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Abstract

Understanding the pose and motion of humans in 3D space has undergone

enormous progress in recent years. The majority of studies in multi-person

scenarios view individuals as separate instances, neglecting the importance of

interaction information. However, in numerous everyday contexts, people al-

ways engage with one another, and it is essential to consider pose instances

jointly as the pose of an individual is influenced by the poses of their inter-

actees. In this context, this thesis aims to develop deep learning techniques to

understand human pose and motion in complex interactions and leverage inter-

action information to enhance the performance of human pose estimation and

human motion prediction. Our investigation encompasses modeling and learn-

ing interaction information, leveraging this information to refine human pose

and motion estimation, and addressing the issue of insufficient 3D interacting

human datasets. To overcome these challenges, we undertake the following

steps: (1) we verified the feasibility of considering person interaction on the

task of 3D human pose estimation from a single RGB image, by modeling

and learning the interaction information with a deep network (PI-Net) on pub-

licly available datasets (published at IEEE WACV2021); (2) we collected and

released a new dataset for extreme interacting poses (ExPI dataset) to study

person interaction (published at IEEE CVPR2022); (3) observing poses as

temporal sequences, we study the task of collaborative motion prediction and

propose a model with cross-interaction attention (XIA), using interaction in-

formation as guidance to improve multi-person motion prediction (published

at IEEE CVPR2022); (4) rethinking the task of human motion prediction, we

further propose a simple and effective baseline model for human motion pre-

diction (published at IEEE WACV2023), which works not only on single-

person motion prediction but also on multi-person scenarios. The code of our

works is publicly available.
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Résumé

La compréhension de la pose et du mouvement des humains dans l’espace

tri-dimensionel a connu d’énormes progrès ces dernières années. Cependant,

la majorité des études sur les scénarios multi-personnes considèrent les indi-

vidus comme des instances distinctes, négligeant l’importance des informa-

tions d’interaction. Pourtant, au quotidien, les personnes interagissent beau-

coup les unes avec les autres. Cette thèse vise donc à développer des tech-

niques d’apprentissage profond pour comprendre la pose et le mouvement

humain dans des scénario d’interactions complexes, en exploitant ces infor-

mations d’interaction pour améliorer les performances. Pour surmonter ces

défis, nous avons entrepris les étapes suivantes : (1) Nous vérifions la possi-

bilité de considérer l’interaction entre personnes pour l’estimation de la pose

humaine en 3D à partir d’une seule image RVB, en modélisant et apprenant

les informations d’interaction avec un réseau profond (PI-Net) sur des ensem-

bles de données publiques (publié à IEEE WACV2021). (2) Nous collectons

et publions un nouvel ensemble de données pour les poses avec interaction

extrêmes (ExPI dataset) pour étudier l’interaction entre les personnes (publié

à IEEE CVPR2022). (3) En observant les poses comme des séquences tem-

porelles, nous étudions la prédiction de mouvement collaboratif et proposons

un modèle basé sur un réseau d’attention pour l’interaction croisée (XIA), util-

isant les informations d’interaction comme guide pour améliorer la prédiction

de mouvement multi-personnes (publié à IEEE CVPR2022). (4) En repen-

sant la tâche de prédiction de mouvement humain, nous proposons un modèle

de base simple et efficace pour la prédiction de mouvement humain basé sur

le perception mutli-couches (MLP), qui fonctionne non seulement pour la

prédiction du mouvement d’une seule personne, mais aussi sur des scénarios

multi-personnes (publié à IEEE WACV2023). Le code de nos travaux est

disponible publiquement.
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1.1 MOTIVATION

Computer vision strives to empower computers with the ability to better understand the

world with visual input, thus understanding human behavior and interactions plays a sig-

nificant role. In recent years, human understanding tasks in 3D space, such as 3D human

pose and motion understanding, have garnered substantial research and industrial interest.

This is largely due to the numerous potential applications across many different fields, in-

cluding sports technology, physical therapy, medical diagnosis, robotic manipulation, au-

tonomous navigation, the entertainment industry, virtual reality, etc. Advancements in 3D

human pose and motion understanding can greatly enhance the accuracy and efficiency of

these applications, leading to improved user experiences and outcomes.

Robotics. 3D human pose and motion understanding could offer numerous valuable ap-

plications in the field of robotics. One key aspect is enabling robots to comprehend and

predict the motion of users, allowing them to provide appropriate responses or even phys-

ical reactions. This capability has wide-ranging applications in healthcare, elderly and

child care, and intelligent services in public spaces such as hotels, banks, and shopping

malls. For instance, if a patient requires assistance from a robot to walk to the restroom,

the robot should be able to understand the patient’s movement, predict their arrival, and

provide precise support based on the detected body joints, such as the location of the

hands, elbows, legs, etc. (Figure 1.1 (b)).

Another application involves robots understanding user poses and accurately replicating

their movements (Figure 1.1 (c)). This functionality can enable people to remotely oper-

ate robots in hazardous environments, where direct human presence would be risky. For

example, users could remain in safe areas while directing robots to work in dangerous

factory settings, disaster relief operations, or even perform tasks outside space stations as

astronauts.

Besides, both of the above aspects could be used in the entertainment industry, creating

innovative and interactive experiences for users.
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Autonomous driving. 3D Human pose and motion understanding could also help the

development of autonomous driving (Figure 1.1 (d)). Specifically, understanding and pre-

dicting the trajectory and motion of the pedestrians could help the system to avoid possible

accidents in advance, or give alerts to the human driver. By accurately analyzing pedes-

trian poses and motions in real-time, autonomous driving systems can proactively avoid

potential hazards. For instance, an autonomous vehicle could adjust its speed or change

lanes to prevent a collision with a pedestrian crossing the road. This technology facilitates

safe and efficient navigation for vehicles in complex environments, enabling them to nav-

igate effectively. In addition to enhancing autonomous vehicle safety, 3D human pose and

motion understanding can improve the driving experience for human drivers. Advanced

driver-assistance systems (ADAS) can provide timely alerts and warnings, aiding drivers

in avoiding accidents and making better decisions. By fostering a deeper understanding

of human behavior in traffic situations, we can develop more intelligent transportation

systems that prioritize safety, efficiency, and user experience.

Sports science. Understanding and analyzing the poses and motions of athletes plays a

significant role in sports science (Figure 1.1 (a)). By leveraging human pose and motion

understanding techniques, real-time pose data of athletes can be easily recorded and ana-

lyzed. This could be helpful for coaches and athletes to identify areas for improvement,

develop personalized training programs, and monitor progress over time, thus benefiting

the advancement of sports technology and performance analysis. Furthermore, it also en-

hances live sports events for spectators: by providing detailed insights into athlete move-

ments and biomechanics, viewers can better appreciate the skill, technique, and effort

involved in various sports.

Virtual reality Based on the study of 3D human motion, multiple applications in virtual

reality could be realized. For example, having only controllers on two hands and sensors

on the head for the user which provides half-body keypoints, legs could be also generated

in the virtual world to obtain a whole-body virtual avatar for the user. Also, based on the

motion of the user, virtual characters could interact with and react to the user with reason-
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ably generated motions, like dancing with the user (Figure 1.1 (e)). Such immersion and

interaction enhance the virtual reality experience for users.

(a)

(b)

(c)

(d)

(e)

Figure 1.1: Applications of human understanding: (a) sport analyses; (b) a hospitalization
robotic which takes care of patients; (c) an entertainment robotic which could follow the
motion of the user; (d) autonomous driving; (f) virtual avatar dancing with the user. 2

2These figure are from:
(b) https://news.xinmin.cn/2022/09/01/32224646.html
(c) IROS2022 Sony Interactive Entertainment, photo taken by the author.
(d) https://www.sohu.com/a/569062231_468661
(e) Starting demo from Oculus Meta Quest2, photo taken by the author.

https://news.xinmin.cn/2022/09/01/32224646.html
https://www.sohu.com/a/569062231_468661
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1.2 CHALLENGES AND GOALS

Single 3D human pose and motion understanding has had fast developments in recent

years, while in multi-person scenarios, the problem of modeling the relations between

different people remains under-investigated. Previous works usually treat different people

separately, disregarding the interactive information among them. These approaches are

agnostic about the context information such as the existence of other people around [138,

122, 139, 118, 84, 164, 117, 17, 40]. However, according to previous psychophysics

studies [127], this is not how our visual system understands the world: objects in the real

world never occur in isolation but co-vary with each other, thus giving a rich source of

contextual associations. A natural way to represent the context of a person is in terms of

their relationship with other instances sharing the same environment. These contextual

associations might include the interaction of a person with objects around or with other

persons involved in the same scenario.

In this thesis, we focus on studying human pose and motion in the multi-person sce-

nario with person interactions: when we human beings look at a multi-person scenario,

especially when different persons are involved in the same activity, how do we under-

stand the behavior of a person is highly related to the observation of other persons around

or the persons involved in the same activity. Thus, we aim to develop machine learning

techniques able to jointly estimate the full body pose or motion (i.e. a sequence of poses)

of several people involved in the same complex physical interaction, seeking to explore

the use of person-interaction information among different people to improve the under-

standing of human poses and motions. We focus on two tasks: we start by considering

a single frame and look into the task of 3D human pose estimation from a single image.

Based on publicly available datasets, we study how to improve the performance of 3D

pose estimation with the help of interaction among different people in the same scene,

thus verifying the feasibility of studying human interaction. There are two challenges for

this problem: (1) How to model and learn the interaction information; (2) How to use the

interaction information to improve the predicted poses.
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Next, we progress from a single frame to a sequence of poses and shift our attention

to the task of human motion prediction, aiming to forecast future pose sequences based

on past observations. This task also presents two challenges: (1) Properly embedding

and learning the interaction information between two interacting motion sequences, and

(2) The lack of suitable multi-person interaction data for studying this problem. While

investigating this issue, we encounter an additional challenge: In spite of complicated

and heavy models, could a simple and light model have state-of-the-art performance for

forecasting human motion? In response to these challenges, we have conducted a series

of studies and experiments, where the main contributions are introduced in the section

below.

1.3 CONTRIBUTIONS

Based on the challenges described above, we started our research by investigating human

interaction in the context of multi-person monocular 3D pose estimation using publicly

available datasets. In this study, we fed the initial pose along with its corresponding in-

teracting poses into a recurrent network to refine the pose of the target individual. Our

method proves its effectiveness on the public MuPoTS dataset, achieving a new state-of-

the-art performance. This finding verifies the feasibility of incorporating human interac-

tion in the process of understanding human poses.

In the dataset we used for the above studies, the interaction signal is weak. At that

moment, existing publicly available 3D multi-person human pose datasets are either too

small, not captured in real-world scenarios, or lack a significant number of highly interac-

tive actions. This makes it challenging to learn person interaction using data with limited

real interaction signals. Consequently, annotated data with complex interactions becomes

crucial for studying human interactions. Since no such dataset is available, we have cap-

tured ExPI (Extreme Pose Interaction) dataset, a new lab-based person interaction dataset

of 2 couples of professional dancers performing lindy-hop dancing actions containing 115

sequences with 30k frames and 60k instances with annotated 3D body poses and shapes.
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We have carefully cleaned and checked the data manually to ensure the high quality of

the data.

Furthermore, during our study of human pose estimation from RGB images, we dis-

covered that modeling interaction within a single frame is challenging, whereas sequence

signals provide clearer and less misleading information about human interactions. Con-

sequently, we began investigating interactive human motion prediction using mocap se-

quences from the ExPI dataset. Leveraging the ExPI dataset, we advanced beyond exist-

ing 3D human motion prediction approaches by considering scenarios involving two peo-

ple engaged in highly interactive activities. Traditional motion prediction formulations

focus on a single individual, while to learn coupled motion dynamics, we introduced a

novel mechanism that utilizes historical information from both people in an attention-like

manner. This model was trained using our ExPI dataset. The results of the provided cross-

interaction attention (XIA) mechanism demonstrate consistent improvements compared

to baseline models that predict the motion of each person independently.

While investigating human motion prediction, we noticed that recent studies on single-

person human motion prediction have increasingly focused on designing more complex

architectures to improve performance. Although these state-of-the-art approaches yield

impressive results, they depend on intricate deep learning architectures, such as Recur-

rent Neural Networks (RNNs), Transformers, or Graph Convolutional Networks (GCNs).

These models typically necessitate multiple training stages and often involve more than

2 million parameters. We began by conducting two straightforward experiments: repeat-

ing the last frame of input observation to serve as output prediction and using a single

FC layer to see how it performs. These experiments yielded reasonably good results,

suggesting that a simpler network might be sufficient for this task. Consequently, we in-

troduced a simple yet effective network for human motion prediction based on extensive

experimentation. The proposed method comprises only fully connected layers, layer nor-

malization, and transpose operations, with layer normalization being the sole non-linear

operation. Despite having significantly fewer parameters, this method attains state-of-

the-art performance on various benchmarks. When applied to the ExPI dataset, which
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features multi-person scenarios, our simple network (SiMLPe) achieves results compara-

ble to state-of-the-art approaches with minimal adaptations.

To summarize, the contributions of this thesis are listed as below:

• We explore ways to leverage the interdependencies between individuals in a shared

scenario to enhance current and potentially future deep networks for 3D monocu-

lar pose estimation. Our Pose Interacting Network (PI-Net) takes the initial pose

estimates of a varying number of interactees and refines the pose of the person of

interest using a recurrent architecture. By achieving state-of-the-art results on the

MuPoTS dataset and producing strong qualitative results on the COCO dataset, we

verify the effectiveness of incorporating interaction information to improve pose es-

timations. This work was presented at WACV2021, and the code is available at

https://github.com/GUO-W/PI-Net.

• We collect and release the ExPI (Extreme Pose Interaction) dataset, a new lab-

based person interaction dataset of professional dancers performing dancing ac-

tions annotated with challenging 3D body poses and shapes in highly interacted

situations. The provided data enables studies of multiple human understanding

tasks and especially studies of human interaction. The data is available at https:

//zenodo.org/record/5578329#.Y8Gw8OzP23K.

• Transitioning from single-image to sequence motion, we investigate the task of col-

laborative human motion prediction when dealing with humans performing collab-

orative tasks. We seek to forecast the future movement of two individuals who

interact with each other, based on their past skeletal sequences. To achieve this,

we introduce a new cross-interaction attention mechanism that leverages historical

data from both individuals and models the relations between their pose sequences.

We extensively evaluate our cross-interaction network on the ExPI dataset, demon-

strating that it consistently outperforms state-of-the-art single-person motion predic-

tion methods for both short- and long-term predictions. This work, along with the

ExPI dataset, was presented at CVPR2022, and the code of this work is available at

https://github.com/GUO-W/PI-Net
https://zenodo.org/record/5578329#.Y8Gw8OzP23K
https://zenodo.org/record/5578329#.Y8Gw8OzP23K
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https://github.com/GUO-W/MultiMotion.

• We proposed a simple but strong baseline for motion prediction. Our experiments

demonstrate that a lightweight network consisting of multi-layer perceptrons (MLPs)

with just 0.14 million parameters can outperform the state-of-the-art methods for

motion forecasting, combining with a set of standard techniques including Discrete

Cosine Transform (DCT), residual joint displacement prediction, and velocity opti-

mization using an auxiliary loss. The proposed model, SIMLPE, consistently out-

performs all other approaches on Human3.6M, AMASS, 3DPW, and ExPI datasets

for single- and multi-person motion prediction. This simple method has also brought

some insights into other motion-understanding tasks such as human motion genera-

tion. This work was presented at WACV2023, and the code of this work is available

at https://github.com/dulucas/siMLPe.

1.4 MANUSCRIPT STRUCTURE

This manuscript is organized as below: Chapter 2 proposes a general literature review of

the previous related works; Chapter 3 formulates the tasks of human pose estimation and

human motion prediction concerned in this thesis, introduces the evaluation metrics and

the datasets used; Chapter 4 illustrates in detail the proposed model PI-Net in monocular

3D human pose estimation; Chapter 5 introduces a new dataset ExPI, and details the pro-

posed XIA model for collaborative motion prediction, evaluated following our carefully

designed evaluation protocols for this new task; Chapter 6 proposes a single and effective

baseline model for human motion prediction, which leads to a rethinking of this task;

Chapter 7 recalls our contributions and discusses the potential future research directions

in this domain.

https://github.com/GUO-W/MultiMotion
https://github.com/dulucas/siMLPe
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1.5 PUBLICATIONS AND WORKS UNDER SUBMISSION

This section is the list of papers published or submitted during my Ph.D. The following

three works are discussed in this manuscript:

• [61] Wen Guo, Yuming Du, Xi Shen, Vincent Lepetit, Xavier Alameda-Pineda,

and Francesc Moreno-Noguer. Back to mlp: A simple baseline for human motion

prediction. In Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision, 2023

• [60] Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, and Francesc Moreno-Noguer.

Multi-person extreme motion prediction. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, 2022.

• [62] Wen Guo, Enric Corona, Francesc Moreno-Noguer, and Xavier Alameda-

Pineda. Pi-net: Pose interacting network for multi-person monocular 3d pose es-

timation. In Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision, 2021.

There are also some other works or preprints which are not discussed in this thesis:

• [19] Xiaoyu Bie, Wen Guo, Simon Leglaive, Lauren Girin, Francesc Moreno-

Noguer, and Xavier Alameda-Pineda. Hit-dvae: Human motion generation via hier-

archical transformer dynamical vae. arXiv preprint arXiv:2204.01565, 2022.

• [59] Wen Guo. Multi-person pose estimation in complex physical interactions. In

Proceedings of the 28th ACM International Conference on Multimedia (Doctoral

Symposium), 2020.

• [44] Yuming Du, Wen Guo, Yang Xiao, and Vincent Lepetit. 1st Place Solution

for the UVO Challenge on Image-based Open-World Segmentation 2021. arXiv

preprint arXiv:2110.10239.
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2.1 3D POSE ESTIMATION

2.1.1 3D SINGLE-PERSON POSE ESTIMATION

Single-person 3D pose estimation using deep learning methods can be divided into two

different strategies. The first strategy is to directly learn the mapping from image features

to 3D poses [115, 98, 132, 136, 35]. Li et al. [98] propose a joint model for body part

detectors and pose regression. Pavlakos et al. [132] introduce a U-Net architecture to

recover joint-wise 3D heatmaps. Sun et al. [149] use a bone-based representation that

enforces human pose structure for regression, and in [150], a differentiable soft-argmax

operation is used for efficiently training an hourglass network.

The second strategy focuses on recovering 3D human pose from 2D image features by

using models that enforce consistency between 3D predicted poses and 2D observations.

For example, Bogo et al. [20] fits a human body parametric model by minimizing the

distance between the projection of the 3D estimation and the 2D predicted joints. Moreno-

Noguer [123] proposes to infer 3D pose via distance matrix regression, while Yang et

al. [173] use an adversarial approach to ensure that estimated poses are anthropomorphic.

2.1.2 2D MULTI-PERSON POSE ESTIMATION

Multi-person pose estimation in 2D is well explored. There are two main approaches to

multi-person pose estimation: top-down [171, 99, 148, 32] and bottom-up models [30,

29, 135, 126].

In the first approach, a human detector is used to estimate the bounding boxes con-

taining the person in an image. Each detected area is then cropped and fed into the pose

estimation network to estimate the poses of each person one by one. This pipeline requires

a separate human detection step, and the pose estimation is performed independently on

each detected person.

In contrast, the second approach follows a different pipeline. A model is used to

estimate all human body keypoints in an image. These keypoints are then grouped into
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each person using clustering techniques. This pipeline does not require a separate human

detection step, and the pose estimation is performed on all the keypoints in the image

at once. For instance, Cao et al. [30, 29] proposed a famous bottom-up approach that

uses Part Affinity Fields to group joints of different people in real time. The bottom-

up approaches could be used as a backbone for lifting 2D joints to 3D in subsequent

stages [40, 131]. The bottom-up approaches are efficient as they allow for the processing

of multiple individuals in the same image without requiring a separate human detection

stage.

Bottom-up methods generally outperform one-stage bottom-up methods. For exam-

ple, Xiao et al. [171] developed a simple but effective baseline by using ResNet [67] as

an encoder and several deconvolutional layers as a decoder. Sunet al. [148] maintained

richer semantic information by connecting high-to-low resolution convolution streams in

parallel. Chen et al. [32] improved the accuracy of hard keypoints in the initial estimates

by using a cascade pyramid network.

Besides the effectiveness of these well-designed methods, another reason for the fast

development of multi-person 2D pose estimation is the release of huge-scale datasets such

as MSCOCO dataset [101], AI-Challenger Dataset [170], CrowdPose Dataset [93], etc,

which contains large scale datasets for multi-person under various and complex scenes.

2.1.3 3D MULTI-PERSON POSE ESTIMATION

Similar to their 2D counterparts introduced above, 3D multi-person poses estimation

methods could also be split into two categories: the top-down approaches [138, 139, 122,

84, 169], and the bottom-up approaches[118, 117, 176].

Top-down methods typically start with a human detection step to estimate the bounding

boxes containing each person in the image. Each detected area is then cropped and fed

into the pose estimation network, which estimates the 3D joint locations. For example,

Rogez et al. [138, 139] classifies the 2D bounding boxes of each person into one clustered

anchor pose, and than this prior anchor pose is refined in a coarse-to-fine manner. Moon et
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al. [122] proposed an architecture that simultaneously predicts the absolute position of the

root joint in 3D space and reconstructs the relative 3D body pose of multiple people.

In contrast, bottom-up methods do not rely on human detection and instead estimate

all 3D joint locations in the image first. Then, clustering techniques are used to group the

joint locations belonging to each individual person. For example, Mehta et al. [118, 117]

first estimates three occlusion-robust location-maps [120], and then modeles the associa-

tion between body keypoints by Part Affinity Fields [30]. Zanfir et al. [176] formalizes

the problem of localizing and grouping people as a binary linear integer program and

solves it by integrating a limb scoring model.

2.1.4 PERSON INTERACTION IN HUMAN POSE ESTIMATION

The above works presented do not consider interactions between different people when

studying the multi-person problems. Recently, there has been an increased focus on in-

corporating contextual information in 3D pose estimation methods by integrating scene

constraints[175] or considering the depth-order to resolve the overlapping problem [77,

92]. Jiang et al. [77] propose a depth ordering-aware loss that takes into account the

occlusion relationship and interpenetration of people in multi-person scenarios. This ap-

proach improves the accuracy of the estimated joint locations by enforcing consistency

with the relative depth ordering of the people in the scene. Similarly, Li et al. [92] divide

human relations into different levels and define three corresponding losses to ensure that

the orders of different people or different joints are correct or not. This approach takes

into account the semantic relationships between different parts of the human body and

helps improve the accuracy of the estimated poses. While these approaches consider con-

textual information, they do not explore the interaction relations between different people

in the same activity. More recently, Fieraru et al. [47] proposed a new dataset of human

interactions with several daily interaction scenarios and proposed a framework based on

contact detection over model surface regions. The dataset was recently released in 2022,

and it provides a valuable resource for developing and evaluating methods that can take

into account the interactions between people in daily interaction scenarios.
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2.2 HUMAN MOTION PREDICTION

Human motion prediction is formulated as a sequence-to-sequence task, where past ob-

served motion is taken as input to predict the future motion sequence. Traditional methods

for human motion prediction have utilized nonlinear Markov models [87], Gaussian Pro-

cess dynamical models [165], and Restricted Boltzmann Machines [151]. While effective

for predicting simple motions, these approaches struggle with complex and long-term

motion prediction [49].

Recently, with the rise of deep learning, human motion prediction has seen signif-

icant advancements through the use of deep networks, such as Recurrent Neural Net-

works (RNNs) [49, 76, 114, 103, 33], Graph Convolutional Networks (GCNs) [113, 111,

60, 107, 41, 96, 94] and Transformers [111, 5, 26]. In this section, we will introduce the

representative methods using these deep networks for human motion prediction.

2.2.1 RNN-BASED HUMAN MOTION PREDICTION

Due to the inherent sequential structure of human motion, some works address 3D hu-

man motion prediction by recurrent models. Fragkiadaki et al. [49] propose an encoder-

decoder framework to embed human poses and an LSTM to update the latent space and

predict future motion. Jain et al. [76] incorporated the semantic similarity between differ-

ent body parts manually and utilized structural RNNs to propagate this information. How-

ever, these methods suffer from discontinuity and are only trained on action-specific mod-

els, meaning that a single model is trained for each specific action. Martinez et al. [114]

proposed training a single model for multiple actions, instead of action-specific mod-

els, allowing the network to leverage regularities across different actions in large-scale

datasets. This approach has been widely adopted by subsequent works. Additionally,

they introduced a residual connection to model velocities instead of absolute values, re-

sulting in smoother predictions.

Despite their effectiveness, the aforementioned methods suffer from inherent limita-

tions of RNNs. Firstly, as sequential models, RNNs are difficult to parallelize during
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training and inference. Secondly, memory constraints prevent RNNs from exploring in-

formation from farther frames. To address these issues, some works have used RNN

variants [103, 33], sliding windows [24, 25], convolutional models [68, 89], or adversar-

ial training [56]. However, these methods often result in complicated networks with a

large number of parameters.

2.2.2 GCN-BASED HUMAN MOTION PREDICTION

To better encode the spatial connectivity of human joints, the most recent works usually

represent human poses as graphs and utilize Graph Convolutional Networks (GCNs) [147,

79] for the task of human motion prediction.

GCNs were first exploited for human motion prediction in Mao et al. [113]. They

use a stack of blocks consisting of GCNs, nonlinear activation, and batch normalization

to encode the spatial dependencies, and leverage discrete cosine transform (DCT) to en-

code temporal information. This work inspired most of the GCN-based motion prediction

methods in recent years. Based on [113], Mao et al. [111] further improved the tempo-

ral encoding by cutting the past observations into several sub-sequences and adding an

attention mechanism to find similar previous motion sub-sequences in the past with the

current observations. Thus, the future sequence is computed as a weighted sum of ob-

served sub-sequences. Then, a GCN-based predictor, the same as in [113], is used to

encode the spatial dependencies. In contrast to using DCT transformation to encode input

sequences, [86] utilized a multi-scale temporal input embedding approach, incorporating

various-sized convolutional layers for different input sizes to enable different receptive

fields in the temporal domain. Ma et al. [107] proposed two variants of GCNs to extract

spatial and temporal features. They developed a multi-stage structure, where each stage

contains an encoder and a decoder. During training, the model is trained with intermediate

supervision to learn progressively refined prediction. Additionally, [41, 96, 94] extended

the graph representation of human pose to a multi-scale version across the abstraction

levels of human pose.
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2.2.3 ATTENTION-BASED HUMAN MOTION PREDICTION

With the rise of Transformers [160], recent works [111, 5, 26] have attempted to use atten-

tion mechanisms for human motion prediction. Mao et al. [111] utilized attention to iden-

tify temporal relations. Aksan et al. [5] employed a combination of “spatial attention” and

“temporal attention” to map both the temporal dependencies and the pairwise relations

between joints. Cai et al. [26] used a transformer-based architecture with a progressive-

decoding strategy to predict the DCT coefficients of target joints progressively based on

the kinematic tree. To guide predictions, they constructed a memory-based dictionary to

preserve the global motion patterns in the training data.

2.2.4 PERSON INTERACTION IN HUMAN MOTION PREDICTION

Modeling interactions and the contextual information has been proven to be effective in

the topic of 3D human pose estimation [92, 65, 175, 167, 77, 61]. Contextual informa-

tion has also been shown to be beneficial in predicting human path trajectories. For this

purpose, recent works explore the use of multi-agent context with social pooling mech-

anisms [6], tree-based role alignment [46], soft attention mechanisms [162] and graph

attention networks [74, 83, 90]. Unlike the trajectory forecasting problem that focuses

on a single center point, motion prediction aims at predicting the dynamics of the whole

human skeleton. Incorporating contextual information in such a situation is still much

unexplored. Corona et al. [36] expand the use of contextual information into motion pre-

diction with a semantic-graph model, but only weak human-to-human or human-to-object

correlations are modeled. Cao et al.[28] involve scene context information into the mo-

tion prediction framework, but without human-to-human interaction. Adeli et al.[1, 2]

develop a social context-aware motion prediction framework, where interactions between

humans and objects are modeled either with a social pooling [1] or with a graph attention

network [2]. However, they only study in 2D space [9] or with weak human interac-

tions [164]. Since in this dataset [164], most of the actions involve weak interactions like

shaking hands or walking together.
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3.1 TASKS AND EVALUATION

This section introduces the definition and common evaluation method of the two tasks

studied in this thesis: 3D human pose estimation and 3D motion prediction.

3D human pose estimation from single RGB input focuses on only one frame, taking

a RGB image as input and predict the 3D poses from the 2D image at that instance. A

predicted poses P ∈ RN×J×3 is usually represented as 3D joint coordinates where N is

the number of person in the frame and J is the number of joints representing the pose

of each person. 3D motion prediction looks into a sequence of human poses, predict-

ing future poses based on past observations. The poses could be represented in multiple

parameterizations such as i) angle-joints, Euler angle, rotation metric, exponential maps

etc., or ii) directly 3D joint coordinates. The former kind of representation needs a kine-

matic tree for the pose, representing the structure of the pose. The latter represents the

joint locations directly but thus might be possible to suffer from the error of bone lengths

of a pose. As we are focusing on multi-person scenarios, building up a kinematic tree to

represent multi-person together is problematic, thus we just use the 3D joint coordinates

to represent the poses.

Evaluation. The Mean Per Joint Position Error (MPJPE) is the most common metric

used to evaluate the accuracy of 3D joint positions in pose estimation and motion pre-

diction tasks. It measures the average Euclidean distance between the predicted joint

positions and the corresponding ground-truth positions. The MPJPE is calculated as fol-

lows:

MPJPE(P,G) =
1

J

J∑
j=1

∥ Pj −Gj∥2 , (3.1)

where J is the number of joints, Pj is the estimated position of joint j, and Gj is the

ground-truth position of joint j. The MPJPE is the average L2-norm across different

joints between the prediction and ground-truth.
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Rigid alignment When evaluating poses, in addition to directly comparing the predicted

results with the ground truth, another common evaluation approach is to assess the poses

after performing the rigid alignment. This evaluation ignores the global rotation and trans-

lation but just focuses on the error of the poses between the predicted and the groundtruth.

To make the representation simple, we use P to represent the points of the predicted pose,

and G to represent the points of the groundtruth, than the rotation and translation matrix

for aligning P based on G is calculated by the following steps in Algorithm 1.

Require: P , G;
1: Compute the centers of P and G:

Pc =
1

N

N∑
i=1

Pi, Gc =
1

N

N∑
i=1

Gi (3.2)

2: Set the origins to the centers:

P orig
i = Pi − Pc, G

orig
i = Gi −Gc (3.3)

3: Singular value decomposition (SVD) of the correlation matrix:

C =
∑

(P origGorigT ) = UΣV T (3.4)

4: Estimate the rotation between the two point sets P orig and Gorig:

R = UV T , T = Pc −RGc (3.5)

5: return P̂ = RP̂ + T ;

Algorithm 1: Rigid Alignment: Finding absolute orientation for 2 groups of points

Then Aligned MPJPE could be calculated as

MPJPEalign(P,G) =
1

J

J∑
j=1

∥∥∥P̂j −Gj

∥∥∥
2
. (3.6)
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Figure 3.1: Datasets used in this thesis. (a, b, c) are datasets we use for human pose
estimation in Chapter 4, (d, e, f) are datasets we use for human motion prediction in
Chapter 6, and (g) is a dataset we collect and present in Chapter 5.

3.2 DATASETS

This section presents the datasets used in this thesis. Figure 3.1 shows some examples of

these datasets.

MuCo3DHP dataset and MuPoTS-3D evaluation set. Multi-person Composited 3D

Human Pose (MuCo3DHP) dataset and Multi-person Pose Test Set in 3D (MuPoTS-

3D) test set was initially introduced by Mehta et al. [118]. MuCo3DHP dataset is a

compositing-based training set based on MPI-INF-3DHP. It takes 1 to 4 subjects from
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the MPI-INF-3DHP [116] single-person 3D pose dataset, which contains 8 subjects with

2 clothing sets each and is captured by 14 cameras, and put them together as multi-person

scenes. MuPoTS-3D evaluation set consists of 8320 images, each containing 2 or 3 peo-

ple performing a common activity such as talking, shaking hands, or engaging in sports.

The images were captured in 20 real scenes, which include 5 indoor scenes and 15 out-

door scenes, and contain a total of 23k instances of human poses. Each scene consists

of several hundred frames extracted from a video, providing a diverse set of poses and

activities to evaluate the performance of pose estimation methods.

The annotations of MuCO and MuPoTS-3D datasets are in COCO format, and these

two datasets provides 2D image coordinates and 3D camera coordinates for each body

joint. MuCO dataset is typically used as train data for the task of multi-person 3D human

pose estimation, always combining with MuPoTS-3D dataset which serves as test data in

the task of multi-person 3D human pose estimation.

COCO dataset. Common Objects in Context (COCO) dataset [101] is a large-scale ob-

ject detection, segmentation, and captioning dataset which contains more than 200,000

images and 250,000 person instances labeled with key points. Although the COCO

val2017 dataset only provides 2D ground-truth labels, it contains challenging scenes with

a large number of people performing diverse actions, making it a valuable resource for

evaluating the performance of 2D and 3D multi-person pose estimation methods. In par-

ticular, we use images from COCO val2017 subset for qualitative evaluation in this thesis.

Human3.6M dataset. Human3.6M contains 3.6 million 3D human poses and corre-

sponding images, which includes 7 actors performing 15 actions with publicly released

3D labels. 32 joints are labeled for each pose. The datasets propose video from 4 cal-

ibrated cameras, 3D joint positions and joint angles from a motion capture system, 3D

laser scans of the actors, and also person bounding boxes.

AMASS dataset. Archive of Motion Capture as Surface Shapes (AMASS) [109] is

a large database of human motion that unifies multiple marker-based motion capture
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Figure 3.2: Inria Kinovis-platform.

datasets [48, 109, 12, 85, 155, 157, 21, 106, 51, 31, 143, 110, 104, 124, 3, 158, 71, 156]

and unifies these datasets within a common framework and parameterization SMPL [105].

It includes totally more than 40 hours of motion data with more than 300 subjects and

more than 11000 motions.

3DPW dataset. 3D Poses in the Wild (3DPW) dataset [163] is an in-the-wild dataset

with accurate 3D poses for evaluation, which includes video footage taken from a moving

phone camera. This dataset contains 60 sequences with 2D and 3D annotations as well as

3D body scans and 3D people models.

ExPI dataset. Extreme Pose Interaction (ExPI) dataset is a dataset presented by Guo

et al. [60]. It is a person interaction dataset of acrobatics, acquired by recording the

performance of 2 couple of actors under 67 to 68 different viewpoints, for exploiting

3D human interaction and studying human behaviors such as human pose estimation,

motion prediction, human shape estimation, etc. The dataset includes 29.6k frames with

115 sequences and 16 different actions, containing over 59.1k instances with annotated

3D body joints and shapes. The data were collected by the Kinovis-platform of INRIA
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which is a platform for capturing the moving human body, see Figure 3.2. The practical

acquisition space of this platform is approximately 40m2. It has 2 acquisition systems: A

68-color camera (4MPixels) system that provides full shape and appearance information

with 3D textured meshes, and a standard Motion capture (Mocap) system composed of

20 cameras that provides infrared reflective marker trajectories. The data was recorded by

18 markers on each actor. For more details about the dataset, please refer to Chapter 5.
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Figure 4.1: PI-Net peformance. An example of test results on MuPoTS dataset. Poses
refined by PI-Net (in green) are closer to the ground truth (in black) than the baseline (in
red). We zoom in to several parts to clearly appreciate the difference. The error before
and after PI-Net refinement for each person is shown in the table. The average 3D joint
error for this example is reduced from 88.02 mm to 86.19 mm.

This chapter studies person interaction in the task of multi-person monocular 3D pose

estimation, which takes a single image as input and aims to predict the 3D joint locations

of multiple persons in the image. Previous literature addressed this problem satisfactorily,

while in these works different persons are usually treated as independent pose instances

to estimate. In this chapter, we investigate how to focus on the interaction between dif-

ferent people to improve the prediction results obtained by a prior 3D pose estimator by

our proposed pose interacting network, PI-Net, which processes the initial estimates by a

recurrent network and refines the poses. We train the model on publicly released datasets

The effectiveness of the model is demonstrated qualitatively and quantitatively on differ-

ent human pose datasets.

The work presented in this chapter was initially presented in:
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“PI-Net: Pose Interacting Network for Multi-Person Monocular 3D Pose Estima-

tion”, Wen Guo, Enric Corona, Francesc Moreno-Noguer, and Xavier Alameda-Pineda,

In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision

(WACV), 2021.

The code of this work is released at https://github.com/GUO-W/PI-Net,

and the project page of this work could be found at https://team.inria.fr/robo

tlearn/pi-net-pose-interacting-network-for-multi-person-mono

cular-3d-pose-estimation/.

4.1 INTRODUCTION

Monocular 3D multi-person human pose estimation is a challenging task that involves

estimating the 3D joints of multiple individuals from a single RGB image. This prob-

lem has gained significant attention from both the research and industrial communities

due to its potential applications in various fields such as entertainment, medical diag-

nosis, sports technology, physical therapy, etc. Previous research in multi-person hu-

man pose estimation usually treat individuals as independent instances, and estimate

their poses separately using top-down methods within separate bounding boxes. How-

ever, these approaches disregards the contextual information such as the presence and

interactions of other individuals in a same scene. This makes all these approaches ag-

nostic about the context information and specifically about the presence of other people

[138, 122, 139, 118, 84, 164, 117, 17, 40].

However, in a multi-person scene where people interact with each other, the pose and

motion of every person are typically dependent and correlated with the body posture of

the people they are interacting with. Contextual information has been demonstrated to be

valuable in various computer vision tasks, including object detection [43, 130, 14], motion

prediction [37], and affordance estimation [38]. However, to the best of our knowledge,

the use of contextual information has not been well explored in the context of 3D hu-

man pose estimation. In this chapter, we investigate how these interdependencies can be

https://github.com/GUO-W/PI-Net
https://team.inria.fr/robotlearn/pi-net-pose-interacting-network-for-multi-person-monocular-3d-pose-estimation/
https://team.inria.fr/robotlearn/pi-net-pose-interacting-network-for-multi-person-monocular-3d-pose-estimation/
https://team.inria.fr/robotlearn/pi-net-pose-interacting-network-for-multi-person-monocular-3d-pose-estimation/


40 Chapter 4: Pose Interacting Network for Multi-Person Monocular 3D Pose Estimation

leveraged to enhance the performance of off-the-shelf architectures for 3D human pose

estimation.

Concretely, we propose a pose interacting network, PI-Net, which is fed with the 3D

pose of a person of interest and an arbitrary number of body poses from other people in

the scene, all of them computed with a context agnostic pose detector. These poses are

potentially noisy, both in their absolute position in space and in the specific representation

of the body posture. PI-Net is built using a recurrent network with a self-attention module

that encodes the contextual information. Since it is unclear how to rank the contextual

information, that is the pose of other persons, regarding the potential impact on the pose

refinement pipeline, we make the very straightforward assumption that the potential of a

person to refine the pose of the person of interest, is inversely proportional to the square

of the distance between them.

We thoroughly evaluate our approach on the MuPoTS dataset [118], and using the

initial detections of 3DMPPE [122], the current best performing approach on this dataset.

PI-Net exhibits a consistent improvement of the pose estimates provided by 3DMPPE in

all sequences of the dataset, becoming thus, the new state-of-the-art (see one example in

Fig. 4.1). Interestingly, note that PI-Net can be used as a drop-in replacement for any

other architecture that estimates 3D human pose. Additionally, the size of the network

we propose is relatively small (3.41M training parameters, while the baseline model has

36.25M parameters), enabling efficient training and introducing a marginal computational

cost at the test. Testing on one Geforce1070, PI-net just cost 0.007s on refining one person

while the baseline cost 0.038s for detecting one root-centered pose and also extra time

on obtaining the bounding boxes and roots. Our method is lightweight and consistently

improves the baseline.

4.2 RELATED WORK

Multi-person pose prediction from single RGB image 2D human pose estimation

has been well explored under two kinds of approaches: the top-down approach and the
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bottom-up approach. Top-down approaches [171, 99, 148, 32] use a detector to get the

bounding box of each person, and then use a single-person pose estimation network on

each detected area. Bottom-ups [30, 29, 135, 126] approach takes a whole image as input

which contains multi-person, detect all the locations of each joint (i.e. all the heads, all

the knees, etc. in the images.) and then group the joints which belong to a same person

together.

When coming to 3D, the problem becomes more difficult as the depth of each joint

should also be predicted but not only the XY-location of the joints on the image, but

the input image does not have depth signals. 3D pose estimation for single person ei-

ther learn 3D poses directly from an input image [115, 98, 132, 136, 35], either estimates

2D poses first and than lift the 2D estimated poses to 3D with the learnt depth predic-

tion [168, 20, 123]. And when studying 3D pose estimation in a multi-person scenario,

similar to 2D multi-person pose estimation, the problem could also be solved in top-

down [138, 139, 122, 84, 169] or bottom-up [118, 117, 176] approaches.

Contextual information in pose estimation Despite the fact that the above works es-

timate the body pose of an arbitrary number of people, each person is processed using

an independent pipeline that does not take into account the interactions between the rest

of the people or other contextual information. People never occur in isolation but are al-

ways related to the surrounding people or environment, thus some recent works begin to

consider contextual information for pose estimation [175, 77, 92]. For example, Jiang et

al. [77] defined a depth-ordering aware loss to take the order of the person involved in the

occlusion, Li et al. [92] defined 3 different losses for three different levels of the human

body to consider the depth order of different people and different joints. These works de-

fine different losses to consider the depth order of different people, but they do not really

make use of the interaction relationship of different people. Fieraru et al. [47] proposed a

person interaction dataset along with a framework based on contact detection over model

surface regions, but this dataset is not released at the moment this work is published.

In this chapter, we propose a method that can be used in combination with the current

state-of-the-art model [122] and boost its performance by looking at the whole group of
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humans and taking advantage of the signals of their surroundings. The proposed model is

flexible and can be stacked after any 3D pose estimation model, independently of it being

top-down or bottom-up.

4.3 PI-NET FOR MULTI-PERSON POSE ESTIMATION

Our goal is to exploit the interaction information between N people so as to improve

the estimation of their pose. We assume the existence of an initial 3D pose estimate

Pn ∈ RJ×3 of person n = 1, . . . , N , where J is the number of estimated joints, e.g.

obtained from 3DMPPE [122]. All the N poses are in absolute camera coordinates.

Formally, our goal is to improve the initial pose estimates, taking into account the pose

of other people:

[Q1, . . . ,QN ] = Π(P1, . . . ,PN), (4.1)

where Qn ∈ RJ×3 denotes the pose of person n improved with the information of the

poses of the interactees.

While the idea is very intuitive, the research question is how to design PI-Net (i.e.

Π) so that it satisfies the following desirable criteria. Firstly, it shall work in environ-

ments with different numbers of people N , and not be fixed to a particular scenario. Sec-

ondly, the interaction information can be efficiently exploited and learned using publicly

available datasets. Finally, it has to be generic enough to work with any 3D monocular

multi-person pose estimator.

4.3.1 PIPELINE OF PI-NET

Naturally, the fact that the number of people N is unknown in advance, points us toward

the use of recurrent neural networks. Such RNN should input the poses estimated by

a generic pose estimator and embed the pose information into a representation learned

specifically to take the cross-interactions into account. Without loss of generality, let us

assume that the person-of-interest is n = 1, and hence the pose to refining is P1. We
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Figure 4.2: PI-Net Architecture. Mask-RCNN [66] and PoseNet [122] are used to ex-
tract the initial pose estimates P1, . . . ,PN . These estimates are fed into PI-Net, composed
of three main blocks: Bi-RNN, Self-attention, and the shared fully-connected layers. The
output of PI-Net refines the initial pose estimates by exploiting the pose of the interac-
tions, yielding Q1, . . . ,QN .

consider using a bi-directional RNN, whose first input is P1, and then the rest of the

initial poses are provided in a given order (see below). Our intuition for using a Bi-RNN

is the following. During the forward pass, and since the first input is P1, the network can

use the information in P1 to extract the features of the other poses that will best refine P1.

In the backward pass, the network accumulates all this information back to P1, obtaining:

e1 = Bi-RNN(P1, . . . ,PN). (4.2)

The learned embedding e1 ∈ RN×Eis supposed to contain the crucial information

from all other poses to refine the pose of the person-of-interest (1 in our example), but not

only. Indeed, given that a priori we do not know which persons would be more helpful

in refining the pose of interest, the computed embedding e1 could contain information

that is not exploitable to refine the pose. In order to take this phenomenon into account,

we soften the requirements of the Bi-RNN through the use of an attention mechanism as

shown in Figure 4.2 (bottom-left zoom). Such attention mechanism aims to improve each
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embedding by combining information from the embeddings of other persons. To do so,

we compute a matrix of attention weights:

W ∈ RN×N , Wnm = e⊤n (AATTem + bATT)), (4.3)

that is then normalized with a row-wise soft-max operation. AATT and bATT are attention

parameters to be learned. The self-attention weights W encoding the residual interaction

not captured by the Bi-RNN are used to update the embedding vector u1 = We1. Finally,

the updated embedding is feed-forwarded through a few fully connected layers, obtaining

the final refined pose Q1. While, at test time the self-attention and fully-connected layers

are used only for the person of interest, at training time we found it is useful to apply

these two operations to all poses and back-propagate the loss associated with everyone.

This strategy eases the training. The overall pipeline depicting of PI-Net is shown in

Figure 4.2.

4.3.2 INTERACTION ORDER

In the previous section, we assumed that the order in which the initial pose estimates Pn

were presented to the Bi-RNN was given. Although there is no principled rule to define

the ordering, there are some requirements. For a given person n, the sequence of poses

presented to the network Pρn(1), . . . ,Pρn(N) has two constraints: (i) each pose is presented

only once and (ii) the first pose is the one to be refined, i.e. ρn(1) = n. Intuitively, the

order should represent the relevance: the more useful Pm is to refine Pn, the closer Pm

should be to Pn in the input sequence, i.e. the smaller ρn(m) should be. Because finding

the optimal permutation is a complex combinatorial optimization problem for which there

is no ground-truth, we opt for assuming that the relevance is highly correlated to the

physical proximity between interactees. Therefore, the closer person m is to person n,

the smaller should ρn(m) be. With this rule, we order the initial pose estimates to be fed

to the Bi-RNN.

We also consider using Graph Convolutional Network [79] to model the interaction
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between different persons. Considering a pair of input persons, the node of the graph

represents the coordinates of all the joints of these two people, and the adjacency matrix

learned from the input represents the interaction between these joints. This strategy does

not provide any performance increase, the results will be discussed in Section 4.4.4.

4.3.3 NETWORK ARCHITECTURE

In order to build and train our PI-Net, we first extract the initial poses using [122]. In the

baseline, Mask-RCNN is used to detect the people present in the image. After that, the

keypoint detector is applied to each image to detect the root-based poses and then project

them into absolute camera coordinates. This keypoint detector is based on ResNet50 and

3 additional deconvolutional layers, following [150]. The set of keypoints for each person

in camera coordinates Pn, is therefore obtained. Note that this regressor gives all J person

joints, despite partial occlusions, the corresponding occluded joints are hallucinated.

These initial pose estimates are then normalized with their mean and standard devi-

ation, thus obtaining the input pose estimates of our PI-Net, {P1, . . . ,PN}. For each

person n, we feed the PI-Net with the sequence of poses in the order appropriate for per-

son n (see Section 4.3.2). The output Qn of PI-Net is the refined pose for person n. PI-Net

is trained with the L1 loss between the refined poses and the ground-truth in 3D camera

coordinates, added for all detected persons in the training image.

The Bi-RNN is implemented using three layers of gated recurrent units (GRU [34]).

The self-attention layer provides a straightforward way to account for person-person in-

teractions. After applying attention, the updated embedding goes through three fully con-

nected layers to output the refined 3D pose in camera coordinates. These three fully

connected layers are shared by all N poses. Consequently, the proposed PI-Net can be

trained and evaluated using images with different numbers of people.
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4.3.4 IMPLEMENTATION DETAILS

We use PoseNet of 3DMPPE [122] to generate our input 3D human pose. This model is

trained on large-scale training data which includes H3.6M single-person 3D dataset [75],

MPII[11] and COCO 2D dataset [101], MuCo multi-person 3D dataset [118], and extra

synthetic data. PI-Net is trained on 33.4k composited MuCo data, which is contained

in the training data of the baseline model. This ensures that the improvement of PI-Net

compared with the baseline model is not caused by adding extra training data.

In terms of dimensions, 3DMPPE [122] outputs J = 17 joints in 3D, the hidden

recurrent layers are of dimension 256, and the Bi-RNN outputs an embedding vector of

dimension E = 512. We train our PI-net using Adam optimization and the poly learning

rate policy [178], with an initial learning rate of 1e-5, a final learning rate of 1e-8, and

power of 0.9, for 25 epochs. The batch size is set to 4.

When testing on an image with n instances, we test for n independent times, each time

with a different ordering, and just retain the first person in each case.

4.4 EXPERIMENTS

We next describe the experiment section, which includes a description of the datasets,

baselines, and evaluation metrics. We then provide a quantitative and qualitative eval-

uation and comparison to state-of-the-art approaches. We finalize this section with an

exhaustive ablation study of the PI-Net architecture and hyperparameters.

4.4.1 DATASETS

MuCo-3DHP dataset and MuPoTS-3D dataset. The experiments discussed below are

primarily based on two well-known datasets, introduced by Mehta et al. [118], that are

widely used in the task of multi-person 3D human pose estimation. The MuCo-3DHP

dataset is a multi-person 3D human pose dataset of multi-person composed by single-

person data. As it is not real multi-person scenes, it is usually used for training but not
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testing. Our PI-Net is trained on 33.4k MuCo images, which contain 80.7k instances,

without the need for additional data. The MuPoTS-3D test set consists of 8320 images

from 20 real scenes, including 5 indoor and 15 outdoor scenes. In each scene, there are

2 or 3 people engaged in common activities such as talking, shaking hands, or doing

sports. Each scene contains from 200 to 800 frames extracted from a video, and the

dataset provides annotations in COCO format for both 2D image coordinates and 3D

camera coordinates for each body joint.

COCO dataset. We also present qualitative results using the COCO dataset, which is a

large-scale multi-person human pose dataset that provides only 2D ground truth labels.

Despite this limitation, the dataset includes challenging scenes with a large number of

people performing diverse actions, making it suitable for qualitative testing of models on

complex in-the-wild cases. Specifically, we utilize examples from the COCO val2017

subset [66].

4.4.2 BASELINE AND EVALUATION METRICS

Our pipeline is capable of refining the poses estimated by any multi-person pose algo-

rithm, independently of the strategy it uses. Given these initially estimated poses we

refine them by leveraging the contextual information. In this chapter, we use the recent

3DMPPE [122] as a baseline and demonstrate both quantitative and qualitative improve-

ments. Note that previous state-of-art works such as PandaNet [16] or SingleShot [118]

do not provide codes either for training or testing and hence, we could not use them as

backbones. The baseline [122] consists of 3 main steps. Firstly, 2D bounding boxes of

humans are detected using Mask-RCNN [66]. For each detection, a deep network refines

the coarse root 3D coordinates obtained from camera calibration parameters, and finally,

a fully convolutional network [150] predicts root-relative 3D pose. Using the 3D root

position, all poses can be represented in a common camera-coordinates reference.

We evaluate the performance of all methods by reporting the percentage of keypoints

detected by the network that are within 150mm or less from the ground truth labels

(3DPCK@150mm). This is the usual evaluation metric on the MuPOTS-3D test set[118,
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138, 139, 117, 16, 122].

Notice that the 3DPCK metric depends greatly on the chosen threshold, for completeness,

we also provide MPJPE and PA-MPJPE metrics to evaluate the performances. MPJPE

indicates mean-per-joint-position error after root alignment with the ground truth [75],

and PA-MPJPE denotes MPJPE after Procrustes Alignment[54]. Lower MPJPE and PA-

MPJPE indicate better performance.

4.4.3 MAIN RESULTS

Quantitative results on MuPoTS-3D testset. We report the results of PI-Net on the

MuPoTS-3D dataset in Table 4.1 and compare them to current state-of-the-art methods.

Our results are obtained using the model depicted in Fig. 4.2, which uses a bidirectional

3-GRU recurrent layer, followed by a self-attention layer. We provide results after root

alignment with the ground-truth poses, on the two strategies usually used on the MuPoTs

datasets. In table4.1, the top-rows Accuracy for all ground truths evaluates all annotated

persons, and the bottom rows Accuracy only for matched ground truths evaluates only

predictions matched to annotations by their 2D projections with the 2D ground truths. We

got improvements on both of the two strategies. PI-Net outperforms all previous models

and improves the state-of-the-art by 1.3% 3DPCK@150mm on average. The improve-

ment is consistent and shows a boost in performance for the majority of actions, setting a

new state-of-the-art on the MuPoTS-3D dataset. Interestingly, we observe that the largest

improvements are produced in those actions that require harmony and certain synchro-

nization between people, such as practicing Taekwondo (S2) or playing a ball together

(S14). We use ground-truth bounding box and roots to test the baseline, so the root-

relative result is comparable with the absolute result here. To avoid redundancy, we only

report root-relative results, which are widely reported in the previous works, for compar-

ison with the state-of-the-art methods.

Table 4.2 shows the comparison of sequence-wise performance using MPJPE with root

alignment and PA-MPJPE with further rigid alignment. Testing our model on the MuPoTS

test dataset, we reduced the MPJPE error and PA-MPJPE error by 2.6mm and 4.3mm on
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average, respectively, in comparison with the baseline results [122]. Again, results are

consistent across different tasks.

Table 4.3 shows a joint-wise comparison with state-of-art methods using 3DPCK@150mm

after root alignment with ground truths. While we achieve similar performance with [122]

in the head, neck, and hip, our method consistently outperforms the rest of the joints on

arms and legs (shoulder, elbow, wrists, and knees). Arguably, the joints on the torso have

little influence on the interaction between people, which comes mostly through the limbs,

for example, hands and legs. Hence, it is reasonable that using the context information to

refine 3D pose predictions gives the most significant boost in these joints.

Finally, it is worth pointing out that the results for all previous approaches reported in

Tables 4.1, 4.2 and 4.3 are those of the respective papers. For 3DMPPE [122], however,

we tested on ground-truth bounding boxes and roots to report these results.

Qualitative results on COCO. Figure 4.3 shows qualitative results on COCO dataset, for

which 3D ground truths are not available. We also include (bottom-right) a failure case,

caused by a misdetection of the baseline. This may be the major limitation of PI-Net,

which is designed to refine poses, but so far, we have not integrated any module to deal

with large deviations in the input poses.

4.4.4 ABLATION STUDY

Next, we provide a detailed analysis of the architectural design of PI-Net and discuss the

interpretation of the predicted adjacency matrix obtained in the self-attention layers.

Effect of the Input Order. Table 4.4 shows the effect of using different strategies to

establish the ordering of the detected people fed into the Bi-RNN layer.

We experimented with three different orders for processing the input people: (i) a

random ordering, (ii) our approach where we select the person of interest followed by

people in order of proximity, and (iii) the inverse approach where the person further away

is processed first. To estimate the distance between people, we compute the distances

between the root coordinates of the input people and the target person.
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Table 4.1: Sequence-wise 3DPCK comparison with state-of-the-art methods on the
MuPoTS-3D dataset. The first three methods show the reported results in the correspond-
ing paper, the fourth method and our model are tested with ground truth bounding boxes
and roots. Higher value means better performance.

Sequence S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Accuracy for all ground truths
LCR[138] 67.7 49.8 53.4 59.1 67.5 22.8 43.7 49.9 31.1 78.1
Singleshot[118] 81.0 60.9 64.4 63.0 69.1 30.3 65.0 59.6 64.1 83.9
Xnect[117] 88.4 65.1 68.2 72.5 76.2 46.2 65.8 64.1 75.1 82.4
LCR++[139] 87.3 61.9 67.9 74.6 78.8 48.9 58.3 59.7 78.1 89.5
PandaNet[16] - - - - - - - - - -
3DMPPE[122] 93.2 75.6 80.3 81.5 84.6 75.3 84.5 69.3 90.1 92.0
PI-Net (ours) 93.5 77.4 82.0 82.9 87.2 75.9 84.0 71.5 90.2 92.2
Accuracy only for matched ground truths
LCR[138] 69.1 67.3 54.6 61.7 74.5 25.2 48.4 63.3 69.0 78.1
Singleshot[118] 81.0 65.3 64.6 63.9 75.0 30.3 65.1 61.1 64.1 83.9
LCR++[139] 88.0 73.3 67.9 74.6 81.8 50.1 60.6 60.8 78.2 89.5
Xnect[117] 88.4 70.4 68.3 73.6 82.4 46.4 66.1 83.4 75.1 82.4
3DMPPE[122] 93.9 83.0 80.3 81.5 85.4 75.3 84.5 77.2 90.1 92.0
PI-Net (ours) 93.9 85.0 81.5 83.0 88.9 75.6 84.7 78.0 90.4 92.2

Sequence S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 AVG

Accuracy for all ground truths
LCR[138] 50.2 51.0 51.6 49.3 56.2 66.5 65.2 62.9 66.1 59.1 53.8
Singleshot[118] 68.0 68.6 62.3 59.2 70.1 80.0 79.6 67.3 66.6 67.2 66.0
Xnect[117] 74.1 72.4 64.4 58.8 73.7 80.4 84.3 67.2 74.3 67.8 70.4
LCR++[139] 69.2 73.8 66.2 56.0 74.1 82.1 78.1 72.6 73.1 61.0 70.6
PandaNet[16] - - - - - - - - - - 72.0
3DMPPE[122] 81.0 81.0 73.4 73.5 81.8 89.6 88.4 84.3 74.5 70.6 81.2
PI-Net (ours) 82.5 82.9 74.7 75.7 83.6 91.4 90.6 86.0 74.9 71.1 82.5
Accuracy only for matched ground truths
LCR[138] 53.8 52.2 60.5 60.9 59.1 70.5 76.0 70.0 77.1 81.4 62.4
Singleshot[118] 72.4 69.9 71.0 72.9 71.3 83.6 79.6 73.5 78.9 90.9 70.8
LCR++[139] 70.8 74.4 72.8 64.5 74.2 84.9 85.2 78.4 75.8 74.4 74.0
Xnect[117] 76.5 73.0 72.4 73.8 74.0 83.6 84.3 73.9 85.7 90.6 75.8
3DMPPE[122] 81.0 81.0 74.3 76.0 81.8 89.6 88.4 84.3 75.5 76.2 82.6
PI-Net (ours) 82.5 82.6 76.0 77.6 83.5 91.5 90.5 85.9 75.7 78.5 83.9



51

Table 4.2: PA MPJPE (top) and MPJPE (bottom) comparisons of PI-net with the state-
of-the-art method [122] used as our baseline on the MuPoTS dataset. The average value
indicated the image-wise average. Ground truth bounding boxes and roots are used for
testing. Lower value means better performance.

Sequence S1 S2 S3 S4 S5 S6 S7

PA MPJPE (mm)
3DMPPE [122] 67.7 102.6 82.7 82.5 79.8 91.1 70.8
PI-Net (ours) 65.8 97.7 82.2 82.4 77.7 91.6 68.6
MPJPE (mm)
3DMPPE [122] 90.9 159.3 121.8 113.5 107.8 121.1 113.8
PI-Net (ours) 87.3 151.3 117.1 109.9 103.9 121.1 108.7

Sequence S8 S9 S10 S11 S12 S13 S14

PA MPJPE (mm)
3DMPPE [122] 110.1 72.8 63.5 88.6 79.6 105.1 110.5
PI-Net (ours) 106.3 70.0 60.5 88.0 77.7 102.3 106.6
MPJPE (mm)
3DMPPE [122] 138.2 99.7 98.4 119.6 115.4 143.7 151.7
PI-Net (ours) 133.9 95.8 93.0 117.0 112.2 141.1 146.2

Sequence S15 S16 S17 S18 S19 S20 AVG

PA MPJPE (mm)
3DMPPE [122] 77.5 72.2 73.3 86.8 91.9 120.0 88.4
PI-Net (ours) 75.5 70.2 71.5 83.7 88.9 112.6 85.79
MPJPE (mm)
3DMPPE [122] 111.7 101.8 105.6 115.8 140.7 187.7 126.0
PI-Net (ours) 108.0 98.0 102.5 111.8 136.2 178.4 121.7
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Figure 4.3: Qualitative results on the COCO dataset. For each pose, a darker color is
used to represent the left side of the person. The bottom-right example corresponds to a
failure case, as the ‘red’ and ‘black’ persons should be located in front of the scene, be-
hind the ’blue’ and ’purple’ persons. This is caused by a misdetection on the root position
of the input detected poses provided by the baseline network, while our network designed
for refining the poses could not refine this kind of large deviation because this large devi-
ation caused by the baseline network hinders our PI-net from learning the correct context
information for correctly interpreting and refining the prediction.
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Table 4.3: Joint-wise 3DPCK comparison with state-of-the-art methods on the MuPoTS-
3D dataset. The first three methods show the reported results in the corresponding paper,
and the fourth method and our model are tested with ground truth bounding boxes and
roots. All ground truths are used for evaluation. Higher value means better performance.

Method Hd. Nck. Sho. Elb. Wri. Hip Kn. Ank. Avg

LCR[138] 49.4 67.4 57.1 51.4 41.3 84.6 56.3 36.3 53.8
single-shot[118] 62.1 81.2 77.9 57.7 47.2 97.3 66.3 47.6 66.0
3DMPPE[122] 78.4 91.9 83.1 79.7 67.0 93.9 84.3 75.3 81.2
PI-Net (ours) 78.3 91.8 87.8 81.9 68.5 94.2 85.3 74.8 82.5

Table 4.4: Comparison of different input orders. Intuitive is the one described in Sec-
tion 4.3.2, from near to far. Inverse is the opposite. Random means in random order.

Order PA MPJPE (mm) MPJPE (mm)

Reverse 86.09 122.23
Random 85.87 121.88
Intuitive 85.79 121.7

Table 4.5: Importance of self-attention and bidirectionality (RNN). PI-Net uses a bidi-
rectional RNN followed by a self-attention layer. We evaluate the impact of each of these
choices: w/o Att. when removing attention, w/o Bi. considering standard RNN.

Method PA MPJPE(mm) MPJPE(mm)

PI-Net w/o Att., w/o Bi. 86.69 122.7
PI-Net w/o Bi. 86.42 123.10
PI-Net w/o Att. 85.92 122.01
PI-Net 85.79 121.7

Although the number of people in MuPoTS dataset images is relatively small, the

processing order of each person’s information has an impact on the model’s performance.

As shown in the table, the ordering we used provided the best performance, while the

inverse order resulted in the worst performance. This finding highlights the importance of

considering context information when processing input data.

Effect of self-attention and bidirectional RNN. In Table 4.5 we analyze the effect of



54 Chapter 4: Pose Interacting Network for Multi-Person Monocular 3D Pose Estimation

Table 4.6: Ablating the unit of the interaction network: None [122], Graph Convolutional
Networks (GCN); LSTM and Gated Recursive Units (GRU), with (2,3,4) layers.

Interaction PA MPJPE (mm) MPJPE (mm) # Par.

None [122] 88.36 126.0 133M
GCN 88.67 126.3 34M

2 LSTM 86.45 122.5 2.78M
3 LSTM 86.17 122.3 4.36M
4 LSTM 86.32 121.7 5.93M

2 GRU 86.27 122.2 2.23M
3 GRU 85.79 121.7 3.41M
4 GRU 85.96 122.2 4.59M

using the self-attention layer, which confirms that it helps to boost performance. We

also study the attention weights predicted by the self-attention layer. These weights are,

as expected, large at the diagonal, which corresponds to the self-interaction. The larger

the distance between two people is, the smaller the weights tend to be. Table 4.5 also

compares our approach which employs Bi-RNN with a standard (not bidirectional) RNN.

The ablation of the recurrent unit is done later. Bi-RNN reduces 0.69mm of the MPJPE

error and 0.77mm of the PA-MPJPE error, while the self-attention layers give an extra

improvement of 0.31mm on MPJPE and 0.13mm on PA-MPJPE.

Interaction unit. In Table 4.6 we report results using alternative units to take the interac-

tion into account. More precisely, Graph Convolution Network (GCN) and LSTM/GRU

with different numbers of layers. For the experiment with GCN, we learned an adjacency

matrix for every pair of persons and represented the interaction between them. We consid-

ered 4 GCN layers to obtain the refined poses. We also ablated the recurrent unit: GRU or

LSTM [50]. Even though the MPJPE error of 4 LSTM layers is similar to that of 3 GRU

layers, we considered the latter because it performs better after rigid alignment, and uses

much fewer parameters which enables it to be trained more efficiently.
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4.5 CONCLUSION

In this chapter, we introduce PI-Net, a pose-interacting network that refines initial 3D

body poses predicted by any pose estimator by leveraging the mutual interaction that oc-

curs in multi-person scenes. PI-Net utilizes three main building blocks: a bi-directional

RNN, a self-attention module, and an MLP, to learn these interactions. The network is

flexible, lightweight, and cost-efficient, and has the potential to improve other approaches

for multi-person 3D human pose estimation, leading to a new state-of-the-art. This line

of work focuses on improving perception results by exploring the interaction between

people. One possible extension is to include other contextual information such as objects

or structures to better understand human actions and explore different ways to interpret

relationships in the scene. In this chapter, we verified the feasibility of considering inter-

actions to improve the estimation of human poses. However, we identified two limitations

of this work: (1) Due to data limitations, we were only able to refine and test on the MuCo,

MuPoTS, and COCO datasets, which only contain loosely interacted scenes. It would be

more informative to study human interaction in actions that involve strong interaction,

such as acroyoga, dancing, or sports, but publicly accessible 3D data for such actions was

not publicly accessible. (2) Analyzing human interaction based on only one frame can

be confusing and misleading, as human poses are variable and can have multiple plausi-

ble possibilities based on one single observed instance. Future research should explore

the potential of utilizing temporal information and studying sequences of human poses,

which could provide more informative insights. These problems will be addressed in the

next chapters.
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Figure 5.1: Collaborative human motion prediction. 1st row: 3D sample meshes
from our ExPI Dataset (just for visualization purposes). 2nd-4th rows: Motion prediction
results by MSR [42], Hisrep [111], and our method. Dark red/blue indicate prediction
results, and light red/blue are the ground truth. By exploiting the interaction information,
our approach of collaborative motion prediction achieves significantly better results than
methods that independently predict the motion of each person.

Based on the limitations discussed at the end of the last chapter, we start to look into a

sequence of human poses and begin to focus on the task of human motion prediction from

now on. Human motion prediction aims to forecast future poses given a sequence of past

3D skeletons. While this problem has recently received increasing attention, it has mostly

been tackled by single humans in isolation. In this chapter, we explore this problem when

dealing with humans performing collaborative tasks, seeking to predict the future motion

of two interacted persons given two sequences of their past skeletons. We investigate

how to focus on the interaction of the two persons to improve the motion forecasting

by a proposed baseline method with a Cross-interaction Attention (XIA) module that

exploits the historical motion of two interacted persons to guide the prediction of their

future movements. Besides, to solve the data lacking problem for this problem, we also

proposed a new large dataset of highly interacted extreme dancing poses, called Extreme

Pose Interaction Dataset(ExPI), along with a benchmark with three carefully selected

train/test splits and two evaluation protocols. We verified the effectiveness of the proposed

model on the ExPI dataset.

The work presented in this chapter was initially presented in: “Multi-person extreme

motion prediction”, Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, and Francesc Moreno-
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Noguer, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2022.

The code of this work is released at https://github.com/GUO-W/MultiMo

tion, and the project page of this work could be found at https://team.inria.f

r/robotlearn/multi-person-extreme-motion-prediction/.

5.1 INTRODUCTION

The goal of human motion prediction is to predict future motions from previous obser-

vations. With the successful development of deep human pose estimation from single

image [122, 61, 138, 139, 118, 84, 164, 117, 17, 40, 123], motion prediction begins to

draw an increasing attention [36, 111, 4, 49, 56, 69, 76, 114, 15, 100, 52, 113, 140, 88].

Most existing works formulate motion prediction as a sequence-to-sequence task, where

past observations of 3D skeleton data are used to forecast future skeleton movements.

A common denominator of all these approaches is that they treat each pose sequence as

an independent and isolated entity: the motion predicted for one person relies solely on

her/his past motion. However, in real-world scenarios people interact with each other,

and the motion of one person is typically dependent on or correlated with the motion of

other people. Thus, we could potentially improve the performance of motion prediction

by exploiting such human interaction.

Based on this intuition, in this chapter, we present a novel task: collaborative motion

prediction, which aims to jointly predict the motion of two persons strongly involved in

an interaction. To the best of our knowledge, previous publicly available datasets for 3D

human motion prediction like 3DPW [164] and CMU-Mocap [55] that involve multiple

persons only include weak human interactions, e.g., talking, shaking hands, etc. Here

we move a step further and analyze situations where the motion of one person is highly

correlated to the other person, which is often seen in team sports or collaborative assembly

tasks in factories.

With the goal to foster research on this new task, we collected the ExPI (Extreme

https://github.com/GUO-W/MultiMotion
https://github.com/GUO-W/MultiMotion
https://team.inria.fr/robotlearn/multi-person-extreme-motion-prediction/
https://team.inria.fr/robotlearn/multi-person-extreme-motion-prediction/
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Pose Interaction) dataset, a large dataset of professional dancers performing Lindy Hop

aerial steps.1 To perform these actions, the two dancers perform different movements that

require a high level of synchronization. These actions are composed of extreme poses

and require strict and close cooperation between the two persons, which is highly suitable

for the study of human interactions. Some examples of this highly interacted dataset

are shown in Figure 5.2. Our dataset contains 115 sequences of 2 professional couples

performing 16 different actions. It is recorded in a multiview motion capture studio, and

the 3D poses and 3D shapes of the two persons are annotated for all 30K frames. We

have carefully created train/test splits and proposed two different extensions of the pose

evaluation metrics for the collaborative motion prediction task.

To model such strong human-to-human interactions, we introduce a novel Cross-Interaction

Attention (XIA) module, which is based upon a standard multi-head attention [160] and

exploits historical motion data of the two persons simultaneously. For a pair of persons

engaging in the same activity, XIA module extracts the spatial-temporal motion informa-

tion from both persons and uses them to guide the prediction of each other.

We exhaustively evaluate our approach and compare it with state-of-the-art methods

designed for single human motion prediction. Note that in our dataset of dancing actions,

movements are performed at high speed. The long-term predictions are very challenging

in this case. Nevertheless, the results demonstrate that our approach consistently out-

performs these methods by a large margin, with 10 ∼ 40% accuracy improvement for

short (≤ 500 ms) and 5 ∼ 30% accuracy improvement for long term prediction (500 ms

∼ 1000 ms).

Our key contributions can be summarized as follows:

• We introduce the task of collaborative motion prediction, to focus on the estimation

of future poses of people in highly interactive setups.

• We collect and make publicly available ExPI, a large dataset of highly interacted

extreme dancing poses, annotated with 3D joint locations and body shapes. We also
1The Lindy Hop is an African-American couple dance born in the 1930s in Harlem,

New York, see [121].



61

Figure 5.2: Some samples of the ExPI dataset: RGB image with projected 2D skeletons,
3D pose, mesh, and textured mesh.

define the benchmark with carefully selected train/test splits and evaluation proto-

cols.

• We propose a method with a novel cross-interaction attention (XIA) module that

exploits the historical motion of two interacted persons to predict their future move-

ments. Our model can be used as a baseline method for collaborative motion predic-

tion.

5.2 RELATED WORK

3D Human Motion Prediction Due to the inherent sequential structure of human mo-

tion, 3D human motion prediction has been mostly addressed with recurrent models. For

instance, Fragkiadaki et al. [49] propose an encoder-decoder framework to embed human
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poses and an LSTM to update the latent space and predict future motion. Jain et al. [76]

split the human body into sub-parts and forward them via structural RNNs. Martinez et

al. [114] introduces a residual connection to model the velocities instead of the poses

themselves. Interestingly, they also show that a model trained with diverse action data

performs better than those trained with single actions. However, although RNNs achieve

great success in motion prediction, they suffer from containing the entire history with a

fixed-size hidden state and tend to converge to a static pose. Some works alleviate this

problem by using RNN variants [103, 33], sliding windows [24, 25], convolutional mod-

els [70, 69, 89] or adversarial training [56].

Since the human body is a non-rigid and structured data, directly encoding the whole body

into a compact latent embedding will neglect the spatial connectivity of human joints.

To this end, Mao et al. [113] introduces a feed-forward graph convolutional network

(GCN) [79, 161] with the learnable adjacent matrix. This approach was later boosted with

self-attention on an entire piece of historical information [111] or a selection of them [91].

Recently, GCN-based methods are further developed by leveraging multi-scale supervi-

sion [42], space-time-separable graph [145], and contextual information [1, 2]. In terms

of GCN design, Cui et al. [39] argues that training the adjacent matrix from scratch ig-

nores the natural connections of human joints, and proposes to use a semi-constrained

adjacent matrix. Li et al. [95] combines a graph scattering network with a hand-crafted

adjacent matrix. Other works also exploit the use of transformers [160] to replace GCN

in human motion prediction [26, 4].

Considering that human actions are essentially stochastic in the future, some works lever-

age on generative models (e.g. VAEs and GANs) [172, 180, 8, 174, 7, 27, 112, 133].

Nevertheless, although these models can generate diverse future motions, their prediction

accuracy still needs to be further improved when compared to deterministic models.

Contextual Information in Human Interaction Context information has been proved

to be useful in pose estimation[92, 65, 175, 167, 77, 61] and trajectory prediction [6, 46,

162, 74, 83, 90]. In motion prediction, human-object interaction [36] scene context et

al.[28] have been taken into consideration. Besides, social context-aware motion predic-



63

tion has also been studied [1, 2] but only in weak interacted scenes. In any event, none

of these papers explores the situation we contemplate in this chapter, in which humans do

perform highly interactive actions.

Datasets Using deep learning methods to study 3D human pose tasks relies on high-

quality datasets. Most previous 3D human datasets are single person [75, 109, 143] or

made of pseudo 3D poses [164, 119]. Other datasets which contain lab-based 3D data

usually do not have close interactions [142, 102, 119, 55]. Recently, some works have

started to focus on the importance of context information and propose datasets to model

the interaction of synthetic persons with scenes [28]. Furthermore, Fieraru et al. [47]

created a dataset of human interaction with a contact-detection-aware framework, but this

dataset just contains several daily scenarios with mild human interactions and it is not

released yet at the time of the publishing of our work concerned in this Chapter. Thus, we

believe the ExPI dataset we present here, where the actions of people are highly correlated,

fills an empty space in the current datasets of human 3D pose/motion.

5.3 PROBLEM FORMULATION

As discussed in the introduction, the task of single-person human motion prediction is

well established. It is defined as learning a mapping M : PtI:t−1 −→ Pt:tE to estimate the

future movements Pt:tE from the previous observation PtI:t−1, where tI (tE) denotes the

initial (ending) frame of a sequence, and Pt denotes the pose at time t.

In this work, we extend the problem formulation to collaborative motion prediction of

two interacted persons. While our formulation is general and could work for any kind

of interaction, for the sake of consistency throughout the paper, we will denote by ℓ and

f variables corresponding to the leader and the follower respectively (see Section 5.4 on

the dataset description). Therefore, the collaborative motion prediction task is defined as

learning a mapping:

MC : P ℓ
tI:t−1, P

f
tI:t−1 −→ P ℓ

t:tE
, P f

t:tE
. (5.1)
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Since the two persons are involved in the same interaction, we believe it is possible

to better predict the motion of a person by exploiting the pose information of her/his

interacted partner. From now on, we will use P c
t = [P l

t , P
f
t ] to denote the joint pose of

the couple (two actors) at time t, and Pt to denote either of them.

In the following parts of the paper, we will provide an experimental framework for

the collaborative motion prediction task, consisting of a dataset and evaluation metrics, to

foster research in this direction. And we will also introduce our proposed method for this

task.

5.4 THE EXTREME POSE INTERACTION DATASET

We present the Extreme Pose Interaction (ExPI) Dataset, a new person interaction dataset

of Lindy Hop dancing actions. In Lindy Hop, the two dancers are called leader and

follower.2 We recorded 2 couples of dancers in a multi-camera setup equipped with a

motion-capture system. In this section we will first describe the recording procedure and

data cleaning; then we will give a comprehensive analysis of our dataset components;

finally, we will analyze the dataset with defined matrices to show the diversity and ex-

tremeness of our collected data.

5.4.1 DATASET COLLECTION AND POST-PROCESSING.

Data collection The data were collected in a multi-camera platform equipped with 68

synchronized and calibrated color cameras and a motion capture system with 20 mocap

cameras.3 The data collection is marker-based, which is to say, each actor is dressed with

18 different markers on the corresponding joints for the system to track and record.

Our data collection strategy went through an Ethics Review Board, and the recordings

were authorized, together with the associated Consent Form. Our data does not contain

any personally identifiable information beyond the images themselves. The data will be

2This is the standard gender-neutral terminology for Lindy-Hop.
3Kinovis https://kinovis.inria.fr/

https://kinovis.inria.fr/
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shared respecting all national and international regulations, as authorized by COERLE,

the Ethics Review Board at INRIA.

Data Post-processing When collecting the motion capture data, some points are missed

by the system due to occlusions or tracking losses, which is a common phenomenon

in lab-based interacted Mocap datasets [47]. This problem becomes even worse when

dealing with extreme poses. To overcome this issue and ensure the quality of the data, we

designed and implemented a 3D hand-labeling toolbox, and we spent months manually

labeling the missing points.

To label the missing joints, for each missed value we choose two orthogonal views among

the several viewpoints and label the missed keypoints by hand on these two frames to get

two image coordinates. We then use the camera calibration to back project these two

image coordinates into the 3D world coordinate, obtaining two straight lines. Ideally, the

intersection of these two lines is the world coordinate of this missing point. Since these

two lines do not always intersect, we find the nearest point, in the least-squares sense, to

these two lines to approximate the intersection. Figure 5.3 shows an illustration of the

idea of this calibration. In this procedure, we did not use the distortion parameters, since

we observed that the distortion error is negligible on the views we choose for labeling.

The intersection is projected into 3D and various 2D images to confirm the quality of

the approximation by visual inspection. Figure 5.4 shows an example of before and after

labeling the missing joints.

5.4.2 DATASET STRUCTURE

Components. 16 different actions are performed in ExPI dataset, some by the 2 couples

of dancers, some by only one of the couples. Each action was repeated five times to

account for variability. More precisely, for each recorded sequence, ExPI provides:

• Multi-view videos at 25FPS from all the cameras in the recording setup;

• Mocap data (3D position of 18 joints for each person) at 25FPS synchronized with
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Figure 5.3: An illustration of labeling the missing joints4.

the videos.;

• camera calibration information;

• 3D shapes as textured meshes for each frame.

Overall, ExPI contains 115 sequences, each one depicting an execution of one of the

actions. It has in total 30k visual frames for each of the 68 viewpoints, and 60k 3D

instances annotated.

Action names and joint order Table 5.1 shows the names of the 16 actions performed

by the couples of actors in ExPI. In the video of the supplementary material, we include

example videos for each of the 16 actions.

In the ExPI dataset, the pose of each person is annotated with 18 keypoints, so we have

36 keypoints for both actors. The order of the keypoints is as follows, where “F” and “L”

denote the Follower and the Leader respectively, and “f”, “l” and “r” denote “forward”,

“left” and “right”:
4This figure is coming from https://ai.googleblog.com/2019/05/movi

ng-camera-moving-people-deep.html

https://ai.googleblog.com/2019/05/moving-camera-moving-people-deep.html
https://ai.googleblog.com/2019/05/moving-camera-moving-people-deep.html
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Figure 5.4: Data-cleaning. Top:Data before cleaning. The two joints ’F-back’ and ’F-
fhead’ are missed. Bottom: Data after cleaning. The yellow marks indicate the two
relabeled joints.

(0) ‘L-fhead’ (1) ‘L-lhead’ (2) ‘L-rhead’
(3) ‘L-back’ (4) ‘L-lshoulder’ (5) ‘L-rshoulder’
(6) ‘L-lelbow’ (7) ‘L-relbow’ (8) ‘L-lwrist’
(9) ‘L-rwrist’ (10) ‘L-lhip’ (11) ‘L-rhip’
(12) ‘L-lknee’ (13) ‘L-rknee’ (14) ‘L-lheel’
(15) ‘L-rheel’ (16) ‘L-ltoes’ (17) ‘L-rtoes’
(18) ‘F-fhead’ (19) ‘F-lhead’ (20) ‘F-rhead’
(21) ‘F-back’ (22) ‘F-lshoulder’ (23) ‘F-rshoulder’
(24) ‘F-lelbow’ (25) ‘F-relbow’ (26) ‘F-lwrist’
(27) ‘F-rwrist’ (28) ‘F-lhip’ (29) ‘F-rhip’
(30) ‘F-lknee’ (31) ‘F-rknee’ (32) ‘F-lheel’
(33) ‘F-rheel’ (34) ‘F-ltoes’ (35) ‘F-rtoes’
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Table 5.1: Composition of the ExPI Dataset. The seven first actions are performed by
both couples. Six more actions are performed by Couple 1, while three others by Couple
2.

Action Name Couple 1 Couple 2

A1 A-frame ✓ ✓
A2 Around the back ✓ ✓
A3 Coochie ✓ ✓
A4 Frog classic ✓ ✓
A5 Noser ✓ ✓
A6 Toss out ✓ ✓
A7 Cartwheel ✓ ✓

A8 Back flip ✓
A9 Big ben ✓
A10 Chandelle ✓
A11 Check the change ✓
A12 Frog-turn ✓
A13 Twisted toss ✓

A14 Crunch-toast ✓
A15 Frog-kick ✓
A16 Ninja-kick ✓

Comparison with other datasets Table 5.2 compares our dataset with several other

publicly available 3D human datasets that are widely used in recent work [114, 113, 111,

42]. From this table, we can see that our dataset is eminently suitable for the task of multi-

person extreme motion prediction, and it is also able to be used in human pose estimation

in rare conditions and challenging human shape estimation.

5.4.3 DATA ANALYSIS

Diversity. Similar to Ionescu et al. [75], we analyze the diversity of our dataset by check-

ing how many distinct poses have been obtained. We consider two poses to be distinct,

if at least one of the J joints for one pose P c
m is different from the corresponding joint of

the other pose P c
n, beyond a certain tolerance τ (mm):

max
j∈[1,J ]

∥P c
m,j − P c

n,j∥ > τ, (5.2)
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Table 5.2: Comparison of ExPI with other publicly available datasets commonly used for
human motion prediction.

Dataset AMASS[109] H3.6m[75] 3DPW[163] MuPoTS[119] ExPI

3D joints ✓ ✓ ✓ ✓ ✓
Video ✓ ✓ ✓ ✓ ✓
Shape ✓ ✓ ✓ ✓
Multi-person ✓ ✓ ✓
Extreme poses ✓ ✓
Multi-view ✓

where m,n ∈ D denote any two poses in the dataset D. Then we define diversity of the

dataset as the percentage of distinct poses among all the poses. According to Ionescu et

al. [75], the diversity of H3.6Mis 24% and 12% when setting the tolerance τ to 50 mm

and 100 mm, respectively. While the diversities of ExPI for the same threshold values are

52% and 23%, which are much more diverse.

Extremeness. To measure the extremeness of a pose sequence, we first compute the

standard deviation (std) over time for each dimension of the xyz−coordinate for every

joint. Then, the extremeness of the joint j is defined as its maximum per-coordinate

standard deviation: εj = max{σx
j , σ

y
j , σ

z
j}. Finally, the extremeness of action is evalu-

ated by computing the percentage of joint extremeness values εn within various intervals

[εmin, εmax]. Figure 5.5 and Figure 5.6 reports the extremeness of ExPI dataset compared

to H3.6M in two different ways: (i) a per-action plot reporting extremeness on various

color-coded intervals (Figure 5.5); (ii) computing the percentage of joints more extreme

than a certain std value(Figure 5.6). From both plots, it is clear that the ExPI dataset is

significantly more extreme than the H3.6M dataset.

Quantitative tests of multiple tasks on ExPI dataset As presented in Section 5.4.2,

ExPI provides various information containing multi-view RGB videos, Mocap 3D labels,

textured mesh etc. Thus it would be proper for the use of multiple human understanding

tasks such as pose estimation, motion estimation, detection and segmentation, etc. From
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Figure 5.5: Per-action extremeness comparison of Human3.6M dataset and ExPI dataset.
This figure shows the percentage of joints whose std is among a certain threshold (in
different colors), for different actions. Actions with more red colors are more extreme.

the above analysis, we could see that ExPI dataset is extreme and diverse and, thus should

be challenging for different tasks. To verify this, we use the official repos of several

different state-of-the-art methods for multiple tasks for some quick quantitative tests on

our collected data, see Figure 5.7. Note that here we use the pre-trained models provided

by these works, but do not fine-turn on our training data. We could see that these methods

perform badly when the poses are extreme, when the two people closely interact, or when

occlusion is severe. One reason is that these methods are trained on publicly released

datasets, though the amount of data is huge, there are rare samples for extremely interacted

poses like our dataset. Also, these methods are not designed for such kind of highly

interactive conditions, resulting in bad performance. Both these two reasons could support

the conclusion that the ExPI dataset could serve as a meaningful and challenging dataset

in this domain.

5.5 METHOD

We introduce our approach for collaborative motion prediction, aiming to set the first

performance baseline to help future developments.
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std

Used in thesis
Figure 5.6: Average extremeness comparison of Human3.6M dataset and ExPI dataset.
This figure shows the percentage of joints whose std is beyond a certain threshold.

5.5.1 PIPELINE

The idea of our method is to learn two person-specific motion prediction mappings and

to propose a strategy to share information between these two mappings. The possibility

to include information from the other person involved in the interaction should push the

network to learn a better representation for motion prediction. The overall pipeline is

described in Figure 5.8.

For the two single-person motion prediction mappings, we draw inspiration from [111],

using an attention model for leaning temporal attention w.r.t. the past motions, and a

predictor based on Graph Convolutional Network (GCN) [79] to model the spatial at-

tention among joints using an adjacency matrix. The temporal attention model aims to

find the most relative sub-sequence in the past by measuring the similarity between the

last observed sub-sequence and a set of past sub-sequences. In this attention model, the

query Q is learned by MLP from the last observation Pt−1−M :t−1 (blue dashed rectangle

in Figure 5.8, length M ). The keys Ki are learned by MLP from the starting chunk of

sub-sequences Pti:ti+M (red dashed rectangles in Figure 5.8, length M ). And the values
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(a) Openpose 2D (b) Mask-rcnn detection (c) Mask-rcnn segmentation

(d) dense pose (e) SPIN (f) VIBE(maskrcnn based)

Figure 5.7: Quantitative tests of multiple tasks on ExPI dataset: (a) 2D pose estimation
by Openpose [29]; (b) Person detection by Mask-rcnn [66]; (c) Instance segmentation by
Mask-rcnn [66]; (d) Pose estimation by Dense pose [57]; (e) 3D pose reconstruction by
SPIN [81]; (f) Human shape estimation by VIBE [80]

Vi consist of DCT representations built from the sub-sequences Pti:ti+M+T (black dashed

rectangles in Figure 5.8, length M + T ), where ti with i ∈ {1, . . . , N} indicates the start

frame of each past sub-sequence.

Training such a strategy separately for each actor does not account for any interac-

tion between the two dancing partners. To deal with this, we design a cross-interaction

attention (XIA) module based on multi-head attention, to introduce guidance from the

interacted person. In the next section, we introduce this XIA module.
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Figure 5.8: Computing flow of the proposed method. Two parallel pipelines – for the
leader and the follower – are implemented. The key-value pairs are refined by XIA mod-
ules(we just visualize XIA modules for the first sub-sequences, while it is the same for
the following sub-sequences).

5.5.2 CROSS-INTERACTION ATTENTION (XIA)

XIA aims to share motion information between the two predictors. In particular, we

denote the query and the key-value pairs for one person by Q and {Ki, Vi}Ni=1 respectively,

and use the superscript f and ℓ to indicate the two persons, follower and leader. We

naturally cast the collaborative human motion prediction task into learning how to jointly

exploit the information in (Ki, Vi) when querying with Q to predict the motion of each

person.

Our intuition is that the pose information (key-value pairs) of one person can be used

to transform the pose information of the other person for better motion prediction. We

implement this intuition with the help of the proposed cross-interaction attention module.
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Figure 5.9: Cross-interaction attention (XIA) module. In order to refine w with the help
of the corresponding interaction information wint., the multi-head attention is queried by
wint. and take w as key and value.

Such a module takes as input w and the corresponding vector from the interacted pose

wint., and uses multi-head self attention to get the refined vector w̃ (see Figure 5.9):

w̃ = XIA(wint., w) = FC(MHA(wint., w, w) + w), (5.3)

where MHA(q, k, v) stands for multi-head attention with query q, key k and value v,

and FC indicates fully connected layers. We use different XIA modules to update keys

and values mentioned in Section 5.5.1: in our implementation, XIA modules for keys

have 8 attention heads, and XIA for values has a single attention head. Moreover, we

add a skip connection for the MHA module followed by 2 FC layers. XIA modules for

leader/follower do not share weights.

The proposed XIA module is integrated at several stages of the computing flow as

shown in Figure 5.8. More precisely, we refine all keys:

K̃ℓ
i = XIA(Kℓ

i , K
f
i ), K̃f

i = XIA(Kf
i , K

ℓ
i ), (5.4)
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and analogously for the values.

XIA could be potentially generalized to any number of participants by considering

either several XIA modules and fusing their outcome or performing the fusion at the

input of XIA module.

5.5.3 POSE NORMALIZATION

Raw poses of ExPI are represented in the world coordinate. Similar to single-person

motion prediction, we normalize the data by removing the global displacement of the

poses based on a selected root joint. While our task aims at predicting not only the distinct

poses but also the relative position of the two persons, so we have to normalize by the same

person to keep the information of their related position. We could either normalize by

leader/follower or choose to normalize by the leader for better visualization. Specifically,

for each frame, we take the root joint (middle of the two hips) of the leader as coordinate

origin, use the root point and left hip of the leader to define x-axis, and use the neck of

the leader to determine the XOZ plane. We normalize all the joints of both persons to

this coordinate, then the pose errors can be computed directly in this coordinate. More

precisely, we represent the raw poses in the world coordinate as Pw ∈ {P ℓ
w, P

f
w}, and TP ℓ

w,t

is the rigid transformation aligning the two actors to the leader’s coordinate system. The

normalized coordinates are thus P ℓ
t = TP ℓ

w,t
P ℓ
w,t, and P f

t = TP ℓ
w,t
P f
w,t. In the following, P

shall always represent the normalized pose unless specified otherwise.

5.6 EXPERIMENTAL EVALUATION

This section describes the experimental protocol on ExPI, and discusses the results of our

proposed method.
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(a) Percentages of improvement of our method comparing with different state-of-the-art methods 

(b) Joint-wise JME improvement (mm) 

Figure 5.10: (a): Percentages of improvement of our method comparing with different
state-of-the-art methods, measured by average JME error on the common action split, at
different forecast times. Lower value means closer performance with our model. Our
method surpasses these methods up to 10 ∼ 40% in the short term, and 5 ∼ 30% in the
long term. (b): Joint-wise JME improvement(mm) of our method over Hisrep [111] and
MSR [95]. Darker color means larger improvement.
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5.6.1 SPLITTING THE EXPI DATASET

As described in Sect. 5.4.2, we record 16 actions in ExPI dataset. Seven of them are

common actions (A1 to A7) which are performed by both of the 2 couples: we denote

them as A1
c performed by couple 1 and A2

c by couple 2. The other actions are couple-

specific, which are performed only by one couple: we denote the actions performed by

couple 1 (A8 to A13) as A1
u, and actions by couple 2 (A14 to A16) as A2

u. With these

notations, we propose three data splits.

Common action split. Similar to [75], we consider the common actions performed by

different couples of actors as train and test data. More precisely, A2
c is the train dataset and

A1
c is the test dataset. Thus, train and test data contain the same actions but are performed

by different people.

Single action split. Similar to [49, 76], we train 7 action-specific models separately for

each common action, by taking one action from couple 2 as train set and the related one

from couple 1 as test set.

Unseen action split. The train set is the entire set of common actions {A1
c ,A2

c}. We

regard the extra couple-specific actions {A1
u,A2

u} as unseen actions and use them as our

test set. Thus the train and test data contain both couples of actors, but the test actions are

not used in training.

To sum up, the common action split is designed for a single model on different actions,

the single action split is designed for action-wise models, and the unseen action split

focuses on testing unseen actions to measure methods generalization.

5.6.2 EVALUATION METRICS

The most common metric for evaluating 3D joint position in pose estimation and motion

prediction tasks is the mean per joint position error MPJPE(P,G) = 1
J

∑J
j=1 ∥Pj −Gj∥2,

where J is the number of joints, Pj and Gj are the estimated and ground truth position of

joint j. Based on MPJPE, we propose two different metrics to evaluate the multi-person

motion task.
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Joint mean error (JME): We Propose Joint Mean per joint position Error to measure

poses of different persons in the same coordinate and denote it as JME for simplicity:

JME(P,G) = MPJPE(P,G), (5.5)

where P and G are normalized (see Section 5.5.3) prediction and ground truth. JME

provides an overall idea for the performance of collaborative motion prediction by con-

sidering the two interacted persons jointly as a whole, measuring both the error of poses

and the error of their relative position.

Aligned mean error (AME): We propose Aligned Mean per joint position Error to mea-

sure pure pose error without the position bias. We first erase the errors on the relative

position between the two persons by normalizing the poses independently to obtain P̂ , Ĝ.

However, the precision of P̂ is importantly influenced by the joints that are used to de-

termine the coordinate (hips and back). To mitigate this effect, we compute the best rigid

alignment TA between the estimated pose and the ground-truth using Procrustes analy-

sis [54]:

AME(P,G) = MPJPE(TA(P̂ , Ĝ), Ĝ), (5.6)

where P̂ ∈ [P̂ ℓ, P̂ f ] are independently normalized predictions P̂ ℓ
t = TP ℓ

t
P ℓ
t and P̂ f

t =

TP f
t
P f
t , and TP is the normalisation transformation computed from the pose P as defined

in Section 5.5.3. The same calculation is done for the ground truth Ĝ. This normalization

is only used for evaluation purposes.

5.6.3 IMPLEMENTATION DETAILS

Since this is the first time the collaborative motion prediction task is presented in the lit-

erature, there are no available methods to compare with. Thus we choose 4 code-released

state-of-the-art methods of single-person motion prediction [114, 113, 111, 42], and im-

plement their released codes5 on ExPI dataset. For a fair comparison, all these models are

trained with 50 frames of input, train/test for the leader and the follower separately.

5All the codes we use are under MIT license.
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We train our model for 25 epochs and calculate the average MPJPE loss of 10 predicted

frames. As the data is normalized by the leader, the corresponding branch converges

faster, so we compensate by exponentially down-weighting the loss of the leader with the

number of epochs ϵ, using the loss function: L = Lf + 10−ϵLl,.

When predicting longer horizons, we use the predicted motion as input to predict future

motion. Inspired by [111], we take 64 sub-sequences for each sequence to reduce the

variance of the test results. Overall, we have 7k and 2.3k sub-sequences for training and

testing respectively in the common action split and the single action split, and 12k / 2.9k

training/testing samples in the unseen action split.

5.6.4 RESULTS AND DISCUSSION

Common action split. Table 5.3 reports the results of the common action split. We

observe that our proposed method outperforms other methods systematically almost for

all actions, in all metrics, and for different testing times. In Figure 5.10-left we calculate

the percentage of improvement of our method compared with the state-of-the-art methods,

and find that we significantly surpass these methods up to 10 ∼ 40% on the short term and

5 ∼ 30% on the long term. We further compare our per-joint results with Hisrep [111]

and MSR [42] in Figure 5.10-right, and observe that our proposed method gets better

results on almost on all the joints. More importantly, the keypoints of the limbs (joints of

arms and legs) are improved largely. This is reasonable as the interaction between persons

comes mostly through the limbs, while joints on the torso have little influence on it. So

our cross-interaction attention is able to improve the accuracy on the limbs more than on

the torso. We could also notice the large improvement on the feet of the follower which

usually flies in the air, indicating that our method works even better for these extremely

high dynamic joints.

Single action split and unseen action split. We also reported our proposed method

by reporting the results on single action split and unseen action split. For single action

split, XIA outperforms the state-of-the-art methods on action-specific models, as shown

in Table 5.4. Interestingly, we observe that the performance on the single action split is
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Table 5.3: Results on common action split with the two evaluation metrics (in mm).
Lower value means better performance. Obviously, our proposal outperforms all the other
methods both on JME and AME.

Action A1 A-frame A2 Around the back A3 Coochie A4 Frog classic
Time (sec) 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

Res-RNN [114] 83 141 182 236 127 224 305 433 99 177 239 350 74 135 182 250
LTD [113] 70 125 157 189 131 242 321 426 102 194 260 357 62 117 155 197
Hisrep [111] 52 103 139 188 96 186 256 349 57 118 167 240 45 93 131 180
MSR [42] 56 100 132 175 102 187 256 365 65 120 166 244 50 95 127 172JM

E

Ours 49 98 140 192 84 166 234 346 51 105 154 234 41 84 120 161
Res-RNN [114] 59 102 132 167 62 112 152 229 57 102 139 215 48 85 113 157
LTD [113] 51 92 116 132 51 91 116 148 43 80 103 130 38 70 89 111
Hisrep [111] 34 69 97 130 44 84 115 150 32 65 91 121 27 56 82 112
MSR [42] 41 75 99 126 54 96 129 180 41 74 98 135 34 61 82 106A

M
E

Ours 32 68 99 128 41 82 116 163 29 58 84 116 24 50 73 96

Action A5 Noser A6 Toss Out A7 Cartwheel AVG
Time (sec) 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

Res-RNN [114] 87 152 201 271 93 166 225 321 104 189 269 414 95 169 229 325
LTD [113] 72 131 173 231 81 151 200 280 112 223 315 442 90 169 226 303
Hisrep [111] 51 105 149 214 61 125 176 252 71 150 222 333 62 126 177 251
MSR [42] 54 100 138 202 70 132 182 258 82 154 218 321 69 127 174 248JM

E

Ours 43 90 132 197 55 113 163 242 62 130 192 291 55 112 162 238
Res-RNN [114] 51 90 120 167 53 94 126 183 74 131 178 265 58 102 137 197
LTD [113] 39 70 90 116 42 75 94 123 52 101 139 198 45 83 107 137
Hisrep [111] 28 58 85 121 34 66 88 115 42 83 120 171 34 69 97 131
MSR [42] 33 59 79 109 42 71 93 124 57 103 146 210 43 77 104 141A

M
E

Ours 24 51 75 109 31 62 86 114 41 81 115 160 32 65 93 127
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Table 5.4: Results on single action split with the two evaluation metrics (in mm). Lower
value means better performance. Seven action-wise models are trained independently.
Our method performs the best in 5 actions, and close to the best for the other 2 actions.

Action A1 A-frame A2 Around the back A3 Coochie

Time (sec) 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

Res-RNN [114] 75 131 171 226 122 215 287 403 97 174 235 329
LTD [113] 70 126 155 183 131 243 312 415 102 194 252 338
Hisrep [111] 66 118 153 190 128 231 308 417 74 143 205 295
MSR[42] 64 108 136 171 119 210 282 385 79 144 189 265JM

E

Ours 64 120 160 199 109 200 275 381 59 117 174 277
Res-RNN [114] 56 99 129 163 61 110 150 229 53 96 131 188
LTD [113] 51 93 114 127 51 91 116 162 43 80 100 126
Hisrep [111] 45 83 106 118 57 102 135 178 39 72 100 132
MSR[42] 46 79 98 118 60 107 141 192 48 86 111 150A

M
E

Ours 43 84 115 131 53 99 136 185 35 68 98 140

Action A4 Frog classic A5 Noser A6 Toss Out A7 Cartwheel

Time (sec) 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

Res-RNN [114] 73 131 177 246 76 136 184 255 100 184 252 357 88 162 219 293
LTD [113] 62 117 153 203 71 131 171 231 81 151 199 299 112 223 306 411
Hisrep [111] 64 120 159 191 63 121 166 227 90 168 232 312 88 166 232 332
MSR[42] 59 103 134 173 65 118 162 225 86 151 201 283 96 178 255 362JM

E

Ours 60 116 162 209 53 106 152 221 65 122 166 223 74 144 203 301
Res-RNN [114] 46 81 106 142 44 79 106 147 53 100 162 176 70 133 163 198
LTD [113] 38 70 88 118 39 70 90 125 42 75 93 123 52 101 137 188
Hisrep [111] 41 77 103 119 35 70 97 125 46 82 107 137 48 90 121 169
MSR[42] 39 68 88 111 39 69 91 121 55 93 117 156 66 118 163 222A

M
E

Ours 37 74 106 128 29 59 86 125 39 72 94 119 43 82 112 152
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worse than the corresponding results on the common action split, meaning that training

on different actions helps regularise the network for this very challenging collaborative

extreme motion prediction task. Regarding the unseen action split shown in Table 5.5,

we can see that XIA still outperforms the state-of-the-art methods on most of the actions,

demonstrating the robustness of our method.

Qualitative results. Figure 5.1 shows some examples of our visualization results com-

pared to Hisrep et al. [111], MSR [42] and the ground truth, on the common action split.

More qualitative examples could be found in Figure 5.11, Figure 5.12 and Figure 5.13

where we compare our model with models that independently predict the motion of each

person, i.e. Res-RNN [114], LTD [113], Hisrep [111] and MSR [42]. We can see that

the poses estimated by our method are much closer to the ground truth than the other

methods, and it works well even on some extreme actions where other methods totally

fail (Figure 5.1-right).

Ablation study. Taking Hisrep [111] as an example, we first tried 3 different ways

of training the single-person motion prediction models on our multi-person dataset: (i)

’mix’: train a single model using data of the two poses {P l, P f}; (ii) ’cat’: concatenate

the two poses as a single input vector [P l, P f ]; (iii) ’sep’: train two person-specific mod-

els for P l and P f . Since ’sep’ gives the best performance, all the state-of-the-art methods

reported above in this chapter is using this setting. As for our collaborative motion predic-

tion model, we report the performances of several different design choices of our model.

We found that updating the key and values of the temporal attention using our XIA mod-

ule provides the best results. We demonstrate interest in the design of our method as the

proposed one is the best in performance and our method significantly improves all the

single-person motion prediction results.

5.7 CONCLUSION

Current motion prediction methods are restricted to a single person. In this chapter,

we move beyond existing approaches for 3D human motion prediction by considering
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Table 5.5: Action-wise results on unseen action split with the two evaluation metrics (in
mm). Lower value means better performance. Our method still performs the best on most
of the unseen actions and on the average result.

Action A8 A9 A10 A11 A12

Time (sec) 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

Res-RNN [114] 239 312 371 193 256 303 189 257 310 305 425 520 215 289 348
LTD [113] 239 324 394 175 226 259 148 191 220 176 240 286 143 178 192
Hisrep [111] 195 283 358 121 169 206 92 129 160 129 193 245 80 104 121
MSR [42] 230 289 335 188 245 290 148 198 248 234 319 384 176 232 278JM

E

Ours 191 287 377 118 165 203 91 129 162 122 183 232 81 107 128
Res-RNN. [114] 124 165 195 125 157 181 131 166 189 148 198 240 149 169 192
LTD [113] 95 123 146 85 106 116 74 91 101 86 115 137 98 125 134
Hisrep [111] 101 144 176 61 82 94 49 67 80 73 105 129 53 73 86
MSR [42] 103 134 155 101 135 160 74 98 121 103 143 173 87 111 132A

M
E

Ours 95 137 171 58 80 93 51 70 84 70 105 134 53 73 88

Action A13 A14 A15 A16 AVG

Time (sec) 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

Res-RNN [114] 165 214 252 214 293 357 149 187 210 167 226 277 204 273 327
LTD [113] 146 193 226 252 333 387 174 228 264 139 184 217 177 233 272
Hisrep [111] 112 154 187 157 219 257 134 190 233 96 146 187 124 176 218
MSR [42] 162 218 266 177 239 295 143 179 213 157 222 281 179 238 288JM

E

Ours 106 150 185 156 216 256 126 175 213 96 152 205 121 174 218
Res-RNN. [114] 102 128 147 181 237 279 100 129 144 93 124 147 128 164 190
LTD [113] 85 110 124 106 136 155 91 119 135 72 96 116 88 113 129
Hisrep [111] 64 89 104 86 120 142 73 104 128 54 82 104 68 96 116
MSR [42] 84 106 122 88 118 142 90 113 136 90 122 148 91 120 143A

M
E

Ours 63 88 104 82 116 142 69 97 120 52 79 104 66 94 116
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Table 5.6: Ablations. ’mix /cat /sep’ use the single person motion prediction model
(Hisrep [111]) for multi-person by: mixing two poses together / concatenate two poses
as a single vector / train two person-specific models. ’w.o. XIA’ indicates training leader
and follower in parallel using our defined loss without XIA module; ’XIA kqv / kq / kv /
v’ use XIA module to update key, value and query of the temporal attention, or just some
of them.

JME AME
Time (sec) 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

mix 69 132 185 233 271 41 77 104 126 142
cat 61 123 176 223 262 37 71 99 121 138
sep 62 126 177 218 251 34 69 97 116 131

w.o. XIA 58 120 174 217 249 33 68 98 118 131
XIA kq 58 118 169 211 245 33 67 95 114 128

XIA kqv 57 117 170 215 251 32 65 95 116 131
XIA v 56 116 168 210 244 32 66 94 113 127

XIA kv 55 112 162 204 238 32 65 93 112 127

a scenario with two persons performing highly interactive activities. We collected a new

dataset called ExPI of professional actors performing dancing actions. ExPI is annotated

with sequences of 3D body poses and shapes, opening the door to not only being applied

for interactive motion prediction but also for single-frame pose estimation or multi-view

3D reconstruction. In order to learn the interacted motion dynamics, we introduce a base-

line method trained with ExPI that exploits historical information of both people in an

attention-like fashion. The results of our method show consistent improvement compared

to methods that independently predict the motion of each person.

While collecting clean and reusable 3D pose data requires specific equipment and

recording extreme poses requires actors with specific skills, thus ExPI is rare and difficult

to reproduce/extend. This is clearly a limitation in the era of data-hungry deep learning

architectures. Besides, we observe that most current methods designed for human motion

prediction, either previous methods for single-person or our proposed method for multi-

person, are all based on complex architectures. The complexity not only means complex

architecture designs but also big model sizes. Thus we begin to think if we could have a
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simpler design to deal with human motion data with fewer model parameters. This is the

motivation for our next chapter.
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Figure 5.11: Visualization results of our proposed method compared with previous state-
of-the-art methods. Dark red/blue shows predicted results, and light red/blue represents
groundtruth.
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Figure 5.12: Visualization results of our proposed method compared with previous state-
of-the-art methods (continue). Dark red/blue shows predicted results, and light red/blue
represents groundtruth.
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Figure 5.13: Visualization results of our proposed method compared with previous state-
of-the-art methods (continue). Dark red/blue shows predicted results, and light red/blue
represents groundtruth.
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This chapter tackles the problem of human motion prediction, consisting in forecasting

future body poses from historically observed sequences. State-of-the-art approaches pro-

vide good results, however, they rely on deep learning architectures of arbitrary complex-

ity, such as Recurrent Neural Networks (RNN), Transformers, or Graph Convolutional

Networks (GCN), typically requiring multiple training stages and more than 2 million pa-

rameters. In this chapter, we first show the effectiveness of a single fully connected layer

on the motion prediction task through two naive experiments, and thus propose siMLPe, a

simple yet effective network that is composed of merely three components: the fully con-

nected layers, the layer normalization, and the matrix transpose operations. The network

has in total 0.14 million parameters which are about 30 times smaller than the state-of-

the-art methods, and it has achieved state-of-the-art results on multiple benchmarks.

The results for single-person human motion prediction presented in this chapter were

initially presented in: “Back to MLP: A simple baseline for human motion prediction”,

Wen Guo, Yuming Du, Xi Shen, Vincent Lepetit, Xavier Alameda-Pineda, and Francesc

Moreno-Noguer, In Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision (WACV), 2023.

We also present in this chapter some extended experiments on multi-person settings.

The code of this work is released at https://github.com/dulucas/siMLPe.

6.1 INTRODUCTION

As presented in the previous chapter, the goal of human motion prediction is to forecast

the follow-up of a sequence of 3D body poses. Accurate prediction of future human

motion is vital for several applications, such as accident prevention in autonomous driving

[128], people tracking [53], and human-robot interaction [82].

Due to the spatio-temporal nature of human motion, the common trend in the liter-

ature is to design models that are capable of fusing spatial and temporal information.

Traditional approaches mainly relied on hidden Markov models [23] or Gaussian process

latent variable models [166]. However, while these approaches performed well on sim-

https://github.com/dulucas/siMLPe
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Figure 6.1: Comparison of parameter size and performance on the Human3.6M
dataset [75]. We report the MPJPE metric in mm at 1000 ms as performance on the verti-
cal axis. The closer to the bottom-left, the better. Our method (SIMLPE, in red) achieves
the lowest error with significantly fewer parameters. We also show the performance of
two simple methods: ‘Repeating Last-Frame’ systematically repeats the last input frame
as output prediction, and ‘One-FC’ uses only one single fully connected layer to predict
the future motion.

ple and periodic motion patterns, they dramatically fail under complex motions [113].

In recent years, with the success of deep learning, various methods have been developed

based on different types of neural networks that are able to handle sequential data. For

example, some works use Recurrent Neural Networks (RNN) [114] to model the human

motion [49, 76, 114, 103, 33], and some more recent works [113, 111, 60, 107, 41, 96, 94]

propose networks based on Graph Convolutional Networks (GCN) [113], or trying with

Transformers([5]) based method [111, 5, 26] to fuse the spatial and temporal informa-
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tion of the motion sequence across human joints and time. However, the architectures of

these recent methods are usually not simple and some of them require additional priors,

which makes their network difficult to analyze and modify. Thus, a question naturally

arises: “Can we tackle the human motion prediction with a simple network?”

To answer this question, we first tried a naive solution by just repeating the last input

pose and using it as the output prediction. As shown in Figure 6.1, this naive solution

could already achieve reasonable results, which means the last input pose is “close” to the

future poses. Inspired by this, we further train only one fully connected layer to predict the

residual between the future poses and the last input pose and achieve better performance,

which shows the potential of a simple network for human motion prediction built on basic

layers like the fully connected layer.

Based on the above observations, we go back to the multi-layer perceptrons (MLPs)

and build a simple yet effective network named SIMLPE with only three components:

fully connected layers, layer normalization [13], and transpose operations. The network

architecture is shown in Figure 6.2. Noticeably, we found that even commonly used

activation layers such as ReLU [125] are not needed, which makes our network an entirely

linear model except for layer normalization. Despite its simplicity, SIMLPE achieves

strong performance when appropriately combined with three simple practices: applying

the Discrete Cosine Transform (DCT), predicting residual displacement of joints, and

optimizing velocity as an auxiliary loss.

SIMLPE yields state-of-the-art performance on several standard benchmarks, includ-

ing Human3.6M [75], AMASS [109] and 3DPW [163]. In the meantime, SIMLPE is

lightweight and requires 20× to 60× fewer parameters than previous state-of-the-art ap-

proaches. A comparison between SIMLPE and previous methods can be found in Fig-

ure 6.1, which shows the Mean Per Joint Position Error (MPJPE) at 1, 000ms on Hu-

man3.6M of different networks versus the network complexity. SIMLPE achieves the

best performance with high efficiency.

In summary, our contributions are as follows:



93

Figure 6.2: Overview of our approach SIMLPE for human motion prediction. FC
denotes a fully connected layer, LN denotes layer normalization [13], and Trans represents
the transpose operation. DCT and IDCT represent the discrete cosine transformation and
inverse discrete cosine transformations respectively. The MLP blocks (in gray), compos-
ing FC and LN, are repeated m times.

• We show that human motion prediction can be modeled in a simple way without

explicitly fusing spatial and temporal information. As an extreme example, a single

fully connected layer can already achieve reasonable performance.

• We propose SIMLPE, a simple yet effective network for human motion prediction

with only three components: fully connected layers, layer normalization, and trans-

pose operation, achieving state-of-the-art performance with far fewer parameters

than existing methods on multiple benchmarks such as Human3.6M, AMASS and

3DPW datasets.

6.2 RELATED WORK

In Section 2.2 we discussed the previous literature on single-person human motion predic-

tion, based on RNN, GCN, or Attention mechanisms. In summary, with the development

of human motion prediction in recent years, the RNN/GCN/transformer-based architec-

tures are well explored and the results have been significantly improved. Though these

methods provide good results, their architectures are becoming more and more compli-

cated and difficult to train. Especially after LTD [113] was proposed, the most recent

works [86, 107, 41, 96, 94] focus on designing complex networks based on GCN, to
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model the spatial and temporal information at different level. While based on the ob-

servation that the human motion data is simple, we doubt the necessity of designing a

complicated network for this task. In this chapter, we stick to simple architectures and

propose an MLP-based network. Recently, a concurrent and independent work [22] based

on [154] also adopts an MLP-based network architecture for motion prediction, while our

network is much simpler as we do not use the squeeze-and-excitation block[72] nor the

activation layers. We hope that our simple method will serve as a baseline and let the

community rethink the problem of human motion prediction.

6.3 OUR APPROACH: SIMLPE

In this section, we formulate the problem and present the formulation of the DCT trans-

formation in Section 6.3.1, details of the network architecture in Section 6.3.2, and the

losses we use for training in Section 6.3.3.

Given a sequence of 3D human poses in the past, our goal is to predict the future

sequence of poses. We denote the observed 3D human poses as P1:T = [P⊤
1 , .., P⊤

T ]⊤ ∈

RT×C , consisting of T consecutive human poses, where the pose at the t-th frame Pt is

represented by a C-dimensional vector, i.e. Pt ∈ RC . In this work, similar to previous

works [114, 113, 111, 107], Pt is the 3D coordinates of joints at t-th frame and C =

3× J, where J is the number of joints. Our task is to predict the future N motion frames

GT+1:T+N = [P⊤
T+1, .., P

⊤
T+N ]

⊤ ∈ RN×C .

6.3.1 DISCRETE COSINE TRANSFORM (DCT)

We adopt the DCT transformation to encode temporal information, which is proven to be

beneficial for human motion prediction [113, 111, 107]. More precisely, given an input
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Table 6.1: Results on Human3.6M for different prediction time steps (ms). We report
the MPJPE error in mm and number of parameters (M) for each method. Lower is better.
256 samples are tested for each action. † indicates that the results are taken from the
paper [111], ⋆ indicated that the results are taken from the paper [107]. Note that ST-
DGCN [107] use two different models to evaluate their short-/long- term performance,
here we report their results of a single model which performs better on long-term for
fair comparison. We also show results of two simple baselines: ’Repeating Last-Frame’
repeats the last input frame 25 times as output, ’One FC’ uses only one single fully con-
nected layer for the prediction.

MPJPE (mm) ↓
# Param.(M) ↓Time (ms) 80 160 320 400 560 720 880 1000

Repeating Last-Frame 23.8 44.4 76.1 88.2 107.4 121.6 131.6 136.6 0
One FC 14.0 33.2 68.0 81.5 101.7 115.1 124.8 130.0 0.003

Res-RNN † [114] 25.0 46.2 77.0 88.3 106.3 119.4 130.0 136.6 3.44
convSeq2Seq † [89] 16.6 33.3 61.4 72.7 90.7 104.7 116.7 124.2 15.58
LTD-50-25 † [113] 12.2 25.4 50.7 61.5 79.6 93.6 105.2 112.4 2.56
LTD-10-10 † [113] 11.2 23.4 47.9 58.9 78.3 93.3 106.0 114.0 2.55
Hisrep † [111] 10.4 22.6 47.1 58.3 77.3 91.8 104.1 112.1 3.24
MSR-GCN ⋆ [41] 11.3 24.3 50.8 61.9 80.0 - - 112.9 6.30
ST-DGCN-10-25 ⋆ [107] 10.6 23.1 47.1 57.9 76.3 90.7 102.4 109.7 3.80

SIMLPE (Ours) 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4 0.14

motion sequence of T frames, the DCT matrix D ∈ RT×T can be calculated as:

Di,j =

√
2

T

1√
1 + δi,0

cos
( π

2T
(2j + 1)i

)
, (6.1)

where δi,j denotes the Kronecker delta:

δi,j =

1 if i = j

0 if i ̸= j .
(6.2)

The transformed input is D(P1:T ) = DP1:T . We apply the Inverse Discrete Cosine

Transform (IDCT) to transform the output of the network back to the original pose repre-

sentation, denoted as D−1 and the inverse of D.
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Table 6.2: Action-wise results on Human3.6M for different prediction time steps (ms).
Lower is better. 256 samples are tested for each action. † indicates that the results are
taken from the paper [111], ⋆ indicates that the results are taken from the paper [107].

Action walking eating smoking discussion

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [114] 23.2 66.1 71.6 79.1 16.8 61.7 74.9 98.0 18.9 65.4 78.1 102.1 25.7 91.3 109.5 131.8
convSeq2Seq † [89] 17.7 63.6 72.2 82.3 11.0 48.4 61.3 87.1 11.6 48.9 60.0 81.7 17.1 77.6 98.1 129.3
LTD-50-25 † [113] 12.3 44.4 50.7 60.3 7.8 38.6 51.5 75.8 8.2 39.5 50.5 72.1 11.9 68.1 88.9 118.5
LTD-10-10 † [113] 11.1 42.9 53.1 70.7 7.0 37.3 51.1 78.6 7.5 37.5 49.4 71.8 10.8 65.8 88.1 121.6
Hisrep † [111] 10.0 39.8 47.4 58.1 6.4 36.2 50.0 75.7 7.0 36.4 47.6 69.5 10.2 65.4 86.6 119.8
MSR-GCN ⋆ [41] 10.8 42.4 53.3 63.7 6.9 36.0 50.8 75.4 7.5 37.5 50.5 72.1 10.4 65.0 87.0 116.8
ST-DGCN-10-25 ⋆ [107] 11.2 42.8 49.6 58.9 6.5 36.8 50.0 74.9 7.3 37.5 48.8 69.9 10.2 64.4 86.1 116.9

SIMLPE (Ours) 9.9 39.6 46.8 55.7 5.9 36.1 49.6 74.5 6.5 36.3 47.2 69.3 9.4 64.3 85.7 116.3
Action directions greeting phoning posing

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [114] 21.6 84.1 101.1 129.1 31.2 108.8 126.1 153.9 21.1 76.4 94.0 126.4 29.3 114.3 140.3 183.2
convSeq2Seq † [89] 13.5 69.7 86.6 115.8 22.0 96.0 116.9 147.3 13.5 59.9 77.1 114.0 16.9 92.9 122.5 187.4
LTD-50-25 † [113] 8.8 58.0 74.2 105.5 16.2 82.6 104.8 136.8 9.8 50.8 68.8 105.1 12.2 79.9 110.2 174.8
LTD-10-10 † [113] 8.0 54.9 76.1 108.8 14.8 79.7 104.3 140.2 9.3 49.7 68.7 105.1 10.9 75.9 109.9 171.7
Hisrep † [111] 7.4 56.5 73.9 106.5 13.7 78.1 101.9 138.8 8.6 49.2 67.4 105.0 10.2 75.8 107.6 178.2
MSR-GCN ⋆ [41] 7.7 56.2 75.8 105.9 15.1 85.4 106.3 136.3 9.1 49.8 67.9 104.7 10.3 75.9 112.5 176.5
ST-DGCN-10-25 ⋆ [107] 7.5 56.0 73.3 105.9 14.0 77.3 100.2 136.4 8.7 48.8 66.5 102.7 10.2 73.3 102.8 167.0
SIMLPE (Ours) 6.5 55.8 73.1 106.7 12.4 77.3 99.8 137.5 8.1 48.6 66.3 103.3 8.8 73.8 103.4 168.7

Action purchases sitting sittingdown takingphoto

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [114] 28.7 100.7 122.1 154.0 23.8 91.2 113.7 152.6 31.7 112.0 138.8 187.4 21.9 87.6 110.6 153.9
convSeq2Seq † [89] 20.3 89.9 111.3 151.5 13.5 63.1 82.4 120.7 20.7 82.7 106.5 150.3 12.7 63.6 84.4 128.1
LTD-50-25 † [113] 15.2 78.1 99.2 134.9 10.4 58.3 79.2 118.7 17.1 76.4 100.2 143.8 9.6 54.3 75.3 118.8
LTD-10-10 † [113] 13.9 75.9 99.4 135.9 9.8 55.9 78.5 118.8 15.6 71.7 96.2 142.2 8.9 51.7 72.5 116.3
Hisrep † [111] 13.0 73.9 95.6 134.2 9.3 56.0 76.4 115.9 14.9 72.0 97.0 143.6 8.3 51.5 72.1 115.9
MSR-GCN ⋆ [41] 13.3 77.8 99.2 134.5 9.8 55.5 77.6 115.9 15.4 73.8 102.4 149.4 8.9 54.4 77.7 121.9
ST-DGCN-10-25 ⋆ [107] 13.2 74.0 95.7 132.1 9.1 54.6 75.1 114.8 14.7 70.0 94.4 139.0 8.2 50.2 70.5 112.9

SIMLPE (Ours) 11.7 72.4 93.8 132.5 8.6 55.2 75.4 114.1 13.6 70.8 95.7 142.4 7.8 50.8 71.0 112.8
Action waiting walkingdog walkingtogether average

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [114] 23.8 87.7 105.4 135.4 36.4 110.6 128.7 164.5 20.4 67.3 80.2 98.2 25.0 88.3 106.3 136.6
convSeq2Seq † [89] 14.6 68.7 87.3 117.7 27.7 103.3 122.4 162.4 15.3 61.2 72.0 87.4 16.6 72.7 90.7 124.2
LTD-50-25 † [113] 10.4 59.2 77.2 108.3 22.8 88.7 107.8 156.4 10.3 46.3 56.0 65.7 12.2 61.5 79.6 112.4
LTD-10-10 † [113] 9.2 54.4 73.4 107.5 20.9 86.6 109.7 150.1 9.6 44.0 55.7 69.8 11.2 58.9 78.3 114.0
Hisrep † [111] 8.7 54.9 74.5 108.2 20.1 86.3 108.2 146.9 8.9 41.9 52.7 64.9 10.4 58.3 77.3 112.1
MSR-GCN ⋆ [41] 10.4 62.4 74.8 105.5 24.9 112.9 107.7 145.7 9.2 43.2 56.2 69.5 11.3 61.9 80.0 112.9
ST-DGCN-10-25 ⋆ [107] 8.7 53.6 71.6 103.7 20.4 84.6 105.7 145.9 8.9 43.8 54.4 64.6 10.6 57.9 76.3 109.7

SIMLPE (Ours) 7.8 53.2 71.6 104.6 18.2 83.6 105.6 141.2 8.4 41.2 50.8 61.5 9.6 57.3 75.7 109.4
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6.3.2 NETWORK ARCHITECTURE

Figure 6.2 shows the architecture of our network. Our network only contains three com-

ponents: fully connected layers, transpose operation, and layer normalization [13]. For

all the fully connected layers, their input dimension is equal to their output dimension.

Formally, given an input sequence of 3D human poses P1:T = [P⊤
1 , .., P⊤

T ]⊤ ∈ RT×C ,

our network predicts a sequence of future poses PT+1:T+N = [P ′⊤
T+1, .., P

′⊤
T+N ]

⊤ ∈

RN×C :

PT+1:T+N = D−1(F(D(P1:T ))) , (6.3)

where F denotes our network.

After the DCT transformation, we apply one fully connected layer to operate only on

the spatial dimension of the transformed motion sequence D(P1:T ) ∈ RT×C :

z0 = D(P1:T )W0 + b0 , (6.4)

where z0 ∈ RT×C is the output of the fully connected layer, W0 ∈ RC×C and b0 ∈ RC

represent the learnable parameters of the fully connected layer. In practice, this is equiv-

alent to applying a transpose operation with a fully connected layer, and then transposing

back the output feature, as shown in Figure 6.2.

Then, a series of m blocks are introduced to only operate on the temporal dimension,

i.e., only to merge information across frames. Each block consists of a fully connected

layer followed by layer normalization, formally:

zi = zi−1 + LN(Wiz
i−1 + bi) , (6.5)

where zi ∈ RT×C , i ∈ [1, ..,m] denotes the output of the i-th MLP block, LN denotes the

layer normalization operation, and Wi ∈ RT×T and bi ∈ RT are the learnable parameters

of the fully connected layer in the i-th MLP block.

Finally, similar to the first fully connected layer, we add another fully connected layer
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after the MLP blocks to operate only on the spatial dimension of the feature, and then

apply IDCT transformation to obtain the prediction:

PT+1:T+N = D−1(z′Wm+1 + bm+1) , (6.6)

where Wm+1 and bm+1 are the learnable parameters of the last fully connected layer.

Table 6.3: Results on AMASS and 3DPW for different prediction time steps (ms). We
report the MPJPE error in mm. Lower is better. The model is trained on the AMASS
dataset. The results of the previous methods are taken from [111].

Dataset AMASS-BMLrub 3DPW
Time (ms) 80 160 320 400 560 720 880 1000 80 160 320 400 560 720 880 1000

convSeq2Seq [89] 20.6 36.9 59.7 67.6 79.0 87.0 91.5 93.5 18.8 32.9 52.0 58.8 69.4 77.0 83.6 87.8
LTD-10-10 [113] 10.3 19.3 36.6 44.6 61.5 75.9 86.2 91.2 12.0 22.0 38.9 46.2 59.1 69.1 76.5 81.1
LTD-10-25 [113] 11.0 20.7 37.8 45.3 57.2 65.7 71.3 75.2 12.6 23.2 39.7 46.6 57.9 65.8 71.5 75.5
Hisrep [111] 11.3 20.7 35.7 42.0 51.7 58.6 63.4 67.2 12.6 23.1 39.0 45.4 56.0 63.6 69.7 73.7

SIMLPE (Ours) 10.8 19.6 34.3 40.5 50.5 57.3 62.4 65.7 12.1 22.1 38.1 44.5 54.9 62.4 68.2 72.2

Table 6.4: Average results for different prediction time periods on Human3.6M and
AMASS. These results are obtained following the evaluation method of STS-GCN [146]
and STG-GCN [179], instead of the standard evaluation protocol adopted in [113, 111,
107].

Dataset Human3.6M AMASS-BMLrub
Time (ms) 80 160 320 400 560 720 880 1000 80 160 320 400 560 720 880 1000

STS-GCN [146] 10.1 17.1 33.1 38.3 50.8 60.1 68.9 75.6 10.0 12.5 21.8 24.5 31.9 38.1 42.7 45.5
STG-GCN [179] 10.1 16.9 32.5 38.5 50.0 - - 72.9 10.0 11.9 20.1 24.0 30.4 - - 43.1

SIMLPE (Ours) 4.5 9.8 22.0 28.1 39.3 49.2 57.8 63.7 6.1 10.8 19.1 22.8 29.5 35.1 39.7 42.7

Note that the lengths T and N do not need to be equal. When T > N , we only take

the N first frames of the prediction, and in the case of T < N , we could pad our input

sequence to N by repeating the last frame, as done in [113, 111].

6.3.3 LOSSES

As mentioned in Section 6.1 and shown in Figure 6.1, the last input pose is “close” to

the future poses. Inspired by this observation, instead of predicting the absolute 3D poses

from scratch, we let our network predict the residual between the future pose PT+t and
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the last input pose xT . As we will show in Section 6.4.4, this eases learning and improves

performance.

Objective function. Our objective function L includes two terms Lre and Lv:

L = Lre + Lv . (6.7)

Lre aims to minimize the L2-norm between the predicted motion PT+1:T+N and ground-

truth one GT+1:T+N :

Lre = L2(PT+1:T+N ,GT+1:T+N) . (6.8)

Lv aims to minimize the L2-norm between the velocity of the predicted motion vGT
T+1:T+N

and the ground truth one vT+1:T+N :

Lv = L2(v
GT

T+1:T+N ,vT+1:T+N) , (6.9)

where vT+1:T+N = [v⊤T+1, .., v
⊤
T+N ]

⊤ ∈ RN×C , vt represents the velocity at frame t and is

computed as the time difference: vt = Pt+1 − Pt. We provide a full analysis of the loss

terms in Section 6.4.4.

6.4 EXPERIMENTS FOR SINGLE-PERSON HUMAN MOTION PREDICTION

In this section, we present our experimental details and results. We introduce the datasets

and evaluation metric in Section 6.4.1, the implementation details in Section 6.4.2, and

the quantitative/qualitative results in Section 6.4.3. An exhaustive ablation analysis is

provided in Section 6.4.4.

6.4.1 DATASETS AND EVALUATION METRIC

Human3.6M dataset [75]. Human3.6M contains 7 actors performing 15 actions, and

32 joints are labeled for each pose. We follow the same testing protocols of [111] and
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Table 6.5: Ablation of the number of MLP blocks on Human3.6M.

Nb. Blocks # Param.(M) ↓ MPJPE (mm) ↓
80 160 320 400 560 720 880 1000

1 0.012 12.7 28.5 59.7 72.1 93.6 107.0 116.8 123.6
2 0.014 10.9 24.9 52.3 64.0 83.2 97.3 108.4 115.4
6 0.025 10.2 23.1 48.8 60.1 79.0 93.3 105.1 112.6
12 0.041 9.9 22.4 47.2 58.3 77.1 91.5 103.3 110.9
24 0.073 9.7 22.0 46.8 57.7 76.4 90.8 102.6 110.3
48 (Ours) 0.138 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4
64 0.180 9.6 21.8 46.5 57.5 76.0 90.1 101.9 109.7
96 0.266 9.7 21.9 46.7 57.8 76.3 90.5 102.1 109.8

Table 6.6: Ablation of different components of our network on Human3.6M. ’LN’
denotes the layer normalization. ’DCT’ denotes the DCT transformation. ’Spa. only’
means that all FC layers are on spatial dimensions (w/o transpose operations before/after
MLP blocs). ’Temp. only’ means that all FC layers are on temporal dimensions (w/o any
transpose operations).

Ablation 80 160 320 400 560 720 880 1000

Spa. only, w/o LN 23.7 44.0 75.5 87.6 106.3 120.4 130.5 135.6
Spa. only 23.8 43.0 73.4 85.2 102.0 116.3 125.3 131.9
Temp. only 9.9 22.4 47.2 58.4 77.2 91.1 102.8 110.5
w/o LN 12.7 29.0 62.3 76.2 97.4 111.6 121.6 127.3
w/o DCT 9.9 22.4 47.3 58.4 76.9 91.2 102.8 110.5

SIMLPE (ours) 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

use S5 as the test set, S11 as the validation set, and the others as the train set. Previous

works use different test sampling strategies, including 8 samples per action [114, 113],

256 samples per action [111] or all samples in the test set [41]. As 8 samples are too few

and taking all testing samples could not balance different actions with different sequence

lengths, we thus take 256 samples per action for testing and evaluate on 22 joints as

in [114, 113, 111, 107].
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Table 6.7: Ablation of data augmentation on Human3.6M. We only use front-back
flip as our data augmentation, i.e., we randomly invert the motion sequence during the
training.

80 160 320 400 560 720 880 1000

w/o aug 10.0 22.6 48.3 59.7 78.2 92.0 103.4 110.8
w aug 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

AMASS dataset [109]. AMASS is a collection of multiple Mocap datasets [48, 109,

12, 85, 155, 157, 21, 106, 51, 31, 143, 110, 104, 124, 3, 158, 71, 156] unified by SMPL

parameterization [105]. We follow [111] to use AMASS-BMLrub [155] as the test set

and split the rest of the AMASS dataset into training and validation sets. The model is

evaluated on 18 joints as in [111].

3DPW dataset [163]. 3DPW is a dataset including indoor and outdoor scenes. A pose

is represented by 26 joints, but we follow [111] and evaluate 18 joints using the model

trained on AMASS to evaluate generalization.

Evaluation metric. We report the Mean Per Joint Position Error (MPJPE) on 3D joint

coordinates, which is the most widely used metric for evaluating 3D pose errors. This

metric calculates the average L2-norm across different joints between the prediction and

ground-truth. Similar to previous works [113, 111, 41, 107], we ignore the global rotation

and translation of the poses and keep the sampling rate as 25 frames per second (FPS) for

all datasets.

6.4.2 IMPLEMENTATION DETAILS

In practice, we set the input length T = 50, the output length N = 10 on the Human3.6M

dataset, and N = 25 on AMASS dataset and 3DPW dataset. During testing, we apply our

model in an auto-regressive manner to generate motion for longer periods. The feature



102 Chapter 6: A Simple Baseline for Human Motion Prediction

dimension C = 3 × J, where J is the number of joints, J = 22 for Human3.6M and

J = 18 for AMASS and 3DPW.

To train our network, we set the batch size to 256 and use the Adam optimizer [78].

The memory consumed by our network is about 1.5GB during the training. All our

experiments are conducted using the Pytorch [129] framework on a single NVIDIA RTX

2080Ti graphics card. We train our network on the Human3.6M dataset for 35k iterations,

the learning rate starts from 0.0003 at the beginning and drops to 0.00001 after 30k steps.

The training takes ∼30 minutes. For AMASS dataset, we train our network for 115k

iterations. The learning rate starts from 0.0003 at the beginning and drops to 0.00001

after 100k steps. The training takes ∼2 hours. During training, we only use the front-

back flip as data augmentation, which randomly inverts the motion sequence during the

training.

6.4.3 QUANTITATIVE AND QUALITATIVE RESULTS

In this section, we compare our approach to existing state-of-the-art methods on different

datasets. We report MPJPE in mm at different prediction time steps up to 1000ms.

Human3.6M dataset. In Table 6.1, we compare our method with other state-of-the-art

methods on the Human3.6M dataset. Our method outperforms all previous methods on

every frame with much fewer parameters.

As explained in Section 6.4.1, some different methods have taken different test sampling

strategies. Following [111], we choose to test with 256 samples on 22 joints. To make a

fair comparison, we evaluate all the methods using the same testing protocol. Our method

outperforms all previous methods on every frame with a much less number of param-

eters. Besides, previous works usually report short-term (0 ∼ 500ms) and long-term

(500 ∼ 1000ms) predictions separately, and [107] reports short-/long- term results using

two different models. In our tables, all the results from 0 ∼ 1000ms are predicted by

a single model, and for [107], we report the results of their model which achieves the

best performance on long-term prediction. In addition, we also evaluate the two simple
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approaches mentioned in Section 6.1 on the Human3.6M dataset in Table 6.1: ‘Repeat-

ing Last-frame’ takes the last input pose and repeats it N times to serve as output, and

‘One FC’ uses only one single fully connected layer trained on Human3.6m. These re-

sults show that the task of human motion prediction could be potentially modeled in a

completely different and simple way without explicitly fusing spatial and temporal in-

formation. Furthermore, similar to all the previous works, we also detail the action-wise

results in Table 6.2.

AMASS and 3DPW datasets. In Table 6.3, we report the performance of the model

trained on AMASS and tested on the AMASS-BMLrub and 3DPW datasets, following the

evaluation protocol of [111]. Different from the Human3.6M dataset where the training

and testing data are from the same types of actions performed by different actors, the

difference between training and testing data under this protocol is much larger, which

makes the task more challenging in terms of generalization. As shown in the table, our

approach performs consistently better on long-term prediction. Moreover, our model is

much lighter. For example, the parameter size of our model is ∼ 4% of Hisrep [111].

While the commonly used evaluation protocol is to consider the predicted error at

different time steps, some works [146, 179] report their result by taking the average error

from the first time step to a certain time step. We report the predicted error at different

time steps in all the tables, except in Table 6.4, where we report the average error for

comparison with [146, 179]. Our approach also achieves better performance than these

two methods.

Qualitative results. In addition to the quantitative results, we provide some qualitative

results of our method in Figure 6.3, showing some testing examples on the Human3.6M

dataset. We could find that the predictions of our method perfectly match the ground-truth

on short-term prediction, and globally fits the ground-truth on long-term prediction. The

error becomes larger when looking into longer predictions, which is a common problem

for all the motion prediction methods as shown in Table 6.1 and Table 6.3. This is because
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Figure 6.3: Qualitative results of our method SIMLPE. The skeletons in light colors
are the input (before 0ms) and the ground-truth (after 0ms). Those with dark colors rep-
resent the predicted motions. Our prediction results are close to the ground-truth.

most of the current methods use auto-regression for predicting a longer future, which will

make the error accumulate. Moreover, uncertainty grows very quickly with time when

predicting human motions.

6.4.4 ABLATION STUDY

We evaluate below the influence of the different components of our approach on the Hu-

man3.6M dataset.

Number of MLP blocks. We ablate the number of MLP blocks m in Table 6.5. Our

proposed architecture already achieves good performance using only 2 MLP blocks with

0.014M parameters. The network achieves its best performance with 48 MLP blocks.

Network architecture. In Table 6.6, we ablate the different components of our network.

As the table shows, temporal feature fusion and layer normalization are both of vital im-

portance to our network. If the network just operates along the spatial dimension of the

motion sequence without merging any information across different frames, it will lead to
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Table 6.8: Ablation of different loss terms on Human3.6M.

Lre Lv 80 160 320 400 560 720 880 1000

✓ 9.6 21.8 46.5 57.5 76.7 91.5 103.5 111.3
✓ ✓ 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

degraded results. However, if the network just operates along the temporal dimension, the

network will still achieve comparable performance. Besides, the use of DCT transforma-

tion can further improve performance slightly.

Data augmentation. In Table 6.7, we ablate the use of front-back flip data augmentation

and find that the data augmentation slightly improves the performance.

Loss. In Table 6.8, we evaluate the importance of different loss terms used during train-

ing. As shown in the table, with the help of the velocity loss Lv, the network achieves

better performance on long-term predictions while maintaining the same performance on

the short-term.

Learning residual displacement. In Table 6.9, we analyze the importance of the pro-

posed residual displacement and compare it to other types of residual used in previous

works [114, 113]. Our method aims to predict the differences between each future pose

and the last observed pose, after the IDCT transformation. When predicting directly the

absolute 3D pose (‘w/o residual’), the performance drops dramatically. We also test other

types of residual by either learning the residual in the DCT space, before applying the

IDCT transformation (‘Before IDCT’) following [113], or learning the velocity of the

motion (‘consecutive’) following [114], and both achieve inferior performance compared

to our proposed residual displacement.
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Table 6.9: Analysis of different types of residual displacement on Human3.6M.
SIMLPE predicts the differences of each future frame with the last observation (after
IDCT). ’Before IDCT’ learns the residual before applying the IDCT transformation. ’Con-
secutive’ learns the velocity between consecutive frames. ’w/o residual’ predicts directly
the absolute 3D poses.

Residual 80 160 320 400 560 720 880 1000

w/o residual 12.4 25.1 50.7 61.6 80.1 93.9 105.5 113.0
Consecutive 9.7 22.0 46.8 57.8 76.5 90.7 102.4 110.1
Before IDCT 10.4 23.0 48.2 59.1 77.9 91.8 103.2 110.5

SIMLPE (ours) 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

6.5 EXPERIMENTS FOR MULTI-PERSON HUMAN MOTION PREDICTION

6.5.1 DATASETS AND EVALUATION METRIC

We test our method on ExPI dataset [60]. ExPI contains 2 couple of actors performing 16

actions, and 18 joints are labeled for each actor. We follow the test protocols of [60] and

test on the common action splits. To evaluate the performance of the proposed methods

on ExPI, we evaluate our proposed method along with other methods on JME and AME

introduced in Section 5.6.2.

6.5.2 QUANTITATIVE RESULTS

In order to implement SiMLPe in the multi-person scenario, we tried several different

implementation strategies: ”mix”: we train a single SiMLPe model using data of the two

people (Figure 6.4); ”cat”: we concatenate the two persons together as a single instance;

”sep”: we train two models separately for the two persons (Figure 6.5). Besides, we also

designed a simple architecture with a link bloc between the two branches for the two

people. The link bloc takes the embeddings of the two branches and concatenates them

as input to an FC layer, and then we add the output back to the two branches (Figure 6.6).
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Figure 6.4: Pipeline of SIMLPE on ExPI dataset by concatenating two persons together
as a single instance (“cat”).

Figure 6.8 and Figure 6.7 show experimental results of SiMLPe and previous SOTA

methods on ExPI datasets. The red colors show methods designed for single-person sce-

narios and implemented on ExPI. The blue colors show methods designed for collabo-

rative motion prediction with a link bloc between the two branches. We could observe

that SiMPLe achieves comparable or even better results to the state of the art, and more

importantly, the model size is much smaller than the previous SOTA. Besides, adding

the link bloc for SiMLPe helps improve the performance of SIMLPE on the multi-person

implementation.

6.6 CONCLUSION

In this chapter, we present SIMLPE, a simple yet effective network for human motion

prediction. SIMLPE is composed of only fully connected layers, layer normalization,

and transpose operations. The only non-linear operation is thus the layer normalization.

While using much fewer parameters, SIMLPE achieves state-of-the-art performance on

various benchmarks. The reported ablation study also demonstrates an interest in various

design choices, highlighting the importance of temporal information fusion in this task.

We hope the simplicity of SIMLPE will help the community to rethink the task of human

motion prediction.
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Figure 6.5: Pipeline of SIMLPE on ExPI dataset by training two models separately for
the two persons (“sep”).
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Figure 6.6: Pipeline of SIMLPE on ExPI dataset by adding a link bloc between the two
branches (“link”).
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Figure 6.7: Comparison of parameter size and JME performance on the ExPI dataset.
We report the JME metric in mm at 1000 ms as performance on the vertical axis. The
closer to the bottom-left, the better. The red colors show methods designed for single-
person scenarios and implemented on ExPI. The blue colors show methods designed for
collaborative motion prediction with a link bloc between the two branches. XIA is the
sota on ExPI which is introduced in Section 5.



111

Figure 6.8: Comparison of parameter size and AME performance on the ExPI dataset.
We report the AME metric in mm at 1000 ms as performance on the vertical axis. The
closer to the bottom-left, the better. The red colors show methods designed for single-
person scenarios and implemented on ExPI. The blue colors show methods designed for
collaborative motion prediction with a link bloc between the two branches. XIA is the
sota on ExPI which is introduced in Section 5.
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In this chapter, we summarize the main contributions of this thesis and discuss some

research directions for future work.

7.1 SUMMARY

In this thesis, we focus on studying human poses and motions, considering the multi-

person scenario where people are interacting. We aim to explore the use of interaction

among different people to improve the understanding of human pose and motion. Based

on this, we have focused on two tasks, human pose estimation from a single frame, and

human motion prediction at the sequence level.

In Chapter 4, we started by studying human pose estimation from a single-frame RGB

image. We take the raw predictions of multi-person from a state-of-the-art predictor that

treats each instance separately and then use a GRU-based network named PI-net to model

and learn the interaction relations among different people. Our refined poses outperform

the raw ones which verifies the feasibility of studying person interaction.

Due to the irregularity and uncertainty of human motion (usually we would misun-

derstand an action by just looking into one single frame, for example, if two people are

standing still face to face, we cannot know if they are talking to each other or just passing

by), we continue to study the sequence level of human poses to better understand human

interaction, and thus in Chapter 5 and Chapter 6, we focus on the task of human motion

prediction.

In Chapter 5, we proposed collaborative motion prediction which aims at predicting

the future motion of highly interacted people from an observed motion sequence. We also

proposed a cross-interaction network with the guidance of the interacted person, which

outperforms the previous state-of-the-art methods designed for a single person. To enable

the study of this problem, we also collected a new dataset named ExPI which contained

highly interacted and challenging poses suitable for the study of multiple human pose

understanding tasks.

In Chapter 6, we propose siMLPe, a simple yet effective network for human motion
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prediction that is based on MLP layers and only has layer normalization as no-linear com-

ponents. The proposed model is about 30 times smaller than the state-of-the-art network

but surpasses the previous state-of-the-art work on multiple benchmarks. This brings

some new insights into the design of networks in the human motion prediction task, as

well as other human motion-related tasks.

7.2 FUTURE RESEARCH DIRECTIONS AND DISCUSSIONS

From this thesis, several lines of future work could be explored for understanding 3D

human pose and motion. In this section, we will firstly discuss some possible direct

follow-up works based on the works introduced in this these, and then discuss some other

related research directions within the domain in a broader view.

7.2.1 FUTURE FOLLOW-UP WORKS

Based on the above works discussed in this thesis, there are several possible follow-up

directions closely related:

• Application of MLP-based architecture on other tasks of human motion: In Chap-

ter 6, we proposed a simple but strong baseline network that achieves state-of-the-

art performance on the task of human motion prediction. Some recent literature has

also shown the effectiveness of this network on other human motion tasks such as

generating whole-body motion from certain joints [45]. Thus we are working on

extending the MLP-based simple architecture to more motion tasks such as single

and multi-motion generation from a sequence of motion or from speech and audio.

• Represent interaction explicitly: As discussed at the beginning of this thesis in Chap-

ter 1, one challenge for studying person interaction is to think about how to model

and learn the interaction information. The works presented in this thesis use net-

works to embed and learn the interaction information implicitly, which has proven to

be an effective solution, and some recent works also follow a similar manner [141].
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However, another possibility is to model interactions explicitly. There are two main

motivations for this approach: Firstly, as mentioned in Chapter 3, an individual can

be represented by a kinematic tree, which models the structural information and

links between different joints. However, it is difficult to apply a similar approach to

multi-person scenarios, making it reasonable to explore alternative representations

that achieve similar objectives. Secondly, with the success of SiMLPe, we have

learned that a simple network can effectively learn features for motion data. In-

stead of designing a network specifically for learning implicit interactions, we might

be able to use a simple network to learn the temporal dependencies of motion data

while focusing on input data formulation to explicitly model interactions. If success-

ful, this approach could be generalized to model various types of interactions, such

as those between people and objects, or consider person-person and person-object

interactions simultaneously.

• ”Dancing with your partner”: In Chapter 5,we introduced collaborative motion pre-

diction, where we predict the future motion sequence of two individuals based on

their previous observations. In highly interactive scenarios, such as dancing, where

two people are closely connected, it would be interesting to study the possibility

of inferring the motion of one person based on the observation of the other. This

would allow the generated character to dance in sync with the given partner, further

enhancing the understanding of human interactions in such dynamic environments.

7.2.2 A BROADER DISCUSSION WITHIN THE DOMAIN OF 3D HUMAN POSE AND MO-

TION UNDERSTANDING

In addition to the direct follow-up work discussed above, we will discuss some other

research directions that are interesting and closely related to this thesis.

3D human understanding with other context information. In the real world, a per-

son always interacts with the surroundings, thus considering context information in the
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understanding of humans is important. Considering 3D human understanding, there are

three main types of context information:

• Person-person interaction, which models the interaction of different persons under

the same scene, especially involved in the same activity;

• Person-object interaction, which models the interaction of a person with the sur-

rounded or contacted objects.

• Physical constraints, which studies the human pose under the consideration of phys-

ical constraints such as forces.

In this thesis, we only focused on the first type of person-person interaction, while the

other two types of context are also starting to attract more attention in recent years [177,

18, 63, 73, 64]. Digging into all these kinds of context information, or combining different

kinds of context information together will no doubt be an important direction in the future

of 3D human understanding.

Data-lacking problem in 3D motion tasks. Research in 2D computer vision tasks has

developed very quickly in the past years with the help of deep learning methods. As a

data-driven problem, one important support for quick development is the collection of

large-scale datasets [101, 10]. With enough human and funding resources, huge-scale 2D

datasets could be labeled and used for training big models. Unfortunately, this becomes

more complicated in 3D vision. Labeling 3D data is more difficult than 2D as the col-

lection and annotating are highly limited by the labeling equipment and actors. Though

many 3D datasets [118, 75, 109, 163, 47, 59] are collected and released in recent years,

the amount of data is still far from the size of 2D datasets. Besides, due to the limitation

of the collecting process, data in current lab-based 3D datasets are not diverse enough.

The public 3D human datasets usually contain a limited number of actions, and the back-

ground environment is also not varied enough.

Looking into the long-term development of 3D vision, one of the significant challenges

that needs to be addressed is the problem of data scarcity. In addition to labeling massive
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3D datasets, virtual datasets [159] and generated 3D data [108] can provide a comple-

mentary solution. Another potential solution is to explore unsupervised learning methods

which is still a relatively underexplored area of research.

3D motion generation. As said in the above paragraph, generating human motion would

be possible to help solve the data lacking problem in 3D human understanding. In addition

to this potential application, human motion generation itself also has more meanings far

more than this. Different from human motion prediction discussed in this thesis, which is

a deterministic task aiming to predict the most possible future close to the ground truth,

the task of human motion generation is a stochastic process: it focuses on generating

various possibilities of the future to model the uncertainty of motion. The human motion

could be generated from various information such as a given action labels [58, 133],

text information [152, 134, 153], a sequence of music[97, 144], or an observed motion

sequence [174, 137, 19]. These tasks have received increasing attention recently, while

most of them focus on a single person. Some very recent works have started to study

multi-person generation [141] but the problem is still not well explored. We believe that

the studies and contributions in this thesis will also have the potential to help with the

multi-person generation problems.
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Gregory Rogez. Ganhand: Predicting human grasp affordances in multi-object

scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 2020.

[39] Qiongjie Cui, Huaijiang Sun, and Fei Yang. Learning dynamic relationships for

3d human motion prediction. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 6519–6527, 2020.

[40] Rishabh Dabral, Nitesh B Gundavarapu, Rahul Mitra, Abhishek Sharma, Ganesh

Ramakrishnan, and Arjun Jain. Multi-person 3d human pose estimation from

monocular images. In 2019 International Conference on 3D Vision (3DV), pages

405–414. IEEE, 2019.

[41] Lingwei Dang, Yongwei Nie, Chengjiang Long, Qing Zhang, and Guiqing Li.

MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Mo-

tion Prediction. In ICCV, 2021.

[42] Lingwei Dang, Yongwei Nie, Chengjiang Long, Qing Zhang, and Guiqing Li. Msr-

gcn: Multi-scale residual graph convolution networks for human motion prediction.

In Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 11467–11476, October 2021.

[43] Santosh K Divvala, Derek Hoiem, James H Hays, Alexei A Efros, and Martial

Hebert. An empirical study of context in object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1271–

1278. IEEE, 2009.

[44] Yuming Du, Wen Guo, Yang Xiao, and Vincent Lepetit. 1st place solution for

the uvo challenge on image-based open-world segmentation 2021. arXiv preprint

arXiv:2110.10239, 2021.

[45] Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, and Art-



135

siom Sanakoyeu. Avatars grow legs: Generating smooth human motion from sparse

tracking inputs with diffusion model. In CVPR, 2023.

[46] Panna Felsen, Patrick Lucey, and Sujoy Ganguly. Where will they go? predicting

fine-grained adversarial multi-agent motion using conditional variational autoen-

coders. In Proceedings of the European conference on computer vision (ECCV),

pages 732–747, 2018.

[47] Mihai Fieraru, Mihai Zanfir, Elisabeta Oneata, Alin-Ionut Popa, Vlad Olaru, and

Cristian Sminchisescu. Three-dimensional reconstruction of human interactions. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, pages 7214–7223, 2020.

[48] Advanced Computing Center for the Arts and Design. ACCAD MoCap Dataset.

[49] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. Recurrent

network models for human dynamics. In Proceedings of the IEEE International

Conference on Computer Vision, pages 4346–4354, 2015.

[50] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-

tinual prediction with lstm. 1999.

[51] Saeed Ghorbani, Kimia Mahdaviani, Anne Thaler, Konrad Kording, Douglas James

Cook, Gunnar Blohm, and Nikolaus F. Troje. MoVi: A Large Multipurpose Motion

and Video Dataset, 2020.

[52] Partha Ghosh, Jie Song, Emre Aksan, and Otmar Hilliges. Learning human motion

models for long-term predictions. In 2017 International Conference on 3D Vision

(3DV), pages 458–466. IEEE, 2017.

[53] Haifeng Gong, Jack Sim, Maxim Likhachev, and Jianbo Shi. Multi-Hypothesis

Motion Planning for Visual Object Tracking. In ICCV, 2011.

[54] John C Gower. Generalized procrustes analysis. Psychometrika, 40(1):33–51,

1975.



136 BIBLIOGRAPHY

[55] CMU graphics lab. Cmu graphics lab motion capture data- base., 2009. http:

//mocap.cs.cmu.edu//.

[56] Liang-Yan Gui, Yu-Xiong Wang, Xiaodan Liang, and José MF Moura. Adver-
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