the sequence
diagram between CiGri and OAR. The size of the batch is defined by the simple
ad-hoc Algorithm 2.

Algorithm 2: CiGri current job submission. It submits jobs like a tap: opens the
tap and submits jobs to OAR. Then closes the tap and waits for all the jobs to be
executed. Then it opens the tap again and submits jobs. The values of rate and
increase_factor have been empirically chosen by the administrators of CiGri.
Input : rate (init. 3),

increase_factor (constant 1.5)
if no running jobs then

rate = min(rate × increase_factor, 100);
submit rate jobs;

else
submit 0 job;

One can think of scenarios where such a submission algorithm can lead to both the
idling of resources or the unnecessary killing of Best-Effort jobs. For example, we can
think of a situation where there are a lot of idle resources on the cluster, but a single
job from the previous submission is still running and thus CiGri will not submit new
jobs, as it must wait for this last job to terminate.

24 Chapter 1 Discussion & State-of-the-Art

Take away 1.4

The harvesting capabilities of CiGri can be improved by integrating feedback
mechanism in its decision process.

We believe that the utilization of the system can be improved by introducing feedback
mechanism to the submission decision process. In particular, we think that using
an Autonomic Computing [KC03] point-of-view coupled with tools from Control-
Theory can yield an improvement in the total utilization of the platform. In this
Thesis, we will focus on two regulation problems of CiGri.

Overload of the file-system

One regulation problem arises when considering the file-system of the cluster. As
CiGri jobs are mostly short, and that no useful job does not either read or write to
the file-system, then having too many CiGri jobs running can lead to an overload
and a potential collapse of the distributed file-system. Such a problem is not taken
into account in OAR for the scheduling of job, but could be with solutions such as
[JPV23]. However, the performance of I/O-aware scheduling techniques are not
yet satisfactory, and are not being implemented in production. They usually need
either instrumentation with Darshan [Car+11; Car+09] for example, or guesses
from the users. Previous work has been done in [Yab+19] by implementing a
Model-Predictive controller, but the complexity of the solution, errors and scale of
the experimental setup (10 nodes) yield a model that did not scale correctly. Hence,
there is the need to keep exploring different control-based approaches.

Avoid loss of computing power from killing low priority jobs

In the case where we do not consider the distributed file-system of the cluster, one
can think that using the all the resources of the cluster is easy and that CiGri “just”
needs to keep enough jobs in the waiting queue of OAR to fill the entire cluster
if available. Even if this represents a regulation problem of its own (addressed
in [Sta+18]), it only considered idle resources to be wasted computing power.
However, killed CiGri jobs also represent wasted computed power as CiGri jobs do
not use check pointing techniques. The campaigns submitted by the users contain a
given work to be executed, and will not be completed until all the work has been
done. Thus, getting CiGri jobs killed is also counterproductive.

1.4 The CiGri Middleware & its need for regulation 25

Take away 1.5: Limitations of CiGri

CiGri is able to harvest idle resources of a set of clusters, but does not take
into account the state/load of the clusters. Applying Autonomic Computing
with Control Theory tools could improve the resources’ utilization.

1.5 Hypotheses of this thesis

In this work, we make the following hypotheses:

There is only one cluster in the grid This hypothesis allows us to focus on a single
cluster. The generalization to several clusters can be done by considering one
autonomic controller per cluster. An interesting path to consider would be the affinity
between CiGri campaigns and the different clusters of the grid, with potentially
similar techniques as in [Cas+00].

CiGri cannot kill one of its jobs We suppose that once a job is submitted by CiGri,
CiGri cannot kill it. The opposite case could lead to strange behaviors in the
considered signal dynamics.

There are no other Best-Effort jobs in the system besides CiGri’s Regular users of
the cluster can in practice also submit Best-Effort jobs. Having both Best-Effort jobs
from CiGri and regular users could lead to some hidden competition for the idle
resources, and introduce noise in the signals. As a first step, we consider that regular
users cannot submit Best-Effort jobs.

The total number of resources in the cluster is constant We do not take into ac-
count the variation of the availability of the nodes. Meaning that no node are
removed or added to the set of available nodes. Note that if we can have a dynamic
sensor of the number of available resources in the cluster, the remaining of this
thesis should be easily adaptable.

26 Chapter 1 Discussion & State-of-the-Art

1.6 Conclusion & Research Questions

HPC systems are not making use of all their resources. This is due to the rigid
nature of the jobs. The idle computing power can be harvested by executing smaller
and interruptible jobs. However, those jobs can introduce perturbations in the
system and degrade the performances of the premium users jobs. We believe that the
harvesting of idle resources represents a regulation problem which can be tackled via
an Autonomic Computing approach. To provide a runtime behavior with guarantees,
we think that using tools and methods from Control Theory will help in terms of
performance and adoption. The CiGri middleware represents a good framework to
investigate these ideas and methods.

The remaining of this Part presents several autonomic feedback loops in the CiGri mid-
dleware to harvest the idle resources of an HPC cluster while considering the degra-
dation of premium users’ jobs performance. Chapters of this Part are articulated by
the following research questions (RQ):

• RQ1: Can we characterize the CiGri jobs? How many jobs are in a campaign?
How long is their execution time?

• RQ2: Can we design a controller with the methodology of Control Theory to
harvest the idle computing resources of a cluster while regulating the load of a
distributed file-system despite disturbances and unpredictability?

• RQ3: Controllers are usually tightly tuned for a specific system. To what extent
can we plug a controller designed on a system A, on a system B?

• RQ4: Can a controller in CiGri reduce the computing power lost due to
both idle resources and the killing of low priority jobs with some internal
decision-making information from the scheduler?

A statistical study of the CiGri jobs from the last 10 years exploring RQ1 is presented
in Chapter 2. The RQ2 will be addressed in Chapter 3 with the implementation
of a Proportional-Integral controller following the methodology of Control Theory.
Chapter 4 investigates RQ3 by comparing the controller defined in Chapter 3 and
two others types of controllers on their design cost and performance. We present a
first step for answering RQ4 in Chapter 5, and conclude Part I in Chapter 6.

1.6 Conclusion & Research Questions 27

Analyzing the characteristics
of CiGri jobs

2

This chapter is based on [GRR22a] published at ComPAS 2022 with Olivier Richard
and Eric Rutten. In this Chapter, we study the characteristics of the Bag-of-Tasks ap-
plications executed by CiGri on the Gricad computing center. The objective is to
characterize such applications to be able to generated realistic synthetic CiGri work-
loads for the study of our controllers presented in the following chapters. This
study relies on the CiGri jobs executed on the Gricad mesocenter between January
2013 and April 2023. The datasets as well as the analysis scripts are available on
Zenodo [GRR22b].

2.1 Global Study of the CiGri Jobs

In this section, we are interested in the global characteristics of the CiGri jobs.
Figure 2.1 shows the empirical cumulative distribution function (ecdf) for the
execution times of the CiGri jobs, as well as the Bag-of-Tasks jobs from the DAS2 grid.
DAS2 [DAS] is the second generation of computing grids for Dutch universities. This
is the only available workload containing explicit Bag-of-Tasks applications that we
are aware of. Table 2.1 shows a side-to-side comparison of execution time metrics
between the two considered computing grids. Globally, the execution times of the
Bag-of-Tasks jobs executed on the Gricad center are longer than on DAS2. Indeed,
half of the jobs on DAS2 last less than 30 seconds, whereas half of the jobs on
Gricad last less than a minute.
The longest job on DAS2 runs for a few hours and the longest job for Gricad lasts
several days. This difference could be explained by the usage of the grid by the
users, the type of jobs, the number of available machines, etc.

Take away 2.1

Half of the CiGri jobs last less than a minute.

29

Gricad

DAS2

0.00

0.25

0.50

0.75

1.00

1s 10s 1m 10m 1h 10h 1d 10d
Execution times of BoT jobs

P
ro

po
rt

io
n

for the Gricad and DAS2 grids

Cumulative distribution function of BoT jobs exec times

Figure 2.1.: Empirical Cumulative Distribution Function (ecdf) for the execution times of
the Bag-of-Tasks jobs executed on the grids Gricad and DAS2. Globally, the
Bag-of-Tasks jobs executed on the Gricad center are longer than on DAS2.

Metrics
Computing Grids

Gricad DAS2

Number of BoT jobs ≃ 4.4 × 107 ≃ 105

Number of clusters 8 5

Minimum texec 1s 1s
Average texec 12m 43s 3m 51s
Maximum texec 9d 1h 27m 10h

Median texec 1m 13s 24s
Quantile 75 % texec 5m 25s 2m 51s
Quantile 95 % texec 48m 16s 15m 1s
Quantile 99 % texec 2h 49m 13s 43m 35s

Table 2.1.: Table summarazing the dataset. texec represents the execution times of the
Bag-of-Tasks jobs from the two computing grids Gricad and DAS2.

30 Chapter 2 Analyzing the characteristics of CiGri jobs

1e+01

1e+03

1e+05

1e+07

13
−3
13

−4
14

−1
14

−2
14

−3
14

−4
15

−1
15

−2
15

−3
15

−4
16

−1
16

−2
16

−3
16

−4
17

−1
17

−2
17

−3
17

−4
18

−1
18

−2
18

−3
18

−4
19

−1
19

−2
19

−3
19

−4
20

−1
20

−2
20

−3
20

−4
21

−1
21

−2
21

−3
21

−4
22

−1
22

−2
22

−3
22

−4
23

−1
23

−2

Year−Quarter

N
um

be
r

of
 jo

bs
 (

lo
g)

Evolution of the number of CiGri jobs executed by Quarter

Figure 2.2.: Quarterly evolution of the number of Bag-of-Tasks jobs executed by CiGri on
the Gricad mesocenter. Every quarter, there are at least 100000 jobs being
executed, and in average around a million jobs.

Figure 2.1 shows the aggregated distributions during the last 10 years. The evolution
during the years of the number of jobs executed by CiGri is depicted in Figure 2.2.
We can see that there are at least 100000 jobs executed every quarter and often
around a million Bag-of-Tasks jobs. We do not observe any trend either in increase
or decrease of usage of CiGri.

Take away 2.2

In average, a million of CiGri jobs are being executed every quarter.

Figure 2.3 depicts the evolution of the mean and median execution times of the jobs
executed per quarters of year. The median execution time is in the order of a few
minutes, whereas the mean execution time is more in the order of dozen minutes
or one hour. We observe variations in the two metrics, which hints for changes in
usage of CiGri. But, as seen on Figure 2.2, the number of jobs does not vary much,
which indicates that the execution time of the jobs executed varies.

To understand the reason of this change of behavior through the years, let us look
at the projects executed. We remind the reader that a project contains campaigns
which themselves contain jobs. Campaigns from the same project have similar
behavior (number of jobs and execution times). Figure 2.4 shows the evolution
of the distribution of the job execution times per quarter. We can see that there
are often several modes of distributions. These modes correspond to the dominant
usage of jobs from the same projects. For example, from the last quarter of 2019
(19-4) to the third quarter of 2022 (22-3) we can see that there is always a mode of
distribution around one minute.

2.1 Global Study of the CiGri Jobs 31

1s

10s

1m

10m

1h

13
−3
13

−4
14

−1
14

−2
14

−3
14

−4
15

−1
15

−2
15

−3
15

−4
16

−1
16

−2
16

−3
16

−4
17

−1
17

−2
17

−3
17

−4
18

−1
18

−2
18

−3
18

−4
19

−1
19

−2
19

−3
19

−4
20

−1
20

−2
20

−3
20

−4
21

−1
21

−2
21

−3
21

−4
22

−1
22

−2
22

−3
22

−4
23

−1
23

−2

Jo
b

ex
ec

ut
io

n
tim

es

Mean

Median

Evolution of the CiGri job execution times by Quarter

Figure 2.3.: Quarterly evolution of the mean and median execution times of the Bag-of-Tasks
jobs executed by CiGri on the Gricad mesocenter. The median execution time
is in the order of a few minutes, whereas the mean execution time is more in
the order of dozen minutes or one hour.

Figure 2.5 shows the proportion of the Bag-of-Tasks jobs executed by quarter which
belonging to given projects. It shows also the proportion of work (i.e., total execution
time times the number of machine used) for the CiGri projects. We can see that
there is often a project submitting the majority of jobs executed for a given quarter.
For example, during the years 2020 and 2021, the project biggnss was responsible
for the majority of the Bag-of-Tasks jobs executed. However, it is noteworthy that
the project having the majority of jobs executed during a period, is not necessary
the one that consumed the most resources (work). For the same period, between
2020 and 2021, the biggnss project does not have the majority of the CiGri jobs
executed during this period (quarter 4 of 2020 for example). Note that we can now
indeed confirm that from 19-4 to 22-3, the same project (biggnss in this case) had
the majority of jobs being executed.

Take away 2.3

The project with the most jobs executed is not always the one doing the most
work. This hints that there are different "shapes" of CiGri campaigns: a lot of
small jobs or fewer jobs but longer.

2.2 Study of the CiGri Projects

Let us now focus on the distribution of execution times among the projects. Fig-
ure 2.6 depicts the distribution of the execution times of the 10 CiGri projects with

32 Chapter 2 Analyzing the characteristics of CiGri jobs

22−3 22−4 23−1 23−2

21−3 21−4 22−1 22−2

20−3 20−4 21−1 21−2

19−3 19−4 20−1 20−2

18−3 18−4 19−1 19−2

17−3 17−4 18−1 18−2

16−3 16−4 17−1 17−2

15−3 15−4 16−1 16−2

14−3 14−4 15−1 15−2

13−3 13−4 14−1 14−2

1s 10s 1m 10m 1h 10h 1s 10s 1m 10m 1h 10h 1s 10s 1m 10m 1h 10h 1s 10s 1m 10m 1h 10h

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Exec times (log)

N
or

m
al

iz
ed

 n
um

be
r

of
 e

xe
cu

te
d

jo
bs

Median Mean

Distribution of the CiGri job execution times by Quarter

Figure 2.4.: Distribution of the execution times per quarter. We can see the dominant usage
of CiGri by some project. From 19-4 to 22-3, most of the jobs last around 1
minutes, which hints that most of the jobs come from the same project.

2.2 Study of the CiGri Projects 33

Proportion of work done [%]

Proportion of executed jobs [%]

13
−3
13

−4
14

−1
14

−2
14

−3
14

−4
15

−1
15

−2
15

−3
15

−4
16

−1
16

−2
16

−3
16

−4
17

−1
17

−2
17

−3
17

−4
18

−1
18

−2
18

−3
18

−4
19

−1
19

−2
19

−3
19

−4
20

−1
20

−2
20

−3
20

−4
21

−1
21

−2
21

−3
21

−4
22

−1
22

−2
22

−3
22

−4
23

−1
23

−2

0

25

50

75

100

0

25

50

75

100

Year−Quarter

Projects

Others

e2vp

braess−dynam

teembio

sdmtk

calibrationabc

droite

biggnss

seiscope

nextgen

phchmystuff

admin

pr−mdcp

formation−ced−calcul

verce

simsert

atlas_diphox

whisper

imvort

eventdetection

salvador

imagin

resolve

f−image

Figure 2.5.: Evolution of the proportion of Bag-of-Tasks jobs executed by CiGri on the Gricad
computing center over the years, as well as the evolution of the work (execution
time times the number of resources) of CiGri jobs. We observe that there is
often one project which has the majority of the jobs executed during a quarter.
However, this project does not necessarily perform the most work. For example,
for the year 2020, the biggnss project has the majority of jobs executed, but
not the majority of executed work.

34 Chapter 2 Analyzing the characteristics of CiGri jobs

f−image braess−dynam droite simsert pr−mdcp

biggnss teembio nextgen calibrationabc sdmtk

1s 10s1m10m1h 10h 10s 1m 10m 1h 10s 1m 10m 1h 1s 10s1m10m1h 10h 10s 1m 10m

1s 10s 1m 10m 1h 10h 1s 10s1m 10m1h 10h 1s 10s1m10m1h 10h 1s 10s1m 10m1h 10h 1s 10s 1m 10m 1h
0

50000

100000

150000

0e+00

1e+05

2e+05

0e+00

1e+05

2e+05

3e+05

4e+05

0e+00

5e+04

1e+05

0e+00

2e+05

4e+05

0e+00

1e+05

2e+05

0

250000

500000

750000

1000000

0e+00

1e+05

2e+05

3e+05

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

5e+04

1e+05

Execution time [s] (log)

C
ou

nt

Cluster
ceciccluster

dahu

fontaine

fostino

froggy

gofree

luke

r2d2

Histogram of the job exec times for the 10 projects with the most jobs

Figure 2.6.: Distribution of the execution times for the 10 CiGri projects with the most
jobs. We observe that most projects have a clear unique mode of distribution.
This mode can be very wide, like for f-image and simsert, or thin, like for
biggnss and pr-mdcp.

the most jobs. We can see that for most of the project, there is one clear mode for
the execution time as well as a heavy distribution tail. The projects like teembio
and sdmtk have two modes for the execution times. In this case, there are several
types of campaigns in the same project, one for each mode. The width of the mode
is also different from project to project. For example, biggnss and pr-mdcp have a
very thin mode of a few minutes, where projects like f-image and simsert have a
range from a few seconds to a couple of hours. Note that as the jobs are executed on
a computing grid composed of several clusters, we also plot the clusters on which
the jobs have been executed.

To model the distributions showed in Figure 2.6, we perform a goodness of fit test with
the following long-tail distributions: Normale, Log-Normale, Frechet, Gamma and
Weibull. We consider only the 10 projects with the most jobs, and follow the
methodology presented in [Jav+09; BNW03]. For each campaign of these projects,
we randomly chose 50 jobs. As the behavior of the jobs can vary for different clusters
of the computing grid, we will consider the distributions per pair (project, cluster).
For each of these pairs, and for each of the selected long-tail distributions, we
perform a Cramer-von Mises test [Dar57]. This test computes the distance between
the empirical distribution function of the execution times of the selected jobs and the
empirical distribution function of the selected distributions. The smaller the distance,
the more likely the execution times distribution follows the tested distribution.
As the Cramer-von Mises test generates randomly the empirical distribution function

2.2 Study of the CiGri Projects 35

50 %: < 406 s

75 %: < 1816 s

95 %: < 24239 s

99 %: < 51839 s

M
e

a
n

Mean: 4329 s

0.00

0.25

0.50

0.75

1.00

1s 10s 1m 10m 1h 10h
Mean job execution times by campaign [s]

P
ro

po
rt

io
n

Cumulative distribution function of job mean exec. times

Figure 2.7.: Empirical cumulative distribution function of the mean execution time of a
campaign. The average mean duration is around 1 hour, but the median mean
duration is around 10 minutes.

of the selected distributions, we repeat this process 30 times and take the mean of
the distances. Globally, the distributions which fit the best the execution times are
the laws Log-Normale, Frechet and Weibull. The quality of the fitting for these laws is
near identical. This concurs with the result of [IE10; Ios+08] for other computing
grids.

Take away 2.4

Different projects have different distribution of execution times. Most project
have a clearly defined unique mode and a long tail. The laws Log-Normale,
Frechet, and Weibull fit the best the distributions of execution times.

2.3 Study of the CiGri Campaigns

Figures 2.7 and 2.8 show respectively the empirical cumulative distribution function
for the mean job duration and the number of jobs in a campaign. Half of the
campaigns have less than 50 jobs, and half of the campaigns have a mean execution
time in the order of the dozen of minutes.

Take away 2.5

The average campaign has around 2500 jobs with a mean execution time of 1
hour and 15 minutes.

36 Chapter 2 Analyzing the characteristics of CiGri jobs

50 %: < 32

75 %: < 269

95 %: < 6499

99 %: < 63188

M
e

a
n

Mean: 2541

0.00

0.25

0.50

0.75

1.00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05
Number of jobs per campaign

P
ro

po
rt

io
n

Cumulative distribution function of the number of jobs/campaign

Figure 2.8.: Empirical cumulative distribution function of the number of jobs per campaign.
Half of the campaigns have less than 50 jobs, but there are in average 2500
jobs per campaign.

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

1h 10h 1d 2d 3d
Mean execution times

N
um

be
r

of
 jo

bs
 p

er
 c

am
pa

ig
n

(lo
g)

Relationship between mean exec. time and number of jobs per campaign

Figure 2.9.: Relation between the number of jobs in a campaign and the mean duration of
its jobs. We observe that large campaigns have short jobs, and small campaigns
have long-lasting jobs.

2.3 Study of the CiGri Campaigns 37

Figure 2.9 plots the relation between the mean execution times of the jobs in a
campaign and the number of jobs in this campaign. We observe that large campaigns
have short jobs, and small campaigns have long-lasting jobs.

Take away 2.6

Large campaigns have short jobs, and small campaigns have long-lasting jobs.

2.4 Job and Campaign model used in this Thesis

In this thesis, we will represent a campaign as a set of jobs having the exact same
theoretical execution time. In practice, we implement a job using the sleep com-
mand with the desired execution time. Choosing this job representation, instead of
executing real Bag-of-Tasks applications, allows us to better control the characteristics
of the campaign and create all sorts of synthetic scenarios.

Some work remains to be done to be able to generate realistic CiGri campaigns.
The realistic aspect might be tricky as there are several dimensions to a campaign
(e.g., number of jobs, job execution times, distribution of execution times), each
with their variability. The work done in [CL22] for MPI applications might give a
good example and starting point.

There are still some open questions. In particular, the origin of the long-tail of the
execution time distribution is still unknown. We suspect that it can come from the
overhead of the scheduler to start and stop the jobs and/or from the load of the
cluster (e.g., file-system, network) at the moment of the execution.

38 Chapter 2 Analyzing the characteristics of CiGri jobs

A Proportional-Integral
Controller to harvest idle
resources

3

In this Chapter we implement a Proportional-Integral (PI) controller in CiGri to
regulate the load of a distributed file-system. As the target audience of this thesis is
mainly computer scientists with limited knowledge of Control Theory, this Chapter
aims to present the methodology in a pedagogical fashion. The reader can also
go through a more hands-on introduction to Control Theory with our tutorial to
introduce Control Theory to computer scientists: [Gui+b].

3.1 Goals, Control Objectives, and Sensors

In this Chapter, we are focusing on the research question RQ2 seen in Section 1.6.
We want to reduce the overhead on the I/O operations of the regular users of the
cluster due to the CiGri jobs. In other words, we want to regulate the impact of the
CiGri jobs on the shared file-system of a cluster.

3.1.1 Sensor on the File-System

The overhead on the I/O operations cannot directly be observed easily. One way
would be to submit a specific job periodically and measure its performance to have
an idea of the load of the file-system. But this would mean submitting an extra job,
which might stay in the waiting queue and introduce some delay in the measurement.
Moreover, such a job will also use nodes on the cluster. We instead will measure
indirectly this overhead on I/O operations by using a sensor on the load of the
file-server (i.e., the load of the machine hosting the file-system). We decided to use
the loadavg metric [FZ87], present on every UNIX system. This metric has some
interesting properties. First, it is already well known by system administrators. This
means that they know what values of this metric are acceptable on their system. It
is also available on every Unix machine under /proc/loadavg. The value of this

39

sensor is updated every 5 seconds which is fast enough compared to the duration
of most HPC jobs, see Chapter 2. This metric also carries some inertia due to its
definition with an exponential filter:

Qi = Qi−1 ×
(
1 − e−T

)
+ qi × e−T , Q0 = 0 (3.1)

where, Qi is the value of the loadavg at iteration i and qi is the number of processes
running or waiting for the disk at iteration i. There exists several variations of this
metric with different factor of filtering (T). Those factors correspond to the period
of consideration for the metric.

$ cat /proc/loadavg
0.62 0.63 0.58 1/1805 49884

The first three values returned correspond respectively to the load averaged over
one minute, five minutes, and fifteen minutes.
The longer the period, the smoother the value of the loadavg, but also the slower
the response of the sensor to a variation. In the following, we consider only the first
value of /proc/loadavg, i.e., the load averaged on the last minute.

This variation of the loadavg metric can however be noisy. Indeed, as this is
a system-wide metric, it might capture behaviors that do not belong to the file-
system. Moreover, this metric works nicely for a distributed file-system such as
NFS, where there is a single machine hosting the file-system on the server side.
In the case of parallel file-system, where there are several I/O nodes, meta-data
nodes, etc., it might be more difficult to use this exact metric. One can average
the different loadavg values of the different nodes belonging to the file-system, but
the aggregated metric would probably lose most of its meaning. In our case, we
are interested in small to medium computing centers, where using NFS as a shared
file-system is a perfectly acceptable option. The implementation of this sensor is
done by opening a ssh connection from the machine hosting CiGri to the file-system
server and periodically reading the content of /proc/loadavg:

ssh fileserver ’while true; do L=$(cat /proc/loadavg);\
D=$(date +%s);\
echo -e $D $L;\
sleep 5;\
done’ >> /tmp/loadavg_storage_server &

40 Chapter 3 A Proportional-Integral Controller to harvest idle resources

In the case of NFS, the configuration defines a number of workers that can manage
I/O requests in parallel (8 by default). Each worker is in its own process, which
makes it easy to observe with loadavg. Hence, the maximum acceptable load on the
file-server is a value of loadavg equal to the number of NFS workers. Note that the
metric can reach an even greater value, but it will not be because of the file-system
load. The minimum load is zero, by definition of the metric.

3.1.2 Sensors on the Cluster

Only looking at the load of the file-system might lead to some degenerate cases for
the closed-loop system. Imagine the situation where the CiGri jobs perform a very
small quantity of I/O, and that even if all the resources are being used, the load of
the file-server is below the reference value. Then the controller will perceive that it
is possible to keep increasing the number of jobs submitted to reach the reference
value. However, as the cluster is already full, the jobs will go in the waiting queue,
and the only action of the controller is to fill faster and faster the waiting queue
of OAR. Hence, we also need a sensor on the state of the cluster to avoid such
cases. Fortunately, OAR offers an API where we can extract, directly or indirectly,
the number of jobs in waiting queue or currently running.

Note that in order to be reactive to potential overload of the file-system, CiGri cannot
afford to have a lot of jobs in the waiting queue of OAR. Indeed, as OAR has no
notion of file-system load, if there are idle resources, and (fitting) waiting jobs, those
jobs will be executed. The desired value for this sensor would be close to zero.

Take away 3.1: CiGri sensors

To sense the load of the distributed file-system, we use the loadavg metric of
the machine hosting the file-system. For information about the state of the
cluster, we use the OAR API.

3.2 Actuators

At first glance, the only actuator, or knob, at CiGri’s disposal to impact the load of
the file-system is the amount of jobs it submits at every iteration (every 30 seconds).
However, we can also consider which jobs are in the submission. Mixing jobs from
different campaigns in a single submission could lead to a better control, where the

3.2 Actuators 41

CiGri

OAR

I/O

File-Sys.

Submit

Schedule

Cluster

Local
Users

Campaign

Task

Controller

loadavg

OAR Sensors

Tap

Figure 3.1.: Graphical representation of the feedback loop in CiGri.

additional knob is the proportion of jobs from each campaign. In this thesis, we
consider only the number of jobs submitted by CiGri at each iteration. The work
done in my Master Thesis [Gui20; Gui+21a] explores the proportion of jobs from
two different campaigns to improve the control of the load of the file-server, and
will be summarized in Section 3.7.2. Figure 3.1 summarizes the definition of the
loop in CiGri with the sensors, and the actuator.

3.3 Model of the system

As we do not have any a priori knowledge of what would be a model of the system,
we perform identification experiments. The identification aims at finding the relation
governing our system. We intend to determine an expression of the following form:

y(k + 1) =
k∑

i=0
aiy(k − i) +

k∑
j=0

bju(k − j) (3.2)

Where:

• y(k): output of the system at step k. In our case, the load of the file-system

• u(k): input to the system at step k. In our case, the number of jobs sent from
CiGri to OAR

• ai, bj ∈ R: coefficients of the model

42 Chapter 3 A Proportional-Integral Controller to harvest idle resources

Equation 3.2 represents a linear model. Such a model is simple, but does not
necessary fit all the systems. In some cases, a change of variable is needed to fall
back on a linear model. The model does not need to be perfect to have a good
control. An approximated model which captures the behavior of the system might
be enough in some cases.

3.3.1 Identification Experiments

To find the coefficients (ai, bj), we will study the system in open loop. This means
without feedback from the system. We change the input and observe the variation in
the output. We submit steps of number of jobs and see the impact on the load of the
file-server. By step of the number of jobs we mean that at time k, ∀k < kstep, u(k) =
u0 and ∀k ≥ kstep, u(k) = ustep, with ustep ≫ u0. We then look at the behavior of
the file-server load during these steps to extract the coefficients of the model.

In the following, we consider 4 different sizes of files: 25, 50, 75 and 100 MBytes.
For each size of file, we have 6 steps of values: 1, 10, 20, 30, 40 and 50 concurrent
jobs. For each step, we execute 120 consecutive identical submissions of the step.
Note that we will only consider the writing I/O operation as it is the most costly.

Figure 3.2 represents the results the identification phase. Figure 3.2a corresponds
to the time to write the files, and Figure 3.2b depicts the file-server load, with the
black dashed line representing its total number of NFS workers. We observe that
increasing the number of simultaneous write requests increases the time to process
these requests. The load of the file-server follows the same pattern.

Take away 3.2

The loadavg metric seems to adequately represent the perturbations of the
file-server and the overhead on the I/O operations.

Note that for a submission of 50 write requests of 100 MBytes, the processing time
skyrockets, and the approximation of the system having a linear behavior is no
longer valid. We see that for such a submission, the load of the file-server reached
the dashed line, representing the number of workers in the system. In this situation,
the file-system is overloaded and cannot deal with all the requests. This motivates
our goal to regulate the load in order not to reach this limit. Thus, the loadavg
metric also provides a way to detect such an overload.

3.3 Model of the system 43

(a) Time for the NFS file-system to process concurrent write requests (colors) of different
sizes (facets).

(b) Load of the machine hosting the NFS file-system through the loadavg metric.

Figure 3.2.: Identification experiments. For the different file sizes, we write n concurrent
files onto the NFS file-system and record the time to process each request
(Figure 3.2a) and the load of the machine hosting the file-system (Figure 3.2b).
The dashed line on Figure 3.2b represents the theoretical maximum load of
that the NFS server can manage based on its number of workers. We can
see that writing 50 concurrent 100Mbytes files overloads the file-system, the
processing time explodes and the load is at the theoretical maximum.

44 Chapter 3 A Proportional-Integral Controller to harvest idle resources

0

100

200

0

10

20

0

5

10

15

25 MBytes Files 50 MBytes Files 75 MBytes Files 100 MBytes Files

1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50

0.0

2.5

5.0

7.5

P
ro

ce
ss

in
g

T
im

e
[s

]

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

25 MBytes Files 50 MBytes Files 75 MBytes Files 100 MBytes Files

1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50

0

2

4

6

8

Number of Jobs in the Submission

F
ile

se
rv

er
 L

oa
d

Processing Time and Fileserver Load for different Submissions (number of jobs and filesize)

Figure 3.3.: Processing time (top) and the file-server load (bottom) for different submissions
in number of jobs and I/O loads. It represents the identification phase. We
vary the quantity of I/O (columns) and the number of simultaneous write
requests/jobs in x-axis. We observe that the loadavg sensor captures the
(over)load of the file-system.

3.3 Model of the system 45

Figure 3.3 is another representation of Figure 3.2 without the temporal dynamic of
the system, which will be helpful for modelling the steady-state components of the
model of our system.

3.3.2 Modelling

From the data gathered during the identification experiments in Figure 3.2, we
model the relation between the value of the loadavg (y), the I/O load (f), and the
number of jobs (u). We consider the upper bound of the loadavg in the modelling
to be conservative. By fitting a linear regression on the open-loop data, we get the
following relation:

y = α + β1f + β2u + γf × u (3.3)

To design the controller for our system, we need a relation as showed in Equation
3.2. As a first approach, we suppose that we are looking for a first order system. The
order of the system corresponds to the degree of dependence of y(k + 1) to previous
values of y (first order: y(k), second order: y(k) and y(k − 1), etc.). First order
systems have a limited set of behaviors, which makes their study easier. Higher order
systems have more than one degree of dependence, which increases their complexity
but also their realism. But they can be approximated to a first order system with
some hypothesis on their poles [Hel+04].

In our case, this means that ∀i, j > 0, ai = 0, bj = 0 in Equation 3.2. We are thus
looking for the following relation between the input (u) and the output (y) at step
k:

y(k + 1) = ay(k) + bu(k) (3.4)

By definition of the loadavg metric (Equation 3.1 and [FZ87]), we have a =
exp

(
− 5

60

)
. The loadavg value updates itself every 5 seconds, faster than a period

of CiGri (∆t = 30s). Thus,

a =
(

exp
(

− 5
60

))∆t
5

(3.5)

46 Chapter 3 A Proportional-Integral Controller to harvest idle resources

25 MBytes Files 50 MBytes Files 75 MBytes Files 100 MBytes Files

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

0.000

0.025

0.050

0.075

0.100

Number of Jobs in the Submission

E
st

im
at

io
n

of
 b

Estimation of the b parameter from the model

Figure 3.4.: Estimation of the parameter b for the model of the system. The bars correspond
to the estimation for a number of jobs (u) and a I/O load (f). The points
represent the value of the estimation when considering u = +∞. We observe
that the estimations converge towards these limits values. We will take these
limits as values for b.

In order to find the value of b, we must look at the behavior of our system in steady
state, meaning when the system has converged. In a steady state (ss), we have the
following relation:

yss = a × yss + b × uss =⇒ b = yss (1 − a)
uss

(3.6)

Figure 3.4 depicts the estimation of b for the values of uss and yss from the identifi-
cation in Figure 3.2.

From Equation 3.6 and Equation 3.3 we get:

lim
u→+∞

b = lim
u→+∞

(α + β1f + β2u + γf × u) (1 − a)
u

= (β2 + γf) × (1 − a)
(3.7)

This means that the value of b depends on the file size of the current jobs (f). We
also plot this limit value of b on Figure 3.4 as points. We can see that the estimations
of b converge to this limit value.

3.3 Model of the system 47

Figure 3.5.: Load of the NFS file-system for random steps in the number of concurrent
writes. We observe that for 100Mbytes and 49 concurrent writes, the file-system
collapses and fails to continue, which shows the importance of not overloading
the distributed file-system of a cluster.

To sum up, we pick the model parameters to be:

a =
(

exp
(

− 5
60

))∆t
5

= 0.6065307
b = (β2 + γf) × (1 − a)

= 0.017761 + 6.4273488 × 10−4 × f

(3.8)

We evaluate our model by executing random steps of concurrent writes on the NFS
file-system, and log the loadavg of the NFS server. Results can be seen on Figure 3.5.
We observe that for 100Mbytes and 49 concurrent writes, the file-system collapses
and fails to continue, which shows the importance of not overloading the distributed
file-system of a cluster.

48 Chapter 3 A Proportional-Integral Controller to harvest idle resources

Take away 3.3

We performed identification experiments to find a linear model of the first
order, linking the jobs submitted by CiGri to the load of the file-system
(Equations 3.4 and 3.8).

3.4 Design of the Controller

We assumed in Section 3.3.2 that our system is a first order. We want to design a
Proportional-Integral (PI) controller to be able to regulate the load of the file-system
with precision and robustness. For a PI, there are two gains to set up:

• Kp is the proportional gain of the controller

• Ki is the integral gain of the controller

These gains are functions of the model of the system (Equations 3.4 and 3.8) and
two parameters that allow to choose the closed loop behavior of the system:

• ks which represents the maximum time for the closed-loop system to get to
steady state, and which gives the rapidity of the system, i.e., the time to react
to a variation

• Mp which represents the maximum overshoot allowed

From these value given by the administrators of the system, we can derive the gains
for the PI controller [Hel+04].

Kp = a−r2

b

Ki = 1−2r cos θ+r2

b

(3.9)

Where:

• r = exp
(
− 4

ks

)
• θ = π log r

log Mp

3.4 Design of the Controller 49

ks

Mp

Mp: 0 Mp: 0.25 Mp: 0.5

ks: 5
ks: 10

ks: 15

5 10 15 20 5 10 15 20 5 10 15 20

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

Iterations

O
ut

pu
t V

al
ue

s

Closed loop behaviour of our system for different values of (ks, Mp)

Figure 3.6.: Impact of the ks and Mp parameters on the Closed Loop Behavior of the system.
The smaller ks, the fastest the closed-loop system will converge to the reference
value. But too small values of ks can lead to some overshooting. Mp controls
the allowed overshoot. The greater Mp, the greater the allowed overshoot.

3.5 Choice of the Closed-Loop Behavior

Figure 3.6 shows the influence of the ks and Mp parameters on the closed loop
system. We now pick the values of ks and Mp to meet with the desired behavior
and extract the gains of the controller from Equation 3.9. In our case, we want to
avoid any overshoot, and thus avoid overloading the file-system, but still have a fast
response. Hence, we will take ks = 12 and Mp = 0.

Take away 3.4

We designed a Proportional-Integral Controller from the model identified
in the Section 3.3.2. Control Theory allows us to choose the closed-loop
behavior of our system (Figure 3.6).

50 Chapter 3 A Proportional-Integral Controller to harvest idle resources

200 MBytes Files

0 2000 4000 6000

0
1
2
3
4
5
6
7
8

F
ile

se
rv

er
 L

oa
d

(y
)

200 MBytes Files

0 2000 4000 6000

0

5

10

15

Time [s]

N
um

be
r

of
 jo

bs
 (

u)

Response of the Controlled System to a Step Perturbation

Figure 3.7.: Response of the closed-loop system to a step perturbation. The Proportional-
Integral controller increases the number of jobs CiGri submits to OAR (bottom)
to get the load to the reference value (top). At t = 2000s we introduce a
step-shape perturbation resulting in an increase of the load. The controller
detects it and decreases the size of the submission to get the load back to the
reference value.

3.5 Choice of the Closed-Loop Behavior 51

Objective
0

25

50

75

100

0 200 400 600

Writing time Overhead (s)

Id
le

 r
es

ou
rc

es
 (

%
)

0 2 4 6 8
Reference Value

Cluster Usage by Writing Time of MADBench2

Figure 3.8.: Overhead on the MADBench2 I/O benchmark [Bor+07] based on the chosen
reference value for our PI controller.

3.6 Example of Perturbation

Figure 3.7 represents the response of the closed-loop system to a step perturbation.
We ask the controller to regulate the load of the fileserver around the value 6
(dashed line). At time t = 2000s, we simulate a premium user job that would
produce a disturbance on the load (dotted and dashed line). We took a step-shaped
disturbance to observe the reaction to an very abrupt change in load and then
observe the convergence to a new stable state. If the disturbance was ramp-based, it
will be easier for the controller to cope with it. We repeat this experiment several
times. Each color on Figure 3.7 represents a single experiment. We also plot the
aggregated mean behavior on these experiments with a continuous line.

We can see that the controller manages to get to the reference value. When the
disturbances start, the controllers detects the rise in load due to the step. It then
decreases the number of jobs sent to OAR to get the load back to the reference
value.

52 Chapter 3 A Proportional-Integral Controller to harvest idle resources

In Figure 3.8, we run the MADBench2 I/O benchmark [Bor+07] as a priority job
while running CiGri with the PI controller presented above. We replayed this scenario
with different reference values for the controller. We confirm that the reference
value is the key to the trade-off between the amount of resources harvested (y-axis)
and the perturbation (x-axis) on the priority applications (MADBench2 here).

3.7 Limitations and Improvements

Proportional-Integral controllers have mathematically proven properties in particular
for their convergence, robustness to disturbances, etc. But they do also have limits.
Indeed, they rely on the system model, defined in Equation 3.4. In our case, the
model depends on the jobs sent by CiGri. Hence, when a new campaign starts, the
model needs to change. In practice, we do not know the quantity of I/O per job and
thus the model. There exists ways to deal with this issue. First, we could measure
this quantity of I/O. But all HPC systems do not provide such metrics as they require
metrics collectors such as Colmet [oar23c] or DCDB [Net+19]. As CiGri campaigns
gather lots of jobs and as they have similar behaviors, we could submit a subset
of these jobs and compute an estimation of their I/Os (f in Equation 3.8). Then
we would adapt the model with this estimation and start the controller with the
newly computed gains. Or, we could perform an online estimation of the model
parameters, in particular b.

The remaining of this chapter presents some modifications of the feedback loop to
improve the behavior of the closed loop system.

3.7.1 Dynamic Reference Value

In this chapter, we showed that a PI controller was able to track correctly a reference
value for the load of the file-system. As we can see at t = 2500s on Figure 3.7, the
response time could lead to an overload of the file-system if the reference value is
too high. The choice of the reference value is thus crucial. A too low reference value
would lead to a poor harvesting of idle resources, and a high reference value would
increase the overhead on priority jobs while increasing the chances of a collapse of
the file-system due to an overload.

One approach would be to dynamically change the reference value based on the
number of premium jobs currently running on the cluster. If there are no premium
jobs, then the reference value is high to allow CiGri to harvest. If there are some

3.7 Limitations and Improvements 53

ymax yref,k ek
Controller

uk System

yk

-
++-

Disturbances

dkyprio,k

f̄

fmodel

Figure 3.9.: Feedback loop representing the control scheme with the dynamic reference
value. The current number of premium jobs (dk) is fed into a model returning
the maximum load that the premium jobs could put on the file-system. This
load is then subtracted to the maximum load for the file-system, and then is
defined as the reference value for the CiGri controller. The value of f̄ represents
a representative file size for the cluster and is chosen by the administrators
of the cluster. This information can be retrieved with Darshan [Car+11] for
example. It could be the mean or median file size, or the 95% percentile to be
more conservative.

premium jobs, then the reference value is decreased to leave more room for the
controller to react. The amount to reduce the reference value depends on how
many nodes are used by priority jobs, and prior global knowledge of the I/O load of
premium jobs.

Figure 3.9 gives an idea of the control loop. The quantity dk represents the number
of resources used by premium jobs at iteration k. fmodel is the estimated maximum
load that can be produced by all the premium jobs simultaneously. It can be found
by performing an identification experiment where, instead of having steps inputs as
previously, we have Diracs.

Figure 3.10 shows the results of this new identification experiment. For different file
sizes, we write concurrently to the distributed file-system and observe the load of
the machine hosting the file-system. We then wait for the load to reach (near) zero
and write again. From this experiment we extract a model of the maximum load
(fmodel) based on the file size and the number of concurrent writes using a linear
regression. Using this model, we can define the reference value for the load of the
file-system:

yref,k = ymax − ypriok
= ymax − max(0, ymax − fmodel(dk, f̄)) (3.10)

The value of f̄ represents a representative file size for the cluster. This information
can be retrieved with Darshan [Car+11] for example. It could be the mean or

54 Chapter 3 A Proportional-Integral Controller to harvest idle resources

Figure 3.10.: Identification experiment to model the maximum load (y-axis) that N concur-
rent writes (color) of a given size (facets) on the distributed file-system. After
performing concurrent write requests, we wait for the load of the machine
hosting the file-system to reach a near zero value before executing the next
write requests.

3.7 Limitations and Improvements 55

Load Reference

Time

Load

Submission Submission

Figure 3.11.: Submissions with jobs from single campaign

median file size, or the 95% percentile to be more conservative. The administrators
of the cluster would set the value of f̄ .

Take away 3.5

With extra information from the premium jobs, we can adapt the reference
value dynamically to reduce the risks of a collapse of the file-system.

3.7.2 Tagging I/O intensive campaigns

This section summarizes the work done during my master thesis [Gui20] and
published in [Gui+21a]. Originally, CiGri submits batches of jobs from the same
campaign to OAR. If the quantity of I/O done in each job of the same campaign is
similar, it differs between campaigns of different projects. Suppose that there are
two campaigns submitted to CiGri, one with high I/O load jobs and the other with
light I/O load jobs.

Figure 3.11 represents a situation using submissions composed of jobs from the
same campaign. If we suppose that we are able to regulate perfectly the number
of jobs submitted for the red campaign to keep the load of the cluster under the
reference load, there will be a “gap” between the actual load of the cluster and the
reference load. We could exploit this “gap” by submitting jobs that have a smaller
impact on the load (blue jobs). Figure 3.12 shows a situation where we submit a
set of jobs coming from two different campaigns to improve the cluster usage, the
number of resources used while keeping the load under the reference value.

A CiGri campaign is represented by a JSON file. We extended the definition of
this JSON file to include a boolean field to the I/O “heaviness” of the jobs of the
submitted campaign. We suppose that at any moment, there are at least one

56 Chapter 3 A Proportional-Integral Controller to harvest idle resources

Load Reference

Time

Load

Submission

Figure 3.12.: Submission with jobs from several campaigns

I/O heavy campaign and one I/O light campaign. This consideration gives us one
additional knob of action on the system: the proportion of jobs from each type of
campaign in the batch of jobs to submit to OAR.

Changing the number of jobs in the submission has a bigger impact than changing
the percentage of I/O heavy jobs in the submission. Thus, to regulate the load of the
file-system precisely, we should do these actions in the following order:

1. Change the number of jobs submitted to OAR

2. Change the percentage of I/O heavy jobs in the submission

The controller will have two modes running in exclusion. The idea could be summed
up as “big step, small step”. The controller will firstly regulate the number of jobs
sent to OAR (big step). Then, when the load of the file-system is “close” to the
reference value, the controller will regulate the proportion of I/O heavy jobs in
the submission (small step). Figure 3.13 gives a graphical representation of the
controller.

Load Reference e
e ?

Nb jobs

< T
% IO heavy

≥ T

System
Output

Load Sensor
Load

-
+

Figure 3.13.: Representation of the feedback loop for a submission with different campaigns
with different I/O loads.

3.7 Limitations and Improvements 57

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
Time

Lo
ad

Load Ref Ref − T Ref + T

Possible Evolution of the Load with a small Threshold value

(a) Situation where a too small threshold value
could lead to oscillations in the system and an
imprecision.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
Time

Lo
ad

Load Ref Ref − T Ref + T

Possible Evolution of the Load with a big Threshold value

(b) Situation where a too large threshold value
could lead to an unavoidable static error.

Figure 3.14.: Graphical representation of the potential behavior of the load if the threshold
is too small (Figure 3.14a) or too big (Figure 3.14b).

The choice of the threshold value (T in Figure 3.13) between the two modes is not
easy, but we give some guidelines below.

If T is too small, then it will be more difficult to get into the mode regulating the
percentage of I/O heavy jobs, and there might be an unavoidable static error plus
some oscillations. Figure 3.14a gives a visual representation of this situation.

If T is too large, the controller might get “stuck” in the mode regulating the percent-
age of I/O heavy jobs. This could lead to reaching a non-optimal stationary state.
Figure 3.14b gives a visual representation of this situation, where the percentage of
I/O heavy jobs reached 100% and the controller cannot get closer to the reference
value. In [Gui+21a], we choose a threshold value of 1 (T = 1) as experiments have
shown not to be too small nor too big.

Figure 3.15 depicts and example of regulation of the load of the NFS file-system by
considering I/O heavy jobs and I/O light jobs. The dashed lines on the bottom plot
represent the threshold between the two modes. The solid line is the reference value.
We can see that the controller first enters the threshold zone around 700 seconds,
and then starts regulating the percentage of I/O heavy jobs in the submission (top
plot).

58 Chapter 3 A Proportional-Integral Controller to harvest idle resources

Figure 3.15.: Example of regulation of the load of the NFS file-system by considering I/O
heavy jobs and I/O light jobs. The dashed lines on the bottom plot represent
the threshold between the two modes. The solid line is the reference value.
We can see that the controller first enters the threshold zone around 700
seconds, and then starts regulating the percentage of I/O heavy jobs in the
submission (top plot).

3.7 Limitations and Improvements 59

Experiments showed that considering I/O heavy and I/O light campaigns allows to
improve the usage of the cluster, while having slightly better control on the load of
the file-system [Gui+21a].

Take away 3.6

By considering jobs from campaigns with different I/O loads, it is possible to
improve the usage of the machines.

60 Chapter 3 A Proportional-Integral Controller to harvest idle resources

Reusability of Autonomic
Controllers for HPC Systems

4
This chapter is based on work submitted in ACM TAAS with Raphaël Bleuse, Sophie
Cerf, Bogdan Robu, Rosa Pagano, and Eric Rutten.

The controller defined in the previous chapter is tightly coupled with its underlying
system. This is due to the identification phase that creates a model of the system.
Implementing such a controller requires a control-theory background. However,
HPC system administrators are not control theory experts. And they cannot develop
on their own a new controller for every new cluster, file-systems, disks, network, in
their platform. To help with the adoption of control-theory based solutions, and with
software engineering concerns in mind, we explore in this Chapter, the reusability of
autonomic controllers using control-theory techniques with the example of CiGri as
a study case. In the following sections, we present the implementation of controllers
of different nature (PI, adaptive PI, and Model-Free Control) to regulate the same
system presented in Chapter 3, and propose a comparative framework to conclude
on their reusability. We further discuss their interdependence and known trade-offs,
from a theoretical point-of-view.

4.1 Criteria for comparison

The controllers are compared based on five criteria, each answering a specific design
or evaluation problematic:

• Nominal Performance: To what extent, and how, does the controlled system
meet its objectives, in the experimental conditions in which the controller has
been designed?

• Portability: How will the controller behave if the system varies from the nominal
version considered for design? What set of systems can the controller manage?

• Setup complexity: To what extent is the controller “plug and play”? How easy
is it to set up the controller?

61

• Support Guarantees: Is the controller design backed by a methodology
bringing behavioral guarantees? Under which hypothesis do the guarantees
hold?

• Competence required: How knowledgeable one needs to be to soundly design
the controller?

Take away 4.1

We propose 5 criteria to compare controllers: their nominal performance,
portability, setup complexity, as well as their guarantees and the competence
they require.

The next sections define in details each criterion, discuss their relevance, and propose
metrics to characterize them.

4.1.1 Nominal Performance

Definition Nominal performance characterizes the ability of the system to perform
its adaptation task. Data- and model-based controllers are inherently dependent
on the configuration and experimental conditions in which the design was done.
Usually, performance of an autonomous system is evaluated in similar conditions,
what we call nominal system. Nominal performance covers both aspects of transient,
dynamical behavior, and converged, stabilized behavior.

Metrics Classical control theory provide three metrics to characterize the dynamical
behavior of a controlled system. Note that stability is eluded here, as we suppose
all controllers are functional. Precision reflects the ability to reach the desired
target. It is measured using the static error metric, giving the distance between the
measured performance and its reference value, once the system converged. 0 is the
best value: the smaller, the better. Rapidity characterizes the speed of convergence
of the controlled system. It is measured using the response time metric, computed
as the time needed from the performance signal to reach 95% of its final value.
The smaller, the better. Quality of the signal is also considered in cases there are
oscillations in the performance signal. It can be measured via the overshoot metric,
the relative value of the highest peak of performance signal. 0 is the best value: the
smaller, the better.

62 Chapter 4 Reusability of Autonomic Controllers for HPC Systems

4.1.2 Portability

Definition When used in real conditions, the controller may have to manage a
system that does not correspond to the nominal situation. Portability captures the
ability of a controller to be applied, without or with limited modification, to a
system different from the nominal design one, and to keep adequate performance.
Two cases can be distinguished for the portability conditions. First, the variation
occurs at runtime, i.e., the system deviates from the nominal version, possibly due
to some disturbances or external events. The ability of a controller to keep good
performance in case of runtime variations of the system is to be linked with the well
studied property in Control Theory of robustness. Robust controllers are able to
reject disturbances, i.e., ensuring that the effect of the disturbance on the system
remains limited and mastered. Second, the controller may be applied to a system
with different configurations, i.e., variations occur offline, on different runs. Such
software or hardware configuration changes can be significant, for instance when
different clusters are considered. This property is rarely considered in Control Theory
for physical system, where the notion of different runs does not exist: controllers
continuously monitor the same physical system.

Metrics Performance metrics of precision, rapidity, and quality can be used to
analyze the controlled system. Different systems can be tested, by varying the
configurations and injecting disturbances, when possible. The distance between
the current system and the nominal system can be characterized, to create a set of
systems that the controller can handle. Portability is then the performance achieved
by a controller for several configurations and disturbances.

4.1.3 Setup complexity

Definition Controllers are implemented and used by system experts, that are not a
priori knowledgeable in Control Theory. A controller with low design complexity is
more likely to be understood, correctly implemented, and tuned. If performances
are acceptable, the simplest controller may be the best option. Note that design
complexity is different from the mathematical complexity of the controller algorithm,
whereas rather addresses the user experience aspect.

4.1 Criteria for comparison 63

Metrics There is no commonly agreed and general metric for design complexity.
We propose to use as a metric the number of parameters, or initial conditions, that
have to be tuned in the controller algorithm. While this metric only covers part of
the difficulties a user can experience in developing a controller, we believe that it
gives a meaningful quantitative metric that can be applied to any algorithm.

4.1.4 Support Guarantees

Definition One advantage of Control Theory-based adaptation is regarding the
mathematical guarantees one can have that the controlled system will perform as
desired. Guarantees are not a binary property: there are nuances beyond having
or not having guarantees. First, a methodology is needed for the controller tuning.
Then, the performance properties that are ensured come with some conditions,
depending on the system’s variations or on appropriate system excitation. There exist
a gradation of guarantees: from safety-critical system requiring strong guarantees,
system subject to SLAs, to best-effort system without the need of guarantees.

Metrics Measuring guarantees level to compare controllers is not an easy task,
there is no agreed-upon metric to characterize this criterion. We opt out for a
qualitative evaluation of guarantees: the availability of a mathematically-backed
methodology for controller tuning, and the hypothesis and conditions that need to
be fulfilled to have those guarantees.

4.1.5 Competence required

Definition Designing and tuning a controller is not straightforward. PID controllers
are known for being fairly accessible, resulting in their predominance in the industrial
applications. However, the proper design of a PID controller may require control
expertise: as it is the case to perform sound identification experiments and tune
accordingly the PID parameters. Advanced techniques such as optimal control, model
predictive control, or robust control require even more domain-specific knowledge.
The need for a control expert leads to additional costs and delays, that may orient
systems’ experts toward simpler solutions.

64 Chapter 4 Reusability of Autonomic Controllers for HPC Systems

Metrics Evaluating the competence required for designing and using a controller
will also be done qualitatively. It can be by evaluating the level of education/knowl-
edge required to design the controller, or the amount of available bibliography on the
controller. Such metric reflects the complexity of the design process, where the need
for complementary actions such as feedforward, anti-windup, preventing bursting,
etc., have to be investigated. The metric also covers the domain-specific knowledge
needed for fine-tuning and to properly understand the achieved guarantees.

4.1.6 Theoretical trade-offs between criteria

No controller is expected to outperform the others on all criteria. Control Theory
highlights the inherent discrepancies between nominal performances and reusability.
Design complexity and guarantees are also hardly compatible. Only a trade-off can
be achieved. Then, strategies for concealing multi-criteria have to be applied, such as
setting priorities, weighting the criteria, or finding Pareto-optimal sets. Such choice
of priorities or weights is not straightforward, and can largely differ depending
on the application context and objectives. This work focuses on this challenge
by evaluating various controllers on complementary criteria. The objective is to
highlight which controller to chose, given one’s priorities.

In the following, we discuss two important trade-offs between pairs of criteria.

Trading nominal performance for reusability Conciliating optimality and robustness
is a primary concern in the control field. Having highly performing controllers on
the nominal system may come at the cost of limited performances, or even instability,
in case the actual system differs significantly. Relaxing constraints on precision,
rapidity, and quality can allow for the reusability of the controller on a large class of
systems.

Trading support guarantees for low setup complexity and limited control compe-
tences Strong guarantees on the behavior of the controlled system over a wide
variety of conditions can be achieved, however it often requires using advanced
control techniques. Properly designing such controllers assumed significant control
engineering knowledge, and its implementation and usage are consequently more
complex. This discussion on the simplicity of the controller usage, even at the cost
of loss of performance guarantees, is very common in the control field. However, it
reflects the reality of systems’ experts when using controllers in practice.

4.1 Criteria for comparison 65

4.2 Considered Controllers

This Section presents the design of the controllers considered in this study of reusabil-
ity: a PI controller (Section 4.2.1), an adaptive PI (Section 4.2.2), and a Model-Free
controller (Section 4.2.3). Sections 4.2.2 and 4.2.3 summarize, respectively, the
work done during the Master 2 internship of Rosa Pagano [Pag23], and [Gui+22d]
published at CCTA 2022 with Bogdan Robu, Cédric Join, Michel Fliess, Eric Rutten,
and Olivier Richard.

4.2.1 Proportional-Integral Controller

For the PI controller, we reuse the controller designed in Chapter 3. To summarize,
we have the following model of our system y(k + 1) = ay(k) + bu(k)

Tuning We have two parameters to choose the closed-loop behavior of our system:
ks and Mp. From those parameters and the model (a and b), we find the gains Kp

and Ki of the PI controller.

4.2.2 Adaptive PI

The PI controller defined above is coupled to one kind of jobs (execution time and
I/O load). An adaptive controller, however, would be able to adapt its configuration
at runtime to fit the jobs running even if they are different from the one used for the
design of the controller. In our case, the parameter b of our model depends on the
I/O load of the jobs (f), see Figure 3.3 and Equation 3.8, which thus motivates the
use of adaptive control.

We build adaptation on top of the previously defined PI controller, and the adaptive
algorithm adjusts its parameters to account for the unmodeled dynamics beyond the
scope of the linear model [She+17].

There are two primary approaches for the adaptation: updating the parameters of
the controller (direct), or updating the parameters of the model (indirect). In our
case, the indirect approach appears more suitable because of the dependence of
the previous PI controller on the b parameter of the model. We will thus, at each
iteration of the control loop, estimate the value of b(k) of our model, noted b̂(k),
and recompute the value of the gains (Kp and Ki) accordingly.

66 Chapter 4 Reusability of Autonomic Controllers for HPC Systems

Controller design

Our objective is to estimate b̂(k) using an online algorithm. We define the prediction
error ε representing how far the estimated model is from the reality measured:

ε(k) = y(k) − ay(k − 1) − b̂(k − 1)u(k − 1), (4.1)

Due to the presence of significant noise in the measured data, see for instance
Figure 3.3, the algorithm should be capable to mitigate noise. Therefore, we use a
modified Recursive Least Square (RLS) [ÅW08] algorithm to improve the robustness
against noise. That is, we substitute ε with its filtered version Φ(ε(k)), given by:

Φ(ε(k)) = ε(k)
1 + ϕ|ε(k)| (4.2)

where ϕ ≥ 0 represents a smoothing parameter to be chosen. By doing so, we
preserve a linear structure when the error is small, while introducing a slower-
than-linear behavior for larger errors. Eventually, we define our robust estimator
as:

b̂(k + 1) = b̂(k) + V (k + 1) × u(k) × Φ(ε(k + 1)) (4.3)

With V (k + 1):

V (k + 1) = V (k)
µ

− V (k)u(k)2V (k)
1 + u(k)V (k)u(k) · 1

µ2 (4.4)

where µ represents the forgetting factor. The presence of changing parameters over
time, such as b varying with different campaigns, requires the use of forgetting effect
of µ ∈ (0, 1]. However, the µ parameter introduces a significant drawback known
as the “bursting phenomena” [And85; FKY81]: when the system lacks sufficient
excitation, the algorithm may approach a singularity, resulting in large spikes in the
estimated parameter.

4.2 Considered Controllers 67

Tuning

The algorithm relies on different parameters: the forgetting factor µ, the smoothing
parameter ϕ, and the initial conditions b̂(0) and V (0). Note also that the adaptive PI
is built on top of the PI, which requires the computation of the model parameter a

and the definition of ks and Mp, two quantities that allow choosing for the close-loop
behavior (see fig. 3.6).

Forgetting factor µ A small µ results in a fast, but noise-sensitive, response. Using
a Parallel Estimation [ÅW08; Kow92] allows us to try various values of µ and pick
the one returning the less error.

Smoothing parameter ϕ Strong smoothing leads to slow estimation, but also re-
duces overshoots and oscillations. There are no methodology to define ϕ, and we
chose a satisfactory value via an experimental approach.

Initial conditions There are two distinct initial conditions: b̂(0) and V (0). For b̂(0),
a value of 0.5 was chosen. Small values, i.e., underestimations, of b̂(0) might lead to
overshooting due the relation between u and b. The significance of V (0) lies in its
impact on the algorithm’s initial speed. Both initial conditions were chosen from
experiments results.

4.2.3 Model-Free Controller

The third type of controller we will compare is one that does not rely on a model.
Many choices exist such as Active Disturbance Rejection Control [Han09], Model-
Free Control [FJ13], or the ones using learning techniques (e.g., [Pon+18]), each of
them with several variants and improvements.

Model-Free control (MFC) is an approach that has the advantage of not necessitating
the possibly tedious phase of modeling. The main ideas and formulations are
summarized in the following of this section.

The MFC formulation relies on an ultra-local model, but does not require building a
reliable global model. In that sense, it justifies its name of Model-Free Control. The
considered ultra-local model is of the form:

68 Chapter 4 Reusability of Autonomic Controllers for HPC Systems

ẏ(k) = F (k) + αu(k) (4.5)

with ẏ(k) the derivative of y(k), α ∈ R a constant, and F (k) a term to be estimated
(see eq. (4.7)), reflecting the unknown structure of the system and its disturbances.

The Model-Free approach allows plugging PID controllers, defining the notion of
intelligent PIDs. For an intelligent Proportional (iP), which is linked to a classical
Proportional-Integral controller, the control action is computed as:

u(k) = − F̂ (k) − ẏ⋆(k) + Kp × e(k)
α

(4.6)

where F̂ (k) is the estimated value of F (k), and Kp ∈ R the proportional gain. [FJ13]
present different techniques to compute F̂ . Yet, as a first approach, we use past
values of y and u to estimate it from (4.5):

F̂ (k) = ẏ(k) − αu(k − 1) (4.7)

Tuning There are two parameters to tune: α and Kp. In [FJ13], the authors
recommend taking α such that ẏ and α × u have the same order of magnitude. Thus,
as in [Gui+22d], we rely on experiments to set the parameter α. The value of the
gain Kp accounts for the closed loop behavior of the system. Small values of Kp yield
conservative and slow controllers, whereas greater values yield more aggressive
controllers prone to overshooting and oscillations. Therefore, the Kp value should
be chosen by trial and error methods or by realizing a Pareto type analysis.

4.3 Evaluation and Comparison

4.3.1 Experimental setup

The experiments were carried out on the nodes from the Grisou Cluster of Grid’5000
[Bal+13] which is a shared French testbed for experimental research in distributed
and parallel computing. Each node of this cluster has two Intel Xeon E5-2630 v3 CPU
with eight cores per CPU and 128 GiB of memory. Each server of our system is being
deployed onto a single Grid’5000 node from a Kameleon system image [Rui+15].
We used four nodes for the deployment setup: one for the CiGri server, one for

4.3 Evaluation and Comparison 69

the RJMS (OAR version 3 [Cap+05; oar23b]), one for the fileserver (implemented
with NFSv3), and one node emulating a cluster of 100 OAR resources. The job
model used in this work (job = sleep + I/O) allows us to efficiently and realistically
emulate several computing resources on a single physical node, and thus reduce the
number of machines required to perform experiments at full scale. The impact on
the realism of such a folded deployment is studied in [Gui+23d] and presented in
Chapter 9.

4.3.2 Controller configurations

The PI is tuned based on the model of Equation 3.3. Based on identification from
experimental data (Figure 3.3), we have the following values: α1 = −0.5071484,
β1 = 0.0086335, β2 = 0.0451394, and γ = 0.001633. The gains of the PI controller are
then defined using eq. (3.9), with the design parameters set to ks = 12 and Mp = 0 in
order to avoid any overshoot, but still have a fast response. The adaptive PI relies on
the PI tuning, with additional parameters set as follows: µ = [0.5, 0.6, 0.7, 0.8, 0.9, 1],
ϕ = 2, b̂(0) = 0.5, and V (0) = 104. For the MFC, refer to [Gui+22d] for the
numerical details of its configuration.

4.3.3 Experimental protocol

For the three controllers considered in this study, we will evaluate their performance
by varying the characteristics of the CiGri jobs from the identified system. Controllers
were designed for jobs lasting 30 seconds and writing 100 MBytes to the fileserver.
This configuration represents our nominal system. For testing, we consider variations
on two dimensions: the amount of I/O written by the jobs, and the execution time
of the jobs. For the I/O, we consider the following file sizes: 50, 100, 200, and
400MBytes and for the execution times, we consider: 10, 30, 60, and 120 seconds.

For each triplet (I/O load, execution time, controller), we repeat 5 times the following
scenario:

1. we start with an empty cluster

2. we define the reference value for the controller at 3

3. we submit a campaign of jobs to CiGri with the desired characteristics (I/O load,
execution time)

70 Chapter 4 Reusability of Autonomic Controllers for HPC Systems

PI aPI MFC

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
0
1
2
3
4
5
6
7
8

Time [s]

F
ile

se
rv

er
 L

oa
d

(y
)

0

500

1000

1500

0.0

0.2

0.4

0.6

0.8

Overshoot Precision Rapidity

PI aPI MFC PI aPI MFC PI aPI MFC
0.0

0.5

1.0

1.5

Controllers PI aPI MFC

Nominal Performance of the Controllers

Figure 4.1.: Nominal performance of the different controllers through time. The solid line
represents the aggregated behavior from 5 different experiments (light dots).
The bottom plots compare the controllers on the performance metrics defined
in Section 4.1.

4. we start the controller

5. at t = 2000 s, we introduce a disturbance in I/O which represents a step of 2
for the load of the fileserver

6. at t = 4100 s, we stop the disturbance.

4.3.4 Performance-related comparison

Nominal performance

We first compare the performance of controllers on the nominal system, i.e., the
system’s configuration that was used for design and tuning. The three controllers are
executed, and the measure of the fileserver load through time is reported in Figure
4.1. The top plots represent the first 2000 s of the scenario (before the introduction
of the disturbance) for each controller. The solid lines aggregate the behavior of
5 repetitions of each experiment (light dots), and the dashed line represents the
reference value that the controllers follow.

4.3 Evaluation and Comparison 71

All controllers are tracking well the reference imposed, however with varying per-
formances. The PI and the MFC have similar behaviors. The MFC is slightly faster
which can lead to greater overshoot, but the PI seems more stable and precise. The
nominal performance of the adaptive PI (aPI) appears quite poor, as the response is
slow and imprecise.

In order to compare quantitatively the controllers, we use the performance metrics
defined in Section 4.1: overshoot, response time, and precision. We evaluate the
controllers on the first 2000 seconds, i.e., before the disturbance, to allow for fair
comparison. The results are presented in the bottom plots of Figure 4.1. The PI has
no overshoot, as defined during the design phase. Similarly, the MFC mostly never
overshoots, but a single experiment lead to an overshoot for the MFC. Despite the
slow response of the adaptive PI, some experiments lead to small overshoots. The
precision of the three controllers is similar, with the one of the adaptive PI being
more volatile. The slow response time of the adaptive PI can be observed on the
Rapidity plot of Figure 4.1.

Take away 4.2

All controllers successfully track the reference value, with overall similar
performances. The adaptive PI is slightly worst in terms of rapidity. The MFC
is fast and precise, but can lead to an overshoot. The PI is fairly performant
on all criteria.

Portability

To evaluate the portability of controllers, we look at their performance when used on
a different system than the nominal one. Figure 4.2 depicts the dynamic behavior of
the different controllers for the different scenarios: variations in I/O and in execution
times (Figures 4.2a and 4.2b respectively). Note that the nominal performance,
i.e., Figure 4.1, are repeated (second line of the plots) to allow for comparison.
Similarly to the previous analysis, aggregated metrics of performance on the first
2000 seconds are computed in Figure 4.3.

Variations of I/O Load All controllers manage to track the reference value, however
some configurations lead to large oscillations in the fileserver load. The disturbance
does not seem to have a detrimental impact, it even reduces the oscillations in some
cases.

72 Chapter 4 Reusability of Autonomic Controllers for HPC Systems

PI aPI MFC

50 M
B

ytes F
iles

100 M
B

ytes F
iles

200 M
B

ytes F
iles

400 M
B

ytes F
iles

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

Time [s]

F
ile

se
rv

er
 L

oa
d

(y
)

Comparison with variations in the I/O impact of jobs

(a) Performance with varying I/O loads of the jobs.

PI aPI MFC

10 sec Jobs
30 sec Jobs

60 sec Jobs
120 sec Jobs

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

Time [s]

F
ile

se
rv

er
 L

oa
d

(y
)

Comparison with variations in the execution time of jobs

(b) Performance with varying jobs execution time.

Figure 4.2.: Global comparison of the controllers’ performance for variations in I/O loads
(fig. 4.2a) and jobs execution times (fig. 4.2b). The solid lines represent the
aggregated behavior from 5 different experiments (light dots).

4.3 Evaluation and Comparison 73

Rapidity

Precision

Overshoot

50 100 200 400

0

2

4

6

0.0

0.5

1.0

1.5

2.0

0

500

1000

1500

File size [MBytes]

Controllers PI aPI MFC

(a) Performance with varying I/O of the jobs.

Rapidity

Precision

Overshoot

10 30 60 120

0

1

2

3

0.0

0.5

1.0

1.5

0

500

1000

1500

Execution times [s]

Controllers PI aPI MFC

(b) Performance with varying jobs execution time.

Figure 4.3.: Comparison of controllers’ portability. The plots represent the performance
metrics computed on various systems between 2000 seconds. The solid lines
link the means over varying configurations for each controller.

For the MFC, the trend is similar than in nominal conditions: fast, but can lead
to large overshoots. The PI is slower but has fewer oscillations when the system
is highly different from the nominal one. The adaptive PI seems to have worse
performance on the nominal system (100MBytes) than the other two controllers,
but then it does not seem to be much impacted by the variations in I/O load.

The quantitative analysis of Figure 4.3a clarifies those analyses:

1. overshoot in the first 2000 seconds is larger for the adaptive PI, except with
400 MBytes (when we are far away from the nominal system), where both PI
and MFC present huge values

2. precision is similar for all controllers, except with 400 MBytes where the
adaptive PI is significantly better rapidity of the adaptive PI is better than for
the other controllers on non-nominal systems

3. rapidity of the adaptive PI is better than for the other controllers on non-
nominal systems (note that for the experiments with large oscillatory behavior,
the rapidity criteria should be mitigated as convergence is not reached)

74 Chapter 4 Reusability of Autonomic Controllers for HPC Systems

Take away 4.3

The MFC and the PI perform very well close to the nominal system, but have
difficulties not overshooting and oscillating when the system is too far from
the nominal system, i.e., 400 MBytes in our scenario. On the other hand, the
adaptive PI has a similar behavior whatever the system configuration.

Variations of Jobs Execution Time When variation in the jobs’ execution time is
introduced, controllers successfully track the reference, with a better behavior than
in the case of I/O variations, see Figures 4.2b and 4.3b.

For the PI and MFC controllers, reducing the job duration to 10 seconds even
improves the performances by reducing the overshoot. When increasing the du-
ration, the PI seems to better control the system, with few oscillations and small
overshoot.

The relative poor performance of the adaptive PI for job duration variations can
be theoretically explained. The increase of jobs duration leads to the addition of
a delay in the system, i.e., it takes more time to see the effect of an action on the
system. The adaptive PI was built to adapt the model parameter b of the model, not
to identify a delay. Thus, the adaptive PI is not designed to deal with such type of
system’s variation, and its adaptation can be detrimental in some cases.

Take away 4.4

Overall, concerning the variations in execution times, the controllers appear
less sensible than with I/O variations. There is overshoot, especially with the
MFC and the adaptive PI, but not as many oscillations.

4.3.5 Methodology and Implementation-related comparison

This section complements the comparison of controllers on their performance,
by focusing on aspects linked to their design, tuning, theoretic soundness, and
implementation. Such considerations are not classic for the point-of-view of control-
theory oriented evaluation, that focuses mainly on performance and robustness to
unpredicted external events. On the contrary, from the practical engineering point-of-
view, simplicity in design, and usage can be a valuable asset. Some performance can
even be traded to allow lower complexity, so that system administrators can master
solutions without the help from an external control expert, or then only in a limited

4.3 Evaluation and Comparison 75

and temporary fashion. In the following, we evaluate the three controllers on the
methodology- and implementation-related criteria of Section 4.1 set-up complexity,
guarantees, and control-theoretical competence required.

Set-up complexity

In a first attempt to evaluate the setup complexity, we count the number of parame-
ters to be tuned for each controller.

The MFC requires two parameters: Kp and α. α is a non-physical constant parameter.
It is chosen by the practitioner such that ẏ and α × u are of the same magnitude. It
should be therefore clear that its numerical value, which is obtained by trials and
errors, is not a priori precisely defined [FJ13]. Kp is chosen through experiments.

The PI also requires two parameters: Kp and Ki. They are computed as in Equa-
tion (3.9) based on the model of the system (two parameters in the case of the linear
first order model: a and b), that can be derived from the identification experiments.
Moreover, the tuning allows translating the problem of finding Kp and Ki into the
choice of the design quantities ks and Mp. Thus, two parameters are needed for
setting up the PI.

Finally, the adaptive PI is based on the PI: thus it requires the same two parameters.
It additionally requires parameters specific to the adaptive part: µ, ϕ, b̂(0), V (0),
summing up to a total of six parameters.

Besides the raw count of parameters, we can point out that some parameters are
more sensitive than others in terms of precision needed. We therefore see three
cases:

1. the very sensitive parameters for which an ill-tuned value can even make the
system unstable (e.g., Kp)

2. the parameters for which an ill-tuned value makes the system slower (e.g., ϕ)

3. the parameters which are continuously updated and therefore an approximate
initial value has little impact (e.g., V (0))

76 Chapter 4 Reusability of Autonomic Controllers for HPC Systems

Guarantees

The controllers studied in this chapter have different guarantees from the point-of-
view of their behavior.

As seen in Chapter 3, the design of a PI controller requires following a well-defined
methodology. This has the benefits of allowing users to choose the closed-loop
behavior (choice of ks and Mp as illustrated in Figure 3.6), and to have guarantees
that the controller will behave as intended.

Designing and using a Model-Free controller requires less knowledge of Control
Theory than a classical PI. It removes the need for complex identification and
modeling of the system. It also has an online estimation of the underlying dynamics
of the system. Yet, this simplicity comes at a cost: the MFC does not have a fixed
methodology to choose all the parameters. It hence does not provide the same
guarantees as the classical PI with respect to convergence or robustness.

The adaptive PI provides additional guarantees to the PI, by broadening the condi-
tions in which the controller is operational. That is to say that the guarantees that
one has on the nominal system, also extend to systems close to the nominal one, as
seen in Section 4.3.4. However, knowing in advance if a system falls into the region
of stability of a controller is not straightforward for a computing system, especially
without performing a preliminary modeling identification phase. Additionally, the
adaptive PI has the drawback of requiring specific input signals – known as persistent
excitation – to avoid its divergence, namely the bursting phenomena.

Competence in Control required

On most computer science curriculums, there are no classes on control-theory. Most
cloud/grid platforms usually do not hire control scientists or engineers in their
system administration team. Therefore, the choice of a control method should be
weighted by its difficulty to be mastered by the system administrators.

In this perspective, MFC has the advantage of very low requirements, as it does not
require specific engineering education. On the other hand, it is a novel, emerging
method, with only little literature and experience from which to draw practical
guidelines.

In the case of the classical PI, there is a need to perform open-loop identification
experiments. It has a practical cost, but there is only relative low mathematical diffi-
culty in the equations at play. Therefore, it is accessible and taught to undergraduate

4.3 Evaluation and Comparison 77

students in control engineering curriculums. As it is very widely used in industry
(around 90 % of the industrial processes use a form of PI/PID controller) there is a
huge amount of available literature [ÅH06; LAC06; DB21].

The adaptive PI builds up on PI: it hence requires a greater set of skills to use [Lan+11].
Moreover, over the years, many upgrading elements and variants have been pro-
posed in order to correct and improve certain aspects in its design (e.g., [ÅW13;
IS96; Mid+88]). In terms of skills, this usually is taught in Master curriculums
dedicated to control engineering or even at the PhD level for the more advanced
variants.

4.4 Conclusion

This chapter addressed the need for the reusability of autonomic controllers in
the context of HPC with the study case of CiGri. Controllers from control-theory
can have a bound too tight to the nominal system, which can make them lose
performance dramatically when they are used in different contexts, with variations
in time or in space. We proposed a comparison framework to evaluate the reusability
of autonomic controllers, defined criteria of interest, and exposed tradeoffs between
criteria. Using the study case of CiGri, we implemented three controllers of different
nature (PI, adaptive PI, and Model-Free control), and compared them with respect
to our criteria.

Criteria PI Adaptive PI MFC

Nominal Performance + + +
Portability - + -
Design Complexity + - +
Guarantees + + -
Competence required + - +

Table 4.1.: Comparison of controllers on all criteria. “+” indicates a positive evaluation of
the criteria – e.g., high portability, low complexity. “-” that the criteria is poorly
fulfilled – e.g., few guarantees, high competence required.

Table 4.1 summarizes the comparison of the different controllers on the criteria of
the framework of Section 4.1. More general comparative results are still an open
question due to the great variety of cases according to the control problems. As
expected, there is no clear “best controller” from a computer engineer point-of-view,
but the table exhibits several tradeoffs.

78 Chapter 4 Reusability of Autonomic Controllers for HPC Systems

The recommendations and guidelines that can be given to system administrators
depend on different contexts: whether a control engineer is available or not, whether
guarantees on the behavior are crucial or not, etc. For example, if the system on
which the controller will be deployed only varies “close” to the nominal system,
then both the PI and the MFC are good solutions from the reusability point-of-view.
However, if the system can vary a lot, then an adaptive PI appears to be a more
judicious choice concerning portability. Note that it will be adaptive only with
respect to the variables for which it has been designed.

In the case where one wants to give away some design complexity and required
competence, but still want acceptable nominal performance, the MFC appears as an
excellent candidate as it has a low setup complexity.

In the case where a well documented and explainable solution is required, then the
PI controller has the advantage of being a very well-known control algorithm.

4.4 Conclusion 79

A Control Theory Approach to
Reduce Wasted Computing
Power in HPC

5

5.1 Introduction

Researchers have been studying the problem of harvesting idle HPC resources
[Mer+17; TTL05; Prz+22] by submitting jobs that are more flexible (smaller, inter-
ruptible). These jobs are viewed as second class citizens by the scheduler and can be
killed if needed. However, these jobs are still being executed on the compute nodes
and impact the shared resources of the cluster (e.g., file-system, communication
network), thus inevitably disturbing the jobs of normal users. Meaning, there is a
trade-off to exploit between the amount of harvesting and the maximum perturba-
tion that these premium users can accept. Unfortunately, these solutions introduce a
new source of computing power waste by killing jobs. Indeed, most of these small
jobs do not implement a check-pointing mechanism, thus, all the computations done
before the jobs are killed will be lost and will need to be started again.

In this chapter, we tackle the problem of harvesting the idle resources of a clus-
ter while reducing the total amount of wasted computing time (from either idle
resources or killed jobs) in the context of CiGri.

5.2 Towards a better usage of the resources

5.2.1 Problem Definition

In this work, we want to improve the usage of a set of computing clusters. We
identify two ways of misusing the computing resources. The first one is to leave
computing nodes idle. The second one is to submit a Best-Effort job while risking
that it will be killed in a near future.

81

Table 5.1.: Summary of the notations used.

Notation Definition

uk Number of Best-Effort resources submitted by CiGri at iteration k
wk Number of Best-Effort resources in the OAR waiting queue at iteration k
rk Number of used resources used by Best-Effort jobs in the cluster at itera-

tion k
yk Output of the sensor at iteration k. (yk = rk + wk)
rmax Total number of resources in the cluster (supposed constant)
p̄j Mean processing time of jobs in a CiGri campaign
yref Reference value, or desired state of the system to maintain. (yref =

(1 ± ε) × rmax with ε ≥ 0)
∆t Time between two CiGri submissions (constant, chosen by the system

administrator). 30 seconds in this paper.
ek Control error. The difference between the desired state and the current

state (ek = yref − yk)
Kp, Ki Proportional and Integral gains of a PI Controller
h Horizon value, amount of time in the future to look at the predictive

Gantt of OAR.

One challenge is to keep enough Best-Effort jobs in the waiting queue of OAR so they
can be started immediately when some resources are freed, but not too many to not
overload the waiting queue. An overload of the waiting queue can lead to a longer
response time for the controller, as OAR will schedule the jobs no matter if they are
destined to be killed or not.

5.2.2 Control Formulation

Our knob of action is the number of Best-Effort jobs submitted by CiGri at each of
its iterations. To sense the current state of the clusters, we can query the API of
the OAR scheduler to get the number of resources currently used, the number of
Best-Effort jobs waiting.

For the sensor, we will consider resources and not jobs as we want 100% of usage
of the nodes. Considering jobs instead of resources could lead to some degenerate
situations. One example would be Best-Effort jobs using 2 resources each and having
a single idle resource on the cluster. By considering jobs instead of resources, the
controller could continue the injection of Bag-of-Tasks jobs thinking that there is
always some idle resources, even though it cannot be used.

We note:

• uk: number of Best-Effort resources submitted by CiGri to OAR at iteration k.

82 Chapter 5 A Control Theory Approach to Reduce Wasted Computing Power
in HPC

• rk: number of used resources by Best-Effort jobs on the cluster at iteration k.

• wk: number of resources from Best-Effort jobs in the OAR waiting queue at
iteration k.

• rmax: the total number of resources in the cluster.

We thus want to regulate the quantity “number of currently used resources + number
of Best-Effort resources waiting” around the total number of resources available in
the cluster. Meaning that we want to regulate rk + wk around rmax by varying the
value of uk.

We note yk = rk + wk. We also note the reference value yref = rmax, which is the
control theory term for the desired state of the system. The reference value could
also be (1 ± ε) × rmax, with ε ≥ 0, based on the cluster administration preferences.
A reference value greater than rmax could lead to longer response time for the
controller and more killing of Best-Effort jobs, whereas a reference value smaller
than rmax will leave some resources idle but kill less jobs.

5.2.3 System Analysis

In this section, we investigate the relationship between uk, the number of Best-
Effort jobs submitted by CiGri at every iteration, and yk, the number of Best-Effort re-
sources in the system either waiting or running. We perform the identification phase
of the Control-Theory methodology.

Let us consider a campaign of jobs with 60 seconds execution time. We modified
CiGri to submit the jobs of the campaign as steps. Meaning that for the first 20
CiGri iterations, jobs are submitted by batches of 5. Then, for the next 20 iterations,
by batches of 10 jobs, then 15 jobs and finally 20 jobs. We record the output of our
sensor during the entire experiment and plot the results in Figure 5.1a.

We observe that around 1500 seconds, CiGri starts to overflow the waiting queue.
And as a result, the value of the sensor does not stabilize but keeps increasing,
until 2600 seconds where there are no more submission from CiGri. This can be
explained by the fact that CiGri is submitting more jobs than the cluster can process
in one iteration. Let pj be the execution time of the jobs of the campaign. Note
that we supposed that the jobs have the same execution times. Then, the number of
resources freed at each iteration is:

5.2 Towards a better usage of the resources 83

Output: Number of resources in the cluster (running + waiting)

Input: Number of resources submitted by CiGri

0 1000 2000 3000

0 1000 2000 3000

0

5

10

15

20

0

50

100

150

200

Time (s)

Model Theoric Model w/ Mean Model w/ Median

(a) Identification experiment. We vary the size of the
batch that CiGri send to OAR as steps. CiGri first
submits batches of 5 jobs for 20 iterations, then
batches of 10 jobs for another 20 iterations, then 15
jobs and finally 20 jobs.

0

100

200

300

60.0 62.5 65.0 67.5 70.0
Execution Times (s)

C
ou

nt

Metric

Mean

Median

Execution times of CiGri jobs of 60 secs

(b) Histogram of the execution times for
a CiGri campaign during the identi-
fication experiment. The campaign
is composed of synthetic jobs of the-
oretical duration 60 seconds.

Figure 5.1.: Results of the identification of the system. Figure 5.1a depicts the link between
the input and the output of our system. Figure 5.1b shows that the distribution
of execution times is impacted by the commission and decommission of the
nodes by OAR, and thus must be taken into account in the modelling.

∆t

pj
× rmax (5.1)

In our experiment, ∆t would be 30 seconds, pj 60 seconds, and rmax 32 resources.
Meaning that the cluster should be able to free up to 16 resources per CiGri itera-
tion.

However, when we look at the actual execution times of the jobs, we remark that the
execution times are not constant. Figure 5.1b shows the histogram of the execution
times of the CiGri campaign used for the identification experiment. As we can see, no
job actually lasted the theoretical 60 seconds. This is due to the node setup and node
cleaning mechanisms of OAR. To improve the precision of the processing rate, we can
replace pj in Equation 5.1 by the mean of the execution times (p̄j). This modification
leads to a processing rate of about 14.8 jobs per iterations. This corrected rate thus
explains why the value of the sensor starts growing when CiGri starts to submit
batches of 15 jobs.

We want to avoid the overflowing the waiting queue. Indeed, if the queue is not
empty, OAR will try to schedule the Best-Effort jobs on the machines no matter if they
are going to be killed soon or not. By regulating the number of jobs in the waiting

84 Chapter 5 A Control Theory Approach to Reduce Wasted Computing Power
in HPC

queue, we reduce the undesired killing of Best-Effort jobs. But the objective is to
have a 100% usage of the cluster.

5.2.4 Model & Control Design

From the discussion in the previous section, we can model the system as:

rk+1 + wk+1 =
(

1 − ∆t

p̄j

)
× rk + wk + uk (5.2)

Equation 5.2 describes perfectly the behavior of the system. However, we cannot
transform this equation into a linear model easily exploitable by control theory tools.
More complex models might be possible, but as a first step we considered linear
models. Linear models have the following form:

yk+1 =
∑

i

ai × yk−i +
∑

i

bi × uk−i (5.3)

with ai, bi ∈ R. However, as in our case yk = rk + wk, this required formulation is
impossible. As we are designing the controller to regulate yk around the value rmax,
we can suppose that all the resources are being used and that the cluster is able to
process ∆t

p̄j
rmax jobs per CiGri iteration. In this case, we can rewrite Equation 5.2

as:

rk+1 + wk+1 ≃ rk + wk − ∆t

p̄j
rmax + uk

⇔ yk+1 = yk + (uk − ∆t

p̄j
rmax)

(5.4)

∆t
p̄j

rmax is called the operating region of the system.

Knowing the model of the open-loop system, we can design a controller to regulate
the closed-loop system. Similarly to the work in Chapter 3, we decide to use a
Proportional-Integral controller for its precision and robustness. In the following,
we use ks = 10 and Mp = 0.

5.2 Towards a better usage of the resources 85

Time

R
es

ou
rc

es

Job #1

Job #2

Job #4

Job #3

Now
Horizon

Figure 5.2.: Graphical explanation of the prediction Gantt sensor. The value returned by the
sensor is the number of resources that will be used by normal jobs in horizon
seconds.

5.2.5 Taking the future into account with help from the scheduler

For now, our controller only reacts to the instant changes in the system (arrival
or departure of normal jobs). To reduce the wasted computing time (idle and
killed), we need a way to predict those changes on the system and take them into
account in the controller. Doing this would allow the controller to proactively
increase or decrease the number of CiGri jobs to submit to OAR to avoid the killing
of Best-Effort jobs or the idling of some resources. We thus need a way to query the
provisional schedule of OAR to extract information.

In the current state of OAR, the available information through the API are not enough
to know the provisional schedule. We thus slightly modified OAR (about 30 lines of
code) to implement a new software sensor by introducing a new route in its API that
returns the number of normal jobs that are predicted to be running at a given time
in the future. We call this time the horizon (h), and its value is decided in CiGri.
Figure 5.2 depicts the idea of this sensor.

There are several ways to inject the information returned by this new sensor into the
controller. We took inspiration from the feedforward techniques of Control Theory,
and decided to change dynamically the reference value. If we note dh

k the number of
resources that will be used by normal jobs in h seconds (the horizon), then we can
redefine the reference value for the controller as yref,k = rmax − dh

k . Roughly, the
reference value is the number of available resources for the CiGri jobs in h seconds.
We also adapt the operating point in Equation 5.4.

86 Chapter 5 A Control Theory Approach to Reduce Wasted Computing Power
in HPC

rmax yref,k ek
Controller

uk System

yk

-
++-

Disturbances
dh

k

Figure 5.3.: Feedback loop representing the control scheme. The reference value (yref) is
proactively changed to take into account the future availability of the resources
(dh

k).

The value of the horizon is a parameter of the controller, which carries some trade
off. A small horizon value makes the sensor highly sensitive to miss evaluation of the
walltimes of the normal jobs, and requires a fast response from the controller to meet
the desired state. This would lead to an increase of the killing of Best-Effort jobs. On
the other hand, a large horizon value might be too conservative and lead to more
idle machines.

Figure 5.3 summarizes the control scheme of our system with this new sensor.

Take away 5.1

By slightly modifying OAR we can extract information about the provisional
schedule. From this information, we adapt the reference value proactively
to avoid the killing of best-effort jobs. The introduction of this new sensor
constitutes a more advanced coordination between the controller and the
scheduler.

5.3 Evaluation

5.3.1 Experimental Setup

The experiments were carried on the dahu cluster of Grid’5000 [Bal+13] where
the nodes have 2 Intel Xeon Gold 613 with 16 cores per CPU and 192 GiB of
memory. The reproducibility of the deployed environments is ensured by NixOS
Compose [Gui+22b]. The environments are available at [fee23]. For each exper-
iment, we deploy 3 nodes: one for the OAR server, one for CiGri, and one for a
OAR cluster of 32 resources. Note that we do not deploy 32 nodes for the cluster, but
instead deploy a single node and define 32 OAR resources. This choice is made with

5.3 Evaluation 87

energy concerns in mind, as deploying a full size cluster to perform the following
experiments would be an aberration. We do deploy the real software stack (OAR,
CiGri), but no real job is executed, only sleeps (see discussion about the job model
in Chapter 2). This representation of the jobs allows us to emulate several OAR re-
sources on a single physical machine without introducing noise to the sharing of
computing resources for computation, communication, storage, etc.

5.3.2 Experimental Protocol

We want to evaluate the controller proposed in Section 5.2. We consider the
following workload from the normal users of the cluster: at time 1000, a new job
arrives and takes 8 resources, then at time 1005, a job requesting 25 resources is
submitted. The second job has to wait for the first one to finish in order to start
as there are not enough available resources for it to start. With this scenario, we
want to observe (i) the behavior of the controller when there is an abrupt change
in available resources (arrival of the first job), (ii) the reaction to the killing of
Best-Effort jobs, and (iii) how the controller will proactively decrease and increase
the number of jobs to submit to meet the start and end of the second job.

We will evaluate the controller on this scenario with different parameters: different
execution times of the CiGri jobs, and different horizon values for the sensor de-
scribed in Section 5.2.5. We consider 3 execution times (pj) for the CiGri campaigns:
30s, 60s, and 240s. Those execution times correspond respectively to the first
quartile, median, and third quartile of the execution times of the CiGri jobs on the
Gricad platform (see Figure 2.1). For the horizon, we consider 9 different duration:
no horizon (or 0 second), 30s, 60s, 90s, 120s, 150s, 180s, 210s, 240s. The horizon
values are multiples of ∆t = 30s as smaller values would miss some behaviors. The
maximum horizon that we consider is 4 minutes which is the third quartile of the
execution times. Each experiment will be repeated 10 times to reduce the noise due
to the time OAR needs to set up and clean the resources before and after a job.

5.3.3 Constant Injection taking into account the future

As a first comparison point, we also implemented a constant submission algorithm.
At each CiGri iteration, we submit ∆t

p̄j
× rmax. The value of p̄j is updated during the

execution of the campaigns jobs. This constant injection is supposed to fill exactly
the cluster if there are no normal jobs.

88 Chapter 5 A Control Theory Approach to Reduce Wasted Computing Power
in HPC

We also made a variation of this submission algorithm by using the sensor defined in
Section 5.2.5. In this variation we change the constant submission by taking into
account the number of resources that will be available. The value of ravail represents
the number of resources available for CiGri. In brief: ravail,k = rmax − dh

k . Thus, at
each CiGri iteration, we submit ∆t

p̄j
× ravail,k.

Figure 5.4a depicts the distribution of the percentage of computing time lost due to
idle resources (left column) and due to killed jobs (right column). We can see that
considering the horizon does not have a noticeable impact on the percentage of lost
time due to idle resources for pj = 30s and 240s. In the case of pj = 60s, we see
that longer horizons lead to more idle resources, which is expected. Note that for
pj = 240s, we see a decrease in the percentage of killed jobs with the increase of the
horizon. This decrease is not noticeable for the other processing times considered.
In our scenario, a constant submission will fill the waiting queue of Best-Effort jobs of
OAR, and the jobs accumulated in the waiting queue will be scheduled by OAR and
get killed when the second job starts.

Take away 5.2

Taking the future into account in a step-based submission strategy does not
yield any noticeable improvement of the usage of the resources.

5.3.4 PI Controller taking into account the future

Figure 5.4b depicts the distribution of the lost compute time due to idle resources
and killed Best-Effort jobs for a PI Controller with various horizon lengths. We can
see that for small horizons (30 or 60 seconds), having this mechanism allows to
reduce the idle time of the system. However, the longer the horizon, the more the
idle time, but the less killing of the jobs. There is thus a trade-off between killing
less and harvesting more.

Compared to the constant injection depicted in Figure 5.4a, we can see that the
percentages of lost computing powers are slightly different. A PI controller without
horizon will lose around 5% of computing power due to idle resources, while losing
one percent due to killed jobs. On the other hand, the constant controller will lose
less concerning idle resources (around 2.5%), and lose a lot more by killing jobs
(about 2%). This is because of the accumulation of jobs in the waiting queue, which
are scheduled by OAR even if they are destined to be killed. This highlights again
the added value of the feedback regulation of the system.

5.3 Evaluation 89

Idle Resources Killed Jobs

pj =
 30s

pj =
 60s

pj =
 240s

None 30s 1m 1m30 2m 2m30 3m 3m30 4m None 30s 1m 1m30 2m 2m30 3m 3m30 4m

0

5

10

15

0

2

4

6

0

5

10

15

20

Horizon

Lo
st

 c
om

pu
te

 ti
m

e
[%

]

(a) Distribution of the lost compute times for the constant submission with
horizon.

Idle Resources Killed Jobs

pj =
 30s

pj =
 60s

pj =
 240s

None 30s 1m 1m30 2m 2m30 3m 3m30 4m None 30s 1m 1m30 2m 2m30 3m 3m30 4m

0

5

10

15

0

2

4

6

0

4

8

12

Horizon

Lo
st

 c
om

pu
te

 ti
m

e
[%

]

(b) Distribution of the lost compute times for the PI Controller with horizon.

Figure 5.4.: Distribution of the lost compute times due to idle resources (left column) and
because of killing Best-Effort jobs (right column). The x-axis represents the
horizon of the sensor described in Section 5.2.5. Figure 5.4a presents the
results for the constant submission with horizon, and Figure 5.4b for the PI
Controller with horizon. The dashed line is the mean lost time for the solution
without horizon.

90 Chapter 5 A Control Theory Approach to Reduce Wasted Computing Power
in HPC

Waiting + Running Best−effort resources (y)

Best−effort resources submitted by CiGri (u)

0 1000 2000 3000 4000

0

10

20

30

40

0

20

40

60

Time [s]

Figure 5.5.: Control signals for a scenario with pj = 60s and a horizon of 60s. The top
plot represents that number of resources submitted by CiGri through time. The
bottom plot depicts the value of our sensor, as well as the number of available
resources to CiGri in dashed red.

484
484
484
484
484

484

484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484
484

478
478

478

478
478
478
478
4780

8

16

24

32

0 1000 2000 3000 4000
Time [s]

R
es

ou
rc

es

CiGri Normal

Figure 5.6.: Gantt chart for a scenario with pj = 60s and a horizon of 60s. The killed jobs
are depicted with a thicker contour.

5.3 Evaluation 91

Figure 5.5 shows the temporal evolution of the control signals for a scenario with a
campaign of one-minute long jobs and a horizon value of 60 seconds. The number
of available resources through time is depicted in dashed red line. We can see that
the controller is able to adapt the number of jobs it submits to OAR (top graph)
to meet the reference value (bottom graph). We do notice some overshooting
around 100s and 3000s. Those are due to a large variation in the reference value,
but the controller manages to stabilize the system in a couple of minutes. The
overshooting could be tamed by changing the gains of the controller, and especially
the Mp parameter presented in Section 5.2.4. This issue might also come from the
imprecision of our model due to the estimation presented in Section 5.2.3. Even if
we designed the controller to reach the reference value within 10 CiGri iterations, it
seems able to reach it less for small variations of reference value.

The Gantt chart of the previous scenario is presented in Figure 5.6. The killed
jobs are depicted with a thicker border. We can see that there are some CiGri jobs
killed at t = 1000s, which is unavoidable for this scenario as the priority job starts
immediately and the sensor controller cannot anticipate it. Only three jobs are killed
when the normal job starts at t = 2000s. We observe that there are some idle time
right after the start of the second normal job. This is due to the reaction of the
controller, and it also can be observed on the bottom plot of Figure 5.5 around 2000
seconds, where the output signal is under the reference value (red dashed line).

Take away 5.3

When using the additional information about the future schedule with a PI
controller, we are able to improve both the number of idle resources and the
number of killed jobs. For large values of horizon, the controller anticipates
too much and it leads to an increase of the idle time.

5.3.5 Global Comparison

From the point-of-view of energy consumption, idle resources and killed jobs do
not consume the same amount of energy. Indeed, in practice, the power used by
a machine when a job is running is about twice more than when the machine is
idle [Hei+17]. In this work, we did not measure the energy consumption of the
jobs during the experiments as we are using sleeps to represent the CPU time.
To estimate the gain in energy consumption of the cluster for each strategy of
submission presented in this paper, we will simply multiply by two the weight of the
computing time lost due to the killing of jobs.

92 Chapter 5 A Control Theory Approach to Reduce Wasted Computing Power
in HPC

Energy point−of−view

Computing Time point−of−view

None 30s 1m 1m30 2m 2m30 3m 3m30 4m

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Horizon

G
ai

n

pj 30s 60s 240s

Figure 5.7.: Gain of using the PI controller compared to the constant submission algorithm.
The top plot represents the gain from the point-of-view of the total energy
consumption loss. The bottom plot considers the computing time lost. Values
above one indicate that the PI out-performs the constant submission algorithm.

5.3 Evaluation 93

Figure 5.7 shows the gain of considering the prediction sensor in the PI Controller.
We look at two gains: the one in lost computing time (top plot) and the energy
loss (bottom plot). We can see that for all the considered processing times (pj)
just having a horizon of 30 seconds improves the usage of the cluster. The best
improvement is reached for a processing time of 60 seconds and a horizon of 60
seconds with about 25% gains in computing time and 40% in energy.

We think that it is possible to get the same behavior of the best horizon by changing
the sampling time of CiGri (∆t) to match the characteristics of the CiGri campaign:

∆t ≃ p̄j

2 and h ≃ p̄j (5.5)

This choice of ∆t could be explained by the Nyquist frequency which stays that a
process should be sampled twice faster than its dynamics. Concerning the choice
of the horizon value, the intuition is that values smaller than p̄j could lead to some
killing, and values larger than p̄j could lead to the idling of machines.

Take away 5.4

Using a PI with information about the future improves the global usage of
resources of 25%. If we consider the energy point-of-view, with a rough
approximation that an idle node consumes twice less than a working node,
then our controller can improve the energy usage by 40%.

5.4 Conclusion and Future Work

This chapter has presented an approach to the harvesting of idle computing resources
in an HPC system using a feedback loop approach coupled with Control-Theory tools.
Contrary to the harvesting solutions of the literature, we also considered the killed
jobs as a source of wasted computing time. We have shown that our solution, a
Proportional-Integral Controller, can reduce the total amount of wasted computing
time compared to an ad-hoc solution. We show that by also taking into account
the predictive Gantt chart of the scheduler, we are able to reduce even more the
wasted computing time. The choice of the horizon value has an impact on the
total usage of the cluster. A horizon value of 30 seconds yields an improvement for
all the considered campaigns. It is however possible to reach better performance
by adapting the sampling time of CiGri to the running Bag-of-Tasks campaign (see
Equation 5.5).

94 Chapter 5 A Control Theory Approach to Reduce Wasted Computing Power
in HPC

Our work shows promises, but has some limitations. We supposed that the normal
user know exactly the duration of their jobs and set the walltime accordingly, but in
practice such behavior rarely happens [CB01; MF01]. We think that the controller
presented in this chapter should adapt relatively well to imprecise walltimes due to
the robust nature of the Proportional-Integral controller. However, we believe that
the robustness to these imprecisions of walltimes could be improved by considering
a probabilistic approach to the durations of the jobs. Control Theory also proposes
Feedforward controllers which bare the same idea as the controller above, but are
more complex and powerful because they also model the disturbances. Future work
include to implement such a controller with the help of Control Theory experts.

5.4 Conclusion and Future Work 95

Conclusion and Perspectives 6
The CiGri middleware exhibits several regulations problems. In this thesis, we
focused on two aspects: regulation based on the load of the distributed file-system
(Chapter 3), and regulation to reduce the amount of lost computing power (idle
machines and killed jobs) (Chapter 5). We showed that such problems can be
addressed with tools from the fields of the Autonomic Computing and Control
Theory. The main limitation of these works is the need for a “strict” model of the
target system. In Chapter 4, we investigated the impact in performance of reusing
a controller designed on a system on another system. We defined comparison
criteria and gave guidelines for choosing a controller based on tradeoffs involving
performance, complexity, guarantees, and competence required.

Even if we tackled the regulations problems independently, we can merge the
controller defined in Chapter 3 and Chapter 5 into a single Autonomic Controller
that can satisfy the different objectives. Figure 6.1 depicts what could be the single
feedback loop for the different controllers and objectives.

6.1 Perspectives on CiGri

Perspectives on CiGri include:

Considering several clusters In this document we consider a single cluster, but
CiGri actually can submit to several clusters. The immediate solution would be to
have a single controller per cluster and apply the work in this thesis. This approach
could miss the opportunity to exploit potential affinity between campaigns and
clusters. Determining this affinity could be done by a combinatorial bandit approach
[CL12; SG19] with a process of exploration where CiGri would submit jobs from a
campaign to different clusters, and observe the performance of the jobs or the impact
on the shared resources, and then exploit a chosen coupling between campaign and
cluster until the next phase of exploration.

97

rmax yref,k ek
Controller

uk

rk + wk

-++ -

Disturbances

dh
k

loadref ek
Controller

uk

loadk

-

+

Min uk

uk System

Figure 6.1.: Feedback loop gathering the controllers and objectives from Chapter 3 (bottom) and Chapter 5 (top). At every iteration, we ran both
controllers and take the minimum number of jobs in the submission (uk) to satisfy the objectives. In the case of a PI controller, we
would only add the error to the integral part only if the chosen submission size comes from this controller. It would be also possible to
add the feedback loop presented in Figure 3.13.

Sampling time of CiGri By default, the CiGri’s loop is executed every 30 seconds.
This value is fixed and ad-hoc, but does bear some importance. Indeed, this sampling
time must be small enough to capture the behavior of the system, but not too small
to react on noise. In Chapter 3 we take the CiGri jobs to have an execution time of
30 seconds. This helps the controller as longer lasting jobs would add some delay in
the system, which cannot be capture by a first order model, as used in this thesis.
One immediate solution would be to adapt the sampling time based on the current
campaign being executed. In Chapter 4, we showed that the controllers were quite
resistant to variation of the execution times. But in Chapter 5, we concluded that
adapting the sampling time of CiGri to half of the execution time of the jobs of
the campaigns could lead to significant improvement of the global usage of the
machines.

I/O characteristics of CiGri jobs In Chapter 3, we consider known the amount of
I/O done by a CiGri job. In practice this information might be tricky to obtain. Users
could give an estimation of the I/O load of their job, but there will be no guarantee
on the quality of this estimation. A heavy instrumentation and monitoring of the
jobs and/or the system would make this information available and more precise
than given by users. Tools such as Darshan [Car+11] or Colmet [Eme+14], could
help to get this information respectively by instrumenting the jobs or the platform.
Using Adaptive controllers can help to reduce the need of such a characterization,
but require more Control Theory knowledge, as seen in Chapter 4.

Sensors for Parallel File-Systems The work presented in this thesis supposes the
use of a centralized distributed file-system like NFS. This assumption makes it easier
to implement a sensor on a file-system. However, in large HPC centers, shared
file-systems are usually parallel with Lustre, BeeGFS, GlusterFS, etc.
Such Parallel File-Systems (PFS) are composed of several nodes to balance the load.
Implementing a sensor on a PFS might be tricky. A simple solution would be to
keep the loadavg and average it over all the nodes of the PFS. But this solution
might lose the meaning of the loadavg, and weird behaviors might happen. Another
solution might be to look at the bandwidth of the PFS. But such metrics could be
greatly varying through time, and would require some sort of filtering to be usable
by a controller.

It might also be interesting to investigate even lower level sensors with the help of
the eBPF technology. The development of such sensors would enable to have very
specific, and less noisy information on the system.

6.1 Perspectives on CiGri 99

Try using models of greater orders In this thesis, we only considered models, in
the Control Theory sense, of the first order. Such models have the advantage of being
simple, but might also lack realism. For instance, in some cases, the CiGri system
might be impacted by delay, which should be considered in the model. This delay
requires to use a greater model order.

Phase detection HPC applications are usually iterative and thus have repeating
phases where they do computation, then perform I/O operations, then computation
again, etc. Detecting such I/O phases (e.g., [Sto+21; Tar+23]) would be a great
additional information for the CiGri controller. This new sensor can then be coupled
with a feedforward control strategy to proactively adapt the submission of CiGri to
avoid I/O overload of the file-system.

Deployment onto the Gricad computing grid The end goal is of course to deploy
our controllers onto the real platform. From the software management point-of-view,
it should be quite easy as we maintain a fork of CiGri with our modifications [cig23].
It will require the additional work of setting up the controller, which is done with a
single JSON file.

6.2 Potential Regulation Problems of Interest

This Section presents some potential interesting systems which suffer from regulation
problems that could be addressed with tools from Autonomic Computing and Control
Theory.

Bebida ([Mer+17]) In Bebida, a partition of the cluster is allocated for Big-Data
jobs only, and the remaining of the platform is available for both HPC jobs and
Big-Data jobs. The authors showed that their solution improves the total usage of
the resources at the cost of a higher mean waiting times for the HPC jobs.

As a first approach, the size of the partitions is fixed. An interesting question would
be to try regulating Quality-of-Service metrics for the HPC jobs based on the size of
the partitions. The actuator would be the size of the partition only of Big-Data jobs,
and the sensor could be the waiting times of jobs, or the bounded slowdown of the
HPC jobs.

100 Chapter 6 Conclusion and Perspectives

Such a regulation could provide a finer Quality-of-Service to the users, while poten-
tially also reducing the number of Big-Data jobs killed and rescheduled.

Turning on and off machines (Chapter 7 of [Poq17]) When cluster nodes are not
being used, one easy way to save energy is to turn them off. However, when users
need the turned off machines to run their jobs, the switching on process takes time
and energy, which would degrade the Quality-of-Service for the users. A regulation
problem thus arises. The objective would be to decide how many nodes to keep
turned on based on metrics on the jobs (waiting time, bounded slowdown, etc.)
Additional sensors on the platforms like the provisional schedule, or historical usage
metrics could also be used to increase precision. The work from [Cer19] can give
inspiration.

Best-effort time-sharing with accepted degradation of performance In the
spirit of harvesting idle resources, the time-sharing of HPC applications on the
same node could improve the usage of machines at a finer grain than CiGri for
example. A best-effort application could run in a cgroup which resource quotas
are dynamically regulated to guarantee an accepted degradation of performance
by the priority application running on the same node. Similarly to [Cer+21], the
priority application would need to be iterative and send a “heartbeat” [Ram+19] to
the controller at the end of each iteration. The heartbeat frequency would be the
signal to control, and the actuator the resources quotas of the cgroup hosting the
best-effort application.

6.2 Potential Regulation Problems of Interest 101

Part II

Improving the Reproducibility and Cost of
Distributed Experiments

Discussion and
State-of-the-Art

7
To prove the quality of a proposed solution, experiments must be performed. How-
ever, different research communities of Computer Science have different visions
of what is an experiment. More theoretical fields tend to implement their own
small simulator to prove the quality of their novel algorithm. Those simulators are
then run on synthetic workloads that match the requirements of the algorithm to
evaluate (e.g., jobs execution times follows distribution X with parameters Y and Z),
even if those requirements are partially met in the real life. One advantage of such
simulators is that they can run on a personal laptop in reasonable time. However,
only using such simulation techniques also does not take care to the hidden techni-
cal problematics of implementing in practice the proposed solution, which might
in some cases require a modification of the solution. The realism of simulation,
in the context of distributed systems, can be improved by using theoretically and
experimentally evaluated and validated simulators such as SimGrid [Cas+14].

On distributed systems, the delay of communication, the I/O, between actors must
be taken into account. Setting up an experiment on distributed systems is so
complex, that researchers often make experiments directly on computing centers
(e.g., evaluating the parallel file-system of the computing center, instead of deploying
one for the experiment).

Experimenting in research topics requiring specific hardware (e.g., GPU, NVRAM,
FPGA, Watt-meters, special architectures, etc.) is more tricky. Usually those pieces
of hardware are not present on regular laptops, and experiments must thus be done
on test-beds such as Grid’5000 providing access to various hardware. Experimenters
can then reserve a node of a cluster with the desired component to experiment.

In the previous part of this thesis, every experiment deploys the actual CiGri software,
an actual OAR cluster, and set up a NFS file-system. Each piece of the deployment
requires its own software environment and configuration which can be quite complex
to set up correctly, and especially on the first try. Figures 7.1a and 7.1b illustrate the
complexity of a software environment for a grid or cluster middleware, CiGri and
OAR in this case. The usual way to set up experiments on a cluster middleware

105

cigri-3.0.0

wrapped-ruby-cigri-env

bash-5.1-p16

ruby2.7.6-kgio-2.11.4ruby2.7.6-raindrops-0.20.1

ruby2.7.6-unicorn-6.1.0

ruby2.7.6-xmpp4r-0.5.6

postgresql-14.6

libossp-uuid-1.6.2 libkrb5-1.20

libkrb5-1.20-devncurses-6.3-p20220507-devicu4c-72.1-dev

systemd-251.7

icu4c-72.1

linux-pam-1.5.2 iptables-1.8.8

audit-2.8.5

kbd-2.5.1

systemd-minimal-251.7

npth-1.6

shadow-4.11.1

libpcap-1.10.1p11-kit-0.24.1

zstd-1.5.2-bin

glibc-2.35-163

ruby-2.7.6

zlib-1.2.13

ncurses-6.3-p20220507

gdbm-1.23

readline-6.3p08openssl-1.1.1s

libyaml-0.2.5

libffi-3.4.4

ruby2.7.6-pg-1.4.6

ruby2.7.6-unf_ext-0.0.8.2ruby2.7.6-json-2.6.3

postgresql-14.6-lib

openssl-3.0.7

libxml2-2.10.3

lz4-1.9.4

glibc-2.35-163-bin coreutils-9.1

gnutar-1.34

libxml2-2.10.3-bin

lz4-1.9.4-bin

binutils-2.39

gcc-11.3.0-lib

acl-2.3.1

attr-2.5.1

gmp-with-cxx-stage4-6.2.1

openssl-3.0.7-bin

perl-5.36.0

libxcrypt-4.4.30

libfido2-1.12.0

libbpf-1.0.1

gnupg-2.3.7elfutils-0.188 kmod-30-lib

libapparmor-3.1.2

libgpg-error-1.45

kexec-tools-2.0.25

util-linux-minimal-2.38.1-lib

util-linux-minimal-2.38.1-bin bash-interactive-5.1-p16libseccomp-2.5.4-lib

pcre2-10.40

libgcrypt-1.10.1

cryptsetup-2.5.0

kmod-30

libmicrohttpd-0.9.71

libcap-2.66-lib tpm2-tss-3.2.0

curl-7.86.0

zstd-1.5.2xz-5.2.7bzip2-1.0.8

libcbor-0.9.0pcsclite-1.9.5

libassuan-2.5.5

libcap-ng-0.8.3 readline-8.1p2

lvm2-2.03.16-lib

json-c-0.16

db-4.8.30

gnutls-3.7.8

libnetfilter_conntrack-1.0.9

libnfnetlink-1.0.2

libnftnl-1.2.4

libmnl-1.0.5

unbound-1.17.0-lib

gmp-with-cxx-6.2.1

nettle-3.8.1

libtasn1-4.19.0libevent-2.1.12

bzip2-1.0.8-bin

gzip-1.12

xz-5.2.7-bin

gnugrep-3.7

pcre-8.45 keyutils-1.6.3-lib brotli-1.0.9-lib nghttp2-1.49.0-lib

libssh2-1.10.0

cigri-env

ruby2.7.6-rack-2.2.6.4

ruby2.7.6-rest-client-2.1.0

bundler-2.3.25

ruby2.7.6-domain_name-0.5.20190701

ruby2.7.6-sinatra-3.0.5

ruby2.7.6-tilt-2.1.0

ruby2.7.6-unf-0.1.4

ruby2.7.6-ydbi-0.5.9

gemfile-and-lockfile

libidn2-2.3.2

libunistring-1.0

zlib-1.2.13-dev

libxml2-2.10.3-dev

ruby2.7.6-netrc-0.11.0ruby2.7.6-rack-protection-3.0.5 ruby2.7.6-http-cookie-1.0.5ruby2.7.6-mustermann-3.0.0

ruby2.7.6-deprecated-2.0.1

ruby2.7.6-ydbd-pg-0.5.9

ruby2.7.6-mime-types-3.4.1

ruby2.7.6-mime-types-data-3.2023.0218.1 ruby2.7.6-ruby2_keywords-0.0.5

ruby2.7.6-http-accept-1.7.0

openssl-3.0.7-dev

lz4-1.9.4-dev

getent-glibc-2.35-163

systemd-251.7-dev tzdata-2022f

ncurses-6.3-p20220507-man

hookdns-root-data-2019-01-11

(a) Graph of the software dependencies of CiGri

python3.10-oar-3.0.0

python3.10-mypy-extensions-0.4.3

python3.10-ptpython-3.0.20

python3.10-black-22.10.0

python3.10-pytz-2022.2.1

python3.10-babel-2.11.0

python3.10-flask-2.2.2

python3.10-passlib-1.7.4

python3.10-sniffio-1.3.0

python3.10-anyio-3.5.0python3.10-Jinja2-3.1.2

python3.10-watchdog-2.1.9

python3.10-werkzeug-2.2.2

python3.10-psycopg2-2.9.5

python3.10-procset-v1.0

python3.10-h11-0.13.0

python3.10-uvicorn-0.18.2

python3.10-platformdirs-2.5.2

python3.10-pyyaml-6.0

python3.10-starlette-0.20.4

python3.10-ClusterShell-1.8.4

python3.10-async-timeout-4.0.2

python3.10-asgiref-3.5.2

python3.10-pathtools-0.1.2

python3.10-jedi-0.18.1

python3.10-pydantic-1.9.2

python3.10-fastapi-0.85.2

python3.10-brotli-1.0.9

python3.10-urllib3-1.26.12python3.10-executing-0.8.2

python3.10-devtools-0.8.0

python3.10-toml-0.10.2

python3.10-importlib-metadata-4.12.0

python3.10-simplejson-3.17.6

python3.10-escapism-1.0.1

python3.10-click-8.1.3

python3.10-python-dotenv-0.21.0 python3.10-brotlicffi-1.0.9.2

python3.10-requests-2.28.1

python3.10-itsdangerous-2.1.2

python3.10-python-dateutil-2.8.2

python3.10-alembic-1.8.1

python3.10-python-multipart-0.0.5

python3.10-future-0.18.2

python3.10-commonmark-0.9.1

python3.10-pycparser-2.21

python3.10-cffi-1.15.1

bash-5.1-p16

python3.10-pygments-2.13.0

python3.10-tabulate-0.8.10 python3.10-docutils-0.19

python3.10-charset-normalizer-2.1.0 python3.10-email-validator-1.2.1

python3.10-Mako-1.2.2

python3-3.10.8

libossp-uuid-1.6.2libkrb5-1.20

openssh-9.1p1

linux-pam-1.5.2

systemd-minimal-251.7

audit-2.8.5

kbd-2.5.1 shadow-4.11.1

zstd-1.5.2-bin

python3.10-rich-12.5.1 python3.10-prompt-toolkit-3.0.31

python3.10-dnspython-2.2.1

python3.10-psutil-5.9.3python3.10-typing-extensions-4.3.0

python3.10-SQLAlchemy-1.4.41 python3.10-pathspec-0.10.1python3.10-parso-0.8.3

python3.10-sqlalchemy-utils-0.38.3

python3.10-idna-3.4python3.10-tomli-2.0.1

python3.10-zipp-3.10.0

python3.10-aiofiles-22.1.0

python3.10-appdirs-1.4.4

python3.10-asttokens-2.0.8

python3.10-six-1.16.0 python3.10-setuptools-65.3.0

python3.10-wcwidth-0.2.5

python3.10-py-1.11.0

python3.10-pyzmq-23.2.1

python3.10-certifi-2022.09.24

python3.10-pysocks-1.7.1python3.10-greenlet-1.1.3 python3.10-markupsafe-2.1.1

glibc-2.35-163

postgresql-14.6-lib

zlib-1.2.13

openssl-3.0.7 libxml2-2.10.3

libyaml-0.2.5gcc-11.3.0-lib brotli-1.0.9-lib

libffi-3.4.4

keyutils-1.6.3-lib

libfido2-1.12.0

libedit-20210910-3.1

libcbor-0.9.0 pcsclite-1.9.5

acl-2.3.1

kmod-30-lib

kexec-tools-2.0.25

coreutils-9.1

util-linux-minimal-2.38.1-lib

util-linux-minimal-2.38.1-bin

bash-interactive-5.1-p16libseccomp-2.5.4-lib kmod-30

libcap-2.66-lib

libxcrypt-4.4.30

glibc-2.35-163-bin

attr-2.5.1

zstd-1.5.2 xz-5.2.7 gmp-with-cxx-stage4-6.2.1

libcap-ng-0.8.3

ncurses-6.3-p20220507

readline-8.1p2db-4.8.30bzip2-1.0.8-bin

gzip-1.12xz-5.2.7-bin

bzip2-1.0.8

gnugrep-3.7

pcre-8.45

zeromq-4.3.4

libsodium-1.0.18gdbm-1.23expat-2.5.0

readline-6.3p08 sqlite-3.39.4

libidn2-2.3.2

libunistring-1.0

getent-glibc-2.35-163

tzdata-2022f mailcap-2.1.53

(b) Graph of the software dependencies of OAR

Figure 7.1.: Software dependencies of CiGri (Figure 7.1a) and OAR (Figure 7.1b).

is to create software environments and then deploy them onto physical machines.
Both creating the environment and deploying it is time-consuming (around tens of
minutes for each). Moreover, experimenters always need more than one iteration
before reaching the desired state of the image. A forgotten package, a typo in a
configuration file, a closed port, forgetting to copy an ssh key, such simple mistakes
require to edit the recipe of the image and rebuild again (Figure 7.2). Such iteration
times do not encourage experimenters to set up their environment properly, and they
will often call it “good enough” even if there are still some “dirty hacks” remaining,
which inevitably deteriorates the reproducibility of the experiments, and thus the
quality of the scientific results.

7.1 Reproducibility

This section is based on [Gui+23a] published at ComPAS 2023 with Adrien Faure,
Millian Poquet and Olivier Richard.

106 Chapter 7 Discussion and State-of-the-Art

Figure 7.2.: Illustration of the process of creating a software environment for a distributed
experiment. Adapted from [XKC].

The scientific community as a whole has been traversing a reproducibility crisis for
the last decade. Computer science does not make an exception [RW18; Bak16].

The reproducibility of the research work is essential to build robust knowledge, and
it increases the reliability of results while limiting the number of methodology and
analysis bias. In 2015, Collberg et al. [CPW15] studied the reproducibility of 402
experimental papers published in system conferences and journals. Each studied
paper linked the source code used to perform their experiments. On those 402
papers, 46% were not reproducible. The main causes were: (i) the source code
was actually not available, (ii) the code did not compile or did not run, (iii) the
experiments required specific hardware

To highlight the reproducible research works, several publishers (like ACM or
Springer) set up an artifact evaluation of a submission. This peer review pro-
cess of the experimental artifact can yield one or several badgers to the authors
based on the level of reproducibility of their artifacts.

The term reproducibility is often used in a broad sense and gathers several concepts.
The definitions that we will use in the rest of this thesis are the ones defined by ACM
for the validation of the submitted artifacts [ACM]. It is composed of three levels of
reproducibility:

1. Repeatable: the measures can be obtained again by the people at the origin of
the work.

2. Reproducible: the measures can be obtained again by people who do not belong
to the original work and with the original artifact of the authors.

7.1 Reproducibility 107

3. Replicable: the measures can be obtained again by people who do not belong
to the original work without the original artifact.

The evaluation of artifact is a crucial point which allows to guarantee the repro-
ducibility of the experiments and the results. However, this reproducibility is not
sufficient. Even if being able to reproduce an experiment is proof a scientific vali-
dation, the experiment and its environment are often too rigid to be extended by a
third party, or even by the authors themselves. We believe that the notion that should
be pushed by the community is the reproducibility with variation. By “variation” we
mean that a third party is able to easily modify the environment of the experience to
continue the research. This means that the hardware and software environments
as well as the experimental scripts must be correctly defined and can be modified
easily.

This section focuses on the software environment. For a global vision of the repro-
ducibility problems, the readers might be interested in [IT18].

Section 7.1.1 gives the context and the motivation of reproducibility for distributed
systems. Several frequently seen traps that might break the reproducibility of the
software environment of an experiment are presented in Section 7.1.2. Finally,
Section 7.1.3 motivates the use of Functional Package Managers as a solution to
most of the reproducibility problems of the software environments.

7.1.1 Context & Motivation

Imagine that in your childhood your grandma cooked a delicious chocolate cake,
and that you now want to know how to do it yourself. You even think that you
can improve on it, and make it tastier! You can try to reproduce the cake based on
your far memories and culinary intuition, but the result might be disappointing. . .
Maybe your parents know the recipe! But you might just get some fuzzy instructions.
Maybe your grandma just improvised the recipe! Who knows?

You decide to go through the old stuff of your grandma’s house. By chance, you find
an old recipe book. You open it and from it falls a piece of paper with what looks
like a cake recipe. The handwriting matches the one from your grandma!

The recipe is clear, well detailed, and contains all the quantities for all the ingredients,
the order of the different steps, the cooking time, etc. You decide to follow the recipe
literally, but the final result is not what you remembered. . . Maybe you did not use

108 Chapter 7 Discussion and State-of-the-Art

the correct type of eggs, or that your oven is too different from your grandma’s. How
to know?

An experiment without the environment in which it was executed makes it much
more difficult to reproduce. Indeed, side effects from the environment can happen
and change the results of the experiment. It is easy to forget to include in the
software environment an element which impacts the performance of the experiment.
The performances, but also the results of a simple C application can depend on
the compilation options [SK18] or also from the quantity of UNIX environment
variables [Myt+09].

Most of the current solutions in terms of “reproducibility” fall under the storage
of artifacts (system images, containers, virtual machines) and replay of experi-
ments [Ros+20; Bra+11; Bri+19]. Even if this is an important part of the re-
producibility spectrum, nothing guarantees that the software environment can be
re-built in the future, and thus nothing guarantees that the experiments can be
re-run if the artifacts disappear.

The step of artifact evaluation for the conferences is done soon after their initial
construction. It is thus very probable that the construction of the artifacts will be
executed in a similar state of the packages mirrors (apt, rpm, etc.). However, what
will happen when someone will try to rebuild the environment in 1 year? 5 years?
10 years? The objective of science is to base itself on robust works to continue to go
forward (Stand on the shoulders of giants). This vision of “short term reproducibility”
is a major obstacle to scientific progress and is in complete opposition to the science
philosophy.

We think that the notion that should be highlighted is the concept of variation [MFR18;
Fei15]. This means allowing a third party to use the environment defined for an
experiment in order to investigate another research idea. An example of variation
would be to change the MPI implementation used in an experiment (e.g., MPICH
instead of OpenMPI). Being able to introduce such a variation is only possible if the
initial environment is correctly defined.

7.1.2 Frequent Traps of the reproducibility of software environments

Sharing the Environment An obvious way to fail the reproducibility of its experi-
ments is not to share the used environments, or to share them in a perennial place.
Platforms such as Zenodo [zen] or Software-Heritage [Her] allow users to store
artifacts (scripts, data, environments, etc.) permanently.

7.1 Reproducibility 109

Knowledge of the environment In the case where the software environment
contains only Python packages, freezing the dependencies with pip (pip freeze)
is not enough. pip only describes the Python environment, and ignores the system
dependencies that numerous packages have. For example, freezing an environment
containing the zmq Python package will not freeze the ZeroMQ system package
installed on the system.
Even if re-creating a Python environment from a requirements.txt is simple,
installing a list of system packages with specific version is on the other hand much
more complex. Moreover, listing manually all the system packages by hand is
error-prone, and the best way to forget a package.

Tools such as Spack [Gam+15] have a similar approach as pip but also for all the
system packages and their dependencies. It is possible to export the environment as
a text file and to rebuild it on another machine. However, the produced environment
might not be completely identical. Indeed, Spack uses applications that are already
present on the machine to build the packages from the sources. Especially, Spack
assumes the presence of a C compiler on the system, and will use this C compiler
to build the dependencies of the environment. Hence, if two different machines
have two different C compiler then the resulting environment could differ from
the desired environment. One clear advantage of Spack is the ease to introduce a
variation in an environment through the command line.

Solutions such as Spack, pip, conda only focus on the software stack above the
operating system. However, results from experiments might depend on the version
of the kernel, some drivers, etc. Thus, it is important to capture entirely the software
stack.

Pitfall 1: Partially capturing the software environment of the experiment

Experiments do not only depend on Python packages, but they can also
depend on system packages, or even the version of the Linux kernel. The
software environment must be capture entirely.

Usually, the capture of the entire software stack goes through it encapsulation in
a system image. This image can then be deployed on machines to execute the
experiments. A way to generate a system image is to start from a base image,
deploy this image, execute the commands required to set up the desired envi-
ronment, and finally compress the image. Platforms such as Grid’5000 [Bal+13]
and Chamelon [Kea+20] propose to their users such tools (tgz-g5k [Gri] and
cc-snapshot [Clo] respectively). In the context of repeatability and replicability, if
the image stays available then this way to produce system images is adequate at

110 Chapter 7 Discussion and State-of-the-Art

best. But, concerning the traceability of the build, one cannot verify the commands
that have been used to generate the image, and thus relies completely on the doc-
umentation from the experimenter. Moreover, such images are not adapted to be
versioned with tools like git as they are in a binary format. In the situation where
the image is no longer available, re-building the exact image is complex and the
precise introduction of variation is utopian.

Depending on a uncontrollable state One way to deploy a complete environment
could be to rebuild it at each experiment. EnOSlib [Che+22] is a Python library
to manage distributed experiments. It integrates a mechanism to install system
packages in a programmatic fashion. Users of EnOSlib can then, by executing their
Python script, base their environment on a default image that they can modify
as they need for their experiment. This strategy of starting from scratch at every
deployment has the advantage of making it harder to forget a dependency in the
environment, as its absence would be detected at every execution. However, it is
still possible to make mistakes. The reproducibility of the experiments using such
solutions strongly depends on the base environment on which they are based. These
base environments are managed by administrators of the platforms and also have a
finite lifetime, which raises the question of their permanence.
Suppose that the administrators update the version of the base environment, what
happens to the reproducibility of an experiment?

Pitfall 2: Forgetting to capture the software environment of the experi-
ment/workflow manager

Capturing the software environment in which the experiment/workflow man-
ager is executed is as important and the environment of the experiment.

A better approach to generate image is via recipes. Those recipes, like Dockerfiles
for Docker containers or Kameleon [Rui+15] recipes for system images, are a
sequence of commands to execute on a base image to generate the desired environ-
ment. The text format of recipes make then much more suitable to version, share,
and reconstruct them. These base images have often several versions which are
identified by labels called tags. In the case of Docker, the tag of the latest version is
often called latest. Basing an environment on this tag breaks the traceability, and
thus the reconstruction of the image itself. Indeed, if a newer version is available
at the time of a future rebuild of the environment, then the image will be based on
this newer version and not the original version. Another important question is to
know if the base image and all the version are themselves reconstructive, and if it is

7.1 Reproducibility 111

not the case, what is the permanence of the platforms hosting those images? For
instance, the lifetime of nvidia/cuda Docker image is 6 months, after 6 months, the
administrators delete the images.

Pitfall 3: Basing environments on non-reproducible images

Be cautious with the longevity of the images on which you base your software
environment. By transitivity, if these images are not reproducible, so are
yours.

Another frequent problem is that the recipe performs an update of the mirror
(e.g., apt get update) before installing the required packages for the environment.
This has the bad property of breaking the reproducibility of the image. Indeed,
the image depends on the state of an external entity which is not controllable. In
order to be sure to use the exact same packages during a rebuild, a solution could
be to use a snapshot of the mirror1. EnOSlib allows users to use this snapshot for
the construction of the environment. Concerning the introduction of variation, to
base an image on a snapshot is quite constraining and can make impossible the
installation of specific version of packages, or can create conflicts with already
installed packages.

When the recipe must download an object from the outside world, it is crucial to
verify the content of the fetched object and compare it to the expected one. In the
case where the object is not checked, the environment depends on the state of the
source of the object at the time of construction. Hence, if the recipe calls curl to get
a configuration file or a snapshot of a mirror for example, the recipe must also check
the content of the files. The usual way to do it is to compare the cryptographic hash
of the downloaded object and the one of the expected object.

A similar problem arises when the recipe downloads a package via git and build
it from source. In this case, it is paramount to correctly set the commit used in the
recipe of the image. Indeed, not knowing the commit used in the original image
leads to having a dependence to the latest commit of the repository on the main
branch. Setting the commit used allows to know exactly the sources used, and
simplifies the controlled introduction of variation in the environment (by changing
commit for example).

1Example for debian: http://snapshot.debian.org/

112 Chapter 7 Discussion and State-of-the-Art

http://snapshot.debian.org/

Mirror

Traditional package managers

Nix

Nix Expression

Build script

Cache

001
110

001
110

001
110Build script

(blackbox)

Build
(local)

Nix
Store

Source
(git, tarball...)

Source
(git, tarball...)

Figure 7.3.: Comparison between traditional package managers and Nix. Traditional pack-
age managers fetch a built version of the package from a mirror, but information
on how they have been built is unknown. In the case of Nix, the package is
described as a Nix function that takes as input the source code and how to
build it. If the package with these inputs has already been built and is available
in the Nix caches (equivalents of mirrors) it is simply downloaded to the Nix
Store. Otherwise, it is built locally and added to the Nix Store.

Pitfall 4: No checking the content of downloaded objects

Every object coming from the outside of the environment must be examined
to be sure that it contains the expected content. It is more important that the
image fails to build if the content differs from the expected one, rather than
the image silently builds with a different content.

7.1.3 Functional Package Managers

Tools such as Nix [DJV04] or Guix [Cou13] fix most of the problems described in
the previous section. Nix and Guix share the similar concepts, in the following we
will focus on Nix.

7.1 Reproducibility 113

Nix is a pure functional package manager for the reproducibility of the packages. A
Nix package is defined as a function where the dependencies of the packages are the
inputs of the function, the body of the function contains the instructions to build
the package. The building of the packages is done in a sandbox which guarantees
the build in a strict and controlled environment. First, the sources are fetched, and
the content verified by Nix. If the hash of the sources differs from the expected
hash, Nix stops the building of the package and yields an error. Nix fetches also
the dependencies and recursively. The build commands are then executed in the
sandbox with the environment defined by the user. At this stage, no network access
or access to the file system is possible.

Nix can generate environments that can be assimilated as multi-languages virtualenvs.
But it can also create containers images (Docker, Singularity, LXC, etc.), virtual ma-
chines, or full system images. The process of building an image with classical tools
(Dockerfile, Kameleon recipe, etc.) is often iterative and arduous. Defining an
image with Nix is done in a declarative fashion. This has the advantage of making
the building of the image faster when modifying an already built recipe [Gui+22b].
It also avoids the annoying optimization of the order of operations, frequent when
building from a Dockerfile [Doc]. As Nix packages are functions, introducing a
variation means changing an argument when the function is called.

Systems like debian store all the packages in the /usr/bin and /usr/lib directories.
This ordering can lead to conflicts between different versions of the same library, and
it thus limits the introduction of variation in the environment without breaking the
system. On the other hand, Nix creates one directory per package. Each directory
name is prefixed by the hash of its sources. Hence, if a user wants to install a different
version of an already installed package, the sources will be different, thus the hash
will be different, and Nix will then create a new directory to store the new package.
Those individual directories are stored in the Nix Store located at /nix/store, in
a read-only file-system. Figure 7.3 summarizes the differences between traditional
package manager and Nix. The advantage of this fine-grained isolation method,
is the precise definition of the $PATH environment variable to manage software
environments.

The definition of packages through function also eases their sharing and distribu-
tion. There is a large base of package definition done by the community, called
nixpkgs [Nix23]. Users can easily base their new packages, or environment on
those definitions. It is also possible for independent teams and research groups to
have their own base of packages. Guix-HPC [Gui23e], NUR-Kapack [OAR23], or

114 Chapter 7 Discussion and State-of-the-Art

/home/alice/.nix-profile
/nix/var/nix/profiles/per-user/alice
├── profile -> profile-42-link
├── profile-41-link -> /nix/store/k72d...-user-env
└── profile-42-link -> /nix/store/zfhd...-user-env
/nix/store
├── zfhd...-user-env
│ └── bin
│ └── batsim
├── 0kkz...-batsim-4.1.0
│ └── bin
│ └── batsim
└── 6k6f...-simgrid-3.31
 └── lib
 └── libsimgrid.so.3.31

Figure 7.4.: Figuration of the Nix Store content when the alice user has installed a Batsim
[Dut+16] binary in her profile. As Batsim requires the SimGrid [Cas+14]
library at runtime, SimGrid must also be in the store. Packages are stored
in their own subdirectory, but common dependencies are not duplicated as
symbolic links and shared libraries are used.

Ciment-channel [Gri23] are examples of independent packages base for HPC and
distributed systems.

A Nix system profile defines the configuration of the system (packages, initrd,
etc.). Among many features, a profile can define filesystems such as NFS and mount
them automatically at boot time. Figure 7.4 depicts an example of user profile
containing the Batsim application [Dut+16], which requires the SimGrid [Cas+14]
library at runtime. NixOS extend the ideas of Nix to the entire operating system.
A NixOS image can contain several profiles and Nix can switch between them by
modifying symbolic links and restarting services via systemd.

7.1.4 Limits of Functional Package Managers

Even though tools like Nix and Guix greatly improve the state of reproducibility for
software environments, it is still possible to go wrong and make a package impure
or to depend on an exterior state. Nix is currently addressing this issue with the
experimental feature Flake [Twe].

7.1 Reproducibility 115

To ensure the reproducibility and traceability of an environment, Nix requires that
all the packages and their dependencies have their source code open and that the
packages are packaged with Nix. This could seem limiting in the case of proprietary
software where the source code is unavailable (Intel compilers for example). It is
still possible to use such proprietary packages with the impure mode of Nix, but it
breaks the traceability and thus the reproducibility of the software environment.

The construction of the packages in a sandbox goes through an isolation mechanism
of the file-system using chroot. Historically, this feature is only available to users
with root privileges. But in the case of computing clusters, this kind of permissions
greatly limits the adoption of Nix or Guix. However, the unprivileged user namespace
feature of the Linux Kernel allows users to bypass this need of specific rights in most
of the cases.

As Nix needs to recompile from source the packages are not available in its binary
cache, it is possible that a future rebuild is impossible if the host of the source code
disappear [bli]. However, as Software Heritage now performs frequent archives of
the open source repositories, it should be possible to find the sources of interest if
needed.

These tools also require a change of point-of-view in the way of managing a software
environment, which might make the learning curve intimidating.

7.1.5 Conclusion

The computer science community starts to get interested in the problems of repro-
ducibility of experiments. However, the problems of reproducibility at the software
level are not truly understood. Setting up reproducible experiments is extremely
complex. The management of the software environment illustrate one facet of this
complexity. The usual tools (pip, spack, docker, etc.) do not answer the repro-
ducibility problems without a huge effort by the experimenters, and only allow a
short-term reproducibility. The graal of reproducibility is the precise introduction
of variation in a third party defined environment. This need for variation allows
scientists to use solid contributions to continue research. Even if there are no per-
fect solution yet, the need for a change of practice concerning reproducibility is
needed.

116 Chapter 7 Discussion and State-of-the-Art

7.2 Research Questions

The experiments conducted in this thesis on the CiGri system are relatively long-
lasting. They should be long enough to observe the impact of the controllers,
which can take a few hours. Then, as the system is relatively complex and noisy,
every experiment must be repeated several times in order to compute an average
behavior. They have the advantage of running the actual middlewares (CiGri, OAR,
File-systems).

The experiments of this thesis raised several questions from the experimental point-
of-view.

• RQ1: How to perform reproducible distributed experiments with a complex
software environment such as CiGri’s?

• RQ2: At which scale should experiment on cluster and grid middlewares be
performed?

• RQ3: Can State-of-the-Art simulators help to reduce the experimental cost to
set up an autonomic controller for systems such as CiGri?

The RQ1 will be addressed in Chapter 8 with the presentation of NixOS Compose,
a tool based on NixOS aiming at reducing the development time to create a re-
producible distributed environment. Chapter 9 investigates RQ2 by considering a
technique we call folding of defining several computing resources on a single physical
node. We will focus on the performance impact of the distributed file-system of the
folded cluster. Chapter 10 presents the first step to answer RQ3 by implementing
a simplified version of CiGri in Batsim, and comparing to a real experiment the
different behavior from the point-of-view of Control-Theory.

The following chapters aim to explore the different stages of experimentation while
reducing the high experimental cost of distributed experiments on cluster or grid
applications such as CiGri:

1. perform preliminary experiments in simulation to reduce exploration space at
very low cost (RQ3),

2. deploy experiments at partial scale with lower cost and with acceptable loss of
realism (RQ2),

3. while keeping a reproducible experimental environment (RQ1).

7.2 Research Questions 117

Reproducible Distributed
Environments

8
This Chapter is based on [Gui+22b] published at CLUSTER 2022 with Jonathan
Bleuzen, Millian Poquet, and Olivier Richard.

8.1 Introduction

In this chapter, we tackle RQ1. We aim to make the entire software stack involved
in a experiment of distributed systems reproducible. This implies making the
compilation and the deployment of this stack reproducible, allowing one to rerun
the experiment on an identical environment in one week or ten years.

To reach this goal, we exploit the declarative approach for system configuration
provided by the NixOS [DL08] Linux distribution. NixOS makes use of a configu-
ration that describes the environment of the entire system, from user-space to the
kernel. The distribution is itself based on the purely functional Nix package manager
[DJV04]. The definition of packages (or system configuration in the case of NixOS)
are functions without side effects, which enables Nix and NixOS to reproduce the
exact same software when the same inputs are given.

We extend this notion of system configuration for distributed systems in a new tool
named NixOS Compose. NixOS Compose enables to define distributed environments
and to deploy them on various platforms that can either be physical (e.g.,on the
Grid’5000 testbed [Bal+13]) or virtualized (Docker or QEMU [Bel05]). NixOS
Compose exposes the exact same user interface to define and deploy environments
regardless of the targeted platform. We think that this functionality paired with fast
rebuild time of environments improves user experience, and we hope that it will
help the adoption of experimental practices that foster reproducibility.

Projects such as NixOps [Nix22], deploy-rs [ser23] or Disnix(OS) [Bur22a; Bur22b]
enable to activate new NixOS configuration on target machines, but they are limited
to machines that already run NixOS. These technologies only change the running

119

Deployed (g5k)

image

Environment description (3 times)

Environment description (once)

Vagrant

NixOS Compose

docker-compose Kameleon

Local

docker VM

composition.nix

(1) (3)(2)
C

u
rr

e
n
t

st
a
te

N
ix

O
S
 C

o
m

p
o
se

Deployed (g5k)

image ramdisk

Local

docker VM

Figure 8.1.: Motivation of NixOS Compose. Currently, to produce a reproducible environ-
ment for each platform, users must maintain a description file for each target
platform. We want NixOS Compose to only use a single description file (called
a composition) that can build reproducible distributed environments and de-
ploy them to several platforms.

configuration on the machines without rebooting them, which keeps a state on the
machines and is detrimental for reproducibility.

Take away 8.1

State-of-the-art solutions to deploy software environements are either not
focused on their reproducibility, or require long development cycles, which
encourages bad reproducibility practices.

We believe that there is a necessity to propose a solution to deploy reproducible
environments for a distributed system with fast development cycles. Figure 8.1
summarizes the motivation that has led us to create NixOS Compose. To generate
reproducible environments with the current solutions, users most often need a
configuration file for every platform they target. NixOS Compose aims at having
a single description of the distributed environment that can be deployed to sev-
eral platforms. NixOS Compose relies on Nix and NixOS and thus inherits their
properties to make the environment completely reproducible. We fully embraced

120 Chapter 8 Reproducible Distributed Environments

Figure 8.2.: Workflow of NixOS Compose. Local development of the environment is done
using light and fast development with containers and virtual machines. Once
the description of the environment (composition) has been tested, deployments
on a distributed platform can be done with the exact same interface.

the descriptive approach for reproducibilityreasons and decided to do most of the
configuration at the image build time. Some part of the configuration must however
still be done at runtime via a provisioning phase, typically to synchronize services
between different machines.

The chapter is structured as follows. Section 8.2 presents NixOS Compose, its main
concepts, the external concepts it relies on, and the users’ utilization workflow
for setting up a complete reproducible system and software stack. Section 8.3
gives technical details on how NixOS Compose works. Section 8.4 presents how
NixOS Compose can be used on a complex example that combines several distributed
middlewares. Section 8.5 offers experimental performance results of NixOS Com-
pose against standard state-of-the-art tools using multiple metrics. Finally, Section
8.6 concludes the section with final remarks and perspectives on reproducible works
and environments.

8.2 Presentation of NixOS Compose

This section gives the main concepts and terminology of NixOS Compose. A software
environment is a set of applications, libraries, configurations and services. We
define the notion of Transposition as the capacity to deploy a uniquely defined
environment on several platforms of different natures. For example one may want
to deploy an environment on local virtual machines to test and develop, and then
want to deploy onto real machines on a distributed platform with the exact same

8.2 Presentation of NixOS Compose 121

description. As depicted on Figure 8.1, it enables users to have a single definition of
their environment and to deploy it to different platforms. For the sake of clarity,
NixOS Compose concepts will be illustrated on an example environment that contains
k3s [K3s], a lightweight version of Kubernetes for the orchestration of containers.

1 { pkgs, ... }:
let k3sToken = "..."; in {

3 roles = {
server = { pkgs, ... }: {

5 environment.systemPackages = with pkgs; [
k3s gzip

7];
networking.firewall.allowedTCPPorts = [

9 6443
];

11 services.k3s = {
enable = true;

13 role = "server";
package = pkgs.k3s;

15 extraFlags = "--agent-token ${k3sToken}";
};

17 };
agent = { pkgs, ... }: {

19 environment.systemPackages = with pkgs; [
k3s gzip

21];
services.k3s = {

23 enable = true;
role = "agent";

25 serverAddr = "https://server:6443";
token = k3sToken;

27 };
};

29 };
}

Listing 8.1: NixOS Compose composition file example for k3s [K3s].

Role A role is a type of configuration associated with the mission of a node. k3s is
a client-server application where clients are named agents. There would therefore
be 2 roles: one for the server and another for the agents. As all the agents have
the same configuration they can use the same role. Note that in cases where there is
one node per role, the notion of role and the notion of node overlap.

Composition A composition is a Nix expression describing the NixOS configuration
of every role in the environment. Listing 8.1 shows an example of composition
for k3s. The composition in Listing 8.1 defines the open port of the server (line

122 Chapter 8 Reproducible Distributed Environments

10-12), the available packages (lines 7-9 and 23-25, packages are k3s and gzip),
as well as the systemd services (lines 13-19 and 26-31). The k3s service is not
defined explicitly in this example, as we reuse an existing definition that is available
in the collection of Nix expressions nixpkgs. For personal applications users might
have to define their own systemd services, which can be done declaratively via a
Nix expression. Nix variables can be used to avoid information duplication, as seen
for the k3s token (used to manage authentication) defined on line 2 and used to
configure both the server (line 18) and the agents (line 30).

Deployment A deployment assigns a role to every node. NixOS Compose proposes
two ways to define deployment as YAML files, as illustrated on Listings 8.2 and
8.3. The first way is to define the number of nodes that should be used for each
role (Listing 8.2). This is convenient when working on homogeneous nodes for
simple deployments. For the sake of reproducibility, NixOS Compose generates a
deterministic assignment – if the same nodes are reserved and the same deployment
is used, the role of each node remains the same. The second way to define a
deployment is to directly define the role that each node should take (Listing 8.3).
This is more suited for complex scenarios, as it enables users to generate their
deployment file depending on their needs.

Users can define the number of nodes per role
2 server: 1

agent: 3

Listing 8.2: Deployment file example for the k3s example with 1 server and 3 agents where
the users defined the quantity of nodes per role. The hostnames are generated
by NixOS Compose. In this example there would be 3 agents with the hostnames
agent1, agent2 and agent3.

1 # Users can also define the hostnames per role
server: 1

3 agent:
- agent1

5 - agent2
- agent3

Listing 8.3: Deployment file example for the k3s example with 1 server and
3 agents where the users defined the hostnames of every node per role.

Flavours A flavour is a target for the deployment of the environment. This notion
includes the (virtual or physical) platform onto which the deployment should be

8.2 Presentation of NixOS Compose 123

done, and also the deployment method that should be used (e.g., full system image or
ramdisk). As we write these lines NixOS Compose supports the following flavours:

• docker for docker-compose [Doc22] configurations.

• vm-ramdisk for in-memory QEMU virtual machines.

• g5k-image for full system tarball images that can be deployed on Grid’5000 [Bal+13]
via Kadeploy [Geo+06].

• g5k-ramdisk for initrds that can be quickly deployed in memory without the
need to reboot the host machine on Grid’5000(via the kexec syscall).

During the development phase of the environment, users can deploy locally, lightly
and quickly with the docker and vm-ramdisk flavours. At a later stage, users can test
their environment on real nodes from the Grid’5000 testbed with the g5k-ramdisk,
which is convenient for trial-and-error operations thanks to its fast boot time. Finally,
the environment can be deployed at real scale on Grid’5000 with the g5k-image
flavour. Please note that some flavours have reproducibilitylimitations due to the
underlying technologies. For example, controlling the version of the Linux kernel is
impossible when using the docker flavour.

Take away 8.2

NixOS Compose introduces the notions of composition which reprents the
configurations of the different roles in the deployement. This composition can
be transposed to different target systems, called flavours.

8.2.1 Workflow

This section presents the workflow of NixOS Compose and how it enables users to
simply transpose their environment from one platform to another.

Local Testing When developing an environment, users can work with the docker
and vm-ramdisk flavours with the following workflow:

1. Building the image: nxc build -f docker or nxc build -f vm-ramdisk

2. Deploy the environment: nxc start. By default, NixOS Compose takes the last
composition built.

124 Chapter 8 Reproducible Distributed Environments

3. Connect to the nodes: nxc connect [node name]. This opens a connection
to the desired node. If name is omitted, a terminal multiplexer1 opens with
one pane per node, which is convenient to run commands on the nodes.

Distributed Deployment Once the environment has been tested with local flavours,
it can be tested in a distributed system.

1. Building the image: nxc build -f g5k-ramdisk or nxc build -f g5k-image

2. Reservation of the nodes to use for the deployment: depends on your platform
resource manager. For example salloc for Slurm [YJG03] or oarsub for
OAR [Cap+05].

3. Deploy the environment: nxc start.

4. Connect to the nodes: nxc connect [node name].

Figure 8.2 summarizes the NixOS Compose workflow. NixOS Compose aims at making
the transition between platforms as seamless as possible. Thus, the workflow in
a distributed setting (Section 8.2.1) is identical to the workflow in a local one
(Section 8.2.1). The only difference is that in a distributed setting, users need to
first reserve the resources before deploying.

8.3 Technical Details

Nix can generate a NixOS configuration from a Nix expression, including the boot
and init phases required to start the kernel. Nix stores those phases in the Nix
Store, which enables NixOS Compose to call them later on. NixOS Compose works
in two steps: Building and Deploying. The building phase is done using Nix tools
wrapped with Python for the command-line interface. The deployment is fully done
with Python and mostly consists in the interaction with the different deployment
tools (Kadeploy, docker-compose, QEMU). The Nix part is around 2000 lines of code,
and the Python part around 4000.

The following section (8.3.1) details how NixOS Compose manages g5k-ramdisk,
the flavour that enables quick in-memory deployment without the need to reboot
host machines on Grid’5000. Details are omitted for the other flavours, but please

1tmux: https://github.com/tmux/tmux

8.3 Technical Details 125

https://github.com/tmux/tmux

Table 8.1.: Table summarizing the different flavours with their building and deployment phases.

Flavour
Phase

Comments
Building Deployment

docker Generate a docker-compose configuration and
docker containers.

Call the docker-compose application with the
right arguments.

Fastest and light but limited in application due to
virtualization.

vm-ramdisk Generate the kernel and initrd for the roles of
the composition.

Create a virtual network with Virtual Distributed
Ethernet (VDE) and starts the Virtual Machines
with QEMU.

Fast but takes a lot of memory. Limited to a couple
of VMs on a laptop.

g5k-ramdisk Generate the kernel and initrd for the roles of
the composition.

Use kexec to quicky start the new kernel with-
out rebooting. Send the deployment informa-
tion through the kernel parameters.

Long to build but fast to deploy. kexec has repro-
ducibility limitations and consumes a lot of memory
which can be limiting for large images.

g5k-image Generate a tarball of the image of the composi-
tion.

Use Kadeploy to deploy the image to the nodes.
Send the deployment information through the
kernel parameters.

Longer to build and deploy, but it has the best re-
producibility properties.

refer to Table 8.1 for a summary of the difference in the building and deployment
phases for all supported flavours.

8.3.1 Details on the g5k-ramdisk Flavour

Construction NixOS Compose uses Nix to evaluate the configuration of every role
in the composition. Nix then generates the kernel and the initrd of the profiles.

Deployment NixOS Compose relies on the kexec Linux system call for this flavour.
kexec enables to boot a new kernel from the currently running one. This skips the
initialization of the hardware usually done by the BIOS, which avoids an entire
reboot of the machines and greatly reduces the time to boot the new kernel. The
kexec commands takes as input the desired kernel, the kernel parameters and the
initrd. NixOS Compose passes the kernel and initrd generated in the construction
phase to kexec.

As NixOS Compose produces a single image containing the profiles of all the roles,
NixOS Compose needs at deployment time to tell each node the role it should
take. To achieve this, we pass this information using the kernel parameters to
set up environment variables based on the role. NixOS Compose also uses the
kernel parameters to pass ssh keys and information about the other hosts (e.g., the
/etc/hosts). There is however a size limit of 4096 bytes on the kernel parameters,
which prevents us to use this method to send the deployment information to nodes
when users want to deploy a lot of nodes. To deal with this, NixOS Compose starts a
light HTTP server on the cluster frontend for the duration of the deployment. We
pass the URL of this server using the kernel parameters. Then, the nodes query this
server with wget to retrieve the information associated with their roles. Note that
the deployed images do not include a HTTP server but only the wget application to
fetch the data. Figure 8.3 represents how the nodes get the deployment information
based on the quantity of nodes involved.

8.4 A Complex Example: Melissa

This section shows how complex distributed environments can be developed with
NixOS Compose by taking the Melissa [Ter+17] framework as an example.

8.4 A Complex Example: Melissa 127

Frontend
kexec via ssh

deployment-infos

$> INITRD={path_on_NFS}/initrd \
KERNEL={path_on_NFS}/kernel \
kexec -l $KERNEL --initrd=$INITRD ...

Boot

deployment-infosStage1

Context setup
/etc/host

/root/.ssh/

...

Node's boot phases

Init Phase

HTTP server
GET /URL

deployment-infos

Kernel parameters ≤4096 bytes

Frontend
kexec via ssh

deployment-infos

$> INITRD={path_on_NFS}/initrd \
KERNEL={path_on_NFS}/kernel \
kexec -l $KERNEL --initrd=$INITRD ...

Boot

deployment-infosStage1

Context setup
/etc/host

/root/.ssh/

...

Node's boot phases

Init PhaseKernel parameters >4096 bytes

Figure 8.3.: Mechanism for the nodes to get the deployment information. For a few nodes,
the information is passed via the kernel parameters. For a higher number of
nodes, this is not possible due to the size limit on the kernel parameters (4096
bytes). In this case NixOS Compose starts a light HTTP server on the frontend
and passes its URL to the nodes via the kernel parameters. The nodes then
query this server to retrieve the deployment information.

128 Chapter 8 Reproducible Distributed Environments

8.4.1 Presentation of Melissa

Melissa is a framework to run large-scale sensitivity analyses. Its main specificity is
the online processing of data to limit usage of intermediate file storage, contrary
to postmortem approaches. It can be used in several HPC environments as it is
compatible with two resource managers (RM): Slurm [YJG03] and OAR [Cap+05].
Melissa implements a client/server model where the clients are simulations that
generate and send data to a server that runs the statistics algorithms.

NixOS Compose enables to deploy a resource manager (including all the components
it requires, e.g., a database), Melissa, and all the components required by Melissa at
runtime (e.g., a distributed file system).

In the following example we deploy Melissa with the Slurm resource manager. Four
roles are needed to define the environment.

• server: RM server and file system server

• dbd: MariaDB database (accounting for the RM)

• computeNode: worker node

• frontend: node from where initial jobs are submitted

server = { pkgs, ... }: {
2 imports = [slurmconfig nfsConfigs.server];

services.slurm.server.enable = true;
4 systemd.services.slurmctld.serviceConfig = {

Restart = "on-failure";
6 RestartSec = 3;

};
8 };

computeNode = { pkgs, ... }: {
10 imports = [slurmconfig nfsConfigs.client];

environment.systemPackages = [
12 melissa melissa-heat-pde

];
14 services.slurm.client.enable = true;

systemd.services.slurmd.serviceConfig = {
16 Restart = "on-failure";

RestartSec = 3;
18 };

};

Listing 8.4: Configuration of the server and computeNode roles.

Some roles share parts of their configuration, like server and computeNode. They
both use Slurm but their configuration differs in terms of services, as they respectively
enable the slurm.server and slurm.client services.

8.4 A Complex Example: Melissa 129

Melissa itself also needs to be part of the environment. Unlike the k3s example shown
on Listing 8.1, Melissa is not available in nixpkgs and thus needs to be packaged.
Listing 8.5 is a snippet of Melissa’s package definition that notably defines which
source code should be used (lines 5-9) and which build dependencies should be
used (lines 10-13). The build commands (line 14) are omitted for the sake of
readability.

1 { pkgs, ... }:
pkgs.stdenv.mkDerivation rec {

3 pname = "melissa-${version}";
version = "0.7.1";

5 src = pkgs.fetchgit {
url="https://gitlab.inria.fr/melissa/melissa";

7 rev="e6d09...";
sha256="sha256-IiJad...";

9 };
buildInputs = with pkgs; [

11 cmake gfortran python3 openmpi
zeromq pkg-config libsodium

13];
Build phases are omitted

15 }

Listing 8.5: Snippet of the package definition for Melissa

Similarly, the melissa-heat-pde simulation application must also be in the environ-
ment (line 12 of Listing 8.4). Finally, as a distributed filesystem is necessary in this
environment, our composition imports a NFS module for the roles that need it.

8.4.2 Key difficulties

This section emphasizes the advantages of using NixOS Compose to deploy the
Melissa distributed environment.

NFS Server Setting up a NFS server with tools like Kameleon or EnOSlib is cumber-
some. The users would first need to install the nfs tools on the nodes and define the
NFS server. Then, the users would have to mount the newly defined server on every
client node. These steps can be automated with scripts, but that would be fragile.

130 Chapter 8 Reproducible Distributed Environments

1 # Configuration of the NFS server
nfsServer = {

3 services.nfs.server.enable = true;
services.nfs.server.exports =

5 "/srv/shared *(rw,no_subtree_check,fsid=0,no_root_squash)";
services.nfs.server.createMountPoints = true;

7 };

Listing 8.6: Definition of the NFS server. It exposes the /srv/shared folder.

1 # Mouting of the NFS server
nfsClient = {

3 fileSystems = {
"/data" = {

5 device = "server:/";
fsType = "nfs";

7 };
};

9 };

Listing 8.7: Mounting of the NFS server for the compute nodes. The local mounting point
is /data.

The declarative definition of NFS with NixOS is based on systemd services (see
Listings 8.6 and 8.7). This makes them easier to define and more robust as they can
be restarted until they perform the mount successfully in the case of the NFS server
starting after the clients.

Resource Manager Melissa runs on production clusters managed by resource man-
agers such as Slurm and OAR. However, experimenting on Melissa’s behavior in
different scenarios requires controlling the resource manager part of the environ-
ment. The installation of such systems is far from trivial as they include several
distributed services that must interact, and each one of these services require config-
uration. A composition can be made modular so that users can descriptively change
the resource manager. The same benefit is achievable for comparison studies of
versions of the Melissa framework, as the Nix function that defines Melissa can be
written in such a way that it takes Melissa’s source code as a function input.

We have deployed the Melissa composition we have written with NixOS Composeon
13 nodes with the experimental setup described in Section 8.5.1. The deployment
took approximately 2 minutes with the g5k-ramdisk flavour.

8.4 A Complex Example: Melissa 131

8.4.3 Melissa Images Content Comparison

NixOS Compose aims to provide the same environment on different target platforms.
This section analyses the content of the Nix Store in the Melissa images generated
for every flavour, as the Nix Store content represents the software environment
available on the node. The docker flavour is omitted here as the containers do not
have a well-defined specific Nix Store but mount the Nix Store of the host machine
instead.

Figure 8.4 presents the content of the Nix Store of the Melissa image for the differ-
ent flavours. The smaller packages are gathered under the others-* name. We
can see that the vast majority of the software stack is shared by several flavours.
There is a common 2 GiB set of packages common to every flavour containing the
NixOS definition and the dependencies of Melissa. The two flavours targeting the
Grid’5000 platform need more packages, for example the firmware to use the nodes’
hardware. Then for each of the flavour, there is about 5 % of the total Nix Store size
for packages specific to the flavour. For example, deploying a g5k-image image
requires a complete reboot of the host and to go through the boot loader, hence the
presence of grub in this image.

Take away 8.3

The resulting environments for the different flavours differ because of the
particularities of the target platform.

8.5 Evaluation

NixOS Compose brings reproducibility guarantees to distributed environments con-
trary to state-of-the-art solutions. The overall goal of this evaluation section is to
determine whether this is done with a significant overhead or not.

8.5.1 Experimental Setup

The following experiments have been carried out on the dahu cluster of the Grid’5000 testbed.
This cluster has machines with 2 Intel Xeon Gold 6130 CPUs with 16 cores per
CPU and 192 Gib of memory. The nodes of this cluster have SSD SATA Samsung
MZ7KM240HMHQ0D3 disks with a capacity of 240 GB formatted in ext4.

132 Chapter 8 Reproducible Distributed Environments

gcc (177 MiB)gcc (177 MiB)gcc (177 MiB)

gfortran (166 MiB)gfortran (166 MiB)gfortran (166 MiB)

mariadb (206 MiB)mariadb (206 MiB)mariadb (206 MiB)

nixos (252 MiB)nixos (252 MiB)nixos (252 MiB)

others−common (1047 MiB)others−common (1047 MiB)others−common (1047 MiB)

python3 (94 MiB)python3 (94 MiB)python3 (94 MiB)

firmware (760 MiB)firmware (760 MiB)

glibc (215 MiB)glibc (215 MiB)

others−common−g5k (373 MiB)others−common−g5k (373 MiB)

others−g5k−image (181 MiB)others−g5k−ramdisk (168 MiB)

others−vm−ramdisk (97 MiB)

0

1

2

3

vm−ramdisk g5k−ramdisk g5k−image
Flavours

S
iz

e
[G

iB
]

Common Common G5K Flavour Specific

Content of the Nix Store of the Melissa Image for each Flavour

Figure 8.4.: Packages present in the Nix Store of the Melissa image for the different flavours.
The colors represent the packages common to the flavours. The smaller pack-
ages are gathered under the others-* name. The docker flavour is omitted as
it mounts the Nix Store of the host machine.

8.5 Evaluation 133

The experiments conducted in this article are repeatable with variation. Data
and analysis scripts are available on Zenodo2 with the link to the experiments’
repository.

8.5.2 Comparison to Kameleon

Grid’5000 provides base images for several Linux distributions and versions. Users
need to build their own images if they want to use more complete images. This
is usually done with Kameleon on Grid’5000 — in fact all the images provided by
Grid’5000 are generated by Kameleon recipes.

In this study, we want to compare the performance of NixOS Compose and Kameleon to
build images. We will focus on the image build time, as well as the size of the gener-
ated images. We also want to evaluate whether caching the Nix Store enables an
interesting build time speedup.

Protocol The following steps are executed in this order.

1. Construction. Build an image from a recipe.

2. Modification. Change the recipe slightly.

3. Reconstruction. Build an image from the new recipe.

We first build a base image with NixOS Compose and Kameleon, measuring its build
time and the size of the generated images. base contains the basic software needed
to conduct a distributed experiment: grid5000/debian11-x64-nfs for Kameleon as
this is the most convenient and common image for distributed experiments on
Grid’5000, and all the packages required by the flavour for NixOS Compose. Then
we add the hello package to the recipes and build a new image (base + hello)
while measuring the same metrics.

This experiment has been executed using Grid’5000’s NFS (mounted on /home) or
without it (using local disks on machines mounted on /tmp), in order to compare
the performance of the tools depending on the filesystem setup used.

We clear the Nix Store before building the base image, but not before building
base + hello, in order to evaluate the impact of cached builds on NixOS Compose.
Kameleon has an indirect caching mechanism via the HTTP proxy Polipo [Chr22].

2https://zenodo.org/record/6568218

134 Chapter 8 Reproducible Distributed Environments

https://zenodo.org/record/6568218

Construction Time with NFS [s] Construction Time without NFS [s] Image size [Mib]

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750

nxc−g5k−ramdisk

nxc−g5k−image

kameleon

base base + hello

Image Size, Construction and Reconstruction Time for Different Environments with and without NFS

Figure 8.5.: Performance comparison between Kameleon and NixOS Compose (nxc). A
base image is first built, then a new image (base + hello) that contains the
additional hello package is built. As Grid’5000 is the targeted platform of this
experiment, images are built with the g5k-ramdisk and g5k-image flavours.
Shown values are averages over 5 repetitions. Error bars represent 99 %
confidence intervals.

However, we did not manage to make it work with Kameleon, and Polipo is no longer
maintained as its utility has become arguable – most of today’s traffic is encrypted,
including fetching packages from mirrors.

Results and Comments As seen on Figure 8.5, NixOS Compose substantially out-
performs Kameleon in terms of image build time. When building from an empty
cache on local disks, NixOS Compose is 11x faster than Kameleon. Moreover, NixOS
Compose uses its local cache efficiently, which enables it to build the image variation
1.7x faster than the initial image build time when the filesystem is used efficiently
(local disks).

Figure 8.5 also shows that NixOS Compose produces bigger images than Kameleon.
This is mainly because we have not optimized the content size of the images as
we write these lines — e.g., many firmwares are kept in the images instead of only
the ones needed on Grid’5000 (see Figure 8.4). Another reason for this image size
comes from our design choice to prioritize compression speed over compression
quality. This is important for NixOS Compose as image variations should be built as
fast as possible to improve user experience. For information, we have measured that
NixOS Compose takes about 25 s to compress each image, which is a non-negligible
portion of a variation build time (30 - 35 %).

Finally, Figure 8.5 shows how the filesystem setup impacts the build time. Here,
using an efficient filesystem setup (local disks) greatly benefits to NixOS Compose as

8.5 Evaluation 135

it makes it 4x faster. This is caused by the many smalls writes done by Nix in the Nix
Store. Filesystem setup has little impact on Kameleon as it uses local disks by default
to generate the whole image, that is later on copied to the NFS.

Take away 8.4

NixOS Compose builds system images faster than Kameleon, but really shines
when introducing a variation in the environment. Nix is victim of the NFS
slowness, and build times can be even more improved when not building on
NFS.

8.5.3 Comparison to EnOSlib

EnOSlib is a state-of-the-art solution to conduct distributed experiments. EnOSlib does
not claim to be reproducible, but it inherits the reproducibility of its underlying
components. In this section, our goal is to compare the performance of NixOS Com-
pose and EnOSlib to set up fully reproducible distributed environments. In particular,
we want to know how much time is taken for each phase of a deployment.

Case Studies We chose to study the two following distributed applications that are
already implemented in EnOSlib:

• k3s [K3s] is a lightweight version of Kubernetes.

• flent [toh22] is a network benchmarking tool.

Our k3s environment consists in two nodes: one k3s server and one k3s agent. The
agent deploys a nginx web server to the agents. The run part of the experiment
simply consists in querying the webserver to retrieve the nginx web page.

Our flent environment consists in 2 nodes: one server and one client. The run part
of the experiment simply runs the flent benchmark.

For both case studies, we made sure that NixOS Compose and EnOSlib set up similar
environments, and that they execute the same run part of the experiment after the
deployment and provisioning phases have been done.

136 Chapter 8 Reproducible Distributed Environments

flent k3s

Build Sub + Deploy Provisioning Run Build Sub + Deploy Provisioning Run
0

100

200

300

Phases

T
im

e
[s

]

EnOSlib nxc−g5k−ramdisk nxc−g5k−image

Time Spent in each Phases for Different Approaches with 99% Confidence Intervals (5 repetitions)

Figure 8.6.: Time spent in the different phases of the deployment of a distributed experi-
ment (build, submission + deploy, provisioning, run). We compare EnOSlib
and NixOS Compose (with the flavours g5k-ramdisk and g5k-image) on two
examples: a network benchmarking tool (flent) and a containers’ orchestrator
(k3s). The errors bars represent the confidence intervals at 99 %.

Protocol EnOSlib’s approach is mostly based on the configuring/provisioning phase,
which executes commands to set up a desired environment (software, services. . .)
on a machine that is already available. As this limits reproducibility on the ker-
nel side, we decided to deploy traceable images on the nodes. We used the
grid5000/debian11-x64-nfs image that is pre-built by Grid’5000. EnOSlib de-
ploys the image with Kadeploy, then executes the provisioning phase, and then
execute the run part of the experiment once the environment is ready.

In NixOS Compose most of the configuration is done inside the composition and thus
in the image. This enables us to completely skip the provisioning phase for flent. For
k3s, our provisioning phase simply consists in waiting that the web server becomes
available.

For both tools we measure the time to build the image, to deploy it, to execute the
provisioning and to run the experiment script. We use an empty Nix Store for a fair
build time.

Results and Comments As seen on Figure 8.6, NixOS Compose’s g5k-ramdisk
flavour is faster to deploy than a full image as it uses kexec and does not require a full
reboot. As expected, we also can see that the solutions with NixOS Compose have a
smaller provisioning time than with EnOSlib. This is because NixOS Compose includes
this as part of this provisioning in the build and deployment phase.

Please note that EnOSlib does not directly provide the time taken by the deployment
phase, but only provides the time between the submission and the first command of

8.5 Evaluation 137

the provisioning. That is why the submission and deployment time (Sub + Deploy)
are shown together on Figure 8.6 both for EnOSlib and NixOS Compose, for the sake
of fairness.

From Figure 8.6, it seems that packing part of the provisioning in the image improves
the provisioning time without deteriorating the deployment time. The only draw-
backs are the non-negligible build times. However, those times can be improved
by utilizing the Nix Store as a local cache (see Section 8.5.2). Note that NixOS
Compose proposes several flavours that can be executed locally to develop and test
the environment. The cost of the construction of these images is thus amortized by
the numerous quick and light local deployments. Finally, please also note that the
build time of EnOSlib is null on Figure 8.6 as a pre-built image is used. However,
depending on their scenario users may need to actually build an image via another
technology (e.g.,Kameleon or NixOS Compose).

Take away 8.5

Using NixOS Compose instead of EnOSlib can reduce the time spent after
deployment to configure services (provisioning) to the build time thanks to
the declarative nature of NixOS services.

8.6 Conclusion

This Chapter has presented NixOS Compose, a free tool, under MIT license [Gui+22a],
that enables the generation of reproducible distributed environments. We have
showed that NixOS Compose deploys the exact same software stack on various
platforms of different natures, without requiring specific work from users. The
software stack is reconstructible by design, as NixOS Compose inherits its repro-
ducibility properties from Nix and NixOS. Our experiments showed that NixOS
Compose’s reproducibility and platform versatility properties are achieved with-
out deployment performance overhead in comparison to the existing solutions
Kameleon and EnOSlib.

NixOS Compose enables to build and deploy reproducible distributed environments.
This is crucial for conducting reproducible distributed experiments, but this is only a
part of the bigger picture. We plan to explore how NixOS Compose can be coupled
to other tools that solve other parts of this problem. EnOSlib is for example well-
suited to control the dynamic part of complex distributed experiments but lacks

138 Chapter 8 Reproducible Distributed Environments

reproducibility properties, which makes us think that a well-designed coupling may
be beneficial for practitioners.

The experiments conducted in this article showed that build caches greatly improves
NixOS Compose’s build times, and that properly using the file system is important
for its performance. From a cluster administration perspective, providing a shared
Nix Store between users would be very interesting to avoid data duplication and
to prevent different NixOS Compose users to build the same packages over and
over. There are many ways to implement a distributed shared Nix Store and we
think that exploring their trade-offs would provide valuable insights, as reproducibil-
ity improvements should not be done at the cost of a higher resource waste on
clusters.

User experience is a crucial factor that must be considered for reproducible experi-
mental practices becoming the standard. With this in mind, we think that the notion
of Transposition we have defined in this article and implemented in NixOS Compose is
very beneficial. Transposition reduces the development time of distributed environ-
ments, as it enables users to do most of the trial-and-error parts of this iterative
process with fast cycles, without any reproducibility penalty on real-scale deploy-
ments. However, practitioners that adopt NixOS Compose are likely to experience a
paradigm shift if they are not already accustomed to Nix’s approach. We strongly
believe that the reproducibility and serenity gains it brings are worth it. To help with
the adoption of NixOS Compose a tutorial has been created and presented at two
occasions [Gui+a].

NixOS Compose currently only provides first-class support for Grid’5000. We would
like to support bare-metal and virtualized deployments on other experimental
testbeds such as CloudLab [Dup+19] and Chameleon [Kea+20]. Moreover, the
hand off from Grid’5000 to SLICES(-FR) might require to also support deployments
technologies such as OpenStack [Ope13].

8.6 Conclusion 139

Reducing the Cost of
Experimenting with
Distributed File-System

9

This chapter is based on [Gui+23d] presented at the 15th JLESC workshop with
Olivier Richard, Raphaël Bleuse, and Eric Rutten.

9.1 Introduction

The increase of computing demands from scientists from all fields led to the develop-
ment of computing cluster and grid architectures. And with these new architectures
came new challenges. Due to their high prices, clusters are often shared among
several research laboratories and teams. This sharing motivates the development
of middlewares such as batch schedulers that are responsible to assign the user
jobs to physical machines, manage the state of the resources, deal with reservation,
etc. Such cluster, or grid, middlewares are complex applications of great research
interest, and they must be tested before reaching production. However, they are
usually destined to operate in an environment of hundreds or thousands of machines.
Deploying a full scale environment is too costly to perform simple tests and very
specific evaluations.

We thus want to answer the following question: Can we reduce the number of
physical machines needed to perform a full scale experiment while keeping a
similar behavior as the full scale system?

One solution to reduce the number of machines used for experiments would be to
use simulation techniques. The system, the applications, and the middlewares are
modeled and can then be executed on a single node. Beside reducing the number of
machines used, simulators also reduce the execution time of the experiments. In the
context of distributed systems and applications, projects such as Simgrid [Cas+14]
and Batsim [Dut+16] are leading the way. One drawback of simulation is that the
real middleware is not being executed, or not fully executed, but instead, a partial

141

or modeled version is executed in a modeled environment. In the case of cluster and
grid middlewares, the applications are often far too complex to model them fully
correctly.

Another approach is to fold the experiment by deploying more “virtual” resources
on physical machines. In the case of a Resources and Jobs Management Systems
(RJMS), like Slurm [YJG03] or OAR [Cap+05], it is possible to define several
resources, from the point of view of the RJMS, on a single machine, which would
be completely transparent for the users. For example, one can deploy a 1000-node
virtual cluster on 10 physical nodes by defining 100 virtual resources on each node.
The advantage is that the experiment takes place on the real system (CPU, network,
disk, etc.) and with the real middleware code. The drawback is that this folding can
introduce noise in the experiment and degrade performance.

In this chapter, we evaluate the performance of a distributed I/O benchmark when we
fold a computing cluster onto itself, and quantify the impact of folding a computing
cluster containing a file system. We then give a rule of thumb for choosing the
amount of folding for distributed experiences containing a distributed file-system.

Section 9.2 defines notions and concepts. We present the experimental protocol in
Section 9.3 and perform the evaluation in Section 9.4.

This problematic arises in the context of experiments with CiGri where we must
deploy and perform experimentation evaluation of a modified version of CiGri on
a realistic environment. It is unreasonable to deploy on the entire Gricad meso-
center, or using simulation due to the complex software stack (CiGri + OAR + users
jobs). We are thus interested in folding strategies to perform the evaluation of our
CiGri modifications.

The statistical description of the execution times of the CiGri jobs presented in
Chapter 2 allows us to use a sleep model to represent the execution times. As sleep
calls are extremely lightweight for a CPU to deal with, we are able to fold several
virtual resources onto one physical resource. However, no realistic job only does
computation without reading and/or writing data. We can extend the previous job
model by adding I/O operations before or after the sleep with the dd command.
This addition makes it less obvious how much we can afford to fold.

The questions that we want to answer are thus the following:

1. What is the minimum number of machines we need to deploy to emulate a
full scale cluster with this job model while keeping the same performance
in I/O?

142 Chapter 9 Reducing the Cost of Experimenting with Distributed File-System

File System

I/O ops.

Physical Res.
Virtual Res.

Comms.

(a) Folding with a factor of 1
(4 physical resources and
4 virtual resources).

File System

I/O ops.

Physical Res.
Virtual Res.

Comms.

(b) Folding with a factor of 2
(2 physical resources and
4 virtual resources).

File System

I/O ops.

Comms.
Physical Res.
Virtual Res.

(c) Folding with a factor of 4
(1 physical resource and 4
virtual resources).

Figure 9.1.: Example of folding a deployment for a system with 4 resources. Figure 9.1a
depicts the system deployed at full scale. Figure 9.1c represent the system
completely folded. And Figure 9.1b shows an intermediate folded deployment.

2. Is there a trade-off between the number of physical resources used and
the overhead of performances due to the folding?

9.2 Definitions & Concepts

We define the folding of a deployment as the action of defining several “virtual
resources” on a physical resource. A physical resource is a node from a cluster, and
a virtual resource represents a resource on the full scale system from the point of
view of the RJMS.

We also define the folding factor (ffold) as the division of the number of virtual
resources in the deployment divided by the number of physical resources. Intuitively,
it represents the number of virtual resources for each physical resource:

ffold = #resourcevirtual

#resourcephysical
∈ [1, +∞[(9.1)

Figure 9.1 depicts an example of folding a deployment.

9.3 Methodology

We aim at evaluating the variations in performance of a distributed application using
a distributed file-system for different value of folding factors (ffold). As explained
previously, the job model that we are using is a sleep time to represent the CPU

9.2 Definitions & Concepts 143

bound phase, and a dd operation to represent the I/O phase. The sleep operation
allows us to fold the CPU bound phase on the same machine easily without noise.
We thus focus on the performance of the I/O operations in a folded deployment.

9.3.1 Experimental Setup

The following experiments were carried on the gros cluster, located in Nancy, of the
Grid’5000 [Bal+13] French test bed. The machines of this cluster have an Intel Xeon
Gold 5220 CPU with 18 cores, 96 GiB of memory, a 2 x 25 Gbps (SR-IOV) network
and a 480 GB SSD SATA Micron MTFDDAK480TDN disk. The reproducibility of the
deployed environment was ensured by NixOS Compose [Gui+22b]. The environment
definitions are available at [hpc23a; hpc23b], the analysis scripts at [Gui+23b], and
the data on Zenodo [Gui+23c].

9.3.2 Benchmark application

To evaluate the performance of the cluster file system, we chose to use the IOR
[Cal23] benchmark. IOR is a MPI application to benchmark I/O performances. It is
the most popular benchmark among research on I/O in HPC [Boi+18], and is also
used in the context of the IO500 list [IO5].

IOR has a multitude of parameters, but give the main ones here. We used the POSIX
protocol (api=POSIX), a transfer size (transferSize) of 1Mbytes and a segment
count of 1 (segmentCount). We assigned a single file per IOR process (filePerProc),
and checked the correct writing and reading afterwards (checkWrite and checkRead).
The number of tasks (numTasks), which represent the number of IOR processes, and
the block size (blockSize), which is the total size of the file to read/write in this
case, are parameters of the following experiments. We used OpenMPI with the TCP
backend.

9.3.3 Distributed File-Systems

For the chosen distributed file-systems, we used NFS and OrangeFS.

144 Chapter 9 Reducing the Cost of Experimenting with Distributed File-System

File System

I/O ops.

IO node

(a) Distributed File system like NFS. Multiple
clients query a single I/O node that pro-
cess all the requests.

File System

I/O ops.

IO node IO node

(b) Parallel File system like OrangeFS. Mul-
tiple clients query in parallel all the I/O
nodes.

Figure 9.2.: Architectures for a distributed file system (Figure 9.2a), and parallel file system
(Figure 9.2b).

NFS (v4) NFS [Paw+00] is a popular distributed file-system for small clusters.
There is only one server. Clients mount the file-system and can perform POSIX
operations. Figure 9.2a depicts the simplified architecture of a distributed file system
like NFS. All the clients query the same I/O node for their files. NFS servers do
have several workers that can manage the requests concurrently. The NFS export
options used are: *(rw,no_subtree_check,fsid=0,no_root_squash). The NFS
server runs under the default configuration (8 workers).

OrangeFS OrangeFS [Bon+11] (or PVFS2) is a parallel file-system. This means
that there are several servers (also called I/O nodes) to manage the requests of the
clients. Figure 9.2b depicts the simplified architecture of a parallel file-system like
OrangeFS. The clients query a I/O node of the file system. If one stripe asked by the
client is not present on the query I/O nodes, the file system indicates on which I/O
node to find it. We used the default configuration recommended by the OrangeFS
installer (the I/O nodes host both the metadata and the storage).

Number of I/O nodes In the case of PFS, like OrangeFS, we did not find any
methodology nor “rule of thumb” to define the number of I/O nodes for a computing
cluster. In the following, we will consider OrangeFS file-systems with 1, 2, or 4 I/O
nodes. Note that in the case of NFS there is only one I/O node.

I/O load We consider 5 different sizes of I/O operations to perform, both in writing
and reading: 1Mbytes, 10Mbytes, 100Mbytes, 500Mbytes, and 1Gbytes. These file
sizes will be the values of the IOR blockSize option.

9.3 Methodology 145

Number of CPU nodes As a first step, and because we aim at emulating clusters
from regional meso-centers, we will thus consider small clusters of 8, 16, 24, and 32
nodes. These number of nodes will be the values of the IOR numTasks option: one
tasks per node of the cluster.

Protocol Let us consider a system with N CPU nodes. We first deploy the system
at full scale, i.e., N machines and the I/O nodes of the file system. As IOR is an MPI
application, we compute the hostfile with one slots per compute node. We then
start the IOR benchmark, that we repeat 5 times (the IOR repetitions option), and
gather the performance reports. We remove one compute node from the hostfile
and recompute the slots for the remaining nodes to keep the number of processes
(numTasks) constant. This protocol is then repeated for all the different variations:
number of CPU, size of I/O operations, type of file system, number of I/O nodes.

Figure 9.3 shows a visual representation of the experimental protocol for an experi-
ment with 4 CPU nodes.

9.4 Evaluation

In this Section, we present the results of the experiments presented in the previous
section. We first consider the file-system of the cluster to be NFS in Section 9.4.1,
and then OrangeFS in Section 9.4.2.

9.4.1 Evaluation of NFS

Figure 9.4 shows the results of the experiments when using NFS. We also plot the
95% confidence intervals. Note that we did not remove the outliers. We notice that
the writing performances (bottom row) does not seem to be affected by the folding
of the deployment as it remains flat. However, for the reading performances (top
row), we can see that the reading times increasing for higher folding factor. This
means that the more we fold, the more we degrade the reading performances.

Take away 9.1

Write operations on NFS do not seem to be affected by the folding of the
deployment. On the other hand, read operation performances degrade the
more the cluster is folded with a quadratic behavior.

146 Chapter 9 Reducing the Cost of Experimenting with Distributed File-System

File System

I/O ops.

node1 node2 node3 node4
slots=1 slots=1 slots=1 slots=1

(a) Initial deployment at full scale: one pro-
cess per node.

File System

I/O ops.

node1 node2 node3 node4
slots=1 slots=1 slots=2 slots=0

(b) We remove node4 and add one extra slot
to node3.

File System

I/O ops.

node1 node2 node3 node4
slots=2 slots=0 slots=2 slots=0

(c) We remove node2 and add one extra slot
to node1.

File System

I/O ops.

node1 node2 node3 node4
slots=4 slots=0 slots=0 slots=0

(d) We remove node3 and reach a fully folded
deployment.

Figure 9.3.: Graphical representation of the experimental protocol presented in Section 9.3.
We start with a full scale deployment, i.e., one MPI process (viewed as a virtual
resource) per physical node (Figure 9.3a), and remove from the hostfile the
physical nodes one by one while keeping the number of MPI processes (i.e., the
number of virtual resources) constant. We recompute the number of slots per
node to balance the processes (Figures 9.3b and 9.3c). The experiment stops
when there is no more node to remove (i.e., after Figure 9.3d).

9.4 Evaluation 147

8 CPU nodes 16 CPU nodes 24 CPU nodes 32 CPU nodes

R
eading

W
riting

0 2 4 6 8 0 5 10 15 0 5 10 15 20 25 0 10 20 30

0.00

0.25

0.50

0.75

1.00

1.25

0

20

40

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to read/write 1M 10M 100M 1G

Evolution of the r/w times based on the folding ratio for experiments with different number of CPU nodes

Figure 9.4.: Evolution of the reading (top row) and writing (bottom row) times based
on the folding factor (x-axis) for experiments with different cluster size (i.e.,
number of CPU nodes) and different sizes of file to read and write (point
shape). We observe that the writing performances are not affected by the
folding, but that the reading ones are, and that the degradation has quadratic
growth with respect to the folding factor.

148 Chapter 9 Reducing the Cost of Experimenting with Distributed File-System

8 CPU nodes 16 CPU nodes 24 CPU nodes 32 CPU nodes

2 4 6 8 4 8 12 16 0 5 10 15 20 25 0 10 20 30

0.00

0.25

0.50

0.75

1.00

R
ea

di
ng

 T
im

e
(s

)

8 CPU nodes 16 CPU nodes 24 CPU nodes 32 CPU nodes

2 4 6 8 4 8 12 16 0 5 10 15 20 25 0 10 20 30

0.01

0.10

1.00

Number of MPI processes per machine

Lo
g1

0
of

 R
ea

di
ng

 T
im

e
(s

)

Size of the file to read 1M 10M 100M 1G Model

Model of the mean reading time for the folding factor and block size

Figure 9.5.: Linear regression modeling the reading times (y-axis) and the folding factor
(x-axis), file size (point shape). The top row shows the fitting of the model on
the data, and the bottom row the same data but in log scale. We can see that
the model fits correctly the data for file sizes greater than 10M. 1M files does
not seem to be affected by the folding, and their variation in performance seem
to be due to noise.

9.4 Evaluation 149

0

10

20

30

0 10 20 30 40 50
Percentage of degradation compared to the full scaled deployment

M
ax

im
um

 n
um

be
r

of
 p

ro
ce

ss
es

 p
er

 m
ac

hi
ne Size of the file to read

10M

100M

1G

(a) Maximum folding factor (ffold) based on the
accepted degradation of the reading time com-
pared to the full scale deployment and to the
size of the file to read.

0.00

0.25

0.50

0.75

0−
10

0

10
0−

1K

1K
−1

0K

10
K−1

00
K

10
0K

−1
M

1M
−4

M

4M
−1

0M

10
M

−1
00

M

10
0M

−1
G

1G
−P

lus

I/O Size in bytes

P
ro

po
rt

io
n

of
 a

ll
R

ea
d

op
er

at
io

ns

(b) Proportion of the size of the read operations
on ANL-Theta between 2019 and 2022. The
majority is smaller than 100K. These val-
ues are extracted from Darshan [Car+11;
Car+09] logs.

Figure 9.6.: Figure 9.6a shows the maximum folding factor to use to have a desired over-
head on the reading times on NFS base on the file size. Figure 9.6b shows the
distribution of the number of read requests per size on ANL-Theta.

We modeled the reading performances based on the size of the file to read and the
number of CPU nodes involved. Figure 9.5 shows the results of a linear regression
between the reading time and the folding ratio, file size and number of CPU nodes
involved. We fitted a model with the following form:

tread(ffold, fsize) ≃ α + β1ffold
2 + β2fsize + γffold

2fsize (9.2)

with α, β1, β2, γ ∈ R the coefficients of the model. The R2 of the fitting is 0.9982.

Figure 9.5 shows the fitting of the model on the NFS data. The bottom row represents
the same information as the top one, but in log scale. We can see that the model fits
all the file sizes but for 1M. We believe that the variations in performance for the
1M files are due to noise.

We are interested in knowing the maximum folding factor (ffold) possible for a
desired file size (fsize). Let p > 1 be the percentage of increased reading time
compared to the full scale deployment containing nbcpu CPU nodes. By using the
definition of the model for tread in Equation 9.2, we get:

tread(f, fsize)
tread(nbcpu, fsize) < p =⇒ f <

√
p × tread(nbcpu, fsize) − (α + β2fsize)

β1 + γfsize
(9.3)

150 Chapter 9 Reducing the Cost of Experimenting with Distributed File-System

Take away 9.2

For files of size 10M, folding 10 resources onto a single physical resource
leads to a degradation of 5%. To reach the same degradation for file size of
100M or 1G, the maximum folding factor would be 5. (Figure 9.6a)

From the model defined previously, Figure 9.6a, and the Darshan [Car+11; Car+09]
logs from ANL-Theta between 2019 and 2022 (Figure 9.6b)1, we can have an
estimation of the overhead if we decided to rerun these Darshan logs (on NFS and
with the job model considered in Chapter 2) with different folding factors. For
example, a folding factor of 10 would lead to an overhead of 64 hours over 4 years
(i.e., an increase of 0.2%), while requiring 10 times fewer machines.

9.4.2 Evaluation of OrangeFS

In the case of OrangeFS, there is an extra dimension to explore: the number of I/O
nodes in the file-system.

Figures 9.7 and 9.8 show respectively the evolution of the performance in reading
and writing time of the IOR benchmark for different number of CPU nodes in
the cluster and I/O nodes in the file-system, as well as different sizes of file to
read/write.

We can see on Figure 9.7 that contrary to NFS, there is a significant loss of per-
formance for the write operations when increasing the folding factor. This loss
of performance appears more significant when there are more I/O nodes in the
file-system.

Concerning the reading performances (Figure 9.8), we observe the same behavior
as for NFS. High folding factors lead to an increase of reading time. The increase
appears greater when there are more I/O nodes in the file-system. The start of this
increase seems to depend on the number of CPU nodes. The more CPU nodes, the
later the increase starts. It is interesting to note that the variation when measuring
the reading time during the experiments is smaller (thus more stable) than for
NFS.

1This data was generated from resources of the Argonne Leadership Computing Facility, which is a
DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

9.4 Evaluation 151

8 CPU nodes 16 CPU nodes 24 CPU nodes 32 CPU nodes

1 I/O
 nodes

2 I/O
 nodes

4 I/O
 nodes

2 4 6 8 4 8 12 16 0 5 10 15 20 25 0 10 20 30

0

10

20

0

10

20

0

10

20

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to write 1M 10M 100M 500M 1G

Evolution of the writing times based on the folding for expes with different numbers of IOR MPI processes

Figure 9.7.: Evolution of the writing times with OrangeFS based on the folding factor (ffold)
for experiments with different number of CPU and I/O nodes and different
sizes of file to write.

8 CPU nodes 16 CPU nodes 24 CPU nodes 32 CPU nodes

1 I/O
 nodes

2 I/O
 nodes

4 I/O
 nodes

2 4 6 8 4 8 12 16 0 5 10 15 20 25 0 10 20 30

0

5

10

15

0

5

10

15

0

5

10

15

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to read 1M 10M 100M 500M 1G

Evolution of the reading times based on the folding for expes with different numbers of IOR MPI processes

Figure 9.8.: Evolution of the reading times with OrangeFS based on the folding factor (ffold)
for experiments with different number of CPU and IO nodes and different sizes
of file to read.

152 Chapter 9 Reducing the Cost of Experimenting with Distributed File-System

Reading Writing

0 10 20 30 0 10 20 30

0

5

10

15

20

Number of MPI processes per machine

T
im

e
(s

)

Size of the file to read/write 10M 100M 500M 1G Model

Model of the breaking point in behavior based on folding ratio for OrangeFS

Figure 9.9.: Model of the breaking point in behavior of performance in reading (left) and
writing (right) for 32 CPU nodes (nbcpu) and 4 I/O nodes (nbio). The model
(dashed line) comes from Equation 9.4.

Take away 9.3

The reading performance of a fully folded deployment does not depend on
the number of I/O nodes in OrangeFS (Figure 9.8).

For both reading and writing performances there seem to be two behaviors. First
a phase where the folding does not affect the performances, and then, from a
given folding factor, the reading/writing times grow linearly. As we want to know
the maximum folding factor until which the folded system behaves like a full scale
system, we are now interested in finding this breakpoint where the behavior changes.
Using segmented regression techniques [Mug03], we found a model that we simplified
to make it a rule of thumb:

fbreak,r ≃ 1 + 0.3 × nbcpu − 0.5 × nbio

fbreak,w ≃ 2 + 0.3 × nbcpu − 0.5 × nbio

(9.4)

where, fbreak,r and fbreak,w are respectively the folding factor of the breakpoint for
the reading and writing performances, nbcpu and nbio are the number of CPU and
I/O nodes in the system.

9.4 Evaluation 153

Take away 9.4

For writing and reading times on OrangeFS, there is a breakpoint in perfor-
mance before which there is no degradation. We modeled rules of thumb to
them in Equation 9.4. These rules of thumb are depicted in Figure 9.9.

As fbreak,w (Equation 9.4) will always be greater than fbreak,r, the overall breaking
point in performance for OrangeFS is fbreak,r.

9.5 Conclusion

In this Chapter, we investigated the use of folding techniques to reduce the number
of deployed machines for the large scale evaluation of applications such as grid and
cluster middlewares like CiGri. We have seen that folding requires a change in the
job model We focused on the impact on the performances of the file-system. To do
so, we took a distributed I/O benchmark, IOR, and ran it for several cluster sizes,
I/O loads and distributed file-systems. We analyzed the results of the benchmark
and reached to the following conclusions:

• Write operations on NFS are not subject to folding (Take away 9.1).

• The performance of read operations on NFS can be modeled with a quadratic
relation, and this model can be used to determine the maximum folding for an
accepted degradation (Take away 9.2).

• The performance of read operations in a fully folded cluster with OrangeFS do
not depend on the number of I/O nodes (Take away 9.3).

• There are breaking points in reading and writing performance for OrangeFS
when folding the cluster. Equation 9.4 gives rules of thumb to estimate these
breakpoints (Take away 9.4).

This study presents some limitations. The studied file-systems are not among the
most popular in large HPC centers. It would be interesting to consider file-systems
such as Lustre [Lus], BeeGFS [Bee], GlusterFS [BBP12], and Ceph [Wei+06]. During
his Master internship, Alexandre Lithaud helped setting up distributed environments
in NixOS Compose containing such PFS, which will allow to extend this study [Lit23].
The reasons of this loss of performance due to folding are still unclear. The main
suspect is the network. We did observe a speed similar (23 Gbps) to the one
advertised on the NIC (25 Gbps). We think that the overhead can be due to the

154 Chapter 9 Reducing the Cost of Experimenting with Distributed File-System

TCP protocol. Investigating different network protocol like InfiniBand or OmniPath
would be interesting.

Recent discussions with Francieli Boito2 highlighted potential imperfections of our
protocol concerning the potential impact of caching on read requests on NFS.

2https://www.labri.fr/perso/fzanonboito/

9.5 Conclusion 155

https://www.labri.fr/perso/fzanonboito/

Towards Simulating CiGri and
its Control Loop

10

10.1 Introduction

Distributed experiments are complex and often require several machines for several
hours or days. Such experiments are time and resource consuming, but are never-
theless mandatory to validate research work. Deploying and running long-lasting
experiments during the exploring phases of research is an obstacle to careful and
sane work and must be addressed.

Simulation techniques are an adequate solution as they allow users to execute in
reasonable time and on a single laptop, experiments that would have taken hours
on a production platform. In the context of High-Performance Computing (HPC),
most of the effort in terms of simulators is focused on tools to evaluate scheduling
algorithms [Dut+16; GKN18; KSS20]. These solutions reduce considerably the
time and computing power required to replay long scientific workloads with a new
scheduling strategy instead of deploying a modified batch scheduler and re-executing
the jobs of the workload, but have limitations in terms of realism due the underlying
models.

Experiments on systems such a grid or cluster middlewares, such as CiGri, are also
victim of high experimental costs and could benefit from simulation techniques.
However, due to this additional layer, the simulators cited above are not directly
equipped to simulate such systems.

For our experiments with CiGri, having access to information about the state of
the machines, the state of the scheduler, etc. would be ideal to implement sensors
and feedback loops. However, simulators usually expose a strict interface and set
of events to the users, without the possibility for the users to obtain more internal
information inside the simulator core.

In this chapter, we present and evaluate BatCiGri, a simulator of the CiGri grid
middleware within Batsim. In Section 10.2 we present the desired properties of the
simulations, the design of the simulation of the middleware as well as its calibration

157

to better match reality. The evaluation of the simulation is performed in Section
10.3.

To test our version of CiGri with our controllers, we deploy a modified CiGri as well as
an instance of OAR and compute nodes. In order to perform faithful evaluations, it is
unreasonable to deploy on the entire Gricad meso-center, and replay long workloads.
We are thus interested in simulation techniques to reduce the experimental costs.

However, one potential limitation of using simulation techniques in our case, is the
inability to obtain the same signals, or for the signals to have a different dynamic or
properties.

Take away 10.1

Simulators from the state-of-the-art are not directly equipped for simulating
middlewares such as CiGri with the need for internal sensors on the system.

10.2 BatCiGri

In this Section, we present a solution based on Batsim [Dut+16] to simulate CiGri:
BatCiGri.

10.2.1 Expected Properties of the Simulation

For the CiGri simulations to be useful from the point-of-view of Control Theory,
they must have the following properties: (i) jobs must have realistic execution
times, (ii) best-effort jobs must be killed and release resources for the normal jobs,
(iii) the killing and releasing of the resources must happen in a realistic time, and
(iv) information about the usage of the platform and about the inner state of the
scheduler must be accessible.

10.2.2 Hypotheses

We work under the following hypotheses: (i) there is only one cluster in the grid,
and (ii) the only best-effort jobs come from CiGri. Regular users of the cluster cannot
submit best-effort jobs.

158 Chapter 10 Towards Simulating CiGri and its Control Loop

10.2.3 Batsim in a Nutshell

Batsim is a batch scheduler simulator which allows users to test their scheduling
algorithms, i.e., how the jobs are mapped to the resources. Batsim relies on Sim-
grid [Cas+14] for sound simulation models. The remaining of this section presents
two important concepts of Batsim: platforms and workloads.

Platforms Batsim platforms, similarly to Simgrid platforms, contain information
about the underlying platform of the simulation. It contains the number of hosts,
CPU information, the network topology, the speed of the links, the capacity of the
disks, etc.

Workloads Workloads contain information about the jobs that will participate in
the simulation. There are two main components: jobs and profiles. Profiles
define the behavior of the jobs, i.e., the underlying simulation to use (delay, parallel
tasks, SMPI, etc.), execution times, SMPI trace to replay, etc. In a Batsim workload,
a job refers to a profile. Each job must have an identifier, a submission time
and a requested number of resources. Listing 10.1 shows a simple example of
Batsim workload.

The study of the CiGri jobs running on the Gricad platform presented in Chapter 2
gives a statistical description of the execution times of those jobs. This allows us to
use a delay model to represent the execution times.

10.2.4 Two Schedulers

The computing grid, in the context of CiGri, requires two levels of scheduling. The
first level is from CiGri to OAR for best-effort jobs, and then from OAR to the nodes
for normal users. Our simulation needs to capture these two levels.

To do so we will have two Batsim schedulers: one for the CiGri jobs and one for the
priority jobs. Each scheduler will manage their own workload but will schedule on
the same platform.

As best-effort jobs need to have less priority on the normal jobs, we need a way to
kill them. The CiGri scheduler will thus only see the free resources of the cluster to
perform its schedule of best-effort jobs. On the other hand, the priority scheduler
does not see the resources taken by CiGri jobs as occupied, and can decide to

10.2 BatCiGri 159

1 {
"jobs": [

3 {
"id": 1,

5 "profile": "cigri",
"res": 1,

7 "subtime": 0
},

9 {
"id": 2,

11 "profile": "cigri",
"res": 1,

13 "subtime": 0
},

15 {
"id": 3,

17 "profile": "cigri",
"res": 1,

19 "subtime": 0
}

21],
"nb_res": 32,

23 "profiles": {
"cigri": {

25 "delay": 235.0,
"type": "delay"

27 }
}

29 }

Listing 10.1: Example of Batsim workload
with 3 jobs belonging to the
cigri profile. Each job requests
one resource and are submitted
at the start of the simulation.

Batsim Broker

JOB_SUBMITTED

KILL_JOB

Prio.
Scheduler

CiGri
Scheduler

JOB_SUBMITTED

EXECUTE_JOB

REMOVE_RESOURCES

KILL_JOB

JOB_KILLED

EXECUTE_JOB

JOB_KILLED

RESOURCES_ADDED

JOB_COMPLETED
ADD_RESOURCES

RESOURCES_ADDED

JOB_COMPLETED

Figure 10.1.: Sequence Diagram represent-
ing the killing of best-effort
jobs when a new priority job
is submitted, as well as when
a priority job finishes making
its resources idle and thus ex-
ploitable by CiGri.

160 Chapter 10 Towards Simulating CiGri and its Control Loop

schedule jobs on those resources. In this case, the CiGri scheduler must manage the
killing of its jobs.

To be as close to reality, we used the same scheduling algorithms as the real system:
conservative backfilling for the priority jobs, and First-Come-First-Served (FCFS)
for the CiGri jobs. The CiGri scheduler is implemented with the Python interface to
Batsim [bat19].

10.2.5 Broker

Batsim can only communicate with a single scheduler. However, as seen in the
previous section, we have two different schedulers. To deal with this limitation,
we used the work done in [Mer19] which implements a message broker between
Batsim and the schedulers [Mer18; Gui23a].

The two schedulers connect to the broker and the broker connects to Batsim. It
filters and redirect the message between the different actors. The main of the work
is to manage adaptation of the available resources for the CiGri scheduler. When a
priority job is submitted, Batsim sends a JOB_SUBMITTED message to the broker. The
broker will then forward this message to the priority job scheduler. If the allocation
of resources returned by the scheduler contains best-effort jobs, the broker will
inform the CiGri scheduler by sending a REMOVE_RESOURCES message.
In this case, the CiGri scheduler must take care of the killing of the concerned jobs
and their resubmission in its queue. When a priority job terminates, its resources
become free and thus available to the CiGri scheduler. Then, the broker will send
a ADD_RESOURCES message to CiGri to indicate the availability of new resources.
Figure 10.1 depicts the sequence diagram of a killing of a best-effort job due to a
submission of a normal job.

Take away 10.2

To represent CiGri jobs and regular jobs, we have two different schedulers.
As Batsim can only communicate with a single scheduler, we use a broker to
redirect the messages between Batsim and the correct scheduler.

10.2.6 The CiGri Submission Loop

By taking advantage of the CALL_ME_LATER event of Batsim, we are able to simulate
the cyclic behavior of CiGri. At every cycle, the CiGri scheduler will read the value

10.2 BatCiGri 161

of the sensors, compute the control error, compute the number of jobs to submit and
submit them.

In our case, the sensor is the number of best-effort resources in waiting queue and
the number of resources used on the platform. The length of the waiting queue
is internal information for the scheduler, whereas the number of resources used is
computed indirectly. Remember that the CiGri scheduler only sees the resources that
are not used by the priority scheduler. Thus, the number of resources currently used
on the cluster is the total number of resources minus the number of resources visible
by CiGri and plus the number of resources used by CiGri jobs.

The remaining of the CiGri cycle is relatively straightforward and is shown in Listing
10.2. All the CiGri jobs are available at the start of the simulation. This means that
in the Batsim workload, they are submitted at time 0.

Take away 10.3

The CALL_ME_LATER event of Batsim allows use to implement a loop. But the
available sensors are limited to information about the platform.

10.2.7 Workload Adjustments

The synchronization between the real experiments and the simulation is complex,
and thus the simulation workload needs to be adjusted to match the real workload.

Starting Delay of OAR Performed experiments showed that OAR needs about 1
minutes and 30 seconds to start the first jobs after the first submission. This delay
should be taken into account in the simulation. From the point of view of the
CiGri scheduler, this delay can be approximated by not starting the jobs submitting
from the first 3 CiGri cycles.

162 Chapter 10 Towards Simulating CiGri and its Control Loop

1 def onRequestedCall(self):
Controller Part --

3 occupied_resources = self.nb_total_resources - len(self.free_resources)
sensor = len(self.waiting_queue) + occupied_resources

5

self.controller.update_error(sensor)
7 self.controller.update_input()

nb_resources_to_submit = self.controller.get_input()
9 # --

11 # Submission Part --
self.add_to_waiting_queue(nb_resources_to_submit)

13 to_schedule_jobs = self.to_schedule_jobs()
--

15

if len(to_schedule_jobs) > 0:
17 # Ask Batsim to notify for the next cycle

self.bs.wake_me_up_at(self.bs.time() + self.cigri_period)
19 else:

self.bs.notify_registration_finished()

Listing 10.2: Implementation of the CiGri submission loop in Batsim. It is triggered by the
CALL_ME_LATER event. At the end of each loop, we ask Batsim to notify us for
the next loop (line 18).

Commission and Decommission Times Another source of divergence between
simulation and real execution, is the commission and decommission of the resources
by OAR. This (de)commission time is required to set up the computing nodes for
the starting jobs, and to clean the nodes after the termination of the jobs. This
delay is not present in Batsim and must be considered for realism. We evaluated the
(de)commission overhead by submitting jobs which perform an identical and precise
amount of work, and compare it to the execution time given by OAR (i.e., termination
time minus starting time). Figure 10.2a shows the distribution of overheads in
seconds. This distribution shows that the overheads are mostly about 2 or 3 seconds
and that the distributions has a long tail.
We performed a fitting of a Log-Normal law on the overheads’ data to retrieve
a statistical model. The fitting yielded that the overheads follow a distribution
Lognormal(1.04, 0.27). Figure 10.2b shows the cumulative distribution functions
of the overhead (solid line) and the model (dashed line). This model allows us to
generate Batsim workloads containing this overhead in the execution time of the
jobs.

Killing of Best-Effort Jobs In Batsim, when priority jobs are submitted, and they
can be scheduled by killing best-effort jobs, the best-effort jobs are immediately

10.2 BatCiGri 163

0

100

200

0 2 4 6
Job Overhead [s]

C
ou

nt

Histogram of the job overhead due to node (de)commission

(a) Histogram of the distribution of job over-
head due to the commission and decom-
mission of resources by OAR. Most of the
overhead is around 2 and 3 seconds.

0.00

0.25

0.50

0.75

1.00

0 2 4 6
Job Overhead [s]

P
ro

po
rt

io
n

Data

Model

Comparison between the overhead data and Log−normal model

(b) Comparison between the empirical cumu-
lative distribution function (CDF) of the
overhead (solid) and the CDF of the Log-
normal model identified (dashed).

Figure 10.2.: Distribution of the job overheads due to OAR commissioning and decommis-
sioning the nodes of the cluster. Figure 10.2b shows the comparison between
the data and the identified model.

stopped, and the priority jobs started instantaneously. In practice, the priority jobs
spend some time in the waiting queue while the best-effort jobs are being killed and
the nodes cleaned and set up. This delay can be taken into account in the description
of the priority jobs. The execution time in Batsim must also contain this delay.

Take away 10.4

OAR introduces variations in the execution times of the jobs due to several
factors. To improve the realism of the simulation, we model this delay and
inject it during the generation of the CiGri workload.

10.3 Evaluation

In this Section, we evaluate the quality of the simulation.

Experimental Protocol For both the real system and the simulated one we will
conduct the same scenario. There are 500 CiGri jobs with an execution time of 235
seconds. The submission loop of CiGri is called every 30 seconds in order to see how
the system respond to delay in the control input. After 2000 seconds, a priority job
is submitted and takes half of the resources of the cluster for 1800 seconds. The
controller of CiGri aims to regulate the quantity wk + rk around the value 64 (which
is the double of the number of resources in the cluster).

164 Chapter 10 Towards Simulating CiGri and its Control Loop

Experimental Setup The real experiments were carried on the dahu cluster of
Grid’5000 [Bal+13] where the nodes have 2 Intel Xeon Gold 613 with 16 cores per
CPU and 192 GiB of memory. The reproducibility of the deployed environment is
ensured by NixOS Compose [Gui+22b]. The environment is available at [Gui23b],
and the data on Zenodo [Gui23c].

We deploy 3 nodes: one for the OAR server, one for CiGri, and one for the OAR cluster.
We do not deploy 32 nodes for the cluster, but instead deploy a single node and
define 32 OAR resources.

Execution time One of the motivation of this study if the cost in time in resources of
experiments. Real experiments require deploying 3 resources (around 10 minutes),
and then to execute the scenario (around 1h20 minutes). In total, a single execution
of the scenario consumes around 9 CPU hours.

In comparison, a simulation requires a single CPU, and needs 2 seconds to complete,
thus consuming approximately 5.5 × 10−4 CPU hours

Signals Comparison For the simulation of CiGri to be useful, we need the signals
of interest to have the same properties and behave the same in both simulation and
real experiments. The signals of interest are:

• the number of best-effort resources in the waiting queue

• the number of currently used resources on the cluster

• the dynamic of a CiGri submission (i.e., the time it takes to see the impact of a
submission)

Figure 10.3 shows the comparison of the signals of interest between experiments
of the same scenario executed in simulation (red) and deployed on real machines
(blue). The signals appear to be in sync. The amplitude does differ, as can be
observed around 500 seconds. The real system is obviously more sensitive to noise.
This noise can be noticed when looking at the used resources (top left graph on
Figure 10.3). The cluster in the simulation is always full, whereas the cluster during
real experiments is not (e.g., at 1000, 2000, 4500 seconds).

10.3 Evaluation 165

Ref

Best−Effort Waiting Resources Sensor Output (Waiting + Used)

Used Resources Number of CiGri jobs submitted

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0

20

40

0

25

50

75

100

0

10

20

30

0

20

40

60

Time [s]

Batsim Real

Figure 10.3.: Comparison of the signals of interest for the same experiment executed in
simulation with Batsim (red) and deploy (blue). Signals appear to be in sync,
but some amplitudes might differ.

Gantt Charts Comparison Figure 10.4 compares the resulting Gantt charts of the
experiment for the simulation (top) and real execution (bottom). We notice that
there are “gaps” in the real schedule (e.g., at time 1500 seconds on resource 24).
These gaps create a lag in the schedule which also impact the signals.

This lag comes from OAR scheduling algorithm. Once the OAR decided to start to
compute a scheduler, if any job arrives during the execution of the scheduler, those
jobs will not be taken into account until the next schedule call. Taking into account
this lag in the simulation is complex, as Batsim is responsible for the management
of the simulation time, and because the time “stops” during the computation of the
schedule.

10.4 Conclusion

Distributed experiments are complex and costly. Simulation techniques can help
reduce the cost of such experiments. However, simulators rely on models that can
lose information compared to the real system. In this chapter, we implemented
the essential behavior of CiGri in Batsim. Real experiments with CiGri requires 3
compute nodes for several hours, while simulation last a few seconds on a laptop.

166 Chapter 10 Towards Simulating CiGri and its Control Loop

5

13

36

54

3

7
9

15
17
20

26

30

40

48
50

60

64
66
68

22
24

28

34

38

42
44
46

56
58

62

32

52
12

4

6

8

21
23

19

55

29

31

33

41

47

51

53

59

25

27

63

35

39

43

69

45

14

16

57

61

65

49

37

67

70

74

71

72

73

75

76

79

80

81
91

95

98

77

78

82

84

85

87

88

93

94

96

86

89

99

100

97

83

90

92

101

102

103

104

105

107

108

109

120

121

113

110

125

112

114

117

118
106

122

123

111

115

116

119

127

128

130

126
132

129

131

133

124

136

137

134

139

140

141
150

143

138

146

155

147

148

157

142

151

144

152

153

154

145

149

162

159

160

161

156
165

158

163

164

166

167

168

169

171

173

179

175

172

176

174

177

180

182

170

185

186

187

188

178

181

183

191
194

189

190

184

192

196

193
195

198

197

199

200

205

207

203

210

201

202

213

214

204

206

215

216

208

217

209

218

211

219

221

223

224

212

226

220

225
222

227
228

229

230

231

232

233

234

238

239

244
248

249

250

251

253

254

256

259
260

235

237

241

236

242

240

243

247

245

246

252

255

257
258

261

262

263

264

269

265

266

267

268

270

271
273

272

276

274

275

277

278

279

280

284

282

283

285

281

286

288
287

290

289

291

292

293

294

295

296

298

297

299
301

303

300

302

304

231#1

305

232#1

233#1

234#1

238#1

239#1

248#1

244#1

250#1

249#1

251#1

253#1

254#1

256#1

307
259#1

260#1

306
308

310

309

311

312

314

313

317

315

316

318

319

320
321

324

322

323

325

326

327

328

332

330

331

329

334

333

335

336

338

337

340

341

339

342

345
343

344
347

346

348
350

349

351

352
354

353
355

356

357

358

1

361
362

360
359

363

365
364

367

368

366

371
370

369

373

372

374

405

375

387
389

393
395

399
401
403

377
379
381
383
385

397

391

376
378

382

386

380

384

394

390

388

392

396
398

400

404

402

406

414

408

410

412

422

416

407

418
419
420
409

411

413

415

417

421

423

426

424

425

428
432

427

431

430

429

433
434

435

436

437

438

439

440

442

444

443
441

446

448

450

451

452

453

449

447

454

445

456

455
457

461

460

462

459

458

464

465

463

466

467

468

469

470

472

473

478

475
476

471

474

479

481

482

483

477

480

484

485

486

489

487

488

490

491

492

494

495

493

497

496
498

499

500

42

284

189

245
118

121

266

1

423

43

163

91

485

123
382

193

237

236

221

77

79

105

71

516

216

165

222

48

518

182

302
302
302
302
302
302
302
302
302
302
302
302
302
302
302

302
180

179

129

99

173

103

82

155

158

252

63

275

119

120
217

253

297

190

491
279

191

468

223 255

107

74

35

242

38
37

289

395

30

75

391

34

36

83

385
157

72

212
366

194

97

167

109

241

198

86

492

283

125

128

162

70

249

69

374

140
40
41

318

176
80

84

81

238

269

240

102
3
2

89

66

519220

314

227

154

186

195

124

174

114

58

22

49
50

122

17

19

95

521

334

202

108

304

367

65

51
52

23

26

32

287

197

126
127

39

160

343

170

523

146

224

320

113

305

153

301

322

112
111

169

168

183

90

85

264

201

15

133

12

14
13

116

292

336
159
150

309

100

149
110

200

244

397

141

130

131

520

44
45

226
533

293

27316

172

178

229

272

372

76

473

263

281

306

161

254

20

47

4

33

73

21

204

132

207

192

117

24
25

432

300

274
175

7

31

60

515

239

104

98

145

138

106

101

139 267

199

428
345

352

325

286

5

177

62

398

29

209

147

332

380

134

142

148

228

211

214

67

6

78

526

136

152

230

295

184

151

185

68

429

59

327

115

64

53

56

137

243

262

326

8

290
144
143

88

87

92

368

213

188

187

135

303

61

296

218 346

11

166

233

270

349

347

531

93

94

96

181

219

196

268

210

251

417

373

246

10

164
505

156

377

312

54
55

257

171

313

344

350

206

232

225

235

234

502

57

288 369

406

9

341

532

376

311
27
28

298

310

319

205

231

203

483

285

522

18

46

248

405

294

215

487
351

208

365

383

360

315

393

324

277

353

425
331

278

282

501

421

335

261

370

371

258

316

265

348

358

276 291
329

506

378

399

271

328
307

280

340

337

431

357

361

362

247

317

256
299

356

446

321

308

342

338

507

330

339

333

422

404
259

260

323

250

359

364

415

443

474

513

499

354

363

508

386
484

475

418
419
424

477

430

384

494

511

381

527

355

528

469

387

375

411
412

416

401

379

441

510

500

453

460

456

470

427

390

394

392

458

389

396

481

448

517

490

400

402
403

451

407

388

503

413

459

466

449

482

524

476

525493

433

434

408
409

463

447

435

471

479

452

410

414

489

454

426

509

472

455

457

504

444
445

462

464

436
437

488
442

461

530

529

486

498

440
465

438
439

450

467

497

420

512

495

480

478

514

496

Real

Batsim

0 1000 2000 3000 4000 5000

0

10

20

30

0

10

20

30

Time [s]

R
es

ou
rc

es

CiGri Priority

Figure 10.4.: Comparison of the Gantt charts for the simulation (top) and real experiment
(bottom) of the same scenario. We observe a small lag, which is due to OAR,
but both schedules are similar.

10.4 Conclusion 167

We compared the behavior and similarities of signals of interest of our system in
simulation and real experiments. We had to modify the workload of the simulation
to match the different overheads induced by the real system. This work is still at
the very early stages, but results showed satisfying quality of signals in simulation,
and this simulator would thus be usable in the early stages of a controller design
to reduce the experimental costs. However, the current limitation of Batsim is the
lack of probe, i.e., a mechanism allowing users to define callbacks on Batsim or
Simgrid events, to sense internal information and states. Without such probes, it is
difficult to implement more complex sensors, actuators, and feedback loops such as
the one presented in Chapter 5. Such probes might however ask a fine-grained level
of realism that simulators cannot provide, which would limit the range of systems
being able to be satisfactory simulated.

168 Chapter 10 Towards Simulating CiGri and its Control Loop

Conclusion and Perspectives 11
Distributed experiments are complex. In this Thesis, we explored several research
questions linked to distributed experiments. In Chapter 8 we presented NixOS
Compose, a tool to set up and deploy reproducible distributed environment. With
NixOS Compose we claim to have a tool to enable researchers to develop quickly and
efficiently reproducible distributed experiments. This tool has already been used in
various research and educational contexts (European projects, PEPRs, teaching of
distributed systems, internships, etc.). Chapter 9 exhibits a method to reduce the
number of machines to deploy when performing experiments involving a distributed
file-system. By folding a cluster, we can reduce the cost of a distributed experiment
while keeping similar performance/behavior as the full scale system. Finally, in
Chapter 10, we show a proof of concept to reduce even more the experimental cost of
experimenting with CiGri by using simulation techniques. These chapters aim to give
an overview of the experimental spectrum: from full scale experiments, to reduced
deployment, to simulation on a single machine. Each of these techniques trade
some realism for reduced experimental cost (either speed or number of machines
required).

11.1 Perspectives and open questions

Simulation of distributed file-systems One of the limitations of the simulation of
CiGri in Batsim presented in Chapter 10 is the lack of support for the distributed
file-system required to reduce the experimental costs of studies like in Chapters 3
and 4. The simulation of PFS is a complex task that some work have tried to tackle.
PFSSim [Liu+11] was the most promising project by developing a framework to
evaluate I/O scheduling algorithms, but the project has been inactive for 10 years.
StorAlloc [Mon+22] focuses on the simulation of intermediate storage, such as burst
buffers, between the compute nodes and the file-system. Recent work on I/O model
validation in Simgrid [Leb+15] could lead to a validated framework to evaluating
I/O scheduling. For now, Simgrid is able to simulate remote disks, files, and MPIIO
calls. But PFS are much more complex: metadata servers, data servers, I/O, etc.

169

Being able to simulate the behavior of classical PFS within Simgrid would lead to a
decrease of experimental costs. Integration with Batsim would be a plus. Moreover,
having a framework to test designs of PFS would enable system administrators to
find the best PFS configuration for their system.

Integration between NixOS Compose and EnOSlib As for now, NixOS Compose does
not provide its own engine to conduct experiments, and this is not our desire.
We developed an integration of NixOS Compose into the Execo engine [Imb+13].
Discussions have been started to support deployments with NixOS Compose in
EnOSlib. This integration would benefit NixOS Compose with the large collection
of tools from EnOSlib, and would also benefit EnOSlib with the integration of fully
reproducible environments.

Filesytems and Functional Package Managers on HPC centers The architecture of
store-based package managers (Nix, Guix, or Spack) creates new kinds of stress on
the underlying filesystems designed for classical FHS1 filesystems. We recently added
support in NixOS Compose to deploy NixOS images with kexec which /nix/store
are located on the shared NFS of Grid’5000. This reduces the size of the ramdisk
image as it does not contain the store and thus increases deployment speed. But it
also raised interesting new questions. As the systems are booting up, the different
systemd services are starting, and as the /nix/store is located on the NFS, a lot of
syscalls are being made to resolve the dynamic libraries of the services. This problem
has been called the stat storm (because of the stat system call). The blog post
[Cou] gives a very nice presentation of the issue. The hierarchy of the /nix/store
catalyzes this problem by the explosion of the combination exploration required to
resolve the dependencies. Variations of this problem have starting to be addressed
in the literature [Zak+22; ST17; Fri+13], but are mostly focused on the loading of
user code and often require to modify it. During the Master 1 internship of Samuel
Brun [Bru23], we started investigating a solution for NixOS Compose based on FUSE
[Sze10], where the nodes loading the services will cache the result of the openat
and stat syscalls from the NFS and share the results by multicast to the other nodes
of the deployment.

Mixed deployments When deploying for CiGri experiments for example, we do not
deploy a 1-to-1 scale cluster, but instead, we define several computing resources
(from the point-of-view of OAR) on a single machine. This allows us to reduce the

1Filesystem Hierarchy Standard

170 Chapter 11 Conclusion and Perspectives

experimental cost while keeping the same production software stack. To increase the
realism of this deployment, NixOS Compose could deploy several virtual machines
containing the environment of a computing node onto one or several physical nodes.
This would allow for isolation between computing resources while reducing the
number of physical nodes to perform an experiment.

Study of the lifetime of artifacts The introduction of the artefacts’ evaluation in
the reviewing process in 2011 for conferences is a good step towards ensuring
reproducibility of the submitted work. However, as the artifacts are evaluated right
after their creation, they pass the reviewing process. In practice, a 6-month-old
artifact that passed the reviewing process has a high probability to not build, or
build to a different state than the original one.

A study of the lifetime of the artifacts, meaning the duration during which the artifacts
rebuild from source the correct/intended one, of the top conferences implementing
an artifact reviewing process would most likely reveal the imperfection of the usual
tools, as seen in Chapter 7.

Reproducibility metric and partial reproducibility The current badge systems dur-
ing artifact reviews do not capture all the potential loss of reproducibility presented
in Section 7.1.2. A system indicating the pitfalls of the work, on several dimensions,
might be more insightful for the readers, e.g., “machine dependent”, “using a non-
free library”. Such criteria be evaluated by artifact reviewers with the help of a
“checklist”, without having to replay any experiments, only by inspecting the source
code. The filled checklist would then be attached to the paper after publication. The
creation of such a checklist that would cover most reproducibility cases would be
a great asset for reviewer to ease the reviewing process, readers to know what to
expect from the presented results, and authors to know what to improve.

The potential issue with such an approach would be the backlash from the community.
Today, authors gain badges for doing more in terms of reproducibility, and this is
a way for the publisher to gently invite authors to improve the quality of their
submission. However, as the artifact review is not always mandatory, and that failing
the reproducibility review does not stop the publication of the paper. A system as
presented above takes the problem from the other side and would explicitly point to
the shortfalls of the work, which could be seen as “public shaming” by authors.

The current artifact reviewing system is far from perfect, and must evolve towards
something more strict and precise. Considering that it took 10 years for the artifact

11.1 Perspectives and open questions 171

reviews to be integrated into most conferences, changing the existing system might
be long.

Environmental cost of reproducibility in computer science Reproducing research
works also has costs. First, humans need to evaluate the reproducibility of the
papers, which is time-consuming and often require a lot of efforts [Bel]. But also
an environmental cost. Replaying experiments requires using additional computing
resources, and in the case of large scale and long-lasting experiments this could
represent a significant energetic cost.

Similar, but at smaller scales, problematics arise from the use of functional package
managers. When replaying an experiment that was packaged with a FPM, the first
step is to set up the software environment. This step can be very long as it will need
to download a lot of packages and their dependencies. Moreover, if the work is
not recent, or is introducing variation deep into the software stack, the packages
required will not be present in the binary caches, and will thus need to be recompiled
from scratch. Storage is also an issue of FPMs as the stores have the tendency to
grow very large with every variation of packages.

Such questions should be addressed by the community. Is a long-lasting experiment
requiring hundreds of machines really reproducible? Should reviewers even try to
reproduce it? Verifying reproducibility has a cost, but also ensures research quality.
Is there a tradeoff between the two? Is the peer-review scheme reaching its limits?

172 Chapter 11 Conclusion and Perspectives

General Conclusion 12
This thesis presented solutions to regulation problems in the harvesting of idle
computing resources in HPC cluster. We used tools from Autonomic Computing
coupled with Control Theory to design and implement controllers with proven
guarantees in the CiGri middleware (Part I). The experimental setup of CiGri led
us to investigate more experiment-oriented research questions (Part II), i.e., how
to reduce the number of machines required to deploy an experiment, and in a
reproducible fashion.

We gave some detailed perspectives of this thesis Chapters 6 and 11. In this Chapter
we give an higher-level conclusion.

Regulation problems are frequent in Computer Science, but especially in fields where
there are runtime components or Service-Level Agreements. Scheduling or Machine
learning-based strategies are very popular but have limitations. Scheduling usually
make assumption on the system, information given by the users, etc. This infor-
mation is then processed by complex (cognitively and computationally) algorithms
that return a schedule of the jobs. It is possible to prove performance bounds of
the scheduling algorithm. Machine learning strategies are black boxes. The cost
of training the model is high, and the resulting model does not have any proven
guarantees other than the precision resulting of the training. Control Theory is
a powerful, yet underused, technique for the runtime management of computing
systems. It really excels at regulating trade-offs, degradation levels, SLAs, QoS, etc.
Moreover, using Control Theory tools on computing systems can foster interaction
between research fields, as it requires a knowledge and expertise very rarely seen
among computer scientists and system administrators. We tried to tackle this issue at
our modest scale by creating and presenting a tutorial to introduce Control Theory
to computer scientists [Gui+b].

The experiments required to design controllers need to be robust to be able to
design a correct controller. The system on which we worked on during this thesis is
complex, with deep software stacks (CiGri, OAR, file-system, jobs, etc.). Deploying
this complete stack in a reproducible fashion is tricky. Usual tools to deploy software
environments are not focused on reproducibility. Nix and Guix are, as of today, the

173

best tools to manage reproducible software environments. We hope that NixOS Com-
pose will help researchers in distributed systems to transition from non-reproducible
tools. In general, there is the need to educate the communities (not only computer
scientists) to these reproducibility questions (e.g., [Gui+a; FPG; LHP; Leg+]), and
develop reproducibility not as a afterthought, but as a fundamental skill. The cost of
experiments in distributed systems, and especially when evaluation grid or cluster
middlewares, is significant. Having realistic experiments implies to perform large
scale deployment, which is expensive. Simulations are a good alternative, but are
limited by the fact that the real software is not executed. Moreover, the state of simu-
lation of parallel file-system is not mature enough to perform the CiGri experiments
in simulation. We believe that an interesting alternative is the use of intermediate
deployment techniques such as the one presented in Chapter 9.

Three concerns of scientific research are: the explainability and the energy efficiency
of the solutions, and the reproducibility of research. This thesis attempted to take
into account these concerns, and to raise awareness about them.

A1

Bibliography

[ACM] ACM. Artefact review badging. https://www.acm.org/publications/policie
s/artifact-review-badging. Accessed: 2023-04-04. cit. on p. 107

[ÅH06] Karl Johan Åström and Tore Hägglund. Advanced PID Control. English. ISA - The
Instrumentation, Systems and Automation Society, 2006. cit. on p. 78

[Amaa] Amazon. Amazon EC2 Spot Instances. URL: https://aws.amazon.com/ec2/.
cit. on p. 12

[Amab] Amazon. Amazon EC2 Spot Instances. URL: https://aws.amazon.com/ec2/sp
ot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-
order=asc. cit. on p. 12

[And+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
“SETI@home: an experiment in public-resource computing”. en. In: Communica-
tions of the ACM 45.11 (Nov. 2002), pp. 56–61. DOI: 10.1145/581571.581573.
URL: http://portal.acm.org/citation.cfm?doid=581571.581573 (visited
on June 11, 2020). cit. on p. 11

[And04] D.P. Anderson. “BOINC: A System for Public-Resource Computing and Storage”.
en. In: Fifth IEEE/ACM International Workshop on Grid Computing. Pittsburgh,
PA, USA: IEEE, 2004, pp. 4–10. DOI: 10.1109/GRID.2004.14. URL: http://ie
eexplore.ieee.org/document/1382809/ (visited on June 11, 2020).

cit. on p. 11

[And85] Brian D. O. Anderson. “Adaptive Systems, Lack of Persistency of Excitation
and Bursting Phenomena”. In: Automatica 21.3 (May 1985), pp. 247–258. DOI:
10.1016/0005-1098(85)90058-5. cit. on p. 67

[ÅW08] Karl Johan Åström and Björn Wittenmark. Adaptive Control. 2nd ed. Dover
Publications, 2008. cit. on pp. 67, 68

[ÅW13] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation,
2013. cit. on p. 78

[Bak16] Monya Baker. “1,500 scientists lift the lid on reproducibility”. In: Nature
533.7604 (May 2016), pp. 452–454. DOI: 10.1038/533452a. URL: http://www
.nature.com/doifinder/10.1038/533452a (visited on May 3, 2019).

cit. on p. 107

A3

 https://www.acm.org/publications/policies/artifact-review-badging
 https://www.acm.org/publications/policies/artifact-review-badging
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/spot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-order=asc
https://aws.amazon.com/ec2/spot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-order=asc
https://aws.amazon.com/ec2/spot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-order=asc
https://doi.org/10.1145/581571.581573
http://portal.acm.org/citation.cfm?doid=581571.581573
https://doi.org/10.1109/GRID.2004.14
http://ieeexplore.ieee.org/document/1382809/
http://ieeexplore.ieee.org/document/1382809/
https://doi.org/10.1016/0005-1098(85)90058-5
https://doi.org/10.1038/533452a
http://www.nature.com/doifinder/10.1038/533452a
http://www.nature.com/doifinder/10.1038/533452a

[Bal+13] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, et al. “Adding
Virtualization Capabilities to the Grid’5000 Testbed”. In: Cloud Computing and
Services Science. Ed. by Ivan I. Ivanov, Marten van Sinderen, Frank Leymann, and
Tony Shan. Vol. 367. Communications in Computer and Information Science.
Springer International Publishing, 2013, pp. 3–20. DOI: 10.1007/978-3-319-0
4519-1_1. cit. on pp. 69, 87, 110, 119, 124, 144, 165

[bat19] [SW] batsim, 2019. URL: https://gitlab.inria.fr/batsim/pybatsim,
SWHID: ⟨swh:1:dir:116fa04d25d22b26f6dcf110f976b681ffa9f027;origin
=https://gitlab.inria.fr/batsim/pybatsim⟩. cit. on p. 161

[BBP12] Eric B Boyer, Matthew C Broomfield, and Terrell A Perrotti. Glusterfs one storage
server to rule them all. Tech. rep. Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2012. cit. on p. 154

[Bee] BeeGFS. BeeGFS Filesystem. Accessed: 2023-09-29. URL: https://www.beegfs
.io/c/. cit. on p. 154

[Bel] Moritz Beller. I will never review artefact again. https://inventitech.com/bl
og/why-i-will-never-review-artifacts-again/. Accessed: 2023-01-19.

cit. on p. 172

[Bel05] Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX
annual technical conference, FREENIX Track. Vol. 41. 46. Califor-nia, USA. 2005,
pp. 10–5555. cit. on p. 119

[Bha+13] Abhinav Bhatele, Kathryn Mohror, Steven H Langer, and Katherine E Isaacs.
“There goes the neighborhood: performance degradation due to nearby jobs”.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. 2013, pp. 1–12. cit. on p. 3

[Ble17] Raphaël Bleuse. “Apprehending heterogeneity at (very) large scale”. Theses.
Université Grenoble Alpes, Oct. 2017. URL: https://hal.science/tel-01722
991. cit. on p. 2

[bli] blinry. Building 15-year-old software with Nix. https://blinry.org/nix-time
-travel/. Accessed: 2023-04-16. cit. on p. 116

[BNW03] John Brevik, Daniel Nurmi, and Rich Wolski. Quantifying machine availability
in networked and desktop grid systems. Tech. rep. Technical Report CS2003-37,
Dept. of Computer Science and Engineering . . ., 2003. cit. on p. 35

[Boi+18] Francieli Zanon Boito, Eduardo C Inacio, Jean Luca Bez, et al. “A checkpoint of
research on parallel i/o for high-performance computing”. In: ACM Computing
Surveys (CSUR) 51.2 (2018), pp. 1–35. cit. on p. 144

[Bon+11] Michael Moore David Bonnie, Becky Ligon, Mike Marshall, et al. “OrangeFS:
Advancing PVFS”. In: USENIX Conference on File and Storage Technologies (FAST).
2011. cit. on p. 145

A4 Bibliography

https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://gitlab.inria.fr/batsim/pybatsim
http://archive.softwareheritage.org/swh:1:dir:116fa04d25d22b26f6dcf110f976b681ffa9f027;origin=https://gitlab.inria.fr/batsim/pybatsim
http://archive.softwareheritage.org/swh:1:dir:116fa04d25d22b26f6dcf110f976b681ffa9f027;origin=https://gitlab.inria.fr/batsim/pybatsim
https://www.beegfs.io/c/
https://www.beegfs.io/c/
 https://inventitech.com/blog/why-i-will-never-review-artifacts-again/
 https://inventitech.com/blog/why-i-will-never-review-artifacts-again/
https://hal.science/tel-01722991
https://hal.science/tel-01722991
https://blinry.org/nix-time-travel/
https://blinry.org/nix-time-travel/

[Bor+07] Julian Borrill, Leonid Oliker, John Shalf, and Hongzhang Shan. “Investigation of
leading HPC I/O performance using a scientific-application derived benchmark”.
In: Proceedings of the 2007 ACM/IEEE conference on Supercomputing. 2007,
pp. 1–12. cit. on pp. 52, 53

[Bra+11] Grant R Brammer, Ralph W Crosby, Suzanne J Matthews, and Tiffani L Williams.
“Paper mâché: Creating dynamic reproducible science”. In: Procedia Computer
Science 4 (2011), pp. 658–667. cit. on p. 109

[Bri+19] Adam Brinckman, Kyle Chard, Niall Gaffney, et al. “Computing environments
for reproducibility: Capturing the “Whole Tale””. In: Future Generation Computer
Systems 94 (2019), pp. 854–867. cit. on p. 109

[Bru23] Samuel Brun. “Étude du phénomène Stat-Storm - Limitation des appels systèmes
pour les systèmes de fichiers distribués de type store”. MA thesis. Université
Grenoble Alpes, Sept. 2023. URL: https://inria.hal.science/hal-0419772
4. cit. on p. 170

[Bur22a] [SW] Sander van der Burg, Disnix Apr. 2022. LIC: LGPL-2.1. URL: https://gi
thub.com/svanderburg/disnix, SWHID: ⟨swh:1:dir:c4f91c498853331fc9a
1c4607d0e6d7c01aa7d6c;origin=https://github.com/svanderburg/disni
x⟩. cit. on p. 119

[Bur22b] [SW] Sander van der Burg, DisnixOS 2022. LIC: LGPL-2.1. URL: https://gith
ub.com/svanderburg/disnixos, SWHID: ⟨swh:1:dir:13bcd4e967b9abf5306
6ebd558b30d8d82920f77;origin=https://github.com/svanderburg/disn
ixos⟩. cit. on p. 119

[Cal23] [SW] University of California, IOR Benchmark 2023. URL: https://github.co
m/hpc/ior, SWHID: ⟨swh:1:dir:006907fd99642d89025fa685ae72d9055c065
a3e;origin=https://github.com/hpc/ior;⟩. cit. on p. 144

[Cap+05] N. Capit, G. Da Costa, Y. Georgiou, et al. “A batch scheduler with high level
components”. en. In: CCGrid 2005. IEEE International Symposium on Cluster
Computing and the Grid, 2005. Cardiff, Wales, UK: IEEE, 2005, 776–783 Vol. 2.
DOI: 10.1109/CCGRID.2005.1558641. URL: http://ieeexplore.ieee.org/d
ocument/1558641/ (visited on May 25, 2020).

cit. on pp. 13, 23, 70, 125, 129, 142

[Car+09] Philip Carns, Robert Latham, Robert Ross, et al. “24/7 characterization of
petascale I/O workloads”. In: 2009 IEEE International Conference on Cluster
Computing and Workshops. IEEE. 2009, pp. 1–10. cit. on pp. 25, 150, 151

[Car+11] Philip Carns, Kevin Harms, William Allcock, et al. “Understanding and improving
computational science storage access through continuous characterization”. In:
ACM Transactions on Storage (TOS) 7.3 (2011), pp. 1–26.

cit. on pp. 25, 54, 99, 150, 151

[Cas+00] Henri Casanova, Arnaud Legrand, Dmitrii Zagorodnov, and Francine Berman.
“Heuristics for scheduling parameter sweep applications in grid environments”.
In: Proceedings 9th Heterogeneous Computing Workshop (HCW 2000)(Cat. No.
PR00556). IEEE. 2000, pp. 349–363. cit. on p. 26

Bibliography A5

https://inria.hal.science/hal-04197724
https://inria.hal.science/hal-04197724
https://github.com/svanderburg/disnix
https://github.com/svanderburg/disnix
http://archive.softwareheritage.org/swh:1:dir:c4f91c498853331fc9a1c4607d0e6d7c01aa7d6c;origin=https://github.com/svanderburg/disnix
http://archive.softwareheritage.org/swh:1:dir:c4f91c498853331fc9a1c4607d0e6d7c01aa7d6c;origin=https://github.com/svanderburg/disnix
http://archive.softwareheritage.org/swh:1:dir:c4f91c498853331fc9a1c4607d0e6d7c01aa7d6c;origin=https://github.com/svanderburg/disnix
https://github.com/svanderburg/disnixos
https://github.com/svanderburg/disnixos
http://archive.softwareheritage.org/swh:1:dir:13bcd4e967b9abf53066ebd558b30d8d82920f77;origin=https://github.com/svanderburg/disnixos
http://archive.softwareheritage.org/swh:1:dir:13bcd4e967b9abf53066ebd558b30d8d82920f77;origin=https://github.com/svanderburg/disnixos
http://archive.softwareheritage.org/swh:1:dir:13bcd4e967b9abf53066ebd558b30d8d82920f77;origin=https://github.com/svanderburg/disnixos
https://github.com/hpc/ior
https://github.com/hpc/ior
http://archive.softwareheritage.org/swh:1:dir:006907fd99642d89025fa685ae72d9055c065a3e;origin=https://github.com/hpc/ior;
http://archive.softwareheritage.org/swh:1:dir:006907fd99642d89025fa685ae72d9055c065a3e;origin=https://github.com/hpc/ior;
https://doi.org/10.1109/CCGRID.2005.1558641
http://ieeexplore.ieee.org/document/1558641/
http://ieeexplore.ieee.org/document/1558641/

[Cas+14] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. “Versatile, Scalable, and Accurate Simulation of Distributed Applications
and Platforms”. In: Journal of Parallel and Distributed Computing 74.10 (June
2014), pp. 2899–2917. URL: http://hal.inria.fr/hal-01017319.

cit. on pp. 105, 115, 141, 159

[CB01] Walfredo Cirne and Francine Berman. “A comprehensive model of the super-
computer workload”. In: Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No. 01EX538). IEEE.
2001, pp. 140–148. cit. on pp. 3, 12, 95

[CDR14] Julio Cano, Gwenaël Delaval, and Eric Rutten. “Coordination of ECA rules by
verification and control”. In: Coordination Models and Languages: 16th IFIP
WG 6.1 International Conference, COORDINATION 2014, Held as Part of the
9th International Federated Conferences on Distributed Computing Techniques,
DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings 16. Springer. 2014,
pp. 33–48. cit. on p. 17

[Cer+21] Sophie Cerf, Raphaël Bleuse, Valentin Reis, Swann Perarnau, and Eric Rutten.
“Sustaining performance while reducing energy consumption: a control theory
approach”. In: Euro-Par 2021: Parallel Processing: 27th International Conference
on Parallel and Distributed Computing, Lisbon, Portugal, September 1–3, 2021,
Proceedings 27. Springer. 2021, pp. 334–349. cit. on pp. 17, 18, 101

[Cer19] Sophie Cerf. “Control Theory for Computing Systems: Application to big-data
cloud services & location privacy protection”. Theses. UNIVERSITÉ GRENOBLE
ALPES, May 2019. URL: https://hal.science/tel-02272258. cit. on p. 101

[Che+22] Ronan-Alexandre Cherrueau, Marie Delavergne, Alexandre van Kempen, et al.
“EnosLib: A Library for Experiment-Driven Research in Distributed Computing”.
en. In: IEEE Transactions on Parallel and Distributed Systems 33.6 (June 2022),
pp. 1464–1477. DOI: 10.1109/TPDS.2021.3111159. URL: https://ieeexplor
e.ieee.org/document/9534688/ (visited on Nov. 22, 2021). cit. on p. 111

[Chr22] [SW] Juliusz Chroboczek, Polipo — a caching web proxy 2022. URL: https://ww
w.irif.fr/~jch/software/polipo/, SWHID: ⟨swh:1:dir:ce183542e1abba5a
a847fed92a700d23cf591f9f;origin=https://github.com/jech/polipo;⟩.

cit. on p. 134

[cig23] [SW] cigri-feedforward-approach, 2023. URL: https://gitlab.inria.fr/c
igri-ctrl/feedforward-approach/cigri-src, SWHID: ⟨swh:1:dir:5fe2f
4d3ccf8da04730c8501db73dbaaca37aeb0;origin=https://gitlab.inria.f
r/cigri-ctrl/feedforward-approach/cigri-src⟩. cit. on p. 100

[Cir+06] Walfredo Cirne, Francisco Brasileiro, Nazareno Andrade, et al. “Labs of the
world, unite!!!” In: Journal of Grid Computing 4 (2006), pp. 225–246.

cit. on p. 13

[CL12] Nicolo Cesa-Bianchi and Gábor Lugosi. “Combinatorial bandits”. In: Journal of
Computer and System Sciences 78.5 (2012), pp. 1404–1422. cit. on p. 97

A6 Bibliography

http://hal.inria.fr/hal-01017319
https://hal.science/tel-02272258
https://doi.org/10.1109/TPDS.2021.3111159
https://ieeexplore.ieee.org/document/9534688/
https://ieeexplore.ieee.org/document/9534688/
https://www.irif.fr/~jch/software/polipo/
https://www.irif.fr/~jch/software/polipo/
http://archive.softwareheritage.org/swh:1:dir:ce183542e1abba5aa847fed92a700d23cf591f9f;origin=https://github.com/jech/polipo;
http://archive.softwareheritage.org/swh:1:dir:ce183542e1abba5aa847fed92a700d23cf591f9f;origin=https://github.com/jech/polipo;
https://gitlab.inria.fr/cigri-ctrl/feedforward-approach/cigri-src
https://gitlab.inria.fr/cigri-ctrl/feedforward-approach/cigri-src
http://archive.softwareheritage.org/swh:1:dir:5fe2f4d3ccf8da04730c8501db73dbaaca37aeb0;origin=https://gitlab.inria.fr/cigri-ctrl/feedforward-approach/cigri-src
http://archive.softwareheritage.org/swh:1:dir:5fe2f4d3ccf8da04730c8501db73dbaaca37aeb0;origin=https://gitlab.inria.fr/cigri-ctrl/feedforward-approach/cigri-src
http://archive.softwareheritage.org/swh:1:dir:5fe2f4d3ccf8da04730c8501db73dbaaca37aeb0;origin=https://gitlab.inria.fr/cigri-ctrl/feedforward-approach/cigri-src

[CL22] Tom Cornebize and Arnaud Legrand. “Simulation-based optimization and sensi-
bility analysis of MPI applications: Variability matters”. In: Journal of Parallel
and Distributed Computing 166 (2022), pp. 111–125. cit. on p. 38

[Clo] Chameleon Cloud. The cc-snapshot utility. https://chameleoncloud.readth
edocs.io/en/latest/technical/images.html#the-cc-snapshot-utility.
Accessed: 2023-04-03. cit. on p. 110

[Cor21] Tom Cornebize. “High performance computing: Towards better performance
predictions and experiments”. PhD thesis. Université Grenoble Alpes [2020-....],
2021. cit. on p. 2

[Cou] Ludovic Courtès. Taming the ‘stat’ storm with a loader cache. URL: https://gui
x.gnu.org/blog/2021/taming-the-stat-storm-with-a-loader-cache/.

cit. on p. 170

[Cou13] Ludovic Courtès. “Functional Package Management with Guix”. en. In: arXiv:1305.4584
[cs] (May 2013). URL: http://arxiv.org/abs/1305.4584 (visited on June 13,
2020). cit. on p. 113

[CPW15] Christian Collberg, Todd Proebsting, and Alex M Warren. “Repeatability and
Benefaction in Computer Systems Research - A Study and a Modest Proposal”.
en. In: (2015), p. 68. cit. on p. 107

[CR23] Sophie Cerf and Eric Rutten. “Combining neural networks and control: poten-
tialities, patterns and perspectives”. In: 22nd World Congress of the International
Federation of Automatic Control. 2023. cit. on p. 17

[Dar57] Donald A Darling. “The kolmogorov-smirnov, cramer-von mises tests”. In: The
Annals of Mathematical Statistics 28.4 (1957), pp. 823–838. cit. on p. 35

[DAS] DAS. DAS2. URL: https://www.cs.vu.nl/das5/home.shtml (visited on
Apr. 25, 2023). cit. on p. 29

[DB21] R.C. Dorf and R.H. Bishop. Modern Control Systems. Pearson, 14th edition, 2021.
cit. on p. 78

[Dép+18] Aline Déprez, Anne Socquet, Nathalie Cotte, and Andrea Walpersdorf. “Toward
the generation of EPOS-GNSS products”. In: 19th General Assembly of WEGENER:
on Earth deformation & the study of earthquakes using geodesy and geodynamics.
2018. cit. on p. 23

[DJV04] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. “Nix: A Safe and Policy-Free
System for Software Deployment”. en. In: (2004), p. 14. cit. on pp. 113, 119

[DL08] Eelco Dolstra and Andres Löh. “NixOS: A Purely Functional Linux Distribution”.
In: SIGPLAN Not. 43.9 (Sept. 2008), pp. 367–378. DOI: 10.1145/1411203.141
1255. URL: https://doi.org/10.1145/1411203.1411255. cit. on p. 119

[Doc] Docker. Optimizing builds with cache management. https://docs.docker.com
/build/cache/. Accessed: 2023-06-20. cit. on p. 114

Bibliography A7

 https://chameleoncloud.readthedocs.io/en/latest/technical/images.html #the-cc-snapshot-utility
 https://chameleoncloud.readthedocs.io/en/latest/technical/images.html #the-cc-snapshot-utility
https://guix.gnu.org/blog/2021/taming-the-stat-storm-with-a-loader-cache/
https://guix.gnu.org/blog/2021/taming-the-stat-storm-with-a-loader-cache/
http://arxiv.org/abs/1305.4584
https://www.cs.vu.nl/das5/home.shtml
https://doi.org/10.1145/1411203.1411255
https://doi.org/10.1145/1411203.1411255
https://doi.org/10.1145/1411203.1411255
https://docs.docker.com/build/cache/
https://docs.docker.com/build/cache/

[Doc22] [SW] Docker, Docker Compose 2022. URL: https://docs.docker.com/compos
e/, SWHID: ⟨swh:1:dir:09c1c47b2ec22e82d5218e3c1d7193b397a3224d;ori
gin=https://github.com/docker/compose;⟩. cit. on p. 124

[Dor+14] Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, and Shadi Ibrahim.
“CALCioM: Mitigating I/O interference in HPC systems through cross-application
coordination”. In: 2014 IEEE 28th international parallel and distributed processing
symposium. IEEE. 2014, pp. 155–164. cit. on p. 3

[Dup+19] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, et al. “The Design and Op-
eration of CloudLab”. In: Proceedings of the USENIX Annual Technical Conference
(ATC). July 2019, pp. 1–14. URL: https://www.flux.utah.edu/paper/duply
akin-atc19. cit. on p. 139

[Dut+16] Pierre-François Dutot, Michael Mercier, Millian Poquet, and Olivier Richard.
“Batsim: a Realistic Language-Independent Resources and Jobs Management
Systems Simulator”. In: 20th Workshop on Job Scheduling Strategies for Parallel
Processing. Chicago, United States, May 2016. URL: https://hal.archives-ou
vertes.fr/hal-01333471. cit. on pp. 115, 141, 157, 158

[Eme+14] Joseph Emeras, Cristian Ruiz, Jean-Marc Vincent, and Olivier Richard. “Analysis
of the jobs resource utilization on a production system”. In: Job Scheduling
Strategies for Parallel Processing: 17th International Workshop, JSSPP 2013,
Boston, MA, USA, May 24, 2013 Revised Selected Papers 17. Springer. 2014,
pp. 1–21. cit. on p. 99

[fee23] [SW] feedforward-approach, 2023. URL: https://gitlab.inria.fr/cigri-
ctrl/feedforward-approach/cigri-feedforward, SWHID: ⟨swh:1:dir:5a5
40eb9a13d6be14e18f47f997bc58d394cb3db;origin=https://gitlab.inria
.fr/cigri-ctrl/feedforward-approach/cigri-feedforward⟩.

cit. on p. 87

[Fei15] Dror G. Feitelson. “From Repeatability to Reproducibility and Corroboration”.
en. In: ACM SIGOPS Operating Systems Review 49.1 (Jan. 2015), pp. 3–11. DOI:
10.1145/2723872.2723875. URL: https://dl.acm.org/doi/10.1145/27238
72.2723875 (visited on May 21, 2020). cit. on p. 109

[Fil+17] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, et al. “Control
strategies for self-adaptive software systems”. In: ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS) 11.4 (2017), pp. 1–31. cit. on p. 17

[FJ13] Michel Fliess and Cédric Join. “Model-free control”. In: International Journal of
Control 86.12 (2013), pp. 2228–2252. cit. on pp. 68, 69, 76

[FKY81] T. R. Fortescue, Lester S. Kershenbaum, and B. Erik Ydstie. “Implementation of
Self-tuning Regulators with Variable F orgetting Factors”. In: Automatica. 17.6
(Nov. 1981), pp. 831–835. DOI: 10.1016/0005-1098(81)90070-4.

cit. on p. 67

[For+21] Alessandra Forti, Ivan Glushkov, Lukas Heinrich, et al. “The fight against COVID-
19: Running Folding@ Home simulations on ATLAS resources”. In: EPJ Web of
Conferences. Vol. 251. EDP Sciences. 2021, p. 02003. cit. on p. 11

A8 Bibliography

https://docs.docker.com/compose/
https://docs.docker.com/compose/
http://archive.softwareheritage.org/swh:1:dir:09c1c47b2ec22e82d5218e3c1d7193b397a3224d;origin=https://github.com/docker/compose;
http://archive.softwareheritage.org/swh:1:dir:09c1c47b2ec22e82d5218e3c1d7193b397a3224d;origin=https://github.com/docker/compose;
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19
https://hal.archives-ouvertes.fr/hal-01333471
https://hal.archives-ouvertes.fr/hal-01333471
https://gitlab.inria.fr/cigri-ctrl/feedforward-approach/cigri-feedforward
https://gitlab.inria.fr/cigri-ctrl/feedforward-approach/cigri-feedforward
http://archive.softwareheritage.org/swh:1:dir:5a540eb9a13d6be14e18f47f997bc58d394cb3db;origin=https://gitlab.inria.fr/cigri-ctrl/feedforward-approach/cigri-feedforward
http://archive.softwareheritage.org/swh:1:dir:5a540eb9a13d6be14e18f47f997bc58d394cb3db;origin=https://gitlab.inria.fr/cigri-ctrl/feedforward-approach/cigri-feedforward
http://archive.softwareheritage.org/swh:1:dir:5a540eb9a13d6be14e18f47f997bc58d394cb3db;origin=https://gitlab.inria.fr/cigri-ctrl/feedforward-approach/cigri-feedforward
https://doi.org/10.1145/2723872.2723875
https://dl.acm.org/doi/10.1145/2723872.2723875
https://dl.acm.org/doi/10.1145/2723872.2723875
https://doi.org/10.1016/0005-1098(81)90070-4

[FPG] Adrien Faure, Millian Poquet, and Quentin Guilloteau. Nix tutorial. URL: https:
//nix-tutorial.gitlabpages.inria.fr/nix-tutorial/index.html.

cit. on p. A1

[Fri+13] Wolfgang Frings, Dong H Ahn, Matthew LeGendre, et al. “Massively parallel
loading”. In: Proceedings of the 27th international ACM conference on Interna-
tional conference on supercomputing. 2013, pp. 389–398. cit. on p. 170

[FZ87] Domenico Ferrari and Songnian Zhou. An empirical investigation of load indices
for load balancing applications. Computer Science Division, University of Califor-
nia, 1987. cit. on pp. 39, 46

[Gam+15] Todd Gamblin, Matthew LeGendre, Michael R. Collette, et al. “The Spack pack-
age manager: bringing order to HPC software chaos”. en. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. Austin Texas: ACM, Nov. 2015, pp. 1–12. DOI: 10.1145/28075
91.2807623. URL: https://dl.acm.org/doi/10.1145/2807591.2807623
(visited on Nov. 22, 2021). cit. on p. 110

[Geo+06] Yiannis Georgiou, Julien Leduc, Brice Videau, Johann Peyrard, and Olivier
Richard. “A tool for environment deployment in clusters and light grids”. In:
Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.
IEEE. 2006, 8–pp. cit. on p. 124

[GKN18] Cristian Galleguillos, Zeynep Kiziltan, and Alessio Netti. “Accasim: an HPC
simulator for workload management”. In: High Performance Computing: 4th
Latin American Conference, CARLA 2017, Buenos Aires, Argentina, and Colonia del
Sacramento, Uruguay, September 20-22, 2017, Revised Selected Papers 4. Springer.
2018, pp. 169–184. cit. on p. 157

[GRC07] Yiannis Georgiou, Olivier Richard, and Nicolas Capit. “Evaluations of the
lightweight grid cigri upon the grid5000 platform”. In: Third IEEE Interna-
tional Conference on e-Science and Grid Computing (e-Science 2007). IEEE. 2007,
pp. 279–286. cit. on pp. 14, 23

[Gri] Grid’5000. Creating an environment images using tgz-g5k. https://grid5000.f
r/w/Environment_creation#Creating_an_environment_images_using_tg
z-g5k. Accessed: 2023-04-03. cit. on p. 110

[Gri23] [SW] Gricad, Nix Ciment Channel 2023. URL: https://github.com/Gricad/n
ix-ciment-channel, SWHID: ⟨swh:1:dir:dec8c22b23ba51650f65352fa2fc2
640f1532bea;origin=https://github.com/Gricad/nix-ciment-channel⟩.

cit. on p. 115

[GRR22a] Quentin Guilloteau, Olivier Richard, and Éric Rutten. “Étude des applications
Bag-of-Tasks du méso-centre Gricad”. In: COMPAS 2022-Conférence d’informatique
en Parallélisme, Architecture et Système. 2022. cit. on pp. 6, 29

[GRR22b] Quentin Guilloteau, Olivier Richard, and Eric Rutten. Étude des applications
Bag-of-Tasks du méso-centre Gricad. Zenodo, July 2022. DOI: 10.5281/zenodo.8
410346. URL: https://doi.org/10.5281/zenodo.8410346. cit. on p. 29

Bibliography A9

https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial/index.html
https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial/index.html
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1145/2807591.2807623
https://dl.acm.org/doi/10.1145/2807591.2807623
https://grid5000.fr/w/Environment_creation# Creating_an_environment_images_using_tgz-g5k
https://grid5000.fr/w/Environment_creation# Creating_an_environment_images_using_tgz-g5k
https://grid5000.fr/w/Environment_creation# Creating_an_environment_images_using_tgz-g5k
https://github.com/Gricad/nix-ciment-channel
https://github.com/Gricad/nix-ciment-channel
http://archive.softwareheritage.org/swh:1:dir:dec8c22b23ba51650f65352fa2fc2640f1532bea;origin=https://github.com/Gricad/nix-ciment-channel
http://archive.softwareheritage.org/swh:1:dir:dec8c22b23ba51650f65352fa2fc2640f1532bea;origin=https://github.com/Gricad/nix-ciment-channel
https://doi.org/10.5281/zenodo.8410346
https://doi.org/10.5281/zenodo.8410346
https://doi.org/10.5281/zenodo.8410346

[Gui+a] Quentin Guilloteau, Jonathan Bleuzen, Millian Poquet, and Olivier Richard.
Initiation to NixOS Compose. URL: https://nixos-compose.gitlabpages.inr
ia.fr/tuto-nxc/. cit. on pp. 7, 139, A1

[Gui+b] Quentin Guilloteau, Sophie Cerf, Eric Rutten, Raphaël Bleuse, and Bogdan Robu.
Introduction to Control Theory for Computer Scientists. URL: https://control-
for-computing.gitlabpages.inria.fr/tutorial/intro.html.

cit. on pp. 7, 39, 173

[Gui+21a] Quentin Guilloteau, Olivier Richard, Bogdan Robu, and Eric Rutten. “Controlling
the Injection of Best-Effort Tasks to Harvest Idle Computing Grid Resources”.
In: ICSTCC 2021 - 25th International Conference on System Theory, Control and
Computing. Ias, i, Romania, Oct. 2021, pp. 1–6. DOI: 10.1109/ICSTCC52150.202
1.9607292. URL: https://hal.inria.fr/hal-03363709.

cit. on pp. 6, 42, 56, 58, 60

[Gui+21b] Quentin Guilloteau, Olivier Richard, Eric Rutten, and Bogdan Robu. “Collecte
de ressources libres dans une grille en préservant le système de fichiers : une
approche autonomique”. In: COMPAS 2021 - Conférence d’informatique en Parallé
lisme, Architecture et Système. Lyon, France, July 2021, pp. 1–11. URL: https:
//hal.inria.fr/hal-03282727. cit. on p. 6

[Gui+22a] [SW] Quentin Guilloteau, Jonathan Bleuzen, Millian Poquet, and Olivier Richard,
version 1.0, 2022. URL: https://gitlab.inria.fr/nixos-compose/nixos-
compose, SWHID: ⟨swh:1:dir:6308ca57ea23fbdcd4ea84006149583a2db8f88
1;origin=https://gitlab.inria.fr/nixos-compose/nixos-compose⟩.

cit. on p. 138

[Gui+22b] Quentin Guilloteau, Jonathan Bleuzen, Millian Poquet, and Olivier Richard.
“Painless Transposition of Reproducible Distributed Environments with NixOS
Compose”. In: CLUSTER 2022 - IEEE International Conference on Cluster Comput-
ing. Vol. CLUSTER 2022 - IEEE International Conference on Cluster Computing.
Heidelberg, Germany, Sept. 2022, pp. 1–12. URL: https://hal.science/hal-
03723771. cit. on pp. 6, 87, 114, 119, 144, 165

[Gui+22c] Quentin Guilloteau, Jonathan Bleuzen, Millian Poquet, and Olivier Richard.
“Transposition d’environnements distribués reproductibles avec NixOS Com-
pose”. In: COMPAS 2022 (July 2022), pp. 1–9. URL: https://hal.science/ha
l-03696485. cit. on p. 6

[Gui+22d] Quentin Guilloteau, Bogdan Robu, Cédric Join, et al. “Model-free control for
resource harvesting in computing grids”. In: Conference on Control Technology
and Applications, CCTA 2022. Trieste, Italy: IEEE, Aug. 2022. URL: https://hal
.archives-ouvertes.fr/hal-03663273. cit. on pp. 6, 66, 69, 70

[Gui+23a] Quentin Guilloteau, Adrien Faure, Millian Poquet, and Olivier Richard. “Com-
ment rater la reproductibilité de ses expériences ?” In: Conférence francophone
en informatique (ComPAS 2023). Annecy, France, July 2023, à paraître. URL:
https://hal.science/hal-04132438. cit. on pp. 6, 106

A10 Bibliography

https://nixos-compose.gitlabpages.inria.fr/tuto-nxc/
https://nixos-compose.gitlabpages.inria.fr/tuto-nxc/
https://control-for-computing.gitlabpages.inria.fr/tutorial/intro.html
https://control-for-computing.gitlabpages.inria.fr/tutorial/intro.html
https://doi.org/10.1109/ICSTCC52150.2021.9607292
https://doi.org/10.1109/ICSTCC52150.2021.9607292
https://hal.inria.fr/hal-03363709
https://hal.inria.fr/hal-03282727
https://hal.inria.fr/hal-03282727
https://gitlab.inria.fr/nixos-compose/nixos-compose
https://gitlab.inria.fr/nixos-compose/nixos-compose
http://archive.softwareheritage.org/swh:1:dir:6308ca57ea23fbdcd4ea84006149583a2db8f881;origin=https://gitlab.inria.fr/nixos-compose/nixos-compose
http://archive.softwareheritage.org/swh:1:dir:6308ca57ea23fbdcd4ea84006149583a2db8f881;origin=https://gitlab.inria.fr/nixos-compose/nixos-compose
https://hal.science/hal-03723771
https://hal.science/hal-03723771
https://hal.science/hal-03696485
https://hal.science/hal-03696485
https://hal.archives-ouvertes.fr/hal-03663273
https://hal.archives-ouvertes.fr/hal-03663273
https://hal.science/hal-04132438

[Gui+23b] [SW] Quentin Guilloteau, Olivier Richard, Raphaël Bleuse, and Eric Rutten,
2023. URL: https://gitlab.inria.fr/nixos-compose/hpc-io/articles/f
olding, SWHID: ⟨swh:1:dir:7b37ae5308065c18081acae7fac97d5028492948
;origin=https://gitlab.inria.fr/nixos-compose/hpc-io/articles/fo
lding⟩. cit. on p. 144

[Gui+23c] Quentin Guilloteau, Olivier Richard, Raphaël Bleuse, and Eric Rutten. Data for
the paper: "Folding a Cluster containing a Distributed File-System". Zenodo, Oct.
2023. DOI: 10.5281/zenodo.10005463. URL: https://doi.org/10.5281/zen
odo.10005463. cit. on p. 144

[Gui+23d] Quentin Guilloteau, Olivier Richard, Raphaël Bleuse, and Eric Rutten. “Folding a
Cluster containing a Distributed File-System”. working paper or preprint. 2023.
URL: https://hal.science/hal-04038000. cit. on pp. 6, 70, 141

[Gui20] Quentin Guilloteau. “Minimizing Cluster Under-use using a Control-Based Ap-
proach”. Internship report. Grenoble INP Ensimag ; Université Grenoble Alpes,
June 2020. URL: https://hal.inria.fr/hal-03167242. cit. on pp. 42, 56

[Gui23a] [SW] Quentin Guilloteau, 2023. URL: https://gitlab.inria.fr/qguillot
/batbroker, SWHID: ⟨swh:1:dir:261eeaa67ea32a2c6fa382ecf1ee72dd6a74
6173;origin=https://gitlab.inria.fr/qguillot/batbroker⟩.

cit. on p. 161

[Gui23b] [SW] Quentin Guilloteau, 2023. URL: https://gitlab.inria.fr/cigri-ctr
l/batcigri, SWHID: ⟨swh:1:dir:c2dbf035e87b3d9d032fc902ba32d5ea135f
75e7;origin=https://gitlab.inria.fr/cigri-ctrl/batcigri⟩.

cit. on p. 165

[Gui23c] Quentin Guilloteau. Data for the paper: "Simulating a Multi-Layered Grid Middle-
ware". Zenodo, Oct. 2023. DOI: 10.5281/zenodo.10005440. URL: https://doi
.org/10.5281/zenodo.10005440. cit. on p. 165

[Gui23d] Quentin Guilloteau. “Simulating a Multi-Layered Grid Middleware”. working
paper or preprint. May 2023. URL: https://hal.science/hal-04101015.

cit. on p. 6

[Gui23e] [SW] Guix-HPC, Guix-HPC 2023. URL: https://gitlab.inria.fr/guix-hpc
/guix-hpc, SWHID: ⟨swh:1:dir:aabd69b989444999630729faf0184f4d68ff1
3fa;origin=https://gitlab.inria.fr/guix-hpc/guix-hpc⟩.

cit. on p. 114

[Han09] Jingqing Han. “From PID to Active Disturbance Rejection Control”. In: IEEE
Trans. Ind. Electron. 56.3 (Mar. 2009), pp. 900–906. DOI: 10.1109/TIE.2008.2
011621. cit. on p. 68

[Hei+17] Franz Christian Heinrich, Tom Cornebize, Augustin Degomme, et al. “Predicting
the energy-consumption of mpi applications at scale using only a single node”.
In: 2017 IEEE international conference on cluster computing (CLUSTER). IEEE.
2017, pp. 92–102. cit. on pp. 2, 92

[Hel+04] Joseph L Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M Tilbury. Feedback
control of computing systems. John Wiley & Sons, 2004. cit. on pp. 46, 49

Bibliography A11

https://gitlab.inria.fr/nixos-compose/hpc-io/articles/folding
https://gitlab.inria.fr/nixos-compose/hpc-io/articles/folding
http://archive.softwareheritage.org/swh:1:dir:7b37ae5308065c18081acae7fac97d5028492948;origin=https://gitlab.inria.fr/nixos-compose/hpc-io/articles/folding
http://archive.softwareheritage.org/swh:1:dir:7b37ae5308065c18081acae7fac97d5028492948;origin=https://gitlab.inria.fr/nixos-compose/hpc-io/articles/folding
http://archive.softwareheritage.org/swh:1:dir:7b37ae5308065c18081acae7fac97d5028492948;origin=https://gitlab.inria.fr/nixos-compose/hpc-io/articles/folding
https://doi.org/10.5281/zenodo.10005463
https://doi.org/10.5281/zenodo.10005463
https://doi.org/10.5281/zenodo.10005463
https://hal.science/hal-04038000
https://hal.inria.fr/hal-03167242
https://gitlab.inria.fr/qguillot/batbroker
https://gitlab.inria.fr/qguillot/batbroker
http://archive.softwareheritage.org/swh:1:dir:261eeaa67ea32a2c6fa382ecf1ee72dd6a746173;origin=https://gitlab.inria.fr/qguillot/batbroker
http://archive.softwareheritage.org/swh:1:dir:261eeaa67ea32a2c6fa382ecf1ee72dd6a746173;origin=https://gitlab.inria.fr/qguillot/batbroker
https://gitlab.inria.fr/cigri-ctrl/batcigri
https://gitlab.inria.fr/cigri-ctrl/batcigri
http://archive.softwareheritage.org/swh:1:dir:c2dbf035e87b3d9d032fc902ba32d5ea135f75e7;origin=https://gitlab.inria.fr/cigri-ctrl/batcigri
http://archive.softwareheritage.org/swh:1:dir:c2dbf035e87b3d9d032fc902ba32d5ea135f75e7;origin=https://gitlab.inria.fr/cigri-ctrl/batcigri
https://doi.org/10.5281/zenodo.10005440
https://doi.org/10.5281/zenodo.10005440
https://doi.org/10.5281/zenodo.10005440
https://hal.science/hal-04101015
https://gitlab.inria.fr/guix-hpc/guix-hpc
https://gitlab.inria.fr/guix-hpc/guix-hpc
http://archive.softwareheritage.org/swh:1:dir:aabd69b989444999630729faf0184f4d68ff13fa;origin=https://gitlab.inria.fr/guix-hpc/guix-hpc
http://archive.softwareheritage.org/swh:1:dir:aabd69b989444999630729faf0184f4d68ff13fa;origin=https://gitlab.inria.fr/guix-hpc/guix-hpc
https://doi.org/10.1109/TIE.2008.2011621
https://doi.org/10.1109/TIE.2008.2011621

[Her] Software Heritage. Software Heritage. Accessed: 2023-03-30. URL: https://ww
w.softwareheritage.org/. cit. on p. 109

[Hin+11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, et al. “Mesos: A platform
for {Fine-Grained} resource sharing in the data center”. In: 8th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 11). 2011.

cit. on p. 13

[HM08] Markus C Huebscher and Julie A McCann. “A survey of autonomic comput-
ing—degrees, models, and applications”. In: ACM Computing Surveys (CSUR)
40.3 (2008), pp. 1–28. cit. on p. 14

[hpc23a] [SW] hpc-io, 2023. URL: https://gitlab.inria.fr/nixos-compose/hpc-
io/nfs, SWHID: ⟨swh:1:dir:882f068849839146a5fd0eb0c56493b64aaa91ec
;origin=https://gitlab.inria.fr/nixos-compose/hpc-io/nfs⟩.

cit. on p. 144

[hpc23b] [SW] hpc-io, 2023. URL: https://gitlab.inria.fr/nixos-compose/hpc-io
/orangefs, SWHID: ⟨swh:1:dir:8f05ae8165fc653aeab06b96039aef7972f4be
ce;origin=https://gitlab.inria.fr/nixos-compose/hpc-io/orangefs⟩.

cit. on p. 144

[IE10] Alexandru Iosup and Dick Epema. “Grid computing workloads”. In: IEEE Internet
Computing 15.2 (2010), pp. 19–26. cit. on p. 36

[Imb+13] Matthieu Imbert, Laurent Pouilloux, Jonathan Rouzaud-Cornabas, Adrien Lebre,
and Takahiro Hirofuchi. “Using the EXECO toolbox to perform automatic and
reproducible cloud experiments”. In: 1st International Workshop on UsiNg and
building ClOud Testbeds (UNICO, collocated with IEEE CloudCom 2013. Bristol,
United Kingdom: IEEE, Dec. 2013. DOI: 10.1109/CloudCom.2013.119. URL:
https://hal.inria.fr/hal-00861886. cit. on p. 170

[IO5] IO500. IO500 Ranking. Accessed: 2023-01-19. URL: https://io500.org/.
cit. on p. 144

[Ios+08] Alexandru Iosup, Hui Li, Mathieu Jan, et al. “The grid workloads archive”. In:
Future Generation Computer Systems 24.7 (2008), pp. 672–686. cit. on p. 36

[IS96] Petros A Ioannou and Jing Sun. Robust adaptive control. Vol. 1. PTR Prentice-Hall
Upper Saddle River, NJ, 1996. cit. on p. 78

[IT18] Peter Ivie and Douglas Thain. “Reproducibility in scientific computing”. In: ACM
Computing Surveys (CSUR) 51.3 (2018), pp. 1–36. cit. on p. 108

[Jav+09] Bahman Javadi, Derrick Kondo, Jean-Marc Vincent, and David P Anderson.
“Mining for statistical models of availability in large-scale distributed systems:
An empirical study of seti@ home”. In: 2009 IEEE International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication Systems.
IEEE. 2009, pp. 1–10. cit. on p. 35

A12 Bibliography

https://www.softwareheritage.org/
https://www.softwareheritage.org/
https://gitlab.inria.fr/nixos-compose/hpc-io/nfs
https://gitlab.inria.fr/nixos-compose/hpc-io/nfs
http://archive.softwareheritage.org/swh:1:dir:882f068849839146a5fd0eb0c56493b64aaa91ec;origin=https://gitlab.inria.fr/nixos-compose/hpc-io/nfs
http://archive.softwareheritage.org/swh:1:dir:882f068849839146a5fd0eb0c56493b64aaa91ec;origin=https://gitlab.inria.fr/nixos-compose/hpc-io/nfs
https://gitlab.inria.fr/nixos-compose/hpc-io/orangefs
https://gitlab.inria.fr/nixos-compose/hpc-io/orangefs
http://archive.softwareheritage.org/swh:1:dir:8f05ae8165fc653aeab06b96039aef7972f4bece;origin=https://gitlab.inria.fr/nixos-compose/hpc-io/orangefs
http://archive.softwareheritage.org/swh:1:dir:8f05ae8165fc653aeab06b96039aef7972f4bece;origin=https://gitlab.inria.fr/nixos-compose/hpc-io/orangefs
https://doi.org/10.1109/CloudCom.2013.119
https://hal.inria.fr/hal-00861886
https://io500.org/

[JPV23] Emmanuel Jeannot, Guillaume Pallez, and Nicolas Vidal. “IO-aware Job-Scheduling:
Exploiting the Impacts of Workload Characterizations to select the Mapping
Strategy”. In: The International Journal of High Performance Computing Applica-
tions (2023), p. 10943420231175854. cit. on p. 25

[K3s] [SW] K3s-io, K3s: Lightweight Kubernetes. URL: https://k3s.io/(visited on
Apr. 28, 2022), SWHID: ⟨swh:1:dir:c8498fe26be8ef891d37b7d89b71dde0579
a35ed;origin=https://github.com/k3s-io/k3s.git⟩.

cit. on pp. 122, 136

[KC03] Jeffrey O Kephart and David M Chess. “The vision of autonomic computing”. In:
Computer 36.1 (2003), pp. 41–50. cit. on pp. 14, 15, 25

[Kea+20] Kate Keahey, Jason Anderson, Zhuo Zhen, et al. “Lessons Learned from the
Chameleon Testbed”. In: Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC ’20). USENIX Association, July 2020.

cit. on pp. 110, 139

[Kow92] Zdzisław Kowalczuk. “Competitive Identification for Self-tuning Control: R
obust Estimation Design and Simulation Experiments”. In: Automatica 28.1 (Jan.
1992), pp. 193–201. DOI: 10.1016/0005-1098(92)90021-7. cit. on p. 68

[KSS20] Dalibor Klusáček, Mehmet Soysal, and Fréd éric Suter. “Alea–complex job
scheduling simulator”. In: Parallel Processing and Applied Mathematics: 13th
International Conference, PPAM 2019, Bialystok, Poland, September 8–11, 2019,
Revised Selected Papers, Part II 13. Springer. 2020, pp. 217–229. cit. on p. 157

[LAC06] Yun Li, Kiam Heong Ang, and G.C.Y. Chong. “Patents, software, and hardware
for PID control: an overview and analysis of the current art”. In: IEEE Control
Systems Magazine 26.1 (2006), pp. 42–54. DOI: 10.1109/MCS.2006.1580153.

cit. on p. 78

[Lan+11] Ioan Doré Landau, Rogelio Lozano, Mohammed M’Saad, and Alireza Karimi.
Adaptive Control. Algorithms, Analysis and Applications. 2nd ed. Communications
and Control Engineering. Springer, 2011. DOI: 10.1007/978-0-85729-664-1.

cit. on p. 78

[Lar+09] Stefan M Larson, Christopher D Snow, Michael Shirts, and Vijay S Pande.
“Folding@ Home and Genome@ Home: Using distributed computing to tackle
previously intractable problems in computational biology”. In: arXiv preprint
arXiv:0901.0866 (2009). cit. on p. 11

[Leb+15] Adrien Lebre, Arnaud Legrand, Frédéric Suter, and Pierre Veyre. “Adding storage
simulation capacities to the simgrid toolkit: Concepts, models, and api”. In: 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
IEEE. 2015, pp. 251–260. cit. on p. 169

[Leg+] Arnaud Legrand, Konrad Hinsen, Christophe Pouzat, et al. Mooc Reproducible
research 2. URL: https://learninglab.gitlabpages.inria.fr/mooc-rr/mo
oc-rr2-ressources/. cit. on p. A1

Bibliography A13

https://k3s.io/
http://archive.softwareheritage.org/swh:1:dir:c8498fe26be8ef891d37b7d89b71dde0579a35ed;origin=https://github.com/k3s-io/k3s.git
http://archive.softwareheritage.org/swh:1:dir:c8498fe26be8ef891d37b7d89b71dde0579a35ed;origin=https://github.com/k3s-io/k3s.git
https://doi.org/10.1016/0005-1098(92)90021-7
https://doi.org/10.1109/MCS.2006.1580153
https://doi.org/10.1007/978-0-85729-664-1
https://learninglab.gitlabpages.inria.fr/mooc-rr/mooc-rr2-ressources/
https://learninglab.gitlabpages.inria.fr/mooc-rr/mooc-rr2-ressources/

[Len21] [SW] Dan Lenski, 2021. URL: https://github.com/dlenski/top500, SWHID:
⟨swh:1:dir:535da402e4285b7b26cdd294db27fee5abbf39ad;origin=https:
//github.com/dlenski/top500⟩. cit. on p. 2

[LHP] Arnaud Legrand, Konrad Hinsen, and Christophe Pouzat. Mooc Reproducible
research. URL: https://lms.fun-mooc.fr/courses/course-v1:inria+41023
+session01/info. cit. on p. A1

[Lit+17] Marin Litoiu, Mary Shaw, Gabriel Tamura, et al. “What can control theory teach
us about assurances in self-adaptive software systems?” In: Software Engineering
for Self-Adaptive Systems III. Assurances: International Seminar, Dagstuhl Castle,
Germany, December 15-19, 2013, Revised Selected and Invited Papers. Springer.
2017, pp. 90–134. cit. on p. 17

[Lit23] Alexandre Lithaud. “Contribution au projet NixOS Compose”. MA thesis. Uni-
versité Grenoble Alpes, Sept. 2023. URL: https://inria.hal.science/hal-0
4197720. cit. on p. 154

[Liu+11] Yonggang Liu, Renato Figueiredo, Dulcardo Clavijo, Yiqi Xu, and Ming Zhao.
“Towards simulation of parallel file system scheduling algorithms with PFSsim”.
In: Proceedings of the 7th IEEE International Workshop on Storage Network
Architectures and Parallel I/O (May 2011). 2011. cit. on p. 169

[Liu+20] Gang Liu, Zheng Xiao, GuangHua Tan, Kenli Li, and Anthony Theodore Chronopou-
los. “Game theory-based optimization of distributed idle computing resources
in cloud environments”. In: Theoretical Computer Science 806 (2020), pp. 468–
488. cit. on p. 12

[LLM87] Michel J Litzkow, Miron Livny, and Matt W Mutka. Condor-a hunter of idle work-
stations. Tech. rep. University of Wisconsin-Madison Department of Computer
Sciences, 1987. cit. on p. 12

[Lus] Lustre. Lustre Filesystem. Accessed: 2023-09-29. URL: https://www.lustre.or
g/. cit. on p. 154

[MC19] Tessema M Mengistu and Dunren Che. “Survey and taxonomy of volunteer
computing”. In: ACM Computing Surveys (CSUR) 52.3 (2019), pp. 1–35.

cit. on p. 11

[MC20] Ali Mohammed and Florina M Ciorba. “SimAS: A simulation-assisted approach
for the scheduling algorithm selection under perturbations”. In: Concurrency
and computation: practice and experience 32.15 (2020), e5648. cit. on p. 17

[Mer+17] Michael Mercier, David Glesser, Yiannis Georgiou, and Olivier Richard. “Big
data and HPC collocation: Using HPC idle resources for Big Data analytics”.
In: 2017 IEEE International Conference on Big Data (Big Data). IEEE. 2017,
pp. 347–352. cit. on pp. 13, 81, 100

[Mer18] [SW] Michael Mercier, 2018. URL: https://gitlab.inria.fr/batsim/batbr
oker, SWHID: ⟨swh:1:dir:428e9cbe73f2da728c1166bdf8f6290af37d8be1;o
rigin=https://gitlab.inria.fr/batsim/batbroker⟩. cit. on p. 161

A14 Bibliography

https://github.com/dlenski/top500
http://archive.softwareheritage.org/swh:1:dir:535da402e4285b7b26cdd294db27fee5abbf39ad;origin=https://github.com/dlenski/top500
http://archive.softwareheritage.org/swh:1:dir:535da402e4285b7b26cdd294db27fee5abbf39ad;origin=https://github.com/dlenski/top500
https://lms.fun-mooc.fr/courses/course-v1:inria+41023+session01/info
https://lms.fun-mooc.fr/courses/course-v1:inria+41023+session01/info
https://inria.hal.science/hal-04197720
https://inria.hal.science/hal-04197720
https://www.lustre.org/
https://www.lustre.org/
https://gitlab.inria.fr/batsim/batbroker
https://gitlab.inria.fr/batsim/batbroker
http://archive.softwareheritage.org/swh:1:dir:428e9cbe73f2da728c1166bdf8f6290af37d8be1;origin=https://gitlab.inria.fr/batsim/batbroker
http://archive.softwareheritage.org/swh:1:dir:428e9cbe73f2da728c1166bdf8f6290af37d8be1;origin=https://gitlab.inria.fr/batsim/batbroker

[Mer19] Michael Mercier. “Contribution to High Performance Computing and Big Data
Infrastructure Convergence”. en. PhD Thesis. Universite Grenoble Alpes, 2019.

cit. on p. 161

[MF01] Ahuva W. Mu’alem and Dror G. Feitelson. “Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling”. In: IEEE
transactions on parallel and distributed systems 12.6 (2001), pp. 529–543.

cit. on pp. 3, 12, 95

[MFR18] Michael Mercier, Adrien Faure, and Olivier Richard. “Considering the Devel-
opment Workflow to Achieve Reproducibility with Variation”. In: SC 2018-
Workshop: ResCuE-HPC. 2018, pp. 1–5. cit. on p. 109

[Mid+88] Richard H Middleton, Graham C Goodwin, David J Hill, and David Q Mayne.
“Design issues in adaptive control”. In: IEEE transactions on automatic control
33.1 (1988), pp. 50–58. cit. on p. 78

[Mon+22] Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu. “StorAl-
loc: A Simulator for Job Scheduling on Heterogeneous Storage Resources”. In:
European Conference on Parallel Processing. Springer. 2022, pp. 211–222.

cit. on p. 169

[Mug03] Vito MR Muggeo. “Estimating regression models with unknown break-points”.
In: Statistics in medicine 22.19 (2003), pp. 3055–3071. cit. on p. 153

[Myt+09] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney.
“Producing wrong data without doing anything obviously wrong!” In: ACM
Sigplan Notices 44.3 (2009), pp. 265–276. cit. on p. 109

[Net+19] Alessio Netti, Micha Müller, Axel Auweter, et al. “From facility to application
sensor data: modular, continuous and holistic monitoring with DCDB”. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 2019, pp. 1–27. cit. on p. 53

[Nix22] [SW] NixOS, NixOps 2022. LIC: LGPL-3.0. URL: https://github.com/Nix
OS/nixops, SWHID: ⟨swh:1:dir:1096fd578c5f898d1b883239bbffc1ba4d556
2c1;origin=https://github.com/NixOS/nixops⟩. cit. on p. 119

[Nix23] [SW] NixOS, nixpkgs 2023. URL: https://github.com/nixos/nixpkgs,
SWHID: ⟨swh:1:dir:3ae910dfaee09a77c726f69f7c6519488e2bd9c3;origin
=https://github.com/NixOS/nixpkgs⟩. cit. on p. 114

[OAR23] [SW] OAR-Team, NUR-Kapack 2023. URL: https://github.com/oar-team/n
ur-kapack, SWHID: ⟨swh:1:dir:1a6970dbce78a86062648a7c76978f674f136
607;origin=https://github.com/oar-team/nur-kapack⟩. cit. on p. 114

[oar23a] [SW] oar-team, 2023. URL: https://github.com/oar-team/cigri, SWHID:
⟨swh:1:dir:f8b6df45300534e9807addc7ec125cd72b92c139;origin=https:
//github.com/oar-team/cigri⟩. cit. on p. 23

[oar23b] [SW] oar-team, 2023. URL: https://github.com/oar-team/oar3, SWHID:
⟨swh:1:dir:ab502da78090e4d77ee363ce7ccc2f6ea65c2d92;origin=https:
//github.com/oar-team/oar3⟩. cit. on pp. 23, 70

Bibliography A15

https://github.com/NixOS/nixops
https://github.com/NixOS/nixops
http://archive.softwareheritage.org/swh:1:dir:1096fd578c5f898d1b883239bbffc1ba4d5562c1;origin=https://github.com/NixOS/nixops
http://archive.softwareheritage.org/swh:1:dir:1096fd578c5f898d1b883239bbffc1ba4d5562c1;origin=https://github.com/NixOS/nixops
https://github.com/nixos/nixpkgs
http://archive.softwareheritage.org/swh:1:dir:3ae910dfaee09a77c726f69f7c6519488e2bd9c3;origin=https://github.com/NixOS/nixpkgs
http://archive.softwareheritage.org/swh:1:dir:3ae910dfaee09a77c726f69f7c6519488e2bd9c3;origin=https://github.com/NixOS/nixpkgs
https://github.com/oar-team/nur-kapack
https://github.com/oar-team/nur-kapack
http://archive.softwareheritage.org/swh:1:dir:1a6970dbce78a86062648a7c76978f674f136607;origin=https://github.com/oar-team/nur-kapack
http://archive.softwareheritage.org/swh:1:dir:1a6970dbce78a86062648a7c76978f674f136607;origin=https://github.com/oar-team/nur-kapack
https://github.com/oar-team/cigri
http://archive.softwareheritage.org/swh:1:dir:f8b6df45300534e9807addc7ec125cd72b92c139;origin=https://github.com/oar-team/cigri
http://archive.softwareheritage.org/swh:1:dir:f8b6df45300534e9807addc7ec125cd72b92c139;origin=https://github.com/oar-team/cigri
https://github.com/oar-team/oar3
http://archive.softwareheritage.org/swh:1:dir:ab502da78090e4d77ee363ce7ccc2f6ea65c2d92;origin=https://github.com/oar-team/oar3
http://archive.softwareheritage.org/swh:1:dir:ab502da78090e4d77ee363ce7ccc2f6ea65c2d92;origin=https://github.com/oar-team/oar3

[oar23c] [SW] oar-team, 2023. URL: https://github.com/oar-team/colmet, SWHID:
⟨swh:1:dir:eef757f42afc1c6032921ea4f56e4999aa2fd63d;origin=https:
//github.com/oar-team/colmet⟩. cit. on p. 53

[Ope] OpenWhisk. OpenWhisk. URL: https://openwhisk.apache.org/ (visited on
Apr. 25, 2023). cit. on p. 13

[Ope13] LLC OpenStack. “OpenStack”. In: Apache Licence 2 (2013), p. 86. cit. on p. 139

[Pag23] Rosa Pagano. Controlling unused resources for digital sobriety. forthcoming. Nov.
2023. cit. on p. 66

[Paw+00] Brian Pawlowski, David Noveck, David Robinson, and Robert Thurlow. “The
NFS version 4 protocol”. In: In Proceedings of the 2nd International System
Administration and Networking Conference (SANE 2000. Citeseer. 2000.

cit. on p. 145

[Pon+18] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. “Temporal Differ-
ence Models: Model-Free Deep RL for M odel-Based Control”. In: (2018). arXiv:
1802.09081 [cs.LG]. cit. on p. 68

[Poq17] Millian Poquet. “Simulation approach for resource management”. PhD thesis.
Université Grenoble Alpes, 2017. cit. on p. 101

[PRD20] Barry Porter, Roberto Rodrigues Filho, and Paul Dean. “A survey of methodol-
ogy in self-adaptive systems research”. In: 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE. 2020,
pp. 168–177. cit. on pp. 15, 16

[Prz+22] Bartłomiej Przybylski, Maciej Pawlik, Paweł Żuk, et al. “Using unused: non-
invasive dynamic FaaS infrastructure with HPC-whisk”. In: SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE. 2022, pp. 1–15. cit. on pp. 13, 81

[Ram+19] Srinivasan Ramesh, Swann Perarnau, Sridutt Bhalachandra, Allen D Malony,
and Pete Beckman. “Understanding the impact of dynamic power capping
on application progress”. In: 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE. 2019, pp. 793–804. cit. on p. 101

[RMS17] Eric Rutten, Nicolas Marchand, and Daniel Simon. “Feedback control as MAPE-K
loop in autonomic computing”. In: Software Engineering for Self-Adaptive Systems
III. Assurances: International Seminar, Dagstuhl Castle, Germany, December 15-19,
2013, Revised Selected and Invited Papers. Springer. 2017, pp. 349–373.

cit. on p. 17

[Ros+20] Daniel Rosendo, Pedro Silva, Matthieu Simonin, Alexandru Costan, and Gabriel
Antoniu. “E2Clab: Exploring the Computing Continuum through Repeatable,
Replicable and Reproducible Edge-to-Cloud Experiments”. In: Cluster 2020 -
IEEE International Conference on Cluster Computing. Kobe, Japan, Sept. 2020,
pp. 1–11. DOI: 10.1109/CLUSTER49012.2020.00028. URL: https://hal.scie
nce/hal-02916032. cit. on p. 109

A16 Bibliography

https://github.com/oar-team/colmet
http://archive.softwareheritage.org/swh:1:dir:eef757f42afc1c6032921ea4f56e4999aa2fd63d;origin=https://github.com/oar-team/colmet
http://archive.softwareheritage.org/swh:1:dir:eef757f42afc1c6032921ea4f56e4999aa2fd63d;origin=https://github.com/oar-team/colmet
https://openwhisk.apache.org/
https://arxiv.org/abs/1802.09081
https://doi.org/10.1109/CLUSTER49012.2020.00028
https://hal.science/hal-02916032
https://hal.science/hal-02916032

[Rui+15] Cristian Ruiz, Salem Harrache, Michael Mercier, and Olivier Richard. “Recon-
structable Software Appliances with Kameleon”. en. In: ACM SIGOPS Operating
Systems Review 49.1 (Jan. 2015), pp. 80–89. DOI: 10.1145/2723872.2723883.
URL: https://dl.acm.org/doi/10.1145/2723872.2723883 (visited on
June 12, 2020). cit. on pp. 69, 111

[RW18] David Randall and Christopher Welser. The Irreproducibility Crisis of Modern
Science. Causes, Consequences, and the Road to Reform. en. New York: National
Association of Scholars, 2018. URL: https://www.nas.org/reports/the-irr
eproducibility-crisis-of-modern-science. cit. on p. 107

[ser23] [SW] serokell, 2023. URL: https : / / github . com / serokell / deploy - rs,
SWHID: ⟨swh:1:dir:d28ae84202e328ef087cff85d9c6748ad9b19080;origin
=https://github.com/serokell/deploy-rs⟩. cit. on p. 119

[SG19] Aadirupa Saha and Aditya Gopalan. “Combinatorial bandits with relative feed-
back”. In: Advances in Neural Information Processing Systems 32 (2019).

cit. on p. 97

[She+17] Stepan Shevtsov, Mihaly Berekmeri, Danny Weyns, and Martina Maggio. “Control-
theoretical software adaptation: A systematic literature review”. In: IEEE Trans-
actions on Software Engineering 44.8 (2017), pp. 784–810. cit. on pp. 20, 66

[Shv+10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. “The
hadoop distributed file system”. In: 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee. 2010, pp. 1–10. cit. on p. 13

[SK05] David Skinner and William Kramer. “Understanding the causes of performance
variability in HPC workloads”. In: IEEE International. 2005 Proceedings of the
IEEE Workload Characterization Symposium, 2005. IEEE. 2005, pp. 137–149.

cit. on p. 3

[SK18] Victoria Stodden and Matthew S Krafczyk. “Assessing reproducibility: An as-
trophysical example of computational uncertainty in the HPC context”. In:
Proceedings of the 1st Workshop on Reproducible, Customizable and Portable
Workflows for HPC at SC. Vol. 18. 2018. cit. on p. 109

[SMM18] Josef Spillner, Cristian Mateos, and David A Monge. “Faaster, better, cheaper:
The prospect of serverless scientific computing and hpc”. In: High Performance
Computing: 4th Latin American Conference, CARLA 2017, Buenos Aires, Argentina,
and Colonia del Sacramento, Uruguay, September 20-22, 2017, Revised Selected
Papers 4. Springer. 2018, pp. 154–168. cit. on p. 13

[Sou+19] Abel Souza, Mohamad Rezaei, Erwin Laure, and Johan Tordsson. “Hybrid re-
source management for HPC and data intensive workloads”. In: 2019 19th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID). IEEE. 2019, pp. 399–409. cit. on p. 13

[SRI16] Supreeth Shastri, Amr Rizk, and David Irwin. “Transient guarantees: Maximizing
the value of idle cloud capacity”. In: SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE. 2016, pp. 992–1002. cit. on p. 12

Bibliography A17

https://doi.org/10.1145/2723872.2723883
https://dl.acm.org/doi/10.1145/2723872.2723883
https://www.nas.org/reports/the-irreproducibility-crisis-of-modern-science
https://www.nas.org/reports/the-irreproducibility-crisis-of-modern-science
https://github.com/serokell/deploy-rs
http://archive.softwareheritage.org/swh:1:dir:d28ae84202e328ef087cff85d9c6748ad9b19080;origin=https://github.com/serokell/deploy-rs
http://archive.softwareheritage.org/swh:1:dir:d28ae84202e328ef087cff85d9c6748ad9b19080;origin=https://github.com/serokell/deploy-rs

[ST17] Tim Shaffer and Douglas Thain. “Taming metadata storms in parallel filesystems
with metaFS”. In: Proceedings of the 2nd Joint International Workshop on Parallel
Data Storage & Data Intensive Scalable Computing Systems. 2017, pp. 25–30.

cit. on p. 170

[Sta+04] David A Stainforth, Myles R Allen, David Frame, et al. “Climateprediction. net:
a global community for research in climate physics”. In: Environmental online
communication. Springer, 2004, pp. 101–112. cit. on p. 11

[Sta+18] Emmanuel Stahl, Agustin Gabriel Yabo, Olivier Richard, et al. “Towards a
control-theory approach for minimizing unused grid resources”. In: Proceedings
of the 1st International Workshop on Autonomous Infrastructure for Science. 2018,
pp. 1–8. cit. on p. 25

[Sto+21] Mathieu Stoffel, François Broquedis, Fré déric Desprez, and Abdelhafid Mazouz.
“Phase-TA: Periodicity Detection and Characterization for HPC Applications”. In:
HPCS 2020-18th IEEE International Conference on High Performance Computing
and Simulation. IEEE. 2021, pp. 1–12. cit. on p. 100

[Sze10] Miklos Szeredi. “FUSE: Filesystem in userspace”. In: http://fuse. sourceforge. net
(2010). cit. on p. 170

[Tar+23] Ahmad Tarraf, Alexis Bandet, Francieli Boito, Guillaume Pallez, and Felix Wolf.
“FTIO: Detecting I/O Periodicity Using Frequency Techniques”. In: arXiv preprint
arXiv:2306.08601 (2023). cit. on p. 100

[Ter+17] Théophile Terraz, Alejandro Ribes, Yvan Fournier, Bertrand Iooss, and Bruno
Raffin. “Melissa: Large Scale In Transit Sensitivity Analysis Avoiding Interme-
diate Files”. In: The International Conference for High Performance Computing,
Networking, Storage and Analysis (Supercomputing). Denver, United States, Nov.
2017, pp. 1–14. URL: https://hal.inria.fr/hal-01607479. cit. on p. 127

[toh22] [SW] tohojo, Overview — Flent: The FLExible Network Tester 2022. URL: https:
//flent.org/, SWHID: ⟨swh:1:dir:b31ce4d599147041ab4bb658e521620f35
25a059;origin=https://github.com/tohojo/flent⟩. cit. on p. 136

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny. “Distributed computing in
practice: the Condor experience”. In: Concurrency and computation: practice and
experience 17.2-4 (2005), pp. 323–356. cit. on p. 81

[Twe] Tweag.io. What problems do flakes solve? https://www.tweag.io/blog/2020-
05-25-flakes/. Accessed: 2023-04-04. cit. on p. 115

[Wan+21] Yawen Wang, Kapil Arya, Marios Kogias, et al. “Smartharvest: Harvesting idle
cpus safely and efficiently in the cloud”. In: Proceedings of the Sixteenth European
Conference on Computer Systems. 2021, pp. 1–16. cit. on p. 12

[Wei+06] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos
Maltzahn. “Ceph: A scalable, high-performance distributed file system”. In:
Proceedings of the 7th symposium on Operating systems design and implementation.
2006, pp. 307–320. cit. on p. 154

[XKC] XKCD. Compiling. https://xkcd.com/303/. cit. on p. 107

A18 Bibliography

https://hal.inria.fr/hal-01607479
https://flent.org/
https://flent.org/
http://archive.softwareheritage.org/swh:1:dir:b31ce4d599147041ab4bb658e521620f3525a059;origin=https://github.com/tohojo/flent
http://archive.softwareheritage.org/swh:1:dir:b31ce4d599147041ab4bb658e521620f3525a059;origin=https://github.com/tohojo/flent
https://www.tweag.io/blog/2020-05-25-flakes/
https://www.tweag.io/blog/2020-05-25-flakes/
https://xkcd.com/303/

[Yab+19] Agustin Gabriel Yabo, Bogdan Robu, Olivier Richard, Bruno Bzeznik, and Eric
Rutten. “A control-theory approach for cluster autonomic management: max-
imizing usage while avoiding overload”. In: 2019 IEEE Conference on Control
Technology and Applications (CCTA). IEEE. 2019, pp. 189–195. cit. on p. 25

[YJG03] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple Linux
Utility for Resource Management”. en. In: Job Scheduling Strategies for Parallel
Processing. Ed. by Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, et al.
Vol. 2862. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60. DOI:
10.1007/10968987_3. URL: http://link.springer.com/10.1007/10968987
_3 (visited on Nov. 22, 2021). cit. on pp. 13, 125, 129, 142

[Zak+22] Farid Zakaria, Thomas RW Scogland, Todd Gamblin, and Carlos Maltzahn.
“Mapping out the HPC dependency chaos”. In: SC22: International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE. 2022,
pp. 1–12. cit. on p. 170

[zen] zenodo. Zenodo. Accessed: 2023-03-30. URL: https://zenodo.org/.
cit. on p. 109

Bibliography A19

https://doi.org/10.1007/10968987_3
http://link.springer.com/10.1007/10968987_3
http://link.springer.com/10.1007/10968987_3
https://zenodo.org/

List of Figures

1. Evolution of the number of cores, CPU frequency, and the maximum
performance of the Top500 machines. The solid line represents the
median, and the ribbons the 5% and 95%. Updated from [Cor21]
with the data from [Len21]. 2

2. Illustration of a Resource and Job Management System (RJMS) [Ble17] 2

3. Dependencies between the different chapters of this thesis. 5

1.1. Representation of the main tool of Autonomic Computing: the MAPE-
K Loop [KC03]. 15

1.2. Approaches used to implement an autonomic controller in 210 sur-
veyed papers of three autonomic computing conferences. Regener-
ated from [PRD20]. 16

1.3. Workflow of the Control Theory methodology [Cer+21]. 18

1.4. Graphical explanation of the different properties of a controlled sys-
tem (stability, settling time, overshoot) [She+17]. 20

1.5. Interactions between CiGri and the different RJSMs of the grid. . . . 24

2.1. Empirical Cumulative Distribution Function (ecdf) for the execution
times of the Bag-of-Tasks jobs executed on the grids Gricad and DAS2.
Globally, the Bag-of-Tasks jobs executed on the Gricad center are
longer than on DAS2. 30

2.2. Quarterly evolution of the number of Bag-of-Tasks jobs executed by
CiGri on the Gricad mesocenter. Every quarter, there are at least
100000 jobs being executed, and in average around a million jobs. . 31

2.3. Quarterly evolution of the mean and median execution times of the
Bag-of-Tasks jobs executed by CiGri on the Gricad mesocenter. The
median execution time is in the order of a few minutes, whereas the
mean execution time is more in the order of dozen minutes or one
hour. 32

2.4. Distribution of the execution times per quarter. We can see the
dominant usage of CiGri by some project. From 19-4 to 22-3, most
of the jobs last around 1 minutes, which hints that most of the jobs
come from the same project. 33

A21

2.5. Evolution of the proportion of Bag-of-Tasks jobs executed by CiGri on
the Gricad computing center over the years, as well as the evolution
of the work (execution time times the number of resources) of CiGri
jobs. We observe that there is often one project which has the majority
of the jobs executed during a quarter. However, this project does not
necessarily perform the most work. For example, for the year 2020,
the biggnss project has the majority of jobs executed, but not the
majority of executed work. 34

2.6. Distribution of the execution times for the 10 CiGri projects with the
most jobs. We observe that most projects have a clear unique mode
of distribution. This mode can be very wide, like for f-image and
simsert, or thin, like for biggnss and pr-mdcp. 35

2.7. Empirical cumulative distribution function of the mean execution
time of a campaign. The average mean duration is around 1 hour,
but the median mean duration is around 10 minutes. 36

2.8. Empirical cumulative distribution function of the number of jobs per
campaign. Half of the campaigns have less than 50 jobs, but there
are in average 2500 jobs per campaign. 37

2.9. Relation between the number of jobs in a campaign and the mean
duration of its jobs. We observe that large campaigns have short jobs,
and small campaigns have long-lasting jobs. 37

3.1. Graphical representation of the feedback loop in CiGri. 42

3.2. Identification experiments. For the different file sizes, we write n
concurrent files onto the NFS file-system and record the time to
process each request (Figure 3.2a) and the load of the machine
hosting the file-system (Figure 3.2b). The dashed line on Figure 3.2b
represents the theoretical maximum load of that the NFS server can
manage based on its number of workers. We can see that writing 50
concurrent 100Mbytes files overloads the file-system, the processing
time explodes and the load is at the theoretical maximum. 44

3.3. Processing time (top) and the file-server load (bottom) for differ-
ent submissions in number of jobs and I/O loads. It represents the
identification phase. We vary the quantity of I/O (columns) and the
number of simultaneous write requests/jobs in x-axis. We observe
that the loadavg sensor captures the (over)load of the file-system. . 45

A22 List of Figures

3.4. Estimation of the parameter b for the model of the system. The bars
correspond to the estimation for a number of jobs (u) and a I/O
load (f). The points represent the value of the estimation when
considering u = +∞. We observe that the estimations converge
towards these limits values. We will take these limits as values for b. 47

3.5. Load of the NFS file-system for random steps in the number of con-
current writes. We observe that for 100Mbytes and 49 concurrent
writes, the file-system collapses and fails to continue, which shows
the importance of not overloading the distributed file-system of a
cluster. 48

3.6. Impact of the ks and Mp parameters on the Closed Loop Behavior of
the system. The smaller ks, the fastest the closed-loop system will
converge to the reference value. But too small values of ks can lead to
some overshooting. Mp controls the allowed overshoot. The greater
Mp, the greater the allowed overshoot. 50

3.7. Response of the closed-loop system to a step perturbation. The
Proportional-Integral controller increases the number of jobs CiGri
submits to OAR (bottom) to get the load to the reference value (top).
At t = 2000s we introduce a step-shape perturbation resulting in an
increase of the load. The controller detects it and decreases the size
of the submission to get the load back to the reference value. 51

3.8. Overhead on the MADBench2 I/O benchmark [Bor+07] based on the
chosen reference value for our PI controller. 52

3.9. Feedback loop representing the control scheme with the dynamic
reference value. The current number of premium jobs (dk) is fed into
a model returning the maximum load that the premium jobs could
put on the file-system. This load is then subtracted to the maximum
load for the file-system, and then is defined as the reference value
for the CiGri controller. The value of f̄ represents a representative
file size for the cluster and is chosen by the administrators of the
cluster. This information can be retrieved with Darshan [Car+11]
for example. It could be the mean or median file size, or the 95%
percentile to be more conservative. 54

3.10.Identification experiment to model the maximum load (y-axis) that N
concurrent writes (color) of a given size (facets) on the distributed
file-system. After performing concurrent write requests, we wait for
the load of the machine hosting the file-system to reach a near zero
value before executing the next write requests. 55

3.11.Submissions with jobs from single campaign 56

List of Figures A23

3.12.Submission with jobs from several campaigns 57

3.13.Representation of the feedback loop for a submission with different
campaigns with different I/O loads. 57

3.14.Graphical representation of the potential behavior of the load if the
threshold is too small (Figure 3.14a) or too big (Figure 3.14b). . . . 58

3.15.Example of regulation of the load of the NFS file-system by consider-
ing I/O heavy jobs and I/O light jobs. The dashed lines on the bottom
plot represent the threshold between the two modes. The solid line
is the reference value. We can see that the controller first enters the
threshold zone around 700 seconds, and then starts regulating the
percentage of I/O heavy jobs in the submission (top plot). 59

4.1. Nominal performance of the different controllers through time. The
solid line represents the aggregated behavior from 5 different experi-
ments (light dots). The bottom plots compare the controllers on the
performance metrics defined in Section 4.1. 71

4.2. Global comparison of the controllers’ performance for variations in
I/O loads (fig. 4.2a) and jobs execution times (fig. 4.2b). The solid
lines represent the aggregated behavior from 5 different experiments
(light dots). 73

4.3. Comparison of controllers’ portability. The plots represent the perfor-
mance metrics computed on various systems between 2000 seconds.
The solid lines link the means over varying configurations for each
controller. 74

5.1. Results of the identification of the system. Figure 5.1a depicts the link
between the input and the output of our system. Figure 5.1b shows
that the distribution of execution times is impacted by the commission
and decommission of the nodes by OAR, and thus must be taken into
account in the modelling. 84

5.2. Graphical explanation of the prediction Gantt sensor. The value
returned by the sensor is the number of resources that will be used
by normal jobs in horizon seconds. 86

5.3. Feedback loop representing the control scheme. The reference value
(yref) is proactively changed to take into account the future availabil-
ity of the resources (dh

k). 87

A24 List of Figures

5.4. Distribution of the lost compute times due to idle resources (left
column) and because of killing Best-Effort jobs (right column). The
x-axis represents the horizon of the sensor described in Section 5.2.5.
Figure 5.4a presents the results for the constant submission with
horizon, and Figure 5.4b for the PI Controller with horizon. The
dashed line is the mean lost time for the solution without horizon. . 90

5.5. Control signals for a scenario with pj = 60s and a horizon of 60s.
The top plot represents that number of resources submitted by CiGri
through time. The bottom plot depicts the value of our sensor, as well
as the number of available resources to CiGri in dashed red. 91

5.6. Gantt chart for a scenario with pj = 60s and a horizon of 60s. The
killed jobs are depicted with a thicker contour. 91

5.7. Gain of using the PI controller compared to the constant submission
algorithm. The top plot represents the gain from the point-of-view
of the total energy consumption loss. The bottom plot considers
the computing time lost. Values above one indicate that the PI out-
performs the constant submission algorithm. 93

6.1. Feedback loop gathering the controllers and objectives from Chapter
3 (bottom) and Chapter 5 (top). At every iteration, we ran both
controllers and take the minimum number of jobs in the submission
(uk) to satisfy the objectives. In the case of a PI controller, we would
only add the error to the integral part only if the chosen submission
size comes from this controller. It would be also possible to add the
feedback loop presented in Figure 3.13. 98

7.1. Software dependencies of CiGri (Figure 7.1a) and OAR (Figure 7.1b). 106

7.2. Illustration of the process of creating a software environment for a
distributed experiment. Adapted from [XKC]. 107

7.3. Comparison between traditional package managers and Nix. Tradi-
tional package managers fetch a built version of the package from
a mirror, but information on how they have been built is unknown.
In the case of Nix, the package is described as a Nix function that
takes as input the source code and how to build it. If the package
with these inputs has already been built and is available in the Nix
caches (equivalents of mirrors) it is simply downloaded to the Nix
Store. Otherwise, it is built locally and added to the Nix Store. 113

List of Figures A25

7.4. Figuration of the Nix Store content when the alice user has installed
a Batsim [Dut+16] binary in her profile. As Batsim requires the
SimGrid [Cas+14] library at runtime, SimGrid must also be in the
store. Packages are stored in their own subdirectory, but common
dependencies are not duplicated as symbolic links and shared libraries
are used. 115

8.1. Motivation of NixOS Compose. Currently, to produce a reproducible
environment for each platform, users must maintain a description file
for each target platform. We want NixOS Compose to only use a single
description file (called a composition) that can build reproducible
distributed environments and deploy them to several platforms. . . 120

8.2. Workflow of NixOS Compose. Local development of the environment
is done using light and fast development with containers and virtual
machines. Once the description of the environment (composition)
has been tested, deployments on a distributed platform can be done
with the exact same interface. 121

8.3. Mechanism for the nodes to get the deployment information. For a
few nodes, the information is passed via the kernel parameters. For
a higher number of nodes, this is not possible due to the size limit
on the kernel parameters (4096 bytes). In this case NixOS Compose
starts a light HTTP server on the frontend and passes its URL to the
nodes via the kernel parameters. The nodes then query this server to
retrieve the deployment information. 128

8.4. Packages present in the Nix Store of the Melissa image for the different
flavours. The colors represent the packages common to the flavours.
The smaller packages are gathered under the others-* name. The
docker flavour is omitted as it mounts the Nix Store of the host machine.133

8.5. Performance comparison between Kameleon and NixOS Compose
(nxc). A base image is first built, then a new image (base + hello)
that contains the additional hello package is built. As Grid’5000 is
the targeted platform of this experiment, images are built with the
g5k-ramdisk and g5k-image flavours. Shown values are averages
over 5 repetitions. Error bars represent 99 % confidence intervals. . . 135

A26 List of Figures

8.6. Time spent in the different phases of the deployment of a distributed
experiment (build, submission + deploy, provisioning, run). We
compare EnOSlib and NixOS Compose (with the flavours g5k-ramdisk
and g5k-image) on two examples: a network benchmarking tool
(flent) and a containers’ orchestrator (k3s). The errors bars represent
the confidence intervals at 99 %. 137

9.1. Example of folding a deployment for a system with 4 resources. Figure
9.1a depicts the system deployed at full scale. Figure 9.1c represent
the system completely folded. And Figure 9.1b shows an intermediate
folded deployment. 143

9.2. Architectures for a distributed file system (Figure 9.2a), and parallel
file system (Figure 9.2b). 145

9.3. Graphical representation of the experimental protocol presented in
Section 9.3. We start with a full scale deployment, i.e., one MPI
process (viewed as a virtual resource) per physical node (Figure
9.3a), and remove from the hostfile the physical nodes one by one
while keeping the number of MPI processes (i.e., the number of virtual
resources) constant. We recompute the number of slots per node to
balance the processes (Figures 9.3b and 9.3c). The experiment stops
when there is no more node to remove (i.e., after Figure 9.3d). . . . 147

9.4. Evolution of the reading (top row) and writing (bottom row) times
based on the folding factor (x-axis) for experiments with different
cluster size (i.e., number of CPU nodes) and different sizes of file to
read and write (point shape). We observe that the writing perfor-
mances are not affected by the folding, but that the reading ones are,
and that the degradation has quadratic growth with respect to the
folding factor. 148

9.5. Linear regression modeling the reading times (y-axis) and the folding
factor (x-axis), file size (point shape). The top row shows the fitting
of the model on the data, and the bottom row the same data but in
log scale. We can see that the model fits correctly the data for file
sizes greater than 10M. 1M files does not seem to be affected by the
folding, and their variation in performance seem to be due to noise. . 149

9.6. Figure 9.6a shows the maximum folding factor to use to have a
desired overhead on the reading times on NFS base on the file size.
Figure 9.6b shows the distribution of the number of read requests per
size on ANL-Theta. 150

List of Figures A27

9.7. Evolution of the writing times with OrangeFS based on the folding
factor (ffold) for experiments with different number of CPU and I/O
nodes and different sizes of file to write. 152

9.8. Evolution of the reading times with OrangeFS based on the folding
factor (ffold) for experiments with different number of CPU and IO
nodes and different sizes of file to read. 152

9.9. Model of the breaking point in behavior of performance in reading
(left) and writing (right) for 32 CPU nodes (nbcpu) and 4 I/O nodes
(nbio). The model (dashed line) comes from Equation 9.4. 153

10.1.Sequence Diagram representing the killing of best-effort jobs when a
new priority job is submitted, as well as when a priority job finishes
making its resources idle and thus exploitable by CiGri. 160

10.2.Distribution of the job overheads due to OAR commissioning and
decommissioning the nodes of the cluster. Figure 10.2b shows the
comparison between the data and the identified model. 164

10.3.Comparison of the signals of interest for the same experiment ex-
ecuted in simulation with Batsim (red) and deploy (blue). Signals
appear to be in sync, but some amplitudes might differ. 166

10.4.Comparison of the Gantt charts for the simulation (top) and real
experiment (bottom) of the same scenario. We observe a small lag,
which is due to OAR, but both schedules are similar. 167

List of Tables

2.1. Table summarazing the dataset. texec represents the execution times
of the Bag-of-Tasks jobs from the two computing grids Gricad and DAS2. 30

4.1. Comparison of controllers on all criteria. “+” indicates a positive
evaluation of the criteria – e.g., high portability, low complexity.
“-” that the criteria is poorly fulfilled – e.g., few guarantees, high
competence required. 78

5.1. Summary of the notations used. 82

A28

8.1. Table summarizing the different flavours with their building and
deployment phases. 126

List of Tables A29

Abstract
High-Performance Computing (HPC) systems have become increasingly more complex, and their performance
and power consumption make them less predictable. This unpredictability requires cautious runtime manage-
ment to guarantee an acceptable Quality-of-Service to the end users. Such a regulation problem arises in the
context of the computing grid middleware CiGri that aims at harvesting the idle computing resources of a set
of cluster by injection low priority jobs. A too aggressive harvesting strategy can lead to the degradation of the
performance for all the users of the clusters, while a too shy harvesting will leave resources idle and thus lose
computing power. There is thus a tradeoff between the amount of resources that can be harvested and the
resulting degradation of users jobs, which can evolve at runtime based on Service Level Agreements and the
current load of the system.
We claim that such regulation challenges can be addressed with tools from Autonomic Computing, and in
particular when coupled with Control Theory. This thesis investigates several regulation problems in the
context of CiGri with such tools. We will focus on regulating the harvesting based on the load of a shared
distributed file-system, and improving the overall usage of the computing resources. We will also evaluate and
compare the reusability of the proposed control-based solutions in the context of HPC systems.
The experiments done in this thesis also led us to investigate new tools and techniques to improve the cost and
reproducibility of the experiments. We will present a tool named NixOS-compose able to generate and deploy
reproducible distributed software environments. We will also investigate techniques to reduce the number
of machines needed to deploy experiments on grid or cluster middlewares, such as CiGri, while ensuring an
acceptable level of realism for the final deployed system.

Résumé
Les systèmes de calcul haute performance (HPC) sont devenus de plus en plus complexes, et leurs performances
ainsi que leur consommation d’énergie les rendent de moins en moins prévisibles. Cette imprévisibilité nécessite
une gestion en ligne et prudente, afin garantir une qualité de service acceptable aux utilisateurs. Un tel problème
de régulation se pose dans le contexte de l’intergiciel de grille de calcul CiGri qui vise à récolter les ressources
inutilisées d’un ensemble de grappes via l’injection de tâches faiblement prioritaires. Une stratégie de récolte
trop agressive peut conduire à la dégradation des performances pour tous les utilisateurs des grappes, tandis
qu’une récolte trop timide laissera des ressources inutilisées et donc une perte de puissance de calcul. Il existe
ainsi un compromis entre la quantité de ressources pouvant être récoltées et la dégradation des performances
pour les tâches des utilisateurs qui en résulte. Ce compromis peut évoluer au cours de l’exécution en fonction
des accords de niveau de service et de la charge du système.
Nous affirmons que de tels défis de régulation peuvent être résolus avec des outils issus de l’informatique
autonomique, et en particulier lorsqu’ils sont couplés à la théorie du contrôle. Cette thèse étudie plusieurs
problèmes de régulation dans le contexte de CiGri avec de tels outils. Nous nous concentrerons sur la régulation
de la récolte de ressources libres en fonction de la charge d’un système de fichiers distribué partagé et sur
l’amélioration de l’utilisation globale des ressources de calcul. Nous évaluerons et comparerons également la
réutilisabilité des solutions proposées dans le contexte des systèmes HPC.
Les expériences réalisées dans cette thèse nous ont par ailleurs amené à rechercher de nouveaux outils et
techniques pour améliorer le coût et la reproductibilité des expériences. Nous présenterons un outil nommé
NixOS-compose capable de générer et de déployer des environnements logiciels distribués reproductibles. Nous
étudierons de plus des techniques permettant de réduire le nombre de machines nécessaires pour expérimenter
sur des intergiciels de grappe, tels que CiGri, tout en garantissant un niveau de réalisme acceptable pour le
système final déployé.

	Front Matter
	Cover
	Epigraph
	Acknowledgments
	Abstract / Résumé
	Contents
	Introduction
	Background
	This Thesis
	Work dissemination

	I Control-based Dynamic Harvesting of Idle HPC Resources
	1 Discussion & State-of-the-Art
	1.1 Harvesting
	1.1.1 Personal Computers
	1.1.2 In the Cloud
	1.1.3 On High-Performance Computing Clusters

	1.2 Autonomic Computing
	1.3 Control Theory
	1.3.1 Identify the goals
	1.3.2 Identify the knobs
	1.3.3 Devise the model
	1.3.4 Design the controller
	1.3.5 Trustable properties of the closed-loop system

	1.4 The Middleware & its need for regulation
	1.4.1 The Computing Center
	1.4.2 The middleware
	1.4.3 jobs
	1.4.4 The Need for Regulation

	1.5 Hypotheses of this thesis
	1.6 Conclusion & Research Questions

	2 Analyzing the characteristics of jobs
	2.1 Global Study of the Jobs
	2.2 Study of the Projects
	2.3 Study of the Campaigns
	2.4 Job and Campaign model used in this Thesis

	3 A Proportional-Integral Controller to harvest idle resources
	3.1 Goals, Control Objectives, and Sensors
	3.1.1 Sensor on the File-System
	3.1.2 Sensors on the Cluster

	3.2 Actuators
	3.3 Model of the system
	3.3.1 Identification Experiments
	3.3.2 Modelling

	3.4 Design of the Controller
	3.5 Choice of the Closed-Loop Behavior
	3.6 Example of Perturbation
	3.7 Limitations and Improvements
	3.7.1 Dynamic Reference Value
	3.7.2 Tagging intensive campaigns

	4 Reusability of Autonomic Controllers for HPC Systems
	4.1 Criteria for comparison
	4.1.1 Nominal Performance
	4.1.2 Portability
	4.1.3 Setup complexity
	4.1.4 Support Guarantees
	4.1.5 Competence required
	4.1.6 Theoretical trade-offs between criteria

	4.2 Considered Controllers
	4.2.1 Proportional-Integral Controller
	4.2.2 Adaptive PI
	4.2.3 Model-Free Controller

	4.3 Evaluation and Comparison
	4.3.1 Experimental setup
	4.3.2 Controller configurations
	4.3.3 Experimental protocol
	4.3.4 Performance-related comparison
	4.3.5 Methodology and Implementation-related comparison

	4.4 Conclusion

	5 A Control Theory Approach to Reduce Wasted Computing Power in HPC
	5.1 Introduction
	5.2 Towards a better usage of the resources
	5.2.1 Problem Definition
	5.2.2 Control Formulation
	5.2.3 System Analysis
	5.2.4 Model & Control Design
	5.2.5 Taking the future into account with help from the scheduler

	5.3 Evaluation
	5.3.1 Experimental Setup
	5.3.2 Experimental Protocol
	5.3.3 Constant Injection taking into account the future
	5.3.4 PI Controller taking into account the future
	5.3.5 Global Comparison

	5.4 Conclusion and Future Work

	6 Conclusion and Perspectives
	6.1 Perspectives on
	6.2 Potential Regulation Problems of Interest

	II Improving the Reproducibility and Cost of Distributed Experiments
	7 Discussion and State-of-the-Art
	7.1 Reproducibility
	7.1.1 Context & Motivation
	7.1.2 Frequent Traps of the of software environments
	7.1.3 Functional Package Managers
	7.1.4 Limits of Functional Package Managers
	7.1.5 Conclusion

	7.2 Research Questions

	8 Reproducible Distributed Environments
	8.1 Introduction
	8.2 Presentation of
	8.2.1 Workflow

	8.3 Technical Details
	8.3.1 Details on the Flavour

	8.4 A Complex Example: Melissa
	8.4.1 Presentation of
	8.4.2 Key difficulties
	8.4.3 Images Content Comparison

	8.5 Evaluation
	8.5.1 Experimental Setup
	8.5.2 Comparison to
	8.5.3 Comparison to

	8.6 Conclusion

	9 Reducing the Cost of Experimenting with Distributed File-System
	9.1 Introduction
	9.2 Definitions & Concepts
	9.3 Methodology
	9.3.1 Experimental Setup
	9.3.2 Benchmark application
	9.3.3 Distributed File-Systems

	9.4 Evaluation
	9.4.1 Evaluation of NFS
	9.4.2 Evaluation of OrangeFS

	9.5 Conclusion

	10 Towards Simulating and its Control Loop
	10.1 Introduction
	10.2
	10.2.1 Expected Properties of the Simulation
	10.2.2 Hypotheses
	10.2.3 in a Nutshell
	10.2.4 Two Schedulers
	10.2.5 Broker
	10.2.6 The Submission Loop
	10.2.7 Workload Adjustments

	10.3 Evaluation
	10.4 Conclusion

	11 Conclusion and Perspectives
	11.1 Perspectives and open questions

	12 General Conclusion

	Back Matter
	Bibliography
	List of Figures
	List of Tables
	Back Cover

