
HAL Id: tel-04350261
https://hal.science/tel-04350261v1

Submitted on 18 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Supporting Service Interactions with Semantics,
Machine Learning, and Blockchain

Nizar Messai

To cite this version:
Nizar Messai. Supporting Service Interactions with Semantics, Machine Learning, and Blockchain.
Web. Université de Tours, 2023. �tel-04350261�

https://hal.science/tel-04350261v1
https://hal.archives-ouvertes.fr

HABILITATION A DIRIGER DES RECHERCHES

Discipline : INFORMATIQUE

Année universitaire : 2022-2023

Supporting Service Interactions with Semantics,
Machine Learning, and Blockchain

présentée et soutenue publiquement par

Nizar MESSAI

le 14 décembre 2023

Devant le jury (par ordre alphabétique) :

M. Boualem BENATALLAH Professeur des universités Dublin City University, Irlande

Mme Amel BOUZEGHOUB Professeure des universités Institut Polytechnique de Paris

M. Thomas DEVOGELE Professeur des universités Université de Tours

M. Ernesto EXPOSITO Professeur des universités Université de Pau et des Pays de l’Adour

Mme Daniela GRIGORI Professeure des universités Université de Paris Dauphine

Mme Marianne HUCHARD Professeure des universités Université de Montpellier

M. Amedeo NAPOLI Directeur de recherches CNRS émérite INRIA Nancy

Résumé
Les services Web se sont imposés comme technologie incontournable pour le développe-

ment d’applications accessibles sur le Web. La prolifération des services Web a accentué
les défis déjà connus liés à leur découverte et leur composition. Elle en a aussi soulevé
des nouveaux notamment ceux liés aux interactions centrées utilisateur tels que la recom-
mandation personnalisée et contextualisée de services, la prise en compte des retours et
commentaires utilisateurs, le respect de la vie privée, la gestion de la sécurité et de la fia-
bilité des échanges, tout en évoluant dans des contextes très dynamiques. Parallèlement,
des domaines de recherche complémentaires, tels que le Web sémantique, l’apprentissage
automatique et la Blockchain, ont également connu beaucoup d’évolutions aboutissant à
la proposition de techniques et d’outils qui peuvent être adaptés pour répondre à ces défis.

Nos travaux se situent à la croisée de ces domaines et visent à proposer des approches
novatrices et efficaces capables de répondre aux défis liés aux interactions à base de services
Web. Nos deux premières contributions ont pour but d’améliorer la qualité et l’efficacité des
recommandations de services Web à travers l’intégration de la sémantique pour l’annotation
des services et leur appariement. Nous proposons pour cela deux mesures de similarité sé-
mantiques qui s’appuient respectivement sur les ontologies et sur les données liées. Nous
faisons également appel à des formalismes tels que l’Analyse de Concepts Formels et les
graphes. Nos deux contributions suivantes visent à améliorer la personnalisation et la
contextualisation dans les interactions à base de services. Nous utilisons la théorie de
configuration pour fournir des recommandations personnalisées et sensibles au contexte
de l’utilisateur. Nous utilisons les principes du Liquid Software pour permettre la mi-
gration fluide des interactions à base de services d’un appareil utilisateur à l’autre. Nos
deux dernières contributions répondent à l’évolution dynamique des interactions à base de
services dans les environnements distribués, ouverts et non fiables. Nous combinons des
modélisations en réseaux sociaux avec des modèles d’apprentissage automatique pour gérer
les différents types d’interactions et prendre en compte les commentaires d’utilisateurs afin
d’entretenir la qualité des recommandations dans le temps. Nous utilisons les Blockchain
pour répondre à la problématique de fiabilité dans les collaborations à base de services.

Les approches proposées ont été implémentées en prototypes et évaluées sur des jeux
de données, réels et synthétiques, afin de montrer leur efficacité et leur pertinence.

3

RÉSUMÉ

4

Abstract

Web services have established themselves as an essential technology for the develop-
ment of real-world applications that may wrap a wide range of Web-accessible functions,
resources, programs, databases, sensors, devices, etc. This unprecedented proliferation of
Web services not only accentuated the already known challenges of service discovery and
composition, but also raised new ones regarding extending service interactions to user-
centric perspectives. This includes the challenges of contextualizing and personalizing
service recommendation, handling user contributions and feedbacks, preserving privacy
and trust while evolving in highly dynamic contexts. At the same time, other hot-topic
research areas such as Semantic Web, Machine Learning and Blockchain, achieved
high maturity level techniques and tools that can be adapted to address these challenges.
In our research, we focus on the convergence of the previous areas of study, aiming to intro-
duce cutting-edge approaches that leverage semantic-awareness, to handle major challenges
encountered throughout the cycle of life of web services. Our ultimate goal is to allow suc-
cessful and effective interactions in service-service scenarios within compositions, as well as
in user-service scenarios. First, to address the mismatch problem in service discovery and
recommendation, we propose semantic similarity measures based on ontologies and Linked
Open Data. These measures are the basis for a semantically enabled Web service interaction
framework including service discovery and composition which also appeals for additional
formal models such as Formal Concept Analysis and Graphs. Second, we tackle the lack of
personalized service recommendation and multiple-device service migration in user-centric
service interactions. We propose a Configuration-based approach to meet highly person-
alized and contextualized service recommendation and Liquid Software based approach
for smoothly migrating user-service interactions in multiple-device contexts. Third, we
address the challenge of dynamic evolution of service interactions in open untrusted envi-
ronments. We combine graph network representations with Machine Learning models to
capture service interactions and user feedbacks to achieve accurate service recommenda-
tion. We finally address the untrusted collaboration issues in service interactions through
the use of Blockchain and Smart contracts. We implemented our methodologies in proto-
types. We tested them rigorously on contemporary datasets, proving their robustness and
showcasing their effectiveness over prevailing state-of-the-art strategies.

5

ABSTRACT

6

Contents

I Research Context, Research Problems, and Contribution Synthesis 15

1 Introduction 17

1.1 Short biography . 17

1.2 General research context and motivation . 17

1.3 Manuscript organization . 20

2 Research Problems and Contribution Synthesis 21

2.1 Research problems . 22

2.1.1 Semantically-enabled service interactions 22

2.1.2 Contextualized and user-centric service interactions 24

2.1.3 Dynamic service interactions and evolution 26

2.2 Contribution Synthesis . 28

2.2.1 Semantically-enabled service interaction framework based on Ontolo-
gies, Formal Concepts Analysis, and Linked Open Data 28

2.2.2 Semantic and configuration-based contextualized and user-centric
service interactions . 35

2.2.3 Machine Learning and Blockchain to handle dynamic and trustwor-
thy service interactions and evolution 41

II Semantically enabled service interactions 49

3 Semantic Web Service Composition Using Semantic Similarities and For-
mal Concept Analysis 51

3.1 Introduction . 52

3.2 Semantic Web Service Composition Framework overview 53

7

CONTENTS

3.3 Semantic similarity measure for Web services (Service Matching Engine) . . 54

3.4 Flexible Web service classification and discovery with FCA (Service Classi-
fication Engine) . 56

3.5 Planning and graph-based composite service generation (Service Composi-
tion Engine) . 58

3.5.1 Planning-based composite service generation 59

3.5.2 Semantic Similarity for Graph-based composite service generation . . 59

3.6 Implementation and evaluation . 61

3.7 Related Work . 62

3.8 Conclusion . 64

4 Linked Open Data Similarity for Web services 65

4.1 Introduction . 66

4.2 LODS: a Linked Open Data Similarity Measure 67

4.2.1 Background . 67

4.2.2 Similarity measure for Linked Data Resources 68

4.3 LOD-based context-aware service discovery 72

4.3.1 Context-aware service annotation model 72

4.3.2 Functional matching of services . 72

4.3.3 Non-functional matching of services 73

4.4 LDS library . 74

4.5 Implementation and Evaluation . 75

4.5.1 LODS similarity measure evaluation 75

4.5.2 LOD-based context-aware service recommendation in the context of
Smart Loire project . 76

4.6 Related work . 78

4.7 Conclusion . 80

III Contextualized and user centric service interactions 81

5 Configuration approach for personalized mashups 83

5.1 Introduction . 84

5.2 Configuration of Personalized Travel Mashup Overview 85

8

CONTENTS

5.3 DSVL for Mashup Query Definition . 87

5.4 Mashup Schema . 88

5.5 Configuration Problem . 89

5.5.1 Configuration Knowledge . 89

5.5.2 Configuration solution . 90

5.6 Reconfiguration Process . 92

5.7 Implementation and Evaluation . 93

5.8 Related Work . 95

5.9 Conclusion . 96

6 User-centric device recommendation 97

6.1 Introduction . 97

6.2 CUBE: Approach overview and formal representation 99

6.3 CUBE: Architecture and technical considerations 100

6.3.1 CUBE architecture . 100

6.3.2 CUBE layered representation and technical considerations 101

6.4 Semantic rule-based device recommendation for service-migration in multi-
ple device environment . 103

6.5 Implementation and evaluation . 104

6.6 Related work . 105

6.7 Conclusion . 106

IV Dynamic service interaction handling with Machine Learning and
Blockchain 107

7 Handling dynamic service evolution with LOD and ML 109

7.1 Introduction . 109

7.2 Approach architecture and overview . 111

7.3 Bootstrapping Phase . 112

7.4 Updating Phase . 114

7.5 Learning Phase . 115

7.6 Experimental Study . 116

7.7 Related Work . 117

9

CONTENTS

7.8 Conclusion . 118

8 Trustworthy service interactions with Blockchain 119

8.1 Introduction . 120

8.2 Background . 121

8.2.1 Business Process Choreographies . 121

8.2.2 Transactional Business Processes . 121

8.2.3 Blockchain and Smart contracts . 121

8.3 Mashup to smart contract transformation model 122

8.4 Extending Smart contracts with transactional business process model 125

8.5 Change propagation in Blockchain-enabled business process choreographies . 128

8.5.1 Declarative choreography modeling and change definition 128

8.5.2 Approach description . 130

8.5.3 Change propagation correctness . 133

8.5.4 Implementation and experimental evaluation 133

8.6 Related Work . 134

8.7 Conclusion . 135

V Conclusion and Perspectives 137

9 Conclusion and perspectives 139

9.1 Conclusion . 140

9.2 Ongoing research activities and short-term perspectives 140

9.2.1 Attentive knowledge based service recommendation 141

9.2.2 Privacy-aware user centric IoT device recommendation 143

9.3 Mid-term and long-term perspectives . 145

9.3.1 Handling IoT services: a user-side perspective for interactions, pri-
vacy, and trust . 145

9.3.2 Beyond conventional cloud computing: The rise of Distributed Com-
puting Continum (DCC) . 146

9.3.3 Application to Healthcare recommendation in SQVALD research project:
A fusion of technologies perspective 147

10

List of Tables

2.1 XML to Solidity code transformation rules 44

3.1 Simple DataType Groups Similarity([139]) 56

3.2 An example of semantic Web services in the registry 57

3.3 Service-Operation similarities . 57

3.4 Service-operation formal context for θ = 0.4 58

3.5 Semantic Composability Matching . 60

3.6 Example of selected services for composability graph building 60

4.1 Selected touristic offers . 77

4.2 A selection of the 9 most frequent queries. 77

4.3 Properties considered in non-functional evaluation 78

8.1 XML to Solidity code transformation rules 123

8.2 Evolution of the markings (included, pending, executed) of the DCR chore-
ography process in Figure 8.3 (before changes) 129

8.3 Proposed allowed and denied changes for a DCR process 130

8.4 SC change propagation gas costs and gas fees 134

11

LIST OF TABLES

12

List of Figures

3.1 Overview of the IDECSE Framework . 54

3.2 Service concept lattice corresponding to the formal context in Table 3.4
(Left) and with the requested service SR (Right) 59

3.3 Composability graph generation steps . 60

3.4 (Left) Time to build IDECSE registry. (Right) Time to match a query. . . . 62

3.5 (Left) Time to generate composition plans. (Right) Performance comparison
with PORSCE and 2P. 62

4.1 Overview of the Architecture of LDS. 75

4.2 Evaluation of LODS and sub-measures. 76

4.3 Example of a touristic service description 78

4.4 (Left) Evaluation of result precision. (Right) Comparing result quality with-
out/without context-awareness of the approach with user evaluation 79

5.1 Travel Mashup Configuration Architecture 86

5.2 (Left) Abstract Activity model. (Right) Example of domain-specific com-
ponents for travel mashup . 87

5.3 Rule editor interface . 88

5.4 Faceted Mashup Schema Data . 89

5.5 Reconfiguration Framework Overview . 92

5.6 Example of tourism data integration . 93

5.7 An example of visit itinerary generated by CART 94

5.8 (a) UEQ questionnaire result (b) UEQ Benchmark reference 95

6.1 CUBE abstract representation . 100

6.2 The CUBE architecture and its internal modules. 101

13

LIST OF FIGURES

6.3 CUBE layers and main used technologies and protocols. 102

6.4 Core concepts and properties . 104

7.1 Architecture of LOD Management of Service Deployment and Evolution . . 112

7.2 Recall and Precision . 117

8.1 A touristic itinerary XML schema . 122

8.2 Process choreography model of a touristic visit 124

8.3 DCR choreography process and tourist private DCR process of the trip e-
booking process . 130

14

Part I

Research Context, Research
Problems, and Contribution

Synthesis

15

Chapter 1

Introduction

1.1 Short biography

Dr. Nizar Messai is an Associate Professor in Computer Science at the University of
Tours, France, since November 2011. He received his Master and PhD in Computer Science
from University of Lorraine, Nancy, France, in 2004 and 2009 respectively. Before joining
the University of Tours, he spent 2 years as Teaching Assistant at the university of Lorraine,
1 year as R&D engineer at Procton Labs Paris and 14 months as a post-doctoral fellow at
École Centrale Paris, France. His research interests mainly include Semantic Web, Linked
Open Data, Web services, Internet of Things, and Blockchain, with a particular focus on
their interactions and combinations. He co-supervised 7 PhD students, of which 5 have
defended their thesis and two are about to do in 2023. He also supervised several Master’s
and Bachelor’s degree internships related to his research work. He has published over 50
articles in international and national peer-reviewed journals and conferences, including 2
best papers. He is the PI of 2 regional research projects on semantics and Web service
based recommendation applied to Tourism and Healthcare domains. On the teaching
front, Dr. Nizar Messai has set up several teaching modules in Computer Science. He was
Deputy Head of the Computer Science Department for 6 years. He is co-responsible for the
computer science bachelor’s degree at Tours, and co-director of studies for 1st and 2nd year
bachelor. He is an elected member of the board of the Faculty of Science and Technology
from 2018 to 2023. He is also elected member of the board of LIFAT, Computer Science
Research Laboratory of the University of Tours. He was awarded RIPEC bonus for the
quality of his research and teaching at University of Tours.

1.2 General research context and motivation

The emergence of Service Oriented Computing (SOC) paradigm two decades ago has
deeply revolutionized the way of developing software systems. This paradigm relies on

17

1.2. GENERAL RESEARCH CONTEXT AND MOTIVATION

the concept of Service as an abstraction of autonomous software component regardless of
any underlying implementation. Any service can then be run separately to provide the
function it was designed for or be combined with other services into composite ones to
provide a new value-added function. In this way, services act as loosely coupled build-
ing blocks that can be assembled into a network of services to create flexible, dynamic
business processes and agile applications [134]. The SOC paradigm promise was quickly
realized through Software Oriented Architectures (SOA) that enable the complete ecosys-
tem for interoperable service discovery, utilization, and combination to support virtually
any business process in any organizational structure or user context [74]. One of the most
successful realizations of SOA is Web services which extends SOA principals over the Web
as the largest infrastructure for service interactions. Web services took advantage of Web
protocols and their highly dynamic evolution. They in turn contributed to the emergence
of new application-to-application interactions over the Web in a service centric perspective
that progressively replaced the data centric perspective of the Web. Web services was first
designed over XML-based standards resulting from intensive standardization activities for
all Web services lifecycle aspects including WSDL, SOAP, and UDDI, among others, re-
spectively for service description, messaging, and registration/discovery. This variant of
Web services implementation usually referred to as SOAP Web services gave way to Rep-
resentational State Transfer (REST) [67] Web services also referred to as RESTful Web
services [141, 136]. REST architecture relies on HTTP protocol and brings more flexibility
for service interactions. The simplicity and flexibility of REST motivated the shift towards
RESTfull Web services which consequently became the most commonly advocated ap-
proach for developing service-based applications. REST architecture is also the most used
for Application Programming Interface (API) developments which supports more features
and communication possibilities than Web services. Quickly adopted and supported by the
major IT firms, REST APIs are today established as the means for Web application in-
teractions. They range from the most complex applications including Web giants (Google,
Amazon, Microsoft, etc.) tools and processes to the most basic cases of connected devices
in Internet of Things (IoT) contexts. Following the service integration paradigm, APIs are
also composed into bigger applications called Mashups. The last most-known variant of
service implementations exposing the functionalities on the Web are Cloud services. They
go further than just the main functionality of Clouds as online data storage solutions to
a wide range of cloud service categories including Software as a Service (SaaS), Platform
as a Service (PaaS), Infrastructure as a Service (IaaS), Function/Machine Learning as a
Service (MLaaS) and more generally Every thing as a Service (*aaS).

The success of Web services to propose a flexible and cost-effective way for distributed
application development that meets enterprise interaction requirements, has significantly
increased the number of available atomic and composite Web services. This large heap of

18

1.2. GENERAL RESEARCH CONTEXT AND MOTIVATION

available services exponentially grows when it comes to building new composite services
over all the composition possibilities. This straightforwardly rises the challenge of iden-
tifying relevant services either for single function invocation or for designing composite
service for more complex tasks. First generation tools for service discovery based on their
syntactic functional and non-functional descriptions fall short to face this challenge [116].
At the same time ontologies and the Semantic Web were gaining a wide interest towards
providing machine understandable Web contents [20]. Enhancing Web services using se-
mantic Web standards quickly became a thriving area and gave birth to semantic web
services [114] as a new generation of Web services. Existing standards were extended with
semantic dimensions describing service capabilities, eg. WSDL-S, and new ones were also
proposed as a full semantic language for web services, eg. OWL-S. These languages mainly
concern SOAP Web services and rather harden the complexity of service integration while
the trend is to promote lightweight service architectures. Semantic handling is then left
to an annotation process within service engineering frameworks. Such process relies on
external semantic resources to automatically annotate service operations and parameters
with external resources [146]. Domain ontologies were largely used for service annotation
with abstract semantic concepts. However the domain specific focus of ontologies makes
them less relevant when it comes to connecting heterogeneous services with complemen-
tary functions from complementary domains to build composite services. Cross-domain
ontologies such as DBPedia and then the Linked Open Data (LOD) brought some an-
swers for "domain-independent" semantic service annotation. Recent advances in Machine
Learning and Natural Language Processing gave rise to active researches to capture service
functionalities and underlying semantics from text descriptions, interaction logs, and user
feedbacks [98, 175].

Over the last ten years, I have been particularly interested in the intersection of the two
research topics of Web services and the Semantic Web. My aim was to bring innovative
sound approaches that leverage all Web service life-cycle steps with native semantic aware-
ness to achieve high level of successful and effective interaction in service-service scenarios
within compositions and mashups as well as in user-service scenarios. I was particularly
interested in defining declarative models with evolving rules to keep pace with context
changes. Within this perspective, my research contributions started with semantic simi-
larity measures proposal for service classification and recommendation, and progressively
moved to handle personalized service-service and user-service interactions including privacy
and trust awareness. These contributions appealed for the most hot topics in interaction
with Web service research fields including (i) ontologies and Linked Open Data (LOD) for
semantic similarity measures, (ii) Formal Concept Analysis (FCA), Configuration Theory,
First Order Logic and Dynamic Condition Response (DCR) Graphs for declarative frame-
works, (iii) Machine Learning for service interaction handling, and (iv) SOLID standards,

19

1.3. MANUSCRIPT ORGANIZATION

Blockchain and Smart Contracts (SC) for privacy and trust in service interactions. These
contributions were achieved in strong collaboration with colleagues and PhD students from
University of Tours and other universities within international collaborations. They were
mostly supported by two scientific projects, Smart Loire and SQVALD, funded by Région
Centre Val de Loire. These projects provided application contexts with specific challenges
respectively in the Tourism and Healthcare domains. This dissertation will go through
these contributions with sufficient details to be self-contained and easily understood. In
case of need for in-depth focus the reader can go through the corresponding published
research papers which contain fully detailed description of each contribution with related
work review, experiments and links on used libraries and datasets.

1.3 Manuscript organization

The manuscript is organized into five parts :

Introduction: This initial part, which contains the current chapter and Chapter 2,
presents the general context of my research activities. It raises the identified research
challenges, and summarizes key contribution I come up with to answer these challenges.

Semantically-Enabled Service Interaction (Part II): This part is dedicated to our
contributions on enabling service interaction via semantic capabilities. Chapter 3 explores
our work on ontology-based similarity. Chapter 4 discusses the details of our new LOD-
based similarity.

Context-Aware and Personalized Service Interactions (Part III) : This part
presents the details of our contributions towards context-aware and personalized service
interactions. A service perspective approach is discussed in Chapter 5, while Chapter 6
focuses on the perspective of running devices.

Handling Service Interaction Evolutions (Part IV) : This part highlights the details
of our contributions towards handling service interaction. Chapter 7 discusses our work
on handling evolutions via leveraging ML models. Chapter 8 describes the exploitation of
Blockchain technology to set trustworthy service interactions.

Conclusion and Research Perspectives (Part V) : This final part provides a general
conclusion, sets the ongoing research efforts and suggests potential next steps to consider
as future research directions.

Chapters 1, 2, and 9 outline a summary of our contributions, highlighting the essential
elements of research and providing insights on future perspectives. The remaining chap-
ters elaborate on the deep details of the proposed contributions, providing an in-depth
comprehensive exploration of each one.

20

Chapter 2

Research Problems and Contribution
Synthesis

Contents
2.1 Research problems . 22

2.1.1 Semantically-enabled service interactions 22
2.1.2 Contextualized and user-centric service interactions 24

2.1.2.1 Need for personalized service recommendation 24
2.1.2.2 Need for fluent user-side service running management . 25

2.1.3 Dynamic service interactions and evolution 26
2.1.3.1 Need for handling dynamic evolution of service interactions 26
2.1.3.2 Need for trustworthy and dynamic service execution . . 27

2.2 Contribution Synthesis . 28
2.2.1 Semantically-enabled service interaction framework based on On-

tologies, Formal Concepts Analysis, and Linked Open Data . . . 28
2.2.1.1 Ontology-based similarity and Formal Concept Analysis

for Web service composition 29
2.2.1.2 Linked Open Data based similarity for Web service rec-

ommendation . 32
2.2.2 Semantic and configuration-based contextualized and user-centric

service interactions . 35
2.2.2.1 Personalized and context-aware Mashups: A Configuration-

based approach . 36
2.2.2.2 User-side service migration in multiple-device contexts . 38

2.2.3 Machine Learning and Blockchain to handle dynamic and trust-
worthy service interactions and evolution 41
2.2.3.1 Handling service evolution with Machine Learning and

Linked Open Data . 41
2.2.3.2 Blockchain and smart contracts for trustworthy execu-

tion of business processes in dynamic contexts 43

21

2.1. RESEARCH PROBLEMS

This chapter introduces the research challenges we identified in service interaction con-
texts and summarizes the scientific contributions achieved towards dealing with these chal-
lenges. In Section 2.1, I discuss three main research challenges: Semantically-enabled
service interactions, in Section 2.1.1, Contextualized and user-centric service interactions,
in Section 2.1.2, and Dynamic service interactions and evolution, in Section 2.1.3. Then,
in Section 2.2, I give an overview of the ways we tackled each challenge respectively. For
each contribution, I discuss the main ingredients, the formal models, and the architecture
elements to help understanding the main idea and the ways we proceeded to achieve it. I
leave detailed presentation to dedicated chapters.

2.1 Research problems

After two decades of intense development and innovation, Web services have estab-
lished themselves as an essential technology for fast establishing next generation real-world
applications that may wrap a wide range of Web-accessible functions, resources, programs,
databases, sensors, devices, etc. This unprecedented proliferation of Web services not
only accentuated the already known challenges of service discovery and composition, but
also raised new ones regarding extending service interactions to user-centric perspectives.
This includes the challenge of contextualizing and personalizing service recommendation,
handling user feedbacks, preserving privacy and trust while evolving in highly dynamic
contexts, etc. For both types of challenges we believe that a successful approach should pro-
vide declarative formal models capable of capturing semantic meanings underlying service
descriptions, functions, compositions, evolutions, and interaction contexts. Our research
activities towards achieving such approach mainly address the following specific research
challenges.

2.1.1 Semantically-enabled service interactions

Handling Web services semantics was an evident answer for several efficiency problems
faced by first generation Web services. Indeed, service management frameworks that relied
only on syntactic descriptions of services were error prone because of the mismatch prob-
lem between descriptions of service functionalities and parameters. They were also time
consuming because of the lack of abstraction structures of service collections which also
leads to low accuracy when it comes to discover relevant services for specific use. Semantics
brought new perspectives and challenges towards efficient automation of service life-cycle
management with machine understandable and processable services. Too many approaches
were proposed since then and covered different facets of enhancing Web service life-cycle

22

2.1. RESEARCH PROBLEMS

management with semantic level. The main focus was to annotate services with abstract
concepts from semantic resources such as domain ontologies. The abstraction semantics
are then used to identify services in discovery process, to classify services into classes based
on their semantics, and to decide how likely two services can successfully build a new
composite one that matches the expected value-added function in composition process or
to which end one service can substitute another service to ensure continuous composition
running.

These intensive research and development activities in semantic Web service manage-
ment resulted in significant improvements of Web service management tools and frame-
works to achieve high performance and accuracy especially in basic use-cases with optimum
conditions of use including: identified specific domain, full accurate descriptions of Web
services, rich and expressive domain ontologies, etc. In general, however, such conditions
are not always met. Web service composition process may involve heterogeneous services
with complementary functions referring to complementary domains rarely covered by one
single domain ontology, rising evident need for cross-domain semantic resources. In ad-
dition, service descriptions provided by service providers may not be exhaustive as this
task requires a high domain expertise to choose the most appropriate description terms.
Service descriptions may also result from aggressive advertising and campaigns to pro-
mote providers services, and again used terms may not be the appropriate ones to use.
Consequently the right meanings for service functions may not be captured by semantic
annotation process. It therefore becomes necessary to complete service annotation with
data from feedbacks on real service running and interactions.

Once the semantic service annotation challenge is tackled, the next challenge to cope
with is twofold. First, defining efficient metrics and measures that exploit semantic an-
notation together with additional criteria to provide accurate similarity measures for Web
services. Second, building dynamic and flexible structures over the similarity measure that
makes it easy to quickly and efficiently identify relevant services for a given usage. To
this end, typical graph-based representations could bring interesting solutions. However,
they require the integration of a semantic layer to support relationships between atomic
Web services as well as those within compositions. The built structures should in turn
serve as flexible search space for service discovery and for composition building. Efficient
algorithms have therefore to be defined over the classification structure to support the dis-
covery process as well as to generate successful compositions through the use of planning
tools.

Another major challenge yet to be addressed is to define the underlying formal models
for a full round-trip service management framework that enables accurate annotation, flex-
ible classification, efficient discovery, reliable composition generation, and efficient recovery

23

2.1. RESEARCH PROBLEMS

from service failures. These points among others show that there are still challenges lying
ahead of the semantically-enabled service interactions. This dissertation is partly focused
on our contribution regarding these challenges.

2.1.2 Contextualized and user-centric service interactions

2.1.2.1 Need for personalized service recommendation

The digital transformation of the society brought new ways and opportunities for
service-based application development and consuming. Powerful mobile devices have be-
come a basic must for even trivial daily-life use. They allow access to a wide range of
Mobile and Web applications covering professional use such as shared workspaces, calendar
scheduling, remote meeting, team managing, etc. as well as personal use such as weather
forecast, gaming, home monitoring, online shopping, etc. In many cases these applications
are built as mashups of existing services and APIs through the use of mashup tools and
platforms such as ProgrammableWeb. These tools have significantly lowered the barriers
to mashup development allowing less experienced contributors with few programming skills
to assemble their own applications [39, 172] in an intuitive way. This straightforwardly led
to evident increase of available services resulting in an unparalleled large scope of choices
on selecting services for further mashups. Consequently, the technical facility for mashup
building comes up against the challenge of choosing the appropriate services to compose
from the plenitude of the available ones.

In this context, semantically enabled frameworks (Section 2.1.1) can bring partial an-
swer as they can be employed as the preliminary selection criteria indeed for coarse ranking.
Semantic matchmaking process will likely find a large set of candidate web services with
close semantic similarity. The challenge then is to define additional ways to achieve highly
relevant service recommendation approaches able to provide mashup builders with the most
relevant services to achieve their specific added-value needs.

This challenge of service recommendation fine-tuning has been addressed through con-
sidering contextual information characterising the situation for service interaction, which
led to the context-aware services discovery research topic defined as the ability to make use
of context information to discover the most relevant services for the user [152, 21]. Context-
aware service discovery was widely studied from the perspective of ubiquitous computing.
In the earlier proposed approaches the context was usually reduced to the user/service
location. More advanced ones introduced a wide range of heterogeneous contents relying
on predefined ontologies and user context history with the promise to delivering “the right
information at the right place and the right time" to users [21]. Service interaction con-
texts may vary within highly heterogeneous situations making it difficult for any approach

24

2.1. RESEARCH PROBLEMS

to define a global view with sufficiently relevant criteria to capture service usage interest
and therefore provide an accurate service recommendation. This straightforwardly raised
the need to consider specific application domains to focus on relevant selection criteria for
service recommendation [41]. This is the case of the Tourism domain for example where
the need for service recommendation systems have grown as far as the tourists need shifted
to more personalized experience.

Although a lot of work has been done in this direction, there is still a gap regarding
user contribution within Mashup creation in intuitive and efficient way. The challenge
that still needs to be addressed is to achieve efficient framework that first provides inex-
perienced users with intuitive ways to create abstract mashups that capture user needs
and preferences and then rely on efficient formal and declarative models to derive relevant
context-aware and domain specific mashup instances that meet the user needs.

This dissertation tackles this twofold challenge from the perspective of Tourism domain.
We discuss our contribution towards a visual intuitive language for mashup creation and
a configuration-based framework for personalized and user-centric service recommendation
in the Tourism domain.

2.1.2.2 Need for fluent user-side service running management

In the same context of digital transformation of the society, end-users use mobile devices
to interact with the services and applications discussed so far from the perspective of
personalized service recommendation. The most commonly used devices are smartphones
and pads. However, depending on the interaction context the mobile device may range
in a larger variety including sensors, screens, home-devices, wearable devices, etc. What
becomes more common is that the user may interact with the same service from more
than one device simultaneously or more usually in sequence to continue an interaction
on a second device when it becomes impossible or uncomfortable to use the first one.
The related research topic is known as service synchronization and migration in multiple-
devices scenarios [78, 170]. The best known contributions that addressed this topic relied
on the concepts of Liquid Software [80] to adapt the service interactions to the used device
[122, 70].

Although these approaches succeeded to adapt service interactions to the chosen run-
ning device, they mostly relied on service-side synchronization. Cloud-based solution in-
deed brought a wide range of support regarding elasticity and resource management for
service execution. On the user-side, however, these approaches do not yet allow to obtain
simple data-flow without restarting user-service interaction sessions from scratch each time
the user moves to a new device.

25

2.1. RESEARCH PROBLEMS

Successful approaches towards the challenge of user-side service migration/synchroniza-
tion should tackle the following issues to provide the user with high quality of experience:
First, it should review synchronization and data-flow handling within the REST protocol.
Second, it should provide efficient matching algorithms between user-service interaction
requirement and devices capabilities as well as efficient device recommendation for ser-
vice execution. Last, it should rely on sound formal models that guarantee the approach
to be generic and extensible to any application scenario. This dissertation discusses our
contribution towards these challenges.

2.1.3 Dynamic service interactions and evolution

2.1.3.1 Need for handling dynamic evolution of service interactions

Web services compositions and Mashups designed through the challenges discussed so
far are then run to provide the expected results. They usually hold over several interaction
sessions. Therefore, the next important challenge to cope with is the dynamic evolution
of such mashups and compositions over time and the interaction relationships services
may hold within. Basically, the most evident relationship between two services is the
composition relationship to yield composite added-value services. With the development
of mashups and new generation Web services the composition is generalized to collaboration
relationship defined as the ability of two or more services to work together to satisfy users
requests. Classifying Web services based on their similarities yields the second type of
relationship between services which is the substitution or replaceability between the highly
similar services to avoid mashup breaking in case of service failure. Substitution is naturally
generalized into competition between services providing the same functions being provided
by concurrent entities.

The quick and phenomenal progress of social networks development and their highly
dynamic evolution inspired researchers on the Web services to model Web service interac-
tion relationships as a social network of services [111] giving birth to the concept of social
Web services [110]. In such network, services which are the entities identify those peers
with which they’d like to work (collaboration), those that can replace them in case of fail-
ure (substitution), and those that compete against them for selection (competition). In the
same direction, new types of relationships such as subscription have been proposed later
to capture situations when a service tries to keep updated with the evolution of another
[97].

Following the social network metaphor, Web service networks allow comments and
feedbacks over services and relationships. This generates relevant new data yet to be
considered to keep high quality mashups, or in the in contrast, to prevent the failure of

26

2.1. RESEARCH PROBLEMS

badly constructed ones. Feedback analysis allows also to evaluate the real quality of service
(QoS) of given services that can be set against the QoS given by service providers. This
highly competitive network of services forces service providers to regularly update their
deployed services in order to continue taking part in the engaged collaborations. They also
deploy new services to answer new needs and/or follow new trends. These updates and
deployments are also described through additional data, largely free text. Consequently,
social Web service computing brought new interesting representation models that capture
the continuous service deployment and the dynamic interaction relationships services may
partake during their lifetime. It however raised the new challenges of handling the generated
data, and analyzing it to ensure and maintain network consistency and evolution while
providing accurate relationship recommendations. Although many research works tried to
tackle this challenge through the use of Machine Learning approaches for text analysis of
descriptions and comments on services and their interactions [99], there is still a need for
a more general framework that relies on both semantically-enabled models and machine
learning tools.

2.1.3.2 Need for trustworthy and dynamic service execution

Web services are widely used in today’s business world as the functional part of larger
Business Processes which also integrate other enterprise perspectives including data and
control. In its abstract representation, a business process is modeled as a graph of tasks,
events and control operators [164]. Service-based business processes rely on Web services
to implement their tasks. Business processes are designed to achieve business goal which
usually involves the collaboration of many entities in decentralized environments. In such
open environments, collaborating entities are also competing for their own business suc-
cess which leads to untrusted behavior. Therefore, successful collaborations require either
a central coordination between involved parties or at least an agreed on reference bro-
ker to mediate and control the execution. The first case, mostly known as orchestration,
faces several issues including central node congestion, additional fees, etc. The second
case, known as choreography, is more suitable for open collaboration as entities collaborate
directly without intermediaries. They however still need to rely on well-defined collabora-
tion rules and policies to trust each other towards successful collaborations. These issues
have been widely addressed by state-of-the art approaches that usually rely on formal and
transactional models to define collaboration rules and on formal verification to ensure ex-
ecution soundness [163, 22, 77]. These approaches fail, however, to dispense with the need
for independent third party to guarantee compliance with trust policies between engaged
entities.

The emergence of Blockchain technologies for decentralized and transactional data shar-

27

2.2. CONTRIBUTION SYNTHESIS

ing across a network of untrusted participants brought the right solution that fits well with
the requirements of business process choreographies executions. It didn’t take long for the
Blockchain technologies to be adopted as infrastructure that handles trustful interactions
between business entities without any need of a central authority [88, 169, 117, 64, 36].
These approaches mostly rely on second generation blockchains which allow for complex
task running through programs called Smart Contracts that enforce the terms of agreement
between the untrusted parties. The proposed approaches focus on execution control flow
of business processes while leaving transactional flow to the basic blockchain specification
that follows standard ACID model which fails to capture advanced reliability requirements
of complex business process executions. There is therefore need to define suitable models
to handle the transactional flow of blockchain-based process executions.

Collaborating business entities evolve in highly dynamic environments that appeal for
continuous updates and improvements of their internal processes to keep high competition
level. These dynamic changes may affect the collaborations in which the enterprise takes
part. Changes may also directly concern the global collaboration due to new external
business policies that should be taken into account. In both cases, changes must be notified
and propagated to the involved partners. Change propagation in process choreographies
has also been tackled prior to blockchain-based approaches [65]. In the blockchain-based
ones however it is still challenging because of the non-mutable nature of shared data.
There is therefore need to bring additional levels to cope with the change propagation
within blockchain based choreographies execution frameworks.

This dissertation will discuss our contribution towards transactional flow modeling and
change propagation model for blockchain-based choreographies.

2.2 Contribution Synthesis

In this section, I give a summary of our contributions regarding the research problems
discussed so far. I will discuss the intuition behind each contribution and its main ingre-
dients including the formal model, the architecture, and the specific application context.
Each contribution will then be detailed in a dedicated chapter of the manuscript.

2.2.1 Semantically-enabled service interaction framework based on On-
tologies, Formal Concepts Analysis, and Linked Open Data

Our contribution towards the challenge of semantically enabled service interactions dis-
cussed in Section 2.1.1 is mainly focused on proposing efficient semantic similarity measures
and then designing service life-cycle modules based on these similarities. We first proposed

28

2.2. CONTRIBUTION SYNTHESIS

ontology-based semantic similarity measure within a fully integrated framework for service
composition, which appeals for concepts lattices and graphs for service classification and
composition generation. Then, following the evolution of semantic Web to Linked Open
Data, we proposed a LOD-based semantic similarity measure for service recommendation.
The proposed LOD-based similarity measure acts then as the central component of an open
source library we developed and proposed to the community as an API and as a Maven
dependency. These contributions are summarized in the following subsections.

2.2.1.1 Ontology-based similarity and Formal Concept Analysis for Web ser-
vice composition

This contribution starts by proposing an Integrated Development Environment for
Composite Services Engineering (IDECSE) that considers semantics in all the composi-
tion steps: analyzing user query, classification of services in the registry based on their
features semantic relatedness, composing services, and verifying the composition process.
The proposed architecture has 3 main components: (i) Service matching component which
relies on efficient similarity measure computing, (ii) Service classification component that
provides a flexible organisation of service registry to support efficient service discovery,
and (iii) Composition generation component that allows the establishment of coherent
composite services relevant to the desired functionalities.

Semantic similarity measure for Web services The IDECSE Framework deals with
semantic Web services features which are annotated through ontological concepts. Web
service description files features include functional features such as Inputs, Outputs, Pre-
conditions, and effects, and non-functional ones such as QoS and service invocation con-
straints. We propose a similarity measure that focuses on functional features and leaves non
functional ones to the composition process. The proposed similarity measure is defined as
the sum of weighted similarities between pairwise service Inputs, Outputs, Preconditions,
and Effects, denoted as follows for any two services Si and Sj :

σ(Si, Sj) = w1SimIn(Si, Sj)+ w2SimOut(Si, Sj)+w3SimPrec(Si, Sj)+ w4SimEff (Si, Sj)

where
∑4

k=1wk = 1. The weights wi allow modeling the similarity measure to be adapted
to different application cases where it may be required to focus on IO only or any other
possible combination of the four aspects. In the case where no specific preferences are
given, these weights are equally set to 0.25.

Each of the four Sim functions is in turn defined as the sum of two weighted concept-
based and data-type based measures as follows for the case of Inputs and analogously for

29

2.2. CONTRIBUTION SYNTHESIS

the three other dimensions:

SimIn(Si, Sj) = uIn1SimCo(Ini, Inj) + uIn2SimDT(Ini, Inj)

where uIn1 + uIn2 = 1.

Web services features are semantically annotated using concepts from ontologies. Mea-
suring their similarity turns out to measuring the similarity between their annotation con-
cepts in the considered ontologies. Comparative study of the state-of-the-art approaches
on semantic similarity measures have shown a better correlation coefficient and higher ef-
ficiency rates for the measure proposed in [145] which follows the Tversky model [157],
where common taxonomical features tend to increase similarity while the non-common
ones decrease it. We therefore adapt the Sanchez formulas to define SimCo.

In the same way, we reviewed and adapted the best state-of-the-art data-type measures
to define SimDT. Following works in [139] and [154] we propose a practical measure
between different data-types that defines abstract groups of compatible data-types and then
assigns similarity values to each pair of groups. Considering SimDT prevents meaningless
composite services built upon highly similar services with respect to SimCo which however
fail to match their data-types. Following this intuition, the weight uIn1 must be higher
than uIn2 to focus on semantic similarity while keeping data-type similarity for checking the
composition consistency. Conducted experiments confirmed that the combination uIn1 =

0.80 and uIn2 = 0.20 gave the highest accuracy.

The proposed Web service semantic similarity measure within the matching component
plays the central role in the IDECSE framework as it is the basis for service matching,
classification, discovery and composition as it will be discussed hereafter.

Flexible service classification with Formal Concept Analysis The way services
are organized within the service registry highly impacts the efficiency of service identifi-
cation for any given need. We therefore propose to build the classification component of
IDECSE upon the well-established formalism called Formal Concept Analysis (FCA) [71]
and particularly its derived structures called Concept Lattices.

Based on partially ordered sets theory, FCA allows to structure the data into a hierarchy
of partially ordered concepts called the Concept Lattice. Each concept corresponds to a
maximal set of objects having in common a maximal set of attributes. The concept lattice
hierarchical relation is based on the dual partial order between sets of objects and dually
sets of attributes. This structure and its properties motivated the use of concept lattices
as indexing structure for information retrieval either by direct querying or by progressive
navigation [118, 119].

Following this direction we apply FCA to automatically organize services into a concept

30

2.2. CONTRIBUTION SYNTHESIS

lattice based on the semantic similarity defined so far. FCA applies on binary matrix
data called formal context, which is not the case of service data set. We operate data
transformation as follows. Services are considered as attributes and objects and encoded
within a matrix SeSimMat of service similarities. We define a similarity threshold θ ∈[0 , 1]
and generate a service similarity context matrix SeSimCxt from SeSimMat. SeSimCxt

is in turn used to generate a formal context SimCxt represented as a triple (S,S,RSimθ
),

where S is a set of services, and RSimθ
is a binary relation indicating whether two services

can offer similar functionality or not.

Starting from SimCxt we can build the corresponding concept lattice structuring the
services in the registry. We define querying and navigation algorithms upon the service
concept lattice: (i) to find equivalent, similar, and composable services to the requested
need, (ii) and to select the most relevant services for the purpose of substitution process
to maintain a composite Web service application functionality as much as possible.

Depending on the request need, selected relevant services are transmitted to the corre-
sponding component of the framework.

Planning and Graph-based service composition The last component of the IDECSE
framework is the composition generator. It takes as input a set of similar services returned
by the previously presented components to provide a set of coherent composite services
relevant to requested function. This component appeals for AI planning techniques and
graphs together with the semantic similarity measure and QoS constraints to ensure suc-
cessful compositions. The key point is the compatibility between Input-Output interfaces
of the services to be connected within the resulting composite ones.

The highest level of compatibility is achieved with identical matching between Input-
Output which feats the use of AI Planning. In this case, Web service composition problem
is mapped to a planning problem based on transformation rules defined in [82] and using
the Planning Domain Definition Language (PDDL) [75]. In this mapping, each service
Si is represented as a state Sti, its inputs and preconditions are represented as the state
preconditions prec(Sti) = SiInputs∪SiPreconditions

, and its outputs and effects are represented
as the state effects eff(Sti) = SiOutputs ∪SiEffects

. We apply STRIPS planning algorithms
on the resulting mapping problem to generate possible solution plans corresponding to
possible service compositions.

In the general case however, there may be no exact Input-Output interface matching.
The composition generator relies on the proposed semantic similarity measure to compute
approximate matching possibilities. The similarity measure σ(Si, Sj) is redefined to apply
on the outputs/effects of Si and the inputs/preconditions of Sj . The obtained similarity
values are mapped to logical match type as defined by [100]. The logical match types are

31

2.2. CONTRIBUTION SYNTHESIS

Fail, Subsume, Plug-in, and Match which respectively correspond to composability values
in [0 , 0.3[, [0.3 , 0.6[, [0.6 , 0.8[, and [0.8 , 1].

Services with "Match" or with "Plug-in" are most likely to lead to successful compo-
sition. The next step consists of considering these services to build a directed weighted
graph with nodes being services and edges being composability values. We formalize satis-
fiable compositions as Scomp ={ Icomp, Ocomp } where Icomp is a set of inputs that present
a valid degree of match with the set of requested Inputs SRIn

and OComp is a set of out-
puts that present a valid degree of match with the set of requested Outputs SROut

. Then,
service composition solutions are those corresponding to paths in the graph between SRIn

and SROut
. The graph search algorithm is enhanced by considering QoS constraints over

services to fine-tune composition solutions ranking.

The work described in this subsection was conducted during the PhD of Ahmed Abid
defended on July 2017. More details will be given in Part II, Chapter 3.

2.2.1.2 Linked Open Data based similarity for Web service recommendation

This contribution takes advantage of the evolution of Semantic Web to Linked Open
Data (LOD) to propose efficient similarity measures that operate for any domain overcom-
ing the shortcuts of ontology-based similarities which usually focus on few specific domains.
The contribution is threefold: (i) we propose a new similarity measure, called LODS, that
assesses the matching degree between pairs of terms represented with LOD resources, (ii)
we apply LODS for context-aware service recommendation, and (iii) we propose an open
source LOD-based similarity measure library.

LODS: a Linked Open Data based Similarity Measure LOD initiative [23] aims at
making a gigantic interlinked database of interlinked datasets/resources following few basic
interlinking principles [19]. LOD have quickly grown and led to an important source of
semantic information with high informativeness that can be useful for many applications in-
cluding semantic similarity calculation [120]. Following these advances, we propose LODS,
a LOD-based similarity measure that takes advantage of LOD properties and resources
interlinking to compute similarity between any two terms.

DBpedia [102], which realizes LOD vision by structuring Wikipedia content and inter-
linking it with external datasets, acts as a central kernel of the LOD cloud. We therefore
consider it as a starting point to glean initial data to compute similarity degree between
compared concepts. Then, we follow interlinks to enrich data from other datasets through
a data augmentation process. Among the numerous LOD properties, LODS focuses on the
following ones:
Instances: LOD resources are described with various multi-domain ontologies making it

32

2.2. CONTRIBUTION SYNTHESIS

possible for a given LOD concept to have multiple instances in different ontologies with
different levels of description richness.
Categories: LOD resources can be arranged into categories with different classification
granularities and depths.
Resource properties: LOD resources are described with different properties which distin-
guish and characterize resources.
Interlinking: LOD resources are usually interlinked to each other using owl:sameAs.

Considering these properties we define LODS as the average of 3 sub-measures: Instance-
based (SimI), Category-based (SimC), and Property-based (SimP). Formally, for any two
LOD resources a and b:

LODS(a, b) = avg(SimI(a, b), SimC(a, b), SimP (a, b))

SimI exploits the taxonomic structure of ontological concepts used to instantiate resources.
It extracts resources features by getting their super-concepts from each annotating ontology.
It then applies the Tversky model on the set of features. The final similarity value is the
average of values obtained for all the annotating ontologies.
SimC follows the same principle as SimI but applies on taxonomic structure of classification
schemata and limits the number of extracted super and sub categories while extracting
resources features.
SimP exploits ingoing and outgoing resources properties. It applies Partial Information
Content (PIC) measure to focus on the discriminant properties rather than the commonly
used ones.

The detailed formalization of these sub-measures is given in Chapter 4. The intuition for
combining these sub-measures is to take into account the LOD reality where resources are
not systematically described with ontological concepts. They are neither always arranged
in categories nor well distinguished with properties. The objective is to reduce the negative
impact of poorly described resources on the resultant similarity score. Each measure applies
on enriched data by following links between different dataset. We define SimI and SimC
as feature-based measures based on the Tversky model [157] instead of distance-based
methods. This is mainly because in multi-domain ontologies, taxonomic relations do not
necessarily represent uniform distance [145].

Context-aware LOD-based service discovery LODS similarity measure is applied
for context-aware service discovery and recommendation. The proposed approach consists
of the following steps: (i) We define an annotation model that captures both functional
properties for service actions and non-functional properties for contextual information. (ii)
We enrich the service model instances with semantic data from LOD. (iii) We propose

33

2.2. CONTRIBUTION SYNTHESIS

matchmaking algorithms based on LODS to identify relevant services for user needs in a
given context. (iv) We illustrate the approach effectiveness in the tourism context provided
by the SmartLoire project.
(i) Context-aware service annotation model: We represent a service S as a triple ⟨ns,Fs,NFs⟩,
where ns is the service name, Fs = {f1, f2, . . . , fi} is the set of service functionalities, and
NFs = {P1,s, P2,s, . . . , Pn,s} is the set of service non-functional property sets. Due to the
diversity of non-functional information, these sets are generally organized in profiles, where
each profile Pi,s describes a specific context information domain.
(ii) LOD-based enrichment of service model instances: Functional service features in Fs

are annotated with LOD resources starting with DBPedia and following interlinks as in
the previous section. Non-functional features however may be either quantitative or qual-
itative properties. Only qualitative properties which take string values can be annotated
with LOD resources.
(iii) Extending LODS for context-aware service discovery: We define a two-step discovery
process. The first step considers functional features and their LOD annotating resources
and relies on LODS measure for computing service similarities with respect to requested
service. The second step considers non-functional properties with a conditional similar-
ity measure which applies LODS on LOD annotated qualitative properties and adequate
numerical similarity measures on quantitative properties. The overall non-functional simi-
larity is a weighted combination of the similarity values of the set of profiles. The weights
allow to define importance to a given profile rather than another depending on the con-
text.
(iv) Applying the approach in the Tourism domain: Within the SmartLoire project, we
consider a dataset of touristic services provided by ADT37 (Agence Départementale de
Tourisme d’Indre-et-Loire) through its platform Tourinsoft (http://www.tourinsoft.com/).
The dataset contains 1632 services classified into different touristic offer categories and
annotated through functional and non-functional properties. We applied the previously
discussed steps and evaluated the discovery relevance by implying more than 20 real users
in the query definition and results ratings. Obtained results from different metrics demon-
strated the high matchmaking relevance in both functional and non-functional discovery
phases.

LDS: LOD-based similarity measures library In order to go further than the LODS
similarity measure, we propose LDS (Linked Data Similarity) Library as an open source
Java software library of LOD-based semantic similarity measures. LDS defines a generic,
reusable, and extensible architecture that integrates the best-known existing LOD-based
similarity measures and supports both developers and researchers who intend to use these
implemented measures or develop their own new ones.

34

2.2. CONTRIBUTION SYNTHESIS

LDS development follows the following requirements: (i) Simple design to facilitate
the reuse of the tool and provide developers the ability to extend and use it with their
developed semantic measures; (ii) Efficient LOD querying, caching and indexing to ensure
similarity calculation efficiency and scalability; and (iii) Extensibility to offers developers
a way to implement rapidly their measures and incorporate the library with their work.

The LDS architecture has 5 main components: (i) Similarity Engine which acts as the
interaction interface of LDS with external programs. (ii) LOD-based Similarity which cal-
culates the similarity values. (iii) Linked data Manager which retrieves data for similarity
calculation. These two components act as plugability layer allowing to easily integrate new
similarity measure as subclass of LOD-based Similarity and the corresponding subclass of
Linked data Manager. (vi) Linked data Indexer implements a mechanism for data indexing
and caching to allow scalability and efficiency of LDS. (v) Finally Linked data Benchmark
is used for testing and measures evaluations. The full architecture of LDS with detailed
description of its components is provided in Part II, Chapter 4.

In its current version the library implements the following LOD-based similarity mea-
sures: LODS and its sub-measures SimI, SimC, and SimP discussed earlier, Linked Data
Semantic Distance (LDSD) [135] and its extensions [135, 11], Resource Similarity (Resim)
[137] and its extensions [11], and Partitioned Information Content Similarity (PICSS) [121].

In addition, to evaluate the ease of usage and extensibility of LDS, we proposed a
new LOD-based similarity measure, Extended Partitioned Information Content Similarity
(EPICS), which extends PICSS by considering an additional set of features called similar
features, which considers the similarity between resources based on shared properties and
directions. The evaluation results not only highlighted the potential of EPICS but more
importantly the effectiveness of LDS as a core library for composing, implementing, and
testing new similarity measures.

The work described in this subsection was conducted during the scientific stay of Nasred-
dine Cheniki at the University of Tours between 2016 and 2019 and during the PhD of Fouad
Komeiha to be defended in 2023. More details will be given in Part II, Chapter 4.

2.2.2 Semantic and configuration-based contextualized and user-centric
service interactions

Our contribution towards the challenge of contextualized and user-centric service in-
teractions discussed in Section 2.1.2 is twofold following two user-service interaction per-
spectives: (i) service perspective and (ii) running device perspective. From the service
perspective, we propose an approach based on Configuration Theory [151] for service com-
position into Mashups. The approach relies also on a set of visual artifacts as Domain

35

2.2. CONTRIBUTION SYNTHESIS

Specific Visual Language to allow end-user express preferences and constraints on the built
Mashups. These artifacts are connected with a rule-based declarative language for consis-
tent Mashup generation. From the running device perspective, we propose an architecture
following Liquid Software principals [80] to allow for smooth service migration from one
device to another from the user-side. We define semantic and rule-based migration con-
text to ensure service interaction continuity while switching to new devices. These two
contributions are summarized in the following sections.

2.2.2.1 Personalized and context-aware Mashups: A Configuration-based ap-
proach

As discussed in Section 2.1.2, high context-awareness is achieved with domain specific
approaches. In this work, we tackle the problem of context-aware service interactions
from the Tourism domain perspective and propose a declarative approach for Mashup
building based on two main ingredients: (i) A visual intuitive language that allows user
build an abstract Mashup and express constraints and preferences and (ii) a configuration-
based technique to map the abstract Mashup with the relevant service instances while
ensuring compliance with the expressed constraints and preferences. The overall approach
is implemented within the CART system, a Web/Mobile framework for personalized trip
planning in the Val-de-Loire French region.

Visual abstract mashups We propose a Domain Specific Visual Language containing
a set of graphical artifacts with drag-and-drop actions and a set of simplified forms to
express user constraints and preferences. The graphical artifacts correspond to the possible
attractions, called Points of Interest (POI), that can be done during a touristic trip in the
Val-de-Loire, typically Castles and Museum, Gardens and Open spaces, Events, etc. It
also includes logistic elements such as Restaurants, Transport (public or car/bike rental).
An abstract mashup is then the sequence of artifacts chosen by the user to define her/his
trip. Additionally, preferences and constraints can be expressed through intuitive forms
built upon the set of service properties. Typical global constraints can be the visit duration
as a cumulative value of individual duration and the total budget the tourist should not
exceed. Preferences can be expressed over the POI categories such as indoor vs outdoor,
guided tour possibilities, etc. Additional contextual constraints such as weather, traffic,
etc. are also captured.

The graphical artifacts are mapped to abstract services with corresponding functional-
ities. The sequence of abstract services is called the mashup query. The preferences and
constraints are mapped to semantic rules and called the configuration knowledge. Both
will be considered by the service configuration module to derive consistent Mashup in-

36

2.2. CONTRIBUTION SYNTHESIS

stance that provides relevant trip plans to the user. The resulting plans are also presented
through a user friendly visualisation including Maps and additional representations of the
trip steps.

Configuring service mashups The key point of the proposed approach is the configuration-
based service mashup. We formalize the composition problem through the Configuration
theory introduced in [151] under the property-based configuration model. In this model, a
final configuration product is obtained through the aggregation of a set of property-value
pairs using a set of pre-specified operators that allows maintaining the configuration in a
coherent state by proposing possible compositions and pruning inconsistent ones. Following
this model, we formalize the service mashup as a Configuration Problem CP = (m,R,CK)

where m denotes the mashup query, R denotes the set of context-aware rules, and CK de-
notes the configuration knowledge used to aggregate services.

The configuration knowledge describes how to compose service instances by mean
of configuration operators and configuration rules. It relies on service’s functionalities,
property-value pairs, to build composition called functional connections. These function-
alities are aggregated through configuration operators that basically apply cumulative op-
erators (eg. addition) on common service properties and composition operators on distinct
properties. Configuration rules are a set of restriction rules that guide the configuration
process and limit the composition search space.

Configuration solutions are sequences of service instances corresponding to the abstract
mashup, following the configuration knowledge, and satisfying the context-aware rules.
Formally, a configuration solution is a pair CS = (I,Q) where I refers to the set of items
in the form (n, s) representing that the service s appears n times in the mashup to be
configured and Q represents the set of mashup features (called quality) in the form of a pair
(f, x) that defines the value x of the feature f . Q is progressively built from configuration
knowledge CK and with respect to rules in R. The detailed formalization of the service
configuration, the semantic matching between the abstract level and the instances, and
the search algorithms will be provided in Chapter 5. There can be more than one valid
configuration solution for a configuration problem. In this case it is possible to rank theses
solutions based on ordering criteria defined on Q.

The CART framework for Personalized trip planning The proposed approach is
implemented into a tool called CART (Configured mAshup Recommender application for
personalized Trip planning) for personalized travel mashup. The CART’s architecture is
structured into 3 layers. The service Layer is in charge of collecting travel data from Web
APIs in addition to DATAtourisme already used, eg. Google Maps, Google Direction,

37

2.2. CONTRIBUTION SYNTHESIS

Google Places, and Forsquare. The Mashup Layer implements the configuration approach
as a SpringBoot Application. The application layer is implemented as a client application
consuming services from the mashup application. It includes UIs allowing users to build
a query mashup for the trip plan indicating their preferences and constraints. In addi-
tion, CART provides end-users with interactive environment to define mashup query and
visualizes visit plan recommendations for the Loire Valley French region.

LOD-based mashup reconfiguration In CART, besides weather forecasting and trans-
portation APIs, we have mainly exploited travel related-data representing places to visit ,
e.g., castles, museums, parks, events, restaurants and hotels, from Tourinsoft APIs in the
context of Loire Valley French region (www.tourinsoft.com). Many other large data sets
are however unexploited because they are sitting in isolated data silos. We propose extend-
ing the CART system with a semantic layer to constitute an integrated platform bringing
together tourists data, locally events data, weather data, etc., from heterogeneous APIs.
The extension relies on LODS similarity measure defined in Section 2.2.1.2. Following the
LOD-based annotation and data linking, we first enrich the DATAtourisme ontology with
contextual concepts from the LOD resources. We then apply LODS similarity measure to
generate new service instance alternatives for the mashups already obtained by CART. We
call this process a reconfiguration process.

The work described in this subsection was conducted during the PhD of Marwa Boulak-
bech defended on July 2020. More details will be given in Part III, Chapter 5.

2.2.2.2 User-side service migration in multiple-device contexts

In this work we tackle the challenge of providing fluent user-side service running man-
agement discussed in Section 2.1.2.2. We propose CUBE, a user-centric architecture follow-
ing Liquid Software principals [80] to allow for smooth service migration from one device
to another from the user-side. We then define semantic and rule-based migration context
to ensure service interaction continuity while switching to new devices.

CUBE: a user-centric architecture for fluent service/data/session migration
in multiple devices environment Our aim in this work is to provide users with user-
centric framework that allows to synchronize user-service interactions over multiple devices
and to perform smooth migration of such interactions between devices. Services are hosted
and managed on Web servers or Cloud which usually allow for multiple device access.
They however require the user to login each time a new device is used. Moreover, in most
cases, users have to restart interaction sessions from scratch. Two typical scenarios can
be considered to illustrate the need for alternative user-centric solution: a light-coupling

38

2.2. CONTRIBUTION SYNTHESIS

scenario with email service and tight-coupling scenario with YouTube service. Considering
server-side synchronization, starting email writing on a device and then moving to a second
device requires the login on both devices and saving the written part of the email as a draft
from the first device to avoid data loss and to continue from the second device. Similarly,
for video streaming on YouTube, user should login from both devices and resume video
from saved history session on YouTube.

As alternative that allows time and data saving, we propose the CUBE, a user-centric
framework that follows Liquid Software principals and defines a layered architecture built
upon REST and RESTful constraints to ensure smooth service synchronization and mi-
gration in multiple device contexts from the user perspective. With CUBE, both previous
scenarios will be handled locally preserving data and session states without the need for
multiple login. The user logs in from the first device then the session can be moved to a
second device through the use of RESTful properties allowing to manage data status. The
multiple-device user context is virtualized for the server which continues interaction as it
was with the first device.

In its abstract representation, the CUBE is seen as a four component model geometri-
cally represented as: a central point which represents the user, surrounded by a first cube,
called INNER CUBE, representing the set of user devices, contained in turn in a second
cube, called the OUTER CUBE, representing the set of services, and between the two
cubes the POOL AREA hosting the user-service interactions through the devices.

Formally, we define the CUBE as C = {u, Ic,Oc,Pa}. u denotes the user. Ic denotes
the INNER CUBE defined as Ic = {dp,Du \{dp},Rd} where dp is the device being used by
u, Du is the set devices owned by u, and Rd denotes the research mechanism to discover
new devices in the user context. Oc denotes the OUTER CUBE defined as Oc = {s ∈ S
such that ∃d ∈ Du and d ↔ s} where S is the set of services and d ↔ s means that there
is an interaction between u and service s through device d. And finally, Pa denotes the
POOL AREA defined as Pa = {d↔ s such that d ∈ Ic and s ∈ Oc}.

The layered CUBE architecture is made of five different layers: (i) Application, (ii)
Request, (iii) Conversation, (iv) Data, and (v) Physical. It is based on an innovative ap-
proach with strong specification of principals and constraints of the REST and RESTful
models to allow data fluidity and content adaptation to devices characteristics. The de-
tailed descriptions of this architecture and each layer are provided in Chapter 6. We will
also provide technical details on the CUBE implementation and illustration on real use of
the system.

Semantic rule-based device recommendation for service-migration in multiple
device environment A successful migration decision, whether it is done automatically

39

2.2. CONTRIBUTION SYNTHESIS

or manually, requires to follow some criteria to know which target device is the most
suitable for the service/application that will be migrated. Also, it has to capture the
users preferences, timeline and other features related to security, reliability, compatibility
of devices, constraints of the services, etc., in order to be able to suggest the right device.
Although this issue has been widely covered from the cloud/server perspective as part
of cloud resource management, efficient device recommendation is still a challenge from
the user-side perspective. It is even more challenging as far as we consider the limited
device computation performances and the lack of access to large semantic resources, such
as Linked Open Data, for similarity calculation.

To address this challenge, We enhance CUBE with a declarative module that relies first
on ontologies and semantic inference rules to ensure device recommendation. The approach
is built upon three main contributions: (i) we first model the main concepts describing
devices, services, users and contexts into a small OWL ontology that can be held on each
device independently. (ii) Second, we define a set of typical semantic inference rules, in
Semantic Web Rule Language (SWRL), formalizing the migration requirements based on
the concepts of the ontology. (iii) Third, we implement the approach within a prototype
that populates the ontology based on APIs and user interactions, applies a reasoning
through the semantic rules, and infers device recommendations for service migration.

(i) OWL ontology core concepts: We conceptualize 4 main components: Device, Owner,
Service, and Characteristic. Each of them contains specific sub-classes to handle service
migration context diversity. We also define necessary properties to model the interactions
and relationships between theses concepts. For example, the Owner class has two object
properties with the device class: a device is ownedBy an owner, and the owner usesDevice.
These two properties are different because a user can own several devices but only uses some
of them at a time. Another property is: the user interactsWith the service. Furthermore,
in order to define the relationship between the devices and their characteristics or the
services with their requirement, we add two main properties. hasCharacteristics property:
links between Device and Characteristic, while the requireCharacteristics property: links
between Service and Characteristic.

(ii) Formalizing migration rules with SWRL: Based on the defined concepts and prop-
erties, we formalise service migration context and conditions through a set of inference
SWRL rules. For example,
R1: Device(?d) ∧HasBattery(?d, ?b) ∧ swrlb : greaterThan(?b, 10)→ Alive(?d, true)

defines the condition to consider a device as alive whereas,
R2: Device(?d1) ∧Device(?d2) ∧HasLocation(?d1, ?l) ∧HasLocation(?d1, ?l)→
InProximity(?d1, ?d2)

expresses under which condition two devices are considered to be in proximity.

40

2.2. CONTRIBUTION SYNTHESIS

Migration rules are usually a combination of other rules. For example R4 which requires
R1, R2, and R3 is an example of migration rule expressing conditions to achieve a successful
migration.
R3: Device(?d)∧HasScreen(?d, ?c)∧WatchingService(?s)∧RequiresScreen(?s, ?c)→
IsCompatiblewith(?d, ?s).
R4: Device(?d1)∧Device(?d2)∧Service(?s)∧Alive(?d2, true)∧ InProximity(?d1, ?d2)∧
IsCompatibleWith(?d2, ?s)→Migrate(?s, ?d2).

(iii) Implementation: The proposed approach is implemented within an API. The on-
tology is designed using Protégé and the SWRL rule-based reasoning is performed through
Apache Jena. The API manages and stores the facts and rules (both defined in Apache
Jena) to finally compute the recommendation results. Facts are very dynamic and change
depending on the situation and the devices. They are stored in a “.n3” file. Some charac-
teristics are automatically added by the app from device APIs (Battery, Connectivity, etc.)
while others are filled in manually by the user. A set of basic common rules is provided by
the app for each device. It can then be enriched by the user to handle specific migration
scenarios. Additional details on the prototype and the evaluation is provided in Chapter
6.

The work described in this subsection was conducted during the PhD of Clay Palmeira
da Silva defended on September 2019 and during the Master 2 Internship of Dimeth Nouicer
defended on December 2020. More details will be given in Part III, Chapter 6.

2.2.3 Machine Learning and Blockchain to handle dynamic and trust-
worthy service interactions and evolution

2.2.3.1 Handling service evolution with Machine Learning and Linked Open
Data

This contribution addresses the challenge of handling dynamic evolution of service in-
teractions discussed in Section 2.1.3.1 through an approach combining semantically-enabled
models and machine learning tools on social interaction data.

Following the graph-based social network representation of Web services in [111] and
[97], we define a three-phase process to deal with service continuous deployment and
changes. (1) The Bootstrapping Phase performs two tasks: (i) Semantic Annotation asso-
ciates a profile to each service and annotates it with LOD resources; (ii) Semantic Match-
making bootstraps relationships for newly deployed and services undergoing updates by
running LOD semantic matching of service capabilities. (2) The Updating Phase updates
service relationships by gathering and analyzing Web service interactions and their user
feedback using sentiment analysis. (3) The Learning phase leverages Web services inter-

41

2.2. CONTRIBUTION SYNTHESIS

action experience to learn new open data links that will be reused in further semantic
matchmaking, hence improving the accuracy of relationship recommendation.

Formally, the multi-relation network modeling Web service interactions is represented as

a weighted directed graph G = (V,R)t where V is a set of services, and R =
k=3⋃
k=1

Rk is a set

of edges, where Rk = {(Su, Sv) ∈ V ×V } is the set of edges of the k-th relationship. Major
services interaction relationships are: substitution (R1), composition (R2), and subscription
(R3). t is the date time when the graph G is observed.

(1) The Bootstrapping Phase: This phase relies on LODS similarity measure and LOD-
based service annotation discussed in Section 2.2.1.2. Services profiles are formally repre-
sented as pairs of features (F,D) where F is a text description of service functionality and
D is a list of description keywords. Following the LOD-based annotation process, service
features are linked to a set of LOD resources and LODS similarity measure is applied to
compute similarity between pair of services in V . Similarity values are then considered to
evaluate how likely two services can yield one of the three defined types of relations and
compute a probability for successful interaction. Detailed algorithms are given in Chapter
7.

(2) The Updating Phase: Although semantic matching of service profiles allows building
relevant business relationships, it relies however entirely on Web service profile data as
isolated components and underlooks their interactive behaviour. The aim of this phase
is to consider user rating scores for observed service interactions to update the graph
accordingly. User feedbacks are expressed through text comments. We apply sentiment
analysis to distinguish between positive comments and negative comments observed in a
time interval [t, t+ δt]. The updated weight of a relation between two services Su and Sv is
computed as the average of the previous weight and on the ratio of positive feedbacks over
all the feedbacks. Formally, wt+δt(Su, Sv) = avg

(
|positiveFeedbacks(Su,Sv)t+δt|

|allFeedbacks(Su,Sv)t+δt| , wt(Su, Sv)
)
.

The higher will be positive user feedbacks on the relationship, the higher will get the
updated weight. The weight will decrease on the contrary case.

(3) The Learning phase: This phase exploits the highly positively evaluated relation-
ships to enrich LOD with new corresponding relationships. Updating LOD is triggered
when the gap between the updated weight value and the bootstrapped weight value gets
above a given threshold for the same relationship. If the updated weight is greater than
the bootstrapped one, this means that Web services have a strong record of interactions in
practice, while bootstrapping phase has not recommended them as such, which proves the
lack of information in LOD. Thus, new relationships among resources describing these in-
teroperable Web services should be added to LOD. On the opposite, if the updated weight
is the lowest, this means that Web services struggle to interact. The cause can be either
Web service description is inadequate with service real capabilities, or Web service suffer

42

2.2. CONTRIBUTION SYNTHESIS

from QoS limitations. LOD relationships among resources describing such services should
be destroyed.

The work described in this subsection was conducted during scientific stay of Hamza
Labbaci at the University of Tours between 2018 and 2019. More details will be given in
Part IV, Chapter 7.

2.2.3.2 Blockchain and smart contracts for trustworthy execution of business
processes in dynamic contexts

The contribution discussed hereafter tackles the challenges discussed in Section 2.1.3.2
regarding the need for transactional flow modeling and change propagation model for
blockchain-based choreographies and gives an overview of a threefold declarative approach
we propose which includes: (i) a transformation model for mashups into smart-contract
choreographies executions, (ii) a flexible transactional business process model for smart-
contract business process executions, and (iii) a change propagation model to handle dy-
namic evolution of business process choreographies.

Mashup to smart contract transformation model. The starting point of this work
is to go a step further configuring service mashups in the tourism context discussed in
Section 2.2.2.1 to propose a way for personalized trip realization. The deployment and ex-
ecution of touristic itineraries usually involve many independent entities (tourist, museum,
restaurants, hotels, transport, etc.) that cooperate and compete in untrusted distributed
context. In order to ensure trust within cooperation to guarantee a successful execution
of touristic itinerary, we propose a two steps transformation model: (a) from data mashup
itinerary to process choreography (BPMN) and then (b) from BPMN to smart contract.
The CART trip planning outputs itineraries following an XML Schema Model with a root
element containing a sequence of steps with or without PoIs and with or without payment.
It also contains user constraints such as total duration and maximal budget. PoIs may
also have additional attributes. The detailed structure of the itinerary generic model will
be given in Chapter 8.

The main transformation rules are given in Table 8.1. We first apply a set of transfor-
mation rules which associate: a choreography model for each itinerary instance (rule (a)).
Within the choreography model we generate a participant pool for every PoI and for the
user (rule (b)) as well as a choreography task for each step of the itinerary (rule (c)). Steps
without PoI correspond to private tasks (rule (d)). Additional user constraints and PoI at-
tributes are embedded in the model documentation and in the PoI process documentation
respectively (rules (e) and (f)).

The resulting choreography BPMN file is in turn used to generate corresponding Smart

43

2.2. CONTRIBUTION SYNTHESIS

Table 2.1: XML to Solidity code transformation rules

Rule XML element Choreography
element

Solidity code

(a) Root element:
Touristic_Visit

Touristic_Visit
choreography model

Touristic_Visit
Interaction Smart
Contract (TVISC)

(b) POI participant (POI) pool participant address
(c) Step containing POI choreography task

=send/receive tasks
+messages flows

functions in TVISC

(d) Step with no POI private task -
(e) Tourist’s constraints

(budget, total visit
duration, etc)

embedded in
choreography model

documentation

Global variable in the
TVISC

(f) POI attributes
(fees, opening hours,

etc)

embedded in the POI
process documentation

Result of the callback
performed by

Touristic_Visit oracle
contract

contracts in Solidity code using the second part of the transformation rules in Table 8.1.
Only interaction activities are captured and included in the produced Smart contract which
encodes only the public view (rule (a)). Each interaction activity, i.e., choreography task,
consists of a send task, receive task and the corresponding message flows. This is encoded
as two functions in the Smart contract (rule (c)). We consider Hyperledger Fabric which
is a permissioned blockchain where only authorized organizations has the access to the
network. In our case, authorized organizations are participant pools in the choreography
model (rule (b)). Private tasks are left to participant private process and are therefore
not included in the Smart contract (rule (d)). Additional constraints and attributes are
encoded as global variables (rule (e)) and callbacks (rule (f)).

Extending Smart contracts with transactional business process model. The
generated interaction smart contract implements the business logic of interaction activi-
ties in the process choreography, that is the control flow. The transactional semantics of
a smart contract follow ACID models and are therefore limited to support transactional
requirements of business process executions [22]. In order to ensure execution reliability of
the generated smart contracts we extend them with the Transactional Business Processes
models [22, 60] which define the transactional flow on top of the control flow of the inter-
action activities. Transactional Business Processes models define transactional properties
of activities: pivot, compensatable, and retriable and the transactional mechanisms which
include failure recovery mechanisms. In addition, we enrich the life cycle of a process activ-

44

2.2. CONTRIBUTION SYNTHESIS

ity, enabled → started → completed with four other possible termination states which are
aborted, cancelled, failed and compensated which we call transactional termination states.

In this contribution we extend the transformation model introduced in the previous
section and generate both the control flow and the transactional flow as well as failure han-
dling mechanisms. For each business process activity we also generate functions and vari-
ables in the smart contract as a transactional flow. Generated functions include lifecycle
activities (ActivityName_start(), ActivityName(), ActivityName_complete(), and Activi-
tyName_fail()) and transition activities (abort(), cancel(), complete(), fail(), and retry())
which allow the activity to move from one state to another. Variables include state vector
StateVector_ActivityName to capture the activity state evolution for each activity. The
extended transformation model is implemented on top of the Caterpillar tool [107].

Change propagation in Blockchain-enabled business process choreographies.
Collaborating business entities evolve in highly dynamic environments that appeal for
continuous updates and improvements of their internal processes to keep high competition
level. These dynamic changes may affect the collaborations in which the enterprise takes
part. Changes may also directly concern the global collaboration due to new external
business policies that should be taken into account. In both cases, changes must be notified
and propagated to the involved partners. Thus, business process management systems
should manage change propagation in a trustworthy fashion. Although change propagation
in process choreographies has been tackled in general [65], it is however still challenging
for blockchain-based choreographies because of the non-mutable nature of shared data.

In running choreography instances, a change may consist of a simple operation, AD-
D/REMOVE/UPDATE activity, or a combination of operations. Handling such changes re-
quires the underlying choreography model to be flexible. We therefore consider declarative
choreographies modeled through Dynamic-Condition-Response (DCR) graphs [127, 128].
With a DCR graph G = (E,M,Rel), processes are modelled as a set of events E, corre-
sponding to the activities in BPMN, linked together with relations Rel modeling linking
constraints. Relations are of five types (condition, response, milestone, include, and ex-
clude) [85]. The graph runtime state is captured by a marking matrix M of the events
through a triplet of binary values corresponding to (currently included, currently pend-
ing, previously executed). In [84], authors propose an approach for trustworthy execution
of DCR choreographies. We briefly describe here our contribution which builds on and
extend this work with the change management mechanism. Detailed formalization and
illustrative scenario will be provided in Chapter 8.

In [84] a DCR choreography is defined as C(G, I,R) where G is a DCR graph, I is a
set of interactions and R is a set of roles. An interaction i is a triple (e, r, r′) in which

45

2.2. CONTRIBUTION SYNTHESIS

the event e is initiated by the role r and received by the roles r′ ⊂ R \ {r}. Each partner
has a projection of the DCR choreography, called public DCR process, in addition to its
private DCR process which refines the public process with local events of the partner. The
shared events and interactions are managed through the choreography smart contract on
the Blockchain.

We propose to extend this approach with change management through the choreography
smart contract. We define the change element GRef as a refinement of C which occurs on
private DCR process and should be propagated to the public DCR process whenever the
change impacts common interactions with other partners. GRef can be either an atomic
element (an event or an interaction relation) or a DCR subgraph. When GRef impacts
common interactions, we manage a negotiation phase that leads either to a consensus in
which case the public process is updated accordingly or to failure in which case the change
is rejected. A change operation can be of three types respectively corresponding to ADD,
REMOVE, and UPDATE: C ⊕ GRef , C ⊖ GRef , and C[GRef 7→ G′

Ref]. We describe
hereafter the four-steps approach we propose to manage these changes.

(i) Change proposal. The role initiator defines the change of its private DCR process
following the previously introduced possible change types and operations. We review a set
of integrity rules [58] to ensure safety and liveness of the updated DCR graph to avoid
cycles. Safety means that the DCR graph is deadlock free whereas liveness guarantees the
ability of the DCR graph to completion. The integrity rules are of two types. Allowed
change rules define what can be done on the graph while Denied ones define what should
be rejected. When the change proposal satisfies these rules the private DCR process is
updated. In the case where the change also concerns the public DCR choreography we
move to the next steps.

(ii) Change request for public-related changes. The change request is sent the choreog-
raphy smart contract which stores the list of change requests assigned to process instances.
Ongoing process instance changes are recorded with the identification hash of the current
process instance. During the change request lifecycle, the request is assigned to a sta-
tus: Init if no change request is ongoing, BeingProcessed during the negotiation stage,
Approved or Declined once the change request is processed by all endorsers. The smart
contract checks the identity of the change initiator which should belong to the list of part-
ner, checks that no other change request is being processed, and then creates the change
request and sends change request notification to the involved partners. The change initiator
also sets two response deadlines t1 for change endorsement and t2 for change propagation
to be checked by the smart contract. If one of the change endorsers does not reply before
deadline t1 during endorsement or t2 during propagation, an alarm clock triggers a smart
contract function cancelling the change request. The smart contract function sets the

46

2.2. CONTRIBUTION SYNTHESIS

change request status to cancelled and emits an event notifying partners that the change
has been cancelled. In this way we prevent any deadlock that could occur due to one of
the partners not responding.

(iii) Change negotiation for public related changes. All partners subscribe to the change
request events emitted by the smart contract. Endorsing partners must send their decision
request to the smart contract based on the Allowed/Denied changes rules. If the change
once computed on the endorser’s process respects all the rules, then the endorser approves
the request. It is otherwise rejected. The smart contract collects all the decisions from
the endorsers to lock (or not) the choreography instance and proceed (or not) with the
change and update the change status to Approved or Declined. In case of approval the
smart contract locks the instance for change propagation. As it manages the negotiation
process, a tamper-proof record of the negotiation is accessible by all partners. This prevents
conflicts and eases potential claim resolutions.

(iv) Change propagation. Change propagation is to apply the change effect after the
negotiation phase succeeds to (i) the affected partners DCR public processes, (ii) each
partner propagates the change effect to its private DCR process. To ensure the correctness
of the change propagation, we introduce a correctness property that checks the safety and
compatibility of the updated graphs. The smart contract receives all the local projection
confirmations and notifies the change initiator. That latter forwards the new DCR chore-
ography to the smart contract which updates the relations and resets the change status to
allow for new changes.

The work described in this subsection was conducted during the PhD of Amina Brahem
to be defended by the end of 2023. More details will be given in Part IV, Chapter 8.

47

2.2. CONTRIBUTION SYNTHESIS

48

Part II

Semantically enabled service
interactions

49

Chapter 3

Semantic Web Service Composition
Using Semantic Similarities and
Formal Concept Analysis

Contents
3.1 Introduction . 52

3.2 Semantic Web Service Composition Framework overview . . . 53

3.3 Semantic similarity measure for Web services (Service Match-
ing Engine) . 54

3.4 Flexible Web service classification and discovery with FCA
(Service Classification Engine) 56

3.5 Planning and graph-based composite service generation (Ser-
vice Composition Engine) . 58

3.5.1 Planning-based composite service generation 59

3.5.2 Semantic Similarity for Graph-based composite service generation 59

3.6 Implementation and evaluation 61

3.7 Related Work . 62

3.8 Conclusion . 64

This chapter describes our first contribution regarding the challenge of semantically-
enabled Web service interactions discussed in Section 2.1.1. It provides a detailed view of
the approach described in Section 2.2.1.1 which consists in an integrated framework for
semantic web services. The main contribution is threefold: a semantic similarity measure
for Web services, a flexible FCA-based Web service classification for Web service discovery,
and a planning and graph-based composite service generation.

51

3.1. INTRODUCTION

3.1 Introduction

One of the most interesting and relevant properties of services is the possibility to com-
bine a number of existing services to create a more general composite service. Composing
services allows for the definition of increasingly complex applications by progressively com-
bining services at increasing levels of abstraction [59]. This composition pattern has re-
ceived much interest to support business-to-business or enterprise application integration.
Several efforts have led to the development of platforms and languages to support compo-
sition and deployment of services [134, 17, 149, 103]. However, despite this considerable
progress, the composition process still poses limitations and challenges which have yet to
be addressed by current technologies and tools for Web service composition. For instance,
considerable differences on structural, semantic and technical levels along with the grow-
ing number of available Web services makes their discovery a significant challenging task.
Achieving a required composite functionality requires the discovery of a collection of Web
services out of the enormous service space. Each service must be examined to verify its
provided functionality, making the selection task neither efficient nor practical [14].

Moreover, using services without considering their underlying semantics, either func-
tional semantics or quality guarantees can negatively affect the composition process by
raising intermittent failures or leading to slow performance [166]. Indeed, semantics play
important roles in Web process life-cycle. They specify the detail semantic information
about the underlying functions supported by a service. Another important aspect is related
to services compatibility as an essential pre-requisite to service composition. Measuring
the similarity of services is an important and valuable task to get useful information about
their compatibility. Similarity measure can be considered as an optimization step before
composing services since it enables to reduce the search time by functionally classifying
similar services.

In this context, this chapter presents a practical approach to measure the similarity
of Web services. Both semantic and syntactic descriptions are integrated through specific
techniques for computing similarity measures between services. Formal Concept Analysis
(FCA) is then used to classify Web services into concept lattices, and therefore generate
a hierarchy of classes of similar Web services. Following this step, a composition engine
takes as inputs the set of similar services and the specification of the required service, and
generates the candidate composition plans that realize the goal through Planning-based
and graph-based algorithms.

The remainder of this chapter is organized as follows. Section 2 introduces the com-
ponents of the composition framework and details their components. Section 3.2 provides
an overview on the framework architecture. Section 3.3 details the proposed semantic

52

3.2. SEMANTIC WEB SERVICE COMPOSITION FRAMEWORK OVERVIEW

similarity measure for Web services. Section 3.4 details the FCA-based classification of
Web services and the use of related structure for service discovery. Section 3.5 details the
planning-based and the graph-based composite service generation. Section 3.6 provides
insights on the framework implementation and the conducted experiments. Section 3.7
reviews related work. Finally Section 3.8 concludes the chapter.

3.2 Semantic Web Service Composition Framework overview

In this section we introduce the Integrated Development Environment for Compos-
ite Services Engineering (IDECSE) framework. The proposed framework is intended to
achieve a high abstraction level allowing the continuous and dynamic improvement of the
composition to support and encourage the adoption of SOA technologies while reducing
costs and composition time. Based on a layered approach, the main general objective is to
develop a well-integrated framework to enable the mastery of complexity and dependability
of service compositions by offering tools for specifying, discovering and composing services.
All service life-cycle processes in the proposed approach are based on native semantic inte-
gration. IDECSE general architecture is depicted in figure 3.1. It consists mainly of three
complementary components: the semantic matching engine, the service classification en-
gine, and the composition engine. The service matching process which plays the central role
as it underlies and supports service discovery and composition processes through providing
successful matching services possibilities among all the services in the service space. The
goal here is then to define efficient similarity measures which allow ensuring an accurate
matching process. The defined similarity measure allows classifying Web services into sets
of highly similar ones. Achieving the previous processes will make it easy to define efficient
and optimized algorithms for relevant service discovery. Finally, the composition process
which is based on efficient tools for ensuring meaningful compositions and dynamically
interacting with the other framework modules towards preserving composition continuity.
These components will be detailed in the following sections.

IDECSE framework also provides a user-friendly interface to enable end users to specify
the high-level description of their desired service. They express their requirements and
preferences that mark the boundary of the solution by following some instructions to build
the query. A query parser is integrated to parse and validate the query by checking syntactic
correctness and decoupling the functional requirements from the non-functional parameters
such as QoS properties.

53

3.3. SEMANTIC SIMILARITY MEASURE FOR WEB SERVICES (SERVICE
MATCHING ENGINE)

Figure 3.1: Overview of the IDECSE Framework

3.3 Semantic similarity measure for Web services (Service
Matching Engine)

The Service Matching Engine is responsible for measuring the similarity between se-
mantically annotated OWL-S services. We define a similarity measure σ over a set S of
services as follows:

σ : S × S →[0 , 1]

σ(Si, Sj) = α1SimP (Si, Sj) + α2SimM (Si, Sj) + α3SimG(Si, Sj) (3.1)

where
∑3

k=1 αk = 1.

SimP , SimM and SimG correspond to similarity function between Profiles, Models and
Groundings, respectively. As Service Model and Service Grounding are used to supplement
the initial similarity and specify details of how to access a service, their parameters can
be modeled as QoS. In this case, similarity is based on functional features located in the
Service Profile of the service OWL-S file.

σ(Si, Sj) ≈ SimP (Si, Sj)

= w1SimI(Si, Sj) + w2SimO(Si, Sj) + w3SimPre(Si, Sj) + w4SimEff (Si, Sj)

(3.2)

where
∑4

k=1wk = 1.

SimI , SimO, SimPre, SimEff , correspond to the similarity function between Inputs,
Outputs, Preconditions and Effects of compared services, respectively. The weights wi

allow modeling the similarity measure to be adapted to different application cases where it
may be required to focus on IO only or any other possible combination of the four aspects.
In the case where no specific preferences are given, these weights are equally set to 0.25.

54

3.3. SEMANTIC SIMILARITY MEASURE FOR WEB SERVICES (SERVICE
MATCHING ENGINE)

In the general case, weights are either expressed by some actor (the user for example) to
define personalised preferences regarding the application domain or the actor expectations,
or empirically deduced through learning techniques over previous computing scenarios.

Each of the four Sim functions is in turn defined as the sum of two weighted concept-
based and data-type based measures as follows for the case of Inputs and analogously for
the three other dimensions:

SimIn(Si, Sj) = uIn1SimCo(Ini, Inj) + uIn2SimDT(Ini, Inj) (3.3)

where uIn1 + uIn2 = 1.

Web service features are semantically annotated using concepts from ontologies. Mea-
suring their similarity turns out to measuring the similarity between their annotation con-
cepts in the considered ontologies. Comparative study of the state-of-the-art approaches
on semantic similarity measures have shown a better correlation coefficient and higher ef-
ficiency rates for the measure proposed in [145] which follows the Tversky model [157],
where common taxonomical features tend to increase similarity while the non-common
ones decrease it. We therefore adapt the Sanchez formulas to define SimCo.

Let A and B two concepts, represented by the nodes a and b in a predefined is-a
semantic taxonomy. Let C be a set of concepts of such a taxonomy; (≤) is defined as
a binary relation ≤: C × C. Having two concepts ci and cj , ci ≤ cj is fulfilled if ci is a
hierarchical specialization of cj or if ci ≡ cj (i.e. same concept). The set of taxonomical
features describing the concept a is defined in terms of the relation ≤ as follows (Equation
3.4).

ϕ(a) = {c ∈ C|a ≤ c} (3.4)

[145] defines the semantic similarity between two concepts as follows:

Sim(a, b)Co = 1 − log(1 +
|ϕ(a)\ϕ(b)|+ |ϕ(b)\ϕ(a)|

|ϕ(a)\ϕ(b)|+ |ϕ(b)\ϕ(a)|+ |ϕ(a) ∩ ϕ(b)|
) (3.5)

In the same way, we reviewed and adapted the best state-of-the-art data-type measures
to define SimDT. Following works in [139] and [154] we propose a practical measure
between different data-types that defines abstract groups of compatible data-types and
then assigns similarity values to each pair of groups. Datatype groups similarity defined in
[139] is summarized in 3.1.

Considering SimDT prevents meaningless composite services built upon highly similar
services with respect to SimCo which however fail to match their data-types. Following

55

3.4. FLEXIBLE WEB SERVICE CLASSIFICATION AND DISCOVERY WITH FCA
(SERVICE CLASSIFICATION ENGINE)

Table 3.1: Simple DataType Groups Similarity([139])

Int. Real Str. Date Bol.
Int. 1.0 0.5 0.3 0.1 0.1
Real 1.0 1.0 0.1 0.0 0.1
Str. 0.7 0.7 1.0 0.8 0.3
Date 0.1 0.0 0.1 1.0 0.0
Bol. 0.1 0.0 0.1 0.0 0.1

this intuition, the weight uIn1 must be higher than uIn2 to focus on semantic similarity
while keeping data-type similarity for checking the composition consistency. Conducted
experiments confirmed that the combination uIn1 = 0.80 and uIn2 = 0.20 gave the highest
accuracy.

Finally, we define our similarity measure as follows (Equation 3.6):

σ(Si, Sj) = w1[uI1SimICo
(Si, Sj) + uI2SimIDT

(Si, Sj)]

+ w2[uO1SimOCo
(Si, Sj) + uO2SimODT

(Si, Sj)]

+ w3[uPre1SimPreCo
Si, Sj) + uPre2SimPreDT

(Si, Sj)]

+ w4[uEff1SimEffCo
(Si, Sj) + uEff2SimEffDT

(Si, Sj)] (3.6)

where
∑4

k=1wk = 1,
∑2

j=1 uaj = 1 and a ∈ {I,O,Pre,Eff}.

The proposed similarity measure will be used for flexible FCA-based service classifica-
tion as well as for Graph-based composition generation detailed in the following sections.

3.4 Flexible Web service classification and discovery with
FCA (Service Classification Engine)

The way services are organized within the service registry highly impacts the efficiency
of service identification for any given need. We therefore propose to build the classification
component of IDECSE upon the well-established formalism called Formal Concept Analysis
(FCA) [71] and particularly its derived structures called Concept Lattices. We illustrate the
FCA-based classification and discovery on a set of semantic services in Table 3.2 extracted
from a public dataset 1. For each service we focus on the operations and the annotation
concepts of its inputs and outputs.

Based on partially ordered sets theory, FCA allows to structure the data into a hierarchy
of partially ordered concepts called the Concept Lattice. Each concept corresponds to a
maximal set of objects having in common a maximal set of attributes. The concept lattice

1http://projects.semwebcentral.org/projects/sws-tc

56

3.4. FLEXIBLE WEB SERVICE CLASSIFICATION AND DISCOVERY WITH FCA
(SERVICE CLASSIFICATION ENGINE)

Service SId Operation OpId Input Output
Author_Finder S1 Author_Find(Book) op11 #Book #Author
Author_Price S2 Find_Author(Book) op21 #Book #Author
_Finder Find_Price(Book) op22 #Book #Price
Search_Book S3 Search_Book(Author) op31 #Author #Book
Hotel_Cost S4 Find_Hotel(Time,Place) op41 #Date, #Hotel,

#Address #Price
Book_Hotel S5 Book_Hotel(Date,Hotel) op51 #Date #Reservation

#Hotel
Hotel_Reservation S6 Hotel_Reservation(Time op61 #Date #Reservation

Hotel) #Hotel
IP_to_Country S7 IPtoCountry(IPaddress) op71 #IP #Country
IP_Map S8 ExtractPlace(IPaddress) op81 #IP #Address

Table 3.2: An example of semantic Web services in the registry

hierarchical relation is based on the dual partial order between sets of objects and dually
sets of attributes. This structure and its properties motivated the use of concept lattices
as indexing structure for information retrieval either by direct querying or by progressive
navigation [118, 119].

Following this direction we apply FCA to automatically organize services into a concept
lattice based on the semantic similarity defined so far. We consider services as objects and
operations as attributes. We compute the similarity between service operations based on
σ in Equation 3.6. Considering the set of services in Table 3.2, this step yields the Service-
Operation matrix in Table 3.3. The matrix is symmetric and only the top part is filled in
for visibility.

Table 3.3: Service-Operation similarities

Serv. \ Op. op11 op21 op22 op31 op41 op51 op61 op71 op81
S1 1 1 0,419 0.353 0.203 0.192 0.152 0.295 0.273
S2 1 1 0.353 0.203 0.192 0.152 0.295 0.273
S3 1 0.237 0.238 0.238 0.204 0.280
S4 1 0.483 0.483 0.175 0.175
S5 1 0.824 0.142 0.142
S6 1 0.142 0.142
S7 1 0.714
S8 1

In FCA, this representation is called Multi-valued formal context formally represented
as a quadruplet (G,M,W, I) where G is a set of objects, M is a set of attributes and
(g,m,w) ∈ I means that attribute m has value w for object g. FCA basic settings,

57

3.5. PLANNING AND GRAPH-BASED COMPOSITE SERVICE GENERATION
(SERVICE COMPOSITION ENGINE)

however, apply on binary contexts formally represented as a triple (G,M, I) where G is a
set of objects, M is a set of attributes and (g,m) ∈ I means that object g has attribute m.
We apply the conceptual scaling on the Multi-valued context based on a similarity threshold
θ ∈[0 , 1]. Similarity values below the threshold are removed and the remaining ones are
replaced with "×", which yield the context in Table 3.4 for θ = 0.4. The corresponding
concept lattice is given Figure 3.2 (Left).

Table 3.4: Service-operation formal context for θ = 0.4

Serv. \ Op. op11 op21 op22 op31 op41 op51 op61 op71 op81
S1 X X X
S2 X X X
S3 X
S4 X X X
S5 X X X
S6 X X X
S7 X X
S8 X X

The concept lattice structures the services in the registry into classes of services with
similar operations. It can then be used as underlying structure for identifying relevant
services for a given need: substitution of similar service or composition of complementary
services. Relevant service identification can rely on best-known algorithms for FCA-based
querying and navigation [118, 119]. In the case of querying, an illustration is given with
a requested service SR which allows to find an Author as String given a Book Title also
as String. SR is modeled as one-operation service, similarity measure σ is applied to
compute similarity values of SR with respect to registry services and the corresponding
scaled context line is added to the context. The corresponding concept lattice is given in
Figure 3.2 (Right).

Selected relevant services can then be returned as query answer for individual invocation
or more generally they can be considered as input of the composition engine for composite
service generation. This step will be detailed in the following section.

3.5 Planning and graph-based composite service generation
(Service Composition Engine)

The last component of the IDECSE framework is the composition generator. It takes as
input a set of similar services returned by the previously presented components to provide
a set of coherent composite services relevant to requested function. This component ap-
peals for AI planning techniques and graphs together with the semantic similarity measure

58

3.5. PLANNING AND GRAPH-BASED COMPOSITE SERVICE GENERATION
(SERVICE COMPOSITION ENGINE)

Figure 3.2: Service concept lattice corresponding to the formal context in Table 3.4 (Left)
and with the requested service SR (Right)

and QoS constraints to ensure successful compositions. The key point is the compatibil-
ity between Input-Output interfaces of the services to be connected within the resulting
composite ones.

3.5.1 Planning-based composite service generation

The highest level of compatibility is achieved with identical matching between Input-
Output which feats the use of AI Planning. In this case, Web service composition problem
is mapped to a planning problem based on transformation rules defined in [82] and using
the Planning Domain Definition Language (PDDL) [75]. In this mapping, each service
Si is represented as a state Sti, its inputs and preconditions are represented as the state
preconditions prec(Sti) = SiInputs∪SiPreconditions

, and its outputs and effects are represented
as the state effects eff(Sti) = SiOutputs ∪SiEffects

. We apply STRIPS planning algorithms
on the resulting mapping problem to generate possible solution plans corresponding to
possible service compositions. In the general case, however, there may be no exact Input-
Output interface matching. We therefore propose a graph-based composition generation
which relies on the proposed semantic similarity measure to compute approximate matching
possibilities.

3.5.2 Semantic Similarity for Graph-based composite service generation

Graph-based composite service generation consists in modeling the set of selected ser-
vices as a composability graph: a weighted directed graph where nodes correspond to
services and edges to their composability similarity values. Composability similarity be-
tween two services Si and Sj is the matching similarity between Si outputs and Sj inputs
to evaluate how likely the two services can be connected. Similarity measure σ in Equation

59

3.5. PLANNING AND GRAPH-BASED COMPOSITE SERVICE GENERATION
(SERVICE COMPOSITION ENGINE)

3.6 is redefined as follows.

σComposability(Si, Sj) = u1SimCo(SiOut , SjIn) + u2SimDT (SiOut , SjIn) (3.7)

where SiOut actually denotes the union of SiOutputs and Sieffects and SjIn actually denotes
the union of SjInputs and SjPreconditions

.

The obtained similarity values are mapped logical match type as defined by [100] and
illustrated in Table 3.5.

Table 3.5: Semantic Composability Matching

Composability value [0, 0.3[[0.3, 0.6[[0.6, 0.8[[0.8, 1]

Logical Match Type Fail Subsume Plug-in Match

Services with "Match" or with "Plug-in" are most likely to lead to successful compo-
sition. Composability graph can be reduced to keep only services with these two compos-
ability match types. To illustrated the graph building steps we consider the set of selected
services in Table corresponding to the use-case of getting access to restaurant menus given
the user IP address. The steps of composability graph generation are given in Figure 3.3.

Table 3.6: Example of selected services for composability graph building

Services SId Input Output
IP_City S1 IP_address City

IP_Restaurant S2 IP_address Restaurant
Find_Restaurant S3 City Restaurant
Restaurant_Menu S4 Restaurant Menu
Requested_Service SR1 IP_address Menu

Figure 3.3: Composability graph generation steps

We formalize satisfiable compositions as Scomp ={Icomp, Ocomp} where Icomp is a set of

60

3.6. IMPLEMENTATION AND EVALUATION

inputs that present a valid degree of match with the set of requested Inputs SRIn
and OComp

is a set of outputs that present a valid degree of match with the set of requested Outputs
SROut

. Then, service composition solutions are those corresponding to paths in the graph
between SRIn

and SROut
. The graph search is enhanced by considering QoS constraints

over services to fine-tune composition solutions ranking. In this example, in addition to
S2 as individual relevant answer to the requested service, the composition S1 − S3 − S4 is
returned as relevant composite answer. A more detailed formalization and illustration of
the graph building and search algorithms is given [2].

3.6 Implementation and evaluation

The proposed approach is implemented as a Java application including an OWL-S
parser based on Jena 2 and JAXP3 and FCA algorithm based on ConExp implementation4.
The prototype is evaluated on two datasets: a set of 250 OWL-S services available online 5,
mainly for accuracy, and a set of 1000 randomly generated services, for performance study.

An overview of evaluation results is given hereafter. More detailed experimental study
is provided in [2]. We start by evaluating the required time to build the IDECSE registry
which is the sum of execution time of three main tasks: parsing service features, measuring
similarity, and building lattice of services. Results for the first dataset (250 OWL-S ser-
vices) are given in Figure 3.4 (Left) and show acceptable performances for this step built
before user interactions. Then we moved to requested service matching for which results
are given in Figure 3.4 (right). The indicated time includes query processing, SR similarity
measure, and lattice querying to identify the set of relevant services.

The composition generation evaluation results are shown on figure 3.5 (Left) showing
also acceptable time to get composition plans including important number of composable
services. The generation of a plan with 7 services, 6 dependencies and 14 parameters for
each service takes less than one second. Plans with more than 20 services takes less than
two seconds to be generated.

Finally, the overall performances of the proposed approach is compared to two other
existing prototypes corresponding to state-of-the art approaches: PORSCE presented in
[82], and 2P presented in [93] and results are shown on Figure 3.5 (Right). Experiments
are run on a randomly generate dataset of 1000 Web services. Services parameters are
uniformly distributed and randomly assigned to services. Then, we generate 100 queries
with parameters from the set of service parameters to keep the same semantic domain. For

2https://jena.apache.org
3http://docs.oracle.com/javase/tutorial/jaxp/
4https://sourceforge.net/projects/conexp/
5http://projects.semwebcentral.org/projects/sws-tc

61

3.7. RELATED WORK

Figure 3.4: (Left) Time to build IDECSE registry. (Right) Time to match a query.

Figure 3.5: (Left) Time to generate composition plans. (Right) Performance comparison
with PORSCE and 2P.

composition generation, we consider until 3-service plans. Results show the efficiency of
the proposed approach.

3.7 Related Work

In this section we briefly review the state-of-the-art approaches related to our approach
in order to position our contribution accordingly. A more detailed and extended review
of related work is presented in [2] and [7]. Among the numerous proposed approaches,
some surveys in [134] and [103], we will particularly focus on those which perform service
clustering and similarity computing for automating service composition.

Web service clustering was discussed in several approaches. [61] perform service cluster-
ing based on WSDL extracted contents such as types, messages, ports, and service name.

62

3.7. RELATED WORK

[171] present a hybrid Web service tag recommendation strategy that employs tag mining
and semantic relevance measurement. Web services are clustered according to the simi-
larities of extracted WSDL features. [44] present the service cluster net unit used then to
check whether any service in the cluster can satisfy user requirements for further use in
service substitution process. One more specific service clustering family groups those based
on FCA. [13] use FCA to classify services according to keywords extracted from WSDL
service descriptions. [129] proposed a service ranking algorithm for diversifying web service
discovery results in order to minimize the redundancy in the search results using FCA.

Some other approaches rely on semantic similarity measures or the definition of seman-
tic queries using SPARQL language for service discovery. [154] consider WSDL descriptions
to provide a practical approach for measuring the similarity between Web services by using
a set of existing lexical and semantic metrics. Similarly, [105] employ external knowledge
to compute the semantic distance between terms from two compared services. While [16]
propose an approach based on modeling the available services into RDF views over a me-
diated ontology. The generated views are then integrated as annotations into WSDL files.
User queries are transformed into a mediated ontologies using SPARQL query languages.
[126] introduce a SPARQL-driven approach for searching relevant services to be addressed
to service repositories for further automatic service composition.

Regarding service composition integrated frameworks, [81] extend their AI-based plan-
ning composition framework using semantic metrics to discover and reason about services.
Graph-based approaches such as [101] develop an integrated framework for dynamic Web
services composition. The framework exploits the semantic Input-Output matchmaking
to discover relevant services and perform automatic composition using a graph-based ap-
proach, taking into account functional and non-functional properties. [55] support both
automatic semantic discovery and composition, among other relevant phases of the compo-
sition life-cycle taking into account non-functional properties. [142] develop a framework
for discovery and composition which includes optimizations to reduce graph size and an
optimal search to extract the best composition from the graph. One of the limitations of
the discovery phase is that it does not support fine-grained services retrieval.

Although Web service discovery and composition approaches have presented efficient
and performing techniques, they still face challenging tasks, which straightforwardly impact
the composition process and the efficiency of composition frameworks. First, providing an
accurate service matching requires to consider the maximum number of available features
describing services, syntactically and semantically, while defining efficient similarity mea-
sures. Second, the discovery process performances and accuracy are highly dependent on
how Web services are structured and/or categorised into considered registries. Existing
FCA-based approaches suffer from lack of semantics and are limited only to basic common

63

3.8. CONCLUSION

features between services. Considering semantic similarity at this level reduces the research
space of relevant services to a specific cluster or class of services instead of the whole reg-
istry. Third, the composition process depends mainly on two elements. The the list of
selected services and the composition algorithm. Fourth a successful framework should
ensure the matching, classification, discovery, and composition processes. Unfortunately,
the literature review stresses the lack of such integrated frameworks. Discovery and com-
position of Web services have indeed been usually developed separately. Also, matching
methods always rely on similarity measures independently defined for abstract concepts,
semantically annotating services, regardless services additional features. In this work, we
addressed these tasks through the proposed integrated framework considering semantics
in all stages of service life-cycle, defining efficient similarity measure that also considers
data type compatibility, combining semantic similarity with FCA for service clustering and
discovery, and using AI planning and Graph-based efficient algorithms for composition gen-
eration.

3.8 Conclusion

In this chapter, we presented a integrated approach for Web services discovery and
composition using semantic similarity measure which combines semantic features together
with data type compatibility. Formal Concept Analysis was used for building Web service
lattices according to functional and operational service similarities. Generated classes of
similar services are then used to identify the candidate composition plans that realize
the desired goal based efficient planning and graph-based algorithms. The approach is
implemented and evaluated over two data sets and compared to state-of-the-art baselines.
Results show the approach efficiency and performances which outperform baselines.

The key point of this work is semantic similarity measure for OWL-S services which
considers ontological hierarchies. The measure efficiency is therefore domain-dependant,
limiting its applicability in general cases where services may refer to complementary do-
mains. The next logical step is therefore to consider cross-domain ontologies. This objective
meets the emergence and recent advances in Linked Open Data (LOD). In the next chap-
ter, we take advantage of LOD to define efficient cross-domain similarity measure to be
applied for service recommendation.

The work described in this chapter was conducted during the PhD of Ahmed Abid
defended on July 2017 [2]. It is mainly published in the following journal and conference
papers: [4], [5], [6], [3], [8], and [7].

64

Chapter 4

Linked Open Data Similarity for
Web services

Contents
4.1 Introduction . 66

4.2 LODS: a Linked Open Data Similarity Measure 67

4.2.1 Background . 67

4.2.2 Similarity measure for Linked Data Resources 68

4.3 LOD-based context-aware service discovery 72

4.3.1 Context-aware service annotation model 72

4.3.2 Functional matching of services 72

4.3.3 Non-functional matching of services 73

4.4 LDS library . 74

4.5 Implementation and Evaluation 75

4.5.1 LODS similarity measure evaluation 75

4.5.2 LOD-based context-aware service recommendation in the context
of Smart Loire project . 76

4.6 Related work . 78

4.7 Conclusion . 80

This chapter describes our second contribution regarding the challenge of semantically-
enabled Web service interactions discussed in Section 2.1.1. It provides a detailed view
of the approach described in Section 2.2.1.2 which consists in exploiting the Linked Open
Data (LOD) for efficient service recommendation. The main contribution is threefold: a
LOD-based semantic similarity measure, a context-aware service recommendation, and a
Library for LOD-based similarity calculation.

65

4.1. INTRODUCTION

4.1 Introduction

The continuous improvement of mobile network performances together with the sig-
nificant evolution of hardware and software of mobile devices has deeply transformed the
way users interact with information systems. A new era of computing, called "ubiquitous
computing", based on these two evolutions, has emerged. Nowadays, a mobile user has an
ubiquitous access to multiple resources, in particular services. In order to satisfy user needs
in terms of functional and non-functional service requirements, discovery process have to be
applied. This process performs at first stage a functional matchmaking to return services
having functionalities that user requested. At the second stage, non-functional parameters
(contextual information) are taken into consideration to rank services depending on user’s
task or situation. Incorporating context information during discovery process reduces im-
proves the discovery accuracy by filtering results that are functionally relevant but do not
correspond to user context.

Despite the interest of using ontologies in context-aware mobile services discovery, they
present in our opinion two major weaknesses. First, they are resources limited and its
knowledge covers generally restricted domains. Second, they are generally isolated, i.e.,
their concepts are not interconnected with concepts in other ontologies, which limits their
exploitation. It is not possible for example to enrich concept definition in one ontology
from an equivalent one defined in another ontology because of missing links. These two
limitations implicitly impact any ontology-based service discovery process.

Researchers over the past few years have addressed this issue in two different ways. Ei-
ther by replacing domain specific ontologies by multi-domains ontologies such as WordNet
or by using textual knowledge sources such as Wikipedia to bootstrap service discovery[21].
However, both directions have drawbacks. Although multi-domains ontologies are relatively
rich, they remain non-interconnected. Textual knowledge sources also suffer from the con-
cepts interconnection problem. In addition, they require exhaustive processing to calculate
relevance. We are thus convinced that, the use of data from Web of Data, commonly called
(Linked Open Data)[23], will make it possible to overcome the previous limitations. These
data are mainly intended to be processed by machines, and therefore designed and thought
to be open, structured, semantically described and linked to each other.

In this chapter we takes advantage of the evolution of Semantic Web to Linked Open
Data (LOD) to propose, in Section 4.2, an efficient similarity measure, LODS, that assesses
the matching degree between pairs of terms represented with LOD resources. We then
use LODS measure in an approach that addresses context-aware service recommendation,
described in Section 4.3. We describe, in Section 4.4, the open source LOD-based similarity
measure library we propose on top of the LODS. We provide in Section 4.5 an insight on

66

4.2. LODS: A LINKED OPEN DATA SIMILARITY MEASURE

the evaluation and results of the proposed approach. We review in Section 4.6 the main
related work. Finally we conclude the chapter in Section 7.8.

4.2 LODS: a Linked Open Data Similarity Measure

4.2.1 Background

In this section, we provide the main necessary constructions and characteristics of LOD
and DBpedia to be used in the description of our proposed similarity measure.

RDF triples. Consider a set of URIs U and literals L, an rdf triple is defined as ⟨s, p, o⟩,
where the subject s ∈ U , the property p ∈ U and the object o ∈ U ∪ L.

Linked Open Data. A dataset that follows a linked data principles [23] is a graph
G = (R, L), where R = {r1, r2, ..., r|R|} is a set of resources and L = {l1, l2, ..., l|L|} a set
of links. li is defined as li = ⟨r, p, r′⟩ ∨ ⟨r, p, v⟩, where p is a property that interlinks the
resource r with the internal/external resource r′ or with a literal attribute v, which is a
basic value (string, date, number ...). So, Linked Open Data is a set of interlinked open
datasets LOD =

⋃
iGi.

Ontology. An ontology is a graph of triples that describe domain concepts and their rela-
tions. In LOD, it is preferred to use concepts from widely used ontologies to instantiate its
resources [83]. This allows efficient data integration and reuse by LOD-based applications.
We denote by O all ontologies used to describe the whole LOD resources.

Classification schema. Classification schemata classify resources into categories and may
contain cycles in their taxonomic structure. This requires to limit the level of extracted
categories to avoid retrieving useless ones. We denote by C all classification schemata used
to classify the whole LOD resources.

Triple patterns, Basic Graph Patterns (BGP). Triple patterns are similar to RDF
triples except that each of the subject, predicate or object may be a variable (started with
’?’). BGP are constructed from a set of triple patterns. We adopt SPARQL BGP1 to
represent queries over RDF datasets.

Properties types. An infinite set of properties could be used to describe LOD resources.
In this work we consider the 4 following property types.

• Instantiation properties (IP). An IP τ ∈ U maps a concept c from an ontology o ∈ O

to a particular resource r, we write ⟨r, τ, c⟩. rdf:type is an example of IP.

• Classification properties (CP). A CP ς ∈ U is used to classify a resource into a
particular category in a schema. dcterm:subject is an example of CP.

1http://www.w3.org/TR/sparql11-query/

67

4.2. LODS: A LINKED OPEN DATA SIMILARITY MEASURE

• Linking properties (LP). An LP ξ ∈ U is used to interconnect two equivalent resources
r and r′ from distinct LOD datasets, we write ⟨r, ξ, r′⟩. owl:sameAs is an example
of LP.

• Subsumption properties (SP). An SP δ ∈ U is used to define specialization or sub-
class relation in a given ontology or classification schemata. Given two concepts ci

and cj from an ontology, ⟨ci, δ, cj⟩ denotes that concept ci is a specialization of cj .
owl:subClassOf is an example of SP.

We call the remaining properties characterization properties, denoted by P , since they
distinguish LOD resources. Properties that have a resource r as subject, i.e. ⟨r, p, ?o⟩, are
called outgoing properties and those having r as object, i.e. ⟨?o, p, r⟩, ingoing properties.

Property paths and paths patterns. We adopt SPARQL1.1 property path nota-
tions such as ZeroOrMorePath, ZeroOrOnePath, OneOrMorePath, SequencePath, Alterna-
tivePath, denoted respectively ∗,+, ?, / and |. They are used to navigate between resources
and reach particular data inside a single or distinct LOD datasets.

Using property paths in a triple that contains variables, expresses a path pattern that
retrieves all triples satisfying it. For instance, the pattern : ⟨r, ξ/τ, ?c⟩ retrieves all instan-
tiation concepts c for the resource r from its equivalent resources. It is worth noting here
that we consider property paths traversal over different LOD datasets.

DBpedia. DBpedia [102] is the semantic counterpart of Wikipedia that realizes LOD
vision by structuring its content and interlinking it with external datasets such as Wikidata
and YAGO. DBpedia transforms every Wikipedia article into a resource, annotated with a
set of properties extracted from the article Web page. Many LOD datasets are producing
data pointing to DBpedia resources making it as a central kernel of LOD cloud2. We
therefore consider in this work DBpedia as starting point to glean initial data to compute
similarity degree between compared concepts. Afterward, follows interlinks we enrich data
from other datasets within a data augmentation process.

4.2.2 Similarity measure for Linked Data Resources

In the following we define a similarity measure composed of three sub-measures: SimI,
SimC, and SimP . SimI exploits the taxonomic structure of ontological concepts used
to instantiate resources. SimC operates on classification schemata used to categorize re-
sources. SimP uses characterization properties of compared resource. The combination
of these sub-measures allows to reduce the negative impact of possibly poorly described
resources. Each sub-measure applies on enriched data by following links between LOD

2http://lod-cloud.net/

68

4.2. LODS: A LINKED OPEN DATA SIMILARITY MEASURE

dataset. The sub-measures are defined as feature-based similarity measures based on Tver-
sky [157] model to handle multi-domain ontologies as well as multiple annotation ontologies
for the same concept [145].

We provide hereafter the formalization of the proposed LOD based similarity measure.
A more detailed presentation with illustrations on a running example can be found in [45].

Let Or ⊆ O be the subset of ontologies containing concepts that instantiate a resource
r. We define a function ϕo(r) that returns all taxonomic features of a resource r, i.e. all
concepts and their subsumers in an ontology o ∈ Or. Formally,

ϕo(r) = {?c ∈ o|⟨r, τ |δ∗|τ/δ∗, ?c⟩} (4.1)

To enrich taxonomic features or even increasing the size of instantiation ontologies
space of a resource. We follow equivalent resources belonging to the same or to different
LOD datasets. Formally, we define ϕ∗

o(r), an augmented function as follows.

ϕ∗
o(r) = ϕ(r) ∪ {?c′ ∈ o | ⟨r, ξ, r′⟩ ∧ ⟨r′, τ |δ∗|τ/δ∗, ?c′⟩, ?c′ /∈ ϕ(r)} (4.2)

After applying the function ϕ∗
o(r), the set of instantiation ontologies of r will be so

augmented. We denote this new set by O∗
r .

Definition 1 (SimI). Let O∗
a,b ⊆ O∗

a ∩ O∗
b be the set of shared augmented ontologies

between two resources a and b. The instantiation similarity SimI∗o (a, b) of two resources
described with concepts from an ontology oi ∈ O∗

a,b is computed based on the cardinalities
of differential and common taxonomic features of compared resources as follows.

SimI∗oi(a, b) =
|ϕ∗

oi(a) ∩ ϕ∗
oi(b)|

|ϕ∗
oi(a) ∩ ϕ∗

oi(b)|+|ϕ∗
oi(a) \ ϕ∗

oi(b)|+|ϕ∗
oi(b) \ ϕ∗

oi(a)|
(4.3)

The overall instantiation similarity SimI∗ over the set of augmented ontologies O∗
a,b is

defined as follows.

SimI∗∀oi∈O∗
a,b
(a, b) =

∑
oi∈O∗

a,b
SimI∗oi(a, b)

|O∗
a,b|

(4.4)

We consider with SimI∗ the average of the resulted similarities from all shared aug-
mented ontologies to hold the balance between ontologies having a rich taxonomic structure
and those with a poor taxonomic structure.

Now, given a resource r classified within categories following a set of classification
schemata Cr ⊆ C, we denote ∆ℓ

t(r) the function that returns, for a resource r, all the
classification categories and their super-categories in a classification schema t ∈ Cr. The
parameter ℓ limits the deepness of the hierarchical level in which categories are retrieved.

69

4.2. LODS: A LINKED OPEN DATA SIMILARITY MEASURE

Formally,

∆ℓ
t(r) = {?c1, . . . , ?cℓ ∈ t|(⟨r, ς, ?c1⟩ ∧ ⟨?c1, δ, ?c2⟩) ∨ ...⟨?cℓ−1, δ, ?cℓ⟩} (4.5)

In the opposite, we denote ∇ℓ′
t (r) the function that returns all the classification categories

and their sub-categories, for a resource r, in a schema t ∈ Cr, with respect to ℓ′ levels
Formally,

∇ℓ′
t (r) = {?c1, .., ?cℓ′ ∈ t|(⟨r, ς, ?c1⟩ ∧ ⟨?c2, δ, ?c1⟩) ∨ ...⟨?cℓ′ , δ, ?cℓ′−1⟩} (4.6)

We combine, the two functions to obtain all classification features of a resource r as
follows.

φℓ,ℓ′

t (r) = ∆ℓ
t(r) ∪∇ℓ′

t (r) (4.7)

Following the same principle of augmenting the space of instantiation concepts of a
resource r, we can define augmented classification features function denoted by φ∗ℓ,ℓ′

t (r).
We can as well obtain its set of augmented classification schemata, denoted by C∗

r .

Definition 2 (SimC). Let C∗
a,b ⊆ C∗

a ∩ C∗
b be the set of shared augmented classification

schemata between two resources a and b. The classification similarity SimC∗ℓ,ℓ′
t (a, b) of

two resources, described with categories from a classification schema t ∈ C∗
a,b with respect

to limited super-categories and sub-categories hierarchy levels ℓ and ℓ′, is computed based
on the cardinalities of differential and common categories features of compared resources
as follows.

SimC∗ℓ,ℓ′
t (a, b) =

|φ∗ℓ,ℓ′

t (a) ∩ φ∗ℓ,ℓ′

t (b)|
|φ∗ℓ,ℓ′

t (a) ∩ φ∗ℓ,ℓ′

t (b)|+|φ∗ℓ,ℓ′

t (a) \ φ∗ℓ,ℓ′

t (b)|+|φ∗ℓ,ℓ′

t (b) \ φ∗ℓ,ℓ′

t (a)|
(4.8)

The overall similarity for the whole augmented classifications space is then defined as
follows.

SimC∗ℓ,ℓ′
∀ti∈C∗

a,b
(a, b) =

∑
ti∈C∗

a,b
SimC∗ℓ,ℓ′

ti
(a, b)

|C∗
a,b|

(4.9)

As for properties, let the subset Pr ⊆ P be the sub-space of properties that contains
characterizing attributes of a resource r. We denote by ΩPi(r) (respectively, Ω′

Pi
(r)) the

function that returns all ingoing (respectively, outgoing) characterizing properties of a
resource r in a particular space Pi ∈ Pr. Formally,

ΩPi(r) = {(?p, IN), ?p ∈ Pi|⟨?x, ?p, r⟩} (4.10)

Ω′
Pi
(r) = {(?p,OUT), ?p ∈ Pi|⟨r, ?p, ?x⟩} (4.11)

70

4.2. LODS: A LINKED OPEN DATA SIMILARITY MEASURE

ΨPi(r) = ΩPi(r) ∪ Ω′
Pi
(r) (4.12)

Following interlinked equivalent resources of r, we can also define as in equation 4.2
function Ψ∗

Pi
that returns the set of augmented properties describing r. The augmented

space of properties P ∗
r can then be obtained.

Definition 3 (SimP). Let P ∗
a,b ⊆ P ∗

a ∩ P ∗
b be the space of shared augmented charac-

terizing properties of two resources a and b, we define characterizing properties similarity
SimP ∗

Pi
(a, b) of a and b as:

SimP ∗
Pi
(a, b) =

µ(Ψ∗
Pi
(a) ∩Ψ∗

Pi
(b))

µ(Ψ∗
Pi
(a) ∩Ψ∗

Pi
(b)) + µ(Ψ∗

Pi
(a) \Ψ∗

Pi
(b)) + µ(Ψ∗

Pi
(b) \Ψ∗

Pi
(a))

(4.13)

where µ is the partial information content of characterizing properties [121]. This function
gives more importance to specific properties based on their occurrences in LOD datasets.
Formally,

µ(Ψ∗
Pi
(r)) =

∑
∀p∈Ψ∗

Pi
(r)

− log

(
Freq(p)

N

)
(4.14)

where Freq is a function that counts the occurrence frequency of the property p in the
description of LOD resources, and N the total number of resources in the underlying
dataset. The overall similarity of all properties space is defined as follows.

SimP ∗
∀Pi∈P ∗

a,b
(a, b) =

∑
Pi∈P ∗

a,b
SimP ∗

Pi
(a, b)

|P ∗
a,b|

(4.15)

Based on the previously defined sub-measures, we define our LOD-based similarity
measure LODS as follows.

Definition 4 (LODS). Given a two resources a and b that are: (i) instantiated with
concepts from augmented shared ontologies oi ∈ O∗

a,b, (ii) classified into categories from
augmented shared classification schemata ti ∈ C∗

a,b, and (iii) characterized with a set of
augmented shared space of properties Pi ∈ P ∗

a,b. We define the Linked Open Data Similarity
(LODS) measure between the resources a and b as follows.

LODSℓ,ℓ′(a, b) = AV G(simI∗∀oi∈O∗
a,b
(a, b), simC∗ℓ,ℓ′

∀ti∈C∗
a,b
(a, b), simP ∗

∀Pi∈P (a, b)) (4.16)

71

4.3. LOD-BASED CONTEXT-AWARE SERVICE DISCOVERY

4.3 LOD-based context-aware service discovery

4.3.1 Context-aware service annotation model

Considering functional and non-functional aspects, a service s can formally be rep-
resented as a triplet ⟨ns,Fs,NFs⟩, where: ns is the service name, Fs = {f1, f2, . . . , fi}
represents the functionalities of s, and NFs = {P1,s, P2,s, . . . , Pn,s} represents its non-
functional properties.

Functionalities in Fs can be annotated by a subset of resources As ∈ LOD where:
∀fi ∈ F ,∃ri ∈ As|{⟨fi, α, ri⟩}. α being an annotation property that attaches a LOD
resource to a service functionality.

Non-functional properties in NFs may be of diverse types. They are therefore generally
organized in profiles, where each profile Pi,s describes a specific context information domain.
Properties inside profiles can be of two types: quantitative and qualitative. Quantitative
properties have generally numerical values while qualitative properties have string type
values that can be attached to LOD resources. This annotation is modeled as follows: for
a property p with set of values {v1, v2, . . . , vi}, a set of resources ri ∈ LOD can be attached
to them. Formally, ∃p = {v1, v2, . . . , vi} ∈ Pi,s | ⟨vi, α, ri⟩, ri ∈ LOD.

As an illustration example, let’s consider an hotel service named ns="Le Plantagenêt"
with only one feature Fs = {Hotel}. The annotation set of this service is As = {dbp :

Hotel}. It has one DBpedia resource3 attached to the functionality Hotel. This ser-
vice has a profile that describes service preferences as non-functional properties: NFs =

{Ppreferences,s}, where Ppreferences,s = {TotalCapacity = 33;Ranking = 3, ComfortServices =

dbr:Internet , SpokenLangues = {French,English}}.

4.3.2 Functional matching of services

The first step of contextual services discovery considers service functional annotation
resources. Considering a user request defined as of a set of terms R = {t1, t2 . . . ti} where
each term can be attached to a subset of annotation resources AR ∈ LOD such that
∀t ∈ R,∃ri ∈ AR|⟨ti, α, ri⟩, the similarity between the request R, annotated by AR, and
service s, which functionalities are annotated by As is defined based on LODS measure as
follows:

SimF (R, s) =

∑
a∈AR

∑
b∈As

LODSℓ,ℓ′(a, b)

|AR| × |As|
(4.17)

SimF is a classical aggregation measure [79] that allows the comparison of two objects
annotated with semantic concepts. It computes the scores obtained from applying LODS

3dbp is a prefix that represents the URL https://dbpedia.org/resource/

72

4.3. LOD-BASED CONTEXT-AWARE SERVICE DISCOVERY

measure on each combination of the Cartesian product of the two compared sets. Then, it
divides the sum by the number of combinations to obtain a similarity value in [0,1].

4.3.3 Non-functional matching of services

At this second matchmaking stage, we first use semantic rules to eliminate services
that do not satisfy mandatory user requirements. Then, a profile-based similarity measure
is applied to the filtered services in order to measure their relevance to the user profile.
Considering the variety of information that can be found in a contextual environment, each
type of information is represented in a separate profile structure. For instance, we can find
a profile for user preferences, a second for user device specifications, a third for information
about surrounding environment, etc. These information can either be explicitly provided
by the user/service-provider or implicitly leaned by the system. Formally, for a user u and a
service s, the set of profiles describing user/service non-functional properties in a particular
context situation is P1,X , P2,X , ...Pn,X where X ∈ {u, s}. Each profile is described by a set
of properties Pi,X = {x1, x2, ..., xn}. We compute the non-functional similarity between u

and s profiles as follows:

SimNF (u, s) = λ1f(P1,u, P1,s) + λ2f(P2,u, P2,s) + ...+ λnf(Pn,u, Pn,s) (4.18)

where λi is the weight expressing the importance of the profile in this particular context.
The function f computes the similarity between two profiles. It is based on measure defined
in [18]. We extend the latter to take into account the different types of data present in
user/service profiles. We integrate our LODS similarity measure into the extended measure
in order to evaluate the quantitative information present in profiles. Formally, consider
Pi,u = {x1, x2, ..., xn} and Pi,s = {y1, y2, ..., ym} two profiles describing respectively a user
u and a service s properties in a particular context situation, we define the similarity Pi,u

and Pi,s as follows:

f(Pi,u, Pi,s) =
a
∑i=N

i=1 wi ×ASim(xi, yi)

a
∑i=a

i=1 wi + b
∑i=b

i=1wa+i + c
∑i=c

i=1wa+b+i

(4.19)

where, a is the number of common properties of X and Y , b is the number of properties
belonging to X but not to Y , and c is the number of properties belonging to Y but not
to X. Each property has a weight wi, where

∑n
i=1wi = 1. The atomic measure ASim is

calculated depending on the property types. It uses LODS for LOD properties and typical
data type specific measures for other cases such as String, Numerical, intervals, and Sets
properties. A more detailed formalization of ASim is given in [48].

The proposed LOD-based context-aware service recommendation approach was applied

73

4.4. LDS LIBRARY

in the Tourism domain within the Smart Loire4 research project as described in Section
4.5.

4.4 LDS library

In order to go further than the LODS similarity measure, we propose LDS (Linked
Data Similarity) Library as an open source Java software library of LOD-based seman-
tic similarity measures. LDS is available at https://github.com/FouadKom/lds.git. LDS
defines a generic, reusable, and extensible architecture that integrates the best-known ex-
isting LOD-based similarity measures and supports both developers and researchers who
intend to use these implemented measures or develop their own new ones.

LDS development follows the following requirements: (i) Simple design to facilitate
the reuse of the tool and provide developers the ability to extend and use it with their
developed semantic measures; (ii) Efficient LOD querying, caching and indexing to ensure
similarity calculation efficiency and scalability; and (iii) Extensibility to offers developers
a way to implement rapidly their measures and incorporate the library with their work.

The LDS architecture shown in Figure 4.1 has 5 main components: (i) Similarity Engine
which acts as the interaction interface of LDS with external programs. (ii) LOD-based
Similarity which calculates the similarity values. (iii) Linked data Manager which retrieves
data for similarity calculation. These two components act as plugability layer allowing
to easily integrate new similarity measure as subclass of LOD-based Similarity and the
corresponding subclass of Linked data Manager. (vi) Linked data Indexer implements a
mechanism for data indexing and caching to allow scalability and efficiency of LDS. (v)
Finally Linked data Benchmark is used for testing and measures evaluations. The full
architecture of LDS with detailed description of its components is provided in [91].

In its current version the library implements the following LOD-based similarity mea-
sures: LODS and its sub-measures SimI, SimC, and SimP discussed earlier, Linked Data
Semantic Distance (LDSD) [135] and its extensions [135, 11], Resource Similarity (Resim)
[137] and its extensions [11], and Partitioned Information Content Similarity (PICSS) [121].

In addition, to evaluate the ease of usage and extensibility of LDS, we proposed a
new LOD-based similarity measure, Extended Partitioned Information Content Similarity
(EPICS), which extends PICSS by considering an additional set of features called similar
features, which considers the similarity between resources based on shared properties and
directions. The evaluation results not only highlighted the potential of EPICS but more
importantly the effectiveness of LDS as a core library for composing, implementing, and
testing new similarity measures.

4https://smartloire.univ-tours.fr

74

4.5. IMPLEMENTATION AND EVALUATION

A more detailed presentation of LDS as well as detailed performance study are given
in [91]. LDS served as underlying framework for similarity calculation in a Privacy-aware
IoT Device Recommendation approach we propose and describe in [92].

Figure 4.1: Overview of the Architecture of LDS.

4.5 Implementation and Evaluation

This section will briefly describe the application of the LOD-based context-aware service
recommendation approach in the Tourism domain and the performance study of LODS
measure and LDS library. Detailed experiments can be respectively found in [48], [46], and
[91].

4.5.1 LODS similarity measure evaluation

LODS similarity measure is implemented using Java and Jena framework5. We ob-
tain required data directly from provided SPARQL endpoints as much as possible. Un-
reachable data via SPARQL endpoints or HTTP principles are downloaded and hosted
on a local endpoint. We rely on DBpedia knowledge base (DBp) as a primary source
of semantic linked data. We then use interlink relationships to navigate through and
get more rich data from Wikidata (WD), YAGO knowledge base (Y AGO), and three
different DBpedia chapters. We consider most active chapters: Dutch (DBpde), Ital-
ian (DBpit), and French (DBpfr). Therefore the considered LOD dataset is LOD =

{DBp,WD, Y AGO,DBpde, DBpit, DBpfr}. The considered ontology space is O = {Odbo,

5https://jena.apache.org/

75

4.5. IMPLEMENTATION AND EVALUATION

Oyago, Oschema, Oumbel, Owd}. The classification schemata is C = {CDBp, CDBp_de, CDBp_it,

CDBp_fr}. And, finally, the property set is P = {PDBp, PDBp_de, PDBp_it, PDBp_fr, PWD}.

The similarity measure is applied on three well-known benchmarks: MC-30 that con-
tains 30 pairs of concepts [123], RG-65 [143] that contains 65 pairs of concepts, and sim-
ilarity gold-standard of WSIM-3536 collection. Results are given in Figure 4.2 and show
high accuracy of LODS combined measure on LOD augmented data.

Figure 4.2: Evaluation of LODS and sub-measures.

4.5.2 LOD-based context-aware service recommendation in the context
of Smart Loire project

Smart Loire7 is a research project funded by the region Centre Val de Loire with the
main objective of cultural tourism promotion in Loire Valley through the development
of contextualized and personalized Trip planning framework. The work described in the
current chapter is partly supported by the Smart Loire project. We therefore consider to
evaluate the proposed approach on the project dataset. The dataset is provided by ADT37
(Agence Départementale de Tourisme d’Indre-et-Loire) through its platform Tourinsoft
(http://www.tourinsoft.com/). The dataset contains 1632 services classified into different
touristic offer categories and annotated with functional and non-functional properties. A
selection of categories is given in Table 4.1 and an example of service description is given
in Figure 4.3.

Following the proposed approach steps, we annotated each service with a set of LOD
resources considering Classification properties as functional properties and the remaining
ones, such as PrestationsEquipements, Location, and Payment Modes, as non functional
properties. We then proposed to a total of 22 users to express queries about tourist services
and collected the most common keywords in Table 4.2.

6http://www.cs.cmu.edu/ mfaruqui/word-sim/EN-WS-353-SIM.txt
7https://smartloire.univ-tours.fr

76

4.5. IMPLEMENTATION AND EVALUATION

Table 4.1: Selected touristic offers

Touristic Offer categories
Hotels and restaurants

Historic Sites and Monuments
Parks and Gardens

Museums
Interpretation centers

Collective accommodations
Leisure and social service activities facilities

Cultural and sporting activities

Table 4.2: A selection of the 9 most frequent queries.

Q French keyword
R1 Hôtel
R2 Restaurant
R3 Hébergements locatifs/collectifs
R4 Chambres d’hôtes
R5 Auberges de jeunesse
R6 Auberge de campagne
R7 Gîte
R8 Site et monument historiques
R9 Château

We the consider these queries to run the functional service discovery algorithm im-
plementing Equation 4.17. For each query we consider the 10 best ranked services. The
precision average is 1 for the first 3 services for all the queries, between 0.8 and 0.97 for the
4th to the 7th services and higher than 0.68 for the remaining services. Thes rates show
the accuracy of the proposed approach.

Moving to the non functional step, we selected 5 users who were asked to define their
profiles in terms of preferences over non-functional service properties and to specify as
example of mandatory constraint the maximum geographic distance in which services are
retrieved (2km, 5km, 10km, 20km, 60km). Other examples of non-functional properties
are given in Table 4.3. We consider the same weight (wi) for all the properties. We apply
non-functional constraints, the algorithm implementing Equation 4.18, on the results in the
previous step and measure the context precision as the number of remaining non filtered
services divided by the number of services of the previous step. Context precision for each
of the 5 users is shown in Figure 4.4 (Left). We also evaluate the overall quality of the
discovery compared to user evaluation of the returned results. Figure 4.4 (Right) shows
that the context-aware service recommendation process quality is very close to user rating.

77

4.6. RELATED WORK

Figure 4.3: Example of a touristic service description

1 <service >
2 <title >Hostellerie du château de l Isle </title >
3 <m:properties >
4 <d:SyndicObjectName >Hostellerie du château de l Isle
5 </d:SyndicObjectName >
6 <d:GmapLatitude >47.3282285 </d:GmapLatitude >
7 <d:GmapLongitude >1.0458362 </d:GmapLongitude >
8 <d:ObjectTypeName >Hôtellerie </d:ObjectTypeName >
9 <d:ClassementsllPrefectoral >3 étoiles </d:ClassementsllPrefectoral >

10 <d:LanguesParlees >Français#Anglais </d:LanguesParlees >
11 <d:CapaciteTotale >12</d:CapaciteTotale >
12 <d:CodePostal >37150 </d:CodePostal >
13 <d:Classification >Hôtels - restaurant </d:Classification >
14 <d:PrestationsEquipements >Boulodrome#Jardin#Jeux pour enfants
15 en extérieur#Jeux pour enfants#Parc#Parking#Parking privé
16 #Restaurant#Salle de réception#Salon#Télécopieur#Terrasse
17 </d:PrestationsEquipements >
18 <d:Web >http://www.chateau -delisle.com </d:Web >
19 <d:ModesPaiements >American Express#Carte bleue#Chèques de voyage
20 #Chèques bancaires et postaux
21 </d:ModesPaiements >
22 </m:properties >
23 </service >

Table 4.3: Properties considered in non-functional evaluation

Property Type µµµ Values Examples
Spoken language Set AtLeast French, English
Payment method Set AtLeast Blue Card, Cash

Ranking Number/Interval - 3 stars, [2-4] stars
Provided services LOD Max dbr:Parking, dbr:Internet

4.6 Related work

In this section we briefly review the main approaches close to our contribution on LOD
based similarity measure and its use to context-aware service discovery. A more detailed
review of the state-of-the-art is given in [46], [48], and [91].

The emergence of LOD and its rapid expansion through continuous interconnection
of new resources motivated the its use as underlying semantic and linked data source to
tackle many challenges such as interoperability and recommendation. These challenges
usually come to, or at least include, similarity measuring between distinct entities taking
advantage of LOD.

In [135] the author proposed a Linked Data Semantic Distance (LDSD) which relies on
direct and indirect relationships between two DBpedia resources in the context of music

78

4.6. RELATED WORK

User 1 User 2 User 3 User 4 User 5
0%

20%

40%

60%

80%

100% 89.16%
18.0

89.16%
18.0

1.2%
164.0

59.04%
68.0

59.04%
68.0

User 1 User 2 User 3 User 4 User 5
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

88%

94% 94%
97%

95%96%

92% 92%

68%

80%

20%

16%

76%

24%

30%

SimNF
User evaluation with context

User evaluation without context

Figure 4.4: (Left) Evaluation of result precision. (Right) Comparing result quality with-
out/without context-awareness of the approach with user evaluation

recommendation. LDSD applies on a cleaned dataset of DBpedia and considers relations
between resources and concepts. This limits its accuracy compared to our approach as
LDSD does not benefit from external interlinked datasets, it does not consider existing
taxonomic structures and it ignores additional characterizing properties.

In [138] authors propose REWOrD, a measure based on a Predicate Frequency, Inverse
Triple Frequency (PF/ITF) model inspired from TF/IDF used to compute the informative-
ness of the paths that connect compared resources. It is also limited in terms of considered
LOD dimensions compared to LODS.

Later on [121] proposed Partitioned Information Content Semantic Similarity (PICSS),
an information content (IC) based approach to compute the similarity between LOD re-
sources. PICSS uses ingoing and outgoing edges as features and then compares resources
based on Tversky model [157]. Although author report efficient performance evaluations,
there is no formal presentation to allow generalizing the measure adoption, especially for
the resource enriching process. In addition, PICSS has the same shortcomings as the two
previously cited measures as it consider less features than LODS.

As for the use of semantic similarities for web services, in particular for context-aware
service discovery, there are many proposed approaches following the emergence of ubiqui-
tous computing research era. Going further than the simple use of locations, the proposed
approaches model contextual profiles with additional properties related to user, to used
devices, and to services [10] [62]. Compared to these works, our approach allows to in-
tegrate multiple types of context information requirements which improves the discovery
effectiveness.

Context-aware services discovery approaches are usually defined as two steps corre-

79

4.7. CONCLUSION

sponding to functional and non-functional matchmaking as it is the case for our approach.
This is the case for approaches in [155], [130], and [144]. Most of these approaches, however,
rely on single ontologies for semantic similarity, and usually for the functional matchmaking
only. The non-functional matchmaking is reduced to rule-based verification of contextual
constraints [43, 66].

Our approach goes further through the use of LOD instead of single ontologies for
similarity measuring. The proposed LODS measure is then used in both functional and non-
functional discovery steps. Only mandatory contextual constraints are modeled through
rules. The remaining profile properties are considered using LODS.

4.7 Conclusion

Starting from the challenge of providing cross-domain semantically-enabled service rec-
ommendation discussed at the end of the previous chapter, we consider Linked Open Data
instead of single ontologies as semantic support underlying service frameworks. We pro-
pose LODS, a LOD-based similarity measure that exploits (i) the taxonomic structure
of ontological concepts, (ii) the classification categories of LOD resources, and (iii) their
characterizing properties. Prior to computing the similarity, the approach performs a data
augmentation process that takes advantage of LOD interlink relationships with external
datasets to enrich data involved in computing similarity measure to reduce the problem
of lack of information within a single dataset. We build on top of LODS a context-aware
service recommendation approach applied to the tourism domain. Services are modeled
through functional and non-functional properties. LOD based annotation process allows
to match these properties with corresponding LOD resources. Then adapted matchmaking
based on LODS is performed to select the most relevant services for user needs in a given
context. In addition, the LODS measure is packaged within a LOD-based similarity library
that also implements the best-known state-of-the-art measures to allow their use and in-
tegration in any framework. The three contributions were evaluated and prove efficient
results.

LODS similarity measure will also be considered in the contribution detailed in next
chapters (Chapter 5 and Chapter 7).

The work described in this chapter was conducted during the scientific stay of Nasreddine
Cheniki at the University of Tours between 2016 and 2019 as part of his PhD [45] and during
the PhD of Fouad Komeiha to be defended in 2023. It is mainly published in the following
conference papers: [46], [48], and [91].

80

Part III

Contextualized and user centric
service interactions

81

Chapter 5

Configuration approach for
personalized mashups

Contents
5.1 Introduction . 84

5.2 Configuration of Personalized Travel Mashup Overview 85

5.3 DSVL for Mashup Query Definition 87

5.4 Mashup Schema . 88

5.5 Configuration Problem . 89

5.5.1 Configuration Knowledge . 89

5.5.2 Configuration solution . 90

5.6 Reconfiguration Process . 92

5.7 Implementation and Evaluation 93

5.8 Related Work . 95

5.9 Conclusion . 96

This chapter describes our contribution regarding the challenge of contextualized user-
centric service interaction discussed in Section 2.1.2. It provides a detailed view of the
approach described in Section 2.2.2.1, which models personalized service mashup building
as a configuration problem based on Configuration Theory [151], then identifies the config-
uration solutions as relevant mashups. The approach relies also on a set of visual artifacts
as Domain Specific Visual Language to allow end-user express preferences and constraints
on the built Mashups. These artifacts are connected with a rule-based declarative language
for consistent Mashup generation.

83

5.1. INTRODUCTION

5.1 Introduction

With the large adoption of Service-Oriented Architecture (SOA) and Cloud Computing,
Web services, generally in the form of Web APIs, have grown rapidly both in quantity and
diversity. Users are surrounded with these services supporting their lifestyles: services that
track their activity through smartphones, enable efficient use of home monitoring, provide
the weather forecast or traffic reports, etc. They have become the first-class citizens on
the Web and the core functionality of any Web application. However, they can no more
be considered as independent/isolated entities, i.e. used individually, but as a set of pairs
characterised by relationships that favour the interconnection. Their connected usage has
the potential to create new value-added services. This type of service is known as a mashup.
In general, a mashup is the process of merging a huge amount of heterogeneous data from
different sources providing a fragmented view of the information and transforming these
islands of data into an integrated view to fulfill complex needs [57, 42]. Moreover, nowadays
end-users occupy an important position in the development of content, it makes sense to
involve them in the mashup creation process through transforming end-users to prosumers
(producer + consumer). In fact, there is an increasing need by end-users to realise their
own ideas and to express their own creativity [161]. So far, systems have been conceived as
pre-packaged sets of data, functionality, and visualisations that somebody else (the software
developer) builds for us which no longer meets this new need. In addition, mobile devices
are considered as the universal gateway between services and end-users.

Nevertheless, services are developed using SOAP-based or REST-based technology,
which is difficult to understand for non-technical end-users aiming to compose services
based on their specific preferences and/or needs. For example, if a user wants to plan for
a trip, she/he will search for a Point Of Interest to visit (POI), restaurants and hotels.
She/he would have to interact separately with the different services, handling different
URLs, comparing retrieved results, and then aggregate data to respond to a particular
travel information need. Even, the recommender system seems to provide a solution to
the trip planning problem, they are limited to a list of recommended POI and lack of
personalization. The user still needs to guess how much time is needed to visit each single
attraction, and to devise a smart strategy to schedule them in order to build a personalized
itinerary. A Travel Mashup is an automated solution for this scenario, where travel relevant
data is retrieved and aggregated from services considering users’ travel information needs,
which may be weighted further by their personal preferences, as well as user’s context then
presented as directly usable information [38]. However, mashup tools require a program-
ming background, so they are not suitable for end-users [12]. The inherent complexity of
service composition must be adequately abstracted to give end-users easy-to-use develop-
ment environments that hide all the underlying technical details. Regarding this, we think

84

5.2. CONFIGURATION OF PERSONALIZED TRAVEL MASHUP OVERVIEW

that an ideal mashup platform should offer a lightweight development process promoting
user-driven-innovation processes. It should support end-users by means of composition
paradigms that abstract from technical details and fit with the particularities of the usage
domain dealing with domain-specific paradigms to increase end-user innovation potential.

In this context, this chapter proposes a configuration-based approach for personalised
mashup that provides end-users with a transparent service composition. A Domain Specific
Visual Language (DSVL) that allows end-users to easily build mashup-based compositions
is proposed. Then, the composition problem is modeled as a configuration problem to
respond to the mashup query. In order to provide users with a personalised solutions,
alternatives are generated by reconfiguration process. In addition, we propose a LOD-
based reconfiguration process to improve the recommendation accuracy.

The remainder of this chapter is organised as follows: Section 5.2 introduces an overview
of configuration-based approach. Section 5.3 exposes the DSVL for mashup query defini-
tion. Section 5.5 presents the configuration problem. Section 5.6 details the reconfiguration
process. Section 5.7 provides insights on the implementation and the conducted experi-
ments. Section 5.8 presents the related work. Finally, Section 5.9 concludes the paper.

5.2 Configuration of Personalized Travel Mashup Overview

An overview of our personalized travel mashup framework is shown on Figure 5.1. The
framework provides end-users with interactive environment to compose services for their
trip planning corresponding to their situational needs through a three-layer architecture:
The Service Layer includes the services developed by professionals developers. Particu-
larly, services are implemented based on SOAP or REST technology.
The Application Layer provides end-users with a Visual Mashup Environment composed
of three editors: (i) the mashup editor allows user to compose services, (ii) the rule editor
allows to create rules describing situations to adapt the travel mashup, and (iii) a presen-
tation UI to show the execution of the travel mashup in form of itinerary recommendation.
This layer interacts with a Mashup Schema to access high-level service representations used
by end-users to compose services and create the mashup query.
The Component Layer offers the software artefacts to connect the Application Layer
and the Service Layer. It implements the mashup configuration approach relying on the
following components. The Mashup Schema allows to map service implementations and
service high-level representation which hides service technological issues. It describes two
facets of services: an invocation facet, used to invoke services; and a semantic facet, used
by Visual Mashup Environment. Developers deploy the service to the mashup schema by
defining invocation and semantic representation in order to make it available to the mashup

85

5.2. CONFIGURATION OF PERSONALIZED TRAVEL MASHUP OVERVIEW

environment. End-users communicate only with the high-level description offered by the
semantic facet. The mashup query is analysed by the Invocation Module, which connects
to the Mashup Schema to obtain the invocation facet of each service of the composition.
Rule descriptions representing context-aware situation and user constraints are used by
this module for mashup adaptation. Then, this concrete mashup query is executed by the
Configuration Module to generate suggestions to end-users as itinerary recommendation
displayed in the Presentation UI.

Figure 5.1: Travel Mashup Configuration Architecture

Numbers on Figure 5.1 correspond to possible interaction scenario steps detailed herein.

1. Service providers deploy their services (SOAP/REST) in the Mashup Schema and
define the invocation and semantic service facets.

2. End-users interact with the visual environment to create the mashup query that
includes the desired services.

3. The Mashup Visual Environment provides end-users with high-level service represen-
tation provided by the Mashup Schema through semantic service facet.

4. End-users complete the mashup by creating constraints and context-aware rules using
the rule editor and then send it to the Invocation Module.

5. The Invocation Module requests the Mashup Schema to get service invocation data
included in the mashup. Considering end-user rules and abstract mashup query, it
generates a concrete query and sends it to the configuration module.

86

5.3. DSVL FOR MASHUP QUERY DEFINITION

6. The configuration module executes the mashup query and generates itinerary sug-
gestions.

7. The Presentation UI displays the recommended itineraries on a map and as a timeline.

5.3 DSVL for Mashup Query Definition

In this section, we present the key concepts of the DSVL which offer to end-users the
possibility to compose services using high-level description. More details are given in [31].

An Activity A is a high level representation of a service which is developed by profession-
als and is registered in the Mashup Schema. A =< name, description, graphicalicon, P >

where name, description and graphical icon hide the technological issues that are required
to invoke the service for end-users, and P is the set of activity parameters. Each parameter
p ∈ P has a name, a value and a source defining how the value should be provided.

We choose the term activity instead of service because it is closer to end-users’ mental
model. Thus, end-users have just to indicate the desired activities to perform in a mashup,
such as get route from user position to an address, checking weather forecast, and so on.
Furthermore, we use the term parameters to represent input and output without distinction
to facilitate the mapping task for end-users.

Activities are connected through Operators such as AND, OR, NEXT. They can also be
filtered through filter operators. Different metaphors were evaluated by end-users in order
to determine intuitive and most adequate operators for components connection [56]. The
puzzle and workflow metaphors were the two most ranked ones. We therefore considered
the puzzle metaphors to create the graphical representation of a mashup, as shown in
Figure 5.2.

Figure 5.2: (Left) Abstract Activity model. (Right) Example of domain-specific compo-
nents for travel mashup

The contextual situation is described through a set of user-specified rules using graph-
ical notations to adapt mashups according to user’s situational needs. We structure the
contextual rule in two parts: Conditions representing the situation for condition activation,

87

5.4. MASHUP SCHEMA

and Actions to be executed. Typically, end-users interpret the "OR" operator as an "ex-
clusive OR". Therefore, we propose a high-level rule description that hides this complexity
based on ALL CONDITIONS connector and AT LEAST ONE CONDITION connector
that refers respectively to AND and OR logic operator. Figure 5.3 shows the rule editor
interface.

Figure 5.3: Rule editor interface

5.4 Mashup Schema

The mashup Schema acts as a gateway between end-users and service implementations,
managing service data types from two facets: Semantic Facet and Invocation Facet.

Semantic Facet describes the goal of each service in order to be handled by end-users.
Once developers register the service into the mashup schema by defining its invocation and
semantic facets, it becomes available for end-users. The high-level service representation
provided by the semantic facet and corresponding to the activity is used by end-users for
mashup creation. It is represented with blue headers in Figure 5.4.

Invocation Facet provides the technological details of the service such as protocol,
url, port, parameters, etc. This data is hidden to end-users at composition time. It is used
only for service invocation at runtime. It is represented with green headers in Figure 5.4.

The mashup schema is implemented as a Java Web module, and expose a REST API
to interact with it through the HTTP protocol based on JSON data format. Figure 5.4
describes the mashup schema composition for each facet by means of UML Diagram.

88

5.5. CONFIGURATION PROBLEM

Figure 5.4: Faceted Mashup Schema Data

5.5 Configuration Problem

The service composition is seen as a configuration that consists to put together com-
ponents following a logical description that respects user constraints to build a compos-
ite component responding to the user query. The mashup is designed using functional-
based aggregation. Formally, we define the service composition as a Configuration Problem
CP = (m,R,CK) where m denotes the mashup query, R denotes the set of context-aware
rules, and CK represents the Configuration Knowledge used to aggregate services that will
be detailed in the following.

5.5.1 Configuration Knowledge

The configuration knowledge describes how to compose data (service instance) by mean
of configuration operators and configuration rules that allow to generate a composition
graph dependency. It relies on service functionalities, in the form of property-value pairs,
to build composition called functional connections. Configuration operators specify how
to aggregate services based on service functionalities (fi ∈ F) to generate composite func-
tionalities (qi ∈ Q). Formally, let (f, x) and (g, y) be two functionalities and let op(x, y) be
a configuration operator. Then, the composite functionality q = ϕ((f, x), (g, y)) is defined
as follows:

ϕ((f, x), (g, y)) =

{
(f, opf (x, y)) if f = g

(f, x), (g, y) otherwise.

89

5.5. CONFIGURATION PROBLEM

The composite functionality is a set that contains either a single property if the func-
tionalities are equal, or the two properties if they are not equal. Thus, if two services,
which have some properties in common, are included in a set containing the configuration,
then it is necessary to compute the values of these properties in some way. This compu-
tation is done by the configuration operator. If this operator is not defined for the given
value constellation, then these two services cannot occur at the same time in the set of
configuration.

5.5.2 Configuration solution

A configuration solution CS ∈ CSS(ConfigurationSolutionSet) to a configuration
problem CP is defined as a pair CS = (I,Q) where:

• I: refers to the set of items in the form (n, s) expressing the fact that service s appears
n times in the mashup to be configured.

• Q: is the set of mashup features (called quality) in the form of a pair (f, x) that
defines the value of the feature f.

Given a set S of services, a configuration solution CS is built recursively as follows:

1. CS = (∅, ∅) is a configuration solution.

2. If CS = (I,Q) is a configuration solution and s ∈ S, then CS′ = (I ′, Q′) is a
configuration solution if the following conditions hold:

(i) For each (f, x) ∈ Q and for each (g, y) ∈ Q, the composite functionality
ϕ((f, x), (g, y)) is defined or Q = ∅.

(ii)

I ′ =

{
I\(k, c) ∪ (k + 1, c) if ∃(k, o) ∈ I

I ∪ (1, c) otherwise.
(5.1)

(iii)

Q′ =

{
Q ∪ (ϕ((f, x), (g, y))|(f, x) ∈ pc, (g, y) ∈ Q) if Q ̸= ∅
pc otherwise.

(5.2)

Condition (i) guarantees that service s ∈ S will be added to the configuration solution
CS only if all the service properties can be combined with all CS qualities. Condition (ii)
specifies how a new service can be added to the item set I. Condition (iii) specifies how a
new set of qualities will be constructed when a new service is added to the configuration.
Although qualities and functionalities are syntactically equal, we distinguish between them

90

5.5. CONFIGURATION PROBLEM

since a functionality is the characteristic of a service, while a quality is the result of the
combination of several services having the functionality f ∈ F . A configuration solution
has the following characteristics: validity and coherence. Validity refers to user constraint
satisfaction. Given a set V of non-negative values, an operator op : 2V → R+ and a budget
threshold B, then ∀CSi ∈ CSS; i, j ∈ N, op(CSi.Ij , CSi.Ij+1) ≤ B. Budget can simply
be the number of resources forming the configuration item solution. Coherence denotes
context-aware solution.

For example, to deal with a travel mashup that includes a touristic activity, a restaurant
activity, and an event activity for 1 day visit and 100€ as total budget, we define the
following operator set overs services si, sj ∈ S: OP = {opduration, opprice}

opprice(si, sj) =

{
si.price+ sj .price if si.price+ sj .price < B

⊥ otherwise.
(5.3)

opduration(si, sj) =

{
si.d+ sj .d if si.d+ sj .d+ δt < D

⊥ otherwise.
(5.4)

opprice calculates the total cost of the visit by the progressive accumulation of service
price property limited by the global budget B. Similarly opduration sums the duration of
visit of the PoI and considers δt the transition duration to move from one PoI to the next.
It keeps only solutions with feasable PoIs within the visit duration D, 1 day in this example.
Using these operators and configuration rules, a configuration solution CSi ∈ CSS can be:

CSi = {(I,Q)} where

I = {(1, POI) ; (1, Restaurant) ; (1, Event)}

Q = {(cost, 80) ; (duration, 1)}

To generate the configuration solutions, we propose an incremental model that consists
in creating compositions by pair patterns, two service instance are composed at the time,
applying the configuration operators. An initial configuration solution CS1 is generated
and is extended to incorporate additional instances of candidates forming a new solution
CS2. We call CS2 partial configuration, as it does not yet satisfy the mashup query and
must be completed by adding more instances. We repeat this step until reaching a final
solution CSn. The proposed algorithm is detailed in [31].

91

5.6. RECONFIGURATION PROCESS

5.6 Reconfiguration Process

The reconfiguration process provides users with more alternatives to personalise the
travel mashup using LODS similarity measure presented in the previous chapter. Figure
5.5 illustrates an overview of the reconfiguration framework.

Figure 5.5: Reconfiguration Framework Overview

The DATAtourisme Enrichment module implements a lightweight integration process
allowing to enrich the DATAtourisme1 dataset that aims to centralize, within a national
French shared platform, travel information produced by different Tourism Committees.
Such information is published as Linked Open Data to facilitate the creation of innovative
travel applications. We propose to enrich it by collecting data from travel APIs such as
Foursquare, Google Places, Sygic Travel, etc. and map the different pieces of data using
the DATAtourisme ontology model. This ensures a unified data representation model
and helps then to transform non-RDF data into semantic ones in order to complete the
missing information in DATAtourisme dataset. Moreover, to model information that is
not covered by this ontology, we can use Schema.org, tourism-domain ontologies or parts
from Mio! ontology network [165]. Furthermore, mapping the resulted unified semantic
data to existing LOD datasets such as DBpedia2 allows, in some cases, completing missing
information that is not provided by API data sources. The mapping could then be exploited
by LOD-based similarity measures such as LODS to propose similar touristic data. The
final rich and semantically generated data is stored in a local RDF store.

Generated mashup can be reconfigured by providing users the possibility to personalize
their initial plan through adding or removing travel activities as well as adapting properties
of a travel activity such as time activity for example. The reconfiguration process exploits

1www.datatourisme.fr/ontologie
2http://dbpedia.org/

92

5.7. IMPLEMENTATION AND EVALUATION

LODS, a LOD-based similarity measures, to produce similar travel activities as alternatives
to the initial ones.

We illustrate in the Figure 5.6 a simplified example of data integration process. Tourism
service information retrieved from two APIs (Google Places and Sygic Travel) are trans-
formed (from XML and JSON respectively) into a semantic representation (RDF) before
being integrated with DATAtourisme. New properties (rating and visit duration) have
then been added to enrich the same service in DATAtourisme dataset.

Figure 5.6: Example of tourism data integration

5.7 Implementation and Evaluation

The proposed configuration approach for personalized travel mashup is implemented
within a prototype called CART (Configured mAshup Recommender application for per-
sonalized Trip planning). CART architecture is structured into 3 layers following the
architecture depicted in Figure 5.1. Technically, the service Layer is in charge of collecting
travel data from Web APIs eg. Google Maps, Google Direction API, Google Places API,

93

5.7. IMPLEMENTATION AND EVALUATION

Forsquare and DATAtourisme. Based on JAXB API, the XML-data are serialized into
POJO classes. The Mashup Layer implements the configuration approach as a SpringBoot
App. The application layer is implemented as a client app consuming services from the
mashup app. It includes UIs allowing users to build a query mashup for the trip plan
indicating their preferences and constraints. In addition, CART provides end-users with
interactive environment to define mashup query and visualizes visit plan recommendations
for the Loire Valley region in France. The considered dataset includes more than 300 mon-
uments, more than 30 remarkable gardens, 6 cities of art and history that crisscross the
Loire Valley. Figure 5.7 shows the UIs of CART illustrating recommended itinerary.

Figure 5.7: An example of visit itinerary generated by CART

We evaluated the proposed approach by 15 end-users (9 male/6 female) with different
programming knowledge levels. Our main idea was to propose to participants to explore
the mashup environment in order to build the travel mashup and define context rules via
the rule editor. Globally, most of the participants felt comfortable using the platform and
they mention a good satisfaction level. Detailed scores are given in [31].

The user were asket to answer a UEQ questionnaire which consists in describing two
concepts with opposite meanings to be assessed on a Likert scale as shown in figure 5.8.
The items constitute six different scales that are aimed at offering results categorized
into attractiveness, perspicuity, efficiency, dependability, stimulation, and novelty [147].
Based on this classification, we have extracted a short version of the questionnaire, more
appropriate to our platform. We used UEQ to test if the Rule Editor system has sufficient
user experience in its current implementation. As can be seen in Figure 5.8, and according
to the UEQ methodology, all scales show a positive evaluation, i.e. they are greater than
0.8. In order to interpret these results, we have based on the benchmark graph built
by [147], illustrated by the Figure 5.8. We can note that all factors were given a value
exceeding the average, which confirms a positive evaluation. The factor with the highest

94

5.8. RELATED WORK

score is dependability reflecting a strong sense of control over the interaction with the
system.

Figure 5.8: (a) UEQ questionnaire result (b) UEQ Benchmark reference

5.8 Related Work

Several mashup platforms: NaturalMash[9]; ResEval[57]; MashupEditor[76]; Puzzle[56];
EUCalip[160] [162], have been proposed to allow end-users to visually compose data and
services from different sources, so that they can satisfy their information needs.

For instance, Puzzle[56] is a framework that allows end-users to create mobile appli-
cations. It allows the composition of device, smart objects, and Web service functionality
using jigsaw metaphor that provides users to put together services without handling techni-
cal issues. EUCalipTool [162] offers an intuitive mobile environment that allows end-users
to create service compositions based on a domain-specific language. Although theses ap-
proaches provide a domain-specific solution, they lack context-awareness.

Various applications for customizing the behaviour of existing applications in mobile
devices or Web services have been introduced, such as IFTTT [133]. The idea is to describe
the system behaviour based on if-then statements that specify how the system should
behave regarding specific situations. They connect apps, devices and services to trigger one
or more automation using abstract descriptions of services that mask technology details.
EFESTO [12] provides end-users with a smart interactive experience to synchronize the
behaviour of smart objects. It implements a visual paradigm for rule creation to support
users in smart visit definition for cultural heritage scenario. Block Composer [113], a system
for the end-user definition of trigger-action rules, uses the puzzle metaphor to support
users in creating such rules. Creating rules is based on visual blocks, implementing a free
composition style where users are supported by color and shape coherence of blocks, and
integrated with recommendation techniques in order to provide intelligent support during
rule creation.

The analysis of the related work illustrates that all the approaches provide high-level

95

5.9. CONCLUSION

service representation to hide technology issues and support end-users in service composi-
tion. However, composing actions and conditions in rule definition for personalised mashup
still difficult for end-user as using logic operators is not trivial for them. Therefore, abstract
descriptions for rule definition is needed. No approach combines domain-specific, context-
aware and propose high-level representation of services and rules to effectively support
end-users in personalised service mashup. Our approach fills this gap.

5.9 Conclusion

In this chapter, we describe the configuration-based approach for personalised mashup
which is a domain-specific and context-aware mashup approach helping end-users in Tourism
domain. The proposed approach is based on three key pillars: (i) Interactive mashup
environment that allows end-users to create compositions by means of a DSVL offering
high-level service representation. A Mashup Schema plays the role of a gateway between
end-users and service implementation. This aspect allows us to achieve the goal of keeping
end-users unaware of technological issue related with services. In addition, descriptions
of available services are totally decoupled from the end-user tool, facilitating its evolu-
tion and maintenance. (ii) Configuration Module that models composition problem using
the configuration theory. It aggregates travel related data to generate configuration that
matches user constraints and provides context-aware solutions in incremental way. (iii)
Reconfiguration process which calculates alternative solutions based on LODS similarity
measure.

The work described in this chapter was conducted during the PhD of Marwa Boulakbech
defended on July 2020 [25]. It is mainly published in the following journal and conference
papers: [33], [34], [27], [28], [26], [29], [47], and [31].

96

Chapter 6

User-centric device recommendation

Contents
6.1 Introduction . 97

6.2 CUBE: Approach overview and formal representation 99

6.3 CUBE: Architecture and technical considerations 100

6.3.1 CUBE architecture . 100

6.3.2 CUBE layered representation and technical considerations 101

6.4 Semantic rule-based device recommendation for service-migration
in multiple device environment 103

6.5 Implementation and evaluation 104

6.6 Related work . 105

6.7 Conclusion . 106

This chapter describes our contribution regarding the challenge of providing fluent user-
side service running management discussed in Section 2.1.2.2. It provides a detailed view
of the approach described in Section 2.2.2.2, which consists in a user-centric architecture
following Liquid Software principals to allow for smooth service migration from one device
to another from the user-side. The proposed approach also defines semantic and rule-based
migration context to ensure service interaction continuity while switching to new devices.

6.1 Introduction

Nowadays, multiple-device ownership is increasing more and more driven by the high
availability of smart objects, their increasing performances and the progress of data man-
agement and transfer protocols. It is indeed expected that by 2025, more than 75 billion

97

6.1. INTRODUCTION

smart devices will be in use, according to Statistica1 and Cisco2. It is now common to
use simultaneously or in sequence at least 2 smart devices by the same user to perform
daily tasks. Especially with the paradigm of Everything-as-a-Service (XaaS), people can
access different services anywhere, anytime and from almost any device. In this context,
multiple-device ownership raises new challenges when users run services over their differ-
ent devices. One of the very common challenges is to switch from one device to another
while keeping interaction with the same service. Services are hosted and managed on Web
servers or Cloud which usually allow for multiple device access. They however require the
user to login each time a new device is used. Moreover, in most cases, users have to restart
interaction sessions from scratch. Two typical scenarios can be considered to illustrate the
need for alternative user-centric solution: a light-coupling scenario with email service and
tight-coupling scenario with YouTube service. Considering server-side synchronization,
starting email writing on a device and then moving to a second device requires the login
on both devices and saving the written part of the email as a draft from the first device to
avoid data loss and to continue from the second device. Similarly, for video streaming on
YouTube, user should login from both devices and resume video from saved history session
on YouTube.

The challenge of fluently moving services through devices in multiplatform environ-
ments was addressed through the Liquid Software paradigm [80]. Achieving Liquid Software
principals requires to build an entire infrastructure for dynamically moving functionality
throughout a server-side or client-side network. Since then, almost all proposed Liquid
Software approaches rely on server-side synchronization [52] and still face data and time
loss issues. Nevertheless, the shift from SOAP to REST services is a opportunity to achieve
user-side liquid software frameworks. REST and RESTfull require services to follow some
constraints as described in [136], such as stateless interaction, hypermedia status, and ad-
dressability of resources. Following these specific constraints can help achieving interaction
session sharing between devices regardless server synchronization. The study in [52] shows,
however, that initiatives in this direction are still missing.

Successful migration of service interaction requires to ensure that target device is suit-
able for hosting the interaction. Also, it has to capture the users preferences, timeline and
other features related to security, reliability, compatibility of devices, constraints of the
services, etc. This issue has also been widely covered from the cloud/server side, as part of
cloud resource management [109] or in the context of IoT device management [92]. From
user-side however, efficient device recommendation modules are still to be defined. Such
issue is more challenging as far as we consider the limited device computation performances
and the lack of access to large semantic resources, such as Linked Open Data, for similarity

1https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
2https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-iot.html

98

6.2. CUBE: APPROACH OVERVIEW AND FORMAL REPRESENTATION

calculation.

In this chapter we present our approach to provide users with user-centric framework,
CUBE, that allows to for smooth user-service interaction migration over multiple devices
from user side. The approach relies on Liquid Software principals [80] and REST/RESTful
constraints [67], [136]. We also define a semantic rule-based declarative module to ensure
successful interaction continuity on the hist devices. The reminder of the chapter is or-
ganized as follows. Section 6.2 presents the CUBE principals and formalization. Section
6.3 presents the framework architecture and main components. Section 6.4 presents the
semantic rule-based module to ensure user-service interaction continuity over devices. Sec-
tion 6.5 provides insights on implemented prototypes and evaluation results. Section 6.6
reviews the main state-of-the-art approaches related to our contribution. Finally, Section
6.7 concludes the chapter.

6.2 CUBE: Approach overview and formal representation

As alternative to server-side synchronization that allows time and data saving, we
propose the CUBE, a user-centric framework that follows Liquid Software principals and
defines a layered architecture built upon REST and RESTful constraints to ensure smooth
user-service interaction migration in multiple device contexts from the user-side. With
CUBE, both tight-coupling and light-coupling scenarios introduced previously will be han-
dled locally preserving data and session states without the need for multiple login. The
user logs in from the first device then the session can be moved to a second device through
the use of RESTful properties allowing to manage data status. The multiple-device user
context is virtualized for the server which continues interaction as with the first device.

In its abstract representation, the CUBE is seen as a four component model geomet-
rically represented as: a central point which represents the user, surrounded by a first
cube, called INNER CUBE, representing the set of user devices, contained in turn in a
second cube, called the OUTER CUBE, representing the set of services, and between the
two cubes the POOL AREA hosting the user-service interactions through the devices.
Figure 6.1 shows a geometric representation of CUBE abstraction.

Formally, we define the CUBE as C = {u, Ic,Oc,Pa}. u denotes the user. Ic denotes
the INNER CUBE defined as Ic = {dp,Du \{dp},Rd} where dp is the device being used by
u, Du is the set devices owned by u, and Rd denotes the research mechanism to discover
new devices in the user context. Oc denotes the OUTER CUBE defined as Oc = {s ∈ S
such that ∃d ∈ Du and d ↔ s} where S is the set of services and d ↔ s means that there
is an interaction between u and service s through device d. And finally, Pa denotes the
POOL AREA defined as Pa = {d↔ s such that d ∈ Ic and s ∈ Oc}.

99

6.3. CUBE: ARCHITECTURE AND TECHNICAL CONSIDERATIONS

Figure 6.1: CUBE abstract representation

Defined this way, the CUBE is an adaptation of User Centric Network (UCN) in Liquid
Software formalization, detailed [80]. The CUBE restricts the UCN definition to a single
user instead of multiple users in UCN. In our first proposal of CUBE framework, the device
discoveryRd in the user context relies on graph representation and graph search algorithms
as detailed in [49]. Later on we enhance this module with semantic rules discussed in Section
6.4.

6.3 CUBE: Architecture and technical considerations

6.3.1 CUBE architecture

The framework general architecture is depicted in Figure 6.2. The content management
system 101 includes two application portions 103 and 105, two application program inter-
face (API) portions 102 and 106, and a database portion 104. 102 and 106 respectively
correspond to the INNER CUBE, Ic, and OUTER CUBE, Oc. 103, 104, and 105 are part
of the the POOL AREA Pa.

The content management system 101 will interact on two fronts, user device front, 100,
and service front, 107. First, at user device front 100, the user specifies the first device in
use, dp. Its choice is made from the available devices owned by the same user, following
Rd discovery results. dp is added to 102. Other user devices discovered through Rd are
also added to 102. Then, the user selects the service, s to interact with through service
front 107. The service discovery process in out of scope of this work. s is added to 106.
The CUBE will be able to manage interactions between dp and s through receiving and
sending different types of requests made by the 100 through the conversation layer 105.

The INNER CUBE 102 interacts with the user’s devices, allowing to switch between

100

6.3. CUBE: ARCHITECTURE AND TECHNICAL CONSIDERATIONS

Figure 6.2: The CUBE architecture and its internal modules.

them during the service execution. While services and devices change, all the information
and sessions retrieved are stored at 104 via module 103. Thus, when any change of device
is required, the user does not need to start from scratch in order to retrieve or fill in her/his
information. The conversation layer, 105, is also an API built under RESTful principles
and is responsible for changing information across the multi-OS environment. Moreover,
this part of the module provides a secure connection for the user devices through a token
created in the INNER CUBE 102 by the join of User ID from devices and services which
are provided by the OUTER CUBE 106. This type of addressability through a resource
identification allows the pool area to ensure a stateless interaction between services. Portion
107 relies on pool area to request external services.

6.3.2 CUBE layered representation and technical considerations

In order to achieve the expected functionalities of the CUBE framework, we follow a
layered representation which holds a parallel with TCP/IP layers while proposing addi-
tional improvements on each layer to meet the interaction migration requirements. Figure
6.3 shows CUBE layers and their correspondence with TCP/IP. The layered CUBE archi-
tecture is made of five different layers: (i) Application, (ii) Request, (iii) Conversation, (iv)
Data, and (v) Physical that we will briefly describe hereafter. More detailed descriptions
and technical implementation details are provided [49].

Our model is based on an innovative approach with a strong attention to REST/REST-

101

6.3. CUBE: ARCHITECTURE AND TECHNICAL CONSIDERATIONS

Figure 6.3: CUBE layers and main used technologies and protocols.

ful principals and constraints [136]. We therefore revisited the definition of the layers and
propose separated layers for REST and RESTful approaches. The Application and Request
layers work together to allow for the multiplatform, where a service can be started for ex-
ample on an Android device and then moved to an iOS device. In order to achieve this
kind of fluidity, we chose JavaScript (JS) as the language for the two firsts layers.

The Application Layer makes use of the Stormpath3 for user authentication and
security management and respects the principals of the REST model. This layer will be
only one of the model layers to appear to the user to allow verifying all the synchronized
multi-devices on the user-centric network.

The Request Layer acts as a Middleware, allowing for a connection between Ap-
plication and Conversation Layers through an oAuth Token method. Basically, this layer
works by sending the HTTP responses across the model. It is implemented in Node.js.

The Conversation Layer is, in our perspective, the gap required for the Liquid
Software approach working independently of the platform [124, 70, 122], and in our model,
it is the domain between the INNER and OUTER CUBES. The main challenge here is to
change the data status, if required for any method, allowing for the content to be displayed
correctly in the following device. Therefore, this layer is represented as RESTful.

The Data Layer can be modeled in two perspectives: a centralized model with a node-
host or a sharing environment without central-node based respectively on IP Multicasting
and Peer-to-Peer principals.

The Physical Layer allows for fluidity over all types of connection. It uses the Eth-
ernet header structure and encapsulate data over IP datagrams for sending and receiving.

3https://github.com/stormpath/stormpath-sdk-php

102

6.4. SEMANTIC RULE-BASED DEVICE RECOMMENDATION FOR
SERVICE-MIGRATION IN MULTIPLE DEVICE ENVIRONMENT

6.4 Semantic rule-based device recommendation for service-
migration in multiple device environment

A successful migration decision, whether it is done automatically or manually, requires
to follow some criteria to know which target device is the most suitable for the service/ap-
plication that will be migrated. Also, it has to capture the users preferences, timeline and
other features related to security, reliability, compatibility of devices, constraints of the
services, etc., in order to be able to suggest the right device. Although this issue has been
widely covered from the cloud/server perspective as part of cloud resource management,
efficient device recommendation is still a challenge from the user-side perspective. It is
even more challenging as far as we consider the limited device computation performances
and the lack of access to large semantic resources, such as Linked Open Data, for similar-
ity calculation. To address this challenge, We enhance CUBE with a declarative module
that relies on ontologies and semantic inference rules, discussed hereafter, to ensure device
recommendation.

(i) OWL ontology core concepts: We conceptualize 4 main components: Device, Owner,
Service, and Characteristic. Each of them contains specific sub-classes to handle service
migration context diversity. We also define necessary properties to model the interactions
and relationships between theses concepts. For example, the Owner class has two object
properties with the device class: a device is ownedBy an owner, and the owner usesDevice.
These two properties are different because a user can own several devices but only uses some
of them at a time. Another property is: the user interactsWith the service. Furthermore,
in order to define the relationship between the devices and their characteristics or the
services with their requirement, we add two main properties. hasCharacteristics property:
links between Device and Characteristic, while the requireCharacteristics property: links
between Service and Characteristic. Figure 6.4 shows a screenshot of the concepts and
properties on Protégé.

After designing the ontology classes and properties, we need to fill the instances with
the users devices and context information. The optimal way to do this would be to get
APIs do the job, as we should keep users intervention as minimal as possible to facilitate
the process. For instance, Battery API can give us: the battery percentage of devices,
whether it’s charging or not, etc. Ontology-update-process starts either when the user
manually triggers a migration request or when predefined callback methods are automati-
cally triggered through specific events related to service or device life-cycle. Both methods
can be used depending on the context and on the user preferences. However, APIs cannot
get all the information needed; that is why we might need users to enter/complete them
manually.

103

6.5. IMPLEMENTATION AND EVALUATION

Figure 6.4: Core concepts and properties

(ii) Formalizing migration rules with SWRL: Based on the defined concepts and prop-
erties, we formalise service migration context and conditions through a set of inference
SWRL rules. For example,
R1: Device(?d) ∧HasBattery(?d, ?b) ∧ swrlb : greaterThan(?b, 10)→ Alive(?d, true)

defines the condition to consider a device as alive whereas,
R2: Device(?d1) ∧Device(?d2) ∧HasLocation(?d1, ?l) ∧HasLocation(?d1, ?l)→
InProximity(?d1, ?d2)

expresses under which condition two devices are considered to be in proximity.

Migration rules are usually a combination of other rules. For example R4 which requires
R1, R2, and R3 is an example of migration rule expressing conditions to achieve a successful
migration.
R3: Device(?d)∧HasScreen(?d, ?c)∧WatchingService(?s)∧RequiresScreen(?s, ?c)→
IsCompatiblewith(?d, ?s).
R4: Device(?d1)∧Device(?d2)∧Service(?s)∧Alive(?d2, true)∧ InProximity(?d1, ?d2)∧
IsCompatibleWith(?d2, ?s)→Migrate(?s, ?d2).

These inference rules can be very flexible and they give us efficient semantic meanings
to achieve relevant device recommendation for migration. They provide typical migration
situation. More specific ones related to user context and situation for migration can be
defined by the user in the same way.

6.5 Implementation and evaluation

The CUBE prototype is implemented as a hybrid application based on JavaScript,
Node, JAVA, HTML, PHP, and Cordova. Were also considered SQL and NoSQL models

104

6.6. RELATED WORK

to authentication and synchronization, which are deployed as a callback procedure for
performance. Regarding the Internet connection, we manage a local sign up/log in, and
allow synchronizing this authentication step when a connection is available. In addition,
we get IMEI and MAC addresses of the device and associate them to the user login.

As a first feasibility tests we considered both light-coupling and tight-coupling scenarios
for email and video session migration respectively. The email scenario was developed based
on Gmail API [53] and the video scenario on YouTube [54]. Both scenario were successfully
run while moving over multiple devices with different OS. A demo video is available for
video session migration scenario (https://youtu.be/-TYPRXtC7Lw). In a more recent ,
the CUBE was extended to support migration of any stateless interaction and was tested
for videoconference meeting migration [50].

The semantic rule-based device recommendation extension is implemented within an
API outside the CUBE framework. The ontology is designed using Protégé and the SWRL
rule-based reasoning is performed through Apache Jena. The API manages and stores
the facts and rules (both defined in Apache Jena) to finally compute the recommendation
results. Facts are very dynamic and change depending on the situation and the devices.
They are stored in a “.n3” file. Some characteristics are automatically added by the app
from device APIs (Battery, Connectivity, etc.) while others are filled in manually by the
user. A set of basic common rules is provided by the app for each device. It can then be
enriched by the user to handle specific migration scenarios.

Evaluation of CUBE implementations was performed with the focus on time and data
saving as well as user satisfaction and quality of experience. Selected users were provided a
set of devices and asked to reproduce predefined interaction scenarios. Results are detailed
in [53], [54], and [50]. They show interesting achievements regarding time and data saving
as well as high satisfactory user quality of experience.

The semantic rule-based device recommendation API was also run over migration sce-
narios to measure the accuracy of the approach towards recommending devices that allow
successful service running after migration. The results, detailed in [132] show also high
accuracy as well as high user satisfaction.

6.6 Related work

Service interaction synchronization is widely covered by companies such as Apple for
cloud services running iOS and Google for Google Docs and other services running on
Android. In addition, other approaches have also been proposed in literature for cross-
device service synchronization such as [131] and [170] for services running on Android
devices. As discussed in the Introduction, these solutions do not allow for fluent service

105

6.7. CONCLUSION

migration as each device has to connect aside to get synchronized service interaction. In the
same category of server-side synchronization, [70] propose the most advanced approach that
realizes Liquid Software principals, called LiquidJS. More than service synchronization,
LiquidJS allows for service migration over devices but again it handles the migration relying
on a server through an API or a browser. The approach also does not meet multi-platform
migration. A detailed discussion including a comparative study of the the best known
proposed approaches is given in [49] and [54]. From user-side, to the best of our knowledge,
the CUBE is the only approach that allows service migration in both multiple device and
multiple OS.

As for semantic device recommendation, approaches exist form server perspective under
the topic of cloud resource management and allocation. Among them we can cite the
mOSAIC ontology [125] for cloud resources annotation and management intended to ease
multi-cloud oriented applications development and [109] which deals with job allocation in
cloud systems using OWL ontology and SWRL rules. Both approaches use large ontologies
defined to cover as much as possible the concepts related to cloud systems. In our work,
we rather focus on a small ontology with few semantic rules that can be run by devices
locally without need for high computing resources.

6.7 Conclusion

Despite all efforts, there is still a gap before achieving both a multi-device and services
synchronization over multi-OS from user-side, described herein. In order to address this
challenge, we have presented our CUBE Model under the principles of Liquid Software.
Throughout a user-centric approach and combining principles of REST and RESTful mod-
els, our proposition, allows to move user-service interactions over multiple devices with
heterogeneous environments. The CUBE realization applies the best practices of different
technologies fulfilling their principals and constraints regarding the issues of security, state-
less interactions and providing a uniform interface shared by all resources, across separated
layers for the REST and RESTful applications. Evaluation over typical user-service inter-
action scenarios show satisfying results in terms of performances and quality of experience.

We also proposed a semantic rule based complementary module for recommending the
most suitable device to migrate to. The module is also implemented and evaluated showing
high recommendation accuracy.

The work described in this chapter was conducted during the PhD of Clay Palmeira
da Silva defended on September 2019 [49] and during the Master 2 Internship of Dimeth
Nouicer defended on December 2020. It is published in the following conference papers [52],
[51], [53], [54], [132], and [50].

106

Part IV

Dynamic service interaction handling
with Machine Learning and

Blockchain

107

Chapter 7

Handling dynamic service evolution
with LOD and ML

Contents
7.1 Introduction . 109
7.2 Approach architecture and overview 111
7.3 Bootstrapping Phase . 112
7.4 Updating Phase . 114
7.5 Learning Phase . 115
7.6 Experimental Study . 116
7.7 Related Work . 117
7.8 Conclusion . 118

This chapter details our first contribution, summarized in Section 2.2.3.1, towards han-
dling dynamic evolution of service interactions discussed in Section 2.1.3.1. The proposed
approach relies on a graph representation modeling a multi-relation network of services and
Linked Open Data annotation and similarity measure introduced in Chapter 4 to propose a
three-phase process for service continuous deployment and changes handling. Bootstraping
phase for service annotation and matchmaking, Update phase for service network updating
from interaction feedbacks, and Learning phase for LOD interlinks updating.

7.1 Introduction

Recent breakthroughs in service oriented computing have encouraged companies and
organizations to export their functionalities as Web services to gain in visibility and market
opportunities. Web services do not operate in silos; they usually interact through several

109

7.1. INTRODUCTION

relationships such as Composition and Substitution. In dynamic environments, new Web
services are continuously deployed. Moreover, existing Web services are updated regularly.
Such updates are most of time associated with modifications to service description ex-
pressed in natural language. These updates affect operation results, and hence may lead
to breach of contract between service providers and clients [69]. Therefore, it is manda-
tory to handle Web service changes that occur at run-time and accurately communicate
these changes to the concerned peers in the network. Handling Web service continuous de-
ployment and updates offers several advantages: First, it avoids brutal contract violation
between providers and customers. Second, it speeds-up the exposure of new functionalities
in the network, helps them gain more visibility, and hence improves the overall availability
of new services. Third, it helps setting new partnerships among Web services.

However, managing the evolution of Web services is challenging for the following rea-
sons. When deployed or updated, Web service capabilities are described by means of
keywords in natural language. What is needed is a semantic approach to match service
capabilities by matching their describing keywords. Moreover, Web service provided de-
scription may not match with service real capabilities. What is also needed is a technique to
update service relationships according to service interaction experience and user feedbacks.
This rises the following research questions respectively: (1) How to bootstrap relationships
for newly deployed/updated services and figure out the most suited relationship type to
link two services ? (2) How to update service relationships and ascertain whether two Web
services are interoperable in practice ? (3) And finally, How to take advantage of service
interaction experience to help learning new links in LOD and in turn improve relationships
recommendation accuracy with the newly learned links ?

In this chapter, we describe our approach based on Linked Open Data (LOD) and
Machine Learning (ML) for handling Web services deployment and evolution. Service
interactions are modeled as a social network of service through a multi-relation graph
where nodes correspond to services and edges to interaction relationships. The approach
follows a three-step process: LOD based service annotation and matchmaking, ML-based
service network update using interaction feedbacks, and LOD links updates using service
network relationships. These phases rely on efficient algorithms. The overall approach is
implemented and evaluated on service interactions from ProgramableWeb between 2007
and 2017.

The remainder of this chapter is organized as follows. Section 7.2 provides an overview
of the proposed approach and a general architecture highlighting the main components.
Section 7.3 presents bootstrapping relationships for newly deployed and updated services.
Section 7.4 introduces our technique to update relationships according to service interaction
with each other and with user. Section 7.5 describes our technique to learn relationships in

110

7.2. APPROACH ARCHITECTURE AND OVERVIEW

LOD according to service interactions and feedbacks. Section 7.6 discusses the experimental
study. Section 4.6 reviews related works. Finally Section 7.8 concludes the chapter.

7.2 Approach architecture and overview

The overall architecture of the proposed approach is depicted in Figure 7.1. The ap-
proach runs a three-phase process to handle Web service deployment and evolution. The
process is triggered when a service provider deploys the interface of his service, and pro-
vides a natural language description of service functionality and application domain. First,
Bootstrapping Phase invokes the LOD-based Annotation module to associate a profile to
the service: a set of keywords describing service inputs, outputs, functionality, and appli-
cation domain. The keywords are annotated with LOD resources. After that, Bootstrap-
ping Phase invokes LOD-based matchmaking module to match annotated service profiles
and derive composition, substitution, and subscription relationships. This results in new
weighted edges for newly deployed service and allows bootstrapping service relationships.
This same process will also be run when a Web service undergoes an update. Annotation
module will annotate service new features in interface and description with LOD resources.
Matchmaking module will match service new features with existing network features. Sec-
ond, Updating Phase updates service relationships according to service interactions with
each other and with users. As services record successful interactions, they receive high
rating scores, this increases the weight of their relationships. In the same way, weights are
decreased for negative feedbacks. Third, Learning phase improves bootstrapping relation-
ships accuracy by learning new relationships in LOD. When the Updating phase returns
a higher weight than the Boostraping phase weight for the same relationship, this would
mean new relationships should be added to LOD and viceversa.

These phases will be formalized and detailed in the following sections. The formalization
relies on multi-relation graph representation to model service network introduced in [97].
Formally, a multi-relation network of Web services is a directed graph G = (V,R) where V is

a set of services, and R =
k=3⋃
k=1

Rk is a set of edges, where Rk = {(Su, Sv) ∈ V ×V } is the set

of edges of the k-th relationship. Major services interaction relationships are: substitution
(R1), composition (R2), and subscription (R3). An edge (Si, Sj) ∈ R1 indicates that
there is a relationship of type substitution between Web services Si and Sj , precisely it
indicates that Sj is a substitute of Si and clients can substitute the invocation of Si by
Sj if Si is unavailable. Similarly, a composition edge (Si, Sj) ∈ R2 indicates that Sj can
be composed with Si and clients can invoke Sj and Si in the same composite application.
A subscription edge (Si, Sj) ∈ R3 indicates that Si can subscribe to the news feed of a
collaborator/competitor Sj to stay aware about its latest updates.

111

7.3. BOOTSTRAPPING PHASE

Figure 7.1: Architecture of LOD Management of Service Deployment and Evolution

7.3 Bootstrapping Phase

LOD-based service annotation and matchmaking. This step relies on the contri-
bution detailed in Chapter 4. It applies LOD-based annotation process on service features
and uses LODS measure within the service matchmaking. Here, service profile is formally
modeled as a pair (F,D) where F is a description in natural language of the service func-
tionality and D is a list of keywords that describe the service application domain. Text
in F is pre-processed to keep meaningful keywords describing service functionality. The
LOD-based annotation maps these keywords to LOD resources. Then we apply service
matchmaking. to infer potential composition and substitution relationships. Semantic
matching is invoked in two cases: (a) When a Web service joins the network. (b) When
a Web service gets updated. It matches Web service capabilities (either the initial or the
updated ones) to recommend the most appropriate relationship to link with two services.
It also predicts the probability value to interact through the recommended relationship.

Given two service features featu, featv described each with a set of keywords Ku =

{ku1, ku2 . . . kui} and Kv = {kv1, kv2 . . . kvj} respectively, where each keyword can be at-
tached to a subset of annotation resources AR ∈ LOD, such that:
∀ki, kj ∈ Ku×Kv, ∃ ri, rj ∈ Au|⟨ki, ri⟩×Av|⟨kj , rj⟩. The similarity between features featu

112

7.3. BOOTSTRAPPING PHASE

and featv, annotated by a set of LOD resources Au and Av respectively is computed in
the same way as in Equation 4.17:

SimLOD(featu, featv) =

∑
a∈Au

∑
b∈Av

LODSℓ,ℓ′(a, b)

|Au| · |Av|
(7.1)

Bootstrapping Composition Relationship This phase assumes that two Web services
Su and Sv are composable and can be linked by a composition edge in the network if and
only if: (i) Su and Sv appear together in at least one mashup, and (ii) the similarity values
between Su and Sv functional descriptions and application domains are higher than the
following thresholds αF and αD respectively.

Algorithm 1 evaluates how likely are two services Su and Sv to be part of the same
composition. The algorithm computes (1) the similarity between their functional descrip-
tions. And (2) the similarity between their application domains. If computed similarities
are above given thresholds, then the algorithm computes a composability likelihood Comp

between Web services Su and Sv. If the composition relationship (Su, Sv) exists, the al-
gorithm updates the composition likelihood as an average of the computed composition
probability and the relationship current weight. Finally the algorithm adds a new compo-
sition edge (Su, Sv) to the network of services with the composition likelihood as weight.

Algorithm 1 Composition Matching Algorithm
Input: G(V,R) : Graph of services. Su, Sv ∈ V .

αF , αD : similarity thresholds for functional descriptions and application domains
CoefF , CoefD : coefficient values for similarities between functional descriptions, and
application domains respectively.

Output: G(V,R) : Updated graph of services.
Begin

1: SimF ← SimLOD(Su.F, Sv.F);
2: SimD ← SimLOD(Su.A, Sv.A);
3: if (SimF >= αF and SimD >= αD) then
4: Comp(Su, Sv) ← (CoefF ∗ SimF + CoefD ∗ SimD)/(CoefF + CoefD);
5: if ((Su, Sv) ∈ R1) then
6: Comp(Su, Sv) ← AV G(Comp(Su, Sv),Weight(Su, Sv))

7: end if
8: R1 ← R1 ∪ (Su, Sv, ”Weight”=Comp(Su, Sv))

9: end if=0

113

7.4. UPDATING PHASE

Bootstrapping Substitution Relationship This phase assumes that two Web services
Su and Sv are candidates for substitution and can be linked through a substitution edge
in the network if and only if: (i) they do not appear together as parts of the same mashup,
and (ii) the similarities between Su and Su functional descriptions and application domains
are higher than given thresholds αF and αD respectively. Substitution Algorithm differs
from Algorithm 1 in that it uses specific threshold and coefficient values. For instance,
functional description similarity threshold should be higher for substitution than it is for
composition.

The current phase allows bootstrapping relationships for, newly deployed services and
those undergoing updates, based on LOD similarity measure. However, relying only on ser-
vice profile data may lead to inconsistencies between service real capabilities and described
ones in profiles. The next section proposes to continuously update service relationships
according to user feedbacks.

7.4 Updating Phase

Although semantic matching of service profiles allows building relevant business rela-
tionships, it relies however entirely on Web service profile data. Such an approach considers
Web services as isolated components and underlooks their interactive behaviour. In reality,
Web services interact through various relationships such as composition, substitution, and
subscription. Bootstrapping Phase may suggest that two services are composable while
they struggle to interoperate in practice. Their record of successful interactions may be
weak. Users will then give bad rating scores. The reason may be QoS limitations of some
services that make them incapable to interoperate with network services. This may also
be due to an incoherent service description with service real capabilities that led to biased
semantic matching results. Gathering and analyzing Web service interactions and their
user feedbacks allow assessing the real value/relevance of bootstrapped relationships. The
intuition is to update relationships weight values returned by semantic layer according to
user rating scores. A relationship (Su, Sv) that keeps a high weight value after many service
interactions means that Su and Sv have collected a strong record of successful interactions.
These interactions have been appreciated by users and consequently have been well rated.
On the opposite, if a relationship will see its weight decreasing as services interact, this
would mean that services struggle to interoperate with each other. The relation did not get
high rating scores and so even after semantic matchmaking returned a high weight value.
This section catches Web service interactions and their user ratings and updates relation
weight values accordingly. This allows keeping the network updated and eases identifying
interoperable services and computing service reputation scores.

114

7.5. LEARNING PHASE

We extend the measure proposed in [99] to leverage user comments for updating rela-
tionship weights as follows:

WEt+δt(Su, Sv)← AV G

[
|positiveFeedbacks(Su, Sv)t+δt|
|allFeedbacks(Su, Sv)t+δt|

,WEt(Su, Sv)

]
(7.2)

WEt(Su, Sv) and WEt+δt(Su, Sv) are the weights of the relation (Su, Sv) observed at t
and t+ δt respectively.

positiveFeedbacks(Su, Sv)t+δt and allFeedbacks(Su, Sv)t+δt designate the number of
positive comments and all comments respectively that have been commented on the relation
(Su, Sv) in the time interval [t, t+ δt]. We apply sentiment analysis to distinguish between
positive comments and negative comments observed in a time interval [t, t+ δt]

The updated weight depends on the previous weight (i.e., bootstrapped weight) and
on user feedbacks on the relationship. The higher will be positive user feedbacks on the
relationship, the higher will get the updated weight. The weight will decrease on the
contrary case.

7.5 Learning Phase

This phase consists in proposing new links in LOD according to Web service interaction
experience. Keeping LOD up to date allows running accurate semantic matching of Web
service capabilities, hence accurately identifying potential business relationships among
Web services. Updating LOD is triggered when the gap between the updated weight value
and the bootstrapped weight value gets above a given threshold for the same relationship.
If the updated weight is greater than the bootstrapped one, this means that Web services
are interoperable (i.e., have a strong record of interactions) in practice, while bootstrapping
phase has not recommended them as such. This proves the lack of information in LOD.
Thus, new relationships among resources describing these interoperable Web services should
be added to LOD. On the opposite, if the updated weight is the lowest, this means that
Web services struggle to interact. The cause can be either (i) Web service description is
inadequate with service real capabilities, or (ii) Web service suffer from QoS limitations.
For the first case, LOD relationships among resources describing such services should be
destroyed. For the second case, LOD ontology structure will be preserved.

Algorithm 2 details how to learn new LOD relationships or to break existing ones. It
derives (LearnLOD) and breaks (BreakLOD) links among resources describing services ac-
cording to a "Normal probability distribution". Such probability distribution is the most
adequate to model phenomenon that consider the sum of many independent variables. In

115

7.6. EXPERIMENTAL STUDY

our case, LOD similarity measure of two service features is computed as the summation
of atomic similarities of their LOD resources. By analogy, we learn or destroy new LOD
relationships according to a "Normal probability distribution". As it is hard to overwrite
existing LOD, we save new learned and broken relationships in local database. Such learn-
ing will serve further bootstrapping relationships that relies mainly on semantic matching
of service features. Hence, future relationship bootstrapping will be more accurate. This
allows a fast exploitation of new functionalities in the network and enhances their overall
availability.

Algorithm 2 Learning New Relationships in LOD
Input: G(V,R)t: Graph of services observed at t. G(V,R)t+δt: Graph of services observed

at t+ δt. Su, Sv ∈ V , gap: Learning gap.
Output: Updated LOD

Begin
weightdiff ← weight(Su, Sv)t+δt - weight(Su, Sv)t;

1: if (weightdiff - gap >0) then
2: LearnLOD(Su.F, Sv.F)

3: LearnLOD(Su.A, Sv.A)

4: else if (weightdiff - gap ≤ 0) then
5: BreakLOD(Su.F, Sv.F)

6: BreakLOD(Su.A, Sv.A)

7: end if=0

7.6 Experimental Study

We evaluate the proposed approach on a dataset 600 mashups of APIs and their at-
tributes from ProgrammableWeb1. We used DBPediaSpotlight2 for annotating Web ser-
vice descriptions and categories. We study Web service evolution over several time periods
[Ti, Tj] where Ti ≥ 2007, Tj ≤ 2017, [Tj − Tj] = 2 years. We first identify newly de-
ployed services and those undergoing updates at Ti, after which we run our relationships
recommendation. Then we observe each recommended relationship [Su, Sv] interaction his-
tory during the time interval [Ti, T j]. Each mashup containing (Su, Sv) that is deployed
within [Ti, T j] means a successful composition interaction feedback on the relation (Su, Sv).
On the opposite, if no mashup containing Su and Sv) is deployed within [Ti, T j], this is
interpreted as a negative interaction feedback. Weight(Su, Sv) is updated according to col-

1www.ProgrammableWeb.com
2DBPediaSpotlight

116

7.7. RELATED WORK

lected interaction feedbacks with the use of Google Sentiment Analysis API3. We simulate
interactions for substitution relationships.

Figure 7.2 shows the recall and precision rates of the relationship recommendation. Re-
call, shown in Fig 7.2(a), refers to the the percentage of relationships that are successfully
recommended within [Ti, T j]. It is shown that up to 70% of service interactions are suc-
cessfully recommended by the proposed approach, which is a good result. The justification
is that proposed relationships recommendation leverages both service semantic and service
interaction history. Leveraging service interaction history shed the light on some relation-
ships that should exist between LOD resources and that do not exist on the original LOD
version. Considering those new relationships improves the relationship bootstrapping.

Figure 7.2: Recall and Precision

Precision, shown in Figure 7.2(b), checks the accuracy with which relationship are
recommended for newly deployed and updated services. It compares the recommended
relationship weights at Ti with real relationship weight at Tj . If the weight difference is
less than a threshold value (0.2 in our case), the relationship is assumed to be precisely
recommended. Our approach recommends relationships with up to 65% precision. The
justification is that weight varies depending on service interaction feedbacks. As such, it
gets challenging to predict with high accuracy future relationships weights.

7.7 Related Work

Our work is at the cross-road of three main research fields, namely the Web services
social computing, the Web services functionalities evolution management, and linked open
data semantic web. The new trend of the research community in service-computing is
to exploit social technologies for a better discovery mechanism of services. In this trend,
works in [110], [108], [96] propose to build a network of Web services with the purpose of

3https://cloud.google.com/natural-language

117

7.8. CONCLUSION

addressing issues like Web services discovery. Although these approaches handled social
interactions of Web services, few efforts have been devoted however to manage Web service
evolution that occurs and may affect Web service interaction. Works in [72], [174], and
[167] aimed to address Web service functionality evolution. [174] studied the evolution of
Amazon Web services to support developers in their tasks of Web service selection and
maintenance. [72] proposed an approach for managing services evolution by analyzing the
co-occurences of their topics. A topic evolution graph is built according to the analysis
of composition patterns in mashups. Resulting graph is used to recommend services for
composition. [167] proposed a service evolution model to identify the changes that a Web
service is subject to. They classified them into two major categories: Changes that concern
Web service Operations and changes that concern Web Service DataTypes.

In our work, we enrich service profiles with LOD-based annotation process which im-
proves service matchmaking accuracy and consequently relationship recommendation accu-
racy. We also take advantage from user feedbacks to evaluate recommended relationships
and reorganize LOD relationships.

Web services evolution has been also at the center of interest of related fields such as
IoT and service-based business processes. [156] proposed a framework to automatically
capture and communicate services changes in IoT environment. The framework manages
syntactic and semantic changes in IoT services capabilities described as RESTful services.
In contrast to our work, ontologies have been used to add semantics to services definitions.
Ontologies are generally domain-specific which limits management of services functional
evolution. We rely instead on LOD that offers more resources to semantically annotated
and matchmake services.

7.8 Conclusion

In this chapter, we proposed a LOD approach for managing service deployment and
evolution. The proposed approach runs a three phase process. First phase recommends new
relationships by matching service capabilities based on LOD. Second phase updates service
relationships according to their interaction with each other and with users. Third phase
increases recommendation accuracy by learning new relationships in LOD. Managing Web
service evolution offers several advantages such as setting long-lasting relationships between
service providers and users, and increasing the visibility of newly added functionalities.
Experiments conducted on real data returned promising results.

The work described in this chapter was conducted during the scientific stay of Hamza
Labbaci in the University of Tours 2018 and 2019 as part of his Phd defended in 2020 [94].
It is published in [95].

118

Chapter 8

Trustworthy service interactions with
Blockchain

Contents
8.1 Introduction . 120
8.2 Background . 121

8.2.1 Business Process Choreographies 121
8.2.2 Transactional Business Processes 121
8.2.3 Blockchain and Smart contracts 121

8.3 Mashup to smart contract transformation model 122
8.4 Extending Smart contracts with transactional business pro-

cess model . 125
8.5 Change propagation in Blockchain-enabled business process

choreographies . 128
8.5.1 Declarative choreography modeling and change definition 128
8.5.2 Approach description . 130
8.5.3 Change propagation correctness 133
8.5.4 Implementation and experimental evaluation 133

8.6 Related Work . 134
8.7 Conclusion . 135

This chapter details our contribution, summarized in Section 2.2.3.2, towards the chal-
lenge of handling trustworthy service interactions in dynamic contexts, discussed in Section
2.1.3.2. We present the proposed threefold declarative approach for blockchain-based chore-
ography executions which includes: (i) a transformation model for mashups into smart-
contract choreographies executions, (ii) a flexible transactional business process model for
smart-contract business process executions, and (iii) a change propagation model to handle
dynamic evolution of business process choreographies.

119

8.1. INTRODUCTION

8.1 Introduction

Service-based business processes rely on Web services to implement their tasks. Busi-
ness processes are designed to achieve business goal which usually involves the collaboration
of many entities in decentralized environments. In such open environments, collaborating
entities are also competing for their own business success which leads to untrusted be-
havior. This is the case for business process choreographies which are suitable for open
collaboration as entities collaborate directly without intermediaries. They however still
need to rely on well-defined collaboration rules and policies to trust each other. These
issues have been widely addressed by state-of-the art approaches that usually rely on for-
mal and transactional models to define collaboration rules and on formal verification to
ensure execution soundness [163, 22, 77]. These approaches fail, however, to dispense with
the need for independent third party to guarantee compliance with trust policies between
engaged entities.

The emergence of Blockchain technologies for decentralized and transactional data shar-
ing across a network of untrusted participants brought the right solution that fits well with
the requirements of business process choreographies executions. It didn’t take long for the
Blockchain technologies to be adopted as infrastructure that handles trustful interactions
between business entities without any need of any central authority [88, 169, 117, 64, 36].
These approaches mostly rely on second generation blockchains which allow for complex
task running through programs called Smart Contracts that enforce the terms of agreement
between the untrusted parties. The proposed approaches focus on execution control flow
of business processes while leaving transactional flow to the basic blockchain specification
that follows standard ACID model which fails to capture advanced reliability requirements
of complex business process executions. There is therefore need to define suitable models
to handle the transactional flow of blockchain-based process executions.

Collaborating business entities evolve, on the other hand, in highly dynamic environ-
ments that appeal for continuous updates and improvements of their internal processes to
keep high competition level. These dynamic changes may affect the collaborations in which
the enterprise takes part. Changes may also directly concern the global collaboration due
to new external business policies that should be taken into account. In both cases, changes
must be notified and propagated to the involved partners. Change propagation in process
choreographies has also been tackled prior to blockchain-based approaches [65]. In the
blockchain-based ones, however, it is still challenging because of the non-mutable nature
of shared data. There is therefore need to bring additional levels to cope with the change
propagation within blockchain based choreographies execution frameworks.

In this Chapter, we will address the above listed challenges and propose a solution
for first trustworthy execution of business process choreographies in Section 8.3. Then, in

120

8.2. BACKGROUND

Section 8.4, we will extend the proposed approach with transactional mechanisms in order
to bring reliability to the blockchain-based business process choreographies. Finally, in
Section 8.5, we will render these choreographies adaptive to dynamic changes via proposing
the needed change propagation mechanisms. We demonstrate the feasibility of the approach
via implemented prototypes and evaluate it through a set of experiments. We use scenarios
from the tourism domain with itineraries generated by the CART prototype described in
Chapter 5.

8.2 Background

8.2.1 Business Process Choreographies

Business process management (BPM) includes methods, techniques, and tools to sup-
port the design, enactment, management, and analysis of operational business processes
[153]. BPM is ensured and automated by Business process management systems (BPMSs)
especially at the intra-organizational level. This first case, mostly known as orchestration,
faces several issues including central node congestion, additional fees, etc. The second
case, known as choreography, is more suitable for open collaboration as entities collaborate
directly without intermediaries. Choreographies are a distributed way for the composition
and control of business processes in an inter-organizational level where the control is not
enacted by one single entity and where many parties, that generally do not know neither
trust each other, conduct each a certain piece of work and maintain an internal state.
The global state of the choreography is obtained through the interactions and message
exchanges between the different involved parties.

8.2.2 Transactional Business Processes

Transactional business processes present an evolution of “traditional” business processes
to support large flow-based applications with complex control structure. [148, 22]. The
transactional approach initially emerged in the context of database management systems
with ACID models. Transactional models permit to relax atomicity property to define
instead the “failure atomicity” or partial failure of a process activity. In addition, they relax
isolation property to allow high inter-process concurrency handling and compensation as
backward recovery.

8.2.3 Blockchain and Smart contracts

A blockchain [158] is a distributed ledger where data is organized in sequence of blocks,
the containers of transactions. The blockchain network is maintained by independent com-

121

8.3. MASHUP TO SMART CONTRACT TRANSFORMATION MODEL

puters referred to as nodes or peers that do not know or trust each other but can connect
and cooperate to validate transactions executed on the blockchain. After validation, peers
record, share and synchronize transactions in their respective electronic ledgers. The first
generation of blockchain allows only sending and receiving monetary values (e.g., Bitcoin).
In the second generation, known as the Smart contracts blockchain (S.C. for short), mean-
while, a transaction allows more complex operations such as the creation of a S.C. and
stores the results of function calls in S.C.. A S.C. can be defined as a program enforcing
the terms of the agreement between untrusted parties about a valid care sale or a loan
assessment or voting or health care tracking, etc. One could consider a contract as a class
in object oriented concepts and each deployment of the contract could be considered as an
instance of the object. A contract may be deployed to a network multiple times, and each
instance would have a distinct address, a secure identifier used to interact with the smart
contract.

8.3 Mashup to smart contract transformation model

The starting point of this work is to go a step further configuring service mashups in the
tourism context discussed in Chapter 5 to propose a way for personalized trip realization.
The deployment and execution of touristic itineraries usually involve many independent
entities (tourist, museum, restaurants, hotels, transport, etc.) that cooperate and compete
in untrusted distributed context. In order to ensure trust within cooperation and guarantee
a successful execution of touristic itinerary, we propose a two-steps transformation model:
(a) from data mashup itinerary to process choreography (BPMN) and then (b) from BPMN
to smart contract. The CART trip planning outputs itineraries following an XML Schema
Model with a root element containing a sequence of steps with or without PoIs and with
or without payment. It also contains user constraints such as total duration and maximal
budget. PoIs may also have additional attributes. Figure 8.1 shows the detailed structure
of the itinerary generic model.

Figure 8.1: A touristic itinerary XML schema

122

8.3. MASHUP TO SMART CONTRACT TRANSFORMATION MODEL

The main transformation rules are given in Table 8.1. We first apply a set of transfor-
mation rules which associate: a choreography model for each itinerary instance (rule (a)).
Within the choreography model we generate a participant pool for every PoI and for the
user (rule (b)) as well as a choreography task for each step of the itinerary (rule (c)). Steps
without PoI correspond to private tasks (rule (d)). Additional user constraints and PoI at-
tributes are embedded in the model documentation and in the PoI process documentation
respectively (rules (e) and (f)).

Table 8.1: XML to Solidity code transformation rules

Rule XML element Choreography
element

Solidity code

(a) Root element:
Touristic_Visit

Touristic_Visit
choreography model

Touristic_Visit
Interaction Smart
Contract (TVISC)

(b) POI participant (POI) pool participant address
(c) Step containing POI choreography task

=send/receive tasks
+messages flows

functions in TVISC

(d) Step with no POI private task -
(e) Tourist’s constraints

(budget, total visit
duration, etc)

embedded in
choreography model

documentation

Global variable in the
TVISC

(f) POI attributes
(fees, opening hours,

etc)

embedded in the POI
process documentation

Result of the callback
performed by

Touristic_Visit oracle
contract

The resulting choreography BPMN file is in turn used to generate corresponding Smart
contracts in Solidity code using the second part of the transformation rules in Table 8.1.
Only interaction activities are captured and included in the produced Smart contract which
encodes only the public view (rule (a)). Each interaction activity, i.e., choreography task,
consists of a send task, receive task and the corresponding message flows. This is encoded
as two functions in the Smart contract (rule (c)). We consider Hyperledger Fabric which
is a permissioned blockchain where only authorized organizations has the access to the
network. In our case, authorized organizations are participant pools in the choreography
model (rule (b)). Private tasks are left to participant private process and are therefore
not included in the Smart contract (rule (d)). Additional constraints and attributes are
encoded as global variables (rule (e)) and callbacks (rule (f)).

In the following, we give a scenario of application of the aforementioned approach.
Listing 8.1 presents an excerpt of the XML instance corresponding to the scenario of a
tourist, Alice, who wants to visit some attraction in Tours and have dinner in a French

123

8.3. MASHUP TO SMART CONTRACT TRANSFORMATION MODEL

restaurant. This itinerary is transformed into the choreography model presented in figure
8.2. This process choreography model elements are then transformed to their respective
Solidity code similarly to the rules in Table 8.1. The output is a smart contract whose
generic structure is given in Listing 8.2.

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <i t i n e r a r y>
3 <days>
4 <etapes>
5 <per iode>
6 <DebutPeriode>2018−06−17T12 :00</DebutPeriode>
7 <FinPer iode>2018−06−17T14 :00</FinPer iode>
8 </ per iode>
9 <poi id="PCU41AASOR100039">

10 <Name>Chateau de Tours</Name>
11 <Pos i t i on>
12 <Lat i tude>47.22</ Lat i tude>
13 <Longitude>0.40</Longitude>
14 <Adresse>25 Avenue Andre</Adresse>
15 </ Pos i t i on>
16 <Type>Point o f I n t e r e s t</Type>
17 <Sty l e>Medieval</ Sty l e>
18 </ etapes>
19
20 </days>
21 </ i t i n e r a r y>

Listing 8.1: An excerpt of the XML instance corresponding to the motivating scenario

Figure 8.2: Process choreography model of a touristic visit

1 contract Tour i s t i cVis i t_Orac le_Abstract_contract {
2 function Visit_TCh_query_service (uint , uint , bytes32) external returns (uint

)) ;
3 . . . }
4
5 contract Tour i s t i cV i s i t_con t r a c t {
6 // gloabal variables
7 uint public marking = uint (4) ;
8 uint public s t a r t e dA c t i v i t i e s = 0 ;
9 address internal orac l eAddres s ;

10 mapping(uint => address) o rac l eAddre s s e s ;
11 uint cumulatedFee = 0 ;
12 uint cumulatedVis i tDurat ion = 0 ;
13 uint age = 0 ;
14 bytes32 pa r t i c u l a r S i t u a t i o n ;
15
16 function Tour i s t i cV i s i t_con t r a c t () {

124

8.4. EXTENDING SMART CONTRACTS WITH TRANSACTIONAL BUSINESS
PROCESS MODEL

17 // TouristicVisit_Oracle_contract instance address
18 orac l eAddre s s e s [2] = 0 x98c9c18 f0e3e7c8deec7b2dc9ac5500e2 f1 fb62c ;
19 orac l eAddres s = orac l eAddre s s e s [2] ;
20 }
21 function Visit_TCh_callback (uint s e rv i c e Index , uint _fee , uint

_vis i tDurat ion , uint _openingHour , uint _closureHour) external returns (
bool) {

22 var (tmpMarking , tmpSta r t edAct i v i t i e s)= (marking , s t a r t e dA c t i v i t i e s) ;
23 i f (s e r v i c e Index == uint (1)) {
24 // TouristicVisit_Oracle_contract instance performs the callback to

the corresponding service
25 require (msg . sender == orac l eAddres s && tmpSta r t edAct i v i t i e s & uint

(2) != 0) ;
26 {//code to execute like updating cumulatedFee and

cumulatedVisitDuration
27 }
28 s tep (tmpMarking | uint (8) , tmpSta r t edAct i v i t i e s & uint (~2)) ;
29 . . . } }
30 function s tep (uint tmpMarking , uint tmpSta r t edAct i v i t i e s) internal{
31 while (true) {
32 i f (tmpMarking & uint (4) != 0) {
33 uint reqId=Visit_TCh_query_service (1 , age , p a r t i c u l a r S i t u a t i o n) ;
34 tmpMarking &= uint (4) ;
35 tmpSta r t edAct i v i t i e s |= uint (2) ;
36 } } }
37 }

Listing 8.2: TouristicVisit contract

The transformation model is implemented on top of the Caterpillar tool [107]. The
reader can find the detailed description of the approach in [36].

8.4 Extending Smart contracts with transactional business
process model

The generated interaction smart contract implements the business logic of interaction
activities in the process choreography, that is the control flow. The transactional semantics
of a smart contract follow ACID models and are therefore limited to support transactional
requirements of business process executions [22]. In order to ensure execution reliability of
the generated smart contracts we extend them with the Transactional Business Processes
models [22, 60] which define the transactional flow on top of the control flow of the inter-
action activities. Precisely, the transactional flow follows the Flexible Transactional Model
principles [148]. The Flexible Transactional Model define transactional properties of activ-
ities: pivot, compensatable, and retriable and the transactional mechanisms which include
alternatives as forward recovery and compensation as backward recovery. Therefore, we
first assign one or many transactional properties to each of input process model activities.
Then, we enrich the life-cycle of a process activity, enabled → started → completed with
four other possible termination states which are aborted, cancelled, failed and compensated
which we call transactional termination states.

In this contribution we extend the transformation model introduced in the previous

125

8.4. EXTENDING SMART CONTRACTS WITH TRANSACTIONAL BUSINESS
PROCESS MODEL

section and generate both the control flow and the transactional flow as well as failure han-
dling mechanisms. For each business process activity we also generate functions and vari-
ables in the smart contract as a transactional flow. Generated functions include life-cycle
activities (ActivityName_start(), ActivityName(), ActivityName_complete(), and Activi-
tyName_fail()) and transition activities (abort(), cancel(), complete(), fail(), and retry())
which allow the activity to move from one state to another. Variables include state vector
StateVector_ActivityName to capture the activity state evolution for each activity.

Following a task failure and depending on the activity’s transactional properties, the
Solidity code generation templates produce the code of the corresponding functions. In
Listing 8.3, we present an excerpt of the BPMN-to-Solidity template corresponding to the
code generated in case of a pivot activity failure. The proposed approach is implemented
on top of the Caterpillar tool [107]. Further details of the proposed approach can be found
in [37].

1 //state vectors
2 <% groupedIds = getWorkItemsGroupByParameters(false);
3 groupedIds.forEach(idGroup => { -%>
4 uint public StateVector_ <%= nodeName(idGroup [0]) %> = 0 ;
5 <% }) -%>
6 ...
7 //for all pivot activities
8 <% groupedIds = getWorkItemsGroupByParameters(false);
9 groupedIds.forEach(idGroup => {

10 idGroup.forEach(nodeId => {
11 let node = nodeMap.get(nodeId),
12 transactionalProperty = nodeTransactionalProperty(nodeId),
13 nodePreMarking = preMarking(nodeId),
14 AllPivot = [];
15 if (transactionalProperty == "pivot") {-%>
16
17 function <%= nodeName(idGroup [0]) %>_fail(uint elementIndex <%=

concatParameters(idGroup [0], false ,true , true) %>) external {
18 var (tmpMarking , tmpStateVector) = (marking , StateVector_ <%= nodeName(

idGroup [0]) %>);
19 if(elementIndex == uint(<%= nodeRealIndex(nodeId) %>)) {
20 require(msg.sender == oracle && tmpStateVector & uint (4) != 0);
21 StateVector_ <%= nodeName(nodeId) %> = fail_task(tmpStateVector);
22 step(tmpMarking | uint(<%= postMarking(nodeId) << 1 %>),

StateVector_ <%= nodeName(nodeId) %>);
23 return;
24 }
25 <% AllPivot.push(nodeRealIndex(nodeId)); -%>
26 }
27 <% } -%>
28 <% }) }) -%>
29 ...
30 //code to generate in function step if the current pivot fails
31 function step(uint tmpMarking , uint tmpStateVector) internal {
32 while (true) {
33 ...
34 if (tmpMarking & uint(<%= nodePostMarking << 1 %>) != 0 &&

tmpStateVector == uint (64)) {
35 // remove token
36 tmpMarking &= uint (~<%= nodePostMarking << 1 %>);
37 // compensate the work already done
38 <% let index = allpivot.indexOf(nodeRealIndex(nodeId));%>
39 <% let PrevNodeList= []; // PrevNodeList: a list containing ids of

previous compensatable activities until the previous pivot
40 for (let i = nodeRealIndex(nodeId); i >= indice; --i) {
41 if (nodeTransactionalProperty(nodeList[i]) == "compensatable"){
42 PrevNodeList.push(nodeList[i]); -%>

126

8.4. EXTENDING SMART CONTRACTS WITH TRANSACTIONAL BUSINESS
PROCESS MODEL

43 <% }}%>
44 //for each node in PrevNodeList update StateVector and call

compensation activity
45 <% for (let i = 0; i <PrevNodeList.length; i++) {%>
46 StateVector_ <%= nodeName(PrevNodeList[i]) %>= compensate_task(

StateVector_ <%= nodeName(PrevNodeList[i]) %>);
47 <%= nodeName(processId ()) %>_Oracle .<%= nodeName(PrevNodeList[i]) %>

_cp_start (<%= nodeImaginaryIndex(PrevNodeList[i]) %><%= concatParameters(
nodeId , true , false , true) %>);

48 <% }%>
49 ...
50 <% var node = nodeMap.get(nodeList[indice]) -%>
51 <% if (is(node , ’bpmn:ExclusiveGateway ’)) { -%>
52 //case there is an alternative --> start it
53 <% }else{
54 //case of no alternatives --> abort non started activities
55 for (let i = nodeRealIndex(nodeId) ; i< nodeList.length ; i++) {
56 if(allActivity.includes(nodeList[i])){ %>
57 StateVector_ <%= nodeName(nodeList[i]) %>= abort_task(

StateVector_ <%= nodeName(nodeList[i]) %>);
58 <% } } } -%>
59 continue;
60 }
61 }
62 }

Listing 8.3: Failure handling code generation for pivot activity

For example, when a pivot activity fails, a function called ActivityName_fail() (line 17
in Listing. 8.3) is generated. This function: (i) updates the state vector of the current task
to failed (line 21); (ii) updates the value of the marking variable; and (iii) calls the step
function to execute the actions to take (line 22). The latter are:

• compensate the set of activities situated between the current and the precedent pivot
(each activity between two pivots or before the first pivot must be compensatable)
(lines 38-48 in Listing 8.3);

• start the next alternative (lines 51-52 in Listing. 8.3);

• else abort activities that are at the state initial when no alternative exists after the
previous pivot (lines 55-58 in Listing. 8.3).

Up to this level of the contributions, we use imperative paradigm (BPMN) to model and
implement business process choreographies. In fact, imperative business process models are
largely used in the scientific community. The principles of imperative models are aligned
with the transactional approach we implemented. And, we consider only the shared view of
the choreography. In the next Section, we migrate to declarative business process models
called Dynamic-Condition-Response (DCR) graphs. Declarative models are more flexible
and light-weight process descriptions than imperative models. Moreover, the declarative
paradigm is aligned with the dynamic nature of business process choreographies and will
be used to better model and execute adaptive business process choreographies.

127

8.5. CHANGE PROPAGATION IN BLOCKCHAIN-ENABLED BUSINESS
PROCESS CHOREOGRAPHIES

8.5 Change propagation in Blockchain-enabled business pro-
cess choreographies

8.5.1 Declarative choreography modeling and change definition

Collaborating business entities evolve in highly dynamic environments that appeal for
continuous updates and improvements of their internal processes to keep high competition
level. These dynamic changes may affect the collaborations in which the enterprise takes
part. Changes may also directly concern the global collaboration due to new external
business policies that should be taken into account. In both cases, changes must be notified
and propagated to the involved partners. Thus, business process management systems
should manage change propagation in a trustworthy fashion. Although change propagation
in process choreographies has been tackled in general [65], it is however still challenging
for blockchain-based choreographies because of the non-mutable nature of shared data.

In running choreography instances, a change may consist of a simple operation, AD-
D/REMOVE/UPDATE activity, or a combination of operations. Handling such changes re-
quires the underlying choreography model to be flexible. We therefore consider declarative
choreographies modeled through Dynamic-Condition-Response (DCR) graphs [127, 128].
With a DCR graph G = (E,M,Rel), processes are modelled as a set of events E, cor-
responding to the activities in BPMN, linked together with relations Rel modeling linking
constraints. Relations are of five types (condition, response, milestone, include, and ex-
clude) [85]. The graph runtime state is captured by a marking matrix M of the events
through a triplet of binary values corresponding to (currently included, currently pend-
ing, previously executed). In [84], authors propose an approach for trustworthy execution
of DCR choreographies. We briefly describe here our contribution which builds on and
extends this work with the change management mechanism.

In [84] a DCR choreography is defined as C(G, I,R) where G is a DCR graph, I is
a set of interactions and R is a set of roles. An interaction i is a triple (e, r, r′) in which
the event e is initiated by the role r and received by the roles r′ ⊂ R \ {r}. Each partner
has a projection of the DCR choreography, called public DCR process, in addition to its
private DCR process which refines the public process with local events of the partner. The
shared events and interactions are managed through the choreography smart contract on
the Blockchain.

We propose to extend this approach with change management through the choreography
smart contract. We define the change element GRef as a refinement of C which occurs
on private DCR process and should be propagated to the public DCR process whenever the
change impacts common interactions with other partners. GRef can be either an atomic

128

8.5. CHANGE PROPAGATION IN BLOCKCHAIN-ENABLED BUSINESS
PROCESS CHOREOGRAPHIES

element (an event or an interaction relation) or a DCR subgraph. When GRef impacts
common interactions, we manage a negotiation phase that leads either to a consensus in
which case the public process is updated accordingly or to failure in which case the change
is rejected. A change operation can be of three types respectively corresponding to ADD,
REMOVE, and UPDATE: C ⊕GRef , C ⊖GRef , and C[GRef 7→ G′

Ref].

Figure 8.3 presents the trip planning scenario that was initially presented in the intro-
duction (c.f. Section 7.1) translated into DCR: Figure 8.3(a) presents the DCR choreogra-
phy and Figure 8.3(b) presents the tourist private DCR process. The choreography process
is managed in the different partners processes, namely Tourist, TouristOfficer, Hotel, and
CastleAdmin, to ensure a separation of concerns. PayPass (p3) is an internal event of the
role Tourist, managed off-chain to preserve the privacy of Tourist. PurchasePass (e1) is
a choreography interaction sent by Tourist and received by TouristOfficer. It is managed
on-chain (c.f. [84]). To execute the send event, Tourist triggers the SC from its private
DCR process. Table 8.2 shows the choreography markings of Figure 8.3 during a run.
Each column stands for the events of the choreography. Rows indicate markings changes
as events on the left are triggered. For example, initially no event is executed nor pending
and the event e1 is included. Thus, its marking is (1,0,0). Once Tourist executes e1, the
marking becomes (1,0,1). Partners have control over the set of internal and choreography
interactions they are involved in. This set of events, hereafter referred to as a partner
private DCR process, is illustrated by the tourist’s one in Figure 8.3(b).

Table 8.2: Evolution of the markings (included, pending, executed) of the DCR choreog-
raphy process in Figure 8.3 (before changes)

Markings
e1 e2 e3 e4

(init) (1,0,0) (0,0,0) (0,0,0) (0,0,0)
e1 (1,0,1) (1,1,0) (0,0,0) (0,0,0)
e2 (1,0,1) (1,0,1) (1,1,0) (1,1,0)

Both choreography and private DCR processes in Figure 8.3 are susceptible to changes.
A change is composed of a set of change elements and a combination of change operations.
We define in the following these two concepts. Change operations are presented in colors
in Figure 8.3. An example of an UPDATE operation is change #1 in red in Figure 8.3.
Here, the pass purchased by the Tourist in the event e1 undergoes a change: it will let
the Tourist to have a dinner in NewRestaurant instead of having it in the Hotel. Hence,
the TouristOfficer, who manages the pass and can add new participants, establishes a new
convention with NewRestaurant. Consequently, the change operations to make are: (i)
add the partner NewRestaurant, (ii) an UPDATE operation where the interaction e4 is
replaced with the DCR fragment{e5,e6}.

129

8.5. CHANGE PROPAGATION IN BLOCKCHAIN-ENABLED BUSINESS
PROCESS CHOREOGRAPHIES

Figure 8.3: DCR choreography process and tourist private DCR process of the trip e-
booking process

8.5.2 Approach description

We describe hereafter the four-steps approach we propose to manage these changes.

(i) Change proposal. The role initiator defines the change of its private DCR process
following the previously introduced possible change types and operations. We review a set
of integrity rules [58] to ensure safety and liveness of the updated DCR graph to avoid
cycles. Safety means that the DCR graph is deadlock free whereas liveness guarantees
the ability of the DCR graph to completion. The integrity rules are of two types and
enumerated in Table 8.3. Allowed change rules define what can be done on the graph while
Denied ones define what should be rejected. When the change proposal satisfies these rules
the private DCR process is updated. In the case where the change also concerns the public
DCR choreography we move to the next steps.

Table 8.3: Proposed allowed and denied changes for a DCR process

Type Rule
AR1 Change condition / response / milestone relations
DR1 Inclusion of an excluded event
DR2 Exclusion of an included event
AR2 Block temporarily/ permanently an included event

130

8.5. CHANGE PROPAGATION IN BLOCKCHAIN-ENABLED BUSINESS
PROCESS CHOREOGRAPHIES

Algorithm 3 Request change smart contract function
Data: changeRequests the list of change requests, E the list of endorser addresses, hcurr

the current ipfs workflow hash, hreq the ipfs hash of requested change description,
t1 the deadline timestamp for change endorsement, and t2 the deadline timestamp
for change propagation

Result: emits change request notifications to endorsers
1 Function requestChange(hcurr, hreq,E, t1, t2):
2 require msg.sender belongs to the list of business partners
3 if changeRequests[hcurr].status == Init then
4 set changeRequests[hcurr].hreq ← hreq

set changeRequests[hcurr].status ← ”BeingProcessed”
set changeRequests[hcurr].initiator ← msg.sender
set changeRequests[hcurr].endorsers ← E
set changeRequests[hcurr].t1 ← t1
set changeRequests[hcurr].t2 ← t2
emit RequestChange(hcurr, hreq, E, msg.sender);

5 else
6 emit Error; // an ongoing change request is being processed

7 end
8 End Function

(ii) Change request for public-related changes. The change request is sent to the
choreography smart contract which stores the list of change requests assigned to process
instances. Algorithm 3 presents the SC function registering a change request. Ongoing
process instance changes are recorded with the identification hash of the current process
instance. During the change request lifecycle, the request is assigned to a status: Init if
no change request is ongoing, BeingProcessed during the negotiation stage, Approved or
Declined once the change request is processed by all endorsers. The smart contract checks
the identity of the change initiator which should belong to the list of partners, checks
that no other change request is being processed, and then creates the change request
and sends change request notification to the involved partners. The change initiator also
sets two response deadlines t1 for change endorsement and t2 for change propagation to
be checked by the smart contract. If one of the change endorsers does not reply before
deadline t1 during endorsement or t2 during propagation, an alarm clock triggers a smart
contract function cancelling the change request. The smart contract function sets the
change request status to cancelled and emits an event notifying partners that the change
has been cancelled. In this way we prevent any deadlock that could occur due to one of
the partners not responding.

(iii) Change negotiation for public related changes. Algorithm 4 presents the SC
function receiving one endorser’s decision. All partners subscribe to the change request

131

8.5. CHANGE PROPAGATION IN BLOCKCHAIN-ENABLED BUSINESS
PROCESS CHOREOGRAPHIES

Algorithm 4 Endorser decision management smart contract function
Data: changeRequests the list of change requests, es the endorser address, E the list of

registered endorsers, hcurr the hash of the current workflow, hreq the hash of the
desired workflow, rsp the endorser response ∈ {0, 1}

9 Function endorserRSP(hcurr, es, rsp):
10 require(block.timestamp <= changeRequests[hcurr].t1)

require(es ∈ E)
require(changeRequests[hcurr].changeEndorsement[es] != 1)
require(changeRequests[hcurr].status == (”BeingProcessed”)

11 if rsp == 1 then
12 set changeRequests[hcurr].changeEndorsement[es]←− 1
13 emit AcceptChange(hreq, es)
14 lockInstanceChecker(hcurr)
15 else if rsp == 0 then

// declineapprovalOutcomes

16 set changeRequests[hcurr].status ← ”Declined”
emit DeclineChange(hreq, es)

17 else
18 emit Error(hreq, es)
19 end
20 End Function

events emitted by the smart contract. Endorsing partners must send their decision request
to the smart contract based on the Allowed/Denied changes rules. If the change once
computed on the endorser’s process respects all the rules, then the endorser approves the
request. It is otherwise rejected. The smart contract collects all the decisions from the
endorsers to lock (or not) the choreography instance and proceed (or not) with the change
and update the change status to Approved or Declined. In case of approval the smart
contract locks the instance for change propagation. As it manages the negotiation process,
a tamper-proof record of the negotiation is accessible by all partners. This prevents conflicts
and eases potential claim resolutions.

(iv) Change propagation. Change propagation after successful negotiation phase con-
sists in (i) applying the change effect to the affected partners DCR public processes and
(ii) propagating the change effect by each partner to its private DCR process. Algorithm 5
presents the function triggered by partners to confirm the projection to the smart con-
tract. The smart contract receives all the local projection confirmations and notifies the
change initiator (didPropagate is filled with ones). The change initiator then retrieves the
new DCR choreography that was saved into IPFS using hreq and forwards it to the smart
contract. The SC updates the relations and markings stored into the process instance and
resets the change status of the workflow instance: a new change request can be processed.

132

8.5. CHANGE PROPAGATION IN BLOCKCHAIN-ENABLED BUSINESS
PROCESS CHOREOGRAPHIES

Algorithm 5 Confirm change propagation smart contract function
Data: changeRequests the list of change requests, es the sender address, E the list of

registered endorsers, hcurr the hash of the current workflow
Result: manages the record of projections of the new public view

21 Function confirmProjection(hcurr, es):
22 require(es ∈ E) require(block.timestamp <= changeRequests[hcurr].t2)

require(changeRequests[hcurr].didPropagate[id] != 1)
set changeRequests[hcurr].didPropagate[id] ←− 1
emit LogWorkflowProjection(hcurr)

23 End Function

8.5.3 Change propagation correctness

To ensure the correctness of the change propagation, we introduce two correctness prop-
erties that check (i) the compatibility between the DCR public processes of the participants
and (ii) the consistency between one partner’s private and public process.

Compatibility between participants public processes. By relying on the rules in
Table 8.3 and to ensure the compatibility between public processes, we introduce the
following property where: c is a change, r, E are respectively change initiator and endorsers,
Gr, Gr′ are respectively the public DCR process of r and r′ where r′ ∈ E \ r, effect(c)∥Gr

the effect of the change c over r, and effect(c)∥Gr
:⇒ Gr refers to computing the new state

of the graph Gr after applying the effect of c over r, then the proposed property stands as
follows:

Property 1. if effect(c)∥Gr
: ⇒Gr is correct-by-construction and ∀r′ ∈ E, effect(c)∥Gr′

:
⇒ Gr′ is correct-by-construction then Gr and Gr′ are compatible ∀r ∈ E, ∀r′ ∈ E \ r.

Consistency between participants public and private processes We define the
private DCR process Pr of a role r as a subclass of the public DCR process Gr. This leads
us to Property 2.:

Property 2. ∀r ∈ E, Pr = Gr + N where N is the new behavior. Pr is a subclass of
the super class Gr and Gr = Pr + τϵ(N), i.e., Pr and Gr are behaviorally equivalent.

A detailed description including proofs of the previous properties is provided in [35].

8.5.4 Implementation and experimental evaluation

An implemented prototype of the aforementioned approach is realized . One smart
contract is deployed per choreography process using Ganache testnet. Each partner can
edit the running instance via the panel manager, a tool to update DCR graph descriptions.
Users can add private and choreography interactions, as well as condition, response, include,
exclude, and milestone relations. They can also use the panel manager to remove and

133

8.6. RELATED WORK

update events and relations. The panel manager implements integrity rules presented in
Table 8.3: the panel verifies the soundness of a desired change operation. Hence, we obtain
a redesigned DCR graph that is correct-by-construction.

We evaluate the smart contract deployment cost as well as the transactions costs related
to change negotiation and propagation operations. Table8.4 presents the gas usage induced
by the execution of the SC during the negotiation and propagation stages. Regarding the
negotiation phase, the transaction fees for placing the change request of an UPDATE op-
eration are 0,00639582 ETH, and are the highest fees of the negotiation stage. Indeed, the
fee to be paid to decline or accept a role is worth around 0.0015 ETH. Nonetheless, all fees
are of the same order of magnitude (0.001 ETH). Regarding the propagation phase, many
transactions fees have to be considered like for example the cost of sending notifications of
the local update which is is worth 0,00201296 ETH and 0,0020115 ETH for both endorsers
(around 5$ per local projection). We analyze the costs and find that propagation transac-
tion fees are higher than the negotiation ones, given the fact that the propagation phase
is longer and comprises many atomic transactions, mainly comprises the cost of the DCR
choreography update.

Table 8.4: SC change propagation gas costs and gas fees

Stage Step Partner Gas Cost(ETH) Cost($)
Nego. LaunchNego NewRestaurant 213194 0,00639582 16,513

Case Decline TouristOfficer 46773 0,00140318 3,623
Case Accept TouristOfficer 78999 0,00157998 4,079

Tourist 86428 0,00181256 4,68
Propag. Upd. projection TouristOfficer 96448 0,00201296 5,197

Upd. projection Tourist 96375 0,0020115 5,193
Upd. projection NewRestaurant 87648 0,00175296 4,526

Upd. SC instance NewRestaurant 1321496 0,02642992 68,238

The reader can find further details of the proposed approach can be found in [35].

8.6 Related Work

Regarding the monitoring and execution of business process collaborations using the
blockchain, authors in [73, 169], propose an approach translating a BPMN model to a
minimized Petri-net and compiling the latter to a smart contract. A derived tool called
Caterpillar implements this approach [107]. However, participant processes are modelled
as lanes belonging to the same pool and not as process choreographies. In [140], a runtime
verification mechanism is developed on top of the Bitcoin blockchain to verify the correct
execution of process choreography instances. In contrast, they make some assumptions. A

134

8.7. CONCLUSION

particular participant called the process owner who initiates the business process execution
hands over the control to a first suitable partner to have a specific process activity executed.
Then, the selected partner passes the execution to another choreography participant to
perform the next task and so on.

Transactional reliability has been tackled prior to blockchain-based approaches. Al-
though they bring many opportunities to business process execution, transactional models
have been applied to orchestration schemes only [22, 60]. They guarantee process execu-
tion reliability, that is, the process reaches its objectives and complete successfully or it
properly undo all undesirable effects of partial execution. Such features can be used to add
transactional reliability to smart contract related transactions, very close to ACID models.
Looking to proposed approaches dealing with business process monitoring and execution
using the blockchain technologies, they handle only the control flow execution of business
processes without taking into consideration its transactional flow. Thus, they do not offer
transactional reliability in case of task failures and subsequent behaviour of the business
process in such cases.

Finally, in regards to approaches dealing with changes of business process collabora-
tions when they evolve in dynamic environments, they have been also proposed prior to
blockchain-based ones. In [65, 89], authors propose change propagation algorithms across
business process choreographies. However, authors do not propose any mechanism to en-
sure that all partners have trustfully applied the change, and no blockchain is used to
deal with this problem. Change management has also been studied in DCR processes, but
only in orchestrations schemes. In [128], authors propose add/remove/update operations
to DCR graphs relations and events. In [58], authors use a set of rules ensuring the cor-
rectness of new instances of DCR orchestrations by design. In [106], authors propose an
approach that allows collaborative decisions in blockchain-enabled collaborations. Their
approach offers flexibility operations such as: (1) late binding and un-binding of actors to
roles in blockchain-based collaborative processes, (2) late binding of subprocesses, and (3)
choosing a path after a complex gateway. Authors, though, do not consider evolutionary
changes like we do. Moreover, their flexibility operations currently push the burden of
checking the transitive effect of new changes onto the new parties. This checking, likely
done in a manual way, which can lead to errors.

8.7 Conclusion

In this Chapter, first, we proposed a solution for trustworthy execution of business
process choreographies modeled in BPMN. Process designers apply a set of transformation
rules in order to transform business process choreographies into smart contracts. Then, a

135

8.7. CONCLUSION

smart contract called Interaction SC monitors on-chain the execution of the shared view
of the choreography.

We extended afterwards the Interaction SC with transactional mechanisms. These
mechanisms include alternatives as forward recovery and compensation as backward recov-
ery. This ensures that the process choreography execution ends in a consistent way even
in case of activities failures.

Finally, we presented a protocol enabling adaptiveness to declarative business process
choreographies modeled as DCR graphs. This protocol allows (i) partners to first negotiate
the change on-chain, (ii) then to dynamically update the choreography process instance
managed by the smart contract with the new process change information, and (iii) finally
propagate this information across partners processes affected by the change. We demon-
strate as well the correctness of the change propagation across participants processes. To
do so, we proposed two correctness criteria: (i) the compatibility between the DCR public
processes of the participants, and (ii) consistency between one partner’s private and public
process.

The work described in this chapter was conducted during the PhD of Amina Brahem to
be defended in 2023. It is mainly published in the following conference papers: [36], [37],
and [35].

136

Part V

Conclusion and Perspectives

137

Chapter 9

Conclusion and perspectives

Contents
9.1 Conclusion . 140

9.2 Ongoing research activities and short-term perspectives 140

9.2.1 Attentive knowledge based service recommendation 141

9.2.1.1 Attention Mechanisms and Knowledge Graphs 141

9.2.1.2 Attention Mechanisms and Deep Learning 142

9.2.1.3 Attention Mechanisms and LSTM for Long-term Service
QoS Forecasting . 142

9.2.2 Privacy-aware user centric IoT device recommendation 143

9.3 Mid-term and long-term perspectives 145

9.3.1 Handling IoT services: a user-side perspective for interactions,
privacy, and trust . 145

9.3.2 Beyond conventional cloud computing: The rise of Distributed
Computing Continum (DCC) . 146

9.3.3 Application to Healthcare recommendation in SQVALD research
project: A fusion of technologies perspective 147

This chapter wraps up the main matter of this document by presenting directions for
my future research starting by the ongoing work as first step toward them. My future work
shares the same general objectives as my previous activities namely semantically-enabled,
context-aware, user-centric and trustworthy service interactions. My ongoing research ac-
tivities mainly tackles the challenge of enhancing personalization and context-awareness in
user-centric service recommendation through a combination of Attention Mechanism with
Machine Learning and Deep Learning models. My future work extends my previous and
current work into the following two research dimensions: Internet of Things services [40]
and Distributed Computing Continuum Systems [24].

139

9.1. CONCLUSION

9.1 Conclusion

This dissertation draws the contributions I achieved with my colleagues and PhD/-
Master students during the last ten years. Our main focus was to bring innovative and
sound approaches to support service-based solutions ensuring successful interactions in
service-service and user-service interactions within most general perspectives of Business-
to-Business and Business-to-Customer contexts. We considered typical research issues
related to service oriented computing with a specific focus on service discovery and recom-
mendation. Our methodology consists in bringing successful advances in complementary
topics such as semantic Web and Machine Learning as well as sound formal frameworks
to tackle service interaction issues. We address service mismatch issue through the defini-
tion of semantic similarity measure first based on ontologies and then extended to Linked
Open Data (Part 2: Chapter 3 and Chapter 4). We address context-aware service rec-
ommendation through a Configuration based approach together with LOD based semantic
similarity (Part 3: Chapter 5). We tackle the issue of service migration in user-centric
contexts through a review of Liquid Software and RESTful principals (Part 2: Chapter
6). We handle service evolutions through the use of Machine Learning models combined
with LOD based similarity and Service Social Network graph modeling (Part 3: Chapter
7). And, finally, we address trustworthy dynamic service interactions through Blockchain
and Smart contracts (Part 3: Chapter 8).

While our work is in line with current research issues in the field of Web services, it also
responds to real needs expressed particularly in the tourism domain within the Smart Loire
research project. Although the contributions described in this dissertation was achieved
separately, they complement each other to provide a coherent solution for personalized trip
recommendation and realisation to meet the Smart Loire project main objectives. The
Smart Loire project allowed in turn to evaluate the proposed approaches on real-world
datasets and by real users, in addition to publicly available test datasets and baselines.

Service interaction research topic is highly dynamic and continuously evolving. Our
contributions described in this dissertation are therefore perfectible in several directions.
Some of them are being investigated as ongoing and short-term perspectives. We give an
insight in Section 9.2. Some others are longer term following visionary roadmap elements
in service oriented computing. We describe our vision to tackle them in Section 9.3.

9.2 Ongoing research activities and short-term perspectives

Our most elaborated ongoing work tackles the challenge of enhancing service recom-
mendation with Attention Mechanisms in order to achieve high level of personalization

140

9.2. ONGOING RESEARCH ACTIVITIES AND SHORT-TERM PERSPECTIVES

and context-awareness. The following subsections give insights on the general idea of our
undergoing contributions. We also address privacy concerns in user-centric IoT device
recommendation.

9.2.1 Attentive knowledge based service recommendation

Attention Mechanisms (AM) [15] was first proposed as an optimisation technique for
machine learning models to make them selectively focus on the most relevant parts of the
input data when making a prediction, which helps achieving accurate predictions while
running more efficiently. AM have then been quickly adopted and integrated in many AI-
based service recommendation approaches which have to process an overwhelming number
of available services [168] [104]. AM fit well more particularly context-aware recommen-
dation approaches where the context helps defining important features relevant services
should match [159].

However, the use of AM for AI-based context-aware service recommendation rises two
major questions. First, which features should be considered as important within the at-
tention mechanism and how to model and learn them ? And, second, how to combine
important feature selection with the recommendation learning model ?

9.2.1.1 Attention Mechanisms and Knowledge Graphs

We try to answer the previous questions in the Tourism context and we rely on our pre-
vious work on LOD-based data augmentation applied on DataTourism ontology (Chapter
5, Section 5.6). We propose to model AM through Knowledge Graphs (KG). KG provide
an efficient form of knowledge representation that captures the semantics of Web objects
based on different entities and their relationships. In addition to AM support, KG allow
for recommendation interpretation. Indeed, by reasoning over a KG in a node-by-node
manner, the connectivity between entities can be discovered as paths that not only reveal
the semantics of entities and relations, but also serve as an explanation reflected through a
simulated decision-making process which provides explicit semantics for the explanations.

Starting from LOD-augmented DataTourism ontology, we construct first a travel-domain
specific knowledge graph (TKG) gathering fine-granular attraction types that allows a deep
convergence of all the data and full considerations of their semantic relations. We apply
a path extraction process to extract the set of candidate paths. A travel path models a
set of entities connected through semantic relationships. Each travel path corresponds a
possible mashup of services corresponding to Point of Interest (PoI) entities in the path.
Additional -non PoI- entities and semantic relationships will be considered for the mashup
explainability. Then, we model the set of travel paths using a recurrent network based

141

9.2. ONGOING RESEARCH ACTIVITIES AND SHORT-TERM PERSPECTIVES

on Gated Recurrent Unit (GRU) technique. User preferences are encored as a Map of
weighted features as part of the attention mechanism which also includes the attention
function. We consider as attention function the dot product applied to user preferences
and travel paths to provide an attention score for each travel path. This allows to keep
only the highly ranked paths as relevant recommendations. The first results of our work
in this direction are interesting and have been published in [30].

9.2.1.2 Attention Mechanisms and Deep Learning

The previously discussed research direction is based on a unique layer that encodes
AM based on user preferences and a single attention function applied as final selection
step for mashup recommendation. As a second direction, we consider to spread the at-
tention mechanism over multiple layers of a deep learning process for personalized service
recommendation. The idea is apply attention mechanism at three different levels: (i) func-
tional service feature mining, (ii) non-functional service feature mining, (iii) user preference
mining, and (iv) overall attention aggregation. The idea is applied on programmableweb
dataset and consists in the following steps. We first discover mashups with similar func-
tionalities. Afterward, we build a composite service network that learns function-related
features of services based on tags and description information. In parallel, based on user
feedback, we learn the non function-related features of services. Then, the recommen-
dation module uses attention aggregation to couple the two service representations and
generate the final recommendation result. The first results of our work in this direction
are interesting and have been published in [32].

9.2.1.3 Attention Mechanisms and LSTM for Long-term Service QoS Fore-
casting

Our previous approach recommends accurately potential service collaborations. The
proposed recommendation focused the matching/learning on the functional behaviour of
web services. In practice, the success and longevity of such collaborations depends on the
ability of the collaborating parties to deliver high Quality of Service (QoS) standards in
the long-run. Indeed, web services with comparable functionalities maybe differentiated
according to their QoS attribute values such as response-time and throughput. This can
be attributed to the differences of their service providers, leading to variability in their
functional behaviour. That is, besides accurately recommending functionally composable
services, it is crucial to figure out services that are likely to deliver comparable QoS levels
over time.

Ensuring long-term success of service interactions and long-run service interoperability

142

9.2. ONGOING RESEARCH ACTIVITIES AND SHORT-TERM PERSPECTIVES

is still challenging. Furthermore, existing techniques predominantly focus on static QoS
values observed during composition time. We believe that sequential Long Short Term
Memory (LSTM) networks can bring reliable solutions for foreseeing long-term QoS fluc-
tuation over time, hence enhancing the overall service composition. LSTM is a deep learn-
ing model adapted to sequential data [86]. It allows to capture information dependency
contained in sequential data for a long period of time and uses this information to enhance
prediction accuracy. LSTM have been successfully combined with Attention Mechanisms
on functional and contextual features for Web service recommendation in mashup creation
[150]. Our aim is therefore to extend the LSTM networks predictive ability by integrating
attention mechanisms for Long-term Service QoS Forecasting.

Handling attention for time series forecasting [1] assigns different weightage to different
parts of the input sequence while predicting each element of the output sequence, allowing
the model to refer back to the most relevant parts of the input and weigh them more heavily.
Attention mechanisms augment the ability of LSTM to manage long sequences, enabling the
model to capture long-term dependencies more effectively by focusing on the most relevant
parts of the input sequence. When it comes to Web services, multiple QoS attributes such
as bandwidth, latency, throughput, availability, and response time are crucial, and each
can have a significant influence on the overall quality of the service. Since these attributes
can be interrelated, employing a multivariate LSTM model can be beneficial to capture the
latent relationships and dependencies between different QoS attributes. The integration of
attention mechanisms into LSTMs enables the model to dynamically allocate varying levels
of importance to different time steps of each QoS attribute, depending on their relevance
to the prediction task at hand. Then the model will be able to focus on crucial portions of
the input sequences (i.e., historical data of QoS attributes like bandwidth) that are more
indicative of future values, thus improving the forecast’s precision.

9.2.2 Privacy-aware user centric IoT device recommendation

This perspective extends our research interest to the Internet of Things (IoT) related
topics. IoT as a paradigm, aims to connect different pervasive devices and smart objects
to the internet and provides means for data communication between them. Today, the IoT
includes an unprecedented number of connections between things as well as between things
and people [68]. According to Statistica1 the number of connected IoT devices exceeds 15
billion in 2023 and could reach 30 billion by 2030. This rapid evolution is supported by the
proliferation of devices of multitude of types, protocols, computing and storage capacities,
etc. ranging from the basic sensors to the most sophisticated smartphones and virtual re-
ality headsets. One of the fundamentals of IoT is the ability to create networks of devices

1https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

143

9.2. ONGOING RESEARCH ACTIVITIES AND SHORT-TERM PERSPECTIVES

working together to accomplish certain goals in different domains such as smart-homes and
healthcare. Ready-made solutions including complementary devices and dedicated man-
agement systems may exist for common use. However, when it comes to more personalized
use or new goal, identifying relevant devices among the sea of existing ones is still challeng-
ing [90]. Moreover, usually acting as data generator, IoT devices naturally face privacy and
trust challenges. These challenges are even accentuated regarding (i) the limited device
capacity making it possible to hold and manage security mechanisms, (ii) the dynamic
contexts in which devices evolve, (iii) and the heterogeneity of collaborating/interacting
devices [24].

We tackle both challenges from a user-centric perspective and following W3C recent rec-
ommendations towards a standardised and interoperable IoT, the Web of Things (WoT)2

and Social Linked Data (SOLID)3 architecture for privacy management. WoT intended to
enhance IoT device interoperability by using existing Web standards such as HTTP and
REST for data communication. It also includes Thing Description model for homogeneous
description of devices and their capabilities. SOLID is a personal data management ar-
chitecture intended to grant data owners full control over their personal data [112]. It is
based on two main components: (1) the Personal Online Store (POD) server where data is
being stored, semantically annotated and accessed by third parties according to the data
owner’s permissions and preferences, and (2) the SOLID application that allows users to
register, add, view, and edit data on PODs.

Starting from these elements, we propose a privacy-aware user-centric architecture
which relies on the following three main steps. (i) First, we extend LOD-based anno-
tation and similarity calculation discussed in the previous chapters to apply on devices
described following Thing Description model. (ii) Second, we implement SOLID archi-
tecture to allow for privacy management. (iii) And third, we propose a recommendation
algorithm that considers the LOD-based similarity as well as a local user-user social rela-
tion network. A first achievement in this direction is presented in [92]. However, there is
still a lot of work to be done to achieve high level privacy and interoperability within such
a framework. We consider to improve it in two directions. First through extending the
privacy management SOLID architecture with a more dynamic permission manager. This
will allow for dynamic and evolving privacy. Second the recommendation algorithm should
consider permissions prior to recommending any device to ensure its usefulness. One more
long-term perspective consists in considering IoT services [24] as functional abstraction of
devices within a more general user-centric architecture. We will discuss this idea with other
interesting long-term perspectives in the next section.

2https://w3c.github.io/wot-architecture/
3https://solidproject.org/

144

9.3. MID-TERM AND LONG-TERM PERSPECTIVES

9.3 Mid-term and long-term perspectives

9.3.1 Handling IoT services: a user-side perspective for interactions,
privacy, and trust

Transitioning from traditional web services to IoT service computing is fundamentally
motivated by massive deployment of new devices for various domains, and how do such
devices change the way services are provided and received. This crucial shift to IoT enables
the delivery of more responsive and intelligent services, unveiling opportunities in various
fields such as enhanced data gathering and analysis, real-time monitoring and adaptive user
experiences. Such transition will open up key opportunities in various domains; particularly
in trust, liquid software and federated learning.

IoT services defined as the transformation of IoT devices that should allow to address
two major IoT challenges from the prism of service computing : communication with things
and management of things [24]. At first glance, such a transformation allows to benefit
from advances in service computing for a straight transposition into IoT service frameworks.
However, the reality of IoT as a cosmopolitan world of heterogeneous things makes the shift
challenging at several levels including IoT service annotation and discovery, IoT service
running and synchronisation, ensuring privacy and trust, etc. Next, we highlight our
vision about directions to tackle these challenges while connecting them to our previous
contributions.

A user centric architecture with locally managed IoT service interactions. IoT
services abstract IoT devices that are usually deployed for contextualized use. Their inter-
actions, with each other as well as with end-user, should allow for a near real-time response
delay. A user-centric architecture is more likely to efficiently handle such interactions. IoT
services can take part of IoT Mashups to achieve more global common goal. Successful
architecture could rely on the concept of IoT Big Service we proposed in [34] as a key
point for IoT service composition. The proposed multi-rooted tree architecture allows for
IoT services to be part of multiple IoT Big Services and any Big service can in turn take
part to more general composition. Local and contextualized management of such services
will allow to dynamically bring personalized solutions for end-user. Two technical consider-
ations could be helpful to make such architecture feasible. First, the Web of Things (WoT)
standardising initiative will make it easy to define LOD-based annotation and similarity
calculation aver IoT services. This will allow to go further defining efficient discovery and
recommendation techniques. Second, the use of REST/RESTful and HTTP for WoT de-
vice communication will allow extending Liquid Software principals for local management
of IoT service interaction synchronisation.

145

9.3. MID-TERM AND LONG-TERM PERSPECTIVES

A multi-layered architecture for multi-level privacy and trust management.
IoT is one of the primary data generators [68], including personal data as well as sensible
one. Besides, IoT device networks are by nature vulnerable [24]. This emphasises the
need for efficient and reliable privacy and trust management mechanisms. In the previ-
ously introduced user centric architecture, this could be achieved through a multi-layered
architecture. SOLID-based privacy management can be extended with local privacy con-
trol nodes for the data generated locally and then combined with higher level privacy
control nodes acting as integrators. The role of privacy control nodes can be affected to
intermediary big service within a global IoT Mashup.

Similarly, highest level of trust could be achieved combining hybrid Blockchain ap-
plication [173] with on-chain/off-chain collaboration [64, 63]. To this end, a trustworthy
interaction scenario could consist in a locally managed smart contract for near-immediate
transaction state managing, then relayer smart contracts propagate transactional full logs
or simply final state commitments to higher level Blockchains. This collaboration model
extends the two-level ones in literature [173]. Achieving this is however challenging as
it requires to think about light-weight Blockchains for the local and lower levels of the
architecture.

9.3.2 Beyond conventional cloud computing: The rise of Distributed
Computing Continum (DCC)

Distributed Computing Continuum (DCC) [40] is a new emerging paradigm proposed to
overcome both cloud and edge computing shortcomings by optimizing application-specific
computational resources. Concurrently, the trend towards serverless computing in the
cloud realm necessitates its adaptation at the edge to manage the heightened complexity,
especially with AI/ML components. Edge computing presents unique challenges, catego-
rized as core, specific, and derived characteristics, essential for developing a self-adaptive
distributed system. Next, we go through main challenges that are still unsolved and their
potential solutions in the realm of DCC.

First, the geographic distribution of available web resources may be problematic, indeed
service and cloud computing models face issues related to data latency, especially when
resources are scattered across vast geographic locations. By integrating resources from the
edge to the cloud, DCC can optimize data processing closer to the data source, reducing
latency and ensuring more efficient resource distribution. Second, scalability is a challenge
in traditional cloud models, especially during peak demands, which can lead to service
disruptions or degraded performance. DCC allows for dynamic scaling by leveraging re-
sources across the computing spectrum (from edge devices to cloud centers) according to
the demand, ensuring consistent performance. Last but not least, DCCs can provide a stan-

146

9.3. MID-TERM AND LONG-TERM PERSPECTIVES

dardized interface ensuring that all devices can cohesively interact with each other despite
the heterogeneity of their manufacturing standards, hence achieving high interoperability
standards.

We believe that user-centric multilayered architecture for IoT services previously dis-
cussed is a step in the right direction to meet DCC requirement at the application level.
Managing resources locally and at the Edge level can take advantage of rule-based ap-
proaches [132], recent standards for resource state management such as GraphQL [50], and
on-the-fly reasoning techniques [115].

9.3.3 Application to Healthcare recommendation in SQVALD research
project: A fusion of technologies perspective

Major recent research advances in service computing are being achieved through the
convergence with other emerging techniques and methods such as AI, Blockchain, IoT,
and DCC. Despite the independent evolution of these technologies, they are becoming
more intertwined [68] for two main reasons: First, the novelty brought in one technology
quickly finds echo in the other ones. This is for example the case of recent advances
in AI deep learning used to bring solutions for service interactions as well as for IoT data
"understanding". Second, the combined usage of these technologies allows to propose multi-
facet solutions to reach new opportunities in several sensitive environments and domains
such as Healthcare [68].

In healthcare, harnessing IoT/IoMT (Internet of Medical Things), AI, Edge Computing,
and Blockchain effectively, to tackle challenges like patients privacy fragility, along with
RGPD compliance, sensor data integration and monitoring, makes it necessary to propose
approaches that leverage wisely all the previous technologies: IoT/IoMT will be in charge of
collecting real-time data from various sources and devices, ingesting a rich and continuous
flow of medical information within the healthcare framework. AI will take care of analyzing
datasets that have been gathered previously to extract and interpret critical insights, thus
making accurate predictions and proposing relevant recommendations to patient. In order
to process data from IoT/IoMT devices, Edge Computing will run the processing close to
the source, facilitating real-time analytics by AI, which is crucial for immediate response
scenarios in healthcare, like critical care monitoring or danger recognition. Blockchain
ensures the secure and immutable storage of the data generated by IoT/IoMT and analyzed
by AI, providing a transparent and immutable ledger for transactions and interactions
within the healthcare framework. It also ensures devices, users, and service providers
authentication as well as their interactions within the framework [87].

In this context, we are running the SQVALD project with the main objective to assist
patients during their recovery period after extensive therapeutic treatment for Cancer.

147

9.3. MID-TERM AND LONG-TERM PERSPECTIVES

The idea is not to focus on monitoring various types of sensors and wearable devices
continuously measuring and communicating values to integration level which alerts when
something goes wrong. We rather aim at helping patient feel and live better in spite of
the disease through: (i) the recommendation of adapted complementary activities outside
hospitals, (ii) the logistic assistance to schedule and execute/practice these activities, and
(iii) the evaluation of the impacts/benefits of the recommended activities on the quality
of life of the patient. To this end, SQVALD framework has to successfully integrate the
following functions. First, it should securely manage patient data, locally generated as
well as accessed on the medical register, through privacy preserving and trustworthy ways.
Second, it should be able to "understand" the patient need and capture/learn her/his
preferences. Third, it should be able to recommend relevant personalized and context-aware
activities. Fourth, it should define and/or choose the best adapted interaction services for
a better quality of experience for the patient, ensuring her/his active participation. Fifth,
it should include quality of life evaluation metrics and help patient following the right
direction.

In order to meet these challenging requirements, it will be necessary to follow a fusion
of technologies perspective: IoT, AI, DCC/Edge-Cloud, and Blockchain [68], within a
user-centric framework. The already achieved contributions as well as research directions
discussed in this dissertation will be considered together towards a successful outcome for
the SQVALD project.

148

Bibliography

[1] H. Abbasimehr and R. Paki. Improving time series forecasting using LSTM and
attention models. Journal of Ambient Intelligence and Humanized Computing, pages
1–19, 2022.

[2] A. Abid. Improvement of web service composition using semantic similarities and
formal concept analysis. PhD thesis, University of Tours (France) and University of
Sfax (Tunisia), 2017.

[3] A. Abid, N. Messai, M. Rouached, M. Abid, and T. Devogele. Semantic similarity
based web services composition framework. In A. Seffah, B. Penzenstadler, C. Alves,
and X. Peng, editors, Proceedings of the Symposium on Applied Computing, SAC
2017, Marrakech, Morocco, April 3-7, 2017, pages 1319–1325. ACM, 2017.

[4] A. Abid, N. Messai, M. Rouached, T. Devogele, and M. Abid. IDECSE: A semantic
integrated development environment for composite services engineering. In S. Nurcan,
E. Pimenidis, O. Pastor, and Y. Vassiliou, editors, Joint Proceedings of the CAiSE
2014 Forum and CAiSE 2014 Doctoral Consortium co-located with the 26th Inter-
national Conference on Advanced Information Systems Engineering (CAiSE 2014),
Thessaloniki, Greece, volume 1164 of CEUR Workshop Proceedings, pages 105–112.
CEUR-WS.org, 2014.

[5] A. Abid, N. Messai, M. Rouached, T. Devogele, and M. Abid. A semantic-aware
framework for composite services engineering based on semantic similarity and con-
cept lattices. In S. Nurcan and E. Pimenidis, editors, Information Systems Engineer-
ing in Complex Environments - CAiSE Forum 2014, Thessaloniki, Greece, Selected
Extended Papers, volume 204 of Lecture Notes in Business Information Processing,
pages 148–164. Springer, 2014.

[6] A. Abid, N. Messai, M. Rouached, T. Devogele, and M. Abid. A semantic similarity
measure for conceptual web services classification. In S. Reddy, editor, 24th IEEE
International Conference on Enabling Technologies: Infrastructure for Collaborative

149

BIBLIOGRAPHY

Enterprises, WETICE 2015, Larnaca, Cyprus, June 15-17, 2015, pages 128–133.
IEEE Computer Society, 2015.

[7] A. Abid, M. Rouached, and N. Messai. Semantic web service composition using
semantic similarity measures and formal concept analysis. Multim. Tools Appl., 79(9-
10):6569–6597, 2020.

[8] A. Abid, M. Rouached, N. Messai, M. Abid, and T. Devogele. A semantic matching
engine for web service composition. Int. J. Bus. Inf. Syst., 30(1):92–108, 2019.

[9] S. Aghaee and C. Pautasso. End-user development of mashups with naturalmash.
Journal of Visual Languages & Computing, 25(4):414–432, 2014.

[10] E. Al-Masri and Q. H. Mahmoud. Mobieureka: an approach for enhancing the
discovery of mobile web services. Pers. Ubiquitous Comput., 14(7):609–620, 2010.

[11] S. D. Alfarhood. Exploiting Semantic Distance in Linked Open Data for Recommen-
dation. PhD thesis, University of Arkansas, Fayetteville, 2017.

[12] C. Ardito, P. Buono, G. Desolda, and M. Matera. From smart objects to smart
experiences: An end-user development approach. International Journal of Human-
Computer Studies, 114:51–68, 2018.

[13] Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha, and C. Tibermacine. Se-
lection of composable web services driven by user requirements. In Web Services
(ICWS), 2011 IEEE International Conference on, pages 395–402. IEEE, 2011.

[14] Z. Azmeh, F. Hamoui, M. Huchard, N. Messai, C. Tibermacine, C. Urtado, and
S. Vauttier. Backing composite web services using formal concept analysis. In Formal
Concept Analysis - 9th International Conference, ICFCA 2011, Nicosia, Cyprus, May
2-6, 2011. Proceedings, pages 26–41, 2011.

[15] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. In Y. Bengio and Y. LeCun, editors, 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[16] M. Barhamgi and D. Benslimane. Composing data-providing web services. In VLDB
PhD Workshop, 2009.

[17] G. Baryannis, O. Danylevych, D. Karastoyanova, K. Kritikos, P. Leitner, F. Rosen-
berg, and B. Wetzstein. Service composition. In Service Research Challenges and
Solutions for the Future Internet - S-Cube - Towards Engineering, Managing and
Adapting Service-Based Systems, pages 55–84, 2010.

150

BIBLIOGRAPHY

[18] A. Belkhirat, A. Belkhir, and A. Bouras. A new similarity measure for the profiles
management. In D. Al-Dabass, A. Orsoni, R. J. Cant, and A. Abraham, editors,
Proceedings of the 13th UKSim-AMSS International Conference on Computer Mod-
elling and Simulation, Cambridge University, Emmanuel College, Cambridge, UK,
30 March - 1 April 2011, pages 255–259. IEEE Computer Society, 2011.

[19] T. Berners-Lee. Linked data -. W3C Design Issues, 2006.

[20] T. Berners-Lee, J. A. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):34–43, May 2001.

[21] P. Bhargava, J. Lampton, and A. Agrawala. Bootstrapped discovery and ranking of
relevant services and information in context-aware systems. EAI Endorsed Transac-
tions on Context-aware Systems and Applications, 2, 08 2015.

[22] S. Bhiri, W. Gaaloul, C. Godart, O. Perrin, M. Zaremba, and W. Derguech. Ensur-
ing customised transactional reliability of composite services. J. Database Manag.,
22(2):64–92, 2011.

[23] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.
Semantic Web Inf. Syst., 5(3):1–22, 2009.

[24] A. Bouguettaya, Q. Z. Sheng, B. Benatallah, A. G. Neiat, S. Mistry, A. Ghose,
S. Nepal, and L. Yao. An internet of things service roadmap. Commun. ACM,
64(9):86–95, 2021.

[25] M. Boulakbech. Mashup de services par configuration : application au domaine
touristique. PhD thesis, Université de Tours, 2020.

[26] M. Boulakbech, N. Cheniki, N. Messai, Y. Sam, and T. Devogele. Linked data graphs
for semantic data integration in the CART system. In C. Pautasso, F. Sánchez-
Figueroa, K. Systä, and J. M. M. Rodríguez, editors, Current Trends in Web En-
gineering - ICWE 2018 International Workshops, MATWEP, EnWot, KD-WEB,
WEOD, TourismKG, Cáceres, Spain, June 5, 2018, Revised Selected Papers, volume
11153 of Lecture Notes in Computer Science, pages 221–226. Springer, 2018.

[27] M. Boulakbech, N. Messai, Y. Sam, and T. Devogele. A smart mobiweb mashup trip
planner tool. In A. Seffah, B. Penzenstadler, C. Alves, and X. Peng, editors, Pro-
ceedings of the Symposium on Applied Computing, SAC 2017, Marrakech, Morocco,
April 3-7, 2017, pages 686–688. ACM, 2017.

[28] M. Boulakbech, N. Messai, Y. Sam, and T. Devogele. Visual configuration for restful
mobile web mashups. In I. Altintas and S. Chen, editors, 2017 IEEE International

151

BIBLIOGRAPHY

Conference on Web Services, ICWS 2017, Honolulu, HI, USA, June 25-30, 2017,
pages 870–873. IEEE, 2017.

[29] M. Boulakbech, N. Messai, Y. Sam, and T. Devogele. Configuring restful web services
for personalized trip planning. In 27th IEEE International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises, WETICE 2018, Paris,
France, June 27-29, 2018, pages 213–216. IEEE Computer Society, 2018.

[30] M. Boulakbech, N. Messai, Y. Sam, and T. Devogele. Attentive knowledge-aware
path network for explainable travel mashup. In R. Chbeir, Z. H. Huang, F. Silvestri,
Y. Manolopoulos, and Y. Zhang, editors, Web Information Systems Engineering -
WISE 2022 - 23rd International Conference, Biarritz, France, November 1-3, 2022,
Proceedings, volume 13724 of Lecture Notes in Computer Science, pages 519–533.
Springer, 2022.

[31] M. Boulakbech, N. Messai, Y. Sam, and T. Devogele. Configuration approach for
personalized travel mashup. Concurr. Comput. Pract. Exp., 35(11), 2023.

[32] M. Boulakbech, N. Messai, Y. Sam, and T. Devogele. Deep learning model for person-
alized web service recommendations using attention mechanism. In 21st International
Conference on Service-Oriented Computing - ICSOC 2023, Rome, Italy, November
28th – December 1st, 2023, Proceedings, Lecture Notes in Computer Science, 2023.

[33] M. Boulakbech, N. Messai, Y. Sam, T. Devogele, and L. Étienne. Smartloire: A web
mashup based tool for personalized touristic plans construction. In S. Reddy and
W. Gaaloul, editors, 25th IEEE International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE 2016, Paris, France, June 13-
15, 2016, pages 259–260. IEEE Computer Society, 2016.

[34] M. Boulakbech, N. Messai, Y. Sam, T. Devogele, and M. Hammoudeh. Iot mashups:
From iot big data to iot big service. In M. Hammoudeh and R. M. Newman, editors,
Proceedings of the International Conference on Future Networks and Distributed Sys-
tems, ICFNDS 2017, Cambridge, United Kingdom, July 19-20, 2017, page 20. ACM,
2017.

[35] A. Brahem, T. Henry, S. Bhiri, T. Devogele, N. Laga, N. Messai, Y. Sam, W. Gaaloul,
and B. Benatallah. A trustworthy decentralized change propagation mechanism for
declarative choreographies. In C. D. Ciccio, R. M. Dijkman, A. del-Río-Ortega, and
S. Rinderle-Ma, editors, Business Process Management - 20th International Confer-
ence, BPM 2022, Münster, Germany, September 11-16, 2022, Proceedings, volume
13420 of Lecture Notes in Computer Science, pages 418–435. Springer, 2022.

152

BIBLIOGRAPHY

[36] A. Brahem, N. Messai, Y. Sam, S. Bhiri, T. Devogele, and W. Gaaloul. Blockchain’s
fame reaches the execution of personalized touristic itineraries. In S. Reddy, editor,
28th IEEE International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises, WETICE 2019, Naples, Italy, June 12-14, 2019, pages
186–191. IEEE, 2019.

[37] A. Brahem, N. Messai, Y. Sam, S. Bhiri, T. Devogele, and W. Gaaloul. Running
transactional business processes with blockchain’s smart contracts. In 2020 IEEE
International Conference on Web Services, ICWS 2020, Beijing, China, October 19-
23, 2020, pages 89–93. IEEE, 2020.

[38] A. E. Cano, A.-S. Dadzie, and F. Ciravegna. Travel mashups. In Semantic Mashups,
pages 321–347. Springer, 2013.

[39] C. Cappiello, F. Daniel, M. Matera, and C. Pautasso. Information quality in mashups.
IEEE Internet Comput., 14(4):14–22, 2010.

[40] V. Casamayor-Pujol, P. K. Donta, A. Morichetta, I. Murturi, and S. Dustdar. Edge
intelligence - research opportunities for distributed computing continuum systems.
IEEE Internet Comput., 27(4):53–74, 2023.

[41] F. Casati, F. Daniel, A. D. Angeli, M. Imran, S. Soi, C. R. Wilkinson, and M. March-
ese. Developing mashup tools for end-users: On the importance of the application
domain. Int. J. Next Gener. Comput., 3(2), 2012.

[42] F. Casati, F. Daniel, A. De Angeli, M. Imran, S. Soi, C. R. Wilkinson, and M. March-
ese. Developing mashup tools for end-users: on the importance of the application
domain. International Journal of Next-Generation Computing, 3(2), 2012.

[43] S. A. Chellouche, D. Négru, J. Arnaud, and J. M. Batalla. Context-aware multimedia
services provisioning in future internet using ontology and rules. In 2014 International
Conference and Workshop on the Network of the Future, NOF 2014, Paris, France,
December 3-5, 2014, pages 1–5. IEEE, 2014.

[44] F. Chen, C. Lu, H. Wu, and M. Li. A semantic similarity measure integrating multiple
conceptual relationships for web service discovery. Expert Systems with Applications,
67:19–31, 2017.

[45] N. Cheniki. Découverte des Web Services Mobiles. PhD thesis, Université des Sciences
et de la Technologie Houari Boumediène, Algérie, 2017.

[46] N. Cheniki, A. Belkhir, Y. Sam, and N. Messai. LODS: A linked open data based
similarity measure. In S. Reddy and W. Gaaloul, editors, 25th IEEE International

153

BIBLIOGRAPHY

Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises,
WETICE 2016, Paris, France, June 13-15, 2016, pages 229–234. IEEE Computer
Society, 2016.

[47] N. Cheniki, M. Boulakbech, H. Labbaci, Y. Sam, N. Messai, and T. Devogele. A
linked open data based approach for trip recommendation. In S. Reddy, editor,
28th IEEE International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises, WETICE 2019, Naples, Italy, June 12-14, 2019, pages
192–195. IEEE, 2019.

[48] N. Cheniki, Y. Sam, N. Messai, and A. Belkhir. Context-aware and linked open data
based service discovery. In T. Mikkonen, R. Klamma, and J. Hernández, editors,
Web Engineering - 18th International Conference, ICWE 2018, Cáceres, Spain, June
5-8, 2018, Proceedings, volume 10845 of Lecture Notes in Computer Science, pages
448–462. Springer, 2018.

[49] C. P. da Silva. The CUBE: A User-Centric system-model architecture for Web service
migration through multiple devices. PhD thesis, University of Tours, 2019.

[50] C. P. da Silva and N. Messai. Beyond traditional web technologies for locally web-
services migration. In H. Fill, F. J. D. Mayo, M. van Sinderen, and L. A. Maciaszek,
editors, Proceedings of the 18th International Conference on Software Technologies,
ICSOFT 2023, Rome, Italy, July 10-12, 2023, pages 620–628. SCITEPRESS, 2023.

[51] C. P. da Silva, N. Messai, Y. Sam, and T. Devogele. CUBE system: A REST and rest-
ful based platform for liquid software approaches. In T. A. Majchrzak, P. Traverso,
K. Krempels, and V. Monfort, editors, Web Information Systems and Technologies -
13th International Conference, WEBIST 2017, Porto, Portugal, April 25-27, 2017,
Revised Selected Papers, volume 322 of Lecture Notes in Business Information Pro-
cessing, pages 115–131. Springer, 2017.

[52] C. P. da Silva, N. Messai, Y. Sam, and T. Devogele. Diamond - A cube model
proposal based on a centric architecture approach to enhance liquid software model
approaches. In T. A. Majchrzak, P. Traverso, K. Krempels, and V. Monfort, editors,
Proceedings of the 13th International Conference on Web Information Systems and
Technologies, WEBIST 2017, Porto, Portugal, April 25-27, 2017, pages 382–387.
SciTePress, 2017.

[53] C. P. da Silva, N. Messai, Y. Sam, and T. Devogele. Liquid mail - A client mail based
on CUBE model. In 38th IEEE International Conference on Distributed Computing
Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018, pages 1539–1540. IEEE
Computer Society, 2018.

154

BIBLIOGRAPHY

[54] C. P. da Silva, N. Messai, Y. Sam, and T. Devogele. User-side service synchronization
in multiple devices environment. In M. Bieliková, T. Mikkonen, and C. Pautasso,
editors, Web Engineering - 20th International Conference, ICWE 2020, Helsinki,
Finland, June 9-12, 2020, Proceedings, volume 12128 of Lecture Notes in Computer
Science, pages 451–466. Springer, 2020.

[55] E. G. Da Silva, L. F. Pires, and M. Van Sinderen. Towards runtime discovery, selec-
tion and composition of semantic services. Computer communications, 34(2):159–168,
2011.

[56] J. Danado and F. Paternò. Puzzle: A mobile application development environment
using a jigsaw metaphor. Journal of Visual Languages & Computing, 25(4):297–315,
2014.

[57] F. Daniel, M. Matera, F. Daniel, and M. Matera. Mashups. Springer, 2014.

[58] S. Debois, T. T. Hildebrandt, and T. Slaats. Replication, refinement & reachability:
complexity in dynamic condition-response graphs. Acta Informatica, 55(6):489–520,
2018.

[59] S. Dustdar and W. Schreiner. A survey on web services composition. Int. J. Web
Grid Serv., 1(1):1–30, August 2005.

[60] J. El Hadad, M. Manouvrier, and M. Rukoz. Tqos: Transactional and qos-aware
selection algorithm for automatic web service composition. IEEE Transactions on
Services Computing, 3(1):73–85, 2010.

[61] K. Elgazzar, A. E. Hassan, and P. Martin. Clustering WSDL documents to bootstrap
the discovery of web services. In Web Services (ICWS), 2010 IEEE International
Conference on, pages 147–154. IEEE, 2010.

[62] K. Elgazzar, H. S. Hassanein, and P. Martin. Daas: Cloud-based mobile web service
discovery. Pervasive Mob. Comput., 13:67–84, 2014.

[63] G. Falazi, U. Breitenbücher, F. Daniel, A. Lamparelli, F. Leymann, and V. Yussupov.
Smart contract invocation protocol (SCIP): A protocol for the uniform integration
of heterogeneous blockchain smart contracts. In S. Dustdar, E. Yu, C. Salinesi,
D. Rieu, and V. Pant, editors, Advanced Information Systems Engineering - 32nd
International Conference, CAiSE 2020, Grenoble, France, June 8-12, 2020, Proceed-
ings, volume 12127 of Lecture Notes in Computer Science, pages 134–149. Springer,
2020.

155

BIBLIOGRAPHY

[64] G. Falazi, U. Breitenbücher, M. Falkenthal, L. Harzenetter, F. Leymann, and V. Yus-
supov. Blockchain-based collaborative development of application deployment mod-
els. In H. Panetto, C. Debruyne, H. A. Proper, C. A. Ardagna, D. Roman, and
R. Meersman, editors, On the Move to Meaningful Internet Systems. OTM 2018 Con-
ferences - Confederated International Conferences: CoopIS, C&TC, and ODBASE
2018, Valletta, Malta, October 22-26, 2018, Proceedings, Part I, volume 11229 of
Lecture Notes in Computer Science, pages 40–60. Springer, 2018.

[65] W. Fdhila, C. Indiono, S. Rinderle-Ma, and M. Reichert. Dealing with change in
process choreographies: Design and implementation of propagation algorithms. In-
formation Systems, 49:1–24, 2015.

[66] G. Fenza, D. Furno, and V. Loia. Hybrid approach for context-aware service discovery
in healthcare domain. J. Comput. Syst. Sci., 78(4):1232–1247, 2012.

[67] R. T. Fielding and R. N. Taylor. Principled design of the modern web architecture.
ACM Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.

[68] F. Firouzi, S. Jiang, K. Chakrabarty, B. J. Farahani, M. Daneshmand, J. Song,
and K. Mankodiya. Fusion of iot, ai, edge-fog-cloud, and blockchain: Challenges,
solutions, and a case study in healthcare and medicine. IEEE Internet Things J.,
10(5):3686–3705, 2023.

[69] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau. An empirical study
on web service evolution. In 2011 IEEE International Conference on Web Services,
pages 49–56. IEEE, 2011.

[70] A. Gallidabino, C. Pautasso, V. Ilvonen, T. Mikkonen, K. Systä, J.-P. Voutilainen,
and A. Taivalsaari. On the architecture of liquid software: Technology alternatives
and design space. In 2016 13th Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA), pages 122–127, 2016.

[71] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer Berlin Heidelberg, 1999.

[72] Z. Gao, Y. Fan, C. Wu, W. Tan, and J. Zhang. Service recommendation from
the evolution of composition patterns. In 2017 IEEE International Conference on
Services Computing (SCC), pages 108–115, 2017.

[73] L. García-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber. Optimized execution
of business processes on blockchain. In Business Process Management: 15th Interna-
tional Conference, BPM 2017, Barcelona, Spain, September 10–15, 2017, Proceedings
15, pages 130–146. Springer, 2017.

156

BIBLIOGRAPHY

[74] D. Georgakopoulos and M. P. Papazoglou. Service-Oriented Computing. The MIT
Press, 11 2008.

[75] M. Ghallab, A. Howe, D. McDermott, A. Ram, M. Veloso, D. Weld, and W. David.
Pddl - the planning domain definition language (version 1.2). Technical report, Yale
Center for Computational Vision and Control, 1998.

[76] G. Ghiani, F. Paternò, L. D. Spano, and G. Pintori. An environment for end-user
development of web mashups. International Journal of Human-Computer Studies,
87:38–64, 2016.

[77] L. Hamel, M. Graiet, M. Kmimech, M. T. Bhiri, and W. Gaaloul. Verifying com-
posite service transactional behavior with EVENT-B. In I. Crnkovic, V. Gruhn, and
M. Book, editors, Software Architecture - 5th European Conference, ECSA 2011, Es-
sen, Germany, September 13-16, 2011. Proceedings, volume 6903 of Lecture Notes in
Computer Science, pages 67–74. Springer, 2011.

[78] P. Hamilton and D. J. Wigdor. Conductor: Enabling and understanding cross-
device interaction. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI’14, page 2773–2782, New York, NY, USA, 2014. Association
for Computing Machinery.

[79] S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain. Semantic measures based on RDF
projections: Application to content-based recommendation systems. In R. Meers-
man, H. Panetto, T. S. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. D. Leenheer, and
D. Dou, editors, On the Move to Meaningful Internet Systems: OTM 2013 Confer-
ences - Confederated International Conferences: CoopIS, DOA-Trusted Cloud, and
ODBASE 2013, Graz, Austria, September 9-13, 2013. Proceedings, volume 8185 of
Lecture Notes in Computer Science, pages 606–615. Springer, 2013.

[80] J. Hartman, U. Manber, L. Peterson, and T. Proebsting. Liquid software: A new
paradigm for networked systems. Technical report, USA, 1996.

[81] O. Hatzi, M. Nikolaidou, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and I. Vla-
havas. Semantically aware web service composition through AI planning. IJAIT,
2015.

[82] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and I. Vlahavas. The
PORSCE II framework: Using AI planning for automated semantic Web service
composition. The Knowledge Engineering Review, 28(02):137–156, 2013.

[83] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers, 2011.

157

BIBLIOGRAPHY

[84] T. Henry, A. Brahem, N. Laga, J. Hatin, W. Gaaloul, and B. Benatallah. Trustworthy
cross-organizational collaborations with hybrid on/off-chain declarative choreogra-
phies. In Service-Oriented Computing: 19th International Conference, ICSOC 2021,
Virtual Event, November 22–25, 2021, Proceedings, page 81–96. Springer-Verlag,
2021.

[85] T. T. Hildebrandt, T. Slaats, H. A. López, S. Debois, and M. Carbone. Declarative
choreographies and liveness. In Formal Techniques for Distributed Objects, Com-
ponents, and Systems: 39th IFIP WG 6.1 International Conference, FORTE 2019,
page 129–147. Springer-Verlag, 2019.

[86] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[87] X. Hu, E. C. H. Ngai, G. Castellano, B. Hu, J. J. P. C. Rodrigues, and J. Song. Special
issue on “toward intelligent internet of medical things and its covid-19 applications
and beyond”. IEEE Internet of Things Journal, 8(21):15649–15651, 2021.

[88] R. Hull, V. S. Batra, Y.-M. Chen, A. Deutsch, F. F. T. Heath III, and V. Vianu.
Towards a shared ledger business collaboration language based on data-aware pro-
cesses. In Q. Z. Sheng, E. Stroulia, S. Tata, and S. Bhiri, editors, Service-Oriented
Computing, pages 18–36, Cham, 2016. Springer International Publishing.

[89] C. Indiono and S. Rinderle-Ma. Dynamic change propagation for process choreogra-
phy instances. In OTM Conferences, pages 334–352. Springer, 2017.

[90] K. Khalil, K. Elgazzar, M. Seliem, and M. Bayoumi. Resource discovery techniques
in the internet of things: A review. Internet of Things, 12:100293, 2020.

[91] F. Komeiha, N. Cheniki, Y. Sam, A. Jaber, N. Messai, and T. Devogele. LDS:
java library for linked open data based similarity measures. In J. He, H. Purohit,
G. Huang, X. Gao, and K. Deng, editors, IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology, WI/IAT 2020,
Melbourne, Australia, December 14-17, 2020, pages 476–481. IEEE, 2020.

[92] F. Komeiha, N. Cheniki, Y. Sam, A. Jaber, N. Messai, and T. Devogele. To-
wards a privacy conserved and linked open data based device recommendation in
iot. In H. Hacid, F. Outay, H. Paik, A. Alloum, M. Petrocchi, M. R. Bouadjenek,
A. Beheshti, X. Liu, and A. Maaradji, editors, Service-Oriented Computing - ICSOC
2020 Workshops - AIOps, CFTIC, STRAPS, AI-PA, AI-IOTS, and Satellite Events,
Dubai, United Arab Emirates, December 14-17, 2020, Proceedings, volume 12632 of
Lecture Notes in Computer Science, pages 32–39. Springer, 2020.

158

BIBLIOGRAPHY

[93] J. Kwon, H. Kim, D. Lee, and S. Lee. Redundant-free web services composition
based on a two-phase algorithm. In 2008 IEEE International Conference on Web
Services (ICWS 2008), September 23-26, 2008, Beijing, China, pages 361–368. IEEE
Computer Society, 2008.

[94] H. Labbaci. A Social Approach for Web Service Discovery and Community Detection.
PhD thesis, University of Science and Technology Houari Boumediène, Algiers, 2020.

[95] H. Labbaci, N. Cheniki, Y. Sam, N. Messai, B. Medjahed, and Y. Aklouf. A linked
open data approach for web service evolution. In H. Panetto, C. Debruyne, M. Hepp,
D. Lewis, C. A. Ardagna, and R. Meersman, editors, On the Move to Meaningful
Internet Systems: OTM 2019 Conferences - Confederated International Conferences:
CoopIS, ODBASE, C&TC 2019, Rhodes, Greece, October 21-25, 2019, Proceedings,
volume 11877 of Lecture Notes in Computer Science, pages 265–281. Springer, 2019.

[96] H. Labbaci, B. Medjahed, and Y. Aklouf. Learning interactions from web service
logs. In International Conference on Database and Expert Systems Applications,
pages 275–289. Springer, 2017.

[97] H. Labbaci, B. Medjahed, Y. Aklouf, and Z. Malik. Follow the leader: A social
network approach for service communities. In Q. Z. Sheng, E. Stroulia, S. Tata,
and S. Bhiri, editors, Service-Oriented Computing - 14th International Conference,
ICSOC 2016, Banff, AB, Canada, October 10-13, 2016, Proceedings, volume 9936 of
Lecture Notes in Computer Science, pages 705–712. Springer, 2016.

[98] H. Labbaci, B. Medjahed, F. Binzagr, and Y. Aklouf. A deep learning approach for
web service interactions. In A. P. Sheth, A. Ngonga, Y. Wang, E. Chang, D. Slezak,
B. Franczyk, R. Alt, X. Tao, and R. Unland, editors, Proceedings of the International
Conference on Web Intelligence, Leipzig, Germany, August 23-26, 2017, pages 848–
854. ACM, 2017.

[99] H. Labbaci, B. Medjahed, F. Binzagr, and Y. Aklouf. A deep learning approach for
web service interactions. In A. P. Sheth, A. Ngonga, Y. Wang, E. Chang, D. Slezak,
B. Franczyk, R. Alt, X. Tao, and R. Unland, editors, Proceedings of the International
Conference on Web Intelligence, Leipzig, Germany, August 23-26, 2017, pages 848–
854. ACM, 2017.

[100] F. Lécué and A. Léger. A formal model for semantic Web service composition. In
The Semantic Web-ISWC 2006, pages 385–398. Springer, 2006.

[101] F. Lécué, E. Silva, and L. F. Pires. A framework for dynamic web services composi-
tion. In Emerging Web Services Technology. Springer, 2008.

159

BIBLIOGRAPHY

[102] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia - a large-scale, mul-
tilingual knowledge base extracted from wikipedia. Semantic Web Journal, 6(2):167–
195, 2015.

[103] A. L. Lemos, F. Daniel, and B. Benatallah. Web service composition: A survey of
techniques and tools. ACM Comput. Surv., 48(3):33, 2016.

[104] X. Li, X. Zhang, P. Wang, and Z. Cao. Web services recommendation based
on metapath-guided graph attention network. The Journal of Supercomputing,
78(10):12621–12647, 2022.

[105] F. Liu, Y. Shi, J. Yu, T. Wang, and J. Wu. Measuring similarity of web services
based on WSDL. In Web Services (ICWS), 2010 IEEE International Conference on.
IEEE, 2010.

[106] O. López-Pintado, M. Dumas, L. García-Bañuelos, and I. Weber. Controlled flex-
ibility in blockchain-based collaborative business processes. Information Systems,
104:101622, 2022.

[107] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, and A. Ponomarev.
Caterpillar: A business process execution engine on the ethereum blockchain. Soft-
ware: Practice and Experience, 49(7):1162–1193, 2019.

[108] A. Louati, J. El Haddad, and S. Pinson. Towards agent-based and trust-oriented
service discovery approach in social networks. In TRUST@ AAMAS, pages 78–89,
2014.

[109] Y. Ma, S.-H. Jang, and J. Lee. Ontology-based resource management for cloud
computing. In Intelligent Information and Database Systems, pages 343–352, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[110] Z. Maamar, N. Faci, L. Krug Wives, H. Yahyaoui, and H. Hacid. Towards a method
for engineering social web services. In J. Ralyté, I. Mirbel, and R. Deneckère, ed-
itors, Engineering Methods in the Service-Oriented Context, pages 153–167, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[111] Z. Maamar, N. Faci, L. Wives, Y. Badr, P. Santos, and J. Palazzo M. Oliveira. Using
social networks for web services discovery. IEEE Internet Computing, 15(4):48–54,
2011.

160

BIBLIOGRAPHY

[112] E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem, A. Aboul-
naga, and T. Berners-Lee. A demonstration of the solid platform for social web ap-
plications. In J. Bourdeau, J. Hendler, R. Nkambou, I. Horrocks, and B. Y. Zhao, ed-
itors, Proceedings of the 25th International Conference on World Wide Web, WWW
2016, Montreal, Canada, April 11-15, 2016, Companion Volume, pages 223–226.
ACM, 2016.

[113] A. Mattioli and F. Paternò. A visual environment for end-user creation of iot cus-
tomization rules with recommendation support. In Proceedings of the International
Conference on Advanced Visual Interfaces, pages 1–5, 2020.

[114] S. McIlraith, T. Son, and H. Zeng. Semantic web services. Intelligent Systems, IEEE,
16:46 – 53, 04 2001.

[115] W. Mebrek and A. Bouzeghoub. A multi-agent based framework for RDF stream
processing. In L. Barolli, F. Hussain, and T. Enokido, editors, Advanced Information
Networking and Applications - Proceedings of the 36th International Conference on
Advanced Information Networking and Applications (AINA-2022), Sydney, NSW,
Australia, 13-15 April 2022, Volume 1, volume 449 of Lecture Notes in Networks and
Systems, pages 516–528. Springer, 2022.

[116] B. Medjahed, A. Bouguettaya, and B. Benatallah. Introduction to special issue on
semantic web services. ACM Trans. Internet Techn., 8(1):1, 2007.

[117] J. Mendling, I. Weber, W. M. P. van der Aalst, J. vom Brocke, C. Cabanillas,
F. Daniel, S. Debois, C. D. Ciccio, M. Dumas, S. Dustdar, A. Gal, L. García-
Bañuelos, G. Governatori, R. Hull, M. L. Rosa, H. Leopold, F. Leymann, J. Recker,
M. Reichert, H. A. Reijers, S. Rinderle-Ma, A. Solti, M. Rosemann, S. Schulte, M. P.
Singh, T. Slaats, M. Staples, B. Weber, M. Weidlich, M. Weske, X. Xu, and L. Zhu.
Blockchains for business process management - challenges and opportunities. ACM
Trans. Manag. Inf. Syst., 9(1):4:1–4:16, 2018.

[118] N. Messai, M. Devignes, A. Napoli, and M. Smaïl-Tabbone. Many-valued concept
lattices for conceptual clustering and information retrieval. In M. Ghallab, C. D.
Spyropoulos, N. Fakotakis, and N. M. Avouris, editors, ECAI 2008 - 18th European
Conference on Artificial Intelligence, Patras, Greece, July 21-25, 2008, Proceedings,
volume 178 of Frontiers in Artificial Intelligence and Applications, pages 127–131.
IOS Press, 2008.

[119] N. Messai, M. Devignes, A. Napoli, and M. Smaïl-Tabbone. Using domain knowledge
to guide lattice-based complex data exploration. In H. Coelho, R. Studer, and M. J.

161

BIBLIOGRAPHY

Wooldridge, editors, ECAI 2010 - 19th European Conference on Artificial Intelli-
gence, Lisbon, Portugal, August 16-20, 2010, Proceedings, volume 215 of Frontiers in
Artificial Intelligence and Applications, pages 847–852. IOS Press, 2010.

[120] R. Meymandpour and J. G. Davis. Linked data informativeness. In Y. Ishikawa, J. Li,
W. Wang, R. Zhang, and W. Zhang, editors, Web Technologies and Applications -
15th Asia-Pacific Web Conference, APWeb 2013, Sydney, Australia, April 4-6, 2013.
Proceedings, volume 7808 of Lecture Notes in Computer Science, pages 629–637.
Springer, 2013.

[121] R. Meymandpour and J. G. Davis. Enhancing recommender systems using linked
open data-based semantic analysis of items. In J. G. Davis and A. Bozzon, editors, 3rd
Australasian Web Conference, AWC 2015, Sydney, Australia, January 2015, volume
166 of CRPIT, pages 11–17. Australian Computer Society, 2015.

[122] T. Mikkonen, K. Systä, and C. Pautasso. Towards liquid web applications. In P. Cimi-
ano, F. Frasincar, G.-J. Houben, and D. Schwabe, editors, Engineering the Web in
the Big Data Era, pages 134–143, Cham, 2015. Springer International Publishing.

[123] G. A. Miller and W. G. Charles. Contextual correlates of semantic similarity. Lan-
guage and Cognitive Processes, 6(1):1–28, 1991.

[124] B. Montz, P. Bridges, P. A. Bigot, R. Piltz, J. J. Hartman, O. Spatscheck, L. L.
Peterson, A. Bavier, and T. A. Proebsting. Joust: A platform for liquid software.
Computer, 32(04):50–56, 1999.

[125] F. Moscato, R. Aversa, B. Di Martino, T.-F. Fortiş, and V. Munteanu. An analysis
of mosaic ontology for cloud resources annotation. In Proceedings of the Federated
Conference onComputer Science and Information Systems, 2011.

[126] M. L. Mouhoub, D. Grigori, and M. Manouvrier. A framework for searching semantic
data and services with SPARQL. In International Conference on Service-Oriented
Computing, ICSOC 2014, Paris, France, pages 123–138, 2014.

[127] R. R. Mukkamala. A formal model for declarative workflows: dynamic condition
response graphs. PhD thesis, IT University of Copenhagen, 2012.

[128] R. R. Mukkamala, T. Hildebrandt, and T. Slaats. Towards trustworthy adaptive case
management with dynamic condition response graphs. In 2013 17th IEEE Interna-
tional Enterprise Distributed Object Computing Conference, EDOC, pages 127–136,
2013.

162

BIBLIOGRAPHY

[129] H. Naim, M. Aznag, M. Quafafou, and N. Durand. Probabilistic approach for diver-
sifying web services discovery and composition. In S. Reiff-Marganiec, editor, IEEE
International Conference on Web Services, ICWS 2016, San Francisco, CA, USA,
June 27 - July 2, 2016, pages 73–80. IEEE Computer Society, 2016.

[130] S. Najar, M. Kirsch-Pinheiro, C. Souveyet, and L. A. Steffenel. Service discovery
mechanism for an intentional pervasive information system. In C. A. Goble, P. P.
Chen, and J. Zhang, editors, 2012 IEEE 19th International Conference on Web Ser-
vices, Honolulu, HI, USA, June 24-29, 2012, pages 520–527. IEEE Computer Society,
2012.

[131] I. A. Narayana and T.Roopa. Extending android application programming framework
for seamless cloud integration. In Proceedings of the 2012 IEEE First International
Conference on Mobile Services, pages 96–104. IEEE Computer Society, 2012.

[132] D. Nouicer, N. Messai, Y. Sam, and I. C. Msadaa. Semantic rule-based device rec-
ommendation for service migration in multiple device contexts. In 30th IEEE In-
ternational Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises, WETICE 2021, Bayonne, France, October 27-29, 2021, pages 171–176.
IEEE, 2021.

[133] S. Ovadia. Automate the internet with “if this then that”(ifttt). Behavioral & social
sciences librarian, 33(4):208–211, 2014.

[134] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented com-
puting: State of the art and research challenges. Computer, 40(11):38–45, 2007.

[135] A. Passant. Measuring semantic distance on linking data and using it for resources
recommendations. In AAAI spring symposium: linked data meets artificial intelli-
gence, volume 77, page 123, 2010.

[136] C. Pautasso. RESTful Web Services: Principles, Patterns, Emerging Technologies,
pages 31–51. Springer New York, New York, NY, 2014.

[137] G. Piao, S. showkat Ara, and J. G. Breslin. Computing the semantic similarity of
resources in DBpedia for recommendation purposes. In Semantic Technology, pages
185–200. Springer International Publishing, 2016.

[138] G. Pirrò. Reword: Semantic relatedness in the web of data. In J. Hoffmann and
B. Selman, editors, Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, July 22-26, 2012, Toronto, Ontario, Canada, pages 129–135. AAAI
Press, 2012.

163

BIBLIOGRAPHY

[139] P. Plebani and B. Pernici. URBE: Web service retrieval based on similarity evalua-
tion. Knowledge and Data Engineering, IEEE Transactions on, 2009.

[140] C. Prybila, S. Schulte, C. Hochreiner, and I. Weber. Runtime verification for busi-
ness processes utilizing the Bitcoin blockchain. Future generation computer systems,
107:816–831, 2020.

[141] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, Inc., May 2007.

[142] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes. An integrated se-
mantic web service discovery and composition framework. IEEE Transactions on
Services Computing, 9(4):537–550, 2016.

[143] H. Rubenstein and J. Goodenough. Contextual correlates of synonymy. Commun.
ACM, 8:627–633, 10 1965.

[144] M. Ruta, F. Scioscia, E. Di Sciascio, and G. Piscitelli. Semantic matchmaking for
location-aware ubiquitous resource discovery. International Journal On Advances in
Intelligent Systems, 4(3/4):113–127, 2012.

[145] D. Sánchez, M. Batet, D. Isern, and A. Valls. Ontology-based semantic similarity:
A new feature-based approach. Expert Systems with Applications, 39(9):7718–7728,
2012.

[146] V. Saquicela, L. M. Vilches-Blázquez, and O. Corcho. Semantic annotation of restful
services using external resources. volume 6385, pages 266–276, 07 2010.

[147] M. Schrepp, A. Hinderks, and J. Thomaschewski. Construction of a benchmark for
the user experience questionnaire (ueq). IJIMAI, 4(4):40–44, 2017.

[148] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and isolation for trans-
actional processes. ACM Transactions on Database Systems (TODS), 27(1):63–116,
2002.

[149] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu. Web services
composition: A decade’s overview. Inf. Sci., 280:218–238, 2014.

[150] M. Shi, J. Liu, et al. Functional and contextual attention-based LSTM for service
recommendation in mashup creation. IEEE Transactions on Parallel and Distributed
Systems, 30(5):1077–1090, 2018.

[151] B. Stein. Functional models in configuration systems. PhD thesis, University of
Paderborn, Germany, 1995.

164

BIBLIOGRAPHY

[152] V. Suraci, S. Mignanti, and A. Aiuto. Context-aware semantic service discovery. In
2007 16th IST Mobile and Wireless Communications Summit, pages 1 – 5, 08 2007.

[153] A. ter Hofstede, W. M. van der Aalst, A. H. ter Hofstede, and M. Weske. Business
process management: A survey. In Business Process Management: International
Conference, BPM 2003 Eindhoven, The Netherlands, June 26–27, 2003 Proceedings
1, pages 1–12. Springer, 2003.

[154] O. Tibermacine, C. Tibermacine, and F. Cherif. Wssim: a tool for the measurement
of web service interface similarity. In Proceedings of the french-speaking Conference
on Software Architectures (CAL), 2013.

[155] A. Toninelli, A. Corradi, and R. Montanari. Semantic-based discovery to support
mobile context-aware service access. Comput. Commun., 31(5):935–949, 2008.

[156] H. T. Tran, A. Jahl, K. Geihs, R. Kuppili, X. T. Nguyen, and T. T. B. Huynh. Decom:
A framework to support evolution of iot services. In Proceedings of the Ninth Inter-
national Symposium on Information and Communication Technology, pages 389–396.
ACM, 2018.

[157] A. Tversky. Features of similarity. Psychological review, 84(4):327, 1977.

[158] S. Underwood. Blockchain beyond Bitcoin. Communications of the ACM, 59(11):15–
17, 2016.

[159] M. Unger, A. Tuzhilin, and A. Livne. Context-aware recommendations based on
deep learning frameworks. ACM Transactions on Management Information Systems
(TMIS), 11(2):1–15, 2020.

[160] P. Valderas, V. Torres, I. Mansanet, and V. Pelechano. A mobile-based solution for
supporting end-users in the composition of services. Multimedia Tools and Applica-
tions, 76(15):16315–16345, 2017.

[161] P. Valderas, V. Torres, and V. Pelechano. A social network for supporting end users
in the composition of services: definition and proof of concept. Computing, pages
1–32, 2020.

[162] P. Valderas, V. Torres, and V. Pelochano. Supporting a hybrid composition of mi-
croservices. the eucaliptool platform. Journal of Software Engineering Research and
Development, 8:1–1, 2020.

[163] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H. M. W. Verbeek.
Choreography conformance checking: An approach based on BPEL and petri nets.

165

BIBLIOGRAPHY

In F. Leymann, W. Reisig, S. R. Thatte, and W. M. P. van der Aalst, editors, The
Role of Business Processes in Service Oriented Architectures, 16.07. - 21.07.2006,
volume 06291 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

[164] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business process
management: A survey. In W. M. P. van der Aalst, A. H. M. ter Hofstede, and
M. Weske, editors, Business Process Management, International Conference, BPM
2003, Eindhoven, The Netherlands, June 26-27, 2003, Proceedings, volume 2678 of
Lecture Notes in Computer Science, pages 1–12. Springer, 2003.

[165] M. P. Villalon, M. C. Suárez-Figueroa, R. García-Castro, and A. Gómez-Pérez. A
context ontology for mobile environments. In Proceedings of Workshop on Context,
Information and Ontologies - CIAO 2010 Co-located with EKAW 2010, volume 626,
Alemania, Octubre 2010. CEUR-WS.

[166] G. Vladislava. Semantic description of web services and possibilities of bpel4ws.
International Journal Information Theories and Applications, 13(2):183–187, Nov.
2006.

[167] S. Wang, W. A. Higashino, M. Hayes, and M. A. Capretz. Service evolution patterns.
In 2014 IEEE International Conference on Web Services, pages 201–208. IEEE, 2014.

[168] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua. Kgat: Knowledge graph attention
network for recommendation. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 950–958, 2019.

[169] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling. Un-
trusted business process monitoring and execution using blockchain. In M. La Rosa,
P. Loos, and O. Pastor, editors, Business Process Management, pages 329–347, Cham,
2016. Springer International Publishing.

[170] D. Wolters, J. Kirchhoff, C. Gerth, and G. Engels. Cross-device integration of android
apps. In Q. Z. Sheng, E. Stroulia, S. Tata, and S. Bhiri, editors, Service-Oriented
Computing, pages 171–185, Cham, 2016. Springer International Publishing.

[171] J. Wu, L. Chen, Z. Zheng, M. R. Lyu, and Z. Wu. Clustering web services to facilitate
service discovery. Knowledge and information systems, 38(1):207–229, 2014.

[172] F. Xie, L. Chen, D. Lin, Z. Zheng, and X. Lin. Personalized service recommendation
with mashup group preference in heterogeneous information network. IEEE Access,
7:16155–16167, 2019.

166

BIBLIOGRAPHY

[173] O. Yessenbayev, M. Comuzzi, G. Meroni, and D. C. D. Nguyen. A Middleware for
Hybrid Blockchain Applications: Towards Fast, Affordable, and Accountable Inte-
gration. In 21st International Conference on Service-Oriented Computing - ICSOC
2023, Rome, Italy, November 28th – December 1st, 2023, Proceedings, Lecture Notes
in Computer Science, 2023.

[174] A. V. Zarras, P. Vassiliadis, and I. Dinos. Keep calm and wait for the spike! in-
sights on the evolution of amazon services. In International Conference on Advanced
Information Systems Engineering, pages 444–458. Springer, 2016.

[175] G. Zou, Z. Qin, Q. He, P. Wang, B. Zhang, and Y. Gan. Deepwsc: Clustering
web services via integrating service composability into deep semantic features. IEEE
Transactions on Services Computing, 15(4):1940–1953, 2022.

167

