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Thesis Advisor

Juliette Leblond, Research Director, Université Côte d’Azur
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Résumé

Dans cette thèse, nous étudions les problèmes d’approximation au sens des moindres
carrés liés à des équations aux dérivées partielles elliptiques. Les problèmes inverses
étudiés sont liés aux solutions des équations de Maxwell, soit sous l’approximation quasi-
statique conduisant à une équation de Poisson, soit sous l’approximation harmonique en
temps induisant une équation de Helmholtz. Ces problèmes concernent la localisation
de sources en imagerie cérébrale, la localisation de charges à partir de mesures continues
du champ électromagnétique qu’elles génèrent et la reconnaissance de formes à partir de
mesures discrètes d’ondes électromagnétiques réfléchies.

Dans un premier chapitre, ces problèmes au sens des moindres carrés sont liés aux
solutions des équations de Poisson issues des équations de Maxwell sous l’approximation
quasi-statique. Nous étudions dans ce cas les problèmes inverses de localisation de sources
en imagerie cérébrale ou de localisation de charges à partir de mesures continues du champ
électromagnétique qu’elles induisent. Pour ces problèmes, nous étudions principalement
les fonctions ”objectif” associées et leur solvabilité numérique. En effet, ces fonctions
n’étant pas convexes, nous étudions l’unicité des leurs points critiques et donc de leurs
minima locaux afin d’assurer la convergence des méthodes de descente vers la solution
désirée. Nous étudions différents problèmes : l’estimation du courant à partir de mesures
du potentiel électrique ou de l’induction magnétique et l’estimation de charge électrique à
partir de mesures du champ électrique ; l’étude est faite pour deux ensembles de mesures
différents : une sphère et un plan infini. Des illustrations numériques sont fournies pour
tous ces problèmes.

Dans un deuxième chapitre, nous étudions un problème de reconstruction de forme
et d’estimation de propriétés électriques à partir de mesures discrètes d’ondes électro-
magnétiques réfléchies sur un objet. Pour ce problème, les champs sont des solutions de
l’équation d’Helmholtz provenant des équations de Maxwell dans l’approximation har-
monique en temps. La question de la reconstruction en elle-même peut être traitée par
des techniques d’apprentissage automatique. Les paramètres choisis sont les pôles de la
fonction qui exprime le champ électrique en fonction de la fréquence. Dans cette thèse,
nous étudions des méthodes d’approximation rationnelle du champ afin de décrire com-
ment ces pôles peuvent être estimés. Nous introduisons et étudions deux généralisations de
l’approximation de Padé au sens des moindres carrés : l’approximation de Padé au sens des
moindres carrés en 0 et l’approximation de Padé multipoints au sens des moindres carrés.
Pour la première approximation, nous généralisons le théorème de Nuttall-Pommerenke,
tandis que nous montrons un résultat plus faible pour la seconde et discutons une conjec-
ture plus forte.

Mots clés : Problème inverse, Électroencéphalographie, Magnétoencéphalographie
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Abstract

In this thesis, we study least-squares approximation problems linked to elliptic partial
differential equations. The studied inverse problems are linked to solutions of Maxwell
equations under either the quasi-static approximation leading to a Poisson equation or
under the time-harmonic approximation leading to a Helmholtz equation. These problems
arise from source localization in brain imaging, charge localization from continuous mea-
surements of the electromagnetic field they induce and shape recognition from discrete
measurements of scattered electromagnetic wave.

In a first chapter, these least-squares problems are linked to solutions of Poisson equa-
tions coming from Maxwell equations under the quasi-static approximation. We study in
this case inverse problems of source localization in brain imaging or charge localization
from continuous measurements of the electromagnetic field they induce. For these prob-
lems, we mainly study the associated least-squares criteria and their numerical solvability.
Indeed, as the criteria are not convex, we study the uniqueness of critical points of the
criteria hence of the local minima in order to ensure the convergence of descent methods
to the desired solution. We study different problems: current recovery from measures
of the electric potential or magnetic induction and charge recovery from measures of the
electric field; the study is done for two different sets of measurements: a sphere and an
infinite plane. Numerical illustrations are provided for all of these problems.

In a second chapter, we study a problem of shape reconstruction and electric properties
recovery from discrete measurements of scattered electromagnetic waves on an object. In
this case, the fields are solution of Helmholtz equation coming from Maxwell equations un-
der the time-harmonic approximation. The reconstruction issue by itself can be achieved
based on machine learning techniques. The chosen parameters are the poles of the func-
tion which express the field with respect to the frequency. In this thesis we study rational
approximation methods of the field in order to describe how these poles can be recovered.
We introduce and study two least-squares generalizations of Padé approximation: the
least-squares Padé approximation at 0 and the least-square multipoint Padé approxima-
tion. For the first approximation we generalize the Nuttall-Pommerenke theorem while
we showed a weaker result for the second one and only discuss a stronger conjecture.

Keywords: Inverse problem, Electroencephalography, Magnetoencephalography
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GENERAL INTRODUCTION

In this thesis, we study least-squares approximation problems linked to elliptic partial
differential equations. Two questions are mainly considered in this work:

• Are the solutions to least-squares approximation problems numerically computable?

• How do these solutions compare with the approximated function when we increase
simultaneously the amount of data and the complexity of the approximation set?

More precisely, the studied inverse problems are linked to solutions of Maxwell equa-
tions under either the quasi-static approximation leading to a Poisson equation, or under
the time-harmonic approximation leading to a Helmholtz equation. These problems arise
from applications like source localization in brain imaging, charge localization from con-
tinuous measurements of the electromagnetic field they induce, and shape recognition
from discrete measurements of scattered electromagnetic wave.

In a first chapter, these least-squares problems are linked to solutions of Poisson equa-
tions coming from Maxwell equations under the quasi-static approximation. We study in
this case inverse problems of source localization in brain imaging or charge localization,
from continuous measurements of the electromagnetic fields they induce. For these prob-
lems, we mainly study the associated least-squares criteria for pointwise sources and their
numerical solvability. Indeed, as the criteria are not convex, we study the uniqueness of
critical points of the criteria hence of the local minima in order to ensure the convergence
of descent methods to the desired source term. We study different problems: current re-
covery from measures of the electric potential or magnetic induction, and charge recovery
from measures of the electric field; the study is done for two different sets of measure: a
sphere and an infinite plane.

In a second chapter, we study a problem of shape reconstruction and electric proper-
ties recovery from discrete measurements of scattered electromagnetic waves. In this case,
the fields are solution of Helmholtz equation coming from Maxwell equations under the
time-harmonic approximation. The reconstruction issue by itself can be achieved based
on machine learning techniques. The chosen parameters are the poles of the function
which express the field with respect to the frequency. In this thesis, we study rational
approximation methods of the field in order to describe how these poles can be recovered.
We introduce and study two least-squares generalizations of Padé approximation: the
least-squares Padé approximation at 0 and the least-square multipoint Padé approxima-
tion. For the first approximation, we generalize the Nuttall-Pommerenke theorem, while
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we showed a weaker result for the second one and only discuss a stronger conjecture.
Numerical illustrations are provided.

The first question is studied in both chapters. In the first chapter, we study the
uniqueness of the local minimizer of some least-squares criteria in order to show the
computability of the minimizer through numerical methods. In the second chapter, we
also study the uniqueness of some least-squares approximants which is a desired property
for numerical computations. The second question is also studied in both chapters. In
the first chapter, we study the uniqueness of the global minimum of some least-squares
criteria in order to show that solving these problems leads to a perfect reconstruction of
the measured function. In the second chapter, we study the error done when considering
some variations of Padé approximation and show some results linked to the Nuttall-
Pommerenke theorem which control this error.
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CHAPTER I

CRITICAL POINT FOR LEAST-SQUARES INVERSE

POTENTIAL PROBLEMS

I.1 Introduction

I.1.1 General framework

In this work, we study the inverse problem of recovering vector-valued pointwise sources
in a domain Ω ⊂ R3 from measurements of the emitted potential on its boundary ∂Ω. In
particular, we inquire the uniqueness of the critical points of the least-squares criterion
linked to this source recovery inverse problem. As the criterion is not convex, uniqueness
of local minimizer is needed to ensure the convergence of classical optimization scheme to
a global minimizer.

Such inverse problems have applications in medical imaging (electroencephalography
(EEG)) as in [4] and in geosciences (rock magnetization) as in [5]. In these applications
the sources are either electric currents due to brain activity or magnetizations due to
remanent rock magnetization. In both cases, the model comes from Maxwell equations
in the quasi-static approximation [6, Sec. 5.3]. This approximation leads to a Poisson
equation with a source term in divergence form:{

∆u = ∇ · µ inRn,
lim

|z|→∞
|u(z)| = 0. (I.1)

for some measure µ with compact support included in a smooth domain Ω ⊂ Rn and a
solution u in the distributional sense.

In this work, we study the two settings. The first setting is such that Ω is the lower
half-space and ∂Ω the horizontal plane. This configuration is more adapted to the geom-
etry a Scanning Magnetic Microscopy used in particular paleontology studies about rock
magnetization where we typically have data on a horizontal plane above the rock. The
second setting is such that Ω is the unit ball and ∂Ω the unit sphere. This configuration
is adapted for EEG in which the measurements are considered on the scalp of a patient
usually modeled as a sphere.
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I.1.2 Main Problems

We consider the inverse problem of source recovery:

Problem I.1.1. Given u0 ∈ L2(∂Ω) find µ0 ∈ [M(Rn)]n such that u0 is the trace on ∂Ω
of the solution of the Poisson equation (I.1) with µ = µ0.

This inverse problem of source recovery is strongly ill-posed. A classical possible
regularization is to restrict the space of sources to finite sums of a fixed number nd ≥ 1
of dipoles:

Snd
=

{
nd∑
i=1

piδxi
, xi ∈ Ω, pi ∈ Rn,∀i ∈ J1, ndK

}
,

where a dipole pδx is parameterized by its location x ∈ Ω and its moment p ∈ R3. The
measure δx is the Dirac delta distribution supported at x ∈ Ω and nd ∈ N plays the role
of the regularization parameter. This model is well adapted for localized dipolar sources
such as epileptic foci in EEG. This regularization is enough to guarantee the uniqueness
of the solution to the inverse problem [7, Thm 1] when dealing with both Dirichlet and
Neumann data. Indeed, there are no silent sources in the space of finite sum of dipoles
(this subject was deeply discussed in [8]). Nevertheless, because of the non-convexity of
the least-squares criterion, still exists the question of the multiple local minima of the
objective function hence of the numerical solvability of the problem even when the data
are noiseless and the original source term µ actually belongs to the approximation space
Snd

.

In this work, we mainly deal with the dimension 3 (n = 3), with a single dipole
µ = p0δx0 (nd = 1) where p0 ∈ R3 and x0 ∈ Ω. In this case, Equation (I.1) becomes:{

∆u0 = 4π∇ · (p0δx0) inR3,
lim

|z|→∞
|u0(z)| = 0. (I.2)

As in Equation (I.1), the partial differential equation (I.2) is to be understood in the
distributional sense, with the Dirac delta distribution δx0 supported at x0 ∈ Ω and the
divergence ∇ · (p0δx0) being defined by:

⟨δx0 , φ⟩ = φ(x0),

⟨∇ · (p0δx0), φ⟩ = −p0 · ∇φ(x0),

for all test functions φ ∈ D(R3) where D(R3) is the set of infinitely differentiable functions
with compact support in R3. The solution to Equation (I.2) in the dual D′(R3) of D(R3)
is unique as the difference of two solutions would be a bounded harmonic function in R3

hence zero according to Liouville’s Theorem (see [9, Thm 2.1]). This solution is given by:

u0(z) =
p0 · (x0 − z)

|x0 − z|3
, ∀z ∈ R3 \ {x0}. (I.3)

From now on, we will consider sets Ω ⊂ R3 which satisfy the following hypotheses:

• Ω is an open domain of R3,

• Ωc = R3 \ Ω is unbounded,

• its boundary ∂Ω is Lipschitz smooth.

(I.4)
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We will make use of the notation 0R3 = (0, 0, 0)T for the null vector of R3. We are
interested in retrieving the location x0 ∈ Ω and the moment p0 ∈ R3 using measurements
(assumed to be noiseless) of the solution u0 on the boundary ∂Ω by minimizing the least-
square criterion J∂Ω:

J∂Ω : Ω× R3 −→ R+

(x, p) 7−→
∫
∂Ω

(
p · (x− z)

|x− z|3
− u0(z)

)2

dσ(z),
(I.5)

with u0 given for all (x0, p0) ∈ Ω × R3 by Equation I.3 and where σ is the Lebesgue
measure on ∂Ω. Hence, we considering solving the minimization problem:

Problem I.1.2. Given u0|∂Ω ∈ L2(∂Ω), find (x∗, p∗) ∈ Ω× R3 such that:

(x∗, p∗) ∈ Argmin
(x,p)∈Ω×R3

J∂Ω(x, p).

To ascertain that we actually find p0 and x0 when numerically solving Problem I.1.2, we
will prove that the least-squares criterion I.5 has only one critical point (xc, pc) = (x0, p0)
when Ω is the lower half-space in R3. Analogous results were given by [10] for similar
problems in two-dimensional domains. Part of the results presented for this problem were
submitted for publication in [1].

In a second part, we consider a similar inverse problem linked to an electric charge
localization retrieval from the measure of the electric field it produces in the vacuum [6,
Eq. 1.3]. In this case, the source is scalar hence there is no moment to consider. In this
problem, we study the function:

E0(z) = q0
x0 − z

|x0 − z|3
, ∀z ∈ R3 \ {x0},

which is the solution in [D′(R3)]
3
of:{

∆E0 = 4πq0∇δx0 inR3,
lim

|z|→∞
|E0(z)| = 0. (I.6)

As for Problem I.1.1, we are interested in retrieving the location x0 ∈ Ω and the charge
q0 ∈ R using measurements (assumed to be noiseless) of the solution E0 on the boundary
∂Ω by minimizing the least-square criterion j∂Ω:

j∂Ω : Ω× R −→ R+

(x, q) 7−→
∫
∂Ω

∣∣∣∣q x− z

|x− z|3
− E0(z)

∣∣∣∣2 dσ(z), (I.7)

with E0 given for all (x0, q0) ∈ Ω×R by Equation I.6 and where σ is the Lebesgue measure
on ∂Ω. Hence, we considering solving the minimization problem:

Problem I.1.3. Given E0|∂Ω ∈ [L2(∂Ω)]
3
, find (x∗, q∗) ∈ Ω× R such that:

(x∗, q∗) ∈ Argmin
(x,q)∈Ω×R

j∂Ω(x, q).
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To ascertain that we actually find q0 and x0 when numerically solving Problem I.1.3, we
will prove that the least-squares criterion (I.7) has only one critical point (xc, qc) = (x0, q0)
when Ω is the lower half-space R3

− in R3 and when Ω is the unit ball B in R3.

In a third part, we consider a similar inverse problem linked to an electric dipolar
source retrieval from the measure of the magnetic field it produces in the vacuum [11, Eq.
4]. In this problem, we study the function:

B0(z) =
p0 × (x0 − z)

|x0 − z|3
, ∀z ∈ R3 \ {x0}, (I.8)

which is the solution in [D′(R3)]
3
of:{
∆B0 = 4π∇× (p0δx0) inR3,

lim
|z|→∞

|B0(z)| = 0.

We are interested in retrieving the location x0 ∈ Ω and the moment p0 ∈ R3 us-
ing measurements (assumed to be noiseless) of the solution B0 on the boundary ∂Ω by
minimizing the least-square criterion J̃∂Ω:

J̃∂Ω : Ω× R3 −→ R+

(x, p) 7−→
∫
∂Ω

∣∣∣∣p× (x− z)

|x− z|3
−B0(z)

∣∣∣∣2 dσ(z), (I.9)

with B0 given for all (x0, p0) ∈ Ω × R3 by Equation I.8 and where σ is the Lebesgue
measure on ∂Ω. Hence, we considering solving the minimization problem:

Problem I.1.4. Given B0|∂Ω ∈ [L2(∂Ω)]
3
, find (x∗, p∗) ∈ Ω× R3 such that:

(x∗, p∗) ∈ Argmin
(x,p)∈Ω×R3

J̃∂Ω(x, p).

To ascertain that we actually find p0 and x0 when numerically solving Problem I.1.4,
we study the critical points of the criterion (I.9) when Ω is the lower half-space R3

− in R3

and the moment p0 is vertical. We show that contrarily to the previous criteria, this one
admits multiple critical points.

I.1.3 Overview

In Section I.2, we study the dipole localization electric inverse problem of minimizing the
criterion (I.5) from given measurements of u0. In Section I.2.1, we state our main results
for two different geometries in Theorem I.2.2 and Proposition I.2.3 which are respectively
proven in Subsection I.2.3 and Section I.2.4 for the planar and spherical geometries.

In Section I.3, we study the charge localization electric inverse problem of minimizing
the criterion (I.7) from given measurements of E0. In Section I.3.1, we state our main
results for two different geometries in Theorem I.3.2 and Theorem I.3.3 which are respec-
tively proven in Section I.3.2 and Section I.3.3 for the planar and spherical geometries.

In Section I.4, we study the dipole localization magnetic inverse problem of minimizing
the criterion (I.9) from given measurements of B0. In Section I.4.1, we state our main
result in Theorem I.4.1 for the planar geometry which is proven in Section I.4.2.

In Section I.5, we provide numerical illustrations for both problems. We finally provide
some concluding remarks and further possible developments of the present work in Section
I.6.
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I.2 A dipole localization electrical inverse problem

In this section, we study the critical points of the criterion J∂Ω given by Equation (I.5) for
two different geometries, ∂Ω being the horizontal plane and the unit sphere in R3 both
centered at 0R3 . It can be noted that these cases are not restrictive as using rotations and
homotheties the results can be extended to any plane and sphere.

I.2.1 Main results

A preliminary result is given by Proposition I.2.1 for general geometric situations following
hypotheses (I.4).

Proposition I.2.1. For each (x0, p0) ∈ Ω×R3 with p0 ̸= 0R3, the criterion J∂Ω admits a
unique global minimizer (x∗, p∗) ∈ Ω× R3. It coincides with the original source: x∗ = x0
and p∗ = p0.

If p0 = 0R3, the minimizers of J∂Ω are all the (x, 0R3) with x ∈ Ω.

Proof. As J∂Ω is non-negative and J∂Ω(x0, p0) = 0, J∂Ω admits 0 as a global minimum.
Let (x∗, p∗) ∈ Ω×R3 be a global minimizer of J∂Ω, we have J∂Ω(x

∗, p∗) = 0. Let us define
on Ωc the difference:

∀z ∈ Ωc, h(z) =
p∗ · (x∗ − z)

|x∗ − z|3
− p0 · (x0 − z)

|x0 − z|3
,

such that: ∫
∂Ω

h2dσ = J∂Ω(x
∗, p∗) = 0. (I.10)

Clearly, h is a continuous bounded function in Ωc, is harmonic in Ωc \ ∂Ω and, if Ωc is
unbounded:

h(z) →
|z|→∞

0.

The function h is equal to 0 on ∂Ω according to the strict positivity of the integral (I.10).
Therefore, the function h is equal to 0 on Ωc according to the uniqueness result [12, Vol.
1, Chap. II, Par. 4, Prop. 1 and 9]. Hence, we have:

∀z ∈ Ωc, Q(z) = (p∗ · (x∗ − z))2|x0 − z|6− (p0 · (x0 − z))2|x∗ − z|6= 0.

As Q is a polynomial of the variables (z1, z2, z3) that is null on Ωc which contains a non-
empty open set in R3, it is null in R3. However, as |z| goes to infinity, we have the
following asymptotic expansion for Q:

Q(z)

|z|6
=

|z|→∞
−
[
(p0 · z)2 − (p∗ · z)2

]
+ 2

[
(p0 · x0)(p0 · z)− (p∗ · x∗)(p∗ · z) + 3(x∗ · z)(p0 · z)

2

|z|2
− 3(x0 · z)

(p∗ · z)2

|z|2

]
+O(1).

By identifying the first coefficient with 0 we see that p∗ = ± p0. Then if p0 ̸= 0R3 , by
identifying the second term with 0, we sequentially find that p0 · x∗ = p0 · x0 by looking
in the direction p0 and finally x∗ = x0. Furthermore, because h is null on ∂Ω, we have
p∗ = p0. Hence, if p0 ̸= 0R3 , there is a unique global minimizer to J∂Ω: (x

∗, p∗) = (x0, p0).
If p0 = 0R3 , then for all x ∈ Ω, (x, 0R3) is a global minimizer of J∂Ω.
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Remark 1. This proof could have been done in any dimension n ≥ 3 with minimal changes.
Hence, the Proposition I.2.1 remains true for all n ≥ 3.

The main result of this work is given by Theorem I.2.2 and deals only with the half-
space geometry. Let Ω = R3

− be the lower half-space, R3
+ be the upper half-space and

∂Ω = Π be the horizontal plane of constant height z3 = 0 in R3. Let x0 = (x01, x02, x03)
T

be a point in R3
− and p0 a vector in R3 (the situation is summarized on Figure I.1). We

are interested in estimating x0 and p0 using measurements of u0 on Π by solving the
least-squares inverse problem:

(x∗, p∗) = argmin
(x,p)∈R3

−×R3

JΠ(x, p),

with the criterion JΠ being given by:

JΠ : R3
− × R3 −→ R+

(x, p) 7−→
∫
Π

(
p · (x− z)

|x− z|3
− p0 · (x0 − z)

|x0 − z|3

)2

dσ(z),
(I.11)

where σ is now the Lebesgue measure on Π: dσ(z) = dz1dz2, z = (z1, z2, 0) ∈ Π.

Π

R3
−

R3
+

0R3

•
e1

e2

e3

x•
x0•

pp0

Figure I.1: Setting of this study in the half-space (Ω = R3
−).

Our main result is the following:

Theorem I.2.2. For each (x0, p0) ∈ R3
− × R3 with p0 ̸= 0R3, the criterion JΠ admits a

unique critical point (xc, pc) ∈ R3
− × R3 such that ∇xJΠ(xc, pc) = ∇pJΠ(xc, pc) = 0R3. It

coincides with the global minimizer: xc = x0 and pc = p0.

If p0 = 0R3, the critical points are all the (x, 0R3) with x ∈ R3
−.

Section I.2.3 is devoted to the proof of Theorem I.2.2.

We also showed a weaker result for the spherical situation. Let B ⊂ R3 be the open
ball of radius 1 and center 0R3 and S ⊂ R3 the sphere of same radius and center. Let
x0 = (x01, x02, x03)

T be a point in B and p0 a vector in R3 (the situation is summarized
on Figure I.2). In this setting, we want, for all p0 ∈ R3 and x0 = 0R3 , to compute the
critical points of the criterion on S:

JS : B× R3 −→ R+

(x, p) 7−→
∫
S

(
p · (x− z)

|x− z|3
− p0 · (x0 − z)

|x0 − z|3

)2

dσ(z).
(I.12)
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S

B 0R3

•

x•

x0•

p

p0

e1

e2

e3

Figure I.2: Setting of this study in the spherical case (Ω = B).

Proposition I.2.3. For x0 = 0R3 and each p0 ∈ R3 with p0 ̸= 0R3, the criterion JS admits
a unique critical point (xc, pc) ∈ B × R3 such that ∇xJS(xc, pc) = ∇pJS(xc, pc) = 0R3. It
coincides with the global minimizer: xc = x0 = 0R3 and pc = p0.

If p0 = 0R3, the critical points are all the (x, 0R3) with x ∈ B.

Section I.2.4 is devoted to the proof of Proposition I.2.3.

I.2.2 Preliminary computations

In this section, we make general considerations that apply to any configuration for which
Ω satisfy the hypothesis (I.4).

I.2.2.a Gradient in p

By expanding the square in Equation (I.5), we have for all (x, p) ∈ Ω× R3:

J∂Ω(x, p) = pTM∂Ω(x, x)p+ pT0M∂Ω(x0, x0)p0 − 2pT0M∂Ω(x, x0)p, (I.13)

where the 3× 3 matrix M∂Ω(x, x0) is defined by:

M∂Ω(x, x0) =

∫
∂Ω

(
x0 − z

|x0 − z|3

) (
x− z

|x− z|3

)T

dσ(z). (I.14)

Therefore, the gradient of J∂Ω with respect to p is given by:

∇pJ∂Ω(x, p) = 2M∂Ω(x, x)p− 2M∂Ω(x, x0)
Tp0.

One can see that the matrix M∂Ω(x, x) is symmetric and positive definite for each x ∈ Ω,
as for all v ∈ R3, v ̸= 0R3 :

vTM∂Ω(x, x)v =

∫
∂Ω

(
v · (x− z)

|x− z|3

)2

dσ(z) > 0,
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which leads toM∂Ω(x, x) being invertible. Therefore, if (xc, pc) ∈ Ω×R3 is a critical point
then necessarily:

pc =M∂Ω(xc, xc)
−1M∂Ω(xc, x0)

Tp0
def
= p(xc). (I.15)

One can see from Equation (I.15) that in this case:

pTc M∂Ω(xc, xc)pc − pT0M∂Ω(xc, x0)pc = 0. (I.16)

Furthermore, if p0 = 0R3 then the critical points of J∂Ω are the (x, 0R3) for any x ∈ Ω.
Indeed, for all (xc, pc) ∈ Ω × R3 critical point of J∂Ω, Equation (I.15) leads to pc = 0R3

and as J∂Ω(·, 0R3) is in this case uniformly null, for all x ∈ Ω, (x, 0R3) is a critical point of
J∂Ω. So, we will suppose in the following that:

p0 ̸= 0R3 . (I.17)

In order not to carry heavy notation, we will drop the dependency in x, x0 and ∂Ω of
M =M∂Ω(x, x0) and all its derived quantities when there is no ambiguity.

I.2.2.b Gradient in x

For all x ∈ Ω, let p = p(x) be defined as in Equation (I.15) and I∂Ω(x) = J∂Ω(x, p(x)).
Then, by definition of p(x), the critical points of J∂Ω are all the (xc, p(xc)) where xc ∈ Ω
is a critical point of I∂Ω. For all x ∈ Ω, in view of Equations (I.13) and (I.15) and because
of Equation (I.16), we have:

I∂Ω(x) = p(x)TM(x, x)p(x) + pT0M(x0, x0)p0 − 2pT0M(x, x0)p(x)

= −pT0M(x, x0)p(x) + pT0M(x0, x0)p0,

So, computing the gradient of I∂Ω, we get for all x ∈ Ω:

∇I∂Ω(x) = −∇
(
pT0M(x, x0)p(x)

)
= −∇

(
pT0M(x, x0)M(x, x)−1M(x, x0)

Tp0
)
,

in view of Equation (I.15). Therefore, upon defining the matrix:

K = K(x, x0)
def
= M(x, x0)M(x, x)−1M(x, x0)

T , (I.18)

we obtain that (xc, p(xc)) ∈ Ω × R3 is a critical point of J∂Ω if and only if, for all
i ∈ {1, 2, 3}:

pT0

(
∂K

∂xi
(xc, x0)

)
p0 = 0. (I.19)

I.2.3 Planar case (Proof of Theorem I.2.2)

Let us fix (x0, p0) ∈ R3
− × R3. In this section, we want to compute the critical points of

the criterion JΠ. To do so, in Section I.2.3.a, we express Equation (I.11) by computing
certain integrals. In Sections I.2.3.b and I.2.3.c, we characterize (x0, p0) as being the
unique critical point of (I.11) by first proving that any critical point (xc, pc) ∈ R3

− × R3

is such that xc and x0 belong to the same horizontal plane using the homogeneity of
the criterion; then, we appropriately combine derivatives to show uniqueness of a critical
point with positivity arguments and conclude the proof in Section I.2.3.d.
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I.2.3.a Explicit computation of the criterion

Our goal in this section is to compute the matrices M(x, x) and M(x, x0) defined by
Equation (I.14) with ∂Ω = Π. The elements of these matrices are given for x and x0 in
R3

− by:

M(x, x0)i,j =

∫
Π

xj − zj

|x− z|3
x0i − zi

|x0 − z|3
dσ(z), (I.20)

for all (i, j) ∈ {1, 2, 3}2.
In order to compute the integrals (I.20), we make use of Clifford analytic calculus

presented in Appendix A. Let us call M1, M2 and M3 the columns of M and identify
them with their corresponding vectors in Cℓ0,3(R):

M1 =M1,1 e1 +M2,1 e2 +M3,1 e3,

M2 =M1,2 e1 +M2,2 e2 +M3,2 e3,

M3 =M1,3 e1 +M2,3 e2 +M3,3 e3.

Upon defining x+ ∈ R3
+ as the symmetric of x with respect to Π and identifying x, x+,

x0 and all z ∈ Π with their corresponding vectors in Cℓ0,3(R), we have:

M1 ⊙ e1 +M2 ⊙ e2 +M3 ⊙ e3 =

∫
Π

x0 − z

|x0 − z|3
⊙ x− z

|x− z|3
dσ(z)

= −
∫
Π

x0 − z

|x0 − z|3
⊙ e3 ⊙ e3 ⊙

x− z

|x− z|3
dσ(z)

=

∫
Π

x0 − z

|x0 − z|3
⊙ e3 ⊙

x+ − z

|x+ − z|3
dσ(z)⊙ e3

= 4π
x+ − x0

|x+ − x0|3
⊙ e3, (I.21)

where we used the relations:

e3 ⊙ e3 = −1,

e3 ⊙ (x− z) = −(x+ − z)⊙ e3,

and Lemma A.0.1 (Appendix A) as z 7→ x+−z
|x+−z|3 is left Clifford analytic in R3

− since

x+ ∈ R3
+. Using Lemma A.0.1, we also have:

(−M1 ⊙ e1 −M2 ⊙ e2 +M3 ⊙ e3)⊙ e3 =

∫
Π

x0 − z

|x0 − z|3
⊙ e3 ⊙

x− z

|x− z|3
dσ(z)

= 0, (I.22)

because z 7→ x−z
|x−z|3 is left Clifford analytic in R3

+ since x ∈ R3
−. Using these equations, we

get the following relations between terms:

M1,1 +M2,2 = M3,3 = −2π
x3 + x03

|x+ − x0|3
= −2π

xa3

|xa|3
, (I.23)

M3,1 = −M1,3 = −2π
x1 − x01

|x+ − x0|3
= 2π

xa1

|xa|3
, (I.24)

M3,2 = −M2,3 = −2π
x2 − x02

|x+ − x0|3
= 2π

xa2

|xa|3
, (I.25)

M2,1 = M1,2, (I.26)

where we defined xa ∈ R3
− by xa = x0 − x+. Indeed:
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• Equation (I.23) comes from the 1 coordinate of Equation (I.21) and the e3 coordinate
of Equation (I.22).

• Equation (I.24) comes from the e3 ⊙ e1 coordinate of Equation (I.21) and the e1
coordinate of Equation (I.22).

• Equation (I.25) comes from the e2 ⊙ e3 coordinate of Equation (I.21) and the e2
coordinate of Equation (I.22).

• Equation (I.26) comes from the e1⊙e2 coordinate of Equation (I.21) or the e1⊙e2⊙e3
coordinate of Equation (I.22).

We are left to compute:

M1,1 =

∫
Π

x1 − z1

|x− z|3
x01 − z1

|x0 − z|3
dσ(z),

M2,2 =

∫
Π

x2 − z2

|x− z|3
x02 − z2

|x0 − z|3
dσ(z),

M2,1 =M1,2 =

∫
Π

x1 − z1

|x− z|3
x02 − z2

|x0 − z|3
dσ(z).

To do so, we use the previously computed M3,3 in Equation (I.23) and define:

m3,3(xa1, xa2, xa3) =M3,3(x, x0)

=

∫
Π

x3

|x− z|3
x03

|x0 − z|3
dσ(z)

= −2π
xa3

[x2a1 + x2a2 + x2a3]
3
2

.

By integration and differentiation, we can transform the integrand of M3,3 into those of
M1,1, M2,2, M2,1 and M1,2. Indeed it is easily checked that for i ∈ {1, 2}:

xi − zi

|x− z|3
=

∫ x3

−∞
∂xi

y

[(x1 − z1)2 + (x2 − z2)2 + y2]
3
2

dy,

x0i − zi

|x0 − z|3
=

∫ x03

−∞
∂x0i

y

[(x01 − z1)2 + (x02 − z2)2 + y2]
3
2

dy.

So, by applying Fubini’s theorem then differentiating under the integral sign, we get for
i ∈ {1, 2}: ∫ x03

−∞

∫ x3

−∞
∂xi
∂x0i

m3,3(xa1, xa2, y1 + y2)dy1dy2 =Mi,i,∫ x03

−∞

∫ x3

−∞
∂x1∂x02m3,3(xa1, xa2, y1 + y2)dy1dy2 =M2,1 =M1,2.

Since m3,3 is a function of xa1 = x01 − x1, xa2 = x02 − x2 and xa3 = x03 + x3, we can
simplify the differentiations and for i, j ∈ {1, 2}:

∂xi
∂x0j

m3,3 = −∂xai
∂xaj

m3,3.
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Then, using known antiderivatives, we compute M1,1, M2,2, M2,1 and M1,2, for all i, j ∈
{1, 2}:

Mi,j = 2π

∫ x3

y1=−∞
∂xai

∂xaj

∫ x03

y2=−∞

y1 + y2

[x2a1 + x2a2 + (y1 + y2)2]
3
2

dy1dy2

= −2π

∫ xa3

−∞
∂xai

∂xaj

1

[x2a1 + x2a2 + y2]
1
2

dy

= −2π

∫ xa3

−∞

[
− δi,j

[x2a1 + x2a2 + y2]
3/2

+ 3
xaixaj

[x2a1 + x2a2 + y2]
5/2

]
dy

=
2π

(x2a1 + x2a2)

[
δij

|xa|+ xa3
|xa|

− xaixaj
2|xa|3 + 3xa3|xa|2 − x3a3

|xa|3 (x2a1 + x2a2)

]
. (I.27)

Remark 2. We can see that all the expressions Mi,j for (i, j) ∈ {1, 2, 3}2 are homogeneous
of degree −2 in all their variables x1, x01, x2, x02, x3 and x03.

By taking the limits of the previously computed terms as x0 goes to x, we find for that
all x ∈ R3

−:

M(x, x) =
π

4x23

1 0 0
0 1 0
0 0 2

 .
One can see that M(x, x0) is also invertible for x ̸= x0 as for (xa1, xa2) ̸= (0, 0):

det(M(x, x0)) =
8π3

(x2a1 + x2a2)
2 |xa|4

(|xa|+ xa3)
2 > 0.

I.2.3.b First step: use of homogeneity

One can see that for all x ∈ R3
−, the matrix K = K(x, x0) defined by Equation (I.18) is

symmetric positive definite as:

K =
((
M(x, x)−1

)1/2
M(x, x0)

T
)T ((

M(x, x)−1
)1/2

M(x, x0)
T
)
.

Furthermore, since M(x, x0) is homogeneous of degree −2, K(x, x0) is also homogeneous
of degree −2 in its six variables (x1, x2, x3, x01, x02 and x03). We can therefore apply
Euler’s homogeneous function theorem [12, Vol. 2, App. Eq. 3.75] and get:

x1
∂K

∂x1
+ x01

∂K

∂x01
+ x2

∂K

∂x2
+ x02

∂K

∂x02
+ x3

∂K

∂x3
+ x03

∂K

∂x03
= −2K.

But, since the following relations hold true:

∂K

∂x01
= −∂K

∂x1
,

∂K

∂x02
= −∂K

∂x2
,

∂K

∂x03
=
∂K

∂x3
− 2

x3
K,

we obtain the following equation:

−x3xa1
∂K

∂x1
− x3xa2

∂K

∂x2
+ x3xa3

∂K

∂x3
= 2(x03 − x3)K. (I.28)

Thus, for xc ∈ R3
− a critical point of IΠ and because of Equation (I.19), pT0 (x03 −

xc3)K(xc, x0)p0 = 0. But, for x03 ̸= xc3, (x03 − xc3)K(xc, x0) is definite which means that
p0 = 0R3 contradicting hypothesis (I.17). Thus, xc ∈ R3

− is a critical point of IΠ only if
xc3 = x03.

21



I.2.3.c Second step: use of strict positivity

Let x ∈ R3
−. Let us use polar coordinates in the plane: xa1 = r cos(θ) and xa2 = r sin(θ)

with r ≥ 0 and θ ∈ [0, 2π[. Let Kr be the matrix:

Kr = Kr(x, x0)
def
= − ∂

∂r
K

x01 − r cos(θ)
x02 − r sin(θ)

x3

 , x0

 .

Let us prove that unless (x1, x2) = (x01, x02) (i.e. r = 0), Kr(x, x0) is positive definite.
In what follows, we assume that r ̸= 0. As Kr is symmetric, we have to check that its
eigenvalues λ1, λ2 and λ3 are positive. First, using Equations (I.24), (I.25) and (I.27),
one can see that the vector (sin(θ),− cos(θ), 0)T is an eigenvector of M(x, x0), thus of
K(x, x0) and thus of Kr(x, x0) with the eigenvalue:

λ1 =
32x23π

r|xa|3

(
xa3
|xa|

+ 1

)
4r2 + 3x2a3

2|xa|3 − xa3r2 − 2xa3|xa|2
> 0.

Furthermore, one can check that:

λ2 + λ3 = Tr(Kr(x, x0))− λ1 =
32x23π

r5|xa|6
A2

t − B2
t

At + Bt

> 0,

where we define the positive quantities:

A2
t − B2

t = r6
(
25r6 + 35r2x4a3 + 50r4x2a3 + 9x6a3

)
> 0,

At = 13r2x4a3 + 15r4x2a3 + 5r6 + 4x6a3 > 0,

Bt = −xa3|xa|
(
4x4a3 + 10r4 + 11r2x2a3

)
> 0.

Similarly, we have:

λ2λ3 =
det(Kr(x, x0))

λ1
=

64x43π
2

r4|xa|12
A2

d − B2
d

Ad + Bd

> 0,

where we define the positive quantities:

A2
d − B2

d = r6
(
1024r6 + 1457r2x4a3 + 240x6a3 + 2240r4x2a3

)
> 0,

Ad = 128r2x4a3 + 135r4x2a3 + 32r6 + 24x6a3 > 0,

Bd = −xa3|xa|
(
24x4a3 + 80r4 + 116r2x2a3

)
> 0.

This shows that λ1, λ2 and λ3 are positive for r > 0. The matrix Kr(x, x0) is thus
positive definite if (xa1, xa2) ̸= (0, 0). Hence, as p0 ̸= 0R3 , and because pT0Kr(xc, x0)p0 = 0
for any critical point xc ∈ R3

− of IΠ, x ∈ R3
− is a critical point of IΠ only if x1 = x01 and

x2 = x02.

I.2.3.d Reciprocal

The only remaining possibility is xc = x0. We first remark from Equation (I.15) that:

p(x0) =M(x0, x0)
−1M(x0, x0)

Tp0 = p0.

Furthermore, (x0, p0) is obviously a critical point of JΠ as it is its global minimizer (see
e.g. Proposition I.2.1). We can thus conclude that JΠ has a unique critical point: (x0, p0).
This ends the proof of Theorem I.2.2.

□
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I.2.4 Spherical case (Proof of Proposition I.2.3)

Let us fix p0 ∈ R3 and x0 = 0R3 . In this section, we want to compute the critical points
of the criterion JS. To do so, in Section I.2.4.a we express (I.12) by computing certain
integrals. We then show in Section I.2.4.b the uniqueness of the critical point of (I.12)
with positivity arguments.

I.2.4.a Explicit computation of the criterion

As part of the following computations can be pursued for any x0 ∈ B, we initially consider
the general case x0 ∈ B rather than x0 = 0R3 . As in the half-space case of Section I.2.3,
we will need to compute M(x, x) and M(x, x0) defined by Equation (I.14) with ∂Ω = S.
The elements of these matrices are given for x and x0 in B by:

Mi,j(x, x0) =

∫
S

x0i − zi

|x0 − z|3
xj − zj

|x− z|3
dσ(z) (I.29)

= ∂xj
∂x0i

F (x, x0),

for all (i, j) ∈ {1, 2, 3}2 and where we defined the function:

F (x, x0) =

∫
S

1

|x0 − z|
1

|x− z|
dσ(z).

Remark 3. One can see that this expression was not usable in the half-space case because
F (x, x0) would be infinite while in this case, it is simply the integral of a continuous
function on a compact set.

First, we compute the matrix M(x, x). For all x ∈ B, let us express f(x) = F (x, x):

f(x) =

∫
S

1

|x− z|2
dσ(z)

=

∫
S
u2(x, z)dσ(z)

=

∫ π

θ=0

∫ 2π

φ=0

sin(θ)

1 + |x|2 − 2|x| cos(θ)
dφdθ

=
2π

|x|
ln

(
1 + |x|
1− |x|

)
,

where we define the function:

u : B× S −→ R

(x, z) 7−→ 1

|x− z|
.

For i and j in {1, 2, 3} we want to compute:

Mi,j(x, x) =

∫
S

xi − zi
|x− z|3

xj − zj
|x− z|3

dσ(z) =

∫
S
ui(x, z)uj(x, z)dσ(z), (I.30)

where for all k in {1, 2, 3}, uk denotes the partial derivative of u with respect to xk.
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For i and j in {1, 2, 3}, we have:

∂xi
∂xj

f(x) =

∫
S
∂xi
∂xj

[
u2(x, z)

]
dσ(z)

= 2

∫
S
(ui,j(x, z)u(x, z) + ui(x, z)uj(x, z)) dσ(z), (I.31)

where for all (x, z) ∈ B× S:

ui,j(x, z) = ∂xi
∂xj

u(x, z)

= 3
(xi − zi)(xj − zj)

|x− z|5
− δi,j

|x− z|3

= 3
ui(x, z)uj(x, z)

u(x, z)
− δi,j

1

u(x, z)

1

|x− z|4
. (I.32)

Hence, using Equations (I.30), (I.31) and (I.32):

∂xi
∂xj

f(x) = 2

∫
S
(ui,j(x, z)u(x, z) + ui(x, z)uj(x, z)) dσ(z)

= 8

∫
S
ui(x, z)uj(x, z)dσ(z)− 2δi,j

∫
S

1

|x− z|4
dσ(z)

= 8Mi,j(x, x)− 2δi,j

∫
S

1

|x− z|4
dσ(z).

By using the expression of aS(x, x0) (I.53) established in Section I.3.3 for x0 = x, we can
deduce that: ∫

S

1

|x− z|4
dσ(z) =

4π

(1− |x|2)2
.

This allows us to compute M(x, x). For i and j in {1, 2, 3} with i ̸= j, we get:

Mi,j(x, x) =
1

8
∂xi
∂xj

f(x)

=
πxixj

4|x|5 (1− |x|2)2

[
3
(
1− |x|2

)2
ln

(
1 + |x|
1− |x|

)
+ |x|(10|x|2 − 6)

]
, (I.33)

Mi,i(x, x) =
1

8

(
∂xi
∂xi
f(x) +

8π

(1− |x|2)2

)
=

π

4|x|6 (1− |x|2)2

[
|x|
(
1− |x|2

)2 (
3x2i − |x|2

)
ln

(
1 + |x|
1− |x|

)

+ 2|x|2
(
|x|2 − 3x2i + |x|4 + 5x2i |x|2

) ]
.

(I.34)

We will suppose in the following that x0 is the center of B (i.e. x0 = 0R3). Since the
problem then becomes symmetric by rotation around the center, x can be chosen in any
direction and thus, for simplicity, will be chosen to be of the form x = (0, 0, x3)

T where
x3 ∈]0, 1[ (we leave out the value x3 = 0 for now). Using these hypotheses on x and x0,
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we have, from Equation (I.29):

M1,1(x, x0) =

∫ π

θ=0

∫ 2π

φ=0

(cos(φ) sin(θ))2

[1 + x23 − 2x3 cos(θ)]
3/2

sin(θ)dφdθ =
4π

3
, (I.35)

M2,2(x, x0) =

∫ π

θ=0

∫ 2π

φ=0

(sin(φ) sin(θ))2

[1 + x23 − 2x3 cos(θ)]
3/2

sin(θ)dφdθ =
4π

3
, (I.36)

M3,3(x, x0) =

∫ π

θ=0

∫ 2π

φ=0

(x3 − cos(θ)) cos(θ)

[1 + x23 − 2x3 cos(θ)]
3/2

sin(θ)dφdθ =
4π

3
, (I.37)

M1,2(x, x0) =

∫ π

θ=0

∫ 2π

φ=0

cos(φ) sin(θ) sin(φ) sin(θ)

[1 + x23 − 2x3 cos(θ)]
3/2

sin(θ)dφdθ = 0, (I.38)

M2,1(x, x0) =

∫ π

θ=0

∫ 2π

φ=0

cos(φ) sin(θ) sin(φ) sin(θ)

[1 + x23 − 2x3 cos(θ)]
3/2

sin(θ)dφdθ = 0, (I.39)

M1,3(x, x0) =

∫ π

θ=0

∫ 2π

φ=0

cos(φ) sin(θ) (x3 − cos(θ))

[1 + x23 − 2x3 cos(θ)]
3/2

sin(θ)dφdθ = 0, (I.40)

M3,1(x, x0) =

∫ π

θ=0

∫ 2π

φ=0

cos(φ) sin(θ) cos(θ)

[1 + x23 − 2x3 cos(θ)]
3/2

sin(θ)dφdθ = 0, (I.41)

M2,3(x, x0) =

∫ π

θ=0

∫ 2π

φ=0

sin(φ) sin(θ) (x3 − cos(θ))

[1 + x23 − 2x3 cos(θ)]
3/2

sin(θ)dφdθ = 0, (I.42)

M3,2(x, x0) =

∫ π

θ=0

∫ 2π

φ=0

sin(φ) sin(θ) cos(θ)

[1 + x23 − 2x3 cos(θ)]
3/2

sin(θ)dφdθ = 0. (I.43)

Similarly, using the formulas (I.33) and (I.34) previously computed, we get:

M1,1(x, x) =
π

4x33(1− x23)
2

[
(1− x23)

2 ln

(
1− x3
1 + x3

)
+ 2x3(1 + x23)

]
,

M2,2(x, x) =
π

4x33(1− x23)
2

[
(1− x23)

2 ln

(
1− x3
1 + x3

)
+ 2x3(1 + x23)

]
,

M3,3(x, x) = − π

2x33(1− x23)
2

[
(1− x23)

2 ln

(
1− x3
1 + x3

)
+ 2x3(1− 3x23)

]
,

M1,2(x, x) =M2,1(x, x) =M1,3(x, x) =M3,1(x, x)

=M2,3(x, x) =M3,2(x, x) = 0.

I.2.4.b Critical point computation

In the spherical case, using Equation (I.18) and relations (I.35) to (I.43), we have for all
x ∈ B:

K(x, x0) =

(
4π

3

)2

M(x, x)−1.

So, because of Equation (I.19), xc ∈ B is a critical point of IS only if:

pT0
d

dx3
M−1(xc, xc)p0 = 0.
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Since the matrixM(x, x) is diagonal, its inverseM−1(x, x) is also diagonal and its diagonal
terms are the inverse of the diagonal terms of the matrix M(x, x). Therefore:

dM−1(x, x)

dx3
=


dM1,1(x,x)

dx3

−1
M2

1,1(x,x)
0 0

0 dM2,2(x,x)

dx3

−1
M2

2,2(x,x)
0

0 0 dM3,3(x,x)

dx3

−1
M2

3,3(x,x)

 .

Since this matrix is diagonal, it is negative definite if and only if its diagonal terms are
negative. Through simple derivations, we obtain:

dM1,1(x, x)

dx3
=

dM2,2(x, x)

dx3

=
π

4x43(1− x23)
3

[
3(1− x23)

3 ln

(
1 + x3
1− x3

)
+ 6x53 + 16x33 − 6x3

]
,

dM3,3(x, x)

dx3
=

π

2x43(1− x23)
3

[
3(1− x23)

3 ln

(
1− x3
1 + x3

)
+ 26x53 − 16x33 + 6x3

]
.

Since 0 < x3 < 1, we can use classical Taylor series expansions [13, Eq. 4.6.5 and 4.6.7]:

ln

(
1 + x3
1− x3

)
= 2x3 +

2

3
x33 + 2

∞∑
n=2

x2n+1
3

2n+ 1
,

=
2x3

1− x23
− 4

3
x33 −

∞∑
n=2

4n

2n+ 1
x2n+1
3 .

Hence:

2x3 +
2

3
x33 ≤ ln

(
1 + x3
1− x3

)
≤ 2x3

1− x23
− 4

3
x33. (I.44)

Using Equation (I.44), we get:

dM1,1(x, x)

dx3
≥ π

4x43(1− x23)
3

[
3(1− x23)

3

(
2x3 +

2

3
x33

)
+ 6x53 + 16x33 − 6x3

]
≥ πx3

2(1− x23)
3

(
9− x43

)
> 0,

dM3,3(x, x)

dx3
≥ π

2x43(1− x23)
3

[
3(1− x23)

3

(
− 2x3
1− x23

+
4

3
x33

)
+ 26x53 − 16x33 + 6x3

]
≥ 2πx3

(1− x23)
3

(
2 + 3x23 − x43

)
> 0.

So, for x3 ̸= 0, all the diagonal coefficients of dM−1(x,x)
dx3

are negative and dM−1(x,x)
dx3

is then
negative definite. Thus, if x3 ̸= 0, x is a critical point of IS if and only if p0 = 0R3 . If
p0 ̸= 0R3 , the only critical point of IS is x3 = 0 which means x = 0R3 = x0. Hence, we
have shown Proposition I.2.3.

□
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I.3 A charge localization electrical inverse problem

In this section, we study the critical points of the criterion j∂Ω given by Equation (I.7)
for two different geometries, ∂Ω being a horizontal plane and the unit sphere. It can be
noted that these cases are not restrictive as using rotations and homotheties the results
can be extended to any plane and sphere.

I.3.1 Main results

A preliminary result is given by Proposition I.3.1 for general geometric situations.

Proposition I.3.1. For each (x0, q0) ∈ Ω × R with q0 ̸= 0, the criterion j∂Ω admits a
unique global minimizer (x∗, q∗) ∈ Ω × R. It coincides with the original source: x∗ = x0
and q∗ = q0.

If q0 = 0, the minimizers of j∂Ω are all the (x, 0) with x ∈ Ω.

Proof. As j∂Ω is non-negative and j∂Ω(x0, q0) = 0, j∂Ω admits 0 as a global minimum. Let
(x∗, q∗) ∈ Ω × R be a global minimizer of j∂Ω, we have j∂Ω(x

∗, q∗) = 0. Let us define on
Ωc the difference:

∀z ∈ Ωc, h(z) = q∗
x∗ − z

|x∗ − z|3
− q0

x0 − z

|x0 − z|3
,

such that: ∫
∂Ω

|h|2dσ = j∂Ω(x
∗, q∗) = 0. (I.45)

Clearly, h is a continuous bounded function on Ωc, is harmonic in Ωc \ ∂Ω and, if Ωc is
unbounded:

h(z) →
|z|→∞

0R3 .

The function h is equal to 0R3 on ∂Ω according to the strict positivity of the integral
(I.45). Therefore the function h is equal to 0R3 on Ωc according to the uniqueness result
[12, Vol. 1, Chap. II, Par. 4, Prop. 1 and 9]. Hence, we have:

∀z ∈ Ωc, Q(z) = q∗2 |x∗ − z|2|x0 − z|6−q20 |x0 − z|2|x∗ − z|6= 0.

As Q is a polynomial of the variables (z1, z2, z3) that is null on Ωc which contains a non-
empty open set in R3, it is null in R3. However, as |z| goes to infinity, we have the
following asymptotic expansion for Q:

Q(z)

|z|6
=

|z|→∞

(
q∗2 − q20

)
|z|2 + 2

[
q∗2(x∗ · z)− q20(x0 · z) + 3q∗2(x0 · z)− 3q20(x

∗ · z)
]
+O(1).

By identifying the first coefficient with 0 we see that q∗ = ± q0. Then if q0 ̸= 0, by
identifying the second term with 0, we find that x∗ = x0. Furthermore, because h is null
on ∂Ω, we have q∗ = q0. Hence, if q0 ̸= 0, there is a unique global minimizer to j∂Ω:
(x∗, q∗) = (x0, q0). If q0 = 0, then for all x ∈ Ω, (x, 0) is a global minimizer of j∂Ω.

The uniqueness of the critical point is given by Theorems I.3.2 and I.3.3 for two
different geometries, the half-space case presented on Figure I.3 and the spherical case
presented on Figure I.4.
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Figure I.3: Schematic geometry in the half-space case.

S

B 0R3

•

x•

x0•

e1

e2

e3

Figure I.4: Schematic geometry in the spherical case.

Theorem I.3.2. For each (x0, q0) ∈ R3
−×R with q0 ̸= 0, the criterion jΠ admits a unique

critical point (xc, qc) ∈ R3
− × R such that ∇xjΠ(xc, qc) = 0R3 and ∂

∂q
jΠ(xc, qc) = 0. It

coincides with the global minimizer: xc = x0 and qc = q0.

If q0 = 0, the critical points are all the (x, 0) with x ∈ R3
−.

Section I.3.2 is devoted to the proof of Theorem I.3.2.

Theorem I.3.3. For each (x0, q0) ∈ B× R with q0 ̸= 0, the criterion jS admits a unique
critical point (xc, qc) ∈ B×R such that ∇xjS(xc, qc) = 0R3 and ∂

∂q
jS(xc, qc) = 0. It coincides

with the global minimizer: xc = x0 and qc = q0.

If q0 = 0, the critical points are all the (x, 0) with x ∈ B.

Section I.3.3 is devoted to the proof of Theorem I.3.3.

Remark 4. Proposition I.3.1 and Theorems I.3.2 and I.3.3 remain true for any dimension
n ≥ 3 as the proofs done in Sections I.3.1, I.3.2 and I.3.3 can be extended to any dimension
with minimal changes.

28



I.3.2 Planar case (Proof of Theorem I.3.2)

Let us fix x0 ∈ R3
− and q0 ∈ R. We want to compute the critical points of the criterion:

jΠ : R3
− × R −→ R+

(x, q) 7−→
∫
Π

∣∣∣∣q x− z

|x− z|3
− q0

x0 − z

|x0 − z|3

∣∣∣∣2 dσ(z), (I.46)

where σ is now the Lebesgue measure on Π: dσ(z) = dz1dz2 with z = (z1, z2, 0) ∈ Π.
By expanding the square in Equation (I.46), we have for all x ∈ R3

− and q ∈ R:

jΠ(x, q) = q2aΠ(x, x) + q20aΠ(x0, x0)− 2qq0aΠ(x, x0),

where:

aΠ(x, x0) =

∫
Π

x− z

|x− z|3
· x0 − z

|x0 − z|3
dσ(z).

Let us compute aΠ(x, x0) as in (I.21) using Clifford analytic calculus presented in Ap-
pendix A:

aΠ(x, x0) =

∫
Π

x0 − z

|x0 − z|3
· x− z

|x− z|3
dσ(z)

= −Re

(∫
Π

x0 − z

|x0 − z|3
⊙ x− z

|x− z|3
dσ(z)

)
= −Re

(∫
Π

x0 − z

|x0 − z|3
⊙ e3 ⊙

x+ − z

|x+ − z|3
dσ(z)⊙ e3

)
= −4πRe

(
x+ − x0

|x+ − x0|3
⊙ e3

)
= −4π

x3 + x03

|x+ − x0|3
, (I.47)

because z 7→ x+−z
|x+−z|3 is left Clifford analytic in R3

− since x+ ∈ R3
+. Hence, for all x ∈ R3

−:

jΠ(x, q) = q2
π

x23
+ q20

π

x203
+ 8πqq0

x3 + x03

|x+ − x0|3
.

One can see that if q0 = 0, (x, 0) are the critical points of jΠ for all x ∈ R3
−. Similarly, if

(xc, 0) for xc ∈ R3
− is a critical point of jΠ then q0 = 0. In the following, we will assume

that q0 ̸= 0 and qc ̸= 0. Simple computations show that:

∂

∂x1
jΠ(x, q) = −qq0

24π(x3 + x03)(x1 − x01)

|x+ − x0|5
,

∂

∂x2
jΠ(x, q) = −qq0

24π(x3 + x03)(x2 − x02)

|x+ − x0|5
.

Hence, (xc, qc) ∈ R3
− × R is a critical point of jΠ only if xc1 = x01 and xc2 = x02.

Furthermore:

∂

∂x3
jΠ

x01x02
x3

 , q

 = −2π

(
q2

x33
− 8qq0

(x3 + x03)3

)
, (I.48)

∂

∂q
jΠ

x01x02
x3

 , q

 = 2π

(
q

x23
− 4q0

(x3 + x03)2

)
. (I.49)
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Let (xc, qc) ∈ R3
− × R be critical point of jΠ. The cancellation of Equations (I.48) and

(I.49) leads to:

qc
x3c3

=
8q0

(xc3 + x03)3
, (I.50)

qc
x2c3

=
4q0

(xc3 + x03)2
. (I.51)

Therefore, by dividing Equation (I.51) by Equation (I.50) and after simplification we get
xc3 = x03. Then, using Equation (I.50), we immediately obtain qc = q0. This shows that
(xc, qc) = (x0, q0) is the unique critical point of jΠ. Hence, we have shown Theorem I.3.2.

□

Remark 5. We could have shown the same result when only considering the vertical
component of the field for the criterion (I.7) with minimal changes.

I.3.3 Spherical case (Proof of Theorem I.3.3)

Let B ⊂ R3 be the open ball of center 0R3 and radius 1 and S its boundary. Let us fix
x0 ∈ B and q0 ∈ R. We want to compute the critical points of the criterion:

jS : B× R −→ R+

(x, q) 7−→
∫
S

∣∣∣∣q x− z

|x− z|3
− q0

x0 − z

|x0 − z|3

∣∣∣∣2 dσ(z), (I.52)

where σ is now the Lebesgue measure on S.
By expanding the square in Equation (I.52), we have for all x ∈ B and q ∈ R:

jS(x, q) = q2aS(x, x) + q20aS(x0, x0)− 2qq0aS(x, x0),

where:

aS(x, x0) =

∫
S

x− z

|x− z|3
· x0 − z

|x0 − z|3
dσ(z).

Let us compute aS(x, x0):

aS(x, x0) =

∫
S

x0 − z

|x0 − z|3
· x− z

|x− z|3
dσ(z)

= −Re

(∫
S

x0 − z

|x0 − z|3
⊙ x− z

|x− z|3
dσ(z)

)
= Re

(∫
S

x0 − z

|x0 − z|3
⊙ z ⊙ z ⊙ x− z

|x− z|3
dσ(z)

)

= Re

∫
S

x0 − z

|x0 − z|3
⊙ z ⊙ z

|z|3
⊙

x− z
|z|2∣∣∣x− z
|z|2

∣∣∣3dσ(z)


= 4πRe

 x0
|x0|3

⊙
x− x0

|x0|2∣∣∣x− x0

|x0|2

∣∣∣3


= 4π
1− x · x0∣∣∣|x|x0 − x

|x|

∣∣∣3 , (I.53)
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because z 7→ z
|z|3 ⊙

x− z
|z|2∣∣∣x− z
|z|2

∣∣∣3 is left Clifford analytic in B using [14, Prop. 3.1]. Hence, for

all x ∈ B:

jS(x, q) = q2
4π

(1− |x|2)2
+ q20

4π

(1− |x0|2)2
− 8πqq0

1− x · x0∣∣∣|x|x0 − x
|x|

∣∣∣3 .
Considering the symmetry under rotation of the problem, we can choose x0 to be of the
form x0 = (0, 0, x03)

T with x03 ≥ 0. We then get:

jS(x, q) = q2
4π

(1− |x|2)2
+ q20

4π

(1− x203)
2 − 8πqq0

1− x3x03

[1 + |x|2x203 − 2x3x03]
3/2
.

One can see that if q0 = 0, for all x ∈ B, (x, 0) are the critical points of jS. Similarly, if
(xc, 0) for xc ∈ B is a critical point of jS then q0 = 0. In the following, we will assume
that q0 ̸= 0 and qc ̸= 0. Thus, for i ∈ {1, 2}:

∂

∂xi
jS(x, q) = 8π

[
2q2

(1− |x|2)3
+ 3

qq0(1− x3x03)x03

[1 + |x|2x203 − 2x3x03]
5/2

]
xi, (I.54)

∂

∂q
jS(x, q) = 8π

[
q

(1− |x|2)2
− q0 (1− x3x03)

[1 + |x|2x203 − 2x3x03]
3/2

]
. (I.55)

Let (xc, qc) ∈ B×R be a critical point of jS. Because of Equation (I.55), qcq0 ≥ 0. Hence,
as the term between the brackets in Equation (I.54) is positive, we get xc1 = x01 = 0 and
xc2 = x02 = 0. Then, computing the remaining derivatives leads to:

∂

∂x3
jS

 0
0
x3

 , q

 = 16π

[
q2x3

(1− x23)
3 − qq0x03

(1− x3x03)
3

]
,

∂

∂q
jS

 0
0
x3

 , q

 = 8π

[
q

(1− x23)
2 − q0

(1− x3x03)
2

]
.

Therefore, doing the same operations as in the proof of Theorem I.3.2, we find that
(xc, qc) ∈ B × R is a critical point of jS only if xc3 = x03 and qc = q0. This shows that
(xc, qc) = (x0, q0) is the unique critical point of jS. Hence, we have shown Theorem I.3.3.

□
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I.4 A dipole localization magnetic inverse problem

I.4.1 Main result

In this part, we only consider the planar case (∂Ω = Π) with the moment p0 being
horizontal (p0 ∈ Π). For this case, we present Theorem I.4.1 which describes the critical
points of the criterion (I.9).

Theorem I.4.1. For each (x0, p0) ∈ R3
− ×Π with p0 ̸= 0R3, the criterion J̃Π admits three

isolated critical points xc0, xc3 and xc4 together with two half-lines dc1 and dc2 of critical
points:

xc0 = x0, pc0 = p0,
dc1 = {x0 + r1(t+ x03)uθ(θ0) + tuz, t ∈]−∞, 0[} , pc1 = 0R3 ,
dc2 = {x0 − r1(t+ x03)uθ(θ0) + tuz, t ∈]−∞, 0[} , pc2 = 0R3 ,
xc3 = x0 + r2(2x03)uθ(θ0), pc3 = µ̃(x03)p0,
xc4 = x0 − r2(2x03)uθ(θ0), pc4 = µ̃(x03)p0.

where:

θ0 = − arctan(p01/p02),

uθ(θ0) = (sin(θ0),− cos(θ0), 0)
T ,

uz = (0, 0, 1)T ,

r1(xa3) = |xa3|
√

3− 2
√
3 ̸= 0,

r2(xa3) = |xa3|

√
1

12

(
61 +

(
286417− 2592

√
202
)1/3

+
(
286417 + 2592

√
202
)1/3)

̸= 0,

µ̃(x03) =
−8x203

(
6r22(2x03)x03 + (r22(2x03) + (2x03)

2)
3/2

+ 8x203

)
3r22(2x03) (r

2
2(2x03) + (2x03)2)

3/2
̸= 0.

If p0 = 0R3, the critical points are all the (x, 0R3) with x ∈ R3
−.

The sequel of this section is dedicated to the proof of Theorem I.4.1.

I.4.2 Proof of Theorem I.4.1

As in Section I.2.2.a, by expanding the square in Equation (I.9), we have for all (x, p) ∈
Ω× R3:

J̃∂Ω(x, p) = pTM̃∂Ω(x, x)p+ pT0 M̃∂Ω(x0, x0)p0 − 2pT0 M̃∂Ω(x, x0)p, (I.56)

where the 3× 3 matrix M̃∂Ω(x, x0) is given by:

M̃∂Ω(x, x0) = tr (M∂Ω(x, x0)) Id −MT
∂Ω(x, x0). (I.57)

where the matrix Id is the 3× 3 identity matrix and the matrix M∂Ω(x, x0) is defined as
in (I.14).

Due to the similarity in the structure between J̃∂Ω and J∂Ω, we see that the compu-
tations done in Section I.2.2 are valid for this criterion by replacing J , p(·), I, M and K
by their magnetic counterpart J̃ , p̃(·), Ĩ, M̃ and K̃ in Equations (I.15) and (I.18) to get:

Ĩ∂Ω : Ω −→ R+

x 7−→ pT0 K̃(x, x0)p0 − pT0 M̃(x0, x0)p0.
(I.58)
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Here, we study the planar case (Ω = R3
−) for which the matrix MΠ(x, x0) is given

by Equations (I.23) to (I.27) hence M̃Π(x, x0) is also known. Let p0 = (p01, p02, 0) ∈ Π
and θ0 = − arctan (p01/p02). First, as in Section I.2.2.a, if p0 = 0R3 , then for all x ∈ R3

−,

p̃(x) = 0R3 and (x, 0R3) is a critical point of J̃ hence we assume in what follows that
p0 ̸= 0R3 .

In the following of the proof, we first use homogeneity of the problem in order to
reduce the search of critical points to two possibilities in Section I.4.2.a. Then, in Section
I.4.2.b we consider the tangential derivative of the criterion in order to describe three
possibilities and we use the radial derivative to characterize them. Finally, by combining
these possibilities, we find potential critical points which are the critical points given in
Theorem I.4.1 and finally check their criticality property in Section I.4.2.c.

I.4.2.a First step: use of homogeneity

Because of Equation (I.57), the homogeneity properties of the problem are similar to those
of the electric potential presented in Section I.2.3.b hence we get an Euler relation similar
to equation (I.28):

−x3xa1
∂K̃

∂x1
− x3xa2

∂K̃

∂x2
+ x3xa3

∂K̃

∂x3
= 2(x03 − x3)K̃. (I.59)

Hence, using the same argument as in Section I.2.3.b, x ∈ R3
− is a critical point of ĨΠ

only if x3 = x03 or det(M̃(x, x0)) = 0. For the second case, we see that:

r4det(M̃(x, x0)) =
−16π3|xa3|7

|xa|9
(v − 1)2(v + 2)(v2 − 2v − 2),

where r =
√
x2a1 + x2a2 and v =

√
1 +

(
r

xa3

)2
≥ 1. Hence, det(M̃(x, x0)) ̸= 0 except for

v = 1 +
√
3 thus r = r1(xa3)

def
= |xa3|

√
3− 2

√
3. Hence, x ∈ R3

− is a critical point of ĨΠ
only if one of the two following conditions is fulfilled;

x3 = x03 (I.60)

r = r1(xa3). (I.61)

I.4.2.b Second step: derivatives in the plane

Let x ∈ R3
−. Let us use polar coordinates in the plane: xa1 = r cos(θ) and xa2 = r sin(θ)

with r ≥ 0 and θ ∈ [0, 2π[. Let K̃r be the matrix:

K̃r = K̃r(x, x0) = − ∂

∂r
K̃

x01 − r cos(θ)
x02 − r sin(θ)

x3

 , x0

 .

Similarly, let K̃θ be the matrix:

K̃θ = K̃θ(x, x0) = − ∂

∂θ
K̃

x01 − r cos(θ)
x02 − r sin(θ)

x3

 , x0

 .
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In what follows, we assume that r ̸= 0. We can see that:

K̃θ =

−α sin(2θ) α cos(2θ) β sin(θ)
α cos(2θ) α sin(2θ) −β cos(θ)
β cos(θ) −β cos(θ) 0


where:

α =
8πx23
r2|xa|6

(
6r2x2a3 + 4xa3|xa|3 − r4 + 4x4a3

)
,

β =
8πx23
r|xa|6

(
2|xa|3 + 3r2xa3 + 2x3a3

)
.

Let us use the cylindrical orthonormal bases (ur, uθ, uz) given by:

ur =

cos(θ)
sin(θ)
0

 , uθ =

 sin(θ)
− cos(θ)

0

 , uz =

0
0
1

 .

One can see that:

K̃θur = −αuθ,
K̃θuθ = −αur + βuz, (I.62)

K̃θuz = βuθ.

Hence, by writing p0 ∈ Π in this base p0 = p0rur + p0θuθ, we see that:

pT0 K̃θp0 = −2αp0θp0r.

Thus, x ∈ R3
− is a critical point of Ĩπ only if one of the three following properties is

satisfied:

α = 0, (I.63)

p0θ = 0, (I.64)

p0r = 0. (I.65)

Condition (I.63) One can see that:

α = − 8πx23
r2|xa|6

|xa3|4 (v − 1)2
(
v2 + 6v + 3

)
,

where v =

√
1 +

(
r

xa3

)2
≥ 1. Hence the condition (I.63) is verified only if v = 1 hence

r = 0.

Condition (I.64) Let us assume that we are in configuration (I.64) hence, as p0 ̸= 0R3 ,
we can assume that p0 = ur. We can then compute the radial derivative of the criterion
and get:

uTr K̃rur =
16πx23
3r2|xa|8

A2
r − B2

r

Ar + Br

> 0,

where we define the positive quantities:

A2
r − B2

r = r6
(
100r10 + 260r8x2a3 + 649r6x4a3 + 948r4x6a3 + 600r2x8a3 + 132x10a3

)
> 0,

Ar = 26r2x6a3 + 24r4x4a3 + 13r6x2a3 + 10r8 + 8x8a3 > 0,

Br = −xa3|xa|3
(
14r2x2a3 + 8x4a3

)
> 0.

Thus, we have shown that the condition (I.64) leads to r = 0.
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Condition (I.65) Finally, let us consider the situation (I.65). Using Equations (I.24),
(I.25), (I.27) and (I.57), one can see that as in Section I.2.3.c, the vector uθ is an eigen-
vector of M̃(x, x0), thus of K̃(x, x0) and thus of K̃r(x, x0) with the eigenvalue:

λ̃1 =
32x23π|xa3|8

3r5|xa|8
(v − 1)3(v2 − 2v − 2)(2v3 − 5v2 − 12v − 6),

where v =

√
1 +

(
r

xa3

)2
≥ 1. So, we see that λ̃1 = 0 hence x ∈ R3

− cancels the normal

derivative, only if one of these conditions is satisfied:

r = 0,

r = r1(xa3)
def
= |xa3|

√
3− 2

√
3,

r = r2(xa3)
def
= |xa3|

√
1

12

(
61 +

(
286417− 2592

√
202
)1/3

+
(
286417 + 2592

√
202
)1/3)

.

Furthermore, condition (I.65) implies that θ = θ0 or θ = θ0 + π as a given vector is
tangential to a circle only twice on the plane.

I.4.2.c Reciprocal

Hence, combining all conditions (I.60) to (I.61) and the conclusions of (I.63) to (I.65)
leads to the possibility of three isolated critical points and two half-lines:

xc0 = x0,

dc1 = {x0 + r1(t+ x03)uθ(θ0) + tuz, t ∈]−∞, 0[} ,
dc2 = {x0 − r1(t+ x03)uθ(θ0) + tuz, t ∈]−∞, 0[} ,
xc3 = x0 + r2(2x03)uθ(θ0),

xc4 = x0 − r2(2x03)uθ(θ0).

These critical points are illustrated on Figure I.5 for x01 = x02 = 0, x03 = −1 and
p0 = (0, 1, 0)T .

Point xc0 Let us study the criticality of xc0. First, we can compute:

p̃(xc0) = M̃(x0, x0)
−1M̃(x0, x0)

−1p0 = p0.

Furthermore, (x0, p0) is obviously a critical point of the criterion as it is a global
minimizer.

Half-lines dc1 and dc2 Let us study the criticality of points belonging to dc1 and dc2.
Let i ∈ {1, 2} and xci a point on di. First, we compute the eigenvalue of M̃(x, x0) for the
vector uθ and see that:

λ̃ =
−2π|xa3|3

r2|xa|3
(v − 1)

(
v2 − 2v − 2

)
.

Thus, λ̃ = 0 as r = r1(xa1). As p0 is proportional to uθ, this shows that:

p(xci) = M̃(xci, xci)
−1M̃(xci, x0)p0 = 0R3 .
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Figure I.5: Locations of the critical points of the criterion (I.9).

Furthermore, by computing the radial and tangential derivatives of Ĩ, we find for :

∂rĨ(xci) = pT0 ∂rK̃p0

= pT0 ∂rM̃(xci, x0)M̃(xci, xci)M̃(xci, x0)
Tp0

+ pT0 M̃(xci, x0)M̃(xci, xci)∂rM̃(xci, x0)
Tp0

= 0, (I.66)

∂θĨ(xci) = pT0 ∂θK̃p0

= pT0 ∂θM̃(xci, x0)M̃(xci, xci)M̃(xci, x0)
Tp0

+ pT0 M̃(xci, x0)M̃(xci, xci)∂θM̃(xci, x0)
Tp0

= 0.

Finally, using Euler’s Equation (I.59) together with (I.66), we find that:

∂x3 Ĩ(xci) = 0.

So, we have shown that any points of the half-lines dc1 and dc1 are critical points of
Ĩ. Hence, because of the definition of p̃, (xc1, 0R3) and (xc2, 0R3) are critical points of the
criterion (I.9).
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Points xc3 and xc4 Let us study the criticality of xc3 and xc4. Let i ∈ {3, 4}. First, we
have shown when studying the condition (I.65) that xci cancels the radial derivative ∂rĨ.
Furthermore, using the Euler’s equation (I.59), we see that it also cancels the vertical
derivative ∂x3 Ĩ. Finally, as p0 is proportional to uθ we can compute:

∂θĨ(xci) = |p0|2uTθ ∂θK̃(xci, x0)uθ

= 0,

because of (I.62). Hence, we have shown that xc3 and xc4 are indeed critical points of Ĩ.
Also, we can see that:

p̃(xci) = µ̃(x03)p0,

where we define:

µ̃(x03)
def
=

−8x203

(
6r2(2x03)

2x03 + (r22(2x03) + (2x03)
2)

3/2
+ 8x203

)
3r2(2x03)2 (r22(2x03) + (2x03)2)

3/2
̸= 0.

Hence, because of the definition of p̃, (xc3, µ̃(x03)p0) and (xc4, µ̃(x03)p0) are critical
points of the criterion (I.9).

□

We shall see on the numerical simulations that xc0 is the unique local minimizer, xc1
and xc2 are local maximizers and xc3 and xc4 are saddle points of Ĩ.
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I.5 Numerical illustration

I.5.1 Dipole and charge localization electric inverse problems

For illustration purposes, we define i∂Ω in a similar manner as I∂Ω in Section I.2.2.b such
that for all x ∈ Ω:

i∂Ω(x) = j∂Ω(x, q(x)), (I.67)

where:

q(x)
def
= q0

a∂Ω(x, x0)

a∂Ω(x, x)
. (I.68)

I.5.1.a Planar case

To illustrate the uniqueness of the critical point of iΠ and IΠ, we consider x0 = (0, 0,−1),
q0 = 1 and p0 = (1,−5, 0.1) and study iΠ(x) and IΠ(x) for x = (x1, x2,−1) in the same
horizontal plane as x0 with (x1, x2) ∈ [−4, 4]2. The quantities iΠ and ∇iΠ were computed
using their expressions in Equations (I.67) and (I.68) together with Equation (I.47) using a
Matlab code. Similarly, the quantities IΠ and ∇IΠ were computed using their expressions
in Section I.2.2.b together with the formulas (I.23), (I.24), (I.25), (I.26) and (I.27) using
a Matlab code. Figure I.6 represents the criteria iΠ and IΠ and their variations on the
horizontal square [−4, 4]2 × {−1} while Figure I.8 illustrates their vertical variation on
the segment {0} × {0} × [−5, 0]. Figure I.7 shows the squared norms of the gradients of
the criteria iΠ and IΠ on the horizontal square [−4, 4]2 ×{−1}. The behaviors of jΠ with
respect to q and JΠ with respect to p are not represented as they are quadratic hence
strictly convex.

Figures I.6 and I.8 illustrate the non-convexity of the criteria hence the need of this
study for the convergence of optimization schemes. These figures also illustrate the con-
vergence of the criteria iΠ and IΠ to ∥E0∥L2(Π) and ∥u0∥L2(Π) as |x| → ∞ or x3 → 0 and
show that there is a unique global minimizer of iΠ and IΠ on the plane of height x03 and
on the vertical line passing through x0 respectively. Figure I.7 shows the uniqueness of
the critical point of iΠ and IΠ in the plane of height x03. One can see that the main
difference between the two studied problems is the symmetry under rotation around the
vertical axis of iΠ which is absent for IΠ as can be seen on Figure I.7.

(a) iΠ. (b) IΠ.

Figure I.6: Criteria on the horizontal square [−4, 4]2 × {−1}.

38



(a) ∇iΠ. (b) ∇IΠ.

Figure I.7: Squared norms of the gradients of the criteria on the horizontal square
[−4, 4]2 × {−1}.
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(b) IΠ.

Figure I.8: Criteria on the vertical line {0} × {0} × [−5, 0].

I.5.1.b Spherical case

To illustrate the uniqueness of the critical point of iS and IS, we consider x0 = (0, 0, 0.5)
(for iS) and x0 = (0, 0, 0) (for IS), q0 = 1 and p0 = (1,−5, 0.1) and study iS(x) and
IS(x) for x = (x1, x2, x03) in the same horizontal plane as x0 with (x1, x2) in the disk

D
(
0,
√

1− x203

)
. The quantities iS and ∇iS were computed using their expressions in

Equations (I.67) and (I.68) together with Equation (I.53) using a Matlab code. Similarly,
the quantities IS and ∇IS were computed using their expressions in Section I.2.4.a using
a Matlab code. Figure I.9 represent the criteria iS and IS and their variations on the
horizontal plane while Figure I.11 illustrates their vertical variation. Figure I.10 shows
the squared norms of the gradients of iS and IS. The behavior of jS with respect to q and
of JS with respect to p are not represented as they are quadratic hence strictly convex.

Figures I.9 and I.11 illustrate the non-convexity of the criteria hence the need of
this study for the convergence of optimization schemes. These figures also illustrate the
convergence of the criteria iS and IS to ∥E0∥L2(S) and ∥u0∥L2(S) as |x| → 1 and show that
there is a unique global minimizer of iS and IS on respectively the plane of height x03 and
the vertical line passing through x0. Figure I.10 shows the uniqueness of the critical point
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of iS and IS in the plane of height x03. One can see that the main difference between the
two studied problems in the rotational symmetry around the vertical axis of iS which is
absent for IS as can be seen on Figure I.10.

(a) iS on D
(
0,

√
3
2

)
×
{
1
2

}
. (b) IS on D (0, 1)× {0}.

Figure I.9: Criteria on the horizontal disk containing x0.

(a) ∇iS on D
(
0,

√
3
2

)
×
{
1
2

}
. (b) ∇IS on D (0, 1)× {0}.

Figure I.10: Squared norms of the gradients of the criteria on the horizontal disk contain-
ing x0.
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(b) IS.

Figure I.11: Criteria on the vertical line {0} × {0} × [−1, 1].

I.5.2 Dipole localization magnetic inverse problem

To illustrate the different critical points ĨΠ, we consider x0 = (0, 0,−1), and p0 = (0, 1, 0)
and study the criterion ĨΠ. On Figure I.12 we plot ĨΠ(x) for x = (x1, x2,−1) in the
same horizontal plane as x0 with (x1, x2) ∈ [−10, 10]2. On Figure I.13 and I.14, we
plot the criterion ĨΠ around xc3 and xc4. Figure I.13 shows ĨΠ on the horizontal disk
xc3+(D(0, 1)× {0}) and on the vertical line {xc3+ tuz, t ∈ [−1, 1]}. Figure I.14 shows ĨΠ
on the horizontal disk xc4 + (D(0, 1)× {0}) and on the vertical line {xc4tuz, t ∈ [−1, 1]}.
Finally, to illustrate dc1 and dc2, let us first define for t ∈ [0,+∞[, xc1(t) the intersection
of dc1 and the horizontal plane of height x3 = t and xc2(t) the intersection of dc2 and the
horizontal plane of height x3 = t. We then plot on Figures I.15, I.16 and I.17 the criterion
around xc1(x03/2), xc1(x03) and xc1(3x03/2) respectively. Figures I.15 shows ĨΠ on the
horizontal disk xc1(x03/2)+ (D(0, 1)× {0}) and on the vertical line {xc1(x03/2)+ tuz, t ∈
[−3/2, 1/2]}. Figures I.16 shows ĨΠ on the horizontal disk xc1(x03)+(D(0, 1)× {0}) and on
the vertical line {xc1(x03) + tuz, t ∈ [−1, 1]}. Figures I.17 shows ĨΠ on the horizontal disk
xc1(3x03/2)+ (D(0, 1)× {0}) and on the vertical line {xc1(3x03/2)+ tuz, t ∈ [−1/2, 3/2]}.
The quantity ĨΠ was computed using its expression in Section I.58 together with the
formulas (I.57), (I.23), (I.24), (I.25), (I.26) and (I.27) using a Matlab code.

These figures illustrate the criticality property of the different critical points described
in Theorem I.4.1. Furthermore, they show that xc0 is the global minimum, xc3 and xc4
are saddle points and points on dc1 and dc2 are global maxima of the criterion ĨΠ.
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Figure I.12: Criterion ĨΠ on the horizontal square [−10, 10]2 × {−1}. The stars indicate
the locations of the critical points: xc0 (blue), xc1(x03) and xc2(x03) (red) and xc3(x03)
and xc4(x03) (green).

(a) Planar variation.
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Figure I.13: Criterion ĨΠ on the horizontal disk xc3 + (D(0, 1)× {0}) and on the vertical
line {xc3 + tuz, t ∈ [−1, 1]}.
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(a) Planar variation.
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(b) Vertical variation.

Figure I.14: Criterion ĨΠ on the horizontal disk xc4 + (D(0, 1)× {0}) and on the vertical
line {xc4 + tuz, t ∈ [−1, 1]}.

(a) Planar variation.

-2 -1.5 -1 -0.5 0

0.367

0.368

0.369

0.37

0.371

0.372

0.373

0.374

0.375

(b) Vertical variation.

Figure I.15: Criterion ĨΠ on the horizontal disk xc1(x03/2) + (D(0, 1)× {0}) and on the
vertical line {xc1(x03/2) + tuz, t ∈ [−3/2, 1/2]}.

(a) Planar variation.
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Figure I.16: Criterion ĨΠ on the horizontal disk xc1(x03) + (D(0, 1)× {0}) and on the
vertical line {xc1(x03) + tuz, t ∈ [−1, 1]}.
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(a) Planar variation.
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Figure I.17: Criterion ĨΠ on the horizontal disk xc1(3x03/2) + (D(0, 1)× {0}) and on the
vertical line {xc1(3x03/2) + tuz, t ∈ [−1/2, 3/2]}.
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I.6 Conclusion

In this chapter, for the dipole localization from measurements of the electric potential
we proved the uniqueness of the critical point of the least-squares criterion JΠ in the
Euclidean geometry (∂Ω = Π). We studied the same problem in the spherical setting
(∂Ω = S). This setting leads to complications in the absence of homogeneity of the
functions considered. Yet, we managed to establish the uniqueness in the particular case
where x0 = 0R3 is at the center of the sphere. Unlike in the two-dimensional case, the
result does not directly generalize to other surfaces.

The study of j∂Ω for the charge localization from measurements of the electric field
was also done for these two different geometries (the horizontal plane Π and the sphere
S) and we showed the uniqueness of the critical point in both cases.

Finally, we studied J̃∂Ω for the dipole localization from measurements of the magnetic
field in the Euclidean geometry (∂Ω = Π) with a horizontal moment p0 ∈ Π for which we
proved the existence of three isolated critical points and two half-lines of critical points.
This show that the uniqueness of the critical point of least-square criteria from solution
to these Poisson equations is not systematic and there can even be degenerated cases for
which the critical points are not discrete.

Further generalizations are still expected for the criteria J∂Ω given by (I.5), j∂Ω given
by (I.7) and J̃∂Ω given by (I.9) for multiple dipolar sources, for incomplete or noisy data
and for more sophisticated geometries.
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CHAPTER II

RATIONAL APPROXIMATION OF SCATTERED

ELECTROMAGNETIC WAVES

II.1 Introduction

II.1.1 Scattering

We are studying the scattering of electromagnetic waves by a perfect electric conductor
Ω. The experimental setting is described on Figure II.1: an antenna is used to send an
electromagnetic plane wave on an object and the electric field scattered by this object
at is measured the same antenna. Our aim is to find the shape of this object knowing
the electric field it scatter at different frequencies. In order to do this recovery different
machine learning algorithms can be used [15] which used poles of the transfer function
as variables. In order to get these poles from finite measurements of the field, several
algorithm of rational approximation has been used [16]. In this work, we study the theory
around different rational approximations rather than the different existing algorithms and
will stick to the vector-fitting algorithm introduced in [17], [18] and [19] for the numerical
examples. The use of rational approximation to the frequency response is justified by the
meromorphic nature of the field as a function of the frequency [20, Thm 3.1].

Incident wave Scattered wave

Object
Antenna

Figure II.1: Geometric situation of the scattering of an incident wave on an object.
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The incident field electromagnetic field is expressed for all x in R3 by:

Einc(x) = E0 exp(−iv · x),
Hinc(x) = H0 exp(−iv · x),

where:

• Einc is the C3-valued incident electric field,

• Hinc is the C3-valued incident magnetic field,

• k ∈ R+ is the wave number of the incident fields,

• v ∈ R3, is the direction of propagation of the incident wave with |v| = 1,

• E0 ∈ C3 and H0 ∈ C3 are the electromagnetic fields at x = 0 with the conditions
that E0 ·H0 = 0, E0 · v = 0 and H0 · v = 0.

This problem is described by Maxwell equations for time-harmonic waves in vacuum (II.1)
and (II.2) with a Dirichlet condition on the object (II.3) and the Silver-Müller radiation
condition (II.4) [21]:

∇× (Esc)− ikHsc = 0, in R3 \ Ω, (II.1)

∇× (Hsc) + ikEsc = 0, in R3 \ Ω, (II.2)

(Esc + Einc)× ν = 0, on ∂Ω, (II.3)

lim|x|→∞(Hsc × x− |x|Esc) = 0, (II.4)

where:

• Esc is the C3-valued scattered electric field,

• Hsc is the C3-valued scattered magnetic field.

• ν is the outgoing unit vector normal to ∂Ω.

Remark 6. One can see that (Einc, Hinc) does not satisfy (II.4). Indeed, plane wave are
not considered to be physical and can only be considered locally which is the case here as
only the boundary value on ∂Ω of Einc appears in Equation (II.1) to (II.4).

This electromagnetic field is also solution of Helmholtz equation:

∆Esc + k2Esc = 0, in R3 \ Ω
∆Hsc + k2Hsc = 0, in R3 \ Ω

(II.5)

with the a zero-divergence condition:

∇ · Esc = 0, in R3 \ Ω
∇ ·Hsc = 0. in R3 \ Ω

(II.6)

In this section, we consider a spherical conductor of center 0R3 and radius a > 0 with
the notation Ω = Ba and ∂Ω = Sa. For such a spherical conductor, there exists a formula
for Esc [21, Eq. (6-104)] given by the Mie series:

Eθ
sc(x) = −E0

kr
cos(φ)

∞∑
n=1

[
−ibnĤ ′

n

(2)
(kr) sin(θ)P ′1

n(cos(θ)) + cnĤn
(2)
(kr)

P 1
n cos(θ)

sin(θ)

]
,

where (r, θ, φ) ∈ R+ × [0, π]× [0, 2π[ are the spherical coordinates of x ∈ R3 \ Ba and for
all n ∈ N:
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• Ĥn
(2)

is the n-th spherical Hankel function of the second kind,

• Ĵn is the n-th spherical Bessel function of the first kind,

• P 1
n is the associated Legendre function of order (1, n),

• bn = −i
−n(2n+ 1)

n(n+ 1)

Ĵ ′
n(ka)

Ĥ ′
n

(2)
(ka)

and cn = −i
−n(2n+ 1)

n(n+ 1)

Ĵn(ka)

Ĥn

(2)
(ka)

.

In this study, we only consider the back-scattering position (θ = π) hence the formula we
are interested in is:

Esc(r) =
E0

kr

∞∑
n=1

in
(
n+

1

2

)[
Ĵn(ka)Ĥn

(2)
(kr)

Ĥn
(2)
(ka)

− i
Ĵ ′
n(ka)Ĥ

′
n

(2)
(kr)

Ĥ ′
n

(2)
(ka)

]
. (II.7)

As for all n ∈ N, Ĥn

(2)
and Ĵn are analytic functions, we can immediately check the

meromorphic nature of Esc and determine its poles are they are the k ∈ C such that there

exists n ∈ N with Ĥn
(2)
(ka) = 0 or Ĥ ′

n

(2)
(ka). Figure II.2 shows the first 120 poles of Esc

in this case.

Real part

Imaginary part

n = 1 2 3 4 5 6 7 8 9 10

O

Figure II.2: Poles of Esc for a metallic sphere of radius a = 1.
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When studying the poles of Esc, we can consider its far-field expansion:

Esc(r) = P (ρ)
i exp(−ikr)

kr
E0,

P (ρ) =
∞∑
n=1

(−1)n
(
n+

1

2

)(
Ĵn(ρ)

Ĥn
(2)
(ρ)

− Ĵ ′
n(ρ)

Ĥ ′
n
(2)
(ρ)

)

=
∞∑
n=0

(−1)n
(
n+

1

2

)(
Ĵn(ρ)

Ĥn

(2)
(ρ)

− Ĵ ′
n(ρ)

Ĥ ′
n

(2)
(ρ)

)
− 1

2
exp(2iρ), (II.8)

ρ = ka,

computed from Equation (II.7) using the following expansions:

Ĥn
(2)
(x) ∼

x→∞
in+1 exp (−ix) ,

Ĥ ′
n

(2)
(x) ∼

x→∞
in exp (−ix) .

This allows simplification in the computations done in Section II.2 and one can see
that Esc and P have the same poles.

II.1.2 Rational approximation

In the chapter, we study a family of rational approximations of meromorphic functions.
The different approximation schemes studied are generalization of Padé approximation
[22] presented below. Other schemes exist as in [23], [24],[25] and [26]. The different
studied properties of these approximants use the notion of logarithmic capacity which is
presented in Appendix B.

II.1.2.a Padé approximation at 0

Definition II.1.1. Let f be analytic in a neighborhood 0. For m,n ∈ N, the Padé
approximant to f at 0, is the rational function p0m,n/q

0
m,n where p0m,n ∈ Pn, q

0
m,n ∈ Pm

with q0m,n ̸≡ 0 and

(p0m,n − fq0m,n)(z) = O
(
zm+n+1

)
as z → 0. (II.9)

For a given function f analytic in a neighborhood of 0, its Padé approximant exists
and is unique. Indeed, even though there exist an infinite number of duets (p0m,n, q

0
m,n)

solutions of Equation (II.9), they all lead to the same fractional function p0m,n/q
0
m,n [27,

Thm 1.4.3]. The following theorem, proven iteratively in [28] and [29] describes the
approximation error made with this approximant and how it evolves when we increase
the order of approximation (m and n).

Theorem II.1.1 (Nuttall-Pommerenke). Let E ⊂ C be a close set with cap(E) = 0 and
0 ̸∈ E and let f be analytic in the complement of E. Let K ⊂ C be a compact set, ε > 0,
δ > 0, λ > 1. Then there exists m0 ∈ N such that for all natural numbers m and n which
satisfy:

m/λ ≤ n ≤ λm,

m0 ≤ m,

we have:
|p0m,n/q

0
m,n − f | < εm,

on K \ Em,n where cap(Em,n) ≤ δ.
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II.1.2.b Multipoint Padé approximation

A natural generalization of this approximation is the multipoint Padé approximation.

Definition II.1.2. For m,n ∈ N and (zi)i∈J1,m+n+1K ∈ Cm+n+1 be a collection of points.
Let f be analytic in a neighborhood of each of these points. The multipoint Padé approxi-
mant to f at (zi)i∈J1,m+n+1K is the rational function pm,n/qm,n where pm,n ∈ Pn, qm,n ∈ Pm

with qm,n ̸≡ 0 and for all i ∈ J1,m+ n+ 1K:

(pm,n − fqm,n)(zi) = 0.

For a given function f analytic in neighborhood of each of points of a collection of
points (zi)i∈J1,m+n+1K ∈ Cm+n+1, its multipoint Padé approximant exists and is unique.
Nevertheless, this approximation is not an interpolation as the numerator and the de-
nominator can vanish at a point zi hence preventing interpolation at this point after
simplification. A generalization of Theorem II.1.1 for the multipoint Padé approximation
is given by [30, Thm 4]:

Theorem II.1.2. Let E and F be two closed sets in C with cap(F ) = 0 and E ∩ F = ∅.
Let (zi)i∈N be a family of distinct points in E. Let f be analytic in C\F . Let K ⊂ C be a
compact set, ε > 0, δ > 0, λ ≥ 1. Then, there exists m0 such that for all natural numbers
m and n which satisfy:

m/λ ≤ n ≤ λm,

m0 ≤ m,

we have:
|pm,n/qm,n − f | < εm,

in K \ Em,n where cap(Em,n) < δ.

Remark 7. This result needs to be compared to the existing ones for least-squares poly-
nomial approximation. Indeed, for Padé approximation this theorem does not require any
assumptions for the points (zi)i∈N which are completely independent of the set K. Nev-
ertheless, the obtained convergence (in capacity) is weaker that the uniform convergence
which can be achieved through least-squares polynomial approximation [31]. There, in
order for uniform convergence to hold true, points have to be chosen in some admissible
meshes (defined by inequalities).

Theorems II.1.1 and II.1.2 only specify a ‘weak’ kind of convergence of the approximant
to the approximated function. Yet, Proposition II.1.3 shows that this convergence in
capacity (defined by B.0.1 in Appendix B) also induces a form of convergence of the
poles of the approximant towards the poles of the approximated function when it is
meromorphic. This proposition is a direct application of Rouché theorem [32, Thm 10.43].

Proposition II.1.3. Let f be a meromorphic function and (gn)n∈N be a sequence of
meromorphic functions which converges in capacity to f . Then for any open set O ⊂ C
in which f admits a finite number of poles and zeros, for any point z in O there exist a
disk D(z, r) ⊂ O of radius r > 0 and an integer k0 ∈ N such that for all k ≥ k0:

pf − zf = pn − zn,

where pf and zf are respectively the number of poles and zeros of f in K counted with
their multiplicities and pn and zn are respectively the number of poles and zeros of gn in
D(z, r) counted with their multiplicities.
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Proposition II.1.3 illustrates the link between convergence in capacity as in Theorem
II.1.1 and the present goal of retrieving the poles of a meromorphic function. Indeed, let
f a meromorphic and a ∈ C one of its poles of multiplicity d ∈ N. We consider a compact
set K ⊂ C such that K does not contain any zeros of f and contains no other poles than
a. Let (gn)n∈N be a sequence of meromorphic functions which converges in capacity to f .
By applying Proposition II.1.3 to f , gn and K, we see that for all n ≥ n0 the approximant
gn admits at least d poles in K and that any additional poles that gn might have shall
be compensated by a zero of gn. As we can choose K as small as want, this shows that
at least a part of the poles of the approximant gn shall be arbitrarily close to the poles
of the approximated function f . Nevertheless, this result does not prevent gn to have
other poles as long as they are compensated by zeros nearby. Indeed, the same argument
applied to a compact set in the analyticity domain of f show that gn can have poles far
from the poles of f as long as it possess zeros nearby.

This property is illustrated on Figure II.3. On the left side (Figure II.3a), we consider
a compact set (a disk) which contains a double pole of f and we see that the approximant
gn has three poles and a zero in this set. On the right side (Figure II.3b), we consider a
compact set (a disk) which contains no pole of f and we see that the approximant gn has
three poles and three zeros in this set.

×+

×

×

×
◦

(a) Compact set which contains a double
pole of f .

×

×

×
◦

◦

◦

(b) Compact set which contains no poles of
f .

Figure II.3: Poles and zeros of f and its approximant gn different compact sets. Red
crosses are poles of gn, blue circles are zeroes of gn and the black star is a double pole of
f .

The goal of this chapter is to study the pole recovery of the far field term P as defined
in Equation (II.8). This recovery is done using the Vector-Fitting algorithm which is an
implementation of a generalization of the multipoint Padé approximation described in
Section (II.4). The results achieved on the convergence in capacity of this approximant,
done in Section (II.4), justifies the use of this method in pole recovering.

II.1.3 Overview

In Section II.2, we study an approximation process of the scattered field for a metallic
sphere at high-frequency in an attempt to extend the data for a given range of frequency.
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In Section II.3, we introduce least-squares Padé approximation at 0 which is a general-
ization of Padé approximation at 0 presented in Section II.1.2.a. For this approximation
we study the existence and uniqueness of the approximant in section II.3.1, then prove a
generalization of Nuttall-Pommerenke theorem in Section II.3.2. Finally, in Section II.4,
we introduce monic least-squares multipoint Padé approximation which is a generalization
of multipoint Padé approximation presented in Section II.1.2.b. For this approximation,
we introduce Theorem II.1.2 and Conjecture II.4.1, which are generalizations of Nuttall-
Pommerenke theorem. Theorem II.1.2 is proven in Section II.4.1, while Conjecture II.4.1
is discussed in Section II.4.2.
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II.2 High-frequency approximation

In this section, we study the behavior of the field at high frequency (as k → +∞). In
Section II.2.1, we construct a high-frequency equivalent in the form of a series which
can be computed for any convex object and is here computed for a spherical object.
In Section II.2.2 we study a finer approximation of the field at high-frequency for the
spherical object in the back-scattering position. This approximation is decomposed into
an optic part similar to the previous series and a creeping wave part whose behavior is
more complex. Finally, in Section II.2.3 we apply a rational approximation scheme to
these different high-frequency extension in order to study their usability for our purpose.

II.2.1 Luneburg-Kline series

In this section, the computations can be done outside the spherical case and we only
assume that Ω ⊂ R3 is convex and smooth. To study this problem, we will assume that
Esc can be expanded in a Luneburg-Kline series [33]:

Esc(k, x) ∼
∞∑
n=0

An(x)

(ik)n
exp (−ikS(x)) , (II.10)

where for all n ∈ N:

An : R3 \ Ω −→ C3,

S : R3 \ Ω −→ R,

are respectfully the amplitudes of the expansion and the phase. This expansion is to be
understood in the Poincaré sense, meaning that for all x ∈ R3 \ Ω and N ∈ N:

Esc(k, x) =
N∑

n=0

An(x)

(ik)n
exp (−ikS(x)) + o

(
1

kN

)
as k → +∞.

This series does not need to converge. Indeed if it converged, because of the uniqueness
of the solution of the system of equations (II.1) to (II.4), the equivalence would be an
equality. In this series, we are mainly interested in A0 and S as they indicate the first
order behavior of Esc when k goes to +∞.

Substituting the expansion II.10 into Equations (II.5) and (II.6) and identifying the
terms as powers of ik we get for all n ∈ N the system of equations:

|∇S|2 = 1, (II.11)

(∆S + 2∇S · ∇)An = −∆An−1, (II.12)

∇S · An = −∇ · An−1,

with the convention A−1 = 0. Equation (II.11) is the eikonal equation and Equation
(II.12) is a transport equation. The Dirichlet condition (II.3) gives, for all y ∈ ∂Ω:

S(y) = v · y, (II.13)

A0 × ν(y) = −E0 × ν(y), (II.14)

where ν(y) is the unit vector which is outgoing and normal to ∂Ω at y.
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II.2.1.a Solving the eikonal equation

Let us define rays as the integral curves of the gradient of the phase S. Let A and B to
points on the ray path and Γ be the curve from A to B on this path. We have:

S(B)− S(A) =

∫
Γ

∇S · ds =
∫
Γ

ds =
def
ℓΓ(A,B), (II.15)

as on the ray, ∇S and ds are parallel (since A and B are on the same ray) and ∇S is of
norm 1 because of Equation (II.11). Now, if we integrate the same quantity on the line
segment [AB], we get from Cauchy-Schwarz inequality:

S(B)− S(A) =

∫ B

A

∇S · ds ≤
∫ B

A

ds = |AB|. (II.16)

Γ

∇S

A
•

B•

Figure II.4: Geometrical representation of the path Γ in the resolution of the eikonal
equation.

Using Equations (II.15) and (II.16) we see that ℓΓ(A,B) ≤ |AB| and thus, as straight
lines are length minimizers, the rays must be straight lines. Let u ∈ R3 be a unit outgoing
director vector of a ray passing through ∂Ω at a point y ∈ ∂Ω. Using the Dirichlet
condition (II.14) and taking the tangential derivative, we see that for all y ∈ ∂Ω:

∇S × ν(y) = v × ν(y).

Hence, as u(y) = ±∇S(y), we see that u has the same tangential component than v at y.
Since it is unitary and outgoing, we find that we have to distinguish between two regions:
the lit side and the shadow side. Indeed for all y ∈ ∂Ω:

u(y) =

{
v − 2(v · ν(y))ν(y) if v · ν(y) ≤ 0,
v else.

(II.17)

So, to solve the eikonal equation (II.11) at a point x outside of Ω, one needs to find
y(x) ∈ ∂Ω such that x and y(x) are on the same ray (this is known as Alhazen’s Problem
[34]). The situation in illustrated on Figure II.6 for a precise configuration and on Figure
II.7 for general reflections. Then, using Equations (II.13) and (II.16) we find:

S(x) = S(y(x)) + |x− y(x)|
= v · y(x) + |x− y(x)|. (II.18)
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v

Figure II.5: Distinction between the lit region (in white) and the shadow region (in gray)
for a spheroid.

y(x)
•

x•

u

v

ν

Figure II.6: Schema of the reflection of an electromagnetic wave on a metallic sphere.

From now on, we assume that Ω is the ball Ba of radius a > 0 and we consider back-
scattering situation for which, given x = −rv, we can easily find y(x) using the formula:

y(x) = a
x

|x|
= −av.

Hence for x = −rv in the back scattering position we have:

S(x) = −a+ r − a = r − 2a.

II.2.1.b Solving the transport equation

Let us solve the transport equation (II.12) for n = 0. Let a0 be any Cartesian component
of A0 (a0 = ei · A0 for i ∈ {1, 2, 3}). First, by multiplication of Equation (II.12) with a0
we have:

∇ · (a20∇S) = 0, in R3 \ Ba. (II.19)
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Figure II.7: Schematic illustration of ray paths from the scattering of a metallic sphere.

Let us define the following parametrization of points on the sphere:

y : [0, π]× [0, 2π[ −→ Sa

(θ, φ) 7−→ a

 cos (φ) sin (θ)
sin (φ) sin (θ)

cos (θ)

 .

Similarly, for all s ∈ R+, we define:

xs : [0, π]× [0, 2π[ −→ R3

(θ, φ) 7−→ y(θ, φ) + su(y(θ, φ)),

where u is as defined in Equation (II.17). Let θ0 ∈ [0, π] and φ0 ∈ [0, 2π[ and y0 = y(θ0, φ0)
be a fixed point on the sphere Sa. Similarly, for all s ∈ R+, we define:

x̂s : [0, π]× [0, 2π[ −→ R3

(θ, φ) 7−→ y(θ, φ) + g(s, θ, φ)u(y(θ, φ)),

where g(s, θ, φ) ∈ R+ is chosen such that:

S(x̂s(θ, φ)) = S(xs(θ0, φ0)).

Let s1 and s2 in R+ and x1 = xs1(θ0, φ0) and x2 = xs2(θ0, φ0). Let W1 and W2 be the
surfaces defined by for all ε > 0:

W1(ε) =
{
x̂s1(θ, φ), θ ∈ [θ0 − ε, θ0 + ε], φ ∈ [φ0 − ε, φ0 + ε]

}
,

W2(ε) =
{
x̂s2(θ, φ), θ ∈ [θ0 − ε, θ0 + ε], φ ∈ [φ0 − ε, φ0 + ε]

}
.
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Figure II.8: Geometric description of the surfaces W1 and W2 used in the resolution of
the transport equation.

Let us consider the volume V = V (ε, s1, s2) which is surrounded by the rays through
the boundaries of both surfaces W1(ε) and W2(ε) and the surfaces themselves. The
different surfaces introduced here are presented on Figure II.8. By integrating the quantity
(II.19) on this volume and using the divergence theorem, one gets:

1

surf(W1(ε))

∫
W1(ε)

a20(s)ds =
surf(W2(ε))

surf(W1(ε))

1

surf(W2(ε))

∫
W2(ε)

a20(s)ds.

Because a0 is assumed to be continuous, we also know that for i ∈ {1, 2}:

lim
ε→0

1

surf(Wi(ε))

∫
Wi(ε)

a20(s)ds = a20(xi).

Let us now compute the ratio of the two surfaces. In what follows, a case distinction
has to be done between the lit side (θ0 ∈ [π/2, π]) and the dark side (θ0 ∈ [0, π/2[). Let
us start with the lit side. Because x = x̂si(θ, φ) is defined by being on the same ray as
y = y(θ, φ) and being on the same wavefront as x0i = xsi(θ0, φ0), we see from Equations
(II.17) and (II.18) that it solves the system:

x− y

|x− y|
= v − 2

v · y
a2

y,

|x− y|+ v · y = s+ v · y0.

This allows us to express x = xsi(θ, φ) as:

x = y(θ, φ) +
(
s+ v · y0 − v · y(θ, φ)

)(
v − 2

v · y(θ, φ)
a2

y(θ, φ)

)
.

Using the known formula for the area of a surface defined this way [13, Eq. 1.6.48] defined
as such we have:

surf(Wi(ε)) =

∫ θ0+ε

θ0−ε

∫ φ0+ε

φ0−ε

Xi(θ, φ)dφdθ

= 4ε2Xi(θ
0, φ0) + o(ε2),
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where for all (θ, φ) ∈ [0, π]× [0, 2π[:

Xi(θ, φ) = |∂θxsi(θ, φ)× ∂φxsi(θ, φ)|.

After computation, which as been done using a symbolic computation program, we find:

Xi(θ
0, φ0) = |sin(θ0)|

(
a2 cos(θ0)− 2as cos(θ0)

2 − 2asi + 4s2i cos(θ0)
)
.

Thus we get:

lim
ε→0

surf(W2(ε))

surf(W1(ε))
=
X2(θ

0, φ0)

X1(θ0, φ0)

=
a2 cos(θ0)− 2as2 cos(θ0)

2 − 2as2 + 4s22 cos(θ0)

a2 cos(θ0)− 2as1 cos(θ0)2 − 2as1 + 4s21 cos(θ0)
.

By taking x02 = x ∈ R3 \ Ba and x01 → y(x) ∈ Sa, one get:

a0(x)
2 =

a4

(a2 − 2v · y(x)|x− y(x)|)
(
a2 − 2 a2

v·y(x) |x− y(x)|
)a0(y(x))2.

So, by continuity of A0, we finally find:

A0(x) =
a2

(a2 − 2v · y(x)|x− y(x)|)1/2
(
a2 − 2 a2

v·y(x) |x− y(x)|
)1/2A0(y(x)).

Similarly, on the shadow side (θ0 ∈ [0, π/2]), as u = v, the areas of those surfaces W1(ε)
and W2(ε) are equal for all ε > 0 small enough thus:

lim
ε→0

surf(W2(ε))

surf(W1(ε))
= 1.

And, we finally find:
A0(x) = A0(y(x)).

Hence, we have computed the following asymptotic expansion, for all x ∈ R3 \ Ba and
y = y(x) as defined before:

Esc(x) ∼
k→∞

a2

(a2 − 2(v · y)|x− y|)1/2
(
a2 − 2 a2

v·y |x− y|
)1/2 if v · y ≤ 0,

×
[
−E0 + 2

(E0 · y)
a2

y

]
exp(−ik (v · y + |x− y|))

∼
k→∞

− E0 exp(−ik (v · x)) if v · y > 0.

The comparison between the Luneburg-Kline series first term A0 exp(−ikS) we calcu-
lated and the accurate truncated Mie series is shown on Figure II.9. We see on that figure
that the approximation made using the first Luneberg-Kline term A0 is only valid around
the back scattering position and its accuracy decreases when approaching the lit/shadow
limit represented as dashed vertical lines on Figure II.9.
One can now compute similarly A1, A2 and so on from Equation (II.10) which in the
back-scattering configuration simplifies to:

Esc(−rv) ∼
k→∞

(
− a

2r − a
− 2

(r − a)2

(2r − a)3
1

ik
+ 2

(r − a)(2r2 − 4ra+ 3a2)

(2r − a)5
1

(ik)2

)
× E0 exp(−ik (r − 2a)).

(II.20)
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Figure II.9: Comparison between Mie (blue) series and the first Luneberg-Kline term
A0 (red) with a = 0.15/2 m, at a distance r = 1 m at a frequency f = 5 GHz for all
θ ∈ [0, 2π].

II.2.2 Creeping Waves

In this section we only consider the far field given by Equation (II.8) in the back-scattering
configuration. We use Watson transformation [35] which transforms a sum into an integral
using the residue theorem to get a simpler form. One of the form Watson transformations
can have is given by:

∞∑
n=0

f

(
n+

1

2

)
= 2

∫
C

exp(−iνπ)
cos(νπ)

f(ν)dν,

where C is a curve passing through 0 which surrounds the half integers and f is an analytic
function in the interior of C. The curve C is illustrated on Figure II.10. In this case,

we take advantage of the analytic nature of ν 7→ Ĥν
(2)

and ν 7→ Ĵν with respect to their
index [13, Sec. 10.2(ii)]. Let us apply this formula to evaluate the sum:

S(ρ)
def
=

∞∑
n=0

(−1)n
(
n+

1

2

)(
Ĵn(ρ)

Ĥn

(2)
(ρ)

− Ĵ ′
n(ρ)

Ĥ ′
n

(2)
(ρ)

)

= 2

∫
C

exp(−iνπ) exp(iπ(ν − 1/2))

cos(νπ)
fρ(ν)νdν

= −2i

∫
C

fρ(ν)ν

cos(νπ)
dν, (II.21)
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where for all ρ in R+ we define the meromorphic function:

fρ : C −→ C

ν 7−→
Ĵν−1/2(ρ)

Ĥ
(2)
ν−1/2(ρ)

−
Ĵ ′

ν−1/2(ρ)

Ĥ ′(2)
ν−1/2(ρ)

.

Because of [13, Eq. 10.4.8], we see that for all ρ in R+, fρ admits the following parity
symmetry:

fρ(−ν) = exp(2iνπ)fρ(ν). (II.22)

Let C+ and C− be sections of C of respectively positive and negative imaginary parts
and CS

− the symmetric of C− with respect to the point 0 in C. Using Equation (II.22),
we have:∫

C−

fρ(ν)ν

cos(νπ)
dν =

∫
C−

exp(2iνπ)

cos(νπ)
fρ(ν)νdν − 2i

∫
C−

exp(iνπ) tan(νπ)fρ(ν)νdν

= −
∫
CS

−

exp(−2iνπ)

cos(νπ)
fρ(−ν)νdν − 2i

∫
C−

exp(iνπ) tan(νπ)fρ(ν)νdν

= −
∫
CS

−

fρ(ν)ν

cos(νπ)
dν − 2i

∫
C−

exp(iνπ) tan(νπ)fρ(ν)νdν, (II.23)

0
• • • • • •

C

C+

C−

CS
−

Figure II.10: Schematic representation of the curves C (red), C− (dashed blue) , C+

(dashed black) and , CS
− (dashed red).

where we used the identity:

∀ν ∈ C :
1

cos(νπ)
= exp(2iνπ)

1

cos(νπ)
− 2i exp(iνπ) tan(νπ).

Using Equations (II.21) and (II.23), we have for all ρ in R+:

S(ρ) = −2i

∫
C+∪CS

−

fρ(ν)ν

cos(νπ)
dν − 4

∫
C−

exp(iνπ) tan(νπ)fρ(ν)νdν.

The first integral on the right-hand side has an integrand which decreases exponentially
when |ν| goes to +∞ with Im(ν) > 0 hence we can close the contour using Cauchy
theorem and apply the residue theorem in the upper half plane to finally find the following
decomposition:

P (ρ) = Pc(ρ) + Po(ρ), (II.24)
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where Po is the optic part of P and Pc is the creeping wave part of P given by:

Po(ρ) =− 1

2
exp(2iρ)− 4

∫
C−

exp(iνπ) tan(νπ)fρ(ν)νdν,

Pc(ρ) =4π
+∞∑
n=1

Ĵν−1/2(ρ)

∂νĤ
(2)
ν−1/2(ρ)

ν

cos(πν)

∣∣∣∣∣
ν=νn

− 4π
+∞∑
m=1

Ĵ ′
ν−1/2(ρ)

∂νĤ ′(2)
ν−1/2(ρ)

ν

cos(πν)

∣∣∣∣∣
ν=ν̃m

.

where for all ρ ∈ C, νn = νn(ρ) and ν̃m = ν̃m(ρ) are the countable values such that:

Ĥ
(2)
νn−1/2(ρ) = 0,

Ĥ ′(2)
ν̃m−1/2(ρ) = 0.

Using the approximations of these (νn) and (ν̃n) given by [36, Eq. 21 and 85] and after
keeping the dominant term, we get:

Pc(ρ) ∼
ρ→+∞

τ 4ei
π
3

1

β1Ai(β1)2
exp

(
iπρ− e−iπ

6 τπβ1 +O(τ−1)
)
, (II.25)

where:

• τ = τ(ρ) =
(
ρ
2

)1/3
,

• β1 ≈ −1.019 is the smallest (in absolute value) zero of the Airy function’s derivative
Ai′ [13, Tb. 9.9.1].

Remark 8. The optic part has a similar high-frequency behavior as the Luneberg-Kline
series (II.20) computed in the previous section. We see that the creeping wave part of
the field decreases exponentially as k goes to +∞. Hence, this part of the field is, as
predicted in the previous section, negligible compared to any polynomial of 1/k hence to
the optic part.

In order to evaluate the contribution of each term in this decomposition, we compute
the error made when only considering the first, the two first and the three first optic terms
and when considering the two first optic terms together with the first creeping wave term.
The evaluated error is displayed on Table II.1 for a metallic sphere of radius a = 0.15/2
m seen in the back-scattering position at a distance r = 1 m at a frequency of 5 GHz
(ρ = 7.9).

Approximate 1 optic 2 optic 3 optic 2 optic and 1 creeping
Error(%) 13.89 9.02 9.01 1.46

Table II.1: Error made in the approximation with respectively one, two and three terms
of the optics part and two terms of the optics part and one term of the creeping wave
part at frequency 5 GHz for a = 0.15/2 m and r = 1 m.

Using the results listed in Table II.1, one can see that at 5 GHz the first optic term
accounts for 86.11% of the field while the second and third one account only for respec-
tively 4.87% and 0.01%. On the other hand, the first term of the creeping wave part of
the field accounts for 7.55%. Hence, even though this part is asymptotically negligible
when compared to the optic part, it cannot be neglected at high but finite frequencies. In
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Figures II.11, II.12 and II.13, a comparison is made between the different approximations.
From the Figures II.11 and II.12, we see that A0 and −A1/k are good approximations of
respectively the real and imaginary parts of the mean value of the field while Figure II.13
shows that the creeping part corresponds to the local variations in frequency.

4 6 8

-0.046

-0.044

-0.042

-0.04

-0.038

-0.036

-0.034

-0.032

-0.03

4 6 8

-12

-10

-8

-6

-4

-2

0

2

4
10

-3

Figure II.11: Comparison between the compensated Mie series P (ρ) exp(2iρ) (in red) and
the first optic term A0 (in blue).

62



4 6 8

-8

-6

-4

-2

0

2

4

6

8
10

-3

4 6 8

-12

-10

-8

-6

-4

-2

0

2

4
10

-3

Figure II.12: Comparison between the compensated Mie series P (ρ) exp(2iρ)−A0 (in red)
and the second optic term A1/(ik) (in blue).

4 6 8

-8

-6

-4

-2

0

2

4

6

8
10

-3

4 6 8

-8

-6

-4

-2

0

2

4

6

8
10

-3

Figure II.13: Comparison between the compensated Mie serie P (ρ) exp(2iρ)−A0−A1/(ik)
(in red) and the first creeping term (in blue).
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II.2.3 Rational approximation using high-frequency behavior

In order to illustrate the use of the previously computed expansions, we apply a rational
approximation scheme linked to the least-squares multipoint Padé approximation. On the
field for a metallic sphere of radius a = 0.15/2 m seen in the back-scattering position at
a distance r = 1 m. We consider 500 frequency measures uniformly distributed between
k = 0 GHz and k = 5 GHz computed using an appropriate truncation of the Mie series
(II.7). We then extend the data on 500 frequency measures uniformly distributed between
k = 5 GHz and k = 10 GHz using iteratively the computed Luneberg-Kline series terms
(II.20), then the association between the optic part / Luneberg-Kline series and the
creeping wave part (II.25). The data is symmetrized with respect to the imaginary axis
using the conjugation symmetry of the field. We further apply the vector-fitting algorithm
presented in [17], [18] and [19] using 100 poles. We do a selection of poles using criteria
given by [37] in order to avoid poles that are irrelevant, as in the case presented on Figure
II.3b. The reconstructed poles are presented on Figures II.14, II.15 and II.16. On these
figures, we plot the exact poles in red (×), the reconstructed poles in blue (+), and the
measure points in green (·).
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Figure II.14: Exact poles (red) and reconstructed poles (blue) using 500 frequencies uni-
formly distributed from 0 to 5 GHz.
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Figure II.15: Exact poles (red) and reconstructed poles (blue) using 500 frequencies uni-
formly distributed from 0 to 5 GHz and extended to 10 GHz with the Luneberg-Kline
approximation.
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Figure II.16: Exact poles (red) and reconstructed poles (blue) using 500 frequencies uni-
formly distributed from 0 to 5 GHz and extended to 10 GHz with the complete approxi-
mation.
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On Figure II.14 we plot the poles computed using the Mie series data. We can see
that the computed poles are too numerous in the plotted region. On Figure II.15 we
plot the poles computed using the Mie series data and the optic extension. We see that
this extension is not proper, as the transition between the Mie series and the optic part
induces an accumulation of poles not related to the field but rather to the rough switch of
behavior. Finally, on Figure II.16 we plot the poles computed using the Mie series data
and the optic and creeping extensions together. We can see that the computed poles are
accurate. This illustrates the possibility of extending the field using the form (II.20) and
a given set of data in order to improve the pole reconstruction.

This illustrates the convergence properties of the least-squares multipoint Padé ap-
proximant studied in the Section II.4. Indeed, extending the field allowed us to increase
the number N of (measurement) points, hence also the degrees m and n of the approx-
imant p/q. Such increases induce the convergence behavior of the poles described by
Proposition II.1.3 and Conjecture II.4.1.
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II.3 Least-squares Padé approximant at 0

Let F be a compact set in C such that cap(F ) = 0 and 0 /∈ F . Let f be analytic in C\F .
F is the singular set of f . For m ∈ N, n ∈ N and N ∈ N such that m + n + 1 ≤ N , we
consider the criterion:

J0 : Pn × P0
m −→ R+

(p, q) 7−→
N−1∑
i=0

|ci(p, q, f)|2 ,
(II.26)

where ci = ci(p, q, f) is the i-th Taylor coefficient of p− qf :

(p− qf)(x) =
+∞∑
i=0

cix
i.

We intend to find the best rational approximation of f at 0 of type m and n in the
least-squares sense by minimizing this least-squares criterion:

Problem II.3.1. Given m ∈ N, n ∈ N and N ∈ N such that m + n + 1 ≤ N , find
p0m,n,N ∈ Pn and q0m,n,N ∈ P0

m such that:

(p0m,n,N , q
0
m,n,N) ∈ Argmin

p∈Pn, q∈P0
m

J0(p, q).

We call a fraction p0m,n,N/q
0
m,n,N a least-squares Padé approximant of f at 0. It always

exists but its uniqueness is not systematic and is discussed in Section. For given integers
m, n and N with N ≥ m+n+1 we define the strong uniqueness property of a solution to
Problem II.3.1 as the uniqueness of both its numerator p0m,n,N and its denominator q0m,n,N ,
and its weak uniqueness property as the uniqueness of the quotient p0m,n,N/q

0
m,n,N itself.

Let us introduce the notation:

p0m,n,N(x) =
n∑

i=0

pix
i, f(x) =

∞∑
i=0

fix
i,

q0m,n,N(x) =
m∑
i=0

qix
i.

Hence, for all i ∈ N:

ci = pi −
i∑

s=0

qsfi−s. (II.27)

Through differentiation of the criterion (II.26) with respect to the coefficients of p and
q and using the formula (II.27), we see that p0m,n,N and q0m,n,N satisfy the critical points
equations:

∀d ∈ J0, nK : cd = 0, (II.28)

∀d ∈ J1,mK :
N−1∑
i=d

cifi−d = 0. (II.29)

As for Padé approximant at 0, we proved a result analogous to Theorem II.1.1 (Nuttall-
Pommerenke) for this approximation which is stated in Theorem II.3.2 and proven in
Section II.3.2.
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Theorem II.3.2. Let F be a compact set in C such that cap(F ) = 0 and 0 /∈ F . Let f
be analytic in C\F . Then for all compact sets K ⊂ C, for all ε > 0, δ > 0, µ > 1, λ ≥ 1,
there exists m0 ∈ N such that for all natural numbers m, n and N which satisfy:

m+ n+ 1 ≤ N ≤ µm,

m/λ ≤ n ≤ λm,

m0 ≤ m,

we have:
|f − p0m,n,N/q

0
m,n,N | < εm,

on K \ Em,n with cap(Em,n) ≤ δ.

II.3.1 Existence and uniqueness

In Section II.3.1.a, we prove the existence of minimizers of the criterion II.26. In Section
II.3.1.b, we study the strong uniqueness property for any given function f while in Section
II.3.1.c we study the set of functions f for which there exists a triple m, n, and N in N
for which the strong uniqueness property does not hold true, and show that it is of empty
interior in the ℓ2 topology. Then, in Section II.3.1.d, we discuss the case in which strong
uniqueness does not hold true and show that it induces weak uniqueness for some lower
orders m, n and N . Finally, in Section II.3.1.e, we discuss the normalization choice and
show that it has no effect on the solutions when the strong uniqueness holds true for all
normalization.

II.3.1.a Existence

As the criterion (II.26) is continuous on Pn × Pm ≃ Rn+m+1, there exists (at least) a
minimum if there exists a bounded minimizing sequence. Let

(
pk, qk

)
k∈N be a minimizing

sequence of polynomials in Pn ×P0
m which satisfy Equation (II.28) (it is always possible)

and Qk be the vector
(
qk1 , . . . , q

k
m

)
. Using equations (II.27) and (II.28) we see that the

criterion evaluated on the minimizing sequence is for all k ∈ N:

J0(p
k, qk) =

∥∥∥∥∥∥∥∥∥


fn+1 . . . . . . fn+1−m

fn+2 . . . . . . fn+2−m
...

...
fN−1 . . . . . . fN−1−m




1
qk1
...
qkm


∥∥∥∥∥∥∥∥∥
2

ℓ2

. (II.30)

Let A be the (N − n− 1)×m matrix:

A =


fn . . . . . . fn+1−m

fn+1 . . . . . . fn+2−m
...

...
fN−2 . . . . . . fN−1−m

 .

For all k ∈ N, we define the vector Q̃k to be the orthogonal projection of Qk on ker(A)⊥

and we define the polynomials q̃k = 1+
∑m

i=1Q
k
iX

i and p̃k according to Equation (II.28).
Clearly, the pair

(
p̃k, q̃k

)
k∈N is also a minimizing sequence as for all k ∈ N we have

J0(p
k, qk) = J0(p̃

k, q̃k). If the sequence (q̃k)k∈N is bounded then so is (p̃k)k∈N because
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of Equation (II.28). Hence,
(
p̃k, q̃k

)
k∈N is a bounded minimizing sequence and we can

conclude that there exists a minimum of the criterion (II.26).

Otherwise, let us define the sequence
(
q̂k
)
k∈N

def
=
(
q̃k/|q̃k|

)
k∈N. As the sequence

(
q̂k
)
k∈N

is bounded, we can extract a subsequence that converges towards a polynomial q∗ ∈
XPm−1 and define the polynomial p∗ according to Equation (II.28) and the vector Q∗ =
(q∗1, . . . , q

∗
m).

On the one hand, we see that |Q∗| = 1 as for all k ∈ N, we have |q̂k| = 1 and q∗0 = 0.
On the other hand, as

(
J(p̃k, q̃k)

)
k∈N is bounded, we see that:

J(p∗, q∗) = lim
k→+∞

J(p̂k, q̂k)

|q̂k|2
= 0.

Hence, because of Equation (II.30), the vector Q∗ belongs to ker(A) and, as it also
belongs ker(A)⊥, it is equal to zero. Hence, we have found the contradiction that the
vector Q∗ is both 0 and of norm 1. Thus the sequence

(
q̂k
)
k∈N is bounded. So, we have

shown that there exists a bounded minimizing sequence hence the criterion J0 admits a
minimum in Pn × P0

m.

II.3.1.b Strong uniqueness property

As the criterion (II.26) is differentiable and convex on Pn×P0
m ≃ Rn+m+1, the uniqueness

of the minimizer, hence the strong uniqueness property, is induced by the uniqueness of
the solution to the critical point equations (II.28) and (II.29). Let n ≥ m. Using the
system of equations (II.27) and (II.28), we see that the numerator p0m,n,N is uniquely and
explicitly defined by q0m,n,N through:

∀d ∈ J0, nK : pd =
d∑

s=0

qsfd−s.

In contrast, using the systems of equations (II.27) and (II.29), we see that q0m,n,N is only
implicitly given by:

∀d ∈ J1,mK :
m∑
s=1

qs

N−1∑
i=n+1

fi−dfi−s = −
N−1∑
i=n+1

fi−dfi.

Hence, we see that q0m,n,N is uniquely defined if and only if the matrix G ∈Mm(C) defined
by:

∀d ∈ J1,mK, ∀s ∈ J1,mK, Gs,d =
N−1∑
i=n+1

fi−sfi−d,

is invertible. One can see that G is a Gram matrix for the vectors:fn+1−m
...

fN−1−m

 ,

fn+1−(m−2)
...

fN−1−(m−2)

 , · · · ,

 fn
...

fN−2

 .

So, uniqueness of q0m,n,N and p0m,n,N is ensured by the linear independence of those m
vectors of CN−n−1. Using [38, Lem. 3 (Kronecker)], we see that if f is a rational function,
q0m,n,N and p0m,n,N are not unique if m and N are big enough hence the strong uniqueness
property does not hold true. On the contrary, if f is not rational, for all m,n ∈ N there
exists N0 ≥ n+m+ 1 such that for all N ≥ N0, q

0
m,n,N and p0m,n,N the strong uniqueness

property holds true.
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II.3.1.c Functions for which the strong uniqueness property fails

Lemma II.3.3. The set of functions f in ℓ2 such that there exist natural numbers n, m
and N for which the the strong uniqueness property of the solutions to Problem II.3.1 does
not hold true is of empty interior for the ℓ2 topology.

Proof. Let:

ℓ2 =

{
+∞∑
i=0

fix
i,

+∞∑
i=0

|fi|2 <∞

}
,

endowed with the norm: ∥f∥ =
(∑+∞

i=0 |fi|2
)1/2

. The space (ℓ2, ∥∥) is a complete normed
space. For all m,n ∈ N, let us consider the application:

Hm,n : ℓ2 −→ C

f 7−→ det


fn fn−1 . . . fn−m+1

fn+1 fn . . . fn−m+2
...

...
. . .

...
fn+m−1 fn+m−2 . . . fn

 .

We see that the set of all functions in ℓ2 such that there exist a choice of m, n and N
such that the criterion does not have a unique minimum is:

B =
+∞⋃
n=0

+∞⋃
m=0

H−1
m,n({0}).

For all m,n ∈ N, as a polynomial function, Hm,n is continuous and not constant on
any open set hence H−1

m,n({0}) is closed and is of empty interior. Hence, applying Baire
category theorem [39, Thm 3.9.3], B is of empty interior.

II.3.1.d Weak uniqueness property

In this section, we discuss the weak uniqueness property of the approximant hence the
uniqueness of the quotient p0m,n,N/q

0
m,n,N . Let f be a function analytic around 0. We show

the following property:

Proposition II.3.4. For all a > 2, there exist three increasing sequences (mk)k∈N, (nk)k∈N
and (Nk)k∈N of integer numbers satisfying a(nk +mk) ≥ Nk ≥ a(mk + nk) −mk for all
k ∈ N, such that the weak uniqueness property holds true.

This proposition illustrates that for any function f analytic around 0, we can construct
an infinite sequence of approximations verifying the hypothesis of Theorem II.3.2 and for
which the approximant is unique.

Proof. First, if f is rational, then for m and n large enough and all N ≥ m+n+1, there
exists a Padé approximant of order m, n, and N . Hence, because of the uniqueness of the
quotient in Padé approximation, the approximant is unique in this case.

Then, if the strong uniqueness property holds true as studied in Section II.3.1.b, the
quotient is obviously unique hence the weak uniqueness property holds true.

Finally, let us study the case in which the strong uniqueness property does not hold
true. Letm, n and N be three positive integers verifyingm+n+1 ≤ N for which Problem
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II.3.1 does not have a unique solution. Let (p, q) ∈ Pn ×P0
m and (p+ r, q+ s) ∈ Pn ×P0

m

be two solutions of Problem II.3.1. As we assumed that the solution pair is not unique,
we have s ̸= 0 and because of the normalization, s(0) = 0. Furthermore, by linearity
of the critical points equations (II.28) and (II.29), s is in ker(A). Thus because of the
definition of A, there exists a polynomial π ∈ Pn such that:

sf = π +O(XN). (II.31)

Let d ∈ J1,mK be the maximal integer such that s ∈ XdPm−d and let us write s = sdX
dq̃

and π = sdX
dp̃ with q̃ ∈ P0

m−d ⊂ P0
m, p̃ ∈ Pn−d ⊂ Pn and sd ̸= 0. Simplifying the

Equation (II.31), we get:
q̃f = p̃+O(XN−d),

where p̃ ∈ Pn and q̃ ∈ P0
m.

We see that (p̃, q̃) is a minimizer of Problem II.3.1 for m, n and N −d, as J0(p̃, q̃) = 0,
and it is a Padé approximant with degrees m, n, and N − d, with d ∈ J1,mK as long as
N − d ≥ m + n + 1. Because of the uniqueness of the quotient in Padé approximation,
this shows the uniqueness of the quotient for the least-squares Padé approximation at 0
with degrees m, n, and N−d. Hence, if the problem does not enjoy the strong uniqueness
property with degrees m, n, and N , it enjoys the weak uniqueness property with degrees
m, n, and N − d with d ∈ J1,mK as long as N − d ≥ m+ n+ 1.

Let a > 2 and let us define three increasing sequences (mk)k∈N, (nk)k∈N and (N0
k )k∈N

of integer numbers satisfying N0
k = a(mk +nk) for all k ∈ N. For all k ∈ N, either the the

strong uniqueness property holds true with degrees mk, nk and N
0
k or the weak uniqueness

property holds true for some degrees mk, nk and Nk = N0
k − dk with dk ≤ mk. Hence,

we have shown that we can construct three increasing sequences (mk)k∈N, (nk)k∈N and
(Nk)k∈N of integer numbers, satisfying Nk ∈ JN0

k −mk, NkK for all k ∈ N, for which the
weak convergence property holds. By construction, the sequence satisfy a(mk + nk) ≥
Nk ≥ a(mk + nk)−mk for all k ∈ N. Furthermore, as a > 2, we have mk + nk + 1 < Nk

which concludes this proof.

II.3.1.e Choice of the normalization

Let us fix n, m and N in N satisfying n +m + 1 ≥ N . When approximating a function
which is analytic at 0 in a least-squares sense, we have a choice for the normalization.
Indeed in Section II.3 we have chosen q0m,n,N(0) = 1. Nevertheless a valid choice can be
for any d ∈ J0,mK:

qdd = 1,

where we write qd = q0m,n,N for this choice of normalization:

(pd, qd) ∈ Argmin
p∈Pn, q∈Pm, qd=1

J0(p, q).

Indeed, for any of these normalization choices, Equation (II.29) becomes for all k ∈ J0,mK,
k ̸= d:

(GQd)k = 0,

where Qd is the coefficients vector of qd and the m × m matrix G is defined for all
(i, j) ∈ J0,mK2:

Gi,j =
N−1∑

k=n+1

fk−ifk−j.
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Hence, if G is invertible:
Q = qddG

−1Gd,

where Gd is the d-th column of G.

We see that if G is invertible (hence qd is uniquely defined for any normalization), two
different normalizations d = d1 ∈ J0,mK and d = d2 ∈ J0,mK will lead to two proportional
qd1 and qd2 . Hence, because of Equation (II.28) which defines pd = pdm,n,N , the fractions
pd1/qd1 and pd2/qd2 they induce will be the same.

Nevertheless, the choice d = 0 is natural has when f = pf/qf is a rational function
analytic at 0 with pf ∈ Pn and qf ∈ Pm, (pf , qf ) is among the minimizers of the criterion
(II.26) which is not necessarily true for other normalizations. For example, if we choose
f : z 7→ z, n = 1 and m = 1, (pf , qf ) = (z 7→ z, z 7→ 1) is a solution for d = 0 but not for
d = 1.

II.3.2 Proof of Theorem II.3.2

First, we see that if f is a rational fraction then for m and n large enough, the approxi-
mation error |p0m,n,N/q

0
m,n,N − f | is uniformly zero in C \F hence the theorem is trivial in

this case.

In the following, we assume that f is not a rational function. We can consider the case
where the compact set K coincides with D(0, r), the disk of center 0 and radius r > 1
chosen such that F ⊂ D(0, r). Let 2ρ > 0 be the distance between F and 0. Let m,n in
N such that 1/λ ≤ n/m ≤ λ with λ ≥ 1. Let 0 < ε < 1/3 and δ > 3rε1/3. As cap(F ) = 0,
for all η > 0, there exists a natural number k and a polynomial h in P1

m such that F ⊂ Dη

where:
Dη = {z ∈ C, |h(z)| < ηk}.

For the purpose of this proof, we choose:

η =
ε2+µρµ

3rµ+1
≤ ε.

Hence, because of the definition (B.1) of the capacity, cap(Dη) ≤ η ≤ ε. Let n ≥ m > k
and ℓ ∈ N such that m− k < kℓ ≤ m. Let us introduce the notation:

hℓ(x) =
m∑
i=0

hℓix
i.

Let (a0, . . . , aN−m−n−1) and (b1, . . . , bm) be two vectors of CN−n−m and Cm respectfully
which solve the system:

∀i ∈ Jn+ 1, N − 1K :
N−1−i∑
t=0

ath
ℓ
N−1−i−t −

m∑
d=1

bdfi−d = 0. (II.32)

It is an homogeneous linear system of N − n − 1 equations and N − n unknowns so
there exists a non trivial vector space of solutions. One can see that the solutions of the
system (II.32) are such that (a0, . . . , aN−m−n−1) is not the null vector. Indeed, (b1, . . . , bm)
would then be such that:

∀i ∈ Jn+ 1, N − 1K :
m∑
d=1

bdfi−d = 0,
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which, according to [38, Lem. 3 (Kronecker) p.5] would lead (b1, . . . , bm) to also be the
null vector for f not a rational function. Hence, we can choose the solution that has the
property:

sup
z∈D(0,r)

|a(z)| = 1, (II.33)

where we defined the polynomial a ∈ PN−m−n−1 by:

a(z) =
N−m−n−1∑

i=0

aiz
i.

Using the systems (II.28), (II.29) and (II.32), we see that this choice of a leads to:

N−1∑
i=0

ci

N−1−i∑
t=0

ath
ℓ
N−1−i−t = 0. (II.34)

•
F

• Γ

Dη

•

•
•
ξ
•

•

•

••
•

z•

0
.

r

Figure II.17: Scheme of the geometrical setting of the different sets and points considered
in the proof of Theorem II.3.2.

Let Γ be a cycle in Dη surrounding F . The situation is summarized on Figure II.17 where
F is represented by red points, Γ is represented as green curves and Dη is represented
as white regions in the gray disk D(0, r). By applying Cauchy’s integral formula for
z ∈ C \Dη:

1

2πi

∫
Γ

hℓ(ξ)(p0m,n,N − q0m,n,Nf)(ξ)a(ξ)

ξN(ξ − z)
dξ =

1

z

N−1∑
i=0

ci

N−1−i∑
t=0

ath
ℓ
N−1−i−t

+
hℓ(z)(p0m,n,N − q0m,n,Nf)(z)a(z)

zN
,
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because the residue at infinity is null. Using Equation (II.34) and because the function

ξ 7→ hℓ(ξ)p0m,n,N (ξ)a(ξ)

ξN (ξ−z)
is analytic in the interior of Γ for all z ∈ C \Dη, this leads to:

hℓ(z)(p0m,n,N − q0m,n,Nf)(z)a(z)

zN
= − 1

2πi

∫
Γ

hℓ(ξ)q0m,n,N(ξ)f(ξ)a(ξ)

ξN(ξ − z)
dξ. (II.35)

Using Equation (II.35), we can estimate the error for all z ∈ C \Dη:∣∣∣∣∣p0m,n,N

q0m,n,N

− f

∣∣∣∣∣ (z) ≤ C0
ηkℓ

|hℓ(z)|
sup
ξ∈Γ

∣∣∣∣a(ξ)a(z)

∣∣∣∣ sup
ξ∈Γ

∣∣∣∣∣q0m,n,N(ξ)

q0m,n,N(z)

∣∣∣∣∣ supξ∈Γ

∣∣∣∣zNξN
∣∣∣∣ ,

where C0 = C0(η,Γ, f) is independent of n. We estimate the above right hand side by
using the following:

• ηkℓ < ηm−k because m− k < kℓ,

• by choosing η small enough, we can assume that for all ξ ∈ Γ, |ξ| > ρ. Furthermore,

as z ∈ D(0, r), we have the estimation: supξ∈Γ

∣∣∣ zNξN ∣∣∣ ≤ ( r
ρ

)N
,

• using Lemma B.0.3, for all z ∈ D(0, r), supξ∈Γ

∣∣∣ q0m,n,N (ξ)

q0m,n,N (z)

∣∣∣ ≤ (3r)m

|q∗(z)| where q
∗ is poly-

nomial in P1
m∗ with m∗ ≤ m,

• using the normalization (II.33), supξ∈Γ|a(ξ)| ≤ 1,

• using Lemma B.0.2, because of the normalization (II.33), |a(z)| ≥ εN−m−n−1 for
z ∈ D(0, r) \Θ where cap(Θ) ≤ 3rε,

• hℓq∗ ∈ P2m is a monic polynomial so, by definition (B.1) of the capacity, |hℓq∗|(z) ≥
ε2m for z ∈ D(0, r) \ Φ where Φ is a set of capacity bounded by ε.

Thus, for all z ∈ D(0, r) \ Em,n with Em,n = Dη ∪Θ ∪ Φ:∣∣∣∣∣p0m,n,N

q0m,n,N

− f

∣∣∣∣∣ (z) ≤ C0η
m−k (3r)

m

εN−1

(
r

ρ

)N

.

Using our choice of η and the linear growth of N with m, we get for m > m0(ε):∣∣∣∣∣p0m,n,N

q0m,n,N

− f

∣∣∣∣∣ (z) < εm,

for all z ∈ D(0, r) \ Em,n.

Applying Lemma B.0.1 with α = ε and d = 2, we get that the exceptional set has a
capacity:

cap(Em,n) ≤ (3rε)1/3(2r)2/3 ≤ 3rε1/3 ≤ δ,

which concludes our proof. The case n ≤ m can be shown similarly by appropriately
changing the definition of ℓ into n− k < kℓ ≤ n.
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II.4 Least-squares multipoint Padé approximant

Let E and F be compact sets in C such that cap(F ) = 0 and E ∩ F = ∅. Let f be
analytic in C\F . F is the singular set of f and E is the set at which we can measure f .
For m ∈ N, n ∈ N and N ∈ N such that m+ n+ 1 ≤ N , we consider the criterion:

J : Pn × P1
m −→ R+

(p, q) 7−→
N∑
i=1

|p(zi)− q(zi)f(zi)|2 ,
(II.36)

where (zi)i∈J1,NK is a collection of N points in E.

We intend to extend the multipoint Padé approximation described in the previous section
order to find the best rational approximation of f at 0 of typem and n in the least-squares
sense by minimizing this least-squares criterion:

Problem II.4.1. Given m ∈ N, n ∈ N and N ∈ N such that m + n + 1 ≤ N , find
pm,n,N ∈ Pn and qm,n,N ∈ P1

m such that:

(pm,n,N , qm,n,N) ∈ Argmin
p∈Pn, q∈P1

m

J(p, q).

We call the fraction pm,n,N/qm,n,N the monic multipoint least-squares Padé approxi-
mation of f . As the criterion (II.36) is convex we respect to p and q, a minimizer always
exists but the uniqueness of the minimizer is not systematic. The existence of a minimizer
can be shown in a similar manner as in Section II.3.1.a.

For m ≥ 1, by differentiation of (II.36) we respect to the coefficients of p and q, we see
that pm,n,N and qm,n,N are such that for all polynomials χ ∈ Pn and ψ ∈ Pm−1:

N∑
i=1

(χ− ψf)(zi) (pm,n,N − qm,n,Nf) (zi) = 0. (II.37)

For m = 0, the critical point equation (II.37) becomes: for all χ ∈ Pn,

N∑
i=1

χ(zi) (p0,n,N − q0,n,Nf) (zi) = 0.

Remark 9. When N = m+n+1, the minimum of the criterion (II.36) is equal to 0 and the
monic multipoint least-squares Padé approximation coincides with the multipoint Padé
approximation presented in section II.1.2.b.

A weak extension of the Nuttall-Pommerenke theorem (Theorem II.1.2) for these ap-
proximant is given by the Theorem II.4.2. Furthermore the Conjecture II.4.1, if proven,
could be a more powerful generalization of Theorem II.1.2. Indeed, the difference between
Theorem II.4.2 and Conjecture II.4.1 is the dependency of (zi)1∈J1,NK with respect to m,
n and N which is not needed for the classical Nuttall-Pommerenke theorem.
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Theorem II.4.2. Let E and F be two compact sets in C such that 0 ̸∈ E, cap(F ) = 0
and E ∩ F = ∅. Let f be analytic in C\F . Let K ⊂ C be a compact set, ε > 0, δ > 0,
µ > 1, λ ≥ 1. Then, there exists n0 such that for all natural numbers m, n and N which
satisfy:

m+ n+ 1 ≤ N ≤ µn, (II.38)

m/λ ≤ n ≤ λm, (II.39)

n0 ≤ n,

there exists a family (zm,n,N
i )i∈J1,NK of N distinct points in E such that:

|f − pm,n,N/qm,n,N | < εn,

on K \ Em,n with cap(Em,n) ≤ δ.

Conjecture II.4.1. Let E and F be two compact sets in C such that 0 ̸∈ E, cap(F ) = 0
and E ∩F = ∅. Let (zi)i∈N be a family of distinct points in E. Let f be analytic in C\F .
Let K ⊂ C be a compact set, ε > 0, δ > 0, µ > 1, λ ≥ 1. Then, there exists n0 such that
for all natural numbers m, n and N which satisfy:

m+ n+ 1 ≤ N ≤ µn,

m/λ ≤ n ≤ λm,

n0 ≤ n,

we have:
|f − pm,n,N/qm,n,N | < εn,

on K \ Em,n with cap(Em,n) ≤ δ.

The sequel of this section is dedicated to the proof of Theorem II.4.2 and a discussion
on Conjecture II.4.1.

II.4.1 Proof of Theorem II.4.2

First, we see that if f is a rational fraction, then for n and m large enough, the approxi-
mation error |pm,n,N/qm,n,N − f | is uniformly equal to zero in C \ F hence the theorem is
trivial in this case.

In the following, we assume that f is not a rational function. We can assume that the
compact set K coincides with the disk D(0, r) of center 0 and radius r > 1 chosen such
that E ⊂ D(0, r) and F ⊂ D(0, r). Let 0 < ε < 1/3 and δ ≥ (2rε)1/2. As cap(F ) = 0, for
all η > 0, there exists a natural number k and a polynomial h in P1

k such that F ⊂ Dη

where:
Dη = {z ∈ C, |h(z)| < ηk}. (II.40)

For the purpose of this proof, we choose:

η =
ε2(1+λ)ρµ

(3r)λC
≤ ε,

where 2ρ = dist(E,F ) and C = C(r, µ, λ) is defined following the relation (II.46) in
Section II.4.1.b. Let n > k and ℓ ∈ N∗ such that n− k < kℓ ≤ n. Let Γ be a cycle in Dη

surrounding F . The situation is summarized on Figure II.18 where F is represented by
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red points, Γ is represented as green curves and Dη is represented as white regions in the
gray disk D(0, r). Let ΠN ∈ P1

N be the polynomial:

ΠN(ξ) =
N∏
i=1

(ξ − zi).

•
F

• Γ

Dη

•

•
•
ξ
•

•

•

••
•

z1×

z2×

z3×

z4×

z5×

z6×

z7×

z•

0
.

r

Figure II.18: Scheme of the geometrical setting of the different sets and points considered
in the proof of Theorem II.4.2.

Let â be a polynomial of degree N −m− n− 1. By applying Cauchy’s integral formula,
for z ∈ C \Dη, we get:

1

2πi

∫
Γ

hℓ(ξ)(pm,n,N − qm,n,Nf)(ξ)â(ξ)

ΠN(ξ)(ξ − z)
dξ =

N∑
i=1

hℓ(zi)(pm,n,N − qm,n,Nf)(zi)â(zi)

Π′
N(zi)(zi − z)

+
hℓ(z)(pm,n,N − qm,n,Nf)(z)â(z)

ΠN(z)
,

because the residue at infinity is null. As the function ξ 7→ hℓ(ξ)pm,n,N (ξ)â(ξ)

ΠN (ξ)(ξ−z)
is analytic in

the interior of Γ, this leads to:

hℓ(z)(pm,n,N − qm,n,Nf)(z)â(z)

ΠN(z)
=−

N∑
i=1

hℓ(zi)(pm,n,N − qm,n,Nf)(zi)â(zi)

Π′
N(zi)(zi − z)

− 1

2πi

∫
Γ

hℓ(ξ)qm,n,N(ξ)f(ξ)â(ξ)

ΠN(ξ)(ξ − z)
dξ.

(II.41)

In the rest of the proof, we first define a polynomial â = az for which we have:

N∑
i=1

hℓ(zi)(pm,n,N − qm,n,Nf)(zi)az(zi)

Π′
N(zi)(zi − z)

= 0. (II.42)

77



This will allow us simplify Equation (II.41) in order to express the approximation error
|f−pm,n,N/qm,n,N |. Then, we study the boundedness of az which allows us to geometrically
bound the approximation error and conclude.

II.4.1.a Definition of the polynomial az

For z ∈ C, let az be a polynomial in PN−n−m−1 such that there exist polynomials χz and
ψz in Pn and Pm−1 respectively that satisfy for all i ∈ J1, NK:

hℓ(zi)az(zi) = [χz(zi)− f(zi)ψz(zi)]Π
′
N(zi)(zi − z). (II.43)

For all z ∈ C, we express the polynomials az, χz and ψz as:

az(ξ) =
N−m−n−1∑

t=0

at(z)ξ
t, (II.44)

χz(ξ) =
n∑

u=0

χu(z)ξ
u,

ψz(ξ) =
m−1∑
v=0

ψv(z)ξ
v,

where for all t ∈ J0, N−m−n−1K, u ∈ J0, nK and v ∈ J0,m−1K, z 7→ at(z), z 7→ χu(z) and
z 7→ ψv(z) are complex valued functions. We shall show later that using an appropriate
normalization, they actually are polynomials with respect to z.

The system of equations (II.43) can then be written as a homogeneous linear system of
N equations which is given for all i ∈ J1, NK by:

hℓ(zi)
N−m−n−1∑

t=0

at(z)z
t
i −

[
n∑

u=0

χu(z)zui − f(zi)
m−1∑
v=0

ψv(z)zvi

]
Π′

N(zi)(zi − z) = 0.

As a system in the coefficients of the polynomials az, χz and ψz, it is a homogeneous
linear system of N equations and (N −m− n− 1 + 1) + (n+ 1) + (m− 1 + 1) = N + 1
unknowns so there exists a non trivial vector space of solutions. We seek a solution that
has the property:

∀z ∈ C, az(z) = ΠN(z). (II.45)

The existence and uniqueness of such a polynomial az is ensured if the following determi-
nant is non-zero:

D = det
[

︸ ︷︷ ︸
j = 0, . . . , N − n−m− 2

zji h
ℓ(zi) ︸ ︷︷ ︸

j = 0, . . . , n

zi
jΠ′

N(zi) ︸ ︷︷ ︸
j = 0, . . . ,m− 1

zi
jΠ′

N(zi)f(zi)
]
.

We show in Proposition II.4.4 in Section II.4.3 that this determinant is non-zero for almost
every (zi)i∈J1,NK in CN and we choose such a sequence (zi)i∈J1,NK ∈ [D(0, r)]N . Hence az,
χz and ψz uniquely exist and solve the system:[

zji h
ℓ(zi) zi

jΠ′
N(zi)(z − zi) zi

jΠ′
N(zi)f(zi)(zi − z)

︸ ︷︷ ︸
j = 0, . . . , N − n−m− 1

zj ︸ ︷︷ ︸
j = 0, . . . , n

0 ︸ ︷︷ ︸
j = 0, . . . ,m− 1

0

] Az

Xz

Ψz

 =


0
...
0

az(z)

 ,
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where Az ∈ CN−m−n−1, Xz ∈ Cn and Ψz ∈ Cm−1 are the vectors of the coefficients of az,
χz and ψz. By applying Cramer’s rule to this system and simplifying, we get that for all
t ∈ J0, N −m− n− 1K:

at(z) =
1
D
det
[

︸ ︷︷ ︸
j = 0, . . . , N − n−m− 1, j ̸= t

zji h
ℓ(zi) ︸ ︷︷ ︸

j = 0, . . . , n

−zijΠ′
N(zi)(zi − z) ︸ ︷︷ ︸

j = 0, . . . ,m− 1

zi
jΠ′

N(zi)f(zi)(zi − z)
]
.

Hence, by using Equation (II.44), we see that the polynomial az is given by:

az(ξ) =
1
D
det

[
zji h

ℓ(zi) −zijΠ′
N(zi)(zi − z) zi

jΠ′
N(zi)f(zi)(zi − z)

︸ ︷︷ ︸
j = 0, . . . , N − n−m− 1

ξj ︸ ︷︷ ︸
j = 0, . . . , n

0 ︸ ︷︷ ︸
j = 0, . . . ,m− 1

0

]
,

and by combining the columns and expand the determinant of the numerator along its
last raw, we find:

az(ξ) =
1

D
det
[

︸ ︷︷ ︸
j = 0, . . . , N − n−m− 2

zji h
ℓ(zi)(ξ − zi) ︸ ︷︷ ︸

j = 0, . . . , n

zi
jΠ′

N(zi)(z − zi) ︸ ︷︷ ︸
j = 0, . . . ,m− 1

zi
jΠ′

N(zi)f(zi)(z − zi)
]
.

Remark 10. Because of Equation (II.37), we see that az will satisfy Equation (II.42) as it
satisfies the system (II.43).

II.4.1.b Upper bound of the polynomial az

By expanding az(ξ) and ordering its terms along the power degrees in z and ξ, we have:

az(ξ) =
N−m−n−1∑

t=0

n+1∑
u=0

m∑
v=0

(−1)N−t−u−vAt,u,vξ
tzu+v,

where for all t ∈ J0, N −m− n− 1K, u ∈ J0, n+ 1K and v ∈ J0,mK:

At,u,v =
1
D
det
[

︸ ︷︷ ︸
j = 0, . . . , N − n−m− 1, j ̸= t

zji h
ℓ(zi) ︸ ︷︷ ︸

j = 0, . . . , n+ 1, j ̸= u

zi
jΠ′

N(zi) ︸ ︷︷ ︸
j = 0, . . . ,m, j ̸= v

zi
jΠ′

N(zi)f(zi)
]
.

Let t ∈ J0, N −m−n−1K, u ∈ J0, n+1K and v ∈ J0,mK. Let us estimate At,u,v. First,
we see that AN−m−n−1,n+1,m = 1. Let us now consider (t, u, v) ̸= (N−m−n−1, n+1,m).
Let us consider points (zi)i∈J1,NK of the form:

∀i ∈ J1, NK, zi = σωi,

where σ ∈ R+ and (ωi)i∈J1,NK are points in C(0, 1). We study the limit of At,v,u when σ

goes to 0. We define the equivalence at x ∈ R of two functions J1 and J2 by:

J1 ∼
x
J2 ⇐⇒ J1(z) = J2(z)

(
1 + o(1)

)
as z → x.
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We see that:

At,u,v ∼
σ→0

σN−t−u−v
det
[ j = 0, . . . , N − n−m− 1, j ̸= t︷ ︸︸ ︷

ωj
i

j = 0, . . . , n+ 1, j ̸= u︷ ︸︸ ︷
ωi

jπ′
N(ωi)

j = 0, . . . ,m, j ̸= v︷ ︸︸ ︷
ωi

jπ′
N(ωi)f(zi)

]
det
[

︸ ︷︷ ︸
j = 0, . . . , N − n−m− 2

ωj
i ︸ ︷︷ ︸

j = 0, . . . , n

ωi
jπ′

N(ωi) ︸ ︷︷ ︸
j = 0, . . . ,m− 1

ωi
jπ′

N(ωi)f(zi)
] ,

where for all i ∈ J1, NK:

π′
N(ωi) =

N∏
j=1,j ̸=i

(ωi − ωj).

As the quotient on the right-hand side is bounded, we find:

lim
σ→0

At,v,u(σω1, . . . , σωN) = 0.

Hence, as At,v,u is a continuous function of the (zi)i∈J1,NK in a neighborhood of 0, for

all m, n and N in N with N ≥ m + n + 1, there exists (zm,n,N
i )i∈J1,NK ∈ [D(0, r)]N such

that for all t ∈ J0, N −m− n− 1K, u ∈ J0, n+ 1K and v ∈ J0,mK:

|At,v,u| ≤ 1.

Hence, doing this choice for the (zi)i∈J1,NK, we have, for all ξ ∈ D(0, r) and z ∈ D(0, r):

|az(ξ)| ≤
N−m−n−1∑

t=0

n+1∑
u=0

m∑
v=0

|ξ|t|z|u+v

≤

(
N−m−n−1∑

t=0

rt

)
×

(
n+1∑
u=0

ru

)
×

(
m∑
v=0

rv

)
≤ 1

(1− r)3
(
1− rN−m−n

) (
1− rn+2

) (
1− rm+1

)
≤ Cn, (II.46)

where C = C(r, µ, λ) ∈ R∗
+ is independent of m, n and N because of the assumptions

(II.38) and (II.39).

II.4.1.c Upper bound of the error

By applying the formula (II.41) with â = az for z ∈ C \Dη and using Equation (II.42),
we find:

hℓ(z)(pm,n,N − qm,n,Nf)(z)az(z)

ΠN(z)
= − 1

2πi

∫
Γ

hℓ(ξ)qm,n,N(ξ)f(ξ)az(ξ)

ΠN(ξ)(ξ − z)
dξ. (II.47)

Using Equation (II.47), we can estimate the error for all z ∈ C \Dη:∣∣∣∣pm,n,N

qm,n,N

− f

∣∣∣∣ (z) ≤ C0 sup
ξ∈Γ

∣∣∣∣hℓ(ξ)hℓ(z)

∣∣∣∣ sup
ξ∈Γ

∣∣∣∣az(ξ)az(z)

∣∣∣∣ sup
ξ∈Γ

∣∣∣∣qm,n,N(ξ)

qm,n,N(z)

∣∣∣∣ sup
ξ∈Γ

∣∣∣∣ΠN(z)

ΠN(ξ)

∣∣∣∣ ,
where C0 = C0(η,Γ, f) is independent of n. We find an upper bound of the right hand
side by:
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• supξ∈Γ
∣∣hℓ(ξ)∣∣ ≤ ηkℓ < ηn−k because of the definition (II.40) and as n− k < kℓ,

• by choosing η small enough, we can assume that for all ξ ∈ Γ and all i ≤ N ,

|ξ − zi| > ρ. Hence, we have the upper bound: supξ∈Γ

∣∣∣ 1
ΠN (ξ)

∣∣∣ ≤ (1
ρ

)N
,

• using Lemma B.0.3: supξ∈Γ

∣∣∣ qm,n,N (ξ)

qm,n,N (z)

∣∣∣ ≤ (3r)m

|q∗(z)| where q
∗ is a monic polynomial of

degree m∗ ≤ m,

• for all z ∈ C, az(z)
ΠN (z)

= 1 because of the normalization (II.45),

• hℓq∗ ∈ P2m is a monic polynomial so, by definition (B.1) of the capacity, |hℓq∗| ≥ ε2m

on D(0, r) \ Φ where Φ is a set of capacity bounded by ε,

• using Equation (II.46), we have supξ∈Γ |az(ξ)| ≤ Cn.

Thus, for all z ∈ D(0, r) \ Em,n with Em,n = Dη ∪ Φ:∣∣∣∣pm,n,N

qm,n,N

− f

∣∣∣∣ (z) ≤ C0C
nηn−k (3r)

m

ε2m
1

ρN
.

Using our choice of η and the linear growth of N with n, we get for n > n0(ε):∣∣∣∣pm,n,N

qm,n,N

− f

∣∣∣∣ (z) < εn,

for all z ∈ D(0, r) \ Em,n.

Using Lemma B.0.1 with α = ε and d = 2, the exceptional set has a capacity:

cap(Em,n) ≤ ε1/2(2r)1/2 = (2rε)1/2 ≤ δ,

which concludes our proof. The case m ≤ n can be handled similarly by changing the
definition of ℓ.

Remark 11. If δ < (2rε)1/2, we can apply the proof with ε0 = δ2

2r
≥ ε hence get to the

conclusion.

Remark 12. The present construction of the (zm,n,N
i )i∈J1,NK does not provide control on

their localization. For each (m,n,N) ∈ N3, they belong to a neighborhood of 0 which
may depend on those natural numbers. Hence we cannot prevent that they all converge
to 0. In this sense, this theorem is linked to Theorem II.3.2 in which all the (zi)i∈J1,NK are
chosen at 0.

II.4.2 Study of Conjecture II.4.1

In the proof of Theorem II.4.2, this dependency is only needed to get Equation (II.46).
Hence, if we can find another way to upper bound |az(ξ)| geometrically with n without this
dependency, the proof of Theorem II.4.2 will directly translate to a proof of Conjecture
II.4.1. In order to study the growth of az, we consider the following parameters:

• f : x 7→ exp(1/x) and F = {0},

• m = n, N = m+ 2n+ 1, and N ≤ Nmax = 40,
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• E = C(0, 1) and ∀t ∈ J1, NmaxK, zt = exp

(
2πi

t− 1

Nmax

)
,

• Γ = C(0, 1/2), k = 3 and h : x 7→ xk, r = 2 (i.e. K = D(0, 2)).

On Figure II.19, we plot supz∈D(0,r),ξ∈Γ|az(ξ)| with respect to n with the parameters
described above. As we can see on Figure II.19, the quantity supz∈D(0,r),ξ∈Γ|az(ξ)| has
a geometrical growth (linear in logarithmic scale) even with a fixed collection of points
(zi)i∈J1,NK. Hence, it seems that the extra assumption on the points variability that is
present in Theorem II.4.2 may not needed.
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Figure II.19: Plot of supz∈D(0,r),ξ∈Γ az(ξ) (blue) and its linear regression (red) in logarith-
mic scale.

II.4.3 Non-zero determinant

Our goal in this section is to study the nullity of the following determinant:

D = D(z1, . . . , zN) = det
[

︸ ︷︷ ︸
j = 0, . . . , N − n−m− 2

zji h
ℓ(zi) ︸ ︷︷ ︸

j = 0, . . . , n

zi
jΠ′

N(zi) ︸ ︷︷ ︸
j = 0, . . . ,m− 1

zi
jΠ′

N(zi)f(zi)
]
.

Lemma II.4.3. If f = p/q is a rational function with p ∈ Pn and q ∈ Pm−1, then D is
null for all (z1, . . . , zN) ∈ CN .

Proof. Let f = p/q where p =
∑n

j=0 pjX
j ∈ Pn and q =

∑m−1
j=0 qjX

j ∈ Pm−1. Obviously,
q(zi) ̸= 0 for all i ∈ J1, NK as f is analytic in E. Let (Bj)j and (Cj)j be respectively the
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columns of the second and third block of D. Then, we see that for all i ∈ J1, NK:(
n∑

j=0

pjBj −
m−1∑
j=0

qjCj

)
i

= Π′
N(zi)

(
p(zi)− q(zi)

p(zi)

q(zi)

)
= 0.

Hence, D is uniformly zero.

Proposition II.4.4. Let f be an analytic function outside a compact set E with cap(E) =
0. If f is not a rational function, then D is non-zero almost everywhere in CN .

Proof. The real and imaginary parts of D are analytic functions of (z1, . . . , zN) so either D
is uniformly null or it is non-zero almost everywhere. To show that apart from the rational
situation, D is not uniformly null, we study its behavior when the (zi)i sequentially tends
to +∞ on the real line ((zi)i∈J1,NK ∈ RN). In this scope, we define a sequence (Dt)t∈N by
D0 = D and for all t ≥ 1, Dt is computed from Dt−1 and is independent of zN−t+1 ∈ R.
The construction of this sequence is performed such that DN is the dominant coefficient
of D(r, r2, . . . , rN) when r → +∞. Hence if DN is non-zero we can conclude that D is
non-zero almost everywhere. We will see that for t ≥ 1, Dt is of the form:

Dt = dt(z1, . . . , zN−t) det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t(zi)ft(zi)

]
,

(II.48)

where the subscript i goes from 1 to N − t and indexes the rows,

• at ∈ N, bt ∈ N and ct ∈ N with at + bt + ct + 3 = N − t

• dt : CN−t → C, ft : C → C and gt : C → C are such that:

dt(z1, . . . , zN−t) ∼
+∞

dt(z1, . . . , zN−t−1)z
δt
N−t,

ft(z) ∼
+∞

ftz
φt ,

gt(z) ∼
+∞

gtz
γt ,

δt ∈ Z, dt : CN−t−1 → C, dt ̸≡ 0,

φt ∈ Z, ft ∈ C∗,

γt ∈ Z, gt ∈ C∗.

We can see that for t = 0, D0 is of the form (II.48) with:

a0 = N −m− n− 2,

b0 = n,

c0 = m− 1,

d0 = 1,

f0 = f,

g0 = 1.

(II.49)

Let t ∈ N. Let us describe the computation of Dt+1. By expanding the determinant in Dt

on its last raw, we see that in each of the three blocks, the columns are ordered in term
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of magnitude with regards to zN−t. Hence, we have:

Dt = det
[

︸ ︷︷ ︸
j = 0, . . . , at − 1

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t−1(zi)ft(zi)

]
(A)

× dt(z1, . . . , zN−t−1)gtz
N−t+δt+γt+kℓ−1
N−t

+ det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt − 1

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t−1(zi)ft(zi)

]
(B)

× dt(z1, . . . , zN−t−1)(−1)btzN−t+δt+2bt+ct
N−t

+ det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct − 1

zjiΠ
′
N−t−1(zi)ft(zi)

]
(C)

× dt(z1, . . . , zN−t−1)ft(−1)bt+ct+1zN−t+δt+bt+2ct+φt

N−t

+ o
(
z
max(N−t+δt+γt+kℓ−1, N−t+δt+2bt+ct, N−t+δt+bt+2ct+φt)
N−t

)
.

Then, we consider seven different cases depending which of the three terms (A), (B)
and (C) is dominant with respect to zN−t. These cases are as follows:

• Case A: the term (A) is dominant in zN−t,

• Case B: the term (B) is dominant in zN−t,

• Case C: the term (C) is dominant in zN−t,

• Case A-B: the terms (A) and (B) are of same degree in zN−t and dominate the
term (C),

• Case A-C: the terms (A) and (C) are of same degree in zN−t and dominate the
term (B),

• Case B-C: the terms (B) and (C) are of same degree in zN−t and dominate the
term (A),

• Case A-B-C: the three terms (A), (B) and (C) are of the same degree in zN−t.

Table II.2 describes the conditions corresponding to each Case, Table II.4 describes the
evolution of the degree of each term in each Case and Figure II.20 shows the possible
transition of cases between t and t+ 1 for t ∈ J0, N − 1K. The proof goes as follows.

• We will see that, in each of these cases, Dt+1 is of the form (II.48), with a column
and a line less than Dt (see Table II.3).

• Hence, when applying this procedure, we eventually get to a situation in which
two blocks are removed. At this stage, the remaining determinant can easily be
computed as it is the determinant of the product of a diagonal matrix with a Van-
dermonde matrix. For example, when the first block is the only remaining one at
t = t0 ≤ N :

Dt0 = dt0 det

 z01 . . . zN−t0−1
1

...
...

z0N−t0
. . . zN−t0−1

N−t0


 hℓ(z1)gt0(z1) 0

. . .

0 hℓ(zN−t0)gt0(zN−t0)

 .
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Case A
γt + kℓ− 1 > 2bt + ct

> bt + 2ct + φt

Case B
2bt + ct > γt + kℓ− 1

> bt + 2ct + φt

Case C
bt + 2ct + φt > γt + kℓ− 1

> 2bt + ct

Case A-B
γt + kℓ− 1 = 2bt + ct

> bt + 2ct + φt

Case A-C
γt + kℓ− 1 > 2bt + ct

= bt + 2ct + φt

Case B-C
2bt + ct = bt + 2ct + φt

> γt + kℓ− 1

Case A-B-C
γt + kℓ− 1 = 2bt + ct

= bt + 2ct + φt

Table II.2: Conditions on γt, kℓ, φt, bt and ct to determine the Case at t.

• Hence, we see that DN , which is the dominant coefficient DN of D(r, r2, . . . , rN)
(and of Dt0(r, r

2, . . . , rN−t0)), can vanish only if dt0 ≡ 0, gt0 ≡ 0 or ft0 ≡ 0 (when
the third block is the only remaining one).

• The construction of these three functions implies that gt0 ̸≡ 0 and that dt0 and ft0
can be null only if there exist t ∈ J0, t0K such that ft ≡ 0 (see Equations (II.49),
(II.50), (II.51), (II.52), (II.53), (II.54), (II.55), (II.56) and (II.57)). We will see
below that the transformations performed on f in order to compute (ft)t consist
in removals of polynomial part and inversions (Equations (II.53) and (II.54)) hence
ft ≡ 0 is possible only if f was rational.

• This allows us to show that, as f is not rational, the dominant coefficient of
D(r, r2, . . . , rN) is not zero hence D is not uniformly zero so D is non-zero almost
everywhere.

The rest of this section is devoted to the construction of Dt+1 from Dt in every cases for
t ∈ J0, N − 1K.

φt+1 at+1 bt+1 ct+1 γt+1

Case A φt at − 1 bt ct γt
Case B φt at bt − 1 ct γt
Case C φt at bt ct − 1 γt

Case A-B φt at − 1 bt ct γt
Case A-C φt at − 1 bt ct γt
Case B-C
dt ≥ 0

φt − 1 at bt − 1 ct γt

Case B-C
dt < 0

−φt − 1 at ct − 1 bt γt − φt

Case A-B-C φt at − 1 bt ct γt

Table II.3: Changes in the various quantities of Dt from t to t+ 1 for every cases.
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Figure II.20: Graph of the possible transitions between cases for Dt from t to t+ 1.

II.4.3.a Case A

We consider Case A hence the term (A) is dominant and we can write:

Dt = dt(z1, . . . , zN−t−1)gt det
[

︸ ︷︷ ︸
j = 0, . . . , at − 1

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t−1(zi)ft(zi)

]
× zN−t+δt+γt+kℓ−1

N−t + o
(
zN−t+δt+γt+kℓ−1
N−t

)
.

In this case, we define Dt+1 as the dominant coefficient of Dt with respect to zN−t. Hence,
Dt+1 is of the form (II.48) with:

at+1 = at − 1,

bt+1 = bt,

ct+1 = ct,

dt+1(z1, . . . , zN−t−1) = dt(z1, . . . , zN−t−1)gt,

ft+1 = ft,

gt+1 = gt.

(II.50)

II.4.3.b Case B

We consider Case B hence the term (B) is dominant and we can write:

Dt = det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt − 1

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t−1(zi)ft(zi)

]
× (−1)btdt(z1, . . . , zN−t−1)z

N−t+δt+2bt+ct
N−t + o

(
zN−t+δt+2bt+ct
N−t

)
.
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γt+1 + kℓ− 1 2bt+1 + ct+1 bt+1 + 2ct+1 + φt+1

Case A γt + kℓ− 1 2bt + ct bt + 2ct + φt

Case B γt + kℓ− 1 2bt + ct − 2 bt + 2ct + φt − 1
Case C γt + kℓ− 1 2bt + ct − 1 bt + 2ct + φt − 2

Case A-B γt + kℓ− 1 2bt + ct bt + 2ct + φt

Case A-C γt + kℓ− 1 2bt + ct bt + 2ct + φt

Case B-C
dt ≥ 0

γt + kℓ− 1 2bt + ct − 2 2bt + ct − 2

Case B-C
dt < 0

γt − φt + kℓ− 1 bt + 2ct − 2 bt + 2ct − 2

Case A-B-C γt + kℓ− 1 2bt + ct bt + 2ct + φt

Table II.4: Changes in the degrees of the three dominant columns of Dt from t to t + 1
for every cases.

In this case, we define Dt+1 as the dominant coefficient of Dt with respect to zN−t. Hence,
Dt+1 is of the form (II.48) with:

at+1 = at,

bt+1 = bt − 1,

ct+1 = ct,

dt+1(z1, . . . , zN−t−1) = (−1)btdt(z1, . . . , zN−t−1),

ft+1 = ft,

gt+1 = gt.

(II.51)

II.4.3.c Case C

We consider Case C hence the term (C) is dominant and we can write:

Dt = det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct − 1

zjiΠ
′
N−t−1(zi)ft(zi)

]
× (−1)bt+ct+1ftdt(z1, . . . , zN−t−1)z

N−t+δt+bt+2ct+φt

N−t + o
(
zN−t+δt+bt+2ct+φt

N−t

)
.

In this case, we define Dt+1 as the dominant coefficient of Dt with respect to zN−t. Hence,
Dt+1 is of the form (II.48) with:

at+1 = at,

bt+1 = bt,

ct+1 = ct − 1,

dt+1(z1, . . . , zN−t−1) = (−1)bt+ct+1dt(z1, . . . , zN−t−1)ft,

ft+1 = ft,

gt+1 = gt.

(II.52)
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II.4.3.d Case B-C

The operations done for the Case B-C assume that φt ≥ 0. If φt < 0, we change the
configuration of Dt so that φt is positive in this new configuration:

Dt = det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t(zi)ft(zi)

]
× dt(z1, . . . , zN−t)

= det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)

gt(zi)
ft(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t(zi)

1

ft(zi) ︸ ︷︷ ︸
j = 0, . . . , ct

zjiΠ
′
N−t(zi)

]

×

(
N−t∏
u=1

ft(zu)

)
dt(z1, . . . , zN−t)

= det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)

gt(zi)
ft(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t(zi)

1

ft(zi)

]

× (−1)(bt+1)(bt+ct+1)

(
N−t∏
u=1

ft(zu)

)
dt(z1, . . . , zN−t).

Hence, Dt can be written in the same form with φt > 0 with:

aBt = aAt ,

bBt = cAt ,

cBt = bAt ,

dBt (z1, . . . , zN−t) = (−1)(b
A
t +1)(cAt +1)+1dAt (z1, . . . , zN−t)

(
N−t∏
u=1

fAt (zu)

)
,

fBt =
1

fAt
,

gBt =
gAt
fAt
,

(II.53)

where the superscript A and B distinguish the previous form with φt < 0 from the new
form with φt ≥ 0. One can see that this operation could be done as ft ̸≡ 0. Indeed if
ft ≡ 0, the term (C) is negligible with respect to (A) and it contradicts Case B-C.

This allows to get φt > 0, hence to continue the construction of this sequence. We
consider Case B-C hence the terms (B) and (C) are dominant and we can write:
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Dt =

(
det

[
︸ ︷︷ ︸

j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt − 1

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t−1(zi)ft(zi)

]

+det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct − 1

zjiΠ
′
N−t−1(zi)ft(zi)

]
ft(−1)ct+1

)

× dt(z1, . . . , zN−t−1)(−1)btzN−t+δt+bt+2ct+φt

N−t + o
(
zN−t+δt+bt+2ct+φt

N−t

)
=det

[
︸ ︷︷ ︸

j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt − 1

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t−1(zi)(ft(zi)− ftz

φt

i )
]

× dt(z1, . . . , zN−t−1)(−1)btzN−t+δt+bt+2ct+φt

N−t + o
(
zN−t+δt+bt+2ct+φt

N−t

)
.

In this case, we define Dt+1 as the dominant coefficient of Dt with respect to zN−t. Hence,
Dt+1 is of the form (II.48) with:

at+1 = at,

bt+1 = bt − 1,

ct+1 = ct,

dt+1(z1, . . . , zN−t−1) = dt(z1, . . . , zN−t−1)(−1)bt ,

ft+1(z) = ft(z)− ftz
φt ,

gt+1 = gt.

(II.54)

II.4.3.e Case A-B

We consider Case A-B hence the terms (A) and (B) are dominant and we can write:

Dt =

(
det

[
︸ ︷︷ ︸
j = 0, . . . , at − 1

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt − 1

zjiΠ
′
N−t−1(zi) gtzi

btΠ′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t−1(zi)ft(zi)

]

− det
[

︸ ︷︷ ︸
j = 0, . . . , at − 1

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt − 1

zjiΠ
′
N−t−1(zi) zati h

ℓ(zi)gt(zi) ︸ ︷︷ ︸
j = 0, . . . , ct

zjiΠ
′
N−t−1(zi)ft(zi)

])

× dt(z1, . . . , zN−t−1)z
N−t+δt+γt+kℓ−1
N−t + o(zN−t+δt+γt+kℓ−1

N−t ).

In this case, we define Dt+1 as the dominant coefficient of Dt with respect to zN−t af-
ter keeping only the second determinant. Indeed, this column dominate the other as a
function of the (zi)i for all i ∈ J1, N − tK. Hence, Dt+1 is of the form (II.48) with:

at+1 = at − 1,

bt+1 = bt,

ct+1 = ct,

dt+1(z1, . . . , zN−t−1) = dt(z1, . . . , zN−t−1)gt,

ft+1 = ft,

gt+1 = gt.

(II.55)
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II.4.3.f Case A-C

We consider Case A-C hence the terms (A) and (C) are dominant and we can write:

Dt =

(
det

[
︸ ︷︷ ︸
j = 0, . . . , at − 1

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct − 1

zjiΠ
′
N−t−1(zi)ft(zi) zi

ctΠ′
N−t−1(zi)ft(zi)

]

+det
[

︸ ︷︷ ︸
j = 0, . . . , at − 1

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct − 1

zjiΠ
′
N−t−1(zi)ft(zi)

ft
gt
zati h

ℓ(zi)gt(zi)
])

× gtdt(z1, . . . , zN−t−1)z
N−t+δt+γt+kℓ−1
N−t + o(zN−t+δt+γt+kℓ−1

N−t ).

In this case, we defineDt+1 as the dominant coefficient ofDt with respect to zN−t after only
keeping the second determinant. Indeed, this column dominate the other as a function of
the (zi)i for all i ∈ J1, N − tK. Hence, Dt+1 is of the form (II.48) with:

at+1 = at − 1,

bt+1 = bt,

ct+1 = ct,

dt+1(z1, . . . , zN−t−1) = dt(z1, . . . , zN−t−1)gt,

ft+1 = ft,

gt+1 = gt.

(II.56)

II.4.3.g Case A-B-C

We consider Case A-B-C hence all the terms (A), (B) and (C) are dominant and we can
write:

Dt =

(
det

[
︸ ︷︷ ︸
j = 0, . . . , at − 1

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t−1(zi)ft(zi)

]
× gt

+det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt − 1

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct

zjiΠ
′
N−t−1(zi)ft(zi)

]
× (−1)bt

+det
[

︸ ︷︷ ︸
j = 0, . . . , at

zji h
ℓ(zi)gt(zi) ︸ ︷︷ ︸

j = 0, . . . , bt

zjiΠ
′
N−t−1(zi) ︸ ︷︷ ︸

j = 0, . . . , ct − 1

zjiΠ
′
N−t−1(zi)ft(zi)

]
× ft(−1)bt+ct+1

)

× dt(z1, . . . , zN−t−1)z
N−t+δt+γt+kℓ−1
N−t + o

(
zN−t+δt+γt+kℓ−1
N−t

)
.

In this case, we define Dt+1 as the dominant coefficient of Dt with respect to zN−t after
keeping only the second determinant. Indeed, its extra column dominate the others as a
function of the (zi)i for all i ∈ J1, N − tK. Hence, Dt+1 is of the form (II.48) with:

at+1 = at − 1,

bt+1 = bt,

ct+1 = ct,

dt+1(z1, . . . , zN−t−1) = dt(z1, . . . , zN−t−1)gt,

ft+1 = ft,

gt+1 = gt.

(II.57)
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II.5 Conclusion

In this section, we have studied the rational approximation of the scattered field created
by an object when illuminated with a plane wave.

We first studied the high-frequency behavior of the field when the object is a metallic
sphere and observed numerically the validity of extending data using this kind of approx-
imation in order to perform a rational approximation using the vector-fitting algorithm.
Applying this technique to other obstacle geometries (not spherical) for which we do not
have explicit formulae for the high-frequency behavior is still an issue to explore.

We also proposed and studied two least-squares generalizations of Padé approxima-
tion: the least-squares Padé approximation at 0 and the least-square multipoint Padé
approximation.
For the first approximation process, we established a generalized version of the celebrated
Nuttall-Pommerenke theorem, while we showed a weaker result for the second one and we
discussed a stronger conjecture. These results justify the use of these approximants for
pole recovery of the field, because of Proposition II.1.3 which describes links between poles
and zeros of these approximants and those of the approximated meromorphic function.
Conjecture II.4.1 is unproven and there is a possibility that it needs extra assumptions
on the points as for polynomial approximation [31].
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APPENDIX A

CLIFFORD ALGEBRA

For a deeper introduction to Clifford algebras, see [40]. Let Cℓ0,3(R) be the unital asso-
ciative algebra generated on R by (e1, e2, e3) with the relations:

∀(i, j) ∈ {1, 2, 3}2, ei ⊙ ej =

{
−1 i = j,

−ej ⊙ ei i ̸= j,

where we denote by ⊙ the product in this algebra and 1 is the multiplicative identity
of the algebra. Cℓ0,3(R) is a 8-dimensional R-vector space with the canonical base:
(1, e1, e2, e3, e1 ⊙ e2, e2 ⊙ e3, e3 ⊙ e1, e1 ⊙ e2 ⊙ e3). Elements of span(e1, e2, e3) are called
vectors and are identified with their R3 counterpart. The 1 coordinate of an element of
Cℓ0,3(R) is called its real part and expressed with the usual symbol Re. The set Cℓ0,3(R)
is a normed vector space when endowed with the Euclidean norm |·|.

For Ω ⊂ R3 an open set, a function f ∈ L1
loc(Ω,Cℓ0,3(R)) is said to be left Clifford

analytic if D ⊙ f = 0 where D =
∑3

j=1 ej
∂

∂xj
is the Dirac operator. Such functions

actually belong to C∞(Ω,Cℓ0,3(R)). Vector-valued left Clifford analytic functions are
actually gradient of harmonic functions. Hence, the prototype of such function is, for all
x ∈ R3:

∀z ∈ R3 \ {x}, fx(z) =
x− z

|x− z|3
,

which is left Clifford analytic in R3 \ {x}. [41, Eq. 1.9].

Left Clifford analytic functions admit a Cauchy formula (see [41, Thm 1.8]). It
states that for all V bounded, 3-dimensional, Lipschitz open domain in Ω, all f ∈
L1
loc(V,Cℓ0,3(R)) left Clifford analytic and all x ∈ R3:

1

4π

∫
∂V

x− z

|x− z|3
⊙ ν(z)⊙ f(z)dσ(z) =

{
f(x) x ∈ V,

0 x ̸∈ V ,
(A.1)

where ν(z) is the unitary outward vector normal to ∂V at z. This formula can be extended
to unbounded domains for specific classes of functions as in Lemma A.0.1 which is proven
bellow.
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Lemma A.0.1. For all x ∈ R3 and all f ∈ L1
loc(R3

−,Cℓ0,3(R)) left Clifford analytic such
that there exists φ : R+ → R+ which converges to 0 at +∞ and:

|f(z)| ≤ φ(|z|),

the Cauchy formula (A.1) holds true on R3
−:

1

4π

∫
Π

x− z

|x− z|3
⊙ e3 ⊙ f(z)dσ(z) =

{
f(x) x ∈ R3

−,

0 x ∈ R3
+.

Proof. Let r > |x|, Dr ⊂ Π the disk of radius r and center 0R3 and S−
r ⊂ R3

− the lower
half-sphere of radius r and center 0R3 . By applying the Cauchy formula (A.1) to f in the
half-ball of boundary S−

r ∪ Dr, we get for r > |x|:∫
Dr∪S−r

x− z

|x− z|3
⊙ ν(z)⊙ f(z)dσ(z) =

{
f(x) x ∈ R3

−,

0 x ∈ R3
+.

Let Λ : z 7→ x−z
|x−z|3 ⊙ ν(z)⊙ f(z). Clearly:

lim
r→∞

∫
Dr

Λ(z)dσ(z) =

∫
Π

Λ(z)dσ(z)

=

∫
Π

x− z

|x− z|3
⊙ e3 ⊙ f(z)dσ(z).

Furthermore, by change of variable and for r > |x|:∣∣∣∣∫
S−r

Λ(z)dσ(z)

∣∣∣∣ =
∣∣∣∣∣
∫
S−1

x0

r
− y∣∣x0

r
− y
∣∣3 ⊙ y ⊙ f(ry)dσ(y)

∣∣∣∣∣
≤
∫
S−1

∣∣∣∣∣ x0

r
− y∣∣x0

r
− y
∣∣3 ⊙ y ⊙ f(ry)

∣∣∣∣∣ dσ(y)
≤
∫
S−1

∣∣∣∣∣ x0

r
− y∣∣x0

r
− y
∣∣3
∣∣∣∣∣ |f(ry)|dσ(y)

≤ φ(r)

∫
S−1

1∣∣x0

r
− y
∣∣2dσ(y), (A.2)

using the property [40, Thm 5.16] that for all x ∈ Cℓ0,3(R) and y ∈ R3 identified with its
corresponding vector in Cℓ0,3(R):

|x⊙ y| = |x||y|.

As the integral on the right-hand side of Equation (A.2) is bounded, we see that:

lim
r→∞

∫
S−r

Λ(z)dσ(z) = 0.

This establishes Lemma A.0.1.
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APPENDIX B

LOGARITHMIC CAPACITY

The work done in Chapter II uses an important concept of potential theory in the complex
plane which is the logarithmic capacity of sets. This appendix gives definitions and
important properties of this capacity and an insight on this concept. For a more complete
introduction to potential theory, see [42].

For all m ∈ N, let Pm be the set of complex polynomials of degree less or equal to m,
P1

m be the set of monic polynomials of degree m and P0
m polynomials of degree less or

equal to m which have value 1 at 0:

Pm =

{
m∑
k=0

akX
k, ∀k ∈ J0,mK : ak ∈ C

}
,

P1
m =

{
Xm +

m−1∑
k=0

akX
k, ∀k ∈ J0,m− 1K : ak ∈ C

}
,

P0
m =

{
1 +

m∑
k=1

akX
k, ∀k ∈ J1,mK : ak ∈ C

}
.

For a compact set E ⊂ C, we define its capacity by:

cap(E) = sup
µ∈P (E)

exp

(∫∫
log(|x− y|)dµ(x)dµ(y)

)
,

where P (E) is the set of all Borel probability measures on C whose support is a compact
subset of E. For the purpose of this work, we consider another definition of the capacity
which is the transfinite diameter:

cap(E) = lim
k→∞

inf
h∈P1

k

max
z∈E

|h(z)|1/k. (B.1)

These two definitions are equivalent [42, Cor. 5.5.5]. Furthermore, let us express some
properties of the capacity:

• For any compact measurable set E:

meas(E) ≤ πcap(E)2. (B.2)
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• Countable sets have capacity 0.

• If E ⊂ C contains a connected subset then:

cap(E) > 0.

• For all r > 0:
cap(D(0, r)) = cap(C(0, r)) = r. (B.3)

where C(0, r) and D(0, r) are respectively the circle and disk of center 0 and radius
r in C.

From Equation (B.3), we see that measurable sets E ⊂ C that are negligible for the
Lebesgue measure (meas(E) = 0) are not necessarily negligible for the capacity (cap(E) =
0) but the opposite is true because of the property (B.2). Hence, the capacity is a finer
tool to measure the size of small sets.
In Sections II.3 and II.4 we will need several lemmas which are given below.

Lemma B.0.1. Let d ∈ N, α > 0, and (Ai)i∈J1,dK a sequence of Borel subsets of C such
that for all i ∈ J1, dK:

cap(Ai) ≤ α,

then, for A =
⋃d

i=1Ai:
cap(A) ≤ α1/ddiam(A)1−1/d. (B.4)

Proof. By applying [42, Thm 5.1.4] to A =
⋃d

i=1Ai, we have:

1

log(diam(A)/cap(A))
≤

d∑
i=1

1

log(diam(A)/cap(Ai))

≤ d

log(diam(A)/α)
,

which naturally leads to the inequation (B.4).

Lemma B.0.2. [29, Lem.]. Let r > 0 and m ∈ N be given and let g be a polynomial in
Pm such that:

max
z∈C(0,r)

|g(z)| ≥ 1.

Let 0 < ε < 1
3
and B = {z ∈ D(0, r), |g(z)| ≤ εm}. Then cap(B) ≤ 3rε.

Lemma B.0.3. [30, Lem. 2]. Let r > 0 and m ∈ N be given and let g be a polynomial
in P1

m. Then there exist m∗ in J0,mK and a polynomial g∗ in P1
m∗ such that for all

z ∈ D(0, r):

max
ξ∈D(0,r)

|g(ξ)|
|g(z)|

≤ (3r)m

|g∗(z)|
.

Definition B.0.1. Let f be a complex function. A sequence (gn)n∈N of functions is said
to converge in capacity to f if for all compact K ⊂ C, ε > 0 and δ > 0, there exists
n0 ∈ N such that for all n ≥ n0:

|gn − f | < εn,

in K \ En where cap(En) < δ.
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