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There is a view in some philosophical circles that anything that can be
understood by people who have not studied philosophy is not profound enough

to be worth saying. To the contrary, I suspect that whatever cannot be said
clearly is probably not being thought clearly either.

— Attributed to RICHARD P. FEYNMAN, “Six Easy Pieces: Essentials of Physics
Explained by Its Most Brilliant Teacher”.
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Abstract

The Monte Carlo method estimates an integral using pointwise evaluations of
the integrand at some points called nodes, which can be chosen as the points of a
point process. While crude Monte Carlo relies on a homogeneous Poisson point
process (PPP), some more regularly spread point processes yield Monte Carlo
methods with faster-decaying variance. In this thesis, we study two families of
regular point processes that are potential candidate nodes to speed up the con-
vergence of crude Monte Carlo. The first one is the family of hyperuniform point
processes (HUPPs). A HUPP is characterized by the variance of the number of
points in a large window scaling slower than the volume of that window. In par-
ticular, a HUPP yields a Monte Carlo estimator of volumes with a faster decaying
variance than under the PPP. Unfortunately, proving that a point process is hy-
peruniform is usually difficult. Aiming to provide statistical tools for identifying
HUPPs we examine a spectral measure called the structure factor whose decay
around zero provides a diagnostic of hyperuniformity. We provide a survey and
derivation of natural estimators of the structure factor and contribute an asymp-
totically valid statistical test of hyperuniformity. We further provide a Python
toolbox containing all the estimators and tools that we discuss. The second fam-
ily of point processes under consideration pertains to repelled point processes
which we construct using a so-called repulsion operator. The repulsion opera-
tor reduces clustering in a configuration of points by slightly pushing the points
away from each other. Our main theoretical result is that applying the repulsion
operator to a PPP yields an unbiased Monte Carlo method with lower variance
than under the original PPP. Moreover, our numerical investigations shed light
on the operator’s variance reduction ability, even when applied to more regular
point processes than the PPP. This suggests that applying the repulsion opera-
tor to the nodes of any Monte Carlo method may decrease its variance and thus
enhance the method’s statistical accuracy.



Résumé

La méthode de Monte Carlo estime une intégrale en utilisant des évaluations de
l’intégrande en certains points appelés nœuds, qui peuvent être choisis comme
les points d’un processus ponctuel. Alors que la méthode Monte Carlo brute re-
pose sur le processus ponctuel de Poisson homogène (PPP), certains processus
de points plus régulièrement répartis produisent des méthodes avec une décrois-
sance plus rapide de la variance. Dans cette thèse, nous étudions deux familles
de processus ponctuels réguliers qui sont des candidats potentiels pour accélérer
la convergence de la méthode Monte Carlo brute. La première famille est celle
des processus ponctuels hyperuniformes (HUPPs). Un HUPP est caractérisé par
la variance du nombre de points dans une grande fenêtre qui évolue plus lente-
ment que le volume de cette fenêtre. En particulier, un HUPP fournit un estima-
teur Monte Carlo des volumes avec une décroissance de la variance plus rapide
que la méthode Monte Carlo brute. Malheureusement, prouver qu’un processus
ponctuel est hyperuniforme est généralement difficile. Dans le but de fournir des
outils statistiques pour identifier les HUPPs, nous examinons une mesure spec-
trale appelée la fonction de structure, dont la décroissance autour de zéro permet
de diagnostiquer l’hyperuniformité. Nous étudions la dérivation des estimateurs
existants de la fonction de structure et contribuons un test statistique asympto-
tiquement valide de l’hyperuniformité. De plus, nous fournissons une librairie
Python contenant tous les estimateurs et outils que nous discutons. La deuxième
famille de processus ponctuels que nous étudions est constituée des processus
ponctuels repoussés, que nous avons construits en utilisant un opérateur de ré-
pulsion. L’opérateur de répulsion réduit le regroupement dans une configuration
de points en repoussant légèrement les points les uns des autres. Notre principal
résultat théorique est que l’application de l’opérateur de répulsion à un PPP four-
nit une méthode de Monte Carlo non biaisée avec une variance inférieure qu’avec
un PPP. De plus, nos simulations numériques mettent en lumière la capacité de
l’opérateur de réduire la variance, même lorsqu’il est appliqué à des processus
ponctuels plus réguliers que le PPP. Cela suggère que l’application de l’opéra-
teur de répulsion aux nœuds de n’importe quelle méthode de Monte Carlo peut
réduire sa variance et ainsi améliorer la précision statistique de la méthode.
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ŜMT(.) Multitapered estimator p. 46
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1.1 Monte Carlo methods and point processes . . . . . . . . . . . . . 1

1.2 Outline of the manuscript . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Monte Carlo methods and point processes

Numerical integration is the task of approximating the integral

I( f ) =
∫

Rd
f (x)dx

of an integrable function f : Rd → R using pointwise evaluations of f . The most

common approximation algorithm involves summing up the evaluations of f at

N points (xi)
N
i=1, called nodes, each multiplied by an appropriate weight (wi)

N
i=1,

i.e.

I( f ) ≈
N

∑
i=1

wi f (xi). (1.1)

In addition to the analogy of the approximation in (1.1) with a Riemann sum,

Bakhvalov (1971) proved that the minimum worst-case error within a class of

functions F, can be achieved by an algorithm of this form (1.1), provided that F

satisfies certain properties. Specifically, to find the infimum

inf
Î∈A

sup
f∈F

|I( f )− Î( f )|,

1



1 – Introduction

over the collection A of all the algorithms approximating I( f ), it’s enough to

search within the algorithms of the form (1.1) if F is convex, i.e., if f1, f2 ∈ F,

then their convex combination t f1 + (1 − t) f2 ∈ F for t ∈ [0, 1], and centrally

symmetric, i.e., if f ∈ F, then − f ∈ F; see (Novak and Woźniakowski, 2008,

Section 4.2.2). Thus, (1.1) seems a reasonable choice of approximation and the

remaining focal point lies in determining the configuration of nodes (xi)
N
i=1 (and

the corresponding weights) that controls the error, in some sense, for as large

class of functions as possible, while also being computationally tractable.

Within the algorithms of the form (1.1), we can distinguish two types: determin-

istic constructions of nodes, called quadrature rules, and random configurations

of nodes, called Monte Carlo methods. Upon noting that the integral of a smooth

function f is the area under the graph of f , the most basic quadrature rules esti-

mate this area using the sum of adjacent rectangular/trapezoidal windows area.

For a low space dimension d, the literature is replete with noteworthy quadra-

ture rules. For instance, the Gauss quadrature is exact, i.e., the approximation

error is equal to zero when f is a (one-dimensional) polynomial of degree up to

2N − 1 (Gauss, 1815); see also (Owen, 2013, Chapter 7). However, the advan-

tage of quadrature rules rapidly decays as the dimension of the space increases,

and Monte Carlo methods become more suitable. This phenomenon shows that

deterministic constructions suffer from the curse of dimensionality and was for-

mulated in a theorem of Bakhvalov (1959); see also (Novak, 2016), (Owen, 2013,

Chapter 7), and (Dimov, 2008, Chapter 3). Bakhvalov’s theorem provides a lower

bound of the worst-case error of quadrature rules and the worst-case root mean

square error (RMSE) of Monte Carlo methods, for the class of Ck functions sup-

ported on a compact with bounded partial derivatives up to order k > 0. Specif-

ically, the theorem states that the convergence rate of the worst-case error of a

quadrature rule is bounded from below by N−k/d compared to N−1/2−k/d for

the worst-case RMSE of a Monte Carlo method. This highlights a notable pos-

sible improvement of N−1/2 of a Monte Carlo method over a quadrature rule

in any space dimension and motivates Monte Carlo methods when estimating

high-dimensional integrals.

In its simplest form, crude Monte Carlo amounts to writing the integral of a func-

tion supported on a compact K as an expectation under a uniform distribution,

2



1 – Introduction

and estimating it by the sample average formed with N i.i.d. uniform samples

in K. Figure 1.1a shows 1000 i.i.d. uniform points observed in the cube [−1, 1]2.

Classical probability results show that the RMSE of the crude Monte Carlo has

the form σ(d)N−1/2 in a d-dimensional space. Interestingly, the convergence rate

N−1/2 of the RMSE is independent of the dimension d and sampling the nodes

is cheap favoring crude Monte Carlo over quadrature rules in high dimensions.

However, letting aside the dependence of σ(d) on d, N−1/2 is a slow convergence

rate: dividing the error by 10 requires multiplying the number of nodes N by a

factor of 100. This becomes unfavorable in scenarios demanding an estimation

with high precision, particularly when evaluating the integrand comes at a sub-

stantial cost. Some methods target improving this N−1/2 convergence rate by

introducing sophisticated dependence through the weights (Delyon and Portier,

2016; Azaïs et al., 2018; Leluc et al., 2023). Other methods, known as variance re-

duction methods, target reducing the scaling factor σ(d), e.g. by leveraging aux-

iliary integrands with known integrals, a method known as control variates; see

(Owen, 2013, Chapters 8 and 10) for classical results, and (South et al., 2022) and

references therein for more recent work. Alternatively, one can consider a more

regularly spread configuration of nodes than i.i.d. draws, as in randomized quasi-

Monte Carlo (RQMC) which reaches a convergence rate N−3/2 log(N)(d−1)/2 un-

der strong smoothness conditions on the integrand (Owen, 2008). Despite the

d-dependence of the convergence rate and the strong smoothness assumptions,

the RQMC is remarkably efficient in practice for small-to-moderate dimension d.

Figure 1.1b illustrates 1000 nodes used in RQMC. This figure visually conveys a

more regular arrangement of points compared to the 1000 i.i.d. points displayed

in Figure 1.1a.

In spatial statistics, we call a random configuration of points a point process (Chiu

et al., 2013; Møller and Waagepetersen, 2003; Daley and Vere-Jones, 2003). In

particular, the configuration of i.i.d. uniform points corresponds to the binomial

point process (BPP). The BPP converges to the famous homogeneous Poisson

point process (PPP) as the number of points appropriately approaches infinity

(Chiu et al., 2013; Coeurjolly et al., 2017; Last and Penrose, 2017). This has po-

sitioned the PPP as the reference point process associated with the crude Monte

Carlo. However, when dealing with the PPP, as well as numerous other point

3
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(a) i.i.d. uniform (b) RQMC (c) DPP

Figure 1.1: Samples of 1000 points observed in the cube [−1, 1]2.

processes, the number of nodes N is itself a random variable. In such scenar-

ios, we express the convergence rate of the RMSE using the expected number

of nodes E[N] rather than the conventional N. Interestingly, more sophisticated

point processes can also be used in numerical integration. Indeed, the first inten-

sity of a point process X of constant intensity ρ > 0 (expected number of points

per unit volume) relates the integral of a compactly supported function f to the

expectation of a so-called linear statistic

E

[
1
ρ ∑

x∈X
f (x)

]
=
∫

Rd
f (x)dx,

offering a natural unbiased Monte Carlo method based on X . Loosely, we call a

point process regular when it is more regularly spread than the PPP, like in Figure

1.1b. Regular point processes appear more promising than a PPP in numerical in-

tegration as they seem more representative of the space. An interesting class of

regular point processes is the class of determinantal point processes (DPPs) (Mac-

chi, 1975; Hough et al., 2009). Figure 1.1c displays a realization of 1000 points of

a DPP. Monte Carlo methods with some DPPs enhanced the convergence rate

of the RMSE beyond N−1/2 to reaches N−1/2−1/(2d) for smooth integrands (Er-

makov and Zolotukhin, 1960; Bardenet and Hardy, 2020; Coeurjolly et al., 2021;

Belhadji et al., 2019).

The purpose of this thesis is to study regular point processes that are potential

nodes in a Monte Carlo method. An important class of regular point processes

is the class of hyperuniform point processes (HUPPs) (Torquato, 2018; Torquato

and Stillinger, 2003; Kim and Torquato, 2018; Klatt et al., 2019, 2022, 2020; Coste,

4
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2021; Dereudre and Flimmel, 2023). A point process is a HUPP if the variance

of the number of points in a large window scales slower than the volume of that

window. Formally, X is hyperuniform if

lim
R→∞

Var [X (B(0, R))]
|B(0, R)| = 0,

where B(0, R) is the ball of radius R centered at the origin. In particular, any

HUPP yields a Monte Carlo method with RMSE decaying at a faster rate than

crude Monte Carlo, when the integrand f is an indicator function. For example, a

HUPP with a number variance scaling in Rd−1 yields a Monte Carlo method with

E[N]−1/2−1/(2d) decaying rate of the RMSE; this is faster than the E[N]−1/2 con-

vergence rate of the RMSE of crude Monte Carlo. Note that, the DPP displayed in

Figure 1.1c is hyperuniform and shows in particular a higher degree of regularity

than the i.i.d. sample observed in Figure 1.1a. Outside numerical integration, this

statistical property, in turn, implies desirable physical properties for materials;

see (Torquato, 2018, Section 14) and references therein. Unfortunately, rigorously

proving that a point process is hyperuniform is usually difficult. The common

practice is to use a few samples to estimate a spectral measure called the struc-

ture factor. The decay of the structure factor around zero provides a diagnostic of

hyperuniformity (Coste, 2021; Torquato, 2018). Given a realization of a point pro-

cess, the standard empirical diagnostic of hyperuniformity thus involves estimat-

ing and plotting the structure factor of the underlying point process (Torquato,

2018; Klatt et al., 2019; Kim and Torquato, 2018). This graphical assessment is

however not standardized and often not described in full reproducible detail in

the literature, with implementation choices and statistical properties often part of

each field’s folklore. Our first contribution (Hawat et al., 2023b) is a survey and

derivation of known estimators of the structure factor. Additionally, we propose

some variants of the estimators and new natural estimators. We leverage the con-

sistency of these estimators to contribute an asymptotically valid statistical test

of hyperuniformity. Interestingly, another statistical test of hyperuniformity was

simultaneously proposed by Klatt, Last, and Henze (2022), tailored to a particular

type (Class I in (Torquato, 2018)) of HUPP. We also developed a modular, open-

source Python package called structure factor, that implements the estimators of

the structure factor, diagnostics of hyperuniformity, and our statistical test.
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(a) PPP (b) Repelled PPP

Figure 1.2: Samples of a PPP and the corresponding repelled sample observed in

the cube [−1, 1]2.

Back to numerical integration, we mentioned that Monte Carlo with DPPs have

demonstrated a faster convergence rate of the RMSE than crude Monte Carlo.

The bottleneck of DPP-based methods is the relatively high sampling complexity

of DPPs (Gautier et al., 2019a). Aiming to introduce regularity at a smaller com-

putational cost than DPPs, we introduce the repulsion operator, which reduces

clustering in a configuration of points X, by slightly pushing the points of X away

from each other (Hawat et al., 2023a). The operator’s driving gear is the force

function

x 7→ ∑
z∈X\{x}
∥x−z∥2↑

x − z
∥x − z∥d

2
,

frequently used in the gravitational allocations from point processes to the Lebesgue

measures (Chatterjee et al., 2010; Nazarov et al., 2007) and the study of Coulomb

gases (Serfaty, 2019; Leblé and Serfaty, 2018). Leaving aside further technicality,

we observe that each term in the sum defining the force at x repels the target

point x from a point of the configuration X. Figure 1.2a shows a sample from a

PPP observed in [−1, 1]2, while Figure 1.2b displays the corresponding repelled

sample. The repelled sample shows a higher degree of regularity than the orig-

inal sample. Our main theoretical result is that applying the repulsion operator

to a PPP yields variance reduction for crude Monte Carlo. Moreover, the experi-

ments suggest that the variance reduction also holds when the operator is applied

6
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to already regular point processes. This finding is intriguing on its own because

it raises the possibility that the repulsion operator may be universal, in the sense

that, it consistently results in a variance reduction of certain linear statistics, re-

gardless of the point process to which it is applied. On the computational side,

compared to the (at least) cubic computational complexity for the Monte Carlo

estimator with the DPP in (Bardenet and Hardy, 2020), the evaluation of our es-

timator is only quadratic in the number of nodes and can be easily parallelized

without any communication across tasks.

1.2 Outline of the manuscript

The manuscript is organized as follows.

Chapter 2 is an introduction to point processes and their integration within Monte

Carlo methods. We review key tools for analyzing point processes, offering an

exploration of various point processes, their inherent properties, and distinctive

characteristics. Our focus is particularly directed toward regular point processes

that are promising candidate nodes of a Monte Carlo method. Additionally, we

touch upon various operations that can be applied to manipulate point processes.

Finally, we delve into the practical application of point processes in numerical

integration and survey some Monte Carlo methods. The knowledge and insights

gleaned from this chapter are essential for a comprehensive grasp of the other

chapters.

Chapter 3 is based on our journal paper (Hawat et al., 2023b) and focuses on hy-

peruniform point processes (HUPPs). We first discuss Monte Carlo methods with

HUPPs and demonstrate the fast convergence rate of their RMSEs when the in-

tegrand is an indicator function. The central part of this chapter is an in-depth

examination of a spectral measure called the structure factor, and its application

in the study of hyperuniformity. We survey existing estimators of the structure

factor, study their main properties, and compare their performances. We inves-

tigate the mathematical underpinnings of some prevalent practices within the

literature when estimating the structure factor. For example, our results suggest

that some of the established conventions on the most common estimator called

7
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scattering intensity, can be relaxed without affecting the accuracy of the estima-

tors. Moreover, we survey commun diagnostics of hyperuniformity, propose an

asymptotically valid statistical test of hyperuniformity, and study their perfor-

mances. Finally, we provide an introduction to the main objects of our Python

package structure factor1 which implements all known estimators of the struc-

ture factor, diagnostics of hyperuniformity, and our statistical test.

Chapter 4 is based on the preprint (Hawat et al., 2023a). In this chapter, we intro-

duce an operator called the repulsion operator acting on a configuration of points

to reduce clustering by slightly pushing the points away from each other. We an-

alyze the properties of this operator when applied to a PPP, propose a Monte

Carlo method based on it, and describe a sampling procedure that we implement

in a Python toolbox MCRPPy2. The main theoretical result is a variance reduc-

tion of the proposed Monte Carlo method compared to crude Monte Carlo. We

illustrate the variance reduction result with numerical experiments. We put the

proposed Monte Carlo method in context, by conducting a comparison with the

Monte Carlo methods surveyed in Chapter 2. In particular, the experiments vali-

date the variance reduction result and show that our method is competitive with

the randomized quasi-Monte Carlo (RQMC), which is currently one of the most

powerful methods. Finally, we numerically investigate a few facets of the repul-

sion operator. Notably, the investigations shed light on the operator’s variance

reduction ability, even when applied to regular point processes such as a HUPP

and the nodes used in RQMC. This suggests that applying the repulsion operator

to the nodes of any Monte Carlo method could potentially enhance the method.

Finally, Chapter 5 outlines several potential directions for future research. Addi-

tional avenues are presented in the concluding sections of Chapters 3 and 4.

1.3 List of publications

1. Journal paper: D. Hawat, G. Gautier, R. Bardenet, and R. Lachieze-Rey.

On estimating the structure factor of a point process, with applications to

1https://github.com/For-a-few-DPPs-more/structure-factor
2https://github.com/dhawat/MCRPPy
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hyperuniformity. Statistics and Computing, 33, 2023. doi: 10.1007/s11222-

023-10219-1.

Companion software: structure factor. Python package available on GitHub

and PyPI, 2022.

23/08/2023, 10:05 For-a-few-DPPs-more/structure-factor: Compute structure factor of stationary and isotropic point processes

https://github.com/For-a-few-DPPs-more/structure-factor 1/5

Compute structure factor of stationary and isotropic point processes

for-a-few-dpps-more.github.io/structure-factor/

 MIT license
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Public repository
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View code
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Approximate the structure factor of a stationary point process, test its hyperuniformity, and identify its class

of hyperuniformity.

structure-factor

Introduction

Dependencies

Installation

Install the project as a dependency

Install in editable mode and potentially contribute to the project

Documentation

Build the documentation

Getting started

Documentation

Notebooks

How to cite this work

Companion paper

Citation
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2. Preprint: D. Hawat, R. Bardenet, and R. Lachieze-Rey. Repelled point pro-

cesses with application to numerical integration, arXiv, 2023.

Companion software: MCRPPy. Python package available on GitHub, 2023.

08/09/2023, 11:24 dhawat/MCRPPy: Sample a repelled point process, compute a Monte Carlo estimation for the integral of a function using various variants …

https://github.com/dhawat/MCRPPy 1/4

Sample a repelled point process, compute a Monte Carlo estimation for the integral of a function using various

variants of the Monte Carlo method including the Monte Carlo with a repelled point process, and visualize

gravitational allocations 2D.

 MIT license

0 stars 0 forks 3 watching Activity

Public repository · Generated from guilgautier/template-python-project

Branches Tags

View code

Monte Carlo with the repelled point processes
(MCRPPy)

CICI passingpassing codecovcodecov 55%55% pythonpython >=3.8,<3.10>=3.8,<3.10

Sampling repelled point processes, estimating function integrals using various Monte Carlo methods

(including a method with the repelled point process), and illustrating 2D gravitational allocation from the

Lebesgue measure to a point process.

Monte Carlo with the repelled point processes (MCRPPy)

Introduction

Dependencies

Installation

Install the project as a dependency

Install in editable mode and potentially contribute to the project

Getting started

Companion paper

Notebooks

How to cite this work

dhawat /

MCRPPy

Code Issues Pull requests Actions Projects Wiki Security Insights

main
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README.md

3. National conference paper: D. Hawat, G. Gautier, R. Bardenet, and R.

Lachieze-Rey. Estimation de la fonction de structure d’un processus ponctuel

pour l’étude d’hyperuniformité. XXVIIIème Colloque Francophone de Traite-

ment du Signal et des Images GRETSI, 2022.

1.4 Notations

Throughout this manuscript, bold lowercase letters, like x, indicate vectors in

Rd, and the corresponding non-bold characters, like x, are scalars. In particular,

x = (x1, · · · , xd). Whenever not confusing, we use the same letter in different

fonts for a vector and its Euclidean norm, i.e., r = ∥r∥2 and k = ∥k∥2. In general,

calligraphic letters like X are used for point processes, i.e., random configurations

of points. Configurations themselves are denoted with sans-serif letters like X.

When the cardinality of a particular point process is almost surely (a.s.) constant,

we sometimes write that point process as XN, with the cardinality N as the index.

Frequently used notations are summarized in the preface to ease the reading.

The abbreviations are listed in Section 0.1. The mathfont letters can be found in

Section 0.2, organized alphabetically. Lastly, greek letters are presented in Section

0.3, while symbols are covered in Section 0.4.
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The primary objects of study in this thesis are point processes, which are random

configurations of points. Many physical phenomena can be modeled by point

processes. For example, the spread of a disease, the arrangement of stars in a

galaxy, the positions of trees in a forest, etc. Our main motivation for studying
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point processes is numerical integration. Point processes will serve as the inte-

grand evaluation points in a numerical integration scheme. This chapter provides

background information on point processes with a special focus on their appli-

cation in numerical integration. For a broader exploration of point processes, we

refer to (Chiu et al., 2013; Møller and Waagepetersen, 2003), and for more insights

about numerical integration, we refer to (Owen, 2013; Novak and Woźniakowski,

2008; Dimov, 2008).

Section 2.1 is an introduction to point processes, while Section 2.2 covers basic

tools characterizing the distribution of a point process. Section 2.3 focuses on

the pair correlation function and the structure factor, which are commonly em-

ployed to study the second-order properties of a point process. Moving on, Sec-

tion 2.4 is dedicated to the renowned homogeneous Poisson point process (PPP),

discussing its properties. The PPP is characterized by the independence of the

process when restricted to disjoint subsets of the underlying space. In contrast,

Section 2.5 focuses on more intricate point processes that exhibit spatial proper-

ties such as clustering or regularity with special emphasis on regularity, which

proves advantageous in numerical integration. Section 2.6 compiles examples

of operations on point processes, including thinning and matching. Finally, in

Section 2.7 we explore how point processes find practical use in numerical inte-

gration.

2.1 Point processes

Let a configuration of Rd be a locally finite set X ⊂ Rd, that is, for any bounded

Borel set B of Rd the cardinality X(B) of X ∩ B is finite. Endow the family N of

such configurations with the σ-algebra generated by the mappings X 7→ X(B),

for any bounded Borel set B. Formally, a (simple)1 spatial point process (henceforth

a point process) is a random element X of N. Loosely speaking, it is a locally finite

random collection of points without duplicated points. The term point pattern

1The term simple indicates that the point process consists of distinct points which is a direct

consequence of the configuration definition as a set. However, it’s important to note that the

condition of simplicity is relaxed in some extensions of the theory, but not in this work; see (Last

and Penrose, 2017, Chapter 6).
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is commonly used to denote a realization of X , that is, a sample of X . A point

process X is called stationary if the law of X is invariant by translation: the law

of X is identical to that of X + y ≜ {x + y; x ∈ X}, for all y ∈ Rd. Similarly,

X is isotropic if its law is invariant by rotation. A stationary and isotropic point

process is also called motion-invariant.

2.2 The distribution of a point process

In this section, we review two essential tools for analyzing and characterizing

the distribution of a point process: the system of void probabilities and intensity

measures.

2.2.1 Void probabilities

The distribution of a point process X ⊂ Rd is determined by the system of void

probabilities

TX (K) ≜ P(X (K) = 0), (2.1)

as K ranges through the compact sets of Rd. This follows from interpreting X
as a random closed set with capacity function 1 − TX (K); see (Chiu et al., 2013,

Chapter 4). In words, the void probability TX (K) is the probability of observing

no points of X in K.

2.2.2 Intensity measure

The distribution of a point process can also be described by the corresponding

intensity measures. The first intensity measure µ(1), is a characteristic analogous to

the mean of a real-valued random variable and is defined by

µ(1)(B) ≜ E[X (B)], (2.2)

for any Borel set B ⊂ Rd. When µ(1) has a density w.r.t. the Lebesgue measure,

µ(1)(dx) = ρ(x)dx, we call ρ (denoted also by ρ(1)) the intensity of X . If X is
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stationary, then µ(1) is proportional to the Lebesgue measure, and the intensity ρ

is a positive constant, equal to the mean number of points of X per unit volume.

More generally, the n-th order intensity measure µ(n) of X (a.k.a. n-th order factorial

moment) is defined by

E

[ ̸=
∑

x1,...,xn∈X
f (x1, . . . , xn)

]
=
∫

Rd×···×Rd
f (x1, . . . , xn)µ

(n)(dx1 . . . dxn), (2.3)

where f is any non-negative bounded measurable function, and the summation

is over all n-tuples of distinct points in X ; see (Chiu et al., 2013; Last and Penrose,

2017, Chapter 4). Again, when µ(n) = ρ(n)(x1, . . . , xn)dx1 . . . dxn, ρ(n) is called the

n-th order intensity function. Intuitively, for any pairwise distinct points x1, . . . , xn,

we can interpret ρ(n)(x1, . . . , xn)dx1 . . . dxn as the probability that X has a point in

each of the n infinitesimally small sets around x1, . . . , xn, with respective volumes

dx1, . . . , dxn.

2.3 Second-order characteristics of a point process

In this section, we recall two essential tools used to analyze the second-order

properties of point processes: the pair correlation function and the structure fac-

tor. The pair correlation function gives insights into the clustering and regularity

of a point process, while the structure factor plays a crucial role in studying the

hyperuniformity of a point process, a specific property characterized by a sub-

Poissonian number variance. These two functions are instrumental in statistical

inference for point processes and can be effectively estimated in practical scenar-

ios. For instance, Chapter 3 will survey various estimators for the structure factor

and explore the concept of hyperuniformity. It will also touch upon the estima-

tion of the pair correlation function, acknowledging its extensive study in (Møller

and Waagepetersen, 2003, Chapter 4).
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2.3.1 Pair correlation function

The second-order intensity measure µ(2) of X helps assess pairwise correlations

in the points of X . Recall that by (2.3), µ(2) is formally defined by

E

[ ̸=
∑

x,y∈X
f (x, y)

]
=
∫

Rd×Rd
f (x, y)µ(2)(dx, dy),

where f is any non-negative bounded measurable function. When X is station-

ary2 with intensity ρ, the previous expression can be factorized in
∫

Rd×Rd
f (x + y, y)ρ2g2(dx)dy, (2.4)

where g2 is called the pair correlation measure. Intuitively, g2(dx) is the probability

that X has a point at location dx, given that X already contains the origin. If in

addition, g2 has a density g w.r.t. the Lebesgue measure, i.e., g2(dx) = g(x)dx,

then g is called the pair correlation function of X which can be expressed as

g(r) =
ρ(2)(0, r)

ρ2 , (2.5)

if the second order intensity function ρ(2) exists; see (Møller and Waagepetersen,

2003, Definition 4.4). Informally, g(r) counts the pairs (x, y) ∈ X × X such that

x − y = r ∈ Rd. Moreover, when X is assumed both stationary and isotropic3,

then the pair correlation function g is radial4. In that case, we abusively write

g(r) = g(r), where r = ∥r∥2. Additionally, in this context, the second-order

intensity function ρ(2) is also a radial function and we have

g(r) =
ρ(2)(r)

ρ2 . (2.6)

2.3.2 Structure factor

In the previous section, we used the second-order intensity measure to define

the pair correlation function g in (2.5). Now, following Coste (2021), we will see
2The stationarity condition can be relaxed while still defining g2 in the same manner; see

(Daley and Vesilo, 1997, Proposition 8.1.I) or (Møller and Waagepetersen, 2003, Chapter 4).
3The assumptions of stationarity and isotropy can be straightforwardly weakened to assum-

ing that the first and second intensity measures are translations and rotation invariants.
4A real-valued function f of Rd is called a radial function if, for any x ∈ Rd, f (x) depends

only on ∥x∥2.
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that by transitioning to the Fourier domain, we can (often) define the so-called

structure factor S which is a main tool in the study of hyperuniformity.

The structure factor measure5 S of a stationary point process X ⊂ Rd with intensity

ρ > 0 is the measure on Rd, when it exists, defined by

S = Ld + ρF
(

g2 −Ld
)
= F

(
δ0 + ρ(g2 −Ld)

)
, (2.7)

where Ld is the d-dimensional Lebesgue measure, F is the Fourier transform

(A.1), g2 is the pair correlation measure (2.4), and δ0 is the Dirac mass in 0; see

(Coste, 2021). We note that in the spectral analysis of stochastic processes S , up

to a scale factor, is also called the Bartlett spectral measure.

When the measure S is absolutely continuous w.r.t. the Lebesgue measure, i.e.,

S(dk) = S(k)dk, we call S the structure factor 6. If in additionel, g2 is absolutely

continuous w.r.t. the Lebesgue measure and g− 1 is integrable, S can be explicitly

written as

S(k) = 1 + ρF (g − 1)(k). (2.8)

Moreover, when the pair correlation function is symmetric, i.e., g(r) = g(−r),

S is a symmetric real-valued function. In particular, when X is isotropic, then

both the pair correlation function g and the structure factor S are radial functions.

Abusively denoting S(k) = S(k), Equation (2.8) reads

S(k) = 1 + ρFs(g − 1)(k), (2.9)

where Fs is the symmetric Fourier transform (A.2). Using (A.4) we get

S(k) = 1 + ρ
(2π)d/2

kd/2−1

∫ ∞

0
(g(r)− 1)rd/2 Jd/2−1(kr) dr, (2.10)

where Jν is the Bessel function of the first kind of order ν; see Torquato (2018,

Section 2). Finally, if the pair correlation function g exists and is smooth, then one

can expect that

S(k) −−−−−→
∥k∥2→∞

1.

On the other hand, the behavior of S in zero measures the fluctuations of g around

1 at large scales ∥r∥2 ≫ 1, which can, in turn, help quantify properties like hype-

runiformity studied in Chapter 3.
5S is a signed positive-definite measure; see (Coste, 2021, Section 1.3).
6The literature is inconsistent as to whether the structure factor is the measure S or its density

S. We choose the density, which is also sometimes known as the scaled spectral density function; see

(Rajala et al., 2020) and references therein.
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2.4 The homogeneous Poisson point process
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Figure 2.1: Samples of four distinct point processes. Plots obtained using the

toolbox structure factor.

Consider a compact set K of Rd, and pick N i.i.d. points uniformly distributed in

K. The point process BN formed by these N points is called the binomial point

process (BPP) with N points. Loosely speaking, when K is enlarged to fill out

Rd while maintaining N = ρ|K|, we obtain a limiting point process P that is

called the homogeneous Poisson point process (PPP)7 of constant intensity ρ > 0.

7In this context, the term “homogeneous” refers to the property of translation invariance,

where the process exhibits a constant intensity. However, it is important to note that a Poisson
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Figure 2.1c displays a realization from a PPP of intensity ρ = 1/π. We now list a

few properties of P .

First, P is motion-invariant. Second, the random number P(B) of points of X in

a bounded Borel set B has a Poisson distribution of mean ρ|B|, where |B| is the

Lebesgue measure of B. In particular, the void probability TP (B) (2.1) of P is

equal to

TP (B) = exp(−ρ|B|).

Third, P(B1), ...,P(Bn) are independent for any disjoint Borel sets B1, ..., Bn with

n ≥ 2. This second fundamental property is known as complete randomness, and

translates the intuition that the PPP has as little structure as possible; for more

details see (Chiu et al., 2013, Chapter 2). In the same vein, a straightforward

calculation reveals that both the pair correlation function (2.5) and the structure

factor (2.8) of P are equal to one; see Figures 2.2a and 2.2b. Fourth, all the mo-

ments of P are determined by ρ, i.e., for any non-negative measurable function

f ,

E

[ ̸=
∑

x1,··· ,xn∈P
f (x1, · · · , xn)

]
= ρn

∫

Rd×···×Rd
f (x1, · · · , xn)dx1 · · ·dxn. (2.11)

With the notation of Section 2.2.2, this reads ρ(n) = ρn. Moreover, by the extended

Slivnyak-Mecke theorem, we have

E

[ ̸=
∑

x1,...,xn∈P
h(x1, . . . , xn,P \ {x1, . . . , xn})

]
=
∫

Rd×···×Rd
E[h(x1, . . . , xn,P)]

ρndx1 . . . dxn, (2.12)

for any non-negative measurable function h on (Rd)n ×N; see (Coeurjolly et al.,

2017, Section 5.1). Equation (2.12) provides further evidence of the PPP’s lack of

dependency structure: informally, once conditioned on a finite number of points

belonging to P , the rest of P has the same distribution as P .

The Poisson point process is a reference point process. First, it plays a central role

as a null hypothesis in statistical tests of interaction. For example, by compar-

ing the pair correlation function of a given point process X with that of a PPP

point process can also have a non-constant intensity, indicating a departure from translation in-

variance. In such cases, the process is called an “inhomogeneous Poisson point process”.
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P , which is equal to one, we can investigate the spatial clustering or regularity

of points. Intuitively, the pair correlation function of P , reflects the complete

independence between the pair of points at all scales. In other words, the proba-

bility of finding a pair of points of P separated by any distance remains constant.

Roughly, when the pair correlation function g(r) of X exceeds 1, it indicates more

clustering in the points of X compared to P at distances r, while g(r) below 1

suggests more regularity i.e., less clustering than P at distances r (Møller and

Waagepetersen, 2003, Section 4.2.1).

Another role of the Poisson point process is its usage as a fundamental building

block for more complex models, including the Thomas point process (Example

2.1), the KLY point process (Example 2.4), and the repelled Poisson point process

that will be introduced in Chapter 4.

Finally, note that the Python toolbox structure factor provides a method for sam-

pling a PPP; see Section 3.4.
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Figure 2.2: Pair correlation functions g(r) and structure factors S(k) of some

point processes.

2.5 Clustering and regularity

While the PPP is characterized by complete randomness, a positive correlation

or attraction between the points of a point process X leads to the formation of

clumps and voids in its point patterns. As a consequence, X will exhibit more

clustering of points than a PPP. Apart from the visual inspection, this clustering

behavior can be detected from the pair correlation function of X that exceeds one
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(within some range of distances). We denote such a point process, a clustering

point process.

Conversely, negative correlation or repulsion between the points of a point pro-

cess Y entails a reduced tendency for clustering in its point patterns. This results

in a more uniform or regular arrangement of points compared to a PPP. In con-

trast to clustering, regularity is typically characterized by a pair correlation func-

tion that is less than one within a range of distances. We denote this type of point

process, a regular point process.

This section collects examples of each type: Section 2.5.1 contains examples of

clustering point processes, while Section 2.5.2 provides examples of regular point

processes.

2.5.1 Clustering point processes

Although the PPP is a simplistic model, it can serve as a basis for constructing

clustering models. One example is the family of Neyman-Scott processes intro-

duced by Neyman and Scott (1958) as a model for the locations of galaxies in

space. A Neyman-Scott process is obtained by artificially creating clustering of

points around the point of a PPP P . First, a random number of i.i.d. points are

placed around each point of P according to a probability distribution ϕ. Then,

the original points of P are removed. The resulting point process X is a cluster-

ing point process. X is stationary, and if ϕ is radially symmetric, then X will also

be isotropic (Chiu et al., 2013, Section 5.3).

Example 2.1 (Thomas point process). The modified Thomas point process (TPP) 8

is a Neyman-Scott point process of Rd that is reminiscent of a mixture of Gaus-

sians. To obtain a TPP, fix λ, σ and ρparent positive, and let Pparent be a PPP of

intensity ρparent. Conditionally to Pparent, let (Nx)x∈Xparent be i.i.d. Poisson ran-

dom variables with mean λ. For any x ∈ Pparent, conditionally to Nx, let (ϕx, i)
Nx
i=1

8In the initial formulation of the Thomas point process by Thomas (1949), clusters were con-

strained to be non-empty, meaning that for every x ∈ Xparent, Nx was conditioned to be non-zero.

Diggle (1978) proposed removing this constraint to make the algebra simpler, resulting in the

so-called “modified” Thomas point process; see (Baddeley et al., 2015, Section 12.3.3).
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be i.i.d. d-dimensional centered isotropic Gaussian vectors with variance σ2. The

resulting point process

XThomas =
⋃

x∈Pparent

{x + ϕx,i, i = 1, . . . , Nx} ,

is a TPP of intensity ρThomas = ρparent × λ (Chiu et al., 2013, Section 5.3). Fig-

ure 2.1d shows a realization of a TPP of intensity 1/π, generated from a parent

PPP of intensity ρparent = 1/(20π), and a standard deviation σ = 2. Since σ is

small enough compared to λ = 20, clusters naturally appear. The pair correlation

function and the structure factor of the TPP, shown in Figures 2.2a and 2.2b, are

both radial functions (Møller and Waagepetersen, 2003, Example 5.3), given by

gThomas(r) = 1 +
1

ρparent(
√

4πσ2)d
exp(− r2

4σ2 ), (2.13)

and

SThomas(k) = 1 + λ exp
(
−k2σ2

)
. (2.14)

The fact that the pair correlation function gThomas consistently remains above one

indicates the attractive nature of the TPP. This aspect is visually evident from the

clustering observed in Figure 2.1d. Note that the Python toolbox structure factor

provides a method for sampling a TPP; see Section 3.4.

2.5.2 Regular point processes

A typical example of regular point processes is the family of determinantal point

processes (DPPs), formalized by Macchi (1975)9. DPPs are point processes pa-

rameterized by a kernel K. The distinctive characteristic of a determinantal point

process (DPP) lies in the determinantal form of the intensity functions. Formally,

for any integer n ≥ 1, and x1, . . . , xk ∈ Rd the n-th order intensity function ρ(n)

(2.3) of a DPP X of kernel K is given by

ρ(n)(x1, . . . , xn) = det
(
K(xi, xj)

)
1≤i,j≤n . (2.15)

9Before the general notion of determinantal point processes was formalized by Macchi in

1975, several examples of DPPs were already known, including the Ginibre ensemble introduced

by Ginibre (1965), and the DPP used by Ermakov and Zolotukhin (1960) to sample quadrature

nodes.
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This is at the heart of the virtues of a DPP, which simplifies the theoretical analy-

sis, making DPPs practical and facilitating their study. For more theoretical detail

see (Hough et al., 2009, Chapter 4) and for sampling from the DPPs see the thesis

of Gautier (2020).

When X is stationary of intensity ρ and K is symmetric, Equations (2.15) and (2.5)

give

g(r) = 1 − K2(0, r)
ρ2 .

Thus, the pair correlation function g of X is less than one. This observation high-

lights that stationary DPPs with symmetric kernels inherently encompass the re-

pulsion aspect as part of their definition.

Example 2.2 (Ginibre ensemble). The Ginibre ensemble (GPP) introduced by Gini-

bre (1965) is a stationary and isotropic DPP of C ≈ R2 with kernel

KGinibre(z, w) = ∑
k≥0

(zw)k

k!
,

where z, w ∈ C (Hough et al., 2009, Example 4.5.8). It can be defined (and ap-

proximately sampled) as the limit of the set of eigenvalues of a matrix filled with

i.i.d. standard complex Gaussian entries, as the size of the matrix goes to infinity

(Hough et al., 2009, Theorem 4.3.10).

Its intensity is equal to ρGinibre = 1/π, and its pair correlation function (Fig-

ure 2.2a) is

gGinibre(r) = 1 − exp(−r2). (2.16)

The fact that gGinibre consistently remains below one indicates the GPP is a reg-

ular point process. This behavior is visually evident in Figure 2.1b. Finally, its

structure factor (Figure 2.2b) can be computed exactly,

SGinibre(k) = 1 − exp(−k2/4). (2.17)

Note that the Python toolbox structure factor provides a method for sampling a

GPP; see Section 3.4.
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2.6 Operations on point processes

This section presents some operations on point processes. Section 2.6.1 is con-

cerned with independent thinning and Section 2.6.2 focuses on matching.

2.6.1 Independent thinning
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Figure 2.3: A sample from the GPP, and the samples obtained after applying an

independent thinning with different retaining probabilities p. Plots obtained

using the toolbox structure factor.

In the context of point processes, a thinning is an operation on a point process,

where points are selectively removed based on a specific rule, resulting a new

point process called the thinned point process.
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For a given point process Xparent, an (independent) p- thinning of Xparent consists

on deleting each point of Xparent with probability 1 − p. The deletion of each

point is independent of the locations and possible deletions of any other points

of Xparent. The remaining points constitute the thinned point process (Chiu et al.,

2013, Section 5.1). The parameter p is called the retaining probability, being the

probability of keeping a point. Figure 2.3 shows a p-thinning of a sample from

the GPP, with retaining probabilities p ∈ {0.1, 0.5, 0.9}.

If the parent point process Xparent is motion-invariant of intensity ρparent, the re-

sulting thinned point process Xp is also motion-invariant of intensity

ρp = p × ρparent.

The pair correlation function of Xp is independent of p and actually equal to the

parent point process’s counterpart gp(r) = gparent(r). However, the structure

factor of Xp is equal to

Sp(k) = pSparent(k) + 1 − p, (2.18)

where Sparent is the structure factor of Xparent. The structure factors of thinned

GPP are shown in Figure 2.4 for a few values of p.
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Figure 2.4: Structure factor of the GPP (Ginibre) before and after applying

independent thinning with different retaining probabilities p. The red line

(Poisson) corresponds to the structure factor of the PPP for reference.
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Example 2.3. A p-thinning of a PPP of intensity ρ results again a PPP of intensity

pρ. This property can be easily verified by computing the void-probabilities (2.1)

of the thinned point process.

2.6.2 Matching

This section focuses on the operation of matching for point processes. We start by

a matching of a point process with the grid Zd.

Example 2.4 (Matching a point process with Zd). This matching was designed by

Klatt, Last, and Yogeshwaran (2020) to generate a particular type of point pro-

cesses exhibiting sub-Poisson number variance known as a hyperuniform point

process; see Chapter 3. Loosely speaking, each point of Zd is matched with a

close-by point of a user-defined point process X in Rd, like a PPP. The matched

points from X form a new point process Xchild. When X is a PPP, we denote

Xchild by the matching algorithm of Klatt, Last, and Yogeshwaran (2020) (KLY).

The KLY is an example of a point process that is known to be stationary but not

isotropic. However, the corresponding pair correlation function and structure

factor are unknown. Figure 2.1a shows a sample from the KLY generated by

matching a subset of Z2 with a realization of a PPP of intensity ρ = 11. The

intensity of the resulting point process is equal to 1. Figure 2.1a strongly sug-

gests that the KLY is a regular point process. Finally, note that the Python toolbox

structure factor provides a method for sampling from the KLY; see Section 3.4.

Additionally, it’s worth mentioning that Klatt et al. (2020) have supplied a corre-

sponding code written in R.

The last example of this section is a matching of a point process with the Lebesgue

measure known as gravitational allocation (or transportation by gradient flow). This

matching will inspire the construction of a new point process in Chapter 4.

Example 2.5 (Matching a point process with the Lebesgue measure). A gravita-

tional allocation is a fair matching between a point process X and the Lebesgue

measure. This matching aims to partition equitably the space -up to a negligible

set- between the points of X via a map called an allocation rule. That is, every

point in X is assigned with a subset of the space called basin, and all basins have

equal Lebesgue measure. The allocation rule is commonly established through a
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Poisson

Figure 2.5: Illustration of the gravitational allocation from Lebesgue to a sample

(black dots) of a PPP of intensity 1/π in a disk. The provided image is purely for

illustrative purposes and no claims are made regarding the existence, in a strict

sense, of a gravitational allocation from the Lebesgue measure to a PPP in

dimension d = 2. Plot obtained using the toolbox MCRPPy.

differential equation that governs the movement of the points of Rd \ X driven

by the Newtonian gravitation potential U (Nazarov et al., 2007)

∂

∂t
Yx(t) = −∇U(Yx(t)), (2.19)

or force F (Chatterjee et al., 2010)

∂

∂t
Yx(t) = F(Yx(t)). (2.20)

The solution Yx(t) of the corresponding differential equation with starting point

x ∈ Rd \ X , i.e. Yx(0) = x, is called the gravitational flow curve of x. Roughly, for

almost any x ∈ Rd \ X , the gravitational flow curve of x collects the trajectory of

x as it moves towards a point z of X , where it terminates (limt→∞ Yx(t) = z). In

this case, i.e., when Yx(t) terminates at z ∈ X , with Yx(0) = x, we say that x is

allocated to z. The points of Rd \ X that are not allocated to any points of X form

the boundaries of the basins.
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Figure 2.5 illustrates a gravitation allocation10 from the Lebesgue measure to a

PPP in the disk. The simulation procedure is detailed in Appendix B. The re-

gion underlying the curves sharing the same color illustrates a basin, that is the

points of the space allocated to the point of the PPP that belongs to that particular

colored region; see also Figure B.1 and Section 4.3.5.

2.7 Numerical integration using point processes

Numerical integration is the task of approximating function integrals. Given an

integrable function f supported on a compact set K ⊂ Rd, the goal is to approxi-

mate the integral of f

I( f ) ≜
∫

K
f (x)dx. (2.21)

The problem of finding good algorithms for approximating I( f ) has been exten-

sively explored, resulting in wealth types of algorithms. Our focus is on linear

non-adaptive estimators of the form

ÎXN( f ) = ∑
x∈XN

wi f (x), (2.22)

where XN = {xi}N
i=1 is a random non-adaptive11 configuration of points belong-

ing to W ⊇ K, typically W = K, and {wi}N
i=1 are some weights, typically fixed.

We call an estimator of the form (2.22) a Monte Carlo method and we use the root

mean square error (RMSE)

E

[(
I( f )− ÎXN( f )

)2
]1/2

(2.23)

to measure the error of ÎXN( f ). The complexity of ÎXN( f ) is quantified by its

convergence rate i.e., the convergence rate of the error RMSE (2.23) to zero as N

increases, and the time needed to compute ÎXN( f ) on machines.

10The provided image serves a purely illustrative purpose, and no assertions are made regard-

ing the existence of a gravitational allocation from the Lebesgue measure to a PPP in dimension

d = 2.
11An adaptive method uses a priori and/or a posteriori information obtained during the calcu-

lation. In this framework, non-adaptive means that for any i, the choice of the point xi doesn’t

depend on the values of f (x1), . . . , f (xi−1).
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In this section, we explore how point processes find practical use in numerical

integration. In Section 2.7.1, we outline how we can build an unbiased Monte

Carlo method using a point process. Finally, Section 2.7.2 provides an overview

of some Monte Carlo methods. While the landscape of Monte Carlo methods

is extensive, our focus here is to highlight the standard and relevant methods

within the scope of our study and demonstrate the advantages of regular point

processes in this context.

2.7.1 Monte Carlo methods and point processes

Recall that from the definition of the first intensity (2.2) of a point process X , we

have for any integrable function f of compact support K

∫

Rd
f (x)ρ(x)dx = E

[
∑

x∈X
f (x)

]
,

where ρ is the intensity function of X . Hence, for any compact W such that K ⊆ W

ÎX∩W( f ) = ∑
x∈X∩W

f (x)
ρ(x)

(2.24)

is a natural unbiased Monte Carlo estimator of I( f ) and its RMSE (2.23) reduces

to the standard deviation

Var
[

ÎX∩W( f )
]1/2

.

A common choice for W is the smallest ball or box window that encompasses K.

We stress that the number of evaluation points of ÎX∩W is a random variable and

its expected value is equal to E[X (W)] =
∫

W ρ(x)dx.

Example 2.6. For P a PPP of intensity ρ > 0, we have

Var
[

ÎP∩W( f )
]
= ρ−1

∫

K
f 2(x)dx. (2.25)

2.7.2 A few Monte Carlo methods

We highlighted in Section 2.7.1 how a point process offers a natural Monte Carlo

method (2.24). In this section, we review some unbiased Monte Carlo methods

and discuss the corresponding convergence rates.
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(a) BPP (b) SSS

(c) MOP
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Figure 2.6: A sample of 1000 points from the BPP in (a), SSS in (b), and MOP in

(c) observed in the cube [−1, 1]2. Figure (d) displays the weighted sample

corresponding to the MOP observed in (a). Each disk in Figure (d) is centered at

a point x of the MOP, and the area of the disk is proportional to the weight

1/KN(x, x) corresponding to x. The marginal plots on each axis in Figure (d)

depict the marginal histograms of the weighted sample, with a green and a red

curve indicating the density of the marginal Jacobi measures which we have set

the Lebesgue measure on [−1, 1]d. The plots (c) and (d) are obtained using the

toolbox DPPy (Gautier et al., 2019c)

Let f be a continuous function supported on K = [−1/2, 1/2]d. The crude (or

simple) Monte Carlo employs a binomial point process (BPP) BN (Figure 2.6a)

supported on K, to estimate I( f ) (2.21) as follows

ÎMC( f ) =
1
N ∑

x∈BN

f (x). (2.26)

29

https://dppy.readthedocs.io/en/latest/continuous_dpps/multivariate_jacobi_ope.html


2 – Point processes

The number of points used is fixed to N. ÎMC( f ) is an unbiased estimator of I( f )

with a variance equal to N−1Var[ f (u)] where u is a uniformly drawn point of K.

Hence, the convergence rate of ÎMC is N−1/2.

Remark 2.1. As mentioned in Section 2.4, when the number of points of a BPP in-

creases appropriately with the size of the observation window, the BPP converges

to a PPP. Consequently, one can think of estimator ÎMC( f ) as a self-normalized

version of the estimator ÎP∩K( f ) (2.24), where P is a PPP with suitable intensity.

Thereby, the PPP is also associated with the crude Monte Carlo. However, setting

the intensity of P equal to N, we get

Var
[

ÎP∩K( f )
]
= N−1

∫

K
f 2(x)dx,

which is larger than the variance of ÎMC( f )

Var
[

ÎMC( f )
]
= N−1

(∫

K
f 2(x)dx −

(∫

K
f (x)dx

)2
)

.

These variances are only equal if the integral of f is zero. Otherwise, fixing the

number of points is preferable to using a random number of points.

Much research has gone into reducing the variance of ÎMC; see e.g. (Owen, 2013)

and references therein. Control variate methods, for instance, rely on incorporat-

ing a function h that is computationally cheap to evaluate and possesses a known

integral. The Monte Carlo control variate estimator is defined as

ÎMCCV( f ) = ÎMC( f )− c( ÎMC(h)− I(h)), (2.27)

where c is a free parameter to be tuned. First, ÎMCCV( f ) is clearly an unbiased esti-

mator of I( f ). Second, the value of c that minimizes the variance of the estimator

is
Cov( f (u), h(u))

Var[h(u)]
,

where u is a uniform random vector on K (Owen, 2013, Section 8.9). For this

specific value of c we have

Var[ ÎMCCV( f )] = Var
[

ÎMC( f )
] (

1 − Corr2 ( f (u), h(u))
)

.

Hence, any function h that correlates with f is helpful to reduce the variance, even

one that correlates negatively. However, the convergence rate remains N−1/2
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as the variance reduction is governed by a factor independent of N. Note that

finding an appropriate h is usually challenging. We opt in Section 4.3.6 for a

polynomial regression of f as our choice for h, and we estimate the coefficient c

by

ĉ = ∑x∈B′ f (x)(h(x)− h̄)
∑x∈B′(h(x)− h̄)2 , (2.28)

where B′ is a BPP on K, which is independent of the point process used to com-

pute ÎMC in (2.27), and h̄ is the mean of h over B′. Under the independence

assumption, using ĉ instead of c does not affect the unbiasedness of ÎMCCV( f )

(Owen, 2013, Example 8.3). Finally, note that the evaluation of ĉ requires extra

integrand evaluations.

On the other hand, Monte Carlo methods that try to improve the rate of con-

vergence of the variance have been proposed, starting with grid-based stratifica-

tion (Owen, 2013, Chapter 10). For a recent example, replacing the BPP of crude

Monte Carlo with some DPPs has been shown to enhance the convergence rate

beyond N−1/2 (Bardenet and Hardy, 2020; Coeurjolly et al., 2021)12. For instance,

the unbiased estimator given in (Bardenet and Hardy, 2020, Section 2.1) and im-

plemented in DPPy (Gautier et al., 2019b) is defined by13

ÎMCDPP( f ) = ∑
x∈DN

f (x/2)
2dKN(x, x)

, (2.29)

where KN is the N-th Christoffel-Darboux kernel associated with the Lebesgue

measure on [−1, 1]d and DN is the multivariate OP Ensemble (MOP) of kernel

KN; see Figure 2.6c. According to Bardenet and Hardy (2020), if f is C1, under

some mild conditions, ÎMCDPP( f ) is an unbiased estimator of I( f ) and its con-

vergence rate is N−1/2−1/(2d), which is faster than the usual N−1/2. One of the

limitations of DPP-based methods lies in the computational complexity associ-

ated with sampling from DPPs. For instance, the computational complexity for

sampling from the MOP is at least cubic in the number of points N (Gautier et al.,

2019a).
12DPPs were previously employed in Monte Carlo integration, tracing back to Ermakov and

Zolotukhin (1960). However, the formal introduction and comprehensive studies of DPPs didn’t

occur until the 1970s with Macchi (1975).
13 ÎMCDPP incorporates additional normalization factors compared to the original estimator de-

fined in (Bardenet and Hardy, 2020, Equation 2.11). This normalization accounts for the variation

in the integration support. While we set K = [−1/2, 1/2]d, the original work used K = [−1, 1]d.
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We conclude with an instance of the randomized quasi-Monte Carlo (RQMC),

which is an attempt at getting both the convenience of variance statements and

the error reduction of stratified deterministic quadrature. The estimator used is

ÎRQMC( f ) =
1
N ∑

x∈SN

f (x), (2.30)

where SN is a randomized low-discrepancy sequence; see Section 5.1. In par-

ticular, each point of SN is uniformly distributed in K, so (2.30) is an unbiased

estimator of I( f ) (Owen, 2013, Chapter 17). Under strong regularity assumptions

on f (at least all mixed partial derivatives of f of order less than d should be con-

tinuous on K), the convergence rate of (2.30) is log(N)(d−1)/2N−3/2 (Owen, 2008).

Despite the d-dependence of the rate and the strong smoothness assumptions,

ÎRQMC is remarkably efficient in small-to-moderate dimensions, and sampling is

computationally cheap compared to, e.g., DPPs. A commun choice of SN is a

scrambled Sobol sequence (SSS)14 (Sobol, 1967); see Figure 2.6b.

Remark 2.2. The SSS observed in Figure 2.6b visually conveys a more regular

arrangement of points compared to the BPP displayed in Figure 2.6a. This ob-

servation motivates favoring regular point processes as nodes in a Monte Carlo

method. Although the MOP depicted in Figure 2.6c may not appear significantly

more regular than the BPP, it is important to note that the MOP is not station-

ary. However, the weights in the estimator (2.29) take into account the non-

stationarity inherent in the MOP. This appears when examining the weighted

MOP depicted in Figure 2.6d, where the relatively more isolated points are as-

signed greater weight, as indicated by their larger blue disks.

14The Python package scipy provide the method Sobol to sample from the SSS (Virtanen et al.,

2020).
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Condensed matter physicists have observed that some random particle systems

exhibit small density fluctuations, that is, the variance of the number of points in

a large window scales slower than the volume of that window, a phenomenon

called hyperuniformity (Torquato, 2018). This statistical property, in turn, implies

desirable physical properties for materials (Torquato, 2018, Section 14). Outside

physics, hyperuniform point processes (HUPPs) have generated a broad interest

in statistics, machine learning, and probability. In the context of our search for

an efficient configuration of nodes for a Monte Carlo estimator of integrals, our

focus lies on HUPPs as they inherently lead to a fast-decaying Monte Carlo er-

ror when estimating volumes. Hyperunifomity also appears in probability across

many fields. The Ginibre ensemble (GPP), arguably one of the most famous deter-

minantal point processes (DPPs) arising from random matrix theory, is a typical

example of a HUPP. In stochastic geometry, and beyond DPPs, HUPPs appear
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e.g., in the zeros of Gaussian analytic functions (Hough et al., 2009), and match-

ing constructions (Klatt et al., 2020). Intriguingly, there is also empirical evidence

that repeatedly applying an algorithm involving local repulsion of points to an

initial point process results a HUPP (Klatt et al., 2019).

Nevertheless, it is important to note that hyperuniformity is not a standard prop-

erty. The Poisson point process, for instance, is clearly not HUPP as the variance

of the number of points in a window scales like the volume of the window. Con-

sequently, HUPPs are occasionally denoted as sub-Poisson point processes. In

the same vein, clustering point processes like the modified Thomas point pro-

cess are typically not hyperuniform. Moreover, an independent thinning of a

motion-invariant point process is not hyperuniform. Less evident, short-range

Gibbs point processes are not hyperuniform (Dereudre and Flimmel, 2023).

Although the concept of hyperuniformity seems important across many scientific

fields, the theoretical understanding of such systems is still limited, and proving

that a point process is hyperuniform is in general a hard task. In theory, under

mild assumptions, a point process in Rd is hyperuniform if and only if its struc-

ture factor is equal to zero at the origin (Coste, 2021).

This chapter focuses on detecting the hyperuniformity of a stationary point pro-

cess by estimating its structure factor. We investigate the mathematical foun-

dations that underlie common practices used in the literature for estimating the

structure factor and testing the hyperuniformity. The primary goal is to provide

statistical tools to detect HUPPs. The investigation described in this chapter was

carried out in our paper (Hawat et al., 2023b), accompanied by the Python toolbox

structure factor1. Section 3.1 provides the needed theoretical background about

HUPPs and a discussion about the usage of a HUPP in a Monte Carlo method. In

Section 3.2, we rederive two families of estimators of the structure factor. The first

family assumes stationarity of the underlying point process, while the second

family additionally assumes isotropy. We mainly focus on studying the bias of

the estimators near the origin. We showcase these estimators and compare them

using the toolbox structure factor. In Section 3.3 we review existing hyperunifor-

mity diagnostics and contribute a test of hyperuniformity based on the debiasing

techniques introduced by Rhee and Glynn (2015). Additionally, we demonstrate

1https://github.com/For-a-few-DPPs-more/structure-factor
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the hyperuniformity diagnostics, the newly proposed statistical test, and the es-

timation of the hyperuniformity class using the toolbox structure factor showing

their performances and limitations. Section 3.4 presents a brief introduction to

the Python toolbox structure factor. We conclude this chapter with a few research

leads in Section 3.5.

3.1 Hyperuniformity

Now, we introduce the theoretical groundwork for hyperuniformity. For more

details, we refer to (Coste, 2021). In Section 3.1.1, two standard definitions of

hyperuniformity are introduced. The first definition pertains to the number vari-

ance and is widely used in the literature. On the other hand, the second definition

hinges on the structure factor and has been recently employed in the numerical

investigations of hyperuniformity. Section 3.1.2 delves into the classification of

HUPPs. Finally, Section 3.1.3 investigates the convergence rate of Monte Carlo

methods with HUPPs for the class of indicator functions.

3.1.1 Hyperuniformity and the structure factor

A stationary point process X of Rd is said to be a hyperuniform point process

(HUPP) (Torquato and Stillinger, 2003) (or super-homogeneous (Gabrielli et al.,

2002)) if the variance of the number of points that fall in a Euclidean ball scales

slower than the volume of that ball, i.e.

lim
R→∞

Var [X (B(0, R))]
|B(0, R)| = 0. (3.1)

Some comments are in order. Although hyperuniformity a priori depends on the

shape of the window, e.g., a ball in (3.1), mild technical assumptions allow to

show that the definition is robust to the choice of the growing window (Coste,

2021, Section 2). Second, being hyperuniform is not a standard feature of point

processes; a homogeneous Poisson process (PPP) (Section 2.4), for instance, is not

hyperuniform as the ratio in (3.1) is a positive constant. Third, the most general

definition of hyperuniformity goes through the structure factor S (Equation (2.8))
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of a point process; under the mild assumption that g2 − 1 (Equation (2.4)) is a

signed measure, (3.1) is equivalent to

S(0) = 0, (3.2)

see (Coste, 2021, Proposition 2.2), and (Torquato, 2018, Section 5.3.1). This last

definition through the structure factor, is commonly used in practical applica-

tions to detect the hyperuniformity numerically. The numerical study involves

estimating the structure factor and analyzing its behavior near zero to diagnose

whether the given point process is a HUPP. In Section 3.2, we will explore a va-

riety of estimators for the structure factor, which will then be used to construct a

statistical test of hyperuniformity in Section 3.3.2.

Example 3.1. The GPP (Example 2.2) and the KLY (Example 2.4) are HUPPs. The

hyperuniformity of the GPP is evident from its structure factor (2.17), which is

zero at the origin. On the other hand, the structure factor of the KLY is unknown,

and its hyperuniformity was proven using the number variance convergence rate

(3.1); see (Klatt et al., 2020).

Example 3.2. Consider a stationary point process of intensity ρ with well-defined

pair correlation function g in (2.5) and structure factor S. Assuming that g − 1 is

integrable we get

S(0) = 1 + ρ
∫

Rd
g(r)− 1dr.

If g ≥ 1, then S(0) ≥ 1 as well, and the corresponding point process is clearly

not hyperuniform. Therefore, point processes that exhibit attraction at all scales,

such as the TPP (Example 2.1), are not hyperuniform. This also suggests that a

HUPP exhibits repulsion at some scales. With the notations of Chapter 2, we can

think of a HUPP as a regular point process with strong regularity conditions at

large scales.

Example 3.3. Consider a motion-invariant point process X of intensity ρ. Apply a

p-thinning to X with a retaining probability p, as described in Section 2.6.1. The

structure factor of the thinned point process is given by

S(k) = pSparent(k) + 1 − p,

where Sparent is the structure factor of X . Consequently, S(0) ≥ 1 − p > 0.

Hence, applying a p-thinning to a motion-invariant point process will never yield
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a HUPP. Even thinning a HUPP with a large retaining probability p will not pre-

serve the hyperuniformity. This shows the very particular structure of HUPPs,

as removing a few points from a HUPP is sufficient to break its structure. Nev-

ertheless, thinning a HUPP is a way to generate a parametrized non-HUPP with

S(0) controlled by p. In particular, large values of p result S(0) arbitrarily close

to zero, which is very useful for assessing the accuracy of a hyperuniformity test

(Kim and Torquato, 2018; Coste, 2021; Klatt et al., 2022).

3.1.2 Hyperuniformity classes

For a HUPP, when the structure factor undergoes a power decay |S(k)| ∼ c∥k∥α
2

in the neighborhood of zero, the point process can be classified into three cate-

gories depending on how α compares to 1, as summarized in Table 3.1 (Torquato,

2018, Section 5.3.2).

Table 3.1: Classes of hyperuniformity

Class α Var [X (B(0, R))]

I > 1 O(Rd−1)

II = 1 O(Rd−1 log(R))

III ∈ (0, 1) O(Rd−α)

Since the variance cannot grow more slowly than Rd−1 for a spherical window

(Beck, 1987), Class I represents the strongest form of hyperuniformity. It includes,

for instance, the GPP (Example 2.2), with a power decay α = 2, as observed

from its structure factor expression (2.17). Additionally, Klatt et al. (2020) demon-

strated that KLY (Example 2.4) also falls in Class I. Class II includes, for instance,

the Sine process, a central object in random matrix theory (Anderson et al., 2009).

By contrast, systems that fall in Class III present the weakest form of hyperunifor-

mity. Many stationary point processes are believed to be Class III, although few

rigorous proofs exist; one can mention the asymptotic result of (Boursier, 2021)

for the one-dimensional Riesz gaz.

38



3 – Diagnosing hyperuniform point processes

3.1.3 Monte Carlo with a hyperuniform point process

We mentioned earlier that our main interest in HUPPs is that by definition (3.1)

a HUPP yields a Monte Carlo method with a fast convergence rate when esti-

mating volumes. Although this may seem straightforward, it deserves to be ar-

ticulated given the that concept of hyperuniformity involves enlarging the ob-

servation window while the convergence rate of a Monte Carlo method relies on

increasing the number of evaluation points.

Consider a Class I HUPP X ⊂ Rd of intensity ρX . Let f be the function defined

by f (x) = 1K(x), where K is a compact of Rd of which we want to estimate the

volume I( f ) in (2.21) using approximately N evaluations of f . We will use a scaled

version of X
Y ≜ (ρX |W|)1/dN−1/dX , (3.3)

where W is another compact of Rd of known volume |W| such that K ⊂ W. As Y
is a stationary point process of intensity ρY = N/|W|, in particular,

ÎY∩W( f ) ≜
|W|
N ∑

x∈Y∩W
f (x) (3.4)

is an unbiased Monte Carlo estimator of I( f ) with an expected number of evalu-

ation points equal to E[Y(W)] = N. Moreover, as X is a Class I HUPP for any

R > 0 we have

Var

[
∑

x∈X
1B(0,R)(x)

]
= O

(
Rd−1

)
, (3.5)

and under mild technical assumptions on X , (3.5) is also valid for diverse win-

dow shapes; see Coste (2021). We will study the convergence rate of (3.4) for

K = B(0, R) keeping in mind that this can be generalized to other window-

shapes. We have

Var
[

ÎY∩W( f )
]
=

|W|2
N2 Var


 ∑

x∈X
1

B

(
0, N1/d

(|W|ρX )1/d R

)(x)


 (3.6)

Inserting (3.5) in (3.6) we get

Var
[

ÎY∩W( f )
]
= O

(
N−1−1/d

)
. (3.7)

Some comments are in order. First, we stress that the number of evaluation

points here is random and N is its expected value. Second, by Beck (1987) the
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variance in (3.5) cannot grow more slowly than Rd−1; see also (Coste, 2021).

Thus, N−1/2−1/(2d) is the optimal convergence rate that a Monte Carlo method

based on a stationary point process, like (3.4), can achieve for the class of indi-

cator functions. Third, by replacing X with a HUPP of Class II and employ-

ing the same methodology as before, the convergence rate of ÎY∩W( f ) becomes

N−1/2−1/(2d) log(N)1/2. Similarly for a Class III with a power decay α ∈ (0, 1),

the convergence rate becomes N−1/2−α/(2d). Now it comes to light that a Monte

Carlo method with any HUPP outperforms the N−1/2 convergence rate of the

crude Monte Carlo. Finally, although it might seem intuitive to anticipate a simi-

lar fast convergence rate for classes of functions beyond indicator functions, this

inference is not straightforward.

3.2 Estimators of the structure factor

Starting from the theoretical definition of the structure factor S (2.8), in Sections

3.2.1 and 3.2.2, we derive all known estimators of S and add a few other natural

candidates based on numerical quadratures of the symmetric Fourier transform.

We pay particular attention to the sources of asymptotic (in the size of the obser-

vation window) bias for each estimator. The estimators are categorized based on

whether they assume stationarity or both stationarity and isotropy of the point

process. Then, Section 3.2.3 demonstrates the estimators using the Python tool-

box structure factor, while Section 3.2.4 provides a more quantitative comparison

of their costs and accuracies.

The closest work to Sections 3.2.1 and 3.2.2 is the paper by Rajala, Olhede, and

Murrell (2020). They introduce new estimators of the structure factor based on the

idea of tapering in time series analysis (Percival and Walden, 2020), and investi-

gate central limit theorems for their estimators. On our end, we limit ourselves to

a survey – including the estimators of Rajala et al. (2020) – and simpler properties

like asymptotic unbiasedness and its relation to implicit implementation choices

in statistical physics papers. One reason for this is our motivation for the study

of hyperuniformity: HUPPs are unlikely to satisfy the assumptions2 behind the

2E.g., Hypothesis (H4) of Biscio and Waagepetersen (2019), when the linear statistic is the

number of points, contradicts hyperuniformity.
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central limit theorems referenced by Rajala et al. (2020). Moreover, our survey in-

cludes a broader choice of estimators, including numerical quadratures of Hankel

transforms. Overall, Sections 3.2.1, 3.2.2 and the paper of Rajala et al. (2020) may

be complementary 3.

3.2.1 Estimators assuming stationarity

The most common estimator of the structure factor is the so-called scattering in-

tensity (Torquato, 2018; Klatt et al., 2019, 2020; Coste, 2021). Its name stems from

its origins in the physics of diffraction, and it corresponds to a scaled version

of Bartlett’s periodogram in time series analysis. After introducing the scatter-

ing intensity, we follow Rajala et al. (2020), who generalize it to so-called tapered

estimators. We group our assumptions and notations in Assumption A1.

Assumption A1. X is a stationary simple point process of Rd with intensity ρ > 0. Its

pair correlation function g exists, and r 7→ g(r)− 1 is integrable on Rd. Moreover, we

only observe a realization of

X ∩ W = {x1, . . . , xN}

in a centered, rectangular window W =
d

∏
j=1

[−Lj/2, Lj/2] of volume |W|. We write

L = (L1, . . . , Ld).

The scattering intensity

In the physics literature, the following derivation is often assumed to be known

to the reader, and it seemed worthwhile to us to make it explicit. This allows,

in particular, to understand the role played by the so-called allowed wavevectors.

Note that Rajala et al. (2020) provide a similar derivation.

The basic idea is to introduce the scaled intersection volume α0

α0(r, W) =
1

|W|
∫

Rd
1W(r + y)1W(y)dy, (3.8)

3We note that during the reviewing process of our paper (Hawat et al., 2023b), which forms

the basis of this chapter, another version of the preprint (Rajala et al., 2020) has been published

(Rajala et al., 2023). The changes in the new version do not seem to impact the research we present

in this chapter.
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in the definition (2.8) of the structure factor. We obtain

S(k) = 1 + ρ
∫

Rd
(g(r)− 1)e−i⟨k,r⟩ dr

= 1 + ρ
∫

Rd
lim

W↑Rd
(g(r)− 1)α0(r, W)e−i⟨k,r⟩ dr

= 1 + lim
W↑Rd

ρ
∫

Rd
(g(r)− 1)α0(r, W)e−i⟨k,r⟩ dr, (3.9)

where we used dominated convergence and the limit limW↑Rd α0(r, W) = 1. In

the notation W ↑ Rd, the limit is taken so that the window progressively covers

the whole space at roughly equal speed in all directions, i.e., minj Lj → ∞ in

Assumption A1. Splitting the integral in (3.9), we shall recognize an expectation

under our censored point process X ∩ W and a bias term,

S(k)− 1 = lim
W↑Rd

[
ρ

|W|
∫

Rd

∫

Rd
e−i⟨k,r⟩1W×W(r + y, y)︸ ︷︷ ︸

f (r+y,y)

g(r)dydr − ρF (α0)(k, W)︸ ︷︷ ︸
=ϵ0(k,L)

]
.

Now, by definition (2.4) of the pair correlation measure, and still for any k ∈ Rd,

S(k)− 1 is the limit as W ↑ Rd of

ρ

ρ2|W|E
[

x ̸=y

∑
x,y∈X

1W(x)1W(y)e−i⟨k,x−y⟩
]
− ϵ0(k, L),

so that

S(k) = lim
W↑Rd

1
ρ|W|E

[
∑

x,y∈X∩W
e−i⟨k,x−y⟩

]
− ϵ0(k, L)

= lim
W↑Rd

1
ρ|W|E



∣∣∣∣∣ ∑
x∈X∩W

e−i⟨k,x⟩
∣∣∣∣∣

2

− ϵ0(k, L). (3.10)

Note that, by (A.7), the bias term satisfies

|ϵ0(k, L)| = ρ

( d

∏
j=1

sin(k jLj/2)√
Ljk j/2

)2

≤





0 if k ∈ AL,

ρ
d

∏
j=1

Lj as ∥k∥2 → 0,

22d
d

∏
j=1

1
Ljk2

j
as ∥k∥2 → ∞,

where we defined

AL =
{

k ∈ (R∗)d such that k j =
2πn
Lj

for some j ∈ {1, . . . , d} and some n ∈ Z∗
}

.

(3.11)

We have thus proved the following proposition.
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Proposition 3.1. Under Assumption A1, for k ∈ AL, the scattering intensity estimator

ŜSI (k) ≜
1

ρ|W|

∣∣∣∣∣
N

∑
j=1

e−i⟨k,xj⟩
∣∣∣∣∣

2

(3.12)

is asymptotically unbiased, i.e.,

sup
k∈AL

∣∣∣E[ŜSI(k)]− S(k)
∣∣∣ −−−→

W↑Rd
0.

This motivates restricting to k ∈ AL if one is interested in estimating the behavior

of S in zero. In the literature, the scattering intensity is actually often evaluated

on a subset of AL, namely

Ares
L =

{(
2πn1

L1
, . . . ,

2πnd
Ld

)
; n ∈ (Z∗)d

}
. (3.13)

The set Ares
L is called the set of allowed wavevectors in physics (Klatt et al., 2020,

Section 10), or part of the dual lattice of fundamental cell W in sampling theory

(Osgood, 2014, Chapter 5), or Fourier grid in time series analysis (Rajala et al.,

2020). We add the superscript res to underline that it is actually a restriction of

the set AL of wavevectors justified by the cancellation of the asymptotic bias.

It is unclear to us why one should consider Ares
L instead of AL. In particular, the

minimal wavenumber (norm of a wavevector) in Ares
L is

kres
min = 2π

√√√√
d

∑
j=1

L−2
j ,

while working with AL in (3.11) relaxes this threshold to a kmin satisfying

2π

maxjLj
< kmin < kres

min.

To see how far we can hope going down in k > 0, we give evidence in Remark 3.1

as to why the scattering intensity should never be evaluated for ∥k∥2 ≤ π√
d maxj Lj

.

Finally, when ρ is unknown, and X is further assumed to be ergodic, it is common

to replace the denominator ρ|W| by N in (3.12), leading to the self-normalized

scattering intensity estimator

ŜSI,s(k) ≜
1
N

∣∣∣∣∣
N

∑
j=1

e−i⟨k,xj⟩
∣∣∣∣∣

2

. (3.14)
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Indeed, by ergodicity,
ŜSI,s

ŜSI

a.s.−−−→
W↑Rd

1.

Many authors define the scattering intensity as its self-normalized version (Torquato,

2018; Klatt et al., 2019; Coste, 2021), but we argue that when ρ is known, it is not

clear whether this estimator has a smaller mean squared error than (3.12); see also

Remark 4.1 about self-normalized estimators.

For readers interested in the second-order properties of this estimator, its second

moment for a PPP input is derived in Section 3.3.2.

Remark 3.1 (A lower bound for kmin). It is clear that when W is fixed, the scattering

intensity (3.14) is not relevant when k is too close to 0, since for a fixed sample

XN = {x1, . . . , xN},

lim
k→0

ŜSI,s(k) = N.

The theoretical convergence to 0 for HUPPs is dictated by the compensation oc-

curring between exponential terms e−i⟨k,xj⟩ on large portions of the space. One

can safely infer that if a large portion of the terms gives a positive contribution,

then the compensation does not occur and the global result will not be accurate.

Still with the notation in Assumption A1, if ∥k∥2 < π√
d maxj Lj

, then for x ∈ W,

|⟨x, k⟩| ≤ π/2, so that there exists ϵ > 0 such that

1
N

∣∣∣∣∣
N

∑
j=1

e−i⟨k,xj⟩
∣∣∣∣∣

2

≥ (Nϵ)2

N
.

Thus for any ∥k∥2 < π√
d maxj Lj

, we have a lower bound of ŜSI,s(k) that is inde-

pendent of the point process, and which diverges as the number of points goes to

infinity. Consequently, we argue that π/
√

d maxj Lj is a lower bound for accessi-

ble wavenumbers, which one might improve with a finer study of the estimator

bias.

Tapered variants of the scattering intensity

The derivation of the scattering intensity can be generalized to the tapered estima-

tor

ŜT(t, k) ≜
1
ρ

∣∣∣∣∣
N

∑
j=1

t(xj, W)e−i⟨k,xj⟩
∣∣∣∣∣

2

, k ∈ Rd, (3.15)
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3 – Diagnosing hyperuniform point processes

where t(·, W) is a uniformly (in W) square-integrable function supported on the

observation window W, called a taper. The tapered estimator (3.15) corresponds

to a scaled version of what is called a tapered periodogram in the signal process-

ing literature (Rajala et al., 2020, Section 3); see also (Daley and Vere-Jones, 2003).

The vocabulary is adapted from the spectral analysis of time series, where tapers

are now well established (Percival and Walden, 2020).

In particular, one recovers the scattering intensity (3.12) from the tapered formu-

lation (3.15) by plugging the taper

t0(x, W) ≜
1√
|W|

1W(x). (3.16)

To follow the derivation of (3.10), we further let

αt(r, W) ≜
∫

Rd
t(r + y, W)t(y, W)dy, (3.17)

and require that

lim
W↑Rd

αt(r, W) = 1 and αt(0, W) = 1, (3.18)

where the limit is again taken as minj Lj → ∞ under Assumption A1. Note first

that our requirement that (3.18) holds differs from the treatment of Rajala et al.

(2020). We find (3.18) to be a more natural generalization of the scattering inten-

sity arguments of Torquato (2018). Note also that, for simplicity, we denoted αt0

by α0 in Equation (3.8), and we shall stick to this simplified notation.

Now, Cauchy-Schwarz inequality and the uniform integrability of t guarantee

that αt(·, W) is uniformly (in W) bounded, so that by dominated convergence,

S(k) = 1 + ρ lim
W↑Rd

∫

Rd
(g(r)− 1)αt(r, W)e−i⟨k,r⟩ dr.

Following the lines of (3.10), we obtain

S(k) = lim
W↑Rd


E

[
ŜT(t, k)

]
− ρ |F (t)(k, W)|2︸ ︷︷ ︸

ϵt(k,L)


 , (3.19)

where the tapered estimator ŜT is defined in (3.15). To eliminate the asymptotic

bias ϵt(k, L), one can restrict oneself again to a set of allowed wavevectors as we

did in (3.11), i.e. the zeros of ϵt(·, L). For general tapers, however, finding these
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3 – Diagnosing hyperuniform point processes

zeros is not straightforward, and an alternative way to escape the bias is to correct

it, as in

ŜUDT(t, k) ≜
1
ρ

∣∣∣∣∣
N

∑
j=1

t(xj, W)e−i⟨k,xj⟩
∣∣∣∣∣

2

− ρ |F (t)(k, W)|2 . (3.20)

We refer to ŜUDT as the undirectly debiased tapered estimator, which is a scaled ver-

sion of what Rajala et al. (2020) define. The major issue of Estimator (3.20) is that

it may give negative values. To remedy this, Rajala et al. (2020) propose to re-

move the bias inside the summation before taking the squared modulus, namely,

to define the directly debiased tapered estimator

ŜDDT(t, k) ≜
1
ρ

∣∣∣∣∣
N

∑
j=1

t(xj, W)e−i⟨k,xj⟩ − ρF (t)(k, W)

∣∣∣∣∣

2

. (3.21)

A straightforward computation gives that the estimator ŜDDT is also asymptoti-

cally unbiased. We only need to observe that using Equation (2.11) we get

E

[
N

∑
j=1

t(xj, W)e−i⟨k,xj⟩F (t)(k, W)

]
= E

[
N

∑
j=1

t(xj, W)e−i⟨k,xj⟩F (t)(k, W)

]

= ρ|F (t)(k, W)|2.

Finally, note that these debiasing techniques naturally apply to the special case

of the scattering intensity, and thus offer an alternative to using allowed values

(3.11).

The multitapered estimator

In the spectral analysis of time series, multitapering was first introduced by Thom-

son (1982); see also Percival and Walden (2020) for a modern reference. The idea

is to average a periodogram over many tapers, in the hope to reduce the vari-

ance of the resulting estimator. Rajala et al. (2020) propose to adapt the method

to point processes, and we follow their lines.

For any k ∈ Rd and P ∈ N∗, and under Assumption A1, Rajala et al. (2020) define

the multitapered estimator ŜMT by

ŜMT((tq)
P
q=1, k) =

1
P

P

∑
q=1

Ŝ(tq, k), (3.22)
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3 – Diagnosing hyperuniform point processes

where the P tapers (tq)
P
q=1 are typically taken to be pairwise orthogonal square-

integrable functions, and Ŝ(tq, ·) is any of the tapered estimators, whether unde-

biased (3.15), undirectly debiased (3.20), or directly debiased (3.21). The directly

and undirectly debiased versions of ŜMT will be respectively denoted by ŜDDMT

and ŜUDMT.

On the choice of tapers

Common taper choices in time series analysis are Slepian tapers, sinusoidal ta-

pers, and minimum bias tapers (Riedel and Sidorenko, 1995). For instance, still

assuming a centered rectangular window W = ∏d
j=1[−Lj/2, Lj/2], the family of

sinusoidal tapers (tq)q≥1 supported on W is defined by

tq(x, W) = t(x, pq, W) ≜
1W(x)√

|W|
d

∏
j=1

√
2 sin

(
πpq

j

Lj

(
xj +

Lj

2

))
, (3.23)

where pq = (pq
1, . . . , pq

d) ∈ (Nd)∗ and x = (x1, . . . , xd) ∈ Rd. The sinusoidal

tapers are pairwise orthogonal, and an easy direct computation shows that they

also satisfy (3.18). Moreover, for k = (k1, . . . , kd) ∈ Rd the Fourier transform

F (tq)(k, W) of tq for any q is

1√
|W|

d

∏
j=1

√
2i(pq

j +1)




sin
((

k j −
πpq

j
Lj

)
Lj
2

)

k j −
πpq

j
Lj

− (−1)pq
j

sin
((

k j +
πpq

j
Lj

)
Lj
2

)

k j +
πpq

j
Lj


 .

This closed-form expression can thus be used in any debiasing scheme. Note

that this analytical tractability, along with the absence of a sensitive parameter

like a lengthscale, lead us to choose the sine taper over, say, a multidimensional

generalization of Slepian tapers (Percival and Walden, 2020; Rajala et al., 2020).

3.2.2 Estimators assuming stationarity and isotropy

For isotropic point processes, a common approach is simply to numerically ro-

tation average the structure factor estimators presented in Section 3.2.1. Alterna-

tively, one could start from the analytical expression (2.9) of the structure factor as

symmetric Fourier transform – a univariate integral – involving the pair correla-

tion function. Then again, two approaches have been identified. First, identifying
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3 – Diagnosing hyperuniform point processes

an expectation under the point process as in Section 3.2.1 leads to a natural esti-

mator originally derived by Bartlett (1964). Second, estimation of the pair corre-

lation followed by numerical quadrature leads to at least two natural estimators,

depending on whether the quadrature is that of Ogata (2005), or that of Baddour

and Chouinard (2015). We review all these estimators in turn. All point processes

in this section satisfy Assumption A2.

Assumption A2. X is a simple stationary isotropic point process of Rd, of intensity ρ.

Its pair correlation function g exists, and r 7→ g(r)− 1 is integrable. Moreover, we only

observe a realization of X ∩ W = {x1, . . . , xN} in the centered ball W = Bd(0, R).

Bartlett’s isotropic estimator

From the observation that the scaled intersection volume α0 (3.8) is a radial func-

tion, α0(r, W) = α0(r, W), and following the lines of Section 3.2.1, dominated

convergence theorem yields

S(k)− 1 =

lim
R→∞

[
ρ
(2π)

d
2

k
d
2−1

∫ ∞

0
α0(r, W) g(r)r

d
2 Jd/2−1(kr)dr − ρFs(α0)(k, W)︸ ︷︷ ︸

≜ϵ1(k,R)

]
. (3.24)

Now, precisely because α0 is radial, we have

α0(r, W) =
1

ωd−1

∫

S(0,1)
α0(ru, W)du, (3.25)

where du is the (d − 1)-dimensional Hausdorff measure and S(0, 1) is the unit

sphere of Rd, with surface area ωd−1. Plugging (3.25) into (3.24) yields

S(k)− 1 =

lim
R→∞

ρ(2π)
d
2 k1− d

2

|W|ωd−1

∫ ∞

0

∫

S(0,1)

∫

Rd
r

d
2 Jd/2−1(kr)g(r)1W×W(ru + y, y) dydudr − ϵ1(k, R) =

lim
R→∞

ρ(2π)
d
2

|W|ωd−1

∫ ∞

0

∫

S(0,1)

∫

Rd

Jd/2−1(kr)
(kr)d/2−1 g(r)1W×W(ru + y, y) dydu rd−1dr − ϵ1(k, R) =

lim
R→∞

ρ(2π)
d
2

|W|ωd−1

∫

Rd

∫

Rd
1W×W(r + y, y)

Jd/2−1(k∥r∥2)

(k∥r∥2)
d
2−1

g(∥r∥2) dydr − ϵ1(k, R).

We now recognize an expectation using (2.4), so that S(k)− 1 rewrites as

lim
R→∞

(2π)
d
2

ρ|W|ωd−1
E

[
x ̸=y

∑
x,y∈X∩W

Jd/2−1(k∥x − y∥2)

(k∥x − y∥2)d/2−1

]
− ϵ1(k, R). (3.26)
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We thus define a new estimator

ŜBI(k) = 1 +
(2π)

d
2

ρ|W|ωd−1

N

∑
i,j=1
i ̸=j

Jd/2−1(k∥xi − xj∥2)

(k∥xi − xj∥2)d/2−1 , (3.27)

along with its self-normalized version

ŜBI,s(k) = 1 +
(2π)

d
2

Nωd−1

N

∑
i,j=1
i ̸=j

Jd/2−1(k∥xi − xj∥2)

(k∥xi − xj∥2)d/2−1 , (3.28)

as in the case of the self-normalized scattering intensity (3.14). When d = 2, ŜBI,s

corresponds to Bartlett’s isotropic estimator (Bartlett, 1964).

Here also, there are two sources of bias in the estimator (3.27). The first one is due

to the restriction of the point process to a bounded observation window, which

shall disappear as the window grows. The second source of bias ϵ1(k, R) is again

related to the Fourier transform of the scaled intersection volume α0(·, W). Diggle

et al. (1987) observed that |ϵ1(k, R)| is larger when k > 0 is small, and proposed to

artificially set the value of the estimator to some constant when k is smaller than

a certain threshold (Diggle et al., 1987, Equation 3.4). Obviously, this correction is

inadequate to study hyperuniformity, i.e., the behavior of S near zero.

An alternative to the clipping procedure is to proceed as done for the scatter-

ing intensity (3.12) and estimate the structure factor only at a set of allowed

wavenumbers, defined as the zeros of ϵ1(·, R). Using (A.6), it comes, for fixed

d,

ϵ1(k, R) = Fs(α0)(k)

= 2dπd/2 Γ(d/2 + 1)
kd J2

d
2
(kR)

=





0 if k ∈ { x
R ; J d

2
(x) = 0},

O(Rd) as k → 0,

O
(

1
kd(Rk)2/3

)
as k → ∞.

The two bounds respectively come from the fact that Jν(x) ∼ 1
Γ(ν+1)(

x
2 )

ν in the

neighborhood of zero, and that for all ν > 0 and x ∈ R, |Jν(x)| ≤ c|x|−1/3 (with

c ≈ 0.8) (Landau, 2000). Thus, for the estimator (3.27), we let the set of allowed

wavenumbers associated with the window W = Bd(0, R) be

AR =
{ x

R
∈ R; Jd/2(x) = 0

}
. (3.29)
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Proposition 3.2. Under Assumption A2, for k ∈ AR, the estimator ŜBI is asymptoti-

cally unbiased, i.e.,

sup
k∈AR

∣∣∣E
[
ŜBI(k)

]
− S(k)

∣∣∣ −−−→
R→∞

0.

Note that one can also define debiased tapered and multitapered versions of

Bartlett’s estimator, as done in Section 3.2.1, but the choice of the taper(s) requires

more attention, as they must be separable and radial.

Using Ogata’s quadrature

Still working under Assumption A2, we can define alternative estimators of the

structure factor (2.9) by first approximating the pair correlation function from a

realization of X , and then approximating the Hankel transform (A.4).

Estimators of the pair correlation function have been thoroughly investigated;

see (Baddeley et al., 2015). In a nutshell, they divide in, on one side, numerical

derivatives of estimates of Ripley’s K function, and on the other side, direct ker-

nel density estimators based on the collection of pairwise distances in the sample.

Both families come with sophisticated edge correction techniques, and, at least for

small sample sizes, it seems reasonable to build on this previous work. Hence-

forth, we assume that an estimator of the pair correlation function is available,

and defer the discussion of which estimator to use to Section 3.2.3.

It remains to perform a numerical quadrature on a Hankel transform. Ogata

(2005) approximates integrals of the form

Iν( f ) =
∫ ∞

0
f (x)Jν(x)dx

as

π
∞

∑
j=1

wν,j f (
π

h
ψ(hξν,j))Jν(

π

h
ψ(hξν,j))ψ

′(hξν,j), (3.30)

with wν,j =
Yν(πξν,j)

Jν+1(πξν,j)
and ψ(t) = t × tanh(π

2 sinh(t)). Yν is the Bessel function of

the second kind of order ν, h is a positive constant called the stepsize, and (ξν,j)j≥1

are the positive zeros of the Bessel function Jν(πx) of the first kind of order ν,

arranged in increasing order. In practice, the infinite sum on the right-hand side
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of (3.30) can be truncated at a small number of function evaluations since the

quadrature nodes approach the zeros of Jν(x), that is π
h ψ(hξν,j) ∼ πξν,j, very fast

as j → ∞.

Ogata’s quadrature applies to the Hankel transform (A.3) of an integrable func-

tion f , since

Hν( f )(k) = Iν

(
x 7→ x

k2 f (x/k)
)

. (3.31)

In particular, it applies to the computation of structure factors since, by (2.9) and

(A.4),

S(k) = 1 + ρFs(g − 1)(k)

= 1 + ρ
(2π)d/2

kd/2−1 Id/2−1

(
x 7→ xd/2

kd/2+1 g(x/k)− 1

)
.

We thus define the Hankel-Ogata estimator of the structure factor as

ŜHO(k) = 1 + ρ
(2π)d/2π

kν

N

∑
j=1

wν,jh̃k

(π

h
ψ(hξν,j)

)
Jν

(π

h
ψ(hξν,j)

)
ψ′(hξν,j), (3.32)

with ν = d/2 − 1, N ∈ N, h̃k(x) = xd/2

kd/2+1 (ĝ(x/k) − 1), and ĝ an estimator of

the pair correlation function. Finally, note that Ogata’s quadrature is also imple-

mented in the Python package hankel of Murray and Poulin (2019).

Remark 3.2 (Relation between kmin and rmax). There exists a hidden inverse pro-

portionality relation in Equation (3.32), between the minimal wavenumber kmin

for which we can hope the estimator to be accurate and the maximal radius rmax

at which the pair correlation function has been estimated. Truncating the infinite

sum after N terms in Equation (3.30) has been informally justified by

ψ(hξd/2−1,N) ≈ hξ d
2−1,N. (3.33)

The maximum radius rmax at which ĝ is available should in turn satisfy

rmax = max
j

{ π

hk
ψ(hξ d

2−1,j); k ∈ R∗
}

. (3.34)

Together, (3.33) and (3.34) entail that

kmin ≈ πξd/2−1,N

rmax
. (3.35)

Thus kmin is not only proportional to 1/rmax but also to the largest considered

zero of the Bessel function Jd/2−1(x).
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Using the quadrature of Baddour and Chouinard

Instead of using the quadrature of Ogata (2005), one can estimate Hankel trans-

forms more directly, similarly to how the discrete Fourier transform is used to

approximate Fourier transforms. Intuitively, assuming that either f or its Han-

kel transform Hν( f ) (A.3) has bounded support allows rewriting it as a Fourier-

Bessel series, with coefficients involving evaluations of either Hν( f ) or f , respec-

tively. Truncating the resulting Fourier-Bessel series yields approximate direct

and inverse Hankel transforms. This discrete Hankel transform (DHT) was de-

rived by Baddour and Chouinard (2015) and originally implemented in Matlab.

Moreover, Guizar-Sicairos and Gutiérrez-Vega (2004) developed a Python pack-

age, pyhank, based on the same idea.

In detail, let N > 0 and f : R+ → R be a continuous function, Baddour and

Chouinard (2015) approximate

Hν( f )(km) ≈
r2

max
ην,N

N−1

∑
j=1

2Jν

(
ην,mην,j

ην,N

)
f (rj)

ην,N J2
ν+1(ην,j)

, (3.36)

where ην,m = πξν,m is the mth positive zero of the Bessel function Jν(x) of the first

kind, 1 ≤ j, m ≤ N − 1 and

rj =
ην,j

ην,N
rmax, km =

ην,m

ην,N
kmax, kmax =

ην,N

rmax
, with rmax > 0. (3.37)

The user thus needs to specify both N and rmax. Intuitively, the choice of rmax is

governed by how far on the positive axis one has been able to evaluate f . Once

rmax is fixed, N decides how large kmax is, that is, how high in frequency one

wishes to estimate the Hankel transform.

To conclude, given an estimator ĝ of the pair correlation function, we define yet

another estimator of the structure factor, called the Hankel-Baddour-Chouinard

estimator,

ŜHBC(km) = 1 + ρ(2π)
d
2

r2
max

ην,N

N−1

∑
j=1

2Jν

(
ην,mην,j

ην,N

)

ην,N J2
d/2(ην,j)kν

m
h̃(rj), (3.38)

where ν = d/2 − 1, h̃(x) = xν(ĝ(x)− 1), and the set of wavenumbers {km}m is

fixed by (3.37). Finally, we can deduce from (3.37) that the minimal wavenum-

ber of ŜHBC (3.38) is k1 = kd/2−1
1 =

ηd/2−1,1
rmax

. Comparing k1 with the minimal
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wavenumber kmin (3.35) of ŜHO (3.32), for the same number of points N and the

same rmax, we observe that k1 < kmin, as k1 is proportional to the first zero of the

Bessel function Jd/2−1(x) while kmin is proportional to the Nth zero of Jd/2−1(x).

For the study of hyperuniformity, this suggests an advantage to using ŜHBC.

3.2.3 Demonstrating the estimators

We now demonstrate the strcuture factor estimators presented in Sections 3.2.1

and 3.2.2. All figures in this section can be reproduced using structure factor, by

following our demonstration notebook 4; see also Section 3.4 for an introduction

to structure factor.

For this demonstration, we used A = 50 samples from the point processes KLY

(Example 2.4), GPP (Example 2.2), PPP (Section 2.4), and TPP (Example 2.1).

Recall that the KLY and the GPP are Class I HUPPs while PPP and TPP are

not HUPPs. The KLY is obtained from matching Z2 with a PPP of intensity

ρ = 11. Moreover, the KLY is of intensity ρKLY = 1, while the GPP is of in-

tensity ρGinibre = 1/π. The used PPP is of intensity ρPoisson = 1/π, and TPP is of

intensity ρThomas = 1/π, with ρparent = 1/(20π) and σ = 2. Our choice of obser-

vation window depends on the intensity and makes sure that we get samples of

around 5800 points. The dimension is always d = 2.

Estimators assuming stationarity

The scattering intensity Figure 3.1 illustrates the scattering intensity estimator

of Section 3.2.1. Columns respectively correspond to the KLY, GPP, PPP, and

TPP. The first row contains a sample of each point process, observed in square

windows. The second row shows the scattering intensity ŜSI in (3.12) on arbi-

trary wavevectors k, while in the third row, the estimators are only evaluated

on a subset of the allowed wavevectors (3.11). The fourth and fifth rows illus-

trate the debiasing techniques, respectively the directly debiased scattering in-

tensity ŜDDT(t0, k) from (3.21), and the undirectly debiased scattering intensity

ŜUDT(t0, k) from (3.20).

4https://github.com/For-a-few-DPPs-more/structure-factor/tree/main/notebooks
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Figure 3.1: Variants of the scattering intensity estimator applied to four point

processes. Plots obtained using the toolbox structure factor.

The clouds of grey points are the approximated structure factors of the samples

observed in the first row of the figure. For isotropic point processes, the structure

factor S is a radial function, so we plot k 7→ Ŝ(k), k ∈ R and not k 7→ Ŝ(k),

k ∈ R2. The KLY is the only non-isotropic example: in that case, we numerically

average Ŝ(k) over vectors satisfying ∥k∥2 = k. To regularize the obtained esti-

mator, we bin the norm of the wavevectors regularly and provide the empirical
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mean (in blue) and the empirical standard deviation of the mean (red bars indi-

cate ±3 such standard deviations). Note that the binning can be specified by the

user in structure factor. On each plot, the exact structure factor is represented by

a green line when it is known. Finally, the dashed black lines are the structure

factor of the PPP, for reference.

While we refer to Section 3.2.4 for a more detailed comparison, one can already

observe from Figure 3.1 that the most accurate estimators are the scattering inten-

sity ŜSI (3.12) evaluated on the set of allowed wavevectors (3.11) and the debiased

scattering intensity ŜDDT(t0, k) (3.21). The bias at small, non-allowed wavenum-

bers of the scattering intensity is visible in the second row. As for the undirectly

debiased variant, it produces a few negative values, visible as large error bars on

our log-log plot.

Using an alternate taper As mentioned in Section 3.2, the scattering intensity

ŜSI is a particular case of the tapered estimator ŜT, with the specific taper t0. We

are free to use other tapers verifying (3.18).

Figure 3.2 shows the estimated structure factors of the same four benchmark

point processes (first row), using ŜT (second row), the corresponding directly de-

biased version ŜDDT (third row), and the undirectly debiased version ŜUDT (last

row). The taper used is the first sinusoidal taper t1(x, W) = t(x, p1, W) with

p1 = (1, 1) in (3.23). The same legend applies as for Figure 3.1.

First, the asymptotic bias of ŜT at small wavenumber k is visible in the second row.

Second, for the KLY (first column), the GPP (second column), and the PPP (third

column) the estimator ŜUDT (last row) returned a few negative values again, re-

sulting in large inaccuracies in our log-log scale. The directly debiased estimator

ŜDDT yields the most accurate approximation of known structure factors, consis-

tently across point processes.

Averaging over multiple tapers The multitapered estimator ŜMT of (3.22) is

now investigated in Figure 3.3, using the first four sinusoidal tapers, i.e., (tq)4
q=1

with tq(x, W) = t(x, pq, W) and pq ∈ {1, 2}2 in (3.23). We also show the results of

the corresponding directly and undirectly debiased versions, ŜDDMT and ŜUDMT.
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Figure 3.2: Tapered estimator and the corresponding debiased versions applied

to four point processes. Plots obtained using the toolbox structure factor.

We again observe the bias of ŜMT at small wavenumbers (second row), and that

the negative values output by ŜUDMT at small wavenumbers (last row) make vi-

sual assessments of hyperuniformity less straightforward. Like with single ta-

pers, the directly debiased estimator ŜDDMT gives a consistently accurate approx-

imation. Compared to Figure 3.2, however, it is not obvious whether multitaper-

ing yields a smaller mean square error than single tapers, and a more quantitative

study will investigate this in Section 3.2.4.

Estimators assuming stationarity and isotropy
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Ŝ

Poisson

mean ± 3 · std

10−1 100 101

Wavenumber (||k||)

10−1

100

101

S
tr

uc
tu

re
fa

ct
or

(S
(k

))

Ŝ
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Figure 3.3: Multitapered estimator and the debiased versions applied to four

point processes. Plots obtained using the toolbox structure factor.

Bartlett’s isotropic estimator Figure 3.4 illustrates Bartlett’s isotropic estimator

of Section 3.2.2. Columns respectively correspond to the KLY, GPP, PPP, and

TPP. The first row contains a sample of each point process observed in a ball

window. The second row shows ŜBI on arbitrary wavenumbers k, while in the

last row, the estimator is only evaluated on a subset of the Bessel-specific allowed

wavenumbers (3.29).

First, we note that, unlike scattering intensity variants, plotting Bartlett’s isotropic

estimator k 7→ ŜBI(k) in (3.27) does not require binning. On the other hand,

Bartlett’s estimator is significantly costlier than its scattering intensity counter-

part; see Section 3.2.4. Now, we comment on the accuracy of the estimator in

Figure 3.4. Here again, small, non-allowed wavenumbers give rise to large biases
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Figure 3.4: Bartlett’s isotropic estimator applied to four point processes. Plots

obtained using the toolbox structure factor.

for ŜBI(k), especially for the two HUPPs KLY and GPP. When applied to allowed

wavenumbers, the estimator shows accuracy across all point processes, similarly

to the directly debiased tapered estimators.

Estimating the pair correlation function The last two estimators of the struc-

ture factor are ŜHO (3.32), and ŜHBC (3.38). These estimators require an approx-

imation of the pair correlation function g (2.5) of the point process. We thus

quickly investigate standard estimators of the pair correlation function on our

benchmark point processes.

There are two types of estimators of g for stationary isotropic point processes

(Baddeley et al., 2015): kernel density estimators applied to pairwise distances

and numerical derivatives of Ripley’s K function. The R library spatstat imple-

ments both, respectively as pcf.ppp, which uses an Epanechnikov kernel and

Stoyan’s rule of thumb for bandwidth selection (Baddeley et al., 2015, Section

7.6.2), and pcf.fv, which computes the derivative of a polynomial estimator of
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Figure 3.5: Approximated pair correlation function applied to four point

processes. Plots obtained using the toolbox structure factor.

Ripley’s K function. The kernel density estimator behaves badly for small values

of r: for many point processes, its variance becomes infinite when r goes to 0. The

derivative estimator, pcf.fv, is recommended for large datasets, where direct es-

timation of the pair correlation function can be time-consuming (Baddeley et al.,

2015, Section 7.6.2). Figure 3.5 shows the two estimators of the pair correlation

function of the benchmark point processes. Note that we provide an indepen-

dent, open-source Python interface5 to the R library spatstat. The second row

shows the estimation of the pair correlation function using pcf.ppp. This method

provides a choice of boundary corrections, like "trans", "iso", or none ("un").

For more details see Baddeley et al. (2015, Sections 7.4.4 and 7.4.5). The last row

of Figure 3.5 shows the estimation of the pair correlation function using pcf.fv.

We observe that, for the cardinalities considered here, the choice of edge correc-

tion method is irrelevant, as long as there is one. As expected, the uncorrected

version "un" underestimates the pcf as r increases. This results from counting

5At https://github.com/For-a-few-DPPs-more/spatstat-interface and on PyPI.
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only the pairs of points that fall inside the observation window, without correct-

ing border effects. We also observe that the two methods for estimating the pair

correlation function perform similarly, and we pick pcf.fv for the rest of this

section. We manually remove undefined values (NaN, -Inf, or Inf), and we in-

terpolate the obtained discrete approximation of g, in order to evaluate it at any

point required by the quadratures of Section 3.2.2. Finally, note that the maxi-

mum radius rmax at which spatstat provides an approximation of g is limited

by the size of the observation window. Typically, it should be less than half the

window diameter for a ball window, and less than 1/4 of the smaller side length

of the window for a rectangular window; see the documentation of spatstat.

For larger values than the rmax provided by spatstat, we manually set g to be

identically 1, which has the effect of automatically truncating quadratures that

evaluate g − 1, like Ogata’s quadrature (3.32).
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Figure 3.6: Structure factor estimation using Hankel transform quadratures

applied to four point processes. Plots obtained using the toolbox

structure factor.
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Hankel transform quadratures Figure 3.6 shows the results of Ogata’s ŜHO

(second row) and Baddour-Chouinard’s ŜHBC (last row) estimators on the bench-

mark point processes KLY, GPP, PPP and TPP. The legend is the same as for

Figure 3.1. For the accuracy of the estimators, we can see that ŜHO failed to ap-

proximate the structure factor of the KLY. Even the results of ŜHBC seem to be

unreliable. The non-isotropy of the KLY may be the reason for the fluctuations

of its approximated pair correlation function in Figure 3.5, leading to the inaccu-

racies of the quadratures. For the remaining point processes, ŜHBC seems to give

more accurate results than ŜHO.

3.2.4 Quantitative comparison of the estimators

We now compare the cost and accuracy of all estimators more quantitatively.

A note on computational costs

For a given wavevector, evaluating any single-tapered estimator requires a sum

of N terms. Multitapering naturally multiplies the cost by the number of tapers,

but it can be trivially parallelized, especially since the number of tapers remains

low in practice (Rajala et al., 2020).

On the other hand, for a sample of N points, Bartlett’s estimator ŜBI is a sum of

O((N2 − N)/2) evaluations of a Bessel function. This makes Bartlett’s estima-

tor significantly costlier than its scattering intensity counterpart. As an example,

for a realization of N = 104 points from a point process in R2, using a modern

laptop, the evaluation of ŜSI at a single wavevector took about one millisecond,

compared to 2 seconds for ŜBI. Note however that for a similar accuracy on an

isotropic point process, ŜBI needs to be evaluated at fewer wavevectors than, say,

the scattering intensity. Indeed, a single value of the former should be compared

to a binwise average of the latter.

Now, for Hankel quadrature estimators, the main bottleneck is the approximation

of the pair correlation function. A kernel density estimator based on N points

is again a quadratic computation. In our experience, combining the estimator
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pcf.fv, based on numerically differentiating an estimated Ripley’s K function,

and a Hankel quadrature to build ŜHO and ŜHBC is the least expensive pipeline.

Measuring the accuracy of the estimators near zero

To confirm the intuitions gained from Sections 3.2.3, in particular, that the mul-

titapered variant of the scattering intensity and Bartlett’s estimator dominate the

others when it comes to visual diagnostics of hyperuniformity, we now compare

the mean square error of the different estimators of the structure factor, integrated

near 0.

For a subdivision [k1, k2) ∪ · · · ∪ [k J−1, k J) of some interval [k1, k J), the integrated

MSE reads

iMSE(Ŝ) =
∫ k J

k1

MSE(Ŝ)(k)dk

=
∫ k J

k1

E

[(
Ŝ(k)− S(k)

)2
]

dk

= E

[∫ k J

k1

(
Ŝ(k)− S(k)

)2
dk
]

.

A crude numerical integration using the trapezoidal rule gives,

iMSE(Ŝ) ≈ E

[
J−1

∑
j=1

1
2
(k j+1 − k j)

[(
Ŝ(k j+1)− S(k j+1)

)2
+
(

Ŝ(k j)− S(k j)
)2
]]

,

(3.39)

The expectation in (3.39) is under the investigated point process. Assuming it is

easy to sample from the point process, we can estimate the iMSE in (3.39) by an

empirical average îMSE over point process samples. Similarly, the difference of

the iMSEs of two different estimators of S can be approximated by an empirical

average of differences of îMSEs. This yields a natural (paired) Student test to

assess whether the difference of the iMSEs of two different estimators of S is 0.

Comparing variants of the scattering intensity

In Section 3.2.3, we derived the intuition that ŜSI on its allowed values, ŜDDT(t0, k),

ŜDDT(t1, k), and ŜDDMT((tq)4
q=1, k) gave the most accurate approximations among

the estimators of Section 3.2. We further expect ŜDDMT((tq)4
q=1, k) to have the
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smallest integrated MSE among them. To test this, we run three paired, one-sided

Student tests, comparing ŜDDMT((tq)4
q=1, k) to each of the three former estimators.

Specifically, we use 50 independent realizations of approximately 5800 points

each, from the GPP, PPP, and TPP, for which we know the exact structure fac-

tor. The intensity of all processes is ρ = 1/π. The additional parameters of

the TPP are, as fixed before, ρparent = 1/(20π), and σ = 2. We evaluated ŜSI

(3.12) on its allowed wavevectors (3.11), between k1 = 0.1 and k J = 2.8. For the

other estimators, ŜDDT(t0, k), ŜDDT(t1, k) (3.21), and ŜDDMT((tq)4
q=1, k) (3.22), we

used arbitrary wavevectors keeping the same range of the wavenumbers used

for ŜSI. The tapers used are t0 (3.16), and the first 4 tapers (tq)4
q=1 of the family

of sinusoidal tapers (3.23). As we got different approximated values of S for dif-

ferent wavevectors of the same wavenumber, for each wavenumber we set the

estimated structure factor to the sample mean of these values.

Table 3.2: Paired t-tests

Estimators T-score p-value T-score p-value T-score p-value

ŜDDMT, ŜSI −29.53 3 × 10−33 −41.59 3 × 10−40 −9.24 10−12

ŜDDMT, ŜDDT −22.40 10−27 −30.42 8 × 10−34 −6.38 2 × 10−8

ŜDDMT, ŜDDT −12.18 9 × 10−17 −25.39 3 × 10−30 −7.16 10−9

GPP PPP TPP

Table 3.2 summarizes the results of the paired one-sided Student tests. For each

point process, applying a Bonferroni correction 6, we can simultaneously reject

at the level 0.01 the three hypotheses that there is no difference in mean between

the estimated iMSEs. This confirms our intuition that ŜDDMT yields the smallest

iMSE among the considered variants of the scattering intensity. In particular,

multitapering helps.

For information, the estimated iMSEs are given in Table 3.3, in the form of a con-

fidence interval (CI) of the îMSEs plus or minus 3 empirical standard deviations

6When conducting statistical hypothesis testing with multiple hypotheses, the probability of

encountering an unusual event becomes higher increasing the risk of erroneously rejecting a null

hypothesis. To mitigate this issue, Bonferroni (1936) proposed testing each hypothesis individu-

ally at a significance level of α divided by the number of hypotheses being tested, instead of the

usual α.
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of the mean. There is roughly a factor 4 between the îMSE of the directly de-

biased multitapered estimator and each of the other three, which confirms its

domination. For reference, we have also indicated the contribution of the sample

integrated variance îVar to each îMSE. Clearly, the variance is the biggest con-

tributor, and the squared bias is at least one order of magnitude smaller, for all

point processes.

Finally, Figure 3.7 shows the pointwise average of each estimator, across the 50

point process realizations. A reduction of bias at small k for ŜDDT(t1, k) and

ŜDDMT((tq)4
q=1, k) is visible for the GPP.

Table 3.3: Sample integrated variance and MSE

Estimators îVar CI[îMSE] îVar CI[îMSE] îVar CI[îMSE]

ŜSI(2πn/L) 0.32 0.32 ± 0.02 1.31 1.34 ± 0.06 69.51 70.71 ± 17.95

ŜDDT(t0) 0.32 0.33 ± 0.03 1.44 1.47 ± 0.1 72.15 73.63 ± 26.12

ŜDDT(t1) 0.34 0.35 ± 0.06 1.47 1.50 ± 0.14 79.29 80.51 ± 27.20

ŜDDMT((tq)4
1) 0.08 0.08 ± 0.007 0.37 0.38 ± 0.02 17.90 18.19 ± 4.19

GPP PPP TPP

Comparing estimators that assume isotropy

We now run the same comparison on ŜBI (3.27), ŜHO (3.32), and ŜHBC (3.38). For

this study, we have sampled 50 independent realizations of approximately 5800

points each, from the GPP, PPP, and TPP, with the same parameters as in Sec-

tion 3.2.4, except that the observation window for all point processes is now a

2-dimensional ball window centered at the origin. For ŜHO, and ŜHBC we used

the method pcf.fv to approximate the pair correlation function with maximal

approximation radius rmax = 30.

We have noted in Section 3.2.2 that ŜHBC is more robust to non-isotropy than ŜHO

and that ŜBI gave the tightest approximations in this family of estimators.

Table 3.4, summarizes the results of two one-sided paired t-tests per point pro-

cess. For each point process, we can again simultaneously reject at level 0.01 the

hypothesis that there is no difference between the estimates iMSEs. This confirms
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Figure 3.7: Pointwise averages of the variants of the scattering intensity,

numerically rotation-averaged, across 50 independent realizations of the GPP,

PPP, and TPP. Plots obtained using the toolbox structure factor.

Table 3.4: Paired t-tests

Estimators T-score p-value T-score p-value T-score p-value

ŜBI vs. ŜHO −12.24 7 × 10−17 −6.60 10−8 −5.32 10−6

ŜBI vs. ŜHBC −25.51 2 × 10−30 −5.32 10−6 −5.16 2 × 10−6

GPP PPP TPP

the claim that Bartlett’s estimator is the most accurate near 0, among estimators

that assume isotropy. For reference, Table 3.5 gives the same summary statis-

tics as Table 3.3 did for scattering intensity variants. Bartlett’s estimator yields

îMSEs one order of magnitude smaller than both Hankel transform quadratures,

for both GPP and PPP, and a factor three for TPP. Again, the iMSE is mostly

variance.

Finally, Figure 3.8 shows the pointwise average of each estimator, across the

50 point processes realizations. The accuracy of Ogata’s quadrature at small

wavenumbers is poor. The bias of the two Hankel quadrature estimators is well

65

https://github.com/For-a-few-DPPs-more/structure-factor


3 – Diagnosing hyperuniform point processes

Table 3.5: Sample integrated variance and MSE

Ŝ îVar CI[îMSE] îVar CI[îMSE] îVar CI[îMSE]

ŜBI 3.9 × 10−3 4.0 × 10−3 ± 3 × 10−4 0.057 0.058 ± 9 × 10−3 11.25 11.65 ± 4.71

ŜHO 0.37 0.38 ± 0.09 2.12 2.14 ± 0.93 43.63 46.70 ± 18.40

ŜHBC 0.03 0.03 ± 0.01 2.44 2.45 ± 1.33 57.62 63.02 ± 28.62

GPP PPP TPP
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ŜHO(k)
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Figure 3.8: Pointwise averages of the three estimators that assume isotropy,

across 50 independent samples of the GPP, PPP and TPP. Plots obtained using

the toolbox structure factor.

visible at small k for all point processes. This is likely due to poor estimation of

the pair correlation function at large scales.

3.3 Hyperuniformity tests

The standard empirical diagnostic of hyperuniformity involves estimating and

plotting the structure factor of the underlying point process (Torquato, 2018; Klatt

et al., 2020). This graphical assessment is however not standardized and often
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not described in full reproducible detail in the literature, with implementation

choices and statistical properties often part of each field’s folklore.

While presenting a preliminary draft of our paper (Hawat et al., 2023b) during

the workshop “New trends in point process theory” at Karlsruhe in March 2022,

a lively discussion with the participants about the existent hyperuniformity di-

agnostics revealed the need for a standardized statistical test of hyperuniformity.

This further motivates us to contribute a statistical test of hyperuniformity 7.

In Section 3.3.1 we present the empirical diagnostics of hyperuniformity. Then,

in Section 3.3.2 we present our statistical test of hyperuniformity (Hawat et al.,

2023b, Section 4). To enhance standardization and accessibility, we have incorpo-

rated these tools into the toolbox structure factor.

3.3.1 Empirical diagnostics

As mentioned in Section 3.1.1, the behavior in zero of the structure factor S quan-

tifies hyperuniformity. Investigating whether one or several samples come from a

HUPP is thus often carried out by estimating the structure factor, and then either

visually inspecting the resulting plots around zero, or regressing the estimated

values. Say for a motion-invariant point process, one option is to regress log(S)

onto log(k) around zero, to assert a potential value for the decay rate α in Ta-

ble 3.1.

Another criterion of effective hyperuniformity has been proposed (Torquato, 2018,

Section 11.1.6); see also (Klatt et al., 2019, Supplementary material). For a motion-

invariant HUPP, given a set of estimated values

{(k1, Ŝ(k1)), . . . , (kn, Ŝ(kn))}

7We knew from personal communication during the workshop, that by then, Günter Last,

Michael Andreas Klatt, and Norbert Henze were independently working on a hyperuniformity

test, whose preprint (Klatt et al., 2022) came out as we were answering the referees on our

manuscript (Hawat et al., 2023b). While our test was based on multiple realizations of the point

process, interestingly, the test of Klatt et al. (2022), specifically tailored for Class I HUPPs, uses a

single realization.
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with 0 < k1 < · · · < kn, the H-index is defined by

H ≜
Ŝ(0)

Ŝ(kpeak)
, (3.40)

where Ŝ(0) is a linear extrapolation of the structure factor in k = 0 based on the

estimated values of S, and kpeak is the location of the first dominant peak value of

the estimated structure factor, defined here as

kpeak = inf
i

{
ki; Ŝ(ki) > 1, Ŝ(ki−1) < Ŝ(ki), and Ŝ(ki+1) < Ŝ(ki)

}
.

If the set is empty, we set Ŝ(kpeak) = 1 in (3.40). When H < 10−3, the process is

called effectively hyperuniform by Torquato (2018, Section 11.1.6). Note that the lin-

ear extrapolation is chosen for simplicity and not based on model selection (Klatt

et al., 2019, Supplementary materials). Like the threshold of 10−3, the definition

of a dominant peak is also somewhat arbitrary. In Section 3.3.2, we will intro-

duce a statistical test that bypasses some of these arbitrary choices. Note that,

Klatt et al. (2022) also introduced a statistical test of hyperuniformity specifically

tailored for Class I HUPPs that bypasses some of these arbitrary choices.

3.3.2 Statistical test

In this section, we use the debiasing device of Rhee and Glynn (2015) to turn re-

alizations of any of the nonnegative, asymptotically unbiased estimators of the

structure factor S of Section 3.2, into an unbiased estimator of a truncated equiv-

alent to S(0). We then propose an asymptotically valid test of hyperuniformity.

We group our assumptions and notations for this section in Assumption A3.

Assumption A3. X is a stationary point process of Rd with intensity ρ > 0. Its pair

correlation function g exists, and r 7→ g(r)− 1 is integrable on Rd.

The coupled sum estimator

Consider a stationary point process X of Rd, of which we observe the intersection

of a single realization with multiple increasing windows. Formally, we consider

an increasing sequence of sets (X ∩ Wm)m≥1, with Ws ⊂ Wr for all 0 < s < r,
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and W∞ = Rd. For simplicity, we assume that the windows are centered and

either rectangular as in Assumption A1 or spherical as in Assumption A2 if X is

isotropic.

We consider any of the positive, asymptotically unbiased estimators Ŝm of S listed

in Section 3.2, applied to X ∩ Wm. All such estimators are asymptotically unbi-

ased on a set of values Bm, possibly in the sense of Proposition 3.1, and there

exists kmin
m ∈ Bm with kmin

m → 0. The reader can keep in mind the scatter-

ing intensity of Section 3.2.1, with, say, the minimum restricted allowed value

kmin
m = (2π/Lm1 , . . . , 2π/Lmd) ∈ Zd, but the proofs hold more generally.

We define the sequence of random variables

Ym = 1 ∧ Ŝm(kmin
m ), m ≥ 1. (3.41)

We cap the estimators at 1 arbitrarily to make them uniformly bounded. The idea

is to use the sequence (Ym) to test whether S(0) = 0.

Following (Rhee and Glynn, 2015, Section 2), we first define a new sequence

Zm =
m∧M

∑
j=1

Yj − Yj−1

P(M ≥ j)
, m ≥ 1, (3.42)

where M is an N-valued random variable such that P(M ≥ j) > 0 for all j, and

Y0 = 0 by convention. Rhee and Glynn (2015) observed that

E[Zm] = E[Ym] and Zm
a.s.−−−→

m→∞
Z,

where Z is the coupled sum estimator

Z =
M

∑
j=1

Yj − Yj−1

P(M ≥ j)
. (3.43)

Under some conditions, Rhee and Glynn (2015) proved that if Ym → Y in L2, then

Z ∈ L2 is an unbiased estimator of E[Y] with a square root convergence rate.

For our choice of (Ym)m, the assumptions of (Rhee and Glynn, 2015, Theorem 1),

especially the L2 convergence of Ym, may not hold for non-HUPPs. We thus use

weaker assumptions that are still enough to build a hyperuniformity test.

Proposition 3.3. Under Assumption A3, with Z defined in (3.43), assume that M ∈ Lp

for some p ≥ 1. Then Z ∈ Lp and Zm → Z in Lp. Moreover,
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1. If X is hyperuniform, then E[Z] = 0.

2. If X is not hyperuniform and

sup
m

E
[
Ŝ2

m(k
min
m )

]
< ∞, (3.44)

then E[Z] ̸= 0.

Proof. Let M ∈ Lp with p > 0. We first prove that Zm → Z in Lp. As we have

Zm → Z a.s., it is enough to show that Zm is uniformly bounded in Lp. For a

realization M′ of M we have,

|Zm| ≤
m∧M′

∑
j=1

|Yj − Yj−1|
P(M ≥ j)

≤ M′

P(M ≥ M′)
.

By assumption M ∈ Lp so Zm is uniformly bounded in Lp. This proves the first

part of the proposition.

Before proving the additional two points, note that, since S is continuous,

E
[
Ŝm(kmin

m )
]
−−−→
m→∞

S(0). (3.45)

Now, let us prove the first point of the proposition. Assume that M ∈ L1 and X is

hyperuniform, so that S(0) = 0. Since Ŝm is nonnegative, Equation (3.45) yields

Ŝm(kmin
m )

L1
−−−→
m→∞

0.

Moreover, letting f : x 7→ 1 ∧ x, | f (x)| ≤ x on R+, so that

E
[
| f (Ŝm(kmin

m ))|
]
≤ E

[
Ŝm(kmin

m )
]
→ 0,

and

Ym = f
(

Ŝm(kmin
m )

)
L1

−−−→
m→∞

0. (3.46)

Since E[Ym] = E[Zm] and Zm converges in L1 to Z, by unicity of the limit, we

have E[Z] = 0.

It remains to show the last point of the proposition. Assume again that M ∈ L1,

but that X is not hyperuniform, so that S(0) > 0. Reasoning by contradiction,

assume that E[Z] = 0. As E[Ym] = E[Zm] and Zm converges in L1 to Z, we get

E
[
Ŝm(kmin

m )1{Ŝm(kmin
m )<1}

]
−−−→
m→∞

0, (3.47)
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and

E
[
1{Ŝm(kmin

m )≥1}
]
−−−→
m→∞

0. (3.48)

Meanwhile,

E
[
Ŝm(kmin

m )
]
−−−→
m→∞

S(0) > 0.

Using Equation (3.47), we get

E
[
Ŝm(kmin

m )1{Ŝm(kmin
m )≥1}

]
−−−→
m→∞

S(0) > 0. (3.49)

Finally, Cauchy-Schwarz, together with Condition (3.44) and Equation (3.48) yield

E
[
Ŝm(kmin

m )1{Ŝm(kmin
m )≥1}

]
≤ E1/2

[
Ŝ2

m(k
min
m )

]
× E1/2

[
1{Ŝm(kmin

m )≥1}
]

−→ 0,

which contradicts Equation (3.49) and ends the proof.

Assumption (3.44) bears on the estimator that we use for the structure factor and

the point process. We believe it not to be too strong and we prove it for the

scattering intensity of a PPP.

Proof (validity of Assumption (3.44)). We show that Assumption (3.44) is satisfied

for X a PPP of intensity ρ, Ŝ = ŜSI, and Wm are increasing rectangular windows.

Let Nm = |X ∩ Wm|, we have

ρ2|Wm|2E
[
Ŝ2

m(k)
]
=

E



∣∣∣∣∣ ∑
x∈X∩Wm
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∣∣∣∣∣

2



2

=

E


N2

m +

(
x ̸=y

∑
x,y∈X∩Wm

e−i⟨k,x−y⟩
)2

+ 2Nm

x ̸=y

∑
x,y∈X∩Wm

e−i⟨k,x−y⟩


 =

E

[
2N2
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∑
x,y∈X∩Wm
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x ̸=y ̸=z ̸=t

∑
x,y,z,t∈X∩Wm

e−i⟨k,x−y+z−t⟩

+
x ̸=y ̸=z

∑
x,y,z∈X∩Wm

2e−i⟨k,x−y⟩ + e−i⟨k,2x−y−z⟩ + ei⟨k,2x−y−z⟩
]
=

E

[
2N2
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]

.
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Using the definition of the n-th order intensity measure µ(n) (2.3) and that for any

n ≥ 1, the n-th order intensity function ρ(n) of X simplifies to ρn (Section 2.4) we

get

ρ2|Wm|2E
[
Ŝ2

m(k)
]
=

E
[
2N2

m − Nm

]
+
∫

Wm×Wm

(
4e−i⟨k,x−y⟩ + e−i2⟨k,x−y⟩

)
ρ2dxdy

+
∫

Wm×Wm×Wm

(
4e−i⟨k,x−y⟩ + e−i⟨k,2x−y−z⟩ + ei⟨k,2x−y−z⟩

)
ρ3dxdydz

+
∫

Wm×Wm×Wm×Wm
e−i⟨k,x−y+z−t⟩ρ4dxdydzdt.

Now, using the parity of 1Wm and that Nm is a Poisson r.v., we get

E
[
Ŝ2

m(k
min
m )

]
=

1
(ρ|Wm|)2

[
ρ|Wm|+ 2(ρ|Wm|)2 + ρ4F 4(1Wm)(k

min
m )

+ ρ2
(

4F 2(1Wm)(k
min
m ) +F 2(1Wm)(2kmin

m )
)

+ ρ3
(

4|Wm|F 2(1Wm)(k
min
m ) + 2F (1Wm)(2kmin

m )F 2(1Wm)(k
min
m )

)]
.

(3.50)

Upon noting that kmin
m = (2π

L1
, · · · , 2π

Ld
) and

F (1Wm)(k) =
d

∏
j=1

sin(k jLj/2)
k j/2

.

Equation (3.50) simplifies to

E
[
Ŝ2

m(k
min
m )

]
=

1
ρ|Wm|

+ 2.

Thus Assumption (3.44) holds.

A multiscale test

We apply Proposition 3.3 with p = 2, say M is a Poisson random variable with

mean λ > 0. In particular, Var[Z] < ∞, and we can apply the central limit

theorem to build a standard test comparing E[Z] to zero.

Consider A i.i.d. pairs (Xa, Ma)A
a=1 of realizations of (X , M), and let Z1, . . . , ZA

be the A corresponding i.i.d. copies of Z. Now, denote the sample mean and
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sample standard deviation of Z by Z̄A and σ̄A. Since the variance of Z is finite,

Slutsky’s lemma yields the usual asymptotic confidence interval CI[E[Z]] of level

ζ for E[Z], [
Z̄A − zσ̄A A−1/2, Z̄A + zσ̄A A−1/2

]
, (3.51)

where z is chosen such that P(−z < N(0, 1) < z) = ζ, and N(0, 1) denotes the

standard normal distribution. By Proposition 3.3, for an estimator of the structure

factor satisfying (3.44), a test of hyperuniformity of asymptotic level ζ consists in

assessing whether 0 lies in the interval (3.51). Since the estimator Z is based on

windows of different sizes, we call the test multiscale.

3.3.3 Demonstrating the tests

We now demonstrate the estimation of the hyperuniformity index H from Sec-

tion 3.3.1, the multiscale hyperuniformity test from Section 3.3.2, and the esti-

mation of the decay rate α from Section 3.1.2. All figures in this section can be

reproduced using the toolbox structure factor, by following our demonstration

notebook 8. For this demonstration, we used A = 50 samples from the point

processes KLY, GPP, PPP and TPP with the same setup used for the experiments

in Section 3.2.3. We additionally used thinned versions of the GPP with various

retaining probabilities to test the accuracy of the multiscale hyperuniformity test;

see Section 2.6.1 and Example 3.2. Recall that the KLY and the GPP are Class I

hyperuniform while PPP, TPP and the thinned GPP are not hyperuniform.

Effective hyperuniformity

Figure 3.9 illustrates the violin plots9 of the index H (3.40) across A = 50 samples

from the benchmark point processes. We used the results of ŜBI, across A samples

of roughly 104 points each (see Section 3.2.2). To fit the line required to compute

H, we considered wavenumbers up to 0.6 for the TPP and 1 for the remaining

8https://github.com/For-a-few-DPPs-more/structure-factor/tree/main/notebooks
9A violin plot gathers a box plot and a kernel density estimator of the assumed underlying

density. The former shows the median (white point), the interquartile range (thick black bar in

the center), and the rest of the distribution except for points determined as outliers (thin black

line in the center). We also add the mean (red dot).
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Figure 3.9: Violin plots of H across 50 samples from the KLY, GPP, PPP, and TPP.

Note the different y-scales. Plots obtained using the toolbox structure factor.

point processes. These values were chosen manually: the trade-off is to remain

close to zero while including enough data points to fit a line. The violin plots of

Figure 3.9 indicate that consistently across the realizations of the PPP and TPP,

H is larger than, say, 0.5. This is a strong hint that these point processes are not

hyperuniform. On the contrary, for the GPP, H is even slightly negative, hinting

at hyperuniformity. For the KLY, although H is close to zero, we note that a

threshold of 10−3 would not lead to the same answer across all 50 realizations.

Multiscale hyperuniformity test

Table 3.6: Multiscale hyperuniformity test

Z̄A CI[E[Z]] Z̄A CI[E[Z]]

KLY 0.003 [−0.003, 0.009] 0.003 [−0.0003, 0.007]

GPP 0.015 [−0.021, 0.051] 0.007 [−0.003, 0.011]

PPP 0.832 [0.444, 1.220] 0.781 [0.560, 1.001]

TPP 0.928 [0.788, 1.068] 1 [0.999, 1]

Ŝ ŜSI ŜBI

Table 3.6 summarizes the results of the multiscale hyperuniformity test of Sec-

tion 3.3.2, for the scattering intensity and Bartlett’s isotropic estimators, on rect-

angular windows for the former and ball windows for the latter. To compute Z̄A,

we used A draws of (X , M). In practice, the GPP cannot be sampled on arbi-

trarily large windows on a personal computer. We thus proceed as follows. Let
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Figure 3.10: Violin plots of Z across 50 samples from the KLY, GPP, PPP, and

TPP using ŜSI (first line) and ŜBI (last line). Plots obtained using the toolbox

structure factor.

Lmax be the maximum sidelength, respectively maximum radius Rmax, of the box-

(respectively ball-) shaped window on which the point process can be sampled

in practice. Since M is a Poisson random variable with parameter λ, we choose

λ such that the probability that WM is larger than WLmax (respectively WRmax) is

small, say smaller than 10−4. Precisely, for the scattering intensity, λ = 85, and

the sidelength of the box window ranges from Lmin = 20 to Lmax = 140, with a

unit stepsize for the GPP, the PPP and the TPP. The wavevectors used {kmin
m }m≥1

are the minimum wavevectors of (3.13) corresponding to {Wm}m≥1. Finally, the

asymptotic confidence interval (3.51), denoted by CI[E[Z]] in Table 3.6, has a

99.7% asymptotic level since we use three standard deviations. For Bartlett’s es-

timator, we use ball windows with a minimum radius Rmin = 30, a maximum

radius Rmax = 100, a unit step size, λ = 50, and the minimum wavenumbers of

(3.29) corresponding to the subwindows for the GPP, the PPP and the TPP. For

the KLY having bigger intensity than the other benchmark point processes, we

use smaller parameters Lmax = 80, Rmax = 56 and L0 = R0 = 20.
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We can see from Table 3.6 that the test successfully rejects the hyperuniformity

for the PPP and the TPP, and does not reject for the GPP and the KLY, as ex-

pected. Moreover, we note that ŜBI provides tighter confidence intervals. Yet, one

should bear in mind that, because ŜSI uses a rectangular window and the GPP

is naturally sampled on disk-like windows, ŜBI has access here to a sample of

larger cardinality than ŜSI. Moreover, ŜBI is also computationally more expensive

to evaluate.

Note that the coverage of the confidence interval on which our test is based is only

controlled when A goes to infinity. For a fixed λ, we thus recommend choosing A

as large as possible. In particular, the overly wide confidence interval for the PPP

in Table 3.6 calls for increasing A. Indeed, the violin plot of the 50 realizations of

Z (Figure 3.10) has large support. Increasing A naturally reduces the size of that

support; see Figure 3.11. Note in passing how Z̄A does not converge to S(0) = 1,

which is an effect of our capping the estimated structure factor in (3.41). Overall,

0 500 1000 1500 2000

Number of couples (Xa,Ma)a

−2

−1

0

1

2

Z̄

Z̄ ± 3.std

Figure 3.11: Estimated confidence intervals of Z̄ as a function of the number of

realizations used to get Z̄ for a PPP. Z is based on the scattering intensity.

there is no free lunch: our test might fail in diagnosing hyperuniformity if A or λ

is too small.

Finally, we demonstrate the test on three thinned versions of the GPP samples

with retaining probabilities p = {0.9, 0.5, 0.1}. The corresponding point processes

have respectively S(0) = {0.1, 0.5, 0.9}; see Example 3.2. We have noticed that the

estimator ŜBI provides tighter confidence intervals, and thus focused here on ŜBI

to compute Z̄50. We keep the same parameters as before. Note that we use the

same 50 realizations of the GPP across the four different values of p (including
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p = 1), so that, strictly speaking, the asymptotic confidence intervals are to be

understood with a Bonferroni correction.

Table 3.7: Multiscale hyperuniformity test obtained using ŜBI on thinned GPP

Z̄A CI[E[Z]]

GPP 0.0057 [−0.0042, 0.0156]

Thinning p = 0.9 0.0865 [0.0411, 0.1318]

Thinning p = 0.5 0.5722 [0.4227, 0.7217]

Thinning p = 0.1 0.611 [0.2082, 1.0137]

Table 3.7 summarizes the obtained results, and Figure 3.12 shows the correspond-

ing violin plots. The test successfully rejects the hyperuniformity for the three

thinned versions. Note that the test is more sensitive when using ŜSI within dif-

ferent trials. Nevertheless, the failure of the test can be noticed from the wide

confidence intervals obtained in general. As mentioned before, getting a wide

confidence interval call for increasing A. We recommend using ŜBI, if possible.

Finally, as expected for the window sizes/intensity that we consider, the case

0.9 < p < 1 remains difficult: in preliminary experiments, we did not reject

hyperuniformity without hand-tuning the test’s parameters to reach the desired

conclusion. We leave this critical case to future work.
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Figure 3.12: Violin plots of Z obtained using ŜBI across A = 50 samples from the

GPP and the corresponding independent thinned point process with retaining

probability p. Plots obtained using the toolbox structure factor.
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Hyperunifomity class

Figure 3.13 shows the violin plots of the estimated power decay α (Section 3.1.2)

across A = 50 samples, of roughly 104 points each, of the KLY and GPP. We

used the results of ŜBI (Section 3.2.3). To approximate the decay rate α of the

structure factor, the maximum wavenumber used to fit the polynomial is equal

to 0.45 for the GPP, and to 0.6 for the KLY. Again, these thresholds are fit man-

ually and represent a trade-off between having enough points to fit our mono-

mial and being close to zero. Figure 3.13 shows the obtained results. There is

limited evidence that the KLY is indeed hyperuniform: while the support of the

distribution is large and includes 0, most estimated values of α are positive and

concentrate around 0.5. This could be further taken as a hint that KLY belongs to

Class III in Table 3.1. Nevertheless, KLY is known to be Class I, so we’d expect α

to be bigger than 1. The misleading concentration around 0.5 may result from the

non-isotropy of the KLY and calls for caution when making claims on the hype-

runiformity class from regression diagnostics. For the GPP, the concentration of

values of α around 2 successfully reflects the known power decay (Section 3.1.2).
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Figure 3.13: Violin plots of α across A samples of KLY and GPP. Plots obtained

using the toolbox structure factor.
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3.4 Python toolbox structure factor

All the illustrations and experiments of this chapter were obtained using the

Python toolbox structure factor10. The toolbox is available on GitHub and re-

leased within the software repository for the Python programming language PyPI.

For the installation procedure, we refer to the dedicated guidelines provided on

the toolbox’s GitHub README page.

The main objective of structure factor is to estimate the structure factor of a sta-

tionary point process X using any of the examined estimators in Section 3.2 as

well as to explore the hyperuniformity of X through the tests outlined in Sec-

tion 3.3. This section offers a concise overview of the three core components

within structure factor essential for achieving these objectives. In Section 3.4.1,

we present the tools designed for generating a point pattern of X in a suitable

format. This prepared sample is subsequently used in Section 3.4.2 to estimate

the structure factor of X . Finally, Section 3.4.3 is concerned with testing the hype-

runiformity of X . For more details, readers are encouraged to explore the online

documentation11 as well as the tutorial Jupyter Notebook12.

3.4.1 Generating a PointPattern

Consider a stationary point process X of intensity ρ. In a nutshell, an object of

type PointPattern of X encapsulates a sample of X ∩ W = {x1, . . . , xN}, the ob-

servation window W, and the intensity ρ (optional). Some comments are in order.

First, one can obtain a PointPattern of the PPP, TPP, GPP, and KLY using the

corresponding objects accessible within the module point processes. Second,

the currently supported window shapes are spherical via the object BallWindow

and rectangular via BoxWindow. Third, if the intensity of X is not provided by the

user, it is automatically approximated by the asymptotically unbiased estimator

ρ̂ = N
|W| . Finally, to comply with the requirements of the structure factor estima-

10https://github.com/For-a-few-DPPs-more/structure-factor
11https://for-a-few-dpps-more.github.io/structure-factor/
12https://github.com/For-a-few-DPPs-more/structure-factor/blob/main/notebooks/

tutorial_structure_factor.ipynb
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tors on specific windows, as outlined in Assumptions A1 and A2, we provide a

restrict to window method for the class PointPattern. This feature enables the

restriction of the realization of X within PointPattern to another observation

window specified by the user.

3.4.2 Estimating the structure factor

All the structure factor estimators from Section 3.2 are implemented as methods

of the class StructureFactor. The class constructor takes as input an object of

type PointPattern; see Section 3.4.1.

Given that certain isotropic estimators necessitate the calculation of the pair cor-

relation function, the module pair correlation function hosts the functions

estimate, and interpolate. estimate is tailored to gauge the pair correlation

function through the estimator pcf.ppp, or pcf.fv originally implemented in the

R package spatstat. Meanwhile, interpolate is dedicated to interpolating the

obtained discrete approximation. Further details are mentioned in Section 3.2.3.

Finally, note that each estimator is complemented by a plot function that en-

hances the visualization of the resultant outcomes with an option to get the same

output as in the figures of Section 3.2.3.

3.4.3 Testing the hyperuniformity

The hyperuniformity tests outlined in Section 3.3 are functions of the module

hyperuniformity. Within this module, the function multiscale test implements

the statistical test of hyperuniformity (Section 3.3.2). multiscale test is comple-

mented by the function subwindows designed to derive a list of subwindows, from

a window specified by the user. It also provides the allowed wavevectors corre-

sponding to the output subwindows. These subwindows and allowed wavevec-

tors are required inputs of the function multiscale test.

The module hyperuniformity also contains the function hyperuniformity class

devised for estimating the power decay α of the structure factor near the origin.

As highlighted in Section 3.1.2, the value of α indicates the hyperuniformity class.
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The estimation procedure to get α involves a simple polynomial fitting around the

origin of an estimation of the structure factor that can be obtained using the class

StructureFactor as outlined in Section 3.4.2.

3.5 Conclusion

In this chapter, we surveyed estimators of the structure factor of a stationary point

process, along with numerical diagnostics of hyperuniformity. The two estima-

tors that fared best in our benchmark are the multitapered variant of the scatter-

ing intensity and, in the case of isotropic point processes, Bartlett’s isotropic es-

timator. Further comparing these two estimators is a natural avenue for further

work, but needs careful thinking. For starters, the two estimators are not defined

on similar windows, and they do not require the same number of evaluations

for a similar accuracy. Selecting the optimal tapers for the multitaper estimator

is currently unclear. On the other hand, the computational cost of Bartlett’s esti-

mator should be lowered, e.g. by subsampling pairs of points. Estimators based

on Hankel transform quadratures, which rely on first estimating the pair corre-

lation function, comparatively showed poor performance. But it is still possible

that estimating the pair correlation first can help estimating the structure factor

if, say, edge correction plays an important role. If the user only has data collected

on a non-rectangular, non-ball window, we would then recommend trying the

Hankel-Baddour-Chouinard estimator. For our benchmarks, though, the large

cardinalities and the regular windows involved do not build upon this strong

point of quadrature-based estimators. On another note, since the structure factor

is a Fourier transform, one might be tempted to periodize one’s sample before

computing estimators. However, we do not see a clear argument for (or against)

periodization yet. First, if one is using the scattering intensity applied on any

of the restricted allowed wavectors in Ares
L , then periodizing the point process

has no effect on the estimator. The case of wavevectors in AL, and of other es-

timators, is less straightforward. Second, adding periodic boundaries forces an

arbitrary regularity at long distances, which intuitively would impact any empir-

ical diagnostic of hyperuniformity.
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3 – Diagnosing hyperuniform point processes

We also proposed an (asymptotic) test of hyperuniformity, based on the debiasing

techniques of (Rhee and Glynn, 2015). The test relies on the coupled sum estima-

tor Z obtained from a sequence of estimation of the structure factor derived from

the point pattern observed in a list of increasing-size windows. We proved that

E[Z] is zero if and only if the corresponding point process is hyperuniform (un-

der mild assumptions) and proposed employing Z to test the hyperuniformity

in practice. The test we proposed involves finding a confidence interval for E[Z]

and checking whether zero falls within this interval as a sign of hyperuniformity.

Our experiments demonstrated the test’s power of rejecting the hyperuniformity

for point processes with S(0) exceeding 0.1 along moderate sample sizes. How-

ever, for S(0) below this threshold, further careful investigation is required. We

postpone this investigation for future work. Moreover, the actual proposed test

requires many realizations from the point process which may be a limitation in

some practical applications. The next natural step is to explore the possibility of

employing a single realization of moderate size.

Finally, we provided an open-source Python toolbox structure factor containing

all discussed estimators of the structure factor, diagnostics of hyperuniformity,

and our statistical test of hyperuniformity. We used structure factor to bench-

mark the estimators, diagnostics, and tests. Moreover, we present an introduc-

tion to the main objects of the toolbox. We hope that our survey and software can

contribute to the standardization and reproducibility of empirical investigations

involving structure factors, including the study of hyperuniform point processes.
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Linear statistics of point processes yield Monte Carlo estimators of integrals. While

the simplest approach relies on a homogeneous Poisson point process (PPP),

more regularly spread point processes, such as scrambled low-discrepancy se-

quences or determinantal point processes, yield Monte Carlo estimators with

fast-decaying root mean square error (RMSE); see Section 2.7.
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4 – Repelled point processes

Motivated by the efficiency of regular configurations in numerical integration, in

this chapter, we introduce the repulsion operator, which aims to reduce clustering

in a configuration by slightly pushing its points away from each other. Namely,

given a configuration of points X and a parameter ε > 0, we explain how to

construct another configuration Πε(X), called the repelled configuration, using the

repulsion operator Πε. Keeping in mind our motivation for numerical integra-

tion, we want Πε to be (i) computationally cheap to apply. Moreover, when ap-

plied to a random configuration, Πε should (ii) preserve stationarity and inten-

sity, and (iii) reduce the variance of linear statistics compared to a PPP. While

the first condition ensures that sampling from Πε(X) remains relatively tractable,

the latter two guarantee that Πε(X) offers a Monte Carlo method with reduced

RMSE compared to the crude Monte Carlo. To achieve these objectives, the re-

pulsion operator employs a force that leads the interaction between the points

of the configuration drawing inspiration from differential equation schemes used

in gravitational allocations; see Example 2.5. In a few words, Πε can be seen as

performing a single step of a numerical scheme to integrate a differential equation

corresponding to a gravitational allocation.

The investigation described in this chapter was carried out in our paper (Hawat

et al., 2023a). In Section 4.1, we introduce the repulsion operator, while Section

4.2 is dedicated to examining the properties of the force function which is the

driving gear of the repulsion operator. The crux of this chapter lies in Section

4.3 where we analyze the properties of the repulsion operator when applied to

a PPP. The obtained point process is denoted repelled Poisson point process

(RPPP). We present our main result, showing that the RPPP yields an unbiased

Monte Carlo method with lower variance than under the PPP. Additionally, we

describe a sampling procedure that we implemented within the Python toolbox

MCRPPy1. We present an experimental illustration of the variance reduction and

estimate the pair correlation function, and the structure factor of the RPPP using

the toolbox structure factor. Moreover, we explore iterating the repulsion oper-

ator several times and draw an analogy to gravitational allocations. Lastly, we

put the Monte Carlo with the RPPP in context, by conducting a comparison with

standard Monte Carlo methods on synthetic integration tasks. In Section 4.4, we

1https://github.com/dhawat/MCRPPy
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4 – Repelled point processes

explore applying the repulsion operator to already repulsive point processes. The

experiments suggest that the variance reduction also holds when the operator is

applied to motion-invariant point processes other than the PPP. All the proofs

are gathered in Section 4.5. Finally, Section 4.6 concludes this chapter with a few

research directions.

4.1 The repulsion operator

For x ∈ Rd and a configuration X ∈ N, consider the series (when it converges),

FX(x) ≜ ∑
z∈X\{x}
∥x−z∥2↑

x − z
∥x − z∥d

2
= lim

R→∞
∑

z∈X\{x}∩B(x,R)

x − z
∥x − z∥d

2
. (F1)

Several observations are in order. First, each term in the sum in (F1) intuitively

represents the Coulomb force felt by a charged particle at x and due to a particle

of the same charge placed at z. In a dynamic setting, this force would repel x

away from z. Second, as the series defining FX(x) is not absolutely convergent,

the order of the summation is important. Following Chatterjee et al., 2010, we

consider the limit in an increasing ball centered at x, i.e., the summands in (F1)

are arranged in order of increasing distance from x. We will discuss in Section

4.2 rearranging the summation by increasing distance from the origin. Third, a

fundamental insight, originally mentioned by Chandrasekhar (1943), states that if

d ≥ 3 and P is a homogeneous Poisson point process (PPP), then, for every x, the

series defining FP (x) converges almost surely. When d = 3, −FP corresponds to

the ordinary Newtonian gravitational force, upon which, Chatterjee et al. (2010)

build a gravitational allocation from P to the Lebesgue measure; see also Exam-

ple 2.5. Further information regarding the characteristics of FP can be found in

Section 4.2.

Call X ∈ N a valid configuration if, for all x, the limit defining FX(x) in (F1) ex-

ists. For ε ∈ R, we define the (Coulomb) repulsion2 operator Πε, acting on valid

configurations, through

Πε : X 7−→ {x + εFX(x) : x ∈ X}. (4.1)

2While we generally speak of “repulsion”, note that when ε < 0 the dynamics become attrac-

tive instead of repulsive.
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There are two formal caveats to our definition (4.1). First, it only applies to valid

configurations. Second, since by definition, ΠεX is a set, it does not keep track of

multiplicities, arising when several points in X are mapped to the same location

by Πε. Anticipating a bit, Corollary 4.1 shows that these two caveats are irrel-

evant when Πε is applied to a PPP P . In particular, P is almost surely a valid

configuration, and for any two distinct points x, y ∈ P , almost surely

x + εFP (x) ̸= y + εFP (y).

This guarantees that ΠεP is a simple point process, which we term the repelled

Poisson point process (RPPP). We will occasionally consider the repelled point

process ΠεX of a more general point process X , although its existence needs

to be discussed. Once the existence is verified, we have the following motion-

invariance property.

Proposition 4.1 (Motion-invariance). Let X be a point process that is almost surely

valid, and ε ∈ R. If X is motion-invariant, then ΠεX is also motion-invariant.

The proof of this proposition is deferred to Section 4.5.2.

4.2 Properties of the force

In this section, we discuss key characteristics of the random function FP , when P
is a PPP.

First, Chatterjee et al. (2010, Proposition 1) proved that when d ≥ 3, almost

surely, the series defining FP (x) converges simultaneously for all x and defines

a translation-invariant (in distribution) vector-valued random function, which is

also almost surely continuously differentiable. The subsequent proposition pro-

vides further insights into the distribution of FP .

Proposition 4.2. Let P be a homogeneous Poisson point process of intensity ρ of Rd,

with d ≥ 3. Then, for any x ∈ Rd, FP (x) has a symmetric α−stable distribution 3 of

index α = d
d−1 .

3A random vector x ∈ Rd has an α− stable distribution iff there exists α ∈ (0, 2] such that for

any x1, ..., xn i.i.d. copies of x, there exits bn ∈ Rd such that ∑n
i=1 xi

d
= n1/αx + bn. If in additional

x d
= −x, x is said α− symmetric stable distribution (Abdul-Hamid and Nolan, 1998). While the
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This observation was mentioned by Chatterjee et al. (2010) and can be easily

checked by observing that the union of n i.i.d. copies of P , which is a PPP of

intensity nρ, is also a PPP of intensity ρ scaled by n−1/d. The individual terms

in FP (x) scale as a (d − 1)-th power of the distance, so the sum of n i.i.d. copies

of FP (x) has the same distribution as n(d−1)/dFP (x). Symmetry is obvious, as

−P d
= P . Proposition 4.2 implies that E [FP (x)] = 0 and E [∥FP (x)∥ν

2] < ∞

iff ν < α. For more details about stable distributions, we refer to (Nolan, 2020,

Section 1.5) and (Abdul-Hamid and Nolan, 1998).

Second, we have the following result regarding the distribution of the difference

of forces.

Proposition 4.3. Let P be a homogeneous Poisson point process of Rd. Then, for any

two distinct points x, y of Rd, the random vector FP (x)− FP (y) is continuous, i.e., for

any c ∈ Rd

P (FP (x)− FP (y) = c) = 0.

The proof of this proposition is deferred to Section 4.5.1. We note that an addi-

tional result regarding the joint density of (FP (x), FP (y)) can be found in (Chat-

terjee et al., 2010, Theorem 10), where the authors demonstrate the existence of

the joint density of (FP (x), FP (y)) for x and y sufficiently far apart, further con-

ditioning on having at least one point of P within balls centered at x and y. They

also derive an upper bound for the density.

Third, it is possible to derive an alternative expression for FP (x) that avoids the

requirement of a different order of summation at each point x. More precisely,

ordering terms by their distance to the origin yields

FP (x) = ∑
z∈P\{x}
∥z∥2↑

x − z
∥x − z∥d

2
− κdρx, (F2)

where κd is the volume of the unit ball of Rd. Note the additional term in (F2),

which compensates for fixing the order of the summation. Chatterjee et al. (2010,

Proposition 5) proved that the expressions (F1) and (F2) are equivalent when P

multivariate stable distribution is a significant theoretical concept as it extends the multivariate

normal distribution, it is not widely employed in practical applications. This is primarily because

of its heavy-tailed behavior and the absence of a closed-form expression for its density function.
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is a PPP of unit intensity. A similar proof with slight modifications holds in the

general case when ρ ̸= 1.

Finally, for a stationary point process X ⊂ Rd, and 0 ≤ q < p, we define the

truncated force

F(q,p)
X (x) ≜ ∑

z∈X\{x}∩A(q,p)(x)
∥x−z∥2↑

x − z
∥x − z∥d

2
, (4.2)

where A(q,p)(x) = B(x, p) \ B(x, q) is the annulus centered at x with small radius

q and big radius p. We will denote A(q,p)(0) simply by A(q,p). Intuitively, F(q,p)
X (x)

represents the total Coulomb force experienced by a charged particle at x due to

the influence of other particles of the same charge located in X ∩ A(q,p)(x). Note

that the law of F(q,p)
P (x) is invariant under the translation of x, as was the case for

its non-truncated counterpart. The truncated force is a useful tool for practical

implementation, just like the truncated repelled point process

Π(q,p)
ε X ≜ {x + εF(q,p)

X (x) : x ∈ X}. (4.3)

4.3 The repelled Poisson point process

We have seen in Section 4.1 that a PPP is a valid configuration for the operator

Πε (Equation (4.1)). In this section, we study ΠεP , the repelled Poisson point

process (RPPP) obtained by applying Πε to a PPP P of intensity ρ > 0. The first

panel of Figure 4.1 displays a sample from a PPP of intensity ρ = 1000 in two

dimensions4, intersected with a disk-shaped observation window. We illustrate

the corresponding RPPP in the second panel.

4.3.1 Properties

In this section, we state some properties of the RPPP. Of particular importance to

us is the following corollary.

4Note that for graphical convenience we present a two-dimensional construction, but we are

not making any convergence claim for the force (F1) in d = 2.
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Figure 4.1: A sample from a PPP of intensity 1000 and the corresponding RPPP.

Plot obtained using the toolbox MCRPPy.

Corollary 4.1. Let d ≥ 3, and P ⊂ Rd be a homogeneous Poisson point process of

intensity ρ > 0. Then, for any ε ∈ R and any two distinct points x, y ∈ P , we have

almost surely

x + εFP (x) ̸= y + εFP (y).

Moreover, ΠεP is a stationary and isotropic point process of intensity ρ.

The proof of this corollary is deferred to Section 4.5.2. According to Corollary 4.1,

ΠεP is of intensity ρ, the same intensity as P . Consequently, for any integrable

function f of compact support K, Equation (2.11) yields

E

[
∑

x∈ΠεP
f (x)

]
= ρI( f ),

where I( f ) is the integral of f defined in (2.22). In particular

ÎΠεP ( f ) ≜
1
ρ ∑

x∈ΠεP
f (x) (4.4)

is an unbiased Monte Carlo estimator of I( f ); see also Section 2.7. We shall also

consider the so-called “self-normalized” estimator

Îs, ΠεP∩K( f ) ≜
|K|

ΠεP(K)
1{ΠεP(K)>0} ∑

x∈ΠεP∩K
f (x), (4.5)
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4 – Repelled point processes

where ΠεP(K) is the number of points of ΠεP in K. Compared to (4.4), (4.5)

replaces ρ by an unbiased estimator. Self-normalized estimators are frequent in

spatial statistics, and one can expect a (small) variance reduction in (4.5) at the

price of a small bias.

Remark 4.1. The self-normalized estimator (4.5) of I( f ) is biased. Indeed

E
[

Îs, ΠεP ( f )
]
= E

[
|K|

ΠεP(K)
1{ΠεP(K)>0}E

[
∑

x∈ΠεP∩K
f (x)

∣∣∣ ΠεP(K)

]]
.

As ΠεP is a stationary point process, once conditioning on ΠεP(K) each point

of ΠεP ∩ K is uniformly distributed over K. Let (Yi)i≥1 be random variables that

follow the uniform distribution over K, we have

E
[

Îs, ΠεP ( f )
]
= E

[
|K|

ΠεP(K)
1{ΠεP(K)>0}

ΠεP(K)

∑
i=1

E [ f (Yi)]

]

= |K|E
[
1{ΠεP(K)>0}E [ f (Y1)]

]

= (1 − TΠεP (K))I( f ),

where the void probability TΠεP is defined by Equation (2.1). As K grows, the

bias thus decreases. It is actually reasonable to expect that it vanishes exponen-

tially fast with the size of K.

The following result ensures that the RPPP has moments of any order.

Proposition 4.4 (Existence of the moments). Let d ≥ 3 and P be a homogeneous

Poisson point process of intensity ρ > 0 in Rd. Let ε ∈ (−1, 1) and R > 0. For any

positive integer m

E

[(
∑

x∈ΠεP
1B(0,R)(x)

)m]
< ∞.

The proof is deferred to Section 4.5.3, and we note that a quantitative upper

bound of the expectation can be deduced from the proof. A direct consequence

of Proposition 4.4 is that for any continuous function f of compact support K, we

have

Var
[

ÎΠεP ( f )
]
≤ ∥ f ∥2

∞
ρ2 E



(

∑
x∈ΠεP

1K(x)

)2

− I( f )2 < ∞.

Once the existence of the variance of linear statistics under ΠεP is established,

we delve further into our investigation. At this point, we present the following

variance reduction result. Its proof is deferred to Section 4.5.4.
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Theorem 4.5 (Variance reduction). Let d ≥ 3, P ⊂ Rd be a homogeneous Poisson

point process of intensity ρ > 0, and ε ∈ (−1, 1). For any function f ∈ C2(Rd) of

compact support K, we have

Var
[

ÎΠεP ( f )
]
= Var

[
ÎP ( f )

]
(1 − 2dκdρε) + O(ε2), (4.6)

where ÎΠεP ( f ) is defined in (4.4),

ÎP ( f ) ≜
1
ρ ∑

x∈P
f (x), (4.7)

and κd is the volume of the unit ball of Rd.

Several remarks are in order.

Remark 4.2. Upon noting that Π0P = P , Equation (4.6) implies a negative deriva-

tive of the variance of ÎΠεP ( f ) at ε = 0. Actually,

Var
[

ÎΠεP ( f )
]
< Var

[
ÎP ( f )

]
= ρ−1 I( f 2), (4.8)

for a small enough stepsize ε > 0. Computing the second-order derivative of

the variance is more challenging because the second-order moment of FP is not

well-defined; see Sections 4.2 and 4.5.4.

Remark 4.3. Taking ε equal to

ε0 ≜
1

2dκdρ
(4.9)

makes the term of order ε in (4.6) vanish. Note also that ε0 does not depend on

the integrand f .

Remark 4.4. When ε < 0, we obtain a positive first-order derivative of the variance

at ε = 0, so for |ε| small enough we have

Var
[

ÎΠεP ( f )
]
> Var

[
ÎP ( f )

]
.

This result is expected as the behavior of Πε shifts from repulsive to attractive.

Remark 4.5. (Truncating the force) The proof of Theorem 4.5 holds even when we

replace FP with its truncated version F(0,p)
P (4.2), as long as p is larger than the

diameter of the support K of the integrand.
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Remark 4.6. A key element of the proof of Theorem 4.5 is the super-harmonicity5

of the Coulomb potential UP , which defines the force function FP . In other words,

defining UP such that ∇UP (x) = FP (x), we have

∆UP (x) = div (FP∩K(x)) = dκd ∑
z∈P\{x}

δ{z}(x)− κdρ,

which is negative on Rd \ P . This property, combined with a tailored integration

by parts, forms the main ingredient of the proof; see also Remark 4.8.

Remark 4.7. Without further assumptions on the integrand, other types of interac-

tion than Coulomb do not necessarily yield such a variance reduction if plugged

into our repulsion operator. Relatedly, there are many links between Coulomb in-

teraction and numerical integration beside our result. For instance, the so-called

Fekete points, defined as maximizers of the Coulomb potential

x1, . . . , xN 7→
̸=
∑

1⩽i,j⩽N

1
∥xi − xj∥d−2

2

on a compact, have been studied as a quadrature scheme, see e.g. (Serfaty, 2019)

and references therein.

4.3.2 Sampling

Let P be a PPP of intensity ρ > 0 and ΠεP be the associated RPPP. Let K ⊂ Rd be

compact, with diameter diam(K). In this section, we propose two approaches to

approximately sampling from ΠεP ∩ K. By Corollary 4.1, ΠεP is stationary, and

we henceforth assume that K ⊆ B(0, p), where p = diam(K)/2.

Our first approach is simply to sample Π(0,p)
ε P ∩ K. This seems reasonable in

the context of application to numerical integration since the variance reduction

result also holds for Π(0,p)
ε P ; see Remark 4.5. The corresponding pseudo-code is

provided by Algorithm 1. In words, we use the points of P that fall in the larger

ball B(0, 2p) to displace the points of P ∩K. Informally, for large K, we expect the

resulting distribution to be close to that of ΠεP ∩ K because, for each x ∈ P ∩ K,

we only neglected contributions to the force (F1) from points at distance further

5A C2 function ϕ on an open set A is super-harmonic if and only if the Laplacian ∆ϕ of ϕ is

negative on A.
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Figure 4.2: PPP samples (first column) and the corresponding RPPP samples,

obtained using Algorithm 2 (second column) and using Algorithm 1 (third

column). The first row corresponds to d = 2 and the second row to d = 3, with ε

set in each row to the value ε0 = ε0(d) in (4.9). The last column shows the two

repelled samples superimposed. Plots obtained using the toolbox MCRPPy.

than p from x, and the magnitude of these contributions decreases fast. One

downside of this approach is that it requires, for each x, to find the points of P
located in B(x, p). While storing the initial sample of P ∩ B(0, 2p) in an ad-hoc

data structure like a KD-tree may help (Bentley, 1975), we empirically found it

more computationally tractable to rely on the alternative expression (F2) of the

force.

Indeed, our second approach stems from the fact that the partial sums of (F2)

use the same points of P , independently of x. The correction term in (F2) seems

partially taking into account the effects of using a fixed order in the sum, so we

propose to sample P ∩ B(0, p) and use the points in the latter sample to displace

the points of P ∩ K using (F2) as described by Algorithm 2. We still need to com-

pute for each x ∈ P ∩ K the distances between x and the points of P ∩ B(0, p),

which in total cost O(NM) operations, where M = P(K) and N = P(B(0, p)).

Some comments are in order. First, the expected number of points of ΠεP ∩ K is

equal to ρ|K|. Second, in both sampling approaches, the points of ΠεP ∩ K can

be sampled concurrently, resulting in a reduction in computational time roughly
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Algorithm 1 : Sampling a repelled point pattern of a point process P in a centered

observation window K using (F1)

1: fix ε

2: set p = diam(K)/2, and k = 1

3: sample a point pattern {xi}N
i=1 from the point process P in the centered ball

window B(0, 2p)

4: sort {xi}N
i=1 in a KD-tree

5: parfor i : 1 → N do

6: if xi ∈ K then

7: search in the KD-Tree the points {xj}j located in B(xi, p) \ {xi}
8: use {xj}j to compute the truncated force F(0,p)

P (xi) at xi via Equation

(4.2)

9: set yk = xi + εF(0,p)
P (xi), and k = k + 1

10: end if

11: end parfor

12: return {yk}k ∩ K

proportional to the number of available processors. This parallelization appears

in Algorithm 1, and 2 through a parfor loop. Third, currently, we do not have

a strategy in place to mitigate border effects without increasing the computa-

tional cost. We recommend, if possible, sampling ΠεP ∩ W, where W is a win-

dow slightly larger than K, and then restricting the obtained sample to the target

window K. In our upcoming experiments, we use W = B(0, diam(K)/2). Finally,

we provide a Python package, called MCRPPy, available on GitHub6, which im-

plements the two sampling methods.

Figure 4.2 shows approximate samples of Πε0P in [−1/2, 1/2]d obtained with the

two aforementioned approaches, for d = 2 (first row) and d = 3 (second row).

The corresponding PPP is of intensity 1000, and the initial samples are given in

the first column. In the second column, (F2) was used (Algorithm 2), while F(0,2)
P

was used in the third column (Algorithm 1). The last column is a superposition

of the samples obtained in columns 2 and 3, displaying very close agreement.

Finally, note that Figures 4.1 and 4.3 were obtained using Algorithm 2, and we

6https://github.com/dhawat/MCRPPy
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4 – Repelled point processes

will keep using this simulation method in the next sections for sampling from the

repelled point process of a stationary point process which may not necessarily be

the PPP.

Algorithm 2 : Sampling a repelled point pattern of a point process P in a centered

observation window K using (F2)

1: fix ε

2: set p = diam(K)/2, and k = 1

3: sample a point pattern {xi}N
i=1 from the point process P in the centered ball

window B(0, p)

4: parfor i : 1 → N do

5: if xi ∈ K then

6: use {xi}N
i=1 to compute the force FP (xi) at xi via Equation (F2)

7: set yk = xi + εFP (xi), and k = k + 1

8: end if

9: end parfor

10: return {yk}k ∩ K

4.3.3 An experimental illustration of the variance reduction

In this section, we present a numerical experiment to confirm the variance re-

duction found in Theorem 4.5. Additional experiments can be found in Section

4.3.6.

Let K = [−1/2, 1/2]d. Consider the three following integrands, all supported in

K,

f1(x) ≜
(

1 − 4∥x∥2
2

)2
exp

(
−2

1 − 4∥x∥2
2

)
1B(0,1/2)(x),

f2(x) ≜ 1B(0,1/2)(x), and f3(x) ≜
d

∏
i=1

cos3(πxi) sin(πxi)1K(x). (4.10)

Both f1 and f3 satisfy the requirements of Theorem 4.5, while the indicator func-

tion f2 is discontinuous on ∂B(0, 1/2). For each of these functions, Figure 4.3

shows the estimated standard deviations σ̂( Îs, ΠεP∩K(.)) of the self-normalized
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Figure 4.3: Estimated standard deviations of Îs,ΠεP∩K with respect to ε, for f1, f2,

and f3, in d = 3. Plots obtained using the toolbox MCRPPy.

estimator Îs, ΠεP∩K (4.5) for varying values of ε in d = 3. We conducted the analy-

sis using 50 independent samples of P , a PPP of intensity ρ = 500.

The estimated standard deviations of Îs,P∩K, corresponding to ε = 0, are repre-

sented by the large red dots. The black dots indicates the values of σ̂( Îs,ΠεP∩K(.)).

The dashed lines indicate ε0 in (4.9). Note that within the range of ε employed, the

number of points of (ΠεP)∩K remains relatively stable, with an average ranging

between 493 and 501.

First, we observe that for negative values of ε, σ̂( Îs, ΠεP∩K(.)) are bigger than

σ̂( Îs,P∩K(.)), for the three functions. This behavior is expected because the op-

erator Πε is attractive for negative values of ε. Second, for positive values of ε,

up to ε0, we observe that σ̂( Îs, ΠεP∩K(.)) are lower than σ̂( Îs,P∩K(.)). This result

aligns with our theoretical expectations and provides evidence for the variance

reduction in Theorem 4.5. Third, for f1 and f3 we observe an interesting trend

when ε exceeds ε0. The standard deviations decrease until reaching a minimum

value. This minimum value, particularly for f3, is relatively close to ε0. However,

after this minimum point, the standard deviations start to increase again. The

behavior of f2 in this scenario appears to be more intricate and less predictable.

Overall, it appears that ε0 is a reasonable choice for ε, regardless of the integrand,

although not necessarily the optimal threshold for a specific integrand.
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4.3.4 Second-order properties

We have seen in Chapter 2 that the second-order characteristics of a point pro-

cess, such as the pair correlation function (2.5) and the structure factor (2.8), offer

valuable insights into the regularity of the point process. Specifically, a pair cor-

relation function less than one indicates repulsion within the points of the point

process (Section 2.5). On the other hand, a structure factor equal to zero at the

origin indicates hyperuniformity, as seen in Chapter 3. In this section, we esti-

mate the pair correlation function and the structure factor of the RPPP to examine

whether they reveal any indications of repulsion or hyperuniformity.
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Figure 4.4: Estimated structure factor S (left) and pair correlation function g

(right) of a RPPP of R2 of intensity 1/π. Plots obtained using the toolbox

structure factor.

Figure 4.4 shows the estimated pair correlation function (2.6) and structure factor

(2.8) of a RPPP of intensity 1/π in dimension d = 2 obtained using the tool-

box structure factor. We used a sample from the RPPP observed in a centered

ball of radius r = 150; see Section 4.3.2. Bartlett’s isotropic estimator ŜBI (Equa-

tion (3.27)) was used to estimate the structure factor on the corresponding set

of allowed wavenumbers k (Equation (3.29)). The estimators pcf.ppp and pcf.fv

(Baddeley et al., 2015, Sections 7.4.4 and 7.4.5) were used to estimate the pair cor-

relation function, as in Section 3.2.3. For reference, dashed black lines represent

the structure factor and pair correlation function of the PPP. As expected, the

estimated values of the pair correlation function are smaller than 1 up to a certain

value of r > 1, indicating repulsion between the points at small scales. However,
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the values of ŜBI(k) are bigger than 0.2 at small k, suggesting that the RPPP may

not be a hyperuniform point process.

4.3.5 Iterating the repulsion

Our repulsion operator Πε in (4.1) can be seen as performing one step of a nu-

merical discretization scheme for a system of differential equations describing

gravitational allocation schemes. In this section, we investigate iterating the ap-

plication of Πε, by drawing an analogy to gravitational allocations (Example 2.5).

To provide more context, let P be a PPP of unit intensity, x ∈ Rd \P , and consider

the differential equation

∂

∂t
Yx(t) = −FP (Yx(t)) with Yx(0) = x. (4.11)

The solution t 7→ Yx(t) of the differential equation (4.11), defined up to some pos-

itive time τx ∈ (0, ∞], is called a flow curve of the gravitational allocation of P
to the Lebesgue measure (Chatterjee et al., 2010); see also Example 2.5. Remark

that for ε < 0, x + εFP (x) is the first step in a naive numerical scheme discretizing

the differential equation (4.11), with a stepsize equal to −ε. Similarly, each point

of ΠεP can be viewed as the initial discretization step of a differential equation

akin to (4.11), with stepsize −ε. The catch is that ΠεP is applied to the points

of P itself, not to points in Rd \ P as in (4.11). Loosely speaking, the image of

x ∈ P in ΠεP can be seen as a first step of the numerical discretization of a grav-

itational flow curve, in a gravitational allocation from the reduced Palm measure

of P to the Lebesgue measure. However, to fully formalize and understand this

allocation, further technical details are required and are out of the scope of this

thesis.

Consider now performing M steps of the same numerical scheme, i.e. for each

x0 ∈ P , define

xt = xt−1 + εFP (xt−1), t = 1, . . . , M. (4.12)

Call Πε,tP the set of t−th iterates (4.12) of the points of P . We expect that for ε < 0

and large t, the distribution of the points of Πε,tP will not be more regular than P .

This assertion is supported by the clustered arrangement of the points of Π−ε0,50P
observed in the left panel of Figure 4.5; see also Figure C.1. It is important to note
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t = 0

t = 50, ε = −ε0

t = 0

t = 50, ε = ε0

Figure 4.5: The green points represent a sample from a PPP P of unit intensity,

the blue points correspond to Π−ε0,50P (left), and Π+ε0,50P (right). Plots

obtained using the toolbox MCRPPy.

that some points of Π−ε0,50 are situated outside the observation window and are

thus not visible in Figure 4.5. Indeed, following the arguments of Chatterjee et al.

(2010), one can prove that the differential equation (4.11) defines an allocation

rule. So, in particular, for almost any x ∈ Rd \ P , each curve Yx(t) will eventu-

ally end at a point of P , almost surely, as t goes to τx. Similarly, in an “ideal”

discretization scenario, we would expect that xt ends at a point of P as t → τx0 .

However, during our experiments, we observed that certain points have moved

away from the observation window and the remaining points clustered together

within it. The movement of certain points away from the observation window

can be attributed to the naive discretization scheme (4.12), where we employed a

fixed stepsize ε, while the points of P are singular points of FP . As a result, when

an xt is in close proximity to a point in P , the force acting on it becomes consid-

erable, which in turn compels xt+1 to escape the observation window. Applying

a truncated version of the force might help prevent this phenomenon and give a

new way to generate a clustered point process.

The scenario where ε > 0 and M is large is less straightforward. This case can

be associated with the reverse dynamics of Equation (4.11). Indeed, for x ∈ Rd \
P , the trajectory of Yx(t) halts at some point of the boundary of a basin of the

gravitational allocation from Lebesgue to P ; see the right panel of Figure B.1. By

the same analogy as before, we can expect that for x0 ∈ P and ε small enough,
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as t → ∞, each point xt will eventually approach the boundary of a basin of the

gravitational allocation from Lebesgue to the reduced Palm measure of P . It is

hard to dig deeper without further investigation. Interestingly, in the right panel

of Figure 4.5, we observe a peculiar clustering behavior of the points in Πε0,50P
characterized by points appearing to overlap or superimpose with each other; see

also Figure C.1.

4.3.6 Monte Carlo with the repelled Poisson point process

This section focuses on examining and comparing the performance of ÎΠε0P ( f ) in

(4.4), for ε = ε0 in (4.9), with the Monte Carlo methods outlined in Section 2.7.2.

While ÎMC, ÎMCCV, ÎMCDPP, and ÎRQMC use a constant number of points across

trials, ÎΠε0P is the only method where the number of points is not fixed, neither in

the computational budget nor in the (smaller) number of integrand evaluations.

In an effort to conduct a fair comparison, we replace the PPP in the estimator

ÎΠε0P with a BPP, which has a fixed number of points. The resulting estimator is

referred to as ÎMCRB. Next, we sample M realizations from the repelled BPP using

Algorithm 2, and find the average number of points obtained within the M trials.

We set the number N of points used in the other methods to this average. Note

that we give an unfair advantage to ÎMCCV by not accounting for the evaluations

of the integrand necessary to estimate the coefficient (2.28).

We use M = 100 samples from each of the point processes with N ranging

roughly from 50 to 1000. We examine the functions f1, f2, and f3 defined in Sec-

tion 4.3 by Equation (4.10). Their integrals are

I( f2) = κd/2d, I( f3) = 0,

while the precise value of I( f1) is unknown.

Figure 4.6 displays the log of the estimated standard deviation of the estimators

ÎMC, ÎMCRB, ÎMCCV, and ÎRQMC, plotted against the log number of points log(N),

for the functions f1, f2, and f3 and d in {2, 3, 4, 5, 7}. ÎMCDPP is only examined for

d ∈ {2, 3} due to its high cost compared to other methods. Lines correspond to

ordinary least squares linear regressions (OLSs). The slopes and standard devia-

tions of the slopes are indicated in the legend.
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Figure 4.6: Estimated standard deviation σ of various Monte Carlo methods for

f1, f2, and f3 across different dimensions d ∈ {2, 3, 4, 5, 7}. Plots obtained using

the toolbox MCRPPy.

First, as expected, the estimated variances of ÎMCRB are generally lower than those

of ÎMC. ÎMCRB outperforms ÎMC in most scenarios, except for f3 with d = 7 where
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the estimated variances of ÎMC and ÎMCRB are comparable. Interestingly, in this

case, the estimated variances of all methods are in the same ballpark. Second,

ÎMCRB outperforms ÎMCDPP in dimension 3. Although the variance of ÎMCDPP is

O(N−1−1/d), it seems that the hidden constant increases significantly with the

dimension compared to the other methods. Moreover, ÎMCDPP is computation-

ally demanding. Fourth, it appears that ÎMCRB outperforms ÎMCCV in most cases.

ÎMCRB and ÎRQMC seem the main competitors.

ÎRQMC consistently performs well. For d ≤ 3, the estimated variances of ÎRQMC

are lower than those of ÎMCRB for N large enough, and the slope of the variance

of ÎRQMC is steeper than that of ÎMCRP. However, ÎRQMC’s performance decreases

significantly as d increases. Interestingly, for f3 and d = 4, the estimated variances

of ÎRQMC are larger than those of ÎMCRB, but the slope for ÎRQMC remains steeper

than for ÎMCRB, letting ÎRQMC catch up as N grows. The same trend is observed

for f1 in d = 7 up to a large value of N, while the opposite trend is observed for

f3 in d = 5. Finally, when comparing the estimated variances of ÎRQMC and ÎMCRB

for f1 and f2 across different dimensions, it appears that ÎRQMC’s performance

declines more rapidly than ÎMCRB’s as the dimension d increases.

SW CI SW CI SW CI SW CI SW CI

f1 stat=0.9, p=0.04 [-0.58, -0.46] stat=0.96, p=0.48 [-0.69, -0.51] stat=0.95, p=0.34 [-0.66, -0.54] stat=0.95, p=0.39 [-0.65, -0.53] stat=0.91, p=0.06 [-0.52, -0.28]

f2 stat=0.98, p=0.88 [-0.63, -0.51] stat=0.94, p=0.26 [-0.65, -0.53] stat=0.93, p=0.17 [-0.61, -0.49] stat=0.96, p=0.61 [-0.63, -0.51] stat=0.94, p=0.30 [-0.60, -0.48]

f3 stat=0.97, p=0.65 [-0.57, -0.45] stat=0.98, p=0.92 [-0.67, -0.55] stat=0.97, p=0.84 [-0.69, -0.57] stat=0.93, p=0.15 [-0.64, -0.52] stat=0.99, p=0.99 [-0.60, -0.48]

d=2 d=3 d=4 d=5 d=7

Table 4.1: p-values and the corresponding statistics of Shapiro-Wilk test (SW) for

the residual of the OLS of the estimated log-standard deviation of ÎMCRB over

log(N) and the confidence interval (CI) of the corresponding slopes with 99.7%

confidence level for f1, f2 and f3 when d ∈ {2, 3, 4, 5, 7}.

We use the Shapiro-Wilk test (Shapiro and Wilk, 1965) to assess whether the resid-

uals of each OLS of log(σ) of ÎMCRB over log(N) shown in Figure 4.6 are nor-

mally distributed7. We also computed confidence intervals of the slopes of the

corresponding OLS. Table 4.1 summarizes the results. The null hypothesis of

Shapiro-Wilk’s test is that the residuals are normally distributed. As the statistics

7To determine the significance of the variance of the slope in a homoscedastic OLS, it is nec-

essary to ensure that the residuals are normally distributed. The normality of the residual allows

getting a confidence interval for the slope using the estimated standard deviations via the Central

Limit Theorem (Fox, 2015, Chapters 6 and 12).
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are close to 1 and the p-values are large (typically larger than 0.01), the distribu-

tions of the residuals are not significantly different from a normal distribution at

a 99% significance level. We have also verified that the Quantile-Quantile plots of

the residuals are compatible with the result of Shapiro-Wilk’s test; for a compari-

son between normality tests see (Mohd Razali and Yap, 2011). Hence, we can use

the estimated standard deviations of the slopes to obtain confidence intervals for

these slope values. Table 4.1 shows the 99.7% confidence intervals (correspond-

ing to three standard deviations) of the slopes. For d ∈ {3, 4, 5}, the confidence

intervals suggest that the variance of ÎMCRB may decrease slightly faster than the

N−1 convergence rate of the variance of crude Monte Carlo.

Finally, to account for the slight possible bias of ÎMCRB, we present the errors

– difference between I( f ) and its estimated value – obtained in the experiment

illustrated by Figure 4.6. Figure 4.7 displays the box plots of the error of ÎMC,

ÎMCRB, ÎMCCV, and ÎRQMC, for the functions f2 and f3 for d in {2, 3, 4, 5, 7} and

for ÎMCDPP when d in {2, 3}. There is no clear evidence that ÎMCRB exhibits any

notable bias.

4.4 Other repelled point processes

In this section, we perform numerical investigations to determine whether the

variance reduction identified in Theorem 4.5 remains valid when the initial point

process is more regular than a PPP like the Ginibre ensemble (GPP) (Example 2.2)

and the scrambled Sobol sequence (SSS) (Section 2.7.2).

Recall that the GPP exhibits strong regularity being a Class I HUPP; see Section

3.1.2. Figure 4.8 displays a sample of a GPP observed in B(0, 50) and the corre-

sponding repelled sample with ε = ε0. The sampling methodology follows the

description provided in Section 4.3.2.

Another model of interest is the SSS, which is a typical example of a random-

ized low-discrepancy sequence; see Section 5.1. Randomized low-discrepancy

sequences play a crucial role in numerical integration being the backbone of the

powerful Randomized Quasi-Monte Carlo method; see Section 2.7.2. Figure 4.9

displays a sample of the SSS observed in B(0, 50) and the corresponding repelled
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Figure 4.7: Estimated error of various Monte Carlo methods for f2, and f3 and

d ∈ {2, 3, 4, 5, 7}.

sample, with ε = ε0. Like for GPP, the repelled SSS displays a high level of regu-

larity.
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(a) GPP (b) Repelled GPP

Figure 4.8: A sample from the GPP (left) and the corresponding repelled sample

(right) with ε = ε0. Plots obtained using the toolbox MCRPPy.

(a) SSS (b) Repelled SSS

Figure 4.9: A sample from the SSS (left) and the obtained repelled sample (right)

with ε = ε0. Plots obtained using the toolbox MCRPPy.

We now examine the behavior of the variance of Îs,ΠεG∩K and Îs,ΠεS∩K w.r.t. ε,

where G represents a GPP and S denotes a SSS. We use the functions f1, f2 and f3

defined in Equation (4.10). Figure 4.10 illustrates the estimated standard devia-

tions of Îs, ΠεG∩K (first row) for d = 2 and Îs, ΠεS∩K for d = 2 (second row), as well

as for d = 3 (last row), for various values of ε. We conducted the experiments us-

ing 50 independent samples of G and S of intensity ρ = 500 obtained using Algo-

rithm 2. GPP’s samples were rescaled to achieve ρ = 500 as the original intensity

of the GPP is equal to 1/π; see Example 2.2. The estimated standard deviations
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4 – Repelled point processes

of Îs,G∩K and Îs,S∩K are indicated by the large red dots, while the black dots corre-

spond to the estimated standard deviations of Îs, ΠεG∩K and Îs, ΠεS∩K. The dashed

lines indicate the value of ε0 defined in Equation (4.9). For the C2 functions f1

and f3, we observe a behavior similar to the RPPP experiments depicted in Fig-

ure 4.3, indicating a variance reduction within a certain range of positive values

of ε. However, for f2, the variance decreases as ε increases for ΠεG in a manner

similar to Figure 4.3, while a more intricate behavior is observed for ΠεS . These

observations allow one to conjecture that the repulsion operator may produce

variance reduction for smooth functions for a wide range of point processes.
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Figure 4.10: Estimated standard deviations of Îs,ΠεG∩K (Ginibre) and Îs,ΠεS∩K

(scrambled Sobol) with respect to ε for f1 (first column), f2 (second column), and

f3 (last column). The first row shows the obtained results for the GPP in d = 2,

the second row for the SSS in d = 2, and the last one for the SSS in d = 3. Plots

obtained using the toolbox MCRPPy.
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4.5 Proofs

In this section, we present the proofs of the results mentioned in Sections 4.1,

4.2, and 4.3.1. The proof of Proposition 4.3 can be found in Section 4.5.1. The

motion invariance results stated by Proposition 4.1 and Corollary 4.1 are proven

in Section 4.5.2. The most intricate proof, which is for Proposition 4.4, is presented

in Section 4.5.3. Finally, Section 4.5.4 contains the proof of the variance reduction

result formulated in Theorem 4.5.

4.5.1 Proposition 4.3

In this section, our objective is to prove Proposition 4.3. This proposition will

play a crucial role in establishing the first part of Corollary 4.1.

Proof of Proposition 4.3. Let {Bn}n≥1 be a sequence of disjoint balls, each with the

same volume |B1| = 1/ρ, and consider the collection of events {Ωn}n≥1 defined

by

Ωn = {P(Bn) = 1} .

As P is a PPP, the events Ω1, Ω2, . . . are independent, and we have

∑
n≥1

P(Ωn) = ∑
n≥1

exp(−1) = ∞.

By Borel-Cantelli, P(lim sup Ωn) = 1. Thus almost surely, infinitely many Ωn

occur, and for c ∈ Rd,

{FP (x)− FP (y) = c} ⊆
⋃

n≥1
{FP (x)− FP (y) = c, Ωn}

⊆
⋃

n≥1
{Xn = c − Yn, Ωn} ,

where Xn = FP∩Bn(x)− FP∩Bn(y), and Yn ≜ FP∩Bc
n(x)− FP∩Bc

n(y). In particular,

P (FP (x)− FP (y) = c) ≤ ∑
n≥1

P (Xn = c − Yn, Ωn) . (4.13)

Now, for all n, conditionally on Ωn, Xn and Yn are independent random vectors

and we further claim that Xn is continuous, we thus get P (Xn = c − Yn, Ωn) = 0.

By (4.13), we conclude that

P (FP (x)− FP (y) = c) = 0.

107



4 – Repelled point processes

Finally, the claim that Xn is continuous conditionally on the event Ωn can be easily

verified using harmonic function theory. For instance, for i ∈ 1, . . . , d, let

gi : Bn \ {x, y} → R

z 7→ xi − zi

∥x − z∥d
2
− yi − zi

∥y − z∥d
2

.

Actually, for z ≜ P ∩ Bn, gi(z) is the i-th component of the random vector Xn.

As gi is a non-constant real harmonic function on Bn \ {x, y}, by Theorem 1.28 of

Axler et al. (2001), gi is a non-constant real analytic function on Bn \ {x, y} (which

is connected). By Proposition 1 of Mityagin (2020), the zero-set g−1
i (0) of gi has

Lebesgue measure zero. By translation, we can deduce that any level set of gi is

negligible. Finally, conditioning on Ωn, z is uniformly distributed on Bn, so

P
(

Xn = c
∣∣∣ Ωn

)
≤ |Bn ∩ {g−1

i (ci)}| = 0.

4.5.2 Proposition 4.1 and Corollary 4.1 (motion-invariance)

Throughout this Section, we fix ε ∈ R and we prove Proposition 4.1 and Corollary

4.1.

First, to prove Proposition 4.1, we show that for a point process X satisfying the

conditions of Proposition 4.1, the void probability (Equation 2.1) of a translation,

respectively rotation of ΠεX is equal two the void probability of ΠεX for any

Borel set. The main point of contention is that FX (x) (Equation F1) is invariant

under both translations and rotations, for any x ∈ Rd.

Proof of Proposition 4.1. Suppose that X is motion-invariant. As the law of ΠεX
is defined by the system of void probabilities (2.1), to show that ΠεX is motion-

invariant, it is enough to prove that for any Borel set B, any a ∈ Rd, and any

rotation r,

Ta+ΠεX (B) = TΠεX (B) and Tr(ΠεX )(B) = TΠεX (B).
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First, observe that by construction Πε(a +X ) = a + ΠεX . This yields

Ta+ΠεX (B) = 1 − P ((a + ΠεX ) ∩ B = ∅)

= 1 − P (Πε(a +X ) ∩ B = ∅) ,

which, by stationarity of X is equal to TΠεX (B). Thus, ΠεX is stationary.

Second, since ∥r(x)∥2= ∥x∥2 and r is linear, we can write

Πε(r(X )) =




r(x) + ε ∑

z∈X\{x}
∥r(x)−r(z)∥2↑

r(x)− r(z)
∥r(x)− r(z)∥d

2





x∈X

=




r(x) + ε ∑

z∈X\{x}
∥r(x−z)∥2↑

r(x − z)
∥r(x − z)∥d

2





x∈X

=




r(x) + ε ∑

z∈X\{x}
∥x−z∥2↑

r(x − z)
∥x − z∥d

2





x∈X

= {r(x + εFX (x))}x∈X .

Thus, we have Πε(r(X )) = r(Πε(X )). This implies that

Tr(Πε(X ))(B) = 1 − P (r(Πε(X )) ∩ B = ∅)

= 1 − P (Πε(r(X )) ∩ B = ∅) ,

which is equal to TΠε(X )(B) by the isotropy of X . Thus, Πε(X ) is isotropic.

We highlight that the proof remains valid when substituting the repulsion opera-

tor Πε with its truncated version Π(q,p)
ε (4.3), with 0 ≤ q < p.

Now, to prove Corollary 4.1, we first note that a PPP P is almost surely a valid

configuration, as mentioned in Section 4.2. In view of Proposition 4.1, it is enough

to prove that, almost surely, the images of two distinct points from P under Πε

remain distinct and that ΠεP possesses the same intensity as P .
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Proof of Corollary 4.1. To show that almost surely the images of two distinct points

from P under Πε remain distinct,8 we need to show that

E

[ ̸=
∑

x,y∈P
1{x+εFP (x)=y+εFP (y)}(x, y)

]
= 0. (4.14)

Using the extended Slivnyak-Mecke theorem (2.12) we get

E

[ ̸=
∑

x,y∈P
1{x+εFP (x)=y+εFP (y)}(x, y)

]

= E

[ ̸=
∑

x,y∈P
1{x+εFP\{x,y}(x)+ε

x−y
∥x−y∥d

2
=y+εFP\{x,y}(y)+ε

y−x
∥y−x∥d

2
}(x, y)

]

=
∫

Rd×Rd
E

[
1{x+εFP (x)+ε

x−y
∥x−y∥d

2
=y+εFP (y)+ε

y−x
∥y−x∥d

2
}(x, y)

]
ρ2dxdy

=
∫

Rd×Rd
P
(

FP (x)− FP (y) = (y − x)
(

ε−1 + 2∥y − x∥−d
2

))
ρ2dxdy. (4.15)

By Proposition 4.3, for x ̸= y, the random vector FP (x) − FP (y) is continuous.

Thus

P
(

FP (x)− FP (y) = (y − x)
(

ε−1 + 2∥y − x∥−d
2

))
= 0.

Plugging back in (4.15) yields (4.14).

It remains to show that the intensity of ΠεP is equal to ρ. Consider a compact K of

Rd. Based on the previous reasoning, almost surely, when the repulsion operator

Πε is applied to the points of P , no two points will end up at the same location.

Thus we have

ΠεP(K) = ∑
x∈P

1K(x + εFP (x)).

Applying the extended Slivnyak-Mecke theorem (2.12) we get

E [ΠεP(K)] = E

[
∑

x∈P
1K

(
x + εFP\{x}(x)

)]
=
∫

Rd
E [1K(x + εFP (x))] ρdx.

As the distribution of FP (x) is translation-invariant (in x) we get

E[ΠεP(K)] =
∫

Rd
E [1K(x + εFP (0))] ρdx.

8In the broader framework of point processes, our objective is to establish that Πε(P) is a

simple point process, assuming that we define Πε(P) as a multiset rather than a set. To accomplish

this, we employ Proposition 6.7 from (Last and Penrose, 2017).
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Exchanging the integral and the expectation using Tonelli’s theorem gives

E[ΠεP(K)] = ρE

[∫

Rd
1K(x + εFP (0))dx

]

= ρE

[∫

Rd
1K−εFP (0)(x)dx

]

= ρE [|K − εFP (0)|] = ρ|K|.

Thus the intensity of ΠεP is equal to ρ, which completes the proof.

4.5.3 Proposition 4.4 (existence of the moments)

In this section, let P ⊂ Rd be a PPP of intensity ρ, with d ≥ 3 and ε ∈ (−1, 1).

Our objective is to demonstrate the existence of the moments of ΠεP . To wit, let

R > 0 and m be a positive integer, we need to show that

E

[(
∑

x∈ΠεP
1B(0,R)(x)

)m]
< ∞.

To accomplish this, the key idea is to decompose the Coulomb force FP (x) acting

on x ∈ Rd and defined in (F2) into two truncated sums, one that collects the

influence of points close to x and the other one of those points in P far from x;

the two terms shall be controlled by different means. Formally, denote B(0, R)c ≜

Rd \ B(0, R). For x ∈ Rd, we write

FP (x) = F(0,1)
P (x) + F(1,∞)

P (x), (4.16)

where the truncated forces are defined in (4.2). We refer to the first term in the

right-hand side of (4.16) as the “internal” force, and to the second term as the “ex-

ternal” force. In words, our proof works by showing that, for x ∈ P ∩ B(0, R)c to

be pushed inside B(0, R), i.e. for x+ εFP (x) ∈ B(0, R), one of two low-probability

events must occur. One of these events involves the internal force, and the other

one the external force.

Let 0 < γ < 1/(d − 1), 0 < β < γ/(d − 1), and r : x 7→ ∥x∥β
2 . Let also R′ =

(R + m − 1)1/β. Now, for x ∈ P ∩ B(0, R′)c, it holds

{x + εFP (x) ∈ B(0, R)} ⊂
{

x + εF(0,1)
P (x) ∈ B(0, r(x))

}
∪
{
∥F(1,∞)

P (x)∥2 ≥ r(x)− R
|ε|

}
.

(4.17)
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To see the validity of this inclusion, note that if x is not in the right-hand side of

(4.17), then

∥x + εFP (x)∥2 ≥ ∥x + εF(0,1)
P (x)∥2 − ∥εF(1,∞)

P (x)∥2 > r(x)− (r(x)− R) = R.

Now, using (4.17), we get

E

[(
∑

x∈ΠεP
1B(0,R)(x)

)m]
≤ E

[(
∑

x∈P
1B(0,R′)(x) + ∑

x∈P∩B(0,R′)c

1B(0,r(x))(x + εF(0,1)
P (x))

+ ∑
x∈P∩B(0,R′)c

1{∥F(1,∞)
P (x)∥2≥(r(x)−R)/|ε|}(x)

)m]
.

By convexity of h : x 7→ xm on R+ \ {0}, it further comes

E

[(
∑

x∈ΠεP
1B(0,R)(x)

)m]
≤ 3m−1

(
E

[(
∑

x∈P
1B(0,R′)(x)

)m]

+ E




 ∑

x∈P∩B(0,R′)c

1B(0,r(x))(x + εF(0,1)
P (x))




m


+ E




 ∑

x∈P∩B(0,R′)c

1{∥F(1,∞)
P (x)∥2≥(r(x)−R)/|ε|}(x)




m

)

.

(4.18)

The first term on the right-hand side of (4.18) is finite since P is a PPP. The rest of

the proof consists in proving that the remaining two terms are finite, which will

be a consequence of Corollaries 4.2 and 4.3.

We first focus on the term in (4.18) involving the external force.

Lemma 4.1. Consider a homogeneous Poisson point process P ⊂ Rd of intensity ρ, with

d ≥ 3. There exist c1, c2, c3 > 0 such that for all p > q > 0 and t > 0 we have

P(∥F(q,p)
P (0)∥2> t) ≤ c1 exp

(
−c2qd−1t log

(
c3t
q

))
. (4.19)

Note that by translation-invariance, the choice of 0 in (4.19) is arbitrary. In ad-

dition, when ρ = 1, Equation (4.19) corresponds to Equation (32) in Theorem 16

of Chatterjee et al. (2010). While the paper does not offer an exhaustive proof of

this equation, it does provide a similar and detailed proof for another equation

within the same theorem. For completeness, following Chatterjee et al. (2010),
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we provide here a proof of Lemma 4.1, valid for any value of ρ > 0. The proof

involves bounding the exponential moment of each component in the random

vector F(q,p)
P (0) and using Markov’s inequality to obtain a tail bound. The Pois-

son assumption then helps simplify the bound.

Proof of Lemma 4.1. In order to streamline the notations used in this proof, we set

G(q,p) = −F(q,p)
P , with G(q,p)

i its i-th component.

If we prove that for any i ∈ {1, . . . , d} there exist C1, C2, C3 > 0 such that

P
(

G(q,p)
i (0) > t

)
≤ C1 exp

(
−C2qd−1t log

(
C3t
q

))
, (4.20)

using that −P is also a PPP of intensity ρ, it follows that

P
(

G(q,p)
i (0) < −t

)
≤ C1 exp

(
−C2qd−1t log

(
C3t
q

))
,

and combining this with (4.20) we obtain (4.19), with c1 = 2dC1, c2 = C2/d, and

c3 = C3/d. Thus, we only need to verify Equation (4.20).

Let θ ≥ 0, using Markov’s inequality we have

P
(

G(q,p)
i (0) > t

)
= P


exp


θ ∑

z∈A(q,p)∩P
∥z∥2↑

zi

∥z∥d
2


 > exp(θt)




≤ E


exp


θ ∑

z∈A(q,p)∩P
∥z∥2↑

zi

∥z∥d
2





 exp(−θt). (4.21)

Conditioning on P(A(q,p)), the points of P ∩ A(q,p) are independent and uni-

formly distributed in A(q,p). Let u be a uniform r.v. in A(q,p), and N > 0. By

symmetry, E[ u
∥u∥d

2
] = 0 and we have

E


exp


θ ∑

z∈A(q,p)∩P
∥z∥2↑

zi

∥z∥2



∣∣∣ P(A(q,p)) = N


 =

E


 ∏

z∈A(q,p)∩P
∥z∥2↑

exp

(
θ

zi

∥z∥d
2

) ∣∣∣ P(A(q,p)) = N


 =

E

[
exp

(
θ

ui

∥u∥d
2

)]N

=

(
1 + E

[
∑
k≥2

1
k!

θk uk
i

∥u∥kd
2

])N

.
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In particular,

E


exp


θ ∑

z∈A(q,p)∩P
∥z∥2↑

zi

∥z∥2



∣∣∣ P(A(q,p)) = N


 ≤

(
1 + ∑

k≥2

1
k!

θkE
[
∥u∥−k(d−1)

2

])N

.

(4.22)

Recall that the surface area of the unit ball of Rd is equal to dκd. As u has uniform

distribution on A(q,p) we get

E

[
1

∥u∥k(d−1)
2

]
=

1
|A(q,p)|

∫

A(q,p)

1

∥u∥k(d−1)
2

du

=
dκd

|A(q,p)|

∫ p

q
rd−1−k(d−1)dr.

As k ≥ 2 and d ≥ 3, we have k > d/(d − 1). Thus

E

[
1

∥u∥k(d−1)
2

]
=

dκd

|A(q,p)|(k(d − 1)− d)

(
1

qk(d−1)−d
− 1

pk(d−1)−d

)

≤ dκd

|A(q,p)|qk(d−1)−d
.

Plugging back into (4.21), we obtain

P
(

G(q,p)
i (0) > t

)
≤ E



(

1 +
dκdqd

|A(q,p)| ∑
k≥2

1
k!

(
θ

qd−1

)k
)P(A(q,p))


 exp(−θt)

≤ E



(

1 +
dκdqd

|A(q,p)| exp
(

θ

qd−1

))P(A(q,p))

 exp(−θt).

Now, remembering that P(A(q,p)) is a Poisson random variable of parameter

ρ|A(q,p)|, we obtain9

P(G(q,p)
i (0) > t) ≤ exp

(
ρ|A(q,p)| dκdqd

|A(q,p)| exp
(

θ

qd−1

))
exp(−θt)

= exp
(

dκdρqd exp
(

θ

qd−1

)
− θt

)
.

Taking θ = qd−1 log( t
dκdρq ), we get

P(G(q,p)
i (0) > t) ≤ exp

(
−tqd−1 log

(
t

dκdρq

)
+ tqd−1

)

= exp
(
−tqd−1 log

(
t

edκdρq

))
,

9If X is a Poisson random variable of parameter λ, then for any γ the mean of the random

variable (1 + γ)X is equal to exp(λγ).
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which ends the proof.

Lemma 4.1 has the following corollary.

Corollary 4.2. Consider a homogeneous Poisson point process P ⊂ Rd of intensity ρ,

with d ≥ 3. Let R > 0, ε ∈ (−1, 1), β ∈ (0, 1) and r(x) = ∥x∥β
2 . Then, for any positive

integer m, there exist positive constants (ak)
m
k=1, (bk)

m
k=1, and (ck)

m
k=1 such that

E




 ∑

x∈P∩B(0,R′)c

1{∥F(1,∞)
P (x)∥2>

r(x)−R
|ε|

}(x)




m
 ≤

m

∑
k=1

ak

(∫

B(0,R′)c
exp (−bkgk(x) log(ckgk(x))) ρdx

)k
,

(4.23)

where R′ = (R + m − 1)1/β and gk(x) =
r(x)−(R+k−1)

|ε|k .

This corollary helps us control the external term in (4.16). Indeed, as ∥x∥2 → ∞

we have

exp (−bkgk(x) log(ckgk(x))) = o
(

exp
(
−∥x∥β

2

))
.

Thus, for any positive integer m

E




 ∑

x∈P∩B(0,R′)c

1{∥F(1,∞)
P (x)∥2>

r(x)−R
|ε| }(x)




m
 < ∞. (4.24)

Proof of Corollary 4.2. Fix a positive integer m. There exists m constants (di)
m
i=1

such that

E




 ∑

x∈P∩B(0,R′)c

1{∥F(1,∞)
P (x)∥2>

r(x)−R
|ε| }(x)




m
 =

m

∑
k=1

dk E




̸=
∑

x1,...,xk∈P∩B(0,R′)c

1{∥F(1,∞)
P (x1)∥2>

r(x1)−R
|ε| }(x1) · · ·1{∥F(1,∞)

P (xk)∥2>
r(xk)−R

|ε| }(xk)




︸ ︷︷ ︸
≜Ek

.

(4.25)

Using Lemma 4.1 we will show that for any k ≥ 1 there exists positive constants

ak, bk and ck such that

Ek ≤
(∫

B(0,R′)c
ak exp [−bkgk(x) log(ckgk(x))] ρdx

)k
,
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with gk(x) =
r(x)−(R+k−1)

|ε|k for k ∈ {1, . . . , m}.

To simplify the notations, we denote P \{x1, . . . , xk} by P̂ (k) for any k ∈ {1, . . . , m}
and sometimes omit to remind that x1, . . . , xm ∈ P ∩ B(0, R′)c when it is clear

from the context.

First, remark that for two distinct points x and y of Rd, we have

F(1,∞)
P (x) =





F(1,∞)
P\{x,y}(x) if ∥x − y∥2 < 1

F(1,∞)
P\{x,y}(x) +

x−y
∥x−y∥d

2
if ∥x − y∥2 ≥ 1

.

Thus

∥F(1,∞)
P (x)∥2 ≤ ∥F(1,∞)

P\{x,y}(x)∥2 + 1.

In particular

1{∥F(1,∞)
P (x)∥2≥(r(x)−R)/|ε|

}(x) ≤ 1{∥F(1,∞)
P\{x,y}(x)∥2≥2g2(x)

}(x). (4.26)

Generalizing Equation (4.26) to k points gives

1{∥F(1,∞)
P (x)∥2≥(r(x)−R)/|ε|

}(x) ≤ 1{∥F(1,∞)

P̂(k) (x)∥2≥kgk(x)
}(x). (4.27)

Using Equation (4.27) and the extended Slivnyak-Mecke theorem (2.12) we get

Ek ≤ E

[ ̸=
∑

x1,...,xk

1{∥F(1,∞)

P̂(k) (x1)∥2>kgk(x1),...,∥F(1,∞)

P̂(k) (xk)∥2>kgk(xk)}
(x1, . . . , xk)

]

=
∫

(B(0,R′)c)k
P
(
∥F(1,∞)

P (x1)∥2 > kgk(x1), . . . , ∥F(1,∞)
P (xk)∥2 > kgk(xk)

)
ρkdx1 . . . dxk

≤
∫

(B(0,R′)c)k
min

j∈{1,...,k}
P
(
∥F(1,∞)

P (xj)∥2 ≥ kgk(xj)
)

ρkdx1 . . . dxk.

As the distribution of F(1,∞)
P (x) is translation invariant (w.r.t. x), we get

Ek ≤
∫

(B(0,R′)c)k
min

j∈{1,...,k}
P
(
∥F(1,∞)

P (0)∥2 ≥ kgk(xj)
)

ρkdx1 . . . dxk

=
∫

(B(0,R′)c)k
P

(
∥F(1,∞)

P (0)∥2 ≥ max
j∈{1,...,k}

kgk(xj)

)
ρkdx1 . . . dxk

≤
∫

(B(0,R′)c)k
P

(
∥F(1,∞)

P (0)∥2 ≥
k

∑
j=1

gk(xj)

)
ρkdx1 . . . dxk. (4.28)

116



4 – Repelled point processes

For x1, . . . , xk ∈ B(0, R′)c, Lemma 4.1 with q = 1 and p = ∞ guarantees the

existence of C1, C2, C3 > 0 such that

P

(
∥F(1,∞)

P (0)∥2 ≥
k

∑
j=1

gk(xj)

)
≤ C1 exp

(
−C2

k

∑
j=1

gk(xj) log

(
C3

k

∑
j=1

gk(xj)

))

= C1

k

∏
j=1

exp

(
−C2gk(xj) log

(
C3

k

∑
j=1

gk(xj)

))

≤ C1

k

∏
j=1

exp
(
−C2gk(xj) log

(
C3gk(xj)

))
.

Plugging back into (4.28), and then in (4.25), we obtain the existence of positive

constants {ak}m
k=1, {bk}m

k=1, and {ck}m
k=1 such that

E

[
 ∑

x∈P∩B(0,R′)c

1{∥F(1,∞)
P (x)∥2>

r(x)−R
|ε| }(x)




m ]

≤
m

∑
k=1

dkak

∫

(B(0,R′)c)k

k

∏
j=1

exp
(
−bkgk(xj) log

(
ckgk(xj)

))
ρkdx1 · · ·dxk

=
m

∑
k=1

dkak

(∫

B(0,R′)c
exp (−bkgk(x) log (ckgk(x))) ρ dx

)k
,

which concludes the proof.

Now we switch focus to bounding the contribution from the internal force to

(4.16). Again, we work with a lemma and a corollary.

Lemma 4.2. Consider a homogeneous Poisson point process P ⊂ Rd of intensity ρ, with

d ≥ 3. Let R > 0 and ε ∈ (−1, 1). Consider a function r : Rd → R+ \ {0} such that

r(x) < ∥x∥2 for any x ∈ B(0, R)c. Then, for any x ∈ B(0, R)c, and 0 < γ < 1/(d− 1),

there exists c1, . . . , c5 > 0 such that

P
(

x + εF(0,1)
P (0) ∈ B(0, r(x))

)
≤ c1

h(x)g(x)1+γ
+ c3 exp (−c4g(x) log(c5g(x))) ,

(4.29)

where h(x) = max
(

1, c2 (∥x∥2/r(x)− 1)d−1 − 1
)

, and g(x) = (∥x∥2 − r(x))/|ε|.

First, by translation-invariance of the distribution of F(q,p)
P (x), the choice of 0 in

(4.29) is arbitrary. Second, by choosing r(x) = ∥x∥β
2 , with 0 < β < 1/(2(d − 1)),
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4 – Repelled point processes

the upper bound in Equation (4.29) is o(∥x∥−d
2 ) as ∥x∥2 goes to infinity. Thus,

P
(

x + εF(0,1)
P (0) ∈ B (0, r(x))

)
is integrable over B(0, R)c.

x1

x2

x3

x4
x5

x6

x7

x8

x9

x10

x11x12

x13

x14

θ
r(x)

Figure 4.11: Illustration of the proof idea

Proof of Lemma 4.2. Fix x ∈ B(0, R)c, and let q = ∥x∥2 − r(x) and p = ∥x∥2 + r(x).

Pick points {xi}m
i=1 iteratively on the sphere S(0, ∥x∥2) with x1 = −x, such that

the balls {B(xi, r(x))}m
i=1 are disjoint, and it is not possible to add an additional

similar ball not overlapping the previous ones. Next, let Bi = B(xi, 3r(x)) and

C1 ≜ κd(3r(x))d be the volume of B1. Then,
⋃m

i=1 Bi is a covering of the annulus

A(q,p). To see why this holds, suppose that there exists a point y ∈ A(q,p) \⋃m
i=1 Bi.

In particular, mini ∥y − xi∥2 > 3r(x). Take z = y ∥x∥2
∥y∥2

, z is in fact the orthogonal

projection of y on S(0, ∥x∥2). For any i ∈ {1, . . . , m}

∥z − xi∥2 ≥ ∥y − xi∥2 − ∥z − y∥
> 3r(x)− |∥y∥2 − ∥x∥2|
> 2r(x).

Thus, we have z ∈ S(0, ∥x∥2) and B(z, r(x)) ∈ A(q,p) \ ⋃m
i=1 B(xi, r(x)) giving

a contradiction. While our work pertains to dimensions greater than two, em-

ploying a visualization that depicts the two-dimensional case can aid in compre-

hending the concept. Figure 4.11 illustrates an example of valid points {xi}m
i=1
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in red and the covering in green of A(q,p) for d = 2. Note that, for d = 2 and

any i ∈ {1, ..., m}, xi can be chosen inductively as the rotation of xi−1 of angle

θ = Arcsin(r(x)/∥x∥2) around the origin.

As the balls {B(xi, r(x))}m
i=1 are disjoint and contained in A(q,p), we have

P
(

εF(0,1)
P (0) ∈ A(q,p)

)
≥ P

(
εF(0,1)

P (0) ∈
m⋃

i=1

B(xi, r(x))

)

=
m

∑
i=1

P
(

εF(0,1)
P (0) ∈ B(xi, r(x))

)

By isotropy of the law of F(0,1)
P (0), we obtain

P
(

εF(0,1)
P (0) ∈ A(q,p)

)
≥ mP

(
εF(0,1)

P (0) ∈ B(x1, r(x))
)

. (4.30)

We will now proceed to find a suitable lower bound for m. To accomplish this,

we will apply the Mean Value theorem to

h : [∥x∥2 − r(x), ∥x∥2 + r(x)] → R

x 7→ xd

and we get that there exists c ∈ (−1, 1) such that

(∥x∥2 + r(x))d − (∥x∥2 − r(x))d = 2dr(x)(∥x∥2 + cr(x))d−1 ≥ 2dr(x)(∥x∥2 − r(x))d−1.

Hence

m ≥
⌊
|A(q,p)|

C1

⌋

=

⌊
κd
(
(∥x∥2 + r(x))d − (∥x∥2 − r(x))d)

κd(3r(x))d

⌋

≥
⌊

κd
(
2dr(x)(∥x∥2 − r(x))d−1)

κd(3r(x))d

⌋
≥ max

(
1, C2

(∥x∥2

r(x)
− 1
)d−1

− 1

)
,

where C2 = (2d)/3d. Thus Equation (4.30) leads to

P
(

εF(0,1)
P (0) ∈ B(x1, r(x))

)
≤

P
(

εF(0,1)
P (0) ∈ A(q,p)

)

max
(

1, C2

(
∥x∥2
r(x) − 1

)d−1
− 1
)

≤
P
(
∥εF(0,1)

P (0)∥2 > ∥x∥2 − r(x)
)

max
(

1, C2

(
∥x∥2
r(x) − 1

)d−1
− 1
) .
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Since F(0,1)
P = FP − F(1,∞)

P , we get

P
(

εF(0,1)
P (0) ∈ B(x1, r(x))

)
≤

P
(
|ε|∥FP (0)− F(1,∞)

P (0)∥2 > ∥x∥2 − r(x)
)

max
(

1, C2

(
∥x∥2
r(x) − 1

)d−1
− 1
)

≤
P
(
∥FP (0)∥2 > ∥x∥2−r(x)

2|ε|
)
+ P

(
∥F(1,∞)

P (0)∥2 > ∥x∥2−r(x)
2|ε|

)

max
(

1, C2

(
∥x∥2
r(x) − 1

)d−1
− 1
)

(4.31)

As a result of Proposition 4.2, for any 0 < γ < 1/(d − 1) we have E[∥FP (0)∥1+γ
2 ]

is finite. Applying Markov’s inequality to the first part of Equation (4.31), and

using Lemma 4.1 with t = (∥x∥2 − r(x))/(2|ε|) for the last part, we obtain the

existence of positive constants c1, c2, and c3 such that

P
(

x + εF(0,1)
P (0) ∈ B(0, r(x))

)

≤
(2|ε|)1+γE

[
∥FP (0)∥1+γ

2

]

max
(

1, C2

(
∥x∥2
r(x) − 1

)d−1
− 1
)
(∥x∥2 − r(x))1+γ

+
c1 exp

(
−c2

∥x∥2−r(x)
2|ε| log

(
c3

∥x∥2−r(x)
2|ε|

))

max
(

1, C2

(
∥x∥2
r(x) − 1

)d−1
− 1
)

≤ C3|ε|1+γ

max
(

1, C2

(
∥x∥2
r(x) − 1

)d−1
− 1
)
(∥x∥2 − r(x))1+γ

+ C4 exp
(
−C5

∥x∥2 − r(x)
|ε| log

(
C6

∥x∥2 − r(x)
|ε|

))

with C3 = 21+γE
[
∥FP (0)∥1+γ

2

]
, C4 = c1, C5 = c2/2 and C6 = c3/2.

Note that under the assumptions and definitions of Lemmas 4.1, 4.2, for x ∈
B(0, R1/β)c, there exists positive constants c1, . . . , c5 such that

P(x + εFP (x) ∈ B(0, R)) ≤ c1

max
(

1, c2

(
∥x∥2
r(x) − 1

)d−1
− 1
)

g(x)1+γ

+ c3 exp (−c4g(x) log(c5g(x))) , (4.32)

for any 0 < γ < 1/(d − 1). As expected, we observe that

P(x + εFP ∈ B(0, R)) −−→
ε→0

0.
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We will later see that by selecting an appropriate function r, typically for r(x) =

∥x∥β
2 with 0 < β < γ

d−1 , the bound in Equation (4.32) converges fast enough to

zero allowing to bound the moments of ∑x∈ΠεP 1B(0,R)(x).

The next result is a corollary of Lemma 4.2.

Corollary 4.3. Consider a homogeneous Poisson point process P ⊂ Rd of intensity ρ,

with d ≥ 3. Let R > 0, ε ∈ (−1, 1) and β ∈ (0, 1). Set r(x) = ∥x∥β
2 , g(x) =

(∥x∥2 − r(x))/|ε| and denote

Ek ≜ E




̸=
∑

x1,...,xk∈P∩B(0,R)c

1B(0,r(x1))
(x1 + εF(0,1)

P (x1)) . . .1B(0,r(xk))
(xk + εF(0,1)

P (xk))


 .

(4.33)

For any positive integer m and 0 < γ < 1/(d − 1) there exists positive constants

a1, . . . , am−1 and c1, . . . , c5 such that

E1 ≤
∫

B(0,R)c

c1

max
(

1, c2

(
∥x∥1−β

2 − 1
)d−1

− 1
)

g(x)1+γ

+ c3 exp (−c4g(x) log (c5g(x))) ρdx, (4.34)

and

E




 ∑

x∈P∩B(0,R)c

1B(0, f (x))(x + εF(0,1)
P (x))




m
 ≤

m−1

∑
k=1

(
akEk + bk−1E1Em−k

)
+ bm−1E1.

(4.35)

where b = 2dκdρ.

Taking 0 < β < γ
d−1 , the integrand in Equation (4.34) is o(∥x∥−d

2 ) as ∥x∥2 → ∞

implying that

E




 ∑

x∈P∩B(0,R)c

1B(0,r(x))(x + εF(0,1)
P (x))




m
 < ∞, (4.36)

for any positive integer m.

Proof of Corollary 4.3. We will show the validity of Equation (4.35) by induction

on m ≥ 1.
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To begin with, for m = 1 using the extended Slivnyak-Mecke theorem (2.12) and

that the law of F(0,1)
P (x) is translation-invariant (w.r.t. x) we have

E1 = E


 ∑

x∈P∩B(0,R)c

1B(0,r(x))(x + εF(0,1)
P\{x}(x))




=
∫

B(0,R)c
P
(

x + εF(0,1)
P (0) ∈ B(0, r(x))

)
ρdx.

By Lemma 4.2, for any 0 < γ < 1/(d − 1) there exists positive constants c1, . . . , c5

such that

E1 ≤
∫

B(0,R)c

c1

max
(

1, c2

(
∥x∥1−β

2 − 1
)d−1

− 1
)

g(x)1+γ

+ c3 exp (−c4g(x) log(c5g(x))) ρdx.

Next, suppose that Equation (4.35) is valid until m, and let’s verify that it holds

for m + 1. There exists a sequence of constants (dk)
m
k=1 such that

E





 ∑

x∈P∩B(0,R)c

1B(0,r(x))(x + εF(0,1)
P (x))




m+1

 =

m

∑
k=1

dkEk + Em+1. (4.37)

We only need to focus on finding an upper bound of Em+1.

To simplify the notations, we denote P \{x1, . . . , xk} by P̂ (k) for any k ∈ {1, . . . , m}
and sometimes omit to remind that x1, . . . , xm ∈ P ∩ B(0, R)c when it is clear from

the context.
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4 – Repelled point processes

To begin, we break down the sum that defines Em+1 according to the count k

of the points of P ∩ B(0, R)c that fall within a ball of radius 2 centered at x1 as

follows

Em+1 =

E




̸=
∑

x1,··· ,xm+1
max
1<i

∥xi−x1∥2≤2

1B(x1,r(x1))
(−εF(0,1)

P (x1)) · · ·1B(xm+1,r(xm+1))
(−εF(0,1)

P (xm+1))




︸ ︷︷ ︸
Am+1

+

m

∑
k=1

E




̸=
∑

x1,··· ,xm+1
max

1<i≤k
∥xi−x1∥2≤2

min
k<i≤m+1

∥xi−x1∥2>2

1B(x1,r(x1))
(−εF(0,1)

P (x1)) · · ·1B(xm+1,r(xm+1))
(−εF(0,1)

P (xm+1))




︸ ︷︷ ︸
Ak

.

First, for Am+1 the extended Slivnyak-Mecke theorem (2.12) followed by a change

of variables gives

Am+1 ≤

E




̸=
∑

x1,··· ,xm+1
max
1<i

∥xi+x1∥≤2

1B(0,r(x1))

(
x1 + εF(0,1)

P̂ (m+1)(x1) + ε
m+1

∑
j=2

x1 − xj

∥x1 − xj∥d
2

)

 =

∫

B(0,R)c

∫

B(x1,2)m
P

(
x1 + εF(0,1)

P (x1) ∈ B

(
ε

m+1

∑
j=2

xj − x1

∥xj − x1∥d
2

, r(x1)

))
ρm+1dxm+1 . . . dx1 =

∫

B(0,2)m×B(0,R)c
P

(
x1 + εF(0,1)

P (x1) ∈ B

(
ε

m

∑
j=1

tj

∥tj∥d
2

, r(x1)

))
ρm+1dx1dt1 . . . dtm.

By the definition of the first intensity measure (2.2) the last equation is equal to

∫

B(0,2)m
E


 ∑

x∈P∩B(0,R)c

1
B

(
ε ∑m

j=1
tj

∥tj∥d
2

,r(x)

)(x + εF(0,1)
P\{x}(x))


 ρmdt1 . . . dtm.
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4 – Repelled point processes

Employing further the stationarity of Π(0,1)
ε P , we get

Am+1 ≤
∫

B(0,2)m
E


 ∑

x∈P∩B(0,R)c

1B(0,r(x))(x + εF(0,1)
P (x))


 ρmdt1 . . . dtm

= (2dκdρ)mE1. (4.38)

Second, for k ∈ {2, . . . , m}, we have

Ak ≤ E

[ ̸=
∑

x1∈B(0,R)c

x2,··· ,xk∈B(x1,2)

(
1B(0,r(x1))

(
x1 + εF(0,1)

P̂ (k) (x1) + ε
k

∑
j=2

x1 − xj

∥x1 − xj∥d
2

)

̸=
∑

xk+1,··· ,xm+1∈B(x1,2)c
1B(0,r(xk+1))

(xk+1 + εF(0,1)
P̂ (k+1)(xk+1))

· · ·1B(0,r(xm+1))
(xm+1 + εF(0,1)

P̂ (k)\{xm+1}
(xm+1))

)]
.

Applying the extended Slivnyak-Mecke theorem (2.12) then, using the indepen-

dence of F(0,1)
P (x) and F(0,1)

P (y) whenever ∥x − y∥2 > 2 yield

Ak ≤
∫

B(0,R)c×B(x1,2)k−1
E

[
1B(0,r(x1))

(
x1 + εF(0,1)

P (x1) + ε
k

∑
j=2

x1 − xj

∥x1 − xj∥d
2

)

̸=
∑

xk+1,...,xm+1∈B(x1,2)c
1B(0,r(xk+1))

(
xk+1 + εF(0,1)

P\{xk+1}(xk+1)
)

. . .1B(0,r(xm+1))

(
xm+1 + εF(0,1)

P\{xm+1}(xm+1)
) ]

ρkdxk . . . dx1

=
∫

B(0,R)c×B(x1,2)k−1
E

[
1B(0,r(x1))

(
x1 + εF(0,1)

P (x1) + ε
k

∑
j=2

x1 − xj

∥x1 − xj∥d
2

)]

E
[ ̸=

∑
xk+1,...,xm+1∈B(x1,R)c

1B(0,r(xk+1))

(
xk+1 + εF(0,1)

P (xk+1)
)

. . .1B(0,r(xm+1))

(
xm+1 + εF(0,1)

P (xm+1)
) ]

ρkdxk . . . dx1

= Em+1−k×
∫

B(0,R)c×B(x1,2)k−1
E

[
1B(0,r(x1))

(
x1 + εF(0,1)

P (x1) + ε
k

∑
j=2

x1 − xj

∥x1 − xj∥d
2

)]
ρkdxk . . . dx1.
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4 – Repelled point processes

Following the same technique used to bound Am+1 we get

Ak ≤

Em+1−k

∫

B(0,2)k−1
E


 ∑

x∈P∩B(0,R)c

1
B(ε

k−1
∑

j=1

tj
∥tj∥d

2
,r(x))

(
x + εF(0,1)

P (x)
)

 ρk−1dt1 . . . dtk−1 =

Em+1−k

∫

B(0,2)k−1
E


 ∑

x∈P∩B(0,R)c

1B(0,r(x))

(
x + εF(0,1)

P (x)
)

 ρk−1dt1 . . . dtk−1 =

(2dκdρ)k−1E1Em+1−k. (4.39)

Inserting (4.38), and (4.39) in (4.37) we get

E





 ∑

x∈P∩B(0,R)c

1B(0,r(x))(x + εF(0,1)
P (x))




m+1

 = Am+1 +

m

∑
k=1

dkEk + Ak

≤ cm
1 E1 +

m

∑
k=1

(
dkEk + ck−1

1 E1Em+1−k

)
,

with c1 = 2dκdρ, which concludes the proof.

4.5.4 Theorem 4.5 (variance reduction)

In this section, we prove Theorem 4.5. Our starting point is a lemma from the

theory of harmonic functions, which is key in subsequent proofs. Then we state

and prove a few technical lemmas on the behavior as ε → 0 of various quanti-

ties relevant to the variance of linear statistics under ΠεP . Finally, we put these

lemmas in action in the proof of Theorem 4.5.

Lemma 4.3. Let d > 2 and g ∈ C2(Rd) have compact support. For all x ∈ Rd, we have

g(x) =
1

(2 − d)dκd

∫

Rd
∆g(y)

1
∥x − y∥d−2

2

dy =
1

dκd

∫

Rd
∇g(y) · x − y

∥x − y∥d
2

dy.

(4.40)

Proof of Lemma 4.3. First, recall Green’s “integration by parts” formula (Axler et al.,

2001, Chapter 1)
∫

A
f (x)∆g(x)dx =

∫

∂A
( f∇g.n + g∇ f .n) dS −

∫

A
∇ f (x) · ∇g(x)dx, (4.41)
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4 – Repelled point processes

where A is a bounded subset of Rd with smooth boundary, f and g are C2 on a

neighborhood of Ā, n is the outward unit normal vector, and S is the surface-area

measure on ∂A. Let the support of g be a compact K ⊂ A, (4.41) simplifies and

we have
∫

A
f (x)∆g(x)dx =

∫

∂A
f∇g.n dS −

∫

A
∇ f (x) · ∇g(x)dx. (4.42)

Let x ∈ Rd, and let R > 0 be large enough such that x and K are contained in

B(0, R). Then using the dominated convergence we get

1
(2 − d)dκd

∫

Rd

∆g(y)
∥x − y∥d−2

2

dy = lim
ε→0

1
(2 − d)dκd

∫

B(0,R)\B(x,ε)

∆g(y)
∥x − y∥d−2

2

dy.

(4.43)

Now, using (4.42) with A = B(0, R) \ B(x, ε) and f : y 7→ 1
∥x−y∥d−2

2
, it comes

∫

A

∆g(y)
∥x − y∥d−2

2

dy =
∫

∂B(x,ε)

1
∥x − y∥d−2

2

∇g(y).n dS + (2 − d)
∫

A
∇g(y).

x − y
∥x − y∥d

2
dy

=
1

εd−2

∫

∂B(x,ε)
∇g(y).n dS + (2 − d)

∫

A
∇g(y).

x − y
∥x − y∥d

2
dy

= ε
∫

∂B(x,1)
∇g(εy).n dS + (2 − d)

∫

A
∇g(y).

x − y
∥x − y∥d

2
dy.

Plugging into (4.43) evaluating the limit, we obtain the desired limit.

We use Lemma 4.3 to prove the following result, which takes us closer to control-

ling the variance of linear statistics under the RPPP.

Lemma 4.4. Consider a homogeneous Poisson point process P ⊂ Rd of intensity ρ, with

d ≥ 3. Let f ∈ C2(Rd) of compact support K ⊂ B(0, R) with R > 0. For any R′ ≥ R

we have

lim
ε→0

ε−1E





 ∑

x∈P∩B(0,R′)
f (x + εFP (x))




2

−
(

∑
x∈P

f (x)

)2

 = −2dκdρ2 I( f 2),

(4.44)

where I(.) is defined in (2.22).

Proof of Lemma 4.4. Let R′ ≥ R. For ε ∈ (−1, 1), define

Xε ≜ ε−1





 ∑

x∈P∩B(0,R′)
f (x + εFP (x))




2

−
(

∑
x∈P

f (x)

)2

 .
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4 – Repelled point processes

We need to show that

lim
ε→0

E[Xε] = −2dκdρ2 I( f 2).

The first step is to find a random variable Y ∈ L1 such that |Xε| ≤ Y for all

ε ∈ (−1, 1) so that we can later apply the dominated convergence theorem to

switch the limit and the expectation.

Recall that every C1 function compactly supported is Lipschitz, so f is Lipschitz.

Let L > 0 be the Lipschitz constant of f , it comes

|Xε| ≤
1
|ε| ∑

x∈P∩B(0,R′)
| f (x + εFP (x))− f (x)| ∑

x∈P∩B(0,R′)
| f (x + εFP (x)) + f (x)|

≤ 1
|ε| ∑

x∈P∩B(0,R′)
L∥εFP (x)∥2 ∑

x∈P∩B(0,R′)
2∥ f ∥∞

= 2L∥ f ∥∞ ∑
x∈P∩B(0,R′)

∥FP (x)∥2 ∑
x∈P

1B(0,R′)(x).

Let

Y = ∑
x∈P∩B(0,R′)

∥FP (x)∥2 ∑
x∈P

1B(0,R′)(x).

We claim that the nonnegative random variable Y ∈ L1. To see why, note that the

extended Slivnyak-Mecke theorem (2.12) yields

E[Y] = E


 ∑

x∈P∩B(0,R′)
∥FP\{x}(x)∥2 + ∑

x∈P∩B(0,R′)
∥FP\{x}(x)∥2 ∑

y∈P\{x}
1B(0,R′)(y)




=
∫

B(0,R′)
E [∥FP (x)∥2] ρdx +

∫

B(0,R′)
E

[
∥FP (x)∥2 ∑

y∈P
1B(0,R′)(y)

]
ρdx

≤ ρκd(R′)d


E [∥FP (0)∥2] + E [∥FP (0)∥a

2]
1/a


E

(
∑

y∈P
1B(0,R′)(y)

)b



1/b

 ,

where the last inequality results from Hölder’s inequality with 1 < a < d/(d− 1)

and b = a/(a − 1). As indicated in Section 4.2, E[∥FP (0)∥γ
2 ] < ∞ for any γ <

d/(d − 1). Therefore E[Y] < ∞ and our claim is true.
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4 – Repelled point processes

Applying the dominated convergence theorem, and a first-order Taylor expan-

sion, we obtain

lim
ε→0

E[Xε] =

E


lim

ε→0

1
ε





 ∑

x∈P∩B(0,R′)
f (x + εFP (x))




2

−
(

∑
x∈P

f (x)

)2




 =

E


lim

ε→0

1
ε





 ∑

x∈P∩B(0,R′)
f (x) + ε∇ f (x) · FP (x) + oε→0(εFP (x))




2

−
(

∑
x∈P

f (x)

)2




 =

2E


 ∑

x∈P∩B(0,R)
f (x) ∑

y∈P∩B(0,R)
∇ f (y) · FP (y)


 .

Expanding the sum, it comes

lim
ε→0

E[Xε] =

2E


 ∑

x∈P∩B(0,R)
f (x)∇ f (x) · FP (x) +

̸=
∑

x,y∈P∩B(0,R)
f (x)∇ f (y) · FP (y)


 =

2E


 ∑

x∈P∩B(0,R)
f (x)∇ f (x) · FP\{x}(x)


− 2E




̸=
∑

x,y∈P∩B(0,R)
f (x)∇ f (y) · x − y

∥x − y∥d
2




+ 2E




̸=
∑

x,y∈P∩B(0,R)
f (x)∇ f (y) · FP\{y,x}(y)


 . (4.45)

Using Slivnyak-Mecke (2.12) and Equation (2.11), we obtain

lim
ε→0

E [Xε] = 2
∫

B(0,R)
E [ f (x)∇ f (x) · FP (x)] ρdx

− 2
∫

B(0,R)×B(0,R)
f (x)∇ f (y) · x − y

∥x − y∥d
2

ρ2dxdy

+ 2
∫

B(0,R)×B(0,R)
E [ f (x)∇ f (y) · FP (y)] ρ2dxdy. (4.46)

But the first and last terms in (4.46) are zero due to FP being a centered process,

and the second term is −2dκdρ2 I( f 2) by Lemma 4.3.

Remarkably, the proof of Lemma 4.4 remains valid even if FP is replaced by its

truncated version F(0,p)
P , where p ≥ 2R. In particular, the choice of p ≥ 2R is

crucial to ensure that Equation (4.45) remains valid.

128
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Lemma 4.5. Consider a homogeneous Poisson point process P ⊂ Rd of intensity ρ,

with d ≥ 3. Let f ∈ C2(Rd) of compact support K ⊂ B(0, R) with R > 0. Let further

0 < β < 1
2(d−1)2 . For any R′ > (2R + 2)1/β

lim
ε→0

ε−1E





 ∑

x∈P∩B(0,R′)c

f (x + εFP (x))




2

 = 0.

The proof is based on Corollary 4.2 and 4.3.

Proof of Lemma 4.5. Let R′ > (2R + 2)1/β,ε ∈ (−1, 1), and

Yε ≜
1
ε

E





 ∑

x∈P∩B(0,R′)c

f (x + εFP (x))




2

 .

Setting r(x) = ∥x∥β
2 with 0 < β < 1

2(d−1)2 , we use the same splitting technique as

in (4.17), and write

|Yε| ≤
∥ f ∥∞

|ε| E





 ∑

x∈P∩B(0,R′)c

1B(0,R)(x + εFP (x))




2



≤ ∥ f ∥∞

|ε| E





 ∑

x∈P∩B(0,R′)c

1B(0,r(x))(x + εF(0,1)
P (x)) + 1{∥εF(1,∞)

P (x)∥2>r(x)−R}(x)




2



≤ 2∥ f ∥∞

|ε| E





 ∑

x∈P∩B(0,R′)c

1B(0,r(x))(x + εF(0,1)
P (x))




2



︸ ︷︷ ︸
≜Eint(ε)

+
2∥ f ∥∞

|ε| E





 ∑

x∈P∩B(0,R′)c

1{∥εF(1,∞)
P (x)∥2>r(x)−R}(x)




2



︸ ︷︷ ︸
≜Eext(ε)

.

By Corollary 4.3 with m = 2, there exists a1 > 0 such that for any 0 < γ <

1/(d − 1)

Eint(ε) ≤ a1E1 + E2
1 ≤ a1|ε|1+γ + 2|ε|2+2γ + h1(ε) + 2h1(ε)

2,

129



4 – Repelled point processes

where E1 is defined by Equation (4.33), for k = 1 and

h1(ε) =
∫

B(0,R′)c
a2 exp

(
−a3

∥x∥2 − r(x)
|ε| log

(
a4
∥x∥2 − r(x)

|ε|

))
ρ dx =

∫

B(0,R′)c
a2 exp

(
−a3

∥x∥β
2

|ε|
(
∥x∥1−β

2 − 1
)

log

(
a4
∥x∥β

2
|ε|

(
∥x∥1−β

2 − 1
)))

ρ dx

for some positive constants a2, . . . , a4. But

h1(ε) ≤
∫

B(0,R′)c
a2 exp

(
−a3

∥x∥β
2

|ε|
(

R′1−β − 1
)

log

(
a4
∥x∥β

2
|ε|

(
R′1−β − 1

)))
ρ dx =

|ε|
d
β

∫

B(0, R′
|ε|1/β )

c
a2 exp

(
−a3∥y∥β

2

(
R′1−β − 1

)
log
(

a4∥y∥β
2

(
R′1−β − 1

)))
ρ dy ≤

|ε|
d
β

∫

B(0,1)c
a2 exp

(
−a3∥y∥β

2

(
R′1−β − 1

)
log
(

a4∥y∥β
2

(
R′1−β − 1

)))
ρ dy

︸ ︷︷ ︸
≜c

where in the second line we used the change of variable y = |ε|−1/βx, and in the

last line we used that R′ > |ε|1/β. Thus

0 ≤ h1(ε) ≤ c|ε|d/β.

As d/β > 1, we have h1(ε)/|ε| going to zero as ε approaches zero, so that Eint(ε) =

o(ε).

It remains to show that Eext(ε) = o(ε). By Corollary 4.2 with m = 2 there exists

a5, . . . , a8 > 0 such that

Eext(ε) ≤ a5

(
h2(ε) + h2(ε)

2
)

,

with

h2(ε) =
∫

B(0,R′)c
a6 exp

(
−a7

r(x)− (R + 1)
|ε| log

(
a8

r(x)− (R + 1)
|ε|

))
ρ dx.

In particular

h2(ε) =
∫

B(0,R′)c
a6 exp

(
−a7

∥x∥β − (R + 1)
|ε| log

(
a8
∥x∥β − (R + 1)

|ε|

))
ρ dx

≤
∫

B(0,R′)c
a6 exp

(
−a7

∥x∥β

2|ε| log
(

a8
∥x∥β

2|ε|

))
ρ dx,
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where in the last line we used that R′ > (2R + 2)1/β. Following the same method

used earlier to bound h1(ε), we can show that h2(ε) ≤ C|ε|d/β for some constant

C. This implies that h2(ε) = o(ε) and Eext(ε) = o(ε). We conclude that Yε =

oε→0(1), which ends the proof.

Again, the proof’s validity is unaffected by replacing FP with its truncated coun-

terpart F(0,p)
P , where p > 0. The upcoming lemma is the final tool required to

demonstrate Theorem 4.5.

Lemma 4.6. Consider a homogeneous Poisson point process P ⊂ Rd of intensity ρ, with

d ≥ 3. Let f be a C2(Rd) function of compact support K ⊂ B(0, R) with R > 0, and

ε ∈ (−1, 1). For any R′ ≥ R we have

lim
ε→0

ε−1E


 ∑

x∈P∩B(0,R′)c

f (x + εFP (x)) ∑
y∈P∩B(0,R′)

f (y + εFP (y))


 = 0.

Proof of Lemma 4.6. Let R′ ≥ R, ε ∈ (−1, 1), and denote

Zε ≜
1
ε

E


 ∑

x∈P∩B(0,R′)c

f (x + εFP (x)) ∑
y∈P∩B(0,R′)

f (y + εFP (y))


 .

We show that Zε = oε→0(1). Since f is C2 with compact support, it is Lipschitz

and we denote its Lipschitz constant by L ≥ 0. For x ∈ Bc(0, R′), f (x) = 0 so

| f (x + εFP (x))| = | f (x + εFP (x))− f (x)| ≤ L∥εFP (x)∥21B(0,R′)(x + εFP (x)).

Hence

|Zε| ≤

1
|ε|E


 ∑

x∈P∩B(0,R′)c

L∥εFP (x)∥21B(0,R′)(x + εFP (x)) ∑
y∈P∩B(0,R′)

∥ f ∥∞


 ≤

L∥ f ∥∞E


 ∑

x∈P∩B(0,R′)c


∥FP (x)∥21B(0,R′)(x + εFP (x)) ∑

y∈P\{x}
1B(0,R′)(y)




 =

L∥ f ∥∞

∫

B(0,R′)c
E

[
∥FP (x)∥21B(0,R)(x + εFP (x)) ∑

y∈P
1B(0,R′)(y)

]
ρdx
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The last equality was obtained using the extended Slivnyak-Mecke theorem (2.12).

Next, we employ Hölder’s inequality with 1 < p < d
d−1 and q = p/(p − 1) to

obtain

|Zε| ≤

L∥ f ∥∞

∫

B(0,R′)c
E
[
∥FP (x)∥p

21B(0,R′)(x + εFP (x))
]1/p

E
[
( ∑

y∈P
1B(0,R′)(y))

q]1/q
ρdx =

ρL∥ f ∥∞E
[
( ∑

y∈P
1B(0,R′)(y))

q]1/q

︸ ︷︷ ︸
C

∫

B(0,R′)c
E
[
∥FP (x)∥p

21B(0,R′)(x + εFP (x))
]1/p

dx

When attempting to compute the limit of the last equation as ε approaches zero,

it becomes challenging to interchange the limit and integral using the dominated

convergence theorem. This difficulty arises because E[∥FP (x)∥p
2 ]

1/p is not inte-

grable over B(0, R′)c. To address this, we will handle the cases of ∥FP (x)∥2 > 1

and ∥FP (x)∥2 < 1 separately. By doing so, we can manage the computation dif-

ferently for each case, allowing us to remove the exponent 1
p in the first case and

proceed with the calculations accordingly. For x ∈ B(0, R′)c, we have

E
[
∥FP (x)∥p

21B(0,R′)(x + εFP (x))
]1/p

= E
[
∥FP (x)∥p

21B(0,R′)(x + εFP (x))
(
1{∥FP (x)∥2<1}(x) + 1{∥FP (x)∥2≥1}(x)

)]1/p

≤ E
[
∥FP (x)∥p

21B(0,R′)(x + εFP (x))1{∥FP (x)∥2<1}(x)
]1/p

+ E
[
∥FP (x)∥p

21B(0,R′)(x + εFP (x))1{∥FP (x)∥2≥1}(x)
]1/p

≤ E
[
1B(0,R′+ε)(x)

]1/p
+ E

[
∥FP (x)∥p

21B(0,R′)(x + εFP (x))
]

= 1B(0,R′+ε)(x) + E
[
∥FP (x)∥p

21B(0,R′)(x + εFP (x))
]

.

Thus

|Zε| ≤ C
∫

B(0,R′)c
1B(0,R′+ε)(x) + E

[
∥FP (x)∥p

21B(0,R′)(x + εFP (x))
]

dx

= C|B(0, R′)c ∩ B(0, R′ + ε)|+ C
∫

B(0,R′)c
E
[
∥FP (0)∥p

21B(0,R′)(x + εFP (0))
]

dx.
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The first term in the last inequality goes to zero as ε → 0. It remains to show that

the second term also goes to zero as ε → 0. Denote by fFP (0) the density function

of FP (0) and observe that

lim
ε→0

|Zε| = lim
ε→0

C
∫

B(0,R′)c
E
[
∥FP (0)∥p

21B(0,R′)(x + εFP (0))
]

dx

= lim
ε→0

C
∫

B(0,R′)c

∫

Rd
∥u∥p

21B(0,R′)(x + εu) fFP (0)(u) du dx

= lim
ε→0

C
∫

Rd
∥u∥p

2 fFP (0)(u)|B(0, R′)c ∩ B(εu, R′)|
︸ ︷︷ ︸

Aε(u)

du.

Now, for any u ∈ Rd, Aε(u) −−→
ε→0

0. It is enough to show that we can use the

dominated convergence theorem to conclude. Actually

|Aε(u)|≤ κdR′d∥u∥p
2 fFP (0)(u) ≜ Y(u)

and
∫

Rd Y(u)du = κdR′dE[∥FP (0)∥p
2 ], which is finite since p < d/(d − 1); see

Section 4.2. The dominated convergence theorem thus concludes the proof.

The proof’s validity is unaffected by replacing FP with its truncated counterpart

F(0,p)
P , where p > 0.

We end this section with the proof of Theorem 4.5. We will use Lemmas 4.4, 4.5,

and 4.6.

Proof of Theorem 4.5. Consider a function f ∈ C2(Rd) of compact support K ⊆
B(0, R) for some R > 0. We start by proving that




∂Var
[

ÎΠεP ( f )
]

∂ε



|ε=0

= −2dκd I( f 2).

First, Proposition 4.4 implies the existence of Var
[

ÎΠεP∩K( f )
]

for any ε ∈ (−1, 1).

Now, fix

0 < β <
1

2(d − 1)2 ,
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and let R′ ≥ (2R + 2)1/β. As E[ ÎΠεP∩K( f )] = E[ ÎP∩K( f )] we have

Var
[

ÎΠεP∩K( f )
]
− Var

[
ÎP∩K( f )

]

= E

[(
ÎΠεP∩K( f )

)2
]
− E

[(
ÎP∩K( f )

)2
]

= ρ−2E



(

∑
x∈P

f (x + εFP (x))

)2

−
(

∑
x∈P

f (x)

)2



= ρ−2E





 ∑

x∈P∩B(0,R′)
f (x + εFP (x))




2

−
(

∑
x∈P

f (x)

)2



+ ρ−2E





 ∑

x∈P∩B(0,R′)c

f (x + εFP (x))




2



+ 2ρ−2E


 ∑

x∈P∩B(0,R′)
f (x + εFP (x)) ∑

x∈P∩B(0,R′)c

f (x + εFP (x))




Using Lemmas 4.4, 4.5, and 4.6 we get



∂Var
[

ÎΠεP∩K( f )
]

∂ε



|ε=0

=

lim
ε→0

ε−1ρ−2E





 ∑

x∈P∩B(0,R′)
f (x + εFP (x))




2

−
(

∑
x∈P

f (x)

)2

 =

− 2dκd I( f 2) = −2dκdρVar[ ÎP ( f )].

Finally, the Taylor expansion of Var
[

ÎΠεP∩K( f )
]

at ε = 0 gives

Var
[

ÎΠεP∩K( f )
]
= Var

[
ÎΠ0P∩K( f )

]
+ ε




∂Var
[

ÎΠεP∩K( f )
]

∂ε



|ε=0

+ O(ε2)

= Var
[

ÎP ( f )
]
(1 − 2dκdρε) + O(ε2)

which ends the proof.

Remark 4.8. Substituting FP with its truncated version F(0,p)
P , where p ≥ diam(K),

preserves the validity of the proof of Theorem 4.5. However, the same cannot be

said for F(q,p)
P when q > 0, as it leads to the breakdown of the proof of Lemma

4.4. This highlights the possibility that the variance reduction may be attributed

to the singularity of FP at the points of P .
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4.6 Conclusion

Motivated by the variance reduction of Monte Carlo methods with regular point

processes and inspired by gravitational allocations, we introduced the repulsion

operator Πε. For small ε > 0, this operator intuitively makes point processes

more regular by slightly pushing their points apart from each other using a force

function and controlled by ε.

We provided a detailed theoretical study of ΠεP , where the repulsion operator

is applied to a homogeneous Poisson point process P , and suggested a practi-

cal value for the parameter ε. In particular, we proved that the repelled Poisson

point process is stationary and isotropic having the same intensity as the father

Poisson point process. We also proved the existence of all the moments under

the repelled Poisson point process. The main theoretical result is a variance re-

duction for smooth linear statistics. Numerical experiments support the variance

reduction and make the repelled Poisson point process a promising alternative to

crude Monte Carlo if one can afford the quadratic cost of computing pairwise dis-

tances. Exploratory experiments suggest that variance reduction is also achieved

when applying the repulsion operator to other point processes, such as the (hy-

peruniform) Ginibre ensemble and the (randomized low-discrepancy sequence)

scrambled Sobol sequence. Proving this is a natural next step for future work,

as well as proving variance reduction when applying the repulsion operator to

non-homogeneous point processes.

We have found no numerical evidence of hyperuniformity for the repelled Pois-

son point process through the estimation of its structure factor, while the variance

decay in experiments on smooth functions is compatible with a slightly faster

than crude Monte Carlo rate.

Moreover, we proposed two algorithms for approximately sampling from re-

pelled point processes. Many open questions remain in this area like developing

solutions to prevent points from exiting the observation window or implement-

ing suitable border corrections, and exploring the feasibility of further reducing

the computational complexity, e.g. by employing fast multipole methods.
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In another direction, it would be interesting to explore the attractive case of the

operator Πε, achieved by selecting a negative parameter ε. This approach yields

clustering point processes, where points tend to aggregate near the points of the

original point process, offering insights into spatial clustering phenomena.
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In this thesis, we studied hyperuniform point processes and we introduced the re-

pelled point processes, both of which are regular point processes. Our motivation

comes from numerical integration where using regular point processes as nodes

shows improvement over the classical homogeneous Poisson point process. In

this section, we present some directions for future research. Additional avenues

are also delineated in the conclusions of Chapter 3 and Chapter 4, each of which

is closely aligned with the specific investigations conducted in the corresponding

chapter.

5.1 Hyperuniformity and low discrepancy sequences

We observed in section 3.1.3 that Monte Carlo methods with hyperuniform point

processes (HUPPs) admit (under mild assumptions) fast decaying RMSE com-

pared to crude Monte Carlo when estimating integrals of indicator functions. In

particular, for K = B(0, R) and YN = Y ∩ W, where W is any compact of Rd

containing K and Y is the rescaled version (3.3) of a Class I HUPP, we have

E





 |W|

N ∑
x∈YN

1K(x)− |K|



2



1/2

= O
(

N−1/2−1/(2d)
)

, (5.1)
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where N is the expected number of points of Y in W. Moreover, mild techni-

cal assumptions allow extending this result to K other than spherical windows,

(Coste, 2021). A promising avenue for future research is exploring the extension

of this result to other classes of functions. One potential starting point is deriv-

ing an analogous to the Koksma-Hlawka inequality –which is tailored to low-

discrepancy sequence– for HUPPs, to generalize the results in (5.1) to smooth

functions.

To elaborate, recall that a random sequence XN of N points in W = [0, 1]d is called

a randomized low-discrepancy sequence if each point of XN is uniformly distributed

over W and XN exhibits low-discrepancy, i.e. there exists two positive constants

M and B such that

P
(

D(XN) < BN−1 log(N)d
)
= 1,

for all N ≥ M, where D(XN) is the (star) discrepancy of XN

D(XN) ≜ sup
a∈[0,1)d

∣∣∣∣∣
1
N ∑

x∈XN

1[0,a)(x)− |[0, a)|
∣∣∣∣∣ , (5.2)

and [0, a) is the rectangular window [0, a1)× · · · × [0, ad) of volume |[0, a)|; see

(Owen, 2013, Chapters 15 and 17). The points of a randomized low-discrepancy

sequence are commonly used as nodes in randomized Quasi-Monte Carlo meth-

ods, which can achieve a convergence rate of log(N)(d−1)/2N−3/2 under strong

regularity assumptions on the integrand f ; see also Section 2.7.2. In fact, a bound

on the discrepancy (5.2) can be turned into a bound on integration errors using

the Koksma-Hlawka inequality (Koksma, 1942/1943; Hlawka, 1962). In particu-

lar, for any function f of bounded variations in the sense of Hardy and Krause, we

have

E



(

1
N ∑

x∈XN

f (x)−
∫

[0,1]d
f (x)dx

)2



1/2

≤ CVHK( f )E
[

D(XN)
2
]1/2

, (5.3)

for large N, where VHK( f ) is the total Hardy-Krause variation of f ; see (Owen,

2013, Section 17.1).

Remark that the notion of discrepancy D in (5.2) bears a resemblance to hyper-

uniformity (5.1). Yet, D appears to be a more stringent criterion, as it quantifies

the maximum error across all window sizes. On the other hand, the convergence

rate in (5.1) achieved by a Class I HUPP is the optimal convergence rate for the
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class of indicator functions, as discussed in Section 3.1.3, while the optimal rate

for discrepancies remains unknown (Owen, 2013, Section 15.3). Hence, it’s possi-

ble that the discrepancy D represents a more stringent criterion than required in

this context, and hyperuniformity alone may be sufficient to achieve the optimal

convergence rate for a Monte Carlo method. Investigating further the relation-

ship between a HUPP, a randomized low-discrepancy sequence, and the estima-

tion error in a Monte Carlo method could help understanding better the error of

a Monte Carlo method. This exploration may also pave the way for deriving a

counterpart of equation (5.3) for HUPPs, potentially allowing to generalize the

results in (5.1) to smooth functions. If such a result is obtained, the incorporation

of HUPPs into Monte Carlo methods could lead to a qualitative enhancement in

both performance and theoretical foundations.

5.2 Extension of repelled point processes

In Chapter 4 we introduced the repulsion operator Πε in (4.1) acting on a (valid)

stationary point process X via the force function FX defined in (F1). We proved in

Theorem 4.5 that the repelled Poisson point process (RPPP) obtained by applying

the repulsion operator to a homogeneous Poisson point process (PPP) yields a

variance reduction of the corresponding linear statistics compared to the PPP.

This results in particular a Monte Carlo method with a smaller variance than

crude Monte Carlo. We have also verified the variance reduction in experiments.

Now, we present two interesting directions for future work.

First, it’s valuable for practical applications to investigate the behavior of the re-

pulsion operator (4.1) when applied to additional points. For the sake of clarity,

let’s consider an example. Let XN be a realization of N i.i.d. points in a compact K

and ΠεXN the corresponding repelled sample. Suppose that we have estimated

the integral I( f ) of a function f supported on K using the Monte Carlo estimator

with nodes the points of ΠεXN and we found that to achieve higher accuracy,

we need to increase the total number of nodes to N + M. The first scenario is to

resample N + M i.i.d. points XN+M, find ΠεXN+M, and use it as the set of nodes.

However, when the evaluation of the function is expensive this scenario is not

desirable as we have to start all over again computing f at N + M nodes. It is
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preferable to sample only M additional i.i.d. points XM in K, repel them, and

evaluate f only on those M repelled points. Hence, an interesting avenue is to

investigate whether the configuration resulting from the union of the points of

ΠεXN and the additional repelled points of XM

ΠεXN ∪ {x + εFXN+M(x)}x∈XM ,

is capable of producing variance reduction, akin to what we would get with

ΠεXN+M.

Second, the exploratory experiments of Section 4.4 suggest that variance reduc-

tion is also achieved when applying the repulsion operator to point processes

other than the PPP. Proving this is a natural next step for future work, as well

as proving variance reduction when applying the repulsion operator to non-

stationary point processes. However, in the case of a non-stationary point pro-

cess X of intensity function ρ we suggest adapting the force function FX in F1 to

account for the inhomogeneity. One way to achieve this is by modifying the force

function as follows

Finh
X (x) = ∑

z∈X\{x}, ∥x−z∥↑

β

ρ(x)ρ(z)

x − z

∥x − z∥d, (5.4)

where β > 0 is a tunning parameter. For P an inhogeneous Poisson point process

of intensity function ρ, assuming the series defining Finh
P converges, it’s easy to

verify that the random vector Finh
P is centered, i.e. E[Finh

X (x)] = 0 like the homo-

geneous counterpart (F1). However, for x ∈ Rd, Finh
P (x) does not mainly follow

a symmetric stable distribution. Consequently, demonstrating a counterpart to

Theorem 4.5 in the non-stationary case may necessitate a distinct and tailored

technical approach than what we used to prove Theorem 4.5. However, once

such a result is obtained under sufficiently weak assumptions, applying the re-

pulsion operator could become a default postprocessing in many Monte Carlo

integration tasks.
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M. A. Klatt, J. Lovrić, D. Chen, S. C. Kapfer, F. M. Schaller, P. W. A. Schönhöfer,
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A — The Fourier transform

The Fourier transform F of an integrable function f : Rd → C is the square

integrable function

F ( f )(k) =
∫

Rd
f (x)e−i⟨k,x⟩dx, (A.1)

where ⟨k, x⟩ is the dot product of the wavevector k by x. If f is furthermore a radial

function, denoted abusively by f (r) = f (r), where r = ∥r∥2, then the Fourier

transform of f is the corresponding symmetric Fourier transform Fs, namely

Fs( f )(k) = F ( f )(k) = (2π)d/2
∫ ∞

0
rd/2 f (r)

Jd/2−1(kr)
kd/2−1 dr, (A.2)

where k = ∥k∥2 is called a wavenumber, and Jν is the Bessel function of the first

kind of order ν (Osgood, 2014). If we further define the Hankel transform of order

ν ≥ −1/2 as

Hν( f )(k) =
∫ ∞

0
f (r)Jν(kr)rdr, for k ≥ 0, (A.3)

then (A.2) rewrites as

Fs( f )(k) =
(2π)d/2

kd/2−1 Hd/2−1( f̃ )(k), (A.4)

where f̃ : x 7→ f (x)xd/2−1. Finally, note that the Fourier transform can be gener-

alized to tempered distributions through duality (Coste, 2021, Appendix B).

Example A.1. Let W ⊂ Rd be a convex set, and denote by |W| its Lebesgue mea-

sure, i.e., its volume. The Fourier transform of the scaled intersection volume

α0(., W), defined by Equation (3.8), is given by

F (α0)(k, W) =
1

|W| (F (1W)(k))2 . (A.5)

In particular, if W = B(0, R) is the Euclidean ball of radius R, α0(., W) is a ra-

dial function (Torquato, 2018, Section 3.1.1). In this case, we abusively write

α0(r, W) = α0(r, W) and

Fs(α0)(k, W) = 2dπd/2 Γ(1 + d/2)
kd J2

d/2(kR), (A.6)
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A – The Fourier transform

where Γ is Euler’s Gamma function. On the other hand, if W = ∏d
j=1[−Lj/2, Lj/2],

Equation (A.5) simplifies to

F (α0)(k, W) =

(
d

∏
j=1

sin(k jLj/2)
k j
√

Lj/2

)2

. (A.7)
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B — Simulation of a gravitational al-

location

Poisson

(a) Tmax = 400

Poisson

(b) Tmax = 600

Poisson

(c) Tmax = 1000

Figure B.1: Illustration of a gravitational allocation from Lebesgue to a

realization (black dots) of a PPP in a disk. The region underlying the curves

sharing the same color illustrates a basin, which collects the points of the space

allocated to the point of the PPP that belongs to that particular colored region.

The additional blue points are the positions where the trajectories of the

opposite flow curves stop for Tmax = 400 (left), Tmax = 600 (middle), and

Tmax = 1000 (right). Note that the provided image is purely illustrative, and no

claims are being made regarding the existence of a gravitational allocation from

the Lebesgue measure to a PPP in dimension d = 2. Plots obtained using the

toolbox MCRPPy.

Consider a point process X in Rd, and let’s assume the existence of a gravita-

tional allocation from Lebesgue to this point process. We’ve previously explored

this concept in Example 2.5 and we emphasized that, in general, a gravitational

allocation involves a differential equation that describes the motion of the points
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A – Simulation of a gravitational allocation

of Rd \ X . This motion is driven by either a potential function U (as in (2.19)) or

a force function F (as in (2.20)) exerted by the points in X . Note that the choice

between using U or F depends on the specific context and the presence of ei-

ther of them. For completeness, we provide the algorithm commonly used for

generating visual representations of gravitational allocations, as exemplified in

Figure 2.5, and explain the underlying concept. For simplicity, we assume the

existence of the force function F and that the gravitational allocation is based on

F as in Chatterjee et al. (2010). The scenario involving a potential function can

be obtained by substituting F with −∇U. We extend our gratitude to Manjunath

Krishnapur for generously sharing his MATLAB code and providing valuable

insights into gravitational allocations.

The common approach to illustrate a gravitational involves discretization of the

opposite gravitational flow curves of some points situated around the points of X .

Specifically, for each point x in X , we select M points {yx
i }M

i=1 within the sphere

S(x, ϵ) centered at x of (small) radius ϵ > 0. Then, we plot a discretization of the

solutions to the differential equation

∂

∂t
Yx(t) = −F(Yx(t)), (B.1)

with starting points {yx
i }M

i=1, up to a maximum time Tmax > 0. In the same vein

as Example 2.5, a solution of (B.1) with starting point z is called the opposite flow

curve of z, since (B.1) have the opposite sign of the differential equation (2.20). In

other words, for each i, we draw yx
i (t) iteratively

yx
i (t) = yx

i (t − 1)− hF(yx
i (t − 1)); yx

i (0) = yx
i ,

where h > 0 is the discretization stepsize and t ∈ {0, . . . , Tmax}. We present the

pseudo-code in Algorithm 3.

Understanding Algorithm 3 requires grasping the formation of the boundaries

of the basins. To elaborate, let Bx be the basin of x ∈ X . Bx is the collection of

points of Rd \ X that their gravitational flow curves terminate at x. Consider a

point y ∈ Rd \ X . There are two possible scenarios for y to be located on the

boundary ∂Bx of Bx. The first scenario entails F(y) = 0, indicating that y remains

unaffected by the force F exerted by X . The second scenario is characterized by

a balanced force at y, i.e. the vector F(y) aligns with the boundary ∂Bx and F(y)
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A – Simulation of a gravitational allocation

is orthogonal to the unit normal vector of ∂Bx. In this case, the gravitational flow

curve of y belongs to ∂Bx. Roughly, the collective gravitational flow curves of

such points constitute ∂Bx. Therefore, the first approach for approximating the

basins involves discretizing the gravitational flow curves of the boundary points,

which necessitates locating the boundary points rendering this scenario hard in

practice.

Alternatively, we can reasonably expect that the points {yx
i }M

i=1 in close proximity

to x belong to Bx. Correspondingly, the opposite flow curves of {yx
i }M

i=1 terminate

at ∂Bx, so discretizing them with a small step size h offers a reasonable approx-

imation of Bx. This is the basic idea behind Algorithm 3 which is implemented

within MCRPPy1; see aslo the tutorial Jupyter Notebook2.

Algorithm 3 Illustration of a gravitational allocation

1: sample a point pattern {xi}N
i=1 from the point process X

2: plot {xi}N
i=1

3: fix M, h, Tmax, and ϵ positive

4: for i : 1 → N do

5: choose {yj}M
j=1 in S(xi, ϵ)

6: choose a color c

7: plot {yj}M
j=1 with color = c

8: for t : 1 → Tmax do

9: for j : 1 → M do

10: yj = yj − hF(yj)

11: end for

12: plot {yj}M
j=1 with color = c

13: end for

14: end for

Figure B.1 illustrates a gravitational allocation from Lebesgue to a realization of

a PPP is a disk using Algorithm 3. We used a stepsize h = 0.005 and a maxi-

mum time Tmax = 400 in the left panel, Tmax = 600 in the middle panel, and
1https://github.com/dhawat/MCRPPy/blob/main/src/mcrppy/gravitational_

allocation.py
2https://github.com/dhawat/MCRPPy/blob/main/notebooks/tutorial_gravitational_

allocation.ipynb
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A – Simulation of a gravitational allocation

Tmax = 1000 in the right panel. The black dots represent the point pattern while

the blue dots display the positions of the endpoints of the opposite flow curves,

i.e. {yx
i (Tmax)}1≤i≤M, x∈X . When an opposite flow curve reaches the boundary

of the corresponding basin, it may not halt immediately; it only ceases when it

reaches a point where the force becomes zero. This is visible in Figure B.1 from

the distinct positions of the blue dots when Tmax varies from 400 to 1000.
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t = 0

t = 30, ε = −ε0

t = 0

t = 30, ε = ε0

t = 0

t = 80, ε = −ε0

t = 0

t = 80, ε = ε0

t = 0

t = 130, ε = −ε0

t = 0

t = 130, ε = ε0

t = 0

t = 180, ε = −ε0

t = 0

t = 180, ε = ε0

t = 0

t = 200, ε = −ε0

t = 0

t = 200, ε = ε0

Figure C.1: The green points represent a sample from a PPP P of unit intensity,

the blue points correspond to Π−ε0,tP (left), and Π+ε0,tP (right), for

t ∈ {30, 80, 130, 180, 200}. Plots obtained using the toolbox MCRPPy.
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D — Résumé en Français (Summary

in French)

L’intégration numérique consiste à approximer l’intégrale

I( f ) =
∫

Rd
f (x)dx

d’une fonction intégrable f : Rd → R en utilisant des évaluations ponctuelles de

f . L’algorithme d’approximation le plus courant consiste à sommer les évalua-

tions de f en N points (xi)
N
i=1, appelés nœuds, multiplié par des poids appropriés

(wi)
N
i=1, c’est-à-dire

I( f ) ≈
N

∑
i=1

wi f (xi). (D.1)

Outre l’analogie de l’approximation dans (D.1) avec une somme de Riemann,

Bakhvalov (1971) a prouvé que l’erreur minimale dans une classe de fonctions

F peut être obtenue par un algorithme de cette forme (D.1), à condition que F

satisfasse certaines propriétés. Plus précisément, pour trouver la borne inférieure

inf
Î∈A

sup
f∈F

|I( f )− Î( f )|,

sur l’ensemble A de tous les algorithmes approximant I( f ), il suffit de chercher

parmi les algorithmes de la forme (D.1) si F est convexe, c’est-à-dire, si f1, f2 ∈ F,

alors leur combinaison convexe t f1 +(1− t) f2 ∈ F pour t ∈ [0, 1] et centrée symé-

triquement, c’est-à-dire, si f ∈ F, alors − f ∈ F ; voir (Novak and Woźniakowski,

2008, Section 4.2.2). Ainsi, (D.1) semble un choix raisonnable d’approximation et

le point focal restant réside dans la détermination de la configuration des nœuds

(xi)
N
i=1 (et les poids correspondants) qui contrôle l’erreur, pour une large classe

de fonctions, tout en garantissant un délai de calcul raisonnable.
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Parmis les algorithmes de la forme (D.1), on peut distinguer deux types : les

constructions déterministes de nœuds, appelées règles de quadrature, et les confi-

gurations aléatoires de nœuds, appelées méthodes de Monte Carlo. En notant que

l’intégrale d’une fonction lisse f est l’aire engendrée par le graphe de f , les règles

de quadrature les plus basiques estiment cette aire en utilisant la somme des aires

de fenêtres rectangulaires/trapèzoidales adjacentes. En faible dimension d, la lit-

térature regorge de règles de quadrature notables. Par exemple, la quadrature de

Gauss est exacte, c’est-à-dire que l’erreur d’approximation est égale à zéro lorsque

f est un polynôme (unidimensionnel) de degré jusqu’à 2N − 1 (Gauss, 1815) ; voir

aussi (Owen, 2013, Chapitre 7). Cependant, l’avantage des règles de quadrature

diminue rapidement lorsque la dimension augmente, et les méthodes de Monte

Carlo deviennent plus appropriées. Ce phénomène montre que les constructions

déterministes souffrent de la malédiction de la dimension et a été formulé dans

un théorème de Bakhvalov (1959) ; voir aussi (Novak, 2016), (Owen, 2013, Cha-

pitre 7) et (Dimov, 2008, Chapitre 3). Le théorème de Bakhvalov fournit une borne

inférieure de l’erreur des règles de quadrature et de la racine de l’erreur quadra-

tique moyenne (RMSE) des méthodes de Monte Carlo, pour la classe de fonc-

tions Ck à support compact ayant des dérivées partielles bornées jusqu’à l’ordre

k > 0. Plus précisément, le théorème indique que le taux de convergence de l’er-

reur dans le pire cas d’une règle de quadrature est borné par N−k/d comparée à

N−1/2−k/d pour la RMSE au pire cas d’une méthode de Monte Carlo. Cela met

en évidence une possible amélioration d’ordre N−1/2 d’une méthode de Monte

Carlo par rapport à une règle de quadrature dans n’importe quelle dimension

d’espace et motive les méthodes de Monte Carlo pour l’estimation des intégrales

en grande dimension.

Dans sa forme la plus élémentaire, la méthode Monte Carlo brute consiste à re-

présenter l’intégrale d’une fonction à support compact K comme une espérance

sous une distribution uniforme, et à l’estimer par la moyenne empirique basée

sur N échantillons uniformes i.i.d. dans K. La Figure 1.1a montre 1000 points uni-

formes i.i.d. observés dans le cube [−1, 1]2. Des calcules classiques en probabilité

montrent que la RMSE de la méthode Monte Carlo brute a la forme σ(d)N−1/2.

Le taux de convergence N−1/2 de la RMSE est indépendant de la dimension d et

l’échantillonnage des nœuds est peu coûteux, favorisant la méthode Monte Carlo
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brute en grande dimension. Cependant, mettant de côté la dépendance de σ(d)

en d, N−1/2 est un taux de convergence lent : diviser l’erreur par 10 nécessite de

multiplier le nombre de nœuds N par un facteur de 100. Cela devient défavo-

rable dans des scénarios exigeant une estimation de haute précision, en particu-

lier lorsque l’évaluation de f coûte cher. Certaines méthodes visent à améliorer

ce taux de convergence en introduisant une dépendance sophistiquée à travers

les poids (Delyon and Portier, 2016; Azaïs et al., 2018; Leluc et al., 2023). D’autres

méthodes, appelées méthodes de réduction de la variance, visent à réduire σ(d),

par exemple en utilisant une fonction auxiliaire ayant un intégrale connue ; voir

(Owen, 2013, Chapitres 8 et 10) pour des résultats classiques et (South et al., 2022)

ainsi que les références qui y sont mentionnées pour des travaux plus récents.

Alternativement, on peut envisager une configuration de nœuds plus régulière-

ment répartie dans K qu’un tirage i.i.d., comme dans la méthode quasi-Monte

Carlo randomisée (RQMC) qui accélère le taux de convergence (Owen, 2008). La

Figure 1.1b illustre 1000 nœuds utilisés en RQMC. Nous observons une dispo-

sition de points plus régulière que les 1000 points i.i.d. affichés dans la Figure

1.1a.

En statistiques spatiales, nous appelons une configuration aléatoire de points un

processus ponctuel (Chiu et al., 2013; Møller and Waagepetersen, 2003; Daley and

Vere-Jones, 2003). En particulier, la configuration de points uniformes i.i.d. corres-

pond au processus ponctuel binomial (BPP). Le BPP converge vers le célèbre proces-

sus ponctuel de Poisson homogène (PPP) lorsque le nombre de points approche cor-

rectement l’infini (Chiu et al., 2013; Coeurjolly et al., 2017; Last and Penrose, 2017).

Cela a positionné le PPP comme le processus de référence associé à la méthode

Monte Carlo brute. Cependant, lorsqu’on travaille avec le PPP, ainsi qu’avec de

nombreux autres processus ponctuels, le nombre de nœuds N est lui-même une

variable aléatoire. Dans de tels scénarios, nous exprimons le taux de convergence

de la RMSE en utilisant l’espérance du nombre de nœuds E[N] au lieu de la

valeur conventionnelle N. Des processus ponctuels plus sophistiqués peuvent

également être utilisés en intégration numérique. En effet, la première meusure

d’intensité d’un processus ponctuel X ayant une intensité constante ρ > 0 (espé-
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A – Résumé en Français (Summary in French)

rance du nombre de points par unité de volume) relie l’intégrale d’une fonction

à support compact f à l’espérance d’une statistique linéaire

E

[
1
ρ ∑

x∈X
f (x)

]
=
∫

Rd
f (x)dx,

offrant ainsi une méthode de Monte Carlo non biaisée basée sur X . De manière

générale, nous appelons un processus ponctuel régulier lorsqu’il est plus réguliè-

rement réparti que le PPP, comme dans la Figure 1.1b. Les processus ponctuels

réguliers semblent plus prometteurs que le PPP en intégration numérique comme

ils présentent une meilleure représentation de l’espace. Une classe intéressante de

processus ponctuels réguliers est la classe des processus ponctuels déterminantaux

(DPPs) (Macchi, 1975; Hough et al., 2009). Les méthodes de Monte Carlo avec des

DPPs améliorent le taux de convergence de la RMSE au-delà du O(N−1/2) (Er-

makov and Zolotukhin, 1960; Bardenet and Hardy, 2020; Coeurjolly et al., 2021;

Belhadji et al., 2019). Le principal goulot d’étranglement des méthodes basées sur

des DPPs est la complexité d’échantillonnage élevée des DPPs.

L’objectif de cette thèse est d’étudier des processus ponctuels réguliers qui sont

des candidats potentiels pour accélérer la convergence de la méthode Monte Carlo

brute. Une classe importante de processus ponctuels réguliers est la classe des

processus ponctuels hyperuniformes (HUPPs) (Torquato, 2018; Torquato and Stil-

linger, 2003; Kim and Torquato, 2018; Klatt et al., 2019, 2022, 2020; Coste, 2021;

Dereudre and Flimmel, 2023). Un processus ponctuel est HUPP si la variance du

nombre de points dans une grande fenêtre décroît plus lentement que le volume

de cette fenêtre. Formellement, X est un HUPP si

lim
R→∞

Var [X (B(0, R))]
|B(0, R)| = 0,

où B(0, R) est une boule de rayon R centrée à l’origine. En particulier, tout HUPP

permet d’obtenir une méthode de Monte Carlo avec une décroissance plus ra-

pide de la RMSE par rapport à la méthode Monte Carlo brute, lorsque f est une

fonction indicatrice. La Figure 1.1c montre un sample de 1000 points d’un HUPP.

En dehors de l’intégration numérique, cette propriété statistique implique des

propriétés physiques souhaitables pour les matériaux (Torquato, 2018, Section

14). Cependant, prouver rigoureusement qu’un processus ponctuel est HUPP est

généralement difficile. La pratique courante est d’utiliser quelques échantillons
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A – Résumé en Français (Summary in French)

du processus ponctuel pour estimer une mesure spectrale appelée la fonction de

structure. La décroissance de la fonction de structure autour de zéro fournit un

indicateur de l’hyperuniformité. La pratique courante est d’estimer la fonction

de structure du processus ponctuel à partir d’un ou plusieurs échantillons, puis

à analyser son comportement près de zéro pour détecter l’hyperuniformité en se

référant à des règles empiriques (Torquato, 2018; Klatt et al., 2019). Cependant,

cette évaluation graphique n’est pas normalisée et n’est souvent pas décrite en

détail de manière reproductible dans la littérature, les choix d’implémentation et

les propriétés statistiques faisant souvent partie du folklore de chaque domaine.

Notre première contribution est une revue et dérivation des estimateurs existant

de la fonction de structure (Hawat et al., 2023b). Nous utilisons également ces es-

timateurs pour proposer un test statistique de l’hyperuniformité asymptotique-

ment valide. Récemment un autre test statistique d’hyperuniformité a été proposé

par Klatt et al. (2022), adapté à un type particulier (Classe I) de HUPPs. Nous

avons également construit une librairie de Python modulaire et open-source ap-

pelé structure_factor, qui implémente tous les estimateurs, diagnostics et tests

discutés.

Revenant à l’intégration numérique, dans le but d’imiter la régularité d’un DPPs

avec un moindre coût computationnel, nous proposons un operatuer nommé

l’opérateur de répulsion. Cet opérateur réduit le regroupement de points dans

une configuration en écartant légèrement les points les uns des autres (Hawat

et al., 2023a). Le choix de l’opérateur est motivé par les allocations gravitation-

nelles des processus ponctuels vers la mesure de Lebesgue (Chatterjee et al., 2010;

Nazarov et al., 2007) et par les gaz de Coulomb (Serfaty, 2019; Leblé and Serfaty,

2018). Notre principal résultat théorique est que l’application de l’opérateur de

répulsion à un PPP donne lieu à une méthode de Monte Carlo admettant une

variance plus petite que la méthode Monte Carlo brute. En termes de complexité

computationnelle, comparativement à une complexité (au moins) cubique pour la

méthode Monte Carlo avec DPPs de Bardenet and Hardy (2020), la complexité de

notre méthode de Monte Carlo est seulement quadratique et peut être facilement

parallélisée sans communication entre les tâches. Les expériences montrent que

la méthode de Monte Carlo que nous proposons est compétitive avec la RQMC.

De plus, les résultats des expériences laissent entendre que la réduction de la va-
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riance persiste lorsque l’opérateur est appliqué à des processus ponctuels inva-

riants par translation qui sont plus reguliers que le PPP. Cet observation suggère

la possibilité que l’opérateur de répulsion est universel, dans le sens où il en-

traîne systématiquement une réduction de la variance, quel que soit le processus

ponctuel auquel il est appliqué.
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