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RÉSUMÉ EN FRANÇAIS

Contexte

La nouvelle génération de caméras embarquées pour les satellites permet d’acquérir
des images de plus grandes résolutions spatiales et spectrales. Cet accroissement de la
résolution se traduit par une plus grande quantité de données à traiter à bord du satellite
et à transmettre au sol. D’autant plus que ces dernières années ont vu une explosion de
l’utilisation des données d’observation terrestre dans une multitude d’applications de la
défense à l’agriculture en passant par l’étude du climat et de la biodiversité. La transmis-
sion de ce grand volume de données nécessite donc des solutions de compression efficaces
et capables de préserver toutes les informations présentes dans l’image et nécessaires aux
tâches d’analyse.

La solution de compression actuellement utilisée a été définie par le comité consultatif
pour les systèmes de données spatiales (CCSDS) et repose sur une transformée en on-
delettes [CCSDS, 2017]. Cette solution proche du standard JPEG 2000 [Skodras et al.,
2001] concernant ses performances de compression a été développée en gardant à l’esprit
un compromis entre les performances de compression et la complexité algorithmique de
la méthode. En effet, cette problématique sur la quantité de données à transmettre se
situe dans le contexte d’un système embarqué qui possède donc des contraintes physiques
fortes sur les ressources de calcul disponibles.

Il est aussi nécessaire de replacer ce processus de compression dans l’ensemble plus large
de la chaîne de traitement des systèmes d’imagerie qui va du capteur jusqu’à l’affichage.
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Résumé en Français

En effet de nombreux traitements tels que le débruitage et le dématriçage sont nécessaires
au sol pour restaurer les images. Dans les applications satellitaires, la compression est un
maillon clé situé à l’interface entre l’espace et la Terre.

Objectifs de la thèse

L’objectif principal de la thèse est d’étudier de nouvelles techniques de compression of-
frant un meilleur compromis débit-distorsion en vue d’une utilisation à bord de nouveaux
satellites à capteurs matriciels de haute résolution. Dans ce contexte, l’intérêt pour les
méthodes de compression avec des réseaux de neurones profonds émerge en premier lieu.
Celles-ci ont pu se développer grâce à trois facteurs travaillant de concert : l’explosion
de la quantité de données, l’utilisation de matériel informatique hautement parallélisable
(GPU) et le développement d’outils logiciels permettant de les utiliser. Ces méthodes
ont démontré leur efficacité dans des champs très larges d’application y compris dans le
domaine de l’imagerie et sont particulièrement performantes pour extraire les caractéris-
tiques de données très typées.

Ces réseaux de neurones doivent cependant être adaptés pour les besoins de notre
problème. Les images satellitaires ont la particularité d’avoir une entropie élevée due
d’une part à leur résolution et d’autre part à la présence importante de détails haute
fréquence e la taille d’un pixel. Le principal défi de la compression de ces images est de
pouvoir distinguer, dans les informations à haute fréquence, la part du bruit de la part
du signal pour une meilleure interprétation des données. Cela doit se faire en minimisant
d’éventuels artefacts de compression pour ne pas détériorer les détails de l’image.

L’autre point crucial est la réduction de la complexité des réseaux de neurones afin
de pouvoir les appliquer à des systèmes embarqués. Malgré l’augmentation des ressources
au sein des satellites, les questions de mémoire et de complexité algorithmique restent
bien présentes. Un enjeu de la thèse sera de concilier notre solution de compression avec
d’autres traitements d’images pour profiter des capacités d’apprentissage de bout en bout
des réseaux de neurones. Ces traitements combinés permettront de diminuer la charge de
calcul en enlevant des étapes.
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Résumé en Français

Structure de la thèse

Le manuscrit est organisé en deux parties précédées d’un premier chapitre qui rap-
pelle les caractéristiques des systèmes d’imagerie satellitaire et ses traitements à bord.
La première partie se concentre sur les questions de compression d’images RVB avec tout
d’abord un état de l’art des méthodes d’apprentissage profond. Ces méthodes sont ensuite
améliorées pour répondre aux enjeux d’une compression à bord. La deuxième partie est
consacrée à l’extension de notre méthode de compression pour y inclure d’autres traite-
ments tels que le débruitage et le dématriçage avec là aussi d’abord une mise en contexte
des algorithmes pour effectuer des traitements joints suivis de nos contributions dans le
contexte de l’imagerie satellitaire.

Dans le Chapitre 1 nous détaillons l’ensemble de la chaîne de traitement pour une
image satellite, de l’acquisition par les capteurs, à son débruitage et dématriçage au sol en
passant par sa compression, étape nécessaire pour la transmission depuis l’espace jusqu’à
la Terre. Cette base de traitements séquentiels au sein du satellite permet une mise en
contexte pour la suite du manuscrit.

Le Chapitre 2 présente la littérature des méthodes d’apprentissage profond pour les
problèmes de compression d’images. Nous détaillons en particulier l’ensemble des réseaux
de neurones utilisant des autoencodeurs et qui forment aujourd’hui l’état de l’art dans
ce domaine. Ces réseaux sont conçus pour reproduire en sortie l’image d’entrée en ex-
trayant les caractéristiques principales de l’image dans une représentation latente plus
compacte. Cela en fait des réseaux particulièrement adaptés à notre problème et l’un
d’eux, l’autoencodeur avec hyperprior [Ballé et al., 2018] sera le point de départ pour
toute la suite du travail présenté.

Le Chapitre 3 est notre premier chapitre de contributions. Nous y développons un
réseau de neurones pour répondre à la compression d’images satellitaires RVB liées au
déploiement de futur satellite avec des capteurs matriciels. Néanmoins ce type d’imagerie
bien que RVB, repose sur des caractéristiques particulières bien différentes de l’imagerie
naturelle et nécessite donc une adaptation de la méthode de compression à bord pour
diminuer la bande passante afin de transmettre ces images au sol. Nous montrons l’efficacité
de ces nouvelles méthodes utilisant l’apprentissage profond dans ce contexte d’images très
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Résumé en Français

typées où ces réseaux réussissent à extraire les caractéristiques des images. Afin de ren-
dre compatible l’algorithme compression aux conditions de système embarqué nous opti-
misons les paramètres du réseau (couches, filtres, noyaux) pour réduire le coût de calcul
et chercher un meilleur fonctionnement à haut débit pour des qualités de reconstruction
suffisantes. Nous ajoutons aussi la possibilité pour le réseau de compresser des images sur
une large bande de débit avec un pas de quantification variable, au lieu d’être bloqué sur
un point de débit-distorsion.

Les images satellitaires sur lesquelles nous travaillons possèdent une entropie impor-
tante, donc une quantité importante de détails dans les hautes fréquences. Pour améliorer
à la fois la qualité de reconstruction générale et la capacité de compression des motifs
striés de hautes fréquences, notre stratégie est d’identifier les zones haute fréquence. Pour
ce faire, nous proposons l’ajout de modules d’attention au sein du réseau. Nous effectuons
aussi un travail sur l’entraînement du réseau avec l’ajout d’une fonction de coût perceptuel
au sein du compromis débit-distorsion. Notre fonction de coût perceptuel nous permet de
mieux extraire lors de l’entraînement des zones jusqu’alors floutées par le schéma de com-
pression optimisé sur une norme L2. Ce nouveau compromis fait lui aussi l’objet d’un
travail avec l’optimisation des hyperparamètres du réseau grâce à une stratégie multi-
objectifs automatique des paramètres.

Enfin, nous proposons une méthode de compression quasi sans perte avec l’ajout
d’une compression spécialisée sur les hautes fréquences de l’image résiduelle. A travers
l’utilisation d’un filtrage et seuillage de nos résidus, nous parvenons à extraire une informa-
tion structurelle contenue dans l’erreur de reconstruction de notre réseau de compression
générale.

À partir du Chapitre 4, tenant compte du déploiement récent et en cours de capteurs
matriciels dans les satellites, et qui nécessitent une étape de dématriçage, nous proposons
d’étendre notre méthode de compression pour ajouter d’autres traitements au sein du
satellite. Dans ce chapitre, nous présentons l’état de l’art des méthodes de traitement con-
joints pour les images en se concentrant uniquement sur le dématriçage, le débruitage et la
compression qui sont les trois traitements au cœur de la chaîne de traitement classique en
imagerie. Ces méthodes jointes permettent de gagner, tant sur la qualité de reconstruction
que sur la réduction de complexité par rapport aux traitements séquentiels.
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Dans le Chapitre 5, nous détaillons la fusion du débruitage et dématriçage au sein de
notre réseau de compression. Ce traitement joint permet de répondre tant à des questions
sur les performances de compression et reconstruction qu’à une problématique de com-
plexité en diminuant le nombre de processus dans la chaîne de traitement. D’abord avec
une preuve de concept du modèle qui mêle des données brutes et donc matricées avec un
réseau de compression forçant une représentation couleur en sortie.

Cette base est améliorée avec l’ajout d’une branche de guidage pendant l’entraînement
qui a pour but de forcer une plus grande représentation intermédiaire des caractéristiques
de l’image. Cela s’adapte parfaitement à notre précédent schéma d’entraînement multi-
objectifs sans provoquer une augmentation du coût de calcul à bord du satellite. Un
pré-traitement des données brutes en amont du réseau est ajouté pour aider une meilleure
reconstruction.

Pour être au plus proche de données réelles, nous considérons des données bruitées et
procédons à une modification de l’entraînement du réseau pour effectuer un débruitage des
images conjointement aux deux autres opérations. Enfin, une ouverture vers une méthode
de compression à qualité constante (au lieu du débit constant) est envisagée dans le cadre
de ces traitements joints. L’étude des statistiques de l’image en amont de la chaîne de
traitement nous permet de faire une estimation des paramètres de qualité nécessaires pour
assurer une compression ne dépassant jamais un certain seuil et donc assurer une qualité
de reconstruction constante tout en minimisant le débit.
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INTRODUCTION

Context

The new generation of cameras on board satellites can acquire images with greater
spatial and spectral resolution. This increase in resolution means that more data must be
processed on board the satellite and transmitted to the ground. That is especially true
as recent years have seen an explosion in the use of Earth observation data for a wide
range of applications, from defence and agriculture to the study of climate change and
biodiversity. The transmission of these large volumes of data therefore requires efficient
compression solutions capable of preserving all the information present in the image and
necessary for the analysis tasks.

The compression solution currently used was defined by the Consultative Committee
for Spatial Data Systems (CCSDS) and is based on a wavelet transform [CCSDS, 2017].
This solution, which is close to the JPEG 2000 standard [Skodras et al., 2001] in terms of
compression performance, was developed with a compromise between compression perfor-
mance and algorithmic complexity in mind. Indeed, the volume of data to be processed
is an issue in the context of an embedded system, which has strong physical constraints
on the available computing resources.

It is also necessary to consider this compression process in the processing pipeline of the
imaging system, from sensor to display. On the ground, numerous processing operations
such as denoising and demosaicking are required to restore images. In satellite applications,
compression is an essential link at the interface between space and earth.
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Objective of the thesis

The main objective of the thesis is to investigate new compression techniques that offer
a better rate-distortion trade-off for use on board new satellites with high-resolution ma-
trix sensors. In this context, there is a growing interest in compression methods using deep
neural networks. These methods have been able to develop thanks to three factors: the
explosion of data, the use of highly parallelisable processing hardware (GPUs), and the
development of software tools to use them. These methods have demonstrated their effec-
tiveness in a wide range of applications, including image processing, and are particularly
effective at extracting features from highly specific data.

However, these neural networks have to be adapted to the needs of our problem. Satel-
lite images have the particularity of having a high entropy due, on the one hand, to their
resolution and, on the other hand, to the large amount of high-frequency pixel-sized de-
tail. The main challenge in compressing these images is to be able to distinguish noise
from signal in the high-frequency information, for a better interpretation of the data. This
must be done while minimising any compression artefacts so as no to alter image detail.

The other key issue is to reduce the complexity of neural networks so that they can be
applied to embedded systems. Despite the increase in resources on satellites, the issues
of memory and algorithmic complexity are still very much present. One of the challenges
of the thesis will be to combine our compression solution with other image processing
techniques to take advantage of the end-to-end learning capabilities of neural networks.
These joint methods will make it possible to reduce the computational load by removing
steps in the imaging pipeline.

Outline of the thesis

The manuscript is divided into two parts, preceded by a first chapter that provides an
overview of the satellite imagery system and its different processing tasks on board. The
first part focuses on RGB image compression issues, starting with a state-of-the-art review
of deep learning methods. These methods are then improved to meet the challenges of
onboard compression. The second part is dedicated to the extension of our compression
method to other processing operations such as denoising and demosaicking, again starting
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with a description of the methods used for joint processing, followed by our contributions
in the context of satellite imagery.

In Chapter 1 we describe the entire image processing pipeline on board satellites, from
acquisition by the sensors, to denoising and demosaicking on the ground. Compression as a
necessary step for transmission from space to Earth is explained in detail. This overview of
sequential processing within the satellite provides a context for the rest of the manuscript.

Chapter 2 presents the literature on deep learning methods for image compression
problems. In particular, we detail neural networks using autoencoders that represent the
state-of-the-art in this field today. These networks are designed to reproduce the output
of the input image by extracting the main features of the image in a more compact latent
representation. This makes them particularly well suited to our problem, and one of them,
the hyperprior autoencoder [Ballé et al., 2018] will be the starting point for the rest of
the work presented.

Chapter 3 is our first chapter of contributions. We develop a neural network to respond
to the compression of RGB satellite images linked to the deployment of future satellites
with matrix sensors. However, although this type of imagery is RGB, it is based on
specific characteristics that are very different from natural images and therefore requires
the onboard compression method to be adapted in order to reduce the bandwidth required
to transmit these images to the ground. We demonstrate the effectiveness of these new
methods using deep learning in the context of highly specific images, where these networks
succeed in extracting the characteristics of the images. To make our compression algorithm
compatible to the conditions of an embedded system, we are optimising the network
parameters (layers, filters, kernels) to reduce the computational cost and achieve better
performance at high bit rates with sufficient reconstruction quality. We are also adding
the ability for the network to compress images over a wide bit rate range with a variable
quantisation step, rather than being locked to a rate-distortion point.

The satellite images we are working on have a high entropy and therefore a large
amount of detail at high frequencies. To improve both the overall reconstruction quality
and the compression capacity of high-frequency striped patterns, our strategy is to identify
high-frequency areas. To do this, we propose adding attention modules to the network.
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We are also working on training the network by adding a perceptual cost function to the
rate-distortion trade-off. Our perceptual cost function allows us to extract areas during
training that were previously blurred by the L2 norm optimised compression scheme.
This new trade-off is also the subject of work on optimising the network’s hyperparameters
using an automatic multi-objective balancing strategy. Finally, we propose a quasi-lossless
compression method with the addition of specialised compression on the high frequencies
of the residual image. Through the use of filtering and thresholding of our residuals, we
manage to extract structural information contained in the reconstruction error.

Starting with Chapter 4, we consider the extension of our compression method to
include other processing within the satellite. In this chapter, we present the state-of-
the-art in joint image processing methods, focusing only on demosaicking, denoising and
compression, the three processes at the heart of the classical image processing chain.
These joint methods offer several advantages over sequential processing, both in terms of
reconstruction quality and complexity reduction.

In Chapter 5 we detail the merging of denoising and demosaicking within our com-
pression network. This joint processing makes it possible to address both compression and
reconstruction performance issues and the complexity problem by reducing the number
of steps in the processing chain. We begin with a proof of concept of the model, combin-
ing raw, and therefore colour filtered, data with a compression network that enforces an
output colour representation.

This base model is improved with the addition of a guidance branch during training,
the aim being to force a larger intermediate representation of image features. This fits
in perfectly with our previous multi-objective training scheme, without increasing the
cost of computing on board the satellite. A pre-processing of the raw data before the
network is added to improve the reconstruction. To get as close as possible to real data, we
consider noisy data and modify the network training to perform image denoising jointly
with the other two operations. Finally, an extension of this work towards a constant
quality compression method is envisaged within the framework. By studying the raw
image statistics at the beginning of the processing pipeline, we can estimate the quality
parameters needed to ensure that the compression never falls below a certain quality
threshold, thus guaranteeing constant reconstruction quality.
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Chapter 1 – Satellite imaging system

1.1 Overview of the processing pipeline

Airbus is preparing to launch a new constellation of small observation satellites [Lebègue
et al., 2020] with increased spatial resolution. Compared with the Pleiades constellation,
which has a resolution of 70 cm for the panchromatic band and 280 cm for the multispec-
tral bands [Gleyzes et al., 2012], this constellation will have a geometric resolution of 50
cm for each RGB colour band. The constellation also differs in the nature of its sensors.
In fact, the acquisition is not of the push-broom type as for the Pleiades, but of the starer
type, similar to the Chinese satellite Jilin-1. The different types of acquisition are shown
in Figure 1.1.

Figure 1.1 – Different types of acquisition of satellite images.

In starer acquisition, a matrix of sensors captures only 3 visible bands together, similar
to standard digital cameras. A complete image is captured with no focal plane shift.
A colour filter array (here a Bayer filter) determines which colour is captured at each
pixel position for the photodiode in the sensor. Demosaicking, the processing required to
reconstruct a full colour image from sub-sampled channels, is performed on the ground.
With push-broom satellites, the satellite takes bands of an area to reconstruct an image.
Each band is acquired separately: red, blue, green, near-infrared and panchromatic (from
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1.2. Image compression

400nm to 800nm). As the colour bands are acquired separately, each pixel in each band
does not capture exactly the same position on the Earth due to the different wavelengths
of the bands and the optical effects that depend on them (e.g. diffraction). To obtain
high-resolution colour images, additional processing must be performed to re-arrange the
spectral bands.

In this thesis, we consider a simple image processing pipeline for a starer satellite,
shown in Figure 1.2. The only processing of the raw data on board the satellite is com-
pression to reduce the bandwidth required for transmission. The amount of data involved
is significant: the satellite is estimated to take an average of several thousands images per
day per satellite, each scene at 150 Mpix per second. Further processing, such as demo-
saicking and denoising, is carried out on the ground due to the high level of complexity of
the task. Additional processing includes a wide range of corrections and calibrations, from
geo-referencing to focal plane repositioning, but is beyond the scope of this thesis. Prior
to delivering the data to the end user, some higher level processing such as classification
or Digital Surface Model (DEM) can be performed.

Figure 1.2 – Simplified image processing pipeline for the satellite.

1.2 Image compression

Although lossless compression is possible, it does not reduce the size sufficiently. In this
thesis we consider lossy compression, which aims to minimise the bit rate while allowing
a certain amount of distortion between the reconstructed image and the original image.
The allowed distortion for satellite images is much lower than for conventional images for
analysis purposes. Satellite images are highly correlated signals with both spectral and
spatial redundancy. Transform coding is used to decorrelate the image so that it can be
compressed efficiently. Other methods exist for exploiting redundancy in the image, some
of which are specially designed for satellite imagery using the uplink to send informa-
tion about the temporal redundancy [Aulí-Llinàs et al., 2016]. Quantisation introduces
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Chapter 1 – Satellite imaging system

approximation error into the image before it is entropy encoded into a bitstream. This
bitstream is then decoded and the inverse transform is used to recover a reconstruction
of the original image.

The Karhunen-Loeve Transform (KLT) [Dony et al., 2001] is used in image processing
to decorrelate the data. The Airbus compression baseline uses a modified KLT transform
[Ohta et al., 1980]. The RGB channels are transformed into 4 components Y, U, V and
W which are compressed independently. For the KLT to work well, the noise must be
consistent between the bands. So we need to do an Anscombe transform before doing
the KLT to take into account the Poisson distribution of the noise. More details on noise
in satellite imagery can be found in Section 1.4. The compression method used is the
standard developed by the Consultative Committee for Space Data Systems (CCSDS),
which is a wavelet transform similar to the JPEG 2000 codec [Skodras et al., 2001].

1.2.1 Principles of image compression

In the encoder, the quantisation step maps the data to a smaller number of discrete
symbols, resulting in some approximation and therefore lossy compression. This quan-
tised representation is losslessly entropy encoded into a bitstream, which is then decoded.
Common entropy coding algorithms includes Huffman coding and arithmetic coding. The
original data is approximated from the quantised code using inverse quantisation and
inverse transform.

Information theory shows that vector quantisation optimises the rate-distortion trade-
off and provides the smallest bit rate for a given distortion. However, due to its enormous
computational complexity, vector quantisation is rarely implemented and scalar quan-
tisation is preferred. Information theory provides some guarantees for this sub-optimal
quantisation. At a high bit rate, uniform scalar quantisation with a variable-length en-
tropy coder is 1.53dB lower than the best rate-distortion performance [Wiegand, Schwarz,
et al., 2011] with vector quantisation. This holds for any independent and identically dis-
tributed data on quadratic distortion metrics.

Despite the good performance of scalar quantisation, it suffers from a major shortcom-
ing compared to vector quantisation, which is the lack of use of correlations in the data.
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1.2. Image compression

Images are particularly redundant data, with both spatial redundancy between adjacent
pixels and spectral redundancy between channels. If we model quantised pixels in terms
of X, a discrete random vector of size n. A property of the joint entropy of X is:

H(X) ≤
n∑

i=1
H(Xi) (1.1)

The joint entropy of X is upper-bounded by the sum of the entropies of each Xi. This
inequality becomes an equality if Xi are independent. The lowest rate is thus obtained if
we can compute the joint entropy, but this proves to be a very complex step that grows
exponentially with n. A variable-length entropy encoder that has difficulty exploiting
the correlations will use a sub-optimal entropy model, resulting in a higher bit rate. To
overcome this problem, we use a transform to reduce the correlation in the data so that
the joint entropy is close to the sum of the individual entropies. If we consider Y the
transformed quantised pixels with almost independence between Yi then

H(Y ) ≲
n∑

i=1
H(Yi) (1.2)

If the inverse transform decorrelates sufficiently the signal, the joint entropy of the quan-
tised code is close to the sum of the entropy of the discrete random variable Yi. After
decoding the bitstream, the inverse transform is applied to the quantised code to recover
the approximation of the original image. For this reason, transform coding is the most
common type of compression. Hand-crafted transform types include the Discrete Cosine
Transform (DCT) used in the JPEG compression standard [Wallace, 1992] and the Dis-
crete Wavelet Transform (DWT) used in the JPEG 2000 standard [Skodras et al., 2001]
or the CCSDS standard [CCSDS, 2017].

1.2.2 JPEG 2000 and the wavelet transform

A compression standard defines a set of rules for processing the input data and for-
matting the behaviour of the bitstream. It provides a degree of interoperability between
bitstream senders and receivers. New standards can respond to new needs, such as in-
creased pressure on bandwidth or additional constraints on complexity. Standards are set
by companies and expert groups such as the Joint Photographic Experts Group (JPEG).
The latter has developed widely used codecs such as JPEG and JPEG 2000.
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Chapter 1 – Satellite imaging system

JPEG 2000 is based on the Discrete Wavelet Transform (DWT) applied to the rows
and columns [Skodras et al., 2001]. The DWT decomposes the image into frequency sub-
bands, transforming the representation into a pyramidal structure. The low and high
filters (both horizontal and vertical) create 4 bands, followed by down-sampling at each
iteration, as shown in the example in Figure 1.3:

1. LL: Low filter horizontally and vertically

2. LH: Low filter horizontally and High filter vertically

3. HL: High filter horizontally and Low filter vertically

4. HH: High filter horizontally and vertically

The iterations continue on the low frequency part of the sub-bands (LL). The transform
is reversible and the original image can be recovered. This transformed image has a higher
energy compression than the DCT [Skodras et al., 2001].

Figure 1.3 – Wavelet transform example. Image of Lena and level 3 DWT decomposition
with the sub-band structure.

The full JPEG 200 codec includes additional processing in the compression pipeline.
An example is the colour transformation before the DWT on each channel. The YUV
colour space with one luminance and two chrominance channels is often preferred for
image compression. This is because the human eye is more sensitive to brightness than
to colour, so most of the energy is concentrated in one channel. Luminance is essentially
the sum of the RGB channel and chrominance is the difference between luminance and
the red and blue channels. Chrominance can also be down-sampled to further increase the
compression of the input image.
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1.3. Image demosaicking

1.2.3 CCSDS 122: a standard for satellite images

The Consultative Committee for Space Data Systems (CCSDS) is made up of the
world’s major space agencies and defines standards for space data and information sys-
tems. These standards must meet the requirements of space missions while allowing in-
teroperability between agencies. For compression, these standards cover a wide range of
applications with lossy image compression [CCSDS, 2017] but also hyperspectral predic-
tive image compression and lossless compression [Huang, 2011a].

The CCSDS recommended standard for image compression was first released in 2005
[CCSDS, 2005] with a second version in 2017 [CCSDS, 2017] bringing more backward
compatibility and support for higher dynamic range. It offers progressive lossy to loss-
less compression, quality or bit rate constant compression, and low complexity for high
throughput. It has been specifically designed to target high bit rate compression while
taking complexity requirements into account.

The codec relies on the DWT, similar to JPEG 2000, followed by a bit-plane encoder
that encodes the transformed code. For the DWT it uses a 9/7 bi-orthogonal filter, which
offers better rate-distortion performance than the 5/3 filter at the cost of increased com-
plexity. This increase in compression complexity is offset by a limited number of additional
features compared to the JPEG 2000 codec while also being specifically implemented for
onboard hardware and software. This standard is essentially a modification of JPEG 2000
for the satellite imagery use case.

1.3 Image demosaicking

1.3.1 Colour filter array

The colour filter array is compressed on board using the CCSDS 122.0-B-2 standard
[CCSDS, 2017] and transmitted to the ground. Once on the ground, the bitstream must
be decompressed and demosaicked to recover a full colour image, as shown in Figure 1.4.
The images we use are from starer-type satellites, which use matrices of detectors. In
particular, the satellite uses conventional digital sensors.
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Figure 1.4 – 1) Bayer CFA. 2) Output of a sensor with the Bayer filter. 3) Output colour
coded with Bayer filter colours. 4) Reconstructed image after interpolation of missing
colour information. Source: Wikimedia Commons

Digital sensors, such as CMOS image sensors, are popular because of their cost and
performance. These photodiodes convert light into voltage to measure intensity but only
capture monochrome intensity. To overcome this, colour filter arrays (CFAs) are stacked
on the photodiodes, the most popular being the Bayer CFA so that each pixel in the raw
image is red, green or blue depending on the Bayer profile. The spectral sensitivity of
the human eye is highest at red, blue and green wavelengths, with a peak at green. The
demosaicking process is used to recover the missing information from each colour channel
by interpolation.

Standard demosaicking algorithms include bi-linear interpolation [Losson et al., 2010],
gradient corrected interpolation [Buades et al., 2011b; Malvar et al., 2004] or directional
filtering with a posteriori decision [Menon et al., 2006]. The method used in the Airbus
baseline is a modified version of the Hamilton-Adams algorithm [Buades et al., 2011b] to
include some form of denoising.
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1.4. Image denoising

1.3.2 Hamilton-Adams demosaicking

Demosaicking is similar to a 2x2 super-resolution problem since we interpolate missing
information from sub-sampled images. The Hamilton-Adams demosaicking algorithm first
interpolates the green channel only and then the other two channels which are initially
twice as sub-sampled [Buades et al., 2011b].

The horizontal and vertical gradients at each missing green pixel are computed using
the first and second-order partial derivatives using the green and red/blue pixels respec-
tively [Buades et al., 2011b]. Depending on the main direction of the gradient, the hori-
zontal or vertical average of the neighbouring green values is used to estimate the missing
value. This is corrected by the second-order derivative of the gradient in that direction.
Once the green channel is fully recovered, the red and blue channels are interpolated using
bi-linear interpolation on the difference R − G and B − G.

1.4 Image denoising

1.4.1 Generalities

The raw image, although noisy, is compressed on board according to the CCSDS 122.0-
B-2 standard [CCSDS, 2017] and transmitted to Earth. Once the bitstream is decom-
pressed and demosaicked, denoising is performed. Denoising is a costly process but is
necessary because noise is added during acquisition and onboard processing. This noise
model affecting satellite imagery is not purely Gaussian and requires some transformation
before denoising algorithms can be applied.

Denoising is a widespread research topic. Standard methods include non-local algo-
rithms that rely on similarities in the whole image rather than the context of a pixel’s
neighbourhood. In the non-local means algorithm, a pixel is replaced by an average of
similar pixels across the whole image, rather than just around the pixel [Buades et al.,
2011a]. An improved version, known as non-local Bayes, uses patches that are replaced by
a weighted average of the most similar existing patches [Lebrun et al., 2013]. BM3D also
uses patch averaging, but in a transform domain, and groups similar DCT 2D patches into
3D groups to increase sparsity [Lebrun, 2012]. The denoising method currently used in the
Airbus baseline is a non-local Bayes modified to include Hamilton-Adams demosaicking.
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1.4.2 Noise model

Noise occurs in several parts in the image processing pipeline. Sensor acquisition in-
troduces shot noise (Poisson distribution) due to the discrete nature of light, which is
significant at high light intensities. Photodiodes are affected by thermal noise from elec-
trical charges and the signal is also altered by read noise in the camera electronics. Both
noises, known as dark noise, follow a Gaussian distribution, the former being independent
of intensity and the latter only relevant to low-intensity signals. For daylight images with
our sensor, the model estimates a mean dark noise with a dynamic around 3 compared to
the 212 dynamic range and a shot noise of about 15 for shot noise.

The noise model depends on the pixel intensity and takes into account the dark and
shot noise. It is given by

σ =
√

A + B ∗ L (1.3)

Where L is the pixel intensity, A and B are sensor parameters which are around 6 and
0.05 respectively. Standard denoising algorithms such as non-local Bayes [Lebrun et al.,
2013] or BM3D [Lebrun, 2012] can be applied to recover a noiseless image.

1.4.3 Variance stabilising transform

State-of-the-art denoising methods assume additive white Gaussian noise [Lebrun et
al., 2013; Lebrun, 2012]. To make this assumption hold for the satellite noise model, a
variance stabilising transform must be used to transform the Poisson distribution into an
approximate Gaussian distribution. The Anscombe transform [Anscombe, 1948] is widely
used and is given by:

A : x 7→ 2
B

√
B · x + 3 · B2

8 + A (1.4)

After standard denoising methods have been applied to the variance transformed image,
the inverse Anscombe transform must be performed to recover the original image. The
algebraic inverse is given by

A−1 : x 7→ B · x2

4 − 3 · B

8 − A

B
(1.5)
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However, this inverse introduces some bias. Asymptotically unbiased or exactly un-
biased inverses exist in the literature [Makitalo & Foi, 2011]. The Anscombe transform
is for a pure Poisson distribution, which is not quite the case in our noise model, but
since the Gaussian noise is marginal compared to the Poisson noise, we assume that the
assumption holds.

1.4.4 Non-local Bayes

Non-local Bayes is an improved version of the non-local means denoising algorithm,
which use the weighted mean of the most similar patches in an image to denoise a patch
[Buades et al., 2011a]. The non-local Bayes method computes optimal patches in terms
of the Bayesian minimum mean square error [Lebrun et al., 2013]. The covariance matrix
of a patch is computed to measure the variability of the patch compared to the one we
are denoising.

Non-local Bayesian denoising requires two steps. The first step finds the most similar
patches in a 3D block, which is filtered and thresholded before an inverse 3D transform.
An estimate of the denoised image is computed by aggregating all the other estimates.
The second step is essentially the same, except that it uses the result of the first step as
an oracle [Lebrun et al., 2013] to improve the search for similar patches.

The denoising performance is important, but the algorithm also suffers from a number
of problems. Firstly, the number of hyperparameters is quite high, with 9 to be set be-
tween the first and second processing steps [Lebrun et al., 2013]. The other point is the
computation time. Despite its high efficiency, especially when compared to BM3D, it’s
still quite significant when processing a large amount of data. For typical image size and
hardware (774x518), the denoising time is in the order of 20s [Lebrun et al., 2013]. For
2000x2000 satellite images, the order of magnitude increases to 10 minutes. This implies
a cost that is too high to perform the task in flight and remains a considerable cost on
the ground.
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1.5 Quality evaluation

The quality of each processing must be evaluated to measure its ability to recover the
signal. We focus on two objective measures, PSNR and SNR, which are widely used in the
literature to measure the distortion between a reconstructed signal and its ground truth.
We also explain the Bjøntegaard metric to compare two rate-distortion curves.

1.5.1 PSNR

The Peak Signal to Noise Ratio (PSNR) is a pixel-based distortion used in many areas
of image processing. It measures the accuracy of our image compared to the truth on the
ground. Given a reference signal I and a degraded image Î we have:

PSNR(I, Î) = 10log10(
d2

MSE(I, Î)
)

= 20log10(d) − 10log10(MSE(I, Î))
(1.6)

Where d is the bit depth of the image which in our case is d = 12. MSE is the mean
square error between the two images:

MSE(I, Î) = 1
nm

n−1∑
i=0

m−1∑
j=0

(I(i, j) − Î(i, j))2 (1.7)

Although PSNR is not a direct measure of image quality as perceived by the human visual
system and differs from its evaluation, it has become a prevalent standard for evaluating
image codec development.

1.5.2 SNR

As an objective metric, we also use the Signal to Noise Ratio (SNR). Given a reference
signal I and a degraded image Î, the SNR is calculated as González et al., 2009:

SNR(I, Î) =
√√√√ ∑

pix I[pix]2∑
pix(I[pix] − Î[pix])2

(1.8)
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SNR is used in the remote sensing community, but not so much in the signal processing
and compression community. Satellite images have a dynamic range that can be large
(212 in our case), but they most often fill values up to 211 or even 210, so SNR is often
preferred because it is the mean of the signal and not the peak of the dynamic range that
is used to compute the metric. It also makes it easier to compare compression noise with
instrument noise, since we know from the noise model the amount of noise in the image
before compression.

1.5.3 Bjøntegaard metric

Comparing rate-distortion curves is difficult because you need to have exactly the
same bit rate or distortion point to compare the results. To overcome this problem, Bjøn-
tegaard proposed to calculate an average difference between two rate-distortion curves
[Bjøntegaard, 2001]. The two curves are interpolated with third-degree polynomials and
two metrics, defined as the average bit rate or PSNR differences between two codecs, are
computed to evaluate the relative performance of one rate-distortion curve over the other.

BD − PSNR = 1
Rh − Rl

∫ Rl

Rh

(C2(r) − C1(r)) dr (1.9)

BD − Rate = 1
Dh − Dl

∫ Dl

Dh

(C2(D) − C1(D)) dD (1.10)

Where C1 and C1 are the two curves and Rh, Rl, Dh, Dl are the lower and upper limits
of the domain. The BD rate is expressed in percent and the BD PSNR is expressed in
decibels.

1.6 Dataset

The satellite images used in this thesis are simulated images from Airbus Defence &
Space new satellite constellation, which will be launched next year. The acquisition is
of the starer type with a matrix of sensors with a geometric resolution of 50 cm. These
simulated satellite images are based on airborne data acquisition campaigns sub-sampled
from to 10 cm to 50 cm resolution. They serve as the RGB ground truth for each test.
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Chapter 1 – Satellite imaging system

The dataset we use consists of 300 12-bit RGB images of size 2000 x 2000 with a 50 cm
resolution, covering areas around Lyon, France, provided by Airbus Defence and Space.
We use 14 images for the test dataset, the rest is used as training data. Examples of images
are shown in Figure 1.5 with images of the city, suburbs, countryside and industrial areas
around the city. The dataset does not contain sea images or cloudy images, although these
are common types of satellite images. The thesis focuses only on the most challenging
images with high entropy.

Figure 1.5 – Simulated 12-bit satellite images around Lyon, France.
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In Chapter 5 we will consider raw data estimated from the RGB ground truth. We
create 300 pairs (I, IB) of RGB noiseless ground truth images and their Bayer CFA coun-
terparts. We use a GRBG pattern as the CFA filter with a red pixel in the right position,
a blue pixel in the lower left position and green pixels elsewhere in a 2 x 2 square area. We
also add noise when considering denoising the raw data and create a pair (I, INB) with
the noise model

σ =
√

A + B ∗ L

of the sensor as seen in Section 1.4.2. Where L is the pixel intensity and A and B are
the parameters which are around 6 and 0.05 respectively. With the noise captured by the
sensor, we get images of around 120 SNR for images that have an average value of 800
over the 212 dynamic range.
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Chapter 2 – Overview of deep learning models for lossy image compression

2.1 Introduction

Deep neural networks have become a powerful data-driven tool for solving problems
previously tackled with model-based methods. The first major contributions to image
compression networks date from 2016, with the first recurrent neural networks [Toderici
et al., 2015] dedicated to image compression. In a few years, they have managed to go
from the performance of early-century codecs such as JPEG 2000 to the best handcrafted
codec, VVC [D. He et al., 2022]. With model-based compression, performance is improved
by refining each element of the compression framework. This is a time-consuming effort
that requires many manpower to make small improvements to each part of the codec. In
network-based compression methods, performance is improved in an end-to-end manner
by working together on the architecture of the network and the training (i.e. loss functions,
data set, optimisation).

Today, there is a wide variety of networks and numerous contributions to improve each
point of the network [Hu et al., 2021]. This chapter provides a comprehensive review
of the literature on end-to-end learned compression. It presents various design options
and components and outlines the challenges and limitations they face. In particular, we
will focus on one architecture that will form the basis of our work: the seminal work of
Johannes Ballé on the hyperprior autoencoder [Ballé et al., 2018]. This is the backbone
of most of the literature today, and we will analyse this architecture in depth, as well as
subsequent improvements. Other types of architectures will be discussed such as recurrent
networks and adversarial generative networks.

2.2 Image compression with a scale hyperprior

2.2.1 Autoencoder architecture

Autoencoders are a type of network on which the compression literature relies heavily.
They are designed to reconstruct input data by extracting its main features. The training
enforces the output to be close to the input, with often a reduction in dimension within
the network. In fact, the network can be divided into an encoder and a decoder with
a minimum dimension between them, known as the bottleneck. This bottleneck holds
the latent representation of the input, which is similar to transform coding in traditional
codecs such as JPEG 2000 [Skodras et al., 2001].
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Figure 2.1 – Hyperprior architecture. Source: [Ballé et al., 2018]

The Figure 2.1 shows the complete hyperprior architecture, which is essentially two
connected autoencoders. The first one does the dimension reduction of the input data and
the second one, the hyperprior, is used to improve the entropy model. The entropy models
and the role of the hyperprior will be discussed in more detail later in this section. If we
leave aside the hyperprior, we find ourselves with a standard autoencoder, which has been
a first step towards deep image compression [Ballé et al., 2017; Theis et al., 2017].

Given an input image x, the encoder acts as a non-linear transform TE with parameters
θE to produce the latent representation y which is processed by a quantisation function
Q into ŷ:

ŷ = Q(TE(x, θE)) (2.1)

The discrete code ŷ is entropy encoded and decoded with an entropy model pŷ(ŷ) with
parameters θy learned by the network. To recover the image x̂ we need the decoder which
takes the place of an inverse transform TD with parameters θD so that:

x̂ = TD(ŷ, θD) = TD(Q(TE(x, θE)), θD) (2.2)
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2.2.2 Layers analysis

The key component of neural networks in image processing is the convolutional layer.
The input is spatially convoluted with a filter to produce a value from a local region rather
than the classical multi-layer perceptron that fails to take into account the contributions
of its spatial neighbours. The input is down-sampled four times through convolutional
layers while increasing the number of feature maps from 3 to N in the hidden layers to M

at the bottleneck layer. The resulting latent representation is still of lower dimension than
the input if the bottleneck layer consists of less than 3 ∗ 44 = 768 feature maps for RGB
input. This larger number M of filters before the latent code creates a wide bottleneck.
The purpose of this is to achieve comparable performance at low values of N and to handle
higher bit rates more efficiently [Ballé et al., 2018].

The activation function used in the forward and inverse transform differs greatly from
the standard ones such as Relu or sigmoid. The Generalised divisive normalisation (GDN)
is a parametric function introduced by [Ballé et al., 2016a, 2016b] to reduce the redun-
dancies brought by the convolutional layer. This normalisation processes each channel
independently and divides each filter output by a measure of the overall filter activity.
In the equation (2.3) xi and yi refer to the input and output data. αij, βi, γij and ϵi are
trainable parameters, i and j the channel index.

yi = xi

(βi + ∑
j γij|xj|αij )ϵi

(2.3)

The approximate inverse transform required in the decoder is:

y′
i = x′

i ∗ (β′
i

∑
j

γ′
ij|x′

j|α
′
ij )ϵ′

i) (2.4)

The GDN provides a more accurate estimate of the optimal transform compared to
conventional activation functions. These layers are inherently more complex than standard
functions but they show sufficient performance gain to be used with great effectiveness in
these shallow architectures. Image compression architectures are not as deep compared to
many other image processing networks which increases the impact of GDNs.
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2.2. Image compression with a scale hyperprior

2.2.3 Loss functions and training

The set of parameters θE, θD, θy correspond to to the weights of the convolutional and
GDN layers of the encoder, decoder and entropy model. They are learned over a rate-
distortion trade-off to minimise the bit rate used to compress the latent representation
while minimising the distortion between the input and reconstructed image. The loss
function J measures this trade-off:

J (θE, θD, θy) = D(x, x̂) + λR(ŷ)

= D(x, TD(Q(TE(x, θE)), θD)) + λR(ŷ)
(2.5)

Here λ controls the trade-off between the the distortion measure and the bit rate. The
distortion D measures the dissimilarity between the input image and the reconstructed
image. Often the L2 norm is used:

D(x, x̂) = 1
N

N∑
n=1

||x − x̂||2 (2.6)

The bitstream size generated by entropy coding is lower bounded by the entropy of
the discrete probability distribution of the quantised vector ŷ [Ballé et al., 2018]. The
rate increase is due to the mismatch between the probability model inferred by the coder
design and the actual discrete probability distribution. The rate is given by the Shannon
cross entropy between the two:

R(ŷ) = −E[log2pŷ(ŷ)] (2.7)

However, a problem arises during training due to the non-differentiability of the quan-
tisation process. Since the derivative is zero or undefined at an integer value, the learning
of the network through the backpropagation of the gradient is not possible. To get around
this problem the quantisation is replaced by different relaxation methods during training.
The work of [Theis et al., 2017] proposes to ignore the quantisation and choose an iden-
tity function during training. In the Ballé autoencoder, the quantisation is approximated
with an additive uniform noise [Ballé et al., 2017] that simulates the bin size of uniform
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Chapter 2 – Overview of deep learning models for lossy image compression

scalar quantisation. This modification allows the differential entropy of ỹ to be used as an
approximation of the entropy of ŷ. The differential entropy is also used during training
to compute an estimated rate R, which used in the rate-distortion optimisation problem.
This process occurs only during training, and quantisation is performed at inference time.

2.2.4 Entropy model

The probability model pŷ(ŷ) used to entropy encode the latent code ŷ must be close
to the actual probability distribution to reduce the bit rate of the bitstream.

2.2.4.1 Factorised model

In the standard fully factorised model all the channels of the latent representation are
assumed to be independent and identically distributed. The network learns a factorised
distribution, which is essentially a differentiable histogram for each channel of the quan-
tised code. Similar to the bit rate estimation, the differential entropy ỹ is used [Ballé
et al., 2017]:

pỹ|θy(ỹ|θy) =
M∏

i=0
pỹi|θi

y
(ỹi) (2.8)

The factorised model θi
y learns to model the corresponding ỹi for each channel i. This

distribution is then used as the entropy model during arithmetic coding.

2.2.4.2 Hyperprior model

To obtain a better entropy model and thus a higher rate-distortion trade-off, the fac-
torised model is replaced by a more powerful entropy model: the hyperprior model [Ballé
et al., 2018]. It introduces side information z derived from an additional autoencoder that
takes y as input. The same factorised distribution is used to encode z but z is now decoded
to produce either the scale of a Gaussian distribution [Ballé et al., 2018] or the mean and
scale [Minnen et al., 2018]. The conditional distribution is now given by:

pỹ|z̃(ỹ|z̃, θh) =
N∏

i=0
(N (µi, σ2

i ) ∗ U(−0.5, 0.5))(ỹi) (2.9)
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All parameters of the hyperprior learned by the network are encapsulated in θh. This
includes the hyperprior encoder, decoder and factorised entropy model. This side informa-
tion has to be entropy coded, which increases the overall file size, but the bit rate savings
due to a better entropy model for ŷ far outweigh this drawback. In fact, this entropy model
is now image-dependent, resulting in improved performance. The hyperprior architecture
achieves similar rate-distortion performance as the HEVC codec [Ballé et al., 2018].

2.3 Improving autoencoder networks

Alongside the hyperprior architecture, other models have been proposed based on con-
volutional networks. Dumas proposed an autoencoder combined with dictionary learning
and sparse representation of the latent code [Dumas et al., 2017] to perform image com-
pression. Different feature extraction convolution layers in the encoder and decoder were
tried such as a pyramidal decomposition of the input image to exploit data shared across
various levels of analysis [Rippel & Bourdev, 2017]. Cheng used a principal components
analysis on the latent representation to obtain a more energy-compact latent code [Z.
Cheng et al., 2018]. This contribution was extended contribution with energy compaction-
based loss function [Z. Cheng et al., 2019]. Other studies have focused on loss functions
such as adversarial loss in the training similar to the fashion of GANs [H. Liu et al., 2018].

However, most contributions to autoencoders are now based on the hyperprior architec-
ture, which has become a new standard for autoencoder networks. We examine a number
of contributions aimed at improving the entropy model, the architecture of the network,
or its complexity.

2.3.1 Context model

The entropy model of the hyperprior architecture is further improved by including a
spatial auto-regressive component which operates on the latent representation rather than
the pixel. The error model uses masked convolutions as shown in Figure 2.2 to condition
the entropy parameter on the already decoded causal context [Minnen et al., 2018]. This
idea has been explored in similar work [Klopp et al., 2018; J. Lee et al., 2019] to reduce
spatial redundancies among latent representations.
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The limitation is that although encoding is fast because mask convolution can be ap-
plied in parallel to all locations, decoding becomes a serial operation because arithmetic
decoding and convolution-based prediction are intertwined. We lose the highly parallelis-
able architecture that could take full advantage of GPUs.

Figure 2.2 – Left: Hyperprior with a context model. Middle: Serial masked convolutional.
Right: Checkerboard masked convolution. Source: [D. He et al., 2021; Minnen et al., 2018]

A parallelisable checkerboard context model, shown on the right in Figure 2.2, is used
to overcome this limitation [D. He et al., 2021]. It allows a parallel implementation while
maintaining the performance of the original masked convolution. This is achieved by
reorganising the coefficients and using a double pass for decoding.

2.3.2 Channel-wise entropy model

In order to further improve the hyperprior model and drop the spatial error model
with its inherent sequential decoding scheme, a channel conditional entropy model was
explored [Minnen & Singh, 2020].

In a standard hyperprior-based model, the entropy parameters used to encode the latent
representation y are conditioned on a hyperprior z. In the channel-wise entropy model
in Figure 2.3, y is split in slices along the channel dimension. The first slice is decoded
based on the hyperprior but other slices use the hyperprior and previously decoded values.
This provides more information and thus a more accurate entropy model which leads to
a better compression rate.
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2.3. Improving autoencoder networks

Figure 2.3 – Hyperprior architecture. Source: [Minnen & Singh, 2020]

This idea was simultaneously explored in a coarse to fine hyperprior model [Hu et
al., 2020], which also uses hierarchical layers of hyperpriors to reduce spatial redundancy
in the data and improve rate-distortion performance. This idea has been refined with
a non-uniform grouping scheme to allow a finer subdivision of the slices [D. He et al.,
2022]. The first slices use fewer channels in the hyperprior and as the model progresses
it becomes more refined with a greater number of channels. All these models allow an
adaptive compression that can be more or less refined depending on the number of slices.

2.3.3 Attention modules

Attention modules [Woo et al., 2018] quickly found their way into all kinds of computer
vision neural networks, even for compression. Attention layers are used to guide the neural
network to the most relevant information within its structure. The basic structure is shown
in Figure 2.4. The input passes through a convolutional layer, followed by a standard
multi-layer perceptron and an activation function. The result is fed into a channel-wise
multiplier that also takes into account the input features.

Figure 2.4 – Description of a basic attention module block.

In terms of image compression, this layer assists the network in highlighting the com-
plicated regions of the image to achieve a better trade-off in bit rate distribution to the
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demanding parts of the image. It was first introduced in the work of [J. Liu et al., 2020]
and refined with more complex attention blocks in [Z. Cheng et al., 2020; Zhou et al.,
2019].

2.3.4 Adapting entropy models

In all previous examples, the hyperprior was used to model Gaussian parameters for
the entropy model. Entropy coding can be improved by developing a more comprehensive
model as seen in [Ladune et al., 2020] which enhance the hyperprior model with addi-
tional binary values and an integer. Also, depending on the statistics of the dataset, the
distribution of the latent representation may differ from the assumption of a Gaussian
distribution. For hyperspectral images, a Student’s t-distribution is used to model pŷ(ŷ)
[Y. Guo et al., 2021]. This distribution is used to better capture the anisotropic nature
of hyperspectral imagery. Compared to the equation (2.8), the conditional distribution is
now given by:

pỹ|z̃(ỹ|z̃, θh) =
N∏

i=0
(T (ỹi|0, νi) ∗ U(−0.5, 0.5))(ỹi) (2.10)

The parameter learned by the hyperprior for a zero-mean Student’s t-distribution is the
degree of freedom.

This modification of the distribution has also been studied for panchromatic satellite
images [Alves de Oliveira et al., 2020, 2021]. The authors propose a simplified version of
the hyperprior in Figure 2.5 to model the latent representation with a Laplace distribution.

Figure 2.5 – Simplified version of the hyperprior to model a Laplace distribution. Source:
[Alves de Oliveira et al., 2021]
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The hyperprior becomes a variance estimator whose results are transmitted as side
information for a better inference of a zero-mean Laplacian distribution.

yi ∼ Laplace(0, bi)bi =
√

V ar(yi)
2 (2.11)

This illustrates the adaptability of the hyperprior to change the target distribution and
adapt to different statistics.

2.4 Alternative network architecture

Only one type of neural network has been introduced so far, autoencoder networks,
which are a subset of the classic feed-forward networks. They are the most common in the
literature [Hu et al., 2021] due to their effectiveness over a wide range of bit rates, but other
architectures have been explored. We want to give a brief overview of some other networks
and how they fit into the deep image compression literature. Some were developed in
parallel with autoencoders in the early days of deep learning for image compression, such
as recurrent neural networks [Toderici et al., 2015]. Some are specifically targeting low bit
rates with highly generative reconstruction [Agustsson et al., 2019].

2.4.1 Recurrent neural networks

Recurrent neural networks (RNNs) are a type of neural network that can be applied
iteratively to a given sequence of inputs, as shown in Figure 2.6. They allow efficient
processing of sequences and are widely used in natural language processing networks. Each
output is added as an additional input variable to the next recurrent iteration in a cyclic
graph representation [Goodfellow et al., 2016]. However, this arbitrarily long sequence
of iterations is the drawback of these RNNs since the network must run sequentially for
the next iteration to have an input. Also, these networks are extremely susceptible to
vanishing gradients because the layers are only traversed once in each iteration.
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Figure 2.6 – Recurrent neural network with a long short term memory unit. Source:
Wikimedia Commons

To overcome this problem, long-short term memory layers (LSTMs) [Hochreiter &
Schmidhuber, 1997] are used, as shown in the middle of Figure 2.6. They contain an
input gate, an output gate and, most importantly, a forget gate. For each iteration, the
LSTM determines which elements from the past to "forget" and which to keep in order to
update its hidden state. This is a useful way of avoiding the vanishing gradient problem
and ensuring that long-term connections are still considered by the method.

The RNN architecture has been studied in the same period as the autoencoders to
take into account a progressive encoding and decoding of the images [Johnston et al.,
2018; Toderici et al., 2015, 2017]. They consist of an encoder, a binariser and a decoder
containing LSTM units. Similar to how autoencoders work, the encoder transforms the
input into a latent representation. The decoder then produces an approximation of the
original input image using the received binary code. This method is repeated with the
subsequent iteration using the recurrent elements transmitted [Toderici et al., 2015, 2017].
A variable bit rate is naturally obtained with the recurrent architecture, since at each
iteration the reconstruction quality increases with the total number of bits.

However, the lower rate-distortion performance, the more difficult training with back-
propagation of the gradient over time and the longer inference time to encode an image
do not compensate for the advantage of variable compression, which can be achieved by
other means and more easily by other architectures. This type of network architecture is
less competitive than autoencoders for image compression.
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2.4. Alternative network architecture

2.4.2 Generative adversarial networks

Figure 2.7 – Generative adversarial network. Source: Wikimedia Commons

Generative adversarial networks were first introduced as specialised networks for re-
producing statistics similar to the training dataset [Goodfellow et al., 2014]. They are
used to generate artificial images that look real and are more concerned with perceptual
losses than pure distortion metrics. As shown in Figure 2.7, the idea is that two neural
networks are competing in a zero-sum game.

The generator G outputs content that is as realistic as possible. Its main task is to fool
the other network (the discriminator) into believing that the output is not artificial. The
discriminator D tries to determine whether the input given to it is real or fake data. The
two networks compete against each other, and in this joint training, both networks gain
increased performance in their respective tasks. The focus is less on the absolute quality
of an image compared to ground truth, and more on producing convincing images.

These conditional generative adversarial networks are used in image compression to
generate high-quality perceptual images from a latent representation of an encoder. They
exploit the strengths of GANs to produce extremely low bit rate images [Agustsson et al.,
2019] that still have good enough visual quality. Some work has even combined autoen-
coders in the encoder to produce high-resolution natural images at half the bit rate of the
best codec [Mentzer et al., 2020].

However, it is important to note that the emphasis is on perceptual quality, even though
the image may look real and with high resolution. This means that the discrepancy be-
tween the reconstructed and ground truth images can be high in terms of pixel-based dis-
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tortion. These methods can typically produce hallucinations and information not present
in the original images and are therefore not suitable for sensitive content such as satellite
imagery where high fidelity is critical.

2.5 Conclusion

In this chapter, we have reviewed the literature on deep learning for image compression.
A variety of networks are available to meet specific needs, from low bit rate generative
compression to recurrent networks. We have focused on the autoencoder network, a good
all-around architecture whose performance makes it the state-of-the-art in deep image
compression. This literature will form the basis of Chapter 3, where we aim at an end-to-
end network optimised for satellite imagery. More specifically, for the work that follows,
we consider the architecture of the hyperprior autoencoder [Ballé et al., 2018], which
combines very good performance, rivalling standard HEVC, with less complexity than
the best existing networks.
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Chapter 3 – Satellite image compression

3.1 Introduction

The aim of this thesis is to explore the new deep learning methods used in image
compression for the specific needs of satellite images. We seek to obtain a compression
network for satellite images, i.e. to obtain the best rate-distortion trade-off taking into
account the characteristics of satellite images:

— The use case:

1. Quasi-lossless compression to preserve information for analysis on the ground

2. Meet hardware constraints by reducing complexity and memory consumption

— The statistical characteristics of the image:

1. Pixel-sized details that lead to high entropy images

2. High dynamic range (12 bits)

3. Specific scenery

Some of the characteristics presented here are directly related to the hardware constraints
of satellites, and thus the need to think not only about the rate-distortion trade-off, as is
usually the case for compression networks on natural images, but also about the compro-
mise with reduced complexity. This raises the need to think about multi-use networks and
the complexity and size of the networks. However, this is a tricky issue because satellite
imagery requires a very high quality of reconstruction for accurate interpretation of the
remote sensing data. In fact, we can call this almost lossless compression since we target a
distortion much lower than the sensor noise. To achieve this rate-distortion performance,
the capacity of the network and therefore the overall complexity must be important. We
need to analyse each part of the architecture to understand their respective contributions
and propose new schemes accordingly to meet our needs. Finally, this type of data is very
different from natural images, in particular it has a high resolution, a wide dynamic range
and many high frequency details. This results in high entropy images harder to compress.

From this set of specifications, we can define three main characteristics that satellite
image compression algorithms must meet. First, (i) high bit rate compression, tending
towards quasi-lossless compression, is required to allow accurate interpretation on the
ground. Second, (ii) the algorithms must be of low computational complexity. Third, (iii)
satellite images differ from natural images in that they contain pixel-sized details and
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have high entropy. So compression must preserve these high-frequency details, which are
often removed by the saturating effect of deep learning compression. While the literature
on satellite image compression mostly focuses on multi and hyperspectral images [Huang,
2011b; Z. Wang et al., 2021; Yu et al., 2009], we propose a single image compression
algorithm based on autoencoders that preserves the three required properties. This type
of neural network has recently led to major advances in the field of image compression,
with some applications in the field of non-hyperspectral satellite imagery [Alves de Oliveira
et al., 2020, 2021], where the focus is on complexity reduction.

In this chapter, we propose new variational autoencoders schemes for satellite image
compression to achieve all of the objectives (i), (ii) and (iii). We present our solutions for
designing a compression network that addresses the issues raised by satellite imagery. The
starting point is the reference image compression network of Johannes Ballé [Ballé et al.,
2018]. This architecture focuses on natural images and tends to saturate at high bit rate.
Therefore the challenge is to propose solutions to achieve high reconstruction quality for
satellite images. We also investigate the number of filters and kernel sizes to determine
a trade-off between network complexity and rate-distortion performance. Contrary to
previous learning methods [Ballé et al., 2018; Z. Cheng et al., 2020; Minnen et al., 2018;
Minnen & Singh, 2020], where several models need to be learned to cover different bit
rate, we propose a single network that can operate successfully over a wide bit range
thanks to gain units prior to quantisation. We add extra layers and data augmentation
to minimise the network saturation effect, which removes high-frequency features.

During training, this takes the form of attention modules and shear mapping to better
highlight problematic parts of the data (e.g. striped patterns). We then focus on increas-
ing the rate-distortion performance of our compression network. To do this, we shift from
the traditional rate-distortion trade-off to a rate-distortion-perception trade-off by incor-
porating perceptual loss. A multi-objective method is used to further improve the results
by optimising hyperparameters in the loss function. Finally, we investigate a multi-stage
network-based extension for quasi-lossless compression. A generic compression network
is coupled to a specialised network focused on the compression of the residual image.
This residual image is processed so that only significant error patches are compressed,
rather than the compression noise. It achieves a low reconstruction error for each type of
information contained in the data.
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3.1.1 Learned image compression architecture backbone

We chose the hyperprior autoencoder [Ballé et al., 2018] from the literature as our
starting point. The reason is both performance and practical. This network achieves per-
formance on par with some of the best traditional codecs such as HEVC [Sullivan et al.,
2012] while being relatively simple and compact. The improved versions of this network
[Z. Cheng et al., 2020; Minnen et al., 2018; Minnen & Singh, 2020] suffer significantly from
a lower parallelism capability, which makes the use of GPUs less efficient and increases
the inference time. We will briefly describe the hyperprior autoencoder [Ballé et al., 2018]
and more details can be found in Chapter 2 about this network or the literature on deep
learning for image compression.

Figure 3.1 – Hyperprior architecture [Ballé et al., 2018]. Source: [Minnen et al., 2018].

The hyperprior architecture [Ballé et al., 2018] consists of two autoencoder networks,
as shown in Figure 3.1. The first autoencoder receives the original image x and generates
a latent representation y. Quantisation is performed to produce a latent code ŷ which
is entropy coded into a bitstream. Once decoded, the inverse transform reconstruct x̂

from the latent code. The purpose of the other autoencoder (the hyperprior) is to extract
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the parameters of the latent representation distribution to improve the entropy model.
This entropy model is shared between the encoder and decoder and is used to encode the
quantised latent representation into a bitstream. This allows entropy coding models to be
adapted to the characteristics of a specific image, as the entropy parameters are estimated
for each image.

Each part of the autoencoder is composed of 3 convolutional layers, each with N filters
of stride 2 and a 5 x 5 kernel support, followed by a generalised divisive normalisation
(GDN) layer. GDN has been shown to be highly efficient in transforming the local joint
statistics of images into Gaussians [Ballé et al., 2017].

zi = xi

(βi + ∑
j γij|xj|αij )ϵi

(3.1)

αij, βi, γij and ϵi represent trainable parameters. i and j are the channel index.

These blocks are linked to the latent representation by a final convolutional layer
with M filters: the bottleneck layer. The hyperprior autoencoder follows the same overall
layout, except that GDNs are replaced by ReLUs and the bottleneck layer is removed.

All training parameters are learned with the following optimisation problem: a trade-
off between a distortion D(x, x̂) between the original image x and the reconstructed image
x̂ and the rate R(ŷ) of the generated bitstream.

J = D(x, x̂) + λR(ŷ) (3.2)

Where λ is a factor to balance each term of the equation (3.2), and the distortion is
chosen as the MSE. This equation, representing the loss function, is then minimised
by back-propagation. In the context of compression, the derivative of the quantisation
function is either zero or undefined. To overcome the problem of non-differentiability, the
quantisation is replaced by uniform noise during training.
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3.1.2 Training details

All the experiments in this thesis were carried out using the Python language with the
Pytorch [Paszke et al., 2019] machine learning library and the CompressAI [Bégaint et
al., 2020] library, which provide tools for developing end-to-end image compression neural
network.

The dataset we use consists of 300 12-bit RGB images of size 2000 x 2000 with a
geometric resolution (effective ground distance between two pixels) of 50 cm, covering
areas around Lyon, France, and was provided by Airbus Defence and Space. We use 14
images for the test dataset, the rest is used as training data. These 286 images are then
divided into 4576 non-overlapping 500 x 500 patches, which form our training dataset.
The batch size (i.e. the number of training samples that pass through the network at each
iteration before gradient descent) is set to 8, and at each epoch the batch size images are
randomly cropped to a size of 256 x 256. Some data augmentation is performed to increase
the variability of the training data set. This variability increases the representative and
exhaustive nature of the training data set. In the long run, this data augmentation will
lead to better performing, more reliable models that are more robust to variation. We
perform a random amount of π

2 rotation to induce some rotational invariance in the data.

Without further precision, all the autoencoder parameters presented in this chapter
are trained on a rate-distortion trade-off optimisation problem that includes the bit rate
R(ŷ, ẑ) of the 2 bitstreams and the distortion D(x, x̂) between the original image x and
the reconstructed image x̂.

L(x, x̂, ŷ) = D(x, x̂) + λR(ŷ, ẑ) (3.3)

The hyperparameter λ, which balances the rate-distortion trade-off, is set to values in
the interval [0.5,0.8] to target a bit rate of around 2 bits per pixel to achieve the desired
quality output. The distortion D chosen to account for image quality is the pixel-based
mean square error (MSE) metric. We optimise our approach using the Adam algorithm
[Kingma & Ba, 2014] with β1 = 0.9 and β2 = 0.999. We use an initial learning rate of
1e−4, which is halved when the evaluation loss reaches a plateau of 10 epochs.

42



3.1. Introduction

The metrics used for all further plots are PSNR and SNR, and more details can be
found in Section 1.5. The two metrics are used because the two communities (i.e. remote
sensing and compression) have their own preferences. SNR is used in the remote sensing
community since satellite images have a dynamic range that can be large but most often
not fill completely, it implies that the mean of the signal and not the peak of the dynamic
range is used to compute the metric. We will add the PSNR metric to our graphs to
better compare the results with the state of the art in compression. We decided not to
use some of the standard metrics commonly found in the compression literature, such as
SSIM, LPC-SI [Hassen et al., 2013], or LPIPS [R. Zhang et al., 2018], because we found
that these criteria are not sensitive enough due to the high quality we are aiming for
the images. To measure the average gain in SNR or bit rate between two rate-distortion
curves, we use the Bjøntegaard metric [Bjøntegaard, 2001]. All the proposed compression
networks are compared with JPEG 2000 instead of CCSDS 122.0-B [CCSDS, 2017], as the
latter is a slightly degraded version of the former in terms of rate-distortion performance.

Experiments are run on a variety of GPU hardware, NVIDIA QUADRO RTX 8000,
A40 and A100. The training time varies depending on the GPU used but is generally
around 8 to 12 hours for 200 epochs. It is faster to train this satellite image compression
model than a natural image compression model because our dataset is more specific and
the scenery is not as diverse as in natural images. We need fewer training examples and
thus reduce the amount of training needed to achieve convergence of the compression
model. The inference time (without model loading) is about 1s to encode a 2000x2000
image and 1.5s to decode it. Each model weighs approximately 100MB.

3.1.3 Relevance of the method to a specific dataset

Neural networks have demonstrated their high performance in compression, reaching
the level of the best handcrafted codecs HEVC [Sullivan et al., 2012] with hyperprior
architecture [Ballé et al., 2018] and VVC [Bross et al., 2021] with more advanced models
[Z. Cheng et al., 2020] in just a few years. They are data-driven algorithms, so they can
extract the information that defines a particular scene. The compression models described
in Chapter 2 were designed for natural images, but training with only satellite images
could yield a great improvement as the network weights adapt to this type of image.
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The difference between the baseline model trained on natural images and the one
trained on satellite data in Figure 3.2 is: BD-SNR = 22.4, BD-RATE = -26.3%. Thus
training with satellite images alone reduces the bit rate by 26%. This increases our con-
fidence in the validity of using these learned end-to-end compression methods for our
compression problem.

We also compare with other work in the non-hyperspectral satellite image compression
literature [Alves de Oliveira et al., 2020, 2021]. However, their dataset differs from ours in
that they used panchromatic data with a geometric resolution of 70 cm instead of RGB
images of 50 cm resolution. Therefore, for a comparison, we retrain their architecture
on our training dataset. This leads to different results as reported in Figure 3.2. Their
network is optimised for less complex images, so the architecture has less capacity than
ours and fall behind in term of rate-distortion performance at the targeted bit rate.

(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 3.2 – Hyperprior models trained on different datasets.
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3.2 Designing the architecture to suit our needs

The design of an algorithm must take into account the specific characteristics of the
hardware on which it is most likely to operate. We are designing an algorithm for use on a
new generation of Earth observation satellites, which have a highly constrained hardware
environment. There are two types of constraints: memory footprint of the network and
inference time to get a compressed representation.

These considerations are the same as for other embedded systems to which the pro-
posed compression method could be applied. We analyse them from the perspective of
architecture optimisation to reduce their impact. However, the goal of any compression
method is to achieve the best performance for the rate-distortion trade-off. To account
for the severe computational constraints inherent in the onboard hardware, a trade-off
between performance and complexity must also be considered. The results can lead to a
marginal increase in complexity if the performance gain is large enough.

3.2.1 Variable bit rate for multi-usage network

State-of-the-art end-to-end autoencoder compression models [Ballé et al., 2018; Z.
Cheng et al., 2020; Minnen et al., 2018; Minnen & Singh, 2020] are trained for a spe-
cific rate-distortion point, which requires training and loading multiple models on board.
Not only does this require more memory to be able to use the different models on the fly,
but it also increases the cost of loading time. There is also the problem of training these
multiple networks, which reduces the versatility of the system in the event of a change.
To respond to this demand for efficiency, we need one compression model that works over
a wide range of bit rates, so that no time or memory is wasted processing multiple models
to compress at different rate-distortion targets.

Methods for transforming single rate-distortion point models into multi-bit rate range
models mostly revolve around the implementation of gain units [Chen & Ma, 2020; Cui et
al., 2021; T. Guo et al., 2020]. They are added at the end of the encoder, just before quan-
tisation, and at the beginning of the decoder. They are essentially scaling factors of the
feature maps before quantisation. This has the similar effect of changing the quantization
step. The rate-distortion performance is on par with the regular single-point compression
model, and only slightly lower overall [Dumas et al., 2018].
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Gain unit is an ideal solution to our problem as they require no additional inference
time for a large bit rate range usage. We simplify it by not distinguishing between the
feature maps and applying the same scaling everywhere. We then train our network while
varying the quality parameter to imply some variations in the scaling of the latent code.
It allows the network to have an increased efficiency for a wide bit rate range. We tune
our network to run at around 2 bits per pixel with a range of around [1.4, 3] bits per pixel.
In Figure 3.3, we compare several model train for specific rate-distortion points with a
single variable model. We compute the BD-SNR and BR-RATE on the best single point
model compared to the variable model. We obtain BD-SNR = -1.25, BR-RATE = 1.44%.
The use of a variable model represents an additional bit rate cost of only 1%. These gain
units allow a variable bit rate for a single model and act as a quality parameter that is
added during inference while reducing memory consumption.

(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 3.3 – Our variable model compared to single rate-distortion models.
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3.2.2 Combination of high bit rate and low complexity

The number of parameters to be learned during training is determined by the number
of layers, their number of filters and the size of the convolution kernel. They all have an
influence on the final size and complexity of the network.

3.2.2.1 Kernel size and network extraction capability

The original hyperprior architecture [Ballé et al., 2018] uses 5 x 5 kernel size for con-
volution in both the encoder and decoder parts. The hyperprior autoencoder has a filter
size of 3 x 3. Work has been done to understand the effect of kernel size on compression
performance [Alves de Oliveira et al., 2021]. The conclusion is that a 5 x 5 kernel support
is sufficient, since a 7 x 7 kernel does not improve the approximation capabilities of the
model, while 3 x 3 results in slightly lower performance.

However, looking at the performance for both the 3 and 5 square kernels in Figure 3.4,
both rate-distortion curves are essentially the same with a relative difference between the
rate-distortion curves of BD-SNR = -1.27, BD-RATE = 2.0%. This result may be due to
the higher entropy contained in satellite images, which have more information per pixel
than natural images, so the filter size does not need to be large to capture the information
in the area of a pixel. This may explain why the 7 x 7 kernel did not give any improvement.
In our case we are working with a 50 cm resolution image, so the entropy is even higher
than in the 70 cm panchromatic data from [Alves de Oliveira et al., 2020, 2021]. A 3 x 3
kernel size may therefore be sufficient for a good approximation of the network with the
advantage of being faster.
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(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 3.4 – RD curves for 5 x 5 and 3 x 3 hyperprior compression model.

3.2.2.2 Increase the network’s capacity using the number of filters

The network consists of convolutional layers with N number of filters and the last
layer, called the bottleneck layer is made of M filters. Models targeting high bit rates can
suffer from saturation in their performance gains if their capacity (i.e. the complexity of
the model in terms of the number of nodes and parameters) is not high enough for a given
bit rate target, as shown in Figure 3.5. In this Figure from [Ballé et al., 2018], the authors
do not discriminate between N and M . However, it has been shown in subsequent work
[Johnston et al., 2019; Minnen & Singh, 2020] that a slight increase of the bottleneck layer
while lowering the number of filters elsewhere lead to stable performance with an overall
decrease of parameters.
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Because we aim for a high bit rate, we increase the number of filters from 192 (encoder
and decoder part) and 256 (bottleneck layer) to 256 and 448 respectively. We maintain
this increased number of filters for all networks to mitigate the saturation effect at a higher
bit rate. The bottleneck layer with 448 feature maps also allows the network to have the
same order of magnitude in terms of total dimension compared to the input. Indeed, all
data go through 4 convolutional layers of stride 2 so the number of parameters for each
feature map at each layer is effectively divided by 4.

At the bottleneck, the dimension of each 448 feature maps is equal to the input di-
mension divided by 256. Given images of size n2, we thus go from 3 ∗ n2 pixels for the
input data to 448

256 ∗ n2 dimension in the latent space. The model is at the limit of over-
parametrisation as we keep roughly the same amount of information between the input
of the encoder and the latent representation. With a much smaller bottleneck layer, we
would lose data representation capabilities which is crucial in the context of high quality
compression.

Figure 3.5 – RD curves for factorised-prior models differing in the number of filters N (No
adjustment between N and the bottleneck layer M). Source: [Ballé et al., 2018].
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3.2.2.3 Achieve GDN normalisation with fewer parameters

Generalised Divisive Normalisation layers (GDN) were introduced in Johannes Ballé’s
work [Ballé et al., 2016a, 2016b, 2017, 2018] as a normalisation transform in the field of
image compression. In Equation (3.4) xi and zii denote the input and output data. αij,
βi, γij and ϵi represent trainable parameters. i and j are the channel index.

zi = xi

(βi + ∑
j γij|xj|αij )ϵi

(3.4)

This normalisation layer proves to be very efficient in transforming the local joint statistics
of the images into Gaussians. It shows great performance compared to traditional non-
linearities at all bit rates [Johnston et al., 2019], but especially at high bit rates. The slight
increase in the total number of parameters to be learned is outweighed by the improve-
ment in rate-distortion. However, in our compression network, we will use a simplified
version from [Johnston et al., 2019] that reduces the overall complexity with some fixed
parameters (αij = 1; ϵi = 1) while maintaining equivalent rate-distortion performance.
Those simplifications mostly remove complex square root computation. It suffers from a
minor drop in performance for sensible gain in computational complexity. The GDN layer
now becomes:

zi = xi

βi + ∑
j γij|xj|

(3.5)

3.3 Towards better high-frequency reconstruction

We present several contributions that all aim at achieving better high-frequency re-
construction. The end-to-end compression model that we develop in Section 3.2 achieves
higher rate-distortion performance than its traditional counterpart JPEG 2000. However,
when we look at the visual quality of the reconstructed images, we see that some details
have disappeared. In Figure 3.6, the compression model derived from the previous section
is compared to JPEG 2000 at 2 bits per pixel with the ground truth. Overall, both com-
pressed images obtained a high SNR as a consequence of a high bit rate, but our deep
learning model, although performing much better on this pixel-based metric, has a poor
visual quality on the high-frequency striped pattern of the image. All these high-frequency
details with a spatial period of 2 pixels result in a high reconstruction error with neural
network compression.
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In this section, we first propose to augment data, with a special focus on diversity of
striped pattern. To do so, we add more data augmentation during training with shear
mapping transform to create more input data that are troublesome to compress. Second,
we explore attention modules to highlight challenging parts in the image and balance the
bit rate between these high-frequency details and texture. Any subsequent mention of
our model will refer to the hyperprior compression network [Ballé et al., 2018] with all
modifications from previous sections.

(a) Ground truth (b) JPEG 2000, SNR = 74 (c) Our model, SNR = 89

Figure 3.6 – Visual comparison of the compressed images (2 bpp) with the ground truth.
Geometric resolution of 50cm. (c) is our model after the changes from Section 3.2.

3.3.1 Shear mapping of the training data

Data augmentation is already performed to increase the variability of the training
dataset. This variability reinforces the representative and exhaustive nature of the training
data set. In the long run, the increased data volume will result in better performing, more
reliable models that are more resistant to variation. To induce rotational invariance in the
data, we perform a random amount of π

2 rotation.

The problem is not the total number of images we trained our network on, as the
overall compression produces good results. However, some small patterns are poorly com-
pressed (e.g. striped patterns) and produce a high reconstruction error. Data augmenta-
tion through the use of a random amount of shear mapping (mapping based on a shear
transform, also called transvection) paired with rotation is aimed at those challenging
structures and increases the number of occurrences during training with a sub-pixel spa-
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tial re-sampling. A shear mapping is a linear map that acts as a translation in perspective.
It shifts each point in a fixed direction by an amount proportional to the distance from a
parallel line passing through the origin.

The influence of shear mapping for better visual reconstruction is clear in Figure 3.7
with the striped patterns that are now visible. They tend to be blurred in deep learning
models, although the overall compression achieves a higher SNR. This is illustrated in
Figure 3.8, using the Fourier transform. Shear mapping allows the network to explore
more of the spectrum and retain more high-frequency information, which is the case for
1-pixel striped patterns.

(a) Ground truth (b) No shearing, SNR = 89 (c) Shearing, SNR = 85

Figure 3.7 – Visual comparison of compressed images (2 bpp) with the ground truth.
Geometric resolution of 50cm. (c) is our model with shear mapping.

Figure 3.8 – Left: Our model, Right: Our model with shear mapping
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When analysing the rate-distortion curves in Figure 3.9, we see that the hyperprior
model has a good reconstruction overall but saturates at higher bit rates and fails to
reconstruct high frequencies. Our shear mapping model provides a solution to this prob-
lem. The focus on these high frequency details is at the expense of a good reconstruction
metric. Nevertheless, the visual quality provided by the shear mapping is significant, it
helps to reduce overfitting and thus acts as a regulariser.

(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 3.9 – Influence of shear mapping during training.

3.3.2 Attention modules to highlight challenging information

The use of attention modules [Woo et al., 2018] is motivated by the performance
obtained in computer vision tasks. In the context of image classification, these layers are
used to discard non-relevant background information. The learning of this trade-off for
each dataset depends on the context and is driven by gradient descent. In the context of
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image compression, the attention mechanism guides the features and helps the network
to highlight the challenging part of the image to balance the bit rate between edges, high
frequencies and textures. We use a lightweight version [Z. Cheng et al., 2020] without
non-local blocks that comes with a significant reconstruction gain for low computational
complexity added.

(a) Ground truth (b) No shearing, SNR=101 (c) Full model, SNR=96

Figure 3.10 – Visual comparison of compressed images (2 bpp) with the ground truth. (b)
is our model without shear mapping during training but with attention modules. (c) is
our full model with both contributions.

We evaluate our model with shear mapping and attention modules combined, on a
subset of representative satellite images in Figure 3.11. The attention-only model has an
overall greater SNR at low bit rate but blur remains a compression artefact as seen in
Figure 3.10. Also, it saturates at a high bit rate compared to other deep models. At low
bit rate textures are well reconstructed but many high-frequency details are missing as
the capacity is not large enough and the model saturate.

Our complete model which includes both attention modules and shear mapping, can
mitigate the shear mapping downside and ensure a better reconstruction on average than
the hyperprior model while preserving the high-frequency details. At high bit rates, our
model does not saturate with the amount of details gained through data augmentation. A
comparison with the hyperprior model gives the following results: BD-SNR = 7.75, BD-
RATE = -8.5%. It results in an improved distortion performance compared to the current
baseline without sacrificing much of its perceptual quality with challenging patterns.
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(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 3.11 – Effects of attention modules and shear mapping.

3.4 Improving the rate-distortion trade-off with a novel
compression loss

The compression model designed in the previous sections shows better rate-distortion
performance than the traditional baseline. The whole architecture is described in Fig-
ure 3.12 with all the changes from the previous sections. However, the aim was more
to overcome the inherent limitations of deep learning model (lessened the blur added
during compression) rather than to improve the hyperprior architecture. This section ex-
plores ideas to push our compression network towards better rate-distortion trade-offs by
incorporating a perceptual loss function to extract structural information.
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Figure 3.12 – Proposed architecture after changes to layers, filters and kernel.
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3.4.1 Perceptual loss to extract low level spatial features

The main source of error in our reconstructed images comes from the blur generated
during compression. It hides high-frequency striped patterns that have a pixel-sized spatial
frequency. This behaviour is induced by the use of the L2 norm as the distortion metric
during training [Y. Liu et al., 2021; Rad et al., 2019; Sajjadi et al., 2016; Yang et al.,
2018]. To better adapt to the characteristics of the data and better reconstruct these
highly typed areas during compression, we want to remove this unwanted effect.

To that end, we include an a priori that locates these areas of interest by adding a
perceptual metric to the cost function to reduce the sole effect of the distortion metric.
This metric differs from pixel-based metrics in that it aims to compute a distance between
features extracted from the reconstructed x̂ images and the x ground truth images. This
perceptual loss is used in a wide range of applications [Johnson et al., 2016; Rad et al.,
2019; X. Wang et al., 2018] to generate more realistic textures and sharper edges in image
processing problems.

Figure 3.13 – The perception-distortion trade-off. Source: [Blau & Michaeli, 2018]
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The choice of a perceptual metric is difficult as there is a wide range of options but
we know that there is a trade-off between distortion and perceptual distance [Blau &
Michaeli, 2018, 2019] as shown in Figure 3.13. This is analogous to the rate-distortion
trade-off, which states that for a given compression algorithm there is a boundary that
separates the infeasible from the achievable. For the perception-distortion trade-off, when
at the boundary, improvement of one of the two characteristics is at the expense of the
other.

From this work [Blau & Michaeli, 2018], we know that there is one metric for which this
trade-off is less severe: VGG classification networks. We therefore define a cost function
based on this network to extract structure within our features and guide learning towards
better high-frequency reconstruction. We take a distance L2 on the latent representations
of x and x̂ at depths 2 and 4 of VGG. We define a loss function based on VGG [Simonyan
& Zisserman, 2014] to extract structures within our features and guide learning towards
a better high-frequency reconstruction.

P (x, x̂) = 1
nm

(V GG0:2(x, x̂)2 + V GG0:4(x, x̂)2)

We choose to use only the early layers of VGG because they oversee the learning of
low-level spatial features [Rad et al., 2019] while deeper layers focus on more abstract
features. As our problem is more detail oriented, we use the first four layers of VGG to
extract two sets of features. We compute the L2 norm between the ground truth and the
reconstructed features.
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We obtain a rate-distortion-perception trade-off:

L = λaD(x, x̂) + λbP (x, x̂) + αR(ŷ) (3.6)

Both λa and λb are empirically set so that the distortion and perceptual metrics are of
the same order of magnitude when the network has converged

λa = 2.6 ∗ 106; λb = 104

α is set to target a bit rate and controls the rate-distortion trade-off.

We then assess the performance gain that perceptual loss brings to our compression
model in Figure 3.14. We compare our model for different loss functions based on MSE,
VGG or both losses when applied during training. VGG alone still performs well on the
SNR and PSNR metrics even though it is not tailored to the MSE distortion, meaning that
the information present in the VGG feature maps captures a perception of the pixel-wise
distortion. When trained with MSE alone, the network performs unsurprisingly better
when evaluated with using pixel-based metrics. Combining both metrics leads to even
better performance, especially at high bit rates. By comparing the rate-distortion curve
of both losses with MSE only we obtain: BD-SNR = 6.68, BD-RATE = -7.8%.

The idea that adding a loss that is not optimised for an MSE metric could lead to
gains in both perceptual and distortion terms seems surprising. Indeed, according to the
work of [Blau & Michaeli, 2018, 2019] and the Figure 3.13, if we were at the perception-
distortion frontier then we would necessarily have had a compromise between these two
cost functions. But we are probably not yet at the frontier of the best compromise, so
we have been able to make progress on both fronts by adding a perceptual loss. We have
improved the overall perception-distortion and rate-distortion performance, which on the
diagram in Figure 3.13 is similar to going from Algorithm 1 to 2.
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(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 3.14 – Comparison of compression models with different loss functions.

3.4.2 Multi-loss balancing strategy

Learning for multiple tasks, with their respective loss functions, can lead to a better
result for all tasks than learning for each task individually as shown in [Kendall et al.,
2018; S. Liu et al., 2019] where semantic classification and depth estimation induce better
performance together than separately. However, this implies adding more balancing terms
in the loss function and since hyperparameters are troublesome to tune, it becomes harder
to optimise the network. In our case we train for a single task (i.e. image compression)
but with multiple loss functions (i.e. distortion and perception metric) which also requires
hyperparameter tuning in the global loss function.
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In our rate-distortion-perception trade-off formulated in equation (3.7), the rate is fixed
during training to target a specific bit rate but both λ1, λ2 must be chosen arbitrarily.

L = λ1L1(x, x̂) + λ2L2(x, x̂) + αR(ŷ) (3.7)

with L1 = λaD; L2 = λbP set as in equation (3.6)

One solution to set the different loss parameters is to jointly tune all parameters within
the loss function with an automatically controlled scheme [Crawshaw, 2020; Ruder, 2017].
It removes the need for manual tuning beforehand and ensures an optimal trade-off be-
tween all loss terms [Bischof & Kraus, 2021; S. Liu et al., 2019]. To automatically evaluate
the λk we are following the dynamic weight average approach [Bischof & Kraus, 2021; S.
Liu et al., 2019] to compute at each epoch a new λk based on previous loss measures for
the distortion and perceptual metric: The loss function in equation (3.7) stays the same
but now hyperparameters becomes:

λk(t) = 2.
exp(wk(t−1)

T
)∑

i exp(wi(t−1)
T

)
, wk = Lk(t − 1)

Lk(t − 2) (3.8)

Each loss Lk is associated with its corresponding λk. T measures the softness of the
process by analogy with the annealing temperature and controls the proximity of different
values of λk. For the first two epochs, we set wk to 1. Then λk(t) is computed using stored
values of previous iterations of distortion and perceptual loss.

We compare the rate-distortion performance of compression models with the multi-loss
balancing strategy. The multi-loss balancing scheme brings the previous model to a better
rate-distortion trade-off over the whole bit rate range. Compared to the model without
the multi-loss balancing strategy, we achieve BD-SNR = 8.8, BD-RATE = -8.4%. During
training, the parameters λk adapt to the relative importance given to their respective task
in previous epochs. If the value of one of the perception-distortion terms overwhelms the
other then at the next epoch λk are changed according to their respective value so that
the underrepresented loss term gains more relative importance. This enables the network
to escape some local minima as the main λk leading the gradient changes over time.

61



Chapter 3 – Satellite image compression

(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 3.15 – Comparison of compression models with different training loss.

3.5 Towards quasi-lossless compression

The progress in terms of rate-distortion performance achieved by our compression
network is significant compared to the baseline hyperprior architecture and to JPEG
2000. Nonetheless, we are still in the scope of lossy image compression with our work and
we would like to close the gap with lossless compression. In this section, we attempt to
reduce patches of error that are still poorly reconstructed with a residual compression
that targets exclusively high-frequency errors.
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3.5.1 Dedicated compression network for high-frequency detail

Even with the improvement provided by the shear mapping and attention modules
regarding high-frequency details and the rate-distortion gain achieved with perceptual
loss, striped patterns are still amongst the most noticeable patches of error in our images.
In Figure 3.16 textures and especially shadows cast by buildings have almost no error.
Many areas have minimal error and no particular structure stands out. However, we
can distinguish patches of a homogeneous error on rooftops and the striped patterns in
pedestrian crossings were the error reconstruction is very high.

Figure 3.16 – Residual image after our neural network compression.

To solve this problem we will use two compression networks to compress a larger
frequency spectrum. The reason is that instead of relying solely on a general compression
network that inherently has troubles with high-frequency details, we prefer specialised
networks, each one responsible for a determined part of the frequency spectrum. This
leads to a generic heavy network for a general compression derived from previous sections
and a secondary lighter network to capture high-frequency errors in the residual image as
shown in Figure 3.17.

These errors resulted from a poor reconstruction of high frequencies in general (noise
accounted), and striped patterns in particular. The network used to compress the residual
is a lighter version of the general compression scheme with a reduced number of filters:
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N = 64, M = 128. Nonetheless, as seen in Figure 3.16, most of the residual is unstructured
noise. It means that very little correlation can be found in the image and it is very
expensive to compress. We need to transform the image to only keep the structured noise
that shows homogeneous patches of error. We filter the information contained in the
residual image as pre-processing before using this in our specialised compression network.

Figure 3.17 – Pipeline for the two compression networks

3.5.2 Filtered compression of the residual image

Not all of the residual image is compressed equally, as we use a mask to remove as
much unstructured noise as possible. This mask is obtained by filtering and thresholding
the luminance of the RGB residual image. High-frequency details are poorly reconstructed
compared to textures, so we try to filter out random noise induced by compression and
keep blocks of meaningful details. The following hand-crafted filter is used to retain only
striped patterns.

Kernel = 1
14



1 0 1 0 1
0 1 0 1 0
1 0 2 0 1
0 1 0 1 0
1 0 1 0 1


The images we are working on, have a 50 cm spatial resolution and it results in having de-
tails at a pixel level. So we focus on patterns that have a 2-pixel period as from experience
they are the ones that suffer the most from poor reconstruction. This is displayed in the
filter with a spacing of each component. This filter highlights areas of a certain pattern
at the expense of the other. We threshold the result to retain homogeneous patches of
errors. Finally, this mask is applied to the original residual image to remove unstructured
noise which is expensive to compress.
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In Figure 3.18, we observe the effect of our processing on the residual images. We
distinguish easily between random and structured errors. The whole process of filter-
ing and thresholding is to highlight those meaningful areas that have not been properly
compressed so that the specialised compression network only focuses on those few error
patches.

(a) True residual before processing (b) Post-processing residual

Figure 3.18 – Effect of our filtering/thresholding mask on residual error

We analyse the effect of the combined general and specialised network on the visual
quality in Figure 3.19. Even with the improvement of the high-frequency reconstruction
from Section 3.3 in Figure (c), the pedestrian crossing still suffers from the blur caused
by the compression and the details of the alternating stripes. In blue circles, we can see
from the error map of the upper part of the images that textures that had artefacts with
the JPEG 2000 codec are well recovered by the learned models. In red circles, we can see
that high-frequency details are now reconstructed in the image (d) with the addition of
the residual compression on top of the general compression.
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Quantitative results of the effect of the residual compression are not shown because
its impact on the overall compression performance is limited compared to the general
compression network. In quantitative terms, the specialised network will increase the
performances up to 2 SNR for a given bit rate for an increase of 0.3 bits per pixel. As
seen with the various visual comparisons, the gain of this secondary compression network
is more about locally recovering high-frequency details than globally enhancing the rate-
distortion performance. Reconstruction is further improved by the addition of a second
network dedicated to compressing the residual image. This compressed residual enables the
network to better preserve high-frequency detail while effectively compressing textures.

Figure 3.19 – Visual comparison of compressed images (2 bpp) with the ground truth.
Error map of the upper areas of the compressed images with range (range value [0,32])
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3.6 Conclusion

This chapter proposes several solutions to the problems of satellite image compression.
Through a series of improvements, we address the issues of rate-distortion performance,
high-frequency reconstruction, and adaptability to the use case and hardware environ-
ment.

We first adapt a reference learned image compression neural network [Ballé et al.,
2018] to the specific use of RGB satellite image compression. We propose an architecture
that take into account the higher bit rate needed for very high reconstruction quality. We
analyse the number of filters and the size of kernels to obtain a trade-off between network
complexity and rate-distortion performance. We enhance the network with gain units
before quantisation to allow for an adaptable network that effectively works on a large bit
range. We add supplementary layers and data augmentation to mitigate the saturation
behaviour of the network which cuts out high-frequency details. This takes the form of
attention modules and shear mapping during training to better highlight challenging parts
of the data (i.e. striped pattern).

We then focus on improving the rate-distortion performance of our compression net-
work. To achieve this, we move from the classical rate-distortion trade-off to a rate-
distortion-perceptual trade-off by including a perceptual loss. The results are further
refined by optimising the hyperparameters using a multi-objective strategy. Finally, we
explore an extension to quasi-lossless compression, which takes the form of a multi-stage
network. A general compression network is combined with a specialised network focused
on compressing the residual image. This residual is processed to compress only meaningful
error patches and not the compression noise. It achieves a marginal error of reconstruction
for every piece of information in the data.

The proposed deep learning framework has an improved distortion performance that
outperforms the CCSDS lossy compression standard [CCSDS, 2017] or JPEG 2000 with-
out sacrificing its perceptual quality with high-frequency details. It addresses the chal-
lenges of satellite imagery with improvements in performance, operating conditions and
versatility.
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4.1 Introduction

4.1.1 Background on the digital imaging pipeline

The standard image processing pipeline used in most digital imaging cameras consists
of 3 main steps, shown in Figure 4.1: demosaicking, denoising and compression. The
output from a camera sensor needs to be processed in order to achieve a correct rendering
and for subsequent applications.

Figure 4.1 – Simplified imaging processing pipeline.

The majority of digital sensors today are CMOS image sensors due to their attrac-
tive cost and performance. These sensors are photodiodes that convert the light they
receive into voltage to measure the intensity of the light. However, they only capture the
monochrome intensity of the light, not the colour spectrum. To overcome this problem,
colour filter arrays (CFAs) are stacked on the photodiodes of the sensors. There are many
CFA profiles, but the most popular is the Bayer CFA, which consists of two green pixels
diagonally, one blue and one red, as shown in Figure 4.1. The spectral sensitivity of the
human eye is highest at the red, blue and green wavelengths, with a peak at the green
wavelength, which explains the emphasis on two green pixels for each of the other colours.
Each pixel of the raw image is either red, green or blue depending on its Bayer profile. The
demosaicking process is used to recover the missing information of each colour channel
by interpolation. Standard demosaicking methods include bi-linear interpolation [Losson
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et al., 2010], Malvar algorithm [Malvar et al., 2004] and Hamilton-Adams demosaicking
[Buades et al., 2011b].

However, the signal that needs demosaicking is not noiseless as several phenomena
introduce noise in the early processing pipeline. Sensor acquisition adds some shot noise
due to the discrete nature of the photons (Poisson noise, significant at high light intensity).
Photodiodes are also affected by the thermal noise of the electric charges (Gaussian noise,
independent of the intensity) and finally, some read noise can be caused by the electronics
inside the camera (important for low-intensity signal). Standard denoising algorithms are
BM3D [Lebrun, 2012] or non-local Bayes [Lebrun et al., 2013].

Denoising is necessary to support other processing, particularly compression which is
used so that the signal can be stored or transmitted using less storage or bandwidth.
Images are signals with many spatial and spectral correlations that codecs use to reduce
the number of bits needed to encode the signal. Since noise adds entropy to the signal,
it makes it harder to compress, while degrading the information contained in the signal.
Denoising is therefore as important for recovering a quality signal as for compressing it.
The most commonly used compression algorithms are JPEG [Wallace, 1992] and JPEG
2000 [Skodras et al., 2001] using respectively a discrete cosine and wavelet transform.

Other processing includes white balancing, gamma correction, colour transformation
and gamut mapping [Ramanath et al., 2005], but we want to focus on the three main
steps shown in the Figure 4.1: demosaicking, denoising and compression.

4.1.2 Motivation

Most of the literature treats these three highlighted problems independently. Each
problem has been the subject of extensive research for a long time, and the advent of deep
learning has transformed the results achieved so far. For the compression task, Chapter
3 gives an overview of deep learning methods that have caught up with the best codecs
[Bross et al., 2021; Sullivan et al., 2012] in just a few years. The pioneering work of [K.
Zhang et al., 2017] with the DnCNN network is now the backbone of many state-of-the-art
denoising networks [Tian et al., 2020a, 2020b; K. Zhang et al., 2018]. For demosaicking,
convolutional networks have rapidly replaced hand-crafted methods to solve this ill-posed
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problem with improved reconstruction performance [Syu et al., 2018; R. Tan et al., 2017;
D. S. Tan et al., 2018].

However, there are several advantages to tackling these problems together rather than
sequentially. First, the hypothesis of many methods is not supported by reality. Demo-
saicking is often performed assuming a noiseless image, but denoising does not necessarily
occur before demosaicking, and residual noise remains after processing. Similarly, compres-
sion almost always considers images that have already been demosaicked and denoised,
whereas the vast majority of the raw data are colour filter arrays. Combining these pro-
cesses can also be beneficial for each of them. No further degradation is added to the
signal if all processes are performed together and the computational resources are shared
on a single task.

4.2 Joint denoising and demosaicking

The best order to perform denoising and demosaicking sequentially is still an open
question, explored in recent studies [Jin et al., 2020]. The advantages of each method are
as follows:

— Denoising first:

1. The noise is not yet correlated before demosaicking and is closer to the inde-
pendent identically distributed assumption.

2. This assumption still holds for non-Gaussian noise present in images, such as
Poisson noise with an Anscombe transform [Anscombe, 1948].

3. The best demosaicking algorithms are designed for noiseless images.

— Demosaicking first:

1. Processing on full-resolution images with fewer details lost compared to 4 sub-
sampled channels.

A joint solution can solve this problem and provide several benefits. One of them is to
include the presence of noise inside the demosaicking. It also reduces the overall compu-
tational complexity compared to sequential processing.

72



4.2. Joint denoising and demosaicking

Methods can be divided into two types: optimisation-based with hand-crafted priors,
and learning-based methods. We will give a brief overview of the methods used before
the emergence of deep learning for joint denoising and demosaicking problems. We will
then focus on neural network methods and conclude with networks that simulate the ISP
pipeline with the addition of other typical image processing.

4.2.1 Non network-based solutions

Hirakawa proposed a first joint demosaicking and denoising method based on a hand-
crafted filter of the Bayer filtered image [Hirakawa & Parks, 2006]. He added additional
constraints to the CFA and used total least square denoising while recovering the full
colour image. The results showed efficient joint processing with improved reconstruction.

Condat introduced a demosaicking algorithm for noisy images using a method designed
for frequency channels. It first decomposes the image into frequency channels and then
performs demosaicking on the luminance only [Condat, 2010]. This has been further im-
proved with a total variation minimisation problem that includes an additional constraint
on the raw image [Condat & Mosaddegh, 2012]. This enforces a closer reconstruction of
the chrominance.

Some authors, such as Chatterjee, have focused on low-light images for their joint
demosaicking and denoising framework. The main idea is to up-sample the noisy image
and perform denoising on this representation, which is then enforced to the desired full
colour image [Chatterjee et al., 2011]. Based on these previous works, Tan uses additional
priors on the CFA image through the ADMM method (alternating direction method of
multipliers) [H. Tan et al., 2017]. All of these methods achieved higher reconstruction
performance than their respective sequential baselines at the time.

4.2.2 Deep learning framework

The use of machine learning in this joint processing approach began with the work of
[Khashabi et al., 2014], which consists of random tree fields - a kind of decision tree. But
it was really the work of [Klatzer et al., 2016] and [Gharbi et al., 2016] that paved the way
for these joint neural network models. The former uses a sequence of demosaicking blocks
similar to residual blocks with a connection between the output and the input. Each block
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is responsible for an energy minimisation problem whose parameters are learned with a
standard loss function over the L2 norm distance between the RGB ground truth and the
reconstructed image.

4.2.2.1 First deep joint network

The work of [Gharbi et al., 2016] first introduced the use of deep learning with convo-
lutional networks for joint processing. Their contribution lies in two aspects: architecture
exploration and dataset generation. The input data is a noiseless raw image, which is then
sub-sampled into the 4 channels of its CFA pattern with an additional noise channel to
help the network recover noisy information, as shown in Figure 4.2. This noise channel can
either be for a fixed σ to specialise the network on a particular noise, or it can vary in a
continuous range of σ to provide better average denoising performance. These 5 channels
are then fed into d convolutional layers and a final residual layer. These feature sets are
up-sampled into 3 channels and form a 6-channel tensor with the addition of the input,
which is separated into its corresponding 3-channel representation. A final convolution
occurs before a final output into the 3 channels RGB enforced by an affine combination
of the feature maps.

Figure 4.2 – Joint denoising and demosaicking architecture. Source: [Gharbi et al., 2016]

Because machine learning algorithms are data-driven, they rely heavily on the input
data to extract information. The authors first trained their network on the millions of
images contained in Imagenet [Deng et al., 2009], only to find that patches had a large
variability in reconstruction quality. To be more precise, about 30% of the patches were
difficult to process with a PSNR below 30, while the rest of the patches could be recon-
structed easily with a PSNR above 40. They create their own subset of all the training
images to include a larger proportion of difficult images in the training dataset. They
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detect them by using a network trained on the Imagenet dataset and then analysing
the poorly restored patches. The most prevalent artefacts in their reconstruction were
salient luminance artefacts and moiré artefacts. Their smaller dataset still provides a bet-
ter PSNR compared to other demosaicking methods, but this is all the more significant
on datasets that target these difficult patches.

4.2.2.2 Iterative networks for joint demosaicking and denoising

Following in the footsteps of iterative optimisation strategies such as [Klatzer et al.,
2016] briefly discussed in a previous section, Kokkinos proposed an iterative network that
solves the inverse problem with a succession of residual blocks to answer the joint problem
[Kokkinos & Lefkimmiatis, 2018, 2019]. The raw image is first convoluted to be a 3-channel
input (or interpolated using bi-linear interpolation) and is fed to the network described
in Figure 4.3.

Residual blocks [K. He et al., 2016] follow one another with the same input and output
dimension so that the last output is already a 3-channel image. They allow better gradient
backpropagation, as the skip connection reduces the effect of vanishing gradients in the
deep architecture. In this noise-adaptive method, these layers are accompanied by the
addition of noise as side information to help the residual layer extract and then remove
the noise from the input. This behaviour is repeated many times throughout the network,
meaning that the network can be tuned for a certain amount of noise removal depending
on the processing resources.

Figure 4.3 – Joint denoising and demosaicking architecture with a succession of residual
blocks. Source [Kokkinos & Lefkimmiatis, 2019]
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4.2.2.3 Self guidance for demosaicking

The reconstruction performance of the previous joint demosaicking and denoising net-
works was already better than sequential processing, but the work of [L. Liu et al., 2020]
has further improved the result of such architectures. The main contributions of the au-
thors are the novel loss functions for parameter learning and the architecture that takes
into account the peculiarities of the CFA pattern of the raw image.

Figure 4.4 – Self-guidance architecture. Source: [L. Liu et al., 2020].

The authors sub-sampled the raw image, similar to other demosaicking methods, with
the additional noise channel, but also with a density map MD. The aim is to make the
high frequencies stand out more clearly in a dedicated channel during training. In fact,
neural networks tend to blur these high-frequency details, as they are often trained using
only the L2 or L1 norm. The density map has a high value if the corresponding raw image
has high-frequency details.

MD = h ∗ (g2 ∗ (IG − g1 ∗ (IG)))

Where h is a normalisation function, g1; g2 is a Gaussian blur kernel, and IG is the grey
image formed from the average of the four sub-sampled RGGB channels of the raw image.
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The second contribution is to use the two green channels within the network and
reconstruct them beforehand to help reconstruct the other channels. In the Bayer CFA,
the red and blue channels are sub-sampled twice as much as the green channel to account
for the eye’s greater sensitivity to this wavelength. They use similar layers as in super-
resolution problems to recover a full-resolution denoised green channel, which is fused
with the main reconstruction branch using a spatially adaptive convolution operation.
The result is resized to the output of one colour. The final contribution that differs from
the previous demosaicking network is the implementation of additional loss functions
to minimise the impact of blur in the reconstruction. Their purpose is to increase the
attention of the network to high frequencies.

L = Ledge + λ1Lsmooth + λ2LL1 + λ3LGreen

1. Ledge an adaptive-threshold edge loss

2. Lsmooth an edge-aware smoothness loss

3. LL1 the L1 loss between the output and ground truth image

4. LGreen the L1 loss between the ground truth of the green channel and the green
channel in the guidance branch

The adaptive-threshold loss is based on the Canny edge filter. It is applied to both the
output and the ground truth which are then separated into patches. With the edge de-
tector, the authors make an estimate of the number of pixels categorised as edges and
deduce a loss function that can be assimilated to an edge amount detector. Areas of the
image that contain many edges will induce a larger cost than textures. The edge-aware
smoothness loss has a slightly different purpose since it tries to preserve the information
edges while also smoothing noise in texture areas. It is a total variation loss with an
exponential smoothing term. The resulting network achieves much higher PSNR for any
noise level and many different datasets.

4.2.3 Emulate ISP pipeline

ISP stands for Image Signal Processing or Image Signal Processor. It is the chain of
processes (or the processor responsible for them) used in modern digital cameras, as shown
in the Figure 4.5. The full ISP pipeline includes processing such as white balance, gamma
correction, colour transformation and gamut mapping.
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Figure 4.5 – Standard image processing pipeline. Source: [Buckler et al., 2017].

A considerable amount of work has been done to include a number of additional treat-
ments that can be found in the pipeline with joint demosaicking and denoising. The work
of [Ratnasingam, 2019] includes in their joint demosaicking and denoising network white
balancing, exposure correction and defect pixel correction with additional prior in the form
of a loss function to aid the reconstruction process. They also showed the effectiveness of
their method with other CFA than the classical Bayer filter.

Working on different types of modality is also something that [Schwartz et al., 2019]
and [A Sharif et al., 2021] are exploring. The former uses only images from a Samsung S7
camera to perform image restoration (as well as demosaicking and denoising) on low-light
images. The advantage of these data-driven methods is that they extract the information
contained in the image, such as the acquisition noise, which depends directly on the sensor.
The latter adapts joint processing to the pixel-bin sensors found in smartphone cameras
to overcome material limitations.

Additional processing such as super-resolution is performed by [Qian et al., 2019]. This
processing is often beyond the scope of ISPs embedded in cameras but is combined in
their work with demosaicking and denoising to help low-resolution sensors achieve higher
performance. For the sake of generality, all of those processing are beyond the scope
of our work, and we focus solely on the joint processes of demosaicking, denoising and
compression
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4.3 Joint compression and denoising

Images from sensors suffer from a certain amount of noise. This degradation can be
amplified by any processing step in the imaging system pipeline that does not take it
into account. This is particularly damaging for the compression step used to process
noisy images, as noise is often a high-frequency type of information that is expensive to
compress. This unwanted information in the image competes with other high-frequency
details, reducing the performance of the rate-distortion trade-off.

Early literature on this topic revolves around thresholding coefficients in the wavelet
domain [Chang et al., 2000] for codecs such as JPEG 2000. In the early 2000s, methods
were developed to improve this type of process with Markov random field to compute the
map of the oriented wavelet transform [Chappelier & Guillemot, 2006]. Joint optimisation
of the distortion brought by compression and denoising in imaging pipelines has been
explored for increased rate-distortion performance [Carlavan et al., 2012]. We have seen the
rise of deep neural networks as part of the state-of-the-art in many image processing tasks
including compression with the hyperprior architecture [Ballé et al., 2018] or denoising
with the DnCNN [K. Zhang et al., 2017] network.

The work of Gonzalez [Gonzalez et al., 2018] proposed a joint compression and de-
compression in the wavelet domain but uses a CNN as a regularisation method to better
extract the image statistics instead of patch-based methods. This evolution of neural net-
works now includes both processes in a joint end-to-end manner to merge denoising with
compression, as in the work of [Brummer & De Vleeschouwer, 2023], which shows better
rate-distortion results when the training is aware of the noise statistic. The core of the
process is based on the extraction of noise statistics by the compression network during
training on a pair of ground truth and noisy images.

4.3.1 Satellite image compression and denoising

Most of the state-of-the-art in deep learning joint compression and denoising is based
on autoencoder networks and more precisely on the hyperprior architecture developed
in [Ballé et al., 2018] and detailed in Chapter 2. This is the case of the work in [Alves
de Oliveira et al., 2022], which specialises in panchromatic satellite imagery. The type
of noise in these images is a mixture of Poisson and Gaussian noise and is highly sensor
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dependent. A data-driven method such as neural networks removes the need for an a
priori on the data. In the case of satellite imagery with a lot of shot noise, the data does
not need to be processed with an Anscombe transform to make all the noise in the image
Gaussian, so that standard denoising methods such as BM3D or non-local Bayes can be
used.

Their architecture is presented in Figure 4.6 and their test includes a modified version
where the hyperprior is replaced by a Laplacian entropy model developed in [Alves de
Oliveira et al., 2021] which was shown to work with a marginal loss in performance for the
compression-only problem, since features in the latent representation for satellite images
are mostly Laplacian distributed. However, with noise degradation, this simplified entropy
parameter estimator no longer gives good results.

Figure 4.6 – Joint compression and denoising architecture. Source: [Alves de Oliveira et
al., 2022].

They train their joint model on pairs of ground truth and noisy data and compare its
rate-distortion performance with the sequential model using BRDNet [Tian et al., 2020b]
as denoiser and the joint model with an additional denoising step on decompressed images
with the same deep learning denoiser. The joint model achieves a reduced complexity
compared to any sequential model using autoencoder based compression while maintaining
on par performance with state-of-the-art sequential compression and denoising method.
Further denoising can be done afterwards to enhance the rate-distortion results as a
supplementary plug-in denoiser on the ground with no negative effect on compression. It
should be noted that these gains only come from noise-aware training.
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4.3.2 Image compression optimised for denoising

More advanced methods to help denoise the input data before entropy coding can be
implemented in the encoder part of the network. This will help the entropy coding by
reducing the noise when the input image is transformed into a latent representation. The
work of [K. L. Cheng et al., 2022] uses a two-branch network during training to infer
better learning of the noise statistics in the encoder.

As shown in Figure 4.7, this hyperprior-based network has two different behaviours
depending on the training or testing time. During training a pair of ground truth and
noisy images is fed to the two branches of the network. Each image is transformed into
a latent representation by encoding blocks (residual layers) whose weights are shared
between the two branches. The difference is that the noisy image passes through a slightly
modified version of the encoder, which has additional denoiser blocks (attention modules)
in between the regular encoding blocks. After encoding, only the noisy image is processed
by the rest of the network, i.e. the hyperprior, the context model and the decoder.

Figure 4.7 – Two-branch design for a joint compression and denoising network trained
with pairs of ground truth and noisy images. Source: [K. L. Cheng et al., 2022]

The network is trained in two steps. First, only a pre-training of the compression
part (i.e. the guiding branch shared between both branches) was carried out, since the
network is essentially a compression network. The parameters are learned over a standard
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rate-distortion trade-off. Second a fine-tuning with the denoising branch and the pair of
images. This fine-tuning uses an extended version of the rate-distortion loss function with
an additional guiding loss:

G = ∥z0 − zGT
0 ∥ + ∥z1 − zGT

1 ∥

These terms are feature maps extracted after the denoiser blocks and compared to the
guiding branch features. This multi-scale guidance loss forces the denoiser blocks to adapt
to the denoising with an additional constraint in the encoder.

4.4 Joint compression and demosaicking

In most modern digital cameras the demosaicking process is performed before compres-
sion. This allows the codec to encode and store a fully processed and restored raw image
so that only the decompression operation is required to display the image. However, in
a transmission-first approach to the imaging system pipeline (e.g. on board a satellite),
the need to compress the CFA before any other process takes place is paramount to save
space and time. One of the reasons for this is that demosaicking does not increase the
information content, but only creates redundancy in the CFA through interpolation.

Compared to the other joint processing problems (i.e., denoising/demosaicking and
denoising/compression), which have extensive literature in both traditional approaches
and deep learning methods, the joint demosaicking and compression problem has few
occurrences in the literature. Work in the literature that considers both processing is
often close to a fully sequential pipeline and does not provide unified end-to-end methods.
This is the case in the work of [Gershikov & Porat, 2010], who compresses the CFA pattern
of the raw image into four channels RGGB using a DWT transform. After decompression,
the four channels are rearranged in the CFA pattern and a demosaicking method is used
to recover the full colour image.

Other papers focus on compression-aware demosaicking [Daho et al., 2011]. The CFA is
first decomposed from RG1G2B into luminance and chrominance Y1Y2CbCr before DCT
transform. Variations exist in the form of a quincunx pattern to extract the green channel
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in the luminance channel [Lian et al., 2006]. The DCT coefficients are then encoded and
decoded but the demosaicking is done in the DCT domain instead of the RGB domain to
save processing steps such as inverse DCT transform and colour transform [Daho et al.,
2011]. The trade-off between the two sequential steps and their respective processing error
has been analysed in [Lian et al., 2006].

The only joint deep learning method that tackles the problem of demosaicking and
compression is the work of [Uhm et al., 2021]. This is a compression-aware demosaicking
network whose architecture is presented in Figure 4.8. It is essentially a network that
mimics the behaviour of an imaging system pipeline and thus includes demosaicking.
However, it is not an agnostic network that only learns on demosaicked data without
any information on future compression. They use JPEG as a compression method but
since JPEG is not differentiable it cannot be used in the learning of the demosaicking
network. To overcome this issue they pre-trained another network that emulates a JPEG
compression since the network learns to create JPEG artefact. During training, they use
both networks in an end-to-end manner and compute the L1 norm as loss functions
after each network to evaluate the reconstruction quality. During inference time, only the
demosaicking network is used and a regular JPEG codec performs the compression. Their
algorithm does not perform both processing but is able to address the issue in a joint
manner with a demosaicking network aware of the compression artefact downstream of
the pipeline.

Figure 4.8 – Compression-aware ISP learning. Source: [Uhm et al., 2021]
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4.5 Conclusion

In this chapter we have reviewed the literature on inverse problems found in the pipeline
of image processing systems from the point of view of joint processing. In addition to
compression, which was discussed in the previous chapters of the thesis, we have focused
on two other problems: denoising and demosaicking. Merging these processes into a unified
method produces better results, both in terms of reconstruction and in terms of saving
computational resources.

There has been a great deal of work in the literature on joint processing, with joint
denoising and demosaicking on the one hand, and joint denoising and compression on
the other. For the last problems (i.e. compression and demosaicking), there is a lack of
extensive work, as well as any research on a complete processing pipeline that takes into
account these three major steps in any digital camera image processing pipeline. This
literature will serve as the basis for Chapter 5, where we aim for an end-to-end optimised
network to merge these three steps together.

84



Chapter 5

JOINT COMPRESSION AND PROCESSING

OF SATELLITE IMAGES

This chapter is adapted from [Bacchus et al., 2023b, 2023c].
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5.1 Introduction

The main objective of this second chapter of contributions is to extend the work of
Chapter 3 with compression to include image processing in our end-to-end framework.
In Chapter 3 we focus only on RGB satellite image compression and achieve improved
performance while taking into account many of the specific characteristics of satellite
imagery from the nature of these images to the use case on board the satellite. However,
we deliberately omitted one inherent feature of satellite imagery: onboard acquisition. Our
assumption was to consider data that had already been demosaicked and denoised, but
these two processes are carried out on the ground. This is because the limited processing
capabilities of the hardware do not allow such tasks to be carried out on board satellites.

In this thesis, we consider the cameras of a satellite with high spatial resolution at
the cost of lower spectral resolution. Single sensor colour cameras with integrated colour
filter arrays (CFAs) are often used to capture the raw image, where each pixel measures
the intensity of only one colour band. Efficient algorithms must therefore be developed
to compress these remote sensing images before transmission to the ground. Currently,
raw data are compressed and transmitted after a KLT transformation. On the ground,
decompressed data are demosaicked and denoised. This differs from the usual image ac-
quisition pipeline, which consists of demosaicking the raw data to reconstruct the colour
image, which is then denoised and compressed. Denoising in particular is worth doing
before compression, as noise is difficult to compress due to the high entropy it induces.

We want to take advantage of the increased hardware capabilities embedded in mod-
ern satellites and the improvements brought by neural networks to design a complete
imaging processing pipeline from the satellite to the ground centre. To do this, we start
with the network architecture design in Chapter 3 and develop a joint compression and
demosaicking network. The purpose is twofold: exploit raw image correlations without
first interpolating redundancies with demosaicking, and to reduce the complexity of the
network by merging several processes. We are improving this architecture with a guiding
branch during training for the decoder part of the network to impose a closer feature
representation and help with the inverse problem reconstruction. We then want to push
our network further by incorporating denoising. Again, the benefit is twofold: it removes
the need for any a priori knowledge of the noise with a data-driven method, and it of-
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fers us another opportunity to improve high-frequency detail reconstruction by helping
the network to discriminate between noise and detail. Finally, we address the issue of
bit rate targeting, which is central to codecs. Compression networks often operate as a
single rate-distortion model, and some incorporate the possibility of a variable bit rate.
However, this type of compression method lacks some form of quality or bit rate constant
control, which is crucial for real-world applications.

5.2 Joint compression and demosaicking

This first section focuses on explaining how we address the optimisation of the joint
compression and demosaicking problem. The approach we have taken is to not overload the
encoder part on board the satellite and leave the reconstruction process, the demosaicking,
to the decoder part of the network on the ground. This keeps the compression network
light on board, where hardware is limited, but still offers the advantage of joint processing
of the raw data. We first give a proof of concept of the benefit of this joint processing
network with a straightforward adaptation, and then improve it with a control branch in
the decoder to help with demosaicking reconstruction.

5.2.1 Implementation setup

The training procedure shares lots of similarities with that of Chapter 3.1.2. We will
focus here on the particularities needed for joint processing. Our whole dataset consists
of 300 12-bit RGB images of size 2000 x 2000 with a 50 cm geometric resolution around
Lyon and its surroundings. We create 300 raw images filtered with a Bayer colour filter
array (CFA) from the ground truth to simulate a raw images dataset. We use a GRBG
pattern as a CFA filter with a red pixel in the right position, a blue pixel in the bottom
left position and green pixels elsewhere in a 2 x 2 square area.

In our supervised method, we work with pairs (I, IB) of ground truth RGB noiseless
images and their Bayer filtered counterparts. We then separate these pairs of images to
create a training and testing dataset consisting of 286 and 14 images respectively. The
batch size is set to 8 and at each epoch batch size images are randomly cropped to a 256
x 256 size with data augmentation to increase the variability of the training dataset.
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The literature on joint compression and demosaicking is not as extensive as that on
joint denoising and demosaicking or joint denoising and compression. To compare our
results in the rest of this section, we decide to use several sequential baselines to highlight
the gain of joint processing and a joint alternative:

1. Sequential baseline: Malvar demosaicking [Malvar et al., 2004] with our general
compression network from Chapter 3

2. Sequential baseline: Malvar demosaicking [Malvar et al., 2004] with JPEG 2000 for
the compression

3. Sequential baseline closer to Airbus process: Hamilton-Adams demosaicking [Buades
et al., 2011b] with JPEG 2000 for the compression

4. Joint baseline: Oliveira’s compression network [Alves de Oliveira et al., 2020, 2021]
retrained on raw Bayer images from our dataset.

JPEG 2000 is used instead of the CCSDS 122.0-B lossy compression standard [CCSDS,
2017], as the latter is a slightly degraded version of the former in terms of rate-distortion
performance. Malvar demosaicking performance holds up well against modern techniques
given its simplicity at a fraction of the cost of specialised networks [Kwan et al., 2019].

5.2.2 Demosaicking capability of our compression network

5.2.2.1 Description of the approach

By construction, joint processing produces better results than separate processing,
since separate processing is a particular case of joint processing as seen in Chapter 4. Our
proposal is therefore to carry out a global joint processing by explicitly exploiting the
statistical dependencies in the raw data. There are 2 approaches to separate processing
(also known as sequential processing). Either demosaicking before compression: this pro-
cess is sub-optimal from a complexity point of view because it increases the size of the
data only to have to reduce it afterwards in the compression stage. Another approach is to
decorrelate each input and apply independent compression to each channel. However, this
process is sub-optimal because only the correlation and not the statistical dependency of
the data is exploited. Moreover, decorrelation is generally achieved using a fixed transform
and is therefore not adapted to the data.
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We present our global architecture that performs joint compression and demosaicking
in Figure 5.1. We essentially use our autoencoder architecture with all the improvements
of Chapter 3 except for the residual compression, which requires a specialised compression
network. The reason for this is that the input and output of the network must have the
same dimension and representation in order to compute the residual image from the
reconstructed image.

Figure 5.1 – Joint compression-demosaicking architecture with raw data as input.

The hyperprior architecture [Ballé et al., 2018] consists of two autoencoder networks,
trained on a pair of ground truth and Bayer filter images (GRBG pattern), with the
ground truth as the reference for the loss computation and the raw data as the input to
the network. The first autoencoder produces a latent representation y of the input raw data
IB. Standard compression operations such as quantisation and entropy coding are applied
to this latent representation to produce a bitstream which is then decoded by the entropy
decoder as ŷ. The decoder reconstructs the signal Î with inverse transforms, which is now
an RGB image that we want to be close to the ground truth I). The other autoencoder,
the hyperprior, models the parameters of the latent representation distribution to improve
the entropy model. This shared entropy model is adapted to the characteristics of this
input data as the entropy parameters are re-estimated at each input.

Our joint network retains the same complexity as the compression algorithm presented
in Chapter 3. Adding processing in the compression network without adding layers im-
proves the network capacity within the encoder part of the network, which means more
processing capabilities without increasing complexity. In fact, the total amount of input
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data has shrunk from RGB to raw, but the network has stayed the same to compensate for
the additional processing required. We approach the issue of complexity from a different
perspective. Instead of reducing complexity to maintain equivalent performance, both in
terms of the amount of processing and rate-distortion, we keep the complexity constant
but with more processing and better rate-distortion performance.

More precisely, we keep all the layer optimisations, additional layers and enhancements
from Chapter 3 to achieve a high bit rate and good reconstruction quality. Variable bit
rates and tuning of the number of filters and kernel size are also retained for reduced com-
plexity. Concerning the learning of the parameters, we use the rate-distortion-perception
trade-off designed with our VGG perceptual loss in our joint compression and demosaick-
ing network:

L = λ1L1(x, x̂) + λ2L2(x, x̂) + αR(ŷ) (5.1)

L1(x, x̂) = λaD(x, x̂); L2(x, x̂) = λbP (x, x̂) (5.2)

Using D and P , the distortion and perceptual metrics respectively, the MSE and our
perceptual loss function based on VGG [Simonyan & Zisserman, 2014] to extract structure
within our features and help the network distinguish more structure in the image for better
high-frequency reconstruction:

P (x, x̂) = 1
nm

(V GG0:2(x, x̂)2 + V GG0:4(x, x̂)2) (5.3)

Both λa and λb are set to λa = 2.6∗106 and λb = 104 so that the distortion and perceptual
metrics are of the same order of magnitude when the network has converged, α is set to
0.6 to target a medium-high bit rate range around 2 bits per pixel. Finally, λ1 and λ2

are automatically tuned using a multi-objective balancing strategy based on previous loss
measures for the distortion and perceptual metrics:

λk = K.
exp(wk(t−1)

T
)∑

i exp(wi(t−1)
T

)
, wk = Lk(t − 1)

Lk(t − 2) (5.4)

Each loss Lk is linked to its corresponding λk, where T controls the proximity of different
values of λk.
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5.2.2.2 Qualitative and quantitative results

Figure 5.2 shows the visual results obtained with different methods compared to the
ground truth for a 50cm geometric resolution satellite image of an urban landscape. The
ground truth image is compressed at 2bpp with the reference baseline JPEG 2000 with
Malvar demosaicking [Malvar et al., 2004], the joint network with multi-loss balancing,
and the joint network with MSE loss only.

(a) Ground truth (b) Sequential, PSNR=51.1

(c) MSE model PSNR=53.6 (d) Our model PSNR=55.5

Figure 5.2 – Visual comparison of compressed images at 2 bpp with the ground truth. An
error map shows the relative difference with the ground truth at a pixel level (range value
[0;32] from blue to red).
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All images are well reconstructed as we aim for a high bit rate. However, in models (b)
and (c), high-frequency details such as the striped patterns on the roof of the building
have disappeared. Model (d), with the perceptual loss balanced with MSE, comes close
to recovering all these details, as the early layers of VGG added more weight to the
reconstruction of the structure. When zooming in and analysing the difference in pixel
values to the ground truth, we see the impact of a higher PSNR for the deep learning
models on the image quality. The pixel difference to the ground truth is much smaller,
although this is hard to see at this high bit rate.

We now evaluate the efficiency of the joint processing model with sequential models
in Figure 5.3. The joint model achieves a huge bit rate gain at constant quality and out-
performs all sequential models. These data-driven models excel at extracting information
from irregular data. The joint model can also achieve a reconstruction quality that is
infeasible for any sequential model. We can also assess the performance gain that percep-
tual loss and multi-loss compensation bring to the joint model. Both metrics combined
lead to even better performance, especially at high bit rates. This combination of a met-
ric optimised for MSE and one focused on structure extraction reduces the main source
of error in our reconstructed images, which comes from high-frequency striped patterns.
They have a 1-pixel spatial frequency and disappear due to the blurring generated by the
distortion metric, the L2 Euclidean norm. Incorporating our perceptual loss allows the
network to better adapt to the data characteristics and better preserve high-frequency
details during compression with non-complete data, such as raw data.

The multi-loss balancing scheme brings the previous model to a better rate-distortion
trade-off over the whole bit rate range. During training, the λk parameters adapt to the
relative importance given to their respective tasks in previous epochs. This allows the
network to escape some local minima as the main λk leading the gradient changes over
time. We also compare it with other work in the literature on non-hyperspectral satellite
image compression [Alves de Oliveira et al., 2020, 2021, 2022]. However, their network is
not designed for demosaicking and their dataset differs from ours as they worked with
panchromatic data at 70 cm geometric resolution. We are still retraining their networks
on our dataset using raw data as input, but the results are completely outside the scope
of their work and should be treated with caution.
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(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 5.3 – RD curves for joint models and sequential baseline for raw satellite images.
Demosaicking is performed prior to compression for sequential models.

5.2.3 Improving the inverse problem capability of the network

In the previous section, we demonstrated the efficiency of an inherent compression
architecture for joint processing with a simple proof of concept adaptation. We use sub-
sampled Bayer data as input to the encoder and impose a full-resolution RGB reconstruc-
tion from the decoder output. It gives promising results without any further adjustment
of the network. The objective of this section is to propose two new methods using a new
architecture and pre-processing in order to to help the network deal with this additional
inverse problem.
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5.2.3.1 Closer intermediate representation with a guiding branch

The Bayer filtered data was previously considered as a single channel, with each pixel
responsible for the intensity of one colour band according to the Bayer pattern (GRBG).
However, we want to take full advantage of the supervised learning of our network and
the pair (I, IB) of ground truth and raw images that we have. The ground truth is only
used to compute the distortion and perceptual metric used in our loss, which means that
we only evaluate the reconstruction on the fully decompressed input. We want to improve
the decoder part of our joint network and enforce a closer representation of the features
of the raw input data with the features of the ground truth demosaicked images. To this
end, we are designing a learning architecture based on a guiding branch that is effective
only during training.

Figure 5.4 – Joint compression-demosaicking architecture with a guiding branch.

The principle as shown in Figure 5.4 is to use a pair of ground truth and degraded
images that both pass through the same network. It is used to explicitly supervise the
network in image reconstruction for inverse problems [K. L. Cheng et al., 2022]. The
ground truth passes through a standard version of the network and the degraded version
of the image to an extended version that includes two demosaicking blocks between the
decoder blocks. Weights are shared between branches, except for the additional demo-
saicking blocks. All parameters of the network are learned by backpropagation of the loss
so the parameters are learned over the input data. This guiding architecture needs inputs
in both branches to have the same dimension as they are using the same network. Previ-
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ously in Section 5.2.2, RGB images were sub-sampled to raw data with only one channel.
Now we sub-sampled the data in a 3-channel fashion, each one responsible for one colour
but only the pixel of the GRBG mask is filled and everything else is set to 0.

We chose to include additional layers in the decoder to assist the demosaicking process
for the degraded image. These layers are essentially used to close the gap between the
feature maps of the ground truth and the degraded image. The demosaicking layers are a
group of several consecutive residual channel attention blocks (RCAB). Residual layers are
often found in the demosaicking network [Gharbi et al., 2016; Kokkinos & Lefkimmiatis,
2019].The RCAB layers shown in Figure 5.5 are an extension of the residual layers used
in the super-resolution literature [Xing & Egiazarian, 2021; Y. Zhang et al., 2018]. They
better extract the channel statistics for improved reconstruction.

Figure 5.5 – Residual channel attention block (RCAB). Source: [Y. Zhang et al., 2018].

In the decoder part of the network, we extract the feature map from both branches
just after the demosaicking block. We create a loss function from these feature maps to
add a data anchoring term to force a close representation. As shown in the following
equation, we compute the mean of the difference between two sets of pairs and minimise
the distance between the demosaicked and the guiding feature:

F (x, x̂) = 1
nm

(|z0 − zGT
0 | + |z1 − zGT

1 |) (5.5)

Similar to equation (5.1) with the addition of the perceptual loss in the rate-distortion
trade-off. We can extend the learning loss to include this feature representation loss along
the rate-distortion-perception trade-off. We continue to use the multi-loss balancing strat-
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egy already applied in our previous joint compression and demosaicking network, as the
increasing number of hyperparameters makes it even more relevant.

L = λ1L1(x, x̂) + λ2L2(x, x̂) + λ3L3(x, x̂) + αR(ŷ) (5.6)

L3(x, x̂) = λcF (x, x̂); λc = 102 (5.7)

We now evaluate the efficiency of this guided demosaicking in Figure 5.6. We compare
it with the sequential baseline from Airbus and several joint solutions, including our
previous joint compression and demosaicking network. We also include a variant of this
guided network where the guided branch targets the encoder part of the network. We
want to study the effectiveness of the demosaicking process given its occurrence in the
network to answer where the guiding is the most beneficial.

If we compare the position of the additional layers and the feature maps needed to
compute the loss function, we can see that guiding at the encoder gives poor results. This
seems to be a logical consequence, since demosaicking is an inverse problem close to super-
resolution, as it tries to interpolate missing data. In our guided network, the decoder part
takes the latent representation and decompresses it, but in the meantime, it performs
additional computation with the increased network capacity to recover the missing data
from the raw input. The role of the encoder is to extract and transform the input into
a latent representation that is easier to compress, and this does not combine well with
demosaicking. At constant network capacity, this increases the amount of processing done
in the encoder for a task that inherently hinders the compression. The guiding branch
at the encoder seems more suitable for denoising purposes, as intended in [K. L. Cheng
et al., 2022], to remove the noise before compression.

Remark on complexity issue: Our guided network has a consistent rate-distortion
gain over the targeted bit range compared to our previous joint model with BD-SNR =
3.30 and BD-RATE = -4.66%. Since the guiding branch is only effective during training
and the RCAB layers are in the decoder, which does not run on board the satellite, all
the changes made in this section do not affect the inference time in the encoder on board,
which means that there is additional rate-distortion for no computational cost on board.
Regarding the complexity issue, the encoder variant is also sub-optimal due to the added
burden on board the satellite.
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(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 5.6 – Study of the position of the guiding branch in joint demosaicknig and com-
pression architecture.

5.2.3.2 Support learning with interpolated data

In the previous joint compression and demosaicking network, the raw input was either
a single channel where each pixel has its respective RGB colour or a 3-channel input where
only the known pixels of each RGB band were filled and all other information was blank.
We propose to extend our joint network with a study of data initialisation, to determine
whether it is possible to obtain a better reconstruction using pre-processing of controlled
complexity. The idea is to use a demosaicking algorithm just before the network in a joint
demosaicking and compression pipeline.

To keep this pre-processing as simple as possible, we restrict the test to a few clas-
sical demosaicking algorithms. We exclude all deep learning networks, even if they have
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excellent performance, because they are also much more computationally expensive. We
selected four demosaicking methods based on their relative reconstruction performance
and inference time:

1. Bilinear interpolation [Losson et al., 2010]

2. Malvar demosaicking [Malvar et al., 2004]

3. Menon demosaicking [Menon et al., 2006]

4. Hamilton-Adams demosaicking [Buades et al., 2011b]

We evaluate the efficiency of each demosaicking method as a pre-processing of the input
data on our guided architecture. The results in Figure 5.7 show mixed results depending
on the methods used. Only Malvar demosaicking is effective compared to our standard
guided network with BD-SNR = 7.33 and BD-RATE = -7.85%, all the others give worse
results to varying degrees. Menon demosaicking is barely on par with no interpolation,
and both bi-linear interpolation and Hamilton demosaicking perform poorly. This may
seem surprising as we are feeding the network with better input data that is much closer
to the ground truth than a 3-colour channel that is only filled with a quarter (red and
blue channel) or half (green channel) of the dimension of the sub-sampled raw data.

However, if we look closely at the demosaicking examples in Figure 5.8 from these algo-
rithms, we can distinguish different visual behaviour, even though the PSNR is close from
one algorithm to another. The PSNR metric does not seem to be a very appropriate metric
to compare the effectiveness of the different demosaicking algorithms, since the perceptual
quality is different. More specifically, Malvar demosaicking has sharper edges compared
to Hamilton-Adams demosaicking, which has an overall smoother transition between tex-
tures and edges and looks visually closer to the ground truth. Also, colour artefacts seem
more present around edges in the bi-linear and Hamilton-Adams methods compared to
Malvar. This could be explained by the demosaicking method used by each algorithm.
The Hamilton-Adams algorithm [Buades et al., 2011b] uses second order derivatives of
the sub-sampled channels to help smooth the gradient-corrected interpolation of the green
channel. The Menon method [Menon et al., 2006] uses directional filtering and a posteriori
decision. Malvar [Malvar et al., 2004] is a gradient-corrected bi-linear interpolation, which
is visually close to bi-linear interpolation, but with an overall better PSNR.
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We have seen in Chapter 3 that a deep learning compression network suffers from
excessive blur added during compression. The fact that Malvar demosaicking preserves
these sharp edges and high frequencies may indicate that it will perform better as a
pre-processing algorithm than Hamilton or Menon demosaicking, which produce visually
good results but also smooth high frequencies [Jin et al., 2021]. With only a simple single
pre-processing of the input data, we can induce better rate-distortion from our joint
compression and demosaicking network. This architecture appears to be well adapted
to the onboard constraints, with minimal computational overload on board and more
computation on the ground where resources are less scarce.

(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 5.7 – Effects of different pre-processing algorithm for raw data in joint demosaicking
and compression architecture.
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(a) Ground truth (b) Bilinear, PSNR=29.47

(c) Hamilton-Adams, PSNR=29.17 (d) Malvar-He-Cutler, PSNR=29.66

Figure 5.8 – Comparison of different demosaicking methods. Source: [Getreuer, 2011]
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5.3 Raw data processing pipeline: Denoising / Com-
pression / Demosaicking

We want to take full advantage of the data-driven behaviour of neural networks to
design a complete processing pipeline that can work effectively with raw data. Similar
to the compression network in Chapter 3, where we omitted the raw data nature of our
images, we have omitted the noise from the sensor acquisition in our joint compression and
demosaicking network. Denoising is usually done as post-processing after decompression
on the ground, but it can be very useful, especially during encoding [Alves de Oliveira
et al., 2022; Brummer & De Vleeschouwer, 2023; K. L. Cheng et al., 2022], to remove noise
before compression, as it is costly to compress high entropy information such as noise.
It could also be a tool to better distinguish between high-frequency detail and noise for
better rate-distortion performance. Finally, with a data-driven method, we remove the
need for any noise modelling, since the purpose of the network is to learn it from the
data. We propose a single end-to-end network that trains on noisy data to learn the noise
model and better reconstruct satellite images.

5.3.1 Extend the network for noisy data

Autoencoders already learn an efficient representation of the input data, which has a
denoising effect, since learning the most important features is accompanied by a reduction
in the effect of noise on the signal. However, we have seen in both Chapter 3 and Chapter
5 that this is accompanied by a loss of high-frequency detail in the image. Since the noise
model of the acquisition system is known, we can work with reliable pairs (I, INB) of
images corresponding to the ground truth and the noisy Bayer filtered image respectively.
The network, as a data-driven algorithm, can extract the specificity of the noisy data.
This will increase the ability of the network to not only reconstruct the image from its
main features, but also to separate the noise from the high-frequency details. Moreover,
this does not require any more computation than supervised training on noisy data, so
it has no negative impact on the network complexity and inference time. In this section,
we consider the joint demosaicking and compression architecture of Figure 5.4. We work
with a pair (I, INB) of images and use the ground truth as a reference image to compute
the loss terms of the decompressed, denoised and demosaicked images.
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5.3.2 Influence of the denoising processing position

The joint approach to denoising with compression and demosaicking also raises the
question of the effectiveness of sequential processing. The modular structure of the net-
works allows several specialised networks to be easily combined, and we want to evaluate
the relative gain of a full joint processing pipeline compared to our previous joint demo-
saicking and compression architecture with a state-of-the-art denoising network.

The choice is large since denoising is a widespread research topic. We choose some-
thing similar to what has been done in similar work on joint denoising and compression
for satellite images [Alves de Oliveira et al., 2022]. They compare their network with
a sequential baseline consisting of their compression network and BRDNet [Tian et al.,
2020b]. However, we chose FFDNet [K. Zhang et al., 2018] over BRDNet as our sequential
deep learning denoising algorithm. BRDNet achieves a higher PSNR than FFDNet at the
cost of much greater computational complexity. It gains about 0.2 dB PSNR on their
test dataset, but the inference time varies much more. The hardware in both papers is
different, but still, FFDNet is three times faster than DnCNN on the same GPU, while
BRDNet is two times slower. For operational purposes, we believe it is more appropriate
to use the FFDNet, which combines near state-of-the-art denoising performance with effi-
cient run-time, as it would be a fairer comparison in the context of a hardware-constrained
environment.

FFDNet [K. Zhang et al., 2018] is based on the DnCNN denoising architecture [K.
Zhang et al., 2017] in terms of the layers used, except that residual connections are
removed. The architecture shown in Figure 5.9 shows the down-sampling of the input
data with the addition of a noise map.

Figure 5.9 – FFDNet architecture [K. Zhang et al., 2018].
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This down-sampling eliminates the need to increase the kernel capacity, as convolution
is applied to the expanded feature maps. The core of the network is a sequence of D

convolution with batch normalisation and ReLU activation function, followed by a final
convolution. Up-sampling is then performed to obtain the denoised image. This efficient
and effective network is retrained for our data to adapt to the specific noise. It is trained
both on the raw data, when it is used before our joint compression and demosaicking
network, and on RGB images.

5.3.3 Evaluation

The training procedure is identical to the joint compression and demosaicking training.
We will focus here on the specificities required for joint processing. The dataset consists
of 300 12-bit RGB images of size 2000 x 2000 with a geometric resolution of 50 cm around
Lyon and its surroundings. From the ground truth, we generate 300 noisy raw images
filtered with a Bayer CFA (GRBG pattern). The noisy images are generated using the
photon noise model of the acquisition sensor. We add a noise dependent on the pixel
intensity L and the instrumental noise is simulated according to the following equation:

σ =
√

A + B ∗ L

Parameters A and B are set to obtain images with an SNR of 120 for images with a mean
value of 800 over the 212 dynamic range.

We select several baseline methods to compare our full processing pipeline in Figure
5.10. They range from a fully joint model to a partially joint model with sequential
processing of one of the three tasks and a fully sequential baseline:

1. Our joint denoising/compression/demosaicking model with a noisy training

2. The PSNR and SNR metric of the noisy validation dataset compared to the ground
truth is plotted as a red line on each graph PSNR = 56.76, SNR = 112.66.

3. Joint baseline: Our joint guided compression and demosaicking network with noise-
less training.

4. Joint baseline: Our joint compression and demosaicking network with noiseless
training.
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5. Partly sequential baseline: Our joint demosaicking and compression network with
FFDNet denoising before compression on raw data. FFDNet is re-trained on raw
data (IB, INB).

6. Partly sequential baseline: Our joint demosaicking and compression network with
FFDNet denoising after compression. FFDNet is re-trained on our RGB dataset
(I, IN).

7. Partly sequential baseline: Oliveira’s joint compression and denoising network [Alves
de Oliveira et al., 2022] retrained on demosaicked [Malvar et al., 2004] data from
our dataset.

8. Sequential baseline closer to Airbus process: Hamilton-Adams demosaicking [Buades
et al., 2011b] with JPEG 2000 and a non-local Bayes denoising after decompression.

Our full processing pipeline outperforms all other methods by a significant margin over
a wide bit range. This is especially true when compared to the sequential method used
by Airbus, as we can achieve rate-distortion performance that is not feasible with their
method. It is important to note that the noise involved is low (SNR = 112.66 for the test
dataset), which makes denoising more complex. None of the methods succeeds in returning
the image to its original noise level, so in a sense, no denoising has been performed by
any of the methods.

However, it should not be forgotten that the processing presented here also includes
compression and demosaicking. This processing results in a degradation of the input data
compared to the ground truth image, because it involves interpolation of the data with de-
mosaicking and a minimal loss of information with lossy compression. Our method almost
reaches the noise level of the noisy image, which means that the addition of compression
and demosaicking has added only a small amount of noise compared to the input image.

We have included two results from a network trained on noiseless data but tested on
noisy images. We have used our previous joint compression and demosaicking networks
trained on noiseless data to evaluate their inherent denoising capability. They perform
reasonably well and are on par with the baseline using a joint compression and demo-
saicking architecture with combined denoising. The autoencoder extraction of the main
features make the network inherently good at denoising. However, our full processing
pipeline captures the noise information better and therefore removes the noise more ef-
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ficiently, resulting in an overall improvement in reconstruction quality with a BD-SNR
= 9.91 and BD-RATE = -18.6% compared to the noiseless training of our guided joint
demosaicking and compression network.

The addition of the FFDNet denoising as pre or post-processing has a limited effect
as networks trained on noiseless data achieve similar performance. However, we can still
analyse the effect of the position of the FFDNet. When denoising is done before com-
pression, we observe an increased rate-distortion performance over the whole bit range
compared to post-processing denoising. This is not surprising as noise increases the en-
tropy of the image and makes it more difficult to compress. However, this method, which
is easily adjustable using a modular network, is also the most computationally expensive,
as it requires more processing on board the satellite.

(a) Distortion measure: SNR (b) Distortion measure: PSNR

Figure 5.10 – RD curves of our full pipeline: denoising, compression and demosaicking.
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5.4 Towards constant quality compression

5.4.1 Background

The majority of state-of-the-art end-to-end compression models [Minnen et al., 2018;
Minnen & Singh, 2020] are trained over a single rate-distortion point. As seen in Section
3.2.1, this requires more memory to use the different models on the fly and also increases
the loading time cost. This is particularly problematic in hardware-constrained environ-
ments such as satellites. To solve this problem, we use gain units before quantisation,
which act as quality parameters that are added at inference time to allow a variable bit
rate for a single model. Although this solves the problem of having a variety of networks
on board, it does not help us to target a specific rate-distortion point for our input image.
At the same target rate, different input images should be quantised at different levels,
corresponding to different gain vectors. We need to find a way to control how the gain
units affect the rate-distortion performance for different inputs.

A critical aspect of satellite image compression is the ability to control compression
while maintaining quality [Huang, 2011a]. The landscape can vary greatly from image to
image, and so can the bit rate for a given quality, from as little as 1 bit per pixel for
ocean imagery to more than 4 bits per pixel for city landscapes. We are less concerned
with constant bit rate control because we need to reconstruct at a sufficient quality for
interpretation. With constant bit rate compression, we would either lose detail on complex
images or waste bit rate.

Several papers explore the tuning of gain units with neural networks in the autoencoder
architecture [L. Wang et al., 2022; S. Zhang et al., 2022]. The first training is done to
learn the parameters of the compression architecture, then it is fixed for the training of the
secondary network, which learns to associate a quality parameter for a given quality/bit
rate and a given image statistic. The training is performed on the full compression network
because the results are used to determine the quality/bit rate of estimation and to compute
the loss function of the secondary network. At run time, the latent representation and
the target quality/bit rate are fed to this secondary network, which returns an estimate
of the gain units required before quantisation and entropy coding. This method gives
good results but relies on a lot of processing in the encoder, which we want to avoid in
embedded systems.
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5.4.2 Method

We want to find a good enough correlation between the quality parameter for a given
SNR target and simple statistical tests on the input image. In the paper by [Jiang et
al., 2017], the authors use several variables in their decision tree model to estimate the
parameters needed to target a particular bit rate. These include continuous variables,
such as the decay rate of singular values, or discrete variables, such as the proportion of
singular values that retain 95% of the energy. In our case, we select 100 random patches
of the same size as the kernel used in our convolution layer (3 x 3) in the input image
and create a matrix of these normalised vectors. We then compute the eigenvalues of this
matrix and obtain its variance. We also use the ratio of the first two eigenvalues as a
metric. Finally, we measure statistics of the image such as the variance.

Figure 5.11 – Quality parameter (target SNR=90) as a function of several input metrics:
variance of the image, variance of the eigenvalues of a subset of the image, ratio of the first
two eigenvalues. The first row is for Bayer filtered images. Second row is for demosaicked
images (Malvar).

In Figure 5.11, we plot the results of the quality parameter for an SNR target of 90,
given each metric for both Bayer filtered data (guided architecture with raw images) or de-
mosaicked data (guided architecture with interpolated images). The correlation obtained
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between the input metric and the quality parameter varies considerably. The ratio of the
eigenvalues offers a too loose correlation compared to the other two input metrics. The
variance of the eigenvalues does not provide a meaningful correlation for raw data. The
best correlation is obtained with the variance of the input image, regardless of whether
the image is raw or demosaicked.

Our estimation model consists of using the variance of the training data and computing
the convex hull of the point cloud in the form of a step function. This choice is motivated
by the need to have strict control over the lowest quality compressed images can have. We
want to ensure that the SNR obtained with our estimation is at least the target we impose,
rather than approximately the target. In the latter case, there would be a variation in
the SNR obtained with a standard regression model, as we can see outliers in the point
cloud that will fit poorly. Such an estimation would give a better bit rate average but
would sacrifice images that are more difficult to compress (typically urban landscapes).
Although reducing the bit rate while maintaining quality is important in our compression
scheme, achieving sufficient compression quality is equally important.

We aim for a ratio of total noise to instrumental noise of around 1.2, which, if we
ignore the slight denoising due to compression, means that the compression noise is about
3 times lower than the instrumental noise. For satellite imagery, this is usually equivalent
to an average of 3 bits per pixel, but this varies with the scene, from over 4 bits per
pixel for urban landscapes to less than 1 bit per pixel over the sea. Given the noise model
developed earlier, if we aim for a strict ratio of 1.25 for our test dataset (SNR = 112.66),
then the SNR to aim for is 90. In Table 5.1, for SNRs ranging from 100 to 85, we show
the bit per pixel from our estimate compared to the optimal bit rate required to at least
meet the target. The relative increase in bit rate ensures that we reach the target level.
This ranges from a bit rate increase of more than 30% SNRs greater than 95, to around
10% increase over the optimum for SNRs around 90. This works well for high bit rates,
which is the operating range of our compression network, and with a minimal statistical
test, we guarantee a compression quality sufficient for reconstruction purposes.
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5.5. Conclusion

SNR Target BPP Estimation BPP Optimal Delta Rate Delta Rate %
100 3.082 2.441 0.641 0.263
99 2.99 2.225 0.765 0.344
98 2.889 2.11 0.78 0.37
97 2.842 2.041 0.801 0.392
96 2.804 1.988 0.816 0.41
95 2.77 1.942 0.827 0.426
94 2.284 1.784 0.499 0.28
93 2.008 1.698 0.31 0.183
92 1.895 1.648 0.247 0.15
91 1.815 1.607 0.208 0.129
90 1.754 1.571 0.183 0.116
89 1.701 1.538 0.163 0.106
88 1.656 1.509 0.147 0.097
87 1.618 1.482 0.136 0.092
86 1.579 1.455 0.123 0.085
85 1.546 1.431 0.115 0.08

Table 5.1 – Bits per pixel for a fixed lower bound SNR target with our estimated quality
parameters compared to the optimal bit rate achievable.

5.5 Conclusion

This Chapter presents a joint processing model designed for raw satellite images with
a GRBG Bayer pattern. With this model, we simultaneously address several problems of
satellite image compression. We answer the questions of rate-distortion performance, raw
data adaptation, and computational efficiency while taking into account the nature of the
images, the hardware-constrained environment, and the need for faithful compression.

First, we take advantage of the data-driven nature of neural networks to match the
input to our RGB compression network to the raw data with a simple proof-of-concept
network. This joint processing not only provides better rate-distortion performance than
other sequential baselines but also increases the efficiency of the network by combining
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multiple processes. This allows us to do more processing with the same RGB compression
network than before and avoids the need for additional, less powerful demosaicking.

This joint compression and demosaicking is further enhance by adding a guiding branch
during training to help the decoder in the inverse demosaicking problem. We induce a
closer intermediate representation in the decoder with a loss function based on features
of a pair (I, IB) of ground truth and raw data with specialised demosaicking blocks in the
decoder. This improvement is obtained exclusively at the decoder level and therefore does
not incur any cost for the encoder. We then explore initialisation of the input data with
minimal pre-processing in the form of simple demosaicking before feeding the network.
This further increase the rate-distortion trade-off of our network.

We then extend this approach to include denoising in a full raw data processing pipeline.
This brings the method closer to real-world conditions, taking into account both the raw
and noisy nature of the data. Compared to noiseless training, this is a significant gain
without any drawbacks. Finally, we look at constant quality compression. This last step
is essential for all compression methods, and especially for satellite imagery, where we
need all images to have a sufficiently high reconstruction quality for analysis. We perform
simple and fast statistical tests on the input images to estimate the appropriate quality
parameter for the quality target.

The proposed deep learning framework manages to effectively respond to the problem
of satellite image compression with improved rate-distortion performance compared to
the traditional sequential baseline.
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CONCLUSION

This thesis addresses the problem of image compression in the context of satellite
imagery. This problem is approached in terms of a trade-off between rate-distortion per-
formance and the ability of the network to operate in a constrained hardware environment
such as a satellite.

We present a neural network designed for satellite image compression and show the
success of deep learning in extracting image features for these specific images. To opti-
mise our compression algorithm for embedded systems, we adjust the network parameters
(layers, filters, kernels) to reduce the computational cost, improve performance at high
bit rates while maintaining satisfactory reconstruction quality, and enable the network to
compress images over a wide range of bit rates. To further improve image quality and
compress the high-frequency stripe patterns in our satellite images, we incorporate atten-
tion modules into our network. As with all networks, the training step is essential, and
we improve the reconstruction of high entropy images with contributions to data aug-
mentation and training losses. We add a perceptual loss function to the rate-distortion
trade-off to help extract previously blurred areas during training and we jointly optimise
this rate-distortion-perceptual trade-off with a multi-objective balancing strategy. Finally,
we present a quasi-lossless compression method that focuses on compressing the high fre-
quencies of the residual image. By filtering and thresholding the residuals, we extract
structural information from the reconstruction error in our compression network.

This first series of contributions focuses on RGB images but we aim to extend it to
raw images. Based on our compression network, we design a comprehensive processing
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pipeline from the satellite to the ground centre to perform joint compression denoising
and demosaicking on raw data. The result is that more processing can be done for the
same network complexity. The architecture of our compression network has been improved
with a guiding branch during training in the decoder part, allowing for closer feature rep-
resentation and demosaicking reconstruction. Denoising is also incorporated to improve
high-frequency detail reconstruction by distinguishing between noise and detail. This re-
sults in improved rate-distortion performance and network efficiency compared to the se-
quential baseline, allowing more processing to be done for the same network complexity.
The work is also extended to a constant quality compression method, which ensures that
compression never falls below a certain quality threshold, ensuring high reconstruction
quality while minimising bit rate.

The proposed joint processing approach outperforms the Airbus reference in terms of
rate-distortion and visual quality while offering great versatility in the number of tasks
that can be performed by a single network. As the processing power of satellites increases,
these methods could prove to be new standards for the industry.

Perspectives

We consider that the joint network developed in this thesis opens up interesting research
directions. We believe that there are three main areas we should be looking at in order to
continue in the direction of a joint compression network for satellite imagery: optimising
our network on dedicated hardware, designing a task-aware compression and increasing
the capabilities of our joint processing network.

Hardware implementation

In this thesis, we have considered the complexity of our networks from a high-level
viewpoint, with the feasibility of joint processing and little consideration of the energy
and computational consumption of the method. In fact, all experiments were performed
on a grid of GPUs using sub-optimised Python code, which is far from real-life onboard
conditions. Quantisation-aware training or post-training quantisation are methods that
aim to reduce the memory footprint of a network by quantifying the weight and activa-
tion function [Gholami et al., 2022; Roth et al., 2020]. This comes at a marginal cost in
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performance, but also a reduction in floating-point operations per second in dedicated
hardware such as FPGAs (Field Programmable Gate Arrays), which are optimised to
run with 8-bit integer values instead of the standard 32-bit float. This type of implemen-
tation optimisation can have a significant positive impact on onboard image processing
throughput.

Improving compression

The core processing in our joint network is still the compression of the bottleneck layer.
In order to place greater emphasis on the compression network, the learning of processing
tasks outside the imaging pipeline should be included in an end-to-end manner [Pu et al.,
2014]. Indeed the whole image processing pipeline is only a part of the whole system, as
once on the ground additional tasks are performed on the image depending on the user’s
needs (e.g. classification) [C. Lee et al., 2015]. Introducing some knowledge of this task
could reduce the overall rate-distortion trade-off right after the decoder but improve the
performance of the subsequent task. This can be done in conjunction with the switch
from uniform scalar quantisation to vector quantisation that has been explored in neural
networks [Agustsson et al., 2017; Lu et al., 2019]. From information theory, we know that
at a high bit rate, the distortion of an optimal scalar quantisation is 1.53dB larger than
the Shannon lower bound [Wiegand, Schwarz, et al., 2011]. We can therefore explore this
possibility to improve compression performance.

Extending joint processing capabilities

Following the success in jointly addressing compression, denoising and demosaicking,
we could further increase the capabilities of our network. A typical processing that comes
to mind is image segmentation [Wu et al., 2019]. We could compress the images based on
their respective semantic maps to adjust the compression and allocate more bit rates on
particular objects found in the image [Akbari et al., 2019]. Some sensitive details could
even be losslessly coded to preserve their reconstruction quality. This distinction can
take the form of an adaptive quantisation of the latent representation depending on the
importance assigned by the semantic map. This would be particularly useful for cloudy
images or sea images where only a small part of the image needs to be compressed at a
high bit rate (e.g. ships). This would reduce the overall bitstream size while maintaining
the high reconstruction quality to analyse the details.
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Titre : Compression d’images satellitaires par apprentissage profond

Mot clés : Compression d’images, traitement conjoint, dématriçage, apprentissage profond

Résumé : Les images satellitaires ont une
grande résolution aujourd’hui grâce à des cap-
teurs performants. Cela se traduit par une
utilisation importante de ces images pour
tout type d’application. Cet accroissement du
volume de données à transmettre jusqu’à
la Terre nécessite des méthodes de com-
pression efficaces devant tenir compte des
contraintes matérielles existant dans les sys-
tèmes embarqués. Nous répondons à ces pro-
blématiques par l’emploi de réseaux de neu-
rones profonds. Nous développons d’abord
un autoencodeur adapté au point de fonc-
tionnement voulu et aux particularités des
images satellitaires. Nous l’améliorons avec
l’ajout d’une fonction de coût perceptuel afin
d’extraire les détails hautes fréquences de ces
images à forte entropie. Dans un deuxième

temps, nous incluons d’autres traitements que
la compression à notre réseau pour diminuer
la complexité. En effet, les images brutes en
sortie de capteurs sont des matrices de filtres
colorés exigeant un dématriçage pour obtenir
une image RVB. Ces images sont par ailleurs
bruitées lors de l’acquisition, ce qui complique
la tâche de compression. Nous présentons
alors un réseau pour traiter conjointement ces
opérations lors de la phase de reconstruction
tout en codant des images brutes. Nous amé-
liorons notre réseau avec une branche de gui-
dage lors de l’entraînement pour forcer une re-
construction intermédiaire proche lors du dé-
codage. Notre méthode obtient de meilleurs
compromis débits-distorsions que les stan-
dards satellitaires actuels tout en réduisant la
complexité totale de l’ensemble du processus.

Title: Deep learning for satellite image compression

Keywords: Image compression, joint processing, demosaicking, deep learning

Abstract: Today’s satellite images have a high
resolution, thanks to high-performance sen-
sors. This means that these images are used
extensively for all kinds of applications. This
increase in the volume of data to be trans-
mitted to Earth requires efficient compression
methods that take into account the hardware
constraints onboard. We are addressing these
issues by using deep neural networks. First,
we are developing an autoencoder adapted to
the desired operating point and to the specific
characteristics of satellite images. We improve
it by adding a perceptual loss function to ex-
tract high-frequency details from these high-
entropy images. Secondly, we include other

processing than compression in our network
to reduce complexity. The raw images at the
sensor output are colour filter arrays requiring
demosaicking to obtain an RGB image. These
images are also affected by noise during the
acquisition process, which hinders the com-
pression process. We therefore present a net-
work for jointly processing these operations in
the decoder while encoding raw images. We
improve our network with a guidance branch
during training to force a close intermediate
reconstruction during decoding. Our method
achieves better rate-distortion trade-offs than
current satellite baselines while reducing the
overall complexity.
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