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Mathématiques et Informatique (InfoMaths)
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Abstract

Electricity is essential for the energetic transition due to the diversity of greenhouse-gas free
means of production and its potential to replace fossil fuels in transportation, heating and
industries. However, it requires a constant balance between generation and consumption to
maintain intensity in the network, and it can’t be stored efficiently. It is then necessary to use
Price Fixing Algorithm (PFA) for developing competitive markets. Daily, the European PFA
EUPHEMIA determines the prices for the next day in Europe, called the Day-Ahead prices,
that maximize the Social Welfare, while maintaining energy balance. Unlike other purely
speculative markets, the Day-Ahead prices is algorithmically computed. Forecasting them
is thus a unique and challenging task.

This introduces the problem of Electricity Price Forecasting (EPF) at the European scale,
that consists in predicting the 24 hourly prices for each market before their fixation at
12am. The literature highlights two approaches: Expert Models, that aim at replicating the
PFA and computing the prices based on estimates of the inputs of EUPHEMIA, and Data
Driven methods that directly estimate prices using exogenous variables and past prices.
Both approaches are incomplete: Expert Models approaches are theoretically appealing but
fail to produce accurate forecasts in practice. Conversely, Data Driven approaches lack
transparency, lowering the forecasts reliability. Also, the true relationship between variables
and prices is only captured by EUPHEMIA, implicitly limiting the performances of Data
Driven approaches.

This thesis addresses those limitations. The first challenge is to produce accurate and
explainable models for a given market. We achieve the former by extending methodologies
from the literature, while we use Shap Values, a model-agnostic explainability tool, for
the latter. Then, we build a multi-market forecasting model by representing the European
network as a graph where each market is a node labeled with its prices. Graph edges
are connection lines between markets, and we estimate the cross-market flows using an
optimization problem prior to training. Lastly, we combine the EUPHEMIA algorithm with
in a Neural Network (NN) that forecasts its inputs. To consider the price forecasting error
in the NN’s training, we compute the gradient of EUPHEMIA’s output with respect to its
input, by vanishing the derivative of the dual function using a dichotomy search.

We believe this thesis will be beneficial for the EPF practitioners and will contribute
toward bridging the gap between Expert Models and Data Driven approaches. We also
believe that our work on mixing optimization problems with machine learning models will
benefit the broader scientific community.
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Résumé

L’électricité est essentielle pour achever la transition énergétique grâce aux nombreux moyens
d’en produire de manière décarbonée et à son potentiel pour remplacer les énergies fossiles
dans les domaines des transports, du chauffage et de l’industrie. Cependant, afin de main-
tenir l’intensité dans le réseau, il faut constamment s’assurer que la production et la consom-
mation soient égales. De plus, il est impossible de stocker efficacement de l’électricité. Il est
donc nécessaire d’utiliser un mécanisme de fixation des prix pour développer des marchés
compétitifs. Tous les jours, EUPHEMIA détermine les prix du lendemain en Europe, que
l’on appelle les Prix Spot. Ces prix sont ceux qui maximisent le bien être social tout en
maintenant l’équilibre dans le réseau. A l’inverse d’autres marchés purement spéculatifs,
le prix de l’électricité est calculé ce qui rend son estimation indispensable pour beaucoup
d’applications industrielles.

Le problème de l’estimation des prix de l’électricité à l’échelle Européenne consiste à
prévoir les 24 prix horaires de chaque marché avant leur fixation à midi. De la littérature
ressortent deux grandes familles d’approches : les modèles experts, qui ont pour but de
répliquer EUPHEMIA et de calculer les prix en se basant sur des estimations des entrées
d’EUPHEMIA, et les approches basées sur les données, qui utilisent les variables exogènes
du marché pour directement estimer les prix. Les deux approches sont incomplètes : les
modèles experts sont théoriquement intéressant mais très imprécis en pratique. A l’inverse,
les approches se basant sur les données manquent de transparence, ce qui diminue la fiabilité
de leurs résultats. De plus, la vraie relation entre les variables du marché et le prix n’est
reflété que par EUPHEMIA, ce qui implicitement limite les performances des approches
basées sur les données.

Cette thèse aborde ces limitations. Le premier défi est d’obtenir des prédictions suff-
isamment précises et transparentes pour un marché donné. La précision est obtenue en
appliquant les méthodes basées sur les données de la littérature et la transparence en util-
isant les valeurs de Shap, un outil d’explicabilité des modèles agnostiques. Ensuite, nous
construisons un modèle de prévision multi-marché en représentant le réseau européen sous
la forme d’un graphe, où chaque marché est un noeud qu’il faut labeliser avec ses prix.
Les arrêtes du graphe sont les câbles connectant deux marchés, et nous estimons les flux
d’énergie à l’aide d’un problème d’optimisation avant l’entraînement du modèle de prédic-
tion des prix. Pour terminer, nous combinons l’algorithme EUPHEMIA avec un réseau de
neurones qui estime ses entrées. Afin de considérer l’erreur de prédiction des prix durant
l’entraînement du réseau de neurones, nous calculons le gradient du résultat d’euphemia
par rapport à ses entrées, en trouvant le point où la dérivée de la fonction duale atteint zéro
avec une recherche dichotomique.

Nous pensons que cette thèse sera bénéfique pour les professionnels de l’énergie re-
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quérant des prédictions de prix de l’électricité, et qu’elle contribue à franchir le fossé qui
sépare modèles experts et méthodes basées sur les données. Nous pensons également que
nos travaux sur le mélange de problèmes d’optimisation avec des modèles d’apprentissage
machine seront bénéfiques pour toute la communauté scientifique en général.
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Chapter 1

Introduction

Electricity is a cornerstone of our current society. Historically overshadowed by fossil fuels,
it grew in popularity during the last decades due to its versatility. It is perfectly adapted
to many everyday-life objects. Think about it, how many electrically-powered items are
present in your house? Or upon your desk? Recently, energy transition politics and the
urgent need to reduce atmospheric pollution in big cities fostered its usage in many sectors.
Industries, transportation, heat, cooling systems, the so-called electricity fairy 1.1 conquered
the world. Unfortunately, there is nothing magical about electricity and its immateriality
and invisibility are sources of many constraints. Maintaining the tension in the network,
transforming the intensity for the end users, producing an electrical current from heat,
wind, steam, photovoltaic cells, was an incredible gift to the society made by scientists and
engineers over the 20th century. Nowadays, other stakes are rising. How can we produce
increasing amount of electricity in a fair, sustainable, and greenhouse gas free manner? Can
we free ourselves from fossil fuel dependency? How can we maintain an affordable price
and eliminate energy precariousness? This thesis lies in this line of interrogations and aims
to contribute in answering them. In particular, it focuses on forecasting electricity prices on
deregulated markets.

1.1 The electricity market

In the past, electricity markets were regionally monopolistic: all means of production be-
longed to the same actor which was also the only supplier. However, since the early
90’s, competitive markets were introduced to end the hegemony of government-controlled
electricity sectors. Moreover, electricity usage is increasingly important: according to the
International Energy Agency, an additional 25TWh of electricity is consumed every year,
making a total of 3711TWh in 2020 1. Those figures are due to the huge increase in use
of electrical transportation, industries, and the democratization of households heaters (Fig-
ure 1.2, (LEFT)). Those different activities have various volume needs and are subject to
intermittency. To support such a demand, a plethora of plant types is available. In Europe,
the energy mix is dominated by thermal and nuclear plants that represent almost two thirds
of the generation (Figure 1.2, (RIGHT)) and whose prices are driven by the price of their
respective commodity. However, the share of renewables is strongly increasing and future

1https://www.iea.org/regions/europe, 23-10-2023
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Figure 1.1 – La fée electricité, a giant painting presented by Raoul Dufy for the Universal
Exposition of 1937 in Paris. Already in the first half of the 20th century, the artist underlined
the diversity of electricity generation sources and consumption means, as well as the benefits
of electricity to society.

policies will follow this trend [Far and Youngs, 2015]. Wind and solar plants, that constitute
the bulk of renewable plants, are subject to heavy intermittency.

Figure 1.2 – (LEFT) The electricity consumption by sector in 2020 (RIGHT) The electricity
sources in Europe for the year 2020.

The opening up to competition of energy generation and supply pushed forward the
need for an open electricity market [IEA, 2001]. To satisfy the different business needs
expressed by the market players, the European market uses a Price-Fixing Algorithm (PFA)
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called euphemia [Committee et al., 2020]. Market actors can submit orders that describe their
intention to buy or sell a fixed volume of energy for a given hour with a limit acceptable
price. Orders are collected and an optimization problem is solved to determine the best
possible price, by accepting or rejecting orders. This price is chosen to maximize the social
welfare (supplier surplus and consumer surplus) and satisfy the energy balance (generated
volume equals consumed volume). All accepted orders are executed using this determined
price. One price per hour is computed everyday at noon for the 24 hours of the following
day in every concerned country 2. We denote the vector of those prices, called the Day-Ahead
Prices, in zone z by Yz P R24. The task of forecasting pYz before price settlement is called
Electricity Price Forecasting (EPF) [Weron, 2014]. Because of the regulation for submitting
orders to the Price-Fixing Algorithm, the prices on the electricity market are not subject to
speculation but aligned with the physical costs of generating plants. The Day-Ahead Price
is also used to determine the price for exchanging energy at larger horizons. For instance,
the cost of trading over a month is the average Day-Ahead Price over this month. The
Price-Fixing Algorithm and Day-Ahead Price are therefore the pillars of electricity markets
and understanding both is the key to many business opportunities.

1.2 Stakes and Applications

Energetic transition politics brought new practices into the spotlight, aiming at favoring clean
energy generation and responsible consumption, as well as increasing the quality of life of
citizens. The Islander project 3, which aims to render the 31km2 island of Borkum (Germany)
carbon-emission free by 2030, is a good example of such trends. The main challenge of
EPF is that such applications are only profitable with an accurate price estimate. This thesis
originated from the company BCMEnergy.

1.2.1 The Islander project

The island of Borkum (Germany), aims to become emission-free by 2030. Challenges of
this project are multiple because of the consumption volatility due to summer tourism that
multiply the population by five. The Islander project implements smart energy management
systems for the island. The island possesses 2 wind turbines of 1.8MW each and a solar panel
park of 1.67 MW, that provides around half of the yearly consumption. The other half is
directly bought on the German market. The idea is, based on generation, consumption and
price forecasts, to decide when it’s best to sell the produced energy to the market or directly
consuming it. To optimize these transactions, it’s also possible to use batteries to buy when
cheapest and sell when most expansive. Lastly, customers can be alerted about the cheapest
times to use their devices. Price forecasts are therefore necessary for the success of such a
project. The authors of [Hong, 2015] estimate that a small plant owner with a 5GW annual
peak load can increase profits by 3 million USD by improving the accuracy of day-ahead
price forecasts by 1%. Some of the findings of this thesis were used for the price prediction
task of the Islander project.

2As some countries are divided into several areas with unique prices, we later use the term zone or market
3https://islander-project.eu/
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1.2.2 BCMEnergy

To tackle these challenges, the company BCMEnergy was commissioned. Created in Lyon in
2015, BCMEnergy supplies green electricity to individual and professional consumers under
the brand elmy. It stands out from other suppliers because of the variety of its commercial
activities. For instance, it helps owners of generation plants maximizing their profits by
bringing expertise in production forecasting, energy equilibrium and other aggregation
services that make the transition between producers and transmission system operators. It
also builds long-term partnerships between owners of fields, roofs or parkings by financing
solar plants on those spaces. This upgrades wasted spaces, increases renewable capacities
and provides profit to the owner. Additionally, it works with local communities to develop
self-consumption projects. Such projects contribute to fighting energy precariousness and
offer consumption tracking to reduce the electricity bill. Lastly, the activity that motivated
this thesis is trading on the Day-Ahead market. The Day-Ahead prices are determined by
the Price-Fixing Algorithm everyday at noon. Afterwards, all actors that submitted orders
exchange energy at this fixed price. Players can also speculate on the Day-Ahead price on a
separated platform. They can buy or sell energy between them, and at noon, if their energy
balance is not equal to 0, they are settled using the Day-Ahead price. By estimating prices
in advance, they can take advantageous positions on the market. An illustration is drawn
in Figure 1.3, where using a price estimate pY and a bid b, one can decide to sell (if pY ă b) or
buy (if pY ą b). The reward is computed using the real price Y and is Y´ b in case the player
bought, b´ Y if he sold.

The expertise on all links of the electricity value chain (from balance responsible to market
access), the engagement in energetic transition and social concerns, as well as the aspiration
to innovate and push boundaries made BCMEnergy an ideal environment to conduct this
thesis.

1.3 Challenges

The EPF task presents many challenges. Some are caused by the diversity of data sources
and explanatory variables of electricity prices, or by the chosen business application. The
most important challenge for EPF is the modeling of prices. The variability in consumption
and generation, combined with the absence of storage lead to strong seasonal components,
high volatility and price spikes [Janczura et al., 2013]. Price fixation mechanisms cause non-
linearity between supply and demand, which can only be understood through solving a
Mixed-Integer Quadratic Programming (MIQP) [Taha, 2014] problem comprising thousands
of orders of different types. Lastly, this algorithm computes prices across a continent where
network topology plays a determining role.

1.3.1 Electricity

Inherently, electricity is an unsteady energy. Electrical systems require a constant balance
between consumption and generation. Balancing supply and demand implies turning on or
off expensive power plants at the last minute or cutting-off consumption. Those mechanisms
heavily affect price determination and can lead to price spikes. On top of that, the solutions
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Figure 1.3 – Based on a price estimate pY and a bid b, it’s possible to decide between selling
(if pY ă b) or buying (if pY ą b). Then, using the real price Y, one can compute the profit as
the difference between b and Y.

for storing electricity (retention lakes, batteries) are not yet economically viable and the
storage capacities are limited.

Unlike other commodities, electricity is always traded based on specific delivery period
(hour, day, quarter, ...). Buying electricity for a given period t to sell it later at t ` δ is not
possible. It naturally follows that prices can highly diverge from one period to another
since the price of period t is not used for pricing t ` δ. Prices are determined by matching
supply and demand from the orders of market actors. The supply side reflects the marginal
costs of power plants. In European countries where the energy mix is eclectic 1.2, this
means that the electricity price is dependent on the prices of other commodities (gas, fuel,
coal). Added to this fact, all generation means are subject to unpredictability such as material
failures, maintenance operations or strikes. The demand side is mostly regulated by regional
governments through tariff shields but legislation can differ across borders. Moreover, the
demand volume, driven by weather conditions, is hard to foresee. The set of regulations
that followed the Paris agreement [Agreement, 2015] are necessary to achieve energetic
transition, but it leads to even more volatile consumption, generation and price of electricity.
Usage of electric cars has been promoted and self consumption allows private individuals to
directly use their own produced energy, making the consumption patterns more complex.
Moreover, the part of renewables in the energy mix in Europe must reach one third in 2030.
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To achieve it, the capacity of solar and wind plants is increasing, making the generation
weather-dependent, and thus, fickle and unpredictable.

Generally, energy transition policies introduce regulations that exacerbate price volatility
by reducing the number of tractable plants (nuclear, fossil plants) or introducing taxation of
carbon dioxide emissions 4. The price of carbon allowances, necessary to compute marginal
costs of fossil plants, is another variable that explains electricity prices. Lastly, unpredictable
worldwide events such as economic crises of pandemics can heavily affect prices. In par-
ticular, the last 3 years where marked by repeated lockdowns and economic recovery that
caused prices to reach unprecedented levels [Narajewski and Ziel, 2020b; Suvarna et al.,
2022].

The intermittency of generation and consumption, as well as the impossibility for efficient
storage and the required balance between supply and demand make the spot prices prone
to spikes, seasonal trends, and high volatility.

1.3.2 The Price-Fixing Algorithm

On the European market, Day-Ahead Prices are computed every day at noon by the euphemia
algorithm. It is a MIQP algorithm that maximizes social welfare and ensures energy balance
across concerned zones. Market actors (suppliers and producers) have to submit Order
Books that describe how much they are willing to buy or sell and at which price. euphemia
computes which orders are accepted and deducts the Day-Ahead Price. It is the price that
generates the most social welfare, defined as the sum of consumers’ surplus and suppliers’
surplus. All accepted orders are carried out using this price.

Order Books are constituted of thousands of orders per trading hour. Orders can be of
several levels of complexity. Simple orders are defined on a single hour, by a volume, and
a limit price (step order) or a price range (linear order). Complex orders can span across
several hours (block orders), have special activation conditions (minimum income conditions
orders) or be linked to other orders (grouped orders). It results that the computed price has a
complex relationship with consumption and generation because of the Order Book structure.
In Figure 1.4, we only displayed step orders. The Day-Ahead Price P‹ lies on the intersection
of the supply and demand curves. If we focus on this intersection point, we see that demand
could be lowered by 35 MWh without modifying the intersection price (red dotted line). On
the other hand, a drop in generation of only 5 MWh would increase the price by 10e/MWh
(blue dotted line).

Order Books enable market players to develop profitable business and implement their
trading strategies, while the euphemia algorithm ensures a fair price for every actor and that
energy balance is satisfied. However, the diversity of orders, the size of the Order Books, and
the complexity of euphemia algorithm make the price-fixation mechanism hard to grasp. On
the other hand, correctly understanding it is the key to mastering electricity price forecasting.

1.3.3 The European network

euphemia operates on 39 European markets, with some countries like Italy or Norway
having multiple markets as shown in Figure 1.5. To compute optimal prices, the social
welfare is maximized and the energy balance ensured across all zones. Each market has its

4https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en 23-10-

https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en


1.3. Challenges 7

Figure 1.4 – P‹ is the price resulting of the intersection of the supply (RED) and demand
(BLUE) plain curves. An important shift in Demand can occur (red dotted line) without
modifying the price, whereas a small supply shift drastically increases the price.

own specific characteristics and is subject to different external conditions. This results in
important differences in supply, demand and prices between the different markets. More
importantly, differences in the relationships between characteristics and prices can occur.
Then, euphemia assigns energy flows from cheaper countries to the more expensive. This
usually helps balancing energy for a cheaper price, but leads to several complexifications.
First, the energy has to be balanced at the scale of a continent, that involves managing energy
flows. The flows are themselves constrained by the Available Transfer Capacities (ATC), that
is the maximal volume that can be sent from one zone to another for a given time period.
Then, the prices of a given zone become dependent on variables from other zones. Also,
many pairs of zones don’t have electrical lines that directly connect them. For instance,
Spain and Germany are not linked. To send energy from Spain to Germany, the connections
Spain France and France Germany can be used. The topology of the European network
(the map of all zones and their connections), is another characteristic of the market to be
taken into account. Lastly, this increases the number of orders by considering all 39 Order
Books and adds another layer of complexity to the Euphemia algorithm. In practice, this
also makes the prices from a country dependent on its neighbors characteristics, potentially
to all considered zones.

1.3.4 Applications of price forecasts

The industrial context in which electricity price forecasts are used should be taken into
account when designing an EPF model. Electricity prices are dependent on many factors,
and huge quantities of data from several providers are available. An appropriate tool
for market players should handle data collection, processing of missing data, and forecast
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Figure 1.5 – The map of the markets considered by euphemia. Countries can be divided into
several price zones (Italy, Norway). Power lines between zones are summarized by black
lines.

publication. Next, the business application in which price forecast are going to be used
introduces constraints. For instance, if the objective is to optimize the use of a battery, it’s
better to forecast the shape of the hourly price curve rather that the actual values. Indeed,
the aim is to buy when cheapest and sell when most expensive. A plant owner would benefit
from a prediction for several days in advance to adjust his generation plan.

The use case that motivated this thesis is trading on the day-ahead market. For this, only
the daily average price is needed, but its accuracy is paramount. Moreover, traders must
react quickly to generate more profit, which constrains the response time of the models.
Traders also benefit from detailed explanations about a forecast to take a more refined
decision. Knowing which input variable led to such forecast allows them to consider data
that wasn’t part of the forecasting process due to lack of historical datasets or unavailability at
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prediction time (impromptu unavailability of a unit, sudden change in weather, unreported
strike, etc...). It also helps the trader to be more confident when taking a position on the
market, with as consequence bidding more often with a growing volume, increasing the
potential profit.

1.4 Contributions

The abundance of data collection tools and computing power has brought Artificial Intelli-
gence to an unprecedented level of efficiency since the 90’s. Rapidly during the early 2000’s,
research interest in this field exploded and thousands of papers, models, architectures were
explored. However, by going further into Machine Learning research, scientists and engi-
neers collided with its limitations. In this thesis, we propose methods that tackle challenges
induced by the EPF task that lies at the edge of the ML methods. Our contribution to the
literature is based on three articles, with two of them presented in the scope of international
conferences.

1.4.1 Explaining the forecasts

One of the main drawbacks of Machine Learning tools is their black-box characteristics. The
output is hard for users to understand, and sometimes a transparent solution is preferred
even at the expense of performance. The EPF problem can be reasonably addressed using
simple methods such as Linear Regression or Auto-Regressive models, that offer the advan-
tage of producing understandable results. Once fitted, the coefficients of a Linear Regression
give a direct value of the weights of each feature in the forecast and users have a simple
mathematical formula to compute the model’s output. This is sufficient to make businesses
practitioners choose a simpler model over a ML model.

In this thesis, we address the problem of explaining electricity price forecasts. We make
use of findings from the eXplainable Artificial Intelligence (XAI) field that aims at lightening
the opacity of ML models. Particularly, we use the Shapely values [Lundberg and Lee, 2017]
which are based on well-known game-theory ideas of [Shapley, 1953]. The forecast is the
reward of a N-person collaborative game where each feature is a player. Computing the exact
contribution of each feature is too expensive as it requires computing 2N model predictions.
[Lundberg and Lee, 2017] thus propose a sampling method to estimate them with reduced
complexity. We show how a feature contribution analysis is able to bridge the gap between
model performance and user confidence. We identify features responsible for performance
increase and discard the less important ones. By analysing the impact of the Covid crisis
on the model performance, we show that when using an appropriate recalibration method,
EPF models can adapt to new situations even in extreme market conditions. This work has
been published in the journal Applied Energy [Tschora et al., 2022].

1.4.2 An optimize-then-predict Graph Neural Network

ML models have to be adapted to work with non-tabular data. For example, Convolutional
Neural Networks, which where first introduced in [LeCun et al., 1995], have been extended
to graph structures in [Gilmer et al., 2017]. Graphs have been widely used for a variety of
problems (assignation, optimal path, etc...) and combining them with ML models has led to
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significant progress in applications such as drug discovery or traffic forecasting. Formally,
a graph is a set of nodes (or vertices) that can be linked together by one or more edges.
Each node and edge usually contains information (time series, tabular data). A common
framework in traffic forecasting [Epelbaum et al., 2017] is to consider a sequence of graphs.
Each graph describes the state of the road network at a given time.

We employ an analoguous representation for the European electricity network. Each
zone is represented by a node, connections between zones are edges, and the model is
trained to label each node by the Day-Ahead Prices. Different values of edge attributes are
assessed and we show that using estimated cross-market flows with an optimization problem
prior to learning significantly contributes towards increasing the model’s performances. Up
to our knowledge, this approach is the first to use a GNN model for EPF, and the only
one that considers the European Network integrally. Moreover, the optimize-then-predict
approach shows that even powerful ML models can benefit from optimization and suggests
that interaction between optimization and model training should be delved into. This work
[Tschora et al., 2023a] has been presented during the IDA 2023 conference 5 where it was
awarded the Frontier Prize.

1.4.3 Considering euphemia in a Decision-Focused Learning framework

ML models are very efficient modeling tools, but a vast domain of real-world problems
requires the enforcement of constraints that those models can’t guarantee. Constrained
Optimization is typically used for such problems, but sometimes, coefficients of the opti-
mization problem are unknown and have to be estimated. Some researchers are trying to
link both worlds [Amos and Kolter, 2017] and fit coefficient forecasting models that yield
the best solution with respect to the optimization problem.

Electricity prices are computed by euphemia, which essentially solves a MIQP problem.
The social welfare which is maximized is a function of the Order Books (which are coefficients
of the problem) and the acceptance of the orders (which are the decision variables). In the EPF
task, Order Books are not available prior to price publication : they have to be estimated. We
build an Order Book forecasting Neural Network (NN), followed by the euphemia algorithm.
euphemia is solved using Order Books estimates and as a way to ensure that the model lowers
the price forecasting error overall, we take into account the solution of euphemia in the
gradient descent. This requires differentiating through a quadratic optimization problem.
We achieve the latter by considering the dual problem that we solve by setting its derivative
to 0. The search for an optimal solution is performed using a dichotomy search where
the gradients of each step are retained. This approach is the first to consider euphemia
along with a NN model and constitutes an important tool for EPF practitioners because
of its consistency with respect to the Price-Fixing Algorithm. Moreover, our approach to
differentiable optimization using a dichotomy search is a novelty that contributes in the
objective of mixing optimization problems and Machine Learning models. This work was
presented during the DSAA 2023 conference [Tschora et al., 2023b] 6.

5https://ida2023.org/
6https://conferences.sigappfr.org/dsaa2023/
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1.5 Thesis structure

This thesis articulates around 4 chapters. In the first Chapter 2, we present the state of the art
in electricity price forecasting literature. Particularly, we focus on the limitations of the two
main approaches. Expert models aim at replicating Price-Fixing Algorithm and Data-Driven
methods that learns relationships between the Day-Ahead Prices and the input data. We
conclude the Chapter by overviewing the existing methods for combining an optimization
problem and a Machine Learning model.

In Chapter 3, we focus on tuning standard Machine Learning models for 3 datasets of in-
terest: France, Germany and Belgium. We compare our results to the state of the art models
and find that simpler models (Support Vector Regressors) can outperform more sophisti-
cated ones (Deep Neural Network) if using the appropriate features. Using Shap Values, we
also discuss the importance of each feature with respect to the market characteristics and
analyze the effects of the Covid crisis in the model accuracy.

Chapter 4, is dedicated to bringing the problem to the European scale by using a graph
structure to capture the topology of the network. We investigate how to enrich the edge
attributes by designing a cross-market flow estimation problem using four different opti-
mization problems. We thus use an optimize-then-predict framework that first computes
optimal flows between markets, then predicts prices for all considered zones. By analyzing
metrics and feature contributions, we explain the price forecasting error differences between
flow estimation methods but also depending on the position of the node in the graph.

Then, in Chapter 5, we introduce our differentiable optimization approach for EPF. We
start by solving euphemia using a differentibale dichotomy search, which is placed on top
of an Order Books forecasting Neural Network. Because of the differentiability of the di-
chotomy search, the NN is fit by considering the price forecasting error rather than the Order
Books error. We analyse our results by varying the weights of the optimization loss in the
training process, and, using Shap values, identify cases where the differentiable optimization
approach outclass the standard approaches.

Chapter 6 summarizes the work accomplished during this thesis. We then forecast our
own future work by introducing several research tracks.

1.6 Publication list

Peer-reviewed international conferences with proceedings:

• Léonard Tschora, Erwan Pierre, Marc Plantevit, Céline Robardet. Forecasting Elec-
tricity Prices: An Optimize Then Predict-Based Approach. In: Crémilleux, B., Hess,
S., Nijssen, S. (eds) Advances in Intelligent Data Analysis XXI. IDA 2023. Lecture
Notes in Computer Science, vol 13876. Springer, Cham. https://doi.org/10.1007/
978-3-031-30047-9_35
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• Léonard Tschora, Tias Guns, Erwan Pierre, Marc Plantevit and Céline Robardet, Elec-
tricity Price Forecasting based on Order Books: a differentiable optimization approach, 2023
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Chapter 2

State of the Art

This chapter introduces the technical and literature background of this thesis. The
first part introduces general notations, formalizes the EPF problem, and explains
the euphemia optimization problem. The second section presents the most popular
EPF methods from the literature. We distinguish between the Data-Driven methods,
which learn relationships between price and variables from historical datasets, and
Expert models, where the relationships are handcrafted by practitioners who ap-
proximate the Price Fixing algorithm (PFA). In a third section, we motivate the need
for developing more sophisticated approaches that combine both approaches by
showing the limits of the literature. To this aim, we present Constrained Optimization
Learning (COL) methods in the fourth section. They consist in solving optimization
problems with coefficients estimated by a ML model. The general idea is to forecast
the input of euphemia using a ML model before solving the optimization problem.

13
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2.1 Preliminaries

Before deepening the electricity price forecasting methods of the literature, we specify the
notations that are used throughout this document. Also, we describe the most important
parts of the euphemia algorithm.

2.1.1 The Electricity Price Forecasting Problem

The Day-Ahead price of a day d, an hour h, and a zone z is denoted by Ypd,hqz P R . Ypdqz P R24 is
the vector of the 24 hourly prices. Everyday d´1 at noon, Ypdqz are computed by the euphemia
algorithm. The EPF problem is a multivariate time series task that consists of forecasting
Ypdqz for one or more z, before the price computation the day before at noon pd ´ 1, 12q.
To achieve this, it’s possible to use past day-ahead prices Ypd´1q

z , thus considered as input
features. A graphical illustration of the Day-Ahead price forecasting task is available in
Figure 2.1. Other usual exogenous features mainly consist of estimates of the fundamentals
of a day d, available in d ´ 1: consumption forecasts Cpdqz P R24, renewable generation
forecasts Rpdqz P R24, programmable generation forecasts Gpdqz P R24. The set of variables used
to predict a day d of a zone z is noted Xd

z . For clarification, if only one market is considered,
the notations Yd and Xd are preferred. Lastly, when referring to a collection of days of size
n, letters X and Y are simply used.

Figure 2.1 – The Day-Ahead prices prediction task. The 24 hourly prices of a day d must be
forecast on d´ 1 before 12 a.m.

2.1.2 euphemia

The full documentation of the euphemia algorithm is available in [Committee et al., 2020].
In this section, to give an overview of the complexity of this algorithm, we detail its major
components. The prices Ypd,hqz are computed by the euphemia algorithm for all zones z and
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hours h of a day d at once, using daily Order Book OBd
z as input. Order Books are done on a

daily basis as they contain orders that span over several hours. We summarize euphemia by
a function E that maps elements from the Order Books domain Φ to the Day-Ahead prices:

E : Φnz ÞÑ R24ˆnz

OBd Ñ E

´

OBd
¯

“ Ypdq

¨

˝

OBd
1

¨ ¨ ¨

OBd
nz

˛

‚Ñ

¨

˚

˝

Ypd,1q1 ¨ ¨ ¨Ypd,24q
1

¨ ¨ ¨

Ypd,1qnz
¨ ¨ ¨Ypd,24q

nz

˛

‹

‚

The general idea behind euphemia is to maximize all zones’ social welfare (SW) while satisfying
the constraints induced by the network or by the player’s orders, by selecting which orders to
accept using decision variables Ad P r0, 1snzˆ|OBd

z | and by determining the necessary energy
exchanges between zones Fd P R24ˆnzˆnz . For simplifying the notations, we employ OB,
A and F to designate the Order Books, Acceptance variables and Cross-Zonal Flows of an
arbitrary day.

argmax
A,F

SWpOB,A,Fq

u.c.

#

Network ConstraintspOB,A,Fq
Order ConstraintspOB,A,Fq

The social welfare is defined as the sum of consumer and supplier economic surplus, which
can be written as the sum of SW of each order of OB. In the social welfare computation, the
profit realized by energy line owners (Congestion Rents CR) is also taken into account. This
profit is simply the amount of energy Fh

z,z1 sent through the line times the tariffs Th
z,z1 of the

line.

SWpOB,A,Fq “
ÿ

OPOB

SWpO,Aq
loooooooomoooooooon

Consumer and Supplier economic surplus

`
ÿ

h

ÿ

z

ÿ

z1
Fh

z,z1T
h
z,z1

looooooooomooooooooon

Congestion Rents

On the market, several players can be found: suppliers, owners of small renewable
plants, owners of important thermal or nuclear power plants, etc. Each player has its own
requirements and constraints that need an appropriate bidding structure. For instance, an
owner of a coal-fired power-plant has to be sure that he will be able to sell its production
above its marginal cost for several consecutive hours, enough to cover its start-up and shut-
down costs. Also, the order should account for the physical requirement of the plant such
as the start-up time, the maximal generation capacity or the possible volume variation each
hour. As such, several types of orders are available and we give the expression of SW and
constraints of the four most common ones: Step s, Linear l, Block b and Complex c Orders.
We identify each order by its type t P ts, l, b, cu, ID i, zone z and hour h.

• StepOrders s are defined by a fixed volume Vh
s,i,z and a limit price Ph

s,i,z on a given hour
h. They can be fully accepted, fully rejected or partially accepted: Ah

s,i,z P r0, 1s.

SWpOh
s,i,zq “ Ah

s,i,zVh
s,i,zPh

s,i,z
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• Linear Orders l express the amount of volume to exchange as a linear function of the
price, on a fixed price range rPoh

l,i,z,Poh
l,i,z ` Ph

l,i,zr on a given hour h. They can be fully
accepted, fully rejected or partially accepted: Ah

l,i,z P r0, 1s :

SWpOh
l,i,zq “ Ah

l,i,zVh
l,i,z

´

Poh
l,i,z ` Ah

l,i,zPh
s,i,z

¯

It is important to notice that the SW expression of Linear Orders is quadratic of the
Optimization variable Ah

l,i,z.

• Block Orders have a volume Vh
b,i,z that can vary each hour h over a period H with a

fixed price Pb,i,z. The acceptance of such an order is defined as the sum of accepted
volume Ab,i,z “

ř

hPH Ah
b,i,z, that must be higher than a submitted Acceptance Ratio

ARb,i,z : Ab,i,z ě ARb,i,z. Players that submit a Block Orders are usually nuclear or
thermal plants owners that can’t shut down their plants once turned on. As such the
order that they submit must ensure them that turning on the plant will be profitable,
i.e. that they can sell energy above the marginal cost during several hours. They can
also submit Linked Blocks (LB) that are a set of Block Orders with Acceptance of
elements of the set dependent on the Acceptance of others. Lastly, Exclusive Groups
EG are also sets of Block Orders, with the constraint Ab,i,z ď 1. The Social Welfare is
defined as

SWpOb,i,zq “ Ab,i,zPs,i,z
ÿ

hPH

Vh
b,i,z

• Complex Orders are a set CO of Step and Linear orders whose social welfare is the sum
of SW of all orders of the set:

SWpOc,i,zq “
ÿ

oPCO

SWpoq

Players submit Complex Orderswith a Minimum Income Condition (MIC) constraint
that stipulates that its profit should exceed a certain value, usually a fixed term (start-up
cost Cstart) and a variable term linear of the sold volume (marginal cost Cmarg) :

ÿ

oPCO

SWpoq ě Cstart ` Cmarg
ÿ

oPCO

AoVo

Scheduled Stop conditions modify the MIC so that plant owners don’t have to abruptly
shut down their plants on the first hour of a new auction. Lastly, Load Gradient
constraints make sure that volume differences from an hour to another do not exceed
a threshold δb,i,z: Ah

b,i,zVh
b,i,z P rA

h
b,i,zVh

b,i,z ´ δb,i,z,Ah
b,i,zVh

b,i,z ` δb,i,zs.

The network constraints are the following:

• Available Transfer Capacities (ATC) are the maximum amount of energy that can be
sent through a line :

Fh
z,z1 ď Γh

z,z1
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for all connections pz, z1q and hours h, with Γh
z,z1 the capacity of exchange between z and

z1 at hour h.

• Flow-Based Capacities (FBC) are another way of expressing the constraints of energy
flows between countries, by considering critical branches of the network. Critical
branches are significantly influenced by the cross-border allocation and have a risk of
being constrained due to network security reasons. Rather than considering connec-
tions separately, a Power Transmission Distribution Factor (PTDF) matrix is used to
describe how a commercial exchange would affect physical flows on a given critical
branch of the network. Each critical branch is a row of the PTDF matrix, and each coun-
try is a column: PTDF P Rncbˆnz . The determined energy flows F P Rnz shall respect
the following constraint : PTDF.F ď RAM with the Remaining Available Margin RAM
is the maximal capacity of the critical branch minus a safety flow reliability margin.
This method is only employed for specific bidding zones of the European Network
and increases social welfare overall by determining more precise flows.

• Energy Balance stipulates that supply and demand should match. In other words, the
sum of accepted volumes from all order types plus the sum of incoming and outgoing
energy flows should be null.

ÿ

tPts,l,b,cu,iPt

Ah
t,i,zVh

t,i,z `
ÿ

z1
Fh

z,z1 ´
ÿ

z1
Fh

z1,z “ 0

for all zones z and hours h. Note that we consider the volumes of supply orders as
positive and of demand orders as negative to simplify the notations.

Let’s summarize. euphemia has to determine the decision variables:

• Acceptance of Orders A

• Cross-Zonal flows F

that best maximize the sum of :

• SW from Step Orders

• SW from Linear Orders

• SW from Block Orders

• SW from Complex Orders

• SW from Congestion Rents

under the constraints:

• Acceptance Ratio of Block Orders

• Linked Block Orders

• Exclusive groups of Block Orders

• Minimum Income Condition of Complex Orders
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• Scheduled stop of Complex Orders

• Load Gradient of Complex Orders

• Available Transfer Capacities

• Energy Balance

Once A and F are computed, it’s possible to determine the Day-Ahead Prices Y by taking
the most expensive accepted supply order or the least expensive accepted demand order
Yh

z “ maxtPts,l,b,cu,iPt Ph
t,i,z ˚ signpVh

t,i,zq. Accepted orders also tell plant owners when to turn
on, how many volume to produce, and individual suppliers at which price they buy. Note
that once Yh

z is computed, all exchanges are conducted using Yh
z , not Ph

t,i,z (i.e. all suppliers
sell at Yh

z whatever their marginal costs and all consumers buy at Yh
z).

2.2 Electricity Price Forecasting Models

The subject of EPF has attracted numerous scientists since the successive market deregula-
tion in the 90s. The complexification of price-fixation algorithms, the increase of renewable
share in the energy mix and the opening up to competition of individual supply explain
the growing popularity of EPF. A plethora of methods have been studied, that can be split
in two categories. Traditionally, the same models were used for any commodity market.
They consisted in using expert domain-knowledge to simulate the market’s rules and logic.
Oppositely, Data-Driven approaches are based on using historical datasets to extract rela-
tionships between prices and market characteristics. In this section an overview of the most
important EPF models found in the literature is given.

2.2.1 Data-Driven methods

Once sufficient amount of data became available, Data-Driven methods revealed to be the
most efficient for modeling electricity prices [Weron, 2014]. They consist in learning relation-
ships between the prices and its past occurrences or exogenous variables using an historical
dataset. Only a few variables are necessary to fit a model that forecasts prices with more ac-
curacy than naive benchmarks, and Auto-Regressive (AR) methods can perform well using
only the price time series as input [Lago et al., 2018a].

2.2.1.1 Naive methods

The most common benchmark is to use the previous day’s price as the forecast Ypd´1q
z for the

current day. Variants capture the weekly seasonality of the prices by forecasting Ypd´1q
z if d

is a working day (except Monday), and Ypd´7q
z if d is a week-end day or a Monday.

Similar day methods [Nogales et al., 2002; Shahidehpour et al., 2003] seek a day with
similar characteristics to the one to predict based on external variables (generation forecasts,
weather, etc...) and uses the prices of this day as forecasts. They constitute a solid naive
regressor [Contreras et al., 2003; Nogales et al., 2002]. In combination, some contributions
used exponential smoothing where the prediction is an exponentially weighted average of
past observations [Cruz et al., 2011].
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Lastly, for the German market, the EXAA auction can be used as a benchmark [Ziel
et al., 2015b]. This exchange is a secondary market in Germany whose prices are published
at 10am. They are thus possible to include in a price forecasting model and give a good
overview of the German price.

2.2.1.2 Statistical models

Regression models consist of expressing the target as a parameterized mathematical expres-
sion of the predictive variable. The simplest expression is the Linear Regression:

zYpd,hq “ β0 ` β1 ¨

¨

˚

˚

˚

˝

Xpd,hq1
Xpd,hq2
¨ ¨ ¨

Xpd,hqn

˛

‹

‹

‹

‚

` εpd,hq

with n input variables X and white noise εpd,hq. Coefficients β1 P R
n and the bias βo is

estimated by minimizing the differences between predicted and observed prices (least square
methods) [Karakatsani and Bunn, 2008]:

pβ “ argmin
β

||Y´ pY||2

The most common variant of regression models is the Auto-Regressive (AR) model, that takes
into account the time correlations between prices. The input variables are past occurrences of
the prices Xpd,hq “ pYpd´1,hq,Ypd´2,hq, ¨ ¨ ¨ ,Ypd´w´1,hqq (with a window length of w). A Moving
Average term β2 ¨ ε can be added to this expression, where ε P Rq is a white noise term errors
and β2 new parameters to estimate. AutoRegressive Moving Average (ARMA) models have
been used for EPF in [Cuaresma et al., 2004; Misiorek et al., 2006].

When Xpd,hq contains both past prices and other variables, the term Auto-Regressive
using exogenous characteristics (AR-X) is employed [Contreras et al., 2003; Lira et al., 2009;
Nogales and Conejo, 2006; Nogales et al., 2002; Zareipour et al., 2006].

Threshold Auto-Regressive (TAR) models [Bunn, 1985; Gonzalez et al., 2011; Misiorek
et al., 2006] include a regime-switching logic. The regimes are switched if an observable
variable Xpd,hqt exceeds a threshold T:

zYpd,hq “

#

β1 ¨ Xpd,hq ` εpd,hq if Xpd,hqt ą T
β2 ¨ Xpd,hq ` εpd,hq otherwise

Lastly, The Generalized AutoRegressive Conditional Heteroskedastic models (GARCH)
[Diongue et al., 2009; Knittel and Roberts, 2005] aim to estimating residuals εpd,hq by represent-
ing the conditional variance σ2 of the time series by an autoregressive process. It addresses
the problem of heteroskedasticity (that occurs when variables have different variance) :

εpd,hq „ Np0, σ2q

σpd,hq
2
“ β1 ¨

¨

˚

˝

εpd,hq
2

¨ ¨ ¨

εpd´ω1,hq2

˛

‹

‚
` β2 ¨

¨

˚

˝

σpd,hq
2

¨ ¨ ¨

σpd´ω2,hq2

˛

‹

‚
` ω
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with different calibration windows ω1 and ω2, and a fixed term ω ą 0.

The simplicity and straightfowardness of these approaches explain their popularity.
Moreover, statistical methods are attractive to price forecasters because of the possibility to
link regression coefficients to market characteristics. While this provides explainability tools
for the users, it also introduces a drawback. Forecasters heavily rely on expert knowledge
to select the variables [Misiorek et al., 2006; Ziel and Weron, 2018]. A well-known outcome
is the so-called Expert model 1, defined as :

zYpd,hq “ β1 ¨

¨

˝

Ypd´1,hq

Ypd´2,hq

Ypd´7,hq

˛

‚` β2 ¨

¨

˝

Ypd´1,24q

Ypd´1,maxq

Ypd´1,minq

˛

‚` β3 ¨ Xpd,hq ` β4 ¨D

with auto-regressive effects (Ypd´1,hq, Ypd´2,hq, Ypd´7,hq) associated to coefficients β1 P R
3, the

last, maximum and minimum prices from the day before Ypd´1,24q, Ypd´1,maxq and Ypd´1,minq

associated to β2 P R3, the exogenous variables Xpd,hq to β3, and D date dummies to β4. Solving
the problem of automatic regressor selection for EPF has been tackled after R. Weron 2014’s
review in the papers [Ludwig et al., 2015; Uniejewski et al., 2016; Ziel, 2016; Ziel et al., 2015a].
It consists in adding a regularization term of order q to the regression : λ

řn
i“1 |βi|

q. For q “ 1,
some β can be set to 0 and eliminates regressors from the model. This feature grapping
method is rightfully called the LASSO for Least Absolute Shrinkage and Selection Operator
[Tibshirani, 1996] and studies such as [Uniejewski et al., 2016] claim that it significantly
outperforms regularization with q “ 2 (Ridge Regression [Hoerl and Kennard, 1970]) and the
Expert model. The Elastic Net [Zou and Hastie, 2005] uses a regularization term constructed
using q “ 1 and q “ 2 and yields even more accurate predictions. LASSO models were
extensively studied in EPF during several years [Janke and Steinke, 2019; Marcjasz, 2020;
Narajewski and Ziel, 2020a; Özen and Yıldırım, 2021; Uniejewski and Weron, 2018; Ziel and
Weron, 2018] and they constituted the state of the art statistical model until its upgrade in the
LASSO-Estimated Auto Regressive model (LEAR) [Lago et al., 2021]. This model renders
the estimated price Ypd,hq dependant not only on data from the corresponding hour h as in

the Expert model, but on all hours of the day. The expression for zYpd,hq becomes:

zYpd,hq “
24
ÿ

i“1

»

—

—

–

βpiq1 ¨

¨

˚

˚

˝

Ypd´1,iq

Ypd´2,iq

Ypd´3,iq

Ypd´7,iq

˛

‹

‹

‚

` β2 ¨ Xpd,iq

fi

ffi

ffi

fl

` β3 ¨D

with the exogenous features Xpd,iq P R2.

2.2.1.3 Machine Learning models

Many ML models have been studied and this section provides a list of the most popular
ones. Detailing the subtleties of all ML models is beyond the scope of this thesis. Instead,
links with the EPF task are given.

1This term used in the literature, denotes the necessary expertise to select the variables, and has to be
differentiated from our class of approaches that we also called Expert
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Support Vector Machines (SVM) [Sansom et al., 2003; Zhao et al., 2008] map data to
a higher-dimensions space using kernel functions, before computing decision boundaries
using linear functions. Usually, the Radial Basis Function kernel is used [Niu et al., 2010;
Shiri et al., 2015], but it’s possible to use a predefined kernel that better separates the data.
SVM are efficient models that work well with small datasets with numerous features. This
is usually the case with EPF datasets where X P Rndˆ24n f . Historical datasets are some-
times hard to constitute for some variables (small nd) and if considering lagged prices
Ypd´1,hq,Ypd´2,hq ¨ ¨ ¨Ypd´l´1,hq as variables, n f quickly grows. They have the disadvantage of
outputting only one scalar value. Hence, 24 models per zone to forecast have to be trained.

Random Forests (RF) [Mei et al., 2014] consist of a collection of Decision Trees trained
on different subsets of the input data. For each tree, the data is split using decision rules
that best discriminate the labels. By summing the number of times that a feature is used to
split the data across all trees of the forest, RF provide a feature importance evaluation that
is valuable for practitioners [Díaz et al., 2019]. The drawback of RF for EPF is that each tree
can only forecast a value that it has already seen. The averaging over numerous trees can
interpolate new values, but unseen price spikes can’t be extrapolated.

The first Neural Networks (NN) to be used for EPF contained a single linear layer, with
sigmoid or RBF activation functions [Garcia-Ascanio and Maté, 2010; Pindoriya et al., 2008]
that use Gaussian kernels [Amjady and Hemmati, 2009; Chen et al., 2012; Cruz et al., 2011;
Garcia-Ascanio and Maté, 2010]. More complex NN were then used in [Keles et al., 2016]
and [Lago et al., 2018a] that introduced a model that they qualified as Deep Neural Network
(DNN). This model consists of two dense hidden layers, followed by a 24-neurons output

layers whose output values are yYpdq. The difficulty in training DNNs for EPF is the number
of trainable weights nw, that is significantly larger to the number of training samples nd. For
instance, [Lago et al., 2018a]’s DNN has nd « 1200 and nw “ 750 ˚ 239 ˚ 162 ˚ 24 “ 700M
weights as illustrated in Figure 2.2. As a result, performances are heavily dependent on
weight initialization and in a follow-up study, [Lago et al., 2021] observes large performance
variations for different runs.

Convolutional Neural Networks (CNN) have also been used by [Cheng et al., 2020; Khan
et al., 2020] to forecast prices. CNNs extract features from a n-dimensional input by moving
filters along the dimensions. Each filter can be viewed as a local feature extractor. Typically
for EPF, convolutions are performed over the time dimension that has a length of 24 and
sometimes the variable dimension. The variable dimension is made of the employed features
(generation forecasts, consumption forecasts, etc...) and is thus usually small, compared to
the Imagenet dataset (222 ˆ 222) that made CNNs very popular [Krizhevsky et al., 2012].
Also, results can vary based on how the features are ordered in the first place since it changes
the value of kernels. [Lago et al., 2018a] decide to only perform 1-dimensional convolutions
over the time dimension, bypassing the problem of feature ordering but ignoring interac-
tions between variables during kernel feature extraction. A summary of those problems is
displayed in Figure 2.3.

Recurrent Neural Networks (RNN) add memory to the network. Each neuron’s output is
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Figure 2.2 – Using a DNN for Day-Ahead price prediction. Dense layers with n1 and n2
neurons require n1 ˚ n2 trainable weights.

now a direct input of the same neuron, for the next training iteration. The Long Short-Term
Memory (LSTM) extend the principle of the RNNs [Anbazhagan and Kumarappan, 2012;
Chen and Zhang, 2021; Sharma and Srinivasan, 2013] and combine time-dependencies from
different horizons. LSTM are capable of modeling long-term and short-term time depen-
dencies at the same time. Lastly, a Neural basis expansion (NBEATs) model introduced in
[Oreshkin et al., 2019] to the EPF task [Olivares et al., 2023]. This model consists in decom-
posing the input signal using predefined projections V. Similar to a Convolutional Neural
Network with residual connection, the input data goes through a series of independent
blocks. Each block is made of several dense layers, followed by the projection on 2 separate
predefined vectors Vback and V f or. Vback is subtracted from the block’s input to constitute the
next block’s input. The idea is that this quantity reaches 0 in the last block. V f or is summed
with all other block’s forecasts to constitute the model’s forecast. Similarly to LSTM, each
block can then capture a specific seasonality. This sounds ideal for EPF where there are
annual, weekly and daily seasonality components in the price. However, we must keep in
mind that market participants can’t buy electricity for a period pd, hq and sell it later at pd1, h1q.
Hence, there is no reason why past prices should be the cause of a next day’s prices. Even
though, some studies that use LSTM [Andalib and Atry, 2009; Sharma and Srinivasan, 2013]
claim that those models are superior to traditional Neural Networks.

2.2.1.4 Milestone Papers

A significant milestone for EPF is the work of [Lago et al., 2018a]. It is a good introduction
to EPF in general as it gives an overview of the appropriate procedure for forecasting
prices (data processing, data splitting, hyper-parameters selection, model evaluation) and
an overview of the most popular models. The authors compare 24 Statistical and Machine
Learning models that were used in previous contributions in the EPF field. Among those
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Figure 2.3 – Using a CNN for Day-Ahead price prediction. (TOP) and (MIDDLE) Modifying
the order of the variables X in the reshaping process can cause a difference in the value of
the computed kernel. (BOTTOM) [Lago et al., 2018a]’s convolutions are only performed on
the time dimension.

models were AR models and their variants ARX, TARX, ARIMA, GARCH, as well as standard
ML models (RF, SVR) and ANN models such as MLP, DNN, LSTM, CNN. The authors
concluded that the DNN model significantly outperforms other models on the Belgian
dataset. In a follow-up study [Lago et al., 2021] established a rigorous evaluation procedure
for model comparison, and set the LEAR and DNN models as the two most adequate models
for forecasting prices.

2.2.2 Expert models

In order to enforce the numerous physical constraints inherent to electrical network, as well
as for limiting unfair behaviors from oligopoly companies, electricity markets are under
heavy regulations. Many EPF models use expert-knowledge to replicate those rules and
simulate prices.

2.2.2.1 Fundamental Analysis

In Fundamental analysis, functional relationships between electricity price and its main
drivers (load, weather, commodity prices), which is called the bid stack, are first formulated.
Then, the drivers are forecasted independently using other processes (usually statistical
models). The bid stack can be constructed by sorting all available power plants by increasing
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marginal cost. Plants are activated until the estimated demand is reached. Then, the price
forecast is the price of the last (and therefore most expansive) plant to be turned on. A
graphical explanation of the bid stack is available in Figure 2.4. Because the pricing of
such plants is easier to replicate, this approach works better on hydro-dominated markets
such as Scandinavia [Johnsen, 2001; Vehviläinen and Pyykkönen, 2005], where snowfall is
the main variable to consider. On other markets where thermal plants are available, the
prices of other commodities have to be forecasted. Other strategies estimate the relationship
between the price and its drivers using a stochastic process : the Ornstein–Uhlenbeck process
[Boogert and Dupont, 2008]. In combination, a transformation can be applied to the prices
such as the inverse Box-Cox [Barlow, 2002] or the hockey-stick curve that better matches
the empirically observed curves [Kanamura and Ōhashi, 2007]. The weaknesses of those
approaches lie in the formulation of the relationship between the drivers and the prices that
is hard to make exhaustive due to the number of available plants in a country. Additionally,
data about certain plants may be missing, rendering the marginal cost or available capacity
impossible to compute. Lastly, the forecast of the price drivers induces imprecision that are
twofold. First, forecasting commodity prices such as gas price is in itself a difficult task
because it also depends on numerous factors. Then, the drivers are always forecasted by
minimizing a prediction error, which means obtaining the forecasts as close as possible to the
true values. However, the real error that has to be minimized is the EPF error. Depending
on the formulated relationship between prices and drivers, a low error on the drivers could
lead to important prices differences.

2.2.2.2 Strategic Production-Cost

To improve over Fundamental Analysis, Strategic Production-Cost models consider market
players as agents that aim to maximizing their gains. To do this, they construct each agent’s
expected behaviors taking into account their marginal costs [Batlle, 2002; Batlle and Barquín,
2005]. For this, they rely on market regulations that stipulate that suppliers can’t sell en-
ergy higher than their marginal costs to prevent important actors of oligopolistic markets
to manipulate the electricity price for their own profit. More sophisticated versions of this
approach also simulate strategic bidding [Wood et al., 2013] that is, each agent considers
other agents’ strategies. The market equilibrium is expressed as a set of algebraic equations.
It relies on the balancing requirements of markets that need a constant balance between gen-
eration and consumption. The market equilibrium is obtained by solving the system [Ruibal
and Mazumdar, 2008] from which a price is deducted. The unavailability of generation units
[García Alcalde et al., 2002; Vives, 1999] can be added to the equation system. The player’s
reaction to rivals can also be taken into account. Thus, the equilibrium is computed using
differential equations [Baldick et al., 2004]. Those methods are still difficult to employ in
applications where a good precision is required. They usually introduce a bias in the results
with prices higher than observed. They fail to produce quantitative results and hardly adapt
to deregulated markets.

2.2.3 Synthesis

The limitations of the EPF literature lie in the fracture between Expert models and Data-
Driven approaches. Expert models follow closely market regulations, estimate bidders
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Figure 2.4 – All available plants are sorted by increasing marginal cost, until the estimated
demand volume Vd is reached. Then, the price forecast is the marginal price of the most
expansive plant P‹.

strategies and simulate price fixing algorithms. As such, the forecasted prices are consis-
tent with the market characteristics and their relationships with the fundamental variables
are understandable. Because Expert models represent exact relationships between drivers
and prices, uncertainties in the drivers drastically reverberate in the forecasts accuracy, ren-
dering Expert models noncompetitive. Oppositely, Data-Driven methods can account for
drivers unreliability by constructing its own relationships between drivers and price. It
turned out that the forecasting accuracy of Data-Driven methods largely outperforms that
of Expert models. However, most Data-Driven models are black-box models whose train-
ing procedures completely occult market rules and price fixation mechanisms. As a result,
the constructed relationships between drivers and prices are opaques and price forecasts
can lack consistency with the fundamental variables. For numerous applications of price
forecasts such as day-ahead trading, consistency of the prediction with the market and un-
derstandability of the forecasts is paramount, but a model that forecasts wrong values is also
undesirable.

2.3 Limitations

We use the term correctness to define how close a forecast is to the real price. This is easily
measured by the difference between the price and the forecast. The term consistency describes
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how coherent a forecast is with respect to the fundamental variables or market regulations.
It is qualitatively measurable along several criteria that we will present throughout this
section. These two terms allow us to summarize the respective limitations of Expert models
and Data-Driven approaches by the trade-off between correctness and consistency. Expert
models models are consistent but lack correctness. Data-Driven methods excel in correctness
but miss consistency. In this section, we will focus on the attempts to improve consistency
of various Data-Driven approaches and detail why they are incomplete.

2.3.1 Understanding the predictions

Once trained, Data-Driven approaches are characterized by their opacity. The test set error
provides an overview of the forecast quality, yet it is difficult to describe the interactions
between the forecast and the input variables. In the EPF literature, attempts to explain fore-
casts are babbling. The only few studies that are covered here provide global explanations
to the forecasts, that give a general idea to the end-user on how a model works, which input
features are important, which market specificities are captured or how the model reacted to
an unprecedented event.

For instance, the Covid-19 pandemic and its successive impacts on electricity markets
have been poorly addressed. [Narajewski and Ziel, 2020b] and [Suvarna et al., 2022] focus
on load forecasting, while [Arya and Chandrakala, 2021] is not comparing its results to the
state-of-the art models (LEAR and DNN), and prediction errors are not properly analysed
against the market characteristics using explainability tools. Consequently, the relationship
between prices and current situation (lock-downs, regulations, etc...) is not put forward.
The work of [Lago et al., 2021] introduces benchmarks whose test set is the year 2016. The
Covid crisis and its repercussions are thus out of the scope of the benchmark, whereas ex-
perts from businesses agree that those events where game-changers. Price histogram and
statistics from this period can be observed in Figure 2.5 where it clearly appears that a new
regime has been in place since 2021. It is also important to note that Data-Driven models
require extensive historical datasets to integrate new regimes. Furthermore, models such as
the Random Forests are not able to extrapolate values not present during training. As such,
drastic changes in market prices will not be properly forecasted.

2.3.1.1 Model-Specific methods

Models natively providing some kind of explanations have been used to measure the impact
of input features on the forecasted price. The Auto-Regressive models’ weights are analyzed
for EPF in [Ziel, 2016]. They consider the weights β1, β2, β3, β4 of the Expert model trained for
forecasting the German prices. They find that the last price of the previous day Ypd´1,24q is
the most important input variable for all hours of the next day, β2,1 ą ą βi, j @i, j. They also
note that the price of the previous day Ypd´1,hq for the same hour to predict is important: β1,1
has a high value. Moreover, they show that weekly lagged values Ypd´7,hq are not considered
important by the model because β1,3 is low. Results of [Maciejowska et al., 2022] confirm
this finding using a more sophisticated LEAR model. Their results are displayed in Figure 2.6.
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Year Average (eMWh STD (e/MWh)
2016 36.75 24.44
2019 39.44 14.02
2020 32.2 16.11
2021 109.16 84.3
2022 275.84 145.82

Figure 2.5 – (LEFT) Sample Hourly Day-Ahead prices from the French market for different
years. The year 2016 that is used for testing in the literature [Lago et al., 2021] is plotted
in black and does not represent the current situation, especially during time of crisis (year
2021 in red). (RIGHT) Average price and Standard Deviation for several years in the French
Market.

The drawback of using LEAR weights and RF feature importance is that the obtained
values are model specific, making them either irrelevant due to model performance or impos-
sible to compare with other methods. The two considered models are, according to [Lago
et al., 2018a], among the worst performing ones. [Van der Heijden et al., 2021] state that the
ARX results can be incomplete because they can only capture linear relationships between
data. Oppositely, RF can only grasp non-linearity between variables. Feature selection from
these models could be misleading: perhaps the feature is not considered important by the
model because it failed to capture its dynamics.

2.3.1.2 Feature selection

The abundance of price drivers available to forecasters and the incapacity for several models
to be efficiently trained with an exceeding number of variables (n f ą nd) led the scientific
community to focus on feature selection from the feature set χ. Selection criteria are based
on a feature importance value that helps in understanding the model.

For instance, [Lago et al., 2018b] considers features as hyper-parameters that are se-
lected using a Tree Parzen Estimator (TPE) algorithm [Bergstra et al., 2011]. The TPE op-
timizes a black-box function M that maps a hyper-parameter set θi to an evaluation loss
li. New hyper-parameters configurations θ j are explored by taking the local minima of
M : θ j “ arg minθ Mpθq. In addition to this hyper-parameter sampling process, authors
use the functional ANOVA methodology [Hutter et al., 2014] that decomposes the model
performance variations into the sum of effects of all possible feature subsets x Ď χ. The
importance of a subset x can be expressed as: Ix “

Vx
V with Vx the variance induced by a

subset x and V the total variance. [Lago et al., 2018b] computes the importance Ix for all
individual features x P χ and pairwise interactions x P χ2. Then, features whose individual
or pairwise importance exceeds a threshold ε “ 0.5% are selected. They apply their method-
ology for predicting the Belgian prices based on the generation and consumption forecasts
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Figure 2.6 – The LEAR weights of Ypd´1q (y-coordinates) for predicting Ypdq (x-coordinates)
on the German market (Figure from [Maciejowska et al., 2022]).

and price history of France and Belgium. In a first experiment, they find that the Belgian
generation forecast degrades performances with a high importance value: Ix “ 75%. In a
second experiment, they discard the Belgian generation forecasts and repeat the process.
They find that French data accounts for more than 50% of the variance while significantly
improving the metrics.

Also, [Van der Heijden et al., 2021] uses an ARX and a Random Forest to select candidate
features to include in the training set of LEAR and DNN models. Particularly, they focus on
selecting the best features from European countries to fit an EPF model on the Dutch market,
using a two-stage method. In a first step, they consider the consumption, consumption
forecast and past day-ahead prices from all European zones to fit an ARX and a RF model
for predicting the Dutch prices. Based on the joint analysis of feature weights in the ARX
and feature importance in the RF, they select all countries whose weights or importance
in forecasting Dutch prices are above 5%. They also select neighbors of the Netherlands.
In a second step, they use their reduced dataset that contains 7 foreign countries (France,
Germany, Belgium, Great-Britain, Norway, Denmark and Italy) to fit more sophisticated
LEAR and DNN models [Lago et al., 2021]. They include each foreign country’s features
one by one and measure the performance increase on the validation dataset. Countries are
discarded if they deteriorate performance. They end up keeping only 3 countries: France,
Great-Britain and Denmark. [Van der Heijden et al., 2021] show that their selected features
lead to significant performance increase on a separated test dataset. The first selection step
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shows the limits of model specific methods. Nothing states that a feature selected based on an
ARX or RF model would also be significant for a LEAR and DNN. This is especially true for
DNN models whose performances are sensible to the number of input features.

Apart from it, both methods use model agnostic methods. Aiming at selecting features that
increase correctness, the proposed methods provide only global explanations of the forecasts:
interactions between features and predictions are averaged over the considered period.
Given a single prediction, it’s not possible to tell which feature acted on the price and how
much.

2.3.1.3 The need for model-agnostic individual explanations

The two major flaws of the four considered studies is that 1) they use model specific feature
importance measures 2) The Representativeness 2 of their methods covers the entire dataset:
they produced global explanations. The first is problematic because the used methods are tied
to underperforming models that make the obtained results limited or difficult to compare.
The second makes it impossible to explain a single forecast. In EPF, the price is forecasted by
many variables that are estimations such as consumption or renewables, and knowing which
characteristics were the most important for a prediction helps practitioners using the model.
It’s possible for instance to include last-minute information (e.g. a plant unavailability, a
strike, etc.) directly to the forecast. Also, some usage (e.g. trading) of a price forecast
requires significant trust of the model’s results, that can be provided by individual forecast
explanations. Model-agnostic individual explanation tools such as SHAP [Lundberg et al.,
2020] would be suitable for EPF as it allows comparing contribution between different
models. Individual explanations are a crucial tool and their absence limits the model usability
by practitioners. Feature importance, model-agnostic explanations and individual forecast
explanations are three criteria that increase the consistency of a model.

2.3.2 Considering the European Network

Markets under study span across almost all European countries. The most studied countries
are Germany, Spain and the United Kingdom. Many studies also consider the Scandinavian
system price 3. Surprisingly, the French market is understudied whereas it is the second-most
important market in Europe. Moreover, the French consumption or generation forecasts are
crucial variables to explain the Spanish, German, or Belgian prices. Table 2.1 summarizes
the most important publications for each European market.

2.3.2.1 Considering several markets

Most of the literature focuses on forecasting prices of a single market. This questions the
flexibility of the trained model as there are no guarantees that performances will be good
on a market with other characteristics. Many factors have to be reconsidered while crossing
borders such as the energy mix of a country, its demand sensibility to temperature changes,

2Representativeness is defined in [Molnar, 2020] as the span of an explanation: global (on the entire dataset)
or individual (on a single forecast).

3The system price is computed by isolating the Nordic regions (Norway, Sweden, Finland, Denmark and
the Baltic) and considering unlimited exchange capacity between those zones.
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Market Publications
Germany [Marcjasz et al., 2018] [Ziel and Steinert, 2016] [Lago et al., 2021]

Spain [Conejo et al., 2005] [Díaz et al., 2019]
Belgium [Lago et al., 2018b] [Lago et al., 2018a] [Lago et al., 2021]
France [Lago et al., 2018b] [Lago et al., 2021]

Scandinavia [Lago et al., 2021] [Olivares et al., 2023] [Kristiansen, 2012]
United Kingdom [Gonzalez et al., 2011] [Karakatsani and Bunn, 2008]
The Netherlands [Van der Heijden et al., 2021]

Table 2.1 – Most frequently considered markets in Europe, and their most relevant contribu-
tions.

the power plants availability, the bidding strategies of suppliers, local regulations, etc. Also,
studies that assess their models on several markets consider them separately [Lago et al.,
2021] i.e. they fit independent regressors for each countries. They evaluate 4 different
LEARs and DNNs models on different European areas and find that all DNNs significantly
outperform all LEARs on German and Belgian datasets, while only 2 LEARs in Scandinavia
and 1 LEAR in France. If tested against more powerful models (i.e. SVR), DNNs might be
outclassed in specific markets.

The attempt of [Lago et al., 2018b] to forecast the prices of 2 neighboring countries (France
and Belgium) using a single model concluded that the multi-forecasting model performed
significantly better than the individual models on 7 out of 24 hours. This study was only
limited to 2 countries, however, on the European market, the euphemia algorithm computes
prices of the 39 zones by aggregating orders from all countries. Figure 2.7 displays the
different zones of the European market. Technically, all prices thus depend on the Order
Book from all other countries. Modeling pan-European electricity prices is a goal that has
never been achieved in the EPF literature.

2.3.2.2 Energy Exchanges

Order Books from neighboring zones z and z1 interact with each other using cross-zonal
flows Fz,z1 . Connection lines between two zones have fixed Available Transfer Capacities
(ATC) Γz,z1 that can be filled to balance energy across both countries : Γz,z1 limits energy
exchanges between countries. This means that the importance of neighbors is dependant on
cross-border flows as well as on its fundamental forecasts (renewable, consumption). The
latter is considered in [Van der Heijden et al., 2021] that use the features of the Netherland’s
neighbors as input variables of their Dutch prices forecasting model. To choose which coun-
tries to include, they analyze the ARX weights, RF feature importance and ATC. The flaw
in their methodology is that ATCs are only considered in the first selection step and are not
included in the final model training, whereas they are necessary to quantify the energy flows
between two zones. To the best of our knowledge, the consideration of cross-zonal flows in
a ML EPF model has never been achieved in the literature.

Lastly, in their study, [Van der Heijden et al., 2021] find that the Italian data (IT-NORD)
has significantly high ARX weights and RF feature importance, even though Italy and the
Netherlands share no border. To exchange energy between those 2 countries, one has to cross
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Figure 2.7 – The different bidding zones whose price is computed by euphemia. Countries
can be split into several zones that have unique prices (Italy, Scandinavia). Country codes are
displayed in place of the zone names. A conversion table can be found in the Appendix B.1.
Connection lines between zones are represented by black segments if constrained by ATC,
and by green ones if constrained by Flow-Based.

several other zones and the problem thus complexifies. The shortest path is Belgium-France,
Germany-Switzerland or Germany-Austria, but perhaps the cheapest option is to send en-
ergy through more countries : the considered connection lines could already be overflown,
or the cost for sending energy through a specific line too expensive. The problem to be
solved is translated as finding the path with the lowest cost t‹ among all possible paths T
from the Netherlands to Northern Italy, while ensuring that all flows from crossed countries
are not exceeded Fz,z1,h ď Γz,z1,h @ pz, z1q P t for all hours h. The topological structure of the
European network has to be considered. Yet, the models that they later trained to forecast
the Dutch prices (LEAR, DNN) are fed with tabular data that do not account for topology.
Only a Graph structure can represent the European Network. Despite this, Graph Neural
Networks (GNN) have never been used in the EPF field.

Three aspects should be considered to enrich the EPF literature. First, Multi-zone fore-
casting models can improve both correctness and consistency. Then, cross-zonal flows
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should be modeled using ATCs. Lastly, the Graph data structure is the only way to model
the topology of the network.

2.3.3 Considering the Price Fixation Algorithm

Expert-Based Approaches aimed at replicating the market rules and price fixation mech-
anism, then simulating scenarios under those rules to obtain a price. Due to their poor
performance, they have been replaced by Data-Driven approaches that completely occult
the price fixation mechanism.

2.3.3.1 Aggregated Curve

The only approach that integrates elements from the PFA in a price forecasting model is
based on the estimation of aggregated curves (AC) [Ziel and Steinert, 2016]. ACs graphically
represent the Order Books for a specific hour and zone (we use the notation ACpd,hq), with all
complex and blockorders transformed into stepor linearorders. AC can only be drawn after
the price computation to decompose complex and block orders and are published shortly
after price computation by the exchange. Supply bids are sorted by increasing selling cost
and the volumes are accumulated. Demand bids are sorted by decreasing buying price. We
formulate the AC as a function that computes the total bid volume as a function of the selling
price P:

ACpd,hq “
´

Spd,hq,Dpd,hq
¯

Spd,hqpPq “
P
ÿ

p“pmin

vpd,hqS ppq

Dpd,hqpPq “
pmax
ÿ

p“P

vpd,hqD ppq

with Spd,hq and Dpd,hq respectively the supply and demand curves, pmin and pmax the minimal
and maximal prices for a bid fixed by the exchange and vpd,hqS ppq and vpd,hqD ppq the bidded
volumes for a given price p for supply and demand. The optimal price P‹ can then be found
exactly at the intersection of the supply and demand curves:

P‹ “ tP|Spd,hqpPq “ Dpd,hqpPqu

We formalize this notation by introducing the Intersection function I that maps an element
from the AC domainA to the day-ahead price:

I : A ÞÑ R

ACpd,hq Ñ Ypd,hq

Analysing the AC reveals the real sensibility of the price to shifts in supply or demand.
Similarities between the the bid stack and the supply side can easily be drawn in Figure 2.8.
On the one hand, volume shifts can be absorbed by generation excess, for instance in
Figure 2.9 where lowering the demand at highest price by 30MWh does not modify the price
since the same set of plants has to be turned on. On the other hand, turning on a more
expensive plant can drastically increase the price with only a small extra produced volume,
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as it is the case in Figure 2.10 where a small decrease of 5MWh in the generation at lowest
price significantly increases the price. Note that on all three figures, we displayed the price
as a function of the bid volume (S´1 and D´1) to follow the conventional representation of
AC.

Figure 2.8 – Arbitrary Aggregated Curves with the supply in blue and demand in red.
Similarities with the Bid Stack can be drawn on the supply side where each step corresponds
to a plant with a fixed marginal cost and generation volume.

Figure 2.9 – Arbitrary Aggregated Curves with the supply in blue and demand in red. A
medium shift of 30MWh in demand (red-dashed line) does no changes the optimal price P‹
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Figure 2.10 – Arbitrary Aggregated Curves with the supply in blue and demand in red. A
small shift of 5MWh in generation (blue-dashed line) drastically increases the optimal price
P‹.

2.3.3.2 The X-Model

[Ziel and Steinert, 2016] propose a method to estimate AC for the hour to predict and to
compute the price as the intersection of the two curves, forming the so-called X-Model. This
approach is unique because it aims at integrating elements from the PFA directly into the
prediction model. Considering EUPHEMIA while forecasting prices is a major issue in EPF
and the X-model is the only approach that addresses it.

Estimating xAC
pd,hq

is a difficult task as the number of points in each curve is high (several
hundreds) and varies every hour. Thus, prior to training, the authors first summarize the
curves by extracting the sum of bid volumes for np “ 15 predefined prices PS and PD, on
the supply and demand side. The AC are first averaged across the dataset:

ĎAC “
`

sS, sD
˘

ĘSpPq “
1

nd ˚ nh
Spd,hq pPq

ĘDpPq “
1

nd ˚ nh
Dpd,hq pPq

Then, P are computed by projecting equally spaced volumes on the curves:

PSi “ sS´1pi ˚ Vstepq

PDi “ sD´1pi ˚ Vstepq

with i “ 1 : np and Vstep a predefined volume Vstep “
Vmax

np
and Vmax “ max

P
psSpPq, sDpPqq. P are
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then projected back on each available curves and volume values are extracted:

Spd,hqvi “ Spd,hq pPSiq

Dpd,hqvi “ Dpd,hq pPDiq

A graphical explanation of this process is displayed in Figure 2.11. The 30 extracted values
constitute a reasonably-sized targets that is forecasted using an Auto-Regressive process m
and exogenous features X.

´

zSpd,hqv,{Dpd,hqv
¯

“ mpXq

with m trained using historical Sv and Dv. Then, they employ a reconstruction algorithm that
simulates orders between forecasted points. The idea is to draw more points from ACpd,hq to
get a finer price estimate. The general formula for the reconstructed curves is given by:

{ACpd,hq “
´

zSpd,hq,{Dpd,hq
¯

zSpd,hq pPq “
RspPqsSpPq

ř

pPrPSi,PSi`1r
RSppqsSppq

zSpd,hqvi @ P P rPSi,PSi`1r

{Dpd,hq pPq “
RDpPqsDpPq

ř

pPrPDi`1,PDir
RDppqsDppq

{Dpd,hqvi @ P P rPDi`1,PDir

with RSpPq being a Boolean variable that indicates if there is a supply order at price P between
PSi and PSi`1. Authors use the following formula:

RSpPq “

#

1 if |tvpd,hqS pPq ą 0|d “ 1 : nd, h “ 1 : nhu| ě 2 ˚ nd ˚ nh

0 otherwise

that is, if price P is used for bidding at least twice a day in the historical dataset. Similar
reasoning is applied to RDpPq. We call this step the Reconstruction function ρ that maps

extracted points
´

pSpd,hqv , pDpd,hqv

¯

to an AC:

ρ : R2ˆnp ÞÑ A
´

pSpd,hqv , pDpd,hqv

¯

Ñ xAC
pd,hq

The method proposed by [Ziel and Steinert, 2016] is summarized below:

TRAINING :

1. Compute ĎAC “
`

sS, sD
˘

2. Compute PS and PD by projecting Vi on sS and sD

3. Compute Spd,hqvi and Dpd,hqvi on all pd, hq of the training dataset by projecting PS on Spd,hq

and PD on Dpd,hq.

4. Fit m to estimate zSpd,hqvi and {Dpd,hqvi based on X

PREDICTION :

1. Forecast
´

zSpd,hqvi,
{Dpd,hqvi

¯

Ð mpXq
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2. Reconstruct {ACpd,hq Ð ρ
´

zSpd,hqvi,
{Dpd,hqvi

¯

3. Intersect zYpd,hq Ð IpxAC
pd,hq

q

Figure 2.11 – [Ziel and Steinert, 2016]’s method for summarizing AC. (LEFT) the computation
of PD by projecting equally spaced volumes on the averaged demand curve sD. (RIGHT)
Extraction of 5 points from an arbitrary demand curve Dpd,hq by projecting the prices back to
the volumes. The obtained Dvi are the targets to estimate.

[Kulakov, 2019] later extends this reasoning by combining the supply and demand curve.
They extract the inelastic demand Dpd,hqppmaxq and form a combined curve SDpd,hq pPq by
adding supply and demand volumes.

SDpd,hq pPq “
P
ÿ

p“pmin

vpd,hqs pPq ` vpd,hqd pPq

The day-ahead price can then be found at the intersection of the curve SDpd,hq and the line
Dpd,hqppmaxq:

Ypd,hq “ tP|SDpd,hq pPq “ Dpd,hqppmaxqu

A graphical summary of their approach is displayed in Figure 2.12. As a result, there is only
one curve to estimate that they represent using 19 extracted points SDpd,hqvi and the inelastic

demand Dpd,hqppmaxq. Estimation of {ACpd,hq is performed using the AR model and recon-
structed with [Ziel and Steinert, 2016]’s method. They report an error drop of 1.1e/MWh
compared to the original X-model, with an execution time 3 times lower.

[Schnürch and Wagner, 2019] apply [Kulakov, 2019]’s transformation to the AC. The

difference is that rather than estimating {ACpd,hq, they consider the previous day’s extracted
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Figure 2.12 – [Kulakov, 2019]’s extension of the X-model. The supply and demand curves
are added and the price can be found by intersecting this curve with the inelastic demand.

points SDpd´1,hq
vi as input features and directly forecast prices. The prices are forecasted

using an AR, Random Forest or DNN model. Thus, they leave the curve reconstruction and
intersection part to a black-box ML model. They somehow also choose to map input data not
to the expected price Ypd,hq but to the closest extracted price Ppd,hq. The error |Ypd,hq ´ Ppd,hq|
is 2e07/MWh on their dataset meaning that even a perfectly forecasted zPpd,hq model will
have a significant error. They also perform feature selection using Random Forest feature
importance to fit the DNN using all SDpd´1,hq

vi , 10 of them, 20 or 0. They find that the best

results are achieved by the DNN using all SDpd´1,hq
vi , supporting their method.

2.3.3.3 Limitations of the X-Model

[Ziel, 2016]’s method is the only attempt to mix the Data-Driven approaches and Expert
Models in a single model. However, it is incomplete in many ways but illustrates well the
difficulty of producing forecasts that are both correct and consistent with the market.

• First, the averaging on all historical dataset ĎAC will distribute thePi around a price area
that is not representative of the distribution of Ypd,hq that are subject to high seasonality.
Projected back to specific auctions,Pi are not guaranteed to represent important points
of ACpd,hq.

• Also, the AR model m that is used in [Ziel and Steinert, 2016] and [Kulakov, 2019] is
outdated. Modern ML models could be better suited to forecast the extracted points.
Also, the obtained metrics are not significantly better than evaluated baselines. The 3
considered studies fail to beat the EXAA benchmark.
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• Thereafter, in this method, the forecasting model is trained to minimize the error on
SDvi. However, nothing states this will lead to a good price prediction error. The
price forecasting error should be taken into consideration while training m. Figure 2.13
illustrates this problem.

• Lastly, the curve reconstruction ρ, based on the occurrences of bids at a specific price
in the historical dataset is not representative of the reality because it assumes that
bid prices are constant over time. Except for specific plants with a relatively fixed
marginal cost (nuclear), plant owners will modify their selling price according to their
costs that is dependant on other commodities prices. Similarly, buyers usually adapt
their strategies with the current price levels. This method is incompatible with drastic
changes that occur in the market (see Figure 2.5). As such, it introduces bias since it’s

impossible to perfectly reconstruct the AC based on SDvi : ρ
´

SDpd,hqvi

¯

, ACpd,hq and

thus I
´

ρ
´

SDpd,hqvi

¯¯

, Ypd,hq.

Considering the end task (price forecasting) during curve estimation as well as the kind
of selected models affect the correctness of the results. It involves adapting the proposed
methodology to lower the price forecasting error. This will not affect consistency because
nothing new will be modeled or explained. Oppositely, selecting more relevant points
to summarize ACpd,hq or improving reconstruction by repricing supply bids according to
commodity prices will not necessarily improve the correctness of the results. However, it
increases the consistency of the model since it gets closer to the euphemia algorithm.

Figure 2.13 – In the Xmodel, the training of the xSD forecasting model m only considers the

error on xSD, while the error on the price forecast zYpd,hq is disregarded.

2.3.4 Synthesis

Figure 2.14 summarizes the cited works. It displays the models on a 2-dimensional. The
x-coordinate represents the consistency, measured by how many criteria are met. The y-
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coordinate represents the correctness, estimated based on the average absolute error. Im-
provements to these models, either from the literature or discussed in this chapter, are
displayed with arrows.

• [Ziel, 2016] and [Maciejowska et al., 2022] studied the possibility to understand the
forecasts of their models by analyzing the weights of an AR-X model and feature
importance of a RF model. Although limited to models less efficient than DNN, their
work reveals the benefits of understanding a model’s forecast for feature selection and
user confidence, leading to more consistent results. A model-agnostic feature-selection
method could increase consistency of any model.

• [Lago et al., 2018b] and [Van der Heijden et al., 2021] have shown that including data
from neighboring countries, and performing multi-country forecasting using a single
model, significantly improved performances of a LEAR and DNN models while getting
closer to the real price fixation mechanism.

• [Ziel and Steinert, 2016], [Kulakov, 2019] and [Schnürch and Wagner, 2019] study a
transformation applied to Aggregated Curves that allow them to incorporate informa-
tion about the bidding structure of the auction in a price forecasting model. Even if the
proposed method suffers from various flaws, their proposed X-Model is able to grasp
part of the price-fixing mechanism while yielding a reasonable accuracy.

In the literature, the pursuit of correctness is put forward with the abundant use of Data-
Driven approaches. As such, price fixation mechanisms, which are better captured by Expert
models, are no longer considered. In particular, the euphemia algorithm, a Mixed-Integer
Optimization Problem (MIQP), has never been considered in combination with a ML model
in the field of EPF whereas it is the most consistent way of predicting prices. Specifically, we
will consider a ML model m that forecasts Order Book, the input of euphemia. The challenge
of such a model is to train the OB forecasting model to minimize the price forecasting error,
as displayed in Figure 2.15. The next section of this chapter is thus dedicated to the study of
the Constrained Optimization Learning field, in the objective of integrating the euphemia logic
into a ML model.

2.4 Constrained Optimization Learning

In this part, we focus on methods that will allow us to integrate the euphemia problem into
an EPF model. Many other real-world problems are constrained by technical requirements
or physical laws. As such, Constrained Optimization Problems (COP) are the most adequate
formulation for many well-known tasks (traveling salesman, knaspack, shortest path, etc.).
However, sometimes, parameters of the COP are unknown and estimated using a ML
model. In this section, we describe the approaches that learn to forecast the parameters of a
CO problem using ML, called Constrained Optimization Learning (COL).

2.4.1 Notations

We use the following notation for optimization problems, where the cost function J depends
on n optimization variables θ and m fixed coefficients c. The p equality constraints Gi and
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Figure 2.14 – A summary of the current EPF models evaluation against 2 criterion : con-
sistency and correctness. Consistency is estimated based on the various criteria listed in
previous sections. Correctness values are based on the values of the price forecasting met-
rics. Arrows indicate a possible improvement against one or two criteria. Green color is
associated with improvement found in the literature.

the q inequality constraints Hi also depend on θ and c.

θ‹ “ argmax
θ

Jpθ, cq

u.c Gipθ, cq “ 0 @ i P 1 : p
H jpθ, cq ď 0 @ j P 1 : q

Under this notation, the Lagrangian of the problem is written:

Lpθ, λ, µq “ Jpθ, cq ´
p
ÿ

i“1

λiGipθ, cq ´
q
ÿ

j“1

µ jH jpθ, cq

Where λ are the p dual variables associated to the equality constraints and µ are the q
dual variables associated to the inequality constraints. The Karush–Kuhn–Tucker (KKT)
conditions state that for a solution θ to be optimal θ˚, the following must be observed:
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Figure 2.15 – For integrating the euphemia algorithm in a EPF model, an Order Book fore-
casting model can be trained to minimize the price forecasting error.

Stationarity
BLpθ, λ, µq

Bθ
“ 0

Primal Feasibility

Gipθ, cq “ 0@ i P 1 : p
H jpθ, cq ď 0@ j P 1 : q

Dual Feasibility

µ j ě 0 @ j P 1 : q

Complementary Slackness
q
ÿ

j“1

µ jH jpθq “ 0

Dual Function

Dpλ, µq “ min
θ
Lpθ, λ, µq

Dual Problem

λ‹, µ‹ “ min
λ,µ
Dpλ, µq

Lastly, for clarification, we note the solution to the COP θ‹ given a value of the coefficients c
as θ‹pcq.
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2.4.2 Predict-then-Optimize

Many solvers exist to solve COPs for various cases of J,G and H. However, most of them
assume that the parameters c are known. In real-world situations, this is not always true.
The most straightforward method for tackling unknown c consists in a two-stage approach.
First, a ML model is trained to estimate c using exogenous variables X : pc “ mpXq. Typically,
a loss function that measures the distance between the real and forecasted coefficient Lpc,pcq
is minimized. Coefficients can be estimated by a Neural Network based on exogenous data
X. In such case, the gradient of the loss with respect to the input variables is computed using
the chain rule for all layers of the network.

BLpc,pcq
BX

“
BLpc,pcq
Bc

Bc
BX

loomoon

“0

`
BLpc,pcq
Bpc

Bpc
BX

“
BLpc,pcq
Bpc

BmpXq
BX

Once training is finished, the optimization problem can be solved using the forecasted
coefficient, and the solution is θ‹ppcq. This approach is called Predict-then-Optimize and has
been used to solve various problems. In our case, it is the approach of the XModel described
in [Ziel and Steinert, 2016]. The drawback of this approach is that it does not consider
the interplay between an error in the estimation of c and its impact on the OP solution.
The final quantity to minimize is the difference in the solutions to the OP Lpθ‹pcq, θ‹ppcqq,
whose gradient with respect to the input data BLpθ‹pcq,θ‹ppcqq

BX is not incorporated in the gradient
descent. In most cases where the COP is expressed as a minimization problem, Lpθ‹pcq, θ‹ppcqq
is also called regret and simply consists of the difference between the sub-optimal cost induced
by a decision based on pc and the optimal cost with c : Jpθ‹ppcq, cq ´ Jpθ‹pcq, cq.

2.4.3 Decision Focused Learning

The body of methods that aims to consider the OP cost (i.e. the decision taken based on
c) while training a ML model is called Decision-Focused Learning 4. The main difficulty in
integrating the regret in the learning process of a NN is the determination of its gradient with
respect to the input features. The gradient can be expressed as:

BLpθ‹pcq, θ‹ppcqq
BX

“
BLpθ‹pcq, θ‹ppcqq

Bθ‹pcq
Bθ‹pcq
Bc

Bc
BX

loomoon

“0

`
BLpθ‹pcq, θ‹ppcqq

Bθ‹ppcq
Bθ‹ppcq
Bpc

Bpc
BX

“
BLpθ‹pcq, θ‹ppcqq

Bθ‹ppcq
Bθ‹ppcq
Bpc

BmpXq
BX

The first term BLpθ‹pcq,θ‹ppcqq
Bθ‹ppcq can easily be computed knowing the loss function L. The last

term BmpXq
BX is the standard gradient for Neural Networks. Only the second term Bθ‹ppcq

Bpc is
non-trivial to express because it requires differentiating argmin. A graphical summary is
displayed in Figure 2.16.

4In [Teso et al., 2022], a Dagstuhl seminar report, the group of experts recommend to use decision-
focused learning instead of predict-and-optimize [El Balghiti et al., 2019; Mandi et al., 2022] or pre-
dict+optimize[Demirovic et al., 2020] because of some confusion around the terminology.
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Figure 2.16 – In Decision-Focused Learning, the regret is taken into account during the training
of the Neural Network that forecasts pc. The chain rule is applied as usual and the gradient of
the solution to the optimization problem with respect to its input Bθ

˚ppcq
Bpc has to be estimated.

2.4.3.1 Differentiable QP

In the literature, most studies are centered [Amos and Kolter, 2017]’s work. They consider a
Quadratic Optimization problem (QP) with linear constraints:

θ‹ “ argmin
θ

1
2
θTQθ` qTθ

u.c Aθ´ a “ 0
Bθ´ b ď 0

With parameters Q P Rnˆn, q P Rn, A P Rnˆn, a P Rn and B P Rnˆn, b P Rn previously esti-
mated by a Neural Network. They first express the Lagrangian and express the Stationarity
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and primal feasability KKT condition:

Lpθ, λ, µq “
1
2
θTQθ` qTθ` λT pAθ´ aq ` µT pBθ´ bq

BLpθ, λ, µq

Bθ
“ Qθ` q` ATλ` BTµ “ 0

Aθ´ a “ 0
Dpµq pBθ´ bq “ 0

with Dpµq the diagonal matrix formed with vector µ. Then, they write the derivative of the
KKT in a matrix form:

»

–

Q BT AT

A 0 0
DpµqB DpBθ´ bq 0

fi

fl

»

–

dθ
dλ
dµ

fi

fl “ ´

»

–

θdQ` dq` λdAT ` µdBT

θdA´ da
DpµqθdB´Dpµqdb

fi

fl

They deduct the expression of the gradients with respect to Lpθ‹pcq, θ‹ppcqq of the different pa-
rameters of the QP by multiplying the inverse of the left-hand side matrix with the previous
backward pass vector BLpθ‹pcq,θ‹ppcqq

Bθppcq . Their approach showed a significant improvement over
Predict-then-Optimize on small experiments (sudoku, MNIST). In another paper, [Donti et al.,
2017] consider a battery optimization algorithm that decides when to charge or discharge
based on estimated electricity prices. Using a stochastic method similar to [Amos and Kolter,
2017], they also demonstrate a small improvement over Predict-then-Optimize.

[Wilder et al., 2019] extend this method to Linear Programming (LP) problems by in-
troducing a quadratic regularization term γ||θ||22 in the cost function to make the optimal
solution twice differentiable with respect to pc, converting the LP into a QP. They then apply
the method of [Amos and Kolter, 2017] to compute Bθpc

Bpc . During testing, the γ regularization
is turned down to 0 to output exact solutions to the problems. Their work assumes that the
constraints of the problem are not dependant on pc. They show significant improvements
over the two-stage Predict-then-Optimize methods.

Similarly, [Mandi and Guns, 2020] proposes a Log-Barrier regularization term, expressed

as γ
´

řN
i“1 lnpθiq

¯

. This term ensures double differentiation, and is consistent with the
regularization term used in primal-dual interior point solvers. Lastly, instead of differenti-
ating the KKT matrix, they use the Homogeneous Self Dual formulation(HSD) to compute
BLpθ‹pcq,θ‹ppcqq

Bpc . They fond that their approach yields better results than a Predict-then-Optimize
approach and [Wilder et al., 2019]’s method on the knapsack and shortest path problems.
They also find that [Elmachtoub and Grigas, 2022]’s differentiable QP problem is more per-
forming on the simpler tested problem (knapsack) whereas their own solution is preferable
for more complicated problems (shortest path).

In a similar manner, [Ferber et al., 2020] also tackles a MILP problem starting with its
LP relaxation. If the solution is also feasible for the MILP, the algorithm stops. If not, a cut
removes the fractional solution and this translate as the introduction of another constraint
set Skpθq ď 0 @ k P r1,Ks. Once an integral solution is found, they compute the differential
of the gradient of the solution with respect to the estimated parameters using [Amos and
Kolter, 2017]’s methodology, and adding the squared regularization term of [Wilder et al.,
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2019]. They compare their method to the Predict-then-Optimize approach and with the direct
relaxation of their MILP problem without cutting planes. This last is equivalent to [Mandi
and Guns, 2020] with the usual KKT matrix approach of [Amos and Kolter, 2017]. They
found that their method significantly outperforms the others on combinatorial portfolio op-
timization, diverse bipartite matching and unit commitment problems. They also investigate
the case where both the coefficient loss Lpc,pcq and the optimization loss Lpθ‹pcq, θ‹ppcqq are
taken into account in the gradient descent, with a parameter α that trades off between accu-
rate coefficients and optimal decision : L “ αLpc,pcq ` p1 ´ αqLpθ‹pcq, θ‹ppcqq. However, this
approach leads to worse Lpθ‹pcq, θ‹ppcqq than with α “ 0 or the relaxed solution. Moreover,
the choice of α is not discussed.

The KKT differentiation method, introduced by [Amos and Kolter, 2017], involves the
factorization of the KKT matrix of size pn ˚ p ˚ qq ˆ pn ˚ p ˚ qq that cannot scale to large
problems. Authors recommend limiting it to cases with less than 1000 hidden dimensions.
Moreover, regularization terms must be applied to linear cost functions for this method,
adding a hyper-parameter to tune.

2.4.3.2 Smart Predict-then-Optimize

[Elmachtoub and Grigas, 2022] employs a different method. They focus on defining a loss
function EML for the ML model that takes into account the COP loss Lpθ‹pcq, θ‹ppcqq. For this,
they consider a simple LP minimization problem where Jpθ, cq “ cTθ. The regret can then be
expressed as Lpθ‹pcq, θ‹ppcqq “ cT rθppcq ´ θpcqs. They show that the surrogate loss function

Ls “ Spc´ 2pcq ` r2pc´ csT θpcq

Spcq “ max
θ

cTθ

gives an upper bound of the best achievable regret : Lpθ‹pcq, θ‹ppcqq ď Ls. They also find that
the gradient of Ls with respect to pc can be approximated by the expression 2pθpcq´θp2pc´cqq.
They show that for an optimal path or portfolio optimization problem, using a simple linear
model for predicting c with their surrogate regret function is enough to outperform L1 (Ab-
solute Loss) and L2 (Least Square) losses. Interestingly, the linear model trained with Ls also
surpasses the Predict-then-Optimize approach with a stronger c forecasting model (Random
Forest).

[Mandi et al., 2020] pursues research in this direction. They replace the linear and RF
models of [Elmachtoub and Grigas, 2022] by a Neural Network and train it using the loss
Ls. Particularly, they investigate on means to reduce the computational burden of solving an
optimization problem at each training epoch. Based on the knapsack and energy scheduling
problem, they find that using the continuous relaxation of MILP problems achieves rela-
tively similar performances compared to un-relaxed problems, in a much faster time. Using
Ls outperforms the differentiable QP method of [Amos and Kolter, 2017] and [Wilder et al.,
2019].

Lastly, [Mandi et al., 2022] generalizes the DFL problem to a Learning To Rank (LTR)
problem, where the goal is to rank items correctly given a query. Given a pool of feasible
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solution to an COP, the ML model learns to rank them by cost order. Results are mitigated
as the developed model fails to outperform [Wilder et al., 2019] or [Elmachtoub and Grigas,
2022] approaches on the studied problems. This is later extended to the full range of ML for
CO problems in [Teso et al., 2022].

2.4.4 Synthesis

Constrained Optimization Learning is a research field that aims to bridge Optimization Prob-
lems and Machine Learning. The two main methods are the differentiable QP of [Amos and
Kolter, 2017] and its adaptation to LP and MILP/MIQP, as well as the SPO Loss defined in
[Elmachtoub and Grigas, 2022]. Both methods are applied only to small problems (less than
1000 dimensions) because they require solving the optimization problem at every training
step that is computationally expensive. Moreover, some proposed methods consider that
only the cost function is dependant on previous layer’s outputs, ignoring the constraints.
The euphemia algorithm which we aim to incorporate into a ML model has |OBpd,hqz | orders
for each zone z and hour h. This numbers in dozens of thousands of orders, each having
one optimization variable A. Additionally, the domain constraints of A, which are either
bound to or between 0 and 1, double this number. Moreover, Block Orders, Complex
Orders, Available Transfer Capacities and Energy Balance can add several thousands
of constraints per auctions. Clearly, the methods proposed in the Constrained Optimization
Learning field cannot be directly adapted to the EPF field.

2.5 Conclusion

Forecasting day-ahead electricity prices is a complex task. Because electricity prices are set
using a Price-Fixing Algorithm, the relationship between fundamental variables and the
price is not intuitive. In Europe, the euphemia algorithm is used to compute the prices which
generate the most social welfare, while ensuring that the network constraints are satisfied.
euphemia uses an MIQP optimization problem that sets the prices Yd

z for a day d of all con-
sidered zones z by selecting which order to accept and determining the cross zonal exchanges.

The EPF field is an important domain that has attracted many scientists over the past
decades, and the combination of market deregulation and energetic transition policies exac-
erbate this phenomenon. Traditionally, Expert models approaches replicate euphemia and
solve it by feeding estimated Order Books. The latter are obtained by defining bidding
strategies at hand, based on variables (gas price, temperature, ...) predicted using stochastic
methods. Nevertheless, those methods fail to produce accurate results in practice. The
prediction of variables induces imprecision which can reverberate badly on the price com-
putation because using estimated Order Books can drastically disrupt the supply-demand
equilibrium. Oppositely, Data-Driven approaches completely occult the PFA and learn re-
lationships between prices and drivers. Those methods have shown to outperform Expert
models approaches [Weron, 2014] when comparing predictive accuracy. In particular, Ma-
chine Learning models such as the DNN introduced by [Lago et al., 2018a] can significantly
outperform traditional Expert models approaches as well as Statistical Models.
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However, there are still many challenges to tackle in this domain; the ML models suffer
from several drawbacks. First, their opacity and possible non-intuitive results can make
them difficult to employ by business practitioners. There is a need for understanding which
variables are considered by the model and to explain a forecast. This is paramount for
building trust of the business practitioners towards the model. Then, because euphemia
computes the prices jointly, the EPF task has to be considered on several countries at once.
Many key topological aspects of the European network, such as the energy exchanges, have
not yet been taken into account while predicting prices. Lastly, Data-Driven approaches are
bound to an inherent limit because they occult the PFA. This brings forward the necessity
of considering euphemia in combination with a Data-Driven approach. The latter has been
introduced by [Ziel and Steinert, 2016] but the employed method uses an approximate of
euphemia that is too simple, in combination with outdated statistical models. We believe that
using a ML model for predicting Order Books before solving euphemia is an ideal solution
to the EPF task. This approach is not without difficulties. Order books prediction errors can
reverberates badly on the optimization result. To minimize this effect, differentiable opti-
mization methods [Amos and Kolter, 2017] consider the difference in optimization results in
the training process. The proposed methods are difficult to apply to euphemia because of its
high dimensionality and MIQP nature.

Because the EPF litterature focuses on lowering the prediction error, many key aspects
of the problem are not considered. In this thesis, we tackle the EPF problem with multiple
objectives. First, we aim to produce explainable results, while mainaining a good accuracy.
Then, we consider the European market as a whole, and we model the energy exchanges
between countries. Lastly, we aim to integrate euphemia in a price forecasting model.





Chapter 3

Extending Data-Driven methods for
EPF

Data-Driven methods are the best approach in the literature. However, no study
evaluates several models on several markets, and the employed datasets are out-
dated or limited in terms of considered variables. Also, those methods consist of
training black-box models that are not satisfactory for business practitioners. In this
Chapter, we consider five ML models that we evaluate on three markets using two
different datasets. We show that the features added in the second dataset signif-
icantly improve the quality of forecasts, even in the current period when sudden
price changes are occurring. We also develop an analysis of the contribution of the
different features in model predictions using Shap values, in order to shed light on
how models make their predictions and to build user confidence in models.

49
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3.1 Introduction

In Section 1.2 of the Introduction, we presented several use-cases of Electricity Price Fore-
casts that motivated this thesis. Particularly, we presented the problem of trading on the
Day-Ahead market, which requires forecasts as accurate as possible, for a day d on time,
before 12am in d´ 1. Given that the trader has to make a decision based on the forecast, he
immensely benefits from an explanation of the obtained price with respect to the input vari-
ables. Such explanations allow one to assess risks and provide confidence in the model. The
business activities conducted by BCMEnergy on the French market, as well as the Islander
project that takes place in the German market, motivate us to forecast prices from several
countries. In the preceding Chapter, we presented the different Data-Driven approaches
for predicting the Day-Ahead prices in Section 2.2.1. Particularly, we highlighted several
flaws of those approaches in Section 2.3. We stated that the state-of-the-art papers compared
either several models on a single market ([Lago et al., 2018a]) or 2 models on several markets
([Lago et al., 2021]), limiting the generalization of their findings. In addition, they studied an
outdated test period (the year 2016) with prices in Europe that are not representative of the
current situation, because it omits the changes provoked by the Covid lockdown. Moreover,
we stated that Data-Driven approaches suffer from their opacity and we emphasized the
need for model-agnostic individual explanations of the forecasts. Using the current meth-
ods proposed by the literature, it is impossible to fulfill all requirements induced by the
nature of industrial activities based on price forecasts.

3.1.1 Contributions

Following the guidelines introduced in a recent publication [Lago et al., 2021], we apply
a rigorous, transparent, and reproducible methodology for using ML models for EPF. We
evaluate 5 ML models over three different areas of Europe on two separated test periods.
By doing so, we challenge [Lago et al., 2018a]’s work which evaluated 24 different models
on a single (Belgian) market and concluded that the DNN model was the most accurate one.
We find that the best-performing model varies according to the studied market. Next, by
incorporating new features on the training dataset (neighboring prices and gas prices), we
show that predictive accuracy can significantly increase for all models and that the DNN
model can be outclassed by a simpler SVR model in all studied markets, including Belgium.
We also update the test period to one more representative of the current situation. We
show that the ML models are capable of correctly adapting to recent electricity prices that
have been greatly affected by the Covid lock-downs of 2020 or by the energy crisis of 2021.
Interestingly, the most performing model of each country remains the same on the updated
period.

We then investigate what explains the performance of a particular model on a given
dataset by conducting a feature analysis based on Shap values [Lundberg and Lee, 2017].
Using these tools, we find that the feature responsible for the performance increase are the
Swiss prices. This is even the case for the Belgian dataset whereas Belgium and Switzerland
share no border. We show that the past occurrences of features contribute very little to
the forecast and suggest that they could be removed. Lastly, we also analyse individual
explanation i.e. we explain each forecast independently. We focus on explaining the fore-
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casting errors during the successive lock-downs in France on the period 2020-2021. We find
that relying on the gas price on d ´ 1 could be misleading when the latter also suffers from
increased volatility.

3.1.2 Chapter Structure

This Chapter is structured as follows. As a starter, we detail the specificity of our datasets in
Section 3.2. Due to data availability, we differentiate the features used in the two time periods
considered in our experiments. Then, we present the technical requirements on ML models,
as well as their evaluation in Section 3.3. We also explain our explainability approach used
to analyze black-box ML models : the Shap values. Section 3.4 reports our results. We
first analyze the quality of the models using metrics, backed with statistical tests. Then, we
give the results of the explanations of the predictions, by analysing the importance of each
feature for different models. We also observe the temporal changes in feature importance
throughout the years 2020 and 2021 and comment the effects of the successive lock-downs.

3.2 Datasets

Many multivariate time series forecasting research articles [Bagnall et al., 2017; Ruiz et al.,
2021] recommend evaluating models on several datasets as the behavior of an algorithm
can be very different depending on inherent characteristics of the dataset. The relative
performance of several models can even vary and considering a large number of datasets
makes it possible to have a more robust evaluation of the model performance. To assess
the specific qualities of a model, it is therefore relevant to consider datasets from different
countries. Indeed, the energy mixes are very different from one country to another and have
a strong influence on the dynamics of the prices of electricity. To build predictive models
of electricity prices, we extend the classically considered datasets [Lago et al., 2021], called
hereafter SOTA, by adding new attributes as predictive features and considering more recent
data. These datasets and their specificity are presented below.

3.2.1 Markets

We consider the three following markets: France (FR), Germany (DE), and Belgium (BE).
These countries are at the same time geographically close yet have features that make them
unique. In this section, we state their peculiarities by detailing their generation by source,
as well as what drives consumption. Figure 3.1 summarizes the energy mix per country,
using the data provided by the International Energy Agency, for the year 2021 1. Figure 3.2
displays the hourly Day-Ahead prices for those markets over the years 2016-2022. Lastly,
Figure 3.3 displays the yearly average of exchanged energy between the three countries.

3.2.1.1 The French Market

Nuclear power plants account for roughly 71% of the average 555TWh of annual produced
electricity. They are to some extent controllable and usually provide enough energy to satisfy

1https://www.iea.org/, 23-10-2023
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Figure 3.1 – Average Energy mix in France, Germany and Belgium from 2016 to 2019. Thermal
plants consist in Gas, Oil, Coal an Waste powered plants. Renewables are Wind, Solar and
Tide power plants.

the consumption and some surplus is sold in Germany, Spain or Italy. However, maintenance
operations, material failure, strikes or even cooling river temperatures can significantly
lower the generation capacity, making it mandatory to buy energy from neighbors or to turn
on much more expensive gas, oil or coal-fired thermal stations. Lastly, the hydro plants,
producing during the spring when the snow melts, increases the gap between winter and
summer prices. On the other hand, the consumption is mainly heat-sensitive due to the
massive use of electric heaters, leading to higher prices in the winter period. French prices
are usually lower than its neighbors but extreme price spikes can occur during cold winters
when nuclear power plants are under maintenance.

3.2.1.2 The German Market

The German generation is based on thermal plants for approximately 58% of its average
610TWh of annual production. The electricity prices are thus continuously dependent on
gas, oil and coal, but also on the price of carbon emissions, whose allowances are sold on
an open market. Furthermore, wind turbines and solar panels play a major role in the price
volatility because their total generation can’t be established in advance: negative prices are
commonly reached. Traditionally, Germany exports energy to its neighbor (mainly France)
when wind generation is high but imports nuclear energy from France when it’s low. The
consumption, less based on heaters, is more stable than in France.
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Figure 3.2 – Price histograms over the period 2016-2019 for France, Germany and Belgium.
We observe price spikes in France while Germany and Belgium display negative prices.

3.2.1.3 The Belgian Market

Nuclear and thermal generation account for almost 80% of Belgium’s generation. Due to the
small size of this market (consumption of 80TWH yearly on average), prices can sometimes
reach extreme negative prices when generation peaks. Interestingly, since the opening of the
connection line with Germany, its sometimes used to send energy from France to Germany
when the line between both countries is full. Prices in Belgium are also sometimes negative
because of the important part of wind turbine generation.

3.2.2 State-of-the-art datasets

We first consider the multivariate time series made of daily data from [Lago et al., 2021].
Each dataset includes next day prices for the period T1 (from 2011 to 2016) and has two
additional exogenous features given in Table 3.1. Typically, the features used are national
or regional consumption and generation forecasts, published by the Transmission System
Operators (TSOs) several hours before price fixation. The ENTSOE transparency platform 2

aggregates this data, as well as the Day-Ahead prices, for all European markets.
Those datasets can be reconfigured into a pX,Yqpair suitable for training machine learning

models. The predictive data is represented by a two dimensional matrix X P Rndˆnc whose
rows represent days and columns are nc predictive time-dependent values. The values to
be predicted correspond to another matrix Y P Rndˆ24, where rows also stand for the days

and columns are the 24 day-ahead prices to be predicted: Yd “

´

Y1
d`1, . . . ,Y

24
d`1

¯

. Typically,
a row of Y contains 24 prices, corresponding to the 24 hour prices to be predicted the next

2https://transparency.entsoe.eu/
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Figure 3.3 – Average yearly exchanges between France, Germany and Belgium. As there
were no connections between Belgium and Germany prior to 2020 and because we don’t
integrate energy exchanges in our datasets, this plot shows the years 2020-2021.

day. To model the time series aspect of the features, X includes the prices of the current
day, those of the day before, two days before and the previous week (1, 2, 3 and 7 days
lag). Exogenous features are included for the current day, the day before and the previous
week. Those values where chosen because of the similarity between two consecutive days,
or between the same day of two consecutive weeks.

Besides these 240 characteristics, the day of the week is also encoded as an integer and
added to the matrix X. Indeed, electricity prices are non-stationary time series and exhibit
seasonal trends captured by this additional feature. All features (prices and exogenous) are
provided with hourly granularity. Consequently, the predictive matrix X is defined as:

Xd “ pYd´1,Yd´2,Yd´3,Yd´7,E1d,E1d´1,E1d´7,

E2d,E2d´1,E2d´7,DayOfWeekq with nc “ 241.

In order to forecast 24-hour prices for the next day, the datasets are reshaped so that for one

day d, Yd contains all 24 prices for the next day: Yd “

´

Y1
d`1, . . . ,Y

24
d`1

¯

.
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Dataset Exogenous input 1 Exogenous input 2
FR Consumption forecast Production forecast

BE
French consumption
forecast

French production fore-
cast

DE
Amprion consumption
forecast

Amprion, TenneT, 50
Hertz renewable fore-
casts

Table 3.1 – Exogenous inputs of epftoolbox dataset. Each dataset is composed of the Day-
Ahead prices for the specified country and 2 exogenous features.

3.2.3 Enriched datasets

For the enriched datasets considered in this study, we incorporate new features to the SOTA,
datasets. We also modify the training and testing period to more recent data : T2 spans from
2016 to 2021. From these data we build four datasets, three (FR, DE, BE) comprising the data
of each country taken individually, and a fourth (Multi-Output) merging together the data
of the three countries. With this dataset, we seek to forecast the prices of the three countries
at once. Due to the pricing algorithm, all European prices are set at the same time and we
want to model this phenomenon.

FR DE BE
Features

T1 T2 T1 T2 T1 T2

French Prices Target Target X X X X
German Prices X X Target Target X X
Belgian Prices X X X X Target Target
Dutch Prices X X X X X X
Spanish Prices X X
Swiss Prices X X X X
French Consumption Forecast X X X X X X
German Consumption Forecast X X X X X X
Belgian Consumption Forecast X X X
French Production Forecast X X X X X X
German Renewable Energy Forecast X X X X X X
Belgian Renewable Energy Forecast X X X
French Gas Prices X X X
Date Dummies X X X X X X

Table 3.2 – Composition of the datasets for each country and the two time periods.

3.2.3.1 Data from neighboring countries

The electricity day-ahead price is fixed by euphemia through the coupling of different markets
where energy transactions can involve sellers and buyers from different countries, only
limited by the constraints of the electricity network. All bilateral interconnections make
it possible to transport less expensive production assets from one country to another with
an important demand. Thus, the price within a country is highly dependent on exogenous
factors in surrounding countries. This is why we have included production and consumption
forecasts from neighboring countries in our datasets. Similarly, we used Dutch, Spanish and
Swiss prices. Swiss prices are attractive as they are available every day at 11.15 am and can
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be used in a forecasting model before the European market closes at noon. Consumption
and generation forecasts from the day to predict, the day before and one week before are
included. Prices of the day before and one week before are included. Swiss prices of the day
to predict are also included.

Figure 3.4 – Markets corresponding to the enriched datasets. In green are the markets whose
Day-Ahead prices are forecasted and their Past Prices, consumption and generation forecasts
are in the training dataset. We only include Past Prices (or current if available) of the markets
in grey.

3.2.3.2 Date indicators

Another aspect that can strongly influence the prediction is the date, especially the days of the
week that involve differentiated human activity and therefore impact energy consumption
and production. But, as shown by [Cartea and Figueroa, 2005], the seasonality of the
electricity market is not only dependent on the day of the week. We therefore propose to
incorporate various date dummy variables into our enriched dataset. We decided to include
weekday, week number, day of month and month number as predictive functions. To better
integrate these cyclic data into our ML models, we apply a circular encoding transformation
F of a cyclic feature that encodes the original feature of the domain valueC (with cardinality
α) into two numeric values:

F : C ÞÑ R2

x ÞÑ psinp
2πx
α
q, cosp

2πx
α
qq

3.2.3.3 Gas Prices

Finally, we also integrate gas prices. Indeed, to maximize social welfare, the euphemia
algorithm favors the power plant with the lowest marginal cost. Accordingly, there is an
order of merit for the technology of production plants. Gas-fired power plants are one of the
cheapest ways of generating electricity among other coal or oil-fired thermal power plants.
However, its marginal cost is a function of gas prices. Therefore, depending on the country’s
energy mix, gas prices are an important feature of electricity prices. We therefore decided to
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include the EGSI gas index3 in our dataset. As this index is available every day at 6pm, after
the market closure, it has to be included for predicting prices 2 days after.

3.2.3.4 Datasets dimensions

As previously mentioned, to model the time series aspect of these features, X contains the
country’s prices for the previous day, those of two days before, three days before and the
previous week (1, 2, 3 and 7 days lag). Other features (see table 3.2) are included for the
day before, the previous week, and if possible the current day. Indeed, production and
consumption forecasts as well as Swiss prices are available for the day to be forecast before
noon. Then, with the exception of gas prices and date dummies, all features are included
for the 24 hours of the day. The datasets therefore have nc “ 24ˆ nl

f ˆ n f ` 8` 1 columns,

with n f the number of features as described in Table 3.2 and nl
f the number of shift days for

a given feature f .

3.2.4 Train/Test splits

In [Lago et al., 2021], the authors provide open-access benchmark datasets for the six-year
period between 2011 and 2016. A good practice in the field of machine learning is to evaluate
models over the same time period to allow comparison of results. We therefore start our
analysis by evaluating our models on the same data (see dataset description T1 in Table
3.2). It is also important to extend our study to the current period, the peculiarities of
which serve as an evaluation of the robustness and adaptability of the models in a context
of high variability. Therefore, we consider a second dataset with 4 years from 2016 to
2019 for training and two test years from 2020 to 2021 (see dataset description T2 in Table
3.3). Recent electricity prices present a more difficult challenge for prediction because the
lock down related to Covid-19 has caused massive changes in the European market, and
in its aftermath, caused small energy crisis in 2021. In addition, since 2015, the ENTSOE
transparency platform4 has brought together and published data from almost all European
TSOs in free access. This results in much more available data. The features of our datasets
therefore vary depending on the period considered as described in Table 3.2.

Period Train start Validation start Test start Test end
T1 2011-01-16 2014-01-07 2015-01-04 2016-12-31
T2 2016-01-01 2019-01-01 2020-01-01 2021-12-31

Table 3.3 – Time period of data used for training (learning of model parameters), valida-
tion (determining hyperparameter values), and testing (evaluating models) for epftoolbox
datasets. As we use the first seven days of the dataset as the input features, the train dataset
starts seven days after the first data sample.

3https://www.boursorama.com/cours/1rPGTT/
4https://transparency.entsoe.eu

https://transparency.entsoe.eu
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3.3 Machine Learning for EPF

As we believe that the capabilities of ML models have not yet been fully unraveled in the
field of EPF, we focus on these approaches. In particular we consider four different models
exposed below. We also present the metrics and tests used to compare them and the way we
preprocess data. Additionally, we explain how we fix hyper-parameter values and present
the recalibration strategy used to adapt models to recent changes in the data. Finally, we
describe the SHAP method that we employ in our analysis to assess the importance of
features in the prediction process.

3.3.1 Machine Learning Models

We present the four models that we will use with our own parameters, as well as the two
that we borrow from the epftoolbox.

Support Vector Regressor

Support Vector Machines (SVR) [Kampouraki et al., 2008; Orsenigo and Vercellis, 2010]
are a category of models with a good mathematical background based on an optimization
problem. With the use of kernels [Che and Wang, 2014; Rakotomamonjy et al., 2008], they
can be applied on complex data structures and model non-linearity. Originally designed
to solve univariate forecasting problems, we adapt them to the multivariate case in two
ways: 1) The ChainSVR method that uses the first forecast to predict the second one, the
second forecast to predict the third one, and so on; 2) The MultiSVR that uses one model per
time series in Y, so 24 in total. We use the method SVR as implemented in scikit-learn
[Pedregosa et al., 2011].

Random Forest Regressor

Random Forest Regressor models (RFR) are widely used ML models both in the field of
EPF [Díaz et al., 2019; Lago et al., 2018a; Mei et al., 2014] and in forecasting tasks in general
[Bagnall et al., 2017; Ruiz et al., 2021]. They consist of a combination of several Decision
Tree Regressor (DTR) that are trained using different subsets of the data. The Bagging
[Breiman, 1996] method used in this paper outputs the average of their predictions. We use
scikit-learn’s implementation [Pedregosa et al., 2011] of RFR.

Deep Neural Networks

The model capabilities and tremendous range of application made Deep Neural Networks
(DNN) the center of interest of numerous researchers in EPF [Lago et al., 2018a,b, 2021;
Mosbah and El-Hawary, 2016] but also in forecasting tasks in general [Abiodun et al., 2018;
Chen and Zhang, 2021; Zhang and Qi, 2005]. The DNNs we use have ` ` 2 layers stacked
sequentially. The number of neurons of the first and the last layer are respectively nc and 24,
the second dimensions of X and Y respectively, the other layers having pn1, ¨ ¨ ¨ ,n`q neurons.
These hyper-parameters (`,n1, ¨ ¨ ¨ ,n`) are set with a grid search. The model is trained using
a gradient descent algorithm of the forecast errors back to the network weights.
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Convolutional Neural Network

Convolutional Neural Networks (CNN) are a variant of Deep Neural Networks which be-
came popular for their image processing capabilities [Badrinarayanan et al., 2015; Krizhevsky
et al., 2012; LeCun et al., 1995; Szegedy et al., 2017]. They are now also used for multivariate
time series regression tasks [Borovykh et al., 2017; Li et al., 2018; Zheng et al., 2014, 2016] and
in particular, for EPF [Cheng et al., 2020; Khan et al., 2020; Lago et al., 2018a]. The epony-
mous convolutional layers combined with pooling layers are the particularity of CNNs. By
applying numerous filters on the data, convolutional layers extract complex patterns that
are then generalized by a pooling operation to provide complex feature representations of
the input. We use the keras5 implementation with tensorflow [Abadi et al., 2016] back-end
to implement our Neural Networks models (DNNs and CNNs).

epftoolbox

The LASSO-Estimated Auto Regressive model (LEAR) model acts as the State-of-the art
Statistical model widely used in the EPF literature for comparison purposes [Lago et al.,
2021]. Its formal definition is available in the precedent Chapter2.2.1.2. In addition to the
DNN, this model is provided with its own hyper-parameters in the epftoolbox. As we
aim to compare our models with those, we also re-run their configurations for four LEAR
models and four DNN models. The LEAR models are denoted LEAR52, LEAR84, LEAR1092
and LEAR1456, in reference to their respective calibration window size. The DNN models are
denoted DNN1, DNN2, DNN3, DNN4.

3.3.2 Evaluation metrics and test

We recall that Ypd,hq is the price for a day d and an hour h of a given zone, and by Y
pdq
“

1
24
ř24

h“1 Ypd,hq the average price of that day. Let pYpd,hq be the values predicted by a model.
The comparison of these values is used to evaluate and test the quality of a model, but also
to learn it, through the loss function used to adjust the parameters of the model.

3.3.2.1 Metrics

The most commonly used metric to evaluate the quality of a model in the field of EPF is the
Mean Absolute Error (MAE):

MAEpY, pYq “
1
nd

nd
ÿ

d“1

24
ÿ

h“1

|Ypd,hq ´ pYpd,hq|

It allows business owners to quickly estimate how they could use a forecasting model to
generate profit. However, since electricity prices can range from -500 to 3000 e/MWh in the
European markets, it is useful to use a relative error measure. While the Mean Absolute
Percentage Error (MAPE) is usually used for this purpose, we prefer employ the Symmetric
Mean Absolute Percentage Error (SMAPE). Indeed, prices close to 0 that are incorrectly

5https://keras.io

https://keras.io
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predicted lead to an unnecessary high MAPE, which is not the case with SMAPE values:

MAPEpY, pYq “
100
nd

nd
ÿ

d“1

24
ÿ

h“1

|Ypd,hq ´ pYpd,hq|
|Ypd,hq|

SMAPEpY, pYq “
100
nd

nd
ÿ

d“1

24
ÿ

h“1

|Ypd,hq ´ pYpd,hq|
1
2

´

|Ypd,hq| ` |pYpd,hq|
¯

We also consider a new metric called the Daily Average Error (DAE). It consists in
computing the MAE between the average predicted price for a day and the real average
price. This metric is very useful for trading-related activities, when one speculates on the
average price for a given day.

DAEpY, pYq “
1
nd

nd
ÿ

d“1

ˇ

ˇ

ˇ

ˇ

ˇ

1
24

24
ÿ

h“1

Ypd,hq ´
1
24

24
ÿ

h“1

pYpd,hq
ˇ

ˇ

ˇ

ˇ

ˇ

Next, to enable cross-dataset comparison, we use the Relative Mean Absolute Error.
The idea is to compare the MAE of a model with the MAE of a naive forecaster. As naive
forecaster, we use the following strategy:

pYpd,hqnaive “

#

Ypd´1,hq if d is a week day
Ypd´7,hq otherwise

RMAEpY, pY, pYnaiveq “
MAEpY, pYq

MAEpY, pYnaiveq

Lastly, we use the LogCosH loss function for training Neural Networks models (DNNs
and CNNs). It combines the benefits of both MAE and Mean Squared Error by being

approximately equivalent to pY´pYq
2 when Y ´ pY is small, and to |Y ´ pY| ´ logp2q when

differences are large. Due to the presence of spikes in electricity prices, it is useful not to put
too much weight on outliers:

LogCosHpY, pYq “ logp
eY´pY ` epY´Y

2
q

3.3.2.2 Diebold & Mariano Test

We use the Diebold & Mariano [Diebold, 2015; Diebold and Mariano, 2002] test to perform
more robust model comparison. Instead of averaging a loss g across the entire dataset, it
computes the loss difference dg between two model predictions Y1 and Y2. A one sided z-test
is then performed to assess if the second model forecasts are significantly better than the first
ones :

dgpY, pY1, pY2q “ gpY, pY1q ´ gpY, pY2q

H0 : E
”

dgpY, pY1, pY2q

ı

ą 0

H1 : E
”

dgpY, pY1, pY2q

ı

ď 0
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If the obtained p-value is lower than a fixed threshold of 0.05, then H0 is rejected and we
can conclude that the first model is better than the second one. We use the absolute loss
gpY, pYq “ MAEpY, pYq in our experiments as it better reflects business applications.

3.3.3 Data preprocessing

Data scaling is critical during ML model training. Most algorithms require that both the input
(X) and output (Y) data are pre-processed. To this aim, we design simple data pipelines to
process the features and target variables of our datasets. We distinguish the scaler used
to process the input data X from the one used for processing the predicted values Y. We
consider these two functions as hyper-parameters with four different possibilities for each
of them: (1) the standard scaler that standardizes data so it has a 0 mean and 1 variance, (2)
the median scaler, a outlier-robust version of standard scaler using the median and median
average deviation, and (3) their combination with the arcsinh function [Uniejewski et al.,
2017] or not:

SSpXq “
X ´ µx

σ2
x

(3.1)

MSpXq “
X ´medianx

MAD2
x

(3.2)

arcsinhpX, f q “ log
ˆ

f pXq `
b

f pXq2 ` 1
˙

,(3.3)

with f either SS or MS.

3.3.4 Hyper-parameters Search

Despite their high modeling power, ML models suffer from a critical issue, which is hyper-
parameter optimization. Hyper-parameters must be configured before training the model
on the data. They need to be tuned for optimal results. This is done by testing numerous
combinations of hyper-parameters and selecting the optimal one. As this part is very time
consuming, we use a Randomized Grid Search [Bergstra and Bengio, 2012] that samples 4000
hyper-parameter combinations for each models in a pre-defined search space. Details of the
search spaces as well as the best configuration found are available in the Appendix C.

3.3.5 Recalibration

Another drawback of ML models is their implicit assumption that the future will be similar
to the past. However, as seen in Figure 2.5, electricity prices can be very volatile and sudden
unpredictable changes can drastically modify the prices, such as the Covid lockdown [Nara-
jewski and Ziel, 2020b] or the European energy gas crisis of fall 2021 [Sheppard, 2021]. Those
changes are critical, for example, [Lago et al., 2018b]’s model gets confusing results while
forecasting Belgian prices due to a sudden change in the generation patterns. To address such
problems, [Mei et al., 2014] uses an online Random Forest method to keep the forecasting
model up to date, [Demir et al., 2021] generates more current data using autoencoders and
[Lago et al., 2021] uses model recalibration. Recalibration consists in retraining the model
with most recent data, that is to say using Xp1q, ¨ ¨ ¨ ,Xpd´1q and Yp1q, ¨ ¨ ¨ ,Ypd´1q to train the
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model before forecasting a new sample Xpdq, pXpdq,Ypdqq, ¨ ¨ ¨ , pXpd´1q,Ypd´1qq being in the test
set. However, this method incurs computational costs as the models have to be re-trained
from scratch for each new sample to predict. Each evaluation step requires as many model
trainings as there are samples in the test set. The search of optimal hyper-parameters, that
is based on the evaluation of numerous combinations, becomes too costly. We decided to
evaluate the performance of a combination on the basic forecasts, without recalibration.

3.3.6 Shapley and SHAP Values

With the help of a domain-knowledge expert, it’s possible to explain a Day-Ahead price
with respect to the market variables. However, EPF models compute their own relationships
between features and prediction, making the latter hard to understand for opaque models.
In this objective, Shapley values [Shapley, 1953] were defined within the framework of game
theory in order to fairly distribute a gain among several players in a cooperative game.
Players are not only paid for what they are able to gain when they are alone, but also for
their contribution to the group when interacting with others. The gain to be distributed is
here the deviation between a forecast and the average forecasted value pYpd,hq´EppYq. To detail
the Shapley value computation, we introduce the following notations : let F “ t1, ¨ ¨ ¨ ncu be
the set of all features in the input dataset X and S Ď F be a coalition of features, and φi be the
Shapley value associated with the feature i. We note the model m as a function that maps
a data instance x “ Xpd,hq to a prediction pYpd,hq, and rmXpd,hqpSq the marginalised prediction
function over the coalition S. The latter is the expected prediction when using the values of
features present in the coalition S and default values for features not in S :

rmxpSq “
ż

mpxqdPx<S ´ ErmpXqs

Then, it’s possible to compute for each coalition S in which feature i does not appear, the
difference in gain:

rmxpSY tiuq ´ rmxpSq

This gives a value of the impact of the collaboration of feature i with the set S. The sign
of this differences indicates if the feature contributes toward increasing or decreasing the
forecast in general. The last step is to sum and weight this value for all possible coalitions:

φipxq “
ÿ

SĎFztiu

|S|!pnc ´ |S| ´ 1q!
nc!

rrmxpSY tiuq ´ rmxpSqs

The calculation of a Shapley coefficient poses two difficulties: estimating the conditional
expectations and dealing with the combinatorial explosion of the number of coalitions to go
through, when the number nc of features increases. The number of coalitions to be covered
is exponential, in 2nc . [Lundberg and Lee, 2017] introduces the concept of Shapley kernel to
approximate Shapley values and makes it possible the use of this approach on real-world
dataset such as EPF ones. The method SHAP (SHapley Additive exPlanations) uses the
Shapley values to compute an additive explanatory model gx that is a linear combination of
Shapley values for each possible coalitions:

gxpzq “ Epmpxqq `
nc
ÿ

i“1

φizi
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with Epmpxqq the average output of the model while being fed x, φi the explained effect of
feature i and z P t0, 1unc a binary encoding of a coalition. This explanatory model is trained
to be roughly equal to m in the vicinity of x. After wane to training nd linear regression
models. We use python’s SHAP6 package to compute the SHAP values of our models, using
a total of 2500 coalitions per forecasts. We analyze the results Φpd,hq P Rn f for each pd, hq of
the test set in Section3.4.2.

3.4 Evaluation of the models on the different datasets

The objective of this section is to evaluate the different models of machine learning. First,
we measure the impact of considering the additional features on the accuracy of predictions.
We also evaluate the interest of simultaneously predicting the price of electricity in several
countries. Then, we propose to study the models from an XAI point of view, to identify on
which variables the predictions are based upon. Results are available in our repository7.

3.4.1 How well do the models perform?

3.4.1.1 Period T1

We present the performance measures of the different models in Table 3.4. We compare the
models to each other and evaluate the impact of adding features on the predictions. To do
a fair comparison with [Lago et al., 2021], we consider the T1 time period that was used in
this paper. For a better interpretability of the multi-market models, we compute the metrics
market by market.

First, we can observe that using additional features to predict prices always increases
performance up to 15% gain. We support this finding by highlighting the p-values of Diebold
& Mariano tests between models trained on SOTA datasets and their counterparts trained
on enriched datasets in Table 3.5 (column A). We can observe that this difference is statisti-
cally significant for the vast majority of countries and models (values in bold lower than 0.05).

In the single-country framework, the Belgian market is the most difficult to tackle. The
RMAE in Table 3.4 indicates that the best model for that country only achieves a fraction of
0.7 of the error of a naive forecaster. The other datasets have an RMAE lower than 0.6, or
even 0.45 on German dataset. We believe this is due to the fact that Belgian consumption
and production forecasts are not present in the SOTA datasets for period T1. This is further
discussed in Section 3.4.2.

Another conclusion from these experiments is that Random Forest models are not com-
petitive enough for EPF. Their metric values are always significantly worse than those of the
other models for all markets. Adding features increases performances, but this is not neces-
sarily enough to outclass other models based on SOTA datasets. It also appears that CNN
models are not state-of-the-art forecasting models for EPF. Even though they obtain relevant
metric values on the enriched datasets, they don’t significantly outperform the DNN or SVR
models on any markets. We believe that the data provided to CNN models is not suitable for

6https://shap.readthedocs.io/en/latest/index.html
7see repository https://www.dropbox.com/sh/2n7qje9dmhixh35/AADffdnjmJXRQEdvxbcBECgma?dl=0

https://shap.readthedocs.io/en/latest/index.html
https://www.dropbox.com/sh/2n7qje9dmhixh35/AADffdnjmJXRQEdvxbcBECgma?dl=0


64 Chapter 3. Extending Data-Driven methods for EPF

SOTA datasets
LEAR DNN SVR

Markets Metrics
56 84 1092 1456 1 2 3 4

CNN DNN RF
Chain Multi

smape 13.32 13.41 13.57 14.59 12.00 11.65 11.75 11.51 12.05 11.57 13.42 11.23 11.26
mae 4.63 4.58 4.35 4.48 4.34 4.15 4.17 4.12 4.27 4.15 4.73 4.03 4.06
dae 3.37 3.34 3.25 3.38 3.35 3.13 3.09 3.09 3.14 3.05 3.46 3.02 3.02

FR

rmae 0.69 0.68 0.65 0.67 0.65 0.62 0.62 0.61 0.64 0.62 0.71 0.60 0.61
smape 15.25 15.16 17.31 17.94 14.27 14.49 14.25 14.20 16.26 14.47 17.43 14.48 14.53

mae 3.64 3.59 3.61 3.72 3.27 3.34 3.22 3.23 3.63 3.27 4.11 3.27 3.28
dae 2.54 2.53 2.65 2.74 2.32 2.46 2.29 2.33 2.58 2.27 2.79 2.38 2.38

DE

rmae 0.50 0.49 0.50 0.51 0.45 0.46 0.44 0.44 0.50 0.45 0.57 0.45 0.45
smape 17.02 17.32 17.20 17.75 15.77 14.79 15.77 15.17 15.20 14.59 15.37 14.50 14.46

mae 7.28 7.32 6.68 6.73 6.84 6.37 6.76 6.50 6.43 6.25 6.55 6.41 6.25
dae 5.18 5.20 4.84 4.91 5.15 4.67 5.00 4.75 4.62 4.50 4.79 4.77 4.62

BE

rmae 0.82 0.83 0.76 0.76 0.78 0.72 0.77 0.74 0.73 0.71 0.74 0.73 0.71

Enriched datasets Multi-market Models
SVR SVR

Markets Metrics CNN DNN RF
Chain Multi

CNN DNN RF
Chain Multi

smape 10.80 11.12 11.81 10.43 10.56 11.07 10.95 12.44 10.66 10.67
mae 3.79 3.89 4.11 3.65 3.67 3.92 3.85 4.30 3.71 3.71
dae 2.67 2.71 2.90 2.57 2.56 2.81 2.78 2.99 2.61 2.57

FR

rmae 0.69 0.58 0.61 0.54 0.55 0.59 0.57 0.64 0.55 0.55
smape 14.24 13.56 15.83 13.84 14.40 14.42 13.96 16.45 14.22 14.29

mae 3.19 3.12 3.72 3.15 3.25 3.29 3.24 4.11 3.26 3.28
dae 2.16 2.12 2.37 2.22 2.31 2.26 2.22 2.71 2.33 2.34

DE

rmae 0.44 0.43 0.51 0.43 0.45 0.45 0.45 0.57 0.45 0.45
smape 14.12 14.82 15.22 14.35 14.28 13.8 13.60 15.50 13.50 13.47

mae 6.14 6.33 6.50 6.11 6.14 6.01 5.87 6.66 5.88 5.90
dae 4.51 4.69 4.85 4.58 4.54 4.28 4.20 4.98 4.35 4.29

BE

rmae 0.70 0.72 0.74 0.69 0.70 0.68 0.67 0.75 0.67 0.67

Table 3.4 – Metrics over the period T1 for the SOTA datasets (TOP) and for the enriched
datasets (BOTTOM). The multi-market models’ metrics are reported market by market. It is
clear that the enriched datasets outperform the SOTA datasets.

convolutions. CNN models are tailored for extracting meaningful patterns among raw fea-
tures, such as basic geometric shapes on an image. We feed it with data such as production
and generation forecasts which is a high-level representation of meteorological data. Also,
our data is of size 32ˆ24, which limits the usefulness of performing convolutions compared
to usual CNN datasets.

Lastly, still considering Table 3.4 and the p-values in Table 3.5 (columns B and C), we see
that the interest of jointly predicting the prices of several markets is mixed. The multi-market
forecasting model reduces forecast quality by up to 5%. This reduction is significant on 4
of the 5 models in France and Germany (column C). However, it significantly increases the
performance of 3 out of 5 models in Belgium (column B). Merging the three datasets did not
add any crucial and previously unknown information to the French and German datasets.
On the other hand, it allows the model to use Swiss prices to predict Belgian prices. We
believe this explains the significant increase in Belgium’s performance.
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A B C
Ho : Ho : Ho :

Country Model
mSOTA ą menriched menriched ą mmulti mmulti ą menriched

CNN 0 1 0
DNN 0 0.176 0.824
RF 0 1 0

ChainSVR 0 0.989 0.011
FR

MultiSVR 0 0.975 0.025
CNN 0 1 0
DNN 0.001 0.999 0.001

RF 0 1 0
ChainSVR 0.003 1 0

DE

MultiSVR 0.219 0.949 0.501
CNN 0 1 0
DNN 0.919 0 1

RF 0.117 0.845 0.155
ChainSVR 0.998 0 1

BE
MultiSVR 0.991 0 1

Table 3.5 – P-values of the Diebold & Mariano tests for the T1 period. (A) the test compares
models trained on SOTA datasets with the same trained on enriched datasets. The null
hypothesis states the enriched dataset has lower metric values than SOTA dataset models.
With a threshold α “ 5%, models in bold are significantly better when trained on the
enriched datasets. (B) compares the single country forecasting models with the multi-
country ones. The null hypothesis states the multi-country forecasting models are better
than single-country ones on enriched datasets (values in bold). (C) The null hypothesis
states the single-country forecasting models are better than multi-country ones on enriched
datasets (values in bold).

3.4.1.2 Period T2

We now study the robustness of these observations by considering the time period T2. We
present the metric values obtained for this period in Table 3.6.

First, the best absolute metrics, MAE & DAE, increased by almost a factor of two over the
T2 period. This is not surprising as price levels also drastically shifted on this period. Figure
2.5 illustrated this phenomenon in France in the preceding Chapter. However, the RMAE
decreased from 0.55 to 0.46 for the French MultiSVR, from 0.44 to 0.42 for the German DNN
and from 0.67 to 0.57 for the Belgian MultiSVR, which shows that the models are performing
better against the baseline than for the previous period. The ML models can thus still be
used when sudden changes occur in the market, if recalibration is performed.

Second, the availability of Belgian consumption and production forecasts made this mar-
ket easier to predict than for the previous period. However, it is still the most difficult market
to predict, probably because we aren’t using Swiss prices, as this country does not border
Belgium.

Third, the differences in performance between the models are greater over this period.
We clearly identify that the SVR models are better on the French and Belgian datasets while
the DNN is the best model on the German dataset. The DM test pvalues in Figure 3.5
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Enriched Datasets
SVR

Market Metric CNN DNN RF
Chain Multi

smape 19.75 15.97 17.33 14.23 14.23
mae 10.40 7.96 9.41 6.86 6.61
dae 7.65 5.70 7.06 5.10 4.74

FR

rmae 0.73 0.56 0.66 0.48 0.46
smape 20.36 18.79 22.35 18.80 19.45

mae 8.66 7.66 10.77 8.44 8.85
dae 6.53 5.13 7.77 6.25 6.62

DE

rmae 0.47 0.42 0.58 0.46 0.48
smape 24.85 21.65 21.60 18.93 19.17

mae 14.18 11.86 12.30 9.35 9.51
dae 10.09 9.37 9.68 6.67 6.78

BE

rmae 0.88 0.73 0.76 0.58 0.59

Table 3.6 – Performance metrics over period T2.

confirm that this difference is significant. In this figure, colored squares at coordinates
pi, jq indicates that the forecasts of model i are significantly more accurate than forecasts
of model j. We clearly identify green columns for the SVR models in France and Belgium,
indicating that the MultiSVR and ChainSVR significantly outperform other models. For these
countries, the DNN model outperforms the RF and CNN models. Finally, the CNN model
is significantly worse than all the other models. For Germany, only the DNN significantly
outperforms all other models, while the RF model is significantly outperformed by all other
models. Although the results were more mitigated for period T1, it is interesting to notice
that the same models for the same markets stood out in terms of metrics (SVR for France
and Belgium and DNN for Germany). We further investigate why those models are better
on specific markets in Section3.4.2.

3.4.2 Forecast Explanations

The ML models’ performance are satisfying : they successfully improve over the baselines
(the RMAE is lower than 1) and outperform the LEAR model. However, to increase the
confidence in the predictions given by then models, it is necessary to be able to explain them
and to identify the most important characteristics in the decision-making process. This allows
us to better appreciate their quality and better understand the phenomena involved in price
prediction. We have seen that adding features dramatically improves model performance
for the vast majority of datasets and models. We now aim to explain this performance bump
by finding which features increase performances and when. We consider the SHAP value
approach [Lundberg et al., 2020], a method that for each sample, assigns each feature a value
that reflects its importance in the prediction process. Φ

pd,hq
c designates a SHAP value and

denotes the contribution of a column c to the predicted hour h on day d. Note that a column
c “ p f , l, h1q refers to the hour h1 of a feature f with l days lag. We also divide the contribution
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Figure 3.5 – P-values of the Diebold & Mariano tests computed on the recalibrated forecasts
on period T2. Colored squares in pi, jq indicates that the forecasts of model i are significantly
more accurate than forecasts of model j. Green columns indicate that the corresponding
models are significantly better than every other. Black lines indicate that the model on the
y-axis’ forecasts are significantly worse than every other.

of each column c so that they sum to one for each output pd, hq:
nc
ÿ

c“1

Φ
pd,hq
c “ 1

3.4.2.1 Global Explanations

We first focus on explaining the performance gaps between models. Results for period T2
on the German dataset are presented on Figures 3.6, 3.7, 3.8. Each subplot corresponds to a
feature f . The x-axis displays all possible lags in hours for this feature, while the outputs are
shown on the y-axis. For a feature f , we display sΦ

phq
f ,l,h1 at coordinates rx “ pl, h1q, y “ hs, the

average contribution over all days :

sΦ
phq
f ,l,h1 “

1
nd

ÿ

d

Φ
pd,hq
f ,l,h1

This is equivalent to the AR model weight plots of Figure 2.6 described in the precedent
Chapter, only organised by groups of features for a better readability, as it counts how much
does a specific column c “ p f , l, h1q participates in the forecast of a specific price h on average
over the test set. Next, we report the feature importance over all samples, for all predicted
hours, grouped by feature f or lags l. The average contribution for each feature sΦ f is reported
as a percentage of the total contribution in Table 3.7 :

sΦ f “
1

24 ˚ nd

nd,24
ÿ

d“1,h“1

nl,24
ÿ

l“1,h1“1

Φ
pd,hq
f ,l,h1
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The average contribution for each lag day sΦl is shown in Table 3.8:

sΦl “
1

24 ˚ nd

nd,24
ÿ

d“1,h“1

n f ,24
ÿ

f“1,h1“1

Φ
pd,hq
f ,l,h1

Lastly, we study the evolution of feature contribution over time. Particularly, we are in-
terested in the effects of the three Covid lock-downs in France on the Daily Average Unit
Contribution (DAUC) that we define below:

sΦ
pdq
f “

1
24

24
ÿ

h“1

1
24 ˚ nl

nl,24
ÿ

l“1,h1“1

Φ
pd,hq
f ,l,h1

The DAUC sΦ
pdq
f gives a value on how much on average does a feature group f brings to

the forecasts of each day. It differs from feature importance sΦ f because the values are not
averaged over the test period but are divided by the number of columns referring to the
feature f . This allows to fairly compare the contribution of French price whose number of
columns nc “ 24 ˚ nl “ 96 with the contribution of Gas Prices that takes only 1 column for
instance. Figure 3.9 displays these measures.

Consumption Forecast Generation Forecast Past Prices Current prices Date Indicators
Model

FR DE BE FR DE BE FR DE BE NL ES CH
Local Foreign

& Gaz Price
CNN 7.11 7.59 5.13 6.65 5.45 22.18 19.38 5.09 3.45 4.59 3.37 8.13 33.14 64.97 1.89
DNN 7.10 4.28 5.15 5.13 5.61 7.55 15.49 5.60 3.82 4.78 5.63 28.39 27.71 70.80 1.49

RF 1.33 1.58 1.33 1.00 1.13 2.19 15.49 1.21 2.30 1.03 1.06 70.09 17.82 81.92 0.26
SVR Chain 4.10 2.86 4.23 9.81 4.18 6.22 17.46 6.16 4.47 6.90 5.62 26.56 31.37 67.21 1.42

FR

SVR Multi 4.10 2.68 4.06 9.06 4.55 6.90 17.16 5.69 4.36 6.16 5.65 27.98 30.32 68.03 1.65
CNN 4.39 6.44 6.03 7.11 18.13 6.23 5.06 22.64 3.90 8.24 - 9.46 47.21 50.42 2.37
DNN 4.11 5.08 4.78 4.98 18.10 6.89 3.88 20.95 3.67 9.27 - 16.66 44.13 54.24 1.63

RF 0.91 1.85 2.54 0.87 11.17 1.77 3.53 32.84 1.44 2.76 - 39.97 45.86 53.79 0.35
SVR Chain 3.15 3.92 4.70 5.09 13.83 6.20 4.87 25.13 5.44 10.05 - 16.56 42.87 56.04 1.09

DE

SVR Multi 2.69 4.01 3.74 5.17 15.82 6.10 4.12 25.33 4.57 10.68 - 16.68 45.16 53.74 1.10
CNN 3.82 4.84 5.90 5.55 6.48 23.46 10.93 7.83 20.35 8.31 - - 49.71 47.76 2.53
DNN 7.77 6.55 7.07 6.88 7.82 11.37 10.96 8.82 20.00 10.78 - - 38.44 59.57 1.99

RF 2.14 3.35 11.70 2.75 2.66 4.94 33.21 2.01 30.47 5.44 - - 47.11 51.56 1.33
SVR Chain 7.79 4.12 5.47 6.20 7.05 10.04 16.22 6.79 22.80 10.07 - - 38.31 58.23 3.46

BE

SVR Multi 7.66 4.08 5.62 5.76 7.00 10.43 15.72 6.56 23.55 10.33 - - 39.59 57.11 3.30

Table 3.7 – Summary of average contributions by feature sΦ f over time period T2. The
contributions are summed for all targets, all times, and all lags for each category. The
last two columns display the weight of the characteristics of foreign countries in the total
contribution.

Figure 3.6 presents the feature contribution of the Random Forest model for the German
dataset. We can observe that most of the feature contributions are close to 0 or are used
uniformly to predict all hourly prices over 24, forming vertical lines of red squares (sΦphqf ,l,h1

is high @ h “ 1 : 24). We relate this observation to the way RF models are trained: the
Multi-Ouptut Decision Tree algorithm chooses a division that satisfies the split criterion for
all target variables. Therefore, at least on the higher nodes, the same characteristics are used
to determine all the target features and their contributions are thus important. Moreover,
we see in Table 3.7 that the majority of the contributions are made by the Swiss prices and
by the country-specific prices (for French and German datasets). Finally, from Table 3.8, we
observe that they barely use the feature with two, three or seven lag days. We believe that
these three facts explain why RF models perform significantly worse than any other model
on every market.
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Figure 3.6 – Average feature contribution of the RF model for the German dataset. Each
subplot displays the contributions of a single feature on all target variables. The target
variables are on the y-axis, and the lag days and hours are represented on the x-axis. A red
square on subplot f at the coordinates rpl, h1q, hsmeans that the contribution of feature f with
l lag days at hour h1 is high on average for the output h. We observe numerous contributions
close to 0, meaning that some features have been omitted.

MultiSVR contributions, shown in Figure 3.7, display diagonals of red squares that occur
when sΦ

phq
f ,l,h1 is high @h1 “ h. This means that a column c “ p f , l, h1q contributes to target

variable h only if h “ h1. This is most visible for the German generation forecast for the
day to predict : market players usually try to take into account Renewable Generation for
making their order books and it helps in estimating the prices.Patterns are hard to identify in
the foreign features with lag days such as French consumption or generation forecasts, even
though the contributions for these features are not null. We can observe partial diagonals in
German, Dutch or Swiss price features. Due to market coupling, prices at a given hour from
neighboring countries are sometimes identical, hence they constitute an important feature
for prediction. Lastly, we notice strong contributions from evening prices with a 1-day lag,
not only when h “ 24 as observed by [Ziel, 2016]. The previous evening’s prices are closest
in time to the prices we aim to predict and are therefore an interesting feature well captured
by the model.

The DNN model contributions in Figure 3.8 display centered group of red squares: high
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Figure 3.7 – Average feature contribution of the MultiSVR model for the German dataset. We
observe diagonal lines of high contributions. This means that features at hour h1 contribute
mainly for predicting the output h if h “ h1.

sΦ
phq
f ,l,h1 for h1 “ 8 am to 8 pm and target variables h “ 8 am to 8 pm. For instance, the German

consumption forecasts from 8 am to 8 pm highly contributes to the German prices forecasts
from 8 am to 8 pm. Peak-load specific orders can be issued by market players during those
hours, and this is most used by power plant owners to allow them to either turn on their plant
or shut it down during those 12 hours. We also identify diagonal patterns for several features
such as the Generation forecasts or German and Dutch prices. The patterns observed on this
model give a finer representation of its use of input features, and attest to its capacity to inte-
grate complex phenomena. It also helps explaining the performance gap between all models.
Similar figures for the CNN, ChainSVR and for other countries can be found in our repository.

We observe from Table 3.7 that both SVR and DNN models use foreign features for more
than half of their total contribution (right-hand side columns). German renewable forecasts
account for almost one fifth of the total contribution for predicting the German prices. This is
the highest contribution after Swiss and German prices and it is almost twice the contribution
of the French generation forecast for predicting French prices (or Belgian generation forecast
for predicting the Belgian prices) that reach 10% at maximum. We explain this observation
by the difference in energy mix between these countries. Nuclear electricity is produced
according to the pricing algorithm, and is, in a sense, a result of the Day-Ahead price com-
putation. Renewables are generated independently and thermal plants are dependant on the
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Figure 3.8 – Average feature contribution of the DNN model for the German dataset. We
observe centered squares of high contributions between hours from 8 am to 8 pm for French
consumption and generation forecasts. The Neural Network models display peak-load
related patterns in their feature contributions.

price of other commodities. As a result, models have to put more weight to those features
for the German market.

We also observe that the French consumption forecast contributes to predict French prices
more than the German consumption forecast for German prices (and Belgian consumption
forecast for the Belgian prices). It reflects the thermosensibility of the French market, that
makes consumption more volatile and more determinant for setting the prices. Our studied
models consider that this feature is more decisive in setting prices and gives it more weight.

In addition, it is clear form Table 3.7 that Swiss prices account for an important part of
the feature contribution for all datasets that contain them. They are not part of the euphemia
algorithm and can therefore be used by market participants to create their order books. Own-
ers of power plants can use these prices to plan their production. Thanks to cross-border
energy flows, market players can also exchange energy from and to this country using its
price as a reference. Swiss prices thus constitute a good overview of the price level that will
be reached in its neighboring countries.

Finally, from Table 3.8, we can conclude that features with two or three day lag contribute
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Model D D-1 D-2 D-3 D-7
CNN 20.27 37.59 4.05 4.21 33.88
DNN 46.71 29.83 2.41 2.32 18.73

RF 73.81 21.05 0.30 0.34 4.49
ChainSVR 42.34 31.42 2.72 2.63 20.89

FR

MultiSVR 44.87 30.74 2.85 2.12 19.42
CNN 38.65 33.48 3.89 3.06 20.93
DNN 43.53 30.01 3.50 2.92 20.04

RF 54.12 40.13 0.49 0.39 4.87
ChainSVR 36.28 37.52 2.92 2.92 20.36

DE

MultiSVR 38.62 37.12 2.55 2.48 19.24
CNN 19.89 40.91 4.21 5.18 29.80
DNN 28.39 39.72 3.99 3.89 24.01

RF 21.55 64.20 1.25 1.31 11.69
ChainSVR 29.55 43.65 3.90 3.27 19.63

BE

MultiSVR 29.61 43.72 3.93 3.30 19.44

Table 3.8 – Summary of average contributions per lag sΦl across all datasets for the first period
T2. Contributions are summed for all targets, all times, and features for each lag.

very little to the decision. They never contribute more than 5% of the total contribution.
However, features with one or seven days lag are an important part of the model decision
process. Different seasonalities can be observed in electricity prices. Among them, the
weekly seasonality is one of the most important: the prices of the week before are generally
more similar to the prices of the previous 2 or 3 days during then week-ends. In addition,
prices are fixed daily by the euphemia algorithm, that uses as input the order books specific
to the corresponding day. Thus, the data of the previous days, although similar to the current
data, are not decisive in setting the prices. Contribution weights assigned to features with
two and three day lags confirm that our models are also mostly based on current data.

3.4.2.2 Individual explanations

Lastly, we focus on the Daily Average Unit Contribution (DAUC) of the features and their
evolution along time period T2. Figure 3.9 displays these values for the best performing
model for the French country: the MultiSVR. Grey areas delimit the periods of confinement.
We have displayed the SMAPE values in red, and we first observe its evolution during the
three lock-downs.

The model hardly adapts to the first lockdown (March 17, 2020 - May 11, 2020) and the
highest error is reached in the middle of it. The second and third lockdown (November 2020
and April 2021) show no significant increase in errors overall. We explain this evolution by
two factors: 1) The first confinement was more brutal for the French market. Because the
industry had come to a standstill, prices and consumption had fallen. This is not the case
for the other two lock-downs. 2) The first lockdown was a completely new situation for the
model, which was not the case for the following. This also explains why the SMAPE starts
dropping after half the first lockdown: the model has integrated several data samples from
the confinement period and is able to adapt. The next two confinements are also more easily
dealt with.
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Next, we focus on the period following the first lockdown (from May 11, 2020 to Octo-
ber 1, 2020). This period was characterized by a slow French industry recovery and warm
temperatures with consumption still below the standards. The nuclear production fleet was
sufficient to cover the consumption and no gas-fired plant was needed. We see that the
model correctly balances the trade-off between French production forecasts and gas prices
by lowering the importance of Swiss and gas prices for the benefit of production forecasts
and date indicators.

The period following the third lockdown (May 2, 2021 - December 31, 2021) is opposite
to the previous one. High volatility in gas prices, due partly to the economic recovery in
China, causes extreme volatility in electricity prices (see Figure 2.5). In this context, we ob-
serve the evolution of the contributions of Swiss and gas prices. These two features are the
two most important characteristics and their movements are opposite: when one decreases,
the other increases. Periods when the gas price contribution increases and the Swiss price
contribution decreases are marked by high SMAPE, and oppositely. The model captures
the importance of the gas price as shown by the strong increase in the contribution, but this
price is so volatile that using gas price from two days ago results in a high error. A good
way to avoid error spikes over this period would be to find a more reliable value than the
EGSI index that is an estimate of price of gas two days before. Using the last value traded
on the gas market could be an alternative.

Lastly, we notice little variation in contribution among the other features. The French
consumption forecast contributed more from January to March 2020 and from November
2020 to April 2021. During these winter periods, the model gave more weight to the con-
sumption forecasts to account for thermosensibility. This is not the case during the winter
of 2021. Very low French nuclear production, due to the maintenance of the power sta-
tions, obliges the gas park to ensure the balance between consumption and production. The
proportion of gas-generated electricity in the total mix was so high that small variations in
consumption did not affect prices because all gas-fired power plants have the same marginal
cost: the price of gas.

3.5 Synthesis, Discussion and Future Work

In this section, we summarize our conclusions and observations from the results of our
experiments. First, we see that including new features in the predictive dataset dramatically
increases model performance. Among these added features, the most discriminating are
the features without lag days: production and consumption forecasts, and Swiss prices. We
believe that the Belgian dataset is more difficult to grasp as it lacks the forecasts for the period
T1 and the Swiss prices for the period T2. We also observe that the feature contributions
depend on the considered dataset. These differences reflect the specificities of the European
market such as the temperature sensitivity of consumption in France, or the intermittency
of production in Germany.
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Figure 3.9 – Evolution of the daily mean unit contribution of each feature sΦ
pdq
f for the

prediction of French prices over the period T2 in the DNN model. The daily SMAPE is
displayed in red.

Second, we report significant inequalities in the performance of ML models. RF and CNN
are not suitable for the EPF paradigm we study. These models incorrectly incorporate input
features and therefore we cannot identify significant patterns in their contribution analysis.
In contrast, DNN and SVR extract meaningful information from features and display diag-
onal and peak load patterns in their contributions. As a result, these models are better over
the three considered markets and the two time periods. Further analysis of the contribution
revealed that they are able to react to significant market changes by updating the weight of
discriminating features such as gas price when necessary. Although this adaptation is not
instantaneous and a short period of performance deterioration is observed, the models pro-
duce accurate predictions in new situations. For example, performance has increased during
the second semester of 2021 for the French market even though prices are more volatile.

Due to the high computation times and the difficulty of acquiring new data, several ex-
periments were left for future work. The integration of new EPF features such as coal, oil or
carbon prices, or the use of more data from foreign countries such as Spain, Italy, Austria or
Denmark could be considered as future work. Given the importance of Swiss and gas prices
in the total contribution, it will also be interesting to include other prices without lag days
available before the close of the EPEX market, such as EXAA prices or UK prices. Moreover,
the available transfer capacities are essential to understand the cross-border energy flows
that are necessary to explain the price differences between countries. Their inclusion in our
datasets should increase the accuracy of the multi-country forecasting framework.

Finally, we observed a slight degradation in performance while forecasting multiple
countries at once. The tabular data structure that we use for feeding our models is not suited
for managing the European network topology. Additionally, the SVR models scale badly
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with the number of markets nz to tackle since one has to train 1 model per output, thus 24˚nz
models in total. An appropriate model for pan-European forecasting is modeling the data
as a Graph and using a Graph Neural Network model.





Chapter 4

Forecasting Electricity Prices: an
Optimize then Predict-based approach

In the last Chapter, we assessed several Data-Driven models for EPF and explained
their representation of the different markets using Shap values. We have concluded
that while foreign features played an important role in price prediction, the Data-
Driven models could not be directly employed for multi-market forecasts. In this
Chapter, we focus on solving the pan-European price forecast problem and focus on
the topological aspect of the network. We start by considering the flow-estimation
problem where energy exchanges between markets are modeled with an optimiza-
tion problem. Then, we represent the European network using a Graph where each
node is a market whose prices have to be predicted. Estimated flows are used as
edge attributes. We show that Graph Neural Networks successfully tackles fore-
casting prices for all considered markets, and that flow estimates are beneficial for
EPF, especially for markets at the center of the Graph.

77
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4.1 Introduction

Being able to forecast day-ahead electricity prices is crucial to control its production and
ensure a successful energy transition. In the preceding Chapter 3, we have sought to pro-
duce the most accurate price prediction models possible. We also aimed to predicting the
prices of different zones jointly. Although we did not obtain a significant improvement in
the forecasts, the analysis of the contributions of the variables highlighted the importance of
integrating data from foreign countries for the price forecast. For example, we have shown
that Swiss prices contribute significantly to increase the accuracy of French, Belgian and Ger-
man price forecasts. We concluded that we had not used enough information to correctly
model the European network, in particular that we had not sufficiently taken into account
transfer capacities and cross-border energy flows in our models.

We propose to overcome these limitations by putting forward different ways to inte-
grate cross-border flows into predictive models. Flows Fz,z1 between two zones z and z1 are
constrained by the Available Transfer Capacity (ATC) Γ between two countries that share
a border : Fz,z1 ď Γz,z1 . However, this maximum capacity is not always fully utilized and
knowing the flows between countries would undoubtedly improve the prediction models.
Also, in the last Chapter, we limited our study to 3 of the most popular markets (France,
Germany and Belgium). The price-fixing algorithm euphemia computes prices jointly for
more than 40 zones across Europe (see Figure 2.7 of the first Chapter).

4.1.1 Contributions

We propose to take advantage of domain knowledge to estimate cross-border flows by a
combinatorial optimization model. Using the definition of euphemia, we design two distinct
optimization problems. One approach consists in a constrained linear problem (LP), the
second is a quadratic problem (QP). We also investigate two means of combining the flow
estimates to improve performances.

We then incorporate the flow estimates as input features of a ML model. Our research
hypothesis is that we can improve the model predictions by enriching the input data thanks
to domain knowledge. This approach is reversed from the predict-then-optimize approaches
presented in Section 2.4 used to solve many decision-making problems by combining Ma-
chine Learning and combinatorial optimization. In this framework, some parameters of a
combinatorial optimization problem are estimated from other features based on historical
data. Our approach uses a combinatorial optimization model to estimate features that are
then used to train a Machine Learning model.

Lastly, from the entsoe platform 1, we collect data from 35 markets and represent the
European network as a Graph, where each market is a node and each connection an edge.
Using appropriate models (DNN, CNN, GNN), we forecast the prices of all markets alto-
gether.

1https://transparency.entsoe.eu/
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4.1.2 Chapter Structure

In the first Section 4.2 of this Chapter, we detail how euphemia works and its variables and
notations. Then, we introduce the flow estimation problem in Section 4.3. We explain our
formalization using linear and quadratic programming. We also cover our combination
methods. We use the results of these optimization problems in a multi-market forecasting
model that predicts prices for 35 distinct zones of the European market (Section 4.4). The
experimental evaluation (Section 4.5) confirms that the cross-border flows estimation makes
it possible to improve the model performance. We then conclude with a broader discussion
and a forward look (Section 4.6).

4.2 Preliminaries

We start this Chapter by presenting the variables of interest and their notations. We also
briefly present the euphemia algorithm.

4.2.1 Variables & Notations

To solve the EPF problem, we consider the European market on day d where each zone has
day-ahead prices Ypd,hqz P R to be predicted for all h P r1, 24s. For simplifying the notations,
we drop the temporal indicator pd, hq on only write Yz. The other features that interest us
are:

• The Renewable generation forecast for the next day Rz P R

• The Programmable generation forecast 2 for the next day Gz P R

• The maximum generation capacity for the next day Vz P R is the sum of capacities of
all plants.

• The Price of the current day Pz P R. When forecasting the next day’s prices, the current
day’s prices are available.

• The Available Transfer Capacities for the next day Γz,z1 P R which is the maximum
amount of energy that can be sent from z to z1

Additionally, we consider the required amount of energy to be produced using controllable
plants Ez P R, and the day-ahead flows Fz,z1 P R. Hence, C,R,G,P,V and Γ are known
at prediction time, while Y, E and F are unknown. In what follows, we propose to take
advantage of knowledge from the field of electricity pricing to estimate the flows F between
zones by combinatorial optimization, before using those results to forecast the day-ahead
prices Y.

2Since renewable energy production is subject to external factors that are not controllable (wind speed, solar
radiation, etc...), we distinguish the two types of source by Rz and Gz.
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4.2.2 Euphemia

Before delving into the flow estimation problem, we quickly recall some key elements of the
euphemia algorithm. More details are available in Chapter2.1.2. On the European market,
this algorithm determines hourly prices by matching demand, production and exchanges
across Europe in a way to maximize the social welfare while taking into account the market
and network constraints. In this Chapter, we consider the following:

• The energy balance must be zero for all zones at all times, that is consumption, gener-
ation and cross-zonal flows balance:

Gz ` Rz `
ÿ

z1
Fz1,z “ Cz `

ÿ

z1
Fz,z1

• The flow of energy between two zones must not exceed the maximum transfer capacity
between these two zones:

Fz1,z ď Γz1,z

• Where possible, the energy flow between two areas is maximized to generate more
profit from congestion rents T.

max
F

ÿ

z,z1
Fz,z1Tz,z1

This algorithm runs daily at noon and determines the day-ahead prices Yz, required energy
production Ez and energy flows Fz,z1 of all the European zones, and it also satisfies the listed
constraints. This leads to sophisticated and counter-intuitive flows between zones, some
zones playing the role of transit zones to make possible energy exchanges between two
other zones. For example, Switzerland is generally used to send energy from France to
Germany or vice versa. Also, as the connected areas have multiple energy lines, bilateral
flows can occur and one can have both Fz,z1 ą 0 and Fz1,z ą 0. To better model these dynamics,
we use domain knowledge to approximate day-ahead flows Fz,z1 and use them as predictive
variables into EPF models.

Limitations

The proposed optimization problems are simplified version of EUPHEMIA that we only use
to estimate the cross-border flows. As seen in Chapter 2.1.2, EUPHEMIA is a complex MIQP
algorithm that considers thousands of orders from several markets. In our approach, we
only consider the total consumption and generation forecasts for a given period, rather than
computing which orders are accepted by maximizing the social welfare. Moreover, we do not
consider the Flow-Based Capacity network constraints and treat all connection lines using
Available Transfer Capacities (ATCs).

4.3 Estimate cross-border flows by combinatorial optimization

In this Section, we present our two optimizations problems for estimating cross-border flows.
We also describe two methods for combining flow estimates.
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4.3.1 A straightforward approach with linear programming

The most natural way to formulate the flow optimization problem is to write the euphemia
algorithm as a linear programming problem. In doing so, the network constraints are
explicitly enforced, and the Day-Ahead Flow F is computed:

Fs “ arg max
Fz,z1

ÿ

z,z1
Fz,z1Tz,z1(4.1)

under const.

#

Gz ` Rz ´ Cz `
ř

z1 Fz1,z ´
ř

z1 Fz,z1 “ 0 @z
Fz,z1 ď Γz,z1 @z, z1

(4.2)

However, when we first tried to solve this problem on real data, we encountered an
important problem with the Energy Balance constraint (4.2). For many data instances, the
problem is not feasible because the flows are not enough to restore energy balance to zero.
In the Appendix, Figure D.1 displays the distribution discrepancy of Cz and Gz ` Rz and it
becomes clear that impossible cases can occur. To quantitize this phenomenon, we count the
number of data instances where one of the two cases occur:

Gz ` Rz ą Cz `
ÿ

z1
Γz,z1 ` ε

Gz ` Rz ă Cz ´
ÿ

z1
Γz1,z ´ ε

for different values of ε. When ε “ 0, this corresponds to extreme cases where the difference
Gz ` Rz ´ Cz can’t be filled even fully using the full capacity of all available lines. When
increasing ε, this gives the number of cases that could be solved while relaxing the Energy
Balance constraint. We gather the results for ε up to 5 GWh and display them as percentages
in Figure 4.1. First, we see that many important markets (France (FR), Belgium (BE), Great-
Britain (GB), Spain (ES), Portugal (PT) and Germany (DE)) can’t fulfill the Energy Balance
condition because they produce too much (blue line). Oppositely, only a few markets can’t
cover their consumption (Greece (GR), Sicily (IT-SICI), Northern Italy (IT-NORTH)). Even
though most market only have less than 5 GWh out-of-balance energy, the problem stays
impossible to solve for many data instances.

4.3.2 Reformulating the problem

4.3.2.1 A formalization by linear programming

The impossibility to enforce Energy Balance comes from the Programmable Production
Forecast Gz : it is too inaccurate and we would better consider it as a result of the price
fixation algorithm. Indeed, euphemia determines which plant has to be turned on to match
consumption (check Section2.1.2 for more details). A first approach to circumvent this
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Figure 4.1 – Percentage of data instances on the period 2020-2021 where Energy Balance
requirement can’t be met, because (BLUE) the generation is too high (RED) the consumption
is too low. This percentage usually goes down to 0 when allowing a 5 GWh gap.

problem is to use the required generation Ez as an optimization variable instead of Gz:

Flin “ arg max
Fz,z1 , Ez

ÿ

z,z1
Fz,z1pPz1 ´ Pzq

under const.

$

’

&

’

%

Ez ` Rz ´ Cz `
ř

z1 Fz,z1 ´
ř

z1 Fz1,z “ 0 @z
0 ď Fz,z1 ď Az,z1 @z, z1

0 ď Ez ď Vz @z

This allows the generation to be determined to match Cz ´ Rz. Ez is only constrained by the
maximal generation capacity of the market Vz, that is largely sufficient to cover consumption
for all data instances. Also, Rz is never superior to Cz thus the problem is solvable for all
data instances. As tariffs from the lines Tz,z1 are not available, we weight a flow Fz,z1 with
the price difference between origin and destination market. This encourages flows from a
zone with lower prices to a zone with higher prices that increases Social Welfare, and thus
matches the logic of euphemia.

4.3.2.2 Formalizing the problem by a least-squares loss

The formulation of the problem by linear programming has a major drawback. It allow the
generation of zone to expand to its maximum capacity Ez ď Vz without penalty to the cost.
In practice, increasing the amount of generation has a cost that is not linear with respect to
the generated volume (Figure 2.10 illustrates this phenomenon). We thus propose to rewrite
the problem by transforming the energy balance constraint into a cost to be minimized :
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Problem CC MAE (MWh SMAPE (%)
Flin 0.153 944.63 120.32
Flsq 0.389 418.05 105.93

Table 4.1 – CC, MAE and SMAPE metrics between Flin and Flsq optimized flows and actual
day-ahead flow values F on the train dataset.

Flsq “ arg min
Fz,z1

ÿ

z

˜

Rz ` Gz ´ Cz `
ÿ

z1
Fz1,z ´

ÿ

z1
Fz,z1

¸2

under constraint 0 ď Fz,z1 ď Az,z1 @z,z1

The squared loss ensures that unbalanced zones are heavily penalized. By doing so, we can
also remove the determination of Ez from the problem and we use the fixed programmable
generation forecast Gz instead. This is equivalent to penalize the gap ε between Rz `Gz and
Cz presented in Section4.3.1 by a square loss.

4.3.3 Improving flow estimates

To study the quality of estimation of these two models, we solved the two optimization
problems for each hour of our train dataset (see Section 4.4.1) using scipy3. As flow values
are known a posteriori, we can evaluate the quality of the estimation on the train set using
standard measures.

4.3.3.1 Combining the two formalizations

The metrics obtained are reported in Table 4.1. It is obvious that Flsq outperforms Flin on
the dataset. However, by analyzing the estimations with a lower granularity, we observe
that the performances vary according to graph edges. For example, the flow on the edge
between Norway-5 and Norway-1 is well handled by problem Flsq as shown in Figure 4.2
(left) while the flow on edge between France and Germany is better handled by problem
Flin (see Figure 4.2 right). To take advantage of these two models, we sought to identify the
market conditions that allow us to differentiate these two scenarios. For this, we first define
the loss difference between the results of the two problems as

Lptqpz, z1q “ |Fptqz,z1 ´ Flsqptqz,z1 | ´ |F
ptq
z,z1 ´ Flinptqz,z1 |

where t “ pd, hq is one of the 24˚nd possible time-steps. We analyze the relationship between
Lptqpz, z1q and the characteristics of the market x P tCz,Cz1 ,Rz,Rz1 ,Pz,Pz1u. We break down x
into 100 quantiles xq and compute the average loss for each px, qq:

Lpz, z1, x, qq “
1

24 ˚ nd

ÿ

tPTpx,qq

Lptqpz, z1q

with Tpx, qq “ tt | xptq P rxq, xq`1su. Market conditions where Lpz, z1, x, qq ą 0 correspond
to situations where it is preferable to use Flin instead of Flsq. We name the results of this

3https://scipy.org/

https://scipy.org/
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Figure 4.2 – Optimized flows Flin (blue), Flsq (green) and the actual Day-Ahead flows F
(red) between the Norway-5 and Norway-1 zones (left) and the France and Germany zones
(right). On the left, we observe that Flsq comes close enough to the Day-Ahead flow F, while
Flin does not. On the right, we observe the opposite.

combination Fcmb. To generate Fcmb on the test dataset, we keep the same market conditions
pz, z1, x, qq as found on the train dataset. This prevents data leaks related to the use of posterior
data for a prediction.

4.3.3.2 One-sided flows

In all the proposed formalizations, we enabled bilateral flows between two zones, i.e. Fz,z1 ą 0
and Fz1,z ą 0 can both occur, which matches the logic of euphemia. However, in practice, a
majority of connections never have bilateral flows. Let’s define

PFpz, z1q “ tpd, hq|Fpd,hqz,z1 ą 0u

the set of instances where there is a positive flow between z and z1. The set

BFpz, z1q “ PFpz, z1q X PFpz1, zq

is the set of instances where there are bilateral flows. Figure 4.3 highlights the percentage of
bilateral flows

100%
24 ˚ nd

|BFpz, z1q|

for each connections. Only 17 out of 63 connections have a positive percentage. This mostly
concerns central countries such as Germany (DE), Switzerland (CH) or Austria (AT) that
act as transit zones for other markets. To further improve our flow modeling, we identify
one-sided connections and apply one-sideness in our flow estimates.

OSpz, z1q “ PFpz, z1qzPFpz1, zq

is the set of instances where the flows between z and z1 is one-sided. If
100%

24 ˚ nd
|OSpz, z1q| ą 75%

then we consider the edge pz, z1q as always one-sided. For this, we keep the most important
predicted flow from which we subtract the least important flow. We set the latter to 0. In this
way, the energy balance in the two zones remains the same. We apply this transformation
to Fcmb and call the result Fos.
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Figure 4.3 – Percentage of Bilateral flows over the 2020-2021 period.

4.4 Electricity price forecasting models

4.4.1 The dataset

In this section, we tackle the EPF problem on the European market. We collected the data
for 35 markets, linked by 63 connections, summarized in Figure 4.4. For each zone z, the
attributes are

Xpdqz “ pCpdqz ,Rpdqz ,Gpdqz ,Ppdqz q P R
96

Hence, each day is described by 35 ˆ 96 predictive features and the targets to be predicted
are the 24 hourly prices for each zone. We exclude the Swiss and Great-Britain prices from
the prediction task. Although they are part of the network, their prices are determined prior
to the closing of euphemia. Due to their important contributions in the forecasts computed
in the previous Chapter 3.4.2, we prefer to use them as predictive variables. We predict
the 24 prices of the remaining 33 zones : Ypdq P R792. Our dataset spans from 01/01/2016
to 31/12/2021. We use the last two years (2020, 2021) as test set. The year 2019 is kept as a
validation set for hyper-parameter search.

In addition to the 35 ˆ 96 predictive features cited above, we consider the Available
Transfer Capacities (ATC) for each connection Γ or instead one of the flow estimates

rFpdq P tΓpdq,Flinpdq,Flsqpdq,Fcmbpdq,Fospdqu

for each link, leading to 126 ˆ 24 additional predictive variables. Each line of our dataset
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Figure 4.4 – The European market as a Graph. Each market is a node to label, except for
the nodes highlighted in red that are already labeled because price fixation happens before
noon. Each connection between market is a Graph Edge.

corresponds to a day and has 6384 values. Lastly, our data is re-arranged as a Graph where
each zone z is a node with attributes Xpdqz and labels Ypdqz , and each connection is an edge
with attribute the flow estimates or ATC, and labels the real Day-Ahead flows. A graphical
summary is displayed in Figure 4.4

4.4.2 The machine learning models

4.4.2.1 Data-Driven approaches

We use Deep Neural Network and Convolutional Neural Network to predict the electricity
prices. Deep Neural Networks (DNN) [Lago et al., 2018a,b, 2021; Mosbah and El-Hawary,
2016] are the most commonly used models in EPF. Their training samples are vectors
Xpdq P R6384. Convolutional Neural Networks (CNN) have also seen a growing interest
in EPF over the past years [Cheng et al., 2020; Khan et al., 2020; Lago et al., 2018a]. We
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compute the convolutions along time and each sample is avector Xpdq P Rp35`126qˆ24. We
employ the same methodology for fitting those models as what was described in the prece-
dent Chapters (Sections 2.2.1and 3.3.1). The dimensionality of the data to predict Ypdq P R792

discourages us to use the SVR models that require fitting 1 model per output.

4.4.2.2 Graph Neural Networks

Lastly, we propose to use a Graph Neural Network (GNN), which is new for the EPF domain.
The GNNs have been proven capableof solving many complex tasks such as traffic forecast-
ing problems, recommendation systems or biology [Wu et al., 2020] [Xu et al., 2018] because
it can process data generated from non-Euclidean space. In the context of EPF, we want to
exploit the European network’s structural data : G “ pV,Eq “ pX, rFq. We perform a Node
Labeling task where graph convolution layers are stacked and update the node embeddings.
This is followed by independent linear layers that map embeddings to their price prediction
for each node to predict. We use TensorFlow and PyTorch-Geometric libraries 4 for training
and evaluation of the GNNs.

4.4.2.3 Hyper-parameter search

Each model (DNN, CNN, GNN) is trained on 5 different versions of our dataset based on the
method used to estimate F: Γ, Flin, Flsq, Fcmb, Fos. To ensure fairness in our experiments, we
set a time limit for the hyper-parameter search. More precisely, we let our program explore
the hyper-parameter grid for 24 hours for each model with rF “ Γ on a 20 cpus computer
and use the same configuration for all variants of F. This introduces a slight bias, as the
resulting best configuration is chosen for its performance on the Γ dataset. After finding
the optimal configuration, we calculate forecasts on the test dataset using recalibration. It
consists in re-training the model using the most recent data before making forecasts. Once a
test set sample has been predicted, we can integrate its predictions into the training dataset
and retrain the model. We recalibrate our models every 30 days.

4.5 Experiments

We compare the values of the predicted pYz and the real Yz target variables for the different
zones z, and the values between estimated flows rF and real flows F for all connections pz, z1q.
We use standard measures MAE, SMAPE and CC (the average correlation coefficient over
the target variables) that is defined as:

CCpy, pyq “
1
nz

ÿ

z

ř

ipyi,z ´ syzqppyi,z ´
s

pyzq
b

ř

ipyi,z ´ syzq2
ř

ippyi,z ´
s

pyzq2

With ȳz “
1

24˚nd

ř

i yi,z the average predicted value for zone z and s

pyz “
1

24˚nd

ř

i pyi,z the

average prediction for zone z. For the flow estimation error, yz is replaced by rFz,z1 . To

4https://www.tensorflow.org/, https://pytorch-geometric.readthedocs.io

https://www.tensorflow.org/
https://pytorch-geometric.readthedocs.io


88 Chapter 4. Forecasting Electricity Prices: an Optimize then Predict-based approach

Problem CC MAE (MWh) SMAPE (%)
Γ 0.14 917.59 111.43
Flin 0.116 876.51 111.12
Flsq 0.380 388.95 105.35
Fcmb 0.367 396.46 102.52
Fos 0.375 314.5 81.19

Problem Γ Flin Flsq Fcmb Fos
Γ - 1.0 1.0 1.0 1.0
Flin 0.0 - 1.0 1.0 1.0
Flsq 0.0 0.0 - 1.0 1.0
Fcmb 0.0 0.0 0.0 - 1.0
Fos 0.0 0.0 0.0 0.0 -

Table 4.2 – (LEFT) Metrics for flow estimation on the test dataset for the different methods.
The Flsq method outperforms the Flin methods. The Fcmb method does not improve the
metrics, while the Fos method improves performances. (RIGHT) p-values of the DM test
using the SMAPE loss. Values in bold on coordinate pi, jq inferior to 5% indicate that model
i is significantly more performing than model j.

check the statistical significance of the results, we use the Diebold & Mariano (DM) test
with threshold of 0.05 (see Section 3.3.2 for more details). We use SMAPE as Loss to better
account for the different price scales. The search space and best configuration of the Hyper-
Parameters are detailed in the Appendix D. For reproducibility purpose, the source code
and the data are made available5.

4.5.1 Results

4.5.1.1 Flow estimate

The results of the flow estimation problems on the test set are first presented in Table 4.2
(LEFT). We make the same observation as for the train set: Flin barely improves the quality
of the flows while Flsq dramatically reduces the error. Then, their combination Fcmb does not
show notable metric improvement while setting up one-sided flows Fos does. We perform
DM tests and display the p-values in Table 4.2(RIGHT). They confirm that the flow estimate
quality increases with the complexity of the estimation method, i.e. Fos outperforms every
method, Fcmb outperforms every method except Fos and Flsq is better than Flin.

4.5.1.2 Price forecast

Global analysis

The results of the EPF problem on the test period are presented in Table 4.3. The left part
displays the metrics, while the right part details the P-values of the DM tests. On each line,
we first compare the model in that line with the same model using other flow estimates
(first 5 columns), then we compare it to other models using the same flow estimate (last 3
columns). We can for instance confirm that the DNN model using the network constraints Γ
is significantly more efficient than the CNN using Γ (first line) because the p-value is zero.

The CNN models are less competitive. They obtain the worst metrics and the DM test
confirms that they are significantly less efficient than other models using the same flows
(penultimate column). The GNN models are the most adequate models for this problem.
Their metrics are better and the DM test statistically confirms that they outperform other

5https://github.com/Leonardbcm/OPALE.git

https://github.com/Leonardbcm/OPALE.git
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models using the same flows (last column). The DNN models thus stand in between. We
now analyse the performance variations with respect to the flow estimation method.

Next, we compare results obtained using the network constraints Γ and those using esti-
mation methods rF (1st column of the RIGHT table). We notice that for the DNN, estimating
the flows significantly improves performances. For the CNN, the performance increase is
only significant for more sophisticated Fcmb and Fos methods, while for the GNN, only for
Fcmb. Moreover, the Flin method is generally never significantly more efficient than other
methods (2nd column of the RIGHT table). However, which flow estimation method is
better for all models remains unclear: no method significantly outperform every other for a
given model.

Analysis by markets

Figure 4.5 details the SMAPE value for each considered zone. It explains the performance
gap of the GNN model compared to the DNN and CNN. In Scandinavia (Denmark (DK),
Norway (NO), Sweden (SE)), the latter fail to achieve correct results. The GNN obtain a
SMAPE that is lower than 35% for all markets and lower than those obtained by the DNN
or CNN. Figure 4.6 highlights the significance of using a flow estimate in place of the ATC.
We observe that replacing Γ by Flsq, Fcmb or Fos leads to overall improvements, even though
local decreases can occur. Almost all zones profit from using rF for the DNN. Using Flin
improves performance less often than other methods and can degrade forecasts on multiple
neighboring areas (Italy (IT) and a central block : Germany (DE), Slovenia (SI), Austria (AT),
Hungary (HU), Czechia (CZ), Slovakia (SK) for the CNN). Using an inappropriate flow
estimate with the GNN can degrade performance for a few markets (France (FR), Germany
(DE), Slovenia (SI), Norway-5 (NO-5)). Fcmb shows the biggest improvements and the lowest
decrease for all models.

4.5.2 SHAP Values

It is possible to further analyze our models and determine the impact of the different groups
of features on the predictions. To that end, we consider the SHAP value approach [Lundberg
and Lee, 2017], a feature attribution method that assigns to each feature a value that reflects
its contribution in the prediction process. We denote the contribution of a column c to the
hourly price h of a zone z on day d as Φ

pd,hq
z,c . A column c “ p f , h1, z1q refers to the feature f at

hour h1 for zone z1 or pair of zones pz1, z2q if f is an edge attribute. Hence, the contribution
tensor Φ P R731ˆ792ˆ6385 is made of 3.7 billion values. For computational reasons, we only
compute 500 most important SHAP values on the first 30 days of the test dataset. We
normalize the results so that the sum of each contribution equals 1 for each target of a given
day (check Chapter 3.4.2 for a more detailed explanation). We are interested in the sum of
the contributions of each feature f :

Φ f “
ÿ

d,z,h,h1,z1
Φ
pd,hq
z, f ,h1,z1
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MAE SMAPE
Models CC

(e/MWh) (%)
DNN_Γ 0.893 13.97 29.76
DNN_Flin 0.903 13.44 28.51
DNN_Flsq 0.904 12.96 28.26
DNN_Fcmb 0.906 13.07 28.38
DNN_Fos 0.909 13.2 28.84
CNN_Γ 0.866 14.41 32.17
CNN_Flin 0.865 14.54 32.23
CNN_Flsq 0.875 14.19 32.01
CNN_Fcmb 0.867 14.04 31.81
CNN_Fos 0.872 14.26 31.87
GNN_Γ 0.925 10.23 24.59
GNN_Flin 0.926 10.22 24.6
GNN_Flsq 0.925 10.17 24.6
GNN_Fcmb 0.926 10.18 24.46
GNN_Fos 0.926 10.14 24.52

Γ Flin Flsq Fcmb Fos DNN CNN GNN

- 1.0 1.0 1.0 1.0 - 0.0 1.0
0.0 - 0.995 0.887 0.04 - 0.0 1.0
0.0 0.05 - 0.06 0.0 - 0.0 1.0
0.0 0.113 0.94 - 0.0 - 0.0 1.0
0.0 0.996 1.0 1.0 - - 0.0 1.0
- 0.35 0.847 0.977 0.964 1.0 - 1.0

0.65 - 0.904 0.99 0.976 1.0 - 1.0
0.153 0.096 - 0.942 0.855 1.0 - 1.0
0.023 0.01 0.058 - 0.33 1.0 - 1.0
0.036 0.024 0.145 0.67 - 1.0 - 1.0

- 0.431 0.457 0.989 0.882 0.0 0.0 -
0.569 - 0.504 0.999 0.945 0.0 0.0 -
0.543 0.496 - 0.999 0.953 0.0 0.0 -
0.011 0.001 0.001 - 0.089 0.0 0.0 -
0.118 0.055 0.047 0.91 - 0.0 0.0 -

Table 4.3 – (Left) Metrics on the test period. (Right) DM test P-values. For each trained model
(line), the p-value is computed against the same model with other flows (first 5 columns)
and against other models with the same flows (last 3 columns). The null hypothesis states
that the column model outperforms the row model. With a threshold of 0.05, the bold values
indicate that the row model outperforms the column model.

We compute Φ f for each f P pC,G,R,P, rFq and display them in Table 4.4. First, we observe that
the GNN’s top contributing features are the prices that explain 30% of the forecasts, against
approximately 20% for the other models. The GNN also uses rF the least (14% against 18-20%).
Next, we observe that the DNN model favors the use of rF at the expense of C, G and R as we
use more sophisticated flow estimate (Flsq, Fcmb, Fos). In contrast, the average contribution
of rF in the CNN and GNN does not show a clear trend. To detail this observation, we display
in Figure 4.7 the difference of contribution between Γ and the used estimate rF. Green squares
on coordinate pi, jq indicate that the contribution of rF is more important than the contribution
of Γ for predicting the zone i for model j. We observe that the Flin contribution differences
are mostly negative; that is, models rely less on Flin than Γ for forecasting prices. Next, we
see that the DNN increases the contribution of rF for almost all zones. This is particularly
marked for Fos. Lastly, the GNN always lowers the contribution of Latvia (LT), Estonia (EE),
Lithuania (LT), Finland (FI) and Greece (GR). Those zones are characterized by having few
(1 or 2) connections and being far from the center of the network.

4.5.3 Discussion

The joint analysis of the model’s performances and SHAP values of Flin shows us significant
degradation of the flow estimation and price forecasts, and less contribution for the forecast
than Γ. This leads us to conclude that the Flin method is not a good flow estimation approach.
Apart from Flin, other flow estimation methods are all beneficial for the EPF task, but can
locally degrade performances for stronger models (GNN). Using Fcmb in a EPF model seems
to be a reasonable default choice for any model.
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Figure 4.5 – SMAPE for all considered markets. While DNN and CNN fail to produce
accurate results in Scandinavia, the GNN can handle it.

DNN CNN GNN
Model

Γ Flin Flsq Fcmb Fos Γ Flin Flsq Fcmb Fos Γ Flin Flsq Fcmb Fos
C 19.4 19.2 19.3 19.3 18.8 19.3 19.2 18.9 18.8 18.6 16.7 17.0 16.7 16.7 17.0
G 20.4 20.5 20.0 20.0 19.5 20.1 20.6 10.7 20.5 20.0 18.1 18.0 18.0 18.0 18.3
R 21.5 21.6 20.7 20.7 20.1 22.1 21.5 21.0 20.9 22.3 19.4 19.1 19.5 19.6 19.5
P 20.5 20.5 20.7 20.5 20.3 20.1 20.5 21.3 21.7 20.4 31.6 31.5 31.0 30.9 30.6
F 18.5 18.2 19.3 19.4 21.2 18.4 18.1 18.1 18.2 18.7 14.2 14.4 14.8 14.8 14.5

Table 4.4 – Average contribution (%) for the predictions grouped by feature. For the DNN
and CNN models, we observe that the average contribution of the flows rF increases as we
use more sophisticated estimation methods.

The DNN is the leat sophisticated model and takes as input tabular data. However,
observing both a significant performance improvement and an increase of the average con-
tribution of any rF over Γ for almost all zones, we infer that the DNN model takes benefit from
using flow estimation methods. The inability of DNN to model the network is balanced by
topology-rich estimated flows.

Next, the CNN uses a matrix of arbitrary-arranged input features and a convolution
kernel and dilation rate inconsistent with the European network. Hence, CNN is the least
tailored model for EPF and zones and flows are not properly associated. The incorporation
of basic flow estimates (Flin, Flsq) in place of ATC can significantly deteriorate the price
forecasts in well-connected central markets, misleading the model.

The GNN model is the best model for EPF at the European scale. The Performance gap
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Figure 4.6 – DM test between models using the network constraints Γ and models using
different flow estimates. A green square indicates that using estimated flows significantly
improved performance, while red squares indicate a significant deterioration in performance.
Yellow squares indicate that no conclusion can be reached.

is even more visible in the Scandinavian markets. Due to the separation of those countries
in several zones, the Scandinavian area consist in smaller markets. Moreover, prices can
be much lower than those in other markets because of the importance of hydraulic power
plants and the low electricity consumption. Lastly, this area is far from the Swiss and British
markets, whose Day-Ahead prices play an important role in the prediction of close markets.
Because the GNN updates nodes embeddings at each training step rather than summarizing
the precedent input using a lower number of neurons, market specificites are conserved and
information from further markets is better incorporated. This ability lowers the contribution
of Γ or rF in the forecast since flows are internally modeled by the weighting of a node’s
neighbor information. This is even more the case for isolated zones as their relationships
with other zones are simpler.

4.6 Conclusion

While many works have focused on the construction of increasingly sophisticated models
for specific regions of the European market, we proposed to tackle the problem of day-ahead
electricity price forecasting at the European scale. Due to its ability to preserve the market’s
specificities, the Graph Neural Network is the best model available to solve this task. Many
options are still to be explored : model the problem as a Graph Labeling task, consider
the Edge Labeling task to estimate the flows or searching for more optimal value of hyper-
parameters. Nevertheless, we hope that our novel approach for solving the EPF task will
benefit the EPF community.
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Figure 4.7 – Difference in contribution made by the flow estimates rF compared to the available
transfer capacity Γ for the different models and zones. The green (resp. red) squares indicate
that rF contributes more (resp. less) than Γ.

Moreover, we presented a way of estimating features based on domain knowledge, and
this upstream of learning. Our results on the flow estimation task are promising since we
showed that this new feature significantly increases the performances on the price forecast-
ing task for less sophisticated models. A next step on this direction would be to assess the
effects of including flow estimates in simple and single-market models, such as the SVR
models, to improve their performances even more.

Furthermore, our optimize then predict strategy brings the EPF models closer to the eu-
phemia price-fixing algorithm. We have considered market interdependence caused by price
regulation mechanisms and investigated the possibility of solving euphemia prior to learning
to explicitly enforce the different network constraints such as the Energy Balance or the ca-
pacities of the connection lines. While our flow estimates showed to increase performances,
this approach has the drawback of being independent of model training. In future work, we
will study ways of taking into account euphemia during model training.





Chapter 5

Electricity Price Forecasting based on
Order Books: a differentiable
optimization approach

In the literature, there is no Data-Driven approach that considers the euphemia
algorithm. In the preceding Chapter, we integrated elements from the Price-Fixing
Algorithm by replicating the flow estimation procedure. We significantly improved
performances, but had to diverge from the EUPHEMIA logic by omitting the order
books. In this Chapter, our approach is to forecast Order Books using a NN model,
then use EUPHEMIA to compute the prices. To this aim, we build our own version
of EUPHEMIA that computes the Day-Ahead Price from an Order Book, using a
dichotomy search. This method has the advantage of being differentiable, and can
thus be considered during the training of a Neural Network. In practice, we faced
many implementation details that mitigate our conclusion. Our approach fails to
improve accuracy on markets dominated by nuclear plants (France) and has to be
combined with a standard DNN to significantly improve performances on other
markets. Nevertheless, this differentiable optimization approach is a significant
addition to the literature because it is the first to consider euphemia in a Data-Driven
model.
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5.1 Introduction

5.1.1 Motivations

As electricity is difficult to store, many specialists have aimed at anticipating electricity
prices to better adjust production. In Section 2.3, we have seen that the most accurate price
forecasting models were black-box Machine Learning models. In Chapters 3 and 4, we have
shown how to increase both accuracy and consistency of the models by using explainability
tools or including domain-knowledge as input features. However, the methods that we have
used are both limited because they don’t fully consider the price-fixing algorithm. Because of
the complexity of euphemia, it’s possible to estimate the price with a Data-Driven approach
only up to a certain accuracy. The solution for improving accuracy and consistency even
more is to consider euphemia.

From the literature review (see Chapter 2.3), we observed that Expert models approaches,
that aim at replicating euphemia, yield inaccurate results. This is mainly because those ap-
proaches consider fixed relationships between price and its drivers. These relationships are
subject to heavy incertitude that feed back to the price estimates. Data-Driven, on the other
hand, are adapted to the drivers volatility. Mixing them with Expert models seems to be
an adequate solution that has been barely explored. In Chapter 4, we paved the way for
combining Expert models and Data-Driven approaches by solving the flow estimation prob-
lem prior to learning. In this approach, we simplified the social welfare expression to only
consider cross-markets flows. Also, the solving occurred prior to learning. In the present
Chapter, we aim at taking a step further in that direction by fully considering the euphemia
algorithm during training.

5.1.2 Differentiable optimization approach

The general idea is to forecast the Order Books (the inputs of euphemia) using a ML model,
before solving the problem. Various works have studied the coupling of a prediction model
with an optimization task (see Chapter 2.4). In the predict-then-optimize approach [El Bal-
ghiti et al., 2019], a predictive model is first built and then used to optimize decision-making.
However, the learning of the model is not guided by the prediction errors on the final task
related to the optimization problem. Conversely, the predict-and-optimize framework pro-
poses to learn a predictive model by directly minimizing the error related to the downstream
decision-making task [Mandi et al., 2022]. This requires differentiating through the solution
of the optimization problem. In Section 2.4.4 we concluded that the current state-of-the art
of Constrained Optimization Learning was not applicable to euphemia.

In this chapter, three models are considered. First, a standard machine learning ap-
proach predicts day-ahead prices based on exogenous variables. The loss used minimizes
the difference between predicted and real prices. The second model predicts order books
by minimizing the difference between predictions and actual order books. The last model
predicts order books with a neural network and then solve the euphemia optimization prob-
lem. The resulting prices are then compared to real prices. During training, the derivation
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of the loss after optimisation is used to adjust the parameters of the neural network. Finally,
by making these three models share a common neural network, it is possible to combine
them using a loss resulting from the linear combination of the three previous losses. We
can then evaluate empirically and on different data sets the impact of each model on the
accuracy of the predictions. We aim to show that end-to-end predict-and-optimize methods
are beneficial for this problem.

5.1.3 Contributions

Our contributions are summarized as follows:

1. We formalize euphemia optimization problem, a Mixed-Integer Quadratic Program-
ming problem with linear orders, as the maximization of social welfare measured by the
difference between market price and order book prices, for all accepted orders (supply
orders with prices inferior to the market price, and demand orders prices superior to
the market price).

2. We present the dual optimization problem that links euphemia to the market prices.
We then show how to analytically solve this problem by setting it’s derivative to
zero using a dichotomy search. To the best of our knowledge, our work is the first
decision-focused learning method to predict the electricity price, taking into account
the euphemia optimization through differentiable optimization.

3. We then give the implementation details of our solver. Using the torch1 software, we
implement a batched and differentiable dichotomy search.

4. We explain how to integrate the optimization problem into the neural network model,
by deriving the calculations of the backward pass. Several neural networks and their
associated loss allow the model to be adjusted according to real prices or order books.
We present experiments performing a deep analysis of seven configurations on four
datasets. We provide an extensive discussion of our results in context.

5.1.4 Chapter structure

The remainder of the Chapter is structured as follows. In Section 5.2 the euphemia optimiza-
tion problem is framed based on its definition. We show how to compute the social welfare
of a linear supply order and generalize its formula. Assuming that model predictions can
be improved by tightly coupling the problem with Order Book prediction from exogenous
data, a method for solving euphemia to determine the electricity price from order books is
proposed in (Section 5.3). The next Section 5.4 is dedicated to explain the implementation
of the differentiable dichotomy search. Then, three strategies of combining an optimal deci-
sion process while learning the order book prediction model are presented in Section 5.5.1.
The experimental evaluation (Section 5.5.4) subsequently compares several configurations of
this end-to-end predict-and-optimize model on 4 different European datasets. Afterwards,
a qualitative analysis determines what information has been captured by the differentiable

1https://pytorch.org/docs/stable/torch.html
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optimization problem using Shap values. Finally, in Section 5.6, we discuss our approach
and results, and we provide future work.

5.2 euphemia optimization problem

In constrast with the Optimization problems described in Chapter 4.2, we consider the
Order Book concept from the original euphemia algorithm. As electricity cannot be stored,
the market is regularized to guarantee the balance between supply and demand at European
scale, by prioritizing the least expensive means of production (see Section 2.1.2 and 2.3.3
for broader explanations). This price harmonization aims at maximizing the social welfare
among all participants. In this section, we present the formalization of euphemia that we
will solve in later sections.

5.2.1 Computing the social welfare of an order

euphemia maximizes the sum of each order’s social welfare, and enforces constraints of the
network. We start by detailing the determination of social welfare for a supply linear order
represented in Figure 5.1 by using :

• A price range rPoi,Poi ` Pis

• A volume Vi

• A variable Ai P r0, 1swhich state whether the order i is accepted or not.

If the optimal price P˚ is strictly lower than Poi, then it’s not worth it for the supplier to turn
on its plants and the order is fully rejected (Ai “ 0, LEFT plot). Oppositely, if P˚ is above
Poi ` Pi, then all the volume Vi is sold and Ai “ 1 (RIGHT plot). Lastly, if P˚ is comprised in
the price range, a volume linearly dependant on the price is sold and Ai is between 0 and 1
(CENTER plot). The social welfare corresponds to the commercial surplus of an order : what
the player receives minus what he was willing to be paid EP. As P˚ is used for exchanging
all orders, the actual payment is always AiViP˚. For a plant owner, EP is the marginal cost of
a plant. By submitting an order, a supplier expresses his wish to sell energy at a price Ppυiq

that is linearly dependant on the volume he sells υi “ AiVi:

Ppυiq “
Pi

Vi
υi ` Poi

The expected payment EPpυiq can then be found by taking the integral of Ppυiq:

EPpυiq “

ż

Ppυiq dυi

“
1
2

Pi

Vi
υ2

i ` Poiυi ` θi
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Figure 5.1 – A linear supply Order is defined by a price range rPoi,Poi ` Pis and volume
Vi. (LEFT) P˚ ă Poi, the order is rejected. (CENTER) P˚ P rPoi,Pis, the order is partially
accepted. (RIGHT) P˚ ą Poi ` Pi, the order is accepted. The curve equation for the price of
selling is Ppυiq “

Pi
Vi
υi ` Poi. The area in orange represents the social welfare brought by the

order.

with constant θi independent on υi. We can then reinject the expression of υi on the previous
equation and express the SWpiq by substracting EPpυiq to the real payment AiViP˚:

EPpυiq “
1
2

A2
i ViPi ` AiViPoi ` θi(5.1)

SWpiq “ AiViP˚ ´
1
2

A2
i ViPi ´ AiViPoi ´ θi(5.2)

5.2.2 Definition of euphemia

The determination of the social welfare for a demand order follows the same logic, and leads to
the same expression if using negative volumes Vi and price range Pi. By summing expression
(5.2) for all orders, we obtain:

Definition 1 (euphemia optimization problem). euphemia is defined by the following convex
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quadratic optimization problem :

max
A

ÿ

iP OB

ˆ

´
1
2

A2
i ViPi ´ AiViPoi

˙

(5.3)

u.c.
ÿ

iP OB

AiVi “ 0,(5.4)

´ Ai ď 0,(5.5)
Ai ´ 1 ď 0(5.6)

Since the constants θi are not affected by the decision variables Ai we remove them .
Also, using the energy balance constraint

ř

iP OB AiVi “ 0 (5.4), we can remove the reward
part P˚

ř

iP OB AiVi.

5.3 Finding the optimal price from an order book

In order to improve electricity price forecasts, we want to integrate the euphemia pricing
mechanism into the predictive model, as we believe that this will increase the accuracy of
the predictions. Market players submit their orders before 12 a.m. each day. euphemia then
calculates Day-Ahead prices that maximize social welfare. While euphemia is reproducible to
some extent, the Order Book is not known until the prices are released. Hence, we propose
to predict the Order Book using fundamental variables and use the predicted orders as input
to euphemia optimization problem to get the price predictions.

5.3.1 Dual euphemia optimization problem

From Definition 1, the relationship between the Day-Ahead Price and the optimal solution
of euphemia remains unclear. To obtain the prices, we have to consider the dual problem.
For a deeper economic interpretation, one can refer to MIT’s lecture about Optimization
Methods in Management Science [Orlin, 2023]. Appendix E.1 gives graphical insights on
why the solution to the dual problem is the Day-Ahead Price, and detailed computations are
available. To determine the dual problem from Definition 1, we introduce λ P R, M P RN

and K P RN as the dual variables associated to the constraints in equations (5.4)-(5.6) and
consider the Lagrangian:

LpA, λ,M,Kq “
ÿ

iPOB

˜

´
A2

i ViPi

2
´ AiViPoi ` λAiVi ´MiAi ` KipAi ´ 1q

¸

Leveraging the different Karush–Kuhn–Tucker necessary conditions for optimality, we ob-
tain the dual problem of euphemia (Appendix E.2):

Definition 2 (Dual of euphemia).

min
λ

ÿ

iP OB

Dipλq(5.7)

withDipλq “

$

’

&

’

%

p1q 0, if VipPoi ´ λq ą 0
p2q Vipλ´

Pi
2 ´ Poiq, if Vipλ´ Pi ´ Poiqq ą 0

p3q Vi
2Pi
pλ´ Poiq

2, if λ P rPoi,Poi ` Pis

(5.8)
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It becomes clear that the optimal dual variable λ‹, is the day-ahead price. Then, (1)
corresponds to the situation of a fully rejected order where the optimal price λ‹ is lower than
Poi for the supply orders (Vi ą 0) and higher for the demand orders (Vi ă 0). Inversely, (2)
corresponds to fully accepted orders. (3) happens when the order is partially accepted (λ‹ is
in the price range and the proportion λ‹´Poi

Pi
of volume Vi is exchanged).

5.3.2 Computing the optimal price λ‹

The minimum ofDpλq can be obtained by looking for the values for which the derivative of
D vanishes: BD

Bλ “ 0. Each segment of the piecewise functionDi is differentiable or equals 0.
Only the inflection points Poi and Poi ` Pi have to be examined by considering their limits.
Let us consider supply orders (similar results can be obtained for demand orders). Using
the generic expression

Dipλ` hq ´Dipλq

h
“

2Vi

Pi

ˆ

h
2
` λ´ Poi

˙

we can compute the limits for the inflection points with h ÞÑ 0´, h ÞÑ 0`. We find that the
limit at λ “ Poi is 0 for both sides of h, and the limit at λ “ Poi ` Pi is Vi (Appendix E.3).
Hence,Di is differentiable for all values of λ and the derivative ofD is

D
1
ipλq “

$

’

&

’

%

0 if VipPoi ´ λq ą 0
Vi if Vipλ´ Pi ´ Poiq ą 0
Vi
Pi
pλ´ Poiq if λ P rPoi,Poi ` Pis

Lastly, we use the Heaviside function:

Hpxq “

#

0 if x ă 0
1 if x ě 0

to rewriteD1. Computations (E.4) leads us to:

D
1pλq “

ÿ

i

xiHpxiq ´ yiHpyiq

Pi

with xi “ Vipλ ´ Poiq and yi “ Vipλ ´ Poi ´ Piq. This function is strictly increasing (Ap-
pendix E.5) and we can use a dichotomy search to solveD1pλ‹q “ 0. Using lb,ub as the lower
and upper bounds initialized at the market prices limits fixed by EPEX, λ‹ is computed with
Algorithm 1. Using the Heaviside function allows us to differentiate through IF statements
(Appendix E.6) that analytically derives to the Dirac function:

δpxq “

#

`8 if x “ 0
0 if x , 0

5.4 A differentiable optimization approach for EPF

In this Section, we present in how to integrate the solution of the optimization problem into
the price prediction neural network model. First, we present how the difference between the
optimal price calculated by Algorithm 1 and the real price is back-propagated to adjust the
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Algorithm 1 Differentiable dichotomy search.
lbÐ -500e/MWh
ubÐ 3000e/MWh
foundÐFalse
while (found = False) and pub´ lb ą 2 ˚ 0.01q do

M Ð
ub`lb

2
DM Ð D1pMq
foundÐ DM “ 0
ub Ð ub´HpDMq ˚ pub´Mq
lb Ð M´HpDMq ˚ pM´ lbq

end while

parameters of the neural network. Then, we go over several implementation tricks that are
necessary to make our solution competitive.

5.4.1 Integrating the optimization process into the forward and backward
passes

Figure 5.2 presents the model architecture. Exogenous variables X are provided to a neural
network that is trained to predict Order Book. The order book is then used to determine
the optimal price, λ‹, using Algorithm 1. A loss function L, between pY, the optimal price
based on estimated Order Book xOB, and the real price Y, evaluates the error made on the
predictions. This error has to be back-propagated through the network that learns xOB from
exogenous features X:

BLppY,Yq
BX

“
BL

BpY
ˆ
BpY

BxOB
ˆ
BxOB
BX

In this expression, the first term is the gradient of the loss, and the third term is the standard
back-propagation. The second term, BpY

BxOB
is obtained by differentiating the dual problem

formulation. Therefore, Algorithm 1 is implemented using PyTorch 2 and is used to solve
euphemia during the forward pass. It is also used to compute the derivative of the order
books with respect to the optimal price BpY

BxOB
during the backward pass. Note that the additive

property of the gradient decompose the final BpY
BxOB

into a sum of gradient brought by each

variable m that is computed using xOB, in our case the value ofD1 for each search iteration k:

BpY

BxOB
“

ÿ

m
∇m

Bm

BxOB

“

N´1
ÿ

k“1

∇D1k

BD1k

BxOB

Thus, it’s not necessary to explicitly formulate BpY
BxOB

.

2https://pytorch.org/docs/stable/index.html
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Figure 5.2 – Differentiable optimization: Predict the order book variables xOB, find optimal
prices given the order book, and back-propagate the errors on the prediction model.

5.4.2 Implementation tricks

5.4.2.1 Approximating the Heaviside function

The implementation of Algorithm 1 is not straightforward. Because we go from the contin-
uous analytic space to the discrete numeric space, some assumptions such as the differentia-
bility of the Heaviside function don’t hold. We thus replace the Heaviside function by the
Sigmoid function:

Hpxq “ lim
kÑ8

σpkxq

The parameter k controls the sharpness of the slope. The derivative of sigmoid is:

σ1pkxq “ σpkxq ˚ p1´ σpkxqq

In Figure 5.3, we ran Algorithm 1 using the real OB and computed the difference with the
real prices Y, using several values of k and the Heaviside function. We find that the price
difference is neglectable (inferior to 3cts/MWh) even for small values of k. As convergence
to results using Heaviside is reached when k “ 100, we used this parameter throughout our
experiments.

5.4.2.2 Batch solver

PyTorch is implemented to perform efficient operations on batches of data. Solving the
optimization problem independently for each data instance drastically increases the training
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Figure 5.3 – (LEFT) Heaviside approximation using sigmoid (RIGHT) evaluation of the Batch
Solver.

time. Hence, we propose to rewrite Algorithm 1 to perform the dichotomy search on batches
of data. The only way to vectorize operations is to determine a fixed number of iterations N
for the search loop. Figure 5.3 displays the price error using various values of N. We observe
that only 20 iterations are sufficient to achieve better performances than with the for-loop.
This is due to two reasons:

• The search converges. While finding D1pMq “ 0, HpD1Mq “
1
2 and the update of ub, lb

does not change their values.

• The search space ranges from -500e/MWh to 3000e/MWh with a cent step, which is
fully explored in 19 iterations by an Oplog2pnqq algorithm.

In our experiments, we pick N “ 30 iterations and solve the problem on batches of 30 ˚ 24
data instances.

5.4.2.3 Shrinking Order Book

Order Book are complex data structure that is not straightforward to use as labels to predict
in a ML model. They consist in tensors OBpd,hqz P Rnoˆ3 with no a variable number of orders,
typically comprised between 500 and 2500. We thus start by defining a mapping S:

S : Φ ÞÑ Rntˆ3

OBpd,hqz Ñ SpOBpd,hqz q

such that E
´

SpOBpd,hqz q

¯

“ E

´

OBpd,hqz

¯
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that reduces the OB to a much lower and fixed dimmensionality nt ăă no while not changing
the solution of euphemia E. For a desired dimension of size nt “ nS ` nD ` 4, we select
the nS supply orders and nD demand orders closest to the intersection price. The orders not
selected are either: supply orders before OSB or after intersection OSA, or demand orders
beforeODB or after intersectionODA. The four sets of unselected orders are each summarized
by a fictitious orders, defined by the following values:

Variable OSB and OSA ODB and ODA

V
ř

iPOVi
ř

iPOVi
Po miniPO Poi maxiPO Poi
P miniPO pPoi ` Piq ´ Po maxiPO pPoi ` Piq ´ Po

Graphically, this replaces the step curve of the portion of unselected orders by a line, as
displayed in the left-hand side of Figure 5.4.

Figure 5.4 – The order book of the 2019/10/12, 1am auction in Belgium (black), and its reduced
version to 20 orders (blue). Around the intersection, the real and reduced order books are
the same (right). Orders far from the intersection are replaced by a straight line. Both real
and reduced order books cover the same volume range and solve to the same price (left).

5.5 Experiments

In this section, we describe a series of experiments with multiple objectives. First, we
want to compare our Order Book model and differentiable euphemiamethod to the baseline
(direct neural network) and determine if they improve the performance. We then analyze
more precisely the impact of varying the weight of the optimization problem in the loss
to understand its links with the model performance. Lastly, we seek to link the effects
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of differentiable optimization to the input variables. For this, we perform a contribution
analysis using Shap values to identify which features have been put forward by adding
differentiable optimization.

5.5.1 Varying the impact of optimization problem on model learning

To be able to vary and evaluate the impact of the integration of the optimization process
within the predictive model, we propose to consider three scenarios (see Figure 5.5). The
first one, is a traditional neural network used to solve EPF problem. The neural network
directly predicts prices pYDNN from exogenous variables without considering order books
and compares them to real prices, computing LDNN. The second branch, uses the exogenous

variables and order books from the last day OBpd´1q to predict order books xOB
pdq

. The loss
function LOB evaluates the difference between the predicted order books and the true ones.
The last scenario, is the differentiable optimization approach that uses xOB to solve euphemia
and get the price estimates pYDO, then computes the loss LDO between solved prices and real
prices. As these three models share a neural network NN, it is possible to combine them.
We propose to evaluate different linear combinations of them. We define the general loss as
a linear combination of the three losses: L “ αLDNN` βLDO`γLOB. By using the SMAPE for
the different losses, they produces values in the same range and their weights α, β, γ in the
combination are consistent. The final price predictions are computed as:

pY “
α{YDNN ` βyYDO

α` β

5.5.2 Datasets

We consider the EPF problem on the European market where the data is available free of
charge3. We forecast the prices for 4 countries: France (FR), Germany (DE), Belgium (BE) and
the Netherlands (NL). As predictive variables, we use the consumption forecasts, the gener-
ation forecasts, the renewable generation forecasts and the current prices of nine European
countries: France, Germany, Belgium, the Netherlands, Austria, Italy, Spain, Switzerland
and England. To those variables, we add the reference gas price, as well as the date in-
dicators (day, day of week, week, month) that are circularly encoded. Hence, each day is
described by 9` 36ˆ 24 predictive features and the targets to be predicted are the 24 hourly
prices for each country. The variables can be grouped into families: domestic variables
(variable of the country being predicted), foreign variables (variable of another country),
gas price and date. The Swiss and English prices are also considered separately because
they are available at 11 am and can be used in the training set. Additionally, it is possible
to include order books from the previous day as predictive features, made available by the
Epex exchange against a fee. Our dataset spans from 01/01/2016 to 31/12/2019. We use the
last year (2019) as test set, to account for the prices seasonality.

3https://transparency.entsoe.eu

https://transparency.entsoe.eu
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Figure 5.5 – Three models architecture combined in one. The left branch directly forecasts
the prices from the exogenous variables. The middle branch forecasts the OB and the right
branch solves the euphemia problem. The final loss is L “ αLDNN ` βLDO ` γLOB.

5.5.3 Models’ implementation

We elaborate on the models introduced in Figure 5.5. The NN part is a dense layer with
873 inputs and 888 outputs, followed by batch normalization, dropout and ReLU activation
layers. The NNY part is a dense layer with 888 inputs and 24 outputs. The NNOB part is
detailed on Figure 5.6. This network receives as input X the output of the shared neural
network NN. The input data is first reshaped to hourly granularity, and then sent through
a dense layer with 37 inputs and 37 outputs, followed by batch normalization, dropout and
ReLU activation layers. This is followed by 6 distinct dense layers with 37 inputs and 20
outputs that forecast the components of the supply and demand sides.

We establish two baseline models and four models to test, by setting α, β or γ to 0. We
define these models in Table 5.1, where the first two are common DNN models from the
literature (see [Lago et al., 2021]) since they do not use the differentiable euphemia solver
(β “ 0). The last 4 models are the novel models (β ą 0).

5.5.4 Results

5.5.4.1 Configurations

We compare the values of the predicted pY with the real Y target variable. We use standard
measures such as MAEpY, pYq, DAEpY, pYq, RMAEpY, pYq and SMAPEpY, pYq. To check the sta-
tistical significance of the results, we use the Diebold & Mariano (DM) test [Diebold and
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Figure 5.6 – Implementation details of the NNOB network. The input X, coming from the
common NN part, is reshaped to hourly granularity and goes through a dense layer. Then,
it is fed to 6 different linear layers to forecast supply and demand components of the order
book.

Mariano, 2002] with a fixed threshold of 0.05. The source code and the free data are made
available.4 The metrics computed on the test period are displayed in Table 5.2. The p-values
of the Diebold & Mariano test are displayed in Figure 5.7. Our observations are the following:

• On the French market, dominated by nuclear energy production, where the marginal
cost is independent of other variables, the order books are more difficult to predict and
less significant. Consequently, the metrics of the baseline models DNNY and DNNY,OB
are significantly better : the order book modeling plus differentiable optimization
models fail to improve performances.

• On the German, Dutch and Belgian datasets, models DO`DNNY and DO`DNNY,OB
outperform other models with statistical significance. These markets are characterized
by a significant gas or coal-fired electricity generation, whose marginal costs are tied to
the commodity prices. Such pricing produces more relevant order books, and hence,
the models using differentiable optimization are more adapted to these markets.

• Models DO and DO`DNNOB that do not use direct forecast (α “ 0) are often outper-
formed by others on every datasets. Models using the differentiable optimization are

4CODE: https://github.com/Leonardbcm/MOB, DATA: https://rb.gy/v9ui3

https://github.com/Leonardbcm/MOB
https://rb.gy/v9ui3


5.5. Experiments 109

Model α γ β Description

DNNY 1 0 0 Predict pY using a standard DNN.
DNNY,OB

1
2

1
2 0 Predict xOB and pY without differentiable optimization.

DO 0 0 1
Pure differentiable optimization model: there is no loss on
xOB, and pY is only obtained through the solving the opti-
mization problem.

DO`DNNOB 0 1
2

1
2

A loss is applied to xOB, but pY is only obtained through
solving.

DO`DNNY
1
2 0 1

2
No xOB forecast loss. pY is obtained directly, but also by
solving the optimization problem.

DO`DNNY,OB
1
3

1
3

1
3 The three models are combined.

Table 5.1 – The different models derived from our architecture. Models DNNY and DNNY,OB
are the baselines that do not use the differentiable optimization.

better trained when the loss is also computed using direct prediction. This suggests a
deeper analysis of the α and β parameters.

5.5.4.2 Varying the β parameter

In this experiment, we focused on the Belgian dataset. For this dataset, we have seen
that model DNNY (α “ 1) is outperformed by model DO (β “ 1), but both models are
outperformed by model DO ` DNNY (α “ 1

2 and β “ 1
2 ) and DO ` DNNY,OB (α “ 1

3 and
β “ 1

3 ). Our purpose is to find even more adequate values for α and β parameters. To
this aim, we start from the configuration of DNNY (α “ 1) and increase β by steps of 5%,
while decreasing α by steps of 5%. Results are displayed in Figure 5.8. It is clear that not
considering the optimization problem during training (β “ 0) does not yield the best results.
However, considering only the differentiable optimization part (β “ 1) is not an adequate
solution either. We see in Fig. 5.8 that adding the optimization loss even with a very small
weight in the global loss (5%) increases all the considered metrics.

5.5.4.3 Contribution Analysis

We now perform a contribution analysis using SHAP [Lundberg and Lee, 2017]. Our aim is
to determine which features have been prioritized by adding the differentiable optimization
problem, and how the weight of the differentiation in the loss affects features contribution.
To this aim, we compute the difference of contribution between a variable with β ą 0 and its
contribution when β “ 0. For each value of β, we compute 1000 SHAP values on the test set.
For a clearer analysis, we regroup the contributions by families of variable and we display
them on Fig. 5.9. Colored squares quantify the variation of contribution between β “ 0 and
β ą 0. We observe almost no variation on the domestic features (first 4 columns), with only
a slight increases of the price contribution at the expense of the generation forecast (gen).
Changes for Foreign features are more pronounced. The contribution of the Foreign Prices
(F. price) increases for smaller values of β while higher values favor the Swiss and English
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Country Model MAE DAE RMAE SMAPE
DNNY 7.74 5.79 0.941 21.27

DNNY,OB 9.63 4.17 1.17 26.48
DO 7.27 4.37 0.884 19.73

DO`DNNOB 19.85 19.49 2.425 42.19
DO`DNNY 6.85 4.32 0.832 20.35

BE

DO`DNNY,OB 6.28 3.44 0.763 17.28
DNNY 7.28 6.67 0.778 29.83

DNNY,OB 8.87 6.52 0.946 30.36
DO 9.01 6.96 0.958 29.87

DO`DNNOB 9.24 7.1 0.983 31.24
DO`DNNY 6.99 5.15 0.745 25.97

DE

DO`DNNY,OB 6.91 4.53 0.735 25.53
DNNY 4.54 3.06 0.653 15.5

DNNY,OB 5.11 3.03 0.734 15.21
DO 6.47 4.8 0.93 20.31

DO`DNNOB 5.92 3.5 0.849 18.25
DO`DNNY 5.3 3.22 0.759 16.2

FR

DO`DNNY,OB 5.79 3.87 0.831 19.51
DNNY 6.32 4.43 1.057 18.84

DNNY,OB 5.77 3.81 0.965 15.5
DO 6.53 3.96 1.092 16.47

DO`DNNOB 10.97 10.34 1.838 25.18
DO`DNNY 5.22 3.49 0.874 13.4

NL

DO`DNNY,OB 5.79 4.47 0.968 14.41

Table 5.2 – Metrics obtained on the test period for different model configurations. Bold
values indicate the best metric among all model configurations for a given dataset.

prices (CH price, UK price). We also note an important decrease in the contribution of the
Foreign generation forecast (F. ren gen) for all values of β, and of the contribution of the
Foreign generation and consumption forecast (F. gen) and (F. conso) for higher values of β.

5.5.5 Discussion

In the scope of our study, the order book modeling and differentiation of the optimization
problem have led to significantly better results on the datasets where the energy mix is
eclectic. For the Belgian dataset, the analysis of the β hyper-parameter shows that the
best model is a combination of the traditional approach where prices are directly forecast
from exogenous features β “ 0 and the differentiable optimization approach (β ą 0). This
experiment suggests that the optimal value of β could be found using hyper-parameter
search methods. The variation in the contribution also reveals that adding differentiable
optimization to the model guides it to a more refined representation of the variables. The
Domestic and Foreign consumption, generation and renewable generation forecasts are less
regarded, in favor of prices. Indeed, while those forecasts are to an extent correlated to the
prices, this correlation does not hold with the order books whose complex structure is more
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Figure 5.7 – p-values of the Diebold & Mariano test for the price forecast task. Colored
squares in pi, jq indicate that the forecasts of model i are significantly more accurate than
forecasts of model j. Green columns indicate that the corresponding models are significantly
better than every other. Black lines indicate that the model on the y-axis’ forecasts are
significantly worse than every other.

price-dependent. This is especially true for Swiss and English prices which are set at 11 am
and thus available for market players to form their order books.

To illustrate this finding, we provide an extract of the test set predictions in Figure 5.10,
where the Belgian day-ahead prices from 10/10/2019 to 12/10/2019 are displayed on the top
diagram along with the forecasts of different models (β “ 0 in red, β “ 1

2 in yellow and β “ 1
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Figure 5.8 – Quality of the obtained predictions according to β on the Belgian dataset: MAE
(top), DAE (middle) and SMAPE (bottom).

in green). On the bottom diagram, the market conditions are displayed (forecast generation
and forecast residual load), expressed as % of deviation from their normal values. Focusing
on the end-of-day auctions of the 11/10/2019: 1 am to 4 am and 11 pm to 3 am of the 12/10/2019,
we note that the model without differentiable optimization (β “ 0), given that the residual
load is 40% below the normal, greatly underestimates the price. The real sensibility of the
price to consumption variations, given by the order book displayed in Figure 5.4, cannot be
captured by the model without differentiable optimization, while the other two models with
β “ 1

2 and β “ 1 predict the price accurately.

5.6 Conclusion

In this Chapter, we addressed the problem of Electricity Price Forecasting (EPF) by com-
bining a prediction model with an optimization task based on the euphemia algorithm. We
aimed to demonstrate the benefits of the end-to-end predict-and-optimize approach for this
problem. Our research hypothesis was that tightly coupling the euphemia optimization task
with order book prediction from exogenous data would improve the accuracy of the model
predictions. To achieve this, we first formalized the euphemia optimization problem and
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Figure 5.9 – Variation of the feature contributions while increasing β on the Belgian dataset.
A green square at coordinate pi, jq indicates that the model trained with β “ i increase the
contribution of feature j compared to the model with β “ 0. A red square indicates the
opposite. On the x-axis, the features are regrouped by category. For instance, F. cons is
the sum of contribution of all Foreign Consumption Forecasts (for Belgium, it is the French,
German, Dutch, Spanish, Italian, English, Austrian and Swiss prices).

proposed a method for solving it to determine electricity prices from order books. Our
approach consisted of a differentiable batch dichotomy search. We then explored different
ways of integrating the optimal decision process while learning the order book prediction
model. By directly minimizing the error related to the downstream decision-making task, we
aimed to improve the overall performance of the EPF model. In the experimental evaluation,
we compared several configurations of the end-to-end decision-focused model using four
different European datasets. The results demonstrated the effectiveness of our approach,
showing improvements in the accuracy of the predictions compared to traditional methods
for the datasets in which the exogenous variables make it possible to finely estimate the
order books. The tight coupling of the euphemia optimization task with the order book
prediction task then allows the model to capture more relevant information and make more
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Figure 5.10 – Day-Ahead prices on the Belgian dataset from 10/10/2019 to 12/10/2019 (black
line) and their predicted values for various β (Top). Fundamental variables of the Belgian
market for the same period, expressed as percentage of deviation from the average (Bottom).

accurate price predictions. Furthermore, we conducted a qualitative analysis using Shap
values to understand the factors and features that influenced the predictions and decisions
made by the predict-and-optimize model. This analysis provided insights into the captured
information and shed light on the relationships between the input features and the final
decision-making process.

Because our work is a novel approach to differential optimization, it deserves additional
work. For instance, explicitly formulating the gradient of the optimal variable for all steps
of the search as a recurrent sequence could speed up computations. Furthermore, our tested
architecture for the different NN parts, the number of dimension nt for the Order Book, as
well as the values of weighting parameters α, β and γ should be included in a more thor-
ough hyper-parameter search. The next step in this direction will also be to include more
sophisticated orders to the problem formulation. Block and Complex orders 2.1.2 constitute
an additional difficulty to tackle because the problem has to be solved at daily granularity
but are crucial for obtaining better price estimates. Additionally, integrating results of our
previous Chapter 4 i.e. flow estimates in euphemia and solving it across the entire European
Network will be a consistent step.

Nevertheless, our study highlights the benefits of the end-to-end differentiable optimiza-
tion approach for Electricity Price Forecasting. By integrating the euphemia optimization
task with order book prediction, we achieved improved accuracy in price forecasting, which
has significant implications for the efficient management of electricity production and con-
sumption. Our findings pave the way for further research and development in this area,
including exploring other optimization algorithms and refining the prediction models to
enhance the overall performance of EPF systems.
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Conclusion

Electricity price forecasts are necessary for many applications that implement the energy
transition such as self-consumption or battery optimization, but also for generating profit
on the market (1.2). Yet, the European electricity market is regulated by the Price-Fixing
Algorithm euphemia that at the same time protects the price of electricity from speculation
and makes its relationship to supply and demand intricated. Because of the unsteadiness of
electricity, its prices are hard to estimate. Moreover, only the Price-Fixing Algorithm gives
the true relationship between fundamentals, transfer capacities and the price, and this at the
European scale (1.3).

In the literature, two families of approaches are in conflict while trying to improve both
the correctness (how close are the forecasts to the real prices) and the consistency (how close
the model is to the Price-Fixing Algorithm) of price forecasts (see Section 2.3). Expert models
aim at replicating the Price-Fixing Algorithm but fail to adapt to real data, while Data-Driven
methods occult it and directly link fundamentals to prices using black-box models. Mixing
both Expert models and Data-Driven approaches by employing a differentiable optimization
framework has never been tried for EPF, whereas it takes the best from both approaches:
considering the Price-Fixing Algorithm and accounting for data volatility. The challenge of
differentiable optimization lies in taking into account the regret (the error in optimal solu-
tions) while training the Neural Network 2.4.

In this thesis, we have presented various ways of tackling the EPF problem. In Chapter 3,
we focus on tuning Data-Driven models for the prediction of three well-known markets.
Using our domain-knowledge and the feature contribution analysis tool Shap, we drew
conclusions about our results. First, we questioned the current state of the art studies [Lago
et al., 2018a] and [Lago et al., 2021] by noticing that the most accurate model for a given
market was tied to the inherent market specificities (SVR for the French market that is based
on steady nuclear plants, DNN for the German market, based on more volatile renewables
energy). We also identified that using features from d´ 2, d´ 3 or d´ 7 for predicting prices
of a day d was not beneficial, whereas using data from non-neighboring markets could sig-
nificantly improve performances (3.4). We also explored the scenario where we predicted
the prices of the three markets jointly. This resulted in a performance increase for only one
market (Belgium), that was due to its access to the Swiss prices (3.5).
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From these observations, we strove for jointly predicting the prices of all European mar-
kets in Chapter 4. To this aim, we first considered the flow estimation problem that we
tackled by solving an optimization problem similar to euphemia prior to learning (4.3). The
idea is to restore energy balance from the consumption and generation forecasts using the
connection lines between zones. We employed several means of penalizing the deviation
from the equilibrium, notably a linear and a quadratic cost. Then, we also modeled the
network as a Graph where each market is a node to label (4.4). The flow estimates are
used as edge attributes. The Graph structure is able to capture the topology of the network
and can preserve market specificities. This translates as significantly more accurate price
forecasts for the GNN model, compared to standard CNN or DNN models (4.5). Despite the
GNN already implicitly considering cross-zonal flows via the training of message weights
between nodes, we have observed in the contribution patterns that using the flow estimated
with a QP problem could still improve performances, particularly in the central areas where
the cross-border flows are more sophisticated (4.5.3).

Lastly in Chapter 5, we attacked the core of EPF that is the euphemia algorithm. We
started by explicitly defining the social welfare of a linear order, that we extended to an entire
Order Book (5.2). We have seen that the Day-Ahead Price could be obtained by solving the
dual problem. In the aim of tracking the gradients of the price with respect to the Order
Book, solved the dual problem by finding the point where its derivative reaches 0 using a
dichotomy search (5.3). This block is then put on top of an Order Books forecasting network
: the Day-Ahead Price is determined by solving euphemia using estimated Order Books.
The result is an hybrid model, combining Data-Driven and Expert models approaches (5.4).
We then analysed the impact of modifying the importance of each component in the final
loss and have concluded that the differentiable optimization part could lead to significant
improvement (5.5). However, pure differentiable optimization was still outperformed by
mixed approaches, suggesting a deeper analysis of the model’s hyperparameters. We have
also seen that the model relies less on fundamental forecasts (consumption, generation)
while increasing the weight of the differentiable optimization in the loss. This is explained
because the true relationship between fundamentals and the price is captured by the Order
Book, not by the point forecasts that are fed to the model (5.6).

6.1 Industrial Approach

The methods we have explored during this thesis can be adapted for use in an industrial
context. The tool that we developed runs on a daily basis. Everyday before noon, it acquires
the prediction data, forecasts the 24 daily prices of the next day, and stores the results in a
database. In particular, we use the models described in Chapter 2 to predict the prices of
France and Germany. Other companies use the forecasted prices of Germany in the scope
of the Islander project. The forecasted prices of France are used for two activities. First,
the hourly price curve is considered to optimize the use of a battery. The battery is charged
when the price forecasts are low and discharged when high.

Second, the daily average price forecast is used by traders. The model is assessed in real
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conditions using a Paper Trade. This means that the trader record the decision taken based on
a forecasted price and a market value at a given time, as explained in Section 1.2.2, without
actually bidding. When the real price is published, the Profit & Loss (P&L) is computed.
As this measure requires the action of a trader, week-end days are excluded. Two versions
of the model are used. The first runs at 8.30 am, and thus can’t use the Swiss prices. The
second runs at 11.30 am and integrates the Swiss prices. Two metrics are monitored for the
last 30 days using a dashboard : the Daily Average Error is displayed in Figure 6.1, while
the P&L is displayed in Figure 6.2. As of writing these lines, the average P&L of the model
using Swiss price (11.30 am) indicates that traders could gain on average 20e/MWh every
working day. Since players usually trade 25MWh, this represents a significant value that is
very promising for a simple model.

Figure 6.1 – Screenshot of the dashboard monitoring SVR model used for predicting the
French prices, taken on the 26-10-2023. The left part displays the real price (in black), the
forecast without Swiss prices (orange) and with Swiss Prices (blue). On the right, the DAE
of the displayed period is computed.

Figure 6.2 – Screenshot of the dashboard monitoring the SVR model used for predicting the
French prices, taken on the 26-10-2023. On the left, the daily P&L of the model without the
Swiss prices is displayed in orange, and in blue for the model using the Swiss prices. On the
right, 3 metrics are displayed for both models. First, the percentage of cases were the daily
P&L is positive. Then, the total P&L over the 30 days period. Lastly, the daily average P&L
over the 30 days.

As this requires additional work, we have not yet converted all our research into tools
like this one we presented. Our first step will be to produce a relevant explanation along
with the forecasted value. We believe that a force diagram, indicating which feature pushed
the price forecast the most, could be a game-changing tool for trading on the day-ahead
market. Using our approaches of Chapter 4 and Chapter 5 for day-to-day applications will
be less straightforward as it requires handling multi-source data acquisition (35 zones for
the graph and thousands of orders for the differentiable optimization). However, since our
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experimental results were promising and the approaches innovative, adapting them will
constitute our next significant task.

6.2 Future Works

Throughout this thesis, we have explored means of improving both the consistency and the
accuracy of the price forecasts. We started from simple ML models for which we explained
the predictions, to a differentiable optimization framework where the Price-Fixing Algorithm
is explicitly solved and Order Book are modeled. However, this approach left a lot of room
for improvement and we detail our possible future steps in this last section.

6.2.1 Task-specific forecasts

The first category of future directions lies in the set of possibilities offered by differentiable
optimization. Indeed, we focused on incorporating the euphemia problem into a price
forecasting network. This solution is suitable for task-agnostic price forecasts. However,
most of the time, forecasts are used for a given application where lowering the price MAE is
not the end objective. Similarly to Order Book errors that reverberates on the price forecasts,
a small price forecast could drastically impact the end-task. For instance, setting-up a
differentiable optimization approach for managing a battery, sounds promising. The neural
network would forecast the prices but the end goal is to maximize the battery profit while
ensuring that users can use their energy at a given time.
Similarly, trading on the Day-Ahead market can be viewed as a knapsack problem where
players have a limited capacity (the traded volume is limited) and the goods they want
to pick have an unknown value (the profit of a trade is unknown without the real price).
We could consider optimizing the profit based on price estimates, with the price prediction
network fit to maximize the profit.
Lastly, many other real-world problems would benefit from Differentiable Optimization
methods. Although our approach presented in Chapter 5 is specific to euphemia, it could
be adapted to other problems. If the Dual function of an Optimization problem admits a
derivative that is monotonous, then our dichotomy search method can be employed.

6.2.2 Order Books embeddings

Our differentiable optimization approach relies on forecasting Order Books and using them
to solve euphemia. Many steps of the forecasting task could be improved. First, the size
of the embedding is constrained by the number of neurons in the hidden dimension of the
network, and enforced by applying a shrinking operation (as defined in Section 5.4.2.3). In
our experiment, we use a fixed value of 20 orders per book, whereas this number should be
treated as a hyper-parameter to optimize.
Then, we scale order books using regular min-max scaler prior to learning, then apply
batch normalization during training. This allows the neural network to fit its weights
optimally and prevents over-fitting. However, this makes the embedding Order Books hard
to interpret. Solving euphemia on the embedded Order Books should yield the scaled prices.
In practice, this is not the case because we use an Order Book scaler independent of the
price scaler. We think our model correct this by predicting biased Order Books and perhaps
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this is why increasing the weight of Order Book forecasting error in the global loss does not
leads to better results (5.5.4). Defining a suitable Order Book scaling operation would be an
important step towards improving the forecasts, but also a very important tool for business
practitioners that would benefit from having access to the Order Books forecasts. Doing so,
they could graphically appreciate the price sensitivity to supply and demand shifts.
Lastly, we considered only linear and step orders. In practice, there are other order types
that adds complexity to euphemia but that could improve our price forecasts. Block and
complex orders span across several hours, that makes it mandatory to consider an entire
day in a single optimization problem : the number of decision variables and constraints is
multiplied by 24. On top of that, the acceptance ratio of a block order is a binary variable.
This makes the problem MIQP thus much harder to solve, and even harder to differentiate.

6.2.3 Solving euphemia for several markets

Another step would be to combine our works on modeling the network as a graph and
solving euphemia. Instead of forecasting the Day-Ahead Price of each node of the graph,
we could forecast the associated Order Books. Then, two options would be available. The
first and easier one would be to solve each Order Book separately using our differentiable
dichotomy search. A more sophisticated option could consist in modifying the search to
solve the problem for several zones at once. To this aim, we would have to combine the
optimization problems of Chapter 4 with our simplification of euphemia constructed in
Chapter 5. This would only increase the problem dimensions (number of constraints and
decision variables), not its complexity since the cross-markets flows are considered linearly
in the energy balance constraint:
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The social welfare of Equation (6.1) has to be accumulated on all considered zones, and the
congestion rents taken into account. The energy balance of Equation (6.2) considers accepted
orders and cross-zonal flows. Lastly, Equation (6.3) ensures that chosen flows respect the
network constraints.

The EPF task is a very dense subject with multiple possible strategies for tackling it. The
diversity of applications, the complexity of the Price-Fixing Algorithm and the abundance
of potential price drivers contribute towards making EPF both difficult and fascinating. Our
work surely paved the way for novel ways of tackling the problem, and we will be excited
to keep working on those promising approaches.
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Appendix - Notation Tables

General notations
Symbol Variable
Y Day-Ahead Price
sYpdq Average daily price
X Predictive dataset
x Data instance
¨pd,hq Timestamp (day, hour)
p̈ Forecasted value
r̈ Estimated value
s̈ Averaged value
¨‹ Optimal Value
z Zone or market
l Lag days of a variable
f Feature
L Loss function

Table A.1 – Notations used throughout this thesis. Most of them are defined in 2.1.
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Feature notations
Symbol Variable
n Number of data instances
nz Number of zones
n f Number of features
nd Number of data instances
nc Number of columns in a data instance
nl

f Number of lags for a Feature
P Current Price
C Consumption forecast
R Renewables forecast
G Generation forecast
V Maximal Generation capacity
E Required programmable generation
F Cross-market Flows
Γ Available Transfer Capacity
T Congestion Rents

Table A.2 – Noatation used for the features, introduced in Chapter 4.2

Shap Values notations
Symbol Variable
E Expectation function
F Set of all features
S Coallition of features
φ Shapley value
m Predictive model
rmxpSq Marginalised preditction function over S
gx Additive explanatory model
z Binary encoding of a coalition
sΦ
phq
f ,l,h1 Average weight of each column for predicting a label

sΦ f Average contribution of feature f
sΦl Average contribution of lag l
sΦ
pdq
f Daily Average Unit Contribution

h1 Hour of a column

Table A.3 – Notations used for Shap Values, defined in Chapter 3.3.6 and 3.4.2
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euphemia notations
Symbol Variable
OB Order Book
Φ Order Book domain
E euphemia algorithm
A Acceptance ratio of an order
P Price limit of a step Order
rPo,Po` Ps Price range of a Linear Order
V Volume of an Order
v Sold volume of an Order
λ Dual Variable associated to the energy balance constraint
M,K Dual Variable associated to the inequality constraints
N Number of orders
L Lagrangian function
D Dual function
Hpxq Heaviside function
δpxq Dirac function
σpxq Sigmoid function
xi Vipλ´ Poiq

yi Vipλ´ Poi ´ Piq

Table A.4 – Notation for solving euphemia. Some variables are introduced in Chapter 2.1.2
and extended in Chapter 5.2.

Differentiable Optimization notations
Symbol Variable
LDNN Direct forecast price loss
LOB Direct forecast Order Book loss
LDO Differentiable optimization price loss
α Weight of LDNN is the total loss
β Weight of LDO is the total loss
γ Weight of LOB is the total loss
YDNN Direct price forecasts
YDO Differentiable optimization price forecasts
NNY Direct price forecasts layers
NNOB Order Book forecasts layers
NN Shared layers
DNNY Direct price forecasts model
DNNY,OB Direct price + Order Book forecast model
DO Differentiable Optimization model

Table A.5 – Notations used for the differentiable optimization model of Chapter 5.
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Appendix - Chapter 1

Country Code Description
AT Austria
BE Belgium
BG Bulgaria
CH Switzerland
CZ Czechia
DE Germany

DK1 Western Denmark
DK2 Eastern Denmark
EE Estonia
ES Spain
FI Finland
FR France
GB United Kingdom
GR Greece
HR Croatia
HU Hungary
IE Ireland

IT-CNOR Northern-Central Italy
IT-CSUD Southern-Central Italy
IT-NORD Northern Italy

Country Code Description
IT-SARD Italy - Sardinia
IT-SICI Italy - Sicilia
IT-SUD Southern Italy

LT Lithuania
LV Latvia

NO1 Norway - Oslo
NO2 Norway - Kristiansand
NO3 Norway - Trondheim
NO4 Norway - Tromsø
NO5 Norway - Bergen
NL the Netherlands
PL Poland
PT Portugal
RO Romania
SE1 Sweden - Luleå
SE2 Sweden - Sundsvall
SE3 Sweden - Stockholm
SE4 Sweden - Malmö
SI Slovenia
SK Slovakia

Table B.1 – Conversion table for associating zonal codes to physical regions.
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Appendix - Chapter 3

Random Forest
Parameter Search Range Dataset Market Value in best configuration

SOTA FR 4
DE 2
BE 3

Enriched FR 21
DE 2

min_sample_split [2, 50]

BE 3
SOTA FR 91

DE 1228
BE 502

Enriched FR 461
DE 359

n_estimators [10, 1500]

BE 416

Table C.1 – Hyper-parameters grid and best configuration for the RF model used in Chap-
ter 3.4.

SVRChain
Parameter Search Range Dataset Market Value in best configuration

SOTA FR 28.688861
DE 9666.061474
BE 2907.102329

Enriched FR 28.688861
DE 268354179.083

C r10´9, 109s

BE 5734.823533
SOTA FR 0.000036

DE 0.0000001583
BE 0.0000001385

Enriched FR 0.000036
DE 0.000438

gamma r10´9, 109s

BE 0.0000000615

Table C.2 – Hyper-parameters grid and best configuration for the SVRChain model used in
Chapter 3.4.
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SVRMulti
Parameter Search Range Dataset Market Value in best configuration

SOTA FR 18.770937
DE 573.647277
BE 1000.08756

Enriched FR 434.409029
DE 10483.318948

C r10´9, 109s

BE 17.81966
SOTA FR 0.000131

DE 0.000003
BE 0.000001

Enriched FR 0.000005
DE 0.0000000916

gamma r10´9, 109s

BE 0.0000007897

Table C.3 – Hyper-parameters grid and best configuration for the SVRMulti model used in
Chapter 3.4.

DNN
Parameter Search Range Dataset Market Value in best configuration

SOTA FR True
DE True
BE True

Enriched FR True
DE False

batch_norm True or False

BE False
SOTA FR 744

DE 367
BE 1200
FR 153

Enriched DE 736

batch_size [10, n]

BE 17
SOTA FR 0.076741

DE 0.180403
BE 0.067465

Enriched FR 0.160375
DE 0.0

dropout [0, 0.5]

BE 0.430954
SOTA FR 1

DE 1
BE 1

Enriched FR 1
DE 2

hidden_layers [1, 4]

BE 1
SOTA FR (157,)

DE (444,)
BE (124,)

Enriched FR (440,)
DE (254, 231)

neurons_per_layer [10, 500]

BE (370,)

Table C.4 – Hyper-parameters grid and best configuration for the DNN model used in
Chapter 3.4. n is the number of data instances in the training set
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CNN
Parameter Search Range Dataset Market Value in best configuration

SOTA FR False
DE False
BE False

Enriched FR False
DE False

batch_norm True or False

BE False
SOTA FR 360

DE 819
BE 235

Enriched FR n
DE 468

batch_size [10, n]

BE 17
SOTA FR 0.073378

DE 0.21907
BE 0.057622

Enriched FR 0.1
DE 0.434814

dropout [0, 0.5]

BE 0.0
SOTA FR 1

DE 0
BE 0

Enriched FR 1
DE 0

fully_connected_layers [0, 2]

BE 0
SOTA FR (470,)

DE ()
BE ()

Enriched FR (50)
DE ()

neurons_per_layer [10, 500]

BE ()
SOTA FR 1

DE 1
BE 1

Enriched FR 2
DE 1

convolutional_layers [1, 4

BE 1
SOTA FR 20

DE 20
BE 4

Enriched FR (8, 6)
DE 7

filters [3, 25]

BE 19
SOTA FR (4, 4)

DE (2, 1)
BE (4, 2)

Enriched FR (4, 4), (2, 2)
DE (4, 3)

dilation_rate ([1, 5], [1, 5])

BE (1, 2)
SOTA FR (10, 15)

DE (5, 21)
BE (3, 14)

Enriched FR (9, 9), (9, 9)
DE (9, 16)

kernel_size ([3, 11], [3, 25])

BE (10, 13)
SOTA FR (0, 0)

DE (0, 0)
BE (2, 3)

Enriched FR (2, 2), (2, 2)
DE (0, 0)

pooling_size ([0, 4], [0, 4])

BE (0, 0)
SOTA FR (0, 0)

DE (0, 0)
BE (2, 3)

Enriched FR (1, 1), (1, 1)
DE (0, 0)

strides ([0, 4], [0, 4])

BE (0, 0)

Table C.5 – Hyper-parameters grid and best configuration for the CNN model used in
Chapter 3.4.
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Figure D.1 – (RED) consumption forecasts histogram (BLUE) Production (programmable +
renewable) forecasts for the period 2020-2021. Data comes from the entsoe website.

DNN
Parameter Search Range Value in best configuration
batch_norm True or False False
batch_size [10, n] 78
dropout 0, 0.5 0.089953
hidden_layers [1, 4] 1
neurons_per_layer [10, 1000] (732,)

Table D.1 – Hyper-parameters grid and best configuration for the DNN model used in
Chapter 4.5. n is the number of data instances in the training dataset
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CNN
Parameter Search Range Value in best configuration
batch_norm True or False False
batch_size [10, n] 300
dropout 0, 0.5 0
dense_hidden_layers [1, 4] 0
neurons_per_layer [10, 1000] ()
convolutional_layers [] 3
filters [3, 25] (24, 12, 6)
dilation_rate ([1, 8] [1, 6]) ([1, 1], [1, 1], [1, 1])
kernel_size ([1, 3], [1, 2]) ([10, 3], [5, 3], [3, 2])
pooling_size ([4, 12], (2, 6)) ([4, 1], [4, 2], [3, 2])
strides ([4, 16], [2, 8]) ([4, 1], [4, 2], [3, 2])

Table D.2 – Hyper-parameters grid and best configuration for the CNN model used in
Chapter 4.5. n is the number of data instances in the training dataset

GNN
Parameter Search Range Value in best configuration
batch_norm True or False False
batch_size [10, n] n
dropout 0, 0.5 0.0
fully_connected_layers [0, 2] 1
neurons_per_layer [24, 96] (81, )
convolution_layers [1, 4] 2
hidden_channels [24, 96] (32, 31)
heads [1, 20] 15

Table D.3 – Hyper-parameters grid and best configuration for the GNN model used in
Chapter 4.5. n is the number of data instances in the training dataset.
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E.1 λ‹ is the Day-Ahead price : Gaphical insights

In this section, we explain why the optimal solution of euphemia dual problem is the Day-
Ahead price. We give a proof for a very simple case that can be extended to more sophisti-
cated examples. We consider only 1 zone on 1 hour. The Order Book only contain one linear
supply order defined by points pVS1,PS1q pVS1 `VS,PS1 ` PSq and one linear demand order
pVD1,PD1q pVD1`VD,PD1`PDq. Graphically, finding the optimal price is rather simple since
it’s the y-coordinate of the segment’s intersection, as in displayed in Figure E.1. Mathemati-
caly, this translates as:

Curve Equations:
#

yD “ PD1 `
PD
VD
px´ VD1q

yS “ PS1 `
PS
VS
px´ VS1q

Intersection:

yD “ ys

ô PD1 `
PD

VD
px˚ ´ VD1q “ PS1 `

PS

VS
px˚ ´ VS1q

ô x˚p
PD

VD
´

PS

VS
q “ PS1 ´ PD1 `

PDVD1

VD
´

PSVS1

VS

ô x˚
PDVS ´ PSVD

VDVS
“

VDVSpPS1 ´ PD1q ` VSPDVD1 ´ VDPSVS1

VDVS

ô x˚ “
VDVSpPS1 ´ PD1q ` VSPDVD1 ´ VDPSVS1

VSPD ´ VDPS

Projection:
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y˚ “ PD1 `
PD

VD
px˚ ´ VD1q

ô y˚ “ PD1 `
PD

VD

ˆ

VDVSpPS1 ´ PD1q ` VSPDVD1 ´ VDPSVS1

VSPD ´ VDPS
´ VD1

˙

ô y˚ “ PD1 `
PD

VD

ˆ

VDVSpPS1 ´ PD1q ` VSPDVD1 ´ VDPSVS1

VSPD ´ VDPS
´

VSPDVD1 ´ VDPSVD1

VSPD ´ VDPS

˙

ô y˚ “
VSPDPD1 ´ VDPSPD1

VSPD ´ VDPS
`

VSPDpPS1 ´ PD1q ´ PDPSVS1 ` PDPSVD1

VSPD ´ VDPS

ô y˚ “
VSPDPS1 ´ VDPSPD1 ` PSPDpVD1 ´ VS1q

VSPD ´ VDPS

Figure E.1 – Finding the optimal price : Graphical Solution

Now let’s write euphemiawith only 1 supply order and 1 demand order:

max
aS,aD

1
2

a2
DVDPD ` aDVDPD1 ´

1
2

a2
SVSPS ´ aSVSPS1

u.c. VS1 ` aSVS ´ VD1 ´ aDVD “ 0

Thanks to the constraint, it would be easy to express aS function of aD. However, writing
down the dual problem will be usefull later. We start by computing the Lagrangian:

LpaS, aD, λq “
1
2

a2
DVDPD ` aDVDPD1 ´

1
2

a2
SVSPS ´ aSVSPS1 ` λpVS1 ` aSVS ´ VD1 ´ aDVDq
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The dual function Dpλq “ min
aD,aS

LpaS, aD, λq is found when:

Ø ∇paS,aDqL “ 0

Ø

#

BL
BaS
“ 0

BL
BaD

“ 0

Ø

#

´aSVSPS ´ VSPS1 ` λVS “ 0
aDVDPD ` VDPD1 ´ λVD “ 0

Ø

#

aS “
λ´PS1

PS

aD “
λ´PD1

PD

We observe that λ “ PS1 ` aSPS “ PD1 ` aDPD. λ is the Day-Ahead price! Let’s check it by
injecting those expressions in the Lagrangian:

LpaS, aD, λq “
1
2

a2
DVDPD ` aDVDPD1 ´

1
2

a2
SVSPS ´ aSVSPS1 ` λpVS1 ` aSVS ´ VD1 ´ aDVDq

Dpλq “
VDPD

2

˜

λ2

P2
D

´
2λPD1

P2
D

`
P2

D1

P2
D

¸

`
λVDPD1

PD
´

VD

PD
P2

D1

´
VSPS

2

˜

λ2

P2
S

´
2λPS1

P2
S

`
P2

S1

P2
S

¸

´
λVSPS1

PS
`

VS

PS
P2

S1

´ λVD1 ` λVS1 ´ λp
λVD ´ VDPD1

PD
q ` λp

λVS ´ VSPS1

PS
q

“ λ2
„

1
2

VD

PD
´

1
2

VS

PS
`

VS

PS
´

VD

PD



` λ

„

´
VDPD1

PD
`

VDPD1

PD
`

VSPS1

PS
´

VSPS1

PS
´ VD1 ` VS1 `

VDPD1

PD
´

VSPS1

PS



`
1
2

VDP2
D1

PD
´

VD

PD
P2

D1 ´
1
2

VSP2
S1

PS
`

VS

PS
P2

S1

Dpλq “
λ2

2

„

VS

PS
´

VD

PD



` λ

„

VS1 ´ VD1 `
VDPD1

PD
´

VSPS1

PS



`
1
2

VSP2
S1

PS
´

1
2

VDP2
D1

PD

with the constant K independant of λ. We are then able to express the dual problem as a
quadratic, unconstrained problem:

min
λPR

λ2

2

„

VS

PS
´

VD

PD



` λ

„

VS1 ´ VD1 `
VDPD1

PD
´

VSPS1

PS



`
1
2

VSP2
S1

PS
´

1
2

VDP2
D1

PD
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The dual problem is solved when the function Dpλq is minimized:

∇λD “ 0

Ø 0 “ λ
ˆ

VS

PS
´

VD

PD

˙

` VS1 ´ VD1 `
VDPD1

PD
´

VSPS1

PS

“ λ
VSPD ´ VDPS

PSPD
`

PSPDVS1 ´ PSPDVD1 ` VDPSPD1 ´ VSPDPS1

PSPD

λ “
VSPDPS1 ´ VDPSPD1 ` PSPDpVD1 ´ VS1q

VSPD ´ VDPS

λ “ P˚

The optimal variable of the dual problem is the day-ahead price. Let’s check if the solution
of the primal problem aligns with our previous findings:

#

aD “
λ´PD1

PD

aS “
λ´PS1

PS

Ø

#

aDPD “
VSPDPS1´VDPSPD1`PDPSpVD1´VS1q

VSPD´VDPS
´

VSPDPD1´VDPSPD1
VSPD´VDPS

aSPS “
VSPDPS1´VDPSPD1`PDPSpVD1´VS1q

VSPD´VDPS
´

VSPDPS1´VDPSPS1
VSPD´VDPS

Ø

#

aDPD “
VSPDpPS1´PD1q`PDPSpVD1´VS1q

VSPD´VDPS

aSPS “
VDPSpPS1´PD1q`PDPSpVD1´VS1q

VSPD´VDPS

Ø

#

aD “
VSpPS1´PD1q`PSpVD1´VS1q

VSPD´VDPS

aS “
VDpPS1´PD1q`PDpVD1´VS1q

VSPD´VDPS

and we can then find V˚:

V˚ “ VD1 ` aDVD

“
VSPDVD1 ´ VDPSVD1 ` VSVDpPS1 ´ PD1q ` VDPSpVD1 ´ VS1q

VSPD ´ VDPS

V˚ “
VDVSpPS1 ´ PD1q ` VSPDVD1 ´ VDPSVS1

VSPD ´ VDPS

we check with the supply side:

V˚ “ VS1 ` aSVS

“
VSPDVS1 ´ VDPSVS1 ` VSVDpPS1 ´ PD1q ` VSPDpVD1 ´ VS1q

VSPD ´ VDPS

V˚ “
VSVDpPS1 ´ PD1q ` VSPDVD1 ´ VDPSVS1

VSPD ´ VDPS

which is the same expression than the graphical resolution.
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E.2 ExpressingDpλq

The Lagrangian of the problem can be written as:

LpA, λ,M,Kq “
ÿ

iP OB

LipA, λ,M,Kq with

LipA, λ,M,Kq “ ´
1
2

A2
i ViPi ´ AiViPoi ` λAiVi ` AipMi ´ Kiq ` Ki

Then @i “ 1 : N, the stationarity condition yields:

BL

BAi
“ 0

Ø
B
ř

jL j

BAi
“ 0

Ø
BLi

BAi
“ 0 because

BL j

BAi
“ 0 @i , j

Ø 0 “ ´AiViPi ´ ViPoi ` λVi `Mi ´ Ki

Ø Ai “
λ´ Poi

Pi
`

Mi ´ Ki

ViPi

Rather than re-injecting in the Lagrangian, we use the Complementarity and Primal Ad-
missibility conditions @i P r1,Ns:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´Ai ď 0
Ai ´ 1 ď 0
´MiAi “ 0
KipAi ´ 1q “ 0
Ai “

λ´Poi
Pi

`
Mi´Ki

ViPi

That leads to only 3 possible scenarios:

Case Ki Mi Ai

(1) 0 Vi pPoi ´ λq 0
(2) Vi pλ´ Pi ´ Poiq 0 1
(3) 0 0 λ´Poi

Pi

Since the Dual Admissibility condition yields that Mi ě 0 and Ki ě 0 @i P r1,Ns, case (1)
occurs if and only if Vi pPoi ´ λq ě 0 and case (2) if Vi pλ´ Pi ´ Poiq ě 0. We can then
compute the value of Li for the three possible scenarios using:

LipA, λ,M,Kq “ ´
1
2

A2
i ViPi ´ AiViPoi ` λAiVi ` AipMi ´ Kiq ` Ki

$

’

&

’

%

p1qLi “ 0
p2qLi “ Vipλ´

Pi
2 ´ Poiq

p3qLi “
Vi
2Pi
pλ´ Poiq

2
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Lastly, we can express the dual function as a sum of piecewise functions:

Dpλq “
ÿ

iP OB

Dipλq

Dipλq “

$

’

&

’

%

p1q 0 if VipPoi ´ λq ą 0
p2q Vipλ´

Pi
2 ´ Poiq if Vipλ´ Pi ´ Poiqq ą 0

p3q Vi
2Pi
pλ´ Poiq

2 if λ P rPoi,Poi ` Pis

And the dual problem is:

min
λ

ÿ

i

Dipλq

E.3 ComputingD1pλq

To find the minimum ofDpλq, we have to derive it:

BD

Bλ
“
B
ř

iDipλq

Bλ
“

ÿ

i

BDipλq

Bλ

Each segment of Di is differentiable or equals 0. We have to compute the differential at the
critical points, which are Poi and Poi`Pi. These are the points where the function can switch
segment while slightly moving along λ. To this aim, we compute:

lim
hÞÑ0´

Dipλ` hq ´Dipλq

h
and lim

hÞÑ0`

Dipλ` hq ´Dipλq

h
Let’s start by considering only supply orders. For pλ “ Poi, h ÞÑ 0`q and pλ “ Poi ` Pi, h ÞÑ
0´q, the function stays in the first case while moving h : λ` h P rPoi,Poi ` Pis. We compute:

Dipλ` hq “
Vi

2Pi
pλ` h´ Poiq

2

“ λ2 Vi

2Pi
` h2 Vi

2Pi
` Po2

i
Vi

2Pi
`
λhVi

Pi
´
λViPoi

Pi
´

hViPoi

Pi

“ Dipλq ` h2 Vi

2Pi
`
λhVi

Pi
´

hViPoi

Pi
Dipλ` hq ´Dipλq

h
“ h

Vi

2Pi
`
λVi

Pi
´

ViPoi

Pi

“
Vi

Pi
p
h
2
` λ´ Poiq

For the point λ “ Poi, we haveDipPoiq “ 0.

lim
hÞÑ0`

Dipλ` hq ´Dipλq

h
“ lim

hÞÑ0`

2Vi

Pi
p
h
2
` λ´ Poiq “ 0

lim
hÞÑ0´

Dipλ` hq ´Dipλq

h
“ lim

hÞÑ0´

0´DipPoiq

h
“ 0
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SoDipλq has a derivative at λ “ Poi andD1ipPoiq “ 0. Now for λ “ Poi ` Pi:

DipPoi ` Piq “
Vi

2Pi
pPoi ` Pi ´ Poiq

2

“
ViPi

2

lim
hÞÑ0´

Dipλ` hq ´Dipλq

h
“ lim

hÞÑ0`

Vi

Pi
p
h
2
` λ´ Poiq “ Vi

lim
hÞÑ0`

Dipλ` hq ´Dipλq

h
“

Vipλ` h´ Pi
2 ´ Poiq ´DipPoi ` Piq

h

“
Vipλ` h´ Pi

2 ´ Poiq ´
ViPi

2

h
“ Vi

SoDipλq has a derivative atλ “ Poi`Pi andD1ipPoi`Piq “ Vi. We apply the same reasonning
for the demand orders. Computations are exactly the same by inverting Poi and Poi`Pi. We
obtain that the derivative ofDipλq @i P r1,Ns:

D
1
ipλq “

$

’

&

’

%

p1q 0 if VipPoi ´ λq ą 0
p2q Vi if Vipλ´ Pi ´ Poiq ą 0
p3q Vi

Pi
pλ´ Poiq if λ P rPoi,Poi ` Pis

We put the 2 points Poi and Poi ` Pi into the first case because the expression Vi
Pi
pλ ´ Poiq

matches our results.

E.4 WritingD1pλq using Heaviside

We propose to rewrite D1pλq as a sum of heaviside functions. Case (1) adds nothing to the
sum, and case (2) is easy to write:

p2q Vi if Vipλ´ Pi ´ Poiq ą 0
ØViHpyiq with yi “ Vipλ´ Poi ´ Piq

For case (1), we have to use 2 heaviside functions:

p3q
Vi

Pi
pλ´ Poiq if λ P rPoi,Poi ` Pis

Ø
xi

Pi
rHpxiq ´Hpyiqs with xi “ Vipλ´ Poiq

Indeed, xi
Pi

Hpxiq yields the right value on the interval rPoi,Poi`Pis but also when Vipλ´Poi´

Piq ą 0! We thus have to remove the same quantity on the inverval Vipλ´Poi´Piq ą 0. The
dual function becomes:

D
1px, yq “

ÿ xiHpxiq ´ yiHpyiq

Pi

This notation is notation will help us taking gradients of D1 for the rest of the computations.
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E.5 Proof thatD1pλq is strictly increasing

We start by proving thatD1pλq is strictly increasing, noting that the derivative of the Heavi-
side function is the Dirac function :

δpxq “

#

`8 if x “ 0
0 if x , 0

BD1pxpλq, ypλqq
Bλ

“
BD1px, yq
Bx

Bxpλq
Bλ

`
BD1px, yq
By

Bypλq
Bλ

“
ÿ

ˆ

Hpxiq

Pi
`

xi

Pi
H1pxiq

˙

Vi ´
ÿ

ˆ

Hpyiq

Pi
`

yi

Pi
H1pyiq

˙

Vi

“
ÿ Vi

Pi
rHpxiq ´Hpyiqs `

xiδpxiq ´ yiδpyiq

Pi

Now, Hpxiq ´ Hpyiq is the boxcar function that is always positive or nul. The fraction
Vi
Pi

is always positive because Vi and Pi always have the same sign. Lastly, we note that

xδpxq “ 0 @ x because either x “ 0 and δpxq ą 0 or x , 0 but δpxq “ 0. Hence, BD
1pxpλq,ypλqq
Bλ ě 0

andD1pλq is always increasing.

E.6 Subsituing IF-statements by Heaviside in the dichotomy
search

To keep the solution do D1pλq “ 0 differentiable, we replace the IF-statements of the di-
chotomy search by the Heaviside function that derives as the Direct function.

paq IFD1pMq ă 0 lb ð M
pbq IFD1pMq ą 0 ub ð M

Statement (b) becomes :

ub ð ub´H rD1pMqs pub´Mq

because ub either takes the value ub ifD1pMq ă 0 or ub´pub`Mq ifD1pMq ą 0. Analogously,
statement (a) becomes :

lb ð lb`H r´D1pMqs pM´ lbq
“ lb` p1´H rD1pMqsqpM´ lbq
“ M´H rD1pMqs ˚ pM´ lbq
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