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Summary / Résumé

PhD thesis summary

The environment influences not only the behavior and physiology of an organism, but can
also impact its descendents. In the nematode model C. elegans, perception of social cues (phero-
mones) elicits such intergenerational effects, notably increasing generation time of the progeny.
Here, I characterize the molecular changes in embryos caused by parental pheromone exposure
by profiling gene expression in single individuals.

To achieve this, I first developed a robust computational method that infers age from the trans-
criptome in diverse organisms and sample types, makes it possible to detect and correct for de-
velopmental bias in gene expression data, and allows us to bypass synchronization and staging
challenges for embryo collection. Then, I adapted experimental techniques used for sorting and
profiling single cells to single embryos in order to improve throughput, revealing great potential
for accessible and cost-efficient studies at large scale. Armed with these methods, I could then
profile genome-wide gene expression across embryo development in the progeny of pheromone-
exposed and control parents. I show that the developing nervous system and sensory organs are
influenced by parental neuronal perception of the environment, likely changing how progeny will
experience their own surroundings.

Résumé de la thèse

L’environnement n’influence pas seulement le comportement et la physiologie d’un
organisme, mais peut également avoir un impact sur sa descendance. Dans le nématode modèle
C. elegans, la perception de l’environnement social (phéromones) déclenche de tels effets inter-
générationnels, augmentant notamment le temps de génération de la progéniture. Dans mes tra-
vaux, je caractérise les changements moléculaires dans les embryons causés par l’exposition des
parents aux phéromones en profilant l’expression des gènes à l’échelle de l’individu.

Pour y parvenir, j’ai d’abord développé une méthode computationnelle robuste capable
d’estimer l’âge à partir du transcriptome dans divers organismes et types d’échantillons, qui per-
met de détecter et de corriger les biais liés au développement dans les données d’expression gé-
nique, et nous permet de contourner les défis de synchronisation et de stadification pour la col-
lecte des embryons. J’ai ensuite adapté des techniques expérimentales initialement utilisées pour
trier et profiler les cellules uniques (single-cell) aux embryons individuels pour permettre un haut
débit, révélant un important potentiel pour mener des études à grande échelle de manière acces-
sible et à moindre coût. Armé de ces méthodes, j’ai ensuite pu profiler l’expression des gènes à
l’échelle du génome tout au long du développement de l’embryon chez la progéniture de parents
exposés aux phéromones et de témoins. Je montre que l’expression génique du système nerveux
et des organes sensoriels est influencée au cours de leur développement par la perception neuro-
nale de l’environnement des parents, ce qui change certainement la manière dont la progéniture
percevra son propre environnement.
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Introduction

L’ensemble des caractères d’un individu, le phénotype, est parfois présenté comme la com-
binaison du génome et de l’environnement. Pourtant, même à environnement contrôlé et égal,
des populations isogéniques peuvent présenter de fortes différences dans des traits importants.
Par exemple, chez le nématode modèle C. elegans, la durée de vie d’individus génétiquement
identiques dans le même environnement peut varier du simple au triple (KIRKWOOD et al., 2005 ;
BANSAL et al., 2015).

De nombreuses études ont révélé que le vécu des générations précédentes est une source ma-
jeure de variation. Ces effets intergénérationnels peuvent impacter de nombreux phénotypes de la
descendance comme son métabolisme (GRANDJEAN et al., 2015), l’hérédité de pathologies (CHEN

et al., 2021), sa vitesse de développement (FRIDMANN-SIRKIS et al., 2014), voire sa durée de vie
(RECHAVI et al., 2014), et leur existence a été démontrée dans de nombreux modèles, dont des
mammifères (JABLONKA et al., 1992), et chez l’Homme (PEMBREY et al., 2006 ; PEMBREY et al., 2014).

Récemment, deux études ont démontré que la perception sensorielle des phéromones chez
C. elegans impacte leur progéniture (PEREZ et al., 2021 ; WASSON et al., 2021), ce qui implique une
transmission d’information du système nerveux vers la lignée germinale capable de changer des
caractères cruciaux chez la descendance, tels que le temps de génération. L’étendue des effets de
la perception parentale de phéromones sur la physiologie de la descendance n’est cependant pas
connue. De plus, bien que plusieurs mécanismes de transmission inter- et transgénérationnels
aient été découverts (PEREZ & LEHNER, 2019 ; FITZ-JAMES & CAVALLI, 2022), peu d’entre eux sont
pleinement compris, et la manière dont l’information perçue par les neurones est transmise à la
descendance reste inconnue.

L’objectif de ma thèse est donc de caractériser les changements moléculaires dans les em-
bryons causés par l’exposition des parents aux phéromones afin de mieux comprendre ce phé-
nomène. Pour cela, j’ai d’abord développé et adapté les outils expérimentaux et computationnels
nécessaires pour profiler l’expression génique d’individus uniques.

Chapitre 1 : Prédire l’âge à partir du transcriptome

Mon travail a commencé par le développement de RAPToR (Real Age Prediction by
Transcriptome staging on Reference), un outil pouvant estimer l’âge à partir du transcriptome qui
a fait l’objet d’une publication incluse dans le premier chapitre (BULTEAU & FRANCESCONI, 2022).
RAPToR est robuste, capable de stadifier précisément le développement et le vieillissement à partir
du profil d’expression génique de types d’échantillons biologiques variés (bulk, individus, tissus,
cellules uniques), fonctionne avec les organismes modèles les plus utilisés (nématode, drosophile,
zebrafish, souris) et chez l’Homme, peut estimer un âge tissu-spécifique à partir de données d’in-
dividu entier, et peut même stadifier des échantillons d’une espèce sur une référence d’une autre.
L’estimation d’âge ainsi obtenue peut être utilisée pour détecter l’effet de perturbations d’intérêt
ou variables expérimentales sur la vitesse de développement, et être utilisée comme covariable
dans un modèle pour améliorer la puissance statistique de détection de gènes différentiellement
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exprimés. De plus, il est possible de quantifier et de corriger l’effet d’une différence de dévelop-
pement entre deux groupes d’échantillons sur une analyse d’expression génique différentielle en
intégrant des données de référence, y compris lorsqu’il n’y a aucun chevauchement entre les âges
des deux groupes.

Mon premier chapitre rapporte également plusieurs améliorations et pistes de recherches ex-
plorées depuis la publication de l’outil. Je caractérise plus en profondeur l’impact de différences de
développement sur les analyses d’expression différentielles et simplifie la méthode de correction
initialement proposée. Ensuite, je propose une manière plus robuste de construire des références
pour stadifier le vieillissement, démontre que RAPToR peut en principe stadifier entre plusieurs
trajectoires de développement, et étends le champ d’applications possibles de l’outil concernant
les échantillons provenant de tissus dissociés.

Enfin, stadifier des individus post-profilage nous permet de contourner les défis de synchro-
nisation et de stadification qui entravent la collecte d’embryons en grand nombre.

Chapitre 2 : Vers le séquençage d’ARN d’individus uniques à grande échelle

L’engouement autour du single-cell (cellules uniques) a poussé les technologies de profilage
à un point tel que les faibles apports d’ARN et la collecte d’échantillons à large échelle ne sont
plus une barrière au RNA-seq (séquençage d’ARN à haut débit). Dans mon deuxième chapitre, je
montre l’intérêt de ces techniques pour profiler l’expression génique d’individus (uniques) entiers,
permettant ainsi l’étude des variations inter-individuelles à grande échelle et à faible coût avec un
moindre ajustement des protocoles existants.

En effet, je montre premièrement que des embryons de C. elegans peuvent être triés avec les
technologies de cytométrie de flux standard (FACS), permettant un haut débit d’échantillonnage.
Ensuite, je démontre qu’avec ces mêmes instruments, il est également possible de sélectionner
des embryons à des stades spécifiques à partir d’une population mixte en utilisant uniquement
des paramètres physiques et l’autofluorescence mesurés, sans avoir besoin de marqueurs fluo-
rescents. Enfin, j’ai adapté le protocole de RNA-seq Smart-seq3 (HAGEMANN-JENSEN et al., 2020)
pour établir le profil d’expression génique d’embryons uniques à haute complexité et faible coût,
permettant dans l’ensemble une mise à l’échelle rentable du profilage d’un individu unique.

Chapitre 3 : La perception des phéromones modifie l’expression génique
du système nerveux en développement dans la descendance

Grâce aux méthodes développées dans les chapitres précédents, j’ai pu profiler des embryons
uniques de C. elegans et étudier l’impact des signaux sociaux perçus par les neurones sensoriels
de la génération précédente sur l’expression des gènes au cours de l’embryogénèse. Ces données
révèlent qu’en plus de retarder la lignée germinale de la progéniture, l’exposition aux phéromones
parentales modifie probablement le développement de leur système nerveux, et en particulier de
leurs organes sensoriels. Nous émettons l’hypothèse que ces changements pourraient altérer la
perception et la réaction à l’environnement de la progéniture, influençant éventuellement les dé-
cisions importantes pour la survie du nématode, telles que l’entrée dans la voie de développement
alternative dauer.

Conclusion

Dans le but de caractériser les changements moléculaires dans l’embryon en développement
de C. elegans causés par l’exposition à la phéromone parentale, ma thèse s’intéresse à plusieurs
méthodes, de la collecte d’échantillons et préparation de banques pour le séquençage, à l’analyse
et l’intégration des données.
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La collecte et l’étude d’embryons uniques par FACS, le profilage d’individus entiers avec Smart-
Seq3 et l’inférence de l’âge à partir du transcriptome ont un potentiel allant au-delà de l’étude des
effets intergénérationnels de la phéromone et de C. elegans, et fournissent des solutions acces-
sibles pour étudier des individus uniques à haut débit. La grande partie de mes travaux dédiée au
développement de méthodes expérimentales et computationnelles est donc certainement perti-
nente pour les recherches futures dans ce domaine.
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In. Introduction

In.1 Same genetics, same environment, differences persist

" Under the most carefully controlled conditions, biological material does whatever it
damn well pleases. "

– Harvard Law of Biology

The apparent frustration expressed in this ’Harvard Law of Biology’ (INSALL, 2001; HALLGRIMS-
SON & HALL, 2011) reflects the ubiquitous nature of variation in biology. Indeed, despite the best
efforts of biologists, it persists even between individuals with identical genetics and environment,
and is often ignored (and cursed) as a hindrance to experiments. Enst Mayr says “variation is an
endless source of challenging questions” (HALLGRIMSSON & HALL, 2011), and we, as biologists,
seek to understand its origins.

In.1.1 Stochasticity in isogenic populations

Some aspects of biology are inherently noisy. Gene expression, for example, is a stochastic
process that is particularly variable when there are low copy numbers of a gene and of its regula-
tory elements (HARDO & BAKSHI, 2021), impacting crucial functions such as DNA repair in cells
(UPHOFF et al., 2016). Dividing cells also impart variable fractions of their cytoplasmic content
(RNAs, proteins, organelles) between daughters which causes heterogeneity between genetically
identical single-celled organisms, or between cells of a tissue (HUH & PAULSSON, 2011).

In multicellular organisms, although cell-to-cell variability is to an extent buffered (SMITH &
GRIMA, 2018), stochasticity can still drive differences between individuals. For example, random
variations of histone acetylation at specific genomic loci explain behavior differences between
isogenic zebrafish (ROMÁN et al., 2018).

Despite controlled environments, all kinds of traits (behavior, physiology, morphology, and life
history) can substantially vary between genetically identical individuals. Within an isogenic pop-
ulation of Caenorhabditis elegans nematodes in a lab culture, the longest-lived individual will live
3 times longer than short-lived worms (KIRKWOOD et al., 2005; BANSAL et al., 2015), and the time
worms spend in good health versus the declining “twilight” period during aging is also highly vari-
able (ZHANG et al., 2016). Furthermore, faced with the same stress, genetically identical C. elegans
worms respond to a different extent, and this variation comes with important consequences, as
higher-stress resistance was shown to be a trade-off with reproductive fitness (CASANUEVA et al.,
2012).

Stochasticity in isogenic populations has been proposed as a means to tackle fluctuating envi-
ronments by diversifying individual responses (THATTAI & VAN OUDENAARDEN, 2004; ACAR et al.,
2008; CASANUEVA et al., 2012). However, the origin of interindividual variation is rarely attributed
to purely random effects (ROMÁN et al., 2018) and growing evidence implicates previous genera-
tions and their experiences as major sources of variation.

In.1.2 Influence of the previous generation and its environment

Daphnia water fleas are famous for developing defensive ‘helmet’ structures in the presence
of predators (Fig. In.1a, AGRAWAL et al., 1999). This plasticity is not restrained to the perturbed
generation, however, and the progeny of Daphnia exposed to predators are also born with larger
defensive structures, and develop faster than controls (AGRAWAL et al., 1999; WALSH et al., 2015).
Therefore, two clones living in identical environments can have very different morphologies and
reach reproductive maturity at different times because of the environment experienced by their
parents.

Evidence for such intergenerational effects – or transgenerational effects, when they persist
for multiple generations – has been found with diverse triggers (e.g. environmental cues, stresses,
age), and in many organisms (JABLONKA et al., 1992), including humans (PEMBREY et al., 2006;
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a b

c

Figure In.1 – Examples of plasticity and transgenerational effects in several species
a, Daphnia cucullata water flea clones have distinct morphologies due to predator presence inducing the
development of defensive ’helmet’ structures (left). Electron micrograph from Fig. 2 of AGRAWAL et al., 1999.
b, Egg sterilization (bacterial depletion in P0) delays the development of F2 progeny into pupae in several
strains of Drosophila melanogaster flies. Curves show the fraction of progeny that reached pupation in days
post-hatching. Panel adapted from Fig. 1d of FRIDMANN-SIRKIS et al., 2014.
c, Heat stress alters gene expression in adult Caenorhabditis elegans nematodes for close to 15 generations,
as evidenced by fluorescence of an integrated multi-copy mCherry transgene reporter. Scale bar (left im-
ages) is 0.1mm. Significance of the difference in fluorescence intensity (right) tested with a Wilcoxon test.
False-discovery rates (FDR) q-values: ****: q < 0.0001 ; ***: q < 0.001 ; ns: q > 0.05. Panel from Fig. 1a of
KLOSIN et al., 2017.
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PEMBREY et al., 2014). Several inheritance mechanisms have been found for these effects, with
some still poorly understood. I give a few examples below to illustrate this diversity, but see PEREZ

& LEHNER, 2019; FITZ-JAMES & CAVALLI, 2022; BURTON & GREER, 2022 for excellent reviews on the
subject.

In mice, parental diet has been shown to influence the physiology and metabolism of progeny.
Specifically, paternal obesity and metabolic disorders like type II diabetes caused by high sugar
and fat diets are inherited through small RNAs in sperm (GRANDJEAN et al., 2015), while precon-
ception fasting of fathers decreases glucose levels in progeny by an unknown mechanism (ANDER-
SON et al., 2006). Furthermore, mice can also inherit obesity maternally through DNA methylation
altering the expression of a long non-coding RNA in progeny (CHEN et al., 2021), thus showing that
similar intergenerational effects can be mediated by distinct mechanisms within a species.

Antibiotic treatments in Drosophila flies can alter the composition of commensal gut bac-
teria, which leads to a developmental delay in the progeny that is transgenerationally inherited
(Fig. In.1b, FRIDMANN-SIRKIS et al., 2014). Furthermore, body mass and reproductive success of
progeny can be similarly altered transgenerationally through gut microbial transfer (MORIMOTO

et al., 2017), altogether implicating the microbiome as a vector for cross-generation effects on im-
portant fitness traits.

Several studies document transgenerational inheritance of small RNAs in C. elegans, with ef-
fects such as learned avoidance of pathogenic bacteria (MOORE et al., 2019; KALETSKY et al., 2020),
altered sexual attractiveness (TOKER et al., 2022), or lifespan extension (RECHAVI et al., 2014). Gene
silencing induced by RNA interference (RNAi), can also be inherited for three or more genera-
tions through a similar mechanism (ALCAZAR et al., 2008; VASTENHOUW et al., 2006). However,
other transgenerational inheritance mechanisms also operate in C. elegans. For instance, heat
stress can alter gene expression transgenerationally for over 10 generations through altered his-
tone methylation that is transmitted through both sperm and oocytes (Fig. In.1c, KLOSIN et al.,
2017). Heavy metal exposure also confers increased resistance to progeny to similar stresses for
several generations, likely through histone modifications, in an example of potentially adaptive
transgenerational inheritance (KISHIMOTO et al., 2017).

Lastly, intergenerational effects are also plenty in the worm, implicating for example parental
diet or age. TAUFFENBERGER & PARKER, 2014 show that a high-glucose diet impairs stress resis-
tance and fecundity in progeny (likely through histone methylation, although the mechanism is
unclear), while PEREZ et al., 2017 demonstrate that loading of vitellogenin (egg yolk) to embryos
increases with maternal age, resulting in progeny born from older mothers being more resistant
to starvation and developing faster.

Thanks to its extensive phenotypic plasticity in controlled isogenic populations and increas-
ingly well-documented inheritance mechanisms, C. elegans has emerged as the star model
amongst lab animals to study inter- and transgenerational effects (BAUGH & DAY, 2020). The
present work too relies on the nematode, further described in the following section.
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In.2 “The worm”

At first glance through the microscope, one could doubt what a small free-living nematode
like Caenorhabditis elegans could bring to this discussion. Yet, since Sydney Brenner introduced
it as a model for genetic studies some 50 years ago, the worm has rapidly spread to labs around
the world, became the first multicellular organism to have its genome sequenced (SEQUENCING

CONSORTIUM, 1998), and has been the vector for landmark discoveries in diverse fields including
neurology, aging, or uncovering the role of small RNAs, notably RNAi.

In recent years, C. elegans has been instrumental to the study of inter- and trans-generational
effects thanks to its short generation time, ease of genetic analysis and handling, and deep pool of
accumulated knowledge. Here, I describe the general life cycle(s) and anatomy of the worm with
a slight focus on the sensory organs.

In.2.1 Life cycles

In nature, C. elegans are typically found feeding on bacteria growing in rotting fruit and veg-
etal matter of compost heaps (FRÉZAL & FÉLIX, 2015), from which the original Bristol “N2” wild-
type1 strain used by labs around the world was isolated by BRENNER, 1974. They are self-fertilizing
(selfing) hermaphrodites making both sperm and eggs required for their offspring, meaning popu-
lations tend to become homozygous and are essentially isogenic. A small fraction of males (<0.2%)
also spontaneously occurs by losing one of the two X chromosomes through chromosomal nondis-
junction, making it possible to cross strains by mating with hermaphrodites.

In around 65 hours at 20°C, a fertilized egg will develop, hatch and grow through four suc-
cessive larval stages (L1-L4) to become a 1 mm long egg-laying adult (Fig. In.2) that is capable of
birthing around 300 genetically identical offspring on its own over several days.

If a larva of the first stage (L1) encounters poor conditions (high temperatures, low food, over-
crowding), it can enter an alternate developmental path leading to a diapause stage capable of
enduring extremely harsh conditions. The dauer larva (German, “enduring” larva) is highly resis-
tant to heat, desiccation, and starvation, capable of roaming for months without food (GOLDEN &
RIDDLE, 1984). When a favorable environment is found, the worm resumes normal development
by molting into the final (L4) larval stage (Fig. In.2).

L1 (14h)

Dauer

(via L2d)

+13h

+ up to 
4 months

+14h

+8.5h Hatching
(840 min)

L2 (28h)

L3 (36.5h)

L4 (45.5h)

Adult (58h)

First cleavage
(40 min)

In utero

Egg-laid
(150 min)

Comma (430 min)

2-fold (500 min)

3-fold (550 min)

Ex-utero embryo
development

+9h

+12.5h

+9h
Egg-laying (67h)

Figure In.2 – Overview of the C. elegans reproductive cycle
Adapted from (ALTUN et al., 2006), timings in hours/minutes post-fertilization at 20°C.

1though “wild-type” is debatable given the extent of lab domestication in C. elegans, see STERKEN et al., 2015; WEBER

et al., 2010.
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In.2.2 General anatomy

The anatomy of C. elegans is characterized by remarkable simplicity and determinism, with
just 959 somatic cells in adult hermaphrodites, that arise from stereotyped cell divisions during
development (SULSTON et al., 1983). Despite this limited cell count, the nematode has defined
tissues and organs including epithelial, muscular, and digestive systems, as well as a complex ner-
vous circuit, arranged in bilateral symmetry within its long tapered cylindrical body (Fig. In.3a).

Pharynx

Mouth

Intestine

Gonad

Proximal tip

Distal tip

Vulva

Spermatheca

Anus

Fertilized egg
100µm

a b

Figure In.3 – C. elegans anatomy and movement
a, General anatomy of C. elegans, adapted from (ALTUN et al., 2006).
b, Sinusoidal movement of the worm. Image from (LIKITLERSUANG et al., 2012)

In the lab, our nematode generally feeds on Escerichia coli (OP50), pumping and grinding the
bacteria with its pharynx. Material then flows through its multi-functional intestine, that not only
digests and absorbs nutrients but also synthesizes and stores lipids, before waste is discharged at
the posterior end through the anus.

The skin (hypodermis) of C. elegans secretes a strong and flexible armor, the cuticle, mainly
composed of collagens and a lipid-rich external membrane (CHISHOLM & XU, 2012), that is shed
between each larval stage and before adulthood to allow growth. Beneath the hypodermis, the
worm’s body is lined with muscles enabling it to move through solid or liquid environments by
sinusoidal undulations (Fig. In.3b).

The hermaphrodite reproductive system consists of two symmetric gonadal arms arranged in
a U-shape that connect to a central uterus at their proximal end (Fig. In.3a). Meiosis occurs along
the distal to proximal axis of the gonad, first producing a limited amount of sperm during the
fourth larval stage (approx. 150 per gonad), then switching permanently to oogenesis after the
final adult molt. Sperm is stored in the spermatheca at the proximal end of the gonad through
which the oocytes pass and are fertilized before reaching the uterus. Fertilized eggs then remain
in the uterus for a couple hours before being laid outside through the vulva, and finish embryoge-
nesis ex-utero. The brood size of selfing hermaphrodites is limited by the initial amount of sperm
produced, but mating with a male can increase the number of progeny up to 1400 (HIRSH et al.,
1976).

In.2.3 Nervous system

In.2.3.1 Overview

The nervous system of an adult C. elegans hermaphrodite accounts for nearly a third of the so-
matic cell count of the animal, with 302 neurons. Most neuron cell bodies are grouped within the
head ganglia (anterior, lateral, ventral, dorsal, and retrovesicular), with many nerve processes bun-
dled in a loop around the pharynx, termed the “nerve ring”, that has the highest synapse density
within the body (Fig. In.4). Other notable groupings of neuron cell bodies and processes include
the ventral nerve cord, and the tail ganglia (preanal, dorsorectal, and lumbar, Fig. In.4). The mor-
phology of C. elegans neurons is nearly exclusively mono- or bi-polar and non-branching, with
highly conserved shapes, positions, and to an extent connections, across individuals (WHITE et
al., 1986; WITVLIET et al., 2021; BRITTIN et al., 2021; COOK et al., 2023).

As for most neuron-endowed creatures, connections are ensured by synapses that are electri-
cal (gap junctions) or chemical, with the latter accounting for around 90% of the nervous system
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Anterior g.

Nerve ring

Amphid, labial, 
& other sensory 

processes

Dorsal g.

Dorsal nerve cord

Lateral g. (left)

Lumbar g.
(left)

Preanal g.

Dorsorectal g.

Ventral g.

Retrovesicular g.

Ventral nerve cord

Figure In.4 – Main elements of the C. elegans nervous system
Cartoon depicting the main neuron ganglia (g.) and nerve processes of C. elegans. Lateral and lumbar
ganglia have equivalents bilaterally symmetrical equivalents on the right side. Ganglia (and a few individual
neurons) are depicted in red, while nerve processes and bundles are in yellow.

connectivity (comparatively over 99% in mammals GREENGARD, 2001) and being the best under-
stood due to comparatively easier annotation.

Neuron classes are further grouped into 4 functional categories: sensory neurons, motor neu-
rons, interneurons, or polymodal neurons (when performing more than one of the previous func-
tions). Motor neurons are characterized by a synaptic output to muscle cells, while interneurons
have both input and output synaptic connections to other neurons.

In.2.3.2 Sensory organs

C. elegans mainly senses its surroundings through 24 sensory neuron classes grouped in 7 sen-
silla : amphids (Am), phasmids (PH), inner and outer labials (IL, OL), anterior and posterior deirids
(ADE, PDE), and cephalic sensilla (CEP). Each sensillum is composed of its respective sensory neu-
rons, a sheath cell (sh) and one or more socket cells (so) that wrap around the sensory neuron
processes and form a ring-like structure at their distal tip respectively. Aside from phasmids and
posterior deirids, all sensilla are in the head of the worm.

ASE
ASG
ASH
ASI
ASJ
ASK
ADF

a b c d

e f g

Chemo
sensors

Bi-ciliated

AWB
AWC

AWA
Odor
sensors

AFD Thermo
sensor

ADL

Figure In.5 – Structure of amphid sensory neurons
a, 3D reconstruction of amphid sensory neuron classes (neurons from the right amphid are show here).
b-g, Structure of individual neurons. Chemosensors are mono-ciliated (b) and bi-ciliated neurons (c), while
thermosensor AFD (d) and volatile odor sensors AWA (e), AWB (f), and AWC (g) have more complex struc-
tures.
Scale bar in all images is 100nm, adapted from DOROQUEZ et al., 2014.

Amphids are the principal chemosensory organs of the worm, with 12 sensory neurons (Fig. In.5).
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Of these, ASE, ASG, ASH, ASI, ASJ, and ASK have simple mono-ciliated and ADF, ADL, bi-ciliated
endings (Fig. In.5b,c). These neurons mainly detect soluble ligands (BARGMANN, 2006), includ-
ing ascaroside pheromones secreted by the worms (“dauer pheromones” and others, LUDEWIG &
SCHROEDER, 2018, see below). ASI in particular is required for inhibition of dauer entry
(BARGMANN & HORVITZ, 1991) and is the only source of DAF-7/TGF-β in normal conditions (REN

et al., 1996). The “wing” cells AWA, AWB, and AWC have more complex branching cilia (Fig. In.5e-
g), and primarily capture volatile ligands. AFD is thermosensory (GOODMAN & SENGUPTA, 2019),
and also required for dauer-entry inhibition (BARGMANN & HORVITZ, 1991).

Phasmids are akin to smaller amphids, with just two chemosensory neuron classes (PHA, PHB)
and a mechanosensor neuron (PQR) (ALTUN & HALL, 2003).

Labial (both inner and outer), deirid (both anterior and posterior) and cephalic neurons are
mainly mechanosensory and involved in head withdrawal responses to touch, but some also likely
function as interneurons, and IL2 is suggested to be chemosensory (PERKINS et al., 1986; ALTUN &
HALL, 2003).

Beyond the sensilla, several neurons also perform sensory functions, notably perception of
oxygen and touch.

To summarize, C. elegans has an exceptionally well-characterized nervous system in which
behaviors, sensory and mechanical functions can be attributed to specific neurons, a knowledge
made possible by the worm’s suitability for the lab, including largely stereotyped cell positions and
shapes, and powerful genetic tools.
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In.3 Sensory perception of the environment changes progeny pheno-
types

Several examples cited above show that environmental conditions experienced by parents can
impact the progeny of C. elegans across several generations (SCHOTT et al., 2014; RECHAVI et al.,
2014; KLOSIN et al., 2017; KALETSKY et al., 2020). However, this is often caused by a stress which
directly affects the germline, such as a heat stress (KLOSIN et al., 2017), or by communication from
the adjacent intestine through the canonical RNA interference pathway, for example after ingest-
ing bacterial RNA (KALETSKY et al., 2020).

Two recent findings, however, show more provoking phenomena with sensory perception of
social cues (pheromones) as the trigger, implicating a neuron to germline transfer of information
that alters progeny phenotypes (PEREZ et al., 2021a; WASSON et al., 2021).

In.3.1 Neuron-germline communication

Communication from sensory inputs (neurons) to the germline is not a novel phenomenon
when considered within the same generation. In C. elegans, it has been demonstrated that TGF-
β produced in ASI neurons when sensing favorable environments (low population density, and
abundant food) regulates germline proliferation through a pathway distinct from dauer entry
(DALFÓ et al., 2012).

Olfactory imprinting, whereby worms behave differently upon sensing a previously-encoun-
tered chemical, has been shown to last several generations in proportion to exposure over mul-
tiple generations (REMY, 2010). The perception of these chemicals requires the AWC chemosen-
sory neurons, and imprinting requires the downstream AIY interneurons (REMY & HOBERT, 2005).
This suggests that an acquired sensory-dependent behavior can be inherited and implies neuron-
germline transfer of information. The mechanism through which imprinting is inherited, and
whether these neurons are actually required for the transgenerational effect is however not known.

DEVANAPALLY et al., 2015 have shown that exogenous double-stranded RNA made in the neu-
rons can be transferred to the germline, and cause transgenerational gene silencing by RNAi. Fur-
thermore, endogenous small-interfering RNAs (endo-siRNAs, a form of RNAi) have been impli-
cated in neuron regulatory function within the same generation, in the context of behavioral adap-
tations to olfactory signals (JUANG et al., 2013). However, although transfer of endogenous small
RNAs from neurons to the germline has been suggested (POSNER et al., 2019), to date, there is no
direct evidence of this.

Of note, although this work focuses on C. elegans, neuron-germline transmission of informa-
tion also occurs in mammals and can generate transgenerational effects. In mice, an odor-con-
ditioned fear response can be paternally transmitted, modifying the behavior of grandsons and
reducing DNA methylation at a gene encoding an olfactory receptor specific to the odor (DIAS &
RESSLER, 2014). How the nervous system could induce such a change in sperm is not known.

To summarize, neuron to germline communication has been shown in C. elegans, with sev-
eral sources suggesting neuronal information can also be transmitted to progeny. Mechanisms
for information transfer to the germline and inheritance possibly implicate small RNAs, but are
currently unclear.

In.3.2 Parental exposure to pheromone changes progeny phenotypes

In.3.2.1 Pheromone effect within the same generation

C. elegans releases hundreds of small chemicals into their environment, the best-studied and
most abundant being ascarosides, first discovered by GOLDEN & RIDDLE, 1982 as the “dauer-
inducing pheromone” conveying population density information. Ascarosides are widely-con-
served signaling chemicals in nematodes (CHOE et al., 2012) that elicit diverse behavioral and
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physiological response in C. elegans upon perception. Depending on the blend, pheromone can
affect attraction, aggregation, and repulsion behaviors (SRINIVASAN et al., 2008; SRINIVASAN et al.,
2012; MACOSKO et al., 2009; CHUTE et al., 2019), as well as developmental speed of larva (LUDEWIG

et al., 2019), metabolism (HUSSEY et al., 2017), germline function (DALFÓ et al., 2012; MCKNIGHT

et al., 2014), and even lifespan (LUDEWIG et al., 2013; MAURES et al., 2014).

Although very much unexplored, there is also evidence for the existence of non-ascaroside
secreted molecules with physiological significance (ARTYUKHIN et al., 2018). For example, mutants
defective in ascaroside production still communicate larval density (ARTYUKHIN et al., 2013).

Despite its numerous effects on worm behavior and physiology in the same generation,
pheromone perception was only recently implicated in intergenerational effects (PEREZ et al.,
2021a; WASSON et al., 2021).

In.3.2.2 Non-dauer pheromone perception alters maternal provisioning of translational ma-
chinery

WASSON et al., 2021 demonstrate that perception of pheromone by hermaphrodites promotes
provisioning of translational machinery to the embryos and reduces stress resistance. They show
that ascaroside pheromones distinct from the dauer-inducing cocktail cause the phenotype, and
that ASI neurons and the FMRFamide-like peptide flp-21 are required in parents for inheritance.
Whether ASI is implicated in perception is unknown, but several genes implicated in its neuropep-
tide signaling pathways are required, namely egl-3, and kpl-1, unc-13, and unc-31.

Maternal mRNA contribution is proposed as the main inheritance mechanism for these ef-
fects, as transcripts found in early embryos (prior to the onset of zygotic transcription) substan-
tially differed between flp-21 mutants and wild-type. However, how flp-21 mediates these changes
is not known, and only chromatin modifications were (partially) ruled out as a means of intergen-
erational communication (WASSON et al., 2021).

WASSON et al., 2021 suggest this intergenerational effect could be adaptive, as although high
concentrations of dauer pheromone generally signal poor environmental conditions, the total ab-
sence of different secretions could also indicate that the environment is severely detrimental to
the worms (e.g. toxin, pathogen, zero-food). Therefore, preparing progeny by cutting down on
energy-intensive processes (translation) and increasing stress responses could be beneficial.

In.3.2.3 Dauer pheromone exposure controls the generation time in the progeny

Pheromone perception can also regulate a crucial fitness trait in the progeny of C. elegans: gen-
eration time. PEREZ et al., 2021a show that the time between the final (L4 to adult) molt and the
appearance of the first embryo (∆ soma-germline), can increase by up to 2 hours in worms whose
parents sensed pheromone. This germline delay in the progeny is already visible at primordial
germ cell division in early L1 stage, and can be induced in a dose-responsive manner with crude
pheromone extract (filtered liquid culture medium) and a synthetic blend of two major dauer-
inducing ascarosides (ascr#2, and ascr#3, see BUTCHER et al., 2007). Parents lacking chemosen-
sory neuron ion channels TAX-2 and TAX-4 implicated in their downstream signal transduction do
not induce the progeny phenotype, as well as genetic ablation strains for ASI, ASJ, ASK, or AWC,
showing that sensory perception and/or processing by these neurons is required.

DAF-7/TGF-β is required in parents, further implicating ASI neurons. The principal down-
stream effector, DAF-3/co-SMAD, which antagonizes TGF-β, as well as another downstream nu-
clear hormone receptor DAF-12/NHR are however dispensable in parents but required in the
progeny, thus implicating the TGF-β signaling pathway for both signal transmission in the par-
ents and interpretation in the progeny. The fact that neither DAF-3/co-SMAD, DAF-12/NHR, or
DAF-9 (a cytochrome P450 enzyme required to catalyze dafachronic acid, a DAF-12/NHR ligand)
are required in the parents suggests DAF-7/TGF-β acts through a non-canonical axis to control
progeny germline delay.
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Of note, although insulin signaling has previously been implicated in intergenerational signal-
ing (HIBSHMAN et al., 2016; JORDAN et al., 2019), PEREZ et al., 2021a exclude its role in the germline
delay phenotype as null mutants of daf-16, transcription factor and downstream effector of the in-
sulin pathway, are still responsive. Signaling from neuron to germline also appears distinct from
the flp-21-dependent axis discussed above (WASSON et al., 2021), does not require inheritance
machinery of RNAi which relies on HRDE-1 (BUCKLEY et al., 2012), nor dsRNA-selective importer
SID-1 required for RNA transport from neuron to germline (DEVANAPALLY et al., 2015), as null mu-
tants for these components still exhibit the intergenerational effect (Fig. In.6).
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Figure In.6 – Parental control of soma-germline delay does not depend on flp-21, hrde-1, or sid-1
a, Scoring L4-adult molt (blue) and appearance of first embryo (red) for worms as soma and germline de-
velopmental transitions respectively. T50 (timing at which 50% of the population has passed the transition)
is then used to compute ∆ soma-germline.
b-d, Germline delay is induced by parental exposure to pheromone in flp-21 (b), hrde-1 (c), and sid-1 (d)
null mutants.
Data from (PEREZ et al., 2021b), experimental procedures as described in PEREZ et al., 2021a.

In.3.3 Open questions

What other changes occur in the progeny of pheromone-exposed individuals? Germline
delay is not the only effect that parental perception of pheromone causes in the progeny. For
instance, PEREZ et al., 2021a also report that the progeny of pheromone-exposed worms spend
longer in the L1 stage, and it is likely that there are others. However, to what extent the physiology
of the progeny is altered remains to be discovered and characterized. Given odor-learned fear
response transgenerationally alters sensory organs specific to the odor in mice (DIAS & RESSLER,
2014), it would be interesting to find a similar feedback loop to amphids in this system.

What is(are) the transmitted signal(s)? Although several inheritance mechanisms have been
ruled out (RNAi inheritance, direct RNA transport, chromatin modifiers, insulin/insulin-like path-
way), the signal transmitted to progeny is currently unknown. Maternal provisioning of mRNA to
the oocyte is a prime suspect, through a mechanism distinct from the flp-21-mediated response
reported by WASSON et al., 2021. However, it is not excluded for different or complementary signals
to exist, especially since crude pheromone extract contains many potentially physiologically rele-
vant chemicals released by the worms that may act independently or in tandem with the ascaro-
sides responsible for germline delay. For example, germline delay in progeny was initially imputed
to maternal age because older mothers live in an environment with accumulated pheromone from
their own secretions (PEREZ et al., 2017; PEREZ et al., 2021a).

The corollary question, namely how is this signal is interpreted by the progeny to generate the
observed (and yet to be discovered) phenotypes is only partially resolved for the germline delay,
implicating the TGF-β pathway with DAF-7/TGF-β in the parents, and DAF-3/co-SMAD, DAF-
12/NHR in the progeny.
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Is this intergenerational inheritance adaptive ? While effects such as pathogen avoidance,
or stress resistance can be viewed as priming the next generation for their environment, delay-
ing germline development is more puzzling. Organisms with rapid life cycles like C. elegans are
critically dependent on their minimum generation time for fitness, more so than brood size, to
colonize their environments (HODGKIN & BARNES, 1991). This would suggest germline delay is
a maladaptive response. However, experiments up to date surveyed the progeny of pheromone-
exposed parents in favorable environments, which may instead disadvantage worms primed for
adverse conditions. This remains to be investigated.
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In.4 Objectives of the thesis

As detailed in the introductory sections above, sensory perception of pheromone by C. ele-
gans adults regulates crucial fitness traits of progeny, such as generation time. However, little is
known about the changes that occur in the progeny because of parental exposure to pheromone,
as well as what signals transmit parental sensory information to the next generation. The aim of
my thesis is to characterize the molecular changes in the developing C. elegans embryo caused
by parental pheromone exposure to better understand this phenomenon. To achieve this, I de-
vised an efficient strategy to profile gene expression of single embryos across embryogenesis from
pheromone-exposed or control parents, which involved adapting single-cell-specific experimen-
tal methods to single embryos and developing a novel computational method.

This method, which I named RAPToR, can precisely infer age from gene expression, an ability
instrumental to this project for several reasons. Manual staging under a microscope can be impre-
cise and tedious, particularly when collecting large numbers of samples. Furthermore, imperfect
synchronization of embryos and interindividual variation in developmental speed could hinder a
sample collection strategy targeting specific time points. Estimating age post-profiling with RAP-
ToR therefore lifted these constraints, allowing us to collect many embryos of all developmental
stages at once from a single population, and exploit heterogeneity in developmental stages. We
found RAPToR to be extremely robust and expanded its scope to include most common model
organisms and stage aging, which are the subject of my first chapter.

Experimentally, I adapted single-cell technologies for large-scale collection and profiling of
single embryos. I demonstrate in the second chapter that high-throughput RNA-sequencing of
C. elegans single embryos can be achieved with minimal adjustments to existing protocols devel-
oped for single-cell. I show that single live wild-type embryos can be sorted with standard FACS,
and that embryos of any stage can be staged and collected from physical parameters and autoflu-
orescence measured by the FACS without requiring fluorescent markers. Furthermore, I adapt the
Smart-seq3 RNA-seq library preparation protocol to profile the transcriptome of single embryos at
high complexity for a fraction of the cost of previous protocols, altogether enabling cost-effective
scaling up of single-individual profiling.

Lastly, I rely on these methods to collect and analyze preliminary data, and start investigating
the changes induced by parental pheromone exposure in my third chapter. With gene expression
profiling of single-individuals spanning all of embryogenesis, I reveal large-scale changes affecting
the developing nervous system of embryos, particularly implicating sensory organs. In light of
these expression changes, I discuss potential phenotypes and their implications for the worms, as
well as further experiments to confirm these findings.

Each of the three chapters of my thesis can be approached independently, with separate dis-
cussions on their respective subjects, before a brief global discussion on my work concludes my
manuscript.
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1. Predicting age from the transcriptome

Foreword

The first (and largest) part of my thesis was dedicated to developing RAPToR, a bioinformatic
tool capable of Real Age Prediction by Transcriptome staging on Reference1.

Initially envisioned specifically for C. elegans – where hidden developmental variation in ex-
pression studies is widespread – RAPToR proved much more flexible and robust than we expected
(and was thus promptly renamed from ’wormAge’). This expansion to various other species (e.g.,
flies, mice, humans) and sample types (e.g. dissected tissues, single cells) led to more substantial
findings and a very broad scope of applications. As a result, my supervisor Mirko Francesconi and
I were able to publish RAPToR in an excellent methods journal (BULTEAU & FRANCESCONI, 2022).

Alongside the publication of the main article, we contributed to a small briefing on our re-
search, which I include below as a good introduction to this chapter and overview of our main
findings.

Since publication, RAPToR has gone through updates, improvements, and further research
described in section 1.2, followed by a general discussion.

1.1 Real age prediction from the transcriptome with RAPToR

1.1.1 Research briefing

MIRKO FRANCESCONI and ROMAIN BULTEAU (2022). “Inferring biological age from
the transcriptome with RAPToR”. in: Nature Methods 19.8, pp. 936–937. ISSN: 1548-
7105. DOI: 10.1038/s41592-022-01542-y

1days of brainstorming.
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Research briefing

Inferring 
biological age 
from the 
transcriptome 
with RAPToR

RAPToR (real age prediction from 
transcriptome staging on 
reference) is a new, broadly 
applicable method that can 
precisely estimate the age of a 
sample from a reference 
transcriptome time series.

The problem
Genome-wide gene expression profiling 
is a powerful tool that provides a rich and 
systematic characterization of biological 
systems. However, its potential has been 
limited by the presence of hidden and 
uncontrolled factors that can obscure and 
confound the effects of variables of interest. 
One such confounding factor, especially 
when profiling fast-developing systems 
(such as worm or fly embryos and larvae), 
is often unintended variation in age across 
samples and experimental conditions. For 
example, when comparing gene expression 
in mutant and wild-type animals, we are 
interested in understanding the specific 
effect of the mutation on gene expression. 
However, if the mutant animal develops 
more slowly than the wild-type and one 
does not account for this difference (Fig. 1a) 
— which can be difficult or impossible — the 
observed expression changes can be domi-
nated by non-mutation-specific changes 
normally observed during development 
(Fig. 1b). It is surprising how many datasets 
are affected by this problem, leading to 
wrong conclusions1.

The solution
The expression of genes changes during 
development and aging; thus, it should be 
possible to estimate age from gene expres-
sion. Many methods have been developed 
to place single-cell transcriptomes along 
developmental trajectories2. However, these 
methods require many samples to infer a suf-
ficiently accurate trajectory and do not pro-
vide an absolute age estimate, but only rank-
ings or arbitrary values called ‘pseudo-time’, 
which are not easily comparable across 
genetic backgrounds, environmental condi-
tions or experiments. To solve this problem, 
we reasoned that we could leverage the 
wealth of time-series gene expression data 
already available for many organisms as a 
reference. First, we fill the gaps between the 
reference time points by interpolating the 
data, thereby overcoming the limitations 
of sparsely sampled datasets. Then, each 
expression profile of interest is indepen-
dently compared to every time point of the 
interpolated reference, and the time point 
with the highest genome-wide correlation 
is determined as the age estimate. This 
method yields an absolute biological age 
estimate for samples across conditions and 
experiments, provided they are staged using 
the same interpolated reference.

This simple method, which we  
named RAPToR (real age prediction  
from transcriptome staging on reference) 
is precise (up to minutes for Caenorhabditis 

elegans larval development) and  
flexible: it works for pooled or single  
whole animals, dissected tissues and 
single-cell data; it works for the most  
common animal models and humans;  
and it even works for non-model organisms  
that lack reference data, by using closely 
related species as reference. When gene  
expression tissue specificity is known, 
RAPToR can provide tissue-specific age 
estimates from whole-animal data. Moreo-
ver, it works for both development and 
aging. When chronological age is known, 
its comparison with RAPToR age estimates 
can precisely quantify the effect of genetic 
or environmental perturbations on the 
speed of development or aging. Integrating 
RAPToR age estimates and reference data 
when performing a differential expression 
analysis enables the recovery of the spe-
cific effect of these perturbations on gene 
expression even when confounded by age. 
Thus, data suspected to be confounded by 
the effects of development or aging can be 
reanalyzed with RAPToR for validation  
(or rejection).

Future directions
RAPToR will be useful for large-scale gene 
expression profiling of single individuals, 
because it eliminates the need for accurate 
manual staging (which can be difficult 
and is usually limited to easily distinguish-
able stages) or synchronization (which is 
not always possible or effective with large 
inter-individual variations). RAPToR also 
has the potential to accelerate research into 
aging, as it can precisely quantify the effects 
of treatments on aging well before the onset 
of mortality (Fig. 1c).

RAPToR needs existing time-series gene 
expression data as a reference, which 
sometimes might be outdated and of poor 
quality compared with recently produced 
data. Although RAPToR is robust even when 
using sparse microarray data as a reference 
(Fig. 1d), this reliance on datasets could be a 
limitation. However, the amount and quality 
of expression data will only increase in the 
future.

RAPToR is theoretically applicable to 
any process with robust gene expression 
dynamics; thus, we plan to test it on disease 
progression in cancer or neurodegenerative 
diseases, although the heterogeneous na-
ture of disease progression (compared with 
development, for example) might compli-
cate the process.

Mirko Francesconi & Romain Bulteau
Laboratoire de Biologie et Modélisation 
de la Cellule, École Normale Supérieure de 
Lyon, Lyon, France.

This is a summary of: 
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diction from the transcriptome with RAPToR. 
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Fig. 1 | Inferring physiological age with RAPToR. a, Groups of individuals sampled at identical 
chronological times can differ in physiological age if a condition affects developmental or aging speed.  
b, Although A and B have the same gene expression dynamic along development, samples presumed to be 
at the same age have different gene expression, as condition B delays development. c, Chronological and 
estimated age in aging Drosophila melanogaster, showing the effect of caloric restriction compared with 
food available ad libitum (ad lib.) on lifespan. d, Morphological staging (from somite number) of Mus 
musculus embryos and RAPToR age estimates using a very sparse reference dataset. R², linear model fit; ρ, 
Spearman correlation. © 2022, Bulteau, R. & Francesconi, M.

Expert opinion

“
These results show how 
developmental variation 
discovered by RAPToR can 

be exploited to increase power, to detect 
differential expression and to untangle  
the signal of perturbations of interest  

even when it is completely confounded  
with development. This method is very  
useful for predicting the precise 
developmental stage from the transcriptome, 
and it will have a significant impact in  
the field.” An anonymous reviewer.

Behind the paper

We have been aware of how 
difficult it can be to control for 
development and how big of an 
effect this confounder can have since 
M.F. analyzed a large C. elegans 
expression dataset in which half the 
variance originated from unintended 
age differences3. The size of the 
dataset enabled the use of a strategy 
that unfortunately is not viable for 
experiments with a smaller sample 
size, such as the typical ‘3 wild-types 

and 3 mutants’. Thus, we aimed to 
solve this problem, initially by trying 
to combine reference and sample 
data using complex methods, with 
little success. In the end, we tried 
simple correlations with a reference 
dataset interpolated for missing data 
points. The results went far beyond 
our expectations, as RAPToR is robust 
and flexible in various organisms and 
profiling data types, showing that 
often ‘the simpler, the better’. R.B.

From the editor

“
Bulteau and Francesconi 
have mined the richness of 
transcriptomic data to develop a 

powerful strategy for determining the precise 
age of animals used in biological studies. 
This work will help to remove confounding 
age-related variables from comparative 
studies, and demonstrates through 
example why this is important. I envision 
the RAPToR technique becoming a staple in 
transcriptomics studies involving animals.” 
Rita Strack, Senior Editor, Nature Methods.

Figure
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1.1.2 Main article

ROMAIN BULTEAU and MIRKO FRANCESCONI (Aug. 2022). “Real age prediction from
the transcriptome with RAPToR”. en. In: Nature Methods 19.8, pp. 969–975. ISSN:
1548-7105. DOI: 10.1038/s41592-022-01540-0
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Genome-wide profiling of gene expression is a powerful tech-
nique that provides a global and unbiased view of the tran-
scriptional state of a biological system. However, the analysis 

of gene-expression data can be complicated by uncontrolled and 
unknown sources of variance—which may be technical or biologi-
cal in nature1—that can mask or confound the effects of variables 
of interest.

To tackle this problem, several methods have been developed 
to learn and remove hidden covariates (or surrogate variables) 
from the data, such as remove unwanted variance2, surrogate vari-
able analysis3, or probabilistic estimation of expression residuals4. 
However, a drawback of these methods is that the sources of vari-
ance usually remain obscure; therefore, potentially interesting bio-
logical variance might also be removed.

Unintended differences in developmental progression across 
biological replicates or experimental conditions are a major source 
of variance in gene-expression data of developing systems (Fig. 1a), 
which can confound (Fig. 1b) or mask (Fig. 1c) the effect of the 
variable of interest. This is especially true in organisms with rapid 
life cycles and highly variable growth speed such as worms, fruit 
fly, or zebrafish, where numerous factors like genetic background, 
temperature, diet, crowding5–9, or even the physiological state of 
the previous generation9 substantially impact developmental speed. 
Carefully controlling for all conditions influencing development is 
therefore particularly challenging, but failing to do so can strongly 
impact gene expression. For example, in Caenorhabditis elegans 
even a few hours of development may result in 10,000 differentially 
expressed genes10. Hence, it is not surprising that around 50% of vari-
ance in gene expression in the profiling of a large panel of C. elegans  
recombinant inbred lines11 is due to unintended developmental 
variation12 and that almost 38% of the datasets that did not intend 
to include development in a C. elegans gene-expression database13 
show substantial developmental variation in gene expression10.

Estimating the real physiological age of the samples and identi-
fying hidden developmental variation between them is important 
first to quantify the impact of the perturbation of interest on devel-
opmental speed; second, to distinguish perturbation-specific from 

unspecific changes in gene expression caused by development; third, 
to uncover time-specific effects of the perturbations under study12 
by including inferred age as a covariate in expression data analyses 
(such as differential expression analysis). In yeast, analogous ideas 
were successfully implemented to identify genetic and environmen-
tal perturbations impacting specific phases of the cell cycle14 and 
direct and specific effects of 700 gene deletions on gene expression 
after removing the main source of variance (25%): a shared expres-
sion signature of cell cycle and growth rate15.

Extracting developmental progression from transcriptomes has 
recently become a topic of intense research, especially after the 
advent of single-cell RNA sequencing. Many algorithms have been 
developed that learn developmental progression from large-scale 
bulk, single-cell, or whole-organism transcriptomic data and sort 
samples along those trajectories (for example Slingshot16, DPT17, 
Monocle18, and BLIND19). However, a major drawback of these 
trajectory-learning algorithms is that they require large numbers of 
samples to learn the trajectory of developmental expression changes 
directly from the data. Moreover, they only output dataset-specific 
ranks or arbitrary values usually referred to as “pseudo-times” 
rather than real-age predictions, making it difficult to compare 
results across datasets or conditions.

To overcome these limitations, we developed a computational 
framework that exploits available time-series gene-expression data 
as reference to determine the absolute age of even a single sam-
ple from its transcriptome with high precision. We implemented 
RAPToR in R (available at https://github.com/LBMC/RAPToR), 
providing references to stage C. elegans, Drosophila melanogaster, 
Danio rerio, and Mus musculus development from gene expression.

We show that RAPToR successfully estimates age during develop-
ment and ageing, estimates tissue-specific age from whole-organism 
data, works in dissected tissue and single-cell profiling, and can 
also estimate age of one species using another species as reference. 
Finally, we show how to use estimated ages to quantify a perturba-
tion effect on developmental or ageing speed, and recover the spe-
cific effects of the variables of interest on gene expression even when 
completely confounded by age.

Real age prediction from the transcriptome  
with RAPToR
Romain Bulteau    and Mirko Francesconi    ✉

Transcriptomic data is often affected by uncontrolled variation among samples that can obscure and confound the effects of 
interest. This variation is frequently due to unintended differences in developmental stages between samples. The transcrip-
tome itself can be used to estimate developmental progression, but existing methods require many samples and do not estimate 
a specimen’s real age. Here we present real-age prediction from transcriptome staging on reference (RAPToR), a computational 
method that precisely estimates the real age of a sample from its transcriptome, exploiting existing time-series data as refer-
ence. RAPToR works with whole animal, dissected tissue and single-cell data for the most common animal models, humans and 
even for non-model organisms lacking reference data. We show that RAPToR can be used to remove age as a confounding fac-
tor and allow recovery of a signal of interest in differential expression analysis. RAPToR will be especially useful in large-scale 
single-organism profiling because it eliminates the need for accurate staging or synchronisation before profiling.

Nature Methods | www.nature.com/naturemethods
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Results
RAPToR design. We set out to develop a strategy to continuously 
stage development from gene expression that would be effective 
even for experiments with a limited number of samples, in which 
trajectory learning methods are not applicable. We reasoned that we 
could exploit existing developmental time-series data as reference 
to stage samples individually by taking the time point of the refer-
ence that has maximum correlation with a sample transcriptome as 
the age estimate. In this way, the age of each sample is inferred inde-
pendently from others and outliers only influence their own staging 
(as opposed to trajectory-based approaches). Furthermore, age esti-
mates acquired on the same reference should be comparable even 
across different experiments, conditions, and genetic backgrounds.

However, using the time of maximum correlation with the 
reference as the age estimate limits its precision to the temporal 
resolution of the reference. To overcome this limitation, we inter-
polate reference gene expression (Fig. 1d) with respect to time in a 
dimensionally-reduced space (Fig. 1e and Supplementary Note 1), 
generating interpolated expression profiles potentially at any time 
between the original reference time points (Fig. 1f).

The sample age estimate is simply the time point of maximum 
Spearman correlation between the interpolated reference and 
the sample gene expression (Fig. 1g). We then compute a confi-
dence interval of the estimate by bootstrapping on genes (Fig. 1h; 
Methods).

We implemented this strategy in RAPToR, an R package where 
we provide functions to interpolate references and stage samples.

RAPToR accurately infers developmental age of model organ-
isms. To test RAPToR in the most commonly used animal model 
organisms, we built interpolated references exploiting existing 
time-series data on C. elegans roundworm embryonic and larval 
development20–22, zebrafish embryonic and larval development23, 
mouse24, and fruit fly25 embryonic development (Supplementary 
Table 1) and then staged independent time-series experiments of 
C. elegans late-larval development26 and zebrafish27,28, mouse29, and 
fruit fly27 embryonic development.

We found RAPToR age estimates accurately match chronologi-
cal age for both C. elegans and zebrafish (R2 > 0.99; Figs. 2a,b), 
and morphological staging (somite number) for mice (R2 = 0.95;  
Fig. 2c). Age estimates of fly single embryos27 less accurately match 
chronological age, especially at later stages (R2 = 0.74; Fig. 2d).  
However, this is likely due to the single-individual nature of 
data as any inter-individual variation in developmental speed 
would not be averaged out as in bulk data. Indeed, the authors 
used BLIND19—a trajectory-learning method—to re-rank their 
samples27 similarly to RAPToR (ρ > 0.99; Extended Data Fig. 1). 
RAPToR estimates do in fact enhance expression dynamics cap-
tured by principal components (Figs. 2e,f and Extended Data Fig. 1)  
and for the majority of genes (Extended Data Fig. 1) in compari-
son to chronological age (Methods). Thus, RAPToR estimates the 
true physiological age of individuals and reveals the heterogeneity 
of their developmental speeds.

Reference interpolation greatly improves staging accuracy. 
Crucially, reference interpolation allows staging with an accuracy 
far beyond the original sampling resolution of reference time series. 
Indeed, RAPToR accurately stages a dense zebrafish time course28 
with over 40 times the temporal resolution of the reference before 
interpolation (Extended Data Fig. 2 and Supplementary Note 1; 
Methods). RAPToR estimates also stay remarkably accurate and 
precise even when staging samples with a few hundred genes or with 
noisy data (Supplementary Note 1 and Supplementary Figs. 1–4), 
and are robust to reference interpolation parameters (Supplementary 
Note 1, Supplementary Figs. 5 and 6, and Supplementary Table 2).

RAPToR correctly infers developmental speed scaling factors. 
RAPToR estimates are relative to the reference chronological age. 
Thus, one can use RAPToR to stage samples with known chrono-
logical age to estimate developmental speed differences or scaling 
factors with a reference. For example, staging a C. elegans develop-
mental time series grown at 25 °C26 on the reference grown at 20 °C20 
recapitulates the expected 1.5-fold increase in developmental speed 
owing to temperature increase20 (Fig. 2a and Supplementary Note 1).
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analysis situations where hidden developmental variation is either misinterpreted as an effect of the condition due to development and condition being 
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RAPToR performs well on ageing. While RAPToR works very well 
with robust expression changes during development, ageing and 
ageing-related changes in gene expression are widely known to be 
heterogeneous, stochastic, and strongly influenced by environmental 
factors30–32. This can potentially limit the applicability of RAPToR to 
ageing. In fact, RAPToR performs poorly between independent age-
ing time series (but works within experiments; Supplementary Note 1  
and Supplementary Fig. 7) with references built using the whole 
transcriptome. We reasoned RAPToR performance could increase 
by strengthening the ageing signal in the reference. Indeed, by build-
ing RAPToR references restricted to genes with robust monotonous 
trends along ageing (Methods), we could successfully estimate age-
ing in C. elegans bulk33 (R² = 0.94; Fig. 2g) and single-worm34 samples 
(R² = 0.67, Fig. 2h), Drosophila35 (R² = 0.96; Fig. 2i), and humans36 
(R² = 0.74; Fig.2j, Supplementary Note 1 and Supplementary Fig. 8). 
Importantly, single worms staged older than their chronological age 
behaved like older individuals34 and vice versa (Fig. 2h), moreover 

age estimates of flies under caloric restriction are consistent with the 
expected lifespan extension35 (Fig. 2i). This shows that RAPToR age 
estimates recapitulate true differences in biological age across indi-
viduals or environmental conditions. We conclude that RAPToR reli-
ably infers ageing from transcriptomic data.

RAPToR accurately stages dissected tissue samples. We tested 
RAPToR on expression profiling from dissected tissues—where 
variation in cell-type composition and relative amount might 
potentially confound staging—using time series of M. musculus 
upper- and lower-jaw first molar development37,38. Since these two 
organs have very similar development37, we built a lower-jaw refer-
ence to stage the upper-jaw samples (Methods). RAPToR not only 
accurately estimates age (R2 > 0.99; Fig. 2k), but also correctly infers 
the known developmental delay of upper molars in comparison to 
lower molars37,38. Thus, despite potential confounders, RAPToR is 
effective and precise on dissected tissue samples.
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RAPToR accurately stages single-cell data. Single-cell expres-
sion data is usually much sparser and noisier than bulk data, which 
might potentially limit RAPToR performance. We therefore tested 
whether RAPToR could stage single cells from human early embryo 
development39 by building a reference with a random subset of the 
data and staging the remaining cells (Methods). Age estimates not 
only match the chronological time (R² = 0.87; Supplementary Fig. 9),  
but also strongly correlate with the pseudo-times computed by the 
authors39 (R² = 0.97; Fig. 2l). Therefore, despite the sparsity of the 
data, RAPToR ranks cells as well as pseudo-time methods specifi-
cally designed for single-cell data but at the same time provides a 
real biological time for each cell.

RAPToR is robust to genetic variation in gene expression. Variable 
genetic background is another potential confounder, so we tested 
RAPToR performance on expression data for over 200 C. elegans 
recombinant inbred lines (RILs) showing extensive genetic variation 
in gene expression11. RAPToR closely matches previous estimates from 
a trajectory-learning approach13 (R² = 0.94; Extended Data Fig. 3),  
thus confirming the RILs span mid-larval to young-adult stage, a 
period with vast expression changes both in the soma (molting) and 
the germline (spermatogenesis and oogenesis) of worms.

We noticed that some gene-expression dynamics in the RILs 
are advanced and others delayed in comparison to the reference 
(Figs. 3a,b, Extended Data Fig. 4 and Supplementary Note 1). Shifts 
between soma and germline development (soma–germline heter-
ochrony) are easily induced by environmental and physiological 
changes in C. elegans9,40. Indeed, a consistent enrichment of soma 
and germline genes in advanced and delayed dynamics respectively 
suggests soma–germline heterochrony between the reference and 
the RILs (Extended Data Fig. 4).

Quantifying heterochrony with tissue-specific staging. To con-
firm this we used germline- and soma-specific gene sets22,26 to sepa-
rately stage the germline and soma of the RILs (Methods; Extended 
Data Fig. 3). We find germline- and soma-specific dynamics align 
better on the reference when staged with the corresponding gene set 
(Figs. 3d,e,g) while they are otherwise shifted (Figs. 3c,f), confirming  

heterochrony between reference and RILs. Thus tissue-specific 
staging outperforms global staging in case of heterochrony between 
the reference and the samples to stage.

Beyond differences between the reference and RILs, we noticed 
that tissue-specific staging also decreases variance among the RILs. 
Indeed, germline genes are better fit by germline than soma age and 
vice versa, suggesting soma–germline heterochrony among the RILs 
(Extended Data Fig. 5). However, when searching for the genetic 
basis of this heterochrony with a multivariate quantitative trait loci 
(QTL) analysis, we found no significant genetic locus (even at a false 
discovery rate (FDR) of 0.5) and overall no significant amount of 
genetic variance in heterochrony (Supplementary Note 1), which is 
therefore likely due to unknown and uncontrolled environmental 
differences or to a very complex genetic architecture not captured 
by the model.

In summary, by using tissue-specific gene sets RAPToR provides 
accurate tissue-specific age estimates from whole-organism expres-
sion despite varying genetic background.

Staging on references of a different species. Developmental 
time-series data are often unavailable for non-model organisms. 
However, gene-expression dynamics during development are often 
well-conserved across related species, especially during the phylo-
typic stage41. Seeing the robustness of RAPToR to genetic variation 
within species, we decided to test how well RAPToR can stage one 
species on a related species.

Staging time series of embryo development across six 
Drosophila species41 on a D. melanogaster reference using ortho-
logs indeed results in accurate age estimates (R2 > 0.99; Fig. 4a) 
despite decreasing overall correlation with increasing phylo-
genetic distance (Fig. 4b). Moreover, we infer between-species 
growth speed factors matching those found by the authors 
(Supplementary Table 3) and account for small age differences 
between replicates of each time point, which refines expression 
dynamics (Extended Data Fig. 6) and reduces unexplained vari-
ance in the data (Supplementary Fig. 10).

Encouraged by this, we probed RAPToR limits by staging 
samples on more distant reference species. We were able to stage 
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early embryo mouse single cells42 on a human reference39, match-
ing both chronological age (R² = 0.86; Fig. 4c) and pseudo-times 
(ρ = 0.95; Extended Data Fig. 7), as well as human43 on cow44 whole 
embryos (R² = 0.83; Supplementary Fig. 11). To our surprise, 
we could even successfully stage C. elegans embryogenesis27 on a  
D. melanogaster reference (R² = 0.96; Fig. 4d, Extended Data Fig. 8 
and Supplementary Note 1), two species separated by 600 million 
years of evolution45.

Which biological processes with highly conserved dynamics 
during embryogenesis could account for this accurate staging? We 
found that gene-expression signatures of decreasing cell prolifera-
tion shared across phyla27 and signatures of muscle development 
or cell differentiation are necessary and almost sufficient for accu-
rate staging (Supplementary Note 1, Extended Data Fig. 7,8 and 
Supplementary Tables 4–11; Methods).

Thus, RAPToR can stage non-model organisms using available 
close species data and perform well even in extremely distant spe-
cies, when applied to developmental stages with highly conserved 
developmental dynamics.

To summarize, RAPToR performs well across the organisms, 
sample types, and diverging genetic backgrounds and species we 
tested, yielding estimates that are precise, accurate thanks to inter-
polation, and robust to gene-set size changes.

RAPToR finds hidden drug effects on germline development. 
RAPToR absolute age estimates are useful in many ways. First, 
rather than just getting a list of differentially expressed genes from 
profiling data, RAPToR precisely quantifies the effect of pertur-
bations on developmental timing, including in a tissue-specific 
way. For example, tissue-specific staging of C. elegans exposed to 
three concentrations of mefloquine, dichlorvos, and fenamiphos46 
found that all three drugs induce a similar germline-specific and 
dose-dependent developmental delay (Fig. 5a, Supplementary Note 2  
and Supplementary Fig. 12).

RAPToR improves differential expression analyses. Even when 
known chronological age is included as a model covariate in dif-
ferential expression analyses, replacing it by RAPToR age estimates 
increases statistical power. For example, using RAPToR estimates 
instead of chronological age when analyzing expression changes 
in C. elegans pash-1 versus wild type (WT)47 (Fig. 5b), detects up 
to 60% more differentially expressed genes in pash-1 and 10% 
more differentially expressed genes across development thanks 
to overall better model fits (Fig. 5c, Supplementary Fig. 13 and 
Supplementary Note 2).

Quantifying developmentally driven changes in gene expression. 
If an experimental condition strongly impacts developmental speed 
but perturbed and control samples are collected at the same chrono-
logical—and therefore different physiological—time (Fig. 1a), the 
variable of interest will be completely confounded with develop-
ment. Thus, purely developmental expression changes are wrongly 
attributed to the perturbation of interest (Fig. 1b). As an example, 
we reanalyze a dataset comparing young-adult C. elegans that devel-
oped through dauer state (post-dauer) to controls that did not48. 
The authors found a downregulation of spermatogenesis-associated 
genes and an upregulation of oogenesis-associated genes from 
which they concluded that post-dauer animals have reduced 
spermatogenesis and increased oogenesis. However, as C. elegans 
switch from sperm to egg production during development, this 
pattern could simply be explained by post-dauer samples being 
physiologically older than controls. This is indeed what RAPToR 
found (Fig. 5d, Supplementary Fig. 14 and Supplementary Note 2).  
Furthermore, strong correlation (r > 0.8) between the observed 
expression changes in germline genes and the expected develop-
mental expression changes calculated from matching time points in 
the reference (Fig. 5e, Extended Data Fig. 9, Supplementary Fig. 14 
and Supplementary Note 2) suggests that, despite synchronization 
efforts, most of the initially observed differential expression is due 
to uncontrolled differences in developmental progression.

Recovering confounded perturbation-specific effects. We rea-
soned that integrating RAPToR age estimates and developmental 
gene expression from the reference in the differential expression 
analysis should allow us to extract perturbation-specific expression 
changes even when the variable of interest is completely confounded 
with development (Supplementary Note 2 and Extended Data  
Fig. 10). We tested this using a C. elegans larval development time 
series of xrn-2 mutant and relative WT control sampled every 
1.5 h49. We defined a gold standard of truly differentially expressed 
genes in the mutant, which allowed us to vary the age difference 
between mutant and WT and quantify first the amount, intensity, 
and variance of expression changes owing to development (Fig. 5f,g, 
Extended Data Fig. 10 and Supplementary Note 2); second, the del-
eterious impact of these developmental expression changes on the 
performance of a standard analysis in detecting truly differentially 
expressed genes; and third, the improvement obtained by integrating 
RAPToR estimates and reference expression data in the model. As 
expected, with increasing age differences between mutant and WT, 
the performance of a standard test of differential expression sharply 
decreases (Fig. 5h). However, performance is greatly recovered by 
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integrating reference data in the model, especially for large age dif-
ferences when the mutant effect would be fully confounded by devel-
opment (Fig. 5i, Extended Data Fig. 10 and Supplementary Note 2).

In summary, we showed that using RAPToR and reference data it 
is possible to measure the impact of development in gene-expression 
analyses and recover the specific effect of a perturbation even when 
completely confounded with development.

Discussion
We present RAPToR, a computational strategy to accurately esti-
mate the age of samples from their gene-expression profile. Unlike 
trajectory-based methods, RAPToR exploits existing reference 
time-series data to continuously stage each sample separately, 
providing several advantages: first, it eliminates the need for large 
datasets to infer developmental trajectories; second, it provides 
absolute developmental times that are comparable across datasets, 
conditions, genetic backgrounds, profiling technologies and other 
covariates; and third, outliers have no impact on the staging of other 
samples as each sample is staged independently.

While RAPToR is limited by the existence of reference time-series 
data, interpolation allows precise staging well beyond the resolution 
of the original reference data, enabling the use of sparse time series 
as references. RAPToR estimates age both during development or 
ageing in most common animal models and humans, from bulk, 
single-individual, dissected-tissue, or single-cell expression profiles,  

and can also infer tissue-specific age from whole-organism profiles. 
Importantly, RAPToR can stage one species using a close species 
as reference, which dramatically expands the scope of RAPToR, 
including to non-model organisms. We showed how RAPToR 
absolute estimates can be exploited in many ways: to detect the 
effect of a perturbation or treatment on developmental or ageing 
speed; as model covariates to increase statistical power to detect 
differential expression; finally, we showed that even in the extreme 
scenario when the perturbation of interest is completely con-
founded with development, it is still possible to recover genuine 
perturbation-specific expression changes by integrating reference 
data in differential expression analysis.

RAPToR can currently only stage on one developmental or age-
ing trajectory, so a future improvement will be to provide RAPToR 
with the ability to stage on multiple branching trajectories. Another 
avenue for improvement is to adapt this approach to data other than 
genome-wide gene expression, such as genome-wide binding data.

We anticipate our strategy of staging post-profiling with 
RAPToR will be especially useful in large-scale single-organism 
profiling experiments since it eliminates the need for synchroniza-
tion or for tedious and potentially difficult steps of accurate staging 
before profiling.

To conclude, we remark that our approach is not restricted to 
development or ageing but can in principle be applied to any pro-
cess with robust underlying reference gene-expression dynamics 
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(for example, cell differentiation, cell cycle, disease progression, and 
drug response) and its scope will only expand with the increasing 
availability of time-series profiling data.
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Methods
Analyses were all performed using the R statistical software (v.4.1.2)

Data pre-processing. Probe or gene IDs of datasets were converted to standard  
IDs (WBGene IDs for C. elegans, FBgn IDs for D. melanogaster, Ensembl IDs for  
D. rerio, M. musculus, H. sapiens and B. taurus). When multiple probes or 
IDs matched a single standard ID, they were mean-aggregated for microarray, 
sum-aggregated for RNA-seq counts. IDs with no standard ID match were dropped.

For RNA-seq datasets, gene-level transcripts per kilobase million (TPM) data 
was used when available, or computed from raw counts using transcript lengths 
from the Ensembl biomart (v.99). No remapping of the transcriptomes was done, 
aside from the M. musculus tooth data (see below). No background correction was 
applied to microarray data.

Samples were considered of poor quality and discarded when the 99th percentile 
of the distribution of their Spearman correlation coefficients with other samples 
fell below a threshold defined below for each dataset.

Expression values for all datasets were quantile normalized using the 
normalizeBetweenArrays function from limma50 (v.3.50.1) on log(X + 1) 
transformed values unless otherwise specified.

RAPToR implementation. Our method is implemented in an R package, RAPToR 
(v.1.1.6), which can be downloaded and installed from https://github.com/LBMC/
RAPToR.

Functions for staging samples, plotting results, interpolation, and building 
references are included in the package. Detailed vignettes on general usage, 
reference building, and showcases are also provided with the package.

Auxiliary R data packages include references for C. elegans (embryonic, larval, 
and young-adult to adult development, https://github.com/LBMC/wormRef),  
D. melanogaster (embryonic development, https://github.com/LBMC/drosoRef), 
D. rerio, (embryonic and larval development, https://github.com/LBMC/zebraRef) 
and M. musculus (embryonic development, https://github.com/LBMC/mouseRef).

Reference interpolation. Let X (m × n) be the gene-expression matrix of m genes 
by n samples. The matrix is first gene-centered such that X0 = X − rowMeans(X). 
We then use independent component analysis (ICA) (‘ica’ function, ‘icafast’ library 
v.1.0.2) or principal component analysis (PCA) (‘prcomp’ base R function) to 
decompose the data into a component space of dimension c such that X0 = G ST, 
with G (m × c) the gene loadings, and S (n × c) the sample scores. Columns of S are 
interpolated on with respect to time (and other potential variables of interest, for 
example, batch), forming a new matrix T (l × c) of l new time points in component 
space. The full interpolated expression matrix Y (m × l) is then reconstructed by 
multiplying the gene loadings matrix by the transposed T and by adding the gene 
centers Y = G TT + rowMeans(X).

To interpolate the components, we fit generalized additive models to handle 
non-linear dynamics through splines with the ‘gam’ function in the ‘mgcv’ 
package (v.1.8.39) using a single model formula for all components selected by 
cross validation (CV) as follows. CV training sets are built with 80% of samples, 
with proportional representation of any covariate group (for example, batch). The 
model is evaluated using the average relative error, mean squared error (MSE), and 
average root MSE51. We compared generalized additive models fitted with different 
splines (cubic, thin plate, and duchon), and chose the model with minimal CV and 
prediction errors. Automatic spline parameter estimation from ‘gam’ function was 
used, unless the model was clearly performing poorly with automatic parameter 
estimation (overfitting, predictions not matching the component dynamics), in 
which case we performed further CV on reasonable spline parameter spaces to 
tweak the model (defining a number of knots). We further verified that RAPToR 
age estimates match chronological age of the original reference data and of 
independent time series when staged on the interpolated reference, using the R² of 
linear models (Supplementary Note 1).

The number of components to fit was selected by setting a cutoff on cumulative 
explained variance (for example, 99%). The cutoff was adjusted according to 
the number of components with intelligible dynamics with respect to time 
(Supplementary Note 1 and Supplementary Fig. 6). Interpolation (and subsequent 
staging) is robust to variation in the number of components used (Supplementary 
Note 1).

We implemented reference interpolation with the ‘ge_im’ function in the 
‘RAPToR’ package. Model formulas and parameters for building all the references 
used in this study are displayed in Supplementary Table 1.

Age estimation. To perform age estimation, we implemented the ‘ae’ function that 
takes the gene-expression matrix to stage (genes as rows, samples as columns), the 
reference matrix (genes as rows and time points as columns), and the reference 
times (time values associated with the columns of the reference matrix) as inputs. 
The ‘ae’ function then finds common genes between sample and reference and 
computes the Spearman correlation between each sample and each reference time 
point. The age estimate for each sample is simply the reference time point with the 
highest correlation.

When an age estimate lands within 5% of the reference edges, RAPToR 
suggests to stage the samples on another appropriate reference if possible.

Confidence intervals on age estimates are computed by repeated staging 
on bootstrap gene sets of default size of one third of the total. Unless stated 
otherwise, the number of bootstraps is 30. A confidence interval is given by the 
median absolute deviation (MAD) of bootstrap estimates (estboot) from the global 
estimate (est), and the resolution of the interpolation (res, time interval between 
two points of the interpolated reference): [est − (median(|est − estboot|) + res/2); 
est + (median(|est − estboot|) + res/2)].

Staging using a prior probability. We implemented the possibility of providing a 
prior probability in the form of parameters for a Gaussian distribution per sample 
(mean, standard deviation) which must be given in the time scale of the reference. 
A Gaussian density function over the reference time is defined per sample from 
these parameters. During staging, all correlation peaks of the profile are determined 
and ranked by averaging their scaled correlation score (height of the peak in the 
correlation profile scaled to [0, 1]) and prior score (value of the Gaussian density 
function scaled to [0, 1], at the peak time point). The first peak of the ranking is then 
kept as the estimate. Since the ranking is determined by averaging normalized priors 
and correlation scores, changing the prior standard deviation parameter results in 
scaling the importance of the prior with respect to the correlation information.

No priors were used for staging unless explicitly stated.

Evaluating RAPToR performance. Staging C. elegans larval development. We built 
the reference from a time series of WT larval development at 20 °C sampled at 26 
time points from L1 feeding to 48 h20 (Supplementary Table 1), we set the number 
of interpolated time points to 500.

Staged samples are WT C. elegans collected during mid to late larval 
development at 25 °C from 22 to 37 h after L1 feeding26. Only samples aged below 
32 h (corresponding to about 48 h at 20 °C) were staged, to stay within the reference 
boundaries.

Staging D. melanogaster embryonic development. We staged a Drosophila 
developmental time series27 on an interpolated reference from another embryo 
developmental time series25 (Dme_embryo reference of the drosoRef package; 
Supplementary Table 1). Samples were discarded when the 99th percentile of the 
distribution of their Spearman correlation coefficients with others samples fell 
below 0.6, leaving 90 samples to stage. The number of interpolated time points in 
the reference was set to 500.

We compared our rankings with the BLIND19 rankings provided in the 
supplementary data27 (restricting to 77 samples as the authors used a more 
stringent quality filter).

To test if our age estimates capture physiological development better than 
chronological age, we fit identical linear models using the ‘lmFit’ function of 
‘limma’ with either chronological age or RAPToR estimates as the predictor. Age 
is modeled using a natural cubic spline with two to eight degrees of freedom (built 
with the ns function of the splines package). For each gene, we use R² to compare 
the goodness of fit of the models with chronological age or RAPToR age estimates.

Staging D. rerio embryonic development. We used the interpolated reference we 
built from embryo and larval development data23 (Dre_emb_larv reference of 
the zebraRef package; Supplementary Table 1) to stage a zebrafish time series of 
embryonic development from fertilization to 72 h post-fertilization27. Samples were 
discarded when the 99th percentile of the distribution of their Spearman correlation 
coefficients with others samples fell below 0.6, leaving 93 samples. The number of 
interpolated time points in the reference was set to 1,000.

We then used the same reference, increasing the interpolation resolution 
between 0 and 15 h to 800 time points (resulting in a reference time density of 
around one time point per minute instead of the previous one time point per 
hour) to stage an additional dense embryonic time series of 180 zebrafish embryos 
around gastrula28. We compare RAPToR staging to rankings (Extended Data  
Fig. 2a) previously determined28 as following: the ten youngest and oldest embryos 
(determined through the morphological criterion of epiboly coverage) are used 
to select the genes with the largest decrease in expression from start to end of the 
time series. The average expression of these genes then determines the ranking. 
To show the benefit of reference interpolation, we also staged the embryos on the 
non-interpolated reference time series (Extended Data Fig. 2c,d).

Staging M. musculus embryonic development. We used the interpolated reference 
we built from mouse embryonic development time series data24 (Mmu_embryo 
reference of the mouseRef package; Supplementary Table 1) to stage an 
independent mouse somite-staged developmental time course29. The number of 
interpolated time points was set to 500. We compare RAPToR staging with the 
provided embryo somite number as no chronological age is given29.

Staging M. musculus first-molar embryonic development. First and second data 
replicates for mouse first molar embryonic development are from Pantalacci 
et al.37, and Sémon et al.38, respectively. Reads from both replicates were processed 
together, trimmed with trimmomatic52 (v.0.39) to remove adapters, and mapped 
using salmon53 (v.0.14.1) and the Ensembl 98 version of the mouse transcriptome 
to obtain TPM values.
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Genes with a median expression of log(TPM + 1) < 0.5 across all samples were 
filtered out, leaving 15,362 genes. A reference was built from both replicates of the 
lower jaw samples (Supplementary Table 1) and used to stage all 32 samples.

Estimating developmental speed factors and resolution increase factors. 
Developmental speed factors and R² between chronological and estimated age of 
samples are estimated with linear models.

We call ‘resolution increase factor’ the factor between sampling frequencies of a 
reference before interpolation and of a successfully staged independent time series.

C. elegans larval development is sampled every 2 h at 20 °C (0.5/h) in the 
reference20 and every hour at 25 °C (1/h, 1.5 development speed factor) in the 
staged time series26 resulting in a resolution increase factor rf = (1.5 × 1)/0.5 = 3.

Drosophila embryo development is sampled every 2 h (0.5/h) in the reference25 
and every 15 min (4/h) in the staged time series27, resulting in a resolution increase 
factor rf = 4/0.5 = 8.

Mouse embryo development is sampled every 1.5 d (0.66/d) in the reference24 
and somite-staged in the target time series29. Since the first 30 somites of M. 
musculus grow in ~2.5 d54, the somite-staged times series has a resolution 
of 12 time points per day (12/d) determining a resolution increase factor 
rf = 12/0.66 = 18.2.

Zebrafish embryo development is sampled every hour (1/h) in the reference23 
and at a rate equivalent to 47 per hour (47/h) in the staged samples28 (180 samples 
are roughly evenly staged between 5.7 and 9.5 h post-fertilization: 180/(9.5 − 5.7) = 
47/h), resulting in a resolution increase factor rf = 47.

Building ageing references. To build RAPToR references capable of staging adults 
across independent studies, we select genes with monotonous expression along 
chronological age. Monotonous genes are defined as those with Spearman 
correlation with chronological age above a threshold given for each dataset. 
A threshold of 

√
0.33 selects genes where approximately a third of expression 

variance is explained by ageing progression. When less than 200 genes were kept 
by the filter, we used a more lenient threshold of √(0.25). We then interpolate as 
described above, using only the first component (which is monotonous given the 
gene selection).

Staging C. elegans ageing. We built a C. elegans ageing reference with an 
unpublished time series (GSE93826) using monotonous genes, defined as those 
with spearman correlation with chronological age above 

√
0.33 (see Supplementary 

Table 1). The number of interpolated time points was set to 500.
We then staged an RNA-seq bulk time series33, and a single-worm microarray 

profiling34. Single-worm behavior was provided by the authors34.

Staging D. melanogaster ageing. Pletcher et al.35 profiled ageing Drosophila in food 
ad libitum and caloric restriction conditions. We built an ageing reference with 
the ad libitum food time series using monotonous genes, defined as those with 
Spearman correlation with chronological age above 

√
0.33 (see Supplementary 

Table 1). The number of interpolated time points was set to 500. We then staged all 
flies (control and caloric restriction).

Staging human ageing from brain tissue. We removed outliers from Chen et al.36 
expression data when the 99th percentile of the distribution of their Spearman 
correlation coefficients with other samples fell below median + 2 s.d., and when 
the reported RNA integrity score was below seven. The remaining 360 samples 
were split per tissue (BA47 or BA11), and genes with Spearman correlation with 
chronological age above 

√
0.25 were defined as monotonous. For each tissue, 

half of the samples were randomly selected to build a RAPToR reference with 
monotonous genes (Supplementary Table 1), on which all samples were then 
staged. Samples were also staged on the reference built from the other tissue 
(Supplementary Fig. 8).

Staging H. Sapiens single-cell embryo development. We filtered Petroupoulos 
et al.39 single-cell counts to remove genes with a median expression of 
log(TPM + 1) < 0.5 across all samples, leaving 8,482 genes. Twenty percent of cells 
were randomly sampled from each of the five time points (305 cells) to build an 
interpolated reference (Supplementary Table 1), on which all 1,529 cells were then 
staged (only non-reference cells are shown in Fig. 2l). Cell pseudo-times are from 
the original study39, provided as sample metadata in the ArrayExpress entry.

Probing robustness of reference interpolation. Robustness of reference interpolation 
to the choice of dimensionality reduction method and number of components was 
evaluated using either the C. elegans time series by Kim et al.20 (as above), or the 
one by Meeuse et al.21 as references.

Robustness was evaluated computing sum squared (SSQ) of gene-expression 
prediction error by reference models using PCA or ICA and 2–16 components 
with the Kim et al. time series, and 2–20 with the Meeuse et al. time series. The 
model formula was fixed to the one defined in Supplementary Table 1. The SSQ 
prediction error is defined as SSQerror = (XXXn×m−XXXpred)

2

n×m , with n samples, m genes.
For six conditions—ICA/PCA, each at three different numbers of 

components—we staged the reference samples as well as an independent  

C. elegans time series26 on the interpolated reference (only samples within reference 
boundaries were staged on the Kim et al. reference). We evaluated models built 
from 4, 9, and 14 PCA or ICA components for the Kim et al. reference and models 
built from 10, 20 and 25 PCA or ICA components for the Meeuse et al. reference.

We then reported the R² value of a linear fit of RAPToR estimates by the 
chronological age of the samples in each condition (Supplementary Table 2), as 
well as correlation scores between samples and the interpolated reference at the 
estimate (Supplementary Fig. 5).

Estimating the impact of gene-set size on staging. The impact of gene-set size on 
staging was evaluated by staging the C. elegans larval time series by Hendriks 
et al.26 on the reference built from the Kim et al.20 samples, as above.

We staged the samples using 50 random gene sets of sizes 16,000, 12,000, 8,000, 
4,000, 2,000, and 1,000. The resulting estimates were used to compute confidence 
intervals for varying bootstrap set sizes. We reported the median absolute deviation 
of estimates to the full gene set estimate plus interpolation resolution (that is, the 
size of half the confidence interval).

The same approach was repeated for smaller gene-set sizes of 2,000, 1,000, 
500, and 250, this time staging the samples with and without priors (defined as 1.5 
times the chronological age of the samples to account for the developmental speed 
difference with the reference; prior standard deviation was set to 10).

Tissue-specific staging and quantification of soma–germline heterochrony. Two 
hundred and eight RILs from a cross between N2 (Bristol) and CB4856 (Hawaii) 
strains of C. elegans were genotyped at 1,455 single-nucleotide polymorphism 
markers, and collected as young-adult hermaphrodites (originally intended as one 
time point) for profiling by microarray with one sample per RIL11.

Microarray intensities were first normalized within arrays with LOESS using 
the ‘normalizeWithinArrays’ function of the ‘limma’ library. Arrays corresponding 
to pooled mixed stage controls were then discarded. Samples were discarded when 
the 99th percentile of the distribution of their Spearman correlation coefficients 
with other samples fell below 0.95, leaving 193 samples for analysis.

We staged the samples with the ‘Cel_larv_YA’ reference21 of the wormRef 
package (Supplementary Table 1), using 1,000 interpolated time points.

Samples were first staged using the entire available gene set to obtain the 
global estimates, then with soma and germline-specific gene sets to obtain 
the corresponding tissue-specific estimates: the soma gene set corresponds to 
the oscillatory genes denoted ‘osc’ in Hendriks et al.26. The ‘germline’ gene set 
corresponds to the union of ‘germline_intrinsic’, ‘spermatogenesis_enriched’, 
and ‘oogenesis_enriched’ gene sets defined in Reinke et al.26. Estimating soma 
age required the use of the global estimate as prior (owing to oscillations in 
gene expression generating multiple correlation peaks), with the prior standard 
deviation set to ten for all samples. Germline age estimates required no prior.

To compare expression dynamics between reference and RILs, we kept the 
overlapping genes between the non-interpolated reference and the samples, 
quantile normalized both datasets together, and performed an ICA (‘ica’ function 
of ‘icafast’) extracting 46 components, explaining 95% of the variance in the joined 
data. For components 2–8, capturing developmental signal (IC1 captured batch 
effect, IC9 captured genetic variation), we defined contributing genes as those with 
an absolute loading above 1.96. We then tested for enrichment of soma, oogenesis, 
and spermatogenesis categories in these genes with a two-sided hypergeometric 
test, the P values of which were adjusted across all tests with the Benjamini–
Hochberg method.

To test heterochrony between RILs and the reference, we fit splines on the 
reference samples in IC2–IC8 (using the same model as the RAPToR reference; 
Supplementary Table 1) and computed root mean square error between the fit 
and RILs for each component. This was done for global, soma and germline age 
estimates of RILs (Fig. 3g), and for shifted values of global age estimates (−5 h to 
+5 h; Extended Data Fig. 4c).

To test the existence of heterochrony among the RILs, we fit identical models 
on the RIL expression data using the ‘lmFit’ function in limma with global, soma, 
or germline age values as predictors. We used natural cubic splines (‘ns’ function in 
the ‘splines’ library) on the age with four, six, or eight degrees of freedom. Choice 
between models (at equal spline degrees of freedom) was done per gene on the 
basis of highest R² value.

QTL analysis on soma–germline heterochrony. The multivariate QTL analysis on 
soma–germline heterochrony among RILs defined as (soma age) − (germline age) 
was performed by random forest regression55 with or without batch as a covariate. 
Each RIL was genotyped at 1,455 single-nucleotide polymorphism markers11. 
Redundant markers were filtered out from the selected 193 RILs, missing values for 
the remaining 1,105 markers are imputed with the ‘rfImpute’ function and random 
forest regression was fit with 5,000 trees using the ‘randomForest’ function; both 
functions are from the ‘randomForest’ package (v.4.6.14). The random forest 
selection frequency was used as importance measure, adjusted for selection bias55, 
which was estimated by fitting 500 forests of 10 trees to Gaussian noise.

We estimated the null probability distribution of random forest selection 
frequency through 100 trait permutations, calculated empirical P values and 
adjusted them for FDR.
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Cross-species staging. Staging non-model Drosophila on D. melanogaster. We used 
the interpolated reference we built from D. melanogaster embryo development 
data25 (Dme_embryo reference of the drosoRef package; Supplementary Table 1) 
to stage developmental time series of six Drosophila species41: D. melanogaster, 
D. simulans, D. ananassae, D. pseudoobscura, D. permisilis and D. virilis profiled 
by microarrays. We used orthologs provided by the authors41. The number of 
interpolated time points in the reference was set to 500.

Developmental speed difference from D. melanogaster was determined 
with a linear model without intercept predicting RAPToR estimates with the 
chronological age of samples, with species as covariate and including interaction. A 
comparison with the original scaling factors41 is shown in Supplementary Table 3.

To determine whether RAPToR estimates or the linearly scaled age from the 
study41 is the better development indicator, we fit identical linear models on gene 
expression (lmFit function of limma) with either value as the predictor, and species 
as covariate. Age is modeled using a natural cubic spline with two to eight degrees 
of freedom (ns function of splines). For each gene, we use R² to compare the 
goodness of fit of either model (Supplementary Fig. 10). No interaction between 
age and species coefficients was considered as temporal scaling of development 
between species is already applied.

We evaluated the effect of species distance on staging through the maximal 
correlation score between the samples and the reference (that is, at their age estimate).

Staging C. elegans on Drosophila. We staged a C. elegans embryo time series27 on  
the interpolated reference we built from the D. melanogaster embryo development 
time series25 (‘Dme_embryo’ reference, drosoRef package). First, poor-quality  
C. elegans samples were discarded when the 99th percentile of the distribution 
of their Spearman correlation coefficients with other samples fell below 0.67. 
Additionally, a sample (GSM1487346, or ‘sample_0029’) was also excluded as it 
clearly appeared as an outlier on multiple ICA components (Extended Data Fig. 8). 
Four samples (GSM1487318, GSM1487319, GSM1487320, and GSM1487321, or 
‘sample_0001’ to ‘_0004’) were further removed owing to erroneous chronological 
age (Extended Data Fig. 8), leaving 127 samples.

We then performed the staging using a restricted worm–fly ortholog set45. We 
also did staging on a second reference interpolated as above but using the first two 
instead of eight components. For both references, the number of interpolated time 
points was set to 500.

Further analysis is restricted to the overlapping set of orthologs between worm 
and fly datasets (3,194 genes). We ranked genes by Spearman correlation between the 
C. elegans embryo time series and their matching timepoints in the second  
D. melanogaster reference. We then selected the 10% of genes with highest correlation 
(319 genes) and staged the C. elegans samples once more on the second  
D. melanogaster reference, evaluating staging performance with Spearman correlation 
and the R² of a linear model between chronological age and estimated age.

Hierarchical clustering of the top 10% genes in the original D. melanogaster 
reference data25 (‘hclust’ function on the euclidean distance matrix of gene-centered 
log(TPM + 1)), resulted in 3 clusters with over 20 genes. We then evaluated Gene 
Ontology enrichment in each cluster with gProfiler56 using the 3,194 overlapping set 
of worm–fly orthologs as background (Supplementary Table 4–6).

Staging M. musculus single cells on H. sapiens single cells. We filtered Deng et al.42 
mouse early embryo single-cell counts to remove genes with a median expression 
of log(TPM + 1) < 0.5 across all samples, leaving 6,506 genes. We then staged 
cells using all available mouse–human orthologs from ensembl (v.99), on the 
interpolated reference we built from H. sapiens embryo development single cells39 
(see above; Supplementary Table 1). We compared age estimates with chronological 
age, as well as with pseudo-time rankings similar to Petropoulos et al.39 (Extended 
Data Fig. 7). We fit a principal curve (principal_curve function of princurve 
library) on the first three components of a PCA on the 1,000 most variable genes.

As done above for worm–fly staging, we then restricted further analysis to the 
overlapping set of orthologs between mouse and human datasets (6,057 genes), 
ranked genes to select the 10% of genes with highest correlation between both 
species (509 genes), and staged the M. musculus single cells once more on the 
human reference, evaluating staging performance with Spearman correlation and 
the R² of a linear model between chronological and estimated age.

Hierarchical clustering of the top 10% of genes in the original H. sapiens 
reference data (expression matrix aggregated per sampled time point, 
gene-centered log(TPM + 1)), resulted in 5 clusters with over 20 genes. We then 
evaluated Gene Ontology enrichment in each cluster with gProfiler56 using the 
6,057 overlapping set of mouse–human orthologs as background (Supplementary 
Tables 7–11).

Staging H. sapiens on B. taurus. We filtered an RNA-seq cow early embryo time 
series44 to keep genes with median log(TPM + 1) expression >0, and built a 
reference with half of the samples. We similarly kept genes of a microarray human 
embryo time series43 with log(X + 1) expression >2 and built a reference with 
half the samples (Supplementary Table 1). As only morphological stages (for 
example, two-cell, four-cell) and not timings were given in both datasets, we used 
timings from the literature57. The number of interpolated time points for both 
references was set to 100. We then staged all cow samples on the human reference 

and vice versa, using all available human–cow orthologs from ensembl (v.99) 
(Supplementary Fig. 11).

Exploiting RAPToR age estimates. Drug dose response on developmental delay 
in C. elegans. Expression profiles of young C. elegans adults exposed to drugs46 
were staged on the “Cel_larv_YA” reference21 from the wormRef package 
(Supplementary Table 1), with 500 interpolated time points in the reference. We 
estimated global, soma-, and germline-specific ages (see Tissue-specific staging). 
For each age type, we then subtracted the age of the control sample within each 
replicate of each drug assay to compute the developmental difference by treatment 
group. We fit a linear model with drug, dose, and interaction on the age differences 
to assess the significance of the effects.

Increasing statistical power in differential expression analyses. WT and pash-1ts  
C. elegans samples47 were staged on the ‘Cel_YA_2’ reference22 from the wormRef 
package (Supplementary Table 1), with 500 interpolated time points in the 
reference. The second replicate of the first WT time point (wt_h0.2) was omitted 
from further analysis owing to its extreme developmental displacement and lack of 
comparable mutant sample.

We fit identical linear models with the ‘lmFit’ function in the ‘limma’ library 
to test for differential expression, including either chronological or estimated 
age modeled with a natural cubic spline (‘ns’ function in ‘splines’, degree of 
freedom = 2), strain, and their interaction.

Effect of strain and development was then assessed by considering the 
significance of appropriate model coefficients (interaction and strain coefficients 
for strain effect, spline and interaction coefficients for development effect), 
with the ‘topTable’ function in the ‘limma’ library. Differential expression was 
considered significant at 0.05 Benjamini–Hochberg FDR.

To test the effect of similar random age differences from chronological age, we 
generated 100 ‘random age’ sets by sampling age differences from the distribution 
of (chronological age) − (estimated age) values, estimated with the ‘density’ 
function in R. Sampled age differences were then added to the chronological age, 
and the same model and analysis as above was applied. The goodness-of-fit per 
gene is assessed using R².

Quantifying developmentally driven changes in gene expression. Given any two 
groups of expression profiling samples ‘A’ and ‘B’, we first stage them, then fit a 
linear model per gene on log2(TPM + 1) (or log2(intensity + 1) for microarray data) 
to compute the observed log2(fold changes) (logFCs) of ‘A’ versus ‘B’ samples. Then 
we fit the same model on reference profiles at matching time points to compute 
logFCs expected from development only (Extended Data Fig. 9). We use squared 
Pearson correlation between observed and expected logFCs to quantify the 
variance explained by development in the observed logFC.

Control and post-dauer C. elegans samples48 were germline-staged (see above) 
on the ‘Cel_larv_YA’ reference21, and on the ‘Cel_YA_2’ reference22 of the wormRef 
package for confirmation, as they landed near the edges of the first reference. 
The number of interpolated time points in the Cel_larv_YA and Cel_YA_2 
references were set to 1,000 and 500 respectively. Using the method described 
above, we quantified the differential expression explained only by difference in 
developmental stages between the control and post-dauer samples.

We could not compare our results to the original results as we were unable to 
exactly reproduce the distribution of differential expression and P values of the 
original t-test analysis. We therefore recalculated differential gene expression using 
linear models (function ‘lmFit’ in ‘limma’ library in R).

Recovering direct perturbation effects using reference data. WT and xrn-2 time series 
of C. elegans late-larval development49 were staged on the ‘Cel_larv_YA’ reference21 
from the wormRef package (Supplementary Table 1), with 500 interpolated time 
points. We restricted further analysis to the genes with both at least five raw counts 
for at least one sample, and overlapping with the reference gene set (17,656 genes).

Defining the differential expression gold standard. To establish the gold standard 
of differentially expressed genes, we selected time points 8–10 of xrn-2 and WT, as 
they had the best (estimated) developmental match. We then calculate differential 
expression fitting a generalized linear model (GLM) on raw counts using the 
glmFit function of egdeR (v.3.36.0), including only the strain variable (model_1), 
and considered genes differentially expressed with Benjamini–Hochberg adjusted 
P values < 0.05 of a likelihood ratio test (glmLRT function of ‘edgeR’) on the  
strain coefficient.

Evaluating gold-standard gene detection decrease with age gap. To test how 
increasing mismatch in developmental time between xrn-2 and WT impacts 
differential expression analysis we apply the same GLM used for the gold standard 
(model_1) to calculate differential expression between the mutant and WT samples 
shifted by −1, −2, −3, −5, and −7 time points and we estimated expression 
changes explained by development as detailed above. We then evaluated how well 
model_1 P values detect gold-standard differentially expressed genes at increasing 
age gaps by precision–recall (PR) curves and area under PR curves (AUPRC) using 
the ‘prediction’ function of the ‘ROCR’ package (v.1.0.11).
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Correcting expression changes from development. To accurately account for 
developmental changes we combine the samples of interest with the interpolated 
reference.

For each set of samples (including WT and mutant samples), we define the 
reference window to include as the range of age estimates widened by a 1-h margin 
on either side. For example, age estimates of the ‘WT-1’ set range 51.7–58.3 h. 
Thus, we include a 50.7–59.3 h window of interpolated reference.

We transform the interpolated reference data to artificial counts assuming a 
fixed library size of 25 × 106 counts per sample and a fixed number of reads ‘per 
gene length’ defined by the median of available gene lengths:

ArtificialCounts = (interpolatedTPM/(106)) × ((25 × 106)/
median(geneLengths)) × geneLengths

The artificial count matrix is then joined to the sample count matrix and a GLM 
is fit (‘glmFit’ in ‘edgeR”), including batch (between reference and sample data), the 
variable of interest (strain) where reference data is grouped together with the control, 
and developmental time modeled with splines (‘ns’ function in ‘splines’). To select the 
optimal spline degree of freedom for each window, we minimized the residual SSQ 
of a linear model fit on the reference window only (Extended Data Fig. 10h). Only 
model coefficients of the variable of interest (strain logFCs) are considered.

We first evaluated how well strain logFCs detects differentially expressed genes 
from the gold standard using PR curves and AUPRC (‘prediction’ function in 
‘ROCR’). We then defined an age-corrected classifier (ACC) as the weighted mean 
of the model_1 P value and strain logFC of the model including the reference:

ACC = w × strainLogFC + (1 − w) × (−log10(model_1Pval))
with w, the weight ratio of either classifier. We defined the optimal w as the 

value for which the AUPRC is maximal, and estimated it for each set of WT shifts. 
At optimal w, we then reported the AUPRC of our ACC and compared it to the 
standard model.

As the optimal w cannot usually be estimated in this way, we explored 
the relationship between optimal w and observed/expected logFC correlation 
(as defined above) calculated for a larger amount of WT three-sample sets 
(Supplementary Table 13).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Source data for all figures is provided. Source data are provided with this paper.

Code availability
The code to download and (pre)process the data, perform the analyses and 
generate the figures of this paper can be found at https://gitbio.ens-lyon.fr/LBMC/
qrg/raptor-analysis
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(IDEX IMPULSION G19002CC) and ENS-Lyon (Projet emergent 2019). R.B. PhD 
fellowship is funded by the French Ministry of Research.

Author contributions
M.F. and R.B. conceived the method; R.B. developed the computational framework and 
performed the analyses; and M.F. and R.B. wrote the manuscript.

Competing interests
The authors report no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41592-022-01540-0.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41592-022-01540-0.

Correspondence and requests for materials should be addressed to Mirko Francesconi.

Peer review information Nature Methods thanks Helge Grosshans, Adam Alexander 
Thil Smith and the other, anonymous, reviewer(s) for their contribution to the peer 
review of this work. Primary Handling Editor: Rita Strack, in collaboration with the 
Nature Methods team. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Methods | www.nature.com/naturemethods



Articles NATuRE METHoDS

Extended Data Fig. 1 | RAPToR estimates fit gene expression data better than chronological age. a, RAPToR estimates of D. melanogaster single-embryo 
samples27 staged on a reference built from bulk data25 plotted against established BLIND ranks27. b, Percentage of genes better fitted by either RAPToR 
estimates or chronological age modeled with splines using 2-8 degrees of freedom in otherwise identical models. c, R² of models from (b) gene count in 
each half of the plot is indicated in the corners. d,e, Principal components plotted along chronological age (d), and RAPToR estimates (e) (as in Fig. 2d-f).
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Extended Data Fig. 2 | Reference interpolation allows RAPToR estimates at high resolution. a, RAPToR estimates of a zebrafish embryonic time-series 
from 9 spawns28 staged on a reference built from Domazet et al. data23 plotted against original developmental ranks28. b, First 2 principal components 
of the zebrafish time-series plotted against RAPToR age estimates. Spawns are color-coded. c,d, RAPToR estimates of the zebrafish time-series on the 
non-interpolated reference (i.e the sampling time of the reference sample with the highest correlation) vs. original developmental ranks (c) and vs. 
standard RAPToR estimates (as in a) (d). In a,c,d, original reference time points within the plot area are shown on the right, in blue.
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Extended Data Fig. 3 | Tissue-specific staging yields soma and germline ages. a, RAPToR estimates of C. elegans Recombinant Inbred Lines (RILs)11 staged 
on the larval to young-adult reference built from Meeuse et al.21 vs. Francesconi & Lehner12 estimates. b-d, Comparison of RAPToR estimates of global age 
vs. germline age (b), global age vs. soma age (c), and soma age vs. germline age (d). e, Distribution of soma–germline heterochrony.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | A delayed germline and an advanced soma. a, Independent Components from ICA on C. elegans Recombinant Inbred Lines (RILs)11 
joined to the (non-interpolated) reference data21 plotted along chronological age and RAPToR global estimates for the reference (orange) and RILs (black) 
respectively. b, Gene loadings on ICA components for all genes (n = 14132), germline genes (oogen. n = 582, sperm. n = 596) and soma (n = 2005) 
categories. Each box within violins spans the interquartile range (IQR), the central white dot denotes the median, and whiskers extend to 1.5×IQR in  
either direction. Category enrichment p-values derive from a two-sided hypergeometric test on genes with absolute loadings above 1.96. From left to  
right, p-values are IC2: p > 0.99, p < 1e-10, and p > 0.99; IC3: p < 1e-10, p = 2.66e-06, and p = 0.022; IC4: p > 0.99, p > 0.99, and p < 1e-10; IC5: p > 0.99,  
p > 0.99, and p < 1e-10; IC6: p < 1e-10, p > 0.99, and p = 6.54e-04; IC7: p > 0.99, p > 0.99, and p < 1e-10; IC8: p > 0.99, p > 0.99, and p < 1e-10. c,d, Summed 
(c) and per-component (d) Root Mean Square Error (RMSE) between RILs and reference fit on IC2-IC8 when shifting RIL (global) age estimates. RMSE 
per-component shows heterochrony, with soma dynamics of RILs matching younger reference time and the reverse for germline dynamics. *: p < 0.05,  
**: p < 0.01, ***: p < 0.001.
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Extended Data Fig. 5 | Soma–germline heterochrony among C. elegans recombinant lines. Recombinant Inbred Lines (RILs)11 are staged on the larval to 
young-adult reference built from Meeuse et al. samples21. a, Percentage of genes better fitted by either RAPToR global, soma, or germline age estimates, 
modeled with splines with 4, 6, or 8 degrees of freedom in otherwise identical models. Genes are classified into spermatogenesis, oogenesis, somatic, or 
other (see methods). b, R² per gene of models with global, soma, or germline age estimates as predictors for 4, 6, and 8 spline degrees of freedom.
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Extended Data Fig. 6 | RAPToR age estimates synchronize expression dynamics across species. a-c, Principal components of Drosophila embryogenesis 
in 6 species41 plotted along chronological age (a), linearly scaled chronological age41 (b), and RAPToR age estimates on a D. melanogaster reference25 (c).
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Extended Data Fig. 7 | Staging M. musculus single cells on H. sapiens reference. Single cells from M. musculus embryos42 were staged on a H. sapiens 
single-cell embryogenesis reference39 using orthologs. a, First 2 principal components of a PCA done on the 1000 most variable genes. A principal  
curve is fit on the first 3 components. Cells are colored by RAPToR age estimate on the H. sapiens reference. b, RAPToR age estimates of M. musculus  
single cells on H. sapiens reference vs. cell ranks along principal curve (a). c, Chronological age of M. musculus single cells vs. RAPToR age estimates on  
H. sapiens reference using top 10% most correlated genes between mouse and human for staging (see methods). d, H. sapiens (red) and M. musculus 
(black) clustered gene expression profiles (aggregated per time point) of highest-correlated genes between both species (see methods).
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Extended Data Fig. 8 | Staging C. elegans embryogenesis with D. melanogaster. a, C. elegans embryo samples from Levin et al.27 staged on the  
D. melanogaster reference built from Graveley et al.25 samples. Gaps appear in the estimates, likely at points where fly expression dynamics are 
incompatible with those of worms. b, As in (a), staging on the adjusted fly reference and using top 10% most correlated genes between fly and worm 
embryogenesis (see methods). c, D. melanogaster (red) and C. elegans (black) clustered gene expression profiles of highest-correlated genes between 
both species (see methods). d, ICA components of the C. elegans embryo time course plotted along sampling time. Both the red highlighted outlier and 4 
samples with erroneous chronological age (circled in IC1) are omitted from analysis (see methods).
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Extended Data Fig. 9 | Estimating the impact of development by integrating reference data. a-c, Cartoon detailing how the log-fold-changes (logFCs) of 
a differential expression analysis between two sample groups (a) and the logFCs of their matching time points in the RAPToR interpolated reference (b) 
can be compared to quantify the impact of development (c).
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Extended Data Fig. 10 | Correcting the effect of development by integrating reference data. Samples from C. elegans time-course experiments of 
wildt-type (WT) and xrn-2 mutants, profiled by Miki et al.49, and staged on the larval to young-adult reference built from Meeuse et al. samples21, are used 
to validate developmental correction approach (see also Fig. 5f-i). a, Cartoon of a model integrating a window of reference data, with Strain and Batch 
coefficients shown in blue. b, Number of DE genes found by a standard differential expression model (FDR < 0.05) increases with the age gaps between 
compared groups, with a quasi-constant fraction of truly DE genes. c, Area under PR curves (AUPRC) in detecting gold-standard DE genes for standard 
differential expression model p-value, age-corrected logFCs, or the age-corrected classifier for each shifted WT subset. d, w parameter optimization for 
shifted WT sets, by maximizing area under the PR curves. e, PR curves of gold-standard gene detection by the age-corrected classifier for each shifted WT 
subset. f, Correlation of expected development logFCs and observed logFCs between the xrn-2 subset and combinations of 3-sample WT sets (note these 
are not the “WT -n” subsets, see Supplementary Table 13). g, Relationship between optimal w and sample-reference logFC correlation, as in (f). h, Optimal 
spline degree-of-freedom (df) selection for the different WT shifted sets by reaching a residual Sum of Square (SSQ) plateau. The selected df increases 
with the shift, which is expected since the reference window to include gets larger and may thus contain more complex dynamics. DE, Differentially 
Expressed. logFC, log2 fold-change. FDR, false discovery rate, PR: Precision-Recall.
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All code for data analysis and figure plotting is available at 
https://gitbio.ens-lyon.fr/LBMC/qrg/raptor-analysis 
 
We share our tool as an open-source R package on github:  
https://github.com/LBMC/RAPToR

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- A description of any restrictions on data availability

The full list of datasets and accession numbers is given in Supplementary Table 12.  
All the data used in this study were previously published and are available on GEO, GSE49043 (C. elegans larval development time course, 20C), GSE52861 (C. 
elegans late larval development time course, 25C), GSE60471 (D. melanogaster embryonic development time course), GSE60755 (C. elegans embryonic 
development time course), GSE60619 (D. rerio embryonic development time course), GSE83395 (D. rerio early embryonic samples), GSE39897 (M. musculus 
embryonic development time course), GSE76316 (M. musculus first molar embryonic development, replicate 1), GSE23857 (C. elegans late larval/young adult 
recombinant inbred lines), GSE696 (C. elegans young adult to adult development time course), GSE130811 (C. elegans larval to adult time course), GSE12298 (C. 
elegans young adult toxicity assay of 3 drugs), GSE97775 (C. elegans larval development time course of WT and xrn-2 mutant), GSE45719 (M. musculus single-cell 
early-embryo development), GSE93826 (C. elegans aging time course), GSE77110 (C. elegans aging time course), GSE12290 (C. elegans single-worm aging time 
course), GSE71620 (H. sapiens profiling of brain tissues), GSE178436 (B. taurus early-embryo development time course), and  GSE29397 (H. sapiens early-embryo 
development time course), available on ArrayExpress, E-MTAB-404 (Embryonic development time course of 6 Drosophila species, E-MTAB-1333 (C. elegans young 
adult to adult mutant vs. wild type experiment, and E-MTAB-3929 (H. sapiens single-cell early-embryo development), available on fruitfly.org (D. melanogaster 
embryonic development time course), in the supplementary data of the original publication (M. musculus embryonic development time course), on request to the 
authors and now in our code repository (C. elegans post-dauer vs. control, and D. melanogaster aging time course). The data from Sémon et al. (M. musculus first 
molar embryonic development, replicate 2) is, at the time of writing, in the process of acquiring a GEO accession ID. 
Source data for all plots is provided.
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Supplementary note 1

Computational Requirements

RAPToR is an R package. We have tested and confirmed the package works in R 3.6.3 and 4.1, under

Windows 7 & 10, Ubuntu 18.04 & 20.04, and macOS (10.14). The package installs under 20s once

dependencies are met. Standard datasets can easily run with 4Gb of RAM and 2 CPU cores. For reference,

the dataset used for demo in the main documentation vignette of the package (43 samples by ~19500 genes,

GSE80157 1) can be both downloaded and staged (including the default 30 bootstraps with n/3 genes) with

RAPToR in under 30 seconds, using less than 2Gb of RAM.

Reference interpolation

For reference interpolation, we take advantage of the redundancy of gene expression. We use either Principal

or Independent Component Analysis (PCA, ICA) to decompose the expression matrix into components

(sample scores, or eigengenes) that summarize the gene expression dynamics, and gene loadings that are

gene contributions to each dynamic 2,3. We interpolate the components with respect to time (Fig 1e), and

reconstruct the full interpolated gene expression by the matrix product of interpolated components and the

gene loadings (Fig 1f, methods). In this way, we simplify model building and validation across thousands of

genes to a few components. We select a number of components by a threshold on cumulative variance

explained (see methods), keeping components with ‘intelligible’ dynamics which we defined as those with a

spline fit explaining > 0.5 of the deviance (Sup. Fig. 6). However, staging results are robust to the variation

number of components used (Sup. Fig. 5a-b, see below).

In order to validate an interpolated reference for staging with RAPToR, we first stage the original reference

data on its interpolated version. We fit a linear model predicting RAPToR age estimates with chronological

age expecting a near-perfect match, with adjusted R² > 0.99, and non-significant intercepts. This was the

case for all references presented throughout the study, aside from “Cel_YA_2” which is built from old data4

(2004) and only had an R² of 0.901. Then, when possible we stage independent time course experiments and
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expect very good fits of linear models (R² ≥ 0.9, as shown in Fig. 2). We note that increased variability is

expected from single-organism profiling data (such as Fig. 2d and Fig. 2h) as well as for aging time-series

(such as Fig. 2j and Sup. Fig. 8), due to their inherent biological heterogeneity.

Interpolation errors or bias are more frequent at the edges of a time series (e.g. splines are known to behave

erratically at edges). In addition, when the real age of a sample is outside the reference range, it will likely

match a time point close to the edge, making estimates close to the edges less reliable. Therefore, when age

estimates are found near the edges, we suggest using another overlapping reference to confirm the

estimates.

Evaluating RAPToR performance

Reference interpolation effectively increases estimates temporal resolution

RAPToR uses correlation with a reference to estimate age. If we were to use a non-interpolated reference (ie.

the expression matrix in Fig. 1d), this would only allow estimates at the sampled time points of the reference.

Reference interpolation enables age estimates between the original reference time points.

We successfully staged worm5, fly6, and mouse7 time-series (Fig. 2a, 2d, 2c) with 3, 8, and over 18 times the

temporal resolution of their respective original references (see methods). This clearly shows that interpolation

allowed us to accurately reconstruct gene expression dynamics of the reference time-series at an increased

temporal resolution and consequently improve the accuracy of the age estimates.

To further test this, we staged another zebrafish time-course consisting of 180 embryos spread in a very short

developmental window around gastrulation8. Despite having over 40 times the estimated temporal resolution

of the reference before interpolation, the data is accurately staged by RAPToR, not only matching the

established ranking8 (ρ=0.99, Extended Data Fig. 2a) and expression dynamics (Extended Data Fig. 2b), but

giving absolute times that are comparable to any estimate obtained with the same reference.

We additionally staged the same zebrafish samples on the non-interpolated reference data to explicitly show

the gain from interpolation. Samples have the highest correlation with the expected reference time points, still

matching the aforementioned ranks (ρ=0.94, Extended Data Fig. 2c) and our previous estimates (ρ=0.94,
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Extended Data Fig. 2d), but the staging is imprecise due to the reference data only having one expression

profile per hour of development.

​Effect of gene set size and data quality on age estimates and bootstrap intervals

We tested RAPToR robustness to changes in the gene set size by staging an independent time series5 of C.

elegans larval development on the reference9 we built (as in Fig. 2a). With random gene sets of 4000 genes,

estimates have a median absolute deviation under 10 minutes from full gene set estimates (18718 genes);

with sets of 1000, under 20 minutes (Sup. Fig. 1a-b). With smaller sets (<1000), estimates are unreliable

likely because repeated expression patterns – such as oscillations or pulses – create multiple correlation

peaks with the reference (Sup. Fig. 1c). For example, the repeated molts of C. elegans larval development

generate oscillations in the correlation profiles of staged samples (Sup. Fig. 2). To address this, we

implemented the possibility to include a prior for estimates (see methods). With the prior, no estimates get

misplaced to other correlation peaks, even for sets of a few hundred genes (Sup. Fig. 1c-d). We note that

priors must be given in reference time (though approximate timings are enough, within a few hours), which is

why we provide correspondence between developmental stages and chronological time in the references

through RAPToR (plot_refs function).

Potential sources of uncertainty for staging can be technical (profiling quality, number of genes available), or

biological (developmental spread of individuals within a bulk sample, heterochrony between tissues). We

explored how these factors could influence the confidence intervals (CI) of RAPToR estimates using the C.

elegans time-series5 and reference9 mentioned above. We find that noise in reference data gets largely

filtered out by the PCA, and thus does not impact the CI size (Sup. Fig. 4a). Staged samples of poor quality

have wider CIs, but estimates stay strikingly accurate with intense noise (Sup. Fig. 4c). Indeed, even when

noisy expression profiles have low correlation scores with the original data (ρ<0.8, Sup. Fig. 4d), staging

accuracy is not diminished (R²=0.99, Sup. Fig. 4c). As discussed above, with less information (fewer genes)

the reliability of staging decreases, which leads to increasing CIs. To simulate developmental spread within a

sample, we averaged the expression values of 2, 3, 5, and 7 consecutive time points in the staged

time-series; similarly, we simulated heterochrony by randomly selecting one of the expression values between
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2, 3, 5, and 7 consecutive time points (i.e. mixing). As expected, CI size increases in both scenarios (Sup.

Fig. 4e, 4f).

We conclude our bootstrapping approach generates confidence intervals that reflect the multiple technical or

biological sources of variability in the data.

Confidence intervals of RAPToR estimates for C. elegans samples5, built from bootstrap estimates with 6239

genes (see methods), are extremely small – between 5 and 20 minutes (Sup. Fig. 3a). As expected, staging

zebrafish embryos6 on a reference10 with lower gene overlap (8662 genes) results in larger confidence

intervals built from bootstrap estimates with 2887 genes – on average, slightly over 2h across the full time

series, and under 50 minutes for samples before 30h of development (Sup. Fig. 3b).

Of note, the combination of interpolation accuracy and estimate precision for small gene sets means that

even time-series transcriptomic data with low sampling rate or gene coverage can be exploited to build

interpolated references.

​Effect of interpolation parameters on age estimates

We tested whether reference-building is robust to parameter changes. As expected, selecting more

components leads to a decrease in prediction error of the model (Sup. Fig. 5a-b), and a slight increase in the

correlation between staged samples and reference at estimate (Sup. Fig. 5c-d). However, the age estimates

and bootstrap intervals were mostly unperturbed by the changes in number of components and were also

robust to choosing PCA or ICA for interpolation (Sup. Table 2, Sup. Fig. 4b).

Scenarios such as aging and cross-species staging can require building references with few, or even a single

component. In this case, expression dynamics are still accurately interpolated when they can be

reconstructed from linear combinations of the selected components. For example, using a single monotonous

component to build a reference will result in genes with complex expression dynamics being poorly modeled,

while those with monotonous dynamics will have accurate fits.
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Within-study aging expression dynamics allow robust RAPToR staging

While there is a known increase of gene expression noise with aging11, the heterogeneity of aging also greatly

depends on environmental factors. Indeed, we find that even though “standard” (whole-transcriptome)

RAPToR references poorly stage independent experiments (data not shown), they accurately stage

independent samples from the same study. We show this in C. elegans (R²>0.99, Sup. Fig. 7a) and even in

dissected tissues of wild-type and transgenic mice12 (R²>0.99, Sup. Fig. 7b). Together with the fact that

RAPToR estimates stay accurate in very noisy expression data (see above, Sup. Fig. 4c), this suggests that

the reason for poor staging performance across studies is likely due to heterogeneous environmental

conditions across studies.

RAPToR stages human adults from dissected brain tissue

RAPToR aging references built with monotonous genes allow us to infer the age of adults accurately despite

heterogeneous environments and genetic backgrounds. In humans – where neither of these factors is

controlled – we could accurately stage individuals from the transcriptome of dissected tissues of two

neighboring brain regions13: Brodmann Area BA11 (R²=0.74, Sup. Fig. 8a) and BA47 (R²=0.68, Sup. Fig.

10d). We could even stage BA11 samples on a BA47 reference (R²=0.61, Sup. Fig. 10b) and vice versa

(R²=0.71, Sup. Fig. 8e) with comparable accuracy. Importantly, BA11 sample age estimates on the BA11

reference finely match those acquired on the BA47 reference (R²=0.93, Sup. Fig. 8c) and the same goes for

BA47 samples (R²=0.93, Sup. Fig. 8f). This suggests that RAPToR captures genuine variability between

chronological and physiological age, since the same age is given to a sample with both references.

In summary, RAPToR can infer the age of adult individuals with heterogeneous environmental and genetic

backgrounds from the transcriptome of dissected tissues, and do so reliably from a reference built with a

similar tissue.

Inferring developmental speed factors

Beside the expected 1.5 fold increase in developmental speed due to temperature we observed in C. elegans

(Fig. 2a), we also observe a difference between chronological and estimated times in the independent

zebrafish developmental time series6 we staged on the zebrafish reference10 determining a developmental
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speed factor of 0.7. We suspect this speed factor is also due to a temperature difference with the reference,

as growth speed scales with temperature also in zebrafish. While the reference data embryos developed at

28.5°C10 , we were unable to confirm at which temperature the staged data embryos developed but we

presume a lower one.

​Soma-germline heterochrony between C. elegans experiments

​To confirm the presence of soma-germline heterochrony between C. elegans Recombinant Inbred Lines14

(RILs) and the reference15 they were staged on, we compared the expression dynamics of both datasets

(Extended Data Fig. 4a). While the overall Root Mean Square Error (RMSE) between the RILs and the

reference fit is minimal at the RIL global estimated age (Extended Data Fig. 4c), that is not the case for single

components. Indeed, reference dynamics match RILs better when shifting the RIL age estimates back for

soma-enriched components and forward for germline-enriched components (Extended Data Fig. 4d). Soma-

and germline-specific age estimates using tissue-specific genes then further improve the match between the

RILs and reference for dynamics of these respective tissues (Fig. 3g).

​Soma-germline heterochrony between the reference and RILs only explains that the dynamics of the soma be

shifted along germline age and vice versa. However, the clear noise increase we see in germline dynamics

along soma age (Fig. 3c) and vice versa (Fig. 3f), also implies heterochrony among RILs as it shows the

soma-germline age difference with the reference varies from sample to sample.

​Quantitative Trait Loci analysis on soma-germline heterochrony

In our QTL analysis of soma-germline heterochrony in C. elegans Recombinant Inbred Lines14, Random

Forest prediction of the trait was poor and non-significantly correlated with the trait (r = 0.12, p = 0.09) and we

found no significant hits out of the 1,455 markers, even at FDR of 0.5. Removing the batch covariate from the

analysis results in even poorer predictions (r = 0.08, p = 0.2), suggesting uncontrolled environmental factors

may be driving heterochrony.

Staging samples on references of a different specie

When we first staged a C. elegans embryo development time course6 on the Drosophila reference16, we noted

two breaks in the age estimates, possibly due to heterochrony of developmental processes between the 2
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species (R² = 0.938, Sup. Fig. [[19]]a). Staging was notably improved after rebuilding the reference with only

2 components which have broad dynamics (R² = 0.958, Fig 4d), further suggesting that sharper expression

dynamics (like pulses or oscillations) diminished staging performance.

To explore the reason behind successful cross-species staging, we analyzed the 319 genes (10%) with

highest correlation between C. elegans and D. melanogaster during embryogenesis, as well as the 509 genes

(10%) with highest correlation between H. sapiens and M. musculus early embryo development in single-cells

(see methods), which suffice to stage the embryos well despite their small number (R² = 0.87 and R² = 0.84,

Extended Data Fig. 8b and 7c). We found the fly-worm gene set clusters into an ascending gene expression

signature of muscle development (cluster 1, Extended Data Fig. 8c, Sup. Table 4), and two decreasing

signatures of cell proliferation split between DNA replication (cluster 2, Extended Data Fig. 8c, Sup. Table 5)

and splicing (cluster 3, Extended Data Fig. 8c, Sup. Table 6) respectively. Similarly, the mouse-human gene

set consists of clear ascending expression signatures of cell respiration, adhesion and secretion (clusters 1-3,

Extended Data Fig. 7d, Sup. Tables 7-9) and of a strong decreasing signature of cell proliferation (cluster 4,

Extended Data Fig. 7d, Sup. Table 10). Other translational-related processes are grouped without a clear

trend (cluster 5, Extended Data Fig. 7d, Sup. Table 11)

Expression dynamics match well between fly and worm embryogenesis (Sup. Fig. [[19]]c), and between

human and mouse early-embryo development, consistent with previous work showing widespread

conservation of decrease in cell proliferation during embryogenesis6 .
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​Supplementary note 2

​Exploiting inferred age in genome-wide expression studies

​Inferring the impact of environmental or genetic perturbations on development

When staging C. elegans exposed to increasing concentrations of mefloquine, dichlorvos, and fenamiphos17,

we noted that beyond the germline developmental delay induced by all three drugs, dichlorvos also showed a

significant and opposite effect of dose on somatic age. However, the scale of the effect is a fraction of the one

observed on the germline (Sup. Fig. 12b).

​Exploiting developmental variation to increase power to detect differential expression

After comparing chronological age and RAPToR age estimates as predictors for C. elegans control and

pash-1 mutants profiled at 4 time points of late development18 and finding better model fits (Fig. 5c), we

further tested whether random perturbations on age could induce a similar result. Thus, we generated age

sets of similar deviation from chronological age than RAPToR estimates (see methods) and found that these

consistently decreased model fits and DE gene detection, confirming that precise age estimates increase the

power of the analysis (Sup. Fig. 13a-c, methods).

We also found a curious batch effect on development: mutants are systematically older than controls in the

first two replicates while it was the opposite in the third (Sup. Fig. 13d).

​Detecting and correcting expression changes caused by development using
reference data
When samples are few and experimental groups have little or no overlap in development, the information

available in the experiment is not sufficient to separate the effects of development from those of interest. To

overcome this, we developed an approach using RAPToR interpolated references to quantify and correct for

development in genome-wide expression data.
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​Quantifying developmental expression changes

To quantify the impact of development in DE analysis, we compare observed log2-fold changes (observed

logFC) between the two groups (i.e. mutant and wt) with changes expected purely from developmental

differences between groups (expected logFC) which we estimate comparing age-matched interpolated

reference profiles (Extended Data Fig. 9 ). We quantify development impact using Pearson correlation

between observed and expected logFCs (or its square). We use Transcripts Per Million (TPMs) to compute

the logFCs, as they are more comparable across samples and datasets.

​Development can completely confound DE analysis leading to erroneous conclusions

Not accounting for confounding developmental variation in DE analysis can lead to erroneous conclusions.

Comparing young adult C. elegans that developed through dauer state (post-dauer) to controls that did not,

Hall et al. 19 conclude that post-dauer animals have reduced spermatogenesis from a down-regulation of

spermatogenesis-associated genes and an up-regulation of oogenesis-associated genes in their DE analysis.

However, this could simply be explained by post-dauer samples being older than controls as C. elegans

naturally switch from sperm to egg production during development. Moreover the increased brood size in

post-dauer worms described by the authors19 would even suggest the opposite as sperm number limits brood

size in C. elegans: post-dauer animals would have up- and not down-regulation of spermatogenesis genes.

To rigorously test if these expression changes are caused by development, we estimated the global and

tissue-specific age of samples with our best-quality reference, and found post-dauer samples were

systematically older. However, while germline age estimates were reliable, global and soma-specific staging

put some samples at the edge of the reference, indicating development beyond reference bounds (Sup. Fig.

14a). Thus, we validated the age estimates with an older and lower-quality reference spanning a few hours

further and found the same divide in global, soma, and germline age between groups (Sup. Fig. 14b).

RAPToR age estimates show the control samples are in late spermatogenesis, while the post-dauer samples

are 5-10 hours older, fully switched to oogenesis (Fig 5c, Sup. Fig. 14a). A DE analysis between the two

conditions does recapitulate reported divide between spermatogenesis and oogenesis genes (Sup. Fig. 14c).

However, this is also fully recapitulated by the expected developmental changes (r = 0.82, Fig 5d, Sup. Fig.
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14d). Correlation also stands with all genes (r = 0.44, Sup. Fig. 14e). Repeating the logFC comparison with

the older reference yielded similar results (germline r = 0.74, all genes r = 0.41 Sup. Fig. 14f-g).

This supports our hypothesis that the expression changes between groups, particularly in germline genes, is

due to a difference in development between the samples, rather than a direct effect of the post-dauer

condition.

​Recovering direct perturbation effects using reference data

To recover the effect of a perturbation confounded by development we propose a model in which we include

all reference expression profiles in a time window spanning the development of the selected samples (see

methods) and model expression dynamics as a spline of developmental time, batch between reference and

sample data, and the perturbation of interest. We first convert interpolated reference data from TPM to

counts, assuming a fixed library size (see methods) to ensure compatibility with tools that require counts to

calculate differential expression. Including reference data with artificially low dispersion invalidates models

statistics such as p-values. We can however rely on the model coefficients (logFCs) estimated with the

reference data to account for development. The perturbation (strain) logFC coefficients estimated by this

reference integrated model are controlled for developmental changes shared by the samples and the

reference (Extended Data Fig. 10a).

To evaluate how effectively our approach recovers truly DE genes, we exploit time series data of C. elegans

xrn-2 and WT late larval development sampled every hour at 25°C20 . We first define a gold standard of truly

DE genes by comparing three mutant and three WT samples with the best developmental match. Next we

evaluate the effect of increasing developmental difference on the DE analysis by comparing the same three

mutant samples with three increasingly mismatching WT samples (Fig. 5f, methods). We shifted WT samples

back by 1, 2, 3, 5 and 7 time points (corresponding roughly to 1, 2, 3, 5, and 7 hours of development at 25°C).

Correlation between expected and observed logFC quickly increases with increasing developmental shifts up

to 0.9, meaning that around 80% of the variance in logFCs is explained by development at 7 hours of time

shift. At the same time, the performance of a standard linear model p-value in identifying truly DE genes
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quickly drops (Fig. 5h) as more and more expression changes are due to development (Extended Data Fig.

10b).

We show that the strain logFC from the reference integrated model already performs better in detecting truly

DE genes than the standard analysis p-value for developmental shifts of 3 or more hours (at 25°C, Extended

Data Fig. 10c). However, we propose an integrated predictor including the weighted mean between the

standard analysis p-value and the strain logFC of the reference integrated where the optimal weight w is

proportional to the variance of standard logFC explained by development (Extended Data Fig. 10d-e). At the

optimal w (see methods, Extended Data Fig. 10e), our integrated predictor outperforms the standard analysis

p-value for all time-shifts considered, with larger time-shifts showing the strongest improvements (Extended

Data Fig. 10 c-d). For the largest shift (WT -7), w = 1 meaning that no information from the standard DE

p-value is used to get the best results.

As no gold-standard is usually available to guide the choice of w, we explored the relationship between the

optimal w and the correlation of logFCs with the reference. Sampling more WT subsets including

non-contiguous sets (see methods, Sup. Table 13) reveals a tight relationship between optimal w and the

correlation between observed and expected logFCs (Extended Data Fig. 10 f-g) which can therefore suggest

the appropriate value of w.
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Supplementary Figure 1 – Effect of gene set size on RAPToR estimates

a, Effect of gene set size on RAPToR estimate of a C. elegans larval development time series5 staged on a
reference built from Kim et al.9 data. Leftmost points and dashed lines indicate estimates on all genes
(18718).

b, Median Absolute Deviation of bootstrap estimates from global estimate + interpolation resolution (i.e. half a
confidence interval) by bootstrap set size for 50 bootstrap estimates.

c,d, Effect of small gene sets on RAPToR estimates without prior (c), or with prior (d). Some samples are
staged to a previous molt (see also Sup. Fig. 2) when the gene set is small, which is solved by including a
prior. Horizontal dashed lines indicate estimates of the samples using the full available gene set (18718).
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Supplementary Figure 2 – Effect of bootstrap (or gene) set size on RAPToR correlation profiles

Correlation profiles of the first 4 samples of the Hendriks et al.5 time course staged on the reference built from
Kim et al.9 samples. Bootstrap gene set size (bss) was set to 2 000, 1 000, 500 or 250, with 100 bootstraps.
With small gene sets, samples can be staged to other points in the transcriptomic landscape with similar
expression (e.g, the four maxima in the profiles shown here are in phase with the oscillatory expression
pattern of the four successive larval molts of C. elegans).

Global and bootstrap estimates, as well as the confidence interval, are shown above each profile. Dotted lines
around the global correlation profiles correspond to 0.025 and 0.975 quantiles of the bootstrap correlation
profiles. As expected, this interval gets larger for smaller bootstrap gene set sizes.
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Supplementary Figure 3 – Minute-scale precision staging of development

a,b, Chronological age vs. RAPToR age estimates (black dots) and their bootstrap confidence intervals (grey
bars) of C. elegans late larval development5 (a), and D. rerio embryo development6 (b) staged on appropriate
references9,10 (as in Fig 2a, 2b).

Bootstrap confidence intervals were computed with 50 bootstrap sets by RAPToR as part of the staging
process (see methods).
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Supplementary Figure 4 – Effect of data quality on staging and confidence intervals

A bulk RNA-Seq C. elegans larval development time-series5 is staged on a reference built from an
independent time series9 . RNA-seq samples were staged using 10,000 genes, with bootstrap confidence
intervals (CI) of the age estimates built from 50 bootstrap estimates.

a,b, CI size when adding gaussian noise to log(TPM+1) reference data before interpolation (a), and when
changing the number of components used for interpolation (b). From top to bottom, p-values are (a): p=0.73,
p=0.73, p=0.98, p=0.73, and p=0.98; (b): p=8.35e-04, p=0.40, p=0.91, and p=0.91.
c, CI size when adding gaussian noise to log(TPM+1) sample expression data. From top to bottom, p-values
are p<1e-10, p=2.05e-05, p=0.016, p=0.036, and p=0.96.
d, Spearman correlation between original data and samples+noise (as in c).
e,f, CI size when averaging samples together to mimic developmental spread of individuals (e) and when
mixing samples together (randomly picking a gene expression value between n samples) to mimic
heterochrony (f). From top to bottom, p-values are (e): p=0.048, p=0.048, p=0.44, and p=0.74; (f):
p=2.00e-04, p=3.68e-03, p=0.25, and p=0.57.
g, CI size when decreasing bootstrap gene set size. From top to bottom, p-values are p<1e-10, p=2.29e-07,
p=5.88e-03, p=0.12, and p=0.17.

In a-c, R² and Spearman correlation between chronological age and RAPToR estimates for each condition
are shown above plots.
In a-c,e-g, significance of mean difference with the control condition (noted “(ctrl)”) is tested with a linear
model. P-values are FDR-adjusted within each panel.

In a-d,g, each box is n=11 RNA-seq samples; in e,f, boxes are n=11, 9, 6, and 4 sample combinations from
left to right respectively. Each box spans the interquartile range (IQR), the central bar denotes the median,
and whiskers extend to 1.5×IQR in either direction.
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Supplementary Figure 5 – Robustness of reference-building to parameter change

a,b, Sum Squared (SSQ) prediction error of gene expression interpolation at known time points by number of
components and dimension-reduction method used for interpolation in the Kim et al.9 (a), and Meeuse et al.15

(b) references of C. elegans larval development.

c,d, Spearman correlation between interpolated reference and (non-interpolated) reference and independent
time series5 samples at their age estimates when varying dimension reduction method and component
number used for reference-building, using Kim et al. samples (c) or Meeuse et al. (d) samples to build a
reference (see also Sup. Table 2).

In c, each box is n=26 for Kim et al.9 samples and n=12 for Hendriks et al.5 samples; in d, each box is n=44
for Meeuse et al.15 samples and n=16 for Hendriks et al. samples. Each box spans the interquartile range
(IQR), the central bar denotes the median, and whiskers extend to 1.5×IQR in either direction.
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Supplementary Figure 6 – Defining intelligible dynamics with spline fits

Expression profiling time series are projected into principal component space and fit with their respective
reference interpolation models (see Sup. Table 1). The interpolation of each component is then evaluated with
the deviance explained (DE) and relative error (RE) of the fit.

a,b, C. elegans larval development9 selected components with (a) and without (b) intelligible dynamics (with
respect to time), that are kept or dropped for reference building respectively.
c,d, D. melanogaster embryo development16 selected components with (c) and without (d) intelligible
dynamics, that are kept or dropped for reference building respectively.
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Supplementary Figure 7 – RAPToR standard reference stage samples well within experiments

a, Chronological age vs. RAPToR age estimates of a C. elegans aging time series (Byrne et al. 2020,
unpublished). The samples from one of 3 replicates were used to build the reference (in red).

b, Chronological age vs. RAPToR age estimates of dissected hippocampus tissue from M. musculus across
the entire lifespan of mice in wild-type (black) and Glud1 transgenic (Tg) animals (red)12. Wild-type samples
were used to build the reference.
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Supplementary Figure 8 – RAPToR stages adult human brain tissue samples

a,b, Chronological age vs. RAPToR estimates of human BA11 brain tissue samples on (a) a reference built
from half the samples (in red) and (b) a reference built from human BA47 brain tissue samples.

c, RAPToR estimates of BA11 samples on BA11 reference (as in a) vs. RAPToR estimates on a BA47
reference (as in b).

d,e, Chronological age vs. RAPToR estimates of human BA47 brain tissue samples on (d) a reference built
from half the samples (in red) and (e) a reference built from human BA11 brain tissue samples.

f, RAPToR estimates of BA47 samples on BA47 reference (as in d) vs. RAPToR estimates on a BA11
reference (as in e).

All samples are from Chen et al.13
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Supplementary Figure 9 – Staging human single cells with RAPToR

20% of a human early-embryogenesis single cell dataset21 were used to build a reference, on which all cells
were then staged. Metrics are split between reference and validation cell subsets.

a, Chronological age vs. RAPToR age estimates of single-cells.

b, Inferred pseudotime from the authors vs. RAPToR age estimates of single cells.
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Supplementary Figure 10

Supplementary Figure 10 – RAPToR age estimates improve model fits over linear age scaling
Drosophila embryo samples from Kalinka et al.23 of 6 species are staged on a D. melanogaster reference built
from Graveley et al.16 samples (as in Fig 3a).

a, Choice between identical models fit on gene expression with linearly-scaled chronological age or RAPToR
estimates as predictors.

b, R² per gene of models with chronological age as predictor vs. the same model using RAPToR estimates,
across 2-8 of spline degrees of freedom.
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Supplementary Figure 11 – Staging cow embryos on human embryos and vice versa

a, Staging early-embryo development of B. taurus24 on a human early-embryo development reference25.

b, Staging early-embryo development of H. sapiens25 on a cow early-embryo development reference24.
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Supplementary Figure 12 – Impact of drugs on C. elegans germline development

C. elegans samples exposed to 3 doses of 3 different drugs profiled by Lewis et al.17 are staged on the
reference built from Meeuse et al.15 samples.

a, Impact of batch on global, soma and germline age.

b, Impact of drug dose on global, soma and germline age, normalized per batch. Age difference is computed
by subtracting the age of the control sample within each batch.

In a,b, bars indicate group mean.
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Supplementary Figure 13 – Increasing the power of DE gene detection with RAPToR estimates

pash-1ts or wild-type C. elegans RNA-seq bulk samples profiled by Lehrbach et al.18 are staged on the
reference built from Reinke et al.4 samples.

a-c, Random perturbations on chronological age (n=100 sets, see methods) produce overall fewer DE genes
for strain (a), and development (b) than either chronological age (red) or RAPToR estimates (blue). These
random perturbations further cause poorer model fits than chronological age whereas RAPToR age estimates
systematically outperform chronological age (c).

d, Batch effect on developmental difference between control and pash-1ts samples. Each box is n = 4
comparisons between WT and mutant time points, and spans the interquartile range (IQR), the central bar
denotes the median, and whiskers extend to 1.5×IQR in either direction. Exact p-values, derived from
two-sided t-tests on linear model coefficients, are p = 0.0139, and p = 0.3755 from top to bottom respectively,
no correction was applied.



Supplementary Figure 14 – Germline expression changes recapitulated by a developmental shift

a,b, Global, soma-specific and germline-specific RAPToR age estimates of C. elegans control and post-dauer
(PD) samples19 staged on a reference built from Meeuse et al.15 (a), and Reinke et al.4 (b). Each group is n=3,
with bars indicating mean age.

c, Volcanoplot of control vs. PD groups. Spermatogenesis and oogenesis genes are color-coded and logFCs
of both categories are shown in boxplots at the bottom.

d, logFCs of control vs. PD for spermatogenesis and oogenesis genes observed in samples (left) and
expected from development in the reference built from Meeuse et al., (right). Boxes are n=15482, n=596, and
n=875 for other, sperm, and oogenesis respectively. Each box spans the interquartile range (IQR), the central
bar denotes the median, and whiskers extend to 1.5×IQR in either direction..

e, Observed expression logFCs between control and PD samples vs. expected developmental expression
logFCs from the reference built from Meeuse et al. (as in Fig 5h, but for all genes).

f,g, Observed expression logFCs genes between control and PD samples vs. expected developmental
expression logFCs from the reference built from Reinke et al., for germline genes (e), and all genes (f).

logFC: log2 fold-change, FDR: false discovery rate.
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Dataset Organism Reference
name

Data-
package

Formula Dim. red,
nc∗

Notes

Kim et al. (2013) C. elegans NA NA X ~s(age, bs=’cr’, k=14) PCA, 9 This reference is not a part of a data-package because
wormRef has a reference built from the joint Kim and
Hendriks data (Cel_larval). This reference was built
to demonstrate that staging could capture developmen-
tal speed differences. Only the 20C samples of the study
were used.

Meeuse et al.
(2020)

C. elegans Cel_larv_YA wormRef X ~s(age, k=25, bs=’cr’) ICA, 20 Age is scaled to “20C development” by staging overlapping
samples on the Cel_larval reference in wormRef and com-
puting the developmental speed difference.

Reinke et al.
(2004)

C. elegans Cel_YA_2 wormRef X ~s(age, bs=’tp’) + cov PCA, 14 ’cov’ is the batch variable. Age is scaled to “20C develop-
ment” by staging on the Cel_larval reference in wormRef.

Graveley et al.
(2011)

D. melanogaster Dme_embryo drosoRef X ~s(age, bs=’cr’) PCA, 8 Timing of the samples was considered as the lower bound
of the given time interval (e.g. “em6.8hr” was considered
at 6h of development).

Domazet et al.
(2010)

D. rerio Dre_emb_larv zebraRef X ~s(age,bs =’cr’) PCA, 12 Mixed sex samples from 0 to 1080 hours post-fertilization
were used.

Lu et al. (2013) M. musculus Mmu_embryo mouseRef X ~s(age, bs=’cr’) ICA, 8 Only samples older than 0.5 day post coitus were used
(large gap between 0.5dpc and next timepoints at 6.5dpc,
7.5dpc, ...)

Pantalacci et al.
(2017) & Sémon et
al. (biorXiv)

M. musculus
(first lower mo-
lars)

NA NA X ~s(age, bs=’ts’, k=4)+rep PCA, 5 Only lower molar samples were used to build the reference.

Petropoulos et al.
(2016)

H. Sapiens
(single-cells)

NA NA X ~s(age, bs=’cs’, k=5) PCA, 6 Only 20% of cells at each time point were used to build
the reference (see methods)

Byrne et al. (un-
published)

C. elegans NA NA X ~s(age, bs=’cr’, k=4) PCA, 1 All samples were used to build the reference. For Sup.
Fig.9, a third of samples were randomly selected to build
the reference, using the model formula and 3 components.

Pletcher et al.
(2002)

D. melanogaster NA NA X ~s(age_days, bs=’tp’, k=3) PCA, 1 Only control (food ad libitum) samples were used to build
the reference.

Chen et al. (2016) H. Sapiens
(BA47 brain
tissue)

NA NA X ~s(age, bs=’cr’) PCA, 1 Half of the samples were randomly sampled to use as ref-
erence.

Chen et al. (2016) H. Sapiens
(BA11 brain
tissue)

NA NA X ~s(age, bs=’cr’) PCA, 1 Half of the samples were randomly sampled to use as ref-
erence.

Wang et al. (2014) M. musculus
(hippocampus)

NA NA X ~s(age, bs=’cs’, k=5) PCA, 4 Only Wild-type samples were used to build the reference

Cuthbert et al.
(2021)

B. taurus NA NA X ~s(age, bs=’cr’, k=4) PCA, 2 Only “somatic cell nuclear transfer” embryos (half) were
used to build the reference. Sample timings are from the
literature (see methods)

Vassena et al.
(2011)

H. sapiens NA NA X ~s(age, bs=’cr’, k=6) PCA, 2 Only replicates 2 and 3 were used to build the reference.
Sample timings are from the literature (see methods)

∗: Dimension reduction, number of components

Supplementary Table 1 – RAPToR References used in this study



Reference built from Kim et al. (2013)
Nb. components 4 9 14

PCA ICA PCA ICA PCA ICA
Kim et al. (2013) samples∗ 0.999 0.999 0.999 0.999 0.999 0.999
Hendriks et al. (2014) samples 0.991 0.993 0.991 0.992 0.992 0.994

Reference built from Meeuse et al. (2020)
Nb. components 10 20 25

PCA ICA PCA ICA PCA ICA
Meeuse et al. (2013) samples∗ 0.999 0.999 1 1 1 1
Hendriks et al. (2014) samples 0.998 0.999 0.999 0.999 0.998 0.999
∗: samples used to build the reference

Supplementary Table 2 – Robustness of Reference-building to parameter changes (R2 of RAPToR estimates vs.
Chronological age)
Samples of the 20°C time-series profiling experiments from Kim et al. (2013) were used to build a reference, changing the
number of components used and between the use of PCA/ICA for interpolation. The same samples were then staged with
RAPToR on the references, and R2 value of Chronological age vs. RAPToR estimates are reported. Another time-course
(Hendriks et al. 2014) was used as an external dataset validation and similarly staged on the references. The same was done
using samples from the Meeuse et al. (2020) dataset to build the references. See also Sup. Fig 7c, 7d.

Species Developmental speed factor
computed from RAPToR estimates

Developmental speed factor
from Kalinka et al. (2010)

D. melanogaster 1.060 1.00
D. simulans 1.185 1.18
D. ananassae 1.190 1.15
D. pseudoobscura 0.901 0.93
D. persimilis 0.880 0.98
D. virilis 0.696 0.70

Supplementary Table 3 – Developmental speed factors of Drosophila species compared to D. melanogaster
Briefly, Kalinka et al. (2010) established their scaling factors by interpolating on the gene expression with respect to time
and computing the sum square difference between a specie and D. melanogaster at equal time, for a range of scaling values.
The minimum of the scaling parameter curves became the chosen factor.

Table too large for PDF (can be downloaded from https://www.nature.com/articles/s41592-022-01540-0#Sec53)

Supplementary Table 4 – * Enrichment analysis of Cluster 1 of highest-correlated C. elegans and D. melanogaster
genes

Table too large for PDF (can be downloaded from https://www.nature.com/articles/s41592-022-01540-0#Sec53)

Supplementary Table 5 – * Enrichment analysis of Cluster 2 of highest-correlated C. elegans and D. melanogaster
genes

Table too large for PDF (can be downloaded from https://www.nature.com/articles/s41592-022-01540-0#Sec53)

Supplementary Table 6 – * Enrichment analysis of Cluster 3 of highest-correlated C. elegans and D. melanogaster
genes



Table too large for PDF (can be downloaded from https://www.nature.com/articles/s41592-022-01540-0#Sec53)

Supplementary Table 7 – * Enrichment analysis of Cluster 1 of highest-correlated M. musculus and H. sapiens
genes

Table too large for PDF (can be downloaded from https://www.nature.com/articles/s41592-022-01540-0#Sec53)

Supplementary Table 8 – * Enrichment analysis of Cluster 2 of highest-correlated M. musculus and H. sapiens
genes

Table too large for PDF (can be downloaded from https://www.nature.com/articles/s41592-022-01540-0#Sec53)

Supplementary Table 9 – * Enrichment analysis of Cluster 3 of highest-correlated M. musculus and H. sapiens
genes

Table too large for PDF (can be downloaded from https://www.nature.com/articles/s41592-022-01540-0#Sec53)

Supplementary Table 10 – * Enrichment analysis of Cluster 4 of highest-correlated M. musculus and H. sapiens
genes

Table too large for PDF (can be downloaded from https://www.nature.com/articles/s41592-022-01540-0#Sec53)

Supplementary Table 11 – * Enrichment analysis of Cluster 5 of highest-correlated M. musculus and H. sapiens
genes



Publication Database Accession Description

Kim et al. (2013) GEO GSE49043 C. elegans larval development time course (20C).

Hendriks et al. (2014) GEO GSE52861 C. elegans late larval development time course (25C).

Levin et al. (2016)
GEO GSE60471 D. melanogaster embryonic development time course.

GEO GSE60755 C. elegans embryonic development time course.

GEO GSE60619 D. rerio embryonic development time course.

Graveley et al. (2011) - fruitfly.org D. melanogaster embryonic development time course.

Rauwerda et al. (2017) GEO GSE83395 D. rerio early embryonic samples.

Lu et al. (2013) GEO GSE39897 M. musculus embryonic development time course.

Collins et al. (2019) - NA1 M. musculus embryonic development time course.

Pantalacci et al. (2017) GEO GSE76316 M. musculus first molar embryonic development (replicate 1)

Sémon et al. (biorXiv) - NA2 M. musculus first molar embryonic development (replicate 2)

Kalinka et al. (2010) ArrayExpress E-MTAB-404 Embryonic development time course of 6 Drosophila species.

Rockman et al. (2010) GEO GSE23857 C. elegans late larval/young adult recombinant inbred lines.

Reinke et al. (2004) GEO GSE696 C. elegans young adult to adult development time course.

Meeuse et al. (2020) GEO GSE130811 C. elegans larval to adult time course.

Lewis et al. (2009) GEO GSE12298 C. elegans young adult toxicity assay of 3 drugs

Lehrbach et al. (2012) ArrayExpress E-MTAB-1333 C. elegans young adult to adult mutant vs. wild type experiment.

Hall et al. (2010) - NA3 C. elegans young adult post-dauer vs. control experiment.

Miki et al. (2017) GEO GSE97775 C. elegans larval development time course of WT and xrn-2 mutant.

Petropoulos et al. (2016) ArrayExpress E-MTAB-3929 H. sapiens single-cell early-embryo development

Deng et al. (2014) GEO GSE45719 M. musculus single-cell early-embryo development

Byrne et al. (unpublished) GEO GSE93826 C. elegans aging time course

Hou et al. (2016) GEO GSE77110 C. elegans aging time course

Golden et al. (2008) GEO GSE12290 C. elegans single-worm aging time course

Pletcher et al. (2002) - NA3 D. melanogaster aging time course in caloric restriction and control
conditions

Chen et al. (2016) GEO GSE71620 H. sapiens profiling of BA47 and BA11 brain tissues in individuals
aged 16-89

Wang et al. (2014) GEO GSE48911 M. musculus hippocampus aging time course in wild-type and Glud1
mutants

Cuthbert et al. (2021) GEO GSE178436 B. taurus early-embryo development time course.

Vassena et al. (2011) GEO GSE29397 H. sapiens early-embryo development time course.

1: data is available in supplementary of the publication (https://ndownloader.figshare.com/files/11864189).
2: data is awaiting publication.
3: the authors kindly provided us with their data (available in our analysis repo at
https://gitbio.ens-lyon.fr/LBMC/qrg/raptor-analysis).

Supplementary Table 12 – List of datasets used in this study with accession IDs



Combination of WT
timepoints

Note

8 9 10 Gold Standard
7 9 10
7 8 10
6 9 10
6 8 10
6 7 10
5 9 10
5 8 10
5 7 10
5 6 10
7 8 9 WT -1
6 8 9
6 7 9
5 8 9
5 7 9
5 6 9
4 8 9
4 7 9
4 6 9
4 5 9
6 7 8 WT -2
5 7 8
5 6 8
4 7 8
4 6 8
4 5 8
3 7 8
3 6 8
3 5 8
3 4 8
5 6 7 WT -3
4 6 7
4 5 7
3 6 7
3 5 7
3 4 7
2 6 7
2 5 7
2 4 7
2 3 7
4 5 6
3 5 6
3 4 6
2 5 6
2 4 6
2 3 6
1 5 6
1 4 6
1 3 6
1 2 6

Supplementary Table 13 – List of WT time point combinations used to estimate the relationship between
optimal w and sample-reference logFC correlation
Using the expression data from Miki et al. (2017), each set of 3 WT samples is compared to the gold standard set of xrn-2
samples (8,9,10), see Figure 5f-i.



1. Predicting age from the transcriptome

1.2 Further improvements of RAPToR

1.2.1 Correcting for age in differential expression analysis

1.2.1.1 Introduction

In fast-growing organisms like C. elegans, even a subtle influence of experimental conditions
on developmental speed can significantly impair gene expression analysis. Indeed, samples are
usually collected at precise timings, aiming for as little developmental spread as possible within
each group. Small growth speed differences between groups are therefore sufficient for the vari-
able of interest to be fully confounded by development (Fig. 1.1a). Because of this, gene expression
changes normally seen during development are easily misattributed to the variable of interest (Fig.
1.1b).
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Figure 1.1 – Effect of a condition delaying development on differential expression analysis.
a,b, Cartoons illustrating a confusion of age and condition (A/B) due to the latter delaying development (a),
and subsequent differential expression analysis situation where the developmental dynamic fully explains
the difference between A and B groups (b). Adapted from BULTEAU & FRANCESCONI, 2022.

We showed that using RAPToR, we can precisely infer age from gene expression to detect pre-
viously unknown age differences between samples (including in a tissue-specific manner), de-
tect and quantify the variance of expression changes due to these age differences, and recover
perturbation-specific expression changes even when these age differences completely confound
the variable of interest (BULTEAU & FRANCESCONI, 2022).

However, the method we initially proposed to recover perturbation-specific expression
changes has two major drawbacks: 1) meaningful p-values can not be derived from the model,
thus requiring a different classifier which 2), relies on an extra parameter that needs to be esti-
mated from the data with an empirical relationship (Extended Data Fig 10g of the article). This re-
quires advanced knowledge of Differential Expression analysis (DE analysis), making our method
difficult to use, which is not ideal for such a widespread problem.

In this section, I improve upon this method and further characterize the effects of age differ-
ences between groups on DE analysis.

1.2.1.2 How to correct for age in differential expression analysis

In theory

The principles behind the age correction method remain the same as initially presented. That
is, RAPToR reference data can bridge the age gap between non-overlapping sample groups, and
rescue otherwise impossible DE analyses. Using a model that includes both (a window of) refer-
ence data and samples of interest, the developmental dynamic is correctly inferred with the refer-
ence and serves as the baseline for the difference between the groups of interest (Fig. 1.2).

The model integrating the reference (mref) can be formally defined as follows:

Y ∼ β0 + s(ag e)+βbatch ∗ Ir e f +βcondi t i on ∗ Icondi t i on (mref)

with
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1. Predicting age from the transcriptome

Y, the observations (i.e. expression values) of a gene;
β0, the intercept;
s(), a polynomial spline to fit nonlinear dynamics along ag e;

βbatch , a batch term between the reference and samples of interest and
Ir e f , its associated binary indicator (0 for reference, 1 for samples);

βcondi t i on , the effect of the condition of interest and
Icondi t i on , its associated indicator (1 for condition B samples, else 0).

Developmental time

G
en

e 
ex
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Interpolated
reference window
A samples
B samples

reference
A samples
B samples

Model fit on 

Condition

Batch

Batch

Figure 1.2 – Cartoon of DE analysis correction by integrating reference data
Adapted from BULTEAU & FRANCESCONI, 2022.

In practice

Most DE analysis tools (such as DESeq2, LOVE et al., 2014, or edgeR, ROBINSON et al., 2010)
input raw counts for their particular statistical properties. As RAPToR references are in transcript
per million (TPM), the interpolated reference data must first be converted from TPM to artificial
counts assuming a fixed arbitrary library size (see Methods). Because these counts derive from
interpolated reference data, they are essentially noiseless, thus invalidating the gene dispersions
(or variances) estimated by DE analysis tools and subsequent statistical testing. This is the source
of the aforementioned problems.

To bypass the issue, we now infer gene dispersions from a model without reference data and
inject them into the final model with reference data. In this way, the model coefficients (log2-fold-
changes, hereafter logFCs) between sample groups are corrected for development by the reference
dynamic, and their respective statistical tests use dispersion values inferred only from samples,
resulting in valid p-values.

1.2.1.3 Effect of age differences and DE correction in a controlled case

Analysis strategy

To test this new strategy, we define a gold-standard of truly Diffferentially Expressed genes (DE
genes) between C. elegans wild-type (WT) and xrn-2 mutants by comparing samples in a window
of matching physiological age from published time-series expression data (MIKI et al., 2017). We
then compare DE genes obtained when shifting the window of WT samples by 1, 2, 3, 5, and 7 time
points with the gold-standard (Fig. 1.3). This allows us to evaluate first, the effect of increasing age
mismatch between the mutant and WT on the performance of a standard DE analysis, and second,
the performance of our method to recover truly DE genes of the gold-standard compared to the
standard DE analysis.

We consider two scenarios for DE analysis.

Y ∼ β0 +βstr ai n ∗ Istr ai n (model 1)

Y ∼ β0 +ag e +βstr ai n ∗ Istr ai n (model 2)

81



1. Predicting age from the transcriptome

Chronological age
(h past L4 stage, 25°C)

R
A

P
To

R
 a

ge
 e

st
im

at
es

(h
 p

os
t−

ha
tc

hi
ng

, 2
0°

C
)

0 10

45

60

WT gold
standard

WT -1

WT -2

WT -3

WT -5

WT -7 wild−type
xrn−2(xe31)

xrn−2
subset

Figure 1.3 – Selected subsets of C. elegans WT and xrn-2 mutant samples
Chronological age vs. RAPToR age estimates of expression data from MIKI et al. (2017).

In the first (model 1), age is not specified. Therefore, we evaluate the effect of age as an "un-
known" confounder on DE analysis, which is the most common scenario. In the second (model 2),
inferred age is included. This should result in better model fits and thus increase statistical power
for DE gene detection as long as the effects of age and strain are separable. However, as the age
difference between groups increases, so does the collinearity between age and strain variables,
which decreases statistical power to detect the specific effect of each individual predictor (GRA-
HAM, 2003).

Both the presence of confounders and of collinearity between variables result in debatable
model and statistical validity (CLARKE & GREEN, 1988; GRAHAM, 2003) and, as shown below, they
have different effects on the analysis.

Age differences between groups decrease DE analysis performance

Using the age-matched set of samples, we find 955 and 1125 truly DE genes with model 1 and
model 2 respectively (FDR < 0.01, |log FC| > 1), which are our gold standard. More genes are found
with model 2 thanks to better fits, but the gene sets largely overlap (943).

As expected, the performance of both models to detect their respective gold-standard genes
drops sharply with increasing developmental shifts between WT and mutant samples (Fig. 1.4a,b,
1.4d-e), particularly once there is no more age overlap between the compared groups (starting at
WT-3). In model 1, where age is an unknown confounder, this drop in performance corresponds to
skyrocketing rates of false positives (Fig. 1.4c) due to developmental changes being misattributed
to the strain effect. In contrast, model 2 keeps a low false positive rate (< 5%) until the age overlap
between groups disappears, and we observe a steady decline in the number of true positives (Fig.
1.4f) which likely corresponds to the loss of statistical power caused by the collinearity of age and
strain variables (GRAHAM, 2003).

Integrating reference data restores analysis performance

As we previously reported (BULTEAU & FRANCESCONI, 2022), age correction by integrating ref-
erence data in the model strongly rescues DE analysis performance in cases where the compared
groups have no overlap (Fig. 1.5). The improved method shown here recovers the analysis to the
same extent as the one presented in our publication.

In sample sets with overlapping age (GS, WT-1, WT-2, Fig. 1.5), we see similar performance
of DE analyses with or without reference data. Slight decreases (GS for both models) or increases
(WT-1, WT-2 in model 1) in performance are explained by reference batch effect or the addition of
age to the model respectively.

We conclude that our updated method works without needing the previously introduced clas-
sifier, thus greatly simplifying its use.

82



1. Predicting age from the transcriptome

P
re

ci
si

on

Recall

a b c

WT -1
WT -2
WT -3
WT -5
WT -7

N
b.

 D
E

 g
en

es

False
positives

True
positives

0

0

1

1

P
re

ci
si

on

Recall0

0

1

1

W
T

 -
1

W
T

 -
2

W
T

 -
3

W
T

 -
5

W
T

 -
70

1

0

6000

P
/R

 c
ur

ve
 A

U
C

W
T

 -
1

W
T

 -
2

W
T

 -
3

W
T

 -
5

W
T

 -
70

1

P
/R

 c
ur

ve
 A

U
C

W
T

 -
1

W
T

 -
2

W
T

 -
3

W
T

 -
5

W
T

 -
7

G
S

WT -1
WT -2
WT -3
WT -5
WT -7

N
b.

 D
E

 g
en

es

0

6000

W
T

 -
1

W
T

 -
2

W
T

 -
3

W
T

 -
5

W
T

 -
7

G
S

False
positives

True
positives

d e f

Figure 1.4 – Differential expression analysis performance drops with increasing age difference between
compared groups.
Differential expression analysis is performed between mutant and WT sample groups with increasing age
differences, as defined in Fig. 1.3.
a-c, Precision-Recall curves (a) and their AUC (b) of the strain effect in model 1 (no age), and true and false
positives of DE genes with False Discovery rate (FDR) < 0.01 and |log FC| > 1 (c).
d-f, idem for model 2 (with age).
DE: differentially expressed; AUC: area under curve; logFC: log2-fold-change; GS: gold standard.
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Figure 1.5 – Integrating reference data restores differential expression analysis performance
Differential expression analysis is performed between mutant and WT sample groups with increasing age
differences, as defined in Fig. 1.3.
a,b, Precision-Recall curves (a) and their AUC (b) of the strain effect in mref in finding model 1 gold-
standard genes. model 1 curves and AUC are shown in lighter color.
c,d, idem for mref in finding model 2 gold-standard genes, with model 2 curves and AUC shown in lighter
color.
DE: differentially expressed; AUC: area under curve; GS: gold standard.
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1.2.1.4 Conclusions

The first approach we proposed for age correction in DE analysis was difficult to use because it
relied on an unconventional classifier, rather than standard p-values. Here, I presented a simpler
method with the same principles and performance that produces meaningful p-values.

We show how a standard analysis becomes dominated by false positives with increasing (un-
known) age differences between groups. Including age as a covariate is a simple solution to keep a
low false positive rate when there is overlap between the compared groups, at the cost of reduced
statistical power. When age is fully confounded with the variable of interest however, the sharp
drop in performance of a DE analysis could only be recovered by integrating external reference
data despite the potential batch effects and complexity this adds to the analysis.

Our approach works under the assumption that batch effects and, most importantly, develop-
ment are conserved between the reference and all samples. Because of this, interaction between
the variable of interest and development cannot be considered in the corrected models. The most
common "3 controls vs. 3 perturbed" scenario is however unlikely to have the power to detect
meaningful interaction if age and the variable of interest are fully confounded.

This strategy therefore provides a precious opportunity to re-analyze data where a standard
DE analysis provided completely meaningless results due to strong unintended physiological dif-
ferences between conditions. Given how prevalent this is in published expression data (SNOEK

et al., 2014), we believe our approach will lead to the discovery of many previously missed effects,
as well as the debunking of erroneous findings.

1.2.2 Building more robust aging references

1.2.2.1 Introduction

Development is a robust process, with conserved gene expression across individuals, and to
some extent, species (LEVIN et al., 2016). In stark contrast, aging is highly variable; individuals age
at different rates but also in different ways due to the influence of diverse factors such as the diet
(HOU et al., 2016), perception of the environment (B. KIM et al., 2020), parental effects (GREER

et al., 2011), as well as unknown causes (W. B. ZHANG et al., 2016). This makes predicting age from
gene expression along aging more difficult than along development.

Nevertheless, we showed that RAPToR could accurately infer age from gene expression in ag-
ing worms, flies, and humans, recapitulating known biological effects (BULTEAU & FRANCESCONI,
2022). We achieved this by selecting informative genes to build the reference, empirically defined
as those with a monotonous trend along aging. This gene selection approach is however very sen-
sitive to the number of time points and samples in the reference, and thresholds for gene selection
are defined arbitrarily. Therefore, we searched for a more data-driven method to select informative
genes.

Here, I briefly show that combining C. elegans aging time series datasets of different profil-
ing technologies, strains, and culture conditions allows us to find a common set of aging genes
sufficient for staging with RAPToR.

1.2.2.2 Few shared dynamics among aging time-series

Table 1.1 lists aging time-series datasets used in this section and their characteristics. We
remark that samples from GOLDEN et al., 2008 distinguish themselves from the others, as gene
expression from fertile, unperturbed, single wild-type worms was profiled along the whole lifes-
pan of C. elegans. Others sterilize wild-type worms by adding FUDR (fluroxidine) to the culture
medium (HOU et al., 2016), or work using sterile strains to avoid signal from embryos: glp-1 is a
heat-sensitive germline-less mutant (SURIYALAKSH et al., 2022), gon-2/gem-1 have degenerate go-
nads while fem-3 mutants produce no oocytes (HASTINGS et al., 2019), and rrf-3 is a heat-sensitive
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Source Tag1 Genotype
Culture
condition

T (°C)
Chron. age
span

Profiling
technology

Accession

GOLDEN

et al., 2008
gol Wild-type plate 20

4-24 days post
egg lay

microarray GSE12290

HOU et al.,
2016

hou Wild-type
plate +
FUDR

20
2-10 days of
adulthood

microarray GSE77111

HASTINGS

et al., 2019
has

gon-2(q388);gem-1(bc364)
and fem-3(q20)

plate 25
2-10 days post
L1 feeding

RNA-seq GSE124994

BYRNE et al.,
2020

byr rrf-3(pk1426) liquid 20
3-18 days of
adulthood

RNA-seq GSE93826

SURIYALAKSH

et al., 2022
sur glp-1(e2144) liquid 25

2-10 days post
hatching

RNA-seq GSE166512

Table 1.1 – C. elegans aging time-series profiling datasets used in this section
1: Used in subsequent plots to identify datasets.

sterile strain (ZHUANG & HUNTER, 2011). We note that rrf-3 mutants are also RNAi hypersensitive
(but under no RNAi treatment), and that the data is unpublished (BYRNE et al., 2020).
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Figure 1.6 – Few shared aging expression dynamics across datasets
a, Selected independent components (IC) from a joint Independent Component Analysis (ICA) of aging
time-series (Table 1.1). Percentage of total variance explained is indicated for each component. See also
Sup. Fig. A.1.
b, IC9 loadings of samples from each dataset along their respective time axes.

An Independent Component Analysis (ICA) with all 5 datasets, shows very different expres-
sion dynamics between datasets (Fig. 1.6a, Sup. Fig. A.1). Beyond the expected batch effects, we
find few components where most time-series have comparable dynamics, and a single component
with a universally monotonic dynamic (IC9, Fig. 1.6b). Therefore, we selected the genes contribut-
ing highly to this component as the shared set of informative aging genes (see Methods).

The resulting set of 1652 genes (653 increasing, and 999 decreasing) is enriched in diverse bio-
logical processes and tissues (Appendix A, Sup. Fig. A.2), a lack of specificity suggesting we capture
an overall aging signature as intended, and not process- or tissue-specific aspects that would be
less robust to perturbation or across datasets.

1.2.2.3 A core set of informative genes stages aging across datasets

Staging single-individual data with the new gene set matches our published analysis, with in-
dividuals staged younger and older than their chronological ages behaving accordingly (Fig. 1.7a,
BULTEAU & FRANCESCONI, 2022). Beyond behavior, age differences captured by staging within
chronological time points, notably earlier ones, agree with age estimates of these individuals on
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Figure 1.7 – RAPToR stages aging with the shared aging gene signature
a,b, Biologically meaningful differences in age are captured when staging single C. elegans individuals (gol,
GOLDEN et al., 2008) on an independent reference (byr, BYRNE et al., 2020). Behavioral differences within
chronological time points are explained by age estimates (a), and overall age differences largely correspond
to those found by age estimates of samples on their own reference (b).
c,d, Bulk samples (sur, SURIYALAKSH et al., 2022) are well staged on an independent reference (has, HAST-
INGS et al., 2019, c), and remaining variability matches age differences captured by their own reference (d).

their own reference (Fig. 1.7b), further showing that RAPToR captures genuine differences in bio-
logical age between samples. Despite this variability being largely averaged out in bulk data, we
find that the remaining differences between chronological and estimated age of samples (Fig. 1.7c).
are similarly captured by their own reference (Fig. 1.7d).

To conclude, despite relatively few genes and dynamics matching between datasets, RAPToR
stages samples well, and recapitulates the effects shown in our publication.

1.2.2.4 Conclusions

In this section, I defined a robust set of informative genes for staging aging with RAPToR
through a joint analysis of multiple references, thus improving upon our previous empirical ap-
proach to select monotonous genes from a single time-series. Despite few shared expression dy-
namics across datasets, we found the selected gene set allows proper and precise staging of aging
from gene expression. Although selecting informative genes in this way requires several indepen-
dent datasets of aging transcriptomes and may therefore be limited to a few model organisms,
selection is data-driven and the comparative analysis could thus also bring insights into under-
standing aging processes.

RAPToR currently stages individuals along a single aging trend, which is helpful to detect dif-
ferences in aging speed along that trajectory. However, individuals might also age in different
ways, along several different gene expression trajectories. While staging would be hindered by this
with the current method, a version of RAPToR capable of staging across multiple trajectories could
theoretically determine both the age of an individual, and how that individual is aging.

1.2.3 Multi-Trajectory RAPToR

1.2.3.1 Introduction

The timing of events is a fundamental and carefully-controlled aspect of development. In C.
elegans, several molecular timing mechanisms are encoded by heterochronic genes that (among
other roles) control the sequence of larval stages (MOSS, 2007). Modifications to heterochronic
genes can cause developmental events to occur prematurely or late. For example, JOHNSON et
al., 2009 characterized a lin-14 mutation that causes a delay in vulva development resulting in
asynchrony with germline maturation.

The relative timing of soma and germline tissues (soma-germline heterochrony) is not only
genetically controlled, but is also a plastic trait in healthy worms (PEREZ et al., 2017; BULTEAU &
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FRANCESCONI, 2022), that can be influenced by parental effects (PEREZ et al., 2021), or experimen-
tal conditions like drug exposure (BULTEAU & FRANCESCONI, 2022). Therefore, much like develop-
ment, heterochrony between tissues can be a major confounder in gene expression analysis.

We showed that, RAPToR can infer a tissue-specific age from whole-organism profiling data
by staging only with tissue specific genes (BULTEAU & FRANCESCONI, 2022). However, this only
works if the relative development of tissues is simply shifted, and we cannot choose amongst dif-
ferent developmental trajectories. Furthermore, handling multiple trajectories would significantly
improve the usability of RAPToR in single-cell data, where branching expression dynamics are
common. Therefore, we investigated whether a "multi-trajectory RAPToR" could stage and select
among multiple developmental trajectories from the gene expression of samples.

Below, I present a proof-of-concept that a simple strategy based on the principles of RAPToR
is capable of staging early C. elegans embryo single cells, and correctly assigning them to their
lineage.

1.2.3.2 Distinct trajectories in a single component space

HASHIMSHONY et al., 2015 profiled gene expression of single-cells from C. elegans embryos,
tracing the main cell lineages (AB, C, D, E, MS, and P) from 2-cell to the end of gastrulation (330
min past 4-cell). An independent component analysis (ICA) on this data shows that the lineages
branch into distinct trajectories along development in multiple components (Fig. 1.8). This means
that expression differences between lineages are captured by the components, and therefore that
reference interpolation for the lineages can be done within the same dimensionally-reduced space
(see Appendix A, Sup. Fig. A.3, Methods).
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Figure 1.8 – ICA distinguishes cell lineages along early embryo development
AB, P, C, E, and MS lineages highlighted on the 5 first Independent Components (IC) of an ICA extracting 40
components. Data from HASHIMSHONY et al., 2015.
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1.2.3.3 Cells from developing embryos are properly recognized and staged

After building an interpolated reference per lineage, we staged each cell on the reference of
each lineage using standard RAPToR (i.e. spearman correlation between the cell and reference
transcriptomes), and confirmed that cells are properly staged on their respective lineages (R2 of
chronological vs. inferred age> 0.9, Appendix A Sup. Fig. A.4). Then, for each cell, we simply assign
the reference with the highest correlation at estimate (i.e. maximum correlation) as the inferred
lineage. We find that most cells are indeed more highly correlated with their respective lineages
than others. Furthermore, the preference of a cell’s lineage over others (correlation difference)
increases with developmental time, likely because cell types become more defined (Fig. 1.9).
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Figure 1.9 – Cells increasingly prefer the reference of their lineage along development
In each subplot, cells from a single lineage indicated in the top label are staged on references built from
AB, P, C, E, and MS lineages (dot color). The reference lineage preference for each cell is defined as the
correlation at estimate with each reference standardized to its lowest value (ie. cor.est −mi n(cor.est )).

1.2.3.4 Discussion

I have briefly shown that the RAPToR strategy can in principle be adapted to build references
and stage distinct developmental trajectories from gene expression. Despite its crude implemen-
tation, this proof-of-concept shows that cell lineages in developing C. elegans embryos can be
distinguished using ICA to build a reference per lineage, and that cells can be staged and assigned
to their respective lineages with increasing clarity along age (i.e. differentiation).

Of course, we must properly verify these results using several independent datasets and other
data types like whole-individual profiling data, as well as the feasibility of applying this approach
to more than 5 different lineages with potentially subtler differences (e.g. distinguishing neuron
types).

Rethinking the design and implementation of the tool could also substantially improve usabil-
ity and performance. For example, although branching splines exist (SILVERMAN & WOOD, 1987),
we could not find proper implementation in R and thus simply treated lineages as separate data.
As a result, precursor cells (e.g. C-P, E-MS, and C-P-E-MS) are used several times for interpolation
across references of the corresponding lineages and are thus redundant in early time points. Fur-
thermore, given the typical size of single-cell datasets and the diversity of cell types, computing
correlations across all cells and lineages is extremely inefficient and could surely be improved by
a multi-step staging process starting with coarser references.

Nevertheless, the results shown here are promising and could be used in tandem with methods
that identify de novo trajectories from expression data – e.g. Slingshot (STREET et al., 2018), Mon-
ocle (CAO et al., 2019) – to build references capable of precisely staging the age and characterizing
the type of a single cell from its transcriptome.

1.2.4 Staging tissue samples on whole-organism data
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1.2.4.1 Introduction

There are abundant time-series profiling experiments of whole organisms, especially models,
in the literature (BAUGH et al., 2003; REINKE et al., 2004; D. H. KIM et al., 2013; HENDRIKS et al.,
2014; LEVIN et al., 2016; HASHIMSHONY et al., 2015; MEEUSE et al., 2020; SURIYALAKSH et al., 2022
to cite a few for just C. elegans). However, the same cannot be said for dissected tissues or disso-
ciated cells from tissues (FOX et al., 2007 and EDWARDS et al., 2021 are rare examples). Therefore,
although we showed RAPToR works in dissected tissue samples when using a reference of sim-
ilar nature (BULTEAU & FRANCESCONI, 2022), actual use in this context is unlikely, and staging
dissected tissue samples on whole-organism data is liable to several biases. First, although tissues
have specific transcriptomic signatures, few genes are uniquely expressed in a given tissue (KALET-
SKY et al., 2018), meaning that the detected expression level of most genes is the combination of
multiple tissues in whole-organism data. Then, dissecting or dissociating biological material ap-
plies a stress on cells that is reflected in gene expression (BRINK et al., 2017; MACHADO et al., 2021).
Furthermore, cell types within a tissue may have distinct sensitivities and responses to the dissoci-
ation and collection process (BRINK et al., 2017; DENISENKO et al., 2020). Therefore, it is not trivial
to assume that gene expression from dissected or dissociated cells from tissues is appropriate for
staging on whole-organism data.

Despite this, in a collaboration with (now Dr.) Charline Roy and her supervisor Dr. Florence
Solari, I had the opportunity to stage dissociated muscle cells from C. elegans young adults on
whole-organism data with surprising accuracy using RAPToR. With their permission, I briefly de-
scribe the insights gained from this below.

1.2.4.2 Muscle cells from long-lived daf-2 mutants appear younger than wild-type

In the context of their research on aging muscles (ROY et al., 2022; ROY, 2022), Dr. Roy and
Dr. Solari dissociated and collected C. elegans muscle cells, and profiled their gene expression in
bulk in wild-type (WT) and long-lived daf-2 mutant adults at days 0, 1, and 6 of adulthood (D0,
D1, D6 respectively) in triplicate. Given the lifespan extension of daf-2 mutants, our aim was to
ensure that the developmental age of WT and daf-2 samples matched within each time point to
avoid measuring differential expression caused by developmental differences.

We staged the D0 and D1 samples that are within the range of our developmental references
(see Methods) using all available genes, and found that both mutant and WT groups have the ex-
pected age at D0 (45-50 h post-hatching, Fig. 1.10). However at D1, although WT cells are properly
staged 24 h later, daf-2 muscle cells appear nearly 10 hours younger, suggesting a slowed aging rate
similar to the expected lifespan extension of daf-2(e1370) (GEMS et al., 1998). We could not suc-
cessfully stage D6 samples on aging references (data not shown) to confirm this delay at later time
points, perhaps because the combination of staging aging and tissue samples on whole-organism
data is testing the limits of our approach.

When collecting dissociated muscle cells, contamination by sperm cells is difficult to avoid
due to their small size and adhesive properties. As our collaborators had already noticed sperm-
specific genes in their data, notably at D1 which are collected during spermatogenesis in
hermaphrodites (see IC1 reference dynamic, Fig. 1.10), we were worried this could bias staging
since the extent of contamination (and therefore, gene expression signal) can vary from sample to
sample. Therefore, we confirmed the age of samples by staging without germline genes (REINKE

et al., 2004) with very similar results (Fig. 1.10).

1.2.4.3 Staging muscle-cell bulk samples from sperm contamination

To our surprise, we could even stage samples using only germline, and even sperm-specific
genes (Fig. 1.10). Genes related to spermatogenesis have a characteristic bell-curve dynamic, so
we wondered how RAPToR could determine “which side” of the bell curve the samples lie on. By
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Figure 1.10 – RAPToR sucessfully stages dissociated muscle cell samples on a whole-organism reference
Selected Independent Components (IC) from an ICA on reference data plotted along reference time, indi-
cating landmark gene expression dynamics of spermatogenesis (IC1) and molting cycle (IC5). Below ICs,
age estimates of daf-2 and WT bulk dissociated muscle cell samples at D0 and D1, when staged with all
genes, without and restricting to germline genes (as defined as defined in REINKE et al., 2004).

clustering spermatogenesis genes in the reference (Fig. 1.11), we found that subtle timing differ-
ences in the bell-curve are sufficient to allow staging. Indeed, staging with sperm genes from a
single cluster does not work, while a random gene set of similar size across all clusters does (Ta-
ble 1.2). We therefore believe that regardless of the amount of sperm contamination, the relative
expression level of genes within each sample is sufficient for staging.
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Figure 1.11 – Subtle differences in the timing of expression peak in spermatogenesis genes
Clustering of spermatogenesis genes, as defined by REINKE et al., 2004, in the interpolated reference (built
from data by MEEUSE et al., 2020) shows slight shifts in peak timing of the bell-curve. Blue lines are individ-
ual genes, red line is the average per cluster. Timing of the peak of average expression (vertical dashed line)
is indicated for each cluster.

1.2.4.4 Conclusions

I have shown that despite potential biases, we could successfully stage bulk dissociated mus-
cle cell samples against a whole-organism reference from their gene expression (and that of their
sperm contaminants). RAPToR could therefore be useful even when a reference of matching sam-
ple type is not available. Furthermore, we note that staging allowed us to notice that the labels of
two samples were inadvertently swapped by the sequencing platform (F. Solari, personal commu-
nication, 2022).

We remark that D0 and D1 samples were collected during the young-adult to adult transition,
a developmental window characterized by particularly intense gene expression changes including
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Cluster
Gene
set size

Correlation (r) with age estimates using all sperm genes

Cluster
genes

Random sperm genes
set 1 set 2 set 3

1 150 0.39 0.98 0.97 0.98

2 129∗ -0.04 0.97 0.96 0.84

3 175 0.18 0.98 0.98 0.84

4 62 0.12 0.48 0.61 0.51

Table 1.2 – Genes across multiple spermatogenesis clusters are required for staging
Correlation between age estimates using all spermatogenesis genes and age estimates using either sper-
matogenesis genes of a single cluster (1-4, see Fig. 1.11) or random spermatogenesis gene sets of equal size
sampled across all clusters.
∗: 129 out of 135 genes overlap between the data and reference.

(but not limited to) spermatogenesis and the onset of germline proliferation (SNOEK et al., 2014;
FRANCESCONI & LEHNER, 2014). It is therefore possibly more challenging to stage tissue samples
from other development stages on whole-organism references, and may partly explain why we
failed to stage D6 samples.

As such, validating other sample types (e.g. dissected tissue), other tissues, and other organ-
isms would be required to generalize whether RAPToR is capable of staging tissue samples on
whole-organism data, or at least delimit the cases where it is possible. Nevertheless, the working
example shown here is encouraging and suggests we can further broaden the already large scope
of application of our method.
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1.3 Discussion

Throughout this chapter, I have shown how age can be predicted from the transcriptome with
RAPToR. I demonstrated the usefulness of this ability through several applications, relying on the
fact that the method is extremely robust and can be applied in diverse contexts.

Indeed, we showed that RAPToR can infer age in all tested organisms, with bulk, single-indi-
vidual, dissected-tissue, or single-cell expression profiles, by staging on appropriate references. To
an extent, references can also be used to stage samples of different species and sample types, for
example staging tissue samples on whole-organism reference data.

RAPToR age estimates make it possible to detect the effects of perturbations on developmental
speed, and take advantage of age variation among samples that would hinder analyses to instead
improve statistical power to detect differential expression (BULTEAU & FRANCESCONI, 2022). Here,
we characterized how the power of a differential expression analysis decreases with growing age
differences between compared groups, and how this can be salvaged by including inferred age as
a covariate while age groups still overlap and by integrating reference data when it is no longer the
case.

Both development and aging can be staged with RAPToR, although the latter requires a selec-
tion of informative genes to build references. We further investigated how to select these informa-
tive genes, improving upon our initially fragile threshold-based approach by combining data from
several sources, and could reliably stage C. elegans samples aging in diverse conditions and ge-
netic backgrounds. Taking advantage of these improvements, my supervisor Mirko Francesconi is
also currently collaborating with Dr. Nicholas Stroustrup and his team at the Centre for Regulatory
Genomics (CRG), to understand the differences between slow and fast-aging individuals amongst
isogenic C. elegans populations.

We showed that single cells can in principle be staged and assigned to their respective differ-
entiation trajectories during embryogenesis with a “multi-trajectory RAPToR” proof-of-concept.
Although preliminary, these results could pave the way for a tool capable of using gene expression
to infer precise age and cell type from single cells, as well as determine the age and developmental
or aging path of individuals among several possible trajectories. Being able to capture and stage
cell differentiation also supports the idea that RAPToR can be adapted to other processes with ro-
bust gene expression dynamics. We further point out that we have yet to explore the limits of the
flexibility of RAPToR with data types other than the transcriptome, such as the methylome which
has already proven predictive of aging (WANG et al., 2020; BELL et al., 2019), or the proteome for
which data collection is gaining in throughput (CUI et al., 2022).

With RAPToR, my work integrates and reuses often under-exploited published data to offer
solutions for addressing developmental bias in gene expression studies, an issue that has largely
been ignored. In this context, I developed RAPToR as an R package 2, a programming language
widely-used by biologists and bioinformaticians to analyze expression data, aiming for minimal
R or coding experience requirements, and provide extensive documentation vignettes detailing
general usage and application examples. Positive feedback on the package and its documentation,
as well as growing usage of RAPToR in C. elegans (G. ZHANG et al., 2022; BELL et al., 2023; KIM

et al., 2023), humans (HAGAN et al., 2022), and non-models (SINIGAGLIA et al., 2022) is therefore
encouraging.

Beyond its benefits for analyzing existing data, staging post-profiling with RAPToR also allows
us to consider novel experimental designs. Notably, as shown in following chapters, it eliminates
the need for synchronization or for tedious and potentially difficult steps of accurate staging be-
fore profiling, greatly simplifying collection in large-scale single-organism profiling experiments.

2available at https://www.github.com/LBMC/RAPToR
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1.4 Methods

All the analyses were performed in R 4.1.2.

1.4.1 Data loading and pre-processing

Expression data and sample metadata were downloaded from GEO (accession codes speci-
fied where relevant) using the GEOquery R package (v2.62.2). Transcript or probe IDs were con-
verted to WormBase gene IDs, and counts to transcript per million (TPM) as previously described
(BULTEAU & FRANCESCONI, 2022). Expression values (TPM or microarray expression) are log-
transformed log (X + 1), and quantile-normalized with normalizeBetweenArrays() function of
limma (v3.56.1), unless otherwise specified.

1.4.2 DE correction

Code to reproduce DE correction is available in the "DE-correction" vignette of the RAPToR
package (v1.2.0) (BULTEAU & FRANCESCONI, 2022) upon which the DE correction section is largely
based. With RAPToR installed, the vignette can be accessed with vignette(’RAPToR-DEcor
rection’), or vignette(’RAPToR-DEcorrection-pdf’) in an R console.

1.4.2.1 Sample subset definition
Age of sample from C. elegans wild-type and xrn-2 mutant time series (MIKI et al., 2017, ac-

cession GSE97775) was estimated the ae() function of RAPToR, on the ’Cel_larv_YA’ reference
from the wormRef data-package (v0.5) interpolated to 600 time points.

The gold-standard samples were chosen as the set of 3 time points with closest-matching age
estimates between WT and mutants, and "shifted" subsets by sliding the window of WT time
points back by 1, 2, 3, 5, and 7 time points from the gold standard.

1.4.2.2 Differential expression analysis
Genes with no ID match in the reference, or with less than 5 counts in all samples were dropped,

leaving 17659 for analysis. Non-corrected DE analysis is performed on all sample subsets defined
above on raw counts using the standard DESeq2 (LOVE et al., 2014) (v1.34.0) Wald test workflow,
specifying models with strain only, or strain and age for model 1 and model 2 respectively, and
fitType=’local’. Genes are considered differentially expressed with FDR < 0.01, and |log FC| ≥
1.0.

1.4.2.3 Precision-recall assessment
For each DE analysis, FDR values of the strain coefficient were set to 1 for genes with |log FC| <

1.0, and the performance of the resulting classifier to detect genes in the appropriate gold-standard
set (model 1 or model 2) was evaluated using precision ( tr ue posi t i ves

tr ue posi t i ves + f al se posi t i ves ) and recall

( tr ue posi t i ves
tr ue posi t i ves + f al se neg ati ves ) with the predict() function of the ROCR package (v1.0-11).

1.4.2.4 Age correction
For each set of samples (including WT and mutant samples), we define the reference window

to include as the range of age estimates widened by a 1h margin on either side. We transform
the interpolated reference data to artificial counts assuming a fixed library size of 25×106 counts
per sample and a fixed number of reads ‘per gene length’ defined by the median of available gene
lengths:

artificialCounts = interpolatedTPM

106 × 25×106

medi an(geneLengths)
×geneLengths (1.1)
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The artificial count matrix is then rounded to the nearest integer and joined to the sample
count matrix and a DE analysis is performed by fitting a DESEq2 model including batch (between
reference and sample data), the variable of interest (strain) where reference data is grouped to-
gether with the control, and age modeled with splines (ns() function in the splines package). To
select the optimal spline degree of freedom for each window, we minimized the residual SSQ of a
linear model fit on the reference window only, resulting in 3, 4, 4, 4, 5, and 5 degrees of freedom for
the gold standard, WT-1, -2, -3, -5, and -7 sample sets respectively. Gene dispersions are inferred
using the estimateDispersions() function with fitType=’local’ on a DESeq2 model without ref-
erence data and with only a strain term, before being injected into the full model and running
nbinomWaldTest().

1.4.3 Aging

1.4.3.1 Selecting informative genes in aging data
Aging time-series datasets specified in Table 1.1 were pre-processed as described above, joined

with overlapping IDs, leaving 9523 genes, and quantile-normalized together using normalizeBe-
tweenArrays() from limma. Only ad-libitum fed samples from HOU et al., 2016 were used.

We then performed a centered PCA (prcomp) to determine that 14 components are sufficient
to explain at least 90% of variance in the data, and performed an independent component analysis
(ICA) extracting 14 components with the icafast function of the ica package (v1.0-3).

Informative genes were defined as those with absolute loading on Independent Component 9
> 1, resulting in 1652 genes.

Gene ontology and tissue enrichment of these monotonically increasing (653) and decreasing
(999) genes against the overlapping gene background was performed using the local version of the
wormbase tea tool (ANGELES-ALBORES et al., 2018), with a q-value threshold of 0.05.

1.4.3.2 Staging aging datasets
Aging references were built with the ge_im() and make_ref() functions of RAPToR for each time-

series, restricting to the informative gene set and using a single PCA component for interpolation,
with formulas as follows. “X~(s(age, bs=’cr’, k=k”), with k set to 5, 3, 4, 5, and 4 for gol,
byr, hou, sur, and has datasets respectively, with genotype included as a covariate for has.

Each dataset was then staged on each reference (including the one built from their own sam-
ples), and age estimates were compared along with chronological age with pearson correlation to
assess staging performance. We remark that differing time units, starting times, age spans, and ag-
ing speeds (temperatures) of the time-series, complicate further comparison between age values.

1.4.4 Multi-trajectory RAPToR

Single-cell expression profiles (HASHIMSHONY et al., 2015, accession GSE50548) were filtered
to remove a poor-quality sample with 99th quantile of spearman correlation with others below
mean(cor )−2× sd(cor ).

We defined timings for each blastomere stage based on the original publication, stages 1-11
correspond to -20, 0, 25, 45, 70,90, 120, 150, 180, 240, and 330 minutes past 4-cell respectively. Cell
lineages reported by the authors were used.

40 components were extracted with and ICA using icafast(). We then built RAPToR references
for each lineage (AB, C, P, E, MS) by interpolating on their respective samples (including precur-
sors) within this component space. A single formula was used for all lineages and components,
“X~s(time, bs=’cr’, k=6)”.

All cells were then staged on all lineage references. We then compared the correlation score at
estimate of each cell against each lineage reference, noting the increasing correlation gap between
the correct lineage and others along development.
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1.4.5 Tissue sample staging

Dr. Roy and Dr. Solari kindly provided us with the RNA-seq count data of their WT and daf-
2(e1370) dissociated muscle cell bulk samples, collected at D0, D1, and D6 of adulthood. We pro-
cessed the data as described above, keeping only D0 and D1 samples for the analyses below, and
staged them as is with ae() of RAPToR on the Cel_larv_YA reference from wormRef (data from
MEEUSE et al., 2020) interpolated to 500 time points, using either all available genes, only germline
genes (defined as the union of ‘germline_intrinsic’, ‘spermatogenesis_enriched’, and ‘oogenesis_-
enriched’ gene sets defined in REINKE et al., 2004), or no germline genes.

ICA components showing landmark expression dynamics and reference interpolation were
directly extracted from the Cel_larv_YA RAPToR reference.

1.4.5.1 Staging with sperm genes

Selecting interpolated expression from the reference after 30h post-hatching, we clustered
sperm genes (‘spermatogenesis_enriched’, REINKE et al., 2004) by expression dynamic using
hclust() on a distance matrix computed by dist() without centering expression values. 12 clusters
were kept to have at least 5 genes per cluster. Then, we computed the average expression dynamic
of each cluster and noted the timing of its maximum.

To test whether slight shifts in dynamics could explain successful staging with sperm genes, we
successively restricted the gene set to each cluster with at least 50 genes (clusters 1-4) for staging,
and compared results with staging using 3 randomly selected sets of sperm genes with the same
size. We then reported pearson correlation between the resulting estimates and age inferred using
all sperm genes.
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Abstract

The single-cell rush has pushed profiling technologies to the point where low quantities of in-
put RNA and large-scale sample collection are no longer a bottleneck for RNA-sequencing. We
sought to apply these recent developments to whole-individual profiling to enable cost-efficient
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large scale study of inter-individual variation. In this chapter, I demonstrate that high throughput
RNA-seq of C. elegans single embryos can be achieved with minimal adjustments to existing pro-
tocols developed for single-cell. First I show that single live wild-type embryos can be sorted with
standard FACS. Second, I show that it is also possible to use FACS select embryos at specific stages
from a mixed population using only physical parameters and autofluorescence without the need
for fluorescent markers. Third, I adapted the Smart-seq3 protocol to profile single embryos at
minimal cost and high complexity enabling cost effective scaling up of single individual profiling.
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2.1 Introduction

The last decade has seen incredible achievements in single-cell technologies. Thanks to mi-
crofluidics and improvements in profiling sensitivity, quality, and throughput (STARK et al., 2019;
ZIEGENHAIN et al., 2017), samples with low RNA input can be sorted in large numbers and profiled
at high complexity and quality. RNA-seq library preparation and sequencing have also become
much cheaper. For example, reagent costs between Smart-seq2 (PICELLI et al., 2014, 35€ per li-
brary) and Smart-seq3 (HAGEMANN-JENSEN et al., 2020, <1€) protocols have been divided 30-fold.
Despite this however, the most recent efforts in high-throughput single animal profiling still do
not include the latest developments in low input RNA library preparation, and still rely on manual
sorting (LEVIN et al., 2016; MACCHIETTO et al., 2017; PEREZ-MOJICA et al., 2023).

Standard Fluorescence-Activated Cell Sorting (FACS) instruments have been used to sort single
cells (JAITIN et al., 2014) and could in theory be used to efficiently sort small single animals such as
C. elegans. FACS has indeed previously been used to collect large populations of live synchronized
C. elegans embryos at precise stages (STOECKIUS et al., 2009), as well as larvae mutants among a
mixed population (FERNANDEZ et al., 2010) by using fluorescent markers, though not to isolate
single individuals. More recent studies have taken to high-throughput technologies (such as the
COPAS Biosort 1) to study single individuals, but they largely focus on imaging (O’REILLY et al.,
2014; KWON et al., 2018) or measuring other phenotypes such as life span (STROUSTRUP et al.,
2013), and to our knowledge never on single-worm collection to profile gene expression.

Rather than using the FACS to get synchronized populations for expression profiling we can
now simply sort single animals and precisely infer their age from gene expression (BULTEAU &
FRANCESCONI, 2022). Inferring age on large numbers of single individuals profiles can then be
used to compare expression dynamics between conditions and genetic backgrounds (FRANCESCONI

& LEHNER, 2014) with significant improvements over the standard “3 vs. 3 controls”. Furthermore,
inter-individual variation in gene expression can also be studied, while controlling for variation
due to interindividual differences in physiological age.

In this chapter, I demonstrate that high throughput RNA-seq of C. elegans single embryos can
be achieved with minor adjustments to existing protocols developed for single-cell. First, I show
single live wild-type embryos can be efficiently sorted using standard FACS. Second, thanks to
flow cytometry coupled to bright field imaging, I developed a robust marker-free strategy to sort
C. elegans embryos of any developmental stage just using a combination of physical and autoflu-
orescence parameters. Third, I adapt the Smart-seq3 protocol (HAGEMANN-JENSEN et al., 2020) to
scale up gene expression profiling of single embryos with full transcript length and high complex-
ity at minimal cost.

2.2 Flow cytometry with C. elegans embryos

As noted by STOECKIUS et al., 2009, C. elegans embryos (eggs) are particularly suited to flow
cytometry and sorting. Embryos are 50 µm in length and 30 µm in diameter, fitting snugly within
the 10-100 µm size range of mammalian cells (Fig. 2.1, GINZBERG et al., 2015), their size stays con-
stant during embryogenesis (unlike e.g. for zebrafish, KIMMEL et al., 1995), constrained by a re-
silient egg-shell which also makes them easy to isolate and purify with bleach. Starting from plates
with egg-laying wild-type adults, we can therefore prepare embryo suspensions for sorting using a
standard nematode bleaching protocol (see Methods), and directly pass the output through FACS
instruments (Fig. 2.2a).
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Figure 2.1 – Size comparison of C. elegans embryo and mammalian cells
Size measurements of human red and white blood cells from PRINYAKUPT & PLUEMPITIWIRIYAWEJ, 2015,
human keratinocyte from HUZAIRA et al., 2001, C. elegans embryo from RIDDLE et al., 1997, and humans
and mouse oocyte from GRIFFIN et al., 2006.

2.2.1 Embryos are reliably identified across instruments

Using an AttuneTM CytPixTM flow cytometer capable of taking brightfield images, we could
identify and separate embryos from debris and dissociated cells in the solution (Fig. 2.2b) using
Forward and Side Scatter (FSC and SSC, respectively). We then distinguished between dead, unfer-
tilized, and live embryos with their autofluorescence on blue color channels (Fig. 2.2c). The result-
ing population spans the whole of embryo development, from 1-cell stage to hatching (Fig. 2.2c-
d). We then reproduced this gating strategy on a FACSAria IIµ to sort live embryos. Despite the
differing channels and measurements between both instruments, we could reliably find similar
clusters (Fig. 2.2e) with high reproducibility (Appendix B) and select live embryos for sorting with-
out further adjustments. The amount of live embryos we recovered from a sample depended on
the success of the bleach and amount of starting material. When bleaching a single plate with
100-150 egg-laying adults we could generally identify 500 to 1200 live embryos, at a rate of 1 to 2
per second (Appendix B).

2.2.2 Sorting efficiency in low volumes

If sorting many embryos in large buffer volumes and tubes is straightforward and efficient
(FERNANDEZ et al., 2010), recent single-cell RNA-seq library preparation protocols use very low
volumes to minimize costs, which could jeopardize this efficiency. Indeed, we initially noticed
poor yield in collection volumes of 2.5 µL(around 10%, Fig. 2.3), and reasoned this was due to
droplets with embryos drying out after landing on the wall of the tubes. We therefore tested ways
to improve embryo recovery after sorting (see Methods).

Although efficiency wasn’t significantly improved by longer post-sorting centrifugation or
adding detergent to the sample, sorting in PCR strip caps (which have a wider surface area for
2.5 µL) improved efficiency to 30-60% (Fig. 2.3), thus confirming droplets must reach the buffer
to recover embryos. Sorting in caps is however impractical, so we explored other solutions and

1now called COPAS FP-250, www.unionbio.com/copas/fp-250.aspx
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Figure 2.2 – FACS with C. elegans embryos
a, Cartoon of workflow for sorting C. elegans embryos.
b, With an Attune CytPix, embryos are separated from debris by gating on scatter parameters. Debris
examples are numbered (1-3), with corresponding brightfield images shown on the right.
c, Dead, non-fertilized (NF), and live embryos gated from (c) are distinguished using autofluorescence.
All embryo developmental stages can be found in the resulting “Live” embryo population. Examples of
dead (1,2), unfertilized (3), multiplets (4) and single live embryos of various stages (5-7) are marked, with
corresponding brightfield images shown on the right.
d, Brightfield images of hatching and hatched larvae taken with the CytPix (independent sample from b,c)
e,f, Equivalent selection of embryos with scatter parameters (e, as in b), and live embryos with autofluores-
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In b-d, all images are 72 µm in total width.
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Figure 2.3 – Sorting efficiency of embryos in 2.5 µL
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were sorted in PCR strips with 2.5 µLof buffer using a FACSAria IIµ, and significance of the effects is evalu-
ated with a linear model including all data (see Methods). .
Each box corresponds to a strip sorted independently, with n=8 wells except F and J where n=5 and n=6
respectively. Boxes span the interquartile range (IQR), the central bar dot denotes the median, and whiskers
extend to 1.5× IQR in either direction. SC, single-cell; ns, non-significant.

were able to achieve similar efficiency by using a different sorting mask dubbed ‘purity’ (Fig. 2.3),
which sorts two consecutive droplets per well. Although this mask theoretically increases the risk
of sorting doublets, our rate of events (rarely above 50/s, of which embryos only constitute a small
percentage) and the droplet rate (10,000/s) are orders of magnitude apart, making this essentially
impossible. Furthermore, we never found extra embryos when sorting few or single embryos per
well. We believe the increase in efficiency may instead result from the second droplet pushing
embryos down into the bottom of the wells.

Sorting efficiency can likely still improve with further optimization. For example, increasing
the nozzle diameter from 100 µm to 130 µm or decreasing the jet pressure, would result in bigger
droplets that are less likely to stick to the edge of a tube during sorting. Robustly exceeding 50%
yield should therefore be possible to make sorting viable.

2.2.3 Embryo development can be inferred from FACS measurements

Collecting embryos at a precise developmental stage currently requires fluorescent markers
under control of stage-specific promoters, such as the promoter of oma-1 (required for oocyte
maturation) to select 1-cell stage embryos (STOECKIUS et al., 2009). However, this requires mu-
tant lines that complicate experimental designs, and can alter signals of interest e.g. due to the
metabolic cost and potential toxicity of fluorescence for the embryo (ANSARI et al., 2016).

We initially noticed a link between embryo developmental stage and multiple scatter and fluo-
rescence channel measurements (Fig. 2.4a-b). Therefore, we explored the possibility of a marker-
free sorting strategy targeting embryos at specific developmental stages by taking advantage of
the brightfield images coupled with flow cytometry parameters provided by the CytPix. Classify-
ing embryos from their images into 1-cell, 2-cell, 4-cell, 4-8-cell, 8-32-cell, >32-cell, Comma, 2-
fold, and Late categories (Fig. 2.4b, see Methods) revealed that multiple scatter and fluorescence
measurements are indeed strongly correlated with development (Fig. 2.4c).

Blue autofluorescence of accumulating gut lipid granules have previously been reported in C.
elegans larvae (CLOKEY & JACOBSON, 1986) and hinted at in mid to late embryo stages (BOSSINGER

& SCHIERENBERG, 1992), which is consistent with the positive correlation we observe between em-
bryo age and blue and violet fluorescence measurements (BL1-A and VL3-A, respectively, Fig. 2.4c).
However, the dynamics of embryo autofluorescence along development and across different wave-
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lengths have yet to be properly characterized, perhaps due to autofluorescence being mostly con-
sidered as a hindrance rather than a proper subject of study in microscopic studies (HEPPERT et al.,
2016; RODRIGUES et al., 2022). Our data therefore also provides the first multi-color (and scatter)
description of embryo autofluorescence along the whole of embryogenesis

We then quantified how well combinations of FACS parameters could predict development,
and found that nearly 100% of embryo age variation in a sample can be explained using all mea-
sured channels in a random forest model (R2 = 0.97, Fig. 2.5a). The age of embryos from an in-
dependent sample is also reliably inferred from the same model (R2 = 0.83, Fig. 2.5b), thus show-
ing the relationship between development and FACS measurements is robust across experiments.
Crucially, a simple linear model including side scatter and violet fluorescence (selected as the two
most important predictors by the random forest model see Methods) can reliably distinguish em-
bryo age within (R2 = 0.79, Fig. 2.5c) and across (R2 = 0.82, Fig. 2.5d) experiments, closely matching
age inferred from the random forest model (R2 = 0.90, Fig. 2.5g). As a result, embryo age progres-
sion can be mapped to the plane described by these two parameters (Fig. 2.5f-h, Methods), which
makes it possible to sort embryos of targeted stages with simple gates.

To summarize, we developed a simple marker-free sorting strategy to reliably sort wild-type
embryos at any developmental stage using side scatter and autofluorescence measurements of
standard flow cytometers and FACS.

2.2.4 Conclusions

In this section, we have first shown that single live embryos can be easily collected and sorted
with standard FACS in low volumes required for downstream RNA-seq profiling with recent pro-
tocols at around 50% efficiency, and with plenty of room to improve this efficiency. Second, we
demonstrated that standard FACS measurements can be used to accurately predict embryo age,
and therefore to obtain synchronized single-individual or bulk samples at any stage of embryo
development without the need for fluorescent markers. Thus, standard flow cytometry and FACS
coupled to transcriptomic profiling or bright field imaging provide simple and powerful marker-
free strategies for large scale studies of inter-individual variation.
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Figure 2.5 – Embryos can be staged and gated using scatter and fluorescence
a,b, Embryo age can be inferred from a random forest (RF) including all FACS measurements in training (a)
and independent (b) data from distinct samples, matching stage annotation from images (left), and their
corresponding age values (right).
c-e, A linear model (LM) including only side scatter (SSC-A) and violet fluorescence (VL3-A) with interac-
tion can also properly predict age in training data (c), as well as for an independent sample (d) where it
agrees closely with the more complex RF model (e).
f-h, Embryo age progression on the side scatter-violet fluorescence plane as described by the linear model
above (f), followed by the training (g) and validation (h) data.

Embryo annotation and color-coding are as described in Fig. [[FACS.4]]b. In a-e, the dashed grey line is x=y.
In a-b (right), c, d, g, and h, only annotated embryos are shown. In a, b, (left), boxes span the interquartile
range (IQR), the central bar dot denotes the median, and whiskers extend to 1.5× IQR in either direction.
Uk, unknown; Unan, unannotated
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2.3 Adapting Smart-seq3 to profile single embryos

Smart-Seq2 is a single-cell RNA-seq library preparation protocol developed by PICELLI et al.,
2013 to provide unmatched sensitivity (ZIEGENHAIN et al., 2017) and full transcriptome coverage
with short-read sequencing (PICELLI et al., 2014) rather than throughput (SVENSSON et al., 2018).
This makes the protocol very flexible and resulted in adaptations to other sample types, notably
single-worm (or single-embryo) developed in following years (SERRA et al., 2018; CHANG et al.,
2021) and applied to C. elegans and other nematodes (MACCHIETTO et al., 2017; REY et al., 2022).

The recently-improved Smart-seq32 further enhances sensitivity, reduces costs, and introduces
a Unique Molecular Identifier (UMI) to account for PCR amplification bias (HAGEMANN-JENSEN

et al., 2020). Furthermore, it allows computational reconstruction of RNA molecules, and thus
of alternatively spliced transcripts (as well as assigning alleles) without resorting to long-read se-
quencing that generally lacks in throughput (OIKONOMOPOULOS et al., 2020).

We therefore sought to adapt Smart-seq3 for single embryo profiling to improve upon current
single-worm adaptations of Smart-seq2, notably in cost and sensitivity.

2.3.1 Overview of the original Smart-seq3 protocol

The robustness and sensitivity of Smart-seq3 are the result of hundreds of optimization ex-
periments performed by HAGEMANN-JENSEN et al., 2020, while recovering full-transcripts from
short-read sequencing data is mainly a computational innovation. As a result, the main steps of
the protocol 3 described below follow standard RNA-seq library preparation guidelines.

Workbench cleanup to clear RNAse and potential contaminants.

Lysis buffer preparation which includes the oligodT primer that will target mature mRNAs for
reverse transcription and dNTPs required for the reaction.

Sample collection followed, if necessary, by storage at -80°C.

Cell lysis and RNA denaturation Lysis is a simple heat treatment, as cells are fragile. The oligodT
also hybridizes with the polyA tail of mRNAs at this step.

Reverse Transcription (RT) PCR selects mRNAs through the oligodT primer, and uses template
switching to incorporate a UMI (and PCR primer) on the 5’ end of the molecule (Fig. 2.6a)

Preamplification PCR to amplify RT-PCR products with UMIs (Fig. 2.6b).

Purification of cDNA with magnetic beads gets rid of leftover reaction components or other ele-
ments from the input sample.

Quality control and normalization of cDNA Control for both cDNA quantity and quality. For ex-
ample, poor quality samples with signs of RNA degradation can be detected with Bioan-
alyzer or Tapestation cDNA fragment length distribution profiles, and discarded (see Ap-
pendix C). Normalization of the purified cDNA concentration ensures an even tagmentation
reaction and final cDNA amount across samples.

Tagmentation in which cDNA is (essentially) randomly cut by a tagmentase enzyme (Tn5) and
the resulting fragments flanked with PCR primers (Fig. 2.6c). After this step, the library con-
sists of UMI-tagged fragments and internal fragments, the ratio of which can be tweaked
with input Tn5 and cDNA concentration (but is also influenced by the sequencer type,

2and even more recent Smart-seq3xpress, HAGEMANN-JENSEN et al., 2022.
3accessible in its latest version (v3 at the time of writing) on protocols.io at https://dx.doi.org/10.17504/

protocols.io.bcq4ivyw
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Figure 2.6 – Journey of an RNA molecule through Smart-seq3
a, RNA molecules with a polyA tail (in blue) are reverse transcribed from the oligodT, and template
switching is carried out at the 5’ end, introducing a Unique Molecular Identifier (UMI).
b, PCR preamplification produces multiple amplicons of the same UMI-tagged initial molecule
c, Tagmentation then randomly cuts the amplicons, producing 5’-UMI-tagged fragments and internal
fragments.
d, After paired-end (PE) sequencing (reads shown in green), variable 3’ ends of fragments with the same
UMI allow partial reconstruction of the initial RNA molecule.

Adapted from Figures 1a and 3a of HAGEMANN-JENSEN et al., 2020.
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HAGEMANN-JENSEN et al., 2020). Unlike most short-read protocols, Smart-seq3 benefits
from a tagmentation output with varied and large fragment sizes. Indeed, copies of the same
initial cDNA (i.e. RNA molecule, with the same UMI) will have variable 3’ ends due to tag-
mentation. After paired-end sequencing, different transcript regions spanned by the 3’ se-
quences (read 2) can therefore be computationally linked to a single molecule with the UMI
in 5’ (read 1) and enable what the authors call parallel reconstruction of the RNA molecule
(Fig. 2.6d).

Tagmentation PCR to amplify and barcode tagmented fragments.

Pooling and final purification Barcoded samples can now be pooled, and purified to remove any
leftover reaction components.

Final quality control to check fragment length distribution after tagmentation.

Sequencing on any Illumina-compatible sequencer, short read and paired end.

Data processing using the zUMIs (PAREKH et al., 2018) pipeline to demultiplex and process sam-
ple barcodes and UMIs.

2.3.2 Protocol modifications for C. elegans single embryos

Perhaps as a testament to the robustness of the protocol achieved by HAGEMANN-JENSEN et al.,
2020, adapting Smart-seq3 from single-cell to single-embryo required fairly minor adjustments
and optimization. In this section, I describe the main changes to the protocol, which concern
sample collection (and potential subsequent freezing), lysis, and the PCR and purification steps
following tagmentation. The full modified protocol is described in Appendix C.

2.3.2.1 Sample collection and lysis

A pure solution of C. elegans embryos of all stages can be collected by bleaching the contents
of a plate (ie. adults + laid eggs, see Methods). Individual embryos can then be pipetted into the
lysis buffer by hand or, as seen above, sorted using a FACS instrument.

More robust than isolated cells, embryos have a protective eggshell and later stages also form
a cuticle, so they require a rougher and more active lysis. Standard practice for worm RNA-seq is
to start by lysing with proteinase-K, as done by SERRA et al., 2018 in their single-worm adaptation
of Smart-seq2. We therefore added a working concentration of the enzyme (1µg /µL) to the lysis
buffer, and introduced its corresponding incubation cycle of 10 min at 65°C, followed by 1 min at
85°C for inactivation. We removed the oligodT and dNTPs from the buffer to avoid damaging them
during lysis, adding them afterwards, followed by 5 minutes of incubation at 72°C to denature and
hybridize mRNAs with the oligo. Though the eggshells of C. elegans embryos are also often lysed
with chitinase to dissociate cells (ZHANG & KUHN, 2018; PACKER et al., 2019), we found this to be
unnecessary and could prepare clean libraries from all developmental stages without it (Fig. 2.7).

Crucially, we found that any kind of freezing (close to 0,-20 or snap freezing) before the lysis
step damages the samples (Fig. 2.8a-d), while freezing after lysis doesn’t (Fig. 2.8e). We don’t know
why, but one hypothesis is that the RNAse inhibitor can not diffuse and perform properly before
the embryo is fully degraded. We found no negative effects on sample quality when freezing post-
lysis at -20°C for 1.5 hr, which left ample time for our sample collection needs. The effect of longer
freezing remains to be tested.

110



2. Streamlining high-throughput RNA-sequencing of single individuals

A
rb

itr
ar

y 
U

ni
ts

0

400

800

15 100 250 1k 2.5k 5k 10k

2-cell
(68 min PF) (457 min PF) (693 min PF)

Fragment length (bp)

Comma

15 100 250 1k 2.5k 5k 10k
0

400

800

Late

15 100 250 1k 2.5k 5k 10k
0

400

800
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Embryos were roughly staged under a binocular before collection, and a precise timing in minutes post-
fertilization (min PF) was acquired post-profiling with RAPToR, which confirms the initial staging. Electro-
pherogram data was acquired on a tapestation using HS-D5000 tapes and reagents.
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frozen after lysis for 15 minutes or 1 hour (e).
Samples are color-coded by embryo development. a,b and c-e are two separate experiments; samples were
processed together within each experiment. In c, the only sample with cDNA yield (out of 4) is shown.
Electropherogram data was acquired on a tapestation using HS-D5000 tapes and reagents.
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2.3.2.2 Tagmentation and following steps

In our hands, the original tagmentation and following PCR initially yielded no detectable am-
plification of material. Following a lead from a Smart-Seq3 author 4, we found the main cause to
be the SDS added to stop tagmentation, which severely inhibited the PCR reaction. To mediate
this effect, I first doubled the PCR reaction volume (from 7µL to 14µL) to stabilize the reaction and
dilute the SDS. Then, the PCR reaction was further stabilized by adding DMSO (at 2.5%, accord-
ing to manufacturer instructions) and Tween-20 (at 0.01%), known to counteract PCR inhibitors
(LORENZ, 2012), which we confirmed (Fig. 2.9a). Finally, the enzyme concentration was increased
to match the manufacturer instructions (0.02U/µL), and the number of PCR cycles raised from 12
to 15.
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Figure 2.9 – Countering the inhibitory effect of SDS on the PCR reaction
a, Tween-20 counteracts SDS, which totally inhibits the PCR at the concentration suggested in the original
Smart-seq3 protocol. Input DNA concentration is 10 ng/µL. Smoothing splines are fit per condition.
b, Low PCR amplification even after adjustments. The PCR reaction includes Tween-20 (0.1%) and SDS
(0.0075%).
DNA concentration was measured with a Qubit instrument after 30 PCR cycles, with no purification (thus
also measuring the primers). Input DNA concentrations refer to their respective solutions, not the PCR
reaction concentration. Negative controls replace input DNA with water.

Despite these adjustments, PCR amplification is still clearly not exponential, and negatively
impacted by the presence of SDS (Fig. 2.9b). At the same time, further increasing the number
of PCR cycles leads to the amplification of undesirable long chimeric fragments, easily identi-
fied when longer than the starting material and often “bleeding through” the fragment length
profile (Fig. 2.10a-c, see also Appendix C). We had little success in removing long chimeric frag-
ments through magnetic bead size-selection (Fig. 2.10c), and therefore instead focused on re-
concentrating the low PCR output at the purification step. Since libraries are barcoded and pooled
at this point, the final elution of the purification can be done in a fraction of the large starting
volume to concentrate the final library up to or above sequencing requirements. We found that
eluting in 1/5 of the starting volume (feasible with at least 3 samples in the pool) is sufficient to
reach comfortable cDNA concentrations, above 4.0 ng/uL.

A final issue to be resolved is the adapter-dimer contamination (peak around 120bp in
Fig. 2.10b-d). Like the chimeras, these fragments compete with the actual cDNA library for se-
quencing and therefore decrease the final amount of usable reads. As I was unable to remove
the adapters, even with multiple rounds of purification selecting longer fragments (Fig. 2.10d,
and given that over half of the already low starting material is lost at each round, we decided
to accept the read losses of small contaminations. Although it should be possible to rid the li-
braries of adapter dimers with a gel size-selection step, this practice is not recommended for low

4commented on the online protocol, see
https://www.protocols.io/view/smart-seq3-protocol-36wgq5rjxgk5/v3/comments?q=sds
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Figure 2.10 – Chimeras and adapter-dimers in tagmented libraries
a, cDNA fragment length distribution of a single sample before (left) and after tagmentation (right), where
long chimeric fragments appear after PCR amplification with 30 cycles.
b, Example of a cDNA fragment length profile after tagmentation without chimeras (pool of multiple input
samples)
c, Magnetic bead capture of large fragments only slightly depletes chimeras in a tagmented pool of samples.
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to remove adapters-dimers (arrow) in tagmented pool of samples. Profiles are scaled to their main peak for
comparison.
In a-d, arrows around 120 bp indicate adapter-dimer contamination. Electropherogram data was acquired
on a tapestation using HS-D5000 tapes and reagents.
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concentration inputs (HOEIJMAKERS et al., 2013), even with more recent automated instruments
(e.g. the BluePippin 5), and would result in further significant loss of material.

To summarize, we introduced an active lysis step to properly degrade embryo tissues, and
optimized the tagmentation PCR and following purification to reach acceptable library quantity
and quality for sequencing.

2.3.3 A missing link

In full transparency, the combination of FACS-sorting embryos and RNA-seq with Smart-Seq3
has yet to be completely realized. The initially poor sorting efficiency of embryos we encountered
was unexpected, and we resorted to manual collection for the pilot experiments presented be-
low. We did however successfully prepare cDNA libraries from the few sorted embryos (Fig. 2.11),
showing there are no problems with processing samples after FACS sorting.
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Figure 2.11 – cDNA libraries from FACS-sorted single embryos
Electropherogram data was acquired on a tapestation using HS-D5000 tapes and reagents.

We expect complementary experiments to optimize sorting efficiency (ensuring at least a ro-
bust 50% yield) are the last requirement for the full streamlined protocol to be viable. Empty wells
can be detected during cDNA quantification after the preamplification PCR, and thus discarded
before the most expensive part of the protocol (tagmentation).

2.4 Quality RNA-sequencing data from single-embryos

In this section, we evaluate the quality of RNA-seq libraries made with our adapted Smart-
seq3 protocol and when appropriate, compare our data with two published single-embryo RNA-
seq time-series (MACCHIETTO et al., 2017; LEVIN et al., 2016) (Table 2.1) that also used library
preparation protocols adapted from single-cell and span all of embryogenesis.

Source
Library preparation
protocol

Sequencing
Avg. depth
(M reads)

Number of
samples

This study
Adapted Smart-seq3 (this
study)

150 PE 4.5 63

MACCHIETTO et al., 2017
Adapted Smart-seq2 (SERRA

et al., 2018)
43 PE 10 48

LEVIN et al., 2016
CEL-seq
(HASHIMSHONY et al., 2012)

50 SE∗ 1 110

∗: CEL-seq is technically PE, with a 15 base read 1 sequence only containing the barcode. After demultiplexing, only
the 50 base read 2 is used for mapping and counting.

Table 2.1 – List of compared C. elegans single-embryo RNA-seq datasets

5https://sagescience.com/products/bluepippin/
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2.4.1 High-complexity libraries saturated for gene detection

Using our adaptation of Smart-seq3, we prepared 63 libraries of single embryos spanning all
developmental stages, and sequenced them at 150 bp paired-end, aiming for an average sequenc-
ing depth of 4.5 million pairs of reads (M reads). Overall sequencing yield was good despite the
presence of adapter dimer and chimeras (around 3% loss, see Methods), and 79% of reads mapped
uniquely to the C. elegans genome.

Mapped library sizes have a median of 3.5M and span 0.3-12M counts, which is coherent
with our sequencing depth and the variability of other single-individual data (Fig. 2.12a). De-
spite this variation in size most of our libraries are saturated in gene detection, meaning we reach
a plateau where deeper sequencing is not worth the resulting slight increase in library complexity
(Fig. 2.12b). We estimate that 93% of genes are detected at median library size, and that doubling it
would only increase this to 96% (Fig. 2.12b, Methods). Sequenced at over twice the depth, libraries
from MACCHIETTO et al., 2017 also show high variability in size (Fig. 2.12a) but good saturation
(Fig. 2.12c). A significant fraction of the libraries from LEVIN et al., 2016 could however have ben-
efitted from further sequencing (Fig. 2.12d), as doubling the median library size (0.85M) would
increase gene detection from 82% to 90%.

Consistent with studies in C. elegans (TINTORI et al., 2016) and zebrafish embryos (WHITE et
al., 2017) showing an increase in the diversity of expressed genes along embryo development, we
find the large differences in complexity between saturated libraries are explained by embryo age
(Fig. 2.12e). In fact, a linear combination of log(library size) and embryo age explains over 99% of
variance in the number of detected genes in all 3 datasets (Fig. 2.12f).

The sensitivity of a protocol can be measured by the number of detected genes at fixed depth
(ZHANG et al., 2019). Although both Smart-seq protocols are clearly more sensitive than CEL-seq
(Fig. 2.13a), in line with previous observations (ZIEGENHAIN et al., 2017), Smart-seq3 and Smart-
seq2 show comparable results, and accounting for embryo age also reveals no consistent differ-
ence in sensitivity between them (Fig. 2.13b-d). As the increase in sensitivity of Smart-seq3 over
Smart-seq2 reported by HAGEMANN-JENSEN et al., 2020 strongly depended on cell type, the lack of
improvement seen here could be explained by our peculiar sample type, where starting material
is more abundant than in single cells.

In summary, our Smart-seq3 single-embryo libraries have comparable or higher gene com-
plexity than similar existing data, and saturate gene detection at our average sequencing depth of
4.5M reads.

2.4.2 Sources of variability for RNA molecule detection

Counting RNA molecules with Unique Molecular Identifiers (UMIs) should correct for am-
plification biases introduced by PCR and give a direct and biologically meaningful scale of gene
expression (ISLAM et al., 2014; KIVIOJA et al., 2012). Therefore, we were surprised to find the num-
ber of UMIs (i.e. molecules) detected per sample spanned an order of magnitude, from 140,000 to
1.64M, and searched for the reasons behind this variation.

2.4.2.1 UMI library size depends on preamplification PCR yield and sequencing depth

Unlike for gene detection, UMI complexity is not explained by embryo age (r=0.18, p=0.14
Fig. 2.14a). Instead, we find that two obvious limitations are sufficient to explain most of the dif-
ferences in UMI library size: the captured RNA pool (i.e, the amount of material after RT and
preamplification) and the total library size (i.e, sequencing depth). Indeed, both the yield of the
preamplification PCR and the total library size are well correlated with UMI library size (r=0.48,
Fig. 2.14b, and r=0.56, Fig. 2.14c, respectively), despite being non-correlated with each other (r=-
0.1, p=0.43, Fig. 2.14d), and a log-linear combination of both yield and total library size explains
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Figure 2.12 – Gene detection saturation and complexity of single-embryo RNA-seq
a, Library sizes of C. elegans single-embryo RNA-seq samples from this study (All mapped reads, and UMI-
corrected), MACCHIETTO et al., 2017, and LEVIN et al., 2016.
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e, Maximum library gene complexity is dictated by embryo age. Curves identical to b-d.
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Figure 2.13 – Smart-seq3 sensitivity for single embryos compared to other protocols
a, Saturation curve fit comparison between Smart-seq3 (this study), Smart-seq2 (MACCHIETTO et al., 2017),
and CEL-seq (LEVIN et al., 2016). Fits per dataset from Fig 2.12b-d.
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mean better gene detection with Smart-seq3.
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over 95% of variance in the number of detected RNA molecules. If sequencing depth can be readily
increased, we have yet to understand the origins of the PCR yield variation.
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Figure 2.14 – UMI detection depends on PCR yield and sequencing depth
a, UMI library size is uncorrelated with embryo development.
b-d, Preamplification PCR yield (a) and total library size (b) explain most of the variance in the number of
detected molecules per sample, and are not correlated with each other (d).
e, Number of reads per UMI averaged per gene. The vertical dashed line denotes the mean (4.36).
f, Estimated fraction of non-unique UMIs per number of detected UMIs for a gene when assuming random
sampling, for an 8-, a 9- and a 10-base sequence. Numbers of UMIs to reach 5 and 10% non-unique bar-
codes are indicated on the plot.
In a-d, Pearson correlation is indicated alongside the p-value of its association test. In c, the dashed grey
line denotes x = y . UMI, Unique Molecular Identifier; M counts, Million counts.

After accounting for yield and depth, residual variance in molecule count is also slightly, but
significantly, explained by the sample batch (PCR strip) during library preparation (p<0.01 ANOVA
of batch on residuals, see Methods), thus also suggesting UMI library size can still be influenced
by other technical and experimental factors.

The clear limit imposed by sequencing depth on UMI detection, particularly in high-yield sam-
ples (Fig. 2.14c) indicates these libraries have not reached saturation (unlike for gene detection),
with each UMI on average sequenced 4 times (Fig. 2.14e). Single-cell RNA-seq comparative studies
and benchmarks agree that 1M reads per cell is generally sufficient to saturate UMI detection (VI-
ETH et al., 2019; SVENSSON et al., 2017; ZHANG et al., 2019). Although such information is lacking
for whole-organism profiling where UMI-based protocols are seldom used, this number depends
on the initial amount of RNA and it is therefore not surprising for 3.5M reads to be insufficient
in our case. To our knowledge, a single other work profiled single (Drosophila) embryos using a
UMI-based protocol (PEREZ-MOJICA et al., 2023). While no saturation analysis was performed by
the authors, they mention an average library size of 6M reads and median detection of 600,000
UMIs, which is slightly below the complexity we achieve at lower depth with Smart-seq3 (690,000
UMIs, with 3.5M reads).
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2.4.2.2 Higher UMI complexity will require longer barcodes

Since the starting pool of RNA for whole embryos is larger than for single cells, there is valid
concern that the diversity of 8b UMI tags (65,536 possibilities) could be limiting. Assuming equal
capture of UMI tags, we can infer that a capture of 6,448 molecules for a gene will on average have
5% non-unique UMIs, resulting in a UMI count of 6,141 (Fig. 2.14f, see Methods). Only 61 genes
(0.25%) pass this UMI count threshold in our libraries, suggesting the 8-base UMI is sufficient
here, but this may not be the case if libraries reach saturation. Using a 9- (or even 10-) base UMI
would dramatically reduce the chance of non-unique UMI tags (Fig. 2.14f) at virtually no extra
cost and no hindrance to the template-switching reaction (in fact, a similar adjustment has been
made to the latest Smart-seq3 installment by HAGEMANN-JENSEN et al., 2022). Furthermore, given
how strongly preamplification PCR yield influences the size of the captured RNA pool (Fig. 2.14b),
we expect that very high-UMI-complexity libraries can be achieved by selecting informative (i.e.
high-yield, >20 ng/µL) samples, and that sequencing such libraries at a depth exceeding 10M reads
would likely still not saturate UMI detection.

Importantly, saturating the detection of UMIs is not always necessary depending on the study.
Expression can be quantified with high accuracy at much lower depths (SVENSSON et al., 2017;
ZHANG et al., 2019), sufficient for differential expression analysis, especially considering the added
power from UMI correction (ZIEGENHAIN et al., 2017; PAREKH et al., 2016). Furthermore, although
saturated UMI libraries should provide an absolute quantification of expression, SVENSSON et al.,
2017 show this is not exactly true.

To summarize, we find that UMI-corrected library sizes measure the amount of unique RNA
molecules we could capture and sequence from a sample, rather than a true amount of starting
mRNA. Then, although an 8b UMI is sufficient here, increasing to 9 or 10 bases would be safer for
highly-expressed genes and deeper sequencing. Finally, high-yield samples tend to make more
complex libraries, which can therefore be selected early-on during library preparation.

2.4.3 Accurate embryo development and gene expression dynamics

We find that age inferred from embryo gene expression using RAPToR (BULTEAU & FRANCESCONI,
2022) matches both our manual staging and timed egg-lays done at sample collection (Fig. 2.15a,
Methods), thus exemplifying that such tedious manual staging of embryos is no longer necessary.

Grouping samples from all datasets together, we perform an Independent Component Anal-
ysis (ICA) to summarize the main signals of gene expression and find remarkably little batch ef-
fect and variation between the three datasets (Fig. 2.16). This is particularly the case between the
Smart-seq protocols, where developmental dynamics in are tightly matched in most Independent
Components (ICs), and batch effects usually seen in the first components only appear in ICs ex-
plaining a low percentage of variance in the data (e.g. IC13, 1.81% or IC15, 1.57%, Fig. 2.16).

Embryos from LEVIN et al., 2016 show more typical batch effects, such as their clear segrega-
tion in IC5 (5.95%), and differences in the amplitude of expression dynamics (ICs 3, 4, 7, and 9,
Fig. 2.16), despite normalization (see Methods). Amplitude differences can not be explained only
by lower sequencing depth, as an ICA on libraries subsampled to 1M reads still shows the arte-
fact (Fig. 2.17), so they could be a consequence of the different sensitivity of the CEL-seq protocol.
Other differences such as diverging dynamics (e.g. IC10, IC11, Fig. 2.16) could be biological, or
the result of differing sample collection protocols (LEVIN et al., 2016 bleached early embryos and
waited for the desired timing, whereas MACCHIETTO et al., 2017 and we directly collected targeted
stages).

We conclude our data closely matches expected expression dynamics along embryo develop-
ment.
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Figure 2.15 – Inferred age matches expected embryo development of samples
RAPToR age estimates of manually staged (left) and timed egg-lay (right) single embryos. Timed egg lays
targeted the windows of development indicated in red (150-350, and 400-600 min past 4C), in two batches
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staged sample.

2.4.4 Conclusions

We have successfully profiled single C. elegans embryos of all stages with our adapted Smart-
seq3 protocol, and generated high quality libraries. The cost of profiling is drastically reduced
over the previously adapted Smart-seq2 (from 35€ to around 1.5€ per sample in reagent costs
alone), but also compared to state-of-the-art protocols. Indeed, a recent single-embryo study re-
ports a total cost per sample (including sequencing) of 36€ (PEREZ-MOJICA et al., 2023), while we
achieve greater UMI complexity for under half that price (see Methods) Our samples match ex-
pected developmental stages, as well as the expression dynamics of previously established stud-
ies. Although library complexity can still be improved by extending the UMI barcode and selecting
high preamplification-PCR yield samples, we conclude our adapted protocol can already produce
exploitable libraries for gene expression analysis.
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2.5 Discussion

I have shown here that single-individual profiling of small organisms can take full advantage
of single-cell technologies. First, we reaffirm that flow cytometry equipment can be used to char-
acterize and sort single live C. elegans embryos, improving upon a seldom-used technique from
over a decade ago (STOECKIUS et al., 2009). Thanks to a cytometer capable of taking brightfield
images of events, we found that unfertilized, dead, or live embryos can be reliably selected with-
out using any markers, which is transposable to other instruments. We further established and
characterized a clear link between embryo autofluorescence in multiple wavelengths and devel-
opmental progression, which can therefore be used to enrich in developmental stages of interest
during sorting. Our findings make flow cytometry a promising technique not only to sort indi-
viduals at high throughput, but also potentially to study interindividual variation at scale in C.
elegans, for example by understanding how variation in genome wide gene expression relates to
phenotypic variation measured by multiple cytometer parameters (autofluorescence, scatter etc..)
or features extracted from images.

Then, we adapted the Smart-seq3 single-cell RNA-seq library preparation protocol for single
embryos, and show they can be profiled across development at high gene and UMI complexity at
much reduced cost from previous (PICELLI et al., 2013) and current (PEREZ-MOJICA et al., 2023)
protocols. Furthermore, we have yet to explore RNA molecule reconstruction and isoform assign-
ment, which add advantages and possibilities for analysis. Coupled to post-profiling staging from
the transcriptome provided by RAPToR (BULTEAU & FRANCESCONI, 2022), these breakthroughs
enable a streamlined high-throughput and cost effective way to profile single nematodes across
embryo development.

Although we have reached a point where both flow cytometry, sorting, and library preparation
of single embryos can be done successfully, further optimization is still needed to make the most
of this work.

To begin, FACS sorting efficiency of embryos must robustly reach at least 50% to truly improve
throughput. Next, we have yet to determine a proper method to remove adapter and chimera
contaminations in pooled tagmented libraries. Finally, UMI complexity of libraries can be sub-
stantially increased by combining a longer UMI barcode with deeper sequencing of high-yield
samples. We also expect that “hands-on” time, plastics use, and errors due to pipetting low vol-
umes can be significantly reduced by using automated liquid dispensers (such as the MANTIS®
robot 6), as we found multichannel pipettes particularly imprecise at low volumes and resorted to
using single-channel pipettes for most of the library preparation steps.

Our sorting method is restricted to smaller individuals like the embryos (or L1 larvae, FERNAN-
DEZ et al., 2010) of C. elegans because we rely on flow cytometry equipment. However, because
such equipment is more widespread than specialized instruments capable of sorting larger, adult-
C. elegans-sized particles like biosorters, we note this also makes our approach more accessible to
potentially interested labs. Large particle sorters can still likely be used in a similar way, but this
and the efficiency of our library preparation protocol on adults and larger animals remains to be
tested.

Moving away from the traditional “3 perturbed vs. 3 control” profiling experimental design to
a larger, less synchronized number of single individuals per condition is now possible at equal or
lower cost to analyze gene expression changes between conditions, taking into account not only
inter-individual variation but also dynamic changes that could have otherwise been missed.

My work focuses on C. elegans, but we believe that other small organisms can also benefit
from our findings. For example, we successfully prepared a cDNA library from the embryo of
a distant nematode cousin, Mesorhabditis Belari, in a small pilot experiment with the lab of Dr.
Marie Delattre. There is also no reason why Smart-seq3 would not work on other sample types,
such as dissected tissues of larger organisms, provided RNA can be extracted from the material.

6see formulatrix.com/liquid-handling-systems/mantis-liquid-handler/
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Going forward, we envision that integrating several levels of information from many single
individuals – such as images, fluorescence and scatter measurements, and gene expression – will
enable us to gain a more complete picture of individuals and their differences within and between
populations.

2.6 Methods

All data analyses were performed with R (v4.3.0) unless otherwise noted.

2.6.1 Nematode culture and handling

C. elegans worms of the standard “N2” laboratory strain were kept at 20°C in roughly synchro-
nized populations on 60mm NGM agar plates seeded with OP50. 100 eggs are transferred to new
plates every 3-4 days to maintain populations.

2.6.1.1 Bleaching protocol

To collect embryos at all stages, we wash a plate with egg-laying adults, laid eggs, and hatched
larvae (indicating that late embryo stages are present) using M9 into a 15mL falcon tube, taking
care to scrape the agar and collect as many eggs as possible. After collection, the tube is filled
to 15 mL with M9, vortexed, and centrifuged for 1 min at 5000 RCF. During centrifugation of the
collection tube, another tube is prepared with 250 µLNaOH (1M) + 150 µL Bleach (NaClO, 13%).
75 µL of the accumulated worm pellet is then transferred to the bleach tube, which is vortexed
thoroughly and checked frequently under a binocular until adult worms are dissolved (generally
2-3 min). M9 is then added to 15 mL to dilute bleach and stop the reaction, and centrifuge the
tube 1 min at 5000 RCF. We check for the presence of a pellet and remove as much supernatant
as possible without disturbing it. This M9 wash is repeated twice before collecting 1 mL of bleach
output with embryos. As this protocol only takes only 10-15 min, our bleach output still contains
early 1-cell embryos. Centrifugation and M9 washes can also be done at 4°C to slow development
and collect early stages.

2.6.2 Flow cytometry experiments and analysis

2.6.2.1 Data acquisition and analysis

Bleached embryo suspensions were directly passed through an AttuneTM CytPixTM flow cy-
tometer, acquiring up to 30,000 event images alongside fluorescence and scatter measurements.
Embryos-sized events are gated with FSC-H and SSC-H (as shown in Fig. 2.2b, and live embryos
with fluorescence channels BL1-A and BL2-A (Fig. 2.2c). Similarly, embryos were sorted with a
BD FACSARIA IIµ (with 3 lasers and 10 fluorescence channels), with FSC and blue laser channel
area scaling factors set to 0.7 and 0.5 respectively. Embryos-sized events are gated with SSC-W and
SSC-H, and live embryos with fluorescence channels FITC-A and PerpCP-Cy5-5-A (Fig. 2.2e-f, see
also Appendix B).

A total of 8 runs were acquired on the Cytpix (2 of which are shown in this chapter, with the
remainder in Appendix B), and 10 runs on the FACSAria.

Flow Cytometry Standard (FCS) files were exported from both instruments (alongside images
for the CytPix), and re-analyzed in R using the flowcore (v2.12.0) and ggcyto (v1.28.0) libraries.

2.6.2.2 Sorting efficiency experiments

To evaluate sorting efficiency, 1, 3, or 8 live embryos were sorted using a FACSAria into PCR
strips or strip caps containing 2.5uL of M9 buffer. We tested a centrifugation time of 5 or 15
seconds (using a small bench centrifuge) after collection, adding Triton at 0.05% in the sorted
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solution, sorting in strips or strip caps, as well as applying either “single-cell” (0:32:16) or “pu-
rity” (32:32:0) sorting masks. After sorting, embryos were counted in wells under a binocular, and
double-checked on slides. We then fitted a linear model including all the parameters (with no
interaction) on the ratio of observed over expected embryos per well to evaluate their effects, re-
porting the significance of model coefficients in Fig. 2.3.

2.6.2.3 Staging embryos from autofluorescence

835 and 327 live embryos from two independent samples were manually staged from their
images using the classification shown in (Fig. 2.3b), with timings in minutes past 4-cell assigned
per class as follows: -55 (1-cell), -25 (2-cell), 0 (4-cell), 25 (4-8 cells), 75 (8-32 cells), 175 (>32 cells),
355 (Comma), 425 (2-fold), and 625 (Late). Embryos classified as ‘Bad’ or ‘Unknown’ were not used
for model training or validation.

Using the first sample, we fit a random forest on embryo age using all 18 channel measure-
ments of the CytPix (FSC, SSC, BL1, BL2, YL1, YL3, RL1, VL1, and VL3, in area (-A, eg. FSC-A),
height (-H), and width (-W)) with the randomForest() function of the homonym package (v4.7-
1.1), fitting 1000 trees with 6 variables. This allowed us to determine the strongest age predictors
as those with the highest average decrease in mean squared error per tree (SSC-A, RL1-A, YL1-A,
BL2-A, and VL3-A). We then used the random forest model to predict the age of embryos from the
second sample.

To prove embryos can be staged using few parameters, we selected two parameters: SSC-A
(the strongest predictor), and VL3-A (which was among the best predictors, and least correlated
with SSC-A) to fit a linear model with interaction on age in the first sample. We then used the
model to infer the age of embryos from the independent second sample, and to establish a map of
development progression along the two parameters.

2.6.3 Smart-seq3 protocol optimization

For all optimization experiments, embryos of different developmental stages spanning at least
4-cell to 3-fold stage were collected by hand after bleaching, as described above and processed
as described in the adapted Smart-seq3 protocol in Appendix C unless otherwise stated. All elec-
tropherogram data was acquired using an Agilent Tapestation, HS-D5000 tapes and reagents, and
plotted with R.

2.6.3.1 Freezing experiments

To test the effect of snap-freezing on sample quality, PCR strips with samples were placed into
liquid nitrogen immediately after collection, and taken out after 15 min for lysis together with the
unfrozen samples, and processed together for subsequent library preparation steps.

To test the effect of freezing before and after lysis, embryos were collected and either imme-
diately frozen (“Frozen pre-lysis”) for 1h, immediately lysed and stored at -20°C for 1h or 15 min
(“Frozen post-lysis”), or immediately lysed and followed by the next protocol steps. All conditions
were processed together from pre-RT incubation onwards.

2.6.3.2 Tagmentation PCR

To evaluate the effect of sodium dodecyl sulfate (SDS) and Tween-20 on the post-tagmentation
PCR, 14µL mixes with reaction concentrations of 0%, 0.0025%, 0.005%, 0.0075%, 0.01%, and 0.015%
SDS were prepared with and without Tween-20 at 0.01%, with 2.8µL of input gDNA at 10 ng/µL (or
water for controls) and 0.7µL of primers at 10µM, and amplified for 30 PCR cycles. DNA concen-
tration was then measured with a dsDNA High Sensitivity quantification assay on a Qubit.

We evaluated the effect of SDS on the adjusted PCR after tagmentation, with 0, 0.1, and 1.0
ng/µL input cDNA pre-tagmentation. Tagmentation and PCR were performed as described in
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Appendix C, adding either 0.5µL SDS 0.2% or 0.5µL water, after tagmentation incubation, and
amplifying for 30 PCR cycles.

2.6.3.3 Chimera and adapter dimer contamination removal

For Fig. 2.10a, a 1.0 ngµL cDNA input library was tagmented followed by a 30-cycle PCR,
and purified with 0.8:1 magnetic bead ratio. In Fig. 2.10b, multiple libraries were tagmented and
pooled, following the final version of the adapted protocol. In Fig. 2.10c, large fragments of a post-
tagmentation library with chimeras were captured with 0.1, 0.2, or 0.3 bead to sample ratios. Beads
were left to settle on the magnet, and the supernatant (in theory depleted of longer fragments at-
tached to the beads) collected for analysis. In Fig. 2.10d, 1 or 2 consecutive rounds of purification
(0.8:1 beads to sample) were done on a library with adapter dimer contamination.

2.6.4 RNA-seq library preparation and pre-processing

2.6.4.1 Smart-seq3 libraries

A first set of multiple batches totalling 32 single embryos were manually staged and picked
from bleach outputs. Timed egg-lays were done to collect a second set of batches of 31 embryos
targeting 150-300 and 400-600 minutes past 4-cell windows of development. Libraries were pre-
pared following the adapted Smart-seq3 protocol described in Appendix C. Preamplification PCR
yield was measured after purification using an Invitrogen™ High-sensitivity dsDNA detection kit
(Q32851) and a Qubit instrument. Both sets of samples (hereafter pool 1 and pool 2) were pro-
cessed, pooled, and sequenced separately.

Pools 1 and 2, with tagmented library profiles shown in Fig. 2.10c (initial) and Fig. 2.10b respec-
tively, were sent for paired-end (PE) 150 bp sequencing on an Illumina Novaseq 6000 instrument.
Targeting 150 million pairs of reads (M) for each pool, yields were 128M and 163M respectively,
resulting in an overall loss of reads of (128+163)/300 = 3%. Lower yield in the first pool may be
caused by the presence of chimeras (which are absent from the second pool), since adapter dimer
is present in both pools, and mapping rate of both pools is identical: 79.2% and 79.4%, respectively.
Raw fastq data was processed with the zUMIs pipeline (PAREKH et al., 2018) using the parameters
provided by Smart-seq3 authors at protocols.io, applying no UMI sequence error correction
(Hamming distance parameter set to 0), mapping to the C. elegans genome (WBcel235, annota-
tion v109) using STAR (v2.5.4b, as given in the zUMIs conda environment). The output count
matrices for UMIs and reads uniquely mapping to intron+exon were used in all analyses (intron
reads account for under 0.5% of mapped reads).

2.6.4.2 Published single-embryo libraries

Raw reads from MACCHIETTO et al., 2017 C. elegans embryo samples were downloaded from
the SRA (accession: SRP084244) using the sra-toolkit (v2.10.7), processed with Trimmomatic (v0.36)
to remove adapters and low-quality reads with fastQC, mapped to the C. elegans genome (WB-
cel235) with STAR (v2.5.4b), and expression quantified with featureCounts (v1.6.0).

Counts from LEVIN et al., 2016 samples were directly downloaded from GEO (accession:
GSE60755), as provided by the authors. As described in BULTEAU & FRANCESCONI, 2022, samples
poorly correlated with others and clear outliers in an ICA were filtered out, leaving 110 samples for
analysis.

2.6.4.3 Inferring embryo age

We used ae() from RAPToR (v1.2.0) to infer the age of all samples against the “Cel_embryo”
reference from wormRef (v0.5). Age is reported in minutes past the 4-cell stage (and can thus be
negative for earlier samples).
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2.6.5 Analysis of library quality and properties

2.6.5.1 Gene detection saturation
Gene detection saturation was estimated by down-sampling read counts of libraries at 1k,

5k,10k, 50k, 100k, 250k, 500k, 1M, 2M, 3M, 4M, 5M, 7.5M, 10M, and 12.5M reads within the avail-
able library size in triplicate, and reporting the number of genes with at least 5 counts. Curves fit
in Figures 2.12-2.13 are Michaelis-Menten saturation equations fit using the nls() function of the
stats core package. We estimated the average number of genes detected for median and 2x median
library sizes using the fits.

To assess sensitivity differences between Smart-seq2 and 3 libraries taking into account em-
bryo development, we binned samples by (inferred) age as shown in Table 2.2 and fit curves as
described above. Fig. 2.13d shows the percentage increase in gene detection of fits per age bin as
follows: 100× SS3−SS2

SS3 .

Age bin
(min past 4-cell)

Smart-seq3 libraries
(this study)

Smart-seq2 libraries
(MACCHIETTO et al., 2017)

(-50,100] 16 17
(100,250] 13 8
(250,375] 12 2
(375,500] 14 12
(500,650] 4 2
(650,800] 4 7

Table 2.2 – Number of samples per age bin for library saturation curves

Linear models to explain library complexity differences were fit for all 3 datasets with the fol-
lowing formula, using the lm function of R complexity ~0 + age * log(libsize) .

2.6.5.2 Explaining UMI library size variation
We fit a linear model using the lm function of R to explain UMI library size by preamplification

PCR yield and its interaction with total library size with the following formula: UMI_libsize
~0+log(yield)+log(yield):log(libsize) We then tested if variance in the residuals of the
model above could be significantly explained by sample batch (PCR strip) using an ANOVA, p<0.01.

2.6.5.3 Estimating duplicate UMI capture
Assuming we select k UMI tags among n possible values with equal probability of being picked

(with replacement) 1
n , then the expected number of distinct tags E(Dk ) is

E(Dk ) = n

[
1−

(
1− 1

n

)k
]

which corresponds to an observed UMI count. Therefore, we can infer the ratio of duplicated
molecules in an observed UMI count with k−E(Dk )

k duplicates, for a given number of possible
UMIs. An 8-base UMI has n = 48 = 65,536 possible sequences. 9 and 10 base UMIs similarly have
n = 49 = 262,144 and n = 410 = 1,048,576 possible sequences respectively.

2.6.5.4 Protocol cost comparisons
For Smart-seq2, PICELLI et al., 2014 give an estimated cost of reagents per library of 36€, and

HAGEMANN-JENSEN et al., 2020 of under 1€ per library for Smart-seq3. We estimate the cost of
reagents per library of our adapted Smart-seq3 protocol for single embryos to under 1.5€. Se-
quencing costs come to 15-16€ per sample with an average depth of 4.5M reads, bringing the total
cost per embryo to 17€.
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PEREZ-MOJICA et al., 2023 mention a total cost per embryo of 36€, sequenced with identical
parameters to ours (150bp, PE, Novaseq 6000 sequencer) aside from depth, at 6.5M, resulting in a
median UMI complexity of 600,000. Despite lower depth, our libraries already have higher median
UMI complexity (690,000) at half the cost. Deeper sequencing of our libraries to match 6.5M would
still result in a significantly cheaper cost per sample, at under 25€. 6.5M

4.5M ×16+1.5 = 24.6€.

Note that sequencing depth (number of sequenced reads) rather than library size (number of
reads mapped to transcripts) is used in the calculations above.

2.6.5.5 Comparison of gene expression dynamics

Expression values of the 3 single-embryo datasets, TPM for Smart-seq3 and MACCHIETTO et al.,
2017 samples and CPM for LEVIN et al., 2016 (as gene length is already accounted for by CEL-seq
RNA capture), were joined with matching gene IDs, logged (log (X+1)), and quantile-normalized
with the normalizeBetweenArrays() function of limma (v3.56.1). We then performed a centered
PCA (prcomp()) to determine that 22 components are sufficient to explain at least 80% of variance
in the data, and performed an independent component analysis (ICA) extracting 22 components
with the icafast() function of the ica package (v1.0-3).

In order to check for expression dynamic amplitude difference at equivalent library size, we
down-sampled libraries to 1M reads as described above (Gene detection saturation), and similarly
joined, logged, and normalized before extracting 22 components with an ICA.
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Abstract

Social cues perceived by sensory neurons in C. elegans can impact the generation time of their
progeny. Gene expression of single embryos across development reveals that besides delaying the
germline of progeny, parental pheromone exposure likely alters the development of their nervous
system, and particularly of their sensory organs. We hypothesize that these changes could alter
perception of and reaction to the environment in the progeny, possibly influencing important life
decisions such as dauer entry.

131



3. Parental pheromone perception alters gene expression of the developing nervous system

3.1 Introduction

The environment is a major source of phenotypic variation in organisms. Although some
changes can be passive, for example reduced growth due to lack of nutrients (VAN KLEUNEN &
FISCHER, 2005), organisms also actively react through sensory perception of their environment
often causing substantial changes.

In C. elegans nematodes, the perception of ascaroside pheromones can influence behavior
such as aggregation (SRINIVASAN et al., 2012) or foraging (GREENE et al., 2016b; CHUTE et al., 2019),
but can also regulate developmental speed (LUDEWIG et al., 2019) and even lifespan (LUDEWIG et
al., 2013; MAURES et al., 2014). Furthermore, high concentrations of pheromone (signaling a poor
environment with high population density) cause immature larvae to enter a developmental arrest
state known as dauer, that is highly resistant to various stresses and can go months without food
(GOLDEN & RIDDLE, 1984; BUTCHER et al., 2007). Pheromone perception thus not only influences
the behavior of C. elegans, but also causes lasting developmental and physiological changes.

Pheromones can also elicit changes across generations. PEREZ et al., 2021a recently showed
that dauer pheromone exposure quantitatively controls the generation time of progeny by de-
laying development of their germline. They demonstrate pheromone perception (implicating
chemosensory neurons such as ASI and AWC) and TGF-β ligand DAF-7 (produced in ASI) are re-
quired in the parents for the progeny phenotype. They further show that the main downstream
effector of the TGF-β pathway, DAF-3, is required in the progeny but dispensable in the parents.
However, a systematic characterization of the molecular changes that occur in the progeny upon
parental perception of pheromone is still lacking.

In this chapter, I describe transcriptional changes induced by parental exposure to pheromone.
With preliminary gene expression profiling and analysis of single embryos across development, we
find exciting leads into potential physiological and behavioral changes induced by parental per-
ception of the social environment, as well as hints to signal transmission.

3.2 Experimental design, data collection and analysis

To better understand the changes occurring in the progeny of pheromone-exposed parents,
we profiled the transcriptome of single individuals from pheromone-exposed (PHE) and control
(CTR) parents across embryo development (Fig. 3.1a,b), using an adapted Smart-seq3 RNA-seq
protocol (HAGEMANN-JENSEN et al., 2020, see Chapter 2). Parents were exposed to control- or
crude pheromone-treated plates as previously described (Fig. 3.1a, PEREZ et al., 2021a), and the ef-
fect of pheromone was confirmed through the soma-germline delay in the progeny of pheromone-
exposed parents (Fig. 3.1c, Methods).

Inferring age from gene expression with RAPToR confirms our samples span most of embryo-
genesis in both control and pheromone conditions (Fig. 3.1b). Of note, embryos from pheromone-
exposed parents collected after a timed egg-lay targeting 400-600 min past 4-cell were on average
older than controls, though non-significantly (p>0.1, Fig. 3.1d). This was not the case for an earlier
developmental window target, and suggests that embryo development could be slightly acceler-
ated by parental exposure to pheromone.

We find developmental expression dynamics match previously published single-embryo pro-
filing data (see Chapter 2) and conclude our data accurately reflects gene expression.
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Figure 3.1 – Single-embryo profiling to characterize the molecular changes caused by parental exposure
to pheromone
a, Experimental schematic showing the division of a synchronized adult population to plates conditioned
by either control or crude pheromone extracts, produced by filtering liquid media in which worms had
been cultured for 3-4 days (or no worms, for control). The parental worms (P0) were then left overnight to
lay eggs, before the plate contents were bleached to collect F1 single embryos for gene expression profiling.
A portion of the F1 eggs were left to hatch on a fresh plate and assayed for soma-germline delay.
b, RAPToR age estimates of profiled embryos from pheromone-exposed parents (PHE, n = 32) or controls
(CTR, n = 31). Horizontal segments denote RAPToR bootstrap confidence intervals. Landmark embryoge-
nesis events are indicated above for reference, timing in minutes past 4-cell stage at 20°C (min past 4C).
c, Time between L4/young-adult molt and appearance of the first embryo (∆ soma-germline), as described
in PEREZ et al., 2021a. Error bars denote 95% confidence intervals.
d, RAPToR age estimates for embryos collected after a timed egg-lay. One-sided t-test between age esti-
mates of CTR and PHE embryos for the second window, p=0.13, non-significant (ns).
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3.3 Parental exposure to pheromone induces neuron-related changes
in gene expression during embryo development

3.3.1 Overall expression changes point to the developing nervous system

We find a total of 1317 DE genes at a false discovery rate (FDR) of 0.1 (see Methods), with over-
all tissue enrichment in the nervous system (Table 3.1). Gene ontology (GO) enrichment shows a
strong enrichment in chromatin-related elements due to the presence of many differentially ex-
pressed histone genes, alongside several categories consistent with the nervous system (synapse-
related elements). Of note, we find no significant difference in interindividual variability of gene
expression between conditions (see Methods), or particular bias in genomic position or GC con-
tent for DE genes (Appendix D, Sup. Fig. D.1).

Term Observed Enrichment FC Q.value

Tissue nervous system 594 1.24 2.08E-05

GO

structural constituent of chromatin 29 4.81 9.29E-12
protein heterodimerization activity 30 3.78 3.04E-09
nucleosome 22 4.27 4.04E-08
postsynaptic membrane 19 2.05 5.63E-02
regulation of postsynaptic membrane
potential

16 2.12 5.63E-02

extracellular ligand-gated ion channel
activity

18 2.12 5.63E-02

chemical synaptic transmission
postsynaptic

17 2.10 5.63E-02

Table 3.1 – Global enrichment of differentially expressed genes
GO, Gene ontology; Enrichment FC, Enrichment Fold-Change
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Figure 3.2 – Clustering genes according to development dynamic and differential expression
1317 DE Genes are separately clustered according to their expression dynamic along embryo development
(1-10, dynamics are fit using all samples regardless of condition), and according to differential expres-
sion (A-F). Grey dots indicate sub-clusters with < 8 genes, for which enrichment was not tested. See Ta-
bles 3.2, 3.3, 3.4 for tissue enrichment and Appendix D, Sup. Fig. D.2, D.3, D.4, D.5, D.6 for GO and pheno-
type enrichment.
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We then cluster DE genes by developmental dynamic and differential expression to better un-
derstand the processes and tissues affected by parental exposure to pheromone (Fig. 3.2). Ex-
pression dynamic clusters (1-10) allow us to see that genes expressed along the whole of embryo
development are impacted. Clusters 1, 2, 3, and 9 group genes expressed in the late embryo, clus-
ters 4, 6, and 7, genes peaking during mid-embryo development, while clusters 5, 8, and 10 involve
genes expressed in early stages.

Further clustering according to differences between conditions (see Methods), then helps bet-
ter understand the processes and tissues that are impacted.

3.3.2 Late embryo development
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Figure 3.3 – Differentially expressed genes peaking in late embryogenesis
Expression dynamic clusters of DE genes, as defined in Fig. 3.2.

We find that clusters corresponding to expression in later embryo development (1, 2, 3, and 9,
Fig. 3.3) are strongly enriched in the nervous system, notably the lateral and retrovesicular ganglia,
where the cell bodies of chemosensory organs are located (Table 3.2). Indeed, amongst enriched
tissues, we find sensory neurons from amphids (AWC, ASI, ADL ASE, ADF) alongside interneurons
known to specifically process their inputs (AIA, AIB, AIY, AUA, RIA, RIZ, AIN precursor), as well as
the amphid sheath cells.

Genes involved in steps from sensory perception to signal transduction in various neurons
contribute to these enrichments (Fig. 3.4). For example, SRG-53 is a G-protein coupled receptor
that binds signal ligands and changes conformation, passing the signal to a G-protein α subunit
such as GPA-11. Then, receptor Guanyl Cyclases (rGC) such as GCY-7 receive this signal and trans-
mit them to Transient Receptor Potential (TRP) channels such as OCR-1, activating ion transfers
to generate electric potential differences within neurons. Ligand-gated channels like LGC-51 can
then transmit this potential to downstream neurons via neuropeptides such as NLP-5 that are
received by neuropeptide receptors like NPR-14. We also remark that DAF-9, the enzyme respon-
sible for production of dafachronic acid, downstream of the DAF-7/TGF-β signaling pathway, is
up-regulated in the progeny of pheromone-exposed worms (Fig. 3.4).

Amphids are sensory organs that secrete factors regulating many traits, including fat storage
(HUSSEY et al., 2017), foraging (GREENE et al., 2016a), and lifespan (LUDEWIG et al., 2013). ASI
and ADF in particular also regulate dauer-entry, through pheromone and temperature perception
respectively, with ASI at the top of the signaling pathway as the main producer of DAF-7/TGF-β in
C. elegans. Finding that these clusters are also associated with phenotypes such as variants in fat
content, foraging, body shape, dauer, chemosensory behavior, or lifespan further supports the fact
that the progeny response affects the amphids (Appendix D, Sup. Fig. D.2, D.3). We also remark
that ASI and AWC neurons found enriched here are required for pheromone perception to delay
progeny germline (PEREZ et al., 2021a).

After amphids, we note an enrichment of other head sensory neurons, such as outer and inner
labial neurons (IL1, IL2), oxygen sensors (URX), putative chemosensors (URY, URA, URB), and
proprioceptors (SMD, SAA). Then, multiple interneurons from the nerve ring (RIM, RIG, RIV, RIS)
and surrounding head ganglia (AVE, AVD, AVH, AVK, AVB), are also strongly enriched. Together
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Tissue 1 1.A 1.E 2 2.B 2.C 2.E 3 3.A 3.B 3.C 3.D 3.E 9 9.B 9.E

lateral ganglion 101 16 29 86 29 15
somatic nervous system 107 92 32
nervous system 40 98 20
preanal ganglion 38 13 28 12
DA neuron 44 28 13
VA neuron 40 27 13
outer labial neuron 66
head mesodermal cell 65
retrovesicular ganglion 47
RIM 21 8 12 6
RIS 3 20 14 7
epithelial system 20 22
ASE 33 8
amphid sheath cell 8 5 16 7
SMD 15 6 10 4
AIY 15 11 4
URX 14 7 9
AWC 14 9 4
ALM 18 7
DB neuron 25
AVE 18 6
ADF 18 5
PVW 9 8 5
RIV 16 6
RIA 14 7
AVD 20
ASI 14 5
PVP 12 6
RIB 16
RID 16
RIG 13 3
M1 neuron 4 7 4
RMD 9 6
ADL 14
BDU 14
ALA 13
AIB 11
AVB 11
AVH 11
AVK 11
AIA 10
g1 5 5
DVA 9
rectal gland cell 8 1
RIP 3 4 2
VC neuron 9
ADA 5 3
anterior arcade cell 8
HSN 8
I2 neuron 5 3
SAA 6 2
URA 5 3
URY 5 3
g2 4 3
nociceptor neuron 7
osmosensory neuron 7
PVN 5 2
RMG 4 3
IL1 neuron 6
AUA 5
I4 neuron 5
PDA 2 3
URB 5
DVC 4
I3 neuron 4
IL2 4
K/K’ cell 4
MC neuron 4
PVQ 2 2
tail hypodermis 4
CEM 3
hook sensillum 3
posterior arcade cell 3
ray 3
AVF 2
RMH 2
hyp4 2
hyp5 2
hyp6 2

Table 3.2 – Tissue enrichment of late embryo development clusters
Clusters as defined in Fig. 3.2, with enrichment for the whole expression dynamic cluster (1, 2, 3, 9), and sub-
cluster with ≥ 8 genes. Cell content and color corresponds the number of annotated genes in each category.
Color code shows neurons in bold, sensory organs/neurons highlighted in yellow, interneurons processing
sensory input highlighted in green, excretory system cells in blue, and cells born post-embryonically in
grey. See also Appendix D, Sup. Fig. D.2, D.3.
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Figure 3.4 – Selected differentially expressed genes involved in neuron signaling
srg-53, gpa-11, gcy-7, ocr-1, lgc-51, nlp-5, npr-14, and daf-9 expression in embryos from pheromone-
exposed parents (PHE) and controls (CTR), with their respective fits.

with pharyngeal sensory neurons (I2, I3, I4, MC), this suggests that changes occur not just in genes
specific to amphids, but also in other sensilla.

The excretory system also appears implicated, as excretory cells g1 and g2 are found amongst
enriched tissues in different clusters, with excretion also appearing in gene ontology (Sup. Fig. D.2,D.3).

Multiple clusters are enriched in dorsal and ventral motor neurons (DA, DB) and the epithelial
system, with a few specific cell types located in the head (mesodermal and arcade cells). We note
that genes related to the epithelial system, extracellular region, and cell body are upregulated in
late embryo development of pheromone-exposed parents (cluster 1.A).

Lastly, although most of the affected tissues are located in the head, genes differing in late
embryo development are also associated to a few neurons located in the tail ganglia of the worm
(PVP, PVQ, DVA, DVC, preanal ganglion).

We raise caution with respect to enrichments in post-embryonically born neurons (e.g., VA,
VC), that are most likely due to gene sets overlapping with neuron classes born earlier (DA, HSN,
respectively).

Overall gene ontology enrichment for these clusters (Appendix D, Sup. Fig. D.2, D.3) strongly
supports neuron activity in both chemical and electrical synapse signaling, with hints to specific
neuron function (taxis, chemosensation) and neuron development (cell projection). Given the
enrichment in motor neurons, it is also possible that part of the genes related to neuron activity
implicate embryo twitching (that starts around 400 min past 4-cell).

3.3.3 Mid embryo development

Unlike in later embryo stages, cell types are less defined during mid embryo development.
Clusters of genes peaking during this period (4, 6, and 7, Fig. 3.5a) are however enriched in specific
cell lineages that give rise to neurons (Table 3.3).

3.3.3.1 Neuron precursors are affected prior to differentiation

We find enrichment in precursors to ASI neurons, that notably only produce ASI neurons as the
other daughter cells are programmed to die after cell division (SULSTON et al., 1983). Contribut-
ing to this enrichment, the gene encoding TGF-β/DAF-7 itself is downregulated in the progeny
of pheromone-exposed individuals (Fig. 3.5b). Precursors to URX and HSN neurons, that were
enriched in later embryo development expression changes, are also enriched here. This suggests
changes occur in neurons also before their differentiation.
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Figure 3.5 – Differentially expressed genes peaking during mid-embryogenesis
a,Expression dynamic clusters of DE genes, as defined in Fig. 3.2.
b,c, daf-7 (b) and maoc-1 (c) expression in embryos from pheromone-exposed parents (PHE) and controls
(CTR), with their respective fits.

Tissue Final cell types (if lineage) 4.B 4.D 6 7 7.D

ABplaapappp ASIL 8
ABpraapappp ASIR 8
ABarpaapap hyp7 8
ABarpaappa hyp7 8
ABarpaappp hyp7 8
ABarppaapa hyp7 8
ABarpppapa hyp7 8
ABplaapppa hyp7 8
ABplaapppp hyp7 8
ABplappppa hyp7 8
ABpraapppa hyp7 8
ABpraapppp hyp7 8
ABprappppa hyp7 8
ABplaaaaapp CEPDL, URXL 7
ABarpapaapp CEPDR, URXR 7
ABplapppapp HSNL, PHBL 7
ABprapppapp HSNR, PHBR 7
AVK 4 3
ADE sheath cell 3
ADE socket cell 3
amphid sheath cell 3
amphid socket cell 3
CEP socket cell 3
IL sheath cell 3
IL socket cell 3
OL sheath cell 3
PDE sheath cell 3
PDE socket cell 3
phasmid sheath cell 3
phasmid socket cell 3
anterior arcade cell 3
B cell 3
hyp4 3
hyp5 3
hyp6 3
tail precursor cell 3
Y cell 3
ABaraapapaa NSML 2
ABaraapppaa NSMR 2
G cell 2
hyp1 2
hyp2 2
tail hypodermis 2
W cell 2
XXX cell 2

Table 3.3 – Tissue enrichment of mid embryo development clusters
Clusters as defined in Fig. 3.2, with enrichment for the whole expression dynamic cluster (6, 7, no enrich-
ment found at dynamic level for cluster 4), and sub-cluster with ≥ 8 genes. Cell content and color corre-
sponds the number of annotated genes in each category. Color code shows neurons in bold, sensory or-
gans/neurons highlighted in yellow, and excretory system cells in blue. See also Appendix D, Sup. Fig. D.4.
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3.3.3.2 A peak of expression around gastrulation in the progeny of pheromone-exposed indi-
viduals
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Figure 3.6 – Mid-embryogenesis expression peak in the progeny of pheromone-exposed worms
a,b, Scaled expression dynamics (a) and heatmap of underlying data (b) per gene and condition in sub-
clusters 4.D and 7.D, as defined in Fig. 3.2.

We notice that pheromone induces a clear expression peak around 250 min past 4C (end of
gastrulation) in clusters 4.D and 7.D (Fig. 3.6). Both of these clusters are enriched in genes asso-
ciated with the AVK neuron class, and cluster 7.D is also enriched in synaptic signaling, indicating
neuron activity (Sup. Fig. D.4). This is surprising given AVK interneurons are born precisely at the
timing of this peak (265 min past 4C, SULSTON et al., 1983), with activity (suggested by flp-1 neu-
ropeptide expression, (HUMS et al., 2016)) and axon development starting at elongation (around
75 min later, MUCH et al., 2000). In mature animals, AVK neurons have cell bodies posterior to
the pharynx and an axon extending towards the anterior before looping around the nerve ring and
running along the full length of the worm; they are involved in food-related locomotion behavior,
notably dispersal (HUMS et al., 2016; ORANTH et al., 2018).

Of note, although the majority of genes are tissue-annotated in both clusters, few are anno-
tated for GO or phenotypes. This may be due to the fact most of these genes are non-coding
elements, including 5 piRNAs, (21-ur transcripts), 2 long intervening non-coding RNAs (linc) linc-
146 and linc-147, as well as trans-spliced leader sequences (sls, 2) sls-1.6 and sls-2.4, a tRNA, and
multiple other small ncRNAs and snoRNA. Together, these results suggest regulatory expression
changes implicating or affecting AVK neuron development.

We note the continued presence of the epithelial (hyp7 precursors) and excretory (G cell)
systems amongst enriched tissues, and point out that maoc-1, a gene implicated in ascaroside
synthesis (VON REUSS et al., 2012), is upregulated in the progeny of pheromone-exposed worms
(Fig. 3.5c).

3.3.4 Early embryo development

Clusters of DE genes expressed in the earliest embryo stages (clusters 5, 8, 10, Fig. 3.7a), are dis-
tinct both in dynamics and enriched terms (Table 3.4). Cluster 10 exclusively groups maternally-
contributed genes (expressed in 4-cell and earlier embryos) whose expression sharply decreases,
and is enriched in germline (and precursors, Z2, Z3), oocyte differentiation and metabolism reg-
ulation, consistent with early-embryo development. Cluster 8 mainly corresponds to genes that
are expressed by the embryo itself at the onset of zygotic transcription, and appears enriched in
intestine-related genes, as well as immune response and dauer metabolism (Sup. Fig. D.5, D.6).
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Figure 3.7 – Differentially expressed genes peaking at the start of embryogenesis
a,Expression dynamic clusters of DE genes, as defined in Fig. 3.2.
b, ets-6, dpl-1, and rsd-6 expression in embryos from pheromone-exposed parents (PHE) and controls
(CTR), with their respective fits.

Tissue Final cell types (if lineage) 5 5.A 5.B 5.D 5.E 5.F 8 8.F 10 10.B 10.E 10.F

reproductive system 242 67 63 36 29 22 42 10
germ line 237 66 61 36 28 21 41 10
gonadal primordium 102 24 33 14
nervous system 144
thermosensory neuron 58 16
intestine 40 19
striated muscle 45 13
AVA 28
Caapa DVC 16 7
male 13 9
ABplapappp ALNL, PLML 15 7
ABprapappp ALNR, PLMR 15 7
ABalappppa IL1DR, IL2DR 15 7
ABarappppp IL1VR, IL2VR 15 7
ABalapaapp IL1L, IL2L 14 7
ABalaapppp IL1R, IL2R 14 7
ABalppappp IL1VL, IL2VL 14 7
ABaraappaa MI, pm1DR 14 7
ABplapaaap AIZL, FLPL, RMGL 12 6
ABprapaaap AIZR, FLPR, RMGR 12 6
ABalpapaap arc ant V 12 6
ABarappaap hyp1 12 6
head mesodermal cell 17

ABarpaaa
CEPshDL, CEPshDR,
OLQshDL, OLQshSR,
OLQsoDL, OLQsoDR

12 5

MSpaaapa I6, M5 12 5
ABalpppppa ADFL, AWBL 11 5
ABpraaappa ADFR, AWBR 11 5
ABplaaaaaa CEMDL, URADL 12 4
ABarpapaaa CEMDR, URADR 12 4
ABplpaaapa CEPshVL, URAVL 12 4
ABprpaaapa CEPshVR, URAVR 12 4
MSpaaaaa M4 10 6
ABalapapap OLQDL, URYDL 12 4
ABalapppap OLQDR, URYDR 12 4
ABplpaaapp OLQVL, URYVL 12 4
ABprpaaapp OLQVR, URYVR 12 4
ABalpppapa AFDL, RMDL 10 5
ABpraaaapa AFDR, RMDR 10 5
MSaapaapa g1AL 10 5
MSpapaapa g1AR 10 5
ABprppppap B, DVA 10 4
ABplppppap F, U 10 4
ABalapaaaa AVHL 12
ABalappapa AVHR 12
ABplpppaapa LUAL, PVCL 12
ABprpppaapa LUAR, PVCR 12
ABarappppa BAGR, SMDVR 11
ABalpppppp ASEL, ASJL, AUAL 10
ABpraaappp ASER, ASJR, AUAR 10
ABalppppppp ASJL, AUAL 10
ABpraaapppp ASJR, AUAR 10
ABalppappa BAGL, SMDVL 10
ABplpappaa RMEV, exc_cell 10
ABplapaaaa ADAL, ADEL 6
ABprapaaaa ADAR, ADER 6
ABplpapapa AVKL, exc_gl_L 5
ABprpapapa AVKR, exc_gl_R 5
MSpaapaa M1 5
somatic cell 4

(Continued on next page)
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Tissue Final cell types (if lineage) 5 5.A 5.B 5.D 5.E 5.F 8 8.F 10 10.B 10.E 10.F

ABprpppppp hyp10 4
ABplpppppp hyp10, spike 4
MSpapp mu_bod 3 1
ABalapaapa RIAL 4
ABalaapppa RIAR 4
ABalaaaarl RMEL 4
ABalaaaarr RMER 4
Z2 2 1
Z3 2 1

ABalpppa
AFDL, ASKL, AVEL, OLLshL,
OLQshVL, RMDL

3

ABplppaa AIAL, DB6, RICL, RIML, SIBDL 3
ABplaapap AIBL, ASGL, ASIL, AWAL 3

ABplpapa
AIYL, AVKL, DB5, SIADL,
SIAVL, SIBVL, SMDDL,
exc_gl_L

3

ABplapapp ALNL, P11, PLML 3
ABplaapaa AMshL, ILsoDL, URBL, hyp3 3

ABalpaap
arc ant DL, arc post DL, arc post
VL, e2DL, hyp1, hyp2, pm3L,
mc1DL

3

ABalppaa AVAL, CEPsoVL, OLQsoVL 3

ABalppap
BAGL, IL1VL, IL2VL, ILshVL,
ILsoVL, RMDVL, SAADL,
SMDVL

3

ABplppap
DA2, DA4, DD1, DD3, DD5,
RIFL, RIGL, SABD, SABVL

3

ABplpppa
DA6, DA9, LUAL, PHAL,
PHshL, PVCL, hyp8/9

3

ABplaaapp HOL, H1L 3
ABplaappa hyp4, hyp6 3
ABplaappp hyp7 3
Ea int 2 1
Eal int 2 1
Ep int 2 1

ABalpaaa
MCL, e3VL, pm1VL, pm2L,
pm2VL

3

ABalpapa
RIPL, RMDDL, SMBDL,
SMBVL, arc ant V, hyp2

3

ABplaaapa XXXL, hyp5 3

Table 3.4 – Tissue enrichment of early embryo development clusters
Clusters as defined in Fig. 3.2, with enrichment for the whole expression dynamic cluster (5, 8, 10), and sub-
cluster with ≥ 8 genes. Cell content and color corresponds the number of annotated genes in each category.
Color code shows neurons in bold, sensory organs/neurons highlighted in yellow, interneurons processing
sensory input highlighted in green, excretory system cells in blue, and cells born post-embryonically in
grey. See also Appendix D, Sup. Fig. D.5, D.6.

The largest group, cluster 5, corresponds to monotonically decreasing genes along embryo-
genesis, and is largely enriched in the germline. This includes germline-related (but not specific)
genes such as ets-6 and dpl-1 (transcription factors negatively regulating vulva development), or
rsd-6, involved in P-granule organization (Fig. 3.7b). However, germline enrichment is also largely
explained by genes related to cell proliferation that are expressed in the germline of mature worms,
and are expected to decrease along embryogenesis, as supported by GO and phenotype enrich-
ment in mitosis-related categories (Sup. Fig. D.5, D.6)). The large overlap between neuron-related
and germline categories further shows that many genes contributing to germline enrichment are
non-specific (e.g. in cluster 5, n=278, of which 237 contribute to germline enrichment and 144 to
the nervous system, Table 3.4).

3.3.4.1 Sensory organ lineages are affected in early development

Consistent with enrichment results in late and mid embryo development clusters, we find that
genes in these early clusters are associated with precursors of sensory organs and neurons and
their downstream interneurons. Notably, precursors to ASE, ASI, ASJ, ASK, ADF, AWA, and AWB
chemosensors, the AFD thermosensor, and AIA, AIZ, AVH, RIA, RIG interneurons processing sen-
sory input. We further remark enrichment in genes linked to precursors of several sheath and
socket cells, including amphids.

Precursors to inner and outer labial neurons (IL, OL), as well as several putative sensory neu-
rons (URA, URB, URY, AUA) seen in enrichments of late embryo development are also found here,
as well as both the AVK neuron class, and the excretory system.

Together, these enrichments suggest that development of the nervous system, particularly sen-
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sory neurons and organs, is affected starting from early cell lineages and throughout embryogen-
esis.

3.3.4.2 Prolonged expression of several histones

We find 29 histones amongst DE genes, most (24) of which are in cluster 5.D (Fig. 3.8). In
progeny from control worms, the expression of these genes decreases after peaking around 100
min past 4C, while it persists longer in progeny of pheromone-exposed individuals, before sharply
decreasing, often to a lower level than controls. Histones genes explain the enrichment of chro-
matin and nucleosome-related GO and phenotype categories seen in this cluster (Sup. Fig. D.5, D.6).
Of note, some of these histones are known as specific to head neurons (his-4 and his-13).
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Figure 3.8 – Prolonged expression of histones in the progeny of pheromone-exposed worms
a,b, Scaled expression dynamics (a) and heatmap of underlying data (b) per gene and condition in sub-
cluster 5.D as defined in Fig. 3.2. Histone genes are indicated on heatmap.

3.3.5 Insights into signal transmission

Transcripts prior to the start of transcription during the 4-cell stage are maternally contributed,
and their differential expression is therefore caused by differences in maternal RNA loading and
could give hints as to transmitted signals from parents. To investigate this, we tested for differ-
ences specifically in the samples staged at 4-cell and below amongst our DE genes (see Methods),
resulting in 18 up-regulated and 17 down-regulated genes in the progeny of pheromone-exposed
individuals (Fig. 3.9).

Surprisingly, several of these genes (up- or down-regulated) are also neuron- (even amphid)
related, which is supported by significant enrichment of neuron precursors and neuron-related
GO categories (Table 3.5, Fig. 3.9). For example, lgc-29 and unc-38 are both ligand-gated chan-
nels involved in synaptic signaling, while Y71F9AL.7 and glb-29 are mainly expressed in sensory
neurons. We also remark that W09H1.1 was recently implicated in genetic variation of ascaro-
side biosynthesis LEE et al., 2023. Of note, we find no apparent changes in maternal loading of
translational machinery, in contrast to a previously reported intergenerational pheromone effect
(WASSON et al., 2021).

These results suggest either differential production of neuron-related transcripts in the ma-
ternal germline for embryo loading in response to neuron input, or transfer of neuronal RNAs
directly to the germline and embryos. The latter has yet to be explicitly shown for endogenous
products, but exogenous dsRNA produced in neurons can enter the germline in C. elegans, even
provoking transgenerational silencing effects (DEVANAPALLY et al., 2015), while extracellular (ex-
ogenous) RNAs can be loaded into oocytes together with yolk (MARRÉ et al., 2016). The export
of endogenous neuronal RNAs to the germline and to embryos is thus within the realm of pos-
sibilities. However, given that both require the dsRNA-selective importer SID-1, which is not the
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Figure 3.9 – Differential maternal transcript loading due to pheromone perception
a,b, DE genes with significant down (a) and up (b) regulation in embryos staged under 10 min past 4C of
pheromone-exposed parents (red) compared to controls (black).
Labels show genes expressed mainly in neurons in bold, sensory organs/neurons highlighted in yellow, and
interneurons processing sensory input highlighted in green. Boxes span the interquartile range (IQR), the
central bar dot denotes the median, and whiskers extend to 1.5× IQR in either direction, n = 7 and n = 6 for
CTR and PHE respectively. **: p < 0.01, *: p < 0.05 of a t-test.

Enriched Term Final cell type (if lineage) Observed Enrichment FC Q.value

Tissue

AB arappppp IL1 / IL2 (VR) 3 11.16 0.092
AB alapaapp IL1 / IL2 (L) 3 11.27 0.092
AB alaapppp IL1 / IL2 (R) 3 11.08 0.092
AB alppappp IL1 / IL2 (VL) 3 11.04 0.092
AB alappppa IL1 / IL2 (DR) 3 11.04 0.092
AB prapaaaa ADA / ADE (R) 2 7.44 0.092
AB plapaaaa ADA / ADE (L) 2 7.41 0.092

GO

extracellular ligand-gated ion channel activity 2 23.8 0.019
ligand-gated channel activity 2 17.8 0.019
chemical synaptic transmission postsynaptic 2 25.0 0.019
postsynaptic membrane 2 21.8 0.019
regulation of postsynaptic membrane potential 2 26.8 0.019
synaptic signaling 2 9.9 0.029
passive transmembrane transporter activity 2 6.9 0.065
transporter activity 3 4.3 0.088
transmembrane transport 3 4.3 0.088

Table 3.5 – Enrichment of maternally loaded up-regulated genes
Only categories with at least 2 contributing genes are shown. No significant enrichments were found for
down-regulated genes. GO, Gene ontology; Enrichment FC, Enrichment Fold-Change.
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case for the intergenerational germline delay (Fig. In.6d, PEREZ et al., 2021b), then signal trans-
mission of pheromone perception from parents to progeny either does not involve its canonical
machinery, or operates through distinct pathways to generate the germline delay and transcrip-
tional changes described here.

To summarize, we find differences in maternally-loaded transcripts related to neurons, that
are distinct from a previous report of intergenerational effect of pheromone.

3.4 Discussion

In this chapter, I have described transcriptional changes induced by parental exposure to
pheromone in developing C. elegans embryos, implicating many changes to the developing ner-
vous system, and notably sensory organs.

We consistently found genes specific for amphids and sensory neurons, particularly ASI and
ADF, and their downstream interneurons differentially expressed along embryo development. On-
tology enrichments also suggest that both neuron development and (possibly as a consequence)
function, notably signaling, are largely altered by parental pheromone exposure. We further re-
ported intriguing effects implicating the AVK neuron and early expression of histone genes, as
well as differences in neuron-specific maternally-loaded transcripts.

Although these results are convincing, we acknowledge they should be reinforced by collecting
more data. Indeed, further sampling will add weight to many changes we find in late embryo de-
velopment that currently rely on few data points, and fill in the gaps of early development before
gastrulation. The increase in sample size will perhaps also allow us to find differences in interindi-
vidual variability between conditions that we are currently unable to detect. We also remark that
many genes we found differentially expressed have little to no functional annotation, meaning we
are likely missing part of the picture. Nevertheless, given the tissues and processes we find affected
at the transcriptional level, our characterization suggests several potential phenotypes to score in
response to parental pheromone exposure.

First, given the implication of AS and AW chemosensory neuron classes, progeny responses
to known attractant or repellent solubles and volatiles (including dauer pheromones) could be
altered, possibly in a cross-generational feedback loop similar to previously-described olfactory
imprinting (REMY, 2010). This can be tested through chemotaxis assays (e.g. BARGMANN et al.,
1993). Then, AVK neurons are known to be involved in food-related locomotion (HUMS et al.,
2016; ORANTH et al., 2018), and therefore assaying changes in foraging and roaming behavior (e.g.
GREENE et al., 2016b; GREENE et al., 2016a) could help understand the consequences of the ob-
served expression changes. Together, these tests would help understand how progeny behavior is
affected by the parental experience.

Then, since ASI, ADF, and dauer-related categories were recurrent in enrichment results, test-
ing if the propensity of progeny to enter dauer in unfavorable environments is increased by parental
pheromone exposure would help understand whether the phenomenon is adaptive. Preliminary
experiments from our lab done by Marie-Alice Miniassian (data not shown) suggest this could be
the case.

Although challenging, characterizing the excretome of young individuals from pheromone-
exposed or control worms could also shed light onto the implication of the excretory system, and
of genes required for ascaroside production like maoc-1 (VON REUSS et al., 2012). Perhaps not only
pheromone perception, but also production could be altered in the progeny.

Differential maternal transcript contributions to embryos lack the clear translational elements
that were reported in another study (WASSON et al., 2021), despite the fact that crude pheromone
extract should also bear the non-dauer metabolites responsible for the effect. A possible explana-
tion could be that WASSON et al., 2021 profiled wild-type and flp-21 mutant embryos, and therefore
did not measure the direct effect of parental pheromone perception on gene expression but the
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absence of the pathway responsible for parental signal transduction (mediated by flp-21). We also
do not exclude the possibility of the effects reported here acting antagonistically or synergistically.

Although several genes are differentially contributed by mothers to embryos, we have yet to
find convincing candidates for signal transmission, but this could be further investigated by pro-
filing mutants of interest. DAF-7/TGF-β is required in parents to transmit the signal (PEREZ et al.,
2021a), and is down-regulated in the progeny according to our data. Furthermore, maternal daf-7
can rescue constitutive dauer entry in daf-7-null progeny (KLABONSKI et al., 2016), even over sev-
eral generations according to experiments from our lab performed by Noémie Brisemeur (data not
shown). Perhaps, DAF-7/TGF-β itself could be the transmitted signal. Germline delay is difficult to
assay in daf-7 mutant progeny due to strongly unsynchronized populations, but we could test this
by profiling (and staging) daf-7 null mutants born from either daf-7 null or heterozygous mothers.
If maternal DAF-7/TGF-β provided to early embryos rescues gene expression to a state compara-
ble to controls in this study, while non-rescued mutants resemble progeny of pheromone-exposed
worms, this would show DAF-7/TGF-β is required in the progeny for a control phenotype, thus
bearing the signal.

To summarize, I have shown that parental perception of pheromones influences gene expres-
sion throughout embryogenesis, notably impacting the developing nervous system and sensory
organs. These results suggest that parental perception of the social environment may alter how
the progeny perceives and reacts to their environment and suggest specific behavioral and physi-
ological changes to experimentally test.

3.5 Methods

3.5.1 Sample collection

3.5.1.1 Nematode cultures
C. elegans worms of the standard “N2” laboratory strain were kept at 20°C in roughly synchro-

nized populations on 60mm NGM agar plates seeded with OP50. 100 eggs are transferred to new
plates every 3-4 days to maintain populations.

4 days prior to sample collection, synchronized worms (the P0 generation) were collected with
a 1-hour L1 hatch, and seeded to fresh plates at a density of 100 worms per plate. On the day
prior to collection, half of the (now adult) worms on each P0 plate were transferred to fresh plates
treated with 0.3 mL of either control or crude pheromone extract. Plate contents were washed and
bleached on the next day (as described in Chapter 2) to collect F1 embryos for profiling or seeding
to assay germline delay.

3.5.1.2 Pheromone extract preparation and germline delay assay
Control and crude pheromone extract were produced as described in PEREZ et al., 2021a.

Briefly, worms were grown in large-scale liquid NGM cultures at 20°C with OP50-1 (streptomycin
resistant) E. coli bacteria for 4 days before removing worms, centrifuging, and filtering the clear
fraction to obtain crude pheromone extract. Control extract was prepared in the same way with-
out worms.

Soma-germline delay was scored as described in PEREZ et al., 2017. Briefly, the young-adult
to adult molt (soma transition) and the appearance of the first embryo (germline transition) were
monitored in worms on agar plates with a standard brightfield binocular, and the fraction of the
population past each developmental transition was estimated by counting worms before and after
the transition at time points before and after 50% of the population underwent transition.

3.5.1.3 RNA-seq library preparation and sequencing
A first set of 16 PHE and 16 CTR single embryos were manually staged to ensure collection

across all embryo development. Timed egg-lays were done to further collect 15 CTR and 16 PHE
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single embryos targeting 150-300 and 400-600 minutes past 4-cell windows of development. Li-
braries were prepared with the adapted Smart-seq3 protocol described in Appendix C. Both sets of
samples were processed, pooled, and sequenced separately at 150 bp PE on an Illumina Novaseq
6000 instrument, with an average 4.5 million pairs of reads (M) per sample.

3.5.2 Data pre-processing

Raw fastq data was processed with the zUMIs pipeline (PAREKH et al., 2018) using the param-
eters provided by Smart-seq3 authors at protocols.io, applying no UMI sequence error correc-
tion (Hamming distance parameter set to 0), mapping to the C. elegans genome (WBcel235, an-
notation v109) using STAR (v2.5.4b, as provided in the zUMIs conda environment), with > 79% of
uniquely mapped reads. UMI-corrected counts uniquely mapping to intron+exon were converted
to counts per million (CPM) to account for UMI library size, and used in all following analyses.

CPMUMI = countUMI ×1e6

library sizeUMI

We used RAPToR (v1.2.0) (BULTEAU & FRANCESCONI, 2022) to estimate the age of all samples
against the “Cel_embryo” reference from wormRef (v0.5). Age is reported in minutes past the 4-
cell stage (min past 4C).

3.5.3 Gene expression analysis

We filtered out lowly expressed genes, keeping only those with at least 3 counts in 3 samples,
leaving 15727 genes for analysis. UMI CPMs were then log-transformed (log (X+1)), and quantile-
normalized with the normalizeBetweenArrays function of limma (v3.56.1).

3.5.3.1 Differential expression analysis
Time-series data is more complex to analyze than static perturbation experiments, and the

usual tools used for analysis may not be appropriate (BAR-JOSEPH et al., 2012). Although DEseq
(LOVE et al., 2014) or edgeR (ROBINSON et al., 2010) allow the use of splines to fit nonlinear dy-
namics, they require matching sample timings or constrain the spline dynamic across conditions.
Therefore, we tested for differential expression by comparing Generalized Additive Models (GAMs)
that include the pheromone condition variable (m1) to a null-hypothesis model which does not
(m0) for each gene. Similarly to "between-class temporal differential expression" discussed by
STOREY et al., 2005, a gene is considered differentially expressed (DE) if the fit of m1 is significantly
better than m0, i.e. when pheromone explains a significant amount of variance in expression.

We fit GAMs using the gam() function of the mgcv package (v1.8-42), modeling development
with a cubic regression spline on age, and with the following formulas:

(m0) : "∼s(age, bs=’cr’, k=8)"
(m1) : "∼s(age, bs=’cr’, k=8, by = cond) + cond"

The value of k (similar to spline degree of freedom) was defined by reaching a plateau in overall
goodness of fit across all genes with m0 after testing values ranging 4-12.

A gene was considered differentially expressed (DE) when both FDR of an ANOVA between m0
and m1 was below 0.1, and m1 has a better fit (AIC) than m0, resulting in 1317 DE genes.

3.5.3.2 Clustering DE genes
We used m0 fits (predictions at 100 evenly spaced time points between earliest and oldest em-

bryo timings, -20.6 and 786.4 min past 4C respectively) to cluster genes according to their expres-
sion dynamic along embryogenesis. A distance matrix was computed from the (gene-wise) scaled
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m0 fits with the base R dist() function, on which we applied hierarchical clustering (base hclust()
function, with method=”ward.D2”). 10 clusters (1-10) were determined sufficient from silhouette
and average dissimilarity indices (‘avg.silwidth’ and ‘dunn2’, respectively) computed with the clus-
ter.stats() function of the fpc package (v2.2-10).

Similarly, m1 fits of pheromone and control conditions were subtracted (PHE−CTR), and the
resulting matrix scaled gene-wise to cluster genes according to their differential expression using
the same approach. 6 clusters (A-E) were determined sufficient, with the same indices as above.

Sub-clusters (e.g. "1.A" or "5.D") are simply the overlap between both clustering results, as
shown in Fig. 3.2.

3.5.3.3 Enrichment analysis

Tissue, gene ontology (GO), and phenotype enrichments were performed using the local ver-
sion of the wormbase tea tool (ANGELES-ALBORES et al., 2018), a q-value threshold of 0.1, and
specifying the background as the 15727 expressed genes selected above.

We tested for enrichment per dynamic cluster (1-10) and per subcluster with at least 8 genes,
discarding enriched categories with less than 2 genes across clusters. Redundant tissue categories
with identical gene sets were collapsed (e.g. IL2L and IL2R collapsed into IL2). Affected tissues are
AWC (on/off, L/R), RMD (L/R), IL2 (L/R), and g1 (L/R).

Enriched cell lineages were assigned to cell types using tables available at www.wormatlas.
org/celllistsulston.htm, derived from SULSTON et al., 1983.

3.5.3.4 Selecting maternally-contributed transcripts

To select genes with significant differences maternal contribution between conditions, we
computed differences between pheromone and control model fits on [-20;10] min past 4C within
the list of DE genes, and kept those with an average absolute fit difference > 1l og (CPMUMI +1).
The resulting genes, were tested for significant differences with a t.test on log (CPMUMI + 1) ex-
pression values restricted to samples staged under 10 min past 4C (7 CTR and 6 PHE), leaving 17
down and 18 up-regulated genes with p<0.05, shown in Fig. 3.9.
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Discussion

To conclude, I have characterized the molecular changes in the developing C. elegans embryo
caused by parental exposure to pheromone, revealing differences in gene expression of the devel-
oping nervous system, and particularly sensory organs, throughout embryogenesis. These results
suggest that parental perception of the social environment may in turn alter how the progeny per-
ceive and react to their own environment.

To reach this end, I have improved and developed methods from sample collection and li-
brary preparation to data analysis and integration that all have potential well beyond the study of
intergenerational effects of pheromone and of C. elegans. Indeed, single embryo collection and
study with FACS, profiling whole individuals with Smart-Seq3, and inferring age from the tran-
scriptome provide accessible solutions to study single individuals at high-throughput. Indeed,
despite growing interest and method development for such single-animal studies, notably in mi-
crofluidics (FREY et al., 2022; BHATTACHARJEE et al., 2016), requiring specialized equipment has
slowed their spread to other labs (BHATTACHARJEE et al., 2016; WAN & LU, 2020). The large portion
of my work dedicated to experimental and computational method development is thus certainly
relevant for future research in this area.

With the increase in throughput, better tools to analyze and interpret the resulting data will
also likely emerge. In my last chapter, for example, I developed a custom approach to analyze and
classify relevant differences of gene expression dynamics between conditions, which can likely be
improved.

Despite its recent publication, RAPToR has already been employed in several studies to infer
age in models and humans (ZHANG et al., 2022; BELL et al., 2023; KIM et al., 2023; SINIGAGLIA

et al., 2022; HAGAN et al., 2022). Therefore, I believe that staging samples post-profiling (with
RAPToR or otherwise) will become standard practice in gene expression studies, improving results
and conclusions gained from profiling data. Looking back on already-published experiments and
findings with RAPToR will also likely debunk false discoveries and lead to new discoveries using
existing data. Nearly 10 years ago, SNOEK et al., 2014 gave us a glimpse of developmental bias in
one expression database. Since then, data collection has skyrocketed while little has been done
to address the issue which in our experience is likely still widespread. Given the reliance of anno-
tations on expression data and, in turn, of studies on such annotations (this work included), the
importance of removing developmental bias from databases cannot be understated.

Going forward, we envision inferring age from gene expression will help us dissect the in-
tricacies of developmental timing regulation and aging, and that analogous strategies to moni-
tor disease progression will be of clinical significance. Using population-scale studies at single-
individual resolution will also bring us closer to truly understanding why individuals are different,
and perhaps at some point, to even stop biological material from doing ’whatever it damn well
pleases’.
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A Supplementary information on RAPToR improvements

This appendix contains supplementary figures for Chapter 1, sections 1.2.2 and 1.2.3.

IC2 (9.26%) IC4 (8.5%)

IC13 (1.02%) IC11 (0.92%)

IC1 (42.5%)

IC5 (4.5%) IC6 (3.99%) IC7 (3.54%) IC8 (3.23%)

IC9 (2.73%) IC10 (2.66%) IC11 (2.29%) IC12 (2.14%)

Age rank within dataset

IC

IC
IC

IC

byr

hou

has

sur

gol

-0.4

0.2

-0.6

0.4

-0.6

0.4

0.3

0.8

0.5

-0.5

0.2

-0.6

0.6

-0.2

IC3 (8.91%)

-1.0

-1.5

0.8

-0.4

0.4

-0.6

0.6

-0.6

0.8

-0.2

0.4

0.6

0.2

-0.4

Figure A.1 – Joint ICA on gene expression of 5 aging time-series
Independent components (IC) from a joint Independent Component Analysis (ICA) of aging time-series
(see Table 1.1). Percentage of total variance explained is indicated for each component.
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B Supplementary information on FACS with C. elegans embryos

This appendix contains supplementary material for Chapter 2, section 2.2.

B.1 Embryos can be robustly selected across experiments and instruments

After bleaching the contents of a plate (see Chapter 2 Methods), we pass the resulting em-
bryo suspension through an AttuneTM CytPixTM cytometer, and reliably find a cluster of embryos,
which are large events with high Side and Forward SCatter (FSC-H, SSC-H, Fig. B.1).
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Figure B.1 – Gating emrbyos on forward and side scatter with a CytPix
CY.1 is the annotated sample shown in Fig. 2.2b, and CY.2 the independent sample used for staging valida-
tion in Fig. 2.5. Plots include events without images, and thus numbers differ from the figures cited above.

On a FACSAria IIµ, forward scatter measurements differed and resulted in less discernible clus-
ters than with the CytPix (data not shown). Therefore, we relied on side scatter Width and Height
to gate embryos (SSC-W, SSC-H, Fig. B.2), which is more consistent across both instruments and
also adequately segregates embryos from debris (Fig. B.3)

Selecting live embryos from the dead or unfertilized (NF) ones is then identical in both instru-
ments, using fluorescence channels (Fig. B.4, B.5).
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Figure B.2 – Gating embryos on side scatter width and height with a FACSAria
FA.1 is the sample shown in Fig. 2.2e-f.
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Figure B.5 – Gating live embryos from debris using autofluorescence with a FACSAria

B.2 Embryos survive sorting (better than bleach)

To ensure that sorting with the FACSAria doesn’t damage embryos, we first sorted live embryos
(FA.1, FA.2, Fig. B.5), and then passed the collected solution in the CytPix (Fig. B.6a). We note a sig-
nificant reduction in cellular debris (and therefore higher embryo ratio), indicating that bleaching
is the main cause of damage to the embryos rather than their journey through the cytometers.

The total disappearance of unfertilized embryos confirms that they are properly removed with
the FACSAria by fluorescence gating (Fig. B.6b). However, remaining debris and dead embryos
also suggest that either passing through the instruments, sorting, or time elapsed since the bleach
causes embryos to die (if bleach washes are insufficient).

Finally, we ran part of a sample through the CytPix right after the bleach (CY.7, Fig. B.7a), and
the remainder 30 minutes later (CY.8, Fig. B.7a). This confirmed that the fluorescence allowing
us to differentiate live embryos from others does not change with time (Fig. B.7b). We also note
that the ratio of live embryos is stable between the runs, thus ruling out the possibility of embryos
dying post-bleach.
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C Single-embryo Smart-seq3 detailed protocol

This is the detailed RNA-seq library preparation protocol for single embryos of C. elegans I
adapted from the Smart-seq3 protocol (HAGEMANN-JENSEN et al., 2020) (accessible in its latest
version on protocols.io, at dx.doi.org/10.17504/protocols.io.bcq4ivyw), also taking into
account elements from the previous version Smart-seq2 (PICELLI et al., 2014), and its adaptation
for single-worm RNA-seq (SERRA et al., 2018).

C.1 Materials

The tables below list the necessary reagents (Table C.1), oligos (Table C.2), and barcodes (Ta-
ble C.3) for the protocol. Reagents for quantification and quality control of cDNA libraries assume
the use of Qubit and Tapestation instruments respectively.

Name Vendor Catalog ref.
Steps/mixes requiring
reagent

Proteinase K Sigma Aldrich P2308-25MG Lysis Buffer

Triton X-100 Sigma Aldrich T8787-50ML Lysis Buffer

dNTP Set (100mM) Thermo Fisher R0182
Lysis Buffer, Preamp. PCR,
Tagmentation

Poly Ethylene Glycol (PEG) 8000 Sigma Aldrich 89510-250G-F Lysis Buffer, Purification

Recombinant RNAse Inhibitor Takarabio 2313A Lysis Buffer, RT

UltraPureTM DNase/RNase-Free Distilled
Water

ThermoFisher 10977035 Most

KAPA HiFi Hotstart PCR kit Roche KK2502 Preamp. PCR

Sera-Mag Speed Beads Ge Healthcare 65152105050250 Purification

Sodium Azide Sigma Aldrich S2002-100G Purification

IGEPAL CA-630 Sigma Aldrich I8896 Purification

EDTA (0.5M, pH 8.0, RNase-free) ThermoFisher AM9260G Purification, QC

Qubit HS dsDNA assay ThermoFisher Q32854 QC

Agilent High Sensitivity D5000 ScreenTape Agilent 5067-5592 QC

Agilent HSD5000 Reagents, Ladder Agilent
5067-5594,
5067-5593

QC

GTP (Tris-buffered solution 100mM)
Thermo
Scientific

R1461 RT

Dithiothreitol (DTT) ThermoFisher 707265ML RT

Maxima H Minus Reverse Transcriptase
(200U/µL)

ThermoFisher EP0751 RT

Magnesium Chloride (1M) Invitrogen AM9530G
RT, Preamp. PCR,
Tagmentation

Sodium Chloride (5M) Invitrogen AM9760G RT, Purification

Trizma-base Sigma Aldrich T6791-100G RT, Purification

Nextera XT DNA Library Preparation Kit illumina FC-131-1096 Tagmentation

SDS (10% Solution, RNase-free) ThermoFisher AM9822 Tagmentation

Phusion High-Fidelity DNA Polymerase
(2U/µL)1

Thermo
Scientific

F530L Tagmentation

NN-Dimethylformamide Sigma Aldrich D4551 Tagmentation

Tween 20 Sigma Aldrich P9416 Tagmentation

1: Phusion Kit also contains DMSO

Table C.1 – Reagents used for single-embryo Smart-seq3.
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Oligo Purification Sequence

Smartseq3_ OligodT30VN HPLC /5Biosg/ACGAGCATCAGCAGCATACGATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

Smartseq3_N8 _TSO
RNase-Free
HPLC

/5Biosg/AGAGACAGATTGCGCAATGNNNNNNNNrGrGrG

Fwd_PCR_primer HPLC TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTGCGCAA*T*G

Rev_PCR_primer HPLC ACGAGCATCAGCAGCATAC*G*A
NexteraTM compatible
primers with barcodes

Standard
desalting

see Table C.3 for sequences and 96 unique i5-i7 ID pairs

Table C.2 – Oligos used in Smart-seq3
All oligos were purchased from IDT.
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Oligo Sequence

NexteraTM s5 primer AATGATACGGCGACCACCGAGATCTACAC[8-bp i5 index]TCGTCGGCAGCGTC
NexteraTM s7 primer CAAGCAGAAGACGGCATACGAGAT[8-bp i7 index]GTCTCGTGGGCTCGG

Barcode ID/well i5 index i7 index

01 A01 ATATGCGC CTGATCGT
02 A02 TGGTACAG ACTCTCGA
03 A03 AACCGTTC TGAGCTAG
04 A04 TAACCGGT GAGACGAT
05 A05 GAACATCG CTTGTCGA
06 A06 CCTTGTAG TTCCAAGG
07 A07 TCAGGCTT CGCATGAT
08 A08 GTTCTCGT ACGGAACA
09 A09 AGAACGAG CGGCTAAT
10 A10 TGCTTCCA ATCGATCG
11 A11 CTTCGACT GCAAGATC
12 A12 CACCTGTT GCTATCCT
13 B01 ATCACACG TACGCTAC
14 B02 CCGTAAGA TGGACTCT
15 B03 TACGCCTT AGAGTAGC
16 B04 CGACGTTA ATCCAGAG
17 B05 ATGCACGA GACGATCT
18 B06 CCTGATTG AACTGAGC
19 B07 GTAGGAGT CTTAGGAC
20 B08 ACTAGGAG GTGCCATA
21 B09 CACTAGCT GAATCCGA
22 B10 ACGACTTG TCGCTGTT
23 B11 CGTGTGTA TTCGTTGG
24 B12 GTTGACCT AAGCACTG
25 C01 ACTCCATC CCTTGATC
26 C02 CAATGTGG GTCGAAGA
27 C03 TTGCAGAC ACCACGAT
28 C04 CAGTCCAA GATTACCG
29 C05 ACGTTCAG GCACAACT
30 C06 AACGTCTG GCGTCATT
31 C07 TATCGGTC ATCCGGTA
32 C08 CGCTCTAT CGTTGCAA
33 C09 GATTGCTC GTGAAGTG
34 C10 GATGTGTG CATGGCTA
35 C11 CGCAATCT ATGCCTGT
36 C12 TGGTAGCT CAACACCT
37 D01 GATAGGCT TGTGACTG
38 D02 AGTGGATC GTCATCGA
39 D03 TTGGACGT AGCACTTC
40 D04 ATGACGTC GAAGGAAG
41 D05 GAAGTTGG GTTGTTCG
42 D06 CATACCAC CGGTTGTT
43 D07 CTGTTGAC ACTGAGGT
44 D08 TGGCATGT TGAAGACG
45 D09 ATCGCCAT GTTACGCA
46 D10 TTGCGAAG AGCGTGTT
47 D11 AGTTCGTC GATCGAGT
48 D12 GAGCAGTA ACAGCTCA

Barcode ID/well i5 index i7 index

49 E01 ACAGCTCA GAGCAGTA
50 E02 GATCGAGT AGTTCGTC
51 E03 AGCGTGTT TTGCGAAG
52 E04 GTTACGCA ATCGCCAT
53 E05 TGAAGACG TGGCATGT
54 E06 ACTGAGGT CTGTTGAC
55 E07 CGGTTGTT CATACCAC
56 E08 GTTGTTCG GAAGTTGG
57 E09 GAAGGAAG ATGACGTC
58 E10 AGCACTTC TTGGACGT
59 E11 GTCATCGA AGTGGATC
60 E12 TGTGACTG GATAGGCT
61 F01 CAACACCT TGGTAGCT
62 F02 ATGCCTGT CGCAATCT
63 F03 CATGGCTA GATGTGTG
64 F04 GTGAAGTG GATTGCTC
65 F05 CGTTGCAA CGCTCTAT
66 F06 ATCCGGTA TATCGGTC
67 F07 GCGTCATT AACGTCTG
68 F08 GCACAACT ACGTTCAG
69 F09 GATTACCG CAGTCCAA
70 F10 ACCACGAT TTGCAGAC
71 F11 GTCGAAGA CAATGTGG
72 F12 CCTTGATC ACTCCATC
73 G01 AAGCACTG GTTGACCT
74 G02 TTCGTTGG CGTGTGTA
75 G03 TCGCTGTT ACGACTTG
76 G04 GAATCCGA CACTAGCT
77 G05 GTGCCATA ACTAGGAG
78 G06 CTTAGGAC GTAGGAGT
79 G07 AACTGAGC CCTGATTG
80 G08 GACGATCT ATGCACGA
81 G09 ATCCAGAG CGACGTTA
82 G10 AGAGTAGC TACGCCTT
83 G11 TGGACTCT CCGTAAGA
84 G12 TACGCTAC ATCACACG
85 H01 GCTATCCT CACCTGTT
86 H02 GCAAGATC CTTCGACT
87 H03 ATCGATCG TGCTTCCA
88 H04 CGGCTAAT AGAACGAG
89 H05 ACGGAACA GTTCTCGT
90 H06 CGCATGAT TCAGGCTT
91 H07 TTCCAAGG CCTTGTAG
92 H08 CTTGTCGA GAACATCG
93 H09 GAGACGAT TAACCGGT
94 H10 TGAGCTAG AACCGTTC
95 H11 ACTCTCGA TGGTACAG
96 H12 CTGATCGT ATATGCGC

Table C.3 – NexteraTM compatible primers and Unique Dual Index (UDI) barcode sequences
IDT references for the barcode oligos are IDT8_UDI_1-96. i5 index is given as forward sequence.
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C.2 Protocol

C.2.1 General guidelines

• Prepare workbench and tools by cleaning with 100% ethanol and RNAseZAP, RNAse-Away,
DNA-OFF or similar to remove RNAse (5% SDS in a spray bottle also works fine).

• Work with gloves and change them frequently.

• Work quickly, and on ice or refrigerated plate holders.

• Prepare master mixes right before use. Some components can be mixed in advance to save
time, but oligos and enzymes should be added at the last minute.

• Count at least 10% extra for mixes (with 1µL minimum margin).

• Do not pipet up and down to avoid loss of material in low-volume steps (< 10 µL).

• Keep tubes/strips sealed as mush as possible to avoid evaporation and contamination.

C.2.2 Lysis buffer and oligodT+dNTP mix

1. Prepare the following lysis buffer solution:

Reagent
Reaction
concentration

Volume (µL) for

1 reaction 96 samples

Poly-ethylene Glycol 8000 (50%
solution)

5% 0.40 44.00

Triton X-100 (10% solution) 0.1% 0.03 3.30

RNAse Inhibitor (40 U/µL) 1 U/µL 0.08 8.80

Protease-K (20 mg/mL) 1 µg /µL 0.13 14.08

Nuclease free water 1.86 204.82

Total (µL) 2.50 275.00

Note that the 50% PEG solution should be prepared beforehand, ensuring that PEG is fully
mixed into solution.

2. Add 2.5 µL of lysis buffer in each tube of a PCR strip (or well of a plate) and do a quick
centrifugation to collect the buffer at the bottom of the wells.

Lysis buffer can be stored (at -20°C or -80°C, for at least a month according to the authors of
Smart-seq3).

3. Prepare the following oligodT+dNTP mix:

Reagent
Reaction
concentration

Volume (µL) for

1 reaction 96 samples

OligodT30VN (100 µM) 0.5 µM 0.02 2.20

dNTPs (25 mM each) 0.5 mM each 0.08 8.80

Nuclease free water 0.40 44.00

Total (µL) 0.50 55.00

This mix can be stored ad libitum at -20°C, as per the contents.
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C.2.3 Sample collection

1. Prepare samples. Assuming manual collection of C. elegans single embryos, wash and bleach
the contents of a plate with egg-laying adults, and place bleach output in an empty petri dish
under a binocular. 0.05% Triton can be added to the bleach output to prevent embryos from
stricking to the dish.

2. Place and keep the prepared strip(s)/plates of lysis buffer on ice, or appropriate cooling
block. Be careful of lysis buffer freezing, which will damage the samples.

3. Pipet single embryos (with 0.400 µLor less) into each well/tube, placing the pipet tip at the
very bottom of the well at a slight angle to release the embryo within the lysis buffer.

Keep strips/tubes sealed as much as possible to avoid evaporation/contamination.

4. After a strip (8 samples) has been collected, centrifuge and run lysis (see below) in a hot-
started thermocycler before storing at -20°C (if needed). Freezing samples before lysis will
damage them.

If collecting multiple strips, launch lysis after each one and collect the next strip in the mean-
time. After lysis of each strip, centrifuge and store samples at -20°C. Collecting a strip takes
roughly as much time as lysis, so many strips can be continuously collected, lysed, and
stored by using a 2-block thermocycler. We see no signs of RNA degradation after storing
samples post-lysis for 1.5 h.

C.2.4 Lysis

1. Incubate collected samples for proteinase-K lysis in a hot-started thermocycler with the fol-
lowing program:

Temperature Time

65°C 10 min

85°C 1 min

4°C Hold

2. If collecting multiple strips, centrifuge and store samples at -20°C as soon as lysis is done.

C.2.5 Reverse-Transcription

1. Add 0.5 µL of the oligodT+dNTP mix in each tube, and incubate at 72°C for 5 minutes, fol-
lowed by a 4°C hold.

2. During incubation, prepare the following RT mix:

Reagent
Reaction
concentration

Volume (µL) for

1 reaction 96 samples

Tris-HCl pH 8.3 (1 M) 25 mM 0.10 11.00

NaCl (1 M) 30 mM 0.12 13.20

MgCl2 (100 mM) 2.5 mM 0.10 11.0

GTP (100 mM) 1 mM 0.04 4.40

DTT (100 mM) 8 mM 0.32 35.20

RNase Inhibitor (40 U/µL) 0.5 U/µL 0.05 5.50

TSO (100 µM) 2 µM 0.08 8.80

Maxima H-minus RT enzyme
(200 U/µL)

2 U/µL 0.04 4.40

Nuclease free water – 0.15 16.50

Total (µL) 1.00 110.00
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3. Add 1 µL of RT mix to each tube.

4. Do a quick centrifugation to collect reaction at the bottom, before placing samples in a ther-
mocycler with the following program:

Temperature Time Repeats

42°C 90 min 1x

50°C 2 min
}

14x
42°C 2 min

85°C 5 min 1x

4°C Hold –

C.2.6 Preamplification PCR

1. When the RT incubation is nearing completion, prepare the following PCR mix. Only add
polymerase just before using the master-mix, as the Kapa DNA polymerase has a 3-5’ ex-
onuclease activity that is not HotStart.

Reagent
Reaction
concentration

Volume (µL) for

1 reaction 96 samples

Kapa HiFi HotStart buffer (5X) 1X 2.00 220.00

dNTPs (25 mM each) 0.3 mM each 0.12 13.20

MgCl2 (100 mM) 0.5 mM 0.05 5.50

Fwd Primer (100 µM) 0.5 µM 0.05 5.50

Rev Primer (100 µM) 0.1 µM 0.01 1.10

Kapa Polymerase (1 U/µL) 0.02 U/µL 0.20 22.00

Nuclease free water – 3.57 392.70

Total (µL) 6.00 660.00

2. Add 6 µL of PCR mix to each tube.

3. Do a quick centrifugation to collect reaction at the bottom, before placing samples in a ther-
mocycler with the following PCR program:

Temperature Time Repeats

98°C 3 min 1x

98°C 20 sec
 20x65°C 30 sec

72°C 4 min

72°C 5 min 1x

4°C Hold –

C.2.7 cDNA purification

C.2.7.1 Prepare 22% PEG Clean-up Beads solution These beads perform similar to Ampure XP
beads, and are prepared as per mcSCRB-seq protocol1.

1. Prepare 10mM Tris-HCl, pH 8.0, 1 mM EDTA buffer (TE buffer).

1: see https://dx.doi.org/10.17504/protocols.io.p9kdr4w
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2. Prepare the following PEG buffer in a 50mL falcon tube, but don’t add all the water until PEG
is fully solubilized. To help solubilize PEG, incubate at 40°C and vortex regularly.

Reagent Amount/Volume

Poly-ethylene Glycol 8000 11 g

NaCl (5M) 10 mL

Tris-HCl pH 8.0 (1M) 500 µL

EDTA, 0.5M 100 µL

IGEPAL, 10% solution 50 µL

Sodium Azide, 10% solution 250 µL

UltraPure Water up to 49 mL

Total 49 mL

Buffers can be stored at 4°C.

3. To prepare 1mL of 22% PEG Clean-up Beads, resuspend Sera-Mag Speed Beads stock care-
fully

4. Pipet 20 µL of bead stock into a 1.5 mL eppendorf tube.

5. Place tube on magnet stand and wait a few minutes for beads to pellet.

6. Remove supernatant.

7. Add 20 µL of TE buffer, and resuspend beads off magnet by pipetting up and down.

8. Place back on magnet stand.

9. Remove supernatant and repeat wash one more time.

10. Add 18 µL of TE buffer, and resuspend beads off magnet.

11. Add 980 µL of PEG solution above and mix well.

C.2.7.2 Purify cDNA

1. Add 0.8 : 1 ratio of 22% PEG beads to sample (samples shoulb be 10 µLby this point, so 8
µLbeads), and mix by gently pipetting up and down 10x.

2. Incubate at room temperature for 8 minutes.

3. Place on magnet and allow beads to settle, roughly 5 minutes.

4. Remove supernatant2.

5. Wash beads once with 100 µLof freshly prepared 85% ethanol, incubate 30s.

6. Remove ethanol and repeat ethanol wash and incubation.

7. Centrifuge 10 seconds at low speed to collect all liquids on the tube walls.

8. Place back on magnet, wait 30 seconds for beads to collect on the side, and remove leftover
ethanol.

9. Let the beads air dry 3-5 minutes (don’t wait too long, ideally just before cracks appear).

10. Elute beads in 12 µLof UltraPure Water, resuspend beads off magnet, mixing thoroughly by
pipetting up and down at least 20x and scraping tube with the pipet tip.

2: Contrary to remarks from the Smart-seq2 adaptation to single-worm (SERRA et al., 2018), the supernatant can not
be re-incubated with the beads if the cDNA yield is insufficient in Smart-seq3. In our hands, this only yields primers
and primer dimers. This could be due to the smaller volumes used here compared to Smart-seq2.
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11. Incubate for 8 minutes.

12. Place on magnet for 2-3 minutes until beads collect and solution is clear.

13. Transfer 10 µLof supernatant to fresh PCR strips (free from nuclease), being careful to mini-
mize bead carryover.

C.2.8 cDNA quality control and normalization

1. Follow manufacturer instructions of Qubit dsDNA HS kit or similar to measure cDNA con-
centration of all samples.

Samples with a cDNA concentration under 1 ng/µLshould be considered as failed, those
with 1-5 ng/µLare passable, and those over 10 ng/µLhave good yield. Samples with higher
yields should be prioritized, as they have a more diverse RNA molecule pool and thus larger
UMI-corrected library sizes; high yield samples also tend to have higher complexity.

2. Dilute all samples to 0.5 ng/µLin fresh PCR strip. Prepare at least 4µLof each to have enough
for quality control and tagmentation.

3. Follow manufacturer instructions of Tapestation High-Sensitivity D5000 ScreenTape Assay
or similar to assess sample quality.

Figure C.1 gives examples of good and bad profiles. Proceeding with a few subpar samples
is fine, but having a majority of them should be cause for concern.
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Figure C.1 – Example profiles of amplified cDNA of varying quality
The ideal sample profile should have no peaks in region A, and a strong main peak in region B (1−1.5 kb).
Peaks in region A correspond to small fragments of cDNA and indicate a sample with degraded RNA. Arrows
indicate a peak of amplified primer dimers, usually around 120 bp, which doesn’t fail the sample unless it
accounts for a large fraction of cDNA (e.g. top-right profile).
Electropherogram data was acquired on a tapestation using HS-D5000 tapes and reagents.

C.2.9 Tagmentation

1. Prepare the following 4X tagmentation buffer. Dimethylformamide (DMF) should be han-
dled in a fume hood and according to local safety regulations.

Reagent
Concentration
(4X)

Volume (µL) for

1 reaction 96 samples

Tris-HCl pH 7.5 (1 M) 40 mM 0.02 2.20

MgCl2 (100 mM) 20 mM 0.10 11.00

Dimethylformamide (DMF) 20% 0.10 11.00

Nuclease free water – 0.28 30.80

Total (µL) 0.50 55.00
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Aliquots of 4X tagmentation buffer can be stored at 4°C for later use. The TD buffer (2x)
from Nextera Kits can also be used, however with the current small amount of ATM (Tn5
tagmentase) used, the Illumina TD buffer will at some point run out.

2. Ensure NexteraTM compatible primer (barcodes) are at 0.5 µM.

Orders from IDT (Table C.3) are packaged at 10 µM, we recommend diluting a full plate by
adding 8 µL of primers to 152 µL of UltraPure water. Store at -20°C.

3. Add 1 µL of normalized cDNA (500 pg/µL) to a new PCR strip/plate.

4. Prepare the following tagmentation mix.

Reagent
Reaction
concentration

Volume (µL) for

1 reaction 96 samples

Tagmentation Buffer (4X) 1X 0.50 55.00

Amplicon Tagmentation Mix
(ATM, Tn5)

0.08 8.80

UltraPure water – 0.42 46.20

Total (µL) 1.00 110.00

The given ATM amount, with 500 pg/µLcDNA input yields around 80% UMI-reads with
a Novaseq6000. Some optimization might be necessary to reach a desired UMI-read to
Internal-read ratio depending on the sample type and sequencer. (See Figure 1c and Ex-
tended data Fig. 3b of HAGEMANN-JENSEN et al., 2020 for effects of cDNA concentration,
ATM amount, and sequencer bias on UMI-read to internal-read ratio.)

5. Dispense 1 µL of Tagmentation mix in each tube.

6. Do a quick centrifugation before incubation in a hot-started thermocycler at 55°C for 10
minutes.

7. Add 0.5 µL of 0.2% SDS to each well to strip off Tn5 from the DNA. Ensure that SDS is not
too concentrated, as it will inhibit the PCR reaction.

8. Quick centrifugation before incubation for 5 minutes at Room temperature.

9. Add 1.5 µL of (different) primers (0.5 µM) to each well.

C.2.10 Tagmentation PCR

1. Prepare the folowing PCR mix. We recommend making the mix without enzyme during the
incubation steps of the tagmentation, and adding enzyme at the last minute to avoid leaving
the samples too long at room temperature.

Reagent
Concentration
(4X)

Volume (µL) for

1 reaction 96 samples

Phusion HF buffer (5X) 1X 2.80 308.00

dNTPs (25 mM each) 0.2 mM each 0.14 15.40

DMSO (50%) 2.50% 0.50 55.00

Tween 20 (1%) 0.01% 0.10 11.00

Phusion HF (2 U/µL) 0.02 U/µL 0.14 15.40

Nuclease free water – 6.32 695.20

Total (µL) 10.00 1100.00
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2. Dispense 10 uL of PCR mix to each tube. If reusing pipet tips for multiple wells, flip the
strip/plate around to ensure that the tip does not come in contact with the area where
primers were deposited and avoid cross-well contamination of barcodes.

3. Do a quick centrifugation and place samples in a hot-started thermocycler with the follow-
ing program:

Temperature Time Repeats

72°C 3 min 1x

98°C 5 min 1x

98°C 20 sec
 15x55°C 30 sec

72°C 30 sec

72°C 5 min 1x

4°C Hold –

C.2.11 Library clean-up

1. Pool the samples in a large enough tube.

2. Add 0.6 : 1 ratio of 22% PEG beads to the final volume of pooled tagmented cDNA.

3. Mix by gently pipeting 10x and incubate 8 minutes at room temperature.

4. Place on magnet and allow beads to settle 5 minutes.

5. Discard supernatant and wash twice with >= 1000µLof freshly prepared 85% ethanol (ethanol
wash amount should exceed the initial volume of the pool).

6. Remove ethanol and let the beads air dry for a few minutes. As for the previous purification
(see C.2.7), a light centrifugation step can be done to ensure no ethanol remains.

7. Elute cDNA in a volume of UltraPure Water of at most 1
5 of the pool input volume to ensure

library concentration requirements.

8. Mix well by pipetting to resuspend beads, and incubate 10 minutes.

9. Place on magnet for 2-3 minutes unitl beads collect and solution is clear.

10. Transfer [Elution volume −2 uL] of the supernatant to a fresh tube, being careful to minimize
bead carryover.

C.2.12 Final library quality control

1. Follow manufacturer instructions of Qubit dsDNA kit or similar to measure library cDNA
concentration.

2. Dilute library to 2 ng/µL if necessary.

3. Follow manufacturer instructions of Tapestation High-Sensitivity D5000 ScreenTape Assay
or similar to assess final library quality.

Figure C.2 gives examples of good and bad profiles.

Filtering out adapters can be attempted with a second purification, although this will also
remove large amounts of material.

Although adapter dimers and chimeric fragments are undesirable, they can be filtered out
during data processing. Adapter dimer reads will fail length and complexity QC, and chimeric
reads will be filtered out during mapping. Contaminated libraries can therefore still be se-
quenced if the loss of reads is acceptable.

XVIII



Appendices

15 100 250 1k 2.5k 5k 10k
0

400

800

A

B

C A

B

C A

B

C

15 100 250 1k 2.5k 5k 10k
0

400

800

15 100 250 1k 2.5k 5k 10k
0

500

1500

Fragment length (bp)

A
rb

itr
ar

y 
U

ni
ts

Excellent Passable Bad

Figure C.2 – Example profiles of tagmented cDNA libraries
The ideal library profile should have no adapter dimer peak (arrows), a main peak in region A (600−1 kb)
followed by a sharp decrease in region B and no fragments in region C.
Fragments should be should be overall shorter than before tagmentation. Thus, fragments in region C (> 2.5
kb) are likely to be chimeric and caused by PCR over-amplification. Both chimeric fragments and adapter
dimers (arrows around 120 bp) and multimers (e.g. right profile, at 240 bp) should also be avoided as they
will compete with the library for sequencing, lowering the yield.
Electropherogram data was acquired on a tapestation using HS-D5000 tapes and reagents.

C.2.13 Sequencing and data processing

1. Sequencing should be done on any Illumna-compatible sequencer, with parameters appro-
priate for the need (length, single-end/paired-end). Note that paired-end (PE) sequencing
is required to computationally reconstruct RNA molecules and thus enable isoform assign-
ment. The Smart-seq3 authors also remark that NovaSeq/HiSeq sequencers are more toler-
ant than NextSeq towards larger fragment distributions.

We successfully seqeunced single-embryo libraries with 150PE on a NovaSeq6000.

2. Raw fastq files can then be processed using zUMIs (PAREKH et al., 2018) (https://github.
com/sdparekh/zUMIs).
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D Supplementary information on the effects of parental pheromone
exposure

This appendix contains supplementary material for Chapter 3.
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Figure D.1 – No genomic position or GC% bias of differentially expressed genes
a, Genomic position of DE genes. Color and distance from the chromosome bar correspond to the sign and
size of maximum difference of PHE and CTR model fits (PHE−CTR) respectively.
b, GC% distribution for all C. elegans genes, and DE genes. Smoothed density from the densi t y() R function,
with bandwidth parameter set to 2.
Genomic position and GC% from the Parasite biomart, for C. elegans PRJNA13758 (v. WS285).
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Figure D.2 – GO and phenotype enrichment of late embryo development clusters
a,b Gene ontology (a) and phenotype (b) enrichment of dynamic clusters 1, 2, 3, and 9, as defined in Fig. 3.2.
Only clusters with at least 2 genes contributing to enrichments are shown.
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E Collaborations

E.1 Single-cell data analysis to support the role of IL-6 in cell differentiation

During my PhD, I collaborated with the team of Pr. Thomas Graf at the Centre for Genomic
Regulation (CRG), in the Barcelona Institute of Science and Technology (BIST).

Pr. Graf and my supervisor Mirko Francesconi had recently partnered on a project to uncover
the heterogeneity of cell differentiation and reprogramming efficiency using single-cell RNA-seq
(FRANCESCONI et al., 2019). In the continuity of this project, Pr. Graf and Marcos Plana-Carmona
were interested in further understanding the regulation and roles of InterLeukin 6 (IL-6) in cell dif-
ferentiation. To this end, I re-analyzed the single-cell data from the previous collaboration to sup-
port experimental evidence from Pr. Graf’s lab. Taking advantage of both the time-series design
of the initial experiment and the similarity of cells to a cell type atlas, my work mostly confirmed
expression trends of key genes and signatures.

This collaboration led to the two publications below, of which my supervisor and I are co-
authors.

MARCOS PLANA-CARMONA, GREGOIRE STIK, ROMAIN BULTEAU, CAROLINA SEGURA-MORALES,
NOELIA ALCÁZAR, CHRIS D. R. WYATT, ANTONIOS KLONIZAKIS, LUISA DE ANDRÉS-AGUAYO, MAXIME

GASNIER, TIAN V. TIAN, GUILLEM TORCAL GARCIA, MARIA VILA-CASADESÚS, NICOLAS PLACHTA,
MANUEL SERRANO, MIRKO FRANCESCONI, and THOMAS GRAF (2022). “The trophectoderm acts as
a niche for the inner cell mass through C/EBPα-regulated IL-6 signaling”. In: Stem Cell Reports
17.9, pp. 1991–2004

GUILLEM TORCAL GARCIA, ELISABETH KOWENZ-LEUTZ, TIAN V TIAN, ANTONIS KLONIZA-
KIS, JONATHAN LERNER, LUISA DE ANDRES-AGUAYO, VALERIIA SAPOZHNIKOVA, CLARA BERENGUER,
MARCOS PLANA CARMONA, MARIA VILA CASADESUS, ROMAIN BULTEAU, MIRKO FRANCESCONI,
SANDRA PEIRO, PHILIPP MERTINS, KENNETH ZARET, ACHIM LEUTZ, and THOMAS GRAF (2023).
“Carm1-arginine methylation of the transcription factor C/EBPα regulates transdifferentiation ve-
locity”. In: eLife 12, e83951

E.2 Staging C. elegans aging muscle cells with RAPToR

As discussed in Chapter 1, section 1.2.4, I also collaborated with Dr. Florence Solari, in the
context of Dr. Charline Roy’s thesis. I could use RAPToR to confirm the biological age of bulk
dissociated muscle cells from C. elegans, revealing not only that cells from long-lived daf-2 mu-
tants were delayed with respect to controls, but also that two sample IDs had been swapped after
sequencing.

This work allowed us to prove that RAPToR could stage tissue samples on whole-organism
reference data.
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DE Differentially Expressed, (DE analysis, Differential Expression Analysis).

FACS Fluorescence-Activated Cell Sorting.

FSC Forward Scatter.

GAM Generalized Additive Model.

GO Gene ontology.

ICA Independent Component Analysis (IC, Independent Component).

NGM Nematode Growth Medium.

PCA Principal Component Analysis (PC, Principal Component).

PCR Polymerase Chain Reaction.

RAPToR Real Age Prediction by Transcriptome staging on Reference.

RNA-seq RNA sequencing.

RNAi RNA interference.

RT-PCR Reverse-Transcription PCR.

SSC Side Scatter.

TGF-β Transforming Growth Factor β.

TPM Transcripts Per Million.

UMI Unique Molecular Identifier.

WT Wild-Type.
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PHD THESIS SUMMARY

The environment influences not only the behavior and physiology of an organism, but can also
impact its descendents. In the nematode model C. elegans, perception of social cues (pheromones)
elicits such intergenerational effects, notably increasing generation time of the progeny. Here, I
characterize the molecular changes in embryos caused by parental pheromone exposure by pro-
filing gene expression in single individuals.

To achieve this, I first developed a robust computational method that infers age from the tran-
scriptome in diverse organisms and sample types, makes it possible to detect and correct for de-
velopmental bias in gene expression data, and allows us to bypass synchronization and staging
challenges for embryo collection. Then, I adapted experimental techniques used for sorting and
profiling single cells to single embryos in order to improve throughput, revealing great potential
for accessible and cost-efficient studies at large scale. Armed with these methods, I could then
profile genome-wide gene expression across embryo development in the progeny of pheromone-
exposed and control parents. I show that the developing nervous system and sensory organs are
influenced by parental neuronal perception of the environment, likely changing how progeny will
experience their own surroundings.

RÉSUMÉ DE LA THÈSE

L’environnement n’influence pas seulement le comportement et la physiologie d’un
organisme, mais peut également avoir un impact sur sa descendance. Dans le nématode mod-
èle C. elegans, la perception de l’environnement social (phéromones) déclenche de tels effets in-
tergénérationnels, augmentant notamment le temps de génération de la progéniture. Dans mes
travaux, je caractérise les changements moléculaires dans les embryons causés par l’exposition
des parents aux phéromones en profilant l’expression des gènes à l’échelle de l’individu.

Pour y parvenir, j’ai d’abord développé une méthode computationnelle robuste capable
d’estimer l’âge à partir du transcriptome dans divers organismes et types d’échantillons, qui per-
met de détecter et de corriger les biais liés au développement dans les données d’expression
génique, et nous permet de contourner les défis de synchronisation et de stadification pour la
collecte des embryons. J’ai ensuite adapté des techniques expérimentales initialement utilisées
pour trier et profiler les cellules uniques (single-cell) aux embryons individuels pour permettre un
haut débit, révélant un important potentiel pour mener des études à grande échelle de manière
accessible et à moindre coût. Armé de ces méthodes, j’ai ensuite pu profiler l’expression des gènes
à l’échelle du génome tout au long du développement de l’embryon chez la progéniture de parents
exposés aux phéromones et de témoins. Je montre que l’expression génique du système nerveux
et des organes sensoriels est influencée au cours de leur développement par la perception neu-
ronale de l’environnement des parents, ce qui change certainement la manière dont la progéni-
ture percevra son propre environnement.
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