
HAL Id: tel-04357864
https://hal.science/tel-04357864v1

Submitted on 21 Dec 2023 (v1), last revised 3 Jun 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Integration and analysis of heterogeneous biological data
through multilayer graph exploitation to gain deeper
insights into feed efficiency variations in growing pigs

Camille Juigné

To cite this version:
Camille Juigné. Integration and analysis of heterogeneous biological data through multilayer graph
exploitation to gain deeper insights into feed efficiency variations in growing pigs. Bioinformatics
[q-bio.QM]. Institut Agro - Rennes Angers, 2023. English. �NNT : �. �tel-04357864v1�

https://hal.science/tel-04357864v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


·
·

· ·

·

·

·

·
·

·

·

·

·

·
·

·

·

·

·
·

·

·

·

·

·

·

·

·
·

·

· ·

·
·

·

·

··

·

··

·

· ·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

··
·

·

·
·

·

··

· ·

·
·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·
·

·

·

·

·

·
· ··

·
·

·

·

·

·

·
·

·

·

··

·

·

·
·

··

·

·

·

·

·

·

·
·

·

·

·
·

·

· · ··

·

·

· ·

·

·

·
·

·

·

·

·

· ··

·

·

·

·

·

·

·
·

·

· ·

·

·

·

·

· · ·

·

·

·

·
· ·

·

·

·

·

·

·

· ·

·

·

·

·

·

·
·

·

·

·

·

·

·
·

·
·

·

· ·

· ·

·

·
·

·

·

·

·

·

·

· ·

·

·

·
··

·

·

·

·
· ·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·
·

·

·

·

·

·

·

·

·······
·

·

·

·

·

·

·

·

·

·
· ·

·

·
·

·

·

·

·
·

·
·

·

·

·

·

··

·

·

·

··

·

·

·

··

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

· ·

·

·

·

·

·

·

· · ·

·

·

·

·

·
·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

·

·
·

·

·

·

·

·
·

·

·

· ·

·

·

·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·
·

··
·

·

·

·

··

·
·

· ·

·

·

·
· ·

·

·

··

·

·

·

·

·

· ·

·

··

·
·

·

·

·

·

·

·

· ·

··

THÈSE DE DOCTORAT DE

L’INSTITUT AGRO RENNES ANGERS

ÉCOLE DOCTORALE NO 600
Écologie, Géosciences, Agronomie, Alimentation
Spécialité : Génétique, génomique et bio-informatique

Par

Camille Juigné
Integration and analysis of heterogeneous biological data through
multilayer graph exploitation to gain deeper insights into feed
efficiency variations in growing pigs

Thèse présentée et soutenue à Rennes, le 1er décembre 2023
Unité de recherche : Physiologie, Envionnement et Génétique pour l’Animal et les Systèmes
d’Élevage (UMR Pegase)

Rapportrice et rapporteur avant soutenance :

Andrea RAU Directrice de recherche, INRAE
Fabien JOURDAN Directeur de recherche, INRAE

Composition du Jury :

Président : Mathieu EMILY Professeur, Institut Agro Rennes-Angers
Examinateur : Michel DUMONTIER Distinguished Professor, Maastricht University
Rapportrice et rapporteur : Andrea RAU Directrice de recherche, INRAE

Fabien JOURDAN Directeur de recherche, INRAE
Dir. de thèse : Florence GONDRET Directrice de recherche, INRAE
Co-dir. de thèse : Emmanuelle BECKER Maîtresse de conférence, HDR, Université de Rennes





ACKNOWLEDGEMENT

3





SCIENTIFIC PRODUCTION

JOURNAL PAPERS

✻ Camille Juigné, Emmanuelle Becker and Florence Gondret. "Small networks of ex-
pressed genes in the whole blood and relationships to profiles in circulating metabolites
provide insights in inter-individual variability of feed efficiency in growing pigs". BMC

Genomics 24, 647 (2023) https://doi.org/10.1186/s12864-023-09751-1. (chapter 5 of
the dissertation)

✻ Camille Juigné, Olivier Dameron, François Moreews, Florence Gondret, Emmanuelle
Becker. "Fixing molecular complexes in BioPAX standards to enrich interactions and
detect redundancies using Semantic Web Technologies". Bioinformatics, 39-5 (2023)
https://doi.org/10.1093/bioinformatics/btad257. (chapter 4 of the dissertation)

✻ Marc Melkonian, Camille Juigné, Olivier Dameron, Gwenaël Rabut, Emmanuelle Becker.
"Towards a reproducible interactome: semantic-based detection of redundancies to unify
protein-protein interaction databases". Bioinformatics, 38-6 (2022) https://doi.org/10.
1093/bioinformatics/btac013.

SUBMITTED JOURNAL PAPERS

✻ Camille Juigné, Emmanuelle Becker, Océane Carpentier, Florence Gondret and Olivier
Dameron. "A graph-based approach to identify complex connections in heterogeneous
biological networks". To be submitted in Bioinformatics. (chapter 6 of the dissertation)

PEER-REVIEWED CONFERENCES PROCEEDINGS

✻ Camille Juigné, Olivier Dameron, Florence Gondret, Emmanuelle Becker. "A method
to identify target molecules and extract the corresponding graph of interactions in BioPAX".
BBCC2022 - Bioinformatics and Computational Biology Conference, Dec 2022, Virtual,

Italy - Oral presentation. https://hal.science/hal-03876091

✻ Camille Juigné, Olivier Dameron, François Moreews, Florence Gondret, Emmanuelle

5

https://doi.org/10.1186/s12864-023-09751-1
https://doi.org/10.1093/bioinformatics/btad257
https://doi.org/10.1093/bioinformatics/btac013
https://doi.org/10.1093/bioinformatics/btac013
https://hal.science/hal-03876091


Scientific Production

Becker. "Detection and correction of non-conformities and redundancies in complexes
of molecules in BioPAX." Journées Ouvertes en Biologie, Informatique et Mathéma-

tiques (JOBIM), Jul 2022, Rennes, France - Oral presentation. https://hal.science/hal-03752473

CONFERENCE ABSTRACTS

✻ Camille Juigné, Emmanuelle Becker, Florence Gondret. "Combined transcriptomics
and metabolomics in the whole blood to depict feed efficiency in pigs." European Feder-

ation of Animal Science (EAAP2023) - Oral presentation. https://hal.science/hal-04103974

TALKS AND POSTERS

✻ Camille Juigné. "Integration and analysis of heterogeneous biological data modelled
with multilayer graphs for a better understanding of feed efficiency". Séminaire DIGIT-

BIO INRAE, Dec 2022, Ecully, France - Poster. https://hal.inria.fr/hal-03880428

✻ Camille Juigné. "Integration and analysis of heterogeneous biological data modelled
with multilayer networks and applied for a better understanding of variations in feed ef-
ficiency". Journées Numériques et Environnement de l’Inria, Oct 2021, Rennes, France

- Oral presentation.

✻ Camille Juigné. "Integration and analysis of heterogeneous biological data modelled
with multilayer networks and applied for a better understanding of variations in feed
efficiency". Journées des doctorants de l’unité PEGASE de l’INRAE, Apr 2022, Saint-

Gilles, France - Oral presentation.

✻ Camille Juigné, Olivier Dameron, François Moreews, Florence Gondret, Emmanuelle
Becker. "Detection and correction of non-conformities and redundancies in complexes
of molecules in BioPAX." Journées scientifiques de l’Ecole Doctorale EGAAL, Jul 2022,

Rennes, France - Oral presentation.

✻ Camille Juigné. "Considering molecular complexes for exhaustively connecting tran-
scriptome and metabolome in BioPAX." Journées du département Data Knowledge

Managment de l’IRISA, Feb 2022, Rennes, France - Poster.

6

https://hal.science/hal-03752473
https://hal.science/hal-04103974
https://hal.inria.fr/hal-03880428


Scientific Production

SCIENCE POPULARIZATION

✻ Camille Juigné. La mélodie de la vie. Rédaction d’un texte de vulgarisation scientifique
pour le pôle médiation scientifique de l’Inria, illustré avec un illustrateur professionnel,
2022. https://project.inria.fr/matheseunesacreehistoire/news/

7

https://project.inria.fr/matheseunesacreehistoire/news/




TABLE OF CONTENTS

Acknowledgement 3

Scientific Production 5

1 Introduction 15
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Addressing data non-conformity and redundancy: Detection and cor-
rection methods for enhanced data integrity . . . . . . . . . . . . . . . 17

1.3.2 Combining experimental data and knowledge bases to reconcile molec-
ular and cellular levels . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.3 Data analysis and knowledge extraction using graph-based metrics . . . 18
1.4 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Background 21
2.1 Unimodal Omics Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Defining the biological data . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.1.1 Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.1.2 Transcriptomics . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.1.3 Proteomics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.1.4 Metabolomics . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Storage : specialized databases and ontologies . . . . . . . . . . . . . . 27
2.2 Multimodal Omic Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Benefits of multiomics . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Existing approaches for multi-omics integration . . . . . . . . . . . . . 29

2.2.2.1 Statistical integration and dimensionality reduction . . . . . 30
2.2.2.2 Network-based integration and active modules research . . . 32

Networks in biology . . . . . . . . . . . . . . . . . . . . . . . 32

9



TABLE OF CONTENTS

Integration approaches . . . . . . . . . . . . . . . . . . . . . . 34
Identifying relevant modules . . . . . . . . . . . . . . . . . . . 35

2.3 Knowledge integration and representation . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Semantic Web, RDF Knowledge graphs and SPARQL . . . . . . . . . 37
2.3.2 Graph databases: Neo4j, Cypher and Neosemantics . . . . . . . . . . . 40

2.4 Case study: networks of entities associated with variability in feed efficiency of
growing pigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Knowledge databases and experimental data 45
3.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 UniProtKB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 ChEBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.3 Reactome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Fixing molecular complexes in BioPAX standards 53
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Molecular complexes and biological interactions in system biology . . 54
4.2.2 Description of complexes in BioPAX. . . . . . . . . . . . . . . . . . . 55
4.2.3 The Reactome use-case. . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.4 Motivations and results . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Definition of invalid recursive complexes . . . . . . . . . . . . . . . . 56
4.3.2 Invalid recursive complexes in interactions . . . . . . . . . . . . . . . 56
4.3.3 Redundancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Identifying invalid complexes . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Fixing the invalid complexes . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 Identifying redundant complexes . . . . . . . . . . . . . . . . . . . . . 60

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 Invalid complexes represent a significant part of complexes in the BioPAX

description of Reactome . . . . . . . . . . . . . . . . . . . . . . . . . 60

10



TABLE OF CONTENTS

4.5.2 Fixing invalid complexes increases the average number of components
participating to complexes in Reactome . . . . . . . . . . . . . . . . . 60

4.5.3 Fixing invalid complexes reduces the path length from a complex to
each of its components . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.4 Fixing invalid complexes improves the detection of redundant complexes 62
4.5.5 Application to non-Human organisms in the Reactome database . . . . 64

4.6 Discussion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Small networks of expressed genes in blood and relationships to metabolic profiles 67
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Origin of phenotypic data . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.3 Transcriptomic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.4 Metabolomic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.5 Construction of the weighted gene co-expression networks . . . . . . . 72
5.3.6 Detection of modules of co-expressed probes and their relationships

with animal phenotypic traits . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.7 Biological functional enrichment in modules of co-expressed probes . . 74
5.3.8 Establishing profiles of circulating metabolites and evaluating connec-

tions between metabolic and transcriptomic levels . . . . . . . . . . . . 75
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Definition of gene co-expression network in the whole blood of pigs . . 76
5.4.2 Relationships between modules of co-expressed genes and animal phe-

notypic traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.3 Close-vicinity of the different modules of co-expressed genes . . . . . 79
5.4.4 Functional enrichment of the modules in biological processes . . . . . 79
5.4.5 Hierarchy of expressed genes in the modules related to feed efficiency

traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.6 Metabolic profiles in the whole blood . . . . . . . . . . . . . . . . . . 84
5.4.7 Connecting the two omics levels . . . . . . . . . . . . . . . . . . . . . 88

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5.1 Analyzing inter-individual variability in feed efficiency . . . . . . . . . 90

11



TABLE OF CONTENTS

5.5.2 Enriched pathways in co-expressed genes modules related to variability
in feed efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.3 Important genes in molecular networks related to feed efficiency . . . . 93
5.5.4 Relationships between transcriptomic and metabolic levels in the defi-

nition of feed efficiency or related traits . . . . . . . . . . . . . . . . . 94

6 A graph-based approach to identify connections in heterogeneous biological net-
works 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Databases and ontologies in biology . . . . . . . . . . . . . . . . . . . 101
6.2.1.1 The UniProt database . . . . . . . . . . . . . . . . . . . . . 101
6.2.1.2 The ChEBI Ontology . . . . . . . . . . . . . . . . . . . . . 101
6.2.1.3 The BioPAX ontology . . . . . . . . . . . . . . . . . . . . . 102
6.2.1.4 The Reactome knwoledgebase . . . . . . . . . . . . . . . . 103

6.2.2 Weighted co-expressed gene networks coupled to metabolic profiles as
a use-case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.2.1 Weighted co-expressed gene networks involved in feed effi-

ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.2.2 Integration of transcriptomic and metabolic -omics levels on

the same Reactome graph to explore connections . . . . . . . 104
6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Retrieving Gene and Protein in the BioPAX export of Reactome
using federated SPARQL queries . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Retrieving SmallMolecules in the BioPAX export of Reactome us-
ing federated SPARQL queries . . . . . . . . . . . . . . . . . . . . . . 106

6.3.3 Computing paths between nodes of interest in Neo4j using Cypher queries106
6.3.4 Biochemical reaction cascades and their regulation in modules of co-

expressed genes and comparison with randomizations . . . . . . . . . 107
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1 Proteins retrieved by their UniProt ID in Reactome . . . . . . . . . . . 108
6.4.2 SmallMolecule retrieved by their ChEBI ID in Reactome . . . . . . . . 108
6.4.3 Graph traversal and paths connecting molecules of interest . . . . . . . 109

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

12



TABLE OF CONTENTS

7 Discussion 115
7.1 Benefits of our approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 Limitations of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3 Perspectives and potential future improvement and research directions . . . . . 121
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 125

13





CHAPTER 1

INTRODUCTION

1.1 Context

Recent technological advances in biological data acquisition result in an exponential growth
of multi-modal (different types) data generated across various laboratories, experiments and
conditions. This rapidly expanding data volume is causing scientific challenges in terms of
storage, standardization and analysis [1, 2].

This thesis specifically addresses the last two challenges, aiming to maximize the utilization
of data from experiments and leveraging the knowledge available in various biological databases
and ontologies. The objective is to gain new insights from the extensive data analysis, consid-
ering the context of the knowledge stored in databases and ontologies, in order to enhance our
depiction and understanding of systems biology.

We hypothesized that adopting a holistic perspective on biological organization can lead
to a better understanding of complex processes by representating the numerous relationships
between different biological entities.

This implies taking advantage of various -ome modalities, such as the genome, transcrip-
tome, proteome, metabolome, etc., by establishing connections between them and encompass-
ing some bias (selectivity, sensitivity, etc.) associated with the data acquisition technologies
for these diverse entity types. The field of -omics (i.e., technologies to acquire data related to
the different -ome levels) encompasses a wide range of objectives, including understanding,
preventing, diagnosing, and managing diseases and optimizing performance.

Most of the time, measurable changes in highly complex biological mixtures (cells, tissues,
fluids) across experimental or environmental conditions are analyzed within a given level of
biological organization (unimodal) using univariate or multivariate statistical methods, and are
compared with existing knowledge through specialized expertise. Methods for the joint analysis
of multimodal -omics data have also been developed to facilitate the mapping of altered path-
ways. These methods mainly focus on reducing data dimensionality by identifying important
shared features and facilitating data manipulation. However, these approaches often overlook
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Chapter 1 – Introduction

the available knowledge regarding the physical relationships between molecules (activation,
inhibition, complexes formation, interaction, etc.). This oversight may result in the loss of valu-
able information and the missing of essential insights or interdependencies. To address these
challenges, we propose a comprehensive and systemic integration approach for the analysis of
multimodal -omics data that takes into account the knowledge present in databases and knowl-
edge bases.

There are a multitude of specialized databases, each focusing on specific types of data, em-
ploying different formats and having its own curation processes. As a result these databases are
complementary and integrating them remains an important challenge due to their heterogeneity
and the existence of potential overlaps between them. Notably, there are several databases dedi-
cated to describing metabolic pathways, which facilitate the linkage of biological entities across
different -omics layers. To address this integration challenge, the Biological Pathway Exchange
(BioPAX) standard has emerged as a valuable solution. This format provides a comprehensive
representation with great finesse of the knowledge on biological processes at the molecular and
cellular levels. BioPAX enables the integration of diverse knowledge bases related to metabolic
pathways and facilitates cross-referencing with external resources, including well-established
ontologies such as UniProt for proteins, ChEBI for small molecules, MI for annotating molec-
ular interactions or GeneOntology for describing the functions of genes and other biological
components. Both the BioPAX and ontologies employ a graph-oriented format.Graphs provide
a mathematical and informatics means to represent interactions between entities, capturing re-
lationships between entities (such as DNA, RNA, proteins and metabolites) through a set of
nodes connected by edges.

1.2 Objectives

The research objectives of this thesis encompass two main aspects. The first one is to develop
an integrative approach to handle heterogeneous data from both experimental sources and public
databases. This approach employs the BioPAX formalism and graph theory to organize and
analyze data across multiple layers. As a use-case, our aim is to investigate the concept of feed
efficiency in pigs, a pivotal phenotype in the context of sustainable meat production. Through
the developed integrative approach, we seek to explore the underlying processes that contribute
to feed efficiency. The results shed light on the biological mechanisms and regulatory actors
influencing this phenotype and contribute to a deeper understanding of feed efficiency.
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1.3 Contributions

1.3.1 Addressing data non-conformity and redundancy: Detection and

correction methods for enhanced data integrity

The utilization of ontologies and standardized formats facilitates interoperability, a crucial
aspect of biological data engineering. However, it does not completely address all challenges
associated with integrating heterogeneous data types and sources. To address the issues of non-
conformity and redundancy within databases, I have contributed to the development of data-
independent methods aimed at detecting and fixing such problems in standard formats. Graph-
like RDF and OWL-based formats offer the capability to be queried using semantic web tools
like the SPARQL Protocol and RDF Query Language (SPARQL). Indeed, databases utilizing
the BioPAX format frequently exhibit redundant molecular complexes with identical proper-
ties but distinct identifiers. Furthermore, these databases often contain invalid complexes, in
which the components themselves are complexes, resulting in a recursive representation that
differs from the flat representation required by the format specifications. Consequently, such
non-conformity and redundancy introduce modifications within the graph, which impact the
subsequent analyses. Firstly, they introduce genericity problems, as redundant representations
mask implicit redundancies, leading to complications in data analysis. Secondly, these com-
plexes exist in various semantic representations that may not necessarily align with biological
interpretations, further exacerbating the issue of redundancy. Lastly, these structures artificially
modify the topology of the graph, increasing the path length between graph nodes and compro-
mising the analysis of the interaction network.

As part of this research focus aimed at addressing issues of non-conformities and redun-
dancies in databases to facilitate their analysis, additional work has also led to a publication in
Bioinformatics. This article deals with differentiating reproducibility and implicit redundancy
within protein-protein databases, and is available in the appendix.

1.3.2 Combining experimental data and knowledge bases to reconcile

molecular and cellular levels

After necessary corrections, the utilization of standardized formats and ontologies holds the
potential for effectively integrating multi-modal and multi-sources data. However, to integrate
experimental data with public knowledge available in databases across different scales, we need
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to query multiple data sources. To address this challenge, I developed a method centered around
federated queries. This approach enables simultaneous querying multiple data sources, facili-
tating the integration of information from various origins. Taking advantage of experimental
lists of gene transcripts and of metabolites that exhibit co-variations, the approach consists in
querying a metabolic graph to identify nodes annotated with the identifiers of interest. This step
facilitates the establishment of connections between multiple -omics levels through interactions,
ensuring comprehensive consideration of system knowledge into the analysis.

1.3.3 Data analysis and knowledge extraction using graph-based met-

rics

Within the enriched metabolic graph, a graph traversal analysis is performed to elucidate or-
ganizational patterns and relationships between the entities of interest. This step aims to provide
a deeper understanding of how these entities are interconnected and how they contribute to the
studied phenotype. The primary focus is on evaluating the paths that connect the entities within
the graph. Furthermore, the graph traversal analysis examines the biochemical interactions that
are traversed and then facilitates transitions between the entities. By investigating these interac-
tions, we can identify potential molecules, molecular events and processes that might regulate or
contribute to the observed phenotype. To facilitate the analysis of the enriched graph, the Neo4j
graph database management system (DBMS) is employed. This NoSQL DBMS is specifically
designed to handle graph data efficiently and effectively. It offers capabilities for storing, query-
ing, and allows for complex graph traversals and pattern matching operations, enabling effective
exploration and analysis of interconnected biological entities.

1.4 Outline of the dissertation

Following this Introduction, the dissertation consists of 6 more chapters:
— Chapter 2: Background. This chapter presents important concepts and the state of the art

in systems biology, multi-omics integration methods, Semantic Web, and feed efficiency.
It aims to provide an understanding of this dissertation’s context and the position of the
approach advocated and adopted in this work.

— Chapter 3: Knowledge databases and experimental data. The purpose of this chapter is
to present the experimental data, databases, and ontologies used in this work.
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— Chapter 4: Fixing molecular complexes in BioPAX standards to enrich interactions and
detect redundancies using Semantic Web technologies. This chapter is made of our pub-
lished article, detailing a method to tackle non-compliance issues prevalent in databases
stored in the BioPAX format. The methodology not only enhances the conformity of
these databases but also automates the analysis of the graph by rectifying the topology
of the complexes within.

— Chapter 5: Small networks of expressed genes in the whole blood and relationships
to profiles in circulating metabolites provide insights in inter-individual variability of
feed efficiency in growing pigs. In this chapter, we elucidate the process of identify-
ing modules of co-expressed genes associated to feed efficiency and their connections
with metabolites and fatty acids concentrations. Our study establishes a link between
transcriptome and metabolome data, revealing connections between immunity and fatty
acid composition.

— Chapter 6: A graph-based approach to identify complex connections in heterogeneous
biological networks. This chapter presents method to integrate multimodal -omics data
using Semantic Web technologies. Our analysis method based on Reactome BioPAX
export identifies knowledge-based chains of relationships between statistically related
nodes in biological datasets, facilitating explainability and suggesting modulatory bio-
logical actors.

— Chapter 7: Discussion. This chapter highlights our contributions and discusses perspec-
tives for enhancing the method and future research directions.
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CHAPTER 2

BACKGROUND

2.1 Unimodal Omics Data

The field of biological data acquisition has experienced significant advancements in recent
decades (Figure 2.1). These advancements in equipment and methodologies have revolution-
ized the way biological data are generated, enabling high-throughput and cost-effective acqui-
sition for various biological specimens. Techniques such as micro-arrays and next-generation
sequencing, chromatography and non-targeted mass spectrometry (MS) as well as Nuclear Mag-
netic Resonance (NMR) spectroscopy have significantly increased the speed and efficiency of
data acquisition [3]. The technologies go well beyond the scope of standard chemistry tech-
niques since they are capable of precise analyses of hundreds to thousands of molecules.

This technical evolution has given rise to the field of high-throughput -omics data analysis,
which encompasses data obtained from various levels of life organisation, namely the genome,
transcriptome, proteome, metabolome, lipidome, as well as the description of the microbiome.
These omics data are characterized by their heterogeneity.

1. Heterogeneity of entity type: They represent distinct biological entities such as genes,
transcripts, proteins, lipids, metabolites, each with its own unique chemical and phys-
ical characteristics. Some of them can be even separated according to their chemical
characteristics, such as phosphorylated proteins (for the phospho-proteome).

2. Heterogeneity of data: There is heterogeneity in terms of the nature of the data itself,
for instance, ranging from textual data for DNA or protein sequences, to binary data
indicating presence or absence of the entities or quantitative data representing the abun-
dance of molecules and phenotypic signatures, and qualitative data describing biological
functions or interactions.

3. Technical heterogeneity: Finally, there is technical heterogeneity, which refers to vari-
ations in measurement techniques, experimental protocols, and data formats.
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Figure 2.1 – A schematic chronological timeline of some of the key technological and theoretical ad-
vances in genomics, transcriptomics and proteomics leading to multiomics. It encompasses milestones
such as major advances in graph theory in the 1930s, the development of DNA sequencing methods, and
the advent of high-throughput technologies on RNA and proteins like next-generation sequencing and
mass spectrometry, respectively, in the 2000s. It also acknowledges the creation of specialized knowl-
edge repositories like UniProt and Reactome. (Figure extracted from "The rise of omics data and their
integration in biomedical sciences" by Manzoni et al. [4]).

2.1.1 Defining the biological data

Before delving into the intricacies of analysis and management related to biological data,
let us establish the fundamental concepts and connections among various biological entities.

2.1.1.1 Genomics

Genomics is the field of research that focuses on the study of genomes, including their
sequence, structure, function, and evolution. The genome serves as the repository of an organ-
ism’s genetic information and is composed of deoxyribonucleic acid (DNA), arranged into one
or multiple chromosomes, depending on the species. These chromosomes are located in the cell
nucleus and contain genes, which are specific segments of DNA that encode various molecules
such as proteins, miRNAs and lncRNAs. DNA possesses a double helix structure consisting of
two strands, with each strand composing of four fundamental building blocks called nucleotides
or bases. These bases are represented by single letters: A for Adenine, T for Thymine, C for Cy-
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Figure 2.2 – Overview of the various -omes and their associated -omics technologies, highlight-
ing their intricate relationships.
Parts of the figure were drawn by using pictures from Servier Medical Art. Servier Medical Art by Servier is li-
censed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.
0/).

tosine, and G for Guanine. The genome sequence represents therefore a list of nucleotides com-
prising all the chromosomes. DNA sequencing is the process used to determine the sequence
of a DNA fragment. Because the two stands of DNA are complementary, the measurement
unit used for sequences is base pairs (pb). For example, the obtained sequence data for the se-
quencing of Homo sapiens represent 3.1 gigabases, 4.6 megabases for Escherichia coli and 2.7
gigabases for Sus scrofa. Both the human and pig genomes exhibit a similar order of magnitude
in terms of number of genes, with slightly more than 20,000 genes. However, it’s important to
emphasize that a significant portion of the genomes does not encode proteins. This non-coding
portion of the genome plays essential roles in regulating gene expression, influencing cellular
processes, and contributing to the complexity of biological functions.

2.1.1.2 Transcriptomics

The process of converting the genetic information encoded in a gene into a functional
molecule is known as gene expression. During gene expression, a specific strand of the DNA
corresponding to the gene is utilized as a template to produce a complementary ribonucleic acid
(RNA) strand by RNA polymerases, in a process called transcription. Some of the resulting
RNA molecules, messenger RNA (mRNA) or transcripts, carry the coding sequences that guide
the synthesis of proteins in a subsequent process known as translation. Although all cells in an
organism possess the same genetic information in the form of DNA, the gene expression can
vary significantly depending on various factors, such as the cell type, the developmental stage
of the organism or the environmental conditions. Gene expression regulation stands as a fun-
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damental mechanism, enabling cellular differentiation, morphogenesis, and the adaptability of
living organisms to their environments. The expression level of a gene is directly correlated with
the abundance of its mRNA copies within the cell. As the number of mRNA copies increases,
the gene’s expression rises proportionally.

Measuring the abundance of mRNA or studying gene expression levels is referred to as
transcriptomics. The main techniques for screening the transcriptome are microarrays gene ex-
pression and RNA sequencing (RNA-seq).

Microarrays workflows involve the conversion of RNA copies into complementary DNA
(cDNA) molecules through reverse transcription. These cDNA molecules can then interact with
specific probes on the microarray that are designed to target particular genes of interest. When
the sample containing RNA from these genes is exposed to the microarray, the cDNA molecules
in the sample bind to their complementary probes on the microarray. It leads to the emission of
fluorescent signals. Each signal’s intensity is proportional to the number of copies of the specific
gene in the sample. Microarrays relies on prior knowledge of the DNA sequences of the gene
whose expression is being measured.

RNA-seq sequences the complementary DNA (cDNA) fragments that are generated from
the RNA in the sample. The library preparation is optimized for enriching coding mRNAs. The
obtained reads are aligned with a reference genome. This process allows for the quantification
of gene expression, providing information about which genes are expressed and at what levels
in the sample. RNA-seq offers several advantages over microarrays, including the ability to de-
tect and quantify transcripts without the need for pre-designed probes. RNA-seq can provide a
more comprehensive and unbiased view of the transcriptome, by identifying more differentially-
expressed protein-coding genes and providing a wider quantitative range of expression level
changes compared to microarrays. Additionally, RNA-seq can detect splice junctions, gene fu-
sions, and single-nucleotide polymorphisms (SNPs). This makes it a preferred choice for many
modern transcriptomic studies but it remains more costly than microarrays and requires more
extensive reference data to fully leverage additional RNA-Seq data, especially for non-coding
sequences [4]. Typically, around 80% of the differentially-expressed genes identified with mi-
croarrays overlap with RNA-seq data [5].

At the conclusion of these analyses, the result is a table of numerical data representing
probe expression levels (for microarrays) or the number of reads for each sequence (for RNA-
seq). The corresponding gene names can be added based on the microarray annotation or by
mapping the sequenced reads to known genes in the case of RNA-seq.
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2.1.1.3 Proteomics

Proteome represents the set of proteins in a given sample at a specific time. During transla-
tion, single-stranded mRNA is read to synthesize proteins. mRNA is composed of nucleotides
A, U, C and G, and each triplet (i.e. codon) of these nucleotides corresponds to one of the 20
amino acids that are to be synthesized. This process of reading the mRNA codons and assem-
bling the corresponding amino acids leads to the formation of the complete protein. Proteins
exhibit various lengths and configurations, and they can go through chemical modifications to
reach their functionality. They can be further modified by phosphorylation, glycosylation, etc.
these extensive post-translational modifications along the production pathways leading to bio-
logically active proteins. Also, a single protein may exist in multiple forms, known as isoforms,
which result from alternative splicing processes. Proteins play a diverse and essential role, serv-
ing as key components responsible for numerous cellular activities. To execute various and fun-
damental biological functions, proteins engage in interactions through physical contacts, often
forming protein complexes where two or more proteins bind together. These interactions are
referred to as protein-protein interactions (PPIs). From a computational perspective, protein-
protein interactions are frequently studied using graph theory, creating what is known as the
interactome. This approach helps unravel the complex network of interactions between proteins
and sheds light on their functional relationships.Proteomics encompasses thus a wide and intri-
cate spectrum of research, spanning from the investigation of protein structures and folding [6–
8], to the exploration of proteins interactions [9], and the study of their functions which are
intricately linked to their folding and complex assembly.

Experimental techniques for studying proteins are equally diverse. For example, mass spec-
trometry is employed to determine protein mass and amino acid composition, nuclear magnetic
resonance (NMR), X-ray crystallography and cryogenic electron microscopy (cryo-EM) are
used to investigate protein folding, while gel electrophoresis (Western blot) is employed to iden-
tify specific proteins (antigen-antibodies) in samples. To identify PPIs, methods such as double
hybrid and affinity purification coupled with mass spectrometry, as well as other luminescence-
based methods, are utilized.

Depending on the chosen perspective to study the proteome, the data are considered as
quantitative, semi-quantitative or only refer to presence or the absence of specific proteins in
the biological samples. They can take the form of text for protein sequences or exist in network
formats (interactome) for protein-protein interactions (PPIs), and they can vary in types for
other studies.
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2.1.1.4 Metabolomics

Metabolomics focuses on the detection, identification, and quantification of metabolites
(small molecules) from complex biological matrices. Metabolites are small molecules pro-
duced and transformed in cellular metabolic processes, including amino acids, glucose, lipids,
and various other molecules. To determine which metabolites are present in a sample and in
what quantities, methods such as nuclear magnetic resonance (NMR) and Liquid Chromatog-
raphy coupled to tandem Mass Spectrometry (LC-MS) are used. LC-MS and 1H-NMR are
untargeted high-throughput methods that generate substantial amount of data. LC-MS faces
the challenge of translating signals into metabolite identities because it can provide the atomic
formula of the analytes. In contrast, 1H-NMR relies on well-annotated peaks in the spectrum
obtained from structural moieties, enabling more precise biological interpretation [10] but is
inherently less sensitive than LC-MS. LC-MS and 1H-NMR provide complementary data as
LC-MS can identify certain functional groups (sulfate and nitro groups) which are 1H-NMR
silent [Gathungu2020].

As a result, researchers typically obtain metabolic profiles that provide an overview of the
types and concentrations of metabolites present in a specific biological sample at a given mo-
ment. The analysis of these metabolic profiles can help in differentiating two groups of individ-
uals (e.g., healthy and diseased), identifying biomarkers (generally defined as the metabolites
that account for most of the variation) associated with specific phenotypes or diseases, or as-
sessing changes in the metabolic profiles after the application of a treatment (diet, medicine,
etc.) [11]. Metabolomics is also used more broadly to understand biological mechanisms, elu-
cidating metabolic pathways, enzymatic reactions and molecular interactions that occur within
a biological system.

What we have seen in this section provides an overview of the four primary -omics levels.
These, of course, are not the only ones, but they form a solid and substantial foundation for
the field of multi-omics research. From these four presentations, we can observe that differ-
ent areas of research in biology are inherently interconnected. Molecules are synthesized from
other molecules, and other molecules regulate these processes. We have also highlighted the
heterogeneity of these biological entities and the data describing them.
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2.1.2 Storage : specialized databases and ontologies

Concurrently with the advancements in data acquisition methods, the creation of large-scale
biological databases has become increasingly prevalent. These databases serve as repositories
for storing and organizing vast amounts of biological data generated from various organisms
and experiments. They play a crucial role in facilitating data sharing, integration, and analysis
in the field of life sciences. Indeed, they stand as valuable resources for researchers, providing
curated and comprehensive data that can be leveraged to gain insights into biological processes,
drive scientific discoveries, and advance our understanding of the complexities of phenotypes.

Because of biochemical data heterogeneity, these biological databases encompass diverse
types of data, including genomic sequences [12], protein sequence and functional informa-
tion [13], gene expression profiles [14], protein structures [15], metabolic pathways [16], and
clinical information [17].

To further enhance the value and interoperability of biological databases, initiatives based
on Semantic Web have emerged. Web semantics is a field of computer science that focuses
on the representation and organization of knowledge (see section 2.3). By applying semantic
principles, such as the use of ontologies, these initiatives aim to improve data integration, in-
teroperability, knowledge sharing and complex data reasoning. An ontology is a formal and
explicit representation of knowledge within a particular domain. This representation includes
clear and precise definition of entities or concepts, along with the relationships that describe
how these different entities are related to each other. Each entity is also associated with prop-
erties describing its attributes and characteristics. In practical terms, within a given context that
employs this data model (i.e. the given ontology), instances of class entities and relationships
are created based on the defined data schema.

There are several prominent ontologies that play a crucial role in the field of life sciences.
These ontologies serve as standardized vocabularies or knowledge frameworks that capture
domain-specific concepts and relationships. They provide a common language for describing
biological entities, processes, functions, and annotations, thereby promoting data integration
and interoperability across different databases and resources. For example, the UniProt on-
tology provides a comprehensive and structured representation of protein-related information,
including protein sequences, functions, and interactions [13]. The Chemical Entities of Biolog-
ical Interest (ChEBI) ontology focuses on small molecules and their chemical properties, en-
abling the consistent annotation and classification of diverse compounds [18]. The Proteomics
Standards Initiative Molecular Interaction (PSI-MI) ontology facilitates the representation and
exchange of data related to molecular interactions [19]. The Gene Ontology (GO) ontology
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captures biological components, processes, and functions, serving as a standardized vocabu-
lary for annotating gene-related information [20]. The complexity increases when dealing with
phenotypes. However, ongoing efforts are being made to establish unified semantic terms. For
human phenotypes, the Human Phenotype Ontology (HPO) fills the role [21]. For production,
health and environmental traits in livestock, ontologies like ATOL, AHOL, EOL are being de-
veloped [22]. One recent example of the application of web semantics in bioinformatics is the
development of ontologies specifically intended for the COVID-19 domain, for instance the
COVID-19 Ontology [23].

2.2 Multimodal Omic Data Analysis

2.2.1 Benefits of multiomics

Single-omic level analyses have undoubtedly played a pivotal role in advancing our com-
prehension of biological systems and continue to be valuable. Nevertheless, in some respects,
there are growing challenges in further refining these analyses. Conversely, we are now gener-
ating an ever-increasing volume of multi-omics data for identical samples or identical scientific
questions. This proliferation is evident when considering the scale of platforms such as Omics
Discovery Index (OmicsDI) (3.4M datasets in September 2023), which archive publicly avail-
able omics datasets [24]. Hence, it is imperative to explore strategies for maximizing the uti-
lization of the wealth of data generated on a daily basis. Considering the inherent connection of
-omic levels and their mutual influence, embracing joint and multi-omic analyses has become a
clear and valuable solution to extract more comprehensive insights from newly generated data
as well as from the abundance of existing material.

The heterogeneous data produced at different organizational scales in organisms are in-
herently interdependent. Analyzing these datasets independently of each other can limit our
understanding of the complex biological processes that underlie biological phenomenons. The
integration of multi-modal data is essential for achieving a comprehensive and interconnected
perspective of biological systems. Each -omics level provides valuable insights into specific
aspects of cellular and organismal function and helps to understand how these different compo-
nents interact and mutually impact one another.

However, integrating heterogeneous data is challenging due to the high heterogeneity of data
in terms of technical, biological and semantic aspects [25]. A review by Eicher et al. empha-
sizes the particular difficulties associated with integrating metabolomic data with other omics
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layers [26]. Indeed, the complication arises from the absence of a direct association between
metabolites and transcripts, unlike transcriptomics and proteomics, where most transcripts can
be mapped to a single protein, allowing for direct profile comparisons [27].

Nonetheless, addressing these challenges is achievable through various techniques that we
introduced in the following section. Indeed, some multi-omics studies have demonstrated the
value of this holistic approach, particularly in cancer research. For instance, multi-omic anal-
yses have enable the identification of underlying molecular signatures across different -omic
layers associated with specific cancer phenotypes, classification of cancer types, and assistance
in clinical decision-making [28–31]. These studies have been made possible by major projects
such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium
(ICGC). The TCGA project, in particular, has facilitated the generation of large datasets com-
prising heterogeneous and interconnected data on cancer, including tissue exome sequencing,
copy number variations (CNV), DNA methylation, gene and microRNA expression, as well as
relevant physiological and clinical data [32]. Moreover, studies that integrate various types of
data have also emerged in other domains. For instance, research on the impact of environmental
factors on different -omics layers, such as the work of Angione et al. on assessing the influence
of various conditions on E. coli growth using a multilayer graph [33] or the work of Rattray
et al. integrating genomics and metabolomics to determine the causes and effects of environ-
mental exposures [34]. Additionally, there are investigations into different human phenotypes in
relation to human microbiomes, enabling by the NIH Human Microbiome Project (iHMP) [35,
36].

2.2.2 Existing approaches for multi-omics integration

The number of reviews published on multiomics analysis tools in recent years demonstrates
the expanding interest and importance of this field [26, 27, 30, 37–41]. These reviews highlight
the advancements, methodologies, and applications of multi-omics analysis.

The analysis of multimodal data is guided by the nature of the data themselves and the
specific research objectives. Integration methods, as described by Zhou et al., can be classified
into two main approaches: statistical integration and network-based integration [38]. Statistical
integration methods are based on identifying common patterns across diverse -omics datasets
through dimension reduction techniques. These methods focus on uncovering shared features
and reducing data complexity. In contrast, network-based integration methods adopt a holistic
approach to understand biological systems. They use interconnected networks that represent
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various biological entities, thereby identifying significant connections and relationships within
these networks.

2.2.2.1 Statistical integration and dimensionality reduction

When working with data from various -omics analyses, the first challenge encountered is the
dimensionality of the data. Indeed, in biology, the number of measured elements often highly
exceeds the number of samples, which leads to unfavorable high-dimensional data. This phe-
nomenon is commonly referred to as ’the curse of dimensionality’ (Richard Bellman, 1961).

Principal Component Analysis (PCA) is a commonly used technique to address this issue.
PCA reduces the dimensionality of the data by finding a new set of uncorrelated variables,
known as principal components, that capture the maximum variance in the data. Each principal
component is a linear combination of the initial variables, but principal components are orthog-
onal and therefore uncorrelated. PCA aims to put the maximum possible information in the
first component, then the maximum remaining information in the second component and so on.
These principal components are used in subsequent analyses in place of the numerous original
variables.

However, when applying PCA to multimodal datasets, differences in variances between
modalities can introduce bias in the results if combined. To address this challenge, several
methods have been developed that consider the contributions of individual modalities during the
dimension reduction process. They include Sparse Principal Component Analysis (sPCA) from
the mixOmics R package [42]. sPCA is an extension of PCA that assigns weights to variables
and penalizes the less informative ones, resulting in a subset of the most informative variables
rather than a combination of all original variables. Among Multiple Factor Analysis-based ap-
proach, the padma method extends PCA to analyze multi-omic dataset, investigating biological
variation at the pathway level by aggregating information across different sources. [43]. Par-
tial Least Square (PLS) based integration methods have also proven valuable in multi-omics
analyses and offering a complementary solution. Thanks to PLS these methods are designed to
identify the variables among numerous variables that contribute significantly to the observed
differences between samples, effectively reducing dataset dimensions while retaining the most
pertinent information. PLS achieves this through an iterative process that constructs novel vari-
ables termed latent components which are linear combinations of the original variables. The
constructions is carried out by maximizing covariance. PLS-based approaches can be employed
for variable selection and performing classification to differentiate groups of individuals or phe-
notypes as depicted in PLS-DA [44, 45]. For instance, employing the sparse Multi-Block Partial
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Least Squares (sMBPLs) method enables the detection of heterogeneous sets of gene expression
regulators within multilayer datasets [46]. In a more recent context, the mixomics framework
DIABLO [47] has emerged as a valuable tool for variable selection capitalizing on latent com-
ponents to facilitate the discovery of biomarkers. The mixOmics group has also introduced the
MINT tool, which relies on PLS for vertical integration. This approach involves utilizing iden-
tical variables obtained from different sources and emphasizing variations across tissues [48,
49].

Matrix factorization is another prominent method for achieving omics integration through
dimension reduction [37]. It involves projecting the variables of a dataset onto a lower-dimensional
space, thereby capturing the underlying patterns and relationships in the data [50]. Each -omics
dataset is typically represented as an extensive matrix, which can be further decomposed into
a product of two matrices. A crucial constraint in this decomposition is that one of the matri-
ces in the product is shared across the various datasets. These methods take into account the
specific characteristics and contributions of each modality when factoring the matrices, leading
to more accurate and informative outcomes. For example, the MOFA tool [51] employs matrix
factorization to reduce dimensionality and uses a Bayesian model to account for the complexity
and uncertainty inherent in -omics data. MOFA’s objective is to identify a restricted number
of latent factors (hidden) that capture the shared source of variability across all input -omics
datasets obtained from a common set of samples (horizontal integration). MOFA has evolved
into MOFA+ to address various challenges [52]. This newer version is well-suited for handling
large-scale datasets and offers the capability for both vertical integration (different samples) and
horizontal integration (different modalities), providing a more comprehensive and flexible ap-
proach. The group have also more recently, developed the MEFISTO [53] specifically designed
for processing temporal data using dimension reduction method.

Another possible approach is to use machine learning techniques. For instance, supervised
variational autoencoders have been employed to integrate transcriptomic data with neuroimag-
ing data to calculate disease progression scores [54]. Similarly, neural networks have been used
to identify relationships between the microbiome and the metabolome providing insights into
the causes of dysregulations in disease (MiMeNet) [55].

The approaches discussed here encompass multivariate analyses of data derived from di-
verse omics modalities. These methodologies have proven to be effective as they possess the
capacity to manage extensive datasets by simplifying them, retaining only the information
that accounts for the most significant variability in the outcomes. This capability facilitates
the recognition of dependency relationships among variables, making them efficient for tasks
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such as classification and prediction.
Despite their advantages, dimension reduction methods present some limitations, primar-

ily in terms of interpretability. The transformed representation obtained by these techniques
may not always be easily interpretable and determining the optimal choice of components
can be challenging. Furthermore, these statistical associations often lack of biological explain-
ability and are not supported by the available knowledge about the physical relations between
molecules, including aspects like activation, inhibition, interaction, control or participation in a
common reaction. Additionally, these methods typically impose a strong constraint that requires
integrating data from the same study, either based on the same individuals (e.g., DIABLO,
MOFA) or identical measurements (e.g., MINT). This constraint can is limiting the applicabil-
ity of these methods when working with diverse datasets from various sources or studies.

Overcoming these limitations remains a subject of ongoing research in the field of multi-
omics integration. Novel methods and techniques are being developed to address these chal-
lenges, seeking to enable more flexible, robust, and comprehensive integration of diverse datasets
with varying characteristics and missing data.

2.2.2.2 Network-based integration and active modules research

Other methods focus on the interconnected and dependent nature of biological entities, with
the aim of retaining almost all measured variables to prevent loss of important signals and to
emphasize relationships across different -omics levels. This approach allows the identification
of active modules of entities and is exemplified by network-based methods, whether they are
driven by knowledge or not.

Network-based approaches are increasingly prevalent and well-suited to the nature of bio-
logical data, which is often manifold and interconnected. These approaches rely on fundamental
graph theory principles, utilizing graphs to represent the data and the relationships that inter-
connect them. Entities are represented by vertices (or nodes), and existing relationships (inter-
actions) between two nodes are represented by edges connecting the respective nodes. These
edges can be either directional or non-directional, depending on whether the relationships be-
tween the nodes have a direction or not. They are referred to as directed or undirected graphs.

Networks in biology To begin this section, let us now turn our attention towards the appli-
cation of networks within the field of biology. Systems biology is a field of study that seeks
to model biological systems, emphasizing their interactions. Graphs and networks are widely
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employed as effective representations of biological relationships. Various types of networks are
used to capture specific aspects of biological interactions.

For example, gene co-expression networks are used to elucidate the relationships between
genes exhibiting similar expression patterns. In such networks, nodes represent genes while
edges represent co-expression relationships. These co-expression relationships can be quantified
using various measures, depending on the methodology employed. For instance, the Weighted
Gene Co-expression Network Analysis (WGCNA) often employs the Pearson correlation coef-
ficient [56], while the Partial Correlation Information Theory (PCIT) method uses partial corre-
lation [57]. These methods provide insights into the common involvement of genes in biological
processes.

Gene regulatory networks (GRN) highlight the regulatory interactions between genes, shed-
ding light on how genes influence each other’s expression and function. In these networks,
nodes represent genes and edges the activation or inhibition events [58].

Protein-protein interaction networks (PPI) depict the physical interactions between proteins.
In these networks, nodes represent proteins and edges their physical interactions. This repre-
sentation enables the comprehension of how proteins interact and form complexes to carry out
their biological functions within cells. Notably, a well-established application is the guilt-by-
association principle, which posits that highly interconnected proteins share functional proper-
ties and may be components of the same biochemical pathway [59, 60].

Metabolic networks provide insights into the interconnected metabolic reactions within
cells. The aim is to study the production and transformation of small molecules through metabolism.
Additionally, biological pathways networks are often used to represent and study sequences of
biological reactions and interactions that contribute to specific functions or processes within
a cell or organism [61]. In both types of networks, nodes typically represent metabolites or
proteins, and edges symbolize biochemical and control reactions, facilitating a comprehensive
understanding of cellular processes. Notably, well-known databases like KEGG [62] and Reac-
tome [16] are prominent resources for accessing and exploring these networks.

There are other types of biological networks such as disease networks [63]. Using networks
to represent biological interactions at large scale, systems biology offers a holistic and com-
prehensive view of biological systems. However, as highlighted in "Big biology: The ’omes
puzzle" [64], "Biology’s central dogma is essentially a parts list. DNA codes for RNA, which

codes for protein. That may give you three basic ’omes (genome, transcriptome and proteome),

but life happens only because these parts work together." This is the rationale behind the emer-
gence of a new type of network: integration of multi-omics data networks. These heterogeneous
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networks aim to reconcile various -omic levels, with nodes representing different types of bio-
logical entities and edges representing the diverse relationships that link them.

Integration approaches Due to their effectiveness in representing -omics data at different
scales, networks became a widely employed approach in the development of integration meth-
ods.

The most common applications is the search for active modules [38, 65]. A module can
be defined as a specific set of molecules that collaborate to enable a common biological func-
tion [66]. An illustrative example is the Weighted Gene Co-expression Network Analysis (WGCNA)
technique, which constructs gene co-expression networks based on transcriptomic data. As
mentioned in the previous subsection, this method aims to identify modules of co-expression,
wherein genes share similar expression patterns. Subsequently, these co-expression modules are
linked to phenotypic and physiological traits of the studied individuals, enabling the identifica-
tion of co-expressed genes modules associated with specific traits [56]. This example illustrates
the integration of trancriptomic and phenotypic data but network-based integration seeks to
combine multiple -omic levels.

Network-based integration requires the construction of multi-omics networks, either from
experimental data or by combining different networks [67].There are two primary approaches
to build the multi-omic network: relying only on experimental data from single-omics analysis,
where interactions among various entities are derived directly from experimental results, or
adopting a systems biology approach, which considers prior knowledge of the system. In the
latter case, relevant entities and interactions for the studied system are gathered from (or mapped
onto) specific databases. It is important to note that isn’t a straightforward task and comes
with challenges related to data correspondences, redundancy and interoperability. Resources
for constructing this network include previously presented biological networks and publicly
accessible databases. To interconnect different networks, entities can be linked based on known
relationships that exist between them. For example, genes can be linked to the proteins they
encode, allowing the connection of a co-expression network with a protein-protein interaction
network. Alternatively, a metabolic network can be used to link proteins and metabolites. One
can choose to extract only known relationships among the molecules of interest, implying the
existence of direct connections, or consider the entire network and project our molecules of
interest onto it.

The constructed network can be a heterogeneous network, i.e. an extension of simple net-
works where the nodes and edges can be of different types. Alternatively, it can involve a more
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structured integration of different networks linked by particular edges across the different lay-
ers to form a multilayer network [68, 69]. Multilayer networks are highly suitable models for
representing empirical systems, including transportation, social and biological networks. These
networks are composed of multiple layers interconnected (or not) by inter-layer edges, with
nodes shared or unique to different layers, interconnected by intra-layer edges. This diversity
results in various types of multilayer networks as illustrated in Figure 2.3: layers of multiplex
interconnected networks share the same set of nodes, while layers in general interconnected
ones may not (inter-layer coupling); in interdependent interconnected network, layers exhibit
different inter-layer relationships (inter-layer dynamics) [70]. More details are available in the
github repository of MuxViz 1.

Figure 2.3 – Distinct classes of multilayer models. (Figure from Manlio De Domenico, "Multilayer
Networks Illustrated" (2020) DOI:10.17605/OSF.IO/GY53K)

The obtained graph is often of considerable size and requires analysis by specific algorithms
based on graph theory. Several methods can be employed to identify relevant connections or
sub-networks. The advantage of this approach, compared to dimension reduction, lies in its
incorporation of additional biological entities that potentially play crucial roles in the studied
biological phenomenon. Another advantage of this approach is that the results are often easier
to interpret.

Identifying relevant modules Once the biological network of interest has been identified or
constructed, it can be analysed to uncover valuable insights into the organization and function-
ing of biological systems. Biological networks being modular because of the interplay of differ-

1. https://github.com/manlius/muxViz/blob/master/gui-old/theory/README.md
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ent biological pathways in the whole network [66], methods have been developed to highlight
these modules based on the network topology. Identifying a module consists in highlighting a
subset (referred to as modules or clusters) of nodes that exhibit high interconnectivity within
the network. This allows for unraveling the network’s underlying structure.

Numerous methods have been developed to perform this analysis [65, 71–73], and their sig-
nificance has been reviewed in [74]. Mitra et al. categorized these methods into three groups.
Firstly, the significant-area-search methods guide the exploration through nodes and edges
weighted with molecular activity scores. Modules are determined to optimize convergence of
molecular activity scores inside modules. This approach gains its strength from a rich diversity
strategies for scoring graph elements, coupled with various heuristics. Secondly, the diffusion-
flow and network-propagation methods start from initial nodes and extend progressively their
influence to neighboring nodes.Various implementations and formulations exist, including Ran-
dom Walk with Restart (RWR) [75] and Heat Diffusion (HD) approaches [76]. Finally, the
clustering-based methods involve grouping interactions in a network based on both their topol-
ogy and the conditions in which they are active. For more comprehensive details and illustrative
example, refer to [65].

These methods operate on single networks, and are used in single -omics layers or alter-
natively in aggregated multi-omic networks representing the interactions from the different
sources. These methods treat all edges (interactions) equally, regardless of their specific molecu-
lar nature. This can be a limitation of these approaches. To address this gap, methods applicable
across multiple networks and multiplex networks have emerged. Initially, MolTi and SimMod
were developed for community detection within multiplex graphs [77, 78]. More recently, ef-
forts have been made to improve these approaches on multilayer graphs based on the different
redefinition of topological metrics on this type of network [69, 79]. Theses new methods include
methods based on RWRs applied to multiplex networks [80, 81], or on multi-objective genetic
algorithm such as in [82].

In the complex field of biological network analysis, obtaining meaningful insights goes far
beyond statistical results. To make sense of this data, it’s imperative to interpret it by contextu-
alizing it within existing biological knowledge. However, crossing this crucial bridge requires
efficient access to numerous available databases and the ability to query them precisely. This
is where the semantic web and knowledge graphs stand as a pivotal technological framework,
enabling the referencing of entities relative to one another across different sources. We will ex-
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plore how this approach can be applied to biological networks, demonstrating how questions
related to networks and graphs can benefit from this perspective, thus leading to a deeper and
more precise understanding of biological interactions.

2.3 Knowledge integration and representation

2.3.1 Semantic Web, RDF Knowledge graphs and SPARQL

RDF (Resource Description Framework) is a formalism introduced by the W3C (World Wide

Web Consortium) that provides a framework for representing and linking symbolic data in the
form of a directed graph. It is de facto a standard for representing knowledge and information in
a structured manner, enabling interoperability and data integration across different sources [83,
84].

In RDF, entities (or resources) and relations (or properties) are identified by unique URIs 2

(Uniform Resource Identifier) and data is organized into triples, which consist of subject-
predicate-object statements.

— The subject represents the identifier of a resource (i.e. a node in the graph).
— The predicate denotes a specific property or relationship (i.e. a directed edge from the

subject to the object in the graph).
— The object can either be a string value or the identifier of a resource (i.e. a literal value or

a node). A string value can be post-fixed by a type to specify the data type of the value,
for example while "42" should be considered as a string, "42"^^xsd:integer
indicates that the value should be interpreted as an integer.

For example, the following code consists of five triples. The first triple states that the entity
uniprotkb:O96008 belongs to the category of proteins (indicated by the URI up:Protein;
note that category descriptions are provided using the rdf:type instantiation relationship).
The second and third triples respectively indicate that uniprotkb:O96008 is marked as "re-
viewed" (which is a boolean attribute), and that it is linked to the entity hgnc:18001 through
the rdfs:seeAlso relationship. The fourth end fifth triples specify that hgnc:18001 is an
entity from the HGNC database and includes the comment "TOMM40" which corresponds to
its common gene name. The corresponding graph is illustrated in Figure 2.4

2. URIs have been extended to IRIs (Internationalized Resource Identifiers) that support non-ASCII characters ;
the principles remains unchanged.
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rdfs:seeAlso rdf:type

up:reviewedO96008

up:database

"TOMM40"
HGNC

Protein

"true"

rdfs:comment

18001

Figure 2.4 – Representation of information about the protein with UniProt identifier ’O96008’
in RDF format. Entities are represented by solid-bordered rectangles, their attributes by dashed-
bordered rectangles and are connected by properties represented by edges. The different triples
form a directed graph.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX owl: <http://www.w3.org/2002/07/owl#>

4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5

6 PREFIX up:<http://purl.uniprot.org/core/>

7 PREFIX udb: <http://purl.uniprot.org/database/>

8 PREFIX uniprot: <http://purl.uniprot.org/uniprot/>

9 PREFIX hgnc: <http://purl.uniprot.org/hgnc/>

10

11 uniprotkb:O96008 rdf:type up:Protein .

12 uniprotkb:O96008 up:reviewed "true"^^xsd:boolean .

13 uniprotkb:O96008 rdfs:seeAlso hgnc:18001 .

14 hgnc:18001 up:database udb:hgnc .

15 hgnc:18001 rdfs:comment "TOMM40" .

There are as many triples as needed to comprehensively describe a resource using literal
values for specific attributes, RDF properties (such as rdf:type) to specify the type of the
resource, and other properties to define relationships between resources. Consequently, RDF
datasets are sets of triples. By using these triples, RDF can represent complex relationships and
interconnected data in a flexible and extensible manner.

Additionally, the concept of "namespace" plays a crucial role. It serves as a mechanism
to uniquely identify and organize resources and properties. URI are used to uniquely identify
resources and these URI can be partitioned into namespace to gather related identifiers and prop-
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erties (e.g. http://www.w3.org/1999/02/22-rdf-syntax-ns# for basic RDF resources and proper-
ties). This prevents naming conflicts when using several ontologies in the same RDF graph.

The graphs from several RDF dataset can be merged by simply performing the union of their
triples. Moreover if these graphs use the same URI to identify a common resource, the graphs
will e connected seamlessly.

The SPARQL language, which stands for SPARQL Protocol and RDF Query Language, is
a query language used for searching, adding, modifying, and deleting data in RDF format. It is
also based on the concept of triples and allows for the representation of variables (denoted by a
preceding question mark).

The following query retrieves all molecular complexes that include the protein O96008
as one of their components. On a dataset containing complexes formed by this protein and
others entities, it should return pairs of complex identifiers and its name. For example the pair
(reactome:R-HSA-1252240, "TOMM40 Complex [mitochondrial outer membrane]") for
the variables ?complexID and ?complexName.

1 PREFIX bp3: <http://www.biopax.org/release/biopax-level3.owl#>

2 PREFIX reactome: <http://www.reactome.org/biopax/84/48887#>

3

4 SELECT DISTINCT ?complexID ?complexName

5 WHERE {

6 ?complexID bp3:component ?protein .

7 ?protein bp3:entityReference/bp3:xref/bp3:id "O96008" .

8 ?complexID bp3:displayName ?complexName .

9 }

A SPARQL endpoint is a web service that exposes an RDF dataset, enabling the execution
of SPARQL queries and the retrieval of query results. The SPARQL engine returns combina-
tions of variable values that satisfy the query constraints. SPARQL endpoint are valuable tools
for accessing RDF data and conducting federated queries that span multiple distributed RDF
repositories simultaneously. This capability is possible through the use of the SPARQL key-
word SERVICE. This means that in a single query, it is possible to draw data from two or more
repositories using shared features or identifiers.

RDF is therefore a well-suited formalism for solving data integration problems and for
linking project data to public databases and knowledge bases [85–87]. In life sciences, most
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databases and knowledge bases are available in RDF, supporting Life Science major place in
the Linked Open Data 3.

Another advantage of RDF is its capability to integrate both data and knowledge by provid-
ing an unified framework based on triples to represent data and ontologies. Similarly, SPARQL
allows the formulation of queries that operate on both aspects.

2.3.2 Graph databases: Neo4j, Cypher and Neosemantics

Neo4j 4 is classified as a Labeled Property Graph (LPG) database [89]. LPG databases are
used to store data in a graph format, similar to RDF triple stores, but they employ a different data
model compared to RDF. Unlike RDF, which uses triples and identifies resources using URIs,
LPG databases rely on uniquely identifiable nodes and edges that can have associated prop-
erties. These properties are essentially key-value pairs, this concept is analog to RDF triples
where the object is a literal value. This structural difference impacts the size and compactness
of data, with LPG databases often being more compact than RDF graphs. The integration of
data and knowledge is also more limited than with the Semantic Web, as complex relation-
ships between node labels are not supported. Another significant difference between LPG and
RDF is the absence of a concept like "namespace" in LPG. Indeed, LPG is primarily designed
for storing and querying data within a single database system rather than for data exchange or
integration across different sources. As a result, exploring data from multiple sources simul-
taneously in LPG databases can be less straightforward compared to RDF, which offers more
robust mechanisms for data integration and linking across disparate sources. Nevertheless, the
plugin NeoSemantics 5 enables to store RDF datasets in Neo4j and to export property graph
from Neo4j as RDF graph. For instance the literal values of RDF that are not supported in
Neo4j are transformed into key-value attributes of the subject node in Neo4j and vice versa.

There are several property graph query languages and Cypher is a well-established and
widely used declarative one [90]. It was developed by the Neo4j group and is therefore highly
optimized for exploring Neo4j graphs. Moreover graph databases support classical graph traver-
sal and analyses algorithms (e.g. shortest paths, centrality, etc.) that are more difficult to imple-
ment with RDF/SPARQL.

RDF and SPARQL are well adapted to data integration and advanced reasoning based on

3. https://lod-cloud.net/ [88]
4. https://neo4j.com/
5. https://github.com/neo4j-labs/neosemantics
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symbolic knowledge from ontologies, whereas graph databases are well adapted for complex
analyses based on graph topology. It is interesting to note that my requirements encompass both
aspects.

In this section, we have briefly introduced two approaches for representing knowledge in the
form of graphs. On one hand, RDF graphs allow for highly structured knowledge organization
through ontologies, which serve as models for data storage and enables interoperability between
different data sources through federated queries and namespaces. On the other hand, graph
databases like Neo4j and the query languages used for these databases allow for the expression
of more complex queries than SPARQL for RDF. This is achieved by leveraging properties
on nodes and edges, as well as graph theory. With the Neosemantics plugin, it is possible to
combine these two technologies by transitioning from one model to another. This combination
of technologies can provide a robust framework for handling and analyzing complex biological
data, especially in the context of multi-omics research.

2.4 Case study: networks of entities associated with variabil-
ity in feed efficiency of growing pigs

2.4.1 Context

Livestock production is significantly influenced by the cost of animal feed, which represents
the largest portion of production costs. These feed costs are directly tied to the fluctuation prices
of raw materials and subsequently have a direct impact on the income of farmers. In order to
ensure the sustainability of farms and the industry as a whole, it is crucial to remain competitive
and to adapt to international markets. However, as pig farming operations expand, they also face
environmental challenges related to storage, treatment and management of effluents. Balancing
economic viability with environmental sustainability has become the primary objective of the
pork industry. To achieve this balance, various factors must be taken into account, and one of
the most promising and widely considered strategies is to enhance feed efficiency of animals.
Improving feed efficiency can optimize resource utilization, reduce feed costs, and minimize
environmental impacts.
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2.4.2 Definition

Feed efficiency in growing animals is defined as the relative ability of the animals to convert
feed into weight (lean) gain while maintaining physiological functions. Improving feed effi-
ciency directly contributes to reducing feed costs and minimizing the environmental impact of
livestock production, particularly in terms of effluent discharge. By maximizing the utilization
of nutrients from the feed, animals can achieve optimal growth while minimizing nutrient losses.
Feed efficiency can be improved through various approaches, including genetic selection and
research into high-performance feeds. However to further advance these strategies, it is crucial
to gain a deeper understanding of the underlying biological processes that drive feed efficiency.
Feed efficiency is indeed a complex phenotype influenced by numerous biological pathways,
which makes measuring it a challenge in itself. Various metrics have been developed, with two
of the most commonly used being Residual Feed Intake (RFI) [91] and Feed Conversion Ratio
(FCR). FCR is the calculated by the ratio of feed intake to body weight (BW) gain during a test
period. Consequently FCR is a measure based on production within livestock farming. A lower
FCR suggests optimal growth rates and favorable body composition [92]. However as FCR is a
ratio, it introduces some bias, an animal can exhibit efficiency by consuming less feed and still
maintaining a lower growth rate. This observation highlights the multifaceted nature of feed
efficiency where feed consumption and growth rate represent only one facet of this intricate
phenotype. Residual feed intake (RFI) has been also proposed as a refined indicator of feed
efficiency. Unlike FCR, RFI delves deeper into the complexity of the phenotype, it is calculated
as the difference between observed feed intake and predicted intake from production and main-
tenance needs. This prediction requires a reference population, therefore, RFI is rather used as
a genetic selection criteria. RFI is rather based on the metabolism efficiency than based on the
daily gain and growth rate which allows RFI to reflect digestive and metabolic variabilities [91,
92]. It is important to note that there are other contributing factors beyond those captured by this
two metrics. Moreover, alternative metrics may provide a more appropriate assessments based
on the specific scientific question.

Feed efficiency stand as a key phenotype in sustainable agriculture, not only saving re-
sources but also reducing waste and effluents into the environment. However, its complexity is
profound, governed by a large number of biological pathways. Understanding this complexity
is the first step towards its improvement. Recent studies showed that gene expression profiling
in the whole blood is suitable to identify a few number of molecular candidate biomarkers for
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FCR in growing pigs [93]. Likewise, metabolomic studies have shown that circulating concen-
trations of metabolites in the blood can be related to economically-important traits including
feed efficiency [94].
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CHAPTER 3

KNOWLEDGE DATABASES AND EXPERIMENTAL

DATA USED IN THIS THESIS

In this chapter, we describe the materials used in this thesis, namely the UniProt and ChEBI
knowledge bases and ontologies, the Reacome database, and experimental data from transcrip-
tomics and metabolomics.

3.1 Databases

3.1.1 UniProtKB

The Universal Protein Resource Knowledgebase (UniProtKB) 1 [13] is a high-quality, freely
accessible database containing protein sequences and functional annotations. It serves as a cen-
tralized and well-organized repository for protein-related information from various sources.
UniProtKB consists of two main subsets:

— UniProtKB/Swiss-Prot contains manually annotated and expert-reviewed protein en-
tries. Each entry is documented with information extracted from the literature. The data
provided includes the protein’s name, corresponding gene name, gene identifiers, organ-
ism details, functional annotations, roles in biological processes, enzymatic activities,
post-translational modifications, domain structures, similar proteins, and various other
properties.

— UniProtKB/TrEMBL (Translated EMBL Nucleotide Sequence Database) contains com-
putationally predicted or inferred coding sequences. These sequences are sourced from
databases such as Ensembl, RefSeq, and CCDS, etc.

Each protein within UniProtKB is assigned a unique entry name or identifier, making it easy
to access and reference.

UniProt offers various methods for accessing and utilizing the UniProtKB including SPARQL

1. https://www.uniprot.org/
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endpoint 2. This endpoint allows users to query UniProtKB data using SPARQL queries, pro-
viding a powerful means to retrieve specific protein-related information and conduct customized
analyses. Figure 3.1 presents an overview diagram illustrating the main concepts of the SPARQL
endpoint. Starting from the accession number (UniProt ID) of a protein, users can access all
the available information stored in the database navigating through the different properties and
classes. Moreover, the diagram highlights the rfs:seeAlso property, which points to exter-
nal databases. For example, these cross-references enable to retrieve UniProt IDs from a gene
identifiers (e.g. HGNC), facilitating integration with external and/or experimental data.

Figure 3.1 – Overview diagram on the main concepts of UniProt SPARQL endpoint. This dia-
gram provides a visual representation of the interconnected data available through the UniProt
SPARQL endpoint. (source: UniProt)

2. https://sparql.uniprot.org/
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3.1.2 ChEBI

Chemical Entities of Biological Interest (ChEBI) 3 [18] is a freely accessible database and
ontology dedicated to small chemical compounds. ChEBI is a part of the Open Biomedical On-
tologies (OBO) project of the European Bioinformatics Institute (EBI). This ressource provides
detailed information on small molecules, including details about their structures, properties and
biological roles. ChEBI compiles and curates data from a wide range of sources, including the
Integrated relational Enzyme database (IntEnz), the subset COMPOUD of the Kyoto Encyclo-
pedia of Genes and Genomes database (KEGG), PDBeChem, ChEMBL (bioactive compounds)
and numerous other repositories.

Each molecular entity within ChEBI is uniquely identifiable by a ChEBI identifier, which
allows users to access to information. This information includes compound’s common name,
level of manual annotation, chemical formula, charge, synonyms, publications that reference it,
a hierarchy tree linking it to other ChEBI entities, and cross-references to other resources.

The ChEBI ontology enables users to explore through related entities (subclasses, enan-
tiomers, etc.) as well as navigate the hierarchy of biological roles using SPARQL queries.

3.1.3 Reactome

Reactome 4 [16] is an open access, manually curated and peer-reviewed database enriched
with knowledge and mappings to third party ontologies. It focuses on biological pathways and
processes. It serves as a centralized repository for knowledge on pathways extracted from lit-
erature. Reactome organizes these pathways based on the concept of reaction involving various
entities. There entities are nucleic acids, proteins, complexes, vaccines, anti-cancer therapeu-
tics and small molecules, all of which contribute to biological interactions that are grouped
into pathways. Reactome provides data and pathways for various species, and each species is
typically represented as a separate subdataset.

Reactome stores data in a relational database and provides multiple ways to access and use
this information. For example, the Reactome website offers an interactive graphical representa-
tion of biological processes, making it easy to explore pathways visually. Futhermore, the data
can be downloaded in various formats, ensuring accessibility for researchers who may wish to
use them for their specific analyses. The available formats include Neo4j GraphDB, MySQL,
BioPAX, SBML and PSI-MITAB files. Each of these formats has its own advantages and limits,

3. https://www.ebi.ac.uk/chebi/
4. https://reactome.org/
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a subject that Strömbäck et al. studied extensively. They particularly emphasized the promising
potential of the BioPAX format for finely describing biological pathways [95].

In this thesis, we mainly used exports from Reactome dataset in BIOPAX format, although
in some occasions, we also used Neo4j. This decision aligns our goal of developing a generic
method that is not dependent on the specific dataset. Additionally, Biological Pathway Exchange
(BioPAX) format has been specifically designed to facilitate integration and interoperability
among various sources of pathways data, promoting reproducibility in our work. It is impor-
tant to highlight that major pathway databases, including KEGG and PathwayCommons, also
provide data in the BioPAX format, which contributes to the genericity of our approach.

BioPAX is a well-established ontology to represent pathways at molecular and cellular
levels as graphs using RDF and OWL technologies. As represented in Figure 3.2, this on-
tology is structured around the root class Entity which encompasses four key subclasses:
Pathway, Interaction, Gene and PhysicalEntity. The PhysicalEntity class
is the parent class for Protein, DNA, RNA, SmallMolecule and Complex classes. The
Interaction class is used to describe biological relationships between entities. There are
various subclasses of the Interaction class, each designed to represent different types of bi-
ological interactions. Some of these subclasses include: Control, MolecularInteraction
and BiochemicalReaction. These subclasses may have further subclasses to provide finer-
grained representation of specific types of interactions.

Entities are interconnected through various properties. For instance, the property bp3:component
links Complex to its components, while bp3:participant (and its subproperties left,
right, controlled, etc. depending on the interaction class) links Interaction to its
participating entities. This structured representation facilitates the description of complex bio-
logical interactions and relationships within pathways.

BioPAX also includes utility classes like EntityReference, which serves as a means
to group entities across different contexts and molecular states that share common physical
properties. Each type of physical entities has a corresponding subclass of EntityReference
(e.g. ProteinReference, SmallMoleculeReference). In practical terms, this means
that for entities like proteins and small molecules, there is a dedicated node where all the non-
changing aspects of the entity are stored. Figure 3.3 is an example of a ProteinReference
(in red) that have a UniProt ID (O96008), and three proteins (in blue) that are linked to this node
with the entityReference property. This linkage suggests that these three proteins share
common attributes but may have variations, such as different cellular locations or molecular
states.
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Figure 3.2 – An overview of the key classes in the BioPAX ontology, represented as boxes,
and their inheritance relationships, indicated by arrows. There are three main types: Pathway
(in red), Interaction (in green), and PhysicalEntity/Gene (in blue). To illustrate properties, the
properties of the Protein class are displayed. (Figure extracted from Demir et al. [96])

BioPAX provides the capability to map entities to external resources through the use of the
XRef utility class. There are several subclasses of "crossref" designed for different purposes.
In the example provided in Figure 3.4, the PublicationXref class (in pink) is employed to
reference the corresponding publication using PubMed ID. The UnificationXref class (in
grey) is used to annotate biological entities, in this example it is used to reference the Reactome
ID of the reaction. However, it can also be used to link to other resources like UniProt or ChEBI.

The BioPAX export of Reactome v.84 (2023-04) is composed of 493, 858 nodes and 2, 885, 960
edges (triples), including 22, 635 Interactions, 31, 332 Proteins, 15, 222 Complexes
and 5, 083 SmallMolecules.

3.2 Experimental data

In this thesis, we reused datasets acquired in the whole blood samples of 48 purebred French
Large White pigs. These pigs were part of a divergent selection for Residual Feed Intake (RFI)
and were fed two different diets (low fiber low fat and high fiber high fat), categorized into four
equivalent groups (n = 12 by line and by diet). The age at slaughter ranges from 124 to 139 days,
with an average of 132.7 days, a median of 132 days, and a standard deviation of 3.7 days.
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Figure 3.3 – Diagram illustrating the EntityReference concept of the BioPAX ontology.
A ProteinReference instance is represented in red, with the UniProt identifier "O98008"
obtained through cross-referencing with UniProt. Additionally, three Protein instances are
connected to this protein reference, shown in blue, indicating that these three proteins are dif-
ferent instances of the protein "O96008".

The datasets encompass:
— Transcriptomes in whole blood (RNA microarrays) [97];

The gene expression in the whole blood is measured using 26,322 probes (approxi-
mately 20 base pair cDNA fragments), by using a custom porcine microarray (8x60K,
GPL16524, Agilent Technologies France, Massy, France) containing 60,306 porcine
probes. Regarding replicates, there are approximately 3 probes per selected gene. Data
have been proceeded for filtration and were median-centered. During a prior analysis to
detect outliers, one of the 48 pigs (number 41) was identified as aberrant because a large
number of its probes have the same expression values. Therefore, pig number 41 has
been removed from the dataset for all subsequent analyses.

— Performance data, including body weight (BW), average feed intake (ADFI), average
daily gain (ADG), feed-conversion ratio (FCR) and various other measured phenotypic
traits [98];
This dataset contains measurements for 15 distinct traits for each individual.
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Figure 3.4 – Diagram illustrating the Xref concept of the BioPAX ontology using the
example of a BiochemicalReaction (shown as a red node). All the properties and
nodes related to this concept are highlighted in red. BiochmicalReaction1 involves
two proteins (depicted in blue) and controls an Interaction (depicted in turquoise). This
BiochemicalReaction is linked to two type of xRef subclasses: UnificationXref
(in grey) to establish cross-references with different databases by providing correspond-
ing IDs, and PublicationXref (in pink) to link the publications related to this
BiochemicalReaction.

— Circulating concentrations of fatty acids (FA) in the plasma (gas chromatography);
14 concentrations were measured, including four groups of fatty acids categorized based
on their functional properties: short and medium-chain saturated fatty acids, polyunsatu-
rated fatty acids from the omega-6 family, polyunsaturated fatty acids from the omega-3
family, and very long-chain monounsaturated fatty acids.

— Blood metabolome data (nuclear magnetic resonance (h1-NMR)) [97].
For each individual, 94 metabolites were identified, including amino acids and lipopro-
teins.

The original data have been analyzed in the referenced publications through differential
analysis between line and/or diet.
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CHAPTER 4

FIXING MOLECULAR COMPLEXES IN BIOPAX
STANDARDS TO ENRICH INTERACTIONS AND

DETECT REDUNDANCIES USING SEMANTIC WEB

TECHNOLOGIES

This chapter has been published as an original research article to Oxford Bioinformatics

(Juigné et al., 2023):
➡ Juigné C, Dameron O, Moreews F, Gondret F, Becker E. Fixing molecular complexes

in BioPAX standards to enrich interactions and detect redundancies using semantic
web technologies. Bioinformatics. 2023 May 4;39(5):btad257. doi: 10.1093/bioinfor-
matics/btad257.

4.1 Abstract

Motivation: Molecular complexes play a major role in the regulation of biological path-
ways. The Biological Pathway Exchange format (BioPAX) facilitates the integration of data
sources describing interactions some of which involving complexes. The BioPAX specifica-
tion explicitly prevents complexes to have any component that is another complex (unless this
component is a black-box complex whose composition is unknown). However, we observed
that the well-curated Reactome pathway database contains such recursive complexes of com-
plexes. We propose reproductible and semantically-rich SPARQL queries for identifying and
fixing invalid complexes in BioPAX databases, and evaluate the consequences of fixing these
non-conformities in the Reactome database.

Results: For the Homo sapiens version of Reactome, we identify 5,833 recursively de-
fined complexes out of the 14,987 complexes (39%). This situation is not specific to the human
dataset, as all tested species of Reactome exhibit between 30% (Plasmodium falciparum) and
40% (Sus scrofa, Bos taurus, Canis familiaris, Gallus gallus) of recursive complexes. As an ad-
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ditional consequence, the procedure also allows the detection of complex redundancies. Overall,
this method improves the conformity and the automated analysis of the graph by repairing the
topology of the complexes in the graph. This will allow to apply further reasoning methods on
better consistent data.

Availability: We provide a jupyter notebook detailing the analysis https://github.com/cjuigne/
non_conformities_detection_biopax.

Supplementary information: Supplementary data are available at Bioinformatics online.

4.2 Introduction

4.2.1 Molecular complexes and biological interactions in system biol-

ogy

Understanding how biological systems adapt to their environment requires to better capture,
describe and model the interactions between their constitutive entities. With the accumulating
knowledge on biological entities and their interactions, the need of a general framework to
understand this information at a system level has led to a formal description of these entities
and interactions. Within the context of biological pathways, several formats have been proposed
such as SBML [99, 100], and BioPAX [96].

Biological systems typically involve an intricate network of interactions between numerous
participants [101]. Among these participants, complexes are a major class of physical enti-
ties that results from the chemical assembly of several molecules (nucleic acids, proteins and
other molecules) that bind each other at the same time and place, and form single multimolec-
ular machines. Biologically, they play an important role in transcription, RNA splicing and
polyadenylation machinery, protein export, transport [102, 103]. From the data analysis per-
spective, complexes cause some indirection between molecules and interactions, as molecules
can participate directly to an interaction but also be a component of a complex that participates
to an interaction. This introduces an additional node (the complex) between two entities that are
no longer directly connected by a link in the cascade of events that triggers cell behaviour.
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4.2.2 Description of complexes in BioPAX.

The Biological Pathway Exchange format 1 (BioPAX) is a well established formalism to
represent biological pathways at the molecular and cellular levels, including interactions [96].
The BioPAX objective is to unambigously describe each component and each interaction. In the
BioPAX ontology, the top four classes are Pathway, Interaction, Physical Entity

and Gene. Interactions represent the biological relationships between two or more entities,
including molecular interactions, controls and conversions. Physical entities encompass small
molecules, proteins, DNA, RNA and complexes. Complexes are defined in BioPAX as “phys-

ical entities whose structure is comprised of other physical entities bound to each other non-

covalently, at least one of which is a macromolecule (e.g. protein, DNA, or RNA)".
The BioPAX specification explicitly states “complexes should not be defined recursively

[...] i.e., a complex should not be a component of another complex. [...] Exceptions are black-

box complexes (i.e., complexes in which the component property is empty), which may be used as

components of other complexes because their constituent parts are unknown". This specification
about the flat representation of complexes was introduced when moving from the BioPAX1.0
to the BioPAX2.0 standard (between April and December 2005), and the rationale given for the
introduction of this constraint was that the use of a tree structure could be interpreted by some
users as an order in macromolecular assembly: “The reason for keeping complexes flat is to

signify that there is no information stored in the way complexes are nested, such as assembly

order. Otherwise, the complex assembly order may be implicitly encoded and interpreted by

some users, while others created hierarchical complexes randomly, which could lead to data

loss.”

4.2.3 The Reactome use-case.

BioPAX is based on Semantic Web technologies, with RDF facilitating integration, SPARQL
facilitating querying and OWL facilitating knowledge-based reasoning. All the major pathway
databases are available in BioPAX. Among them, Reactome 2 is a free, open-source, curated
and peer-reviewed pathway database [16]. It is widely used in genome analysis, modeling, sys-
tems biology, clinical research and education, and biological pathways can be explored to shed
ligth on interconnected proteins [104]. Despite the BioPAX specifications, we noticed the pres-
ence of recursive complexes, i.e. complexes composed of other complexes that are not black-

1. http://www.biopax.org/release/biopax-level3-documentation.pdf
2. https://reactome.org/
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box complexes. Importantly, these non-conform complexes were not detected by the BioPAX
validator 3 [105]. As this pattern eludes validation, their presence in Reactome and possibly
in other databases, may preclude further analyses aiming to provide robust information about
mechanisms and phenotypes.

4.2.4 Motivations and results

We hypothetized that identifying and correcting recursive complexes would be valuable to
enrich the biological database into interactions. This may allow a better analysis of the par-
ticipants, direction and stoichiometry of the biological interactions, either when browsing the
data, or when data are processed automatically. We believe that these non-conformities in the
description of the complexes are an important obstacle to the development of analysis methods
that would work directly from the BioPAX format. Using SPARQL queries, we show that the
well curated Reactome database includes a large fraction of recursively defined complexes, i.e.

whose components contain at least one complex (that is not a black box one). We showed that
these non-conform complexes averaged one-third of the total number of complexes. Using other
SPARQL queries, we corrected these recursive decompositions of complexes. Then, we showed
that these corrections led to the detection of implicitly redundant complexes, whose redundancy
was previously hidden by the different recursive definitions of complexes.

4.3 Approach

4.3.1 Definition of invalid recursive complexes

Recursive complexes are complexes whose component contains at least one complex. These
recursive complexes are invalid if the inner complex is not a black-box one, i.e. the inner com-
plex itself contains at least one component. The different categories of (in)valid complexes in
BioPAX are illustrated in Figure 4.1-A.

4.3.2 Invalid recursive complexes in interactions

Recursive complexes can cause false negatives when identifying the interactions in which a
physical entity can participate. For example, if A, B and C are physical entities, A can directly

3. https://biopax.baderlab.org/
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participate in several interactions, but also indirectly when associated to B as a complex, or to
B and C as another complex. If (A, B) and (A, B, C) are valid complexes, the two situations
can be correctly processed by identifying the interactions matching the criterion “having a par-
ticipant that is a complex composed of A". However, if (A, B, C) complex is composed of the
complex (A, B) and of C, all the interactions in which (A, B, C) participates would fail to meet
the aforementioned criterion, because their participants are not “a complex composed of A" but
“a complex composed of a complex composed of A". We will see that in practice, such nested
composition can occur over multiple levels. The approach we used to identify and fix these in-
valid recursive complexes, while respecting the stoichiometry where available, is illustrated in
Figure 4.1-B.

4.3.3 Redundancies

As an additional consequence, fixing invalid recursive complexes can also result in the iden-
tification of redundancies between complexes, previously hidden by different recursive decom-
positions of complexes. For example, as illustrated in Figure 4.1-C, complexes (A, (B, C)),
((A, C), B) and ((A, B), C) could be distinct (invalid) complexes with their own identifier and
at first glance, having different participants. However, they could be all fixed as a single complex
having the same components A, B and C.

4.4 Methods

We developed semantically-rich SPARQL queries for identifying and fixing invalid recur-
sive complexes, and detecting the resulting redundancies. We applied this method on the Reac-
tome pathways database as a use-case study (version 81 (2022-06-13)). For the sake of repro-
ducibility, we provide a jupyter notebook detailing the analysis 4.

4.4.1 Identifying invalid complexes

We first analyzed all the configurations of BioPAX complexes according to the nature of
their components ( 4.1-A). The SPARQL query presented in figure 4.2 allows to identify the
invalid recursive complexes. Other SPARQL queries to identify non-recursive complexes and
valid recursive complexes, are presented in the Jupyter notebook.

4. https://github.com/cjuigne/non_conformities_detection_biopax
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Figure 4.1 – Illustration of the conformity of complexes with respect to the BioPAX specifica-
tions: identification, correction and redundancies. (A) Validity and invalidity of the categories
of BioPAX complexes. Complexes are represented by circles. Composition is represented by a
diamond head arrow from the component to its complex. A valid complex can have components
that are themselves complexes only if these complexes are all black-box complexes, i.e., they
do not have any components. Note that an invalid complex can itself be a component of another
complex, which therefore becomes invalid as well. (B) Fixing an invalid recursive complex con-
sists in collapsing as direct components all its direct and indirect components that are leaves in
the composition tree of the complex, and then, computing the correct stoichiometric coefficient
values with equation 4.1. (C) Example of invalid recursive complexes leading to redundancy in
the database. Fixing them made possible the detection of redundancy.

4.4.2 Fixing the invalid complexes

Fixing an invalid recursive complex can be decomposed with a four steps methodology: (1)
collapsing as direct components all its direct or indirect atomic components (i.e., those that are
not complexes or black-box complexes); they correspond to the leaves in the tree of compo-
nents, (2) deleting all the other components, (3) setting the correct values for the stoichiometric
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX bp3: <http://www.biopax.org/release/biopax-level3.owl#>

SELECT DISTINCT ?invalidComplex
WHERE {
?invalidComplex rdf:type bp3:Complex .
?invalidComplex bp3:component ?complexComponent .
?complexComponent rdf:type bp3:Complex .
?complexComponent bp3:component ?componentOfComplexComponent .
}

Figure 4.2 – SPARQL query to identify invalid recursive complexes in BioPAX, i.e., the com-
plexes composed of at least another complex that has components.

coefficients, and (4) preserving all other attributes of the complex. The whole procedure con-
sisting of python scripts and SPARQL queries is available in the Jupyter notebook.

To collapse the direct components of the complex in steps (1) and (2), the original BioPAX
relation component was replaced by a component relation between the root complex and
its leaves in the tree of components. We kept all the other relations of the complex in step (4).

To compute the stoichiometric coefficients in step (3), we traced the stoichiometric coeffi-
cients from each leaf up to the root complex. We also considered the fact that a physical entity
can be a component of several parts of the recursive complex. Tracing stoichiometry is illus-
trated by Figure 4.1-B where complex Y was composed of γ Z, and X was itself composed
of α Y . This resulted in α × γ Z in X (via Y ). If, in addition to being a component of Y , Z

was also a direct component of X with β as stoichiometric coefficient value, this resulted in
α × γ + β occurrences of Z in X .

We noted Sy(z) the global stoichiometric coefficient value of Z at Y , i.e. the number of
occurrences of Z in Y , and C(y) the set of the direct components of Y . Formula 4.1 recursively
computes the stoichiometric coefficient value of any physical entity Z.



Sz(z) = 1

Sy(z) = 0 if (y ̸= z) ∧ (C(y) = ∅)

Sy(z) =
∑

p∈C(y)
Sy(p) × Sp(z) otherwise

(4.1)
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4.4.3 Identifying redundant complexes

We considered as redundant the complexes that have exactly the same components with the
same stoichiometric values and the same cellular location. Figure 4.1-C illustrates how invalid
recursive complexes can be the cause of redundancy due to the order by which the components
are nested in the complexes. Fixing the invalid complexes made possible the detection of redun-
dancy. For that, we developed a SPARQL query that identifies the pairs of complexes that have
the same components and properties but different identifiers. This query is also available in the
Jupyter notebook.

4.5 Results

4.5.1 Invalid complexes represent a significant part of complexes in the

BioPAX description of Reactome

The Human subset of Reactome v81 is composed of a total of 14, 987 complexes. Among
them, we identified 862 black-box complexes (i.e. complexes without any components). Among
the remaining 14, 125 complexes with at least one component, 8, 292 complexes have no com-
ponent that is itself a complex with components. Together with the 862 black-box complexes,
they represent the 9, 154 valid complexes.
On the opposite, we identified 5, 833 complexes that have at least one component that is a com-
plex with components. Altogether, these 5, 833 invalid recursive complexes represent 39% of
the 14,987 complexes in Reactome. None of them have been detected by the BioPAX-validator
tool [105].
These invalid recursive complex participate to 7, 149 out of the 22, 237 interactions identified in
Reactome (i.e., 32%).

4.5.2 Fixing invalid complexes increases the average number of com-

ponents participating to complexes in Reactome

All the 5, 833 invalid complexes were fixed thanks to a python script and SPARQL queries
(4.4.2). After fixing recursive complex description, all components of the complexes are de-
scribed by a flat representation in accordance with the BioPAX specification.
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As expected, with this flat representation, the number of direct components implicated in a com-
plex increases (paired t-test, p < 0.0001). Indeed, in the initial Reactome dataset, the average
number of direct components in a complex is 2.2 (σ = 2.6) and the complexes with the largest
number of components are R-HSA-5626171 and R-HSA-72069, each having a maximum
of 65 components. After fixing the invalid complexes, the average number of direct components
in a complex is 4.3 (σ = 8.7) and the largest complex is R-HSA-156656 with 151 compo-
nents. The most drastic changes concerns complexes R-HSA-927767 and R-HSA-927890
which both move from 3 to 103 direct components. Figure 4.3 illustrates the number of direct
components identified before and after fixing the invalid complexes. The distribution of the gain
in the number of direct components is available in supplementary files - Figure 1.

Figure 4.3 – Comparison of topological features before and after fixing invalid complexes. (A)
Number of direct components of the complexes in the Human dataset of Reactome v79 before
(top) and after (bottom) fixing invalid recursive complexes. Fixing invalid complexes clearly
increased the number of components counted in many complexes. (B) Distribution of the depth
of recursive complex definitions in the initial Human dataset of Reactome v81 (logarithmic
scale).

4.5.3 Fixing invalid complexes reduces the path length from a complex

to each of its components

We studied the composition depth of the complexes, before and after fixing the invalid ones.
For a given complex, its composition depth was measured as the maximal length path between
the root complex to its leaves. As illustrated in figure 4.3-A, the tree-like definition of invalid
complexes artificially increases the depth of the complex composition.

In the figure 4.3-B, the depth of complex composition is represented before the fixing proce-
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dure. Valid complexes have a depth of either one, or zero when they are black-box complexes.
The red part of the figure represents invalid complexes having a depth greater than one. The
maximum depth is 10, which leads to an artificial extension of the path length from the root
complex to the majority of its leaves (example of R-HSA-68466 is given in supplementary file
- Figure 2.

As expected, the correction of invalid complexes repairs the topology by reducing the path
length between a complex and its components to a maximal length of 1. The depth of all com-
plexes is 0 (black-box complexes) or 1 (complexes with components).

4.5.4 Fixing invalid complexes improves the detection of redundant

complexes

Redundancies are detected between entity pairs but can also occur between more than two
entities, as illustrated in figure 4.1-C with 3 equivalent complexes . In this example, 3 pairs of
redundancies (X1, X2), (X2, X3), (X1, X3) are thus detected, corresponding to the size of a
maximal clique with 3 vertices.

Among the 14, 987 complexes from the original Reactome database, the SPARQL query
identifies 137 pairs of redundant complexes involving 249 distinct complexes. They constitute
121 maximal cliques of equivalent complexes (clique size ranging from 2 to 6 complexes), cor-
responding to 128 complexes in excess. In other words, we highlighted 121 groups of 2 to 6
redundant complexes identified by searching for pairs of redundant complexes. These redun-
dancies are explicit, as they are not masked by a tree-like definition of complex components.

After fixing the invalid complexes, we identified 217 pairs of redundant complexes involving
347 distinct complexes. They constitute 164 maximal cliques of equivalent complexes (clique
size ranging from 2 to 6), corresponding to 183 complexes in excess. The fixing procedure,
by replacing the tree-like definition of complexes by a flat description of complexes, thus al-
lows to detect more redundancies. These redundancies are implicit, as they are masked by a
tree-like definition of complex components. They become explicit with the flat description of
complex components. Figure 4.4 illustrates how fixing structurally different complexes reveals
this redundancy.

Reactome contains cross-references to ComplexPortal [106] to annotate complexes. We
sought to verify the possibility of identifying complex redundancies in Reactome without our
SPARQL query-based procedure, by simply and unambiguously identifying complexes via their
identifiers in a specialized database dedicated to complexes such as ComplexPortal, even if
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ComplexPortal incompletely supports stoichiometry, which may be a severe limitation. Because
of the very modest size of the ComplexPortal Database (1429 complexes for Homo sapiens),
ComplexPortal IDs do not allow to detect any redundancies identified with the SPARQL query
: among the 347 complexes that constitute 217 pairs of redundant complexes identified, only 3
out of 347 have a ComplexPortal ID.

This study is available in a Jupyter notebook on the GitHub repository. The supplementary
table 1 lists all symetric hasSameCompositionAs relations between cliques of redundant
complexes. The corresponding .ttl files are available on the GitHub repository 5.

Figure 4.4 – Original invalid compositions of Complex11262 (R-HSA-9670369) (top left)
and Complex11263 (R-HSA-9670372) (top right) in Reactome. Some components are
complexes that should be replaced by a flat definition of components (indicated with dashed red
lines). The fixed versions (bottom left and right, respectively) have a greater number of direct
components than the original. Both fixed versions have the same components with the same
stoichiometric coefficients, which reveals their redundancy. The structure difference between
the original versions is highlighted in red: Complex2888 (R-HSA-9670372) is composed
of an intermediate dimer of the p-STATs protein Protein6660 whereas Complex11262
(R-HSA-9670369) is directly composed of p-STATs Protein6660 with a stoichiometric
coefficient of 2. A more detailed figure is available in supplementary files - Figure 3.

5. https://github.com/cjuigne/non_conformities_detection_biopax
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Organism Total number
of complexes

(4.1) Invalid
complexes

(4.2) Average number of direct components (4.3) Redundancy
before fixing after fixing before fixing after fixing

homo sapiens 14987 5833 (39%) 2.2 (std 2.6) max 65 4.3 (std 8.7) max 151 137 (121 cliques) 217 (164 cliques)
mus musculus 10707 4235 (39%) 2.3 (std 2.9) max 65 4.5 (std 9.0) max 151 2 (2 cliques) 16 (16 cliques)
sus scrofa 9022 3638 (40%) 2.3 (std 2.9) max 65 4,7 (std 9,4) max 151 0 (0 clique) 12 (12 cliques)
bos taurus 9412 3773 (40%) 2.3 (std 2.9) max 65 4.6 (std 9.2) max 147 0 (0 clique) 12 (12 cliques)
saccharomyces cerevisiae 1662 517 (31%) 2.5 (std 3.3) max 50 6.0 (std 12.4) max 106 1 (1 clique) 5 (5 cliques)
caernorhabditis elegans 4350 1560 (36%) 2.4 (std 3.3) max 64 5.0 (std 10.4) max 149 0 (0 clique) 8 (8 cliques)
canis familiaris 8945 3601 (40%) 2.3 (std 3.0) max 65 4.7 (std 9.4) max 151 0 (0 clique) 12 (12 cliques)
danio rerio 8618 3391 (39%) 2.3 (std 3.0) max 65 4.7 (std 9.5) max 150 0 (0 clique) 11 (11 cliques)
dictyostelium discoideum 2366 792 (33%) 2.4 (std 2.8) max 50 5.3 (std 9.8) max 103 0 (0 clique) 3 (3 cliques)
drosophilia melanogaster 5361 1955 (36%) 2.4 (std 3.0) max 64 4.8 (std 9.7) max 149 2 (2 cliques) 9 (9 cliques)
gallus gallus 8046 3244 (40%) 2.3 (std 2.8) max 65 4.7 (std 9.4) max 149 2 (2 cliques) 13 (13 cliques)
plasmodium falciparum 875 264 (30%) 2.4 (std 3.6) max 50 5.4 (std 11.9) max 103 0 (0 clique) 2 (2 cliques)
rattus norvegicus 9645 3780 (39%) 2.3 (std 2.9) max 65 4.5 (std 9.2) max 151 4 (4 cliques) 15 (15 cliques)

Table 4.1 – For each organism in the Reactome database, we counted the total number of com-
plexes, then we identified the number of invalid complexes and evaluated the average number
of direct components and the number of redundant complexes (pairs and cliques), before and
after fixing the invalid complexes.

4.5.5 Application to non-Human organisms in the Reactome database

The complete procedure was then applied to all other organisms available in Reactome, to
determine whether the large fraction of non-conform complexes detected in 4.5.1 (39%) is spe-
cific or not to the well-explored Human dataset. The results are presented in table 4.1. This
shows that the large fraction of invalid complexes is not restricted to the Human dataset but
also accounts for all of the 13 tested species. Datasets from all species exhibit between 30%
(Plasmodium falciparum) and 40% (Sus scrofa, Bos taurus, Canis familiaris, Gallus gallus) of
recursively defined invalid complexes. For all these species, repairing the topology of the com-
plexes in the same way as for Homo sapiens significantly increases the average number of direct
components of the complexes. With the flat representation of complexes, we also observed com-
plex redundancies in complexes for each organism, although not in the same proportion as in
the Human dataset (from 2 cliques for Plasmodium falciparum to 16 cliques for Mus musculus).

4.6 Discussion and perspectives

In this study, we show that non-conform recursive complexes affect a large proportion of
Reactome database exported in the BioPAX format. Indeed, they constitute 30 to 40% of the
complexes for all organsims, and participate to about one third of the interactions. The fact
that this phenomenon occurs in all Reactome organisms may be explained in part by the fact
that some interactions and complexes in non-human species are inferred if a large fraction (at
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least 75%) of the proteins involved in the interactions or complexes have an ortholog for the
species considered in PANTHER. Thus, taking into account corrections for Homo Sapiens prior
to PANTHER inference process will probably result in a diminution of the phenomenon for
other species. Due to this pervasiveness, any solution to overcome or repair recursive com-
plexes would be valuable for automated graph analysis whatever the biological questions to be
adressed.

In addition to being widely present in the datasets, we also show that invalid complexes
composition reaches up to 10 levels in the tree of components of the complex. In these situations,
navigating in the BioPAX file from some components of the complete complex to the complete
complex is both painstaking and detrimental to computational performance.

Fixing recursive complexes consists in adding all the indirect components of a complex as
new direct components. This leads to two main outcomes. First, it helps to reduce the path length
from a complex to its components, since the maximal path length with the conform topology is
now 1 (which solves the navigation limitation identified previously). Second, this increases the
average number of components participating to complexes in Reactome. In the human dataset,
this correction doubled the average number of direct components of a complex, from 2.2 to 4.3
components. This result is not specific to the human dataset: for all other organisms, the number
of direct components has doubled.

As a side effect, the procedure reveals redundancies between complexes. These redundan-
cies would have been difficult to identify without the procedure, because they are masked by
the recursive definition of complexes. This is particulary relevant for the Human dataset, since
the redundant complexes increase from 137 to 217 redundant pairs (+58%) before and after the
fixing procedure. For the identification of redundant complexes, the verification that the cellular
location is the same is crucial. Indeed, without considering cellular location, 243 pairs of re-
dundant complexes can be identified whereas taking into account cellular location reduces this
number to 217 pairs of redundant complexes. This difference is caused by the fact that physical
entities can exist several times in BioPAX as long as they refer to physical entities in different
states (including modifications, cellular location, etc.).

The BioPAX ontology, as defined in [96], is a very powerful format to represent and unify
all the subtile levels of interactions occuring in biological pathways. It exploits the ontology
formalism to conciliate genericity (with the high level entity classes Physical Entity and
Interactions) and a precise description of the processes (with low level classes and various
properties). However, this is also a quite complicated format description, and induces a com-
putational complexity when reasoning on the data structured in this format. Strömbäck et al.
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anticipated this, stating that: “This makes it possible to benefit from reasoning and conclusions
based on the semantics given by OWL and the ontology, but the cost is a higher computa-
tional complexity for reasoning and integration of data." [95]. We have showed that more recent
computational advances such as SPARQL, which is designed to handle ontologies, are better
adapted to this task and can be also scale up.

Taking advantage of SPARQL queries, the procedures developed herein to (i) fix recursively
defined complexes and (ii) identify redundant complexes, allow to correct the non-compliance
with BioPAX specifications. As these procedures are applied at the level of the BioPAX files,
they can be applied to all other major BioPAX pathway databases, including Kegg [62], Meta-
CYC [107], PathwayCommons [108], and WikiPathways [109], to assess the importance of in-
valid recursive complexes in these databases. Our strategy to modify directly the BioPAX files
also ensures that further analyses of biological networks can be processed without any needs
to modify any standard queries or scripts based on BioPAX libraries such as Paxtools [110] or
PyBioPAX [111].
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CHAPTER 5

SMALL NETWORKS OF EXPRESSED GENES IN

THE WHOLE BLOOD AND RELATIONSHIPS TO

PROFILES IN CIRCULATING METABOLITES

PROVIDE INSIGHTS IN INTER-INDIVIDUAL

VARIABILITY OF FEED EFFICIENCY IN GROWING

PIGS

This chapter has been published as an original research article to BMC Genomics (Juigné et
al., 2023):

➡ Juigné C, Becker E, Gondret F. Small networks of expressed genes in the whole blood
and relationships to profiles in circulating metabolites provide insights in inter-individual
variability of feed efficiency in growing pigs. BMC Genomics 24, 647 (2023). https:
//doi.org/10.1186/s12864-023-09751-1.

5.1 Abstract

Background Feed efficiency is a research priority to support a sustainable meat production.
It is recognized as a complex trait that integrates multiple biological pathways orchestrated in
and by various tissues. This study aims to determine networks between biological entities to
explain inter-individual variation of feed efficiency in growing pigs.

Results The feed conversion ratio (FCR), a measure of feed efficiency, and its two compo-
nent traits, average daily gain and average daily feed intake, were obtained from 47 growing pigs
from a divergent selection for residual feed intake and fed high-starch or high-fat high-fiber di-
ets during 58 days. Datasets of transcriptomics (60 k porcine microarray) in the whole blood and
metabolomics (1H-NMR analysis and target gas chromatography) in plasma were available for
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all pigs at the end of the trial. A weighted gene co-expression network was built from the tran-
scriptomics dataset, resulting in 33 modules of co-expressed molecular probes. The eigengenes
of eight of these modules were significantly (P ≤ 0.05) or tended to be (0.05 < P ≤ 0.10)
correlated to FCR. Great homogeneity in the enriched biological pathways was observed in
these modules, suggesting co-expressed and co-regulated constitutive genes. They were mainly
enriched in genes participating to immune and defense-related processes, and to a lesser extent,
to translation, cell development or learning. They were also generally associated with growth
rate and percentage of lean mass. In the whole network, only one module composed of genes
participating to the response to substances, was significantly associated with daily feed intake
and body adiposity. The plasma profiles in circulating metabolites and in fatty acids were sum-
marized by weighted linear combinations using a dimensionality reduction method. Close as-
sociation was thus found between a module composed of co-expressed genes participating to
T cell receptor signaling and cell development process in the whole blood and related to FCR,
and the circulating concentrations of polyunsaturated fatty acids in plasma.

Conclusion These systemic approaches have highlighted networks of entities driving key bi-
ological processes involved in the phenotypic difference in feed efficiency between animals.
Connecting transcriptomics and metabolic levels together had some additional benefits.

Keyword Feed efficiency, Fatty acids, Metabolomic, Molecular modules

5.2 Introduction

In the context of various geopolitical tensions and societal questions on the agri-agro-food
systems, feed efficiency (FE) is a research priority to support food security and a sustainable
meat production. Indeed, better FE is associated with a reduced amount of feeds needed for pro-
duction and lower environmental wastes and emissions. Feed efficiency is measured on farms
by the feed conversion ratio (FCR), an index calculated as the ratio of feed intake to body weight
(BW) gain during a test period. Residual feed intake (RFI) has been also proposed as a refined
measure of FE for genetic selection; it is calculated as the difference between observed feed
intake and predicted feed intake from production and maintenance needs, which allows RFI to
reflect digestive and metabolic variabilities [91, 92]. A number of studies have been performed
in the past years to depict and understand the biological bases of FE. Based on the comparison
of animals with low or high FCR or RFI, they all concluded to the complex nature of FE since
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this trait integrates multiple biological pathways orchestrated in and by various tissues [92, 112,
113]. Among tissues, peripheral blood is a convenient and relatively easy sampling source of
biological information that can highlight the variations in tissues metabolism and physiology to
understand complex phenotypes [114] and with potential outcomes for applications in diagnos-
tics and selection [115]. In pigs, about one thousand genes were found differentially expressed
in the whole blood between two lines of pigs divergently selected for RFI [97, 116]. Gene set
enrichment analysis on the whole blood transcriptome in beef cattle has also allowed identifying
biological pathways associated with a divergent selection for low or high RFI [114]. Moreover,
we recently showed that gene expression profiling in the whole blood is suitable to identify a
few number of molecular candidate biomarkers for FCR in growing pigs, when gene expression
levels were analyzed by machine learning algorithms based on classification or regression trees
[93]. Likewise, metabolomic studies have shown that circulating concentrations of metabolites
in the blood can be related to economically-important traits including FE [94]. However, all
these approaches did not address the inter-individual variation in FE traits and did not attend to
depict the interactions among the biological entities at a given level or different levels of omics
organization. Therefore, a systemic approach considering the multiple relationships between
molecules can add new insights in the architecture of complex traits such as FE.

Among various systems biology approaches, the weighted gene co-expression network anal-
ysis (WGCNA) has been proposed as a suitable method for defining interactions between tran-
scripts of genes, by grouping them in modules of pairwise correlations to reveal the higher-
order organization of the transcriptome [56]. Based on RNA-sequencing data in the liver, two
co-expression networks were identified as associated with high or low FE in dairy cows [117].
Another approach based on linear models allowed to combine gene expression data and high
throughput metabolomics data in skeletal muscle [118] ; in this study, pairs of metabolite-
transcript associated with sphingolipid catabolism, multicellular organismal process, and purine
metabolic processes were associated with differences in FE between two pig breeds and between
two groups of pigs of low or high FE values.

The aim of the present study was to depict the biological bases underlying inter-individual
variability in FE and other related traits in growing pigs by identifying small networks of in-
terconnected gene transcripts in the whole blood and their relationships with global profiles
of circulating metabolites. Eight molecular modules mainly composed of interconnected genes
involved in immune and defense-related processes, were related to variability between pigs in
FCR. Other important biological processes represented in these gene networks were the re-
sponse to organic substance, ribosome biogenesis and translation, and cell development and
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learning, respectively. One module of inter-connected expressed genes related to immune pro-
cess was associated with circulating concentrations of omega3 fatty acids in the plasma, thus
connecting transcripts to metabolites in the determinism of variability in FE.

5.3 Material and methods

5.3.1 Ethics

We reused transcriptomics and metabolomics datasets acquired in the whole blood from
purebred French Large White pigs produced in a divergent selection experiment for RFI [97,
119], and that have been previously analyzed separately and for the line-associated effects only.
The animal phenotypes have been published by [98]. These data were complemented by data
on circulating concentrations of fatty acids (FA) in the plasma of the same pigs to specify lipid-
related processes, that have not been previously published. In the original publications, the care
and use of pigs were performed in compliance with the European Union legislation (direc-
tive 2010/63/EU). The protocol was approved by an Ethics Committee in Animal Experiment
(Comité Rennais d’Ethique en matière d’Expérimentation Animale, CREEA N°007, agreement
N°07–2012). All animals were reared and killed in compliance with the national regulations and
according to procedures approved by the French veterinary Services. All methods were reported
in accordance with ARRIVE guidelines. In the present study, reusing published data to perform
new analyses for different animal traits perfectly fits with the 3R (Replacement, Reduction and
Refinement) principles.

5.3.2 Origin of phenotypic data

Full description of the experimental design that provided the original datasets is referenced
by [98]. Briefly, data were obtained from a total of 48 growing pigs (barrows) of two lines in
the 7th generation of divergent selection for RFI, and fed diets formulated at isocaloric and
isoproteic bases but differing in energy source and nutrients (lipids and fibers vs. starch), were
tested from 74d ± 0.3d of age to 132.5d ± 0.5d (SEM) of age. All pigs were reared in isolated
pens during the test period to allow the control of spontaneous feed intake, thus minimizing also
the usual pen effect when pigs are reared in groups. From this publication, we considered body
weight at slaughter (BW in kg), age at slaughter (in days), average daily feed intake (ADFI, in
g/day), average daily gain (ADG, in g/day), FCR (calculated as the ratio between ADFI and
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ADG during the feeding trial), and the percentage (relative to carcass weight) of the dorsal
subcutaneous adipose tissue (%backfat) and of the loin muscle cut (%loin) as surrogates
of body composition.

5.3.3 Transcriptomic dataset

The transcriptomic data were retrieved from NCBI’s Gene Expression Omnibus (GEO)
Subserie accession number GSE70838 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE70838). These data have been obtained from the whole blood collected in pigs at 132.5d ±
0.5d (SEM) of age, by using a custom porcine microarray (8 × 60K, GPL16524, Agilent
Technologies France, Massy, France) containing 60, 306 porcine probes. Full description of
the methods to produce the raw microarray data can be found in [97]. After quality filtration
based on four criteria (background intensity value, diameter, saturation and uniformity of the
spot), the original dataset contained 26, 322 annotated probes expressed in the whole blood.
There were approximately 2.2 replicates per unique gene in the transcriptomic dataset (min: 1;
max: 33).

5.3.4 Metabolomic dataset

The metabolomic dataset consisted in high resolution 1H-NMR spectra generated in plasma
of the 48 pigs, and was retrieved from Jegou et al. [119]. The generated spectra were processed
with one level of zero-filling and Fourier transformation after multiplying free induction decays
by an exponential line broadening function of 0.3 Hz. The 1D NMR spectra were manually
phase- and baseline-corrected, and referenced to the chemical shift of the alpha-glucose at delta
5.235. The bin area method was used to segment the spectra between 0.6 and 8.5 ppm using
the intelligent variable size bucketing tool. Bin areas generated a matrix, which was normalized
by dividing each integrated segment by the total area of the spectrum. This resulted in a new
matrix that is used to perform statistical analyses. A total of 94 buckets, and consequently of 94
variables in this matrix, was considered for dedicated analyses in the present study. Buckets are
individual metabolites or groups of two metabolites. They were notably assigned to different
amino acids, creatine, lactate and glucose.

When using the 1H-NMR approach, lipids were all grouped as a single spectrum. In the
present study, to investigate more deeply the role of the lipidic family in FE variability, the cir-
culating concentrations of fatty acids (FA) in plasma were newly determined in the 48 pigs. For
that, lipids were extracted from plasma as previously described for tissues [98], and methylated.
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Dedicated analyses were then performed on a gas chromatograph (Nelson Analytical, Manch-
ester, NH) equipped with a fused-silica capillary column (30m × 0.25mm internal diameter),
with a base-deactivated silica stationary phase (a 0.25−µm film thickness) filled with a station-
ary phase (80% biscyanopropyl and 20% cyanopropylphenyl) and using margaric acid (C17:0)
as the internal standard. The furnace temperature was 180°C, and injector and detector tem-
peratures were 240°C. Retention times and peak areas were determined. Peaks were identified
by comparison with the retention times of standard FA methyl esters. Individual FAs were then
quantified as percentages of the sum of FA identified in each sample. To facilitate the biolog-
ical interpretation, FA have been then grouped into families of saturated FA with 14C or less
(sC14:0), polyunsaturated FA of the omega-6 family (ssn-6c), and polyunsaturated FA of the
omega-3 family (ssn-3). All other identified FA were kept as these. This led to a total of 14
variables representing circulating FA concentrations in plasma (Supplementary Table 1).

5.3.5 Construction of the weighted gene co-expression networks

Starting from a matrix whose individuals are pigs and features are probes expression levels
(48 pigs × 26, 322 probes), we performed a hierarchical clustering to identify outlier individuals
as recommended [120]. One pig was detected as an outlier and further removed from the dataset
due to aberrant values. Then, we quantified the number of probes that were significantly linked
to the animal phenotypic traits of interest (linear models with a P -value < 0.05 as cut-off). The
results of the linear regressions showed that age at slaughter and line were the factors affecting
the most the expression levels of molecular probes (19% of the probes significantly affected by
age at slaughter and 14% by the line effect) (Supplementary Table 2). For next steps of analysis,
we used the residuals of these linear regressions for the age effect, but preserved the intra- and
inter-line variability of FE.

Corrected probe expression levels were then filtered so that the dataset can be analyzed by
WGCNA as a single block, because "by block" comparison leads to ignore a large number of
weak correlations. In accordance to WGCNA good practices, probes were filtered to remove
non-varying ones, and only probes i whose log fold-change FCi was greater than 1 were se-
lected, with

log2(FCi) = max(log2(expressioni)) − min(log2(expressioni)) (5.1)

The reduced dataset included 16, 190 probes for the 47 pigs.
To calculate the co-expression network, we used the Weighted Gene Co-expression Network
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Analysis (WGCNA) step-by-step method [56], performed with R 4.2.2. The first step consisted
in calculating a measure of co-expression similarity si,j between each pair of probes to highlight
the pairs of probes whose expression varies in a similar way. The adjacency matrix A = [ai,j]
was then constructed by raising the co-expression similarity measure si,j to the power β, using
the signed hybrid method (only positive correlations were kept) [equation 5.2].

signed hybrid aij =

cor(xi, xj)β cor(xi, xj) > 0

0 cor(xi, xj) < 0
(5.2)

where aij is the element (i, j) of the adjacency matrix A, β is the soft-thresholding, xi is the
level expression of the ith probe, and cor(xi, xj) is the Pearson correlation between expression
profiles of the i and j probes.

β is a non-dichotomic soft thresholding that allows to evaluate connection between probes
without losing the continuous character of the co-expression. Low correlations are better masked
with high β values. We set β to 6 according to the criterion of the “approximate scale free topol-
ogy” [121].

Considering probes as nodes, a weighted co-expression network can be then deduced from
the adjacency matrix, by adding edges of weight aij between pairs of probes whose weight is
strictly positive.

5.3.6 Detection of modules of co-expressed probes and their relation-

ships with animal phenotypic traits

To detect modules in this network of co-expressed probes, a proximity measure was calcu-
lated using the Topological Overlap Measure [122], which is a valuable similarity measure set
as default approach in WGCNA framework. The topological overlap of two nodes reflects their
similarity in terms of the commonality of the nodes they connect to. Specifically, it calculates a
correlation matrix from the expression data, calculates a soft threshold and assigns two genes a
high topological overlap if they share common neighborhoods.

Then, an agglomerative hierarchical clustering was performed using the standard R function
“hclust” and the unweighted average linkage criterion method (method = "average", UPGMA
algorithm). With this linkage criterion, proximity between two clusters is the arithmetic mean
of all the proximities between the probes of one, on one side, and the probes of the other, on
the other side. This provides a hierarchical clustering leading to a dendrogram where each leaf
corresponds to a probe and branches group together densely interconnected highly co-expressed
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probes. Branch cutting was performed with the standard method for dynamic tree cut from the
package dynamicTreeCut [56]. The sensitivity threshold was set to 2. To keep modules of highly
co-expressed genes, we set the minimum module size to 25 probes. Each module was then
summarized by the module eigengene ME, that is defined as the first principal component of a
given module, i.e., a mathematical solution to condense the expression profile of the probes in
the module. In the present study, we also checked that this first component always contributed to
the majority - more than 40% - of the variance, and noticed that all other components explained
each very small parts - less than 10% for the second component, etc.

A heatmap of correlations between ME and phenotypic traits was then produced. The heatmap
can be examined to find the most significant associations. In this study, we considered P ≤ 0.05
as significant association and 0.05 < P ≤ 0.10 as a tendency.

We also calculated the gene significance (GS) as (the absolute value of) the correlation be-
tween the probe and the phenotypic trait. For each module, we defined the quantitative measure
of module membership (MM) as the correlation of ME and the gene expression profile. Using
both the GS and MM measures, we can identify genes that have a high significance for FE traits
(central players) and high module memberships in the modules. For a subset of modules, we
provide a graphical representation of the sub-networks considering the annotated probes only.
For that, pairs of probes with correlation coefficients greater than the 95th percentile in a given
module were selected from the adjacency matrix, and represented using Cytoscape with nodes
corresponding to probes and edges corresponding to the adjacency matrix values. For probes
with low correlation with other probes, edges were represented in a different color.

5.3.7 Biological functional enrichment in modules of co-expressed probes

For modules that were significantly related to FCR based on the heatmap examination be-
tween module eigengenes (ME) and animal traits, we matched their constitutive molecular
probes to the corresponding unique genes (official gene symbol), using the annotation pro-
vided by the manufacturer of the expression microarray. When applicable, the gene ontology
(GO) terms for biological processes were then automatically searched in each module, using
the Database for Annotation, Visualization and Integrated Discovery (DAVID) bioinformatics
knowledgebase v2022q4 released (http://david.abcc.ncifcrf.gov/). The GOBP terms_FAT were
selected to filter the broadest terms. The results were downloaded using the “Functional anno-
tation clustering” option of the DAVID tool. Only clusters of terms with an enrichment score
(measured by the geometric mean of the EASE score of all enriched annotations terms) greater
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than 1.2 were considered. Within each cluster, the top GO term was listed together with its own
enrichment score and the associated modified Fisher exact P -value.

5.3.8 Establishing profiles of circulating metabolites and evaluating

connections between metabolic and transcriptomic levels

The second and third datasets considered in this study encompassed the circulating concen-
trations of metabolites and of FA, respectively. To reduce the dimension and facilitate correla-
tion analyses with gene expression networks, these datasets were each summarized by Principal
Component Analysis (PCA) using the R packages FactoMineR and factoextra [123, 124]. This
would avoid bias when considering hundreds metabolic variables with only few modules of
highly correlated genes. A PCA was used to summarize the profile in metabolites identified
after 1H-NMR analysis (94 variables) and another PCA was used for circulating concentra-
tions of FA (14 variables). From each table kept separately (one for 1H-NMR analysis and
one for FA), PCA transforms the original (mean-centered) observations to a new set of vari-
ables (dimensions) using the eigenvectors and eigenvalues calculated from a covariance matrix
of the original variables. The first components of the PCA were called Dimi_Metab for the
metabolomic 1H-NMR table and Dimi_FA for the FA table, respectively, with i = 1 to 5. These
dimensions were linear combinations of the original variables. There is no consensus on the best
number of dimensions to be considered in PCA analysis, and this depends on the objectives. It
is generally assumed keeping dimensions to reach 80% or more of the variance, but the inflation
of dimensions is also not recommended. In this study, we first examined the distribution of the
variance explained by each of the tenth first dimensions in each PCA, and based on this, we
kept the first five dimensions that explained around 80% of the total variance.

To connect information at the two omics levels, the dimensions of each PCA were then
correlated to the eigengenes of the WGCNA modules (ME) by using Pearson correlations. The
correlations were represented by heatmaps to facilitate the description.

5.4 Results

Data obtained in a total of 47 growing pigs with inter-individual differences in FCR (i.e., the
measure of FE on farms) due to genetic selection for RFI and to the diet received during a test
period of 58 days, were considered in the present study. In addition to FCR, the average daily
gain (ADG) and average daily feed intake (ADFI) (i.e., the two components of FCR), and body
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composition estimated by percentage (relative to carcass weight) of backfat (%backfat) and
of the loin cut (%loin) were also obtained (Supplementary Table 1).

5.4.1 Definition of gene co-expression network in the whole blood of

pigs

A network was built with the WGCNA package from the expression levels of 16, 190
molecular probes expressed in the whole blood, where nodes correspond to the expression pro-
file of the molecular probes, and edges are determined by the pairwise correlations between
probes expression (the adjacency matrix is available at https://data-access.cesgo.org/index.php/
s/YPz0J2ItxIEuN5M). This network was then analysed to find modules defined as groups of co-
expressed probes that may represent the molecular architecture behind the animal phenotypic
traits.

After excluding the grey module which is used to hold all the probes that do not clearly be-
long to any other modules i.e., probes that are not co-expressed, we show that the co-expression
network was composed of 33 modules composed of 27 to 3, 829 molecular probes (Supplemen-
tary Table 3). Annotations were used when applicable to identify the corresponding genes. The
distribution in the number of probes and their corresponding unique genes per module is shown
in Figure 5.1.

The module eigengene (ME) was then calculated as the representative of expression profiles
of the genes in the module. The module membership (MM) was calculated by correlating ME
and the expression profile of the probes within each module. By definition, the closer to 1 or
−1 is MM, the higher is the gene connected to ME. The medians of the MM values indicated a
satisfactory clustering from the whole network of the molecular probes expressed in the whole
blood of the 47 pigs. The values are available in Supplementary Table 3.

5.4.2 Relationships between modules of co-expressed genes and animal

phenotypic traits

The heatmap of the correlation coefficients between the module eigengene (ME) of each
WGCNA module and the animal phenotypic traits is presented in Figure 5.1. For six mod-
ules, the ME was significantly correlated (P -value ≤ 0.05) with FCR: they were the mod-
ules violet (probes: 32, unique genes: 16, P -value = 8e − 04), darkred (probes: 82,
unique genes: 53, P -value = 2e − 04), royalblue (probes: 111, unique genes: 81, P -
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value = 0.04), lightcyan (probes: 180, unique genes: 114, P -value = 0.008), white
(probes: 59, unique genes: 28, P -value = 0.04), and darkorange (probes: 60, unique genes:
21, P -value = 0.05). For two other modules, ME tended (P -value < 0.1) to be corre-
lated with FCR: they were the modules darkolivegreen (probes: 27, unique genes: 13,
P -value = 0.08) and steelblue (probes: 45, unique genes: 23, P -value = 0.09).

For the modules violet, darkred, royalblue, lightcyan, and white, the corre-
lations between ME and ADG were also significant, and for the module darkorange, there
was a trend for correlation between ME and ADG. As expected, the signs of correlation between
ME and ADG and between ME and FCR (which is the ratio between ADFI and ADG during
the test period), were opposite. For the modules darkolivegreen and steelblue, the
correlation coefficients between ME and ADG did not reach statistical significance.

Four of the eight modules associated with FCR also displayed significant correlations with
%loin (with opposite signs of correlation): the modules violet, darkred, lightcyan
and white. For these modules, there was no significant correlation between ME and %backfat.

Finally, none of the eight modules associated with FCR were significantly related to ADFI.
In the whole network, only the darkgreen module (probes: 82, unique genes: 43, P -value =
8e − 04) was highly correlated with ADFI; it was also significantly related with %loin (P -
value = 0.004) and %backfat (P -value = 2e − 04). The saddlebrown module (probes:
46, unique genes: 12) tended to be correlated with ADFI (P -value = 0.1) and with %backfat
(P -value = 0.1). Finally, the eigengenes of the modules green (probes: 1, 113, unique genes:
412, P -value = 0.07), brown (probes: 1, 441, unique genes: 773, P -value = 0.02) and
skyblue (probes: 46, unique genes: 45, P -value = 0.05) displayed significant associations
with %loin, but without significant correlations with any other animal phenotypic traits.
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Figure 5.1 – Heatmap of correlations between module eigengenes and animal phenotypic
traits. Module eigengene (ME) was the representative of gene expression profile in the module of co-
expressed molecular probes elicited from the weighted gene correlated network analysis (WGCNA) from
microarray data in the whole blood of 47 growing pigs. Animal phenotypic traits were recorded during
a test period of 58 days. The heatmap indicates the Pearson correlation coefficient between ME and the
phenotypic trait together with the statistical significance (Pvalue).
Abbreviations: ADG = average daily gain; ADFI = average daily feed intake; FCR = feed conversion
ratio; %loin = percentage of loin weight relative to carcass weight; %backfat = percentage of dorsal
subcutaneous fat tissue weight relative to carcass weight; ME = module eigengene

5.4.3 Close-vicinity of the different modules of co-expressed genes

To evaluate the connectivity between modules in the network, a hierarchical clustering was
performed between the eigengenes (ME) of the modules. The resulting dendrogram is shown
in Figure 5.2, in which the eight modules that were significantly associated or tending to be
associated with FCR are enlightened. Among these eight modules, two clusters were identi-
fied. The first cluster associated the lightcyan (114 genes), steelblue (23 genes) and
darkolivegreen (13 genes) modules. The second cluster associated the darkred (53
genes), violet (16 genes) and royalblue (81 genes) modules. The white (28 genes)
and the darkorange (21 genes) modules were isolated in the dendrogram. In addition, the
green (411 genes) and brown (772 genes) modules, that were significantly associated with
%loin, were clustered together (Figure 5.2).

5.4.4 Functional enrichment of the modules in biological processes

For the eight modules identified as significantly correlated or tending to be correlated with
FCR, an enrichment analysis was performed to find the main biological processes shared by the
co-expressed gene transcripts within each module (Table 5.1). Annotations of the probes were
first retrieved, and the corresponding gene name was associated to each probe when applicable.
The DAVID tool was used on the gene list uploaded for each module.

The lightcyan which was the biggest module correlated to FCR (180 probes correspond-
ing to 114 unique genes), displayed a large number of different clusters of biological processes.
On the opposite, for the other seven modules considered, there was/were only one to three clus-
ters (E > 1) identified among the GO terms in each module (Table 5.1). This indicates a good
consistency of the biological processes shared by the intra-connected genes within each module.
The modules violet, royalblue, darkorange, lightcyan and darkolivegreen
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Figure 5.2 – Hierarchical clustering of module eigengenes. The modules that were found
highly correlated with feed conversion ratio (FCR) are enlightened (*** P ≤ 0.001, * P ≤ 0.05,
and † 0.05 < P ≤ 0.10).

showed a predominance of immune, inflammatory and defense-related pathways across their
constitutive genes. The darkorange module also included genes involved in the response
to organic substance. The darkred module was rather oriented towards ribosome biogene-
sis and the process regulating translation. The white module was related to circulatory cell
development and to learning.

The biological processes identified in the other modules related to feed intake (ADFI) or
body composition (%loin and %backfat), but not to FCR, were described in Table 5.2.

The module saddlebrown that tended to be correlated to ADFI and %backfat was
composed of 16 unique genes participating to the response to stimulus. The skyblue module
that was significantly correlated to muscle mass (%loin), showed a predominance of genes
related to protein metabolism among its 44 unique constitutive genes (Table 5.2). The green
module was a large module of 411 unique genes related to various processes such as epigenetics
processes (chromatin organization, histone methylation), to cellular responses to compounds
(nitrogen, organic cyclic) for stress and defense, and to circadian regulation. The brown was
also a big module of 772 unique genes that regulated cell differentiation, protein and lipid
processes, and signaling pathways.
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Table 5.1 – Functional enrichment in biological pathways for molecular modules related
to FCR.
The DAVID tool was used to identify the top enriched pathways across the list of unique an-
notated genes within each module. The gene ontology (GO) terms for biological processes are
indicated together with enrichment score (E) of the process and Fisher P value.

Module probes unique
genes

match
ID DAVID GO_terms

darkolivegreen 27 13 9 GO:0006954 inflammatory response E = 15.6 P < 0.05

darkorange 60 21 15
GO:0010033 response to organic substance E = 4.4 P < 0.001,
GO:0002376 immune system process E = 2.9 P < 0.05

darkred 82 53 44
GO:0042273 ribosomal large subunit biogenesis E = 18.8 P < 0.01,
GO:0002181 cytoplasmic translation E = 16.5 P < 0.01

lightcyan 180 114 96

GO:0007166 cell surface receptor signaling pathway E = 2.3 P < 0.001,
GO:0032502 developmental process E = 1.5 P < 0.001,
GO:0006955 immune response E = 2.74 P < 0.001,
GO:0006909 phagocytosis E = 4.5 P < 0.01,
GO:0042113 B cell activation E = 9.8 P < 0.001,
GO:0070887 cellular response to chemical stimulus E = 1.7 P < 0.01,
GO:0045088 regulation of innate immune response E = 3.4 P < 0.05,
GO:0050727 regulation of inflammatory response E = 3.1 P < 0.05

royalblue 111 81 71
GO:0050852 T cell receptor signaling pathway E = 21.1 P < 0.001,
GO:0030155 regulation of cell adhesion E = 5.6 P < 0.001,
GO:0048869 cellular developmental process E = 2.0 P < 0.001

steelblue 45 23 10 GO:0008104 protein localization E = 3.9 P < 0.05

violet 32 16 12
GO 0045087 innate immune response E = 9.4 P < 0.001,
GO:0016567 protein ubiquitination E = 7.5 P < 0.05,
GO:0006952 defense response E = 6.0 P < 0.001

white 59 28 23
GO:0072359 circulatory system development E = 4.4 P < 0.01,
GO:0007612 learning E = 16.9 P < 0.01,
GO:0030036 actin cytoskeleton organization E = 5.0 P < 0.05
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Table 5.2 – Functional enrichment of molecular modules correlated with feed intake or
body composition, but not to FCR.
The DAVID tool was used to identify the top enriched pathways across the list of unique an-
notated genes within each module. The gene ontology (GO) terms for biological processes are
indicated together with enrichment score (E) of the process and Fisher P value.

Module probes unique
genes

match ID
DAVID GO_terms

brown 1,441 772 623

GO:0009966 regulation of signal transduction E = 1.4 P < 0.001,
GO:0050790 regulation of catalytic activity E = 1.4 P < 0.001,
GO:0007169 transmembrane receptor protein tyrosine kinase signaling

pathway E = 1.9 P < 0.001,
GO:0036211 protein modification process E = 1.3 P < 0.001,
GO:0042886 amide transport E = 1.4 P < 0.001,
GO:0007167 enzyme linked receptor protein signaling pathway

E = 1.7 P < 0.001,
GO:0031400 negative regulation of protein modification process

E = 1.9 P < 0.001,
GO:0042692 muscle cell differentiation E = 1.8 P < 0.01,
GO:0071363 cellular response to growth factor stimulus E = 1.9 P < 0.001,
GO:0031331 positive regulation of cellular catabolic process

E = 1.7 P < 0.05,
GO:0008654 phospholipid biosynthetic process E = 2.5 P < 0.01,
GO:1903320 regulation of protein modification by small protein conjugation

or removal E = 2.2 P < 0.01,
GO:0045595 regulation of cell differentiation E = 1.4 P < 0.01,
GO:0034284 response to monosaccharide E = 2.1 P < 0.01

darkgreen 82 42 33

GO:0009636 response to toxic substance E = 9.9 P < 0.01,
GO:0032496 response to lipopolysaccharide E = 7.9 P < 0.01,
GO:0051128 regulation of cellular component organization

E = 2.2 P < 0.05,
GO:0042063 gliogenesis E = 8.9 P < 0.01

green 1,113 411 356

GO:0006325 chromatin organization E = 2.0 P < 0.001,
GO:0009891 positive regulation of biosynthetic process E = 1.7 P < 0.001,
GO:0034968 histone lysine methylation E = 5.3 P < 0.001,
GO:0033555 multicellular organismal response to stress E = 4.8 P < 0.01,
GO:1901699 cellular response to nitrogen compound E = 2.1 P < 0.001,
GO:0032922 circadian regulation of gene expression E = 5.7 P < 0.01,
GO:0006622 protein targeting to lysosome E = 9.37 P < 0.001,
GO:0016050 vesicle organization E = 2.4 P < 0.001,
GO:0071407 cellular response to organic cyclic compound

E = 2.0 P < 0.01,
GO:0016071 mRNA metabolic process E = 2.0 P < 0.001,
GO:0009611 response to wounding E = 2.1 P < 0.01

saddlebrown 46 16 13
GO:0006357 regulation of transcription E = 3.72 P < 0.01,
GO:0009628 response to abiotic stimulus E = 9.6 P < 0.001

skyblue 46 44 36
GO:0006807 nitrogen compound metabolic process E = 1.80 P < 0.001,
GO:0045184 establishment of protein localization E = 2.7 P < 0.01,
GO:0034660 ncRNA metabolic process E = 4.8 P < 0.05
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5.4.5 Hierarchy of expressed genes in the modules related to feed effi-

ciency traits

To determine which expressed genes accounted the most in the correlations between the
module eigengene (ME) and FCR, we calculated the Gene Significance (GS) in each module,
and expressed the GS as a function of FCR. The top genes are listed in Table 5.3 and the all data
are provided in Supplementary Table 3.

For the white module, IGDCC3, TMEM14C, HRH1, HTR7 and AFF1 were notably
found as top genes. For the violet module, SLPI, P2RY1, MUCA, MED8, HSPA1B and
HSP70.2 were the most important genes triggering the correlation of the module with FCR. For
the royalblue module, POFUT1, LPAR3, CCR7, PTTG1, STRN, NPY and PPAR26 were
pointed as important in the correlation with FCR. For the darkred module, EIF1B, RPL14
and KRTCAP3 were among the top 15 genes. For the lightcyan module, ITGAD, DDG,
HTRA1, EBF1 and CBR3 were notably listed. A graphical representation of the importance of
the genes in the modules is also provided. For the royalblue (Figure 5.3), this shows that the
probes that were highly correlated to other probes were listed in the top list of probes based on
their module membership (MM).

Table 5.3 – Top genes in the molecular modules related to FCR.
The unique genes corresponding to the annotated probes were listed in each module according
to their GS.FCR value. In the table, only genes with a value greater than 0.3 for GS.FCR are
indicated. The GS.FCR is the correlation between Gene Significance (GS) of the module eigen-
gene and FCR.

darkolivegreen darkorange darkred lightcyan royalblue steelblue violet white
PTGER3 BMP6 SLCO2B1 ITGAD POFUT1 UQCC2 SLPI IGDCC3
TUBB6 PADI2 E4 DDC LPAR3 P2RY1 TMEM14C
SLA-DRB1 DNAJB9 CCR3 HTRA1 CCR7 MUC4 KIAA0247

WBSCR27 SLC46A2 EBF1 PTTG1 MED8 HRH1
TAOK3 EIF1B CBR3 NIPSNAP3B HSPA1B HTR7
SERHL2 ZFAND6 MYBL1 EPHB6 TR10D AFF1

CD300C C4BPB SLC4A11 HSP70.2 ZUFSP
FAM102A KIAA0556 STRN LDB3
RPL14 MS4A1 ZCCHC10 PROX1
WWP1 SLA-DOA FMNL3 ACVR2B
KRTCAP3 HMG20A SKAP1 DGKA
POLB CYAC3 NPY LUM
PIGL RALGPS2 PPP1R26 TBC1D19
TMEM52B ELL3 IZUMO4
PLA2G12A PIKFYVE NIPSNAP3A
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Figure 5.3 – Graphical representation of the royalbue module. The network was con-
structed from the adjacency matrix of the royalblue module using Cytoscape. The nodes are
the molecular probes, labeled with their annotation and connected by purple edges that repre-
sent the correlation coefficients greater than the 95th percentile and by green edges, for probes
that were not sufficiently correlated to other probes, to the annotated probe to which they were
the most correlated. The size of the nodes is a function of their degree.

5.4.6 Metabolic profiles in the whole blood

The second part of the present study addressed the metabolic level by considering several
variables obtained in the circulating blood of the 47 pigs, after non-target analysis (1H-NMR
spectra) of plasma and specific analysis of the lipidic fraction (gas chromatography-derived in-
formation) of plasma. The relationships between the 94 variables obtained from the 1H-NMR
spectra were summarized by the first five dimensions of a principal component analysis (PCA).
We showed that the two first dimensions represented 41.4% and 26.8% of the total variability,
respectively. Figure 5.4 shows the corresponding correlation circle. These two dimensions fit-
ted with the objective of summarizing metabolic profiles across the pigs. The first dimension
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of this PCA mainly opposed lactate to the majority of the identified amino acids (lysine, tyro-
sine, valine, phenylalanine, methionine, leucine, isoleucine, glutamine-glutamate) and to high
density lipoproteins (HDL). The second dimension mainly opposed glucose, eventually com-
bined with other molecules, to circulating lipoproteins (very low density lipoproteins VLDL,
low density lipoprotein LDL, and lipids) and to threonine. In addition, because specific metabo-
lites in plasma are considered as end-points in biochemical reactions, the third, fourth and fifth
dimensions were also considered in an exploratory factor analysis of few groups of variables
that may be helpful to generate biological theory. The third, fourth and fifth dimensions repre-
sented respectively 7.9%, 6.0% and 4.1% of the total variability. The third dimension mainly
opposed circulating concentrations of glutamine (Gln), glutamate (Glu) and proline (Pro) on
one hand, and beta-hydroxybutyrate on the other hand. The fifth dimension opposed circulating
concentrations of betaine (bet) and trimethylamine N-oxide (TMAO; i.e., a metabolite produced
by the liver and associated with microbiote metabolism), to VLDL and inositol concentrations.
Correlation circles for the third, fourth and fifth are available in Supplementary Figures 1 and
2. Overall, the first five dimensions explained 86% of the variance.

Considering specifically the lipid fraction of the plasma, we analyzed the fatty acids (FA)
composition by target methodology. From the 30 FA (10 to 22 carbon chains) that can be ana-
lyzed, some of them were present in negligible concentrations in the plasma or even cannot be
detected from the background in some pigs (e.g.; C10:0, C12:0, C18:4 n-3). Therefore, parts of
the FA were grouped in biologically relevant families (saturated FA with 14 carbons or less, n-6
FA family; n-3 FA family). This led to a total of 14 variables representing single FA or groups
of FA. They were then represented by a second PCA to summarize the profiles in circulating FA
among the 47 pigs. Figure 5.5 shows the corresponding correlation circle. The first dimension
represented 42.5% of the total variability and opposed omega-6 (n-6) family of FA and to a
lesser extent omega-3 (n-3) FA, to saturated family of FA. The second dimension represented
13.5% of the total variability and opposed C15:0 to C20:0 FA. Similarly to what was used
for metabolomics, we also considered the third, fourth and fifth dimensions, that represented
respectively 8.0%, 7.5% and 7.1% of the total variability, respectively. The third dimension op-
posed C20:1 to C20:2 FA on one hand and C20:0 FA on the other hand, whereas the fourth
dimension opposed the sum of n-3 FA to C20:1 FA. Correlation circles for the third, fourth and
fifth are available in Supplementary Figures 3 and 4. Overall, the first five dimensions explained
79% of the variance.
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Figure 5.4 – Correlation circle of the principal component analysis summarizing the pro-
files of circulating metabolites. 1H-NMR spectra were obtained in the plasma prepared from
the whole blood of 47 growing pigs. The matrix of correlations was calculated from 94 individ-
ual variables corresponding to the different annotated spectra.
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Figure 5.5 – Correlation circle of the principal component analysis summarizing fatty acid
composition in blood. The fatty acid composition (in percentage) was obtained in the plasma
prepared from the whole blood of 47 growing pigs by using gas chromatography. Some of the
individual FA were grouped in biologically relevant families (saturated FA with 14 carbons or
less, omega-6 sum of n − 6 and omega-3 sum of n − 3), whereas the other fatty acids were kept
as these.
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Table 5.4 – Relationships between transcriptomic and metabolomic levels.
Modules of co-expressed genes were identified from microarray data in the whole blood by us-
ing weighted gene correlation network analysis (WGCNA). Circulating biochemical molecules
in the plasma were analysed by 1H-NMR (metabolites; met) or target gas chromatography for
the lipid fraction subset (FA) and the data were summarized by weighted linear regressions
(dim) using principal component analysis (PCA). Correlations were calculated between the
module eigengenes (ME) and the first five dimensions of each PCA. The table indicates the
number of significant correlations or trends between modules of coexpressed genes and PCA
dimensions.

Dimensions of the principal component analysis of the metabolic level in blood
Modules Dim1_met Dim2_met Dim3_met Dim4_met Dim5_met

Significantly correlated (Pvalue ≤ 0.05) 1 2 8 0 11
Trend (Pvalue ≤ 0.1) 3 5 6 7 6

Dimensions of the principal component analysis of the fatty acids in blood
Modules Dim1_FA Dim2_FA Dim3_FA Dim4_FA Dim5_FA

Significantly correlated (Pvalue ≤ 0.05) 2 1 1 1 1
Trend (Pvalue ≤ 0.1) 4 0 3 3 0

5.4.7 Connecting the two omics levels

We calculated the correlations between the eigengenes of the molecular modules (ME) and
the profiles in circulating metabolites or fatty acids represented by the different dimensions
of each PCA. This allows connecting the transcriptome (via the WGCNA modules) and the
metabolome (via the principal components of the PCA).

The numbers of modules for which ME was correlated with at least one of the five dimen-
sions of each PCA are presented in Table 5.4. A heatmap representing the correlation coeffi-
cients calculated between ME of all modules identified from microarrray data and the first five
dimensions of the PCA, is available in Supplementary Figures 5 and 6.

There were few associations between molecular modules and metabolic and lipid profiles.
A summary is presented in Figure 5.6 considering only the list of modules of interconnected
genes that have been found to be associated with the phenotypic traits of interest in the previous
subsection Definition of gene co-expression network in the whole blood of pigs. There were
no significant correlations between the eigengenes of the modules associated with FCR and
the profiles in circulating metabolites. Only the darkorange module tended to be associated
with the second dimension (dim2_met) which opposed circulating concentrations of glucose
to circulating concentrations of LDL and VLDL lipoproteins. For the other animal traits, the
darkgreen module which was significantly associated with ADFI, was highly correlated
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Figure 5.6 – Heatmap of correlations between molecular modules and profiles of circulat-
ing molecules. Modules of co-expressed probes were obtained from a weighted gene correlation
network analysis (WGCNA) from microarray data in the whole blood of 47 growing pigs. The
eigengene of each module (ME) was considered as a mathematical representative of the expres-
sion levels of the molecular probes within the module. Circulating biochemical molecules were
analyzed and the data were summarized by weighted linear correlation using principal compo-
nent analysis (PCA). The first two dimensions of the PCA were called dim1_met and dim2_met
for the metabolites obtained by 1H-NMR high throughput method and dim1_FA and dim2_FA
for the fatty acids analyzed by target gas chromatography, respectively.

with dim3, which summarized the circulating concentrations in some amino acids (Gln, Glu
and Pro) and hydroxybutyrate. The saddlebrown module which tended to be associated
with ADFI and %backfat, was significantly correlated to the second dimension (dim2_met),
and also tended to be associated with the fifth dimension (dim5_met) which opposed betaine
and TMAO circulating concentrations to inositol concentration. Interestingly, more correlations
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were generally observed between dimi_met and modules related to %loin: the darkgreen
module was highly correlated with dim3_met, and the brown module was correlated with
dim3, and to a lesser extent with dim1_met, dim4_met and dim5_met.

Regarding plasma concentrations of FAs, we observed that the module eigengene (ME) of
the royalblue module, that was negatively correlated with FCR and positively correlated
with ADG, was highly positively correlated to the first dimension (dim1_FA) of the PCA. The
darkorange module that was also negatively correlated with FCR, tended to be correlated
with the fourth dimension (dim4_FA). The ME of the green also tended to be positively cor-
related with the first dimension (dim1_FA), whereas ME of the darkolivegreen tended to
be negatively correlated.

5.5 Discussion

5.5.1 Analyzing inter-individual variability in feed efficiency

In animal and plant breeding, there has been an increasing interest in intermediate omics
traits such as metabolomics and transcriptomics that mediate the effect of genetics on the phe-
notype of interest [125]. This study confirms that analyzing transcriptome in the whole blood
and metabolome in plasma of growing pigs enables to depict the biological molecular pathways
involved in various phenotypic traits related to feed efficiency (FE), namely feed conversion
ratio (FCR) (i.e., the on-farm measure of feed efficiency) and average daily gain (ADG) (i.e.,
one of the component of FCR describing growth rate during the test period), and to a lesser
extent, body composition (%loin, %backfat). This study is a step ahead for the understand-
ing of the relationships between entities that can act in the inter-individual variability in these
traits. Indeed, previous studies have rather addressed differentially-expressed (DE) genes [97,
116], gene set enriched pathways [126] or metabolic signatures [114, 119, 127] between the
lowest and the highest FE animals in pigs, cattle or sheep. They have thus compared a gene or
a molecule with itself in different conditions such as the response to selection for RFI (a mea-
sure of net feed efficiency) or extreme groups based on RFI or FCR. This does not enlighten
and explain the interactions between entities in the architecture of the traits, and the behavior
of regulatory genes acting in complex traits [128]. Moreover, the aforementioned studies of-
ten analyzed only a single type of omics data. Even when they included serum biochemistry
in addition to transcriptomics [129] to illustrate consequences of variations in gene expression
profiles, they did not intent to depict the correlations between the two levels of life organization
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(i.e., gene expression profiles and metabolites). The present study used networks approaches to
reveal the main biological processes that are associated with the inter-individual differences in
animal traits related to FE. Networks approaches are based on the assumption that the effect of
the change in the expression level of one entity can be propagated through the interactions on
other entities to orchestrate complex phenotypes [130]. We identified a total of 33 sub-networks
(modules) of co-expressed genes in the whole blood across 47 pigs. The network was built
with a low threshold set for the minimum number of co-expressed entities in the modules, with
the assumption that this may facilitate not only the identification of co-expressed but also of
co-regulated genes. Finding one to three clusters of enriched biological processes for the ma-
jority of the molecular modules argues for the homogeneity in biological processes shared by
the co-expressed genes participating to each module. Furthermore, modules in close-vicinity in
the dendrogram (hierarchical clustering), such as the darkolivegreen, lightcyan and
steelblue modules or the royalblue, darkred and violet modules, respectively, did
not share identical GO terms. This argues for keeping these modules separated rather than merg-
ing them. Altogether, the procedure used for network building in this study was then adequate
for the identification of co-regulated entities in the different modules.

5.5.2 Enriched pathways in co-expressed genes modules related to vari-

ability in feed efficiency

From the 33 modules identified in the whole genes network across the 47 pigs, six modules
were significantly associated with FCR and two modules tended to be related to FCR. In the
whole blood of young pigs, another study [116] has previously identified four co-expression
modules (minimum of 30 genes per module as threshold, leading to 89 to 786 genes per mod-
ules) in the low or high RFI groups, and indicated that DE genes overlapped with each of the
four differentially expressed modules; however, they found only one module that was signif-
icantly correlated to the RFI phenotype. Moreover, 34 modules of co-expressed genes were
identified [128] from RNA-seq analysis in the liver of low vs high RFI cattle (using a threshold
of 30 genes as the minimum in each module), out of which four modules showed significant
correlations to RFI. Importantly, the majority of the modules related to FCR in the present
study were also related to ADG and to %loin, whereas none of them were significantly asso-
ciated with individual feed intake (ADFI). This suggests that the main molecular entities in the
whole blood explaining the inter-individual variations in FE were involved in the determinism
of lean growth potential rather than acting in the regulation of feeding behaviour. The pigs used
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in this study originated from a divergent selection for RFI and fed different diets during the
test period. Because ADG is an independent variable in the regression that estimates predicted
feed intake, RFI and ADG have no correlation. The situation is however quite different for FCR,
since ADG is part of the ratio in the calculation. Although Gilbert and colleagues [92] indicated
low responses (although statistically significant) to RFI selection on lean meat content across
generations of pigs, several studies have consistently found a higher proportion of lean pieces
in the most feed efficient pigs as induced by genetic selection [131, 132] or by management
strategies [133]. Skeletal muscle is the largest organ in the body and plays important roles in the
utilisation and storage of a large proportion of the energy from feed. This likely explains why
the molecular modules related to FCR were also partly associated with %loin.

To depict the biological functions of the modules identified in the current study, a functional
enrichment analysis was performed within the modules separately. Five of the aforementioned
eight modules related to FCR, the violet, lightcyan, darkorange, royalblue and
darkolivegreen, were significantly enriched in immune and defense-related processes. In
the whole blood, immunity and stress response have been previously identified as biological
pathways shared by DE genes between low and high efficient pigs [116]; however, correlation
analysis to RFI phenotype rather suggested the importance of a module of co-expressed genes
participating to cell adhesion, apoptotic process and immunoglobulin production. In the present
study, the importance of immunity and defense-related pathways in the architecture of FCR
trait may be over-estimated, since we considered the blood where these processes are specifi-
cally enriched. However, previous studies on DE genes in pigs have also reported differences
in expression levels of genes involved in defense pathways when examined in different tissues
(liver, skeletal muscle, adipose tissue) between divergent lines for RFI [132]. In cattle, [129]
also found an enrichment of the transcriptomic networks in the inflammatory response, regula-
tion of monocyte differentiation, proliferation and differentiation of T lymphocytes in the liver
from animals with low or high RFI. Since the whole blood reflects the concerted actions of
the different tissues, these data support the current findings that immunity and defense-related
pathways are important in the determination of feed efficiency. Finally, the recent identification
of variations in expression of genes associated with the immune system in milk from low vs
high FE dairy sheep [134] , further argues for the informative potential of immune and defense
pathways to depict feed efficiency phenotypes of farm animals when analyzed in various bi-
ological fluids. Defense mechanisms trigger the use of nutrients for basal metabolism rather
than for production performance. This likely explain the importance of defense mechanisms in
the determination of feed efficiency, through regulations of ADG and %loin. In support, [135]
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shows that high RFI piglets (the less efficient animals) had greater resting energy expenditure
and respiratory quotient than low RFI piglets (the most efficient). Among defense mechanisms,
we suggested that T cell signaling (royalblue) was negatively related to FCR, whereas B cell
activation (lightcyan) and inflammation (darkolivegreen) were positively associated
to FCR. This association is likely due to the fact that inflammatory stimulation was associated
with a re-orientation of nutrients and alteration of metabolism [135] in growing pigs, thus dete-
riorating feed efficiency of the animals.
In the present study, other biological processes were also enlightened as important contributors
to the inter-individual variability of FCR. Indeed, three modules were composed of co-expressed
genes involved in translation (darkred), protein localization (steelblue) or circulatory
system development and learning (white). In the whole blood of cattle, a set of genes as-
sociated with the metabolism of proteins was also identified as the most enriched pathway of
genes differentially inhibited or activated in high-RFI when compared to low-RFI beefs [126].
These pathways could more specifically account for the regulation of lean growth rate, because
significant correlations with ADG and %loin were also identified. Finding nitrogen metabolic
process (skyblue), protein modification and muscle cell differentiation (brown) as enriched
processes in modules related to %loin further support the assumption that whole blood can en-
compass molecular mechanisms involved in muscle development and metabolism. Finally, two
modules, the darkgreen and saddlebrown, were or tended to be related to both ADFI and
%backfat, a surrogate of body adiposity. The darkgreen module encompassed genes in-
volved in the response to toxic substances. In accordance, there is generally a marked reduction
in voluntary feed intake in disease-challenged pigs [136].

5.5.3 Important genes in molecular networks related to feed efficiency

The main objective of the current study was to enlighten interaction networks related to
feed efficiency, rather than focusing on single genes. However, when looking at the hierarchy
of the genes in the molecular modules found as underlying FCR, we pointed RPL14 in the
darkred module. This gene has been previously suggested by bioinformatics as a hub node
gene in regulatory networks [137]. This is an important point to argue for the biological rele-
vance of gene network architecture built herein. Moreover, some of the genes contributing the
most to the association between transcriptomics level and animal trait as ranked according to
(GS.FCR) values in each module, have been previously identified as genes with fold changes
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in their expression level greater than |2| between groups of low and high (RFI) pigs [97].
There were SLPI (violet module), EIF1B (darkred module) and HTRA1 (ligthcyan
module). As expected, these genes are participating to different biological processes listed as
specifically enriched in their parent modules, such as immune response by protecting epithe-
lial surfaces (SLPI), regulation of cell growth (HTRA1) and translational initiation (EIF1B).
Of note, HTRA1 encodes a secreted enzyme that may regulate the availability of insulin-like
growth factors (IGFs), and correlated responses of IGF-I to RFI have been observed in pigs
[138]. Altogether, these genes are likely biologically important in the variability of FCR.

The royalblue module is of upmost interest since it was associated with FCR and with
profiles of circulating fatty acids (see next section). Therefore, the molecular functions of its
top-ranked genes deserve deeper investigations in the Human Gene Database. The LPAR3

(Lysophosphatidic Acid Receptor 3) and CCR7 (C-C Motif Chemokine Receptor 7) genes are
members of the G protein-coupled receptor family (GPCR). Especially, the protein encoded
by CCR7 is known to activate B and T lymphocytes and to control the polarization of T cells
in chronic inflammation. Another gene involved in T-cell signaling was SKAP1 (Src Kinase
Associated Phosphoprotein 1) that is required for an optimal conjugation between T cells and
antigen-presenting cells. Although EPHB6 (EPH Receptor B6) codes for a protein that mainly
influences cell adhesion and migration and regulates cell developmental process rather than im-
munity, one of its related pathways is GPCR signaling. Interestingly, the GPCR pathway has
been also identified as a putative candidate for RFI difference in pigs by genome-wide as-
sociation studies [139]. Another member of the royalblue module is NPY, a gene coding
for the neuropeptide Y that influences many physiological processes including stress response,
food intake, energy balance and circadian rhythms. In accordance, hypothalamic genes expres-
sion including NPY plays a potential role in feed efficiency variation in different farm species
[140]. The neuropeptide Y also functions through GPRC. Finally, among the top genes in the
white module, HTR7 encodes the serotonin receptor which belongs to the GPCR family and
is regulating several behaviours of animals.

5.5.4 Relationships between transcriptomic and metabolic levels in the

definition of feed efficiency or related traits

Combined phenotype-metabolome-genome analysis by inferring gene networks based on
partial correlation and information theory approaches has been valuable to confirm cellular
maintenance processes as major contributors to genetic variability in bovine feed efficiency
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[141]. Therefore, the present study also addressed the interactions between two levels of or-
ganization in the circulating entities, i.e., transcriptome and metabolome, and their relations
to productive traits in the pigs. Variations at the metabolic level were first summarized by lin-
early transforming the data into few new coordinates that explained most of the total variance,
thanks to principal component analysis (PCA). Correlating the PCA coordinates to the eigen-
genes of the 33 modules allows to determine whether pigs with the same profiles in circulating
fatty acids (FA) and lipoproteins, amino acids (AA) or energy-related metabolites (glucose,
lactate, betaine, etc.) shared similarities in groups of co-expressed genes. However, few sig-
nificant correlations were identified between the two organization levels. The eigengene of the
royalblue module was highly correlated to the PCA coordinate that associated circulating
concentrations in saturated FA and in polyunsaturated FA (omega-6 FA, and to a lesser extent,
omega-3 FA families). In other words, the greater expression levels of genes involved in T sig-
naling, cell adhesion and cell developmental process in the whole blood, were associated with
a higher proportion of saturated FA and a lower proportion of PUFAs in plasma, and altogether,
these changes accounted for a better feed efficiency (lower FCR) and higher ADG). An impor-
tant regulatory element underlying this association might be the expression level of LPAR3, a
gene that is involved in phospholipid binding. Similarly, the eigengene of the darkorange
module which was composed of co-expressed genes related to immune process, tended to be
correlated with the circulating concentrations of omega-3 FA, and these processes simultane-
ously accounted to FCR. Among the top-ranked genes in this module, BMP6 encodes a secreted
ligand of the transforming growth factor (TGF-beta) superfamily of proteins that regulate a
wide range of biological processes including fat cell development, and TAOK3 encodes a ser-
ine/threonine protein kinase that activates the p38/MAPK14 stress-activated MAPK cascade, a
pathway regulating also adipose cell development and metabolism. Thus, whereas the gene net-
work approach did not identify any enriched pathways related to lipid metabolism in the whole
blood transcriptome, the combination between transcriptomics and metabolic data suggests that
fatty acid metabolism in different tissues can be related to FCR and further influenced/be influ-
enced by interconnected molecular pathways of genes related to immunity. In support, muscle
of high-FE pigs exhibited lower proportion of saturated FA and an enhanced proportion of
polyunsaturated FA when compared with low-FE pigs [131], and co-expression analysis in the
liver has revealed altered lipid metabolism between high and low feed efficient steers [129].
Relationships between FA metabolism and immunity have been also described in the literature,
showing that omega-3 (n-3) PUFA can suppress T cell antigen presentation, activation, prolif-
eration and cytokine expression [142]. In addition, high fat western diet promotes inflammation
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and modifies immunity [143].
Among significant associations identified between modules of co-expressed genes in the

whole blood and profiles in circulating metabolites, the darkgreen module composed of
genes involved in the responses to lipopolysaccharide (LPS) and toxic substances and related to
ADFI, was associated with the circulating concentrations of beta-hydroxybutyrate and of Pro,
Glu and Gln amino acids. Beta-hydroxybutyrate is a ketone body whose concentration is rising
up after fasting and in situation of energy deficit, illustrating its dependence to the regulation
of feed intake. Sensing of AA can also act on the hypothalamic control of food intake [144].
Networks of co-expressed genes related to %loin (such as brown and green) also displayed
significant correlations with the metabolome profile, which suggests strong relationships be-
tween AA metabolism and the molecular regulation of muscle growth in the pigs. In support,
protein (amino acids) metabolism is essential for optimizing efficiency of nutrient absorption
and metabolism and to enhance growth performance. Relationships between transcriptomics
and metabolomic data to depict the biological processes underlying complex production traits
like FCR, ADG, ADFI, have been identified herein by statistical analyses (multivariate-based
procedures for data concatenation) and then, scrutinized with the functional annotation tools
DAVID (pathway-based integration techniques) and expert knowledge about the potential roles
of specific entities. However, when transcriptomic and metabolomic data are integrated, there is
no direct association between metabolite and transcript. Although commercially available tools
have been developed to visualize ranked pathways among molecules, there are many biases
when treating genes and metabolites as equivalent entities [27]. To explore the causality within
the interconnected entities at the different levels of cell organization, it seems necessary to use
the graph theories. First, the feed efficiency networks identified herein could be compared in
their topologies (direct interactions, connectivity degree per gene, etc.) with random networks
[141]. Second, knowledge graphs can be generated thanks to web semantic-dedicated queries
to identify paths composed of chains of relationships. Path lengths between entities (pairs of
co-expressed genes and small molecules), traversed properties (edges) and encountered bio-
chemical reactions could be then analyzed. However, the mapping between different identifiers
of genes/metabolites in naming systems is still a problem to be overhelmed in this process [27].

In conclusion, the inter-individual differences in feed conversion ratio (FCR, i.e., the on-
farm measure of feed efficiency), were inferred to be mainly due to variation of co-expressed
genes participating to immunity, defense mechanisms, inflammatory response, cell developmen-
tal process, translation and protein localization. These variations induced changes in the capac-
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ity of amino acids usage and lipid (fatty acids) metabolism between pigs. Among the component
traits of FCR, these processes accounted likely more in the variation of growth rate than in the
regulation of feed intake. However, few genes in the gene networks (e.g., NPY) are suggested for
their roles in regulating feeding behaviour. Analyzing the gene network also allowed to propose
integrative regulatory mechanisms such as G protein-coupled receptors (GPCR). Relationships
were indicated between T cell receptor signaling, cell development process and circulating con-
centrations of omega-3 fatty acids in plasma, which both underlined inter-individual variability
in feed efficiency. This suggests that nutritional recommendations for growing pigs should con-
sider the lipid fraction of diets to improve health and production traits in synergy.
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Abstract

Multimodal analysis of biological systems using metabolomics and transcriptomics has
gained significant interest. However, integrating diverse and massive heterogeneous data, along
with complex reasoning, poses challenges. In this study, we propose a method to integrate mul-
timodal -omics data using Semantic Web technologies. Our analysis method based on Reactome
BioPAX export identifies knowledge-based chains of relationships between statistically related
nodes in biological datasets, facilitating explainability and suggesting modulatory biological
actors. We applied our method to a set of co-expressed genes related to feed efficiency as a use
case. The results show that a large percentage of proteins (89%) and small molecules (70%) can
be linked to UniProt IDs and ChEBI identifiers, respectively. The paths between genes in the
co-expressed gene networks are shorter compared to randomly produced networks of the same
size. This work offers new possibilities for integrating multiple -omics data types and discov-
ering networks between molecules and potential upstream regulators. These networks provide
insights into the underlying biological processes of co-expressed genes.
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6.1 Introduction

High-throughput -omics techniques like transcriptomics (genes expression levels), proteomics
(proteins) and metabolomics (metabolites and small molecules), as well as target analyses for
specific molecules generate large amounts of multimodal data. Typically, each modality can be
statistically analyzed to produce lists of differentially-expressed molecules between experimen-
tal conditions.

We hypothesize that considering the different levels of -omics as a whole will support a
broader and finer understanding of the processes governing biological systems. Indeed, to pro-
vide a holistic view of the tissue or cell behaviors, it is valuable to obtain an extensive descrip-
tion of where and how all types of molecules participate and interact with each other within and
between biological pathways. This systemic representation provides a better knowledge of the
cascade of events, the upstream regulators of specific pathways (series of interactions), and the
cross-talks between pathways.

Among the approaches dedicated to the joint analysis of heterogeneous -omics data, matrix
factorization has proven to be particularly efficient [37]. Each -omics dataset is represented as
a very large matrix that will be further decomposed into a product of two matrices, with the
constraint that one of the matrices in the product is common to the different datasets [145].
This dimensionality reduction identifies the most important joint traits in the heterogeneous
data. However, these statistical associations often lack biological interpretability and fail to
account for the known physical relationships between molecules, such as activation, inhibition,
interaction, control, or participation in common reactions.

To address this limitation, we introduce a methodology that maps high-throughput transcrip-
tomics and metabolomics data onto a graph representing knowledge of cell metabolism, includ-
ing interactions and their regulation. By leveraging the connections between small molecules
and proteins, this graph serves as a suitable framework for integrating metabolomic and tran-
scriptomic data with biological process knowledge. The mapping of different -omics levels onto
this graph represents an initial step in identifying cascades of reactions associated with specific
phenotypes based on a list of multimodal molecules (proteins and metabolites).
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6.2 Background

6.2.1 Databases and ontologies in biology

With the expansion of high-throughput biological analysis technologies, significant efforts
have been directed towards organizing, storing and sharing data. As a result, there are many dif-
ferent databases and formats that facilitate access and use of these massively produced data [146].
Many of them exploit the semantic web: a large fraction have a SPARQL endpoint [147] and
there are numerous ontologies to structure knowledge. Noteworthy examples include UniProt
for proteins, ChEBI for small molecules, MI for annotating molecular interactions, and Gene
Ontology (GO) for describing biological components and functions (Whetzel et al., 2013). This
rich landscape of resources opens up possibilities for integrating multiple knowledge bases and
establishing cross-references with external sources.

6.2.1.1 The UniProt database

UniProt is a specialised knowledgebase for proteins maintained by the UniProt consor-
tium [148]. It is known for its excellent quality, thanks to a high level of manual curation by
an expert biocuration team. It combines data from several databases and contains metadata and
cross-references to other databases and knowledgebases such as publications, sequences, func-
tions, etc. Each protein (i.e., gene product) has a unique and universal identifier, which means
that if a single gene encodes more than one form of the protein or if genetic changes occurs,
each protein has a specific identifier. UniProt is fully accessible and queryable via a SPARQL
endpoint.

6.2.1.2 The ChEBI Ontology

ChEBI is a large database dedicated to chemical compounds and an ontology that aims
to organize these chemical compounds by biological properties: role, nature... [18]. ChEBI is
manually annotated from the literature and each chemical compound has a unique identifier.
Cross-references to other resources (Rhea, NMRShiftDB, BRENDA) are also possible and an
OWL export of the database is provided [149].
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6.2.1.3 The BioPAX ontology

BioPAX is a well established formalism to represent biological pathways at the molecular
and cellular levels including interactions [96]. BioPAX is based on Semantic Web technolo-
gies, with RDF facilitating integration, SPARQL facilitating querying and OWL facilitating
knowledge-based reasoning. All the major pathways databases are available in BioPAX and
can be mapped with other resources such as ChEBI [18], UniProt [150], but also Gene Ontol-
ogy [151] for genes, as well as ontologies for phenotypes or diseases.

In the BioPAX ontology, under the root class named Entity, the four top level classes are
Pathway, Interaction, PhysicalEntity and Gene. Interactions capture biological
relationships involving two or more entities, including molecular interactions, controls, and
conversions. Physical entities encompass various components such as small molecules, proteins,
DNA, RNA, and complexes.

BioPAX introduces the class of EntityReference as “a grouping of several physical

entities across different contexts and molecular states, that share common physical properties

and often named and treated as a single entity with multiple states by biologists". This means
that there is a corresponding entity reference node for proteins, small molecules, DNA, DNA
regions, RNA and RNA regions, where all the non-changing aspects of the entity are stored.
The BioPAX specification mentions that “there should only be one EntityReference de-

fined per UniProt ID". The physical entities are linked to these entity references by the property
entityReference, and one EntityReference can relate to several PhysicalEntities.

In the BioPAX ontology, there are different utility classes intended to annotate the Entity.
Among them, we can find the Xref class defined as “A reference from an instance of a class in

this ontology to an object in an external resource." in the BioPAX documentation. This allows
references to external databases or ontologies, for example by providing a UniProt identifier
to a protein or a Gene Ontology term to a physical entity. Each node Xref has the following
properties: db which reference the external database, dbVersion to explicitly provide the
database version and id which links the physical entity in BioPAX to the external reference.
One EntityReference can be annotated with various references from external sources via
these Xref nodes.
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6.2.1.4 The Reactome knwoledgebase

Reactome 1 is a free, open-source, curated and peer-reviewed multi-species pathway knowl-
edgebase [16]. It is widely used in genome analysis, modeling, systems biology, clinical re-
search and education. Biological pathways can be explored to shed light on inter-connected pro-
teins. Reactome representation is centered on biochemical reactions that can consume and pro-
duce proteins, small molecules, or complexes composed of several proteins or small molecules.
Additionally, Reactome captures the regulatory mechanisms exerted by entities such as proteins
and complexes on these biochemical reactions. Notably, Reactome provides an export feature
that allows users to obtain the database in the BioPAX format, ensuring compatibility and inter-
operability with other systems.

The present study is based on a revised version of Reactome BioPAX files. Indeed, we iden-
tified that Reactome’s BioPAX export did not comply with the BioPAX standard [152]. This
nonconformity had a significant impact on the topology of the interaction graph, artificially
increasing the path length between nodes and changing the degree of the Complex nodes.
Moreover, it obscured implicit redundancy between Complex nodes. By addressing and rectify-
ing these non-compliant aspects (Juigne et al., 2023), we are able to propose a revised version
of Reactome’s BioPAX files, which now align with the BioPAX standard.

6.2.2 Weighted co-expressed gene networks coupled to metabolic pro-

files as a use-case

In a previous study, we investigated the biological processes associated with variations
in feed efficiency, which reflects the utilization of feed nutrients to support growth rate, in
pigs [153]. This analysis involved the examination of transcriptomics data (obtained through
microarray) [97] and metabolomics data (utilizing 1H-NMR) [119] from the blood samples of
47 pigs. These data are briefly summarized hereafter, as they serve as a use-case of the method-
ology presented. For a complete study description, see [153].

6.2.2.1 Weighted co-expressed gene networks involved in feed efficiency

We applied weighted gene co-expression network analysis (WGCNA) to identify 33 weighted
co-expressed gene modules. These modules represent clusters of genes that exhibit similar ex-
pression patterns across different samples [56]. Out of these modules, we found that the eigen-

1. https://reactome.org/
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genes of 8 modules, which summarize the expression profiles within each module, were signifi-
cantly correlated with feed efficiency traits in the animals [153]. However, the challenge lies in
elucidating the underlying biological mechanisms within each module to determine whether the
modules consist of co-regulated genes or if the observed correlations are merely coincidental.
This distinction is crucial in understanding the true relationships and unraveling the biological
significance of these co-expressed gene networks.

6.2.2.2 Integration of transcriptomic and metabolic -omics levels on the same Re-

actome graph to explore connections

In this study, our proposal involves mapping various organizational levels, specifically molecules
from ChEBI and proteins from UniProt, onto the biological reactions extracted from Reactome.
By combining these different -omics levels into a unified graph, we take an initial step towards
exploring and analyzing the pathways. We explore how this integrated graph can reveal the
biological connections and interactions from weighed co-expressed genes modules statistical
analysis.

We focused on the latest version of the Reactome pathways database Homo Sapiens (version
84 (2023-04)), which is also appropriate to study pigs (Sus scrofa). Models of correspondence
between human and pig genomes in both material and formal types have been recently reviewed
in [154].

6.3 Methods

Overview

We developed federated and semantically-rich SPARQL queries to identify specific physi-
cal entities within the BioPAX export of Reactome (detailed in sections 6.3.1 and 6.3.2). These
queries are based on a large variety of classes and properties specific to the BioPAX ontol-
ogy and take advantage of the capability to simultaneously query multiple databases through
SPARQL endpoints. The whole integration schema is represented in Figure 6.1. Subsequently,
we loaded the integrated graph into Neo4j and performed traversal Cypher queries (section 6.3.3)
to characterize the paths between molecules of interest.

To ensure reproducibility, we provide a Jupyter notebook detailing the analysis 2.

2. https://github.com/cjuigne/data_integration_biopax
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Figure 6.1 – Integration schema.
Each layer represents a type of data from a data source linked to the other layers by different
properties. Traversing the relations within and between layers provides some candidate biolog-
ical interpretation of the processes involving co-expressed genes (e.g. in red a simplified path
between two of the three co-expressed genes, see Fig 6.2 for a realistic example). Note that
some layers (e.g. ChEBI) provide relations among some of their nodes, so the integration of
the different layers results in richer graph traversal capabilities by connecting nodes that were
previously disconnected (e.g. in the Reactome layer) or by providing alternative paths.

6.3.1 Retrieving Gene and Protein in the BioPAX export of Reac-

tome using federated SPARQL queries

As introduced in section 6.2.1.3, Proteins are linked to a ProteinReference via

their entityReference property. These ProteinReferences are themselves linked to
a cross-reference UnificationXref providing their UniProt identifier (Figure 6.2). We use
a 3-steps federated SPARQL query that takes a list of HGNC IDs as input:

— First, it queries the SPARQL endpoint of the UniProt database to get all UniProt IDs
related to a HGNC ID.

— Second, it looks for the corresponding ProteinReferences in the BioPAX file.
— Finally, it identifies all the Proteins associated to each ProteinReference.

This process ensures the establishment of connections between HGNC IDs, UniProt IDs,
ProteinReference objects, and associated Protein entities.
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6.3.2 Retrieving SmallMolecules in the BioPAX export of Reac-

tome using federated SPARQL queries

As introduced in section 6.2.1.3, SmallMolecules are linked to a
SmallMoleculeReference via their entityReference property. In the Reac-
tome dataset, SmallMoleculeReferences are annotated with ChEBI identifiers via
UnificationXref nodes (Figure 6.2).

Starting from a list of metabolites names, we used a SPARQL query to retrieve of the
molecule and its possible enantiomer, as well as their respective descendants.

Then, with the next SPARQL query, we identified the corresponding entities in Reactome.
Precisely, for each molecule, we looked for the SmallMoleculeReferences that are an-
notated with the corresponding ChEBI IDs; then, we identified all the SmallMolecules as-
sociated to these entity references.

This strategy wasn’t conclusive, as it returned to many ChEBI entities candidates. We thus
selected manually the identifiers that seemed to be the most appropriate ones and we are cur-
rently working on fixing that problem so that the federated query works.

6.3.3 Computing paths between nodes of interest in Neo4j using

Cypher queries

After the reference identifiers of the molecules of interest have been unified by federated
SPARQL queries and the URI of the nodes of interest have been extracted, we used the NeoSe-
mantics plugin to load the integrated graph in BioPAX format into a Neo4J database. This allows
to combine the semantic richness of the BioPAX ontology, and at the same time, to benefit from
graph traversal capabilities of the Cypher query language.

We designed graph traversal queries to characterize the paths between pairs of target nodes
belonging to the same module of co-expressed genes. We searched for the shortest paths be-
tween two proteins of interest (from the same module of co-expressed genes) to focus on the
metabolic relationships that could bring a different perspective to the co-expression.

To retrieve biologically-compatible paths, our queries specify the combinations of prop-
erties that can be traversed and those that should not be. Indeed, paths are only allowed to
pass through Complex nodes via the component property, through Interaction nodes
(and its sub-classes) via the participant property (and its sub-properties), and through
EntityReference (and its sub-classes) via the entityReference property. Traversal

106



6.3. Methods

bp3:dataSource

bp3:dataSource

bp3:dataSource

bp3:dataSource

bp3:dataSource

bp3:dataSource bp3:dataSource

bp3:dataSource

bp3:dataSource

bp3:dataSource

bp3:dataSource

bp3:dataSource

bp3:dataSource

bp3:Provenance

bp3:xref

bp3:Protein
Reference

bp3:SmallMolecule
Reference

bp3:right
bp3:leftbp3:BiochemicalReaction

bp3:leftbp3:Protein
A

bp3:dataSource

bp3:Small
Molecule

bp3:controller

bp3:CatalysisReaction

bp3:entityReference

bp3:componentbp3:component

bp3:Complex

bp3:right bp3:rightbp3:BiochemicalReaction bp3:Protein
D

bp3:leftbp3:controlled

bp3:right

bp3:BiochemicalReaction

bp3:entityReference

bp3:Protein
E

bp3:entityReference

bp3:entityReference

bp3:Small
Molecule

bp3:component

bp3:Complex

bp3:Protein
B bp3:Protein

C

bp3:UnificationXref

Reactome/
Interactions

Figure 6.2 – Examples of allowed and disallowed path patterns.
The shortest path between Protein B and Protein C is length two and consists of two
bp3:component edges. The shortest path between Protein C and Protein E traverses two
Interactions thanks to the subproperties of bp3:participant. The shortest path between
Protein A and Protein D contains a SmallMolecule, this type of path demonstrates the useful-
ness of using a metabolic network. Protein D and E have the same UniProt ID provided by their
ProteinReference. In Reactome, all nodes are connected to the Provenance node which indi-
cates (through its properties) that all data comes from the Reactome database. There are other
properties and classes that connect many nodes, thus, we avoid this type of path.

through other properties is forbidden because it might lead to irrelevant paths. For example, all
nodes in Reactome are connected to the Provenance node which indicates through its prop-
erties that data were extracted from the Reactome base. Thus, all couple of proteins might be at
distance 2 if the datasource property used to reach the Provenance node is allowed.

For each couple of protein of interest, we retrieve the number of shortest paths (there might
be several ones), the shortest path length, the properties traversed, the number and identifiers of
biochemical reactions traversed and the number and identifiers of small molecules traversed.

6.3.4 Biochemical reaction cascades and their regulation in modules of

co-expressed genes and comparison with randomizations

To capture properties specific to co-expressed gene modules from experimental transcrip-
tomics data, we compare the shortest paths within each WGCNA module to the shortest paths
calculated inside 500 randomly generated modules of the same size. For each randomization,
we randomly pick the same number of ProteinReference nodes in the entire graph, and
compute the shortest paths between all the pairs of these ProteinReference. Then, we
compare the shortest paths distributions inside one co-expressed gene module from experimen-
tal transcriptomics data to the shortest paths distribution inside the 500 randomly-generated
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modules using a non-parametric Mann-Whithney test. We also compare the number of bio-
chemical reactions that have to be traversed using a non-parametric Mann-Whithney test. As
there might be several shortest paths connecting two proteins, we study:

— the number of biochemical reactions on the shortest paths;
— the proportion of paths containing at least one small molecule.

All statistical tests were performed using R software environment.

6.4 Results

6.4.1 Proteins retrieved by their UniProt ID in Reactome

Reactome v84 is composed of a total of 31, 332 Proteins and 11, 672
ProteinReferences.

Among the 11, 672 ProteinReferences, 11, 299 are linked to a unique UniProt ID (i.e.

97%). In accordance with the BioPAX specification (6.2.1.3), several Proteins can point to
the same ProteinReference. Up to 1, 328 distinct Proteins from Reactome are linked
to the most connected ProteinReference, which unsurprizingly the cellular tumor antigen
p53 (UniProt ID: P04637).

When focusing on Proteins, we observed that 27, 453 of the 31, 332 (i.e. 87%) have a
UniProt ID provided by their ProteinReferences. Some Proteins without a UniProt
ID associated to their ProteinReference (in the remaining 13%), can be associated with
a UniProt ID when their name property directly contains a UniProt ID. This happens for 287
Proteins, that all are minor isoforms. Overall, we are able to associate 27, 740 Proteins
(88%) from Reactome to their UniProt ID in Reactome.

Among the 8 modules of co-expressed genes selected for their associations with the animal
phenotype (i.e., feed efficiency), we retrieved from 56 to 100% of the UniProt IDs in Reactome
(Table 6.1).

6.4.2 SmallMolecule retrieved by their ChEBI ID in Reactome

Reactome v84 contains 5, 083 SmallMolecule entities and
2, 903 SmallMoleculeReference nodes. 1, 946 of these 2, 903
SmallMoleculeReferences are linked to a unique ChEBI ID (i.e. 67%). There are
from 1 to 28 SmallMolecules pointing to a SmallMoleculeReference. The most
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Table 6.1 – Number of UniPort IDs corresponding to co-expressed genes in the eight modules
of interest and number of corresponding ProteinReferences and their Protein instances retrieved
in Reactome.

Modules white darkorange royalblue violet darkred darkolivegreen steelblue lightcyan
Corresp. Proteins
in UniProt 23 14 71 12 43 9 10 95

Corresp. Protein
References
in Reactome

13 10 49 10 28 9 7 66

Protein instances in
Reactome (BioPAX) 61 14 200 39 33 22 18 127

connected SmallMoleculeReference is H+ (CHEBI ID:15378), with 28 connections.
When focusing on SmallMolecules, we observe that 3, 562 of the 5, 083 (i.e. 70%) have a
ChEBI ID provided by a SmallMoleculeReference.

In our use-case metabolomic dataset from whole blood of pigs with differences in feed
efficiency, 50 metabolites were investigated [119]. From the 50 metabolites names of interest,
we retrieved 49 ChEBI IDs corresponding to 165 ChEBI elements when we considered sub-
elements and enantiomers (from 1 to 30 IDs per molecule of interest). We found 27 of these IDs
in BioPAX (from 1 to 4 SmallMoleculeReference per 20 molecules of interest). This is
a first step to study whether or not these small molecules are close to the targeted Protein nodes
and/or on the paths linking these proteins (to be continued).

6.4.3 Graph traversal and paths connecting molecules of interest

We compared the shortest paths connecting members of a common co-expression module,
to the shortest paths between the members of randomly-generated modules of the same size. For
the largest module (named lightcyan in Table 1), computations failed due to its large size.
Among the other seven co-expression modules studied, we observed two distinct behaviors.

For some of them such as module darkred, the WGCNA module exhibited shorter paths
than randomly-generated modules of the same size. Fig. 6.3 (middle) shows a significant shift
of the distribution of the shortest paths lengths between the co-expression module and the 500
randomizations (p-value < 2, 2e−16, average length in module 7.2 vs 9.6 in randomizations).
We also observed that shortest paths inside WGCNA module darkred traversed significantly
fewer biochemical reactions than inside randomly-generated modules (p-value = 3.7e−9, aver-
age biochemical reactions within shortest path in module 1.5 vs 2.3 in randomizations). Similar
features are also observed for WGCNA module royalblue presented in Fig. 6.3 (left).

For other co-expression modules such as WGCNA module white, these properties did
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not differ from those found in randomly-generated modules (statistical tests not significant).
This is illustrated in Fig. 6.3 (right). The modules corresponding to this behavior are the small-
est ones, with less than 15 corresponding protein references in Reactome (modules white,
darkorange, violet, darkolivegreen, steelblue).

We investigated whether the shortest paths connecting proteins within co-expression mod-
ules exhibit specific topologies compared to randomly identified paths. Our focus was on
the number of biochemical reactions occurring along these paths and the count of metabo-
lites constituting these paths. We calculated the percentage of paths that did not traversed
any BiochemicalReaction node, passed through exactly one BiochemicalReaction
node, and traversed at least one BiochemicalReaction node. Additionally, we determined
the percentage of paths containing at least one SmallMolecule node. The overall results are
presented in Table 6.2.
In random modules, the proportion of shortest paths passing through at least one biochemical
reaction varied widely, especially in smaller modules, ranging from an average of 28.2% for
randomly generated modules of size 7 to 75.9% for those with a size of 9. For the two sets of
largest modules, the average percentage of paths involving at least one biochemical reaction
spanned from 33.4% for random modules of size 28 to 38.32% for random modules of size
49. Remarkably, within the two largest co-expression modules (royalblue and darkred)
paths between proteins pairs were more likely to involve biochemical reactions than random
behavior. Specifically, 41.5% of the paths in the module royalblue involved biochemi-
cal reactions, in contrast to 38.32% of shortest paths in randomly generated modules. In the
darkred module, 76.44% of shortest paths contained biochemical reactions, compared to the
33.4% observed in random modules.In random modules, the percentage of shortest paths pass-
ing through a metabolite ranged from 10.75% to 29.28%. This percentage exhibited greater vari-
ability in smaller modules, while in the randomizations of the size of the two largest modules
(royalblue and darkred) it was more consistent: 24.3% for royalblue and 20.6% for
darkred. For these significant gene co-expression modules, the percentage of paths involving
a SmallMolecule node exceeded that of random modules: 41.2% of shortest paths between
protein pairs in royalblue involved a small molecule, and up to 82% of shortest paths be-
tween protein pairs in darkred. Similar trends were observed in most smaller co-expression
modules, except for darkorange and steelblue.
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Table 6.2 – Analysis of the topology of the shortest paths in co-expression modules com-
pared with randomly generated modules of the same size. PR : ProteinReference, SM
: SmallMolecule, BR : BiochemicalReaction.

white darkorange royalblue violet darkred darkolivegreen steelblue
(PR =13) (PR=10) (PR=49) (PR=10) (PR=28) (PR=9) (PR=7)

Paths without BR Co-expression modules
23.81% 0% 58.51% 0.79% 23.56% 0.68% 10.72%

Randomly generated modules
54.15% 46.98% 61.68% 52.96% 66.60% 24.13% 71.77%

Paths with BR=1 Co-expression modules
20.24% 0.35% 6.50% 0.63% 17.48% 1.08% 88.63%

Randomly generated modules
24.03% 19.10% 18.35% 26.92% 16.05% 46.37% 13.12%

Paths with BR≥1 Co-expression modules
76.19% 100% 41.49% 99.21% 76.44% 99.32% 89.28%

Randomly generated modules
45.85% 53.02% 38.32% 47.04% 33.40% 75.87% 28.23%

Paths with SM≥1 Co-expression modules
98.68% 1.04% 41.18% 99.75% 82.84% 99.76% 1.18%

Randomly generated modules
19.82% 29.28% 24.97% 29.97% 20.65% 18.23% 10.75%

Figure 6.3 – A. Distribution of the shortest path length in co-expressed gene modules
royalblue, darkred and violet, compared with the average shortest path length of 500
random modules, between pairs of ProteinReference nodes within a module.
B. Distribution of the average length of the shortest paths in random modules. The red line rep-
resents the average length of the shortest paths between pairs of ProteinReference in the
associated WGCNA module.
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6.5 Discussion

Mapping weighed co-expressed gene modules in a whole metabolic network should pro-
vide valuable biological information supporting statistical links, and thereby extending co-
expression to co-regulation of genes behind animal phenotypes.

We analyzed 7 modules that were highly correlated to the phenotype of interest (feed effi-
ciency defined as the ability of an animal to use nutrients to support growth rate) in our com-
panion experimental study [153].

In this study, we compared the distance between pairs of nodes from 7 statistically co-
expressed modules to the distance between pairs of nodes in randomly-generated modules of
the same size.

For 2 of the 7 modules, the distribution of distances between pairs shows a particular behav-
ior in co-expressed modules. Inside these modules, the average distance was lower than for the
randomly generated modules. Interestingly these two modules are the largest ones (49 and 28
ProteinReferences). Their sizes contribute to reaching statistical significance.

On the opposite, in the other 5 modules analyzed in the use-case, the distances between
co-expressed genes were not different from the distance between randomly-generated modules.
We note that non-significant modules were the smallest ones, with less than 15 corresponding
protein references. Thus, lack of significance might be due to small size, but can also reflect that
the relationship between the genes was co-expression not driven by a common co-regulation.

These graph traversals give us a valuable indications on the underlying metabolic relation-
ships existing between set of co-expressed genes, thanks to gathering together different levels of
cell organization. However, the method could still be improved, by questioning the specificity of
the nodes. Indeed, in the interaction graph, there are hubs that are connected to a large number
of the nodes. Some of them can be considered as too generic, such as water or H+ because there
are used by the majority of biochemical reactions. This creates artificially short paths. Possible
solutions could be to declare some hubs in a black list or, in a softer way, to add weights on
the graph. Additionally, in biological networks, the shortest path between two molecules is not
always the most effective path. Flux distribution of within the different branches of the network
occurs in many biological situations. Quantification of the energy efficiency of different nutri-
tional scenarios have been proposed by others [155]. In this study, we computed shortest path
but did not prove that this strategy was the most appropriate. In the future, other paths could be
considered based on specificity or quality indices.

Other types of biological networks exist based on specific data type. Protein-Protein Inter-
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actions (PPI) networks, such as Intact [156], could also be used to assess the proximity between
proteins. However, our study proves that using metabolic network that includes several data
modalities, is relevant: among the identified paths, we retrieved some that contained Small-

Molecule. In the future, we will investigate the presence of the small molecules of interest on
the shortest paths identified, and seek to link the proteins to these small molecules. As a per-
spective, graph-based approach may be used to identify relevant biochemical paths between
unimodal or multimodal data. This will help to focus on the biochemical interactions encoun-
tered on these interesting paths with the aim of understanding the link between our modules and
metabolism.

In the current study, the Semantic Web provides the framework for integrating transcrip-
tomic and metabolomic experimental data with the knowledge on biochemical interactions,
proteins and molecules. The BioPAX ontology allows to represent finely the biological inter-
actions at both cellular and molecular levels, thanks to a well designed data schema. However,
BioPAX remains a fairly complex format description and raised several challenges.

Our example highlights the importance of maintaining the efforts to link the different on-
tologies and databases, as systematically using universal identifiers to describe each physical
entity rather than using strings, even if it means using an ID of a rather generic term. This will
allow to better exploit the growing mass of data and studies [1]. In conclusion, this study opens
new perspectives to integrate simultaneously multimodal data and find the systemic organiza-
tion behind experimental data.
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CHAPTER 7

DISCUSSION

We focused on analysis methods for complex phenotypes that are out of reach of traditional
approaches. Our main hypothesis relied on the possibility to better represent relationships be-
tween molecules that regulate a phenotype by combining experimental results and public knowl-
edge, and by adopting a holistic view on biological organization. We suggested that integrating
different levels of omics as a whole will help understand biological systems, especially by con-
sidering the cascade of events and the interactions between entities. To this end, we focused on
a complex phenotype: feed efficiency in growing pigs.

In this context of feed efficiency, we highlighted relationships between two types of biolog-
ical entities: transcriptomics and metabolomics. We identified modules of co-expressed genes
by constructing a weighted gene co-expression network and computing pairwise correlations
among the molecular probes (mRNA expression levels) in the whole blood sampled from grow-
ing pigs belonging to divergent lines for feed efficiency. Next, we correlated the eigengene
of each module with feed efficiency traits, leading to the identification of 8 modules of co-
expressed genes associated with Feed Conversion Ration (FCR), the on-farm measure of feed
efficiency. These modules were enriched in genes involved in immune and defense-related pro-
cesses, responses to organic substance, ribosome biogenesis and translation, and cell develop-
ment and learning processes. Furthermore, we summarized the metabolomics data, comprising
levels of fatty acids and targeted metabolites in the whole blood of the same animals, and then
correlated them with the eigengene of the modules to link metabolic profiles to the co-expressed
genes related to feed efficiency. This allowed the identification of a module of co-expressed
genes related to immune process associated with circulating concentrations of omega-3 fatty
acids in the plasma.

Then, we addressed both the challenge of integrating experimental data and knowledge
bases to bridge the gap between the molecular and cellular levels, as well as the challenge
of analyzing data and extracting knowledge using graph-based metrics. To investigate co-
regulation and to identify potential regulators for co-expressed gene modules previously associ-
ated with feed efficiency, we developed a knowledge-guided approach. This approach leverages
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the BioPAX format as a robust framework for integrating transcriptomic and metabolomic data.
To reason at the BioPAX level, we had to address issues related to non-conformity and

redundancy in biological databases stored in BioPAX format. We developed a method for de-
tecting and correcting data inconsistencies related to molecular complexes, and we applied this
methods to the widely-used Reactome pathway database. We successfully detected and cor-
rected 39% of molecular complexes in the Homo sapiens version of the database. Similar levels
of improvement, ranging from 30% (in Plasmodium falciparum) to 40% (in Sus scrofa, Bos

taurus, Canis familiaris, and Gallus gallus), were observed for other species suggesting robust
improvement. As an additional consequence, these corrections allowed to identify complex re-
dundancies.

We focused mainly on the eight modules of co-expressed genes, specifically selected due
to their strong associations with animal phenotypes. Among these eight modules, our method
successfully retrieved a significant number of protein nodes from Reactome, ranging from 56%
to 100% of the proteins corresponding to the genes in these modules. Furthermore, we directed
our attention to the 50 metabolites quantified in plasma samples. We retrieved 49 ChEBI IDs
out of the initial set of 50 targeted metabolite names, corresponding to 165 ChEBI elements
when considering sub-elements and enantiomers. However, we found only 27 corresponding
nodes within Reactome.

While RDF was suited to data integration and symbolic reasoning base on ontologies, we
switched to Neo4j database to be able to perform more complex analysis based on the graph
topology. We conducted a comparison between the shortest paths connecting participants in
co-expression modules and those in randomly-generated modules of the same size. Among the
modules studied, we observed two distinct behaviors: the biggest modules exhibited shorter
paths and fewer biochemical reactions in the co-expression module compared to randomiza-
tions, while smaller ones did not show significant differences from random modules. Fur-
thermore, we observe that co-expression modules are significantly more connected by small
molecules than random modules. This finding validates the decision to use a metabolic net-
work.

7.1 Benefits of our approaches

Dealing with BioPAX We have demonstrated that Semantic Web technologies can address
the challenges of standardizing and improving data quality. Our approach, which relies on
semantically-rich queries for identifying and fixing invalid complexes in BioPAX, is not lim-
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ited to a single database but is reproducible on others. This enhances data conformity and the
graph analysis by repairing its topology. Although this issue of non-compliance was noted by
Stromback [95] in 2005, it was neither detected nor rectified by any existing methods, such as
the BioPAX-validator designed to validate BioPAX files [105], nor by parsers such as BioPAX-
Parser [157], Paxtools [110], or PAX2GraphML [158]. As a result, this allows to apply rea-
soning methods on higher-quality data, leading to a better understanding of the regulation of
complex phenotypes.

In the scope of our project, we examined various approaches to leverage pathways datasets,
particularly those within the Reactome database. One option could have been to work directly
within Reactome using the providing Neo4j database or to export it to a Python data model,
such as STARGate-X does [159]. However, this option would have been highly dependant on
data and on Reactome’s specific data model, as emphasized by the authors of STARGate-X: "to
use our tool with a different pathway repository, it would be necessary to store Pathway data
in the graph database according to Reactome’s schema for labels and nodes.". With the aim of
proposing generic methods and analyzes, we opted for the use of BioPAX, a standard format
for representing and sharing pathways data. This choice allows our work to be data-independent
and reproducible across various other pathways databases.

Due to its semantic richness, BioPAX is a complex format. One approach would have been
to simplify its manipulation by transforming the data into a Python model. For instance, tools
like PAX2GraphML, which converts BioPAX files into regulated reaction graphs in order to
facilitates their handling [158]. However, I made the decision to stay as close to the original
data as possible by delving into the complexity of the BioPAX ontology, thereby minimizing
the risk of loss or excessive modification of information. Consequently, our approach preserves
data integrity and allows us to propose generic methods. As a side-result, our work constitutes
a concrete example of the utilization of BioPAX with SPARQL queries.

Heterogeneous data integration We demonstrated that SPARQL and Semantic Web tech-
nologies are highly effective and well-suited for integrating -omics data. The representation of
this data in a graph format facilitates the application of multi-layered graph-based integration.
This approach enables the combined use of various existing databases, knowledge resources,
and ontologies through both local and public SPARQL endpoints. Furthermore, the BioPAX
format proves to be suitable for integrating data across multiple levels of biological organiza-
tion. As noted by Cavill et al. [27] and Eicher et al. [26], the integration of metabolomics data
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with other -omics data poses a significant challenge due to the absence of a direct link between
metabolites and genes, contrary to those existing between genes and proteins. Our integration
strategy focuses on mapping biological entities of interest within a metabolic network. While
the use of metabolic networks for data integration is not a novel concept [160], our approach
distinguishes itself through its innovative nature. In contrast to the current state of the art, our ap-
proach involves the creation of a sort of multi-layered network that integrates knowledge across
various levels, as illustrated in the schema integration Figure 7.1. We leverage the Semantic
Web to enhance interoperability, reproducibility, and flexibility when applying our approach to
address new scientific inquiries or adapting to changes in databases. Our primary objective is
the development of reusable tools that can be applied to diverse datasets and scientific questions.

In addition, we integrated Semantic Web technologies with Neo4j using the Neosemantics
plugin. This combination of technologies provides a robust framework for analyzing complex
data, and we used it to perform graph traversal and exploration. Furthermore, we found that
certain tasks are more efficiently accomplished using SPARQL, particularly integration and
some aspects of reasoning. Conversely, Cypher is indispensable for tasks involving intricate
graph traversal. Additionally, there are intermediate tasks that can be handled equally well using
both SPARQL and Cypher.

We initially identified co-expressed gene modules using a traditional approach. Subse-
quently, using our integration method, we demonstrated that these genes tend to be closer and
more interconnected in the metabolic graph than would be expected from a random distribution.
This observation suggests potential co-regulation within these modules.

Our approach differentiates from dimensionality reduction integration methods by introduc-
ing an integrative approach that capitalizes on the biological knowledge context of the studied
physical entities. Additionally, our approach stands distinct from strictly defined multiplex
graph approaches (with common nodes across layers). These methods often face challenges
in effectively representing biochemical reactions. Unlike these methods, our approach utilizes
oriented and labeled graphs, providing a more nuanced and accurate representation of complex
biological interactions, moving beyond the constraints of adjacency matrices.

Understanding feed efficiency Gilbert et al. suggested, based on a divergent selection experi-
ment on Residual Feed Intake (RFI), a measure of feed efficiency, that pigs have various ways to
achieve efficient use of feed [92]. Therefore, examining the biological bases of inter-individual
differences in feed efficiency is of utmost interest.
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Figure 7.1 – Integration schema. Each layer represents a type of data from a data source linked
to the other layers by different properties.

Our work revealed the existence of a small number of regulatory networks significantly
associated with Feed Conversion Ratio (FCR). Whereas FCR is considered a production per-
formance trait, the majority of the co-expressed gene networks were participating to immune
process. The contribution of immunity to feed efficiency has been previously suggested through
differential analyses between divergent groups for RFI at the transcriptomic level [97] and at
the proteomic level [161]. We also demonstrate that some of the genes previously identified as
having significant variation dynamics between divergent groups of pigs for RFI are important
elements in these regulatory networks influencing inter-individual variability in feed efficiency.

The other benefit of our study is to establish connections between the transcriptome and
metabolome, revealing links between immunity and fatty acid composition. This association
had not previously been demonstrated and is relevant for future nutritional recommendations
to obtain good synergy between production and health. Our study represents an initial effort
toward unraveling the black box of complex traits, which remains a significant challenge in
current research [125]. Other studies have also combined transcriptomic and metabolomic data
for production traits other than feed efficiency, such as body adiposity. However, these studies
often limit their analyses to separate omics levels [162, 163].

7.2 Limitations of the study

This work is subject to several limitations, including the incompleteness of biological
knowledge, the modeling assumptions made, algorithmic limitations, semantic integration
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issues, and identification challenge.

Firstly, it’s important to acknowledge that public databases, much like our understanding
of living organisms, are inherently incomplete. Consequently, in our investigations, we seek
connections between our various entities of interest among the known interactions cataloged in
these databases. Consequently, relying on public databases implies a limitation to well-studied
pathways and functions. It is crucial to remain mindful that both databases and biological
analyses, such as those employed in the context of feed efficiency applications, are intrinsically
characterized by their incompleteness due to the vastness and complexity of biological systems.

Secondly, it’s worth noting that we have made a simplifying assumption that a gene
corresponds to one protein (or more), although reality is often more intricate. The presence
of an expressed transcript does not necessarily imply the translation into the corresponding
protein, as many factors can influence protein production. Regulatory steps, quality controls,
and various other factors are involved in protein synthesis. Furthermore, we do not account
for post-translational modifications, nor consider the notion of flux. Considering flux may be
important for some biological questions involving the dynamic aspects of biological processes.
Only the stoichiometric coefficients of the interactions stored in Reactome are available in the
graph, and for now we do not use this information.

One of the main challenges when integrating experimental data with public knowledge
is accurately identifying biological entities, especially because different sources use varying
naming conventions or identifiers for the same entities. To overcome this challenge we utilized
ontologies that offer unified names and identifiers, namely UniProt and ChEBI. Identifying
proteins is relatively straightforward; however, special attention needs to be given to isoforms
since there are multiple ways to identify them within both UniProt and Reactome. The
complexity intensifies when dealing with metabolites. Indeed, the ChEBI ontology is notably
semantically-rich, making it challenging to ensure a consistent understanding of specific
biological entities in different context. For instance, a search for "lactate" in ChEBI yields 79
entries, encompassing not only lactate but also (R)-lactate and (S)-lactate. A
similar challenge was encountered by Cavill et al. regarding lactate in the KEGG knowledge
base [27]. They identified multiple identifiers for different forms of lactate; however, not all
these lactate forms were involved in the pathways. Their conclusion emphasizes the need
for individual cases to be evaluated manually to manage these overlapping metabolites and
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ambiguous assignments effectively. Consequently, determining the precise identifier used in
each study and selecting the identifier for storage in databases becomes intricate. Experimental
methods often cannot identify elements as finely as the most specific terms in ChEBI. As a
result, within Reactome, although the concept of SmallMoleculeReference exists in
BioPAX, we encounter small molecules described at various levels within the ChEBI ontology.
Indeed, SmallMoleculeReference nodes are designed to group different forms of a small
molecule under a relatively generic term. However, we observed, for example in version 84, that
SmallMoleculeReference number 266 possesses the ChEBI identifier ChEBI:57540
(NAD Anion) and yet serves as the reference entity for several SmallMolecules annotated
"NAD+". To handle this challenge, we manually identified the generic terms corresponding
to metabolites of interest. Subsequently, through a federated query, we searched in ChEBI for
its descendant terms as well as potential enantiomers. These terms were then searched within
Reactome for comprehensive integration.

A further limitation lies in our data model, which is generic with regard to the ontologies
used but not optimized for existing graph traversal algorithms. In Neo4j, the graph being
analyzed is a labeled property graph where edges are derived from the predicates of the
BioPAX ontology, and node types of its classes. This implies that traditional graph mining
algorithms cannot be directly applied. They need to be tailored to our data schema to be
effectively utilized. The complexity of adaptation varies based on the specific algorithms we
plan to employ.

Recognizing these challenges becomes a stepping stone toward innovative solutions and
breakthroughs.

7.3 Perspectives and potential future improvement and re-
search directions

In the immediate future of this research project, our focus is on refining our graph traversal
methods. Currently, efforts are underway to avoid traversing through small molecules acting as
hubs in the graph (such as water, H+, ATP, NAD, etc.). By excluding these molecules, we can
avoid considering the shortest paths passing through these ubiquitous entities [72]. This exclu-
sion will enable a reevaluation of the shortest paths computed in Chapter 6. Consequently, this
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refinement might reveal more distinct patterns between co-expression modules and randomly
generated modules. Furthermore, we aim to compare the list of metabolites present on these
paths with those in our list of interest. Moreover, we intend to identify participants in the inter-
actions connecting our proteins, aiming to systematically detect biological entities that might
be related with the studied phenotypes.

Another planned step involves conducting various topological analyses on these specific
sub-networks of interest. So far, our focus has been on identifying the shortest paths between
two entities within sub-networks of interest. This decision was made to assess whether the
sub-networks of proteins of interest are more interconnected than what would be expected
by random chance. However, to identity potential regulators of the phenotype, it is important
to consider that the shortest paths in metabolic networks are not always the most efficient or
biologically relevant. Frainay and Jourdan highlighted the challenge of selecting meaningful
paths, and the fact there is no one method more appropriate than others [72]. One idea worth
exploring is to traverse the graph using alternative algorithms, such as random walks, where
proteins within a module are chosen as seed nodes. This approach can help identify nodes that
are frequently traversed, providing valuable insights into essential related biological entities.
Another avenue for investigation involves identifying graph traversal algorithms specifically
tailored to our biological questions, especially those capable of navigating multilayer networks.
This approach could emphasize transitions between different types of biological entities. Tools
like MuxViz offer various topological measures for multilayer graphs [70], prompting us to
consider representing our graph as matrices to apply these measures effectively. In any cases,
whether adapting the algorithm implementation or refining our graph representation, extensive
work is required to ensure compatibility with our data model.

Enhancing entity identification is of primordial importance to exploit the large amount of
data generated and stored in databases. Interpreting experimental data in the context of existing
biological knowledge requires accurate referencing. Therefore, addressing these challenges is
crucial. This can be achieved by systematically adopting existing standardized naming conven-
tions, developing more efficient entity resolution algorithms, or exploring the use of machine
learning techniques for entity disambiguation (as in [164]).

We introduced reproducible SPARQL queries for identifying and fixing invalid complexes
in BioPAX databases, however as mentioned in the limitations, there are other types of
inconsistencies that could potentially impact analyses. Further work is needed to identify these
issues and to address them, it would thereby enhancing the overall quality and reliability of the
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graph data.

A long-term perspective would be to enrich the existing graph with additional layers to
capture diverse interactions or incorporate extra knowledge by linking other ontologies to the
physical entities within the graph. In our specific study of feed efficiency, it could be valuable
to integrate not only different -omics levels but also different tissues [165], such as muscles or
less invasive ones like feces or milk in dairy species [134, 166]. This expansion would create
a more interconnected representation and may enlighten new interesting paths. Given that we
explore the Reactome database, it would also be valuable to reason at the level of pathways,
enabling us to identify the specific ones in which the entities of interest are involved.

Feed efficiency is one example of complex phenotype were the simultaneous integration of
different -omics datasets might be useful. There are many other complex phenotypes that could
be investigated with our approach. Applying our approach to another experimental dataset or a
different biological question will allow to validate and reinforce its applicability.

7.4 Conclusion

The methods devised in this thesis have wide-ranging applicability to address diverse biolog-
ical questions related to complex phenotypes. Significant efforts have been dedicated to develop
generic and reusable tools, both in terms of the selected techniques and their implementations.
Furthermore, all codes have been made accessible through notebooks, ensuring their availability
for future research endeavors.

Biological data exhibit a large and multifaceted heterogeneity that can be leveraged to gain
intricate insights into biological systems. However, achieving this requires a collective effort to
bridge the need for the development of integration tools and the use of a common language for
denoting biological entities, enabling the seamless integration and interpretation of diverse data
types.
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Abstract

Motivation: Information on protein-protein interactions is collected in numerous primary databases
with their own curation process. Several meta-databases aggregate primary databases to provide more
exhaustive datasets. In addition to exhaustivity, aggregation contributes to reliability by providing an
overview of the various studies and detection methods supporting an interaction. However, interactions
listed in different primary databases are partly redundant because some publications reporting protein-
protein interactions have been curated by multiple primary databases. Mere aggregation can thus introduce
a bias if these redundancies are not identified and eliminated. To overcome this bias, meta-databases rely
on the Molecular Interaction ontology that describes interaction detection methods, but they do not fully
take advantage of the ontology’s rich semantics, which leads to systematically overestimating interaction
reproducibility.
Results: We propose a precise definition of explicit and implicit redundancy, and show that both can
be easily detected using Semantic Web technologies. We apply this process to a dataset from the
APID meta-database and show that while explicit redundancies were detected by the APID aggregation
process, about 15% of APID entries are implicitly redundant and should not be taken into account when
presenting confidence-related metrics. More than 90% of implicit redundancies result from the aggregation
of distinct primary databases, while the remaining occurs between entries of a single database. Finally,
we build a "reproducible interactome" with interactions that have been reproduced by multiple methods or
publications. The size of the reproducible interactome is drastically impacted by removing redundancies
for both yeast (-59%) and human (-56%), and we show that this is largely due to implicit redundancies.
Availability: Software, data and results are available at https://gitlab.com/nnet56/

reproducible-interactome, https://reproducible-interactome.genouest.org/,
Zenodo (doi:10.5281/zenodo.5595037) and NDEx (doi:10.18119/N94302, doi:10.18119/N97S4D
Contact: emmanuelle.becker@irisa.fr, gwenael.rabut@inserm.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Protein-protein interactions (PPIs) play an ubiquitous and fundamental role
in all biological processes. Description of PPIs is essential to understand
how proteins operate at the molecular level and the construction of accurate
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and comprehensive protein interaction networks (or interactomes) is an
important aim of biological research (Bonetta, 2010; Cafarelli et al., 2017;
Luck et al., 2020; Huttlin et al., 2021).

PPIs can be probed using numerous interaction detection methods
(IDMs), following biophysical (e.g. x-ray crystallography), biochemical
(e.g. affinity purification) or genetic approaches (e.g. yeast two-hybrid).
Importantly, since different IDMs probe PPIs in a different manner,
they produce complementary results that often do not fully overlap. For
instance, some IDMs are designed to detect binary interactions of proteins
probed in pairs (e.g. yeast two-hybrid), while others probe interactions
of protein groups assembled in complexes (e.g. affinity purification).
Consequently, the biological interpretation of PPI networks depends on
the underlying IDMs that have been used to produce them. Moreover,
since IDMs can generate false positive and false negative interactions,
multiple observations of a given PPI with different experimental techniques
reinforce the confidence in this PPI. Accurate IDM annotation and
interpretation is thus an important issue in interactome studies.

Information on published PPIs is collected in primary databases
such as IntAct (Kerrien et al., 2012), MINT (Calderone et al.,
2020), BioGRID (Oughtred et al., 2019), DIP (Salwinski et al.,
2004) or HPRD (Keshava Prasad et al., 2009). The major
databases report IDMs using a controlled vocabulary defined by
the Proteomics Standards Initiative-Molecular Interactions (PSI-MI)
consortium (Sivade Dumousseau et al., 2018). This vocabulary is
structured in an ontology to represent the hierarchical relationships
between IDM families by a directed acyclic graph.

Each primary database follows its own curation process with
different literature mining, filtering, and reporting techniques. To address
the resulting need for integration, several meta-databases aggregate
information from multiple primary databases to provide more exhaustive
PPI datasets. Some of these meta-databases, such as the Agile Protein
Interactomes DataServer (APID) (Alonso-López et al., 2016; Alonso-
López et al., 2019), HINT (Das and Yu, 2012) or mentha (Calderone et al.,
2013), focus exclusively on experimentally determined PPIs, while others,
such as IID (Kotlyar et al., 2019) or STRING (Szklarczyk et al., 2019) also
integrate predicted interactions, text mining results or other information.

The accurate aggregation of PPIs from multiple and partly redundant
sources is not a trivial task (Turinsky et al., 2010; Klapa et al., 2013).
Although the primary databases refer to the PSI-MI ontology, they do not
necessarily select identical terms to annotate PPIs (Alonso-López et al.,
2019). Hence, a PPI observed in a single experiment reported in a given
publication can be annotated with distinct IDM terms in different primary
databases. Such annotation differences are usually not taken into account
or corrected during the aggregation process.

APID, which unifies data from five of the largest PPI databases
(Alonso-López et al., 2016; Alonso-López et al., 2019), implements
an integration method that takes redundancy into account and enables
to distinguish ’experimental evidences’ (i.e experimental observations
reported in publications) from ’curation events’ (i.e. entries in PPI
databases). For a given protein pair, multiple entries annotated with
identical IDM and identical PubMed publication identifier (PMID) are
considered as duplicates and counted as a single experimental evidence.
In addition, IDMs are classified into ’binary’ and ’indirect’ methods and
IDMs corresponding to related binary methods (e.g. ’two hybrid array’
and ’two hybrid pooling approach’) are assigned a common method type
(e.g. ’two hybrid’). This common method type is then used instead of the
original IDM to identify duplicate entries across multiple databases. This
custom integration process is not fully satisfying since it is restricted to
binary interactions and it does not take advantage of the PSI-MI ontology.

We propose a novel approach to integrate PPI information from primary
databases. We define the conventional explicit redundancy and extend it
with implicit redundancy based on parent-related terms in the PSI-MI

ontology. We present a method relying on Semantic Web technologies
that successfully detects and reconciles implicit redundancies in curation
events compiled from multiple primary databases, opening the way to an
improved automated curation process. Once curated for both explicit and
implicit redundancies, the integrated set of experimental evidences can
be used to determine the reproducible interactome supported by multiple
experiments.

2 Approach

2.1 Explicit and implicit redundancy

Let us consider a pair of proteins (A,B) and count the number of non-
redundant experiments reporting their interaction.

Primary databases such as BioGRID or IntAct can provide several
entries corresponding to this protein pair. Usually, these entries differ in
the IDM, the PMID, or both. An entry in these databases can thus be
defined by a quadruplet

(A,B,Mi, Px)

where A and B are the proteins, Mi is the IDM (such as ’affinity
chromatography technology’, ’anti-tag coimmunoprecipitation’ or ’two
hybrid’, for the most frequent ones), and Px is the PMID of the original
article describing their interaction. When two entries only differ in
the IDM, this should signify that the original article has observed the
interaction using several experimental techniques. When two entries only
differ in the PMID, this should signify that the interaction has been
reproduced in two distinct studies using the same detection method.

For meta-databases such as APID, populated by aggregating curation
events from other databases, an entry can be defined by a quintuplet

(A,B,Mi, Px, Da)

where Da indicates the primary database indexing the interaction. Meta-
databases can contain different types of redundancies:

• Explicit redundancy occurs when distinct entries referring to the
same protein pair (A,B) and the same PMID Px have an identical
IDM Mi. This happens when two primary databases registered the
same experimental evidence using the same IDM term. Explicit
redundancies are detected and unified by APID and other meta-
databases.

• Implicit redundancy occurs when distinct entries referring to the
same protein pair and the same PMID have been annotated with
different IDMs although they correspond to the same experimental
evidence. In practice, this occurs when curators select IDM terms
at different levels of the ontology, one being more general and
the other more specific. For example, the interaction of the human
proteins MDM2 and TP53 is listed in APID as (MDM2, TP53, ’anti
tag Co-immunoprecipitation’, PMID:17159902, INTACT:7156209)
and also as (MDM2, TP53, ’affinity chromatography technology’,
PMID:17159902, BIOGRID:680279). Although biologists would
naturally recognize one observation annotated twice at different
granularities, the redundancy is not explicit. Implicit redundancy
should not be confused with the common case where several
experimental techniques are used in a single publication to validate
a given PPI. Therefore, detecting implicit redundancies requires
knowledge on IDMs.

Hereafter, we take advantage of the PSI-MI ontology to identify these
two cases, as illustrated in Figure 1.
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Fig. 1. Illustration of the different types of redundancy across primary databases. (A) Curation events from two databases (DB_1 and DB_2). Depending on the IDM reported by DB_2, one
can identify no redundancy (purple), explicit redundancy (yellow), or implicit redundancy (blue). Ontology representations of the different cases are presented in panels (B), (C) and (D).

2.2 Definitions

Following the notation introduced in 2.1, we consider two entries, Ei and
Ej , of a meta-database, defined by their respective quintuplets of the form
(A,B,Mi, Px, Dα). Note that here we do not consider the experimental
role of A and B, therefore all PPIs are symetric and the order of A and B

is irrelevant.
Ei and Ej present explicit redundancy if and only if:

{
Ei = (A,B,Mi, Px, Da)

Ej = (A,B,Mi, Px, Db)

Ei and Ej present implicit redundancy if and only if:





Ei = (A,B,Mi, Px, Da)

Ej = (A,B,Mj , Px, Db)

Mi is an ancestor of Mj ,

where an ancestor can be a direct or an indirect parent.
Ontologies such as PSI-MI (Sivade Dumousseau et al., 2018) can be

used to formalize the subsumption relations between IDMs. Note that with
the notions provided in section 2.1, explicit and implicit redundancies
might be observed among entries originating from different databases
(inter-database redundancy, Da 6= Db) but also from the same database
(intra-database redundancy,Da = Db). We will discuss later (Section 5.3)
the meaning of intra-database redundancies, which can correspond either
to multiple curation events, but also to variations of an IDM (for example,
switching the experimental role (’bait’ or ’prey’) of the A and B proteins).

3 Methods

3.1 Source PPI datasets

PPI curation events integrated by APID were downloaded from the APID
website on March 23, 2020, last update of APID in January, 2019) for two
species (Homo sapiens and Saccharomyces cerevisiae) in the MITAB25
format (Kerrien et al., 2007). These files aggregate the curated events from
five primary databases in a standard format.

In MITAB25 formated data, each line represents a curation event.
Interacting proteins are identified by their Uniprot accession numbers.
The organism is identified with its NCBI taxonomy identifier. Various
information on the experimental evidence is also provided, notably the
PMID of the source publication and the PSI-MI code of the IDM used

to detect the interaction. Some information such as the direction of the
interaction (which protein was used as a ’bait’ and which as a ’prey’) is
not available in this format, but it is usually recorded in primary databases
or in more recent MITAB formats (MITAB27). If necessary, missing
information might be retrieved using the primary database interaction
identifier which is provided and offers full tractability.

3.2 RDF schema and triplestore

The global RDF schema used to integrate all information is presented in
Figure 2. It relies on the following ontologies:

• Biological Pathway Exchange (BioPAX) is an ontology developed as
a standard for representing molecular interactions, including protein-
protein interactions (Demir et al., 2010). We followed the level 3 of
the BioPAX specification.

• Proteomics Standards Initiative-Molecular Interactions (PSI-MI) is
an ontology edited by the HUPO-PSI. It is dedicated to describe
experimental IDMs (Sivade Dumousseau et al., 2018). We used
version 1.2.

Raw PPI curation events from the MITAB file were first imported into
a MySQL database. A Perl script was used to connect to this database,
to exclude curation events that are not considered by APID (see below),
and to convert it into a RDF dataset following the BioPAX v3 standard.
The resulting interaction data were merged with the PSI-MI ontology,
available as an OWL file, into a triplestore powered by the Apache
Foundation’s JENA suite (v3.14.0). The complete workflow is described
in Supplementary Figure S1.

In its integration process, the APID meta-database does not consider
curation events annotated with IDMs that do not correspond to a specific
experimental method (Alonso-López et al., 2019). To be able to compare
our results with APID, we also excluded from our analysis the very same
curation events. These are the ones annotated with the IDMs ’molecular
interaction’, ’interaction detection method’, ’biophysical’, ’experimental
interaction detection’, ’inference’, ’inferred by author’, ’inferred by
curator’, ’in vitro’, ’in vivo’, ’unspecified method’, or ’phenotype-based
detection assay’.

3.3 SPARQL queries

Queries were run using SPARQL Protocol and RDF Query Language
(SPARQL). The JENA suite was used to run the SPARQL queries. All
queries used to detect redundancies are available in supplementary data
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Fig. 2. Scheme representing two curation events reporting the interaction between the ubiquitin ligase MDM2 (UniprotKB: P04637) and the tumor protein 53 (UniprotKB: Q00987) in the
BioPAX level 3 ontology (yellow nodes). These two curation events (highlighted in bold) were annotated by different databases (BioGRID and Intact). They refer to the same publication
(PMID: 22819825), but different IDMs were used to annotate the interaction (’anti tag coimmunoprecipitation’ and ’affinity chromatography technology’). The PSI-MI ontology (purple
nodes) reveals that ’affinity chromatography technology’ is an ancestor of ’anti tag coimmunoprecipitation’, indicating an implicit redundancy between the two curation events.

(Figures S2, S3, S4, S5, S6, S7). As an example, Figure 3 presents the
SPARQL query used to detect implicit redundancies in curation events,
if one term is an ancestor of the other in the PSI-MI ontology. For each
implicit redundancy detected, we conserved only the curation event with
the most precise IDM.

SELECT DISTINCT ?p1 ?p2 ?pmid ?dm_name1
WHERE {

?ppi1 rdf:type bp:MolecularInteraction ;
bp:participant ?p1, ?p2 ;
bp:xref ?pmid ;
bp:evidence ?dm_name1 .

?dm_name1 bp:evidenceCode ?m_vocab1 .
?m_vocab1 bp:xref ?dm_code1 .
FILTER ( STR(?p1) < STR(?p2) )
FILTER NOT EXISTS {

?ppi2 rdf:type bp:MolecularInteraction ;
bp:participant ?p1, ?p2 ;
bp:xref ?pmid ;
bp:evidence ?dm_name2 .

?dm_name2 bp:evidenceCode ?m_vocab2 .
?m_vocab2 bp:xref ?dm_code2 .
?dm_code2 rdfs:subClassOf+ ?dm_code1 .

}
}

Fig. 3. SPARQL query to select curation events without explicit nor implicit redundancies.
(Note: prefixes are not shown)

3.4 Availability and implementation

The code is available at https://gitlab.com/nnet56/

reproducible-interactome. The results are available at
https://reproducible-interactome.genouest.org/

and on the Zenodo open data repository (doi:10.5281/zenodo.5595037).
The non-redundant interactomes are also accessible on the NDEx platform
to facilitate their analysis and manipulation with classical algorithms
(doi:10.18119/N94302 (human), doi:10.18119/N97S4D (yeast)).

4 Results

4.1 Overview of analyzed curation events

We analysed the same curation events as the APID database to assess
the efficiency of redundancy detection methods. A summary of these
curation events is presented in Table 1. The downloaded MITAB files
contain 700, 484 curation events for Homo sapiens and 305, 102 for
Saccharomyces cerevisiae (hereinafter referred to as human and yeast,
respectively). Together, BioGRID and IntAct represent approximately
85% of all curation events in both species. The contribution of HPRD
and BioPlex, restricted to human data, accounts for 13.9% of human
curation events. For both species, most PPIs appear in only one or two
curation events. PPIs reported by a single curation event represent 49.3%
and 60.7% of interacting pairs in human and yeast, respectively.

4.2 Interaction detection methods (IDMs)

The most frequent IDMs in all curation events are listed in Table 1.
Among them, ’affinity chromatography technology’, ’tandem affinity
purification’, ’anti tag coimmunoprecipitation’ and ’two hybrid’ cover
more than 58% of human and 76% of yeast curation events. Interestingly,
these IDMs include terms with parent–child relationships in the PSI-MI
ontology. For example, ’affinity chromatography technology’ is a direct
ancestor of ’anti tag coimmunoprecipitation’. The presence of such chains
is suggestive of possible implicit redundancies between curation events,
as defined in sections 2.1 and 2.2.

4.3 Quantification of implicit redundancies

Thanks to the expressiveness of the SPARQL language, we identified both
explicit and implicit redundancies among curation events (example query
in Figure 3). For constituting a non-redundant dataset, we selected the
most precise curation events and discard the redundant and less precise
ones since they do not add information.

The occurrence of redundancy among curation events is significant
(Table 2). We detected and discarded 73, 991 (11.1%) and 40, 266

(13.7%) implicitly redundant curation events for human and yeast,
respectively. Taking into account both explicit and implicit redundancies
resulted in removing 30.9% of curation events for human and 35.4% for
yeast.



Identifying redundancies during protein-protein interaction database unification 5

Table 1. Human and yeast curation events (CEs) analysed in this study. Excluded Interaction Detection Methods (IDMs) concern 5.00% (n = 35, 000) of all
curation events in human and 3.87% (n = 11, 809) in yeast. Only IDMs annotated with a frequency higher than 2% are shown.

Contributing Databases Most frequent Interaction Detection Methods Currations events for (Pa, Pb)

Databases CEs (%) Interaction Detection Methods Counts (%) Occurrences Counts (%)
Human

BioGRID 378,910 (54.1%) Affinity chromatography technology 291,621 (41.63%) One 161,031 (49.30%)
IntAct 215,577 (30.8%) Two hybrid 71,969 (10.27%) Two 91,742 (28.08%)
BIOPLEX! 55,151 (7.9%) Anti tag coimmunoprecipitation 49,428 (7.06%) [3-10[ 69,015 (21.13%)
HPRD 42,327 (6.0%) Pull down 42,423 (6.06%) [10-50[ 4,763 (1.46%)
DIP 8,519 (1.2%) Biochemical 40,544 (5.79%) ≥ 50 113 (0.03%)

Anti bait coimmunoprecipitation 27,745 (3.96%)
In vivo 21,118 (3.01%)
Two hybrid array 20,813 (2.97%)
Validated two hybrid 14,525 (2.07%)

Yeast
BioGRID 133,998 (43.9%) Affinity chromatography technology 88,681 (29.07%) One 83,799 (60.73%)
IntAct 130,025 (42.6%) Tandem affinity purification 84,842 (27.81%) Two 28,496 (20.65%)
DIP 41,079 (13.5%) Anti tag coimmunoprecipitation 35,363 (11.59%) [3-10[ 21,792 (15.79%)

Two hybrid 24,752 (8.11%) [10-50[ 3,799 (2.75%)
Pull down 13,960 (4.58%) ≥ 50 99 (0.07%)
Inferred by author 10,894 (3.57%)
Protein complementation assay 6,825 (2.24%)
Enzymatic study 6,817 (2.23%)

Table 2. Impact of the removal of both explicit and implicit redundancies on the number of curation events and on the apparent size of the reproducible interactome,
for human and yeast. (EEs: Experimental Evidences)

Human (%) Yeast (%)
Curation events

Initial curation events 665,484 (100%) 293,293 (100%)
Curation events without explicit redundancies 534,140 (80.3%) 229,630 (78.3%)
Curation events without explicit and implicit redundancies 460,149 (69.1%) 189,364 (64.6%)

Apparent size of the reproducible interactome (PPIs supported by ≥ 2 EEs)
Initial 159,192 (100%) 52,313 (100%)
Without explicit redundancies 111,009 (69,7%) 40,235 (76.9%)
Without explicit and implicit redundancies 70,554 (44,3%) 21,311 (40.7%)

Importantly, detection of redundancy between curation events has a
strong impact on the apparent size of the reproducible interactome (i.e PPIs
supported by at least two experimental evidences) (Table 2, Supplementary
Figures S8 and S9). For human, the reproducible interactome drops from
159, 192 to 70, 554 PPIs (−55.7%:−30.3% due to explicit redundancies
and−25.4% due to implicit ones). For yeast, the impact of redundancies
is even worse, with a drop of the reproducible interactome from 52,313
PPIs to 21,311 after removal of both explicit and implicit redundancies
(−59.3%: −23.1% due to explicit redundancies and −36.2% due
to implicit ones). In other words, for human, discarding 11.1% of
implicitly redundant curation events accounts for reducing by 25.4%

the reproducible interactome. Similarly, for yeast, discarding 13.7% of
implicitly redundant curation events accounts for reducing by 36.2% the
reproducible interactome.

4.4 Implicit redundancies mostly result from the integration
of the different primary databases

We then investigated whether implicit redundancy was already present in
source databases (intra-database redundancy), or if it was a consequence of
the integration of different source databases (inter-database redundancy).
The vast majority originates from inter-database redundancies for both
human (91.1%) and yeast (95.0%) (see Supplementary Tables S1 and
S2). The couple of databases that generates the largest part of the implicit

redundancies is BioGRID and IntAct. This is consistent with the fact that
BioGRID and IntAct are the two most contributing source databases.
Intra-database redundancies will be further discussed in section 5.3.

4.5 Frequently redundant identification methods

We computed the frequency of the pairs of detection methods involved in
implicit redundancies. For human, the most frequent implicitly redundant
couples of IDMs and their parent-child relationships in the PSI-MI
ontology are displayed in Figure 4.

The most frequent couple is ’affinity chromatography technology’
and ’anti tag coimmunoprecipition’, which is responsible for 25, 333

redundancies. The term ’affinity chromatography technology’ is also
frequently observed with other descendants such as "pull down" (n =

9, 896), ’anti bait coimmunoprecipitation’ (n = 6, 617), or "tandem
affinity purification" (n = 5, 968). Two-hydrid techniques are also
introducing redundancies, for example with ’two hybrid’, and its
descendants ’two hybrid array’ (n = 16, 113), ’two hybrid prey polling
approach’ (n = 11, 238), ’validated two hybrid’ (n = 11, 123), or ’two
hybrid pooling approach’ (n = 10, 713). A similar situation is observed in
yeast (the complete list of implicit redundancies for both human and yeast
is available as Supplementary Tables S3 and S4). Implicit redundancies
are thus widespread all along the PSI-MI ontology, and not limited to
binary IDMs. This highlights the need for a general approach to reconcile
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Fig. 4. Couples of related interaction detection methods (IDMs) from the PSI-MI ontology frequently identified in implicit redundancies of human PPIs. The arrows connect the most
specific to the most general term according to the PSI-MI ontology. Only implicit redundancies with at least 50 occurrences are shown. Nodes connected to a common IDM are represented
with the same color.

curation events during the integration of multiple primary databases.
The fact that implicit redundancies are observed between very different
terms of the PSI-MI ontology suggests that different primary databases
have different policies for annotating IDMs, as previously noted for IntAct
and BioGRID (Alonso-López et al., 2019). We therefore further analysed
the IDMs used by each primary database.
We observed that IntAct and DIP use a wide range of IDMs for both human
and yeast PPIs (165 for IntAct and 89 for DIP) while BioGRID, HPRD and
BioPlex use much fewer (12, 3 and1 IDMs, respectively) and more general
IDMs. Hence, the strong discrepancies in database annotation policies are
the source of inter-database implicit redundancies.

Overall, we observed that implicit redundancy (i) occurs between
a wide range of the PSI-MI ontology terms, regardless of the species,
(ii) mostly results from the integration of different primary databases
with different annotation policies, and (iii) happens for all database
combinations.

5 Discussion
The construction of a reliable interactome demands to combine interaction
data produced by several independent experimental evidences and IDMs
in order to reduce false positives. Since experimental evidences are curated
and stored in several primary databases, a unification of these databases
is required. The Human Proteome Organization Proteomics Standards
Initiative (HUPO-PSI) developed the PSICQUIC specification and web
services that facilitate data retrieval from multiple databases and assist
their integration but do not elaborate on redundancy detection (del Toro
et al., 2013). In several (meta-) databases, PPIs are annotated with a
confidence score, which is calculated using the number of independent
experimental evidences and the nature of IDMs (Villaveces et al.,
2015). To be relevant, these algorithmic require reliable, non-redundant,
datasets of experimental evidences. Therefore, several primary databases
have decided to coordinate their curation efforts in the frame of the
IMEx consortium in order to provide a single non-redundant set of
homogeneously annotated protein interaction data (Orchard et al., 2012;
Porras et al., 2020).

Here, we propose a formalisation of both explicit and implicit
redundancy between experimental evidence entries in order to integrate
PPIs from any database that uses the PSI-MI ontology. Knowledge about

IDMs is extracted from the PSI-MI ontology, while the method to identify
redundancies is based on Semantic Web technologies.

5.1 The Semantic Web is adapted for identifying implicit
redundancies

Alonso-López et al. (2019) pointed two problems related to redundancy
identification: (i) there may be a parent-child relationship between IDM
terms, and (ii) the path from a child term to its ancestors may not be unique
due to multiple inheritance. We propose the notion of implicit redundancy
to address the logical implications of two database entries describing the
interaction of the same protein pair with IDMs that have a descendant-
ancestor relationship. The Semantic Web is designed to perform integrated
reasoning on data annotations and ontologies. In particular, it makes
handling simple and multiple hierarchies straightforward. In the raw data of
APID that aggregates BioGRID, IntAct, HPRD, BioPlex and DIP, we were
able to identify both explicit and implicit redundancies. Our work reveals
that implicit redundancies are a widespread phenomenon resulting from the
different curation choices of the various databases and that it is of similar
importance than explicit redundancies. Therefore, we demonstrated the
relevance of both the notion of implicit redundancy and of the choice of
the Semantic Web as a technical framework for addressing the redundancy
identification problem. Moreover, new explicit and implicit redundancies
will continue to occur over the natural updates of the various databases.

The PSI-MI ontology that describes the IDMs is evolving. For example,
during the time of our project, we noticed that the term ’three hybrid’,
which was initially a child of the term ’two hybrid’, is now a child
of ’transcriptional complementation assay’. This modification is highly
relevant since ’two hybrid’ is a binary identification method, whereas
’three hybrid’ is not, and having a non-binary identification method as
a direct child of a binary one was not consistent. Therefore, just like
the databases are regularly updated, the ontologies are also corrected and
enriched, which also has an incidence on redundancies. By allowing to
automate redundancy detection as the integration of databases scales up,
the Semantic Web facilitates the reliable interpretation of the results in the
perspective of the construction of a reproducible interactome.

5.2 Widespread inter-databases implicit redundancies

Implicit redundancies primarily arise from the integration of different
databases (91.1% and 95.0% of inter-database redundancies for human
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and yeast, respectively). In our study, we clearly highlight that this is due
to the granularity of IDMs used in the primary databases. Indeed, while
some databases like IntAct refer to numerous detailed terms from the PSI-
MI ontology (165 and 89 terms used to annotate human and yeast PPIs,
respectively), other databases like BioGRID merely use general and high
level terms (only 12 terms used for both human and yeast).

Therefore, if the integration of different PPI databases is necessary to
better cover the interactome, a particular attention has to be paid to detect
the widespread inter-database implicit redundancies. A simple method
could be to define priorities between databases depending on whether they
use precise or general terms to annotate PPIs. In case of multiple curations
events referring to the same proteins and the same PMID, the ones from
the database with the highest priority would be selected. However, this
would be an approximate approach whereas we propose an exact solution,
robust to possible changes of annotation policy by primary databases.

Primary databases of the IMEx consortium coordinate and share their
curation efforts to produce a non-redundant dataset of PPI experimental
evidences (Orchard et al., 2012). IMEx members use common curation
rules to harmonize their annotation process. The unicity of the curation
events is ensured by allowing PPIs from a given PMID to be annotated
only once, and all data are centralized in IntAct. Both this work from the
IMEx consortium and ours emphasize the need for a general approach to
assemble non-redundant PPI datasets.

5.3 Intra-database redundancies

Our analysis also identified a significant number of apparently redundant
curation events within primary databases (Supplementary Figures S8
and S9). Such intra-database redundancy may originate from multiple
independent annotations of identical experimental evidences within
primary databases, as noted by Alonso-López et al. (2019). Yet, further
inspection of such curation events indicates that intra-database redundancy
primarily occurs when independent experiments from the same publication
have been annotated in a given database with identical or related IDMs,
leading to apparent explicit or implicit intra-database redundancies. For
instance, we observed that the vast majority of the explicit intra-database
redundancies originating from BioGRID are due to PPIs probed with
both partners as baits and preys (6229 out of 8696 explicit redundancies
involving exactly two curation events for yeast and 12283 out of 15385
for human). Intra-database redundancy can also occur when a PPI has
been identified with a high-throughput experiment and then validated
using the same or a related method performed at low-throughput. Hence,
this currently leads to the unification of curation events that actually
report distinct experimental evidences. To correct this, our method could
be extended by taking into account additional information, such as the
experimental role of each protein.

5.4 Towards a reproducible interactome

The size of the reproducible interactome is drastically impacted by
removing redundancies for both human (−55.7%) and yeast (−59.3%),
and we show that this is largely due to implicit redundancies. Indeed, we
observe that filtering the curation events involved in implicit redundancy
(11 to 14 %) leads to a drastic (25 to 36 %) reduction of the apparently
reproducible interactome. This implies that a large number of PPIs
currently considered as reproducible actually relies on integration artefacts.
Thus, more experimental data are still needed to further improve the size
and confidence level of the reproducible interactome. Information on PPIs
that have not yet been reproduced can help to prioritize such experiments.
Knowledge-based methods as presented in this article will be necessary
to support the integration of the continuously increasing experimental
evidences and publications.
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Titre : Intégration et analyse de données biologiques hétérogènes par exploitation de graphes
multicouches pour mieux comprendre les variations d’efficience alimentaire chez le porc

Mot clés : Efficience alimentaire, Graphe multicouche, Intégration de données, Multi-omiques,

Web sémantique

Résumé : Les progrès technologiques d’étude
du vivant ont conduit à une explosion de don-
nées multimodales et multicentriques. Ce phéno-
mène soulève de nombreuses questions liées au
stockage, à la standardisation et à l’analyse de
ces données massives. Ainsi, ce travail de thèse
porte sur le développement d’une méthode inté-
grative d’analyse de données biologiques, pour
en extraire de la connaissance. Pour prendre en
compte leur forte interdépendance, cette approche
consiste à intégrer différents types d’entités biolo-
giques (ARNm, protéines, métabolites, caractères
observables) qui sont habituellement étudiés indé-
pendamment les uns des autres. La solution infor-
matique élaborée permet d’intégrer ces données
hétérogènes dans un graphe multicouche, avec
une couche par type d’entités. L’originalité est de
relier les éléments d’une couche ou de couches

différentes par des propriétés extraites des bases
de données et de connaissances publiques à l’aide
de technologies du Web Sémantique. A partir de
ce graphe, le but est de caractériser les relations
entre un groupe de molécules d’intérêt grâce à
des métriques de la théorie des graphes. La mé-
thode développée a été appliquée à des jeux de
données expérimentaux (transcriptomique, méta-
bolomique et phénotypes animaux) pour décrire
et comprendre les relations entre les molécules et
leur importance dans la variation d’efficience ali-
mentaire de porcs. L’efficience alimentaire est un
phénotype clé pour contribuer à un élevage du-
rable, mais complexe. Ce travail a permis de mettre
à disposition des méthodes d’analyse novatrices, à
différentes échelles de l’organisation du vivant, fa-
vorisant une meilleure compréhension des proces-
sus biologiques.

Title: Integration and analysis of heterogeneous biological data through multilayer graph ex-
ploitation to gain deeper insights into feed efficiency variations in growing pig

Keywords: Data integration, Feed efficiency, Multilayer graph, Multi-omics, Web Semantic

Abstract: Recent technological advancements in
biological data acquisition have resulted in an ex-
plosion of multimodal and multicentric data. This
phenomenon raises numerous questions regard-
ing the storage, standardization, and analysis of
these massive datasets. This thesis focuses on the
development of an integrative method for analyz-
ing biological data to extract knowledge from them.
To account for their strong interdependencies, this
approach involves integrating different types of bi-
ological entities (mRNA, proteins, metabolites, ob-
servable traits) that are typically studied indepen-
dently. The devised computational solution enables
the integration of these heterogeneous data into
a multilayer graph, with each layer representing
a specific type of entity. The novelty lies in link-
ing elements within a layer or across different lay-

ers by utilizing properties extracted from public
knowledge databases through Semantic Web tech-
nologies. Based on this graph, the objective is to
characterize the relationships among a group of
molecules of interest using graph theory metrics.
The method was applied to experimental datasets
(transcriptomics, metabolomics and animal pheno-
types) to describe and understand the relation-
ships between specific molecules and determine
their importance in feed efficiency variations in
growing pigs. Feed efficiency is a key phenotype
for sustainable farming, but is recognized as com-
plex. This work provides innovative analysis meth-
ods to analyze and integrate various levels of bi-
ological organization, facilitating a better under-
standing of biological processes.
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