
HAL Id: tel-04349331
https://hal.science/tel-04349331v2

Submitted on 13 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cryptanalytic Time-Memory Trade-Off
Diane Leblanc-Albarel

To cite this version:
Diane Leblanc-Albarel. Cryptanalytic Time-Memory Trade-Off. Cryptography and Security [cs.CR].
INSA de Rennes, 2023. English. �NNT : 2023ISAR0011�. �tel-04349331v2�

https://hal.science/tel-04349331v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES
SCIENCES APPLIQUÉES DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Informatique

Par

Diane LEBLANC-ALBAREL
Cryptanalytic Time-Memory Trade-Off

Thèse présentée et soutenue à IRISA, le 12/10/2023
Unité de recherche : IRISA, CNRS
Thèse No : 23ISAR 27 / D23 - 27

Rapporteurs avant soutenance :

Orr Dunkelman Professeur, Haifa University, Israël
Orhun Kara Associate Professor, IYTE Izmır Institute of Technology, Turquie

Composition du Jury :
Président : Pierre-Alain Fouque Professeur, Université de Rennes, IRISA, France
Examinateur·rice·s : Orr Dunkelman Professeur, Haifa University, Israël

Orhun Kara Associate Professor, IYTE Izmır Institute of Technology, Turquie
Barbara Fila Maître de Conférence, INSA Rennes, IRISA, France
Bart Preneel Professeur, KU Leuven, Belgique
Philippe Oechslin Docteur, Objectif-Sécurité, Suisse

Dir. de thèse : Gildas Avoine Professeur, INSA Rennes, IRISA, France
Co. encadrant : Xavier Carpent Assistant Professor, Nottingham University, Royaume-Uni

Invité(s) :

Thèse de doctorat

Diane LEBLANC-ALBAREL

Directeur de thèse: Gildas AVOINE

Co-encadrant: Xavier CARPENT

Version finale, 15 décembre 2023

Remerciements

I would like to thank all the members of my jury: Barbara, Bart, Orhun, Orr, Philippe, and
Pierre-Alain for dedicating their time to my defense and reviewing my manuscript. Especially,
thanks to the reviewers for the extra time they devoted to review and comment on it. Your
valuable comments and suggestions have significantly improved the quality of this work.

Merci particulièrement à Xavier et Gildas. Vous êtes, chacun à votre manière, un exemple
pour moi, et j’aimerais devenir une chercheuse aussi accomplie que vous.

Merci Xavier pour ton accueil chaleureux à Nottingham, pour ton soutien et tes conseils.
Merci pour tous les cidres que tu m’as fait goûter et les discussions qui allaient avec. Merci
pour tout le temps que tu m’as accordé. Désolée pour toutes les fois où je t’ai coupé la parole
alors que tu essayais d’expliquer ton point de vue, et merci encore pour toutes ces après-midi
de discussions et de réflexion.

Merci Gildas pour toute ton aide et ton soutien. Merci pour tes conseils et ton écoute. Merci
pour ta bonne humeur. Merci énormément pour ton honnêteté et ta bienveillance. Merci de
m’avoir accordé autant de liberté. Merci infiniment pour tout le temps que tu m’as donné. Ma
thèse n’aurait pas été la même sans ton aide, tes conseils et ton investissement. Merci pour
toutes les opportunités que tu m’as offertes, et pour toutes les après-midi de discussion que
tu m’as accordées. Je te suis très reconnaissante et j’ai énormément apprécié travailler avec toi.

Merci Morgan pour ton soutien, ton aide, et ton honnêteté sans faille. Merci pour toutes
les fois où, quand je passais le week-end à travailler, tu ne m’en voulais pas et me préparais
de bons petits plats pour me remonter le moral.

Merci à toutes les personnes présentes à ma défense. Merci à ceux et celles qui auraient
voulu venir, mais qui ont accepté de ne pas le faire. Merci à toutes les personnes qui m’ont
soutenue, de près ou de loin, pendant ces 3 ans.

Contents

List of Contributions i

Résumé en Français iii

1. Introduction 1
1.1. Context . 1
1.2. Time Memory Trade-Off . 2
1.3. Use Cases . 4
1.4. Time-Memory-Data Trade-Off . 5
1.5. Problem Statement . 5
1.6. Thesis Structure . 6

2. Background 7
2.1. Overview . 7
2.2. Original TMTOs: Hellman Tables . 8
2.3. Other TMTOs Variants . 12
2.4. Variant Analyzed in the Thesis . 22
2.5. Vanilla Rainbow Tables Analysis . 23
2.6. Most Relevant Variants and Improvements . 26

3. Preliminary Results 31
3.1. Motivations . 31
3.2. Maximality Quantification . 32
3.3. Filtration Method . 33
3.4. Conclusion . 39

4. Distributed Filtration 41
4.1. Motivations . 41
4.2. Distributing Precomputation . 42
4.3. Experimental Set Up . 48
4.4. Results . 52
4.5. Conclusion . 53

5. Rainbow Tables on CPU 55
5.1. Motivations . 55

Contents

5.2. Environments and Scenarios Considered . 56
5.3. Evaluation of the Maximum TMTO Size . 58
5.4. Discussion . 61

6. Descending Stepped Rainbow Tables 65
6.1. Motivation . 65
6.2. DSRT Overview . 66
6.3. Analysis of DSRTs . 68
6.4. Experiments . 76
6.5. Evaluation . 78
6.6. Conclusion . 85

7. Ascending Stepped Rainbow Tables 87
7.1. Motivations . 87
7.2. Overview . 88
7.3. Characterization . 90
7.4. Comparison . 101
7.5. Discussion . 107
7.6. Conclusion . 114

8. Conclusion 117
8.1. Thesis Contributions . 117
8.2. Research Takeaways . 117
8.3. Future Works . 118

A. Appendices 123
A.1. Attack Phase with 1 step . 123
A.2. Attack Phase with τ steps . 124
A.3. Configurations . 125

Bibliography 127

List of Contributions

[NLAB+21] Cyrius Nugier, Diane Leblanc - Albarel, Agathe Blaise, Simon Masson, Paul
Huynh, Yris Brice Wandji Piugie. An Upcycling Tokenization Method for Credit
Card Numbers. In Elisa Bertino, Haya Shulman, and Michael Waidner, editors,
Computer Security Proceedings of the 18th International Conference on Security
and Cryptography – SECRYPT 2021, pages 15–25. SCITEPRESS 2021.

[ACLA21] Gildas Avoine, Xavier Carpent, Diane Leblanc-Albarel. Precomputation for
rainbow tables has never been so fast. In Elisa Bertino, Haya Shulman, and
Michael Waidner, editors, Computer Security – ESORICS 2021, pages 215–234.
Springer International Publishing.

[ACLA22] Gildas Avoine, Xavier Carpent, Diane Leblanc-Albarel. Rainbow Tables: How
Far Can CPU Go? In The Computer Journal, pages bxac147. October 2022.

[ACLA23] Gildas Avoine, Xavier Carpent, Diane Leblanc-Albarel. Stairway To Rainbow.
In Proceedings of the 2023 ACM Asia Conference on Computer and Commu-
nications Security ASIA CCS ’23, pages 215–234. page 286–299, New York,
USA, 2023. Association for Computing Machinery.

In submission soon

Gildas Avoine, Xavier Carpent, Diane Leblanc-Albarel. Ascending Stepped Rainbow Tables.

Résumé en Français

1. Contexte

Aujourd’hui, toutes nos données personnelles - depuis nos photographies, nos dossiers médicaux,
jusqu’à nos informations bancaires - sont traduites dans un langage complexe composé de ’1’
et de ’0’, un langage uniquement compréhensible par les machines et par les quelques experts
qui le maîtrisent. Ce basculement du monde physique au monde numérique a transformé nos
informations personnelles en flux de données. La protection de ces flux contre les menaces
potentielles et les acteurs malveillants nécessite des solutions de sécurité sophistiquées.

Les cryptographes, acteurs principaux de cette protection, conçoivent et implémentent des
algorithmes de chiffrement cryptographique conçus pour être extrêmement difficiles à briser,
et qui sont le fondement de la protection de nos données numériques, y compris sur Internet.

De manière générale, les chiffrements cryptographiques reposent sur des clés, que l’on peut
comparer à de très longs mots de passe aléatoires. Le terme "cryptographie symétrique" est
utilisé, lorsqu’une même clé sert à chiffrer et à déchiffrer l’information. Quand on utilise
une clé différente pour chiffrer et déchiffrer, on parle de cryptographie asymétrique. Les
cryptographes font constamment face aux cryptanalystes, qui tentent de briser les chiffrements
en trouvant des failles dans leur conception. Cette thèse se concentre sur un outil utilisé
par les cryptanalystes : Les Compromis Temps-Mémoire Cryptanalytiques (Time Memory
Trade-Off, TMTO).

Le dernier recours des cryptanalystes est l’attaque par recherche exhaustive, qui consiste
à essayer toutes les clés possibles pour récupérer une information chiffrée. Cependant, cette
approche se révèle souvent inefficace en raison du nombre important de possibilités. Les
attaques par dictionnaire sont une alternative consistant à calculer un maximum de possibilité
par avance pour pouvoir déchiffrer une information très rapidement le moment venu. Dans
ce cas, le problème n’est plus le temps, mais la mémoire requise pour stocker toutes ces
possibilités, rendant l’attaque irréaliste dans la plupart des scénarios.

Un bon chiffrement implique plus de 2128 clés possibles, quantité très importante, entravant
l’attaque par recherche exhaustive, et le stockage des clés dans un dictionnaire. Les TMTO
constituent un compromis se situant exactement entre la recherche exhaustive et l’attaque par
dictionnaire. On peut définir les TMTO comme un ensemble d’algorithmes spécifiquement
conçus pour attaquer des fonctions à sens unique. Ils sont principalement connus pour leur
utilisation contre un sous-ensemble de ces fonctions : les fonctions de hachage, dont le résultat
est appelé un haché. La nature à sens unique des fonctions de hachage est ce qui fait leur
particularité : alors qu’il est simple de calculer le haché d’une entrée donnée, il est difficile de
retrouver l’entrée d’origine uniquement à partir du haché.

Les TMTO constituent un outil permettant de retrouver l’entrée d’une fonction à sens

iv Résumé en Français

unique, plus rapidement que par la recherche exhaustive. Leur utilisation est divisée en deux
phases :

1. Une phase de précalcul durant laquelle des entrées possibles de la fonction de hachage
cible sont calculées. Cette phase est très longue, bien plus longue qu’une recherche
exhaustive mais se fait en amont de l’attaque en elle-même.

2. Une phase d’attaque qui consiste à utiliser les données précalculées pour retrouver
rapidement l’entrée correspondant au haché.

2. Compromis Temps-Mémoire Cryptanalytiques

2.1. Problème traité

Une fonction de hachage, notée h, prend une entrée de taille variable et renvoie une chaîne
d’octets de taille fixe. La transformation peut être exprimée ainsi :

h : {0, 1}∗ → {0, 1}n

L’ensemble {0, 1}∗ représente l’ensemble de toutes les entrées possibles et {0, 1}n est
l’ensemble des hachés de n bits possibles. Le symbole ∗ indique que la longueur du message
d’entrée est arbitraire, tandis que n est la longueur fixe du haché.

Il est important de noter que h est déterministe, ce qui signifie que pour une entrée donnée,
elle produit toujours le même résultat. Cependant, en raison de sa nature à sens unique,
étant donné un haché, il est impossible, dans un temps raisonnable, de retrouver l’entrée
correspondante. Cette propriété est connue sous le nom de résistance à la pré-image.

Pourtant, l’objectif d’une cryptanalyse consiste souvent à trouver la pré-image d’une fonction
à sens unique. C’est dans ce but que les TMTO sont utilisés. Leur finalité est de trouver la
pré-image d’un haché donné sans effectuer de recherche exhaustive.

Les TMTO utilisent de la mémoire pour stocker un ensemble d’entrées possibles sous la
forme de tables. Cela réduit considérablement le temps nécessaire pour trouver la pré-image
pendant la phase d’attaque. Plus on alloue de mémoire pour stocker les données précalculées,
moins la phase d’attaque est longue, d’où le concept de compromis temps-mémoire.

2.2. Objectif

Étant donné un espace de recherche A et un espace d’images B d’une fonction à sens unique h,
le problème que les TMTO visent à résoudre est de trouver x∗ avec x∗ ∈ A, tel que h(x∗) = y,
pour la fonction h, et une image y.

En notant N = |A|, l’attaque par force brute coûte O(N) opérations de hachage pendant
la phase d’attaque sans nécessiter aucun précalcul ni stockage. L’utilisation d’un dictionnaire,
elle, coûte O(N) opérations de hachage pendant une phase de précalcul ainsi que O(N) en
stockage, la phase d’attaque étant elle, seulement en O(1) (instantanée).

Un TMTO est un compromis entre les deux : avec M mémoire, la phase d’attaque a
une complexité de O(N2/M2) pour les cas typiques [BBS06] et la phase de précalcul a une
complexité de O(N). Cela signifie qu’utiliser un TMTO a du sens dans les scénarios suivants :

• L’attaque doit être effectuée un grand nombre de fois.

Compromis Temps-Mémoire Cryptanalytiques v

• L’attaque doit être très rapide mais l’attaquant dispose d’autant de temps qu’il le
souhaite pour se préparer (cas de la "lunch time attack"1).

• La puissance de calcul dont dispose l’attaquant n’est pas suffisante pour effectuer une
recherche exhaustive, mais il a accès au résultat d’un précalcul et peut l’utiliser pour
une attaque.

Bien que les TMTO soient généralement perçus comme un compromis entre le temps
d’attaque et la mémoire, d’autres caractéristiques sont importantes, notamment la couverture
et le temps de précalcul.

La couverture est la proportion d’entrées de A représentée dans les données générées lors
de la phase de précalcul. Une couverture élevée implique une forte probabilité de succès pour
l’attaque. À l’inverse, une faible couverture conduira à une probabilité de succès inférieure.
Plus la couverture est élevée, plus la phase de précalcul est longue, car davantage d’applications
de la fonction de hachage doivent être effectuées pour générer des tables avec un nombre plus
important de pré-images.

2.3. Utilisation d’un TMTO

2.3.1. Phase de précalcul

Lors de la phase de précalcul, une ou plusieurs matrices composées d’éléments de l’espace
A sont créées. À la fin de cette phase, seules les premières et dernières colonnes de chaque
matrice sont conservées, tous les autres éléments sont éliminés. On appelle table, les éléments
de la première et dernière colonne conservés à la fin de la phase de précalcul. Ce sont ces
tables qui sont stockées puis utilisées lors de l’attaque. Le stockage des tables précalculées
présente un coût en mémoire appelé M .

Les différentes variantes des TMTO se distinguent par les méthodes de calcul et les formes
des matrices générées. Selon la variante utilisée, les matrices peuvent avoir des lignes avec un
nombre variable de colonnes. Dans ce cas, seuls les premiers et derniers éléments de chaque
ligne sont stockés une fois la phase de précalcul achevée.

Le temps requis pour la phase de précalcul est dépendant de la variante utilisée et de la
couverture ciblée. Par exemple, générer un TMTO qui couvre seulement 70% de l’espace est
moins coûteux qu’un TMTO qui couvre 90%. Au-delà d’un certain taux de couverture, une
augmentation de celui-ci augmente fortement le coût de précalcul. Par exemple, augmenter le
taux de couverture de 99% à 99.9% requiert beaucoup plus de ressources que de 71% à 71.9%.

En définitive, le temps requis pour le précalcul dépasse N , allant de 3 à 4 fois N pour les
variantes améliorées (pour une couverture faible) à des centaines, voir des milliers, de N pour
d’autres variantes.

2.3.2. Phase d’attaque

Les tables générées durant la phase de précalcul sont utilisées pour l’attaque. Indépendamment
de la variante considérée, cette phase suppose que, l’élément recherché x∗, se trouve dans
la matrice précalculée. Si cette hypothèse est vérifiée, il devient possible de transformer y
jusqu’à ce qu’il corresponde à un élément stocké dans la table précalculée, c’est à dire un

1https://en.wikipedia.org/wiki/Chosen-ciphertext_attack#Lunchtime_attacks

https://en.wikipedia.org/wiki/Chosen-ciphertext_attack#Lunchtime_attacks

vi Résumé en Français

élément de la dernière colonne de la matrice. En récupérant l’élément correspondant de la
première colonne, la ligne est recalculée jusqu’à ce que x∗ soit atteint (voir le chapitre 2 pour
plus de détails).

L’aspect le plus chronophage de cette phase est d’éliminer les faux positifs. Cependant, le
temps moyen de l’attaque, T est généralement de l’ordre de T = N2/M2 (voir le chapitre 8
pour une discussion à ce sujet). Une configuration typique est de choisir M = N2/3, ce qui
implique un temps d’attaque T de l’ordre de T = N2/3, considérablement plus efficace que la
recherche exhaustive.

3. Cas d’utilisation

3.1. Cassage de mots de passe

Les TMTO sont, et ont été, largement utilisés pour le cassage de mots de passe, par exemple,
dans les cassages des mots de passe Windows LAN Manager (LM) [Oec03] ou Unix [MBPV06].
En réponse à ces dernières attaques, diverses contre-mesures ont été introduites pour compli-
quer l’utilisation des attaques précalculées dont font partie les TMTO.

La contre-mesure la plus impactante a été l’ajout d’un sel ("salt" en anglais) aléatoire
ajouté au mot de passe avant le hachage. C’est une chaîne de bits aléatoire, ayant une taille
généralement comprise entre 8 et 64 bits. Cette chaîne est concaténée avec le mot de passe
avant d’être haché. Cela garantit que même si deux utilisateurs ont le même mot de passe, leurs
hachés correspondants seront différents si deux sels différents ont été utilisés. Si l’utilisation
du sel est bien implémentée, il n’est révélé qu’au cours de la phase d’attaque et est donc
inconnu lors de la phase de précalcul. Par conséquent, pour tenir compte des sels, un TMTO
doit être généré pour chaque sel possible, ce qui entraîne une augmentation du temps de
précalcul jusqu’à un facteur pouvant aller jusqu’à 2s, où s est la longueur du sel. Dans la
plupart des cas, l’utilisation de sel rend donc les TMTO inutilisables en raison de son impact
sur la phase de précalcul.

Malgré l’introduction du sel pour protéger les services contre les attaques précalculées, et
notamment contre les TMTO, une partie importante des mots de passe reste non salées. Les
TMTO continuent donc d’être utilisés. En particulier, ils sont fréquemment utilisés par des
testeurs d’intrusion ("pentester" en anglais) afin d’identifier les mots de passe potentiellement
faibles dans les bases de données compromises. Leur application s’étend également à la
cybercriminalité, lorsqu’il est nécessaire d’inverser des données hachées pour récupérer des
informations.

3.2. Autres Utilisations

Depuis l’introduction des TMTO par Hellman en 1980 [Hel80], des variantes de la construction
originale de TMTO ont été développées. Certaines ont été conçues pour être appliquées à
des chiffrements par flux [BS00, Bab95, Gol97], ou généralisées pour se servir de données
supplémentaires (ces variantes sont appelées Time-Memory-Data Trade-Off [BMS05]). De plus,
des vulnérabilités ont été découvertes dans d’autres chiffrements tels que LILI-128 [SRQL02] et
Toyocrypt, destinés à être utilisés par le gouvernement japonais, grâce à des attaques réussies
de TMTO [KGL06, KCGL09]. Par ailleurs, trois candidats eSTREAM, Grain [HJMM08],
Lex [DK08a], et MICKEY [HK05], ont également été attaqués à l’aide de TMTO, provoquant
des modifications considérables dans la conception de ces chiffrements. Les TMTO sont

Problématique vii

également utilisés pour d’autres applications spécifiques, notamment lorsque l’espace d’entrée
n’est pas uniformément distribué [ACL15, Hoc09], en utilisant une mémoire externe [ACKT17,
KHP13], un FPGA [MBPV06, SRQL02] ou un GPU [KSH+15, LLH15].

4. Problématique

Ces dernières années, divers facteurs, tels que l’utilisation de sel ou de fonctions de hachage
lentes, ont rendu les TMTO plus difficiles à utiliser. Toutefois, l’utilisation et la compré-
hension des TMTO pourraient également ne pas avoir suffisamment évolué pour augmenter
suffisamment leur efficacité. En particulier, le temps de précalcul requis pour gérer les espaces
utilisés aujourd’hui est devenu excessivement coûteux.

Le grand défi de cette thèse est de mettre en évidence les limites actuelles des TMTO, de
suggérer des solutions pratiques et des variantes alternatives pour repousser ces limites, et
enfin de fournir une compréhension plus approfondie des TMTO.

Cette thèse vise donc trois objectifs :

1. Identifier les facteurs limitant une application plus large des TMTO.

2. Proposer des améliorations et de nouvelles variantes de TMTO qui pourraient efficace-
ment effacer ou repousser ces limites.

3. Introduire une nouvelle perspective sur le problème des TMTO. Jusqu’à présent, l’accent
principal des TMTO a été mis sur la mémoire et le temps d’attaque. Ce travail propose
cependant une stratégie plus complète, prenant également en compte la couverture et
le temps de précalcul. Ces facteurs doivent être considérés comme des composantes
intégrales des TMTO, de la même manière que la mémoire et le temps d’attaque.

5. Structure de la thèse

Le chapitre 2 présente les bases nécessaires à la compréhension de la thèse. Les différentes
variantes les plus connues des TMTO sont présentées, notamment les Tables de Hellman, les
Tables de Points Distingués, les Tables Arc-en-ciel et les Tables Arc-en-ciel Brumeuses. Le
choix d’étudier particulièrement la variante des Tables Arc-en-ciel est justifié, et une analyse
approfondie des variantes de celles-ci ainsi que leurs améliorations est proposée.

Le chapitre 3 présente les résultats préliminaires utilisés dans tous les chapitres ultérieurs
de la thèse. Certains de ces résultats ont probablement été utilisés officieusement avant cette
thèse, mais ils ont été officiellement introduits dans un premier article publié [ACLA21] durant
cette thèse.

Le chapitre 4 présente la méthode de filtration distribuée. Cette technique est spécifiquement
conçue pour diminuer de manière significative le temps de précalcul requis pour générer des
Tables Arc-en-ciel. Ce chapitre présente les complexités de la distribution du précalcul lors de
la mise en place de la filtration, et introduit une manière efficace de gérer cette complexité.
Des expériences réalisées sur différents environnements sont présentées pour vérifier l’efficacité
de cette méthode.

Le chapitre 5 identifie la limite actuelle empêchant une utilisation plus large des Tables
Arc-en-ciel, à savoir le temps de précalcul. Ce chapitre propose une analyse comparative

viii Résumé en Français

de différents scénarios utilisant différents environnements, en examinant l’espace maximal
atteignable dans un laps de temps donné ou pour un investissement monétaire donné.

Le chapitre 6 présente ensuite une nouvelle variante des Tables Arc-en-ciel appelée Des-
cending Stepped Rainbow Tables (Tables Escaliers Arc-en-ciel Descendantes). Cette variante
repousse la limite identifiée dans le chapitre 5 en introduisant une variante qui surpasse les
Tables Arc-en-ciel classiques. De plus, ce chapitre propose de comparer différentes variantes
non seulement en tenant principalement compte de leur temps d’attaque et de leur mémoire,
mais aussi en considérant leur couverture et temps de précalcul dans le compromis global.

Le chapitre 7 introduit une seconde nouvelle variante : les Ascending Stepped Rainbow
Tables (Tables Escaliers Arc-en-ciel Ascendantes). Cette variante surpasse les Tables Escaliers
Arc-en-ciel Descendantes dans certains cas, en particulier lorsque des couvertures élevées
sont visés. Tout comme pour les Tables Escaliers Arc-en-ciel Descendantes, une comparaison
prenant en compte le temps de précalcul et la couverture dans l’évaluation des variantes est
proposée.

Le chapitre 8, conclue sur les contributions de la thèse, aborde les problèmes ouverts
identifiés ainsi que les travaux futurs à réaliser.

Introduction 1
Why did the TMTO algorithm leave the password party buffet

immediately after tasting the food? Because it was too salty!

1.1. Context

Today, all our personal data — from our photographs and health records to our banking
details — are translated into a complex language of ones and zeros, a language that can only
be understood by machines and the few who understand it. This shift from the physical to the
digital world has transformed our personal information into binary data streams. Protecting
these data flows against potential threats and malicious actors requires sophisticated security
solutions.

Cryptography is one of the preferred solutions against these threats. By designing and
implementing cryptographic algorithms, or ciphers, cryptographers play a key role in this
protection. These ciphers, designed to be extremely difficult to break, are the foundation of
our digital data protection, especially on the Internet.

Generally speaking, cryptographic ciphers are based on keys, which can be compared to
very long random passwords. The term symmetrical cryptography is used when the same key
is used to (encrypt) and (decrypt) information. When a different key is used to encrypt and
decrypt, we speak of asymmetric cryptography.

Cryptographers constantly have to contend with cryptanalysts, who try to break ciphers by
finding breaches in their design.

This thesis focuses on a tool used by cryptanalysts: Cryptanalytic Time Memory Trade-Offs
(TMTOs). Cryptanalysts last resort is the brute-force attack (an exhaustive search), which
involves trying every possible key to recover encrypted information. However, this approach
often proves ineffective due to the sheer number of possibilities. Dictionary attacks are an
alternative, in which as many possibilities as possible are computed in advance, so that
information can be decrypted very quickly when needed. In this case, the problem is no longer
time, but the memory required to store all these possibilities, making the attack unrealistic in
most scenarios.

Good encryption involves more than 2128 possible keys. This is very time-consuming to
attack by brute force, and very difficult to store in a dictionary. TMTOs are an effective
compromise between exhaustive search and dictionary attack.

1.1.1. Concept

TMTOs are a set of algorithms specifically designed to attack one-way functions. They
are most known for their use against a particular category of one-way functions: the hash

2 Chapter 1. Introduction

functions. A hash function is a function that transforms the input into a new form, called a
hash value. This transformation is unique such that any minor alteration to the input results
in a drastically different hash value.

The one-way nature of hash functions is what makes them distinctive. While it is simple to
compute the hash of a given input, it is computationally challenging, or even impossible, to
retrieve the original input based solely on the hash.

TMTOs offer a more efficient alternative than to brute-force these one-way functions. They
provide a method to balance the computational time needed to reverse the hash function and
the memory required to store potential original inputs. The use of TMTOs involves creating
a matrix of possible inputs during a precomputation phase, which is subsequently used to
quickly find the correct input during an actual attack phase.

1.1.2. Problem Addressed

A hash function, denoted as h, is a function that takes an input and returns a fixed-size string
of bytes. The transformation can be expressed as:

h : {0, 1}∗ → {0, 1}n

Where {0, 1}∗ represents the set of all possible inputs , and {0, 1}n is the set of all possible
n-bit strings (the hash values). The ∗ denotes that the length of the input message can be
arbitrary long, while n is the fixed length of the hash value.

It is important to note that the hash function h is deterministic, meaning that for a given
input, it always produces the same hash value. However, due to its one-way nature, given a
hash value, it is computationally infeasible to retrieve the original input. This property is
known as preimage resistance.

In the context of cryptanalysis, the goal often becomes to find the preimage of a one way
function. It is for this end that TMTOs are used. The purpose of TMTOs is to find the
preimage (the original input) of a given hash value without exhaustively trying all possible
inputs.

TMTOs use memory to store a certain amount of precomputed inputs, which drastically
reduces the time needed to find the preimage during the attack phase. The more memory
is allocated for storing precomputed inputs, the less time took the attack phase, hence the
name Time-Memory Trade-Off.

1.2. Time Memory Trade-Off

1.2.1. Purpose

Given a searched space A and the one way function images space B, the problem that TMTO
aims to solve is defined as: given a one way function h : A→ B, and an image y ∈ B, find
x∗ ∈ A such that h(x∗) = y.

As mentioned before, this problem has two extreme solutions: (1) the brute force attack,
where all preimages in A are tested sequentially; and (2) the dictionary or precomputed attack,
where preimage-image pairs are computed and saved, and finding the preimage consists in
a simple lookup. Denoting N = |A|, the former attack costs O(N) hash operations during
the attack phase but requires no precomputation or storage. The latter costs O(N) hash

1.2. Time Memory Trade-Off 3

operations during a precomputation phase as well as O(N) in storage, but costs nothing in
the attack phase (barring the cost of the lookup).

A TMTO is a trade-off between the two: with M memory, the attack phase costs in the
order of O(N2/M2) for typical cases [BBS06] and the precomputation phase is in the order
of O(N). This means that using a TMTO makes sense in specific scenarios: the attack has to
be performed several times, the attack itself has to last for a short period of time ("lunch
time” attack1), or the attacker is not powerful enough to perform an exhaustive search but
can download the result of a precomputed phase, stored in what is called tables and use them
to perform the attack.

Although TMTO is usually perceived as a trade-off between attack time and memory, other
characteristics are important, namely: coverage and precomputation time. The coverage refers
to the proportion of A that is represented in the matrices generated during the precomputation
phase. High coverage will result in a high success probability of the attack, while low coverage
will lead to a lower success probability. The higher the coverage, the more time-consuming the
precomputation phase becomes because more applications of hash function must be performed
to generate tables with a larger number of represented preimages.

1.2.2. Overview

1.2.2.1. Precomputation Phase

In the precomputation phase, matrices composed of elements from space A are created. At
the end of this phase, only the first and last columns of the matrix are stored for the attack
phase, while all other matrix elements are discarded. The elements stored for the attack phase
form the tables. A table is store for each matrix and is formed of the first and last columns
of the corresponding matrix. At the end of the precomputation phase, the tables storage
requires M memory.

The various TMTO variants are distinguished by their methods of matrix computation and
the resulting matrix shapes. Depending on the variant used, rows may have varying numbers
of columns. In such cases, the first and last elements of each row are stored at the end of the
precomputation phase.

The time required for the precomputation phase depends on the specific variant used and
the targeted coverage. For instance, generating a TMTO that covers only 70% of the space
costs significantly less than generating a TMTO that covers 90%. Beyond a certain point,
every incremental increase in coverage incurs a higher increase of the computation cost. For
instance, increasing coverage from 99% to 99.9% requires substantially more resources than
raising it from 71% to 71.9%.

Ultimately, the time required for precomputation exceeds N , ranging from 3 to 4 times
N for improved variants (with no extremely high coverage) to hundreds or even thousands
of times N for other variants. Coverage is not the only factor affecting precomputation
time. The attack time resulting from the precomputed matrix also influences it: tables that
allow faster attacks tend to require more precomputation. Conversely, tables that are quickly
precomputed might demand more memory or result in slower attack phases.

1https://en.wikipedia.org/wiki/Chosen-ciphertext_attack#Lunchtime_attacks

https://en.wikipedia.org/wiki/Chosen-ciphertext_attack#Lunchtime_attacks

4 Chapter 1. Introduction

1.2.2.2. Attack Phase

During the attack phase, tables generated during the precomputation phase are used. For
all variants, the attack assumes for each table that the searched element x∗ is in the matrix
corresponding to the table. If this assumption holds, it becomes possible to transform y until
it matches an element in the last column of the matrix — i.e., an element that has been
stored in a table. From this point, by retrieving the corresponding element from the first
column (also stored in the table), the row is precomputed until x∗ is reached (See Chapter 2
for more details).

The most time-consuming aspect of this phase is ruling out the false positives. However,
despite this, the average time for the attack phase, T , is typically in the order of T = N2/M2

(refer to Chapter 8 for a discussion on this point). A typical configuration is M = N2/3,
which results in an attack time T in the order of T = N2/3. This is considerably faster than
performing an exhaustive search.

1.3. Use Cases

1.3.1. Password Cracking

TMTOs have a significant role in password cracking applications, such as in the breaching
of Windows LAN Manager (LM) passwords [Oec03] and Unix passwords [MBPV06]. In
response to such attacks, various countermeasures have been introduced to complicate the
use of precomputed attacks.

The most substantial countermeasure has been the implementation of a random salt added
to the password prior to hashing. The salt, a random bit string typically ranging from 8 to
64 bits in size, is concatenated with the password before it is hashed. This ensures that even
if two users have the same password, their hashes will differ due to the unique salts. If well
implemented, the salt is only revealed during the attack phase, and is unknown during the
precomputation phase. Therefore, to account for the salts, a TMTO must be generated for
every possible salt, leading to an increase in precomputation time by a factor up to 2s, where
s is the length of the salt, which leads, most of the time, to unusable TMTOs due to the
extra cost in precomputation.

Despite the introduction of salt to protect services against precomputed attacks, notably
TMTO attacks, a considerable portion of passwords remains unsalted. Hence, TMTOs
continue to be used. In particular, they are frequently used by penetration testers for
identifying potentially weak passwords within client databases. Their application also extends
to digital forensics, where there may be a need to invert hashed data to retrieve information
from data dumps.

1.3.2. Other Cases

Variants on Hellman’s original construction have been developed over time. Some were
designed to be applied to stream ciphers [BS00, Bab95, Gol97], or generalized to work with
multiple data (so-called Time-Memory-Data Trade-Off [BMS05]). Furthermore, vulnerabilities
were uncovered in other ciphers such as LILI-128 [SRQL02] and Toyocrypt, intended for
use within the Japanese government, through successful TMTOs attacks [KGL06, KCGL09].
Three eSTREAM candidates, Grain [HJMM08], Lex [DK08a], and MICKEY [HK05], were
also attacked using TMTOs, leading to substantial modifications in their design. TMTOs

1.4. Time-Memory-Data Trade-Off 5

are also use for others specific applications, such as when the input space is not uniformly
distributed [ACL15, Hoc09], using external memory [ACKT17, KHP13], or FPGA [MBPV06,
SRQL02] and GPU [KSH+15, LLH15].

Real-life attacks on Digital Signature Transponders (DSTs), used in electronic payments and
vehicle immobilizers, were made feasible with TMTOs. Two additional vehicle immobilizers,
Hitag2 [VGB12], and Megamos Crypto [VMG+13], have been successfully attacked using
TMTOs.

Recently, an attack on WPA3 using TMTOs have been proposed [Van22], and a proposition
of quantic adapted attack phase for various TMTOs variants have been proposed [DKRS21].

1.4. Time-Memory-Data Trade-Off

Time-Memory-Data Trade-Offs (TMDTOs) extend TMTOs by adding an additional factor D
into the trade-off, representing supplementary data for attack execution. Mainly applied for
stream cipher attacks, TMDTOs typically aim to retrieve one of the targeted elements within
a set of D instances.

A notable implementation of TMDTO is the Babbage-and-Golic TMDTO [Bab95, Gol97].
Here, N stands for the total internal states of a bit generator, and D refers to the first
pseudorandom bits generated. The algorithm is essentially about selecting, storing, and
matching random states with their corresponding output prefixes during the attack phase,
resulting in the identification of an internal state of the bit generator, thereby unlocking the
remaining part of the key.

Subsequently of the Babbage-and-Golic TMDTO, a new TMDTO combining the Hellman
and Babbage-and-Golic tradeoff attacks was proposed by Shamir and Biryukov [BMS05],
yielding better bounds for stream cipher attacks. The precomputation time is in the order
of O(N/D), and the attack time in the order of O(t2), with t the number of columns in
the matrix generated during the precomputation phase. This gives a general trade-off of
TM2D2 = N2 or T = N2/M2D2 for D2 ⩽ T ⩽ N .

TMDTOs represent an important extension of TMTOs and are useful in various cryp-
tographic scenarios, particularly in attacking stream ciphers. However, while undoubtedly
interesting, TMDTOs are out of scope of this thesis.

1.5. Problem Statement

Various factors, such as the use of salt or slow hash functions, have made TMTOs more
challenging to use than in the past years. However, the approach to TMTOs may not
have evolved sufficiently to increase their efficiency and tackle their current limitations. In
particular, the precomputation time required for managing the spaces under consideration
has become overly computationally demanding given today practical spaces.

The grand challenge of this thesis is to highlight the current limitations of TMTOs, suggest
practical solutions and alternative variants to overcome these limitations, and provide a more
comprehensive understanding of TMTOs.

To complete this challenge, the thesis targets three purposes.
The first is to identify the current bottlenecks that restrict broader application of TMTOs.
The second is to propose improvements and new TMTOs variants, which could effectively

address these bottlenecks.

6 Chapter 1. Introduction

The third is to introduce a novel perspective on the TMTO problem. Indeed, until now,
the primary emphasis on TMTOs has been on memory and attack time. This work, however,
proposes a more comprehensive strategy, which also takes into account the coverage and
precomputation time. These factors should be considered as integral components of TMTOs,
just like memory and attack time.

1.6. Thesis Structure

This thesis is organized as follows. Chapter 2, presents the necessary background to the
comprehension of the thesis. The most known different variants of TMTOs are presented,
namely the Hellman Tables, Distinguished Points Tables, Rainbow Tables and Fuzzy Rainbow
Tables. The choice of the study of the Rainbow Tables variant in particular is justified and a
deeper analysis of the Rainbow Tables variants and their improvements are proposed.

In Chapter 3, preliminary results used in all the subsequent chapters of the thesis are
presented. Some of these results were probably used unofficially before this thesis but were
formally introduced in the first paper published during this thesis [ACLA21]. Concepts and
quantifier values introduced in this chapter are then used in each chapter of the thesis.

Chapter 4 introduces the distributed filtration method. This technique is specifically
designed to significantly decrease the precomputation time required for generating Rainbow
Tables. This chapter presents the complexities of distributing precomputation when using
the filtration method and introduces an efficient way to deal with it. It presents experiments
performed in various environments to verify the efficiency of the method.

Chapter 5 identifies the current bottleneck limiting the use of Rainbow Tables, namely, the
precomputation time. It states that it is the precomputation time that prevents attacks on
larger spaces when CPUs are employed. This chapter offers a comparative analysis across
different scenarios and environments, investigating the maximum achievable space within a
set time frame or for a specified monetary investment.

Chapter 6 then presents a new Rainbow Table variant named Descending Stepped Rainbow
Tables. This variant addresses the particular bottleneck identified in Chapter 5 by introducing
a variant that outperforms Rainbow Tables. In addition, this chapter proposes to compare
different variants not just by considering mainly their attack time and memory requirements
but also their coverage and precomputation time as part of the whole trade-off.

Chapter 7 introduces another new variant: the Ascending Stepped Rainbow Tables. This
variant outperforms the Descendig Stepped Rainbow Tables in some cases, in particular at
high coverage. As for the Descending Stepped Rainbow Tables, we propose a comparison
that takes also the precomputation time and coverage into account in the comparison of the
variants.

In Chapter 8, we conclude on the contributions of the thesis, and delve into the open
problems identified in the thesis and future works to carry out.

Background 2
A PhD student working on TMTO seems in the moon. Her

supervisor, asks her "where are you at?" Somewhere over the rainbow

2.1. Overview

This chapter lays the foundation necessary for understanding the research conducted in this
thesis. As previously mentioned in Chapter 1, Time-Memory-Data Trade-Offs (TMDTOs),
though substantial in the TMTO literature and extensively discussed, analyzed, and employed
in attacking various stream ciphers (as in [BS00, LLH15, BD00, BSW00, Gol97, MFI07,
CK08, DK08b, KCGL09, BMS05, EK15, Saa02]), are not the focus of this thesis. Hence,
their details would not be extended beyond what was already presented in Chapter 1.

The purpose of this chapter is to present and explain specific TMTO variant that has been
examined in this thesis, as well as to clarify the reasoning behind its selection. In addition, it
aims to compare various TMTO variants, thereby highlighting the motivations driving this
research.

It is essential to stress that there is an ongoing debate in the scientific community concerning
the most efficient TMTO variant. As a result, providing a clear-cut overview of the advantages
and drawbacks of each variant proves to be a challenging task. Nevertheless, this chapter
attempts to provide a preliminary assessment following the presentation of each variant. A
more thorough comparison of all variants is proposed in Chapter 8, as a potential area for
future research.

ø Takeaway:

• This chapter introduces various TMTO: Hellman tables, Distinguished
Points tables, Rainbow tables, and Fuzzy Rainbow tables.

• While there is no consensus on the most efficient TMTO variant, the
Rainbow tables variant has been selected for analysis in this thesis.

• Formulas for evaluating and characterizing the state of the art in Rainbow
tables are provided.

8 Chapter 2. Background

2.2. Original TMTOs: Hellman Tables

Hellman tables are the first variant of TMTOs and were introduced by Martin Hellman in
1980 [Hel80]. The primary idea is to generate tables during a precomputation phase. These
tables take M memory and are then used during the attack phase.

2.2.1. Precomputation Phase

� Reminder:

• A is the space of the searched elements x∗.

• B is the space of the considered hash function.

The precomputation phase consist of the generation of a matrix with t+ 1 columns and m
rows. Only the first and last columns of the matrix are kept to form the table used during
the attack. Thus, the term Hellman matrix refers to the full matrix containing m rows and
t+ 1 columns, while Hellman table refers only to the first and last columns.

The generation of the matrix begins with the selection of m elements from the N possible
elements in the search space A. These m elements form the first column of the matrix. For
each of these elements, a so called hash-reduction function f is applied to compute the next
element in the row. The hash-reduction function f is defined as follows:

f : A → A
xi+1 7→ R(h(xi))

(2.1)

The function h denotes the one-way function1 employed in the TMTO. The function R is
called the reduction function. It maps an element from the hash space B into an element in
A either uniformly or nearly uniformly (the reduction function typically executes a modulo
operation over N [AC17, ACL15, HM13]. Hence, the function is classified as nearly uniform
because if |B| = r+ dN , then r elements in N will be represented once more than the others).
The reduction function must be as fast as possible to minimize both precomputation and
attack time. Typically, a modulo function is chosen as the reduction function.

Figure 2.1 illustrates a Hellman matrix.

f f f
x1,0 −→ x1,1 −→ x1,2 ... −→ x1,t

f f f
x2,0 −→ x2,1 −→ x2,2 ... −→ x2,t

...
...

...
...

f f f
xm,0 −→ xm,1 −→ xm,2 ... −→ xm,t

Figure 2.1. – Hellman Matrix

1In [FN91], the authors show that other functions than one-way functions can be used in TMTOs, however,
this comes at the cost of significantly reduced performance.

2.2. Original TMTOs: Hellman Tables 9

The rows of the matrix are referred to as chains, the length of a chain is the number of
applications of the hash-reduction function required to compute the chain. Thus, a chain i of
length t is the list {xi,0, xi,1, xi,2, ..., xi,t} that contains t+ 1 elements. Similarly, a sub-chain
is a sub-set of consecutive elements of a chain. For instance, {xi,0, xi,1, xi,2, ..., xi,j} is a
sub-chain of length j, containing j + 1 elements, with j < t.

� Reminder: The coverage refers to the part of A that is represented in the matrices
generated during the precomputation phase.

The elements in the first column of the matrix are called start points (SPs), while the
ones in the last column are referred to as end points (EPs). These terms are used for the
other TMTO’s variants as well. In literature end points are also referred to as endpoints or
ending points. To increase the coverage, ℓ tables are generated instead of a single one (see
Section 2.2.3 for more details).

The precomputation phase of Hellman matrices, or of TMTO’s more generally, consumes a
substantial amount of time on the order of O(CN). Here, C varies according to the variant
and the parameters used, ranging between 6 and several hundreds or thousands. As stated
in [HKR83], it is impossible to generate a TMTO table that outperforms an exhaustive search
in less than N operations.

2.2.2. Attack Phase

� Reminder:

• Given a value y and a one-way function h, where y = h(x), the goal of a TMTO
attack is to efficiently retrieve x from y using the tables generated during the
precomputation phase.

• The value x that needs to be determined is referred to as the searched element.

The attack begins by assuming that the searched element x is located in the penultimate
column of the first table. If this assumption is true, R(y) will be equal to one of the EPs of
the first table. Consequently, the attacker computes R(y) and checks for a match with the
EPs. If a match is found, the corresponding SP of the matched EP is retrieved and the chain
starting from this SP is build again until column t− 1. In this column, the attacker retrieves
the element xi,t−1, where i refers to the corresponding row of the chain and t− 1 represents
its column. The attacker then computes h(xi,t−1) and checks if h(xi,t−1) = y. If h(xi,t−1) = y,
the searched element is xi,t−1. If h(xi,t−1) ̸= y or if there is no match between R(y) and any
EPs of the first table, the attacker supposes that the searched element is in the second to last
column of the table. Consequently, they compute f(R(y)) by applying the hash-reduction
function f to the already computed value R(y). If the searched element is indeed in the
second to last column, a match will be found between f(R(y)) and one of the EPs of the
table. If such a match occurs, the attacker repeats the previous process, reconstructing the
corresponding chain up to column t− 2.

The term attack chain is used to denote the chain that hypothetically begins at the
pre-image of y and ends in column t, regardless of its length.

The process of assuming that the searched element is in a certain column c of the matrix
and performing computations to verify this hypothesis is referred to as a search in column c.

The attack process continues by searching in all columns in a similar manner until the

10 Chapter 2. Background

searched element is found or until all tables have been explored. Once the end of the table is
reached, the attacker proceeds to the next table.

2.2.2.1. False Alarm

A match between the attack chain f(f(. . . R(y))) and an EP leads the attacker to rebuild the
corresponding chain up to the column j, where j is the column of the search. However, if
h(xi,j) ̸= y, where i is the row of the matched EP, it results in a false alarm.

False alarms are primarily due to collisions amongst elements of A when applying the
surjective function f . False alarms are very common and unfortunately decrease the attack
phase time significantly.

2.2.3. Coverage

The maximum coverage of a Hellman matrix, pmax
H , is reached when all elements within the

matrix are distinct, as depicted in Equation (2.2) borrowed from [AJO08].

pmax
H =

mt

N
(2.2)

Nonetheless, a primary challenge when using Hellman tables is that the actual coverage
of a Hellman table, denoted by pH , is significantly lower than the maximum coverage pmax

H ,
because far less than mt distinct elements are, on average, present in the matrix. This arises
due to a phenomenon called merges.

During the generation of a Hellman matrix, merges occur between chains. Merges are
formally defined in Definition 2.1, they appears when two distinct chains become identical
after some point. Given that the hash-reduction function is surjective and returns a random
element in A, different elements across different columns and rows can be succeeded by the
same element.

Definition 2.1. For two chains i and i′, with xi,j ̸= xi′,j′ , a merge occurs when xi,j+1 = xi′,j′+1,
where j ⩽ j′. The elements between xi,j+1 and xi,j+1−t−j′ are thus equal to the elements
between xi′,j′+1 and xi′,t.

In case of merge, instead of having 2t− j− j′ distinct elements, only t− j distinct elements
are represented in the two sub-chains {xi,j , ..., xi,t} and {xi′,j′ , ..., xi′,t}.

Merges reduce the coverage of a Hellman matrix substantially, implying that the matrix
will contain significantly fewer distinct elements than mt. Merges are so frequent that the
coverage of a Hellman table is typically less than 1% [Hel80, KM96] for standard memory
and parameter settings.

In order to increase the coverage, ℓ tables are used instead of one table. This is achieved by
generating ℓ matrices, each employing a distinct reduction function, from the other matrices.
If an element of a table ℓi equals an element from a different table ℓj , except in some extremely
rare cases, this would not result in a merge chain situation2, as the next applied reduction
function will differ. Therefore, with the use of ℓ matrices, the maximum coverage of a Hellman
table is provided by Equation (2.3).

In [KM96, MH09], the authors show that under the condition mt2 = N (i.e., generating
ℓ = t Hellman table) the maximum coverage of Hellman trade-off is approximately 80%.

2A merge situation is possible with a probability (1
N
)(t−c), where c is the column of the first equality.

2.2. Original TMTOs: Hellman Tables 11

pmax
ℓH = 1− (1− pmax

H)ℓ (2.3)

2.2.3.1. Clean Hellman Table

As presented above, to achieve the maximum coverage of a Hellman table, it is necessary to
generate tables with elements that are all distinct. This corresponds to deal with a matrix
free of merges. Such a matrix is called a clean matrix. In such Hellman matrix, mt distinct
elements are thus present in the matrix with no merged chains.

These types of matrices are significantly resource-intensive to generate as they require that
all elements within the matrix are checked for merges. As suggested by the authors in [AJO08],
a strategy for building clean Hellman tables could be to compute chains of maximal length
without loop3 and then truncate them to length t in order to assemble them as a clean
Hellman matrix.

Depending on the specific situation, the utility of using clean Hellman tables as opposed to
non-clean ones can be considered unjustified due to the precomputation extra cost it involves.

2.2.4. Precomputation Cost

The precomputation time or cost of Hellman tables can be estimated by the number of
applications of the hash-reduction function, needed to generate ℓ matrices. Express the
function necessary to precomputation time (or the attack time) by a number of hash-reduction
function application instead of real word time allows to estimate a cost that will be independent
of the hardware used. In the case of a Hellman table, the precomputation time can thus be
estimated by Equation (2.4).

P = ℓmt (2.4)

In the literature, the precomputation cost or time for TMTO is typically not considered
worth researching. The underlying assumption is that since this precomputation is conducted
only once for all, thus, it can take as much time as necessary.

2.2.5. Memory Cost

� Reminder: The elements in the first column of a TMTO or Hellman matrix are
called start points (SPs), those in last column are called end points (EPs). Only SPs
and EPs of a matrix are stored to be used during the attack phase.

In the naive way of storing SPs and EPs, when using ℓ tables of m chains, ℓm pairs (SP, EP)
need to be stored for the attack phase, i.e., 2ℓm elements.

Each element can be stored on log2(N) bits. The memory cost of storing a Hellman table
can thus be estimated by Equation (2.5).

M = 2ℓm log2(N) (2.5)
3A loop (or cycle) is a sub-chain where the last element of the sub-chain leads to the first element of the

sub-chain when the hash-reduction function is applied, resulting in a loop.

12 Chapter 2. Background

2.2.6. Attack Cost

� Reminder: The process of assuming that the searched element is in a given column
c of the matrix and performing computations to verify this hypothesis is referred to as
a search in column c.

The average attack time, denoted as T , is typically evaluated by the average number of
hash operations required to either find the searched element (success of the attack) or to
perform a search through all columns of all tables (the attack fails).

The average attack time T is therefore strongly correlated with the coverage of the tables
used during the attack. If the coverage is high, the probability of finding the searched element
without having to search in all columns of all tables is lower than when the coverage is low.
Conversely, with low coverage, there are generally fewer tables to search through, and each
table can have fewer columns to search.

When using a Hellman table that is not clean, numerous false alarms can occur, significantly
slowing down the attack: with each false alarm, an additional t operations are required to
deal with it. Consequently, the probability of a false alarm must also be computed, which
adds complexity to the computation.

For simplicity, we provide in Theorem 2.1 from [AJO08], the cost of an attack for a clean
Hellman table. In [Hon10], the authors provide the attack time for non-clean Hellman tables
and propose an analysis of the false alarms cost.

Theorem 2.1. Given N , m, ℓ and t, the average cryptanalysis time of clean Hellman tables
is:

T = t

ℓ∑
k=1

k
mt

N

(
1− mt

N

)k−1

2.3. Other TMTOs Variants

In Section 2.4, we discuss the reasons behind the decision to focus on the Rainbow tables
variant in this thesis. However, before delving into that, we briefly introduce the major
variants of TMTO, namely the Distinguished Points tables, Rainbow tables, and Fuzzy
Rainbow tables variants.

2.3.1. Distinguished Points Tables

The Distinguished Points (DP) tables variant can be traced back to an idea proposed
by Rivest, as referenced by Denning in [Den82]. While it was not initially introduced
in a standalone publication, the variant received further attention in subsequent works,
in particular in [SRQL02, HJK+08a, HJK+08b, HLM11]. Different way of analyzing the
variant were provided in [BPV98, AJO08, HM13]. A variant of DP tables was also proposed
in [HJK+08b].

DP table is a variant built upon the foundation of Hellman’s tables. Instead of using
chains of fixed length t, the chains are computed until a so-called distinguished point (usually,
element beginning or finishing by at least d zeros) is reached. The way of choosing the DP
is called the DP property. As chains end when a DP is reached, DP tables have chains of
variable lengths. This unpredictability affects both the precomputation and attack phases.

2.3. Other TMTOs Variants 13

2.3.1.1. Precomputation Phase

The generation of a DP matrix shares similarities with the process used in Hellman tables.
However, instead of having a fixed length t for the chains, these stop upon reaching a
distinguished point, DP. If no DP is reached after computing a pre-defined number ν of
elements, the chain computation stops, and the chain is discarded, as it is considered that the
chain will never end or is blocked in a loop.

At the beginning of the precomputation phase, the DP property, i.e., the distinguished
points, are firstly selected. The values ν, ℓ, and m are also set, where m represents the number
of chains to compute, ℓ the number of matrices, and ν the maximum length computed per
chain.

Subsequently, SPs that are not distinguished points are chosen, and the precomputation
begins in a similar manner to Hellman tables. For each SP, the hash-reduction function
f (defined as in Equation (2.1)) is applied until a DP is reached or after having reached ν
iterations of the function. Instead of obtaining a matrix with t columns, chains have different
lengths and the average length of chains is denoted by t̂. When reaching a DP, the latter
is stored as an EP in addition to the corresponding SP. All other elements of the chain are
discarded. The final table thus is formed of the SPs and their corresponding DPs. The
evaluation of the average chain length is usually difficult but in [LH16a], the authors provide
a formula to evaluate it. In certain versions [BPV98], the chain length is stored along with
the EP, potentially increasing the memory cost but also significantly accelerating the attack
phase.

Figure 2.2 represents a DP matrix, and Figure 2.3 shows the corresponding DP table.

� Reminder: A clean matrix is a matrix in which only one instance of merged chains
has been kept.

Clean DP Tables Cleaning the matrix when using DP tables is a much simpler task
compared to Hellman tables. This is because merged chains in DP tables end with the same
DP, hence only one chain among those ending with the same DP needs to be kept to form a
clean DP matrix.

If DP tables are not cleaned, it is possible to end up with EPs that have the same DP for
different chains. This can significantly reduce the efficiency of the attack phase. Therefore,
DPs matrices are cleaned before being stored by retaining only one instance of the chains
ending with the same DP (usually, the longest chain is kept).

As highlighted in [LH16b], clean DP tables do not require additional precomputation time
and they significantly outperform their non-clean counterparts in terms of efficiency. Hence,
unless specified otherwise, we will use the term DP tables to refer to clean DP tables.

14 Chapter 2. Background

f f f
x1,0 −→ x1,1 −→ x1,2 x1,t1 −→ DP1

f f f
x2,0 −→ x2,1 −→ x2,2 ... x2,t2 −→ DP2

f f f
x2,0 −→ x2,1 −→ x2,2 x3,t3 −→ DP3

...
...

...
...

f f f
xm−1,0 −→ xm−1,1 −→ xm−1,2 xm,tj −→ DPm−1

f f f
xm,0 −→ xm,1 −→ xm,2 ... xm,t2 −→ DPm

Figure 2.2. – DP Matrix

x1,0 DP1

x2,0 DP2

x2,0 DP3

...
...

xm−1,0 DPm−1

xm,0 DPm

Figure 2.3. – DP table

2.3.1.2. Attack Phase

In the case of DPs tables, the attack chain is the hypothetical chain that starts at the
pre-image of y and ends not in column t but when a DP is reached or after ν operations.

Similarly to Hellman tables, the attacker initiates the attack phase by computing R(y),
followed by checking for a match with any of the stored EPs, i.e., checking if R(y) is a DP
and if yes, if this DP is among the EPs stored. If no match is found, the attacker applies
the function f to R(y), hence computing f(R(y)), and again checks if a match occurs with
any of the EPs, i.e., if f(R(y)) is equal to one of the stored DPs. The attacker continues to
apply the function f until a match is found between the attack chain and one of the stored
DPs, or until ν applications of f are made. If ν applications of f are reached, this indicates
that the preimage of y is not in the table, prompting the attacker to move on to the next
table. In case the attack chain matches a DP at some point, the attacker reconstructs a chain
starting from the corresponding SP until reaching the column where the searched element
should be in case of success. In the latter column, the element is hashed and compared to y;
if it is equals to y, the attack is successful, otherwise, it is a false alarm.

In case of a false alarm, the attacker immediately proceeds to the next table as, when using
clean DP tables, a false alarm in a table leads to the conclusion that the searched element
cannot be found in the given table.

2.3.1.3. Comparison with Hellman Tables

In this section, we discuss the advantages and disadvantages of DP tables. DP tables are
generally considered superior to Hellman tables in all cases. However, to our knowledge, no
studies have proposed a comparison of all variants for different coverages ranging from 1% to

2.3. Other TMTOs Variants 15

99.99%. The focus of most papers is on the comparison for high coverages, typically higher
than 90% coverage. Results for coverage around 50% to 70% are seldom mentioned [HM13,
HJK+08b, KH13], and are not extensively discussed.

Advantages of DPs Tables

• Handling Collisions: A key advantage of using DP tables is their efficiency in building
attack chains; only one attack chain needs to be computed per table, in contrast to
Hellman tables, which require nearly one per column. Essentially, a single search in a
DP table is enough to determine whether an element is in the table, unlike in Hellman
tables where a search must be performed in every column. This significantly reduces
the number of collisions encountered during the attack.

• Memory Usage: The use of DPs as EPs leads to more efficient memory usage and
decreases computational overhead during the online phase as storing DPs that are
usually elements that begin or end the same way, cost drastically less memory.

• Loop Elimination: DP tables prevent the occurrence of loops (or cycles) in chains, as
they can be easily detected and discarded during the precomputation phase. Conversely,
Hellman tables often contain a number of loops that can significantly slow down the
attack phase and reduce the coverage for a given amount of memory used.

Drawbacks of DPs tables

• Variability: DP tables have a high variability in the lengths of chains, which can pose
challenges. Some chains might end up being extraordinarily short if a DP is found early,
while others may stretch considerably longer. This variability can lead to less predictable
precomputation and attack phase, potentially impacting the overall efficiency of the
table generation and search process.

The unknown length of each chain can also slow down the attack phase. For instance,
an attacker might have to perform ν applications of the hash-reduction function before
switching to the next table. This issue is partially mitigated in [BPV98], where the
authors propose storing chain lengths in addition to the DP, but this approach incurs a
considerable increase in memory usage.

• Complexity: Predicting the average chain length poses a significant challenge when
using DP tables. In Hellman’s tables, chain lengths are pre-determined, which simplifies
the estimation of coverage and precomputation time. On the contrary, the variability
of chain length in DP tables, complicates the prediction of the average chain length,
thereby affecting the overall coverage of the search space.

2.3.2. Rainbow Tables

Rainbow tables (RTs) were introduced by Oechslin in 2003 [Oec03]. Alongside the original
paper, the author also presented Ophcrack [TO], a tool designed to use his tables. The
primary difference of RTs, in comparison to DPs and Hellman tables, is the use of multiple
reduction functions. A Rainbow matrix corresponds to a Hellman matrix, but where each
column of the matrix uses a distinct function. The assignment of a color to each function

16 Chapter 2. Background

ultimately creates a "rainbow" following the precomputation, hence the name "Rainbow
tables" (also illustrated in [BBS06]). In [Li16], the authors propose a variant of RTs in the
form of a TMDTO used to attack A5/1, and the practical use cases of RTs are analyzed
in [KHP13, ACKT17].

2.3.2.1. Precomputation phase

Similarly to Hellman and DPs tables, the precomputation phase of RT involves generating a
matrix where only the first and last columns are kept for the attack phase.

Matrix Generation At the beginning of the precomputation phase, m0 elements are
selected as SPs. To minimize storage, these elements are typically chosen to be as small as
possible and in sequential order. Subsequently, a first hash-reduction function f1 is applied
to each SP, followed by the application of a second hash-reduction function f2, and so forth,
until the hash-reduction function ft is applied. The elements resulting from the application
of the hash-reduction function ft are the EPs, which are stored alongside their corresponding
SPs to form the RT, while all other intermediate elements are discarded.

The generation of a RT requires the application of t hash-reduction functions per table, as
opposed to a single function for both Hellman and Distinguished Point (DP) tables. When
multiple tables are generated to increase coverage, each table employs a unique set of t
hash-reduction functions that differ from those used in other tables. Therefore, if ℓ tables are
generated, ℓt hash-reduction functions are used, instead of ℓ for Hellman and DP tables. To
achieve a high coverage, only 2 to 5 tables are typically required when using RTs, compared
to hundreds or thousands for Hellman and DP tables.

Clean Rainbow Table As for Hellman and DPs tables, collisions between chains occur
during matrix computation. When two distinct chains merge in different columns, they
remain distinct in subsequent columns due to the application of different reduction functions
in each column. However, when two chains become equal in the same column, they merge
and become identical in all subsequent columns and thus end with the same EP. A merge is
formally defined in Definition 2.2.

Definition 2.2. A merge in column j between two chains in rows i and i′ with i ̸= i′ occurs
when xi,j−1 ̸= xi′,j−1, but f(xi,j) = f(xi′,j).

As discussed in Section 2.5.4, equal EPs significantly slow down the attack phase. Con-
sequently, clean RTs, which keep only one instance of merged chains at the end of the
precomputation phase, are always used instead of non-clean RTs. Finding merged chains is
straightforward since they end with the same EP. Thus, cleaning the matrix simply consists
in keeping one instance of chains ending with the same EP.

� Reminder: m0 is the number of elements selected as SPs at the beginning of the
precomputation phase (in column 0).

When clean rainbow tables, mt chains remain in the final clean matrix instead of m0 chains.
With typical parameters, m0 = 0.05mt (See Section 2.5 and Chapter 3 for more details).
Figure 2.4 represents a non-clean Rainbow matrix, Figure 2.5 represents its corresponding
clean Rainbow matrix. Henceforth, we will assume that all RTs are clean.

2.3. Other TMTOs Variants 17

f1 f2 ft
x1,0 −→ x1,1 −→ x1,2 −→ x1,3 . . . −→ x1,t

f1 f2 ft
x2,0 −→ x2,1 −→ x2,2 −→ x2,3 . . . −→ x2,t

f1 f2 ft
x3,0 −→ x3,1 −→ x3,2 −→ x3,3 . . . −→ x3,t

...
...

...
...

...
f1 f2 ft

xm0−1,0 −→ xm0−1,1 −→ xm0−1,2 −→ xm0−1,3 . . . −→ xm0−1,t

f1 f2 ft
xm0,0 −→ xm0,1 −→ xm0,1 −→ x1,1 . . . −→ xm0,t

■ Merged chains in column 1
■ Merged chains in column 2

Figure 2.4. – Non-Clean Rainbow Matrix

f1 f2 ft
x1,0 −→ x1,1 −→ . . . −→ x1,t

f1 f2 ft
x2,0 −→ x2,1 −→ . . . −→ x2,t

...
...

...
...

f1 f2 ft
xmt,0 −→ xmt,1 −→ . . . −→ xmt,t

Figure 2.5. – Clean Rainbow Matrix

2.3.2.2. Attack Phase

During the attack phase, the attacker starts by hypothesizing that the searched element x
is in the penultimate column of the rainbow matrix, and tests this assumption. If x is not
in this column, the attacker proceeds to assume that x is in the second to last column and
iteratively searches through all columns until x is found or until a search in all columns have
been performed.

� Reminder: The term attack chain is used to denote the chain that hypothetically
begins at the preimage of y, i.e., with the searched element x∗.

To perform a search in a column c, the attacker begins by computing the attack chain.
For RTs, this chain initiates with Rc(y) and ends in column t. Formally, the computation of
the attack chain consists of computing Z such that Z = ft(ft−1(...(fi+1(Rc(y))))). After the
computation of this chain, the attacker checks whether Z matches any of the EPs stored in the
RT. If there is a match, the attacker then computes the chain starting from the corresponding
SP and ending at the element xi,c, where i represents the row of the matched EP. Following
this, the attacker computes h(xi,c). If h(xi,c) = y, then the searched element is found and it
is equal to xi,c.

18 Chapter 2. Background

Even when using distinct reduction functions in each column, collisions can still occur
within the same column, often leading to false alarms. Therefore, it is possible (and often the
case) that a match between Z and an EP occurs while h(xi,c) ̸= y. In such case, the attacker
continues the search in other columns to the left until either all columns have been searched,
or the searched element x is found.

When using Hellman tables, the attacker must perform t searches to confirm that the
searched element is not in the table, it costs t2 operations for RTs. This increased cost is
counterbalanced by the fact that RTs have significantly higher coverage per table and thus
require far less tables than Hellman tables.

A noteworthy point when using multiple RTs is that it is faster to alternate searching
through the columns of each table, rather than sequentially searching through each table.
This is contrary to Hellman tables where the cost of search does not increase when searching
further to the left.

2.3.2.3. Comparison with DPs and Hellman Tables

Several papers provide an extensive comparison between Hellman tables, DP tables, and
RTs [HJK+08b, HM13]. We summarize the key points that we believe to be crucial below.

Advantages of RTs over DPs and Hellman Tables

• Coverage: RTs achieve higher coverage with fewer tables compared to DPs and Hellman
tables. This results in reduced precomputation and attack time for same coverage. A
non-formal yet intuitive argument to explain this is that for DPs and Hellman tables,
mt2 ≃ N , whereas when using RTs, mtℓ ≃ N , with ℓ being significantly lower than t.

• Collision: A significant advantage of RTs over Hellman and DPs tables is the reduced
number of collisions when using RTs as opposed to DP tables. The fewer collisions allow
for both the increase of coverage and the reduction of attack time.

• Utilization: Compared to DP tables, RTs provide more predictable outcomes. The
computation of average DP chain lengths can be tricky, and the high variance can result
in increased variance in attack phase time, and a more challenging precomputation
phase.

Drawback of Rainbow Tables

• Memory Access: The number of memory accesses during the attack phase is higher
with RTs than with DPs. This is because, when using RTs, a single memory access
allows the checking of one column, whereas a single memory access for a DP table
enables the checking of an entire table. Even when considering that more tables need
to be searched when using DP tables, this usually does not offset the disadvantage of
RTs number of accesses per table.

• EPs Storage: Given that EPs of DP tables are DPs themselves, they can be stored
efficiently. In contrast, it is more challenging to store EPs of RTs efficiently. While
solutions do exist [ABC15, AC13], they are typically less efficient than DPs, which by
their very nature are easy to store.

2.3. Other TMTOs Variants 19

2.3.3. Fuzzy Rainbow Tables

We now present the Fuzzy Rainbow tables, a variant initially proposed by Barkan, Biham, and
Shamir in [BBS06]. This approach synthesizes concepts from both the RTs and the DP tables,
resulting in a novel variant. The authors of [BBS06] assert that Fuzzy Rainbow tables are
more efficient in comparison to the other two variants. It is worth noting that this technique
is also presented in [vdBP13].

The precomputation phase begins by generating an initial DP matrix, followed by concate-
nating a second DP matrix to the first. The second DP matrix is created using a different
reduction function. A third DP matrix is then generated from the second, and so on. The
final product is a matrix that uses s distinct reduction functions, with each reduction function
applied in a unique part of the matrix. Consequently, each chain contains s DP points, with
each situated at the end of its respective sub-matrix. In this context, a sub-matrix refers to
one of the s DP matrices within a Fuzzy Rainbow matrix.

For simplicity, we will henceforth refer to Fuzzy Rainbow tables as Fuzzy tables (FT). A
clean version of FT, as with DP and Rainbow variants, has been demonstrated to be more
efficient [KH13] than the standard (non-clean) version of FT. Unless otherwise specified, we
will thus consider FTs to be clean in the context of this section.

2.3.3.1. Precomputation Phase

The generation of the Fuzzy matrix starts with the determination of the value s, which
corresponds to the number of DP sub-matrices that will be generated, or in other words,
the number of different reduction functions per matrix. The rule for selecting DPs, such as
the number of bits set to 0 in each DP, is also fixed. The generation itself then proceeds as
though generating s DPs matrices. Initially, SPs that are not DPs are selected, then m chains
are generated from these m elements through the successive application of the hash-reduction
function f1 until each of them reaches a DP or reaches the maximum chain length ν. Once all
chains have reached a DP or have exceeded a length of ν, the first sub-matrix is generated.

Prior to continuing with the precomputation, the first sub-matrix is cleaned by keeping only
one instance of chains ending with the same DP (and keeping the chain with the maximum
length), and by discarding chains that have reached ν iterations of the hash-reduction function.

Next, the second sub-matrix is computed, starting with the DPs elements of the first
sub-matrix and applying the hash-reduction function f2 instead of f1, i.e., using a different
reduction function than in the first sub-matrix. The generation proceeds in the same way
until s sub-matrices have been generated, with each of them having been cleaned.

The EP of each chain is the last DP reached, i.e., the DP of the chains with hash-reduction
function fs. As for RT and DP tables, ℓ tables can be generated in order to cover a larger
portion of A. In each table, all reduction functions are different from those of the other tables.
Figure 2.6 represents a Fuzzy matrix and Figure 2.7 represents its corresponding FT.

It is worth noting that compared to DP matrix, the length of Fuzzy matrix chains are, in
average more homogeneous, which simplified the computation of the theoretical coverage.

An other interesting point is that by taking ν = 1, the matrix obtained is a Rainbow matrix
(but with a very little height as only few chains ending by a DP in each column will remain),
and by taking s = 1 the matrix obtained is a DP matrix.

In [KH14], the authors state that a typical good number of sub-matrix to use should be
between s = 30 and s = 150 depending of the targeted coverage and trade-off between attack

20 Chapter 2. Background

f1 f1 f2 fs
x1,0 −→ ... −→ DP −→ ... DP ... −→ ... DP1

f1 fi fs
x2,0 −→ ... −→ ... DP ... −→ DP2

f1 f2 fi fs
x2,0 −→ DP −→ DP −→ ... −→ DP3

...
...

...
...

...
...

f1 fi fs−1 fs
xm−1,0 −→ ... −→ ... DP ... DP −→ ... −→ DPm−1

f1 fi fs
xm,0 −→ ... DP ... −→ DP ... −→ DPm

Figure 2.6. – Fuzzy Matrix

x1,0 DP1

x2,0 DP2

x2,0 DP3

...
...

xm−1,0 DPm−1

xm,0 DPm

Figure 2.7. – Fuzzy Rainbow table

time and precomputation time. The authors also present the number of tables to use in
the order of ℓ = 50 but this number of tables vary according to the targeted coverage. The
authors of [KH14] also observe that when using FT instead of DPs tables, the lengths of the
DP chains in the Fuzzy variant tend to be shorter than those in the DPs tables. Moreover,
these lengths seem to follow a normal distribution, as opposed to a geometric one when using
DPs tables.

2.3.3.2. Attack Phase

� Reminder: A sub-matrix refers to one of the s DP matrices within a Fuzzy Rainbow
matrix.

The attacker first assumes that the searched element is in the s-th sub-matrix, using the
hash-reduction function fs, i.e., the sub-matrix to the right of the matrix. The attacker then
computes the attack chain starting from Rs(y), and subsequently applies fs to Rs(y) until a
DP is found or until fs has been applied ν times.

If a DP is reached and if a match occurs between this DP and one of the EPs, the attacker
reconstructs the corresponding chain, starting from its corresponding SP. Each time a DP is
reached, the attacker knows that they must switch to a different hash-reduction function.

After reaching the (s − 1)-th DP, the attacker computes only the necessary amount of
hash-reduction functions until the column where the searched element should be if it is equal
to the pre-image of y. The attacker then hashes the element in the latter column and compares
it to y. If they match, the attack is successful; if not, it is a false alarm.

As with the DP table variant, a false alarm in a column means that the searched element is
not in the entire sub-matrix (but it can still be in the other sub-matrices of the Fuzzy matrix).

2.3. Other TMTOs Variants 21

Thus, in the case of a false alarm or if ν applications of the hash-reduction function have been
executed without finding a DP, the attacker moves to the next sub-matrix to the left.

The attacker starts again, but this time by applying Rs−1 to y. Then the attacker applies
fs−1 to Rs−1(y) until either a DP is reached or ν applications have been performed. If a DP
is reached, the attacker understands it to be the DP of the (s− 1)-th sub-matrix, and thus
they apply the hash-reduction function fs to the attack chains until reaching a new DP or
having performed ν iterations of the hash-reduction function. If a DP is reached, the attacker
searches for a match with one of the EPs. If a match is found, the attacker processes as for
the sub-matrix s and rebuilds the chain until reaching the (s− 2)-th DP.

When the attacker reaches the (s − 2)-th DP, they apply only the necessary number of
hash-reduction functions until the column of the supposed searched element. They then hash
the element and compare it to y; if it matches, the attack is successful, otherwise, it continues
in the same way until having searched in every sub-matrix.

It is worth noting that when ℓ tables are used, as with RT, the search is not conducted
table by table but sub-matrix by sub-matrix. The attacker will thus initially search in the
sub-matrix s of table 1, then in sub-matrix s of table 2 and so on. Once the attacker has
searched in all s sub-matrices, they begin to search in sub-matrices s− 1.

2.3.3.3. Comparison with other variants

Although there is consensus on the advantages of FTs over Hellman tables, no such consensus
exists between DPs, Fuzzy, and RTs. Moreover, while extensive studies and proposals
for improvements have been made for DP tables and RTs, literature about FTs and their
improvements is less abundant.

Nonetheless, we provide below some advantages and disadvantages associated with the use
of FTs.

Advantages of Fuzzy Tables

• Improved Coverage: Compared to Hellman and DP tables, FTs generally offer higher
coverage, without the need to increase the number of stored chains.

• Reduced False Alarms: Compared to Hellman and DP tables, FTs significantly lower
the frequency of false alarms during the attack phase. This advantage comes from the
ability of fuzzy chains to better handle collisions that lead to merges, thereby reducing
the probability of false alarms.

• Memory Usage: For the same coverage, and given comparable precomputation and
attack times, FTs require less memory than Hellman and DP tables. Although dealing
with false alarms takes more time, as there are fewer tables to generate and use during
the attack, it often results in a quicker attack phase than DP and Hellman tables. Some
authors claim that in some cases, it may even outperform RTs [BBS06, KH14].

• Memory Access: Compared to Hellman tables and RTs, FTs require a significantly
fewer number of memory accesses during the attack phase. In some environments, such
as on a GPU or FPGA, the cost of memory access during the attack phase cannot be
ignored.

22 Chapter 2. Background

• Precomputation Time: The precomputation time of FT is easier to predict than
the precomputation time of DPs tables. This is due to the fact that DP sub-matrices
"compensate" each other and the resulting chains length are much more homogeneous
than DP tables.

Drawbacks of Fuzzy Tables

• False Alarm: While FTs have less false alarm than DPs and Hellman tables they have
more of them than RTs. This can result in additional time and computational resources,
which can be particularly problematic in larger search spaces.

The cost to deal with false alarms is higher when using FTs than DPs tables. As every
chain of every sub-matrix has a different length, the attacker can not know until reaching
ν applications of a hash-reduction function or until reaching the supposed EP of the
attack chain if the attack chain will end with a false alarm or not.

Compared to DP,s this slows down the attack phase, but in the same time the coverage
is much higher than with DPs tables and thus, less tables have to be generated and
searched in through.

Compared to RTs, discussions are still ongoing, as some authors claim that fuzzy attacks
are faster than RTs[KH13], but do not give the parameters used for RTs to make the
comparison.

• Coverage: The coverage of FTs is typically less than that of standard RTs, especially
for larger search spaces. The extra false alarms and the increased complexity can lead
to a less efficient overall attack phase.

• Optimization Challenges: The variable nature of the chains makes optimizing FTs
more difficult. Determining the optimal balance between fuzziness and chain length
can be a complex task requiring careful consideration and potentially sophisticated
computations.

• Complexity: FTs introduce a new level of complexity into the table construction and
search process. This additional complexity can lead to increased computational costs
and make the overall process harder to comprehend and execute effectively. Moreover,
the literature concerning FTs is less extensive compared to the materials available on
DP, Hellman tables, or RTs.

2.4. Variant Analyzed in the Thesis

It is important to note that apart from the Hellman tables, which are evidently inferior to
other variants at hight coverage, there is no general consensus on the superior variant among
FTs, DP tables, and RTs. Therefore, the study of any of these three variants is justifiable.

This thesis focuses exclusively on the RTs variant. Part of this decision is arbitrary as we
had an initial intuition for improving this specific variant at the beginning of the thesis. With
numerous aspects of TMTOs needing further research, a choice had to be made at some point.
However, since there are also objective reasons that led us to analyze this specific variant
given our objectives. These reasons are listed below.

2.5. Vanilla Rainbow Tables Analysis 23

• Several papers [HM13, LH16b] argue that the RT variant is superior to the DP variant.
As far as we know, the primary argument against this claim is that for equal coverage
and memory usage, the RTs variant requires significantly more memory access than DP
tables. In [Wie04], the authors contend that the number of memory accesses is one of the
most crucial, if not the most crucial, criteria to consider when performing a cryptanalysis
attack. However, we believe that this argument can be mitigated. Paper [ACKT17]
demonstrates that in environments where the memory access cost is high (such as Hard
disk or SSD), the most significant cost factor of the attack is the number of hashes
to perform. We conjecture that, even if GPUs or FPGAs were employed, the attack
cost would still predominantly depend on the number of hashes performed. There is
currently no consensus on this point, and as will be discussed in Chapter 8, future works
should aim to reach a consensus on this topic.

• The main objective of this thesis, particularly in its initial stages, was to emphasize the
importance of the precomputation phase of TMTO, instead of focusing exclusively on
the attack phase, as is commonly done in the literature. Given this, improving the RTs
precomputation phase seems more challenging than other methods due to the use of a
different reduction function in each column, especially when considering the distribution
of the precomputation.

• Throughout this thesis, the aim was to work on high-coverage TMTOs. The RTs variant
is particularly suitable for this, as it performs very well with high coverage and has
been, in part, designed to cover a large portion of the search space.

• In [KH13], authors argue that the Fuzzy Rainbow tables variant is superior to the RTs
variant in all cases. The same authors argue in [HM13] that the RTs variant is superior
to the DP tables variant in all cases. From these papers alone, we might conclude that
the Fuzzy Rainbow tables variant is the best and thus should be analyzed. However,
in [KH13], the author dit not compare variants for all coverage and did not provide
the RTs parameters used for comparison, only those of the Fuzzy Rainbow table. In
particular, if maximal RTs (see Section 2.5) were used in the study, this could have
significantly disadvantaged the RTs variant.

2.5. Vanilla Rainbow Tables Analysis

In this section, we delve into the details of the Vanilla RT variant. In Section 2.5.1, we recall
the method for generating the rainbow matrix using more formal terms and expressions, and
we introduce the crucial notion of maximality. We then provide formulas to estimate the
precomputation time for ℓ RTs. In Section 2.5.2, we offer formulas to evaluate the coverage of
RTs, while in Section 2.5.3, we discuss the approach to estimate the memory requirements
for storing RTs. Finally, in Section 2.5.4, we present the attack time of RT in terms of the
number of hash operations to be performed.

24 Chapter 2. Background

2.5.1. Precomputation phase

2.5.1.1. Matrix Generation

� Reminder: When using clean RTs, only one instance of merged chains is kept at
the end of the precomputation phase.

During the precomputation phase, a clean matrix with t + 1 columns and mt rows is
computed using elements from the search space A. The matrix elements are denoted as xi,j
with 0 ⩽ i ⩽ t representing the column and 1 ⩽ j ⩽ mt representing the row. Two types of
functions are used to construct the matrix: reduction functions Ri and the hash function h.

Reduction functions Ri with 0 < i ⩽ t are fast, mapping elements from the hash space B to
A with nearly uniform distribution. In contrast, the function h with h : A→ B is considered
slow and is the function that the attacker want to target. The matrix element xi+1,j is
obtained from xi,j (element in the same row, previous column) with xi+1,j = Ri−1(h(xi,j)).

A chain depicts the list of elements of the same row with successive columns. Functions fi
with fi : A → A are the composition functions of Ri and h such as xi+1,j = fi−1(xi,j) and
are called hash-reduction functions. Elements in the first column are chosen arbitrarily but
must be different.

2.5.1.2. Maximality

� Reminder: The generation of a RT begins by computing m0 chains. With typical
parameters, a large portion of the m0 chains are merged and are thus discarded to keep
only mt chains to form a clean RT.

When using clean RTs, the number of elements in the last column of the cleaned matrix
is less than the number of elements with which the precomputation begins. The number of
elements considered at the start of the precomputation phase is denoted by m0, while the
number of elements in the last column after cleaning is denoted by mt.

It is possible to determine the number of chains with distinct elements in a column i. This
chains are called the surviving chains. In a column i, there is mi surviving chains i.e., mi

chains with distinct elements in column i.
As presented in [AJO08], given that mi surviving chains are in column i, and that the

probability of picking an element among the distinct elements of surviving chains in column i,
in column i+ 1 is 1

N and that there are N possible elements to pick, mi+1 can be defined
recursively from mi as follows:

mi+1 = N

(
1−

(
1− 1

N

)mi
)

(2.6)

Equation (2.7) gives the solution of Equation (2.6) and allows us to give a good approxima-
tion of the number of surviving chains remaining in column i.

mi =
2N

i+ γ
, with γ =

2N

m0
. (2.7)

To achieve the highest success probability, one can choose m0 = N elements at the beginning
of the precomputation phase. In this case, a maximum of mmax

t elements will remain at the
end of the phase, where mmax

t is given by equation (2.8) borrowed from [Oec03].

2.5. Vanilla Rainbow Tables Analysis 25

mmax
t =

2N

t+ 2
. (2.8)

A table generated using m0 = N elements is known as a maximal table. However, selecting
m0 = N elements is impractical as it drastically increases computation time. Thus in general
less than N elements are considered at the beginning of the precomputation phase.

2.5.1.3. Precomputation Time

Given m0 SPs considered at the beginning of the matrix generation, with m0 ⩽ N , given t+1
columns in per matrix and ℓ matrix to generate, the number of hash operations to perform in
order to generate a clean RT is given by Equation (2.9).

PRT = ℓm0t. (2.9)

2.5.2. Success Probability

� Reminder:

• Cleaning is the process of keeping one instance of each merged chain and discarding
the others.

• The number of elements in a clean RT is mt, which is the number of remaining
elements after cleaning in the last column t.

In a RT attack, the success probability of the attack phase depends on the coverage of A
per RT, which depends on the number of different elements in the clean matrix. The success
probability of a single RT is provided in [Oec03] and is given by Equation (2.10).

p = 1−
(
1− mt

N

)t
. (2.10)

As mentioned in Section 2.3.2.1, the use of several tables increases the success probability
beyond the limit of 86% [Oec03] for a single table. Specifically, when ℓ tables are used, the
success probability of the attack is given by Equation (2.11), which is also taken from [Oec03].

pℓ = 1− (1− p)ℓ. (2.11)

2.5.3. Memory Used

The naive way of storing RTs results in a memory that is expressed in the same way as in the
case of Hellman tables, i.e., as it is presented in Equation (2.12).

MRT
naive = 2ℓmt log2(N) (2.12)

In their paper [AC13], the authors introduce a method called compress delta encoding for
storing RTs. This method achieves a memory usage very close to the theoretical lower bound,
with a difference of only approximately 0.66% from the lower bound. For simplicity, we
approximate the memory used to store a single RT, denoted as MRT , using the lower bound
proposed in [AC13]. This lower bound is provided in Equation (2.13).

26 Chapter 2. Background

Since only the SP and EP are used for the attack, only the memory required to store the
SP (MRT

sp) and the memory required to store the EP (MRT
ep) needs to be considered. The

total memory used to store a RT, MRT , is the sum of MRT
sp and MRT

ep .

MRT =MRT
sp +MRT

ep

= ℓ

[
mt⌈log2(m0)⌉+ log2

(
N

mt

)]
. (2.13)

2.5.4. Attack Time

� Reminder: The process of assuming that the searched element is in a certain
column c of the matrix and performing computations to verify this hypothesis is referred
to as a search in column c.

The average number of hash operations required to search through a single column of a RT
is given by Proposition 2.2 taken from [AJO08].

Proposition 2.2. For a given column c, the average number of hash operations Cc needed to
perform a search is given by:

Cc = t− c
t∏
i=c

(
1− mi

N

)
.

Given the cost of searching through a single column, the average total time required to
perform an attack using ℓ tables is given by Theorem 2.3. This theorem is introduced and
proven in [AJO08]. Intuitively, it corresponds to the sum of the cost of a search in column i
weighted by the probability that the search stops there, plus the cost of the fail case.

Theorem 2.3. Given a search space of size N , the average number of hash operations T
required to perform an attack using ℓ RTs with t+ 1 columns, is:

T = ℓ
t∑

c=1

mt

N

(
1− mt

N

)ℓ(c−1)
c∑
j=1

Ct−j+1

+ ℓ
(
1− mt

N

)t t∑
c=1

Cc.

2.6. Most Relevant Variants and Improvements

In the following chapters, we will present improvements and variants introduced in our work.
Some variants and improvements are compared to the most known and efficient variants and
improvements of RTs. We thus briefly present the most relevant ones in this section.

2.6.1. Checkpoints

The checkpoint technique introduced in [AJO05] is an additional improvement in the use
of RTs, aimed at reducing the computational cost of lookups. Since their introduction,
checkpoints have been analyzed and improved, e.g., in [WL13, Hon16, KSH+15, KSH+12].

The crux of the checkpoint technique involves periodically storing intermediate information
within each chain in the matrix, and not just the SPs and EPs. These stored information,
referred to as "checkpoints", allow for a more efficient lookup process.

2.6. Most Relevant Variants and Improvements 27

During the attack phase, when the attack chain matches an EP of the table, the checkpoints
of the built attack chain are compared to the checkpoints of the matching chain. If at least
one checkpoint differs, then the match is a false alarm and it is therefore useless to rebuild
the chain of the table from its starting point.

The frequency of checkpoints in a chain is a trade-off between the extra memory needed for
storing the table and the gain provided in the attack phase. More frequent checkpoints can
result in faster lookups but at the expense of increased storage requirements. This trade-off
needs to be carefully balanced to ensure optimal performance.

2.6.2. Fingerprints

Fingerprints technique has been introduced in [ABC15]. It consists in applying in an efficient
way the checkpoints improvement with a memory improvement called truncated end points.

The principle of truncated end points method is to store EPs that have been truncated to
reduce the memory needed to store the table. As the memory used to store the table decreases,
for a given memory and given coverage, shorter chains can be used, thus allowing to reduce
the attack time. The drawback of the truncated end points alone is that it introduces false
positive match between the attack chain and the EPs, but the gain in memory counterparts
this drawback.

Fingerprints thus allow to deal with the extra cost of memory necessary to store checkpoints
by using the truncated method to counterbalance it. The resulting technique allows a
significant speedup compared to vanilla RTs.

2.6.3. Delta Encoding

Delta Encoding method has been introduced in [AC13] and is a technique allowing the
optimization of tables storage.

Traditionally, one of the primary challenge with RTs has been the storage of the tables.
Without delta encoding methods, the size of the RTs would make them unfeasible for practical
use due to the excessive storage needs. Delta encoding was introduced to address this issue.
When using Delta encoding method, the memory taken by the final tables is less than 1%
higher that the theoretical memory lower bound (Equation (2.13)).

The principle of delta encoding lies in the observation that a set of consecutive EPs, when
sorted, presents a high degree of similarity. Rather than storing every EPs explicitly, the
delta (difference) between successive EPs is stored instead.

In simpler terms, instead of storing each EP, delta encoding records the difference between
the current EP and the previous EP. Because sorted EPs tend to be very similar, this difference
requires less storage than the list of EPs. As a result, using delta encoding can dramatically
reduce the size of the RT, making it more practical for real-world usage.

To decode the delta-encoded values when looking up a value in the EPs list, the attacker
starts at the first stored EP, then adds the first delta to obtain the next EP, and continues this
process through the table. Even though this decoding step adds a very small computational
overhead during the table look-up process (when searching for a match between the attack
chain and an EP), the trade-off for a much smaller storage requirement outweighs this
disadvantage. In [AC13] the authors even consider this little extra cost as not significant.

We can imagine that the degree of compression achieved using delta encoding depends on
the specific properties of the parameters used, in particular if the final RT comes from a very

28 Chapter 2. Background

sparce Rainbow matrix. However, in practical applications, delta encoding has proven to be a
highly effective strategy for managing RT sizes.

2.6.4. Heterogeneous Tables

In [AC17], the authors introduce the Heterogeneous tables variant. When using heterogeneous
tables, matrices of different lengths are generated, in contrast to generating matrices of the
same shape in the vanilla RT. Figure 2.8 taken from [AC17] clearly illustrates the process.
Instead of using four matrices of identical shape, four matrices of varying shapes are used,
ranging from the tightest to the largest. The quantity of chains to store, the precomputation
time, and the coverage all remain the same. However, the search within the tighter matrix is
much less expensive than in one of the other matrices. With, in this case, 85% coverage per
table, the majority of values can be found in it.

Figure 2.8. – Taken from [AC17], this figure represents four vanilla Rainbow matrices above
with one possible set of four corresponding heterogeneous matrices below.

The particularity of heterogeneous tables is to not search uniformly in every matrix, as is
the case with the vanilla version (where the search is initially conducted in the last column of
the first matrix, then the last column of the second, and so on). Instead, a metric is used to
choose in which column of which matrix to search. This metric is basically the probability of
finding the element in a particular column of the matrix4, divided by the cost of the search
in this column. The search in the tightest matrix is, thus, generally favored. This variant
reduces the average attack time by up to 40% (with the gain being greater when more tables
are used). However, the worst-case scenario (searching in every table without success) is

4The probability varies depending on the columns of the matrix in which a search has already been performed
without success.

2.6. Most Relevant Variants and Improvements 29

worse than in the vanilla RTs.

Preliminary Results 3
A Clean RT (CRT) takes a coffee at her Hellman Table (HT) friend’s place.

- HT: "Would you like a double espresso?"
- CRT: "Oh, no sorry, I only drink filtered coffee."

3.1. Motivations

Before delving into the major contributions of the thesis, it is essential to present some
preliminary results.

Although certain results have been known and occasionally utilized for several years, they
have not been formally documented. Similarly, some techniques have been employed for a
while but have not been previously introduced. Finally, a few results obtained at the beginning
of the thesis may be incremental or minor, but they nonetheless warrant introduction, as they
are utilized throughout the thesis.

This chapter thus presents techniques and results that were introduced at the onset of the
PhD in the paper [ACLA21], which are employed in all subsequent chapters. Specifically, this
chapter introduces the notion of maximality, the method for selecting the parameter for the
precomputation phase to achieve a specified probability of success, the filtration technique,
and the precomputation time lower bound Pmin.

ø Takeaway:

In this chapter, we introduce key notions and techniques that are employed
throughout the thesis’s contributions. Specifically, we present:

• the maximality factor α, which characterizes the extent to which a table
deviates from a maximal table.

• The filtration method, which involves cleaning the table during the
precomputation process rather than only in the final column.

• The precomputation lower bound Pmin, which is attained when the
matrix is cleaned in all columns during the precomputation phase.

32 Chapter 3. Preliminary Results

3.2. Maximality Quantification

� Reminder:

• A RT without duplicated EPs is called a clean RT.

• A clean RT is said to be maximal when it has been generated from m0 = N SPs.
A maximal table contains in average mmax

t EPs.

As discussed in Chapter 2, using maximal tables is infeasible when addressing real-life
problems. Consequently, non-maximal tables are generated using m0 SPs, where m0 ≪ N . In
the body of literature, the technique for generating non-maximal tables consists in arbitrarily
picking m0 values, computing the corresponding chains until obtaining the expected mt

number of EPs. This can turn out to be a lengthy and tedious process.
To address this issue, we introduce α in [ACLA21], called the maximality factor, and

generalize the problem as follows: Given a target mt such that mt ⩽ mmax
t , define α and

r with 0 < α ⩽ 1 and r > 1 such that mt = αmmax
t and m0 = rmmax

t . In Lemma 3.1 and
Proposition 3.2, we provide formulas to obtain r from α.

Lemma 3.1. Let m0 = rmmax
t . The expected number of distinct EPs is given by:

mt ≈
1

(1 + 1
r)
mmax
t .

Proof. From Equation (2.7), we have m0 = 2N
γ . Given that m0 = rmmax

t , we can write
γ = 2N

rmmax
t

. Using Theorem 2.8, we obtain γ ≈ t+2
r ≈

t
r . Replacing γ in Equation (2.7) for

i = t, we finally have:

mt ≈
2N

t(1 + 1
r)

=
1

(1 + 1
r)
mmax
t .

Proposition 3.2. During the precomputation of a table, to obtain mt chains such that
mt = αmmax

t , we must have m0 = rmmax
t , with:

r ≈ α

1− α
.

Proof.

From Lemma 3.1: mt ≈ 1
(1+ 1

r
)
mmax
t .

Since mt = αmmax
t : α ≈ 1

(1+ 1
r
)

Which conducts to: 1
r ≈

1
α − 1⇔ r ≈ α

1−α

Instead of searching for the appropriate m0 manually, this approach allows determining
the targeted number of chains m0 to compute in order to generate a clean table with mt

chains and a maximality factor α using Equation (3.1), which is obtained from Lemma 3.1
and Proposition 3.2.

m0 =
mt

1− α
. (3.1)

3.3. Filtration Method 33

Figure 3.1. – Number of surviving chains mi remaining in column i, according to the value
r when m0 = rmmax

t and for N = 242 and t = 10 000.

Figure 3.1 illustrates the difference between the maximal table scenarios (m0 = N) and the
non-maximal table scenarios (m0 = rmmax

t) in terms of the maximum number of elements in
each column. The case m0 = N , equivalent to r = t+2

2 , is represented in dark blue, while the
other curves correspond to cases where r < t+2

2 .
To illustrate Proposition 3.2, let us consider the case r = 20 (dark green curve), which

results in mt ≈ 0.95239mmax
t . This is a reasonable number that provides a high-quality table1

(mt relatively close to mmax
t), while significantly reducing the precomputation cost (compared

to the m0 = N case). For example, with N = 242 and t = 1 000, generating 20mmax
t chains

instead of N brings the number of chains to be generated from 440× 1010 to 1.7× 1010 – a
258-fold reduction – while keeping the number of EPs very close to the maximum. In real life
cases, r is typically chosen between 4 and 30.

3.3. Filtration Method

Although, the filtration method was probably used in practical tools for a while, it has, up to
our knowledge, never been published before [ACLA21]. The fundamentals of the filtration
method are described in this section, while Chapter 4 introduces techniques to optimize and
distribute the filtration.

3.3.1. Intermediate Filtration

Classically, generating a RT requiresm0×(t+1) elements to compute, although onlymt×(t+1)
elements are represented in the final (clean) matrix. Discarding merged chains at the end of
the precomputation is a wasted effort because a single chain is kept among multiple chains
with the same EP. So each chain is computed from its SP to its EP even if it merges with

1This case is typically used to generate quasi-maximal tables. These tables are very close to the maximal
case while enabling a drastically lower m0 than m0 = N .

34 Chapter 3. Preliminary Results

another chain before reaching the EP. An option to mitigate this waste is to remove merged
chains progressively.

Thus, instead of computing the full chains in a row, from the SPs to the EPs, chains are
divided into sub-chains, and merging chains are detected and discarded at the end of each
sub-chain. A sub-chain is delimited by Intermediate Points (IPs). Computation of chains
is thus performed "column by column" (or group of columns after group of columns), as
opposed to the typical "chain-by-chain" method. A filter is placed in selected columns: when
all sub-chains have been computed up to the filter, a filtration is performed: only one of the
merged chains is saved. Figure 3.2 presents the mechanism of filtration with an example
zooming on one filter placed in column 3.

In column 0, all elements are distinct. Subsequently, in column 1, five chains (illustrated in
blue) merge. The precomputation proceeds to column 2, where two additional chains merge
(depicted in purple). Upon reaching column 3, a filtration is performed, retaining only one
representative of the merged chains and discarding the others. The generation continues
without computing the discarded chains.

f1 f2 f3
x1,0 −→ x1,1 −→ x1,2 −→ x1,3 x1,t

f1 f2 f3
x2,0 −→ x2,1 −→ x2,2 −→ x2,3 x2,t

f1 f2 f3
x3,0 −→ x2,1 −→ x2,2 −→ X X X

f1 f2 f3
x4,0 −→ x2,1 −→ x2,2 −→ X X X
...

...
...

...
...

f1 f2 f3
xi−1,0 −→ x2,1 −→ x2,2 −→ X X X

f1 f2 f3
xi,0 −→ xi,1 −→ x1,2 −→ X X X

f1 f2 f3
xi+1,0 −→ x2,1 −→ x2,2 −→ X X X
...

...
...

...
...

f1 f2 f3
xm0,0 −→ xm0,1 −→ xm0,2 −→ xm0,3 xm0,t

■ Merged chains in column 1
■ Merged chains in column 2
■ Filter in column 3

Figure 3.2. – Filtration with one filter in column 3.

3.3.2. Filtration in Each Column

� Reminder: Surviving chains in a given column c, are chains that remain after a
filtration in this column c. In a given column c, there is mc surviving chains.

3.3. Filtration Method 35

The minimum precomputation time needed to generate a RT corresponds to performing a
filtration in all columns of the table. In other words, this corresponds to discarding duplicated
chains as soon as the merge occurs with other chains. We provide below, the minimum
precomputation time Pmin, needed to generate a clean RT. Proposition 3.3 first provide a
lower bound on the precomputation time, an Theorem 3.4 quantifies this with results from
Section 3.2.

Proposition 3.3. Let mi denote the number of surviving chains in column i of a rainbow
matrix. The number P of hash operations to precompute a mt × (t+ 1) clean rainbow matrix
is lower bounded by:

P ≥
t−1∑
i=0

mi.

Proof. Given that the minimum hash operations to compute in order to obtain a table is
when duplicates are removed from each column and that mi denotes the number of surviving
chains in column i, the expression of the lower bound is trivial.

� Reminder: γ is a variable introduced in Equation (2.7) of Chapter 2, its only
purpose is to simplify calculations with γ = 2N

m0
.

Theorem 3.4. Given m0 = rmmax
t the number of SPs, t + 1 the number of columns, and

r ≪ t, the naïve precomputation cost is:

Pnaive = m0t ≈ 2rN, (3.2)

and the minimum precomputation cost is:

Pmin =
t−1∑
i=0

mi ≈ 2N ln(1 + r). (3.3)

Proof. The proof of Eq. (3.2) follows directly from m0 =
2N
γ ≈

2rN
t . For Eq. (3.3), we have:

t−1∑
i=0

mi = 2N
t−1∑
i=0

1

i+ γ
= 2N

t+γ−1∑
i=γ

1

i
= 2N

[
t+γ−1∑
i=1

1

i
−
γ−1∑
i=1

1

i

]
= 2N [Ht+γ−1 −Hγ−1] ≈ 2N [ln(t+ γ − 1)− ln(γ − 1)]

= 2N ln

(
t+ γ − 1

γ − 1

)

with Hn =

n∑
k=1

1

k
the n-th harmonic number, and where γ is as defined in Equation (2.7), we

obtain γ ≈ t
r , and given that r ≪ t, the expected result is obtained.

For values of r such that m0 ≪ N (i.e., “reasonable” values), we can make the approximation
that γ is large (leading itself to the asymptotic approximation ofHn). This allows for expressing
Pmin that only depends on N and r and is, in particular, virtually independent of t. For
m0 = N however, these approximations do not hold, and the resulting expression of Pmin

does depend on t (Corollary 3.5). We remark that the precomputation cost in all cases is
linear in N .

36 Chapter 3. Preliminary Results

Corollary 3.5. For the case m0 = N , the precomputation costs are respectively Pnaive = Nt
and Pmin ≈ 2N(Ht+1 − 1), with Hn the n-th harmonic number.

Proof. The expression for Pmin results from instantiating 2N [Ht+γ−1 −Hγ−1] (similarly to
the proof of Theorem 3.4) with γ = 2 (from Equation (2.7)).

From Theorem 3.4, for instance, that using a filter in each column with a typical r = 20
reduces the number of performed hash operations by about 85% (regardless of N or t).
Table 3.1 and 3.2 display the maximum speedup Pnaive/Pmin that can be obtained when
filtering in each column with respect to no intermediary filtering. Results in Table 3.1 are
valid for non-maximal tables with r ≪ t, while results in Table 3.2 are valid for maximal
tables.

Table 3.1. – Speedup for quasi-maximum
tables for various values of r.

r 10 15 20 30 50
r

ln(1+r) 4.17 5.41 6.57 8.74 12.72

Table 3.2. – Speedup for maximum tables
of various lengths.

t 1 000 10 000 100 000
t

2(Ht+1−1) 77.03 568.98 4508.50

In the case of non-maximal tables, the speedup only depends on r. In line with the intuition,
the larger r, the greater the gain. Indeed, if r is large, m0 is big and thus filtering is crucial.
For maximal tables, as the number of hash operations performed in the minimal case depends
on the (t+ 1)-th harmonic number, the speedup naturally increases with the increase of t.

3.3.3. Filtration in Chosen Columns

3.3.3.1. Optimal Placement

Results provided in Section 3.3.2 consider the number of hash operations, but they do not
consider the additional time due to filtration and communication. Considering this additional
time, it appears that filtering in every column is counter-productive in practice. Indeed, using
few filters is more efficient in practice than using t filters. We denote by χ the number of
filters used to generate a table of t+ 1 columns, with χ≪ t.

When considering χ filters instead of t, the difficulty is to find the optimal position of each
filter to minimize the total number of operations to perform. We introduce the precomputation
cost using χ filters denoted as (g1, g2, ..., gχ), and placed in columns (cg1 , cg2 , ..., cgχ) in
Equation (3.4). By convention and for equation simplification, we denote g0 = 0 and gχ = t.

P =

χ−1∑
i=0

mcgi
(cgi+1 − cgi). (3.4)

If χ is too close to t, several filters could be assigned to the same column. Choosing
χ ≪ t is not a problem, as it will be presented in Figure 3.3. Equation (3.4) is obtained
straightforwardly from Equation (3.3), since instead of computing one column per column, at
each filtration, (cgi+1 − cgi) have been computed instead.

Using Equation (3.4), Theorem 3.6 gives the optimal placement of χ filters and the number
of hash operations to perform to generate a table using these χ optimal filters.

3.3. Filtration Method 37

Theorem 3.6. The optimal average number of hash operations for precomputation with χ
filters and χ≪ t is:

P = 2Nχ

[(
t+ γ − 1

γ

) 1
χ

− 1

]
.

The optimal placement of the filters is given by:

cgi = γ

(
t+ γ − 1

γ

) i
χ

− γ + 1.

Proof. We have P =

χ∑
i=0

mcgi
(cgi+1 − cgi). Deriving for each filter column position, we obtain:

∂P

∂cgi
=

∂

∂cgi

[
mcgi

(cgi+1 − cgi) +mcgi−1
cgi)
]
.

Inserting mi =
2N

i+γ−1 we have:

∂P

∂cgi
= 2N

∂

∂cgi

[
cgi+1 − cgi
cgi + γ − 1

+
cgi

cgi−1 + γ − 1

]
= 2N

[
1

cgi−1 + γ − 1
−
cgi+1 + γ − 1

(cgi + γ − 1)2

]
.

To minimize P , we must have ∂P
∂cgi

= 0, and thus:

cgi =
√

(cgi−1 + γ − 1)(cgi+1 + γ − 1)− γ + 1.

It is easy to verify that a solution to this recursive relation with terminal conditions c0 = 1
and cgχ = t is:

cgi = γ

(
t+ γ − 1

γ

) i
χ

− γ + 1.

Replacing in the expression for P gives the expected result.

3.3.3.2. Number of Filters

Theorem 3.6 is applicable only when χ≪ t. In this section, we show that only a few filters
are necessary to closely approximate the minimal precomputation lower bound Pmin.

Firstly, Figure 3.3 illustrates Theorem 3.6 for N = 242, t = 1 000, and r = 20. The blue
curve depicts the number of hash operations needed for precomputation with varying number
of filters χ, placed according to Theorem 3.6. It also displays the lower bound Pmin (black
dashed line) in terms of hash operations, which is reached when a filter is applied in each
column. The case χ = 1 corresponds to Pnaive (filtration only in the last column).

It indicates diminishing returns in increasing χ. For instance, in that scenario, using a
single filter decreases P by a factor of 2.88. However, using a filter in each column is only
about 1% faster than using 50 filters.

38 Chapter 3. Preliminary Results

Figure 3.3. – Number of hash operations P according to the number of filters used χ, with
N = 242, t = 10 000, and r = 20. The value P is evaluated with χ filters
according to Theorem 3.6 and P with t filters according to Theorem 3.4.

It is worth noting that the optimal distribution of filters is actually not uniform. Detecting
merges as soon as they occur avoids wasting time computing the useless remaining parts of
the chains. As a consequence, filters are mostly located on the left hand side of the chains.
Figure 3.4 illustrates this non-uniformity. It depicts the position and number of hashes needed
to generate a matrix according to the number of filters, placed according to Theorem 3.6.

The area under the blue line represents the cost of precomputation without any filter. The
area under the dashed black curve is the minimal number of hash operations to perform in
order to generate the matrix. Green, purple, and red curves represent the number of surviving
chains remaining in each column when using one, height, or thirty filters, respectively. The
area under these three curves thus represents the total number of hash operations to perform
to generate the matrix using one, height, or thirty filters.

Figure 3.4 shows that even using one filter considerably decreases the number of hash
operations to perform but still computes 57% more operations than the theoretical lower
bound. However, using only height filters allows for achieving only 15.8% more operations
than the theoretical lower bound, and using thirty filters allows for computing less than 5%
more operations than the theoretical lower bound. For clarity, we have not represented the
curve for more filters, but using fifty filters allows obtaining a number of hash operations to
perform approximately 2% more than the theoretical lower bound and using one hundred
filters allows for computing 1% more hashes than the theoretical lower bound.

Figure 3.4 also illustrates that the majority of filters are placed in the columns in the left
part of the matrix. When using 8 filters, only one is in the right part of the matrix (after
column 5000), and when using 30 filters, only 6 filters out of the 30 are in the right part of
the matrix.

3.4. Conclusion 39

Figure 3.4. – Precomputation according to the number of filters used, with N = 242,
t = 10 000, and r = 20. Filters positioned according to Theorem 3.6.

3.4. Conclusion

In this chapter, we have addressed the issues associated with the characterization of the
generation of non-maximal tables using m0 SPs, particularly when m0 ≪ N . We introduced
the maximality factor, α, to simplify the process of obtaining a targeted mt number of EPs.
We provided formulas to predict the required m0 value for achieving, on average, αmmax

t

distinct EPs, thereby allowing the generation of tables for a targeted success probability and
a targeted memory. We have also shown that by choosing a value of r ≪ t, high-quality tables
can be generated while significantly reducing the precomputation cost.

Additionally, we introduced the filtration method, which consists of cleaning (or filtering)
the matrix several times during the precomputation process instead of only in the final column.
We explored the optimal placement of filters within a matrix to minimize the number of hash
operations required for precomputation. We provided a method for determining the optimal
placement of filters and demonstrated its effectiveness.

In conclusion, our findings offer valuable insights for the generation of non-maximal tables
and the strategic placement of filters to optimize the precomputation process. These insights
will be used throughout the chapters of this thesis. In the subsequent chapters, only non-
maximal tables using α as a parameter of their maximality will be analyzed. Moreover, the
filtration method will be applied in every chapter to generate tables.

Distributed Filtration 4
A RT is coming back by car from a party and gets stopped by a police officer:

- Are you clean?
- Of course!
- Perfect!

4.1. Motivations

In Chapter 3, we introduced methods for characterizing non-maximal tables and presented the
filtration method. Although we assume that the filtration method was informally used prior
to our work, we believe that optimizing filter placement has not been explored. Additionally,
no methods for distributing the precomputation of RTs or conducting such precomputation
experiments were proposed.

Generating RTs on a single CPU for a realistically sized space N is infeasible. The problem
addressed in this chapter is the following: given a total number of available nodes (or cores)
n, how to distribute the precomputation phase across the n nodes. After determining the
number of computing nodes or hashing nodes, nh that will perform the computation of chains
and the number of filtration nodes, nf that will clean the matrix during precomputation, such
that nh + nf = n, we propose a method to distribute the precomputation of RTs using the
filtration method and the n available nodes. We also provide a way to optimize the positions
of filters, taking the number of computing nodes, filtration speed, communication time, and
potential overhead due to implementation into account. We then test our method on two
different environments and evaluate the gains compared to a distributed generation without
using filtration.

ø Takeaway:

In this chapter, we introduce a method for distributing the precomputation
phase of RTs. Our conclusions are as follows:

• Distributing the precomputation phase using the filtration method is
both possible and worthwhile.

• We reduced the precomputation time of RTs by more than six times
compared to a distributed precomputation without the filtration method.

• Even when communication times are significant, the filtration method
remains beneficial.

42 Chapter 4. Distributed Filtration

4.2. Distributing Precomputation

In this chapter, the precomputation time is evaluated in seconds rather than in number of
hash operations, to provide realistic results using various environments. When relying solely
on the number of hash operations, it is not possible to account for the unique aspects of each
experimental environment, such as differences in hash speed, communication time, etc.

� Reminder:

• A sub-chain is a chain that starts with either a SP or an IP and ends with either
an IP or an EP. A sub-chain is a part of a chain of length t.

• The length of a chain or a sub-chain is the number of applications of the hash-
reduction function performed to construct it.

4.2.1. Benefits

For the sake of clarity, the problem is illustrated with concrete examples and parameters that
are used several times throughout this work, i.e., N = 242, and r = 20. The choice of these
parameters is justified in Section 4.3. For simplicity, in this section, a single table (ℓ = 1) is
considered. The scenario for multiple tables can be inferred by multiplying the total time by
the number of tables.

To provide real-world context, the computation time is illustrated using one or more nodes
with computational capabilities similar to those presented in Section 4.3. These nodes can be
characterized as having upper mid-range performances, in particular, they are considered as
components with a single CPU core.

To justify the interest of using both distribution and filtration, the expected results of
filtration without distributed precomputation, and distribution without filtration, are presented
below.

4.2.1.1. Filtration Without Distribution

When the precomputation is not distributed, only one node is used for both filtration and sub-
chains computation. Hence, the filtration cannot be executed in parallel with the computation
of sub-chains. The node must either filter or compute, not both simultaneously. On a single
node environment, precomputing a table for the specified space would take 40.5 days, even
with optimal use of filtration. While this is significantly better than the 253 days required
without filtration, it is still too long compared to what would be possible by using both
filtration and distribution.

4.2.1.2. Distribution Without Filters

Distributing the precomputation phase without using filtration is a common practice. It
is easy to implement and offers only benefits compared to non-distributed precomputation.
Given that there are m0t hashes to be computed and thus m0 chains to be computed, it is
sufficient to distribute the m0 chains to be computed across the available cores. Thus, if n
cores are available, the precomputation time is the time that a single core takes to perform
m0t/n operations.

4.2. Distributing Precomputation 43

If the available cores do not have equal capacities, a weighting constant multiplies the
m0t/n value to ensure that not all nodes are assigned the same number of chains to compute.
With an environment of 128 cores, similar to the one used in Section 4.3, computing a table
for the above-mentioned space and parameters would take 47.5 hours.

Although 47.5 hours is better than filtering without distributing, it is still far from optimal.
Given these parameters, 95% of the computed chains are discarded at the end of precomputa-
tion instead of progressively during the precomputation. The number of hashes computed
exceeds the minimum number of hashes that could be computed by filtering in each column
by a factor of just under 9.

4.2.2. Possible Distributions

Given the waste of time represented by the use of a distributed environment that does not
use filtration or by the use of an environment that is not distributed, the interest in using a
distributed environment while still using filtration is significant.

When considering the distributed method with filtration, several distributed architectures
can be considered. The architectures that appear to be the most relevant to us are briefly
described below, and the chosen architecture is more formally described in Section 4.2.5.

The challenge of distributed precomputation with filtration arises from the fact that to
filter chains, they need to be gathered. It is not straightforward or costless to filter chains
when they are all scattered across different nodes. Thus, the challenge lies in performing
computations on different nodes while still managing to filter all chains.

4.2.2.1. Centralize

The first architecture involves performing filtration on a single node. If n nodes are available,
then the chains to be computed are divided into batches and sent to these n− 1 nodes, which
compute the sub-chains up to the first filter and then return them to the filtration node for
filtering.

One challenge lies in determining the batch size. Naively, each of the n− 1 computation
nodes can compute m0/(n− 1) sub-chains up to the filtration column and return them all
at once to the filtration node, which, after performing the filtration, sends them back to the
computation node. However, this implies that filtration would not be performed in parallel
with the computation of chains, resulting in a loss of time.

Instead of using batches of m0/(n − 1) sub-chains to be computed, smaller batches are
used (see Section 4.2.5.1), and the precomputed pairs (SP, IP) are returned progressively to
the filtration node, which can thus begin filtering while the computation nodes are working.

The downside compared to the naive version is that this requires more communication
between nodes and the filtration node. As seen in Section 4.4, this problem can be mitigated
by reducing the number of filters or increasing the batch size. The challenge, therefore, lies in
finding the optimal batch size and number of filters for a given environment (see Section 4.3).

4.2.2.2. Decentralize

Another approach to the problem is to use multiple filtration nodes. This architecture is
particularly interesting if the filtration time is large.

44 Chapter 4. Distributed Filtration

The principle is to use nh computation nodes and nf filtration nodes, with nf > 1 and
n = nh + nf . In this architecture, the computation nodes receive batches of chains from
different filtration nodes and return the computed pairs (SP, IP) to specific filtration nodes.

The difficulty here is that if nf filtration nodes are used, one must ensure that filtered chains
do not end up duplicated on two different filtration nodes, which would lead to unnecessary
computation.

To prevent this, once a computation node has computed a batch, it subdivides it into nf
sets of pairs (SP, IP) based on a specific criterion on the IP of each chain, and sends each set
to the appropriate filtration node. The criterion can be on the value of the bits by which each
IP begins. For instance, if nf = 2, when a computation node has finished computing a batch,
it subdivides the computation chains into two groups: those with an IP starting with 1 and
those with an IP starting with 0, and then sends each set to the filtration nodes responsible
for sorting batches with IPs starting with 0 and 1, respectively.

The division of computed chains into multiple groups or sets can be done as the computation
nodes precompute the chains, and it does not incur an additional time.

The drawback of this method is that it requires a larger number of exchanges between
the filtration and computation nodes. For each batch, instead of returning the result of the
sub-chains precomputation to a single node, the computation node must return its result to
nf nodes. Similarly, although it seems sufficient for each computation node to receive batches
from only one filtration node, in some cases, they may need to receive them from several ones.

The advantage of this architecture is that the filtration time is divided by nf , so if this
time is prohibitive, then using this architecture is indicated.

4.2.2.3. Hybrid

This architecture involves having all n nodes computing and filtering simultaneously. In this
case, each of the n nodes is thus, both a computation and filtration node.

In the same way as the decentralized architecture, each of the n nodes will precompute
a batch of chains of a given size, split the result into n sets and return each of them to a
specific node based on a given criterion on the IP of each sub-chain.

Thus, if n nodes are available, a criterion on the first n/2 bits of the IP is chosen, each time
a node has finished computing chains and subdividing them into n sets, it sends n− 1 sets to
the other nodes and keeps the last one for itself. It can then filter the chains it received while
computing the sub-chains with the one it kept for itself and then starts the precomputation
again.

This architecture requires to solve numerous challenges. The first is the synchronization
of all the nodes. It must be ensured that sub-chains computed up to a column cj are not
filtered with sub-chains computed up to a column ci with ci ≠ cj . Therefore, whether a signal
must be set up so that each node waits at each filter for all others to reach the same level,
or each node must be able to differentiate between batches that have been computed up to
each filtration column. The latter solution implies increasing the number of subdivisions into
groups and hence the complexity.

Moreover, if all nodes do not have the same capacity, then the process becomes even more
complex. Finally, this architecture is the one that requires the most communication costs
since each node must communicate with all the others continuously.

The advantage, however, is that if shared memory is limited, then this allows for spreading
memory costs over n nodes rather than just one for the centralized architecture and nf for the

4.2. Distributing Precomputation 45

decentralized architecture. Similarly, if filtration is extremely slow, it allows for the maximum
spread of this process.

4.2.3. The Chosen Architecture

Given the environments at our disposal, the implementation is based on the centralized
architecture. The environments at our disposal (see Section 4.3 for their specifications) have
an extremely fast filtration time. Furthermore, one of the two environments has a relatively
low communication speed (at least it cannot be described as fast), using this architecture
allows us to limit the communication between each node while maximizing the time spent on
computation, knowing that it is this cost that is prohibitive, not the filtration.

4.2.4. Compatibility with RTs Improvements

Before presenting the experiments performed to demonstrate the effectiveness of the filtra-
tion method, we briefly revisit the various existing improvements to the attack phase (see
Chapter 2 for a comprehensive presentation of each improvement) and explain why the
precomputation using the filtration method will not impact the attack phase when employing
these improvements.

• Chain storage optimizations (prefix/suffix decomposition or compressed delta encoding
[AC13]): lossless compression can be applied at the end of the table generation, with no
impact on the precomputation process.

• Truncated EPs [ABC15]: EPs can be truncated at the end of the table generation, again
with no impact on the precomputation time.

• Checkpoints [AJO08, ABC15]: Saving checkpoints can be done during the filtered and
distributed precomputation with ease, although specific care must be taken. Hashing
nodes must be made aware of which columns are checkpoint columns, and the filtration
node needs to keep track of this. This adds no significant burden on either of them.

• Heterogeneous tables [AC17]: Precomputation of tables of different shapes is done
independently, regardless of whether they operate on the same input set. Consequently
the use of heterogeneous tables has no impact on precomputation improvements.

• Interleaving [ACL15]: Just like with heterogeneous tables, the different tables are
independently computed, again having no impact on precomputation improvements.

4.2.5. Estimation of the Precomputation Time

4.2.5.1. Precomputation Process

� Reminder:

• nh is the number of computation nodes.

• nf is the number of filtration node and in our case nf = 1.

In an environment with a single filtration node, this node is also responsible for managing
the sequencing of various tasks. A job is defined as a collection of sub-chains to be computed

46 Chapter 4. Distributed Filtration

between two filters. A job of size js contains js (SP, IP) pairs. Precomputations are therefore
divided into two main parts: jobs to be performed between filters and the filtration of these
jobs. Precomputations involve managing, for each filter, the dispatch of jobs to the hashing
nodes and the filtration of the completed jobs.

The rationale behind bundling sub-chains into jobs is to mitigate the communication
overhead. For instance, using js = 1 is a poor choice, as the overhead due to communication
would significantly hinder performance. Contrarly, using a very large js may result in
additional idle time for computing nodes, for example, if there are no available chains left to
compute for an idling computing node while other computing nodes are still busy1. In the
following discussion, we assume that the value of js is reasonable.

Upon receiving a job, a hashing node starts from each IP to compute the new IPs corre-
sponding to the column of the next filter. Once these computations are complete, it returns
the SPs and the new IPs to the filtration node, which sends a new job back to the latter.
The filtration node’s purpose is to receive jobs from hashing nodes and send new ones as
soon as the jobs are received. Meanwhile, the filtration node filters already received jobs. This
procedure is repeated between each filter until the end of the computation phase. As described
in Section 3.3.3, filtering in every column is not feasible in a distributed architecture due to
the added communication and filtration overhead. The problem of choosing the positions of
the filters is discussed in Section 4.2.6.

4.2.5.2. Total Precomputation Time

� Reminder: In this chapter, we evaluate the precomputation time in seconds and
not in number of hash operations.

To perform the table generation, hashing nodes compute sub-chains while the filtering node
filters and sends jobs to be computed simultaneously. In this section, we evaluate the time H,
required for hashing only, the time F , for filtering, the overhead O, due to filtration, and the
time C, spent on communication only. Subsequently, we provide Formula 4.5 to evaluate the
total precomputation time. This formula is only applicable if the filtration is performed in
parallel with the hashing.

Hashing time (H). Jobs computations are carried out by hashing nodes. Given χ filters

with χ < t+ 1, the total number of hash operations to be performed is
χ−1∑
i=0

mcgi
(cgi+1 − cgi)

(see Equation 3.4) with cgi the column of the i-th filter, cg0 = 0 and cgχ = t+ 1. A hashing
node can perform vh applications of the reduction function fi = Ri ◦ h per second. Parameter
vh represents the hashing speed and is determined before the beginning of precomputation
and depends of the hashing nodes performance. Computations of chains are considered to be
done in parallel, by nh hashing nodes with equal performance. The total hashing time can
therefore be estimated as:

H =
1

nhvh

χ−1∑
i=0

mcgi
(cgi+1 − cgi). (4.1)

1Experiments show that, for the typical problem size and architectures considered, choosing js to be anywhere
from 1 000 to 100 000 mitigates both of these issues. The particular choice of js therefore has negligible
impact on the performance, provided it lies within that range.

4.2. Distributing Precomputation 47

Filtration time (F). For a filter in column cgi , the number of elements that have to
be filtered is mcgi

. The total number of elements that have to be filtered in the entire

precomputation is hence
χ∑
i=0

mcgi
. We consider that a filtration node can perform vf filtration

per second. The total time due to filtration is thus:

F =
1

vfnf

χ∑
i=0

mcgi
. (4.2)

We also consider a potential overhead due to the filtration. This can for instance result from
processing the output of the filtration into jobs to be sent to hashing nodes. This overhead
depends on the number of elements generated and depends on the implementation (filtration
algorithm, memory allocation, etc.). Given vo the average overhead time per element, the
total overhead O can be expressed as:

O = vo

χ∑
i=0

mcgi
. (4.3)

Communication time (C). Communication time is the time needed for sending jobs
between filtration nodes and computing nodes. Let vc be the average time for a job to be sent
from a filtration node to a hashing node and back. We assume that when a communication is
in progress with one hashing node, all the other hashing nodes are computing. The impacting
communication time can then be expressed by:

C =
vc
nh

χ∑
i=0

mcgi
(4.4)

Total time. Given that computation of sub-chains and filtration are performed in parallel2,
the most impacting component in the total time spent to generate a RT is the maximum time
between the hashing time H and the filtration time F , i.e., Max(H,F). To obtain the total
time, the communication time has to be added as well as the overhead time due to filtration.
The total time P needed to generate a clean RT is hence:

P = Max(H,F) + C +O. (4.5)

4.2.6. Optimal Configuration

The number of filters and their positions have a considerable impact on the precomputation
time. When considering real environments, the formulas provided by Theorem 3.6 in Chapter 3
give an approximation of the real optimal filter positions only. In this section, we describe
the method that will be used to determine the optimal filter positions in practical cases.
A comparison between placements provided by Theorem 3.6 and our method is given in
Section 4.3.3.2.

2In general, for an architecture with a single filtration node, hashing time is much longer than the filtering
time. If the parameters of the problem and the architecture are such that it is not the case, then another
architecture with several filtration nodes should be considered.

48 Chapter 4. Distributed Filtration

Let a configuration be a set S = {cg1 , . . . , cgχ}, where χ is the number of filters, and cgi
the position (column number) of the gi-th filter. Let S∗

χ be the configuration of χ filters that
minimizes Equation 4.5, and S∗ = min

χ
S∗
χ.

Due to the various operations outside of hashing, particularly the filtering process (which,
to some extent, can be done in parallel to hashing) and other communication/data processing
overheads, the configuration given by Theorem 3.6 typically yields sub-optimal results. For this
reason, we rely on numerical minimization of Equation 4.5, which models the precomputation
time given by our implementation.

We settled on a truncated-Newton method [Nas00], an optimization algorithm suitable for
solving bounded optimization problems with many variables (see, e.g., [Sur00] for a thorough
description). The minimization is used to find S∗

χ, coupled with an exhaustive search3. on χ.
The optimality of the configuration found by the numerical minimization is based on the
following two conjectures: (1) S∗

χ is a convex function of χ, and (2) Equation 4.5 is smooth
enough (w.r.t. S) to guarantee or approach the conditions of optimality of the truncated-
Newton search4 [Nas00]. We offer no proof of these conjectures but note that (a) they seem
to be true both intuitively and after extensive testing and (b) if these conjectures do not hold,
it could only lead to better results.

Regardless of the validity of these conjectures, the configuration obtained through numerical
minimization presents a significant improvement over the analytical minimization that assumes
no overhead or filtration cost (Theorem 3.6). Moreover, the estimated precomputation time
comes very close to the theoretical minimum, as detailed in Section 4.3.

4.3. Experimental Set Up

� Reminder:

• Three parameters are used to characterize a RT, namely, the number of column t,
the quasi-maximality factor α and the number of tables ℓ.

• Variable r is used to simplify computation of m0 and is equal to r = α
1−α .

In this section, we present experiments that consist of implementing the distributed filtration
method in two distinct environments with varying components, hash speeds, communication
speeds, etc. We first describe the environments used, followed by the implementation of
filtration, filter positioning, and parameter selection, as well as the rationale behind these
choices. Finally, our results are presented in Section 4.4.

We have chosen to perform our experiments for a size N = 242 and for a value r = 20
(corresponding to α ≃ 0.95). This choice is justified for N due to its applicability in practical
scenarios (such as retrieving passwords of 8 characters), as well as for ease of comparison with
other contributions [AC13, AC17, ACKT17]. We selected r = 20 because it is a typical value
that enables achieving high success probability while allowing for a significant reduction in
m0 compared to the maximal case m0 = N . Furthermore, for simplicity, the analysis is made
for ℓ = 1.

3To maintain efficiency, the search is from 0 up to a reasonable upper bound χmax. A more sophisticated
approach could be used here (e.g., Newton descent on χ), but we found it to be unnecessary.

4In our case, the conditions are strong convexity and Lipschitz-continuous Hessian.

4.3. Experimental Set Up 49

4.3.1. Computing Environments

Our experiments were conducted in two distinct environments, described below. Prior to
beginning the precomputation phase, we benchmarked these environments to measure the
hashing speed vh, the filtration speed vf , the overhead constant vo associated with the
implementation of filtration, and the communication cost vc. The benchmarking process
involved generating tables for a small-sized problem (N = 232), with filters positioned
according to Theorem 3.6.

Environment 1 is an environment with high communication speed while Environment 2 has
lower communication speed. We show in Section 4.4 that the communication speed does not
change significatively, the results obtained.

Environment 1 consists of a computer hosting two AMD EPYC 7742 3.2 GHz processors,
each comprising 64 cores, resulting in a total of 128 cores. We used 127 cores to ensure
full exploitation during the precomputation, reserving the remaining core for basic system
operations. The benchmark measured vh = 7 747 002 hashes per second, vf = 15 949 709
filtrations per second, and v0 = 1.37 × 10−10. The communication overhead is negligible
compared to vh and vf , therefore vc = 0 can be assumed, which implies that vo + vc

nh
= vo =

1.37× 10−10 seconds are required to process one element.

Environment 2 comprises a cluster of eight computers, each equipped with two CPUs and 14
cores per CPU, totaling 224 cores. Each CPU is an Intel Xeon E5-2680 v4 (Broadwell, 2.40GHz,
14 cores). The computers are directly connected via switches, facilitating communication
through the Ethernet protocol. The benchmark yielded vh = 6 403 611 hashes per second,
vf = 7 918 745 filtrations per second, and vo +

vc
snh

= 7.5 × 10−10 seconds to process one
element.

4.3.2. Filtration Implementation

For the filtration, we employed an open addressing hash table [ML75, MC86] with the following
parameters:

• A load factor λ = 2/3, which strikes a balance between size overhead and a low
probability of collision [SW11].

• The number of slots in the table is k = mci/λ = 1.5mci , with mci representing the
theoretical number of surviving chains after filtration (provided by Equation (2.7)).

• The hash function utilized is IP mod k.

We implemented linear probing [Knu63, Pet57, Ers58] for collision resolution (with an interval
of 1). This method is suitable because inputs to the hash table are uniformly distributed in
A (by construction). Each filtration proceeds as follows:

• A hash table of size k = 1.5mci is created.

• As soon as a job is received by the filtration node, it is filtered as follows:

1. For each pair (SP , IP) in the job, IP mod k is computed.

50 Chapter 4. Distributed Filtration

2. The index IP mod k of the table is checked.

3. If no value is present at the computed index, then IP and its corresponding SP
are inserted at this index.

4. If the value equal to IP is present at the computed index, a merge between two
chains has occurred, and IP and its corresponding SP are removed.

5. If a different value of IP is present at the computed index, a new index value is
computed as IP + 1 mod k, the index IP + 1 mod k is checked, and steps 3 to 5
are repeated.

• Once all jobs have been filtered, the hash table is scanned, and all IPs and their
corresponding SPs are transferred by copying them to an array in a format that
facilitates job transmission.

• The hash table is deleted.

4.3.3. Parameters Choice

� Reminder: The last parameter to set among the three that characterize a RT, is
the number of columns t. When the filtration method is used, optimized number of
filters and their position also need to be set.

This section presents experiments conducted on the environments to determine the optimal
parameters for both environments, aiming to minimize the precomputation time.

We conducted experiments on Environments 1 and 2, as they have different components.
The results were similar in both environments. For brevity and simplicity, however, we only
present experiments conducted on Environment 1 in this section. The precomputation times
for both environments are presented in Section 4.4.

4.3.3.1. Number of Columns

Figure 4.1. – Time (sec) to generate a clean RT according to t (N = 242, r = 20)

4.3. Experimental Set Up 51

The first parameter to select is the number of columns t. The primary objective of this
section is to ascertain if a given number of columns t is less optimal or less appealing than
others. To achieve this, we compute the minimal precomputation time for various values of t
using filters. We vary t and the optimal number of filters to find the minimal precomputation
time for all t using Equation 4.5 (we refer to Section 4.3.3.2 for a description of how the
optimal number and position of filters are determined for each t). We then compare this
precomputation time with the theoretical lower bound and the usual method (without filter).

The chain length impacts the online phase: when t decreases, the time required for the
online phase decreases, but the required memory increases. When filters are employed, the
chain length also affects the precomputation phase, but this effect is substantially smaller, as
illustrated in Figure 4.1. In this figure, the blue curve represents the precomputation time in
seconds using the conventional method (no filters), according to the value of t. The green
curve represents the precomputation time when employing the filtration method with an
optimal number and placement of filters. The red curve is the theoretical lower bound. It can
be observed that the smaller t is, the greater is the precomputation time, which is due to the
fact that when t is too small, fewer filters are used, thus increasing the precomputation time.
Conversely, when t is too large, the impact of additional filters is not significant and, therefore,
less impactful. It is noteworthy that our experimental results are close to the theoretical
lower bound, and our method is substantially more efficient than the conventional way of
generating tables, as detailed in Section 4.4.

We selected t = 10 000 because this value results in a fast online phase on the order of a
few seconds with reasonably-sized memory (for N = 242). For instance, choosing t = 20 000
would yield a 20% faster precomputation but would quadruple the time of the online phase.
As depicted in Figure 4.1, this value allows us to achieve a theoretical precomputation time
sufficiently close to the theoretical lower bound.

Corollary 3.2 provides the number of SPs m0, with m0 = 2rN/t ≈ 1.76× 1010. According
to Proposition 3.1, the expected number of chains in a single column using our chosen value
of t (t = 10 000) is 0.9524,mmax

t ≈ 8.38× 108.

4.3.3.2. Filters

Figure 4.2. – Positions of the 31 filters Figure 4.3. – Number of hash operations

To determine the optimal positions and number of filters, we employed the Truncated

52 Chapter 4. Distributed Filtration

Newton Constrained (TNC) algorithm (Section 4.2.6) applied to Equation (4.5). We then
compared the positions obtained with the optimal number of filters acquired with TNC to
those obtained with Theorem 3.6. Finally, we compared the number of hashes to perform
according to the technique used.

Figures 4.2 and 4.3 present these results when considering the hash speed, filtration speed,
communication, and overhead of Environment 1. For brevity, we only present results for
Environment 1 since we obtained similar results for Environment 2.

We initially computed the optimal configuration for Environment 1 using TNC. For our
parameters N = 242, r = 20, and t = 10 000, the optimal configuration consists of 31 filters.
Figure 4.2 illustrates the position of the 31 filters placed according to TNC (blue cross) and
according to Theorem 3.6 (violet cross), where communications are free. The theoretical
minimization that considers only hashing (and not filtration nor communication) places filters
in columns more to the left of the table (lower column) than the numerical minimization of
Equation (4.5). The difference between the positions of filters is the vertical distance between
a blue cross and a violet cross. The maximal difference is obtained for the 21st filter with a
difference of 1,910 columns.

Figure 4.3 displays the number of hash operations required to generate a clean RT in
Environment 1 when there are no filters (left case), which was the state of the art prior to our
contribution; when there are optimally placed filters, which is our approach (middle case);
and when filtration and communication are free, with a filter in each column, which is the
theoretical lower bound (right case) obtained from Equation (3.3). It is worth noting that our
approach is tightly close to the theoretical lower bound (approximately 10% of the theoretical
lower bound).

We thus conclude that our parameters N = 242, r = 20, t = 10 000, and 31 filters placed
according to TNC are valid and suitable for generating tables.

4.4. Results

We generated a RT on Environment 1 and Environment 2, using the optimal parameters
determined in Section 4.3. This section presents the results obtained for each environment.
Table 5.5 summarizes these results.

ø Takeaway:

• In an environment with high communication speed, distributed filtration
reduces the precomputation time by a factor of approximately 6.

• In an environment with low communication speed, distributed filtration
reduces the precomputation time by a factor of approximately 5.

Environment 1. Precomputing a single RT without any filter requires m0t hash operations
in our scenario, corresponding to 100× 242 operations. Given that vh = 7 747 002 and the
environment consists of 127 cores (each core corresponding to one node) with one filtration
node and 126 hashing nodes, the precomputation time is estimated to be 180 225 seconds (50
hours and 3 minutes), which is very close to our experimental result of 179 850 seconds (49
hours and 57 minutes).

4.5. Conclusion 53

Using thirty one filters optimally placed significantly reduces the precomputation time.
Using Equation (4.5), we obtain that the predicted precomputation time is as low as 30 657
seconds (about 8 hours). Filters thus divide the precomputation time by 5.9 in this scenario.
The experimental result is 31 029 seconds, which is very close (1%) to the theoretical result.

Table 4.1. – Summary of the results (N = 242, t = 10 000, r = 20)

Scenario #Filters #Hashes
(×1012)

#Cores Time
Experimental Predicted

Environment 1
(state of the art) 0 176 127 179 850 180 225

Environment 1
(our approach) 31 28 127 31 029 30 657

Environment 1
(theoretical

bound)
10 000 26.8 127 - 27 452

Environment 2
(state of the art) 0 176 224 123 717 123 194

Environment 2
(our approach) 11 31 224 26 499 26 139

Environment 2
(theoretical

bound)
10 000 26.8 224 - 18 765

Environment 2. According to the TNC algorithm, without any filter, the precomputation
time of a single RT should be approximately 123 194 seconds (about 34 hours and 13 minutes).

The computed optimal configuration for this environment is the utilization of eleven filters.
For an easy comparison, we choose t = 10 000 as for Environment 1.

When eleven filters optimally placed are used, our experimental results show that a table
can be generated in 26 499 seconds (about 7 hours and 20 minutes). According to the
TNC algorithm with the parameters for this second environment, given in Section 4.3.1, this
precomputation time is estimated to be 26 139 seconds (about 7 hours and 12 minutes). Our
experimental results are therefore very close to the predicted ones.

Utilization of filters in this environment allows generating a table five time faster than
the naive method. Table 5.5 provides a summary of the results obtained for Environments 1
and 2.

4.5. Conclusion

This chapter presents the distributed filtration method for precomputing RTs. Given that the
precomputation phase is highly resource-consuming, the distributed filtration method offers

54 Chapter 4. Distributed Filtration

significant practical benefits. We also provide formulas to compute optimal filter positions
and evaluate precomputation time.

Our technique is illustrated using a typical scenario with a problem size of N = 242

(t = 10 000 and r = 20). In such a scenario, the precomputation phase requires 1.76× 1014

hash operations, taking approximately 50 hours on a 128-core computer (Environment
1). In contrast, our technique requires 2.8 × 1013 hash operations, which were completed
(including filtering) in about 8 hours and 36 minutes on the same 128-core computer. The
distributed filtration method thus reduces the expected precomputation time by a factor of
approximately 6. It is also close to the theoretical lower bound of 27,452 seconds, i.e., 7 hours
and 33 minutes (for r = 20), with the difference attributed to filtering and communication
overheads.

We considered a typical scenario in that we used quasi-maximum tables (r = 20) instead of
maximum tables, which were often considered in the literature before this thesis’s contributions.
Maximum tables (corresponding to r = 5, 001 in our case) are not used in practice due to
the prohibitive precomputation requirements. Therefore, we focus on quasi-maximal tables
throughout this thesis. However, considering maximum tables would make the distributed
filtration method even more valuable (e.g., increasing the speedup from 6 to 4,500 with the
same parameters).

It is worth noting that our technique for speeding up the precomputation phase has been
applied to vanilla RTs. We assert in this chapter that it is fully compatible with improvements
published in recent years to enhance the attack phase’s efficiency. Moreover, this technique
will be applied throughout this thesis, as it significantly accelerates the precomputation phase
without impacting the attack phase, and is applicable to all variants that will be introduced
in this work.

Rainbow Tables on CPU 5
Why do Rainbow Tables researchers never stop computing? They

hope that by tirelessly searching at the end of the rainbow,
they will find a leprechaun!

5.1. Motivations

This chapter presents an analysis of the primary bottleneck on the RTs performance. Although
traditional research often emphasizes the attack phase as the limiting factor, the focus of this
chapter is shifted towards the precomputation phase, assumed as the potential bottleneck to
RT efficiency.

To probe this hypothesis, an analysis of the maximum feasible RT across various environ-
ments and scenarios is conducted. The intent is to characterize and identify the predominant
performance limitation for RTs. The study is performed on CPUs based precomputation and
aims to provide pragmatic, actionable insights.

The analysis takes four constraints into account: precomputation time, precomputation
memory, attack time, and attack memory. The targeted coverage is 95%, which implies the
use of four quasi-maximal tables. The application of formulas from Chapters 2 and 4 to a
range of scenarios in different environments aims to highlight the main bottleneck preventing
the extension of TMTO on bigger spaces.

To ensure the applicability of the findings, three environments are analyzed and various
memory configurations are considered. Given the lack of TMTOs multi-core literature, the
attack phase is assumed to be performed on a signle core.

ø Takeaway:

• The precomputation phase is the bottleneck preventing the generation
of Rainbow Tables for larger spaces.

• In certain circumstances, increasing the memory available for the pre-
computation phase allow to decrease the attack time.

• It is not the attack time that prevents the generation of Rainbow Tables
for larger spaces using CPUs.

56 Chapter 5. Rainbow Tables on CPU

5.2. Environments and Scenarios Considered

5.2.1. Context

In practice, the entities that perform TMTOs have different needs, purposes, and resources
(e.g., available memory, amount of money to spend, time available, etc.). Resources are, in
addition, not the same for the attack and precomputation phases. It is therefore necessary to
define the context in which each phase is performed. A company, for instance, does not have
the same resources than a nation state. The memory available for the precomputation as well
as the one for the attack must be defined. Other variables, such as the available time, should
also be specified in advance.

To define the context in which a TMTO is performed, we use the concept of environments
and scenarios. An environment corresponds to the resources available on a given equipment
(RAM, number of cores, CPU performances, etc.) while a scenario defines the resources
available, namely time and memory.

In this chapter, various environments are considered and are described in Sections 5.2.3
(precomputation) and 5.2.4 (attack phase). These environments aim to represent different
entities. For each environment, several scenarios are considered depending on the available
time and money. For each scenario, the largest N that can be reached is evaluated to identify
the technological bottleneck that prevents going further. Experiments are performed to
illustrate the theoretical results.

Three distinct environments are considered for the precomputation phase and various
memory are considered for the attack phase. However, due to the lack of literature on multi
core based attack phases, a single core is considered for the attack. Two environments,
referred to as supercomputer and computer, represent large computing systems with 128
cores. supercomputer is a computer typically listed in the top-100 worldwide1, while computer
represents a machine accessible to medium-sized companies or academic research teams.
The third environment, the cloud environment corresponds to what could be expected on
rented machines available in the cloud. The latter could be economically interesting if the
precomputation is performed only once or occasionally. We indicate which biggest TMTOs
each of those environments can achieve today.

5.2.2. Considered RTs Parameters

As the objective is to estimate feasible TMTOs across different environments, it is critical
to set a constant target coverage for each scenario. This ensures fairness in the comparison.
Given that this thesis mainly focuses on high coverages TMTOs, the coverage is arbitrarily
set to 99.95%.

This choice facilitates the maximization of N , while ensuring that the attack phase remains
manageable. For all scenarios, 4 tables are used with the quasi-maximality factor α set to
0.95, as a consequence, we have r = 20, where r is such that m0 = rmmax

t .

1https://top500.org/

https://top500.org/

5.2. Environments and Scenarios Considered 57

5.2.3. Precomputation phase

� Reminder: Three different types of precomputation environments are considered
in this chapter: (1) supercomputer, which is representative of a supercomputer among
the top 100 worldwide; (2) computer, which corresponds to a 128-core computer; and
(3) cloud, which consists of rented computing units from on the main cloud platforms,
e.g., AWS, Azure, or GCP.

For each precomputation environment, the number of cores, the number of hashes/sec-
ond/core, and the available memory (RAM) are provided for supercomputer and computer in
Table 5.1 and in Table 5.2 for cloud.

For each environment, three scenarios are considered. As shown in Table 5.1, for supercomputer
and computer, the scenarios depend on the available time for the precomputation phase: one
year, one month, or one week. For cloud however, the precomputation phase is bounded to
one month, and as shown in Table 5.2, the environments are defined by the budget assigned to
the precomputation phase according to the different scenarios: 1 000 000 USD, 100 000 USD,
or 10 000 USD2.

Table 5.1. – Precomputing supercomputer and computer environments
Environment #Cores Hashes/Sec/Core RAM (TB)
supercomputer 86 344 25 000 000 16 182

computer 128 11 000 000 1

Table 5.2. – Precomputing cloud environments according to the scenarios
cloud EnvironmentsScenarios #Cores Hashes/Sec/Core RAM (TB)

1M USD 13 055 11 000 000 256
100K USD 1 279 11 000 000 20
10K USD 128 11 000 000 2

5.2.4. Attack phase

.

• There are nine different attack environments, one for each scenario of
the three precomputation environments.

• All attack environments are composed of a single core.

• The difference between attack environments is only the available memory.

For the attack phase, we consider environments with a single core3. This makes the analysis
2The computing characteristics shown in Table 5.2 have been obtained by simulating on these costs on AWS

(cluster EC2).
3Note that a single core is considered to provide a reference value, but the attack phase can be easily

parallelized to operate on several cores.

58 Chapter 5. Rainbow Tables on CPU

and description of environments a little simpler, and as discussed in Section 6.6, does not
change the overal situation.

The number of hashes per second nt, on the attack core is fixed for each environment at
nt = 11 000 0004. The idea is that the attacker usually has limited resources for the attack
phase and cannot benefit from a supercomputer for this phase.

The only attribute that has a bearing on the efficiency of the attack is the size of the
memory available. The different values for the attack memory MT are chosen to correspond to
realistic, practical cases and influence the parameter t. Memory available (but not necessarily
used) are presented in Table 5.3.

To match practical cases, the memory available for this phase should be smaller than
the memory available for the precomputation phase. The memory available for the attack
therefore depends on considered scenarios and the environments used for the precomputation
phase.

For each environment, scenarios depend on the time or money invested in the precomputation
phase. The aim is to perform the attack as quickly as possible given the tables generated
during the corresponding precomputation scenarios: one year, one month, one week of
precomputation or 1M, 100K, 10K, USD invested.

Table 5.3. – Memory available for the attack according to the scenarios and environments
Memory available for the attack (TB)

Scenarios supercomputer computer Scenarios cloud
1 year 32 0.8 1M USD 16

1 month 16 0.4 100K USD 8
1 week 8 0.2 10K USD 4

5.3. Evaluation of the Maximum TMTO Size

5.3.1. Methodology

The maximum problem size N that can be addressed by a CPU-based TMTO in a given
time frame or budget can be accurately evaluated from the analytical formulas provided in
Chapters 3 and 4 (precomputation time) and in Chapter 2 (attack time). We provide bellow
the way of evaluating each parameter.

5.3.1.1. Precomputation Phase

� Reminder: When considering filtration, the following parameters are used:

• χ: Number of filters.

• cgi : Column of the i-th filter.

• nh and nf : Number of hashing nodes and of filtering nodes respectively.

• vh, vf , vo: Respectively the hash speed, filtration speed and overhead constant.

4This corresponds to the number of SHA256 hashes per second measured on an AMD EPYC 7742 3.2 GHz
processor.

5.3. Evaluation of the Maximum TMTO Size 59

The minimum precomputation time Pmin in seconds is given by Equation (5.1) directly
obtained from Theorem 3.4 of Chapter 3. The total precomputation time P in seconds
is given by Equation (5.2) directly obtained from Chapter 4, with the same speed values
(vo = 1.37.10−10 and vc = 0) used in the first environment of Chapter 4. As in Chapter 4, for
simplicity, cg0 = 0 and cχ = t

Pmin =
2N

nhvh
ln(1 + r). (5.1)

P = Max

(
1

nhvh

χ−1∑
i=0

mcgi
(cgi+1 − cgi);

1

vfnf

χ∑
i=0

mcgi

)
+ vo

χ∑
i=0

mcgi
. (5.2)

As in Chapter 4, a single filtration core is used, thus nf = 1. Values of nh and vh according
to the environment and scenario are given in Tables 5.1 and 5.2. Values for vf are given in
Table 5.4.

For computer and cloud environments the number of hashes per second corresponds to
typical hashes value of an environment similar to computer. The filtration speed corresponds
to the one measured on an environment similar to computer. For supercomputer, environment
hashes and filtrations per second have been computed from typical FLOPS numbers on this
kind of environment.

Table 5.4. – Hashes and filtrations per second per core
Environment Hashes/Sec/Core Filtration/Sec/Core
supercomputer 25 000 000 51 270 585

computer 11 000 000 15 949 709
cloud 11 000 000 15 949 709

5.3.1.2. Memory Used

The memory required for the attack, MT , is defined by Equation (5.3). This represents the
memory used for the attack, excluding any form of compression or intelligent table storage.
More precisely, it accounts for the storage of mt SPs and mt EPs on N bits for each of the ℓ
tables. We have opted to estimate memory usage without considering potential improvements,
as this does not significantly affect the overall conclusion and simplifies our analysis. This
method of memory estimation results in a value approximately twice the size of the minimum
lower bound presented in Chapter 2 for the scenarios considered in this chapter.

MT = 2ℓmt log2(N) (5.3)

The maximum RAM needed for the precomputation phase MP is given by Equation (5.4)
with mcg1

the number of surviving chains remaining after performing the first filtration.
Factor 3 is explained by the fact that we consider the use of a hash table for filtration with
the same load factor as in Chapter 4, i.e., λ = 1.5 and both SPs and EPs are stored.

MP = 3mcg1
log2(N) (5.4)

60 Chapter 5. Rainbow Tables on CPU

Table 5.5. – Evaluation of the maximum problem size
Precomputation phase

supercomputer computer cloud
1 year 1 month 1 week 1 year 1 month1 week 1M USD100K USD10K USD

N Problem size 261 256.83 254.2 250.68 247.05 244.9 253 250.13 247.05

t Number of columns (×103) 7 611 788 242.9 1 200 89 17.1 75.5 37 41.5

MP Mem.(TB) prcmp. Eq.(5.4)182.23 59.82 14.1 0.98 0.96 0.98 25.05 15.29 1.99

MT Mem.(TB) attack Eq.(5.3) 32.0 16.0 8.0 0.13 0.14 0.15 11.02 2.89 0.29

P Prcmp. time (days) Eq.(5.2)366.05 30.06 7.73 364.35 30.0 7.11 31.23 30.16 30.04

Pmin Prcmp. low. bnd.(days) Eq.(5.1)301.13 16.73 2.7 354.34 28.62 6.45 17.21 24.01 28.4

Attack phase
supercomputer computer cloud

TRAM Attack time Eq.(5.5) 9.62 d 2.47 h 14.12 m 5.74 h 1.9 m 4.15 s 1.35 m 19.6 s 24.73 s

The abbreviations “d”, “h”, “m”, and “s” respectively denote “days”, “hours”, “minutes”, and “seconds”.

5.3.1.3. Attack Phase

As only one core is used for the attack phase regardless of the environment used for the
precomputation, the attack time can be well estimated by dividing result of Theorem 2.3 by
the number of hashes per second nt performed by the CPU used for the attack. Therefore,
the attack time TRAM , is given by Equation (5.5)

TRAM =
T

nt
(5.5)

with T the number of hashes needed to perform the attack given in Theorem 2.3. As the
attack should be performed by an average computer, we have chosen to use nt = 11 000 000
as the number of hash per second used for the attack phase.

5.3.1.4. Choice of Parameter t

The parameter t is chosen for each time frame (year, month, or week) or according to the
budget (1M, 100K, or 10K USD) in order to maximize MT while keeping MP and MT under
the available memory (see Tables 5.1, 5.2 and 5.3). As t impacts MP , it influences the memory
of the two phases. If t is too high, the attack phase will be too slow. On the contrary, if t is
too small, the memory needed for precomputation and especially for storing tables may be
too large.

5.3.2. Results

The results of the evaluation are provided in Table 5.5, where nine configurations are presented
according to the environments and scenarios considered.

5.4. Discussion 61

5.4. Discussion

5.4.1. Noteworthy observations

This section discusses the impact of memory allocation, precomputation, and attack phase
bottlenecks across the environments supercomputer, computer, and cloud. Each environment
presents unique challenges and characteristics influencing the capacity to handle larger TMTOs.
For each environment, various scenarios are explored, taking the amount of memory available
for precomputation and attack, the impact of N and t on memory requirements, and the
limitations arising from the precomputation phase into account.

Furthermore, it is worth noting that the attack phase is considered to be executed on a
single core as, to our knowledge, no literature explores the parallelization of the attack phase.
However, considering the use of four tables, a reasonable assumption is that the attack time
could be divided by four by executing the attack with four core and attacking with one table
per core.

• Concerning supercomputer environment:

– With the considerable memory capacity available for precomputation, one could
potentially allocate a greater amount of memory to this phase, which might result
in a reduced attack time. Despite this possibility, no further memory is allocated
due to the attack phase memory already operating at its limit. This results
in a scenario where there is a disproportionate allocation of available memory
between the precomputation phase and the attack phase. However, given the
satisfactory performance of the attack phase under the current conditions, it
cannot be conclusively inferred that the memory allocated for the attack phase is
a bottleneck.

– In all scenarios of supercomputer, P and Pmin are relatively distant (considerably
in the one-year scenario). This is due to considering only a single filter node5. In
this case, employing two or three filter nodes instead of only one could considerably
reduce the precomputation time and hence bring P closer to Pmin.

– Even if Pmin were to be considered instead of P , there would be an increase between
1 and 3 bits in the size of N in the one-month and one-week scenarios, but not even
by 1 bit for the one-year scenario. Ultimately, the issue remains: the maximum
allocated time has been consumed for precomputation. To increase N , it would
require more time for precomputation, additional computational resources, or the
introduction of a new algorithm or variant that would achieve these problem sizes
with a lower Pmin.

• Concerning computer environment:

– In this environment, the memory for precomputation is constrained to 1TB. For
all scenarios considered, the maximum available memory for precomputation is
used, leading to an attack memory that is nearly identical across all scenarios.

– One might question why there is a slight increase in the attack memory between
the one-year and one-week scenarios, given that N is smaller in the one-week
scenario and nearly the same memory is used for precomputation in both scenarios.

5Formulas for multiple filter nodes have not yet been introduced.

62 Chapter 5. Rainbow Tables on CPU

This can be explained by the number of columns t, which is lower in the one-week
scenario. Since the same precomputation memory is used for a smaller N to
achieve the same success probability, a smaller t can be adopted, thus increasing
the memory needs for the attack.

– It is observed that in all scenarios within this environment, P is very close to Pmin.

– The bottleneck for this environment is also the precomputation phase, as the only
way to increase the size of N would be to either extend precomputation time, use
more computational resources, or introduce a variant that would have a lower Pmin

for the same N . As the attack times and the necessary memory for the attack are
quite reasonable, they do not constitute a bottleneck for this environment.

• Concerning cloud environment:

– In the case of the cloud environment, unlike the other environments, there is only
one scenario in which the maximum memory for either precomputation or attack
is reached, and that is the 10K USD scenario. For the two other scenarios, the
maximum available memory is never reached.

– In the 10K USD scenario, despite the use of the maximum memory for precompu-
tation, the attack time remains low and P is close to Pmin. Therefore, the use of
the maximum available memory for precomputation is not what prevents one from
performing a larger TMTO.

– In the 100K USD and 1M USD scenarios, P is a bit farther from Pmin. As in the
case of the supercomputer environment, this is due to the fact that only one node
instead of several is used for filtration.

– For this environment, even if Pmin would be considered instead of P , the conclusion
would be the same, namely, that both the memory for precomputation and the
memory for attack are sufficient. The attack times are good. What prevents the
generation of larger TMTOs is still the precomputation phase. More funding would
need to be invested to acquire more computational power, or a variant that covers
the same space for a lower Pmin could be employed.

5.4.2. Take Away Observations

(1) The cost P and the theoretical lower bound Pmin are generally close enough. In the
cases where the gap between Pmin and P is more significant, converting some computation
nodes to filtering nodes would reduce the gap significantly, as it is mainly explained by a slow
filtration speed. Therefore, unless a significant algorithmic change is introduced, improving
the efficiency of the precomputation phase would have negligible impact on the domain size
that can be realistically attacked.

(2) For all environments considered, the largest domain sizes on which tables can be
precomputed in each scenario lead to tables that are practical for the attack phase (i.e.,
reasonably small in memory, and reasonably fast to execute a search). In other words, within
the context established in this Chapter on the environments, scenarios, technology, and
algorithms, the precomputation phase is the bottleneck to using RTs on large domains. The
slight overhead due to performing the attack phase on secondary memory (HDD or SSD)
would thus not change this conclusion.

5.4. Discussion 63

(3) The memory MP needed to perform the precomputation is not a bottleneck for generating
bigger TMTOs in the environments and scenarios analyzed in this chapter. Yet, even if in all
scenarios the attack time is reasonable, in some instances, expanding the attack time entails
increasing the precomputation memory rather than the attack one.

5.4.3. Conclusion

Our main observation from Table 5.5 is that the precomputation cost P is the current
bottleneck of TMTO. Indeed, the attack time remains reasonably low, even for the biggest
space sizes considered. The memory needed for the precomputation and the attack is affordable
(for the corresponding entity that performs it). Therefore, it is the precomputation time P ,
and more precisely, the computing power of the adversary (number of computation nodes and
number of hashes per second) dedicated to the precomputation that limits an increase in N .

Using the state-of-the-art precomputation algorithm, there is little room for improvements
on the precomputation cost P . Indeed, P is very close to the theoretical lower bound Pmin.
New algorithms that have a lower bound, should thus be introduced.

Going further may require forgoing the CPU technology for a more efficient one, which could
currently be GPU or FPGA. While these technologies have constraints in how they are put to
use, they do operate several orders of magnitude faster than typical CPUs. Several articles,
e.g., [KSH+15, LLH15], treat this problem and websites propose implementations or programs6

to purchase or generate RTs on GPU. Other contributions, e.g., [SRQL02, MBPV06], focus
on FPGA-based TMTOs. However, these papers address the problem with relatively small
domains N (in the 240 to 250 range), deprecated one-way functions, or older GPU/FPGA
models. Furthermore, they do not use recent improvements in TMTOs, e.g. filtration.
Therefore, it is not possible to compare these results obtained on GPU/FGPA with the
one from this chapter. A deeper look into efficient GPU- or FPGA-based precomputation
represents interesting future work that could evaluate these technologies capabilities to deal
with larger TMTOs.

In summary, this work helps quantify the vulnerable spaces to TMTOs performed on CPUs.
In addition, although the precomputation phase has not been as widely studied as the attack
phase, it seems to be the main bottleneck preventing larger TMTO-based attacks nowadays.

The precomputation phase being a bottleneck in our observations may likewise be challenged
by such changes. Indeed, the precomputation cost is by nature linear in N , whereas the attack
phase is by nature quadratic in N . A situation where the attack phase is the bottleneck is
therefore not far-fetched, depending on the development of technologies and research in this
field.

6For instance, https://www.cryptohaze.com/ offers a GPU-based rainbow cracker, and http://
project-rainbowcrack.com/ has implementations of RTs on GPU.

https://www.cryptohaze.com/
http://project-rainbowcrack.com/
http://project-rainbowcrack.com/

Descending Stepped Rainbow
Tables 6

What is the height of irony for a DSRT researcher?
To miss a step

6.1. Motivation

The preceding chapters have highlighted the importance of considering all aspects of Time-
Memory Trade-Offs (TMTOs) rather than solely focusing on the time or memory required
for the attack. In this chapter, we introduce a new variant of Rainbow Table (RT) called
the Descending Stepped Rainbow Table (DSRT) that allows users to choose the best trade-off
between the memory required for storing the table, the coverage, the precomputation time,
and the attack time.

To compare the DSRT variant with the vanilla RT, we compared them for the same coverage
and same memory. Thus, the attack time and the precomputation time are the two remaining
characteristics to consider. Our conclusion is that the DSRT variant performs better than the
RT in both attack time and precomputation time.

The key observation leading to the DSRT construction is that during the cleaning process
of RT, most computed chains are discarded due to merges. To reduce the precomputation
time, our idea is to keep some of these merged chains instead of discarding them, and thus
keep chains that are shorter than the regular ones. The merged parts are removed, leading to
a shape of ’stair’ and thus to the so-called DSRT.

ø Takeaway:

In this chapter, we introduce a new variant of Rainbow Table (RT) called the
Descending Stepped Rainbow Table (DSRT).

• The DSRT principle is to keep some well-chosen merged chains after
cutting them, rather than discarding them.

• DSRT performs better than vanilla RT in both attack and precomputa-
tion time.

• To achieve a targeted success probability and memory, a large number
of DSRT configurations are possible, allowing various trade-offs between
precomputation time and attack time.

66 Chapter 6. Descending Stepped Rainbow Tables

6.2. DSRT Overview

The DSRT algorithm involves keeping some specific additional chains in the matrix during the
precomputation phase. In given columns of the matrix called steps, a cleaning is performed,
and well chosen chains are kept with a smaller length. The number of steps in a DSRT
is denoted as τ . For the sake of clarity, we first introduce a DSRT with one step before
generalizing to DSRTs with τ steps. We first introduce how the precomputation phase is
performed, then we present how performing the attack phase using the DSRT. The analysis
of the DSRT performance with τ steps is then proposed in Section 6.3.

6.2.1. DSRT with One Step

6.2.1.1. Precomputation phase

Figure 6.1. – Construction of DSRT matrix with single step.

� Reminder: Surviving chains in a given column c are chains remaining after a
cleaning in column c. We denote by mc the number of surviving chains in a given
column c.

The precomputation phase of DSRT begins by building m0 chains until reaching a first filter.
A filtration is then performed and the computation of chains continues with the remaining
surviving chains. Once the column s (called the step) is reached, a filtration is performed and
remaining elements are temporarily stored. At each subsequent filtration, when chains merge,
one is kept for further extension while the remaining ones are cut short in column s. The
chains that are cut short have length s and their elements present in column s (that have
been temporarily stored) are kept as final EP. Chains remaining after the final filtration in
column t have length t and their final EP is their value in column t.

6.2. DSRT Overview 67

Figure 6.1 illustrates the construction of a DSRT. The solid blue curve is mc. The area
under the dashed red curve represents the amount of hash operations needed to generate the
table using the filtration method (each landing of the curve corresponds to the application of
a filter). The DSRT matrix obtained at the end of the precomputation phase is colored in
green. The SPs and EPs kept as the final table are colored in pink.

6.2.1.2. Attack Phase

� Reminder: The attack chain refers to the chain built from y. The attack chain
starting in column c and ending in column t is thus the chain finishing by the value
ft(ft−1(. . . fc+1(Rc(y)))))).

� Reminder: The three events occurring during the attack phase are:

True alarm: The attack chain matches with an EP and the starting element of the
attack chain is the searched element. The attack is successful.

False alarm: The attack chain matches with an EP but the starting element of the
attack chain is not the searched element. The attack continues by searching in
other columns.

No alarm: The attack chain does not match with any EP. The attack continues by
searching in other columns.

� Reminder: The process of assuming that the searched element is in a given column
c of the matrix and performing computations to verify this hypothesis is referred to as
a search in column c.

In a vanilla RT, all columns have the same probability of raising a true alarm, but the
further to the right the column is, the lower is the cost of searching in that column (in other
words, the cost of the search in that column is decreasing). Therefore, the most effective
searching order is from the last column t in decreasing order.

For a 1-step DSRT, the probability of finding the searched element depends on the column
index, because not all columns contain the same number of elements: columns 0 to s contain
ms elements and columns s+ 1 to t contain mt elements.

Moreover, when an alarm (true or false) occurs in a column c with c < s, it can either
be detected in column s or in column t: it is detected in column s if a match occurs with
one of the chains of length s, otherwise the alarm is detected in column t. The number of
cryptographic operations needed to raise an alarm is consequently not the same in all columns.
Additionally, the number of cryptographic operations to check whether an alarm is true or
false depends on whether the alarm was raised in column s or in column t.

Consequently, with a 1-step DSRT, instead of performing a search from column t− 1 to
column 0, the search is performed in an order that minimizes the total expected time. This
corresponds to searching in the non-explored column with the highest coverage over average
cost ratio1.

1Another example of non-monotonic search order is discussed in the analysis of heterogeneous RTs [AC17].
Optimality of the “coverage over average cost ratio” as a decision metric is also discussed there.

68 Chapter 6. Descending Stepped Rainbow Tables

The procedure to perform the attack phase with 1-step DSRT is provided in Algo. 1
in Appendix A.1. The definition of the function µ that appears in Algo. 1 is provided in
Definition 6.3. In a nutshell, this function returns the index of the most promising column for
the forthcoming search.

6.2.2. DSRT with τ Steps

The concept of DSRTs can be naturally generalized to τ steps with τ > 1.To construct the
matrix, the precomputation begins with m0 elements and is performed until reaching the first
step s1. The ms1 last elements of the surviving chains in column s1 are temporarily stored,
and the precomputation continues. At each subsequent filtration, when chains merge, one is
kept while the other ones are cut and stored with a length of s1. When step s2 is reached, a
filtration is performed. For each merge, one instance of merged chains is kept, the other are
cut and stored with a length of s1. The ms2 last elements of the ms2 surviving chains are
temporarily stored, and the precomputation continues. The same process as with step s1 is
repeated, but now the merged chains are kept with a length of s2.

The precomputation continues until reaching column t, where a final filtration is performed
to obtain a clean DSRT.

Figure 6.2 illustrates the resulting final structure.

. In what follows, the steps are denoted by si with 0 < i ⩽ τ , where si < sj
for i < j. By convention, s0 corresponds to column 0 (s0 = 0), and sτ+1

corresponds to column t (sτ+1 = t).

For each step si, with 0 < i < τ , msi −msi+1 chains of length si are stored, and mt chains
of length t are also stored. Chains of length t form the main table, while chains of length si
are chains of step si.

In total, ms1 chains form the final matrix, and thus ms1 EPs and their corresponding SPs
are stored.

The attack phase using τ steps is similar to Algo.1. Algo.2, provided in Appendix A.2,
presents the attack phase of the generalized DSRTs.

6.3. Analysis of DSRTs

6.3.1. Preliminaries

To facilitate the characterization and visualization of DSRTs, this section provides notations
and notions used when considering DSRTs. The introduced notions are then used throughout
the chapter.

Definition 6.1. The value k(c) is the index of the leftmost step that is to the right of column
c, i.e., sk(c)−1 ⩽ c < sk(c).

Definition 6.1 is useful to express some quantities concisely, in particular: there are msk(c)

surviving chains at the step immediately to the right of column c. Similarly, there are
msk(c) −msk(c)+1

chains of length sk(c) there.
Where appropriate, sτ+1 refers to column t and s0 refers to column 0. This convention

allows for some results to be presented more clearly and concisely.

6.3. Analysis of DSRTs 69

x0,1 xt,1
...

...
x0,mt xt,mt

x0,mt+1 xsτ ,mt+1

...
...

x0,msτ
. xsτ ,msτ

x0,msτ+1 xsτ−1,msτ+1

...
...

x0,msτ−1
. xsτ−1,msτ−1

...
...

...
...

x0,ms1
. . . xs1,ms1

Figure 6.2. – DSRT matrix with τ steps.

The ratio ρ is also introduced in Definition 6.2 for the purpose of making the presentation
of the subsequent results more concise. The value ρi,j represents the proportion of chains with
a length si in column j. For instance, let us consider a DSRT with two steps s1 and s2 with
s1 < s2 < t. In column c, with c < s1 < s2, chains can be of length s1, s2, or t. Values ρ1,k(c),
ρ2,k(c), ρ3,k(c) give the ratio of chains in column c that have a length respectively of s1, s2
and s3 (with s3 = sτ+1 = t). Definition 6.2 generalizes this concept to all steps and columns.

Definition 6.2. Given a column c and a step si of a DSRT, the proportion of chains with
length si in column c is defined by ρi,k(c) where ρi,j is defined as:

ρi,j =


msi−msi+1

msj
i ⩽ τ

mt
msj

i = τ + 1

6.3.2. Success Probability

The success probability of a DSRT is computed similarly to that of RTs, with the difference
that some chains are shorter, which must be taken into account when computing the success
probability.

The success probability for a single DSRT is given in Theorem 6.1.

Theorem 6.1. Given τ steps denoted by si with 0 < i ⩽ τ , s0 = 0 and sτ+1 = t, and
considering msi the number of surviving chains in column si, the success probability p of a
single clean DSRT is:

p = 1−
τ+1∏
i=1

(
1− msi

N

)si−si−1

.

Proof. Each column c covers msk(c) different elements. Following a similar argument as in
Chapter 2, we have:

p = 1−
t∏

c=1

(
1−

msk(c)

N

)
.

70 Chapter 6. Descending Stepped Rainbow Tables

Given that sk(c) (and therefore msk(c)) are equal for all c between two steps, we can group
these factors together, resulting in the formula provided in Theorem 6.1.

The success probability when using ℓ DSRTs, denoted by pℓ, is then directly obtained from
Theorem 6.1, and is given by Corollary 6.2

Corollary 6.2. Given τ steps denoted by si, with 0 < i ⩽ τ , s0 = 0 and sτ+1 = t, and
considering msi the number of surviving chains in column si, the success probability pℓ of ℓ
clean DSRTs is:

pℓ = 1− (1− p)ℓ .

6.3.3. Precomputation Time

Generating DSRTs costs the same number of hash operations as in the case of vanilla RTs (see
Chapter 2). During the precomputation phase, whether at each step intermediary elements
are saved or not has no bearing on the number of hash computations (only the m0 SPs
considered at the beginning of generation and the number and positions of filters matter). As
shown in Section 6.5.4, the overhead due to filtration or the storage of intermediary elements
is insignificant.

However, a distinguishing feature of DSRTs is that for a given targeted memory and success
probability, m0 is typically much smaller than with vanilla tables, thus allowing to significantly
reduce the precomputation time.

The minimum precomputation time of a RT has been established and demonstrated
in Chapter 2 and is presented in equation (6.1).

Pmin =

t−1∑
i=0

mi ≈ 2N ln(1 + r). (6.1)

In this chapter, we use P = 1.13×Pmin. Considering 1.13×Pmin instead of Pmin is arbitrary
but comes with significant justification from our earlier findings. As discussed in Chapter 4,
it has been shown that one can closely approximate the minimum precomputation time using
the filtration method. We also observed that by using between eleven and thirty one filters, it
is feasible to get close enough to the theoretical bound. In the first environment discussed
in Chapter 4, the precomputation time for a vanilla RT was found to be approximately
1.13× Pmin when using twenty filters. Given that the purpose of this chapter is to provide
insights into what could be achievable in real-world applications, we opted for 1.13× Pmin,
assuming that it would offer a good approximation2. In addition, this factor closely aligns
with our experimental results as discussed in Section 6.4.

6.3.4. Attack Time

In contrast to RTs, the DSRT attack is not carried out by searching linearly from the right to
the left in the matrix. The search in each column has an associated average cost, and a given
probability that the search succeeds. This means that, while the cost does increase linearly
with the size of the attack chain (just as it does in RTs), the probability of successful search
does not remain constant (contrarily to RTs). The average attack time thus corresponds to

2Nevertheless results of this chapter can also be replicated using P = Pmin to obtain values that can be
easily transposed to any environment.

6.3. Analysis of DSRTs 71

the sum of the cost of the search in all columns, visited in optimal order, and weighted by the
probability that the search stops there.

As in the vanilla case, a search in a given column either leads to a true alarm (successful
search), a false alarm or to no alarm. An analysis of these events probabilities of occurrence
and the associated costs is the focus of Sections 6.3.4.1 to 6.3.4.6. A useful intermediate
result is the probability that no merge occurs between two given columns. This is one of the
fundamental results in [Oec03] and is generalized to any two columns c and c′ in Lemma 6.3.

Lemma 6.3. Given two columns c and c′ with c < c′ ⩽ t, the probability that the attack chain
does not merge with any chain of the rainbow matrix by c′, given it had not merged in or
before c, is:

pnomrg(c, c
′) =

c′∏
i=c+1

(
1− mi

N

)
. (6.2)

6.3.4.1. Probability of True Alarm

A true alarm occurs when the first element of an attack chain appears in the corresponding
column of the DSRT matrix.

� Reminder: sk(c) is the leftmost step that is to the right of c. In column c, there is
msk(c) elements in the DSRT matrix.

Proposition 6.4. The probability that a true alarm occurs when starting the attack chain in
the column c is:

pfind(c) =
msk(c)

N
.

Proof. There are msk(c) different elements in column c of the DSRT matrix. Given that
elements are uniformly distributed and that the number of elements in the searched space is
N , the probability that x∗ is an element of a column c is the stated quantity.

6.3.4.2. Probability of False Alarm

In DSRTs, a false alarm occurs when the attack chain at column c merges with a chain of the
matrix. This is similar to vanilla RTs, with the difference that this merge can be observed
at any of the steps si > c, including sτ+1 = t, but not exclusively. There is a distinction
to be made whether the merge occurs before or after sk(c). The two cases are analyzed in
Propositions 6.5 and 6.6.

Proposition 6.5. The probability to raise a false alarm due to a merge between columns c
and sk(c) is

pfa-pre(c) = 1− pfind(c)− pnomrg(c, sk(c)).

Proof. Straightforward, as these events (no alarm, true alarm, false alarm) are mutually
exclusive.

Proposition 6.6. The probability to raise a false alarm due to a merge between columns si
an sj, with c ⩽ sk(c) < si < sj, is:

pfa-post(c, si, sj) = pnomrg(c, si)− pnomrg(c, sj).

72 Chapter 6. Descending Stepped Rainbow Tables

Proof. A false alarm due to a merge between columns si and sj means that no merge occurs
between c and si but one occurs between si and sj . Denoting by E1 and E2, respectively, the
events "no merge occurs between c and si" and "a merge occurs between si and sj", we have:

pfa-post(c, si, sj) = Pr(E1 ∧ E2)

= Pr(E1)× Pr(E2 | E1)

= pnomrg(c, si) (1− pnomrg(si, sj))

= pnomrg(c, si)− pnomrg(c, si)pnomrg(si, sj)

= pnomrg(c, si)− pnomrg(c, sj)

The last equality stems from the nature of Lemma 6.2.

6.3.4.3. Probability of No Alarm

When no match occurs between the attack chain and the EPs of a table, no alarm is raised.

Proposition 6.7. The probability that no alarm occurs between a column c and column t is

pnoalarm(c) = pnomrg(c, t).

Proof. For no alarm to happen, the attack chain must not merge with the DSRT matrix at
any point between its start in column c and its end in column t.

6.3.4.4. Cost of Alarms

The cost of an alarm, i.e., the number of cryptographic operations performed when an alarm
occurs, is the same for true and false alarms. In both cases, an entire chain has to be rebuilt:
firstly from column c, where the search is performed, to a step si or to column t (depending
on where the merge is detected) and then from column 0 to column c− 1. Therefore, the cost
of an alarm does not depend on its nature (true or false alarm) but only on the column in
which it is detected. The cost of an alarm is given in Theorem 6.8 using Definition 6.2.

� Reminder: ρi,k(c) is the ratio of chains in column sk(c) that have a length i. In
column sk(c), the possible chains length are {sk(c), sk(c)+1, ..., sτ+1} i.e., the length of
chains ending at step sk(c) and all steps that are to the right of it.

Proposition 6.8. Given a search performed in a column c and k(c) the index of the leftmost
step that is to the right of column c, the number of hash operations necessary to rule out a
false alarm is:

τ+1∑
i=k(c)

ρi,k(c)si.

Proof. ρi,k(c) is the proportion of chains with length si in column c. It corresponds to the
number of chains with the length si in column si divided by the total number of chains in
column si. Given c and k(c) such as sk(c)−1 ⩽ c < sk(c), alarms are not necessarily detected
in step sk(c) but can be detected in each step sj > sk(c). If a merge occurs in column j with
c < j ⩽ si, the probability that this merge is detected in step si is ρi,k(c).

If an alarm is detected in si, a chain of length si has to be rebuilt, which costs si hash
operations. Therefore, the average cost of an alarm in a column c is the sum of the probability
to detect the alarm in each step si with c ⩽ si, multiplied by the number of hash operations
needed to rule it out, depending on which step the alarm is detected.

6.3. Analysis of DSRTs 73

6.3.4.5. Cost of No Alarm

The cost of no alarm in a given column c is (t− c). If no alarm occurs in any step, no chain
will be rebuilt, therefore only (t− c) hash operations will be computed.

6.3.4.6. Total Time of a Search in a Given Column

The number of operations needed to perform a search in a column c is given by Theorem 6.9.

Theorem 6.9. For a given column c and the index k(c), the average number of cryptographic
operations Cc needed to perform a search is:
for sτ < c ⩽ t:

Cc = t− cpnoalarm(c),

for c ⩽ sτ :

Cc =
(
1− pnomrg(c, sk(c))

) τ+1∑
i=k(c)

ρi,k(c)si

+
τ∑

j=k(c)

pfa-post(c, sj , sj+1)
τ+1∑
i=j+1

ρi,j+1si

+ (t− c) pnoalarm(c).

Proof. To obtain the total cost of the search, the probability of the three events (true alarm,
false alarm, no alarm) has to be multiplied by their cost and summed up together.
Case 1: sτ < c ⩽ t.

(a) The probability of a true alarm is obtained from Proposition 6.4 and is mt
N , its cost is

obtained from Proposition 6.8 and is ρτ+1,k(c)sτ+1 = ρτ+1,τ+1sτ+1 = t.
(b) The probability of false alarm is given by Proposition 6.5 and is: 1− mt

N − pnoalarm(c).
The cost is the same as for true alarms.

(c) The probability of no alarm is given by Proposition 6.7 and its cost is t − c (see
Section 6.3.4.5).

We thus have:

Cc = t
mt

N
+ t
(
1− mt

N
− pnoalarm(c)

)
+ (t− c)pnoalarm(c)

= t− cpnoalarm(c).

Case 2: c ⩽ sτ .
(a) The probability of a true alarm is

msk(c)

N , and its cost is
∑τ+1

i=k(c) ρi,k(c)si.
(b) The probability of a false alarm due to a merge between c and sk(c) is given by

Proposition 6.5 and is 1−
msk(c)

N − pnomrg(c, k(c)). Its cost is the same as for a true alarm.
(b’) The probability of a false alarm due to a merge between sj and sj+1 is pfa-post(c, sj , sj+1)

with c ⩽ sj < sj+1 and is given by Proposition 6.6. Therefore the probability of a false
alarm due to a merge between sk(c) and sτ is

∑τ
j=k(c) pfa-post(c, sj , sj+1). Its cost, given by

Proposition 6.8, depends on step sj in which the false alarm is detected and is
∑τ+1

i=j+1 ρi,j+1si.
(c) The probability of no alarm is given by Proposition 6.7 and its cost is t − c (see

Section 6.3.4.5).

74 Chapter 6. Descending Stepped Rainbow Tables

We thus have:

Cc =
msk(c)

N

τ+1∑
i=k(c)

ρi,k(c)si

+

(
1−

msk(c)

N
− pnomrg(c, sk(c))

) τ+1∑
i=k(c)

ρi,k(c)si

+
τ∑

j=k(c)

pfa-post(c, sj , sj+1)
τ+1∑
i=j+1

ρi,j+1si

+ (t− c) pnoalarm(c).

The conclusion follows from the
msk(c)

N

∑τ+1
i=k(c) ρi,k(c)si terms canceling out.

6.3.4.7. Average Attack Time

. Metric µ (corresponding to coverage over average cost ratio) is used to
determine the most efficient column in which to perform each iteration of the
search.

Using µ as defined in Definition 6.3, vector vvv is defined in Definition 6.4. Vector vvv is
composed of all columns of a DSRT from the most to least efficient.

Definition 6.3. Given N and a column c with 0 ⩽ c ⩽ t:

µ(c) =
msk(c)

NCc
.

Definition 6.4. Given a DSRT with t columns, the vector vvv with vvv = [v1, v2, . . . , vt] is
obtained by sorting the columns [1, . . . , t] in decreasing order of µ(c).

The average attack time i.e., the average number of hash operations needed to perform an
attack with a set of ℓ DSRTs, is given by Theorem 6.10.

Theorem 6.10. Given N , ℓ DSRTs with τ steps, and considering its vector vvv = [v1, v2, ...vt]
ordering the columns of tables, the average number of hash operations T required to perform
an attack is:

T = ℓ
t∑

c=1

mvc

N

c−1∏
i=1

(
1− mvi

N

) c∑
j=1

Cvt−j+1

+ ℓ
t∏
i=1

(
1− mvi

N

) t∑
c=1

Cvc .

with mvc the number of surviving chains in column c, and with svc−1 ⩽ c < svc .

Proof. This expression is a generalization of Chapter 2. The proof is constructed using an
approach similar to the one used in [Oec03]. T is obtained by adding on the one hand, the
success probability of the attack using ℓ tables, multiplied by its average cost, and on the
other hand, the failure probability of the attack using ℓ tables, multiplied by the cost of a
failed search.

6.3. Analysis of DSRTs 75

The first term is obtained by multiplying, for each column c, the probability of a true alarm
in the column with the probability of no true alarm in all earlier iterations:

mvc

N

c−1∏
i=1

(
1− mvi

N

)
.

This is multiplied by the cost of all searches performed until reaching this column:
∑c

j=1Cvt−j+1 .
The second term is obtained by multiplying the failure probability using ℓ tables, namely

ℓ

t∏
i=1

(
1− mvi

N

)
, with the cost of performing a search in all columns of a table, namely

t∑
c=1

Cvt−j+1 .

ø Takeaway:

• As for RT, the overall attack time (or cost) using a DSRT is the sum of
the search cost in each column of the table, weighted by the probability
of performing a search in that column.

• False alarms can be detected in steps, which saves the cost of building
the attack chain until column t.

• In contrast to RT, the search in a DSRT is not linear since it may be
more beneficial to search in chains ending at a step to the left rather
than continuing to search chains ending at the same step.

6.3.5. Memory Used

Formulas to evaluate the memory needed to store RTs are presented in [AC13]. In this section,
we adapt them to DSRTs.

6.3.5.1. Rationale

When using DSRTs, instead of considering one set of elements per table, EPs and SPs are
grouped according to their length. For the same number of chains and the same number of
tables, storage of DSRTs EPs thus takes more memory than RTs. Indeed, the EPs to be
stored are divided into independent collections as opposed to a single collection, resulting in
less efficient compression.

On the other hand, in order to generate the same number of chains and the same number
of tables, much fewer SPs need to be considered at the beginning of precomputation. Thus for
a given number of chains (regardless of their size), m0 is smaller for DSRTs than for vanilla
tables. As the memory needed for storing SPs depends on m0, the storage of SPs ends up
using less memory for DSRTs than for RTs.

Overall, the memory for DSRTs compared to vanilla tables depends on specific parameters
(see Section 6.5.5.3 for a discussion). Nevertheless, in this manuscript we always choose
parameters to compare with RTs for the same coverage and memory.

76 Chapter 6. Descending Stepped Rainbow Tables

6.3.5.2. Analysis

For each step si, there are msi −msi+1 elements to be stored. These are in addition to the
mt chains of length t.

The memory needed to store the table EPs is given by Equation (6.3), adapted for DSRTs
from [AC13].

MDSRT
ep = ℓ

(
log2

(
N

mt

)
+

τ∑
i=1

log2

(
N

msi −msi+1

))
. (6.3)

As for SPs, ms1 EPs are stored for each table instead of mt. The storage of individual SPs
is the same as in the vanilla case. The memory needed to store DSRTs SPs, MDSRT

sp , is given
in Equation (6.4):

MDSRT
sp = ℓms1⌈log2(m0)⌉. (6.4)

The total memory used to store ℓ DSRTs MDSRT is simply MDSRT =MDSRT
sp +MDSRT

ep .

6.4. Experiments

This section illustrates the theoretical results obtained in Section 6.3 with practical experiments.
DSRTs with between one to five steps have been generated, and their precomputation time,
success probability, and attack time have been compared to the respective theoretical results.
In all cases, when a sufficient number of experiments has been performed, the relative difference
between theoretical and practical results is below 1%.

It is worth noting that the precomputation time (number of hash operations) is the same
for both RTs and DSRTs when considering equal parameters, namely number of SPs, number
and positions of filters, and the value of t. The comparison that follows consequently focuses
on attack time and success probability only.

In what follows, for the sake of clarity, we call configuration a list of parameters describing
a set of RTs: maximality factor of the tables, number of columns, and number of tables,
denoted by α, t, and ℓ respectively. When considering DSRTs, the configuration also contains
the number of steps, denoted by τ , and their positions s1, . . . , sτ .

6.4.1. Availability

The code used to generate DSRTs and perform attacks is publicly available on GitHub3. It
provides a python script that launches DSRTs generation for parameters (i.e., N , ℓ, α, t and
step positions) given in the script header, and performs attacks using the generated tables.
The number of attacks to perform has to be specified. Log files are created for tracing success
probability, precomputation time and attack time.

6.4.2. Environment

Experiments are conducted on a computer hosting two AMD EPYC 7H12 processors composed
of 64 physical cores and 64 virtual cores each, for a total of 128 physical cores and 128 virtual
cores. We used up to 128 of the physical cores in our experiments.

3https://github.com/DianeLeblancAlbarel/Stairway-To-Rainbow

https://github.com/DianeLeblancAlbarel/Stairway-To-Rainbow

6.4. Experiments 77

The precomputation phase has been distributed as proposed in Chapter 4, using the
filtration method adapted to DSRTs. Both the precomputation and attack phases were
written in the C language, using the SHA256 function of OpenSSL for hashing. The Open
MPI library is used to distribute the precomputation phase.

6.4.3. Success Probability

Theorem 6.1 is used to choose DSRT configurations that reach a target success probability.

Experiments with different configurations were performed, containing up to five steps
positioned between columns 0.3t and t. The positions of the steps are not critical in these
experiments, given that there is no “optimal” configuration. Indeed, the position of the steps
defines a trade-off between precomputation time and the attack time. Nevertheless, configu-
rations with widely different step positions were tested to cover various cases: concentrated
on the right, concentrated on the left, uniformly distributed, etc. Success probabilities were
tested from 85% to 99.5%. All experiments lead to the same conclusion. For clarity, only
the case using two tables and a 95% success probability is presented here. The probability
of 95% has been chosen arbitrarily but same results are obtained with other target success
probabilities.

Figure 6.3 depicts the success probabilities when considering experiments based on two
DSRTs. The blue horizontal line in the figure is the theoretical success probability, chosen to
be 95%.

A test consists in randomly choosing one of the N elements of the space A, hashing it, and
trying to find its preimage using the generated DSRTs. In Figure 6.3, twenty five configurations
are tested. A batch of 10 000 attacks was performed for each configuration. Each point
of the figure represents a different tested configuration. The success probability obtained
corresponds to the proportion of the attacks in the batch that succeeded.

For all configurations, the obtained success probabilities are all between 94.7% and 95.4%.

Figure 6.3. – Experimental success probability according to the configuration used, with
theoretical success probability equal to 95%.

78 Chapter 6. Descending Stepped Rainbow Tables

6.4.4. Attack Time

To test the compliance of the attack time with the model given in Section 6.3, various
configurations have been tested. For each configuration tested, 25 batches of 20 000 attacks
were performed, i.e., 500 000 attacks per configuration. For brevity and clarity of presentation,
we display a random selection of 25 among the large sample of tested configurations. They
were made for the same coverage and memory, though experiments performed for different
memory and coverage lead to the same conclusion. The twenty five configurations presented
here use five steps, two tables, and a 95% success probability. The differences between each
configuration tested are various values of the parameters α and t, and steps positions. The
target probability and memory are the same. The memory M and N have been arbitrarily
chosen to correspond to reasonable cases, namely M = 63.9 GB and N = 242. The position
of the steps varies between 0.3t and t (see Section 6.5.3 for explanations about this bound).

Figure 6.4 presents the results obtained. For each tested configuration, the average attack
time of the configuration corresponds to the average number of hashes performed over the
500 000 attacks. Each point represents the ratio between the average attack time of each
configuration and the theoretical counterpart given by Theorem 6.10.

The black line represents for each point the first and third quartile obtained on each of the
25 batches of 20 000 attacks. The black dashes represent quartiles 0 and 4.

The results are well distributed around 1.0. The large majority of experiments (between
first and third quartile) are within ±1.5%. Figure 6.4 leads to conclude that experimental
results fit the theory very well. It is worth noting that significant variations in the attack
time are intrinsic to RTs and are noticeable for both DSRT and classical RTs.

Figure 6.4. – Average number of hash for an attack over theoretical number of hash for
different configurations.

6.5. Evaluation

This section compares the performance of RTs and DSRTs. The comparison methodology is
first introduced, then the configurations used for the comparison are established, the results
are presented, and the compatibility of the DSRTs with existing improvements is finally
discussed.

6.5. Evaluation 79

6.5.1. Comparison Methodology

� Reminder: A configuration is a list of parameters describing a set of RTs or a set
of DSRTs. For RTs the parameters are: maximality factor of the tables (α), number
of columns (t), and number of tables (ℓ). When considering DSRTs, the configuration
also contains the number of steps, denoted τ , and their positions s1, . . . , sτ .

Defining configurations is needed prior to generating a set of tables. As concluded in
Chapter 5, the precomputation time is usually the bottleneck that prevents the use of large-
scale TMTOs. Nonetheless, the attack time is of primary importance as well. The comparison
thus focuses on the trade-off between these two constraints.

Various trade-off curves are compared. For each comparison, a target success probability
and an available memory for the attack phase are set. These parameters being fixed, the
best configuration refers to the configuration for which there is no other configuration having
both better precomputation time and better attack time, whether we consider RTs or DSRTs.
These configurations define the Pareto frontier for each comparison.

We describe the costs (both precomputation and attack phases) in terms of number of
hash operations. This allows for better accuracy, and can be transposed to any computing
environment. A good approximation of the time in seconds for the precomputation or
attack phase is indeed simply the number of hash operations to be performed divided by the
number of hash operations computable per second on the chosen environment. As shown in
Chapter 4, this approximation may vary slightly for the precomputation phase depending on
the distributed environment used. For the attack phase, this approximation is very accurate.

6.5.2. Configurations

This section presents how the configurations for the comparisons were determined.

6.5.2.1. Rainbow Tables

As previously explained in Section 6.4, three parameters, namely α, t, and ℓ are sufficient
to fully define the characteristics of a RT. The success probability of a single table and the
memory available for the attack phase, given respectively by Equations (2.10) and 2.13, are
fixed by α and t. Only the number of tables, ℓ, remains free. As a consequence, for any given
value of ℓ, there exist a unique configuration once α and t are chosen.

Typically, the number ℓ of tables chosen, is the smallest or second smallest value that allows
reaching the expected success probability4 given by Chapter 2. In practice, only a small range
of values for ℓ is used, since, above a certain number of tables (typically six tables and up),
adding a table does not reduce the precomputation time significantly but does increase the
attack significantly. Therefore, in practice, for a given success probability and a given memory
for the attack phase, only a few configurations of RTs are meaningful.

6.5.2.2. DSRT

By using DSRTs instead of RTs, new parameters are available for determining possible
configurations: the number of steps τ , and their positions. Considering various numbers
of steps and their possible positions, a large number of DSRT configurations can reach

4Certain success probabilities are only achievable by using a sufficient number of tables.

80 Chapter 6. Descending Stepped Rainbow Tables

the expected success probability and memory. When considering τ steps, the number of
possible configurations is technically bounded by (t− 1)τ . Among these, many provide better
performance than RTs. However, some of them perform worse. This often arises for example
when the steps are mostly located towards the left part of the chains. Indeed, in such a
case, a lot of very short chains are stored, causing a significant increase in memory without
significantly increasing the success probability.

6.5.3. Parameters

We considered configurations with one to five steps positioned between 0.3t and t. Placing
steps further to the left of the table (in columns earlier than about 0.3t) is possible and the
formulas apply perfectly to these cases, but in practice these tables are very inefficient and
are therefore never used. Using more than five steps is possible but we have observed that it
does not improve the trade-off between precomputation time and attack time sufficiently to
justify the effort in finding the optimal step positions. To determine the configurations that
reach the success probability and the available memory, we performed a search according to
Algo. 3 available in Appendix A.3.

We chose a set of size N = 242 and a memory of size 63.9 GB distributed over ℓ tables.
N = 242 has been used to provide an easy comparison with articles [ABC15, ACLA21], also
dealing with this space. The memory was chosen to enable use of our results in practical
cases.

For each evaluation we performed, we identified the configurations that reach the expected
success probability and available memory according to Algo. 3. For all configurations, the
precomputation time and the attack time are plotted, both expressed in number of hash
operations.

6.5.4. Results

ø Takeaway: No matter the success probability, there is always a configu-
ration where DSRTs behave better than RTs.

Results are presented in Figures 6.5a, 6.5b, and 6.5c, which correspond to success probabili-
ties of 96%, 98%, and 99.5%, respectively. The (green) crosses in the figures represent the
results for RTs and the (red) dots, the results for DSRTs. Black dots identify the best results,
which indeed all correspond to DSRTs.

It is worth noting that the precomputation times differ between Figures 6.5a, 6.5b, and 6.5c
depending on both the number of chains and the number of tables to generate to reach the
target coverage given the target memory.

The main highlight is that, no matter the success probability, there is always a configuration
where DSRTs behave better than RTs. In other words, when comparing RTs and DSRTs for a
same memory and success probability, RTs are not on the Pareto frontier of configurations.

The relative gain depends on the success probability, which is mostly due to the maximality
factor α. Indeed, whatever the success probability, using DSRTs reduces α and thus the
number of chains to be computed during the precomputation phase. Therefore the gain in
precomputation time is even more important when the success probability requires a larger
maximality factor.

6.5. Evaluation 81

(a) Trade off between precomputation time and attack time 96%
of success, N = 242 and a 63.9 GB memory. 2 and 3 tables used.

(b) Trade off between precomputation time and attack time 98%
of success, N = 242 and a 63.9 GB memory. 2, 3 and 4 tables used.

(c) Trade off between precomputation time and attack time 99.5%
of success, N = 242 and a 63.9 GB memory. 3 to 5 tables used.

Figure 6.5. – Trade-off between precomputation and attack.

82 Chapter 6. Descending Stepped Rainbow Tables

Table 6.1. – Expected gain illustrated on several examples with DSRT and RTs. Precompu-
tation and attack phase numbers are quantity of cryptographic operations.

Success probability: 96%

Precomputation Attack
2 DSRT 2.46× 1013

6.99× 1052 RT 3.26× 1013

Gain 25%

2 DSRT
2.32× 1013

7.17× 105

3 RT 8.6× 105

Gain 17%

Success probability: 98%

Precomputation Attack
2 DSRT 2.96× 1013

9.79× 1052 RT 7.59× 1013

Gain 61%

2 DSRT
3.17× 1013

1.04× 106

3 RT 9.26× 105

Gain 11%

Success probability: 99.5%

Precomputation Attack
3 DSRT 4.4× 1013

1.45× 1063 RT 6.42× 1013

Gain 31%

3 DSRT
4.35× 1013

1.59× 106

4 RT 1.46× 105

Gain 8%

For example, Figure 6.5b for success probability of 98%, using two DSRTs instead of two
RTs divides the precomputation time by 2.56 without increasing the attack time (as all of
these comparisons, for the same coverage and the same memory used). On the environment
described in Section 6.4.2, this corresponds to generating a set of tables in approximately 5.6
hours, instead of 14.4 hours. If three vanilla RTs are used instead of two, DSRTs perform
11% faster. On a single core, these attack times correspond to approximately 0.08 second per
attack.

Table 6.1 provides the expected gains of several configuration examples with various success
probabilities.

We compared so far DSRTs and RTs either for the same attack time or for the same precom-
putation time. However, Figures 6.5a, 6.5b, and 6.5c shows that many other configurations
(“best configurations”, represented by black dots) may also be interesting in practice.

For instance, for a success probability of 99.5%, in the configuration identified by an orange
dot in Figure 6.5c, the use of DSRTs results in a precomputation time of 3.98× 1013 hash
operations and an attack time of 1.53× 106 hash operations. Compared to the 3-tables RT
configuration, this DSRT configuration allows a reduction of 38% in the precomputation time
for an attack time phase only 5% slower.

6.5. Evaluation 83

In the same vein, in Figure 6.5a, the DSRT configuration identified by an orange dot has a
much faster attack time than the 3-table RT configuration (right green cross) and at the same
time has a slightly faster precomputation time. Indeed, using this DSRT configuration instead
of three RTs decreases by 2% the precomputation time, and decreases by 16% the attack time.
Compared to the 2-tables RT configuration (left green cross), this DSRT configuration allows
for a reduction of more than 30% in the precomputation time for an attack time phase only
4% slower.

6.5.4.1. Example Case

� Reminder: m0 is the number of chains considered in column 0, when the precom-
putation begins. As the precomputation progresses, the number of surviving chains in
each subsequent column decreases due to merges between chains.

Figures 6.6a and 6.6b illustrate the shape of the DSRT for a 98% success probability, with
two RTs and two DSRTs as presented in Table 5.5.

Figure 6.6a shows the number of surviving chains per column for both DSRT and RT. The
precomputation time for RT is the area under the blue curve, and the precomputation time for
DSRT is the area under the pink curve. In this particular case, the m0 used for precomputing
the RT table is over 12.5 times higher than the m0 used for precomputing the corresponding
DSRT. This difference in m0 explains the gain in precomputation time for DSRT.

Figure 6.6b shows the final shape of both DSRT and RT. It might suggest that the DSRT
requires more memory than the RT, as it contains more chains. However, this is not the case.
The DSRT and the RT require the same amount of memory, primarily due to the difference
in m0. The memory required to store the SP for the RT is given by:

MRT
sp = ℓmt⌈log2(m0)⌉.

while the memory required for the DSRT is:

MDSRT
sp = ℓms1⌈log2(m0)⌉.

As shown in Figure 6.6b, the number of chains in the RT (mt) is slightly lower than in the
DSRT (ms1). However, the difference is offset by the fact that the RT precomputation begins
with 12.5 more SPs than the DSRT, so the log2 term in the formulas compensates for the
higher number of chains in the table. As a result, the memory required for the DSRT SP is
slightly lower than for the RT SP. However, as the EP must also be stored and compression is
more efficient for the RT than for the DSRT (because the compression of one set of chains is
more efficient than the compression of five set of chains), the DSRT EP thus requires slightly
more memory than the RT EP. When the memory taken by the EP and SP are summed,
DSRT and RT require finally the same amount of memory, even though the DSRT has more
chains.

Both the DSRT and RT configurations have the same average attack time. At first glance,
the DSRT configuration may appear to take slightly more time in attack since it has fewer
chains on the right hand side of the table. However, a side effect of the DSRT is that it helps
to reduce the cost of false alarms. In Figure 6.6b, chains ending before t account for slightly
more than 25% of the total number of chains in the table. Whenever a search is performed
on the left of column s1, there is a 25% chance that a merge with a chain ending at a step

84 Chapter 6. Descending Stepped Rainbow Tables

(a) Precomputation of the matrix

(b) Corresponding final matrix

Figure 6.6. – DSRT VS RT for 98% success probability

before t will occur if a chain of the matrix is encountered. If the search is performed between
s1 and s2, the chance is approximately of 20%, and so on. If it is a false alarm, the cost of
ruling out this false alarm is lower than if the merge occurs with the main table. This time
gain in ruling out false alarms compensates for the lack of columns in the right part of the
table and allows for the same average attack time to be achieved.

6.6. Conclusion 85

6.5.5. Conclusion on Efficiency Comparison

6.5.5.1. Coverage

As seen in Chapter 2, the maximum coverage of a RT is approximately 86%. DSRTs, however,
have a maximum coverage of 100%, obtained when a step is placed in every column. Of
course, placing a step in every column is not worth the cost in memory. Instead, a few,
well-positioned steps are used. Nevertheless, the coverage obtained with a DSRT is better
than those obtained with a RT. This allows using one or two fewer tables to obtain the
same coverage for the same memory. This decreases simultaneously the attack time, and the
precomputation time (all other characteristics being equal).

6.5.5.2. Attack Time

Even for the same number of tables used, there are always better configurations of DSRTs with
the same memory and coverage as RTs, that are faster in both attack and precomputation.
The gain in precomputation is obtained from the smaller number of chains that have to be
computed to obtain the same coverage.

When using the same number of tables, the attack time is smaller for a less obvious reason.
As mentioned in Section 6.3 and illustrated in Section 6.5.4.1, when a false alarm is detected
at a step, the attack chain is not rebuilt until the last column of the table. This allows us to
decrease the average cost of false alarms and thus, the attack time.

6.5.5.3. Memory

Intuitively, DSRTs are more expensive in memory than RTs. However, in this chapter, RTs
and DSRTs are compared for the same memory and the same coverage.

The memory used to store EPs is larger for DSRTs than for RTs, but as fewer elements
are considered at the beginning of the generation, less memory is required to store SPs. The
storage of SPs allows us to keep the total storage cost of DSRTs close to those of vanilla tables
and thus obtain more efficient tables in precomputation and attack for the same memory and
coverage.

6.5.5.4. Memory Accesses

Depending on the memory used for the trade-off, the number of memory accesses may also be
quite relevant to determine the real cost of an attack.

The number of memory accesses needed for an attack with DSRTs and RTs is very close.
In our experiments, DSRTs in their optimal configurations typically require fewer memory
accesses. This is particularly the case when DSRTs have fewer tables than vanilla RTs, which
is often the case, as discussed in Section 6.5.5.1.

6.6. Conclusion

This chapter introduces DSRTs, which outperform vanilla RTs. The key idea of DSRTs consists
in recycling chains that merged during the precomputation phase instead of discarding them.
These recycled chains are shorter than vanilla ones. This leads to the concept of descending
stepped RTs, a name inspired by their staircase-like appearance in a graphical representation.

86 Chapter 6. Descending Stepped Rainbow Tables

The attack phase is modified accordingly to take advantage of the new construction. DSRTs
allow configurations that are not reachable by vanilla RTs. The impact is twofold.

Firstly, DSRTs always perform better than vanilla RTs. Either precomputation is reduced
without increasing the attack time, or the attack time is reduced without increasing precom-
putation. Both of those characteristics are reduced in certain scenarios. The gain depends
on the problem parameters and other characteristics. In the practical examples we explored,
DSRTs divide by 2.56 the precomputation time for the same attack time, same coverage and
same memory used, or reduce the attack time by up to 17% for the same precomputation
time, same coverage and memory.

Secondly, DSRTs are able to slightly increase a parameter to significantly reduce another
one. For instance, for the same coverage and the same memory used, DSRTs can reduce the
precomputation time by 38% while increasing the attack time by 5%.

The consequence of the reduction in precomputation time in particular is not to be
understated. The precomputation phase is the bottleneck of RTs for large spaces today.
Finally, a reduction in the precomputation cost directly translates into a (admittedly modest,
but significant) increase in the reachable attack space.

Ascending Stepped Rainbow
Tables 7

Why Gloria Gaynor is the favorite singer of the ASRT chains?
Because they want to survive!

7.1. Motivations

Chapter 6 introduced Descending Stepped Rainbow Tables (DSRTs) and discussed their
advantages over vanilla RTs, especially in terms of precomputation time reduction. In this
chapter, we introduce a novel variant, the Ascending Stepped Rainbow Tables (ASRTs), which
can be seen as an inverse approach to DSRTs.

Unlike DSRTs, which recycle chains instead of discarding them, ASRTs add new chains
during the precomputation phase to the already computed ones. This results in a larger set
of chains, particularly aligned on the matrix’s right hand side. Depending on the conditions,
ASRTs can outperform DSRTs in terms of both precomputation and attack times, or perform
better than DSRTs in attack at the cost of a slower precomputation phase.

After introducing ASRTs, we analyze their performances and detail scenarios where ASRTs
outperform DSRTs and traditional RTs and explain why such performances is reached. We
continue to approach ASRTs just as we did with DSRTs, considering the overall trade-off
between precomputation time, attack time, memory, and coverage, rather than focusing solely
on attack time.

ø Takeaway:

In this Chapter, we introduce a novel variant, the Ascending Stepped Rainbow
Tables (ASRT).

• ASRTs add new chains during the precomputation phase, leading to a
larger set of chains.

• ASRTs perform better than DSRTs under certain conditions.

• Under other conditions, ASRTs are faster in attack than DSRTs at the
cost of an extended precomputation phase.

• Compare to DSRTs, a wider range of ASRT configurations are possible
when targeted a given coverage and memory.

88 Chapter 7. Ascending Stepped Rainbow Tables

7.2. Overview

The ASRT algorithm involves a gradual addition of chains to the matrix during the precom-
putation phase. In well-chosen columns of the matrix called steps, a cleaning is performed,
and new chains are added to the matrix. These chains do not begin at column 0, but rather
at some columns si, where 0 < si < t. As a result, the matrix consists of chains that start in
different columns but all end in the last column. The Ascending Stepped Rainbow Matrix
(ASRM) can be cleaned in the usual way since the added chains are computed using the same
hash-reduction functions as those already present in the matrix.

The addition of chains to the matrix in given columns results in an increase in both the
precomputation and memory cost. However, this leads to a matrix with more chains present
in the right part of the table, including in particular, more short chains. The purpose is thus
to reduce the attack time by using these shorter chains. Moreover, a higher number of chains
also leads to a higher success probability.

When using DSRTs and RTs, mi (defined in Equation (2.7)) represents the number of
distinct elements in column i. However, this notation is unsuitable for ASRTs since not all
chains start in the same column. Therefore, we introduce mi,j , which represents the number
of distinct elements in column j that are part of chains starting in column i or earlier.

7.2.1. Precomputation

7.2.1.1. Generation

Figure 7.1 represents an ASRM with two steps and notable points represented.

Figure 7.1. – ASRM with two steps

7.2. Overview 89

� Reminder:

• During the precomputation phase, cleaning or filtering in a column c consists in
keeping only chains that have different elements in column c and discarding all
the other chains.

• The length of a chain or of a sub-chain is the number of hash-reduction function
that need to be performed to generate it.

Differing from RT and DSRT, the initial number of SP used in ASRT precomputation is
referred to as m0,0. Accordingly, m0,0 chains are computed from column 0 up to the first step,
denoted by s1, and then filtered to keep only m0,s1 chains.

Next, a value ms1,s1 , greater than m0,s1 , is chosen (refer to Equation (7.1) for the formal
expression of ms1,s1). Then, ms1,s1 −m0,s1 elements are chosen in a way to be as small as
possible1 and not equal to any of the m0,s1 elements that remained in column s1.

At this point, m0,s1 chains with length s1 remain from the first part of the precomputation,
while ms1,s1 −m0,s1 additional elements have been selected. In total, ms1,s1 elements are
present in column s1. The ms1,s1 −m0,s1 elements are the SP of chains starting in s1.

The process then continues by computing the next columns of the ms1,s1 chains, regardless
of where they started. This computation continues until reaching column s2, where another
cleaning is performed.

Whenever chains starting in different columns merge, the longer chain is always retained.
Intuitively, keeping a shorter chain decreases the success probability of the table too much
compared to the gain in attack time and is, therefore, not worth it.

After cleaning in column s2, ms1,s2 chains remain. As previously, ms2,s2 −ms1,s2 elements
are added to the ms1,s2 that remain from the previous part. The computation of chains starts
again with ms2,s2 chains.

This continues for the τ steps chosen and until reaching the last column, i.e., the column t.
As for DSRT, the total number of steps is denoted by τ , and the set of steps is denoted by
{s1, s2, ..., sτ}, with by convention s0 = 0 and sτ+1 = t. The choice of the placement of the
steps is explained in Section 7.4.

7.2.1.2. Maximality

� Reminder: A table generated using m0 = N elements is known as a maximal
table.

Similarly to RT and DSRT, one could set ms0,s0 = N , ms1,s1 = N ,.., msτ ,sτ = N to
achieve a maximal ASRT. However, this choice would result in a significant increase in the
precomputation phase cost for comparatively little benefit. Therefore, only msi,si < N with
i ∈ {0, 1, ..., τ} are selected.

To determine msi,si , a maximality factor αi is chosen for each step, with 0 < αi < 1 and
i ∈ {0, 1, ..., τ}. Unlike RT and DSRT, ASRT has multiple maximality factors (one per step).
Given αi and mmax

t−si , the value of msi,si is obtained from Equation (7.1).

msi,si =
αi

1− αi
mmax
t−si (7.1)

1This choice is justified to minimize the total memory.

90 Chapter 7. Ascending Stepped Rainbow Tables

where mmax
t−si , obtained from Equation (2.8), is the maximum number of chains that started in

column si and remain in column t.

7.3. Characterization

7.3.1. Preliminaries

To facilitate the characterization and visualization of ASRT, this section introduces notations
and notions used when considering ASRT. The introduced notions are then used throughout
the chapter.

Firstly, ηi denotes the length of a chain starting at si. As t− si + 1 columns are present
between si and t, ηi = t− si. We denote ψc,si , the number of columns between si and column
c if c > si, and 0 if c ⩽ si. This notation is employed to simplify future equations, resulting
in ψc,si = max(c− si + 1, 0).

Figure 7.2. – Quantity of doom and surviving chains in a given column in an ASRM with
two steps

When considering ASRT, it is essential to differentiate chains that are part of the final
matrix (and thus present in the final table) from those that were present at a given column
during precomputation but not in the final matrix (due to merges).

Given a column c and a starting column si, the surviving chains are chains that begin in
column si or earlier and, during the precomputation phase, remain after cleaning in column c.
These chains may or may not be present in the final matrix. The number of surviving chains
in column c starting at si or earlier is denoted by msi,c and is given by Equation (7.2), which
is derived from Equation (2.7).

7.3. Characterization 91

msi,c =


2N

ψc,si+
2N

msi,si

c ⩾ si

0 c < si
(7.2)

Among the surviving chains in column c, some will merge and, consequently, will not be
present in the final cleaned matrix. Given a column c and a step si, the doom chains are
chains that begin in column si or earlier and, during the precomputation phase, remain after
cleaning in column c but do not belong to the final matrix.

Figure 7.2 illustrates the notion of surviving chains and doom chains by representing the
number of surviving chains and doom chains in a column c.

The number of doom chains in column c starting at si or earlier is denoted by md
si,c and is

given by Equation (7.3), which is derived from Equation (7.2).

md
si,c =

{
msi,c −msi,t c ⩾ si

0 c < si
(7.3)

Moreover, to effectively use ASRT, it is often necessary to determine the closest step to the
left of a given column c. The index of this closest step is denoted by kA(c) and is defined in
Definition 7.1.

Definition 7.1. We denoted by kA(c) the index of the rightmost step that is to the left of
column c, i.e., skA(c) ⩽ c < skA(c)+1 and with kA(c) ∈ {0, . . . , τ}.

7.3.2. Precomputation Time

� Reminder: The value mc,c′ depicts the number of surviving chains in column c′

that starts in column c or before.
It follows that the value msi,si , is the number of chains in column si, starting in column
si itself, or before.

If the cleaning method is not used, the precomputation time of an ASRM is given by
multiplying, for each step, the msi,si chains considered by the number of columns until the
next one. The maximum precomputation time Pmax can then be obtained by summing up
the product of msi,si and (si+1 − si), as shown in Equation (7.4).

Pmax =
i=τ∑
i=0

msi,si(si+1 − si) (7.4)

However, as with RT and DSRT, filtering can significantly reduce the precomputation
time by reducing the number of hash computations required. The minimum theoretical
precomputation time for a given ASRM can be achieved when a filter is used in every column.

� Reminder: skA(c) is the rightmost step to the left of c. It follows that ms
kA(c)

,c, is
the number of surviving chains in column c starting in column skA(c) or before.

The minimum number of operations needed to generate the matrix is obtained by summing
up all ms

kA(c)
,c values, for c ∈ {0, .., t− 1}, as shown in Equation (7.5).

92 Chapter 7. Ascending Stepped Rainbow Tables

Pmin =
t−1∑
c=0

ms
kA(c)

,c (7.5)

7.3.3. Success Probability

The success probability for a single ASRT is given by Theorem 7.1. Similarly to DSRT and
RT, the success probability for ℓ ASRTs is obtained by applying Equation (2.11). As for RT
and DSRT, the intuitive success probability is the number of distinct elements in an ASRM.
Therefore, the success probability is obtained by counting the number of surviving chains
in each column of the final matrix, which is divided by the total number of elements in the
search space i.e., N .

Theorem 7.1. Given a single ASRT with τ steps and t+ 1 columns, the success probability
for this single ASRT is given by:

P = 1−
τ∏
i=0

(
1− msi,t

N

)si+1−si
.

Proof. In each column c, there are msi,t distinct elements. The probability of finding the
searched element in a given column is msi,t

N .
The probability of not finding the searched element in a column c is therefore(

1− msi,t

N

)
.

Between each step, there are si+1 − si columns. Thus, the probability of not finding the
searched element in any column between si and si+1 is(

1− msi,t

N

)si+1−si
.

As there are τ steps plus the step s0, the probability of not finding the searched element in
the entire ASRT is

τ∏
i=0

(
1− msi,t

N

)si+1−si
.

7.3.4. Memory

The storage approach for ASRT is similar to RT and DSRT with a slight difference in the
computation of the SP storage lower bound. Like RT and DSRT, we use the memory lower
bound to compare each variant since the available storage methods [AC13] are very close to
this lower bound and considering the lower bound simplifies the analysis.

The total memory used by ASRT, denoted by MASRT , is the sum of the memory used for
storing the SPs and the memory required to store the EPs, denoted respectively by MASRT

sp

and MDSRT
ep .

The method for storing EPs is the same as for DSRT, where each collection of chains
starting at a given step is compressed and stored separately from chains starting at other steps.

7.3. Characterization 93

The memory used to store EPs is given by Equation (7.6), which is adapted from [AC13] and
is the same as for DSRT introduced in Chapter 6, Equation (6.3).

MASRT
ep = ℓ

(
log2

(
N

m0,t

)
+

τ∑
i=1

log2

(
N

msi,t −msi−1,t

))
. (7.6)

Unlike in RT and DSRT, the number of SPs varies depending on which step the corresponding
chains start at. Hence, the formula used for SPs needs to be adapted to take this into account.

At each step si, there are msi,si distinct elements and thus possible SPs to consider.
Therefore, the minimal naive way to store SPs is to store (msi,t−msi−1,t) log2(msi,si) for each
step. This is because there are msi,t −msi−1,t elements to store for each step, and for each
step, there are msi,si possible SPs.

However, when considering ASRT, among the msi,si possible elements, msi−1,si are already
part of the chains computed previously and cannot be chosen. These msi−1,si have only a
few chances to be among the msi,si elements considered in step si. Thus, we can compute
the value mu(i, zp), which depicts the maximum number of possible elements among the
msi−1,si elements that are among the msi,si elements and with a probability of 1 − p that
more elements than mu(i, zp) are among the msi,si elements. Here, zp is the quantile function
of the standard normal distribution. In our experiments, we have chosen p = 0.99994, i.e.,
zp = 4 to ensure that the probability that more elements than mu(i, zp) are among the msi,si

elements is less than 0.0007.
The variable mu(i, zp) is defined in Proposition 7.2.

Proposition 7.2. Let si a step using msi,si SPs, an let msi−1,si elements of chains starting
at si−1 and remaining at si after cleaning. The maximum number of elements from msi−1,si

that are in the msi,si elements with a probability 1− p is denoted by mu(i, zp) with:

mu(i, zp) = msi−1,si −

(
msi−1,si

msi,si

N
+ zp ×

√
msi−1,si

msi,si(1−msi,si)

N2

)
.

Proof. The probability that an element from the msi−1,si elements of the previous chains is
part of one of the msi,si elements to choose from is msi,si

N . This is because the hash-reduction
function is considered random, and thus the msi−1,si elements are considered as msi−1,si

random elements in N . The number of msi−1,si elements that are part of the msi,si elements
to choose from thus follows a binomial distribution with parameters p =

msi,si
N and n = msi−1,si .

The expected value E of this distribution is thus given by E = np = msi−1,si
msi,si
N , and the

standard deviation σ is given by

σ =
√
p(1− p)n =

√
msi−1,si

msi,si(1−msi,si)

N2
.

We obtain mu(i, zp) by adding E with zpσ and subtracting this sum from n = msi−1,si .

According to the Proposition 7.2, the maximum number of possible SPs to store for step si
with 1 ⩽ i ⩽ τ is given by msi,si −mu(i, zp). The total memory required to store all the SP
can be computed using Equation (7.7) which is derived directly from [AC13].

MASRT
sp = ℓms0,t⌈log2(ms0,s0)⌉+ ℓ

(
τ∑
i=1

msi,t⌈log2(msi,si −mu(i, zp))⌉

)
. (7.7)

94 Chapter 7. Ascending Stepped Rainbow Tables

By taking zp = 4, the probability that the memory taken by the SPs is larger than the one
given by Equation (7.7) is less than 0.0007%.

The total memory used by ASRT, MASRT , is then obtained by adding MASRT
sp and MASRT

ep ,
and is given in Equation (7.8).

MASRT =MASRT
sp +MASRT

ep (7.8)

7.3.5. Attack Phase

7.3.5.1. Attack Process

The attack using ASRTs is similar to the attack using vanilla RT. Contrarily to DSRT, it
is not required to define any metric for choosing the column in which the search will be
performed. By construction, the most advantageous columns to perform a search are the
right ones, as these are the columns for which the price to build a chain until column t is
the lowest. In addition, these are the columns with the highest success probability since they
have the highest number of chains. These columns also contain the shortest chains.

Thus, the attack begins by assuming that the searched element is in the second to last
column. The attacker computes Rt(y) and checks if the result is one of the EPs stored. If
this is the case, the attacker builds the attack chain from the corresponding SP (regardless of
the column in which the chain starts) to column t− 1 and thus obtains xt−1,j with j the rows
of the matched EP. The attacker computes h(xt−1,j) and if h(xt−1,j) = y the attack ends and
the searched element is xt−1. If h(xt−1,j) ̸= y it is a false alarm and the attack continues in
the columns further on the left until the element they are looking for is found or until the
end of the table is reached.

7.3.5.2. Roadmap

Next sections introduce propositions used to characterize the average cost of the attack. The
average attack time is the sum of the average cost of the search in each column multiplied by
each column’s probability that a search occurs in this column. Thus, we first need to define
the cost and probability of a search in a given column c.

The search in a given column c is equal to the sum of the cost of each possible event
multiplied by their respective probability of occurrence.

We, thus, define each event, namely no alarm, false alarm, and true alarm. We define the
cost of each event and its probability of occurrence. We then multiply cost of each event by
its probability of occurrence and sum the whole to obtain the cost of search in any column of
the table.

7.3.5.3. No Alarm

Cost In the process of searching for a match in column c, if the event of no alarm occurs,
it indicates that there is no match with any EP in the table. In such a scenario, the cost
associated with this event is equal to the cost of the construction of a chain from column c to
t, which is equal to t− c.

7.3. Characterization 95

Probability

� Reminder:

• skA(i) is the rightmost step to the left of column i.

• ms
kA(i)

,i is the number of surviving chains in column i starting in column skA(i)

or before.

If no match occurs with any EP in the table, it implies that the attack chain does not
merge with any chain of the matrix. More formally, for all columns i between c and t, the
elements of the attack chain are not present in any of the ms

kA(i)
,i elements of the matrix in

column i. This corresponds to the fundamental results of Equation (3) in [Oec03], which is
generalized in Lemma 7.3. Instead of mi elements, ms

kA(i)
,i surviving chains are present in

column i, in the ASRT variant.

Lemma 7.3. Given a column c with c < t, the probability that the attack chain does not
merge with any chain of the rainbow matrix by t, given it had not merged in or before c, is:

pAnoalarm(c) =

t∏
i=c+1

(
1−

ms
kA

(i),i

N

)
.

7.3.5.4. True Alarm

Cost When searching for an element in column c, a true alarm occurs when the searched
element is found in that column.

� Reminder:

• The length of a chain is the number of operations to perform to compute it.

• The value ηi is the length of chains starting in si. Thus ηi = t− si.

The cost associated with true alarm event, depends on the column in which the searched
element is found. Since the attack chain needs to be built from column c to t and then from
the corresponding SP to column c, the cost of the search is the length of the chains in which
the corresponding SP is found.

To evaluate the cost of the search, Definition 7.2 introduces ρAi,j , which represents the ratio
of chains with a length of si in column j. For instance, consider an ASRT with two steps in
columns s1 and s2 with s1 < s2 < t. In column c with s2 < c < t, chains can be of length s1,
s2, or t. The value of ρA

1,kA(c)
gives the ratio of chains in column c that have a length of s1.

Definition 7.2 generalizes this concept to all steps and columns.

Definition 7.2. Given a step si and a step sj, the ratio of chains with length si in a column
c with sj < c < sj+1 is given by ρAi,j defined as follows:

ρAi,j =


msi,t−msi−1,t

msj ,t
i > 0

ms0,t

msj,t
i = 0

96 Chapter 7. Ascending Stepped Rainbow Tables

Given that a true alarm occurs, its cost is the sum, for each si such that si ⩽ skA(c), of the
probability that the true alarm is caused by a chain of length si with 0 ⩽ i ⩽ kA(c), denoted
by ρA

i,kA(c)
, multiplied by its length si. This cost is given by Proposition 7.4.

Proposition 7.4. Given a search performed in a column c and k(c) the index of the leftmost
step that is to the right of column c, the number of hash operations needed to rule out a true
alarm is:

kA(c)∑
i=0

ρAi,kA(c)ηi.

Proof. The value of ρA
i,kA(c)

is the ratio of chains with length ηi in column c. In column c,
chains that remain in the final matrix have a length between ηkA(c) and t.

If a true alarm is raised when searching in column c, this means that the attack chain
merged with one of the ms

kA(c),t
chains present in the final matrix in column c. Each of these

ms
kA(c),t

chains has a different length, the cost for ruling out the alarm, is thus the sum of
the probability of merging with a chain of a given length, multiplied by its length.

Given a merge with one of the chains present in the final matrix in column c, the probability
of merge with a chain of length ηi, with 0 ⩽ i ⩽ kA(c) is ρA

i,kA(c)
.

Thus, ∀i ∈ {0, . . . , kA(c)}, the probability of matching a chain of length ηi multiplied by
the cost of going through all the chain is ρA

i,kA(c)
ηi.

Probability Equation (7.2) asserts that a given column c contains msA
k(c)

,t elements. Con-
sequently, for each column c, the probability of finding the searched element in any of the
column’s c elements can be computed straightforwardly. This probability is provided by
Proposition 7.5.

Proposition 7.5. The probability that a true alarm occurs when starting the attack chain
in c is:

pfind(c) =
ms

kA(c)
,t

N
.

Proof. As the search space consists of N elements, and since the column c contains ms
kA(c)

,t

elements, the probability of finding the searched element among the ms
kA(c)

,t elements of

column c is simply
ms

kA(c)
,t

N .

7.3.5.5. False Alarm

The false alarm’s cost and probability depend on various factors. To characterize it efficiently,
we first need to introduce several propositions.

� Reminder: Given a column c and a starting column si:

• There is msi,c surviving chains in column c. These chains are chains starting at
column si or earlier and that remain after cleaning in column c. These chains
may or may not be present in the final matrix.

• There are md
si,c doom chains in column c. These are chains starting in column si

or earlier, remaining after cleaning in column c but are not present in the final
matrix.

7.3. Characterization 97

We first introduce in Proposition 7.6 the probability that the starting element of the attack
chain is not part of a surviving chain (Equation (7.2)) in a given column.

Proposition 7.6. Given a column c in which a search is performed, the probability that the
starting element of the attack chain is not among the elements of surviving chains starting in
skA(c) in column c is:

pnotsurviving(c) = 1−
ms

kA(c)
,c

N
.

Proof. The number of surviving chains in column c is, by construction, ms
kA(c)

,c, thus the
probability that a random element in N is not one of the ms

kA(c)
,c elements of those chains is

straightforward.

Next, we introduce in Proposition 7.7, the probability that the starting element of the
attack chain is an element of a doom chain (the number of doom chains in a column c, md

si,c

has been defined in Equation (7.3)).

Proposition 7.7. Given a column c in which a search is performed, the probability that the
starting element of the attack chain is among doom chains is:

pdoom(c) =
md
s
kA(c)

,c

N
.

Proof. The probability that the starting element of the attack chains is among the elements
of surviving chains in column c is by definition, the average number of doom chains in column
c, md

si,c, divided by the number N , of elements in the searched space.

Lemma 7.8 defines the probability that the attack chain does not merge with a chain
starting in a precise step between two columns c and c′. Lemma 7.8 is obtained by application
of Lemma 6.3 for the ASRT structure.

Lemma 7.8. Given two columns c and c′ and a step of index j with c < c′ ⩽ t, the probability
that the attack chain does not merge with any chain starting in step sj or before by c′, given
it had not merged in or before c, is:

pAsubnomrg(c, c
′, j) =

c′∏
i=c+1

(
1−

msj ,i

N

)
.

Cost The cost of the false alarm depends on the column in which the alarm is detected.
Thus, the cost to rule out a false alarm is ηi, with si the step at which the matrix chain that
merged with the attack chain starts.

Probability When performing a search in column c, the probability of a false alarm depends,
among other factors, on the value of the starting element of the attack chain. There are two
possibilities:

a If the starting element is among the elements of doom chains, a false alarm will occur,
but the probability of occurrence will vary for different steps.

98 Chapter 7. Ascending Stepped Rainbow Tables

b If the starting element is not one of the ms
kA(c)

,c elements of surviving chains, either no
alarm will be raised or a false alarm will occur.

These two possibilities have different probabilities of false alarm, and thus require separate
propositions. Proposition 7.9 provides the probability of a false alarm in case (a), while
Proposition 7.10 provides the probability of a false alarm in case (b).

Proposition 7.9. Given an attack chain starting in c, the probability pfa(c, i) to raise a false
alarm due to merge with chains of length ηi and given that the starting element of the attack
chain is not an element of a surviving chain in column c is:

pfa(c, i) =

{
pAsubnomrg(c, t, i− 1)− pAsubnomrg(c, t, i) i > 0

1− pAsubnomrg(c, t, i) i = 0

Proof. The attack chain merging with any chain of length at least ηi is the complementary
event of Lemma 7.8, for parameters (c, t, i), thus this probability is 1− pAsubnomrg(c, t, i). For
the special case of i = 0, the attack chain can only merge with a chain of length ηi.

For i > 0, we define events E1 and E2 as "no merge occurs between c and t with a chain of
length at least ηi−1" and "no merge occurs between c and t with a chain of length at least
ηi", respectively. As E2 ⊂ E1, we deduce that Pr(E1 ∧ E2) = P (E2). Therefore, we have:

pfa(c, i) = Pr(E1 ∧ Ē2)

= Pr(E1)− Pr(E1 ∧ E2)

= Pr(E1)− Pr(E2)

= pAsubnomrg(c, t, i− 1)− pAsubnomrg(c, t, i)

Proposition 7.10. Given an attack chain starting in c, the probability of raising a false
alarm due to merge with chains of length ηi and given that the starting element of the attack
chain is among the elements of doom chains in column c:

p′fa(c, i) =


pAsubnomrg(c, t, k

A(c)− 1) i = kA(c) ∧ i ̸= 0

pAsubnomrg(c, t, i− 1)− pAsubnomrg(c, t, i) i ̸= kA(c) ∧ i ̸= 0

1− pAsubnomrg(c, t, i) i = 0

Proof. In the cases of i ̸= kA(c) or i = 0 (second and third cases), since c is among the doom
chains present in column c, it follows that ηkA(c) < ηi. If the starting element of the attack
chain is among a doom chain in column c, this implies that the starting element is not among
a surviving chain of any step starting to the left of column skA(c). Given that ηkA(c) < ηi
when i ̸= kA(c) or i = 0, the second and third case are obtained exactly as demonstrated in
Proposition 7.9.

For the specific case of i = kA(c) and i ̸= 0, we again define events E1 and E2 as "no
merge occurs between c and t with a chain of length at least ηkA(c)−1" and "no merge occurs
between c and t with a chain of length at least ηkA(c)". By the definition of a doom chain, a
chain starting with an element among a doom chain in column c will merge with a chain of

7.3. Characterization 99

length at least ηkA(c), therefore Pr(E2) = 0. Consequently, we have Pr(E1 ∧ E2) = 0. From
this, we deduce that, when i = kA(c) and i ̸= 0, we have:

pfa(c, i) = Pr(E1 ∧ Ē2)

= Pr(E1)− Pr(E1 ∧ E2)

= Pr(E1)

= pAsubnomrg(c, t, i− 1)

7.3.5.6. Cost of the Search in One Column

The number of operations needed to perform a search in a column c is given by Theorem 7.11.
It is obtained by multiplying the probabilities of the three possible events (true alarm, false
alarm, no alarm) by their respective costs and sum these results.

Theorem 7.11. For a given column c, the average number of cryptographic operations CAc
needed to perform a search is:

CAc = pfind(c)

kA(c)∑
i=0

ρi,kA(c)ηi

+ pnotsurviving(c)

kA(c)∑
j=0

pfa(c, j)ηj

+ pdoom(c)

kA(c)∑
j=0

p′fa(c, j)ηj

+ (t− c) pnoalarm(c).

Proof. (a) The probability of a true alarm, denoted as pfind, is given by Proposition 7.5. Its

corresponding cost is
kA(c)∑
i=0

ρi,kA(c)ηi as stated in Proposition 7.4. Hence, the cost of a true

alarm in column c can be expressed as pfind(c)

kA(c)∑
i=0

ρi,kA(c)ηi.

(b) A false alarm can occur under two scenarios: (E1) "The starting element of the attack
chain is not equal to an element of a surviving chain in column c". (E2) "The starting element
of the attack chain matches an element of a doom chain in column c".

Hence, the cost of a search in case of a false alarm is the sum of the probabilities of these
two events multiplied by their respective costs.

- (E1): The probability of event E1 is provided by Proposition 7.6. The cost of a false
alarm in this case, analogous to the true alarm, is, for all j with 0 ⩽ j ⩽ kA(c), the
probability of a merge with a chain of length exactly ηj multiplied by its cost (ηj). The

100 Chapter 7. Ascending Stepped Rainbow Tables

probability of merging with a chain of length exactly ηj under event E1 is given by

Proposition 7.9 as pfa(c, j). Hence, the cost of event E1 is
kA(c)∑
j=0

pfa(c, j)ηj .

- (E2): The probability of event E2 is provided by Proposition 7.7. Analogous to E1, the
probability of a merge with a chain of length exactly ηj under event E2 is given by

Proposition 7.10 as p′fa(c, j). Hence, the cost of event E2 is
kA(c)∑
j=0

p′fa(c, j)ηj .

Thus, the cost of a false alarm in column c is:

pnotsurviving(c)

kA(c)∑
j=0

pfa(c, j)ηj + pdoom(c)

kA(c)∑
j=0

p′fa(c, j)ηj .

(c) The probability of no alarm, denoted as pnoalarm(c), is given by Proposition 7.3. Its
cost is t − c, as shown in Section 7.3.5.3. Hence, the cost of no alarm in column c can be
expressed as (t− c) pnoalarm.

By summing up the cost of the events (a), (b), and (c), CAc is obtained.

7.3.5.7. Average Attack Time

The average attack time using ℓ ASRTs is given in Theorem 7.12. As for RTs and DSRTs, this
attack time is computed in two parts. The first part is the cost of the attack if the searched
element is in the table, multiplied by the probability that the searched element is in the table.
The second part is the cost of the attack if the searched element is not in the table multiplied
by the probability that the searched element is not in the table.

Theorem 7.12. Given N , ℓ ASRT with τ steps, the average number T of hash operations
required to perform an attack is:

T = ℓ
t∑

c=1

ms
kA(c)

,t

N

c−1∏
i=1

(
1−

ms
kA(c)

,t

N

) c∑
j=1

CAt−j+1

+ ℓ
t∏
i=1

(
1−

ms
kA(c)

,t

N

) t∑
c=1

CAc .

Proof. This formula is a generalization of Theorem 2.3 as it has been done for DSRT in
Theorem 6.10. The number T is obtained by adding, on the one hand, the success probability
of the attack using ℓ tables, multiplied by its average cost, and on the other hand, the failure
probability of the attack using ℓ tables, multiplied by the cost of a failed search.

The first term is obtained by multiplying for each column c, the probability of a true alarm
in the column, with the probability of no true alarm in all earlier iterations:

ms
kA(c)

,t

N

c−1∏
i=1

(
1−

ms
kA(c)

,t

N

)
.

This is multiplied by the cost of all searches performed until reaching this column:
c∑
j=1

CAt−j+1.

7.4. Comparison 101

The second term is obtained by multiplying the failure probability using ℓ tables, namely

ℓ

t∏
i=1

(
1−

ms
kA(c)

,t

N

)
,

with the cost of performing a search in all columns of a table, namely
t∑

c=1

CAc .

7.4. Comparison

In this section, we compare ASRT, DSRT and RT. We firstly present in Section 7.4.1
the experimental validation of the analysis provided in Section 7.3. We then provide in
Section 7.4.2 the methodology used for the comparison, and we finally present our results in
Section 7.4.3.

In what follows, we call configuration a list of parameters describing a set of either RTs,
DSRTs, or ASRTs. For RTs, a configuration is composed of one maximality factor α, a number
of columns t, and a number of table ℓ. For DSRT, in addition to these three parameters
a configuration is also composed of the steps positions {s1, s2, . . . , sτ}. Finally, the ASRT
configuration is composed of the same parameters as DSRT plus the quasi-maximality factors
considered at each step, defined by {α0, α1, . . . , ατ}.

7.4.1. Experimental Validation

In order to validate the formulas characterizing the different variants, RT, DSRT, and ASRT
were implemented. A series of experiments were conducted to verify the close alignment
between the theoretical results and the practical outcomes observed in concrete examples. The
experiments were carried out on small-sized problems (N = 224 and N = 232) to facilitate a
large number of attacks and generate multiple sets of tables for the different variants. Larger
simulations have then been made on space N = 242.

This section provides an overview of the tests performed to assess the success probability,
memory requirement, precomputation time, and attack time of the implemented variants.

7.4.1.1. Success Probability

To evaluate the success probability of each variant, we generated multiple sets of tables for
various success probabilities and configurations. For each variant, a large number of attacks
were carried out using these tables, typically ranging from 100,000 to 1,000,000 attacks per
configuration in order to obtain accurate results. The observed success probabilities were
consistent with the theoretical predictions given by Equation (2.10) and Theorems 6.1, and 7.1,
with differences below 0.1%.

7.4.1.2. Precomputation Time

We assessed the precomputation time by generating tables for the three variants: RT,
DSRT, and ASRT, with a fixed number of filters (typically around 20 which is a fair balance).

102 Chapter 7. Ascending Stepped Rainbow Tables

Additionally, we conducted tests on smaller spaces (N = 232) using one filter per column. We
do not conduct tests using one filter per column on bigger spaces because as the computations
are distributed, it costs too much time to filter in every column when considering bigger spaces.
Indeed, for larger spaces, employing a filter in every column can achieve the theoretical lower
bound in terms of the number of hash operations, but this approach considerably slows down
the real time process due to the filtration time becoming predominant over the hashing time,
as discussed in Chapter 4.

Our experimental results demonstrate that the precomputation time with one filter per
column (Pmin) closely aligns with the theoretical predictions, with a maximum difference of
less than 0.1%. Moreover, the experiments demonstrate that employing approximately 20
filters (including those used for steps) results in precomputation times that closely approach
the theoretical lower bound, given by Equation (7.5), for all variants.

7.4.1.3. Memory Requirements

We did not implement point compression for memory testing since compression is independent
from the variants chosen. Instead, we adapted the original formula provided in [AC13] for
each variant. We tested the values involved in these formulas and verified that we obtained
the expected numbers of EPs and SPs according to the theory. When applying the formulas to
our experimental results versus the theoretical number of SPs and EPs to store, the differences
were smaller than 0.05% across all tested configurations.

7.4.1.4. Attack Phase

The attack phase was tested in a manner analogous to the success probability evaluation.
Tables were generated for various configurations and target success probabilities, followed
by conducting a substantial number of attacks for each variant and configuration (typically
between 100 000 and 1 000 000 attacks to ensure the accuracy of the average attack time
measured). The average attack time closely adhered to the theoretical predictions, with a
difference of less than 0.8% for all variants. The results were well distributed around the
theoretical mean, with no significant difference based on the configuration used. It is worth
noting, however, that the variance of DSRT attack time is larger than for RTs, and the
variance of ASRTs is slightly larger than the variance of DSRT. This is further discussed in
Section 7.5.

7.4.2. Comparison Methodologies

In Section 7.4.3, the precomputation and attack times of the RT, DSRT, and ASRT variants
are compared, using the same targeted memory and targeted success probability. This
approach allows for an evaluation of RT, DSRT and ASRT in a manner consistent with the
one used in Chapter 6. Furthermore, comparing the variants at fixed success probability and
memory settings highlights the trade-off between precomputation and attack times for each
case.

This section outlines the evaluation process for the precomputation time, attack time,
memory, and success probability of each variant, and provides justifications for the chosen
methodology.

7.4. Comparison 103

7.4.2.1. Precomputation Time

We chose Pmin for comparison due to several reasons. Firstly, our tests demonstrated that
filter usage gives results near the theoretical lower bound for RT, DSRT, and ASRT, thus
offering a suitable comparison basis. Secondly, to perform the evaluation of tens of thousands
of configurations, we favored Pmin over a more time-consuming filter optimization evaluation.
Finally, the use of Pmin avoids any bias that could arise from selecting filter-based comparisons
and, as discussed in Section 7.4.1.2, Pmin approximates filter results for all variants.

7.4.2.2. Memory

For memory requirements, we could have used delta encoding. However, we chose the memory
lower bound, which closely approximates (within 1%) the delta encoding, but offers simpler
associated formulas. To ensure no bias towards DSRT or ASRT over RT, each step of DSRT
and ASRT was treated as a separate table for memory computation which tends to favor
RTs over DSRTs and ASRTs. This is fair as DSRT and ASRT share similar step-by-step
storage methodologies. We also checked that the difference between delta encoding applied to
ASRT and DSRT and their minimal memory lower bound remains under 0.7%, giving us the
confidence to use the memory lower bound for comparison.

7.4.2.3. Success Probability and Attack Time

To compare the success probability and attack time of each variant, we simply applied
Equation (2.11), and Theorems 6.1, 7.1, 6.9, 6.10, and 7.11. As mentioned in Section 7.4.1,
the success probabilities and attack times estimated using these formulas closely align with
the success probabilities and attack time obtained in practice for each variant.

7.4.3. Results

7.4.3.1. Parameters

The parameters chosen for the comparison are N = 242, which allows for an easy comparison
with the results from [ACLA21, AC17, AC13], and from Chapter 6, and an arbitrary mem-
ory M = 32GB, representing a practical use case. The variants are then compared for various
success probabilities, ranging from 80% to 99.95%. To maintain brevity, only results for some
of the tested success probabilities are presented; however, the conclusions drawn are valid for
all success probabilities.

� Reminder: A configuration is a list of parameters describing a set of either RTs,
DSRTs, or ASRTs. The parameters of configurations for each variant are:

RTs: {ℓ, t, α},

DSRTs: {ℓ, t, τ, {s1, . . . , sτ}, α},

ASRTs: {ℓ, t, τ, {s1, . . . , sτ}, {α0, α1, . . . , ατ}}.

For each success probability, possible configurations for RTs, DSRTs, and ASRTs are
computed. For RTs, the number of possible configurations for fixed memory and fixed success
probability is limited, as the only variable left free is the number of tables. For DSRT,

104 Chapter 7. Ascending Stepped Rainbow Tables

in addition to the number of tables, the positions of the steps can vary according to the
configurations, leading to many possible configurations as extensively explained in Chapter 6.
When considering ASRT, the position of steps that remain free, and the number of elements
to add in each step (determined by {α0, α1, . . . , ατ}) are additional parameters to set.

In total, the number of possible configurations for a given number of tables, given probability,
and given memory is 1 for RT, bounded by (t− 1)τ for DSRT, and bounded by (t− 1)τ ×N τ

for ASRT.
Given the number of possible configurations for DSRTs and ASRTs, the number of steps is

set to four for DSRTs and to two for ASRTs. This choice is justified by the fact that using
more than four steps for DSRTs does not significantly increase their performance, as stated in
Chapter 6 using more than two steps for ASRT does not allow a significant gain compared to
the computational cost needed to find possible configurations with three steps.

Following the method outlined in Chapter 6, we used Algorithm 3 to determine the DSRT
configurations. For ASRT, we performed an exhaustive search, adjusting the steps for each
α and t. We varied both t and the columns {s1, s2} in steps of 100 columns, α0 in steps of
0.003, α1 in steps of 0.002, and α2 in steps of 0.001. This strategy offers a balance between
precision and computational efficiency in discovering configurations. The step size for α0 is
larger than that for α1, and the step size for α1 is larger than that for α2. This is due to
the fact that α0, the maximality factor of the leftmost step, is associated with longer chains.
Therefore, the impact of changes of α0 is less pronounced in the resulting number of chains.
This phenomenon, where the number of surviving chains quickly declines before stabilizing,
is illustrated in Figure 3.1 of Chapter 3. The same conclusion holds for choosing the step
variation of α1 larger than those for α2.

7.4.3.2. Figures Interpretation

Figures 7.3a 7.3b, 7.3c depict, for various success probabilities, the attack time of RTs, DSRTs
and ASRTs best configurations according to their precomputation time, while Table 7.1,
presents some interesting results. The attack time and precomputation time are expressed in
the number of hashes to perform. The precomputation time is obtained by computing the
corresponding minimal precomputation time Pmin of each configuration either RTs, DSRT or
ASRTs. The attack time is the average attack time for each configuration of each variant.

For each variant the best configurations are the configurations for which there is no existing
configuration that is better both in precomputation and in attack.

In each plot, ASRT configurations are represented by red dots points, DSRT configurations
are denoted by green dots points, and RT configurations are indicated by orange dots points.
The black line signifies the optimal configurations among all the configurations of each variant.

7.4.3.3. ASRTs Versus RTs

In the following sections, the focus will be on comparing ASRT solely to DSRT, since
as illustrated in Figures 7.3a, 7.3b, and 7.3c, there always exists an ASRT configuration
superior to the RT configurations. Furthermore, similar to DSRT, the number of possible
configurations for a given success probability and specified memory is higher when using
ASRT than when using DSRT or RT. As a result, employing ASRTs allows for better trade-off
between precomputation and attack compared to RTs.

7.4. Comparison 105

The explanation of why ASRTs outperform RT is provided in Section 7.5.

7.4.3.4. ASRTs Versus DSRTS

The subsequent paragraphs highlight noteworthy results from Table 7.1 and Figure 7.3, which
help illustrate the differences between the use of ASRTs and DSRTs. We will discuss and
provide interpretations for these results in Section 7.5. For simplicity, we present only three
representative cases, but it should be noted that these results are applicable for other coverage
and do not depend on the available memory, as discussed in Section 7.5.3.1.

Table 7.1. – Expected gain illustrated on several examples with ASRT and DSRTs. Precom-
putation and attack phase numbers are quantity of cryptographic operations.

Success probability: 90%

Precomputation Attack
1 ASRT 1.48× 1013

1.82× 1061 DSRT 1.21× 1013

Gain +22%

1 ASRT 2.9× 1013 1.3× 106

1 DSRT 2.2× 1013 1.35× 106

Gain +31% −4%
Success probability: 99%

Precomputation Attack
ASRT 5× 1013 4.11× 106

DSRT 2.89× 1013 4.98× 106

Gain +73% −17%
ASRT 3.23× 1013 4.7× 106

DSRT 2.89× 1013 4.98× 106

Gain +12% −6%
Success probability: 99.95%

Precomputation Attack
ASRT 4.8× 1013

8.71× 106DSRT 7.2× 1013

Gain −33%
ASRT

7.2× 1013
7.57× 106

DSRT 8.66× 106

Gain −13%

Case 1: DSRTs more Efficient than ASRTs
There are instances, especially when the targeted coverage is low enough to require only

a single DSRT or ASRT, where DSRT configurations are more advantageous than ASRT
configurations. This is demonstrated in Figure 7.3a and the first sub-Table of Table 7.1. For
a given attack time achievable with DSRT, the corresponding ASRT needs considerably more
precomputation time, rendering the variant less interesting. The configurations on the left of
Figure 7.3a may be worthwhile in some cases, as they permit a reduction in attack time by
4% compared to DSRT, but at the cost of a 31% increase in precomputation time.

106 Chapter 7. Ascending Stepped Rainbow Tables

(a) Trade off between precomputation time and attack time 90%
of success, N = 242 and a 31.99 GB memory.

(b) Trade off between precomputation time and attack time 99%
of success, N = 242 and a 31.99 GB memory.

(c) Trade off between precomputation time and attack time 99.95%
of success, N = 242 and a 31.99 GB memory

Figure 7.3. – Trade-off between precomputation and attack.

7.5. Discussion 107

Case 2: DSRTs and ASRTs Efficient
Figure 7.3b illustrates a typical scenario where ASRT may be preferred over DSRT if the

attack time is the most important factor for the attacker. ASRT configurations achieve nearly
identical trade-offs as the fastest DSRT configurations, and additionally offer a range of faster
attack configurations at the cost of increased precomputation time. For instance, compared
to the fastest DSRT configurations, it is possible to reach trade-offs 6% quicker in attack but
requiring 12% additional precomputation time, or trade-offs that are 17% faster in attack at
the expense of a 73% increase in precomputation time compared to DSRT (only 24% slower
than the fastest RT configuration).

These results are observable for different coverage values greater than 97%. When targeting
coverage higher than 99.5%, ASRT configurations outperform DSRT configurations.

7.4.3.5. Case 3: ASRTs more Efficient than DSRTs

For high targeted coverage, typically coverage requiring three or more tables, ASRTs
outperform DSRTs. Figure 7.3c presents results for a common case discussed in the literature:
the use of four quasi-maximal vanilla RTs, which allows to achieve a coverage of 99.95%.

As depicted in Figure 7.3c and Table 6.1, the optimal configurations are all ASRT configu-
rations. Compared to the fastest DSRT configuration, an ASRT configuration can achieve
the same attack time with 33% less precomputation time, or can reach a configuration 13%
faster in attack for the same precomputation time.

7.5. Discussion

We initiate the discussion by comparing ASRT with RT exclusively in Section 7.5.1. This
comparison facilitates the comprehension of the critical factors that render ASRT effective in
a straightforward manner. Subsequently, in Section 7.5.2, we use the arguments developed in
comparison with RT to contrast DSRT and ASRT, explaining why ASRT outperforms DSRT
under certain circumstances and why ASRT is inferior to DSRT in others.

7.5.1. Comparison with RT

In this section, we compare two configurations: one corresponding to the RT method and
the other one representing the ASRT method. In the particular example being discussed,
the ASRT configuration overpass the RT configuration both in precomputation and attack
efficiency.

To simplify the explanation for the reader, we have opted to compare RT and ASRT using
a representative example. Although the comparison uses a specific example, the insights
presented can be generalized to a broad range of cases.

Figure 7.4 illustrates a Rainbow matrix (depicted in green) and its corresponding ASRM.
For the sake of clarity, this figure is constructed for a small space (N = 224), but the density
of matrices remain consistent for larger spaces. Both configurations aim for a coverage of 98%
and with the same memory.

108 Chapter 7. Ascending Stepped Rainbow Tables

Precomputation

� Reminder: The value mc,c′ depict the number of surviving chains in column c′

that starts in column c or before.
It follows that the value msi,si , is the number of chains considered in column si starting
in column si itself or before.

For the same coverage and memory, the initial m0 considered for the RT is substantially
larger than the ms0,s0 of the ASRT (almost four times larger). This observation holds for all
significant configurations and constitutes a key factor exploited by both ASRT and DSRT.
Selecting four times fewer elements at the beginning of precomputation does not lead to
a reduction by a factor of four in the final number of elements obtained at the end of the
precomputation, but slightly less than twice as many. It is important to note that when
employing filtration, as is our case, choosing four times more elements at the beginning of the
precomputation does not quadruple the precomputation time, but increases it slightly less
than three time. The saved time can be effectively employed to add more elements later in
the precomputation phase.

Figure 7.4. – ASRM with 2 steps versus the corresponding Vanilla Rainbow Table for same
memory and same coverage (98%).

In column s1, adding more elements to the ASRM still keeps the number of hashes required
during the precomputation phase much lower for ASRM than for Rainbow matrix, and allows
for increasing the number of elements in the final table to about 75% of the number of
elements in the final Rainbow matrix.

The number of those SPs considered in column s2 provides crucial insight into how the
ASRT outperforms vanilla RT. The number of SPs considered in column s2 is much larger
than those considered in s0 and s1 and, at the same time, is significantly shifted to the right
of the table. This enables to keep more elements in column t than in the case of vanilla

7.5. Discussion 109

RT. Although the precomputation of the elements between s2 and t requires more time than
the precomputation of the RT chains in the corresponding columns, the time gained at the
beginning of the precomputation by computing fewer chains significantly compensates for
this extra time.

Memory A crucial point to understanding why the matrices depicted in Figure 7.4 occupy
the same memory is based on acknowledging the impact of the log(m0) and log(ms0,s0)
factors in the memories formulas. Although they are logarithmic terms, which may give the
impression of insignificance, the reality is quite the opposite. For instance, with RTs, the
initial m0 in the case of Figure 7.4 is four times larger than the number of elements obtained
at the end, often even larger. This implies that each SP of the RT consumes about 15% more
memory per element than the ms0,s0 elements considered in the ASRT variant. The RT SPs
then take about 25% more memory per SP than the SP of the chains starting in s1 and about
10% more memory per element than the SPs of chains starting in s2.

In the final analysis, even though more SPs must be stored with the ASRT than with RT,
and the fact that storing three batches of SPs slightly mitigates the decrease in memory
required to store each SP, the amount of memory used to store the ASRT’s SPs is roughly
12% lower than the amount of memory required to store the RT SPs.

This 12% memory saving is then used to "compensate" for storing the EPs, which is more
optimized for the RTs due to: (a) Greater efficiency in compressing a single "large" batch of
elements (as in RT EPs) as opposed to three "small" batches of elements (as in ASRT). (b)
The fact that slightly fewer EPs need to be stored when using RT than when using ASRT.

Attack Even though the ASRT chains are longer than the RT chains, the attack phase is
faster when using this particular ASRT configuration than when using the RT configuration.

Firstly, the chains of the ASRT starting in s1 and s2 are substantially shorter than those of
the RT, and these chains account for about half of the ASRT chains. Thus, when performing
a search in columns between s2 and t, about half the time, the search will cost significantly
less than the search in the RT. For the remaining half of the time, where a match occurs
with chains starting in s0 rather than s1 or s2, the cost is higher than when using RT, but
less significantly. This is due to the fact that the difference between the lengths of the RT
chains and the ASRT chains starting in s0 is considerably lower than the difference in length
between the RT chains and the ASRT chains starting in s1 or s2.

� Reminder: The value ηi, is the length of chains starting in column si.

Lastly, there are more chains between s2 and t in the ASRM than in the Rainbow matrix.
This shifts the average column in which the searched element is found, pushing it further to
the right. Consequently, this decreases the number of searches before finding the searched
element and increases the chances of matching with chains of length ηi and η2 instead of t,
thus increasing the chance of performing a search costing less operations.

110 Chapter 7. Ascending Stepped Rainbow Tables

7.5.2. ASRTs versus DSRTs

ø Takeaway: The key points to consider when deciding whether to use
ASRT or DSRT are:

1. The larger the number of tables, the more efficient ASRT becomes, while
the opposite is true for DSRT. It follows that ASRT performs best under
high coverage while DSRT tends to excel at lower coverage.

2. ASRT is the preferred method when using quasi-maximal tables with
α ⩾ 0.95.

3. If the goal of the attacker is to minimize the attack time at any cost,
ASRT should be used; if minimizing precomputation time is the main
concern, DSRT should be selected when fewer than three tables are used.

The comparison between ASRT and DSRT is more complex than that between ASRTs
and RTs. Nevertheless, the insights drawn from Section 7.5.1 regarding the superiority of
ASRTs over RTs, and the discussion in Chapter 6 on the benefits of DSRT over RTs, can help
elucidate the differences between DSRT and ASRTs.

To facilitate this comparison, we will separately address the comparison of ASRT and
DSRT in terms of coverage, precomputation time, attack time, and memory.

7.5.2.1. Coverage

Quasi-Maximality Factor A key point when using ASRT is the need for continuously
increasing quasi-maximality factors. In other words, for ASRT to be effective, the quasi-
maximality factors should satisfy α0 < α1 < ... < αs. The intuition behind this is that the
operational principle of ASRT is based on maintaining a large number of chains, ideally
shorter ones, towards the right of the matrix.

One can perceive the right part of an ASRM as the segment that ensures the speed of the
attack phase, and the left part as the segment that guarantees to reach targeted coverage.

To perform well in comparison with another variant, ASRT must therefore begin with an
initial number of chains ms0, s0 significantly lower than that of the DSRTS. As the coverage
increases, the quasi-maximality factor used tends to increase (to maintain an acceptable
attack time by not adding an additional table), thus enhancing the use of ASRT.

However, at lower coverage, the maximality factor of RTs and DSRTs tends to be lower.
This is particularly true for DSRTs, where the central idea is to generate matrices with lower
quasi-maximality factors and to "compensate" for the waste of chains caused by the decrease
in the quasi-maximality factor, with the steps.

Number of Tables DSRT variant tends to be less interesting, particularly regarding the
attack time, as the number of tables increases. One of the factors contributing to DSRT better
attack performance over RT is its general reliance on one fewer table than RT, which thereby
reduces attack time. However, at higher coverage, the requirement for tables increases, and
thus the benefit of using one less table diminishes, since each table has less impact when more
tables are used.

7.5. Discussion 111

Conversely, the most effective ASRT configurations can use the same number of tables as
the best-performing RT configurations in the attack phase. Therefore, the attack performance
of ASRT is not based mainly on the difference in the number of tables used.

Conclusion on Coverage ASRT outperforms DSRT in both attack and precomputation
scenarios when an equal number of tables is used, or when sufficient tables are used such that
the impact is insignificant, and if the quasi-maximality factors are sufficiently high. Under
different circumstances, either DSRT performs better in both attack and precomputation, or
ASRT is faster in attack but slower in precomputation. These last cases are further detailed
in Sections 7.5.2.2 and 7.5.2.3.

7.5.2.2. Precomputation

� Reminder: While DSRT uses a single maximality factor, ASRT uses several of
them. The maximality factor of DSRT determines the number of elements considered in
column 0 of the DSRT matrix. Conversely, the ASRT maximality factors determine the
number of chains to consider in column 0 and at each of the matrix’s steps {s1, . . . , sτ}.

DSRT was designed with fast precomputation in mind. The critical element that facilitates
the speed of DSRT precomputation is the choice of a lower maximality factor than RT at the
beginning of precomputation, and compensate the resulting waste of chains through the use
of steps.

Despite that, compared to ASRT, DSRT generally uses a higher maximality factor than
ASRT initial maximality factor (while still being lower than RT). Consequently, the initial
phase of precomputation is more costly when generating DSRT than ASRT. However, ASRT
subsequent maximality factors will increase during the precomputation phase. In some cases,
as soon as the first ASRT step is reached, the number of chains to compute becomes higher for
ASRT than for DSRT. Ultimately, in a significant number of cases, the rising quasi-maximality
factors of ASRT lead to a slower precomputation phase, as more chains need to be computed
in the ASRT case after the first step.

When DSRT maximality factor is sufficiently high, the number of chains considered up
until the final step of ASRT remains lower than the number of chains considered in the
DSRT matrix. In the final step, the number of chains considered when using ASRT exceeds
that of DSRT in all examples we have encountered. However, when the difference does not
offset ASRT initial precomputation speed advantage, the precomputation time for the ASRT
variant ends up being less than that of DSRT. On the contrary, if this is not the case, ASRT
precomputation time exceeds that the one of DSRT.

7.5.2.3. Attack

Inherently, ASRTs tend to outperform DSRTs in terms of attack due to their key concept of
maximizing the number of short chains on the right hand side of the matrix. As discussed in
Section 7.5.2.2, this may come to the cost of a higher precomputation time.

Compared to DSRTs, ASRTs have more chains on the right of the matrix, with some parts
of these chains being shorter than even the shortest DSRT chains. When ASRT shorter chains
are not shorter than DSRT shortest chains, ASRT typically still comes with superior efficiency

112 Chapter 7. Ascending Stepped Rainbow Tables

in attack due to the slightly higher number of chains per table, and the lower cost of building
the attack chain when using ASRT.

However, when ASRT shorter chains are not short enough, DSRT often surpasses ASRT
in attack speed, largely due to the phenomenon discussed in Section 6.3 and illustrated in
Section 6.5.4.1: when a false alarm is detected in a DSRT step, the attack chain is not rebuilt
until the final table column. It acts as a sort of partial checkpoint (introduced in Section 2.6.1)
and is one of the key points for maintaining the efficiency of DSRTs in attack.

In scenarios where ASRT does not have a sufficiently high last maximality-factor ατ to
guarantee a sufficient number of chains on the right side of the matrix, and where the chains
of steps are not short enough, ASRT configurations are inferior to DSRT configurations in
attack.

Nonetheless, at sufficiently high coverage (typically greater or equal to 90%), there always
exists an ASRT configuration that outperforms the fastest DSRT in terms of attack time.
However, this may come at the cost of a longer precomputation phase, particularly when
three or fewer tables are used.

7.5.3. Memory

7.5.3.1. Memory Variation

It is essential to note that the relative performance of ASRT, DSRT, and RT do not depend
on the memory available. By relative performance, we refer to the difference in performance
between the variants, irrespective of the memory. Figures 7.5a and 7.5b illustrate the
configurations of ASRTs, DSRTs, and RTs for the space N = 242, the coverage of 90%, and
memory availabilities of 16GB and 32GB, respectively.

For a given coverage, it is clear that the precomputation time does not vary with the
available memory, provided this memory allocation remains "reasonable". However, noticeable
side effects might appear in the precomputation time when t is exceedingly low (high available
memory), or when t is overly high (low available memory), resulting in an insufficient number
of chains. Excluding these exceptional cases where precomputation time could marginally
fluctuate with memory changes, the precomputation time does not depend on the available
memory, since the "area" of the matrix to compute remains the same irrespective of the
memory available. The only variation lies in the shape of the computed matrices, which may
be more or less high or tall, depending on the memory available.

Regarding the attack phase, the results, though intuitive, are less clear-cut. Initially,
when considering the RT, the results shown in Figures 7.5a and 7.5b align perfectly with
expectations. As the memory is doubled while N remains the same and following the relation
T = N2/M2, we can expect that by doubling the memory, we quarter the attack time, which
is indeed the case.

For the DSRT and ASRT variants, we do not provide proof, but we hypothesize that the
behavior of these variants is equivalent to that of RTs. As will be discussed in Chapter 8, we
presume that the relation T = N2/M2 may not be accurate, especially for lower coverages.
Therefore, we postulate that ASRTs and DSRTs variants follow the T = N2/M2 relation for
sufficiently high coverages.

We give some argument to justify our intuition:

• Numerous experiments performed on various search spaces, memory availabilities, and
coverage consistently confirm this hypothesis. For instance, as presented in Figures 7.5a

7.5. Discussion 113

(a)

(b)

Figure 7.5. – Trade-off between precomputation and attack.

and 7.5b, DSRTs and ASRTs follow this postulate and their attack time quarter when
the memory is divided by two.

• The fact that RTs are, in essence, a special case of DSRT and ASRT (ASRT and DSRT
formulas perfectly align with RT formulas when all steps are in the same column t.

• ASRT and DSRT can also be considered as multiple RTs sharing the same reduction
functions. If each RT follows the relation T = N2/M2, we can expect the combined
DSRT and ASRT to also adhere to this relation.

114 Chapter 7. Ascending Stepped Rainbow Tables

7.5.3.2. Access Memory

� Reminder: During a search, the attacker builds the so-called attack chain up to
column t, and then checks for a match between the EPs and the attack chain. Searching
for a match corresponds to performing one memory access.

On average, the number of memory accesses required for the ASRT attack is less than
those needed for the DSRT and RT variants. This is primarily due to the greater number of
chains in the right part of the table, which tends to be higher in ASRT than in the other two
variants, thereby reducing the number of searches (and consequently the number of memory
accesses). Nevertheless, the decrease in the number of memory accesses is not significant; it
amounts to only a few percent, depending on the coverage and memory used.

7.5.4. Worst Attack Time

Like DSRTs, a drawback of ASRTs is that their worst-case attack time is longer than that of
the worst-case RT attack. This is due to the fact that in a significant number of cases (almost
all), the longest ASRT chain exceeds the length of the longest RT chain. Consequently, the
attack time increases when the entire table must be searched through. This disadvantage can
be mitigated since ASRTs are typically of interest in situations with high coverage, and thus,
the worst-case scenario occurs very infrequently.

The most significant implication of this is an increase in the variability of the attack time.
Similar to DSRTs, while the average attack time of ASRTs is shorter than that of RTs, it is
more variable, which could be a disadvantage in some rare use cases.

7.6. Conclusion

This chapter introduces ASRTs, which demonstrate superior performance to both vanilla RTs
and, under certain conditions, DSRTs. The core principle of ASRTs is the addition of chains
at specified columns, referred to as steps. The strategy involves incrementally adding more
chains at each step, with the goal of having more chains on the right side of the final matrix
at the end of the precomputation phase. This approach implies the concept of ascending
stepped Rainbow Tables and offers a two-fold benefit: improved matrix coverage and faster
attack phase.

Owing to the larger parameter space, ASRTs afford a greater number of possible configura-
tions compared to DSRTs. When targeting sufficiently high coverages, ASRTs outperform
both DSRTs and RTs in terms of both attack and precomputation times, with the extent of
gain primarily dependent on the targeted coverage.

Nonetheless, the addition of new chains during the precomputation phase can lead to
increased precomputation times in scenarios involving less than three tables or targeting
lower coverage. In these instances, gains in attack time often come at the cost of extended
precomputation times compared to DSRTs.

In our practical experiments, when a typical coverage of 99.95% (a case frequently referenced
in literature) is targeted, ASRTs can reduce precomputation time by 33% compared to DSRTs,
for the same attack time, coverage, and memory. Alternatively, ASRTs can trim attack time
by 13% for the same coverage, memory, and precomputation time. Compared to RTs, this
represents a precomputation time reduction of 48% for the same attack time, coverage, and

7.6. Conclusion 115

memory, or an attack time reduction of 15% with a precomputation time that remains 24%
lower.

When targeting lower coverage, ASRTs can reduce attack time compared to DSRTs (and
thus RTs) at the cost of an increase in precomputation time. For instance, for a 99% coverage,
ASRTs can decrease attack time by 17% at the cost of an additional 73% in precomputation
time, or reduce attack time by 6% with a 12% increase in precomputation time.

Using both DSRTs and ASRTs instead of RTs can enable an attacker to substantially
decrease both the attack and precomputation times of the used TMTOs, if the suitable variant
is selected based on their targeted coverage and requirements. The potential for combining
DSRTs and ASRTs in one variant remains a prospect for future work and could potentially
facilitate a "best of both worlds" scenario.

Conclusion 8
Why would a PhD student never be a good meteorologist after

having worked on Rainbow Tables?
Because she would always be predicting showers of hashes!

8.1. Thesis Contributions

In this thesis, we have provided significant insights and broadened the use-cases of TMTOs.
One of the primary achievements was the formalization of quasi-maximality of RTs, notably
introducing the quasi-maximality factor. It enables us to reach different coverages, beyond
those reachable with maximal tables and has provided a metric to link formally m0 with mt.
We also introduced the filtration method, a novel approach to optimize the precomputation
phase of RTs. This method significantly reduces the precomputation time, particularly for
quasi-maximal tables, and has triggered a fresh perspective on optimizing the precomputation
process.

A key finding of our research was the identification of the precomputation phase as the
existing bottleneck for RTs. This understanding led us to propose new RT variants that
address and reduce the precomputation time.

We finally introduced two novel RT variants: Descending Stepped Rainbow Table (DSRT)
and Ascending Stepped Rainbow Table (ASRT). The DSRT variant significantly improves the
precomputation phase and yields a substantial reduction in attack time. On the contrary, the
ASRT variant exhibits superior performance than DSRT when a sufficient number of tables is
used. Both variants provide a more flexible approach compared to vanilla RTs, and improve
the efficiency of the trade-off.

8.2. Research Takeaways

8.2.1. Precomputation

The research presented in this work has highlighted a new perspective on RTs and TMTOs in
general. An aspect that had been largely under-explored until now is the importance of the
precomputation time. This work has demonstrated that today, the precomputation time is a
crucial parameter when using TMTOs, as critical as the other traditionally studied aspects,
such as the attack time and memory.

The analysis and experiments conducted within this work show that the time needed to
precompute sometimes outweighs the benefits provided by the TMTO algorithm, limiting its
real-world applicability. This is especially true when dealing with large problem spaces, as in
the case of modern cryptographic systems.

118 Chapter 8. Conclusion

Hence, one of the research conclusion is that in order to fully understand and optimize
TMTOs, it is necessary to move beyond the traditional time-memory dichotomy and to
include the precomputation time as a core part of the TMTO trade-off. This will not only
help to expand the applicability of TMTOs but also contribute to more accurate cost-benefit
analyses of such algorithms.

8.2.2. A Whole Trade-Off

The discussion in this work brings to light an understanding of TMTOs as more than a simple
trade-off between attack time and memory. Instead, it proposes viewing TMTOs through
a more nuanced view by considering a trade-off among four factors: attack time, memory,
precomputation time, and coverage.

Coverage, as precomputation time, is an aspect that this work identifies as being largely
underestimated. Traditional approaches use maximal tables that thus have a fix coverage
per table and thus neglect the flexibility and control that manipulating coverage can provide.
Altering coverage can have significant impact on all other factors, including precomputation
time, memory, and attack time. This interaction can result in substantial performance
improvements or new approaches for algorithm optimization, opening up opportunities for
future work.

8.3. Future Works

8.3.1. TMTOs Bound

The established bounds of TMTOs have been widely acknowledged, with the formula of
T = N2/M2 identified as a characteristic constraint for the attack phase of TMTOs as outlined
in [BBS06]. Nevertheless, throughout the process of this research, multiple elements have
emerged, suggesting that these bounds should be reconsidered and refined.

A crucial aspect that requires revision is the set of assumptions underpinning the defined
bounds. We believe that some assumptions do not hold for all possible TMTOs.

Moreover, the current bounds lack precision. Notably, the bound 1
1024 ln(N) ×

N2

M2 , as
formalized in [BBS06], is close to zero, which is not a realistic representation of actual TMTO
performance. In our tests, the actual attack time tends to considerably exceed the computed
bounds 1

1024 ln(N) ×
N2

M2 , significantly impacting the usefulness of these bounds in assessing
TMTO performance.

In addition to the above points, the applicability of these bounds across various coverage
scenarios and table structures needs to be addressed. Specifically, the bound N2/M2 fails
to hold for all coverages, particularly for lower coverages, and does not accurately reflect
the performances of TMTOs when multiple tables are used or when tables are not close to
maximal. In our tests, for instance, the attack time for RT with a coverage of 70% falls
significantly below (approximately 50% below) the bound N2/M2, and is approximately 104

higher than the bound 1
1024 ln(N) ×

N2

M2 , underscoring the insufficiency of the current bounds
in accurately predicting TMTO performance.

It is also important to consider that the value M actually used in formulas represents the
number of chains or the number of pairs stored. However, there are memory optimizations
that can enhance storage efficiency (e.g., [ABC15, AC13]), and these optimizations operate
differently depending on the maximality (closely tied to coverage) of the tables used. This

8.3. Future Works 119

phenomenon is why we believe that comparing variants with equal chain numbers is not
accurate, and should instead be done with equal memory lower bound. Focusing solely on
the number of chains without considering maximality or coverage will inevitably result in
inaccuracies.

In light of these observations, the scope for future research is vast, particularly in the redef-
inition and refinement of TMTO bounds. By addressing these bounds, a more comprehensive
and accurate understanding of TMTOs can be achieved, which in turn could significantly
enhance their practical applicability and performance.

8.3.2. Evaluation of TMTOs Across Varying Coverage

The investigation and comparison of the ASRT and DSRT variants during this research,
particularly their configurations, prompted a deeper consideration of the coverage level in
TMTO variants. Most of the prior works tend to focus primarily, if not exclusively, on high
coverage scenarios, we suppose, due to a combination of the common use of maximum tables
and the practical requirement for high coverage in passwords cracking.

Despite this, there is a noticeable lack of comparative analyses of different TMTOs variants
at lower coverage. In particular, Rainbow Tables and Fuzzy Rainbow Tables have been
acknowledged for their efficiency, with some researchers claiming them to be the most efficient
TMTO variants. However, such comparisons have been traditionally conducted at high
coverage. An intriguing question that arose during this work, albeit without accompanying
evidence, is whether the Rainbow Tables and Fuzzy Rainbow Tables would maintain their
superiority at lower coverage.

The relevance of this question is amplified by the emergence of applications requiring only
a low success probability, such as, e.g., attacks against corporate employee passwords. Hence,
a comparison of TMTOs variants at varying coverage, including low coverage, could be both
insightful and impactful.

On a broader scale, an analysis comparing all significant TMTOs variants across coverages
from 1% to 99.995%, according to their number of memory accesses, precomputation time,
memory requirements, and attack time, would provide invaluable insights. Such a study could
serve to conclusively identify the most efficient TMTO variant or, more likely, establish a
framework to determine the most suitable variant according to specific attack purposes. This
represents a significant and promising avenue for future research.

8.3.3. Distributed Rainbow Tables on GPU/FPGA

The research presented in [ACLA22] (Chapter 5) highlights that the precomputation phase is
the primary bottleneck of RT particularly on CPUs. Consequently, the potential benefits of
using GPU or FPGA are clear. A primary challenge, however, resides in the application of
filters when using GPUs.

From a cost perspective, the use of multiple GPUs typically results in greater hashing speed
compared to using FPGAs for the same investment. On the contrary, managing memory
and facilitating effective communication is more challenging on GPUs. This brings to the
forefront an interesting trade-off to consider. At lower coverage or when sufficient tables are
used, the number of chains per table (and thus the number of merges) decreases, making the
benefits of filtration less significant. Under such conditions, GPUs may offer a more efficient
alternative compared to FPGAs and CPUs.

120 Chapter 8. Conclusion

However, as we approach higher coverage, the situation becomes less straightforward. Our
hypothesis is that even at high coverage, the use of filters on GPUs will remain advantageous
when compared to not using them or relying on CPUs.

This raises several pertinent subjects for future research. The potential of FPGAs to
outperform GPUs, given an equivalent cost investment, could be evaluated. A comparison of
the speeds of FPGA or GPU usage with CPUs could reveal new insights. Exploring specific
optimization techniques to further enhance the performance of GPUs and FPGAs is another
promising subject.

8.3.4. Investigating Real-World Attacks

There are numerous potential applications for TMTOs that warrant further investigation. For
instance, these could include attacks on cryptographic algorithms employed in communication
networks However, we also believe there are additional practical attack scenarios that could
potentially bring back the light on TMTOs.

Password cracking, in particular, is a field suitable for the application of TMTOs. Currently,
password attacks primarily employ methods other than TMTOs. Yet, recent research on
the topic [CFL22, MUS+16, USB+15] indicate that even when leveraging the most advanced
techniques (e.g., machine learning, mask attacks, or Markov chain attacks), a substantial
portion of attacked passwords remains unretrieved (between 30% and 50% of the database
attacked). According to [CFL22], these passwords typically have a mask that appears only
between one and six times. This suggests that these types of passwords are unlikely to be
retrieved by methods other than TMTOs or brute-force attacks.

We believe that constructing TMTOs targeting specific forms of passwords (e.g., passphrase
or pronounceable but random passwords) could be a fruitful line of investigation. These
TMTOs will target the 30% to 50% of passwords that are not recovered by other techniques.
This becomes especially relevant given the rise of password managers, which increasingly
generate random passwords.

8.3.5. Other Variants

8.3.5.1. Regular Fuzzy Tables

Hellman tables and RTs could be regarded as two ends of a spectrum: while Hellman table
use a single hash-reduction function for t columns, RTs employ t hash-reduction functions for
the same number of columns. DSRTs serve as a generalized version of clean RTs, allowing
chains to end at multiple columns. Similarly, one could propose a generalization of the RT
variant that would use between 1 and t hash-reduction functions across t columns. The precise
number of hash-reduction functions would depend on the targeted coverage, memory, and
attack time. Using fewer than t hash-reduction functions could enhance the attack time,
particularly if the same function is used on the matrix right hand side. However, this could
also lead to a rapid decline in coverage, requiring an optimal trade-off.

Consider a case where th hash-reduction functions are used instead of t. Here, the question
arises as to where to apply these functions. One possible approach could be to use the first
th − 1 functions in the initial th − 1 columns, followed by a single function for the remaining
t− th + 1 columns. This approach would substantially accelerate attack time on the matrix
right hand side but could potentially cause a significant decrease in coverage.

8.3. Future Works 121

Another approach is to use the th hash-reduction function, similar to the method used for
the Fuzzy Rainbow Table, applied in batches across columns. However, without the DPs at
the end of each chain, the attack efficiency could potentially be diminished.

8.3.5.2. Split Rainbow Tables

The concept of Split Rainbow Tables involves the splitting or unmerging of chains at certain
columns during the precomputation process. This "split" consists in applying a different
hash-reduction function on merged chains in a given column c, and then applying the same
hash-reduction functions on the split chains until the precomputation end. The outcome is
a matrix with an increased number of chains, considerably enhancing the attack time. A
potential drawback here is the representation of duplicate chains prior to the split column
c, which could be mitigated by searching within a chain batch across a selected number of
columns left of the split.

Our preliminary experiments indicate that Split Rainbow Tables could outperform RTs.
However, more extensive research and experimentation are required to confirm these results
and determine whether this variant can significantly surpass existing ones, justifying its
introduction.

8.3.5.3. Combined DASRT

A fusion of Descending and Ascending Stepped Rainbow Tables could potentially leads to
a more efficient variant. The objective would be to recycle duplicate chains, particularly
in the right parts of the matrix, while adding new chains across given columns during the
precomputation phase.

The challenge with this combination lies in analyzing and identifying the best configurations.
Given a specific memory and coverage, the possible configuration space would increase
dramatically, with the main task being to find configurations for a specific memory and
coverage.

Appendices A
A.1. Attack Phase with 1 step

Algorithm 1: Attack Phase (1-step)
Input : y ∈ B : y = h(x∗) ∈ A
Output : x∗ (success) or ⊥ (failure)

1 stepsList← [s, t]
2 EP ← [[EP1...EPms−mt

], [EPms−mt+1...EPms
]]

3 SP ← [[SP1...SPms−mt], [SPms−mt+1...SPms]]
4 c← [s, t]
5 v← [0 : len(c)− 1]
6 success← False
7 while c ̸= [0, 0] and success = False do
8 alarm← False
9 for d = 0 to len(c)− 1 do

10 v[d]← µ(c[d])
11 end
12 j ← c[v.index(max(v))]
13 i← j
14 xi ← Ri(y)
15 while i ⩽ t and alarm = False do
16 if i ∈ stepsList then
17 indexi ← stepsList.index(i)
18 if xi ∈ EP [indexi] then
19 alarm← True
20 x← SP [EP [indexi].index(xi)]
21 for g = 1 to j − 1 do
22 x← fg(x)
23 end
24 if h(x) = y then
25 success← True
26 end
27 end
28 end
29 if alarm = False and success = False then
30 xi ← fi(xi)
31 i← i+ 1

32 end
33 end
34 if success = False then
35 c[c.index(j)]← c[c.index(j)]− 1
36 else
37 return (success, x)
38 end
39 end
40 return (success, 0)

124 Appendix A. Appendices

A.2. Attack Phase with τ steps

Algorithm 2: Attack Phase with τ -Steps DSRTtable
input : y ∈ B s.t. y = h(x∗) ∈ A
output : x∗, if it belongs to the DSRTmatrix

1 stepsList← [s1, s2, ...sτ , t]
2 EP ← [[EP1...EPms1−ms2

],
[EPms1−ms2+1...EPms1−ms3

]...
[EPms1

−mt+1...EPms1
]]

3 SP ← [SP1...SPms1
−ms2

],
[SPms1

−ms2
+1...SPms1

−ms3
]...

[SPms1
−mt+1...SPms1

]]

4 c← [s1, s2, ..sτ , t]
5 v← [0 : len(c)− 1]
6 success← False
7 while c ̸= [0, 0, .., 0] and success = False do
8 Alarm← False
9 for d = 0 to len(c)− 1 do

10 v[d]← µ(c[d]) #See Definition 6.3
11 end
12 j ← c[v.index(max(v))]
13 i← j
14 xi ← Ri(y)
15 while i ⩽ t and Alarm = False do
16 if i in stepsList then
17 indexi ← stepsList.index(i)
18 if xi in EP [indexi] then
19 Alarm← True
20 x← SP [EP [indexi].index(xi)]
21 for g = 1 to g = j − 1 do
22 x← fg(x)
23 end
24 if h(x) = y then
25 success← True
26 end
27 end
28 end
29 if Alarm = False and success = False then
30 xi ← fi(xi)
31 i← i+ 1

32 end
33 end
34 if success = False then
35 c[c.index(j)]← c[c.index(j)]− 1
36 else
37 return (success, x)
38 end
39 end
40 return (success, 0)

A.3. Configurations 125

A.3. Configurations

Function adjust used in Algo. 3, takes a number of column t, and a list of steps, with a relative
step position between 30% and 100% of t. It returns the positions of steps according to t.
Algorithm 3: Algorithm used to find valid configurations
input :The success probability TargetProba

The targeted memory
TargetMemory

output :A list validConfig of configurations that reaches the targeted success
probability and memory

1 Procedure:
2 t← 1
3 α← 0.001
4 for ell = 1 to ℓ = 6 do
5 for nbSteps = 1 to nbSteps = 5 do
6 for pos in all possible steps combinations do
7 config ← [t, alpha, ℓ, steps]
8 end← valid_criteria(config)
9 while end ̸= 1 do

10 while proba(config) < TargetProba do
11 α← α+ 0.001
12 config ← [t, alpha, ℓ, steps]

13 end
14 while memory(config) < 0.999TargetMemory do
15 t← t− 1
16 steps← adjust(t, pos)
17 config ← [t, alpha, ℓ, steps]

18 end
19 while memory(config) > 1.001TargetMemory do
20 t← t+ 1
21 steps← adjust(t, pos)
22 config ← [t, alpha, ℓ, steps]

23 end
24 end← valid_criteria(config)
25 end
26 validConfig.append(config)

27 end
28 end
29 end
30 return validConfig

Bibliography

[ABC15] Gildas Avoine, Adrien Bourgeois, and Xavier Carpent. Analysis of rainbow
tables with fingerprints. In Ernest Foo and Douglas Stebila, editors, Information
Security and Privacy - 20th Australasian Conference, ACISP 2015, Brisbane,
QLD, Australia, Proceedings, volume 9144 of Lecture Notes in Computer Science,
pages 356–374. Springer, 2015.

[AC13] Gildas Avoine and Xavier Carpent. Optimal storage for rainbow tables. In Hyang-
Sook Lee and Dong-Guk Han, editors, Information Security and Cryptology -
ICISC 2013 - 16th International Conference, Seoul, Korea, Revised Selected
Papers, volume 8565 of Lecture Notes in Computer Science, pages 144–157.
Springer, 2013.

[AC17] Gildas Avoine and Xavier Carpent. Heterogeneous rainbow table widths provide
faster cryptanalyses. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi,
and Xun Yi, editors, Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United
Arab Emirates, pages 815–822. ACM, 2017.

[ACKT17] Gildas Avoine, Xavier Carpent, Barbara Kordy, and Florent Tardif. How to handle
rainbow tables with external memory. In Josef Pieprzyk and Suriadi Suriadi,
editors, Information Security and Privacy - 22nd Australasian Conference, ACISP
2017, Auckland, New Zealand, Proceedings, Part I, volume 10342 of Lecture Notes
in Computer Science, pages 306–323. Springer, 2017.

[ACL15] Gildas Avoine, Xavier Carpent, and Cédric Lauradoux. Interleaving cryptanalytic
time-memory trade-offs on non-uniform distributions. In Günther Pernul, Peter
Y. A. Ryan, and Edgar R. Weippl, editors, Computer Security - ESORICS 2015
- 20th European Symposium on Research in Computer Security, Vienna, Austria,
Proceedings, Part I, volume 9326 of Lecture Notes in Computer Science, pages
165–184. Springer, 2015.

[ACLA21] Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel. Precomputation
for rainbow tables has never been so fast. In Elisa Bertino, Haya Shulman, and
Michael Waidner, editors, Computer Security – ESORICS 2021, pages 215–234.
Springer International Publishing, 2021.

[ACLA22] Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel. Rainbow Tables:
How Far Can CPU Go? The Computer Journal, page bxac147, 10 2022.

128 BIBLIOGRAPHY

[ACLA23] Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel. Stairway to rainbow.
In Proceedings of the 2023 ACM Asia Conference on Computer and Commu-
nications Security, ASIA CCS ’23, page 286–299, New York, NY, USA, 2023.
Association for Computing Machinery.

[AJO05] Gildas Avoine, Pascal Junod, and Philippe Oechslin. Time-memory trade-offs:
False alarm detection using checkpoints. In Subhamoy Maitra, C. E. Veni
Madhavan, and Ramarathnam Venkatesan, editors, Progress in Cryptology -
INDOCRYPT 2005, volume 3797 of Lecture Notes in Computer Science, pages
183–196. Springer, 2005.

[AJO08] Gildas Avoine, Pascal Junod, and Philippe Oechslin. Characterization and
improvement of time-memory trade-off based on perfect tables. ACM Trans. Inf.
Syst. Secur., 11(4):17:1–17:22, 2008.

[Bab95] S.H. Babbage. Improved "exhaustive search" attacks on stream ciphers. In
European Convention on Security and Detection, 1995., pages 161–166, 1995.

[BBS06] Elad Barkan, Eli Biham, and Adi Shamir. Rigorous bounds on cryptanalytic
time/memory tradeoffs. In Cynthia Dwork, editor, Advances in Cryptology -
CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara,
California, USA, Proceedings, volume 4117 of Lecture Notes in Computer Science,
pages 1–21. Springer, 2006.

[BD00] Eli Biham and Orr Dunkelman. Cryptanalysis of the A5/1 GSM stream cipher. In
Bimal K. Roy and Eiji Okamoto, editors, Progress in Cryptology - INDOCRYPT
2000, First International Conference in Cryptology in India, Calcutta, India,
Proceedings, volume 1977 of Lecture Notes in Computer Science, pages 43–51.
Springer, 2000.

[BMS05] Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. Improved time-
memory trade-offs with multiple data. In Bart Preneel and Stafford E. Tavares,
editors, Selected Areas in Cryptography, 12th International Workshop, SAC 2005,
Kingston, ON, Canada, Revised Selected Papers, volume 3897 of Lecture Notes
in Computer Science, pages 110–127. Springer, 2005.

[BPV98] Johan Borst, Bart Preneel, and Joos Vandewalle. On the time-memory tradeoff
between exhaustive key search and table precomputation. In Symposium on Infor-
mation Theory in the Benelux, pages 111–118. TECHNISCHE UNIVERSITEIT
DELFT, 1998.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs
for stream ciphers. In Tatsuaki Okamoto, editor, Advances in Cryptology -
ASIACRYPT 2000, 6th International Conference on the Theory and Application
of Cryptology and Information Security, Kyoto, Japan, Proceedings, volume 1976
of Lecture Notes in Computer Science, pages 1–13. Springer, 2000.

[BSW00] Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of a5/1
on a pc. In International Workshop on Fast Software Encryption, pages 1–18.
Springer, 2000.

BIBLIOGRAPHY 129

[CFL22] Alessia Michela Di Campi, Riccardo Focardi, and Flaminia L. Luccio. The
revenge of password crackers: Automated training of password cracking tools.
In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and
Weizhi Meng, editors, Computer Security - ESORICS 2022 - 27th European Sym-
posium on Research in Computer Security, Copenhagen, Denmark, Proceedings,
Part II, volume 13555 of Lecture Notes in Computer Science, pages 317–336.
Springer, 2022.

[CK08] Guanhan Chew and Khoongming Khoo. A general framework for guess-and-
determine and time-memory-data trade-off attacks on stream ciphers. In Eduardo
Fernández-Medina, Manu Malek, and Javier Hernando, editors, SECRYPT 2008,
Proceedings of the International Conference on Security and Cryptography, Porto,
Portugal, SECRYPT is part of ICETE - The International Joint Conference on
e-Business and Telecommunications, pages 300–305. INSTICC Press, 2008.

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[DK08a] Orr Dunkelman and Nathan Keller. A new attack on the LEX stream cipher.
In Josef Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, 14th
International Conference on the Theory and Application of Cryptology and
Information Security, Melbourne, Australia. Proceedings, volume 5350 of Lecture
Notes in Computer Science, pages 539–556. Springer, 2008.

[DK08b] Orr Dunkelman and Nathan Keller. Treatment of the initial value in time-memory-
data tradeoff attacks on stream ciphers. Inf. Process. Lett., 107(5):133–137, 2008.

[DKRS21] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. Quantum
time/memory/data tradeoff attacks. IACR Cryptol. ePrint Arch., page 1561,
2021.

[EK15] Muhammed F. Esgin and Orhun Kara. Practical cryptanalysis of full sprout with
TMD tradeoff attacks. In Orr Dunkelman and Liam Keliher, editors, Selected
Areas in Cryptography - SAC 2015 - 22nd International Conference, Sackville,
NB, Canada, Revised Selected Papers, volume 9566 of Lecture Notes in Computer
Science, pages 67–85. Springer, 2015.

[Ers58] Andrei P. Ershov. On programming of arithmetic operations. Communications
of the ACM, 1(8):3–6, 1958.

[FN91] Amos Fiat and Moni Naor. Rigorous time/space tradeoffs for inverting functions.
In Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, New Orleans, Louisiana,
USA, pages 534–541. ACM, 1991.

[Gol97] Jovan Dj Golić. Cryptanalysis of alleged a5 stream cipher. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages
239–255. Springer, 1997.

[Hel80] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf.
Theory, 26(4):401–406, 1980.

130 BIBLIOGRAPHY

[HJK+08a] Jin Hong, Kyung Chul Jeong, Eun Young Kwon, In-Sok Lee, and Daegun Ma.
Variants of the distinguished point method for cryptanalytic time memory trade-
offs. In Liqun Chen, Yi Mu, and Willy Susilo, editors, Information Security
Practice and Experience, 4th International Conference, ISPEC 2008, Sydney,
Australia, Proceedings, volume 4991 of Lecture Notes in Computer Science, pages
131–145. Springer, 2008.

[HJK+08b] Jin Hong, Kyung Chul Jeong, Eun Young Kwon, In-Sok Lee, and Daegun
Ma. Variants of the distinguished point method for cryptanalytic time memory
trade-offs (full version). IACR Cryptol. ePrint Arch., page 54, 2008.

[HJMM08] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The
grain family of stream ciphers. In Matthew J. B. Robshaw and Olivier Billet,
editors, New Stream Cipher Designs - The eSTREAM Finalists, volume 4986 of
Lecture Notes in Computer Science, pages 179–190. Springer, 2008.

[HK05] Jin Hong and Woo-Hwan Kim. Tmd-tradeoff and state entropy loss considera-
tions of streamcipher MICKEY. In Subhamoy Maitra, C. E. Veni Madhavan,
and Ramarathnam Venkatesan, editors, Progress in Cryptology - INDOCRYPT
2005, 6th International Conference on Cryptology in India, Bangalore, India,
Proceedings, volume 3797 of Lecture Notes in Computer Science, pages 169–182.
Springer, 2005.

[HKR83] Martin E. Hellman, Ehud D. Karnin, and Justin M. Reyneri. On the necessity
of cryptanalytic exhaustive search. SIGACT News, 15(1):40–44, 1983.

[HLM11] Jin Hong, Ga Won Lee, and Daegun Ma. Analysis of the parallel distinguished
point tradeoff. In Daniel J. Bernstein and Sanjit Chatterjee, editors, Progress in
Cryptology - INDOCRYPT 2011 - 12th International Conference on Cryptology
in India, Chennai, India, 2011. Proceedings, volume 7107 of Lecture Notes in
Computer Science, pages 161–180. Springer, 2011.

[HM13] Jin Hong and Sunghwan Moon. A comparison of cryptanalytic tradeoff algorithms.
J. Cryptol., 26(4):559–637, 2013.

[Hoc09] Yaacov Zvi Hoch. Security analysis of generic iterated hash functions. PhD
thesis, 2009.

[Hon10] Jin Hong. The cost of false alarms in hellman and rainbow tradeoffs. Designs,
Codes and Cryptography, 57:293–327, 2010.

[Hon16] Jin Hong. Perfect rainbow tradeoff with checkpoints revisited. PLoS ONE, 11(11),
2016.

[KCGL09] Khoongming Khoo, Guanhan Chew, Guang Gong, and Hian-Kiat Lee. Time-
memory-data trade-off attack on stream ciphers based on maiorana-mcfarland
functions. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 92-A(1):11–
21, 2009.

[KGL06] Khoongming Khoo, Guang Gong, and Hian-Kiat Lee. The rainbow attack on
stream ciphers based on maiorana-mcfarland functions. In Jianying Zhou, Moti

BIBLIOGRAPHY 131

Yung, and Feng Bao, editors, Applied Cryptography and Network Security, 4th
International Conference, ACNS 2006, Singapore, Proceedings, volume 3989 of
Lecture Notes in Computer Science, pages 194–209, 2006.

[KH13] Byoung-Il Kim and Jin Hong. Analysis of the non-perfect table fuzzy rainbow
tradeoff. In Colin Boyd and Leonie Simpson, editors, Information Security
and Privacy - 18th Australasian Conference, ACISP 2013, Brisbane, Australia.
Proceedings, volume 7959 of Lecture Notes in Computer Science, pages 347–362.
Springer, 2013.

[KH14] Byoung-Il Kim and Jin Hong. Analysis of the perfect table fuzzy rainbow tradeoff.
J. Appl. Math., 2014:765394:1–765394:19, 2014.

[KHP13] Jung Woo Kim, Jin Hong, and Kunsoo Park. Analysis of the rainbow tradeoff
algorithm used in practice. IACR Cryptol. ePrint Arch., page 591, 2013.

[KM96] Koji Kusuda and Tsutomu Matsumoto. Optimization of time-memory trade-off
cryptanalysis and its application to des, feal-32, and skipjuck. IEICE transactions
on fundamentals of electronics, communications and computer sciences, 79(1):35–
48, 1996.

[Knu63] Donald E Knuth. Notes on “open” addressing. Unpublished memorandum, pages
11–97, 1963.

[KSH+12] Jung Woo Kim, Jungjoo Seo, Jin Hong, Kunsoo Park, and Sung-Ryul Kim.
High-speed parallel implementations of the rainbow method in a heterogeneous
system. In Steven D. Galbraith and Mridul Nandi, editors, Progress in Cryptology
- INDOCRYPT 2012, 13th International Conference on Cryptology in India,
Kolkata, India. Proceedings, volume 7668 of Lecture Notes in Computer Science,
pages 303–316. Springer, 2012.

[KSH+15] Jung Woo Kim, Jungjoo Seo, Jin Hong, Kunsoo Park, and Sung-Ryul Kim.
High-speed parallel implementations of the rainbow method based on perfect
tables in a heterogeneous system. Softw. Pract. Exp., 45(6):837–855, 2015.

[LH16a] Ga Won Lee and Jin Hong. Comparison of perfect table cryptanalytic tradeoff
algorithms. Designs, Codes and Cryptography, 80(3):473–523, Sep 2016.

[LH16b] Ga Won Lee and Jin Hong. Comparison of perfect table cryptanalytic tradeoff
algorithms. Designs, Codes and Cryptography, 80(3):473–523, Sep 2016.

[Li16] Zhen Li. Optimization of rainbow tables for practically cracking gsm a5/1 based
on validated success rate modeling. In Topics in Cryptology-CT-RSA 2016: The
Cryptographers’ Track at the RSA Conference 2016, San Francisco, CA, USA,
Proceedings, pages 359–377. Springer, 2016.

[LLH15] Jiqiang Lu, Zhen Li, and Matt Henricksen. Time-memory trade-off attack on the
GSM A5/1 stream cipher using commodity GPGPU. In Tal Malkin, Vladimir
Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, Applied
Cryptography and Network Security - 13th International Conference, ACNS 2015,
New York, USA, Revised Selected Papers, volume 9092 of Lecture Notes in
Computer Science, pages 350–369. Springer, 2015.

132 BIBLIOGRAPHY

[MBPV06] Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. Time-
memory trade-off attack on FPGA platforms: UNIX password cracking. In Koen
Bertels, João M. P. Cardoso, and Stamatis Vassiliadis, editors, Reconfigurable
Computing: Architectures and Applications, Second International Workshop,
ARC 2006, Delft, The Netherlands, Revised Selected Papers, volume 3985 of
Lecture Notes in Computer Science, pages 323–334. Springer, 2006.

[MC86] J Ian Munro and Pedro Celis. Techniques for collision resolution in hash tables
with open addressing. In Proceedings of 1986 ACM Fall joint computer conference,
pages 601–610, 1986.

[MFI07] Miodrag J. Mihaljevic, Marc P. C. Fossorier, and Hideki Imai. Security evaluation
of certain broadcast encryption schemes employing a generalized time-memory-
data trade-off. IEEE Commun. Lett., 11(12):988–990, 2007.

[MH09] Daegun Ma and Jin Hong. Success probability of the hellman trade-off. Inf.
Process. Lett., 109(7):347–351, 2009.

[ML75] Ward Douglas Maurer and Ted G Lewis. Hash table methods. ACM Computing
Surveys (CSUR), 7(1):5–19, 1975.

[MUS+16] William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer,
Nicolas Christin, and Lorrie Faith Cranor. Fast, lean, and accurate: Modeling
password guessability using neural networks. In Thorsten Holz and Stefan
Savage, editors, 25th USENIX Security Symposium, Austin, TX, USA, 2016,
pages 175–191. USENIX Association, 2016.

[Nas00] Stephen G. Nash. A survey of truncated-newton methods. volume 124, pages
45–59, 2000. Numerical Analysis 2000. Vol. IV: Optimization and Nonlinear
Equations.

[NLAB+21] Cyrius Nugier, Diane Leblanc-Albarel, Agathe Blaise, Simon Masson, Paul Huynh,
and Yris Brice Wandji Piugie. An upcycling tokenization method for credit card
numbers. In Sabrina De Capitani di Vimercati and Pierangela Samarati, editors,
Proceedings of the 18th International Conference on Security and Cryptography,
SECRYPT 2021, pages 15–25. SCITEPRESS, 2021.

[Oec03] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In
Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, Proceedings,
volume 2729 of Lecture Notes in Computer Science, pages 617–630. Springer,
2003.

[Pet57] W Wesley Peterson. Addressing for random-access storage. IBM journal of
Research and Development, 1(2):130–146, 1957.

[Saa02] Markku-Juhani Olavi Saarinen. A time-memory tradeoff attack against LILI-128.
In Joan Daemen and Vincent Rijmen, editors, Fast Software Encryption, 9th
International Workshop, FSE 2002, Leuven, Belgium, Revised Papers, volume
2365 of Lecture Notes in Computer Science, pages 231–236. Springer, 2002.

BIBLIOGRAPHY 133

[SRQL02] François-Xavier Standaert, Gaël Rouvroy, Jean-Jacques Quisquater, and Jean-
Didier Legat. A time-memory tradeoff using distinguished points: New analysis
& FPGA results. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, Revised Papers, volume
2523 of Lecture Notes in Computer Science, pages 593–609. Springer, 2002.

[Sur00] A survey of truncated-newton methods. Journal of Computational and Applied
Mathematics, 124(1):45–59, 2000. Numerical Analysis 2000. Vol. IV: Optimization
and Nonlinear Equations.

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley Educational,
Boston, MA, 4 edition, March 2011.

[TO] Cedric Tissières and Philippe Oechslin. Objectif sécurité, ophcrack. Accessed:
June 2023, https://ophcrack.sourceforge.io/.

[USB+15] Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor,
Saranga Komanduri, Darya Kurilova, Michelle L. Mazurek, William Melicher, and
Richard Shay. Measuring real-world accuracies and biases in modeling password
guessability. In Jaeyeon Jung and Thorsten Holz, editors, 24th USENIX Security
Symposium, Washington, D.C., USA, 2015, pages 463–481. USENIX Association,
2015.

[Van22] Mathy Vanhoef. A time-memory trade-off attack on WPA3’s SAE-PK. In
Jason Paul Cruz and Naoto Yanai, editors, APKC ’22: Proceedings of the 9th
ACM on ASIA Public-Key Cryptography Workshop, Nagasaki, Japan, pages
27–37. ACM, 2022.

[vdBP13] Fabian van den Broek and Erik Poll. A comparison of time-memory trade-
off attacks on stream ciphers. In Amr M. Youssef, Abderrahmane Nitaj, and
Aboul Ella Hassanien, editors, Progress in Cryptology - AFRICACRYPT 2013,
6th International Conference on Cryptology in Africa, Cairo, Egypt. Proceedings,
volume 7918 of Lecture Notes in Computer Science, pages 406–423. Springer,
2013.

[VGB12] Roel Verdult, Flavio D. Garcia, and Josep Balasch. Gone in 360 seconds:
Hijacking with hitag2. In Tadayoshi Kohno, editor, Proceedings of the 21th NIX
Security Symposium, Bellevue, WA, USA, pages 237–252. USENIX Association,
2012.

[VMG+13] Roel Verdult, Wei Meng, Flavio D Garcia, Dan Doozan, Baris Ege, William Enck,
Alex C Snoeren, Giovanni Vigna, Tao Xie, Nick Feamster, et al. Dismantling
megamos crypto: Wirelessly lockpicking a vehicle immobilizer. In 22nd NIX
Security Symposium, pages 687–702, 2013.

[Wie04] Michael J. Wiener. The full cost of cryptanalytic attacks. J. Cryptol., 17(2):105–
124, 2004.

https://ophcrack.sourceforge.io/

134 BIBLIOGRAPHY

[WL13] Wenhao Wang and Dongdai Lin. Analysis of multiple checkpoints in non-
perfect and perfect rainbow tradeoff revisited. In Sihan Qing, Jianying Zhou,
and Dongmei Liu, editors, Information and Communications Security - 15th
International Conference, ICICS 2013, Beijing, China. Proceedings, volume 8233
of Lecture Notes in Computer Science, pages 288–301. Springer, 2013.

Titre : Compromis Temps-Mémoire Cryptanalytique

Mots clés : Compromis Temps-Mémoire, Table Arc-en-Ciel, Tables Escaliers, Précalculs

Résumé : Cette thèse analyse les améliora-
tions des Compromis Temps-Mémoire Cryp-
tanalytiques (TMTO), avec un accent sur les
tables arc-en-ciel (RT). Elle revisite la phase
de précalcul des RT, une étape souvent dé-
laissée, en proposant des avancées notables.
Une contribution majeure est la méthode de
filtration, qui réduit le temps de précalcul des
RT, en particulier celles dites parfaites ou
propres, permettant de diminuer ce temps
par un facteur de 6 pour des tables quasi-
maximales. La thèse explore également la dis-
tribution de la phase de précalcul utilisant la
méthode de filtration et fournit une comparai-
son du temps de précalcul des TMTO sur di-
vers environnements. Ce travail révèle que le
goulet d’étranglement actuel des TMTO sont

les précalculs, et non le temps d’attaque ou
la mémoire. Par ailleurs, elle présente deux
nouvelles variantes des RT : les tables esca-
liers descendantes et ascendantes. Ces deux
variantes, à couverture et mémoire fixes, sur-
passent les RT en précalcul et en attaque.
Notamment, la première permet de réduire si-
gnificativement le temps de précalcul par rap-
port aux RT avec filtration, tandis que la se-
conde permet un gain significatifs pour les
tables quasi-maximales. La thèse conclut que
les TMTO doivent être envisagés comme un
compromis entre quatre facteurs : temps de
précalcul, temps d’attaque, mémoire et cou-
verture, ouvrant la voie à une optimisation fu-
ture des TMTO.

Title: Cryptanalytic Time-Memory Trade-off

Keywords: Time-Memory Trade-off, Rainbow Tables, Stepped Tables, Precomputation

Abstract: This manuscript analyzes en-
hancements to Time-Memory Trade-Off
(TMTO) techniques, focusing on the Rain-
bow Tables (RTs) variant. It revisits the often-
overlooked precomputation phase of RTs,
proposing significant advances. A key contri-
bution is the filtration method, which reduces
precomputation time for RTs, particularly for
so-called ’perfect’ or ’clean’ RTs, allowing this
time to be reduced by a factor of 6 for quasi-
maximal tables. The thesis also investigates
the distribution of the precomputation phase
using the filtration method, providing a com-
parison of TMTO precomputation time across
different environments. This research reveals
that the current bottleneck for TMTOs lies

within the precomputation phase, not the at-
tack time or memory for TMTO storage. More-
over, it introduces two new variants of RTs:
Descending and Ascending Stepped Rain-
bow Tables. These variants, with fixed cov-
erage and memory, outperform vanilla RTs in
precomputation and attack. Notably, the first
allows to significantly reduce the precompu-
tation time compared to RTs with filtration,
while the Ascending variant offers significant
gains for quasi-maximal tables. The thesis
concludes that TMTOs should be viewed as
a trade-off among four factors: precomputa-
tion time, attack time, memory, and coverage,
paving the way for future TMTO optimization.

	Table of Contents
	List of Contributions
	Résumé en Français
	Contexte
	Compromis Temps-Mémoire Cryptanalytiques
	Problème traité
	Objectif
	Utilisation d'un TMTO
	Phase de précalcul
	Phase d'attaque

	Cas d'utilisation
	Cassage de mots de passe
	Autres Utilisations

	Problématique
	Structure de la thèse

	Introduction
	Context
	Concept
	Problem Addressed

	Time Memory Trade-Off
	Purpose
	Overview
	Precomputation Phase
	Attack Phase

	Use Cases
	Password Cracking
	Other Cases

	Time-Memory-Data Trade-Off
	Problem Statement
	Thesis Structure

	Background
	Overview
	Original TMTOs: Hellman Tables
	Precomputation Phase
	Attack Phase
	False Alarm

	Coverage
	Clean Hellman Table

	Precomputation Cost
	Memory Cost
	Attack Cost

	Other TMTOs Variants
	Distinguished Points Tables
	Precomputation Phase
	Attack Phase
	Comparison with Hellman Tables

	Rainbow Tables
	Precomputation phase
	Attack Phase
	Comparison with DPs and Hellman Tables

	Fuzzy Rainbow Tables
	Precomputation Phase
	Attack Phase
	Comparison with other variants

	Variant Analyzed in the Thesis
	Vanilla Rainbow Tables Analysis
	Precomputation phase
	Matrix Generation
	Maximality
	Precomputation Time

	Success Probability
	Memory Used
	Attack Time

	Most Relevant Variants and Improvements
	Checkpoints
	Fingerprints
	Delta Encoding
	Heterogeneous Tables

	Preliminary Results
	Motivations
	Maximality Quantification
	Filtration Method
	Intermediate Filtration
	Filtration in Each Column
	Filtration in Chosen Columns
	Optimal Placement
	Number of Filters

	Conclusion

	Distributed Filtration
	Motivations
	Distributing Precomputation
	Benefits
	Filtration Without Distribution
	Distribution Without Filters

	Possible Distributions
	Centralize
	Decentralize
	Hybrid

	The Chosen Architecture
	Compatibility with RTs Improvements
	Estimation of the Precomputation Time
	Precomputation Process
	Total Precomputation Time

	Optimal Configuration

	Experimental Set Up
	Computing Environments
	Filtration Implementation
	Parameters Choice
	Number of Columns
	Filters

	Results
	Conclusion

	Rainbow Tables on CPU
	Motivations
	Environments and Scenarios Considered
	Context
	Considered RTs Parameters
	Precomputation phase
	Attack phase

	Evaluation of the Maximum TMTO Size
	Methodology
	Precomputation Phase
	Memory Used
	Attack Phase
	Choice of Parameter t

	Results

	Discussion
	Noteworthy observations
	Take Away Observations
	Conclusion

	Descending Stepped Rainbow Tables
	Motivation
	DSRT Overview
	DSRT with One Step
	Precomputation phase
	Attack Phase

	DSRT with Steps

	Analysis of DSRTs
	Preliminaries
	Success Probability
	Precomputation Time
	Attack Time
	Probability of True Alarm
	Probability of False Alarm
	Probability of No Alarm
	Cost of Alarms
	Cost of No Alarm
	Total Time of a Search in a Given Column
	Average Attack Time

	Memory Used
	Rationale
	Analysis

	Experiments
	Availability
	Environment
	Success Probability
	Attack Time

	Evaluation
	Comparison Methodology
	Configurations
	Rainbow Tables
	DSRT

	Parameters
	Results
	Example Case

	Conclusion on Efficiency Comparison
	Coverage
	Attack Time
	Memory
	Memory Accesses

	Conclusion

	Ascending Stepped Rainbow Tables
	Motivations
	Overview
	Precomputation
	Generation
	Maximality

	Characterization
	Preliminaries
	Precomputation Time
	Success Probability
	Memory
	Attack Phase
	Attack Process
	Roadmap
	No Alarm
	True Alarm
	False Alarm
	Cost of the Search in One Column
	Average Attack Time

	Comparison
	Experimental Validation
	Success Probability
	Precomputation Time
	Memory Requirements
	Attack Phase

	Comparison Methodologies
	Precomputation Time
	Memory
	Success Probability and Attack Time

	Results
	Parameters
	Figures Interpretation
	ASRTs Versus RTs
	ASRTs Versus DSRTS
	Case 3: ASRTs more Efficient than DSRTs

	Discussion
	Comparison with RT
	ASRTs versus DSRTs
	Coverage
	Precomputation
	Attack

	Memory
	Memory Variation
	Access Memory

	Worst Attack Time

	Conclusion

	Conclusion
	Thesis Contributions
	Research Takeaways
	Precomputation
	A Whole Trade-Off

	Future Works
	TMTOs Bound
	Evaluation of TMTOs Across Varying Coverage
	Distributed Rainbow Tables on GPU/FPGA
	Investigating Real-World Attacks
	Other Variants
	Regular Fuzzy Tables
	Split Rainbow Tables
	Combined DASRT

	Appendices
	Attack Phase with 1 step
	Attack Phase with steps
	Configurations

	Bibliography

