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RÉSUMÉ EN FRANÇAIS

Contexte

La consommation de vidéos en ligne a explosé ces dernières années, en raison de
multiples facteurs qui ont remodelé notre vie quotidienne. Premièrement, l’émergence de
plateformes vidéo en ligne à la demande (e.g Netflix, TikTok) et de services de streaming
live ont rendu les contenus vidéo plus accessible que jamais. D’autre part, le streaming de
jeux et de sports en temps réel a acquis une immense popularité, contribuant de manière
significative à l’augmentation du trafic vidéo. De plus, la demande croissante de contenus
de meilleure qualité a conduit à la création et à la diffusion de vidéos en très haute
résolution (e.g 4K). De nouvelles expériences immersives, en cours de développement,
visent à améliorer l’expérience utilisateur au prix d’une consommation élevée de ressources
de calcul et de bande passante. Enfin, la transition mondiale vers le travail à distance après
la pandémie de COVID-19 repose sur des outils de communication vidéo pour les activités
liées au travail. Les vidéoconférences, les webinaires et les réunions virtuelles sont devenus
des éléments essentiels de la culture du travail moderne, augmentant le trafic vidéo en
raison du besoin de connectivité constante. Ensemble, ces tendances ont entraîné une
augmentation exponentielle du trafic vidéo. D’après une enquête de Sandvine [1], le trafic
vidéo a été augmenté de 24% en 2022 et représente 65% du trafic Internet total en 2023.

L’augmentation de la bande passante Internet a considérablement facilité l’accès à
ces contenus sur une variété d’appareils, mais ne suffit pas à soutenir l’accélération de la
consommation de contenus vidéos. C’est pourquoi l’évolution des normes de compression
est d’une importance majeure. Depuis la norme H.261 en 1988, les chercheurs et ingénieurs
n’ont cessé de travailler à l’amélioration et à la proposition de nouveaux codecs vidéo pour
s’adapter à de nouvelles contrainte en terme de définition, fréquence des images, d’espace
colorimétrique, ...

Des premières normes comme AVC aux codecs récents comme HEVC et VVC, tous
ces codecs ont conservé jusqu’à maintenant la structure de codage hybride basée sur les
blocs, tout en améliorant considérablement l’efficacité d’encodage à qualité constante.
Cette amélioration des performances d’encodage est due à des algorithmes avancés, à
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Résumé en français

une compensation de mouvement améliorée, à une meilleure prédiction et à un codage
entropique plus efficace. Le dernier codec vidéo, VVC a été finalisé en juillet 2020. Il
permet de réduire d’environ 40% les débits par rapport au HEVC à qualité constante.
Plus précisément, VVC se distingue par son efficacité à transmettre du contenu haute
résolution, y compris des vidéos 4K et 8K, ainsi que du contenu immersif.

Néanmoins, ce gain sur les performances de codage de VVC se fait au prix d’une
complexité de calcul largement accrue. Une approche pour évaluer la complexité d’un
codec consiste à comparer le temps d’encodage de son implémentation de référence avec
les codecs précédents. Concrètement, le temps d’encodage de VVC est de 6,6 à 25,8 fois
plus long que celui de HEVC [2] selon les configurations d’encodage, ce qui limite son
adoption notamment dans les scénarios de diffusion vidéo en continue. Cette complexité
a également un impact sur la consommation énergétique aussi bien pour l’encodage que
le décodage. Enfin, elle rend l’implémentation d’un encodeur basse latence très difficile.
Ces limites sont détaillées dans la section suivante.

Motivations et Objectifs

Selon l’étude Cisco [3], le nombre d’appareils connectés au réseau pourrait atteindre
29,3 milliards d’ici 2023. Une majorité de ces équipements sont des systèmes embarqués
sur lesquels une grande quantité de données vidéo est traitée. D’après le rapport de mobil-
ité d’Ericsson [4], le trafic vidéo représente 71% de l’ensemble du trafic de données mobiles
en 2023. Cette proportion devrait atteindre 80% en 2028. Selon l’enquête [5] menée auprès
des consommateurs du monde entier, les répondants ont regardé en moyenne 17 heures
de contenu vidéo en ligne par semaine en 2023. Une grande partie de ces équipements
mobiles utilise une batterie comme source d’énergie, batterie qui se déchargera plus vite
lors des tâches de traitement vidéo utilisant des codecs plus complexes. Ainsi, il est pri-
mordial de réduire la complexité de ces nouveaux codecs tout en minimisant l’impact sur
le compromis débit-distorsion.

Selon [6], les centres de données représentent 2,7% de la demande d’électricité en 2018.
Une grande partie de ces centres de données sont dédiés à l’encodage ou au transcodage
vidéo. L’utilisation d’un codec plus léger peut réduire efficacement la consommation
énergétique du traitement vidéo, réduisant ainsi une grande partie du coût énergétique
des plateformes de streaming comme Netflix. En 2022, Netflix [7] estime la consommation
de ses centres de données à 36110 mégawattheures. Au vu de ces chiffres, il est clair que
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la réduction de la complexité des codecs vidéo peut réduire considérablement à la fois la
consommation énergétique de ces centres de données et les émissions de gaz à effet de
serre.

Les codecs vidéo sont utilisés dans différents contextes, avec des contraintes très dif-
férentes. Pour l’encodage de vidéos destinées à une plateforme de vidéo à la demande,
l’efficacité d’encodage est bien plus importante que le temps d’encodage. En effet, dans ce
scénario, quelques encodages sont nécessaires à la distribution à des millions d’utilisateurs.
Dans le cas de la diffusion vidéo en continue, le temps et la latence sont favorisés à
l’efficacité d’encodage. Dans ce contexte, et malgré ses promesses de réduction de débit,
la complexité du codec VVC est un frein majeur à son adoption. La complexité de
VVC, en particulier pour le processus d’encodage, doit encore être réduite. Le partition-
nement dans Versatile Video Coding (VVC) est le principal contributeur à sa complexité.
En particulier, il a été observé dans [8] que l’encodeur VVC consacre 97% de son temps
d’encodage à la recherche de la partition optimale. Par conséquent, les méthodes de parti-
tionnement émergent comme les approches les plus prometteuses pour accélérer l’ensemble
du processus d’encodage de VVC.

L’objectif de cette thèse est de proposer des methodes de partitionnement rapides pour
réduire efficacement la complexité d’encodage de VVC. Notre objectif est d’accélérer le
processus de partitionnement dans deux cas particuliers: le cas d’un encodage isolé et
le cas d’une série d’encodages d’une même séquence en multi-débit. Dans le premier
cas, nous proposons de limiter l’espace de recherche de partitionnement d’un encodeur
VVC à l’aide d’un réseau de neurones convolutionnel (CNN). Dans le deuxième cas, nous
proposons une méthode pour exploiter les choix de partitionnement obtenus suite à un
encodage d’une séquence à un certain débit pour les encodages de la même séquence à
d’autres débits. L’objectif général des méthodes de partitionnement rapide ci-dessus est
d’accélérer le processus de codage avec une perte de qualité raisonnable afin de maintenir
le gain de codage du codec VVC par rapport aux codecs précédents.

Contributions

Ce manuscrit comprend trois chapitres distincts correspondant à trois contributions
principales et une analyse statistique en Annexe.

Étant donné que VVC est un codec vidéo récemment finalisé, il n’y a que peu d’études
existantes dans la littérature sur la réduction de la complexité de VVC par rapport
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aux codecs précédents, et encore moins sur l’accélération d’encodage inter. Cependant,
l’accélération d’encodage inter est essentiel pour le déploiement du codec VVC dans une
application industrielle. Dans cette thèse, nous contribuons à l’accélération de l’encodage
inter en VVC par des méthodes de partitionnement rapide. Nos travaux ont été inté-
grés dans différentes implémentations de VVC. Les tests montrent que nos méthodes
surpassent l’état de l’art, contribuant au passage à l’encodage en temps réel VVC. Les
trois principales contributions sont décrites ci-dessous:

Accélération du partitionnement de l’inter dans VVC basée sur
un CNN léger

Pendant le processus d’encodage, de nombreuses partitions sont testées dans la recherche
de partitionnement, représentant la majorité de la complexité. Par conséquent, nous pro-
posons une méthode basée sur un CNN pour réduire l’espace de recherche du partition-
nement inter afin d’accélérer les traitements. Notre méthode opère au niveau CTU, où
chaque CTU est divisé en une grille fixe de 8×8 blocs. Chaque cellule de la grille con-
tient des informations sur la profondeur de partitionnement dans cette zone spécifique.
Au cours du processus d’optimisation taux-distorsion, nous utilisons un CNN léger pour
prédire cette grille, dans le but de limiter la recherche de split MT et d’éviter les par-
titions inutiles qui ont peu de chances d’être sélectionnées. Les résultats expérimentaux
montrent que la méthode proposée atteint une accélération allant de 17% à 30% avec une
légère perte de qualité d’encodage dans le RAGOP32 de l’implémentation VTM10 en tant
que VVC.

Partitionnement rapide de l’encodage inter du VVC par CNN
basé sur le champ de mouvement multiscale

Sur la base de la contribution précédente, nous proposons une nouvelle structure de
Convolutional Neural Network (CNN) et un nouvel algorithme de partitionnement rapide
mieux adapté au schéma de partitionnement de VVC pour réduire davantage l’espace
de recherche du partitionnement inter. Notre approche implique le développement d’un
CNN basé sur U-Net, qui prend en entrée un champ de vecteurs de mouvement à plusieurs
échelles au niveau du Coding Tree Unit (CTU). L’objectif de l’inférence du CNN est de
prédire le chemin de partitionnement optimal lors du processus Rate-Distortion Optimiza-
tion (RDO). Pour ce faire, notre CNN divise le CTU en grilles et prédit la profondeur
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de partitionnement Quadtree (QT), ainsi que les décisions de split Multi-type Tree (MT)
pour chaque cellule de la grille. De plus, nous introduisons un algorithme d’accélération
qui utilise les prédictions du CNN à chaque niveau de partitionnement pour éliminer les
chemins de partitionnement peu probables. Pour équilibrer la complexité et l’efficacité,
nous concevons un schéma de sélection par seuil adaptatif qui offre la scabilité. Les résul-
tats expérimentaux montrent que la méthode proposée permet d’obtenir une accélération
allant de 16,5% à 60,2% avec une baisse raisonnable d’efficacité, surpassant les solutions
dans l’état de l’art en termes de compromis entre l’accélération et l’efficacité.

Préparation de VVC pour le streaming: une approche d’encodage
multi-débit rapide

Les contributions susmentionnées sont implémentées et évaluées à l’aide de l’implémentation
de référence de VVC, qui diffère considérablement des implémentations d’encodage en
temps réel dans des contextes industriels. L’objectif de cette contribution est d’accélérer
le partitionnement dans les scénarios de streaming basés sur une implémentation légère
de VVC. Comme mentionné précédemment, l’application industrielle de VVC est un défi
pour les fournisseurs de services en raison de sa grande complexité. Ces défis sont encore
amplifiés dans les scénarios de streaming où le même contenu doit être encodé à plusieurs
débits (représentations) pour s’adapter aux différentes conditions du réseau.

Pour répondre au besoin d’encodage plus rapide de plusieurs représentations dans
VVC, nous proposons une méthode qui exploite la carte d’encodage d’une représentation
de référence. En utilisant la structure de partitionnement de la représentation de référence,
nous accélérons le processus de codage des représentations restantes, appelées représen-
tations dépendantes. Les résultats expérimentaux démontrent une réduction significative
du temps d’encodage pour les représentations dépendantes, atteignant une accélération de
40% avec une petite baisse de qualité d’encodage. Cette approche permet aux fournisseurs
de services d’encoder plus efficacement plusieurs représentations du même contenu, répon-
dant ainsi aux défis de calcul associés aux codecs avancés dans les environnements de
diffusion en continu.

L’annexe de la thèse porte sur l’analyse de la complexité de l’encodeur VVC lors du
partitionnement inter, peu exploré dans l’état de l’art contrairement au partitionnement
intra. Nous effectuons une analyse statistique de la complexité du codage inter, en nous
concentrant spécifiquement sur les tailles de bloc et les modes de codage inter. Cette anal-

13



Résumé en français

yse identifie les tailles de bloc et les modes de codage fréquemment utilisés et ceux qui
contribuent aux plus grandes portions de complexité. Notre travail fournit des informa-
tions sur les modèles de complexité du codage inter dans VVC, permettant la conception
de méthodes d’accélération plus efficaces.

Plan du Manuscrit

Cette section fournit un bref résumé du contenu couvert dans chaque chapitre de ce
document:

Dans le Chapitre 1, une introduction générale sur la compression vidéo est donnée.
Dans la première section, les caractéristiques de base de la vidéo sont présentées. Ensuite,
nous résumons l’évolution des normes de codage vidéo dans la section suivante. Les
codecs HEVC et VVC sont également spécifiquement présentés dans cette section. Dans
la dernière section, nous présentons brièvement le schéma de codage vidéo de VVC, y
compris le schéma de partitionnement, le codage inter/intra, le processus RDO et d’autres
informations supplémentaires.

Chapitre 2 donne un aperçu des états de l’art dans nos domaines de recherche.
Cette section comprend les travaux connexes dans trois domaines clés: l’analyse de la
complexité de VVC, les méthodes de partitionnement rapide et les méthodes de codage
multi-débits. Chacune de ces parties correspond à nos contributions aux chapitres 3, 4 et
5, et l’Annexe, respectivement.

Chapitre 3 se concentre sur l’accélération de l’encodage inter par une méthode de
partitionnement rapide basée sur l’apprentissage automatique. Un CNN est formé et inté-
gré dans l’encodeur VVC. En utilisant les prédictions CNN, un sous-ensemble de partitions
est exclu de RDO, ce qui réduit efficacement l’espace de recherche de partitionnement.
Nous obtenons une accélération évolutive de l’encodage VVC sous la configuration inter
avec une légère perte.

Dans le Chapitre 4, le travail du chapitre précédent est étendu et encore amélioré.
Un CNN avec une nouvelle structure est proposé. Contrairement à la contribution du
chapitre 3, ce travail atteint une accélération plus élevée en sautant un plus grand nombre
de partitions pendant RDO sur la base de la prédiction du CNN. En implémentant cette
méthode dans l’encodeur VVC, nous obtenons une réduction significative de la complexité
tout en dépassant l’état de l’art en termes de compromis entre l’accélération et la perte.

Chapitre 5 présente une méthode de partitionnement en multi-débit plus rapide.
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Résumé en français

Nous exploitons les informations de partition collectées à partir de l’encodage à un débit
binaire inférieur pour accélérer l’encodage à un débit binaire supérieur. L’expérience
montre que cette méthode offre une accélération considérable sur une implémentation
rapide de l’encodeur VVC.

Dans le Chapitre 6, nous concluons notre thèse en résumant nos contributions et en
discutant des perspectives futures de nos travaux.

Annexe fournit une étude de complexité sur le codage inter VVC. La complexité
d’encodage des différentes tailles de bloc et les modes de codage inter sont étudiés dans ce
chapitre. De plus, nous analysons également le taux de sélection pour les tailles de bloc
et les modes de codage inter. Sur la base de l’analyse ci-dessus, l’opportunité de réduire
la complexité est discutée.
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INTRODUCTION

Context

Online video consumption has been surging in recent years, which is driven by mul-
tiple factors that have reshaped our daily life. First, the emergence of video-on-demand
platforms (e.g. Netflix, TikTok) and live streaming services has made video content more
accessible than ever before. Furthermore, real-time game and sport streaming have gained
immense popularity, contributing significantly to the surge in video traffic. Additionally,
the increasing demand for higher-quality content has led to the creation and distribution
of very high-resolution videos (e.g., 4K). New immersive experiences, currently in devel-
opment, aim to enhance the user experience at the cost of high consumption of computa-
tional resources and bandwidth. In the end, the global shift towards remote working after
the COVID-19 pandemic relies on video communication tools for work-related activities.
Video conferencing, webinars, and virtual meetings have become essential components of
modern work culture, increasing video traffic due to the need for constant connectivity.
Collectively, these trends have led to an exponential increase in video traffic. According
to a survey by Sandvine [1], video traffic increased by 24% in 2022 and represents 65% of
the total Internet traffic in 2023.

The increase in Internet bandwidth has significantly facilitated access to these contents
on a variety of devices but is not sufficient to support the acceleration of video content con-
sumption. This is why the evolution of compression standards is of vital importance.From
the H.261 standard in 1988, researchers and engineers have been continuously working on
improving and proposing novel video codecs to adapt to new constraints in terms of res-
olution, frame rate, color space, and more. Since the H.261 standard in 1988, researchers
and engineers have continuously worked on improving and proposing new video codecs
to adapt to new constraints in terms of resolution, frame rate, color space, ... From early
standards like Advanced Video Coding (AVC) to recent codecs like High Efficiency Video
Coding (HEVC) and VVC, all of these codecs have retained the hybrid block-based cod-
ing structure while significantly improving encoding efficiency at constant quality. This
improvement on coding performance is due to advanced algorithms, improved motion
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compensation, better prediction, and more efficient entropy coding. The latest video
codec is the VVC, finalized in July 2020. VVC achieves roughly 40% bit-rate savings
compared to HEVC at constant quality. Specifically, VVC stands out for its efficiency in
transmitting high resolution content, including 4K and 8K videos, as well as immersive
content.

However, this gain in coding performance of VVC is at the cost of a largely increased
computational complexity of coding. One approach to evaluate the complexity of codec
is to compare the encoding time of its reference implementation with previous codecs.
Concretely, the encoding time of VVC is from 6.6 to 25.8 times longer than that of
HEVC [2] depending on coding configurations, which limits its adoption, especially in
video streaming scenarios. This complexity also has an impact on energy consumption,
both for encoding and decoding. Moreover, it makes the implementation of a low-latency
encoder very challenging. These limitations are detailed in the following section.

Motivations and Objectives

According to the Cisco study [3], the number of devices connected to the network
could reach 29.3 billion by 2023. The majority of these devices are embedded systems
on which a large amount of video data is processed. According to the Ericsson Mobility
Report [4], video traffic is estimated to account for 71% of all mobile data traffic in 2023.
This proportion is expected to reach 80% in 2028. In a survey [5] conducted among
consumers worldwide, respondents watched an average of 17 hours of online video content
per week in 2023. A significant portion of these devices relies on a battery as their power
source, and this battery will drain faster during video processing tasks that use more
complex codecs. Therefore, it is crucial to reduce the complexity of these new codecs
while minimizing the impact on the bitrate-distortion trade-off.

According to [6], data centers account for 2.7% of electricity demand in 2018. A large
part of these data centers are dedicated to video encoding or transcoding. Using lighter
video codecs can effectively reduce the energy consumption of video processing, reducing
a large part of the energy cost for streaming platforms such as Netflix. In 2022, Netflix
estimated the power consumption of its data centers to be 36,110 megawatt-hours. Given
these figures, it is evident that reducing the complexity of video codecs can significantly
decrease both the energy consumption of these data centers and greenhouse gas emissions.

Video codecs are used in various contexts, each with different constraints. For encoding
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videos destined for video-on-demand platforms, encoding efficiency is far more important
than encoding speed. In this scenario, only a few encodings are needed to distribute
content to millions of users. On the other hand, in the case of live video streaming,
encoding speed and low latency take precedence over encoding efficiency. In this context,
despite despite its bitrate reduction compared to previous codecs, the complexity of the
VVC codec is a significant obstacle to its adoption. The complexity of VVC, especially
in the encoding process, still needs to be reduced. The partitioning scheme in VVC is
the main contributor to its complexity. In particular, it has been observed in [8] that the
VVC encoder dedicates 97% of its encoding time to searching for the optimal partition.
Consequently, fast partitioning methods emerge as the most promising approaches to
speed up the whole VVC encoding process.

Therefore, the objective of this thesis is to propose fast partitioning methods to effi-
ciently reduce the encoding complexity of VVC. Our objective is to accelerate the par-
titioning process in two specific cases: single encoding and multi-rate encoding of the
same video. In the first case, we propose limiting the partitioning search space of a VVC
encoder using a CNN. In the second case, we propose a method to leverage the partition-
ing decisions obtained from encoding a sequence at a certain bitrate for encodings of the
same sequence at other bitrates. General purpose of above fast partitioning methods is
to accelerate the encoding process with reasonable quality loss so that the coding gain of
VVC codec comparing to previous codecs is maintained.

Contributions

This manuscript consists of three distinct chapters corresponding to three main con-
tributions and a statistical analysis in Annex. The latter is a preliminary study that
analyzes the frequency and complexity of different inter coding modes and Coding Unit
(CU) sizes in VVC to identify acceleration opportunities. Since VVC is a video codec
recently finalized, there are only a few existing studies on VVC complexity reduction
comparing to previous codecs, and even fewer on the acceleration of inter coding, in the
literature. However, fast inter coding is essential for the deployment of VVC codec in
industrial application. In this thesis, we contribute to the acceleration of inter coding in
VVC by fast partitioning methods. Our work has been integrated into different implemen-
tations of VVC. Tests show that our methods outperform state of the art, contributing
to the move for VVC real-time encoding. The three principle contributions are outlined
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below:

Light-weight CNN-based VVC Inter Partitioning Acceleration

During the encoding process, numerous partitions are tested in the partitioning search,
accounting for the majority of complexity [8]. Consequently, we propose a CNN-based
method to reduce the search space of inter partitioning to speed up the inter coding
process. Our method operates at the CTU level, where each CTU is divided into a fixed
grid of 8×8 blocks. Each cell in the grid contains information about the partitioning depth
within that specific area. During the rate-distortion optimization process, we employ a
lightweight CNN to predict this grid, aiming to limit the search for MT splits and avoid
unnecessary partitions that are unlikely to be selected. Experimental results demonstrate
that the proposed method achieves acceleration ranging from 17% to 30% with slight
encoding quality loss in the RandomAccess Group Of Picture 32 (RAGOP32) of the VVC
Test Model (VTM)10 as VVC implementation.

VVC Fast Inter Partitioning by Multi-Scale Motion Field Based
CNN

Based on the previous contribution, we propose a novel CNN structure and a new fast
partitioning algorithm more adapted to VVC partitioning scheme to further reduce the
search space of inter partitioning. Our approach involves the development of a U-Net-
based CNN, which takes a multi-scale motion vector field as input at the CTU level. Our
CNN divides the CTU into grids and predicts the QT partitioning depth, as well as the MT
split decisions for each cell in the grid. In such way, optimal partition paths of the CTU
are predicted. Additionally, we introduce an efficient partition pruning algorithm that
utilizes the CNN predictions at each partitioning level to skip unnecessary partition paths.
To balance complexity and efficiency, we design an adaptive threshold selection scheme
that offers scalability. Experimental results show that the proposed method achieves an
acceleration ranging from 16.5% to 60.2% with a reasonable efficiency drop, exceeding
those of other state-of-the-art solutions.
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Preparing VVC for Streaming: A Fast Multi-Rate Encoding Ap-
proach

The aforementioned contributions are implemented and evaluated using the reference
implementation of VVC, which differs significantly from real-time encoding implementa-
tions in industrial contexts. The target of this contribution is to speed up the partitioning
in streaming scenarios based on a light-weight implementation of VVC. As previously men-
tioned, the industrial application of VVC is a challenge for service providers due to its
high complexity. These challenges are further amplified in streaming scenarios where the
same content needs to be encoded at multiple bitrates (representations) to accommodate
varying network conditions.

To address the need for faster encoding of multiple representations in VVC, we propose
a method that takes advantage of the encoding map of a reference representation. By uti-
lizing the partitioning structure of the reference representation, we accelerate the encoding
process of the remaining representations, known as dependent representations. Experi-
mental results exhibit a significant reduction in encoding time for the dependent repre-
sentations, achieving a 40% speedup with a small encoding quality drop. This approach
enables service providers to encode multiple representations of the same content more effi-
ciently, thereby addressing the computational challenges associated with advanced codecs
in streaming environments.

The last stage of the thesis focuses on the statistical analysis of the VVC encoder
during inter coding, which is less explored in the state of the art compared to intra
coding. We conduct a statistical analysis of inter coding complexity, specifically focusing
on CU sizes and inter coding modes. This analysis identifies frequently used CU sizes and
coding modes, as well as those that contribute to the largest portions of complexity. Our
work provides insights into the complexity patterns of inter coding in VVC, enabling the
design of more efficient acceleration methods.

Outline

This section provides a brief summary of the content covered in each chapter of this
document:

In Chapter 1, an overview of video compression is given. In the first section, the
basic characteristics of video are presented. Then we summarize the evolution of video

21



Introduction

coding standards in the following section. The HEVC and VVC codec is also specifically
introduced in this section. In the last section, we briefly present the video coding scheme
of VVC, including the partitioning scheme, inter/intra coding, RDO process and other
additional information.

Chapter 2 provides an overview of the current state-of-the-art methods in our re-
search domains. This section comprises the related work in three key areas: complexity
analysis of VVC, fast partitioning methods, and multi-rate coding methods. Each of
these parts corresponds to our contributions in Chapter 3, Chapter 4 and 5, and Annex,
respectively.

Chapter 3 focus on accelerating inter coding by machine-learning-based fast par-
titioning method. A CNN is trained and integrated into VVC encoder. Utilizing CNN
predictions, a subset of partitions is excluded from RDO, effectively reducing the partition-
ing search space. We achieve scalable acceleration of VVC encoding under RandomAccess
(RA) configuration with slight loss.

In Chapter 4, the work in previous chapter further improved. A CNN with novel
structure is proposed. In contrast to the contribution in Chapter 3, this work attains
higher acceleration by skipping a larger number of partitions during RDO based on the
prediction of the CNN. By implementing this method in VVC encoder, we achieve sig-
nificant complexity reduction while surpassing the state of the art in terms of trade-off
between acceleration and loss.

Chapter 5 presents a multi-rate faster partitioning method. We leverage the partition
information collected from the encoding at lower bitrate to speed up the encoding at
higher bitrate. Experiment shows that this method offers a considerable speed-up on a
fast implementation of VVC encoder.

In Chapter 6, we conclude our thesis by summarizing our contributions and dis-
cussing the future perspectives of our work.

Annex provides a statistical analysis on VVC inter coding. The encoding complexity
of different CU sizes and inter coding modes are investigated in this chapter. In addition,
we also analyze the rate of selection for CU and inter coding modes. Based on the above
analysis, the opportunity for complexity reduction of VVC inter coding is discussed.
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Chapter 1

VIDEO CODING

In 2022, the number of Internet users watching streaming or downloading videos at
least once a month surpassed 3 billion [9]. For each video viewer, the average time spent
on video consumption is one hundred minutes per day [10]. Such a huge demand for video
transmission puts pressure on network bandwidth, while uncompressed High Definition
(HD) video footage can take up to 10 GB of space per minute. As a consequence, it is
critical that researchers develop efficient video coding standards to compress the video
and make its transmission affordable for the Internet infrastructure. In addition, video
coding standards set a unified standard in the broadcast chain. To be more precise, the
video stream encoded using a specific coding standard by the broadcaster can be decoded
and played on any consumer device that supports that particular standard.

Moving Picture Experts Group (MPEG) is a working group of International Organiza-
tion for Standardization (ISO) and International Electrotechnical Commission (IEC). This
group has been continuously working on providing video coding standard specifications.
As a result of the collaboration between MPEG and International Telecommunication
Union - Telecommunication Standardization Sector (ITU-T), Joint Video Exploration
Team (JVET) was created in 2017 to develop the latest video coding standard: VVC.
Like previous coding standards, VVC adopts the general block-based hybrid video coding
scheme.

In this chapter, we first present the characteristics of video files. We then briefly
introduce the coding standards, including HEVC and VVC. In Section 1.3, the above-
mentioned coding scheme is first introduced as the background of this thesis. Since this
thesis focuses on the VVC standard, coding modules in VVC that are relevant to this thesis
are presented. These modules include partitioning, inter coding, intra coding, and the
RDO process. To highlight the novel features of VVC, we compare it with HEVC in this
section. Finally, introductions to the temporal coding structure and quality evaluation
metrics are provided as additional information for a better understanding of our work.
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Chapter 1 – Video Coding

1.1 Video Characteristics

A video file can be characterized by its resolution, bit-depth, colour sampling, and
video format etc. In this section, we will explain briefly these concepts before moving on
to the topic of video compression.

Firstly, a video is made up of sequential frames and each frame contains a matrix of
pixels with W columns and H rows denoted by W×H. The dimension of the frame is
defined as the spatial resolution of the video. Resolution directly influences the clarity
and realism of the video. In general, a higher resolution corresponds to a higher level
of clarity in the video. Conventionally, the most frequently utilized resolutions are as
follows.

— 3840x2160 (e.g., 4k, Ultra High Definition (UHD))
— 2560x1440 (e.g., 1440p, Quad High Definition (QHD))
— 1920x1080 (e.g., 1080p, Full High Definition (FHD))
— 1280x720 (e.g., 720p, HD)
— 832x480 (e.g., 480p, Standard Definition (SD))
— 416x240 (e.g., 240p, Low Definition (LD))
Regarding the pixel format, YUV (i.e. YCbCr) is the color representation widely used

for color TV standards, which consists of three components for each pixel: Y is the
luma component and U and V are the chroma components. Pixel components can also
be referred to as channels. Chroma subsampling involves encoding images with reduced
resolution for chroma information compared to luma information, based on the fact that
the human visual system is less sensitive to color differences in comparison to luminance.
Consequently, the chroma samples are stored with reduced resolution as illustrated in
Figure 1.1. Chroma format could be expressed by j:a:b. The j represents the number
of luminance samples per row, and a and b indicate the number of unique samples for
the upper row and the lower row, respectively. Generally, the most common chroma
expressions are 4:4:4, 4:2:2 and 4:2:0.

The number of bits used to store each component of the pixel value is defined as the bit
depth. Bit depth values typically range from 8 to 16 bits, which are the most commonly
used formats in various applications. In this document, the pixel format involved is the
YUV format with chroma sampling 4:2:0 and a bit depth of 8 bits or 10 bits, denoted
as yuv420p / yuv420p10. Nevertheless, our proposed methods can be applied to other
formats.
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1.1. Video Characteristics

Figure 1.1 – Chrominance sub-sampling [11]

Secondly, the temporal resolution is determined by its frame rate, which is usually
expressed as Frames per Second (FPS). The frame rate represents the frequency at which
frames change in the video. The first 5 frames of a raw video in the format yuv420p with
a resolution of 416x240 at a frame rate of 50 FPS are presented in Figure 1.2, where each
frame is refreshed every 0.02 seconds.

Figure 1.2 – Resolution and frame rate of video

The bandwidth needed for transmitting a raw video could be computed as follows:
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Chapter 1 – Video Coding

Bandwidth(bits/s) = W × H × FPS

8 × 2 × (j + a + b) × bitdepth (1.1)

For the 240p video mentioned above, a bandwidth of 57.1 Mb/sec is required. However,
for a 4K video at 10 bits, the required bandwidth increases significantly to 5.8 Gb/sec,
which is mostly unaffordable based on average user’s network conditions. Consequently,
the compression capabilities of video codecs are necessary to effectively reduce the band-
width required for video transmission. In the next section, we will introduce background
information about video coding.

1.2 Video Coding Standard

This section provides a brief introduction to the video coding standards and princi-
ples of coding relevant to this thesis. In the first part, we present a general overview
of the evolution of video coding standards. Then, in the second part, we present the
video coding standard that is the focus of our work: VVC. We will begin by introducing
HEVC, which was developed prior to VVC, and its reference software, HEVC Test Model
(HM). Next, we will introduce VVC and its reference software, VTM, as well as a fast
and efficient implementation of VVC called VVenc. Then, VVC is compared to HEVC
to reflect its improvements and characteristics. The third part provides background in-
formation on video coding. Firstly, the general coding scheme is illustrated. Afterwards,
the partitioning scheme used to divide the frame into sub-blocks is explained. The coding
of these sub-blocks can be either intra coding (discussed in Section 1.3.3) or inter coding
(discussed in Section 1.3.4). Next, the coding results of a search space of coding decisions
undergo the RDO process (discussed in Section 1.3.5) and the best coding decisions are
selected for encoding. Furthermore, Section 1.3.6 presents the temporal coding structure
in VVC, including the type of slice and frame, Group Of Picture (GOP) structure, and
coding configurations. Finally, various quality evaluation metrics for assessing the coding
loss are described in Section 1.3.7.

1.2.1 Evolution of Coding Standards

Video coding is the process of compressing and encoding raw video data to reduce its
size while preserving its quality as much as possible. It is an essential technology in various
fields, such as streaming and broadcasting. The growing demand for HD and UHD videos
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1.2. Video Coding Standard

has led to an increasing need for more efficient and advanced video coding algorithms and
techniques. The development of video coding standards has been advancing rapidly, as
shown in Figure 1.3.

Figure 1.3 – History of international video coding standardization[12]

The most widely used video coding standard [13] in the industry so far remains the
H.264/AVC format introduced in 2003. AVC uses block-based hybrid coding, which com-
bines Discrete Cosine Transform (DCT) and motion estimation to achieve high compres-
sion efficiency. However, with the emergence of HD and UHD videos, AVC has limitations
in terms of compression efficiency.

To address the limitation of coding efficiency, the ITU-T and International Organiza-
tion for Standardization / International Electrotechnical Commission (ISO/IEC) jointly
developed the HEVC standard in 2013. Compared to AVC, HEVC uses advanced tech-
niques such as more variable block sizes, motion vector-based motion estimation, and
extended intra prediction modes to achieve better performance. HEVC can achieve a
bitrate reduction of 49.3% [14] with the same quality as in AVC.

However, even with advances in HEVC, there is still room for improvement in terms of
compression efficiency, especially for low-bit-rate applications. To address this challenge,
the ITU-T and ISO/IEC finalized the VVC standard in 2020. VVC introduces various
novel coding tools and a more sophisticated partitioning structure. In return, its bit-rate
reduction is approximately 50% [2] when compared to HEVC.

In summary, video coding has evolved significantly over the years, with each new gen-
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eration of standards providing improved compression efficiency and better performance.
From AVC to HEVC and now VVC, the industry continues to push the boundaries of
what is possible in terms of video compression and quality. The remainder of this section
will focus on providing an overview of the video coding standards HEVC and VVC.

1.2.2 HEVC and VVC

A video coding standard is a document that outlines the structure and syntax of a
bitstream and the decoder for video compression. It specifies the output format that an
encoder should generate, rather than defining the encoder part, as shown in Figure 1.4.
Typically, video coding standards contain a collection of tools that are used for com-
pression. The principal coding standards include AVC, AOMedia Video 1 (AV1), VP9,
HEVC, and VVC.

Figure 1.4 – Scope of Video Coding Standard[15]

1.2.2.1 HEVC

HEVC shares the basic coding structure as its predecessor, AVC. The differences are
outlined in Table 1.1. These improvements could be summarized as follows.

— More flexible partitioning, from large to small partition sizes
— Greater flexibility in prediction modes and transform block sizes
— More complex interpolation and in-loop filters
— Enhanced prediction and signalling of prediction mode and motion vectors
— Features enabling efficient parallel coding
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Table 1.1 – Comparison between HEVC and AVC

AVC HEVC
Motion Prediction Motion vector prediction Advanced motion vector prediction

(spatial and temporal)
Intra Modes Number 9 35
Inter Modes Number 7 24
Prediction Unit Size 16x16 to 4x4 64x64 to 4x4
Transform Unit Size 8x8 to 4x4 32x32 to 4x4

Block size 16x16 64x64
Supported Resolution Up to 4K Up to 8K

Supported FPS Up to 60FPS Up to 300FPS
Bit-depth 8 bit 10 bit

1.2.2.2 VVC

A major difference when comparing VVC with HEVC is the newly adopted QuadTree
with nested Multi-type Tree (QTMT) partitioning structure instead of the QT partition-
ing structure of HEVC. In addition to the partitioning structure, new intra/inter pre-
diction modes, novel intra/inter coding tools, and improved transform and in-loop filters
have been integrated into VVC to achieve higher coding efficiency. A detailed comparison
is given in Table 1.2.

Table 1.2 – Comparison between VVC and HEVC

HEVC VVC
Partition
structure

Quad Tree,
max block size 64x64

QTMT,
max block size 128x128

Intra
Prediction 35 Intra Prediction Mode (IPM)s

67 IPMs,
intra coding tools

(i.e. Intra SubPartition (ISP) [16],
Multi Reference Line (MRL) [17])

Inter
Prediction Skip mode, Merge mode

Skip mode, Merge mode,
motion prediction tools

(i.e. Affine Motion Estimation (AME) [18],
Bi-Directional Optical Flow (BDOF) [19])

Transform Square transform Square and rectangular transform,
Multiple Transform Set (MTS) [20]

In-loop
filter

deblocking filter,
Sample Adaptive Offset (SAO)

adaptive deblocking filters,
SAO, Adaptive Loop Filter (ALF) [21]
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1.2.2.2.1 VTM

VTM is the reference software for VVC codec. A reference software includes both en-
coder and decoder parts. It serves as a valuable tool for users of a video coding standard,
facilitating the establishment and testing of conformance and interoperability. Addition-
ally, it is helpful for educating users and showcasing the capabilities of the standard.
Hence, this software is made available at [22] to support the study and implementation
of VVC.

From VTM1 [23] in 2018 to VTM20 [24] in 2023, VTM versions have continuously
evolved. Various new coding tools have been proposed and integrated into VTM. After
the finalization of the VVC standard in 2020 with VTM10, JVET continued to make
trivial improvements and bug fixes since then. Therefore, the differences in complexity
and coding performance between various VTM versions are not negligible before VTM10.

Figure 1.5 – VTM versions vs HM. [25]

We observed in 1.5 that the variation in encoding runtime varies substantially after
VTM6, although its coding performance remains relatively stable. During the evolution of
VTM, papers on VVC complexity reductions are consequently based on different versions
of VTM, making the comparison of the state of the art a challenging task. In this thesis,
our method is based on VTM10. We have performed several reimplementations of our
methods in different versions of VTM used in state-of-the-art papers to ensure that the
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comparison of results is within the same context and fair. The involved VTM versions
for these reimplementations are VTM6, VTM8, and VTM11. In VTM10, we have also
reproduced the result of a state-of-the-art approach originally implemented in VTM8. In
the Annex, a statistical analysis is carried out on VTM15.

1.2.2.2.2 VVenc

The Versatile Video Encoder (VVenC), proposed by Fraunhofer, is a fast and efficient
real-world VVC encoder implementation. The corresponding decoder implementation is
Versatile Video Decoder (VVdeC). This encoder implementation has the following main
features in comparison to the VTM encoder:

— Encoder implementation with slower, slow, medium, fast and faster as predefined
quality/speed presets

— Perceptual optimization to improve subjective video quality
— Rate control supporting variable bit rate encoding at the frame level
— Fine-grained control of the encoding process by enhanced encoder interface
As observed in Figure 1.6, VVenC1.3.0 at the slower preset achieves the same coding

performance as VTM14.2, while its speedup in terms of encoding time is 17 times faster.
For the faster preset at the lowest quality, the speedup reaches about 180 times with a
Bjontegaard Delta-Rate (BD-rate) gain of approximately 10% compared to HM-16.24.
VVenC represents an immense step towards a real-time encoder. In Chapter 5, we have
proposed a fast multi-rate encoding approach to further accelerate the VVenC encoder.

1.3 Video Coding of VVC

This section introduces the classical hybrid coding scheme utilized in VVC. Firstly,
we present the general coding scheme for video codecs. As the main subject of this thesis,
the partitioning scheme of VVC is then described and compared with previous codecs
in Section 1.3.2. Subsequently, the intra coding and inter coding in VVC are briefly
introduced. Following that, we present the RDO process to select the optimal combination
of decisions for partitioning and inter/intra coding. Next, the temporal coding structure
is depicted. Finally, the metrics used to evaluate coding quality are presented in the final
part of this section.
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Figure 1.6 – Comparison of Runtime vs PSNR BD-rate.[26]

1.3.1 General Coding Scheme

Video codecs share the same fundamental coding scheme, as demonstrated in Fig-
ure 1.7, which can be summarized in five main steps.

1. Partitioning: Each frame of the input video is first divided into CTUs. Then each
CTU is subdivided into multiple CUs. The subdivision of each CTU corresponds to a
specific partition. During the RDO process, a large number of partitions are tested. The
following steps are applied to each CU in various partitions. The process of partitioning
is detailed in Section 1.3.2.

2. Prediction: Video coding incorporates two prediction techniques: inter prediction
and intra prediction. Intra prediction utilizes neighboring pixels as references to exploit
spatial redundancy in video signals. Conversely, inter prediction involves predicting pixels
using blocks from other frames after motion estimation, known as motion compensation.
Inter prediction leverages temporal redundancy. The residual values are computed by
subtracting the original CU by the predicted CU. These values are then compressed in
subsequent steps. The prediction process in VVC is presented in Section 1.3.3 and 1.3.4.

3. Transform and Quantization: Inside CUs, a robust correlation exists among neigh-
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boring pixels, as well as among the residuals of these CUs. The process of transform
consists of expressing the values in a novel base (e.g. Karhunen–Loève Transform (KLT),
Discrete Sine Transform (DST), DCT [27]). The coefficients of the new base are the re-
sult of the transform. The primary goal of this transformation is to reduce redundancy
in residual values and condense energy, resulting in more low-frequency values after the
transform, thus facilitating quantization. VVC employs a variety of DST and DCT vari-
ations. Notably, the block dimension of the transform in VVC is more flexible, span-
ning from 4×4 to 128×128 block sizes, including rectangular blocks. Furthermore, VVC
incorporates coding tools (namely MTS and Low Frequency Non-Separable Transform
(LFNST) [28]) to optimize the transformation process.

Following the transform, the coefficients are quantified. Quantization involves divid-
ing the coefficient by a quantization step and subsequently rounding the quotient. In
VVC, dependent coding is used to exploit the redundancy of quantized values. Two pos-
sible quantized values can be coded with a single syntax element. From a perceptual
standpoint, the quantization step represents a lossy compression technique, discarding
negligible information.

4. Reconstruction: To restore the quantized coefficients to their original form, the
process begins with an inverse quantization. Essentially, the coefficients are multiplied
by the quantization step. The result is then inversely transformed to restore the original
residuals. By adding these residuals to the prediction of the CU, we arrive at the recon-
structed CU. In VVC, the in-loop filters consist of various components: Luma Mapping
with Chroma Scaling (LMCS) [29], designed to enhance coding efficiency by altering the
distribution of coded values; deblocking filters, which aim to mitigate blocking artifacts;
SAO, intended to alleviate artifacts stemming from transform quantization; and ALFs,
employed to refine the reconstructed values. These filters are applied sequentially to yield
the decoded samples. These decoded images, stored in the buffer, also serve as reference
points for inter prediction.

5. Entropy Coding: There exists statistical redundancy for syntax elements such as
motion data, residual data, and data of coding modes. Therefore, we use the entropy cod-
ing for the syntax elements at the last step of the encoding process to reduce redundancy.
As a lossless coding method, entropy coding improves the coding efficiency of the encoder.
Context Adaptive Binary Arithmetic Coding (CABAC) [30] is integrated in VVC. After
entropy coding, the encoded bitstream is produced.

33



Chapter 1 – Video Coding

1.Partitioning

2.Prediction

4.Reconstruction

3.Tranform&Quantization 5.Entropy coding

Figure 1.7 – Diagram of video coding system. [31]

1.3.2 Partitioning Scheme

The purpose of partitioning is to find the partition that suits the texture of the CTU
region. If a region inside CTU is homogeneous or motionless compared to reference frames,
it is highly advantageous to encode this region with a CU of the same shape and dimension.
Partitioning involves searching among possible partitions for the most suitable one given
the CTU texture at hand. The partitioning proceeds in a raster scan order on each frame
at the CTU level, row by row, and from left to right. Inside CTU, the CUs of a partition
are also processed in raster scan order, as demonstrated in Figure 1.8(a). The CU can
be further split into Prediction Unit (PU)s for prediction. Additionally, the residual of
the CU can be divided into Transform Unit (TU)s for applying different transforms to
subpartitions of the CU. In the following section, the partitioning of AVC, HEVC, and
VVC are separately presented.

1.3.2.1 Partitioning of previous codecs

In AVC, the term used for the equivalent of the CTU is MacroBlock (MB), and CU
is referred to as a block. The size of a MB is fixed at 16×16. As illustrated in Figure 1.9,
possible partitions differ between inter prediction and intra prediction. The inter partition
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Figure 1.8 – Example of CTU Partition in HEVC [32] (a) CTU partition (b) Corresponding
partition tree structure

adopts a more flexible scheme, where an MB can be predicted as one 16×16 block, two
16×8 or 8×16 blocks, or four 8×8 blocks. Each 8×8 sub-MB in MB can be divided verti-
cally, horizontally, or into four 4×4 blocks. For intra prediction, a MB can be partitioned
into 8×8 or 4×4 blocks. The possible sizes for the transform blocks are 4×4 and 8×8.
While various non-square partitions exist, the block partitioning framework of AVC can
be regarded as a three-level quadtree structure allowing blocks sizes from 4×4 to 16×16.

The partition in AVC has its limitation. The MB size of 16×16 is chosen to strike a
balance between memory requirements and coding efficiency when AVC was standardized
in the early 2000s. In recent years, with the emergence of high-resolution content, the
MB size of 16×16 is insufficient to capture the increased spatial correlation in higher
resolution content.

In HEVC, the CTU size is extended to 64×64 compared to the analogous term in
AVC, enabling a more complex partition structure. Furthermore, the notions of CU, PU,
and TU are introduced in HEVC. Each CU of size 2N×2N (where N is one of the values:
32, 16, or 8) can be divided into four smaller CUs, each with a size of N×N, which is
defined as the QT split. By recursively applying the QT split to child CUs of the QT
split, a QT partition tree is obtained. The maximum depth of the partition tree is 3
since the minimum size of the child node of the QT split is 8×8. Figure 1.8 illustrates an
example of CTU partition in HEVC and its partition tree.

A CU can be split into one, two, or four PUs. HEVC defines two split types for intra-
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Figure 1.9 – Block Partitioning structure in AVC [32]

coded CUs and eight split types for inter-coded CUs, as shown in Figure 1.10. Unlike the
CU, the PU may only be split once. Regarding the partition of TU, HEVC specifies four
TU sizes: 4×4, 8×8, 16×16, and 32×32, for coding the prediction residual.

Compared to AVC, the QT partition structure in HEVC results in greater flexibility
in terms of the sizes of coded blocks. With the partition of PUs, the predicted blocks
could be rectangular in shape. Consequently, HEVC achieves better coding performance
on high-resolution content at the cost of higher complexity, partly due to a more complex
partitioning scheme.

1.3.2.2 Partitioning of VVC

In addition to the QT split of HEVC, VVC integrates the MT splits into the parti-
tioning structure. Figure 1.11 demonstrates the adopted split types in VVC: Binary Tree
(BT) split, including Vertical Binary Tree (VBT) split and Horizontal Binary Tree (HBT)
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Figure 1.10 – Illustration of splitting CU to PUs in HEVC [32]

Non-Split VBT Split QT SplitHBT Split VTT Split HTT Split

Figure 1.11 – Different split types in VVC

split, and Ternary-type Tree (TT) split, comprising Vertical Ternary Tree (VTT) split
and Horizontal Ternary Tree (HTT) split. In the TT split case, CU is split in a ratio
of 1:2:1 and the three children CU are a quarter, half, and quarter of the parent CU,
respectively. The parent CU is horizontally or vertically divided into two CUs of equal
size (i.e. half of the parent CU size). The novel partitioning structure in VVC is named
QTMT. Figure 1.12 presents an example of QTMT partition and its partition tree. The
encircled CUs of the partition in Figure 1.12(a) correspond to the encircled leaf nodes of
the partition tree in Figure 1.12(b).

VVC employs a far more sophisticated partitioning structure than AVC and HEVC.
There are 32 possible CU sizes for QTMT partition, including squared and rectangular
CUs ranging from 128×128 to 4×4. A characteristic of QTMT partitioning is that the
available split types depend on CU sizes. Figure 1.13 presents the number of available

37



Chapter 1 – Video Coding

(a) Partition of CTU (b) Partition tree

Figure 1.12 – Example of QTMT partition

split types including No Split (NS) per CU size for luma samples. The number of split
options varies from 1 to 6 for different sizes of CU, making the partition at the CU level
more complicated.

Another noteworthy characteristic of partitioning in VVC is that the CU, PU, and
TU concepts are unified. More precisely, both prediction and transform are executed at
the CU level without further splitting the current CU. The concepts of TU and PU are
discarded in VVC. Consequently, the rectangular transform is available in VVC, which is
an important improvement compared to AVC and HEVC.

Moreover, VVC allows for a CTU dual partition tree [33] for the luma component and
the chroma component for intra-coded frames, suggesting that the partitioning and final
partitions of luma and chroma are separated and distinct. For inter-coded frames, the
luma partition is applied to chroma.

The above new features of partitioning in VVC comply with the increasing demand
for coding at high resolutions (e.g., UHD, QHD, FHD). At the same time, the coding
complexity of VVC in terms of encoding time increases significantly, partly due to this
novel partitioning structure.

1.3.3 Intra Coding in VVC

Intra coding is used to reduce spatial redundancy within a frame by utilizing reference
pixels. It operates at the CU level, referring to neighbouring pixels as demonstrated in
Figure 1.14(a). Since encoding is processed in raster scan order, the reconstructed pixels
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Figure 1.13 – Number of split types per CU in VVC for Luma

on the top row and left column of the CU are frequently available and can be used as
reference pixels. Based on IPM, interpolations are performed on the reference pixels to
predict the original pixels in CU. There are a total 67 IPMs available in VVC, an increase
from the 33 modes in HEVC. These IPMs include 65 directional IPM, a DC mode, and a
planar mode, as presented in Figure 1.14(b). Each directional IPM is associated with the
propagation of neighboring reference samples at a specific angle, ranging from 45 degrees
to -135 degrees. The DC mode predicts the current CU by calculating the average of the
reference pixels, while the planar mode uses bilinear interpolation of reference pixels for
prediction.

(a) CU and reference pixels (b) Intra Prediction Modes [34]

Figure 1.14 – Intra prediction of CU
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Several intra coding tools are introduced in VVC. The ISP mode divides a luma intra-
predicted block into 2 or 4 smaller subpartitions along one dimension, all of which are
predicted using the same intra mode. Figure 1.15 illustrates the four possible lines of
reference pixels introduced by the MRL coding mode. In addition, the Matrix-based In-
tra Prediction (MIP) modes [35] are used in VVC, which generates predictions using a
weighted sum of neighboring downsampled reference samples. These weights are deter-
mined through machine learning methods.

Figure 1.15 – Multiple Reference Line [31]

1.3.4 Inter Coding in VVC

To minimize temporal redundancy between multiple frames, inter coding involves pre-
dicting the current CU from reference frames, which are previously reconstructed frames
stored in the decoded frames buffer. Inter prediction is achieved by identifying the most
« similar » CU (i.e. reference CU) in the reference frame. The pixels of the reference
CU are used to predict the current CU. We use the term Motion Vector (MV), which
consists of horizontal and vertical offsets, to describe the coordinate shift between current
CU and reference CU inside the frame. Examples of MV are provided in Figure 1.16.
In the following part, we first present the motion estimation process, which is related to
our work in Chapters 3 and 4. Then, we depict the inter coding modes involved in the
statistical analysis in Annex.
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1.3.4.1 Motion Estimation

Motion estimation is the process of determining motion vectors that point to the best
reference CU. The search for motion vectors occurs within a search window, as shown in
Figure 1.16.

(a) Motion estimation
for uni-directional prediction

(b) Motion estimation
for bi-directional prediction

Figure 1.16 – Motion estimation [36]

There are two types of inter prediction: uni-directional prediction and bi-directional
prediction. Figure 1.16 illustrates these two types. The motion estimation for unidirec-
tional prediction is based on one reference CU from one previous reference frame, whereas
two MVs are needed for bidirectional prediction. One of the reference frames comes from
previous frames before the current frame, and the other is from frames after the current
frame in terms of display order. For bidirectional prediction, the final prediction in VVC
is generally calculated as the weighted sum of two predictions from two directions.

Besides the aforementioned traditional translational MV, the affine motion model is
integrated to efficiently represent complex motions such as rotation, resizing, and shearing.
In VVC, the affine motion model takes 4 or 6 parameters defined by 2 or 3 motion vectors,
as illustrated in Figure 1.17. The CU is then divided into sub-blocks, and the motion
vector associated with each sub-block is calculated using the parameters of the affine
model.
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(a) 4 parameter affine model (b) 6 parameter affine model

Figure 1.17 – Affine motion model [31]

1.3.4.2 Inter Coding Modes

After the motion estimation, motion compensation is executed. This represents the
process of producing residuals of a CU by subtracting the inter prediction of the CU from
the original CU. Subsequently, the residuals and motion vector information need to be
transmitted. Depending on the transmission of MV and residuals, three coding modes
are available: Advanced Motion Vector Prediction (AMVP) [37] mode, Merge mode, and
Skip mode. For the sake of simplification, we refer to AMVP as the Reg mode for the
rest of the document.

Before transmitting MVs, a candidate list of MVs is constructed based on the spatial
and temporal neighboring CUs by exploiting the correlations of MVs between them. Four
types of inter prediction data can be signaled, including the reference frame index (i.e.
Ref Frame Idx), the candidate index of the best MV (i.e. MV Cand Idx), the difference
between the best candidate and the MV determined by motion estimation (i.e. Motion
Vector Difference (MVD)), and residuals. Table 1.3 presents the signaled data types for
Reg, Merge and Skip.

Table 1.3 – Data types to transmit for motion data coding

Ref Frame Idx MV Cand Idx MVD Residuals
Reg ✓ ✓ ✓ ✓

Merge X ✓ X ✓
Skip X ✓ X X

In addition to the Affine mode and the Intra mode, two novel coding modes are avail-
able in VVC. For CUs coded in merge mode, Combined Intra-Inter Prediction (CIIP) [38]
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combines the inter prediction and the intra prediction to form a final prediction. The
Geometric Partitioning Mode, denoted Geo, is designed to better predict moving objects
in video. In Figure 1.18, CU is split into two parts by a straight partitioning bound-
ary. Uni-directional prediction is separately conducted on each part of the Geo partition.
Additionally, Geo is conventionally coded with Merge mode.

Figure 1.18 – Geometric Partitioning Mode [39]

For inter coding configuration, coding modes of Reg, Merge and Skip could combine
with Affine, CIIP, and Geo, which results in a total of 10 coding modes: Intra, Reg, Merge,
Skip, Affine, AffineMerge, AffineSkip, GeoMerge, GeoSkip, CiipMerge. Statistics of these
coding modes are further collected and analyzed in Annex.

1.3.5 RDO

During the encoding process, there are many decisions for the encoder to make. These
decisions include:

— the best partition for each CTU
— the best coding modes for each CU of the partition
— the best setting of coding tools for each coding mode
— ...
An immense search space is constructed based on the combinations of these decisions,

represented by the coding parameter set. The RDO process consists of finding the optimal
set of coding parameters by minimizing the Rate-Distortion cost (RD-cost) J in the search
space. The RD-cost is defined as follows:

J(s) = D(s) + λ ∗ R(s) (1.2)
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where the D, R, and s represent the distortion, bitrate and coding parameter set,
respectively. λ is the Lagrange multiplier. RD-cost measures the cost considering not
only the coding loss but also the bitrate consumed.

The trade-off between the coding loss and the bitrate is regulated by λ, which is
controlled by the encoding parameter Quantization Parameter (QP). The relation between
λ and QP is expressed in Equation 1.3.

λ = 0.85 × 2(QP −12)/3 (1.3)

With larger QP values, a larger weight is placed on the bitrate. Therefore, sets of
coding parameters with low bitrates are more likely to be selected in the RDO process.
The video is thus encoded at a low bitrate. In [40], the encoding of each sequence is
executed at QP 22, 27, 32, 37.

In VTM, the distortion is measured by Sum of Absolute Differences (SAD) or Sum of
Absolute Transform Differences (SATD) of residuals. By encoding the syntax elements
produced by the coding parameter set with CABAC, its bitrate is obtained. During the
RDO process, the encoder performs a nearly exhaustive search in the search space by
computing the RD-cost for each set of coding parameters s. Although the search space
is previously constrained, the RDO process is computationally costly. The core of fast
encoding methods/algorithms is to accelerate the RDO process by removing less probable
sets of encoding parameters in the search space. As a result, fast methods based on
partitioning are effective approaches to speed up RDO, which are addressed in Sections
3, 4 and 5.

1.3.6 Temporal Coding Structure

The previous part of this chapter gives an overview of how coding is processed at the
CU level. In this section, we present the temporal coding structure at the frame level.
Firstly, frame types used in video coding are introduced. Secondly, we provide details of
the GOP structure, composed of multiple frames with different frame types. Finally, the
coding configuration that defines the frequently used GOP structure is detailed.

1.3.6.1 Slice and Frame Types

In video coding, frames are divided into slices, allowing concurrent parallel encoding
of each slice. In this thesis, parallel encoding is not involved. Thus, we assume that the
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frame contains only one single slice. The term slice is therefore replaced by frame.

Video frames are encoded using different algorithms that correspond to different levels
of data compression. These algorithms for video frames are defined as frame types. As
shown in Figure 1.19, there are three major frame types: Intra-coded picture (i.e. I-frame),
Predicted picture (i.e. P-frame), and Bidirectional predicted picture (i.e. B-frame).

■ I-frame:
I-frame is independently coded without reference frames. Only intra prediction
is allowed during the coding of I-frame, which indicates that only spatial redun-
dancy is exploited. Compared to other frame types, I-frame is therefore the least
compressed frame type.

■ P-frame:
The coding of P-frame depends on the previous frame in coding order. Both intra
prediction and inter prediction are used in the coding of the P-frame. The P-frame
is more compressed than the I-frame.

■ B-frame:
The B-frame can use both temporal backward (previous) and forward (future)
frames as reference frames. The B-frame is the most compressed among the three
types. Nevertheless, the coding of B-frames is the most computationally expensive.

1.3.6.2 GOP Structure

A GOP defines a group of successive frames containing I-frames, B-frames and P-
frames. In video compression, each video is coded with successive GOPs, each of which is
independently encoded and decoded. When compressing the video with a GOP structure,
the encoding/decoding order of frames can be different from the display order of frames
(i.e. Picture Order Count (POC)).

A GOP structure generally starts with an I frame, which is followed by several B-
frames and P-frames. The distance between two I-frames is equal to the GOP size or a
multiple of the GOP size. Figure 1.19 presents an example of a GOP structure of size 12.
Generally, the GOP size has a great impact on the quality of the coded video. Coding with
a larger GOP size results in better quality at a given bitrate. In the following sections,
the GOP size is set to 32 for the evaluation of methods.
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Figure 1.19 – Example of GOP structure [41]

1.3.6.3 Coding Configuration

Coding configuration specifies a set of coding parameters such as the GOP structure,
coding tool configuration, motion estimation configuration, etc. Three example coding
configurations are proposed by Common Test Condition (CTC) [40], namely the All-Intra
(AI) configuration, Low-Delay (LD) configuration, and RA configuration. These coding
configurations are used for different application scenarios.

■ AI configuration:

For the AI configuration, all frames are separately intra-coded. Since there is no
dependence between coded frames, GOP is not utilized in the AI configuration.
Therefore, the frames are encoded in POC order. The coding of the I-frame con-
sumes much more bitrate than other frame types. Thus, the AI configuration is
rarely deployed in scenarios such as streaming.

■ LD configuration:

To improve coding efficiency, both B-frames and I-frames are incorporated into
the GOP of the LD configuration. To achieve lower latency for video streaming, a
smaller GOP size and a simpler frame dependency compared to the RA configura-
tion are used in the LD configuration. In VTM, there are two standard LD config-
urations: Low-Delay B (LDB) and Low-Delay P (LDP). The LDB configuration
includes I-frames and B-frames, while the LDP configuration contains I-frames and
P-frames. Both of these configurations have a GOP size of 8. Figure 1.20 shows the
GOP structure of LDP in VTM. The number inside the box represents the POC of
the frame. LD configurations are commonly employed in video conferencing due to
their superior coding efficiency compared to the AI configuration and their lower
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delay compared to the RA configuration.

Figure 1.20 – LDP configuration of VTM

■ RA configuration:

RA represents the ability to access and decode a specific frame or a portion of
video without decoding all previous frames. RA configurations include I-frames
and B-frames. I-frames serve as random access points where the RA functionality
is available. A hierarchical GOP structure is adopted in the RA configuration with
the introduction of Temporal Layer (TL). Frames at lower TLs are first encoded
and consequently more referenced by future frames at higher TLs. In VTM, the
two default RA configurations are RAGOP16 and RAGOP32. The GOP sizes
for RAGOP16 and RAGOP32 are 16 and 32, respectively. The intra period for
both configurations is 32, indicating that a random access point is set for every 32
frames. The number of TLs for these two configurations is 5. Figure 1.21 illustrates
the GOP structure of RAGOP16.
RA configuration achieves better coding performance compared to the AI and
LD configurations. Consequently, it is more widely employed in over-the-top and
broadcasting services. However, this efficiency gain is accompanied by an increase
in encoding complexity. Consequently, we focus on analyzing and reducing the
complexity of encoding with the RA configuration. RAGOP32 is the configuration
used in the Chapter 3, 4, and 5.
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Figure 1.21 – Random Access of GOP size 16

1.3.7 Quality Evaluation Metrics

In this thesis, we utilize the objective metric BD-rate and the subjective metric Video
Multi-method Assessment Fusion (VMAF) to assess the encoding quality of video se-
quences. In Chapter 3 and 4, we refer to BD-rate as a quality metric. In Chapter 5, we
compute BD-rate and VMAF to evaluate our method.

1.3.7.1 Bjontegaard Delta metric

The Bjontegaard Delta (BD) metric consists of two evaluation criteria: BD-rate and
Bjøntegaard Delta PSNR (BD-PSNR). It serves as a metric to compare the overall coding
performance of two distinct coding algorithms. These algorithms may belong to different
video codecs or modified versions of the reference codec. Similar to RD-cost mentioned
in Section 1.3.5, the BD metric is based on two metrics: Peak Signal-to-Noise Ratio
(PSNR), measuring the loss of the reconstructed video signal, and the bitrate consumed
by the transmission of the encoded video signal.

PSNR is derived from Mean Square Error (MSE). MSE represents the mean square
error, which is the mean energy of the difference between the original image and the
degraded image. It is defined as follows:
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MSE = 1
m × n

m−1∑
i=0

n−1∑
j=0

[I(i, j) − K(i, j)]2 (1.4)

where m, n, I, and K represent the width of the image, the height of the image, the
original image and the degraded image, respectively. As the expression of PSNR is the
logarithm of MSE, its unit is decibel (dB). The PSNR calculates the ratio of the energy
of the peak signal to the average energy of the noise as:

PSNR = 10 log10
MaxV alue2

MSE
= 10 log10

(2BitDepth − 1)2

MSE
(1.5)

The MaxValue here is the maximum pixel value. If the BitDepth is equal to 8, the
MaxValue would be 255. A less degraded image has a smaller MSE value, thus a larger
PSNR value. The other parameter involved in the BD metric is the bitrate, referring to
the amount of data used by the encoded video file in units of time. Its unit is usually
Kbps. The size of the encoded file can be expressed as the product of the bitrate and the
video length in seconds.

The Rate Distortion (RD) curve is plotted with PSNR and bitrate. As demonstrated
in Figure 1.22, each curve is interpolated at four points obtained by four encodings of
different qualities. The figure on the left illustrates the calculation of BD-PSNR, where
the PSNR difference is averaged over the green region denoted as △S within the bitrate
range △R. It signifies the change in PSNR at the same bitrate. Similarly, for BD-rate, the
average bitrate difference in percentage is calculated in the region △S’, which represents
the mean gain/loss in terms of bitrate at the same PSNR quality.

Figure 1.22 – RD curves for BD metric

In this thesis, we use BD-rate for the result evaluation procedure defined in the CTC
standard. The four points of the RD curve are encodings at QP 22, 27, 32, 37. A negative
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BD-rate value represents that the coding performance is improved. Conversely, a positive
BD-rate value indicates that the coding performance is degraded. In Chapter 3 and 4,
we intend to accelerate the VTM encoder with our machine learning-based approach.
Therefore, the degradation of encoding is unavoidable. In this case, a slight positive BD-
rate value is expected, which suggests that the acceleration approaches proposed in this
thesis have largely accelerated the encoding with negligible coding efficiency loss.

1.3.7.2 VMAF

VMAF [42], developed by Netflix, is a perceptual video quality metric that integrates
human vision modeling with machine learning techniques. More precisely, it individually
assesses multiple elementary metrics and combine them into a final VMAF score with the
help of a trained Support Vector Machine (SVM). VMAF includes the evaluation of 38
features, encompassing visual defects, detail losses, temporal differences between frames,
etc.

VMAF is proven to be highly correlated with subjective video quality evaluations and
has been widely used in various video quality assessment tasks. In Chapter 5, we use
VMAF to evaluate our multi-rate approach, as perceptual quality in coding is crucial in
real-time scenarios such as steaming.
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Chapter 2

FAST PARTITIONING AND MULTI-RATE

ENCODING: RELATED WORK

In this chapter, the state of the art of research fields related to this thesis are presented.
In the first section, we summarize the related work for Chapter 3 and 4. The first section
includes the fast partitioning methods for various codecs. The second section is dedicated
to existing multi-rate coding approaches. The last section contains related work of our
contribution in Annex, listing previous analysis of complexity of VVC.

2.1 Fast Partitioning Methods

In this section, fast partitioning methods for previous codecs and VVC are introduced.
In general, these methods can be categorized into two groups: machine learning-driven
methods and heuristic methods. From another perspective, we can classify these methods
into two types: inter fast partitioning methods and intra fast partitioning methods.

2.1.1 Partitioning Acceleration for Previous Standards

There is a handful of acceleration methods dedicated to the complexity reduction of
previous standards such as HEVC [43], VP9 [44], etc. The HEVC standard deploys a
quadtree structure, which means that the partition of the image into CTUs could be
depicted as a QT depth map. In [45], Aolin et al. firstly propose the depth map repre-
sentation of HEVC block partitions and develop a CNN based fast partitioning method.
From another perspective, Chen et al. in [46] rely on a low-complexity CNN to predict
the split decision at the CU level such that redundant RDO calculations are omitted.
Additionally, Shen et al. in [47] train separately SVM classifiers on all CU sizes to decide
if the partition of CU should be early terminated. Others, such as in [48], [49], utilize
decision trees to early terminate the partition search.
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Apart from the aforementioned machine learning-driven methods, there are some
heuristic methods [15]-[18] that use intermediate information during the encoding process
for early termination. More precisely, the authors in [50] apply edge filters on luminance
samples of CU to determine if the current CU should be split or not. Correa et al. [51]
propose an acceleration method by exploiting the correlation of QT depth of co-located
CTU of adjacent frames. Another QT depth related approach is developed in [52]. Based
on the homogeneity of the texture, adaptive thresholds are applied on QT depth of a
CTU to achieve early termination. In [53], Chiang proposes a threshold decision scheme
based on SATD to early terminate the QT partitioning. VP9 developed by Google is a
competitor to HEVC. It exploits the possibility of QT split and BT split at each level of
partition search. In [54], Paul et al. present a multi-level merge map as a novel repre-
sentation of the quadtree plus binary tree (QTBT) partition. They design a hierarchical
CNN to predict the merge decision map at each level and utilize the predicted maps from
the bottom up to accelerate partition search.

2.1.2 Partitioning Acceleration for VVC

Studies concerning partition search speed-up of VVC can be divided into two cate-
gories: heuristic approaches and machine learning ones. Some heuristic methods make full
use of pixel-related statistics, such as gradient, variance, etc. Fan et al. [55] developed a
fast hybrid QTMT partitioning algorithm based on early termination at a CU level based
on pixel variance. They also propose a early termination of the MT partitioning based on
gradients and a partition selection method based on variance. In [56], an early termina-
tion algorithm based on directional gradients is used to accelerate the intra partitioning
in VVC. The method skips the RDO checks of unnecessary split types. Other heuristic
methods employ coding information to simplify the partitioning process. Saldanha et al.
[57] designed strategies to avoid checking MT splits according to the variance and the
best ISP [58] mode chosen for the current CU.

Numerous machine learning methods have also been proposed to speed up the RDO
search of partitioning in VVC. For both intra and inter partition acceleration, these meth-
ods could be further categorized into two classes: CNN-based approaches and Decision
Tree (DT)-based approaches.

For intra partition acceleration, Galpin et al. [59] firstly utilize a CNN model to
predict boundaries of all 4x4 sub-blocks inside a CTU for an experimental software of
JVET - Joint Exploration Model (JEM). In [60], Tissier et al. adopt this method in
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VVC. Another work [61] by Wu et al. consists of merging the boundaries of 4x4 blocks
into split boundaries of different lengths per partition level. Then a Multi-Stage Exit
CNN (MSE-CNN) [62] is proposed by Li et al. intending to determine the possible splits
and early exit by inference of trained subnet for each CU of different sizes. In [63], Feng et
al. propose a fast partitioning method by predicting a QT depth map, multiple MT depth
maps, and multiple MT direction maps with a CNN. For each MT partitioning level, the
MT depth map is utilized to determine the selection between the BT split and the TT
split, with the assistance of the MT direction map guiding the choice between horizontal
or vertical splitting. Regarding the DT-based approaches, Mário et al. [64] propose a fast
block partitioning method in which various Light Gradient Boosting Machine (LGBM)
classifiers are trained separately on different CU sizes to predict the possible splits.

Relatively less contributions for inter-partitioning have been proposed for VVC. For
DT-based approaches, the work proposed by Amestoy et al. [65] uses a cascade of split-
type skipping schemes consisting of different binary skip decisions predicted by trained
Random Forest (RF)s. This method has been later improved by Kulupana et al. [66],
by combining it with hand-crafted rule-based early termination for the TT splits. In the
CNN-based category of methods, the work presented in [67] proposes a multi-branch CNN
to perform a binary classification of the “Partition" or “Non-partition" at the CU level,
in order to early terminate the partitioning. In this paper, different models are trained
for different CU sizes. Moreover, Yeo et al. propose a method in [68], where a variant of
Branch Convolutional Neural Network (B-CNN) [69], called multi-level tree CNN (MLT-
CNN), is used to predict the partitioning mode of the CTU. The key feature of this CNN
is that its outputs correspond to different decisions at different levels of a split mode tree.
In [70], Tissier et al. use the MobileNetV2 structure fed with current CTU and reference
CTUs to predict the boundaries of all 4x4 subblocks. Then LGBM models are trained to
predict the possible splits for each CU sizes.

2.2 Multi-rate Coding Methods

In streaming applications, where video content is encoded at multiple bitrates, fast
multi-rate encoding methods are employed. These methods typically designate a single
representation as the reference representation, encoding it first, and utilizing its infor-
mation to speed up the encoding process for the remaining representations, known as
dependent representations. Schroeder et al. [71] proposed a multi-rate encoding approach
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in which the video is first encoded at a high quality representation, and its information
is reused to accelerate the encoding of lower quality representations. They leverage the
fact that each CTU achieves its highest partitioning depth in the highest quality repre-
sentation. Consequently, by determining the partitioning depth of CTUs in the highest
quality representation (dm), it is possible to skip the partitioning of co-located CTUs in
lower quality representations beyond dm. This leads to significant time savings during
the encoding process. Çetinkaya et al. [72] proposed an approach in which the lower
quality representation is initially encoded, and for each CTU with a partitioning depth
of (dm) in the reference representation, depths lower than dm are skipped during the
RDO search. In this method, CNNs is used to extract additional features, improving
the performance of the partitioning depth decisions. Amirpour et al. [73] investigate the
trade-off between time savings and quality drop by considering different representations as
a reference representation. They concluded that utilizing a middle-quality representation
can effectively strike a balance between these factors, optimizing the trade-off. Menon et
al. [74] presented an extensive investigation of various multi-rate schemes and introduced
innovative heuristics aimed at constraining the RDO process across different representa-
tions. Building upon these heuristics, they proposed three multi-encoding schemes that
leverage encoder analysis sharing across various representations. These schemes were de-
signed to optimize: (i) highest compression efficiency, (ii) the optimal trade-off between
compression efficiency and encoding time savings and (iii) maximum encoding time sav-
ings.

2.3 Statistical Analysis of VVC

As VVC was finalized in 2020, there has been relatively less work done in the realm of
statistical analysis compared to previous video codecs. Several articles have contributed
to the statistical analysis of VVC. Toipwala et al. in [75] first compare the compression
performance and subjective evaluation of VVC with HEVC, AV1 and Essential Video
Coding (EVC). Then Tissier et al. explore in [8] the opportunities for complexity reduc-
tion of VVC intra-encoder. In their research, block partition, intra prediction mode and
the selection of transform are considered. In [76], a detailed complexity analysis based on
VVC intra prediction tools and CU sizes has been performed. Pakdaman et al. in [77]
have broken down the encoding process into encoding modules such as motion estimation,
intra prediction, entropy coding, etc. and then analyzed the complexity partition of mod-
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ules in multiple encoding configurations. [78] reviews complexity aspects of the different
modules of the VVC standard and provide a complexity breakdown of these modules in a
more precise way. In [79], VVC and HEVC are compared in terms of rate-distortion and
complexity analysis.

2.4 Conclusion

In this chapter, we have reviewed the state of the art in fast partitioning and multi-rate
encoding of VVC and previous codecs.

Regarding fast partitioning methods for inter-coding in VVC, most machine learning
methods are based on decision trees or random forests. Initially, these methods mainly
focus on split decisions at the CU level, thereby disregarding the interconnections between
sequential splits occurring at different hierarchical depths. Furthermore, the training and
assessment of these models are vulnerable to the issue of overfitting, due to the fact that
these models are trained on a selective subset of videos drawn from the test set. In
response to these limitations, we introduce our CNN-based approach in Chapter 4. Our
model is designed to conform to the partitioning structure in VVC while considering the
interdependence between split decisions at different depths. As a result, our proposed
method outperforms state-of-the-art methods.

Regarding multi-rate encoding, the existing literature pertains to HEVC. However,
it’s important to note that there is an absence of research in this area concerning the
relatively recent codec, VVC. In Chapter 5, we develop a multi-rate encoding method
based on fast partitioning. This marks a pioneering effort in the field of VVC multi-rate
encoding.
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Chapter 3

LIGHT-WEIGHT CNN-BASED VVC INTER

PARTITIONING ACCELERATION

3.1 Introduction

The novel QTMT partitioning, as detailed in Section 1.3.2.2, is the primary contributor
to the increase in VVC codec complexity compared to previous codecs. As mentioned in
Section 2.1.2, papers based on machine learning generally utilize CNN or RF to accelerate
the partitioning process of VVC. In [45], the concept of the QT depth map is introduced
and predicted by a CNN to efficiently accelerate the intra partitioning in HEVC. In this
chapter, we propose a fast partitioning approach based on the QT depth map, specifically
designed for inter partitioning in VVC. This domain has remained relatively underexplored
when compared to its intra partitioning counterpart.

The contribution presented in this chapter was proposed after the standardization
phase of VVC. As outlined in Section 1.2.2.2.1, our method relies on the VTM10, which
is a relatively complete and stable implementation of VVC. Additionally, we have reimple-
mented our method in VTM6, VTM8, and VTM11 to facilitate comparisons with other
state-of-the-art approaches.

In this chapter, we propose a lightweight CNN-based inter partitioning acceleration
method for VVC. Given that the partitioning syntax of VVC can be specified as a series
of QT-then-MT splits, the proposed method stores the QT depth that each 8×8 block
has been associated. The QT depth grid is then learned by a designed CNN from a large
dataset of encoded videos, and is integrated into the VTM with the help of a threshold to
control the trade-off between complexity reduction and coding performance. Our method
outperforms existing CNN-based approaches while achieving results comparable to those
of RF-based methods.

The upcoming sections of this chapter are structured as follows:
— In Section 3.2, we elaborate on our approach, including the introduction of the
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QT depth map representation, the partitioning search process in the VTM, the
architecture and training for our CNN model, and the associated acceleration al-
gorithm.

— Section 3.3 presents the results of our experiments and a comparative analysis of
our method with state-of-the-art solutions.

— Section 3.4 provides an ablation study on input features of the CNN model.
— Finally, Section 3.5 concludes this chapter.

3.2 Proposed Method

To address the complexity issue of VVC, we propose a CNN-based scheme for pre-
dicting the split modes in inter-coding by skipping unnecessary RDO checks. RF- or
CNN-based solutions have already been proposed for this problem. However, the poten-
tial of acceleration of these methods listed in Section 2.1.2 is limited. Indeed, in [67],
the encoder can only save complexity on CUs classified as "No Partition" while the CNN
proposed in [68] determines the split modes merely at a CTU level. With RF-based solu-
tions in [65], 18 classifiers are involved. In contrast, the proposed solution is based on one
unique model trained on complete CTUs which predicts a depth level on the partition
tree. Skipping split modes at multiple CU levels allows us to save a higher number of
intermediate RDO checks.

Hor split Ver splitQuad split

(a) Example of QTMT partitioning tree on
CTU size of 64x64

(b) QTMT partitions (c) QTdepthMap

Root: 64×64CTU

Figure 3.1 – Example of QTMT partitioning structure, partition and QTdepthMap for a
64×64 CTU
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3.2.1 Quad-tree Depth Map Representation

Figure 3.1-(a) shows an example of QTMT partition tree, with its actual partition
demonstrated in Figure 3.1-(b). Without loss of generality and for the sake of simplicity,
we represent this example for CTU size 64×64, instead of 128×128. As mentioned ear-
lier, once the first MT split is chosen, the QT split becomes forbidden for the following
nodes (i.e. QT-then-MT scheme). In Figure 3.1-(a), the red horizontal arc-shaped curves
indicate the border between the last QT split and the first MT split (if any).

Considering the QT-then-MT scheme in VVC, one can represent partitioning series for
reaching any arbitrary CU, represented as leaf nodes in Figure 3.1-(a), as N consecutive
QT splits, followed by M consecutive MT splits. As each QT split divides a CU into four
smaller sub-CUss with exactly half of its size in width and height, it is in contrary with MT
splits, where the size of sub-CUs highly depends on the MT split type that is selected.
Therefore, in the proposed method, we use the values of N that are associated to leaf
nodes (i.e. final partitions) and form a grid called Quad Tree depth Map (QTdepthMap).
Figure 3.1-(c) shows how this map is computed for the above partitioning example. It is
worth mentioning that as the example in this figure is simplified with a 64×64 CTU, QT
depth values fall in {0, 1, 2, 3}, while in the default configuration of the VTM, a CTU of
size 128×128 would result in QT depth values in {0, 1, 2, 3, 4}.

3.2.2 Baseline Partitioning Search in VTM

The proposed inter partitioning acceleration is designed on top of the existing algo-
rithm of the VTM. This algorithm performs a nearly exhaustive search on possible ways
of partitioning a CTU, except that it incorporates a handful of hand-crafted conditional
shortcuts. Therefore, this work can be considered as an additional shortcut which relies
on CNN.

Figure 3.2 illustrates a simplified tree representation showing all the split types checked
during the partitioning process of a CTU. The green arrows indicate the path to a part
of the final decision for the CTU, while the black arrows represent other paths that have
been checked, but were not included in the final decision. Particularly, it can be observed
that several RDO checks have been unnecessarily carried out at QT depths of 0, 1 and 2.
The complexity of these unnecessary RDO checks can be reduced if the final QT depth
can be accurately predicted. Preliminary tests show that the QTdepthMap representation
is potentially an adequate solution for obtaining such estimation at the CTU level.
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Figure 3.2 – Example of partition path with MT referring to VBT, HBT, HTT and VTT
types.

3.2.3 Network Architecture for QT Depth Map Prediction

The CNN proposed in this contribution, called Multi-Branch Multi-Pooling CNN
(MBMP-CNN), is depicted in Figure 3.3. This network structure fuses inputs of dif-
ferent types. Its multi-pooling layer is designed to extract features at different scales
corresponding to CU dimensions at different QT depths.

Different from the traditional intra partitioning problem, features reflecting temporal
correlation between frames are vital for predicting the inter partition. Consequently, a
residual block of the current CTU is computed by motion-compensated prediction from
the nearest frame and is fed into the network in addition to the luma component. In
multiple papers [67, 68, 80], block residuals are fed into the CNN to give information on
the similarity between the current and the reference block.

Another important feature used in [67] and [65] is the motion field which is composed
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Input 1:
Luma pixels

and residual values
(128, 128, 2)

Input 2:
MV Field
(32, 32, 2)

+

Input 3:
QP matp and
temporal id
(32, 32, 2)

(5, 4, 1)

+

(k=8)

Resblock Conv2D+ Concatenate Maxpooling Upsampling

(k=4)

(k=2)

Output:
QTdepthMap

(16, 16, 1)

(5, 4, 2) (5, 4, 2)

(5, 8, 1) (3, 16, 1) (3, 16, 1) (3, 16, 2) (3, 8, 1) (3, 4, 1) (3, 1, 1)

Figure 3.3 – Structure of proposed MBMP-CNN. The vector of three elements on top of
Resblocks and Conv2D layers represents kernel size, number of filters and stride respec-
tively. Value "k" denotes pooling size for Maxpooling layers.

by motion vectors calculated on each 4x4 sub-block in reference to the closest frame. As
mentioned in [65], the motion field is correlated with the optimal partition. According to
our test on the first 64 frames of all CTC sequences in RAGOP32 configuration, generating
the motion field for each CTU takes on average only 0.1% of the encoding time of VTM10.
Since the motion vector for each 4×4 grid contains a vertical motion value and a horizontal
motion value, the motion field is of the shape 32×32×2.

The QP and temporal ID also impact the partitioning process. Generally, a larger
temporal ID and a smaller QP result in a finer partition. For this branch, we have simply
padded the QP value to 32×32 matrix and concatenated it with the similarly padded
temporal ID matrix to form another input of shape 32×32×2.

Tensors of same width and height corresponding to multiple input branches are con-
catenated before being fed into the main branch of the network architecture.The main
branch begins with three residual blocks [81] followed by the multi-pooling layer intro-
duced in [45]. The different kernel sizes are consistent with the CU sizes at different QT
depths. Finally, three convolutional layers shrink the tensor dimensions, which leads to
the predicted QTdepthMap. The output of the CNN is composed of the QTdepths on
different 8×8 sub-blocks. Each value equals to the QT depth of the CU containing the
corresponding sub-block, as described earlier in Figure 3.1-(c). The inference within the
VTM is performed by the CNN for each CTU before entering the RDO decision loop. By
doing so, the encoder can use the acceleration algorithm presented in the next section to
speed up the partition search.
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3.2.4 Partitioning Acceleration Algorithm

Algorithm 1 MT and NS early skipping
Input: QTdepthMap; QTdepthcur, CU; Th; SizeCU; PosCU, in CTU,
Output: SkipMT_NS: Boolean to decide whether to skip
MT and NS split types or not

1: Compute the QTdepthaverage based on SizeCU, PosCU and QTdepthMap
2: if QTdepthaverage ≥ (QTdepthcur + Th) then
3: SkipMT_NS = True
4: else
5: SkipMT_NS = False
6: end if

We have merged the proposed QTdepthMap prediction with the original partition
search process, with the goal of skipping the RDO of unnecessary MT and NS splits.
The algorithm for early skipping is depicted in Algorithm 1 and the overall algorithm is
described by the flowchart in Figure 4.6.

Figure 3.4 – Example of acceleration by QTdepthMap

The main idea of the proposed acceleration algorithm is to determine if we should
evaluate the MT and NS split modes or not for the CU partitioning. The average of
QTdepth values is computed for each CU based on predicted QTdepthMap before the
RDO check of split modes. We are using the mean value for the current CU since there
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Yes

Execute algorithm for 
MT and NS early skipping

Evaluate QT partition

Evaluate all 
possible
partitions

Yes

No

No

QT split allowed?

Start CU
partitioning

End CU
partitioning

SkipMT_NS

Figure 3.5 – Flow chart of proposed acceleration method

may exist outlier values in the predicted QTdepthMap and we can thus minimize the
error brought by these values compared with the maximum or minimum value methods
mentioned in [45]. If the average QTdepth is larger than the sum of QTdepth of current
CU and the threshold, it indicates that the evaluations of MT and NS splits are skippable.
Otherwise, all possible splits are checked as usual, which means that there is no complexity
reduction in that case. We illustrate an example of acceleration through the prediction
of QTdepthMap in Fig. 3.4. The circled CU in Fig. 3.1 can be achieved by employing the
partitioning outlined by the red path in Fig. 3.4. With the prediction of QTdepthMap,
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the QTdepth of the CU can be determined as 3 before starting the partitioning process.
Consequently, the RDO check of partitions in the black box can be skipped.

To prove the feasibility and effectiveness of this method, a ground truth - or oracle
- test has been conducted before the training and implementation of CNN. This oracle
mode allows us to get the possible upper limit in terms of complexity saving. The ground
truth test consists of implementing and applying the method with pre-obtained ground
truth of QTdepthMap. Experiments show that the ground truth test can speed up the
encoding by 39% with merely 0.61% loss on BD-rate compared with the standard VTM10
with the RAGOP32 configuration. Apart from the oracle test, another test measuring
the overhead of CNN inference has been done. Our proposed CNN comprising nearly 20k
parameters increases the encoding time by only 0.21% when integrated in VTM10.

3.2.5 Dataset and Training Details

800 sequences of different resolutions, namely 240p, 540p, 720p and 1080p, have been
encoded using the VTM10 with the RAGOP32 configuration. From this set, 600 sequences
of 64 frames come from the database BVI-DVC [82], while the remaining 200 sequences
have been selected from the Youtube UGC dataset [83]. We have collected the CTU-
level features, mentioned in previous section, together with its QTdepthMap. 200k CTU
samples have been randomly chosen for each resolution. The model has been trained
using Keras on GTX1080ti with AMD 3700x processor. We used the L1 loss function and
Adam optimizer [84]. The learning rate has been set to 1e−3 for the first 20 epochs, then
decreased by 10% every 10 epochs. The batch size for training is 200. The dataset is split
into 80% of training data and 20% of validation data. The Mean Absolute Error (MAE)
is used as validation metric.

3.3 Experimental Results and Analyses

The proposed method has been implemented in various VTM versions using the
frugally-deep library [85] to load the trained model and to perform the inference on the
CPU. The tests with the CTC sequences have been carried out on a Linux machine with
Intel Xeon E5-2697 v4. These experiments are conducted on the first 64 frames of CTC
sequences with the RAGOP32 configuration on four QP values of 22, 27, 32, 37. Two
main metrics have been used to assess performance: BD-rate [86] and Time Saving (TS).
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Table 3.1 – Performance of the proposed method in comparison with reference CNN-based
methods

Class Sequence Pan [67] (VTM6) Yeo [68] (VTM11) Proposed (Th=0, VTM6) Proposed (Th=0.1, VTM11)

BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%)

A
(3

84
0×

21
60

)

Tango2 4.03 38.56 2.70 25.95 2.93 38.28 1.77 26.92
FoodMarket4 1.74 46.12 NA NA 1.70 39.88 1.11 28.26

Campfire 3.17 38.23 0.58 7.36 0.90 26.98 0.59 18.80
CatRobot1 6.45 36.84 2.58 25.68 2.99 37.61 2.16 27.65

DaylightRoad2 5.63 35.47 NA NA 2.88 35.41 2.37 25.50
ParkRunning3 2.10 26.45 NA NA 1.29 35.67 0.88 28.35

Average 3.85 36.46 1.95 16.99 2.12 35.88 1.47 26.05

B
(1

92
0×

10
80

)

MarketPlace 4.33 33.64 1.33 23.25 2.14 37.44 1.51 27.34
RitualDance 3.55 34.17 0.92 16.35 2.08 36.69 1.25 26.74

Cactus 5.72 29.36 0.82 13.80 1.19 30.80 0.90 23.61
BasketballDrive 3.30 37.28 0.99 15.65 2.19 30.46 1.24 24.85

BQTerrace 1.90 20.21 0.67 13.54 0.33 22.14 0.39 13.08
Average 3.76 30.27 0.95 16.19 1.59 31.79 1.06 23.34

C
(8

32
×

48
0)

BasketballDrill 2.29 29.23 0.19 7.43 0.34 21.45 0.27 15.63
BQMall 2.69 27.48 0.12 3.99 0.56 23.54 0.31 18.35

PartyScene 2.22 20.80 -0.10 2.88 0.09 19.46 0.07 12.93
RaceHorses 3.02 26.39 0.15 3.16 0.57 26.70 0.53 21.66
Average 2.56 25.77 0.09 4.05 0.39 22.94 0.29 17.29

D
(4

16
×

24
0)

BasketballPass 1.85 26.97 0.06 3.37 0.11 13.10 0.08 11.38
BQSquare 1.61 14.86 0.09 3.54 0.03 8.32 -0.01 2.25

BlowingBubbles 3.03 22.15 0.12 3.59 0.25 10.51 0.24 8.63
RaceHorses 2.92 24.20 0.16 0.70 0.37 17.00 0.28 12.55
Average 2.35 21.53 0.11 2.34 0.19 12.34 0.15 8.82

E
(1

28
0×

72
0) FourPeople 2.31 33.77 NA NA 0.97 31.24 0.47 17.66

Johnny 3.53 35.22 NA NA 1.16 27.63 0.72 10.56
KristenAndSara 2.58 36.50 NA NA 1.33 28.25 1.22 13.27

Average 2.81 35.15 NA NA 1.15 29.18 0.80 14.23
Total average 3.18 30.63 0.71 7.12 1.20 27.85 0.83 19.34

The formula for computing TS is given in Equation 4.6. TTest indicates the encoding time
of the proposed method and TVTM indicates for the encoding time of encoder in the same
condition.

TS = 1
4

∑
q∈{22,27,32,37}

TV T M(q) − T Test(q)
TV T M(q) (3.1)

Before presenting the results, it is important to note that any complexity performance
comparison between different versions of the VTM is biased and naturally unfair. This is
due to the fact that in the latest versions of VTM, particularly since VTM10, a significant
effort has been put by the JVET community to accelerate the VTM software by optimizing
its decision engine. As a result, the later the version of VTM is, the less its encoding run
time for a given test set is, hence the more difficult it is to accelerate [25].

Our CNN has been trained on dataset generated from VTM10 and been implemented
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into VTM10. We have obtained encoding time acceleration from 17% to 30% for only
0.37% to 1.18% BD-rate loss in RAGOP32. Table 3.1 shows the encoding efficiency in
terms of BD-rate increase as well as the percentage of TS. In this table, the proposed
method is compared with two CNN-based inter partitioning methods of [67] and [68].
Two values of 0 and 0.1 are used as the internal threshold of the proposed method. It
is noteworthy that, as described in Algorithm 1, a larger threshold can give a higher
acceleration as more partitioning modes are skipped. As can be seen in this table, the
proposed method offers the best trade-off between time saving and performance drop.
More precisely, we have achieved a triple acceleration with the same loss when compar-
ing to [68]. At the same time, if we compared our result with [67], we obtain a larger
acceleration with a significantly lower loss. Finally, it is important to note that we have
reimplemented our method in the VTM6 and VTM11 respectively for a fair comparison
with reference papers in Table 3.1.
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Figure 3.6 – Complexity gains versus BD rate loss in comparison with RF based methods.

The two other acceleration methods for inter partitioning of VVC, notably the RF-
based works presented in [65] and [66], generate their results differently. The test set
used in these papers is different from JVET CTC. Also, the encoder configuration is
modified. In fact, the maximum of the MT split depth has been reduced from its default
value 3 to 2 in [65] and [66]. We refer to this setup as VTM8 with MT2 in the following.
Fig. 3.6 presents a performance comparison of RF solutions with our method implemented
in VTM8 and VTM8 with MT2. For a fair comparison, the results in this figure are
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calculated for all sequences CTC included in the test set of [66]. The label “Th" indicate
the value of the threshold.

Interestingly, the proposed method achieves similar results to these of the RF based
methods. This is remarkable as our method requires a unique network to predict the
QTdepthMap for any QP value and any frame position in the GOP, and the learning has
been performed for a different VTM version from the one used for testing.

0.6 0.65 0.7 0.75 0.8

22

22.5

23

23.5

24

24.5

25

BD-rate (%)

T
S

(%
)

MBMP-CNN
CNN_No_MVField
CNN_No_TempID

Figure 3.7 – Complexity gains versus BD rate loss for CNN models in ablation study

3.4 Ablation Study

The CTU pixel value and QP value are essential for the CNN model. In this work,
we include additional input features such as residual value, tempID value, and MV Field.
To assess the impact of these three features, we conducted an ablation study. Three
CNN models, named CNN_No_Resi, CNN_No_MVField and CNN_No_TempID, were
trained separately on the same dataset. Compared to our purposed model, CNN_No_Resi
shares the same CNN structure except that the residual input feature is removed, and
a similar approach is taken for CNN_No_MVField and CNN_No_TempID. We then
evaluated these models on CTC sequences. The performances of these three models are
compared to our MBMP-CNN in Fig. 3.7. The performance of CNN_No_Resi is 61%
TS with a 25.25% BD-rate increase, indicating that the model malfunctions without the
residual value as an input feature. Fig. 3.7 shows that the performance of the CNN model
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is worse when removing MV Field and tempID features. Consequently, we can conclude
that the residual value is crucial for predicting the QTdepth, and MV Field and tempID
are valuable features for the CNN model.

3.5 Conclusion

In this chapter, we have proposed a lightweight CNN-based CU partition acceleration
algorithm specialised for inter coding in VVC. The proposed MBMP-CNN takes inter
related features as input and predicts a QTdepthMap. An early termination algorithm
is proposed using the predicted QTdepthMap, to reduce the complexity of the MT and
NS partitions. This scalable method succeeds in speeding up the VTM10 efficiently from
17% to 30% for only 0.37% to 1.18% BD-rate increase in the RAGOP32 configuration.
Additionally, we have built a large-scale dataset for inter partitioning of VVC which could
be beneficial to other related works.
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Chapter 4

CNN-BASED PREDICTION OF PARTITION

PATH FOR VVC FAST INTER

PARTITIONING USING MOTION FIELDS

4.1 Introduction

In Chapter 3, we achieved a maximum acceleration of 30% in inter coding for VTM10.
Utilizing the QTdepthMap allowed us to omit the RDO checks for the MT partitions at
specific levels of the partitioning tree. Consequently, RDO checks for MT partitions at
other levels and QT partitions were not considered. To achieve a more substantial acceler-
ation in this contribution, we aim to speed up the RDO check for both QT partitions and
MT partitions across all levels of the partitioning tree. Therefore, the method proposed
in this chapter offers a comprehensive approach to accelerating VVC partitioning.

Generally, fast partitioning approaches, described in Section 2.1.2, aim to reduce the
search space of potential partitions. Therefore, accurately predicting the subset of par-
titions is of crucial importance. Heuristic methods proposed for fast intra partitioning
of VVC [55, 87] heavily depend on handcrafted features to determine whether to check
a partition. These methods are fast and simple to implement but lack accuracy for two
reasons. Firstly, the features are computed locally on the CU and/or sub-CUs, which
fails to provide a synthesized view of the entire CTU. Secondly, these features, including
variances, gradients, and coding information, are low dimensional and do not adequately
capture the complexity of CTU.

One approach to improve the accuracy of partition prediction involves increasing the
dimension of the extracted features. This is the case with the methods based on RF [65] or
DT [66], which use over 20 features from a given CU and its sub-CUs. As a result, decisions
made by these methods remain confined to the local context of CU, without considering
the entirety of CTU. Rather than relying on local information, a more effective selection
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of subsets of partitions should be based on global features computed on the entire CTU.
This can be accomplished through the utilization of CNN-based methods.

Several approaches [67, 68, 88] use CNN to partially accelerate the partition search
process. For instance, in [67], Pan et al. propose a multi-branch CNN to perform a binary
classification of the “Partition” or “Non-partition” at the CU level. In [68], the split type
at the CTU level is predicted, whereas the partitions of its sub-CUs are not determined.
In our contribution in Chapter 3, we employ a CNN to estimate an 8×8 grid map of QT
depth, which is used to discard a portion of the MT splits. These methods cover only a
part of the partition search space, while the partition search is conducted exhaustively
on the remainder. These methods could be referred as partial partitioning acceleration
methods by CNN.

A complete partitioning acceleration of inter coding by CNN is proposed in [70]. A
vector containing probabilities of the existence of split boundaries in the partition is
predicted similarly to [60]. This method is fast in the sense that a single vector is computed
for each CTU. Nevertheless, it is observed in [60], that the predictions are more accurate
at higher levels of the partitioning tree. Hence, they propose improving the decisions by
adding 16 trained DTs to process the CNN output, introducing additional complexity to
the method.

In the MT partitioning, both binary and ternary (with sub-CUs of two different sizes)
splits are available. Consequently, CUs at a specific depth in the tree do not correspond
to the same size and shape, introducing dependence between the MT splits along the
partition path. This dependence partly explains the decrease in partition prediction
accuracy as the depth of the partitioning tree increases, as observed in recent studies [60,
70] presented in the previous section.

More precisely, since the size and shape of a CU depend not only on its depth in the
tree but also on consecutive MT splits, depth alone is insufficient to define a partition.
Therefore, we propose making decisions on MT partitioning in a hierarchical manner,
considering their dependence on the partition path. We also introduce a one-shot ap-
proach for QT partitioning which precedes MT partitioning, since there is a one-to-one
correspondence between the QT depth and the CU size at that particular depth.

Hence, our overall proposition involves predicting the partition path, which includes a
one-shot prediction for the QT partitioning, followed by a hierarchical prediction for the
MT partitioning. Additionally, to further improve the accuracy of partition prediction,
we suggest basing the partition decision not only on pixel values and residual values but
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also on motion vector fields, as these fields exhibit a strong correlation with partitioning
[65]. Similarly to previous work, our method is based on VTM10. Furthermore, we have
re-implemented our method in VTM6 for comparison with state-of-the-art methods.

Our two main contributions are as follows:
— We propose a novel partition-path-based representation of the QTMT partition at

the CTU level as a map of QT depth plus three maps of MT split well adapted to
the sophisticated partitioning scheme in VVC.

— We design a U-Net-based CNN model taking multi-scale fields of motion vectors
as input to effectively predict QT depth map as well as split decisions at different
MT levels.

We also have other contributions such as:
— We build MVF-Inter 1, a large-scale dataset for the inter QTMT partition of VVC,

which could facilitate research in this field.

— We propose a fine tuned loss function for this complex multi-branch multi-class
classification problem.

— We develop a fast partition scheme effectively exploiting the prediction of a CNN
model in a way that the most possible splits are determined at each partition level.

— We design a specific threshold-based selection approach to match with the partition
scheme, which allows us to realize a large range of trade-offs between complexity
and compression efficiency.

The remainder of this chapter is organized as follows. In Section 4.2, we provide an
overview of the proposed method. In this section, we present a novel representation for
QTMT partition and illustrate the structure of the CNN model. In the end, we provide
details on the corresponding acceleration algorithm and the training of the CNN model.
In Section 4.3, we evaluate the prediction accuracy of our CNN model. Additionally, we
compare our results with the state-of-the-art of RF and CNN based methods, respectively.

1. Our dataset MVF-Inter is available at https://1drv.ms/f/s!Aoi4nbmFu71Hgx9FJphdskXfgIVo?
e=fXrs0o
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This section also includes a complexity analysis of our method. Finally, in Section 4.4, we
draw conclusions and provide perspectives for future work. Our source code is available
at https://github.com/Simon123123/MSMVF_VVC_TIP2023.git.

4.2 Proposed Method

In this work, we use the concept of partition path to depict the partition of a CU.
The partition path refers to the sequence of splits applied to obtain a CU during the
partitioning. In the RDO process of partitioning, numerous partition paths included in
the partition search space are checked and the optimal one leading to the final partition
is selected. Figure 3.2 in Chapter 3 illustrates a simplified tree representation showing
all possible partition paths checked for a CTU. The green arrows indicate the selected
partition path with the lowest RD-cost [89], while the black arrows represent other paths
that have been tested by RDO, but were not selected.

Specifically, within the QTMT partition, it is important to note that QT splits are
prohibited for the child nodes of a MT split. Consequently, the search for optimal partition
path in VVC can be conceptualized as a sequential two-step decision-making process,
comprising a sequence of QT splits followed by a series of MT splits.

4.2.1 Novel Representation of QTMT Partition

Based on the partition structure QTMT and the partition path of VVC presented in
the previous section, we introduce in this section a novel representation of QTMT partition
by partition path. In 4.2.1.1, we explain the motivation for this new representation. The
partition path representation is illustrated in 4.2.1.2.

4.2.1.1 Motivation

Previous partition representations at the CTU level have typically used binary vectors
to depict split boundaries. In [59, 60, 70], the authors intend to predict the split boundary
of each 4×4 sub-block in CTU. Lately, Wu et al. improve this representation in [61] by
proposing hierarchical boundaries. This adaptation is designed to better align with the
QTMT partition pattern. In this work, binary labels for split boundaries of varying
lengths are predicted. Collectively, these methods provide a geometric representation of
the partition.
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The limitations of the geometric representation mainly lie in two aspects. Firstly,
it is an implicit representation of the partitioning process, requiring conversions from
boundary vectors to split decisions. In the case of [59], conversions are carried out by
computing the average probability at the location of the specific split. [70] and [60]
convert boundary vectors to split decisions by DT models separately trained for different
CU sizes. Secondly, different partition paths could be deduced from a particular partition
presented in a geometric way. For example, as demonstrated in Figure 4.1, the partition
defined by the split boundaries can lead to three distinct partition paths. These partition
paths correspond to different coding performances and are individually tested in the RDO
process. This multiplicity of partition paths of the geometric representation limits the
acceleration potential of the method.

Figure 4.1 – Possible partition paths for a final partition given by split boundaries

To address the above limitations, we introduced a novel representation based on the
partition path. Our representation comprises the QT depth map and the MT split maps.
Firstly, the split decisions at each depth can be directly deduced from either the QT
depth map or the split map. This eliminates the need for decision trees, reducing method
overhead, and simplifying implementation. Secondly, it corresponds to a unique partition
path, maximizing the potential for complexity reduction.

4.2.1.2 QT Depth Map and MT Split Maps

Considering that the maximum number of QT splits and MT splits is typically set
to 4 and 3 in VTM, any partition can be effectively described by a QT depth map
(i.e. QTdepthMap) along with three MT split maps (i.e. Multi-type Tree split Map
(MTsplitMap)) in sequence. Each element within the QTdepthMap and MTsplitMap
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Figure 4.2 – Example of QTMT partition, tree representation, QTdepthMap and MT-
splitMaps of CTU size of 64×64.

corresponds to an 8×8 and 4×4 area, which aligns with the dimensions of the smallest
sub-CUs for QT split and MT split in VTM.

A detailed example of our partition representation is shown in Figure 4.2. To keep
it simple and without loss of generality, we represent this example for a CTU size of
64×64. In this figure, (a) shows an instance of QTMT partition with its corresponding
tree representation shown in (b). (c)-(f) illustrate the QTdepthMap and MTsplitMaps
generated from this partition. Given that the CTU size in this example is 64×64, the sizes
of QTdepthMap and MTsplitMap are 8×8 and 16×16, respectively. The QTdepthMap in
(c) consists of QT depth values ranging from 0 to 4, while each element in MTsplitMap in
(d)-(f) represents the split decision among five options: NS, HBT, VBT, HTT and VTT.
This representation depicts a distinct partition path for every CU within the partition.
To provide an example, consider the CU highlighted in the green circle in Figure 4.2. Its
partition path can be expressed as three QT splits (QT depth 3), followed by a HBT split
and two NS decisions.

4.2.2 CNN-based Prediction of Partition Path

Predicting the optimal partition is equivalent to predicting the optimal partition path.
In VTM, the size of CTU is set to 128×128 by default, consequently yielding QTdepthMap
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Figure 4.3 – Multi-Scale Motion Vector Field CNN. The vector above Resblock and
Conv2D represents (kernel size, number of filters, stride).

and MTsplitMap dimensions of 16×16 and 32×32, respectively. The representation of
partition path can be predicted by a multi-branch CNN, where one branch infers the QT-
depthMap of regression values with dimension 16×16×1, while the other three branches
produce the MTsplitMap. Each element of MTsplitMap is classified into one of five
classes, corresponding to five split types, resulting in three MT outputs with dimensions
of 32×32×5. We have handled the classification of MT splits as an image segmentation
problem based on 4×4 sub-blocks. Accordingly, we adopted the classical U-Net structure
[90] to design our CNN model to address this segmentation-like task.

In this section, the U-Net structure is briefly introduced. Then we present the structure
of the proposed CNN in Section 4.2.2.2. Afterwards, we list its input features and explain
the reasons for choosing them in Section 4.2.2.3.

4.2.2.1 U-Net

The U-Net structure is derived from Fully Convolutional Network (FCN)[91]. It con-
sists of an encoder part which is composed of a sequence of convolutional layers plus
maxpooling layers. Then this part is followed by a decoder part in which the maxpool-
ing layers are replaced by upsampling layers. In addition, skip connections concatenate
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Figure 4.4 – U-Net feature extractor and MT branch module

feature maps from the encoder and decoder with the same dimension. The U-Net and its
variations have been widely applied to image segmentation tasks.

4.2.2.2 MS-MVF-CNN Structure

The CNN structure proposed in this paper, named Multi-Scale Motion Vector Field
CNN (MS-MVF-CNN), is depicted in Figure 4.3. The proposed CNN has 7 inputs and 4
outputs. After two convolutional layers with stride, the tensor of Input 1 is downsampled
to dimension 32×32×8 and then concatenated with the Input 2. The merged input
is then fed to the U-Net feature extractor demonstrated in Figure 4.4. Regarding the
design of this module, we are referring to the classical structure of U-Net depicted in [90].
Specifically, we concatenate the upsampled feature map in the decoder part of U-Net, the
feature map copied from the encoder part with the motion vector field of the same scale.
At the decoding part, the feature map is gradually expanded and merged with normalized
motion field of 2×2×6, 4×4×6, 8×8×6, 16×16×6, and 32×32×6. As a result, the U-Net
feature extractor outputs a feature map of dimension 32×32×8, combining pixels features
with motion estimation features.

Since the split at each level depends on previous splits, we employ a hierarchical multi-
branch prediction mechanism. QTdepthMap is predicted after shrinking the features
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extracted from U-Net by four convolutional layers. For MT branches, we designed the
MT branch module presented in Figure 4.4. Two inputs of this module are the extracted
features of U-Net and outputs from previous partition levels. We utilize the asymmetric
kernel structure to process the extracted features. This structure is originally proposed by
[46] in HEVC to pay attention to near-horizontal and near-vertical textures for predicting
split decision of intra coding by CNN. We adopt this structure to exploit the horizontal
and vertical information contained in Multi-Scale Motion Vector Field (MS-MVF). The
MT branch module contains branches of kernel size MxN, LxL, and NxM. The values of
(M, N, L) are set as (5, 7, 9) for branch MT0, (3, 5, 7) for branch MT1, and (1, 3, 3) for
branch MT2. On deeper MT levels, splits are made on smaller CUs. Thus, smaller kernel
sizes are applied to extract finer features. After the asymmetric kernels, the feature map
is then concatenated with outputs from previous levels. In the end, the merged feature
maps are given to two residual blocks [81] before yielding classification results of MT
branches. No activation is applied to the fully connected output layer of the QT depth
branch. The output layer of the MT branch is with softmax activation.

4.2.2.3 Input Features

This network structure takes three different types of input. The involved inputs are
presented below:

4.2.2.3.1 Original and Residual CTU

In Figure 4.3, Input 1, with dimensions of 128×128×2, is created by merging the
original CTU with the residual CTU. The original luma pixels carry the texture details
of the CTU, while the residual CTU is generated through motion compensation of the
original CTU based on the nearest frame.

Several studies [67, 68, 80] have adopted a method in which both the original CTU
values and the residual of CTU are fed to a CNN. Combining the original and residual
values as input allows CNN to assess the similarity between current CTU and reference
CTU. This combined input offers features that reflect the temporal correlation between
frames which is a crucial factor in inter partition prediction.

4.2.2.3.2 QP and Temporal ID
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The Input 2, as illustrated in Figure 4.3, has dimensions of 32×32×2, consisting of two
separate 32×32 matrices. These matrices are assigned specific values: one holds the QP
value, while the other contains the temporal identifier. This temporal identifier in VVC,
similar to its usage in HEVC, signifies a picture’s position within a hierarchical temporal
prediction structure, controlling temporal scalability [92].

We specifically utilize the QP value and temporal identifier as input features since inter
partitioning depends on them. In essence, a higher temporal layer identifier or a lower
value of QP tends to result in finer partitions, as outlined in [68]. Instead of developing
separate models for each parameter instance, our approach focuses on training a model
with adaptability to varying values of QP and temporal identifier.

4.2.2.3.3 Multi-Scale Motion Vector Field

In this paper, we have introduced a CNN model based on a novel input feature called
MS-MVF. Our MS-MVF at five scales is presented as Input 3-7 in Figure 4.4. To compute
MS-MVF, we divide the 128×128 CTU into multiple scale sub-blocks ranging from 4×4
pixels to 64×64 pixels, and perform motion estimation on these sub-blocks. Each motion
vector of sub-block comprises a vertical and horizontal motion value, along with the
associated SAD cost value as the third element. By concatenating elements pointing to
reference frame of L0 with those of L1, each sub-block corresponds to 6 elements in the
motion vector field. For example, the motion vector field input for 8x8-pixel scale has
dimensions of 16×16×6.

A significant challenge in inter partition prediction is the large motion search space,
which spans up to 6 regions of 384×384 pixels across different reference frames in the
RAGOP32 configuration. State-of-the-art methods typically employ motion fields or pix-
els from reference frames as input features for machine learning models. Notably, in [65]
and [67], a crucial feature used is the motion field, which comprises motion vectors cal-
culated for each 4×4 sub-block referring to the nearest frame. As mentioned in [65], this
motion field is strongly correlated with the optimal partition. In a different approach,
Tissier et al. in [70] opt to utilize two reference CTUs in the nearest frames.

The choice of using MS-MVF as the CNN input, instead of motion fields and refer-
ence pixels, is based on the following reasons. First, the MS-MVF contains crucial motion
information for the current CTU, which is essential for both inter prediction and inter
partitioning. This information can be interpreted more effectively by the CNN model
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Figure 4.5 – Comparison of performances between PIX-CNN and MVF-CNN.

compared to using reference pixels as CNN input. Second, the multi-scale nature of
the MS-MVF aligns well with the multi-level structure of U-Net and can leverage this
structure effectively. Essentially, MS-MVF represents motion features at various resolu-
tions, allowing for the combination with features extracted from CTU pixels at the same
resolution scale.

To demonstrate the effectiveness of our MS-MVF input, we conducted an experiment
involving the training of two CNN models. The only distinction between these models
is their input: the first model, PIX-CNN, takes the pixels of two reference CTUs as
input, while the second model, MVF-CNN, utilizes our proposed MS-MVF as input.
Both models share the same architecture as in Figure 4.3. The training dataset comprises
250k samples randomly selected from the RAGOP32 encoding of 200 sequences with a
resolution of 540p from [82]. Performance evaluations in Figure 4.5 are based on Class C
sequences of CTC. The results consistently show that MVF-CNN outperforms PIX-CNN
at all four data points, which justifies the advantages of using the MS-MVF input over
pixel input.

Based on our evaluation conducted on the first 64 frames of all CTC sequences using
the RAGOP32 configuration, the computation of MS-MVF for each CTU consumes, on
average, a mere 0.52% of the encoding time in VTM10. Importantly, the generation of
MS-MVF introduces only minimal encoding overhead, making it a task that can be readily
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preprocessed or parallelized.

4.2.3 Proposed CNN-based Acceleration Method

After the prediction by our trained CNN model, we obtain one QTdepthMap and
three MTsplitMaps per CTU. The predicted QTdepthMap is composed of floating-point
values. The predicted MTsplitMaps comprise probabilities of five split types for each 4×4
sub-block within the CTU. In this section, we elucidate the post-processing of the CNN
prediction, with the aim of achieving a wide range of acceleration-loss trade-off.

Algorithm 2 MT splits early skipping
Input:
QTdepthMap; MTsplitMap; Thm; QTdepthcur, CU; SizeCU; PosCU
Output:
SkipMT: Boolean to decide whether to skip MT split
types or not.
CandSplit: Candidate list of splits for RDO check

1: Compute the average QTdepthpred based on SizeCU, PosCU and QTdepthMap
2: if round(QTdepthpred) > QTdepthcur and

QT is possible for current CU then
3: SkipMT = True
4: CandSplit = {NS, QT}
5: else
6: SkipMT = False
7: CandSplit = {NS}
8: for sp in {BTH, BTV, TTH, TTV} do
9: Compute average Probasp based on SizeCU, PosCU and MTsplitMap

10: if Probasp > Thm then
11: CandSplit append split sp
12: end if
13: end for
14: end if

Decision errors at low partitioning depth can result in large loss of BD-rate. Based on
the predictions of our CNN, selecting the best single partition path, equivalent to choosing
the best split at each MT level, will not be optimal or scalable. Our approach involves
generating candidate lists at each level, which means that multiple partition paths are
chosen for the RDO test. This approach of creating candidate lists at various levels is
designed to achieve satisfying trade-off between acceleration and coding loss while assuring
the scalabilty of method.
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The acceleration algorithm is precisely described in Algorithm. 2 and Figure 4.6. We
introduce two parameters Thm and QTskip to regulate the acceleration-loss trade-off.
Specifically, Thm is the threshold for the split probability. QTskip represents whether we
should accelerate RDO of QT splits or not. Increasing the Thm value and setting QTskip
to true will lead to greater acceleration at the cost of increased coding loss.

Regarding the algorithm applied at the CU level, Algorithm. 2 is first executed. This
algorithm produces two outputs: the SkipMT variable and the CandSplit list, both of
which are subsequently utilized in the flowchart in Figure 4.6. To start with, the mean
QTdepthpred of current CU is calculated based on the corresponding area in QTdepthMap.
If the rounded QTdepthpred is larger than the QT depth of the CU and QT split is feasible,
the current CU should be split by QT. Consequently, all MT splits are excluded from
the CandSplit list and SkipMT is set to true. Otherwise, the mean probability of each
available split is computed on the corresponding MTsplitMap in a similar way to that of
the QTdepth. Then CandSplit is filled by splits with Probasp larger than the threshold
Thm. In this case, the value assigned to SkipMT is False.

In the flowchart of Figure 4.6, if the SkipMT is true after the execution of Algorithm 2,
we directly check the CandSplit. In this scenario, the encoder conducts RDO of CU and
splits CU with QT because CandSplit contains only NS and QT. If SkipMT is false, then
we will verify if NS is the only choice in CandList. If this is the case, we will add the
MT split with the highest probability to the list. Next, if QT split is not allowed for CU
due to CU shape or shortcuts, we go directly to the check of CandSplit. If the QT split
is feasible, we refer to QTskip to determine whether to add QT to the CandList or not.
Setting the QTskip to true signifies that we will always check QT if possible. This is for
rectifying the potential error of predicting a QTdepthpred value smaller than the actual
ground truth value. However, it comes at the expense of sacrificing some acceleration.
Finally, we execute RDO on CU and partition it by split types in the CandSplit list.
The partition search then repeats for the next CU, and the algorithm described above is
applied anew.

Our inter partitioning acceleration method is designed on top of the partitioning al-
gorithm of VTM which performs a nearly exhaustive search on possible partition paths
of a CTU, except that it incorporates a handful of handcrafted conditional shortcuts.
Therefore, this work can be considered as a CNN-based shortcut to reduce the search
space of partition paths.
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Figure 4.6 – Flowchart of acceleration algorithm

4.2.4 Training of MS-MVF-CNN

To effectively train our CNN model, we have designed a hybrid loss function and
created a large-scale dataset named MVF-Inter1. First, we will explain how this loss
function is determined in Section 4.2.4.1. Then Section 4.2.4.2 describes training details
and the generation of the dataset.
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4.2.4.1 Loss Function

The outputs of MS-MVF-CNN contain one regression output as well as three classifi-
cation outputs. Therefore, a hybrid loss function is developed in our case. We choose the
category cross-entropy for classification loss and mean square error for regression loss as
follows:

L = a
1
nq

nq∑
i=1

(di − d̂i)2 − (1 − a)(
nb∑

b=1

nm∑
i=1

ns∑
s=1

wb,syb,i,s log(ŷb,i,s)) (4.1)

Here, we have nq = 256, nb = 3, nm = 1024 and ns = 5, representing the number
of elements in QTdepthMap, the number of MT branches, the number of elements in
MTsplitMap, and the number of split types, respectively. In this equation, di denotes
the ground-truth QT depth value, while d̂i represents the predicted QT depth value.
Additionally, ŷb,i,s is used to denote the predicted probability of split type s for the i-th
element of the MT decision map at the b-th MT branch. Similarly, yb,i,s signifies the
ground-truth label for the same case. Notably, we introduce a parameter a, which falls
within the range [0, 1], in Equation 4.1 to fine-tune the relative weights of the regression
loss and classification loss.

The split types are distributed unbalancedly at different MT depths as illustrated in
Figure 4.7. To counteract this imbalance, we introduce class weights for split type s on
MT branch b, denoted as wb,s. The definition of these weights is as follows:

wb,s = λspb,s=ns

pb,s

(4.2)

where pb,s represents the percentage of split type s within MT branch b. For each
branch b, pb,s=ns

pb,s
can be interpreted as the inverse percentage of the split type s normalized

by the inverse percentage of the NS split. In [33], a series of tests were performed to
evaluate the coding gain and increase of complexity associated with the BT and TT splits
individually as demonstrated in Table 4.1.

Table 4.1 – Settings of split type in VTM9 under RA [33]

BT split TT split BD-rate Encoding Time
Anchor Setting X X - -

Setting 1 ✓ X -8.26% 337%
Setting 2 X ✓ -10.22% 732%
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When comparing Setting 1 and Setting 2 to the anchor configuration, it’s observed that
Setting 1 and Setting 2 exhibit similar BD-rate gains, but the encoding time in Setting 2
is twice that of Setting 1. These tests suggest that BT split performs better in terms of
the trade-off between complexity and coding gain compared to TT split. Thus, placing
greater importance on the prediction of the BT split can result in a better acceleration-
loss trade-off. To achieve this, the ratio between the proportion of NS and proportion of
split s is computed for MT branch b. The class weight wb,s in Equation 4.2 is formulated
as the product of this ratio and λs which is another weight added to prioritize the split
type s.

After fine-tuning the model, we find that the best performance is achieved with a value
of 0.8 for a and λs set to 2 for BT splits and 1 for TT splits and NS.

Figure 4.7 – Distribution of split types for MT0, MT1, MT2

4.2.4.2 Dataset Generation and Training Details

Constructing a large-scale inter-partition dataset is more challenging than that of intra
partition because the former needs to encode a substantial number of video sequences,
while the latter could be done by encoding images. To the best of our knowledge, there
exists no prior work focused on developing an inter-partition dataset.

Our MVF-Inter1 dataset involved the encoding of 800 sequences from [82] and an
additional 28 sequences of 600 frames in 720p resolution extracted from [83]. Sequences
of [82] cover resolutions of 240p, 540p, 1080p, and 4k, with 200 videos of 64 frames for
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each resolution. We have encoded all these videos with the VTM10[93] encoder in the
RAGOP32 configuration with QP 22, 27, 32, and 37. We randomly selected a total
of 820k CTU partition samples, equally distributed per resolution and QP, with 120k
samples reserved as a validation set.

Each sample of our dataset contains the following components of each CTU: pixel
values, residual values, motion vector fields at five scales, QP value, temporal ID value,
QTdepthMap with depths ranging from 0 to 4, and MTsplitMap for MT0, MT1, and
MT2. MTsplitMap labels are encoded as VTT (0), VBT (1), NS (2), HBT (3), and HTT
(4).

In terms of training details, we employed the Adam optimizer [84] to train the model.
The initial learning rate was set to 1e−3 and was exponentially decreased by 3% every 5
epochs. The batch size set for training is 400.

4.3 Experimental Results and Analyses

In this section, we present the results of our experiments and provide an in-depth
analysis of the results. To begin, in Section 4.3.1, we assess the precision of the prediction
of our CNN model. Subsequently, comparisons with the RF and CNN based approaches
are made in Section 4.3.2. Finally, the complexity analysis of our framework is carried
out in Section 4.3.3.

4.3.1 Prediction Accuracy Evaluation

At the CU level, our algorithm can be broken down into two decisions: the decision of
SkipMT and the decision of CandSplit list. To evaluate the precision of decisions based
on our model’s output, we have performed the encoding where both the ground truth
partitioning and the CNN output were collected. The analysis is done on the first 64
frames of all CTC sequences excluding class D with QP 22, 27, 32, 37. The accuracy
of these decisions presented in Table 4.2 and Figure 4.8 are calculated by averaging four
QPs and various test sequences.

There is no need to make a SkipMT decision on QT depth 4 since the partitioning is
forced to proceed to MT splits with the maximum of QT depth reached. The accuracy
of SkipMT decision is independently measured on QT depth from 0 to 3. If the current
CU requires further splitting of QT and SkipMT is equal to False, then this decision of

84



4.3. Experimental Results and Analyses

SkipMT is classified as False Negative (FN). The proportion of True Positives (TP), FN,
True Negatives (TN), False Positives (FP) and their corresponding Precision (Prec) and
Recall (Rec) are shown in Table 4.2. Precision, recall, and F1 score are calculated as
follows:

PrecisionQTdepth = TP QTdepth

TP QTdepth + FP QTdepth
(4.3)

RecallQTdepth = TP QTdepth

TP QTdepth + FNQTdepth
(4.4)

F1scoreQTdepth = 2 PrecisionQTdepthRecallQTdepth

PrecisionQTdepth + RecallQTdepth
(4.5)

Generally, our model exhibits strong performance at QT depths ranging from 0 to 2,
as depicted in Table 4.2. Both precision and F1 score decrease as QT depth increases. At
QT depth 3, the precision and F1 score drop to 25% and 40%, respectively, suggesting that
the SkipMT decision at this level is less reliable. These observations could be explained
by two reasons:

First of all, the scale of decision-making diminishes as the QT depth increases. More
explicitly, the SkipMT decision at QT depth 0 is made at the CTU scale by computing
the mean of 256 values from the QTdepthMap. Nevertheless, the decision at QT depth
3 relies only on 4 values from the QTdepthMap within the 16×16 CU. Consequently,
decisions at smaller scales are less resilient to incorrectly predicted QTdepthMap values,
resulting in lower overall accuracy at higher QT depths.

Secondly, decisions at higher QT depths are noticeably more imbalanced than those
at lower QT depths. Positive cases of ground truth at QT depth 3 represent only 0.02% ,
while the proportion of positive cases is 49.65% at QT depth 0. In conclusion, the model
is trained in such a way that it tends to make negative SkipMT decision at larger QT
depths. This explains the decline in precision as the QT depth increases.

Table 4.2 – Table of confusion for SkipMt (Unit: %)

TP FN TN FP Prec Rec F1score
QT depth 0 41.84 7.81 45.83 4.52 90.3 84.3 87.2
QT depth 1 19.53 0.58 72.57 7.32 72.7 97.1 83.1
QT depth 2 2.69 0.08 94.67 2.57 51.1 97.1 67.0
QT depth 3 0.02 0 99.92 0.06 25.0 100.0 40.0
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In Figure 4.8, the accuracy of the CandSplit list decision is determined by whether the
list contains the ground truth split at the MT level. We calculate and draw separate ac-
curacy curves for MT0, MT1 and MT2 separately by varying the threshold Thm. As Thm
increases, the size of the CandSplit list decreases, leading to decreasing precision. Once
Thm reaches a certain value, the accuracy stabilizes because the CandList is constant,
containing only the MT split type with the highest probability and NS. It’s worth noting
that the minimum accuracy of the MT increases with the MT depth. This is mainly due
to the fact that NS is more frequent at larger MT depths, as illustrated in the pie chart
in Figure 4.7. Since our CandSplit list consistently includes NS, the accuracy tends to be
relatively higher at larger MT depths.

In general, our model achieves a satisfactory F1 score for QT depths 0, 1 and 2
regarding the SkipMT decision. As for the CandSplit list decision, our algorithm maintains
an accuracy exceeding 65% while adjusting the value of Thm at various MT levels. These
performance evaluations justifies the high accuracy of the decisions made by our method
during the partition search process in VVC.

Figure 4.8 – Curves of accuracy and Thm for MT0, MT1, MT2
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4.3.2 Comparison with the State of the Art

The proposed method has been implemented in the VTM10.0 encoder using the Fru-
gally deep library [85] for CPU-based inference in real time. Encodings of CTC sequences
are performed on a Linux machine with the Intel Xeon E5-2697 v4 in a single-threaded
manner. To show the effectiveness of our method in the latest version of VTM, we con-
ducted experiments using VTM21, as represented by the black curve in Figure 4.9. These
experiments were conducted on the first 64 frames of CTC sequences with the RAGOP32
configuration on four QPs values of 22, 27, 32, 37.

Two metrics were used to assess the performance: BD-rate [86] and Time Saving
(TS). The formula for computing TS is provided in Equation 4.6. Here, TTest denotes
the encoding time of the proposed method, while TVTM represents the encoding time of
the original VTM10 under the same conditions. The average BD-rate loss and TS are
computed as the arithmetic mean and geometric mean, respectively, on four QPs values
over CTC sequences as defined in [40]. In addition, sequences of class D are excluded
when computing the overall average performance.

TS = 1
4

∑
q∈{22,27,32,37}

TV T M(q) − T Test(q)
TV T M(q) (4.6)

The acceleration performances obtained from the state-of-the-art RF-based methods
could not be directly compared with our performance. There are two main reasons for this.
First of all, the results of [65] and [66] are based on VTM5.0 and VTM8.0, respectively.
The differences of encoder complexity among various VTM versions are not negligible as
highlighted in [25], which makes it less valid to directly compare our performances with
theirs. Secondly, the training dataset was generated from a subset of CTC sequences,
and the results were not obtained from the entire CTC. This approach results in possible
overfitting and reduces the credibility of their results. As a result, comparing our results
obtained on the entire CTC with their results is not fair.

[66] is an extended and specialized work for VVC based on [65]. We have reproduced
the result of [66] in VTM10 to perform an unbiased comparison between our method
and RF-based method in [66]. First of all, we created a non-CTC dataset for training.
Table 4.3 presents details on the composition of sequences for the dataset. For the 720p
resolution, sequences are selected from [83] and sequences for other resolutions are from
[82]. In the end, we generated a large dataset with 3.7e7 samples for the training of 17
Hor/Ver classifiers as well as 2.5e6 samples for the training of 4 QT/MTT classifiers.
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After generating the dataset, we trained, pruned and integrated the RF classifiers in
VTM10.0. This was done in a manner consistent with the original article, including the
implementation of the early termination rule for TT 2.

Table 4.3 – Breakdown of sequences used to train RFs of [66]

Resolution
Number of

videos
240p 480p 720p 1080p 4k
50 13 10 10 5

We reproduce the result of the medium and fast speed preset of [66] in VTM10.
It should be noted that the maximum MT depth is limited to 2 for the fast preset.
We plot the curve of BD-rate loss and TS of our method by gradually adjusting the
threshold Thm and QTskip to build six settings. The curves obtained are shown in
Figure 4.9. For example, the label (T, 0.125) signifies that in this particular setting,
QTskip and Thm are assigned the values True and 0.125, respectively. Our method can
achieve a scalable acceleration varying from 16.5% to 60.2% with BD-rate loss ranging
from 0.44% to 4.59%. Compared to the fast preset, the setting (T, 0.175) produces the
same acceleration with a 0.84% lower BD-rate loss. Similarly, the setting (T, 0) reaches
the same BD-rate loss while providing a 17% higher speed-up compared to the medium
preset. In summary, our method generally outperforms the state-of-the-art RF-based
method. It is worth mentioning that the results in VTM21 are obtained by implementing
our CNN model, which was originally trained on VTM10. Consequently, it is expected to
show reduced performance compared to the results in VTM10. Nonetheless, our method
remains applicable and effective in the latest version of VTM.

Regarding CNN-based approaches, we compared our method with [67] and [70] in
Table 4.4. The VTM version of [67] is VTM6. Thus we reimplement our method and
integrate our model trained on VTM10 into VTM6 for a fair comparison within the same
context. In Table 4.4, the reimplementation in VTM6 labeled as (T, 0, VTM6) reaches
a slightly larger acceleration with only one-third of BD-rate loss compared to [67]. For
[70], their VTM version is the same as ours, allowing for direct comparisons. Encoding
with Thm = 0.125 yields a 40.6% reduction in the encoding time, which is similar to the
acceleration achieved by the C2 configuration in [70], but with only half of its BD-rate
loss. Furthermore, our method with Thm set to 0.2 outperformed their C3 configuration,

2. The code and dataset of reproduction is available at https://github.com/Simon123123/vtm10_
fast_dt_inter_partition_pcs2021.git
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Table 4.4 – Performance of the proposed method in comparison with reference CNN-based
methods

Class Sequence Pan [67] (VTM6) Tissier[70] (C2) Tissier[70] (C3) Ours (T, 0, VTM6) Ours (T, 0.125, VTM10) Ours (T, 0.2, VTM10)

BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%)

A
(4

k)

Tango2 4.03 38.56 - - - - 1.35 32.3 1.84 43.7 3.08 57.5
FoodMarket4 1.74 46.12 - - - - 0.75 29.4 0.85 55.1 1.13 53.6

Campfire 3.17 38.23 - - - - 1.49 40.7 1.83 48.5 3.22 63.2
CatRobot1 6.45 36.84 - - - - 1.31 36.5 1.45 42.6 2.67 57.6

DaylightRoad2 5.63 35.47 - - - - 1.57 39.4 2.00 45.6 3.94 57.9
ParkRunning3 2.10 26.45 - - - - 0.99 42.6 0.98 45.9 1.93 59.8

Average 3.85 36.46 1.84 47.7 3.06 59.7 1.25 37.0 1.49 45.3 2.66 58.4

B
(1

08
0p

)

MarketPlace 4.33 33.64 - - - - 0.99 37.6 1.48 46.3 2.78 57.7
RitualDance 3.55 34.17 - - - - 1.75 39.9 1.91 49.4 3.91 61.8

Cactus 5.72 29.36 - - - - 1.05 37.8 1.30 44.8 2.45 58.3
BasketballDrive 3.30 37.28 - - - - 1.34 39.6 1.95 49.7 3.65 63.4

BQTerrace 1.90 20.21 - - - - 0.99 32.6 1.18 39.8 2.23 52.2
Average 3.76 30.27 2.21 46.5 3.09 58.2 1.22 37.5 1.56 46.1 3.00 58.9

C
(4

80
p)

BasketballDrill 2.29 29.23 - - - - 1.04 26.9 1.08 30.3 2.60 39.7
BQMall 2.69 27.48 - - - - 1.20 29.1 1.18 32.2 2.71 39.7

PartyScene 2.22 20.80 - - - - 0.78 31.5 0.86 33.3 2.25 43.3
RaceHorses 3.02 26.39 - - - - 0.96 32.8 1.09 34.6 2.94 45.6
Average 2.56 25.77 3.20 43.1 3.79 53.8 0.99 30.1 1.05 32.6 2.63 42.1

D
(2

40
p)

BasketballPass 1.85 26.97 - - - - 0.76 19.0 0.85 22.2 1.72 25.1
BQSquare 1.61 14.86 - - - - 0.50 17.6 0.54 19.6 1.38 22.5

BlowingBubbles 3.03 22.15 - - - - 0.33 17.2 0.45 18.9 1.12 23.4
RaceHorses 2.92 24.20 - - - - 1.04 22.8 0.85 24.4 2.11 31.2
Average 2.35 21.53 3.02 36.8 3.26 45.2 0.66 19.2 0.67 21.0 1.58 25.6

E
(7

20
p)

FourPeople 2.31 33.77 - - - - 0.95 29.5 0.90 34.3 1.65 41.2
Johnny 3.53 35.22 - - - - 0.93 22.1 1.13 27.6 2.01 32.8

KristenAndSara 2.58 36.50 - - - - 1.00 24.3 1.11 30.3 1.73 36.4
Average 2.81 35.15 1.45 38.7 2.2 49.6 0.96 25.4 1.04 30.8 1.79 36.9

Total average 3.18 30.63 2.33 43.4 3.12 54.3 1.14 33.8 1.34 40.6 2.60 52.2

achieving a 0.52% lower BD-rate loss at the same level of acceleration. In conclusion, our
method consistently outperforms all state-of-the-art methods.

It is important to note that the level of acceleration can vary depending on different
sequence classes (e.g. resolution), which is consistent with other CNN-based methods. As
discussed in [33], CTUs that exceed the picture boundary are referred to as partial CTUs.
These partial CTUs require a different partition search scheme compared to regular CTUs.
Consequently, the encoding of partial CTUs are not accelerated since the CNN-based
approaches are not applicable to them. Generally, the proportion of the frame region
occupied by partial CTUs is larger for lower resolutions, resulting in less acceleration
when fast partitioning approaches are used on smaller resolutions. This could partially
explain the limited acceleration observed in class D which was excluded from the overall
performance calculation. More specifically, our method tends to perform better on higher
resolutions (e.g. class A and class B) while achieving less acceleration than state-of-the-
art methods on lower resolutions (e.g. class C, class D and class E). Investigating and
improving this aspect could be a focus of future work.
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Figure 4.9 – Comparison of performances between proposed method and reproduction of
[66].

4.3.3 Complexity Analysis

Machine learning-based fast partitioning methods may not be suitable for alternative
implementations of the same codec. For example, VVenc [94] is a fast implementation of
VVC. In the All Intra configuration, VTM10.0 is reported to be 27 times more complex
compared to VVenc with fast preset, as mentioned in [95]. The overall complexity of
the CNN-based method presented in [63] accounts for only 2.34% of the encoding time
of the VTM10 encoder. However, when this method is implemented in VVenc without
any adjustments, its overhead increases to about 67% of the encoding time with the fast
preset, which means that this method is not directly applicable to VVenc. Consequently,
it is crucial to develop a lightweight method to ensure its applicability across different
implementations. Furthermore, lightweight methods do not require parallel execution,
enhancing the cost-effectiveness of such solutions.

Table 4.5 – Overhead of our method (Unit: %)

240p 480p 720p 1080p 4k Average
CNN 0.23 0.37 0.99 0.90 0.84 0.60

Preprocess 0.24 0.41 1.15 0.81 0.86 0.62

As a result, we conducted a complexity analysis of our method to compare it with
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the state of the art. The overhead of a machine learning-based method typically consists
of three components: preprocessing time, inference time, and postprocessing time. The
post-processing of our method is integrated into the VVC partitioning process and intro-
duces minimal overhead to the encoding process. However, preprocessing is necessary to
compute the MS-MVF as model input. Table 4.5 provides the complexity of the prepro-
cessing and the inference of CNN related to the encoding of the anchor VTM10. The last
column corresponds to the geometric average of complexity for sequences from class A to
E (including class D). Based on experimental results, the CNN inference time on a CPU
accounts for only 0.60% of the total encoding time. Our approach consumes only 1.21%
of the total encoding time, underscoring its lightweight nature.

Another important metric for evaluating the complexity of the model is its floating
point operations (FLOPs). Our model has a FLOPs value of 1.12e6. In comparison, the
FLOPs of the model in [62] is approximately 1.1e9[61]. [61] employs a pruned ResNet-18 as
the backbone with 9e7 FLOPs, and [70] utilizes the pretrained MobileNetV2 with 3.14e8

FLOPs. Our model is hundreds of times lighter than these methods. The lightweight
nature of our proposed approach facilitates its adaptation to faster encoders.

4.4 Conclusion

In this study, we propose a machine learning-based method to accelerate VVC in-
ter partitioning. Our method leverages a novel representation of the partition structure
QTMT based on the partition path, which consists of QTdepthMap and MTsplitMaps.
Our work is structured as follows. Firstly, we have created a large-scale inter-partition
dataset. Secondly, we train a novel U-Net-based model that takes MS-MVF as input
to predict the partition paths of CTU. Thirdly, we develop a scalable acceleration algo-
rithm based on thresholds to utilize the output of the model. Finally, we speed up the
VTM10 encoder under RAGOP32 configuration by 16.5%∼60.2% with a BD-rate loss of
0.44%∼4.59%. This performance surpasses state-of-the-art methods in terms of coding
efficiency and complexity trade-off. Notably, our method is one of the most lightweight
methods in the field, making it adaptable to faster codecs.

For future work, we intend to investigate how video resolution influences partitioning
acceleration, aiming to boost the speed-up of our method on lower resolutions. Further-
more, there is still acceleration potential lying in the selection of inter coding modes at the
CU level, as discussed in [96]. An extension of our approach could be the incorporation
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of fast inter coding mode selection algorithm into our method to further accelerate the
inter coding process.
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Chapter 5

PREPARING VVC FOR STREAMING: A
FAST MULTI-RATE ENCODING

APPROACH

5.1 Introduction

In Chapters 3 and 4, we introduce two CNN-based fast partitioning methods for
VVC, both of which are integrated into VTM. In this chapter, our focus shifts to the
application of VVC in streaming scenarios. As we adopt more advanced video codecs
to deliver higher quality videos, one common challenge is the increased computational
time associated with these codecs. This challenge becomes particularly critical in video
streaming applications, where we must encode the same content at multiple bitrates to
accommodate varying network conditions experienced by users. Consequently, various fast
multi-rate encoding methods have been proposed to utilize the encoding at a reference
bitrate to accelerate encodings at other bitrates. While these methods, discussed in
Section 2.2, have demonstrated significant performance in the context of HEVC, the
exploration of fast multi-rate encoding techniques in VVC remains relatively unexplored.

In this chapter, we aim to bridge this gap by applying fast multi-rate encoding to
VVenC 1.7.0, a fast and efficient software implementation of VVC. By leveraging this
approach, we investigate the potential benefits and performance improvements of fast
multi-rate encoding in the VVC domain.

The rest of this chapter is organized as follows. Section 5.2 outlines our proposed fast
multi-rate encoding approach specifically tailored for VVC. The experimental results are
presented in Section 5.3. Finally, Section 5.4 concludes this chapter, summarizing the key
findings and contributions.
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(a) Reference = QP 37 (b) Reference = QP 22

Figure 5.1 – Average percentage of the CUs with CU height and width larger, equal to,
or smaller than the reference encoding.

5.2 Proposed Method

5.2.1 Multi-rate Encoding Opportunities

Multi-rate VVC representations (i.e. encoding) of a video content can carry a signifi-
cant level of redundancies. To demonstrate this, we encoded 18 sequences with RA coding
configurations at QPs of 22, 27, 32, 37. These sequences include six from class A of the
VVC CTC [40] and 12 from the Inter4K dataset [97]. To select 12 sequences out of the
1000 sequences available in the Inter4K dataset, we compared their spatial and temporal
complexities using Video Complexity Analyzer (VCA) [98]. Based on this comparison,
we divided them into four clusters as follows: low spatial and low temporal complexity,
low spatial complexity and high temporal complexity, high spatial complexity and low
temporal complexity, and high spatial complexity and high temporal complexity. From
each cluster, we then selected three sequences randomly for further evaluation (sequences
10, 47, 56, 176, 186, 339, 497, 500, 606, 646, 666, 754). QP 22 and 37 were used as
reference for comparisons of CU sizes in non-reference QPs. Figure 5.1 (a) and (b) show,
respectively, what percentage of coded co-located CUs have both CU width and height
smaller than the reference of QP 37 or larger than the reference of QP 22.

When the reference encoding is set to QP 37, it is observed that a smaller portion
of CUs in the dependent encodings have larger width and height sizes compared to their
co-located CUs in the reference encoding (yellow bars in Figure 5.1(a)). The closer the
QP of the dependent encoding to the reference encoding, the larger the portion of CUs
that have the same size as the co-located CU in the reference encoding. Therefore, when
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Figure 5.2 – Diagram of CU size based fast partitioning.

the reference encoding is set to QP 37, RDO can be skipped for co-located CUs that have
a width and height larger than the reference CU. On the other hand, when the reference
encoding is set to QP 22, a smaller portion of CUs in the dependent encoding have smaller
width and height sizes compared to their co-located CUs in the reference encoding (dark
green bars in Figure 5.1(b)). Therefore, when the reference encoding is set to QP 22,
RDO can be skipped for co-located CUs that have a smaller width and height than the
reference CU. Please note that the cumulative percentages of CUs do not reach 100%
because the cases where CUs have smaller widths but larger heights or larger widths but
smaller heights have not been considered in the evaluations.

5.2.2 A Fast Multi-rate Encoding Scheme for VVC

Based on the experiments presented previously, a method is proposed to exploit the
redundancy in the CU sizes with respect to a reference-coded bitrate. Selecting the ap-
propriate reference encoding for reusing its information to accelerate the encoding of
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Figure 5.3 – Fast approach involved partition search.

dependent representations is indeed a challenging task and can vary depending on the
specific application. In the context of live video streaming, it is commonly observed that
the highest quality representation requires the longest encoding time, followed by lower
quality representations as the quality decreases. Given the significant impact of encoding
time on the latency of live video streaming, it is advantageous to select a representation
with a lower encoding time (lower quality) as a reference for accelerating the encoding
of representations with higher encoding time (higher quality). By doing so, the maxi-
mum and overall encoding process can be expedited, reducing the latency and enhancing
the potential for transitioning towards real-time streaming with VVC. Therefore, in this
chapter, we propose selecting the representation with the lowest encoding time (QP 37)
as the reference encoding. By reusing its information, we aim to accelerate the encoding
process of the dependent representations (QP 32, QP 27, and QP 22).

When a reference CTU of 128×128 is encoded at QP 37, its size map is calculated
to contain the maximum width and height of CUs in the reference partition. Since the
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(a) (b) (c)

Figure 5.4 – The comparison between the standalone VVenC and the proposed fast multi-
rate encoding.

smallest CU size is 4×4, each 4×4 sub-block is assigned the maximum width and height
of the CU it belongs to. This process results in a map of size 32×32 for each CTU.
With a reference encoding of QP 37 and a reference size map of 32×32, the algorithm for
accelerating the encoding of co-located dependent CUs is illustrated in Figure 5.2.

Firstly, possible split types of current CU are investigated. If no split types other than
NS are available, the fast partitioning approach will not be applied to current CU. The
encoding of current CU is directly processed and the CU partitioning is terminated. If
other split types are possible, we obtain max_sz in Figure 5.2 by getting the maximum
value of elements of the size map inside current CU. If the width and height of the current
CU are both smaller or equal to max_sz, we do the RDO for current CU. Otherwise, the
encoding of CU is skipped and the CU is further split to sub-CUs. A part of RDOs of
CU is leaped by applying our fast partitioning method.

To better illustrate the effect of the acceleration achieved by our algorithm, we present
the partition search results with our fast approach applied in Figure 5.3. To simplify the
partition tree, we have set the CTU size to 16×16 and the QT split is disabled for 8×8
CU. Meantime, the maximum partitioning depth is 3. For better visualization, repetitive
branches are not presented in the figure. CUs with RDO skipped are filled with black. If
we proceed with a larger CTU size, the proportion of skipped CUs would be larger.

5.3 Experimental Results and Analyses

To evaluate the proposed algorithm, we performed encodings using the VVenC with
both the standalone and modified versions of the encoder on the same set of sequences
and with the same encoding configuration as mentioned in Section 5.2.2. For each en-
coding, we recorded the bitrate, and encoding time, and computed objective metrics,
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including PSNR and VMAF. Figure 5.4 shows the PSNR vs. bitrate, VMAF vs. bitrate,
and normalized time vs. bitrate for the video sequence 754 from Inter4K dataset as an
example. It is observed that the rate-distortion performance remains approximately the
same while the encoding time is significantly reduced for the dependent representations.
From Figure 5.4-(c), it can be concluded that not only is the overall encoding time of
all representations reduced, but also the maximum encoding time is decreased, which is
equivalent to the encoding latency. This is highly beneficial in live video streaming as
it ensures efficient and timely processing of the video data. In this example, using the
proposed method, the maximum encoding time is reduced by 40%, as can be seen in
Figure 5.4-(c). The average BD-PSNR and BD-VMAF are -0.21 and -0.43, respectively,
indicating that the proposed fast multi-rate encoding method causes a slight decrease
in video quality compared to the standalone VVenC at equivalent bitrates. At the same
time, the average increase in bitrate in equivalent quality is 5.11% and 4.82% using PSNR
and VMAF as objective metrics, respectively. However, the reduction in video quality
is minimal, and the benefits of significantly reduced encoding time make the proposed
method a valuable option for various applications, especially in live video streaming sce-
narios where real-time performance is crucial. The proposed fast multi-rate encoding
results in an average encoding time reduction of 40% for all dependent representations.
Additionally, it achieves an average maximum encoding time reduction of 39%, indicating
that the encoding latency is reduced by 39% when using this approach.

5.4 Conclusion

This chapter proposes a fast multi-rate encoding approach for VVC aimed at reducing
the encoding time for video streaming applications. The approach involves encoding
a reference representation using a standalone VVC encoder. The information obtained
from the reference representation is then utilized to accelerate the encoding process for
the dependent representations. To ensure compatibility with parallel processing, the
representation with minimal encoding time is selected as the reference encoding. This
reference representation is then utilized to reduce the encoding time of the longer encoding
time representations, aiming not only to reduce the overall encoding time but also to
minimize the maximum encoding time, which is equivalent to encoding latency. When
a CTU is encoded in the reference representation, the RDO process is skipped in the
co-located CTUs in dependent representations for CUs that have larger width and height
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compared to the reference CTU. The experimental results demonstrate that the proposed
method achieves an average 40% encoding time reduction, while the quality drop, on
average, is only 0.43 VMAF when using VVenC, an optimized VVC implementation.
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Chapter 6

CONCLUSION

6.1 Summary

The latest VVC standard finalized in 2020 outperforms its predecessor HEVC by
around 40% bitrate reduction for the same quality. Nevertheless, the gain of coding
performance is at the expense of largely increased encoding complexity. For example, with
the RA configuration, the encoding time of VVC is 8 times longer than that of HEVC. The
substantial increase in the complexity of the coding poses a challenge to the widespread
deployment of the VVC codec. This increase in complexity is partly due to the adoption of
a complex partition structure. In the literature, numerous fast partitioning methods have
been suggested, showcasing their effectiveness in reducing encoding complexity. Moreover,
the acceleration of inter coding is overlooked when compared to that of intra coding. As a
result, the focus of this thesis is directed towards reducing the complexity of inter coding
in VVC through the utilization of fast partitioning methods.

In this context, this thesis introduces three fast partitioning methods that involve dif-
ferent implementations of VVC. Two CNN-based fast partitioning methods are introduced
in Chapters 3 and 4. In Chapter 3, our first contribution involves utilizing a lightweight
CNN to predict the QT depth map to remove a part of MT partitions from the search
space of partitioning. Experiments shows that this work can reduce the complexity by
one third with slight coding loss, outperforming other CNN-based methods. Our second
contribution, presented in Chapter 4 significantly improves our first contribution. A novel
CNN structure and acceleration algorithm are proposed in this work. In addition to the
QT depth map, MT decisions at various levels are predicted at the same time, correspond-
ing to a full and explicit representation of QTMT partition of VVC. Higher acceleration
is reached than our first contribution since more partitions are removed from the search
space owing to the complete representation. Its acceleration performance exceeds the
existing stat-of-the-art methods. For a non machine learning contribution in Chapter 5,
we target a more specific application scenario. In steaming scenario, the same content

101



Chapter 6 – Conclusion

need to be encoded at multiple bitrates (i.e. representations). By utilizing the partition-
ing structure of the reference representation, we accelerate the encoding process of the
remaining representations, known as dependent representations. Through the utilization
of our proposed rapid partitioning technique, an acceleration up to 40% is achieved in
VVenC, accompanied by a minor decline in encoding quality. The last stage of this thesis
is a statistical analysis presented in Annex, which offers a global view of the complexity
distribution of inter coding.

With results superior to the state of the art, first two contributions enrich the research
in the field of fast inter coding of VVC by machine learning method. Furthermore, our
last contribution is the first work on fast multi-rate encoding for VVC. Nonetheless,
opportunities for further improvement of these contributions are yet to be explored, as
detailed in the following section.

6.2 Perspectives

Even though our proposed approaches significantly accelerate the inter coding process
of VVC, the resulting complexity reduction is still insufficient for achieving real-time
encoding. Therefore, it is conceivable to combine the fast partitioning method with other
fast coding algorithms.

6.2.1 Machine-learning-based fast partitioning

The nature of fast partitioning method is to reduce the number of CUs checked in
RDO, whereas numbers of coding modes checked for each CU is untouched. Our work
in Annex gives an overview of inter coding modes in RDO. As a result, an interesting
extension of fast partitioning method for inter coding is to incorporate the fast inter
coding mode selection algorithm into our method to further speed up the inter coding
process.

6.2.2 Fast multi-rate encoding

In Chapter 5, the partition information of encoding at lower bitrate is utilized to
speed up the the encoding at higher bitrate. The correlation of other coding information
between different representations are not exploited in this work. Hence, we have the
potential to achieve even more substantial acceleration by using the coded partition in
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conjunction with other coding information (such as coded motion vectors and coded inter
coding modes).
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Annex: Statistical Analysis of Inter
Coding
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Introduction

As stated in the Introduction of this manuscript, it is vital to develop acceleration
methods for VVC to largely reduce the encoding complexity while preserving the majority
of encoding efficiency. To design acceleration methods, it is essential to understand the
complexity distribution and statistics of encoding decisions inside a VVC encoder (e.g.
VTM). The papers mentioned in Section 2.4 present a complexity analysis for VVC.
However, this contribution is the first to provide an analysis of CU sizes and decisions on
coding modes for inter coding in VVC.

In this chapter, a statistical analysis of the RDO process in inter coding of VTM 15.0
is presented. The main focus is on the statistics of two factors: CU sizes and inter coding
modes. The goal is to provide useful information for related works aiming at speeding up
inter coding in VVC. In Section A.2, all statistical observations are presented, which are
later analyzed and concluded in Section A.3.

Figure 1 – High-level view of the RDO process involving partitioning, test modes and
possible VTM shortcuts.

Statistical Analysis

As depicted in Section 1.3.5, the RDO process involves searching for the best combi-
nation of coding decisions that achieve the best trade-off between bit rate and distortion.
With trivial coding decisions (e.g. choice of transform, MV representation mode) ignored,

105



RDO consists of finding the optimal combination of coding modes and CU sizes. Con-
sequently, in this chapter, we analyze the statistics of both CU sizes and coding modes
collectively.

As presented in Figure 1, various CU sizes are the result of partitioning in the RDO
process. In VVC, a CU size is authorised if its widths and heights are any power of two
between 4 and 128, except for sizes 128×4, 128×8, 128×16 and 128×32. There are in
total 32 possible CU sizes in VVC as shown in Figure 1.13.

The hash-based inter prediction and palette modes are coding modes disabled in the
JVET CTC. Therefore, they are not considered in the analysis of this paper. For each
CU, ten coding modes are available according to Section 1.3.4.2. These modes include:
Intra, Reg, Merge, Skip, Affine, AffineMerge, AffineSkip, GeoMerge, GeoSkip, CiipMerge.
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Figure 2 – Encoding time in different QPs comparing to QP 22

Although VVC is computationally expensive, the JVET group has already adopted
diverse shortcuts or conditional early exits as presented in [99] for the VTM. We have
deactivated existing shortcuts in VTM 15.0 and evaluated its performance. As a result,
the complexity increases by 138%. Furthermore, the performance of the tested encoder
(i.e. without shortcuts) is 0.76% better than that of the reference encoder (i.e. with
shortcuts), in terms of BD-rate. This trade-off might be interpreted as an indicator that
the shortcuts in VTM are efficient in terms of identifying useless tests and partitioning
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depths. Many of shortcuts are based on history of the tested split modes. Nonetheless,
aspects of CU sizes and coding modes are overlooked.

Our main purpose in the following analysis is to find CU sizes and / or coding modes
with relatively high complexity occupation and low selection rate in the RDO process.
From the perspective of encoder acceleration, CU sizes or coding modes with higher
complexity portion and significantly lower selection rate are more favorable to the design
of acceleration rules based on block size/coding mode. The size or mode with larger
complexity portion has more potential in accelerating. Lower selection rate indicates it is
less likely to make wrong decisions when skipping the RDO of current CU size or mode.

All our experiments and analyses are performed on the first 64 frames of the CTC
sequences in the RAGOP32 configuration, in which intra frames are excluded. Excep-
tionally, Figure 2 is based on sequences in Class A, B, E of CTC.
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Figure 3 – Complexity distribution for block sizes in QP 22 and QP 37

The encoding complexity for Chrominance channel only accounts for a small part com-
paring to Luminance channel. Thus we focus on Luminance channel in the remaining of
the paper. From a high-level view, the encoding complexity of VTM depends significantly
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on the selected QP. Particularly, larger QP values tend to have faster encoding with the
VTM. Figure 2 is obtained by measuring the encoding times of sequences of resolution
2160p, 1080p, and 720p in QP 22, 27, 32 and 37. Then the average ratio is calculated
between the encoding time of each QP and that of QP 22 is calculated. It shows that the
encoding time at QP 22 could be five times as much as at QP 37.

Figure 3 shows the percentage distribution of the encoding time spent on different
block sizes in QP 22 and QP 37. In addition to the fact that the overall encoding time is
higher for QP 22, it can be observed that a relatively higher portion of the time in QP 22
is passed on smaller block sizes. This could be explained in part by the existing shortcuts
in VTM disallowing excessively small blocks in QP 37. We could declare that larger block
sizes are in general more crucial to speeding up the partitioning process, especially block
64x64 and 128x128 which take in total from 20% complexity in QP 22 to 30% in QP 37.

In another test, the selection percentages of different block sizes are computed. This
metric is defined as the ratio between the total number of times it is selected and the
total number of times a block size is tested. Figure 4 shows the values of this metric
in QP 22 and 37. As we can see from this figure, larger CU sizes correspond to larger
selection rates compared with smaller blocks. Another noteworthy phenomenon is that
the selection rate of 128x128 increases dramatically from 14% in QP 22 to 37% QP 37.

Figure 4 – Selection rate for different block sizes

Combining the above figures, it is observed that CU sizes such as 16x8, 8x16, and
16x16 are sizes with low selection rate and high complexity. For example, 16x16 CUs
have the same level of complexity, while its selection rate is half of 32x32 CUs in QP 22.

To take one step further in the statistical analysis of inter coding, we present how
different inter coding modes are involved in RDO search. The first experiment in Figure 5
presents the distribution of the encoding time at inter coding mode level in QP 22 and
QP 37.
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Figure 5 – Pie chart of complexities of inter coding modes

In general, Intra, AffineMerge, AffineSkip, Merge, and Skip are main contributors to
the encoding time. Figure 6 provides selection rates as the ratio between number of
selected inter coding modes and number of tested modes. We could observe that the
three modes, namely, AffineMerge, AffineSkip, and Merge have relatively low selection
rates, even though they collectively account for nearly half of the complexity.

Figure 6 – Selection rate of inter coding modes

109



Figure 7 shows the distribution of inter modes for encoded CUs of different sizes. The
fact that the aforementioned three coding modes are less chosen could also be proved by
this figure. We find that the number of Skip is dominant for most CU sizes and that
the number of these three modes is relatively small, which is consistent with Figure 6.
From Figure 7 we also observe that smaller CUs tend to be encoded with intra mode.
Another remark is that the skip modes (i.e. Skip, AffineSkip, and GeoSkip) are more
frequently selected for larger CUs. It is probably because the residual of larger CUs is
more expensive to be encoded. In addition, Merge mode have higher chance to be selected
in smaller QP which is in contrast to AffineSkip and GeoSkip. For some CU sizes, we
could make shortcuts or conditions for early termination for RDO of inter modes which
are rarely selected to speed up the encoding process, such as AffineMerge mode with
merely 1.9% selected for bloc 128x128.

Figure 7 – Stacked chart of selected inter modes in different block sizes

Conclusion

In this study, complexity analysis of CU sizes and inter coding modes has been com-
bined with selection rate analysis. From the perspective of CU size, CU sizes with high
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complexity generally correspond to a high selection rate. CU sizes 128x128 and 64x64
are responsible for one third of the complexity. In addition, CU sizes like 16x8, 8x16,
16x16 exhibit relatively low selection rate while requiring a significant share of the overall
complexity. Therefore, these CU sizes are relevant targets for acceleration algorithms.
From coding mode perspective, AffineMerge, AffineSkip, and Merge tend to be less likely
to be selected. Thus, shortcuts dedicated to adaptively skip these coding modes might
be promising. Shortcuts on coding modes and partitioning acceleration method are in
different scopes. The former focus on reducing number of CU for RDO. The latter speeds
up RDO for CU of certain sizes. The combination of these two could lead to a larger
speed-up of encoding.
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Titre : Apprentissage pour l’encodage vidéo nouvelle génération

Mot clés : VVC, Codage inter, Réduction de la complexité, CNN, Partitionnement

Résumé : L’encodage vidéo avec le dernier
codec Versatile Video Coding (VVC) requiert
d’importantes ressources de calcul. Malgré
son impact sur le temps d’encodage global,
peu d’études portent sur l’accélération de l’en-
codage inter. Cette thèse se concentre ainsi
sur ce sujet, en proposant des approches de
partitionnement rapide.

Notre première contribution consiste à uti-
liser un CNN léger pour réduire l’espace de
recherche de partitionnement. En estimant la
carte de profondeur des décisions de parti-
tionnement QT, ce CNN nous permet d’éla-
guer l’espace de recherche de l’arbre MT ini-
tial. Les expériences montrent que ce travail
peut réduire d’un tiers la complexité, pour une
perte légère en efficacité de codage.

Dans la deuxième partie, nous amélio-

rons la première contribution en proposant
une nouvelle structure CNN associé à un algo-
rithme d’accélération. La carte de profondeur
QT et les décisions MT sont prédites simulta-
nément, réduisant davantage l’espace de re-
cherche. Le compromis efficacité et accélé-
ration d’encodage obtenu surpasse l’état de
l’art.

Dans la dernière partie, nous proposons
une méthode de partitionnement rapide multi-
débit pour les scénarios de streaming. Les
données collectées à partir d’encodages à
bas débits sont exploités pour accélérer les
encodages à débits supérieurs. 40% de la
complexité est reduite en appliquant notre ap-
proche à l’encodeur VVenc, avec une perte
raisonnable.

Title: Learning for new generation video coders

Keywords: VVC, Inter coding, Complexity reduction, CNN, Partitioning

Abstract:
Video encoding with the latest video codec

Versatile Video Coding (VVC) requires signifi-
cant computational resources. Despite its im-
pact on the overall encoding time, few stud-
ies focus on accelerating inter-frame encod-
ing. This thesis, therefore, targets this topic
by proposing fast partitioning approaches.

Our first contribution involves utilizing a
lightweight CNN to reduce the search space of
partitioning. By predicting the QT depth map,
this CNN allows us to prune the search space
of the MT partitions. Experiments show that
this work can reduce complexity by a third,
with slight coding loss.

In the second part, we intend to improve
the first contribution by proposing a novel CNN
structure associated with an acceleration al-
gorithm. The QT depth map and the MT de-
cisions are predicted simultaneously, further
reducing the search space. The trade-off be-
tween efficiency and encoding acceleration of
our method outperforms the stat of the art.

In the final part, we propose a multi-rate
fast partitioning process for streaming scenar-
ios. Partition data collected from low-bitrate
encodings are leveraged to accelerate high-
bitrate encodings. 40% reduction in complex-
ity is achieved by applying our approach to the
VVenc encoder, with a reasonable loss.
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