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Abstract
In the era of precision agriculture, where a 70% increase in global food production is impera-
tive, this research unfolds as a transformative force propelled by data-driven methodologies.
Focusing on the vital realm of palm cultivation, which is particularly crucial for date palm
production and environmental balance, this study tackles the challenges posed by diverse
and voluminous data through the integration of remote sensing big data and the Internet of
Things (IoT). The central stage is deep learning, ushering in a new era of smart precision
agriculture tailored for effective palm management. Three key challenges were addressed:
agricultural data management, palm tree detection and counting, and pest and disease man-
agement, all with the overarching goal of fortifying resilience, productivity, and sustainability
in palm production. The contributions of this research are manifested in a scalable remote
sensing data management model, the introduction of a distributed architecture to handle
massive, high-resolution remote sensing data, and a deep learning and UAV-based approach
for efficient palm tree detection. This revolutionary approach not only accelerates data col-
lection, reduces errors, and enhances decision-making but also contributes significantly to the
sustainability of the palm industry and aligns with Sustainable Development Goals (SDGs).
Additionally, this study presents an innovative solution for sustainable palm cultivation by
integrating computer vision, deep learning, IoT, and geospatial data for the early detection
and mapping of Red Palm Weevil (RPW) infestations. Achieving 98.8%-99.5% accuracy and
detection rate with a custom DL model, this technology-driven strategy enables comprehen-
sive mapping, monitoring, and targeted management of RPW spread, benefiting agricultural
agencies, growers, and researchers.

keywords:Remote sensing big data ,Internet of Things, Big Data analytics, Deep learning,
Smart palm agriculture, Remote sensing data, UAV images
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Résumé
À l’ère de l’agriculture de précision, où une augmentation de 70 % de la production alimentaire
mondiale est impérative, cette recherche se dévoile comme une force transformative, propul-
sée par des méthodologies axées sur les données. Axée sur le domaine vital de la culture
du palmier, particulièrement cruciale pour la production d’huile de palme et l’équilibre envi-
ronnemental, l’étude aborde les défis posés par des données diverses et volumineuses grâce à
l’intégration de données massives de télédétection et de l’Internet des objets (IdO). Le protag-
oniste de cette scène est l’apprentissage profond, inaugurant une nouvelle ère d’agriculture de
précision intelligente adaptée à une gestion efficace des palmiers. Trois défis clés sont abordés:
la gestion des données agricoles, la détection et le comptage des palmiers, ainsi que la gestion
des ravageurs et des maladies, le tout dans le but ultime de renforcer la résilience, la produc-
tivité et la durabilité de la production de palmiers. Les contributions de cette recherche se
manifestent par un modèle évolutif de gestion des données de télédétection, introduisant une
architecture distribuée pour gérer des données massives de télédétection haute résolution,
et une approche basée sur l’apprentissage profond et les drones pour une détection efficace
des palmiers. Cette approche révolutionnaire accélère non seulement la collecte de données,
réduit les erreurs et améliore la prise de décision, mais contribue également de manière signi-
ficative à la durabilité de l’industrie du palmier et s’aligne sur les objectifs de développement
durable (ODD). De plus, l’étude présente une solution innovante pour une culture durable
du palmier en intégrant la vision par ordinateur, l’apprentissage profond, l’IdO et les données
géospatiales pour la détection précoce et la cartographie des infestations du charançon rouge
du palmier (RPW). Atteignant une précision et un taux de détection de 98.8%-99.5% avec
un modèle personnalisé d’apprentissage profond, cette stratégie technologique permet une
cartographie complète, une surveillance et une gestion ciblée de la propagation du RPW,
bénéficiant aux organismes agricoles, aux cultivateurs et aux chercheurs.

Mots-clés : Données massive de télédetection, Internet des objets, Analyse de données mas-
sives, Apprentissage profond, Agriculture intelligente des palmiers, Données de télédétection,
Images UAV.
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In this chapter, we will examine the broader context that underlies our research and address
the motivations that led us to conduct this study. Our goal is to illustrate why our research
is not only important but essential in today’s agricultural landscape.

1.1 Context and Motivation
In recent years, precision agriculture (PA) has emerged as a breakthrough innovation in
modern agriculture, ushering in a new era of farming practices. Its profound significance
lies in its overarching goal to redefine agriculture by optimizing crop management, reducing
resource waste, and increasing agricultural productivity [GA10; ZWW02]. With a rapidly
growing global population estimated at 7.8 billion in November 2020 and expected to rise to
8.5 billion by 2030 and 9.9 billion by 2050, the world faces an unprecedented challenge [Foo19;
Wis13] according to the food and agriculture agency (FAO). In practice, this means feeding
nearly two billion more people than in 2020. Meeting this growing global food demand is
a daunting task that will require a 70 percent increase in agricultural production, accord-
ing to the Food and Agriculture Organization of the United Nations [LF17; TSR19]. The
importance of PA becomes clear when we look at the staggering statistics and facts about
modern agriculture. PA practices have the potential to increase crop yields by up to 70%
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and offer a transformative solution to this challenge. Conventional farming practices often
result in inefficient use of resources, wasting up to 50% of water and fertilizer. PA, with its
precise and data-driven approach, offers a compelling solution to address these inefficiencies
and steer agriculture toward a more sustainable and productive future [Roz+23; Zha16].

The cornerstone of this agricultural revolution is data, which has brought about a transfor-
mation in precision agriculture. Data-driven technologies such as remote sensing, the Internet
of Things (IoT), and environmental sensors have changed the agricultural landscape [SRS20;
KK19]. Currently, agriculture relies on data from multiple sources to make informed deci-
sions. These include data from remote sensing technologies that capture critical information
from satellites and drones, IoT devices strategically placed in fields, and sensors that capture
environmental details. The result of an exponential increase in the amount of data promises
to be disruptive but also presents challenges for managing and analyzing that data [TSR19;
Mul13].

The management of palms is a particularly interesting and important area related to precision
agriculture. Palms play a unique and versatile role in agriculture because of their versatility
and significant economic impact. They contribute significantly to global agricultural pro-
duction by providing important products such as palm oil, which is a key ingredient in the
food and cosmetics industries, as well as various palm-based products used in numerous ap-
plications [GRT19]. In addition, palm trees have a significant impact on the environment,
shaping landscapes and ecosystems, especially in regions where they are widely cultivated.
Given their dual role in the economy and the environment, the management of palms is of
utmost importance [Ten12].

Today’s palm farming landscape is characterized by a mix of traditional practices and the
introduction of modern technologies. Despite the long history of palm cultivation, today’s
demands require a shift toward precision agriculture. However, this shift is not without a
number of difficulties and constraints, such as the need to control disease outbreaks, opti-
mize resources, and ensure environmental sustainability, which requires the development of
innovative solutions and the integration of advanced technologies to ensure effective palm
management [El-10; SHS11; Baz+14].

In the complex landscape of palm management, two key factors stand out: remote sensing big
data (RSBD) and IoT. RSBD, which comes from remote sensing technologies such as satellites
and drones, and IoT data, which comes from an array of strategically placed sensors, play a
critical role in shaping the future of palm management. The vast amount of data generated
by these sources presents both opportunities and challenges. The challenges are many: the
diversity of data in its various types and forms, the growing volume of data, the monolithic
approach to service development, and the efficiency of predictive analytics. This treasure
trove of data requires the application of advanced data analytics techniques to realize its
full potential. Deep learning, a subfield of artificial intelligence (AI), has become a critical
component in complex data analysis tasks. Its ability to autonomously learn and extract
intricate patterns from data makes it a prime candidate for unlocking the multi-layered
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nature of RSBD and IoT data. Ultimately, Deep Learning (DL) helps enable smart precision
agriculture (SPA) for palms by extracting valuable insights from large and complex datasets.

1.2 Problem Statement
In SPPA, we face a variety of challenges that include data management, image analysis,
and pests detection. The integration and analysis of large, complicated, and diverse high-
resolution satellite imagery and IoT data is at the heart of these challenges. While these
datasets have the potential to revolutionize palm management, there are also critical data
management and utilization issues.

Effective management of Big Data from remote sensing, including high-resolution satellite
imagery and data from IoT devices, is a formidable challenge. The sheer volume of informa-
tion produced by these sources can strain existing systems and resources, necessitating the
development of scalable distributed data management models tailored to these unique data.
The implementation of such models is crucial for preventing overload, and is a prerequisite
for unlocking the full potential of these valuable data sources.

The surge in IoT devices and advancements in remote sensing and satellite technology have
exponentially increased data generation, making RSBD management a critical focus in SPAA.
This influx of data poses a significant obstacle to efficient processing and management, poten-
tially overwhelming the current systems. To address this, specialized approaches and careful
organization of ideas are required to ensure streamlined data processing, thereby maximiz-
ing the benefits of high-resolution satellite imagery and IoT devices within the realm of the
SPAA.

The challenges associated with RSBD are multi-faceted. First, the data generated by the
remote sensing devices themselves are complex and require sophisticated analysis techniques
to produce meaningful insights. In addition, the integration and analysis of multiple data
sources from different sensors, remote sensing platforms, and IoT devices requires a compre-
hensive approach to obtain a coherent picture of palm management.

To address the challenges associated with the management and use of remote sensing and
IoT data, there is an urgent need for the development and adoption of scalable, distributed
data management models that are specifically tailored to the characteristics of these data
sources. These models are essential to unlock the full potential of remote sensing and IoT
data in SPPA development and to make progress in this area.

Detecting and counting palm trees in vast agricultural landscapes is a critical challenge in
precision agriculture and requires innovative solutions that leverage the capabilities of DL,
unmanned aerial vehicles (UAVs), and remote sensing imagery. The complexity of this task
includes navigating complex visual contexts, identifying palms at different growth stages,
monitoring their condition, and optimizing resource allocation. These challenges underscore
the need for advanced DL algorithms capable of accurately identifying and counting palms
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amidst the visual complexity of agricultural landscapes. The result not only improves palm
detection efficiency but also ensures accurate counting, supports proactive, data-driven pre-
cision planting methods, and contributes to resource optimization and sustainability in palm
cultivation.

Given the catastrophic impact of RPW on palm production, timely detection and mapping of
this pest are of utmost importance. Early detection of RPW infestations when subtle external
symptoms are present is critical. However, this task is complicated by the subtlety of the
symptoms. Therefore, sophisticated detection methods must be developed to identify subtle
signs of infestation and allow rapid intervention to protect the health and sustainability of
palm crops. The complexity of this task lies in the need for precision and speed in identifying
RPW infestations in the vast palm groves.

This research project aimed to address the complex challenges associated with palm manage-
ment by introducing innovative methodologies and frameworks. Our goal was to improve the
efficiency, sustainability, and precision of palm management through the use of RSBD. We
plan to use advanced data analysis techniques and cutting-edge technologies to revolutionize
palm cultivation, disease detection, and pest management. This initiative is guided by the
recognition that effective data management and use are critical to meet the growing demand
for food while ensuring the environmental sustainability of smart precision agriculture for
palm.

1.3 Research Objectives
As we continue to explore the field of PA, it is becoming increasingly clear that integrating
cutting-edge technologies such as remote sensing and IoT is critical to achieving our goals.
When used effectively, these technologies can improve crop health, resource allocation, and
decision-making in ways that were previously unattainable. This study aims to harness the
potential of RSBD and IoT based on DL to usher in a new era of smart PA, with particular
focus on the management of palm, an important sector of agriculture in different regions.

In this work, we mainly address three key challenges in the SPPA sector:

• Agricultural Data Management: effective management of large amounts of data
generated by sensors and drones is essential for the implementation of smart palm
agriculture. In this work, data management systems specific to the needs of palm
cultivation are investigated and proposed. These systems will play an important role
in organizing, storing, and processing the huge amount of data generated by PA. The
systems proposed in this work will be designed to be robust, scalable, and secure to
ensure efficient and reliable data management.

• Palm Tree Detection and Counting: accurate identification and quantification of
palm trees scattered across vast agricultural landscapes is of paramount importance.
This approach not only addresses the difficulties associated with palm tree detection
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and counting but also introduces new methods and technologies, including the use of
DL and drones, to improve and speed up these vital operations.

• Pest and Disease Management: in smart palm agriculture, pest and disease man-
agement is critical. Our research aims to develop innovative solutions that use technolo-
gies such as remote sensing and artificial intelligence to detect, monitor, and proactively
manage pest and disease outbreaks in palm crops. Our goal was to minimize crop losses
by enabling early detection and timely intervention.

By focusing our research efforts on these challenges, we strive to provide practical and mean-
ingful solutions that improve the resilience, productivity, and sustainability of palm produc-
tion in a dynamic agricultural environment.

1.4 Contributions
The growth of smart precision farming methods in agricultural innovation requires a multi-
faceted strategy that synergistically combines multiple technologies. The goal of this thesis
is to provide a series of key contributions, each highlighting a different aspect of our overall
framework. This section presents the diverse but intertwined contributions that culminate
in a cohesive strategy, forming a coherent tapestry that strengthens modern agriculture.

Proposed Approach Architecture

In this section, we would like to introduce a revolutionary strategy that has the potential to
change the landscape of modern agriculture. This solution leverages the interplay of modern
technologies to take the notion of smart precision agriculture to new heights. This strategy is
redefining the way farming systems are understood, managed, and optimized by seamlessly
combining remote sensing, the Internet of Things and Deep Learning, powered by the power
of Big Data technology. We set out to explore the possibilities of this synergistic solution to
advance the field of precision smart agriculture.

The proposed approach represents an innovative solution divided into different levels, as
visually shown in Figure 1.1. The levels of the approach are presented below:

Multi-Sources Data Acquisition Layer

The "Multi-Sources Data Acquisition Layer" is a cornerstone of our suggested approach,
managing the harmonic gathering of varied data sources, including satellite images, UAV
imaging, and IoT sensor data—all taken from a single geographical location.

• Satellite Imagery: Acquire multispectral and/or hyperspectral satellite imagery rel-
evant to a specific agricultural problem (e.g., precision smart agriculture) from rep-
utable sources (e.g., NASA, ESA, commercial providers). This data can provide a
broad overview of the issue and help identify trends and patterns.
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Figure 1.1: Overview of the smart agriculture services approach.

• UAV imagery: Collect high-resolution imagery using UAVs equipped with appropri-
ate sensors to capture high-resolution images of specific areas. This data can provide
detailed insights that cannot be achieved with satellite imagery alone.

• IoT sensors: Deploy a network of IoT sensors strategically placed in the target area
to collect real-time environmental data (e.g., temperature, humidity, air quality, and
soil moisture). Deploy a network of sensors to collect real-time environmental data.
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This complex fusion of data sources not only provides the foundation for subsequent steps in
our methodology, but also overcomes a number of challenges associated with these types of
data, such as managing large data sets, different data formats, and different data collection
frequencies.

Data Aggregation layer

In the data aggregation layer, we focus on two critical components: data integration and
large data set management, both of which play a crucial role in the overall framework of our
proposed solution.

• Data Integration: The main goal of this layer is to harmoniously merge data coming
from many sources, such as satellite imagery, UAV data, and IoT sensor inputs. Com-
bining these disparate data sets creates a single and complete knowledge pool, paving
the way for comprehensive analysis and deep insights.

• Massive Data Storage: To address the challenges associated with managing Big
Data, this aspect involves implementing robust storage solutions. These solutions are
tailored to handle the massive amounts of data generated by satellite imagery, drone
data, and IoT sensors. By integrating state-of-the-art Big Data storage frameworks
(e.g., Apache Hadoop, NoSQL databases, cloud computing, etc.), we ensure efficient
data organization, accessibility, and reliability. This foundational infrastructure facili-
tates subsequent processing and analysis steps, contributing to the smooth functioning
of the entire data aggregation layer.

However, this level is not without a number of challenges. Managing and combining data from
multiple sources while ensuring data quality and integrity requires significant thought. In
addition, the right Big Data storage structure must be selected and implemented according
to the unique requirements of our proposed solution. By overcoming these challenges, we
strengthen the position of the data aggregation layer as an important intermediate link in
our intelligent precision farming architecture.

Analysis layer

In the data analytics layer, we address the critical components of spatial data integration
and the use of advanced machine learning and deep learning technologies for intelligent data
analysis.

• Data analysis via DL technologies This part involves the use of DL techniques
to derive relevant insights from the combined data set. These methods are useful for
identifying patterns, trends, and anomalies that would otherwise remain hidden in huge
databases. We equip ourselves with the ability to predict outcomes, discover critical
features, and make informed decisions based on data-driven outcomes by training ML
and DL models on the integrated data.
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In essence, the analysis layer combines raw data with actionable insights that provide an
overall understanding of the agricultural landscape and enable informed decisions for smart
precision agriculture. Deep learning model construction and fine-tuning for accurate agricul-
tural forecasting and analysis require careful consideration. By overcoming these challenges,
we aim to improve the effectiveness of our data fusion and analysis layer, contributing to the
advancement of intelligent precision agriculture methods.

Intelligent application level in agriculture

At the intelligent application layer, seamless integration of various functions such as clas-
sification, analysis, clustering, prediction, and detection takes place in agriculture. These
interrelated processes contribute to the strong intelligence of the proposed framework. These
capabilities are represented in a unified framework by symbols representing intelligent pre-
cision agriculture, crop disease detection, crop yield prediction, and more. This layer is the
culmination of the integrated system’s potential to provide actionable insights and decision
support to a wide range of agricultural stakeholders.

• Farmers: Those on the front lines of agriculture can benefit significantly from these
sophisticated applications. Farmers can maximize resource utilization, increase crop
yields, and accelerate farming practices by making informed decisions based on real-
time data analytics.

• Government and regulatory agencies: Government organizations responsible for
overseeing agriculture can use the information gained through these applications to
support policymaking, resource allocation, and sustainable land management. Such
applications can help implement and enforce agricultural regulations, ensure environ-
mental sustainability, and promote responsible agricultural practices.

• Agribusiness: Companies in the agribusiness industry can leverage the predictive
capabilities of these applications to improve supply chain management, optimize dis-
tribution, and increase overall operational efficiency.

• Consumers: End consumers of agricultural products gain confidence in the quality
and safety of their food as these technologies help diagnose diseases early, leading to
better product quality.

• Research and Innovation: Researchers and innovators can use the vast amounts of
data these apps provide to improve farming techniques, develop new technologies, and
contribute to the overall success of the industry.

• Environmental organizations: Environmental organizations can use the informa-
tion provided by these apps to monitor land and water use and the impact of agricul-
tural practices on local ecosystems. This information can be used to develop plans for
environmentally friendly agriculture.
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The layer of smart applications empowers various stakeholders across the agricultural spec-
trum and paves the way for a more efficient, sustainable, and technology-driven future of agri-
culture. By harmoniously aligning these functions, the framework bridges the gap between
raw data and actionable insights, fosters informed decision-making, and drives agricultural
productivity and sustainability to new heights.

1.5 Thesis Outline
This manuscript consists of five main chapters, excluding the introductory and concluding
chapters. These chapters are divided into two parts and culminate in a comprehensive general
conclusion. A visual depiction of the thesis structure can be found in Figure 1.2, which offers
a comprehensive overview of the organization of the work presented.

The first part presents the current state of affairs in two chapters, as follows:

• Chapter 2 provides fundamental knowledge in our research area and covers the basics
of precision agriculture for smart palms, including the principles of precision agriculture
for palms, sensor technologies, Big Data analytics, and IoT sensor integration.

• Chapter 3 provides a detailed overview of relevant work in precision agriculture for
palms, highlights current trends, progress, and limitations, and identifies gaps in current
research.

The second part of this manuscript consists of three chapters in which the proposed contri-
butions are evaluated as follows:

• Chapter 4 Chapter 4 introduces an innovative multimodal approach for efficiently
managing the increasing volume of satellite data, which includes remote sensing (RS),
high-resolution imagery, and Internet of Things (IoT) data. By overcoming the lim-
itations of conventional databases, the proposed system integrates NoSQL databases,
the Hadoop framework, cloud computing, and time-series databases. This streamlined
approach simplifies the management of RS data, large images, and IoT data, thereby
demonstrating its potential to revolutionize information handling. The inclusion of
time-series databases enhances a system’s ability to store, retrieve, and analyze time-
dependent datasets efficiently, significantly contributing to advanced data management
and analytics across a wide range of applications.

• In Chapter 5, we focus on increasing efficiency in the palm industry by applying
DL-based object recognition and remote sensing. Specifically, we applied YOLOv5 and
YOLOv8-HighAug for palm tree detection, and YOLOv8-HighAug showed the highest
effectiveness. This method accelerates data collection, reduces errors, and improves
palm management, which promotes sustainability and informed decision-making in the
industry.
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Figure 1.2: The thesis structure

• In Chapter 6, we present an innovative solution for sustainable palm cultivation that
focuses on combating destructive RPW. Our approach integrates computer vision, DL,
the IoT, and geographic data. We have achieved 98.8%-99.5% accuracy and detec-
tion rate in RPW infestation detection with a customized DL model. Geospatial data
integration supports monitoring and targeted management. This technology-based ap-
proach benefits agricultural authorities, farmers and researchers by protecting palm
plantations from RPW infestation

10



Chapter 1. General Introduction

Finally, in the final chapter, we offer a comprehensive summary of our proposed research
contributions and outcomes, along with recognition of the limitations inherent in our
proposal. In addition, we explored potential avenues for future research.
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2.1 Introduction
This chapter serves as the foundation for understanding the essential concepts and theoretical
frameworks that underpin research on Red Palm Weevil (RPW) detection in palm tree farms.
This discussion explores precision agriculture, remote sensing big data, big data management,
and data analytics within the context of palm cultivation, providing innovative solutions to
mitigate RPW infestations.

Structured for a comprehensive understanding, the chapter unfolds systematically. Section
2.2 delves into precision agriculture and its significance in palm cultivation. Section 2.3
examines the critical role of remote sensing big data, including satellites, Unmanned Aerial
Vehicles (UAVs), Internet of Things (IoT) devices, and geographic information systems (GIS).
The exploration of big data management is undertaken in Section 2.4, and Section 2.5 sheds
light on various data analytics tools tailored for precision agriculture. Section 2.6 investi-
gates the synergistic integration of IoT sensors, remote sensing imagery, and deep-learning
technologies. This exploration, grounded in theoretical foundations, holds the promise of rev-
olutionizing precision agriculture, particularly in the realm of palm cultivation, by offering
innovative solutions to the challenges posed by RPW infestations. As we proceed through
each section, our aim is not only to unravel the intricacies of these concepts but also to
emphasize their direct relevance and contribution to our overarching goal: the development
of a robust RPW detection and management system in palm tree farms.

2.2 Precision Agriculture
Agriculture is the cornerstone of economies worldwide. It employs 75% of the world’s pop-
ulation and is a major contributor to countries such as India, China, Brazil and Indonesia.
However, as the world’s population is expected to grow to 9.6 billion by 2050, global food de-
mand will increase by 60%, leading to challenges such as limited land availability and climate
change. About 795 million people worldwide are affected by malnutrition [Foo19] [Des19].

In response to these challenges, precision-smart agriculture has emerged as a transformative
solution. It combines modern technology, advanced data analytics, and digital tools to opti-
mize crop and livestock production. Through real-time data and insights, it enables precise
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decision-making and resource allocation that improve efficiency, profitability, and sustain-
ability [Jem+23]. Innovations such as GPS, remote sensing, sensors, IoT and data analytics
are driving this revolution and enabling environmentally sound agricultural practices [RI06].

Figure 2.1 illustrates the factors driving the emergence of precision agriculture, leading to
transformative changes in farming techniques and ensuring sustainable agricultural produc-
tion.

Targeted application of inputs

based on variability

Increased yield potential and

overall productivity

More efficient use of resources,

reducing waste

Improved economic returns for

farmers
Resource Efiiciency

Advancements in Technology

Data-Driven decision-Making

Variable Yield Potential
SMART PRECISION

AGRICULTURE

FACTORS/OUTCOMES

Minimized environmental impact

through sustainable practices
Environmental Concerns

Economic benefits

Figure 2.1: Key Influences on Smart Precision Agriculture

The development of smart precision agriculture is driven by influential factors that lead to the
emergence of technologies that improve the efficiency and sustainability of agriculture. These
influences are transforming conventional agricultural practices and underscoring the impor-
tant role of smart precision agriculture in achieving sustainable and productive agricultural
outcomes.

In the context of precision agriculture, smart precision agriculture represents a breakthrough
solution with immense potential to transform agricultural landscapes. It enables farmers
to make precise decisions and use resources efficiently, contributing to the economic and
environmental sustainability of farming practices.

2.2.1 Precision Agriculture in Palm Cultivation

Although precision agriculture has the potential to revolutionize agricultural practices world-
wide, it is important to recognize that its implementation is not a one-size-fits-all solution.
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Different crops and farming environments require tailored approaches to take advantage of
this transformative technology. In the following sections, we focus on a single but econom-
ically important crop, palm agriculture, which includes date and oil palms. These iconic
agricultural pillars, most prevalent in the Middle East and North Africa, present a unique
set of challenges that require specialized precision agriculture methods.

In recent years, investment in the agricultural sector has increased significantly. Palms,
which comprise some 2,600 varieties from 202 different genera and can yield more than 1,000
products, have remarkable global importance [DOE22; Bou+23; Haj+23]. They are essential
to the economies of many countries, especially in the Middle East, where they lead date
production with over 8 million tons annually. Indonesia is the world’s leading producer of
palm oil, accounting for more than 50% of global production [AE11]. The palm oil industry
alone is worth about $65 billion per year and provides livelihoods for millions of people,
especially in rural areas where palm oil cultivation is a major source of income [Har+21]
[Kil23].

The date palm, scientifically known as Phoenix dactylifera L., is of paramount importance
in the Middle East and North Africa because of its great cultural, economic, and ecological
significance. As one of the oldest fruit-bearing trees and vital crops, it has had a profound
impact. Countries such as Egypt, Iran, Iraq, Saudi Arabia, and the United Arab Emirates
play an important role, providing 67% of the world’s date production. Date palms are not only
a staple food for humans and animals but are also used in industry to produce wine, oil, and
fiber. [EI-98] trees contribute to the sustainability of desert ecosystems by providing shade
and wildlife habitat. The nutritional benefits of dates and their numerous applications in
cosmetics, construction, and papermaking underscore their versatile value [HBF22], [MES12],
[El-10].

In contrast, palm oil, scientifically known as Elaeis guineensis, is a global economic crop with
remarkable economic importance. Today, palm oil is the world’s most important source of
vegetable oil, surpassing other oilseeds such as canola, soybeans, and sunflower, accounting
for a remarkable 35% of total vegetable oil consumption [Cho+17] [Sha23]. The increasing
demand for vegetable oil, combined with factors such as canola, soybeans, and sunflowers,
has led to the conversion of vast areas of land into palm oil plantations. This conversion not
only includes existing farmland but has unfolded primarily in regions such as Indonesia and
Malaysia. In this context, careful monitoring of palm oil plantations is invaluable to farmers
and stakeholders as it provides an opportunity to improve plantation productivity.

2.2.2 Challenges of growing palm trees

Although palms give the impression of being low-maintenance in the landscape, they are
susceptible to a number of diseases, pests, and nutrient deficiencies. Growing palms presents
unique challenges that must be overcome. These include using resources efficiently, ensuring
environmental sustainability, and optimizing yields. In the 2020s, palm cropping systems face
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a number of pressing challenges. These include the increasing incidence of new and existing
pests and diseases, notable vulnerability to changing climatic conditions, particularly in terms
of higher temperatures and unpredictable rainfall patterns, and downstream issues related
to supply chains and consumer attitudes [El-21] [MGP21].

Figure 2.2 illustrates the main challenges in palm cultivation. These challenges include low
fruit yields, problems with fruit quality and generation time, susceptibility to pests and
diseases, presence of unproductive male palms, ambiguity in distinguishing palm varieties,
sensitivity to soil and water salinity, limited response to fertilizers, water quality problems,
and challenges associated with the irrigation system. All of these factors highlight the com-
plexity of palm cultivation and the need for precision agriculture to effectively address these
issues.

Figure 2.2: Summary of main challenges in palm cultivation

2.2.3 Palm Cultivation opportunities

Table 2.1 summarizes the key challenges in palm cultivation and the corresponding solutions
for precision agriculture to effectively address them. Precision agriculture uses real-time
data, sensors, and advanced analytics to optimize resource allocation, monitor plant health,
and increase overall palm productivity. These solutions aim to address issues such as low
yield, fruit quality, pests, unproductive plants, varietal confusion, salinity, fertilizer manage-
ment, water quality, and irrigation practices. By addressing these very challenges, precision
agriculture contributes to sustainable and efficient palm production.

2.3 Multi-data sources for Palm Precision Agriculture
Several important data sources for the analysis of the agricultural process could be identified
and are analyzed below:
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Challenges Precision Agriculture Solutions
Low Yield Optimization of resource allocation, including water and

nutrients, based on real-time data.
Quality Issues Continuous monitoring of fruit quality with adjustments

in care and management practices.
Pest and Diseases Early detection using sensors and data analytics, en-

abling timely intervention.
Non-productive Plants Identification and removal of non-productive male palm

trees through monitoring.
Variety Confusion Accurate palm variety identification using data collec-

tion and management systems.
Salinity Soil salinity management through precise regulation of

irrigation and fertilization.
Fertilizer Determination of specific fertilizer requirements for each

palm to prevent overuse or underuse.
Water Quality Monitoring of water quality to ensure clean and suitable

irrigation water.
Irrigation Optimization of irrigation practices to provide the right

amount of water at the right times.

Table 2.1: Precision Agriculture Solutions for Palm Cultivation Challenges

2.3.1 Satellite images and Remote Sensing

Remote sensing definition:

"Remote sensing can be broadly defined as the technology used for measuring the character-
istics of an object or surface from a distance (Bird, 1991)" [Con91].

Remote sensing is based on the principle of interaction with electromagnetic radiation and
enables the collection of valuable information about the Earth’s surface and its properties.
This method uses sensors on satellites or aircraft to detect electromagnetic radiation emitted,
reflected, or absorbed by the Earth’s surface in various wavelengths, including the visible
range, infrared, and microwaves [Con91]. The principles of remote sensing include several
important aspects:

1. Electromagnetic radiation: Remote sensing is based on the interaction of elec-
tromagnetic radiation with the Earth’s surface. This sensor measures the emission,
reflection, and absorption of electromagnetic radiation across a range of wavelengths,
including visible light, infrared radiation, and microwaves, by the Earth. Satellites and
aircraft sensors detect this radiation to provide images and data to characterize the
Earth’s properties.

2. Energy interaction: Electromagnetic radiation interacting with the Earth’s surface
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is subject to processes such as absorption, transmission, and scattering. Different mate-
rials have unique spectral fingerprints that allow remote sensing devices to distinguish
between vegetation, water bodies, urban areas, and natural resources.

3. Spectral bands: Remote sensing device sensors detect energy in specific spectral
bands, each corresponding to a range of wavelengths. Researchers have used these
bands to identify land cover types, infer surface features, and detect changes over time
by analyzing radiation intensity.

4. Resolution: Remote sensing images have different geographic, spectral, radiometric,
and temporal resolutions. Spatial resolution defines the smallest detectable object
on the ground, while spectral resolution refers to the ability to distinguish between
wavelengths.

5. Georeferencing: Accurate georeferencing is critical in RS to assign geographic coor-
dinates to each image pixel. Georeferenced data enables spatial analysis, map creation,
and integration with geographic information systems (GIS).

RS data collection relies on two main types of sensors: passive and active. These sensors
enable the collection of valuable information about the Earth’s surface through various mech-
anisms. Active sensors such as synthetic aperture radar (SAR) and light detection and rang-
ing (LiDAR) generate energy and monitor subsequent responses for imaging purposes, while
passive sensors detect natural energy released or reflected from the Earth’s surface [FSK21].
Images from passive sensors are classified into three categories based on their spectral bands:
optical (visible and near-infrared), thermal (infrared), and microwave (longer wavelengths).
Based on these different spectral ranges, the images produced by passive sensors can be
divided into four main types:

1. Panchromatic images: These images, presented in shades of gray, are single-band
images of radiation in the visible range (0.4 to 0.7 micrometers). They are characterized
by high spatial resolution.

2. Multispectral images: These images are obtained from multiple bands with different
wavelengths (usually less than ten) and provide spatial positions with unique spectral
information.

3. Hyper-spectral images: These images are generated from numerous bands of dif-
ferent wavelengths (often hundreds) and provide comprehensive insights into object
properties. This requires decomposing the components of each pixel to extract the
material spectra.

4. Multi-sensor images : They are acquired from several different sensors. The goal is
to use the complementarity and redundancy of continuous information in these images
to develop a better interpretation. Examples of such images are optical images from
passive sensors such as SPOT, LANDSAT and RADARS images from active sensors
such as ERS, JERS, etc.
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In summary, the synergy between passive and active sensors in precision agriculture is re-
markable. Passive sensors can detect variations in plant health and water content, enriching
decision-making for interventions. Active sensors, on the other hand, explore soil conditions,
water dynamics, and plant structures to predict yield and distinguish between different crop
species. With a solid understanding of remote sensing principles, we can now look at sev-
eral platforms that facilitate the collection of invaluable data for smart precision agriculture.
Each offers unique capabilities that provide farmers with real-time insights and actionable
information.

Satellites : are sophisticated platforms equipped with remote sensing instruments that
gracefully orbit the Earth, collecting data from the far reaches of space and providing a
panoramic view of the planet’s surface [NAS14].

Satellites, powered by the intricate principles of physics and engineering, serve as remarkable
tools for acquiring vital information, improving communications, protecting the environment,
exploring the sky, and deepening our understanding of the complex world we inhabit and the
vast cosmos that surrounds it. They serve as a linchpin in modern remote sensing, providing
unparalleled benefits through their comprehensive coverage and ability to monitor dynamic
changes over time [BAF17; FBF18; ABF23]. Their contribution to crop management, re-
source allocation, and overall agricultural efficiency is obvious, providing invaluable data and
insights that accelerate breakthroughs in these areas. Figure 2.3 illustrates the many benefits
of satellites in precision agriculture.

Figure 2.3: Key Influences of Satellites on Precision Agriculture
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2.3.2 Drones and Unmanned Aerial Vehicles (UAVs)

An UAV, also known as a drone, is an aerial vehicle that operates without a human pilot
or passengers on board. These vehicles, when controlled by a human operator, can range
from full automation to remote control and have varying degrees of autonomy [BTK18;
YA19]. UAVs are designed to perform a variety of tasks and use advanced technologies
and sensors to navigate, collect data, capture imagery, and execute missions with precision.
Although some UAVs are equipped with on-board intelligence that enables them to navigate
and make autonomous decisions, many UAVs are controlled by human pilots who control the
vehicle’s movements and operations from a remote location. The versatility of UAVs makes
them indispensable for a wide range of applications, from aerial surveillance and mapping
to scientific research and agricultural monitoring. In the field of precision smart agriculture,
UAVs offer several advantages due to their maneuverability, flexibility, and high-resolution
data capabilities [Kim+19; Mil19]. Figure 2.4 shows some of the key benefits of UAV data
for smart precision agriculture.

Figure 2.4: Key Influences of UAVs on Precision Agriculture

In essence, drone data plays a critical role in improving the precision and efficiency of agricul-
tural practices. They enable farmers to proactively manage their crops, respond to challenges,
and make informed decisions that lead to improved productivity and sustainability.
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2.3.3 Ground Sensors and IoT Devices

Ground Sensors

Ground sensors, a key component in agricultural IoT systems, function as integrated IoT
devices. These devices consist of multiple modules and are critical for collecting, transmit-
ting and monitoring Big Data in agriculture. Basically, IoT technology connects everyday
objects and devices to the Internet, enabling effortless data collection, transmission and ex-
change without the need for direct human intervention. The concept of IoT is illustrated in
Figure 2.5 [Kho+15a]. Sensors equipped with computing power are strategically positioned
in regions with Internet connectivity. These sensors operate within a network that enables
seamless communication between devices and objects regardless of their location [GDR16;
Kha+22; Dri+21]. Specialized systems help collect data by locating and transmitting infor-
mation across a range of communication devices within an IoT architecture. Linking devices
through various access networks, including radio frequency identification (RFID) and wireless
sensor devices [Saf+20b] [Saf+20a], is enabled by communication solutions such as Wi-Fi,
ZigBee, Bluetooth and GSM. This comprehensive overview connects the context, evolution,
and applications of IoT in precision agriculture and offers insights into its operating mecha-
nisms and potential [BTK17].

Figure 2.5: Concept of the Internet of Things [Haj+21]

In precision agriculture, this connectivity has sparked a revolution in data-driven farming
practices [SP16; Sto+16]. By integrating IoT sensors into agricultural processes, farmers can
monitor, analyze, and act on insights in their fields in real time. This integration ushers
in an era of informed decision-making that can optimize resource use, increase yields, and
ensure environmental sustainability. This section discusses the applications, benefits, and
challenges of IoT in precision agriculture and highlights its central role in transforming today’s
agricultural practices [Far+19; FA21].
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IoT Sensors

Sensors are devices that detect and respond to various inputs, such as light, motion, pressure,
heat, and humidity. They convert these inputs into signals that can be interpreted by hu-
mans, making them valuable for analysis and processing. These sensors are used in a variety
of applications, from security systems that detect motion to HVAC systems that measure
temperature. They are also being integrated into everyday objects such as smartphones,
vehicles and home appliances. Sensors work by detecting physical or chemical changes in the
environment and converting them into electrical signals. The type of sensor used depends
on the change it is intended to detect (see Figure 2.6). A temperature sensor, for example,
detects temperature changes and transmits them as electrical signals for evaluation [Haj+21;
Ati+20].

Figure 2.6: Common sensor categories in IoT applications.

In precision smart agriculture, IoT sensors play a transformative role. They offer important
insights into ecological and agricultural aspects. Each sensor, developed in different shapes
and sizes, captures specific data that is important for making informed decisions. These
sensors are widely used in agriculture to collect and transmit real-time data about environ-
mental and crop conditions. IoT-driven precision agriculture uses sensors to monitor fields
and automate irrigation based on variables such as temperature, light, humidity, and soil
moisture. These applications reduce manual labor and increase farming efficiency. Farm-
ers can monitor their fields remotely, enabling precise resource use for greater sustainability
and productivity [Liu+19; GK16]. So, integrating IoT technologies into precision agriculture
enables data-driven decision-making and promises significant improvements in agricultural
practices and resource management.

23



Chapter 2. Preliminary Concepts and Theoretical Background

2.3.4 Geographic Information System (GIS)

Geographic information systems are playing a central role in the advancement of smart pre-
cision agriculture, revolutionizing the way farmers manage and optimize their land. By
integrating spatial data and technologies, GIS offers a multifaceted approach to agricultural
decision-making. These systems enable farmers to map, analyze and understand the geo-
graphic differences in their fields by incorporating multiple layers of data such as soil types,
topography, weather patterns and crop health. By integrating real-time sensor data with
historical information, farmers can use GIS to make informed decisions about irrigation, fer-
tilization and crop management. GIS-based mapping tools help determine optimal cropping
patterns and analyze yield variability, enabling precision farming techniques that maximize
productivity while minimizing resource use. In addition, GIS helps monitor the spread of
pests, diseases, and weeds, enabling targeted interventions and the implementation of effec-
tive control measures. Overall, GIS is a cornerstone of smart precision agriculture, facilitating
data-driven decisions and increasing operational efficiency through the use of spatial infor-
mation and analysis [EG21].

2.4 Big Data Management for Precision Agriculture

2.4.1 Big data characteristics

The use of big data in palm agriculture presents several unique features and difficulties, as
shown in Figure 2.7. These challenges are intrinsically linked to broader big data challenges,
including those related to data volume, variety, and velocity [Ous+18]:

Figure 2.7: Big data challenges

Volume: this is related to the sheer volume of data. At PA, data is being generated on
an unprecedented scale. Farmers are collecting data from a variety of sources, including IoT
sensors, remote sensing imagery, and equipment sensors. This includes information on soil
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conditions, weather patterns, crop health, etc. Managing and analyzing such large amounts
of data using traditional methods can be challenging.

Variety: refers to the different structural nature of a data set. At PA, you can find data
in various forms and formats, including structured data (e.g., sensor readings), unstructured
data (e.g., images captured by drones), and semi-structured data (e.g., weather forecasts).
In addition, the data can have different formats, such as text, images, time series data, and
geospatial data. Managing this diversity is a fundamental challenge in Big Data analytics
for agriculture and specifically for PA.

Velocity: concerns the speed at which data must be generated, analyzed, and processed. At
PA, real-time data is critical for timely decision-making. IoT sensors, for example, provide
constant updates on soil moisture or weather conditions, allowing farmers to make immediate
adjustments, such as irrigation or fertilization. The speed of data is crucial for optimizing
farming operations and responding immediately to changing conditions.

2.4.2 Distributed Computing

Distributed computing is a vital technology in precision agriculture that facilitates the pro-
cessing of vast amounts of data generated from various sources. This involves utilizing multi-
ple networked computers to perform computational tasks collaboratively. In precision agricul-
ture, where data is generated from sources such as satellite imaging, drones, ground sensors,
and IoT devices, distributed computing plays a critical role in managing these data volumes.
This approach allows for parallel processing and analysis of extensive datasets, accelerates
data processing, and enables timely decision-making. Distributing tasks across multiple com-
puting nodes significantly reduces the computational load on individual systems, leading to
faster data analysis, which is crucial for real-time decision support in agricultural practices.
Additionally, distributed computing enhances fault tolerance and scalability by spreading
the workload across a network of interconnected devices, providing a robust framework for
managing growing data requirements in precision agriculture.

2.4.3 Big data technologies

Apache Hadoop

an essential component of Big Data infrastructure, is an open source project launched by
the Apache Foundation. As opposed to running a specialized data center, the architecture is
designed for the distributed storage and processing of enormous amounts of data on computer
clusters made of commodity hardware. Structured, semi-structured, and unstructured data
can be processed by many frameworks and tools that are part of the Hadoop ecosystem
[Ber+16; EJK21]. The main components of Apache Hadoop are the Hadoop Distributed File
System (HDFS) for storage and MapReduce for processing. When faced with a large task,
Hadoop splits it into multiple task chunks and distributes them to different nodes within a
cluster [Sha+19].
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HDFS

HDFS is a scalable and distributed file system inspired by the Google File System (GFS) to
address the challenges posed by the increasing amount of data that cannot be accommodated
on a single machine. HDFS is a distributed file system that utilizes commodity hardware.
Although it shares similarities with other distributed file systems, it is distinct in its design
for low-cost hardware and high fault tolerance. HDFS allows for rapid access to application
data and is well suited for applications that handle large data collections.

Built on a master/slave architecture, the HDFS cluster consists of a single Name Node serving
as the master server responsible for managing the file system namespace and controlling client
access to files. The slaves in the cluster are a group of Data Nodes, typically one for each node
in the cluster, and they handle storage linked to the nodes on which they operate. NameNode
oversees file system namespace activities, such as opening, closing, and renaming files and
directories. It also influences the mapping of blocks to DataNodes. The DataNodes, on the
NameNode’s command, handle read and write requests from the file system’s clients, as well
as block creation, deletion, and replication. Figure 2.8 describes the HDFS architecture.

Figure 2.8: HDFS Architecture

NoSQL databases

The name of this technology not only alludes to the SQL database [WB13]. Unlike traditional
relational databases, which are unsuitable for managing large amounts of unstructured and
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semi-structured data, NoSQL databases can perfectly manage large amounts of unstructured
and semi-structured data. In other words, they are managed by a non-relational DMS and do
not require a fixed schema (i.e., schema-less) [HF18]. NoSQL databases offer four alternative
data model storage options (key value model, column data model, document data model,
and graph data model), each with its own advantages and disadvantages [Cor+17]. There is
no one solution that can be considered far superior to the others; however, some databases
are better suited to addressing particular problems.

Time-Series Database

A time-series database (TSDB) is a specialized database designed for the efficient manage-
ment of time-series or time-stamped data, such as metrics, events, or measurements recorded
over time. Unlike conventional databases, TSDB are optimized for queries and analyses that
focus on changes over time. The key features of TSDBs include data co-location to enhance
query performance, support for fast and simple range queries, high write performance to
accommodate rapid data recording, efficient data compression techniques, and scalability to
manage the substantial growth of time-series data. TSDBs are particularly critical in the
context of the IoT, where the proliferation of connected devices generates vast amounts of
timestamped data. The popularity of TSDBs has increased with the increased adoption of
IoT technologies because these databases offer efficient storage solutions for time-stamped
data from sensors and devices. Common applications of TSDBs include IoT data storage,
DevOps monitoring, and real-time data analysis, demonstrating their versatility and signifi-
cance in contemporary data-management scenarios [NYZ17].

Cloud Computing

Cloud computing refers to the delivery of computing services—such as storage, processing
power, databases, and software—over the internet. In the context of precision agriculture,
cloud computing plays a pivotal role in handling and processing the enormous amounts of
data generated from various sources, like IoT devices, drones, satellites, and other sensors
deployed in fields. Rather than processing programs on local or personal computers, this
type of computing relies on shared, remote servers made available over the Internet for data
management, storage, and processing [Dup+]. Since many smart environment applications
need to analyze large amounts of streaming and historical data with low latency for data
processing, it makes sense to propose cloud computing technologies to increase the speed of
data analysis [Yan+19].

The use of cloud computing in modern agriculture is a critical aspect of managing the vast
amounts of data generated by IoT devices. This technology allows farmers to access shared
computing resources through personal computers and the Internet, eliminating the need for
physical infrastructure ownership. Cloud computing is organized into three layers—System,
Platform, and Application—and offers various services such as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). These services are
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delivered over the Internet and can be deployed through public, private, community, or hybrid
cloud models [EJK21].

The effective management of IoT big data in smart agriculture is essential for realizing the
full potential of data-driven farming. By leveraging cloud computing, farmers and stakehold-
ers in the agricultural sector can make informed decisions, enhance productivity, optimize
resource utilization, and contribute to the sustainability and efficiency of modern agricultural
practices.

2.5 Data Analytics For Precision Agriculture

2.5.1 The data analytics process

Data analytics is about systematically exploring, interpreting, and transforming large data
sets to extract meaningful insights and valuable information. Through the use of various
analytical techniques, statistical methods, and technological tools, data analysis uncovers
patterns, trends, and correlations in structured and unstructured data. This process enables
organizations to make informed, data-driven decisions, predict future trends, and optimize
operations [SC19]. Whether in business, science, healthcare or agriculture, data analytics
plays a central role in transforming raw data into actionable knowledge. It enables compa-
nies and professionals to gain valuable insights, increase efficiency, and gain a competitive
advantage in their respective fields [Ahm+17].

The process of data analysis involves five main phases, which are illustrated in Figure 2.9.
The first phase is about gathering requirements, i.e., identifying the problem, understanding
the needs of the business, and determining the purpose of the data analysis. Although this
phase can be time-consuming and demanding, it lays the foundation for the subsequent steps
[Ahm+17]. Once the requirements are identified, the next phase is about data collection. This
phase is about collecting data, which is then cleaned, filtered and sorted to ensure accuracy
and improve the efficiency of the analysis. Then the appropriate analytical techniques are
used to process and analyze the data. Finally, in the last phase, the results and outcomes of
the analysis process are interpreted and evaluated [Doj23].

2.5.2 Methods for data analysis

The method has delineated four principal categories of data analytics, as depicted in Figure
2.10: descriptive, diagnostic, predictive, and prescriptive analytics [Mar+17]. Below are
concise descriptions of each of these four types of data analytics:

• Descriptive Analysis: categorizes data to reveal emergent patterns, employing tech-
niques like data aggregation and statistical measures for frequency, dispersion, and
central tendencies.
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Figure 2.9: Data analytics process

Figure 2.10: Data analysis methods

• Exploratory Analysis: This approach explores diverse datasets to uncover potential
relationships or driving patterns, aiding in framing hypotheses for further investigation,
such as in data mining for hypothesis generation.
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• Diagnostic Analysis: aims to discern why certain patterns exist, employing meth-
ods like hypothesis testing and distinguishing between correlation and causation to
understand root causes.

• Predictive Analysis: focuses on forecasting future events, guiding decisions about
product features or market performance, and utilizing machine learning and AI along-
side prior analytic results.

• Prescriptive Analysis: determines the most effective strategies for implementing
decisions, utilizing machine learning algorithms to analyze vast datasets and provide
actionable recommendations across business functions.

2.5.3 Analytical Functions

Various analytical techniques have been recommended to handle distinct analytical tasks.
These methods encompass:

• Classification: Utilizing classification algorithms to identify the class of a new obser-
vation from a set of categories based on acquired knowledge from the input data widely
used in Machine Learning, it finds applications in fields such as image recognition,
sentiment analysis, and spam filtering.

• Clustering: Involves using clustering methods to group similar items based on specific
characteristic qualities. Valuable for unveiling patterns in data, it’s commonly employed
in market segmentation, social network analysis, and image segmentation.

• Recognition: trains machines to identify and categorize events, objects, places, or
individuals from images or video data. Mainly utilized in computer vision, it applies
to areas like facial recognition and handwriting identification.

• Detection: Analyzing photos and videos to detect items or situations is widely used
in surveillance systems, medical imaging, and quality control in manufacturing.

• Prediction: An advanced analytics system uncovering trends related to future oc-
currences and proposes necessary actions. Applied in predictive maintenance, demand
forecasting, and fraud detection.

• Analysis: involves cleaning and processing data to extract relevant information sup-
porting decision-making. A crucial step in data analytics, it finds use in fields such as
business intelligence, customer profiling, and social media analysis.

• Recommendation: Uses data mining techniques to offer clients product suggestions
and appropriate courses of action. Commonly employed in recommendation systems,
personalized marketing, and e-commerce.
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2.5.4 Data Analytics Techniques

In this section, we examine various Data Analytics techniques, including computer vision,
machine learning, and deep learning, and how they interrelate. These technologies are fun-
damental to extracting insights from complex data, as illustrated in Figure 2.11. We explore
the intricacies of these methodologies and their interdependencies to highlight their crucial
role in data analysis. It is important to note that these techniques play pivotal roles, facil-
itating advancements in precision agriculture, crop monitoring, environmental sensing, and
the development of smart ecosystems. These technologies are instrumental in optimizing
resource management, enhancing crop yield predictions, and fostering sustainable practices
within smart agricultural and environmental settings.

Computer Vision

Figure 2.11: Data analysis techniques

Computer vision

Computer vision is an area of artificial intelligence that allows machines to perceive and un-
derstand visual data such as images and videos. This technology involves systems that are
capable of extracting significant information, identifying objects, and comprehending visual
content similar to human vision. Computer vision has numerous applications in multiple
industries, including healthcare, automotive, security, and agriculture. Its applications in-
clude object recognition, image analysis, video understanding, facial recognition, autonomous
vehicle navigation, and quality control in manufacturing processes.

Computer vision involves several basic tasks, such as image classification, object detec-
tion/recognition, semantic segmentation and instance segmentation as illustrated in Figure
2.12. The implementation of these tasks is crucial for progress in the field of computer vision
and the improvement of its practical application.
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Figure 2.12: Computer vision tasks

Object detection

Object detection techniques are the foundation for the artificial intelligence field. It involves
developing models capable of identifying object instances within an image and accurately
assigning appropriate class labels to these instances. To achieve this, the instances are
encompassed by bounding boxes that define the smallest rectangle spatially containing the
objects. This spatial delimitation allows for precise localization of the objects in the image.
Figure 2.13 depicts the progression of object detection techniques, illustrating the transition
from traditional machine-learning-based methods for object detection to more advanced deep-
learning-based approaches.

Machine learning-based methods utilize image-based feature extraction techniques, such as
Speeded-Up Robust Features (SURF), Histogram of Oriented Gradients (HOG), and Local
Binary Pattern (LPB), followed by a classification algorithm to generate the final results.
Conversely, deep learning-based methods such as R-CNN and YOLO automatically extract
features using deep learning algorithms, specifically CNNs. Some object detection models
are further modified to produce pixel-wise predictions, which enable the achievement of the
instance segmentation task and will be presented in the subsequent section.

Advancements in ML and DL have significantly accelerated the integration of Artificial Intel-
ligence (AI) across diverse domains, fundamentally transforming pivotal operations [Qiu+16].
Within this scope, AI empowers computers to perform tasks that traditionally require hu-
man intelligence, including image recognition, speech-to-text conversion, language transla-
tion, and, notably, computer vision. The evolution of AI capabilities, particularly in the
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Figure 2.13: A road map of object detection [Liu+20]

realm of computer vision, has shown remarkable progress over the years.

Machine Learning

ML, a subfield of AI, allows computer systems to learn and improve their behavior by training
on specific data sets. Once trained, the model acquires the ability to make decisions without
explicit programming. This is a key property that underlines the efficiency and adaptability
of AI systems in various applications [AJK23].

ML is a pivotal technique that aids in unraveling patterns within datasets and offers de-
scriptive, predictive, and prescriptive insights. Selecting appropriate data for constructing
ML models is paramount and requires careful consideration. Figure2.14 illustrates various
machine-learning techniques. Supervised learning utilizes labeled data to train models and
employs various algorithms such as logistic regression, support vector machines (SVM), deci-
sion trees (DT), random forests (RF), naive Bayes, and artificial neural networks (ANN) for
classification. In contrast, unsupervised learning identifies data patterns without classifica-
tion labels and employs techniques such as clustering and grouping to discern trends within
datasets. Semi-supervised learning incorporates both labeled and unlabeled data, necessitat-
ing the establishment of relationships among the data distributions. Reinforcement learning
(RL) guides decision-making in uncertain environments by rewarding desired behaviors and
employing models such as Markov decision processes (MDP) and Q-learning for sequential
decision-making [MCM13].

2.5.5 Deep Learning for object detection

Deep learning is a type of machine learning and artificial intelligence that draws inspiration
from the structure and functionality of the human brain’s neural networks. It employs
advanced, multilayered neural networks to process and learn from vast amounts of data.
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Figure 2.14: Machine learning types

The fundamental principle underlying deep learning involves creating intricate hierarchical
representations of data to derive high-level abstractions, patterns, and features.

The primary goal of deep learning is to automatically uncover intricate patterns and repre-
sentations within data. Rather than depending on features or rulues crafted by humans, deep
learning algorithms learn to recognize patterns from the data itself through multiple layers
of interconnected nodes, referred to as neurons. These multiple layers enable the system to
progressively extract higher-level features and abstractions from raw data inputs.

Deep learning, characterized by its multilayered approach, constructs computational models
that represent complex data abstractions. Integral to this advancement are key enabling
algorithms in deep learning, such as generative adversarial networks, convolutional neural
networks, and model transfers, which fundamentally transform our comprehension of infor-
mation processing.

Deep learning, commonly referred to as DL, has assumed an increasingly significant role
in various aspects of our lives. Its profound impact is evident in critical domains such as
cancer diagnosis, precision medicine, self-driving vehicles, predictive analytics, and speech
recognition. Unlike the labor-intensive process of crafting features in traditional learning,
classification, and pattern recognition systems, which struggle to scale for larger datasets,
deep-learning algorithms excel. In many scenarios, especially with intricate problems, deep
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learning surpasses the constraints of earlier shallow networks, which hinders the efficient train-
ing and extraction of hierarchical representations from multidimensional data. Deep neural
networks (DNNs) employ multiple layers with highly optimized algorithms and architectures
to process and understand data at intricate levels [GGM23].

Artificial Neural Networks

Artificial Neural Networks (ANNs) are algorithms designed to simulate the functions of neu-
rons in the human brain. An ANN is structured akin to a neuron (Figure 2.15 (a)) and
typically consists of three primary layers: the input, hidden, and output layers, as illustrated
in Figure 2.15 (b). These layers serve as the fundamental computational units that receive
input, process it, and transmit output to the subsequent layer, collectively forming a network.
This interconnected structure involves neurons in one layer being linked to neurons in the
following layer. ANNs are employed to discern and extract intricate patterns and trends that
might pose challenges for other computational methods or human perception

(a)

(b)

Figure 2.15: Neron Network (a), Artificial Neural Network Architecture (b)

Convolutional Neural Networks

Convolutional Neural Networks (CNN) are very similar to traditional neural networks; the
main difference is that the CNNs assume that the input is an image, which reduces the
number of learning parameters and takes into consideration the arrangement of pixels and
the relationship between them in an image. The CNN architecture, shown in Figure 14,
consists of 3 types of layers: convolutional, pooling, and fully connected layers.

35



Chapter 2. Preliminary Concepts and Theoretical Background

Figure 2.16: Conventional Neural Network Architecture

• Convolutional Layer:

– Convolution Operation: In this layer, a set of learnable filters or kernels convolves
across the input image to extract various features.

– Feature Maps: The output of this layer comprises feature maps that represent
specific learned features (edges, textures) from different parts of the input image.

• Pooling Layer:

– Downsampling: This layer reduces the spatial dimensions (width and height) of
the previous layer’s output, decreasing the number of parameters and controlling
overfitting.

– Types of Pooling: Max pooling or average pooling are common methods used in
CNNs.

• Fully Connected Layer:

– Neural Network Structure: Similar to a traditional neural network, these layers
contain neurons connecting to all neurons in the preceding layer, helping to make
predictions.

– Classification/Output: The final layers map the extracted features to the desired
output (e.g., classification into different categories).

CNNs, through the arrangement and interaction of these layers, can automatically learn
hierarchical representations of features from the input data. This ability to detect features
at different levels of abstraction makes CNNs highly effective in image recognition and other
visual tasks.
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One-stage detectors vs Two-stage detectors

Based on the speed-accuracy trade-off and the method followed to perform feature extraction,
we can differentiate between two types of object detectors using deep learning: two-stage
detectors and one-stage detectors. Figure 2.17. illustrates the distinct steps incorporated
within the architecture of one-stage detectors (a) and two-stage detectors (b), respectively.

Two-stage detectors are region proposal-based detection systems. Models like R-CNN,
Fast R-CNN [Gir15], Faster R-CNN [Ren+15], and FPN [Lin+17] utilize region-based Convo-
lutional Neural Networks (CNNs). Initially, the region-based CNN identifies various regions
in the image where object instances might be located, known as Regions of Interest (ROIs).
Subsequently, the features extracted from each proposed region are passed through several
fully connected layers, which generate the classes and a confidence score used as a ranking
criterion for the region proposals. Generally, these models are more accurate than one-stage
detectors, albeit at a slower speed [DZW20].

(a)

(b)

Figure 2.17: (a) one-stage detectors, (b) two-stage detectors

One-stage detectors Detectors are regression-based detection systems that employ a feed-
forward Convolutional Neural Network (CNN) to ascertain the position of the object instances
in an image, namely determining the coordinates defining the bounding box surrounding the
object. Widely used one-stage detectors include YOLO (You Only Look Once) [Jia+22;
Red+16], SSD (Single Shot MultiBox Detector) [Liu+16], and RetinaNet. While one-stage

37



Chapter 2. Preliminary Concepts and Theoretical Background

detectors are appreciated for their simplicity and speed, they exhibit lesser accuracy in tasks
such as identifying small objects and generating masks.

2.5.6 The evaluation metrics

This method involves the use of quantitative metrics such as Precision, Recall, and Intersec-
tion over Union (IoU), etc., to impartially evaluate the performance of the selected models,
Yolov8 and Yolov5. Our goal is to find out which model performs best in accurate palm
recognition by quantitatively comparing the models. Furthermore, this approach allows us
to identify areas of lower effectiveness in the model that can be improved to increase the
overall quality of the object recognition system.

Precision: a measure of the accuracy of a prediction or classification model. It was cal-
culated by dividing the number of true positive predictions by the total number of positive
predictions. The formula for accuracy is as follows:

Precision =
TP

TP + FP
=

TP
All detections

(2.1)

where true positive (TP) denotes the cases where the model correctly recognizes a date palm
in an image. False positive (FP) is when the model incorrectly classifies an object as a date
palm when it is not, while false negative (FN) means that the model does not recognize a
true date palm in the image.

Recall: The recognition score is used to evaluate the model’s ability to recognize and identify
date palms. The proportion of TP, correctly recognized by a classifier or model was measured
by the recall value. It is defined as TP divided by the total numbers TP and FN. The recall
formula is as follows:

Recall =
TP

TP + FN
=

TP
All ground truth

(2.2)

F1-score : The F1 score serves as a valuable metric in binary classification tasks because
it provides a single value that effectively reconciles the relationship between precision and
recall. It is determined as the harmonic mean of accuracy and recall:

F1 = 2× precision× recall
precision + recall

(2.3)

Intersection over Union: To evaluate the accuracy of the predicted position of the bound-
ing box for detection purposes, the average IoU must be calculated. This statistic evaluates
the degree of overlap between the expected and actual bounding boxes in many images. A
higher average IoU means that the model is more accurately locating objects within the
images, while a lower value indicates that the model’s performance could be improved. The
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IoU is a measure of data overlap that is often used to evaluate object recognition systems.
The area of overlap between the two bounding boxes was divided by the area of their union.
The IoU formula is as follows:

IoU =
Bp ∩Bgt

Bp ∪Bgt
=

Area of Intersection
Area of Union

(2.4)

Where: Bp is the predicted bounding box and Bgt is the ground truth bounding box. The
operator ∩ denotes the intersection of the two bounding boxes and ∪ the union. As shown
in Figure 2.18.

Figure 2.18: Visualizing the process of IoU computation between the pre-
dicted and true bounding boxes provides insight into the accuracy of the model

in locating objects in image recognition tasks

Average Precision is a measure of the overall performance of a classification model over
all possible values of a threshold parameter. It was determined by taking the average of the
precision values at all recall values. The formula AP is as follows:

AP =
1

n

∑
r∈R

precision(r) (2.5)

Where: R is the set of all possible recall values.

AP is the average precision of a given class. It corresponds approximately to the area under
the curve (AUC) between precision and recall. AP was evaluated at four different IoU
thresholds (0.5, 0.7, 0.8, and 0.9).

Mean Average Precision: is a measure of the overall performance of a classification model
across multiple classes. It was calculated as the average AP score for each class. The formula
for mAP is as follows:
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mAP =
1

c

c∑
i=1

APi (2.6)

Where: c is the total number of classes. APi is the AP in the ith class, and N is the total
number of classes to be evaluated.

Average Inference Time per image: This metric indicates the average time required
by the YOLOv8 model to process a single image during the inference phase. This statistic
provides useful information about the model’s efficiency in real-time situations, where the
inference speed is critical.

AverageInferenceT ime(ms) =
Total Inference Time (ms)

Number of Images
(2.7)

Where: Total inference time (ms) is the total time required by the YOLOv8 model during
inference to process all images in the dataset, measured in milliseconds. Number of images:
indicates the total number of images in your dataset.

2.6 Synergistic Integration of Big Data, Deep Learning,
and IoT in Precision Agriculture for smart Palm Tree
Management

The synergistic relationship between big data, deep learning, IoT, and precision agriculture,
particularly in the context of palm tree management, is of utmost importance for the ad-
vancement of agricultural practices. The integration of IoT devices, such as ground sensors,
weather stations, drones, and automated machinery, into precision agriculture allows for the
collection of real-time localized data. These data are continuously monitored to provide a
comprehensive understanding of the agricultural environment.

The combination of IoT-generated data with remote sensing data further enriches the big
data ecosystem, providing detailed insights at a localized level. For palm tree management,
IoT devices provide critical information regarding the specific conditions required for optimal
palm growth, such as variations in soil moisture, temperature fluctuations, and the presence
of pests.

The fusion of IoT data with advanced deep-learning techniques enables the development of
intelligent models that can process real-time, high-resolution data to recognize complex pat-
terns, predict disease outbreaks, optimize irrigation schedules, and precisely identify regions
requiring targeted agricultural interventions.

The integration of IoT-generated data with remote sensing information and the application
of deep learning techniques significantly strengthen precision agriculture strategies for palm
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tree management. This comprehensive approach, which combines big data analytics, real-
time IoT-generated data, and deep learning applications, fosters informed decision-making
and more efficient agricultural practices.

2.7 Conclusion
In conclusion, this chapter serves as a strategic foundation for our project, highlighting
the crucial role of precision agriculture in revolutionizing palm cultivation. By examining
the challenges and opportunities of growing palm trees, precision agriculture emerged as a
critical enabler, offering targeted solutions for increased efficiency and sustainability. The
exploration of remote sensing big data underscores the importance of multi-source data in
precision agriculture, emphasizing the diverse range of information from satellites, drones,
ground sensors, and GIS. This multifaceted data approach is integral to our project, ensuring
a comprehensive understanding of palm ecosystems and enabling nuanced decision-making.

Moreover, insights into big data management, including distributed computing, NoSQL
databases, and cloud computing, lay the groundwork for handling the vast datasets inher-
ent in precision agriculture. The ability to efficiently manage and process data is essential
to the success of our project, ensuring the seamless integration of information from various
sources. The subsequent discussion of data analytics, encompassing methods, functions, and
techniques, places our project at the forefront of technological innovation. The incorporation
of deep learning for object detection aligns with cutting-edge advancements in the field and
promises enhanced precision in analyzing palm tree ecosystems.

Ultimately, this chapter underscores the transformative potential of our project in the realm
of smart palm tree management through the synergy of big data, deep learning, and the
IoT. Our objective is to create cutting-edge solutions that facilitate data-driven, precise
decision-making in the cultivation of palm trees. By focusing on key aspects of precision
agriculture, our research positions itself as a pioneer in innovation, significantly contributing
to the sustainable stewardship of palm ecosystems.

In the following chapter, we undertake an extensive examination of the relevant literature and
projects, offering a comprehensive perspective on the progress made in precision agriculture
and its implementation in palm cultivation.
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3.1 Introduction
This chapter is divided into three major sections and serves as a compendium of current
knowledge and innovative advances. The first section (3.2.2) is devoted to challenges and
breakthroughs in agricultural data management and addresses the complexities of dealing
with Big Data from remote sensing and efficient storage of IoT-generated data. The second
section (3.3) focuses on the latest approaches to palm tree detection and counting, with an
emphasis on developing methods to address these important needs. Finally, the third section
(3.4) focuses on recent advances in early detection and mapping of RPW diseases. The goal
is to provide growers with modern tools for proactive management.

There are a wealth of solutions in this research area that provide invaluable insights. How-
ever, the primary focus in all sections of this chapter is on the latest research findings. This
strategic focus includes a comprehensive analysis and comparison of these solutions to high-
light their profound importance. Each section dealing with agricultural data management,
palm detection, and RPW disease detection is devoted to an in-depth examination and eval-
uation of the latest advances. This comprehensive approach ensures a thorough comparative
analysis, highlighting the respective merits and contributions in the field.

3.2 Approaches for Multi-souces Data Management

3.2.1 Concerns and Challenges

3.2.1.1 RSBD Storage Challenges

The increasing volume of remote sensing data now reaching the petabyte, exabyte, and
zettabyte domains poses substantial challenges in raster data storage. Traditionally, file for-
mats like HDF (MODIS), GeoTIFF (Landsat), and JP2000 (Sentinel-2) have been employed,
accommodating datasets ranging from megabytes to terabytes. Cloud-based platforms, rec-
ognizing the surge in data, adopt innovative storage approaches, often utilizing lightweight
formats, such as PNG and JPEG, organized as tiles for efficient visualization and online
processing. These platforms can also leverage Discrete Global Grid Systems (DGGS).

Figure 3.1 offers an in-depth exploration of the evolution of remote sensing instruments across
three crucial sensor characteristics: spectral, spatial, and temporal resolutions. These ad-
vancements have resulted in an escalation of volume, velocity, and variety in remote sensing
data products, presenting challenges in management and processing, while unlocking av-
enues for new applications. For instance, improvements in temporal resolution enable daily
biomass monitoring, whereas enhanced spatial resolution facilitates fine-grained classification
(such as settlement types), damage assessments, and the monitoring of critical infrastructure,
including nuclear proliferation.

Although the 3Vs (volume, velocity, and variety) effectively characterize big data, it is not
necessary for remote sensing big data to satisfy all three dimensions. In this context, a big
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Figure 3.1: Advances in remote sensing data products [Vat+12]

data problem can be defined by any combination of volume and velocity, volume and variety,
or variety and velocity. Beyond these common challenges, remote sensing applications face
additional hurdles, including the extensibility of integrating disparate management systems
for different satellites within a remote sensing data center. Of particular significance is
the intrinsic value concealed within the data, a crucial quality of big data. By utilizing
data processing methods, this concealed value can be revealed, allowing for the practical
realization of the significance of big data in remote sensing applications.

However, the sheer scale of remote sensing data now surpasses the capacities of conventional
standalone storage hardware, such as block storage or redundant arrays of independent disks
(RAID). Distributed storage systems (DFS) have emerged as a viable solution because of their
ability to handle petabytes of data. Nevertheless, the associated costs can be prohibitively
high, thus impacting both individuals and government entities. Notably, considerations of
charging for access to popular remote sensing data sources such as Landsat have been con-
templated by entities such as the USGS to recover expenses.

Furthermore, the retrieval of array data in remote sensing introduces unique challenges stem-
ming from the intricacies of the data structures. This results in decreased input/output (I/O)
efficiency and heightened access latency, a facet often overlooked by existing big data tech-
nologies. For instance, in time-series analysis, remote sensing data are distributed across
multiple files or objects, leading to numerous random-access operations and incurring costs
during the extract-transform-load processes.

Effectively addressing these challenges necessitates the development of advanced data storage
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schemes aligned with big data storage technologies tailored to the specificities of remote
sensing data. This includes optimizing storage systems for the efficient handling of diverse
file formats, managing distributed data, and mitigating the financial barriers associated with
large-scale storage solutions.

3.2.1.2 IoT Data Storage Challenges

One of the key challenges in managing IoT data is selecting an appropriate type of database.
This task can be complex owing to the diverse nature of the IoT environment. When select-
ing a database for IoT applications, several factors must be considered, including scalability,
speed, flexible schema, compatibility with various analytical tools, security, and cost. While
RDBMS can be used to address IoT, they have limitations that can become barriers to
realizing the full potential of IoT data. On the other hand, NoSQL databases offer the flexi-
bility necessary to store different types of data and adapt to changing business needs. While
RDBMS systems may continue to play a role in managing structured data from business IT
systems, IoT requires databases that can handle a wide range of data from a large number
of sensors, devices, and gateways with varying data structures and are potentially connected
and integrated over many years.

The IoT relies heavily on the vast amounts of data generated by applications. This presents
a number of challenges for the database management system of an application, particularly
in terms of scalability and the ability to quickly ingest data. IoT data are often highly
diverse; therefore, the ability to manage rapidly changing data is crucial for storing these
data. The frequency with which a database can handle these demands is influenced by several
factors. Scalability is primarily determined by the sharding and replication techniques used
for partitioning and distributing data in a cluster as well as the volume of data produced. The
overall throughput of a database system is dependent on several factors, including scalability,
consistency requirements, data model complexity, index utilization, and fundamental systems
(such as storage engines and programming languages), as well as hardware. It is essential
that the database designed to power an IoT request considers these variables to meet the
requirements without compromising performance.

3.2.2 Efficient Massive Data Storage Solutions

In this subsection, we examine the current state-of-the-art solutions for storing massive
amounts of satellite and UAV image data, as well as extensive IoT data. The focus is
on advanced technologies and methodologies that exhibit efficiency, scalability, and parallel
processing capabilities. By emphasizing the specific requirements of satellite and UAV im-
age data as well as IoT data within the context of smart palm agriculture, we will explore
breakthroughs in NoSQL databases and cloud computing. These technologies are crucial
for achieving scalable and parallel data storage, catering to the evolving demands of remote
sensing and IoT applications in the realm of smart-palm agriculture.
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3.2.2.1 RSBD Storage Solutions

The storage of remote sensing data on a large scale comprises both remote sensing data and
metadata storage. In the realm of storing remote-sensing raster data, a plethora of tech-
nologies and methods have been developed to address the challenges posed by the rapidly
increasing volume of data. A thorough examination of these solutions is provided in Ta-
ble 3.1, this comprehensive breakdown aims to elucidate the diverse landscape of solutions
available for the storage of remote sensing data, considering their distinct advantages and
potential limitations. Concurrently, both NoSQL and RDBMS have proven their effective-
ness in handling complex metadata associated with remote sensing datasets. As depicted in
Figure 3.2, a visual representation succinctly summarizes the unique characteristics of the
four NoSQL databases, excluding the Array database Management Systems (Array DBMS).
For RDBMS raster storage in cloud-based solutions, Object Storage System (OSS) is the pre-
ferred choice for open data sharing, whereas DFS assume a pivotal role in RSBD platforms.
The cost-effective nature of public cloud-based OSS services alleviates the financial burden
of RSBD management, thereby making OSS the preferred option in recent RSBD systems.
Despite their potential, NoSQL and Array DBMSs have limitations, particularly in terms of
cost.

The decision-making process between NoSQL and the RDBMS for cloud-based RSBD meta-
data storage depends on the specific application scenario. NoSQL demonstrates strength in
managing the complete archive of remote sensing data, which is challenging for an RDBMS.
Studies of Wang et al [Wan+19] and Cheng et al [CZW20] supported this assertion, highlight-
ing the superior functionality of NoSQL, particularly in large RSBD systems. Conversely,
the RDBMS exhibits commendable cost performance in scenarios involving small to medium
volumes of RSBD management. Ultimately, the choice between NoSQL and RDBMS is
contextual, with NoSQL emerging as a robust solution for large-scale RSBD applications,
underscoring its viability and prowess in raster data storage.

The range of options available for storing remote-sensing data highlights the complexity of
managing such data. No single solution is suitable for all situations, and the selection of a
storage system must consider specific data characteristics, access patterns, and collaborative
requirements. The emergence of new technologies, such as cloud-optimized formats and
NoSQL DBMSs, suggests that the landscape is constantly evolving, presenting opportunities
for further research and advancements in remote-sensing data storage. Future endeavors
should concentrate on overcoming the challenges that have been identified and examining
the potential for synergies between different storage solutions to develop more resilient and
versatile systems.
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Storage Solution Description Advantages Disadvantages

Cloud-Optimized Data For-
mats

Formats like Zarr and Cloud
Optimized GeoTiff (COG) opti-
mized for cloud storage.

• On-demand access to specific
portions without downloading
the entire dataset (COG).

• Limited support for certain
cloud services.

OSS Commonly used by major cloud
providers (e.g., Amazon, Mi-
crosoft, Google).

• Facilitates open sharing of
data.

• Lack of direct data sharing
capabilities. High redundant
overhead costs in some scenar-
ios.

DFS Mature big data storage tech-
nology, dominant in RSBD plat-
forms.

• Advantageous functions like
appending writes and modifi-
cations.

• Not as easily shareable as
OSS. Clear need for functions
like append write and random
read.

NoSQL Databases Wide-column, In-memory key-
value, and Document NoSQL
databases.

• Supports storage of large
amounts of unstructured
RSBD raster data.

• Wide-column NoSQL may
lack spatial indexing. In-
memory key-value may have
limited capacity.

Array DBMSs storing and manipulating remote
sensing data as arrays. • High-level array manipulation

for storage, metadata, and in-
dexing.

• In early stages for RSBD
data management. Chal-
lenges in incorporating data
into NoSQL.

Table 3.1: Summary of Remote Sensing Raster Data Storage Solutions.
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Figure 3.2: The advantages and disadvantages of the four distinct types of
NoSQL databases will be examined, along with an assessment of their respective
costs, search capabilities, and input/output performance (illustrated through a

radar chart in the center).

State-of-art in RSBD storage and metatada management

In this subsection, we provide an outline of existing research that addresses the question of
how to effectively manage large amounts of massive remote sensing data. Our focus is on
the architectures, subdivision models, index structures, and tools and methods used in these
studies. We also considered the impact of spatial correlation and metadata standardization
on the management of such data. The table 3.2 provides a comprehensive overview of existing
solutions for RSBD storage and metadata management technologies.

In 2013, Liu et al. [Liu+13], proposed a novel approach to efficiently manage massive RS
data, as traditional methods have reached their limits in terms of cost and extendability. The
authors designed a method based on pyramid maps, Hbase, and MapReduce for data storage
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and processing, which was found to increase the data import and processing speed as the
Hbase cluster increased. However, further testing in an optimal experimental environment
and a good understanding of Hadoop parameters are required to fully assess performance.

In 2016, Li et al. [Li+16], presented a method for RS data integration and management
based on the geosot subdivision model, which was found to improve storage management
and query speed. This approach requires testing in a distributed environment to improve
accuracy.

In 2017, Yang et al. [Li+16], implemented a method for massive RS image storage using a
spark-based pyramid model. The authors demonstrated the efficiency of this method in terms
of image storage and construction performance compared with MapReduce and Hadoop.
Further exploration is required, including practical applications such as image retrieval, image
detection, and image classification.

In 2018, Jing and Dongxue [JT18] and Yosra et al. [HF18] designed a storage model for
remote sensing (RS) image data based on open-source big data technology and a pyramid
map for image data subdivision, with the aim of improving the low efficiency and scalability
of traditional processing models. The results of their methods showed that they improved
both data writing and query speed, as well as high scalability. Additionally, the improved
index used in [HF18] had high spatial proximity in the Hbase table.

In 2019, Wang et al. [Wan+19] presented a distributed storage and access method for large
RS data based on the GridFS mechanism to improve I/O speed, horizontal expansion, and
low-query performance in massive RS data management. This approach was scalable and
had random access performance owing to sharing technology. However, it is necessary to
study the influence of the number of data nodes on the performance of distributed systems.

In 2020, Cheng et al. [Xu+20] proposed ScienceEarth, a framework for large-scale RS data
storage, management, and processing in cluster computing in a cloud environment. Accord-
ing to their test results, the availability and computation of the RS data proved that their
approach was efficient in retrieving and processing RS data. However, efficiency can be af-
fected by the workload situation in the cloud, and the ScienceGeoIndex needs to be optimized
to provide standard map services. The platform needs to support vector data and include
ML and DL frameworks.
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Table 3.2: Overview of existing solutions of the RSBD storage and metatada management technologies

Ref. Storage
Architecture

Subdivision
Model

Spatial
Correlation

Index Structure Metadata
Standard-
ization

Tools & Methods

[Liu+13] Distributed Pyramid Map Yes Hbase (Key-Value) No Hadoop, Hbase,
MapReduce

[Li+16] Local Server GeoSOT (2n-tree) Yes Inverted Index Yes Kingbase Enterprise
Server, Oracle Plat-
form

[YMY+17] Single/Distributed
Storage

Pyramid Map/TMS
(Tile Map Service)

Yes Hbase (Key-Value) No Hadoop, HDFS,
Hbase, Spark RDD

[JT18] Distributed Image Pyramid +
Uniform Grid Divi-
sion

Yes Grid Index+ Hilbert Curve No Hbase, MapReduce,
MRHbase, MySQL

[HF18] Distributed Pyramid Map Yes Hbase (Key-Value) No Hbase, Cassandra,
MongoDB

[Wan+19] Distributed Cluster
Architecture

GridFS Mechanism — MD5 No MongoDB, Post-
greSQL, WiredTiger
Engine

[Xu+20] Distributed Cluster
Architecture

Quad Tree Yes Hbase (Key-Value based
on Quad Tree + Hilbert
Curve)

Yes Hadoop, Hbase,
HDFS, Spark, Open-
Stack Cloud

[WWZ20] Distributed Cluster
Architecture

Google S2 Yes Hbase (Key-Value based on
Hilbert Curve)

No Hadoop, Zookeeper,
Hbase

[Yan+20] Distributed Storage Google S2 Yes Hbase (Key-Value) +
Kylin

Yes Hbase, Zookeeper,
Hive, Kylin

—: Not mentioned
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In the same year, Wang et al. [Wan+20] and Yang et al. [Yan+20] proposed methods for
storing RS image data using Google S2 and Hbase. The proposed method aims to improve
tile storage and query efficiency, resolve data organization and sharing issues caused by the
use of various spatial object formats, and has potential applications in other distributed
databases, data retrieval, data analysis, and lost-tile reconstruction. Furthermore, it can be
used for mining fine-grained RS data.

3.2.2.2 IoT Data Storage Solutions

In this section, we provide an overview of related work that is considered significant for the
advancement of our own research.

In 2012, Tingli Li et al [Li+12] introduces IOTMDB, a NoSQL-based solution designed to
address the challenges of managing extensive and diverse data generated by the IoT. IOT-
MDB is specifically tailored to the characteristics of IoT data, ensuring efficient storage and
seamless data sharing through integration with the RNS platform and ontology-based data
abstraction. The proposed storage strategies, including pre-processing mechanisms and uni-
fied data expression forms, are aimed at enhancing cluster performance and optimizing data
storage. This study further presents a set of NoSQL-based query syntaxes to accommodate
various types of IoT queries. Future work will involve the implementation of a NoSQL-based
database model for IOTMDB as well as the exploration of techniques for processing and
analyzing massive IoT data to maximize its value.

In 2019, the paper authored by Mohammad Nasar and Mohammad Abu Kausar [NK19] delves
into the pivotal role of databases in the effective management of vast amounts of data gener-
ated by IoT devices. Recognizing the constraints of traditional relational databases in han-
dling the magnitude and complexity of IoT data, the authors focused on NoSQL databases,
specifically time-series databases. This study presents and examines five prominent time-
series databases—InfluxDB, Kdb+, Graphite, Prometheus, and RRDtool— to assess their
suitability for efficiently managing diverse and extensive IoT datasets. This research high-
lights the unique characteristics of IoT data, emphasizes the growing significance of NoSQL
databases, and provides a comprehensive comparison to aid researchers and practitioners in
making well-informed choices for IoT data management.

In 2020, Giacobbe, Maurizio and Chaouch [Gia+20] presents a case study that concentrates
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on the implementation of InfluxDB, a time-series database, with the goal of optimizing
monitoring and analytics in distributed IoT environments. The primary objective of this
implementation is to streamline data management and enable efficient IoT-as-a-Service in
geo-distributed unk-smart ecosystems. The authors aimed to create new opportunities for
various stakeholders, including individuals, PAs, academia, and industries, to collaboratively
define and explore innovative synergies.

Recently in 2023, The paper authored by Sandra Włostowska et al, [WŁO+23] significantly
contributes to the state-of-the-art database systems for smart buildings and smart metering
applications. The authors conducted a comprehensive comparison of NoSQL, TSDB, and
relational (SQL) databases with a focus on practical applications, integration with industry
standards, and communication protocols. This study evaluates open-source databases such
as PostgreSQL, MongoDB, and InfluxDB, examining installation, configuration methods,
and interfaces in popular programming languages. Empirical findings regarding access times
and disk space usage provide valuable insights. The paper’s conclusion presents the results
and offers recommendations for potential applications in the discussed fields, adding to the
current knowledge base in database technology for smart environments.

The table 3.3 presents a comprehensive comparison of storage solutions for managing IoT
data. The evaluation of attributes, such as advantages, disadvantages, cost, and security
measures, aims to identify the most suitable technology for storing time-series data associated
with RPW sound data and metadata.

NoSQL for Iot data storage As previously discussed in Section 3.2.1.2, the primary
requirements for databases in IoT applications are scalability and capacity to rapidly ingest
data. NoSQL systems are well suited for these applications owing to their inherent design for
substantial horizontal scalability. Another notable characteristic of NoSQL databases is their
efficient utilization of in-memory data storage, which offers significant advantages in terms of
the write throughput and latency. In contrast, traditional RDBMS systems have limitations
in handling the volume and velocity of data generated by the IoT, and their schemas may
become cumbersome when dealing with rapidly changing information from IoT applications.

The flexibility of NoSQL databases is evident in their ability to easily configure schemas
by introducing new fields to a database or adding unique column groups to a table. This
flexibility facilitates the management of information from IoT applications that undergo
rapid changes. With the storage of vast and rapidly expanding unstructured data, NoSQL
database solutions have gained popularity, surpassing the efficiency and scalability constraints
of rigid relational databases. This prompts a re-evaluation of traditional relational models.
Relational databases adhere to normalization laws, organizing information into field records
and tables, and NoSQL databases, with their focus on scalability and flexibility, continue to
provide a robust alternative for modern, large-scale data processing needs [Li+12].
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Storage Solution Advantages Disadvantages Cost

Time-SeriesDB
[NK19] • Optimized for time-series data.

• Efficient handling of timestamped IoT in-
formation.

• Specialized for time-series data, may have
limitations with other data types.

Varies

NoSQL-Databases
[Li+12] • Designed for large volumes of unstruc-

tured data.
• Suitable for diverse IoT data types.

• Some solutions may lack complex query-
ing capabilities.

Varies

Distributed Databases
• Scalability and performance benefits.
• Distributes load across multiple servers.

• Implementation complexity.
Varies

Cloud-Storage
[Bru+18] • Cost-effective and scalable.

• Provides durable storage for IoT data.
• Potential latency in data retrieval.

Pay-as-you-go

Data Lakes
• Stores raw, unstructured data.
• Enables processing with technologies like

Apache Hadoop.

• Requires careful data governance.
Varies

Edge Storage
• Low-latency storage at the edge.
• Reduces the need for immediate central-

ized data transmission.

• Limited storage capacity at the edge.
Varies

Table 3.3: Comparison of Storage Solutions for Massive IoT Data.
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Time-Series Databases for Iot data storage The assessment of storage alternatives for
coping with extensive IoT data reveals a range of options, each presenting its own unique ben-
efits and challenges. TSDB proved to be the most suitable option for situations with a heavy
reliance on timestamped data, as they provide specialized optimization for time-series infor-
mation. NoSQL databases, on the other hand, offer a flexible solution for accommodating
large volumes of unstructured data, making them well-suited for a variety of IoT data types.
Distributed databases provide advantages in terms of scalability and performance but have
increased complexity in implementation. Cloud storage offers a cost-effective and scalable
solution; however, it is important to consider potential latency issues in data retrieval. Data
Lakes, with their focus on storing raw and unstructured data, offer opportunities for pro-
cessing using technologies like Apache Hadoop, but demand careful data governance. Edge
storage, with its emphasis on low-latency storage at the edge, reduces the need for immediate
centralized data transmission but faces limitations in storage capacity at the edge. The selec-
tion of a storage solution depends on the specific characteristics of the IoT data, processing
requirements, scalability needs, and budget considerations. In some cases, a hybrid approach
incorporating multiple solutions may provide a comprehensive strategy for addressing the
intricacies associated with storing massive amounts of IoT data depending on the nuances of
the IoT system architecture [NK19],[Gia+20].

3.2.3 Discussion

Upon conducting a thorough examination of existing solutions for RSBD storage and meta-
data management technologies, it is crucial to acknowledge inherent limitations and chal-
lenges associated with the approaches presented in these studies. A predominant limitation
evident across multiple references is the absence of standardization in metadata. The stan-
dardization of metadata is vital for ensuring interoperability and seamless data integration.
The lack of standardization in the majority of studies could pose obstacles to data exchange
and collaboration among different systems.

Moreover, the selected storage architecture varies significantly among studies, with some
opting for distributed systems, while others prefer local servers or distributed cluster archi-
tectures. This diversity in storage architecture introduces challenges when attempting to
compare or integrate solutions across platforms, hindering cross-system compatibility.
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Spatial correlation, although acknowledged in all solutions, is addressed using different meth-
ods that may vary. Effectively handling spatial correlation is critical for the accurate analysis
and interpretation of remote sensing data. The nuanced approaches observed could impact
the overall efficacy of the storage solution.

A notable limitation highlighted in the table is the diversity of index structures utilized
across studies. While some employ advanced spatial indexing techniques like the Hilbert
Curve, others rely on simpler structures such as key-value pairs. The choice of the index
structure has implications for query performance and data retrieval efficiency, reflecting the
absence of a standardized or optimized approach in the field.

Furthermore, the tools and methods exhibit significant variation, ranging from Hadoop and
MapReduce to specific databases like Hbase, Cassandra, and MongoDB. The lack of a stan-
dardized toolkit or methodology may pose challenges for researchers and practitioners aiming
to adopt or replicate these solutions in different environments.

In conclusion, while the table 3.2 provides a comprehensive compilation of existing RSBD
storage and metadata management solutions, the lack of metadata standardization, diverse
storage architectures, varied treatment of spatial correlation, differences in index structures,
and the absence of a standardized toolkit underscore the current challenges and limitations
in this field. Addressing these limitations in future research is crucial for developing more
robust and interoperable solutions for handling large-scale remote-sensing data.

On the other side of the analysis, it is evident that TSDBs are indispensable for the continuous
monitoring of RPW sound data. The demand for an optimized storage solution to handle
timestamped information makes TSDBs essential. Their distributed and scalable architecture
aligns well with the dynamic characteristics of RPW IoT data, ensuring efficient storage
and retrieval. The table serves as a guide for selecting the optimal storage technology to
accommodate the large volume of time-series data generated by RPW monitoring devices,
facilitating accurate analysis for early disease detection.

Going forward, our primary objective is the development of a multi Data Model that addresses
the challenges we have identified. This model enables the integration of diverse data types
from various sources, providing a standardized and adaptable representation that facilitates
seamless analysis. At present, there appears to be a dearth of literature focusing on the
management of multisource data for the specific purpose of storing and managing remote
sensing big data and IoT data in the context of smart palm agriculture services. Future
research in this area is crucial for bridging this gap and advancing the field of smart agriculture
practices.

3.3 Approaches for Palm Tree Detection and Counting
In the field of precision agriculture, effective management of palm trees has become increas-
ingly important in the face of rising global demand for palm products. Data analytics plays a
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critical role in revolutionizing the monitoring, management, and conservation of these impor-
tant agricultural commodities. Advanced data analytics provide valuable insights into palm
health, growth patterns, and potential threats. This data-driven approach enables growers
and agriculture professionals to make informed decisions, optimize resource allocation, and
increase crop yields. By harnessing the power of data analytics, precision agriculture not only
ensures sustainable palm growth but also makes an important contribution to global food
security and the efficient use of natural resources. This section discusses the methods, tech-
nologies, and applications of data analytics tailored to the specific needs of palm agriculture
and highlights their indispensable role in modern agriculture.

3.3.1 Palm Tree Detection and Recognition

Accurate identification and determination of palms is of paramount importance as it is a
fundamental element for effective management, biodiversity conservation, and promotion
of the date palm industry in various sectors such as agriculture, forestry, and environmental
protection. A comprehensive study of palms, including their census and spatial analysis, plays
a key role in predicting production capacity and improving plantation monitoring. However,
collecting accurate data is challenging, highlighting the need to integrate state-of-the-art
agricultural technologies. Therefore, it is imperative to develop an efficient, cost-effective, and
accurate approach for analyzing individual palms (IPTs) to promote smart palm management.
This effort becomes even more urgent when considering how laborious, resource-intensive,
and financially burdensome existing methods are. However, it is not always possible to
produce accurate statistics [WNG00]. Therefore, the combination of modern technology and
agriculture is crucial for effective palm management.

Studies on tree canopy classification and recognition algorithms can be divided into three
main categories: classical image processing, traditional ML, and DL methods. In addition,
it is worth noting that the following findings were discovered after extensive and thorough
research in the literature, as summarized in Figure 3.3:

3.3.1.1 Classical Tree detection Techniques

Classic image processing techniques include template matching [KQ11], [Dos+17], [Mur+19],
local maximum filter [WNG00], [Pou+02], [Kho+15b], [Wan+16], [Li+19], image binarization
[Pit01], [Dal+09], image segmentation [Fer+16], [Wag+18], [Ava+18], etc. These traditional
tree canopy detection methods are based on tree canopy morphology and use feature ex-
traction algorithms such as shape, edge, and color [GMD18], [Cam+20]. One of the main
advantages of these methods is their relative simplicity and the ability to use existing tools
or software such as eCognition and ArcGIS without the need to laboriously collect base-
line data or manually label samples (with the exception of template matching) [Dos+17],
[ZSB14]. Many studies have attempted to detect and outline tree canopies in images, with
average accuracy rates ranging from 75% to 95% [MŽ15],[Dos+17], [SHS11].
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Figure 3.3: Taxonomy of palm tree detection relevant methods

3.3.1.2 Classical ML Techniques For Tree Detection

Based on traditional machine learning, canopy detection involves two main steps: feature
extraction for detection and classification and training and predicting classifiers to segment oil
palm images into individual canopies. The feature extraction step is important for the second
step and often involves handcrafted techniques, such as HOG [WZW19], LBP [Mal+14], SIFT
[Mal+14; Nam+16], PCA [SDM19], and ELM [Mal+14]. The extracted features can contain
different types of information such as spectral indices and shadow information [Joh+20;
ÖÜ20]. To recognize tree canopies, traditional machine learning methods usually rely on
annotations and supervised classifiers such as RF [Wei+17; Blo+17], SVM [Riz+18; Dai+18],
ANN [Nev+17], and OBIA [Riz+18]. Some studies have used unsupervised ML algorithms
such as K-means to detect individual trees [Riz+18; Ma+20]. Traditional machine learning
methods for tree canopy detection tend to be more efficient and accurate than classical image
processing methods, particularly in complex regions. Refer to Table 3.4 for a comprehensive
summary of key outcomes from the examined studies, presenting insights into palm tree
detection using various ML algorithms.

Refs Method Dataset Results Objective(s)
[Kal+17] SVM,TM,TM +

OBA
UAV Images OA: 87%

(TM+OBA),
71% (TM)

Counting oil palm in-
ventory
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[WZW19] HOG-
SVM,SVM

UAV Images OA: 99.21% Automatic detection
and enumeration of in-
dividual oil palm trees

[Al-+18] RF, SVM, K-NN Aerial remote
sensing images

OA: 91.88% and
87.03%,

Date palm tree Detec-
tion and mapping

[Riz+18] SVM of OBIA,
FR + GIS

WorldView-3
satellite, Li-
DAR airborne
imagery.

OA: 98,80% for
counting and
84.91% for age
estimation

Counting and age esti-
mation of the oil palm
tree.

[Tag+19] Image pro-
cessing + GIS
functionalities,
RF, SVMR, RP,
k-NN.

UAV Images +
ground data

Best OA: 85%
for RF with 0.82
kappa index

Identification and
quantification of palm
trees

Table 3.4: Overview of the main results in considered studies based on ML
algorithms for palm tree detection

However, although these methods can also identify tree species [WZW19; Tag+19] and do
not require manual selection of tree-planting plots. For some complicated feature extraction
and tree classification methods such as those proposed in [Nev+17; Mal+14; Lóp+16] (for
example, DT, RF, K-NN, MLP, SIFT, LBP, and ELM). However, image data are required
for certain types of imagery, such as hyperspectral and thermal imagery, very high-resolution
drone imagery, point cloud data, and hyperspectral imagery. Because of these requirements,
large-scale palm detection is subject to additional limitations. According to [AKA18], the
final results differ from one to another depending on the type of feature extraction. The
bottleneck of ML methods is that they rely heavily on handcrafted features. This means
that when new data are added, new handcrafted features are needed for this new data, which
can be expensive. Subsequently, an extraction method was applied to the new features. This
process is lengthy and requires sophisticated feature design during feature extraction and
fine-tuning of the parameters during training [Fas+16].

3.3.1.3 DL Techniques For Tree Detection

The remote sensing community has shown a willingness to develop new methods to improve
preprocessing, classification, and segmentation techniques [LW07; Ali+23; Bou+22a]. Deep
learning, a type of machine learning that uses artificial neural networks modeled after the
human brain, has proven successful in various applications, such as computer vision and
medical applications. Due to its ability to learn from data and extract features in a hierar-
chical manner, it has become a popular topic in research. Since 2012, DL has been applied
in numerous fields, including image and handwriting recognition, and has been particularly
successful in medical and healthcare [Ben+22a; Ben+22b; Bou+22b]. More recently, it has
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also been used for canopy recognition, particularly in agriculture, to increase efficiency and
reduce costs. Convolutional neural networks have also been used in remote sensing since
2014, with many studies achieving good results in tasks such as tree canopy detection and
plant type classification in large and complex areas from remote sensing images for early
warning and disease detection systems [HK20].

Overall, these approaches can be divided into three types: first, CNN classification methods;
second, semantic segmentation-based methods; and third, object recognition-based methods,
which are presented below:

CNN Classification Methods The latest Deep Learning-based methods for tree canopy
detection are based on the CNN classification method combined with the sliding window
technique [Don+19]. Typically, they divide the entire image into numerous image patches
of a given window size and then classify them as background or tree canopy using different
CNN architectures, such as AlexNet ([LFY17; Li+18; CCT17]), LeNet ([CCT17; Mub+19]),
VGG ([Bon+20; Li+18]), ResNet ([Gui+17; Zhe+21a]), etc. Although the CNN methods
perform better than the previous two methods (i.e., the image processing and ML methods),
especially in regions with crowded and overlapping trees, they almost adopted the sliding
window approach to complete the final detection, which suffers from low computational
performance due to the relatively large number of detected candidates of different sizes,
such as the aforementioned approaches in [LFY17; Li+18]. These methods are ineffective
and do not detect trees with different crown sizes because the size of the patch must be
predefined based on our prior knowledge [Mub+19]. Furthermore, these methods require
not only annotation of tree canopy samples, but also additional annotation efforts for other
species such as background, other plants, etc.

Semantic Segmentation methods Another approach to tree canopy detection is seman-
tic segmentation. In this method, a continuous algorithm is used to label each pixel of an
image as part of a tree canopy or not, without the need for the time-consuming sliding
window technique used in some CNN classification-based methods. Semantic segmentation
aims to create a dense, detailed label for the entire image rather than a single label for each
patch or window, as in CNN classification. These methods can be more efficient than CNN
classification methods because they can detect multiple trees in a single image at once. Sev-
eral state-of-the-art semantic segmentation models, such as U-Net, FCN, and DeepLab v3+,
have been used in tree canopy detection and have achieved impressive results. In general,
the semantic segmentation approach to tree canopy detection is more efficient than the CNN
classification method because it can detect multiple trees in a single image at once. Some
examples of work in which these models have been used for tree canopy detection include
[Fre+19; Wag+20; Rhi+21; XQH20; ZSB14].

Semantic segmentation methods are suitable for mapping tree species that do not require
counting trees. In areas with overlapping trees, these methods tend to perform poorly because
they may detect only one tree and not multiple overlapping or touching trees. The output of
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the semantic segmentation methods is a probability map or confidence map indicating how
likely it is that a pixel belongs to a tree canopy. These methods require additional post-
processing steps (e.g., detection of local maxima) to produce the final contours of each tree
[Osc+20]. In addition, semantic segmentation-based methods may not be the most accurate
for determining tree canopy size because they primarily focus on detecting and counting
tree crowns. Therefore, semantic segmentation-based methods are not the best choice for
identifying individual tree crowns.

Object detection-based methods In recent years, numerous methods have been devel-
oped to detect various spatial objects in high-resolution remote sensing images, including
palm crowns [Li+20a; ABF21; Aya+22]. Table 3.5 describes the latest relevant approaches
to palm/tree crown detection based on object detection methods that have shown promising
results.

These methods can be divided into two categories: two-stage object recognition methods
such as Fast-RCNN ([CLL20]), Faster R-CNN [Zhe+21b; Zhe+21a], Mask R-CNN [Oce+20;
G B+20], and One-stage object recognition methods such as YOLO v2/v3/v4 [AKB21;
Xia+19], RetinaNet [CDV20; Wei+19; Sel+20] and VGG-SSD [Xia+19].

Overall, the goal is to develop models that can accurately locate and recognize palms in
new images, even under complex and changing environmental conditions. Some studies
have compared the accuracy and efficiency of these approaches to canopy detection [Xia+19;
San+19] and found that two-stage object detection methods tend to have higher accuracy
compared to single-stage methods, but that single-stage algorithms can significantly improve
the speed of canopy detection [CLL20]. However, the existing studies on palm tree detection
based on object recognition methods have some limitations. Among these limitations is
the fact that these types of algorithms require large amounts of annotated training data,
which can be time-consuming and expensive to obtain for palm crowns. The performance of
object recognition algorithms can be affected by varying lighting conditions and the presence
of shadows, which can be particularly challenging for palmate crowns due to their large
and often complex structure, while other algorithms may have difficulty detecting small or
partially occluded palmate crowns. Some object detection algorithms also have problems
detecting palm crowns in dense forests or in areas with a large number of overlapping crowns
[CDV20]. The accuracy of object detection algorithms can depend on the specific parameters
chosen for the model, and it can be challenging to find the optimal set of parameters for a
given data set of palm crowns.

The study in question evaluated its models on only one type of satellite imagery, which calls
into question their generalizability to other imagery types or contexts. [Zhe+19] models
were trained and evaluated on a limited dataset, which may limit their applicability to other
locations or conditions. These approaches often focus only on the detection of one tree species
and do not distinguish between different subcategories. Although some researchers have
treated mature and young oil palm separately, the method required previously defined mature
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oil palm regions and young oil palm regions using different sliding window sizes [Mub+19;
CLL20]. The method proposed by Adel et al. [AKB21] is a promising approach for automated
palm census and geolocation, but it requires large amounts of high-quality training data and
is sensitive to the quality of input images and geolocation data. Implementing this method
requires a large amount of high-quality training data, which can be challenging, especially for
large-scale operations and in remote regions. The quality of the input data plays a critical
role in determining the performance of the model. If the input data is of inferior quality, the
accuracy of the model may be compromised. Furthermore, if the imagery used for training
is not accurate enough, it can lead to inaccuracies in palm tree detection and localization.

In contrast, there can be a tradeoff between the speed and accuracy of object recognition
algorithms, with faster algorithms often having lower accuracy and vice versa. This can be
particularly important in palm crown detection, where the algorithm may need to process a
large number of images in a short time.

3.4 Approaches for RPW Disease early detection
The early detection of diseases in palm trees is vital for preserving their health and produc-
tivity, as these plants are susceptible to various diseases that can significantly harm their
growth and yield. Timely and accurate disease detection is crucial for implementing effective
disease management and control measures. In this section, we discuss the challenges associ-
ated with disease detection in palms, the methods and technologies used for this purpose, and
the importance of early diagnosis for preserving palm tree populations and the agricultural
industries they support.

3.4.1 Palm Tree Diseases

Palm trees are susceptible to various diseases because they are exposed to different envi-
ronmental factors. Although some palm diseases have visible symptoms that facilitate their
detection, others pose a more hidden threat. Bayoud disease, for example, caused by Fusar-
ium oxysporum var. albedinis, is a serious disease of date palm that is widespread in Morocco
and Algeria. Inflorescence blight, known as Khamedj, is caused by Mauginiella scaettae and
poses a significant risk to date palms in Iraq, Libya, Morocco, Tunisia, and Saudi Arabia
[Tan+96]. Leaf spots due to Helminthosporium spp. and Alternaria spp. were reported from
the Al-Qassim region of Saudi Arabia [ALJ10]. Figure 3.4 illustrates some different palm
diseases affecting these iconic trees.
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Ref. Method Backbone Dataset Results Objective(s)
[Zhe+19] The proposed method: sample pre-

processing tailored RPN of Faster-RCNN +
a post-processing method based on empirical
planting rules + data augmentation

VGG16 QuickBird satellite im-
ages

F1-score of 94.99% Large-scale detection
of oil palm trees

Compared with: CNN, Two-Stage CNN by
[LFY17], Faster-RCNN

[Liu+21] The proposed method: Faster-RCNN VGG-16 + softmax UAV Images OA: 97.06%, 96.58%,
and 97.79% in 3 differ-
ent sites

Automatic Detection
of Oil Palm Tree

Compared with: SVM, ANN
[Xia+19] The proposed method: VGG-SSD + over-

lapping partition method
Resnet-50 UAV Images VGG-SSD: best accu-

racy of 90.91%
Fast and robust detec-
tion of oil palm in large
scale

Compared with: Faster-RCNN, YOLO-V3,
Retina-net, Mobilenet-SSD

[CDV20] The proposed method: RetinaNet +
Transfer learning + data augmentation

Resnet-50 Aerial remote sensing
imagery and a palm
map

mAP: 0.861 Detection of Palm
Tree; Tree Inventory
in large scale

[CLL20] The proposed method: Fast RCNN +
SMF-driven DMS + data fusion (local max-
imum) filtering

VGG-16, Alexnet UAV Images: Optical
and 3D Data

A: 99.8%, 100% and
91.4% in young, ma-
ture and mixed vegeta-
tion areas

Detection of Palm Tree
in mixed study areas

Compared with: Faster-RCNN, YOLOV2
[Zhe+21a] The proposed method: MOPAD Based on

Faster RCNN, + RPF module + RPN + hy-
brid class-balanced loss module + Sliding win-
dow technique

ResNet-101 UAV Images Average F1-score
72.83% and 70.57% for
two sites

Both accurate detec-
tion of oil palm trees
and monitoring of their
growing status

Compared with: RF, SVM, CNN (ResNet-
101), Grid R-CNN, GA Faster R-CNN, Cas-
cade R-CNN, Libra Faster R-CNN

[Yar+21] The proposed method: Faster R-CNN Resnet-50, VGG-16 UAV images with RGB
bands

P with Resnet-50 and
VGG-16 respectively
96.34%, 95.15%

Oil Palm Tree Detec-
tion and Health Clas-
sification

[AKB21] The proposed method: Faster R-CNN,
YOLOv3, YOLOv4, and EfficientDet-D5

Resnet-50, Darknet-
53, CSPDarknet-53,
EfficientNet-B5

UAV Images mAP: 99% of YOLO
V4 and EfficientDet
FPS: 7.4

Automated counting
and geolocation of
palm trees

Compared with: [LFY17] (Alexnet)
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[PW23] The proposed method: YOLOv3 Darknet-53 VHR Satellite imagery
and UAV images

F1-Score of up to
91.05%

Automatic detection
and counting of oil
palm trees

[JEE22a] The proposed method: the sub-versions of
YOLOv5

CSPDarknet-slim,
Darknet-53, CSPDark-
net53

UAV images mAP of 92.34% with
YOLO-V5m (medium
depth) model

Date palm tree detec-
tion in drone imagery

Compared with: Yolov3, Yolov4, SSD300
(Single-Shot-MultiBox-Detector)

[Wib+22] The proposed method: YOLOv3,
YOLOv4, and YOLOv5m

Darknet-53, CSPDark-
net53, CSPDarknet-
slim

UAV images and air-
craft images

F1-scores of 97.28%,
97.74%, and 94.94%

Large-Scale Oil Palm
Tree Detection us-
ing High-Resolution
Remote Sensing

Table 3.5: Overview of the main results in considered studies based on object-detection algorithms for palm tree detection
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The red palm weevil, known as Rhynchophorus Ferrugineus and Rhynchophorus Vulneratus,
is the most dangerous pest that has threatened palm trees in the last two decades. This threat
has remained stubbornly hidden but continues to pose a significant threat to the health of
these trees [Kou+20; Ibr+23; Ibr+23]. This destructive pest has been detected in over 60
countries, including France, Greece, Italy, Spain, and various regions of the Mediterranean
and Latin America. It was first discovered on the Arabian Peninsula in the 1980s and spread
rapidly westward. It reached the United Arab Emirates in 1986, Saudi Arabia in 1987, and
Iran in 1992. Since then, it has spread across the Red Sea to North Africa, particularly to
Egypt’s Sharqiya governorate, where it infects date palms. Initially, RPW infections showed
no visible symptoms, making early detection difficult. By the time symptoms appear, the
palms are often already severely damaged and at risk of death. RPW is a formidable flyer
that can travel distances of up to 9007 m, so it can infect different parts of palms, especially
along the base of the trunk (70%) in date palms and near the apical bud (80-90%) in other
palm species [EF20].

Bayoud’s disease Inflorescence rot (Khamedj)  Leaf spots

fusarium wilt Ganoderma Butt Bud Rot 

Figure 3.4: Most common palm tree diseases.

It is estimated that the beetles can spread up to 50 kilometers per day, resulting in rapid
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geographic dispersal and posing a significant threat to trees in widespread locations. Accord-
ing to EPPO (European and Mediterranean Plant Protection Organization), RPW has now
spread to 85 countries and regions worldwide [Smi+09]. Constant monitoring of the situation
is essential to prevent further spread. The financial implications of the extensive damage to
palms are significant, especially for date and coconut producers. The number of date palms
affected by RPW is high; in Saudi Arabia, an estimated 80,000 palms are affected, and this
number is increasing daily [Muk+11].

In terms of the economic impact of this pest, it is estimated that losses to the date palm
industry in the Middle East region from the eradication of infested palms alone amount
to approximately eight million dollars annually. This does not include the additional ad-
ministrative costs to governments and crop losses. In addition, the Food and Agriculture
Organization of the United Nations has projected that the cost of pest control and replace-
ment of damaged palms in Spain and Italy alone will amount to 200 million euros in 2023
[Foo20]. On the other hand, the RPW threat not only poses a financial risk but also has the
potential to cause physical harm to people and property. Widespread infestations of RPW
have caused severe damage to growers, homeowners, and governments and pose a persistent
and significant threat to palm health.

The RPW has a unique reddish-brown coloration and measures about 4 cm in length and
1 cm in width. It is distinguished by the presence of black dots on its pectoral ring. Adult
weevils are remarkably large, especially in terms of their snout, which is equipped with biting
jaws. These specialized jaws help female weevils penetrate palms to lay their eggs. The male
weevil has a distinctive feature on its snout—a tuft of soft, reddish-brown hairs—that is
not present on the female weevil, as shown in Figure 3.5. It is known to colonize various
vulnerable areas of palms, including wounds in the crown, leaf axils, and areas where offshoots
have been removed. This pest has a relatively short life expectancy of about 3 months but
can cause extensive damage during its life cycle, as shown in figure 3.6. The infection process
of this beetle involves egg laying in palms, from which larvae develop. It is during the larval
stage that the palm tree is most at risk, as this is considered the most dangerous stage in
the weevil’s life cycle. The larvae of the weevil feed on the soft fibers of the palms and form
tunnels in the trunk and holes in the stems and fronds. These tunnels weaken the structure
of the tree and cause significant damage, decay and possibly breakage [NM21].

The severity of RPW infestation on palms is divided into three different stages. First and
second limited and superficial areas of infestation that do not penetrate the thigh depth,
and fronds remain green and normal. Third-degree infestation is considered an advanced
infestation characterized by easy removal of offshoots and fronds and the shedding of sawdust.
The fronds become wizened and yellow with a little green, and the palm may collapse and
fall over. Fourth-degree , a foul-smelling resinous liquid oozes out, and the palm eventually
collapses and loses its fronds.
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Figure 3.5: Male weevil (left), Female weevil (right).

Neonate Larva

Mature Larva

Cocoon

Adult RPW Pupa

A female lays
up to 300 eggs

Figure 3.6: RPW Life Cycle illustration.

3.4.1.1 Challenges in RPW early detection

Early detection of red palm weevil infestations is critical because it allows for timely in-
tervention and potentially saves trees from irreversible damage and the need for removal.
Therefore, early detection plays a critical role in controlling the spread of RPW and mini-
mizing the economic damage it causes. In addition, monitoring and early detection facilitate
the implementation of measures such as isolation or treatment of infected trees. However,
one of the biggest challenges is figuring out how to efficiently detect RPW insects in the early
stages of infestation, since there are few external indicators of palm infestation?

Detecting the devastating RPW weevil in the first two to three weeks of the weevil larval
stage is similar to detecting late-stage cancer in humans; visible signs do not appear until it is
already dangerous (see Figure 3.4), making it difficult to save the tree once it is infested. By
this time, the trees may have already fallen and other insects have already invaded, making
treatment more difficult. When palms show clear signs of stress, it usually means that the
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infestation is well advanced; at that point, the tree cannot be saved. The biggest challenge is
detecting RPW early, and different tree species require tailored detection methods. Although
several methods have been investigated, none have proven reliable in treating RPW-infested
palms. Consequently, these palms remain at risk if not detected at an early stage. Despite
extensive research, no reliable method for early detection has yet been found.

3.4.1.2 RPW Detection Methods

In the past, RPW infestations were primarily detected through visual inspections conducted
by local officials or tree owners [KAF21]. However, this approach has its limitations, and
a more reliable and efficient method is needed to address the widespread problem of RPW
infestation [Sor+13]. Alternative methods such as acoustic detection [HSC16], [Sir+10],
[Pin+08], chemical detection [Sch12], thermal remote sensing [AIH19] [AIH19], [Coh+12],
[Coh+10], [Ots79] [Gol+15], and hyperspectral [BME17] [Yon+14] are listed in table 3.6.
Each method has its own advantages and disadvantages in the search for improved RPW
detection techniques.

However, despite intensive efforts to develop techniques for detecting RPW, these methods
are still far from being practical or feasible, so detection depends mainly on visible symp-
toms, which may only become apparent at later stages of infestation and are subjective and
dependent on the experience of the observer. In addition, they can only detect the presence
of adult weevils and can be invasive, potentially damaging trees during manual removal.
These limitations can lead to late detection, allowing infestations to progress and potentially
requiring drastic measures such as tree removal [Ahm20]. Palm trees produce significant
amounts of woody debris, about 25–35 kg per palm, and can thrive for over a century. Un-
like many forest trees, which have a shorter life span and do not yield annual wood products,
palms offer the unique advantage of producing 2.5–3.5 tons of wood per palm during their
long lives. This special feature distinguishes palms because they contribute continuously to
wood production, whereas other tree species provide wood mainly at the end of their life
cycle and often in much smaller quantities than palms [TDH23].Therefore, the removal of
palms represents an actual loss. Accurate identification of pests is crucial for effective pest
control and the use of pesticides. However, relying solely on manual identification can lead
to inefficiency and high labor costs. To overcome this challenge, agricultural pest control
strategies need to be put in place. Therefore, there is an urgent need to develop a novel
model for early detection of RPW. Currently, an optimal solution requires the integration of
different methods and technologies [Sor+13].

3.4.1.3 Advancements in RPW early Detection Approach’s

The literature on palm diseases describes various methods and technologies for monitoring
and detecting RPW pests. Recently, computer vision systems and image recognition tech-
nologies have become significant areas of research worldwide and have attracted the attention
of researchers. In the early detection of canola glossy beetles, these technologies have made
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significant advances in agricultural pest control by reducing the cost of detection while greatly
increasing speed and efficiency. Convolutional neural networks (CNNs) have proven to be
exceptionally accurate and efficient in the automatic detection of crop pests. This capabil-
ity enables precise identification of pest species and facilitates the accurate application of
pesticides, which is hugely important for increasing grain production capacity and food secu-
rity. In addition, the characteristic acoustic features of RPWs play a crucial role in training
machines and deep-learning models, enabling early detection of RPWs before they damage
palms.

Integrating machine learning with acoustic features provides a powerful tool for effective
pest management and offers a comprehensive approach to the RPW challenge. At the same
time, IoT and sensor technologies have proven to be valuable tools for collecting data and
developing practical applications for identifying and detecting agricultural pests and insects
using artificial intelligence techniques, as highlighted in recent studies [NA22], [Ste+20].
Overall, these methods range from image processing algorithms ([AIH19; Eld+20]) to acoustic
and optical detection and processing approaches ([Ash+22; Mao+21] ).

Furthermore, there is a striking inconsistency in the evaluation metrics used in these studies.
Interchangeable metrics such as accuracy, precision, detection and F1 score make direct
comparison of the methods difficult. The use of standardized assessment measures would
lead to a more direct evaluation of the methods.

Critically, the use of small samples in some studies may affect the statistical significance of
their results, leading to questions about the reliability of the results. Clear and transparent
documentation is essential to establish credibility, especially when concerns arise about the
assumptions and limitations of certain methods. While transfer learning is widely [SVA21;
TDH23; Kar+21], critics may argue that the use of pre-trained models is not always appropri-
ate for RPW detection and that tailored approaches specifically designed for pest detection
may provide more accurate results.

Recently, the application of contemporary agricultural methodologies has demonstrated no-
table efficacy in various agricultural domains [BW19; Yan+21]. Within the purview of our
investigation, our focus was on examining the utilization of modern technologies, particu-
larly in the domain of early disease detection, which is a pivotal concern for agricultural
stakeholders. Early detection is of substantial significance, as it ensures the maintenance
of healthy farms and the cultivation of high-quality crops. The literature has delineated
multiple endeavors directed towards employing modern technologies to achieve the prompt
identification of plant infestations [HTR23; Mal+23; Zhu+23]. Nonetheless, this specific
domain of research, especially concerning palm trees, remains an area that requires further
and in-depth exploration [Fer+21]. In this research, we have conducted a review of previous
studies that are pertinent to our investigation into the early detection of RPW infestations
utilizing acoustic signals.

In a study conducted by Mufleh et al. [AH11], an efficient RPW detection system was
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developed using image processing and ANNs. The research identified the Conjugate Gradient
(CG) with Powell/Beale Restarts Algorithm as the most effective due to its quick training
time and high accuracy in a 3-layer ANN configuration. The study signifies the potential of
this automated solution for RPW detection and pest management in palm tree cultivation,
setting aside specific accuracy results. Further research could focus on refining the ANN’s
structure or exploring advanced image processing techniques. However, challenges might arise
in scaling the solution for real-time field applications or adapting to diverse environmental
conditions.

Alaa et al. [Ala+20] aimed to detect palm tree diseases using image processing and machine
learning techniques. Specifically, researchers captured normal and thermal images to identify
three types of diseases: leaf spots, bright spots, and red palm weevils. To achieve this, they
employed CNN and SVM algorithms, with the VGG CNN achieving a 97.9% success rate in
detecting leaves and bright spots and the SVM achieving a 92.8% success rate in identifying
RPW using thermal images. This study highlights the potential of thermal imaging for
RPW detection and proposes future explorations of aerial thermal imaging and hyperspectral
imaging. Furthermore, the study suggests utilizing swarm intelligence algorithms to optimize
the performance of the CNN and SVM models.

In the work of Anis Koubaa et al. [Kou+20], a framework for the early detection of red
palm weevils using IoT technology was presented. The proposed framework utilizes smart
agriculture sensors to detect the presence of red palm weevils using accelerometers. Signal
processing and probability methods were developed to analyze the data collected by these
sensors and accurately identify the activity of the red palm weevil.

The study was headed by Heba Kurdiet et al. [Kur+21] and centered on the early detection
of Red Palm Weevil (RPW) infestation utilizing data mining classification algorithms. The
investigation evaluated the performance of ten advanced classification algorithms, including
Naive Bayes, KSTAR, bagging, PART, J48 Decision Tree, MLP, SVM, random forest, logistic
regression and AdaBoost, by employing plant size and temperature measurements to predict
RPW infestation in its initial stages. The results demonstrated an accuracy of up to 93%,
with temperature and circumference being the most critical features for predicting infestation.
However, the study stresses the need for further data collection to refine the findings and
advocates exploring untapped data-mining techniques to enhance RPW prediction accuracy.

The research conducted by Kagan et al. [KAF21] focused on the application of DL and aerial
street view image analysis to automate the detection and monitoring of RPW infestations.
This study scrutinized more than 47,000 aerial and 61,000 street-level images to identify
and verify infested palm trees using cutting-edge DL algorithms. The framework, employing
transfer learning with Faster R-CNN ResNet-50 FPN pre-trained on COCO and incorporat-
ing data augmentation, demonstrated the feasibility of large-scale infestation detection and
monitoring utilizing publicly available online data, underscoring the potential to transform
existing monitoring practices. However, this study acknowledged several limitations, includ-
ing the absence of timely updates in images and the scarcity of varied infestation stages,
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which affected the accuracy of the classifier.

The research conducted by Wang et al. [Wan+21] focused on leveraging fiber-optic dis-
tributed acoustic sensing (DAS) and machine learning for early RPW detection in large
palm tree farms. Through controlled simulations, an ANN and CNN were trained using
temporal and spectral data obtained from the fiber-optic DAS system. The ANN achieved
an impressive 99.9% classification accuracy with temporal data, whereas the CNN showed
a high 99.7% accuracy with spectral data in controlled noise conditions, demonstrating the
efficacy of this approach. This study addressed practical challenges in deploying the system
in real farm settings, highlighting considerations such as the system’s range, cost, and protec-
tive measures for the optical fiber in challenging farm environments. This study emphasizes
the potential of this innovative approach for efficient and cost-effective RPW monitoring on
large-scale open-air farms. Table 3.7 provides an overview of these relevant prior works.

Karar et al.[Kar+21] presented an IoT-based framework for detecting RPWs in their early
stages by using TreeVibes sensors and a cloud-based DL model. The proposed system uti-
lized the InceptionResNet-V2 classifier, achieving a high accuracy of 97.18% in differentiating
between clean and infested trees. This study discusses the significance of IoT technology in
monitoring RPW infestation and the potential utility of DL models for accurate classifi-
cation, comparing InceptionResNet-V2 to other transfer learning models (e.g., Resnet-50,
MobileNet, Densenet-121, EfficientNetB0, and Xception), and demonstrating the superiority
of the former. Although the classifier’s large size is noted as a limitation, this study suggests
cloud computing services as a viable solution. Additionally, this study emphasizes the im-
portance of considering security protocols and subsystems for secure IoT-based agricultural
systems in future research.

Piyush Singh et al. [SVA21] introduced a deep learning-based framework to detect diseases
and pest infections in coconut trees using hand-collected images and various CNN models
(i,e,.VGG16, VGG19, InceptionV3, DenseNet201, MobileNet, Xception, InceptionResNetV2,
NASNetMobile). It identified effective segmentation methods and fine-tuned models, achiev-
ing 96.94% validation accuracy with the custom CNN model and 82.10% with MobileNet.
The optimized CNN and MobileNet models were deployed in a web application for auto-
mated detection. This research emphasizes the need for larger datasets, explores advanced
segmentation techniques, and plans to include severity levels in future investigations.

The study introduced by Karar et al. [Kar+22] presented an IoT-based sound detection
model to identify RPW larvae in date palm trees, employing a modified mixed depthwise
convolutional network (MixConvNet). Utilizing the TreeVibes dataset, the proposed Mix-
ConvNet classifier demonstrated superiority over other deep learning models, achieving a high
accuracy score of 97.38. Additionally, the classifier showcased precise identification of RPW
infestation cases with an accuracy value of 95.90% ± 1.46 using 10-fold cross-validation. The
future focus involves the practical implementation of the IoT-based sound detection system
for RPW larvae in date palm trees, exploring edge computing integration and addressing
security and privacy aspects in open communication networks for audio signal analysis in
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farms.

Karar et al. [Kar+22] introduced an IoT-based sound detection model for identifying RPW
larvae in date palm trees utilizing a modified mixed depthwise convolutional network (Mix-
ConvNet). The proposed model, MixConvNet, demonstrated superior performance compared
with other deep learning models, achieving a high accuracy score of 97.38% using the Tree-
Vibes dataset. The model also demonstrated precision in identifying RPW infestation cases,
with an accuracy value of 95.90% ± 1.46 using 10-fold cross-validation. In the future, the
focus will be on implementing an IoT-based sound detection system in practical settings, ex-
ploring the integration of edge computing, addressing security and privacy concerns in open
communication networks for audio signal analysis, and managing the data generated by the
system.

Saleh et al. [SE22] presented an image-based machine learning model that is designed to iden-
tify the RPW within palm tree habitats. The model incorporates various image processing
techniques (image enhancement and segmentation using Otsu’s thresholding) to distinguish
RPW from other insects. Using a dataset of 913 images that included RPW and ant images,
the model achieved an accuracy of 92.22% through ten-fold cross-validation. This study of-
fers a practical solution to mitigate the economic losses resulting from RPW-inflicted tree
damage and demonstrates its potential for real-world applications. The authors plan to en-
hance the model’s accuracy by expanding the dataset and exploring the use of deep learning
techniques, such as CNNs, which could potentially result in a 95% accuracy rate.

Al-Sanea et al. [Als+22] developed a deep-learning model that can detect the Red Palm
Weevil (RPW) in real-time and locate it with precision. This study aimed to provide early
identification and accurate classification of RPW to prevent infestations, particularly in the
Al-Qassim region. This study achieved 100% accuracy in detecting early stage RPW infesta-
tions. A comparative analysis of the proposed model with conventional algorithms, including
SVM, MLP, AdaBoost, Random Forest, and Naïve Bayes, revealed that the conventional
algorithms had an accuracy of 93.08% in RPW detection, whereas Naïve Bayes achieved
82.58%. However, the proposed faster R-CNN model demonstrated a substantially higher
accuracy of 99% for classifying and localizing RPW cases. The significance of this research
lies in offering an efficient and cost-effective solution for RPW detection in palm trees, en-
suring their survival, and highlighting the importance of effective early infestation detection.
Future work could explore the use of alternative deep learning models, such as YOLO, for
enhanced detection of various tree species.

Ashry et al. [Ash+22] proposed a novel approach for the early detection of RPWs in extensive
farming areas using an optical fiber DAS system and a CNN. This study utilized temporal
and spectral acoustic signals captured by the DAS system within a 100–800 Hz filter range
to train the CNN models. These models were able to distinguish between "infested" and
"healthy" signals with classification accuracies of 97.0% and 97.1%, respectively. By merg-
ing the classification outcomes from the temporal and spectral CNN models, the system
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achieved a notable reduction in the false-alarm performance metric of the sensor by approxi-
mately 20%. The system demonstrated proficiency in identifying infested and healthy trees,
both in a controlled environment and on an outdoor farm, particularly when wind speeds
were below 9 mph. The primary advantage of this sensor is its ability to provide continuous
monitoring across vast farming areas using a single optical fiber cable. However, the per-
formance of the system in high wind conditions outdoors requires further enhancement for
optimal functionality.

Albraikan et al. [Alb+23] developed a novel method, termed Red Palm Weevil Detection
using Gorilla Troops Optimizer with DL (RPWD-GTODL), which aims to automate the ac-
curate detection of the RPW, a pest that impacts palm trees. This approach integrates CV,
DL, and parameter optimization to enhance date tree productivity. The RPWD-GTODL
method utilizes GF for image pre-processing and employs Mask RCNN with MobileNetv2
as the backbone network for RPW detection. The method achieved an accuracy of 99.27%
for RPW identification, demonstrating its superiority over other DL models for precise real-
time RPW detection. This study highlights the potential of the RPWD-GTODL method
for future applications in insect classification, thermal UAV imagery, large-scale dataset test-
ing, computational complexity analysis, and the use of advanced DL models for improved
detection outcomes.

The study by Torky et al. [TDH23] employs transfer learning with the VGGish deep learning
model to identify RPW based on acoustic features. With RPW infestations posing a signif-
icant threat to palm cultivation and early detection challenges due to limited visible signs,
the proposed model, trained on an RPW dataset, achieves 94.5% accuracy. It outperforms
both traditional (SVM, DT, NB, LR) and deep learning models (InceptionResV3, ResNet50,
DenseNet121, EfficientNetB0, Xception) in recognizing RPW sounds. The research high-
lights acoustic data’s potential for early RPW detection, suggesting exploration of additional
features for training deep learning models. This study advances early RPW detection using
acoustic data, addressing a crucial gap in pest detection solutions.

Wu et al. [Wu+23] presents an enhanced YOLOv5 object detection algorithm that is tai-
lored for efficient RPW management, addressing the limitations of manual counting and
enhancing agricultural monitoring. By integrating attention mechanisms, such as squeeze-
and-excitation (SE) and Convolutional Block Attention Module (CBAM), the model improves
feature extraction, achieving a high accuracy of 93.8% precision and an average of 90.1% pre-
cision on the RPW image dataset. The practical application of this algorithm is emphasized
for its real-time detection capabilities, aiding in prompt pest control measures, and its scal-
ability for broader pest predetection systems. Future research should focus on expanding
the dataset and leveraging additional modal information to enhance insect classification and
detection accuracy.
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3.4.2 Discussion

Research on the early detection of RPW has revealed a multitude of methodologies, under-
scoring the importance of developing effective detection systems. A range of technologies has
been employed in various studies, such as image processing, machine learning, deep learn-
ing models, acoustic feature recognition, and IoT-based systems, to address the challenge
of RPW detection. For example, Mufleh et al. [AH11] demonstrated the high accuracy of
Artificial Neural Networks (ANNs) in identifying RPWs, whereas Wang et al. [Wan+21]
achieved notable results by integrating fiber-optic distributed acoustic sensing with machine
learning.

Notwithstanding these encouraging outcomes, it is essential to address certain limitations
associated with these solutions. These include concerns regarding the scalability of these
solutions for real-time field applications and their adaptability to diverse environmental con-
ditions. Studies such as that by Al-Sanea et al. [Als+22] have underscored the need for
alternative deep-learning models to improve detection in various tree species.

Several studies have suggested the urgency of expanding datasets, utilizing more data, ex-
ploring advanced segmentation techniques, and including severity levels to provide more
comprehensive insights into pest infestations. Moreover, the implementation of cloud com-
puting, edge computing, and IoT technologies is highly recommended to overcome limitations
related to the scalability and applicability of these systems. However, practical challenges
persist in real-world applications, particularly regarding scalability and accuracy. To address
these challenges, interdisciplinary collaboration among agricultural science, data science, and
engineering is crucial for developing robust and practical RPW detection systems.

Notable limitations include the relatively limited variety of datasets used in certain studies
(Al et al. [AH11], Alaa et al. [Ala+20], Kurdi et al. [Kur+21]), potentially affecting the gen-
eralizability of developed models to broader scenarios. Moreover, the lack of comprehensive
testing under real-world conditions (e.g., Ashry et al. [Ash+22]) raises questions regarding
the practicality and robustness of these methods.

The evaluation metrics used in these studies are inconsistent, rendering comparisons of the
methods difficult. Standardized assessment measures are necessary to facilitate a more re-
liable evaluation. Additionally, the small sample sizes might have affected the statistical
significance of the results, thereby compromising the reliability of these findings.

High accuracy levels reported in some studies, such as 99% (e.g., [Wan+21; Als+22; Alb+23]),
might raise suspicion, especially in controversial contexts, given the impact of real-world
environmental factors on accuracy.

Discussions should focus on the effectiveness and scalability of IoT-based solutions in agricul-
ture, ethical concerns related to privacy and environmental impacts, and the specialization of
AI models for pest detection versus broader agricultural challenges. Despite these gaps and
controversies, the integration of IoT technologies for RPW detection and mapping remains
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limited in the presented studies.

By addressing the identified gaps and fostering discussions on these controversies, the devel-
opment and acceptance of RPW detection methods, particularly in the context of IoT and
mapping applications, can be significantly advanced.

3.5 Conclusion
This chapter has undertaken a comprehensive exploration of the current landscape and recent
advancements in smart precision agriculture, with a specific focus on palm tree management
and early detection of RPW diseases. The discussion was organized into three primary sec-
tions, each delving into the challenges and progress in the management of massive agricultural
data, innovative techniques for palm tree detection and counting, and recent strides in RPW
disease detection.

The examination highlighted the intricate aspects of handling Big Data sourced from re-
mote sensing and efficient storage of IoT-generated data within the agricultural context.
The investigation of palm tree detection methods underscored the importance of addressing
fundamental needs in the palm industry, emphasizing the development of modern tools for
effective management. Additionally, the exploration of RPW disease detection has showcased
cutting-edge solutions for early identification and mapping, which are critical for safeguarding
palm plantations.

In this section, a diverse array of solutions and research findings is presented, offering in-
valuable insights into the dynamic domain of smart precision agriculture. By strategically
focusing on the latest research, a thorough analysis and comparison of these solutions were
conducted, highlighting their significance in advancing the field. The knowledge synthesized
in this chapter establishes a robust foundation for subsequent chapters, setting the stage for
the implementation and integration of smart technologies in palm cultivation practices.

Looking ahead, the insights garnered from the examination of remote sensing big data and
IoT management in the context of smart precision agriculture contribute significantly to the
state-of-the-art. The synthesis of these advancements provides a nuanced understanding of
the challenges and opportunities of handling agricultural data, paving the way for sustainable
and efficient palm agriculture practices in the future.
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4.1 Introduction and motivation
The effective utilization of diverse data sources has become indispensable in the rapidly
evolving field of precision agriculture. This chapter focuses on multi-source data manage-
ment, concentrating on integrating massive remote sensing data, UAV observations, and the
intricate network of IoT sensor data. Our primary objective was to explore the challenges
and opportunities in efficiently managing these datasets, driving the advancement of smart
precision agriculture, particularly in Smart Palm Agriculture (SPA).

Satellite remote-sensing technologies significantly enhance our capacity to monitor agricul-
tural landscapes; however, the resulting data volume, surpassing 1TB per day, poses chal-
lenges in storage and management. The motivations for managing RS data in smart precision
agriculture are multifaceted. Satellite imagery, with high resolution, optimizes palm agricul-
ture by offering detailed insights and enabling interventions, such as precision irrigation and
pest management. Essential features such as the Normalized Difference Vegetation Index
(NDVI) from satellite imagery, which provides a quantitative measure of vegetation health,
are invaluable in smart palm precision agriculture. Variations in vegetation health can be
discerned by analyzing NDVI values, allowing tailored interventions.

UAVs offer real-time, high-resolution perspectives in agricultural fields and provide valuable
insights for precision analysis. The integration of massive amounts of UAV data is moti-
vated by their unique contributions, capturing detailed information to address time-sensitive
challenges. In the era of interconnected devices, IoT sensors play a crucial role in capturing
detailed information regarding agricultural environments. The motivation for incorporating
massive amounts of IoT data arises from its potential to provide real-time, context-aware
information that is vital for precision farming.

One of the key challenges in advancing smart-precision agriculture is the effective manage-
ment and storage of massive datasets. Our motivation, rooted in the pursuit of comprehensive
and scalable solutions, drives us to explore this chapter’s focus on managing the integration
of satellites, UAV, and IoT data, specifically addressing pressing storage issues. By address-
ing these challenges, our objective is to accelerate the progress of smart-precision agriculture,
envisioning a future in which data-driven insights empower informed, optimized decisions.
These applications align perfectly with the main objective of our thesis, which is to demon-
strate the practical value and transformative implications of multi-source data in enhancing
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agricultural practices. Significantly, this chapter aims to directly respond to the purpose
and objective of our first thesis by exploring the obstacles and prospects associated with the
integration of massive remote sensing data, UAV observations, and IoT sensor data.

In the context of my thesis on massive multisource data management, these challenges un-
derscore the critical need for innovative solutions to handle and exploit RSBD effectively.
Overcoming these obstacles will unlock the full potential of RSBD for applications such as
precision agriculture and environmental monitoring, thus facilitating sustainable and impact-
ful research in the field.

4.2 Background

4.2.1 Multi-resolution pyramid model

The multi-resolution pyramid model is a suitable way for managing and organizing both
large-scale and high-resolution RS image data. This model’s structure is easy to manage and
functions as a kernel data structure for many virtual globe systems, such as Google Earth.
The pyramid image is a block-oriented image decomposition that depicts a large-scale RS
image at several Levels Of Detail (LOD) in accordance with the image resolution, working
from the highest to the lowest level (Figure 4.1).

Figure 4.1: Four levels RS image tiled pyramid.

Figure 4.1 shows a four-level pyramid in action. The number of higher image quality levels
produced during the pyramid’s creation is referred to as the pyramid level. We obtain
additional layers of the pyramid as the image’s resolution increases. The original image is
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at the base of the pyramid. Consider a image at the base of the pyramid with a resolution
of 1024*1024 pixels. The resolutions quickly dropped to 512*512, 256*256, and 128*128 by
resampling the original image as the pyramid layers grew.

4.2.2 Hbase

HBase, a freely accessible distributed database that operates on the Hadoop Distributed File
System (HDFS), stands out as a notable example in this domain. It facilitates fault-tolerant
data storage and provides random, consistent, and real-time access to big data. HBase orga-
nizes data into tables based on rows and columns, with each unit of data comprising several
rows and specific columns referred to as an element. Elements retain multiple variations of
similar data recorded at different timestamps. In the HBase table, a column family consists
of a set of logically related columns, determined before table use, with columns dynamically
generated during utilization. Data in HBase are stored in a dictionary according to the order
of row keys. Each row key is unique, serving as both the sole identifier for the table files and
the primary key for data retrieval. These logical components are presented in the Figure 4.2
bellow.

Figure 4.2: Hbase Model

Physically [Liu+13], HBase is composed of:

• HBase Master: Responsible for region assignment to HRegion servers, handling DLL
operations (Create, delete tables), and monitoring the health of each region server.
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• HRegion Server: Runs on the Hadoop Distributed File System (HDFS) DataNode.
It communicates with HBase Master to get the list of regions to be served and informs
the Master that it is live.

• HBase Client: Responsible for discovering HRegion servers that are serving the par-
ticular row range of interest.

• HFile: The most basic element of HBase, achieving the fundamental function of fast
and efficient storage of Big Table data.

• Zookeeper: The coordinator used by HBase as a distributed coordination service.
Zookeeper maintains server health in the cluster.

The relationship between these components and how they work together is shown in Figure
4.3 below.

Figure 4.3: Hbase Architecture

4.2.3 InfluxDB

InfluxDB, a product of InfluxData developed using the Go programming language, is a
schemaless open-source time-series database that can be enhanced with optional proprietary
components. This database is designed for optimal performance when handling time-series
data, and offers an SQL-like query language. The open-source version of InfluxDB, known
as the TICK Stack (refer to Image 4.4), constitutes a comprehensive time-series database
platform that includes a range of services, such as the InfluxDB core, and can be deployed on
both cloud and on-premises infrastructures, even on a single node. InfluxData provides two
proprietary versions of InfluxDB: InfluxEnterprise (IE) and InfluxCloud (IC). These versions
offer additional features, including high availability, scalability, backup, and restoration and
can be deployed on premises with InfluxEnterprise or cloud infrastructure with InfluxCloud.
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Figure 4.4: Influxdb Architecture

The decision to utilize InfluxDB for storing IoT data, with a specific focus on red palm
weevil-related information for early detection, is strategic. InfluxDB, developed in Go as a
specialized time-series database, stands out for its efficiency. Its compilation into a single
binary file without reliance on external dependencies makes it an ideal choice for scenarios
involving timestamped big data, such as those encountered in IoT applications.

The repository [3] includes benchmarking code that evaluates InfluxDB against various
databases, including Elasticsearch, Cassandra, MongoDB, and OpenTSDB. This is partic-
ularly relevant for IoT applications because of its ability to mimic operations in scenarios
involving hundreds or thousands of virtual machines. The testing methodology was trans-
parent and carried an MIT license.

In practical IoT implementations, InfluxDB demonstrates an advantage with its high- per-
formance HTTP/S API for both write and query operations. It supports plugins, such as
Telegraf and Graphite, for data ingestion, enhancing its adaptability. The automatic ex-
piration and deletion of data, based on defined retention policies, ensures effective data
management over time. SQL-like Continuous Queries (CQ) facilitate interactions with data
by enabling automatic downsampling and expiring data, aligning well with the needs of IoT
environments.

The open-source characteristics of InfluxDB enable effortless integration into cloud-based
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platforms, thereby facilitating the transmission of time-series data between controlled intel-
ligent environments. In a typical configuration, a software agent situated at the gateway
oversees data flow within the smart environment.

In conclusion, InfluxDB is a suitable option for IoT applications, equipped with the necessary
functionalities for efficient data storage, retrieval, and administration, which are vital for
detecting early warning signs associated with red palm weevils [NK19].

4.3 Proposed approach for multi-modal data management
Databases are among the best ways to store data overall. However, they face challenges
in handling the rapid growth of geographical data, which leads to storage inefficiencies and
performance bottlenecks. To tackle this, we propose a distributed paradigm tailored for
managing extensive remote sensing image data efficiently. Our innovative Hbase model, built
on a tile pyramid image data structure, improves both storage and access through attribute
indexing. This system offers a clear method to effectively manage large-scale geographical
datasets across diverse sources.

The illustration of our multi-modal data management strategy in Figure 4.5 demonstrates
the harmonious blending of massive satellite, UAV, and IoT data, resulting in a cohesive and
expandable solution for effective storage and access of information. This innovative approach
consists of two distinct models, each specifically designed to address the unique challenges
and characteristics of remote sensing data and massive IoT data. These models are described
as follow:

4.3.1 RS Data Management Model

To guarantee the efficient storage of high-resolution remote sensing imagery, we have devel-
oped a HBase model based on a tile pyramid image data structure for distributed storage.
By indexing the metadata that characterizes the remote sensing data, we have significantly
enhanced both storage and access capabilities.

4.3.1.1 Pyramid model for image division

Typically, satellite images are larger than 300 MB. The image is divided, and then the data
volume is increased by one-third. As a result, according [CT14] and [LJW19], the amount
of mosaic tile data can approach 10 GB or 100 GB. [WCS09] The pyramid model based
on image block technology aids in the effective storage and access of RS data. Building
up a hierarchical, multiscale pyramid model with a global sub-division grid image is the
most popular way to arrange image data blocks. The image blocks of specified geographical
regions and resolution levels may thus be easily accessed by end users as needed, [CZW20].
RS images often consist of many bands. In this study, we discuss multi-band, high-resolution
satellite photos (i.g., multi-spectral images). Every band is a combination of various pyramid
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Figure 4.5: Multi-modal data management approach: (above) RS data man-
agement model, (below) IoT data management model.

layers, where a pyramid layer may offer a variety of blocks. Initially, the original image serves
as the foundation, situated at the apex of the pyramid, which is referred to as "level 0" (the
highest level of data). Subsequently, the pyramid was partitioned into equal segments. An
image pyramid is shown in Figure 4.6(a). Each partition is referred to as a tile. A tile is
characterized by its level, row, and column. These distinctions dictate how tile data are
encoded. The encoding procedure is illustrated in Figure 4.6(a).

The procedure for dividing a image is as follows: first, the high-resolution satellite image must
be split into several zoom levels based on the multi-resolution pyramid model (Figure 4.1).
The pyramid model’s images will then be separated into layers and rectangular tiles with the
same pixel size, as explained in the theory of partition. For instance, the tile size in ArcSDE
(SDE for Spatial Database Engine) is 128×128 while the tile size in Oracle GeoRaster is
256 × 256 [XXR07]. In the suggested system, the block size is set at 256 × 256 dollars by
default [LCG11]. Second, the row and column numbers (rownu, colnu) of a block in the
pyramid layer may be used to identify it. With a given longitude λ and latitude φ, the
following equations may be used to get the corresponding values at pyramid level κ:

rownu =
[
((φ+ 90)/(180/2k

]
mod 2k (4.1)

colnu = [((φ+ 180)/(180/2k)] mod 2k+1 (4.2)
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Figure 4.6: Pyramid model of bloc image.

Additionally, the (rownu,colnu) numbers and the pyramid level k might be used to denote
the geographic area of a tile as follows:

west = ((rownu mod 2k+1)× 180/2k)− 180 (4.3)

east = west+ 180/2k (4.4)

south = ((colnu mod 2k)× 180/2k)− 90 (4.5)

north = south+ 180/2k (4.6)

4.3.1.2 Image Data Storage Model

To effectively manage high-resolution remote sensing (RS) images, numerous researchers have
employed image-based structures for data division, as demonstrated in previous studies (e.g.,
[YMY+17]). Building on these findings, we designed a novel model that utilizes Hbase and
HDFS to store and access image data, leveraging the benefits of distributed databases.

Figure 4.7 depicts an overview of the suggested approach for the storage of image data. A
collection of RS image data makes up the recommended system’s entry. In our context,
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Figure 4.7: RS data system with HDFS and Hbase.

high-resolution (spatial, spectral, and temporal) images—such as multi-spectral and hyper-
spectral images—as well as high-spatial- and high-temporal-resolution images—are at issue.

Each of these images has many bands, as seen in Figure 4.7 (1)). Each band is divided into
many levels and blocks in accordance with the steps involved in constructing the pyramid
model (see the first section). So, for each band, a collection of pyramids is created. We
employed the band sequential format (BSQ) to store all data of the same position, from
all bands, in the same block in order to reduce the amount of data transmitted across the
worker nodes (Figure 4.7 (2)). The blocks are then removed from each pyramid and put
in the Hbase database. Based on Hbase and HDFS, we created a tile-based, scalable, high-
resolution data storage system. The metadata and RS image data blocks are kept in separate
tables, referred to as HRaster MetaDataInfoTable and HRasterDataTable, respectively. The
metadata column in the HRaster MetaDataInfoTable table is used to record the metadata
of each layer of the image in order to speed up data retrieval queries. When a new RS image
is imported, a new RasterDataTable table is created to store the tile file portions and a new
file of metadata is added to the HRaster MetaDataInfoTable (Figure 4.7 (3)).
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To improve the load balancing and security features provided by HDFS, we have implemented
a Hbase database on top of it. Hbase allows us to store vast amounts of data and enables fast
data queries based on row keys. This integration provides a scalable and efficient solution
for managing and accessing RS data.

In Figure 4.7 (4), we illustrate the master/slave architecture of HDFS. The DataNodes are
responsible for storing the actual block data, while the NameNodes oversee the file system
and metadata of the entire RS data. This distributed architecture ensures high availability
and fault tolerance for the RS data. By leveraging the combined capabilities of HDFS and
Hbase, we can effectively manage and process large-scale RS data while benefiting from load
balancing, security features, and fast data retrieval.

We applied the balanced placement strategy (BPS) and periodic storage strategy (PSS)
suggested in [WWZ20] to increase the effectiveness of the distributed database. The tiles will
first be distributed evenly across the nodes in accordance with the BPS approach (Figure
4.8). Since the tiles will be kept together based on their spatial correlation, this method
helps to prevent data skew and hot-spotting and enhances query performance. Second, when
storing tiles of the same image, the PSS technique aggregates the tile according to the period
to save data blocks. As a result, the suggested technique enhances not only the efficiency of
data administration and access but also the temporal interaction inside data blocks.

4.3.1.3 RS tile data index

The space-filling curve (SFC) has several definitions that are based on various mapping
possibilities (such as Morton, Peano, and Gray); see [Sag12] [BCM18] for examples. The
Hilbert SFC appears to be superior and more stable when compared to other linearization
curves. Therefore, we suggest using the Hilbert SFC technique to index each tile and fill
the grid of each image [BCM18]. This approach, which converts two-dimensional spatial
locations into one-dimensional space and assigns cells unique codes, guarantees the data’s
great spatial closeness [WWZ20]. As a result, tiles with matching Hilbert codes are preserved
together.

The production of the four order Hilbert curves (H1, H2, H3, and H4) for both 1D and 3D
data is shown in Figure 4.9, which is based on step-wise geometric recursion. We develop the
concept of tile indexation and row keys for each tile in the database in accordance with the
design of the pyramid model and the Hilbert curve indexation model.

For tile data made up of four main sections, we utilized a sample from a row-key model (see
Figure 4.10). RasterID is stored in bits from 0 to 15, pyramid level number is stored in bits
from 15 to 16, image band number is stored in bits from 16 to 32, and the final 32 bits of the
row-key are used for the Hilbert code, which identifies the tile’s spatial placement within the
image. We can quickly run particular queries thanks to RS data indexation. Additionally, we
can quickly retrieve RS data stored in the database for data processing and analysis thanks
to the RS tile data index.
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Figure 4.8: Tiles distribution using BPS.

The proposed model initiates with the introduction of a unified metadata file model, founda-
tional for standardizing metadata across diverse distributed data centers, facilitating seamless
importation and integration of data. This is followed by the implementation of two data or-
ganization models– the pyramid model and the Hilbert-SFC-based data-indexing mechanism,
strategically enhancing the efficiency of querying and accessing remote-sensing images. For
robust data management, the integration of the NoSQL database management system Hbase
ensures the efficient distribution of stored data across multiple nodes, enhancing scalability
and accessibility. Additionally, the utilization of the Hadoop framework plays a pivotal role
in managing and processing remote sensing big data. This comprehensive system, encom-
passing unified metadata modeling, advanced classification models, and distributed database
and processing frameworks, forms an integrated solution for multi-source remote sensing data
management and storage.

4.3.1.4 Standardizing the Archival Model for RS Metadata

The role of RS metadata is pivotal in facilitating complementary studies on Earth observa-
tions. Efficient management of these metadata can streamline the application and exchange
of RS knowledge. In this study, RS metadata refer to the descriptive information associated
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Figure 4.9: The filling process of the Hilbert curve for tiles data index.

Figure 4.10: Hbase key value structure

with satellite image data, where these metadata are generated to store attribute informa-
tion. However, the components of metadata files are diverse, introducing complexities in
the unified management of RS metadata. For instance, in the ZY-3 metadata file, the fields
"Satellite-ID" and "Sensor-ID" correspond, whereas in the Landsat 8 metadata file, the fields
"SENSOR-ID" and "SPACECRAFT-ID" serve as the sensor identifiers in the satellite and
the satellite identifier of the image, respectively. Therefore, it is imperative to establish a
unified archiving model for RS data management.

Unified Satellite Image Metadata In this study, we adopted the ISO 19115-2:2009
standard for geo-information metadata, which is the second section of ISO 19115 and an
extension of the image and grid data. This standard has been incorporated into the global
metadata warehouse Common Metadata Repository (CMR), becoming a standard for data
sharing, integration, and recovery between geo-data centers and international geographic
information organizations. We employed a uniform standard format model for archiving the
RS metadata; its defined fields are listed in Table 4.1. This standard is established based
on a comprehensive survey and investigation of existing metadata standards, including the
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ISO 19115 geographical information metadata standard, and CSDGM (Content Standard for
Digital Geospatial Metadata) ISO 19115:2003 cor.1:2003, along with the metadata structure
of various RS data resources.

Unified UAV Image Metadata A comprehensive and robust model for the metadata
of UAV images was developed in conjunction with the standardization of satellite image
metadata. This model, which is detailed in Table 4.2, encompasses the essential fields for
organizing and describing UAV-captured images. The ’ImageInfo’ section includes key in-
formation such as the ’ImageName,’ ’UAV-ID,’ and ’Camera-ID’ for the purpose of unique
identification. The temporal aspects of the images are covered by ’CaptureTime,’ while
the spatial dimensions are encapsulated in ’GPS-Latitude,’ ’GPS-Longitude,’ and ’Altitude.’
Information about the UAV’s orientation, the specific sensor used (’SensorInfo’), image reso-
lution, and the flight path taken during capture (’FlightPath’) contributed to the richness of
this metadata model. Furthermore, insights into prevailing weather conditions during image
capture enhance the contextual understanding of the data. ’DataLink,’ DataProvider,’ and
’DataOwner facilitate seamless data-retrieval ‘and’ ownership attribution. Overall, this UAV
Image Metadata Model adheres to a unified structure for consistent and organized archival
UAV image data, thereby enabling cohesive analysis and interlinking with other geospatial
datasets.

4.3.2 Massive IoT data storage

In the second model, we shifted our focus to IoT devices and their integration into AWS in-
frastructure. AWS provides a comprehensive suite of services, each serving a specific purpose
in our data processing pipeline.

4.3.2.1 Data Transmission: MQTT Protocol

The message queue telemetry transport (MQTT) protocol serves as the foundation for an
effective IoT data transmission. This adaptable and streamlined messaging system stream-
lines communication between IoT devices and the extensive AWS ecosystem. Designed to
function optimally in resource-limited settings, MQTT guarantees prompt and dependable
transmission of data, making it an ideal choice for managing the red palm weevil dataset and
similar applications that require real-time data exchange. The following Equation represents
the efficiency calculation:

Efficiency =
Data Successfully Transmitted

Total Data Sent
(4.7)

4.3.2.2 Data Ingestion: AWS IoT Core and SQS

The AWS IoT Core is a crucial element in the domain of data ingestion, acting as a cen-
tral hub for coordinating and processing substantial volumes of data originating from IoT
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Table 4.1: Standard archival model for RS metadata

Classification Field name Description
MetadataInfo Creation Time of metadata creation

Last update Time of last update
ImageInfo ImageName Image data name

Tilescodes
Level
Satallite-ID Satellite identifier
Sensor-ID Sensor identifier
ReceiveTime Time of data reception
Satallite-ID Satellite identifier
ReferencesysitemID Reference coordinate system
Time-beginposition Start time
Time-endposition Stop time
ProductLevel Product level
ProductFormat Product format
Time-endposition Stop time
SpatialResolution Spatial resolution
Time-endposition Stop time
ProcessingLevel Pprocessing level
Centerlongtude Center point longitude
Centerlatitude Center point latitude
TopLeftLatitude Latitude in the upper-left corner
TopLeftLongitude Longitude in the upper-left corner
TopRightLatitude latitude in the upper-right corner
TopRightLongitude Longitude in the upper-right corner
BottomRightLatitude Latitude in the lower-right corner
BottomRightLongitude Longitude in the lower-right corner
BottomLeftLatitude Latitude in the lower-left corner
BottomLeftLongitude Longitude in the lower-left corner
FilePath Path
SceneRow Row
CloudPercent Cloud cover volume
DataLink Data download URL
DataProvider Data provider
DataOwner Data owner
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Table 4.2: Standard UAV Image Metadata Model

Classification Field name Description
MetadataInfo Creation Time of metadata creation

Last update Time of last update
ImageInfo ImageName Image data name

UAV-ID UAV identifier
Camera-ID Camera identifier
CaptureTime Time of image capture
GPS-Latitude Latitude of UAV at capture
GPS-Longitude Longitude of UAV at capture
Altitude Altitude of UAV at capture
Orientation UAV orientation
SensorInfo Information about the camera/sensor used
Resolution Image resolution
FlightPath Path followed during the UAV flight
WeatherConditions Conditions during image capture
DataLink Data download URL
DataProvider Data provider
DataOwner Data owner

devices. This robust service is dedicated to providing secure, scalable, and low-latency com-
munication, which is of utmost importance when dealing with massive IoT datasets such as
those associated with red palm weevil monitoring. To optimize data flow, the AWS utilizes
a Simple Queue Service (SQS) as an intermediary, effectively queuing incoming IoT data.
This not only increases efficiency, but also paves the way for subsequent processing that is
specifically tailored to the nuances of the red palm weevil dataset. The following Equation
represents the optimization calculation:

Optimization =
SQS Queued Data

Total Incoming Data
(4.8)

4.3.2.3 Processing: AWS Lambda Functions

Understanding the intricate task of managing the red palm weevil dataset requires a ro-
bust processing mechanism. AWS Lambda functions, with their serverless architecture, serve
as critical components in executing vital operations, such as effortlessly inserting data into
databases. This serverless approach imbues flexibility and scalability, enabling seamless adap-
tation to fluctuating workloads inherent in red palm weevil monitoring. Be it real-time data
processing or periodic analysis, AWS Lambda functions are poised to fulfill the unique re-
quirements of red palm weevil dataset management, thereby fostering an agile and responsive
system. The following Equation represents the flexibility calculation:
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Flexibility =
Serverless Operations

Total Operations
(4.9)

4.3.2.4 InfluxDB for IoT Data Storage

InfluxDB, a database management system renowned for its expertise in handling time-series
data, plays a pivotal role as the ultimate storage solution in architecture. The data, trans-
mitted through the MQTT pipeline, are seamlessly integrated with the AWS IoT Core and
are efficiently buffered via SQS before determining its ultimate destination in InfluxDB. The
architecture of the database was meticulously optimized to meet the specific demands of
handling massive IoT datasets, making it a scalable, high-performance, and well-organized
repository. This level of optimization is crucial for managing the red palm weevil dataset. In
the context of RPW IoT data, InfluxDB is a critical component offering an ideal solution.
As data undergo transmission, integration, and buffering, the specialization of InfluxDB in
handling time-series data becomes evident. Its scalability ensures adaptability to increasing
data volumes and provides a sustainable solution for the continuous monitoring of red palm
weevils. The database’s exceptional performance facilitates real-time insights, whereas its
organized repository management enables logical categorization and indexing, ensuring the
ease of data retrieval. In summary, InfluxDB emerged as a tailored and finely tuned solution
perfectly aligned with the complexities of the red palm weevil dataset.

In the context of RPW monitoring, InfluxDB provides a robust solution for efficiently man-
aging both metadata and sensor data:

Metadata Data Management in InfluxDB

The metadata, containing information about monitoring stations, is organized in a measure-
ment called metadata. Each monitoring station is uniquely identified by a station_id tag
and additional fields such as location, latitude, and longitude offer valuable contextual
information. An example is shown in Figure 4.11.

Figure 4.11: Metadata Data Management in InfluxDB

RPW Sensor Data Management in InfluxDB

For RPW sensor data, a measurement named rpw_sensor is employed. This measurement
includes fields like temperature, humidity, and status. The station_id tag associates each
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data point with a specific monitoring station, facilitating organized retrieval and analysis.
An example is shown in Figure 4.12.

Figure 4.12: RPW Sensor Data Management in InfluxDB

This structured approach enables seamless queries to extract insights from both metadata and
sensor readings. Leveraging InfluxDB’s flexibility, this model ensures efficient data storage,
retrieval, and analysis for comprehensive RPW monitoring.

4.4 Experimental and results
In this section, we focus on evaluating the effectiveness of remote sensing image data model
of storage. We deliberately excluded any tests related to the IoT data storage model, as
numerous comprehensive studies have already conducted extensive comparisons between our
chosen database, InfluxDB, and other databases. These studies have assessed its performance
and benchmarked its effectiveness across diverse contexts and scenarios [NK19; Gia+20;
HKK; WŁO+23]. The collective results of these studies emphasize the strong justifications
for selecting InfluxDB as our preferred database solution for storing massive Iot data.

4.4.1 Dataset collection

The experimental dataset comprised an extensive and varied collection of high-resolution
remote sensing (RS) images sourced from multiple satellite platforms and sources. These
include Spot-6 and Spot-7, which provide multispectral data with four bands at resolutions
of 1.5 meters and 6 meters, respectively; QuickBird, which offers multispectral data with four
bands at resolutions of 0.65 meters and 2.4 meters; and unmanned aerial vehicles (UAVs)
that capture RGB images with resolutions varying based on the platform.

Additionally, data from Copernicus (Sentinel-2) contributed to 13 bands with resolutions
ranging from 10 m to 60 m, while Sentinel-3 (OLCI) provided 21 bands with resolutions
ranging from 300 m to 1 km. WorldView-3 delivers eight multispectral and eight shortwave
infrared bands at a high resolution of 1.24 meters, whereas Landsat 8 contributes 11 bands
with resolutions of 15, 30, and 100 m. Hypersat supplies hyperspectral data with up to
448 bands and WorldView-2 features eight multispectral and eight coastal blue bands at a
resolution of 1.84 meters.
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This diverse dataset, with its multispectral and hyperspectral characteristics, offers a broad
spectrum of information and is a valuable resource for conducting comprehensive experiments
and analyses in remote sensing and environmental applications.

The dataset was meticulously organized into several groups, each of which represents a dis-
tinct data size. This arrangement enables testing and experimentation across a range of
resource intensities. The sizes of these categories ranged from 20GB to 40GB, with the
possibility of expansion up to 100GB. They have been tailored to specific characteristics,
providing flexibility for evaluating performance on various scales. The dataset comprises a
diverse array of sources, high resolutions, and multispectral and hyperspectral layers, reflect-
ing a comprehensive effort to enhance the effectiveness of our proposed method in remote
sensing and environmental applications.

Table 4.3: RS images data details

Data source Number of Bands Resolutions
Spot-6 4 1.5 m, 6 m
Spot-7 4 1.5 m, 6 m
QuickBird 4 0.65 m, 2.4 m
UAVs (RGB) 3 (Red, Green, Blue) Varies by UAV platform
Copernicus (Sentinel-2) 13 10 m, 20 m, 60 m (depending on band)
Sentinel-3 (OLCI) 21 300 m - 1 km (depending on band)
WorldView-3 8 (Multispectral), 8

(Shortwave Infrared)
1.24 m

Landsat 8 11 15 m, 30 m, 100 m
Hypersat Up to 448 Varies by band (e.g., 2.5 m, 5 m, 10 m)
WorldView-2 8 (Multispectral), 8

(Coastal Blue)
1.84 m

OLCI: Ocean and Land Color Instrument

4.4.2 Evaluation metrics

Four measurements were used for the evaluations: speedup, efficiency, scaleup, and sizeup.
The following sub-sections discuss these measurements and the results obtained.

In evaluating a parallel system, two performance measures of particular interest are speedup
and efficiency

Speedup

Speedup is a metric used to evaluate the potential improvement in the execution time that
can be achieved through parallelism. It is calculated as the ratio of the sequential execution
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time to the parallel execution time and is expressed as follows:

Speedup (Sm) =
T (1)

T (m)
(4.10)

Where the execution time of a task on one computing node is represented by T(1), while
the execution time of a parallel task utilizing m computing nodes is represented by T(m). A
perfect parallelism results in a linear speedup, where a system with m times the number of
computing nodes achieves a speedup of m. However, achieving linear speedup is challenging
due to the increasing communication costs associated with an increase in the number of
computing nodes. According to [EZL89], processes with an efficiency of greater than 0.5
(50%) are considered to have achieved good performance.

Efficiency

Efficiency is defined as the average utilization of n allocated processors. Ignoring the I/O,
the efficiency of the single-processor system was 1. The speedup in this case was, of course,
1. In general, the relationship between efficiency (E) and speedup (S) is given by

E(n) =
S(n)

n
(4.11)

If the efficiency remains at 1 as processors are added, we have a linear speedup. Technically,
for linear speedup, only S(n) = C ·n for some constant C, where 0 < C ≤ 1. We use a stricter
definition C = 1 throughout. This is the ideal case, as improvements in speedup can be
obtained at no cost in terms of efficiency. In general, linear speedup is not achievable because
of contention for shared resources, the time required to communicate between processors and
between processes, and the inability to structure the software such that an arbitrary number
of processors can be kept busy.

Eager, Derek L and Zahorjan [EZL89] noted evidence that the “typical” speedup has the
form:

Speedup(S(n)) = log n (4.12)

Other studies have provided evidence that much larger “typical” speedups can be attained.

Scaleup

In the context of parallel computing, the term "scaleup" refers to the capability of a parallel
system or application to manage larger workloads or datasets as the system’s resources,
such as processors, memory, or storage, are increased or scaled. Scaleup is often evaluated
by assessing the performance of a system as the complexity of the problem being solved
increases. Scaleup is closely associated with the concept of "scalability," which encompasses
a system’s ability to handle increased amounts of work by adding more resources. Scaleup
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specifically pertains to the enhancement in performance or efficiency as the system scales,
typically by adding more parallel processing units.

In a parallel system, achieving good scale-up implies that as the system size or complex-
ity increases, computational performance improves or remains consistent. This is a crucial
consideration in the design and evaluation of parallel algorithms and architectures, as it di-
rectly affects the system’s ability to handle computationally demanding tasks efficiently. The
scale-up of a parallel system can be mathematically expressed as follows:

Scaleup(m) =
T (1, D)

T (m,mD)
(4.13)

where m is the number of computing nodes, T (1, D) is the execution time of the tasks on 1
computing node with a data size of D, and T (m,mD) is the execution time of the parallel
tasks with m computing nodes and a data size m times D. Perfect parallelism demonstrates
a constant scaleup.

Sizeup

Sizeup evaluates the ability of parallelism to handle growth, measuring the execution time
of parallel tasks as the data size increases. It assesses how much longer it takes to execute
parallel tasks when the data size is n-times larger than the original datasets. Sizeup analysis
maintains the number of computing nodes constant and grows the size of the datasets by the
factor n. Sizeup can be expressed as follows:

Sizeup(m,n) =
T (m,nD)

T (m,D)
(4.14)

where m is the number of computing nodes, n is the incremental factor of the data size,
T (m,D) is the execution time of parallel tasks with m computing nodes and data size D,
and T (m,nD) is the execution time of parallel tasks with m computing nodes and data size
n times D.

4.4.3 Experimental Setup

The Our experimental methodology relies on the use of virtual machines that have been
carefully designed within the Amazon Web Services (AWS) cloud platform. AWS provides
a comprehensive suite of analytics management services based on open-source principles.
This environment seamlessly supports well-known open-source frameworks including Apache
Hadoop, Apache Hive, Apache Kafka, Apache Spark, and Apache Storm [JMK23].

The detailed specifications of the cluster nodes, as outlined in Table 4.4, provide a com-
prehensive overview of the essential attributes that drive the experimental setup. Notably,
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the deployment included instances of Hbase version 1.4.13, ZooKeeper version 3.4.14, and
Hadoop version 2.7.3 across all instance machines.

This carefully controlled environment underscores the robustness and reliability of our exper-
imental studies, enabling us to assess our proposed approaches within the dynamic landscape
of cloud-based analytics on an AWS platform.

Table 4.4: AWS EC2 Instances Node Description

Node type Head Node Worker node
Instance m5.large m4.large
Node size 2 vCPUs, 8GB RAM 2 vCPUs, 8GB RAM
OS Linux Linux
Hourly Price $0.096 $0.032
AWS EC2 Price $0.064/hour $0.064/hour
Total Price $0.16/hour $0.096/hour

4.4.4 Experimental results and discussion

4.4.4.1 Experiment A: Parameter Optimization of tile size:

In this experiment, two different parameters, the tile size, and the data size were selected to
compare the slice time per response time. As measures for the performance comparison, we
took into account two storage models at various sizes as well as time storage.

Figure 4.13 shows that when the tile size increases, the reaction time also increases and vice
versa. Additionally, we see that the division time is growing at the same rate as the RS data
size. We must carefully select the value of the tile size option if we want to meet the quick
query response time criterion. Additionally, when the RS image data size is huge, image
processing effectiveness may be increased. In this situation, an equilibrium parameter value
must be chosen to satisfy the needs of both users for quick data access and image processing.

4.4.4.2 Experiment B: Scalability on cluster and data size

In this experiment, we examine how effectively the recommended distributed management
architecture handles large quantities of high-resolution photos. First, the database’s ingestion
performance is evaluated to measure the impact of the cluster’s data node count at the
moment of data writing. For comparison, the suggested Hbase model is combined with the
conventional Oracle geographical database. As a result, while the number of data nodes rose
from 1 to 12, the overall size of the data was maintained.

Second, the performance of ingestion for each group of nodes is examined while the dataset
size is increased in order to quantify the impact of data size. Each of the compute nodes uses
seven sets of images with varying volume sizes ranging from 20GB to 100GB. The photos are
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Figure 4.13: Response time and slice time of 4 construction methods with
different tile size value and data size respectively

Figure 4.14: (a) Data ingestion time of different worker nodes, (b) Write time
for different data size

separated into blocks and then stored in each of the 12 nodes. from Reference 4.14.a, For
both Hbase and Oracle Spatial databases, it is apparent that the amount of time required
for data import decreases as the number of worker nodes in the cluster rises. The storage
performance of the suggested approach with Hbase is comparatively more stable, despite the
fact that both databases scale well. This finding leads us to the conclusion that performance
may be improved by adding more worker node instances to the cluster, especially when there
is a strong network connection between the data nodes. Figure 4.14.b illustrates it from the
other side.b) that the time needed to insert the RS data image initially varies very slightly
across the two types of databases before increasing proportionally as the size of the RS image
data rises.

The suggested model’s data importation performance is comparatively steady, and the differ-
ences between the two databases are clear. The suggested tile-based distributed management
approach of huge, high-resolution satellite images has thus been refined in light of the testing
results.
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4.5 Conclusion
The proposed multimodal system serves as a foundational framework for addressing critical
tasks in precision agriculture, particularly in the context of palm tree management and pest
detection. In anticipation of our forthcoming contributions, our primary focus will be on
employing this system for efficient palm tree detection and counting, as well as for the early
detection of the RPW.

Our upcoming contribution, "Efficient Palm Tree Detection Using Deep Learning and UAV
Imagery," builds upon the fundamental principles of our multi-modal approach. By seam-
lessly integrating deep learning techniques with UAV imagery within our unified system, we
aim to improve the precision and efficiency of palm tree detection and counting, ultimately
contributing to the advancement of state-of-the-art methodologies in precision agriculture.

Our second contribution focuses on the early detection of the Red Palm Weevil, a destruc-
tive pest in palm cultivation. By harnessing the capabilities of our multimodal system, we
strive to deliver a robust and timely solution for identifying the signs of RPW infestations.
Early detection is crucial for implementing effective pest control measures, thereby promoting
sustainable management of palm plantations.

The versatility of our proposed multimodal system enabled us to address distinct challenges
in both palm-tree management and pest detection. The success of these contributions will
further validate the adaptability and efficacy of our system across various agricultural do-
mains, making significant strides in the application of advanced technologies for sustainable
and precision farming practices.
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5.1 Introduction and motivation
Building on our earlier approach to multi-source agriculture management, we now consider
this an equally important aspect of our overall plan. This chapter describes our novel method
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for efficiently detecting palm trees using DL and UAV imagery. We chose this method for
two reasons: first, it presents a major challenge in precision agriculture, and second, it fits
effortlessly into our second goal of smart palm agriculture applications.

Palms are economically and environmentally important in a variety of agricultural areas and
require accurate detection and continuous monitoring for optimal land management. How-
ever, the complexity of palm tree detection encompasses a variety of problems, such as the
varying appearance of trees, occlusions, and changing environmental conditions. To address
these multiple difficulties, we leverage the power of state-of-the-art deep learning algorithms
combined with high-resolution data collected by UAVs. This comprehensive methodology
overcomes the limitations of conventional approaches and enables accurate palm tree detec-
tion, counting, and monitoring.

UAV imagery has proven to be extremely effective for monitoring palm plantations. These
techniques support several applications, including land cover classification, tree detection
and counting, yield estimation, age determination, and pest and disease detection. Remote
sensing provides valuable temporal and multimodal data that improves palm plantation pro-
ductivity.

High-resolution imagery RS, especially very high-resolution (VHR) satellite imagery, provides
a cost-effective solution for automatic canopy detection and allows accurate palm detection
and counting. Aircraft equipped with infrared, LiDAR, and multispectral sensors also con-
tribute to this process. However, budget constraints often limit the use of space and airborne
platforms, especially for small and medium enterprises.

In this context, UAVs offer a cost-effective and flexible alternative for palm detection and
monitoring. They capture high-resolution images at customizable altitudes and speeds, pro-
viding detailed and accurate information. Compared to other platforms, UAVs also offer bet-
ter accessibility and maneuverability. Consequently, drone imagery has become the preferred
data source for palm plantation monitoring, offering cost savings, comprehensive coverage,
and access to remote areas [WW12; BCM12; AM14].

In the last decade, remarkable advances in computer hardware and the rapid development
of AI technology have opened new avenues for object recognition and feature extraction in
remote sensing imagery. CNNs, a key component of AI, have driven these developments.
There are several CNN architectures for object recognition in computer vision and image
analysis, which can be divided into two main categories: two-stage and single-stage models.
An influential milestone in the field is the two-stage object recognition model called R-CNN,
introduced in 2013 by Girshick et al. [Gir+14] This model has significantly advanced the
field.

Our research addresses the use of the YOLOv8 a one single stage DL model in conjunction
with UAV imagery for automatic palm tree detection and counting. Our goal is to evaluate
the performance of this approach by comparing it to the YOLOv5 and YOLOv4 models
used in a previous study that provided the dataset for our experiments. This study aims to
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provide more accurate and timely plantation statistics that will benefit stakeholders involved
in palm management.

In summary, the main contributions will be presented in this chapter can be described as
follows:

• New YOLOv8-based detection method: We present a unique YOLOv8-based
model tailored for date palm detection and counting. This model was trained on UAV
imagery to provide accurate date palm identification and counting.

• Performance comparison: We evaluate the effectiveness and efficiency of our ap-
proach by comparing it to other innovative methods, including YOLOv5. We analyze
the accuracy and computational efficiency.

• Real-World Dataset Testing: Our experiments include real-world datasets and
demonstrate the versatility and effectiveness of our method in different scenarios and
environments.

• Quantitative Results: We provide quantitative measurements comparing our ap-
proach to six leading deep object detection models. This demonstrates the superior
performance of our method in palm tree detection.

• Qualitative Results: The effectiveness of our model’s performance is demonstrated
through visually appealing examples, which highlight its capacity to accurately detect
palm trees in a range of situations. This qualitative analysis complements the quanti-
tative results, offering a comprehensive insight into the resilience and versatility of our
proposed method.

5.2 Methodology
The primary objective of this project was to identify the presence of palm trees in images
by utilizing the capabilities of a pre-trained CNN known as YOLOv8. Although YOLOv8 is
not specifically designed for palm-tree classification, its strength lies in its ability to extract
features from images, allowing it to mathematically describe the geometries or objects present
in an image.

The proposed methodology employs the YOLOv8 framework for object identification with
the aim of achieving accurate and efficient detection of date palms. The process, illustrated
in Figure 5.1, unfolds in two distinct phases: "Offline" and "Online." The offline phase
commences with the UAV image database serving as the input dataset. Through region
selection, rectangles were drawn around areas of interest potentially containing date palm
plants, narrowing the focus for future training. Bounding boxes are then created around the
date palm instances at specified locations, generating truthful annotations for the training
data.
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Figure 5.1: Flowchart of the proposed method for detection of date palm
trees.

This annotated dataset was subsequently integrated into the UAV dataset to facilitate fine
tuning. The YOLOv8 model, which is a state-of-the-art object recognition method, was fine-
tuned using weights from a general object recognition task. This approach enabled the model
to specialize in reliable date palm recognition. In the online phase, users can input image
queries depicting the environments with potential date palms. The fine-tuned YOLOv8 model
evaluates these queries by providing bounding boxes for detected date palms. In addition,
the system offers real-time information on the count of date palms in the image, thereby
enhancing its practical utility.

The dataset used for training consisted of two classifications: palms and trees. These labeled
data are employed to train CNNs within the YOLOv8 framework, with the aim of achieving
binary classification to differentiate palm trees from other tree species. In the classification
process, the detected palms and trees are enclosed within rectangles to account for variables
such as size variations, potential overlap or occlusion with other objects, and diverse back-
grounds such as sand or buildings. Addressing these variations within rectangular image
pixels is essential for effective CNN training, ensuring that the trained models can accurately
distinguish palm trees from other trees.

To prepare the dataset for YOLOv8 model training, a preprocessing stage was implemented.
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This includes creating bounding boxes, cropping and saving images, and converting the data
to the YOLO format. These steps are critical for ensuring that the dataset is appropriately
structured and ready for model training. The iterative nature of this comprehensive ap-
proach, encompassing dataset preparation and YOLOv8 model training, establishes a robust
foundation for precise and reliable palm-tree detection in UAV images.

5.2.1 Data-preprocessing

We used a two-step technique to increase palm detection accuracy and training efficiency.
First, we created the largest bounding boxes that could enclose the palms in the images. This
was done by developing a customized algorithm. The method iterated over a list of bounding
boxes to determine the coordinates of the largest bounding box that contained all the smaller
boxes. The resulting largest bounding boxes provided a more comprehensive representation
of the palm regions of interest. Details can be found below:

We then cropped and saved the images based on the largest bounding boxes generated. Each
image in the dataset was cropped based on the coordinates of the matching largest bounding
box. This technique eliminates the specific focus area of the palm tree and disregards the
background. This technique eliminates irrelevant background information and focuses on the
occurrence of the palm tree. We provide targeted and relevant information to improve the
accuracy of palm identification algorithms by identifying palm zones of interest.

Images were then cropped using the largest bounding boxes to ensure that analysis and model
training focused on the most valuable and representative parts. This strategy ensured that
the most informative parts of the images were used for future analysis and model training.
The cropped images served as the basis for developing and testing our YOLOv8-based palm
recognition algorithm.

5.2.2 Yolo for palm recognition

While Faster R-CNN belongs to the family of two-stage object detectors, YOLO belongs to
the class of one-stage object detectors. This is a novel approach to real-time object detection
in images or videos. The key idea behind YOLO is to perform object detection in a single
pass rather than using the traditional two-stage approach of applying a classifier to regions of
interest. YOLO employs a single CNN to predict the bounding boxes and class probabilities
directly from full images in one evaluation. The development of the first version of YOLO
was initiated in 2016 by Redmon et al. [Red+16]. Since then, it has been considered one of
the most attractive state-of-the-art models for object detection. In the years following the
release of the original YOLO algorithm, various updated versions and variations of YOLO
have been developed, such as YOLOv2 and YOLOv3 by Joseph Redmon and Farhadi [RF17]
[RF18], each delivering substantial improvements in both performance and efficiency. In
2020, Bochkovskiy et al. [BWL20] and Jocher [Joc22] developed the YOLOv4 and YOLOv5,
respectively.
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Algorithm 1: Generating Largest Bounding Boxes and Cropping Images
Data: List of bounding boxes bboxs
Result: Cropped images based on the largest bounding boxes

1 Initialize largest_box_xmin to ∞;
2 Initialize largest_box_ymin to ∞;
3 Initialize largest_box_xmax to −∞;
4 Initialize largest_box_ymax to −∞;
5 Initialize empty list cropped_images;
6 for each bounding box bbox in bboxs do
7 Retrieve xmin, ymin, xmax, ymax from bbox;
8 if xmin < largest_box_xmin then
9 largest_box_xmin← xmin;

10 end
11 if ymin < largest_box_ymin then
12 largest_box_ymin← ymin;
13 end
14 if xmax > largest_box_xmax then
15 largest_box_xmax← xmax;
16 end
17 if ymax > largest_box_ymax then
18 largest_box_ymax← ymax;
19 end
20 end
21 for each image in the dataset do
22 Crop the image based on

[largest_box_xmin, largest_box_ymin, largest_box_xmax, largest_box_ymax];
23 Save the cropped image in a separate directory;
24 Add the cropped image to cropped_images;
25 end
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The YOLO algorithm is fast and accurate, making it well suited for real-time applications
such as video surveillance, self-driving cars, and video games. They also have the potential
to be used in various applications related to analyzing palm crops as well as for identifying
and counting palm trees in images or videos. The real-time processing capabilities and object
detection efficiency of YOLO make it a highly efficient solution for tasks such as counting
palm trees. The implementation of CNNs in YOLO further enhances the accuracy of palm
tree detection. This automated tree counting process can offer reliable data for researchers
and planners. Moreover, YOLO proves valuable in detecting pest infestations in palm tree
plantations, enabling timely intervention to protect the trees. YOLO’s capacity to survey and
monitor large areas makes it a versatile tool for assessing tree health, identifying instances
of illegal cutting, and facilitating plantation planning.

In conclusion, YOLO demonstrates promising results for palm tree detection and serves as a
valuable tool for automating the mapping and monitoring of palm tree populations in diverse
environments. However, it’s essential to acknowledge that YOLO, like other object detection
algorithms, may exhibit sensitivity to variations in training data and could require careful
tuning for optimal performance.

5.2.2.1 YOLOV5-YOLOV8

This section delineates the most notable algorithms of recent times and provides an exhaustive
summary of the critical elements of this paper that concentrate on enhancing YOLOv8.
YOLO, a highly respected real-time object detector, has gained broad recognition owing to
its lightweight network architecture, effective feature fusion methods, and improved detection
accuracy. At present, YOLOv5 and YOLOv7 are the two most prevalent algorithms in use.

YOLOv5 is a one-stage target detection algorithm that utilizes a network structure compris-
ing inputs, trunks, necks, and outputs. The algorithm offers four distinct models - YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x - each increasing in network depth and weight file size.
To optimize computational efficiency and minimize network complexity, the YOLOv5s model
was selected for experimental training, with a particular focus on real-time detection perfor-
mance. The network architecture of the YOLOv5s model is shown in Figure 5.2.

YOLOv5, developed by Ultralytics in 2022 [Boe23], brings substantial enhancements com-
pared to its predecessor, YOLOv4. These improvements encompass faster detection speed,
increased accuracy, expanded support for object classes, a streamlined architecture, enhanced
resilience to image-level noise, adaptability to different resolutions and aspect ratios, im-
proved memory usage, and various other features. Additionally, the model undergoes train-
ing using a multi-scale strategy to enhance its capability to detect objects of varying sizes.
In YOLOv5, the overall loss function is a composite of multiple individual loss functions,
each addressing different aspects of the object detection task. Key loss functions employed
in YOLOv5 include classification loss, localization loss, confidence loss, and focal loss. The
training of YOLOv5 involves optimizing this combination of loss functions to achieve robust
object detection performance.
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Figure 5.2: The network structure of yolov5.

The final loss function can be written as:

L = wc ∗ Lcls + wl ∗ Lloc + wobj ∗ Lobj + wfocal ∗ Lfocal (5.1)

where :
• L is the total loss.
• wc, wl, wobj, and wfocal are weighting factors.
• Lcls, Lloc, Lobj, and Lfocal are different components of the loss function.

The loss function is used to train the object detection model, and the weighting factors are
used to adjust the relative importance of each component of the loss function.

YOLOv8, launched on January 10, 2023, represents a significant improvement over its pre-
decessor, including YOLOv5, and it marks the latest pinnacle in real-time object detection
and segmentation. This model, considered the most advanced in the YOLO series to date,
has set new benchmarks and established itself as a standard-setting solution in the field of
AI. According to Glenn Jocher [Boe23], YOLOv8’s exceptional performance has broadened
the scope of possibilities for straightforward and efficient AI applications, offering superior
capabilities for innovative applications.

In the comparison between Ultralytics YOLOv8 and YOLOv5, notable differences emerged
in their architecture and capabilities. YOLOv8 adopts a hybrid backbone architecture that
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incorporates the strengths of YOLOv5 and EfficientDet. In contrast, YOLOv5 exclusively
utilized the CSPDarknet53 backbone. YOLOv8 surpassed YOLOv5 in terms of accuracy
and speed, establishing it as a more advanced and versatile model. Additionally, YOLOv8
exhibits capabilities beyond YOLOv5, handling tasks such as object detection, instance seg-
mentation, and panoptic segmentation, whereas YOLOv5 is primarily designed for object
detection. Both models are suitable for various object detection applications and are char-
acterized by high precision and adaptability. The choice between them depends on the
specific requirements and constraints of a given task. Figure 5.3 shows the network struc-
ture of YOLOv8, illustrating its hybrid backbone architecture that combines the strengths
of YOLOv5 and EfficientDet. Adapted from Ultralytics.

Figure 5.3: The network structure of yolov8.

Ultralytics YOLOv8 employs a combination of different loss functions for effective object-
detection model training. The primary loss functions include the localization loss, confidence
loss, and class loss, each contributing uniquely to the overall loss. The localization loss is
computed as the mean squared error between the predicted and ground-truth bounding box
coordinates, while the confidence loss is calculated as the binary cross-entropy between the
predicted and ground-truth objectness scores. The class loss is determined as the categor-
ical cross-entropy between the predicted and ground-truth class probabilities. In addition,
YOLOv8 incorporates a focal loss function, assigning greater importance to misclassified sam-
ples for a more robust and stable training process. These loss functions are combined into
a weighted sum, with weights empirically set to prioritize the most significant components.
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The resulting combined loss function is optimized during training using backpropagation
and stochastic gradient descent (SGD) to enhance the performance of the model in object
detection and segmentation.

The final loss function can be written as:

L = λcoord ∗ Lcoord + λobj ∗ Lobj + λcls ∗ Lcls + λfocal ∗ Lfocal (5.2)

where:
• Lcoord represent the localization loss.
• Lobj confidence loss.
• Lcls class loss.
• Lfocal focal loss.

The weights assigned to each loss function are represented by λcoord, λobj, λcls, and λfocal. The
objective of training YOLOv8 is to minimize this combined loss function, which is achieved
through backpropagation and gradient descent techniques.

Overall, Ultralytics YOLOv8 and YOLOv5 represent significant advances in object detection,
and their continued development and improvement will have a major impact on the field of
AI and computer vision.

5.2.2.2 Training the network

Several data augmentation strategies were used in training the YOLOv8 model for palm
recognition, including modifications (hue, saturation, and value), random rotation, transla-
tion, scaling, shear transformation, and vertical or horizontal flipping of the image. These
strategies allow the model to learn and recognize objects from different angles and orienta-
tions and to account for differences in lighting, color, and contrast. In addition, the mixup
extension was used to generate more training cases by combining labels and pixels to min-
imize overfitting and improve generalization [Zha+17]. The mosaic augmentation approach
generates mosaic images by integrating numerous images and labels into a single training
example, adding a mix of elements from different scenarios, and improving the resilience of
the model [JEE22b]. These data augmentation strategies are critical to increasing the per-
formance and reliability of the YOLOv8 model for palm tree detection. By combining these
strategies and associated parameter values, the model becomes more robust, can tolerate a
wide range of environmental variables, and can be generalized to new data while minimizing
overfitting. Tables 5.1 and 5.2 provide a comprehensive representation of these data expan-
sion parameters as well as other important parameters of the training process, such as model
weights, dataset configuration, number of epochs, image size, batch size, and early stopping
criteria. Prior to training, the starting weights of the YOLOv8 model are determined. This
training procedure allows the network to learn and recognize objects with great accuracy and
robustness, including date palms.

A validation procedure was used to verify the performance of the model using the specified
mode. The recognition performance of the model was evaluated using a validation dataset
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Table 5.1: Data Augmentation Parameters

Parameter Description Value
hsv_h Hue adjustment 0.015
hsv_s Saturation adjustment 0.7
hsv_v Value (brightness) adjustment 0.4
degrees Random rotation 10

translate Translation (shift) 0.1
scale Scaling 0.9
shear Shear transformation 0.3

perspective Perspective distortion 0.0
flipud Vertical flipping 0.5
fliplr Horizontal flipping 0.5

mixup Mixup augmentation 1.0
mosaic Mosaic effect 0.1

Parameter Value
Epochs 60

Batch Size 3
patience 20

Optimizer SGD
NMS IoU 0.7

Initial Learning Rate 1× 10−2

Final Learning Rate 1× 10−2

Momentum 0.937
Weight-Decay 5× 10−4

Image Scale 0.9
Image Flip Left-Right 0.5

Mosaic 1.0
Image Translation 0.1

Mixup 0.1

Table 5.2: Parameter Setup

with images scaled to 1024 × 1024 pixels. This evaluation determines the ability of the
model to recognize objects in the provided dataset. In addition, the validation procedure
was performed for different intersection over union (IoU) thresholds such as 0.5, 0.7, 0.8, and
0.9 to evaluate the model’s resilience and detection accuracy with increasing overlap between
the predicted bounding box and the actual bounding box.

To properly train the object recognition model in YOLOv8, a mixture of loss functions
was used throughout the training phase. Localization loss, confidence loss, class loss, and
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focus loss are examples of loss functions. The mean square error between the expected and
actual bounding box coordinates is measured as localization loss. The binary cross-entropy
between the predicted and actual objectivity values was calculated using confidence loss.
The categorical cross entropy between the predicted and actual class probabilities was used
to calculate the class loss. In addition, YOLOv8 has a focused loss function that assigns
more weight to misclassified data, making the training process more robust and stable.

The final loss function of YOLOv8 can be written as follows:

L = λcoord ∗ Lcoord + λobj ∗ Lobj + λcls ∗ Lcls + λfocal ∗ Lfocal (5.3)

where:

• Lcoord: Localization loss.
• Lobj: Confidence loss.
• Lcls: Class loss.
• Lfocal: Focal loss.

The weights assigned to each loss function are denoted by λcoord, λobj, λcls, and λfocal. The
goal of training YOLOv8 was to minimize this combined loss function. This is achieved
through backpropagation and gradient descent techniques that optimize the parameters of
the model to improve its accuracy in date palm detection.

Input images of size 4096 × 2160 pixels were reduced to a standard size of 1280 × 1280 pixels
during the training phase of the network. The numerous hyperparameters described above
were used to fit the YOLOv8 model. The dataset was split into many folds to enable successful
training using a proprietary stratified k-fold cross-validation approach. The training images
and labels were split into different folders based on the folding and class labels. The dataset
configuration file was updated to reflect the two classes and their names (’Palm’ and ’Tree’).
For training, the Ultralytics library was used, which provides a high-level API for training
object recognition models.

The YOLOv8 network learns to recognize date palms with high accuracy and resilience
by applying multiple training procedures, fine-tuning hyperparameters, and adding relevant
inputs.

5.2.2.3 Palm Tree Counting and Identification

The algorithm 2 describes the process of palm detection and counting from a collection of
drone images using the YOLOv8 model. Below is a breakdown of the main steps of the
algorithm. The method starts with the configuration of the relevant hyperparameters 5.1.
Preprocessing the drone image involves preparing it for input to the YOLOv8 model by
performing transformations and other necessary preprocessing (explained in Section 5.2.1).
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Algorithm 2: Palm Tree Identification and Counting with YOLOv8 on UAV Dataset
Data: Input UAV images dataset I, Model M , Grid size S, Number of bounding boxes

per grid cell B, Number of object classes N , Confidence threshold Tc, IoU
threshold Tiou

Result: Bounding boxes B and corresponding scores S
1 Set Algorithm Hyperparameters:
2 Image size: 1280, Batch size: 3, Number of epochs: 60, Weights file: "yolov8l.pt",

Optimizer: "SGD", Random seed: 45, Device: "cuda" if available, else "cpu".
3 for each UAV image Ii in the dataset do
4 Preprocess the UAV image;
5 PI ← preprocess_image(Ii);
6 Convert image to tensor and add batch dimension;
7 Itensor ← torch.from_numpy(PI).unsqueeze(0).to(M.device);
8 Forward pass through the model;
9 P ←M(Itensor);

10 Extract bounding boxes from predictions;
11 B ← calculate_bounding_boxes(P, S);
12 Calculate scores for each bounding box;
13 S ← calculate_scores(P,N);
14 Remove bounding boxes with low confidence scores;
15 Bf , Sf ← remove_low_confidence_boxes(B, S, Tc);
16 Apply non-maximum suppression;
17 Bn, Sn ← apply_non_max_suppression(Bf , Sf , Tiou);
18 Translate the bounding boxes Bi back to the original image coordinates;
19 Bi ← translate_bounding_boxes(Bn);
20 Count the number of remaining palm tree bounding boxes;
21 Ci ← count_palm_trees(Bi);
22 Store the detected palm trees, their bounding boxes Bi, and the count for

the current UAV image;
23 store_result(Ii, Bi, Ci);
24 end
25 Return Detected palm trees with their bounding boxes and counts for each

image in the dataset;
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The following steps were performed for each drone image in the dataset. The preprocessed
image is converted into a tensor and sent to the YOLOv8 model, which generates predic-
tions. These predictions provide information about the bounding boxes and the associated
confidence values. The bounding boxes are retrieved from the model predictions, taking into
account the given grid size and the number of bounding boxes per grid cell.

Each bounding box was assigned a value reflecting the probability of the presence of an
object (palm trees in this example). This data set determines the number of object classes.
Bounding boxes with low confidence levels were deleted, leaving only the boxes with higher
confidence levels. Non-maximal suppression is used to remove overlapping bounding boxes
that are redundant, leaving only the most important ones. The remaining bounding boxes
are reset to their original positions in the image.

This method counts the number of bounding boxes of palms and stores the identified palms,
the associated bounding boxes, and the current number of UAV images.

5.3 Experimental results

5.3.1 Data-sets Description

In this experimental phase, we looked at the dataset from the study by Adel et al. [AKB21].
This dataset includes 258 aerial images taken at a palm plantation near Kharj, Saudi Arabia,
and an additional set of 91 images taken at the Prince Sultan University (PSU) campus.

Kharj is a city in the central region of Saudi Arabia, about 80 kilometers southeast of the
capital city of Riyadh. With an average temperature of about 90 °F (32 °C) and extreme
temperatures ranging from 57 °F (14 °C) to 104 °F (40 °C), the city has a distinct hot desert
climate with low humidity. With an average annual precipitation of about 50 mm, Kharj’s
climate perfectly fits its classification as a hot desert climate. The region is known for its
agricultural activities, especially the cultivation of palm trees, and has encouraged the growth
of date palms, which are not only famous for their succulent fruits but also play an important
role in local agriculture. The palm groves are an important economic factor, underscoring
their importance in the economic fabric of the region.

Aerial imagery was carefully captured using two different drone platforms: the DJI Phantom
4 Pro equipped with a DJI FC6310 camera providing 4864*3648 and 4096*2160 resolution,
and the DJI Mavic Pro equipped with a DJI FC220 camera providing 4000*3000 resolution.
Figure 5.5 shows the DJI Phantom 4 Pro drone compared to the DJI Mavic Pro drone.
Detailed information about these drones and their cameras can be found in the table bellow
5.3 respectively. This diverse dataset contains 13,071 instances of palms and various other
tree species that were carefully classified manually using the labelbox platform.

A compelling aspect of this dataset is its representation of a range of real-world challenges
encountered in practical scenarios. The palms in this dataset exhibit a spectrum of char-
acteristics, including varying diameters, uneven distribution across the images, and their
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Figure 5.4: saudi-arabia-map-al-kharj

Figure 5.5: DJI Phantom 4 Pro vs. mavic-pro
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coexistence with a variety of tree species. It is worth noting that the composition of the
dataset is clearly dominated by date palms, with other tree species predominating (11,150
palms versus 1921 other plants).

In addition, it is important to recognize that the image quality in this dataset reflects the
typical conditions encountered in outdoor UAV imagery. These images reflect the inherent
challenges of outdoor UAV imagery and provide an authentic representation of such scenarios.

Figure 5.6 shows two exemplary examples of raw images captured by the drone. These ex-
amples include a mix of date palms, agricultural land, and other tree species and illustrate
the versatility of the dataset. This dataset is a useful resource to support the development
and evaluation of deep neural network-based techniques for date palm detection and count-
ing while providing a realistic representation of the problems encountered, including the
particular phenomenon of date palm dominance.

Figure 5.6: Examples of the captured drone images from a farm in Al-Kharj
and from PSU campus, respectively.

5.3.2 Experimental Setup

We used the computing capabilities of Google Colab, which is a strong cloud-based platform,
to run the tests. The studies were conducted on an NVIDIA Tesla T4 GPU, which is well
known for its high performance. The GPU was outfitted with the most recent driver version
525.85.12 and CUDA version 12.0, ensuring compatibility and efficiency during the trials.
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5.3.3 Palm Tree Detection And Counting Results

In this section, we evaluate the performance of the proposed YOLOV8-based strategy (YOLOv8,
YOLO-HighAug) for date palm detection with approaches based on YOLOV5 (YOLOv5-6l,
YOLOv5-L, YOLOv5-L-HighAug). Each approach was trained on the same training dataset
mentioned above. The same YOLO pre-trained weights and hyperparameters were used in
the construction of the YOLO-V8 networks. The networks were trained until their validation
loss did not change and were then evaluated on identical test data sets. The performances
were compared numerically and subjectively.

5.3.3.1 Quantitative results

We applied a quantitative performance comparison method as described in [PND20] and
[JEE22b] to evaluate object recognition performance metrics in the context of date palm
plant recognition. This method involves an objective evaluation of the effectiveness of the
selected models, Yolov8 and Yolov5, using numerical measures such as accuracy, precision,
and recognition. We hope to determine whether the model performs better in date palm
detection and identification through a quantitative comparison of performance. In addition,
this method will allow us to discover areas where the less effective model can be improved
and increase the overall quality of the object identification system.

Confusion Matrices In this section, we provide a formal evaluation of the performance of
various YOLO models in palm tree detection. The confusion matrices for YOLOv5, YOLOv5-
6L, YOLOv8, and YOLOv8 with high augmentations offer a detailed breakdown of true
positives, false positives, true negatives, and false negatives, respectively. These visualizations
provide valuable insights into the precision and recall of each YOLO model in the context of
palm-tree detection, offering a comprehensive analysis of their capabilities.

To evaluate the performance of four distinct models, YOLOv5-highaugs, YOLOv5-6L, YOLOv8-
highaugs, and YOLOv8-L, in the context of palm tree detection, several key insights emerge.
YOLOv5-highaugs demonstrated notable effectiveness, achieving a high true-positive rate
for palm detection at 95%, while maintaining a relatively low false-positive rate for trees
at 5%. However, the model faces a considerable challenge with a substantial false negative
rate for palms of 53%, indicating potential areas for improvement in enhancing palm detec-
tion. YOLOv5-6L exhibited commendable performance, boasting high true positive rates for
both palms (95%) and trees (83%). However, similar to YOLOv5-highaugs, it grapples with
a significant false negative rate for palms of 53%, underscoring the need for refinement in
palm detection. YOLOv8-highaugs stands out with the highest true positive rate for palm
detection at 97%, but this accomplishment is accompanied by a notable false-negative rate
of 56%. Finally, YOLOv8-L is effective in detecting both palm and tree instances, achieving
high true positive rates; however, it faces a moderate false negative rate for palm detection
at 51%. Overall, YOLOv8-highaugs emerged as a leading contender, showing superior palm-
detection capabilities. Nevertheless, addressing the imbalanced data and optimizing each
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Figure 5.7: Confusion matrices for palm tree detection using YOLOv5,
YOLOv5-6L, YOLOv8, and YOLOv8 with high augmentations, highlighting
model performance in true positives, false positives, true negatives, and false

negatives..

model to mitigate false negatives remains a crucial consideration for further enhancing palm
tree detection accuracy.

Epoch-wise Performance Metrics Analysis In this section, we present a comprehensive
analysis of the quantitative results obtained by testing five distinct object identification
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models: YOLOv5-6L, YOLOv5-L, YOLOv5-L-HighAug, YOLOv8, and YOLOv8-HighAug.
Specifically, we delve into epoch-wise performance metrics, exploring critical parameters such
as accuracy, recall, F1 score, average accuracy (AP), and AP@50 to provide a detailed insight
into the evolving capabilities of the models over numerous training epochs.

Figure 5.8 presents a detailed summary of the quantitative data collected during the eval-
uation of the object identification models. Over multiple training epochs, the plots illus-
trate crucial performance parameters, including the accuracy, recognition, average precision
(AP), and AP@50. The precision plot (Figure 5.8 (A)) showcases the precision achieved by
each model across different epochs. Notably, at epoch 8, YOLOv5-6L achieved the high-
est accuracy of 0.97, while YOLOv8 and YOLOv8-HighAug achieved Precisions of 0.86 and
0.85, respectively. The recall plot (Figure 5.8 (B)) displays the best recall values for each
model, with YOLOv5-6L achieving the highest recall value of 0.87 at epoch 35. Additionally,
other models, such as YOLOv8 and YOLOv8-HighAug, demonstrated excellent recall per-
formances. The fifth plot (Figure 5.8) illustrates the F1 score, which represents a trade-off
between precision and recall.
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Figure 5.8: Precision, Recall, AP, AP@50 and F1-score per epoch history
of the five specific models (YOLOv5-6l, YOLOv5-L, YOLOv5-L-HighAugh,

YOLOv8 and YOLOv8-HighAug)
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At epoch 8, YOLOv5-6L had the highest F1 score (0.919), signifying excellent overall per-
formance. YOLOv8 and YOLOv5-L-HighAug achieved F1 scores of 0.874 and 0.893, re-
spectively. The best AP values produced by each model in certain epochs are highlighted
in the sixth graph (Figure 5.8 (C)). At epoch 39, YOLOv8 had the highest AP (0.54).
Meanwhile, YOLOv5-L-HighAug performed admirably, with an excellent AP@50 of 0.9 at
epoch 50. These findings demonstrate that YOLOv5-L-HighAug excels in recognizing objects
with more accuracy when a tighter IoU threshold is used. Overall, the study highlights the
strengths and flaws of each model, assisting in the selection of the best model for date palm
tree recognition. The top-performing model in terms of accuracy, recall was YOLOv5-6L,
whereas YOLOv5-L-HighAug outperformed AP@50 (Figure 5.8 (D)), which is critical for
specialized applications requiring accurate localization. YOLOv8, however, exhibits compet-
itive performance across several parameters, making it a strong contender for object detection
tasks. When making a final selection, it is critical to consider the model requirements as well
as individual application demands.

(a) (b)

(c)

Figure 5.9: The average precision (AP) values for each of the two categories,
Palm and Other trees, as well as the mean average precision (AP) for both

categories on the testing dataset at various IoU threshold levels.
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The average accuracy (AP) of the four tested object detectors at different intersection over
union (IoU) thresholds for each of the two classes (palm and tree) and the AP for both classes
are shown in Figure 5.9. The reported results provide helpful insights into the performance
of each method for different IoU thresholds, both for specific classes (palm and tree) and
in general (all instances). Most notably, Yolov8-HighAug consistently yields higher average
precision values across a range of IoU thresholds (AP), proving to be the superior approach
in this study. These results show that Yolov8-HighAug performs well in detecting objects
with varying degrees of spatial overlap, making it an interesting option for accurate and
trustworthy object identification applications.

Figure 5.10: Comparison of the four algorithms in terms of mAP (averaged
for IoU values between 0.5 and 0.9 by step of 0.1) and inference time.

In Figures 5.10 and 5.11, we use the mAP metric to examine the accuracy of each model at
different IoU thresholds (0.5, 0.7, 0.8, and 0.9). We also measured the computational power
of the models in GFLOPS, indicating inference time and resource utilization. The results of
these experiments provided important insights into the performance of the models considered.
Figure 5.10 shows the computational efficiency of the recognition process, which was obtained
by measuring the inference time for each model. The results of these studies show that
among the models studied, YOLOv8-HighAug achieves exceptional accuracy with an average
accuracy (mAP) of 0.92 and an average inference time of 92 ms, demonstrating its superior
ability to recognize palms. YOLOv8-HighAug is an interesting option for applications where
precise detection of palms is important, especially under conditions where precision is critical.
In particular, YOLOv5-L achieved a competitive mAP value of 0.81, while the mAP values
of YOLOv5-L-HighAugh and YOLOv5-6l were slightly lower at 0.84 and 0.78, respectively.
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Figure 5.11: mAP vs. Number of Operations

Computational Efficiency and Practical Implications In this subsection, we evaluate
the computational efficiency of various object identification models by considering metrics
such as GFLOPS and inference times and examine their practical implications for the realm
of smart agriculture. In terms of computational efficiency, YOLOv5-L-HighAugh required
the fewest resources, with only 106 GFLOPS, as shown in Figure 5.11. YOLOv5-L was sec-
ond with 107 GFLOPS, while YOLOv5-6l required 110 GFLOPS. YOLOv8-HighAug had a
higher mAP, but also a higher computational cost of 165 GFLOPS. Given the importance of
these assessments for smart agriculture applications for farmers and stakeholders, inference
time and number of operations are critical. Efficient models with shorter inference times can
help farmers make real-time decisions about crop management, insect detection, and resource
optimization. Reducing the number of operations (e.g., GFLOPS) enables more effective
use of computational resources, allowing these models to be used in resource-constrained
contexts. YOLOv8, with its consistently high accuracy and excellent values from AP, can
accurately and reliably identify objects in smart agriculture applications. At the same time,
the exceptional performance of YOLOv5-L-HighAug in AP @50 demonstrates its applica-
bility for accurate detection tasks essential for identifying important problems such as pest
infestations or agricultural diseases. The balanced trade-off between accuracy and detection
of YOLOv5–6L can provide a suitable compromise for common agricultural activities.

Finally, analysis of the performance of these models and their impact on smart agriculture
applications demonstrates the importance of accurate and efficient object identification in
providing useful information to farmers and stakeholders. The results in Figure 5.8 highlight
the importance of selecting the most appropriate model based on individual application needs
to enable the integration of new technologies into current agricultural practices to increase
productivity and sustainability.
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5.3.3.2 Qualitative results

This section presents a visual representation of the performance of our model in detecting
palm and tree objects within images, as illustrated in Figure 5.12. The chosen examples
demonstrate the versatility of our model by showcasing images captured from a farm at
varying angles, as well as images from the campus environment.

Our model displays commendable precision in accurately identifying both palm and tree in-
stances, even when dealing with smaller specimens. Visual examples underscore the robust-
ness of our approach across diverse scenarios and highlight its ability to adapt to different
environmental challenges.

It is essential to acknowledge that, while our model excels in certain challenges, external
factors such as variations in lighting conditions, occlusions, or complex backgrounds may
influence its performance. The presented visual examples serve as valuable qualitative as-
sessments, providing insights into the strengths and potential limitations of our model in
real-world scenarios.

5.3.4 Discussion

In this part, we compare the performance of the object recognition models used in this study,
including Yolov5-L, Yolov5-6L, Yolov5-L-HighAug, and Yolov8-HighAug, with other models
from [AKB21], in particular Faster-RCNN, Yolov3, Yolov4, and EfficientDet. We tested
these models using the "all"," "palm"," and "tree" classes on the dataset and examined their
average precision values (AP) on various intersection over union (IoU) criteria.

The results showed that our models obtained competitive AP results for all three classes
at different IoU levels. However, Yolov8-HighAug routinely outperformed them, with larger
AP values. This outstanding result demonstrates the superiority and robustness of Yolov8-
HighAug in object recognition tasks.

As for the results of the Adel and all. study [AKB21], Faster-RCNN had modest AP values
for the "all"," "palm"," and "tree" classes, but was outperformed by Yolov8-HighAug in
terms of overall recognition accuracy. Yolov3 had good AP values, indicating reasonable
recognition accuracy, but fell short of the better performance of Yolov8-HighAug. Yolov4
had exceptional AP values for the "all" class at IoU thresholds of 0.5 and 0.6, but a slight
drop in performance for the "palm" and "tree" classes. Yolov8-HighAug had better AP scores,
indicating its better object detection capabilities. EfficientDet performed well, especially for
the "palm" class, but like Yolov4, was outperformed by Yolov8-HighAug in all classes and
for all IoU thresholds.

In terms of mAP values and inference times, Yolov8-HighAug outperformed all other models
with the highest average mAP of 0.88, indicating higher accuracy in object detection. Yolov5-
L-HighAug came in second with a mAP of 0.83, while Faster-RCNN achieved the lowest mAP
of 0.57, indicating that it may be less accurate than the other models. Yolov5-L-HighAug
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Figure 5.12: Qualitative Results of Palm and Tree Object Detection

also had the shortest inference time of 59 milliseconds, making it interesting for real-time
applications. Compared to the best model, Yolov8-HighAug and Yolov5-L-HighAug had a
slightly lower mAP of about 5.68%, while the other models had mAP decreases between 8%
and 35.23%.
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In terms of computational efficiency evaluated in GFLOPS (GigaFLOPS), Yolov8-HighAug
proved to be the best performing model, with the highest average mAP of 0.88 and higher
object identification accuracy than the other models. Its high mAP made it the standard
for calculating percent improvements. Faster-RCNN and Yolov3 had lower mAP values of
0.56 and 0.54, respectively, resulting in significant negative percent improvements of approx-
imately -36.36% and -38.64% compared to Yolov8-HighAug. Yolov4 had an mAP of 0.79,
resulting in a negative percent improvement of approximately -10.23%. Both EfficientDet
and Yolov5-L had slightly lower mAP values of 0.81, resulting in a negative percent improve-
ment of approximately -8.00%. Yolov5-6L had an mAP value of 0.78, resulting in a negative
percent improvement of -11.36%. Interestingly, Yolov5-L-HighAug achieved the lowest neg-
ative percent improvement of approximately -5.68%, which is similar to the mAP value of
Yolov5-L while requiring comparable processing resources.

The comparison of mAP scores with inference times and GFLOPS revealed important in-
formation about the strengths and limitations of each model. Yolov8-HighAug had higher
accuracy but required more processing resources, while Yolov5-L-HighAug had an excellent
combination of accuracy and efficiency. These results can help researchers make informed
decisions based on their individual requirements and select the best model for their object
identification tasks.

Finally, both our study and [AKB21] show that Yolov8-HighAug consistently outperforms
the other models and emerges as the best model for object identification tasks. Its ability to
achieve higher AP values across multiple IoU thresholds suggests that it can detect objects
with varying degrees of spatial overlap. As with any model evaluation, the architecture,
training data, and hyperparameters should be considered. In addition, practical variables
such as data processing efficiency and implementation simplicity may influence the best
model for real-world applications.

Overall, the results show that Yolov8-HighAug is a powerful model for object recognition
that demonstrates its potential for accurate and robust recognition tasks for different object
classes and IoU thresholds. Future studies could address the aspects that contribute to
the dominance of Yolov8-HighAug, as well as possible refinements to improve the overall
performance of object recognition models.

5.4 Conclusion
This chapter focuses on the application of different YOLO models, including YOLOv8-
HighAug, YOLOv5-L, YOLOv5-6L, and YOLOv5-L-HighAug, for the detection of date
palms in drone images. Experiments were performed on a dataset of 349 images acquired by
a fixed-wing drone, presenting several challenges, including varying palm sizes, occlusions,
overlaps, and complex backgrounds on a farm or campus in Saudi Arabia. In summary, this
study demonstrates the effectiveness of YOLOv8-HighAug and other proposed models in ac-
curately detecting date palms in the complex world of drone imagery. These results provide
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valuable insights into the practical applications of YOLOv5-L, YOLOv5-6L, YOLOv5-L-
HighAug, and YOLOv8-HighAug for object detection tasks, particularly in agriculture and
environmental monitoring.

In essence, our innovative approach that leverages DL and UAV data for efficient palm detec-
tion has the potential to revolutionize precision agriculture. By combining state-of-the-art
Deep Learning algorithms with UAV-generated imagery, we successfully overcame the diffi-
culties of palm detection, including visual diversity, occlusions, and changing environmental
conditions. This breakthrough technology not only raises the standard for palm detection
and counting but also paves the way for groundbreaking developments in agriculture. These
advances include predictive yield modeling, disease detection, and comprehensive environ-
mental monitoring. Our method represents a significant advance in the field of precision
agriculture, combining technical capabilities with agricultural challenges to promote more
informed, efficient, and sustainable practices.

In the next chapter, we address a critical problem in palm cultivation. Red palm weevils
pose a significant threat to date palms. In this chapter, we explore how the integration of
IoT technology and multimodal data can enable the early detection and mapping of this
destructive pest. By leveraging data from multiple sources and IoT sensors, we aimed to
develop proactive strategies to protect date palms, increase crop yields, and promote sus-
tainable agricultural practices. This chapter continues our commitment to merge technology
and agriculture to find more informed, efficient, and environmentally sustainable solutions.
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6.1 Introduction and motivation
Palm trees, with over 2,500 species, play a vital role in the global culture and economy.
In regions such as the Middle East and Indonesia, where the palm industry thrives, these
trees contribute significantly to date production and palm oil production. However, the
industry faces challenges, particularly the Red Palm Weevil (RPW), which causes economic
and ecological repercussions. The ability of the RPW to remain hidden within palm trunks
makes early detection crucial.

IoT devices play a critical role in providing real-time data from palm farms, enabling proactive
monitoring, early detection of diseases and pests, and rapid response. This collected sonic
data is used to identify palm species and assess their health. In addition, the integration of
palm detection with RPW mapping enables the identification and tracking of RPW-infested
palms, facilitating targeted actions to control this destructive pest [Els+19; JEE22b].

DL algorithms analyze various acoustic signals produced by RPW larvae and their feeding
behavior. To develop an effective palm disease and pest control strategy, DL classifications
based on sound data from IoT devices, palm identification, and RPW mapping are integrated.
This technology, using IoT sensors and DL algorithms, provides efficient and data-driven
management solutions that improve the health and productivity of palm farms [HBF22;
Gha+22; Haj+21].

By seamlessly integrating IoT sensors with multimodal data, this approach establishes a
comprehensive strategy for the early identification and mapping of RPW. Grounded in state-
of-the-art DL algorithms and leveraging the capabilities of IoT sensor networks, our method-
ology excels in detecting, categorizing, and mapping palms infested by RPW. This innovative
strategy builds on the foundation laid in Chapter 5, which focuses on advanced palm identi-
fication techniques.

In essence, our approach amalgamates cutting-edge DL algorithms with the robust capabili-
ties of IoT sensor networks, ensuring the efficient detection, categorization, and mapping of
RPW-infested palms while minimizing redundancy. It is crucial to note that this chapter’s
methodology is intricately connected to the groundwork laid out in Chapter 4, which intro-
duced a multimodal data storage system. We presume that our data are already stored within
this system, emphasizing the seamless integration of data management processes across chap-
ters. This interconnected framework establishes a cohesive and efficient workflow, streamlin-
ing the application of advanced technologies in smart palm precision agriculture.

133



Chapter 6. Early Detection and Mapping of Red Palm Weevil Disease

This chapter pertains to the third thesis objective: pest and disease management in smart
palm agriculture. With the aid of remote sensing and artificial intelligence, the objective is to
detect, monitor, and proactively manage pest and disease outbreaks in palm crops, thereby
minimizing crop loss and preserving palm populations. This chapter is divided into three
sections: The first section, outlined in Section 6.2, provides a comprehensive overview of the
three key phases: DL Health Classification, Palm Tree Detection using YOLOv8, and RPW
Map Generation. These phases constitute the core of the IoT and multimodal data approach
for the early detection and mapping of red palm weevils. The second section, presented in
Section 6.3, includes an experimental study that details the dataset used, assessment metrics,
experimental design, and conclusions with key findings, implications, and recommendations
for future research.

6.2 Proposed Method
Figure 6.1 illustrates the workflow of the proposed approach, which is divided into three
main phases: DL classification based on sound data from IoT devices, palm detection, and
RPW assignment. In the following sections, each of these phases is described in detail. By
fusing cutting-edge technologies and data-driven methods, the proposed methodology aims
to successfully monitor and maintain palm health and productivity.

...

Sound weevil data

CQCC

In
ce
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n

UAV Image Data

DL Health Classification

YOLOV8 Object Detection

Palm Tree Detection

Palm plantation

DATA COLLECTION

Infested Palm Tree

Not Infested Palm Tree

RPW mapping
detection

Figure 6.1: Overview of our proposed approach to palm tree detection, count-
ing, and health classification based on integrated UAV remote sensing and

sound RPW sound data.

Our methodology can be described as follows:

1. We captured remote sensing imagery with a drone and recorded Arduino-based acoustic
sensor measurements for RPW noise.
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2. We created a dataset consisting of Palm Tree Image Samples (PTIS) and Sound Weevil
data.

3. The health status of DL palms was classified using sound weevil data and an Incep-
tionV3 model.

4. The selected YOLOv8 models were trained, validated, and tested to detect and count
palms using PTIS as a reference.

5. Analyzed the precision and efficiency of the best YOLOv8-based model for palm tree
detection;

6. We created a map showing the location and distribution of healthy and unhealthy palms
using both palm classification results and object detection techniques.

6.2.1 Palm Health Classification from sound Weevil

6.2.1.1 Weevil Sound Dataset Feature Extraction

In a study conducted by Boulila et al. [Bou+23] a range of deep learning techniques was
employed using nine backbone models, including MobileNetV2, ResNet50V2, ResNet152V2,
VGG16, VGG19, DenseNet121, DenseNet201, Xception, and InceptionV3. The aim of this
investigation was to evaluate the performance of various deep learning techniques in detecting
RPW infestations using sound features extracted from the Weevil Sound dataset.

Their presented results show the accuracy and loss values for the classification experiments
using these models. Notably, the Constant-Q Cepstral Coefficients (CQCC) feature set con-
sistently demonstrated superior performance across various CNN architectures. The models
trained on the CQCC feature set, particularly the DenseNet121 model, achieved a remarkable
accuracy of 98.8%-99.5%. This robust performance underscores the efficacy of the CQCC
feature in accurately identifying and classifying RPW infestations.

It is worth noting that the choice of CQCC was motivated by its exceptional individual
performance, surpassing other single-feature extraction algorithms such as LFCC, MFCC,
Chroma, GFCC, BFCC, Mel Spectro, and Spectral Centroid. This evidence supports the
decision to incorporate the CQCC feature in our study as it consistently demonstrated the
highest accuracy levels across various deep learning models, providing a strong foundation
for reliable and accurate RPW detection.

We utilized the CQCC feature to convert sound files into images. Extracting valuable features
from recorded sound data is essential for training DL models. Various features have been
explored in existing literature [Li+20b]. These include the conversion of a waveform into
a spectrogram that provides a visual representation. Our selection of the CQCC feature
aligns with its proven effectiveness in the context of RPW detection, as demonstrated by its
superior performance compared with other features in our experimental evaluations.
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Constant-Q Cepstral Coefficients (CQCC) The CQCC feature extraction algorithm is
a robust technique that is frequently employed in audio signal processing tasks such as voice
recognition, sound categorization, and music analysis. This algorithm effectively captures
both the spectral and temporal properties of audio signals, making it a versatile representa-
tion for a wide range of audio-based applications. In this section, we delve into the CQCC
algorithm in detail, including its major phases and equations. The extraction of the CQCC
features is illustrated in Figure 6.2.

1. Constant-Q Transform: The Constant-Q Transform (CQT) of the input audio signal
is calculated as the first step of the CQCC method. The CQT is similar to the well-
known Short-Time Fourier Transform (STFT), but uses logarithmically subdivided
frequency bins to more closely approximate human auditory perception. This is defined
by the following equation:

X[n, k] =
M−1∑
m=0

x[n+m]w[m]e−j2πkQm/M (6.1)

where X[n, k] represents the CQT coefficients at time frame n and the frequency bin
k. x[n] denotes the input audio signal, w[m] is a windowing function (e.g., a Hamming
window), Q is the Q-factor that determines the number of frequency bins per octave,
and M is the window length.

2. Log-compression and Power Normalization:To improve the perceptual represen-
tation of the audio signal, log compression is performed after the calculation of the
CQT coefficients. It is advantageous to compress the components with greater am-
plitude while emphasizing the components with lower amplitude. The log-compressed
coefficients, denoted by Xlog[n, k], are obtained using the following equation:

Xlog[n, k] = log(1 + µ|X[n, k]|) (6.2)

where µ is a small positive constant that avoids the logarithm of zero and controls
compression. A power normalization process was performed to normalize the power
across several frequency bins. It attempts to guarantee that the features produced are
resistant to changes in signal amplitude. The power-normalized coefficients, denoted
by Xnorm[n, k], are computed as follows:

Xnorm[n, k] =
Xlog[n, k]− X̄k

σk

(6.3)

where X̄k and σk represent the mean and standard deviation, respectively, of the CQT
coefficients within each frequency bin k.

3. Cepstral Coefficients:Next, the Cepstral Coefficients are obtained by applying the
discrete cosine transform (DCT) to the power-normalized coefficients. DCT correlates
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Figure 6.2: CQCC feature extraction process [Oo+19]

the coefficients and retains the most relevant information. The resulting cepstral coef-
ficients, denoted as C[n, k], are given by the following equation:

C[n, k] =
M−1∑
m=0

Xnorm[n, k] cos

(
πk(m+ 0.5)

M

)
(6.4)

4. CQCC Features: Finally, the cepstral coefficients are concatenated over several time
frames to obtain the CQCC features. Thus, the audio signal is represented in a concise
and discriminative manner suitable for further processing and analysis.

6.2.1.2 DL Health Classification from sound Weevil

We utilized various deep learning techniques, including InceptionV3, Inception-ResNetV2
, and Mixconvnet on the RPW dataset generated for our study. The training of these
transfer learning models, which were implemented using TensorFlow and Keras frameworks,
was conducted over 200 epochs with a learning rate of 0.0001 and an RMSprop optimizer
[BKK20]. To avoid overfitting, the dataset was divided into training (80%), validation (10%),
and testing (10%) sets. The weights of these models have been fine-tuned for ImageNet
[Rus+15] data classification. ImageNet is a comprehensive dataset comprising 15 million
high-resolution images distributed across 22,000 categories, with 4,400 classes specifically
dedicated to plant, flora, and plant life classification.

Our study on health classification from weevil sounds involved a deliberate consideration
of the aforementioned deep learning models based on their demonstrated efficacy in diverse
applications. InceptionV3, known for his utilization of inception modules and multi-scale
convolutions, respectively, has shown excellent ability to capture intricate features, mak-
ing them well suited for our audio classification task. Inception-ResNetV2, amalgamating
the strengths of Inception and ResNet, offers improved training efficiency and performance
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through its residual connections. Mixconvnet, leveraging mixed depth-wise separable convo-
lutions, was incorporated for its capacity to enhance model expressiveness. The ensemble of
these models aimed to exploit a spectrum of architectural characteristics, allowing for a com-
prehensive exploration of their individual and collective effectiveness in health classification
from weevil sounds.

The use of the RMSprop optimizer in all training experiments was a result of its well-suited
nature for training deep neural networks with a large number of parameters. This range
of CNNs underscores the versatility and applicability of our proposed approach to diverse
audio classification tasks by utilizing various CNN architectures. The utilization of CQCC
in conjunction with various CNNs enables the extraction of diverse audio characteristics,
leading to improved performance across a range of audio classification scenarios. The combi-
nation of feature extraction techniques and CNN architectures enhances the robustness and
adaptability of the proposed approach.

6.2.1.3 Transfer learning classifiers

This section gives an overview of the proposed transfer learning models for identifying the
health status of palm trees, as follows. First, different version architectures of Inception
models are described, highlighting the main features of each transfer learning model.

Inception models Figure 6.3 illustrates the primary architectures for the two iterations
of the inception model. The initial inception classifier introduced by Szegedy et al. [Sze+15]
aims to surpass existing classifiers in the ImageNet Large-Scale Visual Recognition Chal-
lenge 2014 (ILSVRC14). Inception-V1 enhanced the detection and classification accuracy by
augmenting the depth and width of the CNN model while maintaining a consistent compu-
tational cost. The optimized architecture of Inception-V1 adhered to the Hebbian principle
and incorporated multi-scale processing. Notably, Inception-V1, featuring a 22-layer CNN
with dimension reduction, is commonly referred to as GoogleNet, as shown in Figure 6.3 a.

In 2016, Szegedy et al. [Sze+16] introduced Inception-V2 and V3, as illustrated in Figure
6.3b. These upgraded versions feature a modification in the 5 × 5 convolution module of
Inception-V1, replacing it with two 3 × 3 convolutions. However, Inception-V3 incorpo-
rates additional enhancements into its network architecture. It employs factorized 7 × 7
convolutions and an RMSProp optimizer. In addition, the auxiliary classifiers underwent
batch normalization, and label smoothing was introduced to mitigate overfitting in the deep
network. Inception V3 utilizes softmax classifiers for prediction, global average pooling for
aggregation of geographic inputs, and auxiliary classifiers for additional monitoring. Ow-
ing to its effective multiscale feature extraction and computational efficiency, Inception V3
achieves the highest performance on a wide range of computer vision tasks after being trained
on large datasets [Al +22].

Inception V3 has demonstrated versatility in various image-related tasks, including object
detection, image segmentation, and video classification. The use of factorized convolutions
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(a)

(b)

Figure 6.3: Inception-v3 architecture

and inception modules contributes to efficiency and accuracy. Pre-training on ImageNet
enhances its adaptability, making it suitable for diverse applications with impressive accuracy
[Al +22]. The architectural design of Inception V3, boasting approximately four million
parameters, distinguishes it as a more compact model compared to other models such as
VGG. Inception V3 excludes fully connected layers and relies solely on a pooling layer,
thereby accelerating its computational capabilities [Wir21].

To gain further insight into its development, Google implemented Inception V3 with parallel
convolutional layers of different filter widths and inception modules to effectively capture
information at various scales. Using softmax classifiers for prediction, global average pooling
for geographic input aggregation, and auxiliary classifiers for additional monitoring, Inception
V3 achieved the best performance across a range of computer vision tasks [Al +22]. Upon
thorough examination of various deep learning models for the purpose of RPW detection
utilizing sound features, we have opted to employ the InceptionV3 architecture for a number of
compelling reasons. InceptionV3 has demonstrated exceptional performance across a diverse
range of computer vision tasks, thus gaining considerable traction within the deep learning
community.

Initially, InceptionV3 is acclaimed for its capacity to discern intricate hierarchical structures
in data through the utilization of its inception modules. These modules facilitate efficient
learning and representation of features at various scales, which is of particular importance
when working with intricate datasets such as the sound features extracted from the Weevil
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Sound dataset. Accurate detection of RPWs necessitates the identification of subtle patterns,
making InceptionV3’s hierarchical learning capability a highly valuable asset.

Furthermore, InceptionV3 boasts a relatively lightweight architecture when compared to cer-
tain other deep learning models, thereby striking a favorable balance between model size
and computational efficiency. This is of particular significance for practical applications, as
it allows for efficient deployment and inference across a wide range of computing platforms,
including resource-constrained environments.

Moreover, the InceptionV3 model has been extensively adopted and fine-tuned in a variety of
domains, showcasing its versatility and adaptability. The availability of pre-trained weights
on substantial datasets, such as ImageNet, serves as a valuable starting point for transfer
learning, enabling effective training on our particular RPW sound dataset using a relatively
modest amount of labeled data.

In conclusion, our decision to employ the InceptionV3 architecture for our RPW detection
study is rooted in its established ability to capture intricate patterns, its efficient design, and
its extensive success in various computer vision applications. We are confident that these
qualities make InceptionV3 a suitable and effective choice for achieving precise and reliable
RPW detection from sound features in our study.

InceptionResNet-V2 Inception-ResNetV2, a highly sophisticated convolutional neural
network architecture that has been developed for the recognition of images, has demon-
strated exceptional effectiveness in a variety of applications. First proposed by He et al.
[He+16], this architecture combines key elements from both the Inception and ResNet archi-
tectures to achieve superior performance. Specifically, the inception module, which is known
for its ability to capture multi-scale features, is enhanced with residual connections inspired
by ResNet. This integration is designed to leverage the strengths of both architectures, fa-
cilitating efficient feature extraction and mitigating the vanishing gradient problem in deep
networks. The resulting model comprises stacked inception-residual blocks, each of which
incorporates inception modules with residual connections. Batch normalization is employed
to ensure stable training, and a global average pooling layer is utilized for spatial dimension
reduction prior to the final classification layer. Inception-ResNetV2 is noteworthy for its
exceptional accuracy and efficiency in diverse computer vision tasks, which makes it partic-
ularly well-suited for image classification and feature extraction. The InceptionResNet-V2
model architecture is shown in Figure 6.4 (a).

Mixconvnet MixConvNet, a novel CNN architecture introduced by Zhang et al. [ZHW22]
in 2022, represents a significant advancement in the field of deep learning for image-classification
tasks. The architecture incorporates a distinctive mixed-depthwise convolutional operation,
aiming to strike a balance between computational efficiency and expressive power. The model
builds on the efficiency of depthwise separable convolutions by introducing a mixed convolu-
tion operation that combines depthwise and standard convolutions. This innovation allows
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Figure 6.4: (a).InceptionResNet-V2 Model Architecture- (b).MixConv-S
Model Architecture

the network to capture intricate features while maintaining its computational efficiency. The
architecture consists of multiple blocks of mixed-depth-wise convolutions, followed by batch
normalization and nonlinear activation functions. MixConvNet achieves competitive accu-
racy with reduced computational costs, making it a promising choice for applications with
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resource constraints. This model is a noteworthy advancement in CNNs architectures, show-
casing the ongoing evolution towards improved efficiency and performance. The Mixconvnet
model architecture is shown in Figure 6.4 (b).

6.2.2 Palm tree detection using YOLOv8

Building on the foundation of our previous method for efficiently detecting palm trees using
DL and UAV imagery (see 5 section), we now focus on the complexity of palm tree detection
itself. The YOLOv8 model, known for its powerful object recognition capabilities, is key to
our comprehensive solution for early detection and mapping of the red palm weevil (RPW).

The goal of this part is to accurately and effectively detect date palm trees by utilizing the
YOLOv8 object detection framework. The real-time object detector YOLOv8, which was
introduced in 2023 under the name, is the result of numerous real-time object detectors’ tech-
nological developments. It combines the advantages of many models to provide a complete
answer for object detection tasks, such as palm tree detection. Our decision to use YOLOv8
was driven by its capacity to combine the greatest features and improvements from sev-
eral methodologies, producing improved performance and accuracy. Modern backbone and
neck architectures (i.e., YOLOv5) are incorporated into YOLOv8, which enhances feature
extraction and enables accurate palm tree detection.

The network uses a sigmoid activation function to determine the likelihood that a palm tree
will be detected in each instance of detection, as shown in Equation (6.5), where σ represents
the sigmoid function and net denotes the input to the sigmoid.

Output = σ(net) (6.5)

In contrast to the Anchor-Based technique utilized in earlier versions, YOLOv8 adds the
Anchor-Free approach. Additionally, YOLOv8’s matching approach uses the dynamic Task
Aligned Assigner. Equation 6.6 is used to calculate the alignment degree at the Anchor level
for each instance, where "s" stands for the classification score, "u" for the IOU value, and
"alpha" and "beta" for the weight hyperparameters. The remaining anchors are regarded as
negative samples, and "m" anchors with maximum value "t" are chosen to represent positive
samples. The loss function is then used to train the model. Because of these improvements,
YOLOv8 has the highest accuracy of any object detector to date, with a 1% improvement
over YOLOv5.

t = sα · uβ (6.6)

Equation (6.7) illustrates how YOLOv8 uses a complete loss function that combines classi-
fication loss, localization loss, and confidence loss among other components to enhance the
performance of the model. Each term contributes to different parts of the detection task, and
the loss function is intended to direct the training process and enhance detection performance
by penalizing inaccurate predictions and promoting accurate detections.
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Loss = Classification Loss + Localization Loss + Confidence Loss (6.7)

YOLOv8 is the best option for real-time palm tree detection in applications like environ-
mental monitoring, urban planning, and agriculture because to its excellent balance between
accuracy and speed. Additionally, YOLOv8 offers a range of pre-trained models that are
adapted to various performance needs. These models provide a comfortable place to start by
utilizing the knowledge and optimizations that are already there in YOLOv8. This expedites
implementation and saves time and money when creating a reliable palm tree detecting sys-
tem. As a result, YOLOv8 was selected as the reference version and the starting point for
our work.

6.2.2.1 Network achitecture

The Focus, CBL, SPP, and CSP modules, among others, are shared by YOLOv8 and
YOLOv5. Similar functions and goals are served by these modules in YOLOv8 as they
were in YOLOv5. The CBL module is used by the Focus module to create feature maps
after splitting the input image into four parallel slices. Convolution operations are carried
out using the CBL module with batch normalization and leaky-ReLU activation for feature
extraction. Similar to YOLOv5, the CSP module in YOLOv8 is built on CSPNet and com-
prises of CSP1 and CSP2 modules. These modules are used to partition the input feature
map, fuse cross-level features, and establish the depth of the architecture in the network
backbone and neck parts of YOLOv8. In order to capture spatial information, the SPP
module, which is also featured in YOLOv5, downsamples input features using max pooling
layers and then mixes them with the beginning features. The fundamental ideas and purposes
of these modules are the same in both YOLOv8 and YOLOv5, despite possible differences
in architectural components and configurations. The preparation of the dataset, training,
validation, and testing procedures are covered in the following subsections.

6.2.2.2 Network training

With precise labeling that distinguished between palm trees and other types of trees, the
training dataset had two classes: palm and tree. The recognized palm trees and trees were
contained within rectangular bounding boxes that took into account size variations, overlap,
occlusion, and various backdrops. Techniques for data augmentation, such as scaling, crop-
ping, rotation, and color space modifications, were used to enhance the training dataset. For
additional augmentation, mosaicking, a method that combines numerous images to produce
a composite image, was employed to introduce differences in scene composition and context.
The number of training images for each class was greatly boosted by this enlarged dataset,
which improved the model’s capacity for generalization and precise date palm tree detection.
To enhance the training procedure, a number of hyperparameters were changed, including
the SGD optimizer with a momentum value of 0.9 and a decay rate of 0.0005. For consis-
tency, a random seed of 45 was chosen, and the training process was tracked with model
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saving every 10 epochs. To avoid overfitting, early stopping with a patience of 20 epochs
was implemented. These setup options made sure that the YOLO-V8 model was trained
consistently and successfully for precise palm tree detection.

6.2.2.3 Palm tree detection

We scaled the test images to 1280x1280 pixels after training the YOLO-V8 network in order
to keep the aspect ratio constant. This size was selected because it found a good compromise
between maintaining details and lightening the computing burden. The trained network was
then fed the resized images to produce 80x80, 40x40, and 20x20-scale feature maps. In YOLO-
V8, three bounding boxes, each comprising data on the coordinates, size, confidence level,
and class probability, were generated for each prediction scale. Low confidence boxes were
eliminated, and redundant detections were suppressed by defining a threshold and using Non-
Maximum Suppression (NMS). Finally, to precisely pinpoint the palm trees, the bounding
boxes were rescaled to the original image size. This procedure enhanced the system’s overall
performance and made it possible to detect palm trees of all sizes efficiently and accurately.

6.2.3 RPW map generation

The main objective of creating an RPW map is to locate the presence of RPW on UAV images
and identify RPW infestations on palms. This requires a coordinated strategy using UAV
imagery, palm object detection algorithms, and recording devices attached to the palms. The
location of each recording device is first stored in a cloud database before it is carefully placed
and attached to specific palm trees. The sounds of the palms are recorded by these devices
and then subjected to sound analysis. Key spectral and temporal features are captured by
extracting CQCC features from the recorded sounds.

During the training of the InceptionNetV3 model, the TreeVibes dataset was employed to
process the CQCC features. However, it’s crucial to note that for the generation of the RPW
map, a private dataset from the same geographic zone as the drone images was utilized. This
private dataset contributed to the accurate mapping and categorization of RPW-infested
palms within the targeted region. The model, through sound analysis, determined the RPW
infestation status of each palm. To establish a connection between infestation status and
location, the results of the categorization process were stored alongside the coordinates of
each palm. Concurrently, drones equipped with cameras captured high-quality images of the
farm, with a focus on the areas of interest containing the palm groves. These drone-captured
images provided a comprehensive overview of the entire farm.

The final step is to apply palm object detection techniques, such as YOLOv8, to the UAV
images. These techniques locate palm trees in photographs and determine their locations by
returning bounding box coordinates for each palm tree found.

Now begins the crucial process of coordinate matching and visualization. The coordinates
of the palms detected in the object detection phase are compared to the coordinates of the

144



Chapter 6. Early Detection and Mapping of Red Palm Weevil Disease

palms detected by the corresponding recording devices. This matching helps to establish a
link between the category of RPW infection and the palms found.

Once the matching is complete, the RPW map visualization is created. Depending on the
level of RPW infection, the bounding boxes of the identified palms are colored. If a palm
is infested with RPW, the corresponding bounding box is highlighted in red to indicate the
presence of an infestation. The bounding box of a palm that has not been found to be infested
is shown in blue, indicating a healthy palm.

6.3 Experimental Study
This study employed Python code programming with the TensorFlow and Keras packages
[GKP19] to implement the proposed InceptionV3 classifier and other models of transfer learn-
ing. All experiments were conducted on an HP Victus laptop running Windows 11 Home
Single Language Edition version 22H2. The device features a 12th-generation Intel Core
i7-12700H processor operating at a base frequency of 2.30 GHz. It has 24.0 GB of installed
RAM. The system was a 64-bit operating system based on an x64 processor. Additionally,
the laptop was equipped with Disque 1 SSD M.2 storage and included an Nvidia GeForce
graphics card for enhanced graphical processing capabilities.

6.3.1 Data-sets Collection

6.3.1.1 The TreeVibes Dataset

In our scholarly endeavor, we availed ourselves of the extensive TreeVibes dataset, which
encompasses over 54,000 ten-second audio samples. This dataset, described in detail by
Rigakis et al. [Rig+21], serves as a vital resource for delving into the acoustic attributes
of trees, with a particular focus on wood-boring insects, such as Rhynchophorus ferrugineus
(RPW) and other pests. It is worth mentioning that our objective was to utilize this dataset
for training and comparison with other studies, as several models proposed in the literature
have employed the same dataset for similar objectives.

The TreeVibes dataset covers a diverse range of tree species, recorded at various times
throughout the year. Each audio sample was associated with comprehensive metadata, in-
cluding descriptors for tree species, geographic location, season, weather conditions, and
timestamps. These metadata include vital information, such as GPS coordinates, date and
time of recording, temperature, humidity, and barometric pressure. The dataset encompasses
different tree species from various continents, which facilitates the study of sound variations
associated with seasonal and weather-related changes. Table 6.1 provides a comprehensive
overview of the contents of the dataset can be found in Table 6.1. This table provides detailed
information regarding the number of audio samples, tree species diversity, and other relevant
metadata.
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Label Number of records
Not infested 967
Infested 53676

Table 6.1: Number of records in TreeVibes dataset

A distinctive feature of the TreeVibes dataset is its innovative data-collection approach. As
shown in Figure 6.5, the dataset was obtained using a remotely controlled device equipped
with a piezoelectric transducer, which was distinct from conventional microphones. This
transducer records vibrations inside trees generated by wood-boring insects, such as RPWs,
using a drill or a metallic waveguide as a sound coupler. The recorded data were compressed
in Ogg format, transmitted to a cloud server, and subsequently decompressed, logged, and
classified. The design of the dataset allows remote access to recordings, enabling the appli-
cation of automatic classification methods for early pest detection. The TreeVibes device
operates self-sufficiently and is powered by a built-in solar panel, eliminating the need for
recharging and enabling prolonged use on trees. Its global coverage through an SIM map,
combined with GPS tracking, facilitates seamless communication between the trees and the
server.

Despite the richness of the dataset, there are challenges in collecting and tagging the data on
infested trees. Devices must be placed on trees with visible signs of infestation, or recordings
must be made of felled trees while adhering to the required permits. Expanding on the
specifics of the device, as described by the authors, the TreeVibes sensing device employs an
embedded piezoelectric crystal as a microphone to capture vibrations in the infested trees.
The acquired sounds, including those of RPWs and other borers, were converted to audio
signals. These signals are then stored or wirelessly transferred via the proposed IoT network
to a cloud server for further signal processing and analysis.

It is important to note that the TreeVibes device can detect the feeding and movement of
RPW larvae but cannot count them or precisely define their location inside the trunk of
the palms. Proper placement of the sensing device on the trunk is crucial for successfully
detecting suspected sounds of RPWs and other borers within a spherical region with a radius
of 1.5 to 2.0 meters.

The TreeVibes dataset includes annotated audio recordings of RPWs and other insect pests
such as Xylotrechus chinensis and Aromia bungii (red-necked longicorn). This open-access
database, available for download at http://www.kaggle.com/potamitis/treevibes, contains 35
annotated folders with 2485 audio recordings. In this study, we utilized this dataset for the
early detection of wood-boring insects and for pest management. In this study, we assumed
that audio recordings featuring sounds of feeding and movement from pests were exclusively
attributed to the larvae of the RPW.
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Figure 6.5: (upper) Piezoelectric Transducer Inside the Tree for Acquiring
RPW Sounds. (lower) mean spectral sound profile of three different RPWs

6.3.1.2 Private Acoustic Dataset

The Al-kharj region was chosen as the focal point for a case study, aiming to assess the
efficacy of the proposed approach. This deliberate choice builds upon the familiarity and
groundwork established in the previous section (see section 5.3.1 in Chapter 5) , providing
a seamless transition for evaluating the effectiveness of our methodology in a region already
studied and characterized.

The study utilized a dataset comprising recordings obtained through remote vibro-acoustic
surveillance of date palm trees placed in the Al-kharj region. Recordings were captured
using a device attached to the tree trunk, and it is noteworthy that this device aligns with
the equipment used in the TreeVibes dataset 6.5 (for more details about the device, refer
to https://www.insectronics.net/). The use of consistent instrumentation in our approach
guarantees comparable methodology across different datasets, which facilitates meaningful
comparisons and strengthens the reliability of our method. Furthermore, we deliberately
selected a dataset from the same geographical zone where the drone images were captured
to ensure spatial synchronization during the map generation process.

To ensure precise reading points, markings were carefully placed on each date palm trunk,
exactly one meter above the ground level. Next, drill holes were meticulously created at a
30-degree angle using a drill machine equipped with an 8-mm diameter. The brad-point drill
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bit reached a depth of 35 cm within the palm tree. A single hole was carefully drilled at the
designated location on the trunk, and an acoustic device was installed around the tree to
enhance the detection of RPW sounds.

The acoustic device, designed for optimal sound data collection, features a probe or waveg-
uide measuring 35 cm in length. This specialized component was carefully inserted into the
tree and embedded in a recording machine. The waveguide was positioned within a previ-
ously drilled hole in the date palm trunk, establishing a direct connection to the recording
machine. The recording machine is equipped with headphones, allowing users to assess the
intricate sound signals produced by RPW activities. This comprehensive device architecture
facilitates seamless data transmission between the device and a central server or cloud sys-
tem. The RPW device boasts a sound signal detection radius within the date palm tree of
approximately 1.5–2 meters. In this study, specific parameters were configured, including a
five-minute repeat period and a recording duration of 20 s. Each daily tree recording captured
20 seconds of sound data. This rigorous recording protocol was diligently executed across the
entire spectrum of date palm trees, accompanied by precise timestamps for each recording.
Table 6.2 presents a comprehensive overview of the number of recordings per class, with the
aim of facilitating a more profound comprehension of the dataset.

Label Number of records
Not infested 531
Infested 571

Table 6.2: Number of records in our Private Dataset

6.3.1.3 UAV images data

As mentioned in the previous chapter 5, we used the same dataset for this study. This dataset,
as described earlier, includes a total of 349 collected images consisting of aerial photographs
from two different locations. Two drones were used to capture the images. The first drone
was a DJI Phantom 4 Pro, which was equipped with a DJI FC6310 camera with resolutions
of 4864 × 3648 and 4096 × 2160. The second drone was a DJI Mavic Pro equipped with a
DJI FC220 camera with a resolution of 4000 × 3000 pixels. Figure 6.6 shows UAV examples
captured by drones. To analyze and classify the images, the dataset was manually labeled
using the Labelbox platform. A total of 13,071 instances were labeled, with 11,150 instances
identified as palm trees and 1,921 instances identified as other trees.

6.3.2 Evaluation metrics

Mean Validation Accuracy: MVA represents the average accuracy of a model in a val-
idation dataset. It is a measure of how well the model correctly classifies the data in the
validation data set. Typically, the average validation accuracy is calculated by averaging the
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Figure 6.6: UAV images examples

accuracy values obtained during validation for different stacks or validation folds. If you have
accuracy values A1, A2, . . . , An for n validation runs, the mean validation accuracy (MVA)
can be calculated as follows:

MVA =
1

n

n∑
i=1

Ai

Mean Validation Loss: MVL represents the average loss (e.g., cross-entropy loss or mean
squared error) of a model in a validation dataset. It quantifies the dissimilarity between the
predicted values and the true values in the validation set. Similar to the mean validation
accuracy, the mean validation loss is calculated by averaging the loss values obtained during
validation for different stacks or validation folds. If you have loss values L1, L2, . . . , Ln for n
validation runs, the mean validation loss (MVL) can be calculated as follows:

MV L =
1

n

n∑
i=1

Li

In our analysis, we also use a number of well-known evaluation benchmarks to comprehen-
sively investigate the performance of our model. These benchmarks, which include Precision,
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Recall, and mAP, have already been examined in detail in the previous chapter (section
2.5.6).

Precision measures the accuracy of our model in detecting positive instances and guarantees
that an expected infection is indeed a positive case. Recall evaluates the model’s ability
to detect all positive instances and highlights its accuracy in detecting all infections. As
mentioned earlier, the mAP provides a useful overview of the model’s performance at various
confidence levels. Together, these criteria provide a solid evaluation framework for assessing
the effectiveness of our strategy in detecting and controlling wood-boring insect infestations.

6.3.3 Results and discussion

6.3.3.1 RPW classification based on sound data

Using the CQCC feature extraction technique, we converted the dataset of the red palm weevil
audio recordings into visual representations. As illustrated in Figure 6.7, the technique was
applied to a dataset of audio files labeled as either "infested" or "not infested." The figure
shows four samples from each class, and the outputs of the feature extraction techniques are
shown for each sample.

Infested (a)

Not Infested (b)

Figure 6.7: The images obtained for each class (Infested and not-infested
palms).

Using ratios of 0.8, 0.1, and 0.1, the image dataset was divided into training, validation, and
test sets. The DL model used was InceptionV3, trained with a batch size of 16, a learning
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rate of 0.0001, and 200 iterations. Both the binary cross-entropy loss function and the
Adam optimizer were used. The test data set was used to evaluate the trained InceptionV3
model, and the results were very encouraging. The results were very encouraging. The
model performed well, scoring 98.8% on accuracy. Different iterations allowed visualization
of validation accuracy and loss, as shown in Figures 6.8, 6.9. The plots show a decreasing
trend in the loss function and a constant increase in accuracy during training.

Performance comparison

For the RPW classification task, we employed the CQCC feature extraction technique to
transform a dataset of red palm weevil audio recordings into visual representations. Figure
6.7 showcases the application of this technique to a labeled dataset, distinguishing between
"infested" and "not infested" audio files. The figure displays four samples from each class,
presenting the outputs of the feature extraction technique for each sample.

First, our objective was to evaluate our methodology by applying a range of machine-learning
algorithms including; support vector machines (SVM), Logistic Regression (LR), Random
Forest (RF) and Decision Tree (DT), to our private dataset. The results are consolidated
in Table 6.3. Although the outcomes were encouraging, it is essential to emphasize that
our long-term objective was to achieve perfect accuracy. The early detection of Red Palm
Weevil is of paramount significance, and we remain committed to exploring avenues that can
improve the accuracy of our method.

Table 6.3: Performance of ML algorithms on our private Dataset

ML Algorithms SVM LR RF DT Our Proposed Method

Accuracy 98% 99,2% 98% 99% 99.8%

Second, our objective was to assess the robustness of our approach by applying it to various
deep-learning algorithms, particularly focusing on the most recent and highest-performing
results highlighted in the literature review. The methodologies and achievements outlined by
Karar et al. in 2021 and 2022 are particularly influential in guiding our comparative analysis
[Kar+21; Kar+22]. The dataset was split into training, validation, and test sets with ratios
of 0.8, 0.1, and 0.1, respectively. We utilized the InceptionV3 deep learning model, with a
batch size of 16, a learning rate of 0.0001, and 200 iterations. The training employed the
binary cross-entropy loss function and the Adam optimizer. The performance evaluation on
the test dataset yielded highly encouraging results, with the model achieving 98.8% accuracy,
precision, recall, and F1 score.

Different iterations enabled the visualization of validation accuracy and loss, as depicted in
Figures 6.8 and 6.9. These plots illustrate a decreasing trend in the loss function and a
consistent increase in accuracy during the training process.
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Figure 6.8: Mean validation accuracy over 10 iterations.

Figure 6.9: Mean validation loss over 10 iterations.

The outcomes presented in Table 6.4 serve as a robust validation of the efficacy of our
approach assessed on the Treevibes dataset. Notably, the InceptionV3 model surpasses other
classifiers, exhibiting exceptional performance across all evaluation metrics and attaining
perfect precision, recall, and F1-score scores. The model consistently achieved an accuracy
rate of 98.8%, underscoring its resilience in accurately categorizing instances as infested or
non-infested.

These results substantiate the success of our proposed methodology for the classification of
red palm weevils and establish a foundation for reliable and precise pest detection. It is
imperative to note that the performance on our private dataset surpassed these outcomes,
achieving an impressive 99.5% accuracy.
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Table 6.4: Transfer learning classifier performance tested on Treevibes
Dataset

Classifier Class P R F1-score A (%) Loss

InceptionResnet,
[Kar+21]

Infested 0.99 0.92 0.95 97.18 2.82%

Not infested 0.97 0.99 0.98

MixConvNet,
[Kar+22]

Infested 0.99 0.93 0.96 97.38 2.62%

Not infested 0.94 1 0.97

Our proposed method:
InceptionV3 + CQCC

Infested 99.5% 98.5% 99% 98.8% 1%

Not infested 98.8% 99.2% 99%
P: precision, R: recall, A: accuracy

6.3.3.2 YoloV8 for palm tree detection

Using a carefully selected palm recognition dataset, we trained the YOLOv8 object recogni-
tion model. Our goal was to develop an accurate and reliable model that can recognize palms
in a variety of environments. A 1280x1280 image with 60 training epochs was used with the
large YOLOv8 model architecture. The efficiency of our trained YOLOv8 model for palm
tree detection was demonstrated by the evaluation results. With a precision of 0.841, palms
were correctly detected 84.1% of the time. With a recall value of 0.865, 86.5% of the actual
palm plants in the dataset were successfully identified. To evaluate the overall accuracy, we
measured the mean accuracy (mAP). At a confidence level of 50%, the mAP@50 result was
0.899, indicating high accuracy. At a wider range of confidence thresholds, performance was
less effective, as indicated by the mAP@50-95 value of 0.541. The training progress for the
palm object recognition matrix is shown in Figure 6.10.

Our YOLOv8 model achieved exceptional results that were significantly bolstered by the
strategic integration of data from red palm weevils, accompanied by precise GPS coordinates.
The supplementary dataset proved to be a game changer, playing a pivotal role in improving
the performance of our model.

The red palm weevil dataset introduced real-world variations and challenges encountered in
palm tree environments, which introduced a unique dimension to the training process. The
inclusion of GPS coordinates facilitates a nuanced understanding of the spatial distribution of
palm trees and their corresponding infestation patterns. This additional layer of information
enables our model to adapt more effectively to diverse geographical conditions.

By incorporating this enriched dataset, we observed impressive enhancements in several key
performance metrics. The precision of our YOLOv8 model experienced a noteworthy boost,
reaching an ameliorated value of 0.871, representing an increase from the initial value of
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0.841. This signifies that the model achieved even greater accuracy in correctly identifying
palms, now standing at an impressive 87.1

Similarly, the recall value saw a substantial improvement, reaching an improved value of 0.895,
up from the initial 0.865. This signifies an increased capability of our model to successfully
identify a greater proportion (89.5%) of actual palm plants within the dataset.

The mean accuracy (mAP) at a confidence level of 50% also increased, reaching an amelio-
rated value of 0.918. This highlights a further refinement in accuracy, solidifying the model’s
proficiency in palm-tree detection.

In summary, the incorporation of red palm weevil data, coupled with GPS coordinates,
has not only enriched the training process but has also led to substantial improvements
in precision, recall, and overall accuracy. These improved values underscore the model’s
heightened effectiveness in recognizing palms across diverse environments, showcasing its
robustness and adaptability.

Figure 6.10: Precision, Recall, mAP50, and mAp50-95 history.

6.3.3.3 Spatial Synchronization for RPW Detection

This section describes the spatial synchronization method employed to combine data from two
primary sources: acoustic sensors embedded within palm trees to detect RPW activity, and
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aerial imagery obtained via drones. The integration of these datasets is critical to accurately
assessing the health status of palm trees.

Each palm tree in the study area was equipped with an acoustic sensor designed to detect
RPW sounds, which served as a distinctive indicator of their presence and activity. These
sensors, geotagged with precise latitude and longitude coordinates, facilitated the precise
matching of the sensor and its location on the ground.

Deployed drones equipped with high-resolution cameras captured comprehensive aerial im-
ages of the farm, including metadata with exact latitude and longitude coordinates corre-
sponding to the ground-level sensor locations.

The object detection algorithms were calibrated to identify individual palm trees in aerial
photographs, ensuring accurate identification based on distinctive palm tree features. Our
method relies on spatial synchronization, which involves aligning the geographic coordinates
from sensors with drone metadata. This precise matching ensured that each palm tree iden-
tified in the aerial image was correctly associated with its respective sensor data. After
synchronization, the health status derived from the acoustic sensor data was visually repre-
sented on aerial images. Trees without RPW activity are encircled in green, while those with
RPW presence are marked in red, facilitating easy identification and management of infested
trees.

The spatial synchronization process is crucial for reliable data fusion, reducing the poten-
tial for misidentification and errors in determining tree health. This precision significantly
enhanced the accuracy of our pest detection system.

The spatial synchronization of acoustic sensor data with aerial imagery has emerged as a
key element, enabling the precise identification and visualization of palm tree health. This
approach not only enhanced the accuracy of our pest detection system but also presented a
scalable solution for monitoring agricultural areas for pest activity.

6.3.3.4 RPW map generation

The RPW mapping method has produced encouraging results in identifying and visualizing
RPW infestations on palm farms. Effective management techniques can be supported by
the results, which provide useful insights into the distribution of palms infested with RPW.
Figure 6.11 shows the RPW map with the UAV image and bounding boxes for infested and
non-infested palms.

Discussion

Acoustic-based detection systems play a vital role in supplementing image-based techniques
to identify plant diseases and infestations, particularly when external symptoms are not read-
ily apparent. Despite the susceptibility of sound to background noise in various environmen-
tal conditions, DL techniques, such as CNNs, have emerged as a powerful solution, showing
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Figure 6.11: RPW Map Visualizing Infested and Not Infested Palm Trees.

exceptional proficiency in detecting the RPW, even in challenging acoustic environments.

DL’s strength lies in its capacity to learn and distinguish the unique characteristics of the
RPW’s acoustic signature from the surrounding noise. The distinctive features of RPW
acoustic signals, including their unique frequency range, waveform pattern, and duration,
enable CNNs to effectively discern RPW signals from other environmental sounds. How-
ever, the implementation of this solution in a real-world scenario requires acknowledgment
of certain limitations.

The outstanding success in achieving 98.8% accuracy in RPW classification can be primarily
attributed to the diligent efforts made to acquire an impeccable dataset. By ensuring pristine-
ness of the dataset, we effectively attenuated the deleterious consequences of ambient noise
on the performance of the model. To ensure the reliability and robustness of the classification
model, stringent data preprocessing measures were implemented, including the application
of advanced filtering techniques, such as bandpass and high-pass filters, to reduce noise, as
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well as the selection of relevant features, such as CQCC and various spectral features.

Moreover, the proposed method exhibited enhanced effectiveness when the YOLOv8 model
was integrated for palm tree detection in UAV images and RPW mapping. Farm managers
seeking to take targeted actions to protect the health and production of palm ecosystems can
greatly benefit from the information provided by the newly created RPW distribution map.

However, it is essential to acknowledge that implementing the proposed strategy on a larger
scale, particularly on commercial palm farms, has both advantages and disadvantages. The
accuracy of palm detection in UAV images may be influenced by geographic variables such as
variations in vegetation density or topography. Therefore, these aspects must be adequately
considered in the development and implementation of a system to ensure robust performance
under diverse environmental conditions.

In light of the pressing need for cost-effective alternatives, particularly those designed to
meet the requirements of small-scale farmers, we advocate the creation of affordable and
user-friendly devices. Our dedication to making this advanced technology accessible to a
wider audience goes beyond the focus on achieving high levels of accuracy. It encompasses
a commitment to fostering inclusivity and providing solutions that empower a wide range of
farmers to adopt sophisticated pest management techniques.

In proposing these alternatives, we envision a future in which the advantages of advanced pest
detection technologies are not limited to large-scale agricultural operations but are accessible
to farmers of varying scales. This democratization of technology not only promotes the
sustainability of palm agriculture but also contributes to the overall resilience and prosperity
of diverse farming communities.

6.4 Conclusion
Timely identification of RPW infestations is important for mitigating the adverse effects of
this pest on palm trees and the industries dependent on them. Early detection serves as a
crucial factor in limiting the propagation of infestations and enabling swift interventions to
contain and manage the population. Proactive measures to prevent the spread of the red
weevil to adjacent trees contribute to preserving the overall health of the palm population
while also being cost-effective control measures. Addressing this issue before substantial dam-
age occurs may necessitate less extensive and more economical control methods, ultimately
minimizing the economic impact of red weevil infestations on the palm industry.

Our research advocates the adoption of a DL approach for the proactive detection and map-
ping of RPW infestations in palm farms. Our innovative methodology seamlessly integrates
computer vision, DL, the IoT, and geospatial data to accurately identify and classify palm
trees affected by RPW, contributing to a comprehensive RPW management system.

Overall, our proposed technique for early identification and mapping of the RPW represents
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a significant stride towards sustainable palm ecosystem management. By leveraging the syn-
ergistic potential of IoT devices, DL algorithms, and multimodal data, we’ve established
a pathway for proactive monitoring and targeted intervention. The resulting RPW map
serves as a visual tool for identifying and locating RPW-infested palms, providing action-
able information for strategic treatments. This method has the transformative potential to
redefine how palm stands are protected, showcasing the power of technological innovation in
conserving natural resources and ensuring agricultural sustainability. Potential avenues for
enhancing and extending our system include the following: Seamless integration with exist-
ing farm management tools to automate pest control and monitoring, streamlining the RPW
management process. Exploration of advanced DL techniques, such as reinforcement learn-
ing or generative models, to refine the detection system’s performance, predict infestation
severity, and assess potential tree damage Conducting comprehensive field trials in diverse
settings, geographical locations, and varying climatic conditions involving different palm tree
species and background noise These trials aimed to provide deeper insights into the system’s
performance across real-world conditions.
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7.1 Summary of contributions
Precision agriculture has emerged as a transformative paradigm in the contemporary quest
for sustainable and efficient food production. In this era, where a 70% increase in global food
production is not just a goal but a necessity, the integration of data-driven methodologies
becomes imperative. This research, titled "Toward Smart Palm Precision Agriculture: A
Study on Palm Tree and Red Palm Weevil Detection," seeks to harness the power of tech-
nology to address critical challenges in the cultivation of palm trees, particularly focusing on
date palm production and environmental balance.

The cultivation of palms is of great significance for both global food security and environmen-
tal equilibrium. This endeavor is further emphasized by its alignment with the Sustainable
Development Goals (SDGs). In response to the pressing need for increased productivity and
resilience in palm production, this study employs a multifaceted approach that leverages
remote sensing big data and the Internet of Things (IoT).

The primary focus of our investigation was the application of deep learning, which ushers in
a new era of smart precision agriculture specifically designed for effective palm management.
This convergence of technologies not only addresses the current challenges in palm cultivation
but also supports global initiatives aimed at achieving sustainable and responsible agricultural
practices.
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Our multifaceted approach, which integrates remote sensing big data and IoT, is poised to
contribute significantly to the realization of SDGs related to food security, environmental
sustainability, and innovation in agriculture. The adoption of deep learning serves as a
cornerstone, facilitating a transformative shift toward smart precision agriculture.

In integrating these advanced technologies, our research aims to harmonize their potential,
creating a synergy that enhances productivity while fostering resilience in the face of changing
agricultural demands. The resulting framework aspires to meet the immediate needs of the
present, while establishing a strong foundation for a sustainable and technologically driven
future in palm management.

Contributory Approaches: An Overview

In the context of this thesis, the following contributions have been realized:

• We propose a scalable, multimodal distributed management model for mas-
sive, high-resolution remote sensing data and IoT data [C1]
The proposed solution addresses the challenges posed by vast amounts of satellite re-
mote sensing (RS) data and the diverse nature of Internet of Things (IoT) data. This
innovative approach surpasses the limitations of traditional databases in handling high-
resolution RS Big Data and IoT datasets. The proposed multimodal distributed archi-
tecture includes a unified metadata file, pyramid model, and Hilbert Curve for effective
data organization. The use of NoSQL databases within a Hadoop-based framework on
the Amazon Web Services (AWS) cloud platform enables the parallel and distributed
management of both RS and IoT data. The integration of time-series databases en-
hances the multimodal approach, allowing for the efficient storage, retrieval, and anal-
ysis of time-dependent IoT datasets. The experimental results demonstrate the signif-
icant potential of the proposed approach in overcoming traditional constraints. The
proposed solution not only transforms the RS data management landscape but also
presents an integrated solution for storing massive high-resolution image data and time-
dependent IoT datasets.

• We proposed a Deep Learning and UAV-based approach for efficient palm
tree detection to support precision agriculture for palm trees [P2]
We investigated current methods for automatic palm tree detection and counting.
Based on the results, we propose an approach that aims to increase the efficiency
of the palm tree industry by using Deep learning-based object detection and remote
sensing. We focus on the efficient detection and localization of palm trees using UAVs
equipped with deep Learning algorithms. This approach is revolutionizing the palm
industry by reducing errors, accelerating data collection, and accurately detecting and
managing palms. The use of DL-based object recognition increases efficiency and sus-
tainability in the palm industry and improves decision-making, resource optimization,
and the achievement of the SDGs.
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• We proposed an IoT and Multi-Modal Data for Early Detection and Map-
ping of Red Palm Weevil in Sustainable Palm Tree Farming [C3]
In this section, we present an innovative solution for sustainable palm cultivation to
control the destructive weevil. By integrating computer vision, DL, the IoT, and geo-
graphic data, our approach detects and classifies RPW-infested palms. Our custom DL
model achieved 98.8%-99.5% accuracy and detection rate in detecting the infestation.
Geospatial data integration enables comprehensive RPW spread mapping, monitoring,
and targeted management. This technology-based strategy benefits agricultural agen-
cies, growers, and researchers by protecting palm plantations and productivity from
RPW infestations.

Together, these diverse but interrelated contributions form a comprehensive approach that
demonstrates the versatility and potential of data-driven solutions in modern precision agri-
culture. Each individual contribution is examined, evaluated, and contextualized in the
following sections to highlight its importance within the larger tapestry of our work. This
complex web of contributions illustrates our commitment to advancing the field of smart
precision agriculture and defining the future landscape of sustainable agricultural practices
through novel approaches.

7.2 Future work and research directions
Our work lays the groundwork for a diverse range of future research initiatives, encompassing
both methodological advancements and practical applications.

Scalable, Distributed Management Model for Remote Sensing Data

Perspectives: The scalable, distributed management model for remote sensing data presents
an opportunity for further exploration in the realm of edge computing. Integrating edge com-
puting technologies can enhance the real-time processing capabilities of the system, ensuring
timely analysis of high-resolution remote sensing data directly at the source. Additionally,
considering the potential application of machine learning algorithms to dynamically adapt
and optimize the distributed model based on changing data characteristics would usher in a
more intelligent and responsive data management framework.

Future Ideas: The evolution of hybrid architectures is a promising avenue for future devel-
opment. By combining cloud-based processing with edge computing, we can create a flexible
and responsive system that leverages the strengths of both approaches. Dynamic scaling
mechanisms, capable of adjusting resources in real-time to meet varying data processing
demands, represent a cutting-edge area for research. These advancements aim to propel
the distributed management model to new heights of efficiency and adaptability in handling
massive high-resolution image data.
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Deep Learning and UAV-Based Palm Tree Detection for Precision Agriculture

Perspectives: Looking ahead, continuous model training emerges as a key perspective for
the deep learning and UAV-based palm tree detection approach. Enabling the algorithm to
adapt to evolving environmental conditions ensures its effectiveness over time. Additionally,
exploring the integration of multi-sensor fusion, such as incorporating infrared or hyperspec-
tral sensors on UAVs, holds promise for enhancing the accuracy and robustness of palm tree
detection, particularly in diverse agricultural landscapes.

Future Ideas: The concept of autonomous UAVs opens avenues for future research, where
UAVs equipped with autonomous capabilities can operate efficiently in large-scale palm plan-
tations without constant human intervention. Transfer learning techniques represent another
promising area, potentially reducing the need for extensive labeled data by leveraging pre-
trained models on related tasks. These future ideas aim to advance the efficiency and adapt-
ability of palm tree detection, contributing to the evolution of precision agriculture practices.

IoT and Multi-Modal Data for Early Detection of Red Palm Weevil

Perspectives: The IoT and multi-modal data approach for early detection of Red Palm Wee-
vil infestations opens up the prospect of developing real-time monitoring systems. Strength-
ening the IoT infrastructure to enable continuous surveillance allows for prompt detection
and intervention. Additionally, considering the integration of predictive modeling into the
system could lead to the creation of disease prediction models, offering insights into potential
infestation risks based on historical data and environmental factors.

Future Ideas: Exploring the development of automated intervention systems represents an
exciting future direction. These systems could be designed to automatically deploy targeted
treatments upon early detection of Red Palm Weevil infestations or alert agricultural agen-
cies for swift and effective action. Furthermore, investigating the cross-domain applications
of the IoT and multi-modal data approach to detect and manage other agricultural pests
and diseases could contribute to the creation of a comprehensive and adaptive agricultural
ecosystem.
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