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Informatique

École doctorale Informatique, Télécommunications et Électronique
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M. Yamine Äıt Ameur Professeur à ENSEEIHT Toulouse Examinateur
M. Laurent George Professeur à ESIEE Paris Examinateur
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Acknowledgements

I would like to sincerely thank Professors Xavier Blanc, Ivica Crnkovic, and Joël Goossens
for giving me the great honor of reviewing my habilitation thesis. I greatly appreciated their
feedback on my work and the accuracy of their assessment.
I would also like to thank Professors Yamine Ait Ameur, Laurent George, and Frank Singhoff
for having accepted to serve on the jury, as well as Professor Fabrice Kordon for having
accepted to be the president of the jury. I would especially like to thank Professor Fabrice
Kordon for his help in preparing for this habilitation at Sorbonne Université.
The work presented in this document is the result of many and very rich interactions with
colleagues from academia and industry.
First of all, I want to warmly thank Laurent Pautet who has been working with me since the
very beginning of my career: from the PhD to this habilitation. It has been a pleasure to work
with him, and learn from him. I also want to thank my colleagues from TELECOM ParisTech
for the quality of their feedback on my work, and all the good times spent together: Thomas
Robert, Florian Brandner, Rémi Sharrock, James Eagan, Ada Diaconescu, Elie Najm, Sylvie
Vignes, and Petr Kuznetsov. Not to mention Sébastien Gardoll from CNRS.
This work is also the result of the work of brilliant PhD students that I would like to
congratulate again for their achievements, and thank for their collaborations: Fabien Cadoret,
Cuauhtémoc Castellanos, Elie Richa, Smail Rahmoun, and Roberto Medina.
Finally, this work is the result of numerous interactions with researchers and engineers from
both academic and industrial insitutes: I would like to thank the Chaire ISC (in particular Eric
Goubault from Polytechnique, and Alexandre Chapoutot from ENSTA), the IRT SystemX
(along with Alstom, Renault, Thales, Safran), the AADL standardization committee (in
particular Peter Feiler from the Software Engineering Institute, Jean-Pierre Talpin from
INRIA, Pierre Dissaux from Ellidiss, and Brian Larson from Kansas State University) for
their support, their contributions, and feedback.
Last but not least, I want to thank my wife Sara for her support in both my professional and
personal achievements.





Abstract

Cyber Physical Systems are systems controlled or monitored by computer-based programs,
tightly integrated networks, sensors, and actuators. Trains, aircrafts, cars, and some medical
equipments are examples of complex CPS. Software development of complex CPS has
become so difficult that it represents most of the cost of CPS production. According to
domain experts, this trend is going to reach a point where software development would
represent the main source of cost of a CPS production.

In addition, it is interesting to note that the integration, verification and validation of software
in CPS require more efforts than the analysis, design, and implementation activities. The
main reason is that these activities are conducted late in the development process and issues
discovered at this stage of the process will require to rework artifacts produced in the previous
activities (i.e. analysis, design and/or implementation).

In this document, we present our work aiming to improve the reliability of software devel-
opment in the domain of CPS. In this context, we define the reliability of the development
process as its capacity to deliver intermediate artifacts for which the rework effort would be
as small as possible.

This problem is very difficult for general purpose software (i.e. used on desktop computers
or servers), and even more difficult for software in CPS. The main reason is that software
in CPS is often critical, real-time and embedded on domain specific execution platforms.
As a consequence, non-functional properties (also called quality attributes) of software
applications in CPS are often as important and difficult to satisfy as the logical correctness of
these applications.

In order to the improve the reliability of software development in the domain of CPS,
we propose a Model Driven Engineering (MDE) method based on step-wise refinements
of software architecture descriptions (also called architectural models). An architecture
description being an abstraction of the software being developed, the implementation of this
software (i.e. source or binary code) is an interpretation of the architecture model. In the
framework we propose, such interpretations are automated using model refinements, i.e.
model to model transformations lowering the abstraction level of the architecture description.
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However, models interpretation may introduce faults such as bugs or invalidation of non-
functional requirements. It is hence necessary to control as much as possible the correctness,
consistency, and optimality of artifacts produced along the model refinement steps.
To reach this objective, we propose to

1. define model transformations so as to interleave refinement steps with analysis of
the resulting artifacts. We thus improve the consistency between the analysis results
and the software implementation by analyzing models as close as possible to the
implementation.

2. define timing analysis and real-time scheduling techniques to ensure the correctness of
software architectures from a timing perspective.

3. formalize model transformations in order to ensure their correctness using formal
verification techniques.

4. compose model transformations in order to automate the search for optimal (or near-
optimal) architectures.

The work presented in this document is thus at the frontier among different research domains:
MDE, real-time systems scheduling, formal verification, and operational research.
In this work, we chose to rely and extend the Architecture Analysis and Design Language
(AADL) to model the cyber part of CPS. The reasons for this choice are simple: Firstly,
AADL is a standard and a domain specific language for real-time embedded systems. Sec-
ondly, It allows to represent software architectures with different abstraction levels. Last but
not least, AADL supports different types of models of computations communications, some
of which being deterministic.
As a guideline for our work, we developed the methodology we propose in a MDE framework
called RAMSES (Refinement of AADL Models for the Synthesis of Embedded Systems).
This document presents both the methodology and some illustrations of its implementation
in RAMSES.
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Chapter 1

Introduction

Contents
1.1 Industrial Context and Scientific Challenges . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of the document . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Industrial Context and Scientific Challenges

A Cyber Physical System (CPS) is a system that is controlled or monitored by computer-based
programs, tightly integrated networks, sensors, and actuators. “In cyber-physical systems,
physical and software components are deeply intertwined, each operating on different spatial
and temporal scales, exhibiting multiple and distinct behavioral modalities, and interacting
with each other in a lot of ways that change with context.”1 Robotic systems of course, but
also transportation systems, medical devices or power plants are example of CPSs.
The evolution of software applications deployed in CPS shows a significant increase in their
complexity. Measured in terms of lines of code (SLOC) embedded in different generations of
aircraft systems, this complexity indicator shows the significance of their software evolution:
Airbus A310: ˜400 KSLOC, A320: ˜800KSLOC, A330/340: ˜2MSLOC, Boeing 777:
˜4MSLOC, Airbus A380: ˜8MSLOC, Boeing 787: ˜10MSLOC. These impressive numbers
are still below the numbers of estimated lines of code in military aircrafts or luxurious modern
cars.
As a consequence, software development, takes an important role in the production of
such systems. Our industrial partners in the avionics domain estimate that 70% of systems

1https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
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production cost is due to software development, mainly because of very demanding validation,
documentation, and integration activities. They estimate this ratio would grow up to about
90% in 2024.

The cost presented here above measures how difficult software development has become in
the domain of CPS. This cost actually aggregates several sources of difficulties over the devel-
opment life-cycle. In particular, our industrial partners (still in the avionics domain) estimate
that 70% of software development cost is due to rework, validation, and verification activities,
mostly because of faults introduced during the early phases of the development process.
Counterintuitively, this estimation highlights that integration, verification, and validation
activities represent more efforts than analysis, design, and implementation activities.

Verification and validation of software in CPS is particularly difficult because CPS are often
mission or safety critical: failures of such systems could have catastrophic consequences. As
a result, developers of CPS are often required to conform to certification processes aiming at
ensuring these systems meet safety requirements.

On the other hand, software integration in CPS is also challenging because these systems
have meet various requirements such as timing performance, energy consumption, weight,
availability, maintainability, robustness, etc.

Analysis

Design

Implementation Unit testing

Integration

Delivery

Requirements 
model

Architecture 
model

Source code

VerificationVerification

Model based 
analysis 

and verification

Research perimeter

Figure 1.1: Context: Critical CPSs Development Process

Figure 1.1 gives an overview of a traditional development process, called V-cycle, generally
used in the development of CPSs. The objective of the V-cycle development process is to
anticipate validation activity by preparing verification and validation artifacts along with
requirements, design, and implementation activities.
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In addition, Model Driven Engineering (MDE) advocates for the use of models in order to
improve the development process of software applications and in order to increase products
quality. For example, models can be used to improve the development process by enabling
early estimation of software applications performance. In addition, such estimation will
help designers of software applications to compare different solutions and select the most
appropriate one(s). As shown in figure 1.1, models can be the result of the requirements
definition and design activities of the development process, while source code is produced
during the implementation phase of the process.
In the work we present in this document, architecture models produced during the design
activities play a major role: firstly, we combine them with verification and analysis techniques
in order to detect design flaws as early as possible in the process. Secondly, as illustrated
on the figure, we aim at using architecture models to bridge the gap between requirements
models and source code. Therefore, the work presented in this document aims to improve
methods dedicated to the design of software architecture(s) for embedded systems which are
also critical, real-time, and distributed systems. Because the type of systems we consider
are mission or safety critical, the methods we aim for must rely on rigorous models so as to
guarantee safety related properties.
The targeted application domain is the domain of CPS, in which physical systems are
controlled by a set of interconnected computation units (CUs) executing control and/or
monitoring algorithms. More specifically, industrial partners involved in the definition of
research problems presented in this document work on transportation systems (cars, planes,
and/or trains). In next subsection, we present the general problems for which we proposed
the scientific contributions presented in this document.
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1.2 Problem statement

Given the increasing complexity and cost of software development in CPSs, a zoom on the
research perimeter presented in previous section (see the orange part of figure 1.1) led us to
raise the following research question: how to improve the reliability of CPS design activities?
In the context of software development for CPS, we define the reliability of design activities
as their capacity to deliver intermediate artifacts for which the rework effort would be as
small as possible.

Design

Implementation

Integration

Architecture 
model

Source code

VerificationVerification
Analysis &
Verification

Pb1: consistency?

Pb3: optimality?

Pb2: correctness?

Pb4: efficient  
resource usage?

Figure 1.2: Problems in Critical CPSs Development Process

On figure 1.2, we provide a decomposition of this research question into different but
connected research problems:

Problem 1: Are analysis results, obtained on an architecture model, consistent
with the implementation of this architecture with source code?

By essence, architecture models are abstractions of the reality aiming
to enable the analysis of a system under design. This analysis can
evaluate quality of services or even safety properties of the system.
On the other hand, the implementation of these models will require
to interpret this abstract view and translate it into source code by
introducing missing details. If these details had an impact on the anal-
ysis results, these results obtained with the model may no longer be
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consistent with the properties exhibited by its implementation. The
corresponding design would become obsolete, early design choices
would be invalidated, leading to extra re-engineering efforts.

Problem 2: How to ensure the correctness of an architecture model implementa-
tion?

The activity transforming an architecture model into the implemen-
tation of a software application boils down to translate an abstract
view of the system to provide an equivalent executable artifact. By
essence, there exist several variants of such translation: an abstract
model may have several possible implementations. In addition, this
activity my rapidly become repetitive, thus error prone. It is therefore
very important to ensure the correctness of the implementation by
making sure the translation effort did not introduce flaws in the result-
ing source code. Such flaws may, again, invalidate analysis results,
or even worse: introduce bugs in the source code of the application.

Problem 3: Is the input architecture optimal?

As explained in the presentation of Problem 1, the translation of
abstract models into source code may invalidate early analysis results.
One may conclude it would be sufficient to model systems with
sufficient margins to ensure the preservation of analysis results along
the development life-cycle. However, the values of such margins
are difficult to anticipate, and it would be necessary to take very
pessimistic estimations to make sure there would not be extra re-
engineering efforts eventually. In practice, this is infeasible since big
margins also means poor quality: for instance, a computer loaded
at 20% exhibits a big margin but is poorly exploited (which means
more functions of more complex functions could have been deployed
on it). In addition, quality attributes are often in conflict as improving
one quality attribute requires to degrade another one. For instance,
the deployment of replicated functions improves the availability of
these functions to the price of extra weight, energy consumption, and
data flow latency. It is thus important to deal with the problem of
providing optimal (or near optimal) architecture models, otherwise
the chance to face integration issues grows rapidly for complex
systems.
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Problem 4: Are computation resources efficiently allocated to software applica-
tions?

In CPS, software architects have to pay extra attention to the allo-
cation of computation resources to software applications. The main
reason is that some of these applications will have a direct impact on
the safety of the system. Such applications would be classified with
a high level of criticality whereas others would be classified with a
lower level of criticality. In most cyber physical systems, the pro-
vision of enough computation resource to high criticality functions
is thus a safety requirement, whereas the provision of computation
resources to lower criticality functions is a quality of service require-
ment. Note that quality of service, though not critical, is of prime
importance as it has a direct impact on consumers satisfaction. In a
CPS, an inefficient resource allocation may lead to a poor quality of
services, and even worse, to safety requirements violation.

Problems 1 and 2 are obviously connected to our research question (i.e. how to improve
the reliability of CPS design activities?) whereas the link with problems 3 and 4 may
seems less direct. Yet, it is important to consider that software applications in CPS have
to meet stringent requirements in terms of timing performance, memory footprint, safety,
security, and/or energy consumption. These requirements, usually called Non-Functional
Requirements (NFR), are often as important as functional requirements in CPSs. Thus,
if errors are discovered late in the development process because of poor Non Functional
Properties (NFPs) due to design flaws, a design rework is necessary and its cost will raise
fast. It is thus important to ensure, as soon as possible in the design process, that considered
architectures respect NFRs but also provide the best possible margin with respect to the limit
imposed by these NFRs. This boils down to optimize these architectures, either during the
modeling phase (problem 3) or during the deployment phase (problem 4).
Even though our work focuses on software architectures, specificities of CPSs require to
take into consideration hardware platform characteristics as well. Indeed, the adequacy of a
software architecture with respect to these requirements, called Non Functional Requirements
(NFRs), cannot be assessed without a knowledge of the underlying hardware and/or network
architecture.
This is the reason why we used in our work the Architecture Analysis and Design Language
(AADL), an architecture description language offering the capabilities to model both the
software and hardware architecture of a CPS, as well as the binding of software components
onto hardware components.
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In addition, Non Functional Properties (NFPs) evaluation requires dedicated models in which
implementation details are abstracted away in order to focus on most relevant characteristics
of the architecture for a given property. To extract such characteristics from a model, model
transformations are often used: a model transformation is a software application that takes
as input a model, and/or produce a model as output. Model transformations may be used to
translate a given model from one formalism to another one with the same abstraction level.
Such transformations are called horizontal transformations. Model transformations may also
be used to change the level of abstraction of a model by adding or abstracting away modeling
details. Such transformations are called vertical transformations. In this document, we call
refinement a vertical model transformation adding modeling details.
Last but not least, CPS architects often consider design alternatives as decision variables
in an optimization problem aiming at minimizing or maximizing NFPs. However, design
alternatives often come into conflict with respect to their impacts on NFP: most of the time,
a design alternative improves a NFP at the cost of degrading another NFP of a CPS. As a
consequence, designers aim at providing the best possible trade-off among NFPs of a CPS.

1.3 Organization of the document

This document is organized as follows.
Chapter 2 contains an overview of the approach we propose to contribute to the resolution of
the problems presented above. A brief presentation of related works helps to understand the
originality of our approach.
In chapter 3, we present the core ideas our work relies on: model transformations of
architecture models for the analysis, design, and optimisation of critical CPSs. Chapter 4
gives more details on the work we undertook on the composition and formalization of model
transformations.
This work is integrated in RAMSES, which is to the best of our knowledge the only AADL
to code generation framework implementing deterministic subsets of AADL. It is also the
only AADL to code generation framework allowing fine-grained timing analysis of the
non-deterministic subsets of AADL. Last but not least, model transformation compositions
for design space exploration have been experimented in RAMSES on complex optimization
problems with very satisfying results.
Finally, chapter 5 concludes this document and provides research perspectives for the work
presented in this document.
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Overview of contributions

Contents
2.1 Approach: Architecture refinement framework . . . . . . . . . . . . . 9

2.2 Overview of the State-of-Art . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Supervised PhD students . . . . . . . . . . . . . . . . . . . . . . . . . 16

In the previous chapter, we have defined ambitious and difficult research problems. We
contributed to their resolution through the definition of an architecture models refinement
framework we present in section 2.1. We then present in section 2.2 a brief overview of the
state of the art in this domain, before to summarize this activity in terms of PhD students
supervisions (section 2.3).

2.1 Approach: Architecture refinement framework

In order to answer the research problems introduced in previous chapter, we proposed a
method based on model refinements, analysis, and optimization. The general idea behind
this approach is to bridge the gap between requirements model and source code by defining
model transformations that progressively lower the abstraction level of design models. Thus,
from an abstract model provided by a CPS architect, we propose to define and compose
model transformations which produce refined and optimal (or near optimal) architecture
models. Such transformations would, for instance, integrate design patterns in the initial
architecture model.
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We then analyze the resulting models in order to evaluate the impact of the refinement on
the system’s NFPs and select architectures answering at best the trade-off among NFRs. We
continue this process until we define implementation models, i.e. architecture models with a
straightforward correspondence between model elements and source code (e.g. a one-to-one
mapping between each modeling element and a construction in the underlying programming
language and/or operating system configuration). Figure 2.1 illustrates this approach in a two
stages refinement process: the input architecture model is refined into a set of architecture
candidates. These candidates, are, when possible, analyzed to compute their NFPs and
verified to check the design meets predefined NFR and structural constraints. Architecture
candidates satisfying predefined NFRs and structural constraints are then selected and further
refined into a set of implementation models. Again, these models are analyzed and the most
appropriate model(s) is (are) used to automatically generate the corresponding source code.
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Implementation 
model
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Figure 2.1: Proposed refinement framework for CPS design models
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By lowering the abstraction level of models used for both code generation and analysis, we
improve consistency between analysis results and software implementation. More generally,
we aim at applying model transformations and analyze output models to control the impact
of these transformations on NFPs. This work contributes to the resolution of problem 1.
Because timing properties and in particular real-time tasks scheduling plays an important
role in CPSs design, we first experimented these ideas so as to improve precision and/or
reduce the pessimism of timing analysis based on architecture models. This work contributes
to the resolution of problem 4.
We also worked on model transformations formalization as a mean to verify their correctness:
we defined structural constraints on output models and proposed a method to define model
transformation chains enforcing the respect of these constraints; we also defined a method to
validate model transformation chains by producing integration test cases covering unit test
requirements. This work contributes to the resolution of problem 2.
Last but not least, we proposed a design space exploration framework combining multi-
objectives optimization techniques and model transformations composition in order to pro-
duce architecture models answering at best a trade-off among NFPs. This work contributes
to the resolution of problem 3.
Pursuing the objective to provide Refinement Techniques for Real-time Embedded Systems
Architectures, the work we present in this document covers different research domains:

1. Real-time scheduling analysis,

2. Model Driven Engineering,

3. Design Space exploration,

4. Safety and Security.

We give a rapid overview of the state of art of these domains in next section.

2.2 Overview of the State-of-Art

Research areas mentioned at the end of the previous section cover a huge number of relevant
research works. In this section, we do not seek for an exhaustive presentation of these
areas. Instead, we aim at providing a minimal background information to have our readers
understand the scientific context in which our research efforts were undertaken.
Architectures description Languages. Works in the domain of architecture description
languages aim at defining modeling languages for software architectures, hardware archi-
tectures, or a combination of both. Historically, research works in this area have produced
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formalisms, which may be Modeling Languages, Architecture Description Languages and/or
Component-Based Modeling languages. In the domain of CPS, different languages have
been proposed, such as SCADE 1, MATLAB/SIMULINK 2, LUSTRE [35], Giotto [36],
Polychrony [33], the Synchronous Data Flows Graphs (SDFGs) [43], Wright [2], BIP [15],
ProCom [17], the Palladio Component Model (PCM) [67], Fractal [16], UML/MARTE [56],
and the Architecture Analysis and Design Language (AADL) [5]. These languages differ
in many aspects, including the Model of Computation and Communication (MoCC) they
define. For instance, SCADE relies on the synchronous model of computation in which
computations and communications are assumed to take zero time. This hypothesis is satisfied
if the underlying Computation Unit (CU) is fast enough to process input and produce results
before the acquisition of the next input. Relaxing the synchronous hypothesis, Giotto defines
a Logical Execution Time (LET) model of computation where components, modeled as tasks,
take a predefined amount of time (the LET) to execute. Communications with a component
(i.e. inputs reading, outputs writing) can only occur outside its LET interval (i.e. when
the component is not executed). In SDFGs, the focus is more on communications among
components than on their independent execution: applications are described as a set of
communication channels connecting applications (also called actors, processes or tasks).
These channels model communication FIFO queues, and the execution of an application
is triggered by the content of its input queues. Last but not least, AADL is a standardized
modeling language aiming at gathering both a representation of the software architecture, the
hardware architecture, and the binding of software components onto hardware components.

In our work, we consider source code generation as the final objective of an efficient
MDE process. In some industry, and in particular in the transportation domain, several
success stories show the added value of automated source code generation techniques.
MATLAB/SIMULINK and SCADE SUITE provide source code generator widely used
today. Note that these code generators produce the so-called functional code, i.e. software
responsible to answer functional requirements. Another part of software applications for
CPSs is called technical code, i.e. software responsible for interfacing functional code with
the hardware platform of the CPS.

In this context, AADL is an interesting architecture description language since it allows to
represent both the software architecture, the hardware architecture, and the allocation of
software components on hardware components. In addition, as illustrated on figure 2.1, we
aim at representing CPSs architecture at different abstraction level. This is also a facility
offered by AADL, which was experimented during the PhD of Fabien Cadoret (2010 -

1https://www.ansys.com/products/embedded-software/ansys-scade-suite
2https://www.mathworks.com/products/simulink.html
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2014). With respect to its usability in industrial applications, AADL is a standard with
a high visibility. This is an important asset when it comes to experiment our work on
industrial case studies. Last but not least, AADL defines a MoCC which is configurable
thanks to standardized properties. For some subsets of AADL configurations, the MoCC
is deterministic and matches existing formally defined languages (e.g. LET or SDFGs). In
the PhD of Fabien Cadoret and Roberto Medina, we identified subsets of AADL with a
deterministic and formally defined MoCC.
Being advanced users of the language, we have also contributed to its evolution by (i)
providing regular feedback to the AADL standardization committee, and (ii) by leading the
revision of its Behavior Annex: a sub-language of AADL dedicated to modeling components
behavior with state machines.
Scheduling and analysis of real-time systems. Among NFRs of CPSs, timing requirements
plays an important role. Indeed, one of the specificities of CPSs is that they control physical
systems. This means CPSs implement control loops executed repeatedly with a frequency
that is derived from an analysis of the system’s physics. If the results of this control law are
not produced in time, the physical system does not wait. This is why, in real-time systems,
the outputs produced by a software function are valid if their computation is correct, and
they are produced before a predefined deadline.
In order to ensure timing requirements are always satisfied, Liu and Layland [46] proposed
to model software applications with a set of tasks τ = {τi}i=1..N characterized by:

• a period Ti: the minimum delay between two consecutive executions of a task τi.

• a capacity Ci: the time required for the CU to execute task τi. Ci is usually set to the
worst-case execution time (WCET) of τi.

• a deadline Di: time interval between the release of τi and the date at which τi must
have finished its execution.

Since the definition of this very first task model, real-time systems have been intensively
studied and this research field has significantly matured.
In particular, one important issue with the initial model introduced Liu and Layland is the
induced pessimism on tasks response time which leads to a poor resource usage. Different
sources of pessimism are indeed cumulated when verifying tasks always meet their deadlines,
since the verification methods assume:

• tasks always execute all together for their worst case execution time;

• if tasks share data is a protected access, they execute all together spending the longest
possible time in all their critical sections, causing significant blocking times.
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In practice, the probability that one task executes for its WCET is low, so the probability they
all together execute for their WCET is very low. To overcome this limitation, methods based
on allowance [14] or mixed-criticality scheduling [19] have been proposed.
In the PhD of Fabien Cadoret, we first proposed to use AADL in order to implement
fine-grain and less pessimistic response time analysis [13]. The objective was to reduce
pessimism due to the presence of critical sections. We studied this problem in the context
of avionics systems using the ARINC653 standard: in this context, blocking time induced
by inter-partition communications is particularly significant. We also proposed a lock free
implementation for a deterministic MoCC [21, 38]. More recently, in the PhD of Roberto
Medina, we have considered a MoCC for which, by construction, data access protection is
not needed: Directed Acyclic Graphs (DAGs) of tasks. Using this well-known MoCC, we
have proposed new methods to schedule DAGs of mixed-criticality tasks.

In this research work, we showed the capacity of AADL to model such MoCCs. Even more
significant, we used AADL to implement step-wise architecture refinements and proceed to
timing analysis at different abstraction levels. This work has been integrated in the RAMSES
platform3, an open source AADL to AADL model transformation and code generation
platform.
Building on the knowledge gained designing model transformations in RAMSES, we devel-
oped new research activities dedicated to (i) compose and validate model transformations,
and (ii) implement model-based design exploration techniques. We briefly introduce these
methods in next subsection.
MDE and Model transformations for CPS. Model transformations are software appli-
cations taking model(s) as input and producing model(s) as output. Even though model
transformations can be written in any programming language, they are by essence difficult to
write. Indeed, a model transformation consists in transforming a typed graph into another
typed graph. Writing and maintaining such applications rapidly becomes difficult [29]. For
these reasons, dedicated model transformation methods [25, 55] and languages [39, 58, 4]
and have been proposed. In RAMSES, we have initially decided to use ATL as a trade-off
between the rigor of its semantics, and its simplicity of use. In addition, we decided to
decompose model transformations as a chain of AADL to AADL transformations in order to
enable verifications on intermediate AADL models.
However, we use model transformations in the context of critical CPSs, hence we have to
pay extra attention to the validation of these transformations. This is why we proposed to
formalize model transformations and more specifically model transformation chains.
In the PhD of Cuauhtémoc Castellanos, we proposed a formalization of model transforma-

3https://mem4csd.telecom-paristech.fr/blog/
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tions in Alloy [37]. From this formalization, and the specification of constraints on the output
model (expressed with first order logic) we were able to automate the production of model
transformation chains to produce output models satisfying the constraints [23, 22].
In the PhD of Elie Richa, we proposed a formalization of ATL as Algebraic Graph Trans-
formations (AGT) [27]. An automated mapping to Henshin, as well as the automated
construction of the weakest liberal precondition paved the way towards different kinds of
ATL transformations verification [61, 60]. This work was defined as part of an integration
test case generation, but it could also be used for proving model transformations.
In addition to our contributions on model transformations formalization, we proposed to use
model transformations as a medium for design space exploration. We describe this work in
next subsection.
Design space exploration. As CPS have to meet conflicting objectives with respect to their
NFPs, lots of work have been conducted to automate design space exploration for CPSs. In
particular, frameworks such as ArcheOpterix [1], PerOpteryx [40], and AQOSA [45] are
model-based DSE frameworks in the sense that they rely on an input modeling language
(i.e. AADL, PCM) and they provide interfaces for models analysis, optimization problems
definition, and constraints validation.
As an extension to these principles, we proposed in the PhD of Smail Rahmoun to define
design space exploration problems by composition of model transformation variants [63, 65].
The DSE framework we developed relies on genetic algorithms, and our method based
on model transformations composition had the following advantages: first, by transferring
structural validity constraints from the output model to the composition process, only valid
architectures are considered during the exploration process. We expressed validity constraints
with boolean formula and used SAT solving techniques to ensure explored architecture satisfy
the validity constraints. Second, by defining model transformation composition techniques
for DSE, we keep the optimization framework (based on genetic algorithm) completely
generic: it only requires the definition of alternative model transformations as the definition
of a new optimization problem. Following very similar ideas, the MOMoT framework was
designed in parallel [30]. This work, as well as ours, fulfill the objective to make DSE
generic. However, as opposed to our work, this work does not proceed to the validation of
structural constraints during the composition of model transformation rules but after their
application. As shown in [65], this would lead to a prohibitive loss of performance on
complex optimization problems.
Safety and Security. When defining model driven methods for critical software applications,
safety and security issues have to be considered. Safety related concerns have always been
considered in our work, either by considering platforms (e.g. operating systems), standards
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(e.g. for certification), or design patterns (e.g. triple modular redundancy) dedicated to
improve systems safety. More recently, we have started a PhD with Jean Oudot aiming at
defining quantitative evaluation methods for CPS security, as well as architecture optimiza-
tion methods for CPS security. We also started another PhD with Maxime Ayrault aiming at
defining design methods and runtime mechanisms to improving the resilience of CPSs to
cyber attacks.

2.3 Supervised PhD students

Fig. 2.2 provides a rapid overview of the PhDs undertaken with the aforementioned general
objectives. In this figure, PhDs have been placed with respect to the research areas they
contribute to.

Scheduling and timing 
analysis of real-time 
systems

Model transformation and 
source code generation

Safety and security of 
embedded systems

Optimization and design 
space exploration

R.Medina

C.Castellanos

E.Richa

J.Oudot

M.Ayrault

F.Cadoret

S.Rahmoun

Figure 2.2: Thematic distribution of co-supervised PhD students

These students have studied, with different viewpoints and objectives, the problems presented
in section 2.3:

• Fabien Cadoret (02/2010 - 05/2014): initial proposal of the approach presented on
figure 2.1, with a focus on consistency between models used for schedulability analysis
and models used for code generation (thus contributing to solve problem 1). Fabien
Cadoret also studied a deterministic MoCC of AADL, for which he proposed lock-free
implementation variants (thus contributing to solve problem 4).

• Cuauhtémoc Castellanos (09/2011 - 12/2015) proposed to formalize model transforma-
tions into Alloy in order to ensure their composition always leads to analyzable models.
With respect to the approach presented in figure 2.1, this work aimed at chaining model
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transformations in order to reduce the abstraction level of models used for analysis
(contribution to solve problem 1) while making sure the model transformation is correct
in the following sense: the model it produces respects the application condition of
predefined analysis techniques (contribution to solve problem 2).

• Elie Richa (01/2012 - 12/2015) also studied the correctness of model transformations
(problem 2) with another viewpoint: how to ease the verification and validation of
their implementation? In this PhD, we defined a test framework for model transfor-
mation chains, allowing to enforce unit test coverage (where a unit is a single model
transformation) using integration tests (i.e. tests on model transformation chains).

• Smail Rahmoun (11/2013 - 02/2017) extended the work of Fabien Cadoret and Cuauhté-
moc Castellanos by considering design space exploration based on model transfor-
mations as a multi-objective optimization problem aiming to improve NFPs. This
extension is presented in the upper part of figure 2.1, were candidate architecture
are selected according to their NFPs. This work helped to automate the definition of
near-optimal architectures, which is an important part of our initial goal: make the
design process of CPSs more reliable by starting with the best possible design. In
addition, the proposed approach was both applied on design patterns for safety (thus
reusing and extending model transformations proposed by Cuauhtémoc Castellanos)
and code generation (thus reusing and extending model transformations proposed by
Fabien Cadoret).

• Roberto Medina (11/2015 - 01/2019) studied more specifically the problem of resource
usage efficiency in real-time embedded systems (problem 4). This is an important
topic in our context as improving the reliability of software development in real-time
CPS often leads to consider margins on tasks execution time. As a consequence,
computation resources are poorly used whereas system designers aim at deploying
more and more complex applications in CPSs. As a contribution to solve this problem,
Roberto Medina proposed new scheduling techniques on multi-core architectures
based on the concepts of Mixed-Criticality, applied to directed acyclic graphs of tasks.
In particular, we defined in this work new methods to (i) ensure schedulability of
high criticality functions and (ii) evaluate the impact of sharing computation resource
among functions of different criticality levels on the quality of service of low criticality
functions.

• Jean Oudot (09/2017 - ) is working on the definition of quantification methods for
cyber-security of CPSs. Indeed, cyber security is becoming an important problem
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in the design of CPS since these systems are becoming more and more connected to
their environment. These interactions with their environment make CPSs subjects to
cyber attacks with a more and more important surface attack. As opposed to traditional
information systems or desktop computers, CPSs also have to meet stringent safety,
performance, and/or energy consumption properties. For this reason, integrating
security counter measures in CPS architectures raises important challenges in terms of
multi-objective optimization problems. In particular, we aim at defining a methodology
to select the set of sufficient counter measures to reach a level of acceptable risk while
minimizing the impact of these counter measures on safety and performance properties.
This work will contribute to the resolution of problem 3, with an emphasis on security
counter measure selection and configuration.

• Maxime Ayrault (10/2018 - ) is also studying cyber security of CPS but with a different
viewpoint: how to improve their resilience to attacks? Indeed, it is impossible to
anticipate all the potential vulnerabilities of a complex CPS. In addition, once a
CPS is deployed and used, attackers have time to study the system and discover new
vulnerabilities. For this reason, it is important to deploy resilience mechanisms in
CPSs to delay as much as possible the effectiveness of an attack and/or its propagation.
This problem is obviously connected to the design of CPS architectures since resilience
mechanisms have to be defined at design time. This work is going to contribute to the
resolution of problem 3, with an emphasis on resilience to cyber attacks.

I have been the advisor of the first 6 PhD students listed above, and I am the supervisor of
Maxime Ayrault’s PhD.
In next chapters (3 and 4), we describe more precisely these research contributions and their
link with the general approach presented on figure 2.1.
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CPSs are subject to various non-functional requirements, and timing performance is an
important class of such requirements when architecting software applications of a CPS. In
addition, Model Driven Engineering (MDE) advocates for the use of models in order to
improve the development process, as well as the quality, of these applications. In this chapter,
we present a MDE framework aiming at automating the production of software applications
of CPSs.

In particular, we consider source code generation as the final objective of an efficient
MDE process. In some industry, and in particular in the transportation domain, several
success stories show the added value of automated source code generation techniques.
MATLAB/SIMULINK and SCADE SUITE provide source code generator widely used
today. Note that these code generators produce the so-called functional code, i.e. software
responsible to answer functional requirements. Another part of software applications for
CPSs is called technical code, i.e. software responsible for interfacing functional code with
the hardware platform of the CPS.
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When it comes to the evaluation of timing performance in software architectures, both
functional and technical concerns can have a great impact on the result. For instance,
functional code is the main software artifact used to compute the execution time of tasks,
i.e. their capacity Ci as defined in the previous chapter. On the other hand, technical
code may implement complex communication mechanisms with a significant impact on
timing performance. This is particularly true in avionics ARINC653 systems with inter
partition communications. Nowadays, very few MDE frameworks are able to consider both
the functional and technical code of a software application when evaluating their timing
performances.
In this chapter, we present our contributions on the timing analysis of software architectures
for CPSs. The remainder of this chapter is organized as follows. Section 3.1 gives an
overview of the MDE framework we have designed to experiment our research activities.
In the following sections, we present subsets of the AADL modeling language for which
this framework was experimented: partitioned ARINC653 systems in section 3.2, periodic
delayed queued communications in section 3.3, and DAGs of mixed-criticality tasks in
section 3.4.
Results presented in sections 3.2 and 3.3 are results of Fabien Cadoret’s PhD. Results
presented in section 3.4 were obtained during Roberto Medina’s PhD [52–54]. Figure 3.1
show how these contributions are positioned with respect to the approach we described in
chapter 2.
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Figure 3.1: Perimeter of research activities presented in this chapter

3.1 AADL Refinement Framework

In order to automate code generation for CPS while mastering the impact of generated code
on timing performance, we proposed in 2011 a model transformation and code generation
framework based on AADL, called RAMSES [13]. The basic principles of this framework
are depicted on figure 3.2. The idea is to proceed to code generation in a step-wise model
transformation process which would (i) exhibit the generated code into intermediate AADL
models (e.g. refined AADL model on figure 3.2), (ii) analyze these intermediate models,
until (iii) the AADL model reaches an abstraction level leading to a very simple mapping
from AADL to source code constructions. One of the major benefit of this approach is to
reduce the semantic gap between models used for analysis purpose, and models used for
code generation per se.
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Figure 3.2: Overview of RAMSES functionalities

This framework has been the playground of several ideas and experiments presented through-
out this document. We describe those related to timing analysis in the remainder of this
chapter.

3.2 Code generation and fine-grain analysis of partitioned
systems

As mentioned in the introduction of this document, CPSs are often critical systems. However,
among software components of a CPS, only a few are expected to have a high criticality level.
As a consequence, CPS designers have to provide safe methods to share computation and
storage resources among software components of different levels of criticality.

In the avionics domain, this problem has been solved by developing dedicated fault con-
tainment mechanisms in operating systems. These mechanisms are called time and space
partitioning: applications are statically provisioned with dedicated memory and execution
time slots and the operating system is in charge of enforcing the applications to remain
within these predefined slots. Partitioned operating systems are known to ensure a good
time and space isolation among software applications they execute, to the price of a timing
overhead in communication mechanisms. This timing overhead is even more significant
when considering communications among different partitions.

Input models description. Following the general principles described in section 3.1, we
have proposed a method to precisely take into account this overhead when verifying timing
requirements of a CPS. This method was first published at the International Conference on
Complex Computer Systems [20] and specialized to a case study from the real-time systems
domain in a publication at the international symposium on Rapid Systems Prototyping
in 2014 [13]. The proposed method takes as input (i) the AADL model of applications
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deployed on a partitioned system using the ARINC653 annex of AADL, and (ii) a behavioral
description of the runtime services of an ARINC653 system provider, using the behavior
annexe of AADL.
The AADL model of applications is composed of a set of interconnected processes, theme-
selves composed of interconnected tasks. In addition to these structural characteristics,
models may come with a description of tasks internal behavior. The task set is expected to be
described with the following information:

• timing consumption of each subprogram or thread component: either as a timing
interval (bounded by best and worst case execution time) for subprograms or threads,
or timed behavior actions (in the behavior annex), or a set of properties that enable to
compute such timing consumptions from the control flow graph of the components
(e.g. time of assignment actions, subprogram calls, expressions, etc.);

• accesses to shared data, in order to describe which component has access to a shared
data, when does it access it, and what is the access policy to be considered for schedu-
lability analysis;

• scheduling properties of the task set: scheduling protocol, periods, deadlines, and
priorities (if needed, depending on the scheduling protocol).

AADL models of the runtime services are provided by RAMSES, with the support of
operating systems provider. These models takes the form of a library of AADL subprograms
and data components definition. Their behavior is described with the same elements as those
described in previous paragraph for threads description. Their timing characteristics are
supposed to be provided by operating systems vendors.
Model refinements in RAMSES. Figure 3.3 illustrates the principles of the architecture
refinement implemented in RAMSES in order to provide fine-grain schedulability analysis.
On the part A of the figure, we represented a summary of the input models : the architecture
model on top, provided by an end-user of the framework, and the runtime services on the
lower part, provided by an operating system vendor. As specified on the figure, the AADL
code of the receive_input runtime service is provided in listing 3.1. Part B of the figure
represents the result of the refinement implemented as an automatic model transformation in
RAMSES. This transformation expands abstract communication interfaces (i.e. AADL ports)
into data accesses and subprogram calls. Data accesses enable threads to write or read the
value of shared variable Pi_shared_data, which contains data exchanged between threads
through these ports. Global variable Pi_lock enables to protect accesses to Pi_shared_data.
Subprogram calls are represented on part C of the figure (see receive_input!(...)).
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Pi_shared_data:	  Float	  
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Figure 3.3: Model Refinement for Timing Analysis

Listing 3.1 shows the AADL model of the receive_input subprogram of the runtime services
we use to implement communications between AADL threads. In addition, this listing
provides the definition of a processor component which according to the AADL standard,
is an abstract execution platform that represents both the hardware execution unit, and the
operating system running on it. The reason for modeling the processor at this stage is that
execution times of threads and subprograms obviously depend on the processor they are
executed on.
From a timing analysis viewpoint, this model contains the following information:

• A computation statement describes that an execution time interval of one to two
milliseconds is necessary at the beginning of the execution of this subprogram (see
line 12 of listing 3.1). Note that these timing characteristics are only valid when the
subprogram is executed on the x86 processor (modeled in the same listing) as specified
by the “in binding” statement line 12.

• Execution time of subprogram receive_input can also be deduced from the assignment
action line 14, combined with (i) the data size of operands of the assignment and (ii)
the assignment time property given in line 22 of the listing.

• Data accesses are represented in lines 13 and 15, with respectively a locking and
unlocking access to shared data that will be connected to interface lock_access (line 5).
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1 subprogram r e c e i v e _ i n p u t
2 f e a t u r e s
3 v a l u e _ o u t : out parameter F l o a t ;
4 d a t a _ s t o r a g e : r e q u i r e s data a c c e s s F l o a t ;
5 l o c k _ a c c e s s : r e q u i r e s data a c c e s s ARINC653_semaphore ;
6 annex b e h a v i o r _ s p e c i f i c a t i o n {**
7 s t a t e s
8 s1 : i n i t i a l f i n a l s t a t e ;
9 t r a n s i t i o n s

10 t 1 : s1 −[]−> s1
11 {
12 computation (1 ms . . 2 ms ) in b inding ( x86 ) ;
13 l o c k _ a c c e s s ! < ;
14 v a l u e _ o u t := d a t a _ s t o r a g e ;
15 l o c k _ a c c e s s ! > ;
16 }
17 * * } ;
18 end s e n d _ o u t p u t ;
19
20 p r o c e s s o r x86
21 p r o p e r t i e s
22 Assign_Time => [ F ixed => 0 us ; Pe r_Byte => 50 us ] ;
23 end x86 ;

Listing 3.1: AADL Runtime Services Component

In order to analyze the refined model illustrated on parts B and C of figure 3.3, at least three
alternatives exist:

1. transform the intermediate model into a formal model to apply model checking tech-
niques. Given its features, TIMES [3] would be a good candidate but to the best
of our knowledge, it does not cover hierarchical scheduling (which is an important
feature of ARINC653 systems). Another possibility could be to use more generic
formal models such as timed automata or timed Petri nets. However, the translation
of AADL to such models is a difficult task for which different research works were
already undertaken [8, 66]. These works only cover a subset of AADL which is not he
one considered in our work.

2. transform the intermediate model into a single task set with the following character-
istics: each task is given for its capacity its WCET, and each critical section of each
task is characterized by its WCET as well. The resulting model is simple to analyze
with tools such as Cheddar [72] but it may cumulate pessimism (and thus waste of
computation resources). Indeed, when a job executes for its task’s WCET, it may spend
little time in its critical section, and vice versa (when a job enters a critical section’s
WCET, it may spend little time in the task itself).

3. transform the intermediate model into a set of task sets: the control flow graph of each
task of the intermediate model is transformed into an execution tree (going from one
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suspended state of the task to another suspended state). Among the branches without
accesses to locks, we only keep the one with the highest execution time. Branches with
accesses to locks are kept as is in the tree. Task sets are then built from execution trees
by applying a cartesian product of the set of execution branches of each task. Then,
each task set is simple to analyze with tools such as Cheddar [72].

Case study. We experimented the latest alternative in [13]. The number of task sets to
analyze grows rapidly with the number of branches in tasks execution trees. The number of
task set configurations to analyze mainly depends on the characteristics of the input model:
the number of configuration to analyze grows with the number of conditional branches in
which shared data are acquired and released.
Figure 3.4 illustrates the AADL architecture of a case study from the train industry. In this
domain, the main business objective is to reduce the time interval separating two consecutive
trains while guaranteeing passengers safety. To reach this objective, the adaptation of
powerful CU gives the opportunity to embed more computation power on-board trains.
Functions traditionally deployed on the wayside infrastructure can then be embedded on-
board in order to reduce response- time of functions. Trains may then be closer to one another
by depending less on the wayside infrastructure. However, grouping functions on-board the
train should not lead to hardware resources over-consumption otherwise the safety of the
system may be put at risk.
Because train application are also made up of components of different criticality levels, parti-
tioned operating systems are also studied for future architectures of these applications. Fig-
ure 3.4 illustrates the AADL architecture of a simplified application called Communications-
Based Train Control (CBTC). This application is decomposed in two processes: the Auto-
matic Train Operation (ATO) process, represented on the left of figure 3.4, is responsible
for controlling the position, speed, and acceleration of the train. The other process, called
Automatic Train Protection (ATP), is represented on the right of figure 3.4: it communicates
with the ATO in order to check the validity of data computed by the ATO.
Our objective is to ensure CUs provide enough computation power to host both processes.
The software architecture represented configure 3.4 is made up of two AADL processes,
eight AADL threads (four threads in each process), and twelve connections among ports of
these threads.
For the case study presented in figure 3.4, the timing analysis of our case study required the
analysis of 64 tasks configurations (different values for the WCET of tasks and the WCET
in critical sections). These configurations were analyzed using the Cheddar tool suite [72].
Experimentations were conducted on a 2.7 GHz Intel processor (Intel Core i7-3740QM; 4
cores) with 3.9 GiB memory and a SSD hard drive disk. The complete process, from the
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Figure 3.4: AADL Model of our Case Study

beginning of the model refinement, until the compilation of generated code, passing by the
analysis of 64 tasks configuration took 2 minutes and 17 seconds. Considering the complexity
of the input architecture, this result seems to be very satisfactory: of course, the number of
configuration to analyze can grow very fast by increasing the complexity of the input model,
but the analysis of every single configuration is the price to pay for an exhaustive analysis.
However, to limit the complexity of timing analysis, another strategy is to consider more
deterministic MoCCs and to propose lock-fee implementations of these MoCCs. We present
our work related to such techniques in the remainder of this chapter.

3.3 Periodic delayed communications

MoCC presentation. The MoCC we consider in this section is a variant of message passing
communications among periodic tasks:

• Communication channels are modeled by directed ports and connections to enable
various configurations regarding the number of sender and receiver.

• A task τi can receive a set of messages on its input ports.

• A task τ j can send a message on its output ports to connected input ports.

• A message sent on an output port p, is eventually received on input ports connected to
p.

We refined this model to ensure deterministic communications among tasks:

• During each job J j of a task τ j, exactly one message is sent on each output port of a
task.
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• A message sent by a job is delivered to the receiving task at the recipient release time
following the sender job deadline. More formally, a message sent to τi, by the kth job
of τ j is considered delivered at ⌈k·Ti+D j

Ti
⌉ ·Ti (remember that Ti and Di are respectively

the period and deadline of task τi, as defined in notations used in chapter 2).

• Any message delivered to the kth job of τi should be removed from the receiving port
at time k ·Ti+Di. After this time, delivered messages to the kth job of τi are considered
outdated.

• Messages delivered to a task are received in the order of sender jobs deadlines. When
sender jobs deadlines are simultaneous, a predefined order noted ≺, e.g. task priorities,
is used.

The model is said “periodic-delayed” as messages are periodically sent and their delivery is
delayed until sender job deadlines. Such a communication model can be modeled in AADL
with the following properties :

• The Dispatch_Protocol property is set to Periodic for each thread component: tasks
are periodic,

• The Period, and Deadline properties are set for each thread component (with Deadline≤
Period),

• The Timing property is set to Delayed for output ports of tasks: messages are sent at
deadline.

Note that the default value of the AADL Output_Rate property already states that one
message is produced per activation of the producer tasks. Similarly, we use AllItems as the
default value for the property Dequeue_Protocol, which means that all the messages available
at release time of the recipient will be considered as consumed at the end of its job.
Lock-free implementation. In next paragraphs, we show how to compute message indexes
for sent received messages order to implement these action without locks. The number of
received messages at time t on a queue q of size Q can be computed as follows:

Received(q, t) = ∑
j∈STq

⌊
t −D j

Tj
⌋+1

where STq is the set of tasks sending messages to q.The indexes of sent values can be
computed as follows for queue q and the kth job of a sender task τ j:

SendIndex(q, j,k) = Redeived(q,k ·Tj +D j)−Followers(q, j,k)
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where Followers is the number of successors of τ j (according to ≺) in STq having their
deadline at k ·Tj +D j. More formally:

Follower(q, j,k) = ∑
s∈STq, j≺s

Collide(s,k ·Tj +D j)

where Collide is defined as follows

Collide(s, t) =

1 if t−Ds
Ts

∈ N

0 otherwise

Hence, the message sent in q by the kth job of τ j (τ j is the task sending messages in
q) is stored in slot SendIndex(q, i,k) modulo Q (Q is the size of q). Besides, received
messages range from (ReadIndex(qr,k− 1)+ 1) modulo Q to ReadIndex(q,k) modulo Q
where ReadIndex(q,k) = Received(q,k ·Ti) for the task τi receiving messages from q. Note
that SendIndex(q, j,k) and ReadIndex(q,k) can be computed independently without any
internal state, reason why lock free implementations of these functions are possible. Finally,
the size of q can be bound as follows (the proof of this result is available in [21]):

Q ≤ ∑
j∈STq

(⌊
2 ·Tq +Dmax

Tj
⌋+1)

Illustrative example To illustrate this task and communication model, we consider the
time-line depicted in Figure 3.5. This figure shows communications between three tasks: τi

J1.1 

J2.1 

J1.2 

J2.1 

Sends m1.1 Sends m1.2 

J2.2 

J3.1 

Sends m2.2 

J1.3 J1.4 

Sends m1.3 

J3.1 

Receives:  
    {m1.1, m2.1, m1.2} 

Sends m2.1 

Figure 3.5: Illustrative Example of periodic-delayed communications

with i = 1..3, Ti = Di, and T1 = 5, T2 = 7, T3 = 10. τ1 and τ2 send periodically messages
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to τ3 according to the communication model described above. As illustrated on this figure,
exactly one message is sent during each task job for τ1 and τ2. Note that messages m1.1,
m2.1, and m1.2 are only delivered at time 10. Message m2.2 will not be delivered before 20
time units, even though job J2.2 (that produces m2.2) already finished its execution when J3.2
starts in this scenario. This model allows ensuring deterministic time for message reception
independently of task interleaving and actual execution time. Notice also, that messages
are ordered with respect to sender deadlines, reason why m2.1 is put before m1.2 in the
queue even though J1.2 finishes before J2.1 sends message m2.2. This is done to enforce a
deterministic order on message from the point of view of the receiver. Finally, m1.1, m2.1,
and m2.2 are discarded at completion time of J3.2 even if these message were not used during
this job.

Discussion. With respect to timing analysis of architecture models, periodic delayed com-
munications bring the advantage of being deterministic and can therefore be implemented
without locks. As a consequence, tasks with periodic delayed communications can be consid-
ered as independent tasks, which greatly simplifies timing analysis. For instance, it reduces
the complexity of timing analysis induced by multiple critical sections (as presented in
section 3.2). However, these lock free implementations require to store data structures and
execute functions to retrieve and/or compute the indexes of sent or received messages. This
is why the refined model produced by RAMSES is important: it allows to check platform
resources are still sufficient even when taking into account the overhead due to the implemen-
tation of communication mechanisms. Last but not least, delayed communications tend to
increase data flow latency, i.e. the time range separating the reception of inputs from sensors
to the production of commands to actuators in a CPS. This is one of the reasons why we
decided to consider task models made up of DAGs of tasks. Another reason was the necessity
to provide solutions for scheduling mixed-criticality task sets on multi-core architectures.
This work is presented in next section. Note however, that these two MoCCs (i.e. DAGs
and periodic-delayed) are complementary: periodic delayed communications are often used
to break cycles in tasks dependencies while preserving deterministic MoCC and lock free
implementations. Last but not least, scheduling real-time DAGs is known to be a difficult
problem and its adaptation to mixed criticality scheduling required a PhD thesis on its own.

3.4 Mixed-criticality DAGs analysis

The contributions presented in section 3.2 aim at automating the analysis of tasks sets
with critical sections. On hypothesis of this work was that tasks are executed on mono-
core architectures. The results presented in section 3.3 show how to implement lock free
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communications among periodic tasks. Given the communication model we considered,
these results can be used when scheduling tasks on multi-core architecture. Tasks would then
be considered as independent, which greatly ease the application of scheduling techniques.
However, as stated at the end of previous section, this MoCC induces important latency on
data flows.

Context. A MoCC frequently used to model critical embedded systems consists of data
flow graphs. This model defines actors that communicate with each other in order to make
the system run: the system is said to be data-driven. The actors defined by this model
can be tasks, jobs or pieces of code. An actor can only execute if all its predecessors have
produced the required amount of data. Therefore, actors have data-dependencies in their
execution. Theory behind this model and its semantics provide interesting results in terms of
logical correctness: deterministic execution, starvation freedom, bounded latency, are some
examples of properties that can be formally proven thanks to data-flow graphs.

In this work we have considered a simple subclass of data-flow graphs in which data depen-
dencies are directly captured into Directed Acyclic Graphs of tasks. In this MoCC, a software
architecture is made up of DAGs in which vertices represents tasks, and edges represent
precendence constraint, i.e. a task can only start executing when all its predecessors have
finished their execution. In parallel, the adoption of multi-core architectures in the real-time
scheduling theory led to the adaptation and development of new scheduling policies [26]. Pro-
cessing capabilities offered by multi-core architectures are quite appealing for safety-critical
systems since there are important constraints in terms of power consumption and weight.
Nonetheless, this type of architecture was designed to optimize the average performance and
not the worst case. Therefore, ensuring time correctness becomes harder when multi-core
architectures are considered: in hard real-time systems the Worst Case Execution Time is
used to determine if a system is schedulable.

This observation is one of the main reason for the popularity of the mixed-criticality schedul-
ing (MCS), intensively studied these last years [19]. With MCS, tasks can be executed in
different execution modes: in the nominal mode, high and low criticality tasks are both
executed with an optimistic timing budget. When the system detects a timing failure event
(TFE), i.e. a task did not complete its execution within its optimistic timing budget, the
system switches to a degraded mode. In this mode, high criticality tasks are executed with
their pessimistic timing budget, discarding [74] low criticality tasks or degrading them [73]
(i.e. reducing their execution frequency).

Overview of the work. The schedulability problem of real-time tasks in multi-core archi-
tectures is known to be NP-hard. When considering mixed-criticality multi-core systems,
the problem holds its complexity. Thus, in our contributions we have designed a meta-
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Figure 3.6: UAV software architecture with two MC-DAGs

heuristic capable of computing scheduling tables for the execution of Mixed-Criticality
DAGs (MC-DAGs). The reason for choosing scheduling tables is simple: it is known to
ease the certification of critical systems and the ARINC653 scheduling of partitions (using
schedule table to enforce temporal isolation of partitions) is a good example of this statement.

In addition to this meta-heuristic, we have proposed a method to evaluate the availability
of lower criticality tasks. Indeed, the initial objective of MCS is to improve computation
resources usage by allowing to configure the system with lower timing budgets than tasks
WCET. In practice, this is only possible if low criticality tasks are degraded whenever high
criticality tasks need more computation resources. This impacts the quality of low criticality
services. We proposed to measure this impact in terms of availability.

Illustration. Figure 3.6 illustrate the structure of a MC-DAG on a motivating example: an
UAV for field exploration. The UAV is composed of two MC-DAGs: the first one takes care
of the Flight Control System (FCS), noted GFCS [71]. The second MC-DAG represents a
scientific workflow used for image processing [9], noted GMontage. Vertices in gray represent
high criticality tasks, while white vertices are low criticality tasks. Vertices are annotated
with their timing budgets: a single value is given for low criticality tasks since they are not
executed in the high criticality mode. Full edges represent precedence constraints between
tasks, while dashed edges represent the interface with the system’s boundaries: where data
is initially coming from or finally sent to. The idea behind this motivating example is to
demonstrate that the FCS could be executed next to an image processing workflow on a
tri-core architecture.

In the remainder of this section, we present our two main contributions on this task model:
we first present the scheduling method we proposed, before to explain how we compute the
availability of low criticality tasks. For the sake of simplicity, we present these results on
a dual criticality system with a LO and HI modes (i.e. respectively low and high criticality
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modes) but we provided more general results (for any number of criticality levels) in Roberto
Medina’s PhD thesis.
ALAP implementations of MC-Correct schedules. To begin with, we shall recall the
definition of a MC-correct scheduling for DAGs, as defined in [6]:

Definition 1. A MC-correct schedule is one which guarantees

1. Condition LO-Mode: If no vertex of any MC-DAG in G executes beyond its Ci(LO)

then all the vertices complete execution by the deadlines; and

2. Condition HI-Mode: If no vertex of any MC-DAG in G executes beyond its Ci(HI)
then all the vertices that are designated as being of HI-criticality complete execution
by their deadlines.

In the Real-Time Systems Symposium, 2018, we proposed a sufficient conditions to guarantee
Condition HI-Mode of MC-correct scheduling [54]:
First, for each task τi executing in mode χ , we define the function ψ

χ

i as follows:

ψ
χ

i (t1, t2) =
t2

∑
s=t1

δ
χ

i (s). (3.1)

where

δ
χ

i (s) =

1 if τi is running at time s in mode χ,

0 otherwise
.

This function defines the execution time allocated to task τi in mode χ from time t1 to time
t2.

Definition 2. Safe Transition Property

ψ
LO
i (ri,k, t)<Ci(LO)⇒ ψ

LO
i (ri,k, t)≥ ψ

HI
i (ri,k, t). (3.2)

As one cans see in equation (3.2), Safe Trans. Prop. states that, while the k-th activation of
HI task τi has not been fully allocated in LO mode, the budget allocated to this job in LO
mode must be greater than the one allocated to it in HI mode. Intuitively, this guarantees
that whenever a TFE occurs, the final budget allocated to the job of τi is at least equal to its
WCET in HI mode.
Building on the definition Safe Trans. Prop., we proposed a meta-heuristic to build MC-
correct schedules. We also proposed several implementations of this meta-heuristic, based on
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G-EDF1 or G-LLF (Global Least Laxity First): two well known global schedulers appreciated
for their performances. In our implementations of schedulers for MC-DAGs, G-EDF or
G-LLF are used to assign priorities to tasks. In addition, we proposed to improve the
performance of MC-DAG schedulers by executing tasks As Late As Possible (ALAP) in HI
mode, and As Soon As Possible (ASAP) in LO mode. Executing tasks ALAP in HI mode,
we expect to free execution slots close to tasks activation, usable by tasks executed ASAP in
LO mode. Figure 3.7 illustrates the scheduling tables obtained with our MC-DAG scheduler,
using G-LLF and enforcing the respect of Safe Trans. Prop..

(a) Scheduling table in LO mode (ASAP)

(b) Scheduling table in HI mode (ALAP)

Figure 3.7: Scheduling tables for the UAV, using G-LLF and Safe Trans. Prop.

Evaluation framework. A systematic evaluation of the scheduling methods we proposed
was performed during the PhD of Roberto Medina. We implemented the G-ALAP-LLF and
G-ALAP-EDF algorithm in an open-sourced framework2. In addition, since works in [6]
have only presented theoretical results, we also implemented the federated approach. Last
but not least, we developed a MCS generator in order to produce many MCS with random
properties. Thanks to these tools, we generated a set of MCSs and measured the ratio for
which each scheduling method finds a MC-correct schedule.

1Global Earliest Deadline First
2MC-DAG Framework - https://github.com/robertoxmed/MC-DAG



3.4 Mixed-criticality DAGs analysis 35

The random generation needs to be unbiased and uniformly cover the possible timing
configurations of MCS. To design this random generation, we first integrated existing
methods to generate DAGs with unbiased topologies [24]. This is an important aspect,
since certain DAG shapes tend to be more schedulable than others. The distribution of
execution time for tasks is not controlled by existing DAG generation approaches. Yet,
the utilization of the system is the most important factor used to perform benchmarks on
real-time scheduling techniques. To overcome this limitation, we have integrated existing
methods achieving a uniform distribution of utilizations for tasks [10, 26].
Parameters for the generation of MCS are:

• U : Utilization of the system in both criticality modes.

• |G |: Fixed number of MC-DAGs per system.

• |Vj|: Fixed number of vertices per MC-DAG, i.e. all MC-DAGs have the same number
of vertices.

• ρ: Ratio of HI criticality tasks.

• f : Reduction factor for the utilization of HI tasks in LO mode.

• e: Probability to have an edge between two vertices.

Once these parameters are set, we first distribute uniformly the utilization of the system to
each MC-DAG. We use the uniform distribution described in [10] to assign a utilization
for each MC-DAG. The period/deadline for each MC-DAG is then assigned randomly:
this period is chosen from a predefined list of numbers in order to avoid prime numbers3

(which are also avoided in the industrial context). With the assignment of the period and the
utilization of the MC-DAG, we can distribute the utilization to tasks of the DAG. We use
UUnifast-discard [26] in this case. As opposed to the utilization that can be given to DAGs, a
vertex cannot have a utilization greater than 1 since it is a sequential task (parallel execution
for a vertex is not possible). UUnifast-discard is therefore an appropriate method. The
utilization available for LO-criticality tasks is given by the difference between the utilization
of HI tasks in HI mode and the utilization of HI tasks in LO mode, the difference being
controlled by parameter f .
Once the utilization of the system is distributed among MC-DAGs and the utilization of
MC-DAGs is distributed among tasks, we start the generation of the topology for the MC-
DAGs. We start by creating the HI-criticality vertices. These vertices are connected following

3Possible periods: {100,120,150,180,200,220,250,300,400,500}.
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Figure 3.8: Comparison to existing multiple MC-DAG scheduling approach

the probability e given by the user and without creating cycles among vertices. After the
HI-criticality tasks have been created, we create the LO-criticality tasks. Again vertices are
connected following the probability e chosen by the user and without creating cycles. The
higher the probability e, the more dense is the resulting graph: vertices have more precedence
constraints to satisfy, making the scheduling of the system more difficult.

Experimentation setup: We control the parameters of the MCS generator so as to measure
their influence on the performance of our method. We expect the following parameters to
make the scheduling problem more difficult: (i) the density of the graphs, (ii) the utilization
of the system, (iii) the utilization per task of the system, (iv) the number of MC-DAGs. Our
experiments aim at measuring the effect of these parameters on G-ALAP-LLF’s performance.

Experimentation results. Figure 3.8 provides our experimental results in terms of accep-
tance rate obtained with different schedulers and various setups of the MC-DAG generator.
For each point in the figure, the acceptance rate was obtained by generating 500 MC sys-
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tems (i.e. sets of MC-DAGs) and measuring the percentage of these systems for which
a MC-correct schedule (see definition 1) was found. Each subfigure shows the evolution
of the acceptance rate when the CPU usage increases. From one subfigure to another, the
configuration of the MC-DAG generator was changed. For instance, subfigure 3.8a shows
results obtained with 2 MC-DAGs of 100 tasks each, with an edge probability of 20% and
a processor with 4 cores. Results shown on subfigure 3.8b were obtained using the same
configuration except of the number of MC-DAG: 4 MC-DAGs were generated in this case.
On each subfigure, the acceptance rate obtained with different scheduling strategies are
displayed: the red curve corresponds to the G-ALAP-LLF scheduler we proposed. It uses
G-LLF to set tasks priority, enforces the respect of Safe Trans. Prop., and executes tasks
ALAP in HI mode and ASAP in LO mode. the green curve corresponds to G-ALAP-EDF,
following the same principles as G-ALAP-LLF but assigning tasks priorities according to
G-EDF. Finally, the grey curve corresponds to the federated approach, proposed by Baruah
in [6].
Without entering in details into the comparison of these results, readers can easily observe that
G-ALAP-LLF provides much better results than the two other methods. When it comes to
the comparison of G-ALAP-EDF and the federated approach, the performance gain obtained
with G-EDF depends on the system’s configuration. To better understand the results, we shall
explain how the difficulty of the scheduling problems evolve across subfigures. Scheduling
problems obtained with configuration of subfigure 3.8b are easier than problems obtained
with the configuration of subfigure 3.8a: when increasing the number of MC-DAGs on
the same number of cores and the same CPU utilization, we tend to produce smaller tasks
which is easier to schedule than more monolithic task sets. For the same reason, scheduling
problems obtained with configuration of subfigure 3.8c are easier than problems obtained
with the configuration of subfigure 3.8d, and problems corresponding to subfigure 3.8c are
easier than problems corresponding to subfigure 3.8a.
This classification of the difficulty of scheduling problems is confirmed by the experimental
results show on the subfigures. Therefore, the overall comparison of obtained results tend to
show that

1. G-ALAP-EDF is better than the federated approach for systems of intermediate dif-
ficulty but the difference between these methods tend to be reduced for very easy or
very difficult scheduling problems.

2. G-ALAP-LLF is far better than other approaches in terms of acceptance rate.

However, solutions based on LLF are known to produce an important number of preemptions
among tasks. In Roberto Medina’s PhD, we have measured the number of preemptions
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obtained with the different MC-DAG schedulers mentioned above. Without knowing the cost
of a preemption, it is not possible to know how taking preemptions cost into account impacts
the acceptance rate. However, since we produce scheduling tables, the number of preemptions
is known at design time and if we were given a value for preemption cost, we could easily
adapt our scheduling method and decide whether the system remains schedulable.

Availability analysis of low criticality services. In addition to our contributions on MC-
DAGs scheduling, we studied the impact of mixed criticality scheduling on the quality of
services of low criticality tasks. The objective of mixed criticality scheduling is to improve
computation resources usage, to the price of a degradation of low criticality services. Indeed,
when high criticality tasks risk to miss their deadlines, low criticality tasks are discarded (or
slowed down).

In our work, published at the international conference on Design Automation and Test in
Europe 2018, we proposed a method to evaluate the impact of mixed criticality scheduling
on the quality of low criticality services. We formalized this quality of service as the
availability of outputs produced by low criticality tasks, and proposed enhancements of
this quality of service for task sets modeled as MC-DAGs with a discard model (low tasks
are temporarily discarded in case of TFE). Taking advantage of the DAG, we proposed the
following modifications of the MC scheduling: when a TFE occurs in a low criticality task,
we only discard the induced subgraph by the discard of the faulty task. In addition, we
proposed to consider fault tolerance mechanisms such as the Triple Modular Redundancy
of MC-DAGs, and/or the weakly hard nature of some tasks, which is usually formalized
as follows: tasks able to continue their execution as long as less than M errors out for K
consecutive executions.

In order to evaluate the availability of outputs, two types of precedence relationships among
tasks had to be considered: structural precendence (captured by edges in DAGs) and temporal
precedence (captured by the scheduling table obtained with techniques presented in previous
sections). From these models (i.e. MC-DAGs and scheduling tables) we proposed a model
transformation to probabilistic automata. The probabilistic nature of TFE was captures using
the recent notion of probabilistic WCET [51]. Besides, a recovery towards the LO mode
as well as the fault tolerance mechanisms were also captured with state and transitions of
probabilistic automata.

To the best of our knowledge, this contribution was the first method to compute the availability
of low criticality tasks of MC systems. In addition, our experimental evaluation, made with
the PRISM framework [41], showed that our enhancements of this availability were very
significant.
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Figure 3.9: UAV AADL architecture: system level

Figure 3.10: UAV AADL architecture: FCS MC-DAG

Integration in RAMSES. The work presented in this section has also been integrated in
the RAMSES framework. Interestingly, the computation of low criticality tasks availability
relies on the computation of scheduling tables. We thus adapted the RAMSES framework
to refine input AADL models by including a representation of the schedule tables. This
model is then used to produce formulas or automata from which availability of low criticality
functions is computed. We also elaborated a library of AADL models to model MC-DAGs.
Figure 3.9 shows the model of the hardware multi-core platform, i.e. two cores modeled
as AADL processors on the left part of the figure. For the software architecture, which is
illustrated on the right part of figure 3.9, two AADL thread groups represent the MC-DAGs
of the UAV case study. In the software part, LO and HI modes are modeled with AADL
modes, and event ports connect the hardware part to the software part to represent potential
mode switches (LO to HI in case of TFE in a high criticality task, and recovery to switch
back to LO mode).
Figure 3.10 represents the content of the FCS MC-DAG modeled as a set of AADL thread
with data port connections. These connections are associated with a Timing property of value
Immediate to represent in AADL the precedence constraints of DAGs.
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3.5 Concluding remarks

In this chapter, we have presented our contributions to answer the following questions:

1. how to improve the consistency between models used for analysis and code generation
purposes?

2. how to improve resource usage induced by pessimistic hypothesis in the design of
real-time CPS?

To answer these questions, we have proposed a model refinement method and its prototyping
in the RAMSES framework. This framework has been experimented on different MoCCs,
showing the added value of model transformations in the context of CPSs design. By
providing answers to some of the research questions presented here above, our work provides
original methods to improve the reliability of software development in CPSs.
To the best of our knowledge, this work provides a unique AADL framework for fine grain
timing analysis of real-time embedded systems, as well as source code generation for the
most common subsets of AADL MoCCs used in safety critical real-time systems (partitioned
systems, periodic delayed communications, periodic MC-DAGs). These contributions have
been produced by several PhD students who presented their results in well established
international conferences.
This work was inspired by technical discussions with industrial partners, in particular from
the railway domain. Our new results bring answers to significant concerns in this industry in
particular when it comes to better understand how to improve resource usage while ensuring
safety. These results have also been applied in a project with the Department of Defence
(USA) and the Software Engineering Institute (SEI), aiming at generating source code for a
commercial operating system implementing the ARINC653 standard.
As a follow up on this work, we started new research activities in order to adapt security
techniques to the specificity of critical real-time embedded systems. In the scope of Maxime
Ayrault’s PhD, we aim at studying the integration of resilience mechanisms in connected cars.
More generally, we aim at improving the autonomy of critical systems, which is the objective
of a european collaborative project proposals we are involved in. These two perspectives are
further described in chapter 5.
We have focused in this chapter on model transformations for source code generation, but
several other types of model transformations were implemented in RAMSES. In particular,
model transformations for remote communications, modes, and error management are of
interest for timing analysis since all these transformations require to add task to the initial
model in order to react on incoming messages, mode change requests, and error occurrences.
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Building on this experience, we extended our research activities towards the composition of
model transformations for CPSs. We present our contributions on this topic in next chapter.
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In the previous chapter, we have shown how we use model transformations to improve
software design process in the context of real-time CPSs. As stated in the introduction of this
document, however, model transformations are difficult to write: they are, essentially, graphs
transformation applications. This is one of the reasons why dedicated model transformation
languages have been defined. In addition, in order to ease their maintenance and reuse, model
transformations are usually written as small units of transformation which can be composed
into model transformation chains: the output model of a transformation becomes the input
model of the next transformation of the chain.
However, several problems come from the decomposition of model transformations into
chains of smaller transformations:

1. transformation convergence: when model transformations are chained, each transforma-
tion produces an output model that becomes the input model of another transformation.
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This process could be repeated infinitely, failing to produce the output model of the
chain. Ensuring existence of models produced by model transformation chains is a
difficult problem, mentioned on the upper and left part of figure 2.1.

2. output model correctness: because model transformations are complex software ap-
plications, model transformation chains rapidly become difficult to master. However,
it is important to ensure output models correctness. This notion can be decomposed
into qualitative and quantitative correctness where qualitative correctness boils to
ensure the output model satisfies predefined structural constraints whereas quantitative
correctness boils to ensure the output model exhibits satisfactory NFPs. Ensuring
correctness of models produced by model transformation chains is a difficult problem
mentioned on the upper and central part of figure 2.1.

3. variability management: in a model transformation chain, each model transformation
is subject to variability. Indeed, abstraction embodied by a model implies there will
exist several implementations or refinement variants of this model. In practice, it is
very common that such variants would have different impacts on NFPs exhibited by the
resulting model. As these impacts are often in conflict, finding the best transformation
chain boils to solve a multi-objective optimization problem. Solving such problems is
a very difficult task mentioned on the upper and right part of figure 2.1.

4. transformations validation and verification: model transformation chains have to be
validated with very rigorous methods when they are involved in the implementation
process of critical software applications. This becomes a very challenging problem
when model transformations are organized into chains of model transformations since
transformations have to be tested individually and as an integrated chain of transforma-
tions. As a consequence, validation and verification of model transformation chains
may become very costly. This problem is not depicted on figure 2.1 but it is obviously
very relevant in the application domains of our work.

In this chapter, we present the work we have conducted to increase the confidence one can
have in model transformation chains. Reading the contributions presented in this chapter, one
will notice their common focus on structural constraints applied to models produced by model
transformations. Indeed, the notion of structural constraints has been used in this work to
represent: (i) validity constraints for the applicability of analysis and verification techniques
on output models, (ii) test requirements for the validation of model transformations, and (iii)
validity constraints for the model transformation variants selection and composition.
This chapter is organized as follows: section 4.1 introduces the context of this work with
a presentation of model transformation chains implemented in the RAMSES framework.
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Building on this presentation, we illustrate the notion of structural constraint which enable
the application of analysis presented in previous chapter. In section 4.2, we describe our
method to build model transformation chains ensuring produced models respect predefined
structural constraints (results of Cuauhtémoc Castellanos PhD). Section 4.3 presents our
contributions dedicated to model transformation chains validation (results obtained during
Elie Richa PhD). Finally, we present in section 4.4 our work on model transformation
variants selection and composition to implement model-driven and multi-objective design
space exploration techniques (result obtained during Smail Rahmoun PhD). Figure 4.1 show
how these contributions are positioned with respect to the approach we described in chapter 2.
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Figure 4.1: Perimeter of research activities presented in this chapter
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4.1 Model transformation chains in RAMSES

In order to produce software applications of CPS from architecture models, we proposed to
implement AADL to AADL model transformations. One such model transformations have
been described in chapter 2. More generally, a step-wise model transformation process is
illustrated on figure 4.2. In this process, several model transformations are chained:

• security and safety design patterns are first applied to integrate safety and/or security
components such as firewalls, encryption/decryption components, software/hardware
redundancy, etc.

• remote connections are then transformed in order to incorporate communication tasks
in the software architecture of the application.

• operational modes are treated in a similar way: dedicated mode management tasks are
added to the software architecture to handle mode change requests.

• connections among ports of tasks deployed on the same processors are then mapped
into global variables and runtime services calls, as described in chapter 2.

Figure 4.2: RAMSES refinements: chain of model transformations
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In the remainder of this section, we give more details about the implementation of these trans-
formations in RAMSES. The objective of this presentation is to provide enough information
about the technical context in which the research work presented in this chapter have been
conducted. We start with an illustration of a model transformation, and use this example to
explain the model transformation language used in RAMSES.
Several model transformation methods, languages, and tools, have been studied to help MDE
experts develop their frameworks. A classification of model transformation approaches was
proposed by Czarnecki and al. in [25]. From this classification, we decided to use ATL for
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the implementation of the RAMSES framework. We chose this language for the simplicity
of its semantics, as well as for the quality of the associated model transformation tools.
In terms of semantics, ATL is a rule-based transformation language which execution relies
mainly on a pattern matching semantics [39]: in ATL, a transformation consists of a set of
declarative matched rules, each specifying a source pattern and a target pattern. The source
pattern is made up of (i) a set of objects identifiers, typed with meta-classes from the source
meta-model and (ii) an optional OCL [59] constraint acting as a guard of the rule. The target
pattern is a set of objects of the target meta-model and a set of bindings that assign values to
the attributes and references of the target objects.
Figure 4.3 provides an illustration of the application of a model transformation to implement
a safety design pattern called Triple Modular Redundancy (TMR) [50], also called two out
of three (2oo3). Listings 4.1 and 4.2 provide snippets of the ATL code used to implement the
2oo3 model transformation for components replication. This transformation will be used as
an illustrative example in the remainder of this chapter. In listing 4.1, ATL rule m_Process_-
2oo3 transforms every AADL process component into three process components identified
with the following target object identifiers: proc1_2oo3, proc2_2oo3, and proc3_2oo2.
For the sake of concision, this listing does not develop the creation of these processes. Given
the execution semantics of ATL, this rule will match any AADL component instance of the
process category.

Figure 4.3: Overview of the TMR (also called 2oo3) transformation
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In listing 4.2, ATL rule m_PortConnection_2oo3 transforms connections among process
components in the source model, into connections among their replicas in the target model.
This is represented in rule m_PortConnection_2oo3 with the creation of cnx1_1_2oo3,
cnx1_2_2oo3, etc. For the sake of concision, the creation of only one of the connections in
the target model is fully developed in this listing. This rule will match, in the source model
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Listing 4.1: ATL rule for 2oo3: processes replication
1 r u l e m_Process_2oo3
2 {
3 from
4 c : AADLI ! Componen t Ins t ance ( c . c a t e g o r y = # p r o c e s s )
5 to
6 proc1_2oo3 : AADLBA! ProcessSubcomponen t ( . . . ) ,
7 proc2_2oo3 : AADLBA! ProcessSubcomponen t ( . . . ) ,
8 proc3_2oo3 : AADLBA! ProcessSubcomponen t ( . . . ) ,
9 }

of the transformation, any connection cnxc between two process components of the input
model.
One of the reasons for the simplicity of the ATL language is the definition of its resolve
mechanisms: when a source object identifier is referenced in the right hand side of a binding,
a resolve operation is automatically performed to find the rule that matched the source
objects, and the first output pattern object created by that rule is used for the assignment
to the target reference. This is referred to as the default resolve mechanism. Another non-
default resolve mechanism allows resolving a (set of) source object(s) to an arbitrary target
pattern object instead of the first one as in the default mechanism. It is invoked via the
following ATL standard operation: thisModule.resolveTemp(obj, tgtPatternName)

as shown in previous listing. Last but not least, the semantics of ATL ensures transformations
convergence: each rules is applied at most once per pattern it matches in the input model.
This property is not verified by all model transformation languages: for some of them, rules
are executed as long as they match on the input model and the target elements produced by
previously executed rules. As a consequence, we do not consider in our work the problem of
model transformation chains convergence presented in the introduction of this chapter.
This brief presentation of ATL will allow us to present our contributions on model driven
engineering in the context CPSs. In the next section, we present the framework we proposed
in order to chain model transformations in a way that guarantees the output model of the chain
can be analyzed. Contributions presented in chapter 2 provide examples of such analysis.

4.2 Automatic construction of transformation chains

Chaining model transformations properly may become a difficult task. In particular, one
of the objective of models in the domain of CPS is to enable analysis of Non-Functional
Properties. However, this requires to conform to a set of validity constraints: for instance,
models used to ensure real-time systems schedulability (presented in chapter 2) assume that
tasks are periodic (or sporadic in some cases). However, error management tasks are often
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Listing 4.2: ATL rule for 2oo3: connections replication
1 r u l e m_Por tConnec t ion_2oo3
2 {
3 from
4 cnx : AADLI ! C o n n e c t i o n R e f e r e n c e ( cnx . i s P r o c e s s P o r t s C o n n e c t i o n ( ) )
5 us ing
6 {
7 cSrc : AADLI ! Componen t Ins t ance = cnx . g e t S r c C p t I n s t a n c e ( ) ;
8 cDs t : AADLI ! Componen t Ins t ance = cnx . g e t D s t C p t I n s t a n c e ( ) ;
9 }

10 to
11 −− f e a t u r e f _ 1 : PROC_1_src −> PROC_1_dst −−
12 cnx1_2oo3 : AADLBA! P o r t C o n n e c t i o n (
13 name <− cnx . getName ( ) + ’ _1 ’ ,
14 s o u r c e <− sourceCE1_1 ,
15 d e s t i n a t i o n <− d e s t i n a t i o n C E 1 _ 1
16 ) ,
17 sourceCE1_1 : AADLBA! Connec tedElement (
18 c o n n e c t i o n E n d <− cnx . s o u r c e ,
19 c o n t e x t <− t h i s M o d u l e . reso lveTemp ( cSrc , ’ proc1_2oo3 ’ )
20 ) ,
21 d e s t i n a t i o n C E 1 _ 1 : AADLBA! Connec tedElement (
22 c o n n e c t i o n E n d <− cnx . d e s t i n a t i o n ,
23 c o n t e x t <− t h i s M o d u l e . reso lveTemp ( cDst , ’ proc1_2oo3 ’ )
24 ) ,
25 −− f e a t u r e f _ 1 : PROC_1_src −> PROC_2_dst −−
26 cnx2_2oo3 : AADLBA! P o r t C o n n e c t i o n
27 . . .
28 −− o t h e r c o n n e c t i o n s ommi t t ed f o r t h e sake o f c o n c i s i o n
29 }

aperiodic and have a high priority. As a consequence, hypothesis for a timing analysis does
not hold in this case. In practice, this is not an issue from a timing analysis perspective since
designers proceed to timing analysis in nominal conditions (i.e. in the absence of errors).
However, this becomes an issue from a model transformation perspective since it requires to
ensure that timing analysis is performed before model transformations dedicated to errors
management but after all other transformations leading to an analyzable model in terms of
timing analysis. Solving this problem boils to find model transformation chains producing
output models enforcing the respect of application conditions on output models.

In the introduction of this chapter, we have introduced the problem of ensuring model trans-
formation chains produce correct output model. This notion of correctness was decomposed
into qualitative and quantitative correctness. In his PhD, Cuauhtémoc Castellanos studied
this problem considering qualitative correctness defined as a set of structural constraints
on models produced by model transformation chains. Such constraints would also enable
the verification of qualitative correctness by enforcing the respect of application conditions
for analysis of NFPs on the output model. Cuauhtémoc Castellanos also proposed to for-
malize design patterns as model transformations. Design patterns composition was thus
implemented by chaining model transformations. Structural constraints on intermediate
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models were formalized as a set of pre-conditions and post-conditions of transformations.
Additional structural constraints were also defined in order to enforce the applicability of
analysis techniques on output models of a chain. OCL was first used to formalize these
constraints, while ATL was used to define model transformations. The main problem we
addressed in this PhD was: given a set of model transformations with their preconditions and
post conditions, and a set of structural constraints on the output models of transformation
chains, in which order should transformations be chained in order to produce an output
model which satisfies structural constraints on the output model? When transformations are
commutative, which was the object of previous works [29], the order has no importance.
However, model transformations we consider in our work are mostly non-commutative since
they are refinement transformations. In order to find a correct sequence of non-commutative
model transformations, we proposed to formalize model transformations in Alloy [37]. Alloy
is a modeling language to defined constraint satisfaction problems with a relational algebra.
With Alloy, we specify a set of constraints a solution to the problem must satisfy. These
constraints are expressed in first-order logic, which matches a subset of OCL. Once these
constraints are solved, a model instance satisfying all the constraints expressed in Alloy is
generated (if it exists).
Figure 4.4 illustrates the approach we proposed in this research work: from an input model,
a set of transformations along with their applications preconditions and post-conditions, we
asked the Alloy solver to produce a model transformation chains and an output model which
respects predefined post-conditions.

Figure 4.4: Model transformation chains production with Alloy
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In this work, we specified how to formalize ATL model transformations and the chaining
problem in Alloy [37]. However, we did not implement a higher order transformation (HOT,
a transformation that takes as input and/or produce as output a model transformation) from
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ATL to Alloy. Instead, we focused on solving important scalability issues we faced when
using Alloy solvers to find correct chains of non-commutative transformations. We thus
decided to study and improve the scalability of the method proposed method [22].
As a case-study, we presented in this PhD the formalization of a safety design pattern called
Triple Modular Redundancy (TMR), also called two out of three (2oo3). We also defined
a security pattern used in cyber-security called red-black separation. This research work
helped us to formalize such model transformations, highlight their non commutativity, and
define constraint satisfying model transformation chains.
The formalization of these transformations in Alloy led us to realize that the approach defined
in figure 4.4 suffered from important scalability issues. More precisely, these scalability
issues came from the chaining process itself and not from the execution of each transformation
in isolation. In order to improve the scalability of this approach, we needed to define more
transformations than just the safety and security patterns mentioned above. The formalization
in Alloy of all the transformations implemented in RAMSES would have taken too much
time, and the implementation of a HOT from ATL to Alloy would have been risky without
improving first the scalability of the method.
We thus focused on simpler model transformations (i.e. easier to formalize in Alloy) but more
complex chains. We decided to formalize design patterns from the Gang of Four [31] in Alloy.
This contribution, as well as the general approach illustrated on figure 4.4, were published
in the Euromicro conference on Software Engineering and Advanced Applications (SEAA)
2014 [23]. Studying more precisely the reasons for the scalability limitation of our approach,
we defined an improved version in 2015 and published our results at SEAA 2015 [22].
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Figure 4.5: Mean time to find transformation chains

Figure 4.5 shows the performance improvements on a set of model transformation chains:
figure 4.5a shows the solving time (in seconds) obtained on different scenarios with our
initial approach while figure 4.5b shows the solving time (in seconds) obtained on the same
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scenarios but with our improved approach. Each bar thus corresponds to the solving time
for finding a transformation chain on a given input model and a set of design patterns of the
GoF to apply. For instance, the case “adapter3” (which appears to be the most difficult case)
consists in applying three time the adapter pattern on an input model made up of 8 UML
classes. These experiments were conducted on a bi-processor Intel™Xeon™CPU E7-4870
at 2.40 GHz with 52 GB RAM and 3 exploration threads.
The reasons for these improvements are further explained in [22] and can be summarized as
follows:

• partial solutions and parallelization: instead of submitting to the Alloy solver the
complete chaining problem, we submit partial instances of the solution where a partial
solution is the result of executing a sub-chain. This strategy significantly reduced the
size of each problem submitted to the solver, thus leading to better performances. In
addition, it enabled to parallelize of the exploration.

• when selecting one model transformation to apply, early pruning was implemented by
checking the following constraint: either the set of remaining transformations to apply
is empty, or there exists at least one model transformation that can be applied on the
output model.

We also assessed the scalability of our method on “long” model transformation chains:
with 12 transformations to chain (leading to 12! possible orders) and input models of
about 30 elements impacted by the transformations, it took about 2 hours to find a correct
transformation chain. The same case study would not have been solvable without the
optimizations we proposed in this work.
However, an important limitation of this work came from the focus on structural constraints
only. Indeed, beyond such structural constraints, resulting non functional properties are
of prime importance. This is the reason why we decided to study model transformations
composition as a multi-objective optimization problem, as described in section 4.4. In
parallel, we continued studying the validation of model transformation chains considering
their formalization as algebraic graph transformations. This work is presented in section 4.3.

4.3 Precondition construction in algebraic graph transfor-
mations

As stated in the introduction of this chapter, model transformation chains are complex
applications, hence difficult to validate and verify. In the PhD of Elie Richa, we studied
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the validation of model transformation chains in the context of source code generators
qualification. Indeed, when a code generator is used to produce source code of a critical
system, the generated code needs to be certified. Using qualified tools, the certification effort
can be reduced. Qualifying a code generator is as rigorous and demanding as certifying
critical embedded software. This is the reason why tool providers need to adopt efficient
methodologies in the development and verification of code generators [70, 68, 69].

As illustrated on figure 4.2, we consider code generators made up of a transformation chain.
Qualifying an Automatic Code Generator (ACG) requires extensive testing to show the
compliance of the implementation with its requirements. Both the testing of components in
isolation (i.e. unit testing) and the testing of the tool as a whole (i.e. integration testing) are
required.

Given the ACG is a transformation T , a unit is a transformation step Ti. Unit testing then
consists of producing test models Mi, j in the intermediate meta-model MMi, executing Ti

over these test models, and validating the resulting models Mi+1, j with a suitable test oracle.
Conversely, integration testing considers the complete chain, producing test models M0 in the
input meta-model MM0, executing the complete chain, and validating the final result MN, j

(where N is the number of transformations in the chain) with a suitable test oracle.

A unit test requirement tri, j of a transformation step Ti is a constraint over its input meta-
model which must be satisfied at least once during the testing campaign.

Taking inspiration from the work in [7], we notice the following: an integration test exercises
the complete tool, i.e. all intermediate transformation steps Ti. During the execution of an
integration test, the intermediate models Mi manipulated along the way can cover unit test
cases of the intermediate transformations. This interesting property of transformation chains
would allow us to use only integration testing to cover unit test cases.

However, we now need a way to produce new models to cover these unit test requirements.
Given a non-satisfied test requirement tri, j how can we produce a test model M0 in the input
meta-model of the chain such that upon execution of the integration test, tri, j is satisfied?

In order to answer this question, we proposed a new approach in the PhD of Elie Richa, as
illustrated in figure 4.6: given a non satisfied test requirement tri, j , we consider tri, j as a
post-condition of the previous transformation step Ti−1, and design a construction Post2Pre
that transforms the post-condition into an equivalent precondition that ensures the satisfaction
of the post-condition. We call this pre-condition the equivalent test requirement etri, j,i−1 of
tri, j at step Ti−1.

Recently, the construction of Post2Pre has been studied in in the theory of Algebraic Graph
Transformation (AGT) in [34] and [62].
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Figure 4.6: Backward translation of test requirements
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The implementation of this approach in the context of ATL model transformations required
to propose two main contributions. These contributions were all implemented as components
of our Java and EMF-based tool called ATLAnalyser1:

1. a translation of OCL (used to express test requirements) into Nested Graph Constraints
and ATL model transformations into AGTs. This contribution was presented at the
International Conference on Model Transformations 2015 and received the best paper
award of the conference. Using ATL instead of AGT, the objective was to reduce
the complexity of Post2Pre by using model transformations with a simpler semantics
than AGT. One of the challenges of this translation was the translation of the ATL
resolveTemp mechanism, for which dedicated model transformation traces had to be
defined in the AGT. In addition, an ATL rule had to be decomposed in several AGT
rules in order to implement the different phases of an ATL transformation engine:
mainly (i) input patterns matching and output objects instantiation, and (ii) bindings
and objects resolution.

2. an automatic construction of the weakest liberal precondition (wlp): a liberal precon-
dition of a graph transformation is a precondition for which the existence of a graph
resulting from the transformation is not guaranteed, and the termination of the program
is not guaranteed either. In the context of ATL transformations, the termination is
however guaranteed, and the existence of a graph resulting from the transformation
should also be guaranteed by the definition of the application preconditions of the
transformation. A liberal precondition is thus sufficient in our context. Besides, a
precondition c is the weakest precondition if it is implied by all other preconditions.
However, wl p is theoretically infinite for the kind of transformations that we analyze.

1ATLAnalyser, https://github.com/eliericha/atlanalyser
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We thus proposed to implement a bounded version of the wl p, called scopedWl p
which proceeds to the construction of wl p on a bounded number of transformation
rules iteration. In this work, we proved scopedWl p provides results applicable to the
original unbounded transformations.

Both contributions were tested on different model transformations. The translation from ATL
to AGT was validated on several model transformations available online. The validation
method consisted in transforming an ATL transformation into an AGT transformation.Then
both were executed on the same input model and output models were compared to ensure
they are identical. The ATL to AGT translation was also applied to model transformation
from MATLAB/Simulink to C source code in CodeGen, a qualifiable source code generator
developed by AdaCore. The corresponding results have been published in the international
journal on Software and System Modeling 2018 [69].
The automated Post2Pre construction was tested on simple transformations but the com-
putational complexity of the algorithms made the results difficult to produce on realistic
examples.We proposed simplification strategies, but the resulting prototype was still unable
to scale. The theoretical results, however, as well as the first implementation of this complex
technique, is a step forward towards the formal proof of model transformations. To go beyond
these limitations, significant improvements in the algorithms of the Post2Pre constructions
are necessary but such contributions were out of the initial scope of Elie Richa’s PhD.
Last but not least, we present in next section our contributions on model transformation
variants selection and composition, aiming at producing models answering at best the trade-
off between conflicting NFPs.

4.4 Design space exploration by composition of model trans-
formations

The last problem we defined in the introduction of this chapter is variability management
in model refinements. Indeed, from our experience in architecture models refinement, we
realized that the quality of a model transformation chains depends not only on its structural
correctness, but more importantly on the quality attributes of the resulting model. The
correctness of transformation chains was the object of PhDs described in sections 4.2 and 4.3.
In the PhD of Smail Rahmoun, we decided to study the quality of model transformation
chains with respect to the quality attributes of the resulting models [63–65]. This research
work was also aiming at facilitating the transition from requirements specification to early
architecturel design [48, 47].



56 Composition and formalization of model transformations

We thus defined model transformations composition as a multi-objective optimization prob-
lem. Indeed, as stated in the introduction of this document, design alternatives often come
into conflict with respect to their impacts on NFP: a design alternative improves a NFP at
the cost of degrading another NFP of a CPS. In this work, we proposed to define design
alternatives from model transformation variants. We then used genetic algorithms to compose
these variants and have them evolve towards satisfactory architectures. In order to apply
genetic algorithms to the selection and composition of model transformation variants, we
proposed a generic encoding on which genetic operators (i.e. mutations, crossover) can
be applied. Last but not least, we proposed to express constraints on the output model as
boolean constraints on the application of transformations. To do so, we defined a dedicated
language and the notion of Transformation Rules Catalog (TRC), as well as a translation of
these constraints into a satisfiability (SAT) problem. Once the SAT problem is solved, model
transformation rules are structured in a way that guarantees that the application of genetic
operators would only produce valid transformations, i.e. transformations producing models
respecting structural validity constraints. Again, structural constraints take an important role
in this work but using genetic algorithms, we also proposed a framework aiming at improving
non-functional properties.
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Figure 4.7 gives an overview of the process we proposed in Rahmoun’s PhD: from the
definition of a model transformation chain, having for each link a set of transformation
alternatives, we first produce an intermediate model that results from the composition of
these alternatives. This first step is highlighted with bullet 1 on the figure, and repeated for
each link of the transformation chain until the target model is produced. The composition
mechanism, used in this step of the process, is explained at the end of this section. Once
produced, the target model is analyzed with respect to NFPs (bullet 2 in figure 4.7), and the
analysis results are used to evaluate composite transformations.
The process we propose is iterative: each iteration produces, executes, and evaluates a
(sub)chain of composite transformations. In addition, because of the combinatorial complex-
ity of the design space exploration, it is not possible to enumerate, execute, and evaluate all
the composite transformations. As a consequence, we rely on evolutionary algorithms (EAs)
to implement this iterative exploration (see bullet 3 in figure 4.7). In addition, we can see in
figure 4.7 that the proposed process is made up of embedded loops, each loop being dedicated
to explore composite transformations of a given link in the transformation chain. When an
inner loop has converged, other transformation candidates may be evaluated for the outer
loop, thus producing a new intermediate model for the inner loop. The convergence criteria
for each loop relies on convergence criteria of EAs and is parameterized by an end-user of
our approach.
As far as structural constraints are concerned, we aim at validating them a priori, i.e.
before executing the transformation. As far as NFPs are concerned, we aim at validating
them a posteriori, i.e. after executing the transformation. To reach the objective of a priori
validation, we defined application constraints on model transformation rules in transformation
rules catalog.
Listing 4.3 provides a subset of the Transformation Rule Catalog (TRC) we used to describe
transformation alternatives for components replication: 2oo3 and 2*2oo2. This TRC is made
up of two main parts:

1. a description of model transformation alternatives, from line 1 to line 10, lists the set
of ATL modules and rules being part of each alternative. The 2oo3 alternative is made
up of transformation rules described in section 4.1. The 2*2oo2 alternative is made up
of very similar transformation rules.

2. a specification of validity constraints, from line 12 to line 30. The first one, from line 14
to line 21, specifies that when m_PortConnection_2_2oo2 is applied on a connection
(identified as cnx in the constraint), it is necessary to apply rule m_Process_2_2oo2
on both ends of the connection (retrieved executing a OCL helpers called getDes-

tinationProcess and getSourceProcess on cnx). The second constraint, from
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line 22 to line 27, specifies that when applying m_Process_2_2oo2 on a process
component processInstance, m_PortConnection_2_2oo2 should be applied on
all the connections having processInstance as a source (retrieved by applying the
OCL helper getSourceConnectionReference on processInstance). Gathering
these two constraints lead to ensure that the 2*2oo2 alternative is applied to sets of
interconnected process components. Very similar constraints are expressed for the
application of the 2oo3 alternative in the remaining of the TRC.

1 Modules
2 {
3 2 _2oo2 . a t l : m_Process_2_2oo2 , m_Por tConnec t ion_2_2oo2 ;
4 2oo3 . a t l : m_Process_2oo3 , m_Por tConnec t ion_2oo3 ;
5 }
6
7 A l t e r n a t i v e s {
8 r e p l i c a t i o n _ 2 _ 2 o o 2 { modules : 2 _2oo2 . a t l } ,
9 r e p l i c a t i o n _ 2 o o 3 { modules : 2oo3 . a t l }

10 }
11
12 C o n s t r a i n t s {
13 / / 2*2 oo2
14 Apply ( r e p l i c a t i o n _ 2 _ 2 o o 2 . m_Por tConnect ion_2_2oo2 , { cnx } )
15 [
16 r e q u i r e s ( r e p l i c a t i o n _ 2 _ 2 o o 2 . m_Process_2_2oo2 ,
17 { g e t S o u r c e P r o c e s s ( cnx ) }
18 ) and r e q u i r e s ( r e p l i c a t i o n _ 2 _ 2 o o 2 . m_Process_2_2oo2 ,
19 { g e t D e s t i n a t i o n P r o c e s s ( cnx ) }
20 )
21 ] ;
22 Apply ( r e p l i c a t i o n _ 2 _ 2 o o 2 . m_Process_2_2oo2 , { p r o c e s s I n s t a n c e } )
23 [
24 r e q u i r e s ( r e p l i c a t i o n _ 2 _ 2 o o 2 . m_Por tConnect ion_2_2oo2 ,
25 { g e t S o u r c e C o n n e c t i o n R e f e r e n c e ( p r o c e s s I n s t a n c e ) }
26 )
27 ] ;
28 / / s i m i l a r c o n s t r a i n t s f o r 2oo3
29 . . .
30 }

Listing 4.3: TRC for the AADL refinement alternatives

When applying ATL model transformation variants, such as the 2oo3 and 2*2oo2 replication
patterns, we consider as optimization variables the choice of each variant applied to elements
of the input model. To define such alternatives more formally, we first provide a definition of
transformation rules instantiation:

Definition 3. A transformation rule instantiation T RIi is the application of a transforma-
tion rule on an ordered set of elements from the source model. In the remainder of this
section, we say such TRIs are non-confluent. It can be represented as a tuple < R,Ei,Ai >,
where:
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1. R represents the applied transformation rule;

2. Ei is ith tuple of elements in the source model;

3. Ai is the set of actions that R executes when it is applied to Ei.

Given this definition, alternative TRIs exist when more than one rule can be applied to the
same tuple of elements in the source model. Formally, this means :

∃(R,R′) s.t. R ̸= R′and T RIi =< R,Ei,Ai >

and T RI j =< R′,E j,A j > and Ei = E j
(4.1)

According to the semantics of ATL, such situation has to be solve by selecting, among all the
possible TRIs, a subset where non-confluence has been eliminated.
To do so, we rely on a simple selection function defined as follows:

Sel : T → B= {True,False}
T RI → b, where b is True if T RI should be included, and

False if T RI should be excluded from T .

The selection of TRIs may be decomposed into the following formulas:
1) AtLeastOne, dedicated to ensure that at least one of the non-confluent TRIs, gathered in a
set S, is selected:

AtLeastOne(S) =
P∨

i=1

Sel(T RIi) (4.2)

2) AtMostOne, dedicated to ensure that at most one of the non-confluent TRIs is selected:

AtMostOne(S) =
i=P, j=P∧

i=1, j=1,i ̸= j

¬(Sel(T RIi)∧Sel(T RI j)) (4.3)

Combining equations (4.2) and (4.3), we obtain SelectOne, dedicated to select exactly one
TRI from S (set of non-confluent TRIs):

SelectOne(S) = AtLeastOne(S)∧AtMostOne(S) (4.4)

Alternative TRIs can be detected by applying the pattern matching part of alternative model
transformations on an input model. Enforcing the respect of equation (4.4) boils to select
exactly one alternative per element of the input model.
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In addition, validity constraints expressed in the TRC are transformed into boolean validity
constraints on TRIs selection of the form:

ValidityConstraints =
N∧

i=1

(Sel(T RIi)⇒ BoolExpr(Ti)) (4.5)

where Ti is a subset of TRIs, and BoolExpr is a boolean expression over T RIs in Ti, using (i)
the Sel function, (ii) simple boolean operators and, or, and not (∧, ∨, and ¬).

Finally, for all the sets of alternative rule instantiations Sii∈[0..Q], the selection of a valid set
of TRIs boils to evaluate the satisfiability of the boolean formula:

Q∧
i=1

(SelectOne(Si))∧ValidityConstraints (4.6)

However, our objective is not to define a set of valid model transformations, but to define
the genome encoding of a genetic algorithm. To do so, instead of solving the SAT problem
induced by equation (4.6) at once, we aim at grouping TRIs involved in the same validity
constraints into partitions called Atomic Transformation Instantiations (ATI). Doing so, each
ATI become a potential gene in the genome of individuals in the genetic algorithm population.

Grouping TRIs into ATIs is done as follows: we first reorganize equation (4.6) under a
conjunctive normal form. We call B the set of boolean expressions in the conjunction, and
build a partition of B: we group such expressions into smallest non-empty subsets of B in
such a way that every T RI is used in expressions of one and only one of the subsets. These
subsets are called the parts of the partition, and we note βq the boolean formula corresponding
to the qth part of the partition. We note AT Iq,i the ith solution of βq. We then structure a
composite transformation (CT) by choosing, for each possible value of q, one of the solutions
of βq. An individual of the genetic algorithm population is then a CT structured as an array
of AT Ii, j where i is one of the partitions of (4.6) and j is the identifier of a solution of this
partition.
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Figure 4.8: Crossover and Mutation Operators
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Figure 4.8 illustrates the structure of a genome as an array of atomic transformation instantia-
tions AT Ii, j, as well as the application of the crossover operator on two genomes CT1 and
CT2 and the application of the mutation operator CT1 to obtain CT ′

1.
Note that the construction of the genome by partitioning solutions of equation (4.6) ensures
that the result of the genetic operations (i.e. crossover, mutation) leads to the production of
valid transformations.
Resulting composite transformations are then applied to input models in order to produce
intermediate models on which NFPs can be analyzed.
This method has been successfully applied on two case-studies inspired from the railway
domain:

1. a selection of implementations of the periodic delayed communications introduced
in section 3.3. Indeed, three implementations of this communication patterns were
proposed, with conflicting impact on three NFPs: timing performance, memory foot-
print, and maintainability. The corresponding results were published in the ICECCS
conference [65].

2. a chain of model transformations made up of (i) the selection of the replication
pattern (2oo3 or 2*2oo2), (ii) the binding of replicated processes and connections onto
processors and busses with the following validity constraint: replicated components
should not use the same hardware resources. The corresponding results were published
in the international journal on Software and Systems Modeling 2018 [65].

4.5 Concluding remarks

In this chapter, we have presented our contributions to answer the following questions:

1. how to verify the correctness of model transformations structured as model transforma-
tion chains?

2. how to compose model transformations to define optimal (or near optimal) refinement
steps?

To answer these questions, we have proposed to formalize model transformations along with
structural constraints on the output models of these transformations. This formalization
was then used either to search for model transformation chains enforcing the structural
constraints, or to enhance a model transformation validation framework by automating
the generation of test requirements. Reusing this notion of structural constraints, we also
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defined a framework combining model transformations, SAT solving techniques and genetic
algorithms to automate the search for near-optimal architecture refinements.
By providing answers to some of the research questions presented here above, our work
provides original methods to improve the reliability of software development in CPSs: it
enables to check as early as possible the correctness of model transformations, and to
automate the search for near-optimal refinements.
The work we have done on model transformation of AADL models gave us several inputs
to start new research activities in the domain of Model Driven Engineering for CPSs. In
particular, we plan to extend our framework to deal with security in CPSs.
Indeed, security is becoming an important concern in the design and development of CPS.
The way to deal with interactions among security design patterns and other design techniques
of CPS is still an open question. In the PhD of Jean Oudot, started with IRT SystemX and the
Nanyang Technological University (NTU) Singapore, we aim at proposing new techniques to
(i) evaluate architectures security, and (ii) optimize them with respect to this criteria as well
as traditional concerns of CPS (timing performance, safety, cost, and/or energy consumption).
This work aims at extending Smail Rahmoun’s results with a dedicated focus on cyber
security, which would require to drastically revise the design space exploration method since
the nature of threats in cyber security is very different from the nature of threats in safety.
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In this chapter, we conclude this document before to present of our future research directions.

5.1 Concluding remarks

Our concluding remarks aim at summarizing our cintributions, as well as comparing our
contributions to the state of the art. This comparison will focus on a few existing frame-
works, and the comparison will be based on the set of expecte capabilities for model-based
engineering frameworks dedicated to critical, real-time and embbeded software.
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5.1.1 Overview of contributions

Our initial objective was to propose methods to improve the reliability of CPSs design process.
We decided to pursue this objective in the framework of MDE techniques. Our first intent was
to use models as a mean to bridge the gap between requirements definition and source code
production. Indeed, models help bridging this gap by representing systems under design with
different abstraction levels, ranging from high level specifications to implementation models.
We proposed to use architecture models as design artifacts, and model transformations to
automate their refinement steps up to the production of source code.
Building on this first idea, we defined a set of challenging problems, digged into existing
solutions, and proposed improvements over the state-of-art. We highlight hereafter some
noticeable aspects of our work:

1. as often as possible, we prototyped our contributions on top of AADL in order to
improve their applicability to realistic case studies: AADL is a standardized language
built from collaborations with companies in the domain of CPS, and AADL is quite a
complex language (its meta-model is made up of more than 260 meta classes).

2. we defined the first implementation of a deterministic model of computation and com-
munications based on mixed criticality DAGs and periodic delayed communications.
We defined the corresponding subset of AADL and prototyped the compilation of this
AADL subset in a source code generator.

3. we proposed to formalize model transformations to ease their validation and ver-
ification. We have shown how this formalization can help to find correct model
transformation chains and validate model transformations using integration tests.

4. we invented a design space exploration framework based on model transformations
composition, combining model transformations, constraint solving and multi-objective
optimization techniques.

These contributions have been integrated in the RAMSES in order to experiment them on
industrial case studies. This effort was necessary to perpetuate the works of PhD students I
had the opportunity to co-supervise. In the remainder of this section, we compare RAMSES
with similar frameworks from the state of the art.

5.1.2 Comparison of RAMSES with existing frameworks

In order to compare RAMSES with existing frameworks from the state of the art, we propose
to use the following citeria. The selection of these citeria relies on our expertise in the domain
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of criticcal and real-time embedded systems. It is incomplete, and aims primarily at showing
the wide spectrum of contributions prototyped in the RAMSES framework.
The criteria we have selected are the capabilities of existing frameworks to:

C1 refine software models; necessary to bridge the gap between requirements specification
and software implementation while progressively producing and analysing models.

C2 source code generation; here, the objective is to fasten the production of software
while easing its maintenance by relying on automate code generation techniques.

C3 explore and select the best design alternatives; this is all the more important in the
context of critical real-time embedded systems where non-functional properties play a
very important role. In addition, this capability requires to deal with multi-objective
optimization problems.

C4 interoperate with other frameworks, in order to avoid re-defining existing analysis or
verification techniques, but re-use them instead.

C5 produce scheduling configuration; this criteria is obviously specific to the domain of
real-time system, but a very fundamental one since software integration issues in this
domain are often related to scheduling and timing performance issues.

In order to compare RAMSES with existing frameworks from the state-of-the art, we only
selected existing frameworks that, to our best knowledge, cover all these criteria. Without
this selection, potentially incomplete, the body of literature covering these criteria is far
too prolific to provide a meaningful comarison. The frameworks we have selected are:
ProCom [75], Papyrus/MARTE [32], Scade 1, Simulink 2, ArcheOpteryx [1] and Ocarina [42].
Figure 5.1 provides an overview of the comparison between RAMSES and these selected
frameworks. In the reminder of this section, we provide a brief argumentation for this
comparison.

C1: Model transformations (refinements)

Models refinement is the main focus of the method introduced in this document. Among
the selected frameworks, the ProCom component model has been used to define model
refinements [44, 76].
Other framework, based on rich modeling languages (e.g. MARTE and AADL), could also
implement similar refinements as those proposed in RAMSES. This is typically the case for

1https://www.ansys.com/products/embedded-software/ansys-scade-suite
2https://www.mathworks.com/products/simulink.html

https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.mathworks.com/products/simulink.html
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Figure 5.1: Comparison between RAMSES and similar frameworks

Papyrus, ArcheOpteryx, and Ocarina. However, to our best knowledge, model refinements
have not been prototyped in the considered frameworks.
Scade and Simulink could also be used to proceed to models refinement, but their scope and
utility would be less significant as these languages mainly focus on modeling the funcional
aspects of critical real-time and embedded software.

C2: Source/glue code generation

In terms of source code generation for the functional parts of a software architecture, Scade
and Simulink are, by far, the references. When it comes to code generation for the tech-
nical architecture (i.e. operationg system, middleware), Ocarina is the most mature of the
frameworks we considered. Developped in the context of the ASSERT project, it has been
maintained for the needs of the European Space Agency in the scope of the TASTE project.
ProCom also provides code generation capabilities, though the focus of this work was more
on the preservation of the semnatics than on the support of various programming languages or
operating systems [12]. Papyrus has integrated code generation techniques as well, mainly fo-
cusing on code generation for component diagrams and state-charts. Finally, code generation
was not the main focus of ArcheOpteryx.

C3: Multi-objective optimization

With respect to design space exploration, ArcheOpteryx is, among the frameworks we
considered, the richest in terms variety of prototyped optimization methods. However,
by combining model transformations and optimisation techniques, RAMSES allows to (i)
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reuse a generic design exploration framework, i.e. the design alternatives being expressed
using transformation rules catalogs, (ii) focus only on valid design alternatives in terms of
structural constraints satisfaction, and (iii) reuse existing analysis method to evaluate the
quality attributes of these alternatives.

Other frameworks have been used to implement preliminary works on models optimization,
e.g. is Papyrus/MARTE [57], or in Ocarina [? ].

Finally, Scade and Simulink are less usable for automated design space exploration as they
mainly focus on modeling the funcional aspects of critical real-time and embedded software.

C4: Interoperability

This criteria is mainly achieved by relying on standardized modeling languages, which is the
case for RAMSES, Papyrus, Ocarina, and ArcheOpteryx. The ProCom component model is
not standardized but the language specification is publicly available [18]. Finally, Scade and
Simulink use proprietary modeling languages.

C5: Scheduling configuration

Ocarina can be used to anlyse various types of real-time schedulers, and to configure the
scheduler of several operating systems. However, compared to RAMSES, this framework
supports a smaller subset of models of computation. For instance, our recent works on DAGs
and Mixed-criticality scheduling is not part of the subset of AADL supported by Ocarina.
This statement is also true for periodic delayed communications, even though it has less
impact on the scheduler configuration.

Papyrus/MARTE and ProCom can also be used to analyse and configure the scheduler of
real-time operating system. However, only a few research works report new contributions in
this area.

Finally, scheduling configuration has not been the main focus of research works in ArcheOpteryx,
Scade, or Simulink.

As on can easily understand, our work is at the intersection of the fields of model-driven
engineering, operational research, and scheduling of real-time systems. The perspectives we
present in the remainder of this chapter aim at extending this work in three main directions:
(i) security of software architectures for connected CPSs, (ii) autonomy of complex and/or
critical CPSs, and (iii) uncertainty management in design space exploration activities. We
develop these perspectives in the next sections.
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5.2 Future Research Directions

5.2.1 Software Security in Cyber-Physical Systems.

Cyber-physical systems are increasingly connected with their external environment. In
particular, in the transportation domain (rail, automotive and avionics), vehicles are now
connected to their infrastructure, to mobile devices, and to the internet. This evolution
allows manufacturers to deliver new services, but exposes these systems to malicious actions
from hackers. In parallel to this, more and more functionalities are introduced into the
transportation systems in the form of software systems. Some of these functionalities are also
critical, since their failure, or a malicious takeover of these functions can have catastrophic
consequences. The link between vulnerabilities and safety of these systems was considered
negligible as long as the potentially affected functions were not critical, but this is less and
less true.
Indeed, security vulnerabilities nowadays can jeopardize the safety of critical embedded
real-time systems, and thus endanger its users. The introduction of security counter-measures
in the architectures of these embedded systems is necessary, provided they do not degrade
significantly the safety, performance or cost of the system.
We plan to study this problem with two complementary viewpoints:

1. in the PhD of Jean Oudot (started in 09/2017), we aim at defining a design space
exploration framework focusing on security metrics and counter measures. This will
require to quantify a CPS architecture security, and the impact of security counter
measures on security, safety, performance, and cost. The objective is to define the best
set of counter measures to deploy in the CPS architecture. Another objective of this
work is to propose a generic exploration framework, i.e. usable in different fields of
cyber-physical systems and in particular in the transportation domain: avionics, railway,
and automotive. This PhD is funded by the IRT3 SystemX in the CTI (Cybersecurity of
Intelligent Transports) and is co-supervised with Arvind Easwaran from the Nanyang
Technological University (NTU) of Singapore.

2. in the PhD of Maxime Ayrault (started in 10/2018), funded by the industrial chaire on
Connected Cars and Cyber Security (C3S) we adopt a complementary viewpoint: how
to delay attacks and/or their propagation? The basic idea behind this work is to consider
that (i) all vulnerabilities and attacks paths cannot be anticipated at design time, and (ii)
once a system is deployed, attackers have time to study the system and discover new
vulnerabilities and attacks paths. In this work, we will study the integration of moving

3Institut de Recherche Technologique/Technological Research Institute



5.2 Future Research Directions 69

target defense mechanisms in CPSs architectures: the idea of MTD is to reconfigure
the CPS architecture periodically so that vulnerabilities become unstable and attacks
difficult to discover and deploy. Finally, the objective will be to maximize the attacker
learning time and minimize the probability of success of an attack. This approach is
particularly challenging in CPSs since computation and communication resources are
very limited.

The approach outlined in the work of Maxime Ayrault can be generalized and extended to
improve the autonomy of CPS. We present this perspective of our work in the next section.

5.2.2 Autonomy by Reconfiguration of CPS Applications

Architecture models such as AADL provide means to describe different software config-
urations as well as services or techniques to reconfigure software applications. In AADL,
this is done by defining operational modes along with a particular configuration per mode.
Reconfigurations are described with transitions between operational modes. This type
of reconfigurations is pseudo-dynamic: they are executed at runtime but all the possible
configurations and transitions among them have been defined at design time.
Modern CPS are expected to be used for a very long time: a train, for instance, is exploited
for decades. The algorithms running on these systems are thus expected to evolve over time,
as well as the devices they are connected to, they interact with. In addition, some of these
systems cannot be stopped for maintenance purpose, and more generally maintenance should
disrupt as little as possible the operation of CPSs. Eventually, the objective of this perspective
is to improve the robustness of CPSs by having capabilities to reconfigure them even in case
of situations or evolution needs that were not foreseen in their initial development.
In this context, we plan to study how MDE techniques presented in this document can help
to define reconfigurations beyond pseudo-dynamic reconfigurations. The idea would be to (i)
model platform reconfiguration capabilities, (ii) use design exploration techniques to find
new configurations, and (iii) develop new design space exploration techniques to find out
how to progressively move from the current configuration to the targeted configuration.
This boils down to find ways to update systems as dynamically as possible, delegating design
space exploration and target configuration selection to an external model based infrastructure.
This model-based infrastructure would be responsible for finding how to deploy the new
configuration, and how to move from the current configuration to the new one.
The objective of using models to reason about adaptation is to shorten as much as possible
the delay between the detection of new needs and the implementation of a new solution.
Another objective to automate the migration from one solution to another one.
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This perspective is ambitious, and is actually being developed as a European project proposal
with partners met in the European COST action MPM4CPS (Multi-Paradigm Modeling for
Cyber Physical Systems).

5.2.3 Uncertainty Management in Design Space Exploration

Uncertainty management in design decisions is the third perspective presented in this chapter.
It is strongly linked to the topic of architectures exploration as this activity, exploration, aims
to provide architecture candidates for a decision process to select one (or a subset) of them.
This perspective is also related to requirements engineering insofar architecture exploration
aims to develop an architecture (or set of architectures) that satisfy at best a set of non-
functional requirements. However, these requirements are often in conflict: improving
certain non-functional properties of an architecture requires adopting solutions that degrade
the architecture with respect to other non-functional properties. It is in this context that we
have extended the requirements modeling language called RDAL (Requirements Analysis
and Definition Language) [49, 11] and have developed a method of architectures exploration
based on the composition of model transformations [65]. However, these studies do not
consider an important aspect of model-based design: uncertainty.
Indeed, in the early stages of the development process, decisions rely on models containing
uncertain data. Those data are uncertain either because they are difficult to estimate by
essence (e.g. errors probability distribution), or because the implementations they could be
measured from are not available yet (e.g. in construction).
As a consequence, decision-makers should be aware of how much confidence they may have
in the data upon which they base their judgement. Somehow, this problem could be tackled
by considering design activities as an optimization problem aiming at maximizing design
margins (i.e. difference between an estimated quality attribute and the lowest acceptable
level of quality for this attribute). Roughly, increasing margins is expected to improve the
confidence of the decision maker, at least with respect to the risk of necessary rework during
the integration and validation phases of the development process.
However, as explained in the introduction of this document, increasing margins may also
lead to poor quality of service. This is, for example, the philosophy behind mixed-criticality
scheduling as the objective is to improve computation resources usage by reducing margins
in low criticality modes while preserving margins for high criticality tasks in high mode.
In essence, a model is an abstraction of an object that focuses on predominant characteristics
of this object. The evaluation of this abstraction therefore contains a degree of uncertainty
since it deals with a model and not the object itself. Beyond the activity of abstraction,
the information contained in a model may come from more or less reliable sources. For



5.2 Future Research Directions 71

instance, this information can be estimated (by expert judgment for example) or imprecise
(using inaccurate or approximate analysis methods). To some extent, RAMSES reduces
uncertainty by executing successive refinements and revaluations of real-time embedded
system architectures. This reduces the uncertainty due to abstraction, exhibiting architectures
for which the non-functional properties are evaluated with lower and lower abstraction level.
However, uncertainty must also be considered, evaluated, and processed, at the decision-
making level, in order to guide the exploration of architectures. This requires considering, in
particular, uncertainty due to estimated or imprecise information contained in a model. In
the future, we aim at studying uncertainty modeling, and its impact on the related decision-
making and architectural exploration techniques.
Existing studies consider a formalization with fuzzy mathematics [28] to guide the con-
struction of products from a set of feature variants. It would be interesting to extend such
an approach in the scope of design space exploration by model refinements. In particular,
considering uncertainty metrics would help the robustification of design processes in a semi-
automatic way: uncertainty would evolve by interleaving automatic exploration phases with
studies dedicated to lower the level of uncertainty and update NFP properties. In addition,
the risk associated to uncertainty could be controlled by feedbacks from previous experience.
More generally, this perspective aims to rationalize the attitude of decision makers facing
uncertainty in an architecture design activity. We plan to pursue this objective by taking
advantage of model transformation traces, analysis results with uncertainty modeling, and a
description of the multi-criteria decision process.
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