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Cyber Physical Systems are systems controlled or monitored by computer-based programs, tightly integrated networks, sensors, and actuators. Trains, aircrafts, cars, and some medical equipments are examples of complex CPS. Software development of complex CPS has become so difficult that it represents most of the cost of CPS production. According to domain experts, this trend is going to reach a point where software development would represent the main source of cost of a CPS production.

In addition, it is interesting to note that the integration, verification and validation of software in CPS require more efforts than the analysis, design, and implementation activities. The main reason is that these activities are conducted late in the development process and issues discovered at this stage of the process will require to rework artifacts produced in the previous activities (i.e. analysis, design and/or implementation).

However, models interpretation may introduce faults such as bugs or invalidation of nonfunctional requirements. It is hence necessary to control as much as possible the correctness, consistency, and optimality of artifacts produced along the model refinement steps. To reach this objective, we propose to 1. define model transformations so as to interleave refinement steps with analysis of the resulting artifacts. We thus improve the consistency between the analysis results and the software implementation by analyzing models as close as possible to the implementation.

2. define timing analysis and real-time scheduling techniques to ensure the correctness of software architectures from a timing perspective.

3. formalize model transformations in order to ensure their correctness using formal verification techniques.

4. compose model transformations in order to automate the search for optimal (or nearoptimal) architectures.

The work presented in this document is thus at the frontier among different research domains: MDE, real-time systems scheduling, formal verification, and operational research.

In this work, we chose to rely and extend the Architecture Analysis and Design Language (AADL) to model the cyber part of CPS. The reasons for this choice are simple: Firstly, AADL is a standard and a domain specific language for real-time embedded systems. Secondly, It allows to represent software architectures with different abstraction levels. Last but not least, AADL supports different types of models of computations communications, some of which being deterministic. As a guideline for our work, we developed the methodology we propose in a MDE framework called RAMSES (Refinement of AADL Models for the Synthesis of Embedded Systems). This document presents both the methodology and some illustrations of its implementation in RAMSES.

In this document, we present our work aiming to improve the reliability of software development in the domain of CPS. In this context, we define the reliability of the development process as its capacity to deliver intermediate artifacts for which the rework effort would be as small as possible.

This problem is very difficult for general purpose software (i.e. used on desktop computers or servers), and even more difficult for software in CPS. The main reason is that software in CPS is often critical, real-time and embedded on domain specific execution platforms. As a consequence, non-functional properties (also called quality attributes) of software applications in CPS are often as important and difficult to satisfy as the logical correctness of these applications.

In order to the improve the reliability of software development in the domain of CPS, we propose a Model Driven Engineering (MDE) method based on step-wise refinements of software architecture descriptions (also called architectural models). An architecture description being an abstraction of the software being developed, the implementation of this software (i.e. source or binary code) is an interpretation of the architecture model. In the framework we propose, such interpretations are automated using model refinements, i.e. model to model transformations lowering the abstraction level of the architecture description. 

Industrial Context and Scientific Challenges

A Cyber Physical System (CPS) is a system that is controlled or monitored by computer-based programs, tightly integrated networks, sensors, and actuators. "In cyber-physical systems, physical and software components are deeply intertwined, each operating on different spatial and temporal scales, exhibiting multiple and distinct behavioral modalities, and interacting with each other in a lot of ways that change with context." 1 Robotic systems of course, but also transportation systems, medical devices or power plants are example of CPSs. The evolution of software applications deployed in CPS shows a significant increase in their complexity. Measured in terms of lines of code (SLOC) embedded in different generations of aircraft systems, this complexity indicator shows the significance of their software evolution: Airbus A310: ˜400 KSLOC, A320: ˜800KSLOC, A330/340: ˜2MSLOC, Boeing 777: ˜4MSLOC, Airbus A380: ˜8MSLOC, Boeing 787: ˜10MSLOC. These impressive numbers are still below the numbers of estimated lines of code in military aircrafts or luxurious modern cars.

As a consequence, software development, takes an important role in the production of such systems. Our industrial partners in the avionics domain estimate that 70% of systems production cost is due to software development, mainly because of very demanding validation, documentation, and integration activities. They estimate this ratio would grow up to about 90% in 2024.

The cost presented here above measures how difficult software development has become in the domain of CPS. This cost actually aggregates several sources of difficulties over the development life-cycle. In particular, our industrial partners (still in the avionics domain) estimate that 70% of software development cost is due to rework, validation, and verification activities, mostly because of faults introduced during the early phases of the development process.

Counterintuitively, this estimation highlights that integration, verification, and validation activities represent more efforts than analysis, design, and implementation activities.

Verification and validation of software in CPS is particularly difficult because CPS are often mission or safety critical: failures of such systems could have catastrophic consequences. As a result, developers of CPS are often required to conform to certification processes aiming at ensuring these systems meet safety requirements.

On the other hand, software integration in CPS is also challenging because these systems have meet various requirements such as timing performance, energy consumption, weight, availability, maintainability, robustness, etc. In addition, Model Driven Engineering (MDE) advocates for the use of models in order to improve the development process of software applications and in order to increase products quality. For example, models can be used to improve the development process by enabling early estimation of software applications performance. In addition, such estimation will help designers of software applications to compare different solutions and select the most appropriate one(s). As shown in figure 1.1, models can be the result of the requirements definition and design activities of the development process, while source code is produced during the implementation phase of the process. In the work we present in this document, architecture models produced during the design activities play a major role: firstly, we combine them with verification and analysis techniques in order to detect design flaws as early as possible in the process. Secondly, as illustrated on the figure, we aim at using architecture models to bridge the gap between requirements models and source code. Therefore, the work presented in this document aims to improve methods dedicated to the design of software architecture(s) for embedded systems which are also critical, real-time, and distributed systems. Because the type of systems we consider are mission or safety critical, the methods we aim for must rely on rigorous models so as to guarantee safety related properties. The targeted application domain is the domain of CPS, in which physical systems are controlled by a set of interconnected computation units (CUs) executing control and/or monitoring algorithms. More specifically, industrial partners involved in the definition of research problems presented in this document work on transportation systems (cars, planes, and/or trains). In next subsection, we present the general problems for which we proposed the scientific contributions presented in this document.

Problem statement

Given the increasing complexity and cost of software development in CPSs, a zoom on the research perimeter presented in previous section (see the orange part of figure 1.1) led us to raise the following research question: how to improve the reliability of CPS design activities? In the context of software development for CPS, we define the reliability of design activities as their capacity to deliver intermediate artifacts for which the rework effort would be as small as possible. By essence, architecture models are abstractions of the reality aiming to enable the analysis of a system under design. This analysis can evaluate quality of services or even safety properties of the system. On the other hand, the implementation of these models will require to interpret this abstract view and translate it into source code by introducing missing details. If these details had an impact on the analysis results, these results obtained with the model may no longer be consistent with the properties exhibited by its implementation. The corresponding design would become obsolete, early design choices would be invalidated, leading to extra re-engineering efforts.

Problem 2: How to ensure the correctness of an architecture model implementation?

The activity transforming an architecture model into the implementation of a software application boils down to translate an abstract view of the system to provide an equivalent executable artifact. By essence, there exist several variants of such translation: an abstract model may have several possible implementations. In addition, this activity my rapidly become repetitive, thus error prone. It is therefore very important to ensure the correctness of the implementation by making sure the translation effort did not introduce flaws in the resulting source code. Such flaws may, again, invalidate analysis results, or even worse: introduce bugs in the source code of the application.

Problem 3: Is the input architecture optimal?

As explained in the presentation of Problem 1, the translation of abstract models into source code may invalidate early analysis results.

One may conclude it would be sufficient to model systems with sufficient margins to ensure the preservation of analysis results along the development life-cycle. However, the values of such margins are difficult to anticipate, and it would be necessary to take very pessimistic estimations to make sure there would not be extra reengineering efforts eventually. In practice, this is infeasible since big margins also means poor quality: for instance, a computer loaded at 20% exhibits a big margin but is poorly exploited (which means more functions of more complex functions could have been deployed on it). In addition, quality attributes are often in conflict as improving one quality attribute requires to degrade another one. For instance, the deployment of replicated functions improves the availability of these functions to the price of extra weight, energy consumption, and data flow latency. It is thus important to deal with the problem of providing optimal (or near optimal) architecture models, otherwise the chance to face integration issues grows rapidly for complex systems.

Problem 4: Are computation resources efficiently allocated to software applications?

In CPS, software architects have to pay extra attention to the allocation of computation resources to software applications. The main reason is that some of these applications will have a direct impact on the safety of the system. Such applications would be classified with a high level of criticality whereas others would be classified with a lower level of criticality. In most cyber physical systems, the provision of enough computation resource to high criticality functions is thus a safety requirement, whereas the provision of computation resources to lower criticality functions is a quality of service requirement. Note that quality of service, though not critical, is of prime importance as it has a direct impact on consumers satisfaction. In a CPS, an inefficient resource allocation may lead to a poor quality of services, and even worse, to safety requirements violation.

Problems 1 and 2 are obviously connected to our research question (i.e. how to improve the reliability of CPS design activities?) whereas the link with problems 3 and 4 may seems less direct. Yet, it is important to consider that software applications in CPS have to meet stringent requirements in terms of timing performance, memory footprint, safety, security, and/or energy consumption. These requirements, usually called Non-Functional Requirements (NFR), are often as important as functional requirements in CPSs. Thus, if errors are discovered late in the development process because of poor Non Functional Properties (NFPs) due to design flaws, a design rework is necessary and its cost will raise fast. It is thus important to ensure, as soon as possible in the design process, that considered architectures respect NFRs but also provide the best possible margin with respect to the limit imposed by these NFRs. This boils down to optimize these architectures, either during the modeling phase (problem 3) or during the deployment phase (problem 4). Even though our work focuses on software architectures, specificities of CPSs require to take into consideration hardware platform characteristics as well. Indeed, the adequacy of a software architecture with respect to these requirements, called Non Functional Requirements (NFRs), cannot be assessed without a knowledge of the underlying hardware and/or network architecture. This is the reason why we used in our work the Architecture Analysis and Design Language (AADL), an architecture description language offering the capabilities to model both the software and hardware architecture of a CPS, as well as the binding of software components onto hardware components.

In addition, Non Functional Properties (NFPs) evaluation requires dedicated models in which implementation details are abstracted away in order to focus on most relevant characteristics of the architecture for a given property. 

Organization of the document

This document is organized as follows.

Chapter 2 contains an overview of the approach we propose to contribute to the resolution of the problems presented above. A brief presentation of related works helps to understand the originality of our approach.

In chapter 3, we present the core ideas our work relies on: model transformations of architecture models for the analysis, design, and optimisation of critical CPSs. Chapter 4 gives more details on the work we undertook on the composition and formalization of model transformations.

This work is integrated in RAMSES, which is to the best of our knowledge the only AADL to code generation framework implementing deterministic subsets of AADL. It is also the only AADL to code generation framework allowing fine-grained timing analysis of the non-deterministic subsets of AADL. Last but not least, model transformation compositions for design space exploration have been experimented in RAMSES on complex optimization problems with very satisfying results. Finally, chapter 5 concludes this document and provides research perspectives for the work presented in this document.

In the previous chapter, we have defined ambitious and difficult research problems. We contributed to their resolution through the definition of an architecture models refinement framework we present in section 2.1. We then present in section 2.2 a brief overview of the state of the art in this domain, before to summarize this activity in terms of PhD students supervisions (section 2.3).

Approach: Architecture refinement framework

In order to answer the research problems introduced in previous chapter, we proposed a method based on model refinements, analysis, and optimization. The general idea behind this approach is to bridge the gap between requirements model and source code by defining model transformations that progressively lower the abstraction level of design models. Thus, from an abstract model provided by a CPS architect, we propose to define and compose model transformations which produce refined and optimal (or near optimal) architecture models. Such transformations would, for instance, integrate design patterns in the initial architecture model.

We then analyze the resulting models in order to evaluate the impact of the refinement on the system's NFPs and select architectures answering at best the trade-off among NFRs. We continue this process until we define implementation models, i.e. architecture models with a straightforward correspondence between model elements and source code (e.g. a one-to-one mapping between each modeling element and a construction in the underlying programming language and/or operating system configuration). Figure 2.1 illustrates this approach in a two stages refinement process: the input architecture model is refined into a set of architecture candidates. These candidates, are, when possible, analyzed to compute their NFPs and verified to check the design meets predefined NFR and structural constraints. Architecture candidates satisfying predefined NFRs and structural constraints are then selected and further refined into a set of implementation models. Again, these models are analyzed and the most appropriate model(s) is (are) used to automatically generate the corresponding source code. By lowering the abstraction level of models used for both code generation and analysis, we improve consistency between analysis results and software implementation. More generally, we aim at applying model transformations and analyze output models to control the impact of these transformations on NFPs. This work contributes to the resolution of problem 1.

Because timing properties and in particular real-time tasks scheduling plays an important role in CPSs design, we first experimented these ideas so as to improve precision and/or reduce the pessimism of timing analysis based on architecture models. This work contributes to the resolution of problem 4.

We also worked on model transformations formalization as a mean to verify their correctness: we defined structural constraints on output models and proposed a method to define model transformation chains enforcing the respect of these constraints; we also defined a method to validate model transformation chains by producing integration test cases covering unit test requirements. This work contributes to the resolution of problem We give a rapid overview of the state of art of these domains in next section.

Overview of the State-of-Art

Research areas mentioned at the end of the previous section cover a huge number of relevant research works. In this section, we do not seek for an exhaustive presentation of these areas. Instead, we aim at providing a minimal background information to have our readers understand the scientific context in which our research efforts were undertaken. Architectures description Languages. Works in the domain of architecture description languages aim at defining modeling languages for software architectures, hardware architectures, or a combination of both. Historically, research works in this area have produced formalisms, which may be Modeling Languages, Architecture Description Languages and/or Component-Based Modeling languages. In the domain of CPS, different languages have been proposed, such as SCADE1 , MATLAB/SIMULINK2 , LUSTRE [START_REF] Halbwachs | The synchronous dataflow programming language lustre[END_REF], Giotto [START_REF] Henzinger | Giotto: A time-triggered language for embedded programming[END_REF], Polychrony [START_REF] Guernic | POLYCHRONY for system design[END_REF], the Synchronous Data Flows Graphs (SDFGs) [START_REF] Lee | Synchronous data flow[END_REF], Wright [START_REF] Allen | A Formal Approach to Software Architecture[END_REF], BIP [START_REF] Bozga | Modeling synchronous systems in bip[END_REF], ProCom [START_REF] Bures | Procomthe progress component model reference manual[END_REF], the Palladio Component Model (PCM) [START_REF] Reussner | The Palladio Component Model[END_REF], Fractal [START_REF] Bruneton | The fractal component model and its support in java: Experiences with auto-adaptive and reconfigurable systems[END_REF], UML/MARTE [START_REF] Mg | Uml profile for marte: Modeling and analysis of real-time embedded systems[END_REF], and the Architecture Analysis and Design Language (AADL) [START_REF]Architecture Analysis & Design Language (AADL)[END_REF]. These languages differ in many aspects, including the Model of Computation and Communication (MoCC) they define. For instance, SCADE relies on the synchronous model of computation in which computations and communications are assumed to take zero time. This hypothesis is satisfied if the underlying Computation Unit (CU) is fast enough to process input and produce results before the acquisition of the next input. Relaxing the synchronous hypothesis, Giotto defines a Logical Execution Time (LET) model of computation where components, modeled as tasks, take a predefined amount of time (the LET) to execute. Communications with a component (i.e. inputs reading, outputs writing) can only occur outside its LET interval (i.e. when the component is not executed). In SDFGs, the focus is more on communications among components than on their independent execution: applications are described as a set of communication channels connecting applications (also called actors, processes or tasks). These channels model communication FIFO queues, and the execution of an application is triggered by the content of its input queues. Last but not least, AADL is a standardized modeling language aiming at gathering both a representation of the software architecture, the hardware architecture, and the binding of software components onto hardware components.

In our work, we consider source code generation as the final objective of an efficient MDE process. In some industry, and in particular in the transportation domain, several success stories show the added value of automated source code generation techniques. MATLAB/SIMULINK and SCADE SUITE provide source code generator widely used today. Note that these code generators produce the so-called functional code, i.e. software responsible to answer functional requirements. Another part of software applications for CPSs is called technical code, i.e. software responsible for interfacing functional code with the hardware platform of the CPS.

In this context, AADL is an interesting architecture description language since it allows to represent both the software architecture, the hardware architecture, and the allocation of software components on hardware components. In addition, as illustrated on figure 2.1, we aim at representing CPSs architecture at different abstraction level. This is also a facility offered by AADL, which was experimented during the PhD of Fabien Cadoret (2010[START_REF] Borde | Architecture models refinement for fine grain timing analysis of embedded systems[END_REF]. With respect to its usability in industrial applications, AADL is a standard with a high visibility. This is an important asset when it comes to experiment our work on industrial case studies. Last but not least, AADL defines a MoCC which is configurable thanks to standardized properties. For some subsets of AADL configurations, the MoCC is deterministic and matches existing formally defined languages (e.g. LET or SDFGs). In the PhD of Fabien Cadoret and Roberto Medina, we identified subsets of AADL with a deterministic and formally defined MoCC.

Being advanced users of the language, we have also contributed to its evolution by (i) providing regular feedback to the AADL standardization committee, and (ii) by leading the revision of its Behavior Annex: a sub-language of AADL dedicated to modeling components behavior with state machines.

Scheduling and analysis of real-time systems. Among NFRs of CPSs, timing requirements plays an important role. Indeed, one of the specificities of CPSs is that they control physical systems. This means CPSs implement control loops executed repeatedly with a frequency that is derived from an analysis of the system's physics. If the results of this control law are not produced in time, the physical system does not wait. This is why, in real-time systems, the outputs produced by a software function are valid if their computation is correct, and they are produced before a predefined deadline.

In order to ensure timing requirements are always satisfied, Liu and Layland [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF] proposed to model software applications with a set of tasks τ = {τ i } i=1..N characterized by:

• a period T i : the minimum delay between two consecutive executions of a task τ i .

• a capacity C i : the time required for the CU to execute task τ i . C i is usually set to the worst-case execution time (WCET) of τ i .

• a deadline D i : time interval between the release of τ i and the date at which τ i must have finished its execution.

Since the definition of this very first task model, real-time systems have been intensively studied and this research field has significantly matured.

In particular, one important issue with the initial model introduced Liu and Layland is the induced pessimism on tasks response time which leads to a poor resource usage. Different sources of pessimism are indeed cumulated when verifying tasks always meet their deadlines, since the verification methods assume:

• tasks always execute all together for their worst case execution time;

• if tasks share data is a protected access, they execute all together spending the longest possible time in all their critical sections, causing significant blocking times.

In practice, the probability that one task executes for its WCET is low, so the probability they all together execute for their WCET is very low. To overcome this limitation, methods based on allowance [START_REF] Bougueroua | Task allowance for failure prevention of fixed priority scheduled real-time java systems[END_REF] or mixed-criticality scheduling [START_REF] Burns | A survey of research into mixed criticality systems[END_REF] have been proposed.

In the PhD of Fabien Cadoret, we first proposed to use AADL in order to implement fine-grain and less pessimistic response time analysis [START_REF] Borde | Architecture models refinement for fine grain timing analysis of embedded systems[END_REF]. The objective was to reduce pessimism due to the presence of critical sections. We studied this problem in the context of avionics systems using the ARINC653 standard: in this context, blocking time induced by inter-partition communications is particularly significant. We also proposed a lock free implementation for a deterministic MoCC [START_REF] Cadoret | Deterministic implementation of periodic-delayed communications and experimentation in AADL[END_REF][START_REF] Jaouën | PDP 4ps : Periodic-delayed protocol for partitioned systems[END_REF] [START_REF] Etien | Chaining model transformations[END_REF]. For these reasons, dedicated model transformation methods [START_REF] Czarnecki | Feature-based survey of model transformation approaches[END_REF][START_REF] Mens | A taxonomy of model transformation[END_REF] and languages [START_REF] Jouault | Transforming models with atl[END_REF][START_REF] Omg | MOF QVT Final Adopted Specification. Object Modeling Group[END_REF][START_REF] Arendt | Henshin: Advanced concepts and tools for in-place emf model transformations[END_REF] and have been proposed. In RAMSES, we have initially decided to use ATL as a trade-off between the rigor of its semantics, and its simplicity of use. In addition, we decided to decompose model transformations as a chain of AADL to AADL transformations in order to enable verifications on intermediate AADL models. However, we use model transformations in the context of critical CPSs, hence we have to pay extra attention to the validation of these transformations. This is why we proposed to formalize model transformations and more specifically model transformation chains.

In the PhD of Cuauhtémoc Castellanos, we proposed a formalization of model transforma-tions in Alloy [START_REF] Jackson | Alloy: A lightweight object modelling notation[END_REF]. From this formalization, and the specification of constraints on the output model (expressed with first order logic) we were able to automate the production of model transformation chains to produce output models satisfying the constraints [START_REF] Castellanos | Automatic production of transformation chains using structural constraints on output models[END_REF][START_REF] Castellanos | Improving reusability of model transformations by automating their composition[END_REF].

In the PhD of Elie Richa, we proposed a formalization of ATL as Algebraic Graph Transformations (AGT) [START_REF] Ehrig | Fundamentals of algebraic graph transformation[END_REF]. An automated mapping to Henshin, as well as the automated construction of the weakest liberal precondition paved the way towards different kinds of ATL transformations verification [START_REF] Poskitt | Verification of Graph Programs[END_REF][START_REF] Pennemann | Development of correct graph transformation systems[END_REF]. This work was defined as part of an integration test case generation, but it could also be used for proving model transformations.

In addition to our contributions on model transformations formalization, we proposed to use model transformations as a medium for design space exploration. We describe this work in next subsection. Design space exploration. As CPS have to meet conflicting objectives with respect to their NFPs, lots of work have been conducted to automate design space exploration for CPSs. In particular, frameworks such as ArcheOpterix [START_REF] Aleti | Archeopterix: An extendable tool for architecture optimization of AADL models[END_REF], PerOpteryx [START_REF] Koziolek | Peropteryx: Automated application of tactics in multi-objective software architecture optimization[END_REF], and AQOSA [START_REF] Li | An evolutionary multiobjective optimization approach to component-based software architecture design[END_REF] are model-based DSE frameworks in the sense that they rely on an input modeling language (i.e. AADL, PCM) and they provide interfaces for models analysis, optimization problems definition, and constraints validation.

As an extension to these principles, we proposed in the PhD of Smail Rahmoun to define design space exploration problems by composition of model transformation variants [START_REF] Rahmoun | Automatic selection and composition of model transformations alternatives using evolutionary algorithms[END_REF][START_REF] Rahmoun | Multi-objective exploration of architectural designs by composition of model transformations[END_REF].

The DSE framework we developed relies on genetic algorithms, and our method based on model transformations composition had the following advantages: first, by transferring structural validity constraints from the output model to the composition process, only valid architectures are considered during the exploration process. We expressed validity constraints with boolean formula and used SAT solving techniques to ensure explored architecture satisfy the validity constraints. Second, by defining model transformation composition techniques for DSE, we keep the optimization framework (based on genetic algorithm) completely generic: it only requires the definition of alternative model transformations as the definition of a new optimization problem. Following very similar ideas, the MOMoT framework was designed in parallel [START_REF] Fleck | Search-based model transformations with momot[END_REF]. This work, as well as ours, fulfill the objective to make DSE generic. However, as opposed to our work, this work does not proceed to the validation of structural constraints during the composition of model transformation rules but after their application. As shown in [START_REF] Rahmoun | Multi-objective exploration of architectural designs by composition of model transformations[END_REF], this would lead to a prohibitive loss of performance on complex optimization problems. • Roberto Medina (11/2015 -01/2019) studied more specifically the problem of resource usage efficiency in real-time embedded systems (problem 4). This is an important topic in our context as improving the reliability of software development in real-time CPS often leads to consider margins on tasks execution time. As a consequence, computation resources are poorly used whereas system designers aim at deploying more and more complex applications in CPSs. As a contribution to solve this problem, Roberto Medina proposed new scheduling techniques on multi-core architectures based on the concepts of Mixed-Criticality, applied to directed acyclic graphs of tasks.

In particular, we defined in this work new methods to (i) ensure schedulability of high criticality functions and (ii) evaluate the impact of sharing computation resource among functions of different criticality levels on the quality of service of low criticality functions.

• Jean Oudot (09/2017 -) is working on the definition of quantification methods for cyber-security of CPSs. Indeed, cyber security is becoming an important problem in the design of CPS since these systems are becoming more and more connected to their environment. These interactions with their environment make CPSs subjects to cyber attacks with a more and more important surface attack. As opposed to traditional information systems or desktop computers, CPSs also have to meet stringent safety, performance, and/or energy consumption properties. For this reason, integrating security counter measures in CPS architectures raises important challenges in terms of multi-objective optimization problems. In particular, we aim at defining a methodology to select the set of sufficient counter measures to reach a level of acceptable risk while minimizing the impact of these counter measures on safety and performance properties. This work will contribute to the resolution of problem 3, with an emphasis on security counter measure selection and configuration.

• Maxime Ayrault (10/2018 -) is also studying cyber security of CPS but with a different viewpoint: how to improve their resilience to attacks? Indeed, it is impossible to anticipate all the potential vulnerabilities of a complex CPS. In addition, once a CPS is deployed and used, attackers have time to study the system and discover new vulnerabilities. For this reason, it is important to deploy resilience mechanisms in CPSs to delay as much as possible the effectiveness of an attack and/or its propagation. This problem is obviously connected to the design of CPS architectures since resilience mechanisms have to be defined at design time. This work is going to contribute to the resolution of problem 3, with an emphasis on resilience to cyber attacks.

I have been the advisor of the first 6 PhD students listed above, and I am the supervisor of Maxime Ayrault's PhD. In next chapters (3 and 4), we describe more precisely these research contributions and their link with the general approach presented on figure 2.1.

Chapter 3

Architecture Models Timing Analysis CPSs are subject to various non-functional requirements, and timing performance is an important class of such requirements when architecting software applications of a CPS. In addition, Model Driven Engineering (MDE) advocates for the use of models in order to improve the development process, as well as the quality, of these applications. In this chapter, we present a MDE framework aiming at automating the production of software applications of CPSs.

In particular, we consider source code generation as the final objective of an efficient MDE process. In some industry, and in particular in the transportation domain, several success stories show the added value of automated source code generation techniques. MATLAB/SIMULINK and SCADE SUITE provide source code generator widely used today. Note that these code generators produce the so-called functional code, i.e. software responsible to answer functional requirements. Another part of software applications for CPSs is called technical code, i.e. software responsible for interfacing functional code with the hardware platform of the CPS.

When it comes to the evaluation of timing performance in software architectures, both functional and technical concerns can have a great impact on the result. For instance, functional code is the main software artifact used to compute the execution time of tasks, i.e. their capacity C i as defined in the previous chapter. On the other hand, technical code may implement complex communication mechanisms with a significant impact on timing performance. This is particularly true in avionics ARINC653 systems with inter partition communications. Nowadays, very few MDE frameworks are able to consider both the functional and technical code of a software application when evaluating their timing performances.

In this chapter, we present our contributions on the timing analysis of software architectures for CPSs. The remainder of this chapter is organized as follows. Section 3.1 gives an overview of the MDE framework we have designed to experiment our research activities.

In the following sections, we present subsets of the AADL modeling language for which this framework was experimented: partitioned ARINC653 systems in section 3.2, periodic delayed queued communications in section 3. 

AADL Refinement Framework

In order to automate code generation for CPS while mastering the impact of generated code on timing performance, we proposed in 2011 a model transformation and code generation framework based on AADL, called RAMSES [START_REF] Borde | Architecture models refinement for fine grain timing analysis of embedded systems[END_REF]. The basic principles of this framework are depicted on figure 3.2. The idea is to proceed to code generation in a step-wise model transformation process which would (i) exhibit the generated code into intermediate AADL models (e.g. refined AADL model on figure 3.2), (ii) analyze these intermediate models, until (iii) the AADL model reaches an abstraction level leading to a very simple mapping from AADL to source code constructions. One of the major benefit of this approach is to reduce the semantic gap between models used for analysis purpose, and models used for code generation per se. This framework has been the playground of several ideas and experiments presented throughout this document. We describe those related to timing analysis in the remainder of this chapter.

Code generation and fine-grain analysis of partitioned systems

As mentioned in the introduction of this document, CPSs are often critical systems. However, among software components of a CPS, only a few are expected to have a high criticality level. As a consequence, CPS designers have to provide safe methods to share computation and storage resources among software components of different levels of criticality.

In the avionics domain, this problem has been solved by developing dedicated fault containment mechanisms in operating systems. These mechanisms are called time and space partitioning: applications are statically provisioned with dedicated memory and execution time slots and the operating system is in charge of enforcing the applications to remain within these predefined slots. Partitioned operating systems are known to ensure a good time and space isolation among software applications they execute, to the price of a timing overhead in communication mechanisms. This timing overhead is even more significant when considering communications among different partitions.

Input models description. Following the general principles described in section 3.1, we have proposed a method to precisely take into account this overhead when verifying timing requirements of a CPS. This method was first published at the International Conference on Complex Computer Systems [START_REF] Cadoret | Design patterns for rule-based refinement of safety critical embedded systems models[END_REF] and specialized to a case study from the real-time systems domain in a publication at the international symposium on Rapid Systems Prototyping in 2014 [START_REF] Borde | Architecture models refinement for fine grain timing analysis of embedded systems[END_REF]. The proposed method takes as input (i) the AADL model of applications deployed on a partitioned system using the ARINC653 annex of AADL, and (ii) a behavioral description of the runtime services of an ARINC653 system provider, using the behavior annexe of AADL. The AADL model of applications is composed of a set of interconnected processes, themeselves composed of interconnected tasks. In addition to these structural characteristics, models may come with a description of tasks internal behavior. The task set is expected to be described with the following information:

• timing consumption of each subprogram or thread component: either as a timing interval (bounded by best and worst case execution time) for subprograms or threads, or timed behavior actions (in the behavior annex), or a set of properties that enable to compute such timing consumptions from the control flow graph of the components (e.g. time of assignment actions, subprogram calls, expressions, etc.);

• accesses to shared data, in order to describe which component has access to a shared data, when does it access it, and what is the access policy to be considered for schedulability analysis;

• scheduling properties of the task set: scheduling protocol, periods, deadlines, and priorities (if needed, depending on the scheduling protocol).

AADL models of the runtime services are provided by RAMSES, with the support of operating systems provider. These models takes the form of a library of AADL subprograms and data components definition. Their behavior is described with the same elements as those described in previous paragraph for threads description. Their timing characteristics are supposed to be provided by operating systems vendors.

Model refinements in RAMSES. In addition, this listing provides the definition of a processor component which according to the AADL standard, is an abstract execution platform that represents both the hardware execution unit, and the operating system running on it. The reason for modeling the processor at this stage is that execution times of threads and subprograms obviously depend on the processor they are executed on.

From a timing analysis viewpoint, this model contains the following information:

• A computation statement describes that an execution time interval of one to two milliseconds is necessary at the beginning of the execution of this subprogram (see line 12 of listing 3.1). Note that these timing characteristics are only valid when the subprogram is executed on the x86 processor (modeled in the same listing) as specified by the "in binding" statement line 12.

• Execution time of subprogram receive_input can also be deduced from the assignment action line 14, combined with (i) the data size of operands of the assignment and (ii) the assignment time property given in line 22 of the listing.

• Data accesses are represented in lines 13 and 15, with respectively a locking and unlocking access to shared data that will be connected to interface lock_access (line 5).

subprogram r e c e i v e _ i n p u t f e a t u r e s v a l u e _ o u t : o u t parameter F l o a t ; d a t a _ s t o r a g e : r e q u i r e s d a t a a c c e s s F l o a t ; l o c k _ a c c e s s : r e q u i r e s d a t a a c c e s s ARINC653_semaphore ; annex b e h a v i o r _ s p e c i f i c a t i o n { ** s t a t e s s 1 : i n i t i a l f i n a l s t a t e ; t r a n s i t i o n s niques. Given its features, TIMES [START_REF] Amnell | Times: A tool for schedulability analysis and code generation of real-time systems[END_REF] would be a good candidate but to the best of our knowledge, it does not cover hierarchical scheduling (which is an important feature of ARINC653 systems). Another possibility could be to use more generic formal models such as timed automata or timed Petri nets. However, the translation of AADL to such models is a difficult task for which different research works were already undertaken [START_REF] Berthomieu | Formal verification of AADL specifications in the topcased environment[END_REF][START_REF] Renault | Adapting models to model checkers, a case study: Analysing aadl using time or colored petri nets[END_REF]. These works only cover a subset of AADL which is not he one considered in our work.

2. transform the intermediate model into a single task set with the following characteristics: each task is given for its capacity its WCET, and each critical section of each task is characterized by its WCET as well. The resulting model is simple to analyze with tools such as Cheddar [START_REF] Singhoff | Cheddar: A flexible real time scheduling framework[END_REF] but it may cumulate pessimism (and thus waste of computation resources). Indeed, when a job executes for its task's WCET, it may spend little time in its critical section, and vice versa (when a job enters a critical section's WCET, it may spend little time in the task itself).

3. transform the intermediate model into a set of task sets: the control flow graph of each task of the intermediate model is transformed into an execution tree (going from one suspended state of the task to another suspended state). Among the branches without accesses to locks, we only keep the one with the highest execution time. Branches with accesses to locks are kept as is in the tree. Task sets are then built from execution trees by applying a cartesian product of the set of execution branches of each task. Then, each task set is simple to analyze with tools such as Cheddar [START_REF] Singhoff | Cheddar: A flexible real time scheduling framework[END_REF].

Case study. We experimented the latest alternative in [START_REF] Borde | Architecture models refinement for fine grain timing analysis of embedded systems[END_REF]. The number of task sets to analyze grows rapidly with the number of branches in tasks execution trees. The number of task set configurations to analyze mainly depends on the characteristics of the input model: the number of configuration to analyze grows with the number of conditional branches in which shared data are acquired and released. Figure 3.4 illustrates the AADL architecture of a case study from the train industry. In this domain, the main business objective is to reduce the time interval separating two consecutive trains while guaranteeing passengers safety. To reach this objective, the adaptation of powerful CU gives the opportunity to embed more computation power on-board trains. Functions traditionally deployed on the wayside infrastructure can then be embedded onboard in order to reduce response-time of functions. Trains may then be closer to one another by depending less on the wayside infrastructure. However, grouping functions on-board the train should not lead to hardware resources over-consumption otherwise the safety of the system may be put at risk. Because train application are also made up of components of different criticality levels, partitioned operating systems are also studied for future architectures of these applications. Our objective is to ensure CUs provide enough computation power to host both processes.

The software architecture represented configure 3.4 is made up of two AADL processes, eight AADL threads (four threads in each process), and twelve connections among ports of these threads.

For the case study presented in figure 3.4, the timing analysis of our case study required the analysis of 64 tasks configurations (different values for the WCET of tasks and the WCET in critical sections). These configurations were analyzed using the Cheddar tool suite [START_REF] Singhoff | Cheddar: A flexible real time scheduling framework[END_REF].

Experimentations were conducted on a 2.7 GHz Intel processor (Intel Core i7-3740QM; 4 cores) with 3.9 GiB memory and a SSD hard drive disk. The complete process, from the However, to limit the complexity of timing analysis, another strategy is to consider more deterministic MoCCs and to propose lock-fee implementations of these MoCCs. We present our work related to such techniques in the remainder of this chapter.

Periodic delayed communications

MoCC presentation. The MoCC we consider in this section is a variant of message passing communications among periodic tasks:

• Communication channels are modeled by directed ports and connections to enable various configurations regarding the number of sender and receiver.

• A task τ i can receive a set of messages on its input ports.

• A task τ j can send a message on its output ports to connected input ports.

• A message sent on an output port p, is eventually received on input ports connected to p.

We refined this model to ensure deterministic communications among tasks:

• During each job J j of a task τ j , exactly one message is sent on each output port of a task.

• A message sent by a job is delivered to the receiving task at the recipient release time following the sender job deadline. More formally, a message sent to τ i , by the k th job of τ j is considered delivered at ⌈ k•T i +D j T i ⌉ • T i (remember that T i and D i are respectively the period and deadline of task τ i , as defined in notations used in chapter 2).

• Any message delivered to the k th job of τ i should be removed from the receiving port at time k • T i + D i . After this time, delivered messages to the k th job of τ i are considered outdated.

• Messages delivered to a task are received in the order of sender jobs deadlines. When sender jobs deadlines are simultaneous, a predefined order noted ≺, e.g. task priorities, is used.

The model is said "periodic-delayed" as messages are periodically sent and their delivery is delayed until sender job deadlines. Such a communication model can be modeled in AADL with the following properties :

• The Dispatch_Protocol property is set to Periodic for each thread component: tasks are periodic,

• The Period, and Deadline properties are set for each thread component (with Deadline ≤ Period),

• The Timing property is set to Delayed for output ports of tasks: messages are sent at deadline.

Note that the default value of the AADL Output_Rate property already states that one message is produced per activation of the producer tasks. Similarly, we use AllItems as the default value for the property Dequeue_Protocol, which means that all the messages available at release time of the recipient will be considered as consumed at the end of its job.

Lock-free implementation. In next paragraphs, we show how to compute message indexes for sent received messages order to implement these action without locks. The number of received messages at time t on a queue q of size Q can be computed as follows:

Received(q,t) = ∑ j∈ST q ⌊ t -D j T j ⌋ + 1
where ST q is the set of tasks sending messages to q.The indexes of sent values can be computed as follows for queue q and the k th job of a sender task τ j :

SendIndex(q, j, k) = Redeived(q, k • T j + D j ) -Followers(q, j, k)
where Followers is the number of successors of τ j (according to ≺) in ST q having their deadline at k • T j + D j . More formally:

Follower(q, j, k) = ∑ s∈ST q , j≺s Collide(s, k • T j + D j )
where Collide is defined as follows

Collide(s,t) =    1 if t-D s T s ∈ N 0 otherwise
Hence, the message sent in q by the k th job of τ j (τ j is the task sending messages in q) is stored in slot SendIndex(q, i, k) modulo Q (Q is the size of q). Besides, received messages range from (ReadIndex(q r , k -1) + 1) modulo Q to ReadIndex(q, k) modulo Q where ReadIndex(q, k) = Received(q, k • T i ) for the task τ i receiving messages from q. Note that SendIndex(q, j, k) and ReadIndex(q, k) can be computed independently without any internal state, reason why lock free implementations of these functions are possible. Finally, the size of q can be bound as follows (the proof of this result is available in [START_REF] Cadoret | Deterministic implementation of periodic-delayed communications and experimentation in AADL[END_REF]):

Q ≤ ∑ j∈ST q (⌊ 2 • T q + D max T j ⌋ + 1)
Illustrative example To illustrate this task and communication model, we consider the time-line depicted in Figure 3.5. This figure shows communications between three tasks: Discussion. With respect to timing analysis of architecture models, periodic delayed communications bring the advantage of being deterministic and can therefore be implemented without locks. As a consequence, tasks with periodic delayed communications can be considered as independent tasks, which greatly simplifies timing analysis. For instance, it reduces the complexity of timing analysis induced by multiple critical sections (as presented in section 3.2). However, these lock free implementations require to store data structures and execute functions to retrieve and/or compute the indexes of sent or received messages. This is why the refined model produced by RAMSES is important: it allows to check platform resources are still sufficient even when taking into account the overhead due to the implementation of communication mechanisms. Last but not least, delayed communications tend to increase data flow latency, i.e. the time range separating the reception of inputs from sensors to the production of commands to actuators in a CPS. This is one of the reasons why we decided to consider task models made up of DAGs of tasks. Another reason was the necessity to provide solutions for scheduling mixed-criticality task sets on multi-core architectures. This work is presented in next section. Note however, that these two MoCCs (i.e. DAGs and periodic-delayed) are complementary: periodic delayed communications are often used to break cycles in tasks dependencies while preserving deterministic MoCC and lock free implementations. Last but not least, scheduling real-time DAGs is known to be a difficult problem and its adaptation to mixed criticality scheduling required a PhD thesis on its own.

τ i J1.1 J2.

Mixed-criticality DAGs analysis

The contributions presented in section 3.2 aim at automating the analysis of tasks sets with critical sections. On hypothesis of this work was that tasks are executed on monocore architectures. The results presented in section 3.3 show how to implement lock free communications among periodic tasks. Given the communication model we considered, these results can be used when scheduling tasks on multi-core architecture. Tasks would then be considered as independent, which greatly ease the application of scheduling techniques. However, as stated at the end of previous section, this MoCC induces important latency on data flows.

Context. A MoCC frequently used to model critical embedded systems consists of data flow graphs. This model defines actors that communicate with each other in order to make the system run: the system is said to be data-driven. The actors defined by this model can be tasks, jobs or pieces of code. An actor can only execute if all its predecessors have produced the required amount of data. Therefore, actors have data-dependencies in their execution. Theory behind this model and its semantics provide interesting results in terms of logical correctness: deterministic execution, starvation freedom, bounded latency, are some examples of properties that can be formally proven thanks to data-flow graphs.

In this work we have considered a simple subclass of data-flow graphs in which data dependencies are directly captured into Directed Acyclic Graphs of tasks. In this MoCC, a software architecture is made up of DAGs in which vertices represents tasks, and edges represent precendence constraint, i.e. a task can only start executing when all its predecessors have finished their execution. In parallel, the adoption of multi-core architectures in the real-time scheduling theory led to the adaptation and development of new scheduling policies [START_REF] Davis | Priority assignment for global fixed priority preemptive scheduling in multiprocessor real-time systems[END_REF]. Processing capabilities offered by multi-core architectures are quite appealing for safety-critical systems since there are important constraints in terms of power consumption and weight. Nonetheless, this type of architecture was designed to optimize the average performance and not the worst case. Therefore, ensuring time correctness becomes harder when multi-core architectures are considered: in hard real-time systems the Worst Case Execution Time is used to determine if a system is schedulable.

This observation is one of the main reason for the popularity of the mixed-criticality scheduling (MCS), intensively studied these last years [START_REF] Burns | A survey of research into mixed criticality systems[END_REF]. With MCS, tasks can be executed in different execution modes: in the nominal mode, high and low criticality tasks are both executed with an optimistic timing budget. When the system detects a timing failure event (TFE), i.e. a task did not complete its execution within its optimistic timing budget, the system switches to a degraded mode. In this mode, high criticality tasks are executed with their pessimistic timing budget, discarding [START_REF] Vestal | Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance[END_REF] low criticality tasks or degrading them [START_REF] Su | An elastic mixed-criticality task model and earlyrelease edf scheduling algorithms[END_REF] (i.e. reducing their execution frequency).

Overview of the work. The schedulability problem of real-time tasks in multi-core architectures is known to be NP-hard. When considering mixed-criticality multi-core systems, the problem holds its complexity. Thus, in our contributions we have designed a meta- The reason for choosing scheduling tables is simple: it is known to ease the certification of critical systems and the ARINC653 scheduling of partitions (using schedule table to enforce temporal isolation of partitions) is a good example of this statement.

In addition to this meta-heuristic, we have proposed a method to evaluate the availability of lower criticality tasks. Indeed, the initial objective of MCS is to improve computation resources usage by allowing to configure the system with lower timing budgets than tasks WCET. In practice, this is only possible if low criticality tasks are degraded whenever high criticality tasks need more computation resources. This impacts the quality of low criticality services. We proposed to measure this impact in terms of availability.

Illustration. Figure 3.6 illustrate the structure of a MC-DAG on a motivating example: an UAV for field exploration. The UAV is composed of two MC-DAGs: the first one takes care of the Flight Control System (FCS), noted G FCS [START_REF] Siebert | Mobile 3d mapping for surveying earthwork projects using an unmanned aerial vehicle (uav) system[END_REF]. The second MC-DAG represents a scientific workflow used for image processing [START_REF] Bharathi | Characterization of scientific workflows[END_REF], noted G Montage . Vertices in gray represent high criticality tasks, while white vertices are low criticality tasks. Vertices are annotated with their timing budgets: a single value is given for low criticality tasks since they are not executed in the high criticality mode. Full edges represent precedence constraints between tasks, while dashed edges represent the interface with the system's boundaries: where data is initially coming from or finally sent to. The idea behind this motivating example is to demonstrate that the FCS could be executed next to an image processing workflow on a tri-core architecture.

In the remainder of this section, we present our two main contributions on this task model: we first present the scheduling method we proposed, before to explain how we compute the availability of low criticality tasks. For the sake of simplicity, we present these results on a dual criticality system with a LO and HI modes (i.e. respectively low and high criticality modes) but we provided more general results (for any number of criticality levels) in Roberto Medina's PhD thesis. ALAP implementations of MC-Correct schedules. To begin with, we shall recall the definition of a MC-correct scheduling for DAGs, as defined in [START_REF] Baruah | The federated scheduling of systems of mixed-criticality sporadic dag tasks[END_REF]: In the Real-Time Systems Symposium, 2018, we proposed a sufficient conditions to guarantee Condition HI-Mode of MC-correct scheduling [START_REF] Medina | Scheduling multi-periodic mixed criticality dags on multi-core architectures[END_REF]: First, for each task τ i executing in mode χ, we define the function ψ χ i as follows:

Definition 1. A MC-correct
ψ χ i (t 1 ,t 2 ) = t 2 ∑ s=t 1 δ χ i (s). (3.1) 
where

δ χ i (s) =    1 if τ i is running at time s in mode χ, 0 otherwise 
. This function defines the execution time allocated to task τ i in mode χ from time t 1 to time t 2 .

Definition 2. Safe Transition Property

ψ LO i (r i,k ,t) < C i (LO) ⇒ ψ LO i (r i,k ,t) ≥ ψ HI i (r i,k ,t). (3.2) 
As one cans see in equation (3.2), Safe Trans. Prop. states that, while the k-th activation of HI task τ i has not been fully allocated in LO mode, the budget allocated to this job in LO mode must be greater than the one allocated to it in HI mode. Intuitively, this guarantees that whenever a TFE occurs, the final budget allocated to the job of τ i is at least equal to its WCET in HI mode.

Building on the definition Safe Trans. Prop., we proposed a meta-heuristic to build MCcorrect schedules. We also proposed several implementations of this meta-heuristic, based on In addition, since works in [START_REF] Baruah | The federated scheduling of systems of mixed-criticality sporadic dag tasks[END_REF] have only presented theoretical results, we also implemented the federated approach. Last but not least, we developed a MCS generator in order to produce many MCS with random properties. Thanks to these tools, we generated a set of MCSs and measured the ratio for which each scheduling method finds a MC-correct schedule.

The random generation needs to be unbiased and uniformly cover the possible timing configurations of MCS. To design this random generation, we first integrated existing methods to generate DAGs with unbiased topologies [START_REF] Cordeiro | Random graph generation for scheduling simulations[END_REF]. This is an important aspect, since certain DAG shapes tend to be more schedulable than others. The distribution of execution time for tasks is not controlled by existing DAG generation approaches. Yet, the utilization of the system is the most important factor used to perform benchmarks on real-time scheduling techniques. To overcome this limitation, we have integrated existing methods achieving a uniform distribution of utilizations for tasks [START_REF] Bini | Measuring the performance of schedulability tests[END_REF][START_REF] Davis | Priority assignment for global fixed priority preemptive scheduling in multiprocessor real-time systems[END_REF].

Parameters for the generation of MCS are:

• U: Utilization of the system in both criticality modes.

• |G |: Fixed number of MC-DAGs per system.

• |V j |: Fixed number of vertices per MC-DAG, i.e. all MC-DAGs have the same number of vertices.

• ρ: Ratio of HI criticality tasks.

• f : Reduction factor for the utilization of HI tasks in LO mode.

• e: Probability to have an edge between two vertices.

Once these parameters are set, we first distribute uniformly the utilization of the system to each MC-DAG. We use the uniform distribution described in [START_REF] Bini | Measuring the performance of schedulability tests[END_REF] to assign a utilization for each MC-DAG. The period/deadline for each MC-DAG is then assigned randomly: this period is chosen from a predefined list of numbers in order to avoid prime numbers 3(which are also avoided in the industrial context). With the assignment of the period and the utilization of the MC-DAG, we can distribute the utilization to tasks of the DAG. We use UUnifast-discard [START_REF] Davis | Priority assignment for global fixed priority preemptive scheduling in multiprocessor real-time systems[END_REF] in this case. As opposed to the utilization that can be given to DAGs, a vertex cannot have a utilization greater than 1 since it is a sequential task (parallel execution for a vertex is not possible). UUnifast-discard is therefore an appropriate method. The utilization available for LO-criticality tasks is given by the difference between the utilization of HI tasks in HI mode and the utilization of HI tasks in LO mode, the difference being controlled by parameter f . Once the utilization of the system is distributed among MC-DAGs and the utilization of MC-DAGs is distributed among tasks, we start the generation of the topology for the MC-DAGs. We start by creating the HI-criticality vertices. These vertices are connected following the probability e given by the user and without creating cycles among vertices. After the HI-criticality tasks have been created, we create the LO-criticality tasks. Again vertices are connected following the probability e chosen by the user and without creating cycles. The higher the probability e, the more dense is the resulting graph: vertices have more precedence constraints to satisfy, making the scheduling of the system more difficult.

Experimentation setup: We control the parameters of the MCS generator so as to measure their influence on the performance of our method. We expect the following parameters to make the scheduling problem more difficult: (i) the density of the graphs, (ii) the utilization of the system, (iii) the utilization per task of the system, (iv) the number of MC-DAGs. Our experiments aim at measuring the effect of these parameters on G-ALAP-LLF's performance. Experimentation results. Figure 3.8 provides our experimental results in terms of acceptance rate obtained with different schedulers and various setups of the MC-DAG generator. For each point in the figure, the acceptance rate was obtained by generating 500 MC sys-tems (i.e. sets of MC-DAGs) and measuring the percentage of these systems for which a MC-correct schedule (see definition 1) was found. Each subfigure shows the evolution of the acceptance rate when the CPU usage increases. From one subfigure to another, the configuration of the MC-DAG generator was changed. For instance, subfigure 3.8a shows results obtained with 2 MC-DAGs of 100 tasks each, with an edge probability of 20% and a processor with 4 cores. Results shown on subfigure 3.8b were obtained using the same configuration except of the number of MC-DAG: 4 MC-DAGs were generated in this case. On each subfigure, the acceptance rate obtained with different scheduling strategies are displayed: the red curve corresponds to the G-ALAP-LLF scheduler we proposed. It uses G-LLF to set tasks priority, enforces the respect of Safe Trans. Prop., and executes tasks ALAP in HI mode and ASAP in LO mode. the green curve corresponds to G-ALAP-EDF, following the same principles as G-ALAP-LLF but assigning tasks priorities according to G-EDF. Finally, the grey curve corresponds to the federated approach, proposed by Baruah in [START_REF] Baruah | The federated scheduling of systems of mixed-criticality sporadic dag tasks[END_REF]. Without entering in details into the comparison of these results, readers can easily observe that G-ALAP-LLF provides much better results than the two other methods. When it comes to the comparison of G-ALAP-EDF and the federated approach, the performance gain obtained with G-EDF depends on the system's configuration. To better understand the results, we shall explain how the difficulty of the scheduling problems evolve across subfigures. Scheduling problems obtained with configuration of subfigure 3.8b are easier than problems obtained with the configuration of subfigure 3.8a: when increasing the number of MC-DAGs on the same number of cores and the same CPU utilization, we tend to produce smaller tasks which is easier to schedule than more monolithic task sets. For the same reason, scheduling problems obtained with configuration of subfigure 3.8c are easier than problems obtained with the configuration of subfigure 3.8d, and problems corresponding to subfigure 3.8c are easier than problems corresponding to subfigure 3.8a. This classification of the difficulty of scheduling problems is confirmed by the experimental results show on the subfigures. Therefore, the overall comparison of obtained results tend to show that 1. G-ALAP-EDF is better than the federated approach for systems of intermediate difficulty but the difference between these methods tend to be reduced for very easy or very difficult scheduling problems.

2. G-ALAP-LLF is far better than other approaches in terms of acceptance rate.

However, solutions based on LLF are known to produce an important number of preemptions among tasks. In Roberto Medina's PhD, we have measured the number of preemptions obtained with the different MC-DAG schedulers mentioned above. Without knowing the cost of a preemption, it is not possible to know how taking preemptions cost into account impacts the acceptance rate. However, since we produce scheduling tables, the number of preemptions is known at design time and if we were given a value for preemption cost, we could easily adapt our scheduling method and decide whether the system remains schedulable.

Availability analysis of low criticality services. In addition to our contributions on MC-DAGs scheduling, we studied the impact of mixed criticality scheduling on the quality of services of low criticality tasks. The objective of mixed criticality scheduling is to improve computation resources usage, to the price of a degradation of low criticality services. Indeed, when high criticality tasks risk to miss their deadlines, low criticality tasks are discarded (or slowed down).

In our work, published at the international conference on Design Automation and Test in Europe 2018, we proposed a method to evaluate the impact of mixed criticality scheduling on the quality of low criticality services. We formalized this quality of service as the availability of outputs produced by low criticality tasks, and proposed enhancements of this quality of service for task sets modeled as MC-DAGs with a discard model (low tasks are temporarily discarded in case of TFE). Taking advantage of the DAG, we proposed the following modifications of the MC scheduling: when a TFE occurs in a low criticality task, we only discard the induced subgraph by the discard of the faulty task. In addition, we proposed to consider fault tolerance mechanisms such as the Triple Modular Redundancy of MC-DAGs, and/or the weakly hard nature of some tasks, which is usually formalized as follows: tasks able to continue their execution as long as less than M errors out for K consecutive executions.

In order to evaluate the availability of outputs, two types of precedence relationships among tasks had to be considered: structural precendence (captured by edges in DAGs) and temporal precedence (captured by the scheduling table obtained with techniques presented in previous sections). From these models (i.e. MC-DAGs and scheduling tables) we proposed a model transformation to probabilistic automata. The probabilistic nature of TFE was captures using the recent notion of probabilistic WCET [START_REF] Maxim | Probabilistic analysis for mixed criticality systems using fixed priority preemptive scheduling[END_REF]. Besides, a recovery towards the LO mode as well as the fault tolerance mechanisms were also captured with state and transitions of probabilistic automata.

To the best of our knowledge, this contribution was the first method to compute the availability of low criticality tasks of MC systems. In addition, our experimental evaluation, made with the PRISM framework [START_REF] Kwiatkowska | PRISM 4.0: Verification of probabilistic real-time systems[END_REF], showed that our enhancements of this availability were very significant. Integration in RAMSES. The work presented in this section has also been integrated in the RAMSES framework. Interestingly, the computation of low criticality tasks availability relies on the computation of scheduling tables. We thus adapted the RAMSES framework to refine input AADL models by including a representation of the schedule tables. This model is then used to produce formulas or automata from which availability of low criticality functions is computed. We also elaborated a library of AADL models to model MC-DAGs. Figure 3.9 shows the model of the hardware multi-core platform, i.e. two cores modeled as AADL processors on the left part of the figure. For the software architecture, which is illustrated on the right part of figure 3.9, two AADL thread groups represent the MC-DAGs of the UAV case study. In the software part, LO and HI modes are modeled with AADL modes, and event ports connect the hardware part to the software part to represent potential mode switches (LO to HI in case of TFE in a high criticality task, and recovery to switch back to LO mode). Figure 3.10 represents the content of the FCS MC-DAG modeled as a set of AADL thread with data port connections. These connections are associated with a Timing property of value Immediate to represent in AADL the precedence constraints of DAGs.

Concluding remarks

In this chapter, we have presented our contributions to answer the following questions:

1. how to improve the consistency between models used for analysis and code generation purposes?

how to improve resource usage induced by pessimistic hypothesis in the design of real-time CPS?

To answer these questions, we have proposed a model refinement method and its prototyping in the RAMSES framework. This framework has been experimented on different MoCCs, showing the added value of model transformations in the context of CPSs design. By providing answers to some of the research questions presented here above, our work provides original methods to improve the reliability of software development in CPSs.

To the best of our knowledge, this work provides a unique AADL framework for fine grain timing analysis of real-time embedded systems, as well as source code generation for the most common subsets of AADL MoCCs used in safety critical real-time systems (partitioned systems, periodic delayed communications, periodic MC-DAGs). These contributions have been produced by several PhD students who presented their results in well established international conferences. This work was inspired by technical discussions with industrial partners, in particular from the railway domain. Our new results bring answers to significant concerns in this industry in particular when it comes to better understand how to improve resource usage while ensuring safety. These results have also been applied in a project with the Department of Defence (USA) and the Software Engineering Institute (SEI), aiming at generating source code for a commercial operating system implementing the ARINC653 standard. As a follow up on this work, we started new research activities in order to adapt security techniques to the specificity of critical real-time embedded systems. In the scope of Maxime Ayrault's PhD, we aim at studying the integration of resilience mechanisms in connected cars. More generally, we aim at improving the autonomy of critical systems, which is the objective of a european collaborative project proposals we are involved in. These two perspectives are further described in chapter 5.

We have focused in this chapter on model transformations for source code generation, but several other types of model transformations were implemented in RAMSES. In particular, model transformations for remote communications, modes, and error management are of interest for timing analysis since all these transformations require to add task to the initial model in order to react on incoming messages, mode change requests, and error occurrences. In this chapter, we present the work we have conducted to increase the confidence one can have in model transformation chains. Reading the contributions presented in this chapter, one will notice their common focus on structural constraints applied to models produced by model transformations. Indeed, the notion of structural constraints has been used in this work to represent: (i) validity constraints for the applicability of analysis and verification techniques on output models, (ii) test requirements for the validation of model transformations, and (iii) validity constraints for the model transformation variants selection and composition. This chapter is organized as follows: section 4.1 introduces the context of this work with a presentation of model transformation chains implemented in the RAMSES framework.

Model transformation chains in RAMSES

In order to produce software applications of CPS from architecture models, we proposed to implement AADL to AADL model transformations. One such model transformations have been described in chapter 2. More generally, a step-wise model transformation process is illustrated on figure 4.2. In this process, several model transformations are chained:

• security and safety design patterns are first applied to integrate safety and/or security components such as firewalls, encryption/decryption components, software/hardware redundancy, etc.

• remote connections are then transformed in order to incorporate communication tasks in the software architecture of the application.

• operational modes are treated in a similar way: dedicated mode management tasks are added to the software architecture to handle mode change requests.

• connections among ports of tasks deployed on the same processors are then mapped into global variables and runtime services calls, as described in chapter 2. In the remainder of this section, we give more details about the implementation of these transformations in RAMSES. The objective of this presentation is to provide enough information about the technical context in which the research work presented in this chapter have been conducted. We start with an illustration of a model transformation, and use this example to explain the model transformation language used in RAMSES. Several model transformation methods, languages, and tools, have been studied to help MDE experts develop their frameworks. A classification of model transformation approaches was proposed by Czarnecki and al. in [START_REF] Czarnecki | Feature-based survey of model transformation approaches[END_REF]. From this classification, we decided to use ATL for the implementation of the RAMSES framework. We chose this language for the simplicity of its semantics, as well as for the quality of the associated model transformation tools. In terms of semantics, ATL is a rule-based transformation language which execution relies mainly on a pattern matching semantics [START_REF] Jouault | Transforming models with atl[END_REF]: in ATL, a transformation consists of a set of declarative matched rules, each specifying a source pattern and a target pattern. The source pattern is made up of (i) a set of objects identifiers, typed with meta-classes from the source meta-model and (ii) an optional OCL [START_REF] Omg | Object Constraint Language (OCL)[END_REF] constraint acting as a guard of the rule. The target pattern is a set of objects of the target meta-model and a set of bindings that assign values to the attributes and references of the target objects. Figure 4.3 provides an illustration of the application of a model transformation to implement a safety design pattern called Triple Modular Redundancy (TMR) [START_REF] Lyons | The use of triple-modular redundancy to improve computer reliability[END_REF], also called two out of three (2oo3). Listings 4.1 and 4.2 provide snippets of the ATL code used to implement the 2oo3 model transformation for components replication. This transformation will be used as an illustrative example in the remainder of this chapter. In listing 4.1, ATL rule m_Process_-2oo3 transforms every AADL process component into three process components identified with the following target object identifiers: proc1_2oo3, proc2_2oo3, and proc3_2oo2.

For the sake of concision, this listing does not develop the creation of these processes. Given the execution semantics of ATL, this rule will match any AADL component instance of the process category. 
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In listing 4.2, ATL rule m_PortConnection_2oo3 transforms connections among process components in the source model, into connections among their replicas in the target model. This is represented in rule m_PortConnection_2oo3 with the creation of cnx1_1_2oo3, cnx1_2_2oo3, etc. For the sake of concision, the creation of only one of the connections in the target model is fully developed in this listing. This rule will match, in the source model of the transformation, any connection cnx c between two process components of the input model. One of the reasons for the simplicity of the ATL language is the definition of its resolve mechanisms: when a source object identifier is referenced in the right hand side of a binding, a resolve operation is automatically performed to find the rule that matched the source objects, and the first output pattern object created by that rule is used for the assignment to the target reference. This is referred to as the default resolve mechanism. Another nondefault resolve mechanism allows resolving a (set of) source object(s) to an arbitrary target pattern object instead of the first one as in the default mechanism. It is invoked via the following ATL standard operation: thisModule.resolveTemp(obj, tgtPatternName) as shown in previous listing. Last but not least, the semantics of ATL ensures transformations convergence: each rules is applied at most once per pattern it matches in the input model. This property is not verified by all model transformation languages: for some of them, rules are executed as long as they match on the input model and the target elements produced by previously executed rules. As a consequence, we do not consider in our work the problem of model transformation chains convergence presented in the introduction of this chapter. This brief presentation of ATL will allow us to present our contributions on model driven engineering in the context CPSs. In the next section, we present the framework we proposed in order to chain model transformations in a way that guarantees the output model of the chain can be analyzed. Contributions presented in chapter 2 provide examples of such analysis.

Automatic construction of transformation chains

Chaining model transformations properly may become a difficult task. In particular, one of the objective of models in the domain of CPS is to enable analysis of Non-Functional Properties. However, this requires to conform to a set of validity constraints: for instance, models used to ensure real-time systems schedulability (presented in chapter 2) assume that tasks are periodic (or sporadic in some cases). However, error management tasks are often 
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aperiodic and have a high priority. As a consequence, hypothesis for a timing analysis does not hold in this case. In practice, this is not an issue from a timing analysis perspective since designers proceed to timing analysis in nominal conditions (i.e. in the absence of errors). However, this becomes an issue from a model transformation perspective since it requires to ensure that timing analysis is performed before model transformations dedicated to errors management but after all other transformations leading to an analyzable model in terms of timing analysis. Solving this problem boils to find model transformation chains producing output models enforcing the respect of application conditions on output models.

In the introduction of this chapter, we have introduced the problem of ensuring model transformation chains produce correct output model. This notion of correctness was decomposed into qualitative and quantitative correctness. In his PhD, Cuauhtémoc Castellanos studied this problem considering qualitative correctness defined as a set of structural constraints on models produced by model transformation chains. Such constraints would also enable the verification of qualitative correctness by enforcing the respect of application conditions for analysis of NFPs on the output model. Cuauhtémoc Castellanos also proposed to formalize design patterns as model transformations. Design patterns composition was thus implemented by chaining model transformations. Structural constraints on intermediate models were formalized as a set of pre-conditions and post-conditions of transformations. Additional structural constraints were also defined in order to enforce the applicability of analysis techniques on output models of a chain. OCL was first used to formalize these constraints, while ATL was used to define model transformations. The main problem we addressed in this PhD was: given a set of model transformations with their preconditions and post conditions, and a set of structural constraints on the output models of transformation chains, in which order should transformations be chained in order to produce an output model which satisfies structural constraints on the output model? When transformations are commutative, which was the object of previous works [START_REF] Etien | Chaining model transformations[END_REF], the order has no importance. However, model transformations we consider in our work are mostly non-commutative since they are refinement transformations. In order to find a correct sequence of non-commutative model transformations, we proposed to formalize model transformations in Alloy [START_REF] Jackson | Alloy: A lightweight object modelling notation[END_REF]. Alloy is a modeling language to defined constraint satisfaction problems with a relational algebra. With Alloy, we specify a set of constraints a solution to the problem must satisfy. These constraints are expressed in first-order logic, which matches a subset of OCL. Once these constraints are solved, a model instance satisfying all the constraints expressed in Alloy is generated (if it exists). Figure 4.4 illustrates the approach we proposed in this research work: from an input model, a set of transformations along with their applications preconditions and post-conditions, we asked the Alloy solver to produce a model transformation chains and an output model which respects predefined post-conditions. 

Valid transformation chains

In this work, we specified how to formalize ATL model transformations and the chaining problem in Alloy [START_REF] Jackson | Alloy: A lightweight object modelling notation[END_REF]. However, we did not implement a higher order transformation (HOT, a transformation that takes as input and/or produce as output a model transformation) from ATL to Alloy. Instead, we focused on solving important scalability issues we faced when using Alloy solvers to find correct chains of non-commutative transformations. We thus decided to study and improve the scalability of the method proposed method [START_REF] Castellanos | Improving reusability of model transformations by automating their composition[END_REF].

As a case-study, we presented in this PhD the formalization of a safety design pattern called Triple Modular Redundancy (TMR), also called two out of three (2oo3). We also defined a security pattern used in cyber-security called red-black separation. This research work helped us to formalize such model transformations, highlight their non commutativity, and define constraint satisfying model transformation chains. The formalization of these transformations in Alloy led us to realize that the approach defined in figure 4.4 suffered from important scalability issues. More precisely, these scalability issues came from the chaining process itself and not from the execution of each transformation in isolation. In order to improve the scalability of this approach, we needed to define more transformations than just the safety and security patterns mentioned above. The formalization in Alloy of all the transformations implemented in RAMSES would have taken too much time, and the implementation of a HOT from ATL to Alloy would have been risky without improving first the scalability of the method.

We thus focused on simpler model transformations (i.e. easier to formalize in Alloy) but more complex chains. We decided to formalize design patterns from the Gang of Four [START_REF] Gamma | Design Patterns -Elements of Reusable Object-Oriented Software[END_REF] in Alloy. This contribution, as well as the general approach illustrated on figure 4.4, were published in the Euromicro conference on Software Engineering and Advanced Applications (SEAA) 2014 [START_REF] Castellanos | Automatic production of transformation chains using structural constraints on output models[END_REF]. Studying more precisely the reasons for the scalability limitation of our approach, we defined an improved version in 2015 and published our results at SEAA 2015 [START_REF] Castellanos | Improving reusability of model transformations by automating their composition[END_REF]. scenarios but with our improved approach. Each bar thus corresponds to the solving time for finding a transformation chain on a given input model and a set of design patterns of the GoF to apply. For instance, the case "adapter3" (which appears to be the most difficult case) consists in applying three time the adapter pattern on an input model made up of 8 UML classes. These experiments were conducted on a bi-processor Intel™Xeon™CPU E7-4870 at 2.40 GHz with 52 GB RAM and 3 exploration threads. The reasons for these improvements are further explained in [START_REF] Castellanos | Improving reusability of model transformations by automating their composition[END_REF] and can be summarized as follows:

• partial solutions and parallelization: instead of submitting to the Alloy solver the complete chaining problem, we submit partial instances of the solution where a partial solution is the result of executing a sub-chain. This strategy significantly reduced the size of each problem submitted to the solver, thus leading to better performances. In addition, it enabled to parallelize of the exploration.

• when selecting one model transformation to apply, early pruning was implemented by checking the following constraint: either the set of remaining transformations to apply is empty, or there exists at least one model transformation that can be applied on the output model.

We also assessed the scalability of our method on "long" model transformation chains: with 12 transformations to chain (leading to 12! possible orders) and input models of about 30 elements impacted by the transformations, it took about 2 hours to find a correct transformation chain. The same case study would not have been solvable without the optimizations we proposed in this work. However, an important limitation of this work came from the focus on structural constraints only. Indeed, beyond such structural constraints, resulting non functional properties are of prime importance. This is the reason why we decided to study model transformations composition as a multi-objective optimization problem, as described in section 4.4. In parallel, we continued studying the validation of model transformation chains considering their formalization as algebraic graph transformations. This work is presented in section 4.3.

Precondition construction in algebraic graph transformations

As stated in the introduction of this chapter, model transformation chains are complex applications, hence difficult to validate and verify. In the PhD of Elie Richa, we studied 
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Model Generation

The implementation of this approach in the context of ATL model transformations required to propose two main contributions. These contributions were all implemented as components of our Java and EMF-based tool called ATLAnalyser1 :

1. a translation of OCL (used to express test requirements) into Nested Graph Constraints and ATL model transformations into AGTs. This contribution was presented at the International Conference on Model Transformations 2015 and received the best paper award of the conference. Using ATL instead of AGT, the objective was to reduce the complexity of Post2Pre by using model transformations with a simpler semantics than AGT. One of the challenges of this translation was the translation of the ATL resolveTemp mechanism, for which dedicated model transformation traces had to be defined in the AGT. In addition, an ATL rule had to be decomposed in several AGT rules in order to implement the different phases of an ATL transformation engine: mainly (i) input patterns matching and output objects instantiation, and (ii) bindings and objects resolution.

2. an automatic construction of the weakest liberal precondition (wlp): a liberal precondition of a graph transformation is a precondition for which the existence of a graph resulting from the transformation is not guaranteed, and the termination of the program is not guaranteed either. In the context of ATL transformations, the termination is however guaranteed, and the existence of a graph resulting from the transformation should also be guaranteed by the definition of the application preconditions of the transformation. A liberal precondition is thus sufficient in our context. Besides, a precondition c is the weakest precondition if it is implied by all other preconditions. However, wl p is theoretically infinite for the kind of transformations that we analyze.

We thus proposed to implement a bounded version of the wl p, called scopedW l p which proceeds to the construction of wl p on a bounded number of transformation rules iteration. In this work, we proved scopedW l p provides results applicable to the original unbounded transformations.

Both contributions were tested on different model transformations. The translation from ATL to AGT was validated on several model transformations available online. The validation method consisted in transforming an ATL transformation into an AGT transformation.Then both were executed on the same input model and output models were compared to ensure they are identical. The ATL to AGT translation was also applied to model transformation from MATLAB/Simulink to C source code in CodeGen, a qualifiable source code generator developed by AdaCore. The corresponding results have been published in the international journal on Software and System Modeling 2018 [START_REF] Richa | Translation of atl to agt and application to a code generator for simulink[END_REF].

The automated Post2Pre construction was tested on simple transformations but the computational complexity of the algorithms made the results difficult to produce on realistic examples.We proposed simplification strategies, but the resulting prototype was still unable to scale. The theoretical results, however, as well as the first implementation of this complex technique, is a step forward towards the formal proof of model transformations. To go beyond these limitations, significant improvements in the algorithms of the Post2Pre constructions are necessary but such contributions were out of the initial scope of Elie Richa's PhD. Last but not least, we present in next section our contributions on model transformation variants selection and composition, aiming at producing models answering at best the tradeoff between conflicting NFPs.

Design space exploration by composition of model transformations

The last problem we defined in the introduction of this chapter is variability management in model refinements. Indeed, from our experience in architecture models refinement, we realized that the quality of a model transformation chains depends not only on its structural correctness, but more importantly on the quality attributes of the resulting model. The correctness of transformation chains was the object of PhDs described in sections 4.2 and 4.3.

In the PhD of Smail Rahmoun, we decided to study the quality of model transformation chains with respect to the quality attributes of the resulting models [START_REF] Rahmoun | Automatic selection and composition of model transformations alternatives using evolutionary algorithms[END_REF][START_REF] Rahmoun | Multi-objectives refinement of AADL models for the synthesis embedded systems (mu-ramses)[END_REF][START_REF] Rahmoun | Multi-objective exploration of architectural designs by composition of model transformations[END_REF]. This research work was also aiming at facilitating the transition from requirements specification to early architecturel design [START_REF] Loniewski | Model-driven requirements engineering for embedded systems development[END_REF][START_REF] Loniewski | An automated approach for architectural model transformations[END_REF].

We thus defined model transformations composition as a multi-objective optimization problem. Indeed, as stated in the introduction of this document, design alternatives often come into conflict with respect to their impacts on NFP: a design alternative improves a NFP at the cost of degrading another NFP of a CPS. In this work, we proposed to define design alternatives from model transformation variants. We then used genetic algorithms to compose these variants and have them evolve towards satisfactory architectures. In order to apply genetic algorithms to the selection and composition of model transformation variants, we proposed a generic encoding on which genetic operators (i.e. mutations, crossover) can be applied. Last but not least, we proposed to express constraints on the output model as boolean constraints on the application of transformations. To do so, we defined a dedicated language and the notion of Transformation Rules Catalog (TRC), as well as a translation of these constraints into a satisfiability (SAT) problem. Once the SAT problem is solved, model transformation rules are structured in a way that guarantees that the application of genetic operators would only produce valid transformations, i.e. transformations producing models respecting structural validity constraints. Again, structural constraints take an important role in this work but using genetic algorithms, we also proposed a framework aiming at improving non-functional properties. When applying ATL model transformation variants, such as the 2oo3 and 2*2oo2 replication patterns, we consider as optimization variables the choice of each variant applied to elements of the input model. To define such alternatives more formally, we first provide a definition of transformation rules instantiation: Definition 3. A transformation rule instantiation T RI i is the application of a transformation rule on an ordered set of elements from the source model. In the remainder of this section, we say such TRIs are non-confluent. It can be represented as a tuple < R, E i , A i >, where:

1. R represents the applied transformation rule; 2. E i is i th tuple of elements in the source model; 3. A i is the set of actions that R executes when it is applied to E i .

Given this definition, alternative TRIs exist when more than one rule can be applied to the same tuple of elements in the source model. Formally, this means :

∃(R, R ′ ) s.t. R ̸ = R ′ and T RI i =< R, E i , A i > and T RI j =< R ′ , E j , A j > and E i = E j (4.1)
According to the semantics of ATL, such situation has to be solve by selecting, among all the possible TRIs, a subset where non-confluence has been eliminated. To do so, we rely on a simple selection function defined as follows:

Sel : T → B = {True, False} T RI → b, where b is True if T RI should be included,

and

False if T RI should be excluded from T .

The selection of TRIs may be decomposed into the following formulas: 1) AtLeastOne, dedicated to ensure that at least one of the non-confluent TRIs, gathered in a set S, is selected:

AtLeastOne(S) = P i=1 Sel(T RI i ) (4.2)
2) AtMostOne, dedicated to ensure that at most one of the non-confluent TRIs is selected:

AtMostOne(S) = i=P, j=P i=1, j=1,i̸ = j ¬(Sel(T RI i ) ∧ Sel(T RI j )) (4.3) 
Combining equations (4.2) and (4.3), we obtain SelectOne, dedicated to select exactly one TRI from S (set of non-confluent TRIs):

SelectOne(S) = AtLeastOne(S) ∧ AtMostOne(S) (4.4) 
Alternative TRIs can be detected by applying the pattern matching part of alternative model transformations on an input model. Enforcing the respect of equation (4.4) boils to select exactly one alternative per element of the input model.

In addition, validity constraints expressed in the TRC are transformed into boolean validity constraints on TRIs selection of the form:

ValidityConstraints = N i=1 (Sel(T RI i ) ⇒ BoolExpr(T i )) (4.5)
where T i is a subset of TRIs, and BoolExpr is a boolean expression over T RIs in T i , using (i) the Sel function, (ii) simple boolean operators and, or, and not (∧, ∨, and ¬).

Finally, for all the sets of alternative rule instantiations S ii∈[0..Q] , the selection of a valid set of TRIs boils to evaluate the satisfiability of the boolean formula:

Q i=1 (SelectOne(S i )) ∧ValidityConstraints (4.6)
However, our objective is not to define a set of valid model transformations, but to define the genome encoding of a genetic algorithm. To do so, instead of solving the SAT problem induced by equation (4.6) at once, we aim at grouping TRIs involved in the same validity constraints into partitions called Atomic Transformation Instantiations (ATI). Doing so, each ATI become a potential gene in the genome of individuals in the genetic algorithm population.

Grouping TRIs into ATIs is done as follows: we first reorganize equation (4.6) under a conjunctive normal form. We call B the set of boolean expressions in the conjunction, and build a partition of B: we group such expressions into smallest non-empty subsets of B in such a way that every T RI is used in expressions of one and only one of the subsets. These subsets are called the parts of the partition, and we note β q the boolean formula corresponding to the q th part of the partition. We note AT I q,i the i th solution of β q . We then structure a composite transformation (CT) by choosing, for each possible value of q, one of the solutions of β q . An individual of the genetic algorithm population is then a CT structured as an array of AT I i, j where i is one of the partitions of (4.6) and j is the identifier of a solution of this partition. 4.8 illustrates the structure of a genome as an array of atomic transformation instantiations AT I i, j , as well as the application of the crossover operator on two genomes CT 1 and CT 2 and the application of the mutation operator CT 1 to obtain CT ′ 1 . Note that the construction of the genome by partitioning solutions of equation (4.6) ensures that the result of the genetic operations (i.e. crossover, mutation) leads to the production of valid transformations. Resulting composite transformations are then applied to input models in order to produce intermediate models on which NFPs can be analyzed. This method has been successfully applied on two case-studies inspired from the railway domain:
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1. a selection of implementations of the periodic delayed communications introduced in section 3.3. Indeed, three implementations of this communication patterns were proposed, with conflicting impact on three NFPs: timing performance, memory footprint, and maintainability. The corresponding results were published in the ICECCS conference [START_REF] Rahmoun | Multi-objective exploration of architectural designs by composition of model transformations[END_REF].

2. a chain of model transformations made up of (i) the selection of the replication pattern (2oo3 or 2*2oo2), (ii) the binding of replicated processes and connections onto processors and busses with the following validity constraint: replicated components should not use the same hardware resources. The corresponding results were published in the international journal on Software and Systems Modeling 2018 [START_REF] Rahmoun | Multi-objective exploration of architectural designs by composition of model transformations[END_REF].

Concluding remarks

In this chapter, we have presented our contributions to answer the following questions:

1. how to verify the correctness of model transformations structured as model transformation chains?

2. how to compose model transformations to define optimal (or near optimal) refinement steps?

To answer these questions, we have proposed to formalize model transformations along with structural constraints on the output models of these transformations. In this chapter, we conclude this document before to present of our future research directions.

Concluding remarks

Our concluding remarks aim at summarizing our cintributions, as well as comparing our contributions to the state of the art. This comparison will focus on a few existing frameworks, and the comparison will be based on the set of expecte capabilities for model-based engineering frameworks dedicated to critical, real-time and embbeded software.

Overview of contributions

Our initial objective was to propose methods to improve the reliability of CPSs design process. We decided to pursue this objective in the framework of MDE techniques. Our first intent was to use models as a mean to bridge the gap between requirements definition and source code production. Indeed, models help bridging this gap by representing systems under design with different abstraction levels, ranging from high level specifications to implementation models. We proposed to use architecture models as design artifacts, and model transformations to automate their refinement steps up to the production of source code.

Building on this first idea, we defined a set of challenging problems, digged into existing solutions, and proposed improvements over the state-of-art. We highlight hereafter some noticeable aspects of our work:

1. as often as possible, we prototyped our contributions on top of AADL in order to improve their applicability to realistic case studies: AADL is a standardized language built from collaborations with companies in the domain of CPS, and AADL is quite a complex language (its meta-model is made up of more than 260 meta classes).

2. we defined the first implementation of a deterministic model of computation and communications based on mixed criticality DAGs and periodic delayed communications. We defined the corresponding subset of AADL and prototyped the compilation of this AADL subset in a source code generator.

3. we proposed to formalize model transformations to ease their validation and verification. We have shown how this formalization can help to find correct model transformation chains and validate model transformations using integration tests.

4. we invented a design space exploration framework based on model transformations composition, combining model transformations, constraint solving and multi-objective optimization techniques.

These contributions have been integrated in the RAMSES in order to experiment them on industrial case studies. This effort was necessary to perpetuate the works of PhD students I had the opportunity to co-supervise. In the remainder of this section, we compare RAMSES with similar frameworks from the state of the art.

Comparison of RAMSES with existing frameworks

In order to compare RAMSES with existing frameworks from the state of the art, we propose to use the following citeria. The selection of these citeria relies on our expertise in the domain of criticcal and real-time embedded systems. It is incomplete, and aims primarily at showing the wide spectrum of contributions prototyped in the RAMSES framework. The criteria we have selected are the capabilities of existing frameworks to: C1 refine software models; necessary to bridge the gap between requirements specification and software implementation while progressively producing and analysing models.

C2 source code generation; here, the objective is to fasten the production of software while easing its maintenance by relying on automate code generation techniques.

C3 explore and select the best design alternatives; this is all the more important in the context of critical real-time embedded systems where non-functional properties play a very important role. In addition, this capability requires to deal with multi-objective optimization problems.

C4 interoperate with other frameworks, in order to avoid re-defining existing analysis or verification techniques, but re-use them instead.

C5 produce scheduling configuration; this criteria is obviously specific to the domain of real-time system, but a very fundamental one since software integration issues in this domain are often related to scheduling and timing performance issues.

In order to compare RAMSES with existing frameworks from the state-of-the art, we only selected existing frameworks that, to our best knowledge, cover all these criteria. Without this selection, potentially incomplete, the body of literature covering these criteria is far too prolific to provide a meaningful comarison. The frameworks we have selected are: ProCom [START_REF] Vulgarakis | Formal semantics of the procom real-time component model[END_REF], Papyrus/MARTE [START_REF] Gérard | Once upon a time, there was papyrus[END_REF], Scade 1 , Simulink 2 , ArcheOpteryx [START_REF] Aleti | Archeopterix: An extendable tool for architecture optimization of AADL models[END_REF] and Ocarina [START_REF] Lasnier | Ocarina : An environment for AADL models analysis and automatic code generation for high integrity applications[END_REF]. Figure 5.1 provides an overview of the comparison between RAMSES and these selected frameworks. In the reminder of this section, we provide a brief argumentation for this comparison.

C1: Model transformations (refinements)

Models refinement is the main focus of the method introduced in this document. Among the selected frameworks, the ProCom component model has been used to define model refinements [START_REF] Leveque | Flexible semanticpreserving flattening of hierarchical component models[END_REF][START_REF] Yin | Composable mode switch for componentbased systems[END_REF].

Other framework, based on rich modeling languages (e.g. MARTE and AADL), could also implement similar refinements as those proposed in RAMSES. This is typically the case for Scade and Simulink could also be used to proceed to models refinement, but their scope and utility would be less significant as these languages mainly focus on modeling the funcional aspects of critical real-time and embedded software.

C2: Source/glue code generation

In terms of source code generation for the functional parts of a software architecture, Scade and Simulink are, by far, the references. When it comes to code generation for the technical architecture (i.e. operationg system, middleware), Ocarina is the most mature of the frameworks we considered. Developped in the context of the ASSERT project, it has been maintained for the needs of the European Space Agency in the scope of the TASTE project. ProCom also provides code generation capabilities, though the focus of this work was more on the preservation of the semnatics than on the support of various programming languages or operating systems [START_REF] Borde | Towards verified synthesis of procom, a component model for real-time embedded systems[END_REF]. Papyrus has integrated code generation techniques as well, mainly focusing on code generation for component diagrams and state-charts. Finally, code generation was not the main focus of ArcheOpteryx.

C3: Multi-objective optimization

With respect to design space exploration, ArcheOpteryx is, among the frameworks we considered, the richest in terms variety of prototyped optimization methods. However, by combining model transformations and optimisation techniques, RAMSES allows to (i) reuse a generic design exploration framework, i.e. the design alternatives being expressed using transformation rules catalogs, (ii) focus only on valid design alternatives in terms of structural constraints satisfaction, and (iii) reuse existing analysis method to evaluate the quality attributes of these alternatives.

Other frameworks have been used to implement preliminary works on models optimization, e.g. is Papyrus/MARTE [START_REF] Mura | Model-based design space exploration for RTES with sysml and MARTE[END_REF], or in Ocarina [? ].

Finally, Scade and Simulink are less usable for automated design space exploration as they mainly focus on modeling the funcional aspects of critical real-time and embedded software.

C4: Interoperability

This criteria is mainly achieved by relying on standardized modeling languages, which is the case for RAMSES, Papyrus, Ocarina, and ArcheOpteryx. The ProCom component model is not standardized but the language specification is publicly available [START_REF] Bures | Procomthe progress component model reference manual[END_REF]. Finally, Scade and Simulink use proprietary modeling languages.

C5: Scheduling configuration

Ocarina can be used to anlyse various types of real-time schedulers, and to configure the scheduler of several operating systems. However, compared to RAMSES, this framework supports a smaller subset of models of computation. For instance, our recent works on DAGs and Mixed-criticality scheduling is not part of the subset of AADL supported by Ocarina. This statement is also true for periodic delayed communications, even though it has less impact on the scheduler configuration.

Papyrus/MARTE and ProCom can also be used to analyse and configure the scheduler of real-time operating system. However, only a few research works report new contributions in this area.

Finally, scheduling configuration has not been the main focus of research works in ArcheOpteryx, Scade, or Simulink.

As on can easily understand, our work is at the intersection of the fields of model-driven engineering, operational research, and scheduling of real-time systems. The perspectives we present in the remainder of this chapter aim at extending this work in three main directions: (i) security of software architectures for connected CPSs, (ii) autonomy of complex and/or critical CPSs, and (iii) uncertainty management in design space exploration activities. We develop these perspectives in the next sections. Cyber-physical systems are increasingly connected with their external environment. In particular, in the transportation domain (rail, automotive and avionics), vehicles are now connected to their infrastructure, to mobile devices, and to the internet. This evolution allows manufacturers to deliver new services, but exposes these systems to malicious actions from hackers. In parallel to this, more and more functionalities are introduced into the transportation systems in the form of software systems. Some of these functionalities are also critical, since their failure, or a malicious takeover of these functions can have catastrophic consequences. The link between vulnerabilities and safety of these systems was considered negligible as long as the potentially affected functions were not critical, but this is less and less true. Indeed, security vulnerabilities nowadays can jeopardize the safety of critical embedded real-time systems, and thus endanger its users. The introduction of security counter-measures in the architectures of these embedded systems is necessary, provided they do not degrade significantly the safety, performance or cost of the system. We plan to study this problem with two complementary viewpoints:

1. in the PhD of Jean Oudot (started in 09/2017), we aim at defining a design space exploration framework focusing on security metrics and counter measures. This will require to quantify a CPS architecture security, and the impact of security counter measures on security, safety, performance, and cost. The objective is to define the best set of counter measures to deploy in the CPS architecture. Another objective of this work is to propose a generic exploration framework, i.e. usable in different fields of cyber-physical systems and in particular in the transportation domain: avionics, railway, and automotive. This PhD is funded by the IRT 3 SystemX in the CTI (Cybersecurity of Intelligent Transports) and is co-supervised with Arvind Easwaran from the Nanyang Technological University (NTU) of Singapore.

2. in the PhD of Maxime Ayrault (started in 10/2018), funded by the industrial chaire on Connected Cars and Cyber Security (C3S) we adopt a complementary viewpoint: how to delay attacks and/or their propagation? The basic idea behind this work is to consider that (i) all vulnerabilities and attacks paths cannot be anticipated at design time, and (ii) once a system is deployed, attackers have time to study the system and discover new vulnerabilities and attacks paths. In this work, we will study the integration of moving target defense mechanisms in CPSs architectures: the idea of MTD is to reconfigure the CPS architecture periodically so that vulnerabilities become unstable and attacks difficult to discover and deploy. Finally, the objective will be to maximize the attacker learning time and minimize the probability of success of an attack. This approach is particularly challenging in CPSs since computation and communication resources are very limited.

The approach outlined in the work of Maxime Ayrault can be generalized and extended to improve the autonomy of CPS. We present this perspective of our work in the next section.

Autonomy by Reconfiguration of CPS Applications

Architecture models such as AADL provide means to describe different software configurations as well as services or techniques to reconfigure software applications. In AADL, this is done by defining operational modes along with a particular configuration per mode.

Reconfigurations are described with transitions between operational modes. This type of reconfigurations is pseudo-dynamic: they are executed at runtime but all the possible configurations and transitions among them have been defined at design time.

Modern CPS are expected to be used for a very long time: a train, for instance, is exploited for decades. The algorithms running on these systems are thus expected to evolve over time, as well as the devices they are connected to, they interact with. In addition, some of these systems cannot be stopped for maintenance purpose, and more generally maintenance should disrupt as little as possible the operation of CPSs. Eventually, the objective of this perspective is to improve the robustness of CPSs by having capabilities to reconfigure them even in case of situations or evolution needs that were not foreseen in their initial development.

In this context, we plan to study how MDE techniques presented in this document can help to define reconfigurations beyond pseudo-dynamic reconfigurations. The idea would be to (i) model platform reconfiguration capabilities, (ii) use design exploration techniques to find new configurations, and (iii) develop new design space exploration techniques to find out how to progressively move from the current configuration to the targeted configuration. This boils down to find ways to update systems as dynamically as possible, delegating design space exploration and target configuration selection to an external model based infrastructure. This model-based infrastructure would be responsible for finding how to deploy the new configuration, and how to move from the current configuration to the new one. The objective of using models to reason about adaptation is to shorten as much as possible the delay between the detection of new needs and the implementation of a new solution.

Another objective to automate the migration from one solution to another one.

This perspective is ambitious, and is actually being developed as a European project proposal with partners met in the European COST action MPM4CPS (Multi-Paradigm Modeling for Cyber Physical Systems).

Uncertainty Management in Design Space Exploration

Uncertainty management in design decisions is the third perspective presented in this chapter.

It is strongly linked to the topic of architectures exploration as this activity, exploration, aims to provide architecture candidates for a decision process to select one (or a subset) of them. This perspective is also related to requirements engineering insofar architecture exploration aims to develop an architecture (or set of architectures) that satisfy at best a set of nonfunctional requirements. However, these requirements are often in conflict: improving certain non-functional properties of an architecture requires adopting solutions that degrade the architecture with respect to other non-functional properties. It is in this context that we have extended the requirements modeling language called RDAL (Requirements Analysis and Definition Language) [START_REF] Loniewski | Model-driven requirements engineering for embedded systems development[END_REF][START_REF] Blouin | A semi-automated approach for the co-refinement of requirements and architecture models[END_REF] and have developed a method of architectures exploration based on the composition of model transformations [START_REF] Rahmoun | Multi-objective exploration of architectural designs by composition of model transformations[END_REF]. However, these studies do not consider an important aspect of model-based design: uncertainty. Indeed, in the early stages of the development process, decisions rely on models containing uncertain data. Those data are uncertain either because they are difficult to estimate by essence (e.g. errors probability distribution), or because the implementations they could be measured from are not available yet (e.g. in construction). As a consequence, decision-makers should be aware of how much confidence they may have in the data upon which they base their judgement. Somehow, this problem could be tackled by considering design activities as an optimization problem aiming at maximizing design margins (i.e. difference between an estimated quality attribute and the lowest acceptable level of quality for this attribute). Roughly, increasing margins is expected to improve the confidence of the decision maker, at least with respect to the risk of necessary rework during the integration and validation phases of the development process. However, as explained in the introduction of this document, increasing margins may also lead to poor quality of service. This is, for example, the philosophy behind mixed-criticality scheduling as the objective is to improve computation resources usage by reducing margins in low criticality modes while preserving margins for high criticality tasks in high mode.

In essence, a model is an abstraction of an object that focuses on predominant characteristics of this object. The evaluation of this abstraction therefore contains a degree of uncertainty since it deals with a model and not the object itself. Beyond the activity of abstraction, the information contained in a model may come from more or less reliable sources. For instance, this information can be estimated (by expert judgment for example) or imprecise (using inaccurate or approximate analysis methods). To some extent, RAMSES reduces uncertainty by executing successive refinements and revaluations of real-time embedded system architectures. This reduces the uncertainty due to abstraction, exhibiting architectures for which the non-functional properties are evaluated with lower and lower abstraction level. However, uncertainty must also be considered, evaluated, and processed, at the decisionmaking level, in order to guide the exploration of architectures. This requires considering, in particular, uncertainty due to estimated or imprecise information contained in a model. In the future, we aim at studying uncertainty modeling, and its impact on the related decisionmaking and architectural exploration techniques.

Existing studies consider a formalization with fuzzy mathematics [START_REF] Esfahani | Guidearch: guiding the exploration of architectural solution space under uncertainty[END_REF] to guide the construction of products from a set of feature variants. It would be interesting to extend such an approach in the scope of design space exploration by model refinements. In particular, considering uncertainty metrics would help the robustification of design processes in a semiautomatic way: uncertainty would evolve by interleaving automatic exploration phases with studies dedicated to lower the level of uncertainty and update NFP properties. In addition, the risk associated to uncertainty could be controlled by feedbacks from previous experience. More generally, this perspective aims to rationalize the attitude of decision makers facing uncertainty in an architecture design activity. We plan to pursue this objective by taking advantage of model transformation traces, analysis results with uncertainty modeling, and a description of the multi-criteria decision process.
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Figure 3 .

 3 3 illustrates the principles of the architecture refinement implemented in RAMSES in order to provide fine-grain schedulability analysis. On the part A of the figure, we represented a summary of the input models : the architecture model on top, provided by an end-user of the framework, and the runtime services on the lower part, provided by an operating system vendor. As specified on the figure, the AADL code of the receive_input runtime service is provided in listing 3.1. Part B of the figure represents the result of the refinement implemented as an automatic model transformation in RAMSES. This transformation expands abstract communication interfaces (i.e. AADL ports) into data accesses and subprogram calls. Data accesses enable threads to write or read the value of shared variable Pi_shared_data, which contains data exchanged between threads through these ports. Global variable Pi_lock enables to protect accesses to Pi_shared_data. Subprogram calls are represented on part C of the figure (see receive_input!(...)).
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  Figure 3.4 illustrates the AADL architecture of a simplified application called Communications-Based Train Control (CBTC). This application is decomposed in two processes: the Automatic Train Operation (ATO) process, represented on the left of figure 3.4, is responsible for controlling the position, speed, and acceleration of the train. The other process, called Automatic Train Protection (ATP), is represented on the right of figure 3.4: it communicates with the ATO in order to check the validity of data computed by the ATO.
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 1 Condition LO-Mode: If no vertex of any MC-DAG in G executes beyond its C i (LO) then all the vertices complete execution by the deadlines; and 2. Condition HI-Mode: If no vertex of any MC-DAG in G executes beyond its C i (HI)then all the vertices that are designated as being of HI-criticality complete execution by their deadlines.
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Figure

  Figure 4.8 illustrates the structure of a genome as an array of atomic transformation instantiations AT I i, j , as well as the application of the crossover operator on two genomes CT 1 and CT 2 and the application of the mutation operator CT 1 to obtain CT ′ 1 . Note that the construction of the genome by partitioning solutions of equation (4.6) ensures that the result of the genetic operations (i.e. crossover, mutation) leads to the production of valid transformations. Resulting composite transformations are then applied to input models in order to produce intermediate models on which NFPs can be analyzed. This method has been successfully applied on two case-studies inspired from the railway domain:
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 2 Future Research Directions 5.2.1 Software Security in Cyber-Physical Systems.

  To extract such characteristics from a model, model transformations are often used: a model transformation is a software application that takes as input a model, and/or produce a model as output. Model transformations may be used to translate a given model from one formalism to another one with the same abstraction level. Such transformations are called horizontal transformations. Model transformations may also be used to change the level of abstraction of a model by adding or abstracting away modeling details. Such transformations are called vertical transformations. In this document, we call refinement a vertical model transformation adding modeling details.

Last but not least, CPS architects often consider design alternatives as decision variables in an optimization problem aiming at minimizing or maximizing NFPs. However, design alternatives often come into conflict with respect to their impacts on NFP: most of the time, a design alternative improves a NFP at the cost of degrading another NFP of a CPS. As a consequence, designers aim at providing the best possible trade-off among NFPs of a CPS.

  [START_REF] Amnell | Times: A tool for schedulability analysis and code generation of real-time systems[END_REF] according to the communication model described above. As illustrated on this figure, exactly one message is sent during each task job for τ 1 and τ 2 . Note that messages m1.1, m2.1, and m1.2 are only delivered at time 10. Message m2.2 will not be delivered before 20 time units, even though job J2.2 (that produces m2.2) already finished its execution when J3.2 starts in this scenario. This model allows ensuring deterministic time for message reception independently of task interleaving and actual execution time. Notice also, that messages are ordered with respect to sender deadlines, reason why m2.1 is put before m1.2 in the queue even though J1.2 finishes before J2.1 sends message m2.2. This is done to enforce a deterministic order on message from the point of view of the receiver. Finally, m1.1, m2.1, and m2.2 are discarded at completion time of J3.2 even if these message were not used during this job.

	Sends m1.1	Sends m1.2	Sends m1.3
	J1.2		J1.3	J1.4
			Sends m2.1
			Sends m2.2
	1	J2.1	J2.2
			J3.1	J3.1
			Receives:
			{m1.1, m2.1, m1.2}
	Figure 3.5: Illustrative Example of periodic-delayed communications

with i = 1..3, T i = D i , and T 1 = 5, T 2 = 7, T 3 = 10. τ 1 and τ 2 send periodically messages to τ

  This process could be repeated infinitely, failing to produce the output model of the chain. Ensuring existence of models produced by model transformation chains is a difficult problem, mentioned on the upper and left part of figure2.1. 2. output model correctness: because model transformations are complex software applications, model transformation chains rapidly become difficult to master. However, it is important to ensure output models correctness. This notion can be decomposed into qualitative and quantitative correctness where qualitative correctness boils to ensure the output model satisfies predefined structural constraints whereas quantitative correctness boils to ensure the output model exhibits satisfactory NFPs. Ensuring correctness of models produced by model transformation chains is a difficult problem mentioned on the upper and central part of figure 2.1.

3. variability management: in a model transformation chain, each model transformation is subject to variability. Indeed, abstraction embodied by a model implies there will exist several implementations or refinement variants of this model. In practice, it is very common that such variants would have different impacts on NFPs exhibited by the resulting model. As these impacts are often in conflict, finding the best transformation chain boils to solve a multi-objective optimization problem. Solving such problems is a very difficult task mentioned on the upper and right part of figure 2.1. 4. transformations validation and verification: model transformation chains have to be validated with very rigorous methods when they are involved in the implementation process of critical software applications. This becomes a very challenging problem when model transformations are organized into chains of model transformations since transformations have to be tested individually and as an integrated chain of transformations. As a consequence, validation and verification of model transformation chains may become very costly. This problem is not depicted on figure 2.1 but it is obviously very relevant in the application domains of our work.

  Figure 4.7 gives an overview of the process we proposed in Rahmoun's PhD: from the definition of a model transformation chain, having for each link a set of transformation alternatives, we first produce an intermediate model that results from the composition of these alternatives. This first step is highlighted with bullet 1 on the figure, and repeated for each link of the transformation chain until the target model is produced. The composition mechanism, used in this step of the process, is explained at the end of this section. Once produced, the target model is analyzed with respect to NFPs (bullet 2 in figure 4.7), and the analysis results are used to evaluate composite transformations. The process we propose is iterative: each iteration produces, executes, and evaluates a (sub)chain of composite transformations. In addition, because of the combinatorial complexity of the design space exploration, it is not possible to enumerate, execute, and evaluate all the composite transformations. As a consequence, we rely on evolutionary algorithms (EAs) to implement this iterative exploration (see bullet 3 in figure 4.7). In addition, we can see in figure4.7 that the proposed process is made up of embedded loops, each loop being dedicated to explore composite transformations of a given link in the transformation chain. When an inner loop has converged, other transformation candidates may be evaluated for the outer loop, thus producing a new intermediate model for the inner loop. The convergence criteria for each loop relies on convergence criteria of EAs and is parameterized by an end-user of our approach. As far as structural constraints are concerned, we aim at validating them a priori, i.e. before executing the transformation. As far as NFPs are concerned, we aim at validating them a posteriori, i.e. after executing the transformation. To reach the objective of a priori validation, we defined application constraints on model transformation rules in transformation rules catalog. Listing 4.3 provides a subset of the Transformation Rule Catalog (TRC) we used to describe transformation alternatives for components replication: 2oo3 and 2*2oo2. This TRC is made up of two main parts:1. a description of model transformation alternatives, from line 1 to line 10, lists the set of ATL modules and rules being part of each alternative. The 2oo3 alternative is made up of transformation rules described in section 4.1. The 2*2oo2 alternative is made up of very similar transformation rules.2. a specification of validity constraints, from line 12 to line 30. The first one, from line 14 to line 21, specifies that when m_PortConnection_2_2oo2 is applied on a connection (identified as cnx in the constraint), it is necessary to apply rule m_Process_2_2oo2 on both ends of the connection (retrieved executing a OCL helpers called getDes-tinationProcess and getSourceProcess on cnx). The second constraint, from line 22 to line 27, specifies that when applying m_Process_2_2oo2 on a process component processInstance, m_PortConnection_2_2oo2 should be applied on all the connections having processInstance as a source (retrieved by applying the OCL helper getSourceConnectionReference on processInstance). Gathering these two constraints lead to ensure that the 2*2oo2 alternative is applied to sets of interconnected process components. Very similar constraints are expressed for the application of the 2oo3 alternative in the remaining of the TRC.
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	[					
	r e q u i r e s ( r e p l i c a t i o n _ 2 _ 2 o o 2 .			
		Model transformation chain (N links)	
	Transformation	Transformation		Transformation
	link 1			link 2			link L
	Transformation alternatives	Transformation alternatives	Transformation alternatives
	1					
	Source model	Intermediate model			Intermediate model		Target model	NFRs specification
	continue		continue	continue link 2 EA iterations	3	converged EA iterations link 2..L	NFPs analysis plugins
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			Figure 4.7: Approach Overview

  This formalization was then used either to search for model transformation chains enforcing the structural constraints, or to enhance a model transformation validation framework by automating the generation of test requirements. Reusing this notion of structural constraints, we also defined a framework combining model transformations, SAT solving techniques and genetic algorithms to automate the search for near-optimal architecture refinements. By providing answers to some of the research questions presented here above, our work provides original methods to improve the reliability of software development in CPSs: it enables to check as early as possible the correctness of model transformations, and to automate the search for near-optimal refinements. The work we have done on model transformation of AADL models gave us several inputs to start new research activities in the domain of Model Driven Engineering for CPSs. In particular, we plan to extend our framework to deal with security in CPSs. Indeed, security is becoming an important concern in the design and development of CPS. The way to deal with interactions among security design patterns and other design techniques of CPS is still an open question. In the PhD of Jean Oudot, started with IRT SystemX and the Nanyang Technological University (NTU) Singapore, we aim at proposing new techniques to (i) evaluate architectures security, and (ii) optimize them with respect to this criteria as well as traditional concerns of CPS (timing performance, safety, cost, and/or energy consumption). This work aims at extending Smail Rahmoun's results with a dedicated focus on cyber security, which would require to drastically revise the design space exploration method since the nature of threats in cyber security is very different from the nature of threats in safety. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Building on this experience, we extended our research activities towards the composition of model transformations for CPSs. We present our contributions on this topic in next chapter.

Chapter 4

Composition and formalization of model transformations In the previous chapter, we have shown how we use model transformations to improve software design process in the context of real-time CPSs. As stated in the introduction of this document, however, model transformations are difficult to write: they are, essentially, graphs transformation applications. This is one of the reasons why dedicated model transformation languages have been defined. In addition, in order to ease their maintenance and reuse, model transformations are usually written as small units of transformation which can be composed into model transformation chains: the output model of a transformation becomes the input model of the next transformation of the chain. However, several problems come from the decomposition of model transformations into chains of smaller transformations:

1. transformation convergence: when model transformations are chained, each transformation produces an output model that becomes the input model of another transformation.

Building on this presentation, we illustrate the notion of structural constraint which enable the application of analysis presented in previous chapter. In section 4. the validation of model transformation chains in the context of source code generators qualification. Indeed, when a code generator is used to produce source code of a critical system, the generated code needs to be certified. Using qualified tools, the certification effort can be reduced. Qualifying a code generator is as rigorous and demanding as certifying critical embedded software. This is the reason why tool providers need to adopt efficient methodologies in the development and verification of code generators [START_REF] Richa | Towards testing model transformation chains using precondition construction in algebraic graph transformation[END_REF][START_REF] Richa | Translating ATL model transformations to algebraic graph transformations[END_REF][START_REF] Richa | Translation of atl to agt and application to a code generator for simulink[END_REF].

As illustrated on figure 4.2, we consider code generators made up of a transformation chain.

Qualifying an Automatic Code Generator (ACG) requires extensive testing to show the compliance of the implementation with its requirements. Both the testing of components in isolation (i.e. unit testing) and the testing of the tool as a whole (i.e. integration testing) are required.

Given the ACG is a transformation T , a unit is a transformation step T i . Unit testing then consists of producing test models M i, j in the intermediate meta-model MM i , executing T i over these test models, and validating the resulting models M i+1, j with a suitable test oracle. Conversely, integration testing considers the complete chain, producing test models M 0 in the input meta-model MM 0 , executing the complete chain, and validating the final result M N, j (where N is the number of transformations in the chain) with a suitable test oracle.

A unit test requirement tr i, j of a transformation step T i is a constraint over its input metamodel which must be satisfied at least once during the testing campaign.

Taking inspiration from the work in [START_REF] Bauer | Test suite quality for model transformation chains[END_REF], we notice the following: an integration test exercises the complete tool, i.e. all intermediate transformation steps T i . During the execution of an integration test, the intermediate models M i manipulated along the way can cover unit test cases of the intermediate transformations. This interesting property of transformation chains would allow us to use only integration testing to cover unit test cases.

However, we now need a way to produce new models to cover these unit test requirements. Given a non-satisfied test requirement tr i, j how can we produce a test model M 0 in the input meta-model of the chain such that upon execution of the integration test, tr i, j is satisfied?

In order to answer this question, we proposed a new approach in the PhD of Elie Richa, as illustrated in figure 4.6: given a non satisfied test requirement tr i, j , we consider tr i, j as a post-condition of the previous transformation step T i-1 , and design a construction Post2Pre that transforms the post-condition into an equivalent precondition that ensures the satisfaction of the post-condition. We call this pre-condition the equivalent test requirement etr i, j,i-1 of tr i, j at step T i-1 .

Recently, the construction of Post2Pre has been studied in in the theory of Algebraic Graph Transformation (AGT) in [START_REF] Habel | Weakest preconditions for high-level programs: Long version[END_REF] and [START_REF] Poskitt | Verifying total correctness of graph programs[END_REF].