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RÉSUMÉ EN FRANÇAIS

Contexte

Les images sont devenues des outils incontournables de notre société afin de sauve-
garder, partager et diffuser de l’information visuelle sur le monde qui nous entoure. Le
processus d’acquisition d’une image est un processus complexe, et qui est souvent re-
streint par les limitations du matériel d’acquisition ou soumis à des perturbations lors
de la capture. Par conséquent, l’image capturée est généralement une représentation in-
complète ou corrompue de la scène observée. Par exemple, la majeure partie des caméras
traditionnelles sont équipées de capteurs photographiques CCD (Charge-coupled Device)
traduisant l’intensité lumineuse émise par une scène en un signal électronique. Afin de
capturer les différentes composantes de couleur de la lumière incidente, un filtre de couleur
(CFA) est généralement placé devant ces capteurs. Cela a pour conséquence de produire
une image où chaque pixel ne contient l’information liée qu’à une seule couleur donnée:
l’image est alors une mosaïque de couleur, et est donc une mesure incomplète. Le problème
de reconstruction de l’image originale à partir de mesures corrompues ou incomplètes est
généralement présenté comme un problème inverse, où l’on souhaite inverser le processus
d’acquisition. Le problème de reconstruction de l’image attendue à partir de la mosaïque
de couleur est connu sous le nom de « dématriçage », et fait partie d’une pléthore de
problèmes inverses d’acquisition d’images qui ont pu être adressés ces dernières décennies
par la communauté de la recherche du domaine du traitement d’images.

Dans cette thèse, nous nous intéressons plus particulièrement aux problèmes inverses
liés à l’acquisition de champs de lumière. Un champ de lumière est une représentation
d’une scène contenant à la fois l’intensité et l’orientation de l’ensemble des rayons lumineux
parcourant la scène. Par conséquent, la représentation numérique des champs de lumière la
plus couramment utilisée est un ensemble de différents points de vue de la scène observée.
En comparaison, les images capturées par une caméra conventionnelle sont des projections
2D de la scène observée, perdant alors toute information sur l’orientation des rayons
lumineux incidents. Cela implique donc que la majeure partie de l’information 3D soit
perdue lors de l’acquisition de l’image. Malheureusement, cette information 3D perdue
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est cruciale pour une variété de tâches en imagerie, comme par exemple l’estimation de
profondeur et de géométrie de la scène, le changement de point de vue ou de distance
de focus. Bien qu’il y ait une vaste littérature scientifique autour de la réalisation de ces
tâches à partir de mesures incomplètes, une autre approche vise plutôt à capturer une
plus large quantité d’informations via l’acquisition de champs de lumière.

Motivations et objectifs

La reconstruction d’images à partir de mesures dégradées est un vaste domaine de
recherche, s’appuyant notamment sur les travaux mathématiques traitant de la résolu-
tion de problèmes inverses. Résoudre un problème inverse vise à inverser le processus
d’acquisition, afin de retrouver l’image originale à partir des mesures, bien que le pro-
cessus ne soit généralement pas inversible. On pose alors un problème de minimisation,
cherchant une solution en adéquation avec les mesures. Etant donné qu’une partie de
l’information est perdue et/ou corrompue lors de l’acquisition, le problème inverse est
souvent mal conditionné, et la résolution de celui-ci nécessite des connaissances à priori
sur les images à reconstruire. Cependant, les images sont des signaux complexes dont la
structure est difficile à décrire parfaitement.

Avec l’émergence récente des modèles d’apprentissage machine, notamment les mod-
èles d’apprentissage profond, de plus en plus de méthodes de reconstruction d’images
utilisent ces derniers afin d’apprendre automatiquement des connaissances à priori com-
plexes sur les images. Ces modèles sont optimisés, ou entraînés, pour une tâche donnée en
utilisant une banque de données d’entraînement. Le plus souvent, chaque signal d’entrée
de la banque de données est associé à son signal cible. Dans le cas de la reconstruction
d’images à partir de mesures incomplètes et/ou corrompues, le signal d’entrée correspond
généralement à l’image corrompue et le signal cible correspond à l’image cible reconstru-
ite. De cette façon, ces modèles sont entraînés à reconstruire des images, en apprenant
des connaissances à priori sur celles-ci.

Les algorithmes d’optimisation déroulés sont des méthodes bénéficiant de l’avantage
des méthodes analytiques pour résoudre des problèmes inverses et de l’avantage des tech-
niques d’apprentissage profond pour apprendre des connaissances à priori sur les images.
Grâce à cela, les performances de reconstruction de ces méthodes sont l’état de l’art
actuelle pour un grand nombre de problèmes inverses en imagerie. Le principe de ces méth-
odes est que l’entraînement du modèle est réalisé au sein d’un algorithme d’optimisation
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itératif, permettant d’apprendre les connaissances à priori sur les images pour un problème
et pour un algorithme d’optimisation précis. L’entraînement de ce modèle est cependant
contraint à de forts coûts de calcul, notamment en matière de mémoire et de temps de cal-
cul. Le nombre d’itérations considéré dans l’algorithme d’optimisation est alors restreint
par les contraintes liées à l’entraînement du modèle d’apprentissage profond. Le premier
axe de travail de cette thèse s’articule alors autour de la problématique suivante :

1. Comment peut-on réduire les contraintes liées à l’entraînement des modèles au sein
d’un algorithme d’optimisation déroulé ?

Pour répondre à cette problématique, nous proposons une nouvelle méthode pour
l’entraînement des algorithmes déroulés afin de pallier ces contraintes. La principale cause
de ces problèmes est que l’entraînement du modèle d’apprentissage profond doit se faire de
bout en bout au sein d’un algorithme d’optimisation itératif, afin de garantir le meilleur
résultat en sortie de l’algorithme. La méthode présentée doit alors être capable de sim-
plifier ce processus d’apprentissage, afin de le rendre moins coûteux et utilisable quel que
soit le nombre d’itérations considéré dans l’algorithme d’optimisation déroulé.

Dans la suite de cette thèse, nous nous intéressons en particulier aux problèmes inverses
liés à l’acquisition et à la reconstruction de champs de lumière. Nous utilisons alors les
travaux construits autour de la précédente problématique dans l’optique de proposer une
méthode pour la reconstruction de champs de lumière.

Un champ de lumière décrit la scène comme étant une collection de rayons de lumière
émis en tout point de la scène de coordonnées spatiales (x, y, z), dans toutes les direc-
tions, représentées par des coordonnées angulaires (u, v), à n’importe quel moment t et
pour n’importe quelles longueurs d’onde λ. Un champ de lumière est donc représenté par
une fonction en 7 dimensions, connue sous le nom de "fonction plénoptique". Cette fonc-
tion est généralement simplifiée en une fonction en 4 dimensions faisant intervenir deux
coordonnées spatiales (x, y) et deux coordonnées angulaires (u, v). Le champ de lumière
est alors souvent visualisé par une collection de points de vue adjacents, comme illustré
dans la figure 1.

La capture d’une telle quantité d’informations n’est cependant pas une tâche aisée.
Une première approche vise à capturer les différents points de vue simultanément, par
l’intermédiaire d’une matrice de caméras placées sur un plan 2D, comme illustré dans la
figure 2a, ou séquentiellement, via l’utilisation d’une caméra en mouvement. Cependant,
ces dispositifs sont généralement très coûteux et posent des problèmes de calibration des
caméras. Afin de rendre l’acquisition des champs de lumière plus accessible à tout public, il
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Figure 1 – Visualisation d’un champ de lumière: un ensemble de points de vue adjacents.

est nécessaire de réaliser la capture du champ de lumière par l’intermédiaire d’une unique
caméra. Les caméras dites "plénoptiques", utilisant un ensemble de microlentilles placées
devant le capteur pour simuler différents points de vue, ont été proposées à cet effet. Les
modèles les plus connus de caméra plénoptique sont les caméras Lytro, visibles sur la figure
2b. D’autres approches utilisent des masques codés entre l’ouverture et le capteur d’une
caméra traditionnelle, comme illustré sur la figure 2c, permettant d’obtenir une mesure
codée de la scène. Ces différents modèles de caméra sont cependant spécifiques à la capture
de champs de lumière, ne rendant pas l’accès à l’acquisition de champs de lumière tout
public. Une dernière approche vise à capturer un champ de lumière directement avec une
unique caméra conventionnelle, via l’acquisition d’un empilement de mises au point, plus
connu sous le nom de "focal stack", consistant en une série d’images prises en variant la
distance de mise au point.

Il est important de noter que pour toutes les approches utilisant une seule caméra
pour capturer un champ de lumière, l’image obtenue reste cependant mesurée sur un
plan 2D: un problème inverse de reconstruction du champ de lumière à partir de mesures
2D doit être résolu. Pour résoudre ces problèmes inverses, nous nous intéressons aux
algorithmes d’optimisation déroulés évoqués précédemment. Nous nous penchons plus
particulièrement au cas d’une acquisition de champs de lumière via la capture d’une focal
stack, où il est généralement nécessaire d’acquérir une grande quantité d’images de focal
stack pour mesurer suffisamment d’informations sur toutes les profondeurs de la scène.
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(a) (b) (c)

Figure 2 – Design de caméras pour la capture de champs de lumière: (a) la matrice de caméras Stanford
[1], (b) la caméra plénoptique Lytro [2], (c) une caméra utilisant un masque codé [3].

Notre second objectif de la thèse s’axe autour de ce problème et tente de répondre à la
problématique suivante :

2. Est-il possible de construire un algorithme d’optimisation déroulé capable de recon-
struire un champ de lumière de haute qualité à partir d’une focal stack composée de très
peu de mesures ?

Pour répondre à cette problématique, nous proposons une nouvelle méthode de recon-
struction de champs de lumière à partir d’une focal stack composée de seulement quelques
images. Afin de reconstruire efficacement le champ de lumière, l’algorithme proposé a be-
soin (i) de définir un modèle de formation d’une focal stack à partir d’un champ de lumière,
qui puisse être utilisé pour trouver une solution cohérente avec les mesures (ii) de con-
naissances a priori complexes sur les champs de lumière, afin d’inférer toute l’information
perdue lors de l’acquisition tout en produisant un champ de lumière cohérent.

Résumé des contributions

Les contributions présentées dans cette thèse sont organisées en deux parties, suivant
les problématiques énoncées précédemment.

Dans une première partie, nous abordons la problématique de la résolution de prob-
lèmes inverses linéaires en imagerie 2D. Cette partie est divisée en deux chapitres comme
suit.
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Chapitre 1 : ce chapitre vise à introduire la notion de problèmes inverses linéaires,
notamment dans le cadre de l’imagerie, et les approches traditionnelles de la littérature
pour les traiter. Ces problèmes étant généralement mal conditionnés, trouver une solution
désirable à ces derniers impose la prise en compte de connaissances à priori. Le problème
est alors traditionnellement formulé comme un problème de minimisation composé de
deux termes: un terme d’attache aux données, visant à mesurer la fidélité de la solution
trouvée face aux mesures, et un terme de régularisation, visant à quantifier l’adéquation
de la solution aux connaissances à priori. Il existe un grand nombre d’algorithmes utilisés
pour la résolution de ce problème de minimisation, utilisant généralement des algorithmes
d’optimisations itératifs et/ou des méthodes d’apprentissage profond. L’une des approches
les plus prometteuses est l’utilisation d’algorithmes d’optimisation déroulés. Ces derniers
sont caractérisés par l’entraînement d’un modèle d’apprentissage profond au sein d’un
algorithme d’optimisation itératif, afin d’apprendre les connaissances à priori à la fois pour
un problème donné et à la fois pour un algorithme d’optimisation donné. Cet entraînement
est cependant coûteux en calcul, et contraint donc le nombre d’itérations utilisées dans
l’algorithme d’optimisation.

Chapitre 2 : dans ce chapitre, nous présentons notre première contribution [4], visant
à pallier les contraintes d’entraînement des modèles au sein des algorithmes d’optimisation
déroulés. L’approche s’appuie sur les propriétés de l’algorithme des directions alternées
(ADMM) afin de diviser le problème initial d’entraînement de bout en bout du modèle
en un sous-ensemble de problèmes d’entraînement moins coûteux et définis pour chaque
itération de l’algorithme d’optimisation. Ces problèmes d’entraînement sont résolus via
un processus d’optimisation stochastique, permettant ainsi de considérablement réduire
les coûts de calcul, tout en permettant de considérer n’importe quel nombre d’itérations
au sein de l’algorithme d’optimisation déroulé.

Dans la seconde partie, nous nous penchons sur l’acquisition et la reconstruction de
champs de lumière. De façon similaire à la première partie, celle-ci est aussi divisée en
deux chapitres.

Chapitre 3 : ce chapitre présente les fondamentaux de l’acquisition et la reconstruc-
tion des champs de lumière. Les champs de lumière représentent toutes les caractéristiques
des rayons lumineux présents dans une scène et sont souvent représentés par une image en
4 dimensions. Cette représentation de la scène est très importante pour un grand nombre
de problèmes en imagerie nécessitant beaucoup d’informations 3D sur la scène, comme
l’estimation de la profondeur ou encore le changement de focus ou de point de vue. Le
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champ de lumière est directement capturé par un ensemble de caméras ou une caméra
en mouvement, ou alors partiellement capturé puis reconstruit via une caméra modifiée
spécialement pour l’acquisition de champs de lumière ou via une caméra traditionnelle
capturant un empilement de mises au point.

Chapitre 4 : dans ce dernier chapitre, nous proposons une nouvelle approche [5], [6]
pour reconstruire un champ de lumière à partir d’un empilement de mises au point, ou
focal stack, capturé avec une caméra traditionnelle. Nous nous focalisons sur cette méthode
d’acquisition des champs de lumière afin d’ouvrir l’acquisition de ceux-ci à tout public. Les
méthodes de l’état de l’art actuelles nécessitent cependant une grande quantité d’images de
focal stack afin d’obtenir suffisamment d’informations 3D sur la scène. Malheureusement,
la capture d’une grande quantité d’images de focal stack est difficile, notamment à cause
de sa sensibilité aux mouvements de caméra et d’objets dans la scène durant les différentes
captures.

L’approche proposée s’intéresse à la reconstruction d’un champ de lumière à partir
d’une focal stack contenant très peu d’images. Le problème de reconstruction est posé sous
la forme d’un problème inverse linéaire, via l’utilisation de la représentation de champs
de lumière "Fourier Disparity Layers (FDL)". Il s’agit d’une représentation compacte du
champ de lumière qui permet de synthétiser n’importe quel point de vue de celui-ci. Un
algorithme d’optimisation déroulé est présenté afin de résoudre le problème de reconstruc-
tion tout en apprenant des connaissances à priori directement dans le domaine des FDL.
Les FDL étant théoriquement définis uniquement pour les scènes sans occlusions, synthé-
tiser des vues à partir des FDL peut produire des artéfacts autour des zones d’occlusions
dans une scène réelle. Nous proposons alors une nouvelle méthode de synthèse de vues
à partir des FDL, basée sur l’utilisation d’un réseau de neurones profond, pour résoudre
ces problèmes d’artéfacts. Nous montrons que la méthode proposée permet d’obtenir des
champs de lumière de très bonne qualité en utilisant très peu d’images de mesure.
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Context

Nowadays, images are unavoidable tools in our society to save, share, and diffuse visual
information about our surrounding world. The acquisition process of an image is, however,
restricted by the limitations of the acquisition device or subject to perturbations, result-
ing in corrupted or incomplete measurements. For instance, the majority of traditional
cameras are composed of Charge-Coupled Device (CCD), where each sensor captures the
intensity of light rays emitted by the scene to produce an electronic signal. In order to
capture the different color components of the incident light, a Color Filter Array (CFA)
is usually placed in front of the sensors. As a consequence, each pixel of the sensed image
only contains the intensity of a specific color: the sensed image is thus a mosaic image,
hence an incomplete measurement of the original signal. The problem of reconstructing
the original image from corrupted or incomplete measurements is generally presented as
an inverse problem, aiming at inverting the acquisition process. In the case of a mosaic
measurement, the problem of reconstructing the original image is generally referred to as
a "demosaicing" problem, which is part of a plethora of image inverse problems that have
been addressed in the last decades by the image processing community.

In this thesis, we take a particular interest in inverse problems for light field imaging. A
light field is a representation of a scene that contains both the intensity and the orientation
of the light rays traveling through the scene. The most common numerical representation
of a light field is thus a set of adjacent views. In comparison, images captured by a
conventional camera are 2D projections of the observed scene, thus losing orientation
information from the incident light rays. Consequently, a major part of the 3D information
is lost during the acquisition of the image. Nevertheless, this kind of information is crucial
for a variety of image processing tasks, for instance depth and geometry estimation, view
point switching, or image refocusing. While there exists a large scientific literature on
methods to perform these tasks using incomplete measurements, other approaches aim
instead at capturing more information about the scene via the acquisition of light fields.
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Motivations and goals

The problem of reconstructing images from degraded measurements is a vast field of
research that usually relies on the mathematical theory of inverse problem solvers. Solving
an inverse problem aims at inverting the acquisition process in order to retrieve the original
image from its measurements, although the acquisition process is generally not invertible.
A common approach is to pose a minimization problem, aiming at finding a solution
matching the measurements. Since part of the information is lost or corrupted during the
acquisition process, the inverse problem involved is usually ill-conditioned, meaning that
prior knowledge on the type of images we try to recover is required. However, images are
complex signals whose structure is difficult to describe perfectly.

With the rise of machine learning, especially deep learning, more and more image
reconstruction methods take advantage of these models to automatically learn complex
image priors. These models are optimized, or learned, for a specific task using a training
set of data. Generally, each input signal of the training set of data is associated to its target
signal. In the case of image reconstruction from incomplete or corrupted measurements,
the input signal usually corresponds to the degraded signal and the target signal to the
target reconstructed image. Therefore, these models are trained to reconstruct images by
implicitly learning an image prior.

Unrolled optimization algorithms have emerged as a way to take advantage of both
deep learning techniques, to learn an image prior, and analytical solutions, to solve inverse
problems. Thanks to this, these methods have achieved state-of-the-art results for a variety
of image inverse problems. The principle of unrolled optimization algorithms is to train the
deep learned model within an iterative optimization algorithm, hence in a way that it is
optimized for a specific task and a specific algorithm. However, this training usually suffers
from a high computational burden, usually in terms of memory and computation time.
As a result, the number of iterations considered in the unrolled optimization algorithm
is usually restricted by the limitations of the training. The first issue addressed in this
thesis is thus stated as follows:

1. How can we reduce the limitations of the training of an unrolled optimization algo-
rithm ?

To cope with this issue, we propose a novel approach for the training of unrolled
optimization algorithms. This issue is mainly due to the end-to-end training of the deep
learned model within an iterative optimization algorithm, which is used to guarantee the
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Figure 3 – Visualization of light fields: a set of adjacent views.

best output from the algorithm. The proposed method thus needs to simplify this training
in order to reduce its computational burden and to make it applicable for any number of
iterations considered in the unrolled optimization algorithm.

In the second part of this thesis, we focus more specifically on inverse problems related
to the acquisition and reconstruction of light fields. We thus use the methods constructed
around the previous issue in order to propose a novel approach to reconstruct light fields.

A light field describes the scene as a collection of light rays emitted at every point
of the scene at spatial coordinates (x, y, z), in every directions represented by angular
coordinates (u, v), at any time t and for any wavelength λ. A light field is thus represented
by a 7-dimensional function, also known as the "plenoptic function". This function is often
reduced to a 4-dimensional function, using two spatial coordinates (x, y) and two angular
coordinates (u, v). The light field is thus visualized as a collection of adjacent points of
view, as illustrated in figure 3

Capturing such a high quantity of information is, however, a difficult task. A first
approach aims at capturing the different viewpoints simultaneously, using a camera array
as illustrated in figure 4a, or sequentially, using a camera on a moving gantry. However,
these camera architectures are complex and pose calibration issues. In order to make the
acquisition of light fields accessible to the general public, it is necessary to capture the light
field with only a single camera. Plenoptic cameras have been proposed, using an array of
microlenses placed in front of the sensor in order to simulate different viewpoints. The most
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(a) (b) (c)

Figure 4 – Camera architectures for light field imaging: (a) Stanford camera array [1], (b) Lytro plenoptic
camera [2], (c) Coded-mask camera [3].

known plenoptic camera is the Lytro camera, shown in figure 4b. Other approaches tend
to place coded-masks between the aperture plane and the sensor plane of a conventional
camera, as illustrated in figure 4c, which captures a coded projection of the scene. All these
camera designs are, however, specific to light field imaging, making them not accessible to
the general public. A last approach aims at capturing a light field with a single traditional
camera via the acquisition of a focal stack, a set of images captured at different focus
distances.

It is important to notice that for all of the approaches using a single camera to capture
a light field, the sensed image is obtained on a 2D plane: a light field reconstruction
inverse problem from 2D measurements needs to be solved. In order to solve these inverse
problems, we are interested in the unrolled optimization algorithms presented earlier. We
focus on the acquisition of a light field from focal stack measurements, which usually
requires performing a large number of shots with slowly varying focus to retrieve all the
details at every depth in the scene. Our second objective in this thesis is to address the
following issue:

2. Can we produce an unrolled optimization algorithm to reconstruct a high-quality
light field from a focal stack composed of very few images ?

To address this issue, we propose a novel method to reconstruct a light field from
a focal stack with very few shots. In order to reconstruct the light field efficiently, the
proposed algorithm needs (i) a focal stack formation model that can be used to find a
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solution that matches the measurements (ii) a complex image prior in order to retrieve
all the information lost during the acquisition process.

Thesis structure and contributions

The contributions presented in this thesis are organized in two parts, following the
issues stated previously.

In the first part, we address the problem of solving linear image inverse problems. This
part is divided into two chapters, as follows:

Chapter 1: this chapter aims at introducing the notion of linear inverse problems,
with a focus on 2D imaging applications, and the approaches to solve them. With these
problems being generally ill-conditioned, finding a desirable solution requires prior knowl-
edge on the type of image we try to recover. The problem is thus traditionally posed as the
minimization of a function composed of two terms: a data-fidelity term, which measures
the fidelity of the solution with the measurements, and a regularization term, which quan-
tifies how the solution matches with prior knowledge on the target signal. There exist a
variety of algorithms to solve this minimization problem, usually using iterative optimiza-
tion algorithms and/or deep learning techniques. The most promising approaches used to
solve image inverse problems are unrolled optimization algorithms. These methods aim at
learning an image prior within an iterative optimization algorithm, such that it best suits
a specific problem and a specific optimization algorithm. However, the training of such a
learned prior within multiple iterations of an iterative optimization algorithm has a high
computational cost, which restricts the number of iterations considered in the unrolled
optimization algorithm.

Chapter 2: in this chapter, we present our first contribution [4], aiming to cope with
the issues of the training of an unrolled optimization algorithm. Our approach relies on the
properties of the Alternating Direction Method of Multipliers (ADMM) in order to divide
the end-to-end training of the deep learned prior to a set of smaller optimization problems,
defined per unrolled iteration, that require less computational cost. These optimization
problems are solved using a stochastic process, allowing a small computational burden
while considering any number of iterations in the unrolled optimization algorithm.

In the second part, we address the problem of light field acquisition and reconstruction.
Similarly to the first part, this one is divided into two chapters, as follows:

Chapter 3: this chapter presents the fundamentals of the acquisition and reconstruc-
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tion of light fields. Light fields describe all the characteristics of the light rays traveling
through a scene and are usually represented as a 4D image. This representation is impor-
tant to solve a variety of image processing tasks requiring complex 3D information about
the scene, for instance depth and geometry estimation, viewpoint switching or image re-
focusing. The light field is usually captured either directly by a camera array or a camera
on a moving gantry, or partially captured and then reconstructed using a camera built
specifically for light field imaging or using a conventional camera capturing a focal stack.

Chapter 4 : in this last chapter, we propose a novel approach to reconstruct a light
field from a focal stack captured with a traditional camera [5], [6]. We address this problem
in order to open up light field acquisition to the general public. Most state-of-the-art
methods require a focal stack with dense sampling in the focus dimension, so that details
can be retrieved at every depth in the scene. However, capturing many shots of a focal
stack is a difficult task, especially due to its sensitivity to camera and object movements
during the different shots.

The proposed approach aims at reconstructing a light field from a focal stack con-
taining very few images. The reconstruction problem is posed as a linear image inverse
problem using the "Fourier Disparty Layers (FDL)" representation of light fields. The
FDL model is a compact representation of light fields which decomposes the scene into
a few additive layers from which any viewpoint can be reconstructed. A novel unrolled
optimization algorithm is presented to solve the reconstruction problem while learning
an image prior directly in the FDL domain. The FDL representation being theoretically
defined for non-occluded scenes, synthesizing views from a FDL model may bring arti-
facts around occluded areas in real scenes. Hence, we additionally propose a novel neural
network-based process to synthesize views from the FDL model while coping with such
artifacts. We show that the proposed method permits to obtain high quality light fields
using a focal stack with very few images.
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Deep priors for image inverse
problems
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Chapter 1

IMAGE INVERSE PROBLEMS

1.1 Inverse problems

1.1.1 Problem statement

Inverse problems refer to a broad class of problems that appear in a plethora of image
processing and computer vision applications. Due to the limitations of acquisition devices
or defective hardware, the captured signal is usually incomplete or corrupted. Inverse
problems in imaging can be formalized as the recovery of a target image given its noisy
or incomplete observations. Formally, let x ∈ X be the target image and y ∈ Y be the
observation. The general formulation of the formation model, representing the acquisition
process in digital imaging, is as follows:

y = D(Ax), (1.1)

where the matrix A is a linear degradation operator and D is a non-linear degradation
operator, which usually includes randomness such as noise. In many applications, the
degradation can be reduced to a linear additive noise formation model, assuming a linear
operator A and an unknown additive noise ϵ modeled by a Gaussian distribution:

y = Ax + ϵ, ϵ ∼ N (0, σ2), (1.2)

with σ2 being the variance of the Gaussian noise. However, for a variety of acquisition
systems, other types of noise distributions are more accurate [7]. This is, for instance,
the case of photon counting devices, such as Charge-Coupled-Device (CCD) and CMOS
cameras, where the noise is modeled by a Poisson distribution [8]–[10]. Multiplicative
noises are also considered, such as speckle noise, which generally appears with synthetic
aperture radars (SAR) [11]. In the literature, the noise ϵ is generally assumed to follow a
Gaussian distribution, which will be the case in the following.
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Concerning the linear operator A, its design is specific to the inverse problem involved.
There is a plethora of image inverse problems arising from image acquisition system
limitations. Examples of well-studied image inverse problems are presented in the following
section. Note that there are many more image inverse problems tackled in the literature
[12].

1.1.2 Examples of image inverse problems

In this section, a few examples of the multitude of image inverse problems [12] aris-
ing from the limitations of acquisition devices are presented, namely: the denoising, the
deblurring, the super-resolution, and the demosaicing inverse problems.

Denoising

As mentioned in Section 1.1.1, perturbations such as noise are generally expected
when capturing an image. The value of a pixel in the captured image is thus perturbed by
additive noise. The expected type of noise differs depends on the kind of camera used, e.g.
Poisson noise with Charge-Coupled-Device (CCD) and CMOS cameras or speckle noise
with synthetic aperture radars (SAR). Defective sensors are also a common cause of noise
in the measurements. An example of a noisy image is presented in Figure 1.1b.

Solving a denoising image inverse problem aims at removing the noise appearing on
the original image. The linear degradation A in (1.2) is thus equal to the identity matrix
and the additive noise ϵ ̸= 0. Denoising in image processing has been a widely studied
problem with continuous progress [13]–[15].

Deblurring

In a wide range of imaging systems, an acquired image results from the convolution
of the analog input signal to the sensor along with the Point Spread Function (PSF)
characterized by the imaging system. This phenomenon creates a blurring effect on the
acquired image. Other types of blurring effects commonly occur, for instance, motion blur,
which appears when an object is moving in the scene during the capture, or defocus blur,
which occurs when the acquisition device fails to focus an object of interest in the scene.
An example of a blurred image is illustrated in Figure 1.1c.

Deblurring inverse problems are special cases of a deconvolution problem, which have
been widely studied in a variety of forms [16]–[21]. In a deconvolution inverse problem,
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(a) (b) (c) (d) (e)

Figure 1.1 – Examples of measurements for different image inverse problems: (a) the original image
baby.png of the Set5 dataset [22], (b) image corrupted with a Gaussian noise with a standard deviation
σ = 20, (c) blurred image with a gaussian kernel of size 5×5 with a standard deviation σ = 20, (d) down-
sampled and then upsampled image with a magnification factor of 4 and using a bilinear interpolation,
(e) mosaic image obtained using the Bayer kernel.

the linear operator A in (1.2) is a square matrix modeling a convolution kernel.

Super-resolution

Acquiring a high-resolution image is a challenging task for many devices due to hard-
ware limitations. This is, for instance, the case with small portable devices such as smart-
phones. The problem of constructing a high-resolution image from a low-resolution image,
known as the super-resolution image inverse problem, and illustrated in Figure 1.1d, has
received particular attention from the research community, with a variety of proposed
methods [23]–[25].

In the case of a super-resolution problem, the degradation operator A is unknown
in real-world applications. However, it can be approximated via a blurring kernel and a
downsampling operator with a defined scaling factor.

Demosaicing

Most digital photography cameras are equipped with a single Charge-Coupled-Device
(CCD), with each sensor element capturing the intensity of the incident light. To capture
color components of the incident light, a Color Filter Array (CFA) is generally placed on
top of the sensor, such that each sensor element captures a specific color component. As
a result, the acquired image is a mosaic of colors, as illustrated in Figure 1.1e.

The demosaicing inverse problem refers to estimating the original image from the
mosaic of colors. In the literature [26]–[28], the problem is presented as in equation (1.2)
with A being a binary mask representing the CFA.
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1.1.3 Ill-posed linear inverse problems

A linear inverse problem is formalized by the problem of computing an estimate signal
x̂, which approximates the original signal x ∈ X , from the measurements y ∈ Y obtained
following the formation model detailed in equation (1.2). This type of equation is said to
be well-posed, in the sense of Hadamard [29], if it verifies the following three conditions:

1. A solution exists, i.e. ∀y ∈ Y ,∃x ∈ X ,y = Ax + ϵ

2. The solution is unique, i.e. kerA = {0}

3. The solution is stable, i.e. ∀ϵ ∈ R+,∃δ ∈ R+,∀(y,y′) ∈ Y2, ∥y− y′∥ < δ ⇒
∥x̂(y)− x̂(y′)∥ < ϵ

A problem is said to be ill-posed if one of the above conditions is not verified. For
instance, the existence of a solution is usually compromised in the case of an overdetermi-
nated problem, or the uniqueness of the solution may not be verified when the problem
is underdeterminated, which is a common property of many image inverse problems. If
the stability property is not verified, the reconstruction of the estimate x̂ increases the
noise. This is the case when the linear operator A is ill-conditioned. If A is invertible, the
estimate is computed using the inverse of the linear degradation operator:

x̂ = A−1(Ax + ϵ) = x + A−1ϵ. (1.3)

With A being ill-conditioned, the inverse filtered noise A−1ϵ will amplify the noise. In
the case where A is not-invertible, which is the case in many image inverse problems, the
classical approach is the least squares method [30] which minimizes the distance between
Ax and the measurements y:

x̂ = arg min
x∈X

∥Ax− y∥2
2 (1.4)

Note that the least squares method leads to an irregular image when A is ill-conditioned,
as the inverse of the linear degradation operator does. Furthermore, the uniqueness of the
solution is not guaranteed.
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1.2 Reconstruction approaches

1.2.1 Variational approaches

A common strategy to deal with ill-posed image inverse problems consists of introduc-
ing a regularization term in the minimization problem. This approach was first introduced
by Hadamard [31]. The principle of the regularization term is to weight the solution space
to promote certain types of solutions, assuming prior knowledge on the kind of typical
images we attempt to restore. This leads to the following variational formulation:

x̂ = arg min
x∈X

∥Ax− y∥2
2 + λR(x), (1.5)

where R denotes the regularization term, and λ > 0 is a parameter that controls the
amount of regularization. The function to be minimized is thus composed of two terms:
a data-fidelity term ∥Ax− y∥2

2 and a regularization term λR(x). Contrary to the least
squares method in equation (1.4), the variational formulation ensures the uniqueness and
stability of the solution, hence making the inverse problem well-posed.

The quality of the estimated image x is, however, highly dependent on the capacity
of the regularization term to describe natural image statistics. Designing a regularization
term to represent image priors in order to solve image inverse problems has been a major
subject of research [32]. We further discuss regularization techniques in Section 1.4.

1.2.2 Bayesian approaches

Another approach to solve inverse problems starts with its Bayesian formulation. In
this context, y and x in equation (1.1) are realizations of random variables X and Y . The
principle of the bayesian approach is to compute an estimator from the posterior distribu-
tion PX |Y which models the information of the original signal assuming the measurements.
Let C(x̂ − x), a cost function that computes the quality of an estimate x̂ assuming the
original signal x. With the posterior density pX |Y(x|y), the Bayesian estimator is obtained
as:

x̂ = arg min
x∈X

∫
x∈X
C(x̂− x)pX |Y(x|y)dx (1.6)

A common choice for cost function C is the hit-or-miss function defined as follows:
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C(τ) =

 0 if ∥τ∥ < δ

1 if ∥τ∥ ≥ δ
(1.7)

With δ → 0, the solution to the equation (1.6) is x̂ which maximizes the posterior
distribution, hence the name Maximum A Posteriori (MAP) estimator, defined as:

x̂MAP = arg max
x∈X

pX |Y(x|y). (1.8)

Using the Bayes theorem, the posterior density pX |Y(x|y) is expressed as a function of
the likelihood function pY|X (y|x), and of pX (x) which models the prior knowledge on x:

pX |Y(x|y) = pX (x)pY|X (y|x)
pY(y) . (1.9)

Since pY(y) does not depend on x, the MAP estimator can be reduced to the maxi-
mization of the numerator in equation (1.9). Assuming the formation model with Gaussian
noise in equation (1.1), the MAP estimator is thus equivalent to:

x̂MAP = arg min
x∈X

{− log pY|X (y|x)− log pX (x)} (1.10)

= arg min
x∈X

{12 ∥Ax− y∥2
2 + σ2R(x)}

One can note that the MAP formulation of the inverse problem in equation (1.10) is
closely related to the variational approach described in equation (1.5), with the negative
loglikelihood function being the data fidelity-term and the negative log-prior function
being the regularization term.

Other cost functions can be considered for the Bayesian estimator. For instance, an-
other typical cost function C is the quadratic function C = ∥τ∥2. In this case, the Bayesian
estimator is defined as the posterior mean, leading to the Minimum Mean Squared Error
(MMSE) estimator:

x̂MMSE = E [x|y] =
∫

x∈X
xpX |Y(x|y)dx. (1.11)

In the following sections, we consider the problems posed by the variational and MAP
approaches. The MMSE estimator and estimators based on other cost functions are out
of the scope of this thesis.
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1.3 Algorithms

In this section, we introduce the most common classes of algorithms used to solve the
minimization problems posed by the variational approach in equation (1.5), and equiva-
lently, by the MAP formulation in equation (1.10).

1.3.1 Iterative optimization algorithms

Since the problem posed in equation (1.5) generally does not admit a closed-form
solution, classical approaches to solve the minimization problem use iterative optimization
algorithms. The idea behind these algorithms is to generate a sequence of improving
estimates, assuming a function f that computes an estimate x̂k+1 from the estimate x̂k

by minimizing a criteria formulated as a cost function C:

x̂k+1 = f(x̂k), s.t. C(x̂k+1) ≤ C(x̂k) (1.12)

The sequence in equation (1.12) converges to a fixed point x∗, defined by x̂∗ = f(x̂∗),
which is expected to well-estimate the original image. In the case of the variational ap-
proach, the criteria to be minimized is the sum of the data-fidelity term and the regular-
ization term in equation (1.5).

Several iterative optimization algorithms have been designed in the literature, using
different designs of the function f in equation (1.12). These methods can be classified into
two main categories: derivative-based methods and proximal methods.

Derivative-based methods

As mentioned previously, the optimization process in (1.12) aims at finding a solution
x̂ that minimizes a cost function C. Assuming a differentiable function C, a common
strategy is to use its derivatives to find where to move the current estimate in the search
space. There are mainly two types of derivative-based methods: first-order (or gradient)
algorithms and second-order (or Newton) algorithms.

First-order algorithms use the first derivatives of the cost function C, i.e. the gradient
of the function at a point x denoted ∇C(x), to estimate the next point. With the gradient
representing the direction where the cost function to be minimized is increasing the most,
the strategy of first-order algorithms is to move in its opposite direction to find an estimate
that reduces the cost function. The most famous first-order algorithm is the gradient
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descent algorithm [33], which computes the next estimate as follows:

x̂k+1 = x̂k − γk∇C(x̂k), (1.13)

with γk being the step size, also known as the learning rate, which controls how far
to move in the space search at each iteration. Therefore, γk needs to be carefully set.
A small value of γk will result in a long computation time, whereas a large value will
result in bouncing around the search space instead of converging to an optimal estimate.
Based on the gradient descent in Equation (1.13), several algorithms have been proposed
to improve the efficiency of the gradient descent algorithm, mainly for the optimization
of deep neural networks. The momentum gradient descent [34] keeps track of a few past
descent directions at each iteration, which are used to improve the convergence speed of the
algorithm. The Nesterov Accelerated Gradient (NAG) [35] is another momentum gradient
descent method, in which the gradient of the approximated next estimate, approximated
using the momentum, is used to compute the next estimate. Methods were also proposed
to adapt the step size γk to eliminate the need to manually tune it. The Adagrad method
[36] and the RMSProp method [37] compute a step size per parameter to be optimized,
which is adapted depending on the past gradients, similarly to the momentum methods.
The Adaptive Moment Estimation (Adam) [38] was then proposed to take advantage of
both the momentum and the adaptative step size.

The second-order optimization algorithms use the second derivatives, or the Hessian
matrix, of the cost function C to be minimized in addition to the first derivatives. The
idea behind this approach is to approximate the function C with a quadratic function
that is supposed to be easier to minimize. A common strategy to construct this quadratic
function is to compute the Taylor approximation of the function C, using the first and
second order derivatives. The next estimate x̂k+1 is then computed as follows:

x̂k+1 = arg min
x∈X

C(x̂k) +∇C(x̂k)⊤(x− x̂k) + 1
2(x− x̂k)⊤H(x̂k)(x− x̂k), (1.14)

with H being the Hessian matrix of C at x̂k. This approach is often referred to as
the Newton method [39], or quasi-Newton methods when H is an approximation of the
Hessian matrix of C.
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Proximal methods

While derivative-based optimization algorithms are well-suited for the minimization
of a differentiable cost function, proximal methods have been introduced to solve convex
minimization problems of the form:

x̂ = arg min
x∈X

C(x), s.t. C(x) = F(x) +R(x), (1.15)

where F is convex and differentiable and R is convex and possibly non-differentiable.
Note that the problem posed in equation (1.5) is a particular case of the variational
formulation in equation (1.15). The cost function C to be minimized is thus composed
of a sum of convex possibly non-differentiable functions. Finding x̂ that minimizes C, is
equivalent to finding x̂ such that:

0 ∈ ∂C(x̂), (1.16)

where ∂C(x̂) denotes the subdifferential of the sum of functions. A key operator to
solve this problem is the proximal operator introduced by Moreau [40], noted proxC(.)
and defined as:

proxC(x̂) = arg min
x∈X

C(x) + 1
2 ∥x̂− x∥2

2 . (1.17)

The proximal operator is thus composed of a sum of two functions: the cost function
to be minimized, i.e. C in our case, and a proximity term, i.e. 1

2 ∥x̂− x∥2
2. Intuitively,

computing the proximal operator of the function C at x̂ corresponds to finding the min-
imum of C in the neighborhood of x̂. Finding the explicit forms of proximal operators
has thus been an attractive subject of research, with several explicit forms, or closed-form
solutions, presented in recent works, e.g. in [41]–[44].

A variety of proximal optimization algorithms have been proposed in the literature to
solve the minimization problem posed in equation (1.15), and so in equation (1.5). The
forward-backward (FB) algorithm by Combettes et al. [41] combines the gradient descent
presented in equation (1.13) and the proximal operator in equation (1.17) to deal with
the minimization of respectively the differentiable and the non-differentiable terms. The
method alternates between computing the gradient descent step over the differentiable
function F and computing the proximal operator of the non-differentiable function R. An
iteration of the forward-backward algorithm is thus described as follows:
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x̂k+1 = proxR(x̂k − γk∇F(x̂k)) (1.18)

Similarly, the iterative shrinkage-thresholding algorithms (ISTA) by Daubechies et al.
[45] and its derivatives [35], [46], [47] use a shrinkage operator to model the proximal
operator of the ℓ1-norm and the ℓ2-norm. The Douglas-Rachford algorithm [48] is a split-
ting algorithm designed to solve the problem in equation (1.15) with non-differentiable
terms. Another well-known proximal algorithm, which will be further used in this thesis,
is the Alternating Direction Method of Multipliers (ADMM) by Boyd et al. [49], with
its simplified form being the Half-Quadratic Splitting algorithm (HQS) by Geman et al.
[50]. It solves the minimization problem in equation (1.5) by introducing a constrained
minimization problem by splitting the different terms:

x̂ = arg min
x,v∈X

1
2 ∥Ax− y∥2

2 + σ2R(v), s.t.x = v (1.19)

To incorporate the constraint x = v in the minimization problem, we define the
augmented Lagrangian function L, in which a dual variable u and a penalty term ρ are
introduced:

L(x,v,u) = 1
2 ∥Ax− y∥2

2 + σ2R(v) + u⊤(x− v) + ρ

2 ∥x− v∥2
2 , (1.20)

= 1
2 ∥Ax− y∥2

2 + σ2R(v) + ρ

2

∥∥∥∥∥x− v + u
ρ

∥∥∥∥∥
2

2
− ∥u∥

2
2

2ρ

The ADMM optimization algorithm consists of minimizing the augmented Lagrangian
function L for the variables x and v alternatively and updating the dual variable u:

x̂k+1 = arg min
x

1
2 ∥Ax− y∥2

2 + ρ

2
∥∥∥x− vk + uk

∥∥∥2

2
, (1.21)

vk+1 = arg min
v

ρ

2
∥∥∥v− (x̂k+1 + uk)

∥∥∥2

2
+ λ · R(v) (1.22)

uk+1 = uk + (x̂k+1 − vk+1), (1.23)

34



1.3. Algorithms

(a) (b)

Figure 1.2 – (a) Structure of a neuron [57]: The dentrites deliver the input signals to the soma, which
emits an output signal (if the input signals exceed a threshold) to the axon, which delivers it to another
neuron (b) Structure of a neural network: the input signals are transformed to compute the output signal
using a linear transformation, with learnable weights and biases, and and a non-linear activation function.

1.3.2 Deep learning algorithms

In the last decade, a plethora of deep learning techniques have emerged to deal with
many image processing tasks [51]–[54]. The principle of deep learning is to optimize a
very large number of parameters of a model in order to minimize a chosen criteria. In the
following, we introduce the basics of deep learning for image processing.

Principle of neural networks

Many machine learning models have been designed in the literature [55]. In the context
of image processing, deep learning techniques using neural network architectures have been
a common choice of algorithms and have yielded a significant performance leap in the last
years.

Neural network architectures are inspired by the human brain, especially for its capa-
bility of solving a variety of image processing tasks. Our brain contains about 100 billion
neurons that communicate with each other with signals passing through thousands of
synapses for each neuron. The spiking neuron model [56] specified how neurons share and
produce information between each other. In a nutshell, the information signal is repre-
sented by a neuron spike, i.e. an action potential. The treatment and emission of signals
in a neuron are divided into three main steps, as represented in Figure 1.2a. The dendrites
transmit signals coming from other neurons to the soma. The latter processes the input
signals and, if they exceed a certain threshold, emits an output signal in the axon, which
delivers the output signal to another neuron.

Similarly, a neural network is composed of artificial neurons that gather, treat, and
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emit signals. A neural network is an acyclic graph with multiple layers, each containing
multiple neurons connected to other neurons in the previous and next layers. The output
signal emitted by neurons in a layer is the result of a linear transformation of the input
signals passing through a non-linear activation function. The structure of an artificial
neuron is presented in Figure 1.2b. There are several neural network layers, with the most
common ones for image processing being the fully-connected layers and the convolutional
layer. Both network architectures are illustrated in Figure 1.3.

Fully-connected layer: every neuron of the previous layer is connected to each neuron
of the current layer, as illustrated in Figure 1.3a. Formally, let zi ∈ Rm, with m being the
number of input signals, be the vector containing the input signals coming from the layer
number i. Let Wi+1 ∈ Rn×m and bi+1 ∈ Rn be the weights and the bias associated with
the linear transformation, and σ(.) be the non-linear activation function of the current
layer. The output signal zi+1 ∈ Rn is then computed as follows:

zi+1 = σ(Wi+1zi + bi+1). (1.24)

In the context of image processing, fully-connected layers have the advantage of cap-
turing global information in the image since all the information is passing through every
neuron, which comes, however, with a high computational cost.

Convolutional layer: contrary to fully-connected layers, which forces global connections
between neurons, convolutional layers compute local analysis of the input signal. They
were created, at first, for 2D image processing to capture spatial dependencies in the
signal while maintaining a suitable computational cost. At each layer, a set of filters, or
kernels, are convolved with the input image, resulting in a set of convolved images, named
feature maps, as illustrated in Figure 1.3b. Formally, let zi ∈ Rh×w×c be an input image
with height h, width w and number of channels c. Let Wi+1 ∈ Rhk×wk×c×n and bi+1 ∈ Rn

be the n bias and convolutional filters, with kernel size hk×wk, and σ(.) be the non-linear
activation function of the current layer. The output feature map zi+1 ∈ Rh×w×n is then
computed as follows:

zi+1
.,.,j =

c∑
k=0

σ(zi
.,.,k ∗Wi+1

.,.,k,j + bi+1
j ), (1.25)

with ∗ denoting the convolution operator.
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(a) (b)

Figure 1.3 – (a) Structure of a fully connected layer: every neuron of the previous layer is connected
to each neuron of the current layer (b) Structure of a convolutional layer: the input image is convolved
with filters to produce feature maps.

Neural network optimization

A neural network can be seen as a function that maps the input signal space to the
output signal space. For instance, in the case of an image reconstruction problem, as posed
in the variational approach in equation (1.5), a neural network takes a degraded image
y ∈ Y as input and is expected to output the original image x̂ ∈ X . The output of the
neural network is, however, dependent on the values of the weights W and bias b in each
layer of the network. In the following, we note θ the parameters of the neural network, i.e.
the concatenation of all the weights and biases of the neural network, with θi being the
parameters of the ith layer. These parameters θ thus need to be optimized such that the
neural network maps an input signal to its corresponding target output signal. Similarly
to an individual who learns by experience, i.e. learning from examples, the parameters of
a neural network are optimized, or learned, using a training set of data. In this document,
we only consider a supervised learning setup, i.e. where an output target signal is known
for each input signal in a training dataset. Note that there exists a large literature on
unsupervised learning [58], which is out of the scope of this document.

Let a training set of N paired data {(y1,x1),...,(yN ,xN)}, with an input data yn ∈ Y
being associated to its target output data xn ∈ X . The parameters θ of a neural network
N are optimized such that, assuming an input yn, its output x̂n well-estimate the target
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output xn. The criteria to be minimized is thus a function, noted L(.) and generally
referred to as loss function, which computes the error between the target data xn and the
prediction x̂n of the neural network. The optimization of the parameters θ is thus posed
as the minimization of the loss function over the whole training dataset:

θ̂ = arg min
θ

N∑
n=1
L(N (yn, θ),xn). (1.26)

As mentioned in Section 1.3.1, the common strategy to solve this minimization prob-
lem is to use first-order iterative optimization algorithms based on the gradient descent
algorithm in equation (1.13):

θk+1 = θk − γk ∂
∑N

n=1 L(N (yn, θk),xn)
∂θk

. (1.27)

The parameters are generally initialized following specific distributions [59]–[61]. To
reduce the computational burden of computing the derivative of the loss function with
respect to the parameters θ, the usual strategy is to randomly select mini-batches of
paired data at each gradient descent step, instead of using the whole training dataset.
This strategy is known in the literature as the mini-batch stochastic gradient descent
[62]. Note that a neural network is composed of a set of sequential layers. Therefore, the
function N , representing the neural network, is a composite function, with each function
computing a layer. The gradients of the weights of each layer are thus computed using
the chain rule of derivatives. With zi being the output of the ith layer li, and I being the
number of layers, the chain rule is computed as follows:

∂L
∂θi

= ∂L
∂zI

∂lI(zI−1, θI)
∂zI−1 ...∂l

i(zi−1, θi)
∂θi

, (1.28)

where each part of the chain rule, e.g. ∂li(zi−1,θ)
∂zi−1 , is a Jacobian matrix, and where ∂L

∂zI

denotes the row vector of the gradient of the loss function L with respect to the output
zI of the neural network. The backpropagation [63] refers to the algorithm that computes
the gradient of the loss function with respect to each parameter to be optimized in the
neural network, by propagating backward the error from the loss function following the
chain rule in equation (1.28).
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1.4 Regularization in inverse problems

In Section 1.3, the traditional algorithms to solve an ill-posed image inverse problem
were presented. An important component of the variational and the MAP formulations of
the problem in equations (1.5) and (1.10) is the regularization function, which constrains
the space of acceptable estimates assuming prior knowledge on the type of signal to
be reconstructed. Building an efficient image prior through a regularization function is,
however, a challenging task. Several regularization approaches have been proposed in the
literature [32], which are presented in this section.

1.4.1 Hand-crafted priors

A first category of regularization approaches is to build a hand-crafted function mod-
eling a specific image prior. A variety of functions have been designed in the literature,
mostly relying on the Tikhonov regularization or on sparsity prior.

Tikhonov regularization

The most well-known first regularization technique is the Tikhonov regularization, pro-
posed by Tikhonov [31]. With this regularization, the minimization problem in equation
(1.5) is in the following form:

x̂ = arg min
x∈X

∥Ax− y∥2
2 + λ ∥Γx∥2

2 , (1.29)

with the Tikhonov matrix Γ being a linear operator that promotes desirable properties
on the signal x. A well-known choice for the matrix Γ is the identity matrix Γ = Id. The
regularization constraint becomes the ℓ2-norm, promoting solutions with small norms with
all coefficients being small. Another approach consists of defining Γ as a laplacien filter
that promotes small variations in the image, i.e. assuming a smoothness prior on images.
An application of the Tikhonov regularization applied to image denoising is presented in
Figure 1.4b.

Sparsity regularization

Sparsity prior has been widely considered for a variety of signal processing tasks,
including image restoration [66], feature classification [67], and image compression [68].
A signal is said to be sparse when most of its coefficients are zero under a certain linear
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(a) (b) (c) (d)

Figure 1.4 – Examples of hand-crafted regularization applied to a denoising image inverse problem: (a)
Image corrupted with additive Gaussian noise (b) Tikhonov regularization [31] promoting smoothness
(c) Sparsity prior using the wavelet regularization with the Bayes Shrink method [64] (d) Total variation
regularization proposed by Chambolle et al. [65].

transformation defined by a dictionary, which is a common assumption for natural images.
Let a dictionary Φ and s a vector of coefficients in Φ. The variational problem formulated
in equation 1.5 becomes the problem of finding ŝ which minimizes:

ŝ = arg min
s
∥AΦs− y∥2

2 + λ ∥s∥1 , (1.30)

with the ℓ1-norm promoting sparse solutions. Common choices of linear transforma-
tions associated with the dictionary Φ are the Fourier transform [69], the cosine transform
[70] and the wavelet transform [71], since natural images are generally sparse representa-
tions in the frequency domain. A regularization using the wavelet transform is illustrated
in Figure 1.4c. A very popular regularization promoting sparsity is the total variation,
introduced by Rudin et al. [72]. The principle of total variation relies on the fact that im-
ages are mostly composed of homogeneous areas, meaning that variations of intensity are
mainly located around the edges. The gradient of an image is thus expected to be a sparse
representation. Assuming an image x ∈ RI×J and ∇h(.) and ∇v(.) denoting the gradient
operators in respectively the horizontal and vertical directions. The total variation V (x)
of the image x is:

V (x) =
I∑

i=1

J∑
j=1

(
|[∇h(x)]i,j|+ |[∇v(x)]i,j|

)
(1.31)

While high quality images were obtained in the literature using a total variation reg-
ularization, it is also known to produce staircasing effects [73] in areas with smooth vari-
ations. Figure 1.4d shows an example of total variation applied to image denoising.
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1.4.2 Plug-and-play methods

As illustrated in Figure 1.4, it is a challenging task to obtain high quality reconstructed
images using a hand-crafted regularization function. It is mostly due to the complexity
of designing a very complex image prior with hand-crafted functions. To cope with this
issue, more and more researchers in the image processing community are dedicated to
create learned image priors, with a particular interest in deep learning techniques. This
section deals with a first category of optimization methods with learned priors, referred
to as "Plug-and-play", which has been introduced by Venkatakrishnan et al. [74], and
where an off-the-shelf denoiser is used to represent the prior, and is plugged into an
iterative optimization algorithm. More precisely, instead of constructing the regularization
function explicitly, the plug-and-play approach aims at using a denoising neural network
to approximate the gradient of the regularization function or its proximal operator. These
approximations are thus plugged into an iterative algorithm to solve any type of image
inverse problem.

Image denoising is one of the most well-studied image inverse problems in the literature
[13]–[15], with a particular interest in the denoising problem considering an additive white
Gaussian noise in the degradation process. A variety of deep learning architectures have
been proposed for noise removal, including the well-known DRUnet [75] and DnCNN [76]
architectures. Let a Gaussian denoiser D be parameterized by the parameters θ which are
optimized as follows:

θ̂ = arg min
θ
L(D(y, θ),x), (1.32)

with y = x + ϵ, s.t. ϵ ∼ N (0, σ2),

where σ2 is the variance of the Gaussian noise and L(.) is the loss function computing
the error between the denoised image D(x + ϵ, θ) and the original x. Note that solving
an image denoising inverse problem implies the computation of the MAP estimator in
equation (1.10) for a denoising problem:

D(y, θ) = arg min
x

1
2 ∥x− y∥2

2 + σ2R(x). (1.33)

One can note that applying the denoiser D is equivalent to computing the proximal
operator of the regularization function R. Therefore, the denoiser D implicitly learns a
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prior on the target image space. Consequently, a first Plug-and-Play approach aims at
using an off-the-shelf denoiser in a proximal optimization method to solve any image
inverse problem. It was first introduced using the ADMM optimization algorithm by
Venkatakrishnan et al. [74]:

x̂k+1 = arg min
x

1
2 ∥Ax− y∥2

2 + ρ

2
∥∥∥x− vk + uk

∥∥∥2

2
, (1.34)

vk+1 = D(x̂k+1, θ), (1.35)

uk+1 = uk + (x̂k+1 − vk+1), (1.36)

Similarly, the denoiser D can be considered to compute the MMSE estimator in equa-
tion (1.11). Using Tweedie’s formula [77], the relationship between the denoiser D and
the probability density pY(y) is established as:

D(y, θ) = y− σ2∇ log(pY(y)). (1.37)

Therefore, the true prior distribution PX can be approximated using the corrupted
data distribution PY , assuming Gaussian noise with a small variance σ2. It is well-known
[78] that the Unadjusted Langevin Algorithm can produce samples from a probability
density pX (x) knowing only ∇ log(pX (x)). Samples following the probability density pX |Y

can thus be computed using a denoiser D as follows:

x̂k+1 = x̂k + γk∇ log(pX |Y(xk|y)) +
√

2γkzk+1, (1.38)

= x̂k + γk∇ log(pY|X (y|xk)) + γk∇ log(pX (xk)) +
√

2γkzk+1,

≈ x̂k + γk∇
[1
2
∥∥∥Ax̂k − y

∥∥∥2

2

]
+ γk

(
xk − D(xk, θ)

θ2

)
+
√

2γkzk+1,

with zk+1 ∼ N (0, Id) and γ denoting the step size. The MMSE estimate x̂MMSE is
then computed by averaging multiple samples generated using the algorithm described in
equation (1.38).
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Figure 1.5 – Unrolled gradient descent: the learned neural network acts as the gradient of the regular-
ization function.

1.4.3 Unrolled optimization algorithms

Unrolling a fixed number of iterations of optimization algorithms is another way of
coupling iterative optimization and deep learning techniques. Contrary to the plug-and-
play approach, where the optimization of the learned prior is decoupled from the iterative
optimization algorithm, the learnable network in an unrolled algorithm is trained end-to-
end within the iterative algorithm, hence in a way that takes into account the data-fidelity
term. Therefore, the prior is learned to obtain optimized results for a given image inverse
problem and for a given iterative optimization algorithm. An illustration of an unrolled
gradient descent is proposed in Figure 1.5.

Several optimization algorithms have been unrolled in the literature, where a learned
regularization network is used at each iteration of the optimization algorithm. The learned
network plays a specific role for each unrolled algorithm. Unrolling methods were intro-
duced by Gregor et al. [79], where the Iterative Shrinkage Thresholding Algorithm (ISTA)
is unrolled, and where the neural network is learned to give the optimal sparse code. The
gradient descent and the proximal gradient algorithms are considered in [80] and [81]
respectively. When unrolling the gradient descent algorithm, the network used for reg-
ularization is expected to act as the gradient of a regularizer [80]. In the case of the
proximal gradient algorithms in [81], the neural network computes a proximal mapping
of the regularization, which can be interpreted as a Gaussian denoiser. Unrolled proximal
algorithms were also proposed in the literature, following the HQS algorithm [82] and
the ADMM optimization method [83]. In the latter methods, a proximal operator of the
regularization function is learned.

Thanks to the combination of powerful iterative optimization algorithms and deep
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complex image priors, unrolled optimization algorithms have achieved state-of-the-art re-
sults for a variety of image inverse problems [4], [5], [84], [85]. It is important to notice that
training the neural network within the unrolled optimization algorithm requires, however,
high computational resources, especially in terms of memory usage and computation time.
Therefore, the number of iterations considered in practice is usually controlled to avoid
a high computational burden, which can affect the quality of the reconstructed images.
There are mainly two categories of training approaches for unrolled optimization algo-
rithms, respectively based on explicit backpropagation and implicit backpropagation via
the deep equilibrium approach.

Unrolling with explicit backpropagation

The neural network involved is optimized by backpropagating the gradients of a loss
function L explicitly from the output of the unrolled optimization algorithm to its input.
Formally, let an iterative optimization algorithm be unrolled for K iterations, with f

being the function, parameterized with θ, representing an iteration of the unrolled opti-
mization algorithm, and x̂k be the output of the kth iteration. For the sake of simplicity,
we will consider a recurrent unrolled algorithm, i.e. every unrolled iteration uses the same
parameters θ. The differentiation involved in the explicit backpropagation is written using
the chain rule as follows:

∂L
∂θ

=
K∑

k=1

[
∂L
∂x̂K

∂f(x̂K−1, θ)
∂x̂K−1 ...∂f(x̂k, θ)

∂θ

]
. (1.39)

With the neural network used at each unrolled iteration, one can notice that the
computational burden of the explicit backpropagation is linearly dependent on the number
of unrolled iterations. Therefore, the optimization of an unrolled optimization algorithm
usually suffers from intensive memory usage. To cope with this issue, the number of
unrolled iterations considered is usually very small. As a consequence, while iterative
optimization algorithms iteratively improve an estimate until convergence, the unrolled
optimization algorithm is thus trained to recover the best estimate in a fixed number of
iterations, so it loses its convergence properties, as illustrated in figure 1.6. The considered
fixed number of iterations thus needs to be carefully tuned for each task, or sometimes
for each image, to ensure the best reconstruction performances.
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Figure 1.6 – Analysis of the convergence of the unrolled optimization algorithm trained
using an explicit backpropagation: the algorithm reconstructs its best estimate after a
fixed number of iterations and does not converge to a desired estimate.

Deep equilibrium for unrolled optimization algorithms

While classical iterative methods iterate until convergence, unrolled optimization al-
gorithms consider a fixed number of iterations, which is usually small. Indeed, learning a
prior end-to-end while unrolling more iterations would considerably increase the memory
usage of the explicit backpropagation.

To overcome this issue, Deep Equilibrium approaches were introduced for unrolled
optimizations [86], [87]. The Deep Equilibrium models (DEQ) [86], [88] and the Jacobian-
Free Backpropagation Implicit (JFBI) Networks [87], [89] have been introduced using
implicit backpropagations, based on the Recurrent Back Propagation (RBP) algorithm
[90], [91]. It takes advantage of the implicit function theorem [92] to reduce the memory
requirement of the backpropagation.

Let an iterative optimization algorithm be unrolled with a recurrent architecture. Let f
be a function, parameterized with θ, representing an iteration of the unrolled optimization
algorithm. Assuming that the iterative optimization algorithm converges, f admits a fixed
point x̂∗ such that:

x̂∗ = f(x̂∗, θ). (1.40)

This is equivalent to having the following function h:

h(x̂, θ) = x̂− f(x̂, θ),

h(x̂∗, θ) = 0.
(1.41)
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According to equation (1.41), we can use the implicit function theorem [92] allowing
us to define the following differentiable function z:

z(θ) = x̂∗ = f(x̂∗, θ) = f(z(θ), θ), (1.42)

Using equation (1.42), we are able to write the differentiation of z(θ) w.r.t. θ as follows:

∂z(θ)
∂θ

= ∂f(z(θ), θ)
∂θ

= ∂f(x̂∗, θ)
∂x̂∗

∂z(θ)
∂θ

+ ∂f(x̂∗, θ)
∂θ

, (1.43)

∂z(θ)
∂θ

=
[
I − ∂f(x̂∗, θ)

∂x̂∗

]−1
∂f(x̂∗, θ)

∂θ
. (1.44)

The differentiation in equation (1.44) details the differentiation used in the DEQ meth-
ods [86], [88]. It requires the computation of the inverse Jacobian

[
I − ∂f(x̂∗,θ)

∂x̂∗

]−1
, which

is the bottleneck of the DEQ method in terms of computation time.
Further developments in [89] have shown that, by omitting the inverse Jacobian in

equation (1.44), one still obtains a descent direction of the loss with respect to θ. This
leads to the JFBI method, where the differentiation in Eq. (1.44) is rewritten as:

∂z(θ)
∂θ

= ∂f(x̂∗, θ)
∂θ

. (1.45)

With both differentiations in equations (1.44) and (1.45), we are now able to optimize
the network parameters θ in order to fit z(θ), i.e x̂∗, to the groundtruth. It is important
to notice that both differentiations do not depend on how x̂∗ has been computed from
x̂0. Indeed, it only depends on the fixed point x̂∗ and a single application of f . Therefore,
contrary to the explicit backpropagation in which the depth scales linearly with the num-
ber of unrolled iterations, the depth of implicit backpropagation is independent of the
number of unrolled iterations. This explains why implicit methods require low memory
usage compared to traditional unrolled methods.

However, implicit methods heavily rely on the assumption that the fixed point exists
and is reached in practice in order to compute the gradients accurately. The usual strategy
to compute the fixed point is to iterate until idempotence, i.e. the difference between the
input and the output of an iteration is lower than an approximation error value ϵ. While
having a high value of ϵ may result in instability due to a wrong estimation of the fixed
point, a low value of ϵ increases the number of iterations, hence increases the computation
time.
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In summary, unrolling optimization methods with explicit backpropagation suffer from
intensive memory usage. On the other hand, implicit unrolled optimization methods typ-
ically use a very large number of iterations to estimate the fixed point of the iterative
algorithm, without increasing memory usage of the backpropagation, but suffer from in-
tensive computation time.

1.5 Directions and objectives

In this thesis, we take a particular interest in unrolled optimization algorithms. As
mentioned in Section 1.4.3, unrolled optimization algorithms are powerful tools to solve
image inverse problems. However, the number of unrolled iterations is generally restricted
due to the optimization strategy to avoid a high computation burden.

We seek to address this problem by proposing a novel approach to train an unrolled
optimization algorithm, where the computational burden is considerably reduced, and
where any number of unrolled iterations can be considered.

47





Chapter 2

STOCHASTIC UNROLLED PROXIMAL

POINT ALGORITHM

2.1 Introduction

As mentioned in Section 1.4.3, unrolled optimization algorithms have achieved state-
of-the-art results for a plethora of image inverse problems [4], [5], [84], [85], hence being
the most promising approach to solve image inverse problems. The idea behind unrolled
optimization algorithms is to learn a neural network end-to-end within an iterative opti-
mization algorithm, such that it performs best for a specific image inverse problem and
for a specific iterative optimization algorithm. The optimization of the neural network is
done by backpropagating the gradients of the loss function from the output to the input
of the unrolled optimization algorithm. Since a neural network is used at each unrolled
iteration, the computation burden of computing the backpropagation is thus considerable.
Indeed, the memory usage scales linearly with the number of unrolled iterations.

In this chapter, we address the problem of reducing the computational burden of train-
ing a neural networks in an unrolled optimization algorithm. One of the most promising
approaches in the literature is the implicit backpropagation using the Deep Equilibrium
approach [86], [88], [89]. This method takes advantage of the implicit function theorem
[92] to rewrite the differentiation used in the backpropagation. More precisely, assuming
that the iterative optimization algorithm converges to a fixed point, the backpropagation
then depends only on the application of the unrolled iteration taking this fixed point as
input. Therefore, contrary to the explicit backpropagation classically used in an unrolled
optimization algorithm, where the memory usage depends on the number of unrolled it-
erations, the backpropagation with the deep equilibrium approach depends only on the
last iteration, hence making the backpropagation memory-efficient. However, the fixed
point of the iteration optimization algorithm needs to be computed to use the implicit
backpropagation. In practice, the usual approach to compute this fixed point is to iterate
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until convergence, which generally causes a high computational cost.
We thus propose a Stochastic Unrolled Proximal Point Algorithm (SUPPA) to solve

linear image inverse problems. The proposed method is a novel memory-efficient optimiza-
tion method for unrolled optimization algorithms based on the properties of the ADMM
optimization algorithm. Each unrolled iteration is re-defined as a proximal mapping, by
exploiting the fact that the ADMM is an application of the Proximal Point Algorithm
[93], [94]. A stochastic training of the learned weights is performed by considering per-
iteration optimization problems. While both explicit and implicit backpropagations aim
to optimize the network parameters in order to fit the output of the unrolled iterative
algorithm to the ground truth, the backpropagation in our proposed training uses the
intermediate unrolled iterations independently of each other. This optimization strategy
is thus independent of the number of computed unrolled iterations and is mathematically
justified even if the fixed point is not estimated, hence making the training possible for any
arbitrary number of unrolled iterations. We assess the method for several image inverse
problems against recent unrolled optimization methods and task-specific deep methods.
We show that the proposed method achieves state-of-the-art restoration performances for
every image inverse problem considered.

2.2 Unrolled Proximal Point Algorithm

The Proximal Point Algorithm (PPA), introduced by Martinet [95], iteratively com-
putes the resolvent of a maximal monotone operator T:

x̂k+1 = Pk(x̂k), (2.1)

with Pk(x̂k) = (I + ckT)−1x̂k, (2.2)

In the case where the operator T corresponds to a subdifferential of a convex function
g, the proximal point algorithm iteratively computes the proximal point:

x̂k+1 = proxg(x̂k), (2.3)

with proxg(x̂k) = arg min
x

g(x) + 1
2∥x− x̂k∥2

2. (2.4)

With g being convex, the proximal point algorithm converges to the minimum of g.
Eckstein et al. [93] demonstrated that methods applying the Douglas—Rachford splitting
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Figure 2.1 – Unrolled ADMM with a learned denoising neural network.

algorithm, such as the ADMM [94], are special cases of the proximal point algorithm
described in equation (2.1). Let us now write the ADMM parameterized with θ as the
following series:

x̂k+1 = f(x̂k, θ), (2.5)

where, f represents one iteration of the ADMM algorithm, i.e., f performs equations.
(1.34), (1.35), (1.36), with equation (1.35) computed by a trained Gaussian denoiser.
With the ADMM being a special case of the proximal point algorithm, each ADMM
iteration aims to compute the resolvent of a maximal monotone operator:

f(x̂k, θ) = Pk(x̂k). (2.6)

To learn the parameters θ of an unrolled ADMM, we propose to define an optimiza-
tion problem for each unrolled iteration k in order to fit f(x̂k, θ) to a chosen maximal
monotone operator Pk(x̂k). Since the subdifferential of a convex function is a maximal
monotone operator, we consider a maximal monotone operator defined as the subdifferen-
tial of a scalar-valued function g such that each iteration f(x̂k, θ) of the unrolled ADMM,
illustrated in Figure 2.1, is expressed as:

f(x̂k, θ) = arg min
x

g(x, θ) + 1
2∥x− x̂k∥2

2 = proxg(.,θ)(x̂k). (2.7)

We will show in Section 2.4 that the end-to-end optimization problem of the unrolled
ADMM can then be reduced to a set of per-iteration optimization problems.

51



Part I, Chapter 2 – Stochastic Unrolled Proximal Point Algorithm

2.3 Definition of the function g

With g convex, proxg(.,θ)(x̂k) reduces the distance between the estimate x̂k and the
fixed point of the ADMM algorithm. Since the fixed point depends on θ, we will note it
x̂∗

θ. Thus, we define g(x̂, θ) as the weighted squared ℓ2-norm between any image x̂ and
the fixed point x̂∗

θ of the ADMM:

g(x̂, θ) = 1
2λ∥x̂

∗
θ − x̂∥2

2, (2.8)

with λ > 0. The proximal operator of g has thus a well-known closed form:

proxg(.,θ)(x̂) = x̂∗
θ + λx̂
1 + λ

. (2.9)

From this definition, g is convex with respect to x̂ and one can easily verify that
iterative applications of proxg(.,θ) effectively converge towards the fixed point x̂∗

θ, with a
convergence rate controlled by λ.

2.4 Loss function

Unrolled optimizations aim to optimize θ in order to minimize the difference between
the output x̂∗

θ and the groundtruth image xgt. In addition, we propose to fit f(x̂, θ) to
proxg(.,θ)(x̂) for any x̂. We thus want to learn the parameters θ to approximate:

 x̂∗
θ = xgt, (2.10)

f(x̂, θ) = proxg(.,θ)(x̂), ∀x̂. (2.11)

According to Eq. (2.9), this is equivalent to:
{ x̂∗

θ = xgt, (2.12)

x̂∗
θ = (1 + λ)f(x̂, θ)− λx̂, ∀x̂ (2.13)

 x̂∗
θ = xgt, (2.14)

xgt = (1 + λ)f(x̂, θ)− λx̂, ∀x̂ (2.15)

We can notice that Eq. (2.14) is equivalent to a particular case of Eq. (2.15) where
x̂ = x̂∗

θ, since f(x̂∗
θ, θ) = x̂∗

θ by definition of the fixed point. The system can thus be
expressed only with Eq. (2.15). The end-to-end optimization of the unrolled ADMM is
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Figure 2.2 – Average validation PSNR per epoch during training with different values of
λ in Eq. (2.9), for image super-resolution (bicubic x2 without antialiasing).

thus reduced to a set of independent optimization problems. However, optimizing θ for
any possible images x̂ is impractical, since it would require integrating the loss over the
space of images. Instead, we consider only the images in the optimization path, i.e., the
intermediate estimates of the unrolled algorithm, i.e., x̂k,∀k ∈ {0, ..., K}. The full loss
function L is then written as follows:

L(θ, λ, x̂0, ..., x̂K) = 1
K

K∑
k=0

l(θ, λ, x̂k) (2.16)

with:
l(θ, λ, x̂k) = ∥(1 + λ)f(x̂k, θ)− λx̂k − xgt∥2

2. (2.17)

Each term of the sum in Eq. (2.16) considers x̂k as an input. The computation of x̂k is
then not taken into account for the backpropagation, which is essential to keep it shallow.
This will be further discussed in Section 2.5.

The latter loss L is however dependent on the design of the convergence rate λ in Eq.
(2.9). Its value needs to be optimized for both the estimation of the proximal mapping
and the image restoration problems, i.e., such that it minimizes the loss l in Eq. (2.17)
for any input x̂k. We thus propose to learn λ along with the weights θ. to automatically
find its best value. To illustrate the importance of correctly setting λ, we trained the
SUPPA with different values of λ on the same task. As shown in Fig. 2.2, the value of λ
drastically impacts the image reconstruction quality. Furthermore, learning it offers the
best performances.

53



Part I, Chapter 2 – Stochastic Unrolled Proximal Point Algorithm

2.5 Stochastic unrolled iteration learning

Each term of the loss function L in Eq. (2.16) is associated with a specific independent
iteration k, with x̂k considered as an input. Instead of considering all the K iterations
at each training optimization step, we propose a stochastic selection of a small subset of
iterations I ⊂ {1, .., K}. The differentiation of the loss L w.r.t θ can then be written as
follows:

∂L
∂θ

= 1
card(I)

∑
i∈I

∂f(x̂i, θ)
∂θ

T
∂l

∂f(x̂i, θ) . (2.18)

The differentiation of L w.r.t. λ can be simplified as:

∂L
∂λ

= 1
card(I)

∑
i∈I

∂l

∂λ
. (2.19)

The memory usage of the backpropagation is thus independent of the number of un-
rolled iterations, and is instead only dependent on the size of the subset of selected iter-
ations I. In order to favor high restoration quality, we always include the last computed
iteration in the set I. Hence, we propose to use 2 iterations (card(I) = 2) per back-
propagation: the last iteration K and a randomly selected iteration k < K. We have not
observed any further benefit in increasing the number of randomly selected iterations. The
SUPPA has thus the same memory usage advantage as the implicit unrolled methods. Fig.
2.3 gives an overview of the backpropagation used in the different unrolled methods. The
explicit backpropagation propagates through every iteration. On the other hand, in the
DEQ method, implicit backpropagation is performed in one step, considering the whole
unrolled network for the inverse Jacobian matrix computation. By removing the inverse
Jacobian, the JFBI method only requires backpropagation through the last iteration. This
is similar to the proposed backpropagation scheme, but without the additional randomly
selected intermediate iteration.

Algorithm 1 summarizes the different steps of the proposed algorithm. Our PyTorch
implementation of the method is available at: https://github.com/BrandonLeBon/SUPPA

2.6 Experiments

We evaluate the performances of our method on super-resolution and deblurring in-
verse problems against state-of-the-art unrolled and task-specific deep methods. Addi-
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Figure 2.3 – Diagram of backpropagation strategies for the different unrolled methods.

Algorithm 1 Proposed Unrolled Proximal Point algorithm
1: initialize θ, K, λ, ϵ
2: for each epoch do
3: for each batch do
4: x̂0 ← input batch
5: xgt ← groundtruth batch
6: I ← random subset of {1, ..., K}
7: loss← 0
8: k ← 1
9: x̂k ← f(x̂0, θ)

10: while k < K and ∥x̂k−1 − x̂k∥ > ϵ do
11: if k ∈ I then
12: update loss with (2.16)
13: x̂k+1 ← f(x̂k, θ)
14: k ← k + 1
15: update θ and λ with (2.18) and (2.19)

tional visual results are reported on the project web page (http://clim.inria.fr/
DeepCIM/SUPPA/index.html).

Unrolled optimization methods: the selected reference unrolled optimization meth-
ods are (i) the explicit unrolled optimization with deep prior [80] (ii) the Deep Equi-
librium architectures for inverse problems (DEQ) [86] (iii) an adaptation of the DEQ
using the Jacobian-Free differentiation [89], named Jacobian-Free Backpropagation Im-
plicit Unrolled (JFBI). Network parameters are shared between all unrolled iterations and
are pre-trained in order to initialize the proximal operator of the regularizer (1.22) for
Gaussian noise removal as presented in [75] with the DRUnet denoising architecture. The
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explicit unrolled ADMM uses 6 iterations. As stopping criteria for the DEQ, the JFBI,
and the SUPPA, we use a maximum of 50 iterations, with an idempotence estimated with
a precision of ϵ = 10−3 as in [86].

State-of-the-art task-specific deep methods: the efficient task-specific deep meth-
ods considered are (i) the RCAN method [96] and MoG-DUN method [97] for the super-
resolution (ii) the method of Dong et al. [18] for deblurring.

Training parameters: all the above methods have been retrained. We used 75 epochs,
a batch size of 16, and a learning rate of 10−5. We also used an additional learning rate
of 10−1 for the convergence rate λ in the proposed method.

Super-resolution: we consider three scales: x2, x3, and x4. The low resolution images are
generated with a bicubic downsampling without anti-aliasing. As initialization, we per-
form a bicubic interpolation on the downsampled image. As in [97], we used the DIV2K
dataset [98] [99] with random patches of size 48x48 for training, and Set5 [22], Set14 [100]
and BSDS100 [101] datasets for testing. We use the closed-form presented in [75] to solve
Eq. (1.21).

Deblurring: we consider a Gaussian blur kernel with parameters σ = 2, size = 2∗σ and
a 1% noise level. As in [18], we randomly cropped 256x256 patches from the Waterloo
Exploration dataset [102] for training, and we used the BSDS500 dataset [101] for testing.
The exact solution x̂ in Eq. (1.21) was computed using the same closed-form as for the
super-resolution with a scaling factor equal to 1.

2.6.1 Reconstruction performances

Reconstruction performances are evaluated with the mean PSNR per dataset on the
RGB channels. Note that the PSNR values for RCAN and MoG-DUN are significantly
different from the original papers, since these are computed on the Y channel of the YCrCb
color space. Super-resolution and deblurring results are respectively in Table 2.2, and 2.1.
As shown in both tables, our method performs as well as the best unrolled methods, and
outperforms the task-specific deep methods for the two tested inverse problems. Visual
reconstructions are presented in figures 2.4 and 2.5, which show that the proposed SUPPA
allows the recovery of fine details.
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Groundtruth Bicubic RCAN

PSNR: 31.39 dB

MoG-DUN

PSNR: 31.72 dB

Unrolled

PSNR: 32.84 dB

DEQ

PSNR: 31.12 dB

JFBI

PSNR: 32.80 dB

SUPPA

PSNR: 33.08 dB

Figure 2.4 – Visual comparisons of image super-resolution of different methods with a
bicubic downsampling (x4) without anti-aliasing and with a bicubic interpolation initial-
ization on a sample image from the BSDS100 dataset [101]. A portion of the error map
is selected to highlight the error in a specific area. The error is amplified by a factor of 3.
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Groundtruth Input Dong et al.

PSNR: 26.50 dB

Unrolled

PSNR: 27.07 dB

DEQ

PSNR: 26.65 dB

JFBI

PSNR: 27.09 dB

SUPPA

PSNR: 27.00 dB

Figure 2.5 – Image deblurring results with different methods, using a Gaussian kernel
(σ = 2, size = 2 ∗ σ) and an image of the BSDS500 dataset. [101]. A portion of the error
map is selected to highlight the error in a specific area. The error is amplified by a factor
of 3.

Table 2.1 – Deblurring results (average PSNR)

BSDS500
Dong et al. [18] 27.28 dB
Unrolled [80] 27.68 dB

DEQ [86] 27.25 dB
JFBI [89] 27.55 dB
SUPPA 27.60 dB
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Table 2.2 – Superresolution results (average PSNR)

Scale Set5 Set14 BSDS100
Zhang et al. [96] x2 34.30 dB 30.13 dB 28.81 dB
Ning et al. [97] x2 34.59 dB 30.35 dB 30.02 dB
Unrolled [80] x2 34.87 dB 30.42 dB 30.04 dB

DEQ [86] x2 34.75 dB 30.28 dB 29.93 dB
JFBI [89] x2 34.96 dB 30.61 dB 30.09 dB
SUPPA x2 34.92 dB 30.54 dB 30.08 dB

Zhang et al. [96] x3 29.60 dB 25.67 dB 25.91 dB
Ning et al. [97] x3 29.63 dB 25.65 dB 25.93 dB
Unrolled [80] x3 30.06 dB 26.03 dB 26.33 dB

DEQ [86] x3 29.94 dB 25.95 dB 26.27 dB
JFBI [89] x3 29.97 dB 25.90 dB 26.31 dB
SUPPA x3 29.95 dB 25.90 dB 26.30 dB

Zhang et al. [96] x4 27.50 dB 23.80 dB 24.67 dB
Ning et al. [97] x4 27.77 dB 24.28 dB 24.79 dB
Unrolled [80] x4 28.27 dB 24.63 dB 25.21 dB

DEQ [86] x4 27.21 dB 24.17 dB 24.44 dB
JFBI [89] x4 28.34 dB 24.63 dB 25.16 dB
SUPPA x4 28.20 dB 24.63 dB 25.12 dB

2.6.2 Convergence of the unrolled methods

In this section, we study the convergence of the different considered unrolled optimiza-
tion methods. Fig. 2.6 illustrates the convergence of the unrolled ADMM algorithms for
the deblurring and super-resolution tasks.

First, we can notice that, as expected, the explicit unrolled method does not converge,
since it is optimized for a specific number of iterations. Both the implicit backpropagation
methods and SUPPA tend to converge, which is an expected behavior of the ADMM
algorithm. Furthermore, we can notice that SUPPA converges faster than the JFBI and
DEQ methods. A possible explanation for this behavior is that in SUPPA, we explicitly
introduce a convergence rate parameter λ allowing control over the convergence speed,
while JFBI and DEQ tend to use the maximum number of iterations allowed in the
training (50 in our experiments).
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Figure 2.6 – Average PSNR per unrolled iteration for the different unrolled optimization
algorithms considered, and for (top) a super-resolution image inverse problem, with a
magnification factor of 4, on the BSDS100 dataset [101], (bottom) and a Gaussian de-
blurring, with a kernel of parameters σ = 2, size = 2 ∗ σ and a noise level of 1%, on the
BSDS500 dataset [101].

2.7 Conclusion

In this paper, we addressed the problem of reducing the computational burden of
training unrolled optimization algorithms. We proposed a novel training approach to train
a deep neural network in an unrolled iterative optimization for solving image restoration
problems. Based on the ADMM optimization algorithm, the proposed method re-defines
the end-to-end training of the deep neural network as a per-iteration optimization strategy.
Along with a stochastic optimization process, this strategy permits to significantly reduce
the computational burden of training unrolled optimization algorithms, in terms of both
memory usage and computation time, and allows the training to be applicable for any
number of unrolled iterations. Furthermore, the image reconstruction quality is on par
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with the state-of-the-art for the tested applications (i.e., super-resolution and deblurring),
considering both other recent unrolled and task-specific deep methods.
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Chapter 3

LIGHT FIELD IMAGING

3.1 Light field representation

3.1.1 Plenoptic function

Introduced by Gershun [103], in 1939, the ’Light Field’ is a representation of 3D
scenes, defined as the collection of all light rays passing through every point in the scene
and flowing in every direction. A light field is generally described with the 7D plenoptic
function ϕ introduced by Adelson et al. [104], which maps the radiance R of every light
ray, at every 3D position (x, y, z) in the scene, in every direction represented by the polar
coordinates (θ, ϕ), for every wavelength λ and at any time t:

R = ϕ(x, y, z, θ, ϕ, λ, t). (3.1)

However, capturing such a representation of 3D scenes is a very difficult task. For the
sake of simplicity, the light field is usually considered time-invariant and monochrome,
leading to the 5D plenoptic function ϕ(x, y, z, θ, ϕ).

3.1.2 Lumigraph and two-plane parameterization

Gortler et al. [105] proposed a simplified light field representation, called the ’Lumi-
graph’, assuming that the light rays travel through transparent air, i.e. that the radiance
along the rays remains constant. The idea behind the Lumigraph is to capture the radi-
ance of every light ray at the surface of a cube, which encloses the region of interest in the
scene. The radiance is determined by tracing back along the light ray through an empty
space down to the surface of the cube. A light ray is thus described by its intersection with
two parallel planes, defined as the ’Two-plane parameterization’ [105], [106], illustrated
in Figure 3.1. The light ray intersects the two planes at coordinates (ui, vi) and (xi, yi),
which denote respectively the angular (or view) coordinates on the angular plane and the
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Figure 3.1 – Two-plane parameterization of a light field: a light ray is described by its intersection with
the angular plane and the spatial plane.

spatial (or pixel) coordinates on the spatial plane. The light field L is thus a 4D function
which maps the radiance R of every light ray parameterized with two spatial coordinates
(x, y) and two angular coordinates (u, v):

R = L(u, v, x, y). (3.2)

Assuming this representation, the light field is generally visualized as a set of adjacent
viewpoints, as illustrated in Figure 3.2. Each viewpoint of coordinates (ui, vi) corresponds
to the image formed on the spatial plane with all the light rays intersecting the angular
plane at coordinates (ui, vi).

3.2 Light field acquisition

In a conventional camera, each sensor element sums all the light rays emitted by one
point over the lens aperture. Formally, an image I(x, y) is obtained by integrating the
light field over the angular dimensions with an aperture ψ:

I(x, y) =
∫
R

∫
R
L(x, y, u, v)ψ(u, v)dudv. (3.3)

Therefore, the angular information is mixed up on the sensor, making it hard to recover
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Figure 3.2 – Visualization of light fields: a set of adjacent views.

from the 2D measured image I(x, y). In contrast, light field camera architectures aim at
capturing both the light ray intensities and directions. Existing light field acquisition
approaches use camera architectures that can be classified into three categories: camera
arrays, cameras with additional hardware elements, and conventional cameras capturing
a focal stack.

3.2.1 Camera arrays

The principle of camera arrays is to capture the different viewpoints of the light field
using multiple cameras placed at different locations on the same plane. The idea emerged
from the prior work by Lippmann [107], in 1908, where an imaging device composed of an
array of 12 lenses on a photosensitive plate is proposed to capture different viewpoints of
the same scene. The first camera array designed for light field imaging, shown in Figure
3.3, was by Yang et al. [108] in 2002, composed of 64 cameras distributed on an 8 × 8
grid. Several camera arrays were then proposed, e.g. the dense camera array composed of
53 CMOS sensors by Wilburn et al. [109], or the Stanford multi-camera array by Wilburd
et al. [1] with 100 VGA video cameras.

A camera array directly captures the 4D Lumigraph. Indeed, the location of each
camera corresponds to the angular coordinates (ui, vi) and the position of each sensor
element in a camera is associated with the spatial coordinates (xi, yi). As a result, the
angular and spatial dimensions of the captured light field are respectively dependent on
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(a) (b) (c)

Figure 3.3 – Camera arrays designed for light field imaging: (a) the camera array proposed by Yang et
al. [108], (b) the dense camera array by Wilburn et al. [109], (c) the stanford multi-camera array by [1].

the number of cameras and their resolution. Assuming a sufficient number of cameras
with high resolution, a camera array is thus capable of efficiently capturing a light field.
However, the construction of a camera array is a challenging task. In addition to being
expensive, it requires a perfect alignment of the cameras to accurately measure the light
field. In practice, misalignment of the cameras usually occur, involving additional camera
calibration problems and image rectifications.

Much cheaper and easier approaches to directly capture different viewpoints of a 3D
scene were also considered. One way is to place a conventional camera on a moving gantry
[106]. The principle is to capture multiple images of a scene sequentially by moving the
camera along a 2D plane. Consequently, this type of device is only limited to the capture
of static light fields. Smaller camera arrays for portable devices have also been designed,
e.g. the pelican camera array proposed by Venkataraman et al. [110] or the wafer-level-
optics camera array by Huang et al. [111], in order to reduce the cost of camera arrays,
however, at the cost of reducing the light field resolution.

3.2.2 Cameras with additional hardware elements

Another way to capture light fields is to use a single camera designed for light field
imaging, thanks to specific additional hardware elements. There are mainly two types of
light field cameras: plenoptic cameras and coded mask-based cameras.
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Figure 3.4 – Optical system of the plenoptic camera by Ng et al. [113]: an array of microlenses redirects
the incident light rays to form viewpoint images

Plenoptic cameras

Inspired by the 12-lens prototype by Lippmann [107], plenoptic cameras were intro-
duced by Adelson et al. [112], in 1992. The presented camera architecture captures a light
field with a single shot using a single main lens and an array of microlenses at the sensor
plane. Each microlens redirects the incident light rays, according to their incident angle,
to form a microlens image. Each pixel of a microlens image correponds to the same posi-
tion in the scene, observed at different angles. This design was then further improved by
Ng et al. [113], creating the first commercial plenoptic camera. This architecture laid the
foundation for the well-known Lytro 1st generation camera and the Lytro illum camera.
The optical system of the plenoptic cameras is described in Figure 3.4.

The viewpoints, also called sub-aperture images, are produced by gathering pixels with
the same relative position, i.e. with the same incident angle, in the microlens images. One
can note that the spatial resolution depends on the number of microlenses, while the
angular resolution depends on the number of pixels underneath the microlenses. With
the resolution of the sensor being a limiting factor, plenoptic cameras thus impose a
spatial-angular trade-off, with dense angular sampling leading to sparse spatial sampling.
Several super-resolution methods have been proposed to enlarge the resolution of the
captured low-resolution light field. While some of these methods focus on enlarging the
spatial resolution of the sub-aperture images [114]–[118], others focus on applying angular
super-resolution, i.e. a view synthesis [119]–[121], or both at the same time [122]–[124].

Another type of lenslet cameras referred to as "plenoptic 2.0" or "focused plenotpic
cameras" aims at finding a trade-off between angular and spatial resolution. This is for
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instance the case of the Raytrix camera [2]. In this case, the camera is designed so that
the image formed behind each lenslet is in focus. However depth estimation is required in
order to compute the sub-aperture image from the RAW data.

Coded mask cameras

A novel approach, named Coded Aperture Light Field Imaging (CALFI), was intro-
duced by Babacan et al. [125], in 2009. This approach relies on the compressive sensing
theory [126]–[128], which states that a sparse signal can be recovered with a sampling
rate significantly lower than the sampling rate specified by the Shannon-Nyquist theo-
rem, assuming incoherent measurements. It is a common assumption that natural visual
data, such as light fields, have sparse representations. In this framework, a randomly
coded attenuation mask is placed in a conventional camera between the aperture plane
and the sensor, as illustrated in Figure 3.5. To ensure incoherence in the measurements,
the nonzero elements of the coded mask are usually drawn following a specific probability
distribution, e.g. a nonzero Gaussian distribution. Formally, using a monochrome-coded
attenuation mask ϕ and an aperture ψ respectively placed a distance dm and da from the
sensor, the observed image I(x, y) is obtained following the equation:

I(x, y) =
∫
R

∫
R
L(x, y, u, v)ϕ(x+ σ(u− x), y + σ(v − y))ψ(u, v)dudv, (3.4)

with: σ = dm

da

.

Consequently, the captured image is a 2D-coded projection of the 4D light field. The
light field is then reconstructed by solving the compressive sensing inverse problem of re-
covering the light field L(x, y, u, v) from its coded projection I(x, y). Babacan et al. [125]
used a randomly generated mask at the aperture plane and proposed a Bayesian frame-
work to recover the light field. Marwah et al. [129] used a monochrome-coded attuenuation
mask, while a color-coded mask is considered by Miandji et al. [130]. A multi-mask cam-
era model is also considered by Nguyen et al. [131]. For all these methods, sparse priors
were considered to reconstruct the light field with a dictionary of basis functions, e.g. si-
nusoids, monomials, or wavelets. Several works also considered using deep learning priors.
Light field reconstruction methods with deep prior from monochrome measurements were
proposed by Gupta et al. [132] Vadatya et al. [133] and Nabati et al.[134]. Le Guludec et
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Figure 3.5 – Optical system of the coded mask camera presented in [3]: a coded attenuation mask is
placed between the aperture plane and the sensor. The light field is then reconstructed by solving the
compressive sensing inverse problem of restoring the light field from the 2D-coded projections.

al. and Guo et al. [135] proposed methods to jointly learn the coded mask along with a
deep prior to ensure maximal incoherence in the measurements. An unrolled optimization
algorithm was also considered by [85].

The advantage of this approach compared to the system of plenoptic cameras is that
it does not come with a spatial-angular trade-off, hence allowing the capture of the light
field with both high spatial resolution and high angular resolution.

3.2.3 Conventional cameras capturing a focal stack

All the camera architectures presented in Sections 3.2.1 and 3.2.2 are specific to light
field imaging and require either multiple cameras or additional optical elements, hence
being not accessible to the general public. Recent works were focused on capturing light
fields with a single conventional camera, mainly using a focal stack as measurement of
the light field, i.e. a set of images of the scene captured at different focus distances as
illustrated in Figure 3.6. Assuming an aperture ψ, a focus image Is

u0,v0(x, y) at position
(u0, v0) on the camera plane is obtained with the following equation:

Is
u0,v0(x, y) =

∫
R

∫
R
L(x− us, y − vs, u0 + u, v0 + v)ψ(u, v)dudv, (3.5)

71



Part II, Chapter 3 – Light field imaging

(a) (b) (c)

Figure 3.6 – Focal stack from [154]: a set of images of the scene captured at different focus distances.

where s is a focus parameter, such that the regions of the scene being at disparity d = s

are in focus. With a dense focal stack being 2D projections of the 4D light field [136],
[137] that contains rich 3D information, a light field can be efficiently reconstructed. In the
literature, there are mainly two types of reconstruction methods: depth-based methods
[138]–[142] and deconvolution methods [137], [143]–[153]. In addition to being captured
with a conventional camera, a focal stack allows to reconstruct a light field at full sensor
resolution. It is important to notice that the current works require a dense focal stack to
have sufficient 3D information of the scene. Capturing many focal stack images comes,
however, at the cost of losing the instant capture properties. On one hand, the scene needs
to remain static since the different shots are processed sequentially. On the other hand,
the acquisition device has to stay stable to avoid camera translations between each shot.

Depth-based methods

The different viewpoints of the light field can be retrieved using an estimated depth
map. Therefore, several methods in the literature estimate a depth map from the acquired
focal stack in order to reconstruct the light field. Mousnier et al. [142] proposed a masked
back-projection from an estimated depth map to perform the tomographic reconstruction
of epipolar images used to reconstruct the light field. McMillan et al. [139] presented
the "Plenoptic Modeling", an image-based rendering system to reconstruct the plenoptic
function. Deep learning techniques were also recently considered by Huang et al. [144],
with a three sequential convolutional neural networks framework that reconstructs the
light field from estimated all-in-focus images, depth maps, and Lambertian light fields.
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Deconvolution methods

The decovonlution inverse problem of reconstructing the light field from a set of focal
stack images is generally tackled using iterative methods, with or without image priors.
Takahashi et al. [147] proposed an iterative method to construct a light field represen-
tation named "tensor-display", a few light-attenuating layers. Inspired by the CT image
reconstruction tasks, Liu et al. [146] applied the filtered back-projection and the Landwe-
ber iterative methods. Other filter-based iterative methods were proposed by Yin et al.
[145] and Gao et al. [148]. Additionally to sparsity priors, Blocker et al. [151] and Kamal
et al. [150] proposed a low-rank prior to respectively model (i) the low angular varia-
tion of light fields (ii) the redundancies of high-dimensional visual signal. Gao et al. [153]
proposed the ADMM algorithm with a TV-regularization along with a guided filter. Le
Pendu et al. [152] proposed the Fourier Disparity Layers (FDL) representation of light
fields to decompose the scene into a set of additive layers. The author used a Tikhonov
regularization in the optimization of the FDL.

3.3 Examples of light field applications

3.3.1 Digital refocusing

A major application of light field imaging is post-capture image refocusing. In con-
ventional 2D imaging systems, changing the object in focus in a scene is handled by
changing the distance between the sensor and the aperture before the capture. Light field
imaging offers the possibility to compute the integration of the light rays with different
focus planes and apertures after the capture. Assuming a dense set of captured views V ,
a refocused image Is

u0,v0(x, y), at position (u0, v0) on the camera plane, can be obtained
with the shift-and-sum method introduced by Ng et al. [113], using an aperture ψ and a
refocus parameter s:

Is
u0,v0(x) =

∑
(u,v)∈V

L(x− us, y − vs, u0 + u, v0 + v)ψ(u, v) (3.6)

3.3.2 Viewpoints switching

Capturing a light field allows to freely change the viewpoint from which a scene is
observed, or to simulate the displacement of a moving camera. Since most of the light
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field capture systems capture a set of adjacent views, as illustrated in Figure 3.2, the
number of available viewpoints is limited. In order to have access to an unlimited number
of viewpoints or to allow smooth transitions between viewpoints when simulating a cam-
era movement, many view synthesis frameworks have been developed to generate novel
viewpoints from a light field captured with a sparse angular resolution [119]–[121]. An-
other approach is to use a compact representation of light field, e.g. the "tensor-display"
[147], Fourier Disparity Layers [152] and Neural Radiance Fields [155], from which any
viewpoint can be reconstructed.

3.3.3 Geometry and depth estimation

Depth estimation is one of the most well-studied computer vision tasks [156]. Many
methods have been developed to estimate the depth in a scene using one monocular
image [157]–[161] or stereo pairs [156], [162]–[167]. However, estimating the depth and the
geometry of the scene using a maximum of two viewpoints usually leads to occlusion issues.
Therefore, light field imaging is well-suited for depth and geometry estimation thanks to
its high angular resolution. Light fields have thus been considered in several works to
capture the depth in the scene, mainly recovered by three types of depth estimation
approaches: epipolar plane image (EPI)-based methods [122], [168]–[171], pixel matching
methods [172]–[174] and focus-based methods [175]–[177].

3.4 Directions and objectives

As stated in Section 3.2, light fields are generally captured using complex camera
designs specific to light field imaging, which are not accessible to the general public. In
this thesis, we aim to contribute to the domain by improving the capture of light fields with
a single conventional camera, in order to expand light field imaging to the general public.
The most promising approach to the acquisition of light fields with a single traditional
camera is by capturing a focal stack and reconstructing the light field afterward.

Methods proposed in the literature for light field reconstruction from a focal stack
generally require a focal stack with dense sampling in the depth dimension to retrieve
all the 3D information from the scene. However, capturing such a focal stack is difficult,
specifically due to possible movement in the scene or by the camera between the different
shots. Therefore, the capture of a dense focal stack is thus limited to static scenes captured
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with a camera equipped with a stabilizer.
We seek to address this problem by proposing a method to reconstruct light fields

from a focal stack containing very few images captured at different focus distances. To
retrieve all the missing information due to the sparse focal stack, a strong prior on light
fields is required. Therefore, the unrolled algorithms are also considered in this work to
automatically learn a complex prior on light fields.
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Chapter 4

LIGHT FIELD RECONSTRUCTION FROM

FEW-SHOTS FOCAL STACK

4.1 Introduction

As introduced in chapter 3, light field acquisition by capturing a focal stack, i.e. several
images of the scene at different focus distances, is the most promising approach to capture
a light field using a single conventional camera. There are mainly two types of methods
in the literature to reconstruct a light field from a focal stack: depth-based methods
[138]–[142] and deconvolution methods [137], [143]–[153]. However, all existing methods
typically require focal stacks with dense sampling in the focus dimension, so that the
details can be retrieved at every depth in the scene. Hence, many shots are needed in
the capture process. As we mentioned in chapter 3, capturing many sequential shots of
a scene restricts the capture to static scenes and is very sensitive to inconsistency in the
measurements, e.g. slight camera translation between each shot.

In this chapter, we address the problem of light field reconstruction from a small
set of focal stack images. The problem of reconstructing a light field from a focal stack
with only a few shots can be seen as a form of compressive sensing, hence posed as an
image inverse problem. As discussed in chapters 1 and 2, an efficient strategy to deal with
ill-posed image inverse problems consists in learning an image prior as a regularization
term in an unrolled iterative optimization algorithm. The optimization problem is then
posed as the minimization of a function composed of two terms: a data-fidelity term and
a learned regularization term. In the context of light field reconstruction from a set of
focal stack images, several iterative optimization algorithms have been designed in the
literature [145]–[148], [150]–[153]. However, they only rely on handcrafted priors.

We thus propose a novel unrolled optimization method to solve the inverse problem
involved. The Alternating Direction Method of Multipliers (ADMM) [49] is unrolled with
a deep prior to optimize Fourier Disparity Layers (FDL), a compact representation of
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light fields, introduced by Le Pendu et al. [152], from which any view of the light field can
be reconstructed. The problem is solved in the FDL domain, which allows us to derive
a closed-form solution for the data-fidelity term of the cost function to be minimized.
Unrolling the FDL optimization permits to learn the regularization function directly in
the FDL domain. However, the FDL model is known to produce artifacts in occluded non-
Lambertian scenes, such as transparency in occluded regions [152], [178]. To cope with
this issue, we propose a Deep Convolutional Neural Network (DCNN) within the FDL
view synthesis process that is trained to minimize the errors of the reconstructed views.
Both the unrolled ADMM FDL and the view synthesis network are jointly optimized
to ensure the best reconstruction performances. We show that this proposed framework
outperforms recent and efficient state-of-the-art methods for light field reconstruction from
a set of focal stack images, and that it significantly improves the FDL model in terms of
reconstruction performances and robustness to occluded and non-Lambertian scenes.

4.2 Light field imaging and focal stack formation mod-
els

This Section introduces the light field imaging model and the focal stack formation
model considered. Let us consider an input light field, represented by a 4D function
L(x, y, u, v) describing the radiance along light rays, with the two-plane parameteriza-
tion [105], [106] presented in chapter 3. The parameters (u, v) denote the angular (view)
coordinates and (x, y) the spatial (pixel) coordinates. In this chapter, for notation sim-
plicity and without loss of generality, we consider a 2D light field L(x, u) with one angular
dimension and one spatial dimension.

Focal stack images taken at different focus distances can be seen as measurements of
the light field to be reconstructed. Let a refocused light field Ls be defined as Ls(x, u) =
L(x−us, u), with a refocus parameter s defined such that the regions of disparity d = s in
the light field L have a disparity d = 0 in the refocused light field Ls. A refocused image
Is

u0 , at position u0 on the camera plane, is obtained by integrating the light rays over the
angular dimension using the refocused light field and the aperture ψ:

Is
u0(x) =

∫
R
L(x− us, u0 + u)ψ(u)du. (4.1)

Assuming the light field imaging model in equation (4.1), the angular information of
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the light field is lost, for the most part, in the acquisition process. Therefore, the problem
of recovering the light field L from a set of focus images is an ill-posed inverse problem.

4.3 Joint Fourier disparity layers unrolling with learned
view synthesis

In this section, we present our joint optimization framework, briefly illustrated in
Figure 4.1. We first introduce in Section 4.3.1 the Fourier Disparity Layers (FDL) by
Le Pendu et al. [152] that will be used in our framework. The proposed method is a
joint optimization of two different parts introduced in Sections 4.3.2 and 4.3.3 (i) the
parameters θ1 of a denoiser CNN D used in an unrolled ADMM FDL optimization (ii)
and the parameters θ2 of a CNN S of a novel learned view synthesis process trained to
adapt the optimized FDL for each novel view to be reconstructed, in order to cope with
the issues of the FDL model. Finally, in Section 4.3.4, we present the joint optimization
process.

Figure 4.1 – Overview of the proposed joint optimization framework: (i) Fourier disparity
layers are optimized from focal stack measurements through an unrolled optimization
algorithm (ii) the light field viewpoints are reconstructed with a learned view synthesis
process.
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(a) (b) (c) (d)

Figure 4.2 – Examples of the Fourier disparity layers [152] for one scene : each layer contains the
information of the scene at a specific disparity.

4.3.1 Fourier Disparity Layers (FDL)

Fourier Disparity Layers (FDL) have been introduced in [152] as a compact repre-
sentation of dense light fields. The FDL model consists of a set of additive layers L̃k,
each associated with a disparity value dk, where each layer mostly contains details in the
regions of disparity dk in the scene, as illustrated in figure 4.2. The FDL model is defined
such that a sub-aperture view at angular coordinate u0 is reconstructed by shifting each
layer Lk by dku0, and by summing the shifted layers.

Formally, let a Lambertian non-occluded scene be divided into n spatial regions Ωk

with constant disparity dk. The Fourier transform L̃(ωx, ωu) of a light field L(x, u) can
thus be re-written such that the spatial information remains the same for any view:

L̃(ωx, ωu) =
∑

k

δ(ωu − dkωx)L̃k(ωx), (4.2)

with L̃k(ωx), the FDL associated with the disparity dk, defined by:

L̃k(ωx) =
∫

Ωk

e−2iπxωxL(x, 0)dx. (4.3)

The relation between the Fourier transform Ĩs
u0(ωx) of a refocus image of a focal stack

and the FDL is thus etablished in [152] as follows:

Ĩs
u0(ωx) =

∑
k

e+2iπu0dkωxψ̃(ωx(s− dk)) · L̃k(ωx). (4.4)
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Based on equation (4.4), we can define an optimization algorithm to optimize the FDL
from a set of refocused images. Our proposed unrolled optimization algorithm will be
further detailed in Section 4.3.2. It is important to notice that equations (4.2), (4.3),
and (4.4) are only verified in the case of Lambertian non-occluded scenes. Assuming this
model, performing an FDL optimization algorithm will produce light field views with
occlusion and reflectance artifacts, e.g. transparency in occluded areas, as illustrated in
recent works [152], [178]. We address this problem in Section 4.3.3 by proposing a neural
network-based view synthesis process to reconstruct light field views from the optimized
FDL.

4.3.2 Unrolled ADMM FDL optimization

In this section, we introduce the proposed unrolled ADMM optimization algorithm
used to optimize the FDL.

Let us consider an input focal stack containing images Ij. We note m and n respectively
the number of measured focal stack images and the number of considered layers in the
FDL model. For each spatial frequency component ωq of index q in the discrete Fourier
transform, we note bq ∈ Cm a vector with [bq]j = Ĩj(ωq), xq ∈ Cn a vector with [xq]k =
L̃k(ωq), and Aq ∈ Cm×n a matrix defined as follows:

[Aq]j,k = e+2iπujdkωxψ̃j(ωx(sj − dk)). (4.5)

Equation (4.4) is thus reformulated as Aqxq = bq. Therefore, the construction of
the FDL spatial frequencies xq from measurements bq is posed as a linear least squares
optimization problem independently for each frequency component ωq. The matrices Aq

are usually ill-conditioned, making the latter optimization problem ill-posed. To reduce
overfitting on the measurements that may cause severe artifacts in the FDL, the authors in
[152] include a Tikhonov regularization term, which results in the following per-frequency
minimization problem:

x̂q = arg min
xq

∥Aqxq − bq∥2
2 + λ ∥Γqxq∥2

2 , (4.6)

with Γ being the Tikhonov matrix. A calibration method is also proposed in [152] to
determine the angular coordinate u0 of each input view and the disparity values dk of the
layers. However, it only applies in the case of sub-aperture images as measurements. Here,
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we consider focal stacks where all the images are taken at the same angular coordinate
u0 = 0, assuming a known focus parameter s and aperture ψ. For the disparity values dk

of the FDL model, we use uniformly sampled values over the disparity range of the scene.

While the author in [152] uses a Tikhonov regularization to encourage smooth vari-
ations between the light field views generated by the optimized FDL, designing a more
complex prior directly in the FDL domain is a challenging task. To cope with this issue,
we propose to unroll the FDL optimization, following the ADMM unrolling framework,
in order to automatically learn a deep prior in the FDL domain. In order to account for
complex image statistics on the FDL model, we consider a regularization of the full layers,
rather than a per-frequency regularization, as in equation (4.6). Furthermore, since most
neural networks operate on images in the pixel domain, we regularize the images obtained
by the inverse Fourier transform of the FDL layers.

Let us define the matrix X = [x1|...|xQ] representing the full FDL as a concatenation of
the column vectors xq for all the frequency components ωq with q ∈ [1..Q]. The regularized
FDL reconstruction problem is then formulated as:

X̂ = arg min
X

(
λ · R(XΦ−1) +

∑
q

∥Aqxq − bq∥2
2

)
, (4.7)

where Φ−1 is the inverse 2D Fourier transform, applied to each FDL layer (i.e. rows of
X) to regularize the images in the pixel domain. The steps of the ADMM iteration in
equations (1.21), (1.22), (1.23), can then be written:

x̂i+1
q = arg min

x

1
2 ∥Aqx− bq∥2

2 + ρ

2
∥∥∥x− yi

q + ui
q

∥∥∥2

2
, (4.8)

Yi+1 = D((X̂i+1 + Ui)Φ−1; θ1)Φ, (4.9)

Ui+1 = Ui + (X̂i+1 −Yi+1), (4.10)

where we note X̂i = [x̂i
1|...|x̂i

Q] and Ŷi = [ŷi
1|...|ŷi

Q]. For the regularization, one can see in
equation (4.9) that denoising can be applied in the pixel domain by performing the inverse
2D Fourier transform of the denoiser’s input layers (X̂i+1 + Ui), and reapplying the 2D
Fourier transform on the denoised output. Instead of using a pre-learned denoiser as in the
Plug-and-Play approach [75], [179], the denoiser D is here trained end-to-end within the
unrolled algorithm to better train it for the task of FDL denoising. On the other hand, the
data-fidelity subproblem in equation (4.8) can still be solved independently per-frequency
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component, and has a well-known closed form solution:

x̂q = (A∗
qAq + ρI)−1(A∗

qbq + ρ(yi
q − ui

q)), (4.11)

where I is the identity matrix and * is the Hermitian transpose operator. Note that for
each frequency component of index q, the matrix inversion (A∗

qAq + ρI)−1 in equation
(4.11) can be performed efficiently thanks to the small dimensions of the matrix Aq

(A∗
qAq ∈ Cn×n, with n the number of layers). The per-frequency computation of the

proximal operator allowed by the FDL model thus significantly reduces the computational
burden of computing the estimate X̂.

4.3.3 View synthesis network

In this section, we present our learned view synthesis process to synthesize the light
field viewpoints from the optimized FDL.

As derived in [152], the Fourier transform L̃u(ωx) of a view L(x, u) can be reconstructed
by applying a shift-and-sum on the optimized k FDL L̃k(ωx) as follows:

L̃u(ωx) =
∑

k

e+2iπudkωxL̃k(ωx). (4.12)

However, it is well-known that artifacts will occur in specific areas with this technique,
e.g. in occluded regions [152], [178], as mentioned in Section 4.3.1. Since these artifacts are
different for each reconstructed light field view, we need to slightly adjust the optimized k
FDL L̃k(ωx) for each novel view. Since the ground truth views Lgt(x, u) are known during
the training phase, we propose to train the parameters θ2 of a CNN S to modify the k
optimized FDL L̃k(ωx) for each view to be reconstructed, such that the reconstructed
views well estimate their corresponding ground truth views.

As described in equation (4.3), the FDL contain only the spatial information of the
light field within each depth plane. Therefore, we also need to add angular information
to the input of the network S in order to specify which view to reconstruct. We propose
to shift the optimized FDL accordingly to the angular coordinates of the view to be
reconstructed, as in equation (4.12). However, instead of directly summing the shifted
layers, we first concatenate them along with two additional channels C, each containing
an angular coordinate of the view. The resulting tensor is fed into a view synthesis CNN
S which computes the modified shifted layers. These modified layers are then summed to
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reconstruct the view, as in equation (4.12).
Formally, let u be the coordinates of the view to be reconstructed, X̂ ∈ Cn×Q be

the matrix representing the concatenation of the optimized FDL as in equation (4.7),
and Z ∈ Cn×Q be a matrix with Zk,q = e+2iπudkωq . The matrix X̂u ∈ Cn×Q, being the
concatenation of the shifted FDL associated to the angular coordinates u, is thus computed
as follows:

X̂u = Z⊙ X̂, (4.13)

with ⊙ being the Hadamard product. With Cu being a channel filled with the value of the
angular coordinates u of the view to be reconstructed, the parameters θ2 of the network
S are thus optimized as follows:

θ2 = arg min
θ2

∥∥∥∥∥∑
k

[
S(X̂uΦ−1,Cu; θ2)

]
− Lgt(x, u)

∥∥∥∥∥
2

2
, (4.14)

where we compute the inverse Fourier transform of the shifted layers X̂uΦ−1 so that the
network S in the view synthesis process operates in the pixel domain, similarly to the
denoising network in equation (4.9).

In practice, we observed that pre-training the framework using only the shifted FDL
as the input of the network, and then fine-tuning by adding the coordinate channels to
the input offers the best performances. One can notice that several approaches can be
used to model the input of the network. We further discuss our choice in comparison with
other approaches in Section 4.4.5.

4.3.4 Joint optimization

The proposed framework is composed of two successive optimizations, presented in
the previous sections: the unrolled ADMM FDL optimization, with a network D parame-
terized with θ1, described in Section 4.3.2, and the learned view synthesis process, with a
network S parameterized with θ2, described in Section 4.3.3. Instead of training both net-
works independently, we propose a joint optimization in an end-to-end framework. A joint
optimization of θ1, θ2 ensures that both networks are optimized such that the synthesized
views well estimate their corresponding ground truths.

Let F be a function parameterized with θ1, which computes the application of the
whole forward pass of the unrolled ADMM FDL optimization algorithm. The optimization
problem of the entire end-to-end framework is:
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Figure 4.3 – Architecture of the proposed end-to-end framework for light field recon-
struction from focal stack measurements. The pipeline is composed of two blocks: (i) an
unrolled ADMM FDL optimization (red block) which optimizes a matrix X̂i, where each
row X̂i

k corresponds to the vectorized FDL k (ii) a view synthesis (blue block) with a
learned network, where the optimized FDL are shifted and concatenated with additional
coordinate channels to indicate which view to reconstruct to the network.

θ1, θ2 = arg min
θ1,θ2

∥∥∥∥∥∑
k

[
S(X̂uΦ−1,Cu; θ2)

]
− Lgt(x, u)

∥∥∥∥∥
2

2
,

with X̂u = Z⊙ X̂,

and X̂ = F(b; θ1),

(4.15)

where b is a vector containing the measured focal stack images. The joint optimization
algorithm is described in Algorithm 2. The proposed framework is depicted in Fig. 4.3.

4.4 Experiments

We assess our framework for light field reconstruction from focal stacks containing very
few shots, i.e. with 2 and 3 shots. We compare the proposed method against the most
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Algorithm 2 : Proposed joint optimization
1: initialize θ1,θ2
2: for each training iteration do
3: X̂0,Y0,U0 ← 0
4: b← input measurements
5: L_gt← groundtruth views
6: L_recons← 0
7:
8: for each unrolled iteration i do
9: for each frequency component q do

10: x̂q ← (A∗
qAq + ρI)−1(A∗

qbq + ρ(yi
q − ui

q))
11: Yi+1 ← D((X̂i+1 + Ui)Φ−1; θ1)Φ
12: Ui+1 ← Ui + (X̂i+1 −Yi+1)
13:
14: for each view coordinate u do
15: X̂I

u = Z⊙ X̂I

16: L_reconsu ←
∑

k

[
S(X̂I

uΦ−1,Cu; θ2)
]

17:
18: loss = ∥L_recons− L_gt∥2

2
19: θ1 = θ1 − λ∇θ1(loss)
20: θ2 = θ2 − λ∇θ2(loss)

recent and efficient state-of-the-art methods for this task: the Fourier Disparity Layers by
Le Pendu et al. [152], the TV regularized sparse light field reconstruction model based on
guided-filtering recently proposed by Gao et al. [153], and the light field reconstruction
and depth estimation using convolutional neural networks proposed by Huang et al. [144].
For fair comparisons, the method of Huang et al. [144] has been re-trained using the
datasets listed in Section 4.4.1.

Additionally, an ablation study is proposed in Section 4.4.5 to study the importance
of (i) using jointly the unrolled ADMM FDL optimization and the learned view synthesis
network (ii) using the shifted version of the FDL as well as the angular coordinate channels
as network input in the view synthesis process.

4.4.1 Datasets

Two-thirds of both the Stanford Lytro light field archive dataset [180] and the Kalan-
tari dataset [181] were used as training datasets. Reconstruction performances are then
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evaluated with the remaining third of both datasets along with the Linköping Light Field
dataset [182]. The input measurements consist of focal stacks with 2 or 3 images (i.e.
shots) synthesized from ground truth views with the shift-and-add method [113] and with
focus parameters s covering the disparity range of the scene. As ground truth, a dense
light field with a 7× 7 angular resolution is considered.

4.4.2 Architecture and training settings

We used the DRUNet denoising architecture as in [75] for both the denoiser D in
equation (4.9) and the view synthesis network S in equation (4.14). A total of 30 layers in
the FDL model and 12 unrolled iterations have been used. Both networks D and S use as
input the concatenation of all the layers, in order to treat them jointly. For the input of
S, the layers are additionally concatenated with the coordinate channels as described in
Section 4.3.3. The penalty term ρ in equation (4.8) is trained along with the weights of the
two networks. During training, we used a patch size of 64×64 with an additional padding
of size 8. Networks are trained for 1000 epochs with a learning rate of 10−5 and a batch
size of 1. The networks have been retrained specifically for each number of measurements.
The loss function L used was the squared ℓ2-norm between the ground truth light field
sub-aperture views and the corresponding synthesized views as defined in equation (4.15).

Table 4.1 – Comparisons with efficient state-of-the-art methods: average PSNR and SSIM
for light field reconstruction

Datasets Kalantari [119] Stanford [180] Linköping [182]
Metrics PSNR SSIM PSNR SSIM PSNR SSIM

Number of shots 2
Huang et al. [144] 31.44 dB 0.880 31.02 dB 0.875 24.18 dB 0.780

Le Pendu et al. [152] 33.01 dB 0.924 34.76 dB 0.933 26.62 dB 0.861
Gao et al. [153] 35.62 dB 0.936 35.12 dB 0.935 27.19 dB 0.853

Unrolled ADMM FDL 39.82 dB 0.968 37.32 dB 0.955 29.22 dB 0.902
Joint optimization FDL 40.93 dB 0.974 38.35 dB 0.961 29.96 dB 0.917

Number of shots 3
Huang et al. [144] 31.53 dB 0.895 30.59 dB 0.883 23.62 dB 0.788

Le Pendu et al. [152] 35.47 dB 0.947 36.83 dB 0.953 29.15 dB 0.900
Gao et al. [153] 37.21 dB 0.950 36.38 dB 0.947 28.10 dB 0.872

Unrolled ADMM FDL 40.79 dB 0.974 38.48 dB 0.964 30.75 dB 0.920
Joint optimization FDL 41.83 dB 0.978 39.39 dB 0.969 31.87 dB 0.933
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Ground truth Le Pendu et al. [152] Gao et al. [153] Huang et al. [144]

PSNR: 32.83 dB PSNR: 32.43 dB PSNR: 31.81 dB

Unrolled ADMM FDL Joint Optimization FDL

PSNR: 38.06 dB PSNR: 39.05 dB

Figure 4.4 – Reconstructed central views for the light field occlusions_26_eslf from the
Stanford dataset [181] using 2-shots. A portion of the error map is highlighted.

4.4.3 Reconstruction performances

To evaluate the reconstruction performances of the different methods, we measured
the quality of the reconstructed light field views using the PSNR and the SSIM metrics,
traditionally used by the image processing community. Table 4.1 gives the average PSNRs
over the three considered testing datasets for light field reconstruction from 2 and 3
focal stack images as measurements. It shows that the proposed approach significantly
outperforms all the state-of-the-art methods on every dataset.

Additionally, Fig. 4.4 shows a reconstructed central view for each evaluated method.
As illustrated in the figure, the proposed joint optimization method better reconstructs
finer details compared to other approaches.

4.4.4 Algorithm complexity

In this section, we evaluate the complexity of our proposed joint optimization algorithm
compared to other state-of-the-art iterative methods. Since the implementation of the
method by Gao et al.[153] in CPU only, we present results obtained on both CPU and
GPU for fair comparisons. In Table 4.2, we computed the average computation time for
the different iterative reconstruction algorithms, and the average computation time for
the synthesis of a single view with the FDL-based methods.

On one hand, the obtained computation time shows that the unrolled ADMM FDL
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optimization and in the joint optimization method increase the computation time com-
pared to the original FDL reconstruction algorithm presented in [152]. This difference in
computation time is mostly due to the computation of the closed-form solution in equa-
tion (4.6) and to the application of the denoiser D in equation (4.9) for several iterations.
However, the overall iterative reconstruction algorithm in the FDL domain stays faster to
compute than the iterative reconstruction algorithm by Gao et al.[153].

On the other hand, the learned view synthesis presented in Section 4.3.3 increases
the computation time of computing a single view from the optimized FDL. Indeed, while
each view is computed by a simple shift-and-sum applied to the optimized FDL with
the method in [152] and with the unrolled ADMM FDL optimization, the synthesis net-
work S in (4.14) is applied for each view to be reconstructed in our proposed method.
Therefore, the computation time for rendering a dense light field is a limitation of the
proposed method. However, it is important to notice that the view synthesis process can
be parallelized to synthesize several views simultaneously, which permits us to overcome
this computational issue.

Table 4.2 – Algorithm complexity: average computation time (in seconds) (i) for the
iterative reconstruction algorithms (ii) for the rendering of a single view.

Reconstruction View synthesis
algorithm

CPU GPU CPU GPU
Gao et al. [153] 443.27 s - - -

Le Pendu et al. [152] 5.56 s 0.22 s 0.02 s 0.002 s
Unrolled ADMM FDL 159.49 s 4.49 s 0.02 s 0.002 s

Joint optimization FDL 159.49 s 4.49 s 5.51 s 0.220 s

4.4.5 Abblation study: the learned view synthesis

In this section, we first study the importance of both the unrolled ADMM FDL opti-
mization and the view synthesis network in the proposed end-to-end framework. We then
propose to evaluate different approaches for the input of the network used in the view
synthesis process.
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End-to-end framework

First of all, we propose to compare the light field reconstruction performances for
different frameworks that consider different parts of the proposed joint optimization:

— FDL + view synthesis: this framework uses the FDL optimization proposed in
[152], without any learned prior. The learned view synthesis process is trained to
reconstruct views from the estimated FDL.

— Unrolled ADMM FDL: the unrolled ADMM FDL optimization without learning
the view synthesis process.

— Joint optimization FDL: the proposed joint optimization FDL that considers both
the unrolled ADMM FDL optimization and the learned view synthesis parts.

The reconstruction performances are listed in Table 4.3. As shown in the table, having
both the unrolled optimization and the view synthesis network offers the best perfor-
mances by a large margin.

Table 4.3 – Ablation study: average PSNR for light field reconstruction

Datasets Kalantari [119] Stanford [180] Linköping [182]
Metrics PSNR SSIM PSNR SSIM PSNR SSIM

Number of shots 2
FDL + view synthesis 38.75 dB 0.966 36.56 dB 0.954 27.91 dB 0.890
Unrolled ADMM FDL 39.82 dB 0.968 37.32 dB 0.955 29.22 dB 0.902

Joint optimization FDL 40.93 dB 0.974 38.35 dB 0.961 29.96 dB 0.917
Number of shots 3

FDL + view synthesis 39.77 dB 0.971 38.08 dB 0.963 30.12 dB 0.910
Unrolled ADMM FDL 40.79 dB 0.974 38.48 dB 0.964 30.75 dB 0.920

Joint optimization FDL 41.83 dB 0.978 39.39 dB 0.969 31.87 dB 0.933

To further study this improvement, we propose to empirically verify that the learned
view synthesis process is able to reduce the occlusion artifacts not well handled by the FDL
model, as explained theoretically in sections 4.3.1 and 4.3.3. Since the FDL are optimized
from focal stack measurements captured at angular coordinates u0 = 0, the optimized
FDL are then well-defined to reconstruct the central view for any type of scene, while
artifacts are expected on the other views in certain areas, e.g. transparency in occluded
regions [152], [178]. Therefore, we expect the joint optimization method to reduce these
artifacts in order to improve the PSNR of the reconstructed views that are far from the
central view.
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Fig. 4.6 illustrates a transparency artifact occurring in an occluded region with the
unrolled ADMM FDL method. We can visually see that the proposed joint optimization
method significantly reduces this artifact. In Fig. 4.5, we computed the average PSNR gain
over the Kalantari testing dataset [181] with the end-to-end approach over the unrolled
ADMM FDL optimization for several views with different angular coordinates. As shown
in Fig. 4.5, the proposed framework always improves the reconstruction quality compared
to the unrolled ADMM FDL method, especially for the views that are distant from the
central view with an average gain of over 1 dB.

Figure 4.5 – Mean PSNR gain over the test set of the Kalantari dataset [181] for different
light field view coordinates with the proposed joint optimization framework compared to
the unrolled ADMM FDL optimization using 3-shots focal stacks.
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,
(a) Ground truth

,
(b) Unrolled ADMM FDL (PSNR: 33.82 dB)

,
(c) Joint Optimization FDL (PSNR: 39.34 dB)

Figure 4.6 – Example of an occluded region in the light field occlusion_36_eslf. The
middle row illustrates the transparency artifacts with the FDL model in occluded regions:
a building is visible through the grid of a window. These artifacts are reduced in the last
row thanks to the learned view synthesis block of the proposed joint optimization.
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Network input

In this section, we propose a study of different approaches for the network input in
the view synthesis process. To be able to reconstruct any view from the optimized FDL,
the network needs an input which contains all the spatial information carried by the
optimized FDL, but also angular information so that its output is specific and optimal for
each view. A first approach is to concatenate the optimized FDL with additional channels
that contain the value of the angular coordinates of the view to be reconstructed. Another
approach is to directly incorporate the angular information in the optimized FDL, i.e. by
shifting the optimized FDL accordingly to the angular coordinates of the view to be
reconstructed, following the view synthesis process of the FDL model in equation (4.12).

In order to select the best approach, we propose to compare the reconstruction per-
formances with different network input configurations, using either additional coordinate
channels or the shifted version of the FDL, or both at the same time. In our experiments,
when using both approaches at the same time, we obtained better results by first training
the joint optimization method by considering only the shifted FDL without any additional
coordinate channels as network input, then fine-tuning this pre-trained model by adding
the coordinate channels to the network input. We listed the obtained results in Table 4.4
for 2-shots focal stacks as measurements. As shown in the table, the joint optimization
method is able to efficiently reconstruct the light fields with all the considered approaches.
Additionally, according to these results, both approaches are also complementary, offering
the best results when considering both approaches at the same time.

Table 4.4 – Ablation study on view synthesis network input: average PSNR for light field
reconstruction

Coordinates Shift Kalantari [119] Stanford [180] Linköping [182]
PSNR SSIM PSNR SSIM PSNR SSIM

yes no 40.77 dB 0.974 38.19 dB 0.960 29.67 dB 0.914
no yes 40.82 dB 0.974 38.26 dB 0.960 29.93 dB 0.916
yes yes 40.93 dB 0.974 38.35 dB 0.961 29.96 dB 0.917

4.5 Conclusion

We presented a method to reconstruct a dense light field from a focal stack containing
only very few images captured with a single traditional camera. A joint unrolled ADMM
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FDL optimization with a learned view synthesis network is presented to extend the Fourier
Disparity Layer (FDL) representation of scenes to occluded and non-Lambertian scenes.

The Alternating Direction Method of Multipliers (ADMM) optimization method is
unrolled using a deep convolutional denoiser of FDL. Performing the optimization in the
FDL domain allows one to derive a closed-form solution for the proximal operator of the
data-fit term. Furthermore, unrolling the FDL optimization allows to learn a prior directly
in the FDL domain. Additionally, a deep network is trained to adapt the optimized FDL
for each view to be reconstructed, in order to minimize the artifacts created with the
generation of the views from the FDL model.

Thanks to the capacity of the FDL model to incorporate the light field imaging model
in the optimization process, and thanks to deep networks to represent complex priors,
the proposed approach significantly outperforms state-of-the-art methods for light field
reconstruction from focal stacks with very few shots.
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CONCLUSION

Summary

Image reconstruction from corrupted and incomplete measurements has been a widely
studied subject of research, especially in the last decades thanks to the rise of deep learning
techniques. The image inverse problem involved, being usually ill-conditioned, is gener-
ally posed as the problem of minimizing a function composed of two terms: a data-fidelity
term, which measures the fidelity of the solution with the measurements, and a regu-
larization term, which quantifies how the solution matches with prior knowledge on the
target image. This minimization problem is usually tackled using iterative optimization
algorithms. However, designing a function representing an image prior is a difficult task
and has been an attractive subject of research in the domain. Thanks to the power of deep
learning techniques to learn complex structures on signals such as images, more complex
image priors have been proposed in the literature. One of the most promising approaches
uses unrolled optimization algorithms, which have been proposed as a way to automati-
cally learn the image prior for a specific problem and for a specific iterative optimization
algorithm. While these methods achieved state-of-the-art reconstruction performances for
a variety of image processing tasks, the training of a deep learned prior within an un-
rolled optimization algorithm poses computational issues, hence limiting the number of
iterations considered in the unrolled optimization algorithm.

The first part of this thesis addressed the following issues: how can we reduce the
limitations of the training of an unrolled optimization algorithm ?

In chapter 2, we addressed this problem and proposed a novel training method for
unrolled optimization algorithms, called "Stochastic Unrolled Proximal Point Algorithm"
(SUPPA). The proposed approach transforms the training of the whole unrolled opti-
mization algorithm into a set of sub-optimization problems, defined per unrolled itera-
tion. With a stochastic optimization strategy, the computational burden of computing the
backpropagation used to train the image prior within the unrolled optimization algorithm
is considerably reduced, and the number of unrolled iterations is not restricted by the
training process. Consequently, we proposed a method that is efficient in terms of both
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the image reconstruction quality and the complexity.
In the second part of this thesis, we focused on inverse problems associated with

the acquisition and reconstruction of light fields. A light field describes the scene as
a collection of light rays. Each light ray is represented by spatial coordinates, angular
coordinates, time, and a wavelength, creating the well-known 7D plenoptic function. The
light field is generally considered time-invariant and monochrome, thus reduced to a 4D
function with two spatial coordinates and two angular coordinates, thanks to its two-plane
parameterization. Therefore, it is generally represented as a set of adjacent views.

To capture such light fields, an intuitive approach consists of taking pictures from
several viewpoints, either simultaneously thanks to a large camera array or sequentially
with a single camera placed on a moving gantry. Alternatively, more lightweight camera
designs have been proposed to capture light fields on a single 2D sensor: the plenoptic
cameras, using an array of microlenses placed in front of the photosensor to separate the
light rays striking each microlens into a small image, and coded-mask cameras, which
modulates the 4D light field into 2D projections. We took a particular interest in an
alternative way of capturing a light field which does not require hardware modifications
to conventional cameras. It consists in capturing a focal stack, i.e. several images of the
scene at different focus distances, in order to reconstruct a light field.

The second part of the thesis thus addressed the following issue: Can we produce an
unrolled optimization algorithm to reconstruct a high-quality light field from a focal stack
composed of very few images ?

To deal with this problem, we presented, in chapter 4, a novel method to reconstruct
light fields from a small set of focal stack images. An end-to-end joint optimization frame-
work is proposed, where a novel unrolled optimization method is jointly trained with a
view synthesis deep neural network. The proposed unrolled optimization method con-
structs Fourier Disparity Layers (FDL), a compact representation of light fields which
samples Lambertian non-occluded scenes in the depth dimension and from which all the
light field viewpoints can be computed. Solving the optimization problem in the FDL do-
main allows an efficient way to solve the inverse problem efficiently by deriving a closed-
form expression of the data-fidelity term of the inverse problem involved. Furthermore,
unrolling the FDL optimization allows to learn a prior directly in the FDL domain. In
order to widen the FDL representation to more complex scenes, a Deep Convolutional
Neural Network (DCNN) is trained to synthesize novel views from the optimized FDL.
Thanks to the formulation of the problem in the FDL model and to the efficiency of
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deep learning to learn light field priors, the proposed method was able to significantly
outperform the state-of-the-art methods for light field reconstruction from focal stack
measurements.

Future works and perspectives

We think that this thesis opens interesting research directions and that extensions of
the presented works are possible.

The proposed training method for unrolled optimization algorithms, presented in chap-
ter 2, considerably reduces the computational burden of the training. The method relies
on the assumption that the Alternating Direction Method of Multipliers (ADMM) op-
timization method is a special case of the proximal point algorithm in order to write
each iteration of the ADMM as a proximal mapping. This allows us to derive small opti-
mization problems, defined per unrolled iteration, used to train the prior of the unrolled
ADMM algorithm with a stochastic process. A possible extension of this method would
be to widen this approach to other types of iterative optimization algorithms, especially
for image inverse problems which cannot be solved using a proximal algorithm.

In chapter 4, we presented an optimization algorithm for the reconstruction of light
fields from a focal stack containing only very few images, using the Fourier Disparity Lay-
ers (FDL) representation of light fields. Although the method is able to reconstruct high
quality light fields, the FDL model is theoretically limited to non-occluded Lambertian
light fields. Even though this issue is addressed in chapter 4 by adding a novel learned
view synthesis process from the optimized FDL, we think that the method could be fur-
ther improved by addressing this issue directly in the unrolled optimization algorithm.
Furthermore, the addition of a deep view synthesis process increases the computational
burden of computing the different viewpoints of a dense light field. Therefore, dealing with
the occlusion and reflectance issues of the FDL model directly in the unrolled optimization
algorithm could also significantly reduce the computation time of computing the different
viewpoints, hence allowing the use of the proposed method in real-time applications.

Another possible shortcoming is the focal stack formation model from a light field pre-
sented in chapter 4. While it is classically used in the literature, it is, however, adapted to
parfocal lens cameras only. This type of camera is generally used for cinema and broad-
casting purposes, while traditional cameras used for photography purposes use varifocal
lenses. The main difficulty of our proposed approach with varifocal lens cameras is that
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changing the focus also slightly affects the zoom. As a result, the different images of the
focal stack have different zoom parameters. Therefore, the focal stack formation model
needs to take a zoom factor dependent on the re-focus parameter. A possible improvement
of our proposed method would be to integrate this formation model into the unrolled op-
timization algorithm to open up light field reconstruction from focal stack measurements
captured with more types of devices.
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Titre : Apprentissage profond pour l’acquisition et la restauration de champs de lumière

Mot clés : Problème inverse, champs de lumière, apprentissage profond, algorithmes dérou-

lés, restauration d’images

Résumé : L’acquisition d’une image est res-
treinte par les limitations du matériel d’acquisi-
tion et est soumise à des perturbations. La re-
construction d’images à partir de mesures dé-
gradées est un problème inverse, souvent mal
conditionné et demandant donc la présence
d’une connaissance à priori sur les images
à reconstruire. Les algorithmes déroulés ont
prouvé leur efficacité en matière de résolution
de problèmes inverses, mais leur coût en mé-
moire et en temps de calcul est très élevé.

Notre première contribution est une mé-
thode d’entraînement pour les algorithmes dé-
roulés, permettant de considérablement ré-
duire les coûts et les contraintes liées à l’en-
traînement de ces méthodes.

Nous nous intéressons ensuite plus par-
ticulièrement aux problèmes inverses liés à
l’acquisition et à la reconstruction de champs
de lumière. Ceux-ci permettent d’obtenir l’in-
formation 3D cruciale pour une variété de
tâches en imagerie, qui est perdue lors de l’ac-
quisition d’une image avec une caméra tradi-
tionnelle. Un champ de lumière est générale-
ment capturé via des appareils coûteux et non
accessibles au grand public.

Notre deuxième contribution est une mé-
thode basée sur les algorithmes d’optimisa-
tion déroulés, permettant de reconstruire un
champ de lumière à partir d’un empilement de
mises au point, contenant peu d’images cap-
turées avec une caméra traditionnelle.

Title: Deep learning for light field acquisition and restoration

Keywords: Inverse problem, light fields, deep learning, unrolled algorithms, image reconstruc-

tion

Abstract: The acquisition of an image is re-
stricted by the limitations of the acquisition
device and subject to perturbations. Image
reconstruction from degraded measurements
is an inverse problem, usually ill-conditioned,
hence requiring the presence of an image
prior. Unrolled optimization algorithms have
achieved state-of-the-art results for a variety
of image reconstruction tasks, but suffer from
a high computational burden.

Our first contribution is a training method
for unrolled optimization algorithms which con-
siderably reduces the computational burden
and constraints of the training.

We then focus on inverse problems related
to the acquisition and restoration of light fields.
This representation of scenes contains the 3D
information that is crucial for a variety of im-
age processing tasks and that is generally lost
in the acquisition of an image with a tradi-
tional camera. Light fields are generally cap-
tured with complex devices that are not acces-
sible to the general public.

Our second contribution is a method,
based on the unrolled algorithms, which re-
constructs light fields from a focal stack con-
taining very few images captured with a tradi-
tional camera.


	Résumé en français
	Introduction
	Context
	Motivations and goals
	Thesis structure and Contributions

	I Deep priors for image inverse problems
	Image inverse problems
	Inverse problems
	Problem statement
	Examples of image inverse problems
	Ill-posed linear inverse problems

	Reconstruction approaches
	Variational approaches
	Bayesian approaches

	Algorithms
	Iterative optimization algorithms
	Deep learning algorithms

	Regularization in inverse problems
	Hand-crafted priors
	Plug-and-play methods
	Unrolled optimization algorithms

	Directions and objectives

	Stochastic Unrolled Proximal Point Algorithm
	Introduction
	Unrolled Proximal Point Algorithm
	Definition of the function g
	Loss function
	Stochastic unrolled iteration learning
	Experiments
	Reconstruction performances
	Convergence of the unrolled methods

	Conclusion


	II Light field acquisition and reconstruction
	Light field imaging
	Light field representation
	Plenoptic function
	Lumigraph and two-plane parameterization

	Light field acquisition
	Camera arrays
	Cameras with additional hardware elements
	Conventional cameras capturing a focal stack

	Examples of light field applications
	Digital refocusing
	Viewpoints switching
	Geometry and depth estimation

	Directions and objectives

	Light field reconstruction from few-shots focal stack
	Introduction
	Light field imaging and focal stack formation models
	Joint Fourier disparity layers unrolling with learned view synthesis
	Fourier Disparity Layers (FDL)
	Unrolled ADMM FDL optimization
	View synthesis network
	Joint optimization

	Experiments
	Datasets
	Architecture and training settings
	Reconstruction performances
	Algorithm complexity
	Abblation study: the learned view synthesis

	Conclusion

	Conclusion
	Summary
	Future work and perspectives

	Bibliography


