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Abstract

Recent progress in metagenomics has promoted a change of paradigm to inves-
tigate microbial ecosystems. These ecosystems are today analyzed by their gene
content that, in particular, allows to emphasize the microbial composition in terms
of taxonomy (i.e., « who is there and who is not ») or, more recently, their puta-
tive functions. However, understanding the interactions between microbial com-
munities and their environment well enough to be able to predict diversity based
on physicochemical parameters is a fundamental pursuit of microbial ecology that
still eludes us. This task requires deciphering the mechanistic rules that prevail
at the molecular level. Such a task must be achieved by dedicated computational
approaches or modelings, as inspired by Systems Biology. Nevertheless, the di-
rect application of standard cellular systems biology approaches is a complicated
task. Indeed, the metagenomic description of ecosystems shows a large number
of variables to investigate. Furthermore, communities are (i) complex, (ii) mostly
described qualitatively, and (iii) the quantitative understanding of the way commu-
nities interact with their surroundings remains incomplete. Within this research
summary, we will illustrate how systems biology approaches must be adapted to
overcome these points in different manners. First, we will present the application
of bioinformatics protocol on metagenomics data, with a particular emphasis on
network analysis. In particular, we will use environmental and metagenomic data
gathered during the Tara Oceans expedition to improve understanding of a biolog-
ical process such as the carbon export. Second, we will describe how to integrate
heterogeneous omics knowledge via logic programming. Such integration will em-
phasize putative functional units at the community level. Third, we will illustrate
the design and the use of quantitative modeling from this network. In particular,
constraint-Based modeling will predict the microbial community structure and its
behaviors based on genome-scale knowledge.
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Chapter 1

Introduction

For centuries, Biology was mostly a descriptive science. The first biological stud-
ies principally focused on describing living compounds. Such a description relied
on acute observations to identify specific features for each organism. Naturalists
then used these features to identify, to name, and eventually to classify living com-
pounds based on their similarities. The generalization of this approach driven by
observations seeks for a general architecture to describe Life, such as general phy-
logenetic trees or modular descriptions of organic elements. It is worth noticing
that these great descriptive works were associated with intense archiving efforts
that remain active until today by taking the form of up-to-date databases as pro-
moted by the natural history museums. From this description of Life, fascinating
studies attempt to link different organic forms. For instance, one aims at explain-
ing the fundamental changes from one biological component behavior into another
(i.e., the physiology that explains the change of state of a given living form). Also,
one seeks to understand the differences between two distant living forms, promot-
ing the rise of several evolution theories that still elude us, among which the famous
one proposed by Charles Darwin [41]. Both questions propose to infer dynamical
properties between observations. These properties presume the existence of mech-
anisms or general laws inspired by Chemistry or Physics that, as a biologist, one
aims to discover.

To reach this goal, Biology increases its explanatory power by improving ob-
servation techniques. Along with this technical evolution, it is worth noticing that
Biology also changes of central paradigm by empowering other Sciences. Indeed,
Biology started focusing on the organism description, in which case organisms and
their structure where the unit of Life (i.e., comparative anatomy). Following im-
provements in optics, Physics promoted the general use of microscopes to investi-
gate organic components, which led to the identification of cells. This general iden-
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10 CHAPTER 1. INTRODUCTION

tification advocated for the cell as a central paradigm of Life (i.e., embryogenesis,
immunology, a new classification of organisms based on organelles) until the mid
of the twentieth century. At this date, scientists deciphered the molecular bricks
that compose a cell. Among other seminal works, one could mention the work of
the RNA tie club consortium that built upon the discovery of DeoxyriboNucleic
Acid (DNA) to break the code of proteins. Since then, one generally considers
DNA (and assimilated) as the central paradigm of Life that promptly conducted to
the rise of the concept of modern genes when Jacques Monod, François Jacob, and
Andre Lwoff mixed the molecular concept with the biological inheritance theory,
as proposed by Gregor Mendel 70 years earlier [150].

Considering this evolution of paradigm is of significant interest for this work.
It is worth noticing that the paradigm of Life is getting more conceptual over time.
Rapidly, the concept of model emerges in Biology, first for the sake of general-
ization, and more recently for the sake of investigation. In particular, a gene, the
current state-of-the-art biological model, is not observable per se, but its abstrac-
tion/formalization is getting more precise following the accumulation of experi-
mental knowledge. Conversely, the design of new experiments aims at refining
existing models. All these points concur in considering Biology as a science of
models. This statement is particularly crucial for the following if one acknowl-
edges that not a sole, but several abstractions are necessary to cover the full di-
versity of organic forms. It is therefore not surprising that, beyond the interest of
understanding the origins and mechanisms of Life, Biology inspired several formal
sciences driven by different modeling abstractions.

1.1 Biology & Formal Sciences

The formalization of Life is an arduous task. An extensive review of the literature
is beyond the objective of this summary. For the sake of humility, the sequel will
describe only a few critical studies that motivate or inspire this manuscript and
associated works. The chronology of these studies remains partial and depicts a
personal interpretation that would require further investigations to give justice to
the scientific field and its implications. Physicists pioneered the introduction of
formal concepts to tackle biological questions. For instance, Erwin Schrödinger
proposed a classical physicist’s approach by emphasizing "how can the events in
space and time which take place within the spatial boundary of a living organism
be accounted for by physics and chemistry" [180]. This seminal work introduced
several concepts that motivate the application of statistical physics to tackle bio-
logical questions. In particular, his study analyzed biological objects/abstractions
that one barely described at the time, such as chromosomes. The work of Erwin
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Schrödinger was crucial to introduce the concept of self-organization and the use
of entropy to explain biological features. Fascinatingly, Sir Alan Turing proposed,
almost ten years later, another and complementary analysis of biological emerging
properties by focusing, this time, on discrete abstractions and the impact of rules
to simulate feedback loops [203]. This study established the concept of automaton
for biological systems, and from a personal viewpoint, computational biology in
general. Among others, these formal concepts inspired several biological theories.
One of the most famous was maybe the concept of operons proposed by Jacques
Monod, François Jacob, and Andre Lwoff. Already mentioned above, it is worth
noticing that this mathematical modeling settled the modern concept of genes as
formal objects with a functional purpose. To these days, operon and genes repre-
sent abstractions that are still regularly used by the experimental biologists, even if
no one saw a gene per se – but its implication on different experiments. Notice also
that Jacques Monod provided after the second world war another modeling based
on ordinary differential equations to simulate the bacterial growth [150]. This mod-
eling represented a simulation of biological quota variations over time and helped
to design an experimental device, called chemostat, still used today [151].

Searching for self-organized structures The formalization of Life promoted a
change of paradigm in biological studies. The use of modeling allows spanning
multiple biological compounds (i.e., quantities or events) that one could integrate
to examine collective behaviors. Such behaviors, as proposed by above the sem-
inal works, produce an emerging property. Formally, one stated this property as
being the resultant of the asymptotic behavior of the modeled system. In 2008,
Eric Karsenti reviewed the implications of this (fruitful) biological paradigm when
applied on molecules and the shapes of cells [107]. In particular, one should notice
the joint use of mathematics and physics, magnified by computational simulations.
Thus, as a consequence of this paradigm, different observations of the same bi-
ological entity are the result of bifurcation between different states. Bifurcations
are the issue of (non-linear) collective behaviors that include elementary (physi-
cal) rules, such as feedback loop or diffusion processes. From a computer science
viewpoint, one can discretize these processes for the sake of calculability. In par-
ticular, Stuart Kauffman, in his crucial book [110], discussed several implications
of discrete events to simulate self-organized biological systems. Worth noticing
here, this biological paradigm settles several studies that described biological ar-
chitectures as a result of collective molecular behaviors, thus linking two critical
biological concepts: evolution and biological developments such as embryogenesis
(for examples, see [31]).
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A multi-layered system Following the rise of the above biological concepts, bio-
logical sciences made a significant effort to increase the acquisition of experimental
data. In the 1990s, large scale sequencing projects were set up and received massive
fundings. The most popular one remains the sequencing of the human genome (i.e.,
identification of the genes and their organization over the different chromosomes).
However, similar projects took benefits of high-throughput biotechnology devel-
opments to compile comprehensive catalogs of cell contents with gene expression,
proteins, and metabolic reactions. Thus, in addition to genomics, one saw the
emergence of projects in transcriptomics, proteomics, metabolomics, which settled
a new biological discipline called omics. All omics projects focus on a given bio-
logical scales and require specific modelings and data analysis. Altogether, these
descriptions contribute to defining biological systems as multi-layered, which in-
creases, as well, the complexity of biological system descriptions compared to
physical or chemical system standards. However, such new complexity is, maybe,
along with the size of the modern biological dataset, one of the prime motivations
for empowering computer sciences in biological studies (see Chapter 2 for further
details).

1.2 Systems Biology: a definition

Among the above theories, at the interface of computer science, mathematics, and
molecular biology, one saw the emergence of sub-disciplines. For the sake of il-
lustration, Figure 1.2 describes them and their links with the above general con-
cepts. First, Bioinformatics supports the development of biotechnologies. This
sub-discipline focuses mostly on the process and analysis of high volumes of infor-
mation, such as provided by high-throughput experiments in genetics, genomics,
transcriptomic, and, more recently, in metagenomics or metabolomics. Thus, Bioin-
formatics supports data acquisition. Second, Computational Biology is a sub-
discipline that summarizes developments in theoretical biology and biological mod-
eling. It deals with the development of models to study biological systems [95].
Both sub-disciplines overlap. For instance, from a retrospective viewpoint, the
work of Jacques Monod belongs to both sub-disciplines, either by promoting mod-
ern genetics or advancing in the concept of feedback loops and formalizing oper-
ons. Similarly, the self-organization concept contributes to both by fostering the
cellular behavior from molecular collective behaviors [107] or identifying mecha-
nistic behavior from physical statistic laws [190]. Such overlap, often happening
with new experimental datasets, gave rise to a new sub-discipline: Systems Biol-
ogy. The main goal of this discipline is to automatically extract emerging proper-
ties from biological systems depicted by high-throughput experiments. This later
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Figure 1.1: Evolution of molecular biology and biological modeling to create Sys-
tems Biology. The higher panel represents landmark discoveries in molecular biol-
ogy that foster bioinformatics. The lower panel describes its pending in biological
modelings later called computational biology. Both sub-disciplines combine to
create the more recent Systems Biology. Figure adapted from [212].

sub-discipline takes an interest in system-level behavior of biological processes.
The interaction of their molecular constituents describes such systems, conform-
ing complex biological networks [113, 114]. Eighteen years ago, Hiroaki Kitano
proposed a schema not denied since that articulates systems biology via four es-
sential connected topics.

Conception of the biological system This topic consists of analyzing all species
involved in the system, such as genes or proteins. The aim is herein to deci-
pher species that one must consider as variables or constant within a model
that will represent the system. Chapter 2 will further detail this topic.

Analysis of the biological system structure Variables are involved in a given ref-
erential and promote complex interactions that build a structure that is of in-
terest. The complexity of this task relies on the necessity to deal with differ-
ent referentials or scales such as genomic, transcriptomic, or metabolomic.
This multi-scale nature implies the integration of diverse and heterogeneous
variables within a unique modeling framework to capture the biological sys-



14 CHAPTER 1. INTRODUCTION

tem as a whole. This task, often called Integrative Biology, will be described
in Chapter 3.

Simulating the dynamics of the biological system Once identified and integrated,
one is interested in simulating the model to emphasize its emerging proper-
ties, such as dynamical behaviors for the sake of prediction. This task relies
on formal abstractions employed in the previous tasks (e.g., the level of dis-
cretization for each variable). Chapter 4 presents different modelings and
their practical use.

The control of the biological system The final task consists in controlling the sys-
tem for the sake of in silico experiments. Whereas often neglected or associ-
ated with synthetic biology studies, one will resume this task in the chapter 4
for the sake of simplicity.

All these tasks are rarely published together but instead written via distinct studies.
However, altogether, these tasks allow Systems Biology to identify the respective
role of genes in the context of single-cell growth (see [20] for an illustration of our
contribution), or integrate genome and metabolic networks to emphasize functional
units that interplay at both experimental scales (see [16] for an illustration of our
contribution). Achieving this goal is of biological interest but also challenging in
Computer Sciences because biological knowledge is, by essence, incomplete and
most heterogeneous. This interest and corresponding limitations will be discussed
in the last chapter of this manuscript.

1.3 From Systems Biology to Systems Ecology

Systems Biology has been successful in analyzing cellular data sets at molecular
scales, providing insights into underlying processes [113, 114]. Increasing comput-
ing capacity (i.e., data storage, computing time, but also formalization) and large
dataset availability enabled Systems Biology to extend its application domain from
small size reductionist networks to whole micro-organism systems [102] before
considering metazoans [216, 148, 130]. However, despite the interest of studying
sizable biological systems with different compartments, micro-organisms remained
of primary interest. They are indeed the most diverse and abundant cellular life
forms on Earth, with estimates from 25% to 50% of Earth total biomass [213].
Furthermore, one can not cultivate a majority of prokaryotes (>99%) in the labo-
ratory [103], shoving the necessity to promote experimental expertise assessing in
situ microbial diversity.
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The rise of Environmental Genomics In parallel to genomics and bioinformat-
ics, the last decade saw the rise of a new field in Biology, at the interface between
Genomics and Ecology called ” Environmental Genomics” [171]. One of its main
challenges relies on understanding ecosystem behaviors and how microbial com-
munities interact within their environment. Using biotechnological advances (i.e.,
high throughput DNA sequencing, RNA sequencing, or proteomics), one can to-
day capture the whole microbial ecosystem composition and microbial behaviors,
which represents a fantastic holistic viewpoint of ecological systems that take place
in Nature. One will further discuss this point in the following chapters, but several
fundamental ecological questions are today reachable. For instance, recent mi-
crobiology studies seek to understand how the presence of microbial communities
could depollute water soils. Others show how one can engineer microbial commu-
nities as micro-factory, promoting synthetic ecology studies [58]. Others study the
association of microbial communities in the Human gut with Human pathologies
[83]. Overall, biotechnologies allow today to sample broader ecosystems at the
gene level, targeting ecology and evolution of micro-organisms distributed around
the world [109].

Motivations of this work Beyond the sole description of microbial communi-
ties that necessitates applications of bioinformatics techniques to isolate microbial
genes within metagenomes, environmental genomics raises great computational
questions. From a computational viewpoint, these questions consist of empha-
sizing ecosystem behaviors from complex microbial interactions, which relies on
finding emerging properties from microbial ecosystems. These questions are sim-
ilar to those proposed in Systems Biology, and one could be called the new sub-
discipline applied on environmental genomics: Systems Ecology [117]. As previ-
ously demonstrated in Systems Biology, the role of Computer Sciences is herein,
again, essential to support this new thematic, and beyond standard expectations
(computing capacity, storage capacity), but rather by the need to formalize, auto-
matic reasoning, mixing heterogeneous knowledge for analyzing interdependen-
cies and inferring emerging properties. In this context, this manuscript advocates
that one must pursue our systems biology efforts to design a modeling paradigm
that will be suitable for studying ecosystems sampled at the gene level. Constraint
Programming framework was of great help in systems biology, and one assumes
here that it will propose guidance for dealing with environmental genomics. In
particular, Constraint Programming is accurate to model partial or incomplete in-
formation [144]. Each piece of information is one constraint that concerns an in-
vestigated system. The set of constraints summarizes the system and delimits its
solution space. Thus, the use of constraint programming techniques allows, via
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optimization routines, either (i) to describe the set of solutions that satisfy all the
constraints as previously stored, or (ii) to check whether a new constraint can be
added to the set of constraints without modifying their overall consistencies (see
previous work in systems biology [60] for an illustration). Once the problem mod-
eled as a set of constraints, the computational elegance of such a paradigm relies
on the use of state-the-art solvers that allow solving well-modeled problems rather
than focusing on programming resolution techniques per se. Also, constraint-based
models may be refined whenever additional biological knowledge becomes avail-
able, which allows one to make useful inferences even from partial and incomplete
information. Therefore, constraint programming was considered to be an elegant
modeling paradigm to face Systems Biology challenges as emphasized renown bi-
ologist such as B. Palsson (2000) in [54]: “Because biological information is
incomplete, it is necessary to take into account the fact that cells are subject to cer-
tain constraints that limit their possible behaviors. By imposing these constraints
in a model, one can then determine what is possible and what is not, and determine
how a cell is likely to behave, but never predict its behavior precisely.”.

This manuscript will present the adaptation systems biology techniques to en-
vironmental and ecological questions, with a strong emphasis on the use of opti-
mization techniques on graphs and constraints. Three chapters, for each systems
biology topic, constitute this summary. Computational implications and research
perspectives will be discussed in the last chapter.



Chapter 2

Analysis of omics experiments

We cannot solve our problems with
the same thinking we used when we
create them

Albert Einstein

2.1 Introduction & Context

The biological data acquisition represents the cornerstone of many biological sci-
ences for the sake of better biological knowledge. The generated data revert several
aspects that must be stressed out herein. First, biological data are highly heteroge-
neous. As mentioned above, recent biotechnological progress allowed experimen-
tal scientists to drastically increase the focus of their investigation, which allows
today to observe the biological systems at the molecular level via so-called omics
data (i.e., mainly genomics, transcriptomics, metabolomics, proteomics). Omics
data resume the state of a given biological system at a given condition. Analyzing
these data from different states thus enables us to infer underlying molecular mech-
anisms. Second, the same biotechnological progress also proposed a significant
increase in the quantity of data, which makes their analysis difficult or rebarbative
without the use of dedicated algorithms. Considering this last point, it is therefore
not surprising to consider biological data analysis as the primary scientific interface
between biologists and more formal scientists. However, despite the new enthusi-
asm about it, it is worth to notice herein that the amount of biological data do not
permit the qualification of Biology as a "big data science" per se. Indeed, biologi-
cal data, even by considering the recent and sizeable genomic effort, do not revert,
so far, the same magnitude as other sciences. For instance, Astronomy currently
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proposes a data acquisition rate of 7.5 terabytes.s−1 when screening the space (i.e.,
Australian Square Kilometer Array Pathfinder (ASKAP) project) that is huge com-
pared to one zetta-bases.year−1 for the whole biological sequencing effort [187].
Nevertheless, despite a current debate (see [187] details), the rate of genomics data
acquisition does not matter, mainly because the Big data attribute relies more on
the complexity of heterogeneous biological data rather than on the quantity of data
per se.

Biological data describe different abstractions of the multi-layered biological
systems but are also of different types. From a historical viewpoint, the data ac-
quisition protocol was primarily focusing on producing continuous data. The need
to analyze this type of data explains the substantial impact of statistical analysis in
biological sciences. Indeed, several tasks remain a routine for experimental biolo-
gists:

(i) comparing two biological datasets or a dataset with synthetic data produced
by a statistical model,

(ii) finding structure(s) of interest within the dataset(s) via classification or clus-
tering techniques,

(iii) understanding the data distribution compared to external parameters via, for
instance, multivariate analysis.

An overview of these statistical approaches has been extensively discussed, in par-
ticular in ecology [129], where biological observations mainly concern populations
which are, by essence, quantitatively measured. For the sake of ecosystems anal-
ysis, we performed several of these techniques: initially proposed in [209], we
then extend this technique to more different molecular probes [22, 21], which will
further used to study oil spill impact on microbial ecosystem [154]. When ap-
plied to cellular systems, the same techniques are of interest. For instance, we
achieved similar analysis on transcriptomic knowledge (i.e., gene expression lev-
els are semi-quantitative) [34], or at the proteomic level (i.e., the affinity of proteins
are semi-quantitative) [145].

More recently, data acquisition protocols proposed to discretize the biologi-
cal data. Thus, after normalization, gene expression levels have been discretized
to build gene regulatory networks where genes are as Boolean variables that can
be activated (i.e., +1) or repressed (i.e., 0) based on the activity of other genes
[91]. The Section 4 will discuss the simulation of these networks. Whereas these
data processing necessitates a discretization via the use of an expression threshold
(above which the gene is considered as activated, not otherwise), other biologi-
cal data are discrete by nature. For instance, DNA sequencing procedure outputs,
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called reads, are small strings and represent the central biological knowledge pro-
duced so far in Biology [187]. For instance, sequencing a genome consists of
cutting the genome sequence into smaller sequences, reads, that will be defined or
sequenced by high-throughput sequencing techniques. As an output, a set of reads
describes the genome sequence. The whole set of reads of the sequenced genome
is composed of four letters (i.e., A, T, C, G) for each nucleotide and assumed to
cover the whole original genome sequence [38]. Several bioinformatics protocols
aim a reconstructing this original genome sequence. Most of them consist of as-
sembling all reads by solving a general covering problem. The most modern and
efficient techniques propose to assemble reads into another discrete structure called
a de Bruijn graph [220, 51] that is a directed graph representing overlaps between
sequences of symbols. Notice herein that, despite the discrete nature of this bio-
logical knowledge, its analysis remains difficult. For instance, comparing genomes
is a difficult combinatorial problem, even by computing pairwise distances that re-
vert the use of different metrics such as the number of transpositions or breakpoints
(see [64] for review). We proposed the use of one of them, the common interval,
to compare pairwise bacterial genome sequences [5].

2.2 Analysis of a graph that models a cellular system

The general use of discrete variables underlies the interest of discrete abstractions
that are used to represent biological structures. In particular, the last decade saw
the more extensive use of graphs to represent biological knowledge (see [7] for
review). A graph is a discrete and formal abstraction that shows several interests
in Biology. First, a graph is composed of nodes and edges. Based on the definition
of its edges, a graph can be undirected (i.e., no direction on edges) or directed.
One can also consider other edge attributes such as the use of weight on edges
to produce a weighted graph or the use of weighted or color on nodes. These fea-
tures promote a great expressivity to the graph abstraction for the sake of biological
system modeling. This expressivity is in particular well-deserved by several pro-
gramming languages dedicated to describing graphs and their representations (see
[9, 119] for recent illustrations) It is worth to notice herein that graph expressiv-
ity is of particular interest for collaborating with biological collaborators. Indeed,
most of the biological concepts, in particular in physiology, are resumed by graphs
in textbooks. Graphs depict invisible biological system mechanisms or molecu-
lar descriptions of biological systems summarized for the sake of pedagogy. Thus
complex datasets are interpreted and resumed, which makes the graph one of the
favorite abstractions for biologists - and illustrates as well the fact that Biology is
a modeling science - where students must learn state-of-the-art models rather than
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mathematical properties of random networks14. Their
much-investigated random network model assumes that
a fixed number of nodes are connected randomly to each
other (BOX 2). The most remarkable property of the model
is its ‘democratic’or uniform character, characterizing the
degree, or connectivity (k ; BOX 1), of the individual nodes.
Because, in the model, the links are placed randomly
among the nodes, it is expected that some nodes collect
only a few links whereas others collect many more. In a
random network, the nodes degrees follow a Poisson
distribution, which indicates that most nodes have
roughly the same number of links, approximately equal
to the network’s average degree, <k> (where <> denotes
the average); nodes that have significantly more or less
links than <k> are absent or very rare (BOX 2).

Despite its elegance, a series of recent findings indi-
cate that the random network model cannot explain
the topological properties of real networks. The 
deviations from the random model have several key
signatures, the most striking being the finding that, in
contrast to the Poisson degree distribution, for many
social and technological networks the number of nodes
with a given degree follows a power law. That is, the
probability that a chosen node has exactly k links 
follows P(k) ~ k –γ, where γ is the degree exponent, with
its value for most networks being between 2 and 3 
(REF. 15). Networks that are characterized by a power-law
degree distribution are highly non-uniform, most of
the nodes have only a few links. A few nodes with a very
large number of links, which are often called hubs, hold
these nodes together. Networks with a power degree
distribution are called scale-free15, a name that is rooted
in statistical physics literature. It indicates the absence
of a typical node in the network (one that could be
used to characterize the rest of the nodes). This is in
strong contrast to random networks, for which the
degree of all nodes is in the vicinity of the average
degree, which could be considered typical. However,
scale-free networks could easily be called scale-rich as
well, as their main feature is the coexistence of nodes of
widely different degrees (scales), from nodes with one
or two links to major hubs.

Cellular networks are scale-free. An important develop-
ment in our understanding of the cellular network
architecture was the finding that most networks within
the cell approximate a scale-free topology. The first evi-
dence came from the analysis of metabolism, in which
the nodes are metabolites and the links represent
enzyme-catalysed biochemical reactions (FIG. 1).As many
of the reactions are irreversible, metabolic networks are
directed. So, for each metabolite an ‘in’ and an ‘out’
degree (BOX 1) can be assigned that denotes the number
of reactions that produce or consume it, respectively.
The analysis of the metabolic networks of 43 different
organisms from all three domains of life (eukaryotes,
bacteria, and archaea) indicates that the cellular metabo-
lism has a scale-free topology, in which most metabolic
substrates participate in only one or two reactions, but a
few, such as pyruvate or coenzyme A, participate in
dozens and function as metabolic hubs16,17.

Depending on the nature of the interactions, net-
works can be directed or undirected. In directed
networks, the interaction between any two nodes has a
well-defined direction, which represents, for example,
the direction of material flow from a substrate to a
product in a metabolic reaction, or the direction of
information flow from a transcription factor to the gene
that it regulates. In undirected networks, the links do
not have an assigned direction. For example, in protein
interaction networks (FIG. 2) a link represents a mutual
binding relationship: if protein A binds to protein B,
then protein B also binds to protein A.

Architectural features of cellular networks
From random to scale-free networks. Probably the most
important discovery of network theory was the realiza-
tion that despite the remarkable diversity of networks
in nature, their architecture is governed by a few simple
principles that are common to most networks of major
scientific and technological interest9,10. For decades
graph theory — the field of mathematics that deals
with the mathematical foundations of networks —
modelled complex networks either as regular objects,
such as a square or a diamond lattice, or as completely
random network13. This approach was rooted in the
influential work of two mathematicians, Paul Erdös,
and Alfréd Rényi, who in 1960 initiated the study of the

Figure 2 | Yeast protein interaction network. A map of protein–protein interactions18 in
Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements23, illustrates
that a few highly connected nodes (which are also known as hubs) hold the network together.
The largest cluster, which contains ~78% of all proteins, is shown. The colour of a node indicates
the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal,
orange = slow growth, yellow = unknown). Reproduced with permission from REF. 18 ©
Macmillan Magazines Ltd.

Figure 2.1: Illustration of a biological graph: yeast protein interaction network
from Barabási and Oltvai [7]. This picture maps the main component of protein-
protein interactions from Saccharomyces cerevisiae. Each node represents a pro-
tein, and edges represent interactions between two proteins as estimated by the
first two-hybrid measurements in yeast. Accumulation of interactions describes a
graph or called network by biologists. The node color indicates additional knowl-
edge: red is a lethal protein, green is nonlethal, orange depicts a protein associated
with slow growth, and yellow pinpoints no biological feature associated. Such a
representation commonly called hair-ball shows the limit of a graph representation
for the sake of biological investigation, which emphasizes the need for a dedicated
analysis.

complex datasets. Also, the use of graph pinpoints the need to incorporate diver-
sity or uncertainties within a formal and discrete description. For instance, the de
Bruijn graph summarized several short reads by allowing sequencing mistakes or
to consider single nucleotide polymorphisms [97].

Second, the use of graph abstraction allows the use of a large number of tech-
niques to analyze and compare graphs (see [7] for review). For instance, these
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techniques describe global or local properties, ability to cross the graph. Histori-
cally, several of these techniques have been applied to Protein-Protein Interaction
networks (PPI); see Figure 2.2 for illustration. These graphs, built from experi-
mental procedures, represent putative associations between different proteins that
interplay (see Figure 2.2a). Interactions are determined based on pairwise physi-
cal and chemical protein properties, such as covalent bonds or stable or transient
interactions. The set of interactions describes putative complex assemblies (see
Figure 2.2b). Today several databases store PPI networks for several organisms,
among which the renown STRING (see [191] for latest release). Early 2000’s,
Jeong and collaborators [100] pioneered the PPI network analysis by promoting
the use of graph decomposition techniques. As a follow-up, Gagneur and co-
workers [77] proposed the application of hierarchical decomposition of a graph
called modular decomposition. This algorithm emphasizes sub-structures within
the PPI, associated with protein complexes, via the use of a tree. By integrating
the ComBi team in Nantes, Géraldine Del Mondo was a co-advised Master student
with Irena Rusu on a similar subject. We advocated for a natural extension of hi-
erarchical decomposition studies via the use of another algorithm called modular
decomposition.

Géraldine Del Mondo, Damien Eveillard, and Irena Rusu. Homogeneous
decomposition of protein interaction networks: refining the description of

intra-modular interactions. Bioinformatics (Oxford, England), 25(7):926–932,
April 2009

The homogeneous decomposition is a natural extension of the modular decom-
position but remains more computationally challenging. Both modular and homo-
geneous decomposition proposes to build a decomposition tree, whose leaf nodes
are proteins and internal nodes (called modules) are logical rules to combine the
child nodes. Logical rules are herein the use of ∧ (ex. A ∧ B) to describe the fact
that protein A and B must be present within a module, or the use of ∨ (ex. A∨B)
to depict a selective choice between A or B to describe a module. Thus, once the
graph is broken up into modules, one must be able to build the graph again by us-
ing only its module and the logical rules. Compare to the modular decomposition
(see Figure 2.2c), the homogeneous decomposition further decomposes modular
modules. In particular, we identify a new structure called W-graph via the use of
new logical rules (see Figure 2.2d). When applied to realistic PPI, W-graph is of
interest. This structure represents a hub that describes interplays between modules
(or protein complexes). In particular, it shows that a protein could belong to several
complex alternatively, emphasizing putative dynamics or regulation feature within
the PPI. This new description thus, while being computationally challenging, al-
lows describing hidden substructures within PPI datasets, in a similar manner than
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multivariate analysis when working on continuous measurements.
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ABSTRACT

Motivation: Modules in biology appeared quickly as an accurate way
for summarizing complex living systems by simple ones. Therefore,
finding an appropriate relationship between modules extracted
from a biological graph and protein complexes remains a crucial
task. Recent studies successfully proposed various descriptions
of protein interaction networks. These approaches succeed in
showing modules within the network and how the modules interact.
However, describing the interactions within the modules, i.e. intra-
modular interactions, remains little analyzed despite its interest for
understanding module functions.
Results: We overcome this weakness by adding a complementary
description to the already successful approaches: a hierarchical
decomposition named homogeneous decomposition. This
decomposition represents a natural refinement of previous
analyses and details interactions within a module. We propose
to illustrate these improvements by three practical cases. Among
them, we decompose the yeast protein interaction network and
show reachable biological insights that might be extracted from a
complex large-scale network.
Availability: A program is at disposal under CeCILL license at:
www.lina.univ-nantes.fr/combi/DH/Home.html
Contact: irena.rusu@univ-nantes.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
By essence, biological systems are not fully explained. They appear
as complex systems which emphasize our incapacity to understand
the relation between inputs and outputs of the living system (Szallasi
et al., 2006). Evidence of modules in biology and utilities of such a
concept quickly appeared as an accurate way to summarize complex
living systems with simple ones. As an illustration, a molecular
complex abstracts numerous and complex interactions of proteins.
Using a module description implies to replace some part of the
system with an abstraction that maintains a correct property with
the given experimental data. This modeling approach introduces
the concept of modularity such as it was expressed clearly by
Hartwell et al. (1999). Applied on protein interaction networks,
these top-down approaches emphasize molecular hubs or functional

∗To whom correspondence should be addressed.

components within the network (Szallasi et al., 2006). In other
words, they find information of interest within a graph structure
while describing its modules.

Many studies aim at discovering this kind of information
within the structure of biological graphs (Jeong et al., 2000).
In particular, Spirin and Mirny (2003) give a strong support in
such protein interaction network analyses. They show theoretical
modules extracted from the network that correspond to protein
complexes (splicing machinery, transcription factors, etc.) or
dynamic functional units that can belong to the cell-cycle regulation.
However, in silico techniques appear as very sensitive to the
completeness of the protein interaction set. Finding biological
modules is only efficient for already well-investigated protein–
protein interaction graphs.

Due to intensive experimental investigations on Saccharomyces
cerevisiae, the yeast protein interaction graph agrees with such
a criterion. Thus, this graph quickly appeared as an accurate
benchmark for testing protein interaction network analysis
techniques (Guimerà et al., 2004; Hart et al., 2007; Ma et al.,
2004). Based on tandem affinity purification/mass spectrometry
(TAP-MS) experiments (Puig et al., 2001), various techniques aim
at characterizing protein complexes [see Gavin et al. (2002, 2006);
Ho et al. (2002) and Krogan et al. (2006) for illustration]. Among
them, Hart et al. (2007) used the Markov Cluster Algorithm
(MCL) technique developed by Enright et al. (2002). This is a
statistical scoring-based approach that differentiates direct physical
interactions from interactions mediated by other members of the
complex. Based on various experiments, the authors emphasize the
relevance of combining statistical analyses for inferring biological
knowledge. In practice, their study clearly indicates a hierarchical
organization of protein complexes in the cell and confirms that the
yeast ‘complex-ome’ is almost fully described.

In this context, protein complexes act as biological modules and
the method gives a robust overview of how biological modules
interact. Nevertheless, it also highlights other interesting questions
about the impact of specific interactions in the modular description
(He and Zhang, 2006), which is particularly relevant. However, the
MCL technique fails to answer these questions intuitively.

To overcome this technique weakness, we follow the assumptions
of Hart et al. (2007). We consider the yeast protein interaction
network as a graph with an (almost) complete set of protein
interactions. Consequently, each unit protein complex (that is, not
including smaller protein complexes) appears as a fully connected
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part of the network. Note here that the reverse is not true: not
every fully connected part of the network necessarily derives
from an existing (unit or not) protein complex. Our approach
aims at discovering in silico information that is hidden within the
protein interaction network. It identifies unit protein complexes
and the relations between them. Hierarchical graph decompositions
present interesting features for describing complete and large-scale
graphs such as the yeast protein interaction network. Therefore, we
consider these decompositions as a natural theoretical framework
for refining the description of protein complexes (equivalently,
biological modules) obtained using the MCL technique. Following
a similar assumption, Gagneur et al. (2004) apply the hierarchical
decomposition named modular decomposition on protein interaction
graphs. Various tests of this method show that theoretical modules
obtained this way may correspond to protein complexes. They
show as well that modular decomposition is not precise enough
to capture several important features of biological systems. One
main drawback of the modular decomposition is the existence of too
large components when the modular decomposition is finished at all
levels. Therefore, as observed using the MCL technique, important
relationships between intra-modular components remain hidden in
the network analysis.

Notwithstanding, we consider that the assumptions exposed by
Gagneur et al. (2004) are convincing. Further investigations using
hierarchical graph decompositions might complete the MCL results
and show intra-modular interactions. We herein propose to extend
the analysis involving modular description by using a natural
refinement of the method, called homogeneous decomposition. We
precisely explain that this decomposition improves the network
partitioning (see Section 2). It hence allows us to go further into
our biological purposes by (i) identifying smaller significative
components of the network and (ii) showing up their detailed
interactions with the other components. We illustrate these
theoretical features by an application on various protein interaction
networks (see Section 3). We first describe results on a theoretical
protein interaction network. It shows various modular insights,
emphasized by the homogeneous decomposition (see Section 3.1).
Second, we illustrate the improvements obtained with homogeneous
decomposition on known complexes, the transcriptional regulator
complexes, already analyzed (Gagneur et al., 2004) through modular
decomposition (see Section 3.2). Finally, we apply the homogeneous
decomposition on the yeast protein interactions (see Section 3.3)
that represents an accurate realistic benchmark supporting our
method.

2 METHODS
A graph is a data structure used for representing objects and their pairwise
relationships. The objects are the vertices of the graph, while the pairwise
(undirected) relationships between objects are the edges. We herein assume
a protein–protein interaction network as a graph whose vertices and edges
are, respectively, the proteins and their pairwise interactions. The structure
of this graph provides a lot of information on the groups (or complexes)
of proteins that act together to fulfill a biological function. To discover the
organization of a graph, one usually uses graph decompositions. To store
and analyze this organization, one uses decomposition trees.

Graph theory provides various ways to decompose a graph. Many of them
are single-level decompositions because they partition the graph into several
components that are not partitionable themselves. In contrast, multi-level
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Fig. 1. Decomposition tree of an arbitrary graph G with modules α,β and γ .
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Fig. 2. (a) Example graph G and (b) its decomposition into modules α,1,β,5
and γ .

(or hierarchical) decompositions have the major advantage of allowing an
iterative study of the structure by fitting the components into each other.

The modular decomposition, also known as substitution (Möhring and
Radermacher, 1984) or X-join (Habib and Maurer, 1979) decomposition,
is probably the most well-known hierarchical decomposition of graphs. It
was independently discovered several times [see Möhring and Radermacher
(1984) for a review], and various very efficient algorithms [see for instance,
McConnell and Spinrad (1994)] exist to compute it. As a natural refinement
of the modular decomposition, Jamison and Olariu (1995) propose the
homogeneous decomposition, for which Baumann (1996) describes an
efficient algorithm. Both modular and homogeneous decompositions build a
decomposition tree (See Fig. 1 for illustration), whose leaf nodes are proteins
and whose internal nodes (called modules) represent logical rules to combine
the child nodes.

Modular and homogeneous decomposition are explained below and
illustrated on the graph G in Figure 2a. In this description, the notion of
adjacent vertices (or simply neighbors) is paramount. It designates two
vertices of G joined by an edge. A graph whose vertices are all neighbors to
each other is called a clique.

2.1 Modular decomposition
Under the modular decomposition model, a module M is a graph inside the
given graph G so that all the vertices in M have exactly the same neighbors
outside M (let us call that the neighborhood property). The aim of the modular
decomposition is to decompose a graph into non-trivial modules (at least
two), and then to iterate the decomposition process on the resulting modules
until all modules are made of one vertex (such modules are the leaves of
the decomposition tree). Thus, the children of each node in the modular
decomposition tree (Fig. 1) are its modules, whether they are internal vertices
or leaves. Figure 2b shows one decomposition of G in Figure 2a into modules.
Module β may be furtherly decomposed into modules with vertex sets {4,6}
and {9}, while all the other modules have only trivial decompositions into
1-vertex modules (i.e. leaves).

When a graph is broken up into modules, one must be able to build
the graph again using only its modules and a logical rule (otherwise the
decomposition looses information). The logical rule is stored in the node of
the tree corresponding to the graph as a character with values 0, 1 or P as
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Fig. 3. The modular decomposition tree of the example graph G (a) and the
characteristic graph C(G) associated to the root (b), which is a P-node.

follows (see Fig. 3a for illustration):

• 0 means that G is the union of all its modules, without any edge joining
vertices from different modules. In this case, G is a 0©-graph (or 0©-
module) and its corresponding node is a 0©-node. Modules α and β in
Figure 2b are 0©-modules.
Biological interpretation: Gagneur et al. (2004) explain a 0©-node as
an alternative between its children: any of them successfully replaces
the module G in the 0©-node in any operation involving G.

• 1 means that G is the join of all its modules, obtained by adding an
edge between every pair of vertices from two different modules. In this
case, G is a 1©-graph (or 1©-module) and its corresponding node is a
1©-node. Module γ of G and module δ with vertex set {4,6} of β are
1©-modules.

Biological interpretation: following the parsimonious interpretation in
Gagneur et al. (2004), a 1©-node requires that all its children combine
together to replace module G in a 1©-node in any operation involving G.

• P means that G is obtained from its modules by performing, between
any pair of modules, either a union or a join, according to the
characteristic graph C(G), whose vertices correspond to the modules,
and whose edges correspond to the join operations. In this case, G is a P-
graph (or P-module) and its corresponding node is a P-node. The whole
graph G in Figure 2a is a P-module with modules α,1,β,5,γ (Fig. 2b),
which have to be combined together according to the characteristic
graph C(G) in Figure 3b to build G again. Notice here that the
characteristic graph of G is obtained by shrinking in G each module
into a single vertex.
Biological interpretation: there is no reasonable biological
interpretation for a P-node, since such nodes may correspond to
graphs which are very different one from another, and which may be
very large [see, Gagneur et al. (2004) for example].

The uniqueness of such a decomposition (and thus of the interpretation
one obtains when it is applied on a graph) is guaranteed by several simple
rules you must apply when decomposing. To name a few, one must make
sure that there are no edges between 0©-nodes or between 1©-nodes in the
decomposition tree.

2.2 Homogeneous decomposition
The main drawback of the modular decomposition is its unability to further
decompose the characteristic graphs associated to the P-modules. The
homogeneous decomposition partially solves this problem by identifying
P-modules with a specific structure, for which a further decomposition is
proposed. It is not meant to replace the decomposition into modules but to
refine it, once the modules have been computed and the characteristic graph
has been built. The homogeneous decomposition offers, therefore, an obvious
qualitative improvement to the modular decomposition, which is described
here in an intuitive manner and is illustrated in examples. Notice here that
we slightly modified the definition of the homogeneous decomposition tree

(b)(a)

single
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hub

Fig. 4. (a) Wheel structure of a graph. (b) Characteristic graph with
emphasized hub and single vertices. The dotted circle simply highlights the
wheel structure, it does not indicate edges.
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Fig. 5. (a) Wheel structure of G. (b) Characteristic graph C(G) with hub (in
gray) and its three h-modules. (c) Homogeneous tree of G.

compared with the original one by Jamison and Olariu (1995), so as to make
it easier to handle and to explain.

A graph G furtherly decomposable by an homogeneous decomposition is
called a W-graph (or W-module) in the remainder of the article. It has the
wheel structure depicted in Figure 4a. Such a module has a characteristic
graph (Fig. 4b) made of a hub (which is a clique) and of a set of single
vertices around the hub that have neighbors in the hub but are not joined
to each other. The h-modules of a W-module are the graphs (which are also
cliques) made of a single vertex and all its neighbors in the hub. Note that h-
modules do not have the neighborhood property as other modules do. These
notions are illustrated on the example graph G in Figure 5a and b.

The homogeneous decomposition introduces two new logical rules in the
decomposition tree (Fig. 5c), described by characters W and H used to label
internal nodes:

• W means that the graph G is obtained from its modules (stored as
children) and its h-modules (stored as a specific child which is an
H-node) by recovering a wheel structure. This happens when G is a W-
graph (or W-module) and in this case its corresponding node is called
a W-node. Graph G in Figure 2a is a W-module whose corresponding
W-node is shown in Figure 5c.

• H means that the internal node stores the h-modules of its father, which
is necessarily a W-module, in the following form: each h-module is
stored in a child labeled by a vertex set whose first element is the single
vertex identifying the h-module and the other elements are its neighbors
in the hub. In this case, the node is called an H-node.Although this is not
necessary, in our figures and so as to simplify explanations, the vertex
set of the hub labels the H-node. The h-modules of the characteristic
graph C(G) of the example graph G, identified in Figure 5b, are stored
in the H-node in Figure 5c.
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Fig. 6. Homogeneous decomposition of a theoretical protein interaction
network from Wilhelm et al. (2003). (a) Protein complexes elucidated
with TAP-MS. (b) The associated interaction network, where all
possible interactions within the protein complexes are considered. (c)
The corresponding modular decomposition tree. (d) The homogeneous
decomposition tree that highlights modules and their intra-modular
interactions. The gray area indicates the hub, stored in the H-node, that
connects the other h-modules as leaves.

Biological interpretation. W-and H-nodes are always explained together.
The h-modules stored in the H-node as well as in the hub itself (if it is not
already included in an h-module) yield protein complexes. Its composition
is described precisely through a careful interpretation of their vertices
representing modules. In Figure 5c, the h-module with vertex set {α,1}
yields protein complexes {2,1} and {3,1}, since module α is a 0©-module.
Therefore, proteins 2 and 3 are alternatives. The h-module with vertex set
{γ,1,β} contains the hub, thus, the hub itself does not generate specific
protein complexes. After the interpretation of modules γ and β, the protein
complexes generated by {γ,1,β} are {7,8,1,4,6} and {7,8,1,9}.

3 RESULTS
Like many tools in many fields, modular and homogeneous
decompositions might show very useful insights when applied in
the appropriate context. The appropriate context, in this case, is
an (almost) complete protein interaction network, where each unit
protein complex is represented as a clique, due to the method
used to infer the protein interaction network. Note here that
exceptions to this constraint may either seriously or weakly damage
the decomposition, depending on the nature of the exception.
Network analysis aims at finding (i) the hierarchical structure
of the network, (ii) the relations between complexes (inclusion,
disjonction, overlapping), and eventually (iii) the proteins or groups
of proteins within the network that play a central role in specific
regions of the network. In this purpose, the decomposition tree has
to clearly represent the complexes and highlight their relationships,
which gives emphasis to the interpretation of each type of node in
the decomposition tree.

3.1 Theoretical protein interaction network
We propose to illustrate the above notions on the small simplistic
protein complex network shown by Wilhelm et al. (2003) (Fig. 6).
This network comes from TAP and HMS-PCI techniques. Once the
modules α,β,γ and δ are identified by modular decomposition, a
wheel structure appears, with hub {h,α} and three h-modules. In
practice, the hub does not represent a concrete protein complex
(since the hub is part of the h-module {h,α,δ}), but shows the central

role of its components in the intra-modular interaction description.
Each h-module (which is a clique) yields one or more intra-modular
complexes. As an example, the h-module {h,α,δ} yields the larger
clique {h,a,b,i,g} after interpretation of modules α and δ. This
clique, obtained by our theoretical approach, correctly identifies the
complex Y . Similarly, the interpretation of the two other h-modules
{γ,h} and {β,α} conduces to recover cliques with vertex sets {k,j,h}
and {c,d,f ,e,b,a}, that respectively correspond to the complexes Z
and X. Therefore, our theoretical approach perfectly identifies, on
this network, the known complexes, thus showing a great accuracy.
Moreover, the homogeneous decomposition shows the relationships
between these complexes. For instance, complex X and complex Y
share the module α, that is the pair of proteins {a,b}. Despite the
fact that they do not build a proper complex, these proteins always
have to be considered together from a functional viewpoint (since
α is a 1©-module).

3.2 Transcriptional regulator complexes in yeast
We qualitatively validated our approach by comparing to the results
of Gagneur et al. (2004), which used protein interactions from
TAP-MS studies to define transcriptional regulatory complexes
in yeast. It is composed of five complexes [see Cairns et al.
(1994, 1996); Henry et al. (1994) and Kim et al. (1994) for details]:
RSC, SWI/SNF (chromatin-remodeling complexes), TFIIF, TFIID
(general transcription factor complexes) and Mediator (the mediator
complex that mediates signals to RNA polymerase II). The modular
decomposition tree (Fig. 7a) identifies several modules but fails to
identify the relations between the children of the P-node.

In contrast, the homogeneous decomposition tree (Fig. 7b)
singularly identifies a W-module that is structured as a wheel,
according to the information stored in the H-node. The hub is
composed by the protein Anc1 and the module α formed by Arp7
and Arp9. It plays a central role in the decomposition, since it
generates all the interesting cliques in the network. This observation,
exclusively based on our decomposition of the network, meets the
biological knowledge, since either Anc1 or the module α belong to
the five complexes experimentally known (Fig. 7c). Further analysis
argue for the reliability of the homogeneous decomposition and
our interpretation of it. The decomposition indicates three children
of the H-node that correctly identify all the complexes of the
network and their interactions. Each complex is herein associated
with the P-value obtained after a Gene Ontology analysis using
GO::TermFinder (Boyle et al., 2004):

(1) The rightmost child of the H-node represents an interaction
between Anc1, as a component of the hub, and the
module β that is a 0©-module. Consequently, Anc1 interacts
alternatively with the components of β. This interpretation
emphasizes three alternative cliques: either Anc1, Taf40,
Taf19, Taf45, Taf61, Taf90, Taf47, Tsm1, Taf25, Taf67, Taf17,
Taf60 (100% cluster frequency; i.e. how many genes from
the clique are annotated to the GO term associated with the
cluster; P-value = 7.76e−28); or Anc1, Tfg1, Tfg2 (100%,
3.60e−10); or Anc1, Med4, Gal11, Nut2, Nut1, Med2, Med6,
Med7, Pgd1, Cse2, Med8, Med11, Dmc1, Srb5, Srb4, Srb7,
Srb6, Rgr1, Sin4, Srb2, Rox3 (90.5%, 5.08e−50). These
three cliques correspond, respectively, to TFIID, TFIIF and
Mediator complexes. Based on the TAP-MS experiments,
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our decomposition predicts an alternative role for these
complexes.

(2) The center child represents an interaction between the module
α, as a component of the hub, and γ . The corresponding clique
corresponds to the complex RSC (90%, 3.94e−23).

(3) The third leaf indicates interactions between δ, α and Anc1,
which is interpreted as a clique that yields the SWI/SNF
complex (100%, 1.50e−29).

These complexes are already obtained by using the MCL analysis
on TAP-MS data (Hart et al., 2007). However, such a statistical-
based analysis does not show a precise description of the complexes
and their sub-complexes. The homogeneous decomposition achieves
to see the relations between their sub-complexes, just by taking a
glance at the homogeneous decomposition tree.

The particular feature of the decomposition is the hub. It is
composed by the moduleArp7-Arp9 (namely α in Fig. 7b) andAnc1.
A module like this one, not further decomposed, represents a sub-
complex that is related to RNA polymerase II transcription factor
activity (100%, 7.42e−6) and confirmed by experimental studies.
Recently, Chen and Shen’s (2007) experiments show that Arp7 and
Arp9 compose a crucial subunit of the SWI/SNF complex. Moreover,
Szerlong et al. (2003) demonstrate that Arp7 and Arp9 form a stable

heterodimer with the properties of a functional module. In particular,
they emphasize its impact in both restructuration of chromatin
and interactions between transcriptional regulatory complexes, like
SWI/SNF and RSC.

Anc1 is the other component of the hub. Anc1 connects three
modules to the hub, corresponding to TFIID, TFIIF and the Mediator
complex. Following the decomposition tree interpretation, these
complexes are alternative. This interpretation implies that Anc1
plays a major regulatory function by interacting with either TFIID,
TFIIF or the Mediator complex. Kabani et al. (2005) confirm such
an assumption. Experimental evidences indicate indeed that Anc1 is
the only non-essential subunit of TFIID. It is also associated with
TFIIF, although it is not required for its activity. Anc1 thus appears as
not really essential for the proper functions of complexes despite its
overall importance on the whole network [based on its gene-deletion
impact (Giaever et al., 2002)].

The three proteins that compose the hub are interacting with
another module named δ. It represents the complex SWI/SNF.
The interpretation of the decomposition tree indicates that this
last complex is functionally independent from other modules, but
might be modulated by the combination of Anc1, Arp7 and Arp9.
Interestingly, Kabani et al. (2005) indirectly confirm this assumption
by not showing a clear interaction of Anc1 alone with the SWI/SNF
complex. It intuitively implies the need of another component that
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we assume, based on the decomposition tree interpretation, being
the catalytic subunits of Arp7 and Arp9.

To sum up, the homogeneous decomposition emphasizes
complexes that are in accordance with those observed using others
techniques on TAP-MS data. These complexes, not depicted by
the modular decomposition, present accurate statistical results
when compared with biological functions and cellular compounds
accessed via Gene Ontology information (see Supplementary
Material). As additional features, it indicates how complexes interact
using an hub. The function of proteins that belong to the hub is to
connect complexes, which provides their regulation. In particular,
experiments confirm the role of Anc1 as a regulatory function by
modulating the activity of the respective catalytic subunits of the
complexes mentioned above. From a topological viewpoint, the
homogeneous decomposition identifies, in an optimized manner,
proteins that possess the higher degree within the network, like those
investigated by independent studies (Zotenko et al., 2008).

3.3 A large-scale network: the yeast protein
interactome

Previous examples show the qualitative accuracy of informations
extracted by homogeneous decomposition, since the complexes
identified in silico correspond to the already known biological
ones. We propose an application on a more prospective network
where the structure of the protein interaction network [that is, its
(sub-)complexes] remains unknown.

Hart et al. (2006) decompose the large-scale network of the yeast
using the MCL technique on TAP-MS experiments. They obtain 390
clusters or protein complexes, disjoint from each other. Since several
clusters are too complex to be investigated in a precise manner, the
homogeneous decomposition appears as a natural complement of the
MCL technique. Indeed, the decomposition describes relationships
within complexes emphasized by the MCL technique. As an
illustration, we investigated the interactions inside each of the 103
complexes that present at least four proteins (see Supplementary
Material). Among them, 61 complexes are too simplistic to require
a homogeneous decomposition (they have no P-node), 21 complexes
show identical modular and homogeneous decompositions and 21
complexes present an homogeneous decomposition that refines the
modular one. Among these complexes, the modular decomposition
identifies 52 sub-complexes, including 25 that give significant
GO results (in average P-value = 3.35e−04 and 69.9% of cluster
frequency) when investigated with function ontologies (Boyle
et al., 2004). As evidences of a gain over the modular one, the
homogeneous decomposition shows 75 sub-complexes, including
44 that show significant P-values after a GO analysis (in
average P-value = 8.44e−05 and 81.98% of cluster frequency, see
Supplementary Material).

Figure 8 details both decompositions applied on a complex issued
from the MCL analysis. The modular decomposition herein gives no
information about the structure of the complex (Fig. 8b), whereas
the homogeneous decomposition indicates potential protein sub-
complexes (that is, unit complexes) within the complex (Fig. 8c).
Indeed, the hub contains proteins Rfa2, Rad52, Rfa1 and Rfa3,
which therefore play a central role in the description of complex
interactions. The interpretation of the H-node and its children
indicates five cliques that should be interpreted as sub-complexes:
(Rfa2, Rim101, Rfa2, Rad52, Rfa1, Rfa3); (Rtt105, Rfa2, Rfa3);

Rtt105

Mec1

{R
ad51,R

ad52}

{D
N

A
2,R

fa2,R
fa1}

{R
tt105,R

fa2,R
fa3}

{Rfa2,Rad52,Rfa1,Rfa3}
{M

ec1,R
fa2}

{R
im

101,R
fa2,R

ad52,R
fa1,R

fa3}

R
fa2

R
ad51

R
fa1

R
fa3

R
im

101
M

ec1
D

N
A

2
R

tt105
R

ad52

Rad51

Rad52

Rfa3

Rfa2

Rfa1
Rim101

P

(a) (c)

(b)

DNA2

W

H
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presented by Hart et al. (2006). (a) Protein interaction network of proteins
involved in the cell cycle and the DNA repair; (b) Modular decomposition
tree; (c) Homogeneous decomposition tree. The components of the hub are
highlighted in gray.

(DNA2, Rfa2, Rfa1); (Rad51, Rad52); and (Mec1, Rfa2). These
deductions, based on the homogeneous decomposition, should be
seen as a starting point for further intra-modular investigations.

4 CONCLUSIONS
We herein studied the contribution of hierarchical decompositions of
graphs to the analysis of protein interaction networks. The modular
decomposition has been known for a while and showed great
successes for investigating protein–protein interaction networks.
This decomposition gives a representation of a graph as a tree of
labeled nodes called modules. As a fundamental property, all the
nodes within a module have the same neighborhood outside of the
module. Based on the modular decomposition, Gagneur et al. (2004)
interpret these modules as either: (i) 0©-module, (ii) 1©-module or
(iii) P-module, the latter one designating undecomposable graphs.
Unfortunately, the third case occurs on many protein interaction
networks, which makes difficult the analysis of concrete biological
networks, despite interesting internal structures of such subgraphs.
Whereas recent techniques, like MCL analysis, overcome this
problem by using clustering approaches, we here by propose to use
another hierarchical decomposition that investigates the P-nodes: the
homogeneous decomposition. Like the modular decomposition, the
homogeneous one aims at finding the maximum number of cliques
within a graph. In the protein–protein interaction network context, it
gives the maximum number of complexes. As a major improvement,
the homogeneous decomposition introduces two supplementary
node types, namely W- and H-nodes. They give us the opportunity to
identify a wheel structure around a hub, within certain P-modules.
Such a structure refines the decomposition, thus allowing further
investigation on the protein interaction network.

Compared with the modular decomposition, the homogeneous
one efficiently stores the important cliques (i.e. the unit complexes).
As a consequence, an easier analysis of the interactions both between
complexes and within a complex is possible. The homogeneous
decomposition hence represents a major contribution to infer
(sub-)complexes and to identify particular features of (groups of)
proteins. In particular, it emphasizes the presence/absence of specific
proteins within complexes of interest, their impact or interactions on
the overall network. To sum up, the homogeneous decomposition is
a theoretical technique that extracts global and local information.
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It should be used as a complement to experimental techniques that
identify the complete set of interactions in a network. Further works
should focus on developing new decomposition techniques, refining
the current ones.

Conflict of Interest: none declared.

REFERENCES
Baumann,S. (1996) A linear algorithm for the homogeneous decomposition of

graphs. Technical Report M-9615, Zentrum fur Mathematik, Technische Universität
Munchen.

Boyle,E.I. et al. (2004) GO::TermFinder–open source software for accessing gene
ontology information and finding significantly enriched gene ontology terms
associated with a list of genes. Bioinformatics, 20, 3710–3715.

Cairns,B.R. et al. (1994) A multisubunit complex containing the SWI1/ADR6,
SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc.
Natl Acad. Sci. USA, 91, 1950–1954.

Cairns,B.R. et al. (1996) RSC, an essential, abundant chromatin-remodeling complex.
Cell, 87, 1249–1260.

Chen,M. and Shen,X. (2007) Nuclear actin and actin-related proteins in chromatin
dynamics. Curr. Opin. Cell Biol., 19, 326–330.

Enright,A.J. et al. (2002) An efficient algorithm for large-scale detection of protein
families. Nucleic Acids Res., 30, 1575–1584.

Gagneur,J. et al. (2004) Modular decomposition of protein-protein interaction networks.
Genome Biol., 5, R57.

Gavin,A.-C. et al. (2002) Functional organization of the yeast proteome by systematic
analysis of protein complexes. Nature, 415, 141–147.

Gavin,A.-C. et al. (2006) Proteome survey reveals modularity of the yeast cell
machinery. Nature, 440, 631–636.

Giaever,G. et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome.
Nature, 418, 387–391.

Guimerà,R. et al. (2004) Modularity from fluctuations in random graphs and complex
networks. Phys. Rev. E. Stat. Nonlin. Soft Matter phys., 70, 025101.

Habib,M. and Maurer,M. (1979). On the X-join decomposition for undirected graphs.
Discrete Appl. Math., 1, 201–207.

Hart,G.T. et al. (2006) How complete are current yeast and human protein-interaction
networks? Genome Biol., 7, 120.

Hart,G.T. et al. (2007) A high-accuracy consensus map of yeast protein complexes
reveals modular nature of gene essentiality. BMC Bioinformatics, 8, 236.

Hartwell,L. et al. (1999) From molecular to modular cell biology. Nature, 402
(Suppl. 6761), C47–C52.

He,X. and Zhang,J. (2006) Why do hubs tend to be essential in protein networks? PLoS
Genet., 2, e88.

Henry,N.L. et al. (1994) TFIIF-TAF-RNA polymerase II connection. Genes Dev., 8,
2868–2878.

Ho,Y. et al. (2002) Systematic identification of protein complexes in Saccharomyces
cerevisiae by mass spectrometry. Nature, 415, 180–183.

Jamison,B. and Olariu,S. (1995) P-components and the homogeneous decomposition
of graphs. SIAM J. Discrete Math., 8, 448–463.

Jeong,H. et al. (2000) The large-scale organization of metabolic networks. Nature, 407,
651–654.

Kabani,M. et al. (2005) Anc1 interacts with the catalytic subunits of the general
transcription factors TFIID and TFIIF, the chromatin remodeling complexes RSC
and INO80, and the histone acetyltransferase complex NuA3. Biochem. Biophys.
Res. Commun., 332, 398–403.

Kim,Y.J. et al. (1994) A multiprotein mediator of transcriptional activation and its
interaction with the C-terminal repeat domain of RNA polymerase II. Cell, 77,
599–608.

Krogan,N.J. et al. (2006) Global landscape of protein complexes in the yeast
saccharomyces cerevisiae. Nature, 440, 637–643.

Ma,H.-W. et al. (2004) Decomposition of metabolic network into functional modules
based on the global connectivity structure of reaction graph. Bioinformatics, 20,
1870–1876.

McConnell,R.M. and Spinrad,J.P. (1994). Linear-time modular decomposition and
efficient transitive orientation of comparability graphs. In SODA ’94: Proceedings
of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 536–545.

Möhring,R. and Radermacher,F. (1984) Substitution decomposition for discrete
structures and connections with combinatorial optimization. Ann. Discrete Math.,
19, 257–356.

Puig,O. et al. (2001) The tandem affinity purification (tap) method: a general procedure
of protein complex purification. Methods, 24, 218–229.

Spirin,V. and Mirny,L.A. (2003) Protein complexes and functional modules in molecular
networks. Proc. Natl Acad. Sci. USA, 100, 12123–12128.

Szallasi,Z. et al. (2006) In Szallasi,Z. et al. (eds) System Modeling in Cellular Biology:
from Concepts to Nuts and Bolts. Modules and Modularity. The MIT Press,
Cambridge, MA, pp. 41–50.

Szerlong,H. et al. (2003) The nuclear actin-related proteins Arp7 and Arp9: a dimeric
module that cooperates with architectural proteins for chromatin remodeling. EMBO
J., 22, 3175–3187.

Wilhelm,T. et al. (2003) Physical and functional modularity of the protein network in
yeast. Mol. Cell Proteomics, 2, 292–298.

Zotenko,E. et al. (2008) Why do hubs in the yeast protein interaction network tend
to be essential: reexamining the connection between the network topology and
essentiality. PLoS Comput. Biol., 4, e1000140.

932



30 CHAPTER 2. ANALYSIS OF OMICS EXPERIMENTS
Homogeneous decomposition of macromolecular networks

c b

f
ed a

(b)

(a)

a
h

ife
d

(d)

c d f e k j b a i g 

H

h

P(c)

c d f e k j b a 

[b] [g] [a] [d]

[b] [g] [a] [d]

{g,h}

{h,a}

{h,a,d}
{b,a

}

i g 

Ycomplex Zcomplex

b
a
g

h h
j k

Xcomplex

i

k

jgbc

11 1

W

1

11 1 1

Fig. 6. Homogeneous decomposition of a theoretical protein interaction
network from Wilhelm et al. (2003). (a) Protein complexes elucidated
with TAP-MS. (b) The associated interaction network, where all
possible interactions within the protein complexes are considered. (c)
The corresponding modular decomposition tree. (d) The homogeneous
decomposition tree that highlights modules and their intra-modular
interactions. The gray area indicates the hub, stored in the H-node, that
connects the other h -modules as leaves.

Biological interpretation. W-and H-nodes are always explained together.
The h -modules stored in the H-node as well as in the hub itself (if it is not
already included in an h -module) yield protein complexes. Its composition
is described precisely through a careful interpretation of their vertices
representing modules. In Figure 5c, the h -module with vertex set {α,1}
yields protein complexes {2,1} and {3,1}, since module α is a 0⃝-module.
Therefore, proteins 2 and 3 are alternatives. The h -module with vertex set
{γ ,1,β} contains the hub, thus, the hub itself does not generate specific
protein complexes. After the interpretation of modules γ and β, the protein
complexes generated by {γ ,1,β} are {7,8,1,4,6} and {7,8,1,9}.

3 RESULTS
Like many tools in many fields, modular and homogeneous
decompositions might show very useful insights when applied in
the appropriate context. The appropriate context, in this case, is
an (almost) complete protein interaction network, where each unit
protein complex is represented as a clique, due to the method
used to infer the protein interaction network. Note here that
exceptions to this constraint may either seriously or weakly damage
the decomposition, depending on the nature of the exception.
Network analysis aims at finding (i) the hierarchical structure
of the network, (ii) the relations between complexes (inclusion,
disjonction, overlapping), and eventually (iii) the proteins or groups
of proteins within the network that play a central role in specific
regions of the network. In this purpose, the decomposition tree has
to clearly represent the complexes and highlight their relationships,
which gives emphasis to the interpretation of each type of node in
the decomposition tree.

3.1 Theoretical protein interaction network
We propose to illustrate the above notions on the small simplistic
protein complex network shown by Wilhelm et al. (2003) (Fig. 6).
This network comes from TAP and HMS-PCI techniques. Once the
modules α,β,γ and δ are identified by modular decomposition, a
wheel structure appears, with hub {h ,α} and three h -modules. In
practice, the hub does not represent a concrete protein complex
(since the hub is part of the h -module {h ,α,δ}), but shows the central

role of its components in the intra-modular interaction description.
Each h -module (which is a clique) yields one or more intra-modular
complexes. As an example, the h -module {h ,α,δ} yields the larger
clique {h ,a,b,i,g} after interpretation of modules α and δ. This
clique, obtained by our theoretical approach, correctly identifies the
complex Y . Similarly, the interpretation of the two other h -modules
{γ ,h} and {β,α} conduces to recover cliques with vertex sets {k,j,h }
and {c,d,f ,e,b,a}, that respectively correspond to the complexes Z
and X. Therefore, our theoretical approach perfectly identifies, on
this network, the known complexes, thus showing a great accuracy.
Moreover, the homogeneous decomposition shows the relationships
between these complexes. For instance, complex X and complex Y
share the module α, that is the pair of proteins {a,b}. Despite the
fact that they do not build a proper complex, these proteins always
have to be considered together from a functional viewpoint (since
α is a 1⃝-module).

3.2 Transcriptional regulator complexes in yeast
We qualitatively validated our approach by comparing to the results
of Gagneur et al. (2004), which used protein interactions from
TAP-MS studies to define transcriptional regulatory complexes
in yeast. It is composed of five complexes [see Cairns et al.
(1994, 1996); Henry et al. (1994) and Kim et al. (1994) for details]:
RSC, SWI/SNF (chromatin-remodeling complexes), TFIIF, TFIID
(general transcription factor complexes) and Mediator (the mediator
complex that mediates signals to RNA polymerase II). The modular
decomposition tree (Fig. 7a) identifies several modules but fails to
identify the relations between the children of the P-node.

In contrast, the homogeneous decomposition tree (Fig. 7b)
singularly identifies a W-module that is structured as a wheel,
according to the information stored in the H-node. The hub is
composed by the protein Anc1 and the module α formed by Arp7
and Arp9. It plays a central role in the decomposition, since it
generates all the interesting cliques in the network. This observation,
exclusively based on our decomposition of the network, meets the
biological knowledge, since either Anc1 or the module α belong to
the five complexes experimentally known (Fig. 7c). Further analysis
argue for the reliability of the homogeneous decomposition and
our interpretation of it. The decomposition indicates three children
of the H-node that correctly identify all the complexes of the
network and their interactions. Each complex is herein associated
with the P-value obtained after a Gene Ontology analysis using
GO::TermFinder (Boyle et al., 2004):

(1) The rightmost child of the H-node represents an interaction
between Anc1, as a component of the hub, and the
module β that is a 0⃝-module. Consequently, Anc1 interacts
alternatively with the components of β. This interpretation
emphasizes three alternative cliques: either Anc1, Taf40,
Taf19, Taf45, Taf61, Taf90, Taf47, Tsm1, Taf25, Taf67, Taf17,
Taf60 (100% cluster frequency; i.e. how many genes from
the clique are annotated to the GO term associated with the
cluster; P-value = 7.76e−28); or Anc1, Tfg1, Tfg2 (100%,
3.60e−10); or Anc1, Med4, Gal11, Nut2, Nut1, Med2, Med6,
Med7, Pgd1, Cse2, Med8, Med11, Dmc1, Srb5, Srb4, Srb7,
Srb6, Rgr1, Sin4, Srb2, Rox3 (90.5%, 5.08e−50). These
three cliques correspond, respectively, to TFIID, TFIIF and
Mediator complexes. Based on the TAP-MS experiments,
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Figure 2.2: Homogeneous decomposition of a theoretical protein interaction net-
work from Wilhelm et al. (2003). (a) Protein complexes elucidated with TAP-MS.
(b) The associated interaction network, where all possible interactions within the
protein complexes are considered. (c) The corresponding modular decomposition
tree. (d) The homogeneous decomposition tree that highlights modules and their
intra-modular interactions. The gray area indicates the hub, stored in the H-node,
that connects the other h-modules as leaves.

2.3 Analysis of ecosystems from the omics lens

If new omics protocol changed the way to investigate the cellular systems and its bi-
ological abstraction, similar transitions have percolated with a ten-year delay at the
population level. In particular, the early 2000s saw the rise of molecular methods
to study one of the most fundamental issues in ecology: investigating the relation-
ship between ecosystem processes and species richness in communities. Ecosys-
tem processes concern all mechanisms that permit the chemical transformation of
biological matter at the ecosystem level, whereas species richness studies the com-
munity composition. The estimation of diversity was particularly genomic-driven
when applied to microbial organisms. First, because molecular techniques were
mainly the only available technique, and second because these organisms were al-
ready well-documented about their respective role in biogeochemical cycles, with
a particular emphasis in the nitrogen cycle [217]. Among other techniques, one
can notice the significant impact of microarrays for detecting communities without
the need for culturing microbial strains. Once the genomic knowledge is avail-
able (i.e., nucleic sequence of a specific gene), several studies proposed to design
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probes related to nutrient cycles. These functional gene arrays detect the presence
of genes within a given ecosystem and could be used to detect the same gene in
a wide variety of microbial strains. Analysis of these probes permits to build a
phylogenetic tree specific to functional genes (see Figure 2.3). In particular, the
analysis of the amoA gene is of great interest because of its central role in the
nitrogen cycle. amoA encodes for one of the ammonia monooxygenase subunits.
This reaction catalyzes the transformation of ammonia (NH4) into hydroxylamine
(NH2OH), which is then oxidized to nitrites (NO2). The use of this reaction is
in direct concurrency with another reaction driven by urease that transforms NH4

into organic nitrogen compounds. Along the phylogenetic description, we pro-
posed a complementary statistical approach to link the diversity of the functional
gene amoA with these techniques - see Figure 2.4 (initially proposed in [209], then
extended in [22] and [21]).

Complementary to this functional analysis, other molecular techniques were
focusing on broader investigations. In a landmark study, [206] investigates the
whole DNA or RNA that composes an ecosystem (first the Sargasso sea following
by more samples from the global ocean via the Sorcerer II expedition [176]). In-
stead, on focusing on functional genes and prior knowledge, the protocol consists
of focusing on the 16S ribosomal RNA fragment. This nucleic sequence is one
of the most constrained over the tree of Life, one generally considers it as a good
proxy for taxonomy. Thus, the gene sequence of the most abundant species will be
more sequenced than the gene from rare species. Instead of assigning one sequence
to a single species, one defines here the concept of Operational Taxonomic Units
(OTU) that assigns multiple representative sequences to a given group called OTU.
This assignation of a given sequence to an OTU was performed initially by hier-
archical clustering of the nucleic sequence, followed by an arbitrary cut-off into
categories. Despite the great interest of this analysis and knowledge extraction,
several caveats remain. First, the choice of strict hierarchical clustering is highly
sensitive, especially when one considers the speed of speciation not constant over
the evolutionary time. Several other protocols were recently proposed to assess
this limitation, among which the use of the swarm technique [140] that allows a
dynamical clustering of sequences. The use of one assignation technique rather
than another will not be discussed here, despite its significant impact on the fol-
lowing results. The gene copy number per organism is the second possible caveat.
Indeed, some organisms, such as cyanobacteria, hold more that one 16S gene copy,
which could modify the sequencing result by multiplying the gene count by a fac-
tor that corresponds to the number of gene copy. One magnifies this problem when
the same sequencing technique concern metazoans where the number of cells by
definition varies during their life cycle and individual growth rates.

These metagenomic results being by definition semi-quantitative, further anal-
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Figure 2.3: Neighbour-joining phylogenetic trees of amoA gene products and gene
sequences from Chesapeake Bay sediments. Figure from Francis and collaborators
[68]. The tree classifies 156 nucleic sequences of the amoA gene as extracted from
the five Bay stations (see colour-coded key), together with sequences from culti-
vated ammonia-oxidizers and closely related environmental clones (black). Brack-
ets highlight the different phylogenetic clusters

ysis have been proposed to avoid wrong interpretations of the gene copy number
variations. Among others, network analyses proposes a change of computational
abstraction to analyze these data. Considering that metagenomics techniques allow
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Figure 2.4: Principal components analysis based on a correlation matrix combin-
ing pre-correlated physicochemical and biological factors. Data for the plots are
taken functional gene array data dedicated to amoA gene. Each probe data is rep-
resented in black. Data from the same geographic locations are grouped by color
(i.e., red, green and blue). Physicochemical parameters that better explain 47.71%
of the total variance are also represented by the following abbreviations: Temp,
temperature; NH4, ammonium; NO2, nitrite; NO3, nitrate; D.O, dissolved oxygen.
Figure from Bouskill and collaborators [22]

extracting the whole DNA or RNA that composes the ecosystem, and by focusing
on ribosomal RNA or specific functional genes, one counts the number of copy
that belongs to a given species. An abundance matrix stores these count numbers
where each line represents one OTU (i.e., an approximation of species), and each
column a sample site where DNA or RNA has been extracted (see Figure 2.5 for
illustration). This experimental technique emphasizes « who is there» but also «
how many are they» [165]. For each OTU, one then shows if one is significantly
over (or under) abundant when environmental constraints challenge the ecosystem.
Whereas preliminary studies focus on the description of the phylogenic distribu-
tion associated to this over or under abundance and how this diversity is related to
environmental parameters (see for instance the seminal papers from [105] or [25]),
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other studies propose to represent the abundance matrix as a network or graph
(see [175, 82, 157] as a nonexhaustive list of studies). Roughly, when two given
OTUs show abundance patterns that are correlated (and above a significant statisti-
cal threshold), one links both OTUs in a graph. This graph called a co-occurrence
network is a weighted undirected graph where nodes are OTUs and edges represent
significant correlations between them and weighted by a correlation score between
the abundance signals associated with the two given OTUs. Herein the most critical
step of this technique consists of finding an appropriate threshold above which the
absolute value of the correlation is significant. Thus, as illustrated in Figure 2.5,
the positive weight represents positive co-occurrence, whereas negative weights
are negative co-occurrence between two OTUs. Representing the enumeration of
omics data as graph significantly stimulated the recent environmental microbiol-
ogy literature, and the scientific community quickly generalized the use of co-
occurrence network inference protocol [23], which also opens the methodological
question about the choice of the pairwise metric, i.e., correlation-based measures
[33, 62] versus mutual information-based measures [168]. For this purpose, the
literature proposed several methods. CONET [63] proposes to combined differ-
ent correlation metrics to decipher the most significant co-occurrences within the
set of OTUs. SparCC [70] is dedicated to sparse datasets and proposes an adap-
tation of a linear Pearson correlation between log-transformed OTUs abundance
signals. SparCC then considers an approximation of this correlation-like score that
assumes the number of OTUs is large, and the correlation network is sparse. Both
above favorite techniques, as well as state-of-the-art correlation scores, were ap-
plied on biological benchmarks for the sake of their comparison in [211]. More re-
cently, [120] reinforces the interest on dedicated a co-occurrence inference method
that handles sparse and compositional dataset with a method called SPIEC-EASI
(Sparse InversE Covariance Estimation for Ecological Association Inference). This
method and its recent adaptation [199] combines data transformation developed for
compositional data analysis with a graphical model inference framework.

Following the global effort to investigate Earth microbiome (see for illustration
[4]), several of these co-occurrence techniques have been used to summarize large
metagenomic datasets: from the global ocean [133] or the human microbiome [63].
In particular, the CONET technique was also used to compare different biomes
[61]. However, one must notice herein that such a comparison mostly relied on
describing statistics and graph metrics of different built biome networks. Behind
this methodological question lies the problem (i) of dealing with large networks
and (ii) linking the network with broader biological questions. Indeed, the large
number of edges makes challenging the standard functional analysis, as well as
the identification of keystone species without just describing them by their cen-
trality in the co-occurrence network using state-of-the-art graph centrality metrics.
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Figure 2.5: Protocol for building a co-occurrence network. From an abundance
matrice that stores the relative abundances of OTUs for each sample, one can build
a pairwise similarity matrix via the use of pairwise statistical scores. From the
distribution of pairwise scores, compared to randomize scores, one filters the most
discriminant pairs if their scores are above (or below) a given threshold with a
confidence score. For each significant pair, one draws a graph where nodes are
selected OTUs, and edges describe significant pairs. The pairwise score weights
each edge. Figure adapted from Faust and Raes [62]

In such a broad metagenomic context, the study of the global ocean was exposed
to similar questions [49], and the Tara Oceans expedition was presenting a great
case study to tackle this computational problem. Launched in 2008, Tara Oceans
has transformed our understanding of ocean ecology and diversity. Tara Ocean
has federated a trans-disciplinary consortium around the schooner, Tara, to explore
ocean diversity via two circum-global navigations [109]. During this navigation,
the planktonic ecosystem was systematically sampled to cover the entire spectrum
from virus, to prokaryotic, to eukaryotic organisms via meta-barcoding (i.e., se-
quencing functional genes) [45, 189, 26], meta-genomic (i.e., sequencing of the
all genes in a given water mass) [189, 30] or meta-transcriptomic (i.e., quantita-
tive expression of all genes in a given water mass). For the past ten years, this
project was driven by performing a holistic description of the plankton, major
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biological component of the global ocean. This expedition enables many scien-
tific advances, among others, (i) the most extensive collection of homogeneous
eco-morpho-genetic samples and data from a biome, which today makes plankton
the best described planetary ecosystem in terms of organisms and genomes, from
viruses to animals ; (ii) The first referenced pan-ecosystemic database established
at EBI for open and sustainable data sharing with the international community.

Beyond the description of planktonic data and the corresponding unveiled com-
plexity, the Tara consortium performed other integrative studies. Villar and collab-
orators [207] linked the plankton diversity and putative planktonic functions with
ocean circulation around the South Africa edge. Lima Mendez and collaborators
[133] integrate the plankton relative abundance table as a co-occurrence network
via the use of CONET. However, these techniques quickly underperformed to in-
vestigate a more general oceanographic question. In particular, the question of
carbon export is of great interest in the context of climate change. The carbon
export consists of quantifying the amount of carbon captured by the ocean. The
physicochemical properties of the water can perform such capture. An increase
of carbon dioxide in the atmosphere automatically increases the amount of car-
bon encapsulated within the water mass, which also decreases the pH of the water
mass (i.e., ocean acidification) automatically. This carbon capture belongs to a pro-
cess called the physical pump that is responsible for most of the carbon flux (90%)
from the atmosphere to the ocean. Not at the same order of magnitude (10%), com-
plementary carbon sequestration involves the biological component of the global
ocean. This sequestration occurs via trophic networks. Trophic networks are the
result of all biotic interactions and magnified by individual biological behaviors
(i.e., predation, mutualism, commensalism). Roughly, these networks take place
following the availability of solar energy; photon; that are used by photosynthetic
systems to build organic matter that will be further assimilated by heterotrophic
organisms. Thus, at the scale of the Earth system, the unique source of energy is
therefore dissipated as (i) heat that contributes to the global ocean circulation or
(ii) biological matter distributed within several trophic networks or biogeochemi-
cal cycles. Following fluxes of matter within trophic networks, the organic carbon
will finally sink to reach ocean floors by taking the form of either bioproduct ex-
cretion (i.e., mostly mucus that produces marine snow) or dead bodies potentially
desegregated along with their sink toward the bottom floor. This process that leads
to proper sequestration of carbon within sediments is called the carbon export, but
its complexity remains challenging to investigate. Sediments traps usually mea-
sure the carbon export; a protocol that estimates the quantity of carbon per times;
or more recently a computational proxy designed by colleagues from the "Lab-
oratoire d’Océanographie de Villefranche" - LOV called UVP (Underwater Video
Profiler) that estimates the carbon-based on particles distributions along with depth
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profiles - distribution parametrized via video recording [159].
ARTICLERESEARCH

Extended Data Figure 1 | Overview of analytical methods used 
in the manuscript. a, Depiction of a standard pairwise analysis that 
considers a sequence relative abundance matrix for s samples (s × OTUs 
(operational taxonomic units)) and its corresponding environmental 
matrix (s × p (parameters)). sPLS results emphasize OTU(s) that are the 
most correlated to environmental parameters. b, Depiction of a graph-
based approach. Using only a relative abundance matrix (s × OTUs), 
WGCNA builds a graph where nodes are OTUs and edges represent 
significant co-occurrence. Co-occurrence scores between nodes are 
weights allocated to corresponding edges. These weights are magnified 
by a power-law function until the graph becomes scale-free. The graph is 
then decomposed within subnetworks (groups of OTUs) that are analysed 
separately. One subnetwork (group of OTUs) is considered of interest 
when its topology is related to the trait of interest; in the current case 

carbon export. For each subnetwork (for instance the subnetwork related 
to carbon export), each OTU is spread within a feature space that plots 
each OTU based on its membership to the subnetwork (x axis) and its 
correlation to the environmental trait of interest (that is, carbon export). 
A good regression of all OTUs emphasizes the putative relation of the 
subnetwork topology and the carbon export trait (that is, the more a 
given OTU defines the subnetwork topology, the more it is correlated to 
carbon export). c, Depiction of the machine learning (PLS) approach that 
was applied following subnetwork identification and selection. Greater 
VIP scores (that is, larger circles) emphasized most important OTUs. 
VIP refers to variable importance in projection and reflects the relative 
predictive power of a given OTU. OTUs with a VIP score greater than 1 are 
considered as important in the predictive model and their selection does 
not alter the overall predictive power.

© 2016 Macmillan Publishers Limited. All rights reserved

Figure 2.6: Overview of analytical methods used to decipher planktonic commu-
nities associated to carbon export. A. represents the standard pairwise analysis
applied on a relative abundance matrix for s samples (s × OTUs (operational tax-
onomic units)) and its corresponding environmental matrix (s × p (parameters)).
B. depicts the general protocol of WGCNA [122] when applied on OTUs co-
occurrence network. C. illustrates the method used to reduce the number of OTUs
of interest. The figure is adapted from [90].

However, even if estimating the carbon export is becoming a state-of-the-art
measurement during oceanographical campaigns (but at high logistic costs), inves-
tigating its origin remains challenging because it implies to decipher trophic net-
works and eventually the whole planktonic system involved in the biological pump.
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The Tara Oceans dataset could overcome such a limitation, and with colleagues
from the Tara Oceans consortium, we design a study that focuses on delineating
relationships between planktonic features and the carbon export. The standard
analysis consists in searching for significant correlations between species or OTUs
abundances and carbon export (see Figure2.6A). Several statistical methods exist
to emphasize the most significant associations, among which sPLS as available in
the Mixomics package [172]. However, behind their significant impact, these ap-
proaches highlight OTUs that explain the most significant variance, which does not
necessarily describe communities that are involved. Complementary, we proposed
the use of a graph-based approach that focuses on the whole co-occurrence net-
work for the sake of community description. Among these putative communities,
we will aim at deciphering the OTUs that drive the community. The analysis of the
co-occurrence network extracted from the Tara Oceans dataset is complicated, and
a previous study mainly focused on the graph description [133]. A large number of
edges makes challenging the standard functional analysis, as well as the identifica-
tion of patterns within the graph. To overcome this problem, we propose to apply
a network analysis called WGCNA (Weighted Gene Correlation Network Analy-
sis) that clusters the graph based on its overall topology. This technique, inspired
from [122] shown its interest in the context of systems biology [94], and more
recently display excellent efficiency compared to other module detection methods
[177]. Using only a relative abundance matrix (s × OTUs) (see Figure Figure2.6B),
WGCNA builds a graph where nodes are OTUs and edges represent significant co-
occurrence. However, compared to the co-occurrence mentioned above techniques,
WGCNA builds a weighted graph and focuses on such an abstraction to perform
the analysis. Thus, co-occurrence scores between nodes are weights allocated to
corresponding edges. WGCNA aims at detecting modules within the graph to em-
phasize a stronger group of OTUs that present a strong correlation between them.
In this purpose, weights from the weighted graph are magnified by a power-law
function until the graph becomes scale-free. This assumption relies on previous
observations on biological networks [7]. The graph is then decomposed into sub-
networks (groups of OTUs) that are analyzed separately. One subnetwork (a group
of OTUs) is considered of interest when its topology is related to the trait of in-
terest; in the current case, carbon export. For each subnetwork (for instance, the
subnetwork related to carbon export), each OTU is spread within a feature space
that plots each OTU based on its membership to the subnetwork (x-axis) and its
correlation to the environmental trait of interest (that is, carbon export). The mem-
bership is estimated by the module eigenvalue [122]. A suitable regression of all
OTUs emphasizes the putative relationship of the subnetwork topology and the
carbon export trait. These modules are then considered as trait-like because the
more a given OTU is crucial to define the subnetwork topology (i.e., robust eigen-



2.3. ANALYSIS OF ECOSYSTEMS FROM THE OMICS LENS 39

value), the more it is correlated to the trait; the carbon export herein. Finally, to
reduce the number of OTU to investigate (see Figure 2.6C), we applied a Partial
Least Squares Regression on each module associated with the carbon export. This
technique computes a score for each OTU that belong to the module. The score
then refers to variable importance in projection and reflects the relative predictive
power of a given OTU. Higher scores (that is, larger circles) emphasize the most
essential OTUs for the sake of prediction. OTUs with a VIP score higher than one,
are necessary for the predictive model. Considering a weighted graph to abstract
the planktonic community shows its great impact in the following study where we
investigate the plankton associated with the carbon export:
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This study discussed the interest of emphasized planktonic species. In partic-
ular, the same method was applied on distinct abundance matrices: (i) prokaryotic
species, (ii) eukaryotic species, (iii) viruses proteins that reflect viral diversity, but
also (iv) prokaryotic genes. Each matrix, abstracted as a weighted graph, pro-
duces one module associated to carbon export. Worth to notice, and for the sake
of validation, we found consistencies between main species from different matri-
ces, especially about the role of Synechococcus sp. and radiolarian, cryptic species
difficult observe before the systematic use of environmental genomics.
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Marine planktonic photosynthetic organisms are responsible for 
approximately 50% of Earth’s primary production and fuel the global 
ocean biological carbon pump1. The intensity of the pump is correlated 
with plankton community composition2,3, and controlled by the relative  
rates of primary production and carbon remineralization4. About 10% 
of this newly produced organic carbon in the surface ocean is exported 
through gravitational sinking of particles. Finally, after multiple trans-
formations, a fraction of the exported material reaches the deep ocean 
where it is sequestered over thousand-year timescales5.

Like most biological systems, marine ecosystems in the sunlit upper 
layer of the ocean (denoted as the euphotic zone) are complex6,7, char-
acterized by a wide range of biotic and abiotic interactions8–10 and 
in constant balance between carbon production, transfer to higher 
trophic levels, remineralization, and export to the deep layers11. The 
marine ecosystem structure and its taxonomic and functional com-
position probably evolved to comply with this loss of energy by mod-
ifying organism turnover times and by the establishment of complex 

feedbacks between them6 and the substrates they can exploit for metab-
olism12. Decades of ground-breaking research have focused on identi-
fying independently the key players involved in the biological carbon 
pump. Among autotrophs, diatoms are commonly attributed to being 
important in carbon flux because of their large size and fast sinking 
rates13–15, while small autotrophic picoplankton may contribute directly 
through subduction of surface water16 or indirectly by aggregating with 
larger settling particles or consumption by organisms at higher trophic 
levels17. Among heterotrophs, zooplankton such as crustaceans impact 
carbon flux via production of fast-sinking fecal pellets while migrat-
ing hundreds of meters in the water column18,19. These observations, 
focusing on just a few components of the marine ecosystem, highlight 
that carbon export results from multiple biotic interactions and that 
a better understanding of the mechanisms involved in its regulation 
requires an analysis of the entire planktonic ecosystem.

Advanced sequencing technologies offer the opportunity to simul-
taneously survey whole planktonic communities and associated 

The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported 
through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates 
with plankton community composition, the underlying ecosystem structure driving the process remains largely 
uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to 
improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, 
from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected 
taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly 
associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the 
relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export  
in these regions.
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Evry, France. 14Aix Marseille Université, CNRS, IGS, UMR 7256, 13288 Marseille, France. 15Department of Geosciences, Laboratoire de Météorologie Dynamique (LMD), Ecole Normale Supérieure, 
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molecular functions in unprecedented detail. Such a holistic approach 
may allow the identification of community- or gene-based biomark-
ers that could be used to monitor and predict ecosystem functions, 
for example, related to the biogeochemistry of the ocean20–22. Here, 
we leverage global-scale ocean genomics data sets from the euphotic 
zone10,23–25 and associated environmental data to assess the coupling 
between ecosystem structure, functional repertoire, and carbon export 
at 150 m.

Carbon export and plankton community composition
The Tara Oceans global circumnavigation crossed diverse ocean eco-
systems and sampled plankton at an unprecedented scale20,26 (see 
Methods). Hydrographic data were measured in situ or in seawater 
samples at all stations, as well as nutrients, oxygen and photosynthetic 
pigments (see Methods). Net primary production (NPP) was derived 
from satellite measurements (see Methods). In addition, particle size 
distributions (100 μm to a few millimetres) and concentrations were 
measured using an underwater vision profiler (UVP) from which car-
bon export, corresponding to the carbon flux (Fig. 1a) at 150 m, was 
calculated to range from 0.014 to 18.3 mg m−2 d−1 using methods previ-
ously described (see Methods). One should keep in mind that fluxes are 
calculated from images of particles. These estimates are derived from an 
approximation of Stokes’ law relating the equivalent spherical diameter 
of particles to carbon flux (see Methods). This exponential approxima-
tion is reasonable assuming similar particle composition across all sizes, 
as highlighted by the standard deviations of parameters in equation 
(5) (see Methods). Furthermore, because of instrument and method 
limitations, particles <250 μm were not used, which may underestimate 
total carbon fluxes. Finally, these fluxes are instantaneous because they 
do not integrate space and time as sediment traps would. However, 
the approach allowed us to assemble the largest homogeneous carbon 
export data set during a single expedition, corresponding to more than 
600 profiles over 150 stations. This data set is of similar magnitude 
to the body of historical data available in the literature that includes 
the 134 deep sediment trap-based carbon flux time series27 from the 
JGOFS program and the 419 thorium-derived particulate organic car-
bon (POC) export measurements28.

From 68 globally distributed sites, a total of 7.2 terabases (Tb) of 
metagenomics data, representing ~40 million non-redundant genes, 
around 35,000 operational taxonomic units (OTUs) of prokaryotes 
(Bacteria and Archaea) and numerous mainly uncharacterized viruses 
and picoeukaryotes, have been described recently23,25. In addition, a 
set of 2.3 million eukaryotic 18S rDNA ribotypes was generated from 
a subset of 47 sampling sites corresponding to approximately 130,000 
OTUs24. Finally, 5,476 viral ‘populations’ were identified at 43 sites from 
viral metagenomic contigs, only 39 (<0.1%) of which had been previ-
ously observed25 (see Methods). These genomics data combined across 
all domains of life and viruses together with carbon export estimates 
(Fig. 1a) and other environmental parameters were used to explore the 
relationships between marine biogeochemistry and euphotic plank-
ton communities (see Methods) in the top 150 m of the oligotrophic 
open ocean. Our study did not include high-latitude areas owing to 
the current lack of available molecular data and results should not be 
extrapolated to deeper depths.

Using a method for regression-based modelling of highly multi-
dimensional data in biology (specifically a sparse partial least square 
analysis (sPLS)29, Extended Data Fig. 1), we detected several plankton 
lineages for which relative sequence abundance correlated with carbon 
export and other environmental parameters, most notably with NPP, 
as expected (Fig. 1b and see Supplementary Table 1). These included 
diatoms, dinoflagellates and Metazoa (zooplankton), lineages classically 
identified as key contributors to carbon export.

Plankton networks associated with carbon export
While the analysis presented in Fig. 1b supports previous findings 
about key organisms involved in carbon export from the euphotic 

zone14,15,17–19, it is not able to capture how the intrinsic structure of 
the planktonic community relates to this biogeochemical process. 
Conversely, although other recent holistic approaches10,30,31 used spe-
cies co-occurrence networks to reveal potential biotic interactions, 
they do not provide a robust description of sub-communities driven 
by abiotic interactions. To overcome these issues, we applied a sys-
tems biology approach known as weighted gene correlation network 
analysis (WGCNA)32,33 to detect significant associations between the 
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Figure 1 | Global view of carbon fluxes along the Tara Oceans 
circumnavigation route and associated eukaryotic lineages. a, Carbon 
flux in mg m−2 d−1 and carbon export at 150 m estimated from particle size 
distribution and abundance measured with the underwater vision profiler 
(UVP). Stations at which environmental data are available (Supplementary 
Table 9) are depicted by white dots. Stations at which eukaryotic samples are 
available are coloured in red (Supplementary Tables 10 and 12). b, Eukaryotic 
lineages associated to carbon export as revealed by standard methods for 
regression-based modelling (sPLS analysis). Correlations between lineages 
and environmental parameters are depicted as a clustered heat map and 
lineages with a correlation to carbon export higher than 0.2 are highlighted 
(detailed results in Supplementary Table 1).
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Tara Oceans genomics data and carbon export. This method deline-
ates communities in the euphotic zone that are the most associated 
with carbon export rather than predicting organisms associated with 
sinking particles.

In brief, the WGCNA approach builds a network in which nodes are 
features (in this case plankton lineages or gene functions) and links are 
evaluated by the robustness of co-occurrence scores. WGCNA then 
clusters the network into modules (hereafter denoted subnetworks) 
that can be examined to find significant subnetwork–trait relationships. 
We then filtered each subnetwork using a partial least square (PLS) 
analysis that emphasizes key nodes (based on the variable importance 
in projection (VIP) scores; see Methods and Extended Data Fig. 1). 
These particular nodes are mandatory to summarize a subnetwork (or 
community) related to carbon export. In particular, they are of interest 
for evaluating: (i) subnetwork robustness; and (ii) predictive power for 
a given trait (see Methods and Extended Data Fig. 1).

We applied WGCNA to the relative abundance tables of eukaryotic, 
prokaryotic and viral lineages23–25 and identified unique subnetworks 
significantly associated with carbon export within each data set (see 
Methods and Supplementary Tables 2–4). The eukaryotic subnetwork 
(subnetwork–trait relationship to carbon export, Pearson correlation 
r = 0.81, P = 5 × 10−15) contained 49 lineages (Extended Data Fig. 2a 
and Supplementary Table 2) among which 20% represented photosyn-
thetic organisms (Fig. 2a and Supplementary Table 2). Surprisingly, this 
small subnetwork’s structure correlates very strongly to carbon export 
(r = 0.87, P = 5 × 10−16, Extended Data Fig. 2d) and it predicts as much 
as 69% (leave-one-out cross-validated (LOOCV), R2 = 0.69) of the vari-
ability in carbon export (Extended Data Fig. 2g). Only ~6% of the sub-
network nodes correspond to diatoms and they show lower VIP scores 
than dinoflagellates (Supplementary Table 2). This is probably because 
our samples are not from silicate-replete conditions where diatoms 

were blooming. Furthermore, our analysis did not incorporate data  
from high latitudes, where diatoms are known to be particularly impor-
tant for carbon export, so this result suggests that dinoflagellates have 
a heretofore unrecognized role in carbon export processes in subtrop-
ical oligotrophic ‘type’ ecosystems. More precisely, four of the five 
highest VIP scoring eukaryotic lineages that correlated with carbon 
export at 150 m were heterotrophs such as Metazoa (copepods), non- 
photosynthetic Dinophyceae, and Rhizaria (Fig. 2a and Supplementary 
Table 2). These results corroborate recent metagenomics analysis of 
microbial communities from sediment traps in the oligotrophic North 
Pacific subtropical gyre34. Consistently, in situ imaging surveys have 
revealed Rhizarian lineages, made up of large fragile organisms such 
as the Collodaria, to represent an until now under-appreciated com-
ponent of global plankton biomass (T. Biard et al., submitted), which 
here also appear to be of relevance for carbon export. Another 14% 
of lineages from the subnetwork correspond to parasitic organisms, a 
largely unexplored component of planktonic ecosystems when studying 
carbon export.

The prokaryotic subnetwork that associated most significantly 
with carbon export at 150 m (subnetwork–trait relationship to car-
bon export, r = 0.32, P = 9 × 10−3) contained 109 OTUs (Extended 
Data Fig. 2b and Supplementary Table 3), its structure correlated 
well to carbon export (r = 0.47, P = 5 × 10−6, Extended Data Fig. 2e) 
and it could predict as much as 60% of the carbon export variability 
(LOOCV, R2 = 0.60) (Extended Data Fig. 2h). By far the highest VIP 
score within this community was assigned to Synechococcus, followed 
by Cobetia, Pseudoalteromonas and Idiomarina, as well as Vibrio and 
Arcobacter (Fig. 2b and Supplementary Table 3). Noteworthy, the 
genus Prochlorococcus and SAR11 clade fall out of this community, 
while the significance of Synechococcus for carbon export could be vali-
dated using absolute cell counts estimated by flow cytometry (r = 0.64, 

Figure 2 | Ecological networks reveal key 
lineages associated with carbon export at 150 m 
at global scale. The relative abundances of taxa in 
selected subnetworks were used to estimate carbon 
export and to identify key lineages associated with 
the process. a, The selected eukaryotic subnetwork 
(n = 49, see Supplementary Table 2) can predict 
carbon export with high accuracy (PLS regression, 
LOOCV, R2 = 0.69, see Extended Data Fig. 2g). 
Lineages with the highest VIP score (dot size is 
proportional to the VIP score in the scatter plot) 
in the PLS are depicted as red dots corresponding 
to three Rhizaria (Collodaria, Collozoum inerme 
and Sticholonche sp.), one copepod (Oithona sp.), 
one siphonophore (Lilyopsis), three Dinophyceae 
and one ciliate (Spirotontonia turbinata). b, The 
selected prokaryotic subnetwork (n = 109, see 
Supplementary Table 3) can predict carbon export 
with good accuracy (PLS regression, LOOCV, 
R2 = 0.60, see Extended Data Fig. 2h). c, The 
selected viral population subnetwork (n = 277,  
see Supplementary Table 4) can predict carbon 
export with high accuracy (PLS regression, 
LOOCV, R2 = 0.89, see Extended Data Fig. 2i). 
Two viral populations with a high VIP score  
(red dots) are predicted as Synechococcus phages 
(see Supplementary Table 4).
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P = 4 × 10−10, Extended Data Fig. 2k). Moreover, Prochlorococcus cell 
counts did not correlate with carbon export (r = −0.13, P = 0.27, 
Extended Data Fig. 2j) whereas the Synechococcus to Prochlorococcus cell 
count ratio correlated positively and significantly (r = 0.54, P = 4 × 10−7,  
Extended Data Fig. 2l), suggesting the relevance of Synechococcus, rather 
than Prochlorococcus, to carbon export. Notably, Pseudoalteromonas, 
Idiomarina, Vibrio and Arcobacter (of which several species are known 
to be associated with eukaryotes35) have also been observed in live and 
poisoned sediment traps34 and display very high VIP scores in the sub-
network associated with carbon export. Additional genera reported as 
being enriched in poisoned traps (also known as being associated with 
eukaryotes) include Enterovibrio and Campylobacter, and are present 
as well in the carbon export associated subnetwork.

Interestingly, the viral subnetwork (involving 277 populations) 
most related to carbon export at 150 m (r = 0.93, P = 2 × 10−15, 
Extended Data Fig. 2c) contained particularly high VIP scores for two 
Synechococcus phages (Fig. 2c and Supplementary Table 4), which rep-
resented a 16-fold enrichment (Fisher’s exact test P = 6.4 × 10−9). Its 
structure also correlated with carbon export (r = 0.88, P = 6 × 10−93, 
Extended Data Fig. 2f) and could predict up to 89% of the variabil-
ity of carbon export (LOOCV, R2 = 0.89) (Extended Data Fig. 2i). 
The significance of these convergent results is reinforced by the fact 
that sequences from these data sets are derived from organisms col-
lected on distinct filters with different mesh sizes (see Methods), and 
further implicates the importance of top-down processes in carbon  
export.

With the aim of integrating eukaryotic, prokaryotic, and viral com-
munities in the euphotic zone with carbon export at 150 m, we synthe-
sized their respective subnetworks using a single global co-occurrence 
network established previously10. The resulting network focused on 
key lineages and their predicted co-occurrences (Fig. 3). Lineages with 
high VIP values (such as Synechococcus) are revealed as hubs of the 
co-occurrence network10, illustrating the potentially strategic key roles 
within the integrated network of lineages under-appreciated by conven-
tional methods to study carbon export. Associations between the hub 
lineages are mostly mutually exclusive, which may explain the relatively 

weak correlation of some of these lineages with carbon export when 
using standard correlation analyses, as shown in Fig. 1b.

Gene functions associated with carbon export
Given the potential importance of prokaryotic processes influencing 
the biological carbon pump22, we used the same analytical approaches 
to examine the prokaryotic genomic functions associated with carbon 
export at 150 m in the annotated Ocean Microbial Reference Gene 
Catalogue from Tara Oceans23. We built a global co-occurrence net-
work for functions (that is, orthologous groups of genes (OGs)) from 
the euphotic zone and identified two subnetworks of functions that 
are significantly associated with carbon export (light and dark green 
subnetworks; FNET1 and FNET2, respectively, see Extended Data  
Fig. 3a–c).

The majority of functions in FNET1 and FNET2 correlate well with 
carbon export (FNET1: mean r = 0.45, s.d. = 0.09 and FNET2: mean 
r = 0.34, s.d. = 0.10). Interestingly, FNET2 functions (n = 220) encode 
mostly (83%) core functions (that is, functions observed in all euphotic 
samples, see Methods) while the majority of FNET1 functions (n = 441) 
are non-core (85%) (see Supplementary Tables 5 and 6), highlighting 
both essential and adaptive ecological functions associated with car-
bon export. Top VIP scoring functions in the FNET1 subnetwork are 
membrane proteins such as ABC-type sugar transporters (Extended 
Data Fig. 3c). This subnetwork also contains many functions specific 
to the Synechococcus accessory photosynthetic apparatus (for exam-
ple, relating to phycobilisomes, phycocyanin and phycoerythrin; see 
Supplementary Table 5), which is consistent with the major role of 
this genus for carbon export inferred from the prokaryotic subnetwork 
(Fig. 2b). In addition, functions related to carbohydrates, inorganic ion 
transport and metabolism, as well as transcription, are also well repre-
sented (Fig. 4), suggesting overall a subnetwork of functions dedicated 
to photosynthesis and growth.

The FNET2 subnetwork contains several functions encoded by genes 
taxonomically assigned to Candidatus pelagibacter and Prochlorococcus, 
known as occupying similar oceanic regions as Synechococcus,  
but overall most of its relative abundance (74%) is taxonomically 
unclassified (Extended Data Fig. 3e). Top VIP scoring functions in 
FNET2 are also membrane proteins and ABC-type sugar transport-
ers, as well as functions involved in carbohydrate breakdown such as a 
chitinase (Extended Data Fig. 3c). These features highlight the potential 
roles of bacteria in the formation and degradation of marine aggre-
gates36. Notably, 77% and 58%, of OGs with a VIP score >1 in FNET1 
and FNET2, respectively, are functionally uncharacterized37,38 (Fig. 4), 
pointing to the strong need for future molecular work to explore these 
functions (see Supplementary Tables 5 and 6).
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Figure 3 | Integrated plankton community network built from 
eukaryotic, prokaryotic and viral subnetworks related to carbon export 
at 150 m. Major lineages were selected within the three subnetworks 
(VIP > 1) (Supplementary Tables 2, 3 and 4). Co-occurrences between all 
lineages of interest were extracted, if present, from a previously established 
global co-occurrence network (see Methods). Only lineages discussed 
within the study are pinpointed. The resulting graph is composed of 329 
nodes, 467 edges, with a diameter of 7, and average weighted degree of 4.6.
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Figure 4 | Key bacterial functional categories associated with carbon 
export at 150 m at global scale. A bacterial functional network was 
built based on orthologous group/gene (OG) relative abundances using 
the WGCNA methodology (see Methods) and correlated to classical 
oceanographic parameters. Two functional subnetworks (FNET1 (n = 220) 
and FNET2 (n = 441), respectively, Extended Data Fig. 3a) are significantly 
associated with carbon export (FNET1: r = 0.42, P = 4 × 10−9 and FNET2: 
r = 0.54, P = 7 × 10−6, see Extended Data Fig. 3b). Higher functional 
categories are depicted for functions with a VIP score >1 (PLS regression, 
LOOCV, FNET1 R2 = 0.41 and FNET2 R2 = 0.48, see Extended Data  
Fig. 3d) in both subnetworks.
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As for plankton communities, the relevance of the identified 
bacterial functions to predict carbon export was also confirmed 
by PLS regression (Extended Data Fig. 3d). The functional subnet-
works predict 41% and 48% of carbon export variability (LOOCV, 
R2 = 0.41 and 0.48 for FNET1 and FNET2, respectively) with a min-
imal number of functions (Fig. 4, 123 and 54 functions with a VIP 
score >1 for FNET1 and FNET2, respectively). Finally, higher predic-
tive power was obtained using subnetworks of viral protein clusters  
(Extended Data Fig. 4a–c), predicting 55% and 89% of carbon export 
variability (LOOCV R2 = 0.55 and 0.89 for VNET1 and VNET2, respec-
tively; Extended Data Fig. 4d, Supplementary Tables 7 and 8), suggest-
ing a key role of not only bacteria, but also their phages in processes 
sustaining carbon export at a global level.

Discussion
In this work we reveal the potential contribution of unexpected com-
ponents of plankton communities, and confirm the importance of 
prokaryotes and viruses for carbon export in the nutrient-depleted 
oligotrophic ocean. Carbon export at 150 m has been estimated from 
particle size distribution in a global data set, but should be taken with 
caution, as the estimates do not account for particle composition. In 
addition, these export estimates evaluate how much carbon leaves the 
euphotic zone, but they are not related and should not be extrapo-
lated to sequestration, which occurs after remineralization, deeper  
in the water column, and over longer timescales. Nonetheless, the use of 
the UVP was the only realistic method to evaluate carbon flux over the 
3-year expedition because deployment of sediment traps at all stations 
would have been impossible. While our findings are consistent with 
the numerous previous studies that have highlighted the central role 
of copepods and diatoms in carbon export14,15,17–19, they place them 
in an ecosystem context and reveal hypothetical processes correlating 
with the intensity of export, such as parasitism, infection and preda-
tion. For example, while viruses are commonly assumed to lyse cells 
and maintain fixed organic carbon in surface waters, thereby reducing 
the intensity of the biological carbon pump39, there are hints that viral 
lysis may increase carbon export through the production of colloidal 
particles and aggregate formation40. Our current study suggests that 
these latter roles may be more ubiquitous than currently appreciated. 
The importance of aggregation and cell stickiness as inferred from gene 
network analysis should be further explored mechanistically to inves-
tigate the biological significance of these findings.

The future evolution of the oceanic carbon sink remains uncer-
tain because of poorly constrained processes, particularly those 
associated with the biological pump. With current trends in climate 
change, the size and biodiversity of phytoplankton are predicted to 
decrease globally41,42. Furthermore, in spite of the potential impor-
tance of viruses revealed in this study, they have largely been ignored 
because of limitations in sampling technologies. Consequently, as 
oligotrophic gyres expand and global mean NPP decreases43, the field 
is currently unable to predict the consequences for carbon export 
from the ocean’s euphotic zone. By pinpointing key lineages and key 
microbial functions that correlate with carbon export at 150 m in 
these areas, this study provides a framework to address this critical 
bottleneck. However, the associations presented do not necessarily 
suggest a causal effect on carbon export, which will require further 
investigation.

One of the grand challenges in the life sciences is to link genes to 
ecosystems44, based on the posit that genes can have predictable eco-
logical footprints at community and ecosystem levels45–47. The Tara 
Oceans data sets have allowed us to predict as much as 89% of the 
variability in carbon export from the oligotrophic surface ocean with 
just a small number of genes, largely with unknown functions, encoded 
by prokaryotes and viruses. These findings can be used as a basis to 
include biological complexity and guide experimental work designed 
to inform climate modelling of the global carbon cycle. Such statisti-
cal analyses, scaling from genes to ecosystems, may open the way to 

the development of a new conceptual and methodological framework 
to better understand the mechanisms underpinning key ecological 
processes.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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France. 10Aix Marseille Université, CNRS, IGS, UMR 7256, 13288 Marseille, France. 11Stazione 
Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy. 12CEA - Institut de Génomique, 
GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France. 13CNRS, UMR 8030, CP5706 Evry, 
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2.4 Conclusions

Nevertheless, beyond the biological interest of WGCNA to investigate the plank-
ton, two methodological points briefly discussed in the above study must be high-
lighted here. First, these studies [46, 90] emphasized the interest of choosing a
great abstraction to explore the data without considering experimental data per se.
In particular, we have shown herein that the use of the graph could be of great
help to summarize a large quantity of homogeneous knowledge. However, such
an abstraction necessitates discretizing the knowledge, via, for instance, the choice
of a threshold. This particular step is critical and must be considered carefully,
which justifies recent methodological efforts. The interest of Computer Science
is to give herein access to several abstractions (from discrete to continuous via
probabilistic ones). These abstractions are formal objects on which optimization
techniques are performed, designed following parsimonious assumptions. These
techniques thus aim at solving the original problem in an abstraction domain that
becomes computationally tractable. The choice of one formal abstraction rather
than another belongs to the first step of computational modeling, a step often ne-
glected because of the broader access to sophisticated techniques via repository
plate-forms. Beyond the interest of solving a biological question, an appropriate
abstraction must produce an emerging property that could later on considered as
another biological abstraction of interest if validated. For the sake of illustration,
following the above studies, the module is becoming of interest in investigating
the planktonic knowledge. By extension, one considers the modules as biological
units that allow tackling biogeography questions. Figure 2.7 represents the contri-
bution of eukaryotic taxa modules (resp. Fig. 2.7A) and prokaryotic genes modules
(resp. Fig. 2.7B) associated to iron. These eight modules are the direct extension
of WGCNA but are becoming as well an abstraction that reduces the whole Tara
Oceans dataset complexity for the sake of global analysis 1.

Second, the use of graph abstraction proposes a new focus on the dataset. In-
stead of focusing on the most abundant species or the most variant species, the
graph emphasizes species or genes or proteins that are central. Such a central-
ity is computed by different metrics that remain at the discretion of the scientists.
Computer Sciences drive this change of paradigm and not standard statistical tech-
niques, which could benefit to state-of-the-art ecological concepts such as niche
[87], or keystone species [69]. However, the analysis of the biological graph re-
mains at its infancy despite landmark studies. In particular, considering graphs
to abstract biological data opens several methodological locks that the perspective

1extracted from Caputi L., Carradec Q., Eveillard D. et. al. Community-level response to the
natural perturbation in open ocean planktonic ecosystems. Submitted
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Figure 2.7: Planktonic Iron-Associated Assemblages (IAAs) in the global ocean
and the Marquesas Islands stations. (A) Description of eukaryotic modules asso-
ciated with iron. Relative abundances and co-occurrences of eukaryotic lineages
were used to decipher modules. Four modules can predict iron with high accu-
racy. For each IAA, lineages are associated with their score of centrality (x-axis),
to their correlation with iron concentrations (y-axis), and their VIP score (circle
area). Circles depicted representative lineages within each module and named (C:
Copepoda, B: Bacillariophyta, R: Rhizaria). (B) Top panel: contribution of Tara
Oceans stations to the global variance of IAAs of eukaryotic lineages. For each
IAA, we represent the projection of stations on the first principal component (up-
per panel). Lower panel: projection of the relative contribution of the Tara Oceans
stations to the global variance of iron-associated prokaryotic gene assemblages, as
revealed by WGCNA. For each prokaryotic gene module associated with iron, we
represent the projection of stations on the first principal component, proportional
to triangle sizes for each module. The inset shows the behavior of each IAA in the
Marquesas archipelago stations.
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Chapter 3

Integrative Biology:
Understanding Biological
Systems through the integration
of heterogeneous data

Nature is ever at work building and
pulling down, creating and
destroying, keeping everything
whirling and flowing, allowing no
rest but in rhythmical motion,
chasing everything in endless song
out of one beautiful form into
another.

John Muir

Computer Sciences research applied to integrative biology is still in its infancy
for solid reasons. So far, integrative biology appears as a meta-biology, in which
all aspects of the biological system, previously studied as separate objects, are
treated together, while one acquires their different knowledge at different levels of
advancement. Because the description of the biological system is sparse, computer
sciences developed fragmented and heterogeneous methods for individual aspects.
However, the current demand for integrative biology is to move to a higher level of
integration of biological abstractions, which does not consist of a simple parame-
terization of more, but a real integration of concepts, models, bioinformatics meth-
ods themselves. This formalization must be done step by step, aspect by aspect,
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and must rely on several kinds of knowledge to produce integrative knowledge.
Once again, modeling reverts particular importance. Biological abstractions used
for fragmented biological knowledge must be either transformed into another one
from automatic treatments that compare an abstraction with a knowledge database
(see Section 3.1 for illustration) or merged with other abstractions to produce an-
other distinct one (see Section 3.2 or 3.3). Overall, these transformations that could
be linked to the field of model engineering as promoted for software engineering
must promote the emergence of new properties that were not available without
such integration. Thus, the primary objective of integrative biology consists in
deciphering potentially new functional features, that could take the form of new
phenotypic descriptions. This chapter will present how the use of optimization
assumptions could help to detangle new biological properties from different exper-
imental descriptions. Note herein integrative biology also saw the rise of linked
data techniques [14, 221], which will not be discussed in this chapter for the sake
of concision.

3.1 Inferring metabolic networks: integration of genomics
contents with biological & chemical knowledge

The metabolic network relies on the chemical knowledge that identifies the role of
different enzymes to catalyze the transformation of molecules into others. In the
2000s, as discussed in the previous chapter, the development of high-throughput se-
quencing techniques promote the acquisition of extensive data on the genes content
of organisms (i.e., a genome) or even a community of organisms (i.e., a metagenome).
By (almost) direct translation, one assumes the presence of a gene that encodes for
an enzyme as a signal for the alleged use of a metabolic reaction within the or-
ganism. In particular, these computational techniques that use state-of-the-art gene
database help to identify, for a given organism, a catalog of catalytic proteins poten-
tially produced by this organism. In the context of metabolism, metabolic reactions
are feasible because of the presence of the catalyzer, which allows the consumption
of given compounds that will be transformed by the production of other ones (see
Figure 3.1 for illustration). The checking of gene content represents a step called
metabolic mapping.

However, since the genetic information is highly incomplete despite substan-
tial sequencing depth, and the chemical knowledge do not necessarily cover all
biochemical reaction specificities in a given organism (in particular on the balance
of co-factors), the sole metabolic mapping remains limited to characterize the full
metabolic capability of an organism without further analysis. Modeling such a
metabolic network can take either the form of a graph or a stoichiometric matrix.
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Figure 3.1: Schema of a metabolic network as built from genomic knowledge.
Each gene (yellow arrow or gx) encodes for one enzyme (green rectangle or Ex).
An enzyme can be encoded by several genes when several protein subunits are nec-
essary (ex. g1 and g2 necessary for producing E1). The presence of enzymes allows
metabolic reactions to take place (purple square or rx). Chemical database depicts
thermodynamical constraint that results in reversible or irreversible reactions if one
takes reactions in both directions or only one. The same database indicates chemi-
cal compounds (blue circle or cx) that are produced or consumed by each reaction.
Two reactions are linked to each other when the product of one reaction is the sub-
strate of the other one. The interplay between reactions thus describes a metabolic
network, that is a bipartite graph directed by the chemical knowledge ©Philippe
Bordron

This latter form will be discussed later in Chapter 4.3, whereas one will focus on the
graph in this Chapter. Despite this methodological antagonism, Thiele and Palsson
present in their work [193] a global method of metabolic network reconstruction
by trying to homogenize the different protocols for the creation of these networks.
Another review [92] proposes a complementary methodology based on previous
work, where the authors compare various reconstruction tools applied in particular
to prokaryotic networks. Overall, one could divide the metabolic reconstruction
into four stages:

1. construction of a draft metabolic network following the metabolic mapping

2. improvement of the draft

3. conversion of the network into a format usable by automatic methods
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4. evaluation of the quality of the final network

5. reiterate above steps until biological satisfaction

Each of these steps represents itself a field of research, but today steps two and
three are often done together because of recently improved methods that perform
these steps automatically. Also, the final step usually results from expert biological
annotations and determines if further repetitions of these steps are necessary before
releasing the model in the public repository (for instance, Bigg [112]). Beyond the
sole validation of the network, this final step is also fundamental because it drives
the purpose of the model. Indeed, without starting a philosophical discussion here,
the resulting metabolic model aims at reproducing a given phenotype in given en-
vironmental conditions (i.e., a quantity of substrates). However, without extensive
consideration of this final step, one could over-interpret a metabolic model. In-
deed, the model simulation outside of its validation conditions may lead to false
simulations. Certainly, no model is universal, and one must consider with secure
care the following steps to avoid model extrapolations.

Creating a draft metabolic network

The first step builds a draft of the metabolic network by extracting information
from two distinct biological sources. On the one hand, one considers functional
annotations of the genome, such as:

• EC number, which makes it possible to classify the enzymes according to
the reaction which they catalyze,

• GO term, related to the ontology of genes in species,

• Generic names of reactions as proposed by biological expertise

As seen above, all of these data, when available, pinpoint which enzymes are po-
tentially available, thus determining the reactions that take place in a metabolic
network, but also which proteins or metabolic compounds are consumed or pro-
duced. On the other hand, one could retrieve complementary information from
neighboring species. In particular, when gene information is missing, one could
search for gene homologies from HMMs (Hidden Markov Models) profiles for
finding enzymes for non-annotated genes. In particular, one could recover this
information from databases such as KEGG [104] or METACYC [32]. However,
because one performs these functional annotations via alignment scores with a ref-
erence database that stores knowledge of reference species, the draft will be more
accurate if the species that one investigates are sufficiently phylogenetically close
to reference species.
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Refinement of the metabolic network and conversion to an analyzable format

Once drafted, the metabolic network should be verified and completed such that
one can use it in further analysis. Refinement consists of verifying biological prop-
erties from the network. For instance, one can investigate the topology of the
bipartite graph that represents the metabolic network by checking if there exists
a path that links metabolites that are nutrients of the given organism (i.e., called
source) to those that are produced by the same organism (i.e., called targets). By
extension, one often considers these metabolites as elements involved in the or-
ganism’s growth [173]. Another quantitative technique can be used here via the
use of Flux Balance Analysis, later described in Sec. 4.3. When the draft network
fails to reach phenotypic expectations, it is then necessary to add reactions in or-
der to obtain the production of all the targets. This task could be made manually
or automatically via gap-fill techniques. They consist of finding missing reactions
that one must add in the draft. Choosing these reactions consists of optimizing the
shortest path problem [106]. In collaboration with the team DYLISS in Rennes,
we recently proposed a new gap-filling method that focuses on searching all the
filled draft metabolic networks that satisfy biological expertise queries and merged
them into a unique network [36, 164]. The draft network is filled using Answer Set
Programming framework (ASP) to satisfy specific in silico queries, e.g., relating
to its capacity to produce given molecules, from given substrates. Among others,
automatic tools perform some of these analyses as soon as the network and its as-
sociated knowledge are formatted in a standardized way [136]. In particular, one
of the most widely used formats is the SBML format, for Systems Biology Markup
Language, which first lists all the metabolites involved in the network and then lists
the reactions with their substrates and products.

Notice herein that the group of Patil recently proposed a complementary tech-
nique at EMBL that aims to carve a generic prokaryotic metabolic network to fit
the genomic content while maintaining generic properties [135]. This technique is
in the opposite direction of standard gap-fill techniques but presents great promises
for modeling more exotic bacterial strains, such as those that cannot be cultivated
but observed from in situ metagenomic data.

3.2 Operons & Regulons as emerging features of metabolic
and genomic knowledge integration

Above mentioned biological abstractions allow us to understand two particular
characteristics of living systems: (i) the genotype or distribution of genes in a
genome and (ii) the phenotype or functional characteristics of living organisms
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Figure 3.2: Schema of an integrated graph that resumes genomic and metabolic
knowledge. A set of genes (yellow arrow or gx) is ordered to build a genome
(or chromosome). Each of these genes is separated by intervals that can gene
measured as gene count or pair base count. From the metabolic network depicted in
Figure 3.1, one can build a directed weighted graph in B., where a node represents
the dual genomic and metabolic knowledge (gx, ry) with g and r stand for genes
and their encoded reactions respectively. Directions of edges correspond to the
directions between two reactions as imposed by thermodynamical constraints. The
weights on edges represent the numbers of gene interval between two genes pointed
as sources and targets of the given edge. ©Philippe Bordron

such as metabolisms. To integrate these abstractions, one must consider two char-
acteristics that have been previously studied. First, as mentioned in Section 3.1, a
metabolism, modeled as a metabolic network, can be described as a set of paths of
biological signal travels in an oriented graph. For prokaryotes, the distance trav-
eled by the signal from one reaction to another is then a phenotypic characteristic
of importance that follows a parsimonious assumption. Second, the genomic con-
tent of a given prokaryotic system describes a potential phenotype (i.e., a set of
biological functions). However, one could use as well the gene order within the
genome (or chromosome) to compare one organism with other prokaryotic strains
[65]. In particular, the number of gene order rearrangement is a distance metric
that compares bacteria following (again) a parsimonious assumption. Comparing
both distances, i.e., associated with both phenotypic and genotypic abstractions,
is a general issue in biology at the era of omics data. This comparison is not di-
rectly accessible by standard experimental techniques and requires a bioinformat-
ics contribution. From the applicative point of view, it is worth noticing that this
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issue is also at the heart of modern comparative genomics, which can no longer af-
ford to focus on genome sequences alone. However, it must already integrate data
from macromolecular networks such as protein-protein interactions or metabolic
networks [24]. Our contribution to compare both abstractions relies on a formal
description of the problem for the sake of new algorithm design. The problem data
are (i) a network-oriented graph, whose arcs are labeled with protein names, and
(ii) a sequence of characters representing the corresponding genome, each charac-
ter of which is a gene generating a protein from the oriented graph. When two arcs
are fixed in the graph, labeled with two genes gx and gy, several oriented paths
with both arcs as ends exist. The diversity of these paths is a functional index that
must be further studied, and that could be used to compare bacterial species on a
phenotypic basis. In the following study enclosed below:

Philippe Bordron, Damien Eveillard, and Irena Rusu. Integrated analysis of the
gene neighbouring impact on bacterial metabolic networks. IET systems biology,

5(4):261–268, July 2011

we propose to investigate all the paths that link two given genes (or corresponding
encoded metabolic reactions). Among them, following a parsimonious assump-
tion, only the shortest ones are discussed and compared with, at the time, biological
knowledge. To our surprise, one could associate the shortest genome segments with
already known operons or regulons (i.e., functional units for microbial systems)
with 54% of accuracy. This result is of particular interest because one considers
only topological knowledge, whereas most efficient state-of-the-art operon pre-
diction techniques use machine learning approaches that involve training datasets.
From a computational viewpoint, one computes these shortest genome segments,
called SGS in the following, via the brute force algorithm [16]. For the sake of
computational efficiency, in [15], we proposed another implementation encoded as
a Logic programing via Answer Set Programming [79]. As mentioned above, when
building metabolic networks, the benefit of this programming paradigm relies on
the design of the problem rather than its resolution per se. The problem, once
formulated, will be translated for being solved by dedicated and efficient solvers.

Worth the notice, this biological motivation consists of solving a general graph
covering problem since a genome, being a succession of genes, is also a linear
graph. Considering the general problem, one could extend the SGS identification
to other graphs. For instance, we recently proposed an extension of this problem to
the integration of genomic and transcriptomic knowledge [195]. For this purpose,
one abstracts gene expressions in several experimental conditions as a Gene Regu-
latory Network (GRN). This new kind of graph is distantly related to co-occurrence
networks discussed above and will be more discussed in Sec. 4. GRN and genome
are two graphs that one could integrate to emphasize functional units. They will
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represent sets of genes that are nearby in the genome while being connected to the
GRN. Here, SGS cannot be directly related to operons but could foster the investi-
gation of the set of functional units that are associated with given conditions such
as distinct growth media.



Published in IET Systems Biology
Received on 26th July 2010
Revised on 24th March 2011
doi: 10.1049/iet-syb.2010.0070

ISSN 1751-8849

Integrated analysis of the gene neighbouring
impact on bacterial metabolic networks
P. Bordron D. Eveillard I. Rusu
Computational Biology Group (ComBi) – LINA, Université de Nantes, CNRS UMR 6241, 2 rue de la Houssinière,
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Abstract: Different levels of abstraction are needed to represent a living system. Unfortunately information of different nature is
not superposable in an obvious way, but requires a dedicated framework. Because biological abstractions, i.e., genomic or
metabolic information, can be easily respresented as graphs, it is intuitive to integrate them into a unique graph, in which one
can perform graph analysis for investigating a given biological assumption. This study follows such a philosophy and
completes a genome and metabolome combination. In a such integrated framework and as illustration, we applied a graph
analysis that automatically investigates impacts of the gene adjacency to predict functional relationships between genes and
reactions. Our approach, called SIPPER, creates a weighted graph, in which the weights rely on the given relationship
between genes, and computes (alternative) chains of reactions catalysed by genes. This method, as a generalisation of
methods already published, can be easily adapted to several biological assumptions, properties or measures. This paper
evaluates SIPPER on Escherichia coli. We automatically extract subgraphs, called k-SIPs, and quantify their interest in both
genomic and metabolic contexts by showing functional compounds like operons or functional modules.

1 Introduction

A living system is represented via different types of
information, that result from distinct experiments. They
depict the system with distinct detail degrees or at different
biological abstraction levels (i.e. genome, metabolome etc.).
The integration of data coming from these different sources
is an unavoidable approach to identify modules supported
by several data types, thus predicting protein functions and
interactions. Unfortunately, information of different nature
is not superposable in an obvious way, and dedicated
approaches are usually developed for specific types of
information. However, the need to combine heterogeneous
information and to analyse it as a whole increases
constantly. For example, the functional interpretation of
genomes depicts the potential function of a given species,
but not its phenotype expressed under particular
environmental conditions. Bridging this gap between
function and genome can be made via the integration of
metabolic knowledge and the relationship between genes
that notably describe operons. Therefore generic methods to
(i) gather information together and to (ii) represent it in a
suitable automatic way for exploration are necessary today.

Several fields of biological investigations follow such an
integrative philosophy, each focusing on a dedicated
assumption. Like this, comparative genomics uses the
hypothesis that conserved groups of contiguous genes
among prokaryotic genomes are conserved during evolution
[1]. It suggests that the species survival partially depends
on the relationship between the genes within a conserved

group, which may monitor a major function. The study of
the gene co-expression also shows that genes are more or
less strongly linked together, under given environmental
conditions for a given behaviour [2]. Such relationship or
biological assumptions are taken into account according to
different manners. Some studies focus on the notion of
connectivity [3], which informs us about the existence of a
relationship between biological compounds. Some others
[4] are based on the notion of distance, which informs
about how strong the relationship between biological
compounds is.

When one is interested in integrating heterogeneous
biological information, a generalisation of these methods
relies on the use of the concept of connectivity between
biological compounds, which is easily handleable in
networks. The approach offers herein an implementation,
called SIPPER [5], of such a concept. It generalises
previous works aiming at integrating, for instance, genomic
and metabolic data [4, 6, 7], or genomic, co-expression and
metabolic data [8–11]. As a result, SIPPER provides a
graph that integrates heterogeneous biological knowledge.
Each edge of this graph is then weighted by a given
connectivity measure or a given distance. Beyond this new,
but natural and automatic abstraction of the biological
system, such an approach provides as well a wide range of
analyses for investigating the integrated graph.

It is worthwhile to underline here that devising general
methods that integrate heterogeneous information has
genuine limits imposed by the exceptional diversity of the
data and its interpretations. Our approach is independent of
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the distance, but interpretations of the results are not. To
perform a complete explanation of our framework, and for
the sake of clarity, we choose herein to illustrate it on the
integration of two kinds of biological knowledge, the
genome and the metabolism of Escherichia coli; and a
particular distance between genes, the ‘gene neighbouring
distance’ defined as the number of intermediate genes along
the genome between two given genes, plus 1. This choice
relies on two points. Firstly, the genome and the
metabolism of E. coli are, by far, the most studied
information of a well-investigated species. Moreover, as we
work on prokaryotes, a linear relationship between the
bacterial genes and protein activities allow a natural
integration between genome and metabolism (via the
enzymes, products of genes) within a unique graph.
Secondly, the neighbouring of genes takes on a major
importance for investigating the prokaryotic functions. It is
indeed commonly accepted that the gene order in bacterial
genomes is far from random [12, 13], which represents a
way to compare genomes, finding functional modules or
predicting operons using automatic approaches [14–21].

As a concrete application result of SIPPER, this article
illustrates our approach by first (Section 2.1) showing the
integration of metabolic and bacterial genome information
from E. coli. We thus introduce the gene neighbouring
distance and how such a distance contributes to build a
weighted graph. The resulting integrated model is suitable
for standard graph analyses, as depicted in Section 2.2.
Their use will extract subgraphs of interest, called k-shortest
integrated paths (k-SIP). The sequel will propose to
investigate the biological meaning of k-SIPs compared to
functional knowledge like operons or KEGG (Kyoto
Encyclopedia of Genes and Genomes) modules (Section
2.3). As described in Section 3 and discussed later (Section
4), SIPPER will emphasise the set of the biological
compounds that convey biological meanings, like operons
but also the couples and triples of operons associated for
functional reasons, or functional modules but also couples
of functional modules. From a methodological point of
view, and compared to other approaches, we will discuss in
particular how SIPPER permits a decent prediction of
operons and functional modules despite its genericity.
Finally, we will describe and discuss the impact of the gene

neighbouring measure for identifying functional units. In
particular, the sequel will show that this intergenic distance
is not self-sufficient for an accurate functional prediction,
confirming other independent studies.

2 Material and methods

SIPPER is a generic method, whose full algorithmic details
can be found in [5]. However, for the sake of clarity, we
intend in the sequel to illustrate SIPPER by its step-by-step
application on a concrete biological system and a given
measure. Owing to the linear relationship between the gene
activity and its encoded protein production, SIPPER is
automatically applied on the integration of a microbial
genome and its corresponding metabolic information.
Among the microbial phylum, E. coli represents the most-
studied organism for which genome and metabolome are at
our disposal. Moreover, the neighbouring of genes which
gives information about the proximity of genes on a
chromosome, is one of the most used biological measures
to investigate genomes and determine ab initio functional
modules.

2.1 Integrated model

A bacterial genome is represented as a linear or circular
sequence of genes (see Fig. 1a). Each gene produces one or
multiple proteins. Each protein catalyses one or several
metabolic reactions. Thus, the gene’s products impact on
the chain of reactions that occur in the metabolic network
(Fig. 1b), that one considers as a directed graph. This
observation leads us to define an integrated genomic
metabolic network, denoted Gint. The network Gint is a
directed graph, whose vertices are all the pairs (gene g,
reaction r) such as the gene g produces an enzyme
(identified herein by its EC number) that catalyses the
reaction r. An arc goes from vertex ( g1, r1) to vertex
( g2, r2) whenever a product of r1 is a substrate of r2. Its
weight w expresses the studied relationship between g1 and
g2, which is the gene neighbouring distance in Fig. 1c. The
coupling between each gene and reaction in Gint is an
important property. It is more informative than creating an
enzyme network [22]. Indeed, an enzyme can be produced

Fig. 1 Integration of genomic and metabolic information into Gint

a Bacterial monochromosomic genome is a linear or circular sequence of genes (fat arrows)
b Its corresponding metabolic network (in SGBN standard): compounds (circles) are substrates and/or products of reactions (squares), that are catalysed by
enzymes (rounded boxes) produced by genes (fat arrows)
c Resulting integrated network Gint, where each arc is weighted by the gene neighbouring distance between the two genes in its endpoints
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by homologous genes, which implies different genomic
relationship between the same enzymes.

E. coli (K12 MG1655, 31 March 2008 release, [23]), as
mentioned above, is an accurate benchmark for evaluating
SIPPER. At the time of the study, a set of 4242 genes
composes its circular monochromosomic genome (NCBI/
GenBank). Its corresponding metabolism is taken from
KEGG PATHWAYS database (KEGG PATHWAYS, 21
October 2008 release, [24]) which proposes the metabolic
network as a set of pathways maps. Note that in each
pathways map, common (‘hub’) metabolites, that is
compounds that participate in more than 25 reactions, have
been removed to avoid bringing reactions together in a way
that is not biochemically informative [25]. The whole
KEGG metabolic network is then reconstructed by taking,
in each map, the reactions and associated biological
compounds. The connection between a reaction and a
compound exists in the whole metabolic network when the
reaction and the compound are connected in at least one
KEGG pathway map. At the end, the whole bacterial
metabolic network is composed of a set of 2971
biochemical compounds involved in 1131 reactions
catalysed by 647 enzymes. Among them, only 558 are
encoded by identified genes, as indicated by NCBI/
GenBank. For obvious technical reasons, SIPPER only
takes into account the reactions catalysed by these enzymes
for the generation of Gint concerning E. coli. The resulting
Gint of E. coli is composed of 2343 vertices and 13 288
arcs, which correspond to 1049 metabolic reactions
(92.75% of the E. coli reactions) and 779 genes (18.36% of
the bacterial genome).

Additionally, one must consider a biological property, or
assumption, for which we are interested in evaluating the
impact. As suggested above, the adjacency property, also
called herein gene neighbouring, is abstracted by the gene
neighbouring distance, which is the number of intermediate
genes between the two genes along the genome, plus 1
[26]. By convention, the genomic distance between a gene
and itself is null. In a circular genome, the distance consists
of the minimum one obtained from the right-hand and left-
hand traversal. Evaluating the impact of the gene
neighbouring property consists in considering the genomic
distance between two genes as the weight between their
respective vertices in Gint.

2.2 Shortest integrated paths

Intuitively, a shortest (directed) path from Gint represents a
reaction chain from the metabolic network whose genes
encoding for the reactions are strongly related according to
the defined property between them. Such a biological
property is measured by a distance between vertices, herein
the gene neighbouring measure. Finding these paths takes
on a particular interest from a functional viewpoint, since
the involved genes are linked by both a metabolic feature
and a distance within the genome.

Given any pair of reactions involved in the vertices of Gint,
which we identify as the source reaction and the destination
reaction, we are interested in the (directed) paths in Gint that
start with a vertex containing the source reaction and end
with a vertex containing the destination reaction. We then
define the ‘neighbouring coefficient �w’ of a given path as
the ratio between its total weight and the number of its
distinct reactions. Intuitively, the neighbouring coefficient
measures the average genomic distance between two genes
involved in successive reactions from the path. A path in

Gint with the smallest �w, that is neighbouring coefficient, is
called the – ‘1-SIP’ of the two reactions. This path
represents a way to join two given reactions while
preserving the minimum genomic distance along the
genome. Fig. 2a shows an example of 1-SIP.

By extension, for a fixed positive integer k, the subnetwork
of Gint obtained as the union of the k distinct paths with
smallest �w joining two given reactions is called the ‘k-SIP’
of the two reactions. It represents alternative ways to join
the two given reactions. Fig. 2b shows an example of a
10-SIP. All the k-SIPs (for a given k) from Gint, over all
possible pairs of source and destination reactions, are
computed. A k-SIP is generated by using a heuristic that we
obtained by modifying Yen’s algorithm [27]. It calculates
the k minimum weighted circuit-free paths in a weighted
directed graph. It has a running time of
O(kn(m + n × log n)), where n is the number of vertices
and m is the number of arcs in the network.

2.3 Evaluating the biological interest of a k-SIP

2.3.1 Benchmark datasets: In a wide analysis context,
each given k-SIP must be compared with precise collections
of biologically meaningful entities. Genes that belong to a
unique transcriptional unit are, by nature, contiguous along
a given bacterial genome and share a common biological
function [28]. Operons of E. coli are taken from
RegulonDB (Release: 6.3, 30 January 2009) [29]. They are
transcriptional units that are composed of, at least, two
genes. We selected ‘metabolic operons’ that describe
transcriptional units of, at least, two genes that catalyse
metabolic reactions. Herein, a k-SIP is said to match exactly
one or many operons, when the set of genes of the k-SIP
equals the set of genes of one or many operons. The
resulting benchmark contains 135 metabolic operons
(16.2% of the whole set in E. coli).

The KEGG database provides small pieces of biochemical
pathways (i.e. modules) manually defined as either molecular
complexes, consecutive reaction steps, regulatory,
phylogenetic or functional units [30]. A k-SIP matches
exactly one or many modules when the set of reactions of
the k-SIP is the set of reactions of one or many KEGG
modules. We considered KEGG modules that exist in

Fig. 2 Example for a given pair of reactions (from R00315 to
R04737) in E. coli

a 1-SIP (�w = 9.2)
b 10-SIP (�w = 19.8)
It is easy to notice here that paths in the 10-SIP are mainly variants of the
1-SIP that share many common vertices and arcs
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E. coli. They are composed of, at least, two enzymatic
reactions. They constitute a benchmark of 99 metabolic
modules (among 689 modules – 14.39%) of the whole
KEGG database for all listed species).

2.3.2 Benchmark measures: In order to compare a k-SIP
with the above biological datasets, we used ‘Jaccard’s
measure’. As an illustration, applied to the comparison of a
k-SIP and a given operon, this measure consists in the
number of common genes shared by the k-SIP and the
operon, divided by the total number of distinct genes within
the k-SIP and the operon. Jaccard’s measure takes values
between 0 and 1. The higher the value of Jaccard’s measure
is, the more similar are the k-SIP and the operon. When
Jaccard’s measure is equal to 1, the k-SIP and the operon
match exactly. When the measure equals 0, the k-SIP and
the operon are distinct.

As a complementary measure, the coverage of a given
operon by a k-SIP is the number of common genes shared
by the k-SIP and the operon, divided by the number of
distinct genes in the operon. The coverage takes values
between 0 and 1. When the coverage equals 1, the operon
is fully included in the k-SIP. The k-SIP is called then fully
covering the operon. When the covering measure equals 0,
the operon is not covered by the k-SIP. Otherwise, when
the covering measure is between 0 and 1, the operon is
partially covered by the k-SIP.

We complete our study by performing random shuffling
experiments independently on the genome (by randomly
modifying the gene order) and the metabolic network
(according to [31], by randomly shuffling the endpoints of
the arcs in a compound-free representation of the metabolic
network called representation graph). Note that such an
approach might decrease the number of arcs in the network,
and consequently some vertex degrees.

3 Results

3.1 k-SIP of E. coli

The application of SIPPER on E. coli produces 439 382
k-SIPs for each k. As an illustration, Fig. 2 shows the 1-SIP
and the 10-SIP for the reactions R00315 and R04737. In
average (and respective standard deviation), a 1-SIP and a
10-SIP contain respectively 11.8 (+4.5) and 13.8 (+4.7)
genes; and 13.9 (+5.6) and 17.6 (+6.2) reactions. Such
numbers highlight the fact that adding alternative paths
(i.e. from 1 to 10) reveals a weak impact on the number of
genes and reactions used in a k-SIP.

3.2 Comparing a k-SIP with the operon dataset

3.2.1 Impact of the neighbouring coefficient w̄: We
study the evolution of the rate of k-SIPs that exactly match
operons (or ‘operonic confidence rate’) regarding the �w of
the k-SIPs. This analysis was performed for several k
values. For the sake of illustration, Fig. A.1 in
Supplementary material, depicts the evolution of this rate
when k is equal to 1. As a synthesis of all the results,
Table 1 shows the comparison between the rate of operons
exactly matching a k-SIP (k ¼ 1 and 10) in E. coli and in
the shuffled data. Clearly, a random gene order (row k-SIPs
with shuffled genome) significantly changes the genomic
distances between the genes belonging to the same operon
of E. coli, leading to a very important increase of �w for the
1-SIPs that exactly match the operon. These 1-SIPs (and the

corresponding operons) still exist (the metabolic network
did not change), but one cannot identify them. A random
metabolic network (row k-SIPs with randomised
metabolism) significantly changes the paths with respect to
the network of E. coli, and the result is a very small
number of operons exactly matching a 1-SIP only by
chance. In E. coli, k-SIPs for both k ¼ 1 and 10 show
similar results: the rate of exactly matched operons raises
and describes a plateau when �w increases. As a matter of
fact, even if �w is the SIPPER’s primer search criterion,
minimising �w is not a sufficient criterion for optimising the
selection of k-SIPs that exactly match operons.

3.2.2 Impact of the parameter k and prediction of
operons: Impact of k: Since �w is not a self-sufficient
criterion to automatically predict operons, we propose now
to focus on the parameter k that represents the number of
alternative paths within a k-SIP. For each k from 1 to 10,
we compared each operon with each k-SIP. In all, 24.4% of
the operons match exactly a 1-SIP each (namely, 33 over
135 operons, see Table A.1 in the Supplementary material
for the detailled listing – and the S-plot in Fig. 3 for
k ¼ 1). It means that each of such operon produces, using
all its genes, all the enzymes that are needed to catalyse the
corresponding reaction chain. We also found that 49.63% of
the operons are fully covered by at least one 1-SIP. These
rates drop to 12.59% and rise to 64.44%, respectively,
when k ¼ 10. As k becomes larger, the k-SIPs also become

Table 1 Summary of the exact matches between k-SIPs (k ¼ 1

and 10) and the operons from E. coli, in function of w̄ values

Dataset K Rate of operons exactly

matched by k-SIPs, %

�w ≤ 1.0 �w ≤ 5.0 �w ≤ 200.0

k-SIPs 1 23.71 24.44 24.44

10 8.15 12.59 12.59

k-SIPs with 1 0 0 2.22

shuffled genome 10 0 0 0.74

k-SIPs with 1 1.48 1.48 1.48

randomised metabolism 10 0 0 0

Fig. 3 Operonic interest of all k-SIPs for distinct k in E. coli

W-line represents the rate of operons that are fully covered by at least one
k-SIP. The S-line (the D-line and the w-line, respectively) resumes the rate
of the single operons that are exactly matched by an k-SIP (rate of the
single and the couple of operons that are matched exactly by a k-SIP and
rate of the single, the couple and the triple of operons that are matched
exactly by a k-SIP, respectively)
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larger, and thus tend to associate sets of genes that strictly
contain operons rather than exactly match an operon. It is
worth noticing here that 8.15% of the operons (11 of them)
exactly match a k-SIP for all values of k from 1 to 10,
mainly because of the fact that no alternative path exists to
the 1-SIP and that the 10-SIP is thus identical to the 1-SIP.
We then repeated the comparison between each k-SIP and
each couple (and respectively triple) of operons. We found
that 14 couples (2 triples, respectively) of operons match
exactly one k-SIP each, for various k ≥ 1 (see Table A.2 in
the Supplementary material for details).

Operon prediction: After investigating the respective
impacts of �w and k, one can compare SIPPER with other
techniques used to automatically predict operons. SIPPER
prediction results are reported in Table 2. One must notice
that even if the exact matching decreases with an increase
of k, the prediction accuracy (i.e. true positive and negative
values) of SIPPER is clearly improved. We compared our
results with those obtained with one of the methods that
predict metabolic operons. In particular, the method
proposed in [33] has a sensitivity of 89% and a specificity
of 87%. SIPPER, with k ¼ 10, is almost as accurate. Note
that in this previous approach, as in [6, 7], a plasticity
parameter is introduced to skip a few reactions or genes in
order to take into account the potential missing information.
Unlike other approaches, SIPPER’s plasticity is inherent to
the method and relies on the k parameter. Moreover,
SIPPER takes on an advantage that no other prediction
method permits: it not only provides a description of a
unique operon per k-SIP, but also descriptions of couples or
triples of operons (see Table A.2 in the Supplementary
material). Analysing their GO p-values confirms the
functional interest of such operonic sets.

3.2.3 Impact of the gene neighbouring distance to
predict operons: Unlike other operon prediction methods,
SIPPER is not a probabilistic-like approach. It consists on
analysing, in a precise manner, what the impact of the
biological property used to identify operons is. The gene
neighbouring distance is well used, but operon structure lies
in gene adjacencies. We put forward herein a criterion,
called ‘genomic density’, which helps to discriminate paths
that strictly use contiguous genes (not like �w that combines
both length of reaction chains and gene neighbouring
distances). The genomic density of a given k-SIP is the
ratio between the number of genes of the k-SIP and the
number of genes of the smallest contiguous sequence of
genes within the genome that fully covers the whole set of
genes of the k-SIP. Fig. 4 illustrates the relationship
between the genomic density of all 10-SIPs and their
operon matching (i.e. by using the Jaccard’s measure). The
10-SIPs are grouped by classes of genomic density. One

has noticed an increase in the operon prediction accuracy
when the genomic density increases. The class of a density
between 0.7 and 0.9 indicates the 10-SIPs that most predict
the operons. Notice again that for higher densities, the
prediction ability of SIPPER significantly decreases (see
Fig. A.2 in Supplementary material for further illustrations).
This evolution shows that k-SIPs with a genomic density
above 0.9 are either incomplete metabolic operons or exact
metabolic operons with additional genes. These last are
either functionally irrelevant or interesting, but not already
referenced. The k-SIPs with a genomic density equal to 1
are strictly formed by contiguous genes. As these k-SIPs are
not the best candidates for matching operons, it emphasises
the fact that operons cannot be automatically predicted by
focusing on the gene adjacency only. Note that such a
result is biologically counter-intuitive. Searching contiguous
genes is an important criterion, but not the optimal one
when used alone for predicting metabolic operons. As
discussed in the sequel, this observation confirms
independent studies.

3.3 Biological processes investigation

A similar analysis was performed in the metabolic context by
comparing k-SIPs with functional modules, as described in
the KEGG database. The comparison shows, for each k
from 1 to 10, which proportion of functional modules are
fully covered and exactly matched by the k-SIPs. We found
that 33.33% of the modules (namely, 33 over 99 modules,
see Table A.3 in Supplementary material) match exactly
one 1-SIP each (see the S-plot in Fig. 3 for k ¼ 1). We
found that 51.52% of the modules are fully covered by at
least one 1-SIP (W-plot in Fig. 5, with k ¼ 1). These two
rates, respectively, drop to 26.26% and rise to 60.60%
when k ¼ 10. Moreover, 18.18% of the KEGG modules (18
of them) exactly match a k-SIP even for all k from 1 to 10.

Fig. 4 Rate of matching between 10-SIPs and operons in E. coli
by using Jaccard’s measure

10-SIPs are grouped in genomic density classes (the X-axis) and box is plot to
sum up the best Jaccard matching between each 10-SIP of each genomic
density class and the operons (the Y-axis). In each genomic density class,
the bold line is the median Jaccard’s measure value of the corresponding
10-SIPs, the up and down limits of the box are the 0.25 and 0.75 quartile
values, and the whiskers are the most extreme 10-SIPs which are no more
than 1.5 times the height of the box. Plots outside of these extends are
10-SIPs that differ too much from those in the box

Table 2 Rates of operons identified by k-SIPs

Exact matching, % Sensitivity, % Specificity, %

1-SIPs 24.44 61.93 77.26

10-SIPs 12.59 83.75 89.86

Exact matching measure is calculated using the Jaccard’s

measure. Results are also depicted using standard measures

used for the automatic prediction of operons [32]: sensitivity is the

rate of within operon gene pairs correctly predicted, specificity is

the rate of transcriptional unit border gene pairs correctly

predicted
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A closer look at these results (see Fig. A.3 in Supplementary
materials for details) does not show a particular value of �w
that permits to match exactly the KEGG modules.

For a qualitative investigation, we then compared couples
of modules and k-SIPs. We found (see Tables A.4 and in
the Supplementary material for details) that 16 couples of
modules are matched exactly by one k-SIP each, for k ≥ 1.
In Fig. 5, the D-line shows the increase in the rate of
exactly matched KEGG modules, when k-SIPs that match
couple of modules are considered additionally to those that
match single module. No result was found for three or more
modules.

4 Discussion

Applying SIPPER on E. coli with the gene neighbouring
distance, in both the genomic and metabolic contexts (i.e.
operons and KEGG modules), points out the existence, and
often the biological significance, of metabolic paths directed
by the genes localisation proximity (Section 3.1). These
metabolic paths are k-SIPs found in the integrated network
Gint. A part of them revealed to be about 25% of the
operons (see Section 3.2 and Fig. 3) and about 35% of the
KEGG modules (see Section 3.3 and Fig. 5). The quality of
these particular k-SIPs is confirmed by the shuffled tests
made on genome and metabolism. The first test shows that
k-SIPs that match operons are linked to the chosen gene
neighbouring distance. This result is in accordance with the
fact that changing the gene order within genome breaks
operons. The second test shows that k-SIPs that match
KEGG modules depend on the chaining of reactions, which
is in agreement with the fact that KEGG modules are
mostly composed of successive reactions. It is worth
emphasising here that operons and KEGG modules are not
a priori similar. This idea is supported by the fact that the
k-SIPs that match operons, and those that match KEGG
modules are very distinct (i.e. there is only one reaction
chain in the metabolic network that exactly matches both an
operon, fadBA, and a KEGG module, M00059).

Previous works [6, 7, 33] assume that the intra-operonic
gene order has to rely on the role of encoded enzymes in
the bacterial metabolism. Although they consider undirected
metabolic networks and, thus, accept neighbouring
relationship between reactions, which is not allowed in our
approach, these studies show the great need for evidences to

support that assumption. Kovács et al. [12] first propose a
systematic study, by considering pairs of (not necessarily
successive) genes within the same operon and asking
whether their operonic order reflects the functional order of
the encoded enzymes, as recorded by their participation to a
common biochemical pathway. Such pairs are so-called
‘colinear’, and they fulfil constraints involving the order of
genes and reactions only, and not the immediate succession
of the genes along the genome or of the reactions along
some reaction chain. The study shows that approximately
60% of the gene pairs in E. coli are colinear. Turning back
to our approach – whose constraints involve both the order
and the succession of genes and reactions – k-SIPs are
topologically (and not biochemically) defined. However,
they do match or include operons. Firstly, this fact shows
the tendency of operonic genes to participate together in the
same process in the metabolic network. In all, 24.4% of
operons encode precisely the set of enzymes that are
necessary to catalyse a reaction chain, whereas 25.2% of
them (which gives a total of 49.6% of operons) are
associated with other genes, not obligatorily close, to
catalyse a reaction chain. Secondly, this combined genomic
and metabolic proximity does not necessarily imply
colinearity since the gene order within the genome may be
entirely reversed (no colinear pair) or merged (some pairs,
but not all pairs, are colinear) with respect to the order of
reactions along the reaction chain. Indeed, for example,
operons kbl.tdh, cyn.TSX, csiD.lhgO.gabDTP, otsBA,
dgoRKADT are reversed, whereas the operon fadIJ is found
both in right and reversed order, and operons rhaBAD,
glgCAP, araBAD, rfbBDACX have their gene set merged
along the reaction chain. However, some operons show a
‘strong’ (topological) colinearity, since all their genes
appear exactly in the same order on the genome (see
Table A.1 in the Supplementary material for details) and,
via their encoded enzymes, along the reaction chain, even
when the reaction chain is much longer than the operon.
For instance, the fadBA operon contains two genes that
encode enzymes catalysing a six reaction chain (fadB and
fadA, respectively, encode for the first two reactions and
the last four reactions). Similarly, operon pdhR.aceEF
contains three genes that encode the enzymes catalysing a
four reaction chain (aceE encodes the first two reaction
enzymes, whereas aceF and lpd encode the last two reaction
enzymes). Some other short operons (two genes) contribute
to the catalysis of short reaction chains (two genes) thus
being colinear pairs (as considered in [12]), but with the
notable property of being made of successive genes
corresponding to successive reactions (which is not required
by a colinear pair and emphasises again our approach
interest).

The genomic density of a k-SIP is an interesting measure
since, for a small k (i.e. k ≤ 4), a dense k-SIP emphasises
an operon. Note that, from a quantitative viewpoint,
although talA-tktB [34] and sucABCD [35] were not
referenced in RegulonDB at the time of the analysis, they
are highlighted by their gene density (density between 0.9
and 1), which argues the interest of SIPPER to discover
potential metabolic operons. This observation remains true
when considering alternative paths (k equals 10), reinforced
by the accuracy improvement of the operon prediction.
However, Section 3.2.3 shows that it is more difficult to
discriminate the whole operon set using the genomic
density only when alternative paths are added. The use of a
gene neighbouring measure alone or with the genomic
density as discriminant criteria does not seem self-sufficient

Fig. 5 Modular interest of all k-SIPs for distinct k in E. coli

W-line represents the rate of KEGG modules that are fully covered by at least
one k-SIP. The S-line (the D-line respectively) resumes the rate of single (or
couple of respectively) KEGG modules that are exactly matched by some
k-SIPs
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to identify operon. This observation is confirmed by an
independent study [36] that quantifies the operon prediction
gain when other knowledge than gene arrangement are used.

Our approach provides a novel emphasis. k-SIPs identify
the couples or triples of operons (Table A.2 in the
Supplementary material for details). Some of them are
already known in a regulatory context. For instance, fadBA,
fadIJ share the dual common repressor ArcA, fadR [37].
Among couples of operons, cysDNC, cysJIH has already
been identified as an über-operon [38]. Other operons have
already been associated with a unique metabolism of
interest, like atoDAEB and fadIJ that participate in the fatty
acid degradation [39]. Some k-SIPs emphasise as well
operons that share homologous genes (ascFB, bglGFB),
which gives an insight into a reaction chain that is encoded
in distinct locations on the genome, showing an abstraction
of robustness as proposed by Kitano [40]. Notice here that
those operons alone show a worse GO p-values than when
they are associated [41].

Methods described in [6, 7, 33] authorise to skip a few
reactions or genes to provide a flexible way to deal with
missing knowledge. In particular, Boyer et al. [6] highlights
the fact that operon identification is better when small skips
are allowed. Conversely, the k-SIPs that match several
modules or operons (see Sections 3.2.2 and 3.3) are a clear
illustration of the interest of investigating imbricated
functional modules as already highlighted by independent
studies [42, 43].

In a similar way, some k-SIPs emphasise modules of
interest. Some indicate functional units that are closely
related to operons. For instance, M00037 represents an
almost complete transcriptional unit that encodes for the
histidine biosynthesis pathway. This k-SIP omits the hisL
that controls the response in histidine availability [44], but
remains accurate to describe a functional process that
involves gene regulations. Other k-SIPs indicate couples of
KEGG modules, like the ones that rely on the amino acid
metabolism: M00033–M00034, M00033–M00035 or
M00035–M00036. Each couple is transcriptionally
regulated and represents a biological process that transforms
chorismate into amino acids. The combination of these
k-SIPs constitutes a set of reactions that have been called
superpathways of chorismate [37]. Thus, these k-SIPs
confirm herein their interest by showing a hierarchical
description of the metabolism. As observed before for the
couples of operons, the GO p-values confirm again this fact
by showing higher p-values for modules alone compared to
their associations (details in Table A.4 in Supplementary
material). This supports the assumption of previous studies
that decompose the metabolic network for further
investigations [42, 43, 45].

5 Conclusion

We suggest herein a general framework that integrates gene
neighbouring information from one or several data sources
into a metabolic network. This integration is obtained using
a generic notion of distance between genes, that is projected
on the metabolic network via the encoded enzymes. The
resulting integrated network, called Gint, is analysed by
computing the k-SIPs (k ≥ 1), or k-SIPs, between two given
reactions involved in this network, where the optimisation
uses the generic distance between genes. The collection of
k-SIPs obtained for a given k is then filtered according to an
appropriate criterion to extract further information about a
given genomic or metabolic context.

Our method allows us to observe interesting k-SIPs that are
biologically relevant entities: k-SIPs that match either an
operon, or a small group of operons, or a module, or a
small group of modules. We also observe that alternative
ways to transform metabolites is a corner stone feature in
the search for functional entities, even when we consider
intermediate non-neighbouring genes in the associated
process. Further applications of our approach should
involve alternative measures between genes and these are
the main lines of our future works.
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3.3 Building a functional metabolic network of a micro-
bial ecosystem

The study of the microbial ecosystems followed similar aspirations than those in
cellular biology. Complementary to extensive microbial community descriptions,
ecological sciences seek to understand the functional features of a given micro-
bial ecosystem. To study the microbial ecosystem using genomic techniques, one
proposed a protocol similar to what we proposed for investigating single organ-
isms. A first step consists of generating sequence data for all bacterial components
that constitute the ecosystem. Then, one aims to extract the whole set of chemical
reactions involved within the ecosystems. One or several microbial species will
encode these reactions. As previously shown, the combination of these reactions
designs a metabolic network. Contrary to cellular systems analysis, the complexity
herein consists in considering that (i) similar genes could be carried out by several
microbial organisms - emphasizing a putative functional redundancy - sometimes
called core genes or reactions. Also, (ii) reversely part of metabolic pathways are
specific, which indicates a putative interplay between the microbial strains for a
full metabolic network to take place. Ideally, each component of the ecosystem
is sequenced separately. This task is difficult. One achieves this by the isola-
tion of bacterial cultures before nucleic acid extraction, which allows a clear func-
tional separation of different components of the ecosystem. For an application to
non-cultivable microbes, a parallel meta-genome or meta-transcriptome approach
is advisable. Meta-genome or meta-transcriptome reads are mapped against the
isolated bacterial genomes to remove known components. Worth the notice, new
computational techniques proposed to delineate genomes from metagenomes. The
techniques are very similar to those used for building co-occurrence networks and
take the benefit of graphical LASSO algorithms. When genes co-occur in dif-
ferent samples, these techniques assume these genes are belonging to the same
Metagenome species (MGS) [155]. Complementary, one could perform an ex-
tension of the MGS identification by binning all the genes and full-filling their
assembly. The result, called metagenome-assembled genomes (MAGS), is a rea-
sonable approximation of a genome that depicts a non-model organism (i.e., mostly
uncultivable organism) [48].

Once identified and sequenced individually (or extracted from MAGS), the dif-
ferent components of the microbial community are resumed by their metabolic net-
works. For this purpose, one selects the genes that encode for enzymes that permit
a biochemical reaction. The manual generation of these networks is too labor-
intensive to be applied to assemblages of several organisms and requires dedicated
tools [219]. One commonly used tool for this purpose is MetaPatthway [118]. In-
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spired from Pathway Tools [106], this technique proposes network reconstructions
based on functional annotations. It can also easily be combined with increasingly
powerful automatic annotation platforms such as MaGE [204] or RAST [147],
thus generating first draft metabolic networks for the different components of the
ecosystem. These networks are then merged to constitute a draft network of the
whole ecosystem, keeping track of which components contributed which reactions.
A significant benefit of this procedure is that it bridges the gap between studies that
focus on a single species and studies that represent an entire ecosystem as a unique
metabolic network without functional distinction between different components
[161]. Worth to notice, in [123] proposed a complementary technique to build a
metabolic network for an ecosystem that consists in, both, maximizing the com-
pletion of single species network (i.e., intraspecies network or subnetwork), and
minimizing the use of reactions between species (i.e., interspecies network).

The resulting network constitutes an approximation of the right ecosystem
metabolic network designed to decipher a given physiological question. Following
a schema similar to above, this metabolic knowledge could be then integrated with
genomic knowledge when one considers the genomes of all microbial species that
interplay within the ecosystem. The technique CANOE assumes this hypothesis
to identify the functions of unknown prokaryotic genes [186]. In a similar trend,
the following study proposes another extension to identify SGS (called metabolon
in [186]) that defines the putative interactions of functional units that promote
metabolic pathways at the ecosystem level.

Philippe Bordron, Mauricio Latorre, Maria Paz Cortés, Mauricio González, Sven
Thiele, Anne Siegel, Alejandro Maass, and Damien Eveillard. Putative bacterial
interactions from metagenomic knowledge with an integrative systems ecology

approach. MicrobiologyOpen, 5(1):106–117, February 2016
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Introduction

The ecosystems behavior, as observed today by experiments, 
is the immediate result of microbial interactions between 
several organisms. By themselves, these interactions explain 
several steps of natural biogeochemical cycles as well as 
biological processes of economical interest. Interestingly, 
recent high- throughput genomic data have shown for 

different ecological systems a microbial diversity that was 
far greater than expected (Roesch et al. 2007; Hingamp 
et al. 2013; de Vargas et al. 2015) and promise to improve 
the understanding of microbial ecosystems behaviors from 
the molecular viewpoint. To this aim, recent studies  advocate 
for the use of metagenomic techniques to intensively 
 investigate different microbial ecosystems (DeLong 2005; 
Karsenti et al. 2011; Ranjard et al. 2013).
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Abstract

Following the trend of studies that investigate microbial ecosystems using dif-
ferent metagenomic techniques, we propose a new integrative systems ecology 
approach that aims to decipher functional roles within a consortium through 
the integration of genomic and metabolic knowledge at genome scale. For the 
sake of application, using public genomes of five bacterial strains involved in 
copper bioleaching: Acidiphilium cryptum, Acidithiobacillus ferrooxidans, Acidith-
iobacillus thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus thermosulfi-
dooxidans, we first reconstructed a global metabolic network. Next, using a 
parsimony assumption, we deciphered sets of genes, called Sets from Genome 
Segments (SGS), that (1) are close on their respective genomes, (2) take an 
active part in metabolic pathways and (3) whose associated metabolic reactions 
are also closely connected within metabolic networks. Overall, this SGS paradigm 
depicts genomic functional units that emphasize respective roles of bacterial 
strains to catalyze metabolic pathways and environmental processes. Our analysis 
suggested that only few functional metabolic genes are horizontally transferred 
within the consortium and that no single bacterial strain can accomplish by 
itself the whole copper bioleaching. The use of SGS pinpoints a functional 
compartmentalization among the investigated species and exhibits putative bac-
terial interactions necessary for promoting these pathways.
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Advances in bioinformatics have also improved the analysis 
of next- generation sequencing data that characterize microbial 
communities, addressing the question “who is there and 
who is not” (Raes et al. 2011). However, this description 
remains insufficient to depict functional behaviors of 
 microbial ecosystems if no other complementary knowledge 
is considered. Recent studies overcame this weakness by 
combining all biotechnological resources available within a 
modeling framework. In particular, one must notice the 
success of techniques that target potential cross- feedings 
within microbial consortium. Without being exhaustive, they 
focus on either solely community metabolic network (via 
graph or constraint based approaches) (Borenstein et al. 
2008; Zengler and Palsson 2012; Zomorrodi et al. 2014), 
or co- occurrence graph techniques that interconnect covari-
ation of microbial abundance (Faust and Raes 2012; Faust 
et al. 2012) and environmental features (Ruan et al. 2006, 
2010; Brown et al. 2009; Chaffron et al. 2010; Patel et al. 
2010). Some other techniques advocate for hybrid approaches 
that combine heterogeneous knowledge. Microbial cross- 
feedings are for instance investigated by integrating phylo-
genetic and environmental knowledge (see Zaneveld et al. 
2011 for review); omics experiments and in situ observations 
(Orphan 2009; Zelezniak et al. 2015); or metabolic networks 
and diversity graphs (Tzamali et al. 2011). These recent 
modeling approaches are all complementary and reinforce 
the emergence of the new subdiscipline called systems ecol-
ogy (Klitgord and Segrè 2011) that aims to tackle complex 
ecological questions by merging heterogeneous data with 
new computational techniques. However, applications of 
these techniques remain difficult when communities are 
experimentally out of reach, which is particularly the case 
for studying cross- feedings between extremophile species.

This study overcomes this issue by proposing a modeling 
framework for metagenomic consortia analysis that not 
only considers the presence/absence of several bacterial 
species, but rather their precise genome composition and 
corresponding metabolic networks. Complementary to 
previous integrative methods (Segata et al. 2013; Zelezniak 
et al. 2015), our framework emphasizes putative functional 
species interactions in the metagenomic consortium through 
the integration of genome- wide genomic and metabolic 
knowledge. For its application, we considered a 
 chemoautotrophic microbial community related to the 
copper bioleaching process, one of the most extensive and 
complex biohydrometallurgic processes in which a series 
of chemical and biological reactions facilitate the oxidation 
of insoluble sulfide ores, releasing soluble metals such as 
copper. Beside their economic interest, different theories 
postulate that these mineral complexes were the principal 
source of energy used by ancient bacteria consortia (Chemo- 
autotrophic Iron- Sulfur World theory) (Drobner et al. 
1990; Wächtershäuser 2000). This particular mining 

microbial ecosystem is characterized by high concentrations 
of metals and elevated acidity which advocates for the use 
of these living microbial species to study adaptation under 
extreme conditions. Furthermore, the community exhibits 
a remarkably simple habitat for understanding how ancient 
microbial communities work (Baker and Banfield 2003). 
Finally, this microbial ecosystem could be resumed by a 
limited number of bacterial strains (Yin et al. 2008). This 
reductionist advantage is of particular interest to benchmark 
bioinformatics methods on a simple community system 
while maintaining realistic ecological features.

In terms of current knowledge, several bacteria partici-
pating in bioleaching of copper have been isolated and 
sequenced (Barreto et al. 2003; Mi et al. 2011; Valdés 
et al. 2011; Travisany et al. 2012). Even though the study 
of these strains significantly improved the bioleaching 
knowledge, studying single organisms did not allow to 
understand bioleaching as a whole. For instance, little is 
known about the relative functional importance of each 
bacterium in the bioleaching.

To decipher the respective genome- wide role of each 
bacterium within this mining ecosystem, this work integrates, 
at community scale, genomic, and metabolic knowledge. 
Genomic and metabolic features integration relies on a 
parsimonious assumption that considers the different omics 
knowledge connected linked by intrinsic and direct proper-
ties connections, as adapted from a previous single- cell 
systems biology studies (Boyer et al. 2005; Bordron et al. 
2011). In practice, our approach connects genomic and 
metabolic knowledge by considering the genome organiza-
tion and the biochemical reactions catalyzed by enzymes 
encoded by its genes. The underline parsimonious principle 
assumes that genes that must be jointly regulated to activate 
a metabolic reaction cascade, herein a bioleaching pathway, 
and should be close enough in the genome organization 
(for illustration dashed lines in Fig. 1). The corresponding 
sets of genes satisfying the above mentioned constraints are 
defined by Sets from Genome Segments (SGS) (respectively, 
pink and blue segments in bacterium 1, and the red seg-
ment in bacterium 2 in Fig. 1). SGS represents a segment 
of consecutive genes in a bacterial genome with a maximum 
number of genes that participates in a given metabolic 
pathway. Through this selection, SGS decipher putative sets 
of genes that (1) take an active part in metabolic pathways 
while being closely connected via metabolic networks and 
(2) are consecutive on each of the genomes involved.

We applied this approach to a reduced but exhaustive 
bacterial community composed of five different copper 
biomining microbial strains which are simultaneously 
growing in an industrial bioreactor, fully operational for 
large- scale cultures (CODELCO, Radomiro Tomic Division, 
Antofagasta, Chile): Acidithiobacillus ferrooxidans ATCC 
23270, Acidiphilium cryptum JF-5, Acidithiobacillus 
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thiooxidans ATCC 19377, Leptospirillum ferriphilum ML-04, 
and Sulfobacillus thermosulfidooxidans DSM 9293 strains. 
The selected bacterial strains; beside being the main five 
mining genomes (sequenced, assembled, and annotated) 
available today; also cover the four dominant bacterial 
taxonomic groups present in copper mines, that represents 
more than the 50% of the total bacterial genera present 
in mine ecosystems (Yin et al. 2008).

After an exhaustive description of the SGS method and 
omics data used for its application (e.g., genomes and 
metabolic networks), this study provides an integrative 
view of bioleaching at both metabolic pathway and  microbial 
genome levels. In particular, SGS will be enumerated and 
their relative distribution on all the five genomes of  bacteria 
further detailed. At the metabolic level, SGS modeling 
paradigm pinpoints evident complementarities of bacterial 
strains to promote selected bioleaching pathways. In 
 addition, beyond the simple mapping of bacterial strain 
metabolism on these pathways of interest, SGS depict 
functional units, similar to operons, that must be combined 
to genetically monitor the whole bacterial participation in 
the bioleaching process, as well as specific transporters 

that should be further investigated to understand putative 
metabolic collaborative processes at the community level.

Materials and Methods

Genomes

Five distinct genomes from bacteria involved in copper 
bioleaching were considered: A. cryptum JF- 5 (NCBI -  
plasmid & chromosome GenBank ID: from CP000689 to 
CP000697) (Magnuson et al. 2010), At. ferrooxidans ATCC 
23270 (NCBI -  GenBank ID: CP001219) (Valdes, 2008), 
At. thiooxidans ATCC 19377 (NCBI -  GenBank ID: 
AFOH00000000) (Valdés et al. 2011), L. ferriphilum ML- 
04 (NCBI -  GenBank ID: CP002919) (Mi et al. 2011), 
and Sb. thermosulfidooxidans DSM 9293 (JGI database -  
Project ID: 97948). The three annotated genomes of 
A. cryptum, At. Ferrooxidans, and L. ferriphilum are, 
 respectively, composed of 3691 (3158 genes from main 
chromosome and 533 from plasmids), 3304, and 2527 
genes, whereas 2884 and 3602 potential genes were pre-
dicted, respectively, for the two nonannotated genomes 
At. thiooxidans and Sb. thermosulfidooxidans.

Metabolic networks

Metabolic networks of A. cryptum, At. Ferrooxidans, and 
L. ferriphilum were downloaded from Metacyc database v17.5 
(Caspi et al. 2012). Sb. thermosulfidooxidans and At. thioox-
idans metabolic networks were reconstruct following a standard 
procedure: both genome sequences were annotated using a 
local GenDB platform (Meyer et al. 2003). Gene predictions 
were made using Glimmer and functional gene annotations 
were processed by using state- of- the- art methods such as 
SignalP and TMHMM, and by performing local BLAST 
searches against databases NCBI nr, Swissprot, Omniome, 
PDB, KEGG, COG, and TCDB. After gene annotation, a 
GenBank format file was constructed for each genome and 
used as a general input for metabolic reconstruction using 
Pathway Tools software v16.0 (Karp et al. 2010). To recon-
struct a metabolic network, we considered a metabolic reac-
tion present when a gene encoding for an enzyme associated 
to this reaction was identified within the genome. Reactions 
have then been connected together if a product of a reac-
tion was the substrate of another. To build a metabolic 
network of the microbial community, the union of the five 
different metabolic networks was considered.

Complementary, and for the sake of illustration, a list 
of 13 pathways considered as related to the copper 
 bioleaching process was emphasize (Quatrini et al. 2009): 
(1) Fe(II) oxidation (Metacyc ID: PWY- 6692); (2) heme 
biosynthesis: (a) Superpathway of heme biosynthesis from 
uroporphyrinogen- III (Metacyc ID: PWY0- 1415), (b) heme 

Figure 1. Illustration of sets from genome segments (SGS) when applied 
on a toy microbial community. The upper part of the figure illustrates a 
metabolic network, where circles are metabolic compounds, and 
squares are reactions that happen between them. The two bands at the 
lower part represent parts of two bacterial genomes as sequences of 
genes. The catalytic function of a gene, via its enzyme, is represented by 
a dashed line between the gene and the reactions it catalyzes. A SGS 
appears on the genome as set of genes contained into a segment. The 
segment containing a SGS can contain genes that do not participate 
into the SGS (e.g., without catalytic function). The projection of a SGS 
on the metabolic network defines a set of reactions. Two SGS are linked 
together by a gray ribbon if they can be chained through the metabolic 
network.
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biosynthesis from uroporphyrinogen- III I (Metacyc ID: 
HEME- BIOSYNTHESIS- II), c) heme biosynthesis from 
uroporphyrinogen- III II (Metacyc ID: HEMESYN2- PWY), 
d) Superpathway of heme biosynthesis from glutamate 
(Metacyc ID: PWY- 5918), and e) Superpathway of heme 
biosynthesis from glycine (Metacyc ID: PWY- 5920); (3) 
iron- oxidizing/O2- reducing supercomplex (Metacyc ID: 
CPLX- 8218); (4) NAD biosynthesis: a) NAD biosynthesis 
I (from aspartate) (Metacyc ID: PYRIDNUCSYN- PWY), 
b) NAD biosynthesis II (from tryptophan) (Metacyc ID: 
NADSYN- PWY), and c) NAD biosynthesis III (Metacyc 
ID: NAD- BIOSYNTHESIS- III); (5) Superpathway of sulfate 
assimilation and cysteine biosynthesis (Metacyc ID: 
SULFATE- CYS- PWY); (6) [2Fe- 2S] iron- sulfur cluster 
biosynthesis ([Fe- S] cluster biosynthesis) (Metacyc ID: 
PWY- 7250); (7) glutathione biosynthesis (Metacyc ID: 
GLUTATHIONESYN- PWY).

Sets from Genome Segments modeling framework 
and associated methods

The metabolism of a given bacterial system is defined by 
a set of compounds and the related metabolic reactions. 
A metabolic network was represented as a directed graph, 
also called metabolic graph, in which nodes represent reac-
tions and an edge between two reactions exists when a 
product of the input reaction is a substrate of the targeted 
one. Notice herein that for the sake of modeling and fol-
lowing recommendations in Croes et al. (2005), we have 
deliberately neglected common and highly connected com-
pounds that are present in the environment (i.e., compounds 
like water, ATP, NADP, etc., that are present in more than 
40 reactions in this paper) and cofactors listed in Christian 
et al. (2009) to avoid artificial interconnections between 
reactions (see Ravasz et al. 2002; Guimera and Amaral 
2005 for similar assumptions). Complementary, each bacte-
rial chromosome were represented as an ordered list of 
genes, called sequence. Some of these genes encode for 
enzymes known to catalyze metabolic reactions. We called 
them metabolic genes. Notice that a given reaction may 
be catalyzed by several enzymes, implying that a  reaction 
can be associated to one or several metabolic genes.

Assuming a direct causal link between a metabolic gene 
and a reaction via its encoded enzyme, we designed the 
SGS paradigm to integrate both knowledge. A SGS is a 
set of metabolic genes, contained in a segment (i.e. a sub-
sequence) of the genome, that connects a predetermined 
initial reaction (and related gene) to a predetermined 
ending reaction (and related gene) within the metabolic 
network. Among the whole combination of SGS, our 
technique seeks to decipher SGS that satisfy the following 
parsimonious properties (see appendix S1 for a formal 
definitions and S2 for a parameter sensitivity analysis):

1. For all five bacterial chromosomes, the search was 
 restricted to SGS with at most 20 consecutive metabolic 
genes (no more SGS were found for more than 20 
genes). All pairs of initial and end reactions were 
considered.

2. From the whole set of SGS, those with a genomic den-
sity greater than or equal to 0.6 were selected (no more 
than ~⅓ of genes are missing): the genomic density is 
the ratio of the number of genes involved in the meta-
bolic pathway covered by the SGS by the total number 
of genes within the SGS (see appendix S1 for formal 
definition). For example, in Figure 1, the purple SGS 
has a genomic density equal to 0.8, whereas blue and 
red SGS have a genomic density of 1. When a SGS 
has a genomic density equal to 1, all genes in the SGS 
are involved in the targeted metabolic pathway. 
Conversely, a genomic density close to zero implies 
that few genes in the SGS are involved in the metabolic 
pathways.

3. To avoid a “Russian doll effect”, among dense SGS, we 
selected the dominant ones, that are, those that are not 
included into larger SGS.

Transcriptomic enrichment

In order to support the SGS prediction, we compared 
our results to a set of microarray experiments performed 
on cultures of At. ferrooxidans strain Wenelen (DSM 
16786 ; Latorre et al. 2015). Wenelen was grown in 
62 mmol/L FeSO4- 7H2O containing modified 9 K medium 
((NH4)2SO4: 0.4 g/L; K2HPO4: 0.4 g/L; MgSO4- 7H2O: 
0.4 g/L) adjusted to pH 1.8 with concentrated sulfuric 
acid in batch conditions until early exponential phase of 
the culture (24 h at 30°C). Afterward, four minerals (quartz 
concentrate (20% p/v), sample of pyrite concentrate 
(10% p/v), chalcopyrite concentrate (5% p/v) and elemental 
sulfur powder (5% p/v)) were added to the bacterial cul-
tures (except to the control), which were grown at 30°C 
without shaking but with forced air supply. After 16 h 
of grown the cells were collected to RNA extraction, cDNA 
synthesis and microarrays hybridization. From a transcrip-
tomic viewpoint, the expression for common genes between 
ATCC23270 and Wenelen strains is identical (Levican 
et al. 2008; see ortholog list between both strains in 
File S2).

Results

Overlap of metabolic reactions within the 
community

Acidiphilium cryptum, Acidithiobacillus ferrooxidans, 
Acidithiobacillus thiooxidans, Leptospirillum ferriphilum, 
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and Sulfobacillus thermosulfidooxidans have, respectively, 
176, 75, 61, 131, and 263 specific metabolic reactions 
(from 1470, 1190, 1182, 1194, and 1418 total reactions). 
Merging the five metabolic networks generates a network 
composed of 2311 reactions, where 30% of them (706 
reactions) are exclusive to single strains (Fig. 2A). 
Conversely, around 70% (1605 reactions) are conserved 
in the five genomes, describing a core of common path-
ways (Fig. 2B). Conserved reactions are related to the 
generation of precursor metabolites, energy, and basal 
metabolism. Specific reactions are mostly related to deg-
radation of complex sugars, organic acids and subproducts 
of protein synthesis, indicating that major metabolic 
specificities are related to secondary metabolism processes. 
Noteworthy, these metabolic specificities distinguish two 
major groups: (1) reactions associated with energy source 
requirements (mainly iron oxidation) present in auto-
trophs (At. ferrooxidans and L. ferriphilium) and 
 chemo- heterotroph (Sb. thermosulfidooxidans), and (2) 
reactions related to organic degradation compounds of 

organoheterotrophs (A. cryptum) corroborating previous 
descriptions of specific proteins involved in bioleaching 
(Baker and Banfield 2003).

SGS are highly specific to each bacterial 
strain and represent operons

Overall, SGS involve 707 distinct reactions (30.6 % of 
the meta- metabolism). Figure 2A and C show that among 
them, 362 distinct reactions (51%) are single strain SGS 
specific. This proportion is surprisingly large considering 
that only 105 of 707 reactions (~15%) are monospecific 
(Fig. 2A and B). In addition, when considered as sets 
of reactions, most of SGS are single strain specific (183 
or ~60 % – see third column in Table 1) and almost 
unique in their strain (4–11% of SGS from a strain 
share the same set of reactions with another SGS of the 
same strain).

In parallel, sets of genes emphasized by SGS were 
compared to predicted operons (Pathway Tools (Karp 

Figure 2. Reactions distribution of the five biomining bacteria. Diagram (A) illustrates how the set of reactions composing the meta- metabolism is 
monospecific or multispecific, and also which part of a reaction is involved in sets from genome segments (SGS). The Venn diagram (B) illustrates how 
the set of reactions composing the meta- metabolism is distributed among bacteria. The Venn diagram (C) illustrates how the set of reactions involved 
into the SGS is distributed among the bacteria.

(A)

(B) (C)
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et al. 2010)) or known operons as stored in ProOpDB 
(Taboada et al. 2012) and DOOR2 (Mao et al. 2009) 
databases for A. cryptum and At. ferrooxidans. A set of 
SGS gene was considered as an operon when its Jaccard 
measure is greater than or equal to 0.6, which repre-
sents 65.4% of all sets of SGS genes (highlighted as 
pink segments in Fig. 4). Complementary, and for the 
sake of support the SGS prediction, SGS genes expres-
sion was analyzed. These genes are significantly dif-
ferentially expressed for others set of genes located in 

the vicinity; which confirms the SGS functional interest 
in accordance to available experimental stresses (see 
File S3 and Appendix S3).

SGS are complementary to promote 
metabolic pathways and show putative 
cooperations

Figure 3 and Figure S3 show the projection of SGS 
on metabolic pathways of interest (resp. on Superpathway 

Table 1. Number of sets from genome segments (SGS) and the related number of sets of reactions obtained when each SGS is projected onto the 
metabolic network of the corresponding bacterial strain and the microbial consortium meta- metabolism. Due to the existence of common reactions 
to several organisms, the number of reactions within SGS of the consortium is not the sum of the number of reactions of each strain. The comparison 
of reaction sets was done only by considering the frontier of the SGS: two reaction sets are considered as similar if they have at least one start reaction 
and one end reaction from their SGS in common. The specific ones are those from distinct organisms that are not similar.

Bacteria Number of distinct SGS Number of distinct reaction sets Number of specific reaction sets 
according to SGS boundaries

A. cryptum JF- 5 98 92 45
At. ferrooxidans ATCC 23270 61 59 22
At. thiooxidans ATCC 19377 67 61 28
L. ferriphilum ML- 04 78 72 38
Sb. thermosulfidooxidans DSM 9293 92 83 50
Community 396 308 183

A. cryptum, Acidiphilium cryptum; At. ferrooxidans, Acidithiobacillus ferrooxidans; At. thiooxidans, Acidithiobacillus thiooxidans; L. ferriphilum; 
Leptosprillum ferriphilum; Sb. thermosulfidooxidans, Sulfobacillus thermosulfidooxidans.

Figure 3. Superpathway of heme biosynthesis from glycine from Metacyc (PWY- 5920). Each color edge represents a reaction involved into a sets from 
genome segments (SGS). The orange one is for Acidithiobacillus cryptum, the purple one for Leptospirillum ferriphilum, the blue one for Sulfobacillus 
thermosulfidooxidans, the yellow one for Acidithiobacillus thiooxidans, and the green one for At. ferrooxidans.
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Figure 4. Metabolic copper bioleaching relationships between sets from genome segments (SGS) at the metagenomic scale. The outside 
bands represent the five bacterial genomes. The blue, purple, green, orange and yellow bands refer, respectively, to Sulfobacillus 
thermosulfidooxidans, Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans, Acidiphilium cryptum, and Acidithiobacillus thiooxidans 
genomes. The black and pink segments over the genomes illustrate the SGS, where the pink ones are SGS similar to operons whereas the 
black ones are those that are not similar to operons. Gray parts of the segments indicate genes that do not participate in the meta- metabolic 
scale. A link connecting two SGS indicates that those two SGS participate in the same pathway. The color of the link is specific to a set of 
pathways.
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of heme biosynthesis from glycine and the whole com-
munity metabolism) with a particular emphasis on 
monospecific SGS. While SGS are widely spread over 
the community metabolic network, it is worth noticing 
that they remain mostly complementary. Indeed, whereas 
four SGS are totally disconnected from others, mostly 
all SGS sets of reactions are separated by at most two 
reactions (98% of SGS sets of reactions are separated 
by a gap of one reaction only). In particular, bioleach-
ing pathways are very well covered by distinct SGS 
(see supplementary materials for details): Superpathway 
of sulfate assimilation and cysteine biosynthesis (nine 
SGS), NAD biosynthesis I (from aspartate) (2 SGS), NAD 
biosynthesis II (from tryptophan) (2 SGS), Superpathway 
of heme biosynthesis from uroporphyrinogen- III 
(4 SGS), heme biosynthesis from uroporphyrinogen- III 
I (3 SGS), heme biosynthesis from uroporphyrinogen- 
III II (4 SGS), Superpathway of heme biosynthesis from 
glutamate (8 SGS), Superpathway of heme biosynthesis 
from glycine (8 SGS), and glutathione biosynthesis 
(2 SGS).

Interestingly, no single bacterial strain is able, alone, 
to execute a whole pathway related to bioleaching, but 
rather a cooperation of SGS between different strains 
is necessary. For illustration, Figure 4 pinpoints putative 
collaborations of each bacteria to bioleaching pathways 
via their respective SGS. Each ribbon connects SGS of 
the five bacteria that participate in the same pathway 
(one ribbon color per group of bioleaching pathways). 
Precisely, the bacterial participation is as follows: A. cryp-
tum has six linked SGS, whereas At. ferrooxidans and 
Sb. thermosulfidooxidans have five each, L. ferriphilum 
has four and At. thiooxidans has two. Notably these 
SGS are homologous (see Fig. S10 and the SGS list). 
Similarly, Figure 4 (blue) shows a putative homologous 
collaboration between one SGS from A. cryptum and 
one from Sb. thermosulfidooxidans in the NAD biosyn-
thesis I (from aspartate) pathway (see Fig. S5). Contrarily, 
the red link presents a chaining of two SGS (one from 
A. cryptum and the other one from L. ferriphilum) into 
the five pathways of the heme biosynthesis (the orange 
and purple segments in Fig. S6–10). The combination 
of duplicated SGS across bacteria and chaining of SGS 
is also observed. The purple links depict the putative 
collaborative participation of five SGS into the 
Superpathway of heme biosynthesis from glutamate but 
also the Superpathway of heme biosynthesis from glycine. 
These superpathways are variants but they share the 
same reactions. In this pathway, the SGS from A. cryp-
tum and Sb. thermosulfidooxidans, but also those from 
At. ferrooxidans and At. Thiooxidans, are similar and 
participate into a chain with the SGS of L. ferriphilum 
(see Fig. 3 and Fig. S10).

Transporters and common goods as 
consequence of SGS combination

Assuming that SGS from different species decipher puta-
tive intricate collaborations of microbial strains at the 
community level, metabolites surrounded by two SGS from 
different species represent a potential common good that 
must be, respectively, imported and exported from bacte-
rial cytoplasm via transporters. Following this assumption, 
APS (adenosine phosphosulfate), PAPS (phosphoadenosine 
phosphosulfate), protoporphyrinogen, uroporphyrinogen- 
III, and hydrogen peroxide are theoretical common goods, 
because they connect SGS reactions for bioleaching path-
ways. Except hydrogen peroxide these compounds are 
metabolic intermediates that participate mainly in heme 
biosynthesis and amino acid synthesis processes (Valdés 
et al. 2003). While, there is no currently experimental 
evidence for proteins involved in the direct mobilization 
of these metabolites inside or outside bacterial organisms, 
interestingly we identified classical transporters like ATP 
Binding Cassette (ABC), Resistance Nodulation Division 
(RND), and Major Facilitator Superfamily (MFS) systems 
encoded next to SGS involved in sulfate assimilation, serine 
biosynthesis, and mainly heme pathways. These results 
pinpoint the already known central role of heme to control 
the whole bioleaching process (Valdés et al. 2003), whereas 
APS, PAPS, protoporphyrinogen, and uroporphyrinogen- 
III may play an indirect role via their modulation of 
concentrations that potentially impact heme biosynthesis. 
Interestingly, one must notice that these common good 
metabolites connect SGS from L. ferriphilum on one hand 
to the SGS from all four other strains on the other hand.

Discussion

Generic paradigm for genome- wide 
integrative study for a bacterial community

This study integrates genomic and metabolic knowledge 
to study a reduced microbial community. By using a 
simple parsimony assumption on topological knowledge 
(i.e., genome organization and metabolic network), the 
SGS paradigm proposes a genome- wide description of 
functional units that are necessary to achieve a given 
function hold by a microbial community. This approach 
could be considered as a promising alternative to microbial 
cross- feeding analysis when quantitative experiments are 
not feasible. In particular, one considers SGS technique 
as preliminary to recent Flux Balance like techniques that 
need to be considered as an objective function or quan-
titative features for each strain.

These limitations are particularly true for extremophiles 
strains for which biological knowledge is sparse. Indeed, 
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whereas genome sequencing and assembly techniques are 
trustworthy for extremophiles, it remains difficult to con-
sider an exhaustive definition of metabolic networks, that 
are mostly incomplete (McCloskey et al. 2013) or misan-
notated (Liberal and Pinney 2013). To overcome this 
weakness, our SGS technique tolerates uncertainties, via 
a flexible constraints- based implementation. For instance, 
one considers genes within SGS that are not directly re-
lated to the metabolic pathways of interest or even not 
depicted as catalytic genes (c.f. gray genes in Fig. 1).

To further confirm this methodological advantage, we 
advocate for complementary application studies. In par-
ticular, SGS applications are of potential interest for ana-
lyzing metagenomic or meta- transcriptomic results that 
investigate, as observed in nature, more complex microbial 
natural communities. Thus, beyond a further validation 
of SGS, such a extensive application could be of potential 
use to give insights about microbial richness and its rela-
tion to metabolic pathways use and/or biogeochemical 
processes of interest.

Compartments are the consequence of 
genome organization

Interestingly, the bioleaching community shares most of 
the reactions involved in the analyzed pathways (Fig. 2B), 
which supports the idea of a metabolic redundancy within 
the community that usually promotes the use of a “single- 
cell assumption” to investigate meta- genome experiments. 
All these shared reactions are part of the core of conserved 
bacterial pathways present in most strains described to 
date (Lapierre and Gogarten 2009), indicating that con-
servation of the pathways is a general feature of bacterial 
organisms and not a particular property of the bioleaching 
community. However, despite this high redundancy of 
metabolic reactions, SGS are not evenly distributed between 
bacteria of interest (Fig. 2C). SGS mostly covered func-
tional units known as operons. As accepted, the conserva-
tion of a gene in an operon is a strong parameter of 
functional neighborhood inferences, where essential genes 
are more clustered than the average genes (Nuñez, 2013). 
Few SGS or functional units are replicated between all 
bacterial strains, even between pairs of bacteria, which 
implies that, overall, functional units at the community 
level are specialized to each strain. When projected on 
the whole bioleaching metabolic pathways, SGS are mostly 
complementary. This point shows, at a metagenomic level, 
evidences that genome organization could play a role to 
explain cross- feedings between microbial strains at the 
community level. Furthermore, the bacterial strain- specific 
SGS distribution characterizes a functional compartmen-
talization that is, again, a direct consequence of a simple 
parsimony assumption on genome and metabolic 

knowledge integration. Complementary, no single bacte-
rium is able alone, to monitor the whole copper bioleach-
ing network (Fig. 3 and Fig. S3), which clearly indicates 
a specialization of the strains. From an evolutionary point 
of view, this compartmentalization reflects the structured 
evolution of the five genomes and their corresponding 
metabolisms. Compartments could be also considered as 
a way to contain all toxicities that are enhanced by the 
whole copper bioleaching. In particular, the mining com-
munity is composed of extremophiles species that are 
already known to handle severe and distinct environmental 
stresses. By promoting bacterial diversity rather than the 
presence of a single ubiquitous bacterial strain that handles 
the whole bioleaching, one can assume that the com-
munity systems share all stresses based on respective strain 
capacity while maintaining an overall oxidation process 
that is chemically and energetically optimal for the whole. 
From a systems biology point of view, this emergence of 
functional compartments represents another insight that 
promotes the concept of modularity for improving the 
stability of the whole system as previously observed at 
the single- cell metabolic scale (Kitano 2004; Larhlimi et al. 
2011), but herein at the community level. Finally, from 
a biomining viewpoint, this clearly advocates for the need 
for considering bacterial compartments and their interac-
tions and confirms, with no a priori, the lack of interest 
in studying a single bacterial specie like previously At. fer-
rooxidans to embrace the whole bioleaching process.

Putative community common goods

When following a given metabolic pathway, one emphasizes 
connections between different SGS that belong to different 
bacterial strains (see Fig. 1 and Fig. 3), supporting the 
concept that functional interactions between members are 
crucial (Baker and Banfield 2003). Interestingly, the six 
bioleaching superpathways are all functionally intercon-
nected via SGS. More precisely, SGS are connected either 
because they are functionally redundant (e.g.,  superposed 
colors in Fig. 3 and Figure S3) – or complementary on 
metabolic pathways (e.g., a succession of colors in Fig. 3 
and Figure S3). In particular, Sb. thermosulfidooxidans and 
A. cryptum share most of the SGS. Interestingly, besides 
its elevated connectivity, A. cryptum shows the largest 
number of SGS related with NAD(H) biosynthesis meta-
bolic pathway, and this despite not considering NAD(H) 
molecule compound for connectivity purpose (see Method 
section). Such connections between all five bacterial strains 
by SGS related to NAD(H)  superpathways confirms that 
bioleaching requires the  reduction potential given by the 
NAD(H) molecule, denoting its multispecificity participa-
tion in bioleaching, as well as an elevated robustness to 
external factors (Yus et al. 2009).
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Previous studies also correlate the capability of the 
community to bioleach copper with the ability to generate 
biomass, a process that requires NAD potential for its 
realization (Valdés et al. 2010). Because most of NAD(H) 
SGS are monitored by A. cryptum, this strain plays an 
unexpected but major role in structuring the bioleaching 
community, indicating that the collaboration inside the 
community lies principally in its ability to complement 
different metabolic functions, as spread between the five 
strains.

Finally, such collaborations highlight putative transport-
ers between bacterial strains, as well as the common good 
metabolites shared by two species in the bioleaching con-
text. The analysis of these metabolites surrounded by two 
SGS indicates potential transporters to seek within genomes, 
but also confirms the main interest of heme for monitor-
ing bioleaching at the community scale. Indeed SGS analysis 
advocates that APS, PAPS, protoporphyrinogen and 
uroporphyrinogen- III are potential regulators of heme 
pathway. Other transporters, localized next to some SGS, 
were identified related to serine production and sulfate 
assimilation. Interestingly, it has been described that in 
At. ferrooxidans these two processes are directly involved 
in cysteine production and Fe- S cluster formation, two 
crucial molecules highly required during the bioleaching 
of copper (Valdés et al. 2003). The genomic proximity 
between SGS and transporters strongly suggests that strain- 
specific SGS can interact with other organisms of the 
consortia through the biosynthesis and transport of com-
mon metabolic goods, in this case mainly related with 
heme and sulfur assimilation pathways. Beyond the 
 bioleaching application and speculative interpretations, 
SGS results provide functional enrichment to metagenomic 
knowledge as well as guidelines for future molecular in-
vestigations at the community scale, in particular in the 
search and identification of putative transporters necessary 
for a cooperative metabolic behavior at the metabolic 
scale, especially when cross- feeding experiments are not 
feasible.
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3.4 Discussion

These results show the interest of using a weighted graph to integrate different bio-
logical knowledge. Although the choice of this computational abstraction is consis-
tent with those proposed in Chapter 2, one must discuss here two complementary
viewpoints. First, contrary to the undirected graph used to depict co-occurrence
networks, the integration of different knowledge necessitates the use of directed
graphs. Such a direction is the result of considering additional constraints, such as
those enclosed in a public metabolic database and available metabolic networks.
Here again, the interest in computer sciences consists in modeling the knowledge
integration by identifying the best abstraction in which one can solve a well-defined
biological problem. Second, and complementary to the sole description of the bi-
ological abstraction (i.e., directed weighted network), we have shown herein the
need for an optimization process that computes the result of a parsimonious as-
sumption on the integrated graph. The choice of the optimization must be coherent
with the biological question but also with the chosen abstraction. Performing such
optimization will allow focussing on graph local properties. As a result, such a
property indicates either functional units or putative metabolic cross-feeding be-
tween microbial strains in a more global ecosystem framework.

Although performing such a protocol for investigating a cellular system re-
mains feasible, the same question is computationally challenging when dealing
with large ecological networks. As a first attempt, we proposed herein the use
of Answer Set Programming (ASP) to enumerate local properties. Again, ASP is
a declarative problem-solving paradigm from the field of logic programming and
knowledge representation, that offers a rich modeling language along with highly
efficient inference engines [80] based on Boolean constraint solving technology.
Following encouraging preliminary results of ASP applied on integrated networks,
one proposes to generalize the use of ASP to other systems ecology questions, for
instance, to reduce the size of ecological networks while conserving local prop-
erties (i.e., network delineation). Indeed some edges represent false positives that
could be removed from the graph with no degradation of global knowledge such as
the clusters obtained using topology cluster analysis. To manage the combinatorial
explosion of this removal, ASP will allow a flexible encoding that can be easily
adjusted to test different pairwise metrics while still being computationally effi-
cient. Once the graph reduced, we will be able to apply the previously mentioned
graph decomposition techniques [46]. These techniques will emphasize patterns of
species or genes as well as cliques of species and their associations with environ-
mental parameters. (i.e., bacteria consortium or set of genes that are related to the
nitrate concentration or carbon export). As natural following, one will investigate
these identified biological compounds by studying their dynamical properties via
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dedicated modelings and simulations, as depicted in Chapter 4.
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Chapter 4

Dynamical and quantitative
modelings of biological systems

A whole, which is not a heap, is not
identical to the elements, into which
it is divided. The whole is
(contains) something else besides
the elements. The something else is
not an element. The something else
does not consist of a single element.
The something else does not consist
of many elements. The something
else is a principle (cause,
substance, nature). Suppressed
conclusion: The something else is
the form of the whole.

Aristotle

4.1 Introduction & Context

Above mentioned advances in molecular biology and computational biology have
transformed approaches to qualitatively characterize biological systems. However,
among the most significant challenges in biology is the ability to quantitatively pre-
dict a phenotype, by combining molecular data and quantitative physicochemical
data. Since the seminal work of Jacques Monod [150], simple biological model-
ing has been prominent in microbiology. Because of their experimental tractability
and purported simplicity, microbial experimental systems have fostered the rise
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of several cross-scale modeling approaches from the gene to the population level,
which have been extended to test eco-evolutionary hypotheses. These modeling
approaches proposed and addressed foundational hypotheses that developed into
new biological paradigms such as growth rate or identification of functional units.
Reductionist assumptions were driving the first microbial models (e.g., intracellu-
lar quota combined with kinetics mimicking biochemistry rules) yet demonstrated
remarkable predictive power for portraying the growth of microbes in simple sys-
tems such as chemostats [150]. The Monod model takes the following form:

dS
dt = D.Sin −

1

Y
.µmax

S

S + kS
,

dX
dt = µmax

S

S + kS
−D.X,

where bacterial biomass (X) is subject to variation following its Michaelis-Menten
growth (µmax and kS being respectively maximum growth rate and half life con-
stants) and dilution (D); and uptake efficiency (Y ); and quantity of substrat (S) is
subject to variation due to the dilution of initial quantity of substrat (Sin) and the
efficiency of the substrate uptake from the microbial strain. Similar quota assump-
tions were used to model phytoplankton physiology [52, 12] and later for model-
ing simplified global ocean ecosystems [67]. Reductionist modeling approaches
have generally been parameterized from data gleaned from laborious bench ex-
periments. Thus, initial biological modeling efforts were inspired by models of
physical systems and formalized using nonlinear ordinary differential equations
representing dynamic behaviors of gene activity or molecular concentrations:

dxi
dt

= fi(x), 1 ≤ i ≤ n,

where x = [x1, ..., xn]
′ ≥ 0 represents a vector of concentrations of proteins or

quantity of species biomass or any quantity of biological compounds (with respect
to the units) and subject to biological transformations represented by a function fi.
Reaction rates associated with particular mechanistic behaviors such as Michaelis-
Menten or Hill functions drive interactions within these models and express the rate
of synthesis of i as dependent upon the concentration of x. As summarized in [43],
to consider negative feedback loops, one must consider more general equations in
the form:

dx1
dt = κ1nr(xn)− γ1x1,
dxi
dt = κi,i−1xi−1 − γixi, 1 < i ≤ n,

where κ1n, κ2,1, ...κn,n−1 are production or consumption constants when positive
or negative resp., and γ1, ..., γn > 0 degradation constants; and for x1, r(xn)
describes a non linear regulation function.
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When applied to communities, similar mathematical systems are used to de-
scribe specific population growth rates as a function of densities of other popula-
tions. Among others, the Lotka-Volterra model is the most known. Complementary
types of nonlinear differential equation modeling include spatial representation,
which is useful to represent phenomena such as biofilm formation. However, as
the complexity of the biological system increases, it is often not possible to model
a population behavior through simple equations. Individual-Based Models gener-
ally overcome this problem. In this modeling, one considers sets of cells. Each
cell describes a space by its coordinates, and its behavior depends on an algorithm
that makes decisions based on the population enclosed in it [160]. Iterative simu-
lations are then run to mimic the population in space and extracting emerging rules
or global properties from complex local behaviors [89].

To model biogeochemical cycles within ecosystems, the objective is to describe
the dynamics of one or more elements (carbon, nitrogen, phosphate, sulfur, and
other nutrients) for a given ecosystem. Usually, different organisms are thus clas-
sified into functional groups, and one considers flows of chemical elements be-
tween them by following quantities in state variables. Environmental parameters
are then introduced as forced constraints. In this context, these so-called Trait-
Based Models link specified traits, i.e., properties at an individual scale (e.g., size
and concentration) to ecological function, such as energy or matter flux, primary
production, acid production. From this overview, the role of parameters such as
specific growth rate, cellular yield, substrate consumption, and traits, for example,
are central in current modeling approaches. Unfortunately, these parameters are
not always available and need to be inferred from extensive experimental data and
validated by experts. This limitation illustrates the general restriction of nonlinear
differential equation modelings that necessitate more effort during the parametriza-
tion step than in the modeling per se. Furthermore, worth noticing, parameter val-
ues obtained from in-vitro experiments can differ from in-vivo conditions. More-
over, for technical reasons, these parameters are even less reachable for cellular
systems.

4.2 Qualitative modeling to simulate cellular systems

The need to use formal methods to analyze such cellular models has been discussed
extensively in the last 15 years (see De Jong [43] for the state-of-the-art review or
Fisher and Henzinger [66]). The application of formal methods mainly results in
the discretization of all interactions, such that the model becomes qualitative. An
advantage in this context is that the resulting qualitative models are computation-
ally scalable and do not need to incorporate a large number of parameters that
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gene 1 gene 2

protein 1

protein 2

Figure 4.1: Schema representing the two major rules considered in a Gene Regula-
tory Network. The transcription and translation of gene 1 activates the transcription
of genes, which could be formalized by a signed edge g1

+−−−−→ g2. Reversely,
the transcription and translation of gene 2 represses the transcription of gene 1,
which could be formalized by the signed edge g2

−−−−−→ g1

are mostly out of experimental reach, including parameters that show evident sen-
sitivity to experimental conditions [54]. Thus such modelings consider the gene
interaction as the cornerstone to represent a biological behavior. It summarizes
a protein production that activates or represses the target gene. From a biologi-
cal viewpoint, this feature is complementary to the metabolic network illustrated
above but consider the feedback of the protein production to the gene activity, a bi-
ological feature that was neglected when the sole metabolic network is considered.
From a computational viewpoint, these modeling approaches exploit the structure
of signed directed graphs (e.g., interlocked feedback loops) rather than the numer-
ical values of biological compound concentrations

Among the qualitative modeling techniques, most known approaches are based
on Piecewise-Affine Differential Equations (PADEs) [44] or on the René Thomas’s
formalism and extended works [197, 196]. They all gave astonishing results when
applied on real biological systems, in particular to decipher putative marker genes
of disorders [37]. Thus, above dynamical systems in PADEs could be resumed by:

dxi
dt

= gi(x), 1 ≤ i ≤ n,

The function gi is defined as

gi(x) =
∑
l∈L

κi,lbi,l(x)

where bi,l is a Boolean function that indicates the conditions under which the gene
is expressed at a rate κi,l, andL a set of vertices pointed to the gene i. Following the
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description from [43], the Boolean conditions are specified by two step functions
s+ and s− such as

s+(xj , θj) =

{
1 if xj > θj
0 if xj < θj

and s−(xj , θj) = 1− s+(xj , θj)

where θj represents the threshold above which the gene xj is activated. Con-
sidering such a qualitative abstraction, qualitative states (combination of genes that
are activated or inactivated) depict the behavior of the system at one given time and
whereas transitions between these qualitative states resume the dynamical biolog-
ical behaviors. All transitions between qualitatives states describe the state graph
(directed graph where nodes are qualitative states and edges are transitions between
them) that one investigate via automatic methods for the sake of model qualitative
validation. As shown in [10, 169], these techniques correspond to a class of hybrid
systems [81] for which we can use existing powerful methods for the verification
and the control of these hybrid systems. In particular, they permit an automatic
investigation of qualitative properties of the genetic regulatory networks [11].

Nonetheless, even if such models are sufficient to represent microbial gene
regulatory networks, they are generally not enough for modeling quantitative bio-
logical behaviors as needed in the context of simulation of microbial populations
and communities, and subsequently, biogeochemical processes. Nevertheless, one
can mention here an extension of these qualitative models that propose to consider
temporal properties into account. It consists of a new class of hybrid systems [60],
dedicated to biological system modeling with the time delay. Note that such a
setting was often neglected before, despite documented variations of specific prod-
ucts over time. The time delay represents a unique opportunity to refine existing
qualitative models by showing qualitative properties that verify experimental tem-
poral constraints. Conversely, it emphasizes a need for modeling that includes both
qualitative properties, arisen from the biological network structure, and delays as-
sociated with the dynamics of genes or gene products [184]. To a lesser extent, in
[73], we also propose a new hybrid modeling technique that uses the qualitative
and partial temporal experimental data directly. Such modeling does not claim to
substitute for existing qualitative modelings but remains a preliminary approach
for investigating the complex biological system. As a significant feature, it ab-
stracts the structure of the network, i.e., positive and negative feedback loops, by
focusing on the variation of signs of the gene products following given qualitative
behaviors (see Figure 4.2 for illustration). This discretization will be further used
in Section 4.4. In this qualitative abstraction, as described in [73], we add some
constraints on delays for a natural refinement of the qualitative response.
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Figure 4.2: Concentration variations over time are discretized by considering the
sign of the derivative. On the left panel, the whole simulation of two variables x and
y from the Figure ?? describes a qualitative cycle depicted in the right panel. Such
a cycle describe the structure of an hybride automaton where nodes are qualitative
states (like (+,+)) and transitions describe how to reach one qualitative state from
another. On each qualitative state, one considers an additional constraint constraint
called invariant (hx ≤ D+

x andhy ≤ D+
y ), that represent the clock and the delay

in which one remains in the given qualitative state (time in the increase of x and
y concentrations). For each transition (e.g., (+,+) to (-,+)), there is both a reset of
a clock (hx ← 0) and a constraint called guard that forbid to take the transition
before a given delay (hx ≤ d+x , that describes the time for which x must increase).

4.3 Quantitative modeling of biological behaviors at steady
states

Quantifying the biological response of living systems is a question that still eludes
us. Because of their physical nature, biological objects are subject to quantitative
measurements that mostly represent their physiologies. We advocate herein that
these motivations were the fundamental assumption for modeling living systems
via ordinary differential equation systems. In the above Section 4.1, we present the
interest of qualitative modeling to describe biological behaviors over time formally,
without considering kinetic parameters. However, these modelings did not per-
ceive the gain of a description as proposed by the omics knowledge. For instance,
in his seminal model, Jacques Monod mimics the physiology of a heterotrophic
bacteria with two variables. In contrast, the current genome-scale metabolic net-
work description of Eschericha coli (strain K12, MG1655) implies the use of 3011
metabolites linked by reactions driven by 1402 associated enzymes and 387 asso-
ciated transporters [178]. Considering this high number of variables, a standard
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dynamical model is out of reach. So, for practical reasons, several new formalisms
have been proposed to model metabolism and, by extension, a better understand-
ing of physiological responses [208]. Thus, the use of Genome-Scale Models has
gained much interest recently to describe organism physiology. In this framework,
complementary to metabolic network description that defines chemical species and
their interactions (see Section 3.1), one must consider exchanges of an individual
organism with the media (for example, maximal uptake rate) as well as its growth
rate [112, 158] Genome-Scale Models must then consider full genomic descrip-
tions of microorganisms and but also perform quantitative simulations.

4.3.1 Quantitative modeling at steady states of organisms described
at genome-scale

Modeling a metabolic network implies to describe how metabolites are exchanged
and transformed within a network. For instance, a general description can take the
form of a chemical equation:

a1S1 + a2S2 + ...+ apSp −→ ...+ ak−1Pk−1 + akPk

where Si and Pk depicts one metabolite among the k that is respectively a substrate
or a product of the reaction, and ai its corresponding stoichiometry to satisfy the
mass balance law. By definition, substrates are on the left side of the equation,
whereas product one the right one. Considering such a reaction, one formulate its
reaction rate by the rate of degradation of substrate (i.e., negative by convention);
or the rate of production of product (i.e., positive by convention).

vi = −
1

a1

dS1
dt

= − 1

a2

dS2
dt

= ... =
1

ak

dPk

dt
=

1

ap

dMp

dt

with i corresponding to a given reaction, and considering that a metabolite Mi is
either product or consumed, its variation rate is express by:

dMi

dt
= ai1v1 + ai2v2 + ...+ ainvn = Si.v =

∑
j=1...n

aijvj

Using a vector notation, the above equation could be written:

dM

dt
= Sv,

where M is a vector that enclosed all metabolite concentrations, v is flux vector
that summarizes all fluxes vi, and S the matrix that stores stoichiometric coeffi-
cients. Worth the notice here, the definition of this dynamical system is related to
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the one proposed by Jacques Monod but with linear rates. Notice also that the ef-
fect of the temperature does not hold here. Complementary to this definition of the
metabolic network, one must consider metabolites that belong to the surrounding
environment. By convention, one considers a synthetic exchange reaction such as:

Miex −→Mi, or

Mi −→Miex

for uptake and secretion respectively.
Considering that most of the bacteria and eukaryotic cells are homeostatic, they

keep their internal metabolite concentrations as constant as possible, which occurs
very fast modifications, one assumes the system at quasi-steady-states [205], where

dM

dt
= Sv = 0

In addition to this system of linear constraints, one can also consider the bounds on
fluxes to model thermodynamical laws associated to each reaction. By convention,
a flux vi associated to an irreversible reaction must satisfy the following inequality:

0 < vi ≤ ubi,

where ubi represents the upper bound of the flux vi, and the lower bound of vi is
equal to 0. Following the similar convention, fluxes of reversible reactions must
satisfy another inequality:

lbi ≤ vi ≤ ubi,
where lbi represent the lower bound of the flux vi and lbi < 0.

Steady-state flux space All solutions of v that satisfies these constraints are bi-
ologically accurate. The set of solutions describes a steady-state flux space F
defined as:

F := {v ∈ R,Sv = 0, lb ≤ v ≤ ub}
where lb and ub are all lower and upper bounds of fluxes stored in v. Because
F encloses all biologically feasible solutions, several studies focused on its for-
mal description. Among others, one could mention several generators of F that
are of biological interest: the Elementary modes [182, 181, 76, 42] that compute
the vertices of the polyhedron decsribed by F ; the Extreme pathways [162, 214]
that compute extreme rays of the pointed polyhedron (i.e., reversible reactions are
modeled by two irreversible reactions of opposite direction - which states the ex-
treme pathways as subsets of elementary modes [115]); or the Minimal Metabolic
Behaviors [126] that considers the polyhedron rooted in an affine space and then
describes the generators of F via polyhedron face descriptions rather than its ver-
tices for above approaches.
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Flux balance analysis Because the flux space is challenging to interpret, Flux
Balance Analysis (FBA) proposes to select a subset of fluxes that is of particular
interest [205]. The selection relies on Linear Programming (LP). It consists of
adding a function c to maximize (or minimize). Such an objective function usually
model a biological objective; i.e., maximizing given biological components of in-
terest that constitute the biomass of the system. The formulation of the constraints
is then as follow:

maximize z = cTv

subject to

Sv = 0

lb ≤ v ≤ ub

However, it is important to notice here that if an optimal value z exists, this is
unique, which unfortunately cannot be guaranteed for the corresponding values of
v. Indeed, a priori, many flux distributions could satisfy unique optimal objective
function values, which could bring quantitative uncertainties that are inherent to
the biological modeling (see [167] for general overview of FBA limitations).

Flux variability analysis To analyze the multiplicity of flux solutions that satisfy
an optimal value of z, [139] proposed an automatic exploration of these multiple
optimal flux distribution. Considering zobj the optimal objective value as computed
by above FBA, one can formalize both complementary LP problems for each reac-
tion i:

Case 1

maximize vi

subject to

cTv = zobj

Sv = 0

lbi ≤ vi ≤ ubi, i = 1, ..., n

Case 2

minimize vi

subject to

cTv = zobj

Sv = 0

lbi ≤ vi ≤ ubi, i = 1, ..., n

The range of values for each flux for the given optimal objective value are very
informative. First, the size of the range is an indicator of the theoretical variability
that could be associated to a given reaction (e.g., eventually of its corresponding
gene expression). Such a property could be relied on the biological robustness and
quantitative uncertainties as taken from experiments [125]. In particular, recently,
Basler et al. [8] have shown that those boundaries that reflect uncertainties are
necessary to understand intracellular metabolic flux distribution better. Second,
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considering the respective maximal and minimal values of vi (resp. vmax
i and vmin

i ),
one could extract that the qualitative property of the associated reaction.

• 0 /∈ [vmin
i vmax

i ] means that the reaction i is obligatory. A flux must always
occurs in this reaction such as the system could optimize its objective (i.e.,
its biomass).

• 0 ∈ [vmin
i vmax

i ] means that the reaction is alternative. A null flux may oc-
cur in this reaction while still promoting the optimal solution of the system
objective.

• vmax
i = 0 and vmin

i = 0 means that the reaction is blocked. A no flux must
occur in this reaction to reach the optimal solution of the system objective.

Altogether these techniques belong to Constraints-Based modeling. The inter-
est of this modeling paradigm consists in putting more effort into formalizing the
problem than in solving it. Moreover, the solutions are not deterministic in the way
that one defines all the constraints that occur, and all solutions belong to the solu-
tion space. Then, as a natural follow up, one can learn properties from the analysis
of this space. A massive number of modeling techniques are following this schema
with several applications in metabolic engineering (see [163] for the state-of-art
review of the domain). Among them, one could mention the dynamic extension
of FBA that overcomes the quasi-steady-state hypothesis. This method divides the
simulation into time intervals and computes FBA for each of them. The results
computed for one interval will be used as an external input for the computing FBA
in the following interval.

4.3.2 Quantitative modeling of genome-scale microbial communities
at steady states

Following the rise of omics knowledge and the metabolic description of ecosys-
tems in Section3.1, modeling the metabolism of the microbial ecosystem saw a
recent gain of interest [117]. In particular, two publications by [13] and [158],
had reviewed the use of metabolic modeling in communities. In both works, they
promote the use of Constraint-Based Modeling as previously done on single organ-
isms, but mention three modeling extensions: Lumped or “Soup,” compartmental-
ization and bi-level optimization.

Lumped or “Soup” approach is perhaps the most straightforward approach. It
consists of ignoring the boundaries between species and stores all detected genes
(and corresponding reactions) into a single virtual entity, assuming a generalized
biomass objective function that could represent the whole community. Here, the
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metabolic capabilities of all organisms present are the focus. However, one must
notice here that this approach changes the fundamental properties of the network
and the accuracy of flux values carried out by specific organisms (see [116]).

On the contrary, the compartmentalization approach considers each species as
a compartment of the ecosystem, and compartments share metabolites via an extra
compartment, which represents the extracellular environment. Thus a general ma-
trix that depicts the ecosystem is composed of several stoichiometric matrices that
depict individual metabolic models. Each metabolite is defined not by its chemical
definition but also by the compartment it is involved (i.e., metaboliteM1 will be de-
fined asM1A to describe the appurtenance ofM1 to the organism A). The exchange
reactions between each species and the shared extracellular space allow capturing
mechanistic interactions such as mutualism or competition [188, 192, 117, 111]. In
these modelings, the sum of the biomass of all organisms describes the objective
function of the ecosystem, that one will optimize.

Finally, the OptCom framework constitutes the bi-level formulation of an op-
timization problem for modeling an ecosystem [223, 222]. OptCom addresses the
optimization of several problems: (i) inter-organisms constraints to model a given
mechanistic scenario and (ii) intra-organism constraints as already formulated by
standard FBA.

As an alternative, we proposed another description of a microbial ecosystem
in:

Marko Budinich, Jérémie Bourdon, Abdelhalim Larhlimi, and Damien Eveillard.
A multi-objective constraint-based approach for modeling genome-scale

microbial ecosystems. PLoS ONE, 12(2):e0171744, 2017

In this study, we consider (i) the use of multiple compartments to model the in-
terplay of several organisms; (ii) a specific objective function is associated with
each compartment (but not the extracellular compartment); and (iii) all these ob-
jective functions must be maximized concurrently. This new formulation calls for
a change of modeling paradigm: Multi-Objective Optimization. The ecosystem
solution space will then be described as a Pareto front that results when multiple
objectives are satisfied.
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Abstract

Interplay within microbial communities impacts ecosystems on several scales, and elucida-

tion of the consequent effects is a difficult task in ecology. In particular, the integration of

genome-scale data within quantitative models of microbial ecosystems remains elusive.

This study advocates the use of constraint-based modeling to build predictive models from

recent high-resolution -omics datasets. Following recent studies that have demonstrated

the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic net-

works, we sought to study microbial ecosystems as a combination of single-strain metabolic

networks that exchange nutrients. This study presents two multi-objective extensions of

CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-

objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat

model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as

well as thermodynamically favorable relative abundances at community level, were empha-

sized. We expect this approach to be used for integrating genomic information in microbial

ecosystems. Following models will provide insights about behaviors (including diversity)

that take place at the ecosystem scale.

Introduction

Microbial organisms comprise approximately 50% of the Earth’s biomass [1, 2] and their inter-

play drives most biogeochemical cycles [3, 4]. The study of microbial interactions, which occur

at the molecular scale, remains crucial to the elucidation of larger-scale processes [5]. Several

models have attempted to simulate the quantitative impact of molecular-scale processes at an

ecosystem level. Among others, trait-based approaches have gained attention as a precise way

to understand and predict the quantitative behaviors of microbial communities [6, 7]. How-

ever, such models remain difficult to apply to most communities without the additional exper-

tise required for deciphering particular traits and performing extensive experiments to design

accurate parameters [8]; such expertise is often unavailable for the study of natural

communities.
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In the last decade, great advances have been made in the development of high-throughput

techniques that enable the study of the metagenomics, meta-transcriptomics, and meta-meta-

bolomics of natural communities. Such techniques provide ‘omics-scale information for

organisms, from which it is possible to identify specific molecules (e.g., DNA, mRNA, metabo-

lites) present in a particular microbial ecosystem. Such studies of microbial ecosystems have

facilitated drastic changes in approaches utilized for characterizing microbial communities [9,

10], thus leading to the emergence of the field of microbial systems ecology. Further, advances

in bioinformatics and computational techniques have enabled the development of next-gener-

ation sequencing technologies for the qualitative analysis of microbial environments by

emphasizing who is there and who is not [11] and allowing the study of the co-existence of

microbial strains under different environmental conditions (see [12] for illustration). How-

ever, among the most significant challenges in modeling microbial communities remains the

ability to quantitatively predict microbial community composition and functions under spe-

cific environmental conditions.

We propose to overcome this challenge by using recent systems biology approaches for the

prediction of quantitative behaviors of single organisms based on genome-scale data [13, 14].

This study presents a natural extension of such approaches via their application to the model-

ing of microbial ecosystems and the elucidation of their quantitative features [15, 16].

Genome-scale descriptions, in this context, are provided by metabolic networks. A meta-

bolic network summarizes the set of biochemical reactions encoded by the genome of a given

organism. Two reactions are linked within a metabolic network if the substrate of one reaction

is the product of the other. Such genome-scale descriptions of organisms are currently applied

in systems biology for the purpose of investigating physiology [17]. In particular, for an

increasing number of species, current bioinformatics protocols build genome-scale metabolic

networks from genome-scale transcriptomic or metabolomic data [18].

Quantitative analyses utilize such metabolic networks as inputs for constraint-based models

(CBMs) in order to infer physiological features based on a genome-scale description [17]. As a

central assumption, constraint-based modeling considers the constraints defined by the set of

reactions as linked within a metabolic network at steady state, and assume the corresponding

model to behave optimally to achieve a given objective [13, 14]. The use of constraint-based

modeling for microbial ecosystems, which involves the generation of a framework to perform

data integration as well as mathematical descriptions useful for numerical simulations, seems

promising [16, 19].

Several attempts have been made to model the metabolic network of microbial communi-

ties. Rodrı́gez et al. [20] proposed to use a “supra-organism” assumption, which considers

reactions of all members of the community as a single entity. While such an approximation

was used in recent studies (see Biggs et al. [21] and Perez-Garcia et al. [22] for a review), Kilt-

gord and Segré [23] previously showed that fluxes from a compartmentalized network and its

de-compartmentalized counterpart (i.e., supra-organism approach) are significantly different

in their predicted FBA and FVA values. Furthermore, they show that fluxes using both

assumptions are often not correlated. Such a distinction between both modeling results, along

with the indisputable presence of compartments within ecosystems, clearly advocates for the

use of compartments in the modeling. Considering so, several modelings have been proposed.

However, while they all assume to consider distinct compartment for each microbial strain

involved, they differ in their use of choosing the objective function. Stolyar et al. [24] first pro-

posed a compartmentalized flux balance approach for modeling a mutualistic co-culture that

requires an “ecosystem function”. Such a function is usually a weighted sum of each compart-

ment objective. Nevertheless, the relative weight of each strain objective function remains

Microbial ecosystems multi-objective constraint-based modeling
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herein at the discretion of an empirical expertise that is mostly out of reach for complex or

uncharacterized microbial ecosystems.

To overcome such a weakness, more elaborated modeling approaches have been proposed.

Zomorrodi and collaborators [25, 26] modeled each organism in a microbial community as a

single CBM with its own objective function, nested within a global ecosystem model, thereby

enabling the maximization of an ecosystem objective function. This approach still require to

design an ecosystem objective function but proposes a multi-level optimization that considers

both microbial strain and ecosystem objectives. Meanwhile, Khandelwal and collaborators

[27] (followed by [28]) advocates for the use of the “balanced growth” concept, according to

which all microorganisms grow at the same rate. Accordingly, this approach considers several

compartment with no ecosystem objective function per se but rather introduces community

fractions into the formulation, adding new degrees of freedom to the general optimization

problem. Worth noticing, such a modeling assumption is justified for microbial communities

for which biomass production is monitored and constrained in chemostat, but not necessary

for open systems as observed in nature.

In this study, we propose a complementary model, to investigate the general case of micro-

bial ecosystems. Based on Pareto optimality [29], we aim at describing all the feasible solutions

considering metabolic constraints from each strain with no design of ecosystem function.

Consistent with previous works, the present study considers the community as a compartmen-

talized system in which each organism (i.e., a compartment) has (i) its own objective to opti-

mize and (ii) shares metabolites through the environment. Contrary to above methods, our

approach is based on multi-objective optimization, which allows us to consider the objective

function of each organism simultaneously.

Specifically, following previous works, we implemented a multi-objective flux balance anal-

ysis method [30], henceforth known as MO-FBA, for microbial communities, which is based

on an exact resolution algorithm. Additionally, we introduced a complementary multi-objec-

tive flux variability analysis (MO-FVA) method. These analyses emphasize putative metabolic

behaviors that are optimal at the community level, while considering metabolic constraints for

each strain. Finally, we performed complementary thermodynamics analysis [31], which

enabled us to pinpoint (i) favored ecosystem responses to environmental parameters and (ii)

the corresponding diversity.

For the sake of MO-FBA and MO-FVA illustration, this study models a microbial ecosys-

tem comprising three distinct phenotypes: a primary producer, Synecococcus spp. (SYN), fila-

mentous anoxygenic producers (FAP), namely Chloroflexus spp. and Roseiflexus spp.; and

sulfate-reducing bacteria (SRB, composed by Thermodesulfovibrio spp.-like activity, [32]), as

described in [33]. Results emphasize trade-offs between distinct bacterial growth rates based

not only on environmental conditions and genome-scale descriptions of each strain, but also

thermodynamical quantitative predictions that are consistent with experimental knowledge.

Material and methods

Metabolic networks as constraint-based models

The genomic data for a particular microorganism describes a set of genes, allowing the identi-

fication of enzymes and related reactions. Reactions produce metabolites that are used as sub-

strates in subsequent reactions; such interplay constitutes a “metabolic network” whose size

may vary from few tens to several hundreds of reactions [14]. Metabolic networks are modeled

(Fig 1A) in order to study the physiology of the relevant microorganism. In particular, meta-

bolic models are used to infer reaction rates, also known as fluxes, without using kinetic

parameters. For this purpose, a metabolic model is formally described by its stoichiometric

Microbial ecosystems multi-objective constraint-based modeling
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matrix S (Fig 1B), where the rows correspond to the metabolites and the columns correspond

to the reactions considered in the metabolic network. At steady-state conditions, the rate of

formation of internal metabolites is equal to the rate of their consumption. This is expressed

by the flux balance equation Sv = 0, where v = (v1, . . ., vr) stands for the flux vector, i.e., vj is

the flux of reaction Rj for all j = 1, . . ., r.

Under steady-state conditions, the continuous supply of metabolites from the media is facili-

tated by exchange reactions at a constant rate (dark gray eclipses and dashed lines in Fig 1A and

highlighted dark gray block in Fig 1B). This matter exchange with the media allows the meta-

bolic network to be in a non-equilibrium steady state (NESS). If metabolite exchange were not

possible, then for each reaction the only possible state would be the chemical equilibrium, with

all net fluxes equal to zero [31]. In the following, B and ξ represent, respectively, internal reaction

and exchange reaction submatrices (light gray and dark gray blocks in Fig 1B, respectively).

Occasionally, exchange rates may be experimentally measured and incorporated into the model

as equations of the form vi = b for reaction i. In addition, maximal and minimal flux values may

be expressed as lower and upper bounds constraints, by equations of the form li� vi� ui, result-

ing in a model described as a set of constraints. Such models are termed CBMs. CBMs usually

comprise more reactions than metabolites; therefore, these models are undetermined in that

when a solution v exists, it is not unique. All feasible solutions define a “flux space” (Fig 1C) that

may be further analyzed through several state-of-the-art approaches. For a detailed review of

these methods, the reader may wish to refer to [13] and [14].

Flux balance analysis. Flux balance analysis (FBA) is one of the most widely used

approaches for the identification of points of interest in the flux space [14]. Using this method,

an objective function (for example, biomass production) is stated and its maximal value within

the flux space is determined. In addition to the flux balance constraints, FBA utilizes flux

capacity constraints that limit the fluxes of reactions. An optimal flux vector may be obtained

by solving the following linear program (LP):

maximize
v 2 Rn

z ¼ c⊺v

subject to

Sv ¼ 0

li � vi � ui i ¼ 1; . . . ; n;

where c⊺ v is a linear combination of fluxes that represents the objective function (i.e., biomass

production or growth rate). From linear programming theory, it is known that the optimal

value z� of objective function is unique; however, multiple flux distributions (i.e., values of v)

that achieve the same optimal value z� may exist.

Flux variability analysis. The set of all optimal flux distributions, i.e., those with an opti-

mal objective value of z�, may be investigated by using Flux Variability Analysis (FVA) to

Fig 1. Construction of a Constraint Based Model (CBM). (A) Metabolic Network is represented as a chart

of metabolites (ellipses) trough chemical reactions (arrows); borders represent the system boundary. (B)

depicts the Stoichiometric Matrix, in which reactions are presented as columns and metabolites as rows.

Each coefficient Sij of the matrix corresponds to the stoichiometric coefficient of metabolite Mi in reaction Rj,

with reactants as negative and products positive. Exchange reactions and exchange metabolites are placed in

the right and inferior section of the matrix, respectively. Therefore, submatrix ς is in the left and highlighted in

light gray while submatrix ξ is highlighted in dark grey (see text). Normal gray depicts a matrix with only zeros.

(C) Flux space, also known as “solution space”, is defined by the set of restrictions of the CBM (mass balance

in steady state, bounded reaction rates, etc.) and contains all possible values of v.

doi:10.1371/journal.pone.0171744.g001
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determine the flux range of each reaction in the metabolic network [14]. Formally, FVA solves

the two following LPs for each reaction Rj:

maximize = minimize
vj 2 R

vj

subject to

c⊺v � a � z�

Sv ¼ 0

li � vi � ui; i ¼ 1; . . . ; n

where a 2 R; 0 � a � 1 represents the fraction of the optimum value with respect to the FBA

objective value to be considered. FVA allows the user to infer specific properties of the fluxes

involved. For example, essential reactions have strictly positive or negative fluxes, whereas

blocked reactions are constrained to have a flux value equal to zero.

Both FBA and FVA are today state-of-the-art tools to explore CBMs [13]. From a computa-

tional viewpoint, several algorithms are available to solve these optimization-based approaches

(see section Solving Linear Optimization Problems).

Thermodynamic constraints metabolic networks. FBA and FVA utilize constraints

derived from mass conservation laws; however, it is possible to exploit thermodynamic laws to

derive constraints in order to obtain further insights into the behavior of a metabolic system

[31, 34, 35]. In biochemical systems, each metabolite has an associated chemical potential μi

(expressed in J.mol−1), which quantifies the potential to perform chemical work. Chemical

potentials depend on metabolite concentration according to mi ¼ m0
i þ RT lnðxi=x0

i Þ, where xi

is the molar concentration, x0
i is the standard reference concentration (1 M) and μ0 is the stan-

dard chemical potential (dependent on temperature, pressure, and ionic strength); these are

usually tabulated [36, 37]. For a reaction j, the stoichiometric sum of the chemical potentials of

the metabolites involved is equal to the Gibbs energy of the reaction, i.e., DrGj ¼
Pn

i Sij mi

where Δr Gj� 0 for a spontaneous reaction. In the following, we note the Gibbs energy of reac-

tion as a difference of potentials, i.e., Δμj¼
: Δr Gj.

Under NESS conditions, the entropy balance implies that Δμ⊺ vB = μ⊺ vξ, where vB represents

the internal portion of fluxes, vξ boundary fluxes, and Δμ and μ are vectors of components Δμj

and μi, respectively. The term μ⊺vξ represents the chemical motive force or cmf of the network,

which accounts for energy related to boundary fluxes [31]. This equation may be interpreted

as internal fluxes being driven by the consumption of external chemical potential.

The integration of such equations into general CBMs is not straightforward, as in most of

applications, concentrations xi are not known; therefore, these must be introduced as variables.

As a result of non-linear expressions, CBM formulations using these constraints are generally

more complex to solve [38–40].

Solving linear optimization problems. In general, optimization problems are aim at

determining f(v) where v is usually required to satisfy constraints. Linear optimization prob-

lems (LPs) are a particular kind of optimization problem where both objective function and

constraints may be expressed as linear functions of variables, i.e., max f = c⊺v, Av = b; where v

is a vector of variables, c is a row vector of n coefficients, A is a matrix of n columns and m
rows, and b a column vector of m values. The solution space of LP problems are polyhedrons

that are characterized by their extreme points.

The first algorithm to solve a LP, which was proposed in 1947 by Dantizg [41], was based

on the fact that if the objective function has an optimum value in the feasible region, then it

reaches this value in at least one of the extreme points. The algorithm begins its search in one

Microbial ecosystems multi-objective constraint-based modeling
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vertex of the feasible region and then starts visiting adjoint vertexes until the objective function

value cannot be improved. Currently, several solvers such as GUROBI [42] or GLPK are capa-

ble of solving LPs and other types of single objective problems (SOPs) efficiently.

From single microorganisms to microbial ecosystems

In order to model a microbial community, each strain is considered a single compartment [19,

25, 27] that shares metabolites with other strains (see Fig 2A). As the stoichiometric matrix of

a single organism, the structure of the ecosystem is described by a stoichiometric matrix Sσ,

which is formed by the stoichiometric matrices of each single organism. Accordingly, for a

community of k microorganisms, k metabolic models must be considered and represented by

their corresponding stoichiometric matrices: Sl, l = 1, . . ., k.

As shown in Fig 2B, matrices S1 to Sk are used to construct a diagonal block matrix. Each

block is linked to a pool compartment, that mirrors exchange fluxes between each organism

and the environment (−ξl, for l = 1, . . ., k in Fig 2B). A set of exchange reactions Rq to Rn for

metabolites Mq to Mn between the Pool and the external environment, is additionally set (bot-

tom right in Fig 2B). Finally, as for single organisms, a steady state hypothesis restricts the

solution set by adding a constraint Sσ v = 0. Together with flux bound constraints li and ui,

these constraints describe a solution flux space, as depicted in Fig 1C.

Multi objective flux balance analysis of a microbial ecosystem. Each compartment

above corresponds to an organism with a specific objective function ck. Accordingly, the fol-

lowing multi-objective optimization problem, for analyzing flux balance conditions

(MO-FBA), may be defined:

maximize
v 2 R�n

f1

. . .

fk

0

B
B
B
@

1

C
C
C
A
¼

c⊺
1
v

. . .

c⊺kv

0

B
B
B
@

1

C
C
C
A

subject to

Ssv ¼ 0

li � vi � ui i ¼ 1; . . . ; �n

where (f1, . . ., fk)⊺ are the objective functions of the k organisms and �n is the total number of

reactions (i.e., the sum of reactions of each organism and exchange reactions from the pool

compartment). The general class of MO-FBA problems is referred to as the multi objective
problems (MOP) [29, 43]. Contrary to single objective problems, solution of MOPs is a set of

vectors instead of a single value, producing a Pareto front (see section Solving Multi Objective

Optimization Problems), defined in the objective space (Fig 2C). In our present formulation,

all constraints and objective functions are linear, thereby resulting in a particular type of MOP

known as the multi-objective linear problem (MOLP).

Fig 2. Illustration of microbial ecosystem CBM. For the sake of illustration, an ecosystem may be

considered to comprise three microbial strains. (A) According to the metabolic model, each microorganism is

considered a separate compartment, depicted here in green, orange, and purple. Metabolic networks are

linked via an additional compartment, termed the “pool” (blue)), which sums up all external metabolites

exchanged between organisms and the environment. (B) depicts the Stoichiometric Matrix Sσ, where each

compartment is colored accordingly, with their corresponding ς and ξ submatrices. (C) Pareto front. When

performing an FBA for multiple organisms, a set of points known as the Pareto front (in yellow) is obtained.

Objective functions f1, f2 and f3 define the “objective space”.

doi:10.1371/journal.pone.0171744.g002
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Interpretation of MO-FBA can be done in terms of growth rates and resources used to pro-

duce such growth. Indeed, if one of the members of the ecosystem decreases its growth rate,

more resources are available for other members. According to their particular physiologies,

they can use these new available resources to increase their own biomass. A guideline contain-

ing three ideal cases for two guilds is provided in S1 File.

Flux variability analysis of a microbial ecosystem. Given a particular point f� of the

Pareto Front, the multiple optimal flux solutions that achieve the optimal objective values, as

given by the Pareto optima f�, must be explored. To this end, we propose the use of the multi-

objective FVA (MO-FVA) for multiple organisms, which may be considered a straightforward

extension of FVA (see Flux Variability Analysis). Indeed, given a reaction Rj with j ¼ 1; . . . ; �n,

the range of the flux vj may be determined by solving the following LPs:

maximize = minimize
vj 2 R

vj

subject to

C⊺v � a � f�

Ssv ¼ 0

li � vi � ui i ¼ 1; . . . ; �n

where C is the matrix such as the column j corresponds to objective function cj, i.e, C is col-

umn defined as C = [c1, . . ., ck]. a 2 R; 0 � a � 1 is the fraction of the optima considered.

Thermodynamics analysis in the context of a microbial ecosystem. Biological systems

are hypothesized to favor thermodynamic states where entropy production is maximal [44,

45]. To take into account this hypothesis, given a particular point f� of the front, we propose

the following: First, a MO-FVA must be applied to determine Rj for each reaction, with j ¼
1; . . . ; �n and the range [aj, bj] of the flux vj near the Pareto optima f�. Next, the following opti-

mization problem must be considered:

maximize
i2x

cmf ¼
P

mivi

subject to

ai � vi � bi; i 2 x;

m0
i � dgi � mi � m0

i þ dgi;

where ξ is the set of exchange reactions and dgi ¼ RTlnðxi=x0
i Þ. As cmf is non-linear, optimiza-

tion algorithms based on heuristics must be used in order to obtain a numerical solution to

this problem (see Computational Procedures).

Solving multi objective optimization problems. In 1906, Vilfredo Pareto in his Manuale
di Economia Politica, stated that, while (economic) optima have not been achieved, it is possi-

ble to increase the objective of an agent (i.e., welfare) without decreasing that of another [46].

In the following, a formal definition of Pareto optima and efficient solutions is given [43] and

approaches to solutions are discussed.

Let X � Rn and Y � Rp represent the flux space and objective space, respectively, where

X is defined by the set of restrictions and Y :¼ fy j y ¼ fðxÞ; x 2 Xg, with f ¼
ðf1ðxÞ; . . . ; fpðxÞÞ

⊺
denoting the objective functions. If both X and Y are constructed using lin-

ear restrictions and linear objective functions, the MOP represents a MOLP.

A point y 2 Y is a Pareto optimum if there is no y� 2 Y such as y�j � yj; j ¼ 1; . . . ; p and y

6¼ y�. Similarly, yw is a weak Pareto optimum point if there is no y� such as

y�j > yw
j ; j ¼ 1; . . . ; p. A point x 2 X is an efficient solution if there is not a x� 2 X such that
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f(x�)� f(x). A xw 2 X is a weak efficient solution if there is no x� 2 X such as f(x�)> f(xw).

Therefore, a (weak) Pareto optimum is the image of a (weak) efficient solution. Note that all

efficient solutions are also weakly efficient solutions but no vice-versa. The collection of Pareto

optimal points is termed Pareto Front.

Approaches for solving MOPs have been reviewed, for example, by [43] and [47]. Tradi-

tional approaches makes use of “scalarization techniques”, that involve the transformation of

the MOP into a SOP by using a real-valued scalar function of the objective functions. Solution

approaches using scalarization techniques aim to find the set of (weak) efficient solutions

x� 2 X .

The most well known approach is the “weighted sum approach”, wherein the weighted sum

of the objective functions is optimized, i.e., max ∑ λk fk(x), where x 2 X and λ 2 Rp is a given

weight vector with components λk� 0 and at least one λk > 0. If x� is a solution of this SOP

then x� is an efficient solution of the MOP. Furthermore, if the MOP is convex, the inverse is

also true.

Another commonly used approach is the “�-constraint method”, where only one objective

function is retained as the objective and the remaining objective functions are used to intro-

duce new constraints. Then, the j-th �-constraint problem is as follows: max fj(x), subject to

fi(x)� �i, i 6¼ j and x 2 X . If x� is a solution of this SOP, then x� is a weak efficient solution of

the MOP.

Not all approaches rely on scalarization: for MOLPs, a set of algorithms describing the

shape of the image of efficient points, YE :¼ fCx j x is efficientg, referred to as “outer

approximation” or “Benson type” algorithms, have been described [48–51]. Generally speak-

ing, these type of algorithms calculate Y and identify their vertices, which correspond to

Pareto optimal points; additionally, despite their names, these algorithms provide exact solu-

tions. BENSOLVE [52], a solver based on these approaches, computes a set of directions and

points describing the image of the efficient points.

Existing CBM approaches for communities. The various approaches to studying micro-

bial communities have been recently reviewed by Biggs et al. [21] and Perez-Garcia et al. [22].

Among the methods reviewed, OptCom most closely resembles the approach presented here,

in that each member of the community is considered to maximize its own biomass. OptCom

is based on bi-level optimization, where an “outer” maximization problem represents the

whole community and each member of the community is represented by a “inner” optimiza-

tion problem. Inner optimization problems are solved using the primal-dual theorem, which

transforms the whole bi-level formulation into a non-convex single-objective form [25]. A sec-

ond approach that combines compartments and FBA, known as community flux balanced

analysis, advocates the application of a “balanced growth” hypothesis, wherein each compart-

ment grows at the same rate. Furthermore, this approach considers the biomass fraction of

each member of the community. In general, the approach is non-linear, although it may be

made linear by fixing biomass fractions and solving the corresponding FBA. Then, optimal

solutions for various combinations of biomass fractions may be explored [27]. For illustration

purposes, the application of our approach to the analysis of a microbial ecosystem is discussed

below.

Case study: Hot spring mat

In order to illustrate the application of the present approach, we modeled the microbial ecosys-

tem of hot spring microbial mats [33]. Briefly, this ecosystem is composed of three guilds, rep-

resenting three commonly found phenotypes: Synechococcus spp. (SYN), Chloroflexus spp. and

Roseiflexus spp. (FAP) sulfate-reducing bacteria (SRB). SYN is a primary producer that fixes
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carbon and nitrogen for further utilization by other strains. The use of these guilds allows sim-

plification of the ecological diversity while capturing essential metabolite-exchange relation-

ships. Under light conditions, the major fate of nutrients involves assimilation into cells [53];

therefore, most of the overall system growth occurs during the daytime. As growth rates are

related to biovolumes, predictions may be compared with relative abundance data. Therefore,

we will focus on the daytime model as described in [33] (Fig 3), assuming a simplified night-

time behavior, as described below.

Using the available compartment model of this system, as described in [33], we performed

a manual curation (i.e., balancing equations and including intermediate reactions) using

METACYC [54]. Model equivalent reactions in [33] are provided in S2 File. Nitrogen fixation

has been shown to take place at night and in the early morning [55, 56]; therefore, a nitrate

assimilation mechanism for SYN was included and considered as functional. Finally, biomass

coefficients of each guild were scaled to match 1 (h−1) as maximal growth rate [57].

Glycolate is produced by the use of O2 instead of CO2 by the Rubisco enzyme; the flux ratio

between the use of O2 and CO2 varies between 0.03 and 0.07. This restriction was included

Fig 3. Day Model of the Hot Spring Mat Community. The model comprises three guilds of microorganisms of the SYN, FAP, and SRB phenotypes.

Organics acids produced by SYN may be utilized by FAP and SRB. FAP is capable of fixing carbon by anoxygenic photosynthesis. Under anoxygenic

fermentation conditions, FAP is additionally capable of producing hydrogen, which, in turn, may be used by SRB.

doi:10.1371/journal.pone.0171744.g003
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linearly in the model by fixing a ratio of 0.03 between SYN reactions RXN-961 and RIBULO-
SE-BISPHOSPHATE-CARBOXYLASE-RXN during all calculations, under the hypothesis

that the system is in anaerobic state.

Excess photosynthate producing during the day is stored as polyglucose (PG) by SYN. PG is

fermented at night, producing several organic acids that accumulate in the media and are inte-

grated as biomass mostly under light conditions [53, 58]. In order to capture this behavior in

the daytime model, PG was not allowed to accumulate; therefore, the excess photosynthesis

activity is redirected through acetate production. Accordingly, in our model, acetate is inter-

preted as equivalent to several forms of reduced carbon.

For each of the exchanged metabolites, standard Gibbs energies for biological conditions

were obtained from [37], using calculations from [36]. Values used are found in S2 File. For

the pseudo-compound hv (representing photons), a standard chemical potential was

estimated based on glucose synthesis from CO2: 6CO2+6H2O� !
48 hv

C6H12O6. The

assumption that this reaction approaches equilibrium at standard biological conditions (i.e.,
Δμ = 0) implies that μhv = 68.6 kJ.mol−1 (S2 File). The metabolite concentration was allowed to

vary between 103 and 10−3 M, and therefore chemical potential equals mi ¼ m0
i � dg, where

dg = RTln(103)� 20 (kJ.mol−1) for T = 75˚Celsius. For water and hv, concentrations were

considered as fixed at 1 M, implying dgH2O
= dghv = 0.

Computational procedures

For each guild, a metabolic model was built in MATLAB and an ecosystem stoichiometric

matrix Sσ was constructed, as described above. MO-FBA was carried out using BENSOLVE

[52]. In order to analyze nitrogen and carbon fluxes through MO-FBA results, a MO-FVA was

performed using GUROBI [42] through Python interface over a mesh of 5 151 equally distrib-

uted points in the Pareto surface at 90% fraction of optimum. Then, we subdivided the Pareto

surface into 225 similar regions; for each of these regions, we calculated their maximum (as

well as their minimum) as the average of MO-FVA maxima of mesh points contained (this

procedure was repeated for the minima). Thermodynamics calculations were performed over

the same mesh as the MO-FVA using a truncated Newton conjugate algorithm [59] contained

in scipy optimization module. Heatmaps and surface illustrations were generated using mat-

plotlib [60] with ad-hoc scripts.

From methods discussed in Biggs et al. [21] and Perez-Garcia et al. [22], OptCom [25] was

chosen for comparison, as this method resembles the approach applied to the present work.

We applied OptCom and Descriptive OptCom to the hot spring mat model, as follows: first,

11 points were calculated using OptCom, as described by [25], each with a different upper

boundary value for SYN biomass; these values ranged from 1.0 to 0.0 with a step of 0.1 (i.e. 1.0,

0.9, 0.8, . . ., 0.0). Second, Descriptive OptCom was applied three times using SYN to FAP

ratios of 1.5, 2.5, and 3.5, respectively. All programs were written in GAMS language and

solved using BARON [61] through the NEOS Server [62–64].

All scripts are available in https://gitlab.univ-nantes.fr/mbudinich/MultiObjective-

FBA-FVA

Results

Biomass distribution as relative microbial strain abundance

SYN, SRB, and FAP growth rates are represented in a 3-dimensional space, in each axis,

respectively, in Fig 4A. MO-FBA solutions are described as a Pareto front, representing a sur-

face with five extreme points of biomass growth: (1, 0, 0), (0, 1, 0), (0, 0, 1); the points
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corresponding to the maximal growth rates of each guild, and points (0.27, 0.00, 0.89) and

(0.00, 0.46, 0.65). In the following, these points are designated P1, P2, P3, P4, and P5, respec-

tively. For clarity, this Pareto front is then projected in a two-dimensional space. Therefore,

over a triangular surface defined by P1, P2, and P3, heatmaps were produced using the values

for the growth rate of SYN, FAP, SRB, as well as their sum, to depict the overall microbial

abundance (Fig 4B–4E, respectively). Each vertex of the triangle represents the maximal

growth rate of a guild, while its opposing side represents a zero growth rate for that guild.

The results show that when each guild grows at its maximal rate, no biomass is produced by

the other guilds. The sum of the growth rates is always minimal in vertices (blue areas in

Fig 4E). As the growth rates may be directly related to biovolumes [33], red to yellow areas in

Fig 4E represent regions where most of the total biomass of the ecosystem is present. Notably,

these regions correspond to guilds growing at sub-optimally rates.

Nitrogen and carbon fluxes between microbial guilds

Multi-objective FVA was performed in the P4 and P5 regions to explore NH3 import and export

fluxes between guilds (Fig 5A, upper and lower panel, respectively). Notably, the growth rate of

each strain was found to be related to the use of ammonia; the SYN guild re-oxidized ferredox-

ins, which were reduced in the photosynthetic reactions, via nitrate assimilation reactions,

thereby promoting permanent ammonia production. When growing sub-optimally, NH3 that is

not used to build biomass is excreted. This point is emphasized in Fig 5A, where both maximal

and minimal reaction rates are strictly positive for SYN, resulting in an export to the pool.

Nitrogen uptake by FAP and SRB occurs solely from ammonia that is available in the pool

compartment; therefore, these strains compete for its intake. When SRB is not growing

Fig 4. 3D and 2D Projections of Pareto Front. (A) shows a 3D Pareto front, in yellow, describing the maximal growth rates of SYN, FAP, and SRB (in

terms of units per hour, h−1), when considered as a system. It is evident that a decrease in the growth rate of one organism results in an increase in that of

the other two, but not necessarily in equal proportions (see S1 Video for an animated view). The sum of the growth rates of all the guilds in P4 and P5 was

1.16 (h−1) and 1.11 (h−1), respectively. In (B), (C), (D), and (E), the Pareto front was projected onto the triangular surface formed by P1, P2, and P3. (B), (C),

and (D) shows the respective growth rates for SYN, FAP, and SRB, respectively. (E) shows the sum of the three growth rates, which represent the total

biomass of the ecosystem.

doi:10.1371/journal.pone.0171744.g004
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Fig 5. Multi Objective FVA. (A) shows NH3 maximal and minimal fluxes for SYN, FAP, SRB, and pool compartments (green, yellow,

purple, and blue respectively) for extreme points P4 and P5. The export of NH3 by SYN is correlated with a drop in their growth rate;

similarly, increases in NH3 intake are correlated with increases in the growth rates of FAP and SRB. (B) Three sections selected for the

illustration of MO-FVA; (C) Mean values of the minimal and maximal fluxes over selected sections of NH3, CO2, acetate, and glycolate

(columns) for each section (rows).

doi:10.1371/journal.pone.0171744.g005
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(superior panel in Fig 5A), excess of NH3 is taken up mainly by FAP (both minima and max-

ima are negative, implying an intake from the pool). Small amounts that are not taken up by

FAP may be either taken up by SRB (maximal rate value is null and minimal rate negative,

which depicts a possible import) or excreted to the external environment (pool maximal rate

value is positive and minimal rate value is null, which depicts a possible export to the media).

When SRB is growing (inferior panel of Fig 5A), the uptake rate of ammonia by SRB and FAP

is similar, with no export to the external media.

In order to analyze the relationships between the growth rate of each strain and nitrogen-

or carbon-related fluxes, we performed a MO-FVA as described in Computational Procedures,

focusing on exchange reactions. For the purpose of illustration, we highlighted three sections

from 225 calculated, as shown in Fig 5B. These regions were chosen to depict the theoretical

interplay between SYN and FAP when the growth rate of SRB is low [65]. Flux variability of

exchange fluxes for these regions is shown in Fig 5C (see S1 Fig for an alternative representa-

tion and S2 to S5 Figs for a complete MO-FVA for ammonia, acetate, carbon dioxide and gly-

colate fluxes).

For NH3 exchange reactions, high growth rates of SYN are related to lower levels of ammo-

nia export, which represents a limiting factor for FAP and SRB growth rates. This results in the

two strains competing for its use (S2 Fig). Fig 5C shows that most of the ammonia produced

by SYN is captured by FAP, while a small proportion is taken up by SRB. Ammonia that is not

captured is released into the pool.

SYN consumes approximately the same amount of CO2 under all relative abundance

conditions (see second column in Fig 5C and S4 Fig), indicating that carbon compounds

are involved in reactions that serve functions other than biomass synthesis. Acetate intake

by FAP is less restrained at low growth rates of SYN than at high growth rates (see Fig 5C

and S3 Fig).

The present results additionally emphasize that FAP and SRB produce relatively small

amounts of CO2 at low growth rates. However, when the growth rate of FAP increases, the

maximal excretion of CO2 reduces, whereas its minimal excretion increases; these data indi-

cate the theoretical efficiency of carbon management, as experimentally reported by [53]. Gly-

colate metabolism by FAP appears to be reversible as its minimal flux is negative (i.e., intake)

while its maximal flux is positive (i.e., excretion), implying that intake or excretion by FAP is

related to the relative abundance of other strains (see Fig 5C and S5 Fig for details).

Chemical potentials drive community growth rates

As discussed previously, the direct integration of thermodynamic constraints into MO-FBA

and MO-FVA formulations is complex. Instead, we used the thermodynamic optimization

problem stated in as a post-treatment analysis. Considering fluxes as computed by MO-FVA

in 5 151 points of Pareto front (as a result of which growth rates are also determined), we esti-

mated the corresponding maximal cmf for each point (Fig 6A).

Results show that higher cmf is associated with SYN growing at its optimal rate. Lower cmf
rates are related to a higher growth rate of SRB, whereas the impact of the growth rate of FAP

on the value of cmf appears to be lower than that of SRB.

Given that all surface showed positive values, all regions are feasible from a thermodynamic

viewpoint. Under the hypothesis that a biological system prefers configurations in which

entropy production is maximal, it is expected that an ecosystem would favor growth rates with

higher cmf (redder areas in Fig 6A), predicting higher SYN growth rates. This prediction is

consistent with in vivo field measurements of SYN: FAP relative abundance ratios in the range

of 1.5 and 3.5, with a low presence of SRB [33, 65], as shown in Fig 6B.
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Comparison with previous approaches

We compared growth rates and flux predictions of MO-FBA and MO-FVA with those

obtained by a comparable approach (OptCom [25]), as described in Computational Proce-

dures. Predictions obtained were mapped as points in the Pareto front (S6 Fig). Values of

growth rates, as well as their corresponding flux values for NH3, acetate, glycogen, and CO2,

are described in S2 File. As expected, all points calculated using the OptCom approach were

included in the Pareto front calculated by MO-FBA (S6 Fig). Furthermore, all flux predictions

for NH3, acetate, glycogen, and CO2 fall into the range predicted by MO-FVA. Without con-

straining SYN biomass (point O1), OptCom does not reach the maximal biomass optimum.

However, when SYN biomass is increasingly constrained (points O2 to O11), the total biomass

increases. This suggests the existence of local optima in the OptCom general formulation for

this model.

The composition of a community that function in a constant environment can be also

assessed using the approaches proposed in [27] and [28]. Here, we focus on modeling the com-

position of a community in a changing medium where the considered organisms could grow

not necessarily with the same growth rate

Discussion

As reported in previous studies, in particular [25], we extended state-of-the-art systems biology

constraint-based approaches to the modeling of microbial ecosystems, by considering a multi-

objective optimization framework. Within the ecosystem, each microorganism, with its own

Fig 6. Thermodynamics in the Pareto front. (A) Description of the chemical motive force (kJ.gr−1.DW−1.h−1) for each point of the Pareto front;

red regions indicate thermodynamically favored growth rates, while the points where the solver does not reach the optimal criteria are shown in

white. The obtained surface appears smooth, without sudden changes in neighboring values. (B) Description of the overall community biomass

distribution based on the growth rate of each strain, with a particular emphasis on regions supported by experimental measurements showing a

SYN: FAP ratio of between 1.5 and 3.5.

doi:10.1371/journal.pone.0171744.g006
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objective function, represents a building block that interacts with others via the exchange

metabolites. Furthermore, the genomic knowledge of each microorganism is integrated as a

set of metabolic constraints. The main advantage is represented by the capture of trade-offs on

objectives and metabolite exchange between members of the ecosystem. While previous works

report topological analyses that focus on pathways that promote cross-feeding between strains

(see [66, 67] for example), this study quantifies fluxes through these pathways as well as their

effect in objective functions, thereby representing a major step towards automatically produc-

ing trait-based models. Through the application of MO-FBA, we emphasize a full description

of the Pareto front that captures trade-offs in the optimal values of the objective function of

each microorganism. Additionally, we introduced MO-FVA as a tool for the analysis of

exchange fluxes between members of the community. These fluxes help to characterize the

optimal behavior of microorganisms, providing insights into the theoretical relative abun-

dances (i.e., a proxy for microbial diversity) and corresponding nutrients usage, that are based

on omics descriptions.

Unlike previous works that consider multiple objectives, our approach does not rely either

on assumptions about ecosystem behaviors, such as maximization of the total ecosystem bio-

mass, ([25, 26]) nor on the balanced growth ([27, 28]) of microbial strains involved. Instead,

we propose to describe all optimal solutions in the sense of Pareto in the objective space. This

approach provides several advantages: firstly, it includes any solution for a system objective

function expressed as a weighted sum of each compartment objective function (see [43] and

section Solving Multi Objective Optimization Problems). Therefore, it comprises all solutions

proposed by OptCom as system objectives for microbial communities [25]. Secondly, no addi-

tional complementary restrictions are required to focus on given solutions, i.e., imposing an

equal growth rate for all members, as proposed by Kandelwal et al. [27]. This restriction

remains valid for controlled microbial ecosystems. Third, the set of constraints remains linear,

which allows a description of the Pareto front for realistic ecosystems. In [25] and [26], formu-

lations are, in general, non-convex; in [27], the stated general optimization problem is non-lin-

ear. However, in order to solve MOLPs, a series of LPs must be solved for which exact

algorithms are fast, thereby reducing computational complexity. Note herein that the last two

points are mandatory to model natural ecosystems that are by definition composed of a large

number of microbial strains and mostly unconstrained.

For illustration purposes, we applied MO-FBA to the daytime part of the diurnal cycle of

the microbial hot spring mat system [33]. As most biomass fixation occurs during the day

phase [53], we assumed that daytime growth rates dominate overall ecosystem rates. Results

show that the maximal total biomass growth rate is achieved when each guild grows at a rate

below its theoretical maximum, which may, based on genomic knowledge, be interpreted as

an altruistic behavior. Mechanistically, when guilds make resources available to others, they

lower their objective value by a certain proportion, based on metabolic pathways used to syn-

thesize those resources and their biomass function. Conversely, the use of new available

resources increases the value of the objective functions of the other guilds. Therefore, the

growth rate of the global maximal ecosystem, which was designated P4 in our case study,

should correspond to the optimal resource allocation scenario from the ecosystem viewpoint.

P4 also corresponds to the optimal solution to maximal ecosystem biomass [25].

MO-FVA results show that nitrogen flux is correlated to growth rates, and that the three

guilds compete for their usage. In contrast, CO2 consumption and glycolyte and acetate pro-

duction by SYN do not seem to be correlated with its growth rate, indicating that these pro-

cesses are not carbon-limited. Reduced carbon, represented by acetate, appears as being the

main carbon flux in the system for FAP and SRB, and becomes a limiting nutrient for FAP at
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high growth rates. This result is consistent with those of [53] and [58], in which a high propor-

tion of reduced carbon was shown to be assimilated by FAP.

By coupling MO-FVA results with chemical potentials, we were able to analyze thermody-

namic constraints and study favored conditions of the Pareto front by comparing their respec-

tive maxima cmf. We observed that the SYN: FAP ratio, predicted using this criteria, is closer

to the 1.5 to 3.5 value observed in field measurements. Thermodynamic considerations under-

line relative strain growth rates, or microbial diversities, that are more favorable from an ener-

getic viewpoint, which indicates that an ecosystem behaves according to two different

objectives: maximal biomass production and maximization of cmf, corroborating previous sys-

tems biology studies that advocate the use of distinct concurrent objectives to predict Escheri-
chia coli metabolic behaviors [68]. In both cases, observations were possible by general

investigation of the Pareto front.

Nevertheless, further refinement of the thermodynamic calculations is warranted. In partic-

ular, the calculation of cmf does not consider biomass concentration; this may be overcome by

considering community fractions as proposed in [27] and [28]. Furthermore, in the current

model, biomass generation does not affect the overall ecosystem entropy; however, on an intu-

itive basis, a larger amount of biomass should increase an entropy term, in terms of Gibbs

energy, as a result of mass dispersion [69], thereby affecting cmf evaluation. These consider-

ations are out of the scope of the present work; however, they but raise interesting

perspectives.

Despite the above limitations, we consider the present form of the modeling approach as

fruitful guidance to gain qualitative as well as quantitative data for the metabolic interplay

between various species in an ecosystem. This method paves the way for improved contextuali-

zation of other -omics datasets in microbial ecology by providing a mechanistic description of

species co-occurrence via analysis of their metabolic interactions.
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27. Khandelwal RA, Olivier BG, Röling WF, Teusink B, Bruggeman FJ. Community Flux Balance Analysis

for Microbial Consortia at Balanced Growth. PLoS ONE. 2013; 8(5):e64567. doi: 10.1371/journal.pone.

0064567 PMID: 23741341

28. Koch S, Benndorf D, Fronk K, Reichl U, Klamt S. Predicting compositions of microbial communities

from stoichiometric models with applications for the biogas process. Biotechnology for Biofuels. 2016; 9

(1):1–16. doi: 10.1186/s13068-016-0429-x PMID: 26807149

29. Ehrgott M. Multicriteria Optimization. Berlin, Germany: Springer Science & Business Media; 2005.

30. Vo TD, Greenberg HJ, Palsson BO. Reconstruction and functional characterization of the human mito-

chondrial metabolic network based on proteomic and biochemical data. Journal of Biological Chemistry.

2004; 279(38):39532–39540. doi: 10.1074/jbc.M403782200 PMID: 15205464

31. Kschischo M. A gentle introduction to the thermodynamics of biochemical stoichiometric networks in

steady state. The European Physical Journal Special Topics. 2010; 187(1):255–274. doi: 10.1140/

epjst/e2010-01290-3

32. Dillon JG, Fishbain S, Miller SR, Bebout BM, Habicht KS, Webb SM, et al. (2007). High rates of sulfate

reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respir-

ing microorganisms. Applied and Environmental Microbiology. 2007; 73(16), 5218–5226. doi: 10.1128/

AEM.00357-07 PMID: 17575000

Microbial ecosystems multi-objective constraint-based modeling

PLOS ONE | DOI:10.1371/journal.pone.0171744 February 10, 2017 20 / 22



33. Taffs R, Aston JE, Brileya K, Jay Z, Klatt CG, McGlynn S, et al. In silico approaches to study mass and

energy flows in microbial consortia: a syntrophic case study. BMC Systems Biology. 2009; 3(1):114.

doi: 10.1186/1752-0509-3-114 PMID: 20003240

34. Beard DA, Liang Sd, Qian H. Energy balance for analysis of complex metabolic networks. Biophysical

Journal. 2002; 83(1):79–86. doi: 10.1016/S0006-3495(02)75150-3 PMID: 12080101

35. Qian H, Beard DA, Liang Sd. Stoichiometric network theory for nonequilibrium biochemical systems.

European Journal of Biochemistry / FEBS. 2003; 270(3):415–421. doi: 10.1046/j.1432-1033.2003.

03357.x PMID: 12542691

36. Alberty RA. Appendix 2: Tables of Transformed Thermodynamic Properties. Applications of Mathma-

tica. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2006.

37. Flamholz A, Noor E, Bar-Even A, Milo R. eQuilibrator–the biochemical thermodynamics calculator.

Nucleic Acids Research. 2012; 40(Database issue):D770–D775. doi: 10.1093/nar/gkr874 PMID:

22064852

38. Hoppe A, Hoffmann S, Holzhütter HG. Including metabolite concentrations into flux balance analysis:

thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Systems

Biology. 2007; 1(1):1–23 doi: 10.1186/1752-0509-1-23

39. Henry CS, Broadbelt LJ, Hatzimanikatis V. Thermodynamics-Based Metabolic Flux Analysis. Biophysi-

cal Journal. 2007; 92(5):1792–1805. doi: 10.1529/biophysj.106.093138 PMID: 17172310

40. Fleming RMT, Thiele I, Provan G, Nasheuer HP. Integrated stoichiometric, thermodynamic and kinetic

modelling of steady state metabolism. Journal of Theoretical Biology. 2010; 264(3):683–692. doi: 10.

1016/j.jtbi.2010.02.044 PMID: 20230840

41. Dantzig GB. Reminiscences About the Origins of Linear Programming. In: Mathematical Programming

The State of the Art. Berlin, Germany: Springer; 1983. p. 78–86. Available from:

42. Gurobi Optimization I. Gurobi Optimizer Reference Manual; 2015. Available from: http://www.gurobi.

com

43. Ehrgott M, Wiecek MM. Mutiobjective Programming. In: Multiple Criteria Decision Analysis: State of the

Art Surveys. New York: Springer-Verlag; 2005. p. 667–708.

44. Aoki I. Entropy and exergy in the development of living systems: a case study of lake-ecosystems. Jour-

nal of the Physical Society of Japan. 1998; 67(6):2132–2139. doi: 10.1143/JPSJ.67.2132

45. Martyushev LM, Seleznev VD. Maximum entropy production principle in physics, chemistry and biology.

Physics Reports. 2006; 426(1):1–45. doi: 10.1016/j.physrep.2005.12.001

46. Stadler W. A survey of multicriteria optimization or the vector maximum problem, part I: 1776–1960.

Journal of Optimization Theory and Applications. 1979; 29(1):1–52. doi: 10.1007/BF00932634

47. Marler RT, Arora JS. Survey of multi-objective optimization methods for engineering. Structural and

Multidisciplinary Optimization. 2004; 26(6):369–395. doi: 10.1007/s00158-003-0368-6

48. Benson HP. An Outer Approximation Algorithm for Generating AllEfficient Extreme Points in the Out-

come Set of a Multiple ObjectiveLinear Programming Problem. Journal of Global Optimization. 1998;

13(1):1–24.
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4.4 Quantitative modeling of dynamical biological behav-
iors

As illustrated above, not only contemporary next-generation sequencing (NGS)
approaches provide an unprecedented characterization of the diversity of microbial
communities, but also provide a significant amount of data that represent one ex-
periment alongside its associated uncertainties about quantitative measurements.
Thus, worth noting that increasing the data set provides a concomitant increase
in the number of uncertainties that must be considered, uncertainties that are also
amplified when one considers time-series. Uncertainties are accounted for in the
dynamical modeling process (e.g., via averaging) but are hidden in the model it-
self. Moreover, despite the tremendous predictive power of such modelings, the
resulting models are not necessarily biologically meaningful. In particular, once
parameterized, a model could be overfitted to a data set without reflecting emer-
gent properties and precluding or reducing knowledge discovery. Considering that
a single microbial system could produce several distinct data sets through several
experimental approaches, several different models are built accordingly [185, 179].
All corresponding models must be then investigated via automatic learning and ver-
ification techniques to take into account their common properties rather than con-
sidering each model in isolation. Within biological models, these uncertainties can
be accounted for by machine learning techniques (see Libbrecht and Noble [132]
for a review) that produce automatically predictive (deterministic) models from ex-
perimental measurements. Despite the challenges mentioned above, uncertainties
must be accounted for and integrated into microbial modeling approaches. Such
an issue remains a general problem across biology, and even in ecology despite a
long tradition of dealing with quantitative uncertainties [153]. In [47], we advo-
cate granting these uncertainties per se, in particular within quantitative biological
modelings, by promoting a computational convergence on uncertainties rather than
simple simulations.

4.4.1 Modeling the evolution of protein concentrations with a micro-
bial cell-based on genetic activity

Among the techniques that integrate uncertainties, the Bayesian network is a prob-
abilistic graph model that represents the biological compound interactions via a
directed acyclic graph [71]. However, the Bayesian network is not able to take into
account the feedback loops necessary to represent gene regulatory network dynam-
ics, as well as the accumulation of quantities (e.g., the abundance of microorgan-
isms or concentrations) over time, such as is necessary to depict general biological
dynamical behaviors. For this purpose, it would be preferable to use an extension
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of Bayesian networks: dynamical Bayesian networks. These dynamic networks
consist of the repetition of an elementary Bayesian network, as previously defined,
linked together in order to abstract dynamical effects, including feedback loops.
Nevertheless, despite being of practical interest, such a combination of networks
drastically increases model complexity. Such an extension is not always appro-
priate to model deterministic behaviors. By proposing Probabilistic Boolean Net-
works (PBN), [183] overcame this limitation. PBNs combine the expressibility of
Boolean networks to describe deterministic dynamical behaviors and uncertainty
via the use of probability (see [131] for a complete comparison between PBNs and
dynamical Bayesian networks in the context of gene regulatory circuit modeling).
Overall, PBN represents a general probabilistic modeling framework that com-
bines deterministic modeling and uncertainties. PBN offers plenty of applications
in the context of biological networks, with a strong emphasis on qualitative mod-
elings. Nevertheless, PBN does not permit a more quantitative modeling approach
required to depict general biological properties, including the dynamical behavior
of biological properties attributable to continuous variables.

For this purpose, we proposed a novel approach called Event Transition Graph
(ETG) that combines Boolean modeling and probabilistic approaches but integrates
descriptive mechanistic measurements alongside more quantitative knowledge of a
given system.

Jérémie Bourdon, Damien Eveillard, and Anne Siegel. Integrating quantitative
knowledge into a qualitative gene regulatory network. PLoS computational

biology, 7(9):e1002157, September 2011

ETG was originally developed to model multi-scale systems, and we used it to
determine the impact of E. coli gene regulatory networks on intracellular protein
concentrations under diverse growth conditions [174]. Unlike traditional biological
modeling techniques (e.g., ordinary differential equation approaches where all pro-
cesses are equivalent), ETG classifies the order of biological events, such as gene
transcription, and transitions from one state to another via a set of probabilities
such that the succession of states accurately reproduces experimental observations.
Such a classification of biological events, being controlled only by probabilities,
avoids the need for kinetic parameterization, which is usually unknown for mi-
crobial {eco}systems, but rather advocates for the addition of uncertainties to a
deterministic schema.

Unlike other probabilistic modelings, ETG takes both a qualitative description
and quantitative biological data as inputs. This combination of knowledge makes
our probabilistic modeling sensitive to mechanistic descriptions but, on the other
hand, drastically increases its computational complexity compared to other state-
of-the-art probabilistic modelings. However, contrary to less complex modelings,
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the main contribution of ETG does not stand on simulations only, but rather on the
reasoning that one performs during the learning step. In particular, such reasoning
emphasizes the genes that are the most sensitive to parameter value variations,
which makes them candidates for marker genes to monitor physiological response
to perturbations.
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Introduction

There have been a number of success stories in macromolecular

network modeling during the last decade. Special attention has been

paid to dynamical modeling approaches. Among a broad spectrum

of strategies, qualitative models and their associated methods have

played a central role, allowing modelers to investigate the full space

of possible discrete behaviors of several regulatory networks. To that

end, a variety of methods for qualitative modeling, analysis and

simulation of genetic regulatory networks (GRN) have been

proposed since the seminal works of Kauffman [1] and Thomas

[2,3] (see [4] for a review). As they rely on discrete representations of

both time and variables, these methods share two main advantages:

first, the space of possible states is finite (although possibly large),

making it possible to hypothesize about the dynamics of biological

regulatory systems despite the lack of kinetic information at

transcriptional level. Second, regulatory networks can be built from

local experimental observations or knowledge-based information

(gene-gene or gene-protein interactions).

Although these approaches provide high-level insights into the

functioning of gene networks, they often do not accurately reflect

the real dynamics of GRN. Indeed, transitions between states in a

GRN may exhibit a stochastic component as observed in [5]. This

stochastic signal is closely related to population average behaviors

[6]. Consequently, the dynamics of GRNs have a stochastic

component which is difficult to observe in real time and to capture

in discrete models. This has emphasized the need for probabilistic

models and methods for analyzing and simulating GRN. Such

probabilistic representations of gene networks are now widespread

to complement discrete approaches. The Probabilistic Boolean

Network (PBN) approach [7,8] is one of these. Due to its flexibility

and the fact that it can be inferred directly from data, it has been

extensively studied over the last decade. In [9], finite state Markov

chains are also proven to be useful in dealing with microarray data.

It was established that the automatically reconstructed Markov

chain gave rise to steady state distributions in accordance with some

phenotypic biological observations. This suggests that Markov chain

models are capable of mimicking biological behavior. More

generally, Markov chain models are usually applied in the following

way. First, a model that fits a given set of data is inferred [10,11].

Then, steady state distributions are computed, giving access to

biological information, as they reflect some expected phenotypes

[8,12]. In a final step, important product nodes are exhibited, as

they control the steady-state distribution and the phenotype

[5,13,14]. This latter task gives insights useful in designing new

biological experiments, allowing both a better validation of the

model and suggesting some therapeutic targets. Although those

approaches are very efficient, they mainly rely on the quality of the
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network reconstruction process, that yields a two sides issue:

inferring the ‘‘structure’’ of the gene regulatory network and com-

puting transition probabilities that are consistent with the available

data. In concrete terms, the lack of accurate observation datasets on

the result of transition in a GRN usually makes the inference of the

structure more accurate than the computation of the probabilities

[5].

In a quite complementary way, [15,16] have proven that adding

a probabilistic aspect to already qualitatively validated discrete

models may help in determining parameters of the qualitative

model. To do so, the authors add a probabilistic dimension to a

discrete piecewise affine model. They introduce unknown transition

probabilities between two states as the ratio of volumes defined by

the qualitative parameters of the system. The main novelty of their

approach is that they compute the whole set of transition probability

matrices leading to given qualitative attractors of the system, instead

of selecting a precise matrix as the above-mentioned approach does.

This approach allows them to exhibit relations between transition

probabilities and important coefficients of the system such as

synthesis rates. However, as they use an analytic description of the

set of accurate probability matrices, their method is limited to small

networks composed of two or three genes.

In the present work, we advance the idea of studying discrete

knowledge-based transcriptional ‘‘intracellular’’ regulatory infor-

mation given by qualitative models within a global probabilistic

approach. The main novelty of our approach is that we compute

the full set of probability transition matrices that correspond to

quantitative ‘‘population scale’’ observations provided by protein

time-series measurements. We rely on methods inspired by average-

case analysis of algorithms theory [17,18], making use of Markov

chains coupled with transition costs to study statistical properties of

pattern matching issues. We design a probabilistic framework

allowing population scale observations to be integrated into a

qualitative gene expression network assumed to be shared by several

individual cells. Our approach should therefore be considered

as a bridge between purely discrete modeling approaches and

probabilistic simulations. We introduce three main novel features:

first, we rely on a strong asymptotic property of Markov chains to

fully describe the set of all possible weighted probabilistic net-

works matching with protein time-series observations. Second, we

overcome computational problems as we drastically reduce the size

of the model by focusing on slope changes (switch from a variable

increase to a variable decrease, for instance) instead of changes in

product levels. Third, we develop numerical methods to incorporate

a set of suitable Markov chains – all those matching the numerical

observations – rather than a single Markov chain that cannot be

uniquely determined from the few quantitative observations we have

at hand. These three novelties allow us to increase the robustness of

our approach while reducing the set of data required to perform the

analysis. Concretely, our approach involves first computing a

discrete (non-deterministic) description of possible succession of

slope variations. This can be deduced from knowledge-based

transcriptional information, i.e., either a logical graph or a qualitative

event succession like those observed in novel generations of micro-

arrays [19]. This provides us with a graph of transcriptional event

transitions. The transcriptional events, arising on the scale of an

individual cell, affect the protein concentrations, observed on a

population scale. These two scales are related by adding an impact

cost for each transition over a given protein concentration. This cost

is easily deduced by fixing an arbitrary ‘‘natural’’ degradation rate

and by applying an equilibrium principle as follows. Intuitively, in

the absence of any information – when all the transition pro-

babilities are chosen to be uniform – the expected protein concen-

trations will be constant. The next step consists of numerically

determining the set of transition probability matrices that fit a global

quantitative observed outcome. As an example, we expect the

model to fit the time-series quantitative observations of the mean

concentration of a single protein over a cell population - in this

paper we focused on carbon starvation response in Escherichia coli.

We have combined theoretical properties of Markov chains -

inspired by symbolic dynamics - with reverse-engineering methods

(local inference methods) to describe the full space of weighted

Markov chains having the appropriate topological structure and

whose global mean outcome fits the time-series curve. Then we

investigate the geometric structure of the space of Markov chains to

derive biological properties of the system: we derive a ranking of

gene interactions with respect to their importance in achieving the

considered protein variations. Such a classification is confirmed by

the literature. We also accurately predict the quantitative time-series

evolution of several non-observed population-cell protein concen-

trations using only knowledge of discrete gene interactions and very

few quantitative observations on a single protein concentration.

According to our modeling framework, variations in protein quantities

appear to be driven by the dynamical behaviors, qualitatively

described, that occur underneath at the gene regulatory scale.

Method

Main features
As a major modeling contribution, and in the light of the above

assumptions, this paper establishes a relationship between the

concentration time series ( i.e., quantitative knowledge) and the

qualitative behaviors of the biological system, as modeled by

genetic regulatory networks. To that end, two matrices are

considered (see Figure 1). Note herein that an exhaustive

illustration of following features is proposed in the end of the

Method section. The first matrix describes an event transition Markov

chain which constitutes the core of the model. It depicts the

probabilities (latent variables of the model) that the system will

switch from one qualitative ‘‘basic behavior’’ to another, where a

Author Summary

Understanding the response of a biological system to a
stress is of great interest in biology. This issue is usually
tackled by integrating information arising from different
experiments into mathematical models. In particular,
continuous models take quantitative information into
account after a parameter estimation step whereas much
recent research has focused on the qualitative behaviors of
macromolecular networks. However, both modeling ap-
proaches fail to handle the true nature of biological
information, including heterogeneity, incompleteness and
multi-scale features, as emphasized by recent advances in
molecular techniques. The principle novelty of our method
lies in the use of probabilities and average-case analysis to
overcome this weakness and to fill the gap between
qualitative and quantitative models. Our framework is
applied to study the response of Escherichia coli to a
carbon starvation stress. We combine a small amount of
quantitative information on protein concentrations with a
qualitative model of transcriptional regulations. We derive
quantitative predictions about proteins, quantify the
robustness and relevance of transcriptional interactions,
and automatically extract the key features of the model.
The main biological novelty is therefore the presentation
of new knowledge derived from the combination of
quantitative and qualitative multi-scale information in a
single approach.
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qualitative basic behavior means a constant slope for the variation of

a product. The structure of the matrix is determined by the current

extent of our knowledge of what regulates the system. Its numerical

coefficients stand for the mean ratio of trajectories of the system that

may cross a given transition. Our reverse engineering method aims

at computing these numerical non-zero coefficients. As a companion

matrix to this event description, a family of impact matrices is built for

each protein involved in the system. Given a protein P, the

corresponding impact matrix will describe the global outcome of

each transition between two events – corresponding to an arrow of

the Markov chain – over the concentration of the protein P. By way

of example, if we assume that the system goes through a transition

that activates the mRNA production of a gene g, the effect (or

‘‘impact’’) of this event may be modeled by an increase in the

production rate of the protein G encoded by g, say 20%. Addi-

tionally, the effect of this event on all other proteins in the system

may be modeled by a decrease in the production rate, a free

parameter that we fix to 5%, since they undergo a natural

degradation process and are not affected by the event transition.

As detailed hereafter, the exact rates that are used are computed so

that active and passive degradation have the same average impact

during a random process. With these two matrices at hand, average-

case analysis properties of Markov chains reveal a relationship

between the event transition matrix, the impact matrices and the

quantitative evolution of a protein concentration under given

stimuli, allowing to establish some relations between observable

variables of the model (the observed growth ratio of given proteins)

and the latent variables of the model. Roughly, the time-series

concentrations of a given protein make it possible to recover the

main eigenvalue of the event transition matrix, which can be

reformulated to infer times-series concentrations of other proteins,

as well as global properties of the system.

Average impact of a Markov chain over an accumulation
rule

A Markov chain is a random process for which the next state

depends on the current state only. It is described by a graph over

the set of nodes V , and edges labeled with probabilities in (0,1).
Likewise, the random process can be described by a transition matrix

T~(Tu,v)(u,v)[V|V . The Markov chain is described as minimal

when this matrix is aperiodic and irreducible meaning that for

sufficiently large n and all vertices v[V , there exists an n-length

cycle including v. A stationary state of the Markov chain represents a

numerical distribution of the nodes that does not evolve anymore,

which corresponds to the eigenvector of the matrix T .

The main goal is to estimate the quantitative asymptotic impact

Q(t) of the Markov chain on a biological product quantity or a

generic yield. Biologically, such a quantity is any of the phenotypic

measurements that is impacted by the gene regulatory network, i.e.,

any experimental bio-product concentration that might be inferred

from either a cell growth rate or a protein concentration encoded by

a gene that belongs to the system. To this end, an impact matrix C(Q)

is linked to the transition matrix T of the Markov chain. The impact

matrix is the same size as T . Zero-coefficients in T yield zero-

Figure 1. Flowchart of the Event Transition Markov chain modeling protocol.
doi:10.1371/journal.pcbi.1002157.g001
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coefficients in the impact matrix. Coefficients of the impact matrix

are positive real values that describe the estimated cost of a

transition on the change in the phenotypic quantity.

Impact matrices simulate the effect of a Markov process over the

global quantity Q as follows. Let A, B be two nodes of the Markov

chain connected by an edge A?B. Let TA,B denotes the

probability of this transition and C
(Q)
A,B its impact. The elementary

cost of the transition A?B over the quantity Q is defined as

TA,B C
(Q)
A,B. The induced elementary cost matrix is denoted by T�C

(Q).

The quantity Q(n) is then said to evolve following a multiplicative

accumulation rule from an initial distribution m. Its mean value at time n
– that is, after n iterations of the Markov process – ( i.e., the average of the

costs of all trajectories of length n) is strongly related to powers of

elementary cost matrix, that is Q(n)~(1, . . . ,1) ½T�C(Q)�n m. In

other words, to compute the mean value of the quantity at step n,

the elementary cost is multiplied along all paths of length n –

therefore introducing ½T�C(Q)�n. Each path is weighted with the

probability of starting from its initial node – information given by

m. The final impact is given by the sum of all these quantities –

therefore multiplying by (1, . . . ,1). In particular, as detailed below,

such a multiplicative accumulation rule is useful to model the burst

effect of a gene regulatory network on a metabolic scale, in which

a single mRNA stochastically transcribed produces a burst of

protein copy numbers [20–23].

When a Markov chain is fully determined and when an impact

matrix is given, simple linear algebraic computations allow to calcu-

late the growth rate of the corresponding quantity. The added value of

a multiplicative law over a Markov chain relies on its asymptotic

behavior, that is proved to be exponential, as stated in Theorem 1.

More precisely, a multiplicative accumulation rule follows an explicit

log-normal law with explicit mean, variances and estimation of error

terms. All these characteristics, such as the growth rate d of the

exponential, are related to dominant eigenvalues of the elementary

cost impact matrix T�C
(Q). It should be noted that when the Markov

chain reaches a stationary state, the accumulation law itself enters a

permanent regime, where its exponential rate is fixed. The error term is

also exponential, but with a much smaller growth rate, ensuring that

the stationary state of the Markov chain is quickly reached.

Theorem 1
(Average case analysis theory for accumulation rules) Let E be a minimal

Markov chain with transition matrix T . A multiplicative accumulation rule

Q(t) with impact matrix C asymptotically satisfies a log {normal law with

mean and variance

E Q(n)½ �~b exp (d t)zo(Ln
1) Var Q(n)½ �~a cnzo(Ln

2),

where ed is the dominant eigenvalue of the elementary cost matrix

T�C. The other quantities express by means of a generation of the

elementary cost matrix, A(u) defined by Ai,j(u)~Ti,ju
ln Ci,j . More

precisely, c~ max (l(e2),l(e)2) express by means of the dominant

eigenvalue l(u) of A(u), b and a are constants corresponding to

the dominant eigenvectors of A(e) and A(e2). There exists gv1
such that the error terms L1 and L2 verify L1=dƒg and L2=cƒg.

Here, the minimality assumption restricts applications to a

biological process such that (i) its underlying Markov chain is

aperiodic and irreducible; and (ii) for every considered cost matrix,

there exists at most one aperiodic trajectory (meaning that the cost

evolution is aperiodic through times for this trajectory). Note that in

the present work, these assumptions are those that will most restrict

the biological referential. For instance, biological systems that display

oscillatory behavior are outside the natural range of the approach.

Nonetheless, one may overcome this weakness by modeling an input

with oscillatory behavior and modeling the steps of the dynamics with

independent Markov chains. This modeling device is particularly

useful when one aims at modeling the circadian system. For a better

illustration, please see below how to build such a Markov chain that

describes the behaviors of a gene regulatory network.

Reverse engineering of a transition matrix from impact
accumulation rules and growth rates

Given a set of impact rules and assuming that they all follow

accumulation rules, optimization techniques were used to infer a

Markov chain fitting all available experimental results – the

growth rate of several biological quantities. The identification

process was divided into two optimization problems. First, in the

exact case, a Markov chain is computed which minimizes the

euclidean distance between the growth rates d and b – see

Theorem 1 above – of every impact rule associated with the

Markov chain and the objective numerical values provided by the

experimental results at hand. Local search algorithms are well

suited to such an inference task (see [24] for a review). Here, it is

necessary to develop an ad-hoc local search algorithm capable of

handling eigenvalues that have only an implicit definition.

In order to take experimental errors into account, we con-

sidered a second optimization problem, in which the objective

values were defined by an interval of validity. Our goal was to infer

a Markov chain such that the growth rate of every impact rule

belongs to its objective numerical interval, allowing some sets of

valid Markov chains to be defined. These sets were approximated

by using a polyhedra, defined as follows. First the local search

algorithm was used to find a Markov chain whose growth rates

were close to the middle of every objective intervals. This Markov

chain defines a point, hereafter called the source point in the

sequel, inside the solution set. Some points on the boundary of the

solution set were then identified by setting a random direction and

using a dichotomy method to find the intersection between the

boundary and the line, starting from the source point with the

expected random direction. As shown in the results section, the

volume provides particularly meaningful information. In both

cases, sensitivity analysis was performed by considering the

following definition. The function E(T ,g) was introduced,

standing for the Euclidean distance between the growth rate of

all impact rules and their objective numerical values. The sensitivity

of a transition Ti,j is then defined by the E(T ,g) modification, in

percent, when Ti,j is modified by 1%. Note that it is closely related

to the partial derivative according to variable Ti,j of the function

E(T ,g). The higher is the sensitivity of a transition, the more

sensitive is the overall score to small variations of this variable.

Event transition Markov chain associated with a gene
regulatory network

The previous theoretical framework can easily be adapted to the

biological regulatory networks that display discrete dynamics [25].

Products of the system are gathered in a set P and a relevant

Markov chain summarizes the dynamics of the system. In order to

handle computational issues of reverse engineering, the focus is on

shapes of trajectories instead of graph states, formalized as follows.

The main component of the modeling operation are transcrip-

tomic events, i.e., elements of P|fz,{g. They describe the

possible slopes in the variation of a bioproduct during a time unit

(i.e. increasing or decreasing). For instance, (fis,z), also denoted

by fisz, stands for the increase in the transcriptional activity, or

mRNA production, of the gene fis. The two events occurring over

a product g are denoted by gz and g{. It is sometimes useful to

add some supplementary biological events such as a complex
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formation, when the information is available. This increases the

accuracy of the model. The Event Transition Graph (ETG) encodes

the possible successions of events. Its nodes are given by the set of

events. An event g(1)
s targets g

(2)
t if, in at least one trajectory of the

system, g(2) varies with the slope s and then g(2)’s slope changes to

the sign t. This graph may be derived easily from a state transition

graph such as those produced by logical asynchronous multivalued

Thomas mode piecewise linear models [26].

An Event transition Markov chain is an event transition graph

endowed with a matrix probability T . Biologically, considering a

Markov chain means considering an average behavior of the system

over a set of different cells. Since the focus is on events only (i.e.

successions of changes in the slope variations of products) instead of

states, the stationary states of the Markov chain correspond to cell

populations where the proportion of cells with increasing/

decreasing transcripts is fixed. Therefore, the stationary states of

Markov chains do not correspond to stationary states of the

biological system (where all transcripts have a stable concentration).

In order to avoid misunderstandings, a stationary state of an event

transition Markov chain is called a permanent regime.

The Initial state of the Event transition Markov chain depends on

the biological process that is studied. Assuming that the cells within

a population are not synchronized suggests that the initial

distribution of events in the system is uniform. If the cells are

forced to be synchronized at an early stage of the experiments, a

dedicated initial state describing the forced condition must be

taken into account.

Multiplicative impact matrix of the Markov chain over the
production of each protein

It was pointed out that the evolution of one – or several –

protein concentrations resumes a multiplicative phenotypic impact

of the gene regulatory network [21,23]. The multiplicative

assumption was considered as relevant since the protein

concentrations in a single cell follow standard evolution laws

which are of exponential nature, similarly to the behaviors of

systems governed by multiplicative laws [27]. Let g be a gene in

the system at hand and P its encoded protein. The impact matrix

C(P) describes the impact of the event transition Markov chain on

the protein production. To define this matrix, an active impact scale p
and a passive impact scale d must be introduced. If a given transition

impacts a given gene via its mRNA production, we assume that its

encoded protein production increases or decreases by the scale p.

Otherwise the protein rate is assumed to decrease via its natural

degradation by the scale d . Formally, let :?gs be an edge in the

Markov chain (g can be any product and s is either z or {).

Reaching state gs means that the activity of gene g changes leading

to an active production or degradation of its associated protein P. During

all other transitions :?hs, where hs does not encode the protein P,

the system undergoes a natural degradation of protein P. The

production and degradation rate values are chosen as follows. The

passive effect d is set as equal to 0:95 ( i.e., a natural degradation of

5%). The active degradation coefficient is defined according to the

following equilibrium rule. Let D{ (resp. Dz) be the set of all

events associated to an active degradation (resp. production) of the

given protein. We first fix all the transitions to be uniform ( i.e., all

the probabilities of leaving a given state are equal), and denotes by

p the steady-state distribution of the associated Markov chain.

Protein P concentration is stable if

p p{z1=p pzzd (1{p{{pz)~1,

where p{~
X

s[D{
ps and pz~

X
s[Dz

ps. This defines a

degree two equation. Simple arguments prove that this equation

has only one solution smaller than 1 that is assigned to p. The active

production coefficient is then defined as 1=p, the inverse of the active

degradation coefficient. Eventually, the impact matrix associated

to the protein P is fulfilled thanks to the passive effect rate and the

passive and active degradation rates.

Inferring growth rates from protein observations
As the approach is dedicated to prokaryotic systems, a linear

relationship between gene activities and their protein concentra-

tions is assumed. This induced a standard evolution law to

describe the quantitative evolution of the protein concentrations in

the system in accordance with the qualitative events as described

by the event transition Markov. More precisely, it was assumed

that, as with other modeling studies [23,27], a protein concentra-

tion evolves according to a succession of exponential laws

(Q1(t), . . . ,Qk(t)), with Qi(t)~Biexp(Di(t{ti))zCi. The cutting

points t1, . . . ,tk are obtained using the available experimental

data. The meaning of this succession is that the protein

concentration at time t is Qi(t) if t[ ti,tiz1½ �. Then, for each i, di,

bi and ci expresses by

Di~
log½(Qi(tiz1){Ci)=(Qi(ti){Ci)�

tiz1{ti

, Bi~Qi(ti)zCi:

It can be noted here that the concentration of a protein that is only

degraded tends to Ci, which is its basal concentration. Assuming it

to be null leads to simpler formulas for Di and Bi.

According to the hypotheses discussed below, we assume that

the protein concentration Qi follows a multiplicative accumulation

rule Qi in each time interval ti,tiz1½ �. Let t be the mean duration

of a transition. In the permanent regime of Qi, which is reached

very quickly, the relation Qi(n)^Qi(nt) holds. According to

Theorem 1, this equation implies that the product tDi is nothing

but the dominant eigenvalue di of the elementary cost matrix of

Qi. Additionally, Bi introduced below equals the constant bi

introduced in Theorem 1.

Taking all into account, the growth rates di and bi required to

apply our reverse-engineering methods described below, can be

calculated from the protein concentration shape as soon as the

mean duration time t of a translation has been estimated. To that

end, it is assumed that the duration is independent from the

studied dynamics, allowing it to be computed from experimental

knowledge on passive degradation. We introduce t0 the shortest

half-life of amino-acids of the protein of interest – usually available

in the literature. According to the N-end rule, as depicted in [28],

fixing a passive degradation rate of 5% entails that t0~
log (0:5)= log (0:95)t, which allows an explicit computation of t
and completes the inference of growth rates.

Illustration of the method on a two gene network
For the sake of clarity, we propose to illustrate now the

modeling method when applied on a simplistic Event Transition

Graph (core model). It is composed of two genes that monitor four

events as depicted in Figure 2. The graph is also depicted using a

transition matrix in which one adds two unknowns (latent

variables) for describing a Markov chain: v1~pxz?xz
and

v2~pyz?yz
. To solve the problem in a biological context, one

then considers the two following complementary informations:

N Costs per transition (free parameters): Assuming a passive degrada-

tion rate (free parameter) of 5% and applying the above

equilibrium rule, the active degradation rate for both protein

X and protein Y equals 0.882 ({12:8%) while the active
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production rate equals 1:134 (z13:4%). See Supplementary

Text S1 for the matricial description. Here we assume that the

time unit is one iteration of the Markov chain. In some more

general cases, the definition of time units is tricker as

mentioned above.

N Fictive experimental knowledge (observable variables): For illustration

and as tutorial, one considers that the protein X relative

quantity or concentration, is multiplied by 100 in 100

iterations or time units ( i.e., two measures points are thus

(1,1) and (100,100), which defines an asymptotic growth rate

equals to exp ( log (100=1)=100)~1:0471).

These informations are then used to infer v1 and v2 and relative

probabilities. The inference task is performed by an adhoc MATLAB

script (The complete package and its corresponding tutorial are

available in http://pogg.genouest.org). As a general result, several

combinations of probabilities satisfy the given constraints. They

are depicted in Figure 3. Emphasizing a unique set of probabilities

is therefore not possible. Unlike other Markov-like techniques, the

Event Transition Markov chain models the impact of the Markov

chain behaviors over the production of each protein of the system.

We are thus able, for each combination of probabilities that

satisfies the constraints, to estimate the protein growth rates in the

permanent regime. Indeed, one can describe the distribution of Y

protein growth rates for 10,000 probability combinations that

satisfy the constraints (Figure 4(A)). This distribution is obviously

sensitive to the probabilities. For illustration, the distribution of the

protein Y growth rate for 10 000 probability combinations picked

randomly is different, as attested when one depicts the difference

of random and constrained distributions of Y protein growth rates

in Figure 4(B), illustrating the close relations between protein X

and Y concentration evolutions. Computing the distribution is not

an easy task when one considers more than 3 genes or 6 events. In

practice, we then overcome this problem by estimating the mean

of each growth rate ( i.e., 1:0152 (prediction) in the case of the Y

protein growth rate as presented above), instead of each growth

rate distribution. This provides some accurate predictions of

protein concentration evolutions.

Figure 2. Event Transition Graph composed of 2 genes (left) and its corresponding probability transition matrix (right), that
includes two unknowns v1 and v2.
doi:10.1371/journal.pcbi.1002157.g002

Figure 3. Set of probabilities that satisfy the constraints for the Event Transition Graph depicted in Figure 2.
doi:10.1371/journal.pcbi.1002157.g003
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Results

To illustrate the accuracy of the use of Event Transition Markov

chains in a biological context, we propose now to focus the Event

Transition Markov chain approach on predicting the behavior of

protein concentrations during a period of bacterial stress. D.

Ropers and collaborators model the growth phase transition of

Escherichia coli after a period of nutritional stress [29]. In particular,

their model shows the move from an exponential growth state to

stationary growth during a carbon starvation stage. This elegant

‘‘switch’’ is evidenced at gene regulatory level with implications at

phenotypic level. This model is based on the qualitative results

available in both the literature and gene regulatory experiments as

performed by the authors (see Figure 5). Furthermore, the proteins

encoded by the genes that interact within the model have been

well researched by independent studies [30,31]. This provides

partial quantitative information that may be introduced into the

qualitative model.

Event transition graph
The original model [29] is given as a system of piecewise affine

differential equations. It contains 6 genes and 37 constraints over

inequalities and thresholds. This yields a state transition graph of

912 qualitative domains. The corresponding Event Transition

Graph was automatically computed by applying the definition

introduced in the method section and detailed in Supplementary

Text S2. The resulting graph, composed of 22 edges and 11 nodes,

is depicted in Figure 6. Note that for the sake of clarity, we manually

introduced a component named ‘‘complex’’ that summarizes the

effect of cAMP metabolite as depicted in [32]. This node, in

accordance to the original model [29], stands for a complexation of

the Crp and Cya proteins and the carbon starvation signal. Fol-

lowing our formalization, this component is thus a natural product

of cyaz, crpz and the signal component. Although the event

transition graph roughly summarizes the behaviors of the original

qualitative model, it still highlights the major biological properties

by its reading. For illustration, the repression of the crp gene by the

Fis protein [33] is depicted by an active effect of fisz on crp{.

However, the information about crp controlled by two distinct

promoters is lost.

Event transition Markov chain: Impact and transition
matrices

As detailed above in the method section, we computed the

impact matrices based on bacterial protein production growth

rates. This setting appears to be suitable since E. coli can be viewed

as a multi-scale system. Indeed, the change in protein concentra-

tion shall be considered as a protein scale amplification of events

that occurs at the transcriptomic scale that are depicted as protein

burst by experiments [20–22]. By way of illustration and following

the equilibrium rule defined above, in the impact matrix over the

Fis protein, the concentration of Fis, denoted by qFis, undergoes a

46% increase for each transition targeting fisz. It suffers from a

32% decrease for all transitions targeting fis{. Finally, it goes

through a 5% decrease for all other transitions, reflecting a natural

degradation for Fis (see Supplementary Text S2 for a complete

Figure 4. Comparison of the protein Y growth ratio in two different situations. (A) Distribution of the Y protein growth rate estimated from
probabilities randomly picked; (B) Difference of the distribution described in (A), and the distribution of protein Y growth rate estimated from 10 000
combinations of probabilities that satisfies the constraints of the ETG model that depict the interactions of two genes.
doi:10.1371/journal.pcbi.1002157.g004

Figure 5. Biological information concerning Escherichia coli carbon starvation system. (A) represents interactions between genes involved
in the regulatory network (adapted from [29]). (B) shows quantitative variations of macromolecules of interest (based on [30]). Note the linear
relationship between fis mRNA and Fis protein productions that allows to infer protein product behaviors based on the gene regulatory network.
doi:10.1371/journal.pcbi.1002157.g005
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description of the impact matrix). This depicts the Event

Transition Markov chain.

We used quantitative information about changes in Fis protein

concentration to reverse-engineer the transition matrix. Experi-

mental evidence [30] shows that the Fis concentration multiplies by

10 in 80 minutes, during the stationary growth phase (i.e. carbon

starvation conditions) and then decreases in the exponential phase

(see Figure 7 and Supplementary Text S2 for details). Therefore, the

protein concentration curve was approximated by two successive

steps Q1 (stationary phase, from t1~2min with Q1(t1)~10 until

t2~80min with Q1(t2)~100) and Q2 (exponential phase, from

t2~80min with Q2(t2)~100 until t2~130min with Q2(t3)~10).

The shortest half-life of amino-acids of the protein of interest is

estimated as t0~2min by the literature [28], leading to a mean

transition duration of t~0:148min. Applying our inference growth

rate procedure – see method section – resulted in the computation

of the growth rates for both the accumulation rules corresponding

to the stationary phase (B1~10, D1~0:0295, i.e., Q1(t)~
10 exp (0:0295(t{2))) and the exponential phase (B2~100,

D2~{0:0461, i.e., Q2(t)~100 exp ({0:0461(t{80))). Then, the

Figure 6. Even transition graph of the genes regulatory network of carbon starvation response in E. coli. Each component represents
an active event that concerns a gene product (x), either its increase (xz) or its decrease (x{). Arrows between events depict the active effect of one
event on another. Two transitions are absent when the system is subject to carbon starvation.
doi:10.1371/journal.pcbi.1002157.g006

Figure 7. Simulations of changes in bacterial protein concentration during both stationary and exponential growth phases. The
corresponding probability matrix is estimated in the stationary growth condition based on three experimental data for the protein Fis. After
80 minutes, the signal of carbon starvation manually switches from 1 to 0, emphasizing a switch from starvation to non-starvation conditions, which
leads respectively to a stationary and an exponential growth phase of the bacterial population. Experimental data are marked with dashed lines,
whereas computation results are depicted using plain lines for the five proteins of interest (Fis, Cya, Topa, GyrAB and Crp).
doi:10.1371/journal.pcbi.1002157.g007
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reverse-engineering approach using b1~10, d1~0:0044, b2~100,

d2~{0:0068 (see Method section) produced a probability

transition matrix T that fits the protein growth rates in both

stationary and exponential growth phases. By repeating several

times this procedure, one obtains a sampling of the set of all

probability matrices that fits the given experimental protein growth

rates.

Asymptotic behavior of the system
Using the transition matrix of the Event Transition Markov

chain, we perform several simulations on protein concentrations,

as impacted by the gene regulation network. First, the transition

matrix was coupled with impact matrices on proteins Fis and Cya

to simulate their permanent regimes during the stationary phase.

Then, after 80 minutes, it is assumed that the exponential phase is

initiated, inducing a change in the structure of the gene regulatory

network. This change takes place by adding 2 transitions from the

‘‘signal’’ box on the Event transition Markov Chain which

activates crpz and the ‘‘complex’’ compound. Because of the

given initial conditions during the exponential growth phase, these

transitions were neglected, but not in stationary phase conditions.

Then, based on the same matrices (impact and probability

transition), new simulations are performed on the evolution of Fis

and Cya concentrations. Figure 7 depicts the predicted variations

of the Cya and Fis proteins during both phases.

Compared to the available independent experimental results

[30,31], the simulations and experiments are overall significantly

similar according to a Pearson correlation test. The transition

matrix allows us to compute the quantitative behavior of Cya in

both stationary and exponential phases. Based on sparse infor-

mation about Fis only, the predicted Cya behavior is consistent

with the experimentally observed behavior (R2~0:9599, p-

value~10{5) [31], which is a quantitative validation of our model.

Notice herein that we also predict the complete time series of Fis

(R2~0:9937, p-value = 6:5 10{8), which confirms the exponential

growth rate assumption. As a complementary result, the system

remains for only a short time in the transient regime ( i.e., the error

made herein when one computes the mean is significantly lower

than 1% after 7 minutes, or 20 iterations of the Markov Chain),

which backs up our assumption of studying this microbial system

in permanent regime in both growth conditions. This confirms the

usefulness of our modeling approach for this specific biological

system.

Automatic classification of key gene interactions
In addition to the prediction feature, properties of the Markov

chain provide insights into biological system behavior. According

to the inference process, the proteins Cya and Crp have the same

predicted behavior, as a posteriori confirmed by [34]. Furthermore,

the sensitivities associated with the transitions of the Markov chain

also represent an appreciation of the impact of a given biological

compound. In particular, this demonstrates that, in stationary

growth phase, fisz ? crp{ transition is highly constrained.

Interestingly, this transition implicitly monitors the CAMP-CRP

complex that controls the metabolism of alternative carbon

sources [33]. It is closely related to ability to the bacterial system

to switch between both growth phases in function of the carbon

starvation. Furthermore, Schneider and co-workers [35] suggest

that fis is involved in a fine tuning of the homeostatic control of

DNA supercoiling. A small change in the supercoiling drastically

affects the expression of the gene fis, which is in total agreement

with the constraints extracted from the Event Transition Markov

chain. We performed a similar analysis over the whole system ( i.e.,

in both stationary and exponential growth conditions). The most

sensitive transitions are reported in Table 1, in which we detail the

biological meanings of such interactions. Not surprisingly, fis

regulation is one of the corner stone genes of the system, but it

might be a natural consequence of the inferring process in our

modeling approach. However, with no specific transition matrix

inference, gyrAB also emerges as one of the most, if not the most,

important gene of the microbial system. Implicitly, this confirms

the usefulness of the DNA topology for E. coli under carbon

starvation conditions.

Discussion

Our purpose was to illustrate the strength of coupling Markov

models together with accumulation rules to study the dynamics of

a gene regulatory network, by focusing on its effects at a larger

scale – the quantitative protein scale. We assumed that the

production of a protein by a gene that belong to a regulatory

network, follows a multiplicative accumulation rule. This implies

that a permanent distribution of the protein system will be reached

in a very short time. In such a regime, each protein concentration

follows an exponential dynamic. The permanent regime may be

modified by external events, inducing a short transition to another

permanent regime. This paper details why observing such a

permanent distribution – possibly several – at the protein level

allows us to recover the main probabilistic law that governs the gene

regulatory network. The law is thus described by a Markov chain

over the succession of transitions at the transcriptomic scale. Very

general properties of this Markov chain – average case analysis (see

Theorem 1) – allow us to infer the Markov chain from a variety of

heterogeneous information, such as qualitative behaviors based on

existing models and partial quantitative data. We proposed an

efficient algorithm based on this average case analysis to infer the

Markov chain. In this method, it must be emphasized that the

fundamental interest is to focus on transitions between biological

events (slope variations of products during a time unit) instead of

Table 1. Summary of the most important transitions of the system according to their sensibility measure.

Transition in ETG Sensitivity Biological significance Ref.

fisz?crp{ 15:5% control of CAMP-CRP complex [33]

gyrabz?fisz 11:6% fis regulation controlled by the DNA supercoiling level [37]

gyrabz?topaz 8:1% Topoisomerase I regulation by the DNA supercoiling [38]

fisz?topaz 7:1% Homeostatic control of DNA topology [35,39]

fisz?gyrab{ 5:5% Homeostatic control of DNA topology [35,39]

gyrabz?gyrab{ 4:8% gyrAB expression regulation by the DNA supercoiling [35]

doi:10.1371/journal.pcbi.1002157.t001
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state variation as proposed by other state-of-the-art methods.

Indeed, this abstraction of the system is required to reduce the size

of the Markov chain in order to achieve the inference process.

Having determined this Markov chain allows us to study the

main asymptotic properties of the dynamic system: identifying the

main transitions implied in the permanent regime and sorting the

relevance of transition patterns. All these predictions may be quite

easily checked with additional experimentation. Conversely,

experimentation allows refinement of the Markov chain inference

process. Taken together, mixing the properties of a Markov chain

with accumulation rules, provides a tool to determine the quan-

titative and asymptotic properties of a dynamic system.

For illustration and validation purposes, we computed a Markov

chain for the event transitions of the Escherichia coli system in the

carbon starvation. The computations were performed by using a

gene regulatory network of this process and quantitative data

about protein Fis production during the stationary phase. Our

predictions of the behavior of Fis during the exponential phase and

of Cya protein changes were confirmed by independent exper-

imental observations, which emphasizes the ability of our approach

to spread partial quantitative information through an Event Markov

chain built from qualitative models. Moreover, our results produce

various emerging properties such as (i) the sensitivity of a specific

transition within the Markov chain or (ii) the quantitative prediction

of gene products that are not directly optimized during the

simulation. All these features reinforce our interpretation of the

global quantitative behaviors of the natural system as modeled.

From a technical viewpoint, the main interest of this approach is

as follows: it is not necessary to build quantitative differential

dynamic systems that need accurate and complex parameter

estimations. Our method uses the results of several available

observations to recover the main characteristics of the dynamics (its

exponential ratio) and to export several dynamic and biological

features. Such probabilistic-like reasoning shall be considered as

complementary to formal verification techniques used for validating

the qualitative properties of a system [29].

Other recent methods also use probabilistic techniques for

studying gene regulatory networks [7,9,36]. However, their main

purpose is to embed a deterministic model with probabilities. Their

main analyses therefore focus on estimating impacts of varia-

tion. Probability matrices are computed to represent experiments

accurately. Finally, transition probability matrices are used to

compute permanent distributions. We argue that our approach is

complementary since our average case analysis theory allows us to

emphasize emerging properties of the system. Relations between the

two scales of observations allow us to exhibit constraints between the

gene regulatory network and protein observations. Eventually, this

process elucidates transition probabilities that did not come to light

with other available methods.

A weakness of our approach relies on the fact that the Markov

Chain inference process is based on knowledge of a full qualitative

gene regulatory network [4]. This shortens the range of

application of our method since, nowadays, relatively few bio-

logical systems are described at this level of abstraction. However,

this flaw will be moderated by the fact that the gene regulatory

network is used only in order to build a global frame of the event

transition Markov chain, which is much more abstracted and

smaller that the gene regulatory dynamics description. It is

reinforced by our main approach which is to build the Markov

chain automatically from biological assumptions – either from the

literature or experiments such as microarrays.

Another weakness lies in the assumption of a linear relationship

between gene activity and the production of the corresponding

protein (relevant for a microbial system only). To avoid such a

restriction, one must build novel accumulation rules based on

other biological abstractions – metabolic and environmental

phenotypes are the most natural candidates here. Extending the

construction of event transition Markov chain to the models

containing reactions instead of qualitative regulations – for

instance, signaling networks – is also under study to extend the

range of application of our approach. A final range of future works

relies on extracting more precise properties from the Markov

chain description of a given dynamic system. Such studies shall

initially focus on the interpretation of the concentration joint law,

standing as a correlation coefficient between time-series observa-

tions. They will also investigate the use of these Markov chains to

isolate experimental noise from the noise inherent to the chaotic

properties of the system. This would provide an estimation of

measurement qualities. Finally, average case analysis can be

performed on a class of probabilistic models that is much larger

than Markov chains. This would allow us to deal with Markov

chains that may handle slight variations over the course of times,

eventually studying the adaptation of the model behaviors under

given environmental variations.
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4.4.2 Probabilistic modeling of microbial networks for integrating par-
tial quantitative knowledge within the nitrogen cycle

Microbial systems ecology tackles complex ecological questions by coupling ob-
servational (e.g., molecular and geochemical) data with new computational tech-
niques [165, 117, 218]. We saw above that recent computational advances allowed
to qualitatively describe microbial communities by emphasizing "who is there and
who is not" [166]. However, as for other biological systems, among the most sig-
nificant challenges in microbial systems ecology is the ability to quantitatively pre-
dict microbial community composition and function, by combining molecular data
and quantitative physicochemical data. Theoretically, this challenge necessitates
the consideration of both measurements (e.g., community composition, or associ-
ated geochemistry) alongside an uncertainty analysis associated with these mea-
surements. However, such a coupling is still elusive in predictive modeling (see
[153, 47] for review, or [128] for a similar question in the broad context of Com-
puter Sciences). Previous applications in ecology (e.g., [98]; [143]), promote the
use of advanced computational approaches to integrate statistical analysis into a
mechanistic modeling framework, but both concepts of determinism and random-
ness are still usually considered as independent [3]. Following the previous prob-
abilistic modeling, we advocate herein that one can transpose the same modeling
framework to ecological questions, such as the modeling of biogeochemical cycles
carrying out by myriads of microbial metabolisms. In other words, required inputs
for ETG modeling are (i) the chronological descriptions of biological events (i.e.,
metabolic reactions) and their potential connections (e.g., auxotrophy), and (ii) a
quantitative behavior to reproduce (e.g., the trajectory of functional groups under
fluctuating environmental conditions, or time series of quantities as presented in
Figure 4.3). As a result, ETG will learn parameters from quantity variations while
considering uncertainties. In this purpose, ETG weighs the transitions between
discrete events by probabilities that reproduce, on average, the quantitative behav-
iors observed in nature. The main insights gleaned from this approach can bring
further understanding and prediction of the temporal succession of community as-
semblages [75, 22]. In particular, this approach can relate key microbial functional
guilds to changes in the metabolites consumed or produced across gradients in co-
occurring and interacting environmental variables.

For the sake of application and consistency with studies shown in Section 2.3,
we focus here on the nitrogen cycle. Beyond the intrinsic importance of nitrogen
for biological systems, its cycling results from versatile redox chemical reactions.
Combined, these reactions promote complex biogeochemical transformations and
structure microbial communities. From a modeling viewpoint, the nitrogen cycle
presents three features that make it a promising candidate for new quantitative mod-
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elings. First, and despite recent studies uncovering new reactions and pathways
[121], nitrogen metabolic pathways are well understood and therefore constitute a
metabolic map that provides a stable and mechanistic description of the biologi-
cal processes involved [104]. This map represents a set of biological events that
can be quantitatively described. Second, because of recent technological advances,
especially in biogeochemistry and isotopic studies, the main processes involved
in nitrogen transformation (e.g., nitrogen fixation, nitrification, denitrification) can
also be depicted through quantitative rate measurements, which provide an overall
ecosystem behavior. These rates are ETG goals to be reproduced by the trained
model. Finally, high-throughput sequencing technologies provide greater insight
into the ecology of the microbial functional guilds playing an essential role in the
nitrogen cycle, in particular, the organisms responsible for different redox reactions
and their putative interactions (see [101] for an illustration).

Event Transition Graph modeling: data and biological knowledge formatting

ETG requires expert biological knowledge to be formalized as a graph. Experimen-
tal knowledge will then be incorporated into the model via a learning procedure that
weights the edges of this graph.

Network or graph of interactions The first input into ETG modeling is a list
of biological events as well as the consequences of these events. For the sake of
illustration, when representing the nitrogen cycle, the events are reactions (e.g.,
nitrification, denitrification), and their consequences are the respective production
and consumption of metabolites (e.g., NH4

+ NO3
−). This knowledge is neces-

sary to estimate the "cost", or effect when one event occurs over another. Here we
derive a nitrogen network composed of a hypothetical series of reactions (i.e., fixa-
tion, nitrification, denitrification, and anammox), as laid out in the KEGG database
[104], without assigning taxonomy to the microorganisms that mediate these reac-
tions. After removing duplicated reactions, this set of reactions, called sequential
biological events, consists of 14 reactions (see Supp. Material for technical details
and required format).

Concomitantly, as an additional modeling input, interactions between events
take the form of a graph that links reactions (i.e. nodes of the graph) when the
product of one reaction becomes the substrate for another reaction ( directed edge).
Thus, the above 14 reactions result in a graph of 14 nodes and 32 edges, as illus-
trated in Figure. 4.3A. Notice herein that KEGG IDs for amoA and nir have been
replaced below by their reaction names for the sake of clarity, whereas the central
reaction points towards reactions linked to the nitrogen cycle but involved in other
metabolic pathways, such as carbon or phosphate.
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R00785: nitrite→ nitric_oxide
R00783: nitric_oxide→ nitrite
R00790: nitrite→ ammonia
R02492: nitric_oxide→ dinitrogen_oxide
R05186: nitrogen→ ammonia
R02804: dinitrogen_oxide→ nitrogen
R00485: aspartate→ ammonia
R00793: hydroxylamine→ nitrite
R00482: ammonia→ Aspartate
R00148: ammonia→ hydroxylamine
R0023: nitrite→ nitrate
R03071: nitrate→ nitrite
R00143: hydroxylamine→ ammonia
Central: nitrate→ ammonia
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Figure 4.3: Network of the nitrogen cycle and its probabilistic simulation. A rep-
resents the nitrogen cycle where nodes are reactions as described in KEGG, and
edges putative transitions between reactions when a product of a reaction is a sub-
strate of another. B depicts eleven time point nutrient concentrations as described
in [22] station CB100 in Chesapeake Bay, as well as a probabilistic simulation of
the ETG model trained on ammonia and nitrite concentrations between 2001 and
2004.

Initial costs In addition to the overall definition of an event (i.e., reactions and
product/substrate definition) and description of the interactions within events (through
the construction of a graph), the cost of considering one event over another must
also be defined. Each event consumes and produces compounds. For instance,
each reaction within the nitrogen cycle can be described by its stoichiometry (i.e.,
-1 for a metabolite consumption and + 1 for a metabolite production). However,
when randomly crossed, the graph could promote an artificial increase or decrease
of a given compound, solely due to the graph topology. Such a result would not
represent a correct output of the modeling approach, but rather a prospective flaw.
To avoid this, one must compute the cost (denoted initial cost) for all compounds
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Table 4.1: Dissolved inorganic nitrogen concentrations (µM) over the time-course
of dataset from sampling station CB100 surface as presented in [22]

Time course Samples Ammonia (µM) Nitrite (µM) Nitrate (µM)
April 2001 8.4 0.8 88.7
August 2001 4.2 0.4 19.9
October 2001 9.3 7.9 24.2
April 2002 8.1 0.1 59.1
August 2002 6.2 0.4 11
October 2002 2.2 5.7 19.3
April 2003 6.3 0.5 76.8
October 2003 1.8 1.1 101.9
April 2004 3.4 0.6 94.7
August 2004 9.7 2 86.2
October 2004 5.8 1.1 63.7

for each event. This cost is necessary to maintain every compound at a station-
ary amount when every transition is equiprobable (i.e., steady states). For each
compound, this initial cost will be assigned to events that do not mention them
explicitly. For instance, for all reactions that do not consider ammonia, nitrite, or
nitrate as metabolites, one must compute a cost for these metabolites. Thus, -1.5,
-1.00, and -0.25 are the costs related to these metabolites (resp. ammonia, nitrite,
or nitrate) when not explicitly mentioned in their stoichiometry.

Quantitative data or training dataset ETG modeling estimates probabilities
associated with interactions between events (herein reactions) such that the succes-
sion of events reproduces quantitative experimental data. For illustration, we use
physicochemical variables from [22], which describes a time series of ammonia,
nitrite, and nitrate (see Table 4.1). In order to fit such quantitative experimental data
with ETG, one must transform quantitative variations as rates, which necessitates
the assignment of a time-step. For instance, when considering a time-step of two
hours, a variation from 8.4 µM to 4.2 µM of ammonia between April and August
2001 requires 1476 time-steps (123 days x 12), representing an overall variation
rate of:

rateNH3 =
4.2− 8.4

1476
≈ −0.0028455 (4.1)

Experimental variation in rates for each season (from April to August, from Au-
gust to October and from October to April) for the years 2001, 2002, 2003, and
2004, and for each nutrient was thus estimated from Table 4.1. These rates are the
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training data and represent the quantitative variations that must be reproduced by
the probabilistic modeling once parameterized.

Probability estimation and probabilistic simulations Once the ETG model
considers (i) a set of events and their putative interactions (Sec. 4.4.2); (ii) a cost
for each event (Sec. 4.4.2) and (iii) a quantitative rate that depicts an experimen-
tally observed quantitative variation impacted by at least one event (Sec. 4.4.2),
one seeks to learn probabilities to prioritize interactions between events. The over-
all parameterized model will reproduce variations in compounds (e.g., reactions or
products) similar to the experiments. An optimization process, detailed in [20],
will compute sets of probabilities for all transitions between each sample within a
time series. Thus, ETG of nitrogen cycle sequential biological events will compute
probabilities that reproduce the quantitative variation in ammonia and nitrite over
four years. It is important to notice herein that searching for optimal probability
values is performed by a local search method. Local search methods are sensitive
to sub-optimal solutions. Despite the use of a metaheuristic (i.e., Tabu search [85])
that memorizes visited solutions, finding the best solution is complex (NP-hard),
which could be prejudicial for larger complex models. However, from a practi-
cal viewpoint, models with 15 nodes and 30 edges remain realistic on a personal
computer.

Along with probability estimates for transitions between each event, a sensi-
tivity score (S), expressed in percentage, was also computed. The S score asso-
ciated with a transition expresses the fact that the Euclidean distance between the
expected rates (goals from section 4.4.2) and their predictions is modified by S %
when its probability value is changed by 1%. Such a sensitivity score permits rank-
ing the transitions according to their respective sensitivities (i.e., a high sensitivity
transition implies higher constraints on its corresponding probability value). In
practice, sensitivities between two-time points depict in Figure 4.4B are the mean
sensitivities of 100 optimal probability estimations that reproduce ammonia and
experimental nitrate variations.

Evaluation of the Probabilistic modeling

Probability estimate for simulating the nitrogen cycle Ammonia oxidizing or-
ganisms (AOO) mediate the rate-limiting step of nitrification (i.e., NH3 → NO2),
a rate-limiting step in the Nitrogen cycle [210, 21, 22]. Herein, we describe AOO
integration within a unique ETG of quantitative physicochemical variables and a
simulated biological network representing the whole nitrogen cycle. Following an
automatic extraction from the KEGG database [104], ETG that covers the whole
set of reactions associated with the nitrogen pathways represents 41 nodes and 67
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edges. In the present case, for the sake of clarity, the graph is pruned to 14 nodes
and 32 edges (Fig. 4.3A). The ETG describes transitions across biochemical path-
ways with each reaction, or event for the sake of generalization, affecting down-
stream processes (e.g., each event may produce or consume a compound according
to a stoichiometrically balanced reaction equation). In the present case, one sub-
strate can be consumed by several other reactions, which results in multiple edges
per node. The cost of each event is then parameterized in order to maintain stable
concentrations for each product when transitions of the network are equiprobable
(i.e., the null assumption).

To estimate probabilities between reactions and train the ETG, we used an ex-
isting environmental dataset representing variations in Chesapeake Bay ammonia,
nitrite, and nitrate concentrations (µM) between 2001 and 2004 [22]. The opti-
mization process emphasized a set of probabilities that reproduce observed varia-
tions in ammonia and nitrate despite the use of a reduced graph. To test our model,
we simulated variations in physicochemical factors using the Gillespie algorithm
[84] parameterized with computed probabilities, and compared the predictions with
the available time-series data (see Fig.4.3.B). The model accurately replicates am-
monia and nitrite physicochemical variables over the period between 2002-2004
but fails to reproduce the observed nitrate dynamics. This point indicates the need
for further modeling extensions that could integrate recently discovered new reac-
tions or pathways [121], especially to integrate nitrate concentration variations. It
is worth noticing also that no set of probabilities were able to replicate appropri-
ately variations of concentration between April 2003 and October 2003, indicat-
ing the sensitivity of our probabilistic modeling to either the time-step or natural
perturbations. Indeed, this inability to simulate this particular time slot could be
related to the hurricane Isabel, the strongest hurricane in the Atlantic in 2003, that
hit the Chesapeake Bay just before sampling. Such a strong perturbation modified
the AOO assemblage [22], which could affect, as well, the succession of metabolic
reactions compared to normal conditions.

Beyond the probabilistic simulations, the analysis of probabilities between
reactions (i.e. likelihoods of transitions between two reactions) are of interest.
Figure.4.4.A shows the log ratio of computed probabilities over probabilities un-
der the equiprobability assumption, for each transition over the period. Over the
four years, some transitions between reactions show similar probability values, or
close, to the values corresponding to the equiprobability assumption (i.e., light grey
in Figure.4.4.A). Herein, the graph topology remains the main factor to explain
the use of these transitions. However, other reaction transitions show probability
values very divergent than those obtained under the equiprobability assumption.
Transitions depicted in white are underused, whereas those colored in darker grey
are overused compared to an equiprobable use of transitions. Among the overused
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Figure 4.4: Summary of the ETG model Probabilities and Sensibilities trained on
ammonia and nitrite concentrations. Panel A shows the log ratio of computed prob-
abilities over probabilities of each transition under the equiprobability assumption.
Transitions illustrated in light grey show probabilities in the equiprobability as-
sumption. The dark grey color represents transitions with probabilities lower than
those computed under the equiprobability assumption, whereas lighter colors are
transitions with higher probabilities. Panel B gives sensitivity values for each tran-
sition. Cyan transitions are not sensitive, whereas purple transitions are the most
sensitive, i.e., the probability values cannot change without altering the overall
predictive accuracy.

reaction transitions, some transitions show substantial variabilities of probability
values over the four years, whereas others are overused continuously. In particu-
lar, the transition between ammonia-monooxygenase (amo) and the hydroxylamine
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oxidoreductase reaction (R00143) is of great interest. The transition from amo to
hydroxylamine oxidoreductase reaction is essential and used continuously over the
four years. This relationship is intuitive as the two functions are necessary together
for full oxidation of ammonium to regenerate electrons and meet the energetic
requirement of the organism to fix CO2 to biomass. Alternatively, the probabil-
ity analysis shows a spike of the overuse of the transition from hydroxylamine
oxidoreductase reaction to amo during Spring 2002, which could alter the above
behavior during this period.

Figure 4.4B shows the sensitivity analysis of the model by emphasizing the
most constrained transitions; i.e. transitions for which the probability values can-
not change without altering the training efficiency. These transitions are the most
constrained when the system must replicate the quantitative variations used dur-
ing the training process. Logically, identification of the most sensitive transitions
extracts the transition toward amo and nir nodes, as these events are necessary to
mediate NH3 and NO2 transformations that are required to reproduce training con-
ditions in Fig. 4.3B. From a biological viewpoint, this result confirms as well the
Chesapeake microbial ecosystem as driven by ammonia-oxidizing bacteria. High
sensitivities of transitions via R00783, R00785, and R00790, on the other hand, are
consequences of the modeling. More importantly, the sensitivity analysis empha-
sizes seasonal patterns of sensitivities that concern the above-mentioned reactions.
Despite the heterogeneous nature of the physical environmental conditions (see
Figure ??B and Table 4.1), the constraints on the transitions are seasonal, unlike
most of the observational data, and moreover show an antagonistic pattern between
two sets of transitions, with KEGG genes R00790, R00783 and R00785 on one side
and amo, Central, R00793 and R00143 on another. Overall, the sensitivity analysis
emphasizes two antagonistic subsystems that could be resumed as two sets of bio-
chemical reactions. The first subsystem that is the most constrained between April
and August implies:



Nitrite + Reduced azurin + H+ −→ Nitric oxide + H2O
+Oxidized azurin

Nitric oxide + H2O + Ferricytochrome C −→ Nitrite ++H+

Ferrocytochrome C
2 Nitric oxide + NADH + H+ −→ NAD+ + H2O

+Nitrous oxide

Whereas, another subsystem, driven by ammonia, is very constrained between
August and April concerns:
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NH3 + 2H2O + 6 Oxidized ferredoxin ←→ Nitrite + 6H+

+6 Reduced ferredoxin
Nitrite + H2O −→ Hydroxylamine

+O2

Nitric oxide + H2O + Oxidized azurin −→ Nitrite + H+

+Reduced azurin
NH3 + NAD+ + H2O −→ Hydroxylamine

+NADH + H+

It is worth noting that sensitive transitions and corresponding subsystems may in-
dicate potential constraints (or biochemical trade-offs) on organisms mediating the
targeted reactions, which might be related to selective pressures at an ecological
level. These pressures occur seasonally and are the results of a mechanistic mod-
eling that represents interactions between reactions.

Learning on a random network The general criticism about probabilistic mod-
els concerns their use as a statistical protocol that over-fits observed data. Contrary
to other probabilistic modelings, ETG considers a mechanistic interpretation of the
systems via the use of a graph of events. The use of a description of events avoids
overfitting the data. For the sake of illustration, we propose to randomize the model
and to train it on the same dataset. The randomized model consists of building a
graph similar to the nitrogen cycle graph for which all edges have been shuffled
by permutation. The randomized model is then similar to the ETG nitrogen cycle
model in terms of numbers of nodes and edges. We then applied a similar mod-
eling and training procedure to that described above. As pictured in Figure 4.5,
the randomized model is unable to predict the seasonal variabilities in ammonia or
nitrite. Indeed, no simulations permitted accurate depiction of the ammonia and ni-
trites experimental data. Furthermore, nitrate quantities remain constant over time,
which means that the trained model could not predict changes in nitrate.

Interest of ETG for modeling microbial ecosystems

This ETG framework is ideal for investigating the dynamic and transient nature
of microbial ecosystems. It does not begin with an assumption of a community
at a steady-state, unlike Flux Balance Analysis techniques (see [158] for review,
for metabolic modeling of microbial ecosystems see [224, 28]). This framework
is advantageous because, (i) measurements of microbial communities are unlikely
to be made at equilibrium, and (ii) most studies focus on changes in communities
under an environmental forcing, which is itself a transient behavior. This modeling
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Figure 4.5: Summary of the random ETG model Probabilities and Sensibilities
trained on ammonia and nitrites concentrations.

approach, therefore, emphasizes the putative constraints that are applied to a mi-
crobial community by inferring the biochemical constraints on metabolic reactions
under fluctuating environmental conditions. This dynamical property that emerges
from the probabilistic model analysis should be of interest to decipher metabolites
of interest from metabolite maps that depict exchanges between microbial strains
[19, 18]. In particular, these constraints (i.e. sensitivities) could highlight sea-
sonal patterns that could be further compared to co-occurrence patterns [39] for
the sake of validation. This study considered a metabolic network as a qualita-
tive description, but other qualitative networks, such as co-occurrence networks
[157, 62, 74, 90] or gene associations [35], will be analyzed similarly shortly to
refine biogeochemistry models.

Contributions to biological systems modelings
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Chapter 5

Perspectives

I will continue modeling until they
don’t want me anymore basically
because I do love it very much

Claudia Schiffer

In the last decade, we have rooted our work in modeling biological systems and
developing computational techniques for the sake of their understandings. From
this line of work, scientific interests are dual. From the biological viewpoint, the
interest is apparent: gaining biological knowledge from large heterogeneous and
incomplete datasets. However, we would like to emphasize here also the interest
of this exercise from the computational side. By investigating biological systems,
contrary to standard computational studies, one must model the system by choosing
the most accurate abstraction with needs dedicated mostly from the application and
not necessarily in line with computational customs.

Nevertheless, one must also navigate from one abstraction to another for inte-
grating complex biological knowledge but also to solve biological questions of a
single system that occur at different scales. Such plasticity in the choice of the ab-
straction is a characteristic of biological sciences. On the other hand, this modeling
freedom is a significant advantage of Computer Sciences (i.e., switching from one
abstraction to another for the sake of automatic solving of a given problem).

From the Computer Sciences viewpoint, developing formal and robust reason-
ings that must handle such plasticity of abstractions is of particular interest. Pre-
vious studies already mentioned the interest of formal computer sciences to tackle
the biological complexity, i.e., so-called biocomplexity. Among others, one could
notice the seminal works of Alan Turing [203], Stuart Kauffman [110], or more re-
cently an excellent overview by Eric Karsenti [108]. For the sake of modesty, one

145
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can not resume these works in a few lines here. However, one could notice that the
use of formal methods enables considering two biological features that are difficult
to reach from other scientific fields: (i) Computer Sciences abstract the multiscale
organization of Life, for instance by considering different layers of organizations
(i.e., from molecules to cellular behavior); (ii) Computer Sciences is accurate to
model interactions of elements that are not necessarily quantifiable via the gen-
eral rules of the information theory (i.e., genes are not quantifiable whereas their
protein products are). If studying biological systems via formal methods remains
exciting, one advocates herein that studying an ecosystem falls into the same range
of interest but amplified by orders of magnitude of scales and the number of ele-
ments that one must examine (i.e., from molecules to ecosystems). This change of
magnitude calls for a change of the Computer Sciences paradigm to foster ecolog-
ical questions. In the following, we will decipher this paradigm change into four
different sections, that are of distinct scientific interest.

For the sake of illustration, this perspective proposes to root this change of
paradigm into the study of plankton. In our opinion, this biological system exhibits
several computational interests. While considered as microbial to small organisms,
plankton drive marine food webs and global biogeochemical cycles, which are by
definition occurring at the enormous scale of Earth. They are thus among the most
challenging complex systems to model. For decades, several studies formalized
this biological systems via ordinary differential equations (see [170] or [156] for
illustrations), which makes a good candidate for further modelings. In particular,
systems ecology studies on plankton might actively profit from omics-based sys-
tems biology, which would add another dimension to traditional modeling. How-
ever, better and adaptive integration with data acquisition and data- analysis is re-
quired to achieve the goal. A feasible pipeline will integrate traditional and omics
observations, over several time scales, via high-level computational approaches.
Such research perspectives will lead to promoting computer sciences for a deeper
understanding of our planet and to the provision of knowledge-based directions to
stakeholders. The following opinion study describes parts of these research per-
spectives:

Domenico D’Alelio, Damien Eveillard, Victoria J Coles, Luigi Caputi,
Maurizio Ribera d’Alcalà, and Daniele Iudicone. Modelling the complexity of

plankton communities exploiting omics potential: From present challenges to an
integrative pipeline. Current Opinion in Systems Biology, 13:68–74, February

2019



5.1. INVESTIGATION OF THE ECOSYSTEM BIO-COMPLEXITY 147

M2M1

x1

x2

x3

x4

x5

Figure 5.1: Illustration of metabolic interactions between two planktonic metabolic
networks. Following FVA, one estimates the directionality of exchanges based on
ub and lb of exchange reaction. For ub > 0 ∧ lb < 0, the exchange reaction is
reversible (i.e., purple); ub > 0 ∧ lb = 0, the exchange reaction is irreversible
and describes a metabolite production (i.e., blue); ub = 0 ∧ lb < 0, the exchange
reaction is irreversible and describes a metabolite consumption (i.e., green); or
ub = 0 ∧ lb = 0 describes a blocked exchange reaction (i.e., red). Considering
the combination of exchange reaction status, the metabolite x1 could explain the
association between M1 and M2 but requires further investigations in other en-
vironmental conditions. x2 could explain a causalityM1 −→ M2 like predation
or parasitisme. x3 could explain a competition betweenM1 andM2. The status
for metabolites x4 and x5 does not allow to explain the association between both
organisms.

5.1 Investigation of the ecosystem bio-complexity

Omics measurements provide a large amount of plankton distribution data. Rela-
tive abundances are then usually reduced into co-occurrence networks, via several
techniques (see Chapter 2). This effort sets the starting information for better char-
acterizing plankton species interactions to shape trophic webs. Plankton species
interactions create complex ecological networks, including a copious number of
nodes and far more abundant links between them. As mentioned above, a graph,
often weighted, describes these interactions, where nodes are either OTUs or genes,
and edges depict significant associations between nodes weighted by the score as-
signed to the link. Beyond the trendy modeling of experiments (overall redundant
to state-of-the-art multifactorial analysis), the graph remains a formal object that
allows further investigations and innovative perspectives.
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5.1.1 Fostering graph investigations

From correlation to causality Regardless of the interest of co-occurrence net-
works to describe putative antagonistic or mutualistic interactions [133], the pri-
mary challenge remains to develop networks driven by causal links (i.e., inter-
actions per se) starting from correlation networks. To this purpose, one could
take benefit from genomics knowledge that describes the genomic content of each
planktonic organism. For each organism, one could build a metabolic network fol-
lowing protocols described in Chapter 3. Considering a given substrate (i.e., chem-
ical parameters such as nutrients), one could then perform a Flux Variability Anal-
ysis for two organisms, resp. M1 and M2, associated in a given co-occurrence
graph (i.e., nodes connected by an edge). For each metabolic model, examining ub
and lb of each exchange reaction indicates the metabolic flux between two plankton
organisms. For instance, Figure 5.1 illustrates that a metabolite x could explain a
causality between two associated organisms.

This modeling relies on two distinct models: the co-occurrence network and
the metabolic network of each involved organism. The combination of these mod-
els could then be used to emphasize causal associations between organisms, rather
than solely correlations. However, this combination remains computationally chal-
lenging. Indeed, notice here that one must perform such analysis (i) for each as-
sociation (i.e., edge) and (ii) for several environmental conditions. This induced
cost necessitates a change of modeling paradigm, for which the use of constraints
programming holds great promises by combining LP problems and motif find-
ings within a graph. In particular, we propose to formulate this problem through
Answer Set Programming (ASP). This formulation will allow a flexible encod-
ing that can be easily adjusted to test different pairwise metrics while still being
computationally efficient. This technique was already successful in systems bi-
ology [78, 15, 36], and we expect a similar efficiency for ecological networks.
From a biological viewpoint, this integration could also be challenging. Inevitably,
the inference of metabolic causality requires extensive genomic knowledge that is
usually out of reach for uncultivable organisms. However, today, one could advo-
cate for the use of recent bioinformatics advances that reconstruct genomes from
metagenomes (i.e., MAGS).

Beyond its complexity, the benefit of this modeling is varied. From the tech-
nical viewpoint, one must compare this new modeling to previous algorithms that
mostly focus on the graph features [19, 55] where herein one could use the quanti-
tative biomass-data variations and metabolic acclimation of each organism. From
the theoretical biology viewpoint, one could use our modeling hypothesis to ex-
plain causal interactions between organisms that are specific to given conditions or
along a gradient (i.e., following the path of a water mass). Hereabouts, the general
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Blue Community
(low nitrogen)

alignment-alpha-0.4

Turquoise Community
(high nitrogen)

Figure 5.2: Alignment of two planktonic communities from the Sargasso Sea. The
blue network depicts a co-occurrence network of a community associated with low
nitrogen content, whereas the turquoise one shows a community associated with
high nitrogen. The figure describes each network following the Hiveplot nomen-
clature. Two axes duplicate the nodes of a given community, and edges indicate
significant co-occurrence between organisms (from the central ax to the bottom one
to avoid edge duplication). The size of the nodes is proportional to the centrality
of the organism in its community (betweenness centrality), and their color indi-
cates their respective taxonomy. An orange edge indicates an alignment between
organisms of distinct communities. ©Erwan Delage

concept of the ecological niche could be not only applied to the growth of the or-
ganism but also on the interaction between organisms. By transitivity, these causal
metabolic interactions also impact the use of each metabolic network. This phe-
nomenon could be one of the primary drivers of evolutionary mechanisms such as
those resumed by the Black Queen Hypothesis [152, 146] that considers metabolic
exchanges as a constraint that explains genome reduction. Thus, the proposed
plankton model should deal with the community complexity using a network ar-
chitecture by performing static analysis or examining dynamical features based on
quantitative biomass-data variations.
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Graph alignment for comparing ecosystems Assuming the graph as an accu-
rate abstraction of the community structure, we could also extend the investigation
of graph properties for the sake of ecological findings. In particular, we propose
herein to use it to compare communities from different habitats. The co-occurrence
networks enclose the different prevalence of organisms, and the comparison of
graphs may emphasize the role of organisms in their respective communities. To
examine the extent to which the individual OTUs change the way they interact
with other OTUs in the network when living in different environments, one could
propose the use of graph-alignment techniques such as L-GRAAL [141]. Initially
applied to compare protein-protein interaction networks, this method will align
nodes of two graphs when they share both similar topological properties (i.e., for
each organism in each network, the graphlet decomposition depicts the number of
theoretical motifs in which the given organism is involved), and similar labeling
properties (i.e., sequence similarity). As illustrated in Figure 5.2, L-GRAAL will
allow us to align organism from two distinct communities if they share: (i) same
or similar relations within their co-occurrence network (i.e., a similar number of
theoretical motif participation) and (ii) same or similar 16S RNA sequences (i.e.,
similar taxonomy). A combination of these two features to align organisms will
shed light on two different aspects of environmental robustness. First, if the same
or closely similar organisms (regarding their DNA sequence) are aligned together,
it means that these nodes will establish similar ecological relationships within the
community network, despite significant changes in the network structure. Hence,
the nodes are themselves ecologically resistant to environmental variability, which
will indicate the preservation of specific patterns of ecological interactions, which
likely confers robustness to the community network. Second, aligned organisms
may be distinctively different in terms of their gene marker sequence (i.e., dif-
ferent ‘species’). These organisms, even identified in distinct communities (core
species), will establish different relationships with other organisms, and ecologi-
cal role when environmental conditions shift. Such a pattern would suggest the
existence of some level of ecological redundancy and compensatory relationships
within the microbial community as a source of network robustness. Conversely,
aligned organisms could be unique to each network (non-core OTUs), suggesting
that different environmental stressors represent constraints leading to the establish-
ment of similar ecological relations by different planktonic entities.

The results of community alignment remain preliminary [142] but hold great
promises to compare, for instance, different oceanic basins from the global ocean.
In particular, it is of great interest to compare communities from both poles or to
apply such a technique on graphs that depict the co-occurrence of genes for the
sake of functional comparison between bioregions. From a computational side,
a short-term perspective could integrate the broader genetic diversity within the
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Figure 5.3: Illustration of the identification of bi-clusters. A. depicts the identifica-
tion of biclusters that cluster given biological components (Cy) on given samples
(Sx). Biclusters are linked when they share samples (B) or components (C), which
overall help to build a graph of biclusters that emphasize local stabilities (D). When
projected on the ocean geography, these biclusters emphasize bioregion based on
local interactions (E) between different taxonomy (F). ©Marko Budinich

graph alignment. Thus, instead of resuming an organism by a unique DNA se-
quence, one could consider sets of sequence variants like proposed by modern sans
a priori techniques such as Oligotyping [56] or swarm [140], via the general use of
entropy as proposed in [57].

5.1.2 Fostering self-organization properties

The use of systems-biology graph-based methods revealed that one could split the
planktonic community into sub-networks. These components represent groups of
taxa or genes that correlate to and can predict biogeochemical processes (e.g., car-
bon flux [90]; iron bioavailability [29], paving the way to future ecosystems mod-
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eling that bridges genes, organisms, consortia, and biomes. Beyond the resolution
of these techniques to investigate ecosystems, they also change our perceptions
of the biological component of the global ocean. Today, we see plankton as a
giant, dynamic network (or assemblage of multi-layered metabolic and organis-
mal consortia). This network acclimates and adapts to local ecological conditions
principally through multiple modes of interactions, such as red-ox via metabolic
networks of organisms or communities of organisms, chemical signaling between
organisms, information-transfer through vesicles, viruses, and a broad spectrum
of organismal symbioses (from parasitism to mutualism). From an evolutionary
viewpoint, some of this knowledge transfer can even be heritable [200], whereas
others are the sole consequence of biotic and abiotic interactions (interacting ei-
ther directly or indirectly). Analyzing this network is complicated because it oc-
curs across various spatiotemporal scales, from local communities to global meta-
communities. Indeed, these ecosystems are self-assembling networks of organisms
that respond to abiotic and biotic factors, and in turn, feedback on the biological
and chemical landscape. To decipher the self-assembling rules that occur in such
a multi-layered paradigm, one must focus on the local stability of plankton sig-
nals (organism abundance or gene expression). To this purpose, the bi-clustering
technique [137] is promising (see Figure 5.3 for illustration). This technique identi-
fies keystone functional subunits that occur at given locations and given biological
elements. Preliminary results emphasize these subunits as new indicators of bio-
regions defined by putative interactions. We will then investigate these subunits
via their metabolic and energetic properties across wide-ranging spatiotemporal
and biogeochemical dimensions of the ocean ecosystem. Those observations ad-
vocate for fostering the biological properties of the interactions at the organismal
and genomic scales, which may largely determine ecosystem resilience and dy-
namics. Answering these fundamental questions of ecosystem self-organization
is crucial for predicting global ecosystem change. All these features are additional
constraints that one could use to refine the identification of bi-clusters via dedicated
modeling in Answer Set Programming.

5.1.3 Adding physical and temporal constraints

Plankton species interactions create complex ecological networks, including a co-
pious number of nodes and far more abundant links between them. As men-
tioned above, graphs, often weighted, describe such interactions. However, this
abstraction does not examine the plankton dynamical features based on quantita-
tive biomass-data variations. Indeed, following the dynamic movement of water
masses, planktonic species are subject to changing environmental and ecological
interactions at scales ranging from the micro-scale to the global ocean. However,
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despite this constant mixing, planktonic organisms are not homogeneous at any
scale, from local to global. Local populations show seasonal dynamics and eco-
logical successions, and communities are geographically-differentiated [215]. This
local plankton diversity, so-called α-diversity, prevails despite substantial environ-
mental, physical variability. This observation gave rise to the paradox of the plank-
ton [96], and still represents a significant challenge for modelers. Whereas high-
throughput sequencing of DNA and RNA allows accessing α-diversity by revealing
organismal and functional-gene diversities, researchers are still missing a proper
abstraction that could combine genomic description with temporal properties. To
bridge this conceptual gap, one advocates herein to foster the use of probabilistic
models as introduced in Section 4.4 or other abstractions such as continuous-time
Markov Chains to model the change of planktonic behavior within a moving water
mass that is subject to environmental constraints. An automaton will model each
plankton, and its formal investigation could propose new biological insights at the
global ocean scale.

5.2 Reduction of the biocomplexity

Arguably the most significant gap in Earth system and climate modeling is the
lack of integration of realistic, fine-scaled biological data. Life has dramatically
influenced the atmosphere of Earth, and living organisms are at the core of bio-
geochemical cycles, shaping the structure of ecosystems and climate. Still, while
physics and chemistry fairly well constrain current biogeochemical models [6],
they are profoundly oversimplified and unrealistic concerning biology. In partic-
ular, the NPZD type base model (Nutrients - Phytoplankton - Zooplankton - De-
tritus) is the standard modeling of this biological component, whose behavior is
regulated by the flows between different compartments of the model identified a
priori. Despite great modeling successes, this modeling does not take into account
(i) biological retroaction processes, nor (ii) the sometimes complex and singular
life traits of microorganisms resulting from interactions (from genes to organisms)
within an ecosystem. Furthermore, numerous observations and theoretical studies
have shown the significant impact that the ecosystem structure has on biogeochem-
ical flows. To fill this gap, new approaches in ecological modeling use the niche
concept and functional biodiversity to better formalize the microbial component
through the representation of traits (or phytoplankton classes representative of spe-
cific traits) in order to understand better the abiotic and biotic constraints regulating
biogeochemical flows. However, these traits do not reflect functional diversity, as
emphasized by metagenomic and metatranscriptomic knowledge. Indeed, beyond
the simple identification of the microbial actors present in an ecosystem (i.e., meta-
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Figure 5.4: Identification of niche from the metabolic model. From Flux Variabil-
ity Analysis, one estimate fluxes of substrates that are necessary to optimize the
growth rate of an organism. By extension, one can determine fluxes necessary for
a less optimal growth rate (by a factor θ). As a result, one obtains an estimation
of the niche for a given substrate. The right panel depicts a generalization on two
substrates, assuming the niche as a cardinal product of substrate-specific niches,
which is a particular case.

barcode), high throughput DNA sequencing also makes it possible to acquire al-
most exhaustive and semi-quantitative data on the functional diversity of microbes
(i.e., metagenomics) but also on their adaptations (i.e., metatranscriptomics).

5.2.1 Towards the definition of niche and trait-based model from ge-
nomic knowledge

The (meta)genomic information makes it possible to identify new molecular bio-
logical markers that provide a better understanding of the fundamental role played
by the microbial composition in the biosphere. For instance, in [90], a network
analysis identified these biomarkers associated with carbon export, and one could
extend their identification via machine learning techniques on satellite images [127].
Notwithstanding of predicting the localization of these biomarkers via statistical in-
ference, one advocates herein to integrate plankton biocomplexity in a mechanistic
way to produce next-generation ocean-climate models formally.

Current ocean-climate models are mostly deterministic, ignoring the biodi-
versity and complex behavior of plankton. As a first step towards incorporating
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plankton biocomplexity into ocean models, we propose to refine the concept of
niche from omics knowledge. Species distribution models usually depict ecolog-
ical niches, but these models take into account eco-evo observations for charis-
matic mega flora/fauna [198], with limited inclusion of microorganisms [53]. Nev-
ertheless, metagenomics and metatranscriptomics of ocean microorganisms [30]
may represent a significant advance in shifting towards more dynamical species-
distribution models. For instance, a seminal study [149] used genomics data in
trait-based models to predict the response of planktonic diatoms to ocean warm-
ing. Since a relatively large number of unicellular plankton are genome-wide de-
scribed, one must pursue shortly the integration of this more accurate description
within plankton niche definition, e.g., by predicting niche partitioning from even
small genomic differences. However, conceptual models of niche assessment and
prediction are still in their infancy and mostly bottom-up driven; i.e., they are based
on interactions between organisms and the environment and do not integrate bi-
ological interactions. As a near perspective, one proposes herein to use omics
knowledge to build a new generation of niche models based on metabolic model-
ing. In particular, one proposes to redefine the concept of niche via an extension of
Flux Variability Analysis. As illustrated by red areas in Figure 5.4, standard FVA
consists in identifying upper and lower bounds of exchange fluxes that maximizes
an objective function (zobj). By extension, one could perform a similar analysis
for an objective function depreciated by a parameter θ. The corresponding upper
and lower bounds will there draw a new definition of the niche. Thus, solving the
following constraint problem will indicate uncertainties around fluxes exchanges:

Case 1

maximize vi

subject to

cTv = zobj × θ, θ ∈ [0, 1]

Sv = 0

lbi ≤ vi ≤ ubi, i = 1, ..., n

Case 2

minimize vi

subject to

cTv = zobj × θ, θ ∈ [0, 1]

Sv = 0

lbi ≤ vi ≤ ubi, i = 1, ..., n

Analyzing the metabolic network of an organism via this paradigm will de-
scribe a genome-scale niche. Exploration of the corresponding solution space will
indicate if the niche of an organism is the cardinal product of niche for all environ-
mental parameters (i.e., exchange fluxes in a metabolic modeling paradigm) or a
much more complicated space to investigate. For the sake of validation, this new
niche definition will have to be compared to state-of-the-art definitions [198].
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5.2.2 New predictive biogeochemical models from metabolic complex-
ity/interactomes

The use of metagenomics and metatranscriptomics will also promote a new gen-
eration of biogeochemical models. When not considering organisms and their ge-
nomic content, one could foster the functional levels of a given ecosystem. For
instance, from the Tara Oceans dataset, one could extract the set of genes [189]
that occur in a given sample (i.e., location); or their expression [30]. Beyond
the interest of such records, these descriptions represent the ocean genome-scale
complexity that one could reduce for the sake of biogeochemical cycling under-
standing. In particular, amongst the more than150 million genes cataloged by Tara
Ocean data, almost 30% encode for enzymes that run the sizeable metabolic en-
gine underlying the redox chemistry of the world ocean. Beyond the description of
metabolic potential, we will develop predictive biogeochemical modeling from the
corresponding metabolic maps. Via the use of metabolic network reconstruction
techniques [135], one will build a prokaryotic functional metabolic network for
each Tara Oceans samples. To predict global changes in biogeochemical cycling
(notably the flux of carbon to deeper ocean layers by modeling remineralization
processes at the metabolic level), one could simulate these networks via state-of-
the-art flux balance analysis. One advocates herein that such modeling will repre-
sent an accurate proxy of the biogeochemical cycles that occur in the global ocean.
Furthermore, such a global, but genome-scale modeling will represent another use
of meta-omic experiments.

One could also project these simulation results on the broader picture associ-
ated with the Biological Carbon Pump (BCP). In particular, one could resume this
complex process by three features: the carbon export already discussed in Chap-
ter 2, the net primary production (NPP), and the flux attenuation that depicts the
amount of carbon dissolved along with the sinking process. After normalization,
one can plot these measurements in Figure 5.5. Interestingly, the Tara Oceans
samples do not cover the whole feasible space of the three BCP features, but rather
depict a limited subspace. This result emphasizes the occurrence of a potential
system as the three features are interdependent. For the sake of analysis, one could
then resume this BCP subspace by a simplex for which each face represents an
extreme state of the BCP. In Figure 5.5, the right panel describes the distribution
of Tara Oceans samples (dots), and the identification of the simplex and its re-
spective faces (extreme BCP states) in distinct colors. The left panel depicts the
metabolic signification of these extreme BCP states in the global ocean. As a per-
spective, one will investigate the metabolic specificity associated with each extreme
BCP state, such as the specific metabolic pathways or specific metabolic coupling
that occurs and organisms that could be responsible for them. For validation, one
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Figure 5.5: Description of a new modeling paradigm for the biological carbon
pump. Each Tara Oceans samples are distributed in three complementary features
(right panel): the carbon export, the net primary production, and the flux remineral-
ization. One computes the simplex wrapping the whole samples. For each sample,
one estimates its metabolic network. For each metabolic network, one computes
the dependencies (δ). The most significant dependencies between reaction x and
y (|δ(x, y)| > 0.9) are investigated, and associated to the main metabolic path-
ways and represented in a Uppset diagram (lower left panel). Colored stars depict
samples associated with extreme NPP, flux attenuation, or carbon export.

will integrate this new BCP modeling paradigm into next-generation ocean-climate
models. Current ocean-climate models are fundamentally deterministic, ignoring
the biodiversity and complex behavior of plankton, notably at the ecosystem level.
NextGen ocean-climate models integrating these new BCP traits into global-scale
ocean physics (e.g., Lagrangian circulation) and chemistry will then be developed,
highlighting the role of plankton in climate change, from genes to organisms to
ecosystems.
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5.3 Synthetic Ecology

As a natural extension, ecosystem modeling could lead to ecosystem engineerings.
The use of the constraint modeling paradigm could, therefore, lead to two applica-
tive perspectives that could help to design communities.

Research of optimal nutritional conditions Recent work has reconstructed more
than 700 metabolic networks of bacteria associated with the intestinal microbiota
[138]. Their availability is an exceptional opportunity to promote community mod-
eling methods. Indeed, beyond the simple description of networks, biologists are
committed to understanding interactions and their evolution during nutritional vari-
ations. As mentioned above, techniques for simulating metabolic networks are now
standard, in particular through the availability of the COBRA software suite [93],
which enables FBA and FVA in a context of single organisms. As a natural exten-
sion, one could generalize the use of MO-FBA and MO-FVA to simulate the growth
of a bacterial co-culture by considering the growth objectives of each strain via a
multi-objective optimization paradigm. The simulations explore a Pareto front that
describes all possible growth solutions for co-culture under different environmental
conditions. Applied on synthetic communities, we will seek to identify the nutri-
tional conditions favorable to each strain of interest, but also a microbial consor-
tium. For example, in the context of the gut microbiome, the nutritional conditions
allowing the restoration of damaged flora will then be potential therapies, so-called
probiotics.

Ecological capacitance When focusing on a single bacterium, it is possible to
determine in silico the genome transformations necessary to modify a given phe-
notype. In particular, Abdelhalim Larhlimi and collaborators [124] proposed a
modeling method called stoichiometric capacitance (SC) that optimally identifies
the metabolic transformation that one must add to the metabolic network in order
to optimize the production of a metabolite by a given microorganism while main-
taining the overall thermodynamic and mass balance properties. By extension,
this metabolic engineering approach, which identifies an optimal metabolic trans-
formation, proposes to identify all the reactions producing these transformations
as well as the genes encoding them. The genes identified will then be potential
candidates for synthetic strain constructions (i.e., genes allowing the encoding of
enzymes necessary for capacitance), because they modify the phenotype of a strain
optimally. By considering community metabolism as the union of the metabolism
of all strains present in an ecosystem, a short term perspective will be to look for
one to several SC capacities whose implementation will allow an environment un-
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favorable to a given microbial pathogen, or to the benefit to another strain. Each
capacitance of interest will then be decomposed and associated with a set of genes
necessary for its implementation. Notice here that all genes are not unique and
that one will consider several gene combinations. Each gene combination will then
be searched in the knowledge bases using web semantics approaches to identify
microbial strains that may possess the genes. The challenge herein is to isolate
the minimum strains containing the genes necessary for capacitance. At this stage,
and for validation of our synthetic modeling protocol, one will analyze the candi-
date genomes against other complementary techniques based on recently published
graph theory [55].
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Expérience Professionnelle
2006 – ... Maitre de Conférences, Université de Nantes, LS2N UMR 6004.

Membre de l’équipe ComBi
2004 – 2006 Chercheur Post-doctorant, Texas A&M University, Environmental Modeling

Group.
Travail sous la direction de George A. Jackson (Texas A&M University) et Bess B. Ward
(Princeton University)

2000 – 2004 Ingénieur d’études - doctorant, Université de Nancy 1, LORIA - INRIA Lorraine.
Membre de l’équipe MODBIO, sous la direction d’Alexander Bockmayr
et de Christiane Branlant

Habilitation à Diriger des Recherches
Spécialité Bioinformatique

Jury Philippe Vandenkoornhuyse (Prof U. Rennes), Alexander Bockmayr (Prof. Freie
Universität Berlin), Jérémie Bourdon (Prof. U. Nantes), Karoline Faust (Ass. Prof.
KU Leuven), Christopher Quince (Ass. Prof U. Warwick), Claudine Medigue (DR
CNRS) et Eric Rival (DR CNRS)

Titre From Systems Biology to Systems Ecology: a computational journey
Univ. Nantes soutenue le 13 octobre 2020

Doctorat
Spécialité Analyse et Modélisation des Systèmes Biologiques

Encadrants Alexander Bockmayr (Prof. Freie Universität Berlin) et Christiane Branlant (DR
CNRS)

Titre Modélisation statistique et formelle de la régulation de l’épissage alternatif chez
HIV-1

Univ. Nancy soutenue le 14 mai 2004

Diplome d’Etudes Approfondies
Spécialité Océanologie Biologique

Encadrants Antoine Sciandra (DR CNRS) et Olivier Bernard (DR INRIA)



Titre Modélisation de l’effet de la limitation conjuguée de la lumière et de l’azote sur la
croissance autotrophe

Univ. Paris 6 juin 2000, mention AB

Maitrise de Biologie des Populations
Spécialité Océanographie physique et écologie marine

Univ. Paris 6 juin 1999, mention AB

Distinctions et rayonnement international
{ PEDR (2015 - 2024) du ministère de la Recherche et de l’Enseignement Supérieur
{ Lauréat NSF (USA National Science Fundation) : "Integrative Biology and
adaptation of antarctic marine organisms" (sélection de 24 dossiers sur 480).
Mission en Antarctique (décembre 2009 - février 2010) qualifiante pour les missions
polaires et pour l’étude des systèmes microbiens dans leur environnement

{ Prime de l’Excellence Scientifique (2010 - 2014) du ministère de la Recherche et
de l’Enseignement Supérieur

{ Lauréat du Programme Initiative Post-Doc (2006) : Modélisation des systèmes
biologiques avec la programmation par contraintes

Responsabilités Scientifiques
{ Responsable de l’équipe ComBi du LS2N (2019 – )
Participations à des groupements de recherche
{ Membre du comité de direction de la Fédération de Recherche CNRS TARA
Oceans Systems Ecology & Evolution (GO-SEE) FR2022 (2018 – 2023)

{ Co-Responsable avec Philippe Vandenkoornhuyse du groupe de travail Ecologie
des Systèmes pour Biogenouest (2017 - 2018 )

{ Membre du Bureau du Groupe de Recherche (GDR) Génomique Environnementale
(2014 – 2018)

{ Membre du Réseau Thématique Prioritaire (RTP) du CNRS en Génomique
Environnementale (depuis 2012), coordinateur de la prospective modélisation et
données NGS

{ Co-Responsable avec Charles Pineau du groupe de travail Génomique Intégrative
pour Biogenouest (mars - décembre 2011)

Mobilités
USA Dept of Energy, Lawrence Berkeley National Laboratory, 17 jours, février 2018
Chili Center for Mathematical Modeling - Universidad de Chile, 10 jours, septembre 2017
USA Dept of Energy, Lawrence Berkeley National Laboratory, 13 jours, octobre 2016
USA Dept of Energy, Lawrence Berkeley National Laboratory, 12 jours, décembre 2015
USA Dept of Energy, Lawrence Berkeley National Laboratory, 14 jours, mai 2014
Chili Center for Mathematical Modeling - Universidad de Chile, 15 jours, décembre 2013
Chili Center for Mathematical Modeling - Universidad de Chile, 19 jours, décembre 2012



Chili Center for Mathematical Modeling - Universidad de Chile, 17 jours, avril 2011
USA Bodega Bay Marine Laboratory - UC Davis, 15 jours, avril 2010

Japon National Institute of Informatics (NII) - Tokyo, 13 jours mars 2010
Antarctique Mc Murdo Scientific Station, USAP, 6 semaines, janvier 2010

USA Department of Ecology and Evolutionary Biology, Princeton University, 11 jours,
juin 2009

Japon National Institute of Informatics (NII) - Tokyo, 10 jours mars 2009
UK Marine Biology Laboratory, University of Plymouth, 10 jours, août 2008

Allemagne DFG Research - Matheon, Freie Universität Berlin - (juillet 2006)
USA Membre du projet Biocomplexity (septembre 2004 à août 2006) dans le groupe

relatif à la modélisation et à l’analyse des données. Dans ce cadre, j’ai été amené
à différents séjours entre Texas A&M University sous la direction de George A.
Jackson et Princeton University en collaboration avec Bess B. Ward.

Participation à des projets scientifiques
Projets internationaux
{ Projet H2020 ATLANTECO, membre du consortium (2020 – 2024)
{ Tara Magallanes – co-porteur de la campagne océanographique sous l’égide de la
Fondation Tara Océan (2020 – 2021)

{ CNRS PICS France-Berkeley – Responsable du projet EMBASSY en collaboration
avec Lawrence Berkeley National Laboratory (2014 – 2017)

{ TARA Oceans – Membre du Consortium TARA Oceans depuis 2015
{ IntegrativeBioChile – Membre de l’équipe associée (2011 - 2014), (2014 - 2018)
en collaboration avec le Centro de Modialemento Matematico, Chile Universidad

{ INRIA - CONYCIT – Membre du programme de collaboration internationale (2011
- 2012), membre

{ CONICYT – Membre de projet financé par la Commission Nationale de la
Recherche Scientifique et Technologique du Chili (2010 - 2012), membre

{ PHC Sakura – avec le NII (Japon), et Waseda University (2008 - 2010): Hybrid
Constraints Programming for biological systems, membre

{ PHC Procope – avec Université de Nice et Freie Universität Berlin (2008 - 2010):
Temporal properties of discrete biological models, co-porteur

{ Projet NSF BioComplexity – Membre du projet sous la direction de Bess B. Ward,
Princeton University (2000 - 2008)

Participation à des projets de recherche nationaux
{ MEGALODOM - projet interdisciplinaire MASTODOM (2017 - ...), co-porteur de
projet avec Lionel Guidi (CR CNRS - Villefranche-sur-Mer)

{ CINAMON (2018 – 2022) porté par Laurence Garzareck (DR CNRS - Roscoff),
Responsable d’un Workpackage Modélisation de la physiologie de Synnechococus
sp.



{ ANR IMPEKAB (2016 – 2020) porté par Fabrice Not (CR CNRS - Roscoff),
Responsable d’un Workpackage Modélisation de la symbiose chez les radiolaires

{ ANR SAMOSA (2014 – 2017) porté par Laurence Garzareck (DR CNRS - Roscoff),
Responsable d’un Workpackage Modélisation de la physiologie de Synnechococus
sp.

{ Projet Structurant CNRS EC2CO, Commerce (2013 – 2014), co-responsable avec
Fredéric Plewniak, modélisation du métabolisme d’un écosystème microbien

{ Projet Structurant Project Lab INRIA Algae In Silico : modélisation de la réponse
photosynthétique des phytoplancton avec objectif de valorisation industrielle
(production de biocarburant). Projet porté par Olivier Bernard (DR INRIA -
Sophia Antipolis)

{ PEPII AQUASYST (2011 – 2012) : modélisation des systèmes microbiens des
nappes phréatiques. Co-Responsable avec Alexis Dufresne.

{ PEPS MANIFOLD (2011 – 2012) coordonné par A. Goldstejn, membre
{ Investissement d’avenir IDEALG (2011 – 2021) membre associé au projet : recon-
struction et modélisation du métabolisme des algues brunes soumis à un stress
abiotique

{ ANR Blanche (2010 – 2014) : BIOTEMPO Langages, concepts de temps et
modèles hybrides pour l’analyse de modèles incomplets en biologie moléculaire.
Coordonné par A. Siegel. Responsable du Workpackage Intégration de données

{ ANR SYSTERRA (2010 – 2014) : ECS Evolution du comportement de coopéra-
tion plante-symbiontes dans la perspective d’un usage étendu en agriculture
écologiquement intensive. Coordonné par P. Vandenkoornhuyse. Responsable
d’un Workpackage Modélisation

{ PEPS QuantOursin (2010 – 2011) : Modélisation quantitative de l’initiation de
traduction de l’oursin. Coordonné par A. Siegel, membre

{ Membre de l’ARC INRIA Calcul de Processus et Biologie Moléculaire (CPBio)
(2002 – 2004)

Participation à des projets de recherche (bi)régionaux
{ PROLIFIC (2020 – 2024). Membre du Consortium
{ MIBIOGATE - Région Pays de la Loire (2017 – 2021). Membre du comité de
pilotage

{ ProBioSTIC Projet RFI Numerique - Région Pays de la Loire (2017 – 2019),
porteur de projet

{ ProBioSTIC - projet interdisciplinaire de l’Université de Nantes (2017), porteur
de projet

{ ECOSYST (2016 - 2018) - projet structurant de BioGenOuest. Co-porteur avec
Philippe Vandenkoornhuyse (Pr Université de Rennes 1)

{ Projet Régional Structurant GRIOTE (2013 – 2017), coordonné par Jérémie
Bourdon, Richard Redon & Dominique Tessier, membre du comité scientifique,
animateur du pôle valorisation.



{ Projet de la fédération de recherche ATLANSTIC: BioATLANSTIC pour une
collaboration avec l’École Centrale de Nantes sur la modélisation des propriétés
temporelles des systèmes biologiques (2006 - 2008)

{ Projet régional structurant Bioinformatique ligérienne (BIL) (2006-2010) coor-
donné par R. Houlgatte

Enseignement et responsabilités pédagogiques
Je suis Maître de Conférences au département d’Informatique de l’Université de Nantes depuis
2006 avec une moyenne de 243 heures ETD d’enseignement par an. Les domaines enseignés
couvrent les Bases de Données, Langage Script, Langage Objet, initiation à l’algorithmique pour un
public d’étudiants en Informatique, mais aussi la bioinformatique pour des étudiants en biologie.
J’interviens également en Master Bioinformatique pour enseigner la Bioanalyse, les scripts Perl en
Bioinformatique, la gestion de projets.

{ Co-porteur du parcours Master 2 Génétique, Génomique, Biologie des Systèmes
du Master Biologie-Santé de l’Université de Nantes (∼14 étudiants) depuis 2017

{ responsable de Licence 1 à l’Université de Nantes (∼860 étudiants et 23 en-
seignants) de 2009 à 2012, et depuis 2014

{ responsable du module initiation à l’informatique pour le portail Biologie Géologie
Chimie de Licence 1 (∼820 étudiants et 16 intervenants de TD) depuis 2008

{ Co-responsable du module géologie quantitative - Licence 1(∼ 36 étudiants) 2008
– 2009

{ Co-responsable du module informatique pour la Chimie - Licence 2 (∼ 36 étudiants)
depuis 2009

{ Responsable du module langage Script pour la Bionformatique Master 2 Bioinfor-
matique (∼15 étudiants) depuis 2006

{ Responsable du module développement de projet en Bionformatique Master 1
Bioinformatique (∼ 36 étudiants) depuis 2006

{ Co-responsable du module bioanalyse Master 2 Bioinformatique (∼ 25 étudiants)
depuis 2006

{ Intervenant dans le module de biologie quantitative – option BioSTIC de l’École
Centrale de Nantes (∼ 25 étudiants) depuis 2016

Par ailleurs, je suis intervenu dans d’autres formations
{ Université de Nancy 1 (2001 - 2004) : 123 heures ETD sur 3 ans dans le DESS
Ressources Génomiques et Traitements Informatiques (Programmation en C,
Bioanalyse et Modélisation Statistique)

{ Texas A&M University (2005 - 2006) : interventions ponctuelles pour enseigner
la modélisation des systèmes biologiques pour des graduate students in Marine
microbiology

Encadrement d’activités de recherche
Encadrement Doctoral



{ Jakez Rolland - Bourse CIFRE (mai 2021 – ), étudiant en thèse à l’université de
Nantes et salarié de la société Bio-Logbook, encadré à 50% avec Benoit Delahaye
(LS2N): Science des données pour la médecine personalisée

{ Marinna Gaudin - Bourse H2020/Région Pays de la Loire (novembre 2020 – ),
étudiant en thèse à l’université de Nantes, encadré à 50% avec Samuel Chaffron
(LS2N): Modélisation des interactions planctoniques

{ Anna Lambert - Bourse projet PROLOFIC (novembre 2020 – ), étudiant en thèse à
l’université de Nantes, encadré à 50% avec Samuel Chaffron (LS2N): Modélisation
du microbiote intestinale en inyteraction avec la paroi intestinale

{ Antoine Regimbeau - Bourse CNRS 80 Prime (octobre 2019 – ), étudiant en
thèse à l’université de Nantes, encadré à 60% avec Laurent Memery (DR CNRS,
LEMAR) et & Olivier Aumont (DR IRD, LOCEAN): Introduction de la Complexité
planctonique dans les modèles biogéochimiques

{ Ulysse Guyet - Bourse Paris Universitat / Region Bretagne (octobre 2016 – juin
2020), étudiant en thèse à l’université de Paris 6, encadré à 50% avec Laurence
Garkzarek (DR CNRS, Roscoff): Modélisation de la réponse transcriptomique de
Synechococcus sp. aux stress abiotiques

{ Julien Fradin - Bourse MESR (depuis octobre 2015), étudiant en thèse à l’Université
de Nantes, encadré à 30% avec Guillaume Fertin (Pr Univ. Nantes), et Géraldine
Jean (MCU Univ. Nantes): Comparaison de graphes en Biologie

{ Julie Laniau - Bourse INRIA (Octobre 2013 – Octobre 2017), étudiante en
thèse à l’Université de Rennes, encadré à 50% avec Anne Siegel (DR CNRS) :
Reconstruction du métabolisme fonctionnel des communautés

{ Marko Budinich - bourse CNRS / région Pays de la Loire (octobre 2013 - avril 2017),
étudiant en thèse à l’Université de Nantes, encadré à 50% avec Jérémie Bourdon
(Pr. Université de Nantes), inscrit à l’école doctorale Sciences et Technologies de
l’Information et de Mathématiques : Modélisation du métabolisme des écosystèmes
microbiens : vers une modélisation multi-objectif du métabolisme

{ Philippe Bordron - Bourse ministérielle (septembre 2008 - juin 2012), étudiant en
thèse à l’Université de Nantes, encadré à 50% avec Irena Rusu (Pr. Université de
Nantes), inscrit à l’école doctorale Sciences et Technologies de l’Information et
de Mathématiques : Utilisation de la théorie des graphes pour l’intégration de
données omics.

{ Etienne Zohim - Bourse de la Ligue Contre le Cancer (décembre 2008 - juillet 2011),
étudiant en thèse à l’Université de Compiègne, encadré à 50% avec Abalo Chango
(Pr. Institut LaSalle Beauvais), inscrit à l’école doctorale de Biologie-Santé :
Biologie des Systèmes pour la modélisation du métabolisme des monocarbones.

Etudiants de Master
{ Adrien Bonneterre (mars 2017 - juillet 2017) étudiant de Master de Bioinformatique
de l’Université de Nantes: Intégration des données de génomique environnementale
et satelitaires

{ Julie Haguait (mars 2015 - septembre 2016) étudiante de Master Bioinformatique
de l’Université de Nantes: Analyse des données transcriptomique de Synnechococ-
cus sp.



{ Soizic Auffray (mars 2015 - juin 2015) étudiante de Master Bioinformatique de
l’Université de Nantes: Analyse de la réponse transcriptomique de Synnechococcus
sp. aux stress abiotiques

{ Sebastien Charneau (mars 2014 - juin 2014) étudiant de Master Bioinformatique
de l’Université de Nantes: Intégration des données transcriptomiques dans les
modèles métaboliques

{ Géraldine Del Mondo (février 2007 - décembre 2007) étudiante de Master Informa-
tique de l’Université de Nantes, encadrée à 50% avec Irena Rusu (Pr. Université
de Nantes): décomposition homogène des graphes d’interactions biologiques.

{ Myriam Vezain (septembre 2002 - juin 2004), étudiante en DESS de bioinforma-
tique EGOIST de Rouen, co-encadrée avec A. Bockmayr : Modélisation de la
régulation l’épissage alternatif au site A7 de HIV-1.

{ Deo Pakrash Pandey (juin 2002 - août 2002), étudiant en dernier cycle d’ingénieur
en informatique de l’université de Kanpur (Inde), actuellement étudiant en thèse
de biologie moléculaire University of Southern Denmark (SDU) : Modeling with
hybrid constraints the HIV-1 life cycle.

{ Stéphanie Billaut (janvier 2003 - mars 2003), étudiante en Maîtrise de Biologie
Cellulaire et Génétique de Nancy 1 : Recherche de motifs de régulation de
l’épissage alternatif : apprentissage statistique sur HIV-1. (février 2004 - septembre
2004) étudiante en Master de Bioinformatique de Bordeaux: modélisation du
métabolisme de la vitamine B12, approche topologique, co-encadrée avec A.
Bockmayr.

{ Sébastien Vachenc (juin 2002 - février 2003), étudiant en DESS RGTI à Nancy 1,
actuellement Ingénieur attaché au département bioinformatique des laboratoires
Fournier : Combinaison d’approches statistiques pour la découverte de motifs de
régulation d’épissage.

{ Carole Dossat (octobre 2001 - février 2002), étudiante en DESS de Génomique
RGTI à Nancy 1, actuellement Ingénieur au Génoscope : Comparaison et coordi-
nation des algorithmes d’alignements dédiés aux séquences nucléiques.

Participation à des jurys de thèse
{ Examinateur de la thèse de Simon Ramondenc Analyse des variations spatio-
temporelles du zooplancton gélatineux et son effet sur les flux de matières à l’aide
d’une approche combinant expérimentation et écologie numérique. Sorbonne
Universités, 24 Novembre 2017

{ Rapporteur de la thèse de Dhivyaa Rajasundaram Integrative analysis of heteroge-
neous plant cell wall related data using canonical- and network- based approaches.
Potsdam Universitat, 4 juin 2015.

{ Examinateur de la thèse de Gael Bougaran, Co-limitation par l’azote et le phosphore
: étude des mécanismes chez la microalgue Tisochrysis lutea. Université de Nantes,
le 24 octobre 2014. Thèse de l’école doctorale VENAM

{ Examinateur de la thèse de David Thybert, Identification des potentialités fonction-
nelles dans les génomes procaryotes : Application au sous-système de détoxication
des radicaux libres de l’oxygène et de l’azote. Université de Rennes 1, le 8 juillet
2010. Thèse de l’école doctorale Vie Agro-Santé.



{ Examinateur de la thèse de Jamil Ahmad, Modélisation Hybride et analyse des
dynamiques des réseaux de régulations biologiques en tenant compte des délais.
École Centrale de Nantes, le 5 février 2009. Thèse de l’école doctorale Sciences
et Technologies de l’Information et Mathématiques.

Participation à des comités de thèse
{ Clarisse Lemonier (2016 – 2017) doctorat d’Océanographie Biologique, encadrée
par Lois Magnien, Université de Brest

{ Alix Mas (2015 – 2016) doctorat en Ecologie, encadrée par Philippe Vandenkoorn-
huyse & Yvan Lagadeuc, Université de Rennes

{ Loren Méar (2015 – 2016) doctorat en Biologie Moléculaire, encadré par Charle
Pineau (INSERM), Université de Paris Dauphine

{ Simon Ramondenc (2015 – 2016) doctorat en Océanographie Biologique, encadré
par Lionel Guidi (CNRS) et Lars Stemman (Univ. Paris 6), Université Paris 6

{ Stanislas Thiriet-Rupert (2014 – 2015) doctorat en Physiologie Végétale, encadré
par Jean-Paul Cadoret (IFREMER), Université de Nantes.

{ Vincent Picard (2014 – 2015) doctorat en Informatique, encadré par Anne Siegel
(CNRS) et Jérémie Bourdon (Univ. Nantes), Université de Rennes & Ecole
Normale de Rennes

{ Louis Fippo Fitime (2013 – 2014 ) doctorat en Informatique, encadré par Olivier
Roux, Ecole Centrale de Nantes.

{ Nicolas Henry (2013 – 2014) doctorat en Océanographie, encadré par Colomban
de Vargas, Université Paris 6

{ Caroline Baroukh (2012 – 2013) doctorat en Génie des Procédés Biologiques,
encadré par Olivier Bernard, Université de Montpellier 1

Responsabilités Administratives
Organisation de conférences et ateliers scientifiques
{ Co-organisation de JOBIM 2019 à Nantes (∼450 personnes)
{ Co-organisation des "journées réseaux" pour le GDR Génomique Environnemental,
2 juin 2017, Nantes, France (∼ 102 personnes)

{ Membre du comité d’organisation de la Conférence Computational Methods in
Systems Biology, 16 – 18 septembre 2015, Nantes, France (∼ 85 personnes)

{ Co-organisation du Workshop international on Integrative-omics, 9 – 12 décembre
2013, Pucón, Chili (∼ 50 personnes)

{ Membre du comité d’organisation de JOBIM 2009 à Nantes (∼450 personnes)
{ Co-organisation de l’école thématique bi-régionale en biologie intégrative BIGOU
(7-9 novembre 2011, ∼50 personnes).

{ Co-organisation de trois éditions des journées satellites "Modélisation dynamique
et simulation des réseaux biologiques" (∼60 personnes en moyenne),
{ - Lille 2008,

- Nantes 2009,
- Montpellier 2010

Membre de Comités de Selection



J’ai participé à des comités de sélection pour le recrutement de chercheurs et enseignant-chercheurs
en Biologie et en Informatique.

avril 2021 Paris Sorbonnes Université, section 65 CNU (Biologie Moléculaire) Membre
extérieur

avril 2018 Paris Nord Université, section 65 CNU (Biologie Moléculaire) Membre extérieur
mars 2015 INRIA Rhône-Alpes (Informatique) Membre extérieur, Chargé de Recherche
juin 2012 Université de Nantes, section 27 CNU (Informatique)
juin 2012 Université de Nantes, section 27 CNU (Informatique)
juin 2012 Ecole Centrale de Nantes, section 27 CNU (Informatique) Membre extérieur,

Chaire CNRS
septembre

2011
Université de Nantes, section 27 CNU (Informatique)

juin 2011 Université de Nice, section 27 CNU (Informatique) Membre extérieur
juin 2011 Université de Nantes, section 27 CNU (Informatique)
juin 2010 Université de Nantes, section 27 CNU (Informatique)
juin 2009 Université de Nantes, section 27 CNU (Informatique)
juin 2009 Université de Rennes 1, section 65 CNU (Biologie Cellulaire) Membre extérieur

Vie du laboratoire
{ Responsable de l’équipe ComBi (2019 – )
{ Chargé de Mission Développement Durable pour le LS2N (2021 – )
{ Membre du bureau de la celllule "Qualité de Vie au Laboratoire"
{ Membre élu du conseil du laboratoire LS2N (2017 – ....)
{ Animateur du thème transversal Bioinformatique au LINA (2013 – 2016)
{ Membre nommé du conseil de laboratoire du LINA (2011 – 2016)
{ Membre élu du conseil scientifique de l’UFR Sciences et Techniques de l’Université
de Nantes (2012 – 2017)

{ Membre du comité d’organisation de la fête de la Science (2012 – 2016)
{ Responsable des séminaires mensuels "jeunes chercheurs" internes au laboratoire
(2009 – 2011)

Vulgarisation Scientifique
{ Conférencier invité à la nuit blanche des chercheurs : approches du vivant à l’ère
numérique. 27 janvier 2021 lien ici

{ Conférencier invité à la Nantes Digital Week : IA et objectifs de développement
durables. 25 septembre 2020 lien ici

{ Conférencier invité aux Rencontres GreenTech du ministère de la transition
écologique et solidaire : Comment créer de la valeur avec les données. 8 juin 2017

{ Conférencier invité à l’université d’été du Modem: Tara Océans et les enjeux de
l’océan dans la compréhension du climat



{ Presse régionale (Presse Ocean) : lien ici
{ Interview radio – mars 2016 – Radio SUN lien ici
{ Emission régionale : TV Nantes avril 2016s lien ici
{ Interview radio – Podcast National Interstices lien ici
{ Weekly Scientific international journals Nature (Research Highlight) Feb 2016
{ From Molecular Oceanography to Ocean systems modeling. Principles of Systems
Biology - No5, Cell Systems, 2016

{ Parole de Chercheurs, Université de Nantes lien ici

Publications avec comité de lecture
Journaux

[1] Yajuan Lin, Carly Moreno, Adrian Marchetti, Hugh Ducklow, Oscar Schofield, Erwan
Delage, Michael Meredith, Zuchuan Li, Damien Eveillard, Samuel Chaffron, and
Nicolas Cassar. Decline in plankton diversity and carbon flux with reduced sea ice
extent along the Western Antarctic Peninsula. Nature Communications, 12(1):4948,
dec 2021.

[2] Seaver Wang, Weiyi Tang, Erwan Delage, Scott Gifford, Hannah Whitby, Aridane G
González, Damien Eveillard, Hélène Planquette, and Nicolas Cassar. Investigating
the microbial ecology of coastal hotspots of marine nitrogen fixation in the western
North Atlantic. Scientific Reports, 11(1):5508, dec 2021.

[3] Marta and Royo-Llonch, Pablo Sánchez, Clara Ruiz-González, Guillem Salazar, Carlos
Pedrós-Alió, Marta Sebastián, Karine Labadie, Lucas Paoli, Federico M. Ibarbalz,
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tions (see colour-coded key), together with sequences from culti-
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2.4 Principal components analysis based on a correlation matrix com-
bining pre-correlated physicochemical and biological factors. Data
for the plots are taken functional gene array data dedicated to amoA
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of the total variance are also represented by the following abbrevi-
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Faust and Raes [62] . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Overview of analytical methods used to decipher planktonic com-
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2.7 Planktonic Iron-Associated Assemblages (IAAs) in the global ocean
and the Marquesas Islands stations. (A) Description of eukary-
otic modules associated with iron. Relative abundances and co-
occurrences of eukaryotic lineages were used to decipher modules.
Four modules can predict iron with high accuracy. For each IAA,
lineages are associated with their score of centrality (x-axis), to
their correlation with iron concentrations (y-axis), and their VIP
score (circle area). Circles depicted representative lineages within
each module and named (C: Copepoda, B: Bacillariophyta, R: Rhizaria).
(B) Top panel: contribution of Tara Oceans stations to the global
variance of IAAs of eukaryotic lineages. For each IAA, we rep-
resent the projection of stations on the first principal component
(upper panel). Lower panel: projection of the relative contribution
of the Tara Oceans stations to the global variance of iron-associated
prokaryotic gene assemblages, as revealed by WGCNA. For each
prokaryotic gene module associated with iron, we represent the
projection of stations on the first principal component, proportional
to triangle sizes for each module. The inset shows the behavior of
each IAA in the Marquesas archipelago stations. . . . . . . . . . . 41

3.1 Schema of a metabolic network as built from genomic knowledge.
Each gene (yellow arrow or gx) encodes for one enzyme (green
rectangle or Ex). An enzyme can be encoded by several genes
when several protein subunits are necessary (ex. g1 and g2 neces-
sary for producing E1). The presence of enzymes allows metabolic
reactions to take place (purple square or rx). Chemical database
depicts thermodynamical constraint that results in reversible or ir-
reversible reactions if one takes reactions in both directions or only
one. The same database indicates chemical compounds (blue circle
or cx) that are produced or consumed by each reaction. Two reac-
tions are linked to each other when the product of one reaction is
the substrate of the other one. The interplay between reactions thus
describes a metabolic network, that is a bipartite graph directed by
the chemical knowledge ©Philippe Bordron . . . . . . . . . . . . 47
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3.2 Schema of an integrated graph that resumes genomic and metabolic
knowledge. A set of genes (yellow arrow or gx) is ordered to build
a genome (or chromosome). Each of these genes is separated by
intervals that can gene measured as gene count or pair base count.
From the metabolic network depicted in Figure 3.1, one can build
a directed weighted graph in B., where a node represents the dual
genomic and metabolic knowledge (gx, ry) with g and r stand for
genes and their encoded reactions respectively. Directions of edges
correspond to the directions between two reactions as imposed by
thermodynamical constraints. The weights on edges represent the
numbers of gene interval between two genes pointed as sources
and targets of the given edge. ©Philippe Bordron . . . . . . . . . 49

4.1 Schema representing the two major rules considered in a Gene
Regulatory Network. The transcription and translation of gene 1
activates the transcription of genes, which could be formalized by a
signed edge g1

+−−−−→ g2. Reversely, the transcription and trans-
lation of gene 2 represses the transcription of gene 1, which could
be formalized by the signed edge g2

−−−−−→ g1 . . . . . . . . . . 77

4.2 Concentration variations over time are discretized by considering
the sign of the derivative. On the left panel, the whole simulation of
two variables x and y from the Figure ?? describes a qualitative cy-
cle depicted in the right panel. Such a cycle describe the structure
of an hybride automaton where nodes are qualitative states (like
(+,+)) and transitions describe how to reach one qualitative state
from another. On each qualitative state, one considers an additional
constraint constraint called invariant (hx ≤ D+

x andhy ≤ D+
y ), that

represent the clock and the delay in which one remains in the given
qualitative state (time in the increase of x and y concentrations).
For each transition (e.g., (+,+) to (-,+)), there is both a reset of a
clock (hx ← 0) and a constraint called guard that forbid to take the
transition before a given delay (hx ≤ d+x , that describes the time
for which x must increase). . . . . . . . . . . . . . . . . . . . . . 79



LIST OF FIGURES 215

4.3 Network of the nitrogen cycle and its probabilistic simulation. A
represents the nitrogen cycle where nodes are reactions as described
in KEGG, and edges putative transitions between reactions when a
product of a reaction is a substrate of another. B depicts eleven time
point nutrient concentrations as described in [22] station CB100 in
Chesapeake Bay, as well as a probabilistic simulation of the ETG
model trained on ammonia and nitrite concentrations between 2001
and 2004. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 Summary of the ETG model Probabilities and Sensibilities trained
on ammonia and nitrite concentrations. Panel A shows the log ratio
of computed probabilities over probabilities of each transition un-
der the equiprobability assumption. Transitions illustrated in light
grey show probabilities in the equiprobability assumption. The
dark grey color represents transitions with probabilities lower than
those computed under the equiprobability assumption, whereas lighter
colors are transitions with higher probabilities. Panel B gives sensi-
tivity values for each transition. Cyan transitions are not sensitive,
whereas purple transitions are the most sensitive, i.e., the proba-
bility values cannot change without altering the overall predictive
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5.1 Illustration of metabolic interactions between two planktonic metabolic
networks. Following FVA, one estimates the directionality of ex-
changes based on ub and lb of exchange reaction. For ub > 0∧lb <
0, the exchange reaction is reversible (i.e., purple); ub > 0∧lb = 0,
the exchange reaction is irreversible and describes a metabolite
production (i.e., blue); ub = 0 ∧ lb < 0, the exchange reaction is
irreversible and describes a metabolite consumption (i.e., green);
or ub = 0 ∧ lb = 0 describes a blocked exchange reaction (i.e.,
red). Considering the combination of exchange reaction status, the
metabolite x1 could explain the association betweenM1 andM2

but requires further investigations in other environmental condi-
tions. x2 could explain a causalityM1 −→ M2 like predation or
parasitisme. x3 could explain a competition betweenM1 andM2.
The status for metabolites x4 and x5 does not allow to explain the
association between both organisms. . . . . . . . . . . . . . . . . 131
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5.2 Alignment of two planktonic communities from the Sargasso Sea.
The blue network depicts a co-occurrence network of a commu-
nity associated with low nitrogen content, whereas the turquoise
one shows a community associated with high nitrogen. The figure
describes each network following the Hiveplot nomenclature. Two
axes duplicate the nodes of a given community, and edges indicate
significant co-occurrence between organisms (from the central ax
to the bottom one to avoid edge duplication). The size of the nodes
is proportional to the centrality of the organism in its community
(betweenness centrality), and their color indicates their respective
taxonomy. An orange edge indicates an alignment between organ-
isms of distinct communities. ©Erwan Delage . . . . . . . . . . . 132

5.3 Illustration of the identification of bi-clusters. A. depicts the identi-
fication of biclusters that cluster given biological components (Cy)
on given samples (Sx). Biclusters are linked when they share sam-
ples (B) or components (C), which overall help to build a graph of
biclusters that emphasize local stabilities (D). When projected on
the ocean geography, these biclusters emphasize bioregion based
on local interactions (E) between different taxonomy (F). ©Marko
Budinich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Identification of niche from the metabolic model. From Flux Vari-
ability Analysis, one estimate fluxes of substrates that are neces-
sary to optimize the growth rate of an organism. By extension, one
can determine fluxes necessary for a less optimal growth rate (by
a factor θ). As a result, one obtains an estimation of the niche for
a given substrate. The right panel depicts a generalization on two
substrates, assuming the niche as a cardinal product of substrate-
specific niches, which is a particular case. . . . . . . . . . . . . . 136

5.5 Description of a new modeling paradigm for the biological carbon
pump. Each Tara Oceans samples are distributed in three comple-
mentary features (right panel): the carbon export, the net primary
production, and the flux remineralization. One computes the sim-
plex wrapping the whole samples. For each sample, one estimates
its metabolic network. For each metabolic network, one computes
the dependencies (δ). The most significant dependencies between
reaction x and y (|δ(x, y)| > 0.9) are investigated, and associated
to the main metabolic pathways and represented in a Uppset dia-
gram (lower left panel). Colored stars depict samples associated
with extreme NPP, flux attenuation, or carbon export. . . . . . . . 138
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Résumé : Les progrès récents de la 
métagénomique ont favorisé un changement de 
paradigme dans l'étude des écosystèmes 
microbiens. Ces écosystèmes sont aujourd'hui 
analysés par leur contenu génétique qui permet 
notamment de mettre en évidence la 
composition microbienne en terme de taxonomie  
ou plus récemment leurs fonctions putatives. 
Cependant, comprendre suffisamment bien les 
interactions entre les communautés 
microbiennes et l’environnement pour prédire la 
diversité à partir de paramètres physico-
chimiques est une quête fondamentale de 
l'écologie microbienne qui nous échappe 
encore. Cette tâche nécessite de déchiffrer les 
règles mécanistes qui prévalent au niveau 
moléculaire. Une telle tâche doit être accomplie 
par des approches ou des modélisations 
informatiques dédiées, inspirées de la Biologie 
Systémique. Néanmoins, l'application directe 
des approches standard de la biologie des 
systèmes cellulaires est une tâche complexe. En 
effet, la description métagénomique des 
écosystèmes montre un grand nombre de 
variables à étudier.  De plus, les communautés  

sont (i) complexes, (ii) le plus souvent décrites 
qualitativement, et (iii) la compréhension 
quantitative de la façon dont les communautés 
interagissent avec leur environnement reste 
incomplète. Dans ce résumé de recherche, nous 
illustrerons comment les approches de la biologie 
systémique doivent être adaptées pour surmonter 
ces points de différentes manières. Dans un 
premier temps, nous présenterons l'application du 
protocole bioinformatique aux données de 
métagénomique, avec un accent particulier sur 
l'analyse des réseaux. Deuxièmement, nous 
décrirons comment intégrer les connaissances 
hétérogènes en omique par programmation 
logique. Cette intégration mettra l'accent sur les 
unités fonctionnelles présumées au niveau 
communautaire. Troisièmement, nous illustrerons 
la conception et l'utilisation de la modélisation 
quantitative à partir de ce réseau. En particulier, 
la modélisation basée sur les contraintes sera 
utilisée pour prédire la structure de la 
communauté microbienne et ses comportements 
à partir des connaissances à l'échelle du génome. 
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Abstract: Recent progress in metagenomics 
has promoted a change of paradigm to 
investigate microbial ecosystems. These 
ecosystems are today analyzed by their gene 
content that, in particular, allows to emphasize 
the microbial composition in term of taxonomy 
(i.e., «who is there and who is not») or more 
recently their putative functions. However, 
understanding the interactions between 
microbial communities and their environment 
well enough to be able to predict diversity based 
on physicochemical parameters is a 
fundamental pursuit of microbial ecology that 
still eludes us. This task requires to decipher the 
mechanistic rules that prevail at the molecular 
level. Such a task must be achieved by 
dedicated computational approaches or 
modeling, as inspired by Systems Biology.  
Nevertheless, the direct application of standard 
cellular systems biology approaches is a 
complicated task. Indeed, the metagenomic  

description of ecosystems shows a large 
number of variables to investigate. Furthermore, 
communities are complex, mostly described 
qualitatively, and the quantitative understanding 
of the way communities interacts with their 
surroundings remains incomplete. Within this 
research summary, we will illustrate how 
systems biology approaches must be adapted to 
overcome these points in different manners. 
First, we will present the application of 
bioinformatics protocol on metagenomics data, 
with a particular emphasis on network analysis. 
Second, we will describe how to integrate 
heterogeneous omics knowledge via logic 
programming. Such integration will emphasize 
putative functional units at the community level. 
Third, we will illustrate the design and the use of 
quantitative modeling from this network. In 
particular, constraint-Based modeling will be 
used to predict microbial community structure 
and its behaviors based on genome-scale 
knowledge. 
 

 


