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Résumé

Mots clés : Modèles multiphasiques, Systèmes Hyperboliques, Systèmes Hyperboliques, Fluides compressibles, Transitoire rapide, Explosion vapeur Cette thèse a pour objectif la simulation d'une classe de modèles d'écoulements multiphasiques compressibles hors équilibre. Le travail central de cette thèse est l'étude du processus de relaxation sous-jacent à ces modèles, souvent supposé acquis dans la littérature. Les conditions, dans le cadre continu, pour que le processus de relaxation soit effectif sont présentées pour certains modèles. En se basant sur cette étude des termes sources et du processus de relaxation, une méthode numérique pour simuler les termes sources des modèles considérés est développée. Le manuscrit comporte quatre parties. Le chapitre un se focalise sur l'examen de la relaxation effective en pression, pour quatre modèles multiphasiques distincts. Il permet de mettre en évidence une condition portant sur l'écart (ou les écarts) de pression entre phases, afin d'assurer effectivement la relaxation (attendue) en pression au cours du temps. Le premier modèle diphasique est de type Baer-Nunziato (1986). Le second comporte trois phases immiscibles (2007). Les deux derniers modèles sont hybrides (diphasique ou triphasique) et comportent deux gaz miscibles. Dans le chapitre deux, on examine un modèle diphasique de type gaz-liquide ou liquide-vapeur de type Baer-Nunziato. Le processus de relaxation entre les phases, sous-jacent au modèle, est étudié et les conditions de relaxation effectives sont exhibées et discutées. Cette étude du processus de relaxation continu est ensuite utilisée pour le développement d'une nouvelle méthode numérique. Cette méthode, basée sur une équation d'évolution des écarts entre phases des grandeurs thermodynamiques, et qui implique plusieurs échelles de temps distinctes, est proposée. Elle est par la suite comparée à celle classiquement utilisée pour traiter les termes sources dans ces modèles, qui consiste à mettre en oeuvre une technique découplant les échelles de temps associées à chaque processus de relaxation (pas fractionnaires). L'ordre de convergence attendu est vérifié, et des cas tests homogènes, ou inhomogènes traduisant l'impact d'une onde de choc de gaz sur un lit de gouttes liquides, sont effectués et analysés. La nouvelle méthode est plus stable, plus précise et moins coûteuse pour les cas étudiés. Le troisième chapitre est la suite logique du précédent, avec des objectifs identiques de compréhension et de définition de schémas adaptés au traitement des termes sources, en considérant cette fois le modèle hyperbolique à trois phases immiscibles proposé en 2007. Ici encore, une comparaison des algorithmes avec couplage complet des échelles de temps de relaxation, ou découplage par pas fractionnaires, est réalisée sur la base de plusieurs cas tests. Une application au cadre de l'explosion vapeur est examinée. Enfin, la dernière partie poursuit la stratégie globale précédente, en examinant le modèle diphasique hybride à trois champs (eau liquide, vapeur d'eau et gaz incondensable) proposé en 2019. Ce modèle est hyperbolique et admet une caractérisation entropique, tout comme les modèles immiscibles considérés dans les chapitres précédents. Cette fois encore, une partie d'analyse du modèle continu permet de proposer une stratégie numérique adaptée pour tout jeu d'échelles de temps de relaxation.

This PhD aims at computing approximate solutions to a class of compressible nonequilibrium multiphase flow models. A key aspect of this thesis is the study of the underlying relaxation process of those models, which is often assumed to be automatically granted in the literature. Conditions of effective relaxation are exhibited and discussed for different models in the continuous framework. Those results are then used to develop a new numerical approach for treating the source terms of the considered models. The manuscript is broken down into four parts. The first chapter focuses on the sole pressure relaxation effect in four distinct multiphase flow models. It displays conditions of pressure relaxation involving the considered EoS and the pressure gaps between the present phases. Chapter 2 intends at providing a better understanding the global relaxation process of a Baer-Nunziato-like model. Conditions ensuring the global relaxation process over time are presented and discussed. Then, using the results of the continuous framework, a new algorithm for handling the source terms is proposed. It is based on an equation of evolution of the velocity, pressure, temperature and Gibbs potential gaps. Considering different test cases, the new scheme is then compared with the fractional step approach classically used in the literature. The expected order of convergence is retrieved in practice, and homogeneous test cases are computed. Eventually, a numerical simulation of Chauvin experiment is conducted. Whatever the considered test case, the new approach behaves better than the fractional step method, especially when using coarse meshes. The third chapter consists in an extension of the methodology developed in chapter two for an immiscible, compressible, non-equilibrium three-phase flow model. Again, the global relaxation process is investigated. Furthermore, a coupled approach for treating the source terms of the model is presented and compared with the pre-existing fractional step method on various test cases. An application on steam explosion is considered. Eventually, the last part is dedicated to a hybrid two-phase flow model with three fields. This model is also hyperbolic and complies with an entropy inequality. Once again, the underlying relaxation process of this model is examined, and a numerical strategy for handling the source terms, whatever the relaxation time scales are, is introduced.
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-Le circuit primaire, où de l'eau à 155 bars en contact avec les crayons combustibles extrait la chaleur produite par la réaction de fission ; -Le circuit secondaire, où l'eau entre 60 et 80 bars est chauffée et en partie vaporisée par l'eau du circuit primaire dans le générateur de vapeur. C'est cette vapeur qui actionne les turbines et qui produit de l'électricité ; -Le circuit tertiaire qui sert à refroidir l'eau du circuit secondaire et à la recondenser. Ce circuit peut prendre deux formes en fonction du type de centrale, comme montré dans les Figures 1 et 2.

Liste des tableaux -0.1. Contexte industriel L'objectif de cette thèse est de contribuer à développer des outils pour les problématiques d'accidents de dimensionnement et d'accidents graves (niveau 6 sur l'échelle INES) touchant le circuit primaire. Plus précisément, on s'intéresse à deux scénarios accidentels : l' Accident de Perte de Réfrigérant Primaire (APRP) [IRSc] et l'explosion vapeur [Ber00]. Dans la première configuration, une brèche apparaissant dans le circuit primaire entraînerait une chute de la pression et une évaporation rapide de l'eau du réacteur. Dans le deuxième cas, on suppose que l'on n'a pas réussi à refroidir le coeur, et que celui-ci fond. La fusion du combustible et des internes de la cuve, appelé "corium", peut interagir avec l'eau, ce qui entraînerait une vaporisation très rapide de l'eau et donc une montée en pression importante. D'après [Ber00], la phénoménologie de l'explosion vapeur peut être décomposée en quatre phases (voir la Figure 3) :

-La phase de prémélange qui correspond à la formation d'un film de vapeur métastable entre le métal liquide (qui dans le cas du corium peut atteindre 3000 K) et l'eau liquide ;

Liste des tableaux -0.2. La modélisation multiphasique -La phase de déclenchement où le film de vapeur se déstabilise sous l'action de certains mécanismes comme l'arrivée d'ondes de pression issues de l'impact du métal liquide tombant dans l'eau liquide ; -La phase de propagation où la déstabilisation de films de vapeur va à son tour émettre des ondes de pression qui vont déstabiliser les structures métastables proches. De plus, l'eau proche des structures déstabilisées va être rapidement chauffée et mise sous pression. L'hétérogénéité du mélange en termes de pression et de masse volumique va ensuite entraîner la création d'ondes de choc qui vont se propager dans le milieu ; -La phase d'expansion où les ondes de choc du milieu entraînent l'expansion de celui-ci.

-Schéma de la phénoménologie de l'explosion vapeur.

Par ailleurs, le phénomène de fragmentation des gouttes de métal liquide joue, pour l'explosion vapeur, un rôle central dans la dynamique des échanges thermiques entre les phases présentes [Gel96 ;Ber00].

Ces configurations mettent donc en jeu des écoulements multiphasiques, compressibles, en situation de transitoire rapide, avec un changement de phase et des transferts de chaleur importants.

La modélisation multiphasique

Avant de parler de la modélisation multiphasique, une clarification des termes composant, phase et champ qui seront utilisés dans la suite paraît nécessaire afin d'éviter toute confusion. Un composant désigne ainsi une substance chimique donnée, une phase désigne un état de la matière (liquide, gazeux ou solide) et un champ dénote un 

Le cadre diphasique immiscible

Un des premiers modèles de ce type est le modèle Baer-Nunziato [BN86]. Ce modèle a été proposé pour représenter des écoulements gaz particules prenant en compte des effets de combustion. Il comporte sept équations : une sur un des deux taux de présence statistique, deux équations d'évolution de masse, deux équations de bilan de quantité de mouvement et deux équations d'énergie. Les taux de présence statistiques, que l'on appellera dans toute la suite α k , de la phase une et de la phase deux, sont reliés par une contrainte d'immiscibilité : Dans ces travaux de thèse, aucune hypothèse sur les temps de relaxation et leur ordonnancement ne sera faite, sachant que le domaine de variation de ces échelles de temps est assez large. En outre, la dynamique de retour à l'équilibre peut être complexe, avec une échelle de temps de relaxation effective du système global potentiellement très différente de celles associées à chaque effet (voir Annexe A). Ce comportement motive donc une étude plus fine de la dynamique de retour à l'équilibre, comme celle proposée pour un ensemble de modèles à travers tous les chapitres de la thèse.

α 1 + α 2 = 1. (0.

Le cadre multiphasique

La littérature est moins développée concernant les modèles compressibles à plus de deux champs. Dans la lignée du modèle de Baer-Nunziato, un modèle à trois phases immiscibles a été proposé et analysé dans [Hér07]. Ce modèle est composé de deux équations d'évolution portant sur les taux de présence statistiques, trois équations d'évolution portant sur les masses partielles, trois équations de quantité de mouvement et trois équations d'énergie. Comme les phases sont immiscibles, leurs taux de présence statistiques sont reliés par une contrainte d'immiscibilité :

α 1 + α 2 + α 3 = 1 (0.2)
Avec les bonnes fermetures, données dans [Hér07], ce modèle respecte lui aussi le cahier des charges présenté ci-dessus (P1, P2, P3). Là encore, la propriété d'unicité des relations de saut (P2) et la caractérisation entropique (P3) sont des outils très utiles pour proposer des lois de fermeture pour les termes interfaciaux et les termes sources qui apparaissent dans le modèle. Une extension de ce modèle à un nombre quelconque de phases immiscibles est présentée dans [MHR16].

Enfin, un autre type de modèle, basé sur une approche déséquilibrée, a été développé récemment afin de prendre en compte la présence d'un gaz incondensable dans la phase gazeuse. Il s'agit par exemple du modèle diphasique hybride proposé dans [HM19] qui cherche à représenter des écoulements en eau liquide (l ) plus une phase gazeuse composée de vapeur d'eau (v) et d'air (g ). Dans ce modèle, les taux de présence statistiques des deux composants de la phase gazeuse, v et g , sont reliés par la contrainte de miscibilité suivante :

α v = α g . (0.3)
La phase liquide est quant à elle reliée aux deux autres champs par la contrainte d'immiscibilité :

α l = 1 -α v = 1 -α g . (0.4)
Liste des tableaux -0. Une première méthode de résolution consiste à résoudre le système complet en un pas comme présenté dans [AD14] pour un modèle de type Baer-Nunziato barotrope. Cette stratégie se base sur une discrétisation type Volumes Finis en maillage décalé où l'on estime de manière semi-implicite l'évolution des masses partielles puis des taux de présence statistiques et enfin des vitesses phasiques. Une extension de cette approche au modèle avec énergie est proposée dans [RA22].

Une deuxième stratégie consiste à obtenir des solutions approchées du modèle en deux pas, une traitant la partie convective de manière explicite puis les termes sources de manière implicite. Pour clarifier cette approche, on réécrit formellement notre système d'équations associé à notre modèle sous la forme : -Premièrement, estimer à l'aide d'un solveur explicite l'évolution de la variable d'état W sur un pas de temps ∆t du sous-système : 

∂ t (W ) + ∇ • F (W ) + N c (W, ∇W ) = S(W ), ( 0 
∂ t (W ) + ∇ • F (W ) + N c (W, ∇W ) = 0. (0.6)
A(W )∂ t (W ) + ∇ • F (W ) +C (W )∇ • W = S(W ) , (0.8)
où W est la variable d'état associée au modèle considéré. Chacun de ces modèles respecte les propriétés suivantes :

-La partie convective du modèle est symétrisable et donc hyperbolique en dehors de la zone de résonance, -Les relations de sauts sont définies de manière unique, -Les solutions régulières du système d'équations associé au modèle respectent une inégalité d'entropie.

Pour chaque modèle, les fermetures des termes interfaciaux et des termes sources permettant de garantir les deux dernières propriétés présentées ci-dessus sont rappelées.

Ce chapitre a pour objectif de déterminer si la partie associée aux termes sources des modèles permet un retour effectif à l'équilibre en pression des N phases en tout point en temps long. Pour ce faire, on se place pour chaque modèle dans le cas d'un écoulement homogène :

∇ • W = 0 , U k = 0 , k ∈ 1; N , (0.9)
sans relaxation en température et en potentiel de Gibbs, i.e. :

∀(k, l ) ∈ 1 , N 2 , l ̸ = k : τ T kl = +∞ , τ m kl = +∞ . (0.10)
Ces hypothèses permettent de découpler les effets de relaxation en pression de la convection et des autres effets de relaxation présents dans le modèle. De plus, pour chaque modèle, il est possible d'extraire du système (0.8), réécrit avec les hypothèses de (0.10), une équation d'évolution des écarts de pression. Elle peut se mettre sous la

Liste des tableaux -0.4. Synthèse des travaux :

forme suivante dans le cas immiscible :

∂ t ∆ P = -R P (W )∆ P , (0.11)
avec ∆ P ∈ R N -1 défini comme : 

∆ P =    P 1 -P 2 . . . P 1 -P N    (0.12) et R P (W ) ∈ M N -1 (R).
∀k ∈ {l , i } , α k E k = 1 2 m k U 2 k + m k ϵ k (P k , s k ), ( 0 
       ∂ t (α l ) + V I (W )∇α l = φ l (W ) ; ∂ t (m k ) + ∇ • (m k U k ) = Γ k (W ) ; ∂ t (m k U k ) + ∇ • (m k U k ×U k + α k P k I d ) -Π I (W )∇α k = S Q k (W ) ; ∂ t (α k E k ) + ∇ • (α k U k (E k + P k )) + Π I (W )∂ t (α k ) = S E k (W ) , (0.15)
où W correspond à la variable d'état, telle que :

W = (α l , m l , m i , m l U l , m i U i , α l E l , α i E i ) ⊺ . (0.16)
Les termes interfaciaux en bleu, ainsi que les termes sources en vert sont fermés afin que le modèle vérifie les trois propriétés suivantes (voir [Coq+02]) :

-La partie convective du modèle est symétrisable et donc hyperbolique en dehors de la zone de résonance, -Les produits non conservatifs sont bien traités, i.e. les relations de sauts sont définies de manière unique, -Les solutions régulières du système d'équations associé au modèle respectent une inégalité d'entropie sur l'entropie totale η = k m k s k .

Dans un premier temps, on fait l'hypothèse d'un mélange d'eau liquide et de gaz incondensable, ce qui revient à prendre :

Γ l = Γ g = 0 (0.17)
L'idée est de s'intéresser au sous-système de (0.15) associé aux termes sources du modèle et d'en extraire des conditions de relaxation effectives. Avec les fermetures

Liste des tableaux -0.4. Synthèse des travaux :

considérées, ce sous-système s'écrit :

                   ∂ t (α l ) = K (W )∆P ; ∂ t (m l U l ) = -d ∆U ; ∂ t (α l E l ) + Π I (W )∂ t (α l ) = -q(W )∆T - U l +U g 2 d (W )∆U ; ∂ t (m l ) = ∂ t m g = 0 ; ∂ t m l U l + m g U g = 0 ; ∂ t α l E l + α g E g = 0 ;
(0.18) avec : τ P = 10 -5 s, τ T = 10 -4 s, τ m = 10 -6 s. Les conditions initiales de ces cas sont données dans l'Annexe 1 du chapitre 2.

   ∆U = U l -U g ; ∆P = P l -P g ; ∆T = T l -T g . ( 0 
Liste des tableaux -0. 

α 1 + α 2 + α 3 = 1. (0.22)
On définit ici aussi l'énergie totale par phase comme suit :

∀k ∈ 1, 3 , α k E k = 1 2 m k U 2 k + m k ϵ k (P k , s k ), (0.23) 
où ϵ k (P k , s k ) correspond à l'énergie interne phasique, qui est fonction, à travers une loi d'état spécifiée par l'utilisateur, de la pression P k et de l'entropie spécifique s k .

Le système d'équations associé au modèle [Hér07] s'écrit donc :

                         ∂α k ∂t + V I (W ) • ∇α k = S α k (W ) , ∂m k ∂t + ∇ • (m k U k ) = S m k (W ) , ∂m k U k ∂t + ∇ • (m k U k ⊗U k + α k P k I ) + 3 l =1,l ̸ =k Π kl (W )∇α l = S U k (W ) , ∂α k E k ∂t + ∇ • (α k U k (E k + P k )) - 3 l =1,l ̸ =k Π kl (W ) ∂α l ∂t = S E k (W ) , (0.24) 
Comme dans le chapitre précédent, une stratégie de caractérisation entropique, basée sur l'entropie de mélange, est utilisée pour fermer le système. La forme choisie des termes interfaciaux est identique à celle utilisée dans [BH21] :

V I (W ) = U 1 (0.25) Π 12 = Π 21 = Π 23 = P 2 , Π 13 = Π 31 = Π 32 = P 3 . (0.26)
Les termes sources sont définis en supposant des liaisons diphasiques entre deux phases. On fera l'hypothèse ici que seuls les champs 2 (eau liquide) et 3 (vapeur d'eau)

Liste des tableaux -0.4. Synthèse des travaux :

peuvent changer de phase. On a ainsi trois liaisons (1 -2 ; 1 -3 ; 2 -3) pour les effets de relaxation en vitesse, pression et température et une liaison (2 -3) pour le transfert de masse. On a donc au total dix temps de relaxation positifs τ U ,P,T,m k-l à spécifier.

Dans ce chapitre, pour alléger l'écriture, on pose :

∀k ∈ 1, 3 , g k = µ k T k (0.27)
De plus, similairement au chapitre précédent, on introduit la notation : 

∀(k, l ) ∈ 1, 3 2 , ∀Φ k ∈ {U k , P k , T k , g k } , ∆Φ kl = Φ k -Φ l . ( 0 
∂ t ∆ r = -R r el ax (W )∆ r , (0.30) 
avec la matrice non symétrique R r el ax ∈ M 7 (R) de la forme : En raison de la structure "hybride" de ce modèle, en plus de la contrainte d'immiscibilité entre les phases présentes, que nous avions déjà dans les chapitres précédents, une contrainte supplémentaire de miscibilité entre les champs de la phase gazeuse structure le système. On peut donc écrire :

R r el ax = R UU 0 R U R t
α g = α v , α g + α l = 1. (0.32)
Comme précédemment, on introduit l'énergie totale phasique comme : 

∀k ∈ {l , v, g } , α k E k = 1 2 m k U 2 k + m k ϵ k (P k , s k ), ( 0 
                     ∂α g ∂t + V i (W).∇α g = φ g (W) ∂m k ∂t + ∇.(m k U k ) = 0 ∂m k U k ∂t + ∇.(m k U k ⊗ U k + α k p k Id) + Π k (W)∇α g = S U k (W) ∂α k E k ∂t + ∇.(α k U k (E k + p k )) -Π k (W) ∂α g ∂t = S E k (W) (0.34)
La fermeture des termes interfaciaux en bleu et des termes sources en vert se base sur la même stratégie que celle des chapitres précédents. Cette stratégie permet de s'assurer que :

Liste des tableaux -0.4. Synthèse des travaux :

-La partie convective du modèle est hyperbolique en dehors de la zone de résonance ; -Les relations de sauts sont définies de manière unique ; -Les solutions régulières du système (0.34) respectent une inégalité d'entropie. On pose ainsi :

V i (W) = U l . (0.35)
Ce choix nous donne, en utilisant la caractérisation entropique, les uniques pressions interfaciales associées : 

   Π v = -p v , Π g = -p g , Π l = p v + p g . ( 0 

Introduction

We examine herein the pressure relaxation process in some two-phase and three-phase flow models involving either immiscible compressible components, or a mixture of miscible and immiscible components.

1. Pressure relaxation in some multiphase flow models -1.1. Introduction Actually, the main problem at stake here is whether the pressure relaxation process is guaranteed by solutions of the latter models, or in other words, whether the pressure gaps between fields/phases decay in time, or not. According to authors, this problem has seldomly been adressed in the multiphase flow literature, and the present contribution aims at giving some better understanding of this expected behaviour.

The four models discussed in the sequel were introduced in [Coq+02 ; Hér07 ; Hér16 ; HM19 ; Hér20 ; HHQ21 ; Hér21], and more details concerning the derivation and the main properties of the associated PDEs can be found in the latter references. All these models comply with the following basic specifications :

-A physically relevant entropy inequality holds for smooth solutions of PDEs ; -Jump conditions are uniquely defined, field by field ; -The governing set of PDEs can be symmetrized, even in the multi-dimensional framework, which of course implies that the convective subset is hyperbolic.

Before going further on, we also refer the reader to [GGP97 ; GG99a ; GG99b ; GS02 ; Gav11 ; Gav20], among other references, which give another insight of the whole modeling concept, while retaining the powerful tools relying on Hamilton's principle.

In particular, while focusing on two-phase flows involving a cloud of bubbles in a liquid, the early paper [GS02] provides a very promising approach. Bridges between the two approaches still remain to be built.

The paper is organized as follows. In section 2, a class of gas-liquid and liquid-vapor two-phase flow models is examined. These are of the Baer-Nunziato (BN) type (see [BN86 ;Coq+02]), and Property 1 will give some first conditions pertaining to initial conditions on the pressure gap in order to fulfill the pressure relaxation process. In the following section, some three-phase flow models proposed in [Hér07 ; Hér20] are considered, which aim at describing immiscible three-phase flow mixtures. Property 2 characterizes interfacial pressures that are consistent with the decay of the mixture entropy, while Property 3 gives some conditions on initial pressure gaps in order to guarantee the decay of the latter. Two distinct hybrid multiphase flow models are then investigated. The first one, which was first introduced in [HM19], enables to describe a mixture of liquid water, water vapor, and a non condensable gas which is assumed to be perfectly miscible with the water vapor. Property 4 provides the counterpart of Property 1 for this hybrid three-field two-phase flow model. Eventually, a four-field three phase flow model [HHQ21] is discussed, which was derived in order to cope with mixtures of liquid metal, liquid water and its vapor, together with some non condensable gas. It is briefly shown in Property 6 that this model also requires some conditions on initial pressure gaps in order to guarantee their decay in time. Once more, it should be noted that these conditions are again very unlikely to happen in practice.

Three appendices complete the whole paper. The first one concerns the definition of the Realizable Interfacial Pressure (RIP) condition, while the second one focuses on 1. Pressure relaxation in some multiphase flow models -1.2. Gas-water and liquid-vapor two-phase flow models some algorithms in order to account for pressure relaxation effects. The last one discusses the velocity relaxation effects in a three-phase flow model taken from [Hér16].

Gas-water and liquid-vapor two-phase flow models

We start our discussion while focusing on two-phase flow models of BN-type, and thus refer the reader to [BN86] and also to some additional references with slightly different visions, including [GSS99 ; Kap+97 ; CC00 ; Coq+02]. These models give the time-space variations of the state variable, and the governing equations include the mass balance, the mean momentum balance, and the energy budgets for each phase. The structure of these models will be briefly recalled below.

For that purpose, we first emphasize that the two immiscible phases (for instance liquid water and water vapor), which are indexed by l , v, are in full desequilibrium, and characterized by their -positive-statistical fractions α l , α v which are such that :

α l (x, t ) + α v (x, t ) = 1 (1.1)
We need first to define the state variable W B N which will be the following :

W B N = (α l , m l , m v , m l U l , m v U v , α l E l , α v E v ) (1.2) 
where m k = α k ρ k , ρ k , U k and E k respectively denote the -positive-mass fraction, the -positive-density, the mean velocity and the mean total energy, within phase k, setting :

E k = ρ k (ϵ k (P k , ρ k ) + U 2 k 2 ) (1.3)
The function ϵ k (P k , ρ k ), stands for the internal energy of phase k, and must be given by user, in terms of the pressure P k and density ρ k , through an equation of state (EOS).

Hence the whole BN-type model, including energy budgets, writes :

∂ t W B N + ∂ x F B N (W B N ) + B B N (W B N )∂ x (α l ) = S B N (W B N ) (1.4)
where :

F B N (W B N ) = (0, m l U l , m v U v , m l U 2 l +α l P l , m v U 2 v +α v P v , α l U l (P l +E l ), α v U v (P v +E v ))
(1.5) and :

B B N (W B N ) = (V I (W B N ), 0, 0, -P I (W B N ), P I (W B N ), -P I (W B N )V I (W B N ), P I (W B N )V I (W B N )) (1.6)
1. Pressure relaxation in some multiphase flow models -1.2. Gas-water and liquid-vapor two-phase flow models

The left hand side in (1.4) contains all convective terms, whereas source -relaxation terms lie on the right hand side. For a given closure law of the interfacial velocity : ] to be given in a suitable way, we recall that the interfacial pressure P I (W B N ) is chosen so that the following entropy inequality holds for smooth solutions of (1.4) :

V I (W B N ) = β B N (W B N )U l + (1 -β B N (W B N ))U v (1.7) with β B N (W B N ) ∈ [0, 1
∂ t η B N + ∂ x F B N η ≥ 0, (1.8) 
where the entropy η B N simply denotes the mixture entropy :

η B N = m l S l (P l , ρ l ) + m v S v (P v , ρ v ), (1.9) 
thus relying on specific entropies S k (P k , ρ k ), while F B N η denotes the mixture entropy flux :

F B N η = m l S l (P l , ρ l )U l + m v S v (P v , ρ v )U v .
(1.10)

A crucial point to note is that the interfacial pressure P I (W B N ) is defined in a unique way, for a given interface velocity (1.7), or in other words for a given function β B N (W B N ) :

P I (W B N ) = (1 -β B N (W B N ))T v P l + β B N (W B N )T l P v (1 -β B N (W B N ))T v + β B N (W B N )T l
where T l , T v respectively stand for the temperature in phase l , v (see [Coq+02]).

It also seems worthwhile recalling at this stage that the basic strategy retained to fix the function β B N (W B N ) simply consists in enforcing the Linearly Degenerate structure for the field associated with the eigenvalue λ = V I (W B N ). This is indeed a major ingredient, since it results in the fact that non-conservative products are welldefined, which means that uniqueness of field-by-field jump conditions is reached. Again, we refer the reader to [Coq+02] and [Hér12] for this important feature, however it will not interfer with the sequel.

Eventually, the right hand side term S B N (W B N ), which complies with the entropy inequality (1.8), is described in [GHS04], and we refer to the latter references for more details. In the sequel we will only need the exact definition of the first and last components of the right-hand side term.

From now on, we consider some homogeneous situation, where :

∂ x ψ = 0
whatever ψ stands for, and we first restrict to gas-liquid flows without any mass transfer. We also focus on very large temperature and velocity relaxation time scales, which amounts to get rid of velocity and temperature relaxation effects. Thus the 1. Pressure relaxation in some multiphase flow models -1.2. Gas-water and liquid-vapor two-phase flow models governing set of equations reduces to the following simple system :

∂ t (α l ) = α l (1 -α l ) (P l -P v ) Π 0 τ P ; ∂ t m l ,v = ∂ t m l ,v U l ,v = 0; ∂ t α l ,v E l ,v + P I (W B N )∂ t α l ,v = 0. (1.11)
where the so-called (positive) pressure relaxation time scale τ P is a given function of the state variable W B N . Two slightly distinct forms of τ P are proposed in [Gav14 ; BH15 ; BH16], which involve molecular viscosities of both components l , v. We recall here that the entropy increases throughout this step (1.11), since :

∂ t η B N ≥ 0 . (1.12)
In order to simplify the presentation, we restrict here to the classical BN-like choice of the interfacial velocity :

V I (W B N ) = U v (1.13)
which in turn implies that :

P I (W B N ) = P l (1.14)
We introduce the variable : ∆P vl = P v -P l , and also, for k = l , v, celerities c k such that :

ρ k c 2 k = ( P k ρ k -ρ k ∂ ρ k ϵ k (P k , ρ k ) )/(∂ P k ϵ k (P k , ρ k ) )
Very simple calculations enable to rewrite (1.11) so that we get :

∂ t (∆P vl ) = -(α l ρ v c 2 v + α v ρ l c 2 l - α l ρ v ∂ P v (ϵ v ) ∆P vl ) ∆P vl Π 0 τ P . (1.15)
Hence we obtain :

Property 1 : (Pressure relaxation effects in a two-phase liquid-gas model)

We consider system (1.11) together with the closure law (1.14). Then the pressure relaxation process is guaranteed for smooth solutions of (1.11) if the pressure gap ∆P vl is sufficiently small in the following sense :

α l |∆P vl | ≤ ρ v ∂ P v (ϵ v ) (α l ρ v c 2 v + α v ρ l c 2 l ). (1.16)

□

This threshold effect, which was pointed out in [BH21], arises when taking energy balance into account. Otherwise, in the barotropic case, such a constraint on initial conditions does not arise. In order to fix ideas, an estimation of the upper bound can be found in realistic situations in [HHQ21], considering a mixture of liquid metal, liquid water and vapor, and one can easily check that the latter cannot be reached in practice. Note also that Property 1 still holds when considering liquid-vapor water

1. Pressure relaxation in some multiphase flow models -1.3. Flow models involving three immiscible components flows.

We will see later on that we retrieve similar conditions when focusing on three-phase flows with immiscible components.

Flow models involving three immiscible components

Very few models have been proposed in the literature till now, in order to tackle threephase flows involving immiscible components. These are indeed mandatory in order to predict complex flows such as those occuring in vapor explosion for instance. In the latter case, a mixture of hot liquid metal droplets interacts with liquid water and its vapor, and huge pressure waves occur which could create damage when they hit surrounding solid structures. As noted before, the positive statistical fractions for liquid water and its vapor will be noted α l , α v , while α m will stand for the liquid metal statistical fraction. The three of them must satisfy :

α l (x, t ) + α v (x, t ) + α m (x, t ) = 1.
(1.17)

Obviously, this unsteady application framework urges to consider full disequibrium models. Hence we will focus here on the early model introduced in [Hér07], and also refer the reader to some companion work [Hér16 ;MHR16]. The state variable is now :

W t p f m = (α k , m k , m k U k , α k E k )
with k ∈ (l , v, m). The basic strategy applied in [Hér07] is still the same as before. The governing closed set of equations is expected to comply with the following main requirements :

-Smooth solutions of the closed model should verify a physically relevant entropy inequality ; -Unique field-by-field jump conditions must clearly arise ; -A symmetric form of the governing set of equations should exist, considering a three-dimensional framework.

The first and third specifications are actually structuring tools when deriving the closed set of equations.

We also take the opportunity here to underline that the two-phase flow framework discussed in section 2 will be retrieved, at least formally, by enforcing α m = 0 in all equations of the three-field model.

We will now briefly describe the whole set of equations and meanwhile comment the key ingredients.

1. Pressure relaxation in some multiphase flow models -1.3. Flow models involving three immiscible components

The three components indexed by l , v, m possess their own description in terms of mean density ρ k , mean velocity U k , mean pressure P k , for k ∈ (l , v, m). Internal energy functions ϵ k (P k , ρ k ) must be prescribed, and the mass fractions and total energies E k within each phase have been defined in the previous section (see (1.3)). The interfacial velocity is again assumed to be a convex combination of phasic velocities, thus :

V I (W t p f m ) = β t p f m l (W t p f m )U l + β t p f m v (W t p f m )U v + β t p f m m (W t p f m )U m (1.18)
with the Galilean invariance (GI) constraint arising for β

t p f m k (W t p f m ) (with k ∈ (l , v, m)) : β t p f m l (W t p f m ) + β t p f m v (W t p f m ) + β t p f m m (W t p f m ) = 1 .
The governing set of equations simply reads, for k ∈ (l , v, m) :

                 ∂ t (α k ) + V I (W t p f m )∇α k = φ t p f m k (W t p f m ) ; ∂ t (m k ) + ∇. (m k U k ) = Γ t p f m k (W t p f m ) ; ∂ t (m k U k ) + ∇. (m k U k ×U k + α k P k I d ) + j ∈(l ,v,m), j ̸ =k Π t p f m k j (W t p f m )∇α j = S t p f m Q k (W t p f m ) ; ∂ t (α k E k ) + ∇. (α k U k (E k + P k )) - j ∈(l ,v,m), j ̸ =k Π t p f m k j (W t p f m )∂ t α j = S t p f m E k (W t p f m ) . (1.19)
The source terms φ t p f m k (W t p f m ) on the right hand side, which depend on the sole local variable W t p f m , should fufill the following constraint :

k∈(l ,v,m) φ t p f m k (W t p f m ) = 0 .
(1.20)

since the three phases are immiscible. Of course, the latter is mandatory in order to fulfill the maximum principle for the three statistical fractions. Since we focus here on the modeling of interfacial transfer terms, we will also need to enforce the three constraints :

k∈(l ,v,m) Γ t p f m k (W t p f m ) = 0 ; (1.21)
in the mass balance equation, but also :

k∈(l ,v,m) S t p f m Q k (W t p f m ) = 0 ; (1.22)
for the momentum balance, and eventually :

k∈(l ,v,m) S t p f m E k (W t p f m ) = 0 . (1.23)
Source terms must also be such that they comply with the entropy inequality (1.24).

The main point at this stage first consists in finding relevant closure laws for the 1. Pressure relaxation in some multiphase flow models -1.3. Flow models involving three immiscible components six interfacial pressures Π t p f m i j (W t p f m ). This is achieved assuming that an entropy inequality holds for smooth solutions of (1.19) :

∂ t η t p f m + ∇. F t p f m η = R H S t p f m η (W t p f m ) ≥ 0, (1.24)
where the entropy η t p f m simply denotes the mixture entropy :

η t p f m = k∈(l ,v,m) m k S k (P k , ρ k ), (1.25) 
while the entropy flux F t p f m η is :

F t p f m η = k∈(l ,v,m) m k S k (P k , ρ k )U k . (1.26)
recalling that :

c 2 k ∂ P k S k (P k , ρ k ) + ∂ ρ k S k (P k , ρ k ) = 0
On the basis of (1.19), the derivation of the time derivative of the entropy (1.25) is straightforward, and it yields : 

∂ t η t p f m + ∇. F t p f m η + Σ j ∈(l ,v,m) B j (W t p f m )∇α j = R H S t p f m η (W t p f m ) . (1.

19))

-There exists a unique set of six interfacial pressures Π t p f m i j 2 , such that smooth solutions of (1.19) comply with the entropy inequality (1.24). These read :

(W t p f m ), with i ̸ = j , (i , j ) ∈ (l , v, m)
Π t p f m i j (W t p f m ) = (β t p f m k (W t p f m )T k + β t p f m j (W t p f m )T j )P i + β t p f m i (W t p f m )T i P j T (1.28)
where k ̸ = i , k ̸ = j and k ∈ (l , v, m), and :

T = β t p f m l (W t p f m )T l + β t p f m v (W t p f m )T v + β t p f m m (W t p f m )T m with : 1 T k = ∂ P k S k (P k , ρ k ) ∂ P k ϵ k (P k , ρ k )
-The latter interfacial pressures listed in (1.28) comply with the Realizable Interfacial Pressure (RIP) condition recalled in appendix A.

□

Proof : The first part of the proof is detailed in appendix G of [Hér07], which provides

1. Pressure relaxation in some multiphase flow models -1.3. Flow models involving three immiscible components existence and uniqueness in the general case. It simply requires to account for the identity :

j ∈(l ,v,m) B j (W t p f m )∇α j = 0, with : k∈(l ,v,m) j ∈(l ,v,m), j ̸ =k Π t p f m k j (W t p f m )∇α j = 0
whatever the state variable W t p f m is. Thus it only remains to check that the formula (1.28) satify the latter constraint, which is easy though cumbersome. Eventually, since (1.28) simply stands for some average of phasic pressures, the RIP condition is obviously guaranteed.

□

We wonder now whether the steady states involving equilibrated pressures remain stable, more precisely whether the solutions of the following system :

         ∂ t (α k ) = φ t p f m k (W t p f m ) ; ∂ t (m k ) = ∂ t (m k U k ) = 0 ; ∂ t (α k E k ) - j ∈(l ,v,m), j ̸ =k Π t p f m k j (W t p f m )∂ t α j = 0 .
(1.29) relax towards pressure equilibrium.

As already mentioned in section 2, we emphasize that solutions of (1.29) are such that :

∂ t η t p f m ≥ 0, (1.30) 
when considering above-mentioned admissible closure laws for Π t p f m k j (W t p f m ), and source terms φ

t p f m k (W t p f m ) in agreement with (1.35), see [Hér20].
Hence, we define the vector of unknowns involving the pressure gaps : 2 , as follows :

∆P i j = P i -P j (1.31) for (i , j ) ∈ (l , v, m)
P = (∆P l v , ∆P l m ) T
Thanks to (1.29), it comes :

∂ t (P ) = A P (W t p f m )(φ t p f m v (W t p f m ), φ t p f m m (W t p f m )) T (1.32)
1. Pressure relaxation in some multiphase flow models -1.3. Flow models involving three immiscible components where the matrix A P (W t p f m ) ∈ R 2×2 reads :

A P (W t p f m ) = A l (W ) + A v (W ) -∆B l v ∆P l v A l (W ) -∆B l v ∆P l m A l (W ) -∆B l m ∆P l v A l (W ) + A m (W ) -∆B l m ∆P l m (1.33)
Note that in the above mentionned matrix, the following notations have been used :

A k = ρ k c 2 k /α k , B k = β t p f m k (W t p f m )T k T × 1 m k ∂ P k ϵ k (P k , ρ k )
but also :

∆B i j = B i -B j (1.34) for (i , j ) ∈ (l , v, m) 2 .
It remains to insert entropy-consistent closure laws for the source terms φ

t p f m k (W t p f m
), which should be such that :

k∈(l ,v,m) P k φ t p f m k (W t p f m ) ≥ 0 (1.35)
or equivalently :

(P v -P l )φ t p f m v (W t p f m ) + (P m -P l )φ t p f m m (W t p f m ) ≥ 0
Introducing three independent positive time scales τ P i j , we apply for the following closure laws ([BH21]) :

       φ t p f m v (W t p f m ) = α l α v τ P l v ∆P vl + α m α v τ P vm ∆P vm ; φ t p f m m (W t p f m ) = α l α m τ P l m ∆P ml + α m α v τ P vm ∆P mv (1.36)
which are admissible, since (1.35) is equivalent to :

(∆P vl , ∆P ml )D P (W t p f m )(∆P vl , ∆P ml ) T ≥ 0
and the latter quadratic form is positive since the matrix D P (W T P F M ) :

D P (W t p f m ) = b l v + b vm -b vm -b vm b ml + b vm (1.37) with b i j = α i α j τ P i j
, is symmetric positive. Eventually, we may write :

∂ t (P ) = -A P (W t p f m )D P (W t p f m )P . (1.38)
Thus we get :

1. Pressure relaxation in some multiphase flow models -1.3. Flow models involving three immiscible components Property 3 (Pressure relaxation effects in the three-phase flow model (1.19))

We consider system (1.29) equipped with closure laws (1.28) and (1.36), and we use notations introduced in (1.34) and (1.31). If we assume that all pressure gaps ∆P i j , for (i , j ) ∈ (l , v, m) 2 , are such that :

(α i ρ j c 2 j + α j ρ i c 2 i ) > 2α i α j |∆B i j ||∆P i j | (1.39)
then the pressure relaxation process is guaranteed for solutions of (1.29).

□ Sketch of proof :

The two eigenvalues of the real matrix R P = A P (W t p f m )D P (W t p f m ) arising from (1.38) are either real or complex conjugate. We also know that :

d et (D P (W t p f m )) > 0.
In the case of real eigenvalues, we must check that both the trace of R P and the determinant of A P (W t p f m ) are positive. Now we have :

2 t r ace(R P ) = (i , j )∈(l ,v,m) 2 ,i ̸ = j b i j (A i + A j -∆B i j ∆P i j )
Moreover, a straightforward calculation also yields :

2 d et (A P (W t p f m )) = (i , j )∈(l ,v,m) 2 ,i ̸ = j A i (W )A j (W ) - (i , j ,k)∈(l ,v,m) 3 ,i ̸ = j ̸ =k A i (W ) ∆B j k ∆P j k
Hence we may conclude that both t r ace(R P ) and d et (A P (W t p f m )) are positive if the following sufficient condition :

A j (W ) + A i (W ) > 2|∆B i j | × |∆P i j |
holds. The latter condition coincides with (1.39).

In the complex case, we only need to check that the trace of R P is positive. □

When eigenvalues are real, the decay is uniform with respect to time, whereas some oscillations may occur in the relaxation process if complex eigenvalues arise. This was already mentioned in [BH19] when considering a barotropic three-phase flow model with immiscible components. To the knowlegde of authors, this non-monotone behaviour has not been reported in practical studies up to now.

Eventually, and for computational purposes, the reader is refered to appendix B which provides a straightforward application of the latter results , while focusing on the hybrid model discussed in the following section.

1. Pressure relaxation in some multiphase flow models -1.4. Two hybrid models with both miscible and immiscible components

Two hybrid models with both miscible and immiscible components 1.4.1. An hybrid two-phase water-vapor model including incondensable gas

The model considered in this section is somewhat different. We focus here on a slightly distinct framework, where the mixture of liquid water and its vapor -respectively indexed by l , v-also includes some incondensable gas -indexed by g -(air for instance).

We assume that the gas and the water vapor are perfectly miscible, which yields :

α v (x, t ) -α g (x, t ) = 0;
while we get of course, as it occured in section 2 :

α l (x, t ) + α v (x, t ) = 1
Owing to the latter two constraints, we use the sole statistical fraction α g in the remaining. We still note the partial mass m k = α k ρ k for k ∈ (l , v, g ), and U k , P k , ρ k and E k again stand for the phasic mean velocity, the mean pressure, the mean density and the mean total energy respectively ; the latter phasic total energy E k stands for the sum of the internal energy and the kinetic energy, as recalled in (1.3). The state variable now stands for :

W l v g = (α g , m l , m v , m g , m l U l , m v U v , m g U g , α l E l , α v E v , α g E g )
The governing set of equations for mass balance, momentum and energy balance, within phase k, and for the statistical fraction α g are (see [HM19]) :

           ∂ t α g + V l v g I (W l v g )∇α g = φ l v g g (W l v g ) ; ∂ t (m k ) + ∇. (m k U k ) = Γ l v g k (W l v g ) ; ∂ t (m k U k ) + ∇. (m k U k ×U k + α k P k I d ) + Π l v g k (W l v g )∇α g = S l v g Q k (W l v g ) ; ∂ t (α k E k ) + ∇. (α k U k (E k + P k )) -Π l v g k (W l v g )∂ t α g = S l v g E k (W l v g ) .
(1.40) for k ∈ (l , v, g ). In order to ease the presentation, we restrict here to the specific closure law :

V l v g I (W l v g ) = U l
Hence, we get the unique set of interfacial pressures :

Π l v g l (W l v g ) = P g + P v Π l v g v (W l v g ) = -P v Π l v g g (W l v g ) = -P g (1.41)
which is such that smooth solutions of (1.40) comply with the entropy inequality :

∂ t η l v g + ∇. F l v g η = R H S l v g η (W l v g ) ≥ 0, (1.42)
1. Pressure relaxation in some multiphase flow models -1.4. Two hybrid models with both miscible and immiscible components where η l v g , F l v g η denotes the mixture entropy -entropy flux pair :

η l v g = k∈(l ,v,g ) m k S k (P k , ρ k ), F l v g η = k∈(l ,v,g ) m k S k (P k , ρ k )U k . (1.43)
Classical constraints still hold for the source terms detailed in [HM19] :

k∈(l ,v,g ) Γ l v g k (W l v g ) = k∈(l ,v,g ) S l v g E k (W l v g ) = 0
together with :

k∈(l ,v,g ) S l v g Q k (W l v g ) = 0
Meanwhile, the source term arising on the right hand side of the statistical fraction equation reads :

φ l v g g (W l v g ) = K g (W l v g ) P v + P g -P l (1.44) with a positive function K g (W l v g ).
At this stage, it is worthwhile noting that again, the RIP condition is satisfied, considering a flow initially at rest, with uniform initial pressure and temperature fields such that :

P l (x, t = 0) = P 0 l , P v (x, t = 0) = P 0 v , P g (x, t = 0) = P 0 l -P 0 v and T l (x, t = 0) = T v (x, t = 0) = T g (x, t = 0) = T 0 (x).
Now we wish to examine whether the pressure relaxation process holds in a natural way for solutions of (1.40). Thus we consider an homogeneous flow, and evenmore get rid of velocity and temperature effects embedded in source terms, retaining very large temperature and velocity relaxation time scales. This means that we focus on solutions of the set of coupled ODE :

         ∂ t α g = φ l v g g (W l v g ) ; ∂ t (m k ) = 0 ; ∂ t (m k U k ) = 0 ; ∂ t (α k E k ) -Π l v g k (W l v g )∂ t α g = 0 .
(1.45) Once more, we note that solutions of (1.45) comply with the entropy inequality, since :

∂ t η l v g ≥ 0.
Again, introducing :

∆P = P v + P g -P l (1.46)
1. Pressure relaxation in some multiphase flow models -1.4. Two hybrid models with both miscible and immiscible components and still setting

A k = ρ k c 2 k α k for k ∈ (l , v, g
), simple calculations enable to derive :

∂ t (∆P ) = -K g (W l v g ) A l + A v + A g + (m l ∂ P l ϵ l (P l , ρ l ) ) -1 ∆P ∆P
Thus we obtain :

Property 4 (Pressure relaxation in the hybrid model (1.40))

We consider system (1.45) with closure laws (1.44) and (1.41).

If the pressure gap ∆P defined in (1.46) complies with the condition :

m l ∂ P l ϵ l (P l , ρ l ) ρ l c 2 l α l + ρ v c 2 v α v + ρ g c 2 g α g ≥ |∆P | (1.47)
then the pressure relaxation is guaranteed for solutions of (1.45).

□

Obviously, we retrieve the same threshold effect as pointed in (1.16) for the liquidvapor two-phase flow model, which was expected and hoped. Once more, easy estimations of the upper bound in practical situations can be obtained, which confirm that the latter effect is unlikely to happen. We note that the pressure relaxation acts uniformly with respect to time, unlike in the previous model including three immiscible components.

As mentioned in the previous section, appendix B provides some way to use the latter results in the building of stable schemes to cope with stiff pressure relaxation time scales.

An hybrid four-field three-phase model with incondensable gas

We conclude this section with another hybrid model recently proposed in [HHQ21], which is expected to be relevant in order to represent vapor explosion. Thus we focus on a mixture of liquid metal droplets (with index m), liquid water and its vapor (indexed by l , v), together with an incondensable gas (with index g ). The derivation of the model was achieved in [HHQ21], and the reader is refered to the latter reference, which provides details on the whole procedure, together with the main properties of the closed set of PDEs. Actually, we will only provide here some hints and show that this model belongs to the same class of compressible multiphase flow models.
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Since the water vapor and the incondensable gas are assumed to be fully miscible, the statistical fractions will agree with :

α v (x, t ) = α g (x, t );
and we also need to guarantee :

α v (x, t ) + α l (x, t ) + α m (x, t ) = 1.
since components indexed by v, l , m are immiscible. This means that one should only consider two independent statistical fractions, which are -arbitrary-chosen to be α m , α l in the sequel. With some abuse of notations, the state variable W l v g m now stands for :

W l v g m = (α m , α l , m k , m k U k , α k E k ) ∈ R 14 wi t h k ∈ (l , v, g , m).
Using similar notations as in the previous sections, we define the interfacial velocity

V l v g m i (W l v g m ) as : V l v g m i (W l v g m ) = k∈(l ,v,g ,m) β k (W l v g m )U k with β k (W l v g m ) ≥ 0,
and still keeping the Galilean Invariance constraint :

k∈(l ,v,g ,m) β k (W l v g m ) = 1
Now, the whole model will read :

           ∂ t (α k ) + V l v g m I (W l v g m )∇α k = φ l v g m k (W l v g m ) ; ∂ t (m k ) + ∇. (m k U k ) = Γ l v g m k (W l v g m ) ; ∂ t (m k U k ) + ∇. (m k U k ×U k + α k P k I d ) + Π l v g m kl (W l v g m )∇α l + Π l v g m km (W l v g m )∇α m = S l v g m Q k (W l v g m ) ; ∂ t (α k E k ) + ∇. (α k U k (E k + P k )) -Π l v g m kl (W l v g m )∂ t (α l ) -Π l v g m km (W l v g m )∂ t (α m ) = S l v g m E k (W l v g m ) . (1.48) for : k ∈ (l , m, v, g ).
Let us now consider the following entropy-entropy flux pair η l v g m , F l v g m η defined by :

η l v g m = k∈(l ,m,v,g ) m k S k (P k , ρ k ) and : F l v g m η = k∈(l ,m,v,g ) m k S k (P k , ρ k )U k 1.
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Standard computations enable to derive :

∂ t η l v g m + ∇. F l v g m η + j ∈(l ,m) B j (W l v g m )∇α j = R H S l v g m η (W l v g m ) .
(1.49)

We have (see [HHQ21 ;Hér21]) :

Property 5 (Interfacial pressure closure laws in system (1.48))

-There exists a unique set of eight interfacial pressures Π

l v g m i j (W l v g m ), with i ∈ (l , v, g , m), j ∈ (l , m), such that : j ∈(l ,m) B j (W l v g m )∇α j = 0 and : j ∈(l ,m) i ∈(l ,v,g ,m) Π l v g m i j (W l v g m )∇α j = 0 -The latter interfacial pressures Π l v g m i j
(W l v g m ) comply with the Realizable Interfacial Pressure (RIP) condition.

□

We refer to [HHQ21 ; Hér21] which give a proof for the first item. Owing to the form of admissible closure laws for the source terms φ

l v g m k (W l v g m ) , S l v g m Q k (W l v g m ) and

S l v g m E k

(W l v g m ) (see [HHQ21]), the preservation of the RIP condition can be easily checked, considering initial null velocities, initial pressure fields such that : P l (x, t = 0) = P m (x, t = 0) = P 0 ; P v (x, t = 0) = P 1 ; P g (x, t = 0) = P 0 -P 1 and uniform initial temperature fields :

T v (x, t = 0) = T g (x, t = 0) = T l (x, t = 0) = T m (x, t = 0) = T 0
We focus now on the following closure law for the interfacial velocity :

V l v g m I (W l v g m ) = U m (1.50)
and for the statistical fraction evolution :

φ l v g m l (W l v g m ) = K l (W l v g m )(P l -P v -P g ) ; φ l v g m m (W l v g m ) = K m (W l v g m )(P m -P v -P g ) (1
.51) where both functions K l (W l v g m ) and K m (W l v g m ) take positive values, and we note :

|∆P | = max |P l -P v -P g )|, |P m -P v -P g )| (1.52)
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We consider the subsystem :

     ∂ t (α k ) = φ l v g m k (W l v g m ) ; ∂ t (m k ) = 0 ; ∂ t (m k U k ) = 0 ; ∂ t (α k E k ) -Π l v g m kl (W l v g m )∂ t (α l ) -Π l v g m km (W l v g m )∂ t (α m ) = 0 .
(1.53) and we still note 

A k = ρ k c 2 k /α k .
m m ∂ P m ϵ m (P m , ρ m ) K m A m + K l A l + (A v + A g )(K m + K l ) ≥ K m |∆P | (1.54)
with some abuse of notation

K k = K k (W l v g m ),
and also :

m m ∂ P m ϵ m (P m , ρ m ) A l A m + (A v + A g )(A l + A m ) ≥ A l + 2(A v + A g ) |∆P | (1.55) still noting : A k = ρ k c 2 k α k .
Then the pressure relaxation is guaranteed for solutions of (1.53).

□

We refer to section 4.3 in [HHQ21] for more details.

Concluding remarks

-We first recall that the four models recalled in (1.4), (1.19), (1.40), or introduced in [HHQ21], which have been discussed in the present paper, comply with the general specifications first used in [Coq+02], which means that :

• Smooth solutions of the global sets of PDEs, including source terms, comply with the entropy inequality for the mixture, and this in turn not only provides a unique definition of interfacial pressures, but it also gives a relevant framework for closure laws of source terms. Evenmore, the former interfacial pressures were shown to agree with the RIP condition ;

• Owing to the LD structure of the coupling wave associated with the eigenvalue λ = V I , unique field-by-field jump conditions can be derived for these models. This is a crucial point, and of course it is mandatory if one aims at computing flows where shock patterns arise. Defficiencies of other strategies

1. Pressure relaxation in some multiphase flow models -1.5. Concluding remarks were pointed out some time ago in [Gui07], while restricting to compressible two-phase flow models ;

• Though all models contain non-conservative first-order contributions in the convective subset, associated systems of PDE can be symmetrized, far from resonance states. This can be simply shown, using two different tools (see [Coq+14b ; HM19 ; Hér20 ; HHQ21] and also [GMS17] for a different proof). Of course a straighforward basic consequence is that these models are hyperbolic in the same framework. Another one concerns the existence of smooth solutions [Kat75 ; SK85].

-We have focused herein on the pressure relaxation process, thus omitting the velocity and temperature relaxation process, which are of course an intrinsic part of all models considered in the three previous sections. We refer to [Hér20 ; Hér21 ; Hér22] that provide more information on the latter two process, and also to appendix C which briefly summarizes the relaxation behaviour of velocity variables in the three-phase flow model (1.19).

-It has been shown that some threshold effects may arise in the pressure relaxation procedure, unless one restricts to barotropic models (see [Hér16 ;BH19]). More over, it has been emphasized that the return towards pressure equilibrium is monotone for the two-phase flow models (1.4) and (1.40) ; meanwhile, some -stable-oscillatory behaviour may be observed in three-phase flow models such as (1.19) or the one introduced in [HHQ21].

-We pointed out that the RIP condition, which is recalled in appendix A, is indeed another mandatory building block in order to derive relevant models and closure laws for so-called interfacial pressures. This is not only true for two-phase or three-phase flow models with immiscible components, where it may be understood as a "consistency" condition (see section 2 and 3), but it is also valid when tackling models that aim at describing fast transient multiphase flows including non condensables gases (see section 4).

-The latter properties concerning pressure, velocity and temperature relaxation process at the continuous level may be used when deriving numerical methods.

Restricting first to the two-phase flow framework, and applying for the fractional step technique, this has been first used in [GHS04] and [AC12]. It has also been improved in [Gal+10 ;HH12] ; one difference between the latter two and the former is that the exact conservation of the total energy of the mixture is enforced, together with the preservation of the min-max principle for the statistical fractions, solving a non-linear 3x3 system with discrete unknowns α n+1 l , P n+1 l , P n+1 v , resulting from a simple implicit Euler discretization of the total energy balance within each phase, and of the governing equation for the statistical fraction.

1. Pressure relaxation in some multiphase flow models -1.5. Concluding remarks -This simple strategy was also extended to the three-phase framework in [BH19] in the barotropic case first, and then in [BH21] when accounting for energy balances, though choosing slightly distinct algorithms. The leading idea here consists in computing the pressure relaxation process with an implicit scheme, considering an approximate solution of (1.38), and then enforcing the saturation condition :

k∈(l ,v,m) α n+1 k = 1
while ensuring the preservation of the total energy for the mixture, and keeping two frozen entropies, in order to comply with the continuous requirements. This ends up with the resolution of a scalar non-linear equation with one unknown P k 0 . Nonetheless, in some extreme cases corresponding to the vapor explosion situation, a lack of robustness was still observed (see [BH21]), which suggests to investigate even more stable techniques. In order to cure this weakness, an extension of the latter has been recently proposed (see appendix B), which is currently investigated, while focusing on the three-phase flow model ( 1. Pressure relaxation in some multiphase flow models -Références

Appendix A : The RIP condition

We define in this appendix the Realizable Interfacial Pressure (RIP) condition, For that purpose, we focus here on the case of immiscible components, but this principle may be easily extended to any multiphase framework, such as those discussed in the present paper. Evenmore, for the sake of clarity, we restrict to the three-phase framework (1.19), without any mass transfer.

We define some initial condition : W 0 (x) = W (x, t = 0), such that the flow is still :

U k (x, t = 0) = 0 ,
with a uniform pressure field :

P k (x, t = 0) = P 0
and temperature profiles within phase k in agreement with :

T k (x, t = 0) = T 0 (x).
One expects in that case that the fluid will remain steady, that is :

∂ t ψ = 0 whatever ψ is.
Obviously, the source term S(W 0 (x)) vanishes (see [BH21]), and plugging W 0 (x) in system (1.19), while using the closure law (1.18), we get at once :

           ∂ t (α k ) = 0 ; ∂ t (m k ) = 0 ; ∂ t (m k U k ) + P 0 ∇α 0 k + j ∈(l ,v,m), j ̸ =k Π k j (W 0 )∇α 0 j = 0 ; ∂ t (α k E k ) = 0 .
(1.56)

Thus the flow will remain steady if, for all k ∈ (l , v, m) :

j ∈(l ,v,m), j ̸ =k (Π k j (W 0 ) -P 0 )∇α 0 j = 0
or in other words : Π i j (W 0 ) = P 0 for i ̸ = j , i and j in (l , v, m). This precisely corresponds to the Realizable Interfacial Pressure (RIP) condition. To our knowledge, this is not clearly stated in the standard multiphase flow literature.

The RIP condition must be slightly modified when considering hybrid models in-

1.
Pressure relaxation in some multiphase flow models -Références cluding some miscible and immiscible components, in order to account for the counterpart of Dalton's law.

Appendix B : Pressure relaxation algorithms for the multiphase flow models (1.40) and (1.19) The main objective here is to define two pressure relaxation algorithms in order to obtain approximate solutions of ODE arising in the three-field two-phase flow model (1.40) associated with [HM19], while restricting to the sole pressure effects.

In a third part we give some numerical results that are obtained while focusing on the three-phase flow model [Hér07] involving immiscible components, the governing equations of which are recalled in (1.19).

1. We focus first on the hybrid two-phase flow model (1.40), still using the closure law :

V l v g I (W l v g ) = U l
for the interfacial velocity. Hence, starting from the pressure relaxation model :

     ∂ t α g = K g (W l v g )(P v + P g -P l ) ; ∂ t (m k ) = ∂ t (m k U k ) = 0 ; ∂ t (α k E k ) -Π l v g k (W l v g )∂ t α g = 0 .
(1.57) with :

K g = α g (1 -α g )
Π 0 τ P , standard calculations yield :

∂ t (S k ) = 0
for k = g , v, and also :

k∈(l ,v,g ) ∂ t m k ϵ k (P k , ρ k ) = 0
In order to account for pressure relaxation effects associated with (1.57), a first algorithm consists in taking all steady states into account. This can be achieved by eliminating all variables but α g . Eventually, this ends up in looking for the solution α g of the following scalar equation :

H (α g ) = 0 (1.58)
where :

H (α g ) = α g -α 0 g -∆t α g (1 -α g ) Π 0 τ 0 P P v ( m 0 v α g , S 0 v ) + P g ( m 0 g α g , S 0 g ) -P l ( m 0 l 1 -α g , εl (α g ))
1. Pressure relaxation in some multiphase flow models -Références setting : Turning now to the existence of solutions α g ∈ [0, 1] for equation (1.58), we assume that both the EOS for the gas phase and the vapor are perfect gas EOS, and meanwhile, that a stiffened gas EOS holds for the liquid phase, so that :

m l εl (α g ) = k∈(l ,v,g ) m 0 k ϵ k (P 0 k , ρ 0 k ) - k∈(v,g ) m 0 k ϵ k (P k (ρ k (α g ), S 0 k ), ρ k (α g )) with ρ k (α g ) = m 0 k α g for k = v,
P k = (γ k -1)ρ k ϵ k for k = v, g ; P l + γ l Π l = (γ l -1)ρ l ϵ l with γ k > 1, for k ∈ (l , v, g ).
It may be checked that :

lim X →0 + H (X ) = -∞ ; lim X →1 -H (X ) = a 0 > 0
whatever the time step ∆t is. This implies that (1.58) admits at least one solution in the admissible range. The proof of uniqueness can be achieved since the function H (X ) is monotone.

Once α g has been computed, it only remains to update the remaining variables.

2. A second strategy may be considered, which is more focused on the pressure relaxation process. We consider now the equivalent form of (1.57), which writes :

               ∂ t (m k ) = 0 f or k ∈ (l , v, g ) ; ∂ t (S k ) = 0 f or k ∈ (v, g ) ; ∂ t k∈(l ,v,g ) m k ϵ k (P k , ρ k = 0 ; ∂ t (∆P ) = -K g (W l v g ) A l + A v + A g + (m l ∂ P l ϵ l (P l , ρ l ) ) -1 ∆P ∆P .
(1.59) where ∆P = P v + P g -P l , remembering that :

α v -α g = 1 -α l -α g = 0.
The algorithm is now twofold :

-Compute an approximate value ∆P n+1 of the pressure gaps ∆P at time t n+1 , by solving the last equation of (1.59).

1. Pressure relaxation in some multiphase flow models -Références -Define Y = p n+1 g and note that :

p n+1 l = p n+1 v + Y -∆P n+1
Owing to the constraint : α v -α g = 0, we may deduce p n+1 v as a function of Y , solving :

m 0 v ρ v (p n+1 v , S 0 v ) = m 0 g ρ g (Y , S 0 g )
which is noted p n+1 v (Y ) in the sequel. By the way, we note that p n+1 v (Y ) is increasing wrt Y . Due to the invariance of the sum of internal energies, we get at once :

m 0 l εl (Y ) = k∈(l ,v,g ) (m k ϵ k ) 0 -m 0 v ϵ v (p n+1 v (Y ), S 0 v ) -m 0 g ϵ g (Y , S 0 g )
Eventually, it remains to solve the following scalar equation of unknown Y :

G (Y ) = 0 (1.60)
where :

G (Y ) = m 0 v ρ v (p n+1 v (Y ), S 0 v ) + m 0 l ρ l (p n+1 v (Y ) + Y -∆P , εl (Y )) -1
Considering similar assumptions as before for the three EOS for liquid, vapor and gas phases, it is easy to verify that :

lim Y →0 + G (Y ) = +∞ ; lim Y →+∞ G (Y ) = -1 > 0
and also that G (Y ) is decreasing.

Thus we may conclude that the solution Y = P n+1 g ∈ [0, +∞[ of (1.60) exists and is unique.

-Eventually update all remaining components. 3. To conclude, we show now an application of the latter techniques in the framework of the three-phase flow model (1.19).

The exact solution is not recalled herein, and is taken from appendix 4 in [BH21], which also provides the EOS within each phase, and the initial conditions of the run.

We use the previous pressure relaxation algorithm, which is adapted to the threephase flow model (1.19).
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We first plot in figure (1.1) the L 1 norm of the error on the statistical fraction α 1 , at time t = τ P /2, considering successively two different values of τ P = 10 -2 and τ P = 10 -5 . We obviously retrieve the expected first order rate of convergence. The two curves are almost exact translations of one another.

In figure (1.2), the time evolution of the three pressures is given, considering two different time steps. where ∆u kl = U k -U l . We consider solutions of the following subset :

           ∂ t (α k ) = ∂ t (m k ) = 0 ; ∂ t (m k U k ) = j ̸ =k e j k (W t p f m )∆u j k ; ∂ t (α k E k ) = j ̸ =k V j k e j k (W t p f m )∆u j k .
(1.62) with V j k = (U j +U k )/2, and with symmetric positive functions e j k (W t p f m ) involving velocity relaxation time scales τ U j k (see [Hér20] ). We have the following result :

Property 7 (Velocity relaxation process) :

We consider solutions ∆u(t ) of (1.62). These guarantee the return towards velocity equilibrium, whatever the initial condition ∆u(0) is.

□
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Starting from (1.62), we get at once :

∂ t (∆u) = -R u ∆u (1.63)
where the matrix R u ∈ R 2×2 is : The determinant of matrix R u : 

R u =   
d et (R u ) = 1≤k<l ≤3 1 m k m l × (
µ u ± = t r ace(R u ) ± (∆ u ) 1/2 /2 setting : ∆ u = (t r ace(R u )) 2 -4d et (R u )
. These guarantee the -not necessarily uniformdecay of relative velocities u ku l . □

Introduction

Many industrial studies urge the development of suitable models and reliable numerical tools, in order to predict two-phase or even multiphase flows. While restricting to two-phase flows, at least two different modelling strategies may be considered.

A first one basically assumes that inner processes involving various relaxation time scales are such that a full instantaneous equilibrium is reached everywhere in the flow. This has led to a rather broad class of so-called homogeneous two-phase flow models, among which we may at least cite [ACK00 ; BK90 ; FKA10 ; Jao01 ; Hel05].

When very fast transients are at stake or when droplet atomization occurs, a second strategy, which is grounded on full disequilibrium models, may be retained. The present contribution clearly lies within this framework. More precisely, focus will be given on a class of two-phase flow models that is now well-known,see [BN86 ; SA99 ; Coq+14a ; Coq+02 ; GHS04 ; GSS99 ; Kap+97 ; Rai21 ; GGP97 ; GS02 ; MHR16] among others. It must be recalled that three (respectively four) relaxation time scales are embedded in these gas-liquid (respectively liquid-vapour, thus including mass transfer) flow models. The latter time scales obviously require suitable closure laws, that can be found in the literature, see [Gav14 ; BH15 ; BH16 ; BK90 ; Dow+96 ; Ish75 ; Pic17] among others. These relaxation time scales may be quite distinct and may depend on the application. Assumptions regarding some relaxation time scales may lead to relaxation models such as [FL11 ; Lun12 ; FL19 ; HMG21] among others. In the present work, no hypothesis concerning the relaxation time scales is retained, in order to preserve the widest range of applications.

Moreover, the dynamics of the underlying relaxation process in Baer-Nunziato type models has not been thoroughly studied yet. This question is often (implicitly) addressed by seeing the total entropy as a Lyapunov function. In the homogeneous case, i.e. without convective terms, that ensures the stability close to the steady state, or equivalently here, close to the mechanical and thermodynamic equilibrium between the two-phases. However, in many cases, such as vapour explosion or loss-of-coolant accidents, the initial conditions may be set far from thermodynamic equilibrium.

2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -Thus, a better understanding of the effective relaxation process is crucial, in order to guarantee the return to equilibrium. In this paper, conditions of effective relaxation are exhibited and discussed for various equations of state (EOS).

Up to now, most of the numerical strategies that have been proposed in order to obtain approximate solutions of these non-equilibrium two-phase flow models, are grounded on the use of a two-step algorithm. The latter includes : (i) an explicit evolution step that treats all convective contributions together with help of Riemann solvers, relaxation solvers or Discontinuous Galerkin methods, see for example [Coq+14a ; GHS04 ; Sal19 ; SWK06 ; TKN11 ; TT10 ; ACR12 ; CHS17 ; Coq+21 ; Gui07 ; Rai21 ; Sal12], and (ii) an implicit step that deals with source terms associated with the former relaxation time scales, as in [ACR12 ; Coq+21 ; Cro+15 ; Gal+10 ; GHS04 ; Gui07 ; HHM17 ; Pel22 ; PS19 ; Rai21 ; Sal12] among others. It seems worth emphasizing that, in the framework of immiscible three-phase flow models, such as those proposed in [Hér07], the problem of the preservation of admissible states through the convective subsystem (step (i)) has been addressed in section 2.2.4 of [BH21], while focusing on simple Stiffened Gas EOS. This result obviously applies in the framework of two-phase flow models considered here. The first explicit step (i) introduces some constraint on the time step for obvious stability issues. This, in turn, renders the implicit treatment of step (ii) mandatory.

Concerning the second implicit step (ii), a fractional step approach has been widely applied up to now, that treats separately the distinct relaxation time scales, see [Coq+21 ; Gal+10 ; Rai21 ; Cro+15 ; ACR12 ; Gui07] among others. In addition, the numerical treatment of the source terms, using strong hypothesis on some relaxation time scales, has been investigated in the literature, see for example [PS19 ; Pel22 ; HHM17]. However, the fractional step approach used for handling the source terms may suffer from deficiencies, and even lead to a blow-up of the code in some extreme situations, see for example [BH21] which tackles the problem of vapour explosion. Hence, this motivates to investigate further on the set of coupled ODEs accounting for source terms, and meanwhile derive relevant and more coupled schemes in order to tackle extreme situations. In the present work, a new robust numerical scheme without any assumption on the relaxation time scales is presented.

In the following, emphasis is given on the stability of the scheme. We will also examine whether the accuracy of the new scheme is improved, or not, on a given mesh size, by comparing it with the fractional step approach.

The paper is organised as follows. The governing set of equations is recalled first, and the main properties of the model are given. A few results are then provided and discussed, which concern the true inner relaxation process with respect to temperature, pressure, and velocity in gas-liquid flow models. Afterwards, two distinct algorithms 2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.1. Governing equations of the two-phase flow model and main properties will be considered. The first one is classical. It takes the three (respectively four) relaxation effects into account in a fractional step approach involving three steps when dealing with gas-liquid flows (respectively four in the case of liquid-vapour flows). The second one relies on the investigation of coupled relaxation effects, as discussed in section 1. Some important properties of the latter schemes are detailed. Both schemes are tested against Chauvin experiment, and a more complex situation arising from the vapour explosion framework. As expected, the comparison of the two schemes is clearly in favour of the coupled algorithm. Appendices complete the paper. In particular, Appendix 7 discusses the influence of the ratio of pressure and thermal relaxation time scales, whereas Appendix 8 highlights the influence of the interfacial area.

Governing equations of the two-phase flow model and main properties

We first introduce the set of governing equations of the two-phase flow models examined in the sequel. These include the mass balance equations, the momentum and energy balance equations, together with the evolution of the statistical fractions. We also refer the reader to some companion references [BN86 ; Coq+02 ; Gal+10 ; Gav11 ; GGP97 ; GS02 ; GSS99 ; HM18 ; HMG21 ; Kap+97 ; MHR16 ; Rai21 ; SA99] that may help and provide additional details.

Both gas-liquid flows (without any mass transfer), and liquid-vapour flows, which involve a unique component (basically water in our framework), will be examined in the sequel. Thus, we introduce rather logical notations as follows.

The statistical fractions of the immiscible liquid phase and the gas/vapour phase are noted α l (x, t ) and α g ,v (x, t )(for gas and vapour respectively). They are such that :

α l (x, t ) + α g ,v (x, t ) = 1 (2.1)
In order to ease notations, we will favour the liquid phase (indexed by l ) in both cases. All variables in the gas (respectively the vapour) phase will be indexed by g (respectively by v).

Within the k-phase, and for k ∈ (l , g ) or k ∈ (l , v), U k , P k , ρ k , m k = α k ρ k and E k will respectively denote the phasic mean velocity, mean pressure, mean density, mass fraction and mean total energy, setting :

E k = ρ k (ϵ k (ρ k , P k ) +U 2 k /2) (2.2)
where ϵ k (ρ k , P k ) denotes the internal energy within phase k. The gas-liquid state variable W l g will be noted :

W l g = (α l , m l , m g , m l U l , m g U g , α l E l , α g E g ) (2.3)
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W l v = (α l , m l , m v , m l U l , m v U v , α l E l , α v E v ) (2.4)
In the sequel, in order to ease notations, the state variable is called W ; W can refer to W l g or W l v , depending on the current treated case. If no precision is given, then the results stand true for both cases.

Open set of equations

We may now write the governing set of PDE, which correspond to balance equations for mass, momentum and energy, within phase k, and for the statistical fraction α l . These are :

       ∂ t (α l ) + V I (W )∇α l = φ l (W ) ; ∂ t (m k ) + ∇ • (m k U k ) = Γ k (W ) ; ∂ t (m k U k ) + ∇ • (m k U k ×U k + α k P k I ) -Π I (W )∇α k = S Q k (W ) ; ∂ t (α k E k ) + ∇ • (α k U k (E k + P k )) + Π I (W )∂ t (α k ) = S E k (W ) . (2.5) for k ∈ (l , g ), or k ∈ (l , v).
When focusing on gas-liquid flows, we obviously have :

Γ l (W ) = Γ g (W ) = 0 , (2.6) 
whereas for liquid-vapour flows, the following constraint holds :

Γ l (W ) + Γ v (W ) = 0 . (2.7)
For k ∈ (l , g ), or k ∈ (l , v), interfacial transfer terms arising in momentum and energy balance equations, comply with :

k S E k (W ) = 0 (2.8)
together with :

k S Q k (W ) = 0 (2.9)

Entropy-consistent closure laws

We assume that the interfacial velocity V I (W ) takes the form :

V I (W ) = β(W )U l + (1 -β(W ))U v,g (2.10) with β(W ) ∈ [0, 1]
. Hence, it satisfies Galilean invariance. We will specify later on some scalar functions β(W ) that will guarantee unique field by field jump conditions (see also the reference paper [Coq+02]). The next definitions require introducing phasic 2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.1. Governing equations of the two-phase flow model and main properties entropies S k (ρ k , P k ) and temperatures T k (ρ k , P k ), which are such that :

c 2 k ∂ P k S k (ρ k , P k ) + ∂ ρ k S k (ρ k , P k ) = 0 , (2.11) 
where :

ρ k c 2 k = ( P k ρ k -ρ k ∂ ρ k ϵ k (ρ k , P k ) )/(∂ P k ϵ k (ρ k , P k ) ) (2.12)
and : 1

T k = ∂ P k S k (ρ k , P k ) ∂ P k ϵ k (ρ k , P k ) . ( 2 

.13)

Using the latter definitions, we get the admissible interfacial pressure Π I (W ) as :

Π I (W ) = χ(W )P l + (1 -χ(W ))P v,g (2.14)
where the function χ(W ) is obtained straightforwardly :

χ(W ) = (1 -β(W ))T v,g (1 -β(W ))T v,g + β(W )T l (2.15)
We emphasize that this enables to recover the standard Baer-Nunziato closure

Π I (W ) = P l , V I (W ) = U g ,v .
It also guarantees the Realisable Interfacial Pressure condition (see appendix 7 and [HJ23b]). We recall now some classical results.

Property 1 :

(Structure of the one-dimensional convective subset) We restrict to the one-dimensional framework. We have the following results : -The homogeneous convective part (left-hand side) of system (2.5) is hyperbolic.

The seven real eigenvalues read :

λ 0 (W ) = V I (W ) ; λ 1 (W ) = U l -c l ; λ 2 (W ) = U l ; λ 3 (W ) = U l + c l ; λ 4 (W ) = U v,g -c v,g ; λ 5 (W ) = U v,g ; λ 6 (W ) = U v,g + c v,g . (2.

16)

Right eigenvectors span the whole space away from the resonance state : 

|U k -V I (W )| = c k (2.17) -For k ∈ (l , v) or k ∈ (l ,
β(W )(1 -β(W )) = 0 (2.18)
or if : 

β(W ) = m l m l + m v,g . ( 2 

□

The proof of the first three points can be found in [Coq+02], while the fourth one is available in [Coq+14b]. Moreover, details pertaining to Riemann invariants within fields associated with eigenvalues λ 1-6 can also be found in the latter references. Even more, explicit analytic forms of Riemann invariants in the coupling wave can be found in the particular case β(W ) = 0 in [EB92] and [Coq+02]. Owing to the LD structure of the coupling wave, when β(W ) is chosen in a suitable way, unique jump conditions may be defined in GNL fields for system (2.5). This was pointed out in [Coq+02], and a direct consequence is that the computation of shocks is meaningful in that case, since non-conservative products are well-defined in shock waves (in the non-resonant case) : convergent approximations of shocks are not scheme dependent (see [Gui07]). Now, coming back to the three-dimensional setting, we introduce the entropy -entropy flux pair (η, F η ) :

η = k m k S k (ρ k , P k ), F η = k m k S k (ρ k , P k )U k , (2.20) 
Considering smooth solutions, we can examine the time evolution of η in system (2.5).

Straightforward calculations enable to get : In order to ease the presentation and calculations, we rewrite source terms in a slightly different form and define translated unknowns D k (W ) and ψ k (W ) such that :

∂ t η + ∇ • F η = R H S η (W ) . ( 2 
     D k (W ) = S Q k (W ) - U l +U v,g 2 Γ k (W ) ; ψ k (W ) = S E k (W ) -V E I (W )D k (W ) - U l U v,g 2 Γ k (W ) ; (2.22)
Taking interfacial constraints on S Q k (W ) and S E k (W ) into account, we must fulfil :

D l (W ) + D v,g (W ) = 0 , (2.23) 
and also :

ψ l (W ) + ψ v,g (W ) = 0 . (2.24)
We consider a consistent and Galilean invariant formulation for V E I (W ), hence :

V E I (W ) = β E (W )U l + (1 -β E (W ))U v,g . (2.25) 93 
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where β E (W ) must lie in [0, 1]. We classically note in the sequel :

µ k = h k -T k S k (2.26)
where the free enthalpy h k writes :

h k = ϵ k (ρ k , P k ) + P k ρ k (2.27)
Eventually, considering the notations :

           ∆P = P l -P v,g , ∆U = U l -U v,g , ∆T = T l -T v,g , ∆µ = µ l T l - µ v,g T v,g , (2.28) 
we obtain the following classical result ([BN86 ; GHS04 ; Lab08 ; Cro+15 ; MHR16 ; Rai21]) :

Property 2 : (Entropy consistent source terms for a class of two-phase flow models)

We consider the following source terms :

       φ l (W ) = K (W )∆P , D l (W ) = -d (W )∆U , ψ l (W ) = -q(W )∆T , Γ l (W ) = -Λ(W )∆µ , ( 2 

.29)

Then smooth solutions of system (2.5) agree with :

∂ t η + ∇. F η = R H S η (W ) ≥ 0 (2.30)
providing positive functions K (W ), d (W ), q(W ), Λ(W ).

□

Proof.

The proof is simple. The right-hand side term R H S η is simply :

R H S η = 1 
T l T v,g ψ l (W ) T v,g -T l + 1 -β E (W ) T l + β E (W ) T v,g D l (W )(U v,g -U l ) + 1 -χ(W ) T l + χ(W ) T v,g φ l (W )(P l -P v,g ) +( µ v,g T v,g - µ l T l )Γ l (W ) (2.31)
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Note that the second, third and fourth closure laws arising in (2.29) are also entropyconsistent when focusing on single-pressure two-fluid six-equation models ( [Ish75]). Closure laws for heat transfer and drag coefficients arising in q(W ) and d (W ) can be taken from the standard literature (see [Ish75] among others). Besides, references [Gav14 ; BH15 ; BH16 ; Hil19] provide closure laws for the pressure relaxation time scales τ P (W ) involved in K (W ).

Relaxation process in a class of two-phase flow models 2

When focusing on gas-liquid flows, where no mass transfer occurs, a straightforward question arises, which concerns the (physically expected) decay of velocity, pressure and temperature gaps. Note that this problem has been investigated recently in [HJ23b], while focusing on the sole pressure gaps, though examining several twophase or multiphase flow models. While restricting to the present class of gas-liquid two-phase flow models, the problem at stake here is whether the whole relaxation process is active for the three quantities ∆P , ∆U and ∆T . For that purpose, we consider some homogeneous situation with no gradient of mean variables, thus considering an initial condition for system (2.5), such that : ∇ψ(x, t = 0) = 0 (2.33) whatever ψ stands for. Hence, system (2.5) reduces to :

       ∂ t (α l ) = φ l (W ) ; ∂ t (m k ) = 0 ; ∂ t (m k U k ) = S Q k (W ) ; ∂ t (α k E k ) + Π I (W )∂ t (α k ) = S E k (W ) , (2.34) 
2. Consider the vector ∆ defined at each point (x,t), the components of which are quantity discrepancies between phases, corresponding to states that make the source terms vanish. If the solution of the governing equations, without any convective term, complies with :

∂ t ∥∆∥ L 2 ≤ 0 (2.32)
then the relaxation process is said to be effective.
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                 ∂ t (α l ) = φ l (W ) ; ∂ t (α l E l ) + Π I (W )∂ t (α l ) = S E l (W ) ; ∂ t (m l U l ) = S Q l (W ) ; ∂ t (m l ) = ∂ t m g = 0 ; ∂ t m l U l + m g U g = 0 ; ∂ t α l E l + α g E g = 0 .
(2.35) Equipped with this system (2.34), we may write the governing equations for the three quantities ∆P , ∆U and ∆T .

If we note :

∆ l g = (∆U , ∆T, ∆P ) T (2.36)
simple calculations enable to get :

∂ t ∆ l g = -R l g (W )∆ l g (2.37)
where the matrix R l g (W ) ∈ M 3 (R) is given by :

R l g (W ) =    a l g UU (W ) 0 0 a l g T U (W ) a l g T T (W ) a l g T P (W ) a l g PU (W ) a l g P T (W ) a l g P P (W )    (2.38) 
Coefficients in matrix R l g (W ) read :

a l g UU (W ) = d (W ) 1 m l + 1 m g , ( 2 
.39) together with3 :

                     a l g T U (W ) = d (W )∆U β E (W ) -1 m l ∂ T l (ϵ l ) | ρ l + β E (W ) m g ∂ T g ϵ g | ρ g , a l g T T (W ) = q(W ) 1 m l ∂ T l (ϵ l ) | ρ l + 1 m g ∂ T g ϵ g | ρ g , a l g T P (W ) = K (W ) Π I -ρ 2 l ∂ ρ l (ϵ l ) | T l m l ∂ T l (ϵ l ) | ρ l + Π I -ρ 2 g ∂ ρ g ϵ g | T g m g ∂ T g ϵ g | ρ g , (2.40) 
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                     a l g PU (W ) = d (W )∆U β E (W ) -1 m l ∂ P l (ϵ l ) | ρ l + β E (W ) m g ∂ P g ϵ g | ρ g , a l g P T (W ) = q(W ) 1 m l ∂ P l (ϵ l ) | ρ l + 1 m g ∂ P g ϵ g | ρ g , a l g P P (W ) = K (W ) A l + A g + ( χ(W ) -1 m l ∂ P l (ϵ l ) | ρ l + χ(W ) m g ∂ P g ϵ g | ρ g )∆P .
(2.41)

We have used the following notation here for k = l , g :

A k = ρ k c 2 k α k (2.42)
Thus, we get :

Property 3 : (Relaxation effects in a class of gas-liquid flow models) We assume that equations of state within each phase are such that, for k = l , g :

0 ≤ ∂ T k (ϵ k ) | ρ k (2.43)
Considering positive functions K (W ), q(W ), d (W ), the relaxation process is guaranteed for solutions of (2.34), if eigenvalues of matrix R l g (W ) are real and positive, or if they are complex with a positive real part. This is guaranteed if the pressure gap ∆P is sufficiently small in the following sense :

(P g -P l ) (χ(W ) -1)α g ρ l ∂ P l (ϵ l ) | ρ l + χ(W )α l ρ g ∂ P g ϵ g | ρ g ≤ α g ρ l c 2 l + α l ρ g c 2 g , ( 2 

.44)

and if the following condition holds :

a l g T T (W )a l g P P (W ) -a l g T P (W )a l g P T (W ) q(W )K (W ) > 0 . (2.45) □ Proof.
The proof is simple and can be found in [Hér22]. We briefly recall it below.

-First, note that λ = a l g UU (W ) is an obvious real eigenvalue of matrix R l g (W ), and is positive.

-The remaining two eigenvalues of R l g (W ) are the two solutions λ ± of the secondorder polynomial : 

p(λ) = λ 2 -(a

□

For sake of clarity, conditions (2.43), (2.44) and (2.45) are specified and discussed below for various EOS.

To do so, we consider the specific case used in the sequel which is : χ(W ) = 0 and thus Π I = P g .

-First, we note that condition (2.43) stands true in most EOS as it corresponds to a specific capacity at constant volume, which is expected to be positive. -For a mixture of perfect gases :

P k = ρ k (γ k -1)ϵ k (2.48)
Conditions (2.44) and (2.45) always hold true, whatever the state variable W is. -For a mixture of Stiffened-Gases we have :

   P k + γ k Πk = ρ k (γ k -1)(ϵ k -ϵ k 0 ) C v k T k = ϵ k -ϵ k 0 - Πk ρ k (2.49)
where γ k > 1, Πk > 0 and ϵ k 0 are constants. Admissible states are such that :

P k + Πk > 0 and ϵ k -ϵ k 0 > 0.
Close to thermodynamic equilibrium, (2.44) is obviously satisfied. Condition (2.44) may be rewritten as : 

α g (P l + Πl ) + α l γ g + α g (γ l -1) (P g + Πg ) + α g (γ l -1)( Πl -Πg ) > 0 (2.
(m l C v l + m g C v g ) ρ l c 2 l α l γ l + ρ g c 2 g α g γ g ≥ Πl -Πg Πg -Πl T g + P g T g - P l T l + Πl (T l -T g ) T l T g (2.51)
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It must be emphasized that, close to the thermodynamic equilibrium, the righthand side of (2.51) behaves as -( Πl -Πg ) 2 /T g , and thus condition (2.45) is satisfied. This is an expected property as the entropy may be understood as a Lyapunov function of our system, owing to the closure of source terms (see property 2). Condition (2.51) -and thus (2.45)-, no longer holds, for any admissible state W , far from equilibrium. -For a mixture of Noble-Abel Stiffened-Gases [LS16] we have :

       P k + γ k Πk = ρ k (γ k -1) 1 -ρ k b k (ϵ k -εk 0 ) C v k T k = ϵ k -εk 0 - (1 -ρ k b k ) Πk ρ k (2.52)
where γ k > 1, Πk > 0, b k > 0 and εk 0 are constants. Admissible states are such that :

P k + Πk > 0, (1 -ρ k b k ) > 0 and ϵ k -εk 0 > 0.
Condition (2.44) writes as :

(γ l -1)(P l -P g ) < (1 -ρ l b l ) ρ l c 2 l + α l α g ρ g c 2 g
(2.53) Condition (2.45) is identical to the one exhibited for a mixture of Stiffened Gases (2.51).

In practice, for complex EOS, conditions (2.44) and (2.45) have to be checked in computer codes, in particular far from the thermodynamic equilibrium.

Remark 1 :

-We may also note that the threshold effect on ∆P arising in condition (2.44) has already been pointed out in [BH21]. It arises when taking energy balance into account, and it does not exist when restricting to the barotropic case (see [Hér16]). Its counterpart in the framework of immiscible three-phase flows and miscible two-phase flows is discussed in [HJ23b]. Straightforward numerical applications show that it can be hardly violated in practice. Thus, the latter constraint is indeed very weak. Actually, we may note that a simpler sufficient condition guarantees that it holds, whatever the values of statistical fractions are, which is :

|∆P |(| 1 ρ l ∂ P l (ϵ l ) | ρ l | + | 1 ρ g ∂ P g ϵ g | ρ g |) ≤ mi n(ρ l c 2 l , ρ g c 2 g ) (2.54)
-Moreover, a glance at the precise form of condition (2.45) shows that the relative amplitudes of time scales τ P (W ) and τ T (W ) respectively involved in closure laws of K (W ) and q(W ) have no impact on the latter condition. In order to close system (2.5), the functions q(W ), K (W ), Λ(W ) and d (W ) are to be given and thus, four positive relaxation time scales τ P , τ T , τ m and τ U must be introduced.

-Pressure relaxation coefficient :

K (W ) = α l α g ,v τ P P 0 (2.55)
with P 0 a positive reference pressure.

-Heat transfer relaxation coefficient :

q(W ) = m l C v l m g C v g ,v τ T (m l C v l + m g ,v C v g ,v ) (2.56) 
-Mass transfer relaxation coefficient :

Λ(W ) = m l m v τ m (m l + m v )Γ 0 (2.57)
with Γ 0 a positive reference fraction of µ T .

-Drag relaxation coefficient :

d (W ) = m l m g ,v τ U (m l + m g ,v ) (2.58)
Different forms of τ P , τ T , τ m and τ U arise from the literature ( ]). Some of them will be detailed in the following sections.

[Ish75], [Gav14], [BH15], [BH16], [Pic17],[BK90], [ Dow+96 

Finite volume techniques to compute system

(2.5)

We restrict herein to the computation of unsteady two-phase flows, while applying the two-fluid approach, and considering (2.5). Before going further on, we rewrite in a 2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system quite formal way system (2.5) as follows :

∂ t (W ) + ∇ • (F (W )) +C (W )∇α l = S(W ) (2.59)
where W denotes the so-called conservative variable introduced in (2.3) or (2.4). Thus, F (W ) denotes the conservative flux accounting for convective effects, while C (W ) collects non-conservative contributions arising from the left-hand side of (2.5). Eventually, S(W ) accounts for the right-hand side source terms in (2.5).

We emphasize that, in the sequel, we assume that shock relations are uniquely defined in model (2.5), and thus we will restrict for our applications to closure laws for the interfacial velocity V I (W ) detailed in Property 1, or other suitable laws that comply with the LD structure of the coupling wave λ 0 (W ) = V I (W ). Of course, this provides a suitable framework in order to verify algorithms (while computing the error), when shocks occur in the flow.

Due to specific applications including water-hammer, loss of coolant accidents, steam explosion and other extreme situations including shock structures and high energy transfers between fluids or phases, robust algorithms are required, and for that purpose, focus is usually given first on low-order time-space Finite Volume schemes (see

[EGH00 ; GR13]).
In this framework, a simple way to compute approximate solutions of system (2.5) consists in using the following hybrid implicit/explicit time scheme :

vol (Ω i ) W n+1 i -W n i -∆t n (S(W )) n+1 i = - Ω i t n+1 t n (∇ • (F (W )) +C (W )∇α l ) n d xd t
(2.60) setting : ∆t n = t n+1t n , noting vol (Ω i ) the volume of cell Ω i , and using an explicit approximate Riemann solver associated with the hyperbolic system (evolution step) :

∂ t (W ) + ∇ • (F (W )) +C (W )∇α l = 0 (2.61)
in order to get W # i solution of :

vol (Ω i ) W # i -W n i + ∆t n Ω i (∇ • (F (W )) +C (W )∇α l ) n d x = 0 (2.62)
in such a way that the entropy inequality holds true. Afterwards, the solution W n+1 i of the relaxation step :

vol (Ω i ) W n+1 i -W # i -∆t n (S(W )) n+1 i = 0 (2.63)
must be found within each cell.

This strategy has been used by many authors, in order to compute two-phase or 2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system multiphase flows (see among others [BH21 ; Cro+15 ; GHS04 ; Rai21]). Actually, it is rather well-suited for transient flows including shock waves, owing to the fact that :

-the implicit relaxation step enables to get rid of too heavy constraints linked with upper bounds on the time step ; -the explicit scheme involved in the evolution step is in some sense optimal in terms of accuracy, when focusing on fast pressure waves impinging solid structures, and meanwhile it automatically provides the dynamical time stepping.

Obviously, as it occurs in the single phase framework for weakly compressible flows, other numerical strategies should be preferred when aiming at computing low velocity flows, as proposed for instance quite recently in [RA22].

Before going further on, we would like to recall some suitable algorithms that provide meaningful approximations in the evolution step (2.61). Among others, note first that the simple Rusanov solver [Rus62] may be applied for that purpose. Moreover, four distinct schemes providing accurate approximations of the homogeneous part of the Baer-Nunziato model are :

-an approximate Godunov scheme, which has first been proposed in [SWK06] ; -a relaxation scheme that was then introduced in [Coq+14a ; Sal12] and extended in [Sal19] for three-phase flow ; -an HLLC approximate Riemann solver, which was proposed in [TT10] ; -another relaxation scheme that was described in [ACR12].

The reader is referred to the paper [CHS17] which provides a detailed comparison of L 1 norm of errors for the latter schemes, while focusing on test cases involving difficult Riemann problems. It also seems worth mentioning the recent Discontinuous Galerkin scheme described in [Coq+21]. Eventually, we point out the recent work [TV22] dedicated to the analysis of the Riemann problem associated with the Baer-Nunziato model. For all the simulations run in this paper, a robust Rusanov scheme [Rus62] adapted for the handling of non-conservative products is used.

We will now focus on two different strategies in order to get approximations of the set of coupled ODE :

∂ t (W ) = S(W ) (2.64)
In the sequel, we will consider :

V I (W ) = U l Π I (W ) = P g ,v (2.65)

Discrete source terms for gas-liquid flow models

2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system

The strategy consists in simulating the drag effects and thermodynamic effects separately. This approach can be justified by the block triangular structure of matrix R l g , see (2.38). Hence, the simulation of the source terms contains two steps : I : W # V el oci t y r el axat i on ---------------→ W n+1- II : W n+1-T her mod ynami c r el axat i on pr ocess ---------------------------→ W n+1

The same time step ∆t n is used within each step. The velocity relaxation process is taken from [GHS04] and recalled in Appendix 2.

For sake of readability, in sections 2.1 and 2.2, the state W n+1-will be referred as W n and ∆t n will be mentioned as ∆t .

Two approaches for the computation of the thermodynamic source terms

First, we recall that for a quantity Ψ, ∆Ψ is set as :

∆Ψ = Ψ l -Ψ g (2.66)
Two algorithms are detailed in order to simulate the thermodynamic part of the model (2.5) in the case of a mix of liquid and gas (i.e. without mass transfer).

A-Fractional step algorithm A first possible approach in order to account for source terms (2.34) is to use a fractional step scheme, which decouple (2.35). System (2.35), without the velocity relaxation (d (W ) = 0), is simulated in two implicit steps : I : W n P r essur e r el axat i on ---------------→ W n * II : W n * Heat t r ans f er -----------→ W n+1

The time step ∆t , given by the evolution step, is used for computing step I and step II. This idea of decoupling system (2.34) is quite standard and is already used in the literature (see [RA22], [Gal+10] for example).

I-The pressure relaxation algorithm :

This step is similar but different to the one used in [Gal+10]. It simulates the solution of the following system :

             ∂ t (α l ) = K (W )∆P ; ∂ t (m k ) = 0 ; (k ∈ {l , g }) ∂ t (m k U k ) = 0 ; (k ∈ {l , g }) ∂ t m l ϵ l + m g ϵ g = 0 m l ∂ t (ϵ l ) + P g ∂ t (α l ) = 0.
(2.67) 2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system

The equation (2.67.4) allows writing :

ξ n = m n l ϵ n l + m n g ϵ n g = m n * l ϵ n * l + m n * g ϵ n * g > 0 (2.68)
Solution of (2.67) also complies with : 

∂ t S g = 0 (2.
a P P = K (W ) ρ l c 2 l α l + ρ g c 2 g α g - 1 m l ∂ P l (ϵ l ) | ρ l ∆P (2.72)
It can be noted that the coefficient a P P is the one arising in R l g , see (2.38).

The pressure relaxation algorithm consists in three steps 4 .

Pressure relaxation algorithm :

Step 1 : Compute an approximate solution of (2.71) with an implicit Euler time discretization by considering the frozen coefficient a P P at time t n :

∆P n * = 1 1 + a n P P ∆t ∆P n (2.73)
Step 2 : Using the constraint (2.70) on the entropy S n * g = S n g and the conservation law of the sum of the internal energies (2.67.4), define :

         P n * g := P n * l -∆P n * ρ n * g := ρ g (P n * g , S n * g ) ϵ n * l := ξ n -m n g ϵ g (P n * g , S n * g ) m n l (2.74)
4. Given a thermodynamic function Ψ, with some abuse of notation, we still note in the sequel every change of variable of the function Ψ(P, T ) = Ψ(ρ, S) = Ψ(P, ρ) = Ψ(P, S) = Ψ(ρ, T ) as Ψ(P, T ) = Ψ(ρ, S) = Ψ(P, ρ) = Ψ(P, S) = Ψ(ρ, T ). 104 2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system Then compute P n * l by inverting the immiscible constraint :

m n l ρ l (P n * l , ϵ n * l ) + m n g ρ n * g -1 = 0 ⇔ G(P n * l ) = 0 (2.75)
Step 3 : Update the statistical fractions α n * l and α n * g :

     α n * l = m n l ρ l (P n * l , ϵ n * l ) α n * g = 1 -α n * l (2.76)
and the total energies : -For any mixture of two generalized stiffened gas EOS, the solution P n * l of step 2, in the admissible range, exists and is unique. Moreover, α n * l ∈ [0, 1].

   α n * l E n * l = m n l ϵ n * l + 1 2 m n l (U n l ) 2 α n * g E n * g = α n l E n l + α n g E n g -α n * l E n * l (2.

□

Proof. :

-If the pressure gap satisfies (2.44), then the coefficient a P P is positive and the discrete equation (2.73) is a contraction whatever the time step is.

-Let us consider a mixture of two generalized stiffened gases :

   (γ k -1)ρ k (ϵ k -ϵ k 0 ) = P k + γ k Πk S k -s k 0 = C v k l og (ϵ k -ϵ k 0 - Πk ρ k )ρ 1-γ k k (2.78)
with Πk a positive constant and ϵ k 0 and s k 0 constants.

Let us recall the constraint for the pressure in the case of a generalized stiffened gas :

P k + Πk > 0 (2.79)
2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system Thanks to (2.70), one can obtain :

α n * g = m n g γ k -1 1 γ k exp S n g -s g 0 γ g C v g P n * l -∆P n * + Πg 1 γ g (2.80)
By enforcing (2.67.4) one can deduce :

ϵ n * l = 1 m n l ξ n -α n * g P n * l -∆P n * + γ g Πg γ g -1 -m n g ϵ g 0 (2.81)
The immiscible constraint (2.1) can then be rewritten as follows :

(γ l -1) (m l ϵ l ) n * -m n l ϵ l 0 P n * l + γ l Πl + m n g (γ g -1) 1/γ g exp S n g -s g 0 γ g C v g P n * l -∆P n * + Πg 1 γ g -1 = 0 (2.82)
Which can be seen as :

H (P l ) = 0 (2.83)
Standard calculations show that the function H is decreasing and, using (2.79), that the bounds are :

   lim P l →+∞ H (P l ) = -1 lim P l →max(-Πl ,∆P -Πg )
H (P l ) = +∞ (2.84) which enables to conclude for P n * l , such that P n * l + Π l > 0 and P n * g + Π g > 0.

Thus, α n * l ∈ [0, 1], owing to (2.80) and (2.82).

□ II-The temperature relaxation algorithm :

It simulates the solutions of the following system :

             ∂ t (α l ) = 0 ∂ t (m k ) = 0 (k ∈ {l , g }) ∂ t (m k U k ) = 0 (k ∈ {l , g }) ∂ t m l ϵ l + m g ϵ g = 0 m l ∂ t (ϵ l ) + P g ∂ t (α l ) = -q(W )∆T.
(2.85)

The evolution of the temperature gap ∆T can be deduced from (2.85), it reads :

∂ t (∆T ) = -a T T ∆T (2.86)
2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system setting :

a T T = q(W ) 1 m l ∂ T l (ϵ l ) | ρ l + 1 m g ∂ T g ϵ g | ρ g (2.87)
With a T T arising in the matrix R l g , see (2.38).

The temperature relaxation algorithm consists in three steps.

Temperature relaxation algorithm :

Step 1 : Compute an approximate solution of the equation (2.86) with an implicit Euler time discretization by considering the coefficient a T T frozen at the time t n * :

∆T n+1 = 1 1 + a n * T T ∆t ∆T n * (2.88)
Step 2 : Since α l is constant throughout this step, and considering the conservation law of the sum of the internal energies (2.85.4), T n+1 l is solution of :

m n l ϵ l (ρ n * l , T n+1 l ) + m n g ϵ g (ρ n * g , T n+1 l -∆T n+1 ) = ξ n (2.89)
Step 3 : Update the thermodynamic quantities T n+1 g = T n+1 l -∆T n+1 , and the total energies :

   (α l E l ) n+1 = m n l ϵ l (ρ n * l , T n+1 l ) + 1 2 m n l (U n l ) 2 (α g E g ) n+1 = α n * l E n * l + α n * g E n * g -α n+1 l E n+1 l (2.90)

□

We get :

Property 5 : (Temperature relaxation algorithm) -Step 1 guaranties the relaxation process for the temperature throughout this algorithm, whatever the time step is. -Considering a mixture of two generalized stiffened gas EOS, the solution T n+1 l of step 2 in the admissible range exists and is unique.

□

Proof.

-As the coefficient a T T is positive, the discretized equation of evolution of ∆T (2.88) is a contraction. -For a mixture of two generalized stiffened gases, the temperature at time t n+1 is :

T n+1 l = 1 m n l C v l + m n g C v g ξ n + m n g C v g ∆T n+1 -(m n l ϵ l 0 + m n g ϵ g 0 + Πl α n * l + Πg (1 -α n * l )) (2.91) □ 2.
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B-Coupled algorithm

The basic idea of this new algorithm consists in simulating the thermodynamic relaxation effects in one step. The governing set of equations is as follows : 

             ∂ t (m k ) = 0 (k ∈ {l , g }) ∂ t (m k U k ) = 0 (k ∈ {l , g }) ∂ t (m l ϵ l + m g ϵ g ) = 0 ∂ t (α l ) = K (W )∆P m l ∂ t (ϵ l ) + P g ∂ t (α l ) = -q(W )∆T (2.
                                   a P P = K (W ) A l + A g - 1 m l ∂ P l (ϵ l ) | ρ l ∆P a P T = q(W )     1 m l ∂ϵ l ∂P l ρ l + 1 m g ∂ϵ g ∂P g ρ g     a T P = K (W ) ( ∂ϵ l ∂T l ρ l ) -1 P g m l - ρ l α l ∂ϵ l ∂ρ l T l + ( ∂ϵ g ∂T g ρ g ) -1 P g m g - ρ g α g ∂ϵ g ∂ρ g T g a T T = q(W ) 1 m l ∂ T l (ϵ l ) | ρ l + 1 m g ∂ T g ϵ g | ρ g (2.95)
The coupled algorithm reads as follows :

Coupled (P-T) relaxation algorithm :

Step 1 : Compute an approximate solution of system (2.93), with the evolution matrix R P T frozen at time t n , using an implicit Euler scheme :

∆P ∆T n+1 = I 2 + ∆t R n P T -1 ∆P ∆T n (2.96)
where I 2 is the identity matrix in M 2 (R).
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Step 2 : Set : 

     ξ n = m l ϵ l (P n l , T n l ) + m g ϵ g (P n g , T n g ) T n+1 g = T n+1 l -∆T n+1 P n+1 g = P n+1 l -∆P n+1
     m n l ϵ l (P n+1 l , T n+1 l ) + m n g ϵ g (P n+1 g , T n+1 g ) = ξ n m n l ρ l (P n+1 l , T n+1 l ) + m n g ρ g (P n+1 g , T n+1 g ) = 1 
(2.98)

Step 3 : Update α n+1 l :

α n+1 l = m n l ρ l (P n+1 l , T n+1 l ) (2.99)
and the total energies :

   (α l E l ) n+1 = m n l ϵ l (P n+1 l , T n+1 l ) + 1 2 m n l (U n l ) 2 (α g E g ) n+1 = α n l E n l + α n g E n g -(α l E l ) n+1
(2.100)

□

Before going further on, we introduce the following lemma :

Lemma 1 :

For a system of the form :

∂ t Y (W ) = -A(W )Y (W ) (2.101)
with Y ∈ R j and A ∈ M j (R), j ∈ N, discretized by using an implicit Euler scheme as :

(I j + ∆t A n )Y n+1 = Y n (2.102)
with I j the identity of M j (R). If the real part of every eigenvalue of A n is positive, then system (2.102) ensures that :

∥Y n+1 ∥ 2 ≤ ∥Y n ∥ 2 (2.103)
and that system (2.102) is invertible, whatever the time step is. Proof.

As A n ∈ M j (R), its eigenvalues λ 1 , . . . , λ j are in C :

∀k ∈ 1, j , λ k = a k + i b k (2.104)
Then, the eigenvalues λ r 1 , . . . , λ r j of the matrix (I j + ∆t A n ) -1 are :

∀k ∈ 1, j , λ r k = 1 1 + a k ∆t + i b k ∆t (2.105)
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Assuming that the real parts of the eigenvalues of A n are positive :

∀k ∈ 1, j , a k > 0 (2.106) then, ∀∆t > 0 , ∀k ∈ 1, j , |1 + a k ∆t + i b k ∆t | > 1 .
(2.107)

Whatever the time step is, this ensures that system (2.102) is invertible and that : 

∥Y n+1 ∥ 2 ≤ ∥Y n ∥ 2 (2.

□

Proof.

-If conditions (2.44) and (2.45) are verified, then the real parts of the eigenvalues of R P T are positive. Thus, Lemma 1 applies and equation (2.96) ensures the relaxation process over time, whatever the time step is. -Let us consider a mixture of two perfect gases :

(γ k -1)ρ k ϵ k = P k ϵ k = C v k T k (2.109)
Then it can be deduced from the conservation law of the sum of the internal energies (2.92.3) that : 

T n+1 l = ξ n + m n g C v g ∆T n+1 m n l C v l + m n g C v g (2.
Θ(P n+1 l ) = m n l (γ l -1)C v l T n+1 l P n+1 l + m n g (γ g -1)C v g (T n+1 l -∆T n+1 ) P n+1 l -∆P n+1 -1 = 0 (2.
Θ(P l ) = +∞ (2.112)
which enables to conclude for P n * l , such that P n * l + Π l > 0 and P n * g + Π g > 0.

Moreover, as k ∈ {l , g },

T k = P k + Π k ρ k C v k (γ k -1)
, temperatures T l and T g are in the admissible range.

Thus, α n * l ∈ [0, 1], owing to (2.111).

□

Remark 2 : For a mixture of Stiffened Gas EOS, system (2.98) is fully coupled. Equation (2.98.1) writes :

           T n+1 l m n l C v l 1 + (γ l -1) Πl P n+1 l + Πl + m n g C v g 1 + (γ g -1) Πg P n+1 l -∆P n+1 + Πg = ξ n + Ên+1 Ên+1 = -m n l ϵ l 0 -m n g ϵ g 0 + m n g C v g ∆T n+1 1 + (γ g -1) Πg P n+1 l -∆P n+1 + Πg (2.113) Moreover, equation (2.98.2) reads : m n l (γ l -1)C v l T n+1 l P n+1 l + Πl + m n g (γ g -1)C v g (T n+1 l -∆T n+1 ) P n+1 l -∆P n+1 + Πg = 1 (2.114)

Verification and comparison between the two approaches in a homogeneous case

The basic idea for the two approaches detailed before is to deduce from system (2.34) an equation of evolution of the gap of the thermodynamics quantities. The main advantage of this idea is that it can ensure the relaxation process between the phases over time, giving conditions that can be easily verified inside a code. The main difference is whether system (2.34) is simulated in one step or "decoupled". In this section, the two approaches are numerically compared. To do so, the flow is supposed to be homogeneous :

∀Ψ(W ), ∂ x Ψ(W ) = 0 (2.115)
and velocities within each phase are assumed to be null. This simulation can be viewed as the return to thermodynamics equilibrium of a two-phase flow inside a box. The different simulations are performed with time steps ranging between 10 -10 s and 10 -2 s. All relaxation time scales are supposed to be constant. Their values, the initial conditions and the coefficients of the EOS for the different cases are given in Appendix 1. Moreover, in order to ensure an effective relaxation time of each separated effect 2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system close to the relaxation time scale given by the user, the value of P 0 has to be set at t = 0 to :

P 0 = ∥α 0 v ρ 0 l (c 0 l ) 2 + α 0 l ρ 0 v (c 0 v ) 2 -α 0 v ∆P 0 ρ 0 l ∂ P l (ϵ l ) | ρ l 0 ∥ (2.116)
The fractional step algorithm obviously does not capture the correct behaviour of the pressure P l at the origin for coarse time steps in some cases (see Figure 2 In order to evaluate the performance of these two numerical schemes, a convergence 115 Moreover, for a given value of ∆t , the ratio of computational costs is between 2 and 8 in favour of the coupled algorithm, depending on the mesh size, see 

Application : shock wave through a two-phase gas-liquid medium [Cha+11]

A-Experimental set up and numerical settings : This part aims at validating the coupled scheme by comparing its results with the experiment [Cha+11] (see [Cha12] for further details). The experimental set-up is made up of a one-dimensional shock tube composed of air and a layer of liquid droplets. It contains, at t = 0 (see Figure 2.9 for a sketch of this set up), a high pressure chamber (HP), followed by a zone at atmospheric pressure. Inside the low pressure chamber, a cloud of droplets (CD) with a unique diameter (D d = 500µm) lies between x = 3.0m and x = 3.40m. In the experimental set-up, several pressure probes are set throughout the tube [Cha+11]. They give the value of the total pressure. The total pressure P mi x is defined as :

P mi x = k α k P k (2.119) Indeed, setting : Q = k m k U k (2.120)
and using (2.5), we have :

∂ t (Q) + ∇ • ( k m k U k ⊗U k ) + ∇P mi x = 0 (2.121)
Integrating (2.121) over a closed domain shows that the pressure applied on the walls is precisely P mi x , i.e. the total pressure measured experimentally.

The value of P mi x is compared with the experimental data on three probes :

2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system -S 1 located at x = 1.77m. This station is located inside the initial gaseous area.

-S 2 located at x = 3.08m. This station is located at the beginning of the initial layer of droplets. -S 3 located at x = 3.19m. This station is located in the middle of the initial cloud of droplets.

In this configuration, the fragmentation of the water droplets plays a substantial role in the dynamic, according to [Gel96]. That is why an interfacial area A is introduced for the liquid phase :

A = 6α l D d (2.122)
The equation of evolution of the interfacial area (see Appendix 3) and its numerical treatment are taken from [BH19]. The velocity relaxation process has to be computed too. To do so, the algorithm detailed in [GHS04] has been used and is recalled in Appendix 2. In order to simulate this shock tube, stiffened gas EOS (see (2.78)) are used in each phase. The values of the thermodynamic coefficients are given in Appendix 1.

Moreover, the relaxation time scales τ U , τ P and τ T are chosen as follows.

Velocity relaxation time scale :

1 τ U = 0.125(m l + m g )∥U l -U g ∥ ρ l D d ; (2.123)
This expression of τ U is derived from the Stokes formula [Ish75].

Pressure relaxation time scale :

τ P P 0 = 4π 3 µ g ⇔ 1 τ P = 3P 0 4πµ g (2.124)
where µ g = 1.8 .10 -5 kg m -1 s -1 is the dynamic viscosity of the air at 1 bar and 293K. It is the limit of the closure law proposed in [Gav14] for small diameter droplets.

Temperature relaxation time scale :

1 τ T = 6α l Nuλ g (m l C v l + m g C v g ) m l C v l m g C v g D 2 d ; (2.125)
where Nu = 10 is the Nusselt number and λ g = 0.6 (W m -1 K -1 ) is the thermal conductivity of the gas phase. This form is taken from [Pic17].

The simulations have been performed using one-dimensional meshes including 1 000, 10 000 and 20 000 cells. The CFL number is set to 0.45 and provides the time stepping.
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B-Numerical results and comparison with experimental data :

We recall that the Weber number, W e, is a dimensionless number that quantifies the atomization of the droplets. Introducing σ d , a positive reference surface tension, W e is defined as :

W e = ρ l ∥U l -U g ∥ 2 D d σ d . (2.126)
More precisely, if the Weber number is smaller than a certain threshold called the critical Weber number W e c , then the atomization does not occur (see Appendix 3). Two critical Weber numbers will be tested in the simulations : W e c = 3 and W e c = 12. These values, respectively suggested for liquid water and liquid aluminium droplets, are taken from [Pic17]. The total pressure P mi x obtained through numerical simulations is compared with the experimental data. First, let us note that on Figures 2.10, 2.11 and 2.12, the experimental data have been translated of a fixed value t t r ansl at e = 0.0019s, so that the experimental and simulated incident shock waves are synchronized on station 3. As the experimental and numerical shock waves arrive almost at the same time at the station 1 and 2, it can be concluded that the simulation captures well the celerity of the shock wave. On fine meshes, Figures 2.10 2.10), whereas there is almost no discrepancy between the simulation and the experimental data at stations 1 and 2. The pressure loss right after the shock wave is expected as it accounts for the atomization of the water droplets, see [Gel96]. A coarse mesh with 1000 cells is not sufficient to properly capture this phenomenon. In Figure 2.10, after the pressure loss, the total pressure increases and then plateaus around 3.5bar , considering W e c = 3 and a 20 000 cells mesh. Focusing on this mesh, the numerical results overestimate the experimental data on P mi x by about 7 % on station 3, 10 % on station 2 and 2 % on station 1. Eventually, the total pressure decreases due to the arrival of the reflected rarefaction wave coming from the left wall boundary. It is also worth noting that ∆P remains lower than 2. 10 -3 % of the initial phasic pressure throughout the simulation. On the other hand, ∆T remains lower than 2 % of the initial phasic temperature gap.

The numerical simulation of Chauvin experiment [Cha+11] using the fractional step approach can be found in section 4.3 of [BH21]. On a fine mesh, discrepancies between the two approaches on the total pressure profile are less than 1 % on the incident shock wave amplitude, and about 5 % on the pressure plateau.

In addition, these numerical simulations also show the influence of the critical Weber numberi.e. how the interfacial area is taken into account -on the overall behaviour of the solution after the shock wave, inside the cloud of collapsible droplets. Indeed, for various meshes as shown in [Cha+16], an accurate modelling of the inter-facial area evolution is a key ingredient in order to capture the correct behaviour of the pressure profile after the shock. Herein, computational results are closer to the experimental data when using W e c = 3 on a refined mesh, as anticipated. According to Figure 2.13, the velocity of the liquid phase (labelled one) and the gas phase (labelled two) are completely distinct, with a maximum gap of more than 200m.s -1 , right after the incident shock wave. The structural hypothesis of velocity disequilibrium between phases is thus retrieved in the numerical results. Figure 2.14 shows the impact of the value of the critical Weber number on the atomization process. Indeed, a four times bigger critical Weber number results here in a twice larger droplet's diameter on the first plateau after the shock.

In Appendix 8, the Chauvin experiment [Cha+11] is also computed, assuming rigid particles, as conducted by authors in [Cha+16]. In that case, as the diameter of the droplets is constant, no pressure drop arises right after the incident shock wave, as expected (see Figure 3 of [Cha+16], and also [BH21]), even for a refined mesh.

Discrete source terms for a mixture of liquid water and vapour

As in the liquid-gas section, the velocity relaxation is taken into account before the thermodynamic part of the source terms.

Two algorithms for the simulation of the thermodynamic source terms

We recall that for Ψ ∈ {P, T,U }, ∆Ψ is set as :

∆Ψ = Ψ l -Ψ v (2.127)
And for clarity, we note :

∆µ = µ l T l - µ v T v (2.

128)

A-Fractional step approach For a mixture of water and vapour, the relaxation effects, which are presented for a mixture of liquid and gas, must be complemented with the mass transfer terms. This fractional step scheme is thus composed of three steps, one for each thermodynamic effect. The sequence is as follows, still using the same time step ∆t within each step : I : W n P r essur e r el axat i on ---------------→ W n * II : W n * Heat t r ans f er -----------→ W n * + III : W n * + M ass t r ans f er -----------→ W n+1

The first two steps are identical to the ones presented for a mixture of liquid and gas in Section 2.1.1.A. Besides, step III is taken from [Cro+15] and recalled in Appendix 4.
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First, the global system of source terms is recalled :

                           ∂ t (α l ) = K (W )∆P ∂ t (m l ) = Γ l (W ) ∂ t (m l U l ) = U l +U v 2 Γ l (W ) ∂ t (α l E l ) + P v ∂ t (α l ) = U l U v 2 Γ l (W ) -q(W )∆T ∂ t (m l + m v ) = 0 ∂ t (m l U l + m v U v ) = 0 ∂ t (α l E l + α v E v ) = 0 (2.129)
From system (2.129), it can be obtained :

                         ∂ t (α l ) = K (W )∆P ∂ t (m l ) = Γ l (W ) ∂ t (m l U l ) = U l +U v 2 Γ l (W ) ∂ t (m l ϵ l ) + P v ∂ t (α l ) = -q(W )∆T ∂ t (m l + m v ) = 0 ∂ t (m l U l + m v U v ) = 0 ∂ t (α l E l + α v E v ) = 0 (2.130)
It can also be deduced from system (2.130) that :

∂ t (m l ϵ l + m v ϵ v ) = 0. (2.131) since : ∂ t m l U 2 l = U l U v 2 Γ l = -∂ t m v U 2 v (2.132)
System (2.130) can be recast in two subsystems, which are :

             ∂ t (α l ) = K (W )∆P ∂ t (m l ) = Γ l ∂ t (m l ϵ l ) = -P v K (W )∆P -q(W )∆T ∂ t (m l + m v ) = 0 ∂ t (m l ϵ l + m v ϵ v ) = 0 (2.133) and :    ∂ t (m l U l ) = U l +U v 2 Γ l ∂ t (m l U l + m v U v ) = 0 (2.134)
System (2.133) can be solved first, independently of system (2.134).
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From system (2.133), an equation of evolution for the thermodynamic quantity gaps can be derived, see [Hér22] :

∂ t   ∆P ∆T ∆µ   = -R P T µ   ∆P ∆T ∆µ   (2.135)
The coefficients of R P T µ ∈ M 3 (R) are detailed in [Hér22] and recalled in Appendix 5.

Using an implicit Euler method, system (2.135) is discretized as follows :

  ∆P ∆T ∆µ   n+1 = (1 + ∆t R n P T µ ) -1   ∆P ∆T ∆µ   n (2.136)
The conservation laws included in (2.133) imply :

M n = m n l + m n v = m n+1 l + m n+1 v ξ n = (m l ϵ l ) n + (m v ϵ v ) n = (m l ϵ l ) n+1 + (m v ϵ v ) n+1 (2.137)
and the one included in (2.134) gives :

Q U n = (m l U l ) n + (m v U v ) n = (m l U l ) n+1 + (m v U v ) n+1
(2.138)

Coupled (P-T,µ) relaxation algorithm :

Step 1 : Compute ∆P n+1 , ∆T n+1 and ∆µ n+1 , solution of system (2.136). The matrix R P T µ is considered frozen at time t n .

Step 2 : Compute m n+1 l as :

m n+1 l = M n 1 + (M n -m n l ) m n l exp ∆µ n+1 τ n m Γ 0 ∆t > 0 (2.139) Deduce m n+1 v = M n -m n+1 l > 0 and set Γ n+1 l = m n+1 l -m n l ∆t .
Step 3 : Compute P n+1 l and T n+1 l , solutions of the following system : 

     m n+1 l ϵ l (P n+1 l , T n+1 l ) + (M n -m n+1 l )ϵ v (P n+1 l -∆P n+1 , T n+1 l -∆T n+1 ) = ξ n m n+1 l ρ l (P n+1 l , T n+1 l ) + M n -m n+1 l ρ v (P n+1 l -∆P n+1 , T n+1 l -∆T n+1 ) = 1 (2.
               P n+1 v = P n+1 l -∆P n+1 T n+1 v = T n+1 l -∆T n+1 α n+1 l = m n+1 l ρ l (P n+1 l , T n+1 l ) α n+1 v = 1 -α n+1 l (2.
       (m l U l ) n+1 -(m l U l ) n = ∆t Γ n+1 l 2 (U n+1 l +U n+1 v ) (m v U v ) n+1 -(m v U v ) n = -∆t Γ n+1 l 2 (U n+1 l +U n+1 v ) (2.

142)

Step 6 : Update the total energies as :

   (α l E l ) n+1 = m n+1 l ϵ l (P n+1 l , T n+1 l ) + 1 2 m n+1 l (U n+1 l ) 2 (α v E v ) n+1 = (α v E v ) n + (α l E l ) n -(α l E l ) n+1
(2.143)

□ Remark 4 :

-Equation (2.139) is deduced from the mass conservation (2.133.2), with ∆µ frozen at time t n+1 . -System (2.140) is derived from the conservation law of the sum of the internal energies (2.131) and the immiscible constraint (2.1). -System (2.142) is derived from system (2.134) by using an implicit Euler scheme. Thus, we have : -Standard calculations give the determinant δ of system (2.142) :

δ = 1 2 (m n+1 l m n v + m n l m n+1 v ).
(2.144)
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As δ is strictly positive whatever the time step is, system (2.142) is always invertible. -System (2.140) is identical to (2.98), thus it benefits from the same properties.

-If the three fundamentals minors of R P T µ (2.135) are positive, then according to [Hér22], Lemma 1 applies and ensures the relaxation process over time, whatever the time step is.

Verification and comparison between the two approaches in a homogeneous case

In this section, the two schemes presented in the previous part are compared on different test cases. To do so, the flow is supposed to be homogeneous :

∀Ψ(W ), ∂ x Ψ(W ) = 0 (2.145)
and the velocities within each phase are assumed to be null. The different simulations are performed with time steps ranging between 10 -10 s and 10 -1 s. All the relaxation time scales are supposed to be constant. Their values, the initial conditions and the coefficients of the EOS for the different cases are given in Appendix 1. Moreover, in order to ensure an effective relaxation time of each separated effect close to the relaxation time scale given by the user, the value of P 0 and Γ 0 have to be set at t = 0 to :

         P 0 = ∥α 0 v ρ 0 l (c 0 l ) 2 + α 0 l ρ 0 v (c 0 v ) 2 -α 0 v ∆P 0 ρ 0 l ∂ P l (ϵ l ) | ρ l 0 ∥ Γ 0 = ∥m 0 v (γ l C v l + ϵ l 0 T 0 l (2 + ϵ l 0 C v l T 0 l ) + m 0 l (γ v C v v + ϵ v 0 T 0 v (2 + ϵ v 0 C v v T 0 v )∥ (2.146)
As it occurs in the liquid-gas framework, the fractional step algorithm can in some cases overestimate the pressure of the liquid phase for coarse time steps. For example, in case 3, (see Figure 2.15), using a time step of 10 -3 s, the latter method leads to pressure values almost one hundred times bigger than the converged solution. For the same time stepping, the coupled algorithm overestimation is much lower (see Figure 2.16). Even if it is not the case here, the overestimation of the pressure P l by the fractional step algorithm could lead to the violation of the relaxation conditions detailed in [Hér22]. In addition, when case 3 is computed with a time step ∆t = 10 -3 s, the fractional step algorithm is unable to return to pressure equilibrium, and even stops just before t = 0.02s (see Figure 2.17). The temperature profiles of the liquid water and vapour, computed with the fractional step algorithm and the coupled algorithm, are given in Figures 2.19 and 2.20 respectively.
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Application : One dimensional shock tube in vapour with a cloud of water droplets

The aim of this section is to test the coupled algorithm for a mixture of liquid water and its vapour. The application test case is composed of a one dimensional shock tube in vapour. At t = 0, a cloud of water droplets lies inside a portion of the tube. The initial conditions along the tube are set as follows :

Abscissa interval (m)

α l P l (bar) P v (bar) T l (K) T v (K)
x ∈ [0.00, 0.75] 10 -8 6 6 1000 1000

x ∈ [0.75, 3.00[∪]3.40, 3.75] 10 -8 1 1 1000 1000

x ∈ [3.00, 3.40] 0.03 1 1 293 1000

Three probes are set inside the tube :

-S 1 is located inside the initial vapour layer of the tube : x = 1.77m -S 2 is located at the beginning of the initial cloud of water droplets : x = 3.08m -S 3 is located in the middle of the initial zone of liquid -vapour mixture : x = 3.20m Relaxation time scales and EOS coefficients are the same as those used for the convergence curves in Figure 2.21 and can be found in Appendix 1, case 2. In this test case, the particles are supposed to be rigid. S 1 ; 1 000 cells S 2 ; 1 000 cells S 3 ; 1 000 cells S 1 ; 10 000 cells S 2 ; 10 000 cells S 3 ; 10 000 cells A mesh of 10 000 cells has been used. A mesh of 10 000 cells has been used.

As expected, the solution obtained in the homogeneous case is retrieved at station 3 in the first time steps, see Figures 2.22, 2.23 and 2.24. Moreover, in this case, the pressure disequilibrium is substantial as ∆P can be four times larger than the initial pressure, see Figure 2.23. The temperature disequilibrium is also significant, as it is still about 70% of its initial value after the shock wave. The difference of velocities ∆U is also quite large, close to 600 m.s -1 right after the shock wave.

Remark 5 : Eventually, it is also worth noting that the fractional step algorithm fails to compute an approximate solution of this test case.
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Conclusion :

When focusing on the class of liquid-gas flow models considered here, conditions (2.43), (2.44) and (2.45) are the true conditions that guarantee the effective relaxation process. For most EOS, conditions (2.44) and (2.45) are not trivial and have to be numerically tested inside the code. In most cases, conditions (2.44) and (2.45) also involve initial conditions. For liquid-vapour flows, four conditions arise, which also involve EOS and initial conditions.

The coupled algorithm, which has been introduced for the treatment of the sub-system associated with the source terms (2.34), is grounded on the analysis of relaxation effects. This new strategy has been compared with the classical fractional step method. The comparison is clearly in favour of the coupled algorithm, as it was expected, and this is particularly true when rather coarse time steps are considered, or equivalently on coarse "industrial" meshes. Indeed, the coupled algorithm is more stable, especially in the liquid-vapour case. The latter algorithm also provides a higher accuracy for a given mesh size, and a lower computational cost for a comparable accuracy, than the fractional step approach. Moreover, some particular test cases exhibit a rather strange behaviour of the fractional approach, and this might in some sense be compared with what happens when computing shallow-water equations with well-balanced schemes versus the fractional step method. It also clearly arises that mass transfer terms have a huge impact on the practical stability of the whole algorithm.

In addition, substantial values of ∆U , ∆P and ∆T can be observed in the transient regime throughout this paper, which pleads against any hypothesis of instantaneous return-to-equilibrium, for both mechanical and thermodynamic quantities. A posteriori, it also justifies the investigation of the relaxation process.

Of course, higher-order time schemes, such as the Radau V method presented in [WH96], might be used to improve the accuracy of the coupled algorithm, but this lies beyond the scope of the present work. Eventually, relaxation solvers such as those presented in [CHS17] and [BS23] could improve both the accuracy and the computational cost when accounting for convective terms (2.61). TABLEAU 2.3. -Simulation parameters for the homogeneous liquid gas cases and initial conditions Case 1 Case 5 T g (t=0) 1000 K 1000 K TABLEAU 2.6. -Numerical parameters and initial conditions, the liquid gas cases 2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -Références

γ l 1.614924811807376e+00 2.2838590974110350e+01 γ g 1.085507894797296e+00 1.614924811807376e+00 C v l 1.452904592629688e+03 1.2872948262582229e+01 C v g 4.
γ l 1.614924811807376e+00 γ g 1.085507894797296e+00 C v l 1.452904592629688e+03 C v g 4.441148752333071e+03 Πl 3.563521398523755e+08 Πg 0.0 ϵ l 0 0.0 ϵ g 0 0.0 s l 0 0.0 s g 0 -4.769786773517021e+04 TABLEAU 2.7.
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Appendix 2 : Velocity relaxation algorithm

During this step, system (2.5) become, for k ∈ {g , v} :

                                                   ∂ t α l = 0 ∂ t m l = 0 m l ∂ t U l = -d (W )∆U ∂ t (α l E l ) = -d (W ) U l +U k 2 ∆U ∂ t (m l + m k ) = 0 ∂ t (m l U l + m k U k ) = 0 ∂ t (α l E l + α k E k ) = 0 (2.147)
The following algorithm is taken from [GHS04] :

Velocity relaxation algorithm :

Step 1 : Compute U n+1- l and U n+1- k as :

                   U n+1- l = U n+1 * l -∆U n+1 * m n+1 * k 1 -e -∆t τ n+1 * U m n+1 * k + m n+1 * l U n+1- k = U n+1 * l + ∆U n+1 * m n+1 * l 1 -e -∆t τ n+1 * U m n+1 * k + m n+1 * l (2.148)
Step 2 : Compute (m l ϵ l ) n+1-and (m k ϵ k ) n+1-as :

         (m l ϵ l ) n+1-= (m l ϵ l ) n+1 * + m n+1 * l m n+1 * k m n+1 * l + m n+1 * k ∆U n+1 * 2 2 1 -e -2∆t τ n+1 * U (m k ϵ k ) n+1-= (m k ϵ k ) n+1 *
(2.149)

Step 3 : Update the total energies as :

       (α l E l ) n+1-= (m l ϵ l ) n+1-+ 1 2 m n+1 * l (U n+1- l ) 2 (α k E k ) n+1-= (α k E k ) n+1 * + (α l E l ) n+1 * -(α l E l ) n+1- (2.150)
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□

Appendix 3 : Interfacial area

The definition of the interfacial area of the water phase is recalled :

A = 6α l D d (2.151)
Its equation of evolution is supposed to be :

∂A ∂t + ∇(A U l ) = g (A ,W ); (2.152) 
with :

g (A ,W ) = C 0 A 2 6α l ( ρ l ρ g ) 1/2 U r f (W e); (2.153) 
with U r = ∥U l -U g ∥ and We the Weber number define as follows :

W e = ρ l U 2 r D d σ d (2.154)
with σ d = 73 .10 -3 (N .m -1 ) a reference surface tension [Pic17] . Moreover f(We) is defined as :

f (W e) = 1 , i f W e > W e c ; f (W e) = 0 ot her wi se (2.155)
where W e c is called the critical Weber.

Adding this new equation does not change the structure and properties of the global system (2.5) according to [BH19]. Hence, it is chosen for the simulation. The numerical scheme used to simulate (2.152) is detailed in [BH19]. It consists of a fractional step method, splitting the convective part and the source term part. Those two steps will respectively be inserted inside the explicit simulation step of the convective part of system (2.5) and the implicit simulation of the source terms of the same system.
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Appendix 4 : Mass transfer algorithm

During this step, system (2.5) writes as :

                                                   ∂ t α v = 0 ∂ t m v = Γ v ∂ t (m v U v ) = U l +U v 2 Γ v ∂ t (α v E v ) = U l U k 2 Γ v ∂ t (m l + m v ) = 0 ∂ t (m l U l + m v U v ) = 0 ∂ t (α l E l + α v E v ) = 0 (2.156) with : Γ v = 1 Γ 0 τ m m l m g m l + m g ∆µ (2.157) 
From (2.156), a conservation law of the internal energies is obtained during this step :

       ∂ t (m v ϵ v ) = 0 ∂ t (m l ϵ l ) = 0 (2.158)
which implies that :

Γ v = Γv (m l ) (2.159)
The following algorithm is taken from [Cro+15]. A detailed version in French is also available in [Hur17] :

Mass transfer algorithm :

Step 1 : Compute m n+1 * l , solution of :

m n+1 * l = m n * l -∆t Γ v (m n+1 * l ) (2.160) and update m n+1 * v = m n * l + m n * v -m n+1 * l .
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Step 2 : Compute U n+1 * l and U n+1 * v as :

       (m l U l ) n+1 * = (m l U l ) n * -∆t Γ l (m n+1 * l ) n+1 U n+1 * l +U n+1 * v 2 (m v U v ) n+1 * = (m v U v ) n * + (m l U l ) n * -(m l U l ) n+1 *
(2.161)

Step 3 : Update the total energies as :

       (α l E l ) n+1 * = (α l E l ) n * -∆t Γ l (m n+1 * l ) n+1 U n+1 * l U n+1 * v 2 (α v E v ) n+1 * = (α v E v ) n * + (α l E l ) n * -(α l E l ) n+1 * (2.162) □ 155 
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Appendix 5 : Coefficients of the matrix R P T µ

Matrix R P T µ (W ) ∈ R 3×3 is as follow, see [Hér22] :

R P T µ (W ) =          a l v P P (W ) a l v P T (W ) a l v P µ (W ) a l v T P (W ) a l v T T (W ) a l v T µ (W ) a l v µP (W ) a l v µT (W ) a l v µµ (W )          (2.163)
The above mentioned coefficients are as follows :

                   a l v P P (W ) = K (W ) A l + A v - ∆P m l ∂ P l (ϵ l ) | ρ l , a l v P T (W ) = q(W ) 1 m l ∂ P l (ϵ l ) | ρ l + 1 m v ∂ P v (ϵ v ) | ρ v , a l v P µ (W ) = Λ(W ) - ϵ l + ρ l ∂ ρ l (ϵ l ) | P l m l ∂ P l (ϵ l ) | ρ l - ϵ v + ρ v ∂ ρ v (ϵ v ) | P v m v ∂ P v (ϵ v ) | ρ v (2.164)
and :

                     a l v T P (W ) = K (W ) P v -ρ 2 l ∂ ρ l (ϵ l ) | T l m l ∂ T l (ϵ l ) | ρ l + P v -ρ 2 v ∂ ρ v (ϵ v ) | T v m v ∂ T v (ϵ v ) | ρ v , a l v T T (W ) = q(W ) 1 m l ∂ T l (ϵ l ) | ρ l + 1 m v ∂ T v (ϵ v ) | ρ v , a l v T µ (W ) = Λ(W ) -ϵ l -ρ l ∂ ρ l (ϵ l ) | T l m l ∂ T l (ϵ l ) | ρ l + -ϵ v -ρ v ∂ ρ v (ϵ v ) | T v m v ∂ T v (ϵ v ) | ρ v (2.165)
Eventually, setting :

F k = ( 1 ρ k ∂ P k (ϵ k ) | ρ k - h k T k ∂ T k (ϵ k ) | ρ k ) (2.166) G k = h k T k ∂ T k (ϵ k ) | ρ k (ϵ k + ρ k ∂ ρ k (ϵ k ) | T k ) - 1 ρ k ∂ P k (ϵ k ) | ρ k (ϵ k + ρ k ∂ ρ k (ϵ k ) | P k ) (2.167) H k = h k T k ∂ T k (ϵ k ) | ρ k (-P g + ρ 2 k ∂ ρ k (ϵ k ) | T k ) - 1 ρ k ∂ P k (ϵ k ) | ρ k (-P g + ρ 2 k ∂ ρ k (ϵ k ) | P k ) (2.168)
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                   a l v µP (W ) = K (W ) H l m l T l + H v m v T v , a l v µT (W ) = q(W ) F l m l T l + F v m v T v , a l v µµ (W ) = Λ(W ) G l m l T l + G v m v T v (2.169)
The relaxation process over time is guaranteed if the three fundamentals minors are positive [Hér22].

Appendix 6 : The RIP condition

We consider the class of gas-liquid flow models discussed in section 2, thus focusing on immiscible components. We assume some initial condition W 0 (x) = W (x, t = 0), such that :

U k (x, t = 0) = 0 , (2.170) 
and with uniform pressure and temperature fields :

P k (x, t = 0) = P 0 ; T k (x, t = 0) = T 0 . (2.171) 
The flow will remain steady, if :

∂ t ψ (x, t = 0) = 0 (2.172)
whatever ψ is.

Obviously, the source terms vanish, and we get :

                         ∂ t (α k ) (x, t = 0) = 0 ; ∂ t (m k ) (x, t = 0) = 0 ; ∂ t (m k U k ) (x, t = 0) + P 0 ∇α 0 k -Π I (W 0 )∇α 0 k = 0 ; ∂ t (α k E k ) (x, t = 0) = 0 .
(2.173)

Thus the flow will remain steady if : 

P 0 -Π I (W 0 ) ∇α 0 l = 0 (2.

Introduction

This chapter tackles the simulation of three-phase flows with immiscible phases. More precisely, it focuses on three-phase flows with a fast and substantial transient regime. Such flows can arise in some nuclear safety scenario studies. In these cases, the considered flows are usually initialized with a huge disequilibrium between phases and this disequilibrium has a significant role in the dynamics of the flow throughout time. Actually, we know that the simulation of a three-phase flow with the assumption of instantaneous return to equilibrium between phases conducted in [BH21] is unable to compute a value of the total pressure close to the one measured in [Huh+96]. It 3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.2. The immiscible three-phase flow model motivates the development of numerical methods that can compute solutions of three-phase flow model in full disequilibrium. In this regard, this chapter extends the methodology developed in Chapter 2 to the framework of the immiscible compressible three-phase flow model proposed in [Hér07].

Therefore, in this chapter, the relaxation process of this model is investigated in the continuous framework, and a new approach for the numerical treatment of the source terms of this model is presented. This new approach is then tested in some test cases.

The immiscible three-phase flow model [Hér07]

We consider an immiscible, compressible, non-equilibrium, three-phase flow model. In applications, phase 1 corresponds to a liquid metal, phase 2 to liquid water and phase 3 to water vapour. First, as the model is assumed to be immiscible, we have the structural constraint :

α 1 + α 2 + α 3 = 1 . (3.1) 
where ∀k ∈ 1, 3 , α k ∈]0, 1[ denote the statistical fractions of each phase. Moreover, since the model is in full disequilibrium, each phase k ∈ 1, 3 is given a velocity U k , a density ρ k , a partial density m k = α k ρ k , a pressure P k and a specific entropy s k . The total energies are then defined as :

E k = ρ k (ϵ k (P k , ρ k ) +U 2 k /2), (3.2) 
where ϵ k (P k , ρ k ) denotes the internal energy of each phase k. The internal energy of phase k is bind to pressure P k and density ρ k through an Equation of State (EoS). The state variable W writes as :

W = (α 2 , α 3 , m 1 , m 1 U 1 , α 1 E 1 , m 2 , m 2 U 2 , α 2 E 2 , m 3 , m 3 U 3 , α 3 E 3 ) ⊺ . ( 3.3) 
Then, model reads (see [Hér07]) :

                             ∂α k ∂t + V I (W ) • ∇α k = S α k (W ) , ∂m k ∂t + ∇ • (m k U k ) = S m k (W ) , ∂m k U k ∂t + ∇ • (m k U k ⊗U k + α k P k I ) + 3 l =1,l ̸ =k Π kl (W )∇α l = S U k (W ) , ∂α k E k ∂t + ∇ • (α k U k (E k + P k )) - 3 l =1,l ̸ =k Π kl (W ) ∂α l ∂t = S E k (W ) , (3.4) 
where I is the identity matrix. Moreover, V I and Π kl respectively stand for the interfacial velocity and the interfacial pressures. Those interfacial terms, alongside source terms S α k (W ), S m k (W ), S U k (W ) and S E k (W ) have to be specified in order to close 3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.2. The immiscible three-phase flow model the model. To do so, the total entropy η(W ) paired with its entropy-flux F η (W ), are introduced :

       η = m 1 s 1 (P 1 , ρ 1 ) + m 2 s 2 (P 2 , ρ 2 ) + m 3 s 3 (P 3 , ρ 3 ) , F η = m 1 U 1 s 1 (P 1 , ρ 1 ) + m 2 U 2 s 2 (P 2 , ρ 2 ) + m 3 U 3 s 3 (P 3 , ρ 3 ) . (3.5) 
Definitions of the phasic temperature T k , the phasic Gibbs free energy µ k , the phasic enthalpy h k and the phasic celerity c k are also recalled :

1

T k = ∂ P k s k (P k , ρ k ) ρ k ∂ P k ϵ k (P k , ρ k ) ρ k (3.6) µ k = h k -T k S k (3.7) h k = ϵ k (P k , ρ k ) + P k ρ k (3.8) c 2 k ∂ P k s k (P k , ρ k ) ρ k + ∂ ρ k s k (P k , ρ k ) P k = 0 (3.9)
First, the interfacial velocity V I is chosen as :

V I = U 1 , (3.10) 
which leads to the following unique interfacial pressure definition, owing to the entropy inequality (see Appendix G of [Hér07]) :

       Π 12 = Π 21 = Π 23 = P 2 ,
Π 13 = Π 31 = Π 32 = P 3 .

(3.11)

Then, source terms have to be closed. Firstly, those terms are supposed to be such that, ∀k ∈ 1, 3 :

S α k = 3 l =1,l ̸ =k K kl (W )(P k -P l ) , (3.12 
)

S m k = 3 l =1,l ̸ =k Λ kl (W ) µ l T l - µ k T k , (3.13) 
S U k = 3 l =1,l ̸ =k d kl (W )(U l -U k ) + 3 l =1,l ̸ =k V kl Λ kl (W ) µ l T l - µ k T k , (3.14 
)

S E k = 3 l =1,l ̸ =k q kl (W )(T l -T k ) + 3 l =1,l ̸ =k V kl (U l -U k )d kl (W ) + 3 l =1,l ̸ =k H kl Λ kl (W ) µ l T l - µ k T k , (3.15) 
3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.2. The immiscible three-phase flow model with the positive functions K kl (W ), Λ kl (W ), d kl (W ) and q kl (W ) defined as :

K kl (W ) = α k α l P 0 τ P kl (W ) , (3.16) 
Λ kl (W ) = m k m l (m k + m l )Γ 0 τ m kl (W ) , (3.17) 
d kl (W ) = m k m l (m k + m l )τ U kl (W ) , (3.18) 
q kl (W ) = m k m l C v k C v l (m k C v k + m l C v l )τ T kl (W ) . ( 3.19) (3.20) 
Quantities C V k denote the specific heat capacities at constant volume. V kl correspond to phasic mean velocities :

V kl = U k +U l 2 , (3.21) 
and H kl are defined as :

H kl = U k U l 2 . (3.22) 
Π 0 is a positive reference pressure and Γ 0 is a positive reference fraction of µ T .

For each phasic connection kl , τ P kl (W ), τ m kl (W ), τ T kl (W ) and τ U kl (W ) are the positive relaxation time scales related to the return to equilibrium of the associated thermodynamic quantity. Closure laws for the relaxation time scales can be found in the literature, see among others [Gav14 ; BH16] for the pressure, [Ish75] for the velocity, [Ran52] for the temperature and [BK90] for mass transfer. No assumption is made on those time scales, whether it is on the time scales themselves or on any ordering of those time scales.

We recall that, see [Hér07 ; Hér20], model (3.4), with closures (3.10), (3.11), (3.12), (3.13), (3.14) and (3.15), is such that :

Property 1 (Three-phase flow model in a 1D framework) : If ∀k ∈ 1, 3 , α k stay in ]0, 1[ and ∥U k -U 1 ∥ ̸ = c k , then :
-The convective part of the model is hyperbolic and the associated eigenvalues are :

λ 1,2,3 (W ) = U 1 , λ 4 (W ) = U 2 , λ 5 (W ) = U 3 , λ 6,7 (W ) = U 1 ± c 1 , λ 8,9 (W ) = U 2 ± c 2 , λ 10,11 (W ) = U 3 ± c 3 . (3.23) 
-Fields associated with λ k (k = 6 -11) are GNL. Other fields are LD.

3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.3. Relaxation process in the model -Smooth solutions of the model comply with an entropy inequality :

∂ t η(W ) + ∇ • F η (W ) ≥ 0 . (3.24)
-The model is symmetrizable and therefore hyberbolic.

Proof.

The first three items can be found in [Hér07] and the latter is detailed in [Hér20]. □

Remark 1 :

-This closing strategy is detailed in [Hér07] and has been used for other models, see among others [GS02], [Rai21], [GSS99], [Kap+97], [Coq+02], [HM19], [HHQ21] for two-phase and three-phase flow models. -Property 1 can be extended to a three-dimensional framework, see [Hér07] and [BH21].

We focus in the following section on the expected inner relaxation process.

Relaxation process in the model

This part aims at studying the expected inner relaxation process inside the model associated with the source terms (3.12), (3.13), (3.14) and (3.15). First, as phase 1 is in this paper supposed to be a liquid metal, no phase change with phase 2 (liquid water) and 3 (water vapour) can occur physically, which is equivalent to take :

Λ 12 (W ) = Λ 13 (W ) = 0 . (3.25)
For clarity, we set :

∀k ∈ 1, 3 , g k = µ k T k (3.26)
Then, we suppose the following :

∀k ∈ 1, 3 , ∀Ψ ∈ {α k , P k ,U k , m k U k , α k E k } , ∇Ψ = 0 , (3.27) 
and we set :

∀(k, l ) ∈ 1, 3 2 , ∀Φ k ∈ {U k , P k , T k , g k } , ∆Φ kl = Φ k -Φ l .
(3.28)

3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.3. Relaxation process in the model Thus, system (3.4) writes as :

                                           ∂α k ∂t = 3 l =1,l ̸ =k K kl (W )∆P kl , ∂m k ∂t = - 3 l =1,l ̸ =k Λ kl (W )∆g kl , ∂m k U k ∂t = - 3 l =1,l ̸ =k d kl (W )∆U kl - 3 l =1,l ̸ =k V kl Λ kl (W )∆g kl , ∂α k E k ∂t - 3 l =1,l ̸ =k Π kl (W ) ∂α l ∂t = - 3 l =1,l ̸ =k q kl (W )∆T kl - 3 l =1,l ̸ =k V kl d kl (W )∆U kl - 3 l =1,l ̸ =k H kl Λ kl (W )∆g kl .
(3.29)

From system (3.29), hypothesis (3.25), and using the definition of V kl , H kl , the celerity and the Gibbs free energy µ k , for each phase k ∈ 1, 3 , equations of evolution of velocity U k , pressure P k , temperature T k and fraction g k can be derived. This leads to coupled equations of evolution of the gaps : ∆U 12 , ∆U 13 , ∆P 12 , ∆P 13 , ∆T 12 , ∆T 13 , ∆g 23 , which can be rewritten as one equation of evolution of the quantity :

∆ r = (∆U 12 , ∆U 13 , ∆P 12 , ∆P 13 , ∆T 12 , ∆T 13 , ∆g 23 ) ⊺ ∈ R 7 .

(3.30)

The equation of evolution associated with ∆ r reads as :

∂ t ∆ r = -R r el ax (W )∆ r , (3.31) 
with non symmetric R r el ax in M 7 (R) of the form :

R r el ax =      R UU 0 R U R t her mo      , ( 3.32) 
where R UU ∈ M 2 (R), R t her mo ∈ M 5 (R) and R U ∈ M 5,2 (R). All of the coefficients of R r el ax can be found in Appendix 2.

Similarly to [HJ23a], the velocity relaxation process has a peculiar role in the global relaxation process.

Alongside equation (3.31), from system (3.29) and hypothesis (3.25), the following 3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.3. Relaxation process in the model conservation laws can be deduced : From equation (3.31), effective relaxation conditions can be obtained for model (3.4).

∂ t (m 1 ) = 0 (3.33) ∂ t (m 2 + m 3 ) = 0 (3.34) ∂ t (m 1 U 1 + m 2 U 2 + m 3 U 3 ) = 0 (3.35) ∂ t (α 1 E 1 + α 2 E 2 + α 3 E 3 ) = 0 ( 3 

Property 2 (Effective relaxation conditions) :

-If the velocity relaxation process occurs, then :

t r (R UU ) > 0 , (3.37)

d et (R UU ) > 0 . (3.38)
-If the thermodynamic relaxation process is effective, then, noting for i ∈ 1, 5 , λ i the real or complex conjugated eigenvalues of R t her mo , we have :

Σ 1 = t r (R t her mo ) > 0 , (3.39) 
Σ 2 = i < j λ i λ j > 0 , (3.40) 
Σ 3 = i < j <k λ i λ j λ k > 0 , (3.41) 
Σ 4 = i < j <k<l λ i λ j λ k λ l > 0 , (3.42) 
Σ 5 = d et (R t her mo ) > 0 , (3.43) 
Proof.

The proof is given in Appendix 4 of this chapter. □

Remark 2 :

i) Property 2 can be seen as a way to numerically check if the relaxation process is effective or not in a test case at any time and everywhere. Indeed, coefficients Σ i , for i ∈ 1, 5 correspond to the coefficients of the characteristic polynomial of R t her mo :

P 5 (λ) = λ 5 -Σ 1 λ 4 + Σ 2 λ 3 -Σ 3 λ 2 + Σ 4 λ -Σ 5 , (3.44) 
and thus can be identified to the principal minors of R t her mo ; those quantities Σ i i ∈ 1, 5 can be calculated directly from R t her mo . In practice, we use Maxima [Max] a computer algebra system to compute Σ i i ∈ 1, 5 . iii) A similar property has been exhibited in the framework of an immiscible twophase flow model in [HJ23a]. In [HJ23a], it has been shown that relaxation conditions do not always stand true for (EoS) more complex than a perfect gas and have therefore to be numerically tested. As conditions (3.39), (3.40), (3.41), (3.42), (3.43) are more complex than the ones in a two-phase flow model framework, those conditions have to be numerically tested too. iv) The inner relaxation process has also been studied in the framework of "hybrid" two-phase flow [HM19] model in [HJ23c].

Numerical scheme

In the sequel, a numerical strategy is presented in order to compute approximate solutions of system (3.4). The overall strategy is close to the one detailed in [BH21]. However, the scheme proposed in the sequel for the treatment of the source terms differs.

First, let's recall the global numerical approach presented in [BH21] for the current model, but also used in [HH12 ; Cro+15], among others, for a two-phase flow framework. This strategy consists in two steps :

-Compute an approximate solution of the following subsystem associated with the convective part of the model :

                             ∂α k ∂t + V I (W ) • ∇α k = 0 , ∂m k ∂t + ∇ • (m k U k ) = 0 , ∂m k U k ∂t + ∇ • (m k U k ⊗U k + α k P k I ) + 3 l =1,l ̸ =k Π kl (W )∇α l = 0 , ∂α k E k ∂t + ∇ • (α k E k U k + α k P k U k ) - 3 l =1,l ̸ =k Π kl (W ) ∂α l ∂t = 0 , (3.45) 
using an explicit Riemman solver adapted for non-conservative products. This first step fully determines the time step ∆t . Details of this step can be found in [BH21]. -Then, solve implicitly, on a time step ∆t , the stiff system (3.29), which is the counterpart of (3.4) without the convection. In [BH21], this step is conducted 3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.4. Numerical scheme with a fractional step approach, which decouples all relaxation effects for velocity, pressure, temperature, Gibbs free energy. The new approach proposed here follows the same strategy as the one in [HJ23a] in the framework of an immiscible two-phase flow model [BN86].

To begin with, as in [HJ23a], we take advantage of the block triangular structure of R r el ax . Indeed, as the velocity relaxation is less coupled with the other relaxation effects, we choose to treat it beforehand with the same method as the one presented in [BH21] and recalled in Appendix 3.

In the sequel, in order to ease notations, the instant right after the velocity relaxation will be referred as t n .

Then, (3.29) becomes :

                               ∂α k ∂t = 3 l =1,l ̸ =k K kl (W )∆P kl , ∂m k ∂t = - 3 l =1,l ̸ =k Λ kl (W )∆g kl , ∂m k U k ∂t = - 3 l =1,l ̸ =k V kl Λ kl (W )∆g kl , ∂α k E k ∂t - 3 l =1,l ̸ =k Π kl (W ) ∂α l ∂t = - 3 l =1,l ̸ =k q kl (W )∆T kl - 3 l =1,l ̸ =k
H kl Λ kl (W )∆g kl .

(3.46) From system (3.46), one can obtain :

m k ∂ t U 2 k 2 = -U k l ̸ =k (V kl -U k ) Λ kl (W )∆g kl .
(3.47) Thus, using (3.21), we have :

∂ t 1 2 m k U 2 k = - l ̸ =k H kl Λ kl (W )∆g kl . (3.48)
Therefore, from (3.46), we get :

∂ t (m k ϵ k ) - 3 l =1,l ̸ =k Π kl (W ) ∂α l ∂t = - 3 l =1,l ̸ =k q kl (W )∆T kl . (3.49)
Then, a "conservation law" for the sum of the internal energies ϵ k weighted by the partial densities m k can be deduced and reads :

∂ t 3 k=1 m k ϵ k = 0 . (3.50)
3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.4. Numerical scheme

We also recall that the immiscible constraint (3.1) always stands true and can be seen as a stationary constraint : 

∂ t (α 1 + α 2 + α 3 ) = 0 . ( 3 
∂ t (m 2 + m 3 ) = 0 (3.55) ∂ t (m 1 U 1 ) = 0 (3.56) ∂ t (m 2 U 2 + m 3 U 3 ) = 0 (3.57)
Eventually, the new algorithm writes as :

Algorithm : (Coupled P-T-g algorithm)

Step 1 : Estimate the evolution of ∆ t her mo through (3.53) by using an Euler implicit scheme with R t her mo frozen at time t n : ∆ n+1 t her mo = I + ∆t R n t her mo -1 ∆ n t her mo .

(3.58)

Step 2 : Setting : Mn = m n 2 + m n 3 , compute the partial densities at time t n+1 :

                     m n+1 1 = m n 1 m n+1 2 = Mn 1 + ( Mn -m n 2 ) m n 2 exp ∆g n+1 23 τ m n 23 Γ 0 ∆t > 0 m n+1 3 = Mn -m n+1 2 (3.59)
3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.4. Numerical scheme

Step 3 : Writing : and noting : 

P n+1 2 = P n+1 1 -∆P n+1 12 , ( 3 
ξ n = 3 k=1 (m k ϵ k ) n = 3 k=1 (m k ϵ k ) n+1 , ( 3 
       (m 2 U 2 ) n+1 -(m 2 U 2 ) n = ∆t Γ n+1 23 2 (U n+1 2 +U n+1 3 ) , (m 3 U 3 ) n+1 -(m 3 U 3 ) n = -∆t Γ n+1 23 2 (U n+1 2 +U n+1 
3 ) ,

(3.75)

3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.5. Numerical Results :

Step 6 : Update the total energies as : -If the relaxation process is effective over time, then the principal minors Σ i , i ∈ 1, 5 of matrix R t her mo are positive at each instant and at every point, whatever the time step is. -For a mixture of three perfect gas (EoS), solutions of (3.66) and (3.67) exist and are unique inside their definition domain. Moreover, (3.67) ensures that, for k ∈ 1, 3 , α k stays in ]0, 1[.

                 (α 2 E 2 ) n+1 = m n+1 2 ϵ 2 (P n+1 2 , T n+1 2 ) + 1 2 m n+1 2 (U n+1 2 ) 2 , (α 3 E 3 ) n+1 = m n+1 3 ϵ 3 (P n+1 3 , T n+1 3 ) + 1 2 m n+1 3 (U n+1 3 ) 2 , (α 1 E 1 ) n+1 = (α 1 E 1 ) n + (α 2 E 2 ) n + (α 3 E 3 ) n -(α 2 E 2 ) n+1 -(α 3 E 3 ) n+1 . ( 3 

Proof.

The proof is similar to the one given in [HJ23a].

Numerical Results :

As in the previous chapter, this part can be broken down into two main subsections. The first one aims at testing alone the new algorithm presented above. On the other hand, the second part is dedicated at confronting the new algorithm, coupled with the velocity relaxation algorithm recalled in Appendix 3, and the convective solver taken from [BH21], to an experimental test case of vapour explosion called KROTOS 44 [Huh+96].

The homogeneous case

In this subsection, we take the following assumptions :

∀k ∈ 1, 3 ,U k = 0 , (3.77) ∀k ∈ 1, 3 , ∀Ψ k ∈ {α k , P k , T k , α k E k }, ∇Ψ = 0, (3.78) 
which correspond to a zero dimension flow where only the thermodynamic relaxation process take place.

3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.5. Numerical

Results :

Then we choose :

           P 0 = α 0 1 α 0 2 ρ 0 1 (c 0 1 ) 2 α 0 1 + ρ 0 2 (c 0 2 ) 2 α 0 2 + α 0 1 α 0 3 ρ 0 1 (c 0 1 ) 2 α 0 1 + ρ 0 3 (c 0 3 ) 2 α 0 3 + α 0 2 α 0 3 ρ 0 2 (c 0 2 ) 2 α 0 2 + ρ 0 3 (c 0 3 ) 2 α 0 3 Γ 0 = ∥m 0 3 (γ 2 C v 2 + ϵ 2 0 T 0 2 (2 + ϵ 2 0 C v 2 T 0 2 ) + m 0 l (γ 3 C v 3 + ϵ 3 0 T 0 3 (2 + ϵ 3 0 C v 3 T 0 3 )∥ (3.79)
All relaxation time scales are supposed to be constant in this section. Moreover, they are supposed to be equal on each phasic link : 3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.5. Numerical Results :

∀Ψ ∈ P, T : τ Ψ 12 = τ Ψ 13 = τ Ψ 23 = τ Ψ , ( 3 

Application to KROTOS 44 like set up [Huh+96]

This section aims at simulating a KROTOS 44 type set up. The set up consists in a one dimension shock tube in water where droplets of liquid corium (phase 1) interact with liquid water (phase 2) and water vapour (phase 3), as shown in Figure 3.5. Introducing ϵ l i m = 10 -6 , the initial conditions read :

Abscissa interval (m) Besides, four numerical probes are set up :

α 2 α 3 T 1 (K) T 2 (K) T 3 (K) High pressure : x ∈ [0.0, 2.0] 1 -2ϵ l i m ϵ l i
3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.5. Numerical Results :

-S 1 is placed at the beginning of the pure liquid zone : x = 2.05m, -S 2 is located at the beginning of the interaction zone : x = 2.20m, -S 3 is situated at one third of the interaction zone : x = 2.40m, -S 4 is positioned at two third of the interaction zone : x = 2.60m.

Before going further on, as in [HJ23a], we need to introduce an evolution equation of the interfacial area A 1 for liquid corium droplets :

A 1 = 6α 1 D 1 (3.85)
where D 1 stands for the diameter of the corium droplets, which is initialized along the tube at time t = 0 as : D 1 = 15mm. Indeed, as shown physically in [Gel96] and numerically in [Cha+16 ; BH21 ; HJ23a], taking into account droplet atomization is crucial in order to predict well the energy transfer between phases and therefore to have numerical solutions close to the experimental data. Again, as in [HJ23a], the equation of evolution of the interfacial area (see Appendix 5) and its numerical treatment are taken from [BH19].

We now need to specify for (k, l ) ∈ 1, 3 , l > k the form of the relaxation time scales τ U kl , τ P kl , τ T kl and τ m kl . They write as :

-Velocity relaxation time scales :

1 τ U 12 = 1 τ U 21 = 0.75C d (m 1 + m 2 )∥U 1 -U 2 ∥ ρ 1 D 1 ; (3.86) 1 τ U 13 = 1 τ U 31 = 0.75C d (m 1 + m 3 )∥U 1 -U 3 ∥ ρ 1 D 1 ; (3.87) 1 τ U 23 = 1 τ U 32 = 0.75C d (m 2 + m 3 )∥U 2 -U 3 ∥ ρ 3 D 3 . (3.88)
This expression of τ U kl is derived from the Stokes formula [Ish75]. C d = 24/Re is the drag coefficient. D 1 and D 3 are the diameter of the corium droplets and the vapour droplets respectively. The corium one is obtained through an interfacial area equation whereas the liquid vapour one is supposed constant : D 3 = 15mm.

-Pressure relaxation time scales : where µ 2 = 2.82 .10 -4 kg m -1 s -1 and µ 3 = 1.8 .10 -5 kg m -1 s -1 are the dynamic viscosity of respectively the liquid water and liquid vapour at 1 bar and 293K. It is the limit of the closure law proposed in [Gav14] for small diameter droplets.

-Temperature relaxation time scales :

1 τ T 12 = 1 τ T 21 = 6α 1 Nu 1 λ 1 (m 1 C v 1 + m 2 C v 2 ) m 1 C v 1 m 2 C v 2 D 2 1 ; (3.93) 1 τ T 13 = 1 τ T 31 = 6α 1 Nu 1 λ 1 (m 1 C v 1 + m 3 C v 3 ) m 1 C v 1 m 3 C v 3 D 2 1 ; (3.94) 1 τ T 23 = 1 τ T 32 = 6α 3 Nu 3 λ 3 (m 2 C v 2 + m 3 C v 3 ) m 2 C v 2 m 3 C v 3 D 2 3 .
(3.95) (3.96) where Nu 1 = 10, Nu 3 = 10 are the Nusselt number of the corium and the water vapour respectively and λ 1 = 230 (W m -1 K -1 ) and λ 2 = 0.6 (W m -1 K -1 ) are the thermal conductivity of the corium and liquid vapour respectively. This form is taken from [PE87 ; Pic17].

-Gibbs potential relaxation time scale τ m 23 is supposed to be constant :

τ m 23 = τ m = 10 -2 s (3.97)
As we can see on Figure 3.6, the total pressure P mi x = 3 k=1 α k P k peaks at station 3 at 60, 9 MPa, which is close to the measured total pressure interval in [Huh+96] (50 MPa to 60 MPa). A similar test case has been computed in [BH21] but as the relaxation is supposed to be instantaneous for both pressure and velocity, the pressure peak is far lower than the one computed here. Moreover, oscillations come up at the beginning of the simulation, especially at station 3. Those oscillations occur as eigenvalues of the relaxation matrix become complex conjugate. The coarse mesh is unable to capture the structure after the shock. The difference between the two meshes (respectively 1 000 cells and 10 000 cells) is about 8% on the total pressure.

Eventually, as shown in Figure 3.7 in Appendix 5, the droplet break-up is active throughout the simulation. 

Appendix 2 : Coefficients of the relaxation matrix

First, we define R r el ax as :

R r el ax (W ) =              R UU (W ) 0 0 0 R PU (W ) R P P (W ) R P T (W ) r P g (W ) R T U (W ) R T P (W ) R T T (W ) r T g (W ) r gU (W ) ⊺ r g P (W ) ⊺ r g T (W ) ⊺ r g (W )              . ( 3.98) 
Matrices R UU (W ), R PU (W ), R P P , R P T (W ), R T U (W ), R T P (W ), R T T (W ) are in M 2 (R), whereas r P g (W ), r T g (W ), r gU (W ), r g P (W ), r g T are in R 2 and r g is a scalar. Coefficients of R UU (W )(W ) write as follows : 

r UU 11 = 1 
G 22 = (K 12 + K 23 )(ρ 2 c 2 ) 2 ∂ϵ 2 ∂P 2 ρ 2 , G 32 = -K 23 (ρ 2 c 2 ) 2 ∂ϵ 2 ∂P 2 ρ 2 , G 23 = -K 23 (ρ 3 c 3 ) 2 ∂ϵ 3 ∂P 3 ρ 3 , G 33 = (K 13 + K 23 )(ρ 3 c 3 ) 2 ∂ϵ 3 ∂P 3 ρ 3 .
Coefficients of the sub-matrices of R r el ax (W ) read :

-R T U (W ) = 

r T P 22 = - F 31 θ 1 + F 33 θ 3 . (3.108) (3.109) -R T T (W ) = r T T 11 = q 12 θ 1 + q 12 + q 23 θ 2 , (3.110) r T T 12 = q 13 θ 1 - q 23 θ 2 , (3.111) r T T 21 = - q 23 θ 3 + q 12 θ 1 , (3.112) r T T 22 = q 13 θ 1 + q 13 + q 23 θ 3 . (3.113) (3.114) -r T g (W ) = r T g 1 = Λ 23 θ 2 ϵ 2 + ρ 2 ∂ϵ 2 ∂ρ 2 T 2 , (3.115) r T g 2 = - Λ 23 θ 3 ϵ 3 + ρ 3 ∂ϵ 3 ∂ρ 3 T 3 . ( 3 
P P = 1 m 1 (ρ 1 c 1 ) 2 K 12 + ( ∂ϵ 1 ∂P 1 ρ 1 ) -1 (K 23 ∆P 13 -(K 12 + K 23 )∆P 12 ) + 1 m 2 (ρ 2 c 2 ) 2 (K 12 + K 23 ) , (3.123 
)

r P P = 1 m 1 K 13 (ρ 1 c 1 ) 2 + ( ∂ϵ 1 ∂P 1 ρ 1 ) -1 (K 23 ∆P 12 -(K 23 + K 13 )∆P 13 ) - 1 m 2 K 23 (ρ 2 c 2 ) 2 ,
(3.124)

r P P = 1 m 1 (ρ 1 c 1 ) 2 K 12 + ( ∂ϵ 1 ∂P 1 ρ 1 ) -1 (K 23 ∆P 13 -(K 12 + K 23 )∆P 12 ) - 1 m 3 K 23 (ρ 3 c 3 ) 2 ,
(3.125)

r P P = 1 m 1 K 13 (ρ 1 c 1 ) 2 + ( ∂ϵ 1 ∂P 1 ρ 1 ) -1 (K 23 ∆P 12 -(K 23 + K 13 )∆P 13 ) + 1 m 3 (K 13 + K 23 )(ρ 3 c 3 ) 2 .
(3.126)

(3.127) -R P T (W ) = r P T 11 = q 12 σ 1 + q 12 + q 23 σ 2 , (3.128) r P T 12 = q 13 σ 1 - q 23 σ 2 , ( 3 
.129) 

r P T 21 = - q 23 σ 3 + q 12 σ 1 , (3.130) r P T 22 = q 13 σ 1 + q 13 + q 23 σ 3 . ( 3 
r P g 1 = Λ 23 σ 2 ϵ 2 + P 2 ρ 2 -ρ 2 c 2 2 ∂ϵ 2 ∂P 2 ρ 2 , (3.133) r P g 2 = - Λ 23 σ 3 ϵ 3 + P 3 ρ 3 -ρ 3 c 2 3 ∂ϵ 3 ∂P 3 ρ 3 . (3.134) (3.135) -r gU (W ) = r gU 1 = - 1 2ρ 2 T 2 1 σ 2 - ρ 2 h 2 θ 2 [d 12 ∆U 12 + d 23 (∆U 12 -∆U 13 )] + d 23 2ρ 3 T 3 1 σ 3 - ρ 3 h 3 θ 3 [∆U 12 -∆U 13 ] ,
(3.136) -If the thermodynamic relaxation process is effective, then, noting for i ∈ 1, 5 , λ i the eigenvalues of R t her mo , we have :

r gU 2 = - d 23 2ρ 2 T 2 1 σ 2 - ρ 2 h 2 θ 2 (∆U 12 -∆U 13 ) + 1 2ρ 3 T 3 1 σ 3 ρ 3 h 3 θ 3 [d 13 ∆U 13 + d 23 (∆U 13 -∆U 12 )] . (3.137) (3.138) -r g P (W ) = r g P 1 = - 1 ρ 2 T 2 G 22 σ 2 - ρ 2 h 2 F 22 θ 2 T 2 + 1 ρ 3 T 3 G 23 σ 3 - ρ 3 h 3 F 23 θ 3 T 3 , (3.139) 
r g P 2 = - 1 ρ 2 T 2 G 32 σ 2 - ρ 2 h 2 F 32 θ 2 T 2 + 1 ρ 3 T 3 G 33 σ 3 - ρ 3 h 3 F 33 θ 3 T 3 . (3.140) (3.141) -r g T (W ) = r g T 1 = - 1 ρ 2 T 2 1 σ 2 - ρ 2 h 2 θ 2 T 2 (q 12 + q 23 ) - q 23 ρ 3 T 3 1 σ 3 - ρ 3 h 3 θ 3 -T 3 , (3.142) r g T 2 = q 23 ρ 2 T 2 1 σ 2 - ρ 2 h 2 θ 2 T 2 + 1 ρ 3 T 3 1 σ 3 - ρ 3 h 3 θ 3 T 3 (q 13 + q 23 ) . (3.143) (3.144) -r g (W ) = -Λ 23 [ 1 ρ 2 T 2 h 2 σ 2 - ρ 2 c 2 2 σ 2 ∂ϵ 2 ∂P 2 ρ 2 - ρ 2 h 2 θ 2 T 2 ϵ 2 + ρ 2 ∂ϵ 2 ∂ρ 2 T 2 + 1 ρ 3 T 3 h 3 σ 3 - ρ 3 c 2 3 σ 3 ∂ϵ 3 ∂P 3 ρ 3 - ρ 3 h 3 θ 3 T 3 ϵ 3 + ρ 3 ∂ϵ 3 ∂ρ 3 T 3 ] ( 3 
Σ 1 = t r (R t her mo ) > 0 , (3.153) Σ 2 = i < j λ i λ j > 0 , (3.154) 
Σ 3 = i < j <k λ i λ j λ k > 0 , (3.155) 
Σ 4 = i < j <k<l λ i λ j λ k λ l > 0 , (3.156) 
Σ 5 = d et (R t her mo ) > 0 , (3.157) 
The proof reads as follows :

-For the first item of Property 2, if the velocity relaxation occurs, then the real parts of the two eigenvalues l 1 and l 2 of matrix R UU are strictly positive. Then, the two conditions are easily verified. Moreover, if conditions (3.37) and (3.38) are verified, it is trivial that both real parts of l 1 and l 2 are positive.

Besides, if mass transfer between phase 2 and 3 is neglected, i.e. Λ 23 = 0, conditions (3.37) and (3.38) always stand true, since :

t r (R UU ) = 1 m 1 (d 12 + d 13 ) + 1 m 2 (d 12 + d 23 ) + 1 m 3 (d 13 + d 23 ) > 0 d et (R UU ) = 1 
m 1 m 2 + 1 m 1 m 3 + 1 m 2 m 3 (d 12 d 13 + d 12 d 23 + d 13 d 23 ) > 0
-If the thermodynamic relaxation process is effective, then all the real part of the five eigenvalues of R t her mo , λ i , i ∈ 1, 5 are positive. The five coefficients, Σ 1 , 198 3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -Références Σ 2 , Σ 3 , Σ 4 and Σ 5 writes :

Σ 1 =λ 1 + λ 2 + λ 3 + λ 4 + λ 5 , Σ 2 =λ 1 λ 2 + λ 1 λ 3 + λ 1 λ 4 + λ 1 λ 5 + λ 2 λ 3 + λ 2 λ 4 + λ 2 λ 5 + λ 3 λ 4 + λ 3 λ 5 + λ 4 λ 5 , Σ 3 =λ 1 λ 2 λ 3 + λ 1 λ 2 λ 4 + λ 1 λ 2 λ 5 + λ 1 λ 3 λ 4 + λ 1 λ 3 λ 5 + λ 1 λ 4 λ 5 + λ 2 λ 3 λ 4 + λ 2 λ 3 λ 5 + λ 2 λ 4 λ 5 + λ 3 λ 4 λ 5 , Σ 4 =λ 2 λ 3 λ 4 λ 5 + λ 1 λ 3 λ 4 λ 5 + λ 1 λ 2 λ 4 λ 5 + λ 1 λ 2 λ 3 λ 5 + λ 1 λ 2 λ 3 λ 4 , Σ 5 =λ 1 λ 2 λ 3 λ 4 λ 5 .
As R t her mo is in M 5 (R), three cases can occur :

Case 1 : All of the eigenvalues of R t her mo are real. Then, if all eigenvalues of R t her mo are positive, all coefficients Σ n , n ∈ 1, 5 are trivially positive.

Case 2 : One eigenvalue of R t her mo is real (let's call it λ 1 ) and the other four are complex and form two pairs of complex conjugate (λ 3 = λ 2 and λ 5 = λ 4 ). Thus, coefficients Σ n , n ∈ 1, 5 write as :

Σ 1 = λ 1 + 2Re(λ 2 ) + 2Re(λ 4 ) , (3.158) 
Σ 2 = 2λ 1 Re(λ 2 ) + 2λ 1 Re(λ 4 ) + 4Re(λ 2 )Re(λ 4 ) + |λ 2 | 2 + |λ 4 | 2 , (3.159) 
Σ 3 = λ 1 |λ 2 | 2 + |λ 4 | 2 + 4λ 1 Re(λ 2 )Re(λ 4 ) + 2|λ 2 | 2 Re(λ 4 ) + 2|λ 4 | 2 Re(λ 2 ) , (3.160) 
Σ 4 = 2λ 1 Re(λ 4 )|λ 2 | 2 + Re(λ 2 )|λ 4 | 2 + |λ 2 | 2 |λ 4 | 2 ,
(3.161)

Σ 5 = λ 1 |λ 2 | 2 |λ 4 | 2 . ( 3 

.162)

If all the real parts of the eigenvalues of R t her mo are strictly positive, one can easily check from the previous notations that :

∀n ∈ 1, 5 , Σ n > 0 (3.163)
Case 3 : Three eigenvalues of R t her mo are real : λ 1 , λ 2 and λ 3 . The remaining two are complex conjugate λ 5 = λ 4 . Thus, coefficients Σ n , n ∈ 1, 5 write :

Σ 1 = λ 1 + λ 2 + λ 3 + 2Re(λ 4 ) , (3.164) 
Σ 2 = (λ 1 λ 2 + λ 1 λ 3 + λ 2 λ 3 ) + 2 (λ 1 + λ 2 + λ 3 ) Re(λ 4 ) + |λ 4 | 2 ,
(3.165)

Σ 3 = λ 1 λ 2 λ 3 + 2 (λ 1 λ 2 + λ 1 λ 3 + λ 2 λ 3 ) Re(λ 4 ) + (λ 1 + λ 2 + λ 3 ) |λ 4 | 2 , (3.166) Σ 4 = 2λ 1 λ 2 λ 3 Re(λ 4 ) + (λ 1 λ 2 + λ 1 λ 3 + λ 2 λ 3 ) |λ 4 | 2 ,
(3.167) The definition of the interfacial area A 1 of the corium phase is recalled :

Σ 5 = λ 1 λ 2 λ 3 |λ 4 | 2 . ( 3 
A 1 = 6α 1 D 1 , (3.170) 
where D 1 is the diameter of the corium's droplets. The interfacial area equation of evolution can be written as :

∂A 1 ∂t + ∇(A 1 U 1 ) = g (A 1 ,W ); (3.171)
with, see [BH19 ; PE87] :

g (A 1 ,W ) = C 0 A 2 1 6α 1 ( ρ 1 ρ 2 ) 1/2 |U 1 -U 2 | f (W e); (3.172) 
where the coefficient C 0 = 0.245, We the Weber number is defined as follows : where W e c = 12 is called the critical Weber number.

W e = ρ 1 |U 1 -U 2 | 2 D c σ c ( 3 
Adding this new equation does not change the structure and properties of the global system (3.4) according to [BH19]. Hence, it is chosen for the simulation. The numerical scheme used to simulate (3.171) is detailed in [BH19]. It consists of a fractional step method, splitting the convective part and the source term part. Those two steps will respectively be inserted inside the explicit simulation step of the convective part of system (3.4) and the implicit simulation of the source terms of the same system. 

Introduction

Some scenarios in nuclear safety studies sometimes require computational models which adequately account for water liquid-vapor two-phase flows including an additional non condensable gas, typically air, which cannot exchange mass with the water component. Among these applications we may at least find RIA or loss of coolant accident (see for instance [Rad23]). More complex situations involving vapor explosion 4. Relaxation process in a hybrid two-phase flow model -4.1. Introduction are also at stake ([Ber00], [BH19] and [BH21]). Of course the latter applications involve fast transient flows including shock waves, and thus there is a need for meaningful models for such a purpose.

Basically, two types of models are proposed for that aim. The first class considers some instantaneous velocity-equilibrium between phases and components (see for instance [Jao01], [Hel05], and also more recent contributions [HHQ20], [HQ19], [Qui20], [Pel22] ). The second class relies on the well-known two-fluid approach, where each phase/component has its own velocity field (see [BN86], [Kap+97], [GSS99], [Coq+02], [GS02], [Gav20] among others, for standard gas-particle, gas-liquid or liquid-vapor flows). For some applications involving the break-up of liquid droplets, and the estimation of interfacial areas, models in the second class become almost mandatory. Thus the present work is dedicated to the second class, and more precisely, it gives focus on the hybrid three-field two-phase flow model introduced in [HM19].

The main concern herein is whether inner processes that are part of the PDE model guarantee the return-to-equilibrium, as it is classically claimed or assumed, and expected. Unlike in [HJ23b], which focuses on the sole pressure relaxation process, we intend here to investigate and understand the full velocity-temperature-pressure coupling in model [HM19]. This is obviously of interest in order to improve our knowledge of this PDE model. It is also useful for numerical purposes, since some recent computations have clearly exhibited tough situations that easily lead to a blow-up of codes (see for instance [BH21]).

The paper is organised as follows. We first briefly recall model [HM19] together with its main properties. Next we discuss and investigate the preservation of admissible states in the convective subset, and in the submodel involving source terms. The latter is then investigated, while decoupling source terms, or keeping them altogether. Some conditions on Equations of State (EoS), and also on initial conditions, will arise from the analysis.

An appendix will also propose some practical algorithms in order to tackle approximate solutions of the whole model, while retaining the standard fractional step approach.

4. Relaxation process in a hybrid two-phase flow model -4.2. The hybrid three-field two-phase flow model

The hybrid three-field two-phase flow model

The following set of governing equations is considered, in order to describe twophase flows involving a mixture of non condensable gas (typically air, with subscript "g ") and water in liquid (using "l " subscript) and vapour (with subscript "v") phases. The gas and the vapour are assumed to share the same volume, hence associated statistical fractions are expected to comply with the following constraint :

α v = α g (4.1)
Thus we have :

α v + α l = 1 (4.2)
We note W the state variable :

W = (α g , m g , m g U g , α g E g , m v , m v U v , α v E v , m l , m l U l , α l E l ) t
In the sequel we will basically use the gas fraction α g ∈ [0, 1] as a main variable in order to account for statistical fractions. The model reads, for k ∈ {l , g , v} :

                         ∂α g ∂t + V i (W).∇α g = φ g (W) ∂m k ∂t + ∇.(m k U k ) = 0 ∂m k U k ∂t + ∇.(m k U k ⊗ U k + α k p k Id) + Π k (W)∇α g = S U k (W) ∂α k E k ∂t + ∇.(α k U k (E k + p k )) -Π k (W) ∂α g ∂t = S E k (W) (4.3) 
This model was first introduced in [HM19]. Note that the first equation provides the time-space evolution of the statistical fraction α g , and the remaining equations correspond to the mass, momentum and energy balance equations for k = l , g , v.

Variables p k , ρ k , m k = α k ρ k , ϵ k (p k , ρ k ), E k = ρ k (ϵ k (p k , ρ k )+U 2 k /2
) and U k respectively denote the mean pressure, the mean density, the partial mass, the internal energy, the total energy and the mean velocity within phase k. The ForestGreen terms on the right hand side represent the interfacial source terms, which means that :

k=l ,g ,v S U k (W) = 0 (4.4)
and :

k=l ,g ,v S E k (W) = 0 (4.5)
whereas the left-hand side of system (4.3) contains all convective -i.e. all first-order differential-contributions. The latter involve the interfacial velocity V i (W), while the so-called interfacial pressure unknowns Π k (W) require some closures.

4. Relaxation process in a hybrid two-phase flow model -4.2. The hybrid three-field two-phase flow model

We will assume from now on that :

V i (W) = U l (4.6)
which is relevant for our applications. Hence we know (se [HM19]) that the following closure laws are meaningful for interfacial pressures Π k :

                 Π v = -p v Π g = -p g Π l = p v + p g (4.7)
owing to the entropy inequality of the mixture that is recalled in the sequel. We emphasize that these closures (4.7) are unique for a given interfacial velocity (4.6). It also seems worth noting that the latter closure laws enable to comply with the RIP condition (see [HJ23b], appendix A). Actually, this model may be viewed as some counterpart of the classical Baer-Nunziato two-phase flow model ( [BN86].

In order to go further on, it remains now to specify the interfacial source terms S U k (W), S E k (W), and also φ g (W). The latter contribution reads :

φ g (W) = α g (1 -α g ) Π 0 τ P (W) (p v + p g -p l ) = K (W)(p v + p g -p l ) (4.8)
The -positive-pressure relaxation time scale τ P (W) is given by formulas detailed in [Gav14], [BH15] or [BH16], and the reference pressure Π 0 has to be fixed in agreement. Besides, momentum interfacial terms are given by :

S U k = j ̸ =k d k j (W )(U j -U k ) (4.9)
where the -positive-symmetric scalar functions d k j (W ) include velocity relaxation time scales. These correspond to the expected drag effects between fields. Eventually, closure laws for interfacial heat transfers are given by :

S E k = j ̸ =k q k j (W )(T j -T k ) + j ̸ =k V k j d k j (W )(U j -U k ) (4.10) noting : V k j = U k +U j 2 . Considering phasic entropies S k (p k , ρ k ), phasic temperatures
T k are classically defined as :

1

T k = ∂S k (p k , ρ k ) ∂p k ρ k / ∂ϵ k (p k , ρ k ) ∂p k ρ k (4.11) 205 
4. Relaxation process in a hybrid two-phase flow model -4.2. The hybrid three-field two-phase flow model

The -positive-symmetric scalar functions q k j (W ) also involve temperature relaxation time scales. Again, we refer to [Ish75] for further details.

We may now recall some basic properties of the full model in a one-dimensional framework. 

ρ k c 2 k ∂ϵ k (p k , ρ k ) ∂p k ρ k = p k ρ k -ρ k ∂ϵ k (p k , ρ k ) ∂ρ k p k (4.12)
Eigenvalues read : where the entropy-entropy flux pair (η, F η ) is defined by :

                 λ 1 = U l -c l ; λ 2 = λ 3 = U l ; λ 4 = U l + c l ; λ 5 = U v -c v ; λ 6 = U v ; λ 7 = U v + c v ; λ 8 = U g -c g ; λ 9 = U g ; λ 10 = U g + c g . ( 4 
η = m l S l (p l , ρ l ) + m g S g (p g , ρ g ) + m v S v (p v , ρ v ) (4.15)
and :

F η = m l S l (p l , ρ l )U l + m g S g (p g , ρ g )U g + m v S v (p v , ρ v )U v (4.16)

□

The reader is refered to [HM19] for proofs. In particular the structure of the coupling wave associated with the double eigenvalue λ 2,3 is given in Property 2.3 of the latter reference.

4. Relaxation process in a hybrid two-phase flow model -4.3. A few results on the preservation of admissible states

Considering our practical applications in nuclear power plants, where the mean flow velocities are small compared with the speed of acoustic waves within each phase, the occurence of resonnant cases is very unlikely to happen. Moreover, thanks to Kato theoretical results ([Kat75]), unsteady computations are meaningful for this model of PDEs. We also recall that the structure of the LD coupling wave guarantees that shock solutions are well defined, which is mandatory when aiming at predicting flow configurations involving shock waves (such as vapor explosions, or loss of coolant accident). Actually, jump conditions are uniquely defined field by field, owing to the structure of the interfacial velocity. In practice, it also means that approximate solutions of shocks can be considered in practical applications, since various stable schemes will converge towards the same solution when shocks occur. We refer the reader to [Gui07] , figure 8.9, pages 136, which shows some major deficiencies when shocks arise if the coupling wave is no longer LD.

A few results on the preservation of admissible states

We focus here on some specific Equations of State (EoS), and we wonder whether model (4.3) preserves the admissible states in the time-space domain. The following results are not exhaustive of course. We first focus on the convective part, and then on the source terms. Before going further on, we recall that c k and S k comply with the identity :

c 2 k (p k , ρ k ) ∂S k (p k , ρ k ) ∂p k ρ k + ∂S k (p k , ρ k ) ∂ρ k p k = 0 (4.17)
for k ∈ (l , g , v).

Preservation of admissible states in the convective subset

For a finite time interval [0, T ], we introduce some bounded domain Ω. We focus first the homogeneous part of system (4.3) with closure laws (4.7) and (4.6). This writes :

                         ∂α g ∂t + U l .∇α g = 0 ∂m k ∂t + ∇.(m k U k ) = 0 ∂m k U k ∂t + ∇.(m k U k ⊗ U k + α k p k Id) + Π k (W)∇α g = 0 ∂α k E k ∂t + ∇.(α k U k (E k + p k )) -Π k (W) ∂α g ∂t = 0 (4.18)
where the blue terms are detailed in (4.7). We consider smooth solutions of this model, which enables to derive the following governing equations for the pressures P k , for 4. Relaxation process in a hybrid two-phase flow model -4.3. A few results on the preservation of admissible states k ∈ (g , v) :

∂p k ∂t + U k .∇p k + ρ k c 2 k ∇.U k + ρ k c 2 k (U k -U l ).∇Log (α k ) = 0 (4.19)
and for P l :

∂p l ∂t + U l .∇p l + ρ l c 2 l ∇.U l = 0 (4.20)
Let us consider now the following stiffened gas EoS within each phase k ∈ (l , g , v) : 

p k + γ k Πk = (γ k -1)ρ k ϵ k ( 4 

□

Proof :

It is classical, considering the governing equations of the densities and pressures (4.20) and (4.19), with the convention that inlet boudary conditions in phase k correspond to points on the boundary such that U k .n ≤ 0, where the unit normal n points outward. One must simply note that the governing equation for ψ = p l + Πl writes :

∂p l + Πl ∂t + U l .∇(p l + Πl ) + γ l (p l + Πl )∇.U l = 0 (4.22)
which enables to conclude. Note that an alternative way to obtain this result consists in using the governing equation for the phasic entropy S k (p k , ρ k ), which reads :

∂S k (p k , ρ k ) ∂t + U k .∇S k (p k , ρ k ) = 0 (4.23)
for k ∈ (g , v). Note that the condition on the boundedness of (∇.U k +(U k -U l ).∇Log (α k ))

4. Relaxation process in a hybrid two-phase flow model -4.3. A few results on the preservation of admissible states still remains, due to the governing equation of the density that writes :

∂ρ k ∂t + U k .∇ρ k + ρ k ∇.U k + ρ k (U k -U l ).∇Log (α k ) = 0 (4.24)
Actually these results may be extended to other EoS. Consider for instance the case of Nobel-Abel Stiffened Gas (NASG) [LS16] EoS :

(

1 -ρ l b l )(p l + γ l Πl ) = (γ l -1)ρ l (ϵ l -(ϵ l ) 0 ) (4.25)
with γ l > 1, Πl > 0, b l > 0 and (ϵ l ) 0 > 0. In that case equation (4.20) turns into :

∂p l + Πl ∂t + U l .∇(p l + Πl ) + γ l 1 -ρ l b l (p l + Πl )∇.U l = 0 (4.26)
This ensures positive values of p l + Πl , as soon as the density complies with :

0 < ϵ 0 ≤ 1 -ρ l b l (4.27)

Preservation of admissible states in the interfacial transfer

We consider now an homogeneous flow, which is equivalent to investigating solutions of system :

                             ∂α g ∂t = α g (1 -α g ) Π 0 τ P (W) (p v + p g -p l ) ∂m k ∂t = 0 ∂m k U k ∂t = j ̸ =k d k j (W )(U j -U k ) ∂α k E k ∂t -Π k (W) ∂α g ∂t = j ̸ =k q k j (W )(T j -T k ) + j ̸ =k V k j d k j (W )(U j -U k ) (4.28)
Throughout this step, both the total internal energy of the mixture and the entropy of the mixture increase, since : for : Ψ = U , or : Ψ = T . Meanwhile, we note that the total momentum remains unchanged :

∂ k m k ϵ k ∂t = 1 2 k j d k j (W )(∆U k j ) 2 = k-j d k j (W )(∆U k j ) 2 (4.29) while : ∂η ∂t = k-j d k j (W ) T k (∆U k j ) 2 + k-j q k j (W ) T k T j (∆T k j ) 2 + α g (1 -α g ) T l Π 0 τ P (W) ( 
∂( k=l ,g ,v m k U k ) ∂t = 0 (4.33)
and of course we have :

∂( k=l ,g ,v α k E k ) ∂t = 0 (4.34)
which simply means that the sum of total energies is preserved.

Pressure relaxation terms

Let us consider now the sole pressure relaxation terms, that is :

                         ∂α g ∂t = α g (1 -α g ) Π 0 τ P (W) (p v + p g -p l ) ∂m k ∂t = 0 ∂m k U k ∂t = 0 ∂α k E k ∂t -Π k (W) ∂α g ∂t = 0 (4.35)
Still using (4.7), the latter system may be rewritten as follows :

                                   ∂α g ∂t = α g (1 -α g ) Π 0 τ P (W) (p v + p g -p l ) ∂m k ∂t = 0 ∂m k U k ∂t = 0 ∂S k ∂t = 0 (k = g , v) ∂( k=l ,g ,v m k ϵ k ) ∂t = 0 (4.36)
We keep the main scalar variable α g , and may rewrite all variables as follows :

ρ k (α g ) = m 0 k α g (k ∈ g , v) ; ρ l (α g ) = m 0 l 1 -α g (4.37)
4. Relaxation process in a hybrid two-phase flow model -4.3. A few results on the preservation of admissible states

P k (α g ) = p k (ρ k (α g ), S 0 k ) ; e k (α g ) = ϵ k (P k (α g ), S 0 k ) , with k ∈ (g , v) (4.38)
and :

e l (α g ) = ( k∈(l ,g ,v)
m k ϵ k ) 0m 0 v e v (α g )m 0 g e g (α g ) /m 0 l (4.39) but also : P l (α g ) = p l (ρ l (α g ), e l (α g )) (4.40)

We consider now some finite time t ∈ (0, T ), and assume that the following integral is defined : -If EoS are such that : Πl ≥ Πg + Πv , then the sole pressure relaxation process holds ; -Otherwise the condition (4.47) may be violated and the condition must be checked in the computer code at each time step within each cell. Proof :

H (t
For such an EoS we can rewrite condition (4.47) as follows :

α g (γ l -1)( Πg + Πv -Πl ) < α g (p l + Πl )+(α g (γ l -1)+α l γ g )(p g + Πg )+(α g (γ l -1)+α l γ v )(p v + Πv )

The right-hand side is obviously positive, since p k + Πk ≥ 0 for k ∈ {l , g , v}. Thus the latter inequality is always satisfied if Πg + Πv -Πl < 0 ; otherwise the condition (4.47) must be checked.

Remark 2

Assuming some specific EoS for gas and vapour quantities, we may improve this result and check that the liquid pressure/internal energy is admissible. If we consider a perfect gas EoS : 

p k (ρ k , ϵ k ) = (γ k -1)

□

We focus now on isolated heat transfer terms.

Temperature relaxation terms

We focus now on the sole temperature relaxation terms, that is :

                           ∂α g ∂t = 0 ∂m k ∂t = 0 ∂m k U k ∂t = 0 ∂α k E k ∂t -Π k (W) ∂α g ∂t = j ̸ =k q k j (W )(T j -T k ) (4.53)
or equivalently :

                   ∂α g ∂t = ∂m k ∂t = ∂m k U k ∂t = 0 ∂( k m k ϵ k ) ∂t = 0 m k ∂ϵ k ∂T k | ρ k ∂T k ∂t = j ̸ =k
q k j (W )(T j -T k ) noting : 

                             e = q g l ( 1 
M g + 1 M l ) + q g v M g f = q l v M l - q g v M g h = q l g M l - q g v M v i = q vl ( 1 
M v + 1 M l ) + q g v M v

□

Obviously, this also suggests a simple fractional step algorithm in order to account for source terms in (4.28), considering successively so-called pressure relaxation terms, and then interfacial heat transfer terms associated with ψ j k . In order to clarify ideas, we detail in Appendix B such an algorithm. Moreover, a straightforward consequence of the algorithm proposed to deal with pressure relaxation effects is that it gives a discrete counterpart of the proof given in the previous section in property 3 in the continuous framework.

Effective relaxation effects

We now define the following vector of unknowns :

∆ =                   ∆U g l ∆U vl ∆P ∆T g l ∆T vl                   (4.62)
using notations introduced in (4.31) and (4.32), and calculate the time evolution of the latter variable ∆, using (4.28). This ends up with : We still consider positive values of q k j (W ) and τ P . In order to guarantee the pressuretemperature relaxation process through system (4.28), the following three conditions must be fulfilled : In order to guarantee the relaxation process, eigenvalues of A P T

∂ t ∆ = -A(W ) ∆ (4.
(W ) must be real positive, or complex with a positive real part. 

□ Remark 3 :

-Note that when the ratio of relaxation time scales τ P τ T tends to zero ( with some abuse of notation since we have three temperature time scales τ T l v , τ T g v and τ T l g ), the condition (4.67) degenerates, and one retrieves the sole condition on pressure relaxation (see [HJ23b]), which is : τ P a P P (W ) > 0 (4.74) (see (4.47)). Recall that this condition may require that some upper bound on the initial pressure disequilibrium ∆P (0) holds, for general EoS, as detailed in Property 3 and remark 1.

If a P P (W ) > 0, and considering standard EoS for which ∂ϵ k ∂T k ρ k = C v,k > 0, the first condition (4.67) is always satisfied, whatever the ratio of time scales τ P τ T is, since t r ace(A T T (W )) > 0 (see Appendix A).

-For practical purposes, when using complex EoS, the three conditions arising in (4.67), (4.68), and (4.69) must be checked in computational codes. (W ) and a PU (W ) vanish when the two relative velocities ∆U g l and ∆U vl tend to zero (see Appendix A).

□ Remark 4 :

-The counterpart of the latter relaxation conditions is given in [Hér22] for a class of non-equilibrium two-phase flow models, with or without mass transfer (see [HJ23d] also, which provides some additional details). -When focusing on immiscible three-phase flow models such as those proposed in [Hér07], a similar analysis may be performed, see [HJ23a] . Note that this framework enables to exhibit situations requiring a strong numerical coupling of source terms when one aims at tackling difficult situations such as those occurring in vapor explosion [BH21].

□

Conclusion and perspectives

Focus has been given herein on the three-field flow model introduced in [HM19]. Actually, an important result is associated with property 6, which provides conditions (4.67), (4.68), and (4.69) arising from the relaxation matrix A P T (W ). These constraints are neccessary to guarantee the whole relaxation process on velocity, pressure and temperature variables.

The latter conditions are also useful for practical purposes, since they may be used with the algorithm detailed below. This one simply consists in solving successively :

                         ∂α g ∂t + V i (W).∇α g = 0 ∂m k ∂t + ∇.(m k U k ) = 0 ∂m k U k ∂t + ∇.(m k U k ⊗ U k + α k p k Id) + Π k (W)∇α g = 0 ∂α k E k ∂t + ∇.(α k U k (E k + p k )) -Π k (W) ∂α g ∂t = 0 
(4.75) using explicit Rusanov scheme, or some more sophisticated and accurate scheme [BS23], which is relying on relaxation techniques (see [CHS17] for two-phase flow models with energy, and [Sal19] in the immiscible barotropic three-phase framework 4. Relaxation process in a hybrid two-phase flow model -4.5. Conclusion and perspectives

), and then computing approximate implicit approximate solutions of :

                         ∂α g ∂t = φ g (W) ∂m k ∂t = 0 ∂m k U k ∂t = S U k (W) ∂α k E k ∂t -Π k (W) ∂α g ∂t = S E k (W) (4.76)
The first step involves some constraint on the time step ∆t . Depending on the relative values of the relaxation time steps τ P , τ T i j , τ U i j , and of ∆t , an implicit first-order Euler scheme or alternatively higher-order implicit schemes may be considered. Coupled implicit techniques should be priviledged in order to get more stable approximations of (4.76) , in particular when tackling interactions of shock waves with liquid droplets [Cha+11], or vapor explosion ( [Ber00]). This will be discussed in a forthcoming paper.

Appendix A

The matrix A(W ) ∈ R 5 × R 5 introduced in (4.64) is given by : 

A(W ) =         
m g + 1 m l ) + d vl ( 1 
m v + 1 m l ) + d g v ( 1 
m g + 1 m v ) ( 4 
A T T (W ) =      e f h i      =      q g l ( 1 
M g + 1 M l ) + q g v M g q l v M l - q g v M g q l g M l - q g v M v q vl ( 1 
M v + 1 M l ) + q g v M v     
d l g (U l -U g )( 1 2M g - 1 2M l ) + d g v (U v -U g ) 1 2M g d g v (U g -U v ) 1 2M g + d l v (U v -U l ) 1 2M l d g v (U v -U g ) 1 2M v + d l g (U g -U l ) 1 2M l d l v (U l -U v )( 1 2M v - 1 2M l ) + d g v (U g -U v ) 1 2M v                (4.86)
-Eventually we have :

a P T (W ) =      b c      =       q g v L v - q g l L l - q g l + q g v L g q g v L g - q vl L l - q vl + q g v L v       (4.87) with L k = m k ∂ϵ k ∂P k ρ k
, and : A simple first-order scheme accounting for pressure relaxation terms (4.35) In view of section 2.3, the following algorithm arises.

a PU (W ) =       1 2 (d l g ( 1 
L l - 1 L g )(U l -U g ) + d v g ( 1 
L g + 1 L v )(U g -U v )) 1 2 (d l v ( 1 
L l - 1 L v )(U l -U v ) + d v g ( 1 
L g + 1 L v )(U v -U g ))      
Algorithm A P -Consider some given initial value X n = α n g ∈]0, 1[, and compute X = α n+1 g such that :

X -X n = ∆t Π 0 τ P (W n ) X (1 -X )(P v (X ) + P g (X ) -P l (X )) (4.94) using definitions : 

ρ k (X ) = m n k X (k ∈ g , v) ; ρ l (X ) = m n

□

Remarks on Algorithm A P :

-The solution X ∈]0, 1[ of (4.94) exists and is unique.

-Associated values of updated variables at time t n+1 are uniquely defined and in the admissible range.

□

Conclusion

Les travaux menés au cours de cette thèse permettent de mieux comprendre le processus de relaxation effectif dans un ensemble de modèles multiphasiques, compressibles, totalement déséquilibrés avec énergie. En plus d'améliorer la compréhension de la dynamique complexe de retour à l'équilibre dans les modèles considérés, l'analyse dans le cadre continu du processus de relaxation pour le modèle diphasique immiscible [BN86] et pour le modèle triphasique immiscible [Hér07] a permis de développer une nouvelle stratégie numérique pour le traitement des termes sources de ces modèles. Cette stratégie se base sur le calcul de l'évolution des écarts en vitesse, pression, température et potentiel de Gibbs. Elle présente un meilleur comportement que la méthode à pas fractionnaires préexistante dans la littérature sur les cas considérés (voir Chapitre 2). Le gain principal de cette nouvelle stratégie est la stabilité, dans la mesure où elle permet de simuler des cas tests pour lesquels la méthode à pas fractionnaires était insuffisante (voir Chapitre 3).

Suite à l'étude dans le cadre continu proposée dans le Chapitre 4, une extension de la méthode numérique, mise en place dans les Chapitres 2 et 3, pour le traitement des termes sources du modèle diphasique "hybride" [HM19], couplée à une mise en place numérique avec un solveur de la convection, permettrait de proposer une première stratégie pour simuler le modèle dans sa globalité. Un schéma de type Rusanov [Rus62] 4. Relaxation process in a hybrid two-phase flow model -Références adapté au cadre non conservatif pourrait être une premier candidat pour obtenir des résultats préliminaires.

Dans un second temps, les schémas de convection de type Rusanov, utilisés pour toutes les simulations numériques réalisées au cours de cette thèse, pourraient être remplacés par des schémas de type relaxation comme ceux proposés dans [Sal12 ; Coq+14a ; CHS17 ; Sal19 ; BS23]. L'utilisation de ces schémas permettrait de gagner en précision. De plus, ces schémas ont un bon comportement lors de l'apparition de phases évanescentes, qui restent un enjeu pour la simulation des modèles considérés.

En parallèle, une montée en ordre de la stratégie numérique développée dans les Chapitres 2 et 3 améliorerait la précision des solutions approchées du système d'équations non linéaire raide associé aux termes sources. Une piste intéressante serait d'utiliser la méthode Radau V présentée dans [WH96]. L'utilisation de cette méthode permettrait de monter en ordre tout en conservant de bonnes propriétés de stabilité.

Enfin, en gardant comme objectif d'obtenir des résultats plus proches de l'expérimental que ceux présentés dans ce manuscrit, la stratégie numérique proposée dans les Chapitres 2 et 3 devra être adaptée pour des lois d'états plus complexes que le Stiffened Gas, comme par exemple la loi de type Noble Able Stiffened Gas [LS16]. En effet, comme montré dans le chapitre 2 de la thèse [Qui20], les lois d'état de type Stiffened Gas ont un domaine de représentativité relativement restreint. Or, de par la nature des cas tests que l'on cherche à simuler, les grandeurs thermodynamiques considérées balayent un large domaine de fonctionnement. Ainsi, une loi d'état avec un meilleur domaine de représentativité pourrait améliorer le caractère prédictif des simulations numériques.

(see chapter 1), we set :

                 S E g (W ) = -S E l (W )
S E l (W ) = -q ′ (W ) τ T (W ) (T l -T g ) φ l (W ) = k(W ) τ P (W ) (P l -P g ) (.7)

With q ′ (W ) and k(W ) positive functions and τ P and τ T respectively denote the pressure and the temperature relaxation time scales. System (.4) now writes as :

                           ∂ t α l = k(W )
τ P (W ) (P l -P g ) ; This choice enables to retrieve an effective relaxation time of each effect taken separately close to the ones imposed : τ P (W ) when the sole pressure relaxation is taken into account and τ T (W ) when the sole temperature relaxation is taken into account. Now let's evaluate the effective relaxation time scales of system (.11). First we introduce λ + and λ -the two eigenvalues of A(W ). We also supposed that the conditions of relaxation presented in chapter one or in [Hér22] are valid here. Then the eigenvalues of A(W) are real positive or complex conjugate.

∂ t m k = 0 ; U k (W, t ) = 0 ; ∂ t (α k E k ) + P g ∂ t (α k ) = - q ′ (W ) τ T (W ) (T k -T j ) ; k ∈ {l ,
-First case : λ + and λ -are real positive By convention, we suppose that : 0 < λ -≤ λ + (.15)

Then : As λ -is the smallest eigenvalue, it is assosiated with the highest relaxation time scale τ e f f that drives the system. Thus we have : 

1 λ -= λ + λ + λ -= λ + d et (A) ≥ λ -+ λ +
τ e f f = 1 
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 1 FIGURE 1. -Schéma de fonctionnement d'une centrale nucléaire avec aéroréfrigérant.Sources :[IRSb].

FIGURE 2 .

 2 FIGURE 2. -Schéma de fonctionnement d'une centrale nucléaire sans aéroréfrigérant.Sources :[IRSb] 

  .5) avec W la variable d'état non conservative, F (W ) le flux, N c (W, ∇W ) les termes non conservatifs de convection du système et S(W ) les termes associés aux termes sources. Alors la stratégie numérique s'écrit comme :

FIGURE 4 .

 4 FIGURE 4. -Evolution de la pression P l dans le cas 3 calculée avec l'algorithme à pas fractionnaires. τ P = 10 -5 s, τ T = 10 -4 s, τ m = 10 -6 s. Les conditions initiales de ces cas sont données dans l'Annexe 1 du chapitre 2.

Property 2 (

 2 27)Thus we get (see[Hér07 ; Hér20]) : Interfacial pressure closure laws in system (1.

  g . The latter equation (1.58) simply stands for the application of an implicit Euler scheme to the first equation in (1.57), denoting ψ 0 the initial condition, and ∆t the time step.

FIGURE 1 . 1 . 1 .FIGURE 1 . 2 .

 11112 FIGURE 1.1. -Convergence of the pressure relaxation step involved in system (1.19)-Error on the statistical fraction α 1 , at time T = τ P /2 , for two distinct values of the relaxation time scale τ P .

  .21) with an explicit form of the right-hand side R H S η (W ) depending on the closure laws for φ l (W ), Γ l (W ), S Q k (W ) and S E k (W ).

2 .

 2 l g T T (W ) + a l g P P (W ))λ + a l g T T (W )a l g P P (W )a l g T P (W )a l g P T (W ) (2.46) 97 Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.1. Governing equations of the two-phase flow model and main properties Owing to conditions (2.43) and (2.44), the sum a l g T T (W ) + a l g P P (W ) is positive, thus :-In case of complex eigenvalues, these are complex conjugate, and their real part a is equal to (a l g T T (W ) + a l g P P (W ))/2, thus positive ; -If the two eigenvalues λ ± are real, we have : λ + +λ -= a l g T T (W )+a l g P P (W ), thus the sum is positive. Moreover, the product λ + λ -is equal to : conclude that both λ + and λ -are positive, owing to (2.45).

2 .□ 2 . 1 . 4 .

 2214 Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system -When accounting for mass transfer terms arising in liquid-vapour flow models, some additional constraints may arise, as emphasized in[Hér22]. Relaxation time scales : τ P , τ T , τ m and τ U

Property 4 :

 4 (Pressure relaxation algorithm) -The pressure relaxation process is effective during step 1 if the pressure gap satisfies condition (2.44).

  the following system :

2 .FIGURE 2 . 1 .FIGURE 2 . 2 . 2 .FIGURE 2 . 3 .FIGURE 2 . 4 . 2 .FIGURE 2 FIGURE 2

 2212222324222 FIGURE 2.1. -Homogeneous case : evolution of the pressure P l in case 1 (τ P = 10 -5 s and τ T = 10 -3 s), computed with the fractional step algorithm. The initial conditions are given in Appendix 1.

FIGURE 2 .

 2 FIGURE 2.9. -Sketch of the data settings in meters

  ; We c = 12 Num 1 000m ; We c = 3 Num 10 000m ; We c = 12 Num 10 000m ; We c = 3 Num 20 000m ; We c = 12 Num 20 000m ; We c = 3 Experimental Chauvin

FIGURE 2 .

 2 FIGURE 2.10. -Chauvin experiment : Evolution of the pressure P mi x (P a) = α l P l + α g P g at station 3, using two different critical Weber numbers : W e c = 3 or 12. Meshes contain : 1 000 cells, 10 000 cells or 20 000 cells. CFL = 0.45 .

  and 2.11 show a pressure drop right after the incident shock wave 2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system ; We c = 12 Num 1 000m ; We c = 3 Num 10 000m ; We c = 12 Num 10 000m ; We c = 3 Num 20 000m ; We c = 12 Num 20 000m ; We c = 3 Experimental Chauvin

FIGURE 2 .

 2 FIGURE 2.11. -Chauvin experiment : evolution of the pressure P mi x (P a) at station 2 for various meshes and W e c
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 2 Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system

FIGURE 2 .

 2 FIGURE 2.12. -Chauvin experiment : evolution of the pressure P mi x (P a) at station 1 for various meshes

2 .FIGURE 2 .

 22 FIGURE 2.13. -Chauvin experiment : evolution of the velocities at station 3 for a mesh of 20 000 cells. Index number 1 corresponds to the liquid phase and index number 2 corresponds to the gaseous phase.

FIGURE 2 . 2 .

 22 FIGURE 2.14. -Chauvin experiment : evolution of the diameter D d at station 3 for a mesh of 20 000 cells.

Property 7 :

 7 (Coupled P-T-µ algorithm) -System (2.142) is invertible whatever the time step is. -If the three fundamentals minors of matrix R P T µ (2.135) are positive, then step 1 ensures the thermodynamic relaxation process over time, whatever the time step is. -For a given couple of perfect gas EOS, solutions P n+1 l and T n+1 l of (2.140) in the admissible range, exist and are unique. Moreover,

2 .FIGURE 2 .FIGURE 2 .

 222 FIGURE 2.15. -Evolution of P l in case 3 computed with the fractional step algorithm. τ P = 10 -5 s, τ T = 10 -4 s, τ m = 10 -6 s. The initial conditions are given in Appendix 1.
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 222 FIGURE 2.17. -Evolution of ∆P in case 3 computed with the fractional step algorithm. τ P = 10 -5 s, τ T = 10 -4 s, τ m = 10 -6 s. The initial conditions are given in Appendix 1.
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 2 Finite volume techniques to compute the global system

FIGURE 2 .FIGURE 2 .

 22 FIGURE 2.19. -Evolution of T l and T v in case 3 computed with the fractional step algorithm. τ P = 10 -5 s, τ T = 10 -4 s, τ m = 10 -6 s. The initial conditions are given in Appendix 1.
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 2 Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system

FIGURE 2 .FIGURE 2 .

 22 FIGURE 2.22. -Evolution of P mi x for two meshes including 1 000 cells and 10 000 cells

2 .FIGURE 2 .

 22 FIGURE 2.24. -Evolution of T l and T v at station 3 with the initial condition of case 2.A mesh of 10 000 cells has been used.
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 2 Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -Références
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  .36) Hence, we have four stationary constraints (3.33), (3.34), (3.35), (3.36), plus seven unsteady equations embedded in (3.31).

3 .

 3 A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.4. Numerical scheme ii) On the other hand, it can be checked, see Appendix 4 of this chapter, that conditions (3.37) and (3.38) are automatically verified when no mass transfer is involved, i.e. Λ 12 (W ) = Λ 13 (W ) = Λ 23 (W ) = 0, as for all (k, l ) ∈ 1, 3 , d kl (W ) > 0. Moreover, conditions (3.37) and (3.38) are necessary and sufficient to guarantee the velocity relaxation process over time.

3 ) 3 = 1 -α n+1 1 -α n+1 2 = m n+1 3 ρ 3 Step 5 :

 33112335 range, solutions of the implicit non-linear system : = ξ n , (3.66) equations (3.66) and (3.67) stand for the discrete counterpart of (3.50) and (3.1). Then, setting : Γ 23 = Λ 23 ∆g 23 , compute U n+1

Property 3 (

 3 The Coupled P-T-g algorithm) :

  .80) and τ m 23 = τ m . (3.81) Their values, the EoS coefficients within each phase and the initial conditions are given in Appendix 1. Two test cases are computed. The only differences between case A and case B are the values of the relaxation time scales.

Figures 3. 1

 1 Figures 3.1, 3.2, 3.3 and 3.4 show that the effective relaxation time scale of the global system is significantly larger than the biggest relaxation time scale among τ P , τ T , τ m , which is 10 -2 s here. A similar behaviour has already been pointed out in Chapter 2 and a detailed analysis is proposed in Appendix A of this thesis. Moreover, even for a coarse time step, the method captures rather well the behaviour of the solution for both cases. Figures 3.1 and 3.3 show the impact of the choice of the pressure relaxation time scale on the behaviour of the solution. We emphasize that test case A cannot be computed using the fractional step algorithm presented in[BH21].

  Figures 3.1, 3.2, 3.3 and 3.4 show that the effective relaxation time scale of the global system is significantly larger than the biggest relaxation time scale among τ P , τ T , τ m , which is 10 -2 s here. A similar behaviour has already been pointed out in Chapter 2 and a detailed analysis is proposed in Appendix A of this thesis. Moreover, even for a coarse time step, the method captures rather well the behaviour of the solution for both cases. Figures 3.1 and 3.3 show the impact of the choice of the pressure relaxation time scale on the behaviour of the solution. We emphasize that test case A cannot be computed using the fractional step algorithm presented in[BH21].

3 .FIGURE 3 . 1 .FIGURE 3 . 2 .

 33132 FIGURE 3.1. -Pressure evolution for case A (τ P = 10 -5 s, τ T = 10 -3 s and τ m = 10 -2 s) computed with two different time stepping : ∆t = 10 -8 s and ∆t = 10 -3 s.

3 .FIGURE 3 . 3 .FIGURE 3 . 4 .

 33334 FIGURE 3.3. -Pressure evolution for case B (τ P = 10 -8 s, τ T = 10 -3 s and τ m = 10 -2 s) computed with two different time stepping : ∆t = 10 -8 s and ∆t = 10 -3 s.

FIGURE 3 .

 3 FIGURE 3.5. -Scheme of the KROTOS-like shock tube

1 P 3 .

 13 A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -3.5. NumericalResults :

3 .FIGURE 3 .

 33 FIGURE 3.6. -Evolution of the total pressure on station 2 (red lines) and 3 (black lines)for two meshes including respectively 1000 cells and 10 000 cells.

3 .

 3 A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -Références Case A Case B τ P 1.0e-5 s 1.0e-8 s τ T 1.0e-3 s 1.0e-3 s τ m 1.0e-2 s 1.0e-2 s TABLEAU 3.3. -Numerical parameters for Case A and Case B in the homogeneous case.

  coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -Références

.145) 3 . 4 :

 34 A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -RéférencesAppendix Necessary conditions for effective relaxationLet us first recall property 2 : Property 2 : (Effective relaxation conditions) -If the velocity relaxation process occurs, then : t r (R UU ) > 0 , (3.151) d et (R UU ) > 0 . (3.152)

  .168) If all the real parts of the eigenvalues of R t her mo are strictly positive, we can once again easily check from the previous notations that : ∀n ∈ 1, 5 , Σ n > 0 (3.169) 3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -Références □ Appendix 5 : Interfacial area

  .173) with σ c = 73 .10 -3 (N .m -1 ) a reference surface tension[Pic17] . Moreover f(We) is defined as :f (W e) = 1 , i f W e > W e c ; f (W e) = 0 ot her wi se(3.174) 

Figure 3 .

 3 Figure 3.7 shows that the interfacial area equation is active throughout the simulation of the KROTOS 44 set up.

3 .FIGURE 3

 33 FIGURE 3.7. -Evolution of the difference W e -W e c at station 3 with a mesh including 10 000 cells

Property 1 :

 1 (Structure of the three-field two-phase flow model) -The homogeneous part of the one-dimensional model associated with (4.3) equiped with (4.6), (4.7) is hyperbolic if the non-resonance condition is fulfilled. Introducing phasic celerities c k (p k , ρ k ) as :

(4.54) 4 .

 4 Relaxation process in a hybrid two-phase flow model -4.3. A few results on the preservation of admissible states Variables α g , ρ k ,U k thus remain steady through system (4.54), and meanwhile temperatures vary. Defining : gives ∆T (t ), and find T l (t ) solution of the constraint :m 0 l ϵ l (ρ 0 l , T l (t )) + ( k=v,g m 0 k ϵ k (ρ 0 k , T l (t ) + ∆T kl (t ))) = (

( 4 . 4 .

 44 59) with : M k = m k ∂ϵ k ∂T k | ρ k . Thus we obtain : Property 4 : (Temperature relaxation process due to interfacial transfer) Assume that functions ∂ϵ k ∂T k | ρ k and q i j (W ) remain positive and bounded. Then the temperature relaxation process is ensured by (4.54). □ Proof :We first note that t r ace(A T T (W )) = e + i is positive, and also that :d et (A T T (W )) = eif h > 0 (4.60) Relaxation process in a hybrid two-phase flow model -4.4. Effective relaxation effects The characteristic polynomial Q 2 (λ) associated with A T T (W ) : Q 2 (λ) = λ 2 -λt r ace(λ ± . Both are real and positive, or complex with a positive real part.

  63)with A(W ) ∈ R 5 × R 5 in the specific form : (W ) a P P (W ) t a P T (W ) A T U (W ) a T P (W ) are three matrices in R 2 ×R 2 , and the vectors a PU (W ), a P T (W ) and a T P (W ) lie in R 2 . All coefficients are detailed in Appendix A.We note that eigenvalues of matrix A(W ) are those of matrices A UU simply checked that the two fundamental minors t r ace(are positive (see Appendix A), whatever the state variable W is. This implies that its two eigenvalues are either real positive, or imaginary conjugate with a positive real part. Thus we get :Property 5 : (Velocity relaxation process due to interfacial transfer)The velocity relaxation process is guaranteed by system (4.28) for positive values of d k j (W ).

  Property 6 : (Pressure-temperature relaxation process due to interfacial transfer)

  a P P (W ) + t r ace(A T T (W )) = a + e + i > 0 (4.67) (aebd ) + (aic g ) + (eif h) ) = c(d heg ) + b( f gd i ) + a(eif h)

4 .

 4 Relaxation process in a hybrid two-phase flow model -4.4. Effective relaxation effects -First note that the three eingenvalues λ 1 , λ 2 , λ 3 of A P T (W ) may be real (case 1), otherwise one is real λ 1 , and the other two are complex conjugate λ 2 = λ 3 (case 2).-Define :I 1 = λ 1 + λ 2 + λ 3 ; I 2 = λ 1 λ 2 + λ 2 λ 3 + λ 1 λ 3 ; I 3 = λ 1 λ 2 λ 3 (4.70)Note that these coefficients I 1 , I 2 , I 3 arise in the characteristic polynomial Q 3 (λ) associated with A P T(W ) :Q 3 (λ) = (λ -λ 1 )(λ -λ 2 )(λ -λ 3 ) = λ 3 -I 1 λ 2 + I 2 λ -I 3 (4.71)If case 1 is considered, we obviously have :I 1 > 0 ; I 2 > 0 ; I 3 > 0 (4.72)A similar result holds in (case 2) since :I 1 = λ 1 + 2Re(λ 2 ) > 0 ; I 2 = 2λ 1 Re(λ 2 ) + λ 2 λ 2 > 0 ; I 3 = λ 1 λ 2 λ 2 > 0 (4.73) -All coefficients of A P T(W ) are real, thus I 1 , I 2 , I 3 lie in R. Moreover, the first quantity arising in (4.67) identifies with I 1 , the second one in (4.68) with I 2 , while the third one in (4.69) is equal to I 3 .

4 .

 4 Relaxation process in a hybrid two-phase flow model -4.5. Conclusion and perspectives -Eventually, it must noted that the six coefficients arising in A T U

  (W ) a P P (W ) t a P T (W )

1 m g m l + 1 m l m v + 1 m

 111 j and partial masses m k are positive, and :d et (A UU (W )) = (d g l d vl + d g l d v g + d g v d vl )( g m v ) (4.81)-The diagonal coefficient a P P (W ) reads :a P P (W ) = a = 1 Π 0 τ P (W) α g ρ l c 2 l + (1 -α g )(ρ g c 2 g + ρ v c 2 v ) -α g (ρ l∂ϵ l ∂P l |ρ l ) arising in (4.64) reads :

( 4 .

 4 83)noting :M k = m k ∂ϵ k ∂T k ρ k .Its structure is the same as the one of A UU (W ). Thus     

(4.88) 4 .=

 4 Relaxation process in a hybrid two-phase flow model -Références Second, equation (4.90) admits at most one solution since :J ′ (X ) = k∈(l ,g ,v) k=l ,g ,v m n k C v,k T n k -k=g ,v m n k C v,k (∆T ) n+1 kl k=l ,g ,v m n k C v,k(4.93)□

l 1 -

 1 X (4.95)P k (X ) = p k (ρ k (X ), S n k ) ; e k (X ) = ϵ k (ρ k (X ), S n k ) , with k ∈ (g , v) (4.96) and : e l (X ) = ( k∈(l ,g ,v) m k ϵ k ) nm n v e v (X )m n g e g (X ) /m n l (4.97)but also :P l (X ) = p l (ρ l (X ), e l (X )) (4.98)-Update all variables in agreement with (4.35).

  g } , j ̸ = k (.8) From system (.8), an equation of conservation of the sum of the internal energies can be obtained : = P l -P g ∆T = T l -T g (.10) the following system can be derived from (.8) (see chapter 1 and [Hér22]) : A(W ) can be written as (see chapter 1 or[Hér22]) : funtions k(W ) and q ′ (W ) are chosen such that :k(W )a 1 (W ) = O (1) ; q ′ (W )a 4 (W ) = O (1)(.14)

- 2 1

 2 Second case : λ + and λ -are complexe conjugated Then : ∥λ + ∥ = ∥λ -∥. Thus we get : |d et (A)| = ∥λ -∥ + ∥λ + ∥ 2 |d et (A)| ≥ ∥λ -+ λ + ∥ 2 |d et (A)| = |t r ace(A)| 2 |d et (A)| = |a P P + a T T | |d et (A)| (.19)

  

Table des figures 1 .

 des1 Schéma de fonctionnement d'une centrale nucléaire avec aéroréfrigérant. Sources : [IRSb]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Schéma de fonctionnement d'une centrale nucléaire sans aéroréfrigérant. Sources : [IRSb] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Schéma de la phénoménologie de l'explosion vapeur. . . . . . . . . . .

  Homogeneous case : Convergence curve for case 1. The initial conditions are given in Appendix 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8. Homogeneous case : Convergence curve for case 5. The initial conditions are given in Appendix 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9. Sketch of the data settings in meters . . . . . . . . . . . . . . . . . . . . . 2.10.Chauvin experiment : Evolution of the pressure P mi x (P a) = α l P l + α g P g at station 3, using two different critical Weber numbers : W e c = 3 or 12. Meshes contain : 1 000 cells, 10 000 cells or 20 000 cells. CFL = 0.45 . . . 2.11.Chauvin experiment : evolution of the pressure P mi x (P a) at station 2 for various meshes and W e c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12.Chauvin experiment : evolution of the pressure P mi x (P a) at station 1 for various meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.13.Chauvin experiment : evolution of the velocities at station 3 for a mesh of 20 000 cells. Index number 1 corresponds to the liquid phase and index number 2 corresponds to the gaseous phase. . . . . . . . . . . . . 2.14.Chauvin experiment : evolution of the diameter D d at station 3 for a mesh of 20 000 cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.15.Evolution of P l in case 3 computed with the fractional step algorithm.

The initial conditions are given in Appendix 1. . . . . . . . . . . . . . . . . . . . . . . . . . 115 2.7.

  . . . . . . . . . . . . . . . . . . . 2.25.Convergence curve in case 1 with τ P τ = 10 -4 . . . . . . . . . . . . . . . . . 2.27.Convergence curve in case 1 with τ P τ T = 10 -6 . . . . . . . . . . . . . . . . .

	2.26.Convergence curve in case 1 with	τ P τ T

T = 1. . . . . . . . . . . . . . . . . . . 2.28.Chauvin experiment

Les modèles multiphasiques en approche totalement déséquilibrée

  Liste des tableaux -0.2. La modélisation multiphasique composant dans une phase donnée (eau liquide/vapeur d'eau). Ainsi, il est possible de construire des modèles où le nombre de champs est supérieur au nombre de phases. C'est le cas par exemple des modèles que l'on appellera "hybrides" [HM19 ; HHQ21], où une phase contient plusieurs composants. Par exemple, dans le modèle triphasique hybride[HHQ21], les phases (métal liquide, eau liquide et gaz) sont reliées par une contrainte d'immiscibilité et les composants de la phase gazeuse (vapeur d'eau et air) sont quant à eux reliés par une contrainte de miscibilité. Les contraintes de miscibilité et d'immiscibilité jouent un rôle structurant pour les modèles.Dans cette thèse, on s'intéresse aux modèles basés sur une approche Eulérienne. De plus, au vu des cas applicatifs visés, la plupart des modèles discutés embarquent une ou plusieurs équations d'énergie. L'idée de l'approche Eulérienne pour la modélisation multiphasique consiste à considérer chaque phase comme un fluide propre qui Dans les travaux de thèse, nous nous limiterons à l'équation d'aire interfaciale utilisée dans[Mei+14] dans la mesure où elle ne change pas les propriétés du modèle d'après[BH19]. D'autres modélisations plus fines de ce phénomène existent dans la littérature comme par exemple [HI00 ; YM04 ; LMV04 ; Ess+19 ; Cor+20]. Contrairement aux modèles homogènes, les modèles en approche totalement déséquilibrée (aussi appelés bi-fluides, déséquilibrés ou hors-équilibre) ne font pas d'hypothèse d'égalité des vitesses de phase. Dans un premier temps, on se restreint au cas de modèles à phases immiscibles. Dans ce cas, chacun des champs est décrit par

	Cependant, pour les cas de validation que l'on souhaite simuler dans cette thèse
	([Huh+96 ; Cha+11 ; Cha12 ; NEA16]), l'hypothèse d'équilibre en vitesse, souvent utili-
	sée, est trop limitante. En effet, comme montré dans [Gel96 ; Ber00 ; Cha+16], l'un des
	phénomènes physiques cruciaux pour bien représenter les échanges thermiques est

interagit avec les autres à travers des interfaces mobiles. Ces méthodes se basent le plus souvent sur une stratégie de moyennisation statistique

[DP06]

. Les interfaces sont donc traitées de manière diffuse, contrairement à l'approche Lagrangienne, et c'est le taux de présence statistique phasique qui donne la probabilité de présence en un point de chaque phase. Dans le cas de la modélisation diphasique, deux grandes classes de modèles existent dans la littérature : les modèles en équilibre total ou partiel et les modèles totalement hors équilibre.

0.2.1. Les modèles diphasiques en approche homogène

L'approche homogène consiste à modéliser l'écoulement comme un mélange et à traiter la dynamique et la thermodynamique de ce mélange. Le système d'équations associé est assez semblable à un système d'Euler, bien qu'il puisse comporter des termes supplémentaires. La problématique centrale de ces modèles est la définition d'une loi d'état pour le mélange. En effet, cette loi doit caractériser les relations entre les composants du mélange, tout en respectant le premier et le second principe de la thermodynamique. Elle est souvent obtenue en faisant des hypothèses supplémentaires d'équilibre de grandeurs thermodynamiques et mécaniques [BK90 ; BKP90 ; Fau00 ; Kok01 ; Jao01 ; Hel05 ; Fac08 ; Qui20]. La plupart du temps, les modèles homogènes font l'hypothèse que tous les champs ont la même vitesse. Certains modèles supposent que toutes les phases sont en équilibre, on parle alors de modèle HEM (Homogeneous Equilibrium Model). D'autres modèles, dit HRM (Homogeneous Relaxation Model) relaxent certaines de ces hypothèses. L'un des avantages de ces modèles est que leur structure convective est relativement simple lorsque les vitesses relatives sont nulles. la fragmentation de gouttes, pilotée par la vitesse relative entre les phases. La prise en compte de ce phénomène nécessite par ailleurs l'introduction d'équations d'aire Liste des tableaux -0.2. La modélisation multiphasique interfaciale. 0.2.2. un système d'équations de type Euler où des termes de couplage apparaissent. Les termes de couplage peuvent être séparés en deux familles : les termes interfaciaux qui correspondent, dans le cas diphasique, à une vitesse et une pression d'interface, et les termes sources qui pilotent le retour à l'équilibre. Contrairement aux modèles homogènes, chaque phase possède sa propre loi d'état. Cependant, la structure convective des modèles déséquilibrés est plus complexe que celle des modèles homogènes, dans la mesure où des produits non-conservatifs liés aux gradients des taux de présence statistiques apparaissent.

  3. Les schémas numériques pour les modèles multiphasiques hors-équilibreIci encore, le modèle a été construit en respectant les trois propriétés (P1, P2, P3) du cahier des charges présenté pour le cadre diphasique immiscible.

	Une extension de ce modèle au cadre triphasique hybride a été proposée dans [HHQ21].
	Il permet de modéliser des écoulements où les composants suivants sont présents :
	métal liquide, eau liquide, vapeur d'eau et air.
	0.3. Les schémas numériques pour les modèles
	multiphasiques hors-équilibre

0.3.1. Le cas diphasique hors-équilibre

L'objectif central de la thèse concerne le développement de schémas numériques pour la simulation de modèles d'écoulement multiphasique compressible hors équilibre avec énergie. De nombreux travaux existent déjà dans la littérature pour la simulation de modèles diphasiques de la classe dite type Baer-Nunziato. Des codes de calcul pour ces modèles sont aussi développés, comme par exemple dans le cadre du projet SMASH entre l'INRIA et l'Université d'Aix Marseille

[SMA] 

ou encore le code RELAP7 proposé par Idaho National Laboratory

[Ber+16]

.

Méthode numérique pour les modèles comportant plus de deux champs

  Liste des tableaux -0.3. Les schémas numériques pour les modèles multiphasiques hors-équilibre Cette étape conditionne le pas de temps par contrainte CFL. On obtient une variable d'état intermédiaire nommée W * . -Ensuite, calculer de manière implicite l'évolution de W * sur un pas de temps ∆t à travers le sous-système des termes sources :Le pas de temps ∆t est le même que celui imposé par la première étape, c'est pourquoi la méthode numérique associée doit donc être très stable.C'est cette stratégie qui est retenue pour les travaux présentés dans le cadre de la thèse. Il est aussi possible de voir cette approche comme un seul pas hybride explicite/implicite dans la mesure où la variable intermédiaire W

	et sur une compréhension plus fine du comportement du système (0.7) dans le cas
	diphasique immiscible.
	∂ t (W ) = S(W ). 0.3.2. Certains codes de calcul existent pour la simulation d'écoulements à plus de deux (0.7)
	champs. Dans le cadre eau vapeur, on peut à minima mentionner le modèle à trois
	champs, équilibré en pression, implémenté dans le code CATHARE [Val+11]. On peut
	aussi citer les codes développés pour la simulation de scénarios de type explosion
	vapeur : MC3D [Pic17] développé par l'IRSN, IDEMO [Sch12] développé par Institut
	für Kernenergetikund Energiesysteme, le code japonais JASMINE [Mor+95] ou encore
	le code américain ESPROSE.m [YT95].
	re-
	laxation est pris en compte séparément [GHS04 ; Gal+10 ; HH12 ; ACR12 ; Coq+14a ;
	Cro+15 ; PS19 ; Coq+21 ; Pel22]. Pour certaines de ces méthodes, des hypothèses sup-
	plémentaires sur les temps de relaxation et leur l'ordonnancement sont utilisées.
	Lorsqu'aucune hypothèse sur les temps de relaxation n'est retenue, l'approche à pas
	fractionnaires présente des limites de stabilité dans certains cas d'écoulements eau
	vapeur. Cela motive donc totalement les travaux présentés dans le Chapitre 2 sur le
	développement de nouveaux outils numériques pour le traitement des termes sources

* disparaît lorsque l'on somme les deux étapes.

Plusieurs solveurs ont déjà été proposés dans la littérature pour traiter la première étape, i .e. le calcul de solutions approchées du sous-système (0.6). La plupart de ces solveurs utilisent une approche type Volumes Finis

[EGH00]

. On peut citer par exemple le solveur de Rusanov

[Rus62] 

qui, bien que très diffusif, possède de bonnes propriétés de stabilité, le schéma de type Godunov de Schwendemann-Kapila

[SWK06]

, le solveur HLLC proposé par Tokareva-Toro [TT10 ; Loc+16] ou encore le solveur de relaxation proposé dans

[Sal12 ; CHS17]

. Ce dernier a été développé pour un modèle de type Baer-Nunziato où la vitesse interfaciale est une des deux vitesses de phase en utilisant la structure particulière des ondes qui découle de cette hypothèse. Une comparaison de ces quatre solveurs en termes de précision et coût CPU est par ailleurs proposée dans l'article

[CHS17] 

et montre le très bon comportement du solveur de relaxation, en particulier pour la gestion des phases évanescentes. Un autre schéma de Riemann a aussi été proposé dans

[TKN11]

. D'autres approches en Eléments Finis, basées sur des approches de type Galerkin Discontinu ont aussi été proposées, par exemple dans

[Coq+21 ; Rai21]

. Enfin, une première proposition pour une méthode IMEX (IMplicit-EXplicit) qui traite de manière explicite les ondes lentes et de manière implicite les ondes rapides a été récemment proposée dans

[Ait+23]

.

Concernant la seconde étape, le système (0.7) associé est composé d'un ensemble d'équations différentielles ordinaires raides non-linéaires couplées. Dans la littérature diphasique, la principale approche utilisée pour calculer des solutions approchées de ce système consiste en une méthode à pas fractionnaires où chaque effet de Peu de méthodes numériques existent dans la littérature pour traiter les modèles à plus de deux champs qui respectent au niveau continu les propriétés P1, P2 et P3. Dans le cas du modèle triphasique immiscible avec énergie

[Hér07]

, une stratégie a été développée dans

[BH21]

. La méthode utilisée est là aussi basée sur deux pas. Un premier pas explicite pour la convection utilise un solveur de Rusanov. Un second pas implicite traite les termes sources. Pour la stratégie proposée dans

[BH21]

, les termes sources sont également traités avec un algorithme à pas fractionnaires découplant chaque effet de relaxation. Néanmoins, le traitement des termes sources n'est alors pas suffisament robuste pour simuler un cas de validation de type Krotos 44

[Huh+96] 

sans supposer une relaxation instantanée en pression et vitesse, voir

[BH21]

.

Une extension de la méthode présentée pour le traitement des termes sources dans le cas diphasique immiscible

[HJ23d] 

va donc être proposée dans le Chapitre 3, pour le modèle triphasique immiscible. Dans le cas des modèles "hybrides", un premier schéma de convection par relaxation, s'appuyant sur [CHS17 ; Sal12], a été proposé très récemment dans le cadre diphasique barotrope dans

[BS23]

, en considérant le modèle proposé dans

[HM19]

. Pour le modèle diphasique "hybride" avec énergie

[HM19]

, le Chapitre 4 propose également une méthode numérique pour le traitement des termes sources.

0.4.

Synthèse des travaux : 0.4.1. Chapitre 1 : Relaxation en pression pour une classe de modèles multiphasiques / Pressure relaxation in some multiphase flow models

  Dans chaque modèle, une contrainte structurante de miscibilité ou d'immiscibilité relie les taux de présence statistiques des N phases présentes. Par ailleurs, comme ces modèles sont hors-équilibre, à chaque phase k ∈ 1, N est associée une vitesse U

	Ce premier chapitre s'intéresse au phénomène de relaxation en pression dans quatre
	modèles compressibles multiphasiques hors-équilibre avec énergie. Les modèles
	considérés sont les suivants : un modèle diphasique immiscible de type Baer-Nunziato
	[BN86], un modèle triphasique immiscible [Hér07], un modèle diphasique hybride
	[HM19] et un modèle triphasique hybride [HHQ21].

k , une pression P k , une température T k et un potentiel de Gibbs µ k . Ces quatre modèles peuvent être écrits formellement sous la forme suivante :

Chapitre 2 : Deux approches pour simuler un modèle d'écoulement diphasique compressible hors-équilibre avec des termes sources raides / Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms Le

  De cette écriture, en examinant la structure des valeurs propres de la matrices R

P (w), des conditions pour la relaxation effective en pression en temps long sont exhibées pour chaque modèle. Ces conditions dépendent de la loi d'état de chaque phase ainsi que de la variable d'état. Plus précisément, elles donnent une borne maximale de l'écart de pression pour que la relaxation en pression soit effective dans les modèles considérés. Des résultats similaires pour les modèles hybrides (eau liquide/vapeur + gaz incondensable et métal liquide/eau liquide/vapeur + gaz incondensable) sont aussi obtenus.

Dans le chapitre 2, les conditions de relaxation effective dans le cas d'un modèle diphasique immiscible type Baer-Nunziato seront étudiées en détail, sans négliger les relaxations en température et en potentiel. 0.4.2. chapitre 2 a deux principaux objectifs. Dans un premier temps, on s'intéresse au processus de relaxation en vitesse et thermodynamique entre phases dans une classe de modèles diphasiques compressibles immiscibles hors équilibre avec énergie de type Baer-Nunziato

[BN86]

. Puis un nouveau schéma numérique pour traiter la partie associée aux termes sources du modèle est proposé. Ce schéma est décliné dans le cas liquide gaz et liquide vapeur et testé sur un ensemble de cas. Tout d'abord, comme dans le chapitre précédent, on associe à la phase liquide l (respectivement gaz g ou vapeur v) un taux de présence statistique α l (respectivement α g ou α v ), une vitesse U l (respectivement U g ou U v ), une pression P l (respectivement P g ou P v ), une température T l (respectivement T g ou T v ) et un potentiel de Gibbs µ l (respectivement µ g ou µ v ). Dans la mesure où les phases sont supposées immiscibles, Liste des tableaux -0.4. Synthèse des travaux : on a la contrainte structurante suivante : α l + α i = 1, (0.13) où i est égal à g ou v en fonction du cas traité. Par ailleurs, on définit l'énergie totale phasique comme :

  .14) avec ϵ k (P k , s k ) l'énergie interne phasique, fonction, à travers une loi d'état spécifiée par l'utilisateur, de la pression P k et de l'entropie spécifique s k . Le système d'équations associé au modèle est le suivant, avec k dans {l , i } :

0.4.3. Chapitre 3 : Une approche couplée pour simuler un modèle triphasique immiscible à transitoire rapide avec des termes sources raides / A coupled approach to compute solutions of a compressible immiscible three-phase flow with fast transient and stiff source terms

  4. Synthèse des travaux :

	Ce chapitre propose une extension de la méthodologie présentée dans le chapitre
	précédent au modèle triphasique immiscible proposé dans [Hér07]. Ici, on considère
	que les trois phases correspondent respectivement à du métal liquide appelé corium
	(1), de l'eau liquide (2) et de la vapeur d'eau (3). Comme le modèle est totalement
	déséquilibré, on associe à chacune des phases k ∈ 1, 3 , une vitesse de phase U k , une
	pression P k , une température T k et un potentiel de Gibbs µ k . De plus, la contrainte
	d'immiscibilité s'écrit :

  ∆ r = (∆U 12 , ∆U 13 , ∆P 12 , ∆P 13 , ∆T 12 , ∆T 13 , ∆g 23 )

		.28)
	En suivant la même méthodologie que dans le chapitre précédent, on s'intéresse au
	processus de relaxation en supposant un écoulement homogène à l'instant initial, i.e.
	en faisant abstraction des termes convectifs du système (0.24). Du système obtenu
	dans cette configuration, qui correspond à la partie associée aux termes sources de
	(0.24), une équation d'évolution de la variable ∆ r :	
	⊺ ,	(0.29)
	est obtenue. Cette équation peut s'écrire sous la forme suivante :	

.4. Chapitre 4 : Etude du processus de relaxation effectif dans un modèle diphasique hybride / Relaxation process in a hybrid two-phase flow model

  ∈ {l , v, g } une vitesse de phase U k , une pression P k et une température T k . Dans ce chapitre, on néglige le transfert de masse.

	0.4Ce chapitre se place dans la lignée des deux précédents. Il a pour objectifs d'étudier
	le processus de relaxation dans le modèle diphasique "hybride" [HM19] ainsi que
	de mieux comprendre la question de la préservation d'états admissibles à travers le
	modèle.	
	Tout d'abord, rappelons que le modèle proposé dans [HM19] cherche à modéliser des
	écoulements diphasiques à trois champs. Plus précisément, il a été introduit afin de
	représenter un écoulement composé d'une phase d'eau liquide appelée l et d'une
	phase gazeuse constituée de deux composants : la vapeur d'eau v et l'air g . Dans
	ce modèle, on fait l'hypothèse que les champs sont en déséquilibre. On associe là
	encore à chaque champ k	
	,	(0.31)
	her mo	
	De cette écriture, les conditions de relaxation effective sont obtenues et une nou-
	velle stratégie numérique pour le traitement des termes sources du système (0.24),
	semblable à celle développée dans le chapitre précédent, est proposée. Le nouvel
	algorithme qui en découle possède des propriétés similaires à celles présentées dans
	le cadre diphasique au Chapitre 2. Entre autres, il assure le processus de relaxation
	en temps long si les conditions de relaxation, obtenues dans le cadre continu, sont
	vérifiées en tout point et à tout instant dans le cadre discret.	
	Enfin, des résultats numériques utilisant la nouvelle méthode sont présentés. Dans
	la même logique que le chapitre précédent, une première partie de ces résultats
	concerne des écoulements homogènes/en boîte. Une seconde partie s'intéresse à
	la simulation d'un cas embarquant le système complet, que l'on appellera KROTOS
	[Huh+96]. Une première tentative de simulation de ce cas avait été proposée dans
	[BH21]. Cependant, la méthode utilisée alors pour le traitement des termes sources se
	révélait insuffisamment stable. La nouvelle méthode proposée est quant à elle assez
	robuste pour simuler ce cas.	
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  Then we get :

	Property 6 (Pressure relaxation in the hybrid model (1.53))
	Consider system (1.53) with closure laws for interfacial pressures and source terms
	respectively introduced in Property 5 and (1.51). Assume that the pressure gap ∆P
	defined in (1.52) complies with the conditions :

  e 13 e 12 + e 13 e 23 + e 12 e 23 ) (1.65) and the trace of R

	1≤k<l ≤3	e kl	m k + m l m k m l	(1.66)

u : t r ace(R u ) = are both strictly positive. Hence the two eigenvalues µ u ± of R u are :

  g ), waves associated with eigenvalues U k ± c k are Genuinely Non-Linear, and waves associated with eigenvalues U k are Linearly Degenerate.-The coupling wave associated with λ 0 (W ) is Linearly Degenerate if :

  .19)2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.1. Governing equations of the two-phase flow model and main properties-System (2.5) can be symmetrized away from resonant states (2.17).

  111)2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system

	Standard calculations show that the function Θ(P l ) is decreasing and that its
	bounds are :	 	lim P l →+∞	Θ(P l ) = -1
			lim P l →max(0,∆P )

  .1). Actually, it can lead to a huge overestimation of the pressure, whereas the coupled algorithm better follows the monotony of the exact solution (see Figure2.2). For example, in Figure2.1, the pressure P l for large time steps can be ten times bigger than the one obtained with the coupled approach. The relaxation process overtime is effective in case 1 as it can be seen in Figures 2.3 and 2.4. Here, owing to (2.50), and since Πl > Πg , condition (2.44) is automatically satisfied. Nonetheless, condition (2.45) must be checked inside the code -see Section 1.3-. Figures 2.5 and 2.6 show that the two numerical methods give similar results on the temperature profiles in this case. The main difference between the two numerical approaches here lays in the liquid pressure profiles.

  2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system study has been conducted. Let us introduce the error E Ψ (t , ∆t ) of a thermodynamic quantity Ψ for a time step ∆t at time t. Given the numerical approximate solution Ψ ap of Ψ ex , the error E Ψ (t , ∆t ) is calculated as follows :E Ψ (t t , ∆t ) = |Ψ ex (t t ) -Ψ ap (N ∆t )|The convergence curves (see Figures 2.7 and 2.8) show a speed of convergence close to 1 for the two approaches, as expected theoretically. It is worth noting that the value of the error can be quite large for the fractional step algorithm, as it can be two hundred times bigger than the error of the coupled algorithm for the pressure P l , see Figure2.8. The plateau of convergence for large time steps corresponds to simulations where ∆t > t t .

					|Ψ ex (t = 0)|	(2.117)
	with :					
					t t = N ∆t .		(2.118)
	In our cases we set t t = 2.0 10 -3 s.		
		1				
	Log(Error)	1e-05				P l coupled P g coupled T l coupled
						T g coupled
						P l fractional
						P g fractional
						T l fractional
						T g fractional
		1e-10	1e-08	1e-06	0,0001	0,01	1
					log(∆t)	

FIGURE 2.7. -Homogeneous case : Convergence curve for case 1. The initial conditions are given in Appendix 1.

Table 2

 2 . Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system

	2

.1.

Remark 3 : It is also worth noting that the accuracy of the fractional step algorithm decreases when the ratio τ P τ T tends to zero (see Appendix 7).

TABLEAU 2.1. -CPU normalised by the CPU of the fractional step algorithm using ∆t = 10 -8 s for case 1

  .51) Next, as in the previous part, an evolution equation of the quantity : ∆ t her mo = (∆P 12 , ∆P 13 , ∆T 12 , ∆T 13 , ∆g 23 )

	⊺ ,	(3.52)
	is constructed from (3.46) :	
	∂ t (∆ t her mo ) = -R t her mo ∆ t her mo ,	(3.53)
	where R t her mo is the sub-matrix of R r el ax ∈ M 5 (R) arising in (3.32). Alongside (3.53)
	and still considering (3.50) and (3.1), the following can also be obtained from (3.46) :
	∂ t (m 1 ) = 0	(3.54)

  G 21 = -K 12 (ρ 1 c 1 ) 2 ∂ϵ 1 ∂P 1 ρ 1 + ∆P 12 K 12 + (∆P 12 -∆P 13 )K 23 , G 31 = -K 13 (ρ 1 c 1 ) 2 ∂ϵ 1 ∂P 1 ρ 1 + ∆P 13 K 13 -(∆P 12 -∆P 13 )K 23 ,

	3. A coupled approach to compute solutions of a compressible immiscible
	three-phase flow model with fast transient and stiff source terms -Références
	Writing θ k = m k	∂ϵ k ∂T k ρ k	, and :			
		F 21 = K 12 ρ 2 1	∂ϵ 1 ∂ρ 1 T 1	-P 2 K 12 + (∆P 12 -∆P 13 )K 23 ,
		F 31 = K 13 ρ 2 1	∂ϵ 1 ∂ρ 1 T 1	-P 3 K 13 -(∆P 12 -∆P 13 )K 23 ,
		F 22 = -(K 12 + K 23 )ρ 2 2	∂ϵ 2 ∂ρ 2 T 2	+ P 2 (K 23 + K 12 ) ,
		F 32 = K 23 ρ 2 2	∂ϵ 2 ∂ρ 2 T 2	-P 2 K 23 ,
		F 23 = K 23 ρ 2 3	∂ϵ 3 ∂ρ 3 T 3	-P 3 K 23 ,
		F 33 = -(K 13 + K 23 )ρ 2 3	∂ϵ 3 ∂ρ 3 T 3	+ P 3 (K 23 + K 13 ) .
	Moreover, setting σ k = m k	∂ϵ k ∂P k ρ k	, and :
					m 1	d 12 +	1 m 2	d 12 + d 23 -	Λ 23 2	∆g 23 ,
		r UU 12 = r UU 21 =	1 m 1 1 m 1	d 13 -d 12 -	1 m 2 1 m 3	d 23 -d 23 +	Λ 23 2 2 Λ 23	∆g 23 , ∆g 23 ,	(3.99)
		r UU 22 =	1 m 1	d 13 +	1 m 3	d 13 + d 23 +	Λ 23 2	∆g 23 .

  3. A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -Références

	r T U 11 = ∆U 12	d 12 + d 23 2θ 2	-	d 12 2θ 1	-	d 23 2θ 2	∆U 13 ,	(3.100)
	r T U 12 = ∆U 13	d 23 2θ 2	-	d 13 2θ 1		-	d 23 2θ 2	∆U 12 ,	(3.101)
	r T U 21 = ∆U 12	d 23 2θ 3	-	d 12 2θ 1		-	d 23 2θ 3	∆U 13 ,	(3.102)
	r T U 22 = ∆U 13	d 13 + d 23 2θ 3	-	d 13 2θ 1	-	d 23 2θ 3	∆U 12 .	(3.103)
									(3.104)
	-R T P (W ) =							
	r T P 11 = -	F 21 θ 1	+	F 22 θ 2	,	(3.105)
	r T P 12 = -	F 31 θ 1	+	F 32 θ 2	,	(3.106)
	r T P 21 = -	F 21 θ 1	+	F 23 θ 3	,	(3.107)

  Fields associated with eigenvalues λ 1 , λ 4 , λ 5 , λ 7 , λ 8 , λ 10 are Genuinely Non Linear.

	Other fields are Linearly Degenerate.	
	-System (4.3) can be symmetrized away from resonant cases.	
	-Smooth solutions of the full system (4.3) with closure laws (4.6), (4.7), (4.8) , (4.9)
	and (4.10) comply with the entropy inequality :	
	∂η ∂t	+ ∇.(F η ) ≥ 0	(4.14)

.13) Associated right eigenvectors span the whole space of non resonant states. The resonance condition writes : |U j -U l | = c j for j ∈ (g , v). -

Property 2 : (Preservation of admissible states in the convective subset)

  .21) with : 1 < γ k and Πk > 0. In that case admissible states of pressure are such that :p k + Πk > 0. Moreover we recall that : ρ k c 2 k = γ k (p k + Πk ). This enables to state :We consider the above-mentioned stiffened gas EoS (4.21).

-Assume that U l and ∇.U l remain bounded in the domain Ω, and also that initial conditions and inlet boundary conditions of the liquid pressure and density are admissible states, then the mean density ρ l and p l + Πl remain positive in

Ω × [0, T ]. -For k ∈ (g , v), assume that both U k and (∇.U k + (U k -U l ).∇Log (α k ))

remain bounded in the domain Ω, and also that initial conditions and inlet boundary conditions of the pressure p k and density ρ k are admissible states, then the mean density ρ k and p k + Πk remain positive in Ω × [0, T ].

(Pressure relaxation process due to interfacial transfer)

  ) = (α g ) + P v (α g ) -P l (α g ))(τ) is defined and lies in ]0, 1[. Phasic densities ρ k , coming from (4.37), and gas and vapour pressures P v,g arising from (4.38), are admissible. Finally, the liquid internal energy arises from (4.39). Relaxation process in a hybrid two-phase flow model -4.3. A few results on the preservation of admissible states Then the sole pressure relaxation process is guaranteed. Statistical fractions remain in [0, 1] and densities are positive. Meanwhile pressures p v and p g are admissible. Proof : Actually, the latter boundedness conditions together with : a P P (W ) > 0 ensure that the integral in (4.44) is defined and positive. This implies that the pressure relaxation process holds, since (4.44) guarantees a contraction. Consequently H (t ) in (4.41) is defined. This in turn means that the statistical fraction α g (t ) lies in ]0, 1[, considering (4.43). Hence densities and pressures p v,g remain in the admissible range (see (4.37) and (4.38)).

	t 1 -α g (t ) 0 Hence, if α g (0) ∈]0, 1[, we get : α g (t ) Thus If we turn to (4.41), and still using (4.36), we note that straightforward calculations (P g Π 0 τ P (W (τ)) d τ (4.41) = α g (0) 1 -α g (0) exp(H (t )) = R(t ) > 0 (4.42) α g (t ) = R(t ) 1 + R(t ) (4.43) lead to : ∆P (t ) = ∆P (0)exp -t 0 a P P (W (τ))d τ (4.44) with a P P (W ) given by : a P P (W ) = 1 Π 0 τ P (W) α g ρ l c 2 ∂ϵ l ∂P l ρ l ) -1 ∆P (4.45) . Property 3 : Assume that functions 1 τ P (W) and ρ k c 2 k remain positive and bounded, for k ∈ (l , g , v), and also that ∆P is small enough in the sense that : a P P (W ) > 0 (4.46) or equivalently : □ Remark 1 Assume that EoS are such that : α □ p

l + (1 -α g )(ρ g c 2 g + ρ v c 2 v ) -α g (ρ l g ∆P < ρ l ∂ϵ l ∂P l | ρ l α g ρ l c 2 l + (1 -α g )(ρ g c 2 g + ρ v c 2 v ) (4.47) 4. k (ρ k , ϵ k ) + γ k Πk = (γ k -1)ρ k ϵ k (4.48)

with γ k > 1, then :

  ρ k ϵ k(4.49) with γ k > 1, for k ∈ (v, g ), we get from (4.35) : Relaxation process in a hybrid two-phase flow model -4.3. A few results on the preservation of admissible states = g , v, using (4.49). We must consider two cases :-If (p v + p gp l )(0) > 0, we know that : (p v + p gp l )(t ) > 0, owing to (4.44). Hence α g (t ) is increasing (see (4.35) or (4.36)). Now, using the stationary constraint on the sum of internal energies, we have :[m l ϵ l ] t 0 = -.50). Since : [m l ϵ l ] t 0 = m 0 l [ϵ l] t 0 we may conclude that ϵ l (t ) is increasing, which implies that ϵ l (t ) is admissible (and thus p l (t )).-Otherwise, if (p v + p gp l )(0) < 0, (4.44) guarantees that (p v + p gp l )(t ) < 0.Hence α g (t ) is decreasing, and p k (t ) increases for k = g , v, due to (4.51). Considering positive initial conditions p v (0) and p g (0), we may conclude that p l (t ) > (p v + p g )(t ) > (p v + p g )(0) > 0, which means that p l (t ) lies in the admissible range R + .

	4. thus :	α k	∂p k ∂t	+ γ k p k	∂α k ∂t	= 0	(4.51)
	for k k∈(g ,v)	[m k ϵ k ] t 0 =	0	t	(( k=g ,v	p k )	∂α g ∂t	)(τ)d τ > 0	(4.52)
	owing to (4								
		∂m k ϵ k ∂t	+ p k	∂α g ∂t	= 0	(4.50)

  En effet, dans ces modèles, le retour à l'équilibre en vitesse, pression, température et potentiel de Gibbs est piloté, en chaque point, par le sous système d'équations associé aux termes sources. Ainsi, pour que la relaxation soit effective dans le modèle, i.e. que les écarts en vitesse, pression, température et potentiel de Gibbs entre phases tendent vers zéro en tout point, en temps long, une condition nécéssaire est que le sous sytème associé aux termes sources assure ce retour à l'équilibre. Dans le Chapitre 1, la relaxation en pression est étudiée de manière isolée et des conditions de relaxation en pression sont présentées pour un ensemble de modèles. Dans les chapitres suivants, le processus de relaxation global est étudié et les conditions de relaxation du sous-système associé aux termes sources sont présentées dans le cadre diphasique immiscible, triphasique immiscible et diphasique hybride. On retrouve dans ces conditions celles présentées dans le Chapitre 1. De plus, ces conditions dépendent de la variable d'état et des équations d'état considérées. Pour la plupart des équations d'état, elles doivent donc être en pratique vérifiées à chaque point, tout au long du calcul. Par ailleurs, dans ces modèles, les termes sources sont conditionnés par un ensemble de temps de relaxation. Ces temps de relaxation sont des paramètres clés de la dynamique du régime transitoire des solutions des modèles étudiés, comme illustré par exemple dans le Chapitre 3 et l'Annexe A.

This chapter has been published in : Jean-Marc Hérard, Guillaume Jomée. "Pressure Relaxation in some multiphase flow model models", ESAIM : Proceedings and surveys, August 2023, Vol. 72, p. 19-40. https://doi.org/10.1051/proc/202372019

Considering the internal energies ϵ k , with some abuse of notation, we will note in the sequel every change of variable of the functionsϵ k (P k , T k ) = εk (ρ k , S k ) = εk (ρ k , P k ) = εk (P k , S k ) = εk (ρ k , T k ) as ϵ k (P k , T k ) = ϵ k (ρ k , S k ) = ϵ k (ρ k , P k ) = ϵ k (P k , S k ) = ϵ k (ρ k , T k ).

Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -Références

This chapter is an extended version of : Jean-Marc Hérard, Guillaume Jomée. "Relaxation process in an immiscible three-phase flow model. Springer proceedings Finite Volumes for Complex Applications 10 (FVCA10). https://hal.science/hal-04154838v1. https://doi.org/10.1007/978-3-031-40860-1_20

A coupled approach to compute solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms -Références

This note discusses the relaxation process in an hybrid three-field two-phase flow model. The latter model aims at simulating the flow of a mixture of liquid water and its vapor, together with some non-condensable gas. Since the fast transient flow may involve shock waves, this model is well suited due to its main properties which are recalled in the first section.

This chapter is submitted for publication, Jean-Marc Hérard and Guillaume Jomée, https: //hal.science/hal-04197280v1.

Relaxation process in a hybrid two-phase flow model -4.4. Effective relaxation

Relaxation process in a hybrid two-phase flow model -Références

Remerciements

Appendix C : Velocity relaxation in three-phase flow models with immiscible components

We turn now to the velocity relaxation process. For sake of simplicity, we concentrate on the barotropic three-phase flow model taken from [Hér16], and focus again on the sole velocity relaxation effects.

2. Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms -2.2. Finite volume techniques to compute the global system A convergence study is presented below. The error E Ψ (t , ∆t ) is defined as in the liquid gas section (2.117). The speed of convergence is close to one (see Figure 2.21) for the two approaches, as expected. Note that the value of the error for the fractional step algorithm is about one hundred times bigger for the pressure P l than the one obtained with the coupled algorithm. Besides, the ratio of computational costs is in the range [5,12] in favour of the coupled algorithm, for a given ∆t , see Here, Chauvin experiment [Cha+11] is simulated with rigid particles assuming constant interfacial area, associated with constant particle diameter : D d = 500µm. The initial conditions and thermodynamic coefficients are recalled in Appendix 1. The relaxation time scales are the same as those used in section 2.1.3.

We recall that for collapsible droplets, as in the experiment, a pressure drop occurs right after the incident shock wave, as expected when droplet atomization arises, see [Gel96]. The simulation captures this phenomenon quite well, see Figure 2.10.

On the other hand, Figure 2.28 shows that with rigid particles, the simulation exhibits a slow increase of the total pressure after the incident shock wave. Similar results have already been exhibited in [Cha+16] and [BH21]. 

-Initial conditions for the homogeneous cases

Appendix 3 : Velocity relaxation algorithm

The sub-system that characterizes this step can be written as follows :

The algorithm used for computing approximate solutions for the velocity relaxation step is identical to Algorithm 3.3.1.2 presented in [BH21]. It consists, on each cell of the mesh, in five steps :

-Step 1 : Initialize the vector of velocity differences at time t n-(right after the convective step) : ∆U n-= (∆U n- 12 , ∆U n- 13 ) ⊺ , and the velocity relaxation matrix R UU defined in (3.32) at time t n-; -Step 2 : Compute ∆U n such as :

with I the identity matrix in M 2 (R).

-Step 3 : Compute U n 1 using the total momentum conservation : 

Appendix B

We propose here a simple fractional step algorithm in order to compute approximate solutions of sources (4.28).

It consists in solving successively (4.35) and then (4.53).

A simple first-order scheme accounting for temperature relaxation terms (4.53) In view of section 2.4, the following algorithm arises.

Algorithm A T

-For a given value of W n , compute ∆T n+1 solution of : 

□ Remarks on Algorithm A T :

-The first step (4.89) is defined, and the discrete temperature relaxation process is ensured.

-Asuming that the EoS are such that :

, the fucntion J (x) is increasing, and the equation (4.90) admits no more than one solution. -If we assume that EoS are Nobel Abel Stiffened Gas , then :

Hence the solution X of (4.90) exists and is unique. More over it can be obtained explicitly.

□ Proof :

The proof for these three items is simple. First, eigenvalues of I +∆t A T T (W n ) are 1+ ∆t λ j . If λ j is real positive, 1 + ∆t λ j is greater than 1, whatever ∆t > 0. This guarantees the discrete relaxation process. A similar remark holds when λ j is complex, when its real part is positive.

Proof :

If X n = 0 (respectively X n = 1) the obvious solution of (4.94) is X = 0 (respectively X = 1). Otherwise, the solution of (4.94) is also the solution of :

where :

and :

The function f (X ) is increasing, with f (X n ) = 0, and :

Moreover :

for k ∈ (g , v), and :

with :

Let us choose a triple of EOS, more precisely :

-a perfect gas EoS for k ∈ (g , v) :

-a Nobel Abel Stiffened Gas EoS for the liquid phase, that is :

with γ l > 1, b l > 0, Πl > 0, and assuming that 1 > ρ l b l .

Hence we have :

-

4. Relaxation process in a hybrid two-phase flow model -Références

We may conclude that P ′ l (X ) > 0, which yields :

owing to (4.103). Evenmore, we have :

which means that there exists a unique solution X ∈]0, 1[ of (4.99), or equivalently of (4.94). Densities and pressures at time t n+1 are obtained through (4.95), (4.96) and (4.97).

Eventually, assuming that approximate solutions obtained with this fractional step method converge towards the solution when the mesh size and the time step go to zero, one may conclude that solutions of (4.28) belong to the space of admissible states.

ANNEXES A. Effective relaxation time scale

This appendix aims to showcase the effect of the high coupling of the source terms in full disequilibrium models in terms of relaxation time scales. Indeed, the relaxation process of the velocity, the temperature, the Gibbs potential and the pressure is strongly intertwine. It can lead to complex return to equilibrium as the different effects can be in competition, even if only two of them are taken into account.

To better understand this behaviour, let us consider an immiscible two-phase flow model (liquid and gas). As the two phases are assumed to be immiscible the following constraint for the statistical fractions holds :

For each phase k, ρ k , m k and U k respectively refer to its density, mass and velocity. The total energy is :

The state variable can be written as :

and the governing set of equations writes :

We assume that :

and that : ∀k ∈ {l , g } , U k = 0 (.6)

In order to comply with the conservation of total energy and an entropy inequality So in the two cases we obtain :

Hence, if τ P and τ T are fixed, then the value of τ e f is driven by the norm of the determinant of A(W). As shown in Figures 1 and2, its value can be one hundred time bigger than the largest imposed time scale.