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Résumé

Ma thèse porte sur l'étude de quelques modèles cinétiques utilisés pour décrire une variété de phénomènes dans différents domaines, d'une dynamique de la physique à la biologie, et apparaissent naturellement lorsque l'on considère une description statistique d'un grand système de particules/agents évoluant dans le temps. Plus précisément, on s'intéresse à différents problèmes d'analyse asymptotique et numérique de modèles cinétiques et hydrodynamiques provenant de la physique des plasmas et de la modélisation des mouvements collectifs dans les populations animales. Le premier problème est de dériver des modèles de fluides pour le modèle cinétique en swarming et le deuxième problème est consacré à l'étude du comportement en temps long des plasmas sous l'action d'un champ magnétique intense.

Dans un premier temps, nous nous intéressons à la dérivation des modèles fluides pour des particules interagissant par des forces d'auto-propulsion et de frottement, d'alignement et de bruit où la force d'alignement est choisie afin de préserver la quantité de mouvement totale. Nous dérivons des approximations du premier et du second ordre qui correspondent à deux approximations du développement de Hilbert. Enfin, nous effectuons une analyse détaillée pour formuler les équations macroscopiques sous une forme plus simple.

Dans un second temps, nous nous consacrons à l'étude mathématique des équations de Vlasov-Poisson avec champ magnétique intense. Nous nous concentrons sur le comportement asymptotique du système de Vlasov-Poisson avec un fort champ magnétique externe, lorsque la fréquence des collisions n'est pas négligée. Nous dérivons un modèle fluide : les densités de particules limites sont des équilibres Maxwelliens, paramétrés par la concentration des particules et justifions le comportement asymptotique vers les solutions lisses de ce régime. Dans trois dimensions d'espace, nous devons faire face à des difficultés supplémentaires, contrairement au cas bidimensionnel, car une contrainte se produit le long de la direction parallèle. Pour éliminer le multiplicateur de Lagrange correspondant, nous effectuons une moyenne le long des lignes magnétiques. Dans le travail suivant, le système de Vlasov-Poisson bidimensionnel, avec un champ magnétique intense sans courbure mais variant régulièrement en position, a été traité. Enfin, du point de vue numérique, nous souhaitons compléter ce travail de modélisation par des simulations. On s'oriente vers les méthodes semi-Lagrangiennes, combinées à des techniques de splitting pour résoudre le système bidimensionnel de Vlasov-Poisson avec un fort champ magnétique externe uniforme. Dans ce cadre, nous développons et analysons une méthode numérique qui permet d'assouplir la contrainte habituelle très sévère sur le pas de temps, imposée par la forte intensité du champ magnétique, les résultats numériques viennent confirmer la pertinence de cette approche.

Mots clés : Swarming, équations de Vlasov-Poisson-Fokker-Planck, approximation centre-guide, énergie modulée, équation de Vlasov-Poisson, schéma de splitting.

Chapter 1 General Introduction

This dissertation provides a contribution to the asymptotic behavior of systems of kinetic equations arising in physics and biology: theoretical and numerical points of view. More precisely, we are interested in different problems of asymptotic and numerical analysis of kinetic and hydrodynamic models coming from plasma physics and the modeling of collective movements in animal populations such as birds flocks, fish schools or insect swarms.

To start with, we recall the different levels of description of a system of interacting agents/particles and the place of kinetic theory in this hierarchy.

Kinetic Equations

Kinetic equations have been used to describe a variety of phenomena in different fields, ranging from rarefied gas dynamics and plasma physics to biology and socioeconomy, and appear naturally when one considers a statistical description of a large number of particles evolving in time. In order to observe the dynamics of plasmas in different problems of physics and the collective motion of animal populations, one of three following approaches should be chosen and employed (i) the microscopic scale or the individual agent/particle approach, where the motion of individual agent/particle is studied.

(ii) the mesoscopic scale or the kinetic approach, where the plasmas/the animal populations are described by velocity distribution functions.

(iii) the macroscopic scale or the hydrodynamic approach.

At the microscopic level, the motion of agents/particles is described by systems of ordinary differential equations. In the models that we will study, the interactions between agents/particles are described by Newton's equations with forces F , consisting in following the position and the velocity of each agent/particle. Considering N agents/particles and noting their position and velocity by X k ∈ R d and V k ∈ R d , with d ≥ 2, for any k ∈ 1, 2, ..., N, the fundamental principle of the dynamics for the k-th agent/particle is written by

d dt X k (t) = V k (t), d dt V k (t) = F k (t, V k (t), X k (t)). (1.1)
This description is extremely accurate, but it gives far too much information. Moreover, for the physical and biological applications we have in mind, N will be far too large for such a model to be practical, both from a qualitative point of view and from that of numerical analysis. Therefore, one seeks for reduced models of the particle dynamics which are still able to describe the physical reality with sufficient accuracy. The macroscopic scale is the most used for applications. A macroscopic model describes the evolution of the fluid through the evolution of observable quantities associated to the system, such as density, velocity, and temperature. Typical models from fluid mechanics are used such as Euler or Navier-Stokes equations. This description is much less expensive in terms of calculations and provides often sufficient information on the fluid. However, it relies on the assumption that the agents/particles are in equilibrium, which is not always verified. The mesoscopic scale (that of the kinetic theory) is an intermediate scale between the particle and continuum models.

The kinetic model uses a statistical description of the system under consideration. The state of the system is described using a distribution function f = f (t, x, v) which depends on the space coordinate x ∈ R d , the velocity coordinate v ∈ R d and at time t.

The pair (x, v) spans the phase space and the quantity f (t, x, v)dxdv represents the number of agents/particles at a given point (x, v) of phase space and at time t. The time evolution of the distribution function f is such that the total time derivative of f while following free-flight trajectories (X(t), V (t)) is given by a collision operator

Q(f ): d dt f (t, X(t), V (t)) = Q(f )| (t,X(t),V (t)) .
The collision operator Q(f ) actes only on velocity v, which describes the change in f due to collisions. Several collision operators are described in the literature, including the Boltzmann, Landau, Fokker-Planck, or Bhatnagar-Gross-Krook (BGK) collision operators. Applying the chain rule immediately leads to the distribution function f satisfying an evolution partial differential equation, called Vlasov-type equations

∂ t f + v • ∇ x f + ∇ v • [F [f ]f ] = Q(f ) (1.2)
where the force F [f ] stands for the interaction between the agents/particles. The modeling of the interactions between agents/particles and of the influence of the external environment on them depends on the properties of the physical or biological system considered. For example, if one wants to describe a physical plasma model, the interaction F [f ] is usually a self-consistent electro-magnetic field, while for a swarming model, the interaction F [f ] is the sociological behavior of animals that follows a simple set of rules: the repulsion or avoidance, the alignment or orientation, and the attraction or approach.

From the distribution function f , the measurable macroscopic quantities (the observables, i .e. the quantities that can actually be measured) can be reconstructed as a function of integrals of the form R d f (t, •, v)φ(v)dv. We thus define the density n, the average velocity u and the temperature T by

n(t, x) = R d f (t, x, v)dv, u(t, x) = 1 n(t, x) R d vf (t, x, v)dv, T (t, x) = 1 n(t, x)d R d |v -u(t, x)| 2 f (t, x, v)dv.
The description of a particle system by means of the kinetic models (1.2) is very expensive from a numerical simulation point of view because it involves the discretization of the 2d-dimensional phase-space (d space coordinates, d velocity coordinates, plus the time). In most industrial applications, it is necessary to reduce the dimensionality of the model. Therefore, it is often preferable to use more macroscopic models, describing the evolution of observables defined on the d-dimensional physical space. Evolution equations for (n, u, T ) can be obtained by integrating the Vlasov equation (1.2) with respect to the variable v. However, in such a procedure, one faces a closure problem as the evolution system for n, u, T involves unknown moments, since it is coupled to the moment dynamics of more order than 1, v, |v| 2 . To overcome the closure problem, we will consider the physical scales to connect kinetic models to higher level macroscopic models, through hydrodynamic limits. This thesis aims to bridge mesoscopic descriptions of physical and biological systems to their macroscopic counterparts, using hydrodynamic limits.

Kinetic equations for swarming

We introduce some important biological definitions, namely those of swarming, and the interaction rules between individual animals. Then we introduce kinetic formalism and give several examples of kinetic models for swarming. The main reference for this section is [START_REF] Carrillo | Particle, Kinetic, and Hydrodynamic Models of Swarming[END_REF]. We also introduce the kinetic models for swarming studied in this thesis.

Biological context

Swarming describes the behavior of an aggregate of agents of similar size and shape which exhibit some emergent property such as directed migration or group cohesion, see Fig 1 .1. The description of the collective motion (swarming) of multi-agent aggregates resulting into large-scale structures is a striking phenomena, as illustrated by the examples provided by schools of fish, flocks of birds, the displacement of ants and swarms of insects among animal species; morphogenetic and bacterial growth at the cellular and subcellular levels. To study the collective motion of large groups of organisms, the concept of self-propelled particle (SPP) models was introduced in [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. Self-propelled particles interact with each other, which can lead to the emergence of collective behaviors. One of the major concepts of system biology is the understanding of the behavior at the system level from the interactions of the entities comprising the system. To reach this goal, individual-based, or agent-based modeling has become a very promising and powerful methodology. The modeling of individual behavior at the microscopic scale requires resolving the motion of each individual over the course of time. This leads to so-called Individual-Based Models (IBM) (or Figure 1.1 -Swarming: Birds flocks, Fish school, Bees, Ants (Source: Wiki) particle models) consisting of a huge number of coupled ordinary equations (1.1) or stochastic differential equations. In most of the basic particle models for swarming, the forces F k in the particle systems (1.1) is the sum of three basic mechanisms in different forces: a short-range repulsion force, a medium-range alignment force, and a long-range attraction force, see [START_REF] Aoki | A simulation study on the schooling mechanism in fish[END_REF]. The first force is characterized by the tendency of moving apart from another individual in near proximity and keeping a minimum distance in order to avoid a collision. In the second one, the individual tries to align themselves with those at intermediate distances. This explains how they produce synchronized structures. When individuals find themselves too far apart from the group, they are attracted to those by the long-range attraction force. This explains why they move in groups. For the scheme above, see Fig 1 .2. Our start point consists of some particle models incorporating attraction, repulsion, and alignment.

Particle models for swarming

Consider a group of N individuals (birds, fish,...), the k-th being represented by its position X k ∈ R d and velocity V k ∈ R d , governed by the general dynamical system (1.1).

Propelling, Friction, and Attraction-Repulsion particle model

We first consider the model combing the self-propelling, friction, and attraction-Figure 1.2 -Interaction zones between individuals (Source: Wiki) repulsion, as proposed in [START_REF] D'orsogna | Self-propelled particles with soft-core interactions: patterns, stability, and collapse[END_REF] reads as

d dt X k (t) = V k (t), d dt V k (t) = (α -β|V k (t)| 2 )V k (t) - 1 N l̸ =k ∇U (|X k (t) -X l (t)|) (1.3) 
where α, β are nonnegative parameters, U : R d → R is a given potential modeling the short-range repulsion and long-range attraction typical in (1.3). A common choice for U is the Morse potential given as

U (|X k -X l |) = -C a e -|X k -X l |/la + C r e -|X k -X l |/lr .
Here l a and l r represent the attractive and repulsive potential ranges, and C a and C r represent their respective amplitudes. The term corresponding to α is the selfpropulsion of individuals, whereas the term corresponding to β is the friction assumed to follow Rayleigh's law. Notice that the balance between the self-propulsion and friction forces occurs on the velocity sphere v = r := α/β, that means the individual "k" will accelerate or slow down to a speed α/β.

Cucker-Smale particle model

The model proposed by Cucker-Smale in [START_REF] Cucker | On the mathematics of emergence[END_REF], [START_REF] Cucker | Emergent behavior in flocks[END_REF] that intends to describe selforganization of individuals in a population. In the model, the only mechanism taken into account is the alignment of the individuals by adjusting/averaging their relative velocities with all the others. The evolution of each individual is then governed by the following dynamical system

d dt X k (t) = V k (t), d dt V k (t) = 1 N N l=1
w k,l (V l (t) -V k (t)).

(1.4)

Here the weight w k,l quantify the pairwise influence of individual "k" on the alignment of individual "l", as a function of their distance

w k,l = w(|X k -X l |) = 1 (1 + |X k -X l | 2 ) γ
for some γ ≥ 0. Observe that the model (1.4) is symmetric in the sense that the coefficients matrix w k,l is, namely, individuals "k" and "l" have the same influence on the alignment of each other w k,l = w l,k . This symmetry is one of the key points for studying long-time behavior because symmetry implies the conservation of the total momentum and also that the Cucker-Smale model is dissipative. Indeed, let us set

V (t) := 1 N N i=k V k (t).
Then the velocity equation in (1.4) implies that

d dt V (t) = 0, d dt 1 N k |V k -V | 2 = - 1 2N 2 k,l w k,l |V k -V l | 2 ≤ 0.
Consequently, this yields the large time behavior, X k (t) ≈ V (t)t and that the Cucker-Smale dynamics converges to the bulk mean velocity V k (t) → u := V (0) as t → ∞. Notice that the normalization pre-factor 1/N in the velocity equation was added later in [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF] in order to study the "mean-field" limit as the number of agents N becomes very large leads to some undesirable features. In [START_REF] Motsch | A new model for self-organized dynamics and its flocking behavior[END_REF], Motsch and Tadmor improved the Cucker-Smale model (1.4) by considering new interaction, which is non-local and non-symmetric alignment. Their model does not involve any explicit dependence on the number of agents N , only their geometry in phase space is taken into account. The Motsch-Tadmor dynamics system takes

d dt X k (t) = V k (t), d dt V k (t) = 1 N j=1 w k,j N l=1 w k,l (V l (t) -V k (t)). (1.5) 
The main feature here is that the influence individual "l" has on the alignment of individual "k", is weighted by the total influence N j=1 w k,j , exerted on individual "k".

Cucker-Smale particle models with noise

The Cucker-Smale model (1.4) does not take into account any interactions between the particle system and the environment. One possible way of modeling such interactions is to add noise terms to the deterministic dynamical system. In [START_REF] Ha | Emergence of Time-Asymptotic Flocking in a Stochastic Cucker-Smale System[END_REF], a stochastically perturbed Cucker-Smale system in which particles interact with the environment via stochastic noise has been analyzed. Adding simple noise to the particle systems (1.4) leads to the following system for the velocities of individuals

dV k (t) = 1 N N l=1 w k,l (V l (t) -V k (t))dt + √ 2σdΓ k (t) (1.6) 
where Γ k (t) are N independent copies of standard Wiener processes with values in R d and σ > 0 is the noise strength.

Kinetic models for swarming

When the number of agents grows, it becomes increasingly difficult to follow the dynamics of each individual agent. Using the same strategy from the kinetic theory of gases, one would like to describe the agents' dynamics through the statistical distribution of their positions and velocities. Let f (t, x, v) denote the density of individuals in the position x ∈ R d with velocity v ∈ R d at time t ≥ 0. In the large particle limit, one defines the empirical distribution function

f (t, x, v) = 1 N N k=1 δ(x -X k (t)) ⊗ δ(v -V k (t))
consisting of a Dirac sum centered on the trajectories (X k (t), V k (t)) N k=1 . First, we consider the kinetic model which is associated to the particle dynamics (1.3). By direct computation, f verifies the following equation, see [START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF] Self-Propelling, Friction, and Attraction-Repulsion kinetic model

∂ t f + v • ∇ x f + div v (α -β|v| 2 )vf ) -div v [(∇ x U ⋆ ρ)] = 0, (1.7) 
where ρ represents the macroscopic density of f

ρ(t, x) = R d f (t, x, v)dv, t ≥ 0, x ∈ R d .
Then, see [START_REF] Carrillo | Particle, Kinetic, and Hydrodynamic Models of Swarming[END_REF] for detailed formal computations, and [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF] for a rigorous justification via a BBGKY-like hierarchy, the kinetic model which is associated to the Cucker-Smale particle systems (1.4) is given by Cucker-Smale kinetic models

∂ t f + v • ∇ x f + div v (F [f ]f ) = 0 (1.8)
where the vector field F [f ] is given by

F [f ](t, x, v) := R d R d w(x -y)(v ⋆ -v)f (t, v ⋆ , y)dv ⋆ dy
Similarly, see [START_REF] Motsch | A new model for self-organized dynamics and its flocking behavior[END_REF], the kinetic model is derived from the Motsch-Tadmor particle systems (1.5) is written by Motsch-Tadmor kinetic models

∂ t f + v • ∇ x f + div v (F [f ]f ) = 0 (1.9)
where the vector field F [f ] and the total mass ρ are given by

F [f ](t, x, v) := R d R d w(x -y)(v ⋆ -v)f (t, v ⋆ , y)dv ⋆ dy R d w(x -y)ρ(t, y)dy , ρ(t, y) = R d f (t, y, v)dv.
The alignment between particles is imposed via localized versions of the Cucker-Smale or Motsch-Tadmor reorientation procedure leading to relaxation terms to the mean velocity modulated or not by the density of particles. In particular, when the communication weight w converges to the Dirac distribution δ 0 , the Cucker-Smale model would lead to ρdiv v {(v -u[f ])f } while the Motsch-Tadmor model would lead to

div v {(v -u[f ])f }.
In that case, the velocity u[f ] stands for the mean velocity R d vf dv R d f dv . Finally, the stochastic particle system related to Cucker-Smale with noise has been analyzed in [START_REF] Ha | Emergence of Time-Asymptotic Flocking in a Stochastic Cucker-Smale System[END_REF] by using Ito's formula to obtain a Fokker-Planck equation and following a BBGKY procedure. The kinetic model which associated to the particle system (1.6) reads as

Cucker-Smale with noise kinetic models

∂ t f + v • ∇ x f + div v (F [f ]f ) = σ∆ v f (1.10)
is a Fokker-Planck type model.

Hydrodynamic models for swarming

The kinetic equations introduced in the previous part are posed in 2d+1 dimensions, obtaining a numerical solution is very costly. A more compact, continuum approach where particles are represented by a density field, becomes thus desirable. Therefore, it is of great interest to determine parameter regimes where the kinetic model may be reduced to a continuum model. The derivation of the continuum model from the kinetic model requires a spatio-temporal rescaling. Thus, one introduces the following change of variables

Hyperbolic scaling

t ′ = εt, x ′ = εx (1.11) where the small parameter ε stands for the ratio of the microscopic to the macroscopic space units. Considering now the kinetic Cucker-Smale model (1.10) with the relaxation toward the mean velocity u[f ] is described by the term div v {f (v -u[f ])}.

One obtains the following Fokker-Planck type equation

∂ t f +v•∇ x f +div v (F [f ]f ) = Q(f ) := div v {σ∇ v f + f (v -u[f ])} , (t, x, v) ∈ R + ×R d ×R d .
(1.12) In [START_REF] Trygve | Existence of Weak Solutions to Kinetic Flocking Models[END_REF], the authors investigate the large time and space scale regimes as (1.11) of the kinetic transport equation (1.12). Namely, they study the asymptotic behavior when ε ↘ 0 of

∂ t f ε + v • ∇ x f ε + div v (F [f ε ]f ε ) = 1 ε Q(f ε ). (1.13)
At least formally, as ε ↘ 0, the limit distribution function f = lim ε↘0 f ε satisfies Q(f ) = 0 which implies that the equilibria f has the following form

f (t, x, v) = ρ(t, x) 1 (2πσ) d/2 exp - |v -u| 2 2σ , (t, x, v) ∈ R + × R d × R d .
Hence, the asymptotic model describes the evolution of the macroscopic quantities that are the density ρ(t, x) = R d f (t, x, v)dv and the mean velocity u(t, x) = R d vf (t,x,v)dv R d f (t,x,v)dv . The fluid model comes from the kinetic equations by appealing to the conservations of the mass, and momentum, leading to ρ, u solve the following system ∂ t ρ + div x (ρu) = 0,

∂ t (ρu) + div x (ρu ⊗ u) + ∇ x ρ = R d R d
w(x -y)ρ(x)ρ(y)(u(x) -u(y))dy.

The rigorous derivation of this model is presented in [START_REF] Trygve | Existence of Weak Solutions to Kinetic Flocking Models[END_REF] based on the relative entropy method, which provides also a rate of convergence.

Swarming models studied in this thesis

In this thesis, we focus on the model for self-propulsion and friction force, alignment, and noise

∂ t f +v•∇ x f = Q(f ) := div v {σ∇ v f + f (v -u[f ]) + f ∇ v V (| • |)} , (t, x, v) ∈ R + ×R d ×R d .
(1.14) The self-propulsion and friction mechanism are encoded by the term div v {f ∇ v V (| • |)}, with v → V (|v|) a general confining potential in the velocity variables. In the particular example considered in (1.3) we take V = V α,β (|v|) := β |v| 4 4 -α |v| 2 2 , with α, β > 0. The alignment between particles come by relaxing the individual velocities toward the velocity u[f ] defined in a way in which the total momentum does not change

R 2 Q(f )(v)vdv = 0.
In that case, the alignment velocity u is determined by

u[f ] = R d f (v + ∇ v V (| • |)dv R d f dv . (1.15)
It is a generalization of the Fokker-Planck kernel (if V = 0 we obtain the usual mean velocity as above), with mass and momentum conservations, as for the Cucker-Smale model.

We will concentrate on fluid models obtained when the time and space scales in the equation (1.14) become very large. Namely, we consider, after the hyperbolic scaling (1.11), the following model

∂ t f ε + v • ∇ x f ε = 1 ε Q(f ε ) := 1 ε div v {σ∇ v f ε + f ε (v -u[f ε ]) + f ε ∇ v V (| • |)} . (1.16)
In the following, we will introduce some basic concepts related to physical and mathematical models of plasmas.

Kinetic equations for plasma physic

The principal focus of this thesis will be on kinetic equations that arise in the modeling of plasma. What is a plasma? A plasma is an ionized gas, formed by charged particles (ions and electrons). In the mixture of ions and electrons, the interactions between these particles are thus electro-magnetics which transports the particles and explains the dynamics of the plasma.

The required thermodynamic conditions are rarely achieved on Earth, but more than 99 % of the visible matter in the universe is in the plasma state. In fact, plasmas can be found naturally in the universe, stars, interstellar space, and lightning... Industrial applications are numerous, whether they are applications already mastered such as plasma screens, or in technologies of the future such as controlled nuclear fusion (by inertial fusion using high-power lasers or by magnetic confinement in tokamaks).

Plasmas involve different scales determined by certain characteristic quantities, such as the Debye length λ D , and the plasma frequency w p .

Electro-magnetic interactions

We consider a fully ionized plasma model consisting of electrons and one species of ions. We shall use the index "e" for electrons and the index "i" for ions. In a plasma, the main force acting on the charged particles is the Lorentz force F e = q e (E + v e ∧ B), F i = q i (E + v i ∧ B) (1.17) where q e = -|q|, and q i = |q| denote the value of the electron and ion charges which move in space with a speed v s , s ∈ {i, e} respectively. The fields E = E(t, x), B = B(t, x) at (t, x) ∈ R + × R 3 are, respectively, the electric and magnetic fields generated by the plasma itself satisfying Maxwell's equations in vacuum, first introduced in [START_REF] Maxwell | A Dynamical Theory of the Electromagnetic Field[END_REF] Maxwell's equations

ε 0 div x E = ρ, div x B = 0, rot x E + ∂ t B = 0, c 2 rot x B -∂ t E = j ε 0
which are linked to the sources ρ = ρ(t, x) and j = j(t, x) denoting respectively the charge and the current densities. This interaction is therefore local in space, representing the fact that particles feel the influence of other particles in the system even if their spatial separation is large. The equations are respectively called Maxwell-Gauss, Maxwell-Thompson, Maxwell-Faraday, and Maxwell-Ampère. Here ε 0 is the electric permittivity of the vacuum, and c is the speed of light in the vacuum. The electromagnetic field can be broken down into two parts: the external part, denoted by (E ext , B ext ), and the part created by the particles themselves, denoted by (E c , B c ). The latter is called the self-consistent part of the electro-magnetic field.

In the non-relativistic case, i .e., when the characteristic speed of the particles is very low compared to the speed of light in a vacuum, one can assume that the self-consistent magnetic field is stationary. In this case, Maxwell-Faraday's equation reduces to rot x E = 0. Then the electric field derives from a potential, that means E = -∇ x Φ, (1.18) where the electrostatic potential Φ satisfies the Poisson equation

Poisson's equation -ε 0 ∆ x Φ = ρ. (1.19)
Therefore, under the actions of electro-magnetic interactions between the charged particles, the particle dynamics (1.1) become

d dt X s k (t) = V s k (t), d dt V s k (t) = q s m s (E(t, X s k (t)) + V s k (t) ∧ B(t, X s k )). (1.20) 
where m s , s ∈ {e, i} denotes the electron and ion masses respectively.

Vlasov equation, collisionless Models

Plasmas are high temperature, rarefied dynamical systems made of a very large number of charged particles where the typical collisional time scale is much longer than any dynamical time scale. Equivalently, by comparing spatial instead of temporal scales, we get that the diffusive scale length is typically many orders of magnitude larger than any other characteristic length. As a consequence, a plasma can be considered as collisionless, at least in a first approximation, and the dynamics as Hamiltonian. We now consider a non-collisional plasma, i .e. on the physical scales relevant to plasma, the collision terms can be neglected. Let f s , s ∈ {e, i} denote the electron/ion distribution function, which depends on the space coordinate x ∈ R d , the velocity coordinate v ∈ R d and the time t > 0. The principle is to describe the evolution of the distribution function f s (t, x, v) of the species s.

Plasmas models: Linear Vlasov's equation

We consider an external electromagnetic field (E ext (t, x), B ext (t, x)), then the particles in the plasma are subject to an external electro-magnetic or Lorentz force (1.20). From the equation (1.2), the system is described by the linear Vlasov equation given by

∂ t f s + v • ∇ x f s + q s m s (E ext (t, x) + v ∧ B ext (t, x)) • ∇ v f s = 0 (1.21)

Plasmas models: Vlasov-Maxwell's equations

The most fundamental nonlinear model for plasmas corresponding to self-consistent electromagnetic interactions is the relativistic Vlasov-Maxwell system of PDEs which couples the Maxwell equations with the Vlasov equation. Denoting c the speed of light, the system reads

∂ t f s + v 1 + |v| 2 c 2 • ∇ x f s + q s m s (E(t, x) + v ∧ B(t, x)) • ∇ v f s = 0, (t, x, v) ∈ R + × R 3 × R 3
(1.22) The electric and magnetic fields E and B satisfy Maxwell's equations which are related to the distribution functions by the charge and current densities whose expressions are given by ρ(t, x) = s q s R 3 f s (t, x, v)dv = qn i -qn e (1.23)

j(t, x) = s q s R 3
vf s (t, x, v)dv = qn i -qn e .

(1.24)

The well-posedness for Vlasov-Maxwell model is still an open problem. However, weak solutions to the Vlasov-Maxwell system were shown to exist in [START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF] by DiPerna and Lions.

Plasmas models: Vlasov-Poisson's equations

In the non-relativistic case, one can consider that the particles in the plasma are in self-interaction through the electrostatic field E derives from a potential Φ. The self-consistent magnetic field will be neglected and we will often consider the case where the magnetic field B = B(x)e(x), |e(x)| = 1, x ∈ R 3 (1. [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF] is only external, assumed to be divergence-free condition

div x B = 0
for some scalar function B(x) and some field of unitary vectors e(x). Note that this approximation is classical for studying tokamak plasmas. Thus, the Vlasov-Poisson equation comes from the electrostatic Vlasov-Maxwell approximation, obtained (formally) when the speed of light c tends to infinity

∂ t f e + v • ∇ x f e - q m e (E + v ∧ B) • ∇ v f e = 0, ∂ t f i + v • ∇ x f i + q m i (E + v ∧ B) • ∇ v f i = 0, E = -∇ x Φ, -ε 0 ∆Φ = ρ = q(n i -n e ).
(1.26)

In the spatial domain is R 3 , the electric field E can then be represented as the convolution of ρ with the Coulomb kernel G(x) = 1 4π

x |x| 3 and we can write

E = 1 4π x |x| 3 ⋆ ρ(t, x).
The passage in the non-relativistic limit from Vlasov-Maxwell to Vlasov-Poisson has been mathematically studied by Degond [START_REF] Degond | Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity[END_REF], Schaeffer [START_REF] Schaeffer | The classical limit of the relativistic Vlasov-Maxwell system[END_REF], Asano and Ukai [START_REF] Asano | On the Vlasov-Poisson limit of the Vlasov-Maxwell equation. In Patterns and waves[END_REF].

Neglecting the curvature e(x) of the magnetic lines, we assume that the external magnetic field is only applies in the x 3 -direction B(x) = (0, 0, B(x ⊥ )) t .

Since the external magnetic field must satisfy the condition of the divergence free, it gives that indeed B(x) only depends on x ⊥ , where x = (x ⊥ , x 3 ) ∈ R 3 with x ⊥ = (x 1 , x 2 ) ∈ R 2 . In the two-dimensional setting x = (x 1 , x 2 ), v = (v 1 , v 2 ), the Vlasov-Poisson equation (1.26) can be written as

∂ t f e + v • ∇ x f e - q e m e (E + B(x) ⊥ v) • ∇ v f e = 0, ∂ t f i + v • ∇ x f i + q i m i (E + B(x) ⊥ v) • ∇ v f i = 0, E = -∇ x Φ, -ε 0 ∆Φ = ρ = q(n i -n e ).
(1.27)

Here the notation ⊥ (•) stands for the rotation of angle -π/2, i .e.,

⊥ v = R(-π/2)v = (v 2 , -v 1 ), v = (v 1 , v 2 ) ∈ R 2 .
The well-posedness of the Vlasov-Poisson problem is well known. The unmagnetized Vlasov-Poisson system has been extensively studied with the works of Arsenev [START_REF] Arsen'ev | Global existence of a weak solution of vlasov's system of equations[END_REF] for weak solutions, Okabe and Ukai in dimension 2 [START_REF] Okabe | On classical solutions in the large in time of twodimensional Vlasov's equation[END_REF] for strong solutions. In the case of general initial data in dimension 3, two main approaches have been developed. The first one is based on the study of the characteristic curves with the papers from Pfaffelmoser [START_REF] Pfaffelmoser | Global classical solutions of the Vlasov-Poisson system in 3 dimensions for general initial data[END_REF] and Schäffer [START_REF] Schaeffer | The classical limit of the relativistic Vlasov-Maxwell system[END_REF]. The second approach is that of Lions and Perthame [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF], based on the propagation of moments in velocities. For the Vlasov-Poisson system with an external magnetic field, we refer to [START_REF] Bostan | Asymptotic Behavior for the Vlasov-Poisson Equations with Strong External Magnetic Field. Straight Magnetic Field Lines[END_REF].

Collisional Models

The Vlasov-Poisson equation is the correct equation to describe a classical plasma on a short-time scale. When one wants to consider long periods of time, it is necessary to take into account collisions between particles. For this, it is natural to introduce a collision operator on the right-hand side of the Vlasov-type equations. To simplify the discussion and the notations, we only consider the collisions between the particles of the same species.

Collisions between charged particles in a plasma differ fundamentally from those between molecules in a neutral gas. In a gas neutral, the collisions between molecules are of the "billiard ball" type and given by the Boltzmann operator

Q s B (f s , f s ) = R 3 S 2 B(v -v ⋆ , w)(f s (t, x, v ′ )f s (t, x, v ′ ⋆ ) -f s (t, x, v)f s (t, x, v ⋆ ))dωdv ⋆
where v and v ⋆ are the velocities of the incoming particles (before the collision), v ′ and v ′ ⋆ are the velocities of the outgoing particles (after collision) and are given in terms of v and v ⋆ by

v ′ = v -((v -v ⋆ ) • ω)ω v ′ ⋆ = v ⋆ + ((v -v ⋆ ) • ω)ω
for some ω ∈ S 2 . The function B is the kernel of collision. Then the Boltzmann equation is used to model a rarefied gas out of equilibrium

∂ t f s + v • ∇ x f s = Q s B (f s , f s ). (1.28) 
Here, f s , s ∈ {e, i} denotes the light/heavy species distribution function in the gasdynamic case respectively. In plasmas, the adequate collision operators are of the Fokker-Planck-Landau type since the interaction between charged particles is the long range of the Coulomb force. The Fokker-Planck-Landau operator reads

Q s F P L (f s ) = ∇ v • R 3 K s ϕ(v -v ′ )(f s (t, x, v ′ )∇ v f s (t, x, v) -f s (t, x, v)∇ v f s (t, x, v ′ )) ,
where K s is a constant physical, and ϕ(v) ∈ M 3×3 (R) gives by

ϕ ij (v) = 1 |v| δ ij - v i v j |v| 2 .
We also mention the simpler Fokker-Planck operator for the Coulomb interaction containing dynamical friction forces and a diffusion term characteristic of Brownian motion of temperature T th

Q s F P (f s ) = div v {b(v)f s + σ s ∇ v f s } (1.29)
where b is a friction term and σ s is a thermal diffusion coefficient, given by σ s = k B T th m s .

When b(v) = v, the Fokker-Planck operator is derived by Chandrasekhar [59]. This is a linear operator of Fokker-Planck-Landau-type, which describes the evolution of a test particle interacting with a "bath" of Coulomb particles in thermal equilibrium.

Plasmas models: Vlasov-Poisson-Fokker-Planck's equations

The Vlasov-Poisson-Fokker-Planck is one of the fundamental systems used in plasma physics. The coupling between the Vlasov-Poisson equations (1.26), the Fokker-Planck collision operators (1.29) leads to the two-species Vlasov-Poisson-Fokker-Planck system with external magnetic field following

∂ t f e + v • ∇ x f e - q m e (E + v ∧ B) • ∇ v f e = 1 τ e div v {vf e + σ e ∇ v f e } , ∂ t f i + v • ∇ x f i + q m i (E + v ∧ B) • ∇ v f i = 1 τ i div v {vf i + σ i ∇ v f i } , E = -∇ x Φ, -ε 0 ∆Φ = ρ = q(n i -n e ) (1.30) 
where τ s is the relaxation time due to collisions of the particles with the thermal bath.

There are many works dealing with the existence and uniqueness of solutions to the Vlasov-Poisson-Fokker-Planck system. Concerning the problem of existence of global solutions to this problem without external magnetic field, we mention the works of Degond [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF] who studied the existence and uniqueness of global strong solutions in dimensions 1 and 2 for VPFP without term of friction, and the global existence of solutions in the sense that E bounded locally in time was proven by Bouchut [START_REF] Bouchut | Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-Fokker-Planck System in Three Dimensions[END_REF]. The existence of classical solutions was studied by Victory and O'Dowyer [START_REF] Harold | On Classical Solutions of Vlasov-Poisson Fokker-Planck Systems[END_REF], Rein and Weckler [START_REF] Weckler | Generic global classical solutions of the Vlasov-Poisson-Fokker-Planck system in three dimensions[END_REF], and Ono and Strauss [START_REF] Ono | Regular solutions of the Vlasov-Poisson-Fokker-Planck system[END_REF].

Plasmas models studied in this thesis

In this thesis, we will concentrate on models that describe only one species of charged particles of mass m, charge q in a plasma, whose evolution is described by its distribution function f . The model that interests us the most in our discussions will be the Vlasov-Poisson system with an external magnetic field in both the collisional and non-collisional mechanisms. These models will be studied in the full phase space R d × R d , with d ∈ {2, 3}. The distribution function f solves the Vlasov-Poisson-Fokker-Planck (VPFP) system

∂ t f + v • ∇ x f + q m (E + v ∧ B) • ∇ v f = 1 τ div v {vf + σ∇ v f } , E = -∇ x Φ, -ε 0 ∆Φ = ρ = qn = q R d f (t, •, v)dv (1.31)
with B a stationary magnetic field satisfying the divergence free div x B = 0, or the Vlasov-Poisson system in the two-dimensional setting when neglecting the collisions

∂ t f + v • ∇ x f + q m (E + B ⊥ v) • ∇ v f = 0, E = -∇ x Φ, -ε 0 ∆Φ = ρ = qn = q R 2 f (t, •, v)dv (1.32)
where the magnetic field B is a constant. As we shall present below, fusion plasmas are systems that are subject to an external magnetic field whose role is to confine the plasma inside a restricted space for long periods of time. Motivated by this important physical and industrial application, we will investigate how the kinetic models that describe the system are modified in the presence of an added strong external magnetic field.

Magnetized Plasmas and Tokamaks 1.3.5.1 Nuclear Fusion and Tokamaks

The depletion of fossil fuels makes the development of new energies essential. These new forms of energy will obviously have to satisfy economic criteria but also take into account requirements in terms of the environment, the safety of operation, and the availability of resources. Fusion energy satisfies all of these requirements. Fusion is a nuclear reaction: two light atomic nuclei come together, and fuse to Figure 1.3 -Graphic representation of a nuclear fusion reaction form a single heavier one while releasing massive amounts of energy. It occurs for example in the sun and most of the stars in the universe. Among the fusion reactions taking place within stars, the simplest to reproduce, because it involves low-mass species, is the fusion of Deuterium with Tritium (which are two natural isotopes of hydrogen). They form, during a fusion reaction, a 4-helium, freeing a neutron and releasing 17.59 MeV as kinetic energy of the products. Since atomic nuclei have a positive electric charge, in order to approach each other, the two nuclei must overcome the long-range Coulomb repulsion force by colliding with a sufficiently high velocity. This means that in practice, very high temperatures must be considered. In the Sun, fusion reactions are possible because of the extreme conditions in its center: temperatures of about 15 million degrees Celsius and high pressures, caused by the gravitational forces from a mass that is about 330, 000 times larger than that of the Earth. To realize fusion on Earth, one needs a temperature of the order of 150 million degrees Celsius, ten times the temperature in the core of the Sun. Such temperatures are nowadays routinely achieved on Earth in devices. However, to maintain fusion reactions at high temperatures, they must be maintained in a limited volume and kept away from any material wall. This is called confinement. If plasmas are, for example, naturally confined by the mass of a star, the question of their long-term confinement on earth is still open. In the context of thermonuclear fusion, for example, confinement is carried out in a chamber called a "tokamak". A tokamak is a toroidal device in which strong helical magnetic fields can be used to keep a plasma sufficiently far enough away from the wall. This is called 'magnetic confinement' and is discussed in detail below. These issues of magnetic confinement, and more broadly thermonuclear fusion, are current research topics. We refer the interested reader to the famous ITER (International Thermonuclear Experimental Reactor) program. The ITER project is precisely an "advanced" tokamak project, created to demonstrate the technical and scientific feasibility of fusion over a long period of time. To achieve this, ITER is currently building the largest tokamak in the world in Cadarache in the south of France. 

Motion of Charged Particles

For understanding the effects of strong magnetic fields let us start by analyzing the motion of individual charged particles under the action of constant electro-magnetic field (E, B). From the equations in (1.20), the motion equations of a particle of mass m and charge q are given by

dX dt = V (t), dV dt = q m (E + V (t) ∧ B) .
In the direction perpendicular to B, it is easily seen that

d dt V ∥ = d dt V (t) • B |B| = q m E • B |B|
saying that the particle is advected with the acceleration q m E•B

|B| along the magnetic field line. Now we are interested in the motion in the plane orthogonal to B. Let us denote

U (t) = V (t) - E ∧ B |B| 2 .
Then the new velocity U satisfies the equation

dU dt = q m (E • B) B |B| 2 + U (t) ∧ B We denote by U ⊥ the projection of U on the plane orthogonal to B U ⊥ (t) = B |B| ∧ U ∧ B |B| .
A simple computation shows that U ⊥ verifies

d 2 dt 2 U ⊥ + q 2 B 2 m 2 U ⊥ = 0, which implies that U ⊥ (t) = R(-ω c t)U ⊥ (0) = R(-ω c t) V ⊥ (0) - E ∧ B |B| 2
where we denote by

ω c = |q||B| m (1.33)
is the cyclotron frequency which describes the oscillations of the particles under the magnetic field and

T c = 2π ω c (1.34)
is the cyclotronic period. For any θ ∈ R we denote by R(θ) the rotation of angle θ in the plane orthogonal to B, oriented by qB. Therefore we have

X ⊥ (t) = X ⊥ (0) - 1 ω c R π 2 U ⊥ (0) + t E ∧ B |B| 2 + 1 ω c R -ω c t + π 2 U ⊥ (0).
The motion of particles is a helix that can be split into a linear motion of the center of the circle (the guiding center), with a velocity V ∥ along the magnetic field line and a circular motion in the plane perpendicular to B, with a radius of gyration r L = |V ⊥ | ωc , which is called the Larmor radius. Therefore, when the magnetic field is large, the Larmor radius r L tends to zero, and the particle motion can be approximated by the motion of the guiding-center X ⊥ (0) -1 ωc R(π/2)U ⊥ (0), whose velocity in the plane orthogonal to B, given by E∧B |B| 2 is called the electric cross-field drift velocity. This drift velocity is independent of the particle charge or mass, but proportional to the inverse of the strength of the magnetic fields B = O(1/ε). Hence the motion of the guiding-center becomes significant only for large observation time O(1/ε).

The motion of a charged particle in uniform magnetic field lines provides perpendicular confinement but not longitudinal confinement, so plasma particles escape at both ends. To confine a particle in a limited volume like Tokamak, a common solution is to close the magnetic field lines in on themselves, forming a torus as shown in the first picture of Fig. 1.5. Particles following along the closed toroidal field lines would remain within the toroidal confinement chamber. The toroidal field is curved by definition, and nonuniform, by necessity. Taking into account the spatial inhomogeneities of the magnetic field B introduced in (1.25) induces the magnetic gradient drift and the magnetic curvature drift which need to consider in examining confinement, as

- m|v ∧ e| 2 2qB ∇ x B ∧ e B = - |v ∧ e| 2 2 ∇ x ω c ∧ e ω 2 c , - m|v ∧ e| 2 qB ∂ x ee ∧ e = - (v • e) 2 ω c ∂ x ee ∧ e.
Unfortunately, under these drift velocities, the charged particle drifts away from Figure 1.5 -Toroidal, Poloidal, and Helicoidal magnetic fields the magnetic field line, in opposite directions for ions and electrons, which would, if uncompensated, cause the particles to hit the wall of Tokamark. To compensate for this effect, the idea is to stabilize the configuration by adding a poloidal component to the toroidal magnetic field. This is the magnetic configuration used in the tokamak. The field lines become helices which are entirely contained within the toroidal confinement chamber.

Magnetic confinement in the Tokamak

The basis for the magnetic confinement of a plasma is the fact that in strong helical magnetic fields, charged particles move along magnetic field lines because the Larmor radius is proportional to the inverse of the strength of the magnetic field. The helical magnetic field has two components: a toroidal component, which points the long way around the torus, and a poloidal component directed the short way around the machine. Both components are necessary for the plasma to be in stable equilibrium. In a tokamak, the toroidal magnetic field is produced by external coils, whereas the poloidal magnetic field is induced by a current flowing toroidally in the plasma. The toroidal current is induced by means of a transformer.

The simple helical magnetic field geometry one can think of for plasma confinement is that of a cylindrical geometry whose magnetic lines wind on cylindrical surfaces, as

B = Be = (x 2 , -x 1 , 1), x = (x 1 , x 2 , x 3 ) ∈ R 3 . (1.35)
The following helical magnetic field geometry is a toroidal field configuration whose magnetic lines wind on toroidal surfaces. In Cartesian coordinates, a torus can be defined by

(x 2 1 + x 2 2 -R 0 ) 2 + x 2 3 = r 2
where R 0 is known as the "major radius" and r is known as the "minor radius". The magnetic field writes

B = -x 2 x 2 1 + x 2 2 , x 1 x 2 1 + x 2 2 , 0 + 1 f q r x 2 1 + x 2 2 -x 3 x 1 r x 2 1 + x 2 2 , -x 3 x 2 r x 2 1 + x 2 2 , x 2 1 + x 2 2 -R 0 r (1.36)
where f q is the quality factor, that is the number of toroidal winds of a magnetic line, corresponding to one wind.

Guiding-center approximation for physic plasma 1.3.6.1 Asymptotic regimes

The evolution of charged particles in a tokamak via kinetic equations under the action of strong magnetic fields faces some issues. Firstly, the kinetic model size leads to a huge computational cost at numerical resolution since we are working in a phase space with d position dimensions and d velocity dimensions, with d ≥ 2. Secondly, its complexity is due to the nonlinearity and geometry of the Tokamak. Both problems require reducing the description of the system, reducing both the dimension and the complexity of the dynamics. Finally, strong magnetic fields introduce also high cyclotronic frequencies, corresponding to small periods of rotation of the particles around the magnetic lines, leading to instabilities, when simulating numerically such regimes. We are faced with a multi-scale problem. Therefore, the study of the strong magnetic field effect is now of crucial importance, and the question of deriving approximate models, numerically less expensive, is very interesting.

We are interested in regimes whose main characteristic is the intensity of the magnetic field, i .e., T c T obs = ε.

(1.37)

Here ε > 0 is a small parameter, related to the ratio between the cyclotronic period T c and the observation time T obs . There are mainly two asymptotic regimes describing the transport of charged particles under strong magnetic fields: the guiding center, and the finite Larmor radius approximations. In the guiding center approximation, the ratio between the perpendicular and parallel spatial lengths is much smaller (and thus neglected) with respect to the ratio between the cyclotronic period T c and the observation time T obs . In this case, any Larmor circle reduces to its center. Therefore, the particle positions are left invariant at the cyclotronic time scale and the gyroaverage plays only in the perpendicular velocity space, cf. [START_REF] Bostan | Gyrokinetic Vlasov Equation in Three Dimensional Setting. Second Order Approximation[END_REF], [START_REF] Bostan | Impact of strong magnetic fields on collision mechanism for transport of charged particles[END_REF], [START_REF] Frénod | Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field[END_REF], [START_REF] Golse | The Vlasov-Poisson System with Strong Magnetic Field[END_REF]. In the finite Larmor radius approximation cf. [START_REF] Bostan | Finite Larmor radius regime: Collisional setting and fluid models[END_REF], [START_REF] Bostan | The Effective Vlasov-Poisson System for the Finite Larmor Radius Regime[END_REF], [START_REF] Frenod | The finite Larmor radius approximation[END_REF], the situation is quite different. In this case, we assume that the ratio between the perpendicular and parallel spatial lengths is small, remaining of the same order as the ratio between the cyclotronic period T c and the observation time T obs , i .e.,

L ⊥ L ∥ = T c T obs = ε. (1.38)
The particles move on small Larmor circles, the position is not anymore left invariant at the cyclotronic scale, and the gyro-average combines now position and velocity.

The asymptotic regime we will focus on this thesis is the gyro-kinetic model with guiding-center approximation in the long-time behavior. Under this scaling assumption, the Vlasov-Poisson-Fokker-Planck equation (1.31) can be recast in dimensionless variables, as follows:

ε∂ t f ε + v • ∇ x f ε + q m (E ε + v ∧ Be ε ) • ∇ v f ε = 1 τ div v {vf ε + σ∇ v f ε } , E ε = -∇ x Φ ε , -ε 0 ∆Φ ε = ρ ε = qn ε = q R d f ε (t, •, v)dv (1.39)
or the Vlasov-Poisson system (1.32) in the two-dimensional setting when neglecting the collisions between the charged particles

ε∂ t f ε + v • ∇ x f ε + q m (E ε + B ε ⊥ v) • ∇ v f ε = 0, E ε = -∇ x Φ ε , -ε 0 ∆Φ ε = ρ ε = qn ε = q R 2 f ε (t, •, v)dv. (1.40)
We add the initial densities

f ε (0, x, v) = f ε in (x, v), (x, v) ∈ R d × R d . (1.41)
Note that the term ε in front of the time derivative of f ε in the previous equations stands for the fact that we want to approximate the solution for a large time. The study of the asymptotic limit ε ↘ 0 in the equation (1.39) leads to the investigation of the properties of the two following operators. The first operator is the dominant operator (v ∧ Be) • ∇ v and the second one is the transport operator Be • ∇ x . The next section is devoted to the average technique. It consists in averaging along the characteristic flow associated to a divergence free vector field for functions and vector fields.

Mathematic tools: average operators

We consider the linear transport problem introduced in [39]

∂ t u ε + a(t, y) • ∇ y u ε + b(y) ε • ∇ y u ε = 0, (t, y) ∈ R + × R m , u ε (0, y) = u in (y).
(1.42)

The vector field a : R + × R m → R m , and the vector field b : R m → R m is supposed smooth and divergence free

b ∈ W 1,∞ loc (R m ), div y b = 0.
We also assume that the following growth condition holds true

∃C > 0 such that |b(y)| ≤ C(1 + |y|), y ∈ R m .
Under the previous hypothesis, the flow Y = Y (s; y) is well defined and

Y ∈ W 1,∞ loc (R m ) dY ds = b(Y (s; y)), Y (0, y) = y, (s, y) ∈ R × R m . (1.43)
We concentrate on periodic characteristic flows, that means Therefore, the L 2 (R m )-space can be decomposed as follows

∃S > 0 such that Y (s; y) = y, y ∈ R m .
L 2 (R m ) = ker(b • ∇ y ) ⊕ (ker(b • ∇ y )) ⊥ = ker(b • ∇ y )⊕ ⊥ ker ⟨•⟩ .
By Hilbert's method, we have the formal expansion

u ε = u + εu 1 + ε 2 u 2 + ...
and thus, plugging the previous ansatz in (1.42) yields the equations

ε -1 : b(y) • ∇ y u = 0 (1.44) ε 0 : ∂ t u + a(t, y) • ∇ y u + b(y) • ∇ y u 1 = 0. (1.45)
From the equation (1.44), the leading term of the expansion indeed belongs to the kernel of b • ∇ y , and to determine u, we average the equation (1.45) along the vector field b. Since

⟨b(y) • ∇ y u 1 ⟩ = 1 S S 0 B(Y (s; •)) • ∇ y u 1 (t, Y (s; •))ds = 1 S S 0 d ds {u 1 (t, Y (s; •))} ds = 0 saying that L 2 (R m ) = ker ⟨•⟩ ⊕ ⊥ Im(b • ∇ y ).
Therefore the Lagrange multiplier

u 1 in (1.45) is eliminated. Moreover, since u ∈ ker(b • ∇ y ) so ⟨∂ t u⟩ = ∂ t ⟨u⟩ = ∂ t u.
Finally, we have

∂ t u + ⟨a(t, y) • ∇ y u⟩ = 0.
We now compute the average of the advection field a

• ∇ y u. Since Y (-s; Y (s, •)) = y, y ∈ R m we deduce that ∂ y Y (-s; Y (s, •))∂ y Y (s; •) = I m . Therefore ⟨a(t, y) • ∇ y u⟩ = 1 S S 0 a(t, Y (s; •)) • ∇ y u(t, Y (s; •))ds = 1 S S 0 ∂ y Y (-s; Y (s, •))a(t, Y (s; •)) • t Y (s; •)∇ y u(t, Y (s; •))ds = 1 S S 0 ∂ y Y (-s; Y (s, •))a(t, Y (s; •)) • ∇ y u(t, y)ds = 1 S S 0 ∂ y Y (-s; Y (s, •))a(t, Y (s; •))ds • ∇ y u(t, y).
We denote by

⟨a⟩ = 1 S S 0 ∂ y Y (-s; Y (s, •))a(t, Y (s; •))ds
the average of the vector field a. Then we have

⟨a(t, •) • ∇ y u⟩ = ⟨a(t, •)⟩ • ∇ y u.
(1.46)

Numerical tools: semi-Lagrangian schemes

We briefly review numerical methods to study the long-time Vlasov-Poisson equation (1.40), (1.41) with strong magnetic field. When ε = 1, it does not contain any stiff term and the equation (1.40) has been widely studied in the literature. The numerical solution of the Vlasov equation in that case can be performed by Lagrangian, Eulerian, or semi-Lagrangian methods. When the parameter ε becomes very small, the solution f ε involves time oscillations. Indeed, the main oscillation in the equation (1.40) due to the transport equation

∂ t f ε + ω c ε 2 ⊥ v • ∇ v f ε = 0.
The solution of the above equation is given by

f ε (t, x, v) = f ε in (x, R ω c ε 2 t v)
which implies that the solution f ε of the Vlaosv-Poisson equation (1.40) exhibits fast oscillations in time with wavelength O(ε 2 ). From a numerical point of view, this means that for a classical numerical method, the time step must be very small, in particular, smaller than ε 2 which leads to prohibitive time computations in the asymptotic regime.

Many methods have been devoted to design numerical integrators dedicated to the solving of highly oscillatory problems. They have been explored in recent works, performed on the characteristics within the framework of the Particle-In-Cell method. To solve the Vlasov-Poisson equation (1.40), a class of semi-implicit methods has been proposed in [START_REF] Filbet | Asymptotically Stable Particle-In-Cell Methods for the Vlasov-Poisson System with a Strong External Magnetic Field[END_REF] whereas in [START_REF] Frenod | Long time hehaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field[END_REF] an exponential time differencing scheme has been proposed for solving the Vlasov-Poisson equation with very large time steps with respect to the size of oscillations. Recently, a two-scale formulation integrator has been proposed in [START_REF] Crouseilles | Uniformly accurate Particle-in-Cell method for the long time solution of the two-dimensionalVlasov-Poisson equation with uniform strong magnetic field[END_REF] for solving (1.40). This approach separates the fast variable out in the equation and solves it as an extra degree-of-freedom, which benefits to reduce the oscillation.

In this thesis, we propose an alternative to such methods allowing us to make direct simulations of the Vlasov-Poisson system with large time steps with respect to O(ε 2 ). The strategy we will use in this work relies on the same splitting method as [START_REF] Ameres | Splitting methods for Fourier spectral discretizations of the strongly magnetized Vlasov-Poisson and the Vlasov-Maxwell system[END_REF] but the semi-Lagrangian Vlasov solver is used instead of a Fourier spectral discretization solver. The originality of semi-Lagrangian schemes, compared to other numerical methods, is that they use the characteristics of the approximated system to compute the solution at each time step. Let us recall the principles of semi-Lagrangian method for the Vlasov-Poisson equation. We consider the 1d transport equation with advection field A : R → R

∂ t u + A∂ x u = 0, (t, x) ∈ R + × R.
(1.47)

We set X := X(s; t, x) for the characteristic associated to the equation (1.47), that means dX ds = A(X(s; t, x)).

(1.48)

Then, the solution of the transport equation (1.47) can be written as

u(t, x) = u(s, X(s; t, x)) (1.49)
for all x ∈ R, and t, s ≥ 0. We call x i the points of the regular grid in position with h the position step and we call t n the points of the discretization in time with ∆t the time step. Replacing s by t n and t by t n+1 in (1.49), we have

u(t n+1 , x) = u(t n , X(t n ; t n+1 , x)).
The classical semi-Lagrangian scheme allows us to compute the approximation u n+1 of the solution u at time t n+1 using the approximation u n at the previous time t n . For each point of the grid x i , we detail the two steps that make up this semi-Lagrangian scheme:

1. Find the starting point of the characteristic curves ending at x i i .e., X(t n ; t n+1 , x i ) by solving (1.48).

2. Compute u(t n , X(t n ; t n+1 , x)) by the method based on Lagrange interpolation, u being known only at mesh points at time t n since X(t n ; t n+1 , x) isn't necessarily a point of the grid.

Summary of results

We summarize the contributions of this thesis in the next three sections.

Fluid models for kinetic equation in swarming (Chapter 2)

In Chapter 2, we derive first and second-order approximations associated to (1.16) where the alignment velocity is chosen as in (1.15). In order to obtain the macroscopic limit, we use the standard Hilbert expansion

f ε = f + εf 1 + ε 2 f 2 + ... We have Q(f ε ) = Q(f ) + ε lim ε↘0 1 ε {Q(f ε ) -Q(f )} + O(ε 2 ) = Q(f ) + εL f (f 1 ) + O(ε 2 )
where L f := d f Q is the first derivative of Q at f . The linear operator L f is preserving the mass and momentum. Plugging into (1.16) the previous expansions and collecting terms of equal order of ε, we obtain

∂ t f + v • ∇ x f + ε(∂ t f 1 + v • ∇ x f 1 ) + ... = ε -1 Q(f ) + L f (f 1 ) + ... (1.50)
At least formally, the leading order is an equilibrium for the interaction mechanism

Q(f (t, x, •)) = 0, (t, x) ∈ R + × R d . (1.51)
For any u ∈ R d we introduce the notations

Φ u (v) = |v -u| 2 2 + V (|v|), Z(σ, u) = R d exp - Φ u (v) σ dv, M u (v) = exp -Φu(v) σ Z(σ, u) .
(1.52) The function Z depends only on σ and |u|, cf. Proposition 2.2.1 of Chapter 2. Thus we will write Z = Z(σ, |u|). Therefore, the operator Q can be rewritten as

Q(f ) = div v {σ∇ v f + f (v -u[f ]) + f ∇ v V (| • |)} = σdiv v M u[f ] ∇ v f M u[f ] .
From the constraint (1.51), we infer that, for any

(t, x) ∈ R + × R d , the individual density f (t, x, •) is a von Mises-Fisher distribution f (t, x, v) = ρ(t, x)M u(t,x) (v), v ∈ R d .
Notice that the kernel of the operator Q is parametrized by ρ > 0 and u ∈ R d . Indeed, we have

σ∇ v M u + M u ∇ v Φ u = 0 and therefore R d M u (v)∇ v Φ u dv = 0, saying that u[M u ] = u.

First order approximation

We intend to investigate the asymptotic behavior of (1.16) when ε ↘ 0. The terms of order 1 in (1.50) lead to

∂ t f + v • ∇ x f = L f (f 1 ), (t, x, v) ∈ R + × R d × R d .
(1.53)

Multiplying (1.53) by 1 and v, integrating with respect to v and by using the fact that the operator L f preserves the mass and momentum, we get

∂ t R d f dv + div x R d f vdv = ∂ t ρ + div x ρ R d M u (v)vdv = 0 ∂ t R d f vdv+div x R d f v⊗vdv = ∂ t ρ R d M u (v)vdv +div x ρ R d M u (v)v ⊗ vdv = 0.
We determine the fluid model for the macroscopic quantities ρ, u. Therefore, we need to express 

R d M u (v)vdv and R d M u (v)v ⊗
(t, x) ∈ R + × R d the limit lim ε↘0 f ε (t, x, •) = f (t, x, •) is an equilibrium of Q i .e., f (t, x, v) = ρ(t, x)M u(t,x) (v), (t, x, v) ∈ R + × R d × R d and ∂ t ρ + div x ρ 1 + σ ∂ l Z |u|Z(σ, |u|) u = 0 (1.54) ∂ t ρ 1 + σ ∂ l Z |u|Z(σ, |u|) u + div x ρ 1 + 2σ ∂ l Z |u|Z u ⊗ u + ρσ 2 ∂ 2 ll Z -∂ l Z |u| Z Ω[u] ⊗ Ω[u]
(1.55)

+ σ∇ x ρ 1 + σ ∂ l Z |u|Z(σ, |u|) = 0.
The above fluid models can be simplified into systems of equations on the concentration ρ and the current j

(t, x) = R d f (t, x, v)vdv, (t, x) ∈ R + × R d .
From (1.53), the mass balance simply writes ∂ t ρ + div x j = 0. In order to write the momentum balance with respect to ρ, j we need to express u in terms of ρ, j. This can be achieved by using the strictly convex function with respect to l given by E(σ, l) = l 2 2 + σ ln Z(σ, l), l ∈ R + , and its convex conjugate function k

→ E ⋆ (σ, k) = sup l∈R + {kl -E(σ, l)}, k ∈ R + . Theorem 1.4.2 (Chapter 2) Assume that lim |v|→+∞ Φ 0 (v) |v| = +∞, with Φ u=0 defined in (1.52). Then j ρ = 1 + σ ∂ l Z |u|Z(σ, |u|) u and (1.54), (1.55) write ∂ t ρ + div x j = 0 ∂ t j + div x j ⊗ j ρ + σ |j| ∂ k E ⋆ (σ, |j|/ρ) I d + σ 1 k 2 ∂ 2 kk E ⋆ - 1 k∂ k E ⋆ k=|j|/ρ j ⊗ j ρ = 0.
Moreover, we have the entropy inequality

∂ t {ρ(σ ln ρ + E ⋆ (σ, |j|/ρ)} + div x σ ln ρ + E ⋆ (σ, k) + σ ∂ k E ⋆ k∂ 2 kk E ⋆ k=|j|/ρ j ≤ 0.

Second order approximation

Motivated by the derivation of fluid models including diffusion terms, we have to consider the second order approximation of (1.16). That is, we need to take into account the first-order corrections when approximating the particle density i .e., f ε ≈ f ε = f + εf 1 . In that case, we search for fluid equations involving ρε = ρ[ f ε ] and jε = j[ f ε ]. For doing that we need to invert the linearization L f of the collision operator Q on (kerL f ) ⊥ . More exactly, from the equation (1.53) we need to compute the antecedent by L f of ∂ t f + v • ∇ x f . This leads to the following second-order approximation.

Theorem 1.4.3 (Chapter 2) Assume that lim |v|→+∞ Φ 0 (v) |v| = +∞, with Φ u=0 definded in (1.52), that for any u ∈ R d , the function v → 1 4σ |∇ v Φ u | 2 -1 2 ∆ v Φ u belongs to L 1 loc (R d ), is bounded from below and is coercive i .e. lim |v|→+∞ 1 4σ |∇ v Φ u | 2 - 1 2 ∆ v Φ u = +∞.
Consider the family (f ε ) ε of solutions for (1.16). Then a second order approximation

(ρ ε , jε ) for (ρ ε = R 3 f ε dv, j ε = R 3 f ε v dv) is given by ∂ t ρε + div x jε = 0 ∂ t jε + div x jε ⊗ jε ρε + σ ρε M ũε + ε T ε 2 + ε T ε 3 + ε T ε 4 = 0
where

M ũε = ∂ l E(σ, |ũ ε |) |ũ ε | (I d -Ωε ⊗ Ωε ) + ∂ 2 ll E(σ, |ũ ε |) Ωε ⊗ Ωε T ε 2 = ρε σ c 1 (σ, ũε )(I d -Ωε ⊗ Ωε ){∂ x ũε + t ∂ x ũε - 2(I d -Ωε ⊗ Ωε ) : ∂ x ũε d -1 (I d -Ωε ⊗ Ωε )}(I d -Ωε ⊗ Ωε ) T ε 3 = ρε σ c 2 (σ, ũε )(I d -Ωε ⊗ Ωε ) × (I d -Ωε ⊗ Ωε ) + c 3 (σ, ũε )( Ωε ⊗ Ωε ) × ( Ωε ⊗ Ωε ) +c 4 (σ, ũε )[(I d -Ωε ⊗ Ωε ) × ( Ωε ⊗ Ωε ) + ( Ωε ⊗ Ωε ) × (I d -Ωε ⊗ Ωε )] ∂ x ũε T ε 4 = ρε σ c 5 [(I d -Ωε ⊗ Ωε )(∂ x ũε + t ∂ x ũε )( Ωε ⊗ Ωε ) + ( Ωε ⊗ Ωε )(∂ x ũε + t ∂ x ũε )(I d -Ωε ⊗ Ωε )].
Here In this part, we are interested in the limit ε ↘ 0 of the equations (1.39), (1.41). We derive the fluid model and justify the asymptotic behavior toward smooth solutions of this regime. To the best of our knowledge, there has been no result on the asymptotic regime, in particular when the magnetic field is non-uniform. We send the readers the articles of M. Herda and L.M. Rodrigues in [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF] where they considered the uniform magnetic field and showed the convergence to the limit model in the linear case i .e., the electric field is external.

Ωε = Ω[ jε ], ũε = ∂ k E ⋆ (σ, | jε |/ρ ε ) Ωε . For any two matrices A, B ∈ M d (R), the notation A × B stands for the linear application A × B : M d (R) → M d (R), given by (A × B)X = (B : X)A, X ∈ M d (R)
First, in Chapter 3, we study the system VPFP in a three-dimensional setting, with curved magnetic fields, i .e., B = Be. We mention that few mathematical studies investigate the three-dimensional setting, with curved magnetic fields. The analysis, in that case, is difficult due to the combination between the parallel and perpendicular dynamics and to the curvature effects. Both trigger the need for a reduced description of the system, reducing both dimensions. Thus, in Chapter 4, we work in the twodimensional framework, neglecting the curvature of the magnetic lines but smoothly varying in position, i .e., B = (0, 0, B(x 1 , x 2 )) t , which has been rigorously studied.

The three-dimensional setting

R 3 × R 3 (Chapter 3)
In this part, we will assume that the initial data is smooth enough in order to have the existence and uniqueness of a smooth solution to the VPFP system for any fixed ε > 0.

Derivation of the limit model

We are looking for fluid limit models. The limit particle densities are Maxwellian equilibria, parametrized by macroscopic quantities (particle concentration). Indeed, thanks to the balance of the free energy functional associated to the VPFP equation

(1.39) E[f ε ] = R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dvdx + ε 0 2m R 3 |E[f ε ]| 2 dx,
and the arguments for the dissipation term

D[f ε ] = R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdx = R 3 R 3 |σM ∇ v (f ε /M )| 2 f ε dvdx
where M stands for the Maxwellian equilibrium

M (v) = (2πσ) -d/2 exp -|v| 2 2σ , d = 3
, we obtain the following equation

ε d dt E[f ε (t)] + D[f ε (t)] = 0.
Therefore, at least formally, we expect to get to the limit f of the family

(f ε ) ε>0 as ε ↘ 0 f (t, x, v) = n(t, x)M (v), (t, x, v) ∈ R + × R d × R d .
It remains to determine the time evolution of the concentration n = R d f dv. The formal obtention of the limit model is based on the following Hilbert-expansion

f ε = f + εf 1 + ε 2 f 2 + ...
and the properties of the dominant operator in velocity along the magnetic force. Inserting the previous Hilbert's expansion into the kinetic equation (1.39) and identifying the terms of the equal power in ε, yields the infinite hierarchy equations on f, f 1 , f 2 , .... The resolution of this kinetic hierarchy together with the handling of the corresponding fluid hierarchy shall permit to obtain the limit model for the concentration n. Let us show the resulting limit model in the three-dimensional setting. The concentration n satisfies the following model

∂ t n + div x ne ω c ∧ ∇ x k[n] + Be • ∇ x p = 0, (t, x) ∈ R + × R 3 (1.56)
for some function p that the following constraint holds true

Be • ∇ x k[n] = 0, k[n] = σ(1 + σ ln n) + q m Φ[n] (1.57)
coupled to the Poisson equation

E[n] = -∇ x Φ[n], -ε 0 ∆ x Φ[n] = qn.
(1.58)

The limit model involves a Lagrange multiplier p, associated to the constraint (1.57).

Convergence result

The asymptotic regime will be investigated by appealing to the relative entropy or modulated energy method. We are looking a model for the concentration n ε = R 3 f dv, similar to the fluid model (1.56), (1.57) of the limit concentration n. We appeal to the mass and momentum balances of the Vlasov equation in (1.39) and after computations, we get the evolution for the concentration n ε given by

∂ t n ε + div x n ε e ω c ∧ ∇ x k[n ε ] + div x e ω c ∧ F ε + Be • ∇ x p ε = 0, p ε = j ε • e Bε σe • ∇ x n ε + q m n ε e • ∇ x Φ[n ε ] + e • F ε = 0 (1.59)
where

F ε = div x R 3 (σ∇ v f ε + vf ε ) ⊗ vdv + ε∂ t j ε + j ε τ , j ε = R 3 f ε vdv.
We define then the modulated energy between n ε and n given by

E[n ε (t)|n(t)] = σ R d n(t)h n ε (t) n(t) dx + ε 0 2m R d |∇ x Φ[n ε ] -∇ x Φ[n]| 2 dx
where h : R + → R + is the convex function defined by h(s) = s ln s -s + 1, s ∈ R + . We intend to the study of the evolution of the modulated energy E[n ε (t)|n(t)]. We now state the theorem on the asymptotic limit of Chapter 3 for smooth solutions.

Theorem 1.4.4 (Chapter 3) Assume that the initial particle densities

(f ε in ) ε>0 satisfy f ε in ≥ 0, M in := sup ε>0 M ε in < +∞, U in := sup ε>0 U ε in < +∞ where M ε in := R 3 R 3 f ε in (x, v) dvdx, U ε in := R 3 R 3 |v| 2 2 f ε in (x, v) dvdx + ε 0 2m R 3 |∇ x Φ[f ε in ]| 2 dx.
We assume that (f ε ) ε>0 are smooth solutions of (1.39), (1.41) and n is a smooth solution of (1.56), (1.57), (1.58) 

such that W [n] = e ωc ∧ ∇ x k[n] + pBe n belongs to W 1,∞ (]0, T [×R 3 ), n in ≥ 0, n in ∈ L 1 (R 3 ), k[n in ] ∈ ker(Be • ∇ x ). We suppose that lim ε↘0 σ R 3 R 3 n ε in M (v)h f ε in n ε in M dvdx = 0, lim ε↘0 E[n ε in |n in ] = 0 where n ε in = R 3 f ε in dv, ε > 0. Then we have lim ε↘0 sup 0≤t≤T σ R 3 R 3 n ε (t)M (v)h f ε n ε M dvdx = 0, lim ε↘0 sup 0≤t≤T E[n ε (t)|n(t)] = 0 lim ε↘0 1 ετ T 0 R 3 R 3 |σ∇ v f ε + f ε v| 2 f ε dvdxdt = 0.
In particular we have the convergences

lim ε↘0 f ε = nM in L ∞ (]0, T [; L 1 (R 3 × R 3 )) and lim ε↘0 ∇ x Φ[f ε ] = ∇ x Φ[n] in L ∞ (]0, T [; L 2 (R 3 )).

Analysis of the limit model

Now, we investigate the three-dimensional limit models (1.56), (1.57), (1.58). One of the main difficulties is that the unknown is the concentration n, whereas the constraint relies on k[n]. It's not easy like the situation with equations (1.44), (1.45).

First, we will find an equivalent formulation for (1.56) by eliminating the Lagrange multiplier p which appears in (1.56). The idea is to average along the characteristic flow of the magnetic field Be. Taking the average in (1.56), and then expressing the average of the divergence term, we get the following model for the new unknown ⟨n⟩

∂ t ⟨n⟩ + div x ⟨n⟩ e ω c ∧ ∇ x k[n] = 0. (1.60)
We also need to express k[n] with respect to ⟨n⟩, where the concentration n is such that the constraint (1.57) holds true. This can be done by observing that the first variation of the free energy associated to the limit model (1.56), (1.57) and (1.58)

E[n] = R 3 σn ln n + ε 0 2m |∇ x Φ[n]| 2 dx with respect to n is k[n] = σ(1 + ln n) + q m Φ[n]. Moreover, the free energy E[n] satisfies E[n] ≥ E[n] + R 3 k[n](n -n) dx = E[n]
for any concentration n having the same average as n. This implies that for any given average a, the unique concentration n such that ⟨n⟩ = a and Be

• ∇ x k[n] = 0, verifies E[n] = min ⟨n⟩=a E[n]
leading to the application F which maps a ∈ ker(Be • ∇ x ) to n such that ⟨n⟩ = a, and

Be • ∇ x k[n] = 0. Then we get k[n] = k[F (a)] is the first variation of E[n = F (a)].
Combining these arguments, the limit model (1.60) becomes

∂ t a + div x ae ω c ∧ ∇ x k[F (a)] = 0, n = F (a).
Since k[F (a)] ∈ ker(Be • ∇ x ), we obtain by the formula (1.46)

∂ t a + rot x ae ω c • ∇ x k[F (a)] = 0, n = F (a).
The next step is to calculate the formula between operators ⟨•⟩ and rot x . The average advection field is not explicit for a general vector field, so we will establish this formula for the special class of vector fields which present angle variables. In particular, this formula will apply to the magnetic field shapes of the tokamak, as introduced in section 1.3.5.3. Finally, the fluid model obtained with the helical magnetic field (1.35) will be studied for well-posedness.

The two-dimensional setting

R 2 × R 2 (Chapter 4)
Neglecting the curvature of the magnetic lines, in the two dimensional setting, the VPFP system (1.39) can be written as

ε∂ t f ε + v • ∇ x f ε + q m (E ε + B(x) ε ⊥ v) • ∇ v f ε = div v {vf ε + σ∇ v f ε } , E ε = -∇ x Φ ε , -ε 0 ∆Φ ε = q(n ε -D) = q R 2 f ε (t, •, v)dv -D(x) (1.61)
where D is the concentration of a background of positive charges and is assumed to be given. The reason why we add the function D in the two-dimensional Poisson equation because in that case, the electric energy

R 2 |∇ x Φ[f ε ]| 2 dx
may not be finite, cf. [START_REF] Goudon | Multidimensional high-field limit of the electrostatic VPFP system[END_REF].

Global existence of weak solutions

We shall establish the global existence of weak solutions in the sense of distribution to the system (1.61) based on a compactness argument. To do this, we need to apply the velocity averaging lemma which allows to pass to the limit in the VPFP equation including the nonlinear term E[f ε ]f ε in the sense of distribution.

Derivation of the limit model

In the two-dimensional setting, the limit system (1.56), (1.57) and (1.58) for the concentration n becomes

∂ t n -div x n ω c ⊥ ∇ x k[n] = 0, (t, x) ∈ R + × R 2 (1.62)
coupled to the Poisson equation

E[n] = -∇ x Φ[n], -ε 0 ∆ x Φ[n] = q(n -D) (1.63)
Moreover, when the magnetic field is uniform i .e., ∇ x B = 0, the limit system (1.62), (1.63) becomes the vorticity formulation of the two-dimensional incompressible Euler equations

∂ t n + ⊥ E B • ∇ x n = 0, (t, x) ∈ R + × R 2 E[n] = -∇ x Φ[n], -ε 0 ∆ x Φ[n] = q(n -D).
(1.64)

Convergence result

Implementing the same way as in the three-dimensional setting, we now state the theorem on the asymptotic limit of Chapter 4 for weak-strong solutions.

Theorem 1.4.5 (Chapter 4) Let T > 0. Let B ∈ C 3 b (R 2 ) be a smooth magnetic field, such that inf x∈R 2 B(x) = B 0 > 0 and D be a fixed background density verifying |x|D ∈ L 1 (R 2 ), D ∈ W 1,1 (R 2 ) ∩ W 2,∞ (R 2 )
. Let (f ε in ) ε>0 be the initial particle densities of (1.39), (1.41) and

M in := sup ε>0 M ε in < +∞, U in := sup ε>0 U ε in < +∞ where M ε in := R 2 R 2 f ε (x, v) dvdx, U ε in := R 2 R 2 |v| 2 2 f ε in (x, v) dvdx + ε 0 2m R 2 |∇ x Φ[f ε in ]| 2 dx.
Let f ε be the weak solutions of the VPFP system (1.39), (1.41) with initial data f ε in . Let n be the unique smooth solution of the limit system (1.62), (1.63) with initial condition n in . We suppose that

lim ε↘0 σ R 2 R 2 n ε in M (v)h f ε in n ε in M dvdx = 0, lim ε↘0 E[n ε in |n in ] = 0 where n ε in = R 2 f ε in dv, ε > 0. Then we have lim ε↘0 sup 0≤t≤T σ R 2 R 2 n ε M (v)h f ε n ε M dvdx = 0, lim ε↘0 sup 0≤t≤T E[n ε (t)|n(t)] = 0 lim ε↘0 1 ε T 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxdt = 0.
In particular we have the convergences

lim ε↘0 f ε = nM in L ∞ (]0, T [; L 1 (R 2 × R 2 )) and lim ε↘0 ∇ x Φ[f ε ] = ∇ x Φ[n] in L ∞ (]0, T [; L 2 (R 2 )).

Analysis of the limit model

We focus on the two-dimensional limit models (1.62), (1.63). By standard computation, the equation (1.62) can be written for the unknown n/B as

∂ t n B + ⊥ E[n] B -σ ⊥ ∇ x ω c ω 2 c (x) • ∇ x n B = 0. (1.65)
This model is a non-linear transport equation on the concentration n/B which is advected along the electric cross-field drift ⊥ E B and the magnetic gradient drift -σ

⊥ ∇xωc ω 2 c
. Notice that the divergence of the advection field is not zero, but we can follow the same arguments as in the well-posedness proof for the Vlasov-Poisson problem with external magnetic field. We obtain the following result

Proposition 1.4.1 (Chapter 4) Let T > 0. Let B ∈ C 2 b (R 2 ) be a smooth magnetic field, such that inf x∈R 2 B(x) = B 0 > 0 and the fixed background density D verifies |x|D ∈ L 1 (R 2 ), D ∈ W 1,1 (R 2 ) ∩ W 1,∞ (R 2 ).
Assume that the initial condition n in satisfies the following hypotheses

n in ≥ 0, |x|n in ∈ L 1 (R 2 ), n in ∈ W 1,1 (R 2 ) ∩ W 1,∞ (R 2 ) R 2 n in (x) dx = R 2 D(x) dx.
There is a unique smooth solution n(t, x) on [0, T ] × R 2 × R 2 of the limit model (1.62), (1.63). The solution satisfies

n ≥ 0, R 2 n(t, x) dx = R 2 D(x) dx, t ∈ [0, T ] n ∈ W 1,∞ ([0, T ]; L 1 (R 2 )) ∩ W 1,∞ ([0, T ] × R 2 ), |x|n ∈ L ∞ ([0, T ]; L 1 (R 2 )) E[n] ∈ W 1,∞ ([0, T ] × R 2 ), E[n] ∈ L ∞ ([0, T ]; L 2 (R 2 )).

Splitting method for semi-Lagrangian Vlasov-Poisson solvers with

strong uniform magnetic field (Chapter 5)

In Chapter 5, we are interested in the design of splitting schemes for solving the Vlasov-Poisson equation (1.40), (1.41), when the parameter ε becomes small. The time splitting presented here for the Vlasov equation in a strong magnetic field is into two parts where one part includes the transport term and magnetic term, and the other part includes the electric term

ε∂ t f ε + v • ∇ x f ε + ω c ε ⊥ v • ∇ v f ε = 0 (1.66) ε∂ t f ε + q m E ε • ∇ v f ε = 0. (1.67) 
We use the semi-Lagrangian method to approximate the solutions of equations (1.66), and (1.67) respectively. Then we come back to approximate the solution of the magnetized Vlasov- 

(∆t) = f ε (∆t) + O(∆t 3 ) with γ ε (∆t) = γ ε 1 (∆t/2) • γ ε 2 (∆t) • γ ε 1 (∆t/2).
When ε ↘ 0, as we have already said, the system (1.40) converges to the guidingcenter model (1.64). Thus, we will compare our numerical solutions with the one of (1.64) to validate the method under the Kelvin-Helmholtz instability test case.

Introduction

The subject matter of this paper concerns the models for individuals driven by self-propelled forces, with alignment and noise. These models give a mathematical description for self-organizing systems like schools of fish, flocks of birds, swarms of insects, etc. Discrete models where averaging is performed in direction or velocity exist [START_REF] Cucker | On the mathematics of emergence[END_REF], [START_REF] Cucker | Emergent behavior in flocks[END_REF]. When the number of agents grows, models based on particle density functions are preferable, in order to avoid prohibitive calculations [START_REF] Carrillo | Double milling in a selfpropelled swarms from kinetic theory[END_REF][START_REF] Carrillo | Self-propelled interacting particle systems with roosting force[END_REF][START_REF] Chuang | State transitions and the continuum limit for a 2D interacting, self-propelled particle system[END_REF]. The kinetic theory for the description of the collective behavior of large groups of individuals is well developed [START_REF] Neunzert | The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles[END_REF][START_REF] Braun | The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles[END_REF][START_REF] Dobrushin | Vlasov equations[END_REF]. The well-posedness theory was established for models including short-range repulsion and long-range attraction, self-propulsion, and velocity averaging, that is, each individual adapts its own velocity with respect to that of the neighbors. We refer to [START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF] for results based on mass transportation distance, [START_REF] Cañizo | Stochastic Mean-Field Limit: Non-Lipschitz Forces and Swarming[END_REF] for the mean-field limit with locally Lipschitz interactions, [START_REF] Cañizo | Mean-field limit for the stochastic Vicsek model[END_REF] for the mean-field limit of Vicsek models. A summary on the mean-field limit for applications in swarming models was presented in [START_REF] Carrillo | The derivation of swarming models: mean-field limit and Wasserstein distances, in collective dynamics from bacteria to crowds[END_REF], see also [START_REF] Carrillo | Mean-field limit for collective behavior models with sharp sensitivity regions[END_REF] for a rigorous derivation of the mean-field limit for systems of particles interacting through local sensitivity regions.

In most of the models, the alignment between particles comes by relaxing the individual velocities toward the mean velocity through a pairwise particle interaction kernel depending on the distance between particles [START_REF] Carrillo | Asymptotic flocking dynamics for the kinetic Cucker-Smale model[END_REF][START_REF] Carrillo | Particle, Kinetic, and Hydrodynamic Models of Swarming[END_REF][START_REF] Cucker | Emergent behavior in flocks[END_REF][START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF][START_REF] Motsch | A new model for self-organized dynamics and its flocking behavior[END_REF]. For slowly decaying interaction potentials, it is shown that flocking emerges, that is, the distance between agents remains uniformly bounded in time and the agent velocities are asymptotically close to the mean velocity. A simple proof of the Cucker-Smale flocking dynamics was obtained in [START_REF] Ha | A simple proof of the Cucker-Smale flocking dynamics and meanfield limit[END_REF] using the Lyapunov functional approach.

The Cucker-Smale model is symmetric: any two agents have mutually the same influence on the alignment. This symmetry is one of the key points for studying the long-time behavior because symmetry implies the conservation of the total momentum and also that the Cucker-Smale model is dissipative. A new framework for analyzing the phenomenon of flocking is presented in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF], which allows for nonsymmetric pairwise influence between agents and also the treatment of models with leaders. One way to take into account the interaction between the agents and the environment is to add noise terms [START_REF] Ha | Emergence of Time-Asymptotic Flocking in a Stochastic Cucker-Smale System[END_REF].

We denote by f = f (t, x, v) ≥ 0 the particle density in the phase space

(x, v) ∈ R d × R d , with d ≥ 2.
The self-propulsion and friction mechanism are encoded by the term

div v {f ∇ v V (| • |)}
, for a given confining potential v → V (|v|). We refer to [START_REF] Bostan | Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming[END_REF] for the potentials

V α,β (|v|) = β |v| 4 4 -α |v| 2 2
, with α, β > 0. When the coefficients α, β are scaled in such a way that α/β is constant and α and β are large, we obtain measure solutions whose support lies on the sphere of radius r = α/β. Macroscopic models resulting from the balance between the reorientation, which tends to align the particle velocities with respect to the mean velocity, and diffusion, which tends to spread the particle velocities isotropically on the sphere rS d-1 were discussed in [START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF].

The relaxation toward the velocity u[f ] is described by the term div v {f (v -u[f ])}. Adding the term div v {σ∇ v f }, which represents the noise with respect to the velocity variable, we obtain the Fokker-Planck type equation

∂ t f + v • ∇ x f = Q(f ) := div v {σ∇ v f + f (v -u[f ]) + f ∇ v V (| • |)}, (t, x, v) ∈ R + × R d × R d .
(2.1) Many fluid limits, corresponding to various asymptotic regimes are obtained by formal arguments. There are also rigorous derivations, based on the relative entropy method, which provides also a rate of convergence, see [START_REF] Carrillo | Large friction-high force field limit for the nonlinear Vlasov-Poisson-Fokker-Planck system[END_REF] for the large friction and high force field limit, [START_REF] Karper | Hydrodynamic limit of the kinetic Cucker-Smale flocking model[END_REF] for the Cucker-Smale equation with strong noise and strong local alignment. In many models [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF], we assume that the velocity u

[f ] is the standard mean velocity R d f (v)v dv R d f (v) dv .
In that case, the equilibria of the interaction mechanism Q are von Mises-Fisher distributions, parametrized by the concentration ρ[f ] = R d f dv and the orientation of the mean velocity

Ω[f ] = u[f ] |u[f ]| , u[f ] ̸ = 0.
More exactly, for any u ∈ R d we introduce the notations

Φ u (v) = |v -u| 2 2 + V (|v|), Z(σ, u) = R d exp - Φ u (v) σ dv, M u (v) = exp -Φu(v) σ Z(σ, u) .
(2.

2) The function Z depends only on σ and |u|, see Proposition 2.2.1, and thus we will write Z = Z(σ, l = |u|). For any smooth particle density f and any u ∈ R d we have

σ∇ v f + f (v -u[f ]) + f ∇ v V (| • |) = σM u (v)∇ v f M u (2.3)
and therefore the interaction mechanism writes

Q(f ) = σdiv v M u[f ] ∇ v f M u[f ] .
As usual, multiplying by f /M u[f ] and integrating by parts with respect to the velocity imply that any equilibrium satisfies

f = ρ[f ]M u[f ] , ρ[f ] = R d f (v) dv but we also need to check that u[ρ[f ]M u[f ] ] = u[f ]. When u[f ] is R d f (v)v dv R d f (v) dv , we have to impose R d f (t, x, v)(v -u[f (t, x, •)]) dv = 0, (t, x) ∈ R + × R d
and after some computations, see Proposition 2.2.1, we deduce that the distribution ρM u is an equilibrium iff l = |u| is a critical point of Z(σ, •), that is ∂ l Z(σ, |u|) = 0. Notice that for any σ > 0, the distribution

ρM 0 (v) = ρ Z(σ, 0) exp - Φ 0 (v) σ = ρ Z(σ, 0) exp - |v| 2 2 + V (|v|) σ
is an equilibrium of Q, with vanishing mean velocity. But for small enough values 0 < σ < σ 0 , equilibria with non vanishing mean velocity occur cf. [START_REF] Bostan | Fluid models with phase transition for kinetic equations in swarming[END_REF][START_REF] Degond | Macroscopic limits and phase transition in a system of self-propelled particles[END_REF][START_REF] Degond | Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics[END_REF][START_REF] Frouvelle | Dynamics in a kinetic model of oriented particles with phase transition[END_REF], leading to a phase transition at some critical value σ 0 > 0; several values for |u|, or only the trivial one, are admissible, depending on the diffusion coefficient σ being smaller or bigger than the critical value σ 0 . The fluid models corresponding to these values σ ∈]0, σ 0 [ are derived in [START_REF] Bostan | Fluid models with phase transition for kinetic equations in swarming[END_REF]. The modulus l = |u| is determined by ∂ l Z(σ, l) = 0, the concentration ρ ∈ R + and the orientation Ω ∈ S d-1 = ξ ∈ R d : |ξ| = 1 verify a system of d conservation laws (the kernel Q satisfies the mass balance but not the momentum balance).

The fluid models come from the kinetic equations by appealing to the conservations of the mass, momentum etc. We are looking for collision invariants [START_REF] Bostan | Fluid models with phase transition for kinetic equations in swarming[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation[END_REF][START_REF] Levermore | Entropic convergence and the linearized limit for the Boltzmann equation[END_REF][START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF], since any collision invariant leads to a conservation law for the macroscopic quantities parametrizing the equilibria of Q. We refer also to [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] for the notion of generalized collision invariants and to [START_REF] Aceves-Sánchez | Hydrodynamic limits for kinetic flocking models of Cucker-Smale type[END_REF] Theorem 1.1 for the relation between collision invariants and generalized collision invariants.

When considering the Cucker-Smale model, we combine noise, alignment and self-propulsion force. In [START_REF] Barbaro | Phase transition and diffusion among socially interacting self-propelled agents[END_REF] the authors investigate first the hydrodynamic limit, when considering strong diffusion and alignment, whereas the self-propulsion force is weaker. Secondly, they study the effect of a large self-propulsion force in the hydrodynamic model : a phase transition appears around some critical temperature. Diffusion corrections were computed as well. Performing the hydrodynamic and large self-propulsion force limit simultaneously, at the level of the kinetic equation is another interesting issue [START_REF] Barbaro | Phase transitions in a kinetic flocking model of Cucker-Smale type[END_REF].

In the present work we combine noise, alignment and self-propulsion force, making the assumption that the individuals adapt their velocity by talking into account the neighbors velocities, but also the self-propulsion force of the individuals, such that the momentum conservation hold true

R d Q(f )(v)v dv = 0.
In that case the velocity u is determined by

R d f ∇ v Φ u dv = 0 leading to u V [f ] = R d f (v + ∇ v V (| • |)) dv R d f dv = R d f ∇ v Φ 0 dv R d f dv .
It is a generalization of the Fokker-Planck kernel (if V = 0 we obtain the usual velocity

u 0 [f ] = R d f v dv R d f dv
), with mass and momentum conservations, as for the Cucker-Smale model. When the alignment velocity is

R d f ∇vΦ 0 dv R d f dv , any f = ρM u is an equi- librium. Indeed, integrating σ∇ v f + f ∇ v Φ u = 0 with respect to v ∈ R d , we obtain R d f ∇ v Φ u dv = 0 leading to u V [ρM u ] = u. From now on, the notation u[f ] will stand for the expression R d f ∇vΦ 0 dv R d f dv
. When considering large time and space units in (2.1), we are led to the kinetic equation

∂ t f ε + v • ∇ x f ε = 1 ε Q(f ε ), (t, x, v) ∈ R + × R d × R d (2.4)
where, for simplicity, we still denote by (t, x) the new time and space coordinates. At least formally, the asymptotic behavior when ε ↘ 0 comes by the mass and momentum balances, leading to the fluid model for the macroscopic quantities ρ, u which parametrize the equilibrium lim ε↘0 f ε = f = ρM u . There is no phase transition around some critical value for the diffusion. 

∈ R + × R d the limit lim ε↘0 f ε (t, x, •) = f (t, x, •) is a equilibrium of Q i.e., f (t, x, v) = ρ(t, x)M u(t,x) (v), (t, x, v) ∈ R + × R d × R d and ∂ t ρ + div x ρ 1 + σ ∂ l Z |u|Z(σ, |u|) u = 0 (2.5) ∂ t ρ 1 + σ ∂ l Z |u|Z(σ, |u|) u + div x ρ 1 + 2σ ∂ l Z |u|Z u ⊗ u + ρσ 2 ∂ 2 ll Z -∂ l Z |u| Z Ω[u] ⊗ Ω[u]
(2.6)

+ σ∇ x ρ 1 + σ ∂ l Z |u|Z(σ, |u|) = 0.
We are looking for a simplified version of the above fluid model. This can be achieved by writing the above equations with respect to the concentration ρ and the current

j(t, x) = R d f (t, x, v)v dv.
For any σ > 0 we introduce the strictly convex function with respect to l given by E(σ, l) = l 2 2 + σ ln Z(σ, l), l ∈ R + , and its convex conjugate

function k → E ⋆ (σ, k), k ∈ R + . Theorem 2.1.2 Assume that lim |v|→+∞ Φ 0 (v) |v| = +∞, with Φ u=0 defined in (2.2). Then j ρ = 1 + σ ∂ l Z |u|Z(σ, |u|) u and (2.5), (2.6) write ∂ t ρ + div x j = 0 ∂ t j + div x j ⊗ j ρ + σ |j| ∂ k E ⋆ (σ, |j|/ρ) I d + σ 1 k 2 ∂ 2 kk E ⋆ - 1 k∂ k E ⋆ k=|j|/ρ j ⊗ j ρ = 0.
Moreover, we have the entropy inequality

∂ t {ρ(σ ln ρ + E ⋆ (σ, |j|/ρ)} + div x σ ln ρ + E ⋆ (σ, k) + σ ∂ k E ⋆ k∂ 2 kk E ⋆ k=|j|/ρ j ≤ 0.
We investigate also the second order approximation of (2.4). For doing that we need to invert the linearization L f of the collision operator Q on (kerL f ) ⊥ . We need a Poincaré inequality, see Lemma 2.3.1. Taking into account the first order corrections leads to the following second order approximation.

Theorem 2.1.3

Assume that lim |v|→+∞

Φ 0 (v) |v| = +∞, with Φ u=0 defined in (2.2), that for any u ∈ R d , the function v → 1 4σ |∇ v Φ u | 2 -1 2 ∆ v Φ u belongs to L 1 loc (R d ), is bounded from below and is coercive i.e. lim |v|→+∞ 1 4σ |∇ v Φ u | 2 - 1 2 ∆ v Φ u = +∞.
Consider the family (f ε ) ε of solutions for (2.4). Then a second order approximation

(ρ ε , jε ) for (ρ ε = R 3 f ε dv, j ε = R 3 f ε v dv) is given by ∂ t ρε + div x jε = 0 ∂ t jε + div x jε ⊗ jε ρε + σ ρε M ũε + ε T ε 2 + ε T ε 3 + ε T ε 4 = 0 54 
where

M ũε = ∂ l E(σ, |ũ ε |) |ũ ε | (I d -Ωε ⊗ Ωε ) + ∂ 2 ll E(σ, |ũ ε |) Ωε ⊗ Ωε T ε 2 = ρε σ c 1 (σ, ũε )(I d -Ωε ⊗ Ωε ){∂ x ũε + t ∂ x ũε - 2(I d -Ωε ⊗ Ωε ) : ∂ x ũε d -1 (I d -Ωε ⊗ Ωε )}(I d -Ωε ⊗ Ωε ) T ε 3 = ρε σ c 2 (σ, ũε )(I d -Ωε ⊗ Ωε ) × (I d -Ωε ⊗ Ωε ) + c 3 (σ, ũε )( Ωε ⊗ Ωε ) × ( Ωε ⊗ Ωε ) +c 4 (σ, ũε )[(I d -Ωε ⊗ Ωε ) × ( Ωε ⊗ Ωε ) + ( Ωε ⊗ Ωε ) × (I d -Ωε ⊗ Ωε )] ∂ x ũε T ε 4 = ρε σ c 5 [(I d -Ωε ⊗ Ωε )(∂ x ũε + t ∂ x ũε )( Ωε ⊗ Ωε ) + ( Ωε ⊗ Ωε )(∂ x ũε + t ∂ x ũε )(I d -Ωε ⊗ Ωε )].
Here This Chapter is organized as follows. In Section 2.2 we establish some preliminaries, concerning the properties of the function Z. It is useful to define the notion of vector and matrix fields which are left invariant by the orthogonal transformations preserving u. We shall continuein this section by studying the structure of such vector and matrix fields. The linearization of the interaction mechanism is studied in Section 2.3. In Section 2.4 we concentrate on the first order approximation. The second order approximation is analyzed in Section 2.5. Some proofs involving technical calculations were postponed to the Appendix 2.6.

Ωε = Ω[ jε ], ũε = ∂ k E ⋆ (σ, | jε |/ρ ε ) Ωε . For any two matrices A, B ∈ M d (R), the notation A × B stands for the linear application A × B : M d (R) → M d (R), given by (A × B)X = (B : X)A, X ∈ M d (R)

Preliminaries

For any u ∈ R d we denote by T u the family of orthogonal transformations of R d preserving u. Clearly T 0 is the family of all orthogonal transformations of R

d . A function f = f (v) is said invariant by the family T u iff f ( t Ov) = f (v), v ∈ R d , O ∈ T u .
The structure of the functions which are left invariant by the transformations of T u is presented below. We recall the following easy result cf. [START_REF] Bostan | Fluid models with phase transition for kinetic equations in swarming[END_REF].

Lemma 2.2.2

Let u be a vector in R d and a : R d → R d be a integrable vector field on R d , which is left invariant by the family T u i.e.,

a( t Ov) = t Oa(v), v ∈ R d , O ∈ T u . Then R d a(v) dv ∈ Ru.
We assume that the following hypothesis holds true

lim |v|→+∞ |v| 2 2 + V (|v|) |v| = +∞. (2.7)
In that case the function Z is finite for any σ > 0, u ∈ R d , because we can write

Z(σ, u) = exp - |u| 2 2σ R d exp - |v| 2 2 + V (|v|) σ + v • u σ dv ≤ exp - |u| 2 2σ R d exp - |v| σ |v| 2 2 + V (|v|) |v| -|u| dv.
Similarly, all the moments of M u are finite

R d |v| p M u (v) dv < +∞, p ∈ N.
We recall the following formula

R d χ v • Ω |v| , |v| dv = |S d-2 | R + r d-1 π 0 χ(cos θ, r) sin d-2 θ dθdr (2.8) 
for any non negative measurable function χ = χ(c, r

) :] -1, 1[×R ⋆ + → R, any Ω ∈ S d-1 and d ≥ 2. Here |S d-2 | is the surface of the unit sphere in R d-1 , for d ≥ 3, and |S 0 | = 2 for d = 2.
Next we concentrate on the properties of the function Z cf. [START_REF] Bostan | Fluid models with phase transition for kinetic equations in swarming[END_REF].

Proposition 2.2.1

Assume that the potential v → V (|v|) satisfies (2.7).

1. Then the function Z(σ, u) depends only on σ and |u|. We will simply write

R d exp - Φ u (v) σ dv = Z(σ, l = |u|).

For any

u ∈ R d , we have R d M u (v)v dv ∈ R + u. In particular we have R d M 0 (v)v dv = 0. 3. ∂ l Z(σ, |u|) = Z(σ, |u|) R d M u (v) v -u σ dv • Ω[u].
In particular ∂ l Z(σ, 0) = 0 for any σ > 0.

4.

∂ 2 ll Z(σ, |u|) = Z(σ, |u|) R d M u (v) v • Ω[u] -|u| σ 2 - 1 σ dv
where the notation Ω[u] stands for u |u| if u ̸ = 0 and any vector in S d-1 if u = 0. In the sequel we will appeal to vector and matrix fields, which are left invariant by the family T u , u ∈ R d . We end this section by indicating the structure of these vector and matrix fields. This will be crucial when searching for an antecedent of the pressure tensor through the linearization of the collision mechanism.

Proposition 2.2.2

Let a : R d → R d be a vector field on R d , which is left invariant by the family T u , u ∈ R d .

1. If u = 0, then there is a function β : R d → R, β(0) = 0, which is left invariant by the family T 0 , such that a

(v) = β(v)v, v ∈ R d .
2. If u ̸ = 0, then there are two functions α :

R d → R, β : R d → R, β| RΩ[u] = 0, which are left invariant by T u , such that a(v) = α(v)Ω[u] + β(v)(v -(v • Ω[u])Ω[u]), v ∈ R d .
Proof.

1. Obviously, for any function β which is left invariant by T 0 , the vector field

a(v) = β(v)v, v ∈ R d is left invariant by T 0 . Conversely, assume that a : R d → R d is left invariant by T 0 . For any ξ ∈ S d-1 ∩ (Rv) ⊥ we consider O ξ = I d -2ξ ⊗ ξ ∈ T 0 and therefore we obtain a(v) = a( t O ξ v) = t O ξ a(v) = a(v) -2(a(v) • ξ)ξ and thus a(v) • ξ = 0. We deduce that a(v) = 0 if v = 0 and (I d -v ⊗ v/|v| 2 )a(v) = 0 if v ∈ R d \{0}.
The desired result follows by taking the function

β(v) = a(v) • v/|v| 2 , v ∈ R d \{0} and β(0) = 0, which is left invariant by T 0 . 2.
Clearly, for any functions α, β which are left invariant by T u , the vector field

a(v) = α(v)Ω[u] + β(v)(v -(v • Ω[u])Ω[u]), v ∈ R d is left invariant by T u . Conversely, assume that a : R d → R d is left invariant by T u . Then a ⊥ (v) := a(v)-(a(v)•Ω)Ω, v ∈ R d is left invariant by T u .
For any ξ ∈ S d-1 ∩(Rv +RΩ) ⊥ , we consider O ξ = I d -2ξ ⊗ξ ∈ T u and therefore we have 1. If u = 0, there are two functions α : R d → R, β : R d → R which are left invariant by T 0 , α(0) = 0, such that

a ⊥ (v) = a ⊥ ( t O ξ v) = t O ξ a ⊥ (v) = a ⊥ (v) -2(a ⊥ (v) • ξ)ξ saying that a ⊥ (v) • ξ = 0. If v ⊥ := v -(v • Ω)v = 0, as we also have a ⊥ (v) • Ω = 0, we deduce that a ⊥ (v) = 0. If v ⊥ ̸ = 0 we obtain (I d -v ⊥ ⊗ v ⊥ /|v ⊥ | 2 )a ⊥ (v) = 0. We consider the function β(v) = a ⊥ (v) • v ⊥ /|v ⊥ | 2 , v ∈ R d \(RΩ), β| RΩ = 0, which is left invariant by T u . In that case a ⊥ (v) = β(v)v ⊥ , v ∈ R d and therefore a(v) = α(v)Ω + β(v)v ⊥ , v ∈ R d , where α = a • Ω is left invariant by T u . A matrix field A : R d → M d (R) is said invariant by the family T u iff A( t Ov) = t OA(v)O, v ∈ R d , O ∈ T u .
A(v) = α(v) v ⊗ v -|v| 2 I d d + β(v)I d , v ∈ R d .
(2.9)

2. If u ̸ = 0, there are the functions α, β, γ ′ , γ ′′ , δ which are left invariant by T u , α| RΩ = 0, γ ′ | RΩ = 0, γ ′′ | RΩ = 0, such that

A(v) = α(v) v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 + β(v)(I d -Ω ⊗ Ω) + γ ′ (v)v ⊥ ⊗ Ω + γ ′′ Ω ⊗ v ⊥ + δ(v)Ω ⊗ Ω, v ∈ R d , d ≥ 3 (2.10)
and

A(v) = β(v)(I 2 -Ω ⊗ Ω) + γ ′ (v)v ⊥ ⊗ Ω + γ ′′ Ω ⊗ v ⊥ + δ(v)Ω ⊗ Ω, v ∈ R 2 .
Proof.

1. Clearly, every matrix field in (2.9) is left invariant by T 0 . Conversely, let us consider a matrix field A which is left invariant by T 0 . Assume for the moment that trA = 0. For any ξ ∈ S d-1 ∩(Rv) ⊥ , we have

O ξ = I d -2ξ ⊗ξ ∈ T 0 and O ξ A(v) = O ξ A( t O ξ v) = A(v)O ξ implying that ξ ⊗ ξA(v) = A(v)ξ ⊗ ξ, and A(v)ξ = (A(v)ξ • ξ)ξ.
It is easily seen that there is λ, depending only on v, such that A(v)ξ = λξ, for any ξ ∈ (Rv) ⊥ . If v = 0, as trA = 0, we obtain

A(0) = 0. If v ∈ R d \{0},
we claim that v is also a proper vector for A(v). Indeed, since the matrix field t A is left invariant by T 0 , we have as before, for any ξ

∈ S d-1 ∩ (Rv) ⊥ A(v)v • ξ = v • t A(v)ξ = v • ( t A(v)ξ • ξ)ξ = 0 saying that A(v)v ∈ (Rv) ⊥⊥ = Rv.
Let us consider {ξ 1 , ..., ξ d-1 } an orthonormal basis of (Rv) ⊥ . The matrix A(v) writes

A(v) = λ(ξ 1 ⊗ ξ 1 + ... + ξ d-1 ⊗ ξ d-1 ) + µ v ⊗ v |v| 2
where (d -1)λ + µ = trA(v) = 0, and therefore

A(v) = λ I d - v ⊗ v |v| 2 -λ(d -1) v ⊗ v |v| 2 = λ I d -d v ⊗ v |v| 2 = - λd |v| 2 v ⊗ v - |v| 2 d I d . By taking α(v) = d d-1 A(v):v⊗v |v| 4 , v ∈ R d \{0} and α(0) = 0, which is left invariant by T 0 , we obtain A(v) = α(v) v ⊗ v - |v| 2 d I d , v ∈ R d
. Now, for any matrix field A which is left invariant by T 0 , the matrix field A ′ = A -trA d I d is left invariant by T 0 , and has zero trace. There is α ′ : R d → R, which is left invariant by T 0 , such that

A ′ (v) = α ′ (v) v ⊗ v - |v| 2 d I d , v ∈ R d and therefore A(v) = α ′ (v) v ⊗ v - |v| 2 d I d + β(v)I d , v ∈ R d , where β = trA d is left invariant by T 0 .
2. Every matrix field in (2.10) is left invariant by T u . Conversely, let us consider a matrix field A, which is left invariant by T u . For any ξ ∈ S d-1 ∩ (Rv + RΩ) ⊥ we have O ξ = I d -2ξ ⊗ ξ ∈ T u , and we deduce as before that there is λ depending only on v such that A(v)ξ = λξ, ξ ∈ (Rv + RΩ) ⊥ .

If v ∈ RΩ, since the matrix field t A is left invariant by T u , we have for any ξ ∈

S d-1 ∩ (RΩ) ⊥ A(v)Ω • ξ = Ω • t A(v)ξ = Ω • ( t A(v)ξ • ξ)ξ = 0 implying that A(v)Ω ∈ (RΩ) ⊥⊥ = RΩ.
In that case, A(v) has two proper subspaces and 

A(v) = trA(v) -A(v)Ω • Ω d -1 (I d -Ω ⊗ Ω) + (A(v)Ω • Ω)Ω ⊗ Ω, v ∈ RΩ. If v ∈ R d \(
A(v) = v ⊥ |v ⊥ | ⊗ A(v) v ⊥ |v ⊥ | + Ω ⊗ A(v)Ω + d-2 i=1 ξ i ⊗ A(v)ξ i = v ⊥ |v ⊥ | ⊗ A(v) v ⊥ |v ⊥ | + Ω ⊗ A(v)Ω + λ I d - v ⊥ |v ⊥ | ⊗ v ⊥ |v ⊥ | -Ω ⊗ Ω . But the vector field v → A(v)v ⊥ , v → A(v)Ω
A(v)v ⊥ = α 1 (v)Ω + β 1 (v)v ⊥ , A(v)Ω = α 2 (v)Ω + β 2 (v)v ⊥
for some functions α 1 , β 1 , α 2 , β 2 which are left invariant by T u , and therefore

t A(v) = v ⊥ |v ⊥ | ⊗ α 1 Ω + β 1 v ⊥ |v ⊥ | + Ω ⊗ (α 2 Ω + β 2 v ⊥ ) -λ v ⊥ ⊗ v ⊥ |v ⊥ | 2 + λ(I d -Ω ⊗ Ω) = β 1 -λ |v ⊥ | 2 v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 + [β 1 + (d -2)λ] I d -Ω ⊗ Ω d -1 + α 1 |v ⊥ | 2 v ⊥ ⊗ Ω + β 2 Ω ⊗ v ⊥ + α 2 Ω ⊗ Ω. Notice that the matrices v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω⊗Ω d-1 , I d -Ω ⊗ Ω, v ⊥ ⊗ Ω, Ω ⊗ v ⊥ , Ω ⊗ Ω are orthogonal with respect to the scalar product B : C = tr( t BC), B, C ∈ M d (R). We obtain easily that A(v) = (d -1) A(v) : v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω⊗Ω d-1 (d -2)|v ⊥ | 4 v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 + A(v) : (I d -Ω ⊗ Ω) I d -Ω ⊗ Ω d -1 + A(v) : Ω ⊗ v ⊥ |v ⊥ | 2 Ω ⊗ v ⊥ + A(v) : v ⊥ ⊗ Ω |v ⊥ | 2 v ⊥ ⊗ Ω + (A(v)Ω • Ω)Ω ⊗ Ω, v ∈ R d \(RΩ), d ≥ 3
and

A(v) = A(v) : (I 2 -Ω ⊗ Ω)(I d -Ω ⊗ Ω) + A(v) : Ω ⊗ v ⊥ |v ⊥ | 2 Ω ⊗ v ⊥ + A(v) : v ⊥ ⊗ Ω |v ⊥ | 2 v ⊥ ⊗ Ω + (A(v)Ω • Ω)Ω ⊗ Ω, v ∈ R d \(RΩ), d = 2.
The second assertion of the proposition follows by taking

α(v) = (d -1) A(v) : v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω⊗Ω d-1 (d -2)|v ⊥ | 4 1 R d \(RΩ) , v ∈ R d , d ≥ 3 β(v) = A(v) : (I d -Ω ⊗ Ω) d -1 , δ(v) = A(v) : Ω ⊗ Ω, v ∈ R d , d ≥ 2 γ ′ (v) = A(v) : v ⊥ ⊗ Ω |v ⊥ | 2 1 R d \(RΩ) , γ ′′ (v) = A(v) : Ω ⊗ v ⊥ |v ⊥ | 2 1 R d \(RΩ) , v ∈ R d , d ≥ 2
which are left invariant by T u .

Corollary 2.2.1

Let A : R d → M d (R) be a field of symmetric matrices on R d which is left invariant by the family T u , u ̸ = 0, d ≥ 2. There are the functions α, β, γ, δ : R d → R which are left invariant by T u , α| RΩ = 0, γ| RΩ = 0 such that

A(v) = α(v) v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 + β(v)(I d -Ω ⊗ Ω) + γ(v)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) + δ(v)Ω ⊗ Ω, v ∈ R d , d ≥ 3
and

A(v) = β(v)(I 2 -Ω ⊗ Ω) + γ(v)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) + δ(v)Ω ⊗ Ω, v ∈ R 2 .

Linearization of the interaction mechanism

As usual when studying the asymptotic behavior of (2.4), we introduce the Hilbert development for

f ε f ε = f + εf 1 + ε 2 f 2 + ... where f = f (t, x, v), f i = f i (t, x, v), i = 1, 2, .
.. are not depending on ε. We have

Q(f ε ) = Q(f ) + εL f f 1 + O(ε 2 )
where

L f := d f Q is the first derivative of Q at f . Inserting the expansions for f ε , Q(f ε ) in (2.4
) and identifying terms of equal powers of ε, we obtain

∂ t f + v • ∇ x f + ε (∂ t f 1 + v • ∇ x f 1 ) + ... = ε -1 Q(f ) + L f (f 1 ) + ... (2.11)
From the above equation, we infer that Q(f ) = 0 and as seen before, for any (t, x) ∈

R + × R d , the individual density f (t, x, •) is a von Mises-Fisher distribution f (t, x, v) = ρ(t, x)M u(t,x) (v), v ∈ R d .
Notice that the equilibria of Q are parametrized by ρ > 0 and u ∈ R d . Indeed, we have

σ∇ v M u + M u ∇ v Φ u = 0 and therefore R d M u (v)∇ v Φ u dv = 0, saying that u[M u ] = u.
For any equilibrium f = ρM u , we investigate the properties of the linear operator L f . Let us define the Hilbert spaces

L 2 Mu = {g : R d → R measurable : R d g M u 2 M u (v) dv < +∞} H 1 Mu = {g : R d → R measurable : R d g M u 2 + ∇ v g M u 2 M u (v) dv < +∞}
endowed with the usual scalar products 1. The linearization L f = dQ f is given by

(g, h) Mu = R d g(v)h(v) M u (v) dv, g, h ∈ L 2 Mu ((g, h)) Mu = R d g(v) M u (v) h(v) M u (v) + ∇ v g M u • ∇ v h M u M u (v) dv, g, h ∈ H 1
L f g = div v σ∇ v g + g∇ v Φ u -M u (v) R d g(v ′ )∇Φ u (v ′ ) dv ′ .
2. The operator L f satisfies the mass and momentum conservations

R d L f g dv = 0, R d L f g v dv = 0.
3. The null space of L f is given by ker

L f = span{M u , v 1 M u , ..., v d M u }.
Proof.

1. By direct computation we obtain

d ds s=0 u[f + sg] = d ds s=0 R d (v + ∇ v V (| • |))(f + sg) dv R d (f + sg) dv = R d (v + ∇ v V (| • |))g dv R d f (v) dv -R d (v + ∇ v V (| • |))f dv ( R d f (v) dv) 2 R d g(v) dv = R d g(v)∇ v Φ u dv R d f (v) dv implying that L f g = d ds s=0 Q(f + sg) = div v σ∇ v g + g∇ v Φ u -M u (v) R d g(v ′ )∇Φ u (v ′ ) dv ′ . 2. It is easily seen that R d L f g dv = 0 and R d L f g v dv = - R d {σ∇ v g + g(v)∇ v Φ u -M u (v) R d g(v ′ )∇Φ u (v ′ ) dv ′ } dv = - R d g(v)∇ v Φ u dv + R d g(v ′ )∇Φ u (v ′ ) dv ′ = 0.
3. We introduce the notation

W (g) = σ R d M u (v)∇ v g Mu dv, g ∈ H 1
Mu . Notice that for any g ∈ H 1

Mu , W (g) is well defined and we have

|W (g)| ≤ σ R d M u (v) ∇ v g M u dv (2.12) ≤ σ R d M u (v) ∇ v g M u 2 dv 1/2 ≤ σ∥g∥ Mu . Moreover, since σ∇ v M u + M u (v)∇ v Φ u = 0, we can write W (g) = -σ R d ∇ v M u g M u (v) dv = R d g(v)∇ v Φ u dv.
Notice that, thanks to the momentum balance, we have

-σ(L f g, h) Mu = -σ R d L f g h(v) M u (v) dv = R d [σ∇ v g + g(v)∇ v Φ u -M u (v)W (g)] • σ∇ v h M u dv = R d [σM u (v)∇ v g M u -M u (v)W (g)] • [σM u (v)∇ v h M u -M u (v)W (h)]M -1 u (v) dv.
In particular

-σ(L f g, g) Mu = R d σ∇ v g M u -W (g) 2 M u (v) dv ≥ 0 (2.13)
and therefore the operator -L f is symmetric and positive with respect to the scalar product of L 2 Mu . Thanks to the previous computations, we identify the kernel of the operator L f . From (2.13) 

it is clear that if g ∈ ker L f , than σ∇ v g Mu -W (g) = 0 implying that g ∈ span{M u , v 1 M u , ..., v d M u }. Therefore we have the inclusion ker L f ⊂ span{M u , v 1 M u , ..., v d M u }. For the converse inclusion, notice that W (M u ) = σ R d M u ∇ v M u M u dv = 0, W (v i M u ) = σ R d M u ∇ v v i M u M u dv = σe i , 1 ≤ i ≤ d.
We obtain

L f M u = div v {σM u ∇ v M u M u -M u W (M u )} = 0 and L f (v i M u ) = div v {σM u ∇ v v i Mu Mu -M u W (v i M u )} = div v {σM u e i -M u σe i } = 0, 1 ≤ i ≤ d implying that span{M u , v 1 M u , ..., v d M u } ⊂ ker L f .
We also need to determine the range of the linearization L f .

Definition 2.3.1

We say that g ∈

H 1 Mu is a variational solution of -L f g = p, with p ∈ L 2 Mu iff R d σ∇ v g M u -W (g) • σ∇ v h M u -W (h) M u (v) dv = σ R d p(v)h(v) M u (v) dv (2.

14) for any h ∈ H 1

Mu .

If g ∈ H 1

Mu is a variational solution of -L f g = p, p ∈ L 2 Mu , then taking h = M u in (2.14) we obtain R d p(v) dv = 0. Similarly, by taking h i = v i M u , we obtain R d p(v)v i dv = 0, 1 ≤ i ≤ d, saying that a necessary condition for solving -L f g = p is p ∈ (ker L f ) ⊥ . We claim that this condition is also sufficient. We need a Poincaré inequality, which comes from the equivalence between the Fokker-Planck and Schrödinger operators [START_REF] Bonnaillie-Noël | Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations[END_REF]. Under suitable confining assumptions (cf. Theorem XIII.67 in [START_REF] Reed | Methods of modern mathematical physics[END_REF]) we deduce

Lemma 2.3.1 Let u be a vector in R d . Assume that the function v → 1 4σ |∇ v Φ u | 2 -1 2 ∆ v Φ u belongs to L 1 loc (R d )
, is bounded from below and is coercive i.e.

lim |v|→+∞ 1 4σ |∇ v Φ u | 2 - 1 2 ∆ v Φ u = +∞.
Therefore there is λ u > 0 such that for any g ∈ H 1 Mu we have 

σ R d ∇ v g M u 2 M u (v) dv ≥ λ u R d g(v) M u (v) - R d g(v ′ ) dv ′ 2 M u (v) dv. ( 2 
R d p(v) dv = 0, R d p(v)v dv = 0, there is a unique variational solution g ∈ H 1 Mu for -L f g = p, satisfying R d g(v) dv = 0, R d g(v)v dv = 0. Moreover we have sup p∈(ker L f ) ⊥ ∥g∥ Mu |p| Mu < +∞.

Proof.

It is a direct consequence of Lax-Milgram lemma, applied to the bilinear symmetric form

a : H×H → R, a(g, h) = R d σ∇ v g M u -W (g) • σ∇ v h M u -W (h) M u (v) dv, g, h ∈ H
and the linear form l :

H → R, l(h) = σ R d p(v)h(v) Mu(v) dv, h ∈ H where H = {h ∈ H 1 Mu : R d h(v) dv = 0, R d h(v)v dv = 0}. Since the linear applications h → R d h(v) dv, h → R d h(v)v dv are bounded on L 2
Mu and thus on H 1 Mu , we deduce that H is a close subspace in H 1

Mu and therefore a Hilbert space with respect to the scalar product of H 1

Mu . Thanks to (2.12), we have for any g, h

∈ H 1 Mu |a(g, h)| ≤ σ ∇ v g M u + |W (g)| M u Mu σ ∇ v h M u + |W (h)| M u Mu ≤ 4σ 2 R d ∇ v g M u 2 M u (v) dv 1/2 R d ∇ v h M u 2 M u (v) dv 1/2 ≤ 4σ 2 ∥g∥ Mu ∥h∥ Mu
saying that a is bounded on H 1 Mu × H 1 Mu , and also on H × H. We concentrate now on the coercivity of a. Notice that for any g, h ∈ H 1 Mu we have

R d M u (v)σ∇ v g M u • σ∇ v h M u dv = R d M u (v) σ∇ v g M u -W (g) + W (g) • σ∇ v h M u -W (h) + W (h) dv = a(g, h) + W (g) • W (h) + R d σM u (v)∇ v g M u -M u (v)W (g) dv • W (h) + W (g) • R d σM u (v)∇ v h M u -M u (v)W (h) dv = a(g, h) + W (g) • W (h).
We claim that inf h∈H,|W (h)|=1 a(h, h) > 0. Indeed, if it is not the case, there is a sequence

(h n ) n ⊂ H, |W (h n )| = 1, n ≥ 1 such that a(h n , h n ) < 1 n , n ≥ 1. This sequence is bounded in H 1 Mu because σ 2 R d M u (v) ∇ v h n M u 2 dv = a(h n , h n ) + |W (h n )| 2 < 1 n + 1, n ≥ 1
and by the Poincaré inequality (2.15)

λ u R d h n M u 2 M u (v) dv ≤ σ R d ∇ v h n M u 2 M u (v) dv ≤ 1 σ 1 + 1 n , n ≥ 1.
There is a sequence (h n k ) k which converges weakly toward some function h in H.

Since the bilinear form a is bounded and non negative on H × H, we have

0 ≤ a(h, h) ≤ lim inf k→+∞ a(h n k , h n k ) ≤ lim inf k→+∞ 1 n k = 0.
We deduce that a(h, h) = 0, saying that

σ∇ v h Mu -W (h) = 0. It comes easily that h ∈ span{M u , v 1 M u , ..., v d M u } implying that h = 0. Since the linear application W is bounded on H 1
Mu , we obtain a contradiction

0 = |W (h)| = lim k→+∞ |W (h n k )| = lim k→+∞ 1 = 1.
Therefore there is a constant µ u such that

a(h, h) ≥ µ u |W (h)| 2 for any h ∈ H.

Finally we obtain for any

h ∈ H 2a(h, h) ≥ a(h, h) + µ u |W (h)| 2 ≥ min{1, µ u }σ 2 R d M u (v) ∇ v h M u 2 dv ≥ min{1, µ u }σλ u R d h M u 2 M u (v) dv
saying that the bilinear form a is coercive

4a(h, h) ≥ min{1, µ u }σ 2 R d M u (v) ∇ v h M u 2 dv + min{1, µ u }λ u σ R d M u (v) h M u 2 dv ≥ σ min{1, µ u } min{σ, λ u }∥h∥ 2 Mu , h ∈ H.
Clearly, the linear form 

l(h) = σ R d p(v)h(v)/M u (v)

The first order approximation

The goal of this section is to investigate the formal limit of (2.4) when ε ↘ 0. The terms of order 1 in (2.11) lead to

∂ t f + v • ∇ x f = L f f 1 , (t, x, v) ∈ R + × R d × R d (2.16) with f (t, x, v) = ρ(t, x)M u(t,x) (v) = ρ(t, x) exp - Φ u(t,x) (v) σ Z(σ, |u(t, x)|) .
Multiplying (2.16) by 1 and v, integrating with respect to v and by using the fact that the operator L f preserves the mass and momentum, we get

∂ t R d f dv + div x R d f v dv = R d L f (f 1 ) dv = 0 (2.17) ∂ t R d f v dv + div x R d f v ⊗ v dv = R d L f (f 1 )v dv = 0. (2.18) 
We determine the fluid equations satisfied by the macroscopic quantities ρ, u. By Proposition 2.2.1 we have

R d f (t, x, v)v dv = ρ(t, x) R d M u (v)(v • Ω[u]) dv Ω[u]
and

R d M u (v)(v • Ω[u]) dv = σ ∂ l Z(σ, |u|) Z(σ, |u|) + |u| = |u| 1 + σ ∂ l Z(σ, |u|) |u|Z(σ, |u|) . (2.19)
Therefore the equation (2.17) becomes

∂ t ρ + div x ρ 1 + σ ∂ l Z |u|Z u = 0.
We analyze now (2.18). We need to express

R d M u (v)v ⊗ v dv in terms of u. It happens that the elements of the tensor R d M u (v)v ⊗ v dv depend only on two moments: R d M u (v)(v • Ω) 2 dv and R d M u (v)|v ⊥ | 2 dv, v ⊥ = v -(v • Ω)Ω.
The expressions for these two moments, in terms of the function Z are detailed in the following lemma.

Lemma 2.4.1 1. For any u ∈ R d \ {0} we have R d M u (v) |v| 2 -(v • Ω[u]) 2 d -1 dv = σ R d M u (v)(v • Ω[u]) dv |u| = σ + σ 2 ∂ l Z(σ, |u|) |u|Z(σ, |u|) .
2. For any Ω ∈ S d-1 we have

R d M 0 (v)(v • Ω) 2 dv = σ + σ 2 ∂ 2 ll Z(σ, 0) Z(σ, 0) . Proof. 1. Multiplying σ∇ v M u + M u (v)∇ v Φ u = 0 by (|v| 2 I d -v ⊗ v)Ω with Ω = Ω[u] = u/|u|, we deduce after integration with respect to v ∈ R d R d σ∇ v M u • (|v| 2 I d -v ⊗ v)Ω dv + R d M u (v)∇ v Φ u • (|v| 2 I d -v ⊗ v)Ω dv = 0. (2.20) But div v {(|v| 2 I d -v ⊗ v)Ω} = -(d -1)(v • Ω) and ∇ v Φ u • (|v| 2 I d -v ⊗ v)Ω = [v -u + ∇ v V (| • |)] • (|v| 2 I d -v ⊗ v)Ω = -|v| 2 |u| + (v • Ω) 2 |u|.
Therefore (2.20) becomes

σ(d -1) R d M u (v)(v • Ω) dv - R d M u (v)[|v| 2 -(v • Ω) 2 ] dv |u| = 0 implying, thanks to (2.19) that R d M u (v) |v| 2 -(v • Ω[u]) 2 d -1 dv = σ R d M u (v)(v • Ω[u]) dv |u| = σ + σ 2 ∂ l Z(σ, |u|) |u|Z(σ, |u|) .
2. By the last point in Proposition 2.2.1, with u = 0, we have for any

Ω ∈ S d-1 ∂ 2 ll Z(σ, 0) Z(σ, 0) = R d M 0 (v) (v • Ω) 2 σ 2 dv - 1 σ
which is exactly our conclusion.

The reduction of the tensor

R d M u (v)v ⊗ v dv to the moments R d M u (v)(v • Ω) 2 dv, R d M u (v)|v ⊥ | 2 dv
comes by the invariance of M u with respect to the transformations of T u . The details of these computations are postponed to Appendix 2.6, see the proof of Lemma 2.4.2.

Lemma 2.4.2 1. For any

u ∈ R d \ {0} we have R d M u (v)v⊗v dv = 1 + 2σ ∂ l Z |u|Z u⊗u+σ 2 ∂ 2 ll Z -∂ l Z |u| Z Ω[u]⊗Ω[u]+ σ + σ 2 ∂ l Z |u|Z (σ, |u|) I d 2.
We have

R d M 0 (v)v ⊗ v dv = σ + σ 2 ∂ 2 ll Z(σ, 0) Z(σ, 0) I d .

Remark 2.4.1

As ∂ l Z(σ, 0) = 0, σ > 0, we have

lim u→0 1 + 2σ ∂ l Z |u|Z (σ, |u|) u ⊗ u = 0, lim u→0 σ 2 ∂ 2 ll Z -∂ l Z |u| Z = 0 lim u→0 σ + σ 2 ∂ l Z(σ, |u|) |u|Z(σ, |u|) = σ + σ 2 ∂ 2 ll Z(σ, 0) Z(σ, 0) .
Therefore the formulae in Lemma 2.4.2 are coherent as u → 0.

Based on the previous computations, we have

R d ρM u v ⊗ v dv = ρ 1 + 2σ ∂ l Z |u|Z u ⊗ u + ρσ 2 ∂ 2 ll Z -∂ l Z |u| Z Ω[u] ⊗ Ω[u] + ρ σ + σ 2 ∂ l Z |u|Z I d reducing to ρ σ + σ 2 ∂ 2 ll Z(σ,0) Z(σ,0)
I d when u = 0, and we obtain Theorem 2.1.1. A more convenient macroscopic quantity when studying fluid models is the current j

(t, x) = R d f (t, x, v)v dv, (t, x) ∈ R + × R d .
The mass balance simply writes ∂ t ρ + div x j = 0. In order to write the momentum balance with respect to ρ, j we need to express u in terms of ρ, j. This can be done by using the function E(σ, l) = l 2 2 +σ ln Z(σ, l), (σ, l) ∈ R ⋆ + ×R + . The properties of the function E are discussed in the next proposition.

Proposition 2.4.1

The function E(σ, •) is strictly convex for any σ > 0.

Proof.

The first derivative of E with respect to l is

∂ l E = l + σ ∂ l Z
Z and the second one is

∂ 2 ll E = 1 + σ ∂ 2 ll Z Z -σ (∂ l Z) 2 Z 2 .
We are done if we prove that ∂ 2 ll E(σ, l) > 0 for any l > 0. For any l > 0, Ω ∈ S d-1 we know by Proposition 2.2.1 that

∂ l Z(σ, l) Z(σ, l) = R d M lΩ (v) (v -lΩ) • Ω σ dv and 1 + σ ∂ 2 ll Z(σ, l) Z(σ, l) = R d M lΩ (v) ((v -lΩ) • Ω) 2 σ dv.
We deduce that

σ ∂ l Z Z 2 = σ R d M lΩ (v) (v -lΩ) • Ω σ dv 2 ≤ 1 σ R d M lΩ (v) M lΩ (v)|(v -lΩ) • Ω| dv 2 < 1 σ R d M lΩ (v)((v -lΩ) • Ω) 2 dv = 1 + σ ∂ 2 ll Z(σ, l) Z(σ, l)
saying that ∂ 2 ll E(σ, l) > 0 for any σ > 0, l > 0.

We introduce the convex conjugate function

E ⋆ (σ, k) = sup l∈R + {kl -E(σ, l)}, k ∈ R + .
We are looking for a relation between the current j and the velocity u. From Proposition 2.2.1, second and third statements, we infer that

j ρ = R d M u (v)v dv = R d M u (v)(v • Ω[u]) dv ≥0 Ω[u] = |u| + σ ∂ l Z Z(σ, |u|) Ω[u].
The current j and the velocity u being oriented in the same direction, we get

|j| ρ = R d M u (v)(v • Ω[u]) dv = |u| + σ ∂ l Z Z(σ, |u|) = ∂ l E(σ, l = |u|) (2.21) implying that |u| = ∂ k E ⋆ σ, k = |j| ρ . (2.22)
Moreover taking the derivative with respect to l in

∂ k E ⋆ (σ, k = ∂ l E(σ, l)) = l, we obtain ∂ 2 kk E ⋆ (σ, k = ∂ l E(σ, l))∂ 2 ll E(σ, l) = 1.
We introduce the notation

M u = R d M u (v) (v -j ρ ) ⊗ (v -j ρ ) σ dv. (2.23) 
The tensor 

R d M u (v)v ⊗ v dv,
R d M u (v)v ⊗ v dv = σ ∂ l E(σ, |u|) |u| I d + j ⊗ j ρ 2 + σ ∂ 2 ll E(σ, |u|) - ∂ l E(σ, |u|) |u| Ω[u] ⊗ Ω[u]
and 

M u = ∂ l E(σ, |u|) |u| (I d -Ω[u] ⊗ Ω[u]) + ∂ 2 ll E(σ, |u|)Ω[u] ⊗ Ω[u].

We have

R d M 0 (v)v ⊗ v dv = σ∂ 2 ll E(σ, 0)I d and M 0 = ∂ 2 ll E(σ, 0)I d . Remark 2.4.2 We have ∂ l E(σ, 0) = σ ∂ l Z(σ,0) Z(σ,0) = 0
σM u = R d M u (v)((v - j ρ ) • Ω[u]) 2 dv Ω[u] ⊗ Ω[u] + R d M u (v) |v ⊥ | 2 d -1 dv (I d -Ω[u] ⊗ Ω[u]) where v ⊥ = v -(v • Ω[u]) Ω[u], implying that R d M u (v)((v - j ρ ) • Ω[u]) 2 dv = σ∂ 2 ll E(σ, |u|), R d M u (v) |v ⊥ | 2 d -1 dv = σ ∂ l E(σ, |u|) |u| .

For any

Ω ∈ S d-1 we have R d M 0 (v)(v • Ω) 2 dv = σ∂ 2 ll E(σ, 0).
Based on the results obtained in Lemmas 2.4.2, 2.4.3, we are ready to determine the fluid model with respect to ρ, j. We complete this limit model by the entropy inequality satisfied by ρ and j.

Proof. (of Theorem 2.1.

2)

The mass balance gives the continuity equation

∂ t ρ + div x j = 0. (2.24)
Thanks to the equalities

|j| ρ = ∂ l E(σ, |u|), |u| = ∂ k E ⋆ σ, |j| ρ , ∂ 2 ll E(σ, |u|) = 1 ∂ 2 kk E ⋆ (σ, |j| ρ )
we obtain

R d ρM u (v)v ⊗ v dv = j ⊗ j ρ + σ |j| |u| I d + σ 1 k 2 ∂ 2 kk E ⋆ - 1 k∂ k E ⋆ k=|j|/ρ j ⊗ j ρ .
Therefore the momentum balance becomes

∂ t j + div x j ⊗ j ρ + σ |j| |u| I d + σ 1 k 2 ∂ 2 kk E ⋆ - 1 k∂ k E ⋆ k=|j|/ρ j ⊗ j ρ = 0. (2.25)
Observe that

σ |j| |u| I d + σ 1 k 2 ∂ 2 kk E ⋆ - 1 k∂ k E ⋆ k=|j|/ρ j ⊗ j ρ = σρ ∂ l E(σ, |u|) |u| (I d -Ω[u] ⊗ Ω[u]) + σρ∂ 2 ll E(σ, |u|)Ω[u] ⊗ Ω[u] = σρM u
and therefore (2.25) becomes

∂ t j + div x j ⊗ j ρ + σρM u = 0. (2.26)
Using the continuity equation we observe that

∂ t j + div x j ⊗ j ρ = (∂ t ρ) j ρ + ρ∂ t j ρ + div x j j ρ + (j • ∇ x ) j ρ = ρ ∂ t j ρ + j ρ • ∇ x j ρ
and the above momentum balance also writes

∂ t j ρ + j ρ • ∇ x j ρ + σ ρ ∇ x ρ k ∂ k E ⋆ (σ, k) k=|j|/ρ + σ ρ div x ρ 1 k 2 ∂ 2 kk E ⋆ - 1 k∂ k E ⋆ k=|j|/ρ j ρ ⊗ j ρ = 0.
We concentrate now on the entropy inequality. We have

R d Q(f ε ) σ(1 + ln f ε ) + |v| 2 2 + V (|v|) dv = - R d [σ∇ v f ε + f ε (v -u[f ε ] + ∇ v V (| • |)] • σ ∇ v f ε f ε + v + ∇ v V (| • |) dv = - R d |σ∇ v f ε + f ε ∇ v Φ u[f ε ] | 2 f ε dv ≤ 0, (t, x) ∈ R + × R d .
Therefore, multiplying (2.4) by σ(1

+ ln f ε ) + |v| 2 2 + V (|v|), one gets after integration with respect to v ∈ R d ∂ t R d f ε σ ln f ε + |v| 2 2 + V (|v|) dv + div x R d vf ε σ ln f ε + |v| 2 2 + V (|v|) dv ≤ 0.
When ε ↘ 0 we expect that

∂ t R d f σ ln f + |v| 2 2 + V (|v|) dv + div x R d vf σ ln f + |v| 2 2 + V (|v|) dv ≤ 0.
We have

σ ln f + |v| 2 2 + V (|v|) = σ ln ρ Z -Φ u (v) + Φ 0 (v) = σ ln ρ Z - |u| 2 2 + v • u implying that R d f (σ ln f + Φ 0 (v)) dv = R d f (σ ln ρ -σ ln Z - |u| 2 2 + v • u) dv = σρ ln ρ -ρσ ln Z -ρ |u| 2 2 + j • u = σρ ln ρ -ρE(σ, |u|) + |j| |u| = σρ ln ρ + ρ |j| ρ |u| -E(σ, |u|) = σρ ln ρ + ρE ⋆ σ, |j| ρ .
Similarly, thanks to Lemma 2.4.3, we compute

R d f (σ ln f + Φ 0 (v))v dv = R d f (σ ln ρ -σ ln Z - |u| 2 2 + v • u)v dv = σ ln ρ j -σ ln Z j - |u| 2 2 j + ρ R d M u (v)v ⊗ v dv u = σ ln ρ j -E(σ, |u|)j + j ⊗ j ρ u + σρ∂ 2 ll Eu = σ ln ρ j + |j| ρ |u| -E(σ, |u|) j + σρ∂ 2 ll Eu = σ ln ρ j + E ⋆ σ, |j| ρ j + σ ∂ k E ⋆ (σ, |j|/ρ) ∂ 2 kk E ⋆ (σ, |j|/ρ)|j|/ρ j.
Therefore ρ and j satisfy the entropy inequality

∂ t {ρ(σ ln ρ + E ⋆ (σ, |j|/ρ))} + div x σ ln ρ + E ⋆ (σ, k) + σ ∂ k E ⋆ k∂ 2 kk E ⋆ k=|j|/ρ j ≤ 0.
(2.27)

Remark 2.4.4 When V = 0, the equilibria are the standard Maxwellians on R d M u (v) = 1 (2πσ) d/2 exp - |v -u| 2 2σ , v ∈ R d .
In that case the function l → Z(σ, l) is constant

Z(σ, l) = R d exp - |v -u| 2 2σ dv = (2πσ) d/2
and we obtain j = ρu, that is, in that case u is the usual mean velocity. Clearly we have

E(σ, l) = l 2 2 + σ ln(2πσ) d/2 , E ⋆ (σ, k) = k 2 2 -σ ln(2πσ) d/2
and therefore

∂ l E(σ, l) = l, ∂ 2 ll E(σ, l) = 1, ∂ k E ⋆ (σ, k) = k, ∂ 2 kk E ⋆ (σ, k) = 1.
The equations (2.24), (2.25) become the compressible Euler equations for the gas dynamics

∂ t ρ + div x (ρu) = 0, ∂ t (ρu) + div x (ρu ⊗ u + σρI d ) = 0.
The entropy inequality (2.27) writes

∂ t {ρ(σ ln ρ + |u| 2 2 -σ ln(2πσ) d/2 )} + div x {(σ ln ρ + |u| 2 2 -σ ln(2πσ) d/2 + σ)j} ≤ 0
which is the entropy inequality for the Euler equations

∂ t (σρ ln ρ + ρ |u| 2 2 ) + div x {(σρ ln ρ + ρ |u| 2 2 + σρ)u} ≤ 0.

The second order approximation

Motivated by the derivation of fluid models including diffusion terms, we have to consider second-order approximations. That is, we need to take into account the first-order corrections when approximating the particle density i.e., f ε ≈ f + εf 1 . In that case, we search for fluid equations involving ρ[f + εf 1 ] and j[f + εf 1 ]. We are led to a model similar to the compressible Navier-Stokes equations. We appeal to the mass and momentum balances of (2.4)

∂ t R d f ε dv + div x R d f ε v dv = 0
(2.28)

∂ t R d f ε v dv + div x R d f ε v ⊗ v dv = 0. (2.29)
We introduce the notations

f ε = f + εf 1 , ρε = ρ[ f ε ] = R d f ε dv, jε = j[ f ε ] = R d f ε v dv
and therefore we expect from the balances (2.28), (2.29) that

∂ t ρε + div x jε = 0 (2.30) ∂ t jε + div x R d f ε v ⊗ v dv = 0. (2.31)
We need to compute

R d f ε v ⊗ v dv = R d (f + εf 1 )v ⊗ v dv.
The notation P u stands for the orthogonal projection on the subspace ker L f ⊂ L 2

Mu , for any equilibrium f = ρM u . We can write

R d f ε v ⊗ v dv = R d (f + εP u f 1 )v ⊗ v dv + ε R d (f 1 -P u f 1 )v ⊗ v dv. The tensor R d M u (v)v ⊗ v dv has been computed in Lemma 2.4.
3 and therefore, we have a formula for

R d f v ⊗ v dv in terms of ρ[f ], j[f ].
It happens that, up to second-order terms, the same formula holds true for

R d (f + εP u f 1 )v ⊗ v dv. Proposition 2.5.1 For any equilibrium f = ρM u and g ∈ ker L f we have, as ε ↘ 0 R d (f + εg)v ⊗ v dv = j[f + εg] ⊗ j[f + εg] ρ[f + εg] + σ |j[f + εg]| ∂ k E ⋆ (σ, |j[f + εg]|/ρ[f + εg]) I d + σ 1 k 2 ∂ 2 kk E ⋆ - 1 k∂ k E ⋆ k=|j[f +εg]|/ρ[f +εg] j[f + εg] ⊗ j[f + εg] ρ[f + εg] + O(ε 2 ).

Proof.

We introduce the notations

R ε = ρ[f + εg], J ε = j[f + εg], U ε = ∂ k E ⋆ (σ, |J ε |/R ε )Ω[J ε ] for any ε ≥ 0. The equilibria F ε = R ε M U ε , ε ≥ 0 verify R d F ε dv = R ε = R d (f + εg) dv R d F ε v dv = R ε R d M U ε (v) v dv = R ε R d M U ε (v)(v • Ω[U ε ]) dv Ω[U ε ] = R ε |U ε | + σ ∂ l Z Z (σ, |U ε |) Ω[U ε ] = R ε ∂ l E(σ, |U ε |) Ω[U ε ] = R ε |J ε | R ε Ω[U ε ] = J ε = R d (f + εg) v dv.
Therefore, we have for any

ψ ∈ span{1, v 1 , ..., v d } R d (f + εg -F ε )ψ(v) dv = 0, ε ≥ 0.
Taking the derivative with respect to ε at ε = 0, one gets for any

ψ ∈ span{1, v 1 , ..., v d } R d g - d dε | ε=0 F ε ψ(v) dv = 0.
It is easily seen, by direct computation, that d dε | ε=0 F ε ∈ ker L f and thus we obtain

d dε | ε=0 F ε = P u g = g.
Finally, we have

f + εg = F ε + f + εg -F ε = R ε M U ε + f -F 0 =0 +ε g - d dε | ε=0 F ε =0 +O(ε 2 ) = R ε M U ε + O(ε 2 )
and thanks to Lemma 2.4.3 we deduce

R d (f + εg)v ⊗ v dv = R d R ε M U ε v ⊗ v dv + O(ε 2 ) = J ε ⊗ J ε R ε + σ |J ε | |U ε | I d + σ 1 k 2 ∂ 2 kk E ⋆ - 1 k∂ k E ⋆ k=|J ε |/R ε J ε ⊗ J ε R ε + O(ε 2 ) = J ε ⊗ J ε R ε + σR ε M U ε + O(ε 2 ).
Recall that we need to compute

R d (f + εf 1 )v ⊗ v dv. By the previous proposition, we are done if we determine ε R d (f 1 -P u f 1 )v ⊗ v dv. The quantity f 1 -P u f 1 comes by (2.16) ∂ t f + v • ∇ x f = L f f 1 = L f (f 1 -P u f 1 )
which is solvable, cf. Proposition 2.3.2, because the macroscopic quantities defining the equilibria f (t, x, •) were determined by imposing the mass and momentum conservations. We need to compute the antecedent by

L f of ∂ t f + v • ∇ x f .
It is instructive to determine first a fluid second-order approximation in a simplified case when replacing the interaction mechanism Q by a BGK kernel, whose equilibria coincide with that of Q.

The BGK interaction mechanism

As we will see, the linearization of this BGK operator reduces to the opposite of the identity on the orthogonal of its kernel, and therefore the antecedent of ∂ t f + v • ∇ x f comes immediately, without any computation.

Proposition 2.5.2

We consider the kernel

Q BGK (f ) = ρ[f ]M U [f ] -f where ρ[f ] = R d f (v) dv and the velocity U [f ] is given by U [f ] = 0, if j[f ] = 0 l j[f ] |j[f ]| , |j[f ]| ρ[f ] = ∂ l E(σ, l), if j[f ] ̸ = 0.
The interaction mechanisms Q BGK , Q have the same equilibria. The kernel Q BGK conserves the mass and momentum.

Proof.

Any equilibrium of Q has the form f = ρM u where ρ = ρ[f ] ∈ R + and u ∈ R d . We claim that U [ρM u ] = u. Indeed, if u = 0, then j[f ] = R d ρM 0 (v)v dv = 0 and therefore U [ρM u ] = 0. If u ∈ R d \ {0} we have by Proposition 2.2.1 ∂ l E(σ, |u|) = |u| + σ ∂ l Z(σ, |u|) Z(σ, |u|) = R d M u (v)(v • Ω[u]) dv = |j[f ]| ρ[f ] = ∂ l E(σ, |U [f ]|) saying that |U [f ]| = |u| and U [f ] = |U [f ]| j[f ] |j[f ]| = |u| j[f ] |j[f ]| = u.
Conversely, any equilibrium of Q BGK is a equilibrium of Q. We investigate now the mass and momentum balances. For any particle density f = f (v) we have

R d Q BGK (f )(v) dv = R d (ρ[f ]M U [f ] (v) -f (v)) dv = 0 and R d Q BGK (f )(v)v dv = R d ρ[f ]M U [f ] (v)v dv -j[f ] = ρ[f ] R d M U [f ] (v)(v • Ω[j]) dv Ω[j] -j[f ] = ρ[f ] |U [f ]| + σ ∂ l Z Z (σ, |U [f ]|) Ω[j] -j[f ] = |j[f ]|Ω[j] -j[f ] = 0.
Since the kernels Q, Q BGK have the same equilibria and conservations, the first-order approximations for

∂ t f ε + v • ∇ x f ε = 1 ε C(f ε ) with C = Q or C = Q BGK coincide, being
given by (2.17), (2.18). The linearization of Q BGK is given by.

Proposition 2.5.3

We denote by L BGKf the linearization of Q BGK around the equilibrium f = ρM u . Then we have

L BGKf g = -g + P u g, g ∈ L 2
Mu . In particular, the kernels of the linearizations of Q, Q BGK around any equilibrium, coincide.

Proof.

For any g ∈ L 2

Mu we have

L BGKf g = d dε | ε=0 Q BGK (f + εg) = d dε | ε=0 {ρ[f + εg]M U [f +εg] -f -εg} = ρ[g]M U [f ] + ρ d dε | ε=0 M U [f +εg] -g = ρ[g]M u + ρ d dε | ε=0 M U [f +εg] -g. It is easily seen that d dε | ε=0 M U [f +εg] ∈ ker L f and that for any ψ ∈ span{1, v 1 , ..., v d } R d L BGKf g ψ(v) dv = d dε | ε=0 R d Q BGK (f + εg)ψ(v) dv = 0.
We deduce that

ρ[g]M u + ρ d dε | ε=0 M U [f +εg] -P u g = P u ρ[g]M u + ρ d dε | ε=0 M U [f +εg] -g = 0 implying that L BGKf g = P u g -g, g ∈ L 2
Mu . Clearly we have

ker L BGKf = span{M u , v 1 M u , ..., v d M u } = ker L f .
In the sequel we concentrate on the computation of

R d (f 1 -P u f 1 )v ⊗ v dv = - R d L BGKf (f 1 )v ⊗ v dv = - R d (∂ t + v • ∇ x f )v ⊗ v dv. (2.32)
Let us determine the formula for the orthogonal projection on ker L f ⊂ L 2 Mu , for any equilibrium f = ρM u .

Proposition 2.5.4 For any function g ∈ L 2

Mu , we have

P u g = ρ[g]M u + M -1 u j[g] - j ρ ρ[g] • v -j ρ σ M u .

Proof.

The orthogonal projection of g on ker L f writes

P u g = αM u + β • v -j ρ σ M u with α ∈ R, β ∈ R d . The coefficients α, β are determined by imposing R d (g -P u g) dv = 0, R d (g -P u g)v dv = 0. We obtain α = R d g(v) dv = ρ[g] and R d g(v) v - j ρ dv = R d M u (v) (v -j ρ ) ⊗ (v -j ρ ) σ dv β = M u β implying that P u g = ρ[g]M u + M -1 u j[g] - j ρ ρ[g] • v -j ρ σ M u .
In particular we obtain for any

1 ≤ i ≤ d P u (∂ v i f ) = -M -1 u e i • v -j ρ σ f = -f M -1 u v -j ρ σ • e i and thus P u (∇ v f ) = -f M -1 u v-j ρ σ .
We need the following representation formula for

(∂ t + v • ∇ x )f .

Proposition 2.5.5

For any f = ρM u we have

P u (v • ∇ x f ) = div x (f j ρ ) + M -1 u div x (ρM u ) • (v - j ρ )M u . Proof. It is easily seen that div x (f j ρ ) + M -1 u div x (ρM u ) • (v -j ρ )M u belongs to ker L f . We also have R d div x (f j ρ ) + M -1 u div x (ρM u ) • (v - j ρ )M u dv = div x j = R d v • ∇ x f dv and thanks to Lemma 2.4.3 R d [div x (f j ρ ) + M -1 u div x (ρM u ) • (v - j ρ )M u (v)]v dv = div x R d f v ⊗ j ρ dv + R d M u (v)v ⊗ (v - j ρ ) dv M -1 u div x (ρM u ) = div x j ⊗ j ρ + R d M u (v)(v - j ρ ) ⊗ (v - j ρ ) dv M -1 u div x (ρM u ) = div x j ⊗ j ρ + σdiv x (ρM u ) = div x R d f v ⊗ v dv = R d (v • ∇ x f )v dv.
Therefore we obtain that

P u (v • ∇ x f ) = div x (f j ρ ) + M -1 u div x (ρM u ) • (v - j ρ )M u .
In order to compute the right hand side in (2.32), it is very convenient to average with respect to characteristic flows preserving M u , cf. [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF][START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Bostan | Gyrokinetic Vlasov Equation in Three Dimensional Setting. Second Order Approximation[END_REF][START_REF] Bostan | The Effective Vlasov-Poisson System for the Finite Larmor Radius Regime[END_REF][START_REF] Bostan | MultiScale Analysis for Linear First Order PDEs. The Finite Larmor Radius Regime[END_REF]. For simplicity, when dealing with the BGK kernel, we work in the three dimensional setting d = 3, but we will come back to the interaction mechanisme Q in any dimension d ≥ 2. For any u ∈ R 3 \ {0} we consider the characteristic flow

dV dθ = V(θ) ∧ Ω[u], θ ∈ R, V(0; v) = v. (2.33)
Clearly Φ u together with M u are left invariant along this flow because |v| and v • u are left invariant

1 2 d dθ |V(θ)| 2 = V(θ) • dV dθ = 0, d dθ (V(θ) • u) = 0, θ ∈ R.
Observe also that every trajectory is 2π-periodic

V(θ; v) = R(-θ; Ω[u])v, θ ∈ R
where the notation R(θ; Ω) stands for the rotation

R(θ; Ω) = (Ω ⊗ Ω)v + cos θ(I 3 -Ω ⊗ Ω)v + sin θ Ω ∧ v, v ∈ R 3 .
Using the characteristic flow (2.33) is very useful when computing moments of M u . For example, if u ∈ R 3 \{0}, by performing the change of coordinate v → V(θ; v), θ ∈ R, whose jacobian determinant is 1, we can write, using the notation

v ⊥ = v -(v • Ω)Ω M u = R 3 M u (v) (v -j ρ ) ⊗ (v -j ρ ) σ dv = R 3 M u (v) (V(θ; v) -j ρ ) ⊗ (V(θ; v) -j ρ ) σ dv = R 3 M u (v) [(Ω ⊗ Ω)(v -j ρ ) + cos θ v ⊥ + sin θ v ∧ Ω] ⊗2 σ dv.
We average with respect to θ, by taking into account that

1 2π 2π 0 cos θ dθ = 1 2π 2π 0 sin θ dθ = 1 2π 2π 0 sin θ cos θ dθ = 0 1 2π 2π 0 cos 2 θ dθ = 1 2π 2π 0 sin 2 θ dθ = 1 2 .
We obtain

σM u = 1 2π 2π 0 σM u dθ = R 3 M u (v)((v - j ρ ) • Ω) 2 dv Ω ⊗ Ω + R 3 M u v ⊥ ⊗ v ⊥ 2 dv + R 3 M u (v ∧ Ω) ⊗ (v ∧ Ω) 2 dv = R 3 M u (v)((v - j ρ ) • Ω) 2 dv Ω ⊗ Ω + R 3 M u (v) |v ⊥ | 2 2 dv (I 3 -Ω ⊗ Ω).
By Remark 2.4.3 we know that

R 3 M u (v)((v - j ρ ) • Ω) 2 dv = σ∂ 2 ll E(σ, |u|), R 3 M u (v) |v ⊥ | 2 2 dv = σ ∂ l E(σ, |u|) |u|
and finally we retrive the formula

M u = ∂ l E(σ, |u|) |u| (I 3 -Ω[u] ⊗ Ω[u]) + ∂ 2 ll E(σ, |u|) Ω[u] ⊗ Ω[u], u ∈ R 3 \ {0}.
Letting u → 0 while u/|u| is constant, we obtain M 0 = ∂ 2 ll E(σ, 0)I 3 . We will average with respect to the characteristic flow (2.33) in order to compute the moments of M u in (2.32). As we know that

∂ t f + v • ∇ x f ⊥ span{M u , v 1 M u , v 2 M u , v 3 M u },
we can write thanks to Proposition 2.5.5 and by observing that

∂ t f ∈ kerL f - R 3 (∂ t f + v • ∇ x f )v ⊗ v dv = - R 3 (∂ t f + v • ∇ x f )(v - j ρ ) ⊗ (v - j ρ ) dv (2.34) = - R 3 [∂ t f + v • ∇ x f -P u (∂ t f + v • ∇ x f )](v - j ρ ) ⊗ (v - j ρ ) dv = - R 3 div x [f (v - j ρ )](v - j ρ ) ⊗ (v - j ρ ) dv + R 3 [M -1 u div x (ρM u )] • (v - j ρ )M u (v)(v - j ρ ) ⊗ (v - j ρ ) dv = -A + B.
Notice that the evaluation of A, B relies on the computation of third order moments of M u with respect to v -j/ρ. The function E allowed us to express the second order moments of M u . We also need to express in term of E the following third order moments of M u . These computations are details in Appendix 2.6, cf. proofs of Lemmas 2.5.1, 2.5.2.

Lemma 2.5.1 1. For any u ∈ R d \{0} we have R d M u ((v- j ρ )•Ω[u]) 3 dv = σ 2 ∂ 3 lll E(σ, |u|), R d M u ((v- j ρ )•Ω[u]) |v ⊥ | 2 d -1 dv = σ 2 ∂ l ∂ l E l (σ, |u|).

We have for any

Ω ∈ S d-1 R d M 0 (v)(v • Ω) 3 dv = 0, R d M 0 (v)(v • Ω) |v -(v • Ω)Ω| 2 d -1 dv = 0. Lemma 2.5.2 Let us consider ξ ∈ R 3 . 1. For any u ∈ R 3 \ {0} we have R 3 M u (v) ξ • (v - j ρ ) (v - j ρ ) ⊗ (v - j ρ ) dv = σ 2 (ξ • Ω)N u + σ 2 ∂ l ∂ l E l (σ, |u|)[Ω ⊗ (I 3 -Ω ⊗ Ω)ξ + (I 3 -Ω ⊗ Ω)ξ ⊗ Ω]
with

N u = ∂ l ∂ l E l (σ, |u|) (I 3 -Ω[u] ⊗ Ω[u]) + ∂ 3 lll E(σ, |u|) Ω[u] ⊗ Ω[u].

We have

R 3 M 0 (v)(ξ • v)v ⊗ v dv = 0.
Thanks to Lemma 2.5.2, we are ready to compute the right hand side in (2.34).

Denoting by {e 1 , e 2 , e 3 } the canonical basis of R 3 , we have

A(ρ, j) = 3 i=1 R 3 ∂ x i [f (v - j ρ ) i ](v - j ρ ) ⊗ (v - j ρ ) dv (2.35) = 3 i=1 ∂ x i R 3 f (v - j ρ ) i (v - j ρ ) ⊗ (v - j ρ ) dv + 3 i=1 R 3 f (v - j ρ ) i ∂ x i j ρ ⊗ (v - j ρ ) dv + 3 i=1 R 3 f (v - j ρ ) i (v - j ρ ) ⊗ ∂ x i j ρ dv = 3 i=1 ∂ x i ρσ 2 Ω i N u + ∂ l ∂ l E l (σ, |u|)[ Ω ⊗ (I 3 -Ω ⊗ Ω)e i + (I 3 -Ω ⊗ Ω)e i ⊗ Ω ] + σρ ∂ x j ρ M u + M u t ∂ x j ρ .
Similarly we obtain

B(ρ, j) = σ 2 (M -1 u div x (ρM u ) • Ω)N u (2.36) + σ 2 ∂ l ∂ l E l (σ, |u|)[Ω ⊗ (I 3 -Ω ⊗ Ω)M -1 u div x (ρM u ) + (I 3 -Ω ⊗ Ω)M -1 u div x (ρM u ) ⊗ Ω].
The previous computations lead to the second order approximation of (2.4) corresponding to Q BGK .

Theorem 2.5.1

Assume that lim |v|→+∞

Φ 0 (v) |v| = +∞ with Φ u=0 defined in (2.
2) and consider the family (f ε ) ε of solutions for (2.4) with the collision operator Q BGK . Then a second order approximation (ρ ε , jε ) for 

(ρ ε = R d f ε dv, j ε = R d f ε v dv) is given by ∂ t ρε + div x jε = 0 ∂ t jε + div x jε ⊗ jε ρε + σ ρε M ũε -εA(ρ ε , jε ) + εB(ρ ε , jε ) = 0 where ũε = ∂ k E ⋆ (σ, | jε |/ρ ε )Ω[ jε ] and M ũε , A, B

Proof.

Coming back to (2.31), we can write thanks to Proposition 2.5.1, Lemma 2.5.2

R 3 (f + εf 1 )v ⊗ v dv = R 3 (f + εP u f 1 )v ⊗ v dv -ε R 3 (∂ t f + v • ∇ x f )v ⊗ v dv = j[f + εP u f 1 ] ⊗ j[f + εP u f 1 ] ρ[f + εP u f 1 ] + σρ[f + εP u f 1 ]M ũε -εA(ρ[f ], j[f ]) + εB(ρ[f ], j[f ]) where ũε = ∂ k E ⋆ (σ, |j[f +εP u f 1 ]|/ρ[f +εP u f 1 ])Ω[j[f +εP u f 1 ]] = ∂ k E ⋆ (σ, |j[f +εf 1 ]|/ρ[f + εf 1 ])Ω[j[f + εf 1 ]].
Finally, the momentum balance (2.31) becomes

∂ t j[f + εf 1 ] + div x j[f + εf 1 ] ⊗ j[f + εf 1 ] ρ[f + εf 1 ] + σρ[f + εf 1 ]M ũε -εA(ρ[f + εf 1 ], j[f + εf 1 ]) + εB(ρ[f + εf 1 ], j[f + εf 1 ]) = O(ε 2 )
justifying the second order approximation

∂ t jε + div x jε ⊗ jε ρε + σ ρε M ũε -εA(ρ ε , jε ) + εB(ρ ε , jε ) = 0 where ũε = ∂ k E ⋆ (σ, | jε |/ρ ε )Ω[ jε ].

Remark 2.5.1

We have already seen that when V = 0, the equilibria are the standard Maxwellians on

R d , Z = (2πσ) d/2 , j ρ = u. In that case ∂ l E(σ, l) = l, ∂ 2 ll E(σ, l) = 1, ∂ k E ⋆ (σ, k) = k, ∂ 2 kk E ⋆ (σ, k) = 1
and the first order approximation led to the Euler equations. Moreover, when V = 0, d = 3, we have

M u = I 3 , N u = O 3 , A(ρ, j) = σρ ∂ x j ρ + t ∂ x j ρ , B(ρ, j) = O 3
and we obtain the Navier-Stokes equations

∂ t ρε + div x jε = 0, ∂ t jε + div x jε ⊗ jε ρε + σ ρε I 3 -εσ ρε ∂ x jε ρε + t ∂ x jε ρε = 0.

The Fokker-Planck interaction mechanism

We investigate now the fluid second order approximation for the kernel Q. The main difficulty is that we need to determine the antecedent of ∂ t f + v • ∇ x f by the restriction of L f on (kerL f ) ⊥ . We appeal to the structure of matrix fields which are left invariant by T u , cf. Proposition 2.2.3. By Proposition 2.5.5 we have, as before

∂ t f + v • ∇ x f = ∂ t f + v • ∇ x f -P u (∂ t f + v • ∇ x f ) = v • ∇ x f -P u (v • ∇ x f ) = v • ∇ x f -div x f j ρ -M -1 u div x (ρM u ) • v - j ρ M u = (I d -P u )div x (f (v -j/ρ)) = ∂ x u : (I d -P u )f (v -j/ρ) ⊗ (v -j/ρ) σ .
Therefore we obtain

f 1 -P u f 1 = L -1 f (∂ t f + v • ∇ x f ) = ∂ x u : A
where A is the unique matrix field satisfying

L f A = (I d -P u )f (v -j/ρ) ⊗ (v -j/ρ) σ , R d A(v) dv = 0, R d v i A(v) dv = 0, 1 ≤ i ≤ d.
(2.37) Observe, cf. Proposition 2.2.3, that the pressure tensor is left invariant by T u because if u = 0 we have

v ⊗ v = v ⊗ v -|v| 2 I d d + |v| 2 I d d , v ∈ R d
and if u ̸ = 0 we can write

(v -j/ρ) ⊗ (v -j/ρ) = [v ⊥ + ((v -j/ρ) • Ω)Ω] ⊗ [v ⊥ + ((v -j/ρ) • Ω)Ω] = v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 + |v ⊥ | 2 I d -Ω ⊗ Ω d -1 + ((v -j/ρ) • Ω)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) + ((v -j/ρ) • Ω) 2 Ω ⊗ Ω, v ∈ R d .
For any O ∈ T u and any function g(v), vector field b(v), matrix field B(v), we use the notations In particular if g is left invariant by the family T u , so is P u g.

g O (v) = g( t Ov), b O (v) = Ob( t Ov), B O (v) = OB( t Ov) t O, v ∈ R d .

Proof.

We have

|g O | 2 Mu = R d g( t Ov) M u (v) 2 M u (v) dv = |g| 2 Mu < +∞ and (g O , h O ) Mu = (g, h) Mu , for any h ∈ L 2
Mu . Observe also that if h ∈ kerL f , then h O ∈ kerL f . In particular (P u g) O ∈ kerL f and for any h ∈ kerL f we can write

(g O -(P u g) O , h) Mu = (g -P u g, ht O ) Mu = 0 saying that P u (g O ) = (P u g) O , O ∈ T u .
The previous result extends immediately to vector and matrix fields, where the action of the orthogonal projection P u on vector fields and matrix fields is understood by

P u b = (P u b i ) 1≤i≤d , P u B = (P u B ij ) 1≤i,j≤d
for any vector field b and matrix field B such that

|b| 2 Mu = (b, b) Mu = d i=1 (b i , b i ) Mu = d i=1 R d b 2 i (v) M u (v) dv < +∞ and |B| 2 Mu = (B, B) Mu = d i=1 (B ij , B ij ) Mu = 1≤i,j≤d R d B 2 i,j (v) M u (v) dv < +∞.
We have

(b O , c O ) Mu = (b, c) Mu , b, c ∈ (L 2 Mu ) d and similarly (B O , C O ) Mu = (B, C) Mu , B, C ∈ (L 2 Mu ) d 2 .
Exactly as for functions, we obtain that

P u (b O ) = (P u b) O , P u (B O ) = (P u B) O , for any O ∈ T u .
The action of T u commutes also with the operator L f . We establish first this result for functions, the analogous statements for vector fields and matrix fields come by similar arguments. Their proofs are left to the reader.

Proposition 2.5.7 Let us consider a function

p ∈ (kerL f ) ⊥ and let g ∈ H 1 Mu ∩ (kerL f ) ⊥ be the unique variational solution of -L f g = p. For any O ∈ T u , we have p O ∈ (kerL f ) ⊥ , g O ∈ H 1 Mu ∩ (kerL f ) ⊥ and -L f g O = p O , in the variational sense. In particular, if p is the left invariant by T u , so is g = -L -1 f p. Proof. Clearly p O ∈ L 2 Mu and P u (p O ) = (P u p) O = 0, saying that p O ∈ (kerL f ) ⊥ . Similarly, g O ∈ (kerL f ) ⊥ and ∥g O ∥ 2 Mu = R d g 2 O M u dv + R d ∇ g O M u 2 M u (v) dv = ∥g∥ 2 Mu .
For any h ∈ H 1 Mu we have

σ∇ h O M u -W (h O ) = O σ∇ h M u O -W (h)
and therefore

a(g O , h) = R d σ∇ g O M u -W (g O ) • σ∇ (ht O ) O M u -W ((ht O ) O )M u (v) dv = a(g, ht O ) = σ R d p(v)ht O (v) M u (v) dv = σ R d p O (v)h(v) M u (v) dv saying that -L f g O = p O in the variational sense. Proposition 2.5.8 Let us consider a vector field ξ = (ξ 1 , ..., ξ d ) ∈ ((kerL f ) ⊥ ) d and let b = (b 1 , ..., b d ) ∈ (H 1 Mu ∩ (kerL f ) ⊥ ) d be the unique variational solution of -L f b = ξ. For any O ∈ T u , we have ξ O ∈ ((kerL f ) ⊥ ) d , b O ∈ (H 1 Mu ∩ (kerL f ) ⊥ ) d and -L f b O = ξ O , in the variational sense. In particular, if ξ is the left invariant by T u , so is b = -L -1 f ξ. Proposition 2.5.9 Let us consider a matrix field U ∈ ((kerL f ) ⊥ ) d 2 and let B ∈ (H 1 Mu ∩ (kerL f ) ⊥ ) d 2 be the unique variational solution of -L f B = U . For any O ∈ T u , we have U O ∈ ((kerL f ) ⊥ ) d 2 , B O ∈ (H 1 Mu ∩ (kerL f ) ⊥ ) d 2 and -L f B O = U O , in the variational sense. In particular, if U is the left invariant by T u , so is B = -L -1 f U .
Based on the above properties of P u, L f , we determine the structure of the matrix field A solving (2.37). Actually only the case with u ̸ = 0 will be used in the sequel, since the pressure tensor is continuous with respect to u, and therefore the formulae for u = 0 can be obtained from the formulae with

u h = hΩ, Ω ∈ S d-1 , by letting h ↘ 0.
Nevertheless, we present the structure of these matrix field solutions, for any u ∈ R d .

Proposition 2.5.10

1. If u = 0, d ≥ 2, there is a unique function α : R d → R, which is left invariant by T 0 , α(0) = 0, such that L f α v ⊗ v -|v| 2 I d d = (I d -P 0 )M 0 v ⊗ v -|v| 2 I d d and R d α(v) v ⊗ v -|v| 2 I d d dv = 0, R d v i α(v) v ⊗ v -|v| 2 I d d dv = 0, 1 ≤ i ≤ d. 2. If u ̸ = 0, d ≥ 3, there is a unique function α : R d → R, which is left invariant by T u , α| RΩ = 0, such that L f α v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 = (I d -P u )M u v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 and R d α v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 dv = 0, R d v i α v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 dv = 0 for any 1 ≤ i ≤ d.
Proof.

1. The matrix field

(I d -P 0 )M 0 v ⊗ v -|v| 2 I d d is left invariant by T 0 . By Proposition 2.
5.9 there is a unique matrix field A, which is left invariant by T 0 , such that t A = A

L f A = (I d -P 0 )M 0 v ⊗ v -|v| 2 I d d , R d A(v) dv = 0, R d v i A(v) dv = 0, 1 ≤ i ≤ d.
By Proposition 2.2.3, there are two functions α, β which are left invariant by T 0 , α(0) = 0, such that

A(v) = α(v) v ⊗ v -|v| 2 I d d + β(v)I d , d ≥ 2. L f α v ⊗ v -|v| 2 I d d = (I d -P 0 )M 0 v ⊗ v -|v| 2 I d d where R d A(v) dv = 0, R d v i A(v) dv = 0, 1 ≤ i ≤ d. As A(v) = α(v) v ⊗ v -|v| 2 I d d ,
we deduce that

α(v) = A(v) : v ⊗ v |v| 4 d d -1 , v ∈ R d \{0}
implying the uniqueness of α (recall that α(0) = 0). 2. As before, there is unique matrix field, which is left invariant by T u , such that

t A = A L f A = (I d -P u )M u v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 R d A(v) dv = 0, R d v i A(v) dv = 0, 1 ≤ i ≤ d. By Corollary 2.2.
1, there are the functions α, β, γ, δ, which are left invariant by T u , α| RΩ = 0, γ| RΩ = 0 such that

A(v) = α(v) v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 + β(v)(I d -Ω ⊗ Ω) + γ(v)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) + δ(v)Ω ⊗ Ω, v ∈ R d , d ≥ 3.
We have

L f AΩ • Ω = 0, AΩ • Ω ∈ (kerL f ) ⊥ , implying that δ = AΩ • Ω = 0. We also have L f AΩ = 0, AΩ ∈ ((kerL f ) ⊥ ) d and therefore AΩ = γv ⊥ = 0, saying that γ = 0 (because γ| RΩ = 0). Observe that L f trA = 0, trA ∈ (kerL f ) ⊥ , saying that β(d -1) = trA = 0.
Finally we obtain

A(v) = α(v) v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1
where α is given by

α(v) = A(v) : v ⊥ ⊗ v ⊥ |v ⊥ | 4 d -1 d -2 , v ∈ R d \RΩ, α| RΩ = 0.
We determine now the antecedent of the pressure tensor by L f , for u ̸ = 0.

Proposition 2.5.11

If u ̸ = 0, there are the functions α, β, γ, δ, which are left invariant by T u , α| RΩ = γ| RΩ = 0, such that

L -1 f (I d -P u )M u (v-j/ρ)⊗(v-j/ρ) = β(v)(I 2 -Ω⊗Ω 2 )+γ(v)(v ⊥ ⊗Ω+Ω⊗v ⊥ )+δ(v)Ω⊗Ω, v ∈ R 2 and L -1 f (I d -P u )M u (v -j/ρ) ⊗ (v -j/ρ) = α(v) v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 + β(v)(I d -Ω ⊗ Ω) + γ(v)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) + δ(v)Ω ⊗ Ω, v ∈ R d , d ≥ 3.

Proof.

In the two dimensional case we write

(v -j/ρ) ⊗ (v -j/ρ) = [v ⊥ + ((v -j/ρ) • Ω)Ω] ⊗ [v ⊥ + ((v -j/ρ) • Ω)Ω] = v ⊥ ⊗ v ⊥ + ((v -j/ρ) • Ω)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) + ((v -j/ρ) • Ω) 2 Ω ⊗ Ω = |v ⊥ | 2 (I 2 -Ω ⊗ Ω) + ((v -j/ρ) • Ω)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) + ((v -j/ρ) • Ω) 2 Ω ⊗ Ω
and therefore we obtain 2 . By Proposition 2.5.7, 2.5.8, we know that the functions β, δ and the vector field b are left invariant by T u . Finally we have

L -1 f (I d -P u )M u (v -j/ρ) ⊗ (v -j/ρ) = β(v)(I 2 -Ω ⊗ Ω) + b(v) ⊗ Ω + Ω ⊗ b(v) + δ(v)Ω ⊗ Ω where β = L -1 f (I d -P u )M u |v ⊥ | 2 , b = L -1 f (I d -P u )M u ((v -j/ρ) • Ω)v ⊥ , δ = L -1 f (I d - P u )M u ((v -j/ρ) • Ω)
L f b • Ω = 0, b • Ω ∈ (kerL f ) ⊥ , saying that b • Ω = 0. Thus, by Proposition 2.2.2, there is a function γ, γ| RΩ = 0, which is left invariant by T u , such that b = γv ⊥ . If d ≥ 3 we write (v -j/ρ) ⊗ (v -j/ρ) = v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 + |v ⊥ | 2 I d -Ω ⊗ Ω d -1 + ((v -j/ρ) • Ω)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) + ((v -j/ρ) • Ω) 2 Ω ⊗ Ω
and our conclusion follows by taking α, β, γ, δ such that (cf. Proposition 2.5.10) α| RΩ = γ| RΩ = 0 and

L f α v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 = (I d -P u )M u v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 β = L -1 f (I d -P u )M u |v ⊥ | 2 d -1 γv ⊥ = L -1 f (I d -P u )M u ((v -j/ρ) • Ω)v ⊥ , δ = L -1 f (I d -P u )M u ((v -j/ρ) • Ω) 2 .
Thanks to the above representation formula for the antecedent by

L f tensor (I d - P u )M u (v -j/ρ) ⊗ (v -j/ρ), we compute T 1 := R d (f 1 -P u f 1 )v ⊗ v dv = R d L -1 f (∂ t f + v • ∇ x f )(v -j/ρ) ⊗ (v -j/ρ) dv = ρ σ R d L -1 f [(I d -P u )M u (v -j/ρ) ⊗ (v -j/ρ)] : ∂ x u(v -j/ρ) ⊗ (v -j/ρ) dv.

It is useful remark that

Lemma 2.5.3

Let us consider a function g which is left invariant by T u , u ̸ = 0, and such that

R d |v| 2 g(v) dv < +∞. Then we have R d g(v) v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 dv = 0, d ≥ 3 R d g(v)v ⊥ dv = 0, R d g(v)(v • ξ)v ⊥ ⊗ v ⊥ dv = 0, ξ ∈ (RΩ) ⊥ , d ≥ 2. Proof. Consider {E 1 , ..., E d-1 } an orthonormal basis of (RΩ) ⊥ . Taking O ij = Ω ⊗ Ω + k / ∈{i,j} E k ⊗ E k + E i ⊗ E j -E j ⊗ E i ∈ T u for any 1 ≤ i, j ≤ d -1, i ̸ = j, we ob- tain R d g(v)v ⊥ ⊗ v ⊥ dv = d-1 i=1 R d g(v)(v • E i ) 2 E i ⊗ E i dv = R d g(v) |v ⊥ | 2 d -1 dv(I d -Ω ⊗ Ω), d ≥ 3.
Using

O i = I d -2E i ⊗ E i ∈ T u , 1 ≤ i ≤ d -1, we deduce R d g(v)v ⊥ dv = d-1 i=1 R d g(v)(v • E i )E i dv = 0, d ≥ 2.
Thanks to the decompotion v

• ξ = d-1 k=1 (v • E k )(E k • ξ), we are done if we justify for any 1 ≤ k ≤ d -1, d ≥ 2 R d g(v)(v • E k )v ⊥ ⊗ v ⊥ dv = 0.

This comes easily because for any

1 ≤ i, j, k ≤ d -1 we have R d g(v)(v • E k )(v • E i )(v • E j ) dv = 0, d ≥ 2.
We decompose the contribution T 1 as T 2 +T 3 +T 4 , where (T i ) 2≤i≤4 expresse in terms of the Jocobian matrix ∂ x u and some functions given by moments in v of α, β, γ, δ, with the notations of Proposition 2.5.11. These calculations are presented in Appendix 2.6, see proof of Proposition 2.5.12 Proposition 2.5.12 Assume that u ̸ = 0, d ≥ 3, then we have

T 1 = R d (f 1 -P u f 1 )v ⊗ v dv = T 2 + T 3 + T 4 T 2 = ρ σ R d α|v ⊥ | 4 d 2 -1 dv(I d -Ω⊗Ω) ∂ x u + t ∂ x u - 2(I d -Ω ⊗ Ω) : ∂ x u d -1 (I d -Ω ⊗ Ω) (I d -Ω⊗Ω) T 3 = ρ σ R d β |v ⊥ | 2 d -1 dv(I d -Ω ⊗ Ω) × (I d -Ω ⊗ Ω) + R d δ((v -j/ρ) • Ω) 2 dv(Ω ⊗ Ω) × (Ω ⊗ Ω) + R d δ |v ⊥ | 2 d -1 dv(I d -Ω ⊗ Ω) × (Ω ⊗ Ω) + R d β((v -j/ρ) • Ω) 2 dv(Ω ⊗ Ω) × (I d -Ω ⊗ Ω) ∂ x u T 4 = ρ σ R d ((v -j/ρ) • Ω)γ |v ⊥ | 2 d -1 dv [(I d -Ω ⊗ Ω)(∂ x u + t ∂ x u)(Ω ⊗ Ω) + (Ω ⊗ Ω)(∂ x u + t ∂ x u)(I d -Ω ⊗ Ω)]
where for any two matrices A, B ∈ M d (R), the notation A × B stands for the linear application

A × B : M d (R) → M d (R), given by (A × B)X = (B : X)A, X ∈ M d (R). Remark 2.5.2 If u ̸ = 0, d = 2 we obtain T 1 = T 3 + T 4 , cf. Proposition 2.5.11.
In order to phrase out the second order approximation for (2.4) in a concise fashion, we define the function (c i ) 1≤i≤5 given by

c 1 (σ, u) = R d α(v)|v ⊥ | 4 d 2 -1 dv, c 2 (σ, u) = R d β(v)|v ⊥ | 2 d -1 dv, c 3 (σ, u) = R d δ(v)((v-j/ρ)•Ω) 2 dv (2.38) c 4 (σ, u) = R d β(v)((v -j/ρ) • Ω) 2 dv, c 5 (σ, u) = R d γ(v) |v ⊥ | 2 d -1 ((v -j/ρ) • Ω) dv (2.39)
where the functions α, β, γ, δ were introduced in Proposition 2.5.11

(if d = 2, then α = 0 and c 1 = 0). As β = L -1 f (I d -P u )M u |v ⊥ | 2 d-1 , we have by the variational formulation cf. Definition 2.3.1 -a(β, δ) = σ R d (I d -P u )M u |v ⊥ | 2 d -1 δ(v) M u (v) dv = σ (I d -P u )M u |v ⊥ | 2 d -1 , δ Mu = σ |v ⊥ | 2 d -1 , δ Mu = σ R d δ(v) |v ⊥ | 2 d -1 dv. Similarly, since δ = L -1 f (I d -P u )M u ((v -j/ρ) • Ω) 2 , we obtain -a(δ, β) = σ R d (I d -P u )M u ((v -j/ρ) • Ω) 2 β(v) M u (v) dv = σ((I d -P u )M u ((v -j/ρ) • Ω) 2 , β) Mu = σ(M u ((v -j/ρ) • Ω) 2 , β) Mu = σ R d β(v)((v -j/ρ) • Ω) 2 dv.
By the symmetry of the bilinear form a(•, •), we deduce that

c 4 (σ, u) = R d β(v)((v -j/ρ) • Ω) 2 dv = R d δ(v) |v ⊥ | 2 d -1 dv.
Using the functions (c i ) 1≤i≤5 , the expression of the terms T 2 , T 3 , T 4 become

T 2 = ρ σ c 1 (σ, u)(I d -Ω⊗Ω) ∂ x u + t ∂ x u - 2(I d -Ω ⊗ Ω) : ∂ x u d -1 (I d -Ω ⊗ Ω) (I d -Ω⊗Ω) T 3 = ρ σ {c 2 (σ, u)(I d -Ω ⊗ Ω) × (I d -Ω ⊗ Ω) + c 3 (σ, u)(Ω ⊗ Ω) × (Ω ⊗ Ω) +c 4 (σ, u)[(I d -Ω ⊗ Ω) × (Ω ⊗ Ω) + (Ω ⊗ Ω) × (I d -Ω ⊗ Ω)]} ∂ x u T 4 = ρ σ c 5 (σ, u)[(I d -Ω ⊗ Ω)(∂ x u + t ∂ x u)(Ω ⊗ Ω) + (Ω ⊗ Ω)(∂ x u + t ∂ x u)(I d -Ω ⊗ Ω)].
We turn to the proof of the second order approximation for (2.4), with the collision operator

Q(f ) = div v {σ∇ v f + f ∇ v Φ u[f ] }. Proof. (of Theorem 2.1.3)
The mass balance is clear. For the momentum balance, we write thanks to Proposition 2.5.1, 2.5.12

R d (f + εf 1 )v ⊗ v dv = R d (f + εP u f 1 )v ⊗ v dv + ε R d (f 1 -P u f 1 )v ⊗ v dv = j[f + εP u f 1 ] ⊗ j[f + εP u f 1 ] ρ[f + εP u f 1 ] + σρ[f + εP u f 1 ]M ũε + ε(T 2 + T 3 + T 4 )(f ) + O(ε 2 ) = j[f + εP u f 1 ] ⊗ j[f + εP u f 1 ] ρ[f + εP u f 1 ] + σρ[f + εP u f 1 ]M ũε + ε(T 2 + T 3 + T 4 )(f + εf 1 ) + O(ε 2 )
where

ũε = ∂ k E ⋆ σ, |j[f + εP u f 1 ]| ρ[f + εP u f 1 ] Ω[j[f + εP u f 1 ]] = ∂ k E ⋆ |j[f + εf 1 ]| ρ[f + εf 1 ] Ω[j[f + εf 1 ]].
Therefore we expect that a second order approximation (ρ ε , jε ) for (ρ ε , j ε ) verifies 

∂ t jε + div x jε ⊗ jε ρε + σ ρε M ũε + ε( T2 + T3 + T4 ) = 0 where ũε = ∂ k E ⋆ (σ, | jε |/ρ ε )Ω[ jε ].

Appendix

v = (Ω ⊗ Ω)v + d-1 i=1 (E i ⊗ E i )v we obtain R d M u (v)v ⊗ v dv = R d M u (v)[(v • Ω)Ω + d-1 i=1 (v • E i )E i ] ⊗ [(v • Ω)Ω + d-1 j=1 (v • E j )E j ] dv = R d M u (v)(v • Ω) 2 dv Ω ⊗ Ω + d-1 i=1 R d M u (v)(v • E i ) 2 dv E i ⊗ E i (2.40) because R d M u (v)(v • Ω)(v • E i ) dv = 0, 1 ≤ i ≤ d -1 (2.41)
and

R d M u (v)(v • E i )(v • E j ) dv = R d M u (v) |v| 2 -(v • Ω) 2 d -1 dv, 1 ≤ i, j ≤ d -1. (2.42)
Indeed, (2.41) comes by performing the change of variable

v = (I d -2E i ⊗ E i )v ′ and by noticing that I d -2E i ⊗ E i ∈ T u , 1 ≤ i ≤ d -1 R d M u (v)(v • Ω)(v • E i ) dv = - R d M u (v ′ )(v ′ • Ω)(v ′ • E i ) dv ′ = 0, 1 ≤ i ≤ d -1.
Similarly, for any

1 ≤ i, j ≤ d -1, i ̸ = j we have R d M u (v)(v • E i )(v • E j ) dv = - R d M u (v ′ )(v ′ • E i )(v ′ • E j ) dv ′ = 0.
For any 1 ≤ i, j ≤ d -1, i ̸ = j, by using the transformation

O ij = Ω ⊗ Ω + k / ∈{i,j} E k ⊗ E k + E i ⊗ E j -E j ⊗ E i ∈ T u after performing the change of variable v = O ij v ′ , one gets R d M u (v)(v • E i ) 2 dv = R d M u (v ′ )(v ′ • E j ) 2 dv ′ = R d M u (v) |v| 2 -(v • Ω) 2 d -1 dv.
Finally (2.40), (2.41), (2.42) yield

R d M u (v)v⊗v dv = R d M u (v)(v•Ω) 2 dv Ω⊗Ω+ R d M u (v) |v| 2 -(v • Ω) 2 d -1 dv (I d -Ω⊗Ω).
By Proposition 2.2.1 we know that

R d M u (v)(v • Ω) dv = σ ∂ l Z(σ, |u|) Z(σ, |u|) + |u| and R d M u (v)[(v • Ω) 2 -2|u|(v • Ω) + |u| 2 ] dv = σ + σ 2 ∂ 2 ll Z(σ, |u|) Z(σ, |u|) implying that R d M u (v)(v • Ω) 2 dv = 2|u| σ ∂ l Z(σ, |u|) Z(σ, |u|) + |u| -|u| 2 + σ + σ 2 ∂ 2 ll Z(σ, |u|) Z(σ, |u|) = |u| 2 + 2|u|σ ∂ l Z Z + σ + σ 2 ∂ 2 ll Z Z .
Thanks to the first statement in Lemma 3.5.2 we obtain

R d M u (v)v ⊗ v dv = 1 + 2σ ∂ l Z |u|Z u ⊗ u + σ 2 ∂ 2 ll Z -∂ l Z |u| Z Ω ⊗ Ω + σ + σ 2 ∂ l Z |u|Z I d .
2. We know that M 0 is left invariant by T 0 and as before we obtain, thanks to the second statement in Lemma 3.5.2

R d M 0 (v)v ⊗ v dv = R d M 0 (v) |v| 2 d dv I d = σ + σ 2 ∂ 2 ll Z(σ, 0) Z(σ, 0) I d . Proof. (of Lemma 2.4.3) 1. We have |j| ρ = ∂ l E(σ, |u|) = |u| + σ ∂ l Z Z(σ,|u|) and σ∂ 2 ll E = σ + σ 2 ∂ 2 ll Z/Z -σ 2 (∂ l Z/Z) 2
. By the first statement in Lemma 2.4.2 we know that for any u ∈ R d \ {0} we have

R d M u (v)v ⊗ v dv = |u| 2 + 2|u|σ ∂ l Z Z + σ 2 ∂ 2 ll Z -∂ l Z |u| Z Ω[u] ⊗ Ω[u] + σ + σ 2 ∂ l Z |u|Z I d .
Notice that

|j| 2 ρ 2 + σ∂ 2 ll E = |u| 2 + 2|u|σ ∂ l Z Z + σ + σ 2 ∂ 2 ll Z Z
and therefore

R d M u (v)v ⊗ v dv = |j| 2 ρ 2 + σ∂ 2 ll E Ω[u] ⊗ Ω[u] + σ 1 + σ ∂ l Z |u|Z (I d -Ω[u] ⊗ Ω[u]) = |j| 2 ρ 2 + σ∂ 2 ll E Ω[u] ⊗ Ω[u] + σ |j| ρ|u| (I d -Ω[u] ⊗ Ω[u]) = σ ∂ l E(σ, |u|) |u| I d + j ⊗ j ρ 2 + σ ∂ 2 ll E(σ, |u|) - ∂ l E(σ, |u|) |u| Ω[u] ⊗ Ω[u].
It is easily seen that

R d M u (v)v ⊗ v dv = R d M u (v)(v - j ρ ) ⊗ (v - j ρ ) dv + j ⊗ j ρ 2
implying that

M u = ∂ l E(σ, |u|) |u| (I d -Ω[u] ⊗ Ω[u]) + ∂ 2 ll E(σ, |u|) Ω[u] ⊗ Ω[u]. 2. As ∂ l Z(σ, 0) = 0, we have ∂ 2 ll E(σ, 0) = 1 + σ ∂ 2 ll Z Z (σ, 0)
. By the second statement in Lemma 2.4.2 we obtain

σM 0 = R d M 0 (v)v ⊗ v dv = σ 1 + σ ∂ 2 ll Z Z(σ, 0) I d = σ∂ 2 ll E(σ, 0) I d .
Proof. (of Lemma 2.5.1) 1. Thanks to formula (2.8), we have for any

Ω ∈ S d-1 , l > 0 σZ(σ, l)∂ 2 ll E(σ, l) = Z(σ, l) R d M lΩ (v)((v - j ρ ) • Ω) 2 dv = |S d-2 | R + r d-1 π 0 exp - r 2 2σ - l 2 2σ + lr cos θ σ - V (r) σ (r cos θ -∂ l E(σ, l)) 2 sin d-2 θ dθdr.
Taking the derivative with respect to l, one gets

σ 2 Z(σ, l)∂ 3 lll E + σ 2 ∂ l Z∂ 2 ll E = |S d-2 | R + r d-1 π 0 exp - r 2 2σ - l 2 2σ + lr cos θ σ - V (r) σ [(r cos θ -l)(r cos θ -∂ l E(σ, l)) 2 -2(r cos θ -∂ l E(σ, l))∂ 2 ll E(σ, l)] sin d-2 θ dθdr = Z(σ, l) R d M lΩ (v)(v • Ω -l)((v - j ρ ) • Ω) 2 dv -2Z(σ, l) R d M lΩ (v)((v - j ρ ) • Ω) dv =0 ∂ 2 ll E = Z(σ, l) R d M lΩ (v)((v - j ρ ) • Ω) 3 dv + Z(σ, l)(∂ l E -l) R d M lΩ (v)((v - j ρ ) • Ω) 2 dv = Z(σ, l) R d M lΩ (v)((v - j ρ ) • Ω) 3 dv + σ 2 ∂ l Z∂ 2 ll E implying that R d M lΩ (v)((v - j ρ ) • Ω) 3 dv = σ 2 ∂ 3 lll E(σ, l).
Similarly, by taking the derivative with respect to l in

σZ(σ, l) ∂ l E l = |S d-2 | R + r d-1 π 0 exp - r 2 2σ - l 2 2σ + lr cos θ σ - V (r) σ r 2 sin 2 θ d -1 sin d-2 θ dθdr we obtain σ 2 Z(σ, l)∂ l ∂ l E l + σ 2 ∂ l Z ∂ l E l = |S d-2 | R + r d-1 π 0 exp - r 2 2σ - l 2 2σ + lr cos θ σ - V (r) σ (r cos θ -l) r 2 sin 2 θ d -1 sin d-2 θ dθdr = Z(σ, l) R d M lΩ (v)((v - j ρ ) • Ω) |v ⊥ | 2 d -1 dv + σ∂ l Z R d M lΩ (v) |v ⊥ | 2 d -1 dv = Z(σ, l) R d M lΩ (v)((v - j ρ ) • Ω) |v ⊥ | 2 d -1 dv + σ 2 ∂ l Z ∂ l E l .
Therefore we deduce that

R d M lΩ (v)((v - j ρ ) • Ω) |v ⊥ | 2 d -1 dv = σ 2 ∂ l ∂ l E l .
2. For any Ω ∈ S d-1 , passing to the limit when l ↘ 0 in

R d M lΩ (v)(v•Ω-∂ l E) 3 dv = σ 2 ∂ 3 lll E, R d M lΩ (v)(v•Ω-∂ l E) |v -(v • Ω) Ω| 2 d -1 dv = σ 2 ∂ l ∂ l E l yields σ 2 ∂ 3 lll E(σ, 0) = R d M 0 (v)(v • Ω) 3 dv = 0 and lim l↘0 σ 2 ∂ l ∂ l E l (σ, l) = R d M 0 (v)(v • Ω) |v -(v • Ω)Ω| 2 d -1 dv = 0.
Proof. (of Lemma 2.5.2) 1. Averaging with respect to the characteristic flow (2.33) yields

R 3 M u (v) (v - j ρ ) • ξ (v - j ρ ) ⊗ (v - j ρ ) dv = 1 2π 2π 0 R 3 M u (v)ξ • [Ω ⊗ Ω(v - j ρ ) + cos θ v ⊥ + sin θ v ∧ Ω] [Ω ⊗ Ω(v - j ρ ) + cos θ v ⊥ + sin θ v ∧ Ω] ⊗ [Ω ⊗ Ω(v - j ρ ) + cos θ v ⊥ + sin θ v ∧ Ω] dvdθ = R 3 M u (v)((v - j ρ ) • Ω) 3 dv(ξ • Ω) Ω ⊗ Ω + R 3 M u (v) (v - j ρ ) • Ω |v ⊥ | 2 2 dv(ξ • Ω)(I 3 -Ω ⊗ Ω) + R 3 M u (v)(ξ • v ⊥ ) (v - j ρ ) • Ω Ω ⊗ v ⊥ + v ⊥ ⊗ Ω 2 dv + R 3 M u (v) (ξ • (v ∧ Ω)) ((v - j ρ ) • Ω) Ω ⊗ (v ∧ Ω) + (v ∧ Ω) ⊗ Ω 2 dv.
Notice that we have

(ξ • v ⊥ ) Ω ⊗ v ⊥ + v ⊥ ⊗ Ω 2 + (ξ • (v ∧ Ω)) Ω ⊗ (v ∧ Ω) + (v ∧ Ω) ⊗ Ω 2 = Ω ⊗ (I 3 -Ω ⊗ Ω)ξ + (I 3 -Ω ⊗ Ω)ξ ⊗ Ω 2 |v ⊥ | 2 implying that R 3 M u (v)((v - j ρ ) • ξ) (v - j ρ ) ⊗ (v - j ρ ) dv R 3 M u (v)((v - j ρ ) • Ω) 3 dv Ω ⊗ Ω + R 3 M u (v)((v - j ρ ) • Ω) |v ⊥ | 2 2 dv (I 3 -Ω ⊗ Ω) (ξ • Ω) + R 3 M u (v)((v - j ρ ) • Ω) |v ⊥ | 2 2 dv [Ω ⊗ (I 3 -Ω ⊗ Ω)ξ + (I 3 -Ω ⊗ Ω)ξ ⊗ Ω]. 2. When u = 0, the map v → M 0 (v)(v • ξ) v ⊗ v
is odd and thus its integrals over R 3 vanishes.

Proof. (of Proposition 2.5.12) If d ≥ 3, we have by Proposition 2.5.11 and Lemma 2.5.3

T 1 = ρ σ R d α v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 + β(I d -Ω ⊗ Ω) + γ(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) + δΩ ⊗ Ω : ∂ x u v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 + |v ⊥ | 2 I d -Ω ⊗ Ω d -1 + ((v -j/ρ) • Ω)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) +((v -j/ρ) • Ω) 2 Ω ⊗ Ω dv = ρ σ R d α(v) v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 : ∂ x u v ⊥ ⊗ v ⊥ -|v ⊥ | 2 I d -Ω ⊗ Ω d -1 dv + ρ σ R d [β(v)(I d -Ω ⊗ Ω) + δ(v)Ω ⊗ Ω] : ∂ x u |v ⊥ | 2 d -1 (I d -Ω ⊗ Ω) + ((v -j/ρ) • Ω) 2 Ω ⊗ Ω dv + ρ σ R d ((v -j/ρ) • Ω)γ(v)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) : ∂ x u(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) dv = T 2 + T 3 + T 4 .
The term T 3 writes

T 3 = ρ σ R d β(v)|v ⊥ | 2 d -1 dv(I d -Ω ⊗ Ω) × (I d -Ω ⊗ Ω)∂ x u (2.43) 
+ ρ σ R d δ(v)((v -j/ρ) • Ω) 2 dv(Ω ⊗ Ω) × (Ω ⊗ Ω)∂ x u + R d δ(v) |v ⊥ | 2 d -1 dv(I d -Ω ⊗ Ω) × (Ω ⊗ Ω)∂ x u + ρ σ R d β(v)((v -j/ρ) • Ω) 2 dv(Ω ⊗ Ω) × (I d -Ω ⊗ Ω)∂ x u.
In order to evaluate T 4 observe that

R d ((v -j/ρ) • Ω)γ(v)(v ⊥ ⊗ Ω + Ω ⊗ v ⊥ ) : ∂ x u v ⊥ ⊗ Ω dv = R d ((v -j/ρ) • Ω)γ(v)v ⊥ ⊗ Ω : (∂ x u + t ∂ x u)v ⊥ ⊗ Ω dv = R d ((v -j/ρ) • Ω)γ(v) d-1 k=1 (v • E k )E k ⊗ Ω : (∂ x u + t ∂ x u) d-1 l=1 (v • E l )E l ⊗ Ω dv = R d ((v -j/ρ) • Ω)γ(v)) d-1 k=1 (v • E k ) 2 E k ⊗ Ω : (∂ x u + t ∂ x u)E k ⊗ Ω dv = R d ((v -j/ρ) • Ω)γ(v)) |v ⊥ | 2 d -1 d-1 k=1 (∂ x u + t ∂ x u)Ω • E k E k ⊗ Ω dv = R d ((v -j/ρ) • Ω)γ(v)) |v ⊥ | 2 d -1 dv(I d -Ω ⊗ Ω)(∂ x u + t ∂ x u)(Ω ⊗ Ω). T 4 = ρ σ R d ((v -j/ρ) • Ω)γ(v)) |v ⊥ | 2 d -1 dv(I d -Ω ⊗ Ω)(∂ x u + t ∂ x u)(Ω ⊗ Ω) (2.44) +(Ω ⊗ Ω)(∂ x u + t ∂ x u)I d -Ω ⊗ Ω).
We turn to the evaluation of T 2 , which reduces, by Lemma 2.5.3, to

T 2 = ρ σ R d α(v)(v ⊥ ⊗v ⊥ : ∂ x u)v ⊥ ⊗v ⊥ dv- ρ σ R d α(v) |v ⊥ | 4 (d -1) 2 dv[(I d -Ω⊗Ω) : ∂ x u](I d -Ω⊗Ω).

It is easily seen that the only non vanishing terms

A ijkl = R d α(v)(v • E i )(v • E j )(v • E k )(v • E l ) dv, 1 ≤ i, j, k, l ≤ d -1, are those such that 1 ≤ card{i, j, k, l} ≤ 2. As α is left invariant by T u , u ̸ = 0, there is a function α such that α(v) = α(|v ⊥ | 2 , v • Ω)
. By using polar coordinates, we obtain for any

1 ≤ i ̸ = j ≤ d -1 A iiii A iijj = A 1111 A 1122 = R d α(z 2 1 + ... + z 2 d-1 , z d )z 4 1 dz R d α(z 2 1 + ... + z 2 d-1 , z d )z 2 1 z 2 2 dz = R d-2 R + α(r 2 + z 2 3 + ... + z 2 d-1 , z d )r 5 2π 0 cos 4 φdφdrdz 3 ...dz d-1 R d-2 R + α(r 2 + z 2 3 + ... + z 2 d-1 , z d )r 5 2π 0 cos 2 φ sin 2 φdφdrdz 3 ...dz d-1 = 3
where we have used

2π 0 cos 4 φdφ = 3π 4 , 2π 0 cos 2 φ sin 2 φdφ = π 4 .
Observe also that

R d α(v)|v ⊥ | 4 dv = R d α(v)[(v • E 1 ) 2 + ... + (v • E d-1 ) 2 ] 2 dv = (d -1)A 1111 + (d -1)(d -2)A 1122 = (d -1)(d + 1)A 1122 implying that A 1122 = R d α(v)|v ⊥ | 4 dv d 2 -1 , A 1111 = 3 R d α(v)|v ⊥ | 4 dv d 2 -1 .
Finally the terms A ijkl write

A ijkl = R d α(v)|v ⊥ | 4 dv d 2 -1 (δ ij δ kl + δ ik δ jl + δ il δ jk ), 1 ≤ i, j, k, l ≤ d -1.
The previous computations lead to the following expression

R d α(v)(v ⊥ ⊗ v ⊥ : ∂ x u)v ⊥ ⊗ v ⊥ dv = i,j,k,l<d R d α(v)(v • E i )(v • E j )(v • E k )(v • E l ) dv(E i ⊗ E j : ∂ x u)E k ⊗ E l = R d α(v) |v ⊥ | 4 d 2 -1 dv i,j,k,l<d (δ ij δ kl + δ ik δ jl + δ il δ jk ) : ∂ x u)(E i ⊗ E j : ∂ x u)E k ⊗ E l = R d α(v) |v ⊥ | 4 d 2 -1 dv i,j<d {[(E i ⊗ E i ) : ∂ x u](E j ⊗ E j ) + (∂ x uE j • E i )[E i ⊗ E j + E j ⊗ E i ]} = R d α(v) |v ⊥ | 4 d 2 -1 dv{[(I d -Ω ⊗ Ω) : ∂ x u](I d -Ω ⊗ Ω) + (I d -Ω ⊗ Ω)(∂ x u + t ∂ x u)(I d -Ω ⊗ Ω)}.
Consequently the term T 2 is given by

T 2 = ρ σ R d α(v) |v ⊥ | 4 d 2 -1 dv (2.45) (I d -Ω ⊗ Ω) ∂ x u + t ∂ x u - 2(I d -Ω ⊗ Ω) : ∂ x u d -1 (I d -Ω ⊗ Ω) (I d -Ω ⊗ Ω).
The desired result follows from (2.43), (2.44), (2.45).

Chapter 3

Long time behavior for collisional strongly magnetized plasma in three space dimensions Sommaire 

Abstract

We consider the long-time evolution of a population of charged particles, under strong magnetic fields and collision mechanisms. We derive a fluid model and justify the asymptotic behavior toward smooth solutions of this regime. In three space dimensions, a constraint occurs along the parallel direction. For eliminating the corresponding Lagrange multiplier, we average along the magnetic lines.

Introduction

We consider a population of charged particles of charge q, mass m, whose density in the phase space (x, v) ∈ R 3 × R 3 , at time t ∈ R + , is denoted by f = f ( t, x, v). We concentrate on the long time behavior, that is

f ( t, x, v) = f ε (t, x, v), t = ε t.
Here ε > 0 is a small parameter, related to the ratio between the cyclotronic period T ε c and the observation time T obs . The notation B ε = B ε e, B ε > 0, |e| = 1 stands for the magnetic field, assumed to be divergence free. We know that qB ε m ∼ ω ε c = 2π

T ε c and therefore we consider strong magnetic fields

B ε = B T ε c /T obs = B ε
where B is a reference magnetic field, corresponding to T obs , i.e., qB m = ω c = 2π T obs . The collision mechanism accounts for friction and diffusion effects and is described by the Fokker-Planck operator

Q(f ) = 1 τ div v {σ∇ v f + vf }
where τ is the relaxation time and σ is the velocity diffusion, see [START_REF] Chandrasekhar | Brownian Motion, Dynamical Friction, and Stellar Dynamics[END_REF] for the introduction of this operator, based on the principle of Brownian motion. The self-consistent electric field writes

E[f ] = -∇ x Φ[f ], Φ[f ] = 1 4πε 0 R 3 ρ[f (x ′ , •)] |x -x ′ | dx ′ = q 4πε 0 R 3 R 3 f (x ′ , v ′ ) |x -x ′ | dv ′ dx ′
where the potential Φ[f ] satisfies the Poisson equation

-ε 0 ∆ x Φ[f ] = ρ[f ] = q n[f ] = q R 3 f dv
where ρ[f ] and n[f ] stand for the charge density and particle density respectively. Here ε 0 is the electric permittivity of the vacuum. We obtain the Vlasov-Poisson-Fokker-Planck equation, with the external magnetic field

ε∂ t f ε +v•∇ x f ε + q m E[f ε ] + v ∧ Be ε •∇ v f ε = 1 τ div v (σ∇ v f ε +vf ε ), (t, x, v) ∈ R + ×R 3 ×R 3 (3.1) E[f ε ] = -∇ x Φ[f ε ], -ε 0 ∆ x Φ[f ε ] = q n[f ε ] = q R 3 f ε dv. (3.2)
We add the initial densities

f ε (0, x, v) = f ε in (x, v), (x, v) ∈ R 3 × R 3 . (3.3)
There are many works dealing with the existence and uniqueness of solutions to the VPFP system, in the three-dimensional setting. For the existence of weak solutions for the VPFP problem (3.1), (3.2), (3.3) we refer to [START_REF] José | On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in Lp spaces[END_REF][START_REF] Victory | On the existence of global weak solutions for the Vlasov-Poisson-Fokker-Planck system[END_REF]. Existence and uniqueness results for strong solutions of the VPFP problem can be found in [START_REF] Bouchut | Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-Fokker-Planck System in Three Dimensions[END_REF][START_REF] Bouchut | Smoothing Effect for the Non-linear Vlasov-Poisson-Fokker-Planck System[END_REF][START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF][START_REF] Harold | On Classical Solutions of Vlasov-Poisson Fokker-Planck Systems[END_REF][START_REF] Weckler | Generic global classical solutions of the Vlasov-Poisson-Fokker-Planck system in three dimensions[END_REF].

The system (3.1), (3.2), (3.3) describes the dynamic of charged particles under the action of the strong magnetic field B ε → +∞, as ε ↘ 0 and also the collisions between particles. For the mathematical literature in this field, we refer the interested reader to the works [START_REF] Naoufel | Diffusion and guiding center approximation for particle transport in strong magnetic fields[END_REF][START_REF] Bostan | Collisional models for strongly magnetized plasmas. The gyrokinetic Fokker-Planck equation[END_REF][START_REF] Bostan | Impact of strong magnetic fields on collision mechanism for transport of charged particles[END_REF]. Other asymptotic regimes for strongly magnetized plasmas where collisions are taken into account are mentioned, cf. [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF][START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation[END_REF][START_REF] Bostan | High magnetic field equilibria for the Fokker-Planck-Landau equation[END_REF].

We are interested in the asymptotic behavior of the problem (3.1), (3.2), (3.3), as ε ↘ 0. This study is motivated for the description of tokamak plasma [START_REF] Delcroix | Physiquue des plasmas EDP Sciences[END_REF]. In the large magnetic field regime, the charged particles get trapped along the magnetic field lines and they rotate around these lines with a small radius. This gyration radius of the particles is called the Larmor radius and is inversely proportional to the strength of the magnetic field. Therefore, the charged particles are confined well into the tokamak. But solving numerically kinetic equations in the presence of such large magnetic fields requires the numerical resolutions of the small time steps (typically smaller than ε 2 ), due to high oscillations in time of the particles around the magnetic lines, leading to a huge time computations cost. Hence, the question of deriving an asymptotic model, and reducing the cost of numerical simulation is of great importance. Many kinetic models with strong magnetic fields have been studied, it usually leads to the so-called guiding-center or gyro-kinetic models. We refer to [START_REF] Lee | Gyrokinetic approach in particle simulation[END_REF][START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF] for a physical references and [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Brenier | Convergence Of The Vlasov-Poisson System To The Incompressible Euler Equations[END_REF][START_REF] Golse | The Vlasov-Poisson System with Strong Magnetic Field[END_REF][START_REF] Golse | The Vlasov-Poisson system with strong magnetic field in quasineutral regime[END_REF][START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF][START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyrokinetic approximation[END_REF][START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incom-pressible Euler limit[END_REF] for a mathematical result on this topic. We derive a new asymptotic model as ε ↘ 0. Let us now analyze the Vlasov-Fokker-Planck equation (3.1). The dynamic of the charged particles is dominated by the transport in velocity along the magnetic force

1 ε (v ∧ Be) • ∇ v , whereas the transport v • ∇ x + q m E[f ε ] • ∇ v
and the collision operator Q(f ε ) are in the same order, leading to the guiding-center approximation as ε goes to 0. The limit distribution function is constant along the characteristic flow associated to the dominant advection field v∧Be. It only depends on space, time and two components of the velocity, corresponding to the parallel component along the magnetic field line and the magnitude of the perpendicular velocity. Moreover, for collisional plasma, the charged particles seem to reach thermal equilibrium. By performing the balance of free energy functional associated to the VPFP system

E[f ε ] = R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dvdx + ε 0 2m R 3 |E[f ε ]| 2 dx
and the analysis of the dissipation term

D[f ε ] = R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdx
allows us to conclude that the limit distribution function f of the family (f ε ) ε>0 , as ε ↘ 0, is an equilibrium of the form of local Maxwellian distribution in velocity, parametrized by macroscopic quantities (particle concentration), for any

(t, x) ∈ R + × R 3 , i .e., f (t, x, v) = n(t, x)M (v) = n(t, x) e -|v| 2 /2σ (2πσ) 3/2 , (t, x, v) ∈ R + × R 3 × R 3 .
The concentration n(t, x) satisfies the following transport equation with a constraint

∂ t n + div x n E[n] ∧ e B -σ ∇ x ω c ∧ e ω 2 c -σ ∂ x ee ∧ e ω c + Be • ∇ x p = 0, (t, x) ∈ R + × R 3 (3.4) Be • ∇ x k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n] (3.5)
coupled to the Poisson equation

E[n] = -∇ x Φ[n], -ε 0 ∆ x Φ[n] = qn (3.6)
with initial condition

n(0, x) = n in (x) = R 3 f (0, x, v) dv,
where p is thought as a Lagrange multiplier associated to the constraint (3.5). At the limit, the concentration n is advected along the electric cross-field drift, magnetic gradient drift, and magnetic curvature drift. The model obtained in the threedimensional framework is much more complex than the two-dimensional one, see (4.7)-(4.9) in Chapter 4, since in that case, we need to handle extra constraints. The constraint (3.5) comes from the perturbation of the limit particle densities f as ε ↘ 0, i.e., f ε ≃ f + εf 1 leading to the following equation

v • ∇ x f - q m ∇ x Φ[f ] • ∇ v f + q m (v ∧ Be) • ∇ v f 1 = 0. (3.7)
We want to find closure for the dominant term f or the concentration n, so we need to eliminate the magnetic term of f 1 that enters (3.7) as a Lagrange multiplier. In the absence of magnetic fields, the equation (3.7) becomes

v • ∇ x f - q m ∇ x Φ[f ] • ∇ v f = 0.
Substituting f (t, x, v) = n(t, x)M (v) in the previous equality, and by direct computations yield the following relation

∇ x k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n].
This constraint implies that the concentration n(t, x) has the form

n(t, x) = Z(t)e -q mσ Φ[n(t)](x) , (t, x) ∈ R + × R 3 (3.8)
which is the so-called Boltzmann-Gibbs relation, relating the electron density to the electric potential, cf. [START_REF] Bardos | The Maxwell-Boltzmann approximation for ion kinetic modeling[END_REF]. In the general case of magnetic field B(x)e(x), we apply the average along the characteristic flow with respect to the operator (v ∧ e(x)) • ∇ v . Employing this method, we derive rigorously the constraint (3.5) for the concentration n(t, x). Moreover, when the magnetic field is uniform, i .e., Be = (0, 0, 1) t , the constraint (3.5) becomes

∂ x 3 k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n],
which leads to the concentration n(t, x) written as [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF][START_REF] Negulescu | Kinetic Modelling of Strongly Magnetized Tokamak Plasmas with Mass Disparate Particles. The Electron Boltzmann Relation[END_REF]. Here N (t, x ⊥ ) is the reduced macroscopic distribution, which depends only on the perpendicular direction. It is worth showing that our limit model (3.4) is consistent with the limit model of the electron distribution function, obtained for N in [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF]. Indeed, in the case of the uniform magnetic field, the limit equation (3.4) becomes

n(t, x) = N (t, x ⊥ ) e -q mσ Φ[n(t)](x) R e -q mσ Φ[n(t)](x ⊥ ,x 3 ) dx 3 (3.9) where x = (x ⊥ , x 3 ) ∈ R 2 × R, cf.
∂ t n + div x (nE ∧ e) + ∂ x 3 p = 0.
Integrating in x 3 to eliminate the Lagrange multiplier p and using (3.9) we obtain

∂ t N (t, x ⊥ ) + div x ⊥ N (t, x ⊥ ) ⊥ ∇ x ⊥ Φ = 0,
where Φ :

R + × R 2 → R is an x 3 averaged of Φ[n] Φ = mσ q ln R e -q mσ Φ[n] dx 3
which is exactly the limit model introduced in [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF].

The asymptotic regime will be investigated by appealing to the relative entropy or modulated energy method, as introduced in [START_REF] Yau | Relative entropy and hydrodynamics of Ginzburg-Landau models[END_REF]. By this technique one gets strong convergences, provided that the solution of the limit system is smooth as well as the convergence of the initial data. Many asymptotic regimes were obtained using this technique, see [START_REF] Brenier | Convergence Of The Vlasov-Poisson System To The Incompressible Euler Equations[END_REF][START_REF] Brenier | Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system[END_REF][START_REF] Golse | The Vlasov-Poisson system with strong magnetic field in quasineutral regime[END_REF][START_REF] Saint-Raymond | Quasineutral limit for the relativistic Vlasov-Maxwell system[END_REF] for quasineutral regimes in collisionless plasma physics, [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incom-pressible Euler limit[END_REF][START_REF] Berthelin | From Kinetic Equations to Multidimensional Isentropic Gas Dynamics Before Shocks[END_REF] for hydrodynamic limits in gas dynamics, [START_REF] Thierry Goudon | Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Part II: Fine particles regime[END_REF] for fluid-particle interaction, [START_REF] Bostan | High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system[END_REF][START_REF] Bostan | The Vlasov-Maxwell System with Strong Initial Magnetic Field: Guiding-Center Approximation[END_REF] for high electric or magnetic field limits in plasma physics.

Before writing our main result, we define the modulated energy E[n ε (t)|n(t)] by

E[n ε (t)|n(t)] = σ R 3 n(t)h n ε (t) n(t) dx + ε 0 2m R 3 |∇ x Φ[n ε ] -∇ x Φ[n]| 2 dx (3.10)
where h : R + → R + is the convex function defined by h(s) = s ln s -s + 1, s ∈ R + . This quantity splits into the standard L 2 norm of the electric field plus the relative entropy between the particle density n ε of (3.1), (3.2), (3.3) and the particle concentration n of the limit model (3.4), (3.5), (3.6). The main result of this Chapter is the following

Theorem 3.1.1 Assume that the initial particle densities (f ε in ) ε>0 satisfy f ε in ≥ 0, M in := sup ε>0 M ε in < +∞, U in := sup ε>0 U ε in < +∞ where M ε in := R 3 R 3 f ε in (x, v) dvdx, U ε in := R 3 R 3 |v| 2 2 f ε in (x, v) dvdx + ε 0 2m R 3 |∇ x Φ[f ε in ]| 2 dx.
We assume that (f ε ) ε>0 are smooth solutions of (3.1), (3.2), (3.3) and n is a smooth solution of (3.4), (3.5), (3.6) 

such that W [n] = e ωc ∧∇ x k[n]+ pBe n belongs to W 1,∞ (]0, T [×R 3 ), n in ≥ 0, n in ∈ L 1 (R 3 ), k[n in ] ∈ ker(Be • ∇ x ). We suppose that lim ε↘0 σ R 3 R 3 n ε in M (v)h f ε in n ε in M dvdx = 0, lim ε↘0 E[n ε in |n in ] = 0 where n ε in = R 3 f ε in dv, ε > 0. Then we have lim ε↘0 sup 0≤t≤T σ R 3 R 3 n ε (t)M (v)h f ε n ε M dvdx = 0, lim ε↘0 sup 0≤t≤T E[n ε (t)|n(t)] = 0 lim ε↘0 1 ετ T 0 R 3 R 3 |σ∇ v f ε + f ε v| 2 f ε dvdxdt = 0.
In particular we have the convergences

lim ε↘0 f ε = nM in L ∞ (]0, T [; L 1 (R 3 × R 3 )) and lim ε↘0 ∇ x Φ[f ε ] = ∇ x Φ[n] in L ∞ (]0, T [; L 2 (R 3 )).
This Chapter is organized as follows. In Section 3.2 we establish some a priori estimates satisfied by smooth solutions (f ε , E ε ) of the three-dimensional VPFP system.

In the next section, by using Hilbert expansion we derive the asymptotic model. The limit model is a transport equation that involves a Lagrange multiplier with a constraint in the direction of the magnetic field lines. Section 3.4 is devoted to find an equivalent model by eliminating the Lagrange multiplier. The idea is to apply the average along the characteristic flow associated with the magnetic field. The new limit model after averaging needs to analyze the commutation property between the average operator and rot x . We shall establish a result for this commutation property in Section 3.5. In particular, we will apply this formula to cylindrical magnetic fields in the next section. The convergence towards the asymptotic model is proved rigorously in Section 3.7 under the assumption that the solution of the limit problem is smooth. In the last section, we investigate the well-posedness of the limit model obtained from Section 3.6.

Preliminaires

In this work, we will assume that the initial data is smooth enough in order to have the existence and uniqueness of a smooth solution to the VPFP system for any fixed ε > 0. The asymptotic behavior of the Vlasov-Fokker-Planck-Poisson equation (3.1) when ε becomes small comes from the balance of the free energy functional

E[f ε ] = R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dv dx + ε 0 2m R 3 |E[f ε ]| 2 dx
which is the sum of the kinetic energy, the potential energy and the entropy of the system. Multiplying the left hand side of (3.1) by σ(1

+ ln f ε ) + |v| 2 2 and integrating with respect to (x, v) ∈ R 3 × R 3 yield R 3 R 3 ε∂ t f ε + v • ∇ x f ε + q m E[f ε ] + v ∧ Be ε • ∇ v f ε σ(1 + ln f ε ) + |v| 2 2 dvdx = R 3 R 3 ε∂ t + v • ∇ x + q m E[f ε ] + v ∧ Be ε • ∇ v σf ε ln f ε + f ε |v| 2 2 dvdx - R 3 R 3 q m E[f ε ] • vf ε dvdx = ε d dt R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dvdx + 1 m R 3 ∇ x Φ[f ε ] • j[f ε ] dx (3.11)
where

j[f ε ] = q R 3 f ε (•, v)v
dv stands for the current densities. Thanks to the continuity equation

ε∂ t ρ[f ε ] + div x j[f ε ] = 0 we write 1 m R 3 ∇ x Φ[f ε ] • j[f ε ] dx = ε m R 3 Φ[f ε ]∂ t ρ[f ε ] dx (3.12) = - ε 0 ε m R 3 Φ[f ε ]∂ t ∆ x Φ[f ε ] dx = ε 0 ε 2m d dt R 3 |∇ x Φ[f ε ]| 2 dx.
Multiplying the right hand side of (3.1) by σ(1

+ ln f ε ) + |v| 2 2
and then integrating

with respect to (x, v) ∈ R 3 × R 3 imply R 3 R 3 Q(f ε ) σ(1 + ln f ε ) + |v| 2 2 dvdx = - 1 τ R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdx (3.13) = - 1 τ R 3 R 3 |σM ∇ v (f ε /M )| 2 f ε dvdx
where M stands for the Maxwellian equilibrium

M (v) = (2πσ) -3/2 exp - |v| 2 2σ , v ∈ R 3 . Combining (3.11), (3.
12), and (3.13) leads to the balance

ε d dt R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dvdx + ε 0 2m R 3 |∇ x Φ[f ε ]| 2 dx (3.14) + 1 τ R 3 R 3 |σM ∇ v (f ε /M )| 2 f ε dvdx = 0 or equivalently εE[f ε (t)] + 1 τ t 0 R 3 R 3 |σM ∇ v (f ε /M )| 2 f ε dvdxds = εE[f ε (0)].
At least formally, we deduce that f ε = f + O(ε), as ε ↘ 0, where the leading order density f satisfies

1 τ R 3 R 3 |σM ∇ v (f /M )| 2 f dvdx = 0, t ∈ R + . Therefore we have f (t, x, v) = n(t, x)M (v), (t, x, v) ∈ R + × R 3 × R 3
and it remains to determine the time evolution of the concentration n = R 3 f dv. We establish uniform bounds for the kinetic energy.

Lemma 3.2.1 Assume that the initial particle densities

(f ε in ) satisfy f ε in ≥ 0, M in := sup ε>0 M ε in < +∞, U in := sup ε>0 U ε in < +∞,
where for any ε > 0

M ε in := R 3 R 3 f ε in (x, v) dvdx, U ε in := R 3 R 3 |v| 2 2 f ε in (x, v) dvdx + ε 0 2m R 3 |∇ x Φ[f ε in ]| 2 dx.
We assume that (f ε ) ε>0 are smooth solutions of (3.1), (3.2), (3.3). Then we have

ε sup 0≤t≤T R 3 R 3 |v| 2 2 f ε (t, x, v) dvdx + ε 0 2m R 3 |∇ x Φ[f ε ]| 2 dx ≤ εU in + 3σ τ T M in and 1 τ T 0 R 3 R 3 |v| 2 f ε (t, x, v) dvdxdt ≤ εU in + 3σ τ T M in .
Proof.

Multiplying (3.1) by |v| 2 2 and integrating with respect to

(x, v) ∈ R 3 × R 3 yield ε d dt R 3 R 3 |v| 2 2 f ε (t, x, v) dvdx + ε 0 2m R 3 |∇ x Φ[f ε ]| 2 dx = 3σ τ M ε in - 1 τ R 3 R 3 |v| 2 f ε dvdx
and therefore we obtain ε

R 3 R 3 |v| 2 2 f ε (t, x, v) dvdx + ε 0 2m R 3 |∇ x Φ[f ε ]| 2 dx + 1 τ t 0 R 3 R 3 |v| 2 f ε dvdxds = εU ε in + 3σ τ tM ε
in which yields the results.

Formal derivation of the limit model

This section is devoted to the derivation of the limit model for (3.1), (3.2), (3.3) when ε becomes very small by using the properties of the average dominant operator transport. At the formal level, we perform our analysis starting from a Hilbert expansion

f ε = f + εf 1 + ε 2 f 2 + ... 105 
Plugging the above ansatz into the kinetic equation (3.1) yields

ε∂ t (f + εf 1 + ε 2 f 2 + ...) + v • ∇ x (f + εf 1 + ε 2 f 2 + ...) + q m E[f + εf 1 + ε 2 f 2 + ...] + v ∧ Be ε • ∇ v (f + εf 1 + ε 2 f 2 + ...) = Q(f + εf 1 + ε 2 f 2 + ...).
Identifying the contributions to any power of ε leads to 

q m (v ∧ Be) • ∇ v f = 0 (3.15) v • ∇ x f + q m E[f ] • ∇ v f + q m (v ∧ Be) • ∇ v f 1 = Q(f ) (3.16) ∂ t f + v • ∇ x f 1 + q m E[f 1 ] • ∇ v f + q m (v ∧ Be) • ∇ v f 2 = Q(f 1 ). ( 3 
(x, v) ∈ R 3 × R 3 yield R 3 R 3 v • ∇ x + q m E[f ] • ∇ v σf ln f + f |v| 2 2 dvdx + 1 τ R 3 R 3 |σM ∇ v (f /M )| 2 f dvdx = R 3 R 3 q m E[f ] • vf dvdx + R 3 R 3 f 1 q m (v ∧ Be) • σ∇ v f f dvdx. (3.18) 
Integrating (3.16) with respect to v ∈ R 3 we deduce that div x R 3 f v dv = 0 and therefore we have

R 3 R 3 q m E[f ] • vf dvdx = - 1 m R 3 ∇ x Φ[f ] • j[f ] dx = 0.
Using also (3.15), the last contribution in the right hand side of (3.18) cancels, and therefore we obtain

1 τ R 3 R 3 |σM ∇ v (f /M )| 2 f dvdx = 0, t ∈ R +
saying that f = nM , for some function n = n(t, x) to be determined. In that case the constraint (3.15) is satisfied and (3.16) becomes

v • ∇ x f + q m E[f ] • ∇ v f ∈ Range((v ∧ e(x)) • ∇ v ), x ∈ R 3 .
For any e ∈ S 2 we denote by R(θ, e) the rotation of angle θ around the axis e

R(θ, e) = cos θ(I 3 -e ⊗ e)v -sin θ(v ∧ e) + (v • e)e, v ∈ R 3 .
The characteristic flow of the field

(v ∧ e) • ∇ v dV dθ = V(θ; v) ∧ e, V(0; v) = v is given by V(θ; v) = R(-θ, e)v = cos θ(I 3 -e ⊗ e)v + sin θ(v ∧ e) + (v • e)e, (θ, v) ∈ R × R 3 .
For any function g

(v) = (v ∧ e) • ∇ v h in the range of the operator (v ∧ e) • ∇ v , we have g(V(θ; v)) = d dθ h(V(θ; v)) (θ, v) ∈ R × R 3
and by the periodicity of the flow we obtain

1 2π 2π 0 g(V(θ; v))dθ = 0, v ∈ R 3 .
Therefore, for any x ∈ R 3 , the average along the characteristic flow with respect to

(v ∧ e(x)) • ∇ v of the function v • ∇ x f + q m E[f ] • ∇ v f vanishes. But v • ∇ x f + q m E[f ] • ∇ v f = (v • ∇ x n)M - q m (E[f ] • v)n M σ = n σ M v • ∇ x (σ ln n + q m Φ[f ])
and since 1 2π

2π 0 M (V(θ; v))V(θ; v)dθ = M (v)(v • e)e
finally we obtain the constraint

e • ∇ x k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n], x ∈ R 3 .
Here the potential Φ = Φ[n] writes

Φ[n(t)](x) = q 4πε 0 R 3 n(t, x ′ ) |x -x ′ | dx ′ , (t, x) ∈ R + × R 3 .
The time evolution for the concentration n comes by integrating (3.17) with respect to v ∈ R 3

∂ t n + div x R 3 vf 1 dv = 0. (3.19) 
Multiplying (3.16) by v and integrating with respect to v ∈ R 3 we obtain

div x R 3 v ⊗ vf dv -n q m E[f ] - qB m R 3 vf 1 dv ∧ e = 0.
Since f is a Maxwellian equilibrium, we have R 3 v ⊗ vf dv = σnI 3 and the previous equality becomes

ω c R 3 vf 1 dv ∧ e = σ∇ x n -n q m E[f ]
or equivalently

ω c (I 3 -e ⊗ e) R 3 vf 1 dv = ne ∧ σ ∇ x n n - q m E[f ] = ne ∧ ∇ x (σ ln n + q m Φ[n]) = ne ∧ ∇ x k[n].
The divergence with respect to x of R 3 vf 1 dv writes

div x R 3 vf 1 dv = div x (I 3 -e ⊗ e) R 3 vf 1 dv + div x e ⊗ e R 3 vf 1 dv = div x ne ω c ∧ ∇ x k[n] + Be • ∇ x R 3 (v • e)f 1 B dv.
Coming back in (3.19) we obtain the limit model

∂ t n + div x ne ω c ∧ ∇ x k[n] + Be • ∇ x p = 0 (3.20)
for some function p such that the following constraint holds true

Be • ∇ x k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n]. (3.21) 
The limit model involves a Lagrange multiplier p, associated to the constraint (3.21). One of the main difficulty is that the unknown is the concentration n, whereas the constraint relies on k 

d dt R 3 n(t, x) dx = 0, d dt R 3 σn ln n + ε 0 2m |∇ x Φ[n]| 2 dx = 0.
Proof.

Clearly we have the total mass conservation. For the energy conservation, we multiply (3.20) by k[n] and integrate with respect to x ∈ R 3 , observing that

R 3 ∂ t nk[n] dx = d dt R 3 σn ln n + ε 0 2m |∇ x Φ[n]| 2 dx R 3 div x ne ω c ∧ ∇ x k[n] k[n] dx = - R 3 ne ω c ∧ ∇ x k[n] • ∇ x k[n] dx = 0 R 3 Be • ∇ x pk[n] dx = - R 3 pBe • ∇ x k[n] dx = 0.
Recall the usual drift velocities when dealing with magnetic confinement: the electric field drift, the magnetic gradient drift, the magnetic curvature drift

E ∧ e B , - m|v ∧ e| 2 2qB ∇ x B ∧ e B = - |v ∧ e| 2 2 ∇ x ω c ∧ e ω 2 c , - m|v ∧ e| 2 qB ∂ x ee∧e = - (v • e) 2 ω c ∂ x ee∧e.
When working at the fluid level, the averages with respect to v ∈ R 3 of the above drift velocities become

v ∧D = R 3 E ∧ e B M dv = E ∧ e B v GD = - R 3 |v ∧ e| 2 2 ∇ x ω c ∧ e ω 2 c M dv = -σ ∇ x ω c ∧ e ω 2 c v CD = - R 3 (v • e) 2 ω c ∂ x ee ∧ eM dv = -σ ∂ x ee ∧ e ω c .
The flux in the limit model (3.20) also writes nV[n], where

V[n] = v ∧D + v GD + v CD . Proposition 3.3.2
Any smooth function n satisfying

∂ t n + div x ne ω c ∧ ∇ x k[n] + Be • ∇ x p = 0, k[n] = σ(1 + ln n) + q m Φ[n]
also verifies

∂ t n + div x (nV[n]) + Be • ∇ x p = 0, V[n] = E ∧ e B -σ ∇ x ω c ∧ e ω 2 c -σ ∂ x ee ∧ e ω c
and p = p + σn Bωc (e • rot x e).

Proof.

Recall the formula div x (ξ ∧ η) = η • rot x ξ -ξ • rot x η, for any smooth vector fields ξ and η. Therefore we can write

div x ne ω c ∧ ∇ x k[n] = div x ne ω c ∧ σ ∇ x n n - q m E = div x n E ∧ e B + div x σ e ω c ∧ ∇ x n = div x n E ∧ e B + σ rot x e ω c • ∇ x n = div x n E ∧ e B + σ div x n rot x e ω c = div x n E ∧ e B -σ div x n ∇ x ω c ∧ e ω 2 c - n ω c rot x e = div x nv ∧D + nv GD + σn ω c (I 3 -e ⊗ e)rot x e + div x σn ω c (e • rot x e)e .
Notice that we can write Finally we obtain

(I 3 -e ⊗ e)
div x ne ω c ∧ ∇ x k[n] = div x (nV[n]) + Be • ∇ x σn Bω c (e • rot x e)
and our conclusion follows.

Reformulation of the limit model

We intend to find an equivalent formulation for (3.20), (3.21) by eliminating the Lagrange multiplier p which appears in (3.20). For doing that, we will average along the characteristic flow of the magnetic field cf. [START_REF] Bogoliubov | Asymptotic Methods in the Theory of Non-Linear Oscillations[END_REF][START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF][START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Bostan | Gyrokinetic Vlasov Equation in Three Dimensional Setting. Second Order Approximation[END_REF][START_REF] Bostan | The effective Vlasov-Poisson system for strongly magnetized plasma[END_REF][START_REF] Bostan | The Effective Vlasov-Poisson System for the Finite Larmor Radius Regime[END_REF][START_REF] Bostan | Transport of Charged Particles Under Fast Oscillating Magnetic Fields[END_REF]. Let us recall briefly the definition of the average operators along a characteristic flow for functions and vector fields cf. [START_REF] Bostan | MultiScale Analysis for Linear First Order PDEs. The Finite Larmor Radius Regime[END_REF]. Consider a smooth, divergence free vector field

b = b(y) : R m → R m b ∈ W 1,∞ loc (R m ), div y b = 0 (3.22)
with at most linear growth at infinity

∃C > 0 such that |b(y)| ≤ C(1 + |y|), y ∈ R m . (3.23)
We denote by Y (s; y) the characteristic flow associated to b

dY ds = b(Y (s; y)), Y (0; y) = y, s ∈ R, y ∈ R m .
Under the above hypothese, this flow has the regularity Y ∈ W 1,∞ loc (R × R m ) and is measure preserving. We concentrate on periodic characteristic flows (the tokamak characteristic flows are periodic, with uniform period) that are: Indeed, as ψ(Y (s; •)) = ψ, s ∈ R, we have t ∂Y (s; y)(∇ψ)(Y (s; y)) = ∇ψ(y), s ∈ R and therefore

∃S > 0 such that Y (S; y) = y, y ∈ R m .
⟨c⟩ • ∇ψ = 1 S S 0 ∂Y (-s; Y (s; •))c(Y (s; •)) ds • ∇ψ = 1 S S 0 ∂Y (-s; Y (s; •))c(Y (s; •)) • t ∂Y (s; •)(∇ψ)(Y (s; •)) ds = 1 S S 0 (c • ∇ψ)(Y (s; •)) ds = ⟨c • ∇ψ⟩ .
In the previous computations, we have used the equality Y (-s; Y (s; y)) = y, y ∈ R m which implies after differentiation with respect to y

∂ y Y (-s; Y (s; •)∂ y Y (s; •) = I m .
Similarly, the condition [a, b] = 0 expresses the commutation between the flows associated to the vector fields a and b, cf. [START_REF] Arnold | Ordinary Differential Equations[END_REF] Z(h; Y (s;

y)) = Y (s; Z(h; y)), h, s ∈ R, y ∈ R m , (3.26) 
where Z(h; y) denotes the characteristic flow associated to a

d dh Z(h; y) = a(Z(h; y)), (h, y) ∈ R × R m .
Taking the derivative of (3.26) with respect to h at h = 0 we obtain

a(Y (s; y)) = d dh | h=0 Z(h; Y (s; y)) = d dh | h=0 Y (s; Z(h; y)) = ∂ y Y (s; y)a(y), (s, y) ∈ (R×R m ).
Hence we have

⟨a • ∇θ⟩ = 1 S S 0 a(Y (s; •)) • (∇θ)(Y (s; •)) ds = 1 S S 0 a • t ∂ y Y (s; •)(∇θ)(Y (s; •)) ds = 1 S S 0 a • ∇(θ(Y (s; •))) ds = a • ∇ ⟨θ⟩ .
We come back to the limit model (3.20), (3.21) and we consider a smooth magnetic field Be • ∇ x , whose characteristic flow is periodic, with uniform period S. The properties of the average along the magnetic field lines are investigated in the mathematical literature, cf. [START_REF] Negulescu | Kinetic Modelling of Strongly Magnetized Tokamak Plasmas with Mass Disparate Particles. The Electron Boltzmann Relation[END_REF]. If we denote by X = X(s; x) the flow of the magnetic field, we have by S periodicity

⟨Be • ∇ x p⟩ = 1 S S 0 (Be • ∇ x p)(X(s; •)) ds = 1 S S 0 d ds {p(X(s; •))} ds = 0.
Therefore the Lagrange multiplier p can be eliminated, by taking the average in (3.20)

∂ t ⟨n⟩ + div x ne ω c ∧ ∇ x k[n] = 0. (3.27)
The difficulty task is how to express the average of the divergence term, with respect to ⟨n⟩, such that we get a model for the new unknown ⟨n⟩.

Proposition 3.4.1

For any zero average function α, and constant along the flow X function ψ, we have

div x αe B ∧ ∇ψ = 0.
Proof.
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We are done if we prove that for any constant along the flow function θ we have

R 3 div x αe B ∧ ∇ψ θ(x) dx = 0. (3.28)
As e • ∇ψ = 0, e • ∇θ = 0, therefore we have (I 3 -e ⊗ e)(∇θ ∧ ∇ψ) = 0. The vector field ∇θ ∧ ∇ψ is divergence free

div x (∇θ ∧ ∇ψ) = ∇ψ • rot x (∇θ) -∇θ • rot x (∇ψ) = 0
and therefore there is a constant function λ along the flow X such that ∇θ∧∇ψ = λBe. We deduce that 

R 3 div x αe B ∧ ∇ψ θ(x) dx = - R 3 αe B ∧ ∇ψ • ∇θ dx = R 3 (∇θ ∧ ∇ψ) • αe B dx = R 3 λBe • αe B dx = R 3 λα dx =
div x ne ω c ∧ ∇ x k[n] = div x ⟨n⟩ e ω c ∧ ∇ x k[n] .
We also need to express k

[n] = σ(1 + ln n) + q m Φ[n]
, with respect to ⟨n⟩, where the concentration n is such that the constraint (3.21) holds true.

Lemma 3.4.1

The first variation of the free energy

E[n] = R 3 σn ln n + ε 0 2m |∇ x Φ[n]| 2 dx is k[n] = σ(1 + ln n) + q m Φ[n].
For any concentration n, n 0 ≥ 0 we have

E[n] -E[n 0 ] - R 3 k[n 0 ](n -n 0 ) dx = σ R 3 n 0 n n 0 ln n n 0 - n n 0 + 1 dx + ε 0 2m R 3 |∇ x Φ[n] -∇ x Φ[n 0 ]| 2 dx ≥ 0 with equality iff n = n 0 .

Proof.

By direct computations one get

E[n] -E[n 0 ] - R 3 k[n 0 ](n -n 0 ) dx = σ R 3 {n ln n -n 0 ln n 0 -(1 + ln n 0 )(n -n 0 )} dx + R 3 ε 0 2m |∇ x Φ[n]| 2 - ε 0 2m |∇ x Φ[n 0 ]| 2 - q m Φ[n 0 ](n -n 0 ) dx = σ R 3 {n ln n -n + n 0 -n ln n 0 } dx + R 3 ε 0 2m |∇ x Φ[n]| 2 - ε 0 2m |∇ x Φ[n 0 ]| 2 - ε 0 m ∇ x Φ[n 0 ] • (∇ x Φ[n] -∇ x Φ[n 0 ]) dx = σ R 3 n 0 n n 0 ln n n 0 - n n 0 + 1 dx + ε 0 2m R 3 |∇ x Φ[n] -∇ x Φ[n 0 ]| 2 dx ≥ 0 which equality iff n = n 0 . Obviously we have lim h→0 E[n 0 + hz] -E[n 0 ] -h R 3 k[n 0 ]z dx h = lim h→0 σ h R 3 n 0 n 0 + hz n 0 ln n 0 + hz n 0 - n 0 + hz n 0 + 1 dx + lim h→0 ε 0 2mh R 3 h 2 |∇ x Φ[z]| 2 dx = 0 saying that lim h→0 h -1 (E[n 0 + hz] -E[n 0 ]) = R 3 k[n 0 ]
z dx Thanks to the previous lemma we deduce that there is at most one concentration n with a given average, such that Be • k[n] = 0.

Lemma 3.4.2

Let n 1 , n 2 be two concentrations such that ⟨n 1 ⟩ = ⟨n 2 ⟩ and Be

• ∇ x k[n 1 ] = Be • ∇ x k[n 2 ].
Therefore we have n 1 = n 2 . In particular, for a given average, there is at most one concentration n such that Be • ∇ x k[n] = 0.

Proof.

We have, by Lemma 3.4.1

E[n 1 ] -E[n 2 ] - R 3 k[n 2 ](n 1 -n 2 ) dx = σ R 3 n 2 n 1 n 2 ln n 1 n 2 - n 1 n 2 + 1 dx + ε 0 2m R 3 |∇ x Φ[n 1 ] -∇ x Φ[n 2 ]| 2 dx and E[n 2 ] -E[n 1 ] - R 3 k[n 1 ](n 2 -n 1 ) dx = σ R 3 n 1 n 2 n 1 ln n 2 n 1 - n 2 n 2 + 1 dx + ε 0 2m R 3 |∇ x Φ[n 2 ] -∇ x Φ[n 1 ]| 2 dx implying that R 3 (k[n 1 ] -k[n 2 ])(n 1 -n 2 ) dx = σ R 3 (n 1 -n 2 ) ln n 1 n 2 dx + ε 0 m R 3 |∇ x Φ[n 2 ] -∇ x Φ[n 1 ]| 2 dx Since Be • ∇ x (k[n 1 ] -k[n 2 ]) = 0, ⟨n 1 -n 2 ⟩ = 0, we deduce R 3 (k[n 1 ] -k[n 2 ])(n 1 -n 2 ) dx = 0 and thus n 1 = n 2 .
If n is such that Be•∇ x k[n] = 0, then for any concentration n having the same average as n we have

E[n] ≥ E[n] + R 3 k[n](n -n) dx = E[n]
saying that for any given average a, the unique concentration n such that ⟨n⟩ = a and Be

• ∇ x k[n] = 0, satisfies E[n] = min ⟨n⟩=a E[n].
We denote by F the apllication which maps a ∈ ker(Be

• ∇ x ) to n such that ⟨n⟩ = a, Be • ∇ x k[n] = 0. Lemma 3.4.3
The application a ∈ ker(Be

• ∇ x ) → E[n = F (a)] is convex and its first variation is a → k[n = F (a)].

Proof.

Consider a 1 , a 2 ∈ ker(Be • ∇ x ) and λ 1 , λ 2 ∈ [0, 1] such that λ 1 + λ 2 = 1. We have

λ 1 E[F (a 1 )] + λ 2 E[F (a 2 )] ≥ E[λ 1 F (a 1 ) + λ 2 F (a 2 )]
since E is convex and

E[F (λ 1 a 1 + λ 2 a 2 )] = min ⟨n⟩=λ 1 a 1 +λ 2 a 2 E[n] ≤ E[λ 1 F (a 1 ) + λ 2 F (a 2 )] because ⟨λ 1 F (a 1 ) + λ 2 F (a 2 )⟩ = λ 1 ⟨F (a 1 )⟩ + λ 2 ⟨F (a 2 )⟩ = λ 1 a 1 + λ 2 a 2 .
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E[F (a + hz)] -E[F (a)] ≥ R 3 k[F (a)][F (a + hz) -F (a)] dx = R 3 k[F (a)] ⟨F (a + hz) -F (a)⟩ dx = R 3 k[F (a)[⟨F (a + hz)⟩ -⟨F (a)⟩] dx = R 3 k[F (a)][⟨(a + hz)⟩ -⟨a⟩] dx = h R 3 k[F (a)]z(x) dx.
Passing to the limit when h ↘ 0 and h ↗ 0 we deduce that

lim h→0 E[F (a + hz)] -F (a) h = R 3 k[F (a)]z dx.
Combining the results in Proposition 3.4.1, Lemma 3.4.3, the limit model (3.20), (3.21) becomes

∂ t a + div x ae ω c ∧ ∇ x k[F (a)] = 0, n = F (a).
As k[F (a)] ∈ ker(Be • ∇ x ), we obtain by (3.24)

div x ae ω c ∧ ∇ x k[F (a)] = rot x ae ω c • ∇ x k[F (a)] = rot x ae ω c • ∇ x k[F (a)]
and therefore the previous limit model also writes

∂ t a + rot x ae ω c • ∇ x k[F (a)] = 0, n = F (a).
(3.29)

A commutation formula for angular vector fields

The last step will concern a commutation formula between the operators ⟨•⟩ and rot x . We establish this formula for the special class of vector fields which present angle variables. In particular, this formula will apply for tokamak magnetic fields. We start with a very simple example. Consider the vector field b(y)

• ∇ y = y 2 ∂ y 1 -y 1 ∂ y 2 , y = (y 1 , y 2 ) ∈ R 2 , whose characteristic flow is 2π-periodic Y (s; y) = R(-s)y = cos s sin s -sin s cos s y, (s, y) ∈ R × R 2 .
The gradient of any invariant function ψ, that is a function satisfying ψ(Y (s;

•)) = ψ, s ∈ R, verifies t ∂Y (s; •)(∇ψ)(Y (s; •)) = ∇ψ, s ∈ R. (3.30)
There are other vector fields verifying similar properties. Let us consider the angle θ = θ(y) ∈ [0, 2π[ given by

y 1 = |y| cos θ(y), y 2 = |y| sin θ(y), y ∈ R 2 \ {(0, 0)} .
The function θ is smooth in D = R 2 \(R + × {0}) and we have

∇ y θ = - (y 2 , -y 1 ) |y| 2 = - b(y) |y| 2 , y ∈ D.
The function θ is discontinuous across

R ⋆ + × {0} lim y 1 →z 1 ,y 2 ↘0
θ(y) = 0, lim

y 1 →z 1 ,y 2 ↗0
θ(y) = 2π, z 1 > 0 but its gradient, which is well defined on D is the restriction of a smooth vector field on R 2 \ {(0, 0)}

ν(y) = - (y 2 , -y 1 ) |y| 2 , y ∈ R 2 \ {(0, 0)} .
For any y ∈ D and |s| small enough we have Actually it is easily seen that the previous formula holds true for any y ∈ R 2 \ {(0, 0)} and s ∈ R. The vector field ν also satisfies 

d ds θ(Y (s; y)) = b(Y (s; y)) • (∇θ)(Y (s; y)) = -1 implying that θ(Y (s; y)) = θ(y) -s,
div y t ν = div y |y| 2 = 0 but it is not the gradient of a smooth function θ on R 2 \ {(0, 0)}, because, in that case, for any y ∈ R 2 \ {(0, 0)}, we would obtain -1 = 1 2π 2π 0 (b•ν)(Y (s; y)) ds = 1 2π 2π 0 (b•∇ θ)(Y (s; y)) ds = 1 2π
In particular, if α ∈ ker(b • ∇ y ), then (∇ y α ∧ η) • ∇ y is in involution with respect to b • ∇ y in D.
We will use the following lemmas. As α and β are left invariant by the flow Y , we have

Lemma 3.5.1 We denote by M [e] the matrix of the linear transformation

v → e ∧ v, v ∈ R 3 , that is M [e]v = e ∧ v, v ∈ R 3 . For any e ∈ S 2 , ξ, η ∈ R 3 such that ξ • e = 0,
∇α = ∇(α s ) = t ∂Y (s; •)(∇α) s , ∇β = ∇(β s ) = t ∂Y (s; •)(∇β) s implying that ∂Y (s; •)(e ⊗ M [e] t ∂Y (s; •)(∇α) s ) t ∂Y (s; •)(∇β) s = (e s ⊗ M [e s ](∇α) s )(∇β) s .
Observe that

∂Y (s; •)e = ∂Y (s; •)b |b| = b s |b| = |b s | |b| e s , since [b, b] = 0
and therefore we obtain

e s ⊗ ∂Y (s; •)M [e] t ∂Y (s; •) |b| (∇α) s (∇β) s = e s ⊗ M [e s ](∇α) s |b s | (∇β) s
or equivalently

∂Y (s; •)M [e] t ∂Y (s; •) |b| - M [e s ] |b s | (∇α) s ∈ Re s .
Finally we have

(I 3 -e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| - M [e s ] |b s | (∇α) s = 0
for any invariant function α, and our conclusions follows. Taking the scalar product by ν(y), y ∈ D, we obtain

0 = ⟨c⟩ (y) • ν(y) = λ(y)b(y) • ν(y) = λ(y)C, y ∈ D.
Since C ∈ R ⋆ , we deduce that λ vanishes in D and 1 D ⟨c⟩ = 0.

We are ready to prove the commutation formula (3.32).

Proof. (of Proposition 3.5.1) All the computations are performed in D.

We assume for the moment that α ∈ ker(b • ∇ y ) and we prove that ∇α ∧ η is in involution with respect to b • ∇ y . We have by Lemma 3.5.1 and Lemma 3.5.2

∂Y (s; •)(∇α ∧ η) = ∂Y (s; •)(e ⊗ M [e]∇α -M [e]∇α ⊗ e)η = b s ⊗ ∂Y (s; •)M [e] t ∂Y (s; •) |b| (∇α) s - ∂Y (s; •)M [e] t ∂Y (s; •) |b| (∇α) s ⊗ b s η s = b s ⊗ (I 3 -e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| (I 3 -e s ⊗ e s )(∇α) s -(I 3 -e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| (I 3 -e s ⊗ e s )(∇α) s ⊗ b s η s = (e s ⊗ M [e s ](∇α) s -M [e s ](∇α) s ⊗ e s )η s = (∇α) s ∧ η s ,
where we have used that

b s ⊗ (-e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| (∇α) s + (e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| (∇α) s ⊗ b s η s = 0.
Assume now that ⟨α⟩ = 0 and we prove that ⟨∇α ∧ η⟩ = 0. Notice that we need the following formulas in the calculations below

∂Y (s; •)b = b s ⇔ b = ∂Y (-s; Y (s, •))b s and ∇(α s ) = t ∂Y (s; •)(∇α) s ⇔ t ∂Y (-s; Y (s; •))∇(α s ) = (∇α) s .
If η = ∇β for some function β, which is left invariant by Y in D we have 

∂Y (-s; Y (s; •))η s ∧ (∇α) s = ∂Y (-s; Y (s; •))(e s ⊗ M [e s ](∇β) s -M [e s ](∇β) s ⊗ e s )(∇α) s = b ⊗ ∂Y (-s; Y (s; •))M [e s ] t ∂Y (-s; Y (s; •)) |b s | ∇β - ∂Y (-s; Y (s; •))M [e s ] t ∂Y (-s; Y (s; •)) |b s | ∇β ⊗ b ∇(α s ) = b ⊗ (I 3 -e ⊗ e) ∂Y (-s; Y (s; •))M [e s ] t ∂Y (-s; Y (s; •)) |b s | (I 3 -e ⊗ e)
⟨(∇ y α ∧ ν) • ∇ y u⟩ = -⟨(∇ y u ∧ ν) • ∇ y α⟩ = -(∇ y u ∧ ν) • ∇ y ⟨α⟩ = 0.
Therefore we decude that ⟨∇α ∧ ν⟩ = 0.

Finally, for any function α we have

⟨∇α ∧ η⟩ = ⟨∇ ⟨α⟩ ∧ η⟩ + ⟨∇(α -⟨α⟩) ∧ η⟩ = 1 S S 0 ∂Y (-s; Y (s; •))(∇ ⟨α⟩) s ∧ η s ds = 1 S S 0 ∂Y (-s; Y (s; •))∂Y (s; •)(∇ ⟨α⟩ ∧ η) ds = 1 S S 0 ∇ ⟨α⟩ ∧ η ds = ∇ ⟨α⟩ ∧ η.

Cylindrical magnetic fields

In this section we apply the previous results to cylindrical magnetic fields, whose magnetic lines wind on cylindrical surfaces.

We consider the magnetic field B = Be = B 0 3 , where B 0 , R 0 are some reference values for the magnetic field and length. The characteristic flow is given by ( X(s; x), X 3 (s;

x 2 R 0 , -x 1 R 0 , 1 , x = (x 1 , x 2 , x 3 ) = (x, x 3 ) ∈ R
x 3 )) = R -s B 0 R 0 x, x 3 + sB 0 , (s, x, x 3 ) ∈ R × R 3
where

R(θ) = cos θ -sin θ sin θ cos θ , θ ∈ R.
We have two angular vector fields

ν θ = (x 2 , -x 1 , 0) x 2 1 + x 2 2
, x ̸ = 0, ν ∥ = (0, 0, 1).

All the functions are supposed periodic with respect to x 3 . Taking S = 2πR 0 /B 0 , we define the average operator for a function u by

⟨u⟩ (x) = 1 S S 0 u( X(s; x), X 3 (s; x 3 )) ds = 1 S S 0 u R -s 2π S x, x 3 + s 2π S R 0 ds
and for a vector field c

• ∇ x = c • ∇ x + c 3 ∂x 3 by ⟨c⟩ (x) = 1 S S 0   R(s 2π S ) 0 0 0 0 1   c R -s 2π S x, x 3 + s 2π S R 0 ds = 1 S S 0 R(s 2π S )c R -s 2π S x, x 3 + s 2π S R 0 c 3 R -s 2π S x, x 3 + s 2π S R 0 ds.
We use the following decomposition of Be

• ∇ x Be = B 0 R 0 |x| 2 ν θ + B 0 ν ∥ , |x| > 0.
Thanks to Proposition 3.5.1, we compute the term rot x ae ω c appearing in the limit model (3.29). Observe that

rot x ae ω c = rot x a Bω c B 0 R 0 |x| 2 ν θ + B 0 ν ∥ = ∇ x aB 0 |x| 2 Bω c R 0 ∧ ν θ + ∇ x aB 0 Bω c ∧ ν ∥
and therefore

rot x ae ω c = ∇ x aB 0 |x| 2 Bω c R 0 ∧ ν θ + ∇ x aB 0 Bω c ∧ ν ∥ = ∇ x aB 0 |x| 2 Bω c R 0 ∧ ν θ + ∇ x aB 0 Bω c ∧ ν ∥ = rot x ae ω c ,
since the functions a and |x| 2 belong to ker(Be • ∇ x ). We obtain

rot x ae ω c • ∇ x k[F (a)] = rot x ae ω c • ∇ x k[F (a)] = div x ae ω c ∧ ∇ x k[F (a)] .
In that case, the vector field rot x ae ωc is in involution with Be•∇ x , and (3.29) becomes

∂ t a + div x ae ω c ∧ ∇ x k[F (a)] = 0, n = F (a).
In this case we work in the 2πR 0 -periodic domain with respect to x 3 , R 2 × T 1 , where

T 1 = R/(2πR 0 Z).
The potential Φ solves the Poisson equation

-ε 0 ∆ x Φ = qn, x ∈ R 2 × T 1
with the boundary condition

lim |x|→∞ Φ(x, x 3 ) = 0, x 3 ∈ T 1 .
The Jacobian matrix of the flow X(s, x) = ( X(s; x), X 3 (s; x 3 )) is orthogonal

∂ x X(s; x) =   R(-s B 0 R 0 ) 0 0 0 0 1  
which implies that the Laplace operator commutes with the translations along the flow, that is

∆ x u s = (∆ x u) s 123 
for any smooth function u. Indeed, for any ψ ∈ C 1 c (R 2 × T 1 ) we have

R 2 ×T 1 ∆ x u s ψ s dx = - R 2 ×T 1 ∇ x u s • ∇ x ψ s dx = - R 2 ×T 1 t ∂X(s; x)(∇u) s • t ∂X(s; x)(∇ψ) s dx = - R 2 ×T 1 (∇ u ) s • (∇ψ) s dx = - R 2 ×T 1 ∇ u • ∇ψ dx = R 2 ×T 1 ∆ x u ψ dx = R 2 ×T 1 (∆ x u) s ψ s dx saying that ∆ x u s = (∆ x u) s . If Φ[n]
is the potential corresponding to the 2πR 0 -periodic concentration n with respect to x 3 , then

-ε 0 ∆(Φ[n]) s = -ε 0 (∆Φ[n]) s = qn s ,
for any x 3 we have

lim |x|→+∞ Φ[n](X(s; x)) = lim |x|→+∞ Φ[n]( X(s; x), X 3 (s; x 3 )) = 0, because | X(s, x)| = |x| and (Φ[n]) s is 2πR 0 -periodic with respect to x 3 Φ[n]( X(s; x), X 3 (s; x 3 + 2πR 0 )) = Φ[n]( X(s; x), X 3 (s; x 3 ) + 2πR 0 ) = Φ[n]( X(s; x), X 3 (s; x 3 )) = (Φ[n]) s (x).
Therefore we have

(Φ[n]) s = Φ[n s ]. In particular, if n ∈ ker(Be • ∇ x ) then Φ[n] ∈ ker(Be • ∇ x ). By construction n = F (a) is the unique concentration such that ⟨n⟩ = a, Be•∇ x k[n] = 0.
Clearly we have ⟨a⟩ = a and k[a] = σ(1+ln a)+ q m Φ[a] ∈ ker(Be•∇ x ) and thus n = F (a) = a for any a ∈ ker(Be • ∇ x ). The constraint in (3.21) is automatically satisfied. In that case, our limit model simply writes

∂ t n + div x ne ω c ∧ ∇ x k[n] = 0, (t, x) ∈ R + × R 2 × T 1 . (3.33) Remark 3.6.1
The equation (3.33) propagates the constraint Be • ∇ x n = 0. When the magnetic field is uniform i .e., Be = (0, 0, 1), it is not difficult to check that if Be • ∇ x n(t, x) = 0 holds at t = 0, then it will do so for all time in which the solution exists. Thus, the constraint (3.21) can be understood as a mere constraint on the initial data.

Since we know that at any time t, n(t) belongs to ker(Be • ∇ x ), we can reduce the above model to a two dimensional problem. We appeal to the invariants of the flow X

R X 3 (s; x 3 ) R 0 X(s; x) = R x 3 + sB 0 R 0 R -s B 0 R 0 x = R x 3 R 0 x.
We introduce the new unknown function N = N (t, ȳ = (y 1 , y 2 )) such that

n(t, x) = N (t, ȳ = R(x 3 /R 0 )x)
and we are looking for the model satisfied by N = N (t, ȳ).

Lemma 3.6.1

Let us consider a smooth function

U = U (ȳ), ȳ ∈ R 2 , and u(x) = U (R(x 3 /R 0 )x), x ∈ R 2 × T 1 .
We have

∆ x u = div ȳ I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳU (ȳ = R(x 3 /R 0 )x).
Proof.

Consider Ψ ∈ C 1 c (R 2 ) and ψ(x) = Ψ(R(x 3 /R 0 )x), x ∈ R 2 × T 1 .
Integrating by parts, thanks to the x 3 -periodicity, one gets

R 2 ×T 1 ∆ x u ψ(x) dx = - R 2 ×T 1 ∇ x u • ∇ x ψ dx = - R 2 ×T 1 t ∂ ȳ ∂x (∇ ȳU )(R(x 3 /R 0 )x) • t ∂ ȳ ∂x (∇ ȳΨ)(R(x 3 /R 0 )x) dx = - R 2 ×T 1 ∂ ȳ ∂x t ∂ ȳ ∂x (∇ ȳU )(R(x 3 /R 0 )x) • (∇ ȳΨ)(R(x 3 /R 0 )x) dx
where ∂ ȳ ∂x is the Jacobian matrix of the application x → R(x 3 /R 0 )x

∂ ȳ ∂x = R(x 3 /R 0 ), R(x 3 /R 0 + π/2) x R 0 ∈ M 2,3 (R).
The matrix product ∂

ȳ ∂x t ∂ ȳ ∂x writes ∂ ȳ ∂x t ∂ ȳ ∂x = I 2 + R x 3 R 0 ⊥ x R 0 ⊗ R x 3 R 0 ⊥ x R 0 , ⊥ x = (x 2 , -x 1 )
and we obtain

R 2 ×T 1 ∆ x u ψ(x) dx = - R 2 ×T 1 I 2 + R x 3 R 0 ⊥ x R 0 ⊗ R x 3 R 0 ⊥ x R 0 (∇ ȳU )(R( x 3 R 0 )x) • (∇ ȳΨ)(R( x 3 R 0 )x) dx = - T 1 R 2 I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳU (ȳ) • ∇ ȳΨ(ȳ)dȳ dx 3 = 2πR 0 R 2 div ȳ I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳU Ψ(ȳ)dȳ = R 2 ×T 1 div ȳ I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳU ȳ = R x 3 R 0 x ψ(x) dx.
The previous computation shows that

∆ x u-div ȳ I 2 + ⊥ ȳ⊗ ⊥ ȳ R 2 0 ∇ ȳU ȳ = R x 3 R 0 x is orthogonal on ker(Be • ∇ x ).
But this function belongs to ker(Be • ∇ x ), because u belongs to ker(Be • ∇ x ), together with ∆ x u, since the Laplace operator commutes with the flow X. Finally we obtain

∆ x u = div ȳ I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳU ȳ = R x 3 R 0 x . Lemma 3.6.2 Let us consider two smooth functions U = U (ȳ), W = W (ȳ), ȳ ∈ R 2 and u(x) = U (R(x 3 /R 0 )x), w(x) = W (R(x 3 /R 0 )x), x ∈ R 2 × T 1 . We have div x ue ω c ∧ ∇ x w = div ȳ U ω 0 R(π/2)∇ ȳW ȳ = R x 3 R 0 x , ω 0 = qB 0 m .

Proof.

As before, we perform the computation in the distribution sense. We already know that the vector field rot x ue ωc • ∇ x is in involution with Be • ∇ x , and therefore

div x ue ω c ∧ ∇ x w = rot x ue ω c • ∇ x w ∈ ker(Be • ∇ x ).
It is enough to consider test functions

ψ(x) = Ψ(R(x 3 /R 0 )x), Ψ ∈ C 1 c (R 2 ) R 2 ×T 1 div x ue ω c ∧ ∇ x w ψ(x) dx = - R 2 ×T 1 ue ω c ∧ ∇ x w • ∇ x ψ(x) dx = - R 2 ×T 1 u ω c M [e]∇ x ω • ∇ x ψ dx = - R 2 ×T 1 U (R(x 3 /R 0 )) ω c ∂ ȳ ∂x M [e] t ∂ ȳ ∂x (∇ ȳW )(R(x 3 /R 0 )x) • (∇ ȳΨ)(R(x 3 /R 0 )x) dx.
By direct computations we obtain

1 ω c ∂ ȳ ∂x M [e] t ∂ ȳ ∂x = 1 ω 0 R π 2 , ω 0 = qB 0 m
and therefore the previous calculations lead to

R 2 ×T 1 div x ue ω c ∧ ∇ x w ψ(x) dx = 2πR 0 R 2 U (ȳ) ω 0 ⊥ ∇ ȳW • ∇ ȳΨdȳ = -2πR 0 R 2 div ȳ U (ȳ) ω 0 ⊥ ∇ ȳW Ψ(ȳ)dȳ = - R 2 ×T 1 div ȳ U (ȳ) ω 0 ⊥ ∇ ȳW ȳ = R x 3 R 0 ψ(x) dx.
We deduce that

div x ue ω c ∧ ∇ x w = div ȳ U ω 0 ⊥ ∇ ȳW .
Combining Lemma 3.6.1 and Lemma 3.6.2 we derive the limit model with respect to the new unknown N . The potential

Φ = ϕ[n] writes ϕ(t, x) = Φ(t, ȳ = R(x 3 /R 0 )x)
where Φ(t, ȳ) solves the elliptic equation

-ε 0 div ȳ I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳΦ(t, ȳ) = qN (t, ȳ), ȳ ∈ R 2 .
We supplement this elliptic equation by the condition lim |ȳ|→+∞ Φ(t, ȳ) = 0 and we denote by Φ[N ] the solution corresponding to the concentration N . We introduce

K[N ] = σ(1 + ln N ) + q m Φ[N ].
The time evolution for the concentration N is given by

∂ t N + div ȳ N ω 0 R π 2 ∇ ȳK[N ] = 0, (t, ȳ) ∈ R + × R 2
and the initial condition

N (0, ȳ) = N in (ȳ), ȳ ∈ R 2 where n in (x) = N in (R(x 3 /R 0 )x), x ∈ R 2 × T 1 .

Convergence result

We concentrate now on the asymptotic behavior as ε ↘ 0 of the family of smooth solutions (f ε , E[f ε ]) ε>0 of the Vlasov-Poisson-Fokker-Planck system (3.1), (3.2), (3.3) and we establish rigorously the connection to the fluid model (3.4), (3.5), (3.6). We are looking a model for the concentration n ε = n[f ε ] = R 3 f ε dv, similar to the equation (3.4) of the limit concentration n and we perform the balance of the relative entropy between n ε and n. As usual, these computations require the smoothness of the solution for the limit model. We justify the asymptotic behavior of (f ε , E[f ε ]) ε>0 when ε ↘ 0, provided that there is a smooth solution (n,

E[n] = -∇ x Φ[n]
) for the fluid model (3.4), (3.5), (3.6). We do not concentrate on the well posedness of this fluid model, nevertheless we refer to Section 3.6 for some examples of smooth solutions. We are working with smooth solutions

(f ε , E[f ε ]) ε>0 .
The balance for the number of particles writes

∂ t n ε + 1 ε div x j ε = 0, j ε = j[f ε ] = R 3 f ε v dv. (3.34)
We are using the balance momentum as well

ε∂ t j ε + div x R 3 f ε v ⊗ v dv - q m n ε E[f ε ] - ω c ε j ε ∧ e = - j ε τ (3.35)
which allows us to express the orthogonal component of j ε

j ε -(j ε • e)e ε = n ε e ω c ∧ σ ∇ x n ε n ε + q m ∇ x Φ[f ε ] + e ω c ∧ div x R 3 (σ∇ v f ε + vf ε ) ⊗ v dv + ε∂ t j ε + j ε τ = n ε e ω c ∧ ∇ x k[n ε ] + e ω c ∧ F ε , k[n ε ] = σ(1 + ln n ε ) + q m Φ[f ε ]
where we denote

F ε = div x R 3 (σ∇ v f ε + vf ε ) ⊗ v dv + ε∂ t j ε + j ε τ (3.36)
and in the above computation, we have used that

div x R 3 σ∇ v f ε ⊗ v dv = -σ∇ x n ε .
Observe that

1 ε div x j ε = div x j ε -(j ε • e)e ε + div x (j ε • e)Be Bε = div x n ε e ω c ∧ ∇ x k[n ε ] + div x e ω c ∧ F ε + Be • ∇ x (j ε • e) Bε
and finally, thanks to (3.34), we obtain a similar model for n ε , as in (3.4)

∂ t n ε + div x n ε e ω c ∧ ∇ x k[n ε ] + div x e ω c ∧ F ε + Be • ∇ x p ε = 0, p ε = (j ε • e) Bε . (3.37) 
We are also looking for a equation, analogous to (3.5), in order to complete the evolution equation (3.37), involving the Lagrange multiplier p ε . Considering the parallel component in the momentum balance (3.35), we obtain

σe • ∇ x n ε + q m n ε e • ∇ x Φ[n ε ] + e • F ε = 0.
Thanks to (3.5), the above equation also writes

e • ∇ x σ n ε -n n + q m (Φ[n ε ] -Φ[n]) + e n • F ε = q m (n ε -n)(E[n ε ] -E[n]) n • e. (3.38)
We now intend to estimate the modulated energy (3.10) of n ε with respect to n by writing E[n ε |n] as follows

E[n ε |n] = σ R 3 nh n ε n dx + ε 0 2m R 3 |∇ x Φ[n ε ] -∇ x Φ[n]| 2 dx = R 3 (σn ε ln n ε + ε 0 2m |∇ x Φ[n ε ]| 2 ) dx - R 3 (σn ln n + ε 0 2m |∇ x Φ[n]| 2 ) dx - R 3 σ(1 + ln n) + q m Φ[n] (n ε -n) dx := E[n ε ] -E[n] - R 3 k[n](n ε -n) dx. (3.39) 
We introduce as well the modulated energy of f ε with respect to n ε M , given by σ

R 3 R 3 n ε M h f ε n ε M dvdx + ε 0 2m R 3 |∇ x Φ[f ε ] -∇ x Φ[n ε M ]| 2 =0 dx = σ R 3 R 3 f ε ln f ε -f ε ln n ε + f ε ln(2πσ) 3/2 + f ε |v| 2 2σ dvdx = R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dvdx + ε 0 2m R 3 |∇ x Φ[f ε ]| 2 dx - R 3 σn ε ln n ε dx - ε 0 2m R 3 |∇ x Φ[n ε ]| 2 dx + σ ln(2πσ) 3/2 R 3 R 3 f ε dvdx = E[f ε ] -E[n ε ] + σ ln(2πσ) 3/2 R 3 R 3 f ε dvdx.
Thanks to the free energy balance (3.14) and mass conservation of (3.1), from the previous relation, one gets

E[n ε (t)] -E[n ε (0)] + σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx (3.40) -σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx = - 1 ετ t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds.
Thanks to Proposition 3.3.1 and combining (3.39), (3.40) leads to

E[n ε (t)|n(t)] + σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 ετ t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds = E[n ε (0)|n(0)] + σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx - t 0 d ds R 3 k[n](n ε -n) dxds. (3.41)
The next task is to evaluate the time derivative of

R 3 k[n](n ε -n) dx.
Notice that for any smooth concentration n, we can write

ne ω c ∧ ∇ x k[n] = ne ω c ∧ σ ∇ x n n + q m ∇ x Φ[n] = σe ω c ∧ ∇ x n + ne B ∧ ∇ x Φ[n] = nV [n] -σrot x ne ω c
where

V [n] = σrot x e ωc + e∧∇xΦ[n] B
. Clearly, we have 

div x ne ω c ∧ ∇ x k[n] = div x (nV [n]). ( 3 
d dt R 3 k[n(t)](n ε (t, x) -n(t, x)) dx = R 3 p Be n + e ω c ∧ ∇ x k[n] • q m (n ε -n)(E[n ε ] -E[n]) -F ε dx.

Proof.

By straightforward computations, we obtain

d dt R 3 k[n](n ε -n) dx = R 3 σ ∂ t n n + q m ∂ t Φ[n] (n ε -n) dx + R 3 k[n](∂ t n ε -∂ t n) dx = R 3 ∂ t n σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx (3.43) + R 3 k[n] div x ne ω c ∧ ∇ x k[n] -div x n ε e ω c ∧ ∇ x k[n ε ] -div x e ω c ∧ F ε dx
where in the last integral we have used the constraint Be • ∇ x k[n] = 0 which allows us to deduce that

R 3 k[n](Be • ∇ x p -Be • ∇ x p ε ) dx = 0.
Thanks to (3.42), (3.38) we have

R 3 ∂ t n σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx = - R 3 div x ne ω c ∧ ∇ x k[n] σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx (3.44) - R 3 Be • ∇ x p σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx = - R 3 div x (nV [n]) σ n ε -n n dx - R 3 ne ω c ∧ ∇ x k[n] • q m (E[n ε ] -E[n]) dx + R 3 pBe n • q m (n ε -n)(E[n ε ] -E[n]) -F ε dx = -σ R 3 div x e ∧ ∇ x Φ[n] B (n ε -n) dx -σ R 3 ∇ x ln n • V [n](n ε -n) dx - R 3 ne B ∧ ∇ x k[n] • (E[n ε ] -E[n]) dx + R 3 pBe n • q m (n ε -n)(E[n ε ] -E[n]) -F ε dx = - R 3 ∇ x k[n] • V [n](n ε -n) dx - R 3 ne B ∧ ∇ x k[n] • (E[n ε ] -E[n]) dx + R 3 pBe n • q m (n ε -n)(E[n ε ] -E[n]) -F ε dx.
Thanks to (3.42) again, the last integral in (3.43) writes easily

R 3 k[n] div x ne ω c ∧ ∇ x k[n] -div x n ε e ω c ∧ ∇ x k[n ε ] -div x e ω c ∧ F ε dx (3.45) = R 3 ∇ x k[n] • (n ε V [n ε ] -nV [n]) dx - R 3 e ω c ∧ ∇ x k[n] • F ε dx.
Observe that

n ε V [n ε ] -nV [n] -(n ε -n)V [n] = n ε e ∧ ∇ x Φ[n ε ] B -n e ∧ ∇ x Φ[n] B -(n ε -n) e ∧ ∇ x Φ[n] B = n ε e ∧ (∇ x Φ[n ε ] -∇ x Φ[n]) B
and finally (3.43), (3.44), (3.45) yield the result.

Coming back to (3.41), the modulated energy balance becomes

E[n ε (t)|n(t)] + σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 ετ t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds = E[n ε (0)|n(0)] + σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx (3.46) - t 0 R 3 W [n] • q m (n ε -n)(E[n ε ] -E[n]) -F ε dxds 131 where W [n] = pBe n + e ωc ∧ ∇ x k[n].
In order to apply Gronwall's lemma, we estimate the terms in the last integral of (3.46). Thanks to the formula

q m (n ε -n)(E[n ε ] -E[n]) = ε 0 m [div x (E[n ε ] -E[n])](E[n ε ] -E[n]) = ε 0 m div x (E[n ε ] -E[n]) ⊗ (E[n ε ] -E[n]) - |E[n ε ] -E[n]| 2 2 I 3 we obtain - R 3 W [n] • q m (n ε -n)(E[n ε ] -E[n]) dx = ε 0 m R 3 (E[n ε ] -E[n]) ⊗ (E[n ε ] -E[n]) - |E[n ε ] -E[n]| 2 2 I 3 : ∂ x W [n] dx ≤ ∥∂ x W [n]∥ L ∞ (R 3 ) ε 0 m 1 + √ 3 2 R 3 |E[n ε ] -E[n]| 2 dx
where for any matrix P ∈ M 3,3 (R), the notation ∥P ∥ stands for (P : P ) 1/2 . Similarly, we will estimate

t 0 R 3 W [n] • F ε dxds
where F ε is defined in (3.36). We have for some value C to be precised later on

R 3 W [n] • div x R 3 (σ∇ v f ε + f ε v) ⊗ v dv dx = - R 3 ∂ x W [n] : R 3 
(σ∇ v f ε + f ε v) ⊗ v dv dx ≤ ∥∂ x W [n]∥ L ∞ (]0,T [×R 3 ) 1 2ετ C R 3 R 3 |σ∇ v f ε + f ε v| 2 f ε dvdx + ετ C R 3 R 3 f ε |v| 2 2 dvdx . Since j ε = R 3 (σ∇ v f ε + f ε v) dv we have t 0 R 3 W [n(s)] • (ε∂ s j ε + j ε τ ) dxds = ε R 3 W [n(t)] • j ε (t, x) dx -ε R 3 W [n(0)] • j ε (0, x) dx + t 0 R 3 R 3 [σ∇ v f ε + f ε (s, x, v)v] • W [n(s)] τ -ε∂ s W [n(s)] dvdxds ≤ √ ε R 3 R 3 (f ε (0, x, v) + f ε (t, x, v)) ε |v| 2 2 + ∥W [n]∥ 2 L ∞ 2 dvdx + ε∥∂ s W [n]∥ L ∞ + ∥W [n]∥ L ∞ τ t 0 R 3 R 3 1 2εC |σ∇ v f ε + f ε v| 2 f ε + εC 2 f ε dvdxds.
Plugging the above computations in (3.46), the modulated energy balance becomes

for 0 ≤ t ≤ T E[n ε (t)|n(t)] + σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 ετ 1 - ∥W [n]∥ L ∞ 2C - ετ ∥∂ s W [n]∥ L ∞ 2C - ∥W [n]∥ L ∞ 2C t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds ≤ E[n ε (0)|n(0)] + σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx + ∥∂ x W [n]∥ L ∞ 2 + √ 3 ε 0 2m R 3 |E[n ε ] -E[n]| 2 dx + ε τ C 2 ∥∂ x W [n]∥ L ∞ T 0 R 3 R 3 f ε |v| 2 dvdxdt + √ ε sup 0≤t≤T ε R 3 R 3 f ε |v| 2 dvdx + √ ε √ ε CT 2 ε∥∂ s W [n]∥ L ∞ + ∥W [n]∥ L ∞ τ + ∥W [n]∥ 2 L ∞ R 3 R 3 f ε (0, x, v) dvdx.
Taking 0 < ε ≤ 1 and C large enough, we obtain by Lemma 3.2.1 and (3.39), for some constant

C T , 0 ≤ t ≤ T , 0 < ε ≤ 1 E[n ε (t)|n(t)] + σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 2ετ t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds ≤ E[n ε (0)|n(0)] + σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx + C T t 0 E[n ε (s)|n(s)]ds + C T √ ε
Applying Gronwall lemma, we deduce that for 0 ≤ t ≤ T , 0 < ε ≤ 1

E[n ε (t)|n(t)]+σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 2ετ t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds ≤ E[n ε (0)|n(0)] + σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx + C T √ ε e C T t .
The above inequality says that the particle density f ε remains close to the Maxwellian with the same concentration, i .e., n ε (t)M , and n ε (t) stays near n(t), provided that analogous behavior occur for the initial conditions. Therefore, we are ready to prove our main theorem.

Proof. (of Theorem 3.1.1)

We justify the convergence of

f ε toward nM in L ∞ (]0, T |; L 1 (R 3 × R 3
)), the other convergences being obvious. We use the Csisár -Kullback inequality in order to control the L 1 norm by the relative entropy, cf. [64, 102]

R n |g -g 0 |dx ≤ 2 max R n g 0 dx 1/2 , R n gdx 1/2 R n g 0 h g g 0 dx 1/2
for any non negative integrable functions g 0 , g : R n → R. Applying two times the

R 3 R 3 |f ε (t, x, v) -n(t, x)M (v)| dvdx ≤ R 3 R 3 |f ε (t, x, v) -n ε (t, x)M (v)| dvdx + R 3 |n ε (t, x) -n(t, x)| dx ≤ 2 M ε in R 3 R 3 n ε (t)M (v)h f ε (t) n ε (t)M dvdx 1/2 + 2 max M in , ∥n in ∥ L 1 (R 3 ) R 3 n(t)h n ε (t) n(t) dx 1/2
→ 0, as ε ↘ 0.

In the same manner we perform the balance of the relative between two smooth solutions of the limit model.

Proposition 3.7.2

Assume that n, ñ are smooth solutions of (3.4), (3.5), (3.6) 

such that n in , ñin ≥ 0, n in , ñin ∈ L 1 (R 3 ), ∇ x Φ[n in ], ∇ x Φ[ñ in ] ∈ L 2 (R 3 ), ∂ x W [n] ∈ L 1 (]0, T [; L ∞ (R 3 )), k[n in ], k[ñ in ] ∈ ker(Be • ∇ x ).
Then we have the inequality

E[ñ(t)|n(t)] ≤ E[ñ in |n in ] exp (2 + √ 3)∥∂ x W [n]∥ L 1 (]0,T [;L ∞ (R 3 )) , 0 ≤ t ≤ T.
In particular, there is at most one smooth solution.

Proof.

By (3.39) we know that

E[ñ|n] = E[ñ] -E[n] - R 3 k[n](ñ -n) dx = σ R 3 nh ñ n dx + ε 0 2m R 3 |∇ x Φ[ñ] -∇ x Φ[n]| 2 dx.
Thanks to the constraint Be

• ∇ x k[n] = 0, Be • ∇ x k[ñ] = 0, we can write e • ∇ x σ ñ -n n + q m (Φ[ñ] -Φ[n]) = q m (ñ -n)(E[ñ] -E[n]) n • e.
As in the proof of Proposition 3.7.1, we observe that

d dt R 3 k[n](ñ -n) dx = R 3 ∂ t n σ ñ -n n + q m (Φ[ñ] -Φ[n]) dx + R 3 k[n] div x ne ω c ∧ ∇ x k[n] -div x ñe ω c ∧ ∇ x k[ñ] dx = R 3 W [n] • q m (ñ -n)(E[ñ] -E[n]) dx
and the balance for the relative entropy becomes

E[ñ(t)|n(t)] -E[ñ(0)|n(0)] = - q m t 0 R 3 (ñ -n)(E[ñ] -E[n]) • W [n] dxds ≤ ∥∂ x W [n]∥ L ∞ (R 3 ) (2 + √ 3) ε 0 2m t 0 R 3 |E[n ε ] -E[n]| 2 dxds ≤ ∥∂ x W [n]∥ L ∞ (R 3 ) (2 + √ 3) t 0 E[ñ(s)|n(s)]ds.
Applying Gronwall lemma completes the proof.

Example of smooth solutions for limit model

In this section we construct a smooth solution for the limit model obtained in Section 3.6. We focus on the existence of the limit model

∂ t n+div x ne ω c ∧ ∇ x k[n] = 0, k[n] = σ(1+ln n)+ q m Φ[n], (t, x) ∈ R + ×R 2 ×T 1 (3.47)
where Φ[n] stands for the Poisson electric potential which solves

-ε 0 ∆ x Φ[n(t)](x) = q n(t, x), (t, x) ∈ R + × R 2 × T 1 . (3.48) Denoting E[n(t)] = -∇ x Φ[n(t)] the electric field derives from the potential Φ[n(t)].
We supplement our model by the initial condition

n(0, x) = n in (x), x ∈ R 2 × T 1 (3.49)
where n in is a smooth function and belongs to ker(Be•∇ x ). The external magnetic field we consider here Be = (x 2 , -x 1 , 1). Notice that the vector field e/B ∈ W 2,∞ ((R 2 × T 1 )) 3 . We follow the same arguments as in the well posedness proof for the Vlasov-Poisson problem with external magnetic field, cf. [START_REF] Bostan | Asymptotic Behavior for the Vlasov-Poisson Equations with Strong External Magnetic Field. Straight Magnetic Field Lines[END_REF][START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions[END_REF]. We need to get a priori bounds for the L ∞ norm of E[n] and ∂ x E[n] in not the full space R 3 , but in R 2 × T 1 . These bounds are based on estimating the fundamental solution of Laplace's equation on

R 2 × T 1 .
Therefore we start by investigating the Poisson equation for a given density in this domain and finding a fundamental solution to this goal.

Fundamental solution of Laplace's equation on

R 2 × T 1 Consider a function Ξ : R 2 × T 1 → R satisfying -∆ x Ξ = δ 0 (x, x 3 ), x = (x = (x 1 , x 2 ), x 3 ) ∈ R 2 × T 1 (3.50)
in the sense of distributions, where δ 0 (x) denotes the Dirac measure on R 2 × T 1 giving unit mass to the point 0.

Lemma 3.8.1

Let x = (x, x 3 ) ∈ R 2 × T 1 . Then Ξ(x) = - 1 4π 2 ln(|x|) + Γ(x),
satifies (3.50), where

Γ(x) := ∞ 0 1 4πt e -|x| 2 /4t 1 π ∞ n=1
e -n 2 t cos(nx 3 ) dt.

Proof.

We have

-∆ x Ξ = δ 0 (x, x 3 ) = δ 0 (x)δ 0 (x 3 ) = δ 0 (x) 1 2π n∈Z e inx 3 = 1 2π n∈Z δ 0 (x)e inx 3 (3.51)
where we have used the formula

δ 0 (x 3 ) = 1 2π n∈Z e inx 3 .
Indeed, the Dirac measure δ 0 (x 3 ) is periodic in x 3 with period 2π, it can be represented as a Fourier series

δ 0 (x 3 ) = n∈Z c n e inx 3
where the Fourier coefficients are

c n = 1 2π 2π 0 δ 0 (x 3 )e -inx 3 dx 3 = 1 2π e -in0 = 1 2π .
On the other hand, as Ξ is periodic in x 3 of period 2π, we also have 

Ξ = n∈Z β n (x)e inx 3 therefore -∆ x Ξ(x, x 3 ) = n∈Z (-∆ xβ n (x) + n 2 β n (x))e inx
(x) + n 2 β n (x) = 1 2π δ 0 (x), x ∈ R 2 . (3.53)
A solution to (3.53) can be found by using the Fourier transform for linear equation.

It is known that the solution to this equation is given in term of the Bessel potential B(x) as β n (x) = 1 2π (B ⋆ δ 0 )(x), cf. [START_REF] Evans | Partial Differential Equations: Second Edition (Graduate Studies in Math-ematics) 2nd Edition[END_REF] where

B(x) = ∞ 0 1 4πt e -|x| 2 /4t e -n 2 t dt.
Thus, we have the solution formula

β n (x) = 1 2π ∞ 0 1 4πt e -|x| 2 /4t e -n 2 t dt.
In the case n = 0, the equation (3.53) becomes the Laplace equation on R 2 . It is well known that the fundamental solution is given by β 0 (x) = -1 4π 2 ln(|x|). Subsequently, we obtain

Ξ = - 1 4π 2 ln(|x|) + n∈Z\{0} 1 2π ∞ 0 1 4πt e -|x| 2 /4t e -n 2 t dt e inx 3 = - 1 4π 2 ln(|x|) + ∞ 0 1 4πt e -|x| 2 /4t 1 2π n∈Z\{0} e -n 2 t e inx 3 dt = - 1 4π 2 ln(|x|) + ∞ 0 1 4πt e -|x| 2 /4t 1 π ∞ n=1
e -n 2 t cos(nx 3 ) dt.

Let us denote Γ 1,2 (t, x) := 1 4πt e -|x| 2 /4t and Γ 3 (t,

x 3 ) := 1 2π 1 + 2 ∞ n=1 e -n 2 t cos(nx 3 ) . It is know that Γ 1,2 is a heat kernel on R 2 of the heat equation ∂ t Γ 1,2 (t, x) -∆ xΓ 1,2 (t, x) = 0, (t, x) ∈ R + × R 2 Γ 1,2 | t=0 (x) = δ 0 (x) while Γ 3 is a heat kernel on T 1 of ∂ t Γ 3 (t, x 3 ) -∂ 2 x 3 Γ 3 (t, x 3 ) = 0, (t, x 3 ) ∈ R + × T 1 Γ 3 | t=0 (x 3 ) = δ 0 (x 3 ).
For a proof of this property, we refer to [START_REF] Carrillo | Decay and vanishing of some axially symmetric D-solutions of the Navier-Stokes equations[END_REF]. We define now G(t, x) := Γ 1,2 (t, x)Γ 3 (t, x 3 ).

Then G is the fundamental solution of heat equation on R 2 × T 1 , that means

∂ t G -∆ x G = 0, (t, x = (x, x 3 )) ∈ R + × R 2 × T 1 G| t=0 (x) = δ 0 (x).
Thus, we have that the function Γ in the fundamental solution Ξ for Laplace's equation (3.50) is related to the preivous solution of heat equation as The heat kernel Γ 3 on T 1 can also be given by the heat kernel k t (x 3 ) = (4πt) -1/2 e -x 2 3 /4t on the real line R as follows

Γ(x) = ∞ 0 Γ 1,2 (t, x) Γ 3 (t, x 3 ) - 1 2π dt. ( 3 
Γ 3 (t, x 3 ) = 1 2π g t (x 3 ) := 1 2π 2π n∈Z k t (x 3 + 2πn) , x 3 ∈ T 1 . (3.55)
Indeed, the function g t ∈ L 1 (T 1 ) since

∥g t ∥ T 1 = T 1 g t dm(x 3 ) = n∈Z T 1 k t (x 3 + 2πn)dx 3 = R k t (x 3 )dx 3 = 1
where dm(x 3 ) is Haar measure on T 1 , dm(x 3 ) = 1/(2π) dx 3 . Thus, the periodic function g t can be written in the form of the Fourier series

g t (x 3 ) = n∈Z ĝt (n)e inx 3
where (ĝ t (n)) n∈Z is the sequence of the Fourier coefficients which is given by

ĝt (n) = T 1 g t (x 3 )e -inx 3 dm(x 3 ) = 1 2π k∈Z T 1 2πk t (x 3 + 2πk)e -in(x 3 +2πk) dx 3 = R k t (x 3 )e -inx 3 dx 3 = kt (n/2π) = e -n 2 t ,
where kt (n/2π) is the Fourier transform of the function k t (x 3 ).

Since we need the bounds of the function Γ and its first and second order derivatives in the following, thus from (3.54) we have to estimate the function Γ 3 -1 2π and also the first and second derivates of Γ 3 . We shall use the arguments in [START_REF] Maheux | Notes on Heat Kernels on Infinite dimensional Torus[END_REF] to get the bound of |Γ 3 -1 2π |. Firstly, by the formula (3.55) we can rewrite the function Γ 3 on T 1 as following Lemma 3.8.2 For any t > 0 and for any x 3 ∈ T 1 , we have

g t (x 3 ) = π t exp -x 2 3 4t   1 + 2 n≥1 exp -π 2 n 2 t cosh πnx 3 t   .

Proof.

Using the definition of g t (x 3 ), we have

g t (x 3 ) = 2π n∈Z 1 (4πt) 1/2 exp - (x 3 + 2nπ) 2 4t = π t exp -x 2 3 4t n∈Z exp - πnx 3 t exp -π 2 n 2 t = π t exp -x 2 3 4t   1 + n≥1 exp πnx 3 t + exp - πnx 3 t exp -π 2 n 2 t   ,
which gives the claim, using cosh(y) = e y +e -y 2 .

Next, using the Lemma 3.8.2, we obtain the following estimate Lemma 3.8.3 For any t > 0 and any

x 3 ∈ T 1 = [-π, π], we have exp -x 2 3 4t g t (0) ≤ g t (x 3 ) ≤ π t + g t (0) exp -x 2 3 4t . (3.56) 
Proof.

Using the Lemma 3.8.2 and the fact that from cosh(y) ≥ 1, y ∈ R we get the lower bound. Indeed, for any t > 0

g t (x 3 ) ≥ exp - x 2 3 4t π t   1 + 2 n≥1 exp -π 2 n 2 t   = exp - x 2 3 4t g t (0).
For the upper bound, let us write

S(x 3 ) = 1 + 2 n≥1 exp -π 2 n 2 t cosh πnx 3 t .
For any n ≥ 1,

using |x 3 | ≤ π 2 cosh πnx 3 t ≤ 2 cosh π 2 n t = exp π 2 n t + exp - π 2 n t ≤ 1 + exp π 2 n t . Therefore S(x 3 ) ≤ 1 + n≥1 exp -π 2 n 2 t 1 + exp π 2 n t = 1 + n≥1 exp -π 2 n 2 t + exp - π 2 n(n -1) t ≤ 1 + n≥1 exp -π 2 n 2 t + exp - π 2 (n -1) 2 t = 2 + 2 n≥1 exp -π 2 n 2 t = 1 + t π g t (0).
Together with g t (x 3 ) = π t exp -x 2 3 4t S(x 3 ) implies the upper bound we wanted to prove.

We need the estimate of the function g t (x 3 ) at x 3 = 0.

Lemma 3.8.4

For any t > 0, we have

π t ≤ g t (0) ≤ 1 + π t and 2e -t ≤ g t (0) -1 ≤ 2e -t 1 -e -t .
Consequently, there exist positive constant

C 1 , C 2 such that |g t (0) -1| ≤ C 1 e -C 2 t √ t .
Proof. Using Lemma 3.8.2 with x 3 = 0 gives g t (0) ≥ π t . By formula (3.55) we have

g t (0) -1 = 2ϕ(t), ϕ(t) = 2 n≥1 e -n 2 t .
Since e -x 2 t is positive and decreasing, bounding a sum by an integral we get

ϕ(t) ≤ ∞ 0 e -x 2 t dx = 1 √ t ∞ 0 e -x 2 dx = 1 2 π t hence g t (0) ≤ 1 + π t
. Moreover, ϕ(t) ≥ e -t we have g t (0) -1 ≥ 2e -t . Finally, since e -n 2 t ≤ e -nt , for any n ≥ 1, we deduce that ϕ(t) ≤ 2 n≥1 e -nt = 2e -t 1 -e -t which gives

g t (0) -1 ≤ 2e -t
1-e -t . To finish the Lemma, it remains to estimate |g t (0) -1|, for any t > 0. Indeed, since g t (0) ≥ 1 we deduce that

|g t (0) -1| = (g t (0) -1)1 {0<t<1} + (g t (0) -1)1 {t≥1} ≤ π t e -t e t 1 {0<t<1} + 2e -t 1 -e -t √ t 1 √ t 1 {t≥1} ≤ C 1 e -C 2 t √ t
for some positive constants C 1 and C 2 .

Now the following Lemma provides the estimates of Γ 3 -1 2π and its first and second order derivatives on T 1 .

Lemma 3.8.5

Let Γ 3 = 1 2π 1 + 2 ∞ n=1 e -n 2 t cos(nx 3 ) be the heat kernel on T 1 . Then there exist constants C 1 , C 2 , C 3 which can change from line to line such that

Γ 3 (t, x 3 ) - 1 2π ≤ C 1 1 √ t e -C 2 t e -C 3 x 2 3 /4t , x 3 ∈ T 1 (3.57) |∂ x 3 Γ 3 (t, x 3 )| ≤ C 1 1 t e -C 2 t e -C 3 x 2 3 /4t , x 3 ∈ T 1 (3.58) |∂ 2 x 3 Γ 3 (t, x 3 )| ≤ C 1 1 t 3/2 e -C 2 t e -C 3 x 2 3 /4t , x 3 ∈ T 1 (3.59) 

Proof.

Readers can see these results in [START_REF] Carrillo | Decay and vanishing of some axially symmetric D-solutions of the Navier-Stokes equations[END_REF], even when T 1 is replaced by a more general compact manifold, cf. [START_REF] Qi | Isoperimetric inequality under Kähler Ricci flow[END_REF][START_REF] Qi | A formula for backward and control problems of the heat equation[END_REF]. We provide here the main lines of the proof. For the bound (3.57), it is easily obtained from the consequence of Lemma 3.8.4 for t ≥ 1. If t ≤ 1, first using (3.55) yields Γ 3 (t, x 3 ) -1 2π = 1 2π (g t (x 3 ) -1) then (3.56) we have

1 2π exp -x 2 3 4t g t (0) -1 ≤ Γ 3 (t, x 3 ) - 1 2π ≤ 1 2π exp -x 2 3 4t π t + g t (0) -1 .
(3.60) Using the upper bound in (3.60) and Lemma 3.8.4 we deduce that

Γ 3 (t, x 3 ) - 1 2π ≤ 1 2π exp -x 2 3 4t π t + 1 2π exp -x 2 3 4t 2e -t 1 -e -t .
If t ≥ δ 0 , for some δ 0 ∈ (0, 1), it's not hard to show from the previous inequality that there exist positive constants

C 1 , C 2 , C 3 such that Γ 3 (t, x 3 ) -1 2π ≤ C 1 1 √ t e -C 2 t e -C 3 x 2 3 /4t . On the other hand, for any positive test function φ ∈ C ∞ 0 (R), since lim t→0 + Γ 3 -1 2π , φ = (1-1/2π)φ(x 3 ) and lim t→0 + ⟨k t , φ⟩ = φ(x 3 ), where k t (x 3 ) = (4πt) -1/2 e -x 2
3 /4t is the heat kernel on R, we deduce that we can choose the positive constants to obtain the previous upper estimate of Γ 3 -1/2. Together these arguments give us the upper bound of (3.57). Similarly, from the lower bound in (3.60) and Lemma 3.8.4, we also imply the lower bound in (3.57). Therefore, we get the estimate (3.57). Now, for the estimates (3.58) and (3.59), we apply Lemma 2.1 in [START_REF] Qi | Isoperimetric inequality under Kähler Ricci flow[END_REF], which can be extended to the parabolic case, see Lemma 2.3 in [87]

|∇ x u(t, x 3 )| ≤ C r 1 r 4 r t-r |y-x 3 |<r |u(s, y)| 2 dyds 1/2
, where u is a solution of the heat equation

∂ t u -∆ x 3 u = 0 in the domain [t -r 2 , t] × B(x 3 , r), with r = √ t/2 for any fixed point (t, x 3 ) ∈ R × T 1 .
In the next lemma, we give the estimates of the function Γ and its derivatives by using the relation ( 

|Γ(x)| ≤ C |x| , |∂ x Γ(x)| ≤ C |x| 2 , |D 2 x Γ(x)| ≤ C |x| 3
where D 2

x denotes the second order derivative. Here, C stands for a positive constant, which can vary in each estimate.

Proof.

For these estimated results of Γ, reader can see in [START_REF] Carrillo | Decay and vanishing of some axially symmetric D-solutions of the Navier-Stokes equations[END_REF], Lemma 4.2. We will first estimate Γ(x). Thanks to (3.54) and (3.57), we deduce that

|Γ(x)| ≤ C 1 4π ∞ 0 t -3/2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt ≤ C 1 4π ∞ 0 t -3/2 e -C 2 t e -C ′ 3 |x| 2 /t dt, C ′ 3 = min (1, C 3 )/4 = C 1 4π e -2 √ C 2 C ′ 3 |x| ∞ 0 t -3/2 e -C 2 t+2 √ C 2 C ′ 3 |x|-C ′ 3 |x| 2 /t dt = C 1 4π e -2 √ C 2 C ′ 3 |x| ∞ 0 e - √ C ′ 3 |x|- √ C 2 t √ t 2 2d(-t -1/2 ) = C 1 2π e -2 √ C 2 C ′ 3 |x| ∞ 0 e - √ C ′ 3 |x|u- √ C 2 u -1 2 du, u = t -1/2 = C 1 2π 1 C ′ 3 |x| e -2 √ C 2 C ′ 3 |x| ∞ 0 e -θ- √ C 2 C ′ 3 |x|θ -1 2 dθ, θ = C ′ 3 |x|u ≤ C |x|
for some positive constant C, where we have used that

∞ 0 e -θ- √ C 2 C ′ 3 |x|θ -1 2 dθ = √ π 2 (3.61)
see the proof of Lemma 3.9.1 in Appendix 3.9.

Next we estimate ∇ x Γ(x). Taking the derivative in x in the formula (3.54) we imply that

|∇ x Γ(x)| ≤ ∞ 0 |∇ xΓ 1,2 (t, x)||Γ 3 (t, x 3 ) - 1 2π |dt + ∞ 0 |Γ 1,2 (t, x)||∂ x 3 Γ 3 (t, x 3 )|dt.
A simple computation shows that

∇ xΓ 1,2 (t, x) = -x 8πt 2 e -|x| 2 /4t
and thanks to the estimates (3.57) and (3.58) we obtain

|∇ x Γ(x)| ≤ C 1 |x| 8π ∞ 0 t -5/2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt + C 1 4π ∞ 0 t -2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt ≤ C 1 |x| 8π ∞ 0 t -5/2 e -C 2 t e -C ′ 3 |x| 2 /t dt + C 1 4π ∞ 0 t -2 e -C 2 t e -C ′ 3 |x| 2 /t dt where C ′ 3 = min(1, C 3 )/4. Using sup R ⋆ + h(t) = h(C ′ 3 |x| 2 ) where h(t) = t -1/2 e -C ′ 3 |x| 2 /2t
for the first integral on the last line of the previous inequality, we deduce that

|∇ x Γ(x)| ≤ C 1 8π 1 C ′ 3 e + C 1 4π ∞ 0 t -2 e -C ′ 3 |x 2 |/2t dt = C 1 8π 1 C ′ 3 e + C 1 4π 2 C ′ 3 |x| 2 ∞ 0 d dt e -C ′ 3 |x 2 |/2t dt ≤ C |x| 2
for some positive constant C.

Finally, we estimate D 2 x Γ(x). By direct computation in (3.57), we have

|D 2 x Γ(x)| ≤ ∞ 0 |D 2 xΓ 1,2 (t, x)||Γ 3 (t, x 3 ) - 1 2π |dt + ∞ 0 |∇ xΓ 1,2 (t, x)||∂ x 3 Γ 3 (t, x 3 )|dt + ∞ 0 |Γ 1,2 (t, x)||∂ 2 x 3 Γ 3 (t, x 3 )|dt.
Observe that

D 2 xΓ 1,2 (t, x) = 1 8πt 2 -I 2 + x ⊗ x 2t e -|x| 2 /4t
implying that

|D 2 xΓ 1,2 (x)| ≤ 1 8πt 2 e -|x| 2 /4t + |x| 2 16πt 3 e -|x| 2 /4t .
Using the inequalities (3.57), (3.58), (3.59) we deduce that

|D 2 x Γ(x)| ≤ C 1 8π ∞ 0 t -5/2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt + C 1 |x| 2 16π ∞ 0 t -7/2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt + C 1 |x| 8π ∞ 0 t -3 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt + C 1 4π ∞ 0 t -5/2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt := I 1 + I 2 + I 3 + I 4 .
The estimates of the integrals I 1 et I 4 perform as above. Thus we get

I 2 ≤ C |x| 3 , I 4 ≤ C |x| 3 .
For the integral I 3 , we see that 3 , for some positive constant C. Similarly for integral I 2 , we also have

I 3 ≤ C 1 |x| 8π ∞ 0 t -3 e -C 2 t e -C ′ 3 |x| 2 /t dt, C ′ 3 = min(1, C 3 )/4. Using again sup R ⋆ + h(t) = h(C ′ 3 |x| 2 ) where h(t) = t -1/2 e -C ′ 3 |x| 2 /2t we obtain that I 3 ≤ C |x|
I 2 ≤ C 1 |x| 2 16π ∞ 0 t -7/2 e -C 2 t e -C ′ 3 |x| 2 /t dt, C ′ 3 = min(1, C 3 )/4 ≤ C 1 |x| 2 16π 1 C ′ 3 e|x| ∞ 0 t -3 e -C 2 t e -C ′ 3 |x| 2 /2t dt ≤ C |x| 3 .
Together the estimations of I i , for any i = 1, ..., 4 will give us the estimate of D 2

x Γ(x).

Thanks to Lemma 3.8.1 and the L ∞ estimate for the function Γ in Lemma 3.8.6, following the same arguments as in the proof for Poisson's equation in R 3 , we can show that the solution of the Poisson equation (3.48) is given by

Φ[n](x) = q ε 0 Ξ ⋆ n(x) = q ε 0 π -π R 2
Ξ(x -y)n(y) dȳdy 3 .

(3.62)

Estimations for the electric field and its gradient on R 2 × T 1

We give now some estimates of the electric field E[n] = -∇ x Φ[n] which can be proved by treating the singular term coming from the previous estimate of the fundamental solution Ξ as in, cf. [START_REF] Batt | Global symmetric solutions of the initial value problem of stellar dynamics[END_REF] for the space domain x ∈ R 3 and [126] for x ∈ T 3 .

Lemma 3.8.7

Let n be a positive concentration and belongs to L 1 (R 2 × T 1 ) ∩ L ∞ (R 2 × T 1 ). Then, there exists a constant C > 0 such that the electric field E[n] satisfies the following estimate:

∥E[n]∥ L ∞ ≤ C(∥n∥ L ∞ + ∥n∥ L 1 ).

Proof.

For any x = (x,

x 3 ) ∈ R 2 × [-π, π]
, by the formula (3.62) we have

∇ x Φ[n](x) = - 1 4π 2 π -π R 2 ∇ x ln |x -ȳ|n(y) dȳdy 3 + π -π R 2 ∇ x Γ(x -y) n(y) dȳdy 3 = - 1 4π 2 π -π R 2 x - ȳ |x -ȳ| 2 n(y) dȳdy 3 + x 3 +π x 3 -π R 2 ∇ x Γ(x -y) n(y) dȳdy 3 .
The first integral in the previous expression can be estimated as

1 4π 2 π -π R 2 |x -ȳ| |x -ȳ| 2 1 {|x-ȳ|≤1} n(y) dȳdy 3 + π -π R 2 |x -ȳ| |x -ȳ| 2 1 {|x-ȳ|>1} n(y) dȳdy 3 ≤ C(∥n∥ L ∞ + ∥n∥ L 1 ).
For the second integral, we make a decomposition of R 2 × T 1 in the following way

R 2 × [x 3 -π, x 3 + π] := I ∪ J where I = y ∈ R 3 : |x -y| ≥ 1 ∩ R 2 × [x 3 -π, x 3 + π] J = y ∈ R 3 : |x -y| ≤ 1 . It is obviously that J ⊆ R 2 × [x 3 -π, x 3 + π].
Thus the last integral in the previous equality can be written

x 3 +π x 3 -π R 2 ∇ x Γ(x -y) n(y) dȳdy 3 = I ∇ x Γ(x -y) n(y)dy + J ∇ x Γ(x -y) n(y)dy.
Thanks to Lemma 3.8.6, we deduce that

|E[n](x)| ≤ C I 1 |x -y| 2 n(y)dy + J 1 |x -y| 2 n(y)dy ≤ C x 3 +π x 3 -π R 2 n(y) dȳdy 3 + |x-y|≤1 1 |x -y| 2 n(y)dy ≤ C π -π R 2 n(y) dȳdy 3 + 4π∥n∥ L ∞ ≤ C(∥n∥ L 1 + ∥n∥ L ∞ )
where we have used that |x-y|≤1 1 |x-y| 2 dy = 4π. Combining these estimates, we obtain the desired result in Lemma 3.8.7.

Lemma 3.8.8

Let n ∈ L 1 (R 2 × T 1 ) ∩ W 1,∞ (R 2 × T 1 ) and n ≥ 0. There exists a constant C > 0 such that the gradient of the electric field E[n] satisfies the following estimates

∥∇E[n]∥ L ∞ ≤ C 1 + ∥n∥ L ∞ (1 + ln + (∥∇n∥ L ∞ )) + ∥n∥ L 1
where the notation ln + stands for the positive part of ln.

Proof.

We estimate now ∂ 2

x 1 Φ[n](x). In other cases, we can do the same. Observe that

Φ[n](x) = π -π R 2 Γ(x -y) n(y) dȳdy 3 - 1 4π 2 π -π R 2 ln(|x -ȳ|)n(y) dȳdy 3 = π -π R 2 Γ(y) n(x -y) dȳdy 3 - 1 4π 2 π -π R 2 ln(|ȳ|)n(x -ȳ, y 3 ) dȳdy 3
because the functions Γ and n are periodic with respect to x 3 of period 2π. Taking the derivative in the variable x 1 of the above equality, we have

∂ x 1 Φ[n](x) = π -π R 2 Γ(y)∂ x 1 n(x -y) dȳdy 3 - 1 4π 2 π -π R 2 ln(|ȳ|)∂ x 1 n(x -ȳ, y 3 ) dȳdy 3 = - π -π R 2 Γ(y)∂ y 1 n(x -y) dȳdy 3 + 1 4π 2 π -π R 2 ln(|ȳ|)∂ y 1 n(x -ȳ, y 3 ) dȳdy 3 = - π -π R 2 Γ(x -y)∂ y 1 n(y) dȳdy 3 + 1 4π 2 π -π R 2 ln(|x -ȳ|)∂ y 1 n(ȳ, y 3 ) dȳdy 3 which implies that ∂ 2 x 1 Φ[n](x) = - π -π R 2 ∂ x 1 Γ(x -y)∂ y 1 n(y) dȳdy 3 + 1 4π 2 π -π R 2 ∂ x 1 ln(|x -ȳ|)∂ y 1 n(ȳ, y 3 ) dȳdy 3 = - x 3 +π x 3 -π R 2 ∂ x 1 Γ(x -y)∂ y 1 n(y) dȳdy 3 + 1 4π 2 π -π R 2 x 1 -y 1 |x -ȳ| 2 ∂ y 1 n(ȳ, y 3 ) dȳdy 3 =: I 1 + I 2 .
Let us now estimate the integral I 1 in the previous expression. Let r, R > 0 such that 0 < r < R < ∞ verify

y ∈ R 3 : |x -y| < R ⊂ R 2 × [x 3 -π, x 3 + π].
Then we make a decomposition of R 2 × [x 3 -π, x 3 + π] in the following way

R 2 × [x 3 -π, x 3 + π] := J 1 ∪ J 2 ∪ J 3 where J 1 = y ∈ R 3 : |x -y| > R ∩ R 2 × [x 3 -π, x 3 + π] J 2 = y ∈ R 3 : r < |x -y| < R , J 3 = y ∈ R 3 : |x -y| < r .
For the integral on J 1 , thanks to the integration by parts with respect to the vari-able y 1 , and notice that the boundary of

J 1 is ∂J 1 = y ∈ R 3 : |x -y| = R ∪ R 2 × {x 3 -π, x 3 + π}, one gets - J 1 ∂ x 1 Γ(x -y)∂ y 1 n(y)dȳdy 3 = J 1 ∂ y 1 ∂ x 1 Γ(x -y)n(y)dȳdy 3 - |x-y|=R ∂ x 1 Γ(x -y)n(y) -(x 1 -y 1 ) |x -y| dσ(y) - R 2 [∂ x 1 Γ(x -(ȳ, x 3 + π))n(ȳ, x 3 + π) -∂ x 1 Γ(x -(ȳ, x 3 -π))n(ȳ, x 3 -π)] =0 dȳ. (3.63)
Similarly, the integral on J 2 can write

- J 2 ∂ x 1 Γ(x -y)∂ y 1 n(y)dȳdy 3 = J 2 ∂ y 1 ∂ x 1 Γ(x -y)n(y)dȳdy 3 - |x-y|=R ∂ x 1 Γ(x -y)n(y) (x 1 -y 1 ) |x -y| dσ(y) - |x-y|=r ∂ x 1 Γ(x -y)n(y) -(x 1 -y 1 ) |x -y| dσ(y). (3.64) 
For the integral on J 3 , since ∂ y 1 n(y) = ∂ y 1 [n(y) -n(x)] and then using the integration by parts, we obtain

- J 3 ∂ x 1 Γ(x -y)∂ y 1 n(y)dȳdy 3 = - J 3 ∂ x 1 Γ(x -y)∂ y 1 [n(y) -n(x)]dȳdy 3 = J 3 ∂ y 1 ∂ x 1 Γ(x -y)[n(y) -n(x)]dȳdy 3 - |x-y|=r ∂ x 1 Γ(x -y)[n(y) -n(x)] (x 1 -y 1 )
|x -y| dσ(y).

(3.65)

Combining the equalities (3.63), (3.64) and (3.65) we deduce that

∂ 2 x 1 Φ[n](x) = J 1 ∂ y 1 ∂ x 1 Γ(x -y)n(y)dȳdy 3 + J 2 ∂ y 1 ∂ x 1 Γ(x -y)n(y)dȳdy 3 + J 3 ∂ y 1 ∂ x 1 Γ(x -y)[n(y) -n(x)]dȳdy 3 + |x-y|=r ∂ x 1 Γ(x -y)n(x) (x 1 -y 1 ) |x -y| dσ(y) := I 1 + I 2 + I 3 + I 4 .
Thanks to Lemma 3.8.6, we will estimate the integrals I i , for any i = 1, ..., 4.

For the integral I 4 , using the L ∞ estimate of ∂ x Γ we have

I 4 ≤ C |x-y|=r 1 |x -y| 2 dσ(y)∥n∥ L ∞ = 4πC∥n∥ L ∞ .
For the integral I 3 , using the L ∞ estimate of ∂ 2

x Γ we also get

I 3 ≤ C |x-y|<r 1 |x -y| 3 |x -y|dy∥∇n∥ L ∞ = 2π 2 Cr∥∇n∥ L ∞ .
Similarly for the integral I 2 and the integral I 1 , we obtain

I 2 ≤ C r<|x-y|<R 1 |x -y| 3 dy∥n∥ L ∞ = 2π 2 C ln(R/r)∥n∥ L ∞ I 1 ≤ C J 1 1 |x -y| 3 n(y)dy ≤ C R 3 ∥n∥ L 1 .
Finally, together these estimates of I i , for any i = 1, ..., 4 we obtain

∥∂ 2 x 1 Φ[n]∥ L ∞ ≤ C 1 R 3 ∥n∥ L 1 + ln(R/r)∥n∥ L ∞ + r∥∇n∥ L ∞ + ∥n∥ L ∞ .
Taking r = 1 1+∥∇n∥ L ∞ and R = 1 which gives us the estimate of the integral I 1 . Let us now estimate the integral I 2 . Let 0 < r < R. Making the decomposition in

R 2 as R 2 = ȳ ∈ R 2 : |x -ȳ| > R ∪ ȳ ∈ R 2 : r < |x -ȳ| < R ∪ ȳ ∈ R 2 : |x -ȳ| < r .
Using the same argument as in the integral I 1 , and notice that on the domain ȳ ∈ R 2 : |x -ȳ| < r we will write

∂ y 1 n(ȳ, y 3 ) = ∂ y 1 [n(ȳ, y 3 ) -n(x, y 3 )].
Therefore, combining the estimates of integrals I 1 and I 2 , we imply the desired result in Lemma 3.8.8.

Local existence of smooth solutions

Let's start to establish strong solutions for the limit model. It is enough to construct a solution on some time interval [0, T ], T ∈ R + . We only present the main arguments, the other details being left to the reader. We assume that the initial condition n in satisfies the hypotheses

H1) n in ≥ 0, H2) n in ∈ W 1,∞ (R 2 × T 1 ) ∩ W 1,1 (R 2 × T 1 ).

Solution integrated along the characteristics

A standard computation, we can rewrite the equation (3.47) as 

∂ t n + E ∧ e B • ∇ x n + σrot x e ω c • ∇ x n -rot x e B • En = 0, (t, x) ∈ R + × R 2 × T 1 . (3.66) For any smooth field E ∈ L ∞ (]0, T [; W 1,∞ (R 2 × T 1 )),
Π(s; s, x) = x ∈ R 2 × T 1 , (3.67) 
where Π(t; s, x) is the solution of the ODE, t represents the time variable, s is the initial time and x is the initial position. Π(s; s, x) = x is our initial condition. Notice that the vector field e B is also smooth and belongs to W 2,∞ (R 2 × T 1 ). Therefore, the characteristics in (3.67) are well defined for any (s, x) ∈ [0, T ] × R 2 × T 1 and there are smooth with respect to x. From (3.67), the equation ( 

Conservation law on a volume

We have the following conservation law

R 2 ×T 1 n(t, x) dx = R 2 ×T 1 n in (x) dx, 0 ≤ t ≤ T. (3.69) 
Indeed, we denote J(t; s, x) as the Jacobian matrix of Π(t; s, x) with respect to x at (t; s, x). The determinant of the Jacobian matrix J(t; s, x) is given by

   d dt det (J(t; s, x)) = div x E(t) ∧ e B + σrot x e ω c (Π(t; s, x))det (J(t; s, x)) det(J(t; t, x)) = 1.
Hence, we obtain

det (J(t; s, x)) = exp - t 0 rot x e B (Π(θ; s, x)) • E(θ, Π(θ; s, x))dθ .
Integrating the equality (3.68) with respect to x and then changing the variable x to Π(t; 0, x), we obtain

R 2 ×T 1 n(t, x) dx = R 2 ×T 1 n in (x) exp t 0 rot x e B (Π(s; 0, x)) • E(s, Π(s; 0, x))ds det (J(t; 0, x)) dx = R 2 ×T 1 n in (x) dx.

A priori estimates

The bound in L ∞ (]0, T [; W 1,∞ (R 2 × T 1 )) of the solutions We have the following bounds

sup t∈[0,T ] ∥n(t)∥ L ∞ (R 2 ×T 1 ) ≤ ∥n in ∥ L ∞ (R 2 ×T 1 ) exp C B T sup t∈[0,T ] ∥E(t)∥ L ∞ (3.70) ∥∇ x n(t)∥ L ∞ (R 2 ×T 1 ) ≤ ∥n in ∥ L ∞ + exp C 0 T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ) ∥∇n in ∥ L ∞ (3.71) exp C 0 T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ )
where we denote the constants C B = ∥e/B∥ W 2,∞ (R 2 ×T 1 ) and C 0 = C(σ, q, m, B).

We will first prove (3.70). By the formula (3.68), for any t ∈ [0, T ] we have

∥n(t)∥ L ∞ ≤ ∥n in ∥ L ∞ exp t 0 rot x e B (Π(s; t, x)) • E(s, Π(s; t, x))ds L ∞ ≤ ∥n in ∥ L ∞ exp T ∥∂ x (e/B)∥ L ∞ sup t∈[0,T ] ∥E(t)∥ L ∞ ≤ ∥n in ∥ L ∞ exp C B T sup t∈[0,T ] ∥E(t)∥ L ∞ .
We prove then (3.71). From the formula (3.68) we imply

∥∇ x n(t)∥ L ∞ ≤ ∥n in (Π(0; t, x))∥ W 1,∞ exp t 0 rot x e B (Π(s; t, x)) • E(s, Π(s; t, x))ds W 1,∞
.

We estimate now ∥n in (Π(0; t, x))∥ W 1,∞ . Since

∥n in (Π(0; t, x))∥ W 1,∞ ≤ ∥n in ∥ L ∞ + ∥∂ x Π(0; t, •)∥ L ∞ ∥∇n in ∥ L ∞ therefore it remains to estimate sup t∈[0,T ] ∥∂ x Π(0; t, •)∥ L ∞ .
Taking the derivative with respect to x in (3.67), we deduce that

∥∂ x Π(0; t, •)∥ L ∞ ≤ 1 + t 0 (∥E(s) ∧ (e/B)∥ W 1,∞ + σ∥e/ω c ∥ W 2,∞ ) ∥∂ x Π(0; s, •)∥ L ∞ ds ≤ 1 + (1 + C(σ, q, m))C B t 0 (1 + ∥E(s)∥ W 1,∞ )∥∂ x Π(0; s, •)∥ L ∞ ds
for some constant C(σ, q, m) depending on σ, q, m. Thanks to Grönwall's inequality, we have

∥∂ x Π(0; t, •)∥ L ∞ ≤ exp (1 + C(σ, q, m))C B t(1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ) , t ∈ [0, T ] (3.72) which implies that ∥n in (Π(0; t, x))∥ W 1,∞ ≤ ∥n in ∥ L ∞ +exp (1 + C(σ, q, m))C B T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ) ∥∇n in ∥ L ∞ .
Next we estimate the following norm

I(t) := exp t 0 rot x e B (Π(s; t, x)) • E(s, Π(s; t, x))ds W 1,∞
.

A straightforward computation and then using (3.72) yield

I(t) ≤ exp t 0 rot x e B • E(s)ds L ∞ 1 + t 0 rot x e B • E(s)| Π(s;t,x) W 1,∞ ds ≤ exp C B t sup t∈[0,T ] ∥E(t)∥ L ∞ 1 + t 0 C B ∥E(s)∥ W 1,∞ (1 + ∥∂ x Π(s; t, •)∥ L ∞ )ds ≤ exp C B t sup t∈[0,T ] ∥E(t)∥ L ∞ 1 + 2 t 0 C B (1 + sup [0,T ] ∥E(s)∥ W 1,∞ ) exp (1 + C(σ, q, m))C B s(1 + sup [0,T ] ∥E(s)∥ W 1,∞ ) ds = exp C B t sup t∈[0,T ] ∥E(t)∥ L ∞ 2 1 + 1 1 + C(σ, q, m) t 0 d ds exp (1 + C(σ, q, m))C B s(1 + sup [0,T ] ∥E(s)∥ W 1,∞ ) ds ≤ 2 exp C B t sup t∈[0,T ] ∥E(t)∥ L ∞ exp (1 + C(σ, q, m))C B t(1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ) ≤ exp C(σ, q, m, B)t(1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ )
for some constant C(σ, q, m, B) depending on σ, q, m, C B . Combining these estimates yield

∥∇ x n(t)∥ L ∞ ≤ (∥n in ∥ L ∞ + exp (C 0 T (1 + ∥E∥ W 1,∞ )) ∥∇n in ∥ L ∞ ) exp(C 0 T (1 + ∥E∥ W 1,∞ ))
where we use the notation C 0 for a universal constant depending on σ, q, m, B.

The bound in L

∞ (]0, T [; W 1,1 (R 2 × T 1 )) of the solutions ∥n(t)∥ L 1 = ∥n in ∥ L 1 , t ∈ [0, T ] (3.73) ∥∇ x n(t)∥ L 1 ≤ exp (C 0 t(1 + ∥E∥ W 1,∞ )) ∥∇n in ∥ L 1 + tC 0 sup t∈[0,T ] ∥E(t)∥ W 1,∞ ∥n in ∥ L 1
(3.74) where C 0 is the constant depending on σ, q, m, B. Now we will prove (3.74). Taking the derivative with respect to x in (3.68) we have

∇ x n(t, x) = exp t 0 rot x e B • E(s)| Π(s;t,x) ds t ∂ x Π(0; t, x)∇ x n in (Π(0; t, x))
+n in (Π(0; t, x))

t 0 t ∂ x Π(s; t, x)∇ x rot x e B • E(s) | Π(s;t,x) ds
Then we integrate with respect to x and change the variable x to Π(t; 0, x). Notice that the Jacobian formula is given by

exp - t 0 rot x e B • E(s)| Π(s;0,x) ds therefore we deduce that R 2 ×T 1 |∇ x n| dx ≤ R 2 ×T 1 ∥∂ x Π(0; t, •)∥ L ∞ |∇ x n in | dx + C B R 2 ×T 1 n in (x) t 0 ∥∂ x Π(s; t, •)∥ L ∞ ∥E(s, •)∥ W 1,∞ ds dx.
Thanks to (3.72) we obtain

R 2 ×T 1 |∇ x n(t)| dx ≤ exp (C 0 t(1 + ∥E∥ W 1,∞ )) ∥∇n in ∥ L 1 + tC 0 sup t∈[0,T ] ∥E(t)∥ W 1,∞ ∥n in ∥ L 1
where we use same the notation C 0 for a universal constant depending on σ, q, m, B.

Local existence of solutions

We define

Σ := E ∈ L ∞ ([0, T ]; W 1,∞ (R 2 × T 1 )) 3 : sup [0,T ] ∥E(t)∥ L ∞ ≤ M 1 , sup [0,T ] ∥∂ x E(t)∥ L ∞ ≤ M 2
where M i , i = 1, 2 are two constants to be fixed later. Given an electric field E in Σ. We consider the solution by the characteristic of the equation (3.66) on R 2 × T 1 , corresponding to the electric field E and denote by n E which is given by the formula (3.68). We construct the following map F on Σ, whose fixed point gives the solution of the system (3.66), (3.48), (3.49) at least locally in time such solutions exist

E → F(E) = q ε 0 R 2 ×T 1 ∇ x Γ(x -y)n E (t, y) dy. (3.75)
We will prove that the map F is left invariant on the set Σ for a convenient choice of the constants M 1 and M 2 , then we want to establish an estimate like

∥FE(t) -F Ẽ(t)∥ L ∞ ≤ C T t 0 ∥E(s) -Ẽ(s)∥ L ∞ ds, E, Ẽ ∈ Γ, t ∈ [0, T ] (3.76) 
for some constant C T , not depending on E, Ẽ. After that, the existence of the system (3.66), (3.48), (3.49) immediately, based on the construction of an iterative method for F.

Lemma 3.8.9

There exists the positive constants M 1 , M 2 and T = T (M 1 , M 2 ) such that F(Σ) ⊂ Σ.

Proof.

Let E ∈ Σ. Thanks to Lemma 3.8.7 and the formulas (3.70), (3.73) we have

∥F(E)(t, •)∥ L ∞ ≤ C ∥n in ∥ L ∞ exp C B T sup t∈[0,T ] ∥E(t)∥ L ∞ + ∥n in ∥ L 1 ≤ C(∥n in ∥ L ∞ + ∥n in ∥ L 1 ) exp C B T sup t∈[0,T ] ∥E(t)∥ L ∞ + 1 ≤ C(∥n in ∥ L ∞ + ∥n in ∥ L 1 ) exp C B T sup t∈[0,T ] ∥E(t)∥ L ∞ + 1 .
Here, we fix M 1 to be a constant such that Ce 2 (∥n in ∥ L ∞ + ∥n in ∥ L 1 ) ≤ M 1 and we choose

T = 1 max(C B ,C 0 )(M 1 +M 2 )
, where C 0 = C(σ, q, m, B) is a universal constant. Hence we obtain sup

t∈[0,T ] ∥F(E)(t, •)∥ L ∞ ≤ M 1 .
The bound of L ∞ norm for the density n(t) in (3.70) becomes 

∥n(t)∥ L ∞ ≤ e∥n in ∥ L ∞ . ( 3 
+ (∥∇ x n(t)∥ L ∞ ) ≤ ln + ∥n in ∥ L ∞ + exp C 0 T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ) ∥∇n in ∥ L ∞ + C 0 T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ) ≤ ln + ∥n in ∥ W 1,∞ (1 + exp C 0 T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ) ) + C 0 T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ) ≤ ln + (∥n in ∥ W 1,∞ ) + 1 + 2C 0 T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ).
Thus, together with (3.77) we get

∥∂ x F(E)(t, •)∥ L ∞ ≤ C 1 + e∥n in ∥ L ∞ (2 + ln + (∥n in ∥ W 1,∞ ) + 2C 0 T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ )) + ∥n in ∥ L 1 ≤ 2C(1 + e∥n in ∥ L ∞ (2 + ln + (∥n in ∥ W 1,∞ )) + ∥n in ∥ L 1 )(1 + C 0 T sup t∈[0,T ] ∥E(t)∥ W 1,∞ ).
Here, we fix M 2 to be a constant such that

2C(1 + e∥n in ∥ L ∞ (2 + ln + (∥n in ∥ W 1,∞ )) + ∥n in ∥ L 1 ) ≤ M 2 2 and we take T = 1 max(C B ,C 0 )(M 1 +M 2 )
. Therefore we obtain

∥∂ x F(E)(t, •)∥ L ∞ ≤ M 2 2 2 = M 2 .
Now we establish (3.76). Let us consider E, Ẽ ∈ Σ and denote by n E , ñ Ẽ the solutions by characteristics of (3.66), (3.49) corresponding to the electric fields E, Ẽ respectively. It is easily seen from the Lemma 3.8.7 that

∥F(E)(t) -F( Ẽ)(t)∥ L ∞ ≤ C(∥n E (t) - ñ Ẽ (t)∥ L ∞ + ∥n E (t) - ñ Ẽ (t)∥ L 1 ).
Notice that the constant C is not dependent on E, Ẽ. We will use the following lemmas.

Lemma 3.8.10

We have

∥n E (t) - ñ Ẽ (t)∥ L ∞ ≤ C t 0 ∥E(s) -Ẽ(s)∥ L ∞ ds
for some constant C, not depending on E, Ẽ.

Proof.

Thanks to (3.68), we deduce that

|n E (t, x) - ñ Ẽ (t, x)| ≤ |n in (Π E (0; t, x)) -ñin ( Π Ẽ (0; t, x))| exp t 0 rot x e B • E(s)| Π E (s;t,x) ds + ñ Ẽ in ( Π Ẽ (0; t, x)) exp t 0 rot x e B • E(s)| Π E (s;t,x) ds -exp t 0 rot x e B • Ẽ(s)| Π Ẽ (s;t,x) ds := I 1 + I 2
where Π E , Π Ẽ denote the characteristic of (3.67) corresponding to the vector fields E, Ẽ.

We estimate now the integral I 1 . Since 

|n in (Π E (0; t, x)) -ñin ( Π Ẽ (0; t, x))| ≤ |Π E (0; t, x) - Π Ẽ (0; t, x)|∥∇n in ∥ L ∞ we need to estimate sup t,s∈[0,T ] |Π E (t; s, •) - Π Ẽ (t; s, •)| L ∞ . We claim that sup t,s∈[0,T ] |Π E (t; s, •) - Π Ẽ (t; s, •)| L ∞ ≤ C 0 e C 0 T (1+M 1 +M 2 ) t 0 ∥E(s, •) -Ẽ(s, •)∥ L ∞ ds. ( 3 
(Π E - Π Ẽ )(s; s, x) = x.
Integrating between s and t we find

|(Π E - Π Ẽ )(t; s, x)| ≤ C 0 t 0 ∥E(s) -Ẽ(s)∥ L ∞ ds + C 0 t 0 ∥ Ẽ∥ W 1,∞ |(Π E - Π Ẽ )(τ ; s, x)|dτ + C 0 t 0 |(Π E - Π Ẽ )(τ ; s, x)|dτ. Notice that sup t∈[0,T ] ∥ Ẽ(t)∥ W 1,∞ ≤ M 1 + M 2 , since Ẽ ∈ Σ.
Then, the Gronwall lemma allows us to conclude that (3.78) holds. Therefore we have

I 1 ≤ C t 0 ∥E(s, •) -Ẽ(s, •)∥ L ∞ ds.
Next, we estimate the integral I 2 . Using the inequality |e x -e y | ≤ e x+y |x -y| which holds for any x, y ∈ R and then by applying the same argument as in the estimate of I 1 we obtain

I 2 ≤ C t 0 ∥E(s, •) -Ẽ(s, •)∥ L ∞ ds.
Notice that, for the sake of simplicity, we use the same notation C in the inequalities of I 1 and I 2 standing for a universal constant depending on T, M 1 , M 2 , B, n in . Finally, we combine the estimate for the integrals I 1 and I 2 to imply the result.

Lemma 3.8.11

We have

∥n E (t) - ñ Ẽ (t)∥ L 1 ≤ C t 0 ∥E(s) -Ẽ(s)∥ L ∞ ds
for some constant C, not depending on E, Ẽ.

Proof.

Since n E , ñ Ẽ are the solutions of (3.66) therefore we deduce that

∂ t (n E (t) - ñ Ẽ (t)) + [E -Ẽ] ∧ e B • ∇ x n E + Ẽ ∧ e B • ∇ x (n E - ñ Ẽ ) +σrot x e ω c • ∇ x (n E - ñ Ẽ ) -rot x e B • (E -Ẽ)n E -rot x e B • Ẽ(n E - ñ Ẽ ) = 0.
Multiplying this equation by sign(n Eñ Ẽ ), then integrating with respect to x, we obtain

∂ t R 2 ×T 1 |n E (t) - ñ Ẽ (t)| dx + R 2 ×T 1 sign(n E - ñ Ẽ ) [E -Ẽ] ∧ e B • ∇ x n E dx - R 2 ×T 1 sign(n E - ñ Ẽ )rot x e B • (E -Ẽ)n E dx - R 2 ×T 1 rot x e B • Ẽ|n E - ñ Ẽ | dx = 0.
Using the inequality (3.74) and a straightforward estimations yield

∂ t R 2 ×T 1 |n E (t) - ñ Ẽ (t)| dx ≤ C∥E(t) -Ẽ(t)∥ L ∞ + C R 2 ×T 1 |n E - ñ Ẽ | dx
for some positive constant C. Integrating between 0 and t and thanks to Gronwall lemma we get the result.

Based on these arguments and Proposition 3. 

n ≥ 0, n ∈ L ∞ (]0, T [; W 1,∞ (R 2 × T 1 )) ∩ L ∞ (]0, T [; W 1,1 (R 2 × T 1 )) E ∈ L ∞ (]0, T [; W 1,∞ (R 2 × T 1 )).

Appendix

Lemma 3.9.1 For any r ∈ R + , we have

∞ 0 e -(θ-rθ -1 ) 2 dθ = √ π 2 .

Proof.

Let us denote I(r) = ∞ 0 e -(θ-rθ -1 ) 2 dθ. It is easily seen that

I(0) = ∞ 0 e -θ 2 dθ = √ π 2 .
For any r > 0, by taking the derivative with respect to r, we obtain that

I ′ (r) = 2 ∞ 0 θ -1 (θ -rθ -1 )e -(θ-rθ -1 ) 2 dθ
which yields

I ′ (r) = 2I(r) -2r ∞ 0 θ -2 e -(θ-rθ -1 ) 2 dθ. (3.79) Observer that 2r ∞ 0 θ -2 e -(θ-rθ -1 ) 2 dθ = -2 ∞ 0 e -(θ-rθ -1 ) 2 d(rθ -1 )
and by changing the variable u = rθ -1 one gets

2r ∞ 0 θ -2 e -(θ-rθ -1 ) 2 dθ = -2 0 ∞ e -(ru -1 -u) 2 du = 2I(r).
Substituting in (3.79), we have 

I ′ (r) = 0,

Introduction

We consider f = f (t, x, v) the density of a population of charged particles of mass m, charge q depending on time t, position x, and velocity v. We are interested in the Vlasov-Poisson system, in the presence of an external magnetic field, taking into account the collisions between charged particles. Neglecting the curvature of the magnetic lines, we assume that the external magnetic field has a constant direction orthogonal to (Ox 1 , Ox 2 ) but a variable amplitude B(x). In dimension two, we set x = (x 1 , x 2 ), v = (v 1 , v 2 ). The Vlasov-Poisson-Fokker-Planck equation is written in the form

∂ t f + v • ∇ x f + q m E [f (t)] (x) + B (x) ⊥ v • ∇ v f = Q FP (f ) , (t, x, v) ∈ R + × R 2 × R 2 (4.1)
where the notation ⊥ (•) stands for the rotation of angle -π/2, i .e., ⊥ v = (v 2 , -v 1 ) and the magnetic field B(x) = (0, 0, B(x)), x ∈ R 2 . The potential Φ[f ] satisfies the Poisson equation

-ε 0 ∆ x Φ [f (t)] (x) = q R 2 f (t, x, v) dv -D(x) , (t, x) ∈ R + × R 2 . whose fundamental solution is z → -1 2π ln |z|, z ∈ R 2 \ {0}.
Here, the function D = D(x) is the concentration of a background of positive charges and is assumed to be given. The constant ϵ 0 represents the electric permittivity of the vacuum. For any particle density f = f (t, x, v), the notation E[f (t)](x) represents the Poisson electric field which derives from the potential Φ[f (t)](x) given by

E [f (t)] (x) = q 2πε 0 R 2 R 2 f t, x ′ , v ′ dv ′ -D(x ′ ) x -x ′ |x -x ′ | 2 dx ′ (4.2)
and n[f (t)], j[f (t)] stand for the concentration and the current density respectively

n [f (t)] = R 2 f (t, •, v) dv, j [f (t)] = R 2 vf (t, •, v) dv.
In the equation (4.1), the operator Q FP is the linear Fokker-Planck operator acting on velocities

Q FP (f ) = div v (σ∇ v f + vf ) ,
where σ is the velocity diffusion, see [START_REF] Chandrasekhar | Brownian Motion, Dynamical Friction, and Stellar Dynamics[END_REF] for the introduction of this operator, based on the principle of Brownian motion. We complete the above system by the initial condition

f (0, x, v) = f in (x, v) , (x, v) ∈ R 2 × R 2 . (4.3)
In this work, we analyze the evolution of the distribution density f over a long time, in the regime of an intense magnetic field (gyro-kinetic), in order to observe the drift phenomenon in the directions orthogonal to the magnetic field. Indeed, it is well known that the velocities of electric cross-field drift and the magnetic gradient drift are proportional to 1 B , and consequently, it is necessary to observe the drift movements over a large time proportional to B. In other words, we consider

f (t, x, v) = f ε ( t, x, v) , B ε (x) = B(x) ε , t = εt.
Here ε > 0 is a small parameter related to the ratio between the cyclotronic period and the advection time scale. Hence ∂ t f = ε∂tf ε . Then in the equation (4.1), the term ∂ t is to be replaced by ε∂t or by ε∂ t to simplify our notation, and the Vlasov-Poisson-Fokker-Planck system becomes

ε∂ t f ε + v • ∇ x f ε + q m E [f ε (t)] • ∇ v f ε + ω c (x) ε ⊥ v • ∇ v f ε = Q F P (f ε ), (4.4 
)

E [f ε ] = -∇ x Φ[f ε ], -ε 0 ∆ x Φ[f ε ] = q (n ε -D) = q R 2 f ε (t, •, v) dv -D , (4.5) 
where ω c (x) = qB(x) m stands for the cyclotron frequency. We complete with an initial condition

f ε (0, x, v) = f ε in (x, v) , (x, v) ∈ R 2 × R 2 . ( 4.6) 
The existence theory of the weak and classical solution of the VPFP system is now well developed and understood. Let us summarize the literature concerning the existence results for this problem. In the absence of the external magnetic field i .e., B(x) = 0, several existence results for the VPFP system are known. The classic solutions have been studied by Degond in [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF] which showed the global/local existence and the uniqueness of the strong solution in one and two/three dimensions respectively, without friction term i .e., Q FP = σ∆ v . Victory and O'Dwyer obtained in [START_REF] Victory | On classical solutions of VPFP systems[END_REF] the same result of the existence of classical solution using the fundamental solution of the operator

∂ t + v • ∇ x -∇ v • (σ∇ v + v).
In [START_REF] Weckler | Generic global classical solutions of the Vlasov-Poisson-Fokker-Planck system in three dimensions[END_REF], G. Rein and J. Weckler gave sufficient conditions to show the global existence of classical solutions in three dimensions.

Regarding weak solutions, we can mention the works of Victory in [START_REF] Victory | On the existence of global weak solutions for the Vlasov-Poisson-Fokker-Planck system[END_REF], J. A. Carrillo and J. Soler in [START_REF] José | On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in Lp spaces[END_REF] with an initial data in the space L p . With the magnetized VPFP system, when the external magnetic field is uniform i .e., ∇ x B(x) = 0, x ∈ R 2 , it seems that the methods used in the articles above, also apply. We followed the method of [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF] to show the existence and uniqueness of the global classical solution in time.

We present the detailed proof in Section 4.7 of Appendix 4.7.2. In the case B(x) is general, we show the global existence in the time of weak solutions, in the sense of Definition 4.2.1. The detailed proof is provided in Section 4.2.

We study the asymptotic behavior of the solutions (f ε ) ε>0 of the problem (4.4), (4.5), (4.6) when ε tends to 0. By investigating the balance of free energy associated with the VPFP system, we show formally in Section 4 that the family (f ε ) ε>0 converges to the 2σ , where the limit concentration n verifies the first-order nonlinear hyperbolic equation

limit distribution function f (t, x, v) = n(t, x) 1 2πσ e -|v| 2 
∂ t n + div x n ⊥ E[n] B(x) -σ ⊥ ∇ω c (x) ω 2 c (x) = 0, (t, x) ∈ R + × R 2 (4.7)
coupled to the Poisson equation

E[n] = -∇ x Φ[n], -ε 0 ∆ x Φ[n] = q(n -D) (4.8)
with the initial condition

n(0, x) = n in (x) = R 2 f (0, x, v) dv.
(4.9)

Let us observe the limit equation (4.7), we see that the concentration n is advected along the vector field

⊥ E B(x) -σ ⊥ ∇ωc ω 2 c (x)
which is the drift velocity respectively to the sum of the electric cross-field drift ⊥ E B and the magnetic gradient drift σ ⊥ ∇ωc(x) ωc(x) 2 . These drift velocities were mentioned in the limit model of M. Herda, L.M. Rodrigues [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF] and P. Degond, F. Filbet [START_REF] Degond | On the asymptotic limit of the three dimensional Vlasov-Poisson system for large magnetic field: formal derivation[END_REF]. In the case of the uniform magnetic field, the above model becomes

∂ t n + ⊥ E[n] B • ∇ x n = 0, (t, x) ∈ R + × R 2 E[n] = -∇ x Φ[n], -ϵ 0 ∆ x Φ[n] = q (n -D) , (t, x) ∈ R + × R 2 n (0, x) = n in (x), x ∈ R 2
that is to say, the vorticity formulation of the two-dimensional incompressible Euler equations, with the cross electric field drift velocity

⊥ E B and the vorticity rot ⊥ x E = -q ε 0 (n -D).
Notice that the same model was obtained by F. Golse, L. Saint-Raymond in [START_REF] Golse | The Vlasov-Poisson System with Strong Magnetic Field[END_REF], L. Saint-Raymond [START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyrokinetic approximation[END_REF] and E. Miot [START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF] from the two-dimensional Vlasov-Poisson system without collisions. The authors justified rigorously the convergence towards the two-dimensional Euler equation of incompressible fluids in the other approach. Concerning the collisions between charged particles, we can mention the work of M. Herda and L.M. Rodrigues in [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF]. In this paper, the authors are interested in the limit ε ↘ 0 of the VPFP system (4.4), (4.5), (4.6) in three-dimensional version (t, x, v) ∈ R + × T 3 × R 3 (where T = R/Z is a torus one-dimensional). They formally show that the family (f ε ) ε>0 converges to the limit distribution function f and the limit electric potential ϕ which have reached an adiabatic regime along the magnetic field

f (t, x, v) = n(t, x) 1 (2π) 3/2 e -|v| 2 2 = N (t, x ⊥ ) e -qϕ(t,x) T e -qϕ(t,x ⊥ ,x ∥ ) dx ∥ M (v), (t, x, v) ∈ R + ×T 3 ×R 3
where x = (x ⊥ , x ∥ ) ∈ T 2 × T and the concentration n is the anisotropic Boltzmann-Gibbs density. The limit model is derived by the reduced macroscopic density N : R + × T 2 → R + in the perpendicular direction, satisfying

∂ t N -div x ⊥ N ⊥ ∇ x ⊥ φ = 0
with the initial condition

N (0, x ⊥ ) = N in (x ⊥ ) = T R 2 f 0 (x ⊥ , x ∥ , v)dx ∥ dv
where φ : R + × T 2 → R is the average potential

φ(t, x ⊥ ) = -q ln T e -qϕ(t,x ⊥ ,x ∥ ) dx ∥ .
Their results of passing to the limit concerned a linear model where the electric field is given i .e., E[f ε ] = E = -∇ x ϕ, for a given potential ϕ. However, in the non-linear case of the VPFP type, they do not completely justify the passage to the limit model from the kinetic equation.

To the best of our knowledge, there has been no result on the asymptotic regime when the magnetic field is non-uniform. In the current work, the asymptotic behavior will be investigated by appealing to the relative entropy or modulated energy method, as introduced in [START_REF] Yau | Relative entropy and hydrodynamics of Ginzburg-Landau models[END_REF]. This relative entropy method relies on the smooth solution of the limit system. By this technique, one gets strong convergences. Many asymptotic regimes were obtained using this technique, see [START_REF] Brenier | Convergence Of The Vlasov-Poisson System To The Incompressible Euler Equations[END_REF][START_REF] Brenier | Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system[END_REF][START_REF] Golse | The Vlasov-Poisson system with strong magnetic field in quasineutral regime[END_REF][START_REF] Saint-Raymond | Quasineutral limit for the relativistic Vlasov-Maxwell system[END_REF] for quasineutral regimes in collisionless plasma physics, [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incom-pressible Euler limit[END_REF][START_REF] Berthelin | From Kinetic Equations to Multidimensional Isentropic Gas Dynamics Before Shocks[END_REF] for hydrodynamic limits in gas dynamics, [START_REF] Thierry Goudon | Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Part II: Fine particles regime[END_REF] for fluid-particle interaction, [START_REF] Bostan | High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system[END_REF][START_REF] Bostan | The Vlasov-Maxwell System with Strong Initial Magnetic Field: Guiding-Center Approximation[END_REF][START_REF] Goudon | Multidimensional high-field limit of the electrostatic VPFP system[END_REF] for high electric or magnetic field limits in plasma physics.

Before establishing our main result, we define the modulated energy

E[n ε (t)|n(t)] by E[n ε (t)|n(t)] = σ R 2 n(t)h n ε (t) n(t) dx + ε 0 2m R 2 |∇ x Φ[n ε ] -∇ x Φ[n]| 2 dx
where h : R + → R + is the convex function defined by h(s) = s ln s -s + 1, s ∈ R + . This quantity splits into the standard L 2 norm of the electric field plus the relative entropy between the particle density n ε of (4.4), (4.5), (4.6) and the particle concentration n of the limit model (4.7), (4.8), (4.9). The main result of this Chapter is the following 

∈ L 1 (R 2 ), D ∈ W 1,1 (R 2 ) ∩ W 2,∞ (R 2 )
. Assume that the initial particle densities (f ε in ) ε>0 satisfy the hypotheses H1, H2, H3 (see Section 4.2 below) and

M in := sup ε>0 M ε in < +∞, U in := sup ε>0 U ε in < +∞ where M ε in := R 2 R 2 f ε (x, v) dvdx, U ε in := R 2 R 2 |v| 2 2 f ε in (x, v) dvdx + ε 0 2m R 2 |∇ x Φ[f ε in ]| 2 dx.
Let f ε be the weak solutions of the VPFP system (4.4), (4.5), (4.6) with initial data f ε in provided by Theorem 4.2.2. We also assume that the initial concentration n in verifies the hypotheses H4, H5 (see Section 4.5 below) and let n be the unique smooth solution of the limit system (4.7), (4.8), (4.9) with initial condition n in constructed in Proposition 4.5.1. We suppose that

lim ε↘0 σ R 2 R 2 n ε in M (v)h f ε in n ε in M dvdx = 0, lim ε↘0 E[n ε in |n in ] = 0 where n ε in = R 2 f ε in dv, ε > 0. Then we have lim ε↘0 sup 0≤t≤T σ R 2 R 2 n ε M (v)h f ε n ε M dvdx = 0, lim ε↘0 sup 0≤t≤T E[n ε (t)|n(t)] = 0 lim ε↘0 1 ε T 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxdt = 0.
In particular we have the convergences

lim ε↘0 f ε = nM in L ∞ (]0, T [; L 1 (R 2 × R 2 )) and lim ε↘0 ∇ x Φ[f ε ] = ∇ x Φ[n] in L ∞ (]0, T [; L 2 (R 2 )).

Remark 4.1.1

In two dimensional setting, the initial potential energy This Chapter is structured as follows. Section 4.2 is devoted to establish the global existence of weak solutions to the VPFP system with external magnetic field. In Section 4.3, we derive a priori estimates with respect to the small parameter ε > 0 on the weak solutions from the evolution of physical quantities associated to the VPFP system. Section 4.4 is devoted to the formal derivation of the limit model. The well-posedness of the limit model is studied in the next section. We establish existence and uniqueness results for the strong solution. The convergence towards the limit model is justified rigorously in Section 4.6. We obtain strong convergence for well-prepared initial conditions.

ε 0 2m R 2 |∇ x Φ[f ε in ]| 2 dx may not be finite (or the electric field E[f ε in ] cannot belong to L 2 (R 2 )) even if the initial datum f ε in lies in C ∞ 0 (R 2 × R 2 ), cf

Global existence of weak solutions of the VPFP equations

In this section, we will study the global existence of weak solution for the VPFP equation in the presence of an external magnetic field for fixed ε > 0. In order to simplify the proofs of existence of the solution, as we do not want any uniform estimate with respect to ε, we will take ε = 1 and omit all the subscripts. Thus we first consider the following problem

∂ t f + v • ∇ x f + E[f ] • ∇ v f + B(x) ⊥ v • ∇ v f = div v (σ∇ v f + vf ), (4.10) 
E[f ] = -∇ x Φ [f ] , -∆ x Φ[f ] = R 2 f (t, •, v) dv -D (4.11) f (0, x, v) = f in (x, v) , (x, v) ∈ R 2 × R 2 . (4.
12)

The dependency on the small parameter ε > 0 will be taken into account when establishing a priori estimates uniform in ε in the next section. The idea of the proof is as follows: we will first mollify the singular interaction potential ln |x| by introducing regularization parameter η and conider a solution f η to that regularized system. We then show some uniform-in-η estimates. In order to pass to the limit η → 0, we use the velocity averaging lemma, cf. [START_REF] Trygve | Existence of Weak Solutions to Kinetic Flocking Models[END_REF]. We will suppose the initial data f in also satisfies the hypotheses.

H1) f in ≥ 0, f in ∈ (L 1 ∩ L ∞ )(R 2 × R 2 ), (|x| + |v| 2 + | ln f in |)f in ∈ L 1 (R 2 × R 2 ) H2) (1 + |v| 2 )f γ/2 in ∈ L ∞ (R 2 × R 2 ), γ > 2 H3) R 2 R 2 f in dvdx = R 2 D(x) dx.

The linear Vlasov-Fokker-Planck (VFP) equation

We consider the Vlasov-Fokker-Planck equation with a given electric field E(x) = -∇ x Φ(x)

∂ t f + v • ∇ x f + E • ∇ v f + div v (B(x) ⊥ vf ) = σ∆ v f + div v (vf ), f (0, x, v) = f in (x, v). (4.13)
We notice that the global existence and uniqueness of a weak solution in the distribution sense of the VFP equation (4.13) is demonstrated following by the standard theory for linear kinetic equations in [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF], also taking into account the velocity transport, generated by the external magnetic field. We have the following result, see Appendix 4.7.1 for the main lines of the proof.

Theorem 4.2.1

For a given T ∈]0, ∞[. Let f in be an initial data verifying H1, H2 and E(x) be an external electric field belongs to (L ∞ (R 2 )) 2 . Then there exists a unique positive weak solution of the equation (4.13) on the interval [0, T ] in the sense of Definition 4.2.1 provided by Proposition 4.7.

1 such that f ∈ L ∞ ([0, T ]; L ∞ ∩ L 1 (R 2 × R 2 )). Furthermore, f belongs to L 2 ([0, T ] × R 2 x ; H 1 (R 2 v )
) and verifies the following estimates

∥f ∥ L ∞ ([0,T ];L p (R 2 ×R 2 )) ≤ e p-1 p dT ∥f in ∥ L p (R 2 ×R 2 ) , p ∈]1, ∞[ (4.14) ∥f ∥ L ∞ ([0,T ];L 1 (R 2 ×R 2 )) = ∥f in ∥ L 1 (R 2 ×R 2 ) , ∥f ∥ L ∞ ([0,T ]×R 2 ×R 2 ) ≤ e dT ∥f in ∥ L ∞ (R 2 ×R 2 ) sup [0,T ] R 2 R 2 f (t, x, v) |v| 2 2 dvdx < C(∥E∥ L ∞ , T, σ) R 2 R 2 f in (x, v) |v| 2 2 dvdx. (4.15) sup [0,T ] R 2 R 2 f (t, x, v)|x| dvdx < C(T ) R 2 R 2 f in (x, v)|x| dvdx. (4.16) ∥∇ v f 1/2 ∥ L 2 ([0,T ];L 2 (R 2 ×R 2 )) ≤ C(∥E∥ L ∞ , T, f in , σ) + R 2 R 2 σf in | ln f in | dvdx. (4.17)
We next provide an auxiliary lemma showing some relationship between the local density n

[f ] = R 2 f dv, the current j[f ] = R 2 vf dv and the kinetic energy R 2 R 2 |v| 2 f dvdx. Lemma 4.2.1 Assume that f ∈ L 1 ∩ L ∞ (R 2 × R 2 ) and |v| 2 f ∈ L 1 (R 2 × R 2 ). Then there exists a constant C > 0 such that ∥n[f ]∥ L p (R 2 ) ≤ C, p ∈ [1, 2], ∥j[f ]∥ L p (R 2 ) ≤ C, p ∈ [1, 4/3].

Proof.

We first estimate the L p norm for the density n[f ]. It is obvious when p = 1. Let p ∈]1, 2[ and q such that 1/p + 1/q = 1. Observer that

n[f ](x) = R 2 f (x, v) dv = R d (1 + |v|) 2/p f 1/p (x, v) f (x, v) 1/q (1 + |v|) 2/p dv we deduce that n[f ](x) ≤ R d (1 + |v|) 2 f (v) dv 1/p R d f (v) (1 + |v|) 2q/p dv 1/q ≤ ∥f ∥ 1/q L ∞ (R 2 ×R 2 ) R 2 1 (1 + |v|) 2q/p dv 1/q R d (1 + |v|) 2 f (v) dv 1/p . Since p ∈]1, 2[ we have 2q p > 2 therefore R 2 1 (1+|v|) 2q/p dv = C < +∞. Then we obtain ∥n[f ]∥ L p (R 2 ) ≤ C∥f ∥ 1/q L ∞ (R 2 ×R 2 ) R 2 R 2 (1 + |v|) 2 f (v) dvdx 1/p .
When p = 2, for any R > 0, we have

n[f ](x) = R 2 f (x, v) dv = R 2 f (x, v)1 {|v|≤R} dv + R 2 f (x, v)1 {|v|>R} dv ≤ ∥f ∥ L ∞ (R 2 ×R 2 ) πR 2 + 1 R 2 R 2 f (x, v)|v| 2 dv. We now take R = R 2 f |v| 2 dv ∥f ∥ L ∞ (R 2 ×R 2 ) 1/4 to obtain n[f ](x) = R 2 f (x, v) dv ≤ (1 + π) ∥f ∥ 1/2 L ∞ (R 2 ×R 2 ) R 2 f |v| 2 dv 1/2
, then raising each side of the inequality to the power 2 and integrating in the variable x gives the result. By combining these estimates, we obtain the bound of the norm L p , p ∈ [1, 2] for the density particle n[f ]. For the current j[f ], we use the same argument as above to obtain the desired estimate.

The next result will be useful in order to estimate the L ∞ norm of the density particle n[f ], so as to control the electric field. However, we cannot obtain L ∞ estimate for the such hypothesis in Lemma 4.2.1. The key is the decay of the solution f when the velocity goes to infinity.

Lemma 4.2.2 If

(1 + |v| 2 ) γ f ∈ L ∞ (R 2 × R 2 ), with γ > 2 we have the bound of the L ∞ norm ∥n[f ]∥ L ∞ (R 2 ) ≤ C(γ)∥f ∥ (γ-2)/γ L ∞ (R 2 ×R 2 ) ∥(1 + |v| 2 ) γ/2 f ∥ 2/γ L ∞ (R 2 ×R 2 ) . In particular, if |v| 2 f ∈ L 1 (R 2 × R 2 )) then the current j[f ] belongs to L 2 (R 2 ) and satisfies ∥j[f ]∥ L 2 (R 2 ) ≤ ∥n[f ]∥ L ∞ (R 2 ) ∥|v| 2 f ∥ L 1 (R 2 ×R 2 ) .

Proof.

For any R > 0, we have

n[f ](x) = R 2 f (x, v) dv = R 2 f 1 {|v|<R} dv + R d f 1 {|v|≥R} dv ≤ 2πR 2 ∥f ∥ L ∞ (R 2 ×R 2 ) + R 2 1 {|v|≥R} 1 (1 + |v| 2 ) γ/2 dv∥(1 + |v| 2 ) γ/2 f ∥ L ∞ (R 2 ×R 2 ) ≤ 2πR 2 ∥f ∥ L ∞ (R 2 ×R 2 ) + 2π γ -2 R 2-γ |(1 + |v| 2 ) γ/2 f ∥ L ∞ (R 2 ×R 2 ) . We take R = 1 γ -2 ∥ L ∞ (R 2 ×R 2 ) ∥f ∥ L ∞ (R 2 ×R 2 )
1/γ , we complete the bound estimate of the L ∞ norm for n[f ]. As a consequence, we can give the estimate in L 2 norm of j[f ]. Indeed, we have

j[f ](x) = R 2 vf dv ≤ R 2 |v| 2 f dv 1/2 R d f dv 1/2 . This implies that R 2 |j[f ](x)| 2 dx ≤ R 2 R 2 |v| 2 f dv R 2 f dv dx ≤ ∥n[f ]∥ L ∞ (R 2 ) R 2 R 2 |v| 2 f dvdx which concludes the desired estimate of j[f ].
We then show the bound estimate of the electric energy in the lemma below.

Lemma 4.2.3 Let ρ(x) = R 2 f (x, v) dv be a function which belongs to L 1 (R 2 ) ∩ L ∞ (R 2 ) and let E(x) be such that E(x) = 1 2π ∇ x ln | • | ⋆ ρ.
Then we have

∥E∥ L ∞ (R 2 ) ≤ 1 2π ∥f ∥ L 1 (R 2 ×R 2 ) 1/2 ∥f ∥ γ-2 γ L ∞ (R 2 ×R 2 ) ∥(1 + |v| 2 ) γ/2 f ∥ 2/γ L ∞ (R 2 ×R 2 ) 1/2
.

Proof.

We first recall the classical inequality

∥E∥ L ∞ (R 2 ) ≤ C∥ρ∥ 1/2 L 1 (R 2 ) ∥ρ∥ 1/2 L ∞ (R 2 )
for some constant C > 0. Together with Lemma 4.2.2 yields the desired result.

The Vlasov-Poisson-Fokker-Planck equation

We first introduce the concept of weak solution to the problem (4.10), (4.11), (4.12).

Definition 4.2.1

For a given T ∈]0, ∞[. We say that the pair (f, E[f ]) is a weak solution to the system (4.10), (4.11), (4.12) if and only if the following conditions are satisfied (i)

f ≥ 0, f ∈ L ∞ ([0, T [; L 1 ∩ L ∞ (R 2 × R 2 )), |E[f ]|f ∈ L 1 loc ([0, T [×R 2 × R 2 ). (ii) For any φ ∈ C ∞ 0 ([0, T [×R 2 × R 2 ), we have T 0 R 2 R 2 f ∂ t φ + v • ∇ x φ + (E[f ] + B(x) ⊥ v) • ∇ v φ dvdxdt + T 0 R 2 R 2 f (σ∆ v φ -v • ∇ v φ) dvdxdt + R 2 R 2 f in (x, v)φ(0, x, v) dvdx = 0.
Now, we provide the global existence of the weak solution to the VPFP system (4.10), (4.11), (4.12) based on a compactness argument. For this purpose, we need the following velocity averaging lemma obtained in [START_REF] Trygve | Existence of Weak Solutions to Kinetic Flocking Models[END_REF], see also [START_REF] Perthame | A limiting case for velocity averaging[END_REF].

Lemma 4.2.4 Let (g k ) k be bounded in L p loc ([0, T ] × R 2 × R 2 ) with 1 < p < ∞, and (G k ) k be bounded in L p loc ([0, T ] × R 2 × R 2 )
. If for any k, g k and G k satisfy the equation

∂ t g k + v • ∇ x g k = ∇ l v G k , g k (t = 0) = g 0 ∈ L p (R 2 × R 2 ),
for some multi-index l, then for any

ψ ∈ C 1 c (R 2 × R 2 ) we have R d g k ψ dv k is relatively compact in L p loc ([0, T ] × R 2 ).
The averaging lemma allows to pass to the limit in the VPFP equation including the nonlinear term E[f ]f in the sense of distribution, see [START_REF] Di Perna | Global weak solutions of Vlasov-Maxwell Systems[END_REF]. The only difficult term is the Poisson equation -ε 0 ∆ x Φ[f ] = q(n[f ] -D), since the velocity averaging lemma cannot be directly applied to conclude compactness of the density n[f ] ( recall that only quantities of the type |v|≤R g k dv, R being finite, converge to |v|≤R gdv). In order to get such compactness, one uses the previous lemma to show the following result, see Lemma 2.8 in [START_REF] Trygve | Existence of Weak Solutions to Kinetic Flocking Models[END_REF] Lemma 4.2.5 Let (g k ) k and (G k ) k be as in Lemma 4.2.4 and we assume that

g k is bounded in L p ([0, T ] × R 2 × R 2 ), (|v| 2 + |x|)g k is bounded in L ∞ (0, T ; L 1 (R 2 × R 2 )).
Then for any ψ(v) such that |ψ(v)| ≤ c|v| and 1 < q < 4 3 , the sequence

R d g k ψ dv k is compact in L q ([0, T ] × R 2 ).
We state the following result 

∈ L 1 (R 2 ), D ∈ L 1 (R 2 ) ∩ L ∞ (R 2 )
. Assume that the initial condition f in satisfies the hypotheses H1, H2 and H3. Then there exists a weak solution to the problem (4.10), (4.11), (4.12) in the sense of Definition 4.2.1, satisfying

f ≥ 0, f ∈ L ∞ ([0, T ]; L 1 ∩ L ∞ (R 2 × R 2 )), 1 + |v| 2 γ/2 f ∈ L ∞ ([0, T ] × R 2 × R 2 ) (|x| + |v| 2 + | ln f |)f ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )) E[f ] ∈ L ∞ ([0, T ] × R 2 ), E[f ] ∈ L ∞ ([0, T ]; L 2 (R 2 )).
(4.18)

Furthermore, we have f ∈ L 2 ([0, T ] × R 2 x , H 1 (R 2 v )).
The proof of Theorem 4.2.2 will be devided into 5 steps. The first is devoted to regularize the VPFP system, the second establishs some uniform-in-η estimates, the third to a convergence of the sequence, the fourth passes to the limit and the last step studies the properties of the solution.

Step 1: Regularized VPFP system For the existence of weak solutions to (4.10)-( 4.12), we first regularize the system with respect to regularization parameters η > 0 as follows:

∂ t f η + v • ∇ x f η + E η • ∇ v f η + B(x) ⊥ v • ∇ v f η = σ∆ v f η + div v (vf η ) (4.19)
subject to the initial data

f η 0 = f η (0, x, v) := f in (x, v)1 {|v|≤1/η}
and E η is given as

E η = - 1 4π ∇ x W η ⋆ (n η -D) = - 1 4π ∇ x ln η + |x| 2 ⋆ (n η -D), n η = R 2 f η dv.
We note that ∇W η is bounded and Lipschitz continuous. The existence of weak solutions to (4.19) comes from a fixed point in the following sense: for E ∈ L ∞ (0, T ; L ∞ (R 2 )) 2 , let f solve (4.13) provided by Theorem 4.2.1 and define the operator

T : L ∞ ((0, T ) × R 2 ) 2 → L ∞ ((0, T ) × R 2 ) 2 E → T (E) = E η = - 1 4π ∇W η ⋆ (n -D), n = R 2 f dv.
It is easily seen that T is well defined. Then, any fixed point T (E) = E is a solution to (4.19). We will prove the existence of such a fixed point by using the Schaefer theorem. We will first work with the space of continuous functions C 0 ((0,

T ) × R 2 ) instead of L ∞ ((0, T ) × R 2 )
and then the result follows by passing to the limit. We refer the reader to the same argument in [START_REF] Trygve | Existence of Weak Solutions to Kinetic Flocking Models[END_REF], Theorem 6.3.

Let us first verify that the operator T is compact. Let (E k ) k be a uniformly bounded sequence in C 0 ((0, T ) × R 2 ) 2 and (f k ) k be the corresponding sequence solutions to (4.13) given by Theorem 4.2.1. By estimate (4.14) and ∇W η is bounded and Lipschitz, we can deduce that the sequence (T (E k )) k is both uniformly bounded and equicontinuous. Thus, it follows that T is compact in

(C 0 ((0, T ) × R 2 )) 2 .
Next, let us verify that the operator T is continuous. Let (E k ) k∈N be a uniformly bounded sequence in C 0 ((0, T )×R 2 ) 2 and lim k→∞ E k = E in C 0 ((0, T )×R 2 ) 2 . Denoting by f k a weak solution to (4.13) corresponding to E k , that means

∂ t f k + v • ∇ x f k + E k • ∇ v f k + B(x) ⊥ v • ∇ v f k = σ∆ v f k + div v (vf k ).
(4.20)

Note that the bounds (4.14)-(4.15), together with the assumption that E k is uniformly bounded, we infer that there exists a constant C that does not depend on k satisfying

sup [0,T ] R 2 R 2 (1 + |x| + |v| 2 )f k dvdx + ∥f k ∥ L ∞ ([0,T ]×R 2 ×R 2 ) < C.
Thus, we have, at least for a subsequence, that

f k → f, weak ⋆ in L ∞ ([0, T ] × R 2 × R 2 ).
Since E k converges strongly to E, we can pass to the limit in (4.20) to conclude that the limit f solves (4.13) corresponding to E. Moreover, since for the equation (4.13) we have uniqueness for the weak solution, it follows that f is the unique weak solution corresponding to E. Note also that from the uniqueness it comes also that the whole sequence (f k ) k converges weakly ⋆ in L ∞ . In addition, making the same arguments in Lemma 4.2.7 below to the equation (4.20), it follows from Lemma 4.2.5 that

n k = R 2 f k dv → n = R 2 f dv in L p ([0, T ] × R 2 ), p ∈ (1, 4/3)
which implies the convergence of

T (E k ) towards T (E) in L ∞ ([0, T ] × R 2 ). Since T is compact, it implies that T (E k ) → T (E) in C 0 ([0, T ] × R 2 )
. This proves the continuity of the map T . Finally, it remains to verify that

{E = λT (E) for some λ ∈ [0, 1]} is bounded.
For this purpose we take E in this set and f is a weak solution to (4.13) given by Theorem 4.2.1. Then from the estimate (4.14) we have

∥E∥ L ∞ = λ∥T (E)∥ L ∞ ≤ 1 4π ∥∇ ln η + | • | 2 ∥ L ∞ ∥n -D∥ L 1 ≤ C(f in , D)∥∇ ln η + | • | 2 ∥ L ∞ .
Combining these arguments, the operator T satifies the Schaefer fixed point theorem and hence we prove the existence of weak solution of regularized system (4.19).

Step 2: Uniform-in-η estimates Thanks to Theorem 4.2.1, we obtain the following estimations

f η ≥ 0, sup [0,T ] ∥f η (t)∥ L p (R 2 ×R 2 ) ≤ C(T )∥f in ∥ L p (R 2 ×R 2 ) , p ∈ [1, ∞] (4.21) sup [0,T ] R 2 R 2 f η |v| 2 2 dvdx < C(T, ∥E η ∥ L ∞ ) R 2 R 2 f in |v| 2 dvdx (4.22) sup [0,T ] R 2 R 2 f η |x| dvdx < C(T ) R 2 R 2 f in |x| dvdx (4.23) ∥σ∇ v f η / f η ∥ L 2 ([0,T ];L 2 (R 2 ×R 2 )) ≤ C(∥E η ∥ L ∞ , T, f in , σ) + R 2 R 2 σf in | ln f in | dvdx.
(4.24) We will now establish the uniform estimates with respect to η of the electric field E η , that means sup [0,T ] ∥E η ∥ L ∞ (R 2 ) < C for some constant C > 0, not depending on η. Thanks to Lemma 4.2.3 and (4.21), it suffices to show that for all η > 0, the following inequality

∥Y η (t)∥ L ∞ (R 2 ×R 2 ) < C
where we denote

Y η (t) = (1 + |v| 2 ) γ/2 f η (t, x, v).

Lemma 4.2.6

Let f in be an initial data verifying the hypothesis

∥Y 0 ∥ L ∞ (R 2 ×R 2 ) = ∥(1 + |v| 2 ) γ/2 f in ∥ L ∞ (R 2 ×R 2 ) < ∞, γ > 2.
Then there exists a constant C > 0 independent of η, satisfying for every η > 0

∥Y η (t)∥ L ∞ (R 2 ×R 2 ) ≤ C.

Proof.

The proof relies on the maximum principle, which is stated in Remark 4. 

∂ t Y η + v • ∇ x Y η + E η • ∇ v Y η + B(x) ⊥ v • ∇ v Y η -σ∆ v Y η -div v (vY η ) (4.25) = γ(1 + |v| 2 ) (γ-2)/2 (v • E η )f η -2σγ(1 + |v| 2 ) (γ-2)/2 v • ∇ v f η -σγ(γ -2)(1 + |v| 2 ) (γ-4)/2 |v| 2 f η -2σγ(1 + |v| 2 ) (γ-2)/2 f η -γ(1 + |v| 2 ) (γ-2)/2 |v| 2 f η .
But we have

-2σγ(1 + |v| 2 ) (γ-2)/2 v • ∇ v f η = - 2σγ 1 + |v| 2 (1 + |v| 2 ) γ/2 v • ∇ v f η = - 2σγ 1 + |v| 2 v • ∇ v Y η + 2σγ 2 |v| 2 1 + |v| 2 (1 + |v| 2 ) (γ-2)/2 f η
so that the equation (4.25) can be rewritten

∂ t Y η + v • ∇ x Y η + E η + 2σγ v 1 + |v| 2 • ∇ v Y η + B(x) ⊥ v • ∇ v Y η -σ∆ v Y η -div v (vY η ) = R 1 + R 2 (4.26) with R 1 = γ(1 + |v| 2 ) (γ-2)/2 (v • E η )f η R 2 = σγ 2 |v| 2 1 + |v| 2 (1 + |v| 2 ) (γ-2)/2 f η -2σγ(1 + |v| 2 ) (γ-2)/2 f η -γ(1 + |v| 2 ) (γ-2)/2 |v| 2 f η .
Now, thanks to the hypotheses on the initial data, we apply the L ∞ estimate in Remark 4.7.1 to (4.26), and therefore we obtain

∥Y η ∥ L ∞ (R 2 ×R 2 ) ≤ e 2T ∥Y 0 ∥ L ∞ (R 2 ×R 2 ) + t 0 ∥R 1 (s)∥ L ∞ (R 2 ×R 2 ) + ∥R 2 (s)∥ L ∞ (R 2 ×R 2 ) ds. (4.27) But ∥R 2 (s)∥ L ∞ (R 2 ×R 2 ) ≤ (σγ 2 + (2σ + 1)γ)∥Y η (s)∥ L ∞ (R 2 ×R 2 ) = C 1 (σ, γ)∥Y η (s)∥ L ∞ (R 2 ×R 2 ) ,
and

∥R 1 (s)∥ L ∞ (R 2 ×R 2 ) ≤ γ∥E η (s)∥ L ∞ (R 2 ) ∥(1 + |v| 2 ) (γ-1)/2 f η ∥ L ∞ (R 2 ×R 2 ) .
Then we use Lemma 4.2.3 for the electric field E η and by combining with the bound of L p norm (4.21) we get

∥E η (s)∥ L ∞ (R 2 ) ≤ C(D, f in ) 1 + ∥(1 + |v| 2 ) γ/2 f η (s)∥ 1/γ L ∞ (R 2 ×R 2 ) = C(D, f in ) 1 + ∥Y η (s)∥ 1/γ L ∞ (R 2 ×R 2 ) ,
where C(D, f in ) stands for the constant, depending only on D and f in . On the other hand, thanks to the result of the elementary interpolation and (4.21) we have

∥(1 + |v| 2 ) (γ-1)/2 f η (s)∥ L ∞ (R 2 ×R 2 ) ≤ C(γ)∥f η (s)∥ 1/γ L ∞ (R 2 ×R 2 ) ∥Y η (s)∥ 1-1/γ L ∞ (R 2 ×R 2 ) ≤ C(γ, f in )∥Y η (s)∥ 1-1/γ L ∞ (R 2 ×R 2 ) .
Therefore the previous bound estimate of R 1 becomes

∥R 1 (s)∥ L ∞ (R 2 ×R 2 ) ≤ C∥Y η (s)∥ L ∞ (R 2 ×R 2 )
for some positive constant C depending only on D, f in , γ. Together the estimates of R 1 and R 2 , the inequality (4.27) becomes

∥Y η (t)∥ L ∞ (R 2 ×R 2 ) ≤ e 2T ∥Y 0 ∥ L ∞ (R 2 ×R 2 ) + C 1 t 0 ∥Y η (s)∥ L ∞ (R 2 ×R 2 ) ds.
for some positive constants C 1 , not depending on η. By Grönwall's inequality, we have

∥Y η (t)∥ L ∞ (R 2 ×R 2 ) ≤ e 2T ∥Y 0 ∥ L ∞ (R 2 ×R 2 ) e C 1 T , ∀t ∈ [0, T ]
which implies the desired result.

By Lemma 4.2.6, we deduce that the constants in the inequalities (4.22), (4.24) respectively are independent with respect to η. Together with Lemma 4.2.2 and (4.21) yields the uniform bound of

(n η ) η>0 in L ∞ ([0, T ]; L p (R 2 )), for any p ∈ [1, ∞].
Step 3: Compactness and convergence It follows from the uniform bound of the sequences that there exists a limit (f, n, E) such that up to the extraction of a subsequence, it holds as η → 0 that

f η ⇀ f weak ⋆ in L ∞ ([0, T ]; L p (R 2 × R 2 )), p ∈]1, ∞], n η ⇀ n weak ⋆ in L ∞ ([0, T ]; L p (R 2 )), p ∈]1, ∞], E η ⇀ E weak ⋆ in L ∞ ([0, T ] × R 2 ).
Furthermore, by using Lemma 4.2.5 with ψ(v) = 1 we get the strong convergence 

n η → n in L q ([0, T ] × R 2 ), q ∈]1, 4/3[. ( 4 
G η := σ∇ v f η + vf η -E η f η -B(x) ⊥ vf η .
Then the equation (4.19) can be written as

∂ t f η + v • ∇ x f η = div v G η .
We now claim that the sequence (G η ) η>0 is bounded in L q ([0, T ] × R 2 × R 2 ) to apply the averaging lemma, Lemma 4.2.5. Hence, we need to prove the following lemma.

Lemma 4.2.7

For any q ∈ [1, 2], there exists a constant C independent of η such that for every η > 0 we have

∥G η ∥ L q ([0,T ]×R 2 ×R 2 ) ≤ C, q ∈ [1, 2].

Proof.

As the sequence of electric fields E η is bounded in L ∞ ([0, T ] × R 2 ) and the magnetic field B belongs to L ∞ (R 2 ) we obtain

∥G η ∥ L q ≤ ∥σ∇ v f η ∥ L q + (1 + ∥B∥ L ∞ )∥vf η ∥ L q ([0,T ]×R 2 ×R 2 ) + C∥f η ∥ L q
for some positive constant C not depending on η.

From (4.21) it is easily seen that ∥f η ∥ L q ([0,T ]×R 2 ×R 2 ) ≤ T 1/q ∥f in ∥ L q (R 2 ×R 2 ) . On the other hand, since ∥vf η ∥ L q ([0,T ]×R 2 ×R 2 ) ≤ T 1/q sup [0,T ] ∥vf η ∥ L q (R 2 ×R 2 )
and thanks to Hölder's inequality for q ∈ [1, 2[ we have

∥vf η ∥ L q (R 2 ×R 2 ) = R 2 R 2 f η |v| q dvdx 1/q = R 2 R 2 |v| q (f η ) q/2 (f η ) q/2 dvdx 1/q ≤ R 2 R 2 |v| 2 f η dvdx 1/2 R 2 R 2 (f η ) q/(2-q) dvdx (2-q)/2 ≤ R 2 R 2 |v| 2 f η dvdx 1/2 ∥f η ∥ q/2 L q/(2-q) (R 2 ×R 2 ) .
When q = 2 we also get

∥vf η ∥ L 2 (R 2 ×R 2 ) ≤ ∥f η ∥ 1/2 L ∞ (R 2 ×R 2 ) R 2 R 2 |v| 2 f η dvdx 1/2 .
Consequently, the sequence

(vf η ) η is bounded in L q ([0, T ] × R 2 × R 2 ), for any q ∈ [1, 2].
It remains to uniformly bound the sequence ∥σ∇ v f η ∥ L q ([0,T ]×R 2 ×R 2 ) . Using Hölder's inequality again for q ∈ [1, 2[, we have

T 0 R 2 R 2 |∇ v f η | q dvdxdt = T 0 R 2 R 2 (f η ) q 2 |∇ v f η | q (f η ) q 2 dvdxdt ≤ T 0 ∥f η ∥ q 2 L q 2-q R 2 R 2 |∇ v f η | 2 f η dvdx q 2 dt ≤ C(T )∥f η ∥ q 2 L ∞ [(0,T ];L q 2-q ) T 0 R 2 R 2 |∇ v f η | 2 f η dvdxdt q 2
and when p = 2 we also get

T 0 R 2 R 2 |∇ v f η | 2 dvdxdt = T 0 R 2 R 2 f η |∇ v f η | 2 f η dvdxdt ≤ ∥f η ∥ L ∞ ([0,T ]×R 2 ×R 2 ) T 0 R 2 R 2 |∇ v f η | 2 f η dvdxdt.
Thanks to Lemma 4.2.6 and (4.24), we deduce that the sequence

(|∇ v f η | 2 /f η ) η>0 is bounded in L 1 ([0, T ] × R 2 × R 2 ). Therefore, the sequence (∇ v f η ) η>0 is bounded in (L q ([0, T ] × R 2 × R 2 )) 2 with q ∈ [1, 2].
Altogether the above estimates we conclude the result of Lemma 4.2.7.

Step 4: Passing to the limit Thanks to the weak convergences obtained in Step 3, we see that to pass to the limit in the weak formulation of equation (4.19) it suffices to show the convergence towards

0 for any test function φ ∈ C ∞ c ([0, T ) × R 2 × R 2 ) of the non-linear contribution T 0 R 2 R 2 [(∇W η ⋆ n η )f η -(∇W ⋆ n)f ] φ dvdxdt = T 0 R 2 R 2 [(∇(W η -W ) ⋆ n η )f η ] φ dvdxdt + T 0 R 2 R 2 [∇W ⋆ (n η -n)f η ] φ dvdxdt + T 0 R 2 R 2 (∇W ⋆ n)φ(f η -f ) dvdxdt. (4.29)
For the second term in (4.29) we write

T 0 R 2 R 2 [(∇ x ln(| • |) ⋆ (n η -n))f η ] φ dvdxdt = T 0 R 2 ∇ x ln(| • |)1 {|•|≤1} ⋆ (n η -n)) R d f η φ dv dxdt + T 0 R 2 ∇ x ln(| • |)1 {|•|>1} ⋆ (n η -n)) R d f η φ dv dxdt =: I 1 + I 2 .
Estimating now

I 1 . Notice that ∇ x ln(|x|)1 {|•|≤1} ∈ L 1 (R 2 )
we have

I 1 ≤ T 0 ∥∇ x ln(|x|)1 {|•|≤1} ∥ L 1 (R 2 ) ∥n η -n∥ L q (R 2 ) R d f η φ dv L q ′ (R 2 )
dt where q ∈]1, 4/3[ and q ′ is the Hölder conjugate of q. Here we have used Young's inequality for the convolutions

R 2 (f ⋆ g)h dx ≤ ∥f ∥ L p ∥g∥ L q ∥h∥ L r , 1 p + 1 q + 1 r = 2.
Then by the Hölder inequality in variable t we have

I 1 ≤ ∥∇ x ln(|x|)1 {|•|≤1} ∥ L 1 (R 2 ) ∥n η -n∥ L q ([0,T ]×R 2 ) R 2 f η φ dv L q ′ ([0,T ]×R 2 )
.

Notice that the sequence

(f η ) η>0 is bounded in L ∞ ([0, T ]×R 2 ×R 2 ) and φ ∈ C ∞ 0 ([0, T )× R 2 × R 2 ) imply (f η φ) η>0 is bounded in L q ′ ([0, T ] × R 2 ). Since n η converges strongly to n in L q ([0, T ] × R 2 ) therefore we get I 1 → 0 as η → 0. Estimating now I 2 . Notice that ∇ x ln(|x|)1 {|•|≥1} ∈ L p (R 2 ) for any p ∈]2, ∞[. Using
Young's inequality again for the convolutions then we have

I 2 ≤ T 0 ∥∇ x ln(|x|)1 {|•|≥1} ∥ L p ′ (R 2 ) ∥n η -n∥ L p (R 2 ) R d f η φ dv L 1 (R 2 )
dt, where p ∈]1, 4/3[ and p ′ is the Hölder conjugate of p (p ′ > 4). Performing in the same way as I 1 , we also have I 2 → 0 as η → 0. Combining the convergences of I 1 and I 2 we deduce that the first term in (4.29) converges to 0, as η → 0.

For the third term in (4.29) we write

T 0 R 2 R 2 (∇ x ln(| • |) ⋆ n)φ(f η -f ) dvdxdt = T 0 R 2 R 2 ∇ x ln(| • |)1 {|•|<1} ⋆ n φ(f η -f ) dvdxdt + T 0 R 2 R 2 ∇ x ln(| • |)1 {|•|≥1} ⋆ n φ(f η -f ) dvdxdt =: K 1 + K 2 . Estimating now K 1 . Notice that ∇ x ln(| • |)1 {|•|<1} ⋆ nφ belongs to (L 1 ([0, T ]; L p (R 2 × R 2 ))) 2 avec p ∈ [1, ∞[. Indeed, since T 0 R 2 ∇ x ln(| • |)1 {|•|<1} ⋆ n p R 2 |φ| p dv dx 1 p dt ≤ T 0 R 2 |φ| p dv 1/p L ∞ (R 2 )
dt sup

[0,T ] R 2 ∇ x ln(| • |)1 {|•|<1} ⋆ n p dx 1/p and sup [0,T ] R 2 ∇ x ln(| • |)1 {|•|<1} ⋆ n p dx 1/p ≤ ∥∇ x ln(| • |)1 {|•|<1} ∥ L 1 (R 2 ) ∥n∥ L ∞ ([0,T ];L p (R 2 ))
where we have used the convolution inequality

∥f ⋆ g∥ L r ≤ ∥f ∥ L p ∥g∥ L q , 1 p + 1 q = 1 + 1 r we deduce that ∇ x ln(| • |)1 {|•|<1} ⋆ nφ ∈ L 1 ([0, T ]; L p (R 2 × R 2 )) with p ∈ [1, ∞[. As the sequence (f η ) η>0 converges weakly-⋆ to f in L ∞ ([0, T ]; L q (R 2 × R 2 )) with q ∈]1, ∞] thus K 1 → 0 when η → 0. Estimating now K 2 . Since ∇ x ln(| • |)1 {|•|≥1} ∈ L p (R 2 ) with p > 2, and n ∈ L ∞ ([0, T ]; L q (R 2 ))
with q ∈]1, ∞] and by using the convolution inequality we get

∇ x ln(| • |)1 {|•|≥1} ⋆ n ∈ L ∞ ([0, T ]; L r (R 2 )) with r > 2. This implies that ∇ x ln(| • |)1 {|•|≥1} ⋆ nφ lies in L 1 ([0, T ]; L p (R 2 × R 2 )) with p ∈]2, ∞[. Thus we also have K 2 → 0 as η → 0.
For the first term in (4.29) we write

T 0 R 2 R 2 [(∇(W η -W ) ⋆ n η )f η ] φ dvdxdt = T 0 R 2 R 2 (∇(W η -W )(•)(1 {|•|≤1} + 1 {|•|≥1} ) ⋆ n η )f η φ dvdxdt =: J 1 + J 2 . Estimating now J 1 . Since ∇(W η -W )(•)1 {|•|≤1} ∈ L 1 (R 2 ) 2
, performing in the same way as I 1 , we have

J 1 ≤ ∥∇(W η -W )(•)1 {|•|≤1} ∥ L 1 (R 2 ) ∥n η ∥ L q ([0,T ]×R 2 ) R 2 f η φdv L q ′ ([0,T ]×R 2 )
where q ∈]1, 4/3[ and q ′ is the Hölder conjugate of q. Using the uniform bound for n η and R 2 f η φdv and thanks to the dominated convergence theorem, we deduce that J 1 → 0 as η → 0. Estimating now J 2 . Making the same estimate as I 2 and then using the dominated convergence theorem for the convergence of the potential term, we have J 2 → 0, as η → 0.

Finally, the contribution (4.29) converges to 0 as η → 0. Therefore we obtain f is the weak solution of VPFP system (4.10), (4.11), (4.12) with the electric field

E satisfying E = -1 2π ∇ x ln | • | ⋆ (n -D) where n = R 2 f dv. Furthermore, from Proposition 4.7.3, the sequence (f η ) η>0 is uniformly bound in L 2 ([0, T ] × R 2 x , H 1 (R 2 v )). Thus it is easily check that f ∈ L 2 ([0, T ] × R 2 x , H 1 (R 2 v )).
Step 5: Properties (4.18) of solutions The nonegative limit function f is a direct consequence of the weak-⋆ convergence of the nonegative sequence

(f η ) η>0 in L ∞ ([0, T ]×R 2 ×R 2 ). In particular, f ∈ L ∞ ([0, T ]× R 2 ×R 2 )
. Moreover, we also have

(1+|v| 2 ) γ/2 f ∈ L ∞ ([0, T ]×R 2 ×R 2 ) since the sequence ((1 + |v| 2 ) γ/2 f η ) η>0 is bounded in L ∞ ([0, T ] × R 2 × R 2 ). Now, let φ be any nonnegative function in C ∞ 0 ([0, T [) and R > 0 be a constant. To prove f ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )) we use the function ψ R (t, x, v) = φ(t)1 {|x|≤R,|v|≤R} . Hence by the weak-⋆ convergence of (f η ) η>0 to f we deduce that T 0 φ(t) R 2 R 2 f (t, x, v)1 {|x|≤R,|v|≤R} dvdxdt ≤ lim sup η→0 T 0 φ(t) R 2 R 2 f η (t, x, v) dvdxdt.
Taking now the limit R → ∞ and apply the monotone convergence theorem to get f ∈

L ∞ ([0, T ]; L 1 (R 2 × R 2 )). Similarly, if we choose the test function ψ R (t, x, v) = φ(t)(|x| + |v| 2 )1 {|x|≤R,|v|≤R} then we can show that (|x| + |v| 2 )f ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )).
We complete the property of the solution by showing that f ln f ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )). Indeed, we have the identity

f | ln f | = f ln f χ {f ≥1} -f ln f χ {0≤f ≤1} . Since f ln f χ {f ≥1} ≤ f 2 and f ln f χ {0≤f ≤1} ≤ Ce -(|x|+|v| 2 ) + (|x| + |v| 2 )f , for some constant C > 0 together with f ∈ L ∞ ([0, T ]; L 2 (R 2 × R 2 )), see [125], Lemma 2.3, and (|x| + |v| 2 )f ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )), we deduce that f ln f ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )).
The following lemma provides the property on the potential Φ[f ] and the electric field

E[f ] = -∇ x Φ[f ] of the Poisson equation on R 2 ,
so as to control the potential energy. We refer to Lemma 3 in [START_REF] Goudon | Multidimensional high-field limit of the electrostatic VPFP system[END_REF].

Lemma 4.2.8 Let ρ ∈ L p (R 2 ) with any p ∈ [1, ∞] be such that R 2 (1 + |x|)|ρ(x)| dx < +∞, R 2 ρ(x) dx = 0.
Consider the potential Φ given by Φ(x) = -1 2π R 2 ln |x -y|ρ(y)dy. Then, Φ is a continuous and bounded function such that lim |x|→∞ Φ(x) = 0. Furthermore, we also have

Φ ∈ L 2 (R 2 ) and ∇Φ ∈ (L 2 (R 2 )) 2 .

Proof.

Since -1 2π ln |x| is the fundamental solution of -∆ x on R 2 , we have |ξ| 2 Φ(ξ) = ρ(ξ) by using the Fourier transform. Then the integral of ρ vanishes so ρ(0) = 0 which implies that

| Φ(ξ)| = ρ(ξ) |ξ| 2 ≤ ρ(ξ) -ρ(0) |ξ| 2 1 {|ξ|≤1} + ρ(ξ) |ξ| 2 1 {|ξ|>1} .
On the other hand, |ρ(ξ) -ρ(0

)| ≤ |ξ|∥∇ρ∥ L ∞ (R 2 ) ≤ |ξ|∥ ∇ρ∥ L 1 (R 2 ) = |ξ∥xρ∥ L 1 (R 2 ) . Hence | Φ(ξ)| ≤ ∥xρ∥ L 1 (R 2 ) 1 |ξ| 1 {|ξ|≤1} + ρ(ξ) |ξ| 2 1 {|ξ|>1} . (4.30) Since 1/|ξ| ∈ L 1 loc (R 2 ) and ρ ∈ L 2 (R 2 )
, it is easily obtain from (4.30) that Φ ∈ L 1 (R 2 ). It follows that x → Φ(x) is a continuous and bounded function which tends to 0 at infinity. Hence, Φ ∈ L ∞ (R 2 ). Furthermore, we can show that Φ ∈ L q (R 2 ) with any q ∈]1, 2[ such that q is the Hölder conjugate of p. Indeed, first we observer that 1/|ξ| ∈ L q loc (R 2 ) with 1 < q < 2. Then since ρ ∈ L p (R 2 ), 1 < p < 2 we deduce that ρ ∈ L q (R 2 ) with 1/p + 1/q = 1. Applying the inequality (a + b) r ≤ 2 r (a r + b r ) in (4.30), for any a, b, r ≥ 0, we conclude that

Φ ∈ L q (R 2 ), q ∈]1, 2[, so is Φ. Together with Φ ∈ L ∞ (R 2 ), we get Φ ∈ L 2 (R 2 ). Similar to the derivative of Φ, we have | ∇Φ(ξ)| = ξ |ξ| 2 ρ(ξ) ≤ ∥xρ∥ L 1 (R 2 ) 1 {|ξ|≤1} + ρ(ξ) |ξ| 2 1 {|ξ|>1} .
It is easily deduce that ∇Φ ∈ (L 2 (R 2 )) 2 by ρ ∈ L 2 (R 2 ) and the Plancherel theorem. Therefore, the potential energy is finite and we have the identity

R 2 ρΦ dx = R 2 |∇Φ| 2 dx.
via standard approximation and truncation arguments.

A priori estimates

The aim of this section is the derivation of a priori estimates, uniform with respect to ε, on the weak solution f ε provided by Theorem 4.2.2. These estimates are deduced from the conservation properties of the system and from the dissipation mechanism due to the collisions. We recall that (f ε , E[f ε ]) is a weak solution to the problem (4.4), (4.5), (4.6) on [0, T ] with any T > 0, if for any the test function

φ ∈ C ∞ 0 ([0, T [×R 2 × R 2 ) we have T 0 R 2 R 2 f ε ε∂ t φ + v • ∇ x φ + q m (E[f ε ] + B(x) ε ⊥ v) • ∇ v φ dvdxdt (4.31) + T 0 R 2 R 2 f ε (σ∆ v φ -v • ∇ v φ) dvdxdt + R 2 R 2 εf ε in (x, v)φ(0, x, v) dvdx = 0.
Let us define the free energy of the VPFP system (4.4), (4.5), (4.6) as

E[f ε ] = R 2 R 2 (σf ε ln f ε + f ε |v| 2 2 ) dvdx + ε 0 2m R 2 |E[f ε ]| 2 dx. Proposition 4.3.1 Let (f ε , E[f ε ]
) be a weak solution of the system (4.4), (4.5), (4.6) provided by Theorem 4.2.2. Then, we have the mass conservation and the balance of the free energy

d dt R 2 R 2 f ε (t) dvdx = 0, ε d dt E[f ε (t)] = - R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdx.
First, we formally analyze how to get these equations. The mass conservation follows formally by integrating (4.4) in v, which gives the continuity equation for the mass density, and then integrating in x. On the other hand, the law for the balance of the total energy is derived formally by summing up these relations below. First, multiplying the equation (4.4) by |v| 2 2 to obtain the balance of kinetic energy

d dt R 2 R 2 |v| 2 2 f ε dvdx = R 2 R 2 q m E[f ε ] • vf ε dvdx - R 2 R 2 (σ∇ v f ε + vf ε ) • v dvdx.
Then, thanks to the continuity equation 

∂ t n[f ε ] + div x R 2 vf ε dv = 0,
ε 0 ε 2m d dt R 2 |E[f ε ]| 2 dx = - q m R 2 R 2 E[f ε ] • vf ε dvdx.
Finally, multiplying the equation (4.4) by σ(1 + ln f ε ) to get the balance of entropy

d dt R 2 R 2 σf ε ln f ε dvdx = - R 2 R 2 (σ∇ v f ε + vf ε ) • σ∇ v f ε f ε dvdx.
As for weak solutions, we shall follow the same scheme. We find relations analogous to the previous relations in the lemmas below. The difficulty is in overcoming the lack of regularity and the need to justify operations that are taken for granted when the solutions are smooth. We will prove these properties of solutions by combining the formal arguments above with the choice of an appropriate sequence of test functions in (4.31) for every studied property. A similar rigorous approach that the one given in Refs. [START_REF] Bonilla | Asymptotic behaviour of the initial boundary value problem for the three dimensional Vlasov-Poisson-Fokker-Planck system[END_REF] and [START_REF] Bouchut | On long asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials[END_REF] can be easily adapted for the properties studied in our weak solution.

We start with the balance of kinetic energy. 

d dt R 2 R 2 |v| 2 2 f ε dvdx = R 2 R 2 q m E[f ε ] • vf ε dvdx - R 2 R 2 (σ∇ v f ε + vf ε ) • v dvdx.

Proof.

Let χ be a nonegative function of class C ∞ 0 (R) such that

χ(s) = 1, on |s| ≤ 1, χ(s) = 0 on |s| ≥ 2, we define the function χ R as χ R (z) = χ |z| R . Then χ R (z) = 1 on |z| ≤ R, χ R (z) = 0 on |z| ≥ 2R and ∥∇ z χ R ∥ L ∞ ≤ ∥χ ′ ∥∞ R . By using the test functions φ(t, x, v) = ϕ(t)χ R (x)χ R (v) |v| 2 2 with ϕ ∈ C ∞ 0 ([0, T [) in the definition of weak solution (4.31), we obtain T 0 R 2 R 2 f ε [ε∂ t ϕ(t)χ R (x) + v • ∇ x χ R (x)ϕ(t)] χ R (v) |v| 2 2 dvdxdt + T 0 R 2 R 2 f ε E[f ε ] + B(x) ε ⊥ v • ∇ v χ R (v) |v| 2 2 ϕ(t)χ R (x) dvdxdt + T 0 R 2 R 2 f ε (σ∆ v -v • ∇ v ) χ R (v) |v| 2 2 ϕ(t)χ R (x) dvdxdt + R 2 R 2 εf ε in (x, v)ϕ(0)χ R (x)χ R (v) |v| 2 2 dvdx = 0.
A simple computation shows that

∇ v χ R (v) |v| 2 2 = v R|v| χ ′ |v| R |v| 2 2 + vχ R (v), ∆ v χ R (v) |v| 2 2 = div v v R|v| χ ′ |v| R |v| 2 2 + div v (vχ R (v)) = 1 R χ ′ |v| R |v| 2 + |v| R + χ ′′ |v| R |v| 2 2R + 2χ R (v) + χ ′ |v| R |v| R .
For each ε > 0, using Theorem 4.2.2 on the solution, we have

(1+|v| 2 )f ε ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )) and E[f ε ] ∈ L ∞ ([0, T ] × R 2 ).
Letting R → ∞, one gets, by the dominated convergence theorem, the following relation for any

ϕ ∈ C ∞ 0 ([0, T [) T 0 ∂ t ϕ(t) R 2 R 2 ε |v| 2 2 f ε (t, x, v) dvdxdt + T 0 ϕ(t) R 2 R 2 E[f ε ] • vf ε dvdxdt + T 0 ϕ(t) R 2 R 2 (2σ -|v| 2 )f ε (t, x, v) dvdxdt + R 2 R 2 ε |v| 2 2 f ε in (x, v)ϕ(0) dvdx = 0.
On the other hand, from Theorem 4.2.2, our weak solution

f ε belongs to L 2 ([0, T ] × R 2 x , H 1 (R 2 v )
) and tends to 0 at infinity since (1+|v| 2 ) γ/2 f ε ∈ L ∞ , thus by the divergence theorem we have

R 2 R 2 (2σ -|v| 2 )f ε (t, x, v) dvdx = - R 2 R 2 (σ∇ v f ε + vf ε ) • v dvdx.
Substituting into the previous relation, we easily deduce the assertions on the lemma.

In the following lemma, we obtain the balance of the potential energy.

Lemma 4.3.2

Let f ε be the weak solution of the problem (4.4), (4.5), (4.6) provided by Theorem 4.2.2. Then we have

ε 0 ε 2m d dt R 2 |E[f ε ]| 2 dx = - q m R 2 R 2 E[f ε ] • vf ε dvdx = - q m R 2 E[f ε ] • j[f ε ] dx. Proof. First, we show that Φ[f ε ], E[f ε ] and ∂ t E[f ε ] belong to L ∞ ([0, T ]; L 2 (R 2 )
). We will apply Lemma 4.2.8. The conditions in Lemma 4.2.8 are fulfilled by the properties on the solution f ε and the background densities D(x) by assumption H3. Hence one gets

Φ[f ε ] and E[f ε ] lie in L ∞ ([0, T ]; L 2 (R 2 )). It remains to prove that ∂ t E[f ε ] belong to L ∞ ([0, T ]; L 2 (R 2 )) 2 .
Thanks to the continuity equation on [0, T [×R 2 in the sense of distributions

∂ t n[f ε ] + div x R 2
vf ε dv = 0 see Lemma 4.4.1 below, together with the Poisson equation (4.5), we deduce that

∂ t E[f ε (t)](x) = - q 2πε 0 ∇ ln | • | ⋆ ∂ t (n[f ε ] -D) = 1 2πε 0 ∇ ln | • | ⋆ (div x j[f ε ]).
In order to estimate ). We have

∂ t E[f ε (t)],
1 2πε 0 ∇ ln | • | ⋆ (div x j[f ε ]), η = R 2 q 2πε 0 D 2 ln | • | ⋆ η(x) • j[f ε ] dx. By Lemma 4.2.2 one gets j[f ε ] ∈ L ∞ ([0, T ]; L 2 (R 2 × R 2 )
). Therefore we deduce that

1 2πε 0 ∇ ln | • | ⋆ (div x j[f ε ]), η ≤ q 2πε 0 ∥D 2 ln | • | ⋆ η∥ L 2 ∥j[f ε ]∥ L 2 ≤ C∥η∥ L 2 ∥j[f ε ]∥ L 2 .
It allows to conclude that

∂ t E[f ε ] belongs to L ∞ ([0, T ]; L 2 (R 2 )). Now let ν > 0 and let κ ∈ C ∞ 0 (R 2 ) be a standard mollifier. Define the regularization kernel κ ν := 1 ν 2 κ( x ν ). Convoluting with κ ν in the equation div x (∂ t E[f ε ] + q ε 0 ε j[f ε ]) = 0 we obtain div x (∂ t E ν [f ε ] + q ε 0 ε j ν [f ε ]) = 0 where E ν [f ε ] = E[f ε ] ⋆ κ ν , j ν [f ε ] = j[f ε ] ⋆ κ ν . Multiplying the previous equation by Φ ν [f ε ]χ R (x)
and integrate by parts to find that

R 2 ∂ t E ν [f ε ] • E ν [f ε ]χ R (x) dx + q ε 0 ε R 2 E ν [f ε ] • j ν [f ε ]χ R (x) dx + R 2 (∂ t E ν [f ε ] + q ε 0 ε j ν [f ε ]) • Φ ν [f ε ]∇χ R dx = 0.
where Φ ν [f ε ] = Φ[f ε ] ⋆ κ ν and χ R stands for the family of smooth cut-off functions, defined in Lemma 4.3.1. Let ν → 0. The terms on the left side converge as a consequence of the theorem of smooth approximations from the first arguments on

Φ[f ε ], E[f ε ], ∂ t E[f ε ]. Then we obtain R 2 ∂ t E[f ε ] • E[f ε ]χ R (x) dx + q ε 0 ε R 2 E[f ε ] • j[f ε ]χ R (x) dx + R 2 (∂ t E[f ε ] + q ε 0 ε j[f ε ]) • Φ[f ε ]∇χ R dx = 0.
Letting R → ∞, the dominated convergence theorem yields

R 2 ∂ t E[f ε ] • E[f ε ] dx + q ε 0 ε R 2 E[f ε ] • j[f ε ] dx = 0
which gives the result in the lemma.

Finally, let us deduce the balance of entropy. We refer to Lemma 2. 

d dt R 2 R 2 σf ε ln f ε dvdx = - R 2 R 2 (σ∇ v f ε + vf ε ) • σ∇ v f ε f ε dvdx.
To prove the statement of the lemma, we need the following lemma. 

ε∂ t Ψ(f ε ) + v • ∇ x Ψ(f ε ) + q m E[f ε ] • ∇ v Ψ(f ε ) + q m B(x) ε ⊥ v • ∇ v Ψ(f ε ) -v • ∇ v Ψ(f ε ) -σ∆ v Ψ(f ε ) = 2f ε Ψ ′ (f ε ) -σΨ ′′ (f ε ) |∇ v f ε | 2 . (4.32)

Proof.

Let us consider a sequence of mollifiers κ ν := κ t,x,v ν = κ ν (t) ⋆ κ ν (x) ⋆ κ ν (v) which approximates the Dirac delta function, and κ ν (t) is supposed to have its support in the negative real axis. Then we define

f ε,ν = f ε ⋆ t,x,v κ ν . It is well known that f ε belongs to L 2 ([0, T ] × R 2 x ; H 1 (R 2 v )) then f ε,κ ∈ C ∞ (0, T ; H m (R 2 × R 2 )
), for every ν > 0, m ≥ 1. Moreover, by the theorem of smooth approximations, we also have

f ε,ν → f ε in L 2 ([0, T ]; L 2 (R 2 × R 2 )), ∇ v f ε,ν → ∇ v f ε in L 2 ([0, T ]; L 2 (R 2 × R 2 )).
We convolute with κ ν in the equation (4.4), we obtain

ε∂ t f ε,ν +v•∇ x f ε,ν + q m E[f ε ]•∇ v f ε,ν + q m B(x) ε ⊥ v•∇ v f ε,ν -div v (vf ε,ν )-σ∆ v f ε,ν = 4 i=1 h ε,ν i (4.33)
where the functions h ε,ν i are defined by

h ε,ν 1 = v • ∇ x (κ ν ⋆ f ε ) -(v • ∇ x f ε ) ⋆ κ ν h ε,ν 2 = q m E[f ε ] • ∇ v (κ ν ⋆ f ε ) -(E[f ε ] • ∇ v f ε ) ⋆ κ ν h ε,ν 3 = q m B(x) ε ⊥ v • ∇ v (κ ν ⋆ f ε ) -(B(x) ⊥ v • ∇ v f ε ) ⋆ κ ν h ε,ν 4 = -[v • ∇ v (κ ν ⋆ f ε ) -(v • ∇ v f ε ) ⋆ κ ν ]. For each ε > 0, it is obviously that h ε,ν 2 tends to 0 in L 2 ([0, T ]; L 2 (R 2 × R 2 )) as ν ↘ 0, since ∇ v f ε,ν = ∇ v (κ ν ⋆ f ε ) converges to ∇ v f ε in L 2 ([0, T ]; L 2 (R 2 × R 2 )) and E[f ε ] ∈ (L ∞ ([0, T ] × R 2 )) 2 hence E[f ε ] • ∇ v (κ ν ⋆ f ε ) tends to E[f ε ] • ∇ v f ε and (E[f ε ] • ∇ v f ε ) ⋆ κ ν also tends to E[f ε ]) • ∇ v f ε in L 2 ([0, T ]; L 2 (R 2 × R 2 )). For other terms h ε,ν i , we also obtain that h ε,ν i → 0 in L 1 ([0, T ]; L β loc (R 2 × R 2 )).
Here, we have used the following property, see [START_REF] Dipern | Ordinary differentail equations, transport theory and Sobolev spaces[END_REF] Lemma II.1:

Let W ∈ L 1 (0, T ; (W 1,α loc (R d )) d ), g ∈ L ∞ (0, T ; L p loc (R d )), then we have (W • ∇g) ⋆ δ ε -W • ∇(g ⋆ δ ε ) → 0 in L 1 (0, T ; L β (R d )),
where

1 β = 1 α + 1 p if α or p < ∞, β < ∞ is arbitrary if α = p = ∞.
Now we establish the equation (4.32). Since

Ψ ∈ C 2 (R) then Ψ(f ε,ν ) ∈ C 2 (R). Multiplying by Ψ ′ (f ε,ν ) in (4.33), one gets ∂ t Ψ(f ε,ν ) + v • ∇ x Ψ(f ε,ν ) + q m E[f ε ] • ∇ v Ψ(f ε,ν ) + q m B(x) ε ⊥ v • ∇ v Ψ(f ε, ν) -v • ∇ v Ψ(f ε,ν ) -σ∆ v Ψ(f ε,ν ) = 2f ε,ν Ψ ′ (f ε,ν ) -σΨ ′′ (f ε,ν )|∇ v f ε,ν | 2 + 4 i=1 h ε,ν i Ψ ′ (f ε,ν ). Since Ψ ∈ C 2 (R 2 ) with Ψ ′′ ∈ L ∞ (R 2 )
thus Ψ is at the most quadratic at infinity, we have

Ψ(f ε,ν ) → Ψ(f ε ) in L 1 loc , Ψ ′ (f ε,ν ) → Ψ ′ (f ε ) in L 2 loc .
Passing to the limit we obtain the equation (4.32) in the sense of distribution. Now we are ready to establish the balance of the entropy identity.

Proof. (of Lemma 4.3.3)

We shall apply (4.32) for the following function

ψ δ (f ε ) = (δ + f ε ) ln 1 + f ε δ + f ε ln δ, δ > 0.
A simple computations show that

ψ ′ δ (f ) = ln 1 + f δ + ln δ + 1, ψ ′′ δ (f ) = 1 δ + f ≤ 1 δ .
Thus, the function ψ δ belongs to C 2 (R) and satisfies

ψ ′′ δ ∈ L ∞ with ψ δ (0) = 0. More- over, ψ δ ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )), since (δ + f ε ) ln 1 + f ε δ ≤ (δ + f ε ) f ε δ = f ε + (f ε )2 δ .
Therefore, ψ δ (f ε ) satisfies the following equation in the sense of distribution

∂ t ψ δ (f ε ) + v • ∇ x ψ δ (f ε ) + q m E[f ε ] • ∇ v ψ δ (f ε ) + q m B(x) ε ⊥ v • ∇ v ψ δ (f ε ) -v • ∇ v ψ δ (f ε ) -σ∆ v ψ δ (f ε ) = 2f ε ψ ′ δ (f ε ) -σψ ′′ δ (f ε )|∇ v f ε | 2 . (4.34)
We consider the test function φ(t, x, v) = ϕ(t)χ R (x)χ R (v), where the function χ R was defined in the Lemma 4.3.1. For each ε > 0, we have

ψ δ (f ε ) ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )) and E[f ε ] ∈ L ∞ ([0, T ] × R 2 )
. Passing to the limit as R → ∞, we easily deduce from (4.34) the following relation

d dt R 2 R 2 ψ δ (f ε (t)) dvdx + R 2 R 2 σ|∇ v f ε | 2 δ + f ε dvdx + 2 R 2 R 2 ψ δ (f ε ) dvdxdτ = 2 R 2 R 2 f ε ln 1 + f ε δ + ln δ + 1 dvdx which is equivalent to d dt R 2 R 2 ψ δ (f ε (t)) dvdx + R 2 R 2 σ|∇ v f ε | 2 δ + f ε dvdx = 2 R 2 R 2 f ε -δ ln 1 + f ε δ dvdx (4.35)
Next we will study the limit of (4.35) as δ → 0. Let us recall that the solution f ε satisfies the properties:

f ε ∈ L ∞ ([0, T ]; L 1 ∩ L ∞ ), f ε ln f ε ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )). Since ψ δ (f ε ) -f ε ln f ε = δ ln 1 + f ε δ + f ε ln 1 + δ f ε
we deduce that this term tends to 0 a.e in R 2 as δ → 0 and it is uniform bounded with respect to δ by

|ψ δ (f ε ) -f ε ln f ε | ≤ δ f ε δ + f ε | ln(δ + f ε )| + |f ε ln f ε | ≤ f ε + f ε ln(1 + f ε ) + |f ε ln f ε | ≤ f ε + (f ε ) 2 + |f ε ln f ε | which belongs to L 1 (R 2 )
. Therefore, by the dominated convergence theorem, we get

R 2 R 2 |ψ δ (f ε ) -f ε ln f ε | dvdx → 0, δ ↘ 0.
Using the same arguments for the integral in the right hand side of (4.35), we also have

2 R 2 R 2 f ε -δ ln 1 + f ε δ dvdx → 2 R 2 R 2 f ε dvdx, as δ ↘ 0.
On the other hand, integrating (4.35) between 0 and T yields

T 0 R 2 R 2 σ|∇ v f ε | 2 δ + f ε dvdxds = - R 2 R 2 ψ(f ε )| T 0 dvdx + 2 T 0 R 2 R 2 f ε -δ ln 1 + f ε δ dvdxds which shows that the sequence (|∇ v f ε | 2 /(δ + f ε )) δ>0 is bounded in L 1 ([0, T ] × R 2 × R 2 ).
Thanks to Fatou's lemma, one gets

∇ v √ f ε ∈ L 2 ([0, T ] × R 2 × R 2 )
. By using the dominated convergence theorem together with the previous arguments, we obtain

R 2 R 2 f ε ln f ε | T 0 dvdx + T 0 R 2 R 2 σ|∇ v f ε | 2 f ε dvdxds = 2 T 0 R 2 R 2 f ε dvdxds
which can be rewritten as

d dt R 2 R 2 f ε ln f ε dvdx = - R 2 R 2 σ|∇ v f ε | 2 f ε dvdx - R 2 R 2 v • ∇ v f ε dvdx since f ε ∈ L 2 ([0, T ] × R 2 x ; H 1 (R 2 v )
). So we complete the proof of the lemma.

Proof. (of Proposition 4.3.1)

The mass conservation can be deduced by testing the test function We establish now uniform bounds for the kinetic energy.

φ(t, x, v) = ϕ(t)χ R (x)χ R (v) in (4.

Lemma 4.3.5

Assume that the initial particle densities

(f ε in ) satisfy f ε in ≥ 0, M in := sup ε>0 M ε in < +∞, U in := sup ε>0 U ε in < +∞,
where for any ε > 0

M ε in := R 2 R 2 f ε in (x, v) dvdx, U ε in := R 2 R 2 |v| 2 2 f ε in (x, v) dvdx + ε 0 2m R 2 |∇ x Φ[f ε in ]| 2 dx.
We assume that (f ε ) ε>0 are smooth solutions of (4.4), (4.5), (4.6). Then we have

ε sup 0≤t≤T R 2 R 2 |v| 2 2 f ε (t, x, v) dvdx + ε 0 2m R 2 |∇ x Φ[f ε ]| 2 dx ≤ εU in + 2σT M in and T 0 R 2 R 2 |v| 2 f ε (t, x, v) dvdxdt ≤ εU in + 2σT M in .
Proof.

Using the Lemmas 4.3.1 and 4.3.2 yields

ε d dt R 2 R 2 |v| 2 2 f ε (t, x, v) dvdx + ε 0 2m R 2 |∇ x Φ[f ε ]| 2 dx = 2σM ε in - R 2 R 2 |v| 2 f ε dvdx and therefore we obtain ε R 2 R 2 |v| 2 2 f ε (t, x, v) dvdx + ε 0 2m R 2 |∇ x Φ[f ε ]| 2 dx + t 0 R 2 R 2 |v| 2 f ε dvdxds = εU ε in + 2σtM ε
in which yields the results.

Formal derivation of the limit model

The asymptotic behavior of the Vlasov-Fokker-Planck-Poisson equation (4.4) when ε becomes small comes from the balance of the free energy functional E[f ε ]. Thanks to the Proposition 4.3.1, we deduce that

εE[f ε (t)] + t 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxds = εE[f ε (0)].
Since the dissipation term can rewrite as

t 0 R 2 R 2 |σM ∇ v (f ε /M )| 2 f ε dvdxds
where M stands for the Maxwellian equilibrium

M (v) = (2πσ) -1 exp -|v| 2 2σ , v ∈ R 2
. Therefore, at least formally, we deduce that f ε = f + O(ε), as ε ↘ 0, where the leading order distribution function f satisfies

R 2 R 2 |σM ∇ v (f /M )| 2 f dvdx = 0, t ∈ R + .
Hence, we obtain

f (t, x, v) = n(t, x)M (v), (t, x, v) ∈ R + × R 2 × R 2 .
Then, the question is to determine the evolution equation satisfied by the concentration n(t, x) = R 2 f (t, x, v) dv.

We are looking at the model for the concentration n[f ε ] = R 2 f ε dv. First, by integrating the equation (4.4) with 1 and v, we straightforwardly get the local conservation laws satisfied by the first two moments.

Lemma 4.4.1

Let ε > 0. Let f ε be a weak solution of the system (4.4), (4.5), (4.6) provided by Theorem 4.2.2. Then the following conservation laws hold in the distributional sense

∂ t n[f ε ] + 1 ε div x j[f ε ] = 0. (4.36) ε∂ t j[f ε ] + div x R 2 v ⊗ vf ε dv - q m E[f ε ]n[f ε ] - qB(x) m ⊥ j[f ε ] ε = -j[f ε ]. (4.37) 
Proof.

For each ε > 0, (f ε , E[f ε ]) solves (4.4) in the sense of distribution given by equation (4.31) and satisfies

(1 + |v| 2 )f ε ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )), E[f ε ] ∈ L ∞ ([0, T ] × R 2 ).
Then, we test (4.31) on the test functions of the form φ 

(t, x, v) = ϕ(t)χ R (x)χ R (v) and φ(t, x, v) = ϕ(t)χ R (x)χ R (v)v,
∂ t n[f ε ] + div x n[f ε ] ⊥ E[f ε ] B(x) -σ ⊥ ∇ x ω c (x) ω c (x) 2 = div x F ε (4.38)
where we denote by

F ε = ε∂ t ⊥ j[f ε ] + ⊥ j[f ε ] ω c (x) + 1 ω c (x) ⊥ div x R 2 (v ⊗ v -σI 2 )f ε dv.

Proof.

The proof of the result is obviously by observing that the momentum flux tensor can be decomposed as

R 2 v ⊗ vf ε dv = R 2 (v ⊗ v -σI 2 )f ε dv + σI 2 n[f ε ].
Passing formal to the limit in (4.38), as ε ↘ 0, we get

∂ t n[f ] + div x n[f ] ⊥ E[f ] B(x) -σ ⊥ ∇ω c (x) ω 2 c (x) = 0,
where we have used that

f ε tends to f = n(t, x)M (v) leading to n[f ε ] → n[f ], j[f ε ] → j[f ] = 0 and R 2 (v ⊗ v -σI 2 )f ε dv → R 2 (v ⊗ v -σI 2 )f dv = 0. Therefore the limit model is ∂ t n + div x n ⊥ E[n] B(x) -σ ⊥ ∇ω c (x) ω 2 c (x) = 0, (t, x) ∈ R + × R 2 (4.39) E[n] = -∇ x Φ[n], -ε 0 ∆ x Φ[n] = q(n -D) (4.40) 
with the initial condition

n(0, x) = n in (x), x ∈ R 2 . (4.41)
We have the following balances for the previous limit model 

d dt R 2 n(t, x) dx = 0, d dt R 2 σn ln n + ε 0 2m |∇ x Φ[n]| 2 dx = 0.

Proof.

Clearly, we have the total mass conservation. For the energy conservation, a straightforward computation, the evolution in time of the energy for the limit model can be written as

R 2 σ∂ t n(1 + ln n) dx + R 2 ε 0 m E[n] • ∂ t E[n] dx.
Using the equation (4.39) for the first integral in the previous equality, we have

R 2 σ∂ t n(1 + ln n) dx = R 2 σ ⊥ E[n] B(x) -σ ⊥ ∇ω c (x) ω 2 c (x) • ∇n dx = σ R 2 ⊥ E[n] • ∇B B 2 (x) n dx.
Thanks to Poisson's equation (4.40), then using again (4.39) for the second integral, we get

R 2 ε 0 m E[n] • ∂ t E[n] dx = R 2 q m Φ[n]∂ t n dx = - q m R 2 E[n] • n ⊥ E[n] B(x) -σ ⊥ ∇ω c (x) ω 2 c (x) dx = -σ R 2 n ⊥ E[n] • ∇B B 2 (x) dx.
Combining these equalities we obtain the balance of the energy.

Well-posedness of the limit model

In this section, we focus on the existence, uniqueness and properties of the solution for the limit model (4.39), (4.40), (4.41). We will construct a smooth solution on any time interval [0, T ], T ∈ R + , following the same arguments as in the well-posedness proof for the Vlasov-Poisson problem with an external magnetic field, cf. [START_REF] Bostan | Asymptotic Behavior for the Vlasov-Poisson Equations with Strong External Magnetic Field. Straight Magnetic Field Lines[END_REF]. We assume that the initial condition n in satisfies the hypotheses

H4) n in ≥ 0, |x|n in ∈ L 1 (R 2 ), n in ∈ W 1,1 (R 2 ) ∩ W 1,∞ (R 2 ) H5) R 2 n in (x) dx = R 2 D(x) dx. and the external magnetic field B(x) verifies B ∈ C 2 b (R 2 ), inf x∈R 2 |B(x)| = B 0 > 0.

Solution integrated along the characteristics

First, a standard computation, the equation (4.39) can be rewritten for the unknown n/B as

∂ t n B + ⊥ E[n] B -σ ⊥ ∇ω c (x) ω 2 c (x) • ∇ x n B = 0. (4.42) 
For any smooth field E ∈ L ∞ ([0, T ]; W 1,∞ (R 2 )) 2 , we consider the associated characteristics flow of (4.42) given by

d dt X (t; s, x) = ⊥ E (t, X (t; s, x)) B (X (t; s, x)) -σ ⊥ ∇ω c (X (t; s, x)) ω 2 c (X (t; s, x)) , t, s ∈ [0, T ] X (s; s, x) = x, s ∈ [0, T ], x ∈ R 2 (4.43)
where X(t; s, x) is the solution of the equation (4.43), t represents the time variable, s is the initial time and x is the initial position. X(s; s, x) = x is our initial condition.

Notice that by the hypothesis on the magnetic field B(x), the vector field σ

⊥ ∇ωc ω 2 c (x)
is also smooth with respect to x and we have

σ ⊥ ∇ω c ω 2 c (x) W 1,∞ (R 2 ) ≤ C(σ, B, B 0 ).
Therefore, thanks to Cauchy-Lipschitz theorem, the characteristics in (4.43) are well defined for any

(s, x) ∈ [0, T ] × R 2 and X(t; s, x) ∈ W 1,∞ [0, T ] × [0, T ] × R 2 2
. Then the equation (4.42) can be written as

d dt n (t, X (t; s, x)) B(X(t; s, x)) = 0
which yields the solution of the transport equation (4.42) given by

n (t, x) = B(x) n (0, X (0; t, x)) B(X(0; t, x)) = B(x) n in (X (0; t, x)) B (X (0; t, x)) , t ∈ [0, T ]. (4.44) 

Conservation law on a volume

We have the following result

R 2 |n(t, x)| dx = R 2 n in (x) dx, t ∈ [0, T ]. (4.45) 
Indeed, we denote J(t; s, x) as the Jacobian matrix of X(t; s, x) with respect to x at (t; s, x). Then the evolution of determinant for the Jacobian matrix J(t; s, x) is given by

d dt detJ(t; s, x) = div x ⊥ E B -σ ⊥ ∇ω c ω 2 c (x) (X(t; s, x))detJ(t; s, x) detJ(s; s, x) = 1
which is equivalent to

d dt detJ(t; s, x) = - ⊥ E(t, X(t; s, x) • ∇B(X(t; s, x)) B 2 (X(t; s, x)) detJ(t; s, x). (4.46) 
On the other hand, using the equation (4.43) we deduce that together with detJ(s; s, x) = 1 one gets |B (X (t; s, x))| detJ(t; s, x) = |B(x)|. Therefore, integrating the equality (4.44) with respect to x and then changing the variable x to X(t; 0, x), we obtain

d dt ln |B (X (t; s, x))| = B(X(t; s, x)) |B(X(t; s, x))| ∇B (X (t; , x)) |B (X (t; s, x))| • ⊥ E (t, X (t; s, x)) B (X (t; s, x)) - ⊥ ∇ω c (X (t; s, x)) ω c (X (t; s, x)) 2 = ∇B (X (t; s, x)) • ⊥ E (t, X (t; s, x)) B(X (t; s, x)) 2 . ( 4 
R 2 |n(t, x)| dx = R 2 |B (x)| |n in (X (0; t, x))| |B (X (0; t, x))| dx = R 2 |B (X (t; 0, x))| n in (x) |B (x)| detJ (t; 0, x) dx = R 2 n in (x) dx
which completes the proof of the equality (4.45).

A priori estimates

We establish here a priori estimates on the solution n(t, x) provided by (4.44).

The bound in L

∞ ([0, T ]; W 1,∞ (R 2 )) Lemma 4.5.1
Let n(t, x) be a solution of (4.42) given by (4.44). Then we have

sup t∈[0,T ] ∥n(t)∥ L ∞ (R 2 ) ≤ C(B, B 0 )∥n in ∥ L ∞ (R 2 ) (4.48) sup t∈[0,T ] ∥∇n(t)∥ L ∞ (R 2 ) ≤ C(σ, q, m, n in , T, B, B 0 )(1 + exp t 0 ∥E(s, •)∥ W 1,∞ (R 2 ) ds ). (4.49) 
Proof.

The bound (4.48) is obviously from the formula (4.44) and the hypothesis of the magnetic field. For the estimate (4.49), taking the derivative with respect to x in (4.44), we have

∇ x n(t, x) = t (∂ x X) (0; t, x) ∇n in (X (0; t, x)) B (X (0; t, x)) - n in (X (0; t, x)) ∇B (X (0; t, x)) B 2 (X (0; t, x)) B (x) + ∇B(x) n in (X (0; t, x)) B (X (0; t, x)) (4.50) 
which implies that

|∇n(t, x)| ≤ C(n in , B, B 0 )(1 + | (∂ x X) (0; t, x) |) (4.51) 
where C(n in , B, B 0 ) is the constant depending on n in , B, B 0 . Then we have to estimate the derivative of (∂ x X)(0; t, x). Taking the derivative with respect to x in (4.43), we deduce that

d dt (∂ x X) (t) = ∂ x ⊥ E (t, X (t)) ∂ x X (t) B (X (t)) - ⊥ E (t, X (t)) ⊗ (∇B) (X (t)) ∂ x X (t) B(X (t)) 2 + σ ⊥ ∇ω c (X (t)) ⊗ (∇ω c ) (X (t)) ∂ x X (t) ω c (X (t)) 3 -σ ∂ x ⊥ ∇ω c (X (t)) ∂ x X (t) ω c (X (t)) 2
and after integrating in time between s and t we find

|(∂ x X)(t)| ≤ 1 + t s (∥E(τ, •)∥ W 1,∞ (R 2 ) + C(σ, q, m, B, B 0 ))|(∂ x X)(τ )|dτ
where we have written X(t) instead of X(t; s, x) for simplicity, and C(σ, q, m, B, B 0 ) stands for the constant depending only on σ, q, m, B, B 0 . Thanks to Gronwall's inequality we deduce that

|(∂ x X)(t; s, x)| ≤ C(σ, q, m, T, B, B 0 ) exp t s ∥E(τ, •)∥ W 1,∞ (R 2 ) dτ . (4.52) 
Therefore, substituting (4.52) into (4.51) we get

|∇n(t, x)| ≤ C(σ, q, m, n in , T, B, B 0 )(1 + exp t 0 ∥E(s, •)∥ W 1,∞ (R 2 ) ds )
which yields the desired estimate.

The bound in L

∞ ([0, T ]; W 1,1 (R 2 )) Lemma 4.5.2
Let n(t, x) be a solution of (4.42) given by (4.44). Then we have

∥n(t)∥ L 1 (R 2 ) = ∥n in ∥ L 1 (R 2 ) , t ∈ [0, T ] (4.53) sup t∈[0,T ] ∥∇n(t)∥ L 1 (R 2 ) ≤ C(σ, q, m, T, B, B 0 )(1 + ∥E∥ L ∞ ([0,T ];W 1,∞ (R 2 )) )∥n in ∥ W 1,1 (R 2 ) . (4.54) 
Proof.

(4.53) is clearly. For the estimate (4.54), taking the absolute value on both sides in (4.50) then integrating with respect to x and changing the variable x to X(t; 0, x), we get

R 2 |∇n(t, x)| dx ≤ R 2 |(∂ x X)(0; t, •)| |∇n in (x)| + |∇B(x)| B(x) n in(x) dx + R 2 |∇B(X(t; 0, x))| B(X(t; 0, x)) n in (x) dx which implies that R 2 |∇n(t, x)| dx ≤ ( sup t∈[0,T ] |∂ x X(0; t, •)| + C(B, B 0 ))∥n in ∥ W 1,1 (R 2 ) .
Using the inequality (4.52) we get the estimate (4.54).

Global existence of smooth solutions

We define the following set of the electric vector field

Σ = E ∈ L ∞ [0, T ]; W 1,∞ R 2 2 : ∥E(t)∥ L ∞ t,x ≤ M, ∥∂ x E (t)∥ L ∞ x ≤ α (t) , t ∈ [0, T ]
where the constant M > 0 and the function α(t) : [0, T ] → R + will be determined later. Given an electric field E in Σ. Considering the characteristic solution of (4.42) on R 2 , corresponding to the electric field E, denoted by n E which is given by the formula (4.44). We then construct the following map F on Σ, whose fixed point gives the solution of the system (4.42), (4.40), (4.41)

E → F (E) (x) = - q 2πε 0 (∇ ln | • |) * x n E -D (x). (4.55) 
We will show that the map F is left invariant on the set Σ for a convenient choice of the positive constant M and the function α(t), then we want to establish an estimate like

∥F (E) -F( Ẽ)(t)∥ L ∞ (R 2 ) ≤ C T T 0 ∥(E -Ẽ)(t)∥ L ∞ (R 2 ) dt, ∀t ∈ [0, T ] (4.56) 
for some constant C T , not depending on E, Ẽ. After that, the existence of the solution of the system (4.42), (4.40), (4.41) immediately, based on the construction of an iterative method for F. Before starting, let us recall the following classical inequality Lemma 4.5.3 Let ρ(x) be a function which belongs to

L 1 (R 2 ) ∩ W 1,∞ (R 2 ) and let E(x) such that E(x) = R 2
x -y |x -y| 2 ρ(y)dy.

Then we have the following estimates

∥E∥ L ∞ (R 2 ) ≤ C∥ρ∥ 1/2 L 1 (R 2 ) ∥ρ∥ 1/2 L ∞ (R 2 ) , (4.57) 
∥∇ x E∥ L ∞ (R 2 ) ≤ C(1 + ∥ρ∥ L ∞ (R 2 ) (1 + ln + ∥∇ x ρ∥ L ∞ (R 2 ) ) + ∥ρ∥ L 1 (R 2 ) ) (4.58) 
here the notation ln + stands for the positive part of ln.

Lemma 4.5.4

There exists a positive constant M and a function α(t) such that F(Σ) ⊂ Σ.

Proof.

Let E ∈ Σ. Thanks to (4.57), (4.48) and (4.53) we have

∥F(E)(t, •)∥ L ∞ (R 2 ) ≤ C(q, ε 0 , B, B 0 ) ∥n in ∥ L 1 (R 2 ) + ∥D∥ L 1 (R 2 ) 1/2 ∥n in ∥ L ∞ (R 2 ) + ∥D∥ L ∞ (R 2 ) 1/2 .
We choose here the constant M in the set Σ given by

M = C(q, ε 0 , B, B 0 ) ∥n in ∥ L 1 (R 2 ) + ∥D∥ L 1 (R 2 ) 1/2 ∥n in ∥ L ∞ (R 2 ) + ∥D∥ L ∞ (R 2 ) 1/2 hence we have sup t∈[0,T ] ∥F(E)(t, •)∥ L ∞ (R 2 ) ≤ M , for any E ∈ Σ. We estimate now ∥∂F(E)(t, •)∥ L ∞ (R 2 )
. Thanks to (4.58), (4.48) and (4.53) we obtain

∥∂F(E)(t, •)∥ L ∞ (R 2 ) ≤ C 0 (1 + ln + (∥∇n(t)∥ L ∞ (R 2 ) + ∥∇D∥ L ∞ (R 2 ) ))
where

C 0 = C(n in , D, B, B 0 ) which leads to estimate ln + (∥∇n(t)∥ L ∞ (R 2 ) +∥∇D∥ L ∞ (R 2 ) ).
By inequality (4.49), we have

∥∇n(t)∥ L ∞ (R 2 ) ≤ C(σ, q, m, n in , T, B, B 0 )(1 + exp t 0 ∥∂ x E(s, •)∥ L ∞ (R 2 ) ds )
which yields

∥∇n(t)∥ L ∞ (R 2 ) + ∥∇D∥ L ∞ (R 2 ) ≤ C 1 (1 + t 0 ∥∂ x E(s, •)∥ L ∞ (R 2 ) ds)
where C 1 = C(σ, q, m, n in , D, T, B, B 0 ). Using the standard inequality 1 + e x ≤ e x+1 holds for any x ≥ 0, we deduce that

ln + (∥∇n(t)∥ L ∞ (R 2 ) + ∥∇D∥ L ∞ (R 2 ) ) ≤ (ln + C 1 + 1) + t 0 ∥∂ x E(s, •)∥ L ∞ (R 2 ) ds.
Finally, denoting by

C 2 = ln + C 1 + 1 we have ∥∂F(E)(t, •)∥ L ∞ (R 2 ) ≤ C 0 C 2 + C 0 t 0 ∥∂ x E(s, •)∥ L ∞ (R 2 ) ds.
Denote by α(t) the solution on [0, T ] of the linear equation dα/dt = C 0 α(t) with the initial condition α(0) = C 0 C 2 . We choose here the function

α(t) = C 0 C 2 e C 0 t in the set Σ, then we have ∥∂F(E)(t, •)∥ L ∞ (R 2 ) ≤ α(t), t ∈ [0, T ] for any E ∈ Σ.
Now we will establish the inequality (4.56). Let us consider E, Ẽ ∈ Σ and denote by n E , ñ Ẽ the characteristics solutions of (4.42) and (4.43) corresponding to the electric fields E, Ẽ respectively. It is easily seen by (4.57) that

∥F (E) -F( Ẽ)(t)∥ L ∞ (R 2 ) ≤ C T t 0 ∥n E (s) - ñ Ẽ (s)∥ 1/2 L ∞ (R 2 ) ∥n E (s) - ñ Ẽ (s)∥ 1/2 L 1 (R 2 ) ds (4.59
) where C T is the positive constant, not depending on E, Ẽ. Then, the inequality (4.56) is derived from the inequality (4.59) and Lemmas 4.5.5 and 4.5.6 below.

Lemma 4.5.5

We have

∥n E - ñ Ẽ ∥ L ∞ (R 2 ) ≤ C T t 0 ∥E(s, •) -Ẽ(s, •)∥ L ∞ (R 2 ) ds
for some constant C T > 0, not depending on E, Ẽ.

Proof.

Let us denote X E , X Ẽ the characteristic solutions of (4.43) corresponding to E, Ẽ respectively. Thanks to the formula (4.44) we have

|n E (t, x) - ñ Ẽ (t, x)| ≤ |B(x)| n in (X E (0; t, x)) -n in (X Ẽ (0; t, x)) B(X E (0; t, x)) + |B(x)|n in (X Ẽ (0; t, x)) 1 B(X E (0; t, x)) - 1 B(X Ẽ (0; t, x))
which implies that

|n E (t, x) - ñ Ẽ (t, x)| ≤ C(n in , B, B 0 )|X E (0; t, x) -X Ẽ (0; t, x)| (4.60)
On the other hand, from the characteristic equation (4.43) we deduce that

d dt X E -X Ẽ (t; s, x) = ⊥ E t, X E (t; s, x) B (X E (t; s, x)) - ⊥ Ẽ(t, X Ẽ (t; s, x)) B(X Ẽ (t; s, x)) -σ ⊥ ∇ω c X E (t; s, x) ω 2 c (X E (t; s, x)) + σ ⊥ ∇ω c (X Ẽ (t; s, x)) ω 2 c (X Ẽ (t; s, x)) , (X E -X Ẽ ) (s; s, x) = 0.
The first term on the right-hand side of the previous equality can be estimated by

⊥ E t, X E (t) B (X E (t)) - ⊥ Ẽ(t, X Ẽ (t)) B(X Ẽ (t)) ≤ ⊥ E(t, X E (t)) -⊥ Ẽ(t, X E (t)) B(X E (t)) + ⊥ Ẽ(t, X E (t)) -⊥ Ẽ t, X Ẽ (t) B (X E (t)) + ⊥ Ẽ(t, X Ẽ (t)) 1 B(X E (t)) - 1 B(X Ẽ (t)) ≤ ∥E(t) -Ẽ(t)∥ L ∞ (R 2 ) B 0 + C(B, B 0 , M ) XE (t) - X Ẽ (t) ,
since Ẽ ∈ Σ while the second term can be bounded by

⊥ ∇ω c X E (t) ω 2 c (X E (t)) - ⊥ ∇ω c X Ẽ (t) ω 2 c X Ẽ (t) ≤ ∇ω c X E (t) -∇ω c X Ẽ (t) ω 2 c (X E (t)) + ∇ω c X Ẽ (t)   1 ω 2 c (X E (t)) - 1 ω 2 c X Ẽ (t)   ≤ ∂ 2 x ω c L ∞ (R 2 ) + 2∥∇ω c ∥ ∞ ∥ω c ∥ 3 ∞ X E (t) -X Ẽ (t)
where we denote (X E (t), X Ẽ (t)) = (X E (t; s, x), X Ẽ (t; s, x)). Integrating between s and t together with previous estimates we find

X E (t) -X Ẽ (t) ≤ t s 1 B 0 E (τ ) -Ẽ (τ ) L ∞ (R 2 ) dτ +C (σ, B, B 0 , M ) t s X E (τ ) -X Ẽ (τ ) dτ.
Thanks to Gronwall's inequality one gets

X E (t; s, x) -X Ẽ (t; s, x) ≤ e C(σ,B,B 0 ,M )|t-s| 1 B 0 t s E (τ ) -Ẽ (τ ) L ∞ dτ
which together with (4.60) yields the desired estimate of the lemma.

Lemma 4.5.6

We have

∥n E - ñ Ẽ ∥ L 1 (R 2 ) ≤ C T t 0 ∥E(s, •) -Ẽ(s, •)∥ L 1 (R 2 ) ds
for some constant C T > 0, not depending on E, Ẽ.

Proof.

Since n E , ñ Ẽ are solutions of (4.42) corresponding to E, Ẽ thus we deduce that

∂ t n E -n Ẽ + B ⊥ E B -σ ⊥ ∇ω c ω 2 c • ∇ x n E -n Ẽ B + ⊥ E -⊥ Ẽ • ∇ x n Ẽ B = 0, n E -n Ẽ (0, x) = 0.
Multiplying this equation by sign(n E -n Ẽ ) and then integrating with respect to x we find

d dt R 2 n E (t) -n Ẽ (t) dx + R 2 B ⊥ E B - ⊥ ∇ω c ω 2 c • ∇ x n E -n Ẽ B dx + R 2 sign n E -n Ẽ ⊥ E -⊥ Ẽ • ∇ x n Ẽ B dx = 0. (4.61) 
Thanks to Lemma 4.5.2 we deduce that n E , ñ Ẽ ∈ W 1,1 (R 2 ) a.e t ∈ [0, T ] and since

div x B ⊥ E B - ⊥ ∇ωc ω 2 c
= 0 so by the divergence theorem, we obtain that

R 2 B ⊥ E B - ⊥ ∇ω c ω 2 c • ∇ x n E -n Ẽ B dx = 0.
Then, from (4.61) we imply

d dt R 2 n E (t) -n Ẽ (t) dx ≤ C(B, B 0 )∥E(t, •) -Ẽ(t, •)∥ L ∞ (R 2 ) ∥n Ẽ (t, •)∥ W 1,1 (R 2 ) .
Integrating between 0 and t of this inequality leads to

∥n E (t) - ñ Ẽ (t)∥ L 1 (R 2 ) ≤ C(B, B 0 ) sup t∈[0,T ] ∥n Ẽ (t, •)∥ W 1,1 (R 2 ) t 0 ∥E(s, •) -Ẽ(s, •)∥ L ∞ (R 2 ) ds.
Finally, by estimate (4.54) we get

n E (t) -n Ẽ (t) L 1 (R 2 ) ≤ C T t 0 ∥E (s) -Ẽ (s)∥ L ∞ (R 2 ) ds, ∀t ∈ [0, T ]
for some constant C T > 0, not depending on E, Ẽ. Now, we shall prove that the sequence of an iterative method by map F converges to a solution to the original problem. First, we consider E 0 = 0, then we put

E 1 = F(E 0 ), ..., E k+1 = F(E k ) for each k ∈ N. Applying (4.56) we have ∥E k+1 (t) -E k (t)∥ L ∞ (R 2 ) ≤ (C T ) k t k k! ∥E 1 (t) -E 0 (t)∥ L ∞ (R 2 )
which yields that there exists

E ∈ L ∞ ([0, T ]×R 2 ) such that E k tends to E in L ∞ ([0, T ]× R 2
). Moreover, since E k ∈ Σ hence we also have E ∈ Σ. This allows us to define the action of the map F on the vector field E as

F(E) = - q 2πϵ 0 ∇ ln | • | * n E -D
where n E is the solution of (4.42) associated with the electric field E. Using again (4.56) we find

∥E k+1 (t) -F(E) (t)∥ L ∞ (R 2 ) = ∥F(E k )(t)-F(E)(t)∥ L ∞ (R 2 ) ≤ C T ∥E k (t) -E (t)∥ L ∞ (R 2 )
which leads to

E k+1 → F(E) in L ∞ ([0, T ] × R 2 ) as k → ∞.
Therefore we get F(E) = E and n E is the solution of (4.39), (4.40), (4.41). Moreover, by Lemmas 4.5.1, 4.5.2 we conclude that

n E ∈ L ∞ ([0, T ]; W 1,∞ (R 2 ) ∩ W 1,1 (R 2 )). Hence, from (4.42), ∂ t n E ∈ L ∞ ([0, T ]; L 1 (R 2 ) ∩ L ∞ (R 2 )). Thanks to Lemma 4.5.3, we have ∂ t E ∈ L ∞ ([0, T ] × R 2 ), thus E ∈ W 1,∞ ([0, T ] × R 2 ). It remains to verify that the elec- tric field E lies in L ∞ ([0, T ]; L 2 (R 2 )). Applying Lemma 4.2.8, we need to show that |x|n ∈ L ∞ ([0, T ]; L 1 (R 2 )
). Indeed, by (4.44) and the change of variable x → X(t; 0, x) we have

R 2 |x||n(t, x)| dx = R 2 |X(t; 0, x)|n in (x) dx.
On the other hand, from (4.43) we deduce for any t ∈ [0, T ] that

|X(t; 0, x)| ≤ |x| + C(E, B 0 , B)T together with (1 + |x|)n in ∈ L 1 (R 2
) yields the desired result.

Uniqueness of smooth solutions

The uniquenness of smooth solution n(t, x) which belongs to

L ∞ ([0, T ], W 1,1 (R 2 ) ∩ W 1,∞ (R 2 )
) is immediately derived from the inequality (4.56) and Gronwall's inequality.

Based on the previous details of the arguments we establish the following result.

Proposition 4.5.1 Let T > 0. Let B ∈ C 2 b (R 2 ) be a smooth magnetic field, such that inf x∈R 2 B(x) = B 0 > 0 and the fixed background density D verifies |x|D ∈ L 1 (R 2 ), D ∈ W 1,1 (R 2 ) ∩ W 1,∞ (R 2 ).
Assume that the initial condition n in satisfies the hypotheses H4, H5. There is a unique smooth solution n(t, x) on [0, T ] × R 2 × R 2 of the limit model (4.39), (4.40), (4.41). The solution satisfies

n ≥ 0, R 2 n(t, x) dx = R 2 D(x) dx, t ∈ [0, T ] n ∈ W 1,∞ ([0, T ]; L 1 (R 2 )) ∩ W 1,∞ ([0, T ] × R 2 ), |x|n ∈ L ∞ ([0, T ]; L 1 (R 2 )) E[n] ∈ W 1,∞ ([0, T ] × R 2 ), E[n] ∈ L ∞ ([0, T ]; L 2 (R 2 )).

Remark 4.5.1

From the estimates (4.49), (4.58), and (4.51) we realize that there is a relation in the L ∞ -norm between the following quantities

∇ x n, ∂ x X, ∂ x E.
In the same way, we can extend this relation to the higher order

∂ 2 x n, ∂ 2 x X, ∂ 2 x E
by noting that the inequality (4.58) can apply to estimate ∂ 2 x E given by

∥∂ 2 x E∥ L ∞ (R 2 ) ≤ C(1 + ∥∇ρ∥ L ∞ (R 2 )(1 + ln + ∥∂ 2 x ρ∥ L ∞ (R 2 ) ) + ∥∇ρ∥ L 1 (R 2 ) ).
By similar arguments, we can prove further regularity results for the strong solution of the limit model. The proof is standard and is left to the reader.

Convergence results

We now concentrate on the asymptotic behavior as ε ↘ 0 of the family of weak solutions (f ε , E[f ε ]) ε>0 of the Vlasov-Poisson-Fokker-Planck system (4.4), (4.5), (4.6) and we establish rigorously the connection to the fluid model (4.7), (4.8), (4.9). We justify the convergence of the solutions (n[f ε ], E[f ε ]) ε>0 of the system (4.38) towards the solution (n, E[n]) of the limit problem when ε goes to zero by performing the balance of the relative entropy between n ε and n. The proof requires some regularity properties of the limit solutions as well as the convergence of the initial data. Let us recall the modulated energy between n ε and n

E[n ε (t)|n(t)] = σ R 2 nh n ε n dx + ε 0 2m R 2 |∇ x Φ[n ε ] -∇ x Φ[n]| 2 dx
where h : R + → R + is the convex function defined by h(s) = s ln s -s + 1, s ∈ R + . We intend to estimate the modulated energy E[n ε (t)|n(t)], so we will write as

E[n ε |n] = σ R 2 nh n ε n dx + ε 0 2m R 2 |∇ x Φ[n ε ] -∇ x Φ[n]| 2 dx (4.65) = R 2 (σn ε ln n ε + ε 0 2m |∇ x Φ[n ε ]| 2 ) dx - R 2 (σn ln n + ε 0 2m |∇ x Φ[n]| 2 ) dx - R 2 σ(1 + ln n) + q m Φ[n] (n ε -n) dx := E[n ε ] -E[n] - R 2 k[n](n ε -n) dx
where we have been denoted by k

[n] = σ(1 + ln n) + q m Φ[n].
We introduce as well the modulated energy of f ε with respect to n ε M , given by σ

R 2 R 2 n ε M h f ε n ε M dvdx + ε 0 2m R 2 |∇ x Φ[f ε ] -∇ x Φ[n ε M ]| 2 =0 dx = σ R 2 R 2 f ε ln f ε -f ε ln n ε + f ε ln(2πσ) + f ε |v| 2 2σ dvdx = R 2 R 2 σf ε ln f ε + f ε |v| 2 2 dvdx + ε 0 2m R 2 |∇ x Φ[f ε ]| 2 dx - R 2 σn ε ln n ε dx - ε 0 2m R 2 |∇ x Φ[n ε ]| 2 dx + σ ln(2πσ) R 2 R 2 f ε dvdx = E[f ε ] -E[n ε ] + σ ln(2πσ) R 2 R 2 f ε dvdx.
Thanks to the free energy balance and mass conservation of the equation (4.4) provided by Proposition 4.3.1 one gets

E[n ε (t)] -E[n ε (0)] + σ R 2 R 2 n ε (t)M h f ε (t) n ε (t)M dvdx (4.66) -σ R 2 R 2 n ε (0)M h f ε (0) n ε (0)M dvdx = - 1 ε t 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxds.
Thanks to Proposition 4.4.1 and together with (4.65), (4.66) leads to

E[n ε (t)|n(t)] + σ R 2 R 2 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 ε t 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxds = E[n ε (0)|n(0)] + σ R 2 R 2 n ε (0)M h f ε (0) n ε (0)M dvdx - t 0 d ds R 2 k[n](n ε -n) dxds. (4.67) 
The next task is to evaluate the time derivative of

-d dt R 2 k[n](n ε -n) dx.
To start establishing, let us rewrite the model (4.38) for the concentration n ε as follows

∂ t n ε + div x A[n ε ] = div x F ε (4.68) 
where the flux

A[n ε ] is defined by A[n ε ] = n ε ⊥ E ε B(x) -σ ⊥ ∇ωc(x) ω 2 c (x)
and

F ε = ε∂t ⊥ j[f ε ]+ ⊥ j[f ε ] ωc(x) + 1 ωc(x) ⊥ div x R 2 (v ⊗ v -σI 2 )f ε dv.
Similarly, the limit model (4.7) for the limit concentration n can be rewritten as

∂ t n + div x A[n] = 0 (4.69) with the flux A[n] = n ⊥ E B(x) -σ ⊥ ∇ωc(x) ω 2 c (x)
. By direct formal computations, we get

- d dt R 2 k[n](n ε -n) dx = - R 2 σ ∂ t n n + q m ∂ t Φ[n] (n ε -n) dx - R 2 k[n](∂ t n ε -∂ t n) dx = - R 2 ∂ t n σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx - R 2 ∇ x k[n] (A[n ε ] -A[n] -F ε ) dx.
We shall establish the previous equality for the weak solution of (4.68) and the strong solution of (4.69).

Lemma 4.6.1

With the notations in (4.68), (4.69) we have the equality

- d dt R 2 σ(1 + ln n)(n ε -n) dx = -σ R 2 (n ε -n)∂ t ln n dx - R 2 (A[n ε ] -A[n]) • [σ∇(1 + ln n)] dx + d dt R 2 ε ⊥ j ε ω c (x) • ∇[σ(1 + ln n)] dx - R 2 ε ⊥ j ε ω c (x) ∂ t ∇[σ(1 + ln n)] dx + R 2 ⊥ j ε ω c (x) • ∇[σ(1 + ln n)] dx + R 2 R 2 (v ⊗ v -σI 2 )f ε dv : ∂ x ⊥ ∇[σ(1 + ln n)] ω c (x) dx.

Proof.

From (4.68), (4.69), we find n ε -n satisfying the following equation in the sense of distribution

∂ t (n ε -n) + div x (A[n ε ] -A[n]) = div x F ε .
Then for any test function

φ ∈ C 1 0 [0, T [×R 2 we have T 0 R 2 (n ε -n)∂ t φ dxdt + T 0 R 2 (A[n ε ] -A[n]) • ∇ x φ dxdt + T 0 R 2 ε ⊥ j ε ω c (x) • ∂ t ∇ x φ dxdt - T 0 R 2 ⊥ j ε ω c (x) • ∇ x φ dxdt - T 0 R 2 R 2 (v ⊗ v -σI 2 ) f ε dv : ∂ x ⊥ ∇ x φ ω c (x) dxdt + R 2 ε ⊥ j ε in ω c (x) • ∇ x φ(0, x) dx + R 2 (n ε in -n in )φ(0, x) dx = 0. (4.70) 
We test φ R (t, x) = θ(t)[σ(1 + ln n(t, x))]χ R (x) where θ ∈ C 1 0 ([0, T [), χ was defined in Lemma 4.3.1. Notice that by Lemmas 4.5.7, and 4.5.8, and a standard computations, the following sequences are uniformly bounded with respect to R > 1 in L ∞ ([0, T ]×R 2 )

∂ t φ R = ∂ t θσ(1 + ln n)χ R (x) + θσ∂ t ln nχ R (x) ∇ x φ R = θ(t)σ∇ ln nχ R (x) + θ(t)σ(1 + ln n)χ ′ ( |x| R ) x R|x| ∂ t ∇ x φ R = ∂ t θσ∇ ln nχ R (x) + θσ∂ t ∇ ln nχ R (x) + ∂ t θσ(1 + ln n)χ ′ ( |x| R ) x R|x| + θ(t)σ∂ t ln nχ ′ ( |x| R ) x R|x| ∂ x (∇ x φ R ) = σθ(t)[∂ 2 x ln nχ R (x) + ∇ ln n ⊗ χ ′ ( |x| R ) x R|x| ] + σθ(t)[∇ ln nχ ′ ( |x| R ) x R|x| ] + σθ(t)[(1 + ln n)(χ ′′ ( |x| R ) x R|x| ⊗ x R|x| + χ ′ ( |x| R )( |x| 2 I 2 -x ⊗ x) R|x| 3 )].
On the other hand, for each ε > 0, using the properties on the solution i .e., taking into account that

(1 + |v| 2 )f ε ∈ L ∞ ([0, T ]; L 1 (R 2 )), E ε ∈ L ∞ ([0, T ] × R 2 )
, we can easily apply the dominated convergence as R → ∞. Passing to the limit as R → ∞, we get

for any test function θ ∈ C 1 0 ([0, T [) that T 0 R 2 (n ε -n)∂ t θ[σ(1 + ln n)] dxdt + σ T 0 R 2 (n ε -n)θ(t)∂ t ln n dxdt + T 0 R 2 (A[n ε ] -A[n]) • θ(t)∇[σ(1 + ln n)] dxdt + T 0 R 2 ε ⊥ j ε (t) ω c (x) • θ(t)∇[σ(1 + ln n)] dxdt + T 0 R 2 ε ⊥ j ε ω c (x) θ(t)∂ t ∇[σ(1 + ln n)] dxdt - T 0 R 2 ⊥ j ε ω c (x) • θ(t)∇[σ(1 + ln n)] dxdt - T 0 R 2 R 2 (v ⊗ v -σI 2 )f ε dv : ∂ x θ(t) ⊥ ∇[σ(1 + ln n)] ω c (x) dxdt + R 2 ε ⊥ j ε in ω c (x) • θ(0)∇ x (1 + ln n in ) dx + R 2 (n ε in -n in )θ(0)(1 + ln n in ) dx = 0
which implies the desired equality in Lemma.

Lemma 4.6.2

With the notations in (4.68), (4.69) we have the equality

- d dt R 2 q m Φ[n](n ε -n) dx = - R 2 (n ε -n) • q m ∂ t Φ[n] dx - R 2 (A[n ε ] -A[n]) • q m ∇ x Φ[n] dx + d dt R 2 ε ⊥ j ε ω c (x) • q m ∇ x Φ[n] dx - R 2 ε ⊥ j ε ω c (x) • ∂ t q m ∇ x Φ[n] dx + R 2 ⊥ j ε ω c (x) • q m ∇ x Φ[n] dx + R 2 R 2 (v ⊗ v -σI 2 )f ε dv : ∂ x   q m ⊥ ∇ x Φ[n] ω c (x)   dx.

Proof.

We test φ(t, x) = q m θ(t)Φ[n]χ R (x) in (4.70). Notice that by Proposition 4.5.2 we have

E[n] ∈ W 2,∞ ([0, T ] × R 2 ), which proves that E[n] is continuously differential with respect to (t, x). So we have Φ[n] ∈ C 2 ([0, T ] × R 2
). Then we use the same argument as Lemma 4.6.1 which yields the result of Lemma. Now we combine the Lemmas 4.6.1, 4.6.2 and futher computations, we get Proposition 4.6.1 With the notations in (4.68), (4.69), we have the evolution of the following equality

- d dt R 2 k[n](n ε -n) dx = R 2 ⊥ ∇ x k[n] B(x) • (n ε -n)(E ε -E[n]) dx + K(t, x)
where we denote by

K(t, x) = d dt R 2 ε ⊥ j ε ω c (x) • ∇ x k[n] dx - R 2 ε ⊥ j ε ω c (x) ∂ t ∇ x k[n] dx + R 2 ⊥ j ε ω c (x) • ∇ x k[n] dx + R 2 R 2 (v ⊗ v -σI 2 )f ε dv : ∂ x ⊥ ∇ x k[n] ω c (x) dx.

Proof.

First thanks to Lemma 4.2.8 and Poisson's equation, the first term on the right hand side in the equality of Lemma 4.6.2 can be written as

- R 2 (n ε -n) • q m ∂ t Φ[n] dx = - R 2 q m (Φ[n ε ] -Φ[n])∂ t n dx.
Then combine this equality and the remaining terms in the equation of Lemma 4.6.2 with the equation of Lemma 4.6.1 we obtain

- d dt R 2 k[n](n ε -n) dx = - R 2 ∂ t n σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx - R 2 ∇ x k[n] • (A[n ε ] -A[n]) dx + K(t, x).
Furthermore, using the equation (4.69), the first term in the previous equality can be written as

R 2 div x A[n] σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx = R 2 σdiv x ⊥ E[n] B(x) (n ε -n) dx + σ R 2 A[n] n • ∇ ln n(n ε -n) dx + R 2 A[n] • q m (E ε -E) dx = R 2 ∇ x k[n] • A[n] n (n ε -n) dx + R 2 A[n] • q m (E ε -E) dx Observer that A[n ε ] -A[n] - A[n] n (n ε -n) = n ε ⊥ E ε B(x) -σ ⊥ ∇ω c (x) ω 2 c (x) -n ⊥ E[n] B(x) -σ ⊥ ∇ω c (x) ω 2 c (x) - ⊥ E[n] B(x) -σ ⊥ ∇ω c (x) ω 2 c (x) (n ε -n) = n ε ⊥ (E ε -E) B(x)
and the divergence of the flux A[n] in (4.69) can be written as

div x A[n] = -div x n ω c (x) ⊥ ∇ x k[n] 203 Therefore we get - R 2 ∂ t n σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx - R 2 ∇ x k[n] • (A[n ε ] -A[n]) dx = - R 2 ∇ x k[n] • n ε ⊥ (E[n ε ] -E) B(x) dx + R 2 A[n] • q m (E[n ε ] -E) dx = R 2 ⊥ ∇ x k[n] • n ε (E[n ε ] -E) B(x) dx - R 2 ⊥ ∇ x k[n] • n (E[n ε ] -E) B(x) dx = R 2 ⊥ ∇ x k[n] B(x) • (n ε -n)(E[n ε ] -E[n]) dx.
So, Proposition 4.6.1 is proved.

Coming back to (4.67), the modulated energy balance becomes

E[n ε (t)|n(t)] + σ R 2 R 2 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 ε t 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxds = E[n ε (0)|n(0)] + σ R 2 R 2 n ε (0)M h f ε (0) n ε (0)M dvdx + t 0 R 2 ⊥ ∇ x k[n] B(x) • (n ε -n)(E[n ε ] -E[n]) dxds + t 0 K (s, x)ds (4.71) 
where

t 0 K(s, x)ds = t 0 d ds R 2 ε ⊥ j ε ω c (x) • ∇ x k[n] dxds - t 0 R 2 ε ⊥ j ε ω c (x) ∂ s ∇ x k[n(s)] dxds + t 0 R 2 ⊥ j ε ω c (x) • ∇ x k[n] dxds + t 0 R 2 R 2 (v ⊗ v -σI 2 )f ε dv : ∂ x ⊥ ∇ x k[n] ω c (x) dxds := K 1 + K 2 + K 3 + K 4 .
In order to apply Gronwall's lemma, we will estimate the integrals in the last line of (4.71). Thanks to the formula

(n ε -n)(E[n ε ] -E[n]) = ε 0 q [div x (E[n ε ] -E[n])](E[n ε ] -E[n]) = ε 0 q div x (E[n ε ] -E[n]) ⊗ (E[n ε ] -E[n]) - |E[n ε ] -E[n]| 2 2 I 2 204 we obtain R 2 ⊥ ∇ x k[n] B(x) • (n ε -n)(E[n ε ] -E[n]) dx = ε 0 q R 2 (E[n ε ] -E[n]) ⊗ (E[n ε ] -E[n]) - |E[n ε ] -E[n]| 2 2 I 2 : ∂ x ⊥ ∇ x k[n] B(x) dx ≤ ε 0 m ∂ x ⊥ ∇ x k[n] ω c (x) L ∞ (R 2 ) 1 + √ 2 2 R 2 |E[n ε ] -E[n]| 2 dx
where for any matrix P ∈ M 2,2 (R), the notation ∥P ∥ stands for (P : P ) 1/2 . Next, we shall estimate the integrals K i , for i = 1, ..., 4, thanks to Remark 4.5.2. For K 1 , we have

K 1 = ε R 2 ⊥ j ε (t, x) ω c (x) • ∇ x k[n(t)] dx -ε R 2 ⊥ j ε (0, x) ω c (x) • ∇ x k[n(0)] dx ≤ √ ε R 2 R 2 (f ε (t, x, v) + f ε (0, x, v)) ε |v| 2 2 + ∥∇k[n]∥ L ∞ 2 dvdx.
For K 2 , an elementary estimate yields

K 2 ≤ m qB 0 ∥∂ s ∇k[n]∥ L ∞ (R 2 ) ε t 0 R 2 R 2 |v| 2 2 + 1 2 f ε (s, x, v) dvdxds. For K 3 , since j ε = R 2 (σ∇ v f ε + vf ε ) dv we have K 3 = - t 0 R 2 R 2 (σ∇ v f ε + vf ε ) • ⊥ ∇ x k[n] ω c (x) dvdxds ≤ 1 4ε t 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxds + m qB 0 ∥∇k[n]∥ L ∞ ε t 0 R 2 R 2 f ε dvdxds. For K 4 , since R d (v ⊗ v -σI 2 )f ε dv = R d (vf ε + σ∇ v f ε ) ⊗ v dv = R d (vf ε + σ∇ v f ε ) √ εf ε ⊗ v εf ε dv we have K 4 ≤ 1 4ε t 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxds + ∂ x ⊥ ∇ x k[n] ω c (x) L ∞ (R 2 ) ε t 0 R 2 R 2 |v| 2 f ε dvdxds.
Plugging the above computations in the equality (4.71), the modulated energy balance becomes for

0 ≤ t ≤ T E[n ε (t)|n(t)] + σ R 2 R 2 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 4ε t 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxds ≤ E[n ε (0)|n(0)] + σ R 2 R 2 n ε (0)M h f ε (0) n ε (0)M dvdx + ∂ x ⊥ ∇ x k[n] ω c (x) L ∞ (R 2 ) 2 + √ 2 ε 0 2m R 2 |E[n ε ] -E[n]| 2 dx + m 2qB 0 ∥∂ s ∇k[n]∥ L ∞ (R 2 ) + ∂ x ⊥ ∇ x k[n] ω c (x) L ∞ (R 2 ) ε T 0 R 2 R 2 |v| 2 f ε dvdxdt + √ ε sup t∈[0,T ] ε R 2 R 2 |v| 2 f ε dvdx + √ ε ∥∇k[n]∥ L ∞ + √ ε T m 2qB 0 ∥∂ s ∇k[n]∥ L ∞ + √ ε T m qB 0 ∥∇k[n]∥ L ∞ R 2 R 2 f ε (0, x, v) dvdx.
Thanks to Lemma 4.3.5 and (4.65) for some constant

C T , 0 ≤ t ≤ T , 0 < ε < 1 we obtain E[n ε (t)|n(t)] + σ R 2 R 2 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 4ε t 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxds ≤ E[n ε (0)|n(0)] + σ R 2 R 2 n ε (0)M h f ε (0) n ε (0)M dvdx + C T t 0 E[n ε (s)|n(s)]ds + C T √ ε.
Applying Gronwall's lemma, we deduce that for 0 ≤ t ≤ T , 0 < ε < 1

E[n ε (t)|n(t)] + σ R 2 R 2 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 4ε t 0 R 2 R 2 |σ∇ v f ε + vf ε | 2 f ε dvdxds ≤ E[n ε (0)|n(0)] + σ R 2 R 2 n ε (0)M h f ε (0) n ε (0)M dvdx + C T √ ε e C T t .
The above inequality says that the particle density f ε remains close to the Maxwellian with the same concentration, i .e., n ε (t)M , and n ε (t) stays near n(t), provided that analogous behavior occurs for the initial conditions. Therefore, we are ready to prove our main theorem.

Proof. (of Theorem 4.1.1)

We justify the convergence of

f ε toward nM in L ∞ (]0, T [; L 1 (R 2 × R 2 )
), the other convergences being obvious. We use the Csisár -Kullback inequality in order to control the L 1 norm by the relative entropy, cf. [64, 102]

R n |g -g 0 |dx ≤ 2 max R n g 0 dx 1/2 , R n gdx 1/2 R n g 0 h g g 0 dx 1/2
for any non negative integrable functions g 0 , g : R n → R. Applying two times the

R 2 R 2 |f ε (t, x, v) -n(t, x)M (v)| dvdx ≤ R 2 R 2 |f ε (t, x, v) -n ε (t, x)M (v)| dvdx + R 2 |n ε (t, x) -n(t, x)| dx ≤ 2 M ε in n ε (t)M (v)h f ε (t) n ε (t)M 1/2 + 2 max M in , ∥n in ∥ L 1 (R 2 ) R 2 n(t)h n ε (t) n(t) dx 1/2
→ 0, as ε ↘ 0.

Appendix

The linear Vlasov-Fokker-Planck equation with external magnetic field

This appendix is devoted to provide a rigorous proof of Theorem 4.2.1. The results on the existence and uniqueness of solutions are deeply inspired by those given by Degond in [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF]. We recall the linear VFP system in dimension d = 2 with the external magnetic field B(x)

∂ t f + v • ∇ x f + E(x) • ∇ v f + B(x) ⊥ v • ∇ v f = div v (σ∇ v f + vf ), (t, x, v) ∈ [0, T ] × R 2 × R 2 f (0, x, v) = f in (x, v). (4.72) 
Let us introduce the Hilbert space

H = L 2 ([0, T ] × R 2 x , H 1 (R 2 v )) = u ∈ L 2 ([0, T ] × R 2 × R 2 ) | ∇ v u ∈ L 2 ([0, T ] × R 2 × R 2 )
with norm ∥ • ∥ H and scalar product ⟨•, •⟩ H defined by

∥u∥ 2 H = T 0 R 2 R 2 |u| 2 dvdxdt + T 0 R 2 R 2 |∇ v u| 2 dvdxdt, u ∈ H, ⟨u, w⟩ H = T 0 R 2 R 2 uw dvdxdt + T 0 R 2 R 2 ∇ v u • ∇ v w dvdxdt, u, w ∈ H.
We also denote H ′ is the dual space of H which is given by

H ′ = L 2 ([0, T ]×R 2 x , H -1 (R 2 v )). The symbole ⟨•, •⟩ H ′ ,H
represents the dual relation between H and its dual. We first state a result on the existence and uniqueness of a weak solution of equation (4.72) in an L 2 setting, which can be rewritten in the following form

∂ t f + T f + E(x) • ∇ v f -2f -σ∆ v f = 0.
where T denotes the transport operator given by T and satisfying the initial condition in the sense of distribution.

= v • ∇ x + (B(x) ⊥ v -v) • ∇ v .
We first recall the theorem of Lions [START_REF] Lions | Equations differentielles operationnelles et problemes aux limites[END_REF], already used in [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF].

Theorem 4.7.1 Let E be a Hilbert space, provided with a norm ∥ • ∥ E and scalar product (, ). Let V be a subspace of E with a prehilbertian norm ∥ • ∥ V such that the injection V → H is continuous. We consider a bilinear form

E E : E × V → R (u, ϕ) → E(u, ϕ),
such that E(•, ϕ) is continuous on E, for any fixed ϕ ∈ V, and such that

|E(ϕ, ϕ)| ≥ α∥ϕ∥ 2 V , ϕ ∈ V, α > 0.
Then given a linear form L in V ′ , there exists a solution u in E of problem

E(u, ϕ) = L(ϕ), for any ϕ ∈ V.
Proof. (of Proposition 4.7.1)

We follow exactly the proof in [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF]. First make the change of unknown function f (t, x, v) = e -(λ+2)t f (t, x, e -t v), with any λ > 0 so that f satisfies the equation

∂ f ∂t + e -t v • ∇ x f + B(x) ⊥ v • ∇ v f + e t E(x) • ∇ v f + λ f -σe 2t ∆ v f = 0, f (0, x, v) = fin (x, v) = f in (x, v). (4.74) 
Now, let E be equal to the space H and let V be the space

C ∞ 0 ([0, T ) × R 2 × R 2 ).
V is equipped with a prehilbertian norm defined by

∥ϕ∥ 2 V = 1 2 R 2 R 2 |ϕ(0, x, v)| 2 dvdx + ∥ϕ∥ 2 H , ϕ ∈ V.
A weak solution of equation (4.74) in the distribution sense is a function f ∈ H such that

T 0 R 2 R 2 f -∂ t ϕ -e -t v • ∇ x ϕ -B(x) ⊥ v • ∇ v ϕ + λϕ dvdxdt + T 0 R 2 R 2 ∇ v f • e t E(x)ϕ + σe 2t ∇ v ϕ dvdxdt = R 2 R 2 fin (x, v)ϕ(0, x, v) dvdx (4.75)
for any ϕ ∈ V. We consider the following bilinear form E as the left-hand side of the variational equation (4.75) defined by

E( f , ϕ) = T 0 R 2 R 2 f -∂ t ϕ -e -t v • ∇ x ϕ -B(x) ⊥ v • ∇ v ϕ + λϕ dvdxdt + T 0 R 2 R 2 ∇ v f • e t E(x)ϕ + σe 2t ∇ v ϕ dvdxdt
and the linear form

L(ϕ) = R 2 R 2 fin (x, v)ϕ(0, x, v) dvdx.
Now, let us check E satisfies the properties stated in Theorem 4.7.1. It is easily seen that E(•, ϕ) est continue sur

H since E ∈ (L ∞ (R 2 )) 2 .
It remains to show that E is coercivity on V × V. Indeed, for any ϕ ∈ V we have

E(ϕ, ϕ) = T 0 R 2 R 2 ϕ -∂ t ϕ -e -t v • ∇ x ϕ -B(x) ⊥ v • ∇ v ϕ + λϕ dvdxdt + T 0 R 2 R 2 ∇ v ϕ • e t E(x)ϕ + σe 2t ∇ v ϕ dvdxdt = 1 2 R 2 R 2 |ϕ(0, x, v)| 2 dvdx + λ T 0 R 2 R 2 |ϕ| 2 dvdxdt + σ T 0 R 2 R 2 e 2t |∇ v ϕ| 2 dvdxdt + 1 2 T 0 R 2 R 2 e t ∇ v |ϕ| 2 • E(x) dvdxdt = 1 2 R 2 R 2 |ϕ(0, x, v| 2 dvdx + σ T 0 R 2 R 2 e 2t |∇ v ϕ| 2 dvdxdt + λ T 0 R 2 R 2 |ϕ| 2 dvdxdt ≥ min (1, σ, λ) ∥ϕ 2 ∥ V .
Then Lion's Theorem 4.7.1 applies and we get that variational equation E( f , ϕ) = L(ϕ), for any ϕ ∈ V admits a solution f ∈ H. Moreover, f satisfies the equation (4.75) for any ϕ ∈ V, hence by using the function test φ = e (λ+d)t ϕ(t, x, e t v) we deduce that f (t, x, v) = e (λ+2)t f (t, x, e t v) is a weak solution of (4.72) in the sense of distribution. This gives that ∂f ∂t

+ T f = -E(x) • ∇ v f + 2f + σ∆ v f ∈ H ′ so that f belongs to Y.
We shall call the following Lemma to give a meaning to the initial condition, and also, to show the uniqueness. The proof is very close to the one of Lemma A.1 in [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF] and we have been left behind. This means that the linear map u → (u(0,

•, •), u(T, •, •)) is continuous from Y to L 2 (R 2 × R 2 ). 209 
2. For f and f in Y we have

∂ t f + T f, f H ′ ×H + ∂ t f + T f , f H ′ ×H = 2 T 0 R 2 R 2 f f dvdxdt + R 2 R 2 f (T, x, v) f (T, x, v) dvdx - R 2 R 2 f (0, x, v) f (0, x, v) dvdx (4.76)
where

T = v • ∇ x + (B(x) ⊥ v -v) • ∇ v . 3.
Similarly, for f and f in Y we have

∂ t f + T ′ f, f H ′ ×H + ∂ t f + T ′ f , f H ′ ×H = R 2 R 2 f (T, x, v) f (T, x, v) dvdx - R 2 R 2 f (0, x, v) f (0, x, v) dvdx (4.77)
where

T ′ = e -t v • ∇ x + B(x) ⊥ v • ∇ v .
Let us now end the proof of Proposition 4.7.1. Using formula (4.76) to the solution f of equation (4.72) and test function ϕ in V we have

⟨∂ t f + T f, ϕ⟩ H ′ ×H + ⟨∂ t ϕ + T ϕ, f ⟩ H ′ ×H (4.78) = 2 T 0 R 2 R 2 f ϕ dvdxdt - R 2 R 2 f (0, x, v)ϕ(0, x, v) dvdx.
As f is a solution of (4.72) in H ′ then we get

⟨∂ t f + T f, ϕ⟩ H ′ ×H = ⟨-E(x) • ∇ v f ϕ -(λ -2)f + σ∆ v f, ϕ⟩ H ′ ×H = - T 0 R 2 R 2 (E(x) • ∇ v f ϕ + (λ -2)f ϕ + σ∇ v f • ∇ v ϕ) dvdxdt.
Furthermore, f satisfies the variational equality E(f, ϕ) = L(ϕ) thus

⟨∂ t ϕ + T ϕ, f ⟩ H ′ ×H = T 0 R 2 R 2 λf ϕ + ∇ v f • (E(x)ϕ + σ∇ v ϕ) dvdxdt - R 2 R 2 f in (x, v)ϕ(0, x, v) dvdx.
Substituting into (4.78) which yields

R 2 R 2 (f (0, x, v) -f in (x, v))ϕ(0, x, v) dvdx = 0, ∀ϕ ∈ V.
Therefore, the initial condition is satisfied in L 2 (R 2 ). Now for uniqueness, we assume that f is a solution of (4.72) with f in = 0, which belongs to Y. Proceeding as in Proposition 4.7.1, we define the function f as f (t, x, v) = e -(λ+d)t f (t, x, e -t v) which verifies equation (4.74) with zero initial data. We apply the formula (4.77) to the solution f of equation (4.74) which gives

0 = ∂ t f + T ′ f , f H ′ ×H + e t E(x) • ∇ v f + λ f -σe 2t ∆ v f , f H ′ ×H = 1 2 R 2 R 2 | f (T, x, v)| 2 dvdx + λ T 0 R 2 R 2 | f | 2 dvdxdt + σ T 0 R 2 R 2 e 2t |∇ v f | 2 dvdxdt ≥ λ T 0 R 2 R 2 | f | 2 dvdxdt.
Therefore we get f = 0, which proves uniqueness.

Proof. (of Lemma 4.7.1)

Let us consider set Y of C ∞ functions of (x, t) in [0, T ] × R 2
x with values in H 1 (R 2 v ) which are compactly supported in [0, T ]×R 2 ×R 2 . Following the arguments in Lemma A.1 in [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF], we have that the set Y is dense on Y. Let us take u ∈ Y . Using a partition of unity we can assume, without loss of generality, that u vanishes on (0, x, v)

: (x, v) ∈ R 2 × R 2 or (T, x, v) : (x, v) ∈ R 2 × R 2 .
Assume that u does not vanish on (0, x, v) : (x, v) ∈ R 2 × R 2 . Thanks to Green's identity, we have

R 2 R 2 |u(0, x, v)| 2 dvdx = -2 T 0 R 2 R 2 u ∂ t + v • ∇ x + (B(x) ⊥ v -v) • ∇ v u dvdxdt + 2 T 0 R 2 R 2 |u| 2 dvdxdt ≤ 2 ∂ t + v • ∇ x + (B(x) ⊥ v -v) • ∇ v u H ′ + 2 ∥u∥ H ≤ C∥u∥ Y .
The rest of the lemma follows from straightforward arguments involving the density of Y in Y.

The following Proposition is devoted to a maximum principle and an L ∞ estimate. 

∥f (t)∥ L ∞ (R 2 ×R 2 ) ≤ e 2T ∥f in ∥ L ∞ (R 2 ×R 2 ) .
We start by giving the following Lemmas. The proof of these Lemmas are very close to those given by in [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF]. We leave it to the reader.

Lemma 4.7.2

Let f ∈ Y then f + and f -defined by

f + = max(f, 0) f -= max(-f, 0) belong to H and ∇ v f + = 1 + sign(f ) 2 ∇ v f, ∇ v f -= -1 + sign(f ) 2 ∇ v f
. Futhermore, we have

∂ t f + T ′ f, f - H ′ ×H = 1 2 R 2 R 2 f (T, x, v)f -(T, x, v) dvdx - R 2 R 2 f (0, x, v)f -(0, x, v) dvdx (4.79)
where

T ′ = e -t v • ∇ x + B(x) ⊥ v • ∇ v .
Similarly, we also have

∂ t f + T f, f - H ′ ×H = T 0 R 2 R 2 f f -dvdxdt + 1 2 R 2 R 2 f (T, x, v)f -(T, x, v) dvdx - R 2 R 2 f (0, x, v)f -(0, x, v) dvdx (4.80) où T = v • ∇ x + (B(x) ⊥ v -v) • ∇ v .
Lemma 4.7.3 Let V ⊂ H ⊂ V ′ be a canonical triple of Hilbert spaces. We suppose that the mapping 

u → u -is a contraction on V. Let u belong to L 2 ([0, T ]; V) ∩ C 0 ([0, T ]; H) such that du dt ∈ L 2 ([0, T ]; V ′ ). Then T 0 du dt , u - V ′ ×V dt = 1 2 |u -(0)| 2 H -|u -(T )| 2 H . ( 4 
∂ t f + T ′ f , f - H ′ ×H + e t E(x) • ∇ v f + λ f -σe 2t ∆ v f , f - H ′ ×H = 0.
Then we apply the formula (4.79) for the function f to compute

∂ t f + T ′ f , f - H ′ ×H .
Therefore we obtain

e t E(x) • ∇ v f + λ f -σe 2t ∆ v f , f - H ′ ×H = - 1 2 R 2 R 2 f (T, x, v) f -(T, x, v) dvdx - R 2 R 2 f (0, x, v) f -(0, x, v) dvdx ≥ 0 since f -(0, x, v) = f -(0, x, v) = 0. Moreover f = f + -f -and f ∈ H we have λ f , f - H ′ ×H = -λ f -, f - L 2 ×L 2 .
Thanks to Lemma 4.7.3 we deduce that

-σe 2t ∆ v f , f - H ′ ×H = -σ e 2t ∇ v f -, ∇ v f - L 2 ×L 2 ≤ 0, and E(x) • ∇ v f , f - H ′ ×H = -E(x) • ∇ v f -, f - L 2 ×L 2 = 0. Therefore, we get 0 ≤ -λ f -, f - L 2 ×L
2 which implies that f -= 0 a.e and f ≥ 0 a.e so f ≥ 0 a.e. Now we estimate the bound of L ∞ norm. First, making the change of unknown function w(t, x, v) = e -2t f (t, x, v) in the equation (4.72) we get

∂w ∂t + v • ∇ x w + (B(x) ⊥ v -v) • ∇ v w + E(x) • ∇ v w -σ∆ v w = 0, w 0 (x, v) = f in (x, v).
We will prove that ∥w

(t)∥ L ∞ ≤ ∥w 0 ∥ L ∞ . Putting w 1 (t, x, v) = K(w(t, x, v) -∥w 0 ∥ L ∞ ) where K is a function of class C 2 satisfying K(s) = 0, s ≤ 0, K is increasing, ∥K ′ ∥ L ∞ ≤ C, K ′′ ≥ 0.
We give an example on the function K as K(y) = y 0 g(s)ds with g(s) = e -1 s if s > 0 and g(s) = 0 if s ≤ 0. By the construction of K and w ∈ Y we deduce that w 1 ∈ H and

∂ t w 1 + T w 1 = K ′ (w(t) -∥w 0 ∥ ∞ )(∂ t w + T w) ∈ H ′ .
Multiplying the previous equation for w by K ′ (w(t, x, v) -∥w 0 ∥ L ∞ ) then w 1 belongs to Y and satisfies the following equation

∂ t w 1 + T w 1 + E(x) • ∇ v w 1 -σ∆ v w 1 + σ|∇ v w| 2 K ′′ (w -∥w 0 ∥ L ∞ ) = 0, w 1 (0) = K(w(0, x, v) -∥w 0 ∥ L ∞ ) = 0.
Therefore, w 1 satisfies the variational equation

∂ t w 1 + T w 1 , w + 1 H ′ ×H + E(x) • ∇ v w 1 -σ∆ v w 1 + σ|∇ v w| 2 K ′′ (w -∥w 0 ∥ L ∞ ), w + 1 H ′ ×H = 0.
Using (4.80) we have

∂ t w 1 + T w 1 , w + 1 H ′ ×H = T 0 R 2 R 2 w 1 w + 1 dvdxdt + 1 2 R 2 R 2 w 1 (T, x, v)w + 1 (T, x, v) dvdx - R 2 R 2 w 1 (0, x, v)w + 1 (0, x, v) dvdx = 1 2 2 T 0 R 2 R 2 |w + 1 | 2 dvdxdt + R 2 R 2 |w + 1 (T, x, v)| 2 dvdx - R 2 R 2 |w + 1 (0, x, v)| 2 dvdx ≥ T 0 R 2 R 2 |w + 1 | 2 dvdxdt car w + 1 (0, x, v) = w 1 (0) = 0.
For the other terms in the previous expression,

-σ∆ v w 1 , w + 1 H ′ ×H = σ ∇ v w + 1 , ∇ v w + 1 L 2 ×L 2 ,
and

E(x) • ∇ v w 1 , w + 1 H ′ ×H = E(x) • ∇ v w + 1 , w + 1 L 2 ×L 2 = 0. Therefore we deduce that T 0 R 2 R 2 |w + 1 | 2 dvdxdt + σ ∇ v w + 1 , ∇ v w + 1 L 2 ×L 2 ≤ 0 This implies that w + 1 = 0. Thus w 1 ≤ 0 which yields ∥w(t)∥ L ∞ ≤ ∥w 0 ∥ L ∞ .

Remark 4.7.1

If we add the source term U (t, x, v) in the right hand side of (4.72), that means

∂f ∂t + v • ∇ x f + (B(x) ⊥ v -v) • ∇ v f + E(x) • ∇ v f -2f -σ∆ v f = U, f (0, x, v) = f in (x, v)
and we assume that

U ∈ L 1 ([0, T ]; L ∞ (R 2 × R 2 )). Then we have ∥f (t)∥ L ∞ (R 2 ×R 2 ) ≤ e 2T ∥f in ∥ L ∞ (R 2 ×R 2 ) + T 0 ∥U (s)∥ L ∞ ds.
The following estimates relate to the L p estimate, the kinetic energy and the entropy of equation VFP (4.72). To establish these estimates, we make the change of unknown function w(t, x, v) = e -2t f (t, x, e -t v). Then w is the solution of the following equation 

   ∂w ∂t + e -t v • ∇ x w + B(x) ⊥ v • ∇ v w + e t E(x) • ∇ v w -σe 2t ∆ v w = 0 w 0 (x, v) = f in (x, v). ( 4 
∥f ∥ L ∞ (0,T ;L p (R 2 ×R 2 )) ≤ e p-1 p 2T ∥f in ∥ L p (R 2 ×R 2 ) , 1 ≤ p < ∞, (4.83) 
∥∇ v f p/2 ∥ L 2 (0,T ;L 2 (R 2 ×R 2 )) ≤ p 4(p -1)σ e (p-1)T ∥f in ∥ L p (R 2 ×R 2 ) , 1 < p < ∞. (4.84) 
Proof.

First we consider the case p = 2. Since w in H satisfies (4.82), we deduce that

∂ t w + T ′ w, w H ′ ×H = -e t E(x) • ∇ v w + σe 2t ∆ v w, w H ′ ×H .
Since w ∈ H the divergence theorem implies that the integral of -e t E(x) • ∇ v w vanishes on R 2 × R 2 . Then we apply (4.77) for ⟨∂ t w + T ′ w, w⟩ H ′ ×H to obtain

2 ∂ t w + T ′ w, w H ′ ×H = R 2 R 2 |w(T, x, v)| 2 | dvdx - R 2 R 2 |w(0, x, v)| 2 dvdx.
Therefore we get for any T > 0 that

R 2 R 2 |w(T, x, v)| 2 dvdx + 2σ T 0 R 2 R 2 e 2t |∇ v w| 2 dvdxdt = R 2 R 2 |w(0, x, v)| 2 dvdx
which yields the bounds of (4.83) and (4.84) when p = 2.

Next, we consider the case 1 ≤ p < ∞ and p ̸ = 2. We establish a class of function of approximation C 2 of px p-1 , x ≥ 0 (indeed, the function pw p-1 does not belong to H hence we can not define ∂ t w + T ′ w, pw p-1 H ′ ,H so we need to modify the function px p-1 ) verifies

(i) p = 1 : ψ ε (s) = 0 if s ≤ 0, ψ ε (s) = 1 if ε ≤ s and ψ ε (s) is increasing in [0, ε]. (ii) 1 < p < ∞, p ̸ = 2 : ψ ε (s) = 0 if s ≤ ε, ψ ε (s) = ps p-1 if ε ≤ s ≤ 1 ε and ψ ′ ε (s) = 0 on [1/ε, +∞).
It is easily seen that ψ ε ∈ C 2 with ψ ′ ε ∈ L ∞ (R) and ψ ε (0) = 0. Let φ ε (s) be a primitive of ψ ε (s) defined by φ ε (t) = t -∞ ψ ε (s)ds. Since w ∈ H we imply that ψ ε (w) and φ ε (w) belong to H and ∇ v φ ε (w) = ψ ε (w)∇ v w. Moreover, the function w in H satisfies (4.82), we deduce that

∂ t w + T ′ w, ψ ε (w) H ′ ×H + e t E(x) • ∇ v w -σe 2t ∆ v w, ψ ε (w) H ′ ×H = 0. (4.85)
where

T ′ w = e -t v • ∇ x w + B(x) ⊥ v • ∇ v w.
In the same way of Lemma 4.7.1 we also have

T ′ w, ψ ε (w) H ′ ×H = R 2 R 2 φ ε (w(T, x, v)) dvdx - R 2 R 2 φ ε (w(0, x, v)) dvdx.
Since w ∈ H the divergence theorem implies the integral of e t E(x) • ∇ v w vanish on

R 2 × R 2 . If p = 1,
we apply again the divergence theorem to -σe 2t ∆ v w, ψ ε (w) H ′ ×H we have

-σe 2t ∆ v w, ψ ε (w) H ′ ×H = σ T 0 R 2 R 2 e 2t |∇ v w| 2 ψ ′ ε (w) • 1 {0≤w≤ε} dvdxdt.
Then the equation (4.85) gives

R 2 R 2 φ ε (w(T, x, v)) dvdx + σ T 0 R 2 R 2 e 2t |∇ v w| 2 ψ ′ ε (w)1 {0≤w≤ε} dvdxdt = R 2 R 2 φ ε (w(0, x, v)) dvdx.
Since ψ ′ ε ≥ 0 and by using Fatou's Lemma and the dominated convergence theorem we get for any T > 0 that

∥w(T )∥ L 1 (R 2 ×R 2 ) = R 2 R 2 w(T, x, v) dvdx ≤ ∥w 0 ∥ L 1 (R 2 ×R 2 )
which yields (4.83) with p = 1. If 1 < p < ∞ and p ̸ = 2, by the construction of ψ ε we have

-σe 2t ∆ v w, ψ ε (w) H ′ ×H = σ T 0 R 2 R 2 e 2t |∇ v w| 2 ψ ′ ε (w) • 1 {ε≤w≤1/ε} dvdxdt = σp(p -1) T 0 R 2 R 2 e 2t |∇ v w| 2 w p-2 • 1 {ε≤w≤1/ε} dvdxdt = 4(p -1) p σ T 0 R 2 R 2 e 2t |∇ v w p/2 | 2 1 {ε≤w≤1/ε} dvdxdt.
Then the equation (4.85) becomes

R 2 R 2 φ ε (w(T, x, v)) dvdx + 4(p -1) p σ T 0 R 2 R 2 e 2t |∇ v w p/2 | 2 1 {ε≤w≤1/ε} dvdxdt = R 2 R 2 φ ε (u(0, x, v)) dvdx.
Using Fatou's Lemma and the dominated convergence theorem we get for any T > 0 that

∥w∥ p L ∞ ([0,T ];L p (R 2 ×R 2 )) + 4(p -1) p σ∥∇ v w p/2 ∥ 2 L 2 ([0,T ];L 2 (R 2 ×R 2 )) ≤ ∥w∥ p L ∞ ([0,T ];L p (R 2 ×R 2 ))
which yields the estimates of (4.83) and (4.84) when 1 < p < ∞ and p ̸ = 2.

Next we provide the estimates of the kinetic energy and the entropy. First we consider the truncation function χ(s) ∈ C ∞ 0 (R) such that

χ(s) = 1 if |s| ≤ 1, χ(s) = 0 if |s| ≥ 2, ∥χ∥ W 1,∞ (R) ≤ 1 and we define χ R (z) = χ |z| R , z ∈ R 2 , R > 0. We then consider a function of class C ∞ (R) ∩ L ∞ (R) satisfying ψ ε (s) = 0 if s ≤ 0, ψ ε (s) = 1 if s ≥ ε and ψ ε is increasing on [0, ε]. Let φ ε be a primitive of ψ ε as φ ε (t) = t -∞ ψ ε (s)ds. Proposition 4.7.4
Assume that the initial data f in is positive and

(1 + |v| 2 /2)f in ∈ L 1 (R 2 × R 2 )
. Then the solution of Proposition 4.7.1 satisfies

sup [0,T ] R 2 R 2 |v| 2 2 f (t) dvdx ≤ C 1 + C 2 R 2 R 2 |v| 2 2 f in dvdx
for some constants C 1 and C 2 , depending only on ∥E∥ L ∞ , f in , T, σ.

Proof.

Since w(t) = e -2t f (t, x, e -t v) in H satisfies the equation (4.82) we deduce for any function h ∈ H that the following variational equation

∂ t w + T ′ w, h H ′ ×H + e t E(x) • ∇ v w -σe 2t ∆ v w, h H ′ ×H = 0. (4.86) 
where

T ′ = e -t v • ∇ x w + B(x) ⊥ v • ∇ v . Taking in (4.86) the function h = χ R (v) |v| 2 2 ψ ε (w). It is easily seen that h ∈ H since the function χ R (v) |v| 2
2 ∈ L ∞ (R) and ψ(w) ∈ H by w ∈ H. In the same way as Lemma 4.7.1, we have the following formula

∂ t w + T ′ w, χ R (v) |v| 2 2 ψ ε (w) H ′ ×H = R 2 R 2 [φ ε (w(T, x, v)) -φ ε (w(0, x, v))] χ R (v) |v| 2 2 dvdx - T 0 R 2 R 2 B(x) ⊥ v • v |v| χ ′ v R |v| 2 2R 1 {|v|≤2R} + χ R (v)v φ ε (w) dvdxdt = R 2 R 2 [φ ε (w(T, x, v)) -φ ε (w(0, x, v))] χ R (v) |v| 2 2 dvdx.
Before estimating the other terms in (4.86) we need to observe that φ ε (w) = wΦ ε (w) with Φ ε (w) = 1 0 ψ ε (θw)dθ, which implies that

φ ε (w) = |φ ε (w)| ≤ w 1 0 |ψ ε (θw)|dθ ≤ w, ∀ε > 0.
Moreover, the solution w belongs to

L 1 ([0, T ]×R 2 ×R 2 ) beacause w ∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 
)). On the orther hand, since w ∈ H the divergence theorem implies that the term e t E(x) • ∇ v w, h H×H ′ can be estimated as

e t E(x) • ∇ v w, h H ′ ×H = - T 0 R 2 R 2 e t E(x)φ ε (w) • χ ′ |v| R v |v| |v| 2 2R 1 {|v|≤2R} + χ R (v)v dvdxdt ≤ ∥χ∥ W 1,∞ (R 2 ) ∥E∥ L ∞ e T T 0 R 2 R 2 w(t, x, v)|v| dvdxdt ≤ 1 2 C(∥E∥ L ∞ , T ) T 0 R 2 R 2 w dvdxdt + T 0 R 2 R 2 w|v| 2 dvdxdt .
It remains to estimate the contribution of -σe 2t ∆ v w, h H×H ′ in (4.86). Similarly, by applying the divergence theorem and by direct computations we get

-σe 2t ∆ v w, h H ′ ×H = σ T 0 R 2 R 2 e 2t |∇ v w| 2 ψ ′ ε (w)χ R (v) |v| 2 2 dvdxdt + σ T 0 R 2 R 2 e 2t ∇ v w • χ ′ |v| R v |v| |v| 2 2R 1 {|v|≤2R} + χ R v ψ ε (w) dvdxdt ≥ σ T 0 R 2 R 2 e 2t ∇ v w • χ ′ |v| R v |v| 2R 1 {|v|≤2R} + χ R v ψ ε (w) dvdxdt = σ T 0 R 2 R 2 e 2t ∇ v φ ε (w) • χ ′ |v| R v |v| 2R 1 {|v|≤2R} + χ R v dvdxdt = -σ T 0 R 2 R 2 e 2t φ ε (w) χ ′′ |v| R |v| 2 2R 2 1 {|v|≤2R} + 2χ ′ |v| R |v| R 1 {|v|≤2R} + 2χ R dvdxdt → -2σ T 0 R 2 R 2 e 2t w dvdxdt, when ε ↘ 0, R → ∞,
where we have used the dominated convergence theorem in the last integral. Finally, from the equation (4.86) we obtain

R 2 R 2 φ ε (w(T, x, v))χ R (v) |v| 2 2 dvdx ≤ R 2 R 2 φ ε (w(0, x, v))χ R (v) |v| 2 2 dvdx + 1 2 C(∥E∥ L ∞ , T ) T 0 R 2 R 2 w dvdxdt + T 0 R 2 R 2 w|v| 2 dvdxdt +2σ T 0 R 2 R 2
e 2t w dvdxdt.

Since T 0 R 2 R 2 w dvdxdt ≤ T 0 R 2 R 2 w 0 dvdxdt = T ∥f in ∥ L 1 (R 2 ×R 2 ) we deduce that R 2 R 2 φ ε (w(T, x, v))χ R (v) |v| 2 2 dvdx ≤ R 2 R 2 φ ε (w(0, x, v))χ R (v) |v| 2 2 dvdx +C(∥E∥ L ∞ , T, σ, f in ) + C(∥E∥ L ∞ , T ) T 0 R 2 R 2 w |v| 2 2 dvdxdt.
Using Fatou's Lemma and then the dominated convergence theorem when ε ↘ 0, R → ∞ we get for any T > 0 that

R 2 R 2 w(T, x, v) |v| 2 2 dvdx ≤ R 2 R 2 w(0, x, v) |v| 2 2 dvdx +C(∥E∥ L ∞ , T, σ, f in ) + C(∥E∥ L ∞ , T ) T 0 R 2 R 2 w |v| 2 2 dvdxdt.
By Growall's inequality we complete the proof.

In the same way as for the proof of Proposition 4.7.4, if we take the function h in the equation (4.86) given by h(t, x, v) = χ R (x)|x|ψ ε (w), we can obtain the following Proposition Proposition 4.7.5 Assume that the initial data f in belongs to L 1 (R 2 × R 2 ) and satifies

(|x| + |v| 2 /2)f in ∈ L 1 (R 2 × R 2 ).
Then the solution f is given by Proposition 4.7.1 satisfies 

sup [0,T ] R 2 R 2 |x|f (t) dvdx ≤ C 1 + C 2 R 2 R
+ |x| + |v| 2 /2)f in ∈ L 1 (R 2 × R 2 ).
Then the solution f of Proposition 4.7.1 satisfies

sup [0,T ] R 2 R 2 f (t)| ln f (t)| dvdx ≤ C + R 2 R 2 σf in | ln f in | dvdx sup [0,T ] R 2 R 2 |σ∇ v f (t)| 2 f (t) dvdx ≤ C + R 2 R 2 σf in | ln f in | dvdx
for some constant C, depending only on ∥E∥ L ∞ , f in , T, σ.

Proof.

As before, we will work on w(t, x, v) = e -2t f (t, x, e -t v) which is satisfied by equation (4.82) and variational equation (4.86). For any ε > 0, we define the function g ε (w) such that 1 + 1 {ε≤w≤1/ε} ln φ ε (w) = 1 + 1 {ε≤w≤1/ε} ln w := 1 + g ε (w)

and it is obvious that it belongs to L ∞ ([0, T ] × R 2 × R 2 ). Observing that

∂ t w(1 + 1 {ε≤w≤1/ε} ln φ ε (w)) = ∂ t (wg ε (w))
and

T ′ w(1 + 1 {ε≤w≤1/ε} ln φ ε (w)) = T ′ (wg ε (w)).
Multiplying the equation (4.82) by σ(1 + 1 {ε≤w≤1/ε} ln φ ε (w)) and then passing to the variational equation (4.86) with h = ψ ε (w) ∈ H we get

σ ∂ t (wg ε (w)) + T ′ (wg ε (w)), ψ ε H ′ ×H +σ [e t E(x) • ∇ v w -σe 2t ∆ v w](1 + g ε (w)), ψ ε (w) H ′ ×H = 0. (4.87)
Since ψ ε (w) = 1 on ε ≤ w ≤ 1/ε so in the same way of Lemma 4.7.1, we have the following formula

σ ∂ t (wg ε (w)) + T ′ (wg ε (w)), ψ ε H ′ ×H = R 2 R 2 σw(T, x, v) ln w(T, x, v)1 {ε≤w≤1/ε} dvdx - R 2 R 2
σw(0, x, v) ln w(0, x, v)1 {ε≤w≤1/ε} dvdx.

We estimate now the other terms in (4.87). Since w ∈ H so the divergence theorem implies that

σ e t E(x) • ∇ v w(1 + g ε (w)), ψ ε (w) H ′ ×H = σ e t E(x) • ∇ v (wg ε (w)), ψ ε (w) H ′ ×H = σ T 0 R 2 R 2 e t E(x) • ∇ v (wg ε (w))1 {ε≤w≤1/ε} dvdxdt = 0, and 
-σ 2 e 2t ∆ v w(1 + g ε (w)), ψ ε (w) H ′ ×H = σ 2 T 0 R 2 R 2 e 2t ∇ v w • ∇ v g ε (w)1 {ε≤w≤1/ε} dvdxdt = T 0 R 2 R 2 e 2t |σ∇ v w| 2 w 1 {ε≤w≤1/ε} dvdxdt.
Finally, from (4.87) we obtain for any T > 0 that

R 2 R 2 σw(T, x, v) ln w(T, x, v)1 {ε≤w≤1/ε} dvdx + T 0 R 2 R 2 e 2t |σ∇ v w| 2 w 1 {ε≤w≤1/ε} dvdxdt ≤ R 2 R 2
σw(0, x, v) ln w(0, x, v)1 {ε≤w≤1/ε} dvdx.
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By standard argument, there exists a constant C > 0, (see [START_REF] Poupaud | Parabolic limit and stability of the Vlasov-Poisson-Fokker-Planck system[END_REF], Lemma 2.3) such that

|u ln u| = u ln u -2u ln u {0≤u≤1} ≤ u ln u + 1 4 (|x| + |v| 2 )u + Ce -|x|+|v| 2 2 therefore R 2 R 2 σw(T, x, v)| ln w(T, x, v)|1 {ε≤w≤1/ε} dvdx + T 0 R 2 R 2 e 2t |σ∇ v w| 2 w 1 {ε≤w≤1/ε} dvdxdt ≤ R 2 R 2 σw(0, x, v)| ln w(0, x, v)| dvdx + 1 4 R 2 R 2 (|x| + |v| 2 )w dvdx + C8π
where we have used that R 2 R 2 e -|x|+|v| 2 2 dvdx = 8π. Thanks to the hypothesis on the initial data f in we infer that

1 4 R 2 R 2 (|x| + |v| 2 )w dvdx ≤ C(∥E∥ L ∞ , f in , T, σ). Therefore, Fatou's Lemma implies that R 2 R 2 σw(T, x, v)| ln w(T, x, v)| dvdx + T 0 R 2 R 2 e 2t |σ∇ v w| 2 w dvdxdt ≤ R 2 R 2 σw(0, x, v)| ln w(0, x, v)| dvdx.
Substitutively w = e -2t f (t, x, e -t v) leads to the desired result.

Classical solution of the VPFP system with uniform external magnetic field

In this part, we consider the system (4.10), (4.11), (4.12) for uniform magnetic field i .e., ∇B(x) = 0. In order to simplify, we take in the equation (4.10) with B = 1. We focus on the global existence and uniqueness of smooth solutions. The proof will be based on the approximation scheme (f k ) k∈N constructed as follwing: we start with E 0 (t, x) = 0 and f 0 (t, x, v) = f in (x, v). For a given electric field E k (t, x) belongs to (L ∞ ([0, T ]R 2 )) 2 , we consider f k+1 the unique weak solution of the following linear transport equation, cf. Theorem 4.2.1

∂ t f k+1 + v • ∇ x f k+1 + E k • ∇ v f k+1 + B(x) ⊥ v • ∇ v f k+1 = σ∆ v f k+1 + div v (vf k+1 ), f k+1 (0, x, v) = f in (x, v). (4.88)
Then the density n k+1 and the electric field E k+1 are defined by

n k+1 (t, x) = R 2 f k+1 (t, x, v)dv, E k+1 (t, x) = - q 2πε 0 ∇ x ln | • | ⋆ (n k+1 -D).
In order to prove that the system admits a global regular solution, we show that the sequence (f k ) k∈N is actually bounded, as well as its derivatives, by a function that does not blow up in finite time, if we further assume that the electric field

E k ∈ L ∞ loc ([0, ∞[; W 1,∞ (R 2 
)). We have the following regularity estimate Lemma 4.7.4 Let f in be a non-negative function such that

f in ∈ W 1,1 (R 2 ), (1 + |v| 2 ) γ/2 (f in + |∇ x,v f in |) < +∞, γ > 2.
Then, there exist two functions α(t), β(t) in L ∞ loc ([0, ∞[) independent of k, such that for every k and t, we have

∥(1 + |v| 2 ) γ/2 f k (t, x, v)∥ L ∞ (R 2 ×R 2 ) ≤ α(t), ∥(1 + |v| 2 ) γ/2 Df k (t, x, v)∥ L ∞ (R 2 ×R 2 ) ≤ β(t).

Proof.

We define

Y k (t, x, v) = (1 + |v| 2 ) γ/2 f k (t, x, v), Z k (t, x, v) = (1 + |v| 2 ) γ/2 Df k (t, x, v).
For the L ∞ estimate of the sequence (Y k ) k∈N , we use the same argument as in the Lemma 4.2.6. We will now focus on estimating Z k . Taking the derivative with respect to the variables (x, v) in the linear VFP equation (4.88) for f k+1 , we get

∂ t (Df k+1 ) + v • ∇ x (Df k+1 ) + E k • ∇ v (Df k+1 ) + ⊥ v • ∇ v (Df k+1 ) = div v σ∇ v (Df k+1 ) + v(Df k+1 ) -Dv • ∇ x f k+1 -DE k • ∇ v f k+1 -D ⊥ v • ∇ v f k+1 + Dv • ∇ v f k+1 .
A standard computations, we have the following equalities

-Dv • ∇ x f k+1 = - 0 0 I 2 0 ∇ x f k+1 ∇ v f k+1 -DE k • ∇ v f k+1 = - 0 ∇E k 0 0 ∇ x f k+1 ∇ v f k+1 -D ⊥ v • ∇ v f k+1 = - 0 0 0 R -π 2 ∇ x f k+1 ∇ v f k+1 Dv • ∇ v f k+1 = 0 0 0 I 2 ∇ x f k+1 ∇ v f k+1
where R -π 2 is a rotation matrix of angle -π/2. Then, the previous equation can be rewritten as

∂ t (Df k+1 ) + v • ∇ x (Df k+1 ) + E k • ∇ v (Df k+1 ) + ⊥ v • ∇ v (Df k+1 ) = div v σ∇ v (Df k+1 ) + v(Df k+1 ) + A k • Df k+1 (4.89)
where

A k (t, x) ∈ L ∞ (R + × R 2 ) denotes the following matrix A k (t, x) = 0 -∇E k -I 2 I 2 -R(-π/2)
. Now, we multiply equation (4.89) by (1 + |v| 2 ) γ/2 and get the following equation for Z k+1

∂ t Z k+1 + v • ∇ x Z k+1 + E k + 2σγ v 1 + |v| 2 • ∇ v Z k+1 + ⊥ v • ∇ v Z k+1 -σ∆ v Z k+1 -div v (vZ k+1 ) = R 1 + R 2 + R 3 (4.90)
where R 1 and R 2 are obtained from (4.26) by replacing f k+1 by Df k+1 and

S 3 = (1 + |v| 2 ) γ/2 A k • Df k+1 .
Thanks to the estimations on R 1 and R 2 in Lemma 4.2.6, we get

∥R 1 (t)∥ L ∞ (R 2 ×R 2 ) ≤ γ∥E k (t)∥ L ∞ (R 2 ) ∥(1 + |v| 2 ) (γ-1)/2 Df k+1 ∥ L ∞ (R 2 ×R 2 ) ≤ γ∥E k (t)∥ L ∞ (R 2 ) ∥Z k+1 (t)∥ L ∞ (R 2 ×R 2 ) ≤ γC(f in )∥Y k (t)∥ 1/γ L ∞ (R 2 ×R 2 ) ∥Z k+1 (t)∥ L ∞ (R 2 ×R 2 ) ≤ C 1 (γ, f in )α(t) 1/γ ∥Z k+1 (t)∥ L ∞ (R 2 ×R 2 ) ∥R 2 (t)∥ L ∞ (R 2 ×R 2 ) ≤ C 2 (σ, γ)∥Z k+1 (t)∥ L ∞ (R 2 ×R 2 ) ∥R 3 (t)∥ L ∞ (R 2 ×R 2 ) ≤ ∥A k (t)∥ L ∞ (R 2 ) ∥Z k+1 (t)∥ L ∞ (R 2 ×R 2 ) . Since ∥n k (t)∥ L 1 (R 2 ) ≤ ∥f in ∥ L 1 (R 2 ) and by Lemma 4.2.2 and ∥Y k (t)∥ L ∞ ≤ α(t) we deduce that ∥n k (t)∥ L ∞ (R 2 ) ≤ C(γ, f in )α(t) 2/γ . Moreover, ∥∇ x n k (t)∥ L ∞ (R 2 ) ≤ R 2 1 (1 + |v| 2 ) γ/2 dx∥Z k (t)∥ L ∞ (R 2 ×R 2 ) = C(γ)∥Z k (t)∥ L ∞ (R 2 ×R 2 ) .
Combining the above bounds on the density n k and the inequality (4.58) in Lemma 4.5.3 gives an estimate for the derivatives of E k . Therefore we obtain

∥A k (t)∥ L ∞ (R 2 ) ≤ C 3 (γ, f in ) 1 + ln + ∥Z k (t)∥ L ∞ (R 2 ×R 2 ) ∥Z k+1 (t)∥ L ∞ (R 2 ×R 2 ) .
So, the maximum principle in Remark 4.7.1 applied to (4.90) and the previous estimates of R 1 , R 2 and R 3 lead to We denote here

∥Z k+1 (t)∥ L ∞ (R 2 ×R 2 ) ≤ e 2T ∥Z 0 ∥ L ∞ (R 2 ×R 2 ) + C 1 (γ, f 0 ) t 0 α(s) 1/γ ∥Z k+1 (s)∥ L ∞ (R 2 ×R 2 ) ds + C 2 (σ, γ) t 0 ∥Z k+1 (s)∥ L ∞ (R 2 ×R 2 ) ds + C 3 (γ, f in ) t 0 α(s) 2/γ 1 + ln + ∥Z k (s)∥ L ∞ (R 2 ×R 2 ) ∥Z k+1 (s)∥ L ∞ (R 2 ×R 2 ) ds.
ψ 1 (t) = C 1 (γ, f in )α(t) 1/γ + C 2 (σ, γ), ψ 2 (t) = C 3 (γ, f in )α(t) 2/γ . Since α(t) ∈ L ∞ loc (R + ) then ψ 1 (t), ψ 2 (t) ∈ L ∞ loc (R +
). Now we introduce the function

z k (t) = max(1, ∥Z k+1 (t)∥ L ∞ (R 2 ×R 2 ) ).
We find that there exist a function ψ 3 (t) such that

1 + ψ 1 (t) + ψ 2 (t) + ln + ∥Z k (t)∥ L ∞ (R 2 ×R 2 ) ≤ ψ 3 (t) ln z k (t).
Indeed,

1 + ψ 1 (t) + ψ 2 (t) + ln + ∥Z k (t)∥ L ∞ (R 2 ×R 2 ) ≤ ln z k (t)ψ 3 (t) ≤ ln z k (t) ψ 3 (t) , with ψ 3 (t) = exp(1 + ψ 1 (t) + ψ 2 (t)) since z k (t) ≥ 1.
Then, from (4.91) the function z k+1 (t) satifies the inequality

z k+1 (t) ≤ e 2T ∥Z 0 ∥ L ∞ (R 2 ×R 2 ) + t 0 ψ 3 (s) ln z k (s)z k+1 (s)ds.
We denote β(t) the solution of the differential equation

β(t) = ψ 3 (t) ln β(t)β(t), β(0) = e 2T ∥Z 0 ∥ L ∞ (R 2 ×R 2 )
whose solution is

β(t) = exp ln β(0) exp t 0 ψ 3 (s)ds .
We see that β belongs to L ∞ loc (R + ) since ψ 3 ∈ L ∞ loc (R + ) and the same argument as function α(t) in the Lemma 4.2.6 show that Z k+1 satisfies

∥Z k+1 (t)∥ L ∞ (R 2 ×R 2 ) ≤ β(t), ∀t ∈ R + .
So Lemma 4.7.4 is proved.

Corollary 4.7.1

With the same assumptions and notations as in Lemma 4.7.4, there exist a function η lies in L ∞ loc (R + ) such that for all k ∈ N and t > 0 

∥n k (t)∥ ∞ + ∥∇ x n k (t)∥ ∞ + ∥E k (t)∥ ∞ + ∥∇ x E k (t)∥ ∞ ≤ η(t) (4.92) ∥Df k (t)∥ L 1 (R 2 ×R 2 ) ≤ η(t). ( 4 
∥Df k+1 (t)∥ L 1 (R 2 ×R 2 ) ≤ ∥Df 0 ∥ L 1 (R 2 ×R 2 ) + t 0 ∥A k (s)∥ L ∞ (R 2 ×R 2 ) ∥Df k+1 (s)∥ L 1 (R 2 ×R 2 ) ds.
Since ∥A k (s)∥ L ∞ is bounded by η(t). It implies that Df k+1 (t)∥ L 1 satisfies a linear Gronwall inequality whose coefficients are independent of k and gives (4.93).

Global existence of the solution

Let T > 0. We then prove the convergence of iterations towards a weak solution.

Thanks to Lemma 4.7.4 and (4.92) we obtain the following convergences, up to extraction of a subsequence, in the weak star topology of

L ∞ ([0, T ] × R 2 × R 2 ) f k ⇀ f ; (1 + |v| 2 )f k ⇀ (1 + |v| 2 )f, (1 + |v| 2 )Df k ⇀ (1 + |v| 2 )Df, (4.94) 
and, in L ∞ ([0, T ] × R d ) weak star

E k ⇀ E, ∇E k ⇀ ∇E. (4.95) 
To take limits in the nonlinear terms of (4.88), we need strong compactness and convergence of the whole sequence. We will prove that f k converges to f in the norm of L ∞ ([0, T ]; L 1 (R 2 )). Indeed, (f k+1 -f k ) solves the equation

∂ t (f k+1 -f k ) + v • ∇ x (f k+1 -f k ) + E k • ∇ v (f k+1 -f k ) + ⊥ v • ∇ v (f k+1 -f k ) = Q F P (f k+1 -f k ) -(E k -E k-1 ) • ∇ v f k .
Now, thanks to the L 1 estimate, we obtain 

R 2 R 2 |f k+1 -f k | dvdx ≤ t 0 R 2 R 2 |(E k -E k-1 )(s, x)||∇ v f k (s, x, v)| dvdxds ≤ 1 2π t 0 R 2 R 2 R 2 1 |x -y| |∇ v f k (s,
sup y R 2 R 2 1 |x -y| |∇ v f k (s, x, v)| dvdx ≤ R 2 R 2 |∇ v f k (s, x, v)| dvdx 1/2 sup x R 2 |∇ v f k (s, x, v)| dv 1/2 ≤ C(γ)∥Df k (s)∥ L 1 (R 2 ×R 2 ) ∥Z k (s)∥ L ∞ (R 2 ×R 2 ) ≤ C(γ, T ).
Thus (4.96) leads to

∥(f k+1 -f k )(t)∥ L 1 (R 2 ×R 2 ) ≤ C(γ, T ) 2π t 0 R 2 |n k (s, y) -n k-1 (s, y)|dyds ≤ C(γ, T ) 2π t 0 ∥(f n+1 -f n )(s)∥ L 1 (R 2 ×R 2 ) ds. Then ∥(f k+1 -f k )(t)∥ L 1 (R 2 ×R 2 ) satisfies ∥(f k+1 -f k )(t)∥ L 1 (R 2 ×R 2 ) ≤ C(γ, T ) 2π k t k k! ∥f 1 (t) -f in ∥ L ∞ (0,T ;L 1 (R 2 ×R 2 )) .
which proves that f k converges in L ∞ ([0, T ]; L 1 (R 2 × R 2 )) to a unique limit which coincides with the function f found previously. It is then easy to prove that f is a weak solution of equation (4.10).

Uniqueness of the solution

The uniqueness of the solution which belongs to L ∞ ([0, T ];

W 1,1 (R 2 × R 2 ) ∩ W 1,∞ (R 2 × R 2 )
) can be performed similarly as in the part of existence. 

Regularity of the solution

f ≥ 0, f ∈ L ∞ ([0, T ]; L ∞ ∩ L 1 (R 2 × R 2 )), ( 1 
+ |v| 2 ) γ/2 (f + |Df |) ∈ L ∞ ([0, T ] × R 2 × R 2 )). Corollary 4.7.1 shows that Df k is bounded in L ∞ ([0, T ]; L 1 (R 2 × R 2 )).
∈ L ∞ ([0, T ]; L 1 (R 2 × R 2 )) 2 .
Then, thanks to a standard interpolation, we impliy that the density

n(t, x) = R 2 f (t, x, v) dv belongs to L ∞ ([0, T ]; W 1,1 (R 2 × R 2 ) ∩ W 1,∞ (R 2 × R 2 )
). So the electric field solves the Poisson equation in a classical sense and we obtain E ∈ L ∞ ([0, T ]; W 1,∞ (R 2 )). We deduce that f is a classical solution of system (4.10), (4.11), (4.12) on [0, T [. We state the following result Proposition 4.7.7 Let T > 0. Assume that the initial data f in (x, v) is nonegative and satisfies

f in ∈ W 1,1 (R 2 × R 2 ), (1 + |v| 2 ) γ/2 (f in + |Df in |) ∈ L ∞ (R 2 × R 2 ) with γ > 2.
Then, there exists a unique smooth solution of the VPFP system on the time interval [0, T [. This solution satisfies

f ≥ 0, f ∈ L ∞ ([0, T ]; W 1,1 (R 2 × R 2 )) (1 + |v| 2 ) γ/2 (f + |Df |) ∈ L ∞ ([0, T ] × R 2 × R 2 )) E ∈ L ∞ ([0, T ], W 1,∞ (R 2 × R 2 )).

Remark 4.7.2

When the magnetic field B is non-uniform, observing the derivative in the variable x i , i = 1, 2 of the transport in velocity along the magnetic force

∂ x i [B(x) ⊥ v • ∇ v f ] = ∂ x i B ⊥ v • ∇ v f + B(x) ⊥ v • ∇ v (∂ x i f )
and then multiplying this identity by (1 + |v| 2 ) γ/2 we get

(1 + |v| 2 ) γ/2 ∂ x i [B(x) ⊥ v • ∇ v f ] = ∂ x i B ⊥ vZ i + B(x) ⊥ v • ∇ v Z i -B(x) ⊥ v • ∇ v 1 + |v| 2 γ/2 ∂ x i f = ∂ x i B ⊥ vZ i + B(x) ⊥ v • ∇ v Z i
where we denote Z i = (1 + |v| 2 ) γ/2 ∂ x i f . We cannot apply the maximum principle of Remark 4.7.1 as in the equation (4.90), because this term

∂ x i B ⊥ vZ i is not bounded in L ∞ (R 2 × R 2 ).

Preliminary study on the Poisson equation

In this part, we consider the Poisson equation -∆

x Φ = ρ in R d , where ρ ∈ C ∞ 0 (R d ) with d ≥ 2 whose support suppρ ⊂ x ∈ R d : |x| ≤ R .
The solution of this equation is given by the convolution with the fundamental solution of the Laplace operator as Φ = G d ⋆ ρ, where

G d (x) =      - 1 2π ln |x|, d = 2 |x| 2-d (d -2)|B(0, 1)| , d ≥ 3.
The purpose of this part is to justify the following identity by using the integral by parts

R d ρΦdx = R d |∇ x Φ| 2 dx.
The formula requires that the vector field ∇ x Φ decays rapidly at infinity. This is a reasonable condition in the three-dimensional case but not in the two-dimensional one. In three dimensions, the decay of the vector field ∇Φ is fast enough so that the integral R 3 |∇ x Φ| 2 dx is finite. In two dimensions, nevertheless, this vector field is not decreasing fast enough to infinity to be in L 2 . This is a consequence of the decay property of the kernel ∇ x G d . You can see that, in two dimensions, ∇ x G 2 decreases to infinity as 1/r, which is not square integral, while in three dimensions, ∇ x G 3 decreases as 1/r 2 . Now we consider the case d = 3. Since we can write

∇ x Φ(x) = 1 |B(0, 1)| R 3
x -y |x -y| 3 1 {|x-y|≤1} ρ(y)dy + R 3

x -y |x -y| 3 1 {|x-y|≥1} ρ(y)dy .

So, thanks to the Young's inequality for the convolution we get

∥∇ x Φ∥ L 2 (R 3 ) ≤ 1 |B(0, 1)| 1 |x| 2 1 {|x|≤1} L 1 ∥ρ∥ L 2 + 1 |x| 2 1 {|x|≥1} L 2 ∥ρ∥ L 1 < +∞.
Another approach to show the vector field ∇ x Φ ∈ L 2 (R 3 ) is to use the Hardy-Littlewood-Sobolev inequality, see Lemma (4.7.6) below

∥∇ x Φ∥ L 2 (R 3 ) = x |x| 3 ⋆ ρ L 2 (R 3 ) ≤ ∥ρ∥ L 6/5 (R 3 ) .
Next, we consider the case d = 2. The solution Φ and its gradient write

Φ(x) = - 1 2π R 2 ln |x -y|ρ(y)dy, ∇ x Φ(x) = - 1 2π R 2
x -y |x -y| 2 ρ(y)dy.

Observer for |x| ̸

= 0 that

ln |x -y| = ln |x| + ln x -y |x| , |x -y| -2 = |x| -2 1 -2 x • y |x| 2 + |y| 2 |x| 2 -1
.

If |y| ≤ R and |x| ≥ 2R then for |x| large, we have

ln |x -y| = ln |x| + O(|x|), |x -y| -2 = |x| -2 + O(|x| -3 ).
Since w(y) has support in |y| ≤ R we see that for |x| large

Φ(x) = - 1 2π ln |x| R 2 ρ(y)dy + O(|x|), ∇ x Φ = - 1 2π x |x| 2 R 2 ρ(y)dy + O(|x| -2 ).
Combining the fact that

R d (1 + |x| 2 ) -l/2 dx < ∞ ⇔ l > d we deduce that ∇ x Φ is not square integrable except that R 2 ρ dx = 0. If R 2 ρ dx = 0
, by adding the decay at infinity of ρ as 

(1 + |x|)ρ ∈ L 1 (R 2 ) we can show that ∇ x Φ ∈ L 2 (R 2 ) and that R 2 (-∆Φ)Φ dx = R 2 |∇ x Φ| 2 dx.

Inequalities

T α f = f ⋆ K α . If p > 1 and α = d(1 -1 q + 1 p ), then we have ∥T α f ∥ L q (R d ) ≤ C∥f ∥ L p (R d )
for some positive universal constant C.

x, and the velocity v, represents the distribution of particles in the phase space with

(x, v) ∈ R d × R d , d = 2, 3.
The Vlasov equation reads:

∂ t f + v • ∇ x f + q m (E(t, x) + v ∧ B) • ∇ v f = 0, (t, x, v) ∈]0, T ] × R 3 × R 3 , (5.1) 
To simplify, the curvature of magnetic field lines is neglected and we assume that the external magnetic field only applied in the x 3 -direction B = (0, 0, B) t , where B is a given constant.

In the two dimensional setting x = (x 1 , x 2 ), v = (v 1 , v 2 ) the Vlasov equation writes

∂ t f + v • ∇ x f + q m E(t, x) + B ⊥ v • ∇ v f = 0, (t, x, v) ∈]0, T ] × R 2 × R 2 , (5.2) 
where ⊥ v = (v 2 , -v 1 ), while the Poisson equation is

E(t, x) = -∇ x Φ(t, x), -ε 0 ∆ x Φ(t, x) = qρ(t, x) = q R 2 f (t, x, v)dv, (5.3) 
where ε 0 is the permittivity of the vacuum. We complete the above system with the initial condition

f (0, x, v) = f 0 (x, v).
The well-posedness of the Vlasov-Poisson problem is well known, see [START_REF] Arsen'ev | Global existence of a weak solution of vlasov's system of equations[END_REF] for the weak solution, and [START_REF] Batt | Global symmetric solutions of the initial value problem of stellar dynamics[END_REF], [START_REF] Bostan | Asymptotic Behavior for the Vlasov-Poisson Equations with Strong External Magnetic Field. Straight Magnetic Field Lines[END_REF], [START_REF] Ukai | On the classical solution in the large time of the two dimensional Vlasov equations[END_REF], [START_REF] Lions | Propagation of moments and regularity for the 3 dimensional Vlasov-Poisson system[END_REF] for the strong solution. The numerical solution of the Vlasov equation can be performed by Lagrangian, Eulerian, or semi-Lagrangian methods. Lagrangian particle methods like particle-in-cell methods (PIC) consist of approximating the plasma by a finite number of macro-particles. The trajectories of these particles are computed from the characteristic curves given by Vlasov equation, whereas self-consistent fields are computed by gathering the charge densities of the particles on a mesh of the physical space (see [START_REF] Langdon | Plasma Physics Via Computer Simulation[END_REF]). Eulerian methods have been used to discretize Vlasov's equation on a phase space grid instead of particles. Semi-Lagrangian methods can be viewed as a combination of Lagrangian methods and Eulerian methods which consist in computing the distribution function on a grid by following the characteristic curves, backward in time for a one-time step and interpolating the value at the feet of the characteristics using the grid point values of the distribution function at the previous time step, see [START_REF] Sonnendrücker | The semi-Lagrangian method for the numerical resolution of the Vlasov equation[END_REF], [START_REF] Crouseilles | Hamiltonian splitting for the Vlasov-Maxwell equations[END_REF]. This method is usually coupled with time splitting. We are interested in the long-time behavior of particles under the regime of intense magnetic field, i .e., T obs → +∞ and |B| → +∞ in order to observe a drift phenomenon in the plane orthogonal to the magnetic field direction. Therefore, we first introduce a set of characteristic scales. The characteristic length scale x is the Debye length

x = λ D = k B ε 0 T 4πnq 2 1/2 ,
where k B is the Boltzmann constant, T is the temperature scale and n is the density scale. Then, the characteristic velocity v is the thermal velocity

v = v th = k B T m 1/2
.

The characteristic magnitude of the electric field Ē can be expressed from n and x by Ē = 4πqnx ε 0 .

Finally, we denote by B the characteristic magnitude of the magnetic field and f = n v2 the distribution function scale. Next, we introduce various time scales that appear in the problem:

• T obs the observation time scale,

• T p = w -1 p = x v the reciprocal plasma frequency, • T c = w -1 c = m q
B the reciprocal cyclotron frequency. The above regime i .e., (T obs → +∞, |B| → +∞) corresponds to the following scaling assumption in [START_REF] Degond | On the asymptotic limit of the three dimensional Vlasov-Poisson system for large magnetic field: formal derivation[END_REF] given by

T obs T p = 1 ε , T c T p = ε. (5.4) 
The small parameter ε > 0 is related to the ratio between the reciprocal Larmor frequency and the advection time scale. Then we define the new variables and given fields by

x ′ = x x , v ′ = v v , t ′ = t T 0 , E ′ (t ′ , x ′ ) = E(t, x) Ē , B ′ = B B ,
and the new unknown

f ′ (t ′ , x ′ , v ′ ) = f (t, x, v) f .
Inserting all these changes into (5.2), we obtain the dimensionless equation

1 w p T 0 ∂f ′ ∂t ′ + v ′ • ∇ x ′ f ′ + q m E ′ + w c w p B ′⊥ v ′ • ∇ v ′ f ′ = 0, (t ′ , x ′ , v ′ ) ∈]0, T ′ ] × R 2 × R 2 .
For the sake of clarity and simplicity, we drop the primes in the above equation. Therefore, under the scaling assumption (5.4), the Vlasov equation can be recast in dimensionless variables, as follows:

ε ∂f ε ∂t + v • ∇ x f ε + q m E ε • ∇ v f ε + 1 ε qB m ⊥ v • ∇ v f ε = 0, (t, x, v) ∈]0, T ] × R 2 × R 2 , (5.5)
where the Poisson equation for the potential

Φ ε satisfies E ε (t, x) = -∇ x Φ ε (t, x) and -ε 0 ∆ x Φ ε (t, x) = ρ ε (t, x) = q R 2 f ε (t, x, v)dv. (5.6) 
We are interested in the behavior of the Vlasov-Poisson equation (5.5)-(5.6) as ε → 0. At the continuous level, following the work of L. Saint Raymond [START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyrokinetic approximation[END_REF] or more recently of Miot [START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF] using the characteristic curves, it can be proved that the density particle (ρ ε ) ε>0 converges in some ways to the solution of the guiding center model

∂ t ρ(t, x) + ⊥ E(t, x) B • ∇ x ρ(t, x) = 0, (t, x) ∈]0, T ] × R 2 , (5.7) 
E(t, x) = -∇ x Φ(t, x), -ε 0 ∆ x Φ(t, x) = ρ(t, x). (5.8) 
This means that when watching the dynamic of particles on a long enough time as the intensity of the magnetic field |B| is large enough (i.e., ε << 1), the dentity particles of the Vlasov-Poisson system (5.2)-( 5.3) is approximated by the density of the system (5.7)-(5.8). Hence, the asymptotic model (5.7)-(5.8) is sufficient to describe the Vlasov-Poisson system in this regime and it only requires solving a two-dimensional problem instead of a four-dimensional problem like the Vlasov-Poisson problem, thus reducing the cost of numerical simulation. Moreover, since it does not contain any stiff term, standard numerical methods can be employed to approximate it, cf. [START_REF] Sonnendrücker | The semi-Lagrangian method for the numerical resolution of the Vlasov equation[END_REF] using the backward semi-Lagrangian methods. Readers can refer to the semi-Lagrangian method for guiding center simulations on different meshes, cf. [START_REF] Hamiaz | The semi-Lagrangian method on curvilinear grids[END_REF], [START_REF] Hamiaz | Guiding center simulations on curvilinear grids[END_REF], [START_REF] Mehrenberger | Solving the guiding-center model on a regular hexagonal mesh[END_REF].

In this work, we perform the numerical solution of the Vlasov-Poisson equation (5.5)-(5.6) by semi-Lagrangian methods coupled with a time splitting, inspired by the splitting schemes introduced in [START_REF] Ameres | Splitting methods for Fourier spectral discretizations of the strongly magnetized Vlasov-Poisson and the Vlasov-Maxwell system[END_REF]. Before describing and analyzing our numerical methods for the Vlasov-Poisson equation, we need to observe the motion of each individual charged particle in the electromagnetic field. The trajectories of particles are computed from the characteristic curves corresponding to the Vlasov equation (5.5) as follows:

dX ε (t) dt = 1 ε V ε (t), X ε (0) = x ∈ R 2 , dV ε (t) dt = q m E ε (t, X ε (t)) ε + ω c ε 2 ⊥ V ε (t), V ε (0) = v ∈ R 2 ,
whereas the electric field is computed from a discretization of the Poisson equation on a mesh of the physical space. When the electromagnetic field is constant and given, by direct computation, one sees that the trajectory of particle is described by

V ε (t) = R - ω c ε 2 t (V ε (0) -ε ⊥ E B ) + ε ⊥ E B , X ε (t) = X ε (0) + ε ⊥ V ε (0) ω c center circle + t ⊥ E B slow drift + R - ω c ε 2 t + π/2 ε V ε (0) ω c fast Larmor rotation .
The evolution of a given particle's position is a combination of two different time movements: a slow dynamic of the center of the circle x g = x + ε ⊥ v/ω c , usually called guiding center, which is given by the drift velocity and a fast rotation of period about T c = ε 2 2π/ω c , with a small radius ε|v|/ω c around guiding center. Thus, the Vlasov-Poisson system is multi-scale. Due to high oscillations in time, if one wants to do accurate simulation of the Vlasov problem using classical numerical schemes, one needs small time steps, typically smaller than T c . A way to avoid this restriction is to use the asymptotic model (5.7)-(5.8), since it does not contain fast oscillations in time, and so a very small time step is no longer required in order to simulate these oscillations. However, the aim of this work is to produce a reference solution of the Vlasov-Poisson equation for several values of the parameter ε.

From the discrete point of view, we are interested in a method which is able to capture this singularly oscillatory limit, while the numerical parameters may be kept independent with respect to ε, in particular the large time step, so that the numerical method provides a consistent discretization of the limit system as ε → 0. This concept is called Asymptotic Preserving property (see [START_REF] Hu | Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations[END_REF]). The methods of passage from the Vlasov-Poisson equation to the Guiding-center model, which are satisfied this property have been studied by recent works within the framework of PIC method, which allow to focus on the construction of a numerical scheme in time of the characteristic equations. Readers can refer to various multi-scale techniques that have been proposed such as the exponential integrator in velocity in [START_REF] Frenod | Long time hehaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field[END_REF], implicitexplicit time discretizations in [START_REF] Filbet | Asymptotically Stable Particle-In-Cell Methods for the Vlasov-Poisson System with a Strong External Magnetic Field[END_REF], and two-scale formulation integrator in [START_REF] Crouseilles | Uniformly accurate Particle-in-Cell method for the long time solution of the two-dimensionalVlasov-Poisson equation with uniform strong magnetic field[END_REF].

In this dissertation, we propose an alternative to such methods allowing us to make direct simulations of the Vlasov-Poisson system with large time steps with respect to O(ε 2 ). This work is based on the same splitting method as [START_REF] Ameres | Splitting methods for Fourier spectral discretizations of the strongly magnetized Vlasov-Poisson and the Vlasov-Maxwell system[END_REF] but the semi-Lagrangian Vlasov solver is used instead of a Fourier spectral discretization solver. Now, we start to summarize the basis of the method and the results of this paper. The time splitting is used to approximate the solution of the Vlasov-Poisson system is based on exact computations of the following two equations:

ε∂ t f ε + v • ∇ x f ε + 1 ε qB m ⊥ v • ∇ v f ε = 0, (5.9) 
ε∂ t f ε + q m E ε (t, x) • ∇ v f ε = 0.
(5.10)

The time splitting presented here for the Vlasov equation in strong magnetic field into two parts where one part includes the transport term and magnetic term, and the other part includes the electric term which has also been applied in [START_REF] Chartier | Numerical methods for the twodimensional Vlasov-Poisson equation in the finite Larmor radius approximation regime[END_REF] for the finite radius approximation Larmor regime. We will study the approximation of the distribution function f ε when using the splitting scheme (5.9)-(5.10). Since each equation can be solved exactly in time using the characteristic method when the magnetic field is uniform, the error is only due to the splitting procedure (first order for Lie splitting, second order for Strang splitting). If we use such a method, we have to guarantee the accuracy of the scheme, especially when considering the high-frequency oscillations of the particles. By investigating the commutator, the global error of the p-order splitting is O(∆t p+1 /ε p+1 ), see Appendix 5.7 for p = 1, 2. This error bound indicates that to obtain good results for the numerical solution of the distribution function f ε (t, x, v), the time step ∆t has to be the same order of ε which would require very large CPU time cost when considering a very small ε. However, considering the numerical solution for the density particle ρ ε (t, x) obtained from the approximation of the distribution function f ε (t, x, v), we realize that it can be performed with larger time step, and moreover provide a consistent approximation to the guiding center model. To see the asymptotic limit as ε goes to 0, we expect that when ε becomes very small, the distribution function

f ε (t, x, v) satisfies f ε (t, x, v) ≈ f ε (t, x -ε ⊥ v/ω c , v) and so, we get that ρ ε (t, x) = R 2 f ε (t, x, v)dv ≈ R 2 f ε (t, x -ε ⊥ v/ω c , v)dv.
Following [START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF], we work on the gyro-coordinates (x -⊥ v, v) and focusing on the equations satisfied by the shifted distribution f ε (t, x -ε ⊥ v/ω c , v). Performing the change variables, we get equations for f ε (t, x -ε ⊥ v/ω c , v) that can be written as (see Proposition 5.3.2):

∂ t f ε (t, x -ε ⊥ v ω c , v) + ω c ⊥ v ε 2 • ∇ v f ε (t, x -ε ⊥ v ω c , v) = 0, ∂ t f ε (t, x -ε ⊥ v ω c , v) + ⊥ E ε B (t, x -ε ⊥ v ω c ) • ∇ x f ε (t, x -ε ⊥ v ω c , v) + 1 ε q m E ε (t, x -ε ⊥ v ω c ) • ∇ v f ε (t, x -ε ⊥ v ω c , v) = 0.
After integrating these equations with respect to velocity, we get the following equations

R 2 ∂ t f ε (t, x -ε ⊥ v ω c , v)dv = 0, R 2 ∂ t f ε (t, x -ε ⊥ v ω c , v)dv + R 2 ⊥ E ε B (t, x -ε ⊥ v ω c ) • ∇ x f ε (t, x -ε ⊥ v ω c , v)dv = 0,
which do not contain the stiff term. Formally passing to the limit as ε → 0 we obtain

R 2 ∂ t f (t, x, v)dv = 0, R 2 ∂ t f (t, x, v)dv + R 2 ⊥ E B (t, x) • ∇ x f (t, x, v)dv = 0,
which corresponds to the guiding center approximation

∂ t ρ(t, x) = 0, ∂ t ρ(t, x) + ⊥ E(t, x) B • ∇ x ρ(t, x) = 0.
Finally, we will construct the full discretized numerical scheme for the distribution function f ε (t, x, v) from the splitting scheme (5.9)-(5.10) by using the backward semi-Lagrangian method. The first order scheme in time and the second one of solutions are presented. Then we perform a formal analysis of the first order full-discretized scheme for the density particle ρ ε (t, x) to show that the numerical method provides a consistent discretization to the guiding center model. During the implementation, we have to filter out the fast rotation of velocity and then remove the fast translation of the electric field that occur in the chracteristic curves by changing of variable in the direction of the velocity. This Chapter is organized as follows. In Section 5.2 we briefly first recall the main steps of the semi-Lagrangian method for solving the Vlasov-Poisson system, and we present then two splitting schemes: exponential Boris and Scovel's method. Section 5.3 is devoted to investigate the asymptotic limit for the approximation of density of the Vlasov equation under the Scovel method. Then the full discretized numerical solution is constructed from the Scovel method using the semi-Lagrangian method in Section 5.4. In Section 5.5 we write an algorithm for the second order accuracy of for θ ̸ = kπ, k ∈ Z ⋆ . This formula has been generalized to arbitrary dimension, the reader can refer to [START_REF] Bernier | Exact splitting methods for semigroups generated by inhomogeneous quadratic differential operators[END_REF], [START_REF] Bernier | Exact splitting methods for kinetic and Schrodinger equations[END_REF]. As a consequence, the computation of φ

[B]
∆t can be done by solving three one dimensional linear equations (in v 1 , v 2 and v 1 direction successively), i.e.

f 0 (x, v) → f ⋆ (x, v) = f 0 (x, v 1 -tan(θ/2)v 2 , v 2 ) → f ⋆⋆ (x, v) = f ⋆ (x, v 1 , sin(θ)v 1 + v 2 ) → φ B ∆t = f ⋆⋆ (x, v 1 -tan(θ/2)v 2 , v 2 ). (5.21) 
This factorization is very useful to compute the rotation, since, using the semi-Lagrangian methods, it requires one dimensional interpolations instead of two dimensional interpolation. Moreover, when the angle θ is small (i.e. B∆t << 1), by approximating sin(x) ≈ x and tan(x) ≈ x, we get the approximate decomposition of rotation (5.20) given by

R(θ) = cos(θ) -sin(θ) sin(θ) cos(θ) ≈ 1 -θ 2 /2 -θ + θ 3 /4 θ 1 -θ 2 /2 = 1 -θ/2 0 1 1 0 θ 1 1 -θ/2 0 1 ,
which correspond exactly to the computation of φ ∆t by using a Strang splitting for equation (5.18), where the splitting steps read:

∂ t f + qB m v 2 • ∇ v 1 f = 0, ∆t/2 ∂ t f - qB m v 1 • ∇ v 2 f = 0, ∆t ∂ t f + qB m v 2 • ∇ v 1 f = 0, ∆t/2.
Note that, contrary to the exact splitting (5.20), this factorization is not exact: there is remainder term which is evaluated as O(B 2 ∆t 2 ). Consequently, it is less accurate than (5.21) and then the time step can not be taken quite large. Now, we want to use the splitting methods to approximate the solution f in (5.12) of the system (5.2)-(5.3). A first order Lie method based on the exponential Boris algorithm writes

χ Lie ∆t = f (∆t) + O(∆t 2 ) where χ Lie ∆t = φ [f ] ∆t • φ [B] ∆t • φ [E]
∆t , and then the Strang method based on the exponential Boris algorithm writes

χ Strang ∆t = f (∆t) + O(∆t 3 )
(which is a second order accurate splitting method) with

χ Strang ∆t = φ [f ] ∆t/2 • φ [B] ∆t/2 • φ [E] ∆t • φ [B] ∆t/2 • φ [f ] ∆t/2 .
(5.22)

To achieve the second order accurate as Strang splitting, one can consider the composition of a first-order method like Lie method with its adjoint cf. [START_REF] Bernier | Splitting methods for rotation: application to Vlasov equations[END_REF]. This composition method writes

χ Compo ∆t = χ Lie ∆t/2 • χ Lie ∆t/2 ⋆ , (5.23) 
where the adjoint method χ Lie ∆t/2 ⋆ of the Lie method χ Lie ∆t/2 is denoted the inverse map of the original method with reserved time step, and it writes

χ Lie ∆t/2 ⋆ = χ Lie -∆t/2 -1 = φ [E] -∆t/2 -1 • φ [B] -∆t/2 -1 • φ [f ] -∆t/2 -1 . Since φ [E]
∆t/2 is the exact solution of equation (5.19) on the half-time step ∆t with the initial data f 0 , and so φ

[E] ∆t/2 = f 0 (v -E 0 • ∆t/2)
where the electric field E 0 is computed from discretization of the Poisson equation ( 5.3) at the initial time, it yields that

φ [E] ∆t/2 -1 = f 0 (v + E 0 • ∆t/2) and hence φ [E] -∆t/2 -1 = f 0 (v -E 0 • ∆t/2) = φ [E] ∆t/2 .
Similarly, we also have φ

[f ] -∆t/2 -1 = φ [f ] ∆t/2 . For φ [B] -∆t/2 -1
, from (5.21), we have the inverse solution φ

[B] ∆t/2 -1 writes f 0 (x, v) → f ⋆⋆ (x, v) = f 0 (x, v 1 + tan(θ/2)v 2 , v 2 ) → f ⋆ (x, v) = f ⋆⋆ (x, v 1 , -sin(θ)v 1 , v 2 ) φ [B] ∆t -1 = f ⋆ (x, v 1 + tan(θ/2)v 2 , v 2 ), θ = qB m ∆t 2 hence it yields that φ [B] -∆t/2 -1 = φ [B]
∆t/2 . Combining these computations, we deduce that the adjoint of the Lie method χ Lie ∆t/2

⋆ writes χ Lie ∆t/2 ⋆ = φ [E] ∆t/2 • φ [B] ∆t/2 • φ [f ] ∆t/2 = χ Lie ∆t/2 .
Therefore χ Compo ∆t = χ Strang ∆t is of order 2 in time.

The Scovel method

The characteristic of the splitting underlying Scovel's method reads cf. [START_REF] Ameres | Splitting methods for Fourier spectral discretizations of the strongly magnetized Vlasov-Poisson and the Vlasov-Maxwell system[END_REF]:

   Ẋ(t; s, x, v) = V (t; s, x, v), V (t; s, x, v) = qB m ⊥ V (t; s, x, v), (5.24) 
Ẋ(t; s, x, v) = 0, V (t; s, x, v) = q m E(t, X(t; s, x, v)), (5.25) 
which leads us to the equations associated with the characteristic equations (5.24) and (5.25) respectively:

∂ t f + v • ∇ x f + qB m ⊥ v • ∇ v f = 0, (5.26) 
∂ t f + q m E(t, x) • ∇ v f = 0. (5.27)
Note the following properties of the rotation matrix:

d dθ R(-θ + π/2) = R(-θ), (5.28) 
since

d dθ R(-θ + π/2) = d dθ R(-θ) R(π/2) = -sin(θ) cos(θ) -cos(θ) -sin(θ) 0 -1 1 0 = R(-θ).
Thanks to (5.28), the exact solution of the characteristic curves in the equation (5.24) on one time step ∆t reads:

V (∆t; 0, x, v) = R(-θ)v, θ = qB m ∆t. (5.29) X(∆t; 0, x, v) = x + ∆t 0 V (τ ; 0, x, v)dτ = x + ∆t 0 R(- qB m τ )vdτ = x + m qB ∆t 0 d dτ R(- qB m τ + π/2)vdτ = x + m qB R - qB m ∆t + π/2 -R(π/2) v = x + m qB sin(θ) 1 -cos(θ) cos(θ) -1 sin(θ) v, θ = qB m ∆t. (5.30) 
We can therefore rewrite the equations (5.29) and (5.30) in matrix form as follows: ∆t the exact solutions corresponding to the equations (5.26) and (5.27) on one time step ∆t from an initial condition f 0 (x, v). From (5.31), we can deduce the exact solution of equation (5.26) writes

X(∆t; 0, x, v) V (∆t; 0, x, v) =     1 
γ [B] ∆t = f 0 (X(0; ∆t, x, v), V (0; ∆t, x, v)), (5.32) 
where

X(0; ∆t, x, v) V (0; ∆t, x, v) =     1 0 m qB sin(-θ) m qB (1 -cos(θ)) 0 1 m qB (cos(θ) -1) m qB sin(-θ) 0 0 cos(θ) sin(-θ) 0 0 sin(θ) cos(θ)     x v , θ = qB m ∆t.
(5.33)

For step ii., a four-dimensional interpolation need to use to update the function values of the numerical unknown on the phase space grid. Therefore, to avoid fourdimensional interpolation, we propose an exact splitting that allows us to reduce four-dimensional interpolation to one-dimensional interpolations. To do so, the matrix (5.33) can be expressed into two shears:

    1 0 0 0 0 1 0 0 0 0 cos(θ) sin(-θ) 0 0 sin(θ) cos(θ)         1 0 m qB sin(-θ) m qB (1 -cos(θ)) 0 1 m qB (cos(θ) -1) m qB sin(-θ) 0 0 1 0 0 0 0 1     , (5.34) 
where the first matrix is decomposed into three shears as (5.20) and the second one can be into a product of four shear transformations:

   1 0 m qB sin(-θ) 0 0 1 0 0 0 0 1 0 0 0 0 1       1 0 0 0 0 1 m qB (cos(θ) -1) 0 0 0 1 0 0 0 0 1       1 0 0 m qB (1 -cos(θ)) 0 1 0 0 0 0 1 0 0 0 0 1       1 0 0 0 0 1 0 m qB sin(-θ) 0 0 1 0 0 0 0 1   
leads to an exact splitting in time. In consequence, we just have to solve shear transformations which is nothing but one-dimensional linear advection. Moreover, for the small angle θ, by approximating sin(x) ≈ x and 1 -cos(x) ≈ x 2 /2 ≈ 0, the product of two matrices in (5.34) becomes

    1 0 0 0 0 1 0 0 0 0 cos(θ) sin(-θ) 0 0 sin(θ) cos(θ)         1 0 -∆t 0 0 1 0 -∆t 0 0 1 0 0 0 0 1     , θ = qB m ∆t which implies that γ [B] ∆t = φ [B] ∆t • φ [f ] ∆t , (5.35) 
where φ

[f ] ∆t and φ

[B]
∆t are exact solutions of equations (5.17) and (5.18) and this is equivalent to splitting the equation (5.24) into successive equations (5.14) and (5.15). We see that γ

[B] ∆t is not remain the exact solution of equation (5.26). We consider now the adjoint solution of γ

[B] ∆t . The adjoint solution γ [B] ∆t ⋆ reads γ [B] ∆t ⋆ = γ [B] -∆t -1 = f 0 (X(-∆t; 0, x, v), V (-∆t; 0, x, v)),
because of the fact that X(-∆t;0,x,v) V (-∆t;0,x,v) is just the inverse of X(0;∆t,x,v) V (0;∆t,x,v) with the time step reversed. From (5.31) and (5.33), we get (X, V )(-∆t; 0, x, v) = (X, V )(0; ∆t, x, v) which yields that γ

[B] ∆t ⋆ = γ [B] ∆t . Hence γ [B] ∆t ⋆
is still exact solution to equation (5.26). Therefore, we can use the decomposition as in (5.34) to compute the adjoint solution. For symmetric composition with the adjoint method, the matrix created by two matrices in (5.34) with the time step reversed

    1 0 m qB sin(-θ) m qB (cos(θ) -1) 0 1 m qB (1 -cos(θ)) m qB sin(-θ) 0 0 1 0 0 0 0 1         1 0 0 0 0 1 0 0 0 0 cos(θ) sin(-θ) 0 0 sin(θ) cos(θ)     (5.36)
where the second matrix is decomposed into three shears as (5.20) and the first matrix can be into a product of four shear transformations:

   1 0 0 0 0 1 0 m qB sin(-θ) 0 0 1 0 0 0 0 1       1 0 0 m qB (cos(θ) -1) 0 1 0 0 0 0 1 0 0 0 0 1       1 0 0 0 0 1 m qB (1 -cos(θ)) 0 0 0 1 0 0 0 0 1       1 0 m qB sin(-θ) 0 1 0 0 0 1 0 0 0   
For the small angle θ, the product of two matrices in (5.36) becomes

    1 0 -∆t 0 0 1 0 -∆t 0 0 1 0 0 0 0 1         1 0 0 0 0 1 0 0 0 0 cos(θ) sin(-θ) 0 0 sin(θ) cos(θ)     , θ = qB m ∆t.
Hence, we get

γ [B] ∆t ⋆ = φ [f ] ∆t • φ [B]
∆t .

(5.37)

and γ

[B] ∆t ⋆ is not exact solution of (5.26). This is equivalent to splitting the equation (5.24) into successive equations (5.15) and (5.14). It is clear that, in this situation i.e. θ is small, from (5.35) and (5.37) the solution γ

[B] ∆t and its adjoint are different, since these solutions are not exact solutions for the equation (5.26). Now, we want to use the Scovel method in combination with Strang's splitting or the composition with adjoint method to approximate the solution (5.13) of the system (5.2)-(5.3). The second order Strang splitting based on the Scovel method writes

Γ Strang ∆t = f (∆t) + O(∆t 3 ) with Γ Strang ∆t = γ [B] ∆t/2 • γ [E] ∆t • γ [B] ∆t/2 . (5.38) 
The composition with adjoint method based on the Scovel method writes

Γ Compo ∆t = γ [E] ∆t/2 • γ [B] ∆t/2 ⋆ • γ [E] ∆t/2 • γ [B] ∆t/2 . (5.39) Since γ [E] ∆t/2 ⋆ = γ [E] ∆t/2 and γ [B] ∆t/2 ⋆ = γ [B]
∆t/2 we obtain

Γ Compo ∆t = γ [B] ∆t/2 ⋆ • γ [E] ∆t/2 ⋆ • γ [E] ∆t/2 • γ [B] ∆t/2 = γ [B] ∆t/2 • γ [E] ∆t/2 • γ [E] ∆t/2 • γ [B] ∆t/2 = Γ Strang ∆t .
Therefore the composed Scovel coincides with the Strang splitting based on the Scovel method and so it is of order 2 in time. Moreover from (5.35) and (5.37), for the small values of B • ∆t, it is easily seen that the method splitting based on Scovel method is same the one based on exponential Boris algorithm.

Consistency in the limit ε ↘ 0 of Scovel method

In this section, we consider the characteristic system of the Vlasov equation (5.5) given by

   ε Ẋε (t; s, x, v) = V ε (t; s, x, v), ε Vε (t; s, x, v) = qB m ⊥ V ε (t; s, x, v) ε + q m E ε (t, X ε (t; s, x, v)), t, s ∈ [0, T ], (5.40) 
and the characteristic equation of the guiding-center approximation (5.7)- (5.8) given by

Ẏ (t; s, x) = ⊥ E(t, Y (t; s, x)) B , t, s ∈ [0, T ].
(5.41)

In the sequel we will denote X ε (t) = X ε (t; s, x, v) and V ε (t) = V ε (t; s, x, v).

We define then the following combination of the characteristics:

Z ε (t) = X ε (t) + m qB ε ⊥ V ε (t), (5.42) 
which is the formula giving the Guiding center position.

Proposition 5.3.1 For all (x, v) ∈ R 2 × R 2 , the evolution of the Guiding Center Z ε (t) satisfies:

Żε (t) = ⊥ E ε (t, X ε (t)) B .

Proof.

By direct computation and using of equations (5.40) we have:

Żε (t) = Ẋε (t) + m qB ε ⊥ Vε (t) = V ε (t) ε + m qB ⊥ qB m ⊥ V ε (t) ε + q m E ε (t, X ε (t)) = ⊥ E ε (t, X ε (t)) B .
We consider now the Vlasov equation (5.5) under the Scovel method, that means the distribution function f ε (t, x, v) solves successively

ε∂ t f ε (t, x, v) + v • ∇ x f ε + ω c ε ⊥ v • ∇ v f ε = 0, (t, x, v) ∈]0, T ] × R 2 × R 2 , (5.43) 
and

ε∂ t f ε (t, x, v) + q m E ε (t, x) • ∇ v f ε = 0, (t, x, v) ∈]0, T ] × R 2 × R 2 , (5.44) 
where the electric field E ε is computed from the Poisson equation after performing the equation (5.43).

We first observe the approximation of the exact Guiding center position Z ε in (5.42) when computing the composition of the characteristic equations associated with equations (5.43) and (5.44) respectively. The characteristic equation associated with equation (5.43) is

E 1 ε (t) :        ε Ẋε (t) = V ε (t), t > 0 ε Vε (t) = qB m ⊥ V ε (t) ε ,
and with equation (5.44) being

E 2 ε (t) :      ε Ẋε (t) = 0, t > 0 ε Vε (t) = q m E ε (t, X ε (t)),
where the electric field E ε is computed from the Poisson equation. Using the formulae (5.29)-(5.30), the exact solution of the subflow E 1 ε (t) reads then

εX ε,⋆ = εX ε (0) + mε 2 qB R - qB m t ε 2 + π/2 -R(π/2) V ε (0), V ε,⋆ = R - qB m t ε 2 V ε (0), (5.45) 
and the exact solution of the subflow E 2 ε (t) with the initial condition (X ε,⋆ , V ε,⋆ ) reads 

εX ε (t) = εX ε,⋆ , εV ε (t) = εV ε,⋆ + q m t 0 E ε (s, X ε,⋆ )ds. ( 5 
X ε (t) = X ε (0) + m qB R - qB m t ε 2 + π/2 -R(π/2) εV ε (0), εV ε (t) = R - qB m t ε 2 εV ε (0) + q m t 0 E ε (s, X ε (s))ds.
(5.47)

Substituting the second equation into the first one of (5.47), we obtain that

X ε (t) = X ε (0) + m qB R(π/2)ε [V ε (t) -V ε (0)] + q m t 0 ⊥ E ε (s, X ε (s)) B ds.
Then, using (5.42), this equation becomes:

Z ε (t) = Z ε (0) + t 0 ⊥ E ε B s, Z ε (s) - m qB ε ⊥ V ε (s) ds.
Therefore, the system (5.47) can be re-written for (Z ε , εV ε ) as:

Z ε (t) = Z ε (0) + t 0 ⊥ E ε B s, Z ε (s) - m qB ε ⊥ V ε (s) ds, εV ε (t) = R - qB m t ε 2 εV ε (0) + q m t 0 E ε s, Z ε (0) - m qB R - qB m s ε 2 ε ⊥ V ε (0) ds.
(5.48)

The asymptotic limit for the density particle We will use the splitting scheme (5.43)-(5.44) to approximate the distribution function f ε (t, x, v) and then compute the density particle ρ ε (t, x). We show formally that the limit ρ(t, x) of the sequence (ρ ε ) ε when ε goes to 0 is consistent with the guiding center equation, based on the work of Miot in [START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF]. Motivated by the computation in the Proposition 5.3.1, we introduce the change of coordinates (x, v) → (x, v) and consider the gyro-coordinates given by

x = x + ε ⊥ v ω c , v = v, ω c = qB m .
At any time t ∈ [0, T ], we introduce the new distribution of particles fε (t) in the new coordinates (x, v), that is

fε (t, x, v) = f ε (t, x, v), x = x -ε ⊥ v ω c .
Performing the above change of coordinates allow us transform the equations (5.43)-(5.44) of presence density f ε into equations of fε which give respectively by: Proposition 5.3.2 We have

∂ t fε (t, x, v) + ω c ⊥ v ε 2 • ∇ v fε = 0, (t, x, v) ∈ [0, T ] × R 2 × R 2 , (5.49) 
and

∂ t fε + ⊥ E ε B t, x -ε ⊥ v ω c • ∇ x fε + q m E ε ε t, x -ε ⊥ v ω c • ∇ v fε = 0, (t, x, v) ∈ [0, T ] × R 2 × R 2 .
(5.50)

Proof. We compute:

∂ t f ε = ∂ t fε , ∇ x f ε = ∇ x fε , and 
∇ v f ε = t (∂ v x)∇ x fε + ∇ v fε = t ε ω c R(-π/2) ∇ x fε + ∇ v fε = ε ω c R(π/2)∇ x fε + ∇ v fε .
Combining the above computations we obtain that

ε∂ t f ε + v • ∇ x f ε + ω c ε ⊥ v • ∇ v f ε = ε∂ t fε + v • ∇ x fε + ω c ε ⊥ v • ε ω c R(π/2)∇ x fε + ∇ v fε = ε∂ t fε + v • ∇ x fε -v • ∇ x fε + ω c ε ⊥ v • ∇ v fε = ε∂ t fε + ω c ε ⊥ v • ∇ v fε ,
and we also have

ε∂ t f ε + q m E(t, x) • ∇ v f ε = ε∂ t fε + q m E ε (t, x) • ε ω c R(π/2)∇ x fε + ∇ v fε = ε∂ t fε + ε ⊥ E ε B t, x -ε ⊥ v ω c • ∇ x fε + q m E ε t, x -ε ⊥ v ω c • ∇ v fε ,
which yield the result.

We then consider the macroscopic density in the gyro-coordinates x, that is

ρε (t, x) = R 2 fε (t, x, v)dv = R 2 f ε (t, x -ε ⊥ v ω c , v)dv.
After integrating into the equations in Proposition 5.3.2 with respect to the velocity v, the density ρε solves successively the following equations:

Proposition 5.3.3 We have ∂ t ρε (t, x) = 0, (t, x) ∈ [0, T ] × R 2 , (5.51) 
and

∂ t ρε (t, x) + div x R 2 ⊥ E ε B t, x -ε ⊥ v ω c fε dv = 0, (t, x) ∈ [0, T ] × R 2 .
(5.52)

Proof. The first equation is obvious since

R 2 ⊥ v • ∇ v fε dv = 0.
For the second equation we have to show that

R 2 E ε t, x -ε ⊥ v ω c • ∇ v fε dv = 0.
After using the integration by partial w.r.t the variable v, we have to compute the divergence of the following term

div v E ε t, x -ε ⊥ v ω c = ∂ v 1 E 1 ε t, x -ε ⊥ v ω c + ∂ v 2 E 2 ε t, x -ε ⊥ v ω c = ε ω c ∂ x 2 E 1 ε t, x -ε ⊥ v ω c - ε ω c ∂ x 1 E 2 ε t, x -ε ⊥ v ω c = 0, where we used E ε = (E 1 ε , E 2 ε ) = -(∂ x 1 Φ ε , ∂ x 2 Φ ε )
, hence the second equation of Proposition 5.3.3 follows.

Remark 5.3.1

We see that the evolution of the density particle from the equations (5.51)-(5.52) does not contain the fast scale, so a very small time step is no longer required to simulate well. Then we compare it with the exponential Boris algorithm presented in Section 5.2 when applying the above procedure. In this procedure splitting, the simulation of density particle will be affected by the time step. Indeed, we appeal the exponential Boris algorithm for the Vlasov equation as

ε∂ t f ε (t, x, v) + v • ∇ x f ε = 0, ε∂ t f ε (t, x, v) + ω c ε ⊥ v • ∇ v f ε = 0, ε∂ t f ε (t, x, v) + q m E ε (t, x) • ∇ v f ε = 0.
When we apply the above change of coordinates, the above equations becomes:

ε∂ t fε (t, x, v) + v • ∇ x fε = 0, ε∂ t fε (t, x, v) -v • ∇ x fε + ω c ε ⊥ v • ∇ v fε = 0, ∂ t fε (t) + ⊥ E ε B t, x -ε ⊥ v ω c • ∇ x fε + q m E ε ε t, x -ε ⊥ v ω c • ∇ v fε = 0.
Integrating these equations w.r.t the variable v, we obtain

ε∂ t ρε (t) + ∇ x • R 2 v fε dv = 0, ε∂ t ρε (t) -∇ x • R 2 v fε dv = 0, ∂ t ρε (t, x) + div x R 2 ⊥ E ε B t, x -ε ⊥ v ω c fε dv = 0.
We see that the stiff term is still present in the above system. Therefore, in order to obtain good results with this method, the time step ∆t has to be the same order of ε which penalizes the method in terms of CPU time cost when we consider a very small ε.

Finally, we will formally check the asymptotic behavior of the sequence of density particle (ρ ε ) ε . Passing formal to the limit as ε → 0 in the equations of Proposition 5.3.3 yield

∂ t ρ(t, x) = 0, ∂ t ρ(t, x) + div x R 2 ⊥ E(t, x) B f (t, x, v)dv = 0.
Therefore we get the density limit ρ solves successively the following equations:

∂ t ρ(t, x) = 0, ∂ t ρ(t, x) + ⊥ E(t, x) B • ∇ x ρ(t, x) = 0. Proposition 5.3.4 (formal) Assume that the family (E ε ) ε>0 is uniform bounded in L ∞ (R + × R 2
) and the sequences (ρ ε ) ε>0 satisfy the equations in Proposition 3.4, with the initial data (f ε,0 ) ε>0 be a non negative presence density satisfying

sup ε>0 R 2 R 2 f ε,0 (x, v)dxdv < +∞.
Then, there is a sequence (ε k ) k such that ρ ε k → ρ, E ε k → E as ε k → 0 and the limit (ρ, E) solves successively the following equations:

∂ t ρ(t, x) = 0, ∂ t ρ(t, x) + ⊥ E B (t, x) • ∇ xρ(t, x) = 0, (5.53) 
in the sense of distribution.

Proof. The uniform bounded w.r.t ε > 0 on the total mass R 2 R 2 f ε (t)dxdv and the electric field E ε implies that there exists ρ ∈ L ∞ ([0, T ], M + (R 2 )) and E ∈ L ∞ ([0, T ] × R 2 ), such that up to extraction of a subsequence (ρ ε k ) k , the following convergences hold as k → +∞

ρ ε k → ρ in L ∞ ([0, T ], M + (R 2 )) weak -⋆, E ε k → E in L ∞ ([0, T ] × R 2 ) weak -⋆. Let Ψ ∈ C ∞ 0 ((0, T ) × R 2 )
, from the equation (5.52) we have

d dt R 2 ρε k (t, x)Ψ(t, x)dx = R 2 ρε k (t, x)∂ t Ψ(t, x)dx + R 2 ∇ xΨ(t, x) • R 2 ⊥ E ε k B t, x -ε k ⊥ v ω c fε k (t, x, v)dv dx.
Observing the first term in the above expression we get

R 2 ρε k (t, x)∂ t Ψ(t, x)dx = R 2 R 2 fε k (t, x, v)∂ t Ψ(t, x)dxdv = R 2 R 2 f ε k t, x -ε k ⊥ v ω c , v ∂ t Ψ(t, x)dxdv = R 2 R 2 f ε k (t, x, v) ∂ t Ψ(t, x + ε k ⊥ v ω c )dxdv.
Similarly for the second term,

R 2 ∇ xΨ(t, x) • R 2 ⊥ E ε k B t, x -ε k ⊥ v ω c fε k (t, x, v)dv dx = R 2 R 2 ∇ xΨ(t, x + ε k ⊥ v ω c ) • ⊥ E ε k B (t, x) f ε k (t, x, v)dvdx.
Finally, we obtain

d dt R 2 ρε k (t, x)Ψ(t, x)dx = R 2 R 2 f ε k (t, x, v) ∂ t Ψ(t, x + ε k ⊥ v ω c )dxdv + R 2 R 2 ∇ xΨ(t, x + ε k ⊥ v ω c ) • ⊥ E ε k B (t, x) f ε k (t, x, v)dvdx.
The expression on the right of this equality can be rewritten as

R 2 ρ ε k (t, x) ∂ t Ψ(t, x)dx + R 2 ∇ xΨ(t, x) • ⊥ E ε k B (t, x) ρ ε k (t, x)dx + R 2 R 2 f ε k (t, x, v) ∂ t Ψ(t, x + ε k ⊥ v ω c ) -∂ t Ψ(t, x) dxdv + R 2 R 2 ∇ xΨ(t, x + ε k ⊥ v ω c ) -∇ xΨ(t, x) • ⊥ E ε k B (t, x) f ε k (t, x, v)dvdx.
Formally, as ε k → 0 we dedude for any

Ψ ∈ C ∞ 0 ((0, T ) × R 2 ) that d dt R 2 ρ(t, x)Ψ(t, x)dx = R 2 ρ (t, x) ∂ t Ψ(t, x)dx + R 2 ∇ xΨ(t, x) • ⊥ E B (t, x) ρ(t, x)dx,
which yields the equation (5.53) after integrating w.r.t the variable time t.

Numerical scheme

This Section will be devoted to the construction of a numerical scheme for the splitting scheme (5.43)-(5.44) using the semi-Lagrangian method. We will perform the analysis of the first order numerical scheme: we check formally that this numerical scheme provides a consistent discretization of the guiding-center approximation.

Let ∆t > 0 be the time step and denote t n = n∆t for n ≥ 0 as the discretisation of the t-variables. Then denoting f ε,n (x, v) with the approximation of f ε (t n , x, v), ρ ε,n (x) with the approximation of ρ ε (t n , x) and E ε,n (x) with the approximation of E ε (t n , x).

We define

(X ε,n , V ε,n ) = (X ε , V ε )(t n ; t n-1 , X ε,n-1 , V ε,n-1 ).

The first order numerical scheme

The numerical scheme of the forward trajectory of particles (X ε (t), V ε (t))

Now we give a time discretizations for equations (5.45)-(5.46) based on explicit Euler scheme. The discretization in time of the equation (5.45) on a time step ∆t can thus be written as follows:

       εX ε (t n+1/2 ; t n , X ε,n , V ε,n ) = εX ε,n + mε 2 qB R - qB m ∆t ε 2 + π/2 -R(π/2) V ε,n , V ε (t n+1/2 ; t n , X ε,n , V ε,n ) = R - qB m ∆t ε 2 V ε,n ,
and we evaluate the distribution function at time t n at the foot of the characteristics starting (x, v) at time t n+1/2 as

f ε,⋆ (x, v) = f ε,n (X ε (t n ; t n+1/2 , x, v), V ε (t n ; t n+1/2 , x, v)).
Then we compute the electric field E ε at time t n+1 by substituting f ε,⋆ in the Poisson equation. Hence the discretization in time of the equation (5.46) on the time step ∆t becomes

εX ε,n+1 = εX ε (t n+1/2 ; t n , X ε,n , V ε,n ), εV ε,n+1 = εV ε (t n+1/2 ; t n , X ε,n , V ε,n ) + q m ∆tE ε,n+1 (X ε (t n+1/2 ; t n , X ε,n , V ε,n )).
Therefore the numerical solution at the time t n+1 for trajectory particles is

       X ε,n+1 = X ε,n + m qB R - qB m ∆t ε 2 + π/2 -R(π/2) εV ε,n , εV ε,n+1 = R - qB m ∆t ε 2 εV ε,n + q m ∆tE ε,n+1 (X ε,n+1 ).
(5.54)

We now study the position of the guiding center by substituting the second equation in the first one of (5.54)

X ε,n+1 = X ε,n + m qB R(π/2)ε [V ε,n+1 -V ε,n ] + ∆t ⊥ E ε,n+1 (X ε,n+1 ) B .
Using then the formula (5.42), we can rewrite this equation as

Z ε,n+1 -Z ε,n = ∆t ⊥ E ε,n+1 (X ε,n+1 ) B .
Finally, the system (5.54) can be re-written for (Z ε,n , εV ε,n ) as

Z ε,n+1 -Z ε,n ∆t = ⊥ E ε,n+1 B Z ε,n+1 - m qB ε ⊥ V ε,n+1 , εV ε,n+1 -R - qB m ∆t ε 2 εV ε,n = q m ∆tE ε,n+1 Z ε,n - m qB R - qB m ∆t ε 2 ε ⊥ V ε,n , (5.55) 
with the initial data

(Z ε,0 , V ε,0 ) = X ε,0 + m qB ε ⊥ V ε,0 , V ε,0 .
The full-discretized numerical scheme for the distribution function f ε,n (x, v) First of all, we assume that the initial distribution

f 0 ∈ C 1 c (R 2 × R 2 ) whose support is included in some Ω = [-R, R] 2 × [-v R , v R ] 2 ⊂ R 2 × R 2 for R > 0, v R >
0 large enough and we introduce the finite uniform mesh points (x i,j , v k,l ) whose coordinates are denoted by

x i,j = (x i , x j ), (i, j) ∈ 0, 1, 2, ..., N x -1 and v k,l = (v k , v l ), (k, l) ∈ 0, 1, 2, ..., N v -1
to discreteze the phase-space computional domain (x, v) ∈ Ω where ∆x 1 , ∆x 2 are the sizes of one cell in x i , x j directions and ∆v 1 , ∆v 2 are the sizes of one cell in v k , v l directions. Then, we give the value of distribution function f ε at the mesh points (x i,j , v k,l ) at any given time t n . Therefore, the numerical scheme allows us to go to from time t n to t n+1 and compute f ε,n+1 (x i,j , v k,l ) using the characteristics backward in time can be described as follow:

(A1) Computing the distribution function at time t n+1/2 at the foot of the characteristic subflow E 1 ε starting at (x i,j , v k,l ) at time t n+1 using the Lagrange interpolation operator. This action is given by the operator T1 as follow:

T1 f ε,n (x i,j , v k,l ) = ΠT 1 f ε,n (x i,j , v k,l ).
Here Π is the Lagrange interpolation operator and T 1 is the transport operator defined by

T 1 f ε,n (x i,j , v k,l ) = f ε,n (X ε (t n+1/2 ; t n+1 , x i,j , v k,l ), V ε (t n+1/2 ; t n+1 , x i,j , v k,l )), where        X ε (t n+1/2 ; t n+1 , x i,j , v k,l ) = x i,j + R qB m ∆t ε 2 + π/2 -R(π/2) ε v k,l ω c , V ε (t n+1/2 ; t n+1 , x i,j , v k,l ) = R qB m ∆t ε 2 v k,l .
The output from above is integrated with respect to velocity to provide an approximation for the density at time t n+1 ,

ρ[ T1 f ε,n ](t n+1 , x i,j ) = R 2 T1 f ε,n (x i,j , v)dv,
which is then substitued into the Poisson equation to compute the approximation of the electric field at time t n+1 , that is

E ε,n+1 (x i,j ) = -∇ x Φ ε,n+1 (x i,j ), -ϵ 0 ∆ x Φ ε,n+1 (x i,j ) = q R 2 T1 f ε,n (x i,j , v)dv.
(A2) The result obtained from (A1) is computed the distribution function at time t n at the foot of the characteristic subflow E 2 ε starting at (x i,j , v k,l ) at time t n+1/2 with the electric field E ε,n+1 using the Lagrange interpolation operator. This action is described by the operator T2 as follow:

T2 f ε,n (x i,j , v k,l ) = ΠT 2 f ε,n (x i,j , v k,l ),
with the transport operator T 2 gives by

T 2 f ε,n (x i,j , v k,l ) = f ε,n (X ε (t n ; t n+1/2 , x i,j , v k,l ), V ε (t n ; t n+1/2 , x i,j , v k,l )), where X ε (t n ; t n+1/2 , x i,j , v k,l ) = x i,j , V ε (t n ; t n+1/2 , x i,j , v k,l ) = v k,l - q m ∆t ε E ε,n+1 (x i,j ).
If we use such a method, due to the 1 ε -frequency oscillations of the electric field, we have to guarantee the accurate simulation of the scheme using the semi-Lagrangian solvers. Therefore, the time step ∆t must satisfy the following condition:

∆t < O(ε|v R |), (5.56) 
where v R denotes the maximum value in the velocity grid. Finally, the full-discretized numerical scheme can be written as:

f ε,n+1 (x i,j , v k,l ) = T2 • T1 f ε,n (x i,j , v k,l ), (5.57) 
and then we compute the density ρ ε,n+1 given by

ρ ε,n+1 (x i,j ) = ∆v 1 ∆v 2 Nv-1 k,l=0 f ε,n+1 (x i,j , v k,l ).
The asymptotic limit of full discretization for density (ρ ε,n ) ε>0 In Section 5.3, we have been analysed the asymptotic limit of the semi-discretization in time for density particle ρ ε . Now, we want to study the asymptotic limit property of the full discretized density ρ ε,n+1 (x i,j ), as ε → 0. To do this, we rewrite the formula of the distribution function f ε,n+1 in (5.57) as:

ΠT 2 • ΠT 1 f ε,n (x i,j , v k,l ) = Π[T 2 • T 1 ]f ε,n (x i,j , v k,l
) + O((∆x 1 ) p (∆x 2 ) p ) + O((∆v 1 ) p (∆v 2 ) p ),

where p denotes the degree of the Lagrange interpolation operator. Hence, considering the fine phase space mesh, we can expect that ΠT 2 • ΠT 1 f ε,n (x i,j , v k,l ) ≈ Πf ε,n (X ε (t n ; t n+1 , x i,j , v k,l ), V ε (t n ; t n+1 , x i,j , v k,l )),

where [T 2 • T 1 ]f ε,n (x i,j , v k,l ) = f ε,n (X ε (t n ; t n+1 , x i,j , v k,l ), V ε (t n ; t n+1 , x i,j , v k,l )) with

       X ε (t n ; t n+1 , x i,j , v k,l ) = x i,j + R qB m ∆t ε 2 + π/2 -R(π/2) ε v k,l ω c , V ε (t n ; t n+1 , x i,j , v k,l ) = R qB m ∆t ε 2 v k,l - q m ∆t ε E ε,n+1 (x i,j ).
We now give a formal proof that the density ρ ε,n obtained from f ε,n ρ ε,n+1 (x i,j ) ≈ ∆v 1 ∆v 2

Nv-1 k,l=0

Πf ε,n (X ε (t n ; t n+1 , x i,j , v k,l ), V ε (t n ; t n+1 , x i,j , v k,l )) (5.58) is a consistent first order approximation w.r.t ∆t of the guiding center model, that is ρ ε,n → ρ n , as ε → 0, and the limit (ρ n ) n is a first order numerical solution w.r.t ∆t of the guiding center equation provided by the semi-Lagrangian method. Before passing to the limit, we need the following Lemma: 

T 1 f ε,n (x i,j , v k,l ) = T 1 f ε,n (x i,j -ε ⊥ v k,l ω c , v k,l ) + O(ε).
Consequently, we get

T 2 • T 1 f ε,n (x i,j , v k,l ) = f ε,n (x i,j + R qB m ∆t ε 2 + π/2 ε v k,l ω c , R qB m ∆t ε 2 v k,l - q m ∆t ε E ε,n+1 (x i,j )) + O(ε).
Proof. Since T 1 f ε,n (x i,j , v k,l ) = f ε (t n , X ε (t n ; t n+1/2 , x i,j , v k,l ), V ε (t n ; t n+1/2 , x i,j , v k,l ))

= f ε (t n , x i,j + R qB m

∆t ε 2 + π/2 -R(π/2) ε v k,l ω c , R qB m ∆t ε 2 v k,l ),
we get

T 1 f ε,n (x i,j -ε ⊥ v k,l ω c , v k,l ) = f ε (t n , x i,j -ε ⊥ v k,l ω c + R qB m ∆t ε 2 + π/2 -R(π/2) ε v k,l ω c , R qB m ∆t ε 2 v k,l ) = f ε (t n , x i,j + R qB m ∆t ε 2 + π/2 ε v k,l ω c , R qB m ∆t ε 2 v k,l ).
Hence we deduce by the mean-value theorem that

|T 1 f ε,n (x i,j , v k,l ) -T 1 f ε,n (x i,j -ε ⊥ v k,l ω c , v k,l )| ≤ ε ω c ∥∇f ε (t n )∥ ∞ |v k,l | ≤ Cε,
where C = C(ω c , f 0 , v R ) and then it implies that

T 1 f ε,n (x i,j , v k,l ) = T 1 f ε,n (x i,j -ε ⊥ v k,l
ω c , v k,l ) + O(ε).

(5.59)

Finally, we apply the operator T 2 to (5.59) and we obtain

T 2 • T 1 f ε,n (x i,j , v k,l ) = T 2 • T 1 f ε,n (x i,j -ε ⊥ v k,l ω c , v k,l ) + O(ε) = f ε,n (x i,j + R qB m ∆t ε 2 + π/2 v k,l ω c , R qB m ∆t ε 2 v k,l - q m ∆t ε E ε,n+1 (x i,j )) + O(ε),
since the operator T 2 is linear.

Thanks to Lemma 5.4.1 we have that

∆v 1 ∆v 2 Nv-1 k,l=0 ΠT 2 • T 1 f ε,n (x i,j , v k,l ) = ∆v 1 ∆v 2 Nv-1 k,l=0
Πf ε,n (x i,j -εR qB m

∆t ε 2 ⊥ v k,l ω c , R qB m ∆t ε 2 v k,l - q m ∆t ε E ε,n+1 (x i,j )) + O(ε) = ∆v 1 ∆v 2 Nv-1 k,l=0 Πf ε,n (x i,j -ε ⊥ v k,l ω c , v k,l - q m ∆t ε E ε,n+1 (x i,j )) + O(∆v 1 ∆v 2 ) + O(ε),
where we used the change of variable v k,l → R(-qB m ∆t ε 2 )v k,l to filter the fast rotation in velocity. The error O(∆v 1 ∆v 2 ) comes from the fact that the discrete integral over the velocity variable is not conserved by a rotation. Performing then the translation v k,l → v k,l + q m ∆t ε E ε,n+1 (x i,j ) to remove the stiff term, with the condition (5.56) to ensure that this change of variable is well defined in the velocity grid. If we consider a fine mesh in the direction of velocity, we can expect that the density ρ ε,n+1 in (5.58) can be approximated by

ρ ε,n+1 ≈ ∆v 1 ∆v 2 Nv-1 k,l=0 Π[T 2 • T 1 ]f ε,n (x i,j , v k,l ) ≈ ∆v 1 ∆v 2 Nv-1 k,l=0
Πf ε,n (x i,j -∆t B ⊥ E ε,n+1 (x i,j ) -ε ⊥ v k,l ω c , v k,l ) + O(ε).

(5.60)

Formally passing to the limit as ε → 0 in (5.60), we obtain that

ρ n+1 (x i,j ) ≈ ∆v 1 ∆v 2 Nv-1 k,l=0
Πf n (x i,j -∆t

B ⊥ E n+1 (x i,j ), v k,l ) = Nv-1 k,l=0
Πρ n (x i,j -∆t

B ⊥ E n+1 (x i,j )),
which is a consistent first order approximation with respect to ∆t of the guiding center model provided by the semi-Lagrangian method.

The first order adjoint scheme

Now we consider the first order which is an adjoint of Lie method in Section 5.4.1

Ẽ1 ε (t) :     
ε Ẋε (t) = 0, over ∆t > 0 ε Vε (t) = q m E ε (t, X ε (t)), Ẽ2 ε (t) :

       ε Ẋε (t) = V ε (t), over ∆t > 0 ε Vε (t) = qB m ⊥ V ε (t) ε .
We give a time discretization for these equations based on the explicit Euler scheme. The discretization in time of the equation Ẽ1 ε (t) on a time step ∆t can thus be written as follows:

εX ε,⋆ = εX ε,n , εV ε,⋆ = εV ε,n + q m ∆tE ε,n (X ε,n ), and the equation Ẽ2 ε (t) with the initial condition (X ε,n , V ε,n ) given by

       X ε,n+1 = X ε,⋆ + m qB R - qB mε 2 ∆t + π/2 -R(π/2) εV ε (t n+1/2 ; t n , X ε,n , V ε,n ), V ε,n+1 = R - qB mε 2 ∆t V ε,⋆ .
Therefore, the numerical solution at time t n+1 for the trajectory particles reads:

       X ε,n+1 = X ε,n + m qB R - qB mε 2 ∆t + π/2 -R(π/2) εV ε,n + q m ∆tE ε,n (X ε,n ) ,
εV ε,n+1 = R -qB mε 2 ∆t εV ε,n + q m ∆tE ε,n (X ε,n ) .

(5.61) We then evaluate the distribution function at time t n at the foot of the characteristic curves starting (x, v) at time t n+1 f ε,n+1 (x, v) = f ε,n (X ε (t n ; t n+1 , x, v), V ε (t n ; t n+1 , x, v)), which is substituted into the Poisson equation to compute the approximation of the electric field at time t n+1 . In order to study the guiding center position, we substitute the second equation into the first one of (5.61) to get

X ε,n+1 = X ε,n + m qB R(π/2)ε[V ε,n+1 -V ε,n ] + ∆t ⊥ E ε,n (X ε,n ) B .
Using then the formula (5.42), we can write this equation for Z ε,n as

Z ε,n+1 -Z ε,n ∆t = ⊥ E ε,n (X ε,n ) B .
Finally, the equation (5.61) can be rewritten for (Z ε,n , V ε,n ) as

Z ε,n+1 -Z ε,n ∆t = ⊥ E ε,n B (Z ε,n - m qB ε ⊥ V ε,n ), R qB mε 2 ∆t εV ε,n+1 = εV ε,n + q m ∆tE ε,n (Z ε,n - m qB ε ⊥ V ε,n ).
(5.62)

The full discretized numerical scheme for the distribution function f ε,n (x, v) (A1) Computing the distribution function at time t n+1/2 at the foot of the characteristic subflow Ẽ1 ε starting (x i,j , v k,l ) at time t n+1 using the Lagrange interpolation operator. This action is described by: T1 f ε,n (x i,j , v k,l ) = ΠT 1 f ε,n (x i,j , v k,l ), where T 1 f ε,n (x i,j , v k,l ) = f ε,n (X ε (t n+1/2 ; t n+1 , x i,j , v k,l ), V ε (t n+1/2 ; t n+1 , x i,j , v k,l )), with X ε (t n+1/2 ; t n+1 , x i,j , v k,l ) = x i,j , V ε (t n+1/2 ; t n+1 , x i,j , v k,l ) = v k,l -q m ∆t ε E ε,n (x i,j ).

(A2)

The result obtained from (A1) is evaluated at time t n at the foot of the characteristic subflow Ẽ2 ε starting at (x i,j , v k,l ) at time t n+1/2 using the Lagrange interpolation operator. This action is given by: T2 f ε,n (x i,j , v k,l ) = ΠT 2 f ε,n (x i,j , v k,l ), with T 2 f ε,n (x i,j , v k,l ) = f ε,n (X ε (t n ; t n+1/2 , x i,j , v k,l ), V ε (t n ; t n+1/2 , x i,j , v k,l )), where X ε (t n ; t n+1/2 , x i,j , v k,l ) = x i,j + m qB R qB m ∆t ε 2 + π/2 -R(π/2) εv k,l , V ε (t n ; t n+1/2 , x i,j , v k,l ) = R qB m ∆t ε 2 εv k,l .

Finally, the numerical scheme can be written as:

f ε,n+1 (x i,j , v k,l ) = T2 • T1 f ε,n (x i,j , v k,l ).
Then we compute the density ρ ε,n+1

ρ ε,n+1 (x i,j ) = ∆v 1 ∆v 2 Nv-1 k,l=0
f ε,n+1 (x i,j , v k,l ), and resolution of the Poisson equation at time t n+1 to get E ε,n+1 .

The asymptotic limit of full discretization for the density (ρ ε,n ) ε>0

In the same way as the proof in section 5.4.1, we can conclude that the limit of particle density ρ ε,n+1 (x i,j ) approximate to ρ n+1 (x i,j ) when ε goes to zero which satisfies the following equation

ρ n+1 (x i,j ) ≈ Πρ n (x i,j - ∆t B ⊥ E n (x i,j )),
which is a consistent first-order approximation with respect to ∆t of the guiding center model.

The second order scheme

We will now consider the second order scheme (5.39) which is the composition of Lie method (5.54) and its adjoint (5.61) over the time step ∆t/2. Therefore, the first stage corresponds to 

E 1 ε :        X ε,n+1/2 = X ε,n + m qB
f ε,⋆ (x, v) = f ε,n (X ε,⋆ , V ε,⋆ ),
where the characteristic curves (X ε,⋆ , V ε,⋆ ) are given by

X ε,⋆ = x + m qB R qB m ∆t 2ε 2 + π/2 -R(π/2) εv, V ε,⋆ = R qB m ∆t 2ε 2 v.
Then, the second stage is given by Finally, the numerical solution of trajectory particles at the time step t n+1 is given by

E 2 ε :            X ε,n+1 = X ε,
               εV ε,n+1 = R - qB m ∆t ε 2 εV ε,n + q m ∆tR - qB m ∆t 2ε 2 E ε,n+1/2 (X ε,n+1/2 ), X ε,n+1 = X ε,n + m qB R - qB m ∆t ε 2 + π/2 -R(π/2) εV ε,n +∆t R - qB m ∆t 2ε 2 + π/2 -R(π/2)
E ε,n+1/2 B (X ε,n+1/2 ).

(5.63)

In order to study the guiding center position, we substitute the first equation in the second one of (5.63) to obtain

X ε,n+1 = X ε,n + m qB R(π/2)ε[V ε,n+1 -V ε,n ] + ∆t ⊥ E ε,n+1/2 B (X ε,n+1/2 ).
Using then the formula (5.42), this equation can be written for Z ε,n as

Z ε,n+1 -Z ε,n ∆t = ⊥ E ε,n+1/2 B (X ε,n+1/2 ), (5.64) 
Finally the equation (5.63) can be re-written for (Z ε,n , εV ε,n ) as

Z ε,n+1 -Z ε,n ∆t = ⊥ E ε,n+1/2 B ( Xε,n -R - qB mε 2 ∆t 2 m qB ε ⊥ V ε,n ), εV ε,n+1 = R - qB mε 2 ∆t εV ε,n + q m ∆tR - qB mε 2 ∆t 2 E ε,n+1/2 (Z ε,n -R - qB mε 2 ∆t 2 m qB ε ⊥ V ε,n ).
The full discretized numerical scheme for the distribution function f ε,n (A1) Computing the distribution function at time t n,⋆⋆ intermediate between t n+1/2 and t n+1 at the foot of the characteristic subflow E 1 ε starting at (x i,j , v k,l ) at time t n+1 using the Lagrange interpolation operator. This action is described by: T1 f ε,n (x i,j , v k,l ) = ΠT 1 f ε,n (x i,j , v k,l ) where T 1 f ε,n (x i,j , v k,l ) = f ε,n (X ε (t n,⋆⋆ ; t n+1 , x i,j , v k,l ), V ε (t n,⋆⋆ ; t n+1 , x i,j , v k,l ))

with        X ε (t n,⋆⋆ ; t n+1 , x i,j , v k,l ) = x i,j + m qB R qB m ∆t 2ε 2 + π/2 -R(π/2) εv k,l V ε (t n,⋆⋆ ; t n+1 , x i,j , v k,l ) = R qB m ∆t 2ε 2 v k,l .
The output from above is integrated with respect to velocity to obtain an approximation for the density at time t n+1/2 , which is then substituted into the Poisson equation to compute the approximation of the electric field at time t n+1/2 , that is E(t n+1/2 , x i,j ) = -∇ x Φ(t n+1/2 , x i,j ), -ϵ 0 ∆ x Φ(t n+1/2 , x i,j ) = q R 2 T1 f ε,n (x i,j , v)dv.

(A2)

The result obtained from (A1) is computed at time t n+1/2 at the foot of the characteristic subflow E 2 ε starting at (x i,j , v k,l ) at time t n,⋆⋆ with the electric field E(t n+1/2 ) using the Lagrange interpolation operator. This action is described by: T2 f ε,n (x i,j , v k,l ) = ΠT 2 f ε,n (x i,j , v k,l ), where T 2 f ε,n (x i,j , v k,l ) = f ε,n (X ε (t n+1/2 ; t n,⋆⋆ , x i,j , v k,l ), V ε (t n+1/2 ; t n,⋆⋆ , x i,j , v k,l )), with X ε (t n+1/2 ; t n,⋆⋆ , x i,j , v k,l ) = x i,j , V ε (t n+1/2 ; t n,⋆⋆ , x i,j , v k,l ) = v k,l -q m ∆t 2ε E ε,n+1/2 (x i,j ).

(A3)

The result obtained from (A2) is evaluated at time t n,⋆ intermediate between t n and t n+1/2 at the foot of the characteristic subfow E 2 ε starting at (x i,j , v k,l ) at time t n+1/2 with the electric field E n+1/2 using the Lagrange interpolation operator. This action is described by: T2 f εn (x i,j , v k,l ) = ΠT 2 f ε,n (x i,j , v k,l ), where T 2 f ε,n (x i,j , v k,l ) = f ε,n (X ε (t n,⋆ ; t n+1/2 , x i,j , v k,l ), V ε (t n,⋆ ; t n+1/2 , x i,j , v k,l ) with X ε (t n,⋆ ; t n+1/2 , x i,j , v k,l ) = x i,j , V ε (t n,⋆ ; t n+1/2 , x i,j , v k,l ) = v k,l -q m ∆t 2ε E ε,n+1/2 (x i,j ).

(A4)

The result obtained from (A3) is computed at time t n at the foot of the characteristic subflow E 1 ε starting at (x i,j , v k,l ) at time t n,⋆ using the Lagrange interpolation operator. This action is described by T1 f ε,n (x i,j , v k,l ) = ΠT 1 f ε,n (x i,j , v k,l ), where T 1 f ε,n (x i,j , v k,l ) = f ε,n (X ε (t n ; t n,⋆ , x i,j , v k,l ), X ε (t n ; t n,⋆ , x i,j , v k,l )), with

       X ε (t n ; t n,⋆ , x i,j , v k,l ) = x i,j + m qB R qB mε 2 ∆t 2 + π/2 -R(π/2) εv k,l , V ε (t n ; t n,⋆ , x i,j , v k,l ) = R qB mε 2 ∆t 2 v k,l .
Finally, the second order numerical scheme is given by f ε,n+1 (x i,j , v k,l ) = T1 • T2 • T2 • T1 f ε,n (x i,j , v k,l ), then we compute the density ρ ε,n+1

ρ ε,n+1 = ∆v 1 ∆v 2 Nv-1 k,l=0
f ε,n+1 (x i,j , v l,k ).

The asymptotic limit of full discretization for the density (ρ ε,n ) ε>0

In the same way as the proof in the subsection 5.4.1, we can conclude that the limit of density ρ ε,n+1 (x i,j ) approximate to ρ n+1 (x i,j ) when ε goes to zero which satisfies the following equation

ρ n+1 (x i,j ) ≈ Πρ n (x i,j - ∆t B ⊥ E n+1/2 (x i,j ))
which is a consistent second order approximation with respect to ∆t of the guiding center model provided by the semi-Lagrangian method.

The Algorithm

In this Section, we review the main steps of the splitting methods which are presented in the Subsections 5.2.1 and 5.2.2 in the case of directional splitting with constant advection. Initialization: f 0 (x, v) is given. We then can compute ρ(0, x) = q R 2 f 0 (x, v)dv and compute the electric field E by solving the Poisson equation. Update from t n to t n+1 = t n + ∆t with f n is knonw at all grid points (x, v) and E n is knonw at x.

Algorithm for Strang-Boris method

1. Perform along the v 1 -axis f [1] (x, v) = f n (x, v 1 -tan qB m ∆t/4 , v 2 ) 2. Perform along the v 2 -axis f [2] (x, v) = f [1] (x, v 1 , sin qB m ∆t/2 v 1 + v 2 ) 3. Perform along the v 1 -axis f [3] (x, v) = f [2] (x, v 1 -tan qB m ∆t/4 , v 2 ) 4. Perform along the x 1 -axis f [4] (x, v) = f [3] (x 1 -∆t/2v 1 , x 2 , v) 5. Perform along the x 2 -axis f [5] (x, v) = f [4] (x 1 , x 2 -∆t/2v 2 , v) 6. Computation the charge density and the electric field at time t n+1 by substituting f [5] in the Poisson equation 7. Perform along the v-axis f [6] = f [5] (x, v -E(t n+1 , x)∆t) 8. Perform along the v 1 -axis f [7] (x, v) = f [6] (x, v 1 -tan qB m ∆t/4 , v 2 ) 9. Perform along the v 2 -axis f [8] (x, v) = f [7] (x, v 1 , sin qB m ∆t/2 v 1 + v 2 ) 10. Perform along the v 1 -axis f [9] (x, v) = f [8] (x, v 1 -tan qB m ∆t/4 , v 2 ) 11. Perform along the x 1 -axis f [10] (x, v) = f [9] (x 1 -∆t/2v 1 , x 2 , v) 12. Perform along the x 2 -axis f n+1 (x, v) = f [10] (x 1 , x 2 -∆t/2v 2 , v)

Algorithm for Strang-Scovel method

1. Perform along the v 1 -axis f [1] (x, v) = f n (x, v 1 -tan qB m ∆t/4 , v 2 ) 2. Perform along the v 2 -axis f [2] (x, v) = f [1] (x, v 1 , sin qB m ∆t/2 v 1 + v 2 ) 3. Perform along the v 1 -axis f [3] (x, v) = f [2] (x, v 1 -tan qB m ∆t/4 , v 2 ) 4. Perform along the x 1 -axis f [4] (x, v) = f [3] (x 1 -m qB sin qB m ∆t/2 v 1 , x 2 , v) 5. Perform along the x 1 -axis f [5] (x, v) = f [4] (x 1 + m qB (1 -cos qB m ∆t/2 )v 1 , x 2 , v) 6. Perform along the x 2 -axis f [6] (x, v) = f [5] (x 1 , x 2 + m qB (cos qB m ∆t/2 -1)v 1 , v) 7. Perform along the x 2 -axis f [7] (x, v) = f [6] (x 1 , x 2 -m qB sin qB m ∆t/2 v 2 , v) 8. Computation the charge density and the electric field at time t n+1 by substituting f [7] in the Poisson equation 9. Perform along the v-axis f [8] = f [7] (x, v -E(t n+1 , x)∆t) 10. Perform along the v 1 -axis f [9] (x, v) = f [8] (x, v 1 -tan qB m ∆t/4 , v 2 ) 11. Perform along the v 2 -axis f [10] (x, v) = f [9] (x, v 1 , sin qB m ∆t/2 v 1 + v 2 ) 12. Perform along the v 1 -axis f [11] (x, v) = f [10] (x, v 1 -tan qB m ∆t/4 , v 2 )

13. Perform along the x 1 -axis f [12] (x, v) = f [11] (x 1 -m qB sin qB m ∆t/2 v 1 , x 2 , v) 14. Perform along the x 1 -axis f [13] (x, v) = f [12] (x 1 + m qB (1 -cos qB m ∆t/2 )v 1 , x 2 , v) 15. Perform along the x 2 -axis f [14] (x, v) = f [13] (x 1 , x 2 + m qB (cos qB m ∆t/2 -1)v 1 , v) 16. Perform along the x 2 -axis f n+1 (x, v) = f [14] (x 1 , x 2 -m qB sin qB m ∆t/2 v 2 , v)

Algorithm for Composition with adjoint method 1. Perform along the v 1 -axis f [1] (x, v) = f n (x, v 1 -tan qB m ∆t/4 , v ) 2. Perform along the v 2 -axis f [2] (x, v) = f [1] (x, v 1 , sin qB m ∆t/2 v 1 + v 2 ) 3. Perform along the v 1 -axis f [3] (x, v) = f [2] (x, v 1 -tan qB m ∆t/4 , v ) 4. Perform along the x 1 -axis f [4] (x, v) = f [3] (x 1 -m qB sin qB m ∆t/2 v 1 , x 2 , v) 5. Perform along the x 1 -axis f [5] (x, v) = f [4] (x 1 + m qB (1 -cos qB m ∆t/2 )v 1 , x 2 , v) 6. Perform along the x 2 -axis f [6] (x, v) = f [5] (x 1 , x 2 + m qB (cos qB m ∆t/2 -1)v 1 , v) 7. Perform along the x 2 -axis f [7] (x, v) = f [6] (x 1 , x 2 -m qB sin qB m ∆t/2 v 2 , v) 8. Computation the charge density and the electric field at time t n+1/2 by substituting f [7] in the Poisson equation 9. Perform along the v-axis f [8] = f [7] (x, v -E(t n+1/2 , x)∆t/2) 10. Perform along the v-axis f [9] = f [8] (x, v -E(t n+1/2 , x)∆t/2) 11. Perform along the x 2 -axis f [10] (x, v) = f [9] (x 1 , x 2 -m qB sin qB m ∆t/2 v 2 , v) 12. Perform along the x 2 -axis f [11] (x, v) = f [10] (x 1 , x 2 + m qB (1-cos qB m ∆t/2 )v 1 , x 2 , v) 13. Perform along the x 1 -axis f [12] (x, v) = f [11] (x 1 + m qB (cos qB m ∆t/2 -1)v 1 , x 2 , v) 14. Perform along the x 1 -axis f [13] (x, v) = f [12] (x 1 -m qB sin qB m ∆t/2 v 1 , x 2 , v) 15. Perform along the v 1 -axis f [14] (x, v) = f [13] (x, v 1 -tan qB m ∆t/4 , v 2 ) 16. Perform along the v 2 -axis f [15] (x, v) = f [14] (x, v 1 , sin qB m ∆t/2 v + v 2 ) 17. Perform along the v 1 -axis f [16] (x, v) = f [15] (x, v 1 -tan qB m ∆t/4 , v 2 ) 18. Computation the charge density and the electric field at time t n+1 by substituting f [16] in the Poisson equation.

Numerical Simulation

This section is devoted to numerical illustrations of the numerical schemes introduced above. We consider the Vlasov-Poisson system (5.5)-(5.6) with the Kelvin-Helmholtz instability type initial data

f 0 (x, v) = (1 + sin(k 2 x 2 ) + ν cos(k 1 x 1 )) 1 2π exp - v 1 2 + v 2 2 2 , (5.65) 
consider the case where ε = 1. In this weak case, the plasma is not well confined. The lack of confinement appears to introduce diffusion like effects and does not develop the instability phenomena, see Figure 5.4. Then, we take with several values of ε ∈ {1/32, 1/64, 1/132}, and for this case, the figures in Figs. 5.5, 5.6 and 5.7 show the development of the instability of the density and it is obeyed to the same evolution as the density of the guiding center model in above Figure 5.3 for final time T going from 10 to 58, but in the case of the long final time T = 98 and 120 there is no longer obeyed because of the error in time. On Fig. 5.8 and Fig. 5.9, we plot the time evolution of L 2 and L 1 for the Vlasov-Poisson system with several values of ε ∈ {1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/132} and several of number of points in the position grid N x = N y ∈ {32, 64, 128, 256} and compare these results with the guiding center model.

On Figs. 5.10 and 5.11, we investigate the kinetic effects in the case of weak and strong magnetic fields. These figures indicate that kinetic effects are only present in the weak case. Due to the lack of confinement the distribution does not clearly display Maxwellian. For the strong field the distribution ressembles a sharp Maxwellian.

Appendix: A priori estimate

In this Appendix, we will give the global error of the p-order Scovel method (p = 1, 2) presented in Section 5.4. We want to evaluate the global error at time t n+1 :

e 1 = ∥f ε (t n+1 , x, v) -T 2 • T 1 f ε (t n , x, v)∥ L ∞ , ẽ1 = ∥f ε (t n+1 , x, v) -T 1 • T 2 f ε (t n , x, v)∥ L ∞ , e 2 = ∥f ε (t n+1 , x, v) -T 1 • T 2 • T 1 f ε (t n , x, v)∥ L ∞ ,
where the transport operators T i , i = 1, 2 are given by

T 1 f ε (t n , x, v) = f ε (t n , x + R ω c ε 2 ∆t + π/2 -R(π/2) ε v ω c , R ω c ε 2 ∆t v), T 2 f ε (t n , x, v) = f ε (t n , x, v - q m ∆t ε E ε (t, x)).
Lemma 5.7.1 Assume that f ε ∈ C 1 b (0, T ; C 1 (R 2 × R 2 )) and E ε ∈ C 1 b (0, T ; C 1 (R 2 )), then there exists a constant C such that

e 1 ≤ C(∥f ε ∥ C 1 b , ∥E ε ∥ C 1 b ) (∆t/ε) 2 + (∆t/ε) 3 , ẽ1 ≤ C(∥f ε ∥ C 1 b , ∥E ε ∥ C 1 b )(∆t/ε) 2 , e 2 ≤ C(∥f ε ∥ C 1 b , ∥E ε ∥ C 1 b )(∆t/ε) 3 .
Proof. As f ε is constant along the characteristic curves, we have f ε (t n+1 , x, v) = f ε (t n , X ε (t n ; t n+1 , x, v), V ε (t n ; t n+1 , x, v)), where (X ε , V ε ) are the characteristic solutions of d dt X ε (t) = 

ẽ1 = ∥f ε (t n+1 , x, v) -T 1 • T 2 f ε (t n , x, v)∥ L ∞ ≤ C(∥f ε ∥ C 2 b , ∥E ε ∥ C 1 b
)O(∆t 2 /ε 2 ).

Next, we will estimate e 1 = ∥f ε (t n+1 , x, v) -T 2 • T 1 f ε (t n , x, v)∥ L ∞ . We have 

T 2 • T 1 f ε (t n , x, v) = f ε (t n ,
e 1 = ∥f ε (t n+1 , x, v)-T 2 •T 1 f ε (t n , x, v)∥ L ∞ ≤ C(∥f ε ∥ C 1 b , ∥E ε ∥ C 1 b
)(O(∆t 2 /ε 2 )+O(∆t 3 /ε 3 )).

Finally, we estimate e 2 = ∥f ε (t n+1 , x, v) -T 1 • T 2 • T 1 f ε (t n , x, v)∥ L ∞ . We have Finally, we get

T 1 • T 2 • T 1 f ε (t n , x, v) = f ε (t n ,
e 2 = ∥f ε (t n+1 , x, v) -T 2 • T 1 • T 1 f ε (t n , x, v)∥ L ∞ ≤ C(∥f ε ∥ C 1 b , ∥E ε ∥ C 1 b
)O(∆t 3 /ε 3 ). 

Conclusion-Perspective Conclusion

In this thesis, we have tackled several asymptotic problems for different kinetic equations in their theoretical or numerical aspects.

In Chapter 2, we have studied a kinetic model for swarming with individuals interacting through self-propelling and friction forces, alignment, and noise. We have considered that the velocity of each individual relaxes towards some average velocity, defined in a way in which the total momentum does not change. We have investigated its macroscopic limit when the time and space variables are rescaled to the macroscopic scale. Namely, the model

∂ t f ε + v • ∇ x f ε = 1 ε Q(f ε ) := 1 ε div v σ∇ v f ε + f ε (v -u V [f ε ]) + f ε ∇ v V (| • |)
where

u V [f ε ] = R 2 f ε (v + ∇ v V (| • |))dv R 2 f
ε dv for certain potentials V (|•|). Formally, in this limit, the velocity distribution converges to an equilibrium that depends on the local density ρ and local velocity of the particles u := u V [f ]. The fluid models for the macroscopic quantities ρ, u come by appealing to the conservation of the mass and momentum balances. Then we have derived first and second-order models which correspond to two approximations of the Hilbert expansion. The first-order model is similar to a compressible Euler system. Taking into account the first-order corrections, we have obtained the second-order model which is similar to a compressible Navier-Stokes system. Finally, we perform a detailed analysis to cast the macroscopic equations in a simpler form.

In Chapters 3 and 4, we are interested in the long time behavior of the Vlaosv-Poisson system with strong external magnetic field, when the frequency of collisions is not neglected in the three/two-dimensional settings respectively. Namely, the model

εf ε + v • ∇ x f ε + q m E ε + v ∧ Be ε = 1 τ div v {σ∇ v f ε + vf ε }
In this scaling the magnetic force term is the dominant operator, whereas the collision term appears in the same order as the transport terms, leading to the so-called driftkinetic or gyro-kinetic regimes when the dynamics are observed on a slower time scale than the plasma frequency. We provide a formal analysis based on a Hilbert-type expansion of the solution and the formal limit distribution function is Maxwellian equilibria, parametrized by macroscopic quantities (particle concentration). The formal obtention of the limit model for concentration is based on the average properties of the dominant operator. At the limit, the concentration is advected along where u is the averaged local particle velocity, i .e., u[f ] := R 2 vf dv R 2 f dv .

The second term in N FP (f ) describes the nonlinear relaxation towards the local velocity u used in classical kinetic theory, cf. [START_REF] Villani | A Review of Mathematical Topics in Collisional Kinetic Theory[END_REF]. It can be rigorously derived from velocity alignment forces for particles as introduced in [START_REF] Trygve | Existence of Weak Solutions to Kinetic Flocking Models[END_REF] for swarming models. In future work, we are interested in the asymptotic analysis of the Vlasov-Poisson system of a strongly magnetized, weakly collisional N FP (f ) in two-dimensional plasma. Namely, after scaling the VPFP model

ε∂ t f ε + v • ∇ x f ε + q m E[f ε ] + B(x) ε ⊥ v • ∇ v f ε = div v {σ∇ v f ε + f ε (v -u[f ε ])}
coupled to the Poisson equation

E[f ε ] = -∇ x Φ[f ε ], ε 0 ∆ x Φ[f ε (t)] = q n[f ε (t)] = q R 2 f ε (t, •, v)dv.
The asymptotic behavior of the previous VPFP system when ε becomes small comes from the balance of the free energy functional

E[f ε ] = R 2 R 2 σf ε ln f ε + f ε |v| 2 2 dvdx + ε 0 2m R 2 |E[f ε ]| 2 dx.
Performing that we obtain the following balance

εE[f ε (t)] + t 0 R 2 R 2 |σ∇ v f ε + (v -u[f ε ])f ε | 2 f ε dvdxds = εE[f ε (0)].
Remarking that if we set a local Maxwellian

M u (v) = 1 2πσ exp - |v -u| 2 2σ
the dissipation term in the previous balance of free energy can be rewritten as

t 0 R 2 R 2 |σM u[f ε ] ∇ v f ε /M u[f ε ] | 2 f ε dvdxds.
At least formally, we deduce that f ε = f + O(ε), u[f ε ] = u + O(ε), as ε ↘ 0, where the leading order dentsity f and velocity u satisfy

R 2 R 2 |σM u ∇ v (f /M u )| 2 f dvdx = 0,
leads to f (t, x, v) = n(t, x)M u (v), (t, x, v) ∈ R + × R 2 × R 2 . On the other hand, the leading order term f also verifies the constraint ⊥ v • ∇ v f = 0 which implies that the limiting density f depends only on time, space, and the length of v. Therfore, we have the velocity u(t, x) = 0, (t, x) ∈ R + × R 2 . In particular, there is no current j(t, x) = R 2 vf (t, x, v)dv = 0 along the orthogonal directions to the magnetic lines, as expected by the magnetic confinement context. But orthogonal drifts may appear in the next order. Naturally, in order to observe the drift velocity we need to take into account the first order correction term in the expansion of the velocity u[f ε ] defined by u[f ε ] = u + εu 1 + O(ε 2 ). We shall investigate the limit model for the local concentration n and local velocity u 1 . The limit equation satisfied by the macroscopic quantities n(t, x) and u 1 (t, x) can be obtained from the following system

∂ t R 2 f ε dv + 1 ε div x R 2 vf ε dv = 0 ε∂ t R 2 vf ε dv + div x R 2 v ⊗ vf ε dv - q m E[f ε ] R 2 f ε dv - ω c (x) ε ⊥ R 2 vf ε dv = 0.
Taking into account the previous formal asymptotics, we get

1 ε R 2 vf ε dv → ⊥ E[n]
B(x) nσ ⊥ ∇xn ωc(x) , as ε ↘ 0 where n(t, x) = R 2 f (t, •, v)dv. Moreover, we also have

1 ε R 2 vf ε dv = 1 ε n[f ε ]u[f ε ] → nu 1
, as ε ↘ 0. Therefore, we obtain a similar limit model as in the chapter 3

∂ t n + div x (nu 1 ) = 0, (t, x) ∈ R + × R 2
where the velocity

u 1 = ⊥ E[n] B(x) -σ ⊥ ∇ωc(x) ω 2 c (x)
, coupled to the Poisson relation

E[n] = -∇ x Φ[n], -ε 0 ∆ x Φ[n] = qn.
The convergence towards the limit model shall investigate by appealing to relative entropy (or modulated energy).

Secondly, a very important question consists in dealing with the full system (1.30) involving kinetic equations for both positive and negative particles. This leads to a tough analysis and again most of the results in the mathematical literature are not able to deal with the two-species model. We are interested in the long-time behavior of the ion/electron Vlasov-Poisson equations for weakly collisional, under the action of strong magnetic fields with mass disparate particles. Namely, the rescaled two species Vlasov-Fokker-Planck -Poisson kinetic system with the external magnetic field

µ∂ t f i + v • ∇ x f i + E + B(x) µ ⊥ v • ∇ v f i = div v {σ∇ v f i + vf i } µ∂ t f e + v ε • ∇ x f e - 1 ε E + B(x) µ ⊥ v ε • ∇ v f e = 1 ε div v {σ∇ v f e + vf e }
supplemented with Poisson's equation

E = -∇ x Φ, -∆ x Φ = n i -n e
where ε and µ are small parameters that account for the electron/ion mass ratio ε 2 := m e m i and the fast cyclotronic motion µ 2 := T ci T obs . We refer to [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF] for the details of
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For

  any function u = u(y) : R m → R we define the average ⟨u⟩ along the flow of b • ∇ y by ⟨u⟩ ((s; y))ds, y ∈ R m . When applied to L 2 (R m ) functions, the above operator corresponds to the orthogonal projection onto ker(b • ∇ y ) which is the subspace of constant function along the characteristics (1.43), i .e. R m (u -⟨u⟩)φdy = 0, φ ∈ ker(b • ∇ y ).

Theorem 1 . 4 . 1 (

 141 vdv in terms of u, through the function Z(σ, |u|) and the orientation of the velocity Ω[u]. Chapter 2) Assume that lim |v|→+∞ Φ 0 (v) |v| = +∞, with Φ u=0 defined in (1.52) and consider the function Z introduced in (1.52), which depends only on σ and l = |u|. Then, at any

Lemma 2 . 2 . 1

 221 The functions on R d which are left invariant by the family T 0 are those depending only on |v|. The functions on R d which are left invariant by the family T u , u ̸ = 0, are those depending on v • u and |v|.

MuProposition 2 . 3 . 1

 231 and we denote by | • | Mu , ∥ • ∥ Mu the associated norms. Let f = ρM u be an equilibrium of Q.

Proposition 2 . 5 . 6

 256 Notice that the invariance of g, b, B by the family T u simply writes g = g O , b = b O , B = B O for any O ∈ T u . The orthogonal projection P u commutes with the action of T u . More exactly the following assertions hold true. For any function g ∈ L 2 Mu and any O ∈ T u , we have g O ∈ L 2 Mu and P u (g O ) = (P u g) O .

  [n]. Formally, we have the balances Proposition 3.3.1 Any smooth solution of the limit model (3.20), (3.21) verifies the mass and free energy conservations

  rot x e = e ∧ (rot x e ∧ e) = e ∧ [(∂ x e -t ∂ x e)e] = e ∧ ∂ x ee implying that σ n ω c (I 3 -e ⊗ e)rot x e = -σ n ω c ∂ x ee ∧ e = nv CD .

For

  any function u = u(y) : R m → R we define the average ⟨u⟩ along the flow of b • ∇ y by ⟨u⟩ (y) = 1 S S 0 u(Y (s; y)) ds, y ∈ R m .When applied to L 2 (R m ) functions, the above operator coincides with the orthogonal projection in L 2 (R m ), over the subspace of constant functions along the flow of b • ∇ y , cf.[START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF]. Indeed, it is easily seen that for anyy ∈ R m , h ∈ R ⟨u⟩ (Y (h; y)) = 1 S S 0 u(Y (s; Y (h; y)))ds = 1 S S 0 u(Y (s + h; y))ds = ⟨u⟩ (y) and for any ψ ∈ L 2 (R m ) which is constant along the flow Y we have R m u(y)ψ(y) dy = R m u(y)ψ(Y (-s; y)) dy = R m u(Y (s; y))ψ(y) dy = (s; y)) ds ψ(y) dy = R m ⟨u⟩ (y)ψ(y) dy. For any vector field c = c(y) : R m → R m , we define the average ⟨c⟩ along the flow of b • ∇ y by ⟨c⟩ = 1 S S 0 ∂Y (-s; Y (s; •))c(Y (s; •)) ds. Notice that the family of transformations c → ∂Y (-s; Y (s; •))c(Y (s; •)), s ∈ R, is a one-parameter group. The average operators for functions and vector fields are related by the formulae ⟨c • ∇ψ⟩ = ⟨c⟩ • ∇ψ (3.24) for any function ψ which is constant along the flow Y and ⟨a • ∇θ⟩ = a • ∇ ⟨θ⟩ (3.25) for any vector field a which is in involution with respect to b, that is, their Poisson bracket vanishes [a, b] := (a • ∇ y )b -(b • ∇ y )a = 0.

R 3 λ

 3 ⟨α⟩ dx = 0 and therefore (3.28) holds true. Applying Proposition 3.4.1 with the function k[n], which is constant along the flow of Be • ∇ x , we obtain

  y ∈ D and |s| small enough. Taking the gradient with respect to y we obtain t ∂Y (s; y)(∇θ)(Y (s; y)) = ∇θ(y) or t ∂Y (s; y)ν(Y (s; y)) = ν(y), y ∈ D, |s| small enough. (3.31)

Proposition 3 . 5 . 1

 351 (s; y)) ds = 0. Generally, given a smooth divergence free vector field b • ∇ y in R 3 , with global characteristic flow Y = Y (s; y), (s, y) ∈ R × R 3 , we call angular vector field in D ∈ R 3 any vector field ν • ∇ y satisfying b(y) • ν(y) = C, t ∂Y (s; y)ν(Y (s; y)) = ν(y), rot y ν = 0, (s, y) ∈ R × D for some constant C ∈ R ⋆ , where D is an open subset of R 3 , which is left invariant by the flow i .e., Y (s; D) = D, s ∈ R. We intend to establish the following commutation formula. Let us consider a vector field b • ∇ y in R 3 satisfying (3.22), (3.23) with S-periodic characteristic flow Y = Y (s; y), (s, y) ∈ R × R 3 . We denote by η • ∇ y the gradient of an invariant function with respect to the flow Y , or an angular vector field, in some open subset D of R 3 , which is left invariant by the flow Y . Therefore, for any C 1 function α = α(y), we have ⟨∇ y α ∧ η⟩ = ∇ y ⟨α⟩ ∧ η in D. (3.32)

Lemma 3 . 5 . 2

 352 we have ξ ∧ η = (e ⊗ M [e]ξ -M [e]ξ ⊗ e)η Proof. By direct computations one gets (e ⊗ M [e]ξ -M [e]ξ ⊗ e)η = ((e ∧ ξ) • η)e -(e • η)e ∧ ξ = ((ξ ∧ η) • e)e + (η • e)ξ ∧ e = e ⊗ e(ξ ∧ (η -(η • e)e)) + (η • e)ξ ∧ e = ξ ∧ (η -(η • e)e) + (η • e)ξ ∧ e = ξ ∧ η where we have used that ξ ∧ (η -(η • e)e) ∈ Re, since ξ • e = 0. For any function or vector field, the notation F s stands for F • Y (s; •). We have the equality (I 3 -e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| (I 3 -e s ⊗ e s ) = M [e s ] |b s | , e = b |b| . Proof. For any invariant functions α = α(y), β = β(y) with respect to the flow Y we have ∇ y α ∧ ∇ y β ∈ Re and div y (∇ y α ∧ ∇ y β) = 0. Therefore there is λ ∈ ker(b • ∇ y ) such that ∇ y α ∧ ∇ y β = λb, saying that the vector field ∇ y α ∧ ∇ y β is in involution with respect to b • ∇ y . We have ∂Y (s; •)∇α ∧ ∇β = (∇α) s ∧ (∇β) s . By Lemma 3.5.1 we obtain ∂Y (s; •)(e ⊗ M [e]∇α -M [e]∇α ⊗ e)∇β = (e s ⊗ M [e s ](∇α) s -M [e s ](∇α) s ⊗ e s )(∇β) s which reduce, thanks to the equalities e • ∇β = 0, e s • (∇β) s = 0 to ∂Y (s; •)(e ⊗ M [e]∇α)∇β = (e s ⊗ M [e s ](∇α) s )(∇β) s .

Lemma 3 . 5 . 3

 353 Let us consider a vector field b • ∇ y in R 3 satisfying (3.22), (3.23) with S-periodic characteristic flow Y = Y (s; y), (s, y) ∈ R × R 3 , which possesses angular vector field ν in some invariant open subset D ⊂ R 3 . A vector field c • ∇ y has zero average in D iff ⟨c • ν⟩ = 0 in D and ⟨c • ∇ y u⟩ = 0 in D for any function u such that 1 D u ∈ ker(b • ∇ y ).

  By formula (3.24) we know that for any function u which is left invariant by Y in D, we have ⟨c • ∇ y u⟩ = ⟨c⟩ • ∇ y u in D. Similarly, for any y ∈ D we write ⟨c • ν⟩ (y) = 1 S S 0 c(Y (s; y)) • ν(Y (s; y)) s; Y (s; y))c(Y (s; y)) • t ∂ y Y (s; y)ν(Y (s; y)) s; Y (s; y))c(Y (s; y)) ds • ν(y) = ⟨c⟩ (y) • ν(y). Clearly, if ⟨c⟩ = 0 in D, then 1 D ⟨c • ∇ y u⟩ = 0 for any function u such that 1 D u ∈ ker(b • ∇ y ) and 1 D ⟨c • ν⟩ = 0. Conversely, if 1 D ⟨c • ∇ y u⟩ = 0 for any function u such that 1 D u ∈ ker(b • ∇ y ) and 1 D ⟨c • ν⟩ = 0, then 1 D ⟨c⟩ • ∇ y u = 0, 1 D ⟨c⟩ • ν = 0. We deduce that there is a function λ = λ(y) in D such that ⟨c⟩ (y) = λ(y)b(y), y ∈ D.

  ∇β -(I 3 -e ⊗ e) ∂Y (-s; Y (s; •))M [e s ] t ∂Y (-s; Y (s; •)) |b s | (I 3 -e ⊗ e)∇β ⊗ b ∇α s = b ⊗ M [e] |b| ∇β -M [e] |b| ∇β ⊗ b ∇α s = (e ⊗ M [e]∇β -M [e]∇β ⊗ e)∇α s = ∇β ∧ ∇α s , where we used again Lemmas (3.5.1) and (3.5.2). Therefore, we obtain ⟨∇β ∧ ∇α⟩ = 1 S S 0 ∇β ∧ ∇α s ds = ∇β ∧ ∇ ⟨α⟩ = 0. If η is an angular vector field ν in D, we appeal to Lemma 3.5.3. Obviously we have ⟨(∇α ∧ ν) • ν⟩ = 0 and for any function u such that 1 D u ∈ ker(b • ∇ y ), we can write since (∇ y u ∧ ν) • ∇ y is in involution with b • ∇ y in D cf. the first part of this proof, and thanks to (3.25)

. 42 ) 3 . 7 . 1

 42371 Proposition With the notations in (3.4), (3.5), (3.37),(3.38) we have the equality

  51) and (3.52) yields the following linear elliptic equation in the whole space R 2 for any n ∈ Z\ {0} -∆ xβ n

7 . 2 , we establish the following result Proposition 3 . 8 . 1

 72381 Assume that the initial condition n in satisfies the hypotheses H1 and H2. There exists T > 0 and a local time strong solution (n, E) on [0, T ] for the limit model (3.47), (3.48),(3.49). The solution is unique and satisfies

r > 0

 0 which implies I(r) is independant of value of r and thus I(r) = √ π 2 , for any r ∈ R + .

Theorem 4 . 1 . 1

 411 Let T > 0. Let B ∈ C 3 b (R 2 ) be a smooth magnetic field, such that inf x∈R 2 B(x) = B 0 > 0 and D be a fixed background density verifying |x|D

Theorem 4 . 2 . 2

 422 Let T > 0. Let B ∈ C 1 b (R 2) be a smooth magnetic field and D be a fixed background density verifying |x|D

  we multiply this equation by Φ[f ε ] and use the Poisson equation to find the balance of potential energy

Lemma 4 . 3 . 1

 431 Let f ε be the weak solution of the problem (4.4), (4.5), (4.6) provided by Theorem 4.2.2. Then we have

Lemma 4 . 3 . 4

 434 Let Ψ ∈ C 2 (R) such that Ψ ′′ ∈ L ∞ (R) and Ψ(0) = 0. Then Ψ(f ε ) solves the following equation in the sense of distribution on [0, T [×R 2 × R 2

  [START_REF] Bostan | Reduced fluid models for self-propelled populations, interacting through alignment[END_REF]. On the other hand, using the Lemmas 4.3.1, 4.3.2 and 4.3.3, we imply the desired result for the balance of energy E[f ε ].

Corollary 4 . 4 . 1

 441 where the function χ R was defined in Lemma 4.3.1, and ϕ ∈ C ∞ 0 ([0, T [). Letting R → ∞, one gets, by dominated convergence theorem, the relations (4.36) and (4.37) which hold in the distribution sense on [0, T ] × R 2 and are respectively the continuity equation and the momentum equation. Then, we apply the rotation v → ⊥ v to the equation (4.37) and eliminate 1 ε j[f ε ] between the resulting equation and (4.36) leads to the new equation for the concentration n[f ε ]. Let ε > 0. Let f ε be a weak solution of the system (4.4), (4.5), (4.6) provided by Theorem 4.2.2. Then the concentration n[f ε ] satisfies the following equation

Proposition 4 . 4 . 1

 441 Any smooth solution of the limit model (4.39), (4.40), (4.41) verifies the mass and free energy conservations

  Then we have the following result Proposition 4.7.1 Under the hypothesis of Theorem 4.2.1, there exists a unique weak solution f of equation (4.72) in the class of functions Y defined by Y = u ∈ H| ∂u ∂t + T u ∈ H ′ (4.73)

Lemma 4 . 7 .1 1 .

 471 For u ∈ Y, u admits continuous trace values u(0, x, v) and u(T, x, v) in L 2 (R d × R d ).

Proposition 4 . 7 . 2

 472 Assume that the initial condition f in is positive and belongs to L ∞ (R 2 × R 2 ). Then the solution f provided by Proposition 4.7.1 is positive and satisfying sup [0,T ]

  x, v)||n k (s, y) -n k-1 (s, y)|dy dvdxds. (4.96) Using the standard interpolation argument and (4.93) we get

Lemma 4 . 7 . 5 (

 475 Calderon-Zygmund) Let ρ ∈ L p (R d ), with 2 ≤ p < ∞, and let Φ = G d ⋆ ρ. Then ∥D 2 Φ∥ L p (R d ) ≤ Cp∥ρ∥ L p (R d ) ,where G d is the fundamental solution of the Laplace equation in R d , D 2 denotes any second derivative and C is a positive universal constant. Lemma 4.7.6 (Hardy-Littlewood-Sobolev) Consider a kernel K α (x) = 1 |x| α and convolution

Lemma 5 . 4 . 1

 541 Let us consider a time step ∆t > 0, a final time T > 0 and set N T = [T /∆t]. Assuming that the initial distribution function f 0(x, v) whose support is included in Ω = [-R, R] 2 × [-v R , v R ] 2 and (f ε,n ) 0≤n≤N T -1is the numerical solution of the Vlasov-Poisson system, computed by the numerical scheme in(5.57). Then, for 1 ≤ n ≤ N T , we have

132 Figure 5 . 1 -

 13251 Figure 5.1 -Comparison between the time evolution of electrostatic energy in first dimension from Vlasov-Poisson system and the guiding center model. N x = 128, N v = 64, v max = 8, ∆t = 0.01. The number of time steps stays constant N = 5000.
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 53 Figure 5.3 -Simulation for time evolution of the density of Guiding center model using the Lagrangian interpolation. N x = N y = 128, ∆t = 0.01. From left to right we present the densities's contours at fluid times scale T = 10, T = 18, T = 25, T = 58, T = 98 and T = 120.
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 54 Figure 5.4 -Simulation for time evolution of the density of Vlasov-Poisson system with ε = 1. N x = 128, N y = 128, N vx = 64, N vy = 64, ∆t = 0.01.
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 55 Figure 5.5 -Simulation for time evolution of the density of Vlasov-Poisson system with ε = 1/32. N x = 128, N y = 128, N vx = 64, N vy = 64, ∆t = 0.01.
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 56 Figure 5.6 -Simulation for time evolution of the density of Vlasov-Poisson system with ε = 1/64. N x = 128, N y = 128, N vx = 64, N vy = 64, ∆t = 0.01.
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 57 Figure 5.7 -Simulation for time evolution of the density of Vlasov-Poisson system with ε = 1/132. N x = 128, N y = 128, N vx = 64, N vy = 64, ∆t = 0.01.
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 58 Figure 5.8 -Comparison between the time evolution of theoretically quantities of Vlasov-Poisson system with several values of ε and the guiding center model. N x = N y = 128, N vx = N vy = 64, v max = 8, ∆t = 0.01.
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 59 Figure 5.9 -Comparison between the time evolution of theoretically quantities of Vlasov-Poisson system when ε = 1/32 with several values of N x and the guiding center model with N x = 128. N vx = N vy = 64, v max = 8, ∆t = 0.01.
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 510 Figure 5.10 -Simulation for time evolution of the kinetic effect of Vlasov-Poisson system with ε = 1. N x = 128, N y = 128, N vx = 64, N vy = 64, ∆t = 0.01.
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 511 Figure 5.11 -Simulation for time evolution of the kinetic effect of Vlasov-Poisson system with ε = 1/32. N x = 128, N y = 128, N vx = 64, N vy = 64, ∆t = 0.01. 275

  

  and the functions (c i ) 1≤i≤5 are defined in (2.38), (2.39).

1.4.2 Long time behavior for the Vlasov-Poisson-Fokker-Planck equation

with strong external magnetic field (Chapter 3, 4)

  Notice that if the matrix field A, B and the vector field a, b are left invariant by T u , then trA, Aa, t A, A : B, a • b, a ⊗ b are left invariant by T u .

	Proposition 2.2.3
	Let A : R d → M d (R) be a matrix field on R d which is left invariant by the family T u ,
	d ≥ 2.

  RΩ), let us consider {ξ 1 , ..., ξ d-2 } an orthonormal basis of (Rv + RΩ) ⊥ . Recall that for any matrix B ∈ M d (R) and orthonormal basis {e 1 , ..., e d } of R d , we have B = d i=1 e i ⊗ t Be i . Therefore we write

	t

  are left invariant by T u . We deduce by Proposition 2.2.2 that

  ≤ σ|p| Mu |g| Mu ≤ σ|p| Mu ∥g∥ Mu implying that ∥g∥ Mu ≤

	dv is bounded on H and by Lax-Milgram lemma, there is a unique function g ∈ H such that a(g, h) = l(h), h ∈ H. Actually the previous formulation holds true for any h ∈ H 1 Mu , because for any h ∈ ker L f we have a(g, h) = 0 = l(h). With the notation α = min{1, µ u } min{σ, λ u }/4 we have σα∥g∥ 2 Mu ≤ a(g, g) = l(g) |p| Mu

α .

Lemma 2.4.3 1. For any u ∈ R d \ {0} we have

  

	computed in Lemma 2.4.2, in terms of the function Z,
	can be expressed as well thanks to the convex function E. These calculations are
	technical, the details are presented in Appendix 2.6, see proof of Lemma 2.4.3.

2.6.1 Proofs of Lemmas 2.4.2, 2.4.3, 2.5.1, 2.5.2, Proposition 2.5.12 Proof

  

. (of Lemma 2.4.2) 1. Let us consider {E 1 , . . . , E d-1 } an orthonormal basis of (RΩ) ⊥ , with Ω = Ω[u] = u/|u|. By using the decomposition

  3.54) and inequalities (3.57), (3.58),(3.59). Let Γ(x) be the function on R 2 × T 1 provided by Lemma 3.8.1. Then we have the following estimates

	Lemma 3.8.6

  .[START_REF] Goudon | Multidimensional high-field limit of the electrostatic VPFP system[END_REF]. This is due to the fact that the kernel x/|x| d does not belong to L 2 (R 2 ) at infinity, see Appendix 4.7.3 for a discussion. For these reasons, one needs to slightly modify the Poisson equation adding a fixed background density D satisfying the global neutrality relation H3, see Section 4.2 below.

  .81) Proof. (of Proposition 4.7.2) We will now show that f ≥ 0 a.e. As above, we define f = e -(λ+2)t f (t, x, e -t v) with any λ > 0 which solves (4.74) with the initial data f in . It is well known that f ∈ Y since f ∈ Y and thus ∂ t f + T ′ f ∈ H ′ . Thanks to Lemma 4.7.2 we have f -∈ H which implies from (4.74) that

  .[START_REF] Frenod | Long time hehaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field[END_REF] The solution w satisfies w ∈ H and ∂ t w + T ′ w ∈ H ′ since f ∈ Y. The estimates of solutions that we will study can be obtained by choosing an appropriate sequence of functions in the variational equation of w. Assume that the initial data f in is positive and belongs to L p (R 2 × R 2 ), with any p ∈ [1, ∞[. Then solution f provided by Proposition 4.2.1 satisfies

	Proposition 4.7.3

  2 |x|f in dvdx for somse constants C 1 and C 2 , depending only on f in , T . Assume that the initial function f in is positve and verifies (1

	Proposition 4.7.6

  .[START_REF] Ha | A simple proof of the Cucker-Smale flocking dynamics and meanfield limit[END_REF] 

	Proof.
	The estimate (4.92) is a direct consequence of Lemma 4.7.4. For the estimate (4.93),
	going back to equation (4.89), and applying L 1 estimate, leads to

  Then, for almost every t ∈ [0, T [, Df k (t) is a bounded measure, and since it is a function, we obtain Df

  (X ε,n+1/2 ),where the electric field E ε at time t n+1/2 is computed thanks to the resolution of the Poisson equation with the distribution function

			R -	qB mε 2	∆t 2	+ π/2 -R(π/2) εV ε,n ,
	εV ε,n+1/2 = R -	qB mε 2	∆t 2	εV ε,n +	q m	∆t 2	E ε,n+1/2

  We therefore have by integrating these equations betweent and t n+1 X ε (t; t n+1 , x, v) = x -1 ε (s -t) E ε (s, X ε (s; t n+1 , x, v))ds.(5.68)We will first estimateẽ1 = ∥f ε (t n+1 , x, v) -T 2 • T 1 f ε (t n , x, v)∥ L ∞ . We have T 1 • T 2 f ε (t n , x, v) = f ε (t n , Xε (t n ; t n+1 , x, v), Vε (t n ; t n+1 , x, v)),whereXε (t n ; t n+1 , x, v) = x + R ω c ε 2 ∆t + π/2 -R(π/2)Substituting the equality (5.69) into the equation (5.67) to getX ε (t n ; t n+1 , x, v) = x + R ω c ε 2 ∆t + π/2 -R(π/2) + π/2) = R(-θ) and hence X ε (t n ; t n+1 , x, v) -Xε (t n ; t n+1 , x, v) = O(∆t) (E ε (t n , x) -E ε (t n+1 , x)) + O(∆t 3 /ε 2 ) + O(∆t 2 ) = O(∆t 3 /ε 2 ) + O(∆t 2 ).(5.71)Finally, using (5.70) and (5.71) we obtain

			t n+1							
				V ε (s; t n+1 , x, v)ds,			(5.67)
		t									
	V ε (t; t n+1 , x, v) = R	ω c ε 2 (t n+1 -t) v -	q mε	t	t n+1	R	ω c ε 2 ε ω c	v -	q m	∆t ε	E ε (t n , x) ,
	Vε (t n ; t n+1 , x, v) = R	ω c ε 2 ∆t	v -	q m E q ∆t ε mε ∆tR	ω c ε 2 ∆t E (5.70)
											ε ω c	v + O(∆t 3 /ε 2 )
		+ -∆tR		ω c ε 2 ∆t + π/2 + ∆tR(π/2) + O(∆t 2 )	E ε (t n+1 , x) B	,
	where we used the formula	d dθ	R(-θ					

1 ε V ε (t) and d dt V ε (t) = q m 1 ε E ε (t, X ε (t)) + ωc ε 2 ⊥ V ε (t). ε (t n , x) .

Now using the right rectangle rule to approximate the integral in (5.68) we obtain

V ε (t; t n+1 , x, v) = R ω c ε 2 (t n+1 -t) v -q mε (t n+1 -t)R ω c ε 2 (t n+1 -t) E ε (t n+1 , x) + O(∆t 2 ) ,

(5.69)

then using (5.69) for t = t n we get

V ε (t n ; t n+1 , x, v) = R ω c ε 2 ∆t vε (t n+1 , x) + O(∆t 2 ) .

Hence, we deduce that

V ε (t n ; t n+1 , x, v) -Vε (t n ; t n+1 , x, v) = O(∆t/ε)(E ε (t n , x) -E ε (t n+1 , x)) + O(∆t 2 /ε) = O(∆t 2 /ε).

  Xε (t n ; t n+1 , x, v), Vε (t n ; t n+1 , x, v)),whereXε (t n ; t n+1 , x, v) = x + R ω c ε 2 ∆t + π/2 -R(π/2) (t n+1 , Xε (t n ; t n+1 , x, v)).Using now the left rectangle rule to approximate the integral in (5.68) we obtainV ε (t) = R ω c ε 2 (t n+1 -t) v -q mε (t n+1 -t)E ε (t, X ε (t; t n+1 , x, v)) + O(∆t 2 ) ,(5.72)which implies for t = t n thatV ε (t n ; t n+1 , x, v) = R ω c ε 2 ∆t v -q mε ∆tE ε (t n , X ε (t n ; t n+1 , x, v)) + O(∆t 2 ) .Substituting the equality (5.72) into the equation (5.67) and re-use the left rectangle rule to getX ε (t n ) = x + R ω c ε 2 ∆t + π/2 -R(π/2) E ε (t n , X ε (t n )) + O(∆t 3 /ε 2 ). Xε (t n ; t n+1 , x, v) -X ε (t n ; t n+1 , x, v)| + O(∆t 2 /ε)= O(∆t 2 /ε) + O(∆t 3 /ε 3 ) + O(∆t 5 /ε 3 ) + O(∆t 2 /ε).

	ε ω c	v,
	Vε (t n ; t n+1 , x, v) = R ε 2 Hence we deduce that ω c ε 2 ∆t v -q m ∆t ε E ε ε ω c q ∆t 2 v -m	
	X (5.74)
	Thus from (5.73) and (5.74) we obtain	

ε (t n ; t n+1 , x, v) -Xε (t n ; t n+1 , x, v) = O(∆t 2 /ε 2 ) + O(∆t 3 /ε 2 ), (5.73)

and, as a consequence

V ε (t n ) -Vε (t n ) = q m ∆t ε E ε (t n+1 , Xε (t n )) -E ε (t n , X ε (t n )) + O(∆t 2 /ε) = O(∆t/ε) ∆t + |

  Xε (t n ; t n+1 , x, v), Vε (t n ; t n+1 , x, v))whereXε (t n ; t n+1 , x, v) = x + R qB mε 2 ∆t + π/2 -R(π/2) ε (t n+1/2 , Xε (t n ; t n+1/2 , x, v)), with Xε (t n ; t n+1/2 , x, v) = x + RUsing now the midpoint rectangle rule to approximate the integral in (5.68) we obtainV ε (t; t n+1 , x, v) = R ω c ε 2 (t n+1 -t) v (t n+1/2 -t) E(t n+1/2 , X ε (t n+1/2 ; t n+1 , x, v)) + O(∆t 3 ) ,(5.75)which implies for t = t n thatV ε (t n ) = R ω c ε 2 ∆t v -Substituting the equality (5.75) into the equation (5.67) for t = t n+1/2 and using the left rectangle rule to get , X ε (t n+1/2 )) + O(∆t 2 /ε 2 ), and hence we deduce thatX ε (t n+1/2 ) -Xε (t n ; t n+1/2 , x, v) = O(∆t 4 /ε) + O(∆t 2 /ε 2 ) + (∆t 2 /ε 2 ) = O(∆t 2 /ε 2 ). + π/2 -R(π/2) E ε (t n+1/2 , X ε (t n+1/2 ; t n+1 , x, v)) + O(∆t 3 ). + π/2 -R(π/2) + ε 2 O(∆t 3 ).Using (5.76) and (5.77) we haveX ε (t n ; t n+1 , x, v) -Xε (t n ; t n+1 , x, v) = O(∆t 3 /ε 3 ),V ε (t n ; t n+1 , x, v) -Vε (t n ; t n+1 , x, v) = O(∆t 3 /ε 3 ).

	where we computed the integral					
	t n+1 tn	(t n+1 -s)R	qB m	t n+1/2 -s ε 2	ds =	ε 2 ω c	t n+1 tn	v ω c (t n+1 -s)	d ds	R	qB m	t n+1/2 -s ε 2	+ π/2 ds
	Vε (t n ; t n+1 , x, v) = R = ε 2 ω c -∆tR = ε 2 ω c -∆tR = -ε 2 ω c ∆t R		-∆t R qB mε 2 ∆t v -qB mε 2 q m ∆t 2 ∆t + π/2 -R(π/2) ε R qB mε 2 qB m ∆t 2ε 2 + π/2 + t n+1 R qB m t n+1/2 -s E ε B ε 2 tn ∆t 2 qB m ∆t 2ε 2 + π/2 + ∆tR qB m t n+1/2 -t n+1/2 (t n+1/2 , Xε (t n ; t n+1/2 , x, v)), + π/2 ds ε 2 + π/2 + O(∆t 3 ) E ε qB mε 2 ∆t 2 + π/2 -R(π/2) ε v ω c . qB ∆t m 2ε 2
		-E X ε (t n+1/2 ) = x + R q mε ω c (t n+1 -t)R ε 2 q mε ∆tR ω c ε 2 ∆t 2 qB mε 2 ∆t 2 + π/2 -R(π/2) ε	v ω c
					+ O(∆t 4 /ε) +	q mε 2	∆t 2 4	E(t n+1/2 (5.76)
	Do it again for t = t n we have					
	X ε (t n ) = x + R	qB m	∆t ε 2 + π/2 -R(π/2) ε	v ω c	+ O(∆t 4 /ε)
		-	∆t B	R	qB m	∆t 2ε 2 (5.77)
											265	

ε (t n+1/2 , X ε (t n+1/2 ; t n+1 , x, v)) + O(∆t 3 ) .

X(-∆t;0,x,v) V (-∆t;0,x,v) can be decomposed into two shears that is the inverse of the product of
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Abstract

The subject matter of this Chapter concerns the Vlasov-Poisson-Fokker-Planck (VPFP) equations in the context of magnetic confinement. We study the long-time behavior of the VPFP system with an intense external magnetic field when neglecting the curvature of the magnetic lines. When the intensity of the magnetic field tends to infinity, the long-time behavior of the particle concentration is described by a first-order nonlinear hyperbolic equation of the Euler type for fluid mechanics. More exactly, when the magnetic field is uniform, we find the vorticity formulation of the two-dimensional incompressible Euler equations. Our proofs rely on the modulated energy method.

In the rest of this section, we provide some estimates on

Then, there exists a constant C > 0 depends only on ∥ ln n in ∥ L ∞ ([0,T ]×R 2 ) , B, B 0 and T > 0 such that sup

Proof.

From the equation (4.42), we deduce that

Thanks to the formula of the characteristic solution (4.44), we get

which gives the estimate in the lemma.

We next provide higher-order estimates on ln n.

Lemma 4.5.8

Assume that ln

where the constants C k > 0, k = 1, 2 depend only on ln n 0 , B et B 0 .

Proof.

From the equation (4.63) we have 

By Remark 4.5.1 it is well known that ∂ 2 x X(0; t, x) ∈ L ∞ ([0, T ] × R 2 ). Hence we obtain the L ∞ bound for ∂ 2

x ln n. Finally we estimate ∥∂ t ∇ x ln n∥ L ∞ (R 2 ) . Taking the time derivative in (4.64) yields 

Chapter 5

A splitting method for semi-Lagrangian Vlasov-Poisson solvers with a strong external uniform magnetic field 

Abstract

We solve numerically the Vlasov-Poisson system with a splitting method suited for strong external magnetic field. Our splitting scheme is inspired by J. Ameres [START_REF] Ameres | Splitting methods for Fourier spectral discretizations of the strongly magnetized Vlasov-Poisson and the Vlasov-Maxwell system[END_REF] but uses the semi-Lagrangian solver instead of a Fourier spectral discretization solver. We show that when the magnitude of the external magnetic field becomes large while the time step is independent of the fast oscillation in time, this scheme is able to provide a consistent semi-Lagrangian discretization of the guiding-center model. In addition, we propose some numerical simulations to validate the method under the Kelvin-Helmholtz instability test case.

Introduction

We consider a plasma consisting of mass m with individual electric charge q, which is described by the Vlasov equation coupled with the Poisson to compute the selfconsistent fields E in the presence of an external magnetic field B, motivated by the magnetic confinement. The unknown f (t, x, v), depending on the time t, the position the exponential Boris and the Scovel method. Finally, in Section 5.6 we implement a numerical simulation with using the Kelvin-Helmholtz instability test case.

The time-splitting problem

Now we will recall the principles of semi-Lagrangian method for the Vlasov-Poisson equation cf. [START_REF] Sonnendrücker | The semi-Lagrangian method for the numerical resolution of the Vlasov equation[END_REF] in two dimensions of the phase space. In this Section, we work on the unscaled Vlasov-Poisson equation (5.2)-(5.3) for the sake of presentation simplicity. We return to the scale system when we study the asymptotic limit in section 5.3. The characteristic curves corresponding to the Vlasov equation (5.2) are the solutions of the following first order differential system:

with the initial conditions

We denote by (X(t; s, x, v), V (t; s, x, v)) the position in phase space at the time t, of a particle which was in (x, v) at time s. Then, the solution of the Vlasov equation (5.2) is given by

Replacing s by t n and t by t n+1 in (5.12), and denoting X n = X(t n ; t n+1 , x, v) and V n = V (t n ; t n+1 , x, v) we have

For each point of the phase space grid (x, v), the distribution function is updated thanks to the two following steps:

i. Find the starting point of the characteristic curves ending at (x, v), i .e., X n = X(t n ; t n+1 , x, v) and V n = V (t n ; t n+1 , x, v) by solving (5.11).

ii. Compute f (t n , X n , V n ) by the method based on Lagrange interpolation, f being known only at mesh points at time t n .

We now perform a time discretization in the step i. of (5.11) by introducing a splitting procedure.

The exponential Boris algorithm

The characteristics of the splitting underlying the exponential Boris algorithm reads cf. [START_REF] Crouseilles | Hamiltonian splitting for the Vlasov-Maxwell equations[END_REF]:

which leads us to the equations associated with the first order differential systems (5.14), (5.15) and (5.16) respectively:

We denote φ

∆t and φ

∆t the exact solutions corresponding to the equations (5.17), (5.18) and (5.19) on one time step ∆t from the initial condition f 0 (x, v). The solutions φ

[f ] ∆t and φ

∆t can be computed exactly in time since the advection fields in the equations (5.17) and (5.19) do not depend on the variable to be advected. The solution φ

[B] ∆t of (5.18) can be also solve exactly in time, since the fact that characteristic equation (5.15) can be computed exactly. With the two-dimensional rotation matrix

the characteristic solution to equation (5.15) on one time step ∆t writes X(∆t; 0, x, v) = x, V (∆t; 0, x, v) = R(-θ)V (0), with θ = qB m ∆t.

Hence, the solution to (5.18) by the method characteristic (5.13) writes

For step ii., a two-dimensional interpolation has to be performed in the variable v of φ

[B] ∆t to update the numerical unknown. However, high-dimensional interpolation is known to be non conservative and it is obviously more demanding in terms of complexity and time. To remedy this difficulty, we use the method in [START_REF] Bernier | Splitting methods for rotation: application to Vlasov equations[END_REF] where the authors proposed a splitting strategy to reduce the problem into very simple one-dimensional linear transport equations which can be solved efficiently with semi-Lagrangian method. The splitting is based on the fact that the two-dimensional rotation matrix R(θ) is decomposed into a product of three shear matrices:

), the amplitude ν = 0.015

and

Then the initial density of the guiding-center approximation (5.7)-(5.8) writes:

defined in Ω x . The numerical parameters are N x points in space, N v points per velocity direction. We perform numerical simulation using the splitting schemes coupled with the semi-Lagrangian method described in Section 5.2 for the Vlasov-Poisson equation (5.5)- (5.6). On the orther hand, we compute an approximation of the guiding center model (5.7)-(5.8) using a backward semi-Lagrangian method developed in [START_REF] Sonnendrücker | The semi-Lagrangian method for the numerical resolution of the Vlasov equation[END_REF] with Lagrangian interpolation. This reference will be used to compare our results obtained from Vlasov-Poisson system with a large magnetic field for a long time.

First of all, we are interested in the time evolution of the electrostatic energy in the first dimension 1 2 ∥E 1 ∥ 2 2 . We focus our comparisons on the different methods presented in Section 5.2: the Strang splitting based on the exponential Boris algorithm, the Strang spliting and the composition with the adjoint of Scovel method from weak to strong magnetic field whilst holding the actual number of time steps constant. In Figure 5.1, we plot the time evolution of the electrostatic energy in the first dimension with several values of ε going from 1 to 1/132. We also compare the numerical results obtained with these schemes to a numerical solution for the Guiding center model. The run is performed up to a final time T = 50 with the value of the time step ∆t = 0.01. For ε = 1, 1/2, 1/4 and 1/8 all integrators show the same performance, but in the case of the parameter ε becomes smaller, the Scovel method is clearly better. For ε = 1/16, 1/32, 1/64 and 1/132 the Strang splitting based on the exponential Boris algorithm fail entirely whereas the Strang splitting and the composition with adjoint based on Scovel's method remain unaffected, confirm the convergence of Vlasov-Poisson system (5.5)-(5.6) towards the asymptotic model (5.7)-(5.8).

Then we investigate numerically the effect of condition (5.56) to the convergence of the Vlasov-Poisson system (5.5)-(5.6) to its limit model (5.7)-(5.8). In Figure 5.2, we plot the time evolution of the electrostatic energy in the first dimension for different values ε when fixing the numerical parameters as follows: ∆t = 0.01, N x = 128 and the ratio N v/v max = 4 which is denoted the number of points per cell in the velocity grid. As we can see in Figure 5.2 that when the parameter ε becomes smaller, we need to choose a large value of v max to obtain good results. For ε = 1/132, we take v max = 8 as enough value to produce a good simulation, and then for ε = 1/400 and 1/1000, this value of v max is not sufficient, it gives bad result, but the value v max = 16 give better result. For ε = 1/1600, we need to choose v max = 32.

In the following, we will do numerical comparisons between the density particle obtained from the discretized Vlasov-Poisson system with the semi-Lagrangian method and the one corresponding to the discretized guiding center model. More precisely, we represent in the physical space the contours of the particle densities at several values of final fluid time T ∈ {10, 18, 25, 58, 98, 120}. First, we observe the time evolution of the density particle for the guiding center model by using Lagrangian interpolation in Figure 5.3. For the densities given by Vlasov-Poisson system, first we the electric cross-field drift, magnetic gradient drift and magnetic curvature drift. The analysis of the asymptotic model is much more complex in the three-dimensional setting since in that case, we need to handle extra constraints. Moreover, the constraint introduced in the limiting system is not standard, it is a nonlinear term and we cannot simply eliminate or replace it with other equivalent conditions to show that the obtained solution is satisfying this condition. Therefore, the rigorous mathematical study of the well-posedness of the limit model is an interesting and hard point for general magnetic fields in three-dimensional settings. However, for some situations of magnetic fields, the constraint is automatically satisfied, it is possible to construct solutions. In Chapter 4, we considered the Vlasov-Poisson system in two dimensions and that the magnetic field has a constant direction but smoothly varies in position. In that case, the limit model was reduced to dimension two without any constraint. The well-posedness of the limit model was well-studied. Finally, the rigorous justification of the asymptotic limit has been done. Our proofs rely on the relative entropy or modulated energy method. By this technique, we have obtained strong convergences, provided that the solutions of the limit system are smooth enough. Finally, in Chapter 5, we have used the semi-Lagrangian method to solve numerically the solutions of the four-dimensional Vlasov-Poisson system with a strong external uniform magnetic field. The splitting schemes for the Vlasov equation are presented based on the exponential Boris algorithm and Scovel method. The exponential Boris algorithm works badly. The Scovel method presented here performs independently of the strength of the magnetic field very well, we can choose the time step ∆t much larger than O(ε 2 ). However, due to the high oscillation in the electric field by the Scovel method, the time steps ∆t is imposed to the condition ∆t < O(εv max ) within the semi-Lagrangian method. As the parameter ε becomes smaller, we need to take the larger value of v max and then increase the number of points in the direction of velocity to produce good results. Since the semi-Lagrangian schemes are based on interpolation on a phase space mesh, we have to pay attention to the number of point in the velocity grid as v max is larger. Therefore, for an intermediate value of ε, the Scovel method is an appropriate method to the Vlasov-Poisson model, but for a very small value of ε, the fluid model is an appropriate approximation to the kinetic model because it contains all the relevant dynamics and will be much cheaper. Moreover, we have shown numerically that the Scovel method provides a consistent discretization with respect to the limiting guiding center model.

Perspectives

Starting from the work in the thesis some interesting directions can now be considered in future research in the context of magnetic confinement fusion. Some of them are discussed in the following.

First of all, we will consider extending the previous approach in Chapter 4 to nonlinear collisional operators. We will analyze the nonlinear Fokker-Planck operator given by N FP (f ) := div v {σ∇ v f + (v -u[f ])f } this scale. The full limit system of equations for the dynamic of ion/electron transport when the parameters ε and µ toward 0 is then given by