
HAL Id: tel-04379086
https://hal.science/tel-04379086v1

Submitted on 13 Aug 2024 (v1), last revised 11 Sep 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Analysis of Algebraic Data Types and Arrays
Santiago Bautista

To cite this version:
Santiago Bautista. Static Analysis of Algebraic Data Types and Arrays. Computer Science [cs]. ENS
Rennes, 2023. English. �NNT : 2023URENE010�. �tel-04379086v1�

https://hal.science/tel-04379086v1
https://hal.archives-ouvertes.fr


·
·

· ·

·

·

·

·
·

·

·

·

·

·
·

·

·

·

·
·

·

·

·

·

·

·

·

·
·

·

· ·

·
·

·

·

··

·

··

·

· ·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

··
·

·

·
·

·

··

· ·

·
·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·
·

·

·

·

·

·
· ··

·
·

·

·

·

·

·
·

·

·

··

·

·

·
·

··

·

·

·

·

·

·

·
·

·

·

·
·

·

· · ··

·

·

· ·

·

·

·
·

·

·

·

·

· ··

·

·

·

·

·

·

·
·

·

· ·

·

·

·

·

· · ·

·

·

·

·
· ·

·

·

·

·

·

·

· ·

·

·

·

·

·

·
·

·

·

·

·

·

·
·

·
·

·

· ·

· ·

·

·
·

·

·

·

·

·

·

· ·

·

·

·
··

·

·

·

·
· ·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·
·

·

·

·

·

·

·

·

·······
·

·

·

·

·

·

·

·

·

·
· ·

·

·
·

·

·

·

·
·

·
·

·

·

·

·

··

·

·

·

··

·

·

·

··

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

· ·

·

·

·

·

·

·

· · ·

·

·

·

·

·
·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

·

·
·

·

·

·

·

·
·

·

·

· ·

·

·

·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·
·

··
·

·

·

·

··

·
·

· ·

·

·

·
· ·

·

·

··

·

·

·

·

·

· ·

·

··

·
·

·

·

·

·

·

·

· ·

··

THÈSE DE DOCTORAT DE

L’ÉCOLE NORMALE SUPÉRIEURE DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Informatique

Par

Santiago Sara BAUTISTA
Static Analysis of Algebraic Data Types and Arrays

Thèse présentée et soutenue à Rennes, le 20 décembre 2023
Unité de recherche : IRISA

Rapporteurs avant soutenance :

Xavier RIVAL Directeur de recherche à Inria Paris
Mihaela SIGHIREANU Professeure des Université à l’ENS Paris-Saclay

Composition du Jury :
Présidente : Nathalie BERTRAND Directrice de Recherche Inria Rennes
Examinateurs : Matthieu LEMERRE Ingénieur-Chercheur CEA Paris-Saclay

Xavier RIVAL Directeur de Recherche Inria Paris
Mihaela SIGHIREANU Professeure des Universités ENS Paris-Saclay

Directeur de thèse : Thomas Jensen Directeur de recherche Inria Rennes
Co-encadrant de thèse : Benoît Montagu Chargé de recherche Inria Rennes





TABLE OF CONTENTS

1 Introduction 5

2 Preliminaries 13
2.1 Algebraic Types and Values . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 A Language With Algebraic Data Types . . . . . . . . . . . . . . . . . . . 14
2.3 Background: Numeric Abstract Domains . . . . . . . . . . . . . . . . . . . 17

I Abstract Domains for Algebraic Types 20

3 Related Work on Algebraic Types Analysis 21
3.1 Numbers Inside Structured Values, and Relations between them . . . . . . 24
3.2 Disjunctive Abstract Domains . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Recursive Algebraic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 NPR: An Abstract Domain for Algebraic Types 29
4.1 Extended Variables: Variable-Path Pairs . . . . . . . . . . . . . . . . . . . 32
4.2 Numeric Domain Over Extended Variables: the NPR Domain . . . . . . . 35

5 Precision and Scalability for Algebraic Types 49
5.1 Constructor Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Structural Equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Reduced Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Disjunctive completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Analysis Result for the do_ticks Function . . . . . . . . . . . . . . . . . . 56

II From abstract domain to language analysis 59

6 Turning Relational Domains into Input-Output Relational Domain 61
6.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3



TABLE OF CONTENTS

6.2 A Collecting Semantics of Relations . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Leveraging Relations in Space to Express Relations in Time . . . . . . . . 65

7 Implementation and Experimental Results 69
7.1 Intra-Procedural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Analysis of Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Experimental Results and Complexity . . . . . . . . . . . . . . . . . . . . 75

III Abstract Domain for Arrays of Structured Values 79

8 Related Work on Array Analysis 81
8.1 Array segments from [GRS05] . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.2 Slice variables and shift variables from [HP08] . . . . . . . . . . . . . . . . 85
8.3 Segmentations from [CCL11] . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4 Works that are not based on abstract interpretation . . . . . . . . . . . . . 89

9 Extending Segmentations to Arrays of Structured Values 91
9.1 Extension of the Language and Motivating Example . . . . . . . . . . . . . 92
9.2 Structure of our Abstract Domain for Arrays . . . . . . . . . . . . . . . . . 95
9.3 Array Segmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.4 Unification and Inclusion for Segmentations . . . . . . . . . . . . . . . . . 100

9.4.1 Unification of Segmentations . . . . . . . . . . . . . . . . . . . . . . 100
9.4.2 On the Unsoundness of Segmentation Inclusion in [CCL11] . . . . . 102
9.4.3 A Sound Definition For Segmentation Inclusion . . . . . . . . . . . 103

9.5 Comparison with the [CCL11] Domain For Arrays . . . . . . . . . . . . . . 107
9.6 Disjunctive Completion for the Pana Domain . . . . . . . . . . . . . . . . 112
9.7 Soundness Theorem tor the Diorana Domain . . . . . . . . . . . . . . . . . 113
9.8 Result of Analysis on the Motivating Example . . . . . . . . . . . . . . . . 114
9.9 Conclusive Remarks on Array Analysis . . . . . . . . . . . . . . . . . . . . 115

IV Conclusion 116

10 Conclusion 117

Bibliography 125

4



Chapter 1

INTRODUCTION

Research in static analysis has successfully developed several techniques to ensure the
safety and security of programs, by detecting bugs before a program actually runs. Some
static analysis techniques are automatic. For example, in the context of abstract interpre-
tation [CC77], there exists a substantial number of abstract domains that target programs
with numeric or pointer-based computations and which can automatically detect frequent
bugs that arise from arithmetic overflows or memory safety issues. Other static analysis
techniques are not automatic. Interactive theorem proving, for example, is very expressive
on the properties that it can prove, but it may require a significant amount of human
effort [Mat18, Chapter 4]. Interactive theorem proving has successfully been used to verify
the entire functional specifications of complex pieces of software, such as the CompCert
compiler [Ler+16], verified using the Coq proof assistant, or the seL4 microkernel [Kle+14],
verified using the Isabelle/HOL proof assistant.

Automatic static analysis techniques have successfully been used to decrease the
amount of human effort required when using interactive theorem proving. For example,
the correlations abstract domain [And+19] allowed to discharge two thirds of the proof
obligations required to verify the invariants of the ProvenCore microkernel [Les15]. The
long-term goal of the work done during this thesis is to be able to further apply this
technique of using abstract interpretation to alleviate human effort in interactive theorem
proving. This asks for abstract domains that are expressive and that can analyse languages
with features such as algebraic data types (ADTs) and arrays. For example, the formal
verification of seL4 done in Isabelle/HOL uses a specification in Isabelle that features
ADTs and arrays, and properties that include numeric relations between parts of values of
algebraic data types stored in arrays. In this manuscript we will use the term structured
values to refer to values from algebraic types.

During this thesis, we investigated whether it is possible, for languages that feature
algebraic data-types and arrays, to use techniques based in abstract interpretation to
compute input-output summaries of functions, that are expressive enough to capture the

5



Introduction

numeric relations that hold between parts of structured values; even when these structured
values are stored inside arrays of an unknown size.

Two examples of the kind of programs that we want to be able to analyse are given in
figures 1.1 and 1.2. Both examples are simplified versions of the kind of functions that
can be found in an operating system’s micro-kernel; and were inspired by the functional
specification of seL4. The first example, function do_ticks from figure 1.1, manipulates
values from an algebraic type process representing processes. The type process has three
fields: a field id containing an identifier of the process, a field msg that may contain a
message sent by another process, and a field status describing the status of the process.
The status of a process might be either Running or Asleep. If the process is running, a
field count stores how many times the process has been activated. If the process is asleep,
a field secs stores the number of seconds the process should remain asleep, and the field
count stores the number of times the process has been activated. The function do_ticks
takes two parameters: a process p and a number of seconds n. The function simulates the
action of n clock ticks on a process p: a clock tick leaves the process p unchanged if p is
already running; or, if it is asleep, decrements the sleeping budget of p. If that budget is
already zero, the clock tick promotes p into a running process.

The important properties of do_ticks(p, n) that we intend to infer automatically
are the following:

1. If p is initially running, then it remains unchanged;

2. If p is initially sleeping, then it might wake up: in this case, its original sleeping
budget was less than n, and count—its number of activations—has been incremented
by one;

3. If p is initially sleeping, then it might remain sleeping: in this case, its sleeping
budget decreased by n, and its number of activations remains the same;

4. The field id, of integer type, of the process p has not changed;

5. The field msg, of record type, of the process p has not changed either.

The main idea of our approach for analysing algebraic types is to use pairs of variable
names and access paths (we call these pairs extended variables) to refer to different parts
of structured values. In particular, when extended variables point to numbers inside
structured values, then we can use numeric abstract domains that already exist to capture

6



Introduction

type status = [ (∗ Scheduling status ∗)
| Running of { count: int }

(∗ Running: activation times ∗)
| Asleep of { secs: int; count: int }

(∗ Sleeping : remaining seconds , activation times ∗)
]
type msg = { (∗ Messages ∗)

data : int ; (∗ Payload ∗)
reply : [ (∗ Whether to reply or not ∗)

| Reply of int (∗ Who to reply to ∗)
| DontReply of {} (∗ No reply expected ∗)

]
}
type process = { id: int; msg: msg; status: status } (∗ Process structure ∗)

def do_ticks(process p, int n) : process = {
(∗ Performs n clock ticks on the process p ∗)

int count; int secs; int i
assert (n > 0)
i = 0
while (i < n) do (∗ loop n times, i . e .: perform n clock ticks ∗)

branch (∗ case where p is running ∗)
count = p.status@Running.count

or (∗ case where p is asleep and can sleep longer ∗)
assert (p.status@Asleep.secs > 0)
count = p.status@Asleep.count
secs = p.status@Asleep.secs
p = { id = p.id; msg = p.msg;

status = Asleep { secs = secs - 1; count = count } }
or (∗ case where p is asleep and has no more sleeping budget ∗)

assert (p.status@Asleep.secs = 0)
count = p.status@Asleep.count
p = { id = p.id; msg = p.msg;

status = Running { count = count + 1 } }
end
i = i + 1

end
return p

}

Figure 1.1: Example program performing clock ticks on a process’s meta-data.

7



Introduction

numeric relations between these numeric parts of structured values. For example, for
the do_ticks function in figure 1.1, in the case where both the input and the output
of the function are asleep processes, we capture the property p′.status@Asleep.secs =
p.status@Asleep.secs − n that states that the sleeping budget of the process has been
decreased by n. This property can be captured for example, by the polyhedra domain, if
the extended variables p.status@Asleep.secs and p′.status@Asleep.secs are treated
as if they were numeric variables. Our approach can extend any numeric domain, as long
as it provides the operators and verifies the properties listed in section 2.3. We call this
first construction the NPR domain, for Numeric Path Relations (Chapter 4).

The main challenge to this approach comes from the fact that values from a sum type
can use different constructors, that are mutually exclusive. For example, the status of
processes (figure 1.1) can be either Running or Asleep. This changes the fields that are
defined: the sleeping budget, in our example, only exists for processes that are asleep. But
it also changes the properties that need to be captured. Indeed, when a programmer decides
to use a sum type, it generally models states of data that are quite different and require
different treatment. Hence the analysis of programs with sum types also requires, in order
to remain precise, a distinction between different cases, according to what constructors
are used by values from sum types. In our example, if the input process is Running then
the only properties that need to be captured are the fact that the message and identity
fields are not modified. If the input process is Asleep, then additional properties need to
be captured to reflect how the sleeping budget and status of the process evolve.

To tackle this challenge, we introduce a disjunctive completion (section 5.4), where
different disjuncts capture information about the different possible constructors for sum
types. To keep our disjunction small, we adopt two different strategies:

• We merge together disjuncts that make equivalent assumptions on the constructors
used. We introduce an abstract domain that explicitly tracks the assumptions made
on constructors. This abstract domain is called the Constructor Constraints domain
(section 5.1).

• We avoid some disjunctions by capturing in a concise way the parts of structured
values that are equal. For this, we introduce the Structural Equalities domain
(section 5.2).

Our second example, function find_max_prio from figure 1.2, manipulates arrays. It
involves thread descriptors—named Thread Control Blocks, or TCBs for short—that

8



Introduction

type unit = {} (∗ Record type with no fields ∗)

(∗ Thread descriptors (Thread Control Block) ∗)
type tcb =
{ prio : int; (∗ Priority ∗)

... (∗ Other fields of the TCB are elided ∗)
}

(∗ An array of TCBs. Represents a scheduler queue. ∗)
type queue = tcb[]

(∗ Options of TCBs. Serves as a return type for find_max_priority ∗)
type max_result = [ NoMax of unit | SomeMax of tcb ]

(∗ Returns the TCB with the hightest priority in the queue, if any. ∗)
def find_max_priority(queue q) : max_result = {

max_result res
unit case
int i
tcb challenger

i = 0
res = NoMax{}
while (i < |q|) do (∗ Iterate over the queue ∗)

challenger = q[i]
branch

case = res@NoMax (∗ First iteration ∗)
res = SomeMax challenger

or
assert(challenger.prio > res@SomeMax.prio) (∗ Higher priority found ∗)
res = SomeMax challenger

or
assert(res@SomeMax.prio >= challenger.prio) (∗ No change needed ∗)

end
i = i + 1

end
return res

}

Figure 1.2: Program that finds a thread descriptor with highest priority in an array.

9



Introduction

represent information about the threads that are managed by an operating system kernel.
TCBs are records of properties. To keep the example short, we only exhibit one property of
TCBs—their priority—although TCBs may have more. The find_max_priority function,
takes an array of TCBs as a parameter, and it searches in the array for a TCB whose
priority is the highest. It returns an option type, such that either NoMax{} is returned if
the array is empty, or SomeMax d is returned, where d is a TCB in the array, with the
highest priority.

Ideally we would want our analysis to fully verify the find_max_prio function by
capturing its full specification: the fact that the output is a TCB from the input array,
with the highest priority. However, as we will see in Chapter 9, our domain can only
capture the fact that the output TCB has a priority that is higher to the priority of any
TCB inside the input array; but it does not capture the fact that the output TCB indeed
belongs to the input array.

When analysing arrays, the main challenge is the fact that the size of the array is
unknown, hence the different cells of the array cannot be analysed individually. Instead,
multiple cells of arrays should be analysed together. However, analysing separately cells
that behave differently allows for a better precision. In this thesis we adopt the approach of
Cousot, Cousot and Logozzo [CCL11] for analysing arrays: each array variable is mapped
into a segmentation. Segmentations have different sets of bounds that divide the array
into segments, and each segment is summarized separately. Our approach has three main
differences with respect to [CCL11]:

• We allow for arrays to contain values from algebraic types, whereas [CCL11] supported
only arrays of scalars.

• We allow the summaries of array segments to refer to other variables of the program,
hence capturing the relations between the array contents and the values stored in
other variables, or the parameters of functions.

• We have a different definition for the abstract inclusion between array segmentations
(section 9.4.3), to solve a problem of monotonicity that we found in [CCL11]’s
concretisation for array segmentations (section 9.4.2).

For an example, we examine an intermediate result of our analysis on the function
find_max_priority from figure 1.2. If we only consider the executions that take the loop
at least once and we look at the segmentation that we get for array q at the head of the

10



Introduction

loop, after the widening converges, we get

{0}

 0 ≤ l ≤ i − 1; i ≥ 1
v.prio ≤ res@SomeMax.prio

 {i} ⊤S {|q|}?

In this segmentation, two different segments are considered: a segment from index 0
(included) to index i (excluded), and a segment from index i (included) to the length
of the array (excluded). The question mark after the sets of bounds {|q|} indicates that
the second segment might be empty. Inside segment summaries, the variables l and v are
special variables: l stands for the index of array slots in the segment, while v stands for the
content of array slots in the segment. The summary of the first segment properly captures
the fact that the TCB stored in variable res has a priority that is higher than the TCBs
stored in the array slots of this segment. Note that capturing this property requires to
relate a variable that is outside to the array (variable res) with the content of the array.

The structure of this manuscript is as follows. In Chapter 2 we introduce some
preliminary definitions, in which we formalize what we mean by algebraic types and
values (section 2.1), we describe the language that we work with (section 2.2) and we
list the hypotheses that we expect on the numeric domains that we extend (section 2.3).
Part I describes how we extend numeric domains to handle algebraic types. In Part II we
describe the different steps needed to turn our abstract domain into an actual program
analysis, and we discuss implementation and experimental results. In Part III we further
extend our approach, in order to handle arrays. The contributions of Parts I and II are
implemented, but the contributions of Part III are not. Both Parts I and III start with a
chapter discussing related work (Chapters 3 and 8). This manuscript includes the following
contributions:

• A novel abstract domain that expresses relations between values of non-recursive
ADTs (Part I). Our abstract domain can be instantiated with any numeric relational
domain. This offers a choice between domains with different precision vs cost balances,
and allows to capture numeric inequalities. This improves upon the correlation domain
[And+19], that is restricted to information about equality and reachability.

• Our abstract domain uses a particular form of disjunctive completion (section 5.4),
where we limit the number of disjuncts by merging some of them. Our merging
strategy is guided by observing the different cases of algebraic values.

• We give a formal justification to the folklore assertion that “a static analysis can

11



Introduction

be made relational by duplicating variables”, by showing that a non input-output
relational and an input-output relational analysis actually share the same structure
(lemma 12) and by showing how any relational domain can express relations between
different stores (Chapter 6).

• We formally define a relational analysis that infers relations between inputs and
outputs of programs (section 7.1), and propose a modular inter-procedural extension
that is based on function summaries (section 7.2). We illustrate the analyser’s results
on the function do_ticks from figure 1.1, which serves as running example for Parts I
and II.

• We provide an OCaml implementation [BJM22a] of our analyser, for a while language
with non-recursive algebraic types; together with 43 test cases, some of which are
inspired from an operating system code (Tables 7.1 and 7.2 in section 7.3). We briefly
discuss the complexity of our implementation (section 7.3).

• We extend our approach to encompass functional arrays that can contain algebraic
data types (Part III). This extension of our abstract domain is based on the notion
of array segmentations by Cousot, Cousot and Logozzo [CCL11].

The contributions from Parts I and II of this manuscript have already been published:

• [BJM20] contains a preliminary version of the NPR abstract domain from Chapter 4

• [BJM22b] contains all the contributions of Parts I and II. It is accompanied by a
virtual machine artefact, that contains the code of our implementation [BJM22a].

The extension for functional arrays (Part III) is not published at the time of writing, but
is undergoing peer-review. It was submitted as part of a journal article.

12



Chapter 2

PRELIMINARIES

In this chapter, we introduce some definitions, notations and hypothesis that we will use
in the rest of the manuscript. Section 2.1 introduces the definitions we use for algebraic
types and values. Section 2.2 describes the programming language that we analyse. Our
programming language is an extension of a classic while language, with algebraic data
types (products and sums). Section 2.3 introduces the notations and the hypotheses for
the abstract numeric domains that we use.

2.1 Algebraic Types and Values

ADTs are pervasively used in functional languages like OCaml, Haskell, Coq, or F⋆, and
have become a central feature of more recent programming languages, such as Swift or
Rust, just to name a few. We briefly recall the definitions of algebraic types, and of the
structured values that inhabit them.

Definition 1 (Algebraic types and structured values). Algebraic types and structured
values are inductively defined as follows:

τ ∈ Types ::= Int | {fi → τi
i∈I} | [Ai → τi

i∈I ]
v ∈ Values ::= n | {fi = vi

i∈I} | A(v)

Here, Int is the type of numbers, the (fi)i∈I are field names, the (Ai)i∈I are constructor
names, and I ranges over finite sets. The compound type {fi → τi

i∈I} is a record type, in
which a type τi is associated to each field fi. The type [Ai → τi

i∈I ] is a sum type containing
values formed with a head constructor that must be one of the Ai, and whose argument
must be of type τi. {fi = vi

i∈I} denotes a record value where each field fi has value vi

for every i ∈ I. A(v) denotes a variant value, built by applying the constructor A to the
value v. Constructors expect exactly one argument. Constructors with arities other than 1,
as typically found in functional languages, are encoded by providing a (possibly empty)

13



Part , Chapter 2 – Preliminaries

record value as argument to constructors. The numeric type Int and the record type with
no fields {} are the two base cases for types.

We use projection paths to refer to a part of a structured value (i.e., to a value embedded
inside another structured value). A path is either the empty path ε, or the path p.f , that
first accesses the value at path p and then accesses the record field f , or the path p@A, that
first accesses the value at path p and then accesses the argument of variant constructor A.

Definition 2 (Paths). Paths are inductively defined as follows:

p ∈ Paths ::= ε | p.f | p@A

Because paths are simply sequences of atomic paths (.f or @A) we allow their creation
or destruction from either side, and write for example @Ap to denote a path that starts
with @A.

The projection of the value v on the path p, written v ⇓val p, is the value that p points
to inside v. It is defined as follows:

Definition 3 (Projection of a value on a path).

v ⇓val p =



v if p = ε

v′ ⇓val p′ if p = @Ap′ and v = A(v′)

vi ⇓val p′ if p = .fip
′ and v = {fj = vj

j∈I} and i ∈ I

Undef otherwise

Our definition returns Undef when a path does not make sense for some value.

2.2 A Language With Algebraic Data Types

Figure 2.1 presents the syntax of the language, which consists of expressions t, boolean
conditions b, and commands c. Vars denotes the set of variables that may appear in
commands. For any set of variables V , let Fresh(V ) = Vars \ V be the set of variables that
are fresh with respect to V . Expressions include the projection of a variable x ∈ Vars over
a path p ∈ Paths, written x.p. The expression t1 ⊞ t2 denotes some arithmetic operations
on the expressions t1 and t2, and t1 ▷◁ t2 ranges over arithmetic comparisons.

We restrict our attention to well-typed commands (that we call programs), following
a standard structural type system [Pie02]. For instance, well-typedness ensures that

14



2.2. A Language With Algebraic Data Types

t ∈ Exp ::= n | A(t) | {fi = ti
i∈I} | x.p | t1 ⊞ t2

b ∈ BExp ::= t1 ▷◁ t2 | b1 ∧ b2 | b1 ∨ b2 | ¬b
c ∈ Cmd ::= skip | c1 ; c2 | branch c1 or . . . or cn end |

while b do c end | assert b | x := t

Figure 2.1: Grammar of the analysed language

SeqStep
(c1, s) → (c′

1, s
′)

(c1 ; c2, s) → (c′
1 ; c2, s

′)

SeqSkip

(skip ; c2, s) → (c2, s)

Assign
v ∈ JtKexp

s

(x := t, s) → (skip, s(x 7→ v))

Branch
1 ≤ i ≤ n

(branch c1 or . . . or cn end, s) → (ci, s)

Assert
tt ∈ JbKbool

s

(assert(b), s) → (skip, s)

WhileTrue
tt ∈ JbKbool

s

(while b do c end, s) → (c ; while b do c end, s)

WhileFalse
ff ∈ JbKbool

s

(while b do c end, s) → (skip, s)

Figure 2.2: Small-step semantics of commands. B = {tt, ff} is the set of boolean values.

arithmetic tests and operations receive arguments of integer type, and that every projection
x.p is consistent with the type of the variable x.

Programs operate on stores, denoted by s, that are finite maps from Vars to Values.
We define the semantics of programs using a standard small-step semantics that specifies
the effects of commands on stores (figure 2.2). The relation (c, s) → (c′, s′) tells that the
command c transforms the store s into a store s′, and that command c′ is to be executed
next.

The command skip performs no operation, whereas the sequence c1 ; c2 executes c1

followed by c2. The branching command branch c1 or . . . or cn end non-deterministically
chooses one of the commands ci and executes it, discarding the other branches. The
command while b do c end executes the command c as long as the condition b holds, and
successfully terminates otherwise.

The command assert(b) tests whether the condition b holds, in which case the command
succeeds, and the execution of the program continues. When b is not satisfied, assert(b) fails,
i.e., the program remains stuck. We can express the conditional construct if b then c1 else c2

as branch assert(b) ; c1 or assert(¬b) ; c2 end.

15



Part , Chapter 2 – Preliminaries

Jx.pKexp
s =

{s(x) ⇓val p} if s(x) is defined and s(x) ⇓val p ̸= Undef
∅ otherwiser

{fi = ti
i∈I}

zexp

s
=

{
{fi = vi

i∈I} | ∀i ∈ I, vi ∈ JtiK
exp
s

}
JA(t)Kexp

s = {A(v) | v ∈ JtKexp
s }

Jt1 ⊞ t2K
exp
s = {v1 ⊞ v2 | v1 ∈ Jt1K

exp
s ∧ v2 ∈ Jt2K

exp
s }

Figure 2.3: Denotation of expressions.

Jt1 ▷◁ t2K
bool
s = {v1 ▷◁ v2 | v1 ∈ Jt1K

exp
s ∧ v2 ∈ Jt2K

exp
s }

Jb1 ∧ b2K
bool
s = {b1 ∧ b2 | b1 ∈ Jb1K

bool
s ∧ b2 ∈ Jb2K

bool
s }

Jb1 ∨ b2K
bool
s = {b1 ∨ b2 | b1 ∈ Jb1K

bool
s ∧ b2 ∈ Jb2K

bool
s }

J¬bKbool
s = {¬b | b ∈ JbKbool

s }

Figure 2.4: Denotation of conditions.

Finally, the assignment command x := t evaluates t to some value v and updates the
variable x with v. We write s(x 7→ v) to denote the store s updated with the association
from variable x to value v. If there was an entry for x in s already, then it is replaced with
the value v. Otherwise, a new entry is created.

The evaluation JtKexp
s of an expression t in a store s proceeds by induction on the

structure of t to evaluate sub-expressions, and reads in the store s the values of variables
(figure 2.3). JtKexp

s is either a singleton, which denotes normal execution, or the empty set,
which denotes a failure, such as an invalid projection x.p. For example, if s(x) = A(v) then
Jx@BKexp

s = ∅, because the constructors A and B are different. The evaluation of booleans
JbKbool

s is standard (figure 2.4).
Importantly, records and variants are immutable in our language: it is not possible

to update some field f of a record in-place, for example. Instead, the programmer must
follow the functional idiom, and create a new record value, that contains a different value
for the field f .

We recover the pattern matching construct match twithA1(x1) → c1 | · · · | An(xn) →
cn end as a syntactic sugar for command z := t ; branch x1 := z@A1 ; c1 or . . . or xn :=
z@An ; cn end for a freshly chosen variable z.

For any expression t (respectively any boolean condition b), we call Env (t) (resp.
Env (b)) the set of all variable projections that appear in t (resp. b). For example, for
boolean expression x@A ≤ y@B + 1, we have Env (x@A ≤ y@B + 1) = {x@A; y@B}.
Lemma 1 (Consistency between the semantics of expressions and the projections

16



2.3. Background: Numeric Abstract Domains

being mentioned). For any expression t ∈ Exp, any boolean condition b ∈ BExp, any
set of variables V and any state s : V → Values

• If JtKexp
s ̸= ∅ then ∀x.p ∈ Env (t) , s(x) ⇓val p ̸= Undef.

• If JbKbool
s ̸= ∅ then ∀x.p ∈ Env (b) , s(x) ⇓val p ̸= Undef.

Proof sketch. Both of this properties are proven by induction: induction on t for expressions,
and induction on b for boolean conditions. The proof for expressions is done before the proof
for boolean conditions, as the former is used in the latter. The base case for expressions
(that is, projection), directly follows from the definition of the semantics of expressions
(figure 2.3). All the recursive cases are proven in the same way:

• The non-emptiness of denotations propagates to sub-expressions, given the way J�Kexp
�

is defined (figure 2.3).

• Any projection mentioned in a compound expression is mentioned in one of its
sub-expressions, which allows to use the induction hypothesis.

The base case for boolean conditions (numeric comparison between two expressions) uses
the proof for expressions. The recursive cases for boolean conditions work exactly like the
recursive cases for expressions.

Lemma 1 will be used when proving the soundness of the transfer functions of the
NPR domain of section 4.2.

2.3 Background: Numeric Abstract Domains

We first review the structure of traditional numeric domains [Min17] such as intervals,
octagons and polyhedra. The domains are parametrised by a set of variables, and describe
sets of numeric stores over those variables, i.e., sets of maps from variables to numbers.

Given a set of variables V , we expect a numeric abstract domain N(V ) to provide
the operations listed below (which are included in the user interface of the Apron li-
brary [JM09]) in such a way that the standard soundness properties of abstract inter-
pretation [CC77; Cou21] are met: A set of abstract values N(V ) with a concretisation
function γN(V ) ∈ N(V ) → P(V → Int), a pre-order on abstract values ⊑N(V ), abstract
union ⊔N(V ) and intersection ⊓N(V ), and a widening operator ▽N(V ). The domain must
also offer abstractions for boolean conditions CondN(V ) ∈ BExp → N(V ) → N(V ) and for

17



Part , Chapter 2 – Preliminaries

assignment AssignN(V ) ∈ V × Arith (V ) → N(V ) → N(V ) (where Arith (V ) is the set of
arithmetic expressions over the variables V ), satisfying the soundness properties:

γN(V )(AssignN(V )(x := t)(d)) ⊇ {s(x 7→ v) | s ∈ γN(V )(d) ∧ v ∈ JtKexp
s }

γN(V )(CondN(V )(b)(d)) ⊇ {s ∈ γN(V )(d) | tt ∈ JbKbool
s }

Additionally, we expect a predicate CanSatN(V ) ∈ N(V ) ×BExp → B for querying an
abstract value to know whether a boolean condition can be satisfied or not. This operation
must verify the property

(
∃s ∈ γN(V )(d), JcKexp

s = {tt}
)

⇒ CanSatN(V )(d, c)

From this predicate, another predicate SatisfiesN(V ) can be deduced, by taking

SatisfiesN(V )(d, c) = ¬ CanSatN(V )(d,¬c)

The predicate SatisfiesN(V ) verifies the property

SatisfiesN(V )(d, c) ⇒ ∀s ∈ γN(V )(d), JcKexp
s ⊆ {tt}

In other words, SatisfiesN(V )(d, c) guarantees that condition c is either true or blocking,
for all states in the concretisation of d.

We also assume the existence of “variable management” operators for removing, adding
and renaming variables. Operator RemN(V )

V ′ projects an element of N(V ) onto N(V \ V ′).
Operator AddN(V )

V ′ embeds an element of N(V ) into the domain N(V ∪ V ′). Given a bijection
r : V1 → V2, the operator RenameN(V1)

r translates an element of N(V1) into N(V2). These
operators satisfy the following soundness properties.

Hypothesis 1 (Soundness of variable removal).

γN(V \V ′)(RemN(V )
V ′ (d)) ⊇ {s|(V \V ′) | s ∈ γN(V )(d)}

Hypothesis 2 (Soundness of variable addition).

γN(V ∪V ′)(AddN(V )
V ′ (d)) ⊇ {s : (V ∪ V ′) → Int | s|V ∈ γN(V )(d)}

18



2.3. Background: Numeric Abstract Domains

Hypothesis 3 (Soundness of variable renaming).

γN(V2)(RenameN(V1)
r (d)) ⊇ {s | s ◦ r ∈ γN(V1)(d)}

In addition, we require three properties about the operator for removing variables of
the underlying numeric domain N:

Hypothesis 4 (Monotony of variable removal with respect to abstract values). For any
two sets of variables V1 and V2 and any two abstract values d1 and d2 in N(V1), we require
that

d1 ⊑N(V1) d2 ⇒ RemN(V1)
V2 (d1) ⊑N(V1\V2) RemN(V1)

V2 (d2)

Hypothesis 5 (Composition of variable removal). For any three sets of variables V1, V2

and V3 such that V1 ⊆ V2 ⊆ V3, and any abstract value d ∈ N(V3), we require that

RemN(V3)
V3\V1

(d) ⊑N(V1) RemN(V2)
V2\V1

(
RemN(V3)

V3\V2
(d)
)

In other words, hypothesis 5 states that, when removing a set of variables from a
numeric abstract value, it is at least as precise to remove them all at once, than to remove
them in two steps.

Hypothesis 6 (Empty set removal). For any set of variables V and any abstract value
d ∈ N(V ), we require that

RemN(V )
∅ (d) = d

Even though it is technically possible to implement in Apron a numeric domain that
does not respect hypotheses 4 and 5, these hypotheses are neither surprising nor very
restrictive. In particular, we believe that all the numeric abstract domains that we tested
our implementation with (polyhedra, octagons and intervals) respect all of the hypotheses
in this section.

Hypotheses 4 and 5 are used to prove that the pre-order of the NPR lifting is transitive
(lemma 5 on page 39). Hypothesis 6 is used when proving that the widening of the NPR
lifting enforces convergence in finite time (lemma 7 on page 41); and the reflexivity of the
NPR pre-order (lemma 5).

19



Part I

Abstract Domains for Algebraic
Types

20



Chapter 3

RELATED WORK ON

ALGEBRAIC TYPES ANALYSIS

In this chapter, we discuss some of the work that has been done to analyse programs that
manipulate algebraic data-types:

• Lattice tree automata by Genet et al. [Gen+13] and the domain for trees by Journault,
Miné and Ouadjaout [JMO19] that both combine tree automata and numeric abstract
domains.

• The correlation domain by Andreescu et al. [And+19], that recursively defines
abstract values that focus on equalities between parts of structured values.

• Convoluted tree automata by Losekoot, Genet and Jensen [LGJ23], that recognize
regular sets of tuples of terms.

• Li et al. [Li+17b] who, in the context of shape analysis, introduce the notion of
silhouette to control the number of disjuncts in a disjunctive abstract domain.

• Liu and Rival [LR15b] who focus on the particular case of optional values.

• Valnet, Monat and Miné [VMM23] who are currently working on extending the
MOPSA platform ([Jou+19]) to develop a static analyser for the OCaml language.

In order to explain the different approaches, we will use the simple example programs
of figure 3.1. The alternate function from figure 3.1a is taken from [JMO19], while
the alternate_0_1 function from figure 3.1c and alternate_eq from figure 3.1b are two
variations of alternate that are easier to analyse.

The alternate function. The function alternate from figure 3.1a takes as parameters
a non-negative integer n and an integer x. It returns a list of size 2n, where the elements

21



Part I, Chapter 3 – Related Work on Algebraic Types Analysis

let rec alternate x n =
assert(n >= 0);
match n with
| 0 -> []
| _ -> (x + 1) ::

(x - 1) ::
(alternate x (n - 1))

(a) An OCaml function returning a list of size 2n that alternates between x + 1 and x − 1.
This example is taken from [JMO19].

let rec alternate_eq x n =
assert(n >= 0);
match n with
| 0 -> []
| _ -> x ::

(x + 1) ::
(alternate_eq x (n - 1))

(b) A variation on alternate that alternates
between x and x + 1.

let rec alternate_0_1 n =
assert(n >= 0);
match n with
| 0 -> []
| _ -> 0 ::

1 ::
(alternate_0_1 (n - 1))

(c) A variation on alternate that alternates
between 0 and 1.

Figure 3.1: Three example programs

of even index are equal to x+ 1 and the elements of odd index are equal to x− 1 (indexing
starts at 0).

The alternate_eq function Like the alternate function, the alternate_eq function
also takes as parameters a non-negative integer n and an integer x; and returns a list of
size 2n. However, instead of alternating between x + 1 and x − 1, the elements of the
output list alternate between x and x+ 1. This function is slightly easier to analyse than
the function alternate. Indeed, there is an equality between the input x and the values at
even indices of the list; rather than a more complex numeric relation such as +1 or −1.
As we will see, the abstract domain of correlations ([And+19]) specializes in equalities,
and can capture more information when analyzing this function than when analyzing
alternate.

The alternate_0_1 function. The alternate_0_1 function takes as a parameter a non-
negative integer n and returns a list of size 2n that alternates between the values 0 (for
even indices) and 1 (for odd indices). This function is easier to analyse than the alternate

and alternate_eq functions, since the values in the output list can be described on their

22



own, without referring to an input x. In other words, describing the values in the output
list of this function does not require to capture a relation between input and output.

In figures 3.2 to 3.5, we give abstract values from different related work that over-
approximate either the output or the input-output relation of some of these examples.
However, we adapt the notations to make these abstract values readable without having
to introduce all of the formalism of the original works.

Values from algebraic types can be seen as trees. For this reason, several works analyzing
programs with algebraic types and discussed in this chapter use tree automata [Com+08].
We briefly introduce tree automata by an example.

Tree automata in a nutshell. A tree automaton is a way of describing a set of terms,
using a system of rewriting rules. As an example, we consider the set of lists that only
contain zeros. These lists can be seen as terms built using 3 symbols:

• The symbol Nil, representing the empty list. It takes no arguments.

• The symbol Cons, representing a non-empty list. It takes two arguments: the first
element of the list, and the rest of the list.

• The symbol 0, representing the integer zero.

We now define a tree automaton that recognizes the set of lists of zeros. We give this
automaton two states: a state q0 that recognizes zero, and a state qL that recognizes lists
filled with zeros. We give this automaton the following system of rewriting rules:

0 → q0 Nil → qL Cons(q0, qL) → qL

The meaning of the transition system is:

• The term 0 can be rewritten into q0. We also say that state q0 recognizes the term 0.

• The term Nil can be rewritten into qL. In other words, state qL recognizes the term
Nil.

• The term Cons(q0, qL) can be rewritten into qL. Said otherwise, if there are two terms
t1 and t2 that are recognized by q0 and qL respectively, then the term Cons(t1, t2) is
recognized by qL.

We declare qL as the final state of our automaton, which means that the terms recognized
by the automaton are the ones recognized by qL. This ends our example of tree automaton.

23



Part I, Chapter 3 – Related Work on Algebraic Types Analysis

Symbols: Nil (no arguments),
Cons (two arguments)

Automaton states: qzero (the integer zero)
qone (the integer one)
qeven (lists of an even size)
qodd (lists of an odd size)

Final state: qeven

Rewriting rules: [0; 0] → qzero

[1; 1] → qone

Nil → qeven

Cons(qone, qeven) → qodd

Cons(qzero, qodd) → qeven

Figure 3.2: A lattice tree automaton ([Gen+13]) that represents the possible outputs of
function alternate_0_1 from figure 3.1c; using intervals as numeric abstract domain.

3.1 Numbers Inside Structured Values,
and Relations between them

In 2013, Genet et al. [Gen+13] introduced lattice tree automata, which combine tree
automata and numeric abstract domains. The main idea is that some of the states of the
automaton recognize numeric abstract values (representing a set of numbers). This allows
to capture properties on the numbers contained in the structured values of the program
being analysed. However, a limitation of this approach is that the numeric abstract values
are necessarily at the leaves of the structured values being recognized. Thus excluding the
possibility to capture relations between different leaves of a single structured value; or
leaves of different structured values. Figure 3.2 shows the abstract value that this approach
would yield to represent the possible outputs of function alternate_0_1 from figure 3.1c.
For the more complex function figure 3.1a, this approach would not yield a very precise
abstraction, since it cannot capture the numeric relation between the input x and the list
elements x+ 1 and x− 1.

A later approach by Journault, Miné and Ouadjaout [JMO19] also combines tree
automata and numeric abstract domains to abstract over sets of values from algebraic
types. But instead of having numeric abstract values directly in the rewriting rules of
the automaton, a special symbol □ is used for numerical values in the rewriting rules.
Constraints on numerical values are then given alongside the automaton, by using regular
expressions to describe sets of access paths, and a numeric abstract value to describe

24



3.1. Numbers Inside Structured Values, and Relations between them

Symbols: Nil (no arguments),
□ (no arguments),
Cons (two arguments)

Automaton states: qeven (lists of an even size)
qodd (lists of an odd size)

Final state: qeven

Rewriting rules: Nil → qeven

Cons(□, qeven) → qodd

Cons(□, qodd) → qeven

Regular expressions
for access paths:

reven = (.1.1)∗.0 (numeric elements at even indices)
rodd = (.1.1)∗.1.0 (numeric elements at odd indices)

Numeric constraints: t.rodd = x− 1; t.reven = t.rodd + 2

Figure 3.3: Abstract value from [JMO19] for the alternate function of figure 3.1a; assuming
the output is stored in a variable t.


x →


Nil → ⊤

Cons →
{

head → Eq
tail → ⊤

}Output


Output

n → ⊤



Input

Figure 3.4: Correlation ([And+19]) over-approximating the alternate_eq function from
figure 3.1b.

numeric constraints on the values at those access paths. This approach manages to capture
numeric relations between the different leaves of a structured value; as shown in figure 3.3.

Some related work focuses on capturing specific kinds of relations. It is the case for
correlations ([And+19]) that focuses on equality, and convoluted tree automata ([LGJ23])
which captures some relations between the size of structured values and numbers in the
program.

Andreescu et al. [And+19] define the abstract domain of correlations to abstract over
input-output relations of functions manipulating algebraic data-types. Correlations capture
equality relations between parts the input and parts of the output of a function. If a function
has multiple inputs, correlation analysis will treat it as having a single input which is
a record. Correlations are defined inductively. The base cases are ⊤ (which carries no
information), ⊥ (which corresponds to unreachable code or unreachable constructors), and
Eq (which indicates an equality between the part of the input being currently considered,
and the part of the output being currently considered). For the inductive cases, a superscript

25



Part I, Chapter 3 – Related Work on Algebraic Types Analysis

indicates whether the correlation will focus on different parts of the input, or different
parts of the output. An inductive case built with curly braces indicates that the value
being considered is a record, and then focuses on each field of the record. An inductive case
built with square brackets indicates that the value being considered is a variant, and then
focuses on the different possible constructors of the variant. An example of correlation is
given in figure 3.4, for the alternate_eq function from figure 3.1b. Correlations should be
read from the outside in. For figure 3.4, the outermost curly braces with the superscript
Input tell us that the input is a record. A correlation is given for each one of the two fields
x and n of this record. The correlation associated to field x is built with square brackets
with the superscript Output. This tells us that the output is a variant. This variant has
two possible constructors Nil and Cons. The ⊤ correlation associated to constructor Nil
does not tell us anything in particular. However, the correlation associated to constructor
Cons indicates to us that the argument of constructor Cons is a record with two fields head
and tail. Furthermore, the correlation Eq indicates that the value of the field head is equal
to the input x.

To summarize, the correlation of figure 3.4 states that, if the output of function
alternate_eq is a non-empty list (built using constructor Cons), then the head of that list
is equal to the input x.

A limitation of this approach is that it can only express equality relations between
parts of the input and parts of the output, instead of more complex numeric relations. For
example, this approach would not be able to capture any interesting property for function
alternate form figure 3.1a; since no part of the output is equal to any part of the input.
Instead there are numeric relations between x and x+ 1 and x and x− 1.

There is an approach by Losekoot, Genet and Jensen [LGJ23] that does not use abstract
numeric domains, but relies entirely on tree automata. Their approach translates both
the program to be analysed and the property to be verified into constrained Horn clauses,
and then uses a learner-teacher implication counter-example procedure to either find a
model that proves the property or a counter-example that disproves it. The procedure
may also loop, or fail to answer. An advantage of [LGJ23] compared with the other works
cited in this chapter is that they can relate the size of structured values to other numeric
quantities. For example, they can prove that the length of a reversed list is the same than
the one of the original list. However, the expressiveness of their approach is limited by the
models that they produce: convoluted tree automata. Only some kinds of relations can be
recognized by such automata. For example, their approach cannot relate the size of the

26



3.2. Disjunctive Abstract Domains

output of function alternate_0_1 with the input n, since the multiplication by two of an
integer cannot be encoded inside a convoluted tree automata.

3.2 Disjunctive Abstract Domains

As pointed out by Kim, Rival and Ryu [KRR18], different static analyses use either
disjunctions or conjunctions of implications to achieve an improved precision. It then
becomes important to limit the number of disjunctions, so as to keep the cost of the
analysis under control. As we will see in Chapter 5, we use a form of disjunction when
analyzing algebraic types. We separate disjuncts according to which constructors are used
to build variants. We limit the size of our disjunction by merging together disjuncts that
consider the same sets of constructors.

Our strategy for limiting the size of our disjunction is similar to the one used by Li et
al. [Li+17b] in the context of shape analysis. Indeed, in both works, disjuncts are merged
together if they are equivalent, for an equivalence relation defined by the analysis. In the
case of [Li+17b], two disjuncts are equivalent if they have the same silhouette, which is an
abstraction of which symbolic variables point to each other in memory. In our case, two
disjuncts are equivalent if they consider the same sets of constructors for variants.

In the particular case of optional values (that are either None or Some of a number),
Liu and Rival ([LR15b]) don’t use a disjunction nor a conjunction of implications. Instead,
they use multiple avatars for the variables that have an option type. For each optional
variable, the two avatars represent respectively a lower-bound and an upper-bound on
the number of the Some case. If the two avatars hold contradictory constraints, then the
optional variable is in the None case.

3.3 Recursive Algebraic Types

The approach that we will present in this thesis for analyzing algebraic types does not han-
dle recursive algebraic types. By contrast, the techniques based on tree automata [Gen+13;
LGJ23; JMO19] (presented in section 3.1) handle recursive algebraic types. Correla-
tions [And+19] (presented in section 3.1) handle recursive types in a limited way. A
correlation can capture information for the first few stages of recursion, but the rest will
sooner or later be over-approximated with ⊤. In particular, for function alternate_eq,
this domain cannot capture the fact that one of every two elements of the output is equal

27



Part I, Chapter 3 – Related Work on Algebraic Types Analysis

Possible constructors at top-level: {Cons,Nil}
Symbolic variable for the head of the list: r
Possible constructors for nested values: {Cons,Nil}
Numeric constraints on symbolic variables: 0 ≤ r ≤ 1

Figure 3.5: Value from the abstract domain of [VMM23] over-approximating the possible
outputs of function alternate_0_1.

to the input x.
Valnet, Monat and Miné [VMM23] have developed an abstract domain to analyse

languages with algebraic data types. Their approach is based on using symbolic variables
to summarise the different values that a field of a structured value might take at different
depths of recursion; and indicating the list of constructors that are possible for recur-
sive cases. Figure 3.5 shows an example of an abstract value from their domain, that
over-approximates the possible outputs of the alternate_0_1 function from figure 3.1c.
Compared to our approach, they have the advantage of handling recursive algebraic data
types. When it comes to which relations can be captured between the different fields of
structured values or the precision of input-output summaries for functions, it is difficult to
compare the precision of their approach to ours, since these aspects are not yet part of
their implementation.

28



Chapter 4

NPR: AN ABSTRACT DOMAIN FOR

ALGEBRAIC TYPES

The goal of this chapter and the next is to define an abstract domain that will allow to
analyse programs that manipulate algebraic types. The syntax of the programs was defined
in Chapter 2. In this chapter we will use as a running example the do_ticks function from
the introduction (figure 1.1 on page 7), that is presented again in figure 4.2. The different
steps in the construction of our abstract domain are summarised in figure 4.1. Our domain
is parametric with respect to a numeric abstract domain N, so that we can instantiate it on
different precision versus cost trade-offs. We expect the numeric domain N to provide the
operations described in section 2.3, which are a subset of the API offered by Apron [JM09].
Numeric abstract domains are tailored to abstract sets of stores where variables hold
numbers. Instead, in a program that manipulates algebraic types, variables hold structured
values. The main idea of our approach is to use projection paths to artificially build stores
in which pairs of variables and projection paths are associated to numbers. We call these
variable-path pairs extended variables. Section 4.1 defines extended variables and some
operations on them. Using extended variables, we define in section 4.2 a first way to lift
numeric domains to languages with algebraic types: the Numeric Path Relations lifting,
or NPR lifting for short. It can express, for example, that a call to do_ticks can only
decrease the value in the field secs of processes (that denotes the number of seconds for
which a process should remain asleep), thanks to the constraint on extended variables
p.status@Asleep.secs ≥ p′.status@Asleep.secs.

In next chapter, we improve the precision of the NPR lifting by combining it with two
other domains (sections 5.1 and 5.2) in a product domain (section 5.3). A first domain
of constructor constraints tracks which constructors are used for values of sum types
(section 5.1). Constructor constraints allow us to distinguish between different cases, by
stating which extended variables are valid in each case. For the do_ticks program, a
possible case is when the input process p is sleeping—i.e., p.status@Asleep is valid—and

29



Part I, Chapter 4 – NPR: An Abstract Domain for Algebraic Types

N (section 2.3)

NPR (N) (section 4.2)
(numeric constraints)

NPR lifting

seq (section 5.2)
(structural equalities)

×cc (section 5.1)
(constructor constraints)

×

Pan (N)

Reduction (section 5.3)

S (N)

Disjunctive completion
(section 5.4)

Structural
lifting

Rand (N)

Relational lifting (section 6.3)

P(Vars → Int)

P(Vars → Values)

P
(
(Vars → Values)2

)

Figure 4.1: The construction of the RAND abstract domain. The frame-enclosed sets are
the sets the abstract domains concretize to.

the output process p’ is running—i.e., p’.status@Running is valid. Another domain, called
structural equalities (section 5.2), uses equality constraints between extended variables to
express equalities that must hold between arbitrary parts—of any type—of structured
values. With this domain, we can tell for the do_ticks program that the msg field of
processes cannot change, by saying that the extended variables p.msg and p’.msg are
equal. Finally, in order to obtain additional precision when analysing pattern-matching,
we use a disjunctive completion of the product of these domains (section 5.4): we obtain
the structural lifting of the numeric abstract domain. Each value of the structural lifting
can contain multiple cases, and each case has three components: one that expresses
constructor constraints, one that expresses structural equalities, and one that expresses
numeric constraints. Sections 4.2, 5.1 and 5.2 also define abstractions for assignments and
conditionals, that are needed in Chapter 7 to define the analysis of our language.

Running Example Figure 4.2 recalls the function do_ticks from figure 1.1 in the
introduction, for which we would like to infer precise input-output properties. This function
features algebraic data types that represent the meta-data of a process, as usually found
in operating system implementations. Here, a process is a record composed of an identifier,

30



type status = [ (∗ Scheduling status ∗)
| Running of { count: int }

(∗ Running: activation times ∗)
| Asleep of { secs: int; count: int }

(∗ Sleeping : remaining seconds , activation times ∗)
]
type msg = { (∗ Messages ∗)

data : int ; (∗ Payload ∗)
reply : [ (∗ Whether to reply or not ∗)

| Reply of int (∗ Who to reply to ∗)
| DontReply of {} (∗ No reply expected ∗)

]
}
type process = { id: int; msg: msg; status: status } (∗ Process structure ∗)

def do_ticks(process p, int n) : process = {
(∗ Performs n clock ticks on the process p ∗)

int count; int secs; int i
assert (n > 0)
i = 0
while (i < n) do (∗ loop n times, i . e .: perform n clock ticks ∗)

branch (∗ case where p is running ∗)
count = p.status@Running.count

or (∗ case where p is asleep and can sleep longer ∗)
assert (p.status@Asleep.secs > 0)
count = p.status@Asleep.count
secs = p.status@Asleep.secs
p = { id = p.id; msg = p.msg;

status = Asleep { secs = secs - 1; count = count } }
or (∗ case where p is asleep and has no more sleeping budget ∗)

assert (p.status@Asleep.secs = 0)
count = p.status@Asleep.count
p = { id = p.id; msg = p.msg;

status = Running { count = count + 1 } }
end
i = i + 1

end
return p

}

Figure 4.2: Example program performing clock ticks on a process’ meta-data.

31



Part I, Chapter 4 – NPR: An Abstract Domain for Algebraic Types

some incoming message that was sent by another process and finally a piece of data that
describes the status of the process. The message is a record that contains some payload
and whether it needs a reply (and to whom). The process status is either running, in which
case it records how many times the process has been activated, or it is asleep, in which
case it also records how many seconds the process should remain asleep before waking up
again. The function do_ticks(p, n) simulates the action of n clock ticks on a process
p: a clock tick leaves the process p unchanged if p is already running, or, if it is asleep,
decrements the sleeping budget of p. If that budget is already zero, the clock tick promotes
p into a running process.

The important properties of do_ticks(p, n) that we intend to infer automatically
are the following:

1. If p is initially running, then it remains unchanged;

2. If p is initially sleeping, then it might wake up: in this case, its original sleeping
budget was less than n, and count—its number of activations—has been incremented
by one;

3. If p is initially sleeping, then it might remain sleeping: in this case, its sleeping
budget is decreased by n, and its number of activations remains the same;

4. The field id, of integer type, of the process p has not changed;

5. The field msg, of record type, of the process p has not changed either.

Chapters 4 and 5 explain in detail how we express and capture these properties by
presenting the structure of the RAND abstract domain. The correlation abstract domain
[And+19] was also designed to handle programs that manipulate algebraic data types, but
cannot express, on numbers, properties other than binary equalities. Using the correlation
domain, we could infer all the properties listed above, except the ones that involve
arithmetics: properties 2 and 3.

4.1 Extended Variables: Variable-Path Pairs

Paths were defined in section 2.1, on page 14. We call extended variable the pair of a
variable and a path. Extended variables designate some values that are located inside
a structured value. We only consider paths that make sense for the given variables, i.e.
paths whose projections on a variable’s type are valid in the following sense:

32



4.1. Extended Variables: Variable-Path Pairs

Definition 4 (Projection of a type on a path). The judgement τ ⇓typ p defines when a
path p is consistent with a type τ , and is inductively defined by:

τ ⇓typ ε

τi ⇓typ p i ∈ I

{fj → τj
j∈I} ⇓typ .fip

τi ⇓typ p i ∈ I

[Aj → τj
j∈I ] ⇓typ @Aip

For example, for the type status from figure 4.2, both the judgement status ⇓typ

@Running.count and the judgement status ⇓typ @Asleep.secs hold. However, the judgment
status ⇓typ @Cons.head does not hold, since constructor Cons does not belong to the sum
type status.

Typing contexts, written Γ, are mappings from variables to types. We write E(Γ) =
{x.p | x ∈ dom Γ ∧ Γ(x) ⇓typ p} for the set of extended variables x.p such that p is
consistent with the type of x in Γ. For example, if a typing context Γ contains a single
binding Γ = [x 7→ status], then the set E(Γ) is

E(Γ) = {x, x@Running, x@Asleep, x@Running.count, x@Asleep.secs, x@Asleep.count}

We say that two extended variables x.p1 and x.p2 are incompatible — written x.p1 <>

x.p2 — if they would force a value (or part of a value) to be in two different variants of a
sum type. Definition 5 formalises this notion of incompatibility, using the prefix order ≼

on extended variables (x.p ≼ y.q iff x = y and p is a prefix of q).

Definition 5 (Incompatibility and inconsistency). Two extended variables x1.p1 and x2.p2

are incompatible, written x1.p1 <> x2.p2, if and only if x1 = x2 and there is a path p and
two distinct constructors A1 and A2, such that x1.p@A1 ≼ x1.p1 and x2.p@A2 ≼ x2.p2. A
set of extended variables E is inconsistent if it contains two or more incompatible extended
variables. Two sets of extended variables are incompatible, written E1<>E2, if their union
is inconsistent.

For example, if the typing context is Γ = [x 7→ status], then the two extended variables
x@Running.count and x@Asleep.count are incompatible; hence the set of extended variables
{x@Running.count, x@Asleep.count, x@Asleep.secs} is inconsistent. This implies that the
two sets of extended variables {x@Running.count} and {x@Asleep.count, x@Asleep.secs}
are incompatible.

In section 5.1, we use the fact that inconsistent sets of extended variables denote empty
sets of stores. Such inconsistent sets correspond to unreachable program points, and can

33



Part I, Chapter 4 – NPR: An Abstract Domain for Algebraic Types

be safely removed from the disjunctive completion of section 5.4.

Assignment decomposition To easily define the abstract transfer functions for assign-
ment in section 4.2, it is useful to decompose an assignment command x := t—where t
can be a compound expression—into an equivalent set of parallel assignments of the form
x.p := t′, where t′ is either an expression of numeric type or an extended variable. The
idea is to model the effect of the assignment as a set of parallel assignments on the paths
of variable x.

Definition 6. The decomposition of the assignment x := t is defined by:

Decomp (x.p := t) =


⋃

i∈I Decomp (x.p.fi := ti) if t = {fi = ti
i∈I}

Decomp (x.p@A := t′) if t = A(t′)

{x.p := t} if Γ ⊢ t : Int ∨ t ∈ E

We write Decomp (x := t) as a shorthand for Decomp (x.ε := t).
For example, in a typing context Γ = [st 7→ status; secs 7→ Int; count 7→ Int] the

assignment st = Asleep {secs = secs - 1; count = count} would be decomposed as
follows

Decomp (st := Asleep{secs = secs − 1; count = count}) =
{st@Asleep.secs = secs − 1; st@Asleep.count = count}

The fact that assignment decomposition properly reflects what happens for extended
variables after an assignment is stated by the following lemma.
Lemma 2 (Soundness of assignment decomposition). For any set of variables V ,
for any variable x ∈ V , for any expression t ∈ Exp, any value v ∈ Values, and any store
s : V → Values; if t evaluates to v in s — i.e. v ∈ JtKexp

s —, then

∀(x.p := u) ∈ Decomp (x := t) , v ⇓val p ∈ JuKexp
s

Proof sketch. The main idea of the proof is to do an induction on expression t. However,
the property of this lemma is not strong enough to carry through the induction, since
Decomp (x := t) is necessarily the beginning of the decomposition, with an empty path.
Hence, the property proven by induction is a more general one: for any path p,

∀(x.pp′ := u) ∈ Decomp (x.p := t) , v ⇓val p′ ∈ JuKexp
s

34



4.2. Numeric Domain Over Extended Variables: the NPR Domain

The base cases (when t is either an extended variable or a numeric expression) are very
simple: we then have p′ = ε and u = t.

The inductive cases (when t is either a variant or a record) go through because the
definition of value projection ⇓val (definition 3 on page 14), the definition of the denotational
semantics of expressions J�Kexp (figure 2.3 on page 16) and the definition of assignment
decomposition work well together. Indeed, when t is a variant of the form A(t′) (respectively,
a record of the form

{
fi = ti

i∈I
}
), then we know that p′ starts with the corresponding

constructor access @A (resp. with a field access .fi) and the rest of p′ is a certain path p′′.
Then, the induction hypothesis can be applied with p@A (resp. p.fi) as the new p, p′′ as the
new p′ and t′ (resp. ti) as the new t. By the definition of JtKexp

s , there is an argument v′ such
that v is the variant v = A(v′) (resp. a field vi such that v is the record v =

{
fi = vi

i∈I
}

).
By definition of ⇓val, we can go from v′ ⇓val p′′ ∈ JuKexp

s (resp. vi ⇓val p′′ ∈ JuKexp
s ) to the

conclusion t⇓val p′ ∈ JuKexp
s .

This will be used when proving the soundness of the transfer function for assignment
for the NPR domain of section 4.2.

For the different objects defined in this paper, we write Env (�) for the set of extended
variables that appear in them.

4.2 Numeric Domain Over Extended Variables:
the NPR Domain

In this section, we define the Numeric Path Relations lifting NPR as a generic way to
lift a domain N that is numeric—i.e., that denotes sets of stores that map variables to
numbers—to a domain that denotes sets of stores that map variables to structured values
(definition 1 in section 2.1). The main idea is to use extended variables as the variables of
the underlying numeric domain.

For a typing context Γ, the abstract values of NPR (N)(Γ) are pairs of a set E of
extended variables that are valid in Γ, and a numeric abstract value from N(E)—i.e.,
whose variables are the extended variables in E.

Definition 7 (Abstract values of the NPR domain). For any numeric domain satisfying
the hypothesis of section 2.3 and any typing context Γ, the set of abstract values of the

35



Part I, Chapter 4 – NPR: An Abstract Domain for Algebraic Types

NPR domain is given by:

NPR (N)(Γ) = {(d,E) | E ∈ P(E(Γ)) ∧ d ∈ N(E)}

In this definition, an abstract numeric value d can refer to any extended variable x.p
declared in E, and does not need to reason on whether x.p is a valid projection. In practice,
though, the complete domain of section 5.4 will only consider sets E that are consistent.
When writing examples in the rest of the paper, we will write any numeric abstract value
d as a set of constraints, and we may omit the set E when it can be deduced from context,
for example when E is exactly the set of extended variables used in d. For example, if we
have as typing context Γ = [st 7→ status] — where status is the type defined in figure 4.2—,
then we have {st@Asleep.secs ≥ 0; st@Asleep.count ≥ 0} ∈ NPR (N)(Γ).

Intuitively, an abstract value (d,E) denotes a set of stores that map regular variables
to structured values, such that the paths listed in E point to integer values, and such that
those integers are related by the numeric abstract value d. Using the projection function
for values ⇓val (definition 3 in section 2.1), it is easy to transform a store whose indices
are variables into a store whose indices are extended variables:

Definition 8 (Projection of a store). The projection of a store s ∈ Vars → Values on a
set of extended variables E ∈ P(E) is a store in E → (Values ∪ {Undef}), written s⇓sto E,
and is defined by: (s⇓sto E)(x.p) = s(x) ⇓val p.

As an example, we consider a store s = [st 7→ Asleep{secs = 42; count = 7}] — where a
variable st has type status and holds a value built using constructor Asleep, for which the
field secs has value 42 and the field count has value 7 — and a set of extended variables
E = {st@Asleep.secs; st@Asleep.count}. The projection of store s on the set of extended
variables E is the function [st@Asleep.secs 7→ 42; st@Asleep.count 7→ 7].

The concretisation of an element (d,E) ∈ NPR (N)(Γ) easily follows: it is the set of
well-typed stores whose projections on E satisfy the numeric constraints d. The typing
judgement Γ ⊢ s means that s(x) has type Γ(x) for every x.

Definition 9 (Concretisation for the NPR domain). The concretisation γNPR(N)(Γ)(d,E)
of an abstract value (d,E) from NPR (N)(Γ) is given by:

γNPR(N)(Γ)(d,E) =
{
s | Γ ⊢ s ∧ s⇓sto E ∈ γN(E)(d)

}
For example, if the typing context is Γ = [st 7→ status], then the concretization of the

36



4.2. Numeric Domain Over Extended Variables: the NPR Domain

abstract value n = {st@Asleep.secs ≥ 0; st@Asleep.count ≥ 0} contains any store in which
variable st is mapped to a value of type status built using constructor Asleep and where
both fields secs and count are non-negative. In particular,

[st@Asleep.secs 7→ 42; st@Asleep.count 7→ 7] ∈ γNPR(N)(Γ)(n)

When projecting a store on a set of extended variables, some extended variables may
map to Undef, if a variant does not use the constructor assumed by the path of the
extended variable. However, in the stores of the concretization of a numeric abstract value,
all variables map to a number. Hence, if a store s belongs to γNPR(N)(Γ)(d,E) for some set
of extended variables E, this means that for any extended variable x.p ∈ E, the projection
s(x) ⇓val p is well defined. A consequence of this is that if a set of extended variables E is
inconsistent (in the sense of definition 5), then the concretisation γNPR(N)(Γ)(d,E) will be
empty for any numeric abstract value d ∈ N(E).
Lemma 3 (Concretisation is empty if the set of extended variables is inconsis-
tent). Let Γ be a typing context. Let E ∈ E(Γ) be an inconsistent set of extended variables.
Let d ∈ N(E) be a numeric abstract value. We have γNPR(N)(Γ)(d,E) = ∅.

Proof sketch. Lemma 3 is proven by contradiction. Assume there exists a store s ∈
γNPR(N)(Γ)(d,E). Then, by definition of inconsistent, there would be two different con-
structors A and B, a variable x and paths p, q1 and q2 such that both x.p@Aq1 and
x.p@Bq2 belong to E. Since s ∈ γNPR(N)(Γ)(d,E), it can be shown that both projections
s(x) ⇓val p@A and s(x) ⇓val p@B must be well defined. This implies that the value s(x) ⇓val p

is both of the form A(v) and B(v′) for some values v and v′, which is impossible.

Remark 1 (Extended variables as constraints). The stores in γNPR(N)(Γ)(d,E) are such
that the paths in E are valid. In particular, a larger E means a more constrained —a more
precise— abstract value. In a way, E acts as a set of constraints.

For an example, we consider the typing context Γ = [st 7→ status] and two stores
s1 = [st 7→ Asleep{secs = 42; count = 7}] and s2 = [st 7→ Running{count = 8}]. The NPR
abstract value n = (∅,⊤N) — with no extended variables and no numeric constraints —
has as concretisation all the stores that are well-typed with respect to Γ. In particular,
{s1, s2} ⊆ γNPR(N)(Γ)(n). However, the NPR abstract value n′ =

(
{st@Running.count},⊤N

)
— with extended variable st@Running.count and no numeric constraint — requires that

37



Part I, Chapter 4 – NPR: An Abstract Domain for Algebraic Types

variable st is built using constructor Running. In particular s1 /∈ γNPR(N)(Γ)(n′) and s2 ∈
γNPR(N)(Γ)(n′).

Definition 10 (Pre-order for the NPR domain). For any typing context Γ and any two
NPR abstract values (d1, E1) and (d2, E2) from NPR (N)(Γ), the relation ⊑NPR(N)(Γ) is
defined by

(d1, E1) ⊑NPR(N)(Γ) (d2, E2) iff E2 ⊆ E1 ∧ RemN(E1)
E1\E2

(d1) ⊑N(E2) d2

As seen in remark 1, extended variables behave like constraints. This explains why the
definition of ⊑NPR(N)(Γ) requires that E2 ⊆ E1. In other words, the more precise abstract
value (d1, E1) has a larger set of extended variables, than the less precise abstract value
(d2, E2). The numeric abstract values d1 and d2 have different sets of extended variables.
In order to compare them using the underlying numeric relation ⊑N, we first need to
transform them so that they have the same set of extended variables. We could either add
variables to d2 to embed it in N(E1), or remove variables from d1 to embed it in N(E2). In
the definition of ⊑NPR(N)(Γ), we made the choice of removing variables from d1 to embed it
in N(E2). This choice makes the proofs involving widening easier. Indeed, widening needs
to relax constraints to be sound, and extended variables behave like constrains. Hence,
widening needs to use variable removal; and the proofs are easier if widening and pre-order
use the same operator.
Lemma 4 (γNPR(N)(Γ) is monotonic with respect to ⊑NPR(N)(Γ)). For any typing
context Γ and any two NPR abstract values (d1, E1) and (d2, E2) from NPR (N)(Γ), we
have

(
(d1, E1) ⊑NPR(N)(Γ) (d2, E2)

)
⇒
(
γNPR(N)(Γ)(d1, E1) ⊆ γNPR(N)(Γ)(d2, E2)

)
Proof. We assume (d1, E1) ⊑NPR(N)(Γ) (d2, E2) and we need to prove γNPR(N)(Γ)(d1, E1) ⊆
γNPR(N)(Γ)(d2, E2).

Let s be a store in γNPR(N)(Γ)(d1, E1). By the definition of γNPR(N)(Γ) we have

s⇓sto E1 ∈ γN(E1)(d1)

Hence, by the soundness property of variable removal (hypothesis 1 on page 18), we have

s⇓sto E2 ∈ γN(E2)
(
RemN(E1)

E1\E2
(d1)

)
38



4.2. Numeric Domain Over Extended Variables: the NPR Domain

Besides, by the definition of ⊑NPR(N)(Γ) we have

RemN(E1)
E1\E2

(d1) ⊑N(E2) d2

Therefore, the monotony of γN(E2) with respect to ⊑N(E2) allows to conclude that

s⇓sto E2 ∈ γN(E2)(d2)

In other words,
s ∈ γNPR(N)(Γ)(d2, E2)

Lemma 5 (⊑NPR(N)(Γ) is a pre-order). For any typing context Γ, the relation ⊑NPR(N)(Γ)

from definition 10 is a pre-order.

Proof. We will first prove that ⊑NPR(N)(Γ) is reflexive, then that it is transitive.
Reflexivity of ⊑NPR(N)(Γ). Let (d,E) ∈ NPR (N)(Γ) be an abstract value. To prove

that (d,E) ⊑NPR(N)(Γ) (d,E), we need to prove both E ⊆ E and RemN(E)
E\E (d) ⊑N(E) d. The

former is immediate, since set inclusion is reflexive. The latter is easily proven thanks to
hypothesis 6 on page 19 — that states that removing an empty set of variables does not
have any effect on an abstract value — and the reflexivity of ⊑N.

Transitivity of ⊑NPR(N)(Γ). Let (d1, E1), (d2, E2) and (d3, E3) be three abstract
values from NPR (N)(Γ). In order to prove the transitivity of ⊑NPR(N)(Γ), we assume both
(d1, E1) ⊑NPR(N)(Γ) (d2, E2) and (d2, E2) ⊑NPR(N)(Γ) (d3, E3), and we need to prove that
(d1, E1) ⊑NPR(N)(Γ) (d3, E3). By unfolding the definition of ⊑NPR(N)(Γ), the two things that
we need to prove are E1 ⊆ E3 and RemN(E1)

E1\E3
(d1) ⊑N(E3) d3. The former follows from the

transitivity of set inclusion. We will prove the latter using the monotony and composition
assumptions of variable removal (hypotheses 4 and 5 on page 19). Indeed, the assumption
(d1, E1) ⊑NPR(N)(Γ) (d2, E2) gives us

RemN(E1)
E1\E2

(d1) ⊑N(E2) d2

By applying the monotony of variable removal (hypothesis 4) to the previous inequality,
in the case of the removal of extended variables E2 \ E3, we get

RemN(E2)
E2\E3

(
RemN(E1)

E1\E2
(d1)

)
⊑N(E3) RemN(E2)

E2\E3
(d2)

39



Part I, Chapter 4 – NPR: An Abstract Domain for Algebraic Types

Besides, by applying the property about composition of variable removals (hypothesis 5)
we get

RemN(E1)
E1\E3

(d1) ⊑N(E3) RemN(E2)
E2\E3

(
RemN(E1)

E1\E2
(d1)

)
Hence, by transitivity of ⊑N(E3), we have

RemN(E1)
E1\E3

(d1) ⊑N(E3) RemN(E2)
E2\E3

(d2)

The assumption (d2, E2) ⊑NPR(N)(Γ) (d3, E3) gives us RemN(E2)
E2\E3

(d2) ⊑N(E3) d3 which, by
using again the transitivity of ⊑N(E3), allows to conclude.

The binary operators of the NPR domain (abstract intersection, abstract union and
widening) are all defined following a common structure:

• they use either variable addition or variable removal to bring all numeric abstract
values to a common set of extended variables,

• then they use the corresponding operator of the underlying numeric domain.

As explained in remark 1, the extended variables behave like constraints. In order to be
sound, abstract union and widening can only keep the constraints that are common to
the two NPR abstract values (d1, E1) and (d2, E2) being considered. Hence abstract union
and widening have the intersection E1 ∩ E2 as set of extended variables, and use variable
removal to project the numeric abstract values d1 and d2 into N(E1 ∩ E2).

Definition 11 (Abstract union for the NPR domain). For any typing context Γ and any
two abstract values (d1, E1) and (d2, E2) from NPR (N)(Γ), the abstract union operator
⊔NPR(N)(Γ) is defined by

(d1, E1) ⊔NPR(N)(Γ) (d2, E2) =
(
RemN(E1)

E1\E2
(d1) ⊔N(E1∩E2) RemN(E2)

E2\E1
(d2), E1 ∩ E2

)
Lemma 6 (Soundness of abstract union for the NPR domain). For any typing
context Γ and any two abstract values (d1, E1) and (d2, E2) from NPR (N)(Γ), we have

γNPR(N)(Γ)(d1, E1) ∪ γNPR(N)(Γ)(d2, E2) ⊆ γNPR(N)(Γ)
(
(d1, E1) ⊔NPR(N)(Γ) (d2, E2)

)
Proof. Let s be a store in γNPR(N)(Γ)(d1, E1) ∪ γNPR(N)(Γ)(d2, E2). There exists i ∈ {1, 2}

40



4.2. Numeric Domain Over Extended Variables: the NPR Domain

such that s ∈ γNPR(N)(Γ)(di, Ei). By the definition of the NPR concretisation, we have

s⇓sto Ei ∈ γN(Ei)(di)

Let j ∈ ({1, 2} \ {i}) be the index of the other abstract value. The abstract union uses the
variable removal RemN(Ei)

Ei\Ej
(di) to project di into N(E1 ∩ E2). Indeed, we have

E1 \ (E1 \ E2) = E2 \ (E2 \ E1) = Ei \ (Ej \ Ei) = E1 ∩ E2

and (
s⇓sto Ei

)∣∣∣
Ei\(Ej\Ei)

=
(
s⇓sto Ei

)∣∣∣
E1∩E2

= s⇓sto (E1 ∩ E2)

From the soundness property of variable removal (hypothesis 1 on page 18), we deduce

s⇓sto(E1 ∩ E2) ∈ γN(E1∩E2)
(
RemN(Ei)

Ei\Ej
(di)

)
Then, the soundness of ⊔N(E1∩E2) allows to conclude.

Definition 12 (Widening operator for the NPR domain). For any typing context Γ
and any two abstract values (d1, E1) and (d2, E2) from NPR (N)(Γ), a widening operator
▽NPR(N)(Γ) is defined for the NPR domain by:

(d1, E1) ▽NPR(N)(Γ) (d2, E2) =
(
RemN(E1)

E1\E2
(d1) ▽N(E1∩E2) RemN(E2)

E2\E1
(d2), E1 ∩ E2

)
Lemma 7 (Soundness of the widening for the NPR domain). For any typing
context Γ the widening operator ▽NPR(N)(Γ) is sound — i.e. it computes upper-bounds and
enforces convergence.

Proof. We will first prove that the widening computes upper bounds; and then we will
prove that it enforces convergence.

The widening computes upper bounds. Let (d1, E1) and (d2, E2) be two abstract
values from NPR (N)(Γ). We want to prove that

(d1, E1) ⊑NPR (d1, E1) ▽NPR(N)(Γ) (d2, E2) ∧ (d2, E2) ⊑NPR (d1, E1) ▽NPR(N)(Γ) (d2, E2)

Notice that both abstract values RemN(E1)
E1\E2

(d1) and RemN(E2)
E2\E1

(d2) belong to N(E1 ∩ E2)
because E1 \ (E1 \ E2) = E2 \ (E2 \ E1) = E1 ∩ E2. Given that the widening of the

41



Part I, Chapter 4 – NPR: An Abstract Domain for Algebraic Types

underlying numeric domain computes upper-bounds, we have both

RemN(E1)
E1\E2

(d1) ⊑N(E1∩E2) RemN(E1)
E1\E2

(d1) ▽N(E1∩E2) RemN(E2)
E2\E1

(d2)

RemN(E2)
E2\E1

(d2) ⊑N(E1∩E2) RemN(E1)
E1\E2

(d1) ▽N(E1∩E2) RemN(E2)
E2\E1

(d2)

Since we also have

E1 ∩E2 ⊆ E1 E1 ∩E2 ⊆ E2 E1 \E2 = E1 \ (E1 ∩E2) E2 \E1 = E2 \ (E1 ∩E2)

The definition of ⊑NPR allows to conclude:

(d1, E1) ⊑NPR (d1, E1) ▽NPR(N)(Γ) (d2, E2) (d2, E2) ⊑NPR (d1, E1) ▽NPR(N)(Γ) (d2, E2)

Widening enforces convergence. We consider a sequence of abstract values
(dn, En)n∈N from NPR (N)(Γ). Let the sequence (d′

n, E
′
n)n∈N be the sequence defined

by (d′
0, E

′
0) = (d0, E0) and ∀n ∈ N∗, (d′

n, E
′
n) = (d′

n−1, E
′
n−1) ▽NPR(N)(Γ) (dn, En). Our goal

is to prove that the sequence (d′
n, E

′
n)n∈N stabilizes in finite time.

We start by proving that (En)n∈N stabilizes in finite time. The set E ′
0 is finite, and

each E ′
n is a subset of the previous set of the sequence. Indeed:

∀n ∈ N∗, E ′
n = E ′

n−1 ∩ En ⊆ E ′
n−1

Since there cannot be an infinitely decreasing sequence of finite sets, there exists an index
n0 ∈ N such that the sequence stabilizes at n0:

∀n ≥ n0, E
′
n = E ′

n0

We now consider the sequence (d′
n)n>n0 . Given the assumption on the removal of the empty

set of variables (hypothesis 6), the definition of d′
n for n > n0 can be simplified

from d′
n = RemN(E′

n−1)
E′

n−1\En
(d′

n−1) ▽N(E′
n0 ) RemN(En)

En\E′
n−1

(dn)
to d′

n = d′
n−1 ▽N(E′

n0 ) RemN(En)
En\E′

n−1
(dn)

Since the numeric widening ▽N(E′
n0 ) enforces convergence, we know that the sequence

(d′
n)n>n0 stabilizes in finite time. Hence the sequence (d′

n, E
′
n)n∈N stabilizes in finite time.

42



4.2. Numeric Domain Over Extended Variables: the NPR Domain

By contrast with abstract union and widening, the abstract intersection can keep any
constraint present in either (d1, E1) or (d2, E2). Hence the set of extended variables of the
abstract intersection is E1 ∪ E2, and variable addition injects the numeric abstract values
into N(E1 ∪ E2).

Definition 13 (Abstract intersection for the NPR domain). For any typing context Γ and
any two abstract values (d1, E1) and (d2, E2) from NPR (N)(Γ), the abstract intersection
operator ⊓NPR(N)(Γ) is defined by:

(d1, E1) ⊓NPR(N)(Γ) (d2, E2) =
(
AddN(E1)

E2 (d1) ⊓N(E1∪E2) AddN(E2)
E1 (d2), E1 ∪ E2

)
Lemma 8 (Soundness of abstract intersection for the NPR domain). For any
typing context Γ and any two NPR abstract values (d1, E1) and (d2, E2), we have

γNPR(N)(Γ)(d1, E1) ∩ γNPR(N)(Γ)(d2, E2) ⊆ γNPR(N)(Γ)
(
(d1, E1) ⊓NPR(N)(Γ) (d2, E2)

)
Proof. Let s be a store in γNPR(N)(Γ)(d1, E1)∩γNPR(N)(Γ)(d2, E2). Both projections s⇓sto E1

and s⇓sto E2 are well defined, in the sense that they do not map any extended variable into
Undef. Hence, the projection s⇓sto(E1 ∪ E2) is well-defined as well. Hence the soundness
property of variable addition (hypothesis 2 on page 18) allows us to go from

s⇓sto E1 ∈ γN(E1)(d1) ∧ s⇓sto E2 ∈ γN(E2)(d2)

to

s⇓sto(E1 ∪ E2) ∈ γN(E1∪E2)
(
AddN(E1)

E2 (d1)
)

∧ s⇓sto(E1 ∪ E2) ∈ γN(E1∪E2)
(
AddN(E2)

E1 (d2)
)

Hence, by soundness of ⊓N(E1∪E2), we have

s⇓sto(E1 ∪ E2) ∈ γN(E1∪E2)
(
AddN(E1)

E2 (d1) ⊓N(E1∪E2) AddN(E2)
E1 (d2)

)
In order words,

s ∈ γNPR(N)(Γ)
(
AddN(E1)

E2 (d1) ⊓N(E1∪E2) AddN(E2)
E1 (d2), E1 ∪ E2

)
which allows to conclude.

43



Part I, Chapter 4 – NPR: An Abstract Domain for Algebraic Types

Transfer Functions The transfer function for assignment x := t works by temporarily
introducing a new variable x′ (that represents the value of x after assignment). First, it
applies the transfer function for assignment on every numeric assignment in the decom-
position of x′ := t (definition 6). Then, it removes the references to the paths of x, and
finally renames x′ into x. The auxiliary variable x′ is introduced to avoid clashes between
the paths that are valid for x before the assignment and those that are valid after the
assignment.

Definition 14 (Transfer function for assignment in the NPR domain). For any typing
context Γ, any assignment x := t, and any abstract value (d,E) from NPR (N)(Γ), the
transfer function for assignment in the NPR domain is given by

AssignNPR(N)(Γ)(x := t)(d,E) = RenameNPR(N)(Γ2)
[x′ 7→x]

(
RemNPR(N)(Γ1)

{x} (d1, E1)
)

where



x′ ∈ Fresh (dom(Γ))
d1 =

lN(E1)

x′.p:=u∈Decomp(x′:=t),Γ⊢u:Int

AssignN(E1)(x′.p := u)(AddN(E)
E0 (d))

E1 = E ∪ E0

E0 = {y.p ∈ Env (Decomp (x′ := t)) | Γ ⊢ y.p : Int}
Γ1 = Γ(x′ 7→ Γ(x))
Γ2 = Γ1|(dom(Γ1)\{x})

Lemma 9 (Soundness of the transfer function for assignment in the NPR
domain). For any assignment x := t and any abstract value (d,E) from NPR (N)(Γ), we
have

{
s(x 7→ v) | s ∈ γNPR(N)(Γ)(d,E) ∧ v ∈ JtKexp

s

}
⊆ AssignNPR(N)(Γ)(x := t)(d,E)

Proof. Let s′ be a store in

{
s(x 7→ v) | s ∈ γNPR(N)(Γ)(d,E) ∧ v ∈ JtKexp

s

}
By definition, we know that there exists some store s ∈ γNPR(N)(Γ)(d,E) such that expression
t evaluates to some value v ∈ JtKexp

s and s′ = s(x 7→ v).
The definition of the transfer function for assignment AssignNPR(N)(Γ)(x := t)(�) works

by introducing a fresh variable x′, analysing the assignment as if it was x′ := t, forgetting
about variable x, and then renaming x′ into x. In this proof, we introduce intermediate

44



4.2. Numeric Domain Over Extended Variables: the NPR Domain

stores that follow this same logic. Let s1 = s(x′ 7→ v) be the store obtained from s by
mapping x′ into v (the value t evaluates to). Let s2 = s1|dom(s1)\{x} the store obtained
from s1 by removing the binding of variable x. From s2, if we rename x′ into x, we get
back the store s′ previously defined, as summarized in the following diagram:

s s1 s2

s′

x′ 7→ v Remove x

Rename x′ into xx 7→ v

As in the definition of AssignNPR(N)(Γ)(�)(�), we call

E0 = {y.p ∈ Env (Decomp (x′ := t)) | Γ ⊢ y.p : Int}

the set of extended variables with a numeric type that appear (either on the left-hand
side or the right-hand side) in the decomposition of assignment x′ := t. We also call
E1 = E ∪ E0 the set of all the extended variables that should be considered before
the removal of x. Given that s and s1 only differ on x′ and that x′ does not appear in
E, we have s1 ⇓sto E = s⇓sto E, hence s1 ⇓sto E ∈ γN(E)(d). Together with the fact that
(s1 ⇓sto E1)|E = s1 ⇓sto E, this allows to use the soundness of variable addition (hypothesis 2
on page 18) to deduce that

s1 ⇓sto E1 ∈ γN(E1)
(
AddN(E)

E0 (d)
)

Let’s prove that the store s1 that we have defined belongs to the concretisation of the
abstract value d1. We recall the definition of d1:

d1 =
lN(E1)

x′.p:=u∈Decomp(x′:=t),Γ⊢u:Int

AssignN(E1)(x′.p := u)(AddN(E)
E0 (d))

Let x′.p := u be an element of the assignment decomposition Decomp (x′ := t). If we
evaluate s1 ⇓sto E1 on x′.p, that yields

(
s1 ⇓sto E1

)
(x′.p) = s1(x′) ⇓val p = v ⇓val p

By the soundness of assignment decomposition (lemma 2 on page 34), we know that
v ⇓val p ∈ JuKexp

s′ . Given that s′ and s only differ on x′, and x′ does not appear in u, we

45



Part I, Chapter 4 – NPR: An Abstract Domain for Algebraic Types

have v ⇓val p ∈ JuKexp
s1

. Using the soundness of the transfer function for assignment of the
underlying numeric domain, we deduce that

s1 ⇓sto E1 ∈ γN(E1)
(
AssignN(E1)(x′.p := u)(AddN(E)

E0 (d))
)

This being true for all x′.p := u ∈ Decomp (x′ := t), we deduce, by soundness of the numeric
abstract intersection, that s1 ⇓sto E1 ∈ γN(E1)(d1); therefore s1 ∈ γNPR(N)(Γ1)(d1, E1). By
the soundness of variable removal,

s2 ∈ γNPR(N)(Γ2)
(
RemNPR(N)(Γ1)

{x} (d1, E1)
)

We have s′(x) = s2(x′) and s′ and s2 are identical on every variable other than x and x′.
By the soundness of variable renaming, s ∈ AssignNPR(N)(Γ)(x := t)(d,E).

The transfer function for conditionals is simpler: it suffices to add to the extended
variables those that occur in the test, and to call the transfer function of domain N for
conditionals.

Definition 15 (Transfer function for conditions in the NPR domain). For any typing con-
text Γ, any boolean condition b ∈ BExp and any NPR abstract value (d,E) ∈ NPR (N)(Γ);
the transfer function for conditions of the NPR domain is defined by

CondNPR(N)(Γ)(b)(d,E) =
(
CondN(E∪Env(b))(b)(AddN(E)

Env(b)(d)), E ∪ Env (b)
)

Lemma 10 (Soundness of the transfer function for conditions). For any boolean
condition b ∈ BExp and any abstract value (d,E) from NPR (N)(Γ), we have

{
s ∈ γNPR(N)(Γ)(d,E) | tt ∈ JbKbool

s

}
⊆ γNPR(N)(Γ)

(
CondNPR(N)(Γ)(d,E)(b)

)
Proof. Let s be a store in γNPR(N)(Γ)(d,E) for which the boolean condition b evaluates to
true — i.e. tt ∈ JbKbool

s . Since s ∈ γNPR(N)(Γ)(d,E), we have

s⇓sto E ∈ γN(E)(d)

In addition, according to lemma 1 on page 16, all the extended variables in Env (b) are

46



4.2. Numeric Domain Over Extended Variables: the NPR Domain

valid for store s, in the sense that

∀x.p ∈ Env (b) , s(x) ⇓val p ̸= Undef

Hence, by the soundness of variable addition (hypothesis 2 on page 18), we have

s⇓sto(E ∪ Env (b)) ∈ γN(E∪Env(b))
(
AddN(E)

Env(b)(d)
)

Then, by the soundness of abstract conditions for the underlying numeric domain N(E ∪
Env (b)), we have

s⇓sto(E ∪ Env (b)) ∈ γN(E∪Env(b))
(
CondN(E∪Env(b))(b)

(
AddN(E)

Env(b)(d)
))

which allows to conclude.

We could use the NPR abstract domain to analyse programs that manipulate algebraic
types. This however, would not yield precise results, because it would loose any information
about values that can use different constructors. For example, in figure 4.2 on page 31, the
status of the process manipulated by function do_ticks can be either Running or Asleep,
hence the NPR domain alone cannot capture any information about this status. To have a
more precise analysis, we introduce in the next chapter a disjunctive completion, where
the different disjuncts can talk about different constructors for the same variable. In order
to control the size of the disjunction and improve scalability, we merge disjuncts that that
talk about equivalent extended variables, and we introduce a domain for talking about
equality of two structured values.

47





Chapter 5

IMPROVING

PRECISION AND SCALABILITY

FOR ALGEBRAIC TYPES ANALYSIS

This chapter improves on the precision of Chapter 4 by introducing a disjunctive completion.
This disjunctive completion allows to store in different disjuncts the information about
different constructors of variant values. It poses, however, the challenge to keep the number
of disjuncts small, in order to maintain scalability. Two different things are done to help
keep the number of disjuncts small:

• Merge together the disjuncts that impose equivalent constraints on which constructors
are used.

• Introduce a domain for equalities between structured values. As we will see, this
domain avoids some disjunctions.

Section 5.1 introduces the domain of Constructor Constraints, which fully formalizes
remark 1 on page 37: extended variables behave as constraints, as they impose the use of
certain constructors for the values from sum types. The Constructor Constraints domain
from section 5.1 will be used to determine when to merge disjuncts in the disjunctive
completion. Section 5.2 introduces the domain of Structural Equalities, that can express
equalities between structured values. This domain of structural equalities helps to keep the
number of disjuncts in the disjunction small. Section 5.3 describes the reduced product
between the Constructor Constraints domain of section 5.1, the Structural Equalities
domain of section 5.2 and the NPR lifting of section 4.2. This product domain is called
Pan for Product domain for Algebraic types and Numbers. Section 5.4 presents how we take
a disjunctive completion of the Pan domain. Disjuncts are merged if they have equivalent
constructor constraints.

49



Part I, Chapter 5 – Precision and Scalability for Algebraic Types

5.1 Constructor Constraints

We introduce the abstract domain of constructor constraints, that intuitively describes in
which cases the values of a store might be, i.e., which are the allowed variant constructors
of the values of a store. We write cc(Γ) for the set of constructor constraints for a typing
environment Γ. An element c ∈ cc(Γ) is a set of extended variables, that restricts the
possible sets of stores to those that are compatible with every path in c. In other words,
if a path in c mentions some constructor, then the corresponding value in any store of
the concretisation must be built using that constructor. Constructor constraints are a key
ingredient of the disjunctive completion of section 5.4, as they serve as hints for which
disjuncts need to be kept separate, and which should be merged.

An element c ∈ cc(Γ) is either the bottom value ⊥cc(Γ), or must be a set of extended
variables that is both consistent and closed under the prefix order ≼.

Definition 16 (Constructor constraints). The domain of constructor constraints is defined
by cc(Γ) = {c ⊆ E(Γ) | c is ≼-closed and consistent } ∪ {⊥cc(Γ)} and is equipped with the
ordering ⊑cc(Γ) defined as c1 ⊑cc(Γ) c2 iff c1 = ⊥cc(Γ) or c1 ⊇ c2.

For any set of extended variables E, we write closcc(Γ)(E) to denote the prefix-closure
of E, i.e., the smallest ≼-closed set that contains E. For example, if we consider the type
status from figure 4.2 defined by

type status = [Running of { count: int } | Asleep of { secs: int; count: int }]

and the typing context Γ = [x 7→ status] where variable x has type status, then the
prefix-closure of the singleton E = {x@Asleep.secs} is the set {x@Asleep.secs, x@Asleep, x}.
For a given Γ, the domain cc(Γ) is finite: because our types are not recursive, the valid
paths necessarily have finite lengths.

The concretisation γcc(Γ) defines the stores denoted by constructor constraints.

Definition 17 (Concretisation for constructor constraints).

γcc(Γ)(⊥cc(Γ)) = ∅ γcc(Γ)(c) = {s | Γ ⊢ s ∧ ∀x.p ∈ c, s(x) ⇓val p ̸= Undef}

The concretisation of a set c produces a set of well-typed stores such that the values in
the stores can be projected along the paths in c. For example, the concretization of the
abstract value c = {x@Asleep.secs, x@Asleep, x} contains all the stores in which variable x

50



5.1. Constructor Constraints

holds a value built with constructor Asleep. In particular, the store

s1 = [st 7→ Asleep{secs = 42; count = 7}]

belongs to γcc(Γ)(c); whereas the store s2 = [st 7→ Running{count = 8}] does not.
The abstract union and intersection for the cc(Γ) domain are easily obtained:

⊥cc(Γ) ⊔cc(Γ)c = c ⊔cc(Γ)⊥cc(Γ) = c c1 ⊔cc(Γ)c2 = c1 ∩ c2 otherwise

c1 ⊓cc(Γ) c2 =

⊥cc(Γ) if c1 = ⊥cc(Γ) or c2 = ⊥cc(Γ) or c1 <> c2

c1 ∪ c2 otherwise

Because the domain is finite, there is no issue with infinite ascending chains, and we can
simply define the widening as the abstract union.

Transfer Functions We express the abstract transfer function for assignment in the
cc(Γ) domain in a standard “kill-gen” form as follows:

Assigncc(Γ)(x := t)(c) = (c \ Killcc(Γ)(x)(c)) ⊓cc(Γ) Gencc(Γ)(x := t)(c)
where Killcc(Γ)(x)(c) = {y.p ∈ c | y = x}
and Gencc(Γ)(x := t)(c) =

closcc(Γ)({y.q ∈ Env (t) | y ̸= x}∪{x.p | ∃t′, x.p := t′ ∈ Decomp (x := t)})

The extended variables that must be removed are those that have x as root, since the
value stored in variable x changes, and the old projection paths are not necessarily valid
for the new value. Two kind of extended variables are added:

• The extended variables that appear in the expression t, as long as the variable is
different from x. Indeed, the assignment x := t only succeeds for the stores in which
all the extended variables mentioned in t are valid before the assignment. As x is
the only variable that changes, all the extended variables in {y.q ∈ Env (t) | y ̸= x}
are valid after the assignment.

• The extended variables that are valid for the new value of variable x. In particular, all
the extended variables in {x.p | ∃t′, x.p := t′ ∈ Decomp (x := t)} —i.e. the extended
variables appearing on the left-hand side of the assignment decomposition— are
valid after the assignment.

51



Part I, Chapter 5 – Precision and Scalability for Algebraic Types

We ensure that the added variables remain prefix-closed thanks to a call to closcc(Γ).
The transfer function for conditionals is straightforward: it adds the extended variables

of the boolean condition:

Condcc(Γ)(b)(c) = c ⊓cc(Γ) closcc(Γ)(Env (b))

The domain for constructor constraints introduced in this section will prove useful
in the disjunctive completion of section 5.4, as we use it to determine when to merge
disjuncts.

5.2 Structural Equalities

The NPR lifting of section 4.2 can only express relations between the numeric parts of
values. It can’t record whether some non-numeric part of a value has not changed. In our
example of figure 4.2 on page 31, this is the case of the msg field of processes, that is
not modified, and is of record type. We introduce in this section the domain seq(Γ), that
tracks structural equalities. The domain seq(Γ) tells which parts of the values of a store
must be identical.

One could argue that any equality between structured values could be replaced with a
conjunction of equalities between the integer fields of those values, and, consequently, that
the seq(Γ) domain is hardly useful. Such a decomposition could lead, however, to more
verbose abstract values, and could also introduce extra disjunctions when dealing with
values of sum types. Thus, our choice of handling equality constraints between structured
values is beneficial, as it helps keep our abstract values small in size.

We give here a simplified definition of the domain, where the abstract values of seq(Γ)
are either the bottom element ⊥seq(Γ) —denoting the empty set of stores— or a finite set
e of pairs of extended variables (x.p, y.q) —denoting a set of stores s in which the value at
path p in s(x) is equal to the one at path q in s(y). In practice, our implementation uses a
map from extended variables to equivalence class indices, to ensure we remain closed by
reflexivity, symmetry and transitivity.

Definition 18 (Domain of structural equalities). The domain of structural equalities
seq(Γ) = P(E(Γ) × E(Γ)) ∪ {⊥seq(Γ)} is equipped with the concretisation function γseq(Γ) ∈

52



5.2. Structural Equalities

seq(Γ) → P(Vars → Values) that is defined as follows:

γseq(Γ)(⊥seq(Γ)) = ∅

γseq(Γ)(e) = {s | Γ ⊢ s ∧ ∀(x.p, y.q) ∈ e, s(x) ⇓val p = s(y) ⇓val q ̸= Undef}

Abstract values in this domain might carry some implicit information. For example, if
x and y have type {f → Int; g → Int}, the abstract value {(x, y)} also implicitly implies
that x.f = y.f and x.g = y.g. To avoid losing precision, it is sometimes necessary to
saturate an abstract value by congruence, so that it contains all the valid equalities that
mention a given set of extended variables. For this purpose, we define the following closure
operator.

Definition 19 (Closure of structural equalities). The closure of a set of structural equalities
e with respect to a set of extended variables E, written closseq(Γ)

E
(e), is the smallest set that

is larger than e, that mentions the variables in E, is closed under symmetry, reflexivity
and transitivity, and satisfies the following congruence property:

(x.p, y.q) ∈ closseq(Γ)
E

(e)

(x.pr) ∈ Env
(

closseq(Γ)
E

(e)
)
 ⇒ (x.pr, y.qr) ∈ closseq(Γ)

E
(e)

The need for a closure operator is not surprising, as it occurs in other relational
domains, like octagons [Min06]. We use this closure operator to gain precision in the
transfer function for assignment, and in the reduction operator of the product domain of
section 5.3.

Transfer Functions The transfer function for assignment x := t for the seq(Γ) do-
main exploits the decomposition of assignments from definition 6. It considers only the
assignments of the form x.p := y.q, where the right-hand side is an extended variable.
We express the transfer function in a “kill-gen” form, where we kill every equality that
involves x, and add the new equalities x.p = y.q where we are careful to avoid any use of
x that refers to the value before the assignment.

53



Part I, Chapter 5 – Precision and Scalability for Algebraic Types

Assignseq(Γ)(x := t)(e) =
(
e \ Killseq(Γ)(x)(e)

)
∪ Genseq(Γ)(x := t)(e)

where Killseq(Γ)(x)(e) = {(y.p, z.q) ∈ e | y = x ∨ z = x}
and Genseq(Γ)(x := t)(e) =⋃

x.p:=y.q∈Decomp(x:=t)
{(x.p, z.r) | z ̸= x ∧ (y.q, z.r) ∈ closseq(Γ)

{y.q}
(e)}

The transfer functions for conditionals can only exploit equality tests between extended
variables: Condseq(Γ)(b)(e) = e ⊓seq(Γ) {(x.p, y.q)} if b is x.p = y.q.

5.3 Reduced Product

We call Pan (N) = cc × seq × NPR (N) the product of the constructor constraints domain,
the structural equalities domain and the NPR lifting. Pan stands for Product domain for
Algebraic types and Numbers. We equip Pan with a reduction operator ρ, that enables
information transfer between the different domains of the product.

Definition 20 (Reduction operator). The reduction operator ρ for the product of con-
structor constraints, structural equalities and the NPR lifting is defined as follows:

ρ(c, e, n) =


c ⊓cc(Γ) closcc(Γ)(Env (e′)),
e′,

CondNPR(N)(Γ)(∧(x.p,y.q)∈e′∧Γ⊢x.p:Int x.p = y.q)(n)


where e′ = closseq(Γ)

closcc(Γ)(Env((c,e,n)))
(e)

The reduction operator ρ transfers the following pieces of information between the
three components of the product:

• Structural equalities are completed with additional constraints, so that all the
extended variables that are used in the constructor constraints and the numeric
constraints are mentioned (this is the role of e′).

• If some equalities between integers are deduced from the structural equalities, then
they are added to the numeric constraints.

• The extended variables from the structural equalities and the numeric constraints
are added to the constructor constraints, which may reveal some inconsistent cases.

54



5.4. Disjunctive completion

Union, intersection and widening for the reduced product domain add variables to the
structural equalities component, use component-wise operations and use the reduction
operator. For widening, reduction is only applied to the right-hand side argument to avoid
interfering with convergence. We invite the reader to look at [BJM22c] for further details.
The transfer functions for assignment and conditionals use the transfer functions of each
component.

5.4 Disjunctive completion

Pattern matching performs a case analysis on the different constructors a value may start
with: these cases are pairwise incompatible. To analyse pattern matching with precision,
we add disjunctions to our abstract domain by means of a disjunctive completion, so that
each pattern matching case has a distinct disjunct. Hence, for any numeric domain N, we
take the disjunctive completion [Cou21] of the reduced product of constructor constraints,
structural equalities and the NPR lifting of N. We call this the structural lifting of N,
written S, and defined as S (N) = P(Pan (N)). To control the number of disjuncts, however,
we merge some cases together: merging is performed when the constructor constraints
of two abstract values concretise to the same sets of stores—i.e., when they impose the
same constraints on the constructors used for variant values. Definition 21 defines what it
means for two sets of constructor constraints to be equivalent. This definition is used in
definition 22 to describe how, for the elements of the disjunctive completion, cases with
equivalent constructor constraints are merged together, using abstract union.

Definition 21 (Equivalence of constructor constraints). Two sets of constructor constraints
c1 and c2 are said to be equivalent, written c1 ≡ c2, if any path ending with a constructor
present in one of them is also present in the other. Formally:

c1 ≡ c2 iff ∀x.(p@A) ∈ c1, x.(p@A) ∈ c2 ∧ ∀y.(q@B) ∈ c2, y.(q@B) ∈ c1

≡ is an equivalence relation for constructor constraints.
We can extend this into an equivalence relation for elements of the structural lifting,

by:
(c1, e1, n1) ≡Pan

E (c2, e2, n2) iff c1 ≡ c2

This equivalence only considers the extended variables, and does not correspond to an
equivalence with respect to ⊑Pan nor to a semantic equivalence. The sub-script in the

55



Part I, Chapter 5 – Precision and Scalability for Algebraic Types

notation ≡Pan
E reminds of that.

Given an element d of S, we write d/≡Pan
E the set of equivalence classes of d with

respect to ≡Pan
E .

This notion of equivalence allows us to define an operator that collapses together
equivalent triplets in an element of P(Pan).

Definition 22 (Collapse operator for the disjunctive completion). We define an operator
CollapseS that takes a set of elements of Pan and merges together (by taking the abstract
union), the elements that are equivalent with respect to ≡Pan

E . Formally,

CollapseS(O) =
{⊔Pan

a∈a

a | a ∈ O/≡Pan
E

}

We use this collapse operator to provide an abstract union and intersection for the
structural lifting

d1 ⊔S d2 = CollapseS(d1 ∪ d2)

d1 ⊓S d2 = CollapseS

t1 ⊓Pan t2 |
t1 ∈ d1 ∧ t2 ∈ d2∧
t1 ⊓Pan t2 ̸= ⊥Pan




A widening for the structural lifting is given by

d1 ▽S d2 =
{t1 ▽Pan t2 | t1 ∈ d1 ∧ t2 ∈ d2 ∧ t1 ≡Pan

E t2}
∪{t2 ∈ d2 | ∄t1 ∈ d1, t1 ≡Pan

E t2} ∪ {t1 ∈ d1 | ∄t2 ∈ d2, t1 ≡Pan
E t2}

The other constructions of the structural lifting are the standard ones of disjunctive
completion domains. For example, abstract inclusion is given by a Hoare ordering:

d1 ⊑S d2 iff ∀a ∈ d1,∃a′ ∈ d2, a ⊑Pan a′

5.5 Analysis Result for the do_ticks Function

Figure 5.1 shows the result of running our analyser on the example from figure 4.2 (on
page 31) using the RAND domain, with polyhedra as the underlying numeric domain. In
one sentence, the difference between the RAND domain (Chapter 6) and the structural
lifting of this chapter is that the RAND domain duplicates all the variables, to capture
input-output relations:

56



5.5. Analysis Result for the do_ticks Function

Function summary for function do_ticks(p, n) returning p’ :
(Constructor constraints : p.status@Running; p’.status@Running ...

Structural equalities : p = p’ ; ...
Numeric constraints : n >= 1 ; ...

)
Or
(Constructor constraints : p.status@Asleep; p’.status@Running ...

Structural equalities : p.msg = p’.msg
Numeric constraints :

p.id = p’.id; p’.status@Running.count = p.status@Asleep.count + 1;
p.status@Asleep.secs >= 0; n >= p.status@Asleep.secs + 1

)
Or
(Constructor constraints : p.status@Asleep; p’.status@Asleep ...

Structural equalities : p.msg = p’.msg
Numeric constraints :

p.id = p’.id; p.status@Asleep.secs >= n; n >= 1;
p.status@Asleep.count = p’.status@Asleep.count;
p’.status@Asleep.secs = p.status@Asleep.secs - n )

Figure 5.1: Result of our analysis on the example of figure 4.2. Ellipses mark information
that is also present in other components of the same case and is elided.

• variables with a prime denote the output,

• whereas variables without a prime denote the input.

In figure 5.1, we see that our disjunctive completion considers three different cases,
and contains all five properties that we wanted to infer automatically. In the first case,
both the input and the output are running processes and the structural equality p = p′

tells us that the process remained unchanged (property 1). In the two other cases, the
structural equality p.msg = p′.msg conveys that the msg field has not changed (property 5)
while numeric constraints indicate that the id field has not changed (property 4). In the
second case, the input process is asleep while the output process is running. The numeric
properties tell us that the wake up count has increased by one and the sleeping budget of
the input process is lower than argument n (property 2). In the third case, both the input
and output process are asleep. The numeric relations tell us that the initial sleeping budget
was greater than n and has decreased by n; also, the wake up count remains unchanged
(property 3).

A preliminary version of the NPR domain from Chapter 4 was published in [BJM20].

57



Part I, Chapter 5 – Precision and Scalability for Algebraic Types

Then, when the approach was implemented, we found several precision concerns, which lead
us to modify the definitions in order to improve precision. This inspired the contributions
from Chapter 5, which were published in [BJM22b; BJM22a].

58



Part II

From abstract domain
to language analysis

59





Chapter 6

TURNING RELATIONAL DOMAINS INTO

INPUT-OUTPUT RELATIONAL DOMAIN

The term “relational analysis” is widely used in the literature, and may refer to two
different notions. In a majority of related works, a “relational analysis” designates a static
analysis that infers relations that hold between variables of a single program point, i.e.,
relations in space. In other works, a “relational analysis” denotes a static analysis that
infers relations between (variables of) different states, i.e., relations in time. In the rest of
this manuscript, the term “relational” mostly refers to input-output relational analyses,
that compute relations between the input states and the output states of a program.

It is a folklore result, known in the literature, that a non-input-output relational
analysis can be turned into an input-output relational analysis by “duplicating the number
of variables”. In this chapter, we give the formal details that allow to use this folklore result
in the context of abstract interpretation. After briefly discussing related work in section 6.1,
we present the relational collecting semantics that serves as basis for our input-output
analysis in section 6.2 and then we formalize the generic approach that allows to build
an abstract domain for input-output analyses from a domain for reachability analyses, in
section 6.3. In particular, this will allow us to describe in detail (in section 7.2), how we
summarize functions during our inter-procedural analysis, and how we instantiate these
summaries during function call analysis.

6.1 Related work

The idea of exploiting an input-output relational semantics to verify while programs was
developed by Kozen [Koz97]. He introduced Kleene Algebra with Tests, an extension of
relation algebra [Tar41] with co-reflexive relations named tests, that serves as a foundation
for the semantics of imperative programs, their verification, and as an effective formal tool
for proving the correctness of program transformations.

61



Part II, Chapter 6 – Turning Relational Domains into Input-Output Relational Domain

A number of static analyses for approximating the input-output relation of a program
have been proposed. Cousot and Cousot [CC02] used abstract interpretation for designing
modular and relational analyses, and argue that compositionality can improve the scalability
of analysers. Compositional Recurrence Analysis (CRA), by [FK15], is a compositional
static analysis that infers numeric relations between the inputs and the outputs of programs.
CRA first builds a regular expression to describe the set of program paths, that is then
interpreted as an input-output relation in a compositional way, in a second stage. Their
approach is context insensitive, and is similar to the relational semantics of definition 23.
Whereas we follow the standard iteration-based analysis of loops, they use a special
operator to compute the reflexive transitive closure of a relation, that is specialised on
linear recurrence equations. Interestingly, they discuss in their benchmarks a variation of
their analysis, named CRA+OCT, that “uses an intra-procedural octagon analysis to gain
some contextual information, but which is otherwise compositional”, and that leads to more
precise results than pure CRA. Although no precise definition is given for CRA+OCT, we
believe that it follows our relational collecting semantics of definition 24, again with the
exception of the treatment of loops. As we have also observed, exploiting the information
available at loop entries is crucial to obtain sufficiently precise results. ICRA — by Kincaid,
Breck and Bouroujeni [Kin+17] — is an inter-procedural extension of CRA, where function
summaries are computed once and for all, independently of their calling contexts—an
approach we have followed too in section 7.2. In contrast to CRA and ICRA, our analysis
can deal with programs that are not purely numeric, and that can handle algebraic data
types. We have not found any detailed description of how the function summaries of CRA
and ICRA are instantiated. We are therefore not able to compare the way we instantiate
function summaries (section 7.2) with CRA or ICRA. In contrast to CRA and ICRA, our
analysis does not yet support recursively defined functions.

Other relational analyses were developed in the context of inter-procedural shape
analysis [SJ11b; Jea13; ILR21]. They all feature a form of function summary, that helps
reduce the analysis cost of large programs, by enabling modular analyses.

6.2 A Collecting Semantics of Relations

In this section, we define an input-output relational semantics of programs, that forms the
semantic basis of an input-output relational analysis. Our relational semantics determines
relations that relate the input stores of a program with its output stores, i.e., the stores

62



6.2. A Collecting Semantics of Relations

that are obtained when there are no more commands to evaluate.

Definition 23 (Relational semantics). The relational semantics of a command c is defined
as follows: S JcK = {(s1, s2) | (c, s1) →∗ (skip, s2)}.

As shown in lemma 11 below, the relational semantics of a compound command can
be decomposed in terms of the relational semantics of the command’s constituents. We
define the relation Id = {(s, s)} as the identity relation on stores, and we write a1; a2 =
{(s1, s3) | ∃s2, (s1, s2) ∈ a1 ∧ (s2, s3) ∈ a2} to denote the composition of the relations a1

and a2. We also write a∗ to denote the reflexive transitive closure of the relation a, i.e., the
least fixed point of the functional λa′.Id ∪ (a; a′). We have a∗ = Id ∪ (a; a∗) = Id ∪ (a∗; a).
Lemma 11. The relational semantics enjoys the following identities:

S JskipK = Id
S Jc1 ; c2K = S Jc1K ; S Jc2K

S Jbranch c1 or . . . or cn endK = ⋃
1≤i≤n S JciK

S Jwhile b do c endK = (C JbK ;S JcK)∗;C J¬bK
S Jassert(b)K = C JbK

S Jx := tK = {(s, s(x 7→ v)) | (s, v) ∈ E JtK}

where the semantics of numeric expression and boolean conditions are defined as follows:

E JtK = {(s, v) | v ∈ JtKexp
s } C JbK = {(s, s) | tt ∈ JbKbool

s }

Lemma 11 allows for fully compositional analyses, where atomic commands are analysed
independently from one another, and the analyses’ results are then combined. An example of
such a compositional analysis is CRA [FK15; Kin+17]. A drawback of a fully compositional
approach, however, is its inability to exploit any information about the states that have
been reached so far, which may degrade the precision of an analysis. The following piece
of code illustrates this issue: assert (x > 1 && y > 1); x := y * x. If we analyse the
assignment x := y * x with no knowledge that the preceding assertion succeeded, then,
using a linear relational domain—e.g., octagons or polyhedra—we will not obtain any
precise information about how the value of x has changed, as the domain cannot express
non-linear relations. The relational collecting semantics P JcK from definition 24 below
waives this limitation, as it allows to exploit the information that has so far been obtained
for the current program point. Our collecting semantics P JcK is a function from relations

63



Part II, Chapter 6 – Turning Relational Domains into Input-Output Relational Domain

to relations: given some initial relation a that holds between initial stores si and the stores
sb at the current program point (before the execution of c), P JcK (a) computes a relation
between the initial stores si and the final stores sf that are produced by evaluating the
command c from the stores sb. Thus, P JcK extends the relations in time by composing on
the right-hand side with the behaviour of command c.

si sb sf

a S JcK

P JcK

Definition 24 (Collecting semantics). P JcK (a) = a;S JcK

P JcK is an abstraction of a semantics of computation traces [Cou97]. Computation
traces keeps all the intermediate stores that a program may reach during its execution;
whereas P JcK only keeps the initial and final stores. The collecting semantics P JcK enjoys
the equations listed in the next lemma, that shows how it decomposes by following the
syntax of commands.
Lemma 12 (Inductive Characterisation of the Collecting Semantics). The fol-
lowing equations hold:

P JskipK (a) = a

P Jc1 ; c2K (a) = P Jc2K (P Jc1K (a))
P Jbranch c1 or . . . or cn endK (a) = ⋃

1≤i≤n P JciK (a)
P Jwhile b do c endK (a) = P Jassert(¬b)K (lfp fa)

where fa(r) = a ∪ P JcK (P Jassert(b)K (r))
P Jassert(b)K (a) = {(s1, s2) | (s1, s2) ∈ a ∧ JbKbool

s2
= {tt}}

P Jx := tK (a) = {(s1, s2(x 7→ v)) | (s1, s2) ∈ a ∧ v ∈ JtKexp
s2

}

Proof. The proof of the three first cases rely on the algebraic properties of relational
composition, namely: Id is its neutral element, composition is associative, and it distributes
over union. To prove the fourth case, we first notice that for any fixed a and b, for the
function g(r) = a ∪ (r; b), we have gi(⊥) = ⋃

0≤j<i a; bj. Then, it follows that lfp g =⋃
i≥0 g

i(⊥) = ⋃
i≥0

⋃
0≤j<i a; bj = ⋃

j≥0
⋃

i>j a; bj = ⋃
j≥0 a; bj = a;⋃j≥0 b

j = a; b∗. The
proofs of the last two cases proceed by unfolding definitions.

Lemma 12 will serve as the semantic basis for the analysis that we describe in section 7.1.

64



6.3. Leveraging Relations in Space to Express Relations in Time

Lemma 12 shows that the syntax-directed decomposition of the relation transformer
P JcK follows the same structure as the standard set-based collecting semantics, that collects
the set of reachable states. Most transfer functions of our collecting semantics are the
same, but they operate on different objects (binary relations on stores instead of sets of
stores). The two transfer functions that are specific to this relational semantics are the
ones for assertion and for assignment. We show in section 6.3 how to generically define
abstractions for those two transfer functions—that transform relations that relate stores
in different program points—using any relational abstract domain that represents sets of
stores for one program point. Using these two results, we can turn a folklore technique into
a formal claim: transforming a non input-output relational analysis into an input-output
relational one is “as simple as” duplicating variables [BH19; ILR17].

An important difference between the two styles of analyses—set-based vs. relational—is
the choice of the most precise starting point for the initial store, when no assumption is
made on that store. In set-based analysis, that starting point is ⊤ (the set of all stores),
whereas in the relational analysis, the starting point is Id (the identity relation on stores).

6.3 Leveraging Relations in Space to Express Rela-
tions in Time

In this section we show that any relational domain—i.e., that denotes sets of stores and
can express binary relations between different variables of a single store—can be lifted
to a domain for pairs of stores, that is able to express relations between input stores and
output stores. The main idea is simple: a pair of stores (s1, s2) ∈ (Vars → Values)2 can be
represented as a single store, provided we can distinguish the variables in s1 from those in
s2.

Formally, this is achieved by assuming two bijections prime : Vars → Vars′ and
second : Vars → Vars′′ where Vars′ and Vars′′ are disjoint “copies” of Vars, that intuitively
contain the “primed” and “seconded” versions of the variables of Vars. We write x′ as a
shorthand for prime(x), and x′′ for second(x), and use the same convention as in [FK15],
i.e., we use regular variables for the left-hand sides of relations—the input stores—and
primed variables for the right-hand sides—the output stores. We introduce the set Vars′′

of “seconded” variables for composition (definition 28 on page 72). Indeed, if a1 and a2

abstract two input-output relations that we want to compose, we rename the variables so
that

65



Part II, Chapter 6 – Turning Relational Domains into Input-Output Relational Domain

• regular variables refer to the input of the result, which is also the input of a1,

• primed variables refer to the output of the result, which is also the output of a2,

• and seconded variables are temporarily used for the intermediate state corresponding
both to the output of a1 and the input of a2.

For any map f , we write f ′ as a shorthand for f ◦ prime−1, and we write f ∪ g for the
union of maps with disjoint domains. This allows us to represent any pair (s1, s2) of stores
as a single store s1 ∪ s′

2. We use this encoding to transform any relational domain that
represents a set of stores into a domain that represents a binary relation over stores.

With this encoding, if some variable x is effectively present both in the input store s1

and in the output store s2, it will occur twice—as x and as x′—in the store s1 ∪ s′
2.

Definition 25 (Relational lifting). Let D be an abstract domain, such that for any typing
context Γ, D(Γ) is equipped with concretisation function γD(Γ) ∈ D(Γ) → P(Vars → Values).
For any two typing contexts Γ1 and Γ2, the relational lifting R (D)(Γ1,Γ2) of D and its
concretisation function are defined as follows:

R (D)(Γ1,Γ2) = D(Γ1 ∪ Γ′
2)

γR(D)(Γ1,Γ2)(a) = {(s1, s2) | s1 ∪ s′
2 ∈ γD(Γ1∪Γ′

2)(a)}

The relational lifting expects two typing contexts—one for the input stores, and one
for the output stores. The fact of allowing different typing environments for the store on
the left and the store on the right will prove useful when analysing function calls. Indeed,
the same variable name can represent variables with different types for the caller and the
callee. Hence, the abstract values representing the transitions from caller to callee and
from callee to caller will simultaneously handle two different typing contexts.

The lifted domain R (D)(Γ1,Γ2) is naturally equipped with a pre-order relation, abstract
union, intersection and widening, by reusing those of D(Γ1 ∪ Γ′

2).
As we remarked in section 6.2, only two pieces are missing to get a relational input-

output analysis: now that we can express relations on stores, the question remains of how
to express the transfer functions for conditionals and assignments. We show in figure 6.1
how to do so in a generic way, by exploiting the transfer functions of the underlying
domain.

The transfer function for conditionals CondR(D)(Γ1,Γ2)(b)(a) constrains the right-hand
side of the relation a to satisfy the boolean condition b. This is achieved by calling the

66



6.3. Leveraging Relations in Space to Express Relations in Time

CondR(D)(Γ1,Γ2)(b)(a) = CondD(Γ1∪Γ′
2)(b′)(a)

AssignR(D)(Γ1,Γ2)(x := t)(a) = AssignD(Γ1∪Γ′
2)(x′ := t′)(a)

Figure 6.1: Relational transfer functions for conditionals and assignment.

transfer function for conditions of the underlying domain on b′, to enforce that the variables
of b refer to the outputs of a.

The transfer function for assignment AssignR(D)(Γ1,Γ2)(x := t)(a) calls the underlying
domain on the primed version of the assignment, x′ := t′, to ensure that it applies to the
outputs of relation a, leaving the inputs unchanged.

This concludes our justification of the folklore claim that, “to turn a static analysis for
the sets of final states into an analysis for input-output relations, it suffices to duplicate
variables”. We have built our justification on the following remarks: 1. Duplicating variables
turns a non input-output relational domain—i.e., a relation between variables of the stores
of a single program point—into a domain of binary relations between stores of two different
program points. 2. An input-output relational analysis has the same structure as an
analysis for final states. 3. The transfer functions that are specific to the input-output
relational analysis can be defined in a generic way, using those of the analysis for final
states.

In the rest of this manuscript, we use the relational lifting of the abstract domain from
Part I, that we call RAND—short for Relational Algebraic and Numeric Domain.

67





Chapter 7

IMPLEMENTATION

AND EXPERIMENTAL RESULTS

In this chapter, we describe how to use the RAND domain from Part I to analyse programs,
and we discuss implementation, experimental results and complexity. Section 7.1 describes
intra-procedural analysis, on the language described in section 2.2, while section 7.2 extends
the language with function calls and describes inter-procedural analysis. In section 7.3,
we present an OCaml implementation, we report on experimental results over several
examples and we discuss complexity.

7.1 Intra-Procedural Analysis

We define a function Analyse that takes a program c and an abstract value a—representing
the relation gathered so far between the input states and the current state—and returns the
abstract value Analyse(c)(a) that over-approximates the effect of running c after a. This
section deals with basic constructs, while section 7.2 explains how we analyse functions.

Definition 26 (Intra-procedural version of the analysis function).

Analyse(assert(b))(a) = CondRand(b)(a)
Analyse(x := t)(a) = AssignRand(x := t)(a)
Analyse(c1 ; c2)(a) = Analyse(c2) (Analyse(c1)(a))

Analyse(branch c1 or . . . or cn end)(a) = ⊔Rand
i∈1,...,n Analyse(ci)(a)

Analyse(while b do c end)(a) = CondRand(¬b) (limn→∞ an)
where a0 = a and an+1 = an ▽Rand Analyse(assert(b); c)(an)

For assertion and assignment, we use the transfer functions built in previous sections.
Sequence and branching follow the structure outlined in lemma 12.

We analyse loops in a standard way, using a widening-based Kleene iteration, which

69



Part II, Chapter 7 – Implementation and Experimental Results

ensures that we reach a post-fixpoint in a finite number of iterations. In practice, our
implementation performs a loop unrolling [RY20, p.131] of the first iteration, so as to
obtain better precision.

The Analyse function is sound, in the sense that it over-approximates the relational
collecting semantics.
Theorem 1 (Soundness w.r.t. the collecting semantics). For any numeric domain
N satisfying the hypotheses from section 2.3, for any command c that type-checks in some
typing-context Γ and any abstract value a ∈ Rand (N)(Γ,Γ),

P JcK
(
γRand(N)(Γ,Γ)(a)

)
⊆ γRand(N)(Γ,Γ) (Analyse(c)(a))

By instantiating theorem 1 with the abstraction of the identity relation, we get a
soundness result with respect to the relational semantics of commands:
Corollary 1 (Soundness w.r.t. the relational semantics). For any numeric domain
N satisfying the hypotheses from section 2.3, for any command c that type-checks in some
typing-context Γ and any abstract value a ∈ Rand (N)(Γ,Γ),

S JcK ⊆ γRand(N)(Γ,Γ)
(
Analyse(c)

(
IdRand(N)(Γ,Γ)

))

7.2 Analysis of Function Calls

In this section, we add function definitions and function calls to our language, and extend
the intra-procedural analysis of section 7.1 into a modular inter-procedural analysis, based
on function summaries.

Extended syntax and semantics for functions We extend our language to support
function calls in commands and function declarations:

c ∈ Cmd ::= . . . | x := f(x1, . . . , xn)
d ∈ Decl ::= def f(τ1 x1, . . . , τn xn) : τ = {c ; returnx}
P ∈ Prog ::= d1; . . . ; dn

For simplicity, the command for function calls y := f(x1, . . . , xn) immediately saves in a
variable y the result of calling a function f . This restriction forbids to call functions within
expressions, so that the semantics of expressions and the transfer function for assignment

70



7.2. Analysis of Function Calls

FunctionCall
∆(f) = ((x1, . . . , xn), cf , r,Γf ) ∀i ∈ {1, . . . , n}, vi ∈ JziK

exp
s

(y := f(z1, . . . , zn), s, π) → (cf ; return r, [x1 7→ v1, . . . , xn 7→ vn], (y, s) : π)

FunctionReturn
vr ∈ JrKexp

s

(return r, s, (yr, sr) : π) → (skip, sr(yr 7→ vr), π)

Figure 7.1: Small-step semantics for functions

remain unchanged.
A program is a sequence of function declarations of the form

def f(τ1 x1, . . . , τn xn) : τ = {c ; return r}

that specify, for each function f , what are its formal parameters x1, . . . , xn with their
respective types τ1, . . . , τn, what is the output type τ , what is the body c and what is the
return variable r. A program effectively defines a map ∆, that associates to every declared
function f a quadruplet ∆(f) = ((x1, . . . , xn), c, r,Γ) that holds the formal parameters xi

of f , its body c, its formal return variable r, and the typing context Γ that specifies the
types of its formal and local variables.

Figure 2.2 on page 15 gives the small-step reduction rules for the language without
function calls. We extend the small-step reduction rules from figure 2.2 as follows. First,
we add to our semantic states (c, s), that are composed of a program and a store, a third
component π that denotes a call stack, and is used to properly handle function returns.
The reduction rule SeqStep that handles sequences of commands simply propagates any
change to the stack, whereas the other rules of figure 2.2 leave the stack unchanged. Then,
we augment the reduction relation with two new rules (figure 7.1). Rule FunctionCall
installs the body of the called function f as the new code to execute, and installs a new
store that defines the actual values—read in the caller’s store—for the formal parameters
of f . Simultaneously, a new element (y, s) is added at the top of the call stack, so as
to remember that the caller’s store s should be restored upon f ’s return, and that the
value computed by f must be recorded in the variable y. This very action, that must be
performed at function return, is specified by rule FunctionReturn.

71



Part II, Chapter 7 – Implementation and Experimental Results

Analysing functions We have chosen to develop a modular analysis, by analysing each
function only once and computing a function summary, that summarises a function’s
behaviour. This summary is then reused and instantiated each time that function is called.
Such a modular analysis allows to better scale to large code bases [CC02].

Definition 27 (Function summaries). For a function f defined by

∆(f) = ((x1, . . . , xn), cf , yf ,Γf )

we call summary of f the quadruplet given by:

(
(x1, . . . , xn),Analyse(cf )

(
IdRand(N)(Γf ,Γf )

)
, yf ,Γf

)
The first, third and fourth components of a function summary are the same than in

the function declaration: respectively formal parameters, formal return variable and the
function’s typing context.

The second component of the summary of a function f is an abstract value summaris-
ing f ’s behaviour by over-approximating the input-output relation between its formal
arguments and its formal return variable. Thus, this abstract value deals with the variables
that are local to the execution of f : no information about the caller’s environment is
recorded in the summary. This abstract value is obtained by analysing the body of f ,
starting with the identity relation. This means that we make no assumption on the actual
arguments that will be given to f , hence we can reuse the same summary in every calling
context.

To use a function summary at some call site, we instantiate the summary on the actual
arguments and output variable used at the call site. Our method to instantiate summaries
is based on an abstraction of relational composition, that sequentially chains together two
abstract values that represent binary relations.

Definition 28 (Abstract composition). Let Γ1, Γ2 and Γ3 be typing contexts. Let a1 ∈
R (D)(Γ1,Γ2) and a2 ∈ R (D)(Γ2,Γ3) be two abstract values. The abstract composition
a1 ;R(D) a2 of the abstract values a1 and a2 is defined by:

a1 ;R(D) a2 = Remove
Γ′′

2

(
Add

Γ′
3

c1 ⊓D(Γ1∪Γ′′
2 ∪Γ′

3) Add
Γ1

c2

)

72



7.2. Analysis of Function Calls

where c1 = Rename
primeT oSecond

a1 and c2 = Rename
regularT oSecond

a2 and

primeToSecond : dom(Γ1 ∪ Γ′
2) → dom(Γ1 ∪ Γ′′

2)
x ∈ dom(Γ1) 7→ x

x′ ∈ dom(Γ′
2) 7→ x′′

regularToSecond : dom(Γ2 ∪ Γ′
3) → dom(Γ′′

2 ∪ Γ′
3)

x ∈ dom(Γ2) 7→ x′′

x′ ∈ dom(Γ′
3) 7→ x′

Abstract composition chains the effects of a1 and a2 by introducing auxiliary names
(seconded variables of the form y′′) for the states that are in the output of a1 and the
input of a2, before taking the intersection, and then removing the temporarily introduced
variables. The calls to Add are necessary name management steps, that ensure that the
abstract values deal with the same sets of variables. Abstract composition is a sound
approximation of relational composition, as stated by the following lemma:
Lemma 13 (Soundness of composition). For any two abstract values from the rela-
tional lifting, a1 ∈ R (D)(Γ1,Γ2) and a2 ∈ R (D)(Γ2,Γ3), we have:

γR(D)(Γ1,Γ2)(a1) ; γR(D)(Γ2,Γ3)(a2) ⊆ γR(D)(Γ1,Γ3)(a1 ;R(D) a2)

Based on abstract composition, we express summary instantiation as follows:

Definition 29 (Summary instantiation). The instantiation of the function summary
Sf = ((x1, . . . , xn), af , yf ,Γf) on the actual parameters (z1, . . . , zn), the actual return
variable y and the caller typing context Γ is defined as follows:

Inst(Sf , (z1, . . . , zn), y,Γ) = ins ;Rand(N) af ;Rand(N) outs
where ins = CondRand(N)(Γ,Γf )

(∧
i∈{1,...,n} zi = x′

i

) (
⊤Rand(N)(Γ,Γf )

)
and outs = CondRand(N)(Γf ,Γ)(yf = y′)

(
⊤Rand(N)(Γf ,Γ)

)
Summary instantiation simply works by composing three abstract values, using abstract

composition. Instantiation first ties each actual parameter to its formal parameter by
pre-composing the abstract value af for f ’s body with the ins abstract value, and then ties
the formal output to the actual output by post-composing with the outs value. The values
ins and outs are simply expressed as mere conjunctions of equalities. The first composition
deals with the call of the function, whereas the second composition handles the return.

73



Part II, Chapter 7 – Implementation and Experimental Results

During a function call y := f(z1, . . . , zn), the instantiation of f ’s summary describes
how variable y has changed, but does not deal with the fact that only the variable y may
have changed: every other variable that is available before the call remains the same after
the call. Thus, the transfer function for function call augments the instantiation of the
function summary Sf with equalities for the unaltered variables, before extending the
relation a gathered so far with the effect of the call to f :

Analyse(y := f(z1, . . . , zn))(a) =

a ;Rand(N)

 Inst(Sf , (z1, . . . , zn), y,Γ)⊓Rand(N)(Γ,Γ)
lRand(N)(Γ,Γ)

x ̸=y
CondRand(N)(Γ,Γ)(x = x′)


The transfer function for function calls is sound:
Lemma 14 (Soundness of function call analysis). For every function definition of
the form

∆(f) = ((x1, . . . , xn), cf , yf ,Γf )

and any function summary of the form

Sf = ((x1, . . . , xn), af , yf ,Γf )

such that S JcfK ⊆ γRand(N)(Γf ,Γf )(af ), we have:

P Jy :=f(z1, . . . , zn)K(γRand(N)(Γ,Γ)(a)) ⊆ γRand(N)(Γ,Γ)(Analyse(y :=f(z1, . . . , zn))(a))

Proof. Let s0 be a store, and s2 be the store that results from the call instruction
y :=f(z1, . . . , zn) on the initial store s0. We have

(s0, s2) ∈ P Jy :=f(z1, . . . , zn)K(γRand(N)(Γ,Γ)(a))

Unfolding the definition of P J�K gives an intermediate store s1 such that (s0, s1) belongs
to γRand(N)(Γ,Γ)(a) and (s1, s2) belongs to S Jy :=f(z1, . . . , zn)K. The function call can be
decomposed as a series of reductions

(y :=f(z1, . . . , zn), s1, π) → (cf ; return yf , s
′, (y, s1) : π)

→∗ (return yf , s
′′, (y, s1) : π)

→ (skip, s2, π)

74



7.3. Experimental Results and Complexity

where s′ is the store that is initialised at the beginning of the execution of f ’s body, and
s′′ is the store that is obtained at the end of the execution of f ’s body. Let ins and outs be
the abstract values used in definition 29. By the definition of s′ in rule FunctionCall, we
get (s1, s

′) ∈ γRand(N)(Γ,Γf )(ins). Moreover, (s′, s′′) ∈ S JcfK is obtained by the hypothesis
on f ’s summary. Finally, we prove (s′′, s2) ∈ γRand(N)(Γf ,Γ)(outs) by the definition of s2

in rule FunctionReturn: s′′ and s2 indeed coincide on every variable other than the
actual return variable. We conclude using the soundness of abstract composition, abstract
intersection and abstract condition.

Lemma 14 ensures that the soundness result for the intra-procedural analysis (theorem 1)
extends to the language with function calls that we have described in this section.

7.3 Experimental Results and Complexity

We have implemented an analyser in approximately 5000 lines of OCaml, to analyse
a while language with algebraic types. Our implementation together with instructions
on how to add new test cases and run the tests cases is packaged and published as a
virtual machine artefact [BJM22a]. Similarly to our formal development, our analyser
is parametrised by an abstract domain for integers. A command-line option allows to
choose among numeric domains provided by Apron [JM09], such as intervals, octagons or
polyhedra.

We have tested our analyser on a total of 43 programs, summarised on Tables 7.1
and 7.2. Table 7.1 describes some complex examples: some sorting algorithms, the do_ticks

function from figure 4.2, and 6 functions inspired from the abstract specification of the seL4
micro-kernel [Kle+09]. Table 7.2 describes a set of simple examples. We now review the
results that our analyser computed on the complex examples of Table 7.1, using polyhedra
as numeric domain.

Sorting integer arrays Our OCaml implementation does not include the extension for
arrays that is presented later in the manuscript, in Part III. To circumvent the absence of
support for arrays in our prototype, we modelled arrays of fixed length using tuples, and
we defined get and set functions.

The do_ticks function The do_ticks function (figure 4.2 on page 31) is inspired from
a process scheduler from operating system code. As reported in section 5.5, the analysis

75



Part II, Chapter 7 – Implementation and Experimental Results

result for do_ticks captures all the properties we expected.

seL4-inspired functions We have extracted from the abstract specification of the
seL4 formally verified micro-kernel [Kle+09] several functions, that work both on ADTs
and on scalar values, and translated them in our while language. Specifically, those
functions are related to either thread management, capability management or scheduling
(decode_set_priority, check_prio, mask_cap, validate_vm_rights, cap_rights_update,
timer_tick). Our analyser infers exact abstractions for all of them, except for timer_tick.
This program is slightly different from do_ticks: when a thread’s time budget is over, this
budget is reset to its original value and the thread is then re-scheduled, in a scheduler
queue. Then, a new (possibly different) current thread is chosen from the scheduler queue.
During a re-scheduling, the case constraints of our abstract domain cannot distinguish
whether the new current thread is the same as the old one or not, so a join of those two
cases is performed. This results in some expected information loss on the thread’s time
budget.

For the mask_cap program, we experimented with two encodings of bitmasks, using either
integers or ADTs to represent booleans. The integer-based encoding produced a function
summary that is compact—only 4 cases—but hard to understand for a human being,
whereas the summary produced with the ADT-based encoding is large —it distinguishes
324 disjuncts— but each disjunct is easy to interpret for a human being.

We consider that the precision we obtained on the seL4 examples is satisfying. Still, the
last example illustrates a limitation of our approach. Indeed the function summaries can
significantly grow when the analysed program pattern matches on many distinct variables.
Abstract domains that leverage BDDs have been successfully used to reduce analysis costs
by sharing common results [Dim19; DAL22; SJ11a; Jea09], and could also help in our
situation.

Complexity of our analysis Each domain that constitutes RAND, with the exception of
the disjunctive completion layer, features operators and transfer functions whose complexity
is polynomial in program parameters, e.g., the number of variables, or the maximum depth
of the defined types. For the disjunctive completion, however, the complexity is polynomial
in the number of possible cases, which can itself be exponential in program parameters.
The number of cases is asymptotically bounded by cxfp , where x is the number of variables
in the program, c is the maximum number of different constructors per sum type, f is the

76



7.3. Experimental Results and Complexity

Table 7.1: Complex test cases used for experimental evaluation. The columns indicate
whether the tests involve sum types, numeric operations, while loops or function calls,
as well as the analysis time, and the maximum number of cases per function summary.
Analysis times are given in milliseconds, with the exception of longer durations, that are
given in seconds and printed with a bold face. Measures were performed on an Intel®
Core™ i7 @2.30GHz × 16. The codebase [BJM22a] includes instructions to reproduce the
results.

Name Sums Numeric Loops Calls Time Cases
Hand-crafted tests:

do_ticks Yes Yes Yes No 166 ms 3
nondeterministic_

bubble_sort Yes Yes Yes Yes 2.1 s 5
selection_sort Yes Yes Yes Yes 10.9 s 25

Inspired from SeL4:
decode_set_priority Yes Yes No Yes 10 ms 2

mask_cap_boolean Yes No No Yes 7.4 s 324
mask_cap_int Yes Yes No Yes 1.5 s 4

timer_tick_scheduling Yes Yes Yes Yes 41.2 s 81

maximum number of fields in any product type and p is the maximum depth of the types
being defined. While it is possible to write a program that reaches this bound, we have
not found any program, even in seL4, that makes the number of cases explode.

The asymptotic bound for the number of cases can be reached for programs in which
all the variables hold a complete f -ary tree of depth p, with all the leaves belonging to a
sum type having c possible constructors.

For our analysis to actually consider all those possible cases, the program would also
have to perform pattern-matching on all the different leaves, probably using pattern-
matching inside a loop or a function call.

There are two different scenarios that render our analysis costly: either when the
number of different cases is high—in which case our disjunctive completion can be the
bottleneck—or when many numeric extended variables are considered—in which case
the underlying numeric domain can be the bottleneck. A solution for the first scenario
could be to adopt a different merging strategy, so that more cases are merged, at the risk
of losing precision. In the second scenario, the generic aspect of our domain allows to
choose between numeric domains with different precision versus cost trade-offs. In addition,
techniques based on partitioning the set of variables could also be leveraged.

77



Part II, Chapter 7 – Implementation and Experimental Results

Table 7.2: Simple test cases used for experimental evaluation. We use the * symbol for
families of similar tests, whose names start identically. The columns indicate whether the
tests involve sum types, numeric operations, while loops or function calls, as well as
the analysis time, and the maximum number of cases per function summary. Analysis
times are given in milliseconds, with the exception of longer durations, that are given in
seconds and printed with a bold face. Measures were performed on an Intel® Core™ i7
@2.30GHz × 16. The codebase [BJM22a] includes instructions to reproduce the results.

Name Sums Numeric Loops Calls Time Cases
Simple tests:

assert* Yes Yes No No 1 ms 1
call_inside_loop_* No Yes Yes Yes 15 ms 1

drift Yes Yes Yes Yes 24 ms 2
exchange No No No No 2 ms 1
facto* No Yes Yes No 8 ms 1

false_type_collision No No No Yes 3 ms 1
fibonacci No Yes Yes Yes 51 ms 1

gauss* No Yes Yes No 15 ms 1
ghost_equality No No No No < 1 ms 1
hidden_incompat Yes No No No 2 ms 0

id No No No No < 1 ms 1
if No Yes No No 2 ms 1

incompat Yes No No No < 1 ms 0
indirect_swap Yes No No Yes 3 ms 2

long_id Yes No No Yes 5 ms 2
modulo No Yes Yes Yes 33 ms 2

multiplication_larger No Yes No No 2 ms 1
or_constructor Yes No No No < 1 ms 0

plus_* Yes Yes No No < 1 ms 1
record_assignment* No Yes No No 2 ms 1

reduction No Yes No No 3 ms 1
struct_exchange Yes No No No < 1 ms 1

swap Yes No No No < 1 ms 2
test_loop No Yes Yes No 3 ms 1
two_by_two No Yes Yes No 3 ms 1
while_true No No Yes No < 1 ms 0

widening_convergence No Yes Yes No 49 ms 1
xor Yes No No Yes 8 ms 3

78



Part III

Abstract Domain for Arrays of
Structured Values

79





Chapter 8

RELATED WORK ON ARRAY ANALYSIS

In this Part III, we extend the work that we have already done, on abstract interpretation
for algebraic types (Part I), to programs that manipulate arrays. Hence we are particularly
interested in works that use abstract interpretation to analyse the contents of arrays.

Work by Dietsch et al. [Die+18] uses abstract interpretation to analyse programs that
manipulate arrays. However, they do not focus on the numeric relations satisfied by the
values inside arrays slots. Instead, they focus on the equality of arrays up to exceptional
indices. They define the map equality domain, whose abstract values express the equality of
array pairs, except at the indices that satisfy some (automatically established) predicates.
By focusing on equality, the perspective that the correlation domain [And+19] takes on
algebraic types is similar to the perspective that the map equality domain [Die+18] takes
on arrays.

[And+19] also handle arrays, with an expressiveness that is, on purpose, limited. When
describing the relation between two arrays, they may specify one exceptional index and at
most two correlations: one correlation that explains how the arrays relate at the exceptional
index, and one that explains how the arrays relate at all other indices. As with algebraic
types, correlations between values inside arrays track whether parts of the values are equal
to each other; and do not track numeric relations other than equality.

When it comes to analyzing the values inside arrays using abstract interpretation, two
extremes are array smashing and array expansion, both discussed by [Bla+03]. Array
smashing uses a single abstract value for each array. Array expansion uses a different
abstract value for each array slot in each array. Array smashing is very scalable, but not
very precise. Array expansion is very precise, but at a cost for scalability. Moreover, array
expansion is only feasible when the sizes of the arrays that are analysed are statically
known.

A compromise between array smashing and array expansion consists in separating
array slots into groups, called segments, and associate an abstract value to each segment.
This approach was first treated by Gopan, Reps and Sagiv [GRS05]. In order to choose

81



Part III, Chapter 8 – Related Work on Array Analysis

the way of cutting arrays into segments, they first determine n integer variables (given
either by heuristics or by the user), and then they partition the indices of the arrays,
according to whether they are less than, equal or greater than each one of the n integer
variables. [GRS05] do not allow for the segments to be empty, which implies that they
sometimes need to consider a disjunction, to distinguish the cases where a segments exists
(is not empty) or does not exist (would be empty). In the worst case, their disjunction of
partitions can consider more than factorial of n different ways of partitioning an array.
This can be very costly. A later work by Halbwachs and Péron [HP08], inspired by [GRS05],
allows segments to be empty, and avoids having a disjunction. In [HP08], possible indices
are partitioned by a family of predicates (φp)p∈P , and for each predicate φp, a predicate on
arrays’ contents ψp must hold. This approach can be seen as a conjunction of implications
of the form ∧

p φp ⇒ ψp. If a segment is empty (that is, some φp is false on all indices),
then the associated implication vacuously holds. A salient point of [HP08] is the ability to
express relations between segments of different arrays. Both [GRS05] and [HP08] separate
the step of determining which segments to consider, from the step of capturing information
on those segments. Cousot, Cousot and Logozzo [CCL11] improve on the scalability of
[GRS05] and [HP08], by performing these two analyses simultaneously: the segments being
considered evolve during the analysis, together with the properties on those segments.

For analysing arrays that contain algebraic data types, we build on [CCL11]. [CCL11]
in turn improves [HP08] and [GRS05]. Hence, we will present these three works in more
detail in this chapter, in sections 8.1 to 8.3.

Works done after [CCL11] extend array analysis in different directions. Fulara [Ful12]
presents a more general framework that encompasses dictionaries, in addition to arrays.
Liu and Rival [LR15a] have looked at non-contiguous arrays partitions, for the programs
where the array slots that share similar properties are not adjacent. This can be the case,
for example, when arrays are used to implement dictionaries. Li et al. [Li+17a] have looked
at array segments specially tailored for induction loops.

8.1 Array segments from [GRS05]

In order to explain the approach from [GRS05], we take as an example the simple
initialization function array_fill from figure 8.1. This function takes as arguments an
array of integers a, an initialization value x and n the size of array a. It fills the array a by
putting the value of x at every slot. We call i the value of variable i and x the value of

82



8.1. Array segments from [GRS05]

void array_fill(int a[], int x, int n) {
i <- 0;
while (i < n) {

// ∗ We look at the abstract value obtained here , after stabilisation
a[i] <- x;
i <- i + 1

}
}

Figure 8.1: A function initializing all the slots of an array to the same value.

variable x. Like [GRS05], for this example we assume that:

• the analyser knows that the size of the array a is the value of the argument n, and

• the size of the array a is at least 1.

The first step for the analysis defined by [GRS05] is to determine which integer variables
to use in order to partition the array a into segments. In their approach, these integer
variables can be either manually provided by the user, or found by heuristics. For the
simple example of figure 8.1, it is enough to partition according to the single integer
variable i. This is found by the heuristic that looks at which variables are used to access
the array. The analysis will hence consider at most three different segments for array a:

• The segment a<i of the slots of a that have an index strictly smaller than i.

• The segment ai that summarizes a single array slot, at index i.

• The segment a>i of array slots with an index strictly greater than i.

For each segment, two variables are introduced: one summarizing the indices of the segment,
and the other summarizing the values of the segment. For example, for segment a<i, the
two variables a<i.index and a<i.value will be introduced. These variables are called
segment variables.

The different segments do not necessarily exist, depending on the size of the array
and the value of variable i, which explains why the abstract value being considered is a
disjunction: each disjunct corresponds to a way of partitioning the array, according to
hypothesis on the size of the array and the value of i. When partitioning a according to i

there can be up to six disjuncts:

83



Part III, Chapter 8 – Related Work on Array Analysis
D

isj
un

ct

ai ai a>i aia<i aia<i a>i

In
fo

rm
at

io
n

i = 0
n = 1
ai.index = 0

i = 0
n > 1
ai.index = 0
i < a>i.index < n

i = n− 1
n > 1
ai.index = i
a<i.value = x
0 ≤ a<i.index < i

0 < i < n
0 ≤ a<i.index < i
a<i.value = x
ai.index = i
i < a>i.index < n

Figure 8.2: Abstract value obtained at the beginning of the loop, after stabilization, by
the method of [GRS05], for the function of figure 8.1. We label disjuncts by the way they
partition the array a.

• The disjunct a>i corresponds to the case where i is negative. Hence all the array
slots have an index strictly larger than i and are in the segment a>i. In this case,
the segments a<i and ai do not exist.

• The disjunct ai corresponds to the case where i = 0 and the array is of size 1. In
this case, the segments a<i and a>i do not exist.

• The disjunct ai a>i corresponds to the case where i = 0 and the array has
strictly more than one slot. In this case, the segment a<i does not exist.

• The disjunct ai a>ia<i corresponds to the case where the array has strictly
more than two slots and i is an index in the array index range, other than the first
or the last index.

• The disjunct aia<i corresponds to the case where the array has strictly more
than one slot, and i is the last index of the array.

• The disjunct a<i corresponds to the case where all the array slots have an index
strictly smaller than i.

Figure 8.2 shows the abstract value obtained by the analysis at the beginning of the
while loop, after the widening has converged. Like [GRS05], we represent the abstract value
as a table, where each column represents a different disjunct. The first line describes how
that disjunct partitions the array, and the second line describes the information gathered
on the array by that disjunct. The two first disjuncts, ai and ai a>i , correspond
to the first iteration of the loop, since they assume i = 0. At the first iteration, no slots

84



8.2. Slice variables and shift variables from [HP08]

of the array have been initialized yet, hence the only information captured corresponds
to the disjuncts’ assumptions and the segments’ definitions. The third disjunct aia<i

corresponds to the last iteration of the loop (i = n− 1) while the disjunct aia<i a>i

corresponds to all the iterations of the loop that are neither the first nor the last one. In
both the third and the forth disjunct, we see the constraint a<i.value = x, that correctly
captures that the array slots at indices strictly smaller than i have been initialized with
value x. For this example, only 4 of the 6 possible disjuncts appear in the disjunction. The
disjunct a>i does not appear because i is initialized to 0 and only increases. Hence
i is never negative. Since the array slot at 0 has an index greater than or equal to i, it
cannot be part of the segment a>i. Therefore the disjunct that considers a single segment
a>i does not partition the whole array. The disjunct a<i does not appear because the
loop condition i < n ensures that the array slot at n− 1 has an index smaller or equal to i.
Hence that slot cannot be part of the segment a<i. Therefore, the disjunct that considers
a single segment a<i does not partition the whole array.

When considering more than one integer variable to partition arrays, which may be
needed for more complicated examples, the number of disjuncts considered by [GRS05]
can grow factorially. To avoid this disjunctive aspect, later work by [HP08] and [CCL11]
allow segments to be empty.

8.2 Slice variables and shift variables from [HP08]

The approach by [HP08] is inspired from the approach of [GRS05]. However, it allows for
empty segments, which avoids having to consider as many cases as [GRS05]. In [HP08],
each abstract value is a triple

(
Φ, (φp)p∈P , (ψp)p∈P

)
where

• Φ is a formula on numeric variables that holds independently of any array segment.

• Each formula in the family (φp)p∈P describes a set of array indices, by stating numeric
inequalities on a special variable l (assumed to be fresh) that represents array indices.
For example, the formula φ = (0 ≤ l ≤ 5) denotes the set of array indices {0, . . . , 5}.
In addition to l, a formula φp may also refer to the other integer variables of the
program. Because of this, two formulas in (φp)p∈P may describe the same set of
array indices, while making different assumptions on the other program variables.
For example, both formulas φ1 = (1 = l < j < i) and φ2 = (1 = l = j < i) describe
the singleton {1} as the possible values of the array index; but they make different

85



Part III, Chapter 8 – Related Work on Array Analysis

assumptions on the values of i and j. This is similar to how, in [GRS05], different
partitions in the disjunction can make different assumptions on the value of the
integer variables of the program. However, unlike [GRS05], in [HP08] the set of
indices described by a φp might be empty. The abstract domain of [GRS05] needs
to consider different partitions in the disjunction to distinguish cases where a given
segment exists or not. Whereas in [HP08], if the set of indices described by a given
φp is empty, this is not a problem at all; and it does not require introducing any
additional formulas in the conjunction of implications.

• Each formula ψp in the family (ψp)p∈P describes information that holds for the
contents of arrays whenever φp holds.

To illustrate this, we take the same example that in section 8.1: the abstract value obtained
at the beginning of the while loop, after stabilization of the widening, when analyzing the
array_fill function from figure 8.1. The abstract value that we get at this program point
using the method of [HP08] is the following. The information gathered independently of
array segments is Φ = (0 ≤ i < n). Three different sets of array indices are considered.
φ1 = (0 ≤ l < i < n) for the indices before i, φ2 = (0 ≤ l = i < n) for the array
slot at index i, and φ3 = (0 ≤ i < l < n) for the indices after i. The information
captured for segments is given by the three abstract values ψ1 = (a = x), ψ2 = ⊤, and
ψ3 = ⊤ respectively. The (φp)p∈P and (ψp)p∈P must be understood as a conjunction of
implications. For example, for segment 1, we have ∀l, φ1(l) ⇒ a[l] = x. The denotation
of (Φ, (φp)1≤p≤3, (ψp)1≤p≤3) is the same than the disjunction of partitions from figure 8.2.
In other words, the approaches by [GRS05] and [HP08] have the same precision on this
example program. However, instead of having 4 disjuncts (of 1 to 3 segments each) like
[GRS05], [HP08] only considers a conjunction of 3 implications: one per segment. This
improved conciseness is possible thanks to the fact that segments are allowed to be empty,
in which case the corresponding implications are vacuously true. For example, the case
where the array has size 1 — that is, n = 1 — corresponds to a case where the formula
φ1 = (0 ≤ l < i < n) is unsatisfiable, which means that the implication φ1(l) ⇒ a[l] = x

holds for any index l, since the left-hand side of the implication is false for any index l.
Unlike [GRS05], [HP08] can express relations between segments from two different

arrays. For example, if a program manipulates two arrays a and b, a constraint ψp = (a = b)
for some segment φp would mean ∀l, φp(l) ⇒ a[l] = b[l], i.e. the point-wise equality of the
two arrays on the given segment. Given that the variables representing the arrays in the

86



8.3. Segmentations from [CCL11]

abstract values (φp)p∈P have this point-wise meaning, Halbwachs and Péron call them
slice variables, to distinguish them from the segment variables of [GRS05]. Additionally,
[HP08] also introduces shift variables, that are like slice variables but shifted by a constant.
For example, for an array a, the shift array a−1 corresponds to the array a where array
accesses are shifted by the constant −1. Hence, for a segment described by φp, the
constraint ψp = (a−1 ≤ a) would mean that the array a is sorted on segment p. Indeed,
the corresponding implication is ∀l, φp(l) ⇒ a[l − 1] ≤ a[l].

8.3 Segmentations from [CCL11]

Both [GRS05] and [HP08] separate the process of determining which segments to consider,
and the analysis on the values in those segments. Inspired by [GRS05; HP08], Cousot,
Cousot and Loggozo [CCL11] propose a new approach in which each array is abstracted
by a segmentation. A segmentation describes both a way of partitioning array indices
into segments, and information on the array values inside those segments. As in [HP08],
segments are allowed to be empty. Unlike [GRS05] and [HP08], the way of partitioning
array indices into segments is not directly determined by the program’s syntax nor provided
by the user. Instead the way the partition is chosen is guided by the semantic of the
program. The abstract operators and transfer functions on segmentations change the
partition being considered, during the abstract interpretation of the program. For each
segment of the array, a summary is provided, that is an abstract value that denotes the
possible values that the array may hold at the indices of the segment. For example, the
segmentation

{0} ⊤ {i}? [0,+∞] {7} [−∞, 2] {|a|}?

denotes a set of arrays of integers, where three segments have been selected:

• The first segment denotes the indices that are greater or equal to 0 and that are
strictly less that the value of the variable i. The values in the arrays at such indices
may have any value, as indicated by the ⊤ summary. The presence of the ? symbol
tells that this segment might be empty.

• The second segment represents the indices that are greater or equal to the value of i
and that are strictly smaller than 7. The absence of a ? symbol indicates that this
segment cannot be empty. Moreover, the values that are stored at indices between i
and 7 must belong to the abstract value [0,+∞].

87



Part III, Chapter 8 – Related Work on Array Analysis

• The last segment deals with indices that span from 7 to the end of the array a. The
expression |a| denotes the length of the array stored in the variable a. This segment
might be empty, as mentioned by the ? symbol, and the values in this segment must
belong to [−∞, 2].

The segments are delimited by boundsets—{0}, {i}, {7} and {|a|}—that are non-empty
sets of expressions. Each boundset might contain more than one expression, and all
the expressions a boundset contains must evaluate to the same value. For example, the
segmentation

{0} ⊤ {i; j + 1}? [0,+∞] {7} [−∞, 2] {|a|}?

contains all the information of the previous example, and adds the additional information
that the expressions i and j + 1 must be equal.

The least precise segmentation for an array stored in the variable a is {0} ⊤ {|a|}?. It
only defines one segment (from indices 0 included to |a|, the size of the array), that may
be empty, and it gives no information for the values stored in this segment, as stated by
the abstract value ⊤.

A segmentation also introduces two special variables l and v, that might be used inside
segment summaries. The variable l refers to some index of the segment, and v refers to
the value that is stored at that index. For example, the segmentation

{0} l ≤ v < l + 3 {|a|}

describes a non-empty array where each value is greater than or equal to the index at
which it is stored, and is less than this index plus 3. The variables l and v are bound by the
segmentation, they are not free variables. Therefore, they can be arbitrarily renamed using
fresh variables. This domain manages to express point-wise relations between an array
index and the value stored at that index in the array. This is done in segment summaries,
through relations between the variables l and v (like the relation l ≤ v < l+ 3 above). This
kind of index-value relations cannot be captured by either [GRS05] nor [HP08]. However,
this domain does not manage to express relations between segments of two different arrays,
or two segments of the same array; while [HP08] does.

If we look at the same example as in sections 8.1 and 8.2 — the abstract value at the
loop head, after stabilization of the widening, for the function array_fill from figure 8.1

— we get a more concise abstract value. Indeed, at that program point, the array a is

88



8.4. Works that are not based on abstract interpretation

summarized by the segmentation {0} v = x {i}? ⊤ {|a|} which only considers two segments:
the segment for indices between 0 included and i excluded (which may be empty), and the
segment for indices between i included and n excluded (which is necessarily non-empty).
Actually, for this example, there are some program points for which this analysis will
consider the same three segments as [HP08] would: that is the case after the assignment
a[i] <- x. However, abstract union, abstract intersection and widening on segmentations
can reduce the number of segments. This explains why at the head of the loop, after
widening, we get only two segments with [CCL11].

8.4 Works that are not based
on abstract interpretation

Some works analyse arrays, but rely on frameworks different from abstract interpretation.
Bradley, Manna and Sipma [BMS06] focus on a particular fragment of array theory and
translate it to quantifier-free formulas on the theories of un-interpreted functions and
Presburger arithmetic. Habermehl, Iosif and Vojnar [HIV08] use Büchi counter automata
as models. Jhala and McMillan [JM07] combine Counter-Example Guided Abstraction
Refinement with the deduction of Craig Interpolants from proofs of unreachability of
certain program paths.

As explained earlier, in next chapter we combine our work from Part I with an analysis
of arrays, in order to be able to analyse programs in which arrays contain algebraic types.
Since Part I uses abstract interpretation, we have decided to extend an approach for
analysing arrays that also uses abstract interpretation; namely the approach of Cousot,
Cousot and Logozzo [CCL11].

89





Chapter 9

EXTENDING SEGMENTATIONS TO

ARRAYS OF STRUCTURED VALUES

In this chapter, we extend our abstract domain and analysis to support functional arrays.
Unlike arrays found in most programming languages, functional arrays cannot be modified
in-place. As such, the update operation creates a new array whose contents are the same
as in the original array, except for the cell for which an update has been requested.

Such arrays are used in SMT solvers that handle array theories, but are also available
in theorem provers such as Coq. Some formal development, such as seL4 [Kle+09], employ
a model of functional arrays—they use functions with natural numbers as a domain—to
represent tables that contain thread descriptors in the state of their operating system
micro-kernel.

As explained in Chapter 8, in order to analyse programs that manipulate algebraic
types and arrays containing values from algebraic types, we extend the segmentation
approach from [CCL11], that we presented in section 8.3.

Differences with [CCL11] segmentations In this chapter, we extend [CCL11] seg-
mentations in two directions. First, we allow segment summaries to refer to other program
variables, including to parameters of a function. For example, if n is an integer variable,
the segmentation {0} v = n− l {|a|}? describes a set of (possibly empty) arrays of the
form [ n ; n− 1 ; n− 2 ; . . . ; n− (|a| − 1) ].

Second, we allow for arrays to contain values from algebraic types. Hence, we use
for segment summaries the abstract values of the domain that we introduced in Part I
(structural lifting).

Finally, we give a new definition for the abstract inclusion between segmentations,
as we have found corner cases in the [CCL11] definitions where the concretisation for
segmentations was not monotonic with respect to the inclusion relation.

91



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

Chapter outline This chapter is organised as follows: First, we extend our programming
language with primitives for arrays and provide a motivating example (section 9.1). Second,
we give an overview the overall structure of our abstract domain (section 9.2). Then, we
describe our segmentations (section 9.3), and we focus on the differences between our
definitions and the ones of [CCL11] (section 9.4). In section 9.7, we give the soundness
theorem of our abstract domain. Then, we give the result of our analysis on the motivating
example (section 9.8). Finally, we summarize our approach and its current limitations
(section 9.9).

9.1 Extension of the Language
and Motivating Example

We extend the syntax of types and values with arrays. We allow for arrays to contain
algebraic types, but we do not handle, for now, arrays nested inside algebraic types nor
arrays nested inside other arrays. In order to enforce this, we separate, in the definitions,
algebraic types τ alg ∈ AlgTypes from array types τ arr ∈ ArrTypes, and values of algebraic
types valg ∈ AlgValues from values of array types varr ∈ ArrValues. The definition of
algebraic types and values remains exactly the same as in definition 1 on page 13:

τ alg ∈ AlgTypes ::= Int | {fi → τ alg
i

i∈I

} | [Ai → τ alg
i

i∈I

]
valg ∈ AlgValues ::= n | {fi = valg

i

i∈I

} | A(valg)

Array types and values are defined as follows:

τ arr ∈ ArrTypes ::= Array
(
τ alg

)
varr ∈ ArrValues ::= [valg

1 ; . . . ; valg
k ]

Each variable has either an algebraic type or an array type, hence the types of the language
are Types = AlgTypes ∪ ArrTypes. The values are Values = AlgValues ∪ ArrValues. For
example, if we consider the type status defined by

type status = [Running of { count: int } | Asleep of { secs: int; count: int }]

then an example of an array of type Array(status) is

[ Running {count = 5} ; Asleep {secs = 42; count = 7} ]

92



9.1. Extension of the Language and Motivating Example

which is an array of size two, and of type Array (status).
We add three new commands to the language of section 2.2, that deal with array creation,

array access, and array updates, respectively. We also add a new case of expressions, written
|x|, that denotes the length of the array that is stored in a variable x.

c ∈ Cmd ::= . . . | y := new_array(τ alg, e1, e2) (array creation)
| y := x[e] (array access)
| y := x[e1 → e2] (array update)

e ∈ Exp ::= . . . | |x| (array length)

The creation of a new array x := new_array(τ alg, e1, e2) initialises the variable x with a
new array. This construct takes as parameters the type τ alg of the values contained in the
array, an expression e1 for the size of the array, and an expression e2 for the initial values
of all the array slots. The array access y := x[e] loads in the variable y the contents of the
array that is stored in x at the index e. The array update y := x[e1 → e2] stores in the
variable y a new array that differs from the array stored in x at one index only: the new
array contains at index e1 the result of the evaluation of e2. The array length |x| refers to
the length of the array stored inside variable x.

The restriction that the main array operations (creation, access, update) should be
assigned to a variable before further manipulation does not restrict the expressiveness of
the language, but simplifies the analysis.

Motivating example Figure 9.1 recalls the function find_max_priority that was also
presented in the introduction (figure 1.2). Function find_max_priority is an example
of a function that manipulates arrays. It is inspired by a function from the functional
specification of the seL4 micro-kernel [Kle+14]. It involves thread descriptors—named
Thread Control Blocks, or TCBs for short—that represent information about the threads
that are managed by an operating system kernel. TCBs are records of properties. To keep
the example short, we only exhibit one property of TCBs—their priority—although TCBs
may have more.

The find_max_priority function searches in an array of TCBs one TCB whose priority
is the highest. It returns an option type, such that either NoMax{} is returned if the array is
empty, or SomeMax d is returned, where d is a TCB in the array, with the highest priority.

In the rest of the chapter, we explain how we build the Diorana abstract domain, that
allows to obtain the abstract value from figure 9.3. The construction of this domain uses

93



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

type unit = {} (∗ Record type with no fields ∗)

(∗ Thread descriptors (Thread Control Block) ∗)
type tcb =
{ prio : int; (∗ Priority ∗)

... (∗ Other fields of the TCB are elided ∗)
}

(∗ An array of TCBs. Represents a scheduler queue. ∗)
type queue = tcb[]

(∗ Options of TCBs. Serves as a return type for find_max_priority ∗)
type max_result = [ NoMax of unit | SomeMax of tcb ]

(∗ Returns the TCB with the hightest priority in the queue, if any. ∗)
def find_max_priority(queue q) : max_result = {

max_result res
unit case
int i
tcb challenger

i = 0
res = NoMax{}
while (i < |q|) do (∗ Iterate over the queue ∗)

challenger = q[i]
branch

case = res@NoMax (∗ First iteration ∗)
res = SomeMax challenger

or
assert(challenger.prio > res@SomeMax.prio) (∗ Higher priority found ∗)
res = SomeMax challenger

or
assert(res@SomeMax.prio >= challenger.prio) (∗ No change needed ∗)

end
i = i + 1

end
return res

}

Figure 9.1: Program that finds a thread descriptor with highest priority in an array.

94



9.2. Structure of our Abstract Domain for Arrays

N (section 2.3)

S (N)

Structural lifting (Part I)

Seg (N)

(section 9.3)

A (N)

(section 9.2)

Pan (N) ×

(Chapter 5)

Pana (N)

Dana (N)

Disjunctive completion (section 9.6)

Diorana (N)

Relational lifting (section 6.3)

Figure 9.2: The construction of the abstract domain for analyzing programs that manipulate
both values from algebraic types, and arrays containing values from algebraic types.

some of the same ingredients than the RAND domain. It allows to compute input-output
summaries of functions that manipulate arrays and algebraic types.

9.2 Structure of our Abstract Domain for Arrays

Figure 9.2 summarizes the different components of the construction. Extending the
structural lifting allows us to define segmentations for abstract arrays whose contents are
values from algebraic types (section 9.3). Then, a domain associates a segmentation to
each array variable. We call this domain A (N). To also handle non-array variables, we take
a product between the Pan (N) domain from section 5.3 and the array domain A (N). We
call this product domain Pana (N) = Pan (N) × A (N) for Product domain for Algebraic
types, Numbers and Arrays. Then, we take a disjunctive completion of this product domain,
to handle incompatible cases for constructors, like we did for the Pan domain. We call
this disjunctive completion Dana (N), for Disjunction for Algebraic types, Numbers and
Arrays. Finally, we apply the relational lifting of section 6.3 to get a domain that expresses
relations between two different program states (input and output). We call this domain

95



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

Diorana, for Domain for Input-Output Relations on Algebraic types, Numbers and Arrays.

9.3 Array Segmentations

For each variable x, the expression |x| represents the length of the array contained in x, if any.
For a typing context Γ, we call V(Γ) the set of variables of numeric types and of array lengths
expressions. Formally, V(Γ) = {x | Γ(x) = Int} ∪ ⋃τ∈AlgTypes{|x| | Γ(x) = Array(τ)}. We
also call K the set of possible numeric constants in the programming language. In particular,
0 ∈ K.

Definition 30 (Bound expressions and boundsets). We call bound expression any element
of the set E(Γ) = K ∪{x+ k | x ∈ V(Γ) ∧ k ∈ K}. We call boundset any finite set of bound
expressions, i.e., an element of Pfin(E(Γ)).

In the examples that follow, we will write x instead of x+ 0, when x+ 0 ∈ E(Γ). The
bound expressions E(Γ) will be used as formal bounds, that delimit the array segments in
segmentations.

We write (zi)i∈{1,...,n} for the finite sequence of elements z1, z2, . . . , zn. The definition of
segmentations follows.

Definition 31 (Segmentations). Let x be a variable with an array type in the typing
context Γ, i.e., Γ(x) = Array(τ) for some algebraic type τ ∈ AlgTypes. A segmentation
s ∈ Seg(N)(Γ)(x) for variable x is a quadruplet

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
where:

• l and v are distinct fresh variables, i.e., elements of Fresh(dom(Γ)) such that l ≠ v,
and

• each bi for i ∈ {0, . . . , n} is a boundset, and

• each di for i ∈ {1, . . . , n} belongs to S (N) ((Γ \ {x})[l 7→ Int; v 7→ τ ]), and

• each mi for i ∈ {1, . . . , n} is a boolean.

In a segmentation
(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
, l is a variable that refers to the indices

of the array inside segment summaries, whereas the variable v refers to the values of
the array inside segment summaries. Segmentations behave like binders for the special
variables l and v, in the same way a λ-abstraction would, in a λ-calculus. Hence, these

96



9.3. Array Segmentations

variables can be replaced by any other variables, as long as they are sufficiently fresh, so
that accidental captures are avoided.

Each bi for i ∈ {0, . . . , n} is a boundset that marks the segment limits, and each di

for i ∈ {1, . . . , n} is a segment summary, that denotes the set of values that a segment
can contain. Finally, each mi for i ∈ {1, . . . , n} is a boolean that indicates whether the
preceding segment is allowed to be empty.

In the examples that follow, we omit the special variables l and v, and we write boolean
markers as ? when they are equal to tt and omit them when they are equal to ff. For
example, we write

{0} (NPR : {0 ≤ l < i; v = l}) {i; 5} ⊤S {|x|}?

for the segmentation (l, v, b0, (di, bi,mi)i∈{1,2}) where b0 = {0}, b1 = {i; 5}, b2 = {|x|},
d1 = (NPR : {0 ≤ l < i; v = l}), d2 = ⊤S, m1 = ff and m2 = tt.

Each segment summary di is an abstract value from the structural lifting of Part I. The
segment summaries of a segmentation for the array x cannot refer to the variable x, but
they can refer to other program variables, as well as to the special variables l and v, that
represent the index and the value of the different array slots, respectively. This is why we
take segment summaries in S (N) ((Γ \ {x})[l 7→ Int; v 7→ τ ]), that is the structural lifting
of numeric domain N, for typing context (Γ \ {x})[l 7→ Int; v 7→ τ ]. This is the typing
context obtained from Γ by removing variable x, and adding variable l of type Int and
variable v of type τ (the type of the values inside the array).

In the rest of this manuscript, we only consider well-formed segmentations, that are
defined as follows.

Definition 32 (Well-formed segmentations). Let s =
(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
be a

segmentation for the array variable x. We say that the segmentation s is well-formed if it
satisfies the following properties:

• 0 ∈ b0, and

• |x| ∈ bn, and

• ∀i ∈ {0, . . . , n} , bi ̸= ∅, and

• ∀i ∈ {0, . . . , n} , ∀j ∈ {0, . . . , n} , i ̸= j ⇒ bi ∩ bj = ∅.

97



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

The indices of an array always range from 0 to the length of the array minus one. This
is why we require that the first boundset of a well-formed segmentation contains 0 and the
last boundset contains the length of the array (the segments include their left boundset
and exclude their right boundset).

Boundsets are required to be non-empty. Indeed, boundsets should evaluate to array
indices, as they delimit the range of array indices of each segment, and an empty boundset
cannot be evaluated. To prevent an operation on segmentations from creating an empty
boundset, we may need to merge the segment summaries on each side of a boundset using
abstract union. We will see later in section 9.4.1, that the unification of segmentations is
such an operation.

The concretisation of segmentations (definition 35) will enforce that all the expressions
of a given boundset must evaluate to the same concrete value. Therefore, we require that
distinct boundsets do not intersect, in order to avoid having boundsets that are artificially
split.

The constraint that all the expressions of a boundset must evaluate to the same value
is formalised as follows, with the definition of the concretisation of boundsets.

Definition 33 (Concretisation for boundsets). The concretisation of a boundset b is the
set of environments defined by γB(b) = {ρ | ∀e1 ∈ b, ∀e2 ∈ b, Je1K

exp
ρ = Je2K

exp
ρ ̸= ∅}.

For a boundset b and an environment ρ ∈ γB(b) that belongs to the concretisation of
b, all the expressions in the boundset, if any, must evaluate to the same value. Hence, it
makes sense to talk about the evaluation of a boundset b, as the evaluation of any bound
expression contained in b.

Definition 34 (Evaluation of a boundset). For any non-empty boundset b and any store
ρ ∈ γB(b), we call evaluation of boundset b in store ρ, written JbKexp

ρ , the value v such that
JeKexp

ρ = {v}, for e ∈ b.

Definition 33 guarantees both that JeKexp
ρ is a singleton for any e ∈ b, and that any

choice of e in b gives the same result.
The definition of the concretisation of abstract segmentation follows.

Definition 35 (Concretisation for segmentations). For a segmentation

s =
(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)

98



9.3. Array Segmentations

its concretisation γSeg(s) is the set of pairs composed of an environment ρ and an array
value t, that satisfy the following conditions:

• Equalities in each boundset: ∀i ∈ {0, . . . , n} , ρ ∈ γB(bi)

• Inequalities between boundsets: ∀i ∈ {1, . . . , n} , Jbi−1K
exp
ρ ≤ JbiK

exp
ρ

• Strict inequalities for non-empty segments:

∀i ∈ {1, . . . , n} , (¬mi) ⇒ Jbi−1K
exp
ρ < JbiK

exp
ρ

• Segment summaries:

∀i ∈ {1, . . . , n} ,∀j, Jbi−1K
exp
ρ ≤ j < JbiK

exp
ρ ⇒ ρ[l 7→ j; v 7→ t[j]] ∈ γS(di)

• Array size: |t| = JbnKexp
ρ .

The five conditions of definition 35 guarantee that the array t corresponds to the
information described by the segmentation. But the segmentation also gives information on
store ρ, through the “Equalities in each boundset” and “Segment summaries” conditions.
This is why the concretisation is a set of pairs composed of a store and of an array, instead
of only a set of arrays. For example, the segmentation {0} ⊤S {i; 5} ⊤S {|x|}? tells us that
the value stored in variable i must be 5, and that the length of the array stored in variable
x must be greater than or equal to 5.

The “Equalities in each boundset” condition guarantees that for each boundset, all the
bound expressions concretise to the same integer value. Without this condition, the other
four conditions of the definition would not be well-defined, as they refer to the evaluation
JbiK

exp
ρ of the different boundsets bi.
The “Inequalities between boundsets” guarantees that the boundsets are in increasing

order, with respect to their evaluation. Since we only consider well-formed segmentations
(definition 32), we know that 0 ∈ b0, hence the first boundset evaluates to zero (Jb0K

exp
ρ = 0).

The last condition “Array size” guarantees that the last boundset evaluates to the size
of the array t (JbnKexp

ρ = |t|).
For well formed segmentations, the conditions “Equalities in each boundset”, “Inequali-

ties between boundsets” and “Array size” guarantee that the boundsets describe a partition
into intervals of the indices of array t. These intervals of indices might be empty.

99



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

The “Strict inequalities for non-empty segments” condition enforces that, whenever the
emptiness marker of a segment is false, then the corresponding interval of array indices is
not empty, i.e., the strict inequality Jbi−1K

exp
ρ < JbiK

exp
ρ must be satisfied.

The main difference between the segmentations defined here and the ones defined by
[CCL11] is that the numeric abstract values used to summarize each segment can refer
to the other variables of the program, in addition to refering to the index and value of
the array slots. For this purpose, the “Segment summaries” condition guarantees that the
information given by an array summary di expresses the relations that hold between any
array index j, the value stored at that index in array t, and all other variables in store ρ.

9.4 Unification and Inclusion for Segmentations

This section starts by discussing the differences between our definition of segmentation
inclusion, and the one from [CCL11]. We first give an intuitive explanation of an operator
called unification, that is used in [CCL11]’s definition of segmentation inclusion. Then, we
present the problem of monotonicity for concretisation with respect to inclusion that we
found in [CCL11] definitions (section 9.4.2), and we present our definition of segmentation
inclusion (section 9.4.3). Lastly, we discuss the two other differences between our definitions
and the one from [CCL11]: the presence of other program variables inside segmentation
summaries, and values of algebraic types inside arrays (section 9.5).

9.4.1 Unification of Segmentations

In [CCL11], intersection, union, widening and inclusion test on segmentations are performed
in two steps: first, unification is performed to obtain two segmentations that might be less
precise, but that share the same boundsets to delimit segments; then, intersection, union,
widening and inclusion test are performed segment per segment.

We say that two segmentations are unified when they share the same boundsets. In
other words, two unified segmentations may only differ by their segment summaries and
their emptiness markers.

Definition 36 (Unified segmentations). Let s1 =
(
l, v, b1

0, (d1
i , b

1
i ,m

1
i )i∈{1,...,n}

)
and s2 =(

l, v, b2
0, (d2

i , b
2
i ,m

2
i )i∈{1,...,p}

)
be two segmentations. s1 and s2 are called unified if and only

if the two following conditions are satisfied:

• n = p, and

100



9.4. Unification and Inclusion for Segmentations

• ∀i ∈ {0, . . . , n} , b1
i = b2

i .

In order to transform two arbitrary segmentations into two unified segmentations, two
basic transformations on segmentations can be applied:

Removal of bound expressions This amounts to forgetting equalities between expres-
sions. If the removal of bound expressions might create an empty boundset, then the
two enclosing summaries are joined, so that no empty boundset is created.

Split of a boundset into two parts Again, this amounts to forgetting equalities be-
tween expressions. It has the effect of creating a new segment with an emptiness
marker set to tt, and with a summary that has to be chosen, depending on what
operation—union, intersection, widening, or inclusion test—is to be performed.

For example, in order to unify segmentation s1 = {0; a; b} d1 {|x|} with segmentation
s2 = {0; a} d2 {|x|}, we can remove the bound expression b from s1. This yields s1′ =
{0; a} d1 {|x|}, which is indeed unified with s2. If instead we had started with s1 =
{0; a} d1

1 {b} d1
2 {|x|}, then removing bound expression b from s1 remains possible, but it

implies merging together, with abstract union, the segment summaries d1
1 and d1

2. We get
s1′ = {0; a} d1

1 ⊔ d1
2 {|x|}, which is unified with s2.

Removing bound expressions is sufficient to unify two segmentations for the same array
variable. Indeed, it is always possible to remove all bound expressions except the ones for
0 and the array length, that are necessarily common to both segmentations. When doing
so, the unified segmentations contain a single segment. However, by splitting a boundset
into a possibly empty segment, we might obtain more precise unifications. For example,
let us consider the two segmentations s1 = {0; a} d1 {|x|} and s2 = {0} d2

1 {a} d2
2{|x|}.

Instead of removing the bound expression a from both segmentations, we can split the
boundset {0; a} of segmentation s1 into a possibly empty segment {0} . . . {a}?, where
the choice of the abstract value that serves as a summary for this new segment depends on
what operation the unification is performed for. For example, if the goal is to compute the
abstract union of s1 and s2, then their unification can choose ⊥—i.e., the neutral element
of abstract union—as summaries for the new segments that might be created by a split.
We would get, for this unification, s1′ = {0} ⊥ {a}? d1{|x|}, which is unified with s2.

We refer the reader to section 11.4 of [CCL11] for a detailed description of the [CCL11]
algorithm for unification, that uses bound expression removal and boundset splitting.
Their algorithm works by doing a parallel traversal of the two segmentations. Any bound

101



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

expression that is only present in one of the two segmentations is removed. As long as
common bound expressions are found at the current traversal position, the algorithm splits
the boundsets to keep the bound expressions that are present in the two segmentations,
and then continues the traversal. However, if at some point the traversal arrives at a
position where there are no bound expressions in common, it backtracks in order to remove
bound expressions that resulted from previous splits.

Removing bound expressions and splitting boundsets yields segmentations that are less
precise than the initial ones. For this reason, it is sound to perform a unification before
union, intersection and widening (as done both by [CCL11] and by us). For example, when
taking the abstract union of two segmentations s1 and s2, if we call s1′ and s2′ the result
of unifying them, and if we write s1′ ⊔seg s2′ for the segment-wise union after unification,
then we have

γSeg
(
s1
)

⊆ γSeg
(
s1′)

γSeg
(
s2
)

⊆ γSeg
(
s2′)

γSeg
(
s1′) ∪ γSeg

(
s2′) ⊆ γSeg

(
s1′ ⊔seg s2′)

which allows to conclude γSeg (s1) ∪ γSeg (s2) ⊆ γSeg
(
s1 ⊔Seg s2

)
, which is the soundness

lemma for abstract union.
It can be incorrect, however, to apply unification for segmentation inclusion, as it is

done in [CCL11]. Indeed, testing the inclusion with a less precise value on the right-hand
side of the inclusion does not guarantee that the inclusion still holds for the initial, more
precise value. We show an example of this issue below, in section 9.4.2.

9.4.2 On the Unsoundness of Segmentation Inclusion in [CCL11]

In [CCL11], the concretisation for segmentations is not monotonic with respect to the
abstract inclusion. The following example illustrates this issue. Let s1 be the segmenta-
tion {0}⊤{a}⊤{b}⊤{c}⊤{|t|} and s2 be the segmentation {0}⊤{c}⊤{b}⊤{a}⊤{|t|}. In
[CCL11], segmentation inclusion is tested by first unifying segmentations, then testing
inclusion segment-wise. The unification of segmentations s1 and s2 yields {0}⊤{b}⊤{|t|}
on both sides. Hence, with [CCL11] definitions, we have s1 ⊑Seg s2. We will show, however,
that γSeg(s1) ⊈ γSeg(s2). Let t0 = [0; 0; 0; 0] be the array of size 4 filled with zeros, and
let ρ0 = [a 7→ 1; b 7→ 2; c 7→ 3; t 7→ t0] be an environment. We have (ρ0, t0) ∈ γSeg(s1).
However, (ρ0, t0) /∈ γSeg(s2), because otherwise, we would have ρ0(c) < ρ0(a), i.e., 3 < 1.

102



9.4. Unification and Inclusion for Segmentations

Thus, γSeg(s1) ⊈ γSeg(s2), which proves that the segmentation concretisation from [CCL11]
is not monotonic with respect to the segmentation inclusion of [CCL11].

Our definition of segmentation inclusion (definition 37 below) fixes this issue, as proved
by lemma 16 below.

9.4.3 A Sound Definition For Segmentation Inclusion

When we define operations that involve two segmentations, we always assume, without
loss of generality, that they have the same index and value variables. It is indeed always
possible to rename those variables with fresh ones, so that the two segmentations use the
same index and value variables.

To define the inclusion test between two segmentations s1 and s2, we will avoid
computing their unification. Testing inclusion between s1 and s2 is not straightforward,
since the two segmentations may have different numbers of segments. For this reason, in
our definition (definition 37), we introduce a map ϕ between the indices of the boundsets
of s2, and the indices of the boundsets of s1, that keeps track of which boundsets and
segments of s1 correspond to the boundsets and segments of s2. The function ϕ therefore
identifies how the segments of the two segmentations can be aligned with each other.

Definition 37 (Segmentation inclusion). Let s1 =
(
l, v, b1

0, (d1
i , b

1
i ,m

1
i )i∈{1,...,n}

)
and s2 =(

l, v, b2
0, (d2

i , b
2
i ,m

2
i )i∈{1,...,p}

)
be two segmentations for the same array variable, with the

same index and value variables. We say that s1 is included in s2, written s1 ⊑Seg s2, if
and only if there exists a non-decreasing function ϕ : {0, . . . , p} → {0, . . . , n} such that the
following conditions are satisfied:

• First and last indices: ϕ(0) = 0 ∧ ϕ(p) = n

• Boundset inclusion: ∀i ∈ {0, . . . , p} , b2
i ⊆ b1

ϕ(i)

• Segment summaries: ∀i ∈ {1, . . . , p} ,∀j, ϕ(i− 1) < j ≤ ϕ(i),⇒ d1
j ⊑S d2

i

• Emptiness markers: ∀i ∈ {1, . . . , p} ,
(∧ϕ(i)

j=ϕ(i−1)+1 m
1
j

)
⇒ m2

i

The smaller a boundset, the less equality constraints it implies on its concretisation.
This is why, if s2 is less precise than s1 (that is s1 ⊑Seg s2), then the boundsets of s2 must
be smaller than their s1 counterpart. This is stated by the “Boundset inclusion” condition.

The “Segment summaries” condition enforces that the aligned segment summaries must
be related by the inclusion relation of the abstract domain used for array cells. Several

103



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

summaries on the left-hand side might correspond to the summary d2
i at index i on the right-

hand side. Since d2
i is delimited by the boundsets b2

i−1 and b2
i , the corresponding summaries

on the left-hand side are delimited by the boundsets b1
ϕ(i−1) and b1

ϕ(i). Therefore, the
summaries on the left-hand side that are aligned with d2

i are the d1
j for ϕ(i−1)+1 ≤ j ≤ ϕ(i).

The “Emptiness markers” condition is similar and considers the markers for the same
segments as for the “Segment summaries” condition. It states that if all the segments on
the left-hand side might be empty, then the aligned segment on the right-hand side might
be empty too.

For example, let us define two segmentations s1 and s2 as follows:

s1 = {0} (v ≤ 0) {3; y}

 3 ≤ l < 5
v = 2 × l

 {5}

 5 ≤ l < 7
v = 3 × l

 {7} (v > 14) {|x|}?

s2 = {0} (v ≤ 0) {3} (v = 0) {y}? (v ≥ 0) {7}? (v > 14) {|x|}?

We have s1 ⊑Seg s2 because function ϕ = [0 7→ 0; 1 7→ 1; 2 7→ 1; 3 7→ 3; 4 7→ 4] is
non-decreasing and satisfies all the conditions of definition 37. The function ϕ maps both
1 and 2 to 1. This reflects the fact that s1 assumes one more equality than s2 on bound
expressions: the equality y = 3. The “Emptiness markers” condition verifies that this
additional equality is allowed by s2. The fact that 2 is not in the range of ϕ reflects the fact
that multiple segments in s1—namely, segments 2 and 3—correspond to a single segment
in s2—namely, segment 3.

Intuitively, there are multiple reasons why s1 is more precise than s2:

• The segmentation s1 states that y and 3 must be equal, because y and 3 belong to
the same boundset. The segmentation s2, however, only requires that 3 ≤ y, because
3 and y are in two boundsets that delimit a segment, that might be empty.

• For the indices between y and 7, the segmentation s2 only states that the values in
the array are non-negative, whereas segmentation s1 states more precise conditions.
Segmentation s1, indeed, states that between indices y and 5 the values are equal to
twice their index, and that the values that lie between indices 5 and 7 are equal to
three times their index.

Lemma 15. The relation ⊑Seg is a pre-order.

Proof sketch. For the proof of transitivity, it suffices to check that the identity function
satisfies all the conditions of definition 37. The proof of transitivity is based on the fact that

104



9.4. Unification and Inclusion for Segmentations

if two functions ϕ1 and ϕ2 satisfy the properties of definition 37, so does their composition
ϕ2 ◦ ϕ1.

The ⊑Seg pre-order is sound, in the sense that the concretisation for segmentations is
monotonic with respect to this pre-order.
Lemma 16. If s1 ⊑Seg s2, then γSeg(s1) ⊆ γSeg(s2).

Proof. We write s1 =
(
l, v, b1

0, (d1
j , b

1
j ,m

1
j)j∈{1,...,n}

)
for the different components of s1 and

s2 =
(
l, v, b2

0, (d2
i , b

2
i ,m

2
i )i∈{1,...,p}

)
for the different components of s2. Let ϕ : {0, . . . , p} →

{0, . . . , n} be the function given by the fact that s1 ⊑Seg s2.
Let (ρ, t) ∈ γSeg(s1). Given definition 35, there are five conditions that we need to

prove to show that (ρ, t) ∈ γSeg(s2).
Condition 1 : Equalities in each boundset. We need to prove that for any index

i ∈ {0, . . . , n} and any two bound expressions e1 ∈ b2
i and e2 ∈ b2

i , we have Je1K
exp
ρ = Je2K

exp
ρ .

Let i ∈ {0, . . . , n}, e1 ∈ b2
i and e2 ∈ b2

i . By the “boundset inclusion” property that stems
from s1 ⊑Seg s2 (definition 37), we know that b2

i ⊆ b1
ϕ(i). Hence, using the “equalities in

each boundset” property of (ρ, t) ∈ γSeg(s1) (definition 35), we have Je1K
exp
ρ = Je2K

exp
ρ ,

which is what we wanted.
Condition 2: Inequalities between boundsets. Here, we want to prove that for any

index i ∈ {1, . . . , n}, we have
q
b2

i−1
yexp

ρ
≤ Jb2

i K
exp
ρ . For that, we will take two expressions

e1 ∈ b2
i−1 and e2 ∈ b2

i and prove that Je1K
exp
ρ ≤ Je2K

exp
ρ . Let i ∈ {1, . . . , n}, e1 ∈ b2

i−1 and
e2 ∈ b2

i . By the “boundset inclusion” property of s1 ⊑Seg s2, we have b2
i−1 ⊆ b1

ϕ(i−1) and
b2

i ⊆ b1
ϕ(i). Hence e1 ∈ b1

ϕ(i−1) and e2 ∈ b1
ϕ(i). We recall that the function ϕ is non-decreasing,

therefore ϕ(i − 1) ≤ ϕ(i). By using the “inequalities between boundsets” condition of
(ρ, t) ∈ γSeg(s1) for all the indices between ϕ(i− 1) + 1 and ϕ(i), we have

q
b1

ϕ(i−1)
yexp

ρ
≤

q
b1

ϕ(i−1)+1
yexp

ρ
≤ . . . ≤

q
b1

ϕ(i)
yexp

ρ

and hence
r
b1

ϕ(i−1)

zexp

ρ
≤

r
b1

ϕ(i)

zexp

ρ
. Since e1 ∈ b1

ϕ(i−1) and e1 ∈ b2
i−1, we have

r
b1

ϕ(i−1)

zexp

ρ
=

Je1K
exp
ρ =

q
b2

i−1
yexp

ρ
. Similarly,

r
b1

ϕ(i)

zexp

ρ
= Je2K

exp
ρ = Jb2

i K
exp
ρ . This allows to deduce that

q
b2

i−1
yexp

ρ
≤ Jb2

i K
exp
ρ , which is what we wanted to prove.

Condition 3: Strict inequalities for non-empty segments. Now, we need
to prove that for any index i ∈ {1, . . . , n} such that the boolean m2

i is false, we have
q
b2

i−1
yexp

ρ
< Jb2

i K
exp
ρ . Let i ∈ {1, . . . , n}. For the same reasons than in the previous condition,

105



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

we have
q
b2

i−1
yexp

ρ
=

r
b1

ϕ(i−1)

zexp

ρ
and Jb2

i K
exp
ρ =

r
b1

ϕ(i)

zexp

ρ
. From the “emptiness markers”

condition of s1 ⊑Seg s2 we know that the implication
(∧ϕ(i)

j=ϕ(i−1)+1 m
1
j

)
⇒ m2

i holds. The
right-hand side of the implication being false, we know that the left-hand side must be
false as well. A conjunction of booleans is only false if it is not empty and one of the
booleans is false. Hence, ϕ(i − 1) ̸= ϕ(i) and ∃j, ϕ(i − 1) < j ≤ ϕ(i) ∧ ¬m1

j . Using the
“strict inequalities for non-empty segments” condition of (ρ, t) ∈ γSeg(s1), we deduce that
q
b1

j−1
yexp

ρ
<

q
b1

j

yexp
ρ

. Combining this with the “inequalities between boundsets” condition
of (ρ, t) ∈ γSeg(s1), for all the indices between ϕ(i− 1) + 1 and ϕ(i), we have

q
b1

ϕ(i−1)
yexp

ρ
≤ . . . ≤

q
b1

j−1
yexp

ρ
<

q
b1

j

yexp
ρ

≤ . . . ≤
q
b1

ϕ(i)
yexp

ρ

Therefore,
r
b1

ϕ(i−1)

zexp

ρ
<

r
b1

ϕ(i)

zexp

ρ
. We recall that

q
b2

i−1
yexp

ρ
=

r
b1

ϕ(i−1)

zexp

ρ
and Jb2

i K
exp
ρ =

r
b1

ϕ(i)

zexp

ρ
. Hence, we have proven

q
b2

i−1
yexp

ρ
< Jb2

i K
exp
ρ ; which is what we needed to prove.

Condition 4: Segment summaries. We want to prove that for any index i ∈
{1, . . . , n} of the the segmentation s2, and for any index k of array t such that

q
b2

i−1
yexp

ρ
≤

k < Jb2
i K

exp
ρ , we have ρ[l 7→ k][v 7→ t[k]] ∈ γD(d2

i ). Let i ∈ {1, . . . , n} and k be an
index such that

q
b2

i−1
yexp

ρ
≤ k < Jb2

i K
exp
ρ (if no such index exists, what we want to prove

is vacuously true). Like in conditions 3 and 4, the “boundset inclusion” condition of
s1 ⊑Seg s2 allows us to deduce that

q
b2

i−1
yexp

ρ
=

r
b1

ϕ(i−1)

zexp

ρ
and Jb2

i K
exp
ρ =

r
b1

ϕ(i)

zexp

ρ
.

Hence,
r
b1

ϕ(i−1)

zexp

ρ
≤ k <

r
b1

ϕ(i)

zexp

ρ
. Let’s consider the sequence of integer intervals

({q
b1

j−1
yexp

ρ
, . . . ,

q
b1

j

yexp
ρ

− 1
})

ϕ(i−1)<j≤ϕ(i)

These integer intervals are contiguous, their left-most bound is
r
b1

ϕ(i−1)+1−1

zexp

ρ
which

is equal to
r
b1

ϕ(i−1)

zexp

ρ
, and their right-most bound is

r
b1

ϕ(i)

zexp

ρ
− 1, hence they form a

partition of the integer interval{q
b1

ϕ(i−1)
yexp

ρ
, . . . ,

q
b1

ϕ(i)
yexp

ρ
− 1

}

to which k belongs. Hence, there exists a j such that ϕ(i − 1) < j ≤ ϕ(i) and k ∈{q
b1

j−1
yexp

ρ
, . . . ,

q
b1

j

yexp
ρ

− 1
}

. Using the “segment summaries” condition of (ρ, t) ∈ γSeg(s1)
for index j, we have ρ[l 7→ k][v 7→ t[k]] ∈ γD(d1

j). Then, using the “segment sum-
maries”condition of s1 ⊑Seg s2, we know that d1

j ⊑D d2
i . Hence, using the monotony of γD

106



9.5. Comparison with the [CCL11] Domain For Arrays

with respect to ⊑D, we can deduce ρ[l 7→ k][v 7→ t[k]] ∈ γD(d2
i ), which is what we wanted

to prove.
Condition 5: Array size. Here, the goal is to prove that

q
b2

p

yexp
ρ

= |t|. Since
ϕ(p) = n, the “boundset inclusion” condition of s1 ⊑Seg s2 gives us that b2

p ⊆ b1
n and hence

q
b2

p

yexp
ρ

= Jb1
nKexp

ρ . Using the “array size” condition of (ρ, t) ∈ γSeg(s1), we have Jb1
nKexp

ρ = |t|.
Hence

q
b2

p

yexp
ρ

= |t|, which is what we wanted.
Conclusion of the proof. Since these five conditions are satisfied, we have proved that

(ρ, t) ∈ γSeg(s2), for any (ρ, t) in γSeg(s1). Thus, we have proved that γSeg(s1) ⊑Seg γSeg(s2),
for any segmentations s1 and s2. Therefore, we have proved that s1 ⊑Seg s2 implies
γSeg(s1) ⊑Seg γSeg(s2). This concludes the proof of monotonicity of γSeg.

9.5 Comparison with the [CCL11] Domain For Arrays

We have explained how our definition of segmentation inclusion differs from the version
in [CCL11]. As we have already stated, our domain for array differs in two more aspects.
First, we allow segment summaries to refer to any other program variables—as opposed to
only the special l and v variables for index and cell value in [CCL11]. Then, we handle
arrays that can contain values of algebraic data types—as opposed to scalar values only in
[CCL11].

In this section, we discuss the main four ways in which these differences impact our
definitions:

• First, we discuss in more details the differences in our definitions of segmentations
and segmentation concretisation, compared with [CCL11].

• Then, we describe the three types of assignments that we need to distinguish—whereas
[CCL11] distinguish only two types of assignments.

• Finally, we illustrate how we transfer information between segment summaries and
the Pan component of the Pana product domain, by looking at the transfer functions
for array creation, and array access at non-bound expressions.

All the aspects of abstract domain operators and transfer functions that we do not
mention in this section—such as the transfer function for array update—are similar to
[CCL11]’s.

107



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

Differences in Segmentations and Segmentation Concretisation In [CCL11],
the segment summaries of segmentations can only talk about the special variables l and
v for array index and array value. In our definition (definition 31), segment summaries
can talk about any variable of the program—except the one containing the array that is
summarized by the segmentation—in addition to the same special variables l and v.

More precisely, in the definition of concretisation (definition 31), the difference lies in
the “Segment summaries” condition. Let t be an array, j an index of t and di a segment
summary for some segment that contains the index j. The part that deals with the segment
summary di in the [CCL11] concretisation enforces that the pair (j, t[j]) belongs to the
concretisation of di. Our definition of concretisation, however, constrains the whole store ρ,
by checking that the extended store ρ[l 7→ j; v 7→ t[j]] belongs to the concretisation of di.
We consider the store—instead of just the pair (j, t[j])—precisely because di might impose
some constraints on other program variables, that are recorded in the store. We also allow
the index l and the value at this index v to be constrained by di—and possibly related to
other program variables—by adding l and v to the store.

Different Types of Assignments Two different kinds of assignments are described in
[CCL11]: array updates, and scalar updates. We handle these two kinds of assignments
similarly as [CCL11] do. Because we also handle algebraic values, we need to support
another kind of assignment, for variables that are neither scalar nor arrays. We briefly
review how to handle the different kinds of assignments.

Assignment to an array variable Like in [CCL11], when updating an array
variable, the only segmentation that changes is the one for that variable. The other
segmentations remain unaffected.

Assignment to a numeric variable Like in [CCL11], the update of a numeric
variable y := e may have two sorts of consequences:

• The assignment might be propagated inside the segment summaries of arrays.

• The boundsets of segmentations may change. Indeed, the variable y can occur inside
bound expressions. Hence these bound expressions need to be either updated or
removed to remain valid after the assignment. If the assignment is of the form
y := y + k where k ∈ K is a constant, then the bound expressions where y occurs
are updated, by replacing y with y − k. Otherwise, the bound expressions where y

108



9.5. Comparison with the [CCL11] Domain For Arrays

occurs are removed. Additionally, the variable y might also be added (because of its
new value) to boundsets. Indeed, if the expression e in the assignment y := e is a
bound expression that occurs in a boundset, then variable y can be added to that
boundset, so as to record that y = e.

Other assignments When updating a variable that has neither a numeric nor an
array type, then the segment summaries are updated, but the boundsets remain unchanged.
The boundsets cannot be affected by the variable update, since the expressions in a
boundset necessarily have a scalar type.

Conversion: Transfer Function for Array Creation When converting an element
of the Pan domain into a segment summary, we take three steps:

• We add the special variables for array index and array value

• We add information on those special variables, if we have any

• We embed this abstract value into the disjunctive completion of the structural lifting,
by creating a singleton out of it

This can be seen, for example, in the transfer function for array creation:

Definition 38 (Transfer Function for Array Creation [Simplified Version]). For any
algebraic type τ alg ∈ AlgTypes, for any variable y of type Array(τ alg), for any numeric
expression e1, any expression e2 of type τ alg and any abstract value (t, a) ∈ Pana, the
transfer function for array creation is defined by

AssignPana
(
y := new_array(τ alg, e1, e2)

)
(t, a) =(

CondPan(e1 ≥ 0)(t), a [y 7→ {0} d {|y|}? ]
)

where d =
{
CondPan(0 ≤ l < e1 ∧ v = e2)

(
AddPan

{l,v}(t)
)}

Indeed, in this transfer function we see in the array component of the result, that
variable y is associated to the segmentation {0} d {|y|}?, where the segment summary d
used to summarise all the array slots of y, is a singleton, that contains the information
that the array indices are non-negative (given by condition 0 ≥ l) and also abstracts the
fact that the array slots contain e2 (given by condition v = e2). The abstraction that the
array slots contain e2 may not be an exact one, depending on expression e2 and on the

109



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

underlying numeric domain N used to build Pan. This definition also takes into account
the fact that if the instruction succeeds, then the expression e1 given as the size of the
new array is non-negative. Which is why component t of the abstract value is enriched
with condition e1 ≥ 0 in the result.

This is a simplified version of the definition. The full definition queries the abstract
value for previous knowledge on e1, and distinguishes four cases as a result:

• The case where e1 is known to be negative and the result is ⊥Pana, since any code
after this is unreachable.

• The case where e1 is known to be non-positive, in which case the new array is known
to have size 0.

• The case where e1 is known to be positive, in which case the emptiness marker of
the segmentation is false, as we know for certain the array is not empty.

• All the other cases, where we have no particular prior knowledge on e1, and the
result is the one described in definition 38.

Conversion: Transfer Function for Array Access at Non-Bound Expressions
When converting a segmentation summary back into an element of the Pan domain, two
steps need to be taken:

• Abstract union is used to turn an element of the disjunctive completion into a single
element of the Pan domain

• The special variables for array index and array value are removed

This can be seen, for example, in the transfer function for array access at a non-bound
expression:

Definition 39 (Transfer function for an array access at a non-bound expression). For
any abstract value (t, a) ∈ Pana and any array access instruction y := x[e] where e is not

110



9.5. Comparison with the [CCL11] Domain For Arrays

a bound expression, the abstraction for array access is given by

AssignPana(y := x[e])(t, a) = (t′, a′)
where a′ = AssignA(y := x[e])(a)

and t′ = RemPan
{l,v}

⊔Pan

t′′∈d

t′′


and d =

⊔S

i∈I

AssignS(y := v)
(
CondS(l = e ∧ 0 ≤ e)(di)

)
and I =

{
i ∈ {1, . . . , n} | ∃e1 ∈ bi−1,∃e2 ∈ bi,CanSatPan(t, e1 ≤ e < e2)

}
and

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
= a(x)

We will explain the different lines of this definition from bottom to top. When performing
the assignment y := x[e], the variable y receives the value that is stored in array x, at the
array index that expression e evaluates to. Hence, to know any information on the new
value of variable y, we look at what information we had for the array stored in variable
x. In other words, we look at what segmentation was stored for variable x inside the
array component a of the abstract value (t, a). Let

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
be this

segmentation a(x), as stated by the last line of the definition. In this segmentation, the
segments that might talk about array index e are the segments i such that e might be
delimited by boundsets bi−1 and bi. In other words, the segments i such that there exists
two expressions, e1 ∈ bi−1 and e2 ∈ bi such that, given the knowledge we have so far in
abstract value t, it is possible that e1 ≤ e < e2. The set of these segment indices is called
I, as stated in the second-to-last line of the definition. We then use this set I to extract
from the segment summaries the information we want: the result of assigning to variable
y the content of the array — as represented by the special variable v — when the array
index is e, as represented by the condition l = e. Abstract union is used to merge the
result for the different segment summaries that might be involved, yielding abstract value
d. Then, the conversion step takes place: d is an element of the structural lifting. We take
the abstract union of its disjuncts to obtain a single element of the Pan domain. Then we
remove the special variables l and v, and we get t′, that we use as new Pan component
in the Pana domain. As explained earlier at page 108, if y is a numeric variable then the
boundsets of all the segmentations need to be updated, and if y has a product type or a
sum type, then the segment summaries of segmentations are updated. This is done by the
AssignA operator.

111



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

9.6 Disjunctive Completion for the Pana Domain

In this section, we give the detailed definitions for the Dana domain, which is obtained
from the Pana domain by taking a disjunctive completion where cases that have equivalent
constructor constraints are merged together using abstract union. This construction follows
the exact same structure than the construction that allows to go from the reduced product
to the structural lifting in section 5.4.

Abstract inclusion is given by a Hoare order:

O1 ⊑Dana O2 iff ∀o ∈ O1, ∃o′ ∈ O2, o ⊑Pana o′

Abstract intersection for the disjunctive completion is given by:

O1 ⊓Dana O2 = CollapseDana

o1 ⊓Pana o2 |
o1 ∈ O1 ∧ o2 ∈ O2∧
o1 ⊓Pana o2 ̸= ⊥Pana




We take a disjunction because for certain programs we want to be able to extract
information for different cases, in which incompatible constructor names are involved.
However, when two abstract values are equivalent with respect to the constructors that
they mention, they should be merged, to limit the size of the disjunction. We use the same
definition of constructor constraints equivalence as in section 5.4; but this time we extend
it for the quadruplets of the Pana domain:

(c1, e1, n1, a1) ≡Pana
E (c2, e2, n2, a2) iff c1 ≡ c2

This notion of equivalence allows us to define an operator that collapses together
equivalent quadruplets in an element of Dana = P(Pana).

Definition 40. We define an operator CollapseDana that takes a set of elements of Pana
and merges together (by taking the abstract union), the elements that are equivalent with
respect to ≡Pana

E . Formally,

CollapseDana(O) =
{⊔Pana

o∈o

o | o ∈ O/≡Pana
E

}

We use this collapse operator to provide an abstract union for the Dana domain:

O1 ⊔Dana O2 = CollapseDana(O1 ∪ O2)

112



9.7. Soundness Theorem tor the Diorana Domain

A widening for the Dana domain is given by

O1 ▽Dana O2 =
{o1 ▽Pana o2 | o1 ∈ O1 ∧ o2 ∈ O2 ∧ o1 ≡Pana

E o2}
∪{o2 ∈ O2 | ∄o1 ∈ O1, o1 ≡Pana

E o2} ∪ {o1 ∈ O1 | ∄o2 ∈ O2, o1 ≡Pana
E o2}

9.7 Soundness Theorem tor the Diorana Domain

We now state the main soundness theorem for our abstract domain for arrays, and give a
sketch of its proof.
Theorem 2 (Soundness of the Diorana domain). The operators and transfer functions
of the Diorana domain are sound :

• ⊑Diorana is a pre-order.

• γDiorana is monotonic with respect to the pre-order.

• The abstract union ⊔Diorana, and abstract intersection ⊓Diorana are sound over-approximations
of their concrete counter-parts.

• Widening ▽Diorana computes upper-bounds and enforces convergence.

• The transfer functions for assignment AssignDiorana and conditions CondDiorana are
sound.

Proof sketch. For pre-order, concretisation, abstract union, abstract intersection and
widening, the soundness of the Diorana domain is deduced from the one of the Seg domain.
Indeed, from Seg to A the proofs are transported element-wise, from A to Pana the
standard arguments of non-reduced products apply, and for the disjunctive layer of Dana
and the relational lifting layer of Diorana, the arguments are the same than for RAND.

The fact that ⊑Seg is a pre-order is the object of lemma 15. The fact that γSeg is
monotonic with respect to segmentation inclusion is the object of lemma 16. For abstract
union and abstract intersection of segmentations, the soundness is a combination of the
fact that unification yields less precise abstract values, and the fact that segment-wise
operations are sound. For example, for abstract union, if s1 and s2 are two segmentations,
and s′

1 and s′
2 are the result of their unification, then we have

s1 ⊑Seg s′
1 s2 ⊑Seg s′

2

113



Part III, Chapter 9 – Extending Segmentations to Arrays of Structured Values

Function summary for function find_max_priority(p) returning res’ :
( Constructor constraints : res’@NoMax

Numeric constraints : |q| = 0
Abstract array environment : [ q -> { 0 |q| } ]

)
Or
( Constructor constraints : res’@SomeMax

Numeric constraints : |q| > 0
Abstract array environment :

[ q -> { 0 } v.prio <= res’@SomeMax.prio { |q| } ]
)

Figure 9.3: Abstract value for the function find_max_priority from figure 9.1.

Which implies, by the monotonicity of γSeg with respect to ⊑Seg, that

γSeg(s1) ⊑Seg γSeg(s′
1) γSeg(s2) ⊑Seg γSeg(s′

2)

Then, by the soundness of segment-wise operations

γSeg(s′
1) ∪ γSeg(s′

2) ⊆ γSeg(s′
1 ⊔seg s′

2)

Hence,
γSeg(s1) ∪ γSeg(s2) ⊆ γSeg(s′

1 ⊔seg s′
2)

Since s1 ⊔Seg s2 is defined as s′
1 ⊔seg s′

2, this proves the soundness of ⊔Seg.
For the convergence of widening, the process of unification can only remove, not add,

bound expressions; and there is only a finite number to begin with. Hence, from a certain
index, the results of unification always yield segmentations with the same boundsets, and
we can rely on the convergence of segment-wise widening.

For the transfer functions for assignment and conditions, we proceed in the same way
than [CCL11].

9.8 Result of Analysis on the Motivating Example

The Diorana domain is not implemented in our OCaml prototype. However, we have used
the Diorana domain to execute by hand an analysis of the find_max_priority function
from figure 9.1. We obtained as a result the abstract value from figure figure 9.3. This

114



9.9. Conclusive Remarks on Array Analysis

input-output summary of function find_max_priority distinguishes two cases:

• either the input queue is empty (|q| = 0) and the result is built using constructor
NoMax;

• or the input queue is not empty (|q| ≥ 1), the result is built using constructor
SomeMax and the TCB that is returned as a result (via the constructor SomeMax)
has a priority that is greater than the priority of any of the TCBs in the input queue.

In the second case, the relation between the output and the contents of the input array
(namely that the priority of the ouput is greater than the priorities of any of the array
values) was captured thanks to the fact that we allow our segment summaries to refer
to program variables in addition to referring to the array’s index and value. Here, in
particular, it is the relations captured between variable res and the values inside array q

that carry interesting information on the function’s behaviour.
This input-output summary is not exact: it does not state that, when the result is a

TCB wrapped in constructor SomeMax, this TCB belongs to the input queue.

9.9 Conclusive Remarks on Array Analysis

We have described in this chapter an abstract domain that allows us to compute input-
output summaries of functions that may manipulate arrays that contain values from
algebraic types. For this purpose, we have built on the segmentation approach of [CCL11].
Unlike [CCL11], we allow arrays to contain values from algebraic types, we allow segment
summaries to refer to arbitrary program variables, and we have fixed the definition of
segmentation inclusion, so that it makes the concretisation function monotonic.

One limitation of our approach is that we only allow arrays in top-level program
variables: we do not allow arrays nested inside values of algebraic types nor inside other
arrays. Additionally, we have not yet implemented our abstract domain for arrays.

115



Part IV

Conclusion

116



Chapter 10

CONCLUSION

We have shown that it is possible to define an abstract domain that is expressive enough
to capture numeric relations between parts of values from algebraic types; even when these
values are stored inside arrays of an unknown size. We have partially implemented our
approach (Parts I and II) and we obtain a satisfying precision and reasonable execution
times for the kind of programs that we are interested in (section 7.3, in particular Table 7.1).

For algebraic types, the main idea is to consider extended variables—i.e., pairs of
a variable and an access path—as the entities that are related in a numeric abstract
domain (Chapter 4). To reduce the size of abstract values, we add a domain that keeps
track of equalities between non-numeric values (section 5.2). The domains are combined
using a reduced product that propagates equalities (section 5.3). Additional expressiveness
and precision is obtained using an adaptation of disjunctive completion for handling the
different, incompatible cases that an algebraic value can exhibit (section 5.4). This abstract
domain is called RAND—the Relational Algebraic Numeric Domain.

We have given a formal justification, in the context of abstract interpretation, to the
folklore result of static analysis that “an intra-procedural analysis can be made input-output
relational by duplicating variables”, by effectively turning an analysis that relates different
parts of a store into an analysis that computes a relation between input and output stores
(Chapter 6). One key observation is that the input-output relational analyser and the
non-input-output relational one share the same structure: only a few transfer functions
need to be redefined. The second observation is that any relational domain can easily be
used to express relations between different stores: the necessary transfer functions can be
redefined once and for all, in a generic manner.

We have used the RAND abstract domain to implement [BJM22a] a static analyser for
a while language with algebraic data types and function calls that exploits the relational
feature of RAND to infer function summaries (Chapter 7). Summaries express the input-
output behaviours of functions, and enable a modular inter-procedural analysis of programs:
every function is analysed exactly once.

117



Finally, we have shown how to extend RAND to handle functional arrays (Chapter 9).
This extension is based on the notion of array segmentation [CCL11], and enables the
analysis of programs that manipulate arrays whose cells may contain values of algebraic
data types. Our array extension improves on [CCL11], by fixing a problem on the abstract
inclusion operator, that made the concretisation operator not monotonic on some edge
cases. Additionally, our extension allows to capture relations between array contents and
other program variables.

The main limitation of our RAND abstract domain is that it does not handle recursive
algebraic types. Two possible ideas for overcoming this limitation are to allow for regular
expressions inside paths, or to use tree automata. Both of these ideas are used in the work
done by Journault, Miné and Ouadjaout [JMO19]. It would also be an interesting line of
work to see whether replacing our disjunctive completion by a conjunction of implications,
as advocated by Liu and Rival [LR15b], could improve either the performance or the
precision of our analysis of algebraic types.

The main limitation of our inter-procedural analysis is that it is restricted to non-
recursive functions. Analysing recursive functions will require the computation of a fixpoint
at the level of function summaries.

When it comes to arrays, an obvious next step is to implement our abstract domain, and
to study its complexity and scalability. Beyond the lack of implementation, the approach
we suggest for arrays has two main limitations.

The first limitation is that we forbid array types as record fields or constructor arguments
inside algebraic types. At first sight it might look like the only change needed in order to
overcome this limitation is to associate segmentations to extended variables, instead of just
variables. However, we already allow algebraic types inside array types. Hence, the most
significant challenge in having array types inside algebraic types is the possibility of arrays
nested inside arrays. In particular, this could imply having an abstract domain definition
that is recursive: the domain for arrays would map (extended) variables into segmentations,
which in turn use the domain for arrays inside the summaries of array segments. We
believe this would actually work, because the number of (extended) variables having an
array type decreases at each stage, thus the abstract values are finite. Nevertheless, this
could have a significant cost on performance and scalability, especially since the domain
we use to summarize each array segment contains a disjunctive completion. Hence there
would be disjunctions inside disjunctions, which could be very costly. Allowing for nested
arrays would be useful. For example, the functional specification of seL4 in Isabelle does

118



feature arrays inside arrays. Indeed, the kernel heap is represented as an array that may
contain thread control blocks, and each thread control block in turn contains an array of
capabilities describing the permissions of the thread.

The second limitation is that we do not capture relations between arrays. Indeed, we
associate a segmentation to each variable with an array type, and the segmentations do
not interact with each other. Overcoming this limitation would allow, for example, to
describe the way in which an array changes between the input and the output of a function.
This might prove useful when analysing functions that modify a scheduler queue, for
example. One possibility would be to map each pair of array variables to a segmentation,
and duplicate, in the summaries of array segments, the special variable v that refers to
the array’s content. Each copy of v would refer to the content of one of the arrays in the
pair, and the segment summaries would capture relations between them. Our intuition is
that only some pairs of arrays would be related in a meaningful way. It would then be
interesting to try to determine statically which pairs of array variables to analyse, and
avoid useless computations.

As mentioned in the introduction (Chapter 1), this work was motivated by the long-term
goal of alleviating the human effort required by interactive theorem proving, by mixing
automatic and interactive forms of formal verification. This thesis focuses on developing
abstract domains whose expressiveness would be useful for this endeavour; but it does not
study the question of how to integrate such abstract domains with interactive theorem
proving. One possibility would be to formally verify our analysis inside the proof assistant.
However, this approach would require for the numeric abstract domains that we extend
to be verified as well. In order to maintain a choice of instantiation for the underlying
numeric domain, a significant verification effort would be required. A second possibility
would be to have our analyser generate a certificate that explains how the analysis result
was obtained, and have a verifier (itself formally verified inside the proof assistant) check
the certificate. More precisely, this certificate could consist of the different intermediate
results of the analysis, and the verifier could then use a set of lemmas about the language
semantics to try to check that the different intermediate results are correct, until the final
result is reached. A third possibility could be to have our analyser generate a proof script,
and have the proof assistant check that the provided proof script indeed allows to prove
the final result of the analysis. In a way, this third possibility follows the same principle as
the second possibility, except the certificate is a proof script and the verifier is the proof
assistant itself.

119





BIBLIOGRAPHY

[And+19] Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu,
“Inferring Frame Conditions with Static Correlation Analysis”, in: POPL,
2019, doi: 10.1145/3290360.

[BH19] Rémy Boutonnet and Nicolas Halbwachs, “Disjunctive Relational Abstract
Interpretation for Interprocedural Program Analysis”, in: VMCAI, Lecture
note in Computer Science, 2019, doi: 10.1007/978-3-030-11245-5_7.

[BJM20] Santiago Bautista, Thomas Jensen, and Benoît Montagu, “Numeric Domains
Meet Algebraic Data Types”, in: NSAD, 2020, doi: 10.1145/3427762.3430178.

[BJM22a] Santiago Bautista, Thomas Jensen, and Benoît Montagu, Artifact for the
“Lifting Numeric Relational Domains to Algebraic Data Types” article of the
SAS 2022 symposium, 2022, doi: 10.5281/zenodo.6977156.

[BJM22b] Santiago Bautista, Thomas Jensen, and Benoît Montagu, “Lifting Numeric
Relational Domains to Algebraic Data Types”, in: SAS, 2022, doi: 10.1007/
978-3-031-22308-2_6.

[BJM22c] Santiago Bautista, Thomas Jensen, and Benoît Montagu, Lifting Numeric
Relational Domains to Algebraic Data Types (extended version), 2022, url:
https://hal.inria.fr/hal-03765357.

[Bla+03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival, “A static
analyzer for large safety-critical software”, in: PLDI, 2003, doi: 10.1145/
780822.781153.

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma, “What’s Decidable
About Arrays?”, in: VMCAI, 2006, doi: 10.1007/11609773_28.

[CC02] Patrick Cousot and Radhia Cousot, “Modular Static Program Analysis”, in:
CC, 2002, doi: 10.1007/3-540-45937-5_13.

121

https://doi.org/10.1145/3290360
https://doi.org/10.1007/978-3-030-11245-5_7
https://doi.org/10.1145/3427762.3430178
https://doi.org/10.5281/zenodo.6977156
https://doi.org/10.1007/978-3-031-22308-2_6
https://doi.org/10.1007/978-3-031-22308-2_6
https://hal.inria.fr/hal-03765357
https://doi.org/10.1145/780822.781153
https://doi.org/10.1145/780822.781153
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/3-540-45937-5_13


[CC77] Patrick Cousot and Radhia Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints”, in: POPL, 1977, doi: 10.1145/512950.512973.

[CCL11] Patrick Cousot, Radhia Cousot, and Francesco Logozzo, “A parametric seg-
mentation functor for fully automatic and scalable array content analysis”, in:
2011, doi: 10.1145/1925844.1926399.

[Com+08] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Christof Löding, Sophie Tison, and Marc Tommasi, Tree Automata
Techniques and Applications, 2008, url: https://hal.inria.fr/hal-03367725.

[Cou21] Patrick Cousot, Principles of Abstract Interpretation, Cambridge, Massachusetts:
The MIT Press, 2021, p. 832, isbn: 9780262044905.

[Cou97] Patrick Cousot, “Constructive Design of a Hierarchy of Semantics of a Tran-
sition System by Abstract Interpretation (Extended Abstract)”, in: MFPS,
1997, doi: 10.1016/s1571-0661(05)80168-9.

[DAL22] Aleksandar S. Dimovski, Sven Apel, and Axel Legay, “Several lifted abstract
domains for static analysis of numerical program families”, in: Science of
Computer Programming 213 (2022), doi: 10.1016/j.scico.2021.102725.

[Die+18] Daniel Dietsch, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz, and
Andreas Podelski, “The Map Equality Domain”, in: VSTTE, 2018, doi:
10.1007/978-3-030-03592-1_17.

[Dim19] Aleksandar S. Dimovski, “Lifted static analysis using a binary decision diagram
abstract domain”, in: GPCE, 2019, doi: 10.1145/3357765.3359518.

[FK15] Azadeh Farzan and Zachary Kincaid, “Compositional Recurrence Analysis”,
in: FMCAD, 2015, doi: 10.1109/FMCAD.2015.7542253.

[Ful12] Jędrzej Fulara, “Generic Abstraction of Dictionaries and Arrays”, in: Electronic
Notes in Theoretical Computer Science 287 (Nov. 2012), pp. 53–64, doi:
10.1016/j.entcs.2012.09.006.

[Gen+13] Thomas Genet, Tristan Le Gall, Axel Legay, and Valérie Murat, “A Completion
Algorithm for Lattice Tree Automata”, in: CIAA, 2013, doi: 10.1007/978-3-
642-39274-0_13.

[GRS05] Denis Gopan, Thomas Reps, and Mooly Sagiv, “A framework for numeric
analysis of array operations”, in: POPL, 2005, doi: 10.1145/1040305.1040333.

122

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/1925844.1926399
https://hal.inria.fr/hal-03367725
https://doi.org/10.1016/s1571-0661(05)80168-9
https://doi.org/10.1016/j.scico.2021.102725
https://doi.org/10.1007/978-3-030-03592-1_17
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1109/FMCAD.2015.7542253
https://doi.org/10.1016/j.entcs.2012.09.006
https://doi.org/10.1007/978-3-642-39274-0_13
https://doi.org/10.1007/978-3-642-39274-0_13
https://doi.org/10.1145/1040305.1040333


[HIV08] Peter Habermehl, Radu Iosif, and Tomáš Vojnar, “What Else Is Decidable
about Integer Arrays?”, in: FOSSACS, 2008, doi: 10.1007/978-3-540-78499-
9_33.

[HP08] Nicolas Halbwachs and Mathias Péron, “Discovering properties about arrays
in simple programs”, in: PLDI, 2008, doi: 10.1145/1379022.1375623.

[ILR17] Hugo Illous, Matthieu Lemerre, and Xavier Rival, “A Relational Shape Ab-
stract Domain”, in: NASA Formal Methods, 2017, doi: 10.1007/978-3-319-
57288-8_15.

[ILR21] Hugo Illous, Matthieu Lemerre, and Xavier Rival, “A relational shape abstract
domain”, in: Formal Methods in System Design 57.3 (Apr. 2021), pp. 343–400,
doi: 10.1007/s10703-021-00366-4.

[Jea09] Bertrand Jeannet, The BDDAPRON logico-numerical abstract domains library,
https://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/, 2009.

[Jea13] Bertrand Jeannet, “Relational interprocedural verification of concurrent pro-
grams”, in: Softw. Syst. Model. 12.2 (May 2013), pp. 285–306, issn: 1619-1366,
doi: 10.1007/s10270-012-0230-7.

[JM07] Ranjit Jhala and Kenneth L. McMillan, “Array Abstractions from Proofs”,
in: CAV, 2007, doi: 10.1007/978-3-540-73368-3_23.

[JM09] Bertrand Jeannet and Antoine Miné, “Apron: A Library of Numerical Abstract
Domains for Static Analysis”, in: CAV, 2009, isbn: 978-3-642-02658-4, doi:
10.1007/978-3-642-02658-4_52.

[JMO19] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout, “An Abstract
Domain for Trees with Numeric Relations”, in: ESOP, 2019, doi: 10.1007/978-
3-030-17184-1_26.

[Jou+19] Matthieu Journault, Antoine Miné, Raphaël Monat, and Abdelraouf Ouad-
jaout, “Combinations of Reusable Abstract Domains for a Multilingual Static
Analyzer”, in: VSTTE, 2019, doi: 10.1007/978-3-030-41600-3_1.

[Kin+17] Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas Reps,
“Compositional Recurrence Analysis Revisited”, in: PLDI, 2017, doi: 10.1145/
3062341.3062373.

123

https://doi.org/10.1007/978-3-540-78499-9_33
https://doi.org/10.1007/978-3-540-78499-9_33
https://doi.org/10.1145/1379022.1375623
https://doi.org/10.1007/978-3-319-57288-8_15
https://doi.org/10.1007/978-3-319-57288-8_15
https://doi.org/10.1007/s10703-021-00366-4
https://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/
https://doi.org/10.1007/s10270-012-0230-7
https://doi.org/10.1007/978-3-540-73368-3_23
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-030-17184-1_26
https://doi.org/10.1007/978-3-030-17184-1_26
https://doi.org/10.1007/978-3-030-41600-3_1
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3062341.3062373


[Kle+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood, “seL4: Formal
Verification of an OS Kernel”, in: SOSP, 2009, doi: 10.1145/1629575.1629596.

[Kle+14] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser, “Comprehensive formal verification
of an OS microkernel”, in: ACM Trans. Comput. Syst. 32.1 (Feb. 2014), doi:
10.1145/2560537.

[Koz97] Dexter Kozen, “Kleene Algebra with Tests”, in: TOPLAS, 1997, doi: 10.1145/
256167.256195.

[KRR18] Se-Won Kim, Xavier Rival, and Sukyoung Ryu, “A Theoretical Foundation
of Sensitivity in an Abstract Interpretation Framework”, in: TOPLAS, 2018,
doi: 10.1145/3230624.

[Ler+16] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus
Pister, and Christian Ferdinand, “CompCert - A Formally Verified Optimizing
Compiler”, in: ERTS 2016: Embedded Real Time Software and Systems, 8th
European Congress, SEE, Toulouse, France, Jan. 2016, url: https://inria.hal.
science/hal-01238879.

[Les15] Stéphane Lescuyer, “ProvenCore: Towards a Verified Isolation Micro-Kernel”,
in: MILS@HiPEAC, 2015, doi: 10.5281/zenodo.47990.

[LGJ23] Théo Losekoot, Thomas Genet, and Thomas Jensen, “Automata-Based Verifi-
cation of Relational Properties of Functions over Algebraic Data Structures”,
in: FSCD, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:
10.4230/LIPICS.FSCD.2023.7.

[Li+17a] Bin Li, Juan Zhai, Zhenhao Tang, Enyi Tang, and Jianhua Zhao, “A Framework
for Array Invariants Synthesis in Induction-Loop Programs”, in: 2017 24th
Asia-Pacific Software Engineering Conference (APSEC), Dec. 2017, doi:
10.1109/apsec.2017.8.

[Li+17b] Huisong Li, Francois Berenger, Bor-Yuh Evan Chang, and Xavier Rival,
“Semantic-directed clumping of disjunctive abstract states”, in: POPL, 2017,
doi: 10.1145/3009837.3009881.

124

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2560537
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/3230624
https://inria.hal.science/hal-01238879
https://inria.hal.science/hal-01238879
https://doi.org/10.5281/zenodo.47990
https://doi.org/10.4230/LIPICS.FSCD.2023.7
https://doi.org/10.1109/apsec.2017.8
https://doi.org/10.1145/3009837.3009881


[LR15a] Jiangchao Liu and Xavier Rival, “Abstraction of Arrays Based on Non Con-
tiguous Partitions”, in: VMCAI, 2015, pp. 282–299, doi: 10.1007/978-3-662-
46081-8_16.

[LR15b] Jiangchao Liu and Xavier Rival, “Abstraction of Optional Numerical Values”,
in: APLAS, 2015, doi: 10.1007/978-3-319-26529-2_9.

[Mat18] Daniel Matichuk, “Automation for Proof Engineering: Machine-Checked Proofs
At Scale”, PhD thesis, Sydney, Australia: UNSW, 2018, doi: 10 . 26190/
unsworks/20637.

[Min06] Antoine Miné, “The octagon abstract domain”, in: High. Order Symb. Comput.
19.1 (2006), pp. 31–100, doi: 10.1007/s10990-006-8609-1.

[Min17] Antoine Miné, “Tutorial on Static Inference of Numeric Invariants by Abstract
Interpretation”, in: Found. Trends Program. Lang. 4.3-4 (2017), pp. 120–372,
doi: 10.1561/2500000034.

[Pie02] Benjamin C. Pierce, Types and Programming Languages, Cambridge, Mas-
sachusetts: The MIT Press, 2002, isbn: 978-0-262-16209-8.

[RY20] Xavier Rival and Kwangkeun Yi, Introduction to static analysis: an abstract
interpretation perspective, Cambridge, Massachusetts: The MIT Press, 2020,
isbn: 9780262043410.

[SJ11a] Peter Schrammel and Bertrand Jeannet, “Logico-Numerical Abstract Acceler-
ation and Application to the Verification of Data-Flow Programs”, in: SAS,
2011, doi: 10.1007/978-3-642-23702-7_19.

[SJ11b] Pascal Sotin and Bertrand Jeannet, “Precise Interprocedural Analysis in the
Presence of Pointers to the Stack”, in: ESOP, 2011, doi: 10.1007/978-3-642-
19718-5_24.

[Tar41] Alfred Tarski, “On the Calculus of Relations”, in: Journal of Symbolic Logic
6 (Sept. 1941), doi: 10.2307/2268577.

[VMM23] Milla Valnet, Raphaël Monat, and Antoine Miné, “Analyse statique de valeurs
par interprétation abstraite de programmes fonctionnels manipulant des types
algébriques récursifs (Static analysis of values by abstract interpretation of
functional programs manipulating recursive algebraic types)”, in: JFLA, 2023,
url: https://inria.hal.science/hal-03936718.

125

https://doi.org/10.1007/978-3-662-46081-8_16
https://doi.org/10.1007/978-3-662-46081-8_16
https://doi.org/10.1007/978-3-319-26529-2_9
https://doi.org/10.26190/unsworks/20637
https://doi.org/10.26190/unsworks/20637
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1561/2500000034
https://doi.org/10.1007/978-3-642-23702-7_19
https://doi.org/10.1007/978-3-642-19718-5_24
https://doi.org/10.1007/978-3-642-19718-5_24
https://doi.org/10.2307/2268577
https://inria.hal.science/hal-03936718






Titre : Analyse Statique de Types Algébriques et de Tableaux

Mot clés : Interprétation abstraite, types algébriques, tableaux, segmentations

Résumé : Pour assurer l’absence d’erreurs
dans les logiciels critiques, la vérification for-
melle peut s’appuyer sur des méthodes d’ana-
lyse statique, telle que l’interprétation abs-
traite, qui déduisent des propriétés sur les pro-
grammes à partir de leur code source. Cepen-
dant, les domaines d’interprétation abstraite
existants se concentrent majoritairement sur
des programmes où les variables contiennent
des nombres ou des pointeurs. Cette thèse
étudie la possibilité de développer une inter-
prétation abstraite pour des langages de pro-
grammation où les variables contiennent des
valeurs de types algébriques, ou des tableaux

de telles valeurs. Nous présentons une fa-
çon générique d’étendre les domaines numé-
riques existants pour calculer des résumés
du comportement entrée-sortie des fonctions
manipulant des valeurs de types algébriques
et des tableaux ; pourvu que les types algé-
briques en question soient non-récursifs. L’as-
pect entrée-sortie de notre analyse lui permet
d’être modulaire, n’analysant qu’une seule fois
chaque fonction. Un prototype de notre ana-
lyse pour les types algébriques (mais pas pour
les tableaux) a été implémenté en OCaml et
testé sur 43 exemples, dont certains inspirés
du code du micro-noyeau seL4.

Title: Static Analysis of Algebraic Data Types and Arrays

Keywords: Abstract interpretation, algebraic types, arrays, segmentations

Abstract: In order to ensure that critical soft-
ware has no error, formal verification may rely
on static analysis. Static analysis methods,
such as abstract interpretation, infer the prop-
erties of a program by analysing its source
code. However, the existing domains of ab-
stract interpretation mainly focus on programs
where the variables hold numbers or point-
ers. In this thesis, we study the possibility
of developping an abstract interpretation for
programming languages with algebraic types
and arrays of values from algebraic types. We
present a generic way of extending already ex-

isting numeric domains in order to infer input-
output summaries of functions manipulating
both numbers, values of algebraic types and
arrays. A limitation of our approach is that
we only handle non-recursive algebraic types.
The input-output aspect of our function sum-
maries allows for a modular analysis, where
each function is analysed only once. A proto-
type of our analysis of algebraic types (with-
out the analysis of arrays) was implemented
in OCaml and tested on 43 exemples. Some
of the examples are inspired from the code of
the seL4 micro-kernel.


	Introduction
	Preliminaries
	Algebraic Types and Values
	A Language With Algebraic Data Types
	Background: Numeric Abstract Domains

	I Abstract Domains for Algebraic Types
	Related Work on Algebraic Types Analysis
	Numbers Inside Structured Values, and Relations between them
	Disjunctive Abstract Domains
	Recursive Algebraic Types

	NPR: An Abstract Domain for Algebraic Types
	Extended Variables: Variable-Path Pairs
	Numeric Domain Over Extended Variables: the NPR Domain

	Precision and Scalability for Algebraic Types
	Constructor Constraints
	Structural Equalities
	Reduced Product
	Disjunctive completion
	Analysis Result for the !doticks! Function


	II From abstract domain to language analysis
	Turning Relational Domains into Input-Output Relational Domain
	Related work
	A Collecting Semantics of Relations
	Leveraging Relations in Space to Express Relations in Time

	Implementation and Experimental Results
	Intra-Procedural Analysis
	Analysis of Function Calls
	Experimental Results and Complexity


	III Abstract Domain for Arrays of Structured Values
	Related Work on Array Analysis
	Array segments from Gopan2005
	Slice variables and shift variables from Halbwachs2008
	Segmentations from Cousot2011
	Works that are not based on abstract interpretation

	Extending Segmentations to Arrays of Structured Values
	Extension of the Language and Motivating Example
	Structure of our Abstract Domain for Arrays
	Array Segmentations
	Unification and Inclusion for Segmentations
	Unification of Segmentations
	On the Unsoundness of Segmentation Inclusion in Cousot2011
	A Sound Definition For Segmentation Inclusion

	Comparison with the Cousot2011 Domain For Arrays
	Disjunctive Completion for the Pana Domain
	Soundness Theorem tor the Diorana Domain
	Result of Analysis on the Motivating Example
	Conclusive Remarks on Array Analysis


	IV Conclusion
	Conclusion
	Bibliography


