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Abstract

In this thesis, we work in two directions, both concern problems in combina-
torics.

The first direction is related to the study of an important invariant of
oriented graphs which is the chromatic number. Given a graph with large
chromatic number, it is natural to ask whether it must contain a cycle or
path with particular properties. We are interested in studying such question
in directed graphs. More precisely, we are interested in the study of the exis-
tence of special oriented paths or cycles in digraphs with bounded chromatic
numbers.
Cohen et al. [21] conjectured that for every oriented cycle C, there exists
a constant f(C) such that every strong digraph with chromatic number at
least f(C) contains a subdivision of C and they proved this for cycles of the
form C(1, 1, 1, 1). In this direction, we prove that if D is a digraph having a
spanning out-tree T with no subdivisions of C(k1, 1, 1, 1), then the chromatic
number of D is at most 18k1.
We are interested in the study of an analogous problem about paths in di-
graphs, more precisely in studying the existence of paths of three blocks of the
form P (1, k, 1). We show that every 3n2

4 -chromatic digraph contains any path
of three blocks of length n − 1. Indeed, we prove that any (2n − 5)-chromatic
digraph contains a path of the form P (1, n − 3, 1). Moreover, we show that
every (n + 1)-chromatic digraph contains a subdivision of P (1, n − 3, 1).

The second direction concerns the study of identities of integer partitions
using algebraic and combinatorial tools. Two of the most famous identities of
integer partitions were found by Rogers and Ramanujan. We prove two new
partition identities dual to those. These new identities are inspired by a cor-
respondence between three kinds of objects: neighborly partitions, monomial
ideals, and some infinite graphs.
For i ∈ {1, 2} and for a positive integer n, we call neighborly partitions of n
the set Ni(n) of partitions λ of n which satisfy the following properties:

1. For every part λj of λ, there exists l ∈ N>0, l ̸= j such that: | λl −λj |≤
1.

2. Each part of λ can occur at most twice.
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3. For every l ∈ N, λl ≥ 3 − i (i.e. for i = 1, there are no parts equal to
1).

The terminology neighborly is inspired by the property 1. which says that
for every part λj of λ, there is a neighbor part λl of λ which is equal or at a
distance 1 to λj. With a neighborly partition λ, we associate a graph Gλ as
follows: The set V (Gλ) of vertices of Gλ is in bijection with the set of parts of
λ; if h is a part of λ of multiplicity 1( that is, it occurs as a part only once),
the associated vertex is called xh; if h is a part of λ of multiplicity 2, the
vertices associated with the two equal parts are named respectively xh and
yh. The set E(Gλ) of edges of Gλ is given by

E(Gλ) = {(xh+1, xh), (xl, yl), for every xh+1, xh, xl, yl ∈ V (Gλ)}.

Let λ be a neighborly partition. We define the signature δ(λ) of λ by:

δ(λ) =
∑︂
H

(−1)|E(H)|,

where H ranges over the vertex spanning subgraphs of Gλ, which have no
isolated vertices.
Let n be a positive integer; for i ∈ {1, 2}, let Ri(n) be the set of partitions of
n whose parts are larger or equal to 3 − i, distinct and congruent to 0 or ±(i)
mod 5. The new identities we have found are given by the following theorem:

Theorem 1. For i ∈ {1, 2}, we have the identities∑︂
λ∈Ni

δ(λ)q|λ| =
∏︂

j≥3−i,j ≡ 0,±i mod 5

(1 − qj).

where |λ| is the sum of parts of λ.

In this direction, we also study a family of ideals related to the jet schemes
of the double point SpecK[x]/x2 and conclude some results concerning the
generating series of some special type of integer partitions.
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Résume

Dans cette thèse, nous travaillons dans deux directions, toutes deux concer-
nent des problèmes de combinatoire.

La première direction est liée à l’étude d’un invariant important des graphes
orientés qui est le nombre chromatique. Étant donné un graphe dont le nom-
bre chromatique est assez grand, il est naturel de se demander s’il doit contenir
un cycle ou un chemin avec des propriétés particulières. Nous nous sommes
intéressés à étudier une telle question pour les graphes orientés. Plus précisé-
ment, nous nous intéressons à l’étude de l’existence de certains chemins et
cycles orientés dans les digraphes avec nombres chromatiques bornés.
Nous désignons par C(k1, k2, . . . , kn) le cycle orienté formé de n blocs de
longueurs k1, k2, . . . , et kn respectivement. Cohen et al. a conjecturé que
pour tout cycle orienté C, il existe une constante f(C) telle que tout digraphe
fort de nombre chromatique au moins f(C) contient une subdivision de C et
ils l’ont prouvé pour des cycles de la forme C(1, 1, 1, 1). Dans cette direction,
nous montrons que si D est un digraphe ayant un arbre extérieur couvrant T
sans subdivisions de C(k1, 1, 1, 1) , alors le nombre chromatique de D est au
plus 18k1.
Nous nous intéressons à l’étude d’un problème analogue de chemins dans les
digraphes, plus précisément à l’étude de l’existence de chemins de trois blocs
de la forme P (r, k, l). Nous montrons que tout digraphe 3n2

4 -chromatique con-
tient n’importe quel chemin de trois blocs de longueur n − 1. En effet, nous
prouvons que tout digraphe (2n − 5)-chromatique contient un chemin de la
forme P (1, n − 3, 1). De plus, nous montrons que tout digraphe (n + 1)-
chromatique contient une subdivision de P (1, n − 3, 1).

La deuxième direction concerne l’étude des identités des partitions entières
à l’aide d’outils algébriques et combinatoires. Deux des identités les plus
célèbres des partitions entières ont été trouvées par Rogers et Ramanujan.
Nous prouvons deux nouvelles identités de partitions duales de celles-ci. Ces
nouvelles identités s’inspirent d’une correspondance entre trois types d’objets:
les partitions voisines, les idéaux monomiaux et certains graphes infinis.
Pour i ∈ {1, 2} et pour un entier positif n, l’ensemble Ni(n) de partitions
voisines de n est par définition l’ensemble de partitions λ de n qui vérifient
les propriétés suivantes:
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1. Pour toute partie λj de λ, il existe l ∈ N>0, l ̸= j tel que : | λl −λj |≤ 1.

2. Chaque partie de λ peut apparaître au plus deux fois.

3. Pour chaque l ∈ N, λl ≥ 3 − i (c’est-à-dire que pour i = 1, il n’y a pas
de parties égales à 1).

La terminologie voisine est inspirée de la propriété 1. qui dit que pour
chaque partie λj de λ, il existe une partie voisine λl de λ qui est égale ou à une
distance 1 de λj. A une partition voisine λ, on associe un graphe Gλ comme
suit : L’ensemble V (Gλ) des sommets de Gλ est en bijection avec l’ensemble
des parties de λ; si h est une partie de λ de multiplicité 1( c’est-à-dire qu’il
n’apparaît comme partie qu’une seule fois), le sommet associé est appelé xh; si
h est une partie de λ de multiplicité 2, les sommets associés aux deux parties
égales sont nommés respectivement xh et yh. L’ensemble E(Gλ) des arêtes de
Gλ est donnée par

E(Gλ) = {(xh+1, xh), (xl, yl), pour tout xh+1, xh, xl, yl ∈ V (Gλ)}.

Soit λ une partition voisine. On définit la signature δ(λ) de λ par :

δ(λ) =
∑︂
H

(−1)|E(H)|,

où H varie dans l’ensemble des sous-graphes H de Gλ tel que V (H) = V (Gλ)
et qui n’ont pas de sommets isolés.
Soit n un entier positif; pour i ∈ {1, 2}, soit Ri(n) l’ensemble des partitions de
n dont les parties sont supérieures ou égales à 3 − i, distinctes et congruentes
à 0 ou ±(i) mod 5. Les nouvelles identités que nous avons trouvées sont
données par le théorème suivant :

Theorem 2. Pour i ∈ {1, 2}, nous avons les identités∑︂
λ∈Ni

δ(λ)q|λ| =
∏︂

j≥3−i,j ≡ 0,±i mod 5

(1 − qj).

où |λ| est la somme des parties de λ.

Toujours en rapport avec la théorie des partitions, nous étudions une
famille d’idéaux définissant les espaces de jets du point double SpecK[x]/(x2)
et concluons quelques résultats concernant les séries génératrice d’un certain
type particulier de partitions entières.
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Chapter 1

Introduction (English Version)

In this thesis, we work in two directions, both concern problems in combina-
torics. The first direction is related to the study of an important invariant
of oriented graphs which is the chromatic number. More precisely, we are
interested in the study of the existence of special oriented paths or cycles in
digraphs with bounded chromatic numbers. The second direction concerns
the study of identities of integer partitions using algebraic and combinatorial
tools. Two of the most famous identities of integer partitions were found by
Rogers and Ramanujan. We prove two new partition identities dual to those.
These new identities are inspired by a correspondence between three kinds
of objects: neighborly partitions, monomial ideals, and some infinite graphs.
In this direction, we also study a family of ideals related to the jet schemes
of the double point SpecK[x]/x2 and conclude some results concerning the
generating series of some special type of integer partitions.

Before going deep into the details, we will present in Chapters 3 and 4 basic
definitions, standard notations, and preliminary results that will be significant
for our research. The first one will introduce the readers to the fundamentals
and preliminaries in graph theory and the second will give an outlook over
the fundamentals of partition theory and its relation with algebraic objects.

Paths and Cycles in Digraphs with Large Chromatic Number:
To start with Direction 1, we answer the following question for particular

cases: Given an n-chromatic digraph D, can we guarantee the presence of a
copy of a path or a cycle of certain properties in D?

In Chapter 5, we will study the existence of oriented cycles of four blocks
in digraphs with large chromatic number. A digraph or an oriented graph D
is said to be strong if for any two vertices u and v of D, there is a directed
path from u to v. Given an oriented cycle C, a block is a maximal directed
subpath of C. We denote by C(k1, k2, . . . , kn) the oriented cycle formed of n
blocks of lengths k1, k2, . . . , and kn respectively. We are interested in the study
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of the existence of oriented cycles in strong digraphs. In [15], Bondy proved
that every strong digraph D contains a directed cycle of length at least χ(D).
A subdivision of a digraph F is a digraph F

′ obtained by replacing each arc
(x, y) of F by an xy-directed path of length at least 1. Since any directed cycle
of length at least k can be seen as a subdivision of the directed cycle Ck of
length k, Cohen et al. [21] conjectured that Bondy’s theorem can be extended
to all oriented cycles: For every oriented cycle C, there exists a constant f(C)
such that every strong digraph with chromatic number at least f(C) contains
a subdivision of C. In fact, Cohen et al. [21] proved this conjecture in their
article for cycles with two blocks. In particular, they showed that the chro-
matic number of strong digraphs with no subdivisions of two blocks cycles
C(k1, k2) is bounded from above by O((k1 + k2)4). More recently, Kim et al.
[42] improved this upper bound to O((k1 + k2)2). In [39], El Joubbeh solved
this conjecture for Hamiltonian digraphs, and demonstrated a linear version
by showing that any 3n-chromatic Hamiltonian digraph contains a subdivi-
sion for any oriented cycle of order n. Furthermore, Cohen et al. confirmed
in [21] the above conjecture for a particular case of cycles with four blocks by
proving that for D a strong digraph with no subdivisions of four blocks cycles
C(1, 1, 1, 1), we have χ(D) ≤ 24. In [6] Al Mniny conjectured that for every
positive integers k1, k2, k3 and k4, there is an integer g(k1, k2, k3, k4) such that
every strong digraph with no subdivisions of C(k1, k2, k3, k4) has chromatic
number at most g(k1, k2, k3, k4). In the same paper, Al Mniny proved this
conjecture for digraphs containing spanning out-tree when k2 = k3 = k4 = 1
for g(k1, 1, 1, 1) = 83k1. In Chapter 5, we are going to improve the bound
established in [6] by proving that if D is a digraph having a spanning out-tree
T with no subdivisions of C(k, 1, 1, 1), then the chromatic number of D is at
most 18k. In our proof, we use for the first time in such investigations what
is called a wheel in the study of the chromatic number of such digraphs. A
wheel is a graph made up of a chordless cycle and a vertex adjacent to at least
three vertices of the cycle, such vertex is called universal.

Chapter 6 will be devoted for answering the main question arised above
for oriented paths with three blocks. Recall that a block of a path in a di-
graph is a maximal directed subpath, with the length of a path is the number
of its edges. Following the result we obtained concerning the cycles of four
blocks of the form C(k, 1, 1, 1), we can easily see that any 18k-chromatic di-
graph contains a path of three blocks of the form P (1, k, 1), for k a positive
integer. Indeed, Gallai–Roy’s celebrated theorem [30, 53] states that every
digraph with chromatic number at least n contains a directed path of length
n − 1. El-Sahili and Kouider [24] showed that every digraph with chromatic
n + 1 contains every path of order n with two blocks. However, Addario
et.al.[57] refined this result for any digraph D with chromatic number at least
n. For the case of oriented paths with three blocks, Burr’s result [19], guar-
antees the existence of any path of three blocks of length n − 1 in any digraph
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with chromatic number at least (n − 1)2. In Chapter 6, we show that every
3n2

4 -chromatic digraph contains any path of three blocks of length n − 1. El
Joubbeh [40] improved this result by demonstrating that every digraph with
chromatic number at least 4.6n contains any path with three blocks of length
n−1. Recently Tarhini found a better linear bound for the chromatic number
of digraphs that contains no path with three blocks. Moreover, Mortada et.al
proved in [48] that any (n+1)-chromatic digraph contains a three blocks path
of length n−1, in which two consecutive blocks are of length 1 each. For k and
l two positive integers, Tarhini et. al [55] proved the existence of a P (k, 1, l)
of length n − 1 in any (2n + 2)-chromatic digraph D and they proved that the
existence of such an oriented path is ensured in any n-chromatic digraph that
contains a hamiltonian directed path. Recently, Tarhini improved her result
in [55] by proving that any (2n − 3)-chromatic digraph contains any path
P (k, 1, l) of length n − 1. In Chapter 6, we prove that any (2k + 1)-chromatic
digraph contains a P (1, k, 1), for k a positive integer. Moreover, we show that
this becomes k + 4 if we search for the existence of a subdivision of P (1, k, 1).

Identities of Integer Partitions:
Moving to Direction 2 of our research, we begin with Chapter 7 by

giving new integer partition identities which are dual to the so called Rogers-
Ramanujan identities. An integer partition of a positive integer n is a finite
non-increasing sequence of positive integers λ1, . . . , λr which sums up to n.
The λi are called the parts of λ and r its size. Partition theorists are more
concerned in the study of restricted partitions with certain conditions over the
size of the partition or the parts themselves. An axial problem in the theory of
integer partitions is the study of partition identities, this is about finding two
types of partitions A and B such that for n any positive integer, the number
of partitions of type A of n is equal to the number of partitions of type B of n.
Among the most famous partition identities, we have the Rogers-Ramanujan
identities:

Theorem 3. (Rogers-Ramanujan identities) Let n be a positive integer. For
i ∈ {1, 2}, let Ti(n) be the set of partitions of n without equal nor consecutive
parts and the part 1 appears at most i − 1 times. Let Ei(n) be the number of
partitions of n into parts congruent to ±(2 + i) mod 5. Then we have

| Ti(n) |=| Ei(n) | .

The notation | A | in the theorem stands for the cardinal of a set A.

Example 4. E2(5) = {4 + 1, 1 + 1 + 1 + 1 + 1} and T2(5) = {5, 4 + 1}
These identities appear in many fields other than combinatorics, such as

statistical mechanics, number theory, representation theory, algebraic geome-
try, probability theory or commutative algebra [1, 2, 3, 4, 5, 8, 10, 12, 17, 18,
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29, 31, 34].
The main goal of Chapter 7 is to prove two new identities which are in some
sense dual to the Rogers-Ramanujan identities. We begin by introducing the
notions appearing in these new identities; neighborly partitions, signature of
a neighbourly partition:
For i ∈ {1, 2} and for a positive integer n, we call neighborly partitions of n
the set Ni(n) of partitions λ of n which satisfy the following properties:

1. For every part λj of λ, there exists l ∈ N>0, l ̸= j such that: | λl −λj |≤
1.

2. Each part of λ can occur at most twice.

3. For every l ∈ N, λl ≥ 3 − i (i.e. for i = 1, there are no parts equal to
1).

The terminology neighborly is inspired by the property 1. which says that
for every part λj of λ, there is a neighbor part λl of λ which is equal or at a
distance 1 to λj. With a neighborly partition λ, we associate a graph Gλ as
follows: The set V (Gλ) of vertices of Gλ is in bijection with the set of parts of
λ; if h is a part of λ of multiplicity 1( that is, it occurs as a part only once),
the associated vertex is called xh; if h is a part of λ of multiplicity 2, the
vertices associated with the two equal parts are named respectively xh and
yh. The set E(Gλ) of edges of Gλ is given by

E(Gλ) = {(xh+1, xh), (xl, yl), for every xh+1, xh, xl, yl ∈ V (Gλ)}.

Example 5. For the neighborly partition λ = 2 + 1 + 1, Gλ is given by
V (G2+1+1) = {x2, x1, y1}, E(G2+1+1) = {(x2, x1), (x1, y1)} and it has the fol-
lowing shape

x1

y1

x2

Figure 1.1: The graph G2+1+1

A subgraph H of Gλ is said to be vertex-spanning if V (H) = V (Gλ); it is
said to be without isolated vertices if any vertex of H is an endpoint of some
edge in E(H). Let λ be a neighborly partition. We define the signature δ(λ)
of λ by:

δ(λ) =
∑︂
H

(−1)|E(H)|,
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where H ranges over the vertex spanning subgraphs of Gλ, which have no
isolated vertices and | E(H) |, as mentioned before, is the cardinal of E(H).
Let n be a positive integer; for i ∈ {1, 2}, let Ri(n) be the set of partitions of
n whose parts are larger or equal to 3 − i, distinct and congruent to 0 or ±(i)
mod 5. The new identities we have found are given by the following theorem:

Theorem 6. Let n be a positive integer. For i ∈ {1, 2}, we have the identities
∑︂

λ∈Ni(n)
δ(λ) =

∑︂
λ∈Ri(n)

(−1)size(λ).

By considering the generating sequence of both sides of Theorem 6, we
find the following equivalent statement:

Corollary 7. For i ∈ {1, 2}, we have the identities∑︂
λ∈Ni

δ(λ)q|λ| =
∏︂

j≥3−i,j ≡ 0,±i mod 5

(1 − qj).

where |λ| is the sum of parts of λ.

Chapter 8 focuses on the investigation of the Hilbert series and Gröbner
basis of the family of ideals defining the jet schemes of a double point D =
SpecK[x]/x2, for K a field of characteristic zero. Recall that the (m − 1)-
jet scheme of X is defined as the space of maps: SpecK[t]/tm → X. In
the case of the double point, such a map is defined by a polynomial: x(t) =
x0+x1t+. . .+xm−1t

m−1, where x(t)2 ≡ 0 mod tm. By expanding this equation,
we get a set of polynomials in the polynomial ring Rm = K[x0, . . . , xm−1]
defined as: fk =

k−1∑︁
i=0

xixk−1−i, for k = 1, . . . , m. The ideal Im of Rm generated
by f1, . . . , fm is the defining ideal of the (m − 1)-jet scheme of the double
point.
Assigning to each variable xi the weight (i, 1), we induce a bigrading on Rm/Im

as ⊕i,j≥1(Rm/Im)i,j. Define the bigraded Hilbert series of Rm/Im to be the
series in variables q and t given by:

Hm(q, t) =
∑︂

i,j≥0
dimk(Rm/Im)i,jq

itj

In Chapter 8, following [11] we study the initial terms of the Gröbner basis
of Im with respect to the reverse lexicographic order and we draw for this
consequences concerning the generating series of some partition identities:

Definition 8. Let n be a positive integer. Let λ be a partition of n. De-
note SC(λ) to be the pair of the smallest consecutive or equal parts of λ. For
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SC(λ) = (i, j), denote by |SC(λ)| the sum i + j. Define the k-value of λ as
follows: k(λ) = |SC(λ)| − |λ| − 1. For a partition λ with no consecutive or
equal parts we consider |k(λ)| = +∞.
We call ∆m-partitions of n the set ∆m(n) of partitions λ of n with parts less
than or equal to m such that for any k(λ) parts i1 ≤ . . . ≤ ik(λ) of λ less than

or equal to ⌊m − 3k − 1
2 ⌋ + 1 + 2(k − 1) we have |it − it+1| ≤ 1 for some t.

Denote by ∆m(n, p) the set of all the ∆m-partitions of n with size p.

Definition 9. Define the generating series of ∆m(n, p) to be the two variable
power series given by:

Hm(q, t) =
∑︂

n,p≥0
∆m(n, p)qntp

Theorem 10. Let n ≥ 1 be an integer. The generating series of the ∆m-
partitions is given by:

Hm(q, t) = Hm(q, qt) =
∞∑︂

p=0

(︂
h(m,p)+1

p

)︂
q
qp2

tp

(1 − qm+1−h(m,p)t) . . . (1 − qmt)

where h(m, p) = ⌊m−p
2 ⌋ and

(︂
a
b

)︂
q

= (1−q)...(1−qa)
(1−q)...(1−qb)(1−q)...(1−qa−b)

Keywords— Oriented cycle, Oriented path, Strong Digraph, Chromatic
number, Rogers-Ramanujan identities, Integer partitions, Neighborly parti-
tions, Monomial ideals, Simple graphs, Hilbert series.

16



Chapter 2

Introduction (Version
Française)

Dans cette thèse, nous travaillons dans deux directions, toutes deux concer-
nent des problèmes de combinatoire. La première direction est liée à l’étude
d’un invariant important des graphes orientés qui est le nombre chromatique.
Plus précisément, nous nous intéressons à l’étude de l’existence de certains
chemins et cycles orientés dans les digraphes à nombres chromatiques bornés.
La deuxième direction concerne l’étude des identités des partitions entières
à l’aide d’outils algébriques et combinatoires. Deux des identités les plus
célèbres des partitions entières ont été trouvées par Rogers et Ramanujan.
Nous prouvons deux nouvelles identités de partition duales de celles-ci. Ces
nouvelles identités s’inspirent d’une correspondance entre trois types d’objets
: les partitions voisines, les monômes idéaux et certains graphes infinis. Dans
cette direction, nous étudions également une famille d’idéaux définissant les
schémas de jets du point double SpecK[x]/x2 et concluons quelques résultats
concernant la séries génératrice d’un certain type particulier de partitions en-
tières.

Avant d’entrer dans le vif du sujet, nous présenterons dans les Chapitres
3 et 4 les définitions de base, les notations standard et les résultats prélimi-
naires qui seront importants pour notre recherche. La première introduira les
lecteurs aux fondements et aux préliminaires de la théorie des graphes et la
seconde donnera une vue d’ensemble des fondements de la théorie des parti-
tions et de sa relation avec les objets algébriques.

Chemins et Cycles dans les Digraphes à Grand Nombre Chro-
matique:

Pour commencer la première partie, nous répondons à la question suivante
pour des cas particuliers : Étant donné un digraphe n-chromatique D, peut-
on garantir la présence d’une copie d’un chemin ou d’un cycle de certaines
propriétés dans D ? Nous répondons à cette question dans deux directions
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pour certains types de chemins et de cycles.

Dans le chapitre 5, nous allons étudier l’existence de cycles orientés de
quatre blocs dans des digraphes à grand nombre chromatique. Un digraphe
D est dit fort si pour deux sommets quelconques u et v de D, il existe un
chemin orienté de u à v. Étant donné un cycle orienté C, un bloc est un
sous-chemin orienté maximal de C. Nous désignons par C(k1, k2, . . . , kn) le
cycle orienté formé de n blocs de longueurs k1, k2, . . . , et kn respectivement.
Nous nous intéressons à l’étude de l’existence des cycles orientés dans les di-
graphes forts. Dans [15], Bondy a prouvé que tout digraphe fort D contient
un cycle orienté de longueur au moins χ(D). Une subdivision d’un digraphe
F est un digraphe F

′ obtenu en remplaçant chaque arc (x, y) de F par un
chemin dirigé de x à y de longueur au moins 1. Puisque tout cycle dirigé de
longueur au moins k peut être vu comme une subdivision du cycle dirigé Ck

de longueur k, Cohen et al. [21] ont conjecturé que le théorème de Bondy
peut être étendu à tous les cycles orientés : Pour tout cycle orienté C, il
existe une constante f(C) telle que tout digraphe fort dont le nombre chro-
matique est au moins égal à f(C) contient une subdivision de C. En fait,
Cohen et al. [21] ont prouvé cette conjecture dans leur article pour les cycles
à deux blocs. En particulier, ils ont montré que le nombre chromatique des
digraphes forts sans subdivisions de cycles à deux blocs C(k1, k2) est limité
par le haut par O((k1 + k2)4). Plus récemment, Kim et al. [42] ont amélioré
cette limite supérieure à O((k1 + k2)2). Dans [39], El Joubbeh a résolu cette
conjecture pour les digraphes hamiltoniens, et a démontré une version plus
forte en montrant que tout digraphe hamiltonien chromatique à 3n contient
une subdivision pour tout cycle orienté d’ordre n. De plus, Cohen et al. dans
[21] ont confirmé la conjecture ci-dessus pour le cas des cycles à quatre blocs
en prouvant que pour D un digraphe fort sans subdivisions des cycles à quatre
blocs C(1, 1, 1, 1), on a χ(D) ≤ 24. En [6] Al Mniny a conjecturé que pour
tout entier positif k1, k2, k3 et k4, il existe un entier g(k1, k2, k3, k4) tel que tout
digraphe fort sans subdivisions de C(k1, k2, k3, k4) a un nombre chromatique
au plus égal à g(k1, k2, k3, k4). Dans le même article, Al Mniny a prouvé cette
conjecture pour les digraphes contenant un arbre sortant spanning lorsque
k2 = k3 = k4 = 1 pour g(k1, 1, 1, 1) = 83k1. Dans le chapitre 5, nous al-
lons améliorer la borne établie dans [6] en prouvant que si D est un digraphe
ayant un arbre de sortie spanning T sans subdivisions de C(k, 1, 1, 1), alors le
nombre chromatique de D est au plus 18k. Dans notre preuve, nous utilisons
pour la première fois dans de telles recherches ce qu’on appelle une roue afin
d’étudier le nombre chromatique des digraphes. Une roue est un graphe com-
posé d’un cycle sans corde et d’un sommet adjacent à au moins trois sommets
du cycle, un tel sommet est appelé universel.

Le chapitre 6 sera consacré à la réponse à la question principale soulevée
ci-dessus pour les chemins orientés à trois blocs. Rappelons qu’un bloc d’un

18



chemin dans un digraphe est un sous chemin dirigé maximal, la longueur d’un
chemin étant le nombre de ses arêtes. Suite au résultat que nous avons obtenu
concernant les cycles de quatre blocs de la forme C(k, 1, 1, 1), nous pouvons
voir que tout digraphe 18k-chromatique contient un chemin de trois blocs de
la forme P (1, k, 1), pour k un entier positif. En effet, le célèbre théorème de
Gallai-Roy [30, 53] stipule que tout digraphe dont le nombre chromatique est
au moins égal à n contient un chemin dirigé de longueur n − 1. El-Sahili et
Kouider [24] ont montré que tout digraphe de chromatique n+1 contient tout
chemin d’ordre n à deux blocs. Cependant, Addario et.al.[57] ont raffiné ce
résultat pour tout digraphe D avec un nombre chromatique d’au moins n.
Pour le cas des chemins orientés, le résultat de Burr, [19], garantit l’existence
de tout chemin de trois blocs de longueur n − 1 dans tout digraphe dont le
nombre chromatique est au moins (n−1)2. Au chapitre 6, nous montrons que
tout digraphe 3n2

4 -chromatique contient un chemin quelconque de trois blocs
de longueur n − 1. El Joubbeh [40] a amélioré ce résultat en démontrant que
tout digraphe de nombre chromatique au moins 4, 6n contient tout chemin
de trois blocs de longueur n − 1. Récemment, Tarhini a trouvé une meilleure
borne linéaire pour le nombre chromatique de digraphes qui ne contient au-
cun chemin avec trois blocs. De plus, Mortada et.al ont prouvé dans [48]
que tout digraphe (n + 1)-chromatique contient un chemin à trois blocs de
longueur n − 1, dans lequel deux blocs consécutifs sont de longueur 1 chacun.
Soit k, l deux entiers positifs, Tarhini et. al [55] ont prouvé l’existence d’un
P (k, 1, l) de longueur n − 1 dans tout digraphe (2n + 2)-chromatique D et
ils ont prouvé que l’existence d’un tel chemin orienté est assurée dans tout
digraphe n-chromatique qui contient un chemin dirigé hamiltonien. Récem-
ment, Tarhini a amélioré son résultat dans [55] en prouvant que tout digraphe
(2n − 3)-chromatique contient tout chemin P (k, 1, l) de longueur n − 1.
Dans ce chapitre, nous prouvons que tout digraphe chromatique de 2k + 1
contient un P (1, k, 1), pour k un entier positif. De plus, nous montrons que
cela devient k + 4 si l’on recherche l’existence d’une subdivision de P (1, k, 1).

Identités des Partitions Entières:
Pour aborder la deuxième partie de notre recherche, nous commençons avec
le Chapitre 7 en donnant de nouvelles identités de partition entière qui sont
duales aux identités dites de Rogers-Ramanujan. Une partition entière d’un
entier positif n est une séquence finie non croissante d’entiers positifs λ1, . . . , λr

dont la somme est égale à n. Les λi sont appelés les parties de λ et r sa taille.
Les théoriciens des partitions sont plus concernés par l’étude des partitions
restreintes avec certaines conditions sur la taille de la partition ou des parties
elles-mêmes. Un problème axial dans la théorie des partitions entières est
l’étude des identités de partition, il s’agit de trouver deux types de partitions
A et B tels que pour n tout entier positif, le nombre de partitions de type A
de n est égal au nombre de partitions de type B de n. Parmi les identités de
partition les plus célèbres, nous avons les identités de Rogers-Ramanujan :
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Theorem 11. (Identités de Rogers-Ramanujan) Soit n un entier positif. Pour
i ∈ {1, 2}, soit Ti(n) l’ensemble des partitions de n sans parties égales ni
consécutives et la partie 1 apparaît au plus i − 1 fois. Soit Ei(n). le nombre
de partitions de n en parties congruentes à ±(2 + i) mod 5. On a alors

| Ti(n) |=| Ei(n) | .

La notation | A | dans le théorème représente le cardinal d’un ensemble A.

Example 12. E2(5) = {4 + 1, 1 + 1 + 1 + 1 + 1} and T2(5) = {5, 4 + 1}

Ces identités apparaissent dans de nombreux domaines autres que la com-
binatoire, tels que la mécanique statistique, la théorie des nombres, la théorie
des représentations, la géométrie algébrique, la théorie des probabilités ou
l’algèbre commutative. [1, 2, 3, 4, 5, 8, 10, 12, 17, 18, 29, 31, 34].
L’objectif principal du chapitre 7 est de prouver deux nouvelles identités qui
sont, en quelque sorte, duales des identités de Rogers-Ramanujan. Nous com-
mençons par introduire les notions apparaissant dans ces nouvelles identités :
partitions voisines, signature d’une partition voisine. Pour i ∈ {1, 2} et pour
un entier positif n, on appelle partitions voisines de n l’ensemble Ni(n) des
partitions λ de n qui satisfont aux propriétés suivantes :

1. Pour chaque partie λj de λ, il existe l ∈ N>0, l ̸= j tel que | λl −λj |≤ 1.

2. Chaque partie de λ peut être répétée au maximum deux fois.

3. For every l ∈ N, λl ≥ 3 − i (c’est-à-dire que pour i = 1, il n’y a pas de
parties égales à 1).

La terminologie "voisine" est inspirée de la propriété 1. qui dit que pour
chaque partie λj de λ, il existe une partie λl de λ qui est égale ou à une distance
de 1 de λj. A une partition voisine λ, on associe un graphe Gλ comme suit
: L’ensemble V (Gλ) des sommets de Gλ est en bijection avec l’ensemble des
parties de λ; si h est une partie de λ de multiplicité 1, le sommet associé est
appelé xh; si h est une partie de λ de multiplicité 2, les sommets associés aux
deux parties égales sont nommés respectivement xh et yh. L’ensemble E(Gλ)
des arêtes de Gλ est donné par

E(Gλ) = {(xh+1, xh), (xl, yl), pour chaque xh+1, xh, xl, yl ∈ V (Gλ)}.

Example 13. Pour la partition voisine λ = 2 + 1 + 1, Gλ est donné par
V (G2+1+1) = {x2, x1, y1}, E(G2+1+1) = {(x2, x1), (x1, y1)} et elle a la forme
suivante
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x1

y1

x2

Figure 2.1: Le graphe G2+1+1

On dit d’un sous-graphe H de Gλ qu’il s’étend sur plusieurs sommets si
V (H) = V (Gλ); on dit qu’il n’a pas de sommets isolés si tout sommet de H
est le point final d’une arête dans E(H). Soit λ une partition de voisinage.
Nous définissons la signature δ(λ) de λ par:

δ(λ) =
∑︂
H

(−1)|E(H)|,

où H s’étend sur les sous-graphes d’étendue des sommets de Gλ, qui n’ont
pas de sommets isolés et | E(H) |, comme mentionné précédemment, est le
cardinal de E(H).
Soit n un entier positif ; pour i ∈ {1, 2}, soit Ri(n) l’ensemble des partitions
de n dont les parties sont plus grandes ou égales à 3 − i, distinctes et congru-
entes à 0 ou ±(i) mod 5. Les nouvelles identités que nous avons trouvées
sont données par le théorème suivant:

Theorem 14. Soit n un entier positif. Pour i ∈ {1, 2}, nous avons les iden-
tités suivantes:

∑︂
λ∈Ni(n)

δ(λ) =
∑︂

λ∈Ri(n)
(−1)taille(λ).

En considérant la suite génératrice des deux côtés du théorème 14, on
trouve l’énoncé équivalent suivant:

Corollary 15. Pour i ∈ {1, 2}, on a:∑︂
λ∈Ni

δ(λ)q|λ| =
∏︂

j≥3−i,j ≡ 0,±i mod 5

(1 − qj).

où |λ| est la somme des parties de λ.

Le Chapitre 8 est consacré à l’étude de la série de Hilbert et de la base
de Grobner de la famille des idéaux définissant les schémas de jets d’un
point double D = SpecK[x]/x2, pour K un corps de caractéristique zéro.
Rappelons que le schéma de jets m − 1 de X est défini comme l’espace
des cartes: SpecK[t]/tm → X. Dans le cas du point double, une telle
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carte est définie par un polynôme : x(t) = x0 + x1t + . . . + xm−1t
m−1, où

x(t)2 ≡ 0 mod tm. En développant cette équation, on obtient un ensemble de
polynômes dans l’anneau de polynômes Rm = K[x0, . . . , xm−1] défini comme:
fk =

k−1∑︁
i=0

xixk−1−i, for k = 1, . . . , m. L’idéal Im de Rm engendré par f1, . . . , fm

est l’idéal de définition du schéma à jets de m − 1 du point double.
En attribuant à chaque variable xi le poids (i, 1), on induit un bigrading sur
Rm/Im comme ⊕i,j≥1(Rm/Im)i,j. Définir la série de Hilbert bigarrée de Rm/Im

comme étant la série en variables q et t donnée par:

Hm(q, t) =
∑︂

i,j≥0
dimk(Rm/Im)i,jq

itj

Dans le chapitre 8, suivant [11] nous étudions les termes dominants de la base
de Gröbner de Im par rapport à l’ordre lexicographique inverse et nous en
tirons des conséquences concernant la série génératrice de certaines identités
de partition :

Definition 16. Soit n un entier positif. Soit λ une partition de n. Indique
que SC(λ) est la paire des plus petites parties consécutives ou égales de λ.
Pour SC(λ) = (i, j), notons |SC(λ)| la somme i + j. Définissez la valeur k de
λ comme suit : k(λ) = |SC(λ)| − |λ| − 1. Pour une partition λ sans parties
consécutives ou égales, nous considérons |k(λ)| = +∞.
On appelle ∆m-partitions de n l’ensemble ∆m(n) de partitions λ de n avec des
parties inférieures ou égales à m tel que pour tout k(λ) parties i1 ≤ . . . ≤ ik(λ)

de λ inférieur ou égal à ⌊m − 3k − 1
2 ⌋+1+2(k −1) nous avons |it − it+1| ≤ 1

pour quelques t.
Soit ∆m(n, p) l’ensemble de toutes les ∆m-partitions de n de taille p.

Definition 17. Définissez la série génératrice de ∆m(n, p) comme étant la
série à deux puissances variables donnée par :

Hm(q, t) =
∑︂

n,p≥0
∆m(n, p)qntp

Theorem 18. Soit n ≥ 1 un entier. La série génératrice des partitions ∆m

est donnée par :

Hm(q, t) = Hm(q, qt) =
∞∑︂

p=0

(︂
h(m,p)+1

p

)︂
q
qp2

tp

(1 − qm+1−h(m,p)t) . . . (1 − qmt)

où h(m, p) = ⌊m−p
2 ⌋ et

(︂
a
b

)︂
q

= (1−q)...(1−qa)
(1−q)...(1−qb)(1−q)...(1−qa−b)

Mots clefs Cycle orienté, chemin orienté, digraphe fort, nombre chroma-
tique, identités de Rogers-Ramanujan, partitions entières, partitions voisines,
idéaux monomiaux, graphes simples, séries de Hilbert.
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Chapter 3

Preliminaries of Graph Theory

The introduction will be divided into two parts to acquaint the reader with
the terminologies of each research direction we shall represent in this thesis.

3.1 Graphs, Paths, and Cycles
A graph is nothing but a collection of nodes called vertices that might be
connected by a line, called an edge. Those mathematical structures first ap-
peared in the paper of Leonhard Euler on the seven bridges of Königsberg[27].
The two enormous islands of Kneiphof and Lomse, which were connected to
the two parts of the city’s mainland by seven bridges, were part of Königs-
berg, which was situated on both sides of the Pregel River. The challenge was
coming up with a route through the city that would only cross each of those
bridges once. Euler noticed that the route chosen inside each land mass is
unimportant. The argument was done over the order of the bridges crossed
in the route. By removing all features other than the list of land masses and
the bridges connecting them, he was able to reformulate the issue in abstract
terms and establish the groundwork for graph theory. Each land mass is re-
placed by an abstract "vertex" or node, and each bridge is replaced by an
abstract link, or "edge".

To this day, today’s technology may regard graphs as the ultimate ab-
straction for a variety of real-world issues. Graphs are most useful when they
identify arbitrary, important relation-ships in data that would otherwise be
missed. A good example to talk about here is social graphs. Social graphs
draw edges between you and the people, places, and things you interact with
online. The finest example of using graphs in social relations is perhaps Face-
book’s Graph API. On the Graph API, everything is a vertex. It includes
things like Users, Pages, Places, Groups, Comments, Photos, Photo Albums,
Stories, Videos, Notes, Events, and so on. And every link or relationship is
considered as an edge. This might include a user publishing a photo or a com-
ment, a user upgrading their relationship status, etc. These sets of vertices
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Figure 3.1: Königsberg’s Bridge Problem

and edges are used by the Graph API to store its data.

Figure 3.2: Facebook’s Graph API

In the sequel, we will introduce some definitions and terminologies that
are relevant to our research:

3.1.1 Basic Definitions
A graph G in this context is made up of a set of vertices, V (G), also called
nodes which are connected by edges. We denote the set of edges of a graph G
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by E(G). For x and y two connected vertices, we write the edge connecting
them as (x, y) and we say that x and y are adjacent in G. To simplify, we
denote the edge e = (x, y) by xy, and we call x and y the end-vertices of e. If
two edges e and f have one common end-vertex, we say that they are adjacent.
While if they have the same end-vertices, we say that this is a multiple edge.
If an edge e has equal end-vertices, it is said to be a loop. In our work, we
will consider only simple graphs, that is with no loops and no multiple edges.
The order of a graph G is the cardinality of V (G), denoted by v(G). And the
cardinality of E(G), denoted by e(G), is called the size of G.

Figure 3.3: A graph G over 6 vertices with 5 edges

3.1.2 Vertex Degree
For a graph G and a vertex x of G, we denote by NG(x), the set of all vertices
of G that are adjacent to x, it is called the set of neighbors of x. The degree
of x in G, denoted by dG(x), is the cardinality of NG(x). For simplicity, we
can omit G from the notation. The maximum degree of a graph G, denoted
by ∆(G) is the maximum of the degrees of the vertices of G. Similarly, the
minimum degree of a graph, denoted by δ(G) is the minimum of the degrees
of the vertices of G. G is said to be k-regular graph if d(x) = k ∀x ∈ V (G).
A vertex x is said to be isolated if d(x) = 0, that is, it has no neighbors.
One of the theorems that will be relevant to mention is the following:

Theorem 19. [27] For a graph G, we have:∑︂
x∈V (G)

dG(x) = 2e(G)

3.1.3 Subgraphs
A subgraph H of a graph G is a graph H whose vertex set and edge set are
subsets of those of G. If H is a subgraph of G, then G is said to be a super-
graph of H. An induced subgraph of a graph G is a subgraph H of G formed
from a subset of the vertices of V (G) and all of the edges in G connecting
pairs of vertices in that subset. Formally, consider any graph G = (V, E) and
any subset S of V , the graph whose vertex set is S and whose edge set is made
up of all of the edges in E that have both ends in S is thus said to be the
induced subgraph of G by S and denoted by G[S]. A spanning subgraph H
of G is a subgraph that satisfies V (H) = V (G), no condition is required over
the edges of H.
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Figure 3.4: This graph H is an induced subgraph of the graph G in Figure
3.3

Actually, we can use set operations to extract from a graph or more a new
graph. Specifically, let G be a graph and let S be a subset of the vertices of
G, G − S is the induced subgraph of G by V (G) − S, that is, the subgraph
obtained from G by deleting the vertices in S, and consequently the edges
connecting them. Basically, the union of two graphs G1 and G2, denoted by
G1 ∪ G2, is the graph whose vertex set is V (G1) ∪ V (G2) and whose edge set
is E(G1) ∪ E(G2).

3.1.4 Particular Graphs
We can obtain graphs with certain structures by setting constraints on the set
of vertices or edges. Some of those particular graphs will be the heart of our
study in Chapters 2 and 3.

• Complete Graph: A complete graph is a simple graph in which every
pair of distinct vertices is connected by an edge. A complete graph over
n vertices is denoted by Kn.

Figure 3.5: The complete graph K5 over 5 vertices

• Walk: A walk is a sequence of alternating vertices and edges of the
form v1e1v2e2 . . . vn−1en−1vn, where ei = vivi+1 for i = 1, . . . n − 1. If
v1 = vn, we call this a closed walk. The length of a closed walk is the
number of edges in this walk. If this number is odd, we call it an odd
closed walk, otherwise, we say that it is an even closed walk.
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• Path: For a graph P over the n vertices v1, . . . , vn, P is said to be a
path of length n−1 if E(P ) = {vivi+1, 1 ≤ i ≤ n−1}. Usually, we write
this graph as P = v1 . . . vn and we set v1 and vn to be the end-vertices
of P . It is clear that e(P ) = n − 1, which is the length of P denoted by
l(P ). We say that P is a v1vn-path and for any two vertices vi and vj

in V (P ), we denote by P[vi,vj ] the subpath of P with end-vertices vi and
vj, that is P[vi,vj ] = vivi+1 . . . vj. Given a graph G, a hamiltonian path
P of G is a spanning path in G, that is V (P ) = V (G).

a

b

c

d

e

Figure 3.6: A graph G with a hamiltonian path P = bdace of length 4.

• Connected Graph: A graph G is said to be connected if for any two
vertices x and y of G, G contains, as a subgraph, a path P of end-
vertices x and y. Else, we say that G is disconnected. A connected
component of G is a connected subgraph H of G that is not a part of a
larger connected subgraph of G.

• Cycle: A cycle is a path whose end-vertices are equal. To simplify,
a graph is said to be a cycle, denoted by C = v1 . . . vnv1, if V (C) =
v1, . . . , vn and E(C) = {vivi+1, 1 ≤ i ≤ n − 1} ∪ {v1vn}. For simplicity
we might write C as v1 . . . vn. The length of C, denoted by l(C), is the
number of the edges in C. If C is a cycle with odd length, we say that
C is an odd cycle. Else, it is called an even cycle. If n is even we say
that C is an even cycle, else it is called an odd cycle. Similar to paths,
for P the subpath of C of end-vertices vi and vj, we write P as C[vi,vj ].
For a graph G, define the girth of G, denoted by g(G), to be the length
of the shortest cycle in G. A chord of a cycle C is an edge not in the
edge set of C whose endpoints lie in the vertex set C. A cycle with no
chord is said to be chordless.

Given a graph G, a hamiltonian cycle C of G is a spanning cycle in
G. A hamiltonian graph is a graph that contains a hamiltonian cycle.
However, if a graph G has no cycles as subgraphs, we say that G is
acyclic, or often a forest. A connected forest is called a tree.
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Figure 3.7: Even and Odd cycles of lengths 4 and 5 respectively.

Figure 3.8: An example of a Hamiltonian graph

A lemma that will be useful in the sequel is the following:

Lemma 20. If G is a graph that contains an odd closed walk, then G
contains an odd cycle.

• Bipartite Graph: A bipartite graph G is a graph for which we can
partition V (G) into two disjoint sets A and B and for which the edges of
G can only occur between a vertex in A and another in B. We usually
write G = (A, B, E). We say that A and B are stable sets of G; that is
E(G[A]) = E(G[B]) = ϕ.

Figure 3.9: An example of a bipartite graph

The following is a relevant theorem that we will use in our study over
cycles in directed graphs:

Theorem 21. {König, 1920} A graph G over at least two vertices is a
bipartite graph if and only if it contains no odd cycles.

Proof. ⇒ The first direction is quite easy. Indeed, let G = (A, B, E)
be a bipartite graph that contains a cycle C = v1 . . . vnv1, with v1 ∈ A
without loss of generality. Every edge of C has one end in A and the
other in B. Thus, when starting with v1 in A, to end up at v1 in A, we
have to pass an even number of edges. Hence, C is an even cycle.
⇐ Let G = (V, E) be a graph with no odd cycles. We will assume
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without loss of generality that G is connected. Let v0 be a vertex in G.
We will partition V to A and B as follows:

A = {v ∈ V/ : the shortest path between v and v0 is of even length}

B = {v ∈ V/ : the shortest path between v and v0 is of odd length}

We claim that A is stable. Suppose for contradiction that A contains an
edge xy for x, y ∈ A. Then the union between the shortest path between
x and v0, the shortest path between y and v0, and the edge xy is an odd
closed walk. Hence G contains an odd cycle, contradiction. Similarly we
can see that B is a stable set of G. Therefore, G is a bipartite graph.

• Wheel A wheel is a graph made up of a chordless cycle and a vertex
adjacent to at least three vertices of the cycle, such vertex is called uni-
versal.

3.1.5 Hyper-Graphs
A hyper-graph is a graph generalization in which one edge can connect any
collection of vertices. In contrast, an edge in a graph connects exactly two
vertices. Basically, a set V , whose components are referred to as vertices, and
a family E of subsets of V , referred to as edges or hyper-edges, together create
a hyper-graph. It is denoted by H = (V, E). The concept of a hyper-graph is
a variant of the familiar concepts of a complex, a block design and a network.

Figure 3.10: An example of a hyper graph with 7 vertices and 4 hyper-edges

3.2 Digraphs
A digraph is an orientation of a graph. Indeed, we have seen that a graph
can be a representation of a data network as social relationships on Facebook.
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Some relationships can be double-sided, as Instagram. It is a two-way con-
nection between two people, X and Y, in which X can choose whether or not
to follow Y, and vice versa. Even though X followed Y, unless Y followed X
back, he will have no access on the latter’s data.

Figure 3.11: An example of relations of Instagram represented as a directed
graph

3.2.1 Basic Definitions
A digraph D is shortly a directed graph. It is made up of two sets: V (D)
the set of vertices, and A(D) the set of arcs such that each arc a ∈ A(D) is
an ordered pair (u, v) of vertices of D. We say in this case that a is directed
from u to v, with u the tail and v the head of a. We often write V and A
for simplicity. We denote by v(D) and a(D) the cardinals of V and A respec-
tively. For two adjacent vertices x and y, we denote by xy the arc between x
and y if its orientation is unknown. Considering a digraph D and ignoring the
directions of its arcs, we obtain a graph which we call the underlying graph
of D and will be denoted by G(D).
As we defined before a sub graph of a graph, we can define a sub digraph of
a digraph with the same terminologies. As previously specified, we can also
define a bipartite digraph to be a digraph whose underlying graph is bipartite.

3.2.2 Vertex Degree
Consider a digraph D and let a = (u, v) be an arc of D oriented from u to v,
then we say that u in an in-neighbor of v and that v is an out-neighbor of u.
For a vertex v in D, we denote by N+

D (v) the set of all out-neighbors of v in
D and by N−

D (v) the set of all in-neighbors of v in D. The cardinal of N+
D (v)

30



will be called the out-degree of v and denoted by d+
D(v). Similarly, we define

the in-degree of v, denoted by d−
D(v), to be the cardinal of N−

D (v). For v a
vertex of D satisfying d+

D(v) = 0, we say that v is a sink of D. However, if
d−

D(v) = 0, we say that v is a source of D.
Euler’s identity[27] for graphs and vertex-degrees can be extended to digraphs
as the following:

Theorem 22. Let D be a digraph, we have:∑︂
v∈V

d+
D(v) =

∑︂
v∈V

d−
D(v) = a(D)

Define the maximum out-degree of D, denoted by ∆+(D), to be the max-
imum of d+

D(v), for all v ∈ D. Define the minimum out-degree of D, denoted
by δ+(D), to be the minimum of d+

D(v), for all v ∈ D. Similarly we can define
the maximum in-degree and the minimum in-degree of D, denoted by ∆−(D)
and δ−(D) respectively.

a

b

c

d

e

Figure 3.12: A digraph D over 5 vertices.
Notice that d+

D(c) = 1 and d−
D(c) = 3.

3.2.3 Particular Digraphs
• Tournaments: A tournament T is shortly an orientation of a complete

graph. For a tournament over n-vertices, we write Tn.

v1 v2

v3

v4

Figure 3.13: A tournament T4 over 4 vertices
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• Oriented Paths: An orientation of a path is said to be an oriented
path. The length of an oriented path P is exactly the length of G(P ).
For P = v1 . . . vn an oriented path, we denote by P[vi,vj ] the oriented
subpath of P vivi+1 . . . vj, for 1 ≤ i ≤ j ≤ n. An arc (vi, vj) of P is said
to be forward if j = i + 1. Else it is said to be backward. If all the arcs
of P have the same orientation, we say that P is a directed path. For in-
stance, for an oriented path P over the vertex-set V (P ) = {v1, . . . , vn},
we say that P is a directed path if A(P ) = {(vi, vi+1), 1 ≤ i ≤ n − 1}.
In this case, we say that P is a v1vn-directed path with v1 its origin
and vn its terminus. A spanning oriented path of a digraph D is called
hamiltonian.
A block of an oriented path P is a maximal directed subpath of P . It
is said to be a forward block, respectively backward block, if all its arcs
are forward in P , respectively backward. We denote by P +(k1, . . . , ks)
an oriented path of s-consecutive blocks starting by a forward block of
length k1. However, we denote by P −(k1, . . . , ks) an oriented path of
s-consecutive blocks starting by a backward block of length k1. And we
call this a path with s-blocks or an s-block path. An anti-directed path
is an oriented path of the form P (1, 1, . . . , 1).

v1 v2 v3 v4 v5

Figure 3.14: An example of an oriented path P +(1, 2, 1)

• Oriented Cycles: The notion of cycles in graphs can be extended to
digraphs. An oriented cycle is simply an orientation of a cycle. Given an
oriented cycle C, a block is a maximal directed subpath of C. We denote
by C+(k1, k2, . . . , kn) the oriented cycle formed of n blocks of lengths
k1, k2, . . . , and kn respectively, starting by k1 forward arcs. Conversely,
we can define C−(k1, k2, . . . , kn) to be the oriented cycle formed of n
blocks of lengths k1, k2, . . . , and kn respectively, starting by k1 back-
ward arcs. The length of C, denoted by l(C), is the sum of lengths of all
its blocks. Moreover, for a block B directed from x to y of an oriented
cycle C, we call x (resp. y) the source (resp. the sink) of B, and we
write B as C[x,y]. An oriented cycle of arcs with the same direction is
called a directed cycle or a circuit. An oriented cycle whose all blocks
are each of length 1 is called an anti-directed cycle.

v1 v2 v3 v4 v5

Figure 3.15: An example of an oriented cycle C = C+(2, 1, 1, 1)
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A hamiltonian oriented cylce is an orientation of a hamiltonian cycle.
If a digraph D contains a hamiltonian oriented cycle, we say that D is
hamiltonian. However, if D contains no oriented cycles, we say that it
is acyclic or an oriented forest.

• Subdivision of a Digraph: A subdivision of a digraph D is a digraph
D

′ obtained by replacing each arc (x, y) of D by an xy-directed path of
length at least 1.

v1 v2 v3 v4 v5 v6
Figure 3.16: P = P +(1, 3, 1) is a subdivision of P +(1, 2, 1)

• Strong Digraphs: A digraph D is said to be strong or strongly con-
nected if for any two vertices u and v of D, D contains a uv-directed
path.

• Oriented Forests: An oriented forest is a digraph that contains no
oriented cycles. An orientation of a tree is said to be an oriented tree.
An out-tree T is an oriented tree with one and only one vertex whose
in-degree is equal to zero, called the source or root of T , and the rest
of the vertices have in-degree equal to 1. Inversely, an in-tree is an ori-
ented tree T with one vertex of out-degree zero, called the sink of T ,
and the rest of the vertices are of out-degree 1. Similarly, we can define
an in-forest and an out-forest.
Let T be a spanning out-tree of a digraph D rooted at r. For a vertex x
of D, there is a unique rx-directed path in T , denoted by T[r,x]. The level
of x with respect to T , denoted by lT (x), is the length of this path. For
a non-negative integer i, set Li(T ) to be the set of all the vertices having
a level i in T . For x ∈ V (T ), the ancestors of x are the vertices that
belong to T[r,x]. For an ancestor y of x, we will write y ≤T x and we will
denote by T[y,x] the directed path in T from y to x. For two vertices x
and y of T , the least common ancestor, z, of x and y is the common an-
cestor of x and y having the highest level in T . Let D′ be a sub-digraph
of a digraph D. Let x ∈ V (D′), x is said to be a minimal in D′ for ≤T if
∀v ∈ V (D′) satisfying v ≤T x, we have x ≤T v. Moreover, x is said to be
a maximal in D′ for ≤T if ∀v ∈ V (D′) satisfying x ≤T v, we have v ≤T x.
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r

Figure 3.17: An out-tree T rooted at r.

An arc (x, y) of D is said to be forward (resp. backward) with respect
to T if lT (x) < lT (y) (resp. lT (x) ≥ lT (y)). For two adjacent vertices
x and y, we denote by xy the arc between x and y if its orientation is
unknown.
A maximal out-tree T of D is a spanning out-tree for which for any
backward arc with respect to T , say (x, y), there exists a yx-directed
path in T . We can easily see that for a maximal out-tree T of a digraph
D, Li(T ) is stable in D for all i ≥ 0. We can also notice that every
strong digraph D has a spanning out-tree. Indeed, suppose not and let
T be an out-tree of D with maximal number of vertices. Then there
exists a vertex x ∈ V (D) − V (T ). Since D is strong then there exists
a vertex y ∈ V (T ) such that (y, x) ∈ A(D). Let T ′ = T ∪ (y, x), an
out-tree of D with V (T ′) > V (T ), a contradiction. Moreover, in [6], Al
Mniny proved that any digraph D that has a spanning out-tree admits a
maximal out-tree. Consequently, every strong digraph admits a maximal
out-tree.

3.3 Coloring
The initial graph coloring results deal entirely with planar graphs in the form
of map coloring. Francis Guthrie proposed the four color problem while at-
tempting to color a map of England, finding that four colors were sufficient
to color the map so that no parts sharing a common border received the same
color.

Here is yet another example of graph coloring. A company produces n
chemicals C1, C2, . . . , Cn. When these chemicals are brought into touch with
one another, some chemical pairings that are incompatible with one another
might explode. The factory wants to partition its warehouse into segments
so that incompatible chemicals can be kept in separate areas as a precaution.
How many segments should the warehouse be divided into at the very least?
We will transform this problem into a graph problem. We obtain a graph G
on the vertex set {v1, . . . , vn} by joining vi and vj if and only if the chemicals
Ci and Cj are incompatible. We will assign the vertices of G colors. What
is the minimal number of colors assigned to the vertices of G so that no two
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Figure 3.18: A four-coloring of a map of the United States.

adjacent vertices are assigned the same color?

In the sequel we will give the terminology of graph coloring. The same
terminology is applicable for digraphs.

3.3.1 Basic Definition

A graph coloring is a labeling of the vertices. In other words, a coloring of
a graph G using k colors or labels is a mapping ϕ from the set of vertices of
G, V (G), to the set of colors {1, 2, . . . , k}. If this coloring satisfies that no
adjacent vertices are assigned the same color, we call this a k-proper coloring
of G and we say that G is k-colorable. The chromatic number of a graph G,
denoted by χ(G), is the minimal number of colors for which such an assign-
ment is possible. A digraph is k-chromatic if its chromatic number equals k.

Figure 3.19: A proper coloring of a graph using 3 colors, the minimum number
of colors possible.

The following proposition shows the relevance between the chromatic number
and the maximum degree of a graph:
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Proposition 23. For any graph G, we have:

χ(G) ≤ ∆(G) + 1

According to Brooks [16], if G is a connected graph which is neither a
complete graph nor an odd cycle, then we have χ(G) ≤ ∆(G).

An intriguing result over the chromatic number of the union of two di-
graphs is the following:

Theorem 24. [21] Consider any two digraphs D1 and D2, we have:

χ(D1 ∪ D2) ≤ χ(D1) × χ(D2).

3.3.2 Critical Graphs
A graph G is said to be k-critical if χ(G) = k and χ(G − v) = k − 1 for every
vertex v ∈ G, for k a positive integer. We can see that every k-chromatic
graph G contains a k-critical subgraph H. Indeed, if G is not k-critical, we
can proceed by deletion of vertices until we obtain such a subgraph.
The following is a relevant proposition for our study over chromatic number
and paths in digraphs that we will see later:

Proposition 25. Let G be a k-critical graph, for k a positive integer, then
dG(v) ≥ k − 1 for every v ∈ V (G).

Proof. Let G be a k-critical graph. Suppose for the contrary that G has a
vertex v with a degree at most k − 2. Let H = G − v, as G is k-critical, we
have that χ(H) = k−1. Let us consider ϕ to be a (k−1)-proper coloring of H
with the color set {1, . . . , k − 1}. As v has at most k − 2 neighbors, let us say
without loss of generality that those neighbors are assigned by ϕ colors from
the set {1, . . . , k − 2}. We will extend ϕ to a coloring of G, ϕ

′ , by labeling v
by the color k − 1. This is a (k − 1)-proper coloring of G, a contradiction.
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Chapter 4

Preliminaries of Integer
Partitions and Commutative
Algebra

In this chapter, we represent the terminology and definitions concerning the
second direction of our study.

4.1 Partition Theory
The theory of number partitions is an intriguing field of number theory.
Leonard Euler introduced the notion of partitions in the 18th century. Al-
though the theory of partition had been explored and debated by many other
notable mathematicians such as Gauss, Jacobi, Schur, McMahon, and An-
drews, among others, Ramanujan’s collaboration with Prof. G.H. Hardy cre-
ated a revolutionary change in the field of partition theory of numbers.

4.1.1 Basic Definitions
A partition of a positive integer n is a finite non-increasing sequence of posi-
tive integers λ1, λ2, . . . , λr that sum up to n. The λi are called the parts of λ.
For a partition λ = (λ1, . . . , λr) of n, we often write |λ| for the sum of parts
of λ, which is exactly n. Set r to be the size or length of λ, denoted by l(λ).
We usually write λ = (1f12f23f3 . . .), such that fi is the number of parts of λ
that are equal to i.
Define the partition function p(n) to be the number of integer partitions of n.
By convention, p(0) = 1. Denote by P the set of all integer partitions.

Example 26. • p(1)=1 as 1 has only one integer partition which is 1.
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• p(4)=5 as 4 has the following integer partitions:
4
3+1
2+2=22

2 + 1 + 1 = 122
1 + 1 + 1 + 1 = 14

For λ = (λ1, . . . , λr) a partition, we may define a new partition λ′ =
(λ′

1, . . . , λ′
m) such that λ′

i is the number of parts of λ that are greater than or
equal to i. Such a partition is called the conjugate of λ.

Example 27. Let λ = (8, 6, 6, 5, 1) be a partition of 26. The conjugate of λ
is
λ′ = (5, 4, 4, 4, 4, 3, 1, 1).

4.1.2 Graphical Representation of Partitions
An effective elementary device to study partitions is the graphical represen-
tation.
Let λ be an integer partition of a positive integer n. A Young diagram [λ] of
λ is a collection of n 1×1 squares (i, j) on a square grid Z2, with 1 ≤ i ≤ l(λ)
and 1 ≤ j ≤ λi.
The conjugate Young diagram [λ′ ] is the reflection of [λ] through the line
i = j. And it is obvious that applying the conjugate twice returns us to the
initial partition λ.

Young diagram of λ = (6, 5, 5, 3)

Young diagram of λ
′ = (4, 4, 4, 3, 3, 1)

A partition identity is an equality carried on between the number of in-
teger partitions of n that satisfies a condition A and the number of integer
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partitions of n that satisfies a condition B, which works for all positive inte-
gers n.
The following is the first identity of integer partitions which we will expose
the reader to and will be demonstrated using the Young diagram:

Theorem 28. Let n and m be two positive integers. The number of integer
partitions of n with at most m parts is equal to the number of integer partitions
of n with parts that are less than or equal to m.
Proof. In fact, by mapping each partition onto its conjugate, we may establish
a one-to-one relationship between the two classes of partitions. This mapping
is a bijection, and we can see from the Young diagram that the condition
"at most m parts" changes to the condition "no part exceeds m" and vice
versa.
Example 29. Let us consider the partitions of 6, "into at most 2 parts":
(6), (5, 1), (4, 2), and (3, 3). And then consider the partitions of 6 "into parts
less than or equal to 2": (1, 1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1, 1) and (2, 2, 2), which
are the conjugates of the latters respectively.

4.1.3 Generating Series of Integer Parttitions
Definition 30. The generating function f(q) of the sequence a0, a1, . . . is the
power series f(q) = ∑︁

n≥0
anqn.

It is sufficient to think of f(q) as a formal power series in q for many of
the problems we will encounter.
Definition 31. Define the generating series of one variable of the partition
function to be the power series given by:

P (q) =
∑︂
n≥0

p(n)qn

Theorem 32. The generating series of the partition function is given by:

P (q) = 1∏︁
n∈N

(1 − qn)

Proof. Indeed, we can write the right-sided product as the following:
1∏︁

n∈N
(1 − qn)

=
∏︂

n∈N
(1 + qn + q2n + q3n + . . .)

= (1 + q + q2 + q3 + . . .)(1 + q2 + q4 + q6 + . . .)(1 + q3 + q6 + q9 + . . .) . . .

=
∑︂

a1≥0

∑︂
a2≥0

∑︂
a3≥0

. . . q1a1+2a2+3a3+...
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Observe that the exponent of q in this series corresponds to the partition
(1a12a23a3 . . .). Hence qn will occur once in this sum for each partition of n.
Therefore, we get that P (q) = 1∏︁

n∈N
(1−qn) .

Definition 33. Let n be a positive integer. Define Pn,k to be the set of integer
partitions of n with at most k parts, and denote by pk(n) its cardinal.

Considering the conjugate mapping, we can find a bijection between Pn,k

and the set of partitions of n with all parts are less than or equal to k. Hence
and following the same reasoning as the previous theorem, we can see that
the generating series of pk(n) is given as follows:

Pk(q) =
∑︂
n∈N

pk(n)qn = 1∏︁
n≤k

(1 − qn)

Definition 34. Let n be a positive integer. Define (O, n) to be the set of
integer partitions of n with only odd parts, and denote by p(O, n) its cardinal.
Similarly, define (D, n) to be the set of integer partitions of n with distinct
parts, and denote by p(D, n) its cardinal.

One of the most interesting identities of integer partitions given by Euler
is the following:

Theorem 35. (Euler)
Let n be any positive integer, we have:

p(O, n) = p(D, n)

Proof. For the sake of proving this identity, we will prove an identity over the
generating series of either partition function.
First, let us notice that if we follow the same reasoning as theorem 26, we find
that: ∑︂

n≥0
p(O, n)qn = 1∏︁

n≥0
(1 − q2n+1)

Similarly, we have: ∑︂
n≥0

p(D, n)qn =
∏︂
n≥1

(1 + qn)

Noticing that:

∏︂
n≥1

(1 + qn) =
∏︂
n≥1

(1 − q2n)
(1 − qn) =

∏︂
n≥1

(1 − q2n−1)−1
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we get that: ∑︂
n≥0

p(O, n)qn =
∑︂
n≥0

p(D, n)qn

By equating the coefficients of qn for n ≥ 1 in both power series, we get Euler’s
identity.

We can also define the generating series of the partition function of two
variables taking into consideration the sizes of the partitions.

Definition 36. Define the generating series of the partition function of two
variables to be the power series given by:

P (q, t) =
∑︂
λ∈P

q|λ|tl(λ)

4.1.4 Rogers-Ramanujan Identities
The Rogers-Ramanujan identities apply to fundamental hypergeometric se-
ries and integer partitions. Leonard James Rogers originally found and es-
tablished the identities in 1894, which were later rediscovered (without proof)
by Srinivasa Ramanujan before 1913. Rogers-Ramanujan identities continue
to be one of the most intriguing episodes in the history of partitions. These
identities appear in many fields other than combinatorics, such as statistical
mechanics, number theory, representation theory, algebraic geometry, proba-
bility theory or commutative algebra [1, 2, 3, 4, 5, 8, 10, 12, 17, 18, 29, 31, 34].

Theorem 37. (Rogers-Ramanujan Identities)
Let n be a positive integer. For i ∈ {1, 2}, let Ti(n) be the set of partitions of n
without equal nor consecutive parts and the part 1 appears at most i−1 times.
Let Ei(n) be the number of partitions of n into parts congruent to ±(2 + i)
mod 5. Then we have

| Ti(n) |=| Ei(n) | .

The notation | A | in the theorem stands for the cardinal of a set A.

Example 38. E2(4) = {4, 1 + 1 + 1 + 1} and T2(4) = {4, 3 + 1}

Note that it is not difficult to obtain the generating series of the second
object, namely:

For i = 1,
∞∏︂

j=0

1
(1 − q5j+2)(1 − q5j+3)

For i = 2,
∞∏︂

j=0

1
(1 − q5j+1)(1 − q5j+4)
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4.2 Commutative Algebra
For the sake of establishing a common language, the following introduces some
notations and elementary definitions.

4.2.1 Basic Definitions
A ring is an abelian group (R, +) over which we can define a multiplication
operation:
(a, b) → ab and an identity element 1, satisfying the following for every a, b,
and c in R:

a(bc) = (ab)c associativity

a(b + c) = ab + ac

(b + c)a = ba + ca distributivity

1a = a1 = a identity

A ring R is said to be commutative if ab = ba for all a, b ∈ R. Nearly, we will
deal with commutative rings in this thesis and we shall omit the adjective.
An element u ∈ R is said to be invertible if there exists an element v ∈ R so
that uv = 1. Such v is unique and is denoted by u−1, and called the inverse
of u. A field is a ring in which every non-zero element is invertible. We write
Z,Q,R and C respectively for the ring of integers, and fields of rational, real,
and complex numbers. The characteristic of a ring R, often denoted char(R),
is defined to be the smallest positive integer n so that n.1 = 0. If such n
doesn’t exist, we say that R is of characteristic zero.
An ideal I of a commutative ring R is an additive subgroup such that rs ∈ I
for all r ∈ R and s ∈ I. An ideal is said to be generated by S ⊂ R if every
element t ∈ I can be written in the form:

t =
n∑︂
1

risi for ri ∈ R and si ∈ S

We usually write I =< S >. By convention, the ideal generated by the empty
set is 0. An ideal generated by only one element is said to be principal. I is
said to be finitely generated if it is generated by a finite set of elements. For I
and J two ideals of R, define the ideal quotient of I by J , denoted by (I : J),
to be the ideal of R given by:

(I : J) = {f ∈ R/ : fJ ⊂ I}

If A and B are two rings, then the direct product of A and B, denoted by
A × B, is the ring of ordered pairs (a, b) with a ∈ A and b ∈ B defined with
the following operations:

(a, b) + (a′, b′) = (a + a′, b + b′)
(a, b)(a′, b′) = (aa′, bb′)
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A ring homomorphism or a ring map, or shortly homomorphism, from a ring R
to a ring S, is a homomorphism of abelian groups that preserves multiplication
and associates the identity of R to the identity of S. A subring of R is a subset
of R closed under addition, subtraction, and multiplication, and contains the
identity of R. The commutative algebra over a commutative ring R is a
commutative ring S together with a homomorphism of rings ϕ : R → S. A
subring S ′ of S that includes the image of R is said to be a subalgebra of S. An
interesting example of an R-algebra is the polynomial ring S = R[x1, . . . , xr]
in finitely many variables.
Let k be a commutative ring, and let us consider the polynomial ring over
k in the variables x1, . . . , xr, denoted by k[x1, . . . , xr]. The elements of k are
generally referred to as scalars. A monomial is a product of variables, it has a
degree equal to the number of those factors considering the repetitions. The
unique monomial of degree 0 is 1. A term is a product of a scalar with a
monomial. Every polynomial f can be uniquely written as a finite sum of
non-zero terms. It is said to be homogeneous if all those monomials have the
same degree.
For R a ring and I an ideal of R, we can define an equivalence relation ∼ on
R as follows:

a ∼ b if and only if a − b ∈ I

For a ∈ R, the equivalence class of a in R is given by:

[a] = a + I = {a + r/ : r ∈ I}

The set of all those equivalence classes form a ring accompanied with the
following operations:

(a + I) + (b + I) = (a + b) + I

(a + I)(b + I) = (ab) + I

It is called the quotient ring or factor ring and denoted by R/I.

For a ring R, an R-module M is an abelian group with a map: R×M → M
satisfying the following for every r, s ∈ R, m, n ∈ M :

r(sm) = (rs)m
r(m + n) = rm + rn

(r + s)m = rm + sm

1m = m

The most intriguing examples of R-modules are the ideals of R and their
corresponding quotient rings.
If M and N are two R-modules, define the direct sum of M and N to be the
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module M⊕N given by {(m, n)/ : m ∈ M, n ∈ N} with r(m, n) = (rm, rn) for
r ∈ R, m ∈ M, and n ∈ N . A free R-module is a module that is isomorphic
to a direct sum of copies of R. The direct sum of n copies of R, denoted by
Rn, is a free R-module with basis (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

4.2.2 Graded Rings
We will apply grading on rings, namely polynomial rings, as well as the objects
we will analyze as ideals and quotient rings. The main idea behind this tool
is to understand the properties of a graded object X by seeing it as a direct
sum of vector spaces and analyzing the attributes of each vector space.
A graded ring is a ring R together with a direct sum decomposition of abelian
groups:

R = R0 ⊕ R1 ⊕ R2 . . .

where

RiRj ⊂ Ri+j, for i, j ≥ 0

A quite fascinating example is the graded polynomial ring:
Example 39. We will introduce a grading over the polynomial ring R =
k[x1, . . . , xn], for k a field. Set deg(xi) = 1 for all i. The degree of a monomial
xα1

1 . . . xαn
n is α1 + . . . + αn. Now consider Ri to be the k-vector space of

homogeneous polynomials of degree i with R0 = k.
An element a ∈ R is said to be homogeneous if a ∈ Ri, for some i. An ideal

I of R is said to be homogeneous if it is generated by homogeneous elements.
For f ∈ R, we can uniquely write f as:

f = f0 + f1 + f2 + . . . with fi ∈ Ri

where the fi are called the homogeneous components of f .
Let R = ⊕i≥0Ri be a graded ring, a graded module M over R is a module
that satisfies:

M = ⊕i∈NMi

for the Mi are abelian groups satisfying RiMj ⊂ Mi+j, for all i, j.

Considering a grading over a ring R, we may measure its dimension by
measuring the dimensions of its graded components. Let M be a finitely
generated graded module over k[x1, . . . , xn]. The Hilbert-Poincaré function of
M is given as follows:

HM(s) := dimkMs

Define also the Hilbert-Poincaré series to be given by the following q-series:

HilbM(q) =
∑︂
i∈N

HM(i)qi
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Example 40. • Consider the polynomial ring of one variable x over the
field C. We can write C[x] as the direct sum of the C-vector spaces of
homogeneous polynomials of degree i, i ∈ N. Hence:

HilbC[x](q) = 1 + q + q2 + q3 + . . . = (1 − q)−1

• Let k be a field and consider the polynomial ring over k with variables
{xi}i∈N for which we will assign each xi a weight i. We will assign
this polynomial ring a grading following the decomposition into k-vector
spaces of homogeneous polynomials of weight i, denoted by Ri, i ∈ N.
Notice here that Ri is generated by polynomials of the form xα1

1 xα2
2 xα3

3 . . .
with weight i, that is 1α1 + 2α2 + 3α3 + . . . = i, which is a partition of i.
Therefore, there is a one-to-one correspondence between the generators
of Ri and the partitions of i. Hence we can find that dimKRi = p(i).
And so the Hilbert series of this polynomial ring is given by:

HilbK[x1,x2,...](q) =
∑︂
i∈N

p(i)qi =
∏︂
i≥1

(1 − qi)−1

The following lemma would be a great exercise to familiarize the readers
with the Hilbert Poincaré series:

Lemma 41. (Greuel 2002) Consider the polynomial ring R = K[x1, . . . , xn]
and let I be a homogeneous ideal of R. Let f ∈ R be a homogeneous polynomial
of degree d. We have:

HilbR/I(q) = HilbR/(I,f)(q) + qdHilbR/(I:f)(q)

Example 42. Consider the graded polynomial ring R = C[x, y, z] for which
x, y, and z are each assigned a weight 1. Let I be the homogeneous ideal
generated by {xy, xz}.

HilbR/I(q) = HilbR/(I,x)(q) + qHilbR/(I:x)(q)
= HilbC[y,z](q) + qHilbC[x](q)

= 1
(1 − q)2 + q

1
(1 − q) = 1 + q − q2

(1 − q)2

Many generating series of partitions satisfying some conditions can be seen
as Hilbert series of some graded rings. Let K be a field of characteristic zero
and consider R to be the graded polynomial ring over the variables {xi}i∈N
considering the grading following the decomposition into k-vector spaces of
homogeneous polynomials of weight i, denoted by Ri. For instance, let h be
a positive integer; consider the set D(h) of partitions of h into distinct parts.
Denote by D the set of all partitions with distinct parts. Let ID ∈ R be the
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ideal generated by x2
i , i ≥ 1. Note that a monomial M ∈ R, belongs to ID if

and only if it is divisible by one of its generators, say x2
i , for some i positive

integer. In particular, for a monomial Mλ ∈ Rh associated to a partition λ of
h, Mλ ∈ ID if and only if λ /∈ D. By the definition of a quotient ring, we then
have:

λ ∈ D if and only if Mλ ̸= 0 in R/ID

So we have the equality: ∑︂
h≥0

|D(h)|qh = HilbR/ID
(q)

Now, as the generators of ID form a regular sequence [49], and since x2
i has

the weight 2i, we have:

HilbR/ID
(q) =

∏︂
i≥1

(1 − q2i)
(1 − qi) =

∏︂
i≥1,i odd

1
(1 − qi)

Notice that the right sided series is the generating series of partitions with
only odd parts. Then we obtain the identity obtained by Euler in theorem 28.
In a similar way, we can obtain that the Hilbert series of the quotient ring:

K[xi, i ≥ 1]
< x2

i , xixi+1, i ≥ 1 >

is the generating series of the partitions with neither equal nor consecutive
parts, which is the type of partitions that appears in Rogers-Ramanujan iden-
tity.

4.2.3 Gröbner Basis
Let K be a field and let R be the polynomial ring over K defined over the
variables x1, . . . , xn. Let M be a free R-module with basis. A monomial or-
dering on M is a total ordering < defined over the monomial of M so that for
any monomials a, b and c with a ̸= 1, we have ab < ac whenever b < c.
For m a polynomial in M and < a monomial ordering over M , define the ini-
tial term of m, denoted by in<(m) to be the greatest term of m with respect
to < . Define the initial ideal of M , denoted by in<(M), to be the monomial
submodule generated by the monomials in<(m) for all m ∈ M.
The following will be a crucial lemma to compute the Hilbert series of the
quotient ring R/in<(M):
Lemma 43 (Greuel[33]). Let < be a graded monomial ordering on the poly-
nomial ring R and let M ⊂ R be a homogeneous ideal and consider its initial
ideal in<(M) with respect to <. Then:

HilbR/M(q) = HilbR/in<(M)(q)
Consider a free module M with basis. A Gröbner basis of M with respect to

an order < is a set of elements g1, . . . , gs ∈ M such that if N is the submodule
of M generated by g1, . . . , gs, then in<(g1), . . . , in<(gs) generate in<(M).
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Part I
Cycles and Paths in Digraphs

with Large Chromatic Number
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Chapter 5

Four Blocks Cycles

5.1 Introduction
Since the graph coloring was first defined, it was accompanied with many

questions. How to determine the chromatic number of a given graph? How to
find a graph coloring with as few colors as possible? How does the chromatic
number relate to other graph invariants as edges, vertex degree, sub graphs,
girth?
Following the definition of the chromatic number we may obtain the following
upper bound:

Proposition 44. For a graph G with m edges, the chromatic number of G
satisfies:

χ(G) ≤
√︄

2m + 1
4 + 1

2

Proof. Let ϕ be a proper coloring of G with exactly χ(G) colors. Then G has
at least one edge between any two color classes. Thus m ≥ 1

2χ(G)(χ(G) − 1).
Solving this inequality for χ(G), we obtain the assertion claimed.

One simple way to color a graph G with not too many colors is the greedy
algorithm: Set V (G) = {v1, . . . , vn}, color the vertices one by one in order
assigning to vi the smallest integer not yet assigned to one of its already
colored neighbors. Hence we can see that χ(G) ≤ ∆(G) + 1.

Brooks [16] studied the chromatic number for connected graphs rather
than complete graphs or odd cycles:

Theorem 45 (Brooks[16]). Let G be a connected graph. If G is neither com-
plete graph nor odd cycle, then:

χ(G) ≤ ∆(G)
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As we have seen, a graph G with large chromatic number must have a
large maximum degree, trivially at least χ(G) − 1. What can we say about
such graph? Can we guarantee the existence of a complete graph with large
order as a subgraph of G? The answer comes to be No.

Theorem 46 (Erdös [26]). For every two positive integers g and k, there
exists a graph G for which g(G) > g and χ(G) > k.

Can we answer this question for another graph classes? More specifically,
given a graph with large chromatic number, it is natural to ask whether it must
contain a cycle with particular properties. König showed that a 2-colorable
graph has no cycles of odd length. Erdös and Hajnal [25] supported this by
proving that every graph with chromatic number at least k contains an odd
cycle of length at least k. Further results on graphs with prescribed lengths
of cycles have been obtained [36, 41, 43, 45, 60].

What can we say if we considered the analogous problem for directed
graphs?
Indeed, for the case of tournaments, Camion [20] showed that a tournament

has a directed hamilton cycle if and only if it is strong. Rosenfeld in [52]
conjectured that any oriented cycle of order n is contained in any tournament
of order n, provided n is large enough. This has been verified for cycles with
a block of length n − 1 by Grünbaum, for alternating cycles by Rosenfeld [52]
and Thomassen [58], and for cycles with just two blocks by Benhocine and
Wojda [13].

In this chapter, we are interested in the study of the existence of oriented
cycles in strong digraphs in specific. In [15], Bondy proved that every strong
digraph D contains a directed cycle of length at least χ(D). Since any directed
cycle of length at least k can be seen as a subdivision of the directed cycle
Ck of length k, Cohen et al. [21] conjectured that Bondy’s theorem can be
extended to all oriented cycles:

Conjecture 47. (Cohen et al. [21]). For every oriented cycle C, there exists
a constant f(C) such that every strong digraph with chromatic number at least
f(C) contains a subdivision of C.

In fact, Cohen et al. [21] proved this conjecture in their article for cycles
with two blocks. In particular, they showed that the chromatic number of
strong digraphs with no subdivisions of two blocks cycles C(k1, k2) is bounded
from above by O((k1 + k2)4). More recently, Kim et al. [42] improved this
upper bound to O((k1 + k2)2). In [39], El Joubbeh solved this conjecture
for Hamiltonian digraphs, and demonstrated a stronger version by showing
that any 3n-chromatic Hamiltonian digraph contains a subdivision for any
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oriented cycle of order n. Furthermore, Cohen et al. in [21] confirmed the
above conjecture for the case of some cycles with four blocks.

Theorem 48. Let D be a strong digraph with no subdivisions of four blocks
cycles C(1, 1, 1, 1), then χ(D) ≤ 24.

In [6], Al Mniny proved conjecture 47 for oriented cycles of four blocks of
the form C(k, 1, 1, 1) for f(C) = 83k.

In this Chapter, we improve the bound established in [6] by proving that if D
is a digraph having a spanning out-tree T with no subdivisions of C(k1, 1, 1, 1),
then the chromatic number of D is at most 18k1.

In our proof, we use for the first time in such investigations the wheels in
order to study the chromatic number of the digraphs. Recall that a wheel is
a graph made up of a chordless cycle and a vertex adjacent to at least three
vertices of the cycle, such vertex is called universal. In [59], Thomassen et al.
proved that every graph having no wheel as a subgraph is 3-colorable. This
result play an important role in our improvement.

5.2 Coloring Digraphs without Four Blocks
Cycles

Given an oriented cycle C, a block is a maximal directed subpath of C. We
denote by C(k1, k2, . . . , kn) the oriented cycle formed of n blocks of lengths
k1, k2, . . . , and kn respectively. Moreover, for a block B of an oriented cycle
C with ends x and y, if B is directed from x to y we denote by x (resp. y)
the source (resp. the sink) of B, and we write B as C[x,y]. In general, for an
oriented cycle C with s blocks, we will denote by Bi the blocks of C, such
that B2i has ends xi+1 and yi for all 1 ≤ i ≤ s

2 − 1 and B2i+1 has ends xi+1
and yi+1 for all 0 ≤ i ≤ s

2 − 1.
Now we are ready to prove our theorem:
Let k be a positive integer and let D be a digraph with a spanning out-tree.

D admits a maximal out-tree, say T .
We used the same partition of D introduced by Al Mniny[6]. However we

found less bounds for the chromatic number of each part, sometimes by using
cycles and sometimes by using the wheels that facilitated our study of such
digraph.
For i = 0, .., k − 1, let Vi := ∪α≥0Li+αk(T ). Define Di to be the subdigraph

of D induced by Vi, and then partition the arcs of Di as follows:
A1 := {(x, y)|x ≤T y};
A2 := {(x, y)|y ≤T x};
A3 := A(Di)\(A1 ∪ A2).

For 0 ≤ i ≤ k − 1 and j = 1, 2, 3, let Dj
i be the spanning subdigraph of Di
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whose arc-set is Aj.

Let C be a cycle of D of s blocks, say B1, . . . , Bs with s ≥ 4. We will
use the same notations for the ends of the blocks of C as introduced above
such that the xi’s (resp. yi’s) are the sources (resp. sinks) of the blocks of C.
Without loss of generality, we will suppose that x1 is minimal in {xi}1≤i≤s/2
for ≤T . Let 0 ≤ i ≤ k − 1, C is said to be a mixed cycle if all its blocks are
induced by arcs in D1

i except for the block B1 that contains a vertex z1 ̸= y1
such that the arcs of C[x1,z1] belong to T and the arcs of C[z1,y1] belong to D1

i .
B1 is called the mixed block of C.
Remark that x1 is the smallest for ≤T in C.

Lemma 49. If D contains a mixed cycle then it contains a subdivision of
C(k, 1, 1, 1).

Proof. Let C be a mixed cycle of D. We will proceed by induction on the
number of blocks of C, s.

For s = 4, if l(C[x1, z1]) ≥ k then C is a subdivision of C(k, 1, 1, 1). Else
let z be the minimal for ≤T in C − C[x1, z1]. We will study three cases
depending on the position of z on C. Indeed, if z ∈ C]x1,y1[ then we replace
in C, C]z1,z[ by T]z1,z[ and get a subdivision of C(k, 1, 1, 1). Else if z ∈ C]x1,y2[
then C[z1,y1] ∪ C[x2,y1] ∪ C[x2,y2] ∪ T[z1,z] ∪ C[z,y2] is a subdivision of C(k, 1, 1, 1).
Finally if z = x2, in this case we will introduce z′ to be a minimal for ≤T in
C −C[x1,z1] −{x2}. If z′ ∈ C[x2,y1] or C[x2,y2] then replace in C, C[x2,z′] by T[x2,z′]
and get a subdivision of C(k, 1, 1, 1). Else if z′ ∈ C[x1,y2[ then replace in C,
C]x2,y2[ ∪ C]z′,y2[ by T[x2,z′] and get a subdivision of C(k, 1, 1, 1). The only case
left to study is if z′ ∈ C]z1,y1[, then replace in C, C]x2,y1[ ∪ C]z′,y1[ by T[x2,z′]
and get a subdivision of C(k, 1, 1, 1).

Suppose it is true up to s − 2 and let’s prove it for s, s ≥ 6. Notice that
z1 ≤T xi for all 1 ≤ i ≤ s

2 . Let i ̸= 1 be the integer such that lT (xi) is minimal.
If i ≥ 3, then C[z1,y1] ∪ C[x2,y1] ∪.... ∪ C[xi,yi−1] ∪T[z1,xi] contains a mixed cycle
of D of blocks less than or equal to s−2. Otherwise i = 2, we can get a mixed
cycle of D of blocks less than or equal to s − 2 by replacing in C, C]z1,y1] ∪
C]x2,y1] by T[z1,x2]. In both cases, using the induction hypothesis, we get that
D contains a subdivision of C(k, 1, 1, 1).

Consequently, if D contains a cycle C of s blocks, s ≥ 4, whose all arcs
are in D1

i , 0 ≤ i ≤ k − 1, then D contains a subdivision of C(k, 1, 1, 1).

Let C be a cycle of D of s blocks, say B1, . . . , Bs. We will use the same
notations for the ends of the blocks of C as introduced above such that the yi’s
(resp. xi’s) are the sources (resp. sinks) of the blocks of C. Let 0 ≤ i ≤ k − 1,
C is said to be back-mixed if s ≥ 6 and all its blocks are induced by arcs in
D2

i except for Bs that contains a vertex z1 such that the arcs of C[z1,x1] belong
to T , the arcs of C[y s

2
,z1] belong to D2

i , z1 ̸= y s
2
, and z1 is a minimal in C for
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≤T . Bs is called the back-mixed block of C.
Remark that x1 is the smallest for ≤T in C − C[z1,x1].

Lemma 50. If D contains a back-mixed cycle then it contains a subdivision
of C(k, 1, 1, 1).

Proof. Let C be a back-mixed cycle of D. We will proceed by induction on
the number of blocks of C, s. Notice that x1 ≤T xi for all 1 ≤ i ≤ s

2 .
For s = 6. Let i ̸= 1 be the integer such that lT (xi) is minimal. If i = 2,

then C[y2,x2] ∪ C[y2,x3] ∪ C[y3,x3] ∪ C[y3,x1] ∪ T[x1,x2] contains a subdivision of
C(k, 1, 1, 1). Else i = 3, then C[y1,x1] ∪ C[y1,x2] ∪ C[y2,x2] ∪ C[y2,x3] ∪T[x1,x3]
contains a subdivision of C(k, 1, 1, 1).

Suppose it is true up to s − 2, and let’s prove it for s, s ≥ 8. Let i ̸= 1 be
the integer such that lT (xi) is minimal. If i > 3, then C[y1,x1] ∪ C[y1,x2] ∪ . . . ∪
C[yi−1,xi] ∪ T[x1,xi] contains a back-mixed cycle of D with blocks less than or
equal to s − 2, and so D contains a subdivision of C(k, 1, 1, 1). Else if i = 2,
then replace in C, C]y1,x1[ ∪ C]y1,x2[ by T[x1,x2], this contains a back-mixed cycle
of D of blocks less than or equal s − 2, and so D contains a subdivision of
C(k, 1, 1, 1). Finally if i = 3, notice that C[y1,x1] ∪ C[y1,x2] ∪ C[y2,x2] ∪ C[y2,x3]
∪ T[x1,x3] contains a subdivision of C(k, 1, 1, 1).

Consequently, if D contains a cycle C of s blocks, s ≥ 6, whose all arcs
are in D2

i , 0 ≤ i ≤ k − 1, then D contains a subdivision of C(k, 1, 1, 1).

Let C be a cycle of D of 4 blocks, say B1, . . . , B4. We will use the same
notations for the ends of the blocks of C as introduced above such that the
yi’s (resp. xi’s) are the sources (resp. sinks) of the blocks of C. C is said to
be a bad 4-blocks cycle if it is either a C(1, 1, 1, 1) ( named bad of type 1) or a
C(2, 1, 1, 1) such that B1 = (y1, z1) ∪ (z1, x1) and x1 ≤T x2 ≤T z1 ≤T y2 ≤T y1
( named bad of type 2). Else C is said to be a good 4-blocks cycle.

Lemma 51. Let C be a cycle with 4-blocks in D2
i , 0 ≤ i ≤ k − 1. If D

contains no subdivision of C(k, 1, 1, 1), then C is a bad cycle.

Proof. Suppose to the contrary that C is a good 4-blocks cycle. Indeed,
consider without loss of generality x1 to be a minimal in C for ≤T . Let z
minimal in C-{x1} for ≤T . If z ∈ C]yi,x1[ for i = 1 or 2 then replace in C, (z, x1)
by T[x1,z] and get a subdivision of C(k, 1, 1, 1), a contradiction. Then z = x2.
Let z′ be a minimal in C − {x1, x2} for ≤T . If z′ ∈ C]yi,x2[ for i = 1 or 2 then
replace (z′, x2) by T[x2,z′] and get a subdivision of C(k, 1, 1, 1), a contradiction.
Notice also that y1 and y2 can not be both minimal in C−{x1, x2} for ≤T , since
else C is bad of type 1, a contradiction. Moreover if without loss of generality
y1 is minimal in C-{x1, x2} for ≤T , then let z′′ be a maximal in C − {y2} for
≤T such that z′′ ≤T y2. If z′′ ∈ C]y2,xi[ for i = 1 or 2 then replace in C, (y2, z′′)
by T[z′′,y2] and get a subdivision of C(k, 1, 1, 1), a contradiction. Then z′′ = y1
or z′′ = x2 and so C is bad of type 1, a contradiction. Hence z′ /∈ C[yi,x2[
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for i = 1, 2. If without loss of generality z′ ∈ C]y1,x1[, let z′′ be a minimal
in C − {x1, x2, z′} for ≤T . If z′′ = y1 then replace in C, (y1, z′) by T[z′,y1]
and get a subdivision of C(k, 1, 1, 1), a contradiction. Else if z′′ ∈ C]yi,x2[ for
i = 1, 2 then C[z′,x1] ∪T[z′,z′′] ∪C[y2,z′′] ∪C[y2,x1] is a subdivision of C(k, 1, 1, 1), a
contradiction. Else if z′′ ∈ C]y2,x1[ then replace in C, C[z′,x1] ∪C[z′′,x1] by T[z′,z′′]
and get a subdivision of C(k, 1, 1, 1), a contradiction. Else if z′′ ∈ C]y1,z′[
then C[z′,x1] ∪ T[z′,z′′] ∪ C[y1,z′′] ∪ C[y1,x2] ∪ T[x1,x2] is a subdivision of C(k, 1, 1, 1),
a contradiction. Then z′′ = y2 then let z′′′ be a maximal in C-{y1} with
z′′′ ≤T y1. Notice that z′′′ can not be y2 since else C is bad of type 2, where
x1 ≤T x2 ≤T z′ ≤T y2 ≤T y1, a contradiction. Hence z′′′ ∈ C]y1,x2[ or C]y1,z′[
and so replace in C, (y1, z′′′) by T[z′′′,y1] and get a subdivision of C(k, 1, 1, 1),
a contradiction.

Lemma 52. If D has no subdivision of C(k, 1, 1, 1) then χ(D3
i ) ≤ 2, for all

0 ≤ i ≤ k − 1.

Proof. We claim that the underlying graph of D3
i is bipartite. Indeed, suppose

to the contrary that D3
i contains an odd cycle C = x1...xt. Without loss of

generality, suppose that x1 is with minimal level for T in C. Now we will
study two cases:
Case 1: Neither xt is ancestor of x2 nor x2 is ancestor of xt.
In this case lT (xt) = lT (x2), since else let y be their least common ancestor,

so T[y,x2] ∪ T[y,xt] ∪ (x1, xt) ∪ (x1, x2) is a subdivision of C(k, 1, 1, 1), a contra-
diction. Thus t ≥ 5. Similarly, we can see that both T[y,xt] and T[y,x2] have
lengths less than k.

Notice that x2 is an ancestor of xt−1. If not, let z be the least common an-
cestor of x2 and xt−1. If x1 /∈ T[z,xt−1] then T[z,xt−1] ∪ T[z,x2] ∪ (x1, x2) ∪ (x1, xt)
∪ xt−1xt is a subdivision of C(k, 1, 1, 1), a contradiction. Else, T[y,xt] ∪ xt−1xt

∪ T[y,x2] ∪ (x1, x2) ∪ T[x1,xt−1] is subdivision of C(k, 1, 1, 1), a contradiction.
As well, xt is an ancestor of x3. Thus, (x2, x3) and (xt, xt−1) are arcs in D3

i .
Then T[xt,x3] ∪ T[x2,xt−1] ∪ (x2, x3) ∪ (xt, xt−1) is a subdivision of C(k, 1, 1, 1), a
contradiction.
Case 2: Without loss of generality, suppose that x2 ≤T xt.

Let i the smallest integer greater than 2 satisfying lT (xi) > lT (xi−1). We will
study the following cases:

If i = 3. Consider the least common ancestor of x1 and x3, y, then
T[y,x1] ∪(x1, xt) ∪ T[y,x3] ∪(x2, x3) ∪ T[x2,xt] is a subdivision of C(k, 1, 1, 1), a
contradiction. Notice that D3

i has no path of type P (1, 2) satisfying the same
properties of the xtx1x2x3 which is a path of type P (1, 2) with x2 ≤T xt, since
else we can find similarly a subdivision of C(k, 1, 1, 1) in D, a contradiction.

If i = t, let z the least common ancestor of x1 and xt−2, then T[z,x1] ∪
(x1, xt) ∪ T[z,xt−2] ∪ (xt−1, xt−2) ∪ (xt−1, xt) is a subdivision of C(k, 1, 1, 1), a
contradiction.

If 4 ≤ i < t. Then lT (xi) > lT (xi−2), since else we can consider the least

58



common ancestor of x1 and xi to find a subdivision of C(k, 1, 1, 1), a contra-
diction. Hence lT (xi) > lT (xi−2). Notice that xi−2 ≤T xi, since else let y be
their least common ancestor, and so T[y,xi−2] ∪ T[y,xi] ∪ (xi−1, xi) ∪ (xi, xi−2) is
a subdivision of C(k, 1, 1, 1), a contradiction. Note that here i = 4, since else
one can notice that (xi−1, xi) ∪ (xi−1, xi−2) ∪ (xi−2, xi−3) is a path P (1, 2) as
in case i = 3, a contradiction. Notice that neither x4 ≤T xt nor xt ≤T x4,
since else we can combine the directed path in T between x4 and xt and the
oriented path in C between x4 and xt and find a subdivision of C(k, 1, 1, 1),
a contradiction. Moreover, using the least common ancestor of x1 and x3,
we can prove that lT (x4) = lT (xt) and the length of the directed paths in T
from their least common ancestor to each is less than k. Now, using the least
common ancestor of x4 and xt we can show similarly that lT (x1) = lT (x3).
Notice that t ≥ 7.
Denote by y the least common ancestor of x5 and xt. Notice here that neither
x1 nor x3 is ancestor of xt.
Also y ̸= xt, since else we can find a subdivision of C(k, 1, 1, 1), a contradic-
tion. Besides, y ̸= x5, since else we can use the least common ancestor of x1
and x3 to find a subdivision of C(k, 1, 1, 1), a contradiction.
We claim also that neither x1 nor x3 is ancestor of x5. Indeed, if x1 ≤T x5,
we’ll consider the least common ancestor of x4 and xt to find a subdivision
of C(k, 1, 1, 1), a contradiction. Similarly, if x3 ≤T x5, we’ll consider the least
common ancestor of x4 and xt and the least common ancestor of x1 and x3 to
find a subdivision of C(k, 1, 1, 1), a contradiction.
Hence denote by z the least common ancestor of x1 and x3. If y /∈ T[z,xi],
i = 1, 3, then T[z,x3] ∪ (x3, x4) ∪ x4x5 ∪ T[y,x5] ∪ T[y,xt] ∪ T[z,x1] ∪ (x1, xt) is
a subdivision of C(k, 1, 1, 1), a contradiction. Else, y is in particular the least
common ancestor of x2 and x5 and l(T[y,x2]) ≥ k, then T[y,x2] ∪ T[y,x5] ∪ x5x4 ∪
(x3, x4) ∪ (x3, x2) is a subdivision of C(k, 1, 1, 1), a contradiction.

Hence D3
i contains no odd cycle then χ(D3

i ) ≤ 2.

Now we are ready to prove our main result:

Theorem 53. Let k be a positive integer and D a digraph with a spanning
out-tree with no subdivisions of C(k, 1, 1, 1) then the chromatic number of D
is at most 18k.

Proof. Let D be a digraph with a spanning out-tree with no subdivisions of
C(k, 1, 1, 1). Let T be a maximal out-tree of D. We will consider the same
partition for the arcs of D used in the beginning of this section.
Claim 1: χ(D1

i ) ≤ 3, for all 0 ≤ i ≤ k − 1.

Proof. Suppose to the contrary that χ(D1
i ) > 3, then D1

i contains a wheel of
cycle say C and a universal vertex x. C can’t be a cycle of 4 blocks or more,
since else D contains a subdivision of C(k, 1, 1, 1), a contradiction. Then C
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is a cycle of 2 blocks. Denote by z1(resp. z2) the vertex of C with in-degree
(resp. out-degree) zero. We will reach a contradiction finding a subdivision of
C(k, 1, 1, 1) by studying the order of the levels of x and its neighbors. Denote
by x1,x2,x3 three neighbors of x on C such that lT (x1) < lT (x2) < lT (x3).
If lT (x) < lT (x2), then since z1 /∈ {x2, x3}, C[z1,x2] ∪(x, x2) ∪ (x, x3) ∪ C[z1, x3]
is cycle with 4 blocks in D1

i and so D contains a subdivision of C(k, 1, 1, 1),
a contradiction. Then lT (x2) < lT (x). If x1 and x2 belong to the same block
on C, then (C − C[x1,x2]) ∪ (x1, x) ∪ (x2, x) is a cycle with 4 blocks in D1

i and
so D contains a subdivision of C(k, 1, 1, 1), a contradiction. Else C[x1,z2] ∪
C[x2,z2] ∪ (x2, x) ∪ (x1, x) is a cycle with 4 blocks in D1

i and so D contains a
subdivision of C(k, 1, 1, 1), a contradiction.

Claim 2: χ(D2
i ) ≤ 3, for all 0 ≤ i ≤ k − 1.

Proof. Suppose to the contrary that χ(D2
i ) > 3, then D2

i contains a wheel of
cycle say C and a universal vertex x. Notice that D2

i contains no good 4-blocks
cycle or a cycle with 6 blocks or more, since else D contains a subdivision of
C(k, 1, 1, 1), a contradiction. In particular, C can’t be neither a good 4-blocks
cycle nor a cycle with 6 blocks or more.

If C is a cycle with 2 blocks, then denote by z1 (resp. z2) the vertex
of C with out-degree (resp. in-degree) zero. We will reach a contradiction
finding a subdivision of C(k, 1, 1, 1) by studying the order of the levels of x
and its neighbors. Let x1,x2,x3 to be three neighbors of x on C /: lT (x1) <
lT (x2) < lT (x3). If lT (x) < lT (x1), then T[x1,x2] ∪C[x2,x3] ∪ (x1, x) ∪ (x3, x) is a
subdivision of C(k, 1, 1, 1), a contradiction. Else if lT (x) > lT (x3). If x1 and
x2 belong to the same block on C, then T [x2, x3] ∪ C[x2,x1] ∪(x, x1) ∪ (x, x3) is
a subdivision of C(k, 1, 1, 1). Else T [x2, x3] ∪ C[x2,z1] ∪C[x1,z1] ∪(x, x1)∪(x, x3)
is a subdivision of C(k, 1, 1, 1). Else if lT (x1) < lT (x) < lT (x2), then let z to
be of minimal level in T /: z ∈ C and x ≤T z. It is clear that z ̸= z2. So
replace by T[x,z] ∪ (x, x1), C[z,x1] (resp.C[z,z1] ∪C[x1,z1]) if x1 and z belong to the
same block on C (resp. if x1 and z belong to different blocks on C), and get
a subdivision of C(k, 1, 1, 1), a contradiction. Then lT (x2) < lT (x) < lT (x3),
let z to be of minimal level in T /: z ∈ C and x ≤T z. If z ̸= z2, we will
proceed as the case before. Else, z = z2 and so z = z2 = x3. Let z′ in C of
maximal level in T such that z′ ≤T x. Then (x3, x) ∪ T [z′, x] ∪ C[x3,z1] ∪ C[z′,z1]
is a subdivision of C(k, 1, 1, 1), a contradiction.

Hence C is a bad 4-blocks cycle. We will study the following cases:
If C=C(2, 1, 1, 1) where x1 ≤T x2 ≤T z1 ≤T y2 ≤T y1, then since x has at

least 3 neighbors in C which is of length 5, then we can see that there are two
adjacent vertices of C which are both neighbors of x. Notice that whenever
two adjacent vertices of C, a and b, are both neighbors of x then replace in C,
the arc (a, b) by the arcs ax and bx and so we get in D2

i a cycle with 6 blocks
or a good 4-blocks cycle, a contradiction.

If C = C(1, 1, 1, 1) with y1 and y2 are not ancestors one of the other, if x1
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and y1 are both neighbors of x then replace in C, (y1, x1) by {xx1} ∪ {xy1},
we will get a C(2, 1, 1, 1) of good type in D2

i , a contradiction. Then x2 and y2
are both neighbors of x. Then replace in C, (y2, x2) by {xx2} ∪ {xy2}, and so
we will get a C(2, 1, 1, 1) of good type in D2

i , a contradiction.
If C = C(1, 1, 1, 1) with x1 ≤T x2 ≤T y2 ≤T y1, we claim that x1 and y1

can’t be both neighbors of x, since else replace in C, (y1, x1) by {xx1}∪{xy1}.
We will either get a C(2, 1, 1, 1) of good type in D2

i , a contradiction, or we
will get a bad 4-blocks cycle of type 2, C(2, 1, 1, 1), and so in this case we have
T[x2,x] ∪ (y1, x) ∪ (y1, x1) ∪ (y2, x1) ∪ (y2, x2) is a subdivision of C(k, 1, 1, 1) in
D, a contradiction. Then x2 and y2 are both neighbors of x and so replace
in C, (y2, x2) by {xx2} ∪ {xy2}. We will either get a C(2, 1, 1, 1) of good
type in D2

i , a contradiction, or we will get a bad 4-blocks cycle of type 2,
C(2, 1, 1, 1), in D2

i and in this case replace in C, (y1, x2) by T[y1,x] ∪ (x, x2) and
get a subdivision of C(k, 1, 1, 1) in D, a contradiction.

If C = C(1, 1, 1, 1) with x1 ≤T x2 ≤T y1 ≤T y2, we proceed similarly as the
case before.

With the fact that Di = D1
i ∪ D2

i ∪ D3
i then χ(Di) ≤ 2.3.3 = 18 for all

i ∈ {0, ..., k − 1}. Consequently, as V (Di), 0 ≤ i ≤ k − 1 form a partition of
V (D), we obtain a proper 18k-coloring of D by giving to each Di 18 distinct
colors. This implies the hoped result.

61





Chapter 6

Three Blocks Paths

6.1 Introduction
This chapter is devoted to study the existence of oriented paths in digraphs.
Digraphs considered here have no loops or multiple edges.
Problem: Given a digraph D with chromatic number n, what kind of ori-
ented paths can we find in D?

Many answers were given for the case of tournaments. Grünbaum proved
in [35] that, with three exceptions, every tournament contains an antidirected
hamiltonian path. In 1972, Rosenfeld [51] gave an easier proof of a stronger
result: in a tournament on at least 9 vertices, each vertex is the origin of an
antidirected hamiltonian path. He also conjectured: there is an integer N > 7
such that every tournament on n vertices, n ≥ N , contains any orientation
of the hamiltonian path. Rosenfeld’s conjecture was verified by Thomason,
who proved in [56] that N exists and is less than 2128. In [37], Havet and
Thomassé proved that any n-tournament contains any oriented path of length
n − 1 except in three cases: the directed 3-cycle, the regular tournament on
five vertices, and the Paley tournament on seven vertices; in these cases D
contains no antidirected path of length n − 1. Further results about paths in
tournaments was established in [7, 28, 54].
In general, for any digraph D of chromatic number n, the situation is quite
different. To start with Gallai–Roy’s celebrated theorem [30, 53], they proved
that every digraph with chromatic number at least n contains a directed path
of length n − 1:

Theorem 54. Every digraph D contains a directed path with χ(G) vertices.

Proof. Let P be the longest directed path of D and denote by k its order.
Consider a maximal acyclic subdigraph D′ of D. D′ contains no directed
path with length greater than k − 1. Construct a coloring c of D using k
colors so that each vertex v is assigned the color c(v) which is the number of

63



vertices of a longest directed path in D′ starting at v. We claim that this is a
proper coloring.
Indeed, let us consider any arc (u, v) ∈ A(D). If (u, v) ∈ A(D′), let P be a
longest directed path that starts at v and ends at a vertex w ∈ D′. As D′

contains no cycle then u /∈ V (P ). Now consider the directed path starting at
u, (u, v)∪P , and so c(u) > c(v). Else if (u, v) /∈ A(D′), then D′∪(u, v) contains
a directed cycle. As D′ is maximally acyclic, D′ contains a vu-directed path
P . Let Q be a longest directed path in D′ starting at u. Because D′ is acyclic
then V (P ) ∪ V (Q) = {u}. Thus P ∪ Q is a directed path in D′ starting at v
and so c(v) > c(u).
In both cases c(u) ̸= c(v) for any arc (u, v) of D. Hence c is a proper coloring
with k colors. Hence D contains a directed path with χ(G) vertices.

Moving to paths with two blocks, El-Sahili and Kouider [24] showed that
every digraph with chromatic n + 1 contains every path of order n with two
blocks. However, Addario et.al.[57] refined this result for any digraph D with
chromatic number at least n. For the case of oriented paths with three blocks,
Burr’s result [19] guarantees the existence of any path of three blocks of length
n − 1 in any digraph with chromatic number at least (n − 1)2.
In this Chapter, we show that every 3n2

4 -chromatic digraph contains any path
of three blocks of length n − 1. El Joubbeh [40] improved this result later
by demonstrating that every digraph with chromatic number at least 4.6n
contains any path with three blocks of length n − 1. Recently, Tarhini found
a better linear bound for the chromatic number of digraphs that contains
no path with three blocks. Moreover, Mortada et.al proved in [48] that any
(n + 1)-chromatic digraph contains a three blocks path of length n − 1, in
which two consecutive blocks are of length 1 each. For k and l two positive
integers, Tarhini et. al [55] proved the existence of a P (k, 1, l) of length n − 1
in any (2n + 2)-chromatic digraph D and they proved that the existence of
such an oriented path is ensured in any n-chromatic digraph that contains a
hamiltonian directed path. Recently, Tarhini improved her result in [55] by
proving that any (2n − 3)-chromatic digraph contains any path P (k, 1, l) of
length n − 1.
In this Chapter, we are interested in the study of three blocks paths of the form
P (1, k, 1). Indeed, we prove that any (2n − 5)-chromatic digraph contains a
path of the form P (1, n−3, 1). Moreover, we show that every (n+1)-chromatic
digraph contains a subdivision of P (1, n − 3, 1).

6.2 Paths with Three Blocks
The aim of the work done in this section is to find a bound for the chromatic
number of digraphs with no paths with three blocks. Using our method, there
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is no hope to get an optimal value for χ(D) and all we look for is to give a
bound better than that given by Burr [19]. We follow in this section the same
reasoning as El Sahili in [23].
Let f(n) be the smallest positive integer such that any f(n)-chromatic digraph
contains a P (k, l, r), for k, l, and r three positive integers that sum up to n−1.
It follows from the result of Burr [19] that f(n) ≤ (n − 1)2. In this section we
will improve this bound to 3n2

4 . Given an oriented path P , we denote by P̄
the path obtained from P by reversing the directions of all the arcs of P .
The following lemma will be relevant for the proof of our result:

Lemma 55. Let G be a graph containing no K2n+1, n ≥ 2. Suppose that we
can orient G in such a way that each vertex has out-degree at most n, then
χ(G) ≤ 2n.

Define the sequence g(m, i) for m ≥ 4 and 0 ≤ i ≤ m
2 − 1 by:

g(m, i) = g(m − 1, i − 1) + 2(m − 3) for m ≥ 5 and i ≥ 1

g(m, 0) = m and g(4, 1) = 4

Lemma 56. Any g(m, i)-chromatic digraph D contains any paths P (k, m −
1 − k − i, i) for k a positive integer less than m − 1.

Proof. We will proceed by induction on i. For i = 0, the case is solved by
Addario et al. [57]. For i = 1 and m = 4 see [22] and [48].
Let i ≥ 1 and m ≥ 5. Let D be a g(m, i)-chromatic digraph with no P (k, m −
1−k−i, i). Let H be the sub digraph of D induced by the vertices of out-degree
in D at least m − 2. Set H ′ to be the sub digraph induced by V (D − H). We
claim that H contains no path of the form P (k, m − 1 − k − i, i − 1). Suppose
to the contrary that H contains a path Q = P (k, m − 1 − k − i, i − 1) and let
v be the end vertex of Q in the block of length i − 1. Since d+(v) ≥ m − 2,
then there exists an out-neighbor u of v outside Q. Notice so that Q ∪ (v, u)
is a P (k, m − 1 − k − i, i), a contradiction. And so, following the induction
hypothesis, we get that χ(H) < g(m−1, i−1). Besides, following the previous
lemma, we can find that χ(H ′) ≤ 2(m−3), since else H ′ contains a tournament
of order 2m − 5 and so by [56] it contains a P (k, m − 1 − k − i, i). But, since
χ(D) ≤ χ(H) + χ(H ′), we get that χ(D) < g(m, i), a contradiction.

Similarly we can prove the following lemma:

Lemma 57. Any g(m, i)-chromatic digraph D contains any paths P̄ (k, m −
1 − k − i, i) for k a positive integer less than m − 1.
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When looking deep on the sequence g(m, i), we can see that it is increasing
with respect to i.

Lemma 58. Let m ≥ 4, g(m, i) is an increasing sequence with respect to i.

Proof. We argue by induction on i.
For i = 1, if m = 4, then g(4, 1) = 4 ≥ g(4, 0). Else, we have:

g(m, 1) = g(m − 1, 0) + 2(m − 3) = m − 1 + 2(m − 3) ≥ m = g(m, 0)

Now suppose it is true for i, that is g(m, i) ≥ g(m, i − 1) for all m ≥ 4.
We have:

g(m, i + 1) = g(m − 1, i) + 2(m − 3) ≥ g(m − 1, i − 1) + 2(m − 3) = g(m, i)

Hence, g(m, i) is increasing with respect to i.

Now we are ready to give the quadratic bound we have found for f(m),
for m a positive integer.

Theorem 59. Every 3m2

4 -chromatic digraph contains a three blocks path of
length m − 1.

Proof. Following that every g(m, i)-chromatic digraph contains a P (k, m −
1 − k − i, i) and a P̄ (k, m − 1 − k − i, i) for any k a positive integer less than
m − 1, we can notice that f(m) is less than or equal g(, m, m

2 − 1) for m even
and less than or equal g(m, m−3

2 ) for m odd. Now we will bound those two
terms.
For m even, we have:

g(m,
m

2 − 1)

= g
(︃

m − 1,
(︃

m

2 − 1
)︃

− 1
)︃

+ 2 (m − 3)

= g
(︃

m − 2,
(︃

m

2 − 1
)︃

− 2
)︃

+ 2 (m − 3) + 2 ((m − 1) − 3)

= g
(︃

m −
(︃

m

2 − 2
)︃

, 1
)︃

+ 2 (m − 3) + . . . + 2
(︃

m −
(︃

m

2 − 3
)︃

− 3
)︃

= g
(︃

m −
(︃

m

2 − 1
)︃

, 0
)︃

+ 2 (m − 3) + . . . + 2
(︃

m −
(︃

m

2 − 2
)︃

− 3
)︃

= g(m + 2
2 , 0) + 2

m
2 −2∑︂
k=0

(m − k − 3)

= 3
4m2 − 3m + 5
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For m odd, we have:

g(m,
m − 3

2 )

= g
(︃

m − 1,
(︃

m − 3
2

)︃
− 1

)︃
+ 2 (m − 3)

= g
(︃

m − 2,
(︃

m − 3
2

)︃
− 2

)︃
+ 2 (m − 3) + 2 ((m − 1) − 3)

= g
(︃

m −
(︃

m − 3
2 − 1

)︃
, 1

)︃
+ 2 (m − 3) + . . . + 2

(︃
m −

(︃
m − 5

2 − 1
)︃

− 3
)︃

= g
(︃

m −
(︃

m − 3
2 − 1

)︃
− 1, 0

)︃
+ 2 (m − 3) + . . . + 2

(︃
m −

(︃
m − 5

2

)︃
− 3

)︃

= g(m + 3
2 , 0) + 2

m−5
2∑︂

k=0
(m − k − 3)

= 3
4m2 − 7

2m + 27
4

Therefore, f(m) ≤ 3m2

4 , for all m.

6.3 Subdivision of Paths with Three Blocks
This section is devoted to study the existence of a subdivision of P (1, k, 1) in
digraphs, for k a positive integer.
Theorem 60. Any (k + 4)-chromatic digraph D contains a path of the form
P (1, l, 1) for some l ≥ k.
Proof. Let D be a (k + 4)-chromatic digraph. Suppose to the contrary that
D contains no P (1, l, 1) for all l ≥ k. Suppose without loss of generality that
D is k + 4-critical, and so d(v) ≥ k + 3 for all v ∈ V (D).
Note that D contains a P (k, 1). Let P = x1x2..xs+1y be a path of the form
P (s, 1) such that s ≥ k and s is maximal. Due to the maximality of s, any in-
neighbor of x1 must belong to P . Besides, all the out-neighbors of x1 belong
to P , since else if there exists z ∈ N+(x1) − P , so (x1, z) ∪ P is a P (1, s, 1)
for s ≥ k, a contradiction.
Let i be the minimal integer greater than or equal to 3 such that xi ∈ N(x1).
Note that |P[xi,xs+1]| ≥ |N(x1) − {x2, y}| ≥ k + 1. If (x1, xi) ∈ E(D) then
the path (x1, x2) ∪ (x1, xi) ∪ P[xi,xs+1]) ∪ (y, xs+1) is a P (1, l, 1) for l ≥ k,
a contradiction. Else (xi, x1) ∈ E(D) and so the path (xi, x1) ∪ P[xi,xs+1] ∪
(y, xs+1) is a P (1, l, 1) for l ≥ k, a contradiction.

Conjecture 61. Any (k + 3)-chromatic digraph D contains a P (1, l, 1) for
some l ≥ k.
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6.4 Paths with Three Blocks of the form P(1,k,1)
The problem is quite different when we search for an exact copy of P (1, k, 1) in
a digraph D. Indeed, let D be a (3k+4)-chromatic digraph with no P (1, k, 1),
k is a positive integer. Let U be the set of all origins of any P (k, 1) in D. It
is clear that U ̸= ϕ. If all the vertices in U has an out-degree in D less than
k + 1 then, by lemma 2.1, χ(U) ≤ 2k + 2. Then χ(D − U) ≥ k + 2 and so
D −U contains a P (k, 1), a contradiction. Hence there exists u ∈ U such that
d+(u) > k + 1. Let Pu(k, 1) be a path of the form P (k, 1) in D with origin
u. Let z ∈ N+(u) − Pu(k, 1) and so the path Pu(k, 1) ∪ (u, z) is P (1, k, 1),
contradiction. Hence every (3k + 4)-chromatic digraph contains a P (1, k, 1).
In the sequel, we improve this to 2k + 1.

Theorem 62. Any (2k + 1)-chromatic digraph contains a P (1, k, 1), k is a
positive integer.

Proof. Let D be a digraph with χ(D) = 2k + 1 with k ≥ 2 positive integer.
Suppose without loss of generality that D is critical. We argue by the way of
contradiction assuming that D has no P (1, k, 1). Let D1 be the subdigraph
of D induced by the vertices of D with d−

D(v) ≥ k + 1 and D2 the subdigraph
of D induced by V (D) − V (D1). Note that all the vertices in D2 have an
out-degree in D is greater than or equal k. We either have χ(D2) ≥ k or
χ(D1) ≥ k + 2. Suppose first that χ(D2) ≥ k. Let P be a directed path of
maximal length in D2. It’s clear that l(P ) ≥ k − 1.
Claim 1: l(P ) ≥ k.

Proof. Suppose to the contrary that l(P ) = k − 1. Set P = x1...xk. Note
that N+

D2(xk) ⊂ P then xk has at least two out-neighbors in D1, say a1 and
a2. Since d+(x1) ≥ k, let v an out-neighbor of x1 outside P . If v /∈ {a1, a2}
then N−(ai) = P ∪ {v} for i = 1, 2, since else let z ∈ N−(ai) − (P ∪ {v})
then (z, ai) ∪ (xk, ai) ∪ P ∪ (x1, v) is a P (1, k, 1), contradiction. But now
(v, a2) ∪ (xk, a2) ∪ P ∪ (x1, a1) is a P (1, k, 1), contradiction. Thus v ∈ {a1, a2}.
Without loss of generality consider that v = a2. Note that N−(a1) = P ∪ {v}
and N+(x1) ⊆ P ∪ {v}. Since (a2, a1) ∈ D and d−(a2) ≥ k + 1, then a2 has
an in-neighbor outside P ∪ {a1}, say x. Set (x, a2) ∪ (xk, a2) ∪ P ∪ (x1, a1) is
a P (1, k, 1), contradiction.

Set then P = x1...xr+k with r ≥ 1 and P1 = xr...xr+k.
Claim 2: N+(xr+k) ∩ D1 = ϕ .

Proof. Suppose to the contrary that N+(xr+k) ∩ D1 ̸= ϕ. If |N+(xr+k) ∩
D1| ≥ 2. Then a contradiction can be reached using the same argumentation
as claim 1. Then |N+(xr+k) ∩ D1| = 1. Let a1 ∈ N+(xr+k) ∩ D1. We
claim that xr ∈ N−(a1). Suppose not, then there exists w ∈ N−(a1) −
P1. If (xr+k−1, a1) ∈ E(D), then N+(xr) = [xr+1, xr+k] and so (xr, xr+2) ∈
E(D). Consequently, (xr, xr+1) ∪ (xr, xr+2) ∪ [xr+2, xr+k] ∪ (xr+k, a1) ∪ (w, a1)
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is a P (1, k, 1), contradiction. Hence (xr+k−1, a1) /∈ E(D) and so there exists
w′ ∈ N−(a1) − P1 − {w}. In this case N+(xr+1) = [xr+2, xr+k] ∪ {a1}. And
so N+(xr) = [xr+1, xr+k] in particular (xr, xr+2) ∈ E(D), contradiction as
before. Hence xr ∈ N−(a1). Consequently, N+(xr+1) = [xr+2, xr+k] ∪ {a1}.
In particular (xr+1, xr+k) ∈ E(D), but N+(xr+k) ≥ k then there exists xj ∈
N+(xr+k) for 1 ≤ j < r so r ≥ 2. As before xr−1 ∈ N−(a1). Then xr+k has at
least two out-neighbors in [x1, xr[, let xi be one of them with i maximal, then
(xi−1, xi)∪ [xr+1, xr+k]∪(xr+k, xi)∪(xr+1, a1) is a P (1, k, 1), contradiction.

Claim 3: If (xr+k, xr) ∈ E(D) then (xr+k, x1) ∈ E(D).

Proof. Suppose to the contrary that (xr+k, x1) /∈ D.
Since (xr+k, xr) ∈ E(D) then N+(xr+1) ⊆ [xr+2, xr+k] ∪ {xr−1}, since else
we get a P (1, k, 1), a contradiction. But d+(xr+1) ≥ k, then N+(xr+1) =
[xr+2, xr+k] ∪ {xr−1}. In particular, (xr+1, xr+k) ∈ E(D). Since d+(xr+k) ≥ k,
then there exists 1 < i < r − 1 such that xi ∈ N+(xr+1). Hence (xi−1, xi) ∪
[xr+1, xr+k] ∪ (xr+k, xi) ∪ (xr+1, xr−1) is P (1, k, 1), a contradiction.

Now if |N+(xr+k) ∩ [x2, xr[| ≥ 3, then we get P (1, k, 1), contradiction. If
|N+(xr+k) ∩ [x2, xr[| = 2 then so (xr+k, x1) ∈ E(D), since else we get that
(xr+k, xr+1) ∈ E(D), but since d+(xr+1) ≥ k then xr+1 has at least two out
neighbors outside P1 which gives a contradiction as before. If |N+(xr+k) ∩
[x2, xr[| ≤ 1, then (xr+k, x1) ∈ E(D). Hence xi can play the role of xr+k for
every xi ∈ V (P ). We claim that N−(xi) ⊂ P for every xi ∈ V (P ). Otherwise,
without loss of generality suppose that there exists z ∈ N−(xr+k)−P . z ∈ D1,
since else (z, xr+k)∪(xr+k, x1)∪[x1, xr+k−1] is a directed path in D2 longer than
P , a contradiction. Since N+(xr) ⊆ P then N+(xr) = [xr+1, xr+k], otherwise
we get a P (1, k, 1), in particular, (xr, xr+2) and (xr, xr+k) ∈ E(D). But
d+(xr+k) ≥ k, then there exists xj ∈ N+(xr+k) such that 1 < j < r. Hence
(xr, xr+1) ∪ (xr, xr+2) ∪ [xr+2, xr+k] ∪ (xr+k, xj) ∪ (xj−1, xj) is a P (1, k, 1), a
contradiction. Hence N−(xi) ⊂ P for every xi ∈ V (P ). Since also N+(xi) ⊂ P
and D is critical then V (D) = V (D2) = V (P ). Since d+(xi) ≥ k and d−(xi) ≤
k for every xi ∈ V (P ), then d+(xi) = d−(xi) = k for every xi ∈ V (P ) and so
D is a 2k-regular digraph. Since χ(D) = 2k+1, then D is a 2k+1-tournament
and so it contains a P (1, k, 1), a contradiction.
Consequently, χ(D2) < k and so χ(D1) ≥ k + 2 , then let P = z1...zk+r be a
directed path in D1 with maximal length in (r ≥ 2) and let P2 = z1...zk+1.
Claim 4: N−(z1) ∩ D2 = ϕ.

Proof. Suppose to the contrary that N−(z1) ∩ D2 ̸= ϕ. Let a1 ∈ D2 ∩ N−(z1).
Since d−(zk) ≥ k + 1, then there exists v ∈ N−(zk) − [z1, zk+1] − {a1} .
Note that d+(a1) ≥ k. If there exists w ∈ N+(a1) − [z1, zk] − {v}, we get a
P (1, k, 1), a contradiction. Hence N+(a1) ⊆ ([z1, zk]∪{v}). If (a1, z2) ∈ E(D)
then N−(zk+1) = [z1, zk] ∪ {a1} since else we get a P (1, k, 1), a contradiction.
But N+(a1) ⊆ ([z1, zk] ∪ {v}), a contradiction. And so (a1, z3) ∈ E(D).
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Since d−(zk+2) ≥ k + 1 and zk+2 /∈ N+(a1), then there exists x ∈ N−(zk+2) −
([z3, zk]∪{a1, z1}). Hence (x, zk+2)∪ [z3, zk+2]∪(a1, z3)∪(a1, z1) is a P (1, k, 1),
contradiction.

Since d−(z1) ≥ k + 1 then there exists zt1 , zt2 ∈ N−(z1) such that k <
t1 < t2 < k + r. Also since d−(zk) ≥ k + 1 then |N−(zk) − [z1, zk−1]| ≥ 2.
Set I = N−(zk) − [z1, zk−1]. I ⊆ {zt1 , zt1+1} ∩ {zt2 , zt2+1} since else we get a
P (1, k, 1), a contradiction. But |I| ≥ 2, and so |{zt1 , zt1+1} ∩ {zt2 , zt2+1}| ≥ 2
then {t1, t1 + 1} = {t2, t2 + 1}, a contradiction.
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Part II
Neighborly Partitions and New
Identities of Integer Partitions

73





Chapter 7

Neighborly Partitions and the
numerators of
Rogers-Ramanujan Identities

7.1 Introduction
Among the most famous and ubiquitous formulas involving q-series, we find
the Rogers-Ramanujan identities:

∞∑︂
k=0

qk2

(1 − q) . . . (1 − qk) =

∏︁
j≥1, j ≡ 0,±2 mod 5

(1 − qj)
∏︁

j≥1
(1 − qj) , (7.1)

∞∑︂
k=0

qk2+k

(1 − q) . . . (1 − qk) =

∏︁
j≥2, j ≡ 0,±1 mod 5

(1 − qj)
∏︁

j≥2
(1 − qj) . (7.2)

On the left side of the identities, the term corresponding to k = 0 is taken
to be 1. Usually the right side of this identity is written after the obvious
simplifications which allow to put 1 in the numerators. We chose this form,
because the numerators play an important role in this chapter. As revealed
by MacMahon [44], these identities can be stated in the realm of the theory
of partitions: recall first that an integer partition of a positive integer n is
simply a decreasing sequence of positive integers λ = (λ1, .., λr), such that
|λ| := λ1 + . . . + λr = n. The λi’s are called the parts of λ and r =: size(λ)
is its size; see [9, 14] for more about the theory of partitions.

Theorem 63. (Rogers-Ramanujan identities) Let n be a positive integer. For
i ∈ {1, 2}, let Ti(n) be the set of partitions of n without equal nor consecutive
parts and the part 1 appears at most i − 1 times. Let Ei(n) be the number of
partitions of n into parts congruent to ±(2 + i) mod 5. Then we have
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| Ti(n) |=| Ei(n) | .

The notation | A | in the theorem stands for the cardinal of a set A. Observe
that the sums side in the q − series identities corresponds to the generating
series of the | Ti(n) | (first for i = 2 and then for i = 1) and the products
side corresponds to the generating series of the | Ei(n) | . These identities
appear in many fields other than combinatorics, such as statistical mechanics,
number theory, representation theory, algebraic geometry, probability theory
or commutative algebra [1, 2, 3, 4, 5, 8, 10, 12, 17, 18, 29, 31, 34].

The main goal of this chapter is to prove two identities which are in some
sense dual to the Rogers-Ramanujan identities. We begin by introducing the
notions appearing in these new identities: neighborly partitions, signature of
a neighbourly partition.

Definition 64. For i ∈ {1, 2} and for a positive integer n, we call neighborly
partitions of n the set Ni(n) of partitions λ of n which satisfy the following
properties:

1. For every part λj of λ, there exists l ∈ N>0, l ̸= j such that | λl−λj |≤ 1.

2. The multiplicity of any part of λ is at most 2 (i.e. there is no part of λ
which is repeated more than twice).

3. For every l ∈ N, λl ≥ 3 − i (i.e. for i = 1, there are no parts equal to
1).

The terminology neighborly is inspired by the property 1. which says that
for every part λj of λ, there is a neighbor part λl of λ which is equal or at a
distance 1 to λj. As an example, the integer 4 has 5 partitions:

4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Then the neighborly partitions are

N1(4) = {2 + 2}, N2(4) = {2 + 2, 2 + 1 + 1}.

With a neighborly partition λ, we associate a graph Gλ as follows: The set
V (Gλ) of vertices of Gλ is in bijection with the set of parts of λ; if h is a part
of λ of multiplicity 1, the associated vertex is called xh; if h is a part of λ
of multiplicity 2, the vertices associated with the two equal parts are named
respectively xh and yh. The set E(Gλ) of edges of Gλ is given by

E(Gλ) = {(xh+1, xh), (xl, yl), for every xh+1, xh, xl, yl ∈ V (Gλ)}.

For example V (G2+1+1) = {x2, x1, y1}, E(G2+1+1) = {(x2, x1), (x1, y1)} and
G2+1+1 has the following shape

76



x1

y1

x2

Figure 7.1: The graph G2+1+1

A subgraph H of Gλ is said to be vertex-spanning if V (H) = V (Gλ); it is said
to be without isolated vertices if any vertex of H is an endpoint of some edge
in E(H).

Definition 65. Let λ be a neighborly partition. We define the signature δ(λ)
of λ by

δ(λ) =
∑︂
H

(−1)|E(H)|,

where H ranges over the vertex spanning subgraphs of Gλ, which have no
isolated vertices and | E(H) |, as mentioned before, is the cardinal of E(H).

We now are ready to state the main theorem. Let n be a positive integer;
for i ∈ {1, 2}, let Ri(n) be the set of partitions of n whose parts are larger or
equal to 3 − i, distinct and congruent to 0 or ±(i) mod 5.

Theorem 66. [47] Let n be a positive integer. For i ∈ {1, 2}, we have the
identities

∑︂
λ∈Ni(n)

δ(λ) =
∑︂

λ∈Ri(n)
(−1)size(λ).

Example 67. 1. For n = 6 and i = 1, we have N1(6) = {3 + 3} and
R1(6) = {6}. The graph G3+3 has the following shape

x3

y3

Figure 7.2: The graph G3+3

and it has no (strict) subgraphs which are vertex-spanning without iso-
lated vertices. Hence, we have

∑︂
λ∈N1(6)

δ(λ) = δ(3+3) = (−1)1 =
∑︂

λ∈R1(6)
(−1)size(λ) = (−1)size(6) = (−1)1.
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2. For n = 6 and i = 2, we have N2(6) = {3+3, 3+2+1, 2+2+1+1} and
R2(6) = ϕ. The graphs corresponding to the partitions 3+3, 3+2+1 have
no (strict) vertex-spanning subgraphs without isolated vertices ; hence we
have δ(3 + 3) = (−1)1 and δ(3 + 2 + 1) = (−1)2. The graph G2+2+1+1
has the shape

x1

y1

x2

y2

Figure 7.3: The graph G2+2+1+1

and beside G2+2+1+1 itself, its only vertex-spanning subgraph without
isolated vertices is

x1

y1

x2

y2

Hence, we have δ(2 + 2 + 1 + 1) = (−1)3 + (−1)2 = 0 and∑︂
λ∈N2(6)

δ(λ) = δ(3 + 3) + δ(3 + 2 + 1) + δ(2 + 2 + 1 + 1) = −1 + 1 + 0

= 0 =
∑︂

λ∈R2(6)
(−1)size(λ).

For i ∈ {1, 2}, We set Ni = ∪n∈N>0Ni(n). By considering the generat-
ing sequence of both sides of Theorem 66, we find the following equivalent
statement:
Corollary 68. For i ∈ {1, 2}, we have the identities∑︂

λ∈Ni

δ(λ)q|λ| =
∏︂

j≥3−i,j ≡ 0,±i mod 5

(1 − qj).

One observes that the right side of the identities in corollary 68 corresponds
to the numerators of the identities (7.1) and (7.2). As we will show later, the
left side of the identities in the theorem is related to the left side of the
identities (7.1) and (7.2). Here we use the Rogers-Ramanujan identities to
prove theorem 66. The proof of the main theorem is actually a proof that
the Rogers-Ramanujan identities are equivalent to corollary 68; in particular,
a direct proof (i.e. which does not use the Rogers-Ramanujan identities) of
theorem 66 would also give a proof of the Rogers-Ramanujan identities.
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7.2 Strategy and Proof of the Main Result
We will divide the scheme of the proof into three steps which are the subject
of the three subsections of this section.

1. For i ∈ {1, 2}, we interpret the q-series ∑︁
λ∈Ni

δ(λ)q|λ| (see corollary 68)
in terms of a generating series Si "counting" the subgraphs of an infinite
(simple) graph G∞

i .

2. For i ∈ {1, 2}, we give a formula relating Si to the Hilbert series Hi of
a graded ring which is the quotient of polynomial ring with a (infinite)
countable number of variables: In this step, we use the notion of edge
ideals, and the result that we prove is valid for any edge ideal.

3. For i ∈ {1, 2}, we describe a formula relating Hi in terms of the gen-
erating series of | Ti(n) | (see theorem 63). Then we use the Rogers-
Ramanujan identities to obtain the main results.

All the graphs that we will consider are simple, i.e they do not have more
than one edge between any two vertices and no edge starts and ends at the
same vertex.

7.2.1 Neighborly partitions and enumerating subgraphs
For i ∈ {1, 2}, we begin by considering the infinite graph G∞

i whose set
of vertices is V (G∞

i ) = {xj, yj; j ∈ N, j ≥ 3 − i} and whose set of edges is
E(G∞

i ) = {(xj, xj+1), (xj, yj); j ≥ 3−i}. Notice that for a neighborly partition
λ ∈ Ni, the graph Gλ is an induced subgraph of G∞

i which has no isolated
vertices. So G∞

i has the following shape

x3−i

y3−i

x4−i

y4−i

xl−1

yl−1

xl

yl

. . . . . .

Recall that a subgraph H is said to be induced if an edge of G is an edge
of H whenever its endpoints are vertices of H. In particular, such a subgraph
is completely determined by it vertices. Conversely any induced subgraph of
G∞

i , i = 1, 2, without isolated vertices is of the type Gλ for some λ ∈ Ni.

Definition 69. Let G be a simple graph, let V (G) = {vj, j ∈ I} be its set
of vertices that we assume countable. We call the multivariable subgraph enu-
merating series of G the series in the variables (vj)j∈I and which is defined
by

79



SG(v, z) =
∑︂
H

(
∏︂

vj∈V (H)
vj)z|E(H)|,

where H ranges over finite subgraphs of G without isolated vertices and where
we denoted by v the multivariable (vj)j∈I .

Note that, since we are only considering finite subgraphs, the monomi-
als in the multivariable subgraph enumerating series make intervene a finite
number of variables. We will express the series corollary 68 in terms of the
multivariable subgraph enumerating series of G∞

i , i = 1, 2. Recall the vertices
vj of G∞

i , i = 1, 2 belong to {xj, yj; j ∈ N, j ≥ 3 − i}. Denote by x the
multivariable (xj)j≥3−i and by y the multivariable (yj)j≥3−i.

Lemma 70. For i ∈ {1, 2}, set Si(v, z) := SG∞
i

(v, z) = Si(x, y, z). Let
Sw

i (q, z) be the series which is obtained from Si(x, y, z) by substituting xj and
yj by qj. We have

∑︂
λ∈Ni

δ(λ)q|λ| = Sw
i (q, −1).

Proof. For i ∈ {1, 2}, we have

Si(v, z) =
∑︂
H

(
∏︂

vj∈V (H)
vj)z|E(H)|

=
∑︂

V ⊂V (G∞
i )

(
∑︂

{H;V (H)=V }
(

∏︂
vj∈V

vj)z|E(H)|) =
∑︂

V ⊂V (G∞
i )

(
∏︂

vj∈V

vj)(
∑︂

{H;V (H)=V }
z|E(H)|),

where H ranges over finite subgraphs of G∞
i without isolated vertices and V

over the sets of vertices of such subgraphs H. So we have gathered the sub-
graphs which have the same set of vertices V together. The induced subgraph
of G∞

i whose set of vertices is such a V is of the form Gλ for some λ ∈ Ni. In
particular, if we replace in ∏︁

vj∈V vj the xj’s and the yj’s by qj, we obtain q|λ|.

Moreover if we set φ(z) = ∑︁
{H;V (H)=V } z|E(H)|, we obtain by the definition of

the signature that δ(λ) = φ(−1) and the lemma follows.

7.2.2 Multigraded Hilbert series of Edge ideals and enu-
merating subgraphs

Let G be a simple graph, let V (G) = {vj, j ∈ I} be its set of vertices that
we assume countable or finite. Let E(G) be set of edges of G that we also
assume countable or finite (this is sufficient for our purposes). Let K be a
field of zero characteristic. We consider the ring of polynomials A = K[v] =
K[vj, j ∈ I] whose variables range in the set of vertices V (G). With the graph
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G we associate its edge ideal which is a square-free monomial ideal generated
by

I(G) =< vjvl | (vj, vl) ∈ E(G) > .

We are interested in the multigraded Hilbert series which counts the mono-
mials in the quotient ring of the polynomial ring by an edge ideal.

Definition 71. Let G be a simple graph as above. The multigraded Hilbert
series of A/I(G) is the series HG in the variables vj, j ∈ I which is defined
by

HA/I(G)(v) = HG(v) =
∑︂

M ̸∈I(G)
M,

where M ranges over the monomials of A (making intervene a finite number
of variables) which are not in the ideal I(G).

Note that the multigraded Hilbert series of A/I(G) "counts" the mono-
mials in A which are not zero in A/I(G). We have the following formula
expressing the multigraded Hilbert series in terms of the multivariable sub-
graph enumerating series.

Lemma 72. Let G be a simple graph as above. We have

HG(v) = SG(v, −1)∏︁
j∈I(1 − vj)

.

Proof. First one remarks that (one may think of the one variable and then
two variables cases to be convinced)

HA(v) = 1∏︁
j∈I(1 − vj)

.

Now recall that a monomial belongs to a monomial ideal if and only if it is
divisible by at least one of its generators. Let M = {m1, m2, . . .} be the set
of generators of I(G) which are in bijection with the edges of G. We have the
formula

HA/I(G)(v) = HA(v) −
∑︂

m∈M

mHA(v)

+
∑︂

{mj1 ,mj2 }⊂M

lcm(mj1 , mj2)HA(v) + . . . +

(−1)k
∑︂

{mj1 ,mj2 ,...,mjk
}⊂M

lcm(mj1 , mj2 , . . . , mjk
)HA(v) + . . . =

HA(v)[1 −
∑︂

m∈M

m +
∑︂

{mj1 ,mj2 }⊂M

lcm(mj1 , mj2) + . . . +

(−1)k
∑︂

{mj1 ,mj2 ,...,mjk
}⊂M

lcm(mj1 , mj2 , . . . , mjk
) + . . .], (7.3)
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where lcm stands for the least common multiple. The formula expresses that
the (non-zero) monomials A/I(G) are the monomials in A except those which
are divisible by one of the m′

js. When taking out the monomials which are
divisible by one of the mj (which is expressed by − ∑︁

m∈M mHA(v)), we take
out twice those which are divisible at the same time by some mj1 and mj2 (i.e.
by lcm(mj1 , mj2)); so we need to add once those which are divisible by both
(this is expressed by adding ∑︁

{mj1 ,mj2 }⊂M lcm(mj1 , mj2)HA(v)) hence adding
twice those which are divisible by three and so on: this is simply the inclusion
exclusion-principle since the monomials in I(G) are those which belong to
the union of the ideals generated by the m′

js. Now remark that choice of k
monomials mj1 , mj2 , . . . , mjk

corresponds to the choice of k edges of G, i.e. a
subgraph of G having k edges and the variables appearing in the associated
monomial (which are square free, the graph G being simple) correspond to
vertices of this subgraph; hence we have

SG(v, −1)
= 1 −

∑︂
m∈M

m + . . . + (−1)k
∑︂

{mj1 ,mj2 ,...,mjk
}⊂M

lcm(mj1 , mj2 , . . . , mjk
) + . . .

and the proposition follows.

Remark 73. 1. Note that the formula (7.3) in lemma 72 can also be seen
as a direct application of the Taylor resolution (see [50]) of the monomial
ideal I(G).

2. A variant of the formula in lemma 72 exists in the literature, often for
special gradings [32]; however, this exact statement will be needed in the
next subsection and the proof makes the paper self-contained.

7.2.3 Proof of the main result
For i = 1, 2 we now consider the K-algebra Pi := K[xj, yj, j ≥ 3 − i]/I(G∞

i )
which, by definition of the ideal I(G∞

i ) is equal to

K[xj, yj, j ≥ 3 − i]
< xjyj, xjxj+1, j ≥ 3 − i >

.

By giving to xj and yj, for j ≥ 3 − i, the weight j, the algebra P inherits the
structure of a graded algebra, i.e. we can write

Pi = ⊕h∈Z≥0Pi,h

where the Pi,h’s are additive groups satisfying Pi,h.Pi,h′ ⊂ Pi,h+h′ . By abuse of
notation, the Pi,h is a K-vector space generated by all the monomials which
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does not belong to I(G∞
i ) and which have weight equal to h. The Hilbert-

Poincaré series of the graded algebra Pi is by definition

HPPi
(q) :=

∑︂
h∈Z≥0

dimKPi,hqh.

One notices that the monomials in the varaibles xj, yj which are of weight h
are exactly those such that when we replace xj and yj by qj, we obtain qh : for
instance, xjxj′ is of weight j + j′ and the mentioned substitution gives qj+j′

.
Hence, if we set Hw

Pi
(q) to be the series which is obtained from HG∞

i
(v) (see

Definition 71) by substituting xj and yj by qj we find

HPPi
(q) = Hw

Pi
(q).

Applying lemma 72 and lemma 70 we deduce the following:

Proposition 74. We have

HPPi
(q) =

∑︁
λ∈Ni

δ(λ)q|λ|∏︁
j≥3−i(1 − qj)2 .

To make the link with Rogers-Ramanujan identities we will consider polar-
ization of monomial ideals: this is a procedure that allows to associate with
a monomial ideal a squarefree monomial ideal in a polynomial ring which
has more variables. The interesting fact is that invariants of both ideals are
very related. The procedure amounts to replace any power of the type xe (in
some polynomial ring having x as a variable) by the monomial xy1 . . . ye−1
where the yi are variables in a new polynomial ring extending the variables
in the original polynomial ring. By applying this process to the generators
of a monomial ideal, we obtain a squarefree monomial ideal. The important
examples for us are the ideals

I(G∞
i ) =< xjyj, xjxj+1, j ≥ 3 − i >⊂ K[xj, yj, j ≥ 3 − i], for i = 1, 2.

These are the polarization (this is why we called our ring above Pi) of the
ideals

< x2
j , xjxj+1, j ≥ 3 − i >⊂ K[xj, j ≥ 3 − i],

where the grading is induced from giving to xj the weight j. We have the
following (Corollary 1.6.3 in [38], see also [46, 50]):

HPPi
(q) =

HPK[xj ,j≥3−i]/<x2
j ,xjxj+1,j≥3−i>(q)∏︁

j≥3−i(1 − qj) . (7.4)

Note that, in loc. cit., the proof is given for finitely generated ideals. But
this extends easily to our situation. Indeed, the K-algebra

R := K[xj, j ≥ 3 − i]/ < x2
j , xjxj+1, j ≥ 3 − i >
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is the inductive limit of the K-finitely generated algebra

Rn = K[xj, 3 − i ≤ j ≤ n + 1]/ < x2
j , xjxj+1, 3 − i ≤ j ≤ n > .

Moreover, since the weights of the variables xj are growing we can see that

HPRn(q) = HPR(q) modulo qn.

This implies

lim
n→+∞

HPRn(q) = HPR(q),

and that the case of finitely generated ideals gives the equality (7.4).

Now everything is settled down for the proof of Corollary 68 (which is
equivalent to Theorem 66).

Proof. On one hand, from Proposition 74 and the equality (7.4) we otain that
for i ∈ {1, 2} we have

∑︁
λ∈Ni

δ(λ)q|λ|∏︁
j≥3−i(1 − qj)2 =

HPK[xj ,j≥3−i]/<x2
j ,xjxj+1,j≥3−i>(q)∏︁

j≥3−i(1 − qj) . (7.5)

On the other hand, the homogeneous components of weight h of

R = K[xj, j ≥ 3 − i]
< x2

j , xjxj+1, j ≥ 3 − i >

is generated by the monomials xi1 . . . xir such that i1 + . . . + ir = h and
which are not divisible by neither x2

j nor xjxj+1, for any j ∈ N. So the data of
such a monomial is equivalent to the data of a partitions of h without equal
nor consecutive parts and the part 1 appears at most i − 1 times (because of
the condition j ≥ 3 − i in the indices of the variables xj). Hence we have

HPR(q) =
∑︂
h≥0

| Ti(h) | qh,

which is the left side of the identities (7.1) (for i = 2) and of (7.2) (for i = 1).
From the equalities (7.5), (7.1) and (7.2), we get that for i ∈ {1, 2}, we have:

∑︁
λ∈Ni

δ(λ)q|λ|∏︁
j≥3−i

(1 − qj) =

∏︁
j≥3−i, j ≡ 0,±i mod 5

(1 − qj)
∏︁

j≥3−i
(1 − qj) ,

and the theorem follows.
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Chapter 8

∆m-Partitions and Jet Schemes
of the Double Point

8.1 Introduction
In this chapter, for a positive integer m we study the family of ideals defining
the jet scheme of the double point SpecK[x]/x2( K being an algebraically
closed field of characteristic 0) and we conclude some results concerning the
generating series of a special type of integer partitions that we will introduce
below.
As we mentioned before, the (m − 1)-jet scheme of X is the space of maps
of the form: SpecK[t]/tm → X. Such a map is determined by the data
(x0, . . . , xm−1) ∈ K for which x(t)2 ≡ 0 mod tm, where x(t) = x0 + x1t + . . . +
xm−1t

m−1. When expanding this equation, we get a set of polynomials of the
form:

f1 = x2
0, f2 = 2x0x1, . . . , fm =

m−1∑︂
i=0

xixm−1−i

Let Rm be the polynomial ring over the field K defined over the variables
x0, . . . , xm−1. The ideal defining the (m − 1)-jet scheme of X in SpecRmis
the ideal Im ⊂ Rm generated by f1, .., fm. We will endow Rm with a double
grading by assigning to each xi the bigrading (i, 1), for 0 ≤ i ≤ m − 1. Notice
that the ideal Im is homogeneous for both grading.
Define the bigraded Hilbert series of Rm/Im to be the series in Z[[q, t]] given
by:

Hm(q, t) =
∑︂

i,j≥0
dimK(Rm/Im)i,jq

itj

Gorsky et. al. [11] found an explicit formula for this Hilbert series:

Theorem 75 ([11]). The Hilbert series Hm(q, t) is given by the following
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explicit formula:

Hm(q, t) =
∞∑︂

p=0

(︂
h(m,p)+1

p

)︂
q
qp(p−1)tp

(1 − qm−h(n,p)t) . . . (1 − qm−1t)

where h(m, p) = ⌊m−p
2 ⌋ and

(︂
a
b

)︂
q

= (1−q)...(1−qa)
(1−q)...(1−qb)(1−q)...(1−qa−b)

In the following section, we determine the initial ideal of Im for the reverse
lexicographic order and we conclude the generating series of a new type of
integer partitions.

Definition 76. Let n be a positive integer. Let λ be a partition of n. De-
note SC(λ) to be the pair of the smallest consecutive or equal parts of λ. For
SC(λ) = (i, j), denote by |SC(λ)| the sum i + j. Define the k-value of λ as
follows: k(λ) = |SC(λ)| − |λ| − 1. For a partition λ with no consecutive or
equal parts we consider |k(λ)| = +∞.
We call ∆m-partitions of n the set ∆m(n) of partitions λ of n with parts less
than or equal to m such that for any k(λ) parts i1 ≤ . . . ≤ ik(λ) of λ less than

or equal to ⌊m − 3k − 1
2 ⌋ + 1 + 2(k − 1) we have |it − it+1| ≤ 1 for some t.

Denote by ∆m(n, p) the set of all the ∆m-partitions of n with size p.

Definition 77. Define the generating series of ∆m(n, p) to be the two variable
power series given by:

Hm(q, t) =
∑︂

n,p≥0
∆m(n, p)qntp

Theorem 78. Let n ≥ 1 be an integer. The generating series of the ∆m-
partitions is given by:

Hm(q, t) = Hm(q, qt) =
∞∑︂

p=0

(︂
h(m,p)+1

p

)︂
q
qp2

tp

(1 − qm+1−h(m,p)t) . . . (1 − qmt)

where h(m, p) = ⌊m−p
2 ⌋ and

(︂
a
b

)︂
q

= (1−q)...(1−qa)
(1−q)...(1−qb)(1−q)...(1−qa−b)

8.2 The Initial Ideal of Im and the ∆m- Parti-
tions

Let Rm = K[x0, .., xm−1] and let Im ⊂ Rm be the ideal generated by f1, .., fm,
as defined above. In a paper of Gorsky et. al [11], they found a recursive
definition for the Gröbner basis of Im with respect to the reverse lexicographic
order. Following their work, we will compute the generators of the initial ideal
of Im.
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Order the monomials in Rm following the reverse lexicographic order, that is:
xα < xβ if and only if |α| < |β| or |α| = |β| and the rightmost entry of
α − β is negative. The following two operators were defined in [11] in the sake
of finding the Gröbner basis Gm of Im with respect to the reverse lexicographic
order.
Define a ring homomorphism S : Rm → Rm+1 by the equation S(xi) = xi+1.
This homomorphism is called the shift operator. Define the modified shift
operator S̃ over Im as follows:
For any element p ∈ Im of the form p =

m∑︁
i=1

ϕifi, define S̃(p) as:

S̃(p) =
m∑︂

i=1
S(ϕi)fi+2

Theorem 79 ([11]). Let

G1 = {f1} ⊂ R1, G2 = {f1, f2} ⊂ R2

and recursively define the sets Gm, m ≥ 3 as follows:

Gm = x0S
2(Gm−3) ∪ {f1, f2} ∪ S̃(Gm−2).

Then Gm is a Gröbner basis for Im.

In the following, we will determine the initial ideal of Im.

Lemma 80. The initial ideal L(Im) with respect to the reverse lexicographic
order is generated by the following monomials:

xjxixi1 . . . xik

such that j = i or i + 1, k = i + j − m + 1, 0 ≤ i1 ≤ ⌊m − 3k − 1
2 ⌋ and

il−1 + 2 ≤ il ≤ ⌊m − 3k − 1
2 ⌋ + 2(l − 1)

for which xi1 = . . . = xik
= 1 if k ≤ 0

Proof. We will proceed by induction. For m = 1 or 2, we can easily check
that it is true.
Suppose it is true up to m − 1, let’s prove it for m.
The initial terms of S̃(Gm−2), which are the initial terms of Gm−2 shifted once
by S have the following form:

S(xjxixi1 ..xik
)

such that j = i or i + 1, k = i + j − m + 2 + 1, 0 ≤ i1 ≤ ⌊m − 2 − 3k − 1
2 ⌋

and il−1 + 2 ≤ il ≤ ⌊m − 2 − 3k − 1
2 ⌋ + 2(l − 1)
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That is:

xj+1xi+1xi1+1..xik+1
such that j = i or i + 1, k = (i + 1) + (j + 1) − m + 1,

1 ≤ i1 + 1 ≤ ⌊m − 3k − 1
2 ⌋ and

il−1 + 2 + 1 ≤ il + 1 ≤ ⌊m − 2 − 3k − 1
2 ⌋ + 2(l − 1) + 1

That is:

xj′xi′xi′
1
..xi′

k

such that j = i or i + 1, k = i′ + j′ − m + 1, 1 ≤ i′
1 ≤ ⌊m − 3k − 1

2 ⌋ and

il−1 + 2 ≤ i′
l ≤ ⌊m − 3k − 1

2 ⌋ + 2(l − 1)

The initial terms of x0S
2(Gm−3) have the following form:

xj+2xi+2x0xi1+2..xik+2
such that j = i or i + 1, k = i + j − m + 3 + 1 and

il−1 + 2 + 2 ≤ il + 2 ≤ ⌊m − 3 − 3k − 1
2 ⌋ + 2(l − 1) + 2

That is:

xj′xi′xi′
1
xi′

2
..xi′

k′

such that j′ = i′ or i′ + 1, k′ = k + 1 = i′ + j′ − m + 1, i′
1 = 0 and

i′
l−1 + 2 ≤ i′

l ≤ ⌊m − 3(k + 1) − 1
2 ⌋ + 2(l − 1)

That is:

xj′xi′xi′
1
xi′

2
..xi′

k′

such that j′ = i′ or i′ + 1, i′ ≤ 2(m − 1)/3, k′ = k + 1 = i′ + j′ − m + 1,
i′
1 = 0 and i′

l−1 + 2 ≤ i′
l ≤ ⌊m − 3k′ − 1

2 ⌋ + 2(l − 1)

That is:

xj′xi′xi′
1
xi′

2
..xi′

k′

such that j′ = i′ or i′ + 1, k′ = i′ + j′ − m + 1, i′
1 = 0 and

i′
l−1 + 2 ≤ i′

l ≤ ⌊m − 3k′ − 1
2 ⌋ + 2(l − 1)
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Following from [33], the Hilbert series of the quotient ring Rm/Im is equal
to that of the quotient ring Rm/L(Im).
Denote by R′

m the polynomial ring in K over the variables x1, . . . , xm. This
ring is nothing but the image of Rm by the shift operator S. Similarly, denote
by I ′

m the ideal of R′
m generated by S(fi), 1 ≤ i ≤ m. As in the case of

Rm, we consider R′
m = ⊕R′

i,j. Notice that the image by S of a monomial

xα = xα1
i1 . . . x

αj

ij
of Rm of degree j and weight i =

t=j∑︁
t=1

itαt is given by S(xα) =
xα1

i1+1 . . . x
αj

ij+1 which is a monomial in R′
m of degree j also but of weight i + j.

Hence, we can see that Ri,j is isomorphic to R′
i+j,j, and so HilbR′

m/I′
m

(q, t) =
HilbRm/Im(q, qt).
In the following theorem, we reveal a one to one correspondance between the
monomials generating R′

m/I ′
m and the ∆m-partitions:

Theorem 81. Let n ≥ 1 be an integer. The generating series of the ∆m-
partitions is given by:

Hm(q, t) = Hm(q, qt) =
∞∑︂

p=0

(︂
h(m,p)+1

p

)︂
q
qp2

tp

(1 − qm+1−h(n,p)t) . . . (1 − qmt)

where h(m, p) = ⌊m−p
2 ⌋ and

(︂
a
b

)︂
q

= (1−q)...(1−qa)
(1−q)...(1−qb)(1−q)...(1−qa−b)

Proof. Notice first that the initial ideal of I ′
m is generated by:

xjxixi1 ..xik

such that j = i or i + 1, k = i + j − m − 1, 1 ≤ i1 ≤ ⌊m − 3k − 1
2 ⌋ + 1 and

il−1 + 2 ≤ il ≤ ⌊m − 3k − 1
2 ⌋ + 1 + 2(l − 1)

We will prove a one-to one correspondence between the monomial generating
R′

m/I ′
m and the ∆m partitions.

Consider a partition λ of n that corresponds to a monomial generating R′
m/I ′

m

and consider j, i, i1, .., ik to be parts of λ such that (j, i) is a consecutive or
equal pair and i1 ≤ i2 . . . ≤ ik ≤ m − 3k − 1

2 +1+2(k−1) with k = i+j−m−1.
If ik ≥ ik−1 + 2 ≥ . . . i1 + 2(k − 1) then λ corresponds to a monomial in I ′

m, a
contradiction. Then we have |it − it+1| ≤ 1 for some t.
Moreover, for any consecutive or equal pair (i′, j′) smaller than (i, j), λ has
no parts of the form j1, . . . , jk′ satisfying k′ = i′ + j′ − m − 1, 1 ≤ j1 ≤
⌊m − 3k′ − 1

2 ⌋ + 1 and jl−1 + 2 ≤ jl ≤ ⌊m − 3k′ − 1
2 ⌋ + 1 + 2(l − 1). For the

contrary, suppose that there exist such j1, . . . , jk′ , so for some 1 ≤ t ≤ k. We
have i1 is strictly greater than ⌊m − 3k′ − 1

2 ⌋ + 1 + 2(t − 1) and so k < k′, a
contradiction.
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Hence we can deduce a one to one correspondence between the generators
of R′

m/I ′
m and the ∆m-partitions. And so the theorem yields.
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