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Spécialité Informatique

par
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Chapter 1

Introduction – Français

La simplicité n’a pas besoin d’être simple, mais du
complexe resserré et synthétisé.

Alfred Jarry.

1.1 Résumé

Mes travaux de recherche s’inscrivent dans un cadre
qui vise à développer des approches formelles pour
aider à concevoir des systèmes complexes (distribués
et embarqués) à large échelle, avec un bon niveau de
sûreté et de sécurité. Plus précisément, mes travaux
consistent à proposer des outils théoriques et pra-
tiques permettant de simplifier la modélisation et la
vérification des systèmes et des applications à con-
cevoir.

Il est bien connu que la complexité des systèmes,
notamment des systèmes concurrents, les problèmes
de fiabilité et les contraintes de délais de mise sur le
marché sont des exemples de certains défis actuels qui
poussent les méthodologies de conception existantes à
leurs limites. Les systèmes distribués en particulier
se caractérisent par un grand nombre d’entités, par-
fois hétérogènes, en interaction. Elles sont souvent
décrites avec différents modèles (matériels et logiciels),
différents langages de programmation et de descrip-
tion, et utilisent divers moyens de communication. Il
arrive aussi que ces systèmes soient en perpétuelle
évolution, les entités sont conçues dans l’objectif
d’évoluer et se veulent extensibles afin de prendre
en charge des fonctionnalités non prévues initiale-
ment. Leur étude nécessite alors de combiner plusieurs
points de vue (différents niveaux de spécification et
d’abstraction, différents formalismes,...).

Confronté à des modèles excessivement complexes
de par leurs tailles, et par la variété des interactions,
le défi est l’intégration rigoureuse de ces différents as-
pects d’un système au sein d’une démarche unifiée de
modélisation et de vérification. Les modèles utilisés
jusqu’alors pour la modélisation et la vérification des
comportements des systèmes montrent aujourd’hui
leurs limites. Par exemple, l’aspect variabilité ou
paramétrique d’un système multi-entités devient dif-
ficilement ”représentable” dans ces modèles. Et le
caractère ”extensiblité” n’en est pas moins difficile à
représenter.

Pour faire face à ces problèmes, nous proposons
un cadre théorique et pratique, autour d’un formal-
isme appelé pNets, qui facilite la modélisation et la
vérification des systèmes complexes (et concurrents).
Le cadre pNets fournit une approche qui permet une
conception rigoureuse et incrémentale des systèmes
grâce à une modélisation modulaire, hiérarchique,
compositionnelle et symbolique.

Des pNets...

Dans le cadre de mes travaux de doctorat [33], nous
avons défini un formalisme permettant la spécification
compositionnelle de systèmes complexes. Ce formal-
isme, nommé pNets (pour parameterized Networks of
automata), permet d’exprimer le modèle sémantique
comportemental d’un système à travers la composi-
tion hiérarchique des modèles de ses sous-systèmes,
qui eux sont représentés par des systèmes de transition
étiquetés paramétrés nommés pLTSs (pour parameter-
ized labelled transition systems). Le modèle des pNets
étend les modèles des algèbres de processus tradition-
nels pour:
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• modéliser aisément des familles de processus, mais
aussi les interactions entre les éléments de ces
familles en se basant directement sur l’index de la
source et de la cible, sans passer par des canaux
de communication artificiels.

• prendre en compte la composition hiérarchique
des processus, à un niveau sémantique très ex-
pressif: nous avons conçu pour cela une extension
des vecteurs de synchronisation d’Arnold et
Nivat [14], permettant un codage sémantique
flexible de modes de synchronisation très variés,
plutôt que de nous limiter à un choix restreint
d’opérateurs de parallélisme.

• introduire un codage explicite des données, tant
sous forme de communication ”value-passing”,
que pour la description de topologies paramétrées
de processus.

• définir des techniques permettant de prouver en
pratique l’équivalence comportementale de deux
systèmes donnés.

Le modèle pNets et la composition hiérarchique
des pLTSs, permet une spécification de bas niveau
d’un système pour exprimer et réfléter son comporte-
ment global à travers la spécification de ses sous-
systèmes. L’aspect paramétré, permet entre autres de
raisonner sur des systèmes de taille variable voire in-
finie, ce qui est crucial pour la conception et la pro-
grammation distribuées. Les modèles paramétrés peu-
vent être instanciés ou assemblés pour construire de
plus grands systèmes. L’autre propriété importante
pour ces modèles est la ”compositionalité”. Outre la
modélisation qui est compositionnelle, la vérification
peut être aussi accomplie de manière composition-
nelle; ce qui signifie que les propriétés logiques, et
les équivalences, peuvent être vérifiées localement, et
seront garanties préservées par composition.

Cette contribution à la théorie des systèmes con-
currents a été utilisée, dans un premier temps, pour la
spécification des applications Java, en particulier des
applications implémentées avec le middleware ProAc-
tive [33]. Les modèles pNets ont servi alors pour
définir des procédures de génération automatique de

modèles comportementaux pour les objets actifs de
la bibliothèque ProActive, avec leurs mecanismes de
communication: les queues de requêtes asynchrones
ainsi que les futurs de première classe [23, 32]. Ils ont
aussi été utilisé pour la modélisation et l’analyse de
plusieurs cas d’étude réalistes [7,8,15,64] dont la com-
plexité dépassait largement les possibilités des outils
de vérification de l’époque.

Par la suite, dans le cadre d’autres travaux (e.g.
[20]), le modèle pNets a été utilisé pour définir et
exprimer la sémantique des applications développées
par une approche à base de composants. Celles-ci
sont des assemblages de composants avec leur struc-
ture d’encapsulation, leurs possibilités de reconfigu-
ration dynamique, et dotées parfois de contrôleurs
non-fonctionnels. Naturellement, l’approche pNets
qui est par essence une approche compositionnelle
se prête particulièrement bien pour l’analyse de ce
type d’applications à base de composants, notam-
ment de composants logiciels. À travers les travaux
menés sur les modèles de composants, nous avons
montré que les modèles pNets pouvaient exprimer
formellement la sémantique comportementale des com-
posants Fractal (e.g. [21, 34]). Nous avons étendu
les modèles et créé une nouvelle version [10] pour
sous-tendre la sémantique des modèles de composants
GCM (Grid Component Model) (e.g. [25, 50]), et plus
généralement, pour exprimer la sémantique des lan-
gages de programmation à base de composants asyn-
chrones (adaptables ou autonomes) qui supportent
les mecanismes pour structurer les applications, et
d’autres caractéristiques comme les futurs de première
classe et leurs stratégies de mise à jour ainsi que les
communications de groupe.

Une plateforme, nommée VerCors (pour VERifica-
tion de modèles pour COmposants Répartis commu-
nicants, sûrs et Sécurisés), a été construite sur la base
du formalisme pNets (e.g. [19, 44, 73]). L’outil offre
un éditeur graphique pour la spécification des archi-
tectures de composants, accessible aux non-experts; il
offre également des passerelles vers les outils de min-
imisation et de model-checking de CADP (e.g. [61]).
VerCors utilise le formalisme pNets comme sémantique
de base pour la modélisation du comportement des
systèmes, mais utilise comme langage intermédiaire



PM_F1

?Forward(gf,val)

?New_F1(gf)

Proxy_F1[q](gf)

!Forward(gf,val) !GetValue_F1(val)

A

!GetProxy_F1(gf)

Method_m2

Proxy_m2[p2]
Method_m

B

CForward(gf,val)

PM_m2

Queue

PM_m1

!Call_m2(q)

x:=C2.m2(f)

FutDetect_m2

Body

!Call_m2(gf)

Serve_m(...)

Q_m(...)

New_m2(p2)

Queue

Call_m(...)

R_m1(p,val)

R_m2(p2,res)

!GetProxy_m1

Q_m2(p2,gf)

f:=C1.m1(arg)

!Q_m1(p,arg)

GetValue_m1(p,val)

New_m1(p)

Recycle_m1(p)

Body

Serve_m2(p2,gf)

New_F1(q,gf)
GetValue_F1(q,val)

FProxy_m1[p]

P3.6

P3.3

P2.4

C8

C7.1

P1.2

P2.3 P1.1

P2.1

P1.4

P2.2

P1.2

P1.3

P4

C7.2

P3.1

P3.2

C7.2

P1.1

P2.1

C7.1

P2.3

P2.5

P2.2
P2.6

P3.4

P3.5

P2.4

Figure 1.1: Structure pNets d’un composant GCM avec sa Queue de requêtes asynchrones et ses Futurs (Figure
extraite de [10])

le langage appelé Fiacre1(pour Format Intermédiaire
pour les Architectures de Composants Répartis Em-
barqués) [29]. Ce langage pivot, a été défini avec les
partenaires du projet appelé également Fiacre, pour
servir comme langage formel commun à plusieurs out-
ils de vérification, il est lui même basé sur la no-
tion de processus et de constructeurs de composition
hiérarchique.

Vers les Open pNets.

Tout en poursuivant l’objectif premier de la
modélisation et la vérification des systèmes
paramétrés, extensibles et compositionnelles, dans nos
travaux de ces dernières années, la phase deux visait
à accrôıtre la puissance du formalisme de spécification
pNets, pour capturer les aspects de l’évolution du
comportement des composants et supporter l’idée de
systèmes partiellement spécifiés. La sémantique com-
portemantale des pNets, ainsi que les algorithmes de

1Fiacre sur http://projects.laas.fr/fiacre/

vérification, sont adaptés pour l’analyse des systèmes
fermés (clos), c’est-à-dire les systèmes statiques et
non évolutifs. Cependant, ils ne permettent pas la
modélisation de systèmes dont la spécification est
partielle ou incomplète. C’est pour cette raison que
la notion d’open pNets a été introduite, pour offrir
la possibilité de représenter l’ouverture d’un système
et l’incomplétude d’une spécification. Les open pNets
sont des pNets avec des trous permettant de décrire
en outre des processus inconnus. Dans ce formalisme,
les indices de processus sont utilisés comme moyen
pour encoder des composants non spécifiés (inconnus)
et dont les comportements sont décrits que par
l’ensemble des actions acceptés par le composant (la
sorte du trou), sans aucune spécification sur l’ordre
dans lequel elles seront exécutées.

L’extension de la théorie des pNets à la théorie des
open pNets permet de raisonner sur des systèmes com-
plexes ouverts ou partiellement spécifiés. Les travaux
sur les Open pNets ont démarré sur l’initiative en-
tre autres d’Eric Madelaine (chercheur INRIA), Lu-
dovic Henrio (chercheur CNRS – ENS Lyon) et (Min
Zhang (Chercheuse ECNU – Université Shangäı) [75].
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Figure 1.2: Un exemple d’open pNet modélisant un Failure Monitor (Figure extraite de [103])

Nous les avons poursuivis pour définir une théorie pour
raisonner sur l’équivalence des systèmes, selon les no-
tions de bisimulation symbolique et d’équivalence com-
portementale. Nos principales contributions à cette
recherche sont les suivantes:

1. La définition de la notion d’open automata
(d’automates ouverts): une algèbre d’automates
paramétrés avec des trous qui constitue une
sémantique de base pour les systèmes concurrents
ouverts, notamment les pNets ouverts. Aussi,
nous avons défini des règles de traduction des
pNets ouverts en automates ouverts.

2. La définition de la théorie permettant de raisonner
sur les pNets ouverts selon la notion d’équivalence
comportementale. En particulier, nous avons
avons défini la notion de relation de bisimulation
entre automates ouverts. Le travail s’est fait
en deux étapes: dans un premier temps, nous
avons adapté la relation de bisimulation forte déjà
définie et introduite dans [75] pour permettre
de montrer que cette relation est une relation
d’équivalence. Nous avons également établi une
preuve complète que cette relation de bisimulation
est satisfait les propriétés de compositionnalité.
Dans l’étape suivante, soucieux de minimiser

l’effort de vérification des modèles et d’ignorer les
étapes de calcul, i.e. les actions qui ne modifient
pas le comportement ”visible” d’un système, nous
avons introduit la notion de transition ouverte
faible pour définir la théorie de bisimulation
faible. Des algorithmes ont été développés
pour le calcul de la sémantique symbolique en
termes d’automates ouverts; ces derniers sont
utilisés pour l’analyse d’une étude de cas réaliste:
l’analyse du logiciel de contrôle embarqué des
satellites [103,104].

3. Le modèle d’automate ouvert défini peut être con-
sidéré comme une description partielle sur un
système global, où les détails inutiles des autres
composants et de l’environnement externe ont été
abstraits. À partir de ce modèle initial par-
tiel (abstrait), les détails des composants peu-
vent être introduits par raffinement de composants
séparés, et les descriptions résultantes peuvent être
synthétisées par composition en un modèle détaillé
du système global. Pour garantir une substitua-
bilité sûre d’une version abstraite d’un composant
par sa version raffinée dans une telle démarche,
nous proposons une définition du raffinement des
automates ouverts en terme de simulation. Nous



avons donc défini une relation de simulation en-
tre les open pNets qui joue le même rôle que la
simulation entre les systèmes de transition clas-
siques, avec des contraintes particulières et des
conditions supplémentaires pour traiter les sortes
des trous. La relation simulation définie sur les au-
tomates ouverts capture le principe selon lequel un
composant en raffine un autre s’il présente moins
de trous, ou s’il impose plus d’ordre sur les ac-
tions de ses trous. Bien qu’elle ne donne pas
des garanties sur la préservation des propriétés de
sûreté, la relation de simulation permet de garan-
tir qu’une implémentation est bien une extension
d’une spécification, une propriété particulièrement
utile dans certains cadres, notamment en program-
mation.

1.2 Structure du Document

Le reste du document est organisé comme suit:

Le chapitre 3 rassemble des éléments de com-
paraison avec d’autres travaux de recherche directe-
ment liés à notre travail: approches de conception
– de modélisation et de vérification – composition-
nelle permettant de spécifier et de vérifier des systèmes
de manière compositionnelle; nous discuterons des
modèles symboliques qui permettent de vérifier des
systèmes paramétrés, mais aussi des systèmes sensi-
bles aux données; et enfin nous discuterons la notion
de raffinement qui permet de relier des spécifications
à des implémentations correctes.

Le chapitre 4 décrit notre théorie de spécification
compositionnelle. Celle-ci basée sur le formalisme
pNets pour le codage des systèmes fermés (clos) et
sur les Open pNets pour le codage des systèmes ou-
verts. Ces modèles adaptés pour décrire la sémantique
des systèmes distribués, et supporte parfaitement
l’approche compositionnelle. L’article principal sur le
modèle open pNets qui a été soumis au journal Logical
and Algebraic Methods in Programming, JLAMP [11]
est inclus dans le chapitre.

Puis le chapitre 5 présente une autre contribution
au développement de modèles systèmes composition-
nels à travers une approche incrémentale. Les open au-

tomata sont considérés comme des spécifications par-
tielles de systèmes, qui peuvent être raffinées par com-
position. Les détails techniques de l’approche sont
donnés dans l’article inclus: un papier en cours d’une
une soumission.

Enfin, le document sera terminé par une analyse de
l’état actuel de ce travail. Ce dernier ouvre plusieurs
directions pour des travaux futurs que nous prévoyons
d’explorer dans les années à venir.





Chapter 2

Introduction – English

Everything should be made as simple as possible, but not
simpler.

Albert Einstein. Oct. 1977.

2.1 Summary

My research work is part of a framework that aims
to develop formal approaches to help design complex
systems with a good level of safety and security. More
precisely, my work consists in proposing a theoreti-
cal and practical framework allowing to facilitate the
modelling and verification of complex distributed and
embedded systems.

It is well known that the complexity of systems,
especially concurrent systems, reliability issues and
time-to-market constraints are examples of some of
the current challenges that push existing system de-
sign methodologies to their limits. These systems are
characterised by a large number of interacting hetero-
geneous entities, described through different models
(hardware and software), various programming lan-
guages, and use various means of communication.
Moreover, these systems are often in perpetual evo-
lution, the entities are designed with the objective of
evolving and are intended to be extensible in order
to cope with unplanned or unanticipated functionali-
ties. Their analysis requires the combination of several
points of view (different levels of specification and ab-
straction, various formalisms,. . . ).

Faced with the complexity of models through their
size, and the variety of interaction mechanisms, the
challenge is the rigorous integration of these different

aspects of a system within an unified and rigorous ap-
proach. In other words, the challenge is to define a
procedure for integrating several perspectives within a
single model. The models used so far for the modelling
and behavioural verification of systems have revealed
their limitations. For instance, most formalisms are
not able to ”represent” the variability or parametric
aspect of a multi-entities system. The ”extensibility”
(and infinite) aspect is no less difficult to model.

To address these issues, we propose a theoretical
framework, referred to as pNets, that can help to model
and verify complex (and concurrent) systems. The
pNets framework provides an approach that supports
incremental design through symbolic compositional hi-
erarchical modelling.

From pNets...

During my PhD research [33], we defined a symbolic
compositional hierarchical model called pNets (for pa-
rameterized Networks of automata) for systems mod-
elling and verification. The pNets formalism allows to
express the behavioural semantics of a system through
hierarchical composition of the models of its subsys-
tems, which are represented by parameterised labelled
transition systems (pLTSs). The pNets model extends
the classical models of process algebras in order to:

• ease the modelling of process families, and the in-
teractions between the elements of these families,
based purely on the source and target indices,
without using artificial communication channels.
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Figure 2.1: Structure pNets of a GCM component with its Queue of asynchronous requests and its Futures (Figure
retrieved from [10])

• take into account the hierarchical composition of
processes, at a high expressive semantic level: we
have designed for this purpose an extension of
Arnold and Nivat’s synchronization vectors [14],
providing a flexible formalism for encoding a wide
variety of synchronization modes, rather than
being limited to a restricted choice of parallelism
operators.

• include explicit coding of data in models, both
as communication parameters for concurrent
value-passing systems, and as parameters for the
description of parameterised process topologies.

• provide techniques and tools based on equivalence-
checking notion, for determining the establishing
equivalence of systems.

The pNets and pLTSs models allow the low-level
beahavioural specification of a system through speci-
fication of its subsystems. The parameterised feature
allows us to reason about variable-sized systems, or
even potentially infinite-sized systems, which is a cru-

cial aspect for distributed design and programming.
The parametrized models can be instantiated, or as-
sembled to build larger systems. Another key feature
of pNets models is the ”compositionality”. This for-
malism allows to build a models in a compositional and
hierarchical manner, but also allows to perform com-
positional verification, which gives a significant advan-
tage for the verification technique that relies on model
checking.

Our contribution to the theory of concurrent sys-
tems has been used, in the early work, for the specifi-
cation of Java applications, which are developed over
ProActive middleware [33]. The pNets models were
then used to develop procedures for the automatic gen-
eration of behavioural models for active objects within
ProActive library, with their various mechanisms of
communication and features, as asynchronous request
queues and first class futures [23,32]. The potential of
pNets model is demonstrated through many convinc-
ing and realistic case studies [7,8,15,64], in which the
complexity of some case studies was far beyond the
capabilities of the existing tools.



Subsequently, in other work [20], the models have
been used in the area of component-based software en-
gineering. The pNets formalism is used to express the
semantics of applications developed by a component-
based approach. These applications are basically as-
semblies of components – program units – with their
specific characteristics as the notion of encapsulation
structure, dynamic reconfiguration possibilities, and
sometimes with non-functional controllers. Naturally,
the pNets approach, which is basically a compositional
approach, is particularly well-suited to the analysis of
such applications. In this context, we have shown that
pNet models can formally express the behavioural se-
mantics of Fractal component models [21,34]. Further
in this line, we have extended an earlier version (given
in [10]) to cover the complete behavioural semantics
of the Grid Component Model (GCM) [25, 50], and
more generally to address a broader class of (adapt-
able or autonomous) component-based programming
languages that support mechanisms for structuring ap-
plications and others features like first-class futures
with their update strategies and also group communi-
cations.

A platform, called VerCors [19], has been built
on the pNets formalism; the platform [44, 73] offers
an user-friendly graphical editor for the specification
and modelling of component architectures; and it is
directly plugged to CADP minimisation and model-
checking tools [61], that is used for the verification.
The pNets models are used as the basic model for the
description of systems, but at the implementation level
the models are translated into Fiacre1intermediate lan-
guage (for Intermediate Format for Embedded Dis-
tributed Component Architectures) [29]. The Fiacre
language, that is supported by several verification
tools, is also based on the notion of processes and hi-
erarchical composition constructors.

The pNets model allows us to analyse full-size dis-
tributed systems. The parametric nature of the model
and the properties of compositionability of the equiva-
lence relations are thus the main strengths of our ap-
proach.

1Fiacre on http://projects.laas.fr/fiacre/

Towards Open pNets.

While pursuing the primary objective of modelling and
verifying parameterised and extensible systems in a
compositional manner, in a second phase of our re-
search, we have tackled the problem of partial (or in-
complete) specifications. pNets models, in their initial
version, do not allow modelling of a partially specified
system. The formalism and the verification algorithms
based on the pNets were developed for the analysis of
closed systems, i.e. the systems that are static and
fully specified. But it appears that sometimes the be-
haviour of some sub-systems is unknown and there is
still a need to analyse such systems.

For this reason, the notion of open pNets was in-
troduced, to address this issue, i.e. to offer t the pos-
sibility of modelling open systems and the incomplete
specification. Open pNets are pNets with holes that
gives the ability to model open systems. The holes
are placeholders inside the hierarchical structure that
can be filled by sub-systems, i.e. they play the role of
unknown processes. Each hole has an index as its iden-
tity and the set of actions that it can perform. Thus,
the extension of pNets towards Open pNets provide
a means to deal with partially specified systems and
to reason on them. The research on Open pNets was
initiated in collaboration with Eric Madelaine (INRIA
researcher), Ludovic Henrio (CNRS - ENS Lyon re-
searcher) and (Min Zhang (Chercheuse ECNU – Uni-
versité Shangäı) [75], we have pursued them to develop
a theory for reasoning about the equivalence of sys-
tems. Our main contributions to this research are the
following:

1. The definition of the notion of open automata:
an algebra of automata with parameters and
holes that gives a basic semantics for concurrent
systems, in particular for open pNets. Moreover,
we have defined rules allowing to derive open
automata from open pNets.

2. The definition of the theory for reasoning about
open pNets: the behavioural reasoning through
equivalences and preorders that provides a means
for relating different systems expressed in the
formalism. A notion of strong bisimulation over
open automata has been defined and introduced
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Figure 2.2: Example of open pNet encoding of the Failure Monitor architecture (Figure retrieved from [103])

in [75], so we extended this relation with an
additional property in order to get an equivalence
relation. Furthermore, we have developed a
complete proof demonstrating that the bisimu-
lation relation is compositional. Afterwards, we
introduced the theory of weak bisimulation for
open automata, and its properties. The theory
relies on the definition of the notion of weak open
transitions that are derived from transitions of the
open automaton by concatenating invisible action
transitions with one (visible or not) action tran-
sition. We showed that under certain condition
of non-observability of actions, weak bisimulation
relation is compositional. Algorithms been have
developed for computing the symbolic semantics
in term of open automata; they are used for
the analysis of a realistic use-case based on the
on-board control software of satellites [103,104].

3. The open automaton model can be seen as a par-
tial description of an overall system, where unnec-
essary details of other components and the exter-
nal environment have been abstracted. From this
initial partial (abstract) model, the details of com-
ponents can be introduced separately by refine-
ment, and the resulting models from the composi-

tion composition can be viewed as detailed model
of the overall system. In order to ensure a safe
substitutability of an abstract version of a com-
ponent by its refined version in such an approach,
we propose a definition of a refinement relation of
open automata in terms of simulation. The simu-
lation relation over open automata is in some way
similar to the simulation over the classical labelled
transition systems, with symbolic evaluation of the
guards and transitions, but it also provides how
to deal with the holes. It captures the principle
that one component refines another if it has fewer
holes, or if it introduces more order over the ac-
tions of the holes. Although, the proposed does
not provide guarantees on the preservation of the
safety properties, it provides a means to show that
an implementation is an extension of some given
specification, a particularly useful property in cer-
tain settings, as in programming context.

Open pNets model allows us to reason on composi-
tion operators as well as on full-size distributed open
systems.

2.2 Organisation of the manuscript

The rest of the document is organized as follows:



Chapter 3 gathers elements of comparison with
other research works directly related to our work:
design – modelling and verification – compositional
approaches to building and verifying systems; we
will discuss symbolic models that allow us to express
parametrised systems and to verify data-sensitive
systems; and finally we will introduce the notion of
refinement that allows us to relate specifications to
theirs implementations.

Chapter 4 presents our theory of compositional
specification. This is based on the pNets formalism
for encoding closed systems and on open pNets for
encoding open systems. Both models are convenient
languages for expressing the semantics of distributed
systems, and the description languages for modelling
component-based applications. The main article on
the Open pNets model, which is accepted to the jour-
nal Logical and Algebraic Methods in Programming
(JLAMP), is included in the chapter.

Chapter 5 presents another contribution to the de-
velopment of compositional system models through an
incremental approach. Open automata are considered
as partial system specifications, which can be refined
by composition. Establishing refinement relations be-
tween systems is an important mean for verifying their
correctness. Relying on open automata, we define re-
finement relations for the comparison of systems spec-
ified as pNets. Open automata are labelled transition
systems with parameters and holes, which are adopted
as a semantic view of open pNets. This part is il-
lustrated by the paper published in the International
Conference on Software Engineering and Formal Meth-
ods (SEFM’23).

Finally, the document will be concluded with an
analysis of the current state of this work. This opens
up several directions for future work which we plan to
explore in the coming years.





Chapter 3

Related Works

Process description languages, as CCS [95] and
CSP [76], are useful tools for the design of concurrent
and distributed systems because of their compositional
nature and their well-established semantic theory. Yet,
it well-known that the major problem in applying au-
tomatic verification techniques to analyse even mod-
erate sized concurrent systems is the potential combi-
national explosion of the state-space, arising from the
combination of independent subsystems. Nevertheless,
many progress has been made to combat this prob-
lem; Indeed, various techniques have been developed
to tackle the state-space explosion, either by applying
compositional reasoning which relies on ”divide-and-
conquer” strategies that (de)compose a global system
into local concurrent subsystems (processes) and ad-
dress each subsystem separately, by applying model
checking based on symbolic models which instead of
reasoning about the pure version of process algebras,
it is done on their abstracted semantic version which
allows to perform the analysis on the input values, or
by applying an incremental approach which advocates
starting from a system specification and deriving the
corresponding implementation using refinement. But
there is very little or no support that combine all these
techniques. Before discussing our approach in the con-
text of modelling and verification of concurrent sys-
tems, it is actually interesting to relate it to all these
existing techniques.

In this chapter we give an overview of research on
approaches for overcoming the state space problem,
which related to the advocated approach through dif-
ferent perspectives, commenting the relations and dif-
ferences when possible.

Compositional systems

Compositional Modelling.

The increasing complexity of distributed systems has
led to the use of compositional techniques for their de-
sign, modelling and verification. The compositional
approach is based on the ”divide-and-conquer” princi-
ple. It allows a system to be divided into more man-
ageable parts (sub-systems) that can be studied and
modified relatively independently. This approach is
effective in several area. For instance, in the field of
software engineering, compositional programming ap-
proach is considered as entirely apart branch.
Component-based software approach is widely used by
the programmers of applications on computing grids or
clouds (e.g., [24,25,97]). Component models, like Frac-
tal [38] and GCM [43], provide a structured program-
ming paradigm, and more efficient means to ensure va-
riety and re-usability of programs. From the modelling
side, component models provide a convenient formal-
ism (and abstraction) for specifying and verifying the
correctness of systems: they provide structuring enti-
ties easing the verification. The concept of composi-
tionality of models is widely used in several modelling
languages, such as process algebras and UML [98] lan-
guages. Some formalisms offer some advanced con-
structs, as for Statecharts [71] that includes specific
features such as hierarchy and broadcast communica-
tion. The hierarchical structure of statecharts (which
is fundamentally a network property) introduces a new
dimension to conventional compositional models, it ex-
tends traditional state machines with features such as
multi-level (nested) hierarchy on states. pNets are
also hierarchical structures, whereas in statecharts the
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states are organised in a hierarchy, in pNets, the pro-
cesses are hierarchical.

Compositionality.

The ultimate aim of compositional techniques is to
provide a means for reasoning about the behaviour of
a large system based on its subsystems. Verifying con-
current systems with a large number of subsystems can
be notoriously hard to achieve due to the state explo-
sion problem. Compositional verification can provide
a powerful algorithm for state-space reduction.

The theoretical idea of the compositional verifica-
tion approach has been introduced by Winskel in [112]
thirty years ago. Later, Andersan demonstrated [13]
its practical use and its potential in overcoming state-
space explosion through the analysis of Milner’s Sched-
uler use-case [91]. Since then, there have been sev-
eral works in the field (e.g. [2, 5, 90]). In the litera-
ture, there are various forms of compositional verifi-
cation. Amongst them, the approaches referred to as
compositional minimisation or compositional reacha-
bility analysis (e.g. [47, 78, 108]). In these approaches,
a system can be minimized by replacing a compo-
nent (or process) of a system with an abstraction,
simpler than the corresponding component while still
preserving the property that is checked. Another al-
ternative, leading to a reduction of the state-space,
is the use of the interface constraints technique (e.g.
[46,67,81]); this technique allows to impose restrictions
on the component behaviour, when the latter cannot
be minimised in isolation from its environment, i.e.,
from the other components. Compositional minimi-
sation approaches rely on equivalence-checking tech-
nique for verification. This technique consists in check-
ing behavioural equivalence and preorder relations be-
tween the labelled transition systems that model the
behaviour of systems. The pNets verification approach
is part of the general compositional minimisation ap-
proach and is based on model checking technique.

We find interesting to cite here the compositional
reasoning approach, referred to as assume-guarantee
approach (e.g. [12, 66, 107]). This approach also aims
at overcoming state-explosion, although different from
the previous one and therefore from the approach adopted

with pNets, since it extends the system model with
assumptions about the environment. It is based on
model checking technique, but the verification of a
global system is conducted on a conjunction of its sub-
systems (local specifications), including additional as-
sumptions that should constrain the system behaviour.

In addition to the fact that the compositional veri-
fication approaches allow the analysis of systems by
(de)composition, they offer a significant benefit for
the verification of their properties. Actually, most of
them support the quotienting methods (e.g. [78, 84]);
these methods for reducing state-space are based on
the principle of preventing the construction and the
exploration of the whole set of states of a system,
by gradually moving specification of components (sub-
systems) from the corresponding model into the prop-
erties to be verified.

Compositional technique has been used with suc-
cess for the verification of concurrent systems and em-
bedded software on many (even industrial) case-studies
(e.g. [82, 86, 113]). In [63] the authors have reported
and highlighted an extensive list of case studies. De-
spite its great potential in overcoming state-space ex-
plosion as demonstrated in many convincing case stud-
ies, compositional approach is not used widely enough
in practice. There are very few practical tools that
support such an approach (e.g. [48, 62, 68]) because
modelling (and therefore verification) still faces other
limitations that pose significant issues for scalability
and decidability, such as the problem of data trans-
mission. This is specifically what we target here.

Symbolic and data-sensitive systems

Another alternative used for overcoming the state ex-
plosion problem is the symbolic representation of the
system. When searching the literature for the key-
word symbolic approach, many results are related to
the Symbolic Bisimulation notion. This notion refers
to a domain that is not related to our topic. In-
deed, Symbolic Bisimulation refers to the computation
of state-space. An approach introduced in the early
1980s [57,106], which is based on the symbolic (rather
then enumerative) representation of the set of states



of a system. This approach has produced tools, that
were widely used in practice with the advent of binary
decision diagrams (BDDs) [39,40].

The notion symbolic approach, that is closed to our
research, allows reasoning about processes, which ma-
nipulate and exchange values. This feature of exchang-
ing data between processes, and which is referred to as
value-passing, was introduced by Milner [93] on CCS
and Hoare [76] on CSP. In those works, the notion
of data values is only expressed at the language level,
which appears as a feature of its syntax. This addi-
tional feature for the transmission of data (with possi-
bly infinite value domains), is considered as input val-
ues and has impacted on the already established theo-
ries for the processes calculi. As pointed out in [85] this
leads to potentially non finite-branching transitions
on which algorithms establishing behavioural equiva-
lences fail to be decidable. In the literature, it has been
recognized that an attractive solution to this prob-
lem, is to deal with data (inputs) symbolically, i.e.,
to rely on symbolic models and semantics for estab-
lishing equivalences.

The pioneering work in this area is done by Hen-
nessy and Lin [72]. In their seminal paper [79], the au-
thors introduced a notion of symbolic transition graphs
and developed the associated symbolic bisimulation
with various forms (early and late, strong and weak).
The main idea of their approach is to assign to each
action (over a transition) a formula describing the sym-
bolic values used in the action. The notion of symbolic
semantic has been used for establishing behavioural
equivalence over various formalisms as for full LOTOS
(e.g. [42]) or pi-calculus (e.g. [31, 41, 54, 87]), even for
quantum processes (e.g. [59]).

Due the symbolic nature of the constructs of open
pNets, our approach also fits into this field of symbolic
semantics. However, all the above works are based on
models definitely different from ours, and none of them
allows systems to be as much parameterised as open
pNets.

Open systems and refinement

Like the behavioural bisimulation equivalences, the re-
finement orderings provide a basis for compositional

reasoning about concurrent systems [49]. The notion
of refinement captures the relation between a specifi-
cation and an implementation of the same component.
Refinement entails that one system can be considered
as a more precise version of the specification, featuring
all the specified behaviours with more concrete details.
An elegant way to check whether an implementation
meets a specification is to build a refinement (preorder)
relation that relates their state models; It captures the
idea of more behaviour and reflects the fact that an im-
plementation is ”at least as good as” the specification.

The notion of refinement was initially introduced
to allow reasoning on the correction of programmes
[56], then it was formalised as theory (e.g. [17]), and
then used in different verification frameworks (e.g. [1]).
Its particular strengths it adds a further dimension to
compositionality, and has even given rise to a complete
methodology for designing systems through the well
known B Method [3].

In the process algebra setting, the refinement is ad-
dressed either by the verification of inclusion between
the sets of traces recognized by processes, or by the
simulation-based approach (e.g. [27,28,80,92]). These
approaches ensure that all behaviours of the specifica-
tion must belong to the behaviours of the implemen-
tation. Most works on the refinement in the literature
focus on closed systems [70], whose behaviour is fully
defined and completely determined by labelled tran-
sition systems. They cannot be used as such to deal
with open systems whose behaviour depends on their
interaction with the environment, and which require
reasoning about unspecified behaviours.

There is few work that has addressed the refine-
ment of open systems (e.g. [55, 114]). Defining refine-
ment of open systems as trace inclusion is addressed
as a notion of subtyping in type theory (e.g. [35, 65]).
Such refinement is instead based on an interface-oriented
approach, to give the ability to characterise behaviour
it allows the expression of (internal and external) choices.
The refinement of open systems is also tackled in terms
of alternating simulation (e.g. [6,52]), which deals with
game-based models. Alternating simulation that is
originating from the game theory [51] allows the study
of relations between individual components by viewing
them as alternating transition systems [110]. In partic-
ular, a refinement of game-based automata expresses



that the refined component can offer more services (in-
put actions) and fewer service demands (output ac-
tions). The difference with the open pNets is mainly
attributable to the operation of composition which is
rather specialised in the case of game approach [52],
whereas in our approach it is inclusive. In order to
establish the condition of composability, we use the
notion of comparability of holes (similar to the notion
of compatibility of game approach), that is explicitly
encompassed in the definition of composition.

The result of our preliminary investigation and re-
search on open automata confirms our belief that this
formalism can provide theoretical foundations and a
great support for the vertical dimension of composi-
tional verification. It would therefore be interesting
to have a further exploration, in particular to exam-
ine other semantics of (bi)simulations and refinements
(e.g. those highlighted in [58]).



Chapter 4

A Theory for the Composition of Open
Systems

4.1 Summary

In computer science a parallel and distributed system
consists of several cooperating components, which may
be called processes. In order to study such systems,
dealing with interactions, concurrency theory is gen-
erally used, which is the fundamental theory of in-
teracting, parallel and distributed systems. Process
calculi (or process algebra) is usually considered as
an approach to concurrency theory [18, 60], as it pro-
vides means to describe such systems, and means to
talk about parallel composition. Besides this, it al-
lows reasoning about such systems using basic laws.
Behind the theory of process algebra and its mathe-
matical models there exist many variants of modelling
languages, among them CCS [91, 93], CSP [37], LO-
TOS [30] and MEIJE [16] that are used to model con-
current systems and applied to solve real-life problems
in various areas, including telecommunication proto-
cols, distributed software, and hardware circuits.

Along the same lines as this research, for the least
fifteen years, we have defined a behavioural semantic
model extending the existing semantic models for con-
current and distributed systems. This model called
pNets (as parameterised Networks of synchronised au-
tomata) [22,23] allows:

• hierarchical composition of processes, at a very ex-
pressive semantic level, through synchronisation
vectors, allowing to express a wide range of classi-
cal synchronisation patterns and various synchro-
nization modes, instead of the limited choice of

parallel operators. Synchronization vectors allow
also to express data transmission.

• explicit handling of data, parameters can be used
as local variables inside parametrized labelled tran-
sition systems (pLTSs) and for ”value-passing com-
munication”; they can also be used to define fami-
lies of pNets of variable size and for the description
of indexed process topologies.

In technical terms, pNets are constructors for hi-
erarchical behavioural structures: a pNet is formed
by other pNets, or pLTSs at the leaves of the hier-
archy tree. A composite pNet consists of a set of
sub-pNets, each exposing a set of actions according to
its sort. The synchronisation between a global action
of the pNet and actions of the sub-pNets is achieved
through synchronisation vectors. The expressiveness
of the pNet model has been demonstrated through
real-world and real-size use-cases [7,9], among the more
complex examples include the specification and formal
analysis of the Chilean electronic invoicing system [15].
The pNets model has also been shown that it is well-
suited for formalising crucial aspects of distributed
components: like reconfiguration and diverse mecha-
nisms of communication (e.g. [8,10,34]). More impor-
tantly, it has been demonstrated that pNets can pro-
vide a theoretical background and a very rich environ-
ment for building heterogeneous component-based ap-
plications [10, 21]. In particular, the pNets formalism
has been used as a low level semantic framework for
expressing the behaviour of various component mod-
els: as semantics for the Fractal model [38] which is a
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standard component model for programming compo-
nents for the Grid, and for the GCM model [4] and its
GCM/ProActive [43] with their specific features, in-
cluding first-class futures and group communication.

Subsequently, the pNets formalism has been proven
to be a particularly well-suited model for specifying
open systems. In pNets formalism, and more gen-
erally in process algebra languages, the term system
(and sub-system) means the behaviour of a process,
i.e. a system is anything showing behaviour, like the
execution of a software system. Behaviour is deter-
mined by actions or events that the system can per-
form, but also by the order in which they can be ex-
ecuted (and possibly other aspects of the execution).
The pNets formalism allows us to deal with a notion of
closed systems, whose behaviour is totally determined,
meaning that the behaviour of each process is fully
specified. But sometimes the specification of certain
components (processes) of a system is unknown, which
makes the specification of the global system partial.
These types of systems, whose behaviour is partially
specified, are called open, in contrast with closed sys-
tems. Their modelling requires a means of expressing
both the known and unknown parts. pNets formalism
lacks constructs to express such systems.

Consequently,

This has led to the transformation of the formal-
ism from a (closed) pNets to an Open pNets. Similarly
to pNets, open pNets model offers means of describing
and specifying systems in a compositional and sym-
bolic manner, but also means of talking about partially
specified systems, i.e. about open systems. Techni-
cally speaking, similar (closed) pNets the structure of
open pNets is hierarchical, while their leaves can be ei-
ther automata (pLTSs) or ”holes”, playing the role of
process parameters. The holes are used as placehold-
ers for unknown processes, of which we only specify the
set of possible actions that it can perform. They can
be instantiated by pNets through composition mech-
anism. The open pNets formalism was introduced by
Henrio, Madelaine and Minh [74, 75]. The expressive-
ness of language and its ability to encode open systems
has been shown in several examples. In particular, the
way of coding the operators of various classical process
algebras.

Example

To illustrate the expressive power and semantic com-
pleteness of this formalism, consider the following LO-
TOS specification: P>>(acc(v);Q) that includes the
Enable and Prefix operators of the LOTOS language.
For the readers not familiar with LOTOS, the enable
operator, denoted >>, expresses sequential composi-
tion, it is seen as a special case of parallel composition.
The behaviour of the process on its left must terminate
successfully in order for the process on the right to be
enabled. The waiting is obtained on a special gate δ.
In Figure 4.1 we show the encoding of the formula us-
ing pNets. This pNet is composed of: a toplevel node
PN1 encoding the Enable operator, a pLTS C1 acting
as the controller of the node; a hole representing the
process variable P ; another node PN2 representing the
Prefix operator, with its controller C2, and its hole Q.

0

c

0

1

P

Q

l [s=0]

δ [s=0] s:=1

r [s=1]

C1

acc(x)

C2

<l, a1, > -> a1[∀x.a1 6= δ(x)]

<c, b> -> b

PN1

PN2

<δ, δ(x), acc(x)> -> δ(x)

<r, , a2> -> a2

<acc(x), > -> acc(x)

Figure 4.1: Open pNet encoding LOTOS expression

The root pNet node PN1 has 3 sub-pNets: its con-
troller C1, the hole P and the sub-pNet PN2. For
this pNet system, the sort Action includes the actions
of all processes, i.e. both the actions of holes and
controllers: {l, δ, r, a1, a2, b, c, acc}. Three synchroni-
sation vectors define the possible synchronisations be-
tween the actions of the subnets. The first vector
”< l, a1, > − > a1” transmits an action a1 of P
to the upper level. Here the ”l” action is related to
the corresponding transition of the controller C1, ” ”
means that the corresponding subnet is not involved



in this synchronisation, and there is a guard mean-
ing this synchronisation can only occur if a1 is not a
δ. The second synchronisation vector composes an ac-
tion δ(x) from P with an acc(x) from Q, transmitting
a value x before Q takes the control; The vector result
δ(x) is a ”synchronized” action, that cannot be further
synchronized at upper levels. This notion of synchro-
nized actions is a useful generalization of the notion of
internal actions, that will be convenient for observing
internal events during model-checking.

Note that unlike most process calculi that use a
”state-oriented” encoding style, the pNet model al-
lows two encoding styles, ”state-oriented” and ”data-
oriented”, which are used to encode the two controllers.
Controller C2 is ”state-oriented”: it has two states to
indicate the position of the control point in the Pre-
fix expression (acc(v);Q). The second one is ”data-
oriented”: controller C1 has a single state, with a state
variable s encoding the change of control point from
the left to the right subnet.

Comparing processes is at the core of the study
of process algebra. Indeed, in various application ar-
eas, there is a desire to compare process models, for
instance, to relate a discovered model to an exist-
ing reference model. It is widely recognized that be-
havioural equivalence is the most basic notion of the
concurrency theory, as reflected by its very rich lit-
erature. A board spectrum of notions of equivalence
(e.g., trace equivalence, bisimulation, branching bisim-
ulation, etc.) are provided (e.g. [105]). The various
types of equivalence relations capture the different the-
oretical semantics of concurrency, and allow to decide
about the behavioural equivalence of processes on var-
ious levels. Trace equivalence (e.g. [37,77]) and bisim-
ulation equivalence (e.g. [94, 99]) characterise the two
extremes of the spectrum, in between them there is a
whole lattice of equivalence relations [109].

To establish the theoretical foundations of open
pNets, naturally we considered their semantics. We
examined the notion of behavioural equivalence (equal-
ity) over open pNets models, and the compositionality
properties that they offer. As a first step in our re-
search, we focused mainly on strong bisimulation and
weak bisimulation as they are the central notions of
equivalence in process theory.

The results of our investigations and research in
this field are summarised below:

• Bisimulation equivalences for open pNets are ob-
tained by introducing open labelled transitions sys-
tems (open automata) as their semantic model:
open transitions in open automata carry some sort
of guarded action labels. Another way to consider
these is that each represents a potentially infinite
set transitions.

• A notion of strong bisimulation is defined, whose
key feature is the possibility to simulate a sin-
gle open transition with a set of open transitions.
This bisimulation called FH-bisimulation (FH as
Formal Hypotheses) stating that the bisimulation
relation is achievable after imposing a formal as-
sumption on the unknown components of the sys-
tem.

• We have proven the composability of the theory.
This key property states: If two systems are proven
equivalent they will be undistinguishable by their
context, and they will also be undistinguishable when
their holes are filled with equivalent systems.

• We designed a weak bisimulation theory for open
automata, with the study of its key properties (the
technical details of this work are given and dis-
cussed in the paper included in the following sec-
tion).

4.2 Paper Accepted to JLAMP
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1. Introduction

In the nineties, several works extended the basic behavioural models based
on labelled transition systems to address value-passing or parameterised sys-
tems, using various symbolic encodings of the transitions [16, 37]. These works
use the term parameter to designate variables whose value have a strong influ-
ence the system structure and behaviour. In parameterised systems, parameters
can typically be the number of processes in the system or the way they inter-
act. In [34, 26], Lin, Ingolfsdottir and Hennessy developed a full hierarchy of
bisimulation equivalences, together with a proof system, for value passing CCS,
including notions of symbolic behavioural semantics and various symbolic bisim-
ulations (early and late, strong and weak, and their congruent versions). They
also extended this work to models with explicit assignments [40]. Separately
Rathke [28] defined another symbolic semantics for a parameterised broadcast
calculus, together with strong and weak bisimulation equivalences, and devel-
oped a symbolic model-checker based on a tableau method for these processes.
Thirty years later, no verification platform use this kind of approaches to provide
proof methods for value-passing processes or open process expressions, perhaps
because of the difficulty to apply these methods on industrial systems.

This article provides a theoretical background that allows us to implement
such a verification platform. We build upon the concept of pNets that we have
employed to give a behavioural semantics of distributed components and verify
the correctness of distributed applications in the past 15 years. pNets is a low
level semantic framework for expressing the behaviour of various classes of dis-
tributed languages, and as a common internal format for our tools. pNets sup-
port the specification of parameterised hierarchical labelled transition systems:
labelled transition systems with parameters can be combined hierarchically.

We develop here a semantics for a model of interacting processes with pa-
rameters and holes. Our approach is originally inspired from Structured Op-
erational Semantics with conditional premises as in [21, 47]. But we aim at a
more constructive and implementable approach to compute the semantics (in-
tuitively transitions including first order predicates) and to check equivalences
for these open systems. The main interest of our symbolic approach is to de-
fine a method to prove properties directly on open structures; these properties
will then be preserved by any correct instantiation of the holes. As a conse-
quence, our model allows us to reason about composition operators as well as
about realistic distributed systems. The parametric nature of the model and
the properties of compositionality of the equivalence relations are thus the main
strengths of our approach.

pNets. pNet is a convenient model to model concurrent systems in a hierarchical
and parameterised way. The coordination between processes is expressed as
synchronisation vectors that allow for the definition of complex and expressive
synchronisation patterns. Open pNets are pNets for which some elements in the
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hierarchy are still undefined, such undefined elements are called holes. A hole
can be filled later by providing another pNet. This article first defines pNets
and illustrates with an example how they can be used to provide the model of
a communicating system.

A semantics for open pNets based on open automata. The semantics of pNets
can be expressed as a translation to a labelled transition system (LTS), but only
if the pNet has no parameter and no hole. Adding parameters to a LTS is quite
standard [40] but enabling holes inside LTSs is not a standard notion.

To define a semantics for open pNets we thus need LTSs that have both
standard variable parameters, and process parameters, i.e. holes that can be
filled by processes. We call such LTSs with parameters and holes open automata.
The main goal of this article is to define the theory behind open automata and
to use them to provide a semantics and prove compositionality properties for
open pNets. The transitions of open automata are much more complex than
transitions of an LTS as the firing of a transition depends on parameters and
actions that are symbolic. This article defines the notion of open transition,
namely a transition that is symbolic in terms of parameters and coordinated
actions.

Beware that even if open transitions may look similar to the notion of Tran-
sition System Specification [24, 23] and other forms of SOS rules, they are not
structural rules, but rules defining the behaviour of the global states of the
system.

Unlike pNets, open automata are not hierarchical structures, we consider
them here as a mathematical structure that is convenient for formal reasoning
but not adapted to the definition of a complex and structured system. Open
transitions are expressed in terms of logics while the communication in pNets
is specified as synchronisation vectors that specify synchronised actions. Open
automata could alternatively be seen as an algebra that can be studied inde-
pendently from its application to pNets but their compositionality properties
make more sense in a hierarchical model like pNets.

Previous works and contribution
While most of our previous works relied on closed, fully-instantiated se-

mantics [7, 2, 29], it is only recently that we could design a first version of a
parameterised semantics for pNets with a strong bisimulation equivalence [30].
This article builds upon this previous parameterised semantics and provides a
clean and complete version of the semantics with a slightly simplified formalism
that makes proofs easier. It also adds a notion of global state to automata.
Moreover, in [30] the study of compositionality was only partial, and in particu-
lar the proof that bisimularity is an equivalence is one new contribution of this
article and provides a particularly interesting insight on the semantic model
we use. The new formalism allowed us to extend the work and define weak
bisimulation for open automata, which is entirely new. This allows us to define
a weak bisimulation equivalence for open pNets with valuable compositionality
properties. To summarise, the contribution of this paper are the following:
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• The definition of open automata: an algebra of parameterised automata
with holes, and a strong bisimulation relation. This is an adaptation of [30]
with an additional result stating that strong FH-bisimilarity is indeed an
equivalence relation.

• A semantics for open pNets expressed as translation to open automata.
This is an adaptation of [30] with a complete proof that strong FH-
bisimilarity is compositional.

• A theory of weak bisimulation for open automata, and a study of its
properties. It relies on the definition of weak open transitions that are
derived from transitions of the open automaton by concatenating invisible
action transitions with one (visible or not) action transition. The precise
and sound definition of the concatenation is also a major contribution of
this article.

• A resulting weak FH-bisimilarity equivalence for open pNets and a simple
static condition on synchronisation vectors inside pNets that is sufficient
to ensure that weak FH-bisimilarity is compositional.

• An illustrative example based on a simple transport protocol, showing
the construction of the weak open transitions, and the proof of weak FH-
bisimulation.

What is new about open automata bisimulation?
Bisimulation over a symbolic and open model like open pNets or open au-

tomata is different from the classical notion of bisimulation because it cannot
rely on the equality over a finite set of action labels. Classical bisimulations
require to exhibit, for each transition of one system, a transition of the other
system that simulates it. Instead, bisimulation for open automata relies on the
simulation of each open transition of one automaton by a set of open transitions
of the other one, that should cover all the cases where the original transition
can be triggered. This is similar to the early and late symbolic bisimulation
equivalences for value-passing CCS [27], though we use more general definitions
in our setting.

Compositionality of bisimilarity in our model comes from the specification
of the interactions, including actions of the holes. This is quite different from
the works on contextual equivalences, e.g. [37, 38]; we will provide a detailed
comparison in Section 6. In pNets, synchronisation vectors define the possible
interactions between the pNet that fills the hole and the surrounding pNets.
In open automata, this is reflected by symbolic hypotheses that depend on the
actions of the holes. This additional specification is the price to pay to obtain
the compositionality of bisimilarity that cannot be guaranteed in traditional
process algebras.

This approach also allows us to specify a sufficient condition on allowed
transitions to make weak bisimilarity compositional; namely it is not possible to
synchronise on invisible actions from the holes or prevent them to occur. This
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is loosely related to works on the syntactic conditions on SOS rules to check
whether weak bisimulation is a congruence for some process algebra operators
[24]. Our approach is semantical and more global: our sufficient condition
applies to all the synchronisations at a given composition level of an (open)
system and not on individual rules. It is expressed on the open automaton (see
Definition 15).

Structure
This article is organised as follows. Section 2 provides the definition of pNets

and introduces the notations used in this paper, including the definition of open
pNets. Section 3 defines open automata, i.e. automata with parameters and
transitions conditioned by the behaviour of “holes”; a strong bisimulation equiv-
alence for open automata is also presented in this section. Section 4 gives the
semantics of open pNets expressed as open automata, and states composition-
ality properties of strong bisimularity for open pNets. Section 5 defines a weak
bisimulation equivalence on open automata and derives weak bisimilarity for
pNets, together with compositionality properties of weak bisimilarity. Finally,
Section 6 discusses related works and Section 7 concludes the paper.

2. Background and Notations

This section introduces the notations we will use in this article, and recalls
the definition of pNets [30] with an informal semantics of the pNet constructs.
The only significant difference compared to our previous definitions (from [30])
is that we remove here the restriction that was stating that variables should be
local to a state of a labelled transition system.

2.1. Notations
Term algebra. Our models rely on a notion of parameterised actions, which are
symbolic expressions using data types and variables. As our model aims at
encoding the low-level behaviour of possibly very different programming lan-
guages, we do not want to impose one specific algebra for denoting actions, nor
any specific communication mechanism. So we leave the constructors of the
algebra that will be used to build expressions and actions unspecified. More-
over, we use a generic action interaction mechanism, based on (some sort of)
unification between two or more action expressions, to express various kinds of
communication or synchronisation mechanisms.

Formally, we assume the existence of a term algebra T, and denote as Σ the
signature of the data and action constructors. Within T, we distinguish a set
of data expressions E, including a set of boolean expressions B (B ⊆ E), and a
set of action expressions called the action algebra A, with A ⊆ T,E ∩ A = ∅;
naturally action terms will use data expressions as sub-terms1. The function
vars(t) identifies the set of variables in a term t ∈ T.

1In our tools, we use datatypes for the different kinds of terms. In this article, we use
different sets of variables for terms of different kinds.
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We let ei range over expressions (ei ∈ E), a range over action labels, op be
operators, and xi and yi range over variable names. We additionally rely on a
set of action names, ranged over by a, b, . . .

We define two kinds of parameterised actions. The first kind supports two
kinds of parameters: input parameters that are variables and output parameters
that can be any expression. The second kind makes no distinction between input
and output parameters. The actions that distinguish input variables will be used
in the definition of pLTS below and are defined as follows:

α ∈ A ::= a(p1, . . . , pn) action terms
pi ::= ?x | ei parameters (input var or expression)
ei ::= Value | x | op(e1, .., en) Expressions

The input variables in an action term are those marked with a ?. We addi-
tionally impose that each input variable does not appear anywhere else in the
same action term: pi =?x⇒ ∀j 6= i. x /∈ vars(pj). We define iv(t) as the set of
input variables of a term t (without the ’?’ marker). Input variables are used
in guards and to update the local state, they can only appear in well-identified
expressions. Action algebras can encode naturally usual point-to-point message
passing calculi (using a(?x1, ..., ?xn) for inputs, a(v1, .., vn) for outputs), but
they also allow for more general synchronisation mechanisms, like gate negoti-
ation in Lotos, or broadcast communications.

The set of actions that do not distinguish input variables is denoted AS , it
will be used in synchronisation vectors of pNets:

α ∈ AS ::= a(e1, . . . , en)

Indexed sets. This article extensively uses indexed structures (maps) over some
countable indexed sets. The indices can typically be integers, bounded or not.
We use indexed sets in pNets because we want to consider a set of processes, and
specify separately how to synchronise them. Roughly this could also be realised
using tuples, however indexed sets are more general, can be infinite, and give a
more compact representation than using the position in a possibly long tuple.

An indexed family is denoted as follows: ti∈Ii is a family of elements ti
indexed over the set I. Such a family is equivalent to the mapping (i 7→ti)i∈I , and
we will also use mapping notations to manipulate indexed sets. To specify the
set over which the structure is indexed, indexed structures are always denoted
with an exponent of the form i ∈ I.

Consequently, ti∈Ii defines first I the set over which the family is indexed,
and then ti the elements of the family. For example ti∈{3}i is the mapping with
a single entry t3 at index 3; exceptionally, for mappings with only a few entries
we use the notation (37→t3) instead. In this article, sentences of the form “there
exists ti∈Ii ” means there exist I and a function that maps each element of I to
a term ti.

When this is not ambiguous, we shall abuse notations for sets, and typically
write “indexed set over I” when formally we should speak of multisets, and
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“x ∈ Ai∈Ii ” to mean ∃i ∈ I. x = Ai. To simplify equations, an indexed set can
be denoted t instead of ti∈Ii when I is irrelevant or clear from the context.

The disjoint union on sets is ] and we only use A ] B when A and B are
disjoint. We extend it to union of indexed sets provided they are indexed over
disjoint families; is ] is then defined by the merge of the two sets. The elements
of the union of two indexed sets are then accessed by using an index of one
of the two joined families. The subtraction operation on indexed sets is \, it
reduces the set of indexes such that dom(A \B) = dom(A) \B.

Substitutions. This article also uses substitutions. Applying a substitution in-
side a term t is denoted t{{yi ← ei}}i∈I and consists in replacing in parallel all the
occurrences of variables yi in the term t by the terms ei. Note that a substitution
is defined by a partial function that is applied on the variables inside a term.
We let Post range over partial functions that are used as substitution and use
the notation {yi ← ei}i∈I to define such a partial function2. These partial func-
tions are sometimes called substitution functions in the following. Thus, {{Post}}
is the operation that applies, in a parallel manner, the substitution defined by
the partial function Post. � is a composition operator on these partial func-
tions, such that for any term t we have: t{{Post � Post′}} = (t{{Post′}}){{Post}}.
This property must also be valid when the substitution does not operate on all
variables. We thus define a composition operation as follows:

(xk←ek)k∈K � (x′k′ ← e′k′)k
′∈K′

=(xk ← ek{{(x′k′←e′k′)k
′∈K′}})k∈K

∪ (x′k′←e′k′)k
′∈K′′

where K ′′ = {k′ ∈ K ′|x′k′ 6∈ {xk}k∈K}

2.2. The principles of Parameterised Networks (pNets)
pNets are tree-like structures, where the leaves are either parameterised la-

belled transition systems (pLTSs), expressing the behaviour of basic processes,
or holes, used as placeholders for unknown processes. Every node of the tree is a
pNet, it acts as a synchronising artefacts, using a set of synchronisation vectors
that express the possible synchronisation between the parameterised actions of
a subset of the sub-trees. The pNets model is hierarchical in the structure of the
processes, in contrast to the Statecharts formalism [25], which is widely used to
model high-level behaviour, that organises the states (but not processes) in a
hierarchy.

We introduce the notion of pNets through a simple example below, and
define formally pLTSs and pNets afterwards:

Example 1 (CCS choice). Here is the encoding of a choice operator.

2When using this notation, we suppose, without loss of generality that each yi is different.
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< −, b, r >→ b
< a, −, l >→ a

SV+ = It consists of one pNet (Definition 2
below) with two holes and a sub-
net. The pNet is represented by
the top box with three circles and
two synchronisation vectors on the
right. The sub-net is a pLTS that is
represented by the bottom box.

Each hole is represented by an empty disc, when the hole is filled it becomes
a black disc. The left hole is indexed L the right hole R. The sub-net is an
labelled transition system (LTS) with three states and emitting actions l and r.

The behaviour of the pNet is defined with synchronisation vectors also shown
on the figure. In the examples, we write them on the form < a,−, l >→ a. This
states that if the first hole L performs the action a and the third sub-net, i.e.
the LTS, performs the action l, both of them progress synchronously, and an
action a is emitted by the pNet. The symbol − at the second position denotes
that the second hole does nothing. On the formal side, numbering and ordering
the vectors is cumbersome, this is why we adopt indexed families of actions.
The LTS is sometimes called the “control part”, it controls the evolution of the
rest of the pNet. The first action of one of the holes decides which branch of
the LTS is activated; all subsequent actions will be performed by the same side.

2.3. Parameterised Labelled Transition systems (pLTS)
A pLTS is a labelled transition system with variables; variables can be used

inside states, actions, guards, and assignments. Note that we make no assump-
tion on finiteness of the set of states nor on finite branching of the transition
relation. Compared to our previous works [30, 2] make variables global, which
makes the model easier to use.

Definition 1 (pLTS). A pLTS is a tuple pLTS , 〈〈S, s0, V,→〉〉 where:

• S is a set of states.

• s0 ∈ S is the initial state.

• V is a set of global variables for the pLTS.

• →⊆ S ×L× S is the transition relation and L is the set of labels. Labels
have the form:
〈α, eb, (xj := ej)j∈J〉, where α ∈ A is a parameterised action, eb ∈ B is
a guard, and the variables xj (that are pairwise distinct) are assigned the

expressions ej ∈ E. If s 〈α, eb, (xj:=ej)j∈J 〉−−−−−−−−−−−−−→ s′ ∈→ then vars(α)\iv(α)⊆V ,
vars(eb)⊆V ∪ vars(α), and ∀j∈J. (vars(ej)⊆V ∪ iv(α) ∧ xj ∈ V ).

A set of assignments between two states is performed in parallel so that their
order do not matter and they all use the values of variables before the transition
or the values received as action parameters.
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2.4. Parameterised Networks (pNets)
Now we define pNet nodes as constructors for hierarchical behavioural struc-

tures. A pNet has a set of sub-pNets that can be either pNets or pLTSs, and
a set of holes, playing the role of process parameters. A pNet is thus a compo-
sition operator that can receive processes as parameters; it expresses how the
actions of the sub-processes synchronise.

Each sub-pNet exposes a set of actions, called internal actions. The syn-
chronisation between global actions exposed by the pNet and internal actions
of its sub-pNets is given by synchronisation vectors: a synchronisation vector
synchronises one or several internal actions, and exposes a single resulting global
action.

We now define the structure of pNets, the following definition relies on the
definition of holes, leaves and sorts formalised below in Definition 3. Informally,
holes are process parameters, leaves provide the set of pLTSs at the leaves of
the hierarchical structure of a pNet, and sorts give the signature of a pNet, i.e.
the actions it exposes.

Definition 2 (pNets). A pNet P is a hierarchical structure where leaves are
pLTSs and holes

P , pLTS | 〈〈P i∈Ii ,Sortj∈Jj ,SVk∈Kk 〉〉
We denote vars(P ) the set of variables used by the pLTSs inside P and Sort(P )
the signature of the actions emitted by P ; both are defined below, in Definition 3.
A pNet is composed of the following:

• I is a set of indices and P i∈Ii is the family of sub-pNets indexed over I.
vars(Pi) and vars(Pj) must be disjoint for i 6= j.

• J is a set of indices, called holes. I and J are disjoint: I∩J = ∅, I∪J 6= ∅.

• Sortj ⊆ AS is a set of action terms, denoting the sort of hole j.

• SVk∈Kk is a set of synchronisation vectors.
∀k ∈ K.SVk = αl∈Ik]Jk

l → α′k[ek] where α′k ∈ AS , Ik ⊆ I, Jk ⊆ J ,
∀i∈Ik. αi∈Sort(Pi), ∀j∈Jk. αj ∈Sortj , and vars(α′k) ⊆ ⋃l∈Ik]Jk

vars(αl).
The global action of a vector SVk is α′k. ek ∈ B is a guard associated to
the vector such that vars(ek) ⊆ ⋃l∈Ik]Jk

vars(αl).

Synchronisation vectors are identified modulo renaming of variables that appear
in their action terms, e.g. the vectors < a(x), b(x) >→ τ and < a(y), b(y) >→ τ
are equivalent.

The preceding definition relies on the auxiliary functions defined below:

Definition 3 (Sorts, holes, leaves, variables of pNets).
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• The sort of a pNet is its signature, i.e. the set of actions in AS it can
perform, where each action signature is an action label plus the arity of
the action.

Sort(〈〈S, s0, V,→〉〉) = {Sort(α)|s 〈α, eb, (xj:=ej)j∈J 〉−−−−−−−−−−−−−→ s′ ∈→}
Sort(〈〈P,Sort,SV 〉〉) = {Sort(α′)|α→ α′[eb] ∈ SV }
Sort(α(p1, .., pn)) = (α, n)

• The set of variables of a pNet P , denoted vars(P ) is disjoint union the set
of variables of all pLTSs that compose P .

• The set of holes Holes(P ) of a pNet is the set of indices of the holes of the
pNet itself plus the indices of all the holes of its sub-pNets. It is defined
inductively (we suppose that those index sets are disjoints):

Holes(〈〈S, s0, V,→〉〉)=∅
Holes(〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉) = J ]

⋃

i∈I
Holes(Pi)

∀i ∈ I. Holes(Pi) ∩ J = ∅
∀i1, i2 ∈ I. i1 6= i2 ⇒ Holes(Pi1) ∩Holes(Pi2) = ∅

• The set of leaves of a pNet is the set of all pLTSs occurring in the structure,
as an indexed family of the form Leaves(P ) = 〈〈Pi〉〉i∈L.

Leaves(〈〈S, s0, V,→〉〉)=∅
Leaves(〈〈P i∈Ii ,Sort,SV 〉〉) =

⊎

i∈I
Leaves(Pi) ] {i7→Pi|Pi is a pLTS}

For example, the controller of Example 1 has the sort {l, r} and holes {L,R}.
Note that Holes(P )is a set of indexes because holes are characterized only by
their indices, while entities at the leaves ar pLTSs and thus Leaves(P ) is a set
of pLTSs. A pNet Q is closed if it has no hole: Holes(Q) = ∅; else it is said to
be open. Sort comes naturally with a compatibility relation that is similar to a
type-compatibility check. We simply say that two sorts are compatible if they
consist of the same actions with the same arity. In practice, it is sufficient to
check the equality of the two sets of action signatures of the two sorts3.

The informal semantics of pNets is as follows. pLTSs behave more or less
like classical automata with conditional branching and variables. The actions
on the pLTSs can send or receive values, potentially modifying the value of
variables. pNets are synchronisation entities: a pNet node composes several
sub-pNets and defines how the sub-pNets interact, where a sub-pNet is either

3A more complex compatibility relation could be defined, but this is out of the scope of
this article.
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a pNet or a pLTS. The synchronisation between sub-pNets is defined by syn-
chronisation vectors (originally introduced in [4]) that express how an action of
a sub-pNet can be synchronised with actions of other sub-pNet, and how the
resulting synchronised action is visible from outside of the pNet. The synchro-
nisation mechanism is very expressive, including pattern-matching/unification
between the parameterized actions within the vector, and an additional predi-
cate over their variables. Consider a pNet node that assembles several pLTSs,
the synchronisation vectors specify the way that transitions of the composed
pNet are built from the transitions of the sub-nets. This can be seen as “condi-
tional transitions” of the pNet, or alternatively, as a syntax to encode structural
operational semantics (SOS rules) [44] of the system: each vector expresses not
only the actions emitted by the pNet but also what transitions of the composed
pLTSs must occur to trigger this global transition. Synchronisation vectors can
also express the exportation of an action of a sub-pNet to the next level, or to
hide an interaction and make it non-observable. Finally, a pNet can leave sub-
pNets undefined and instead declare holes with a well-defined signature. Holes
can then be filled with a sub-pNet. This is defined as follows.

Definition 4 (pNet composition). An open pNet: P =〈〈P i∈Ii ,Sortj∈Jj ,SV 〉〉
can be (partially) filled by providing a pNet Q to fill one of its holes. Suppose
j0 ∈ J and Sort(Q) ⊆ Sortj0 , then:

P [Q]j0
= 〈〈P i∈Ii ] {j0 7→Q},Sortj∈J\{j0}

j ,SV 〉〉

pNets are composition entities equipped with a rich synchronisation mecha-
nism: synchronisation vectors allow the expression of synchronisation between
any number of entities and at the same time the passing of data between pro-
cesses. Their strongest feature is that the data emitted by processes can be used
inside the synchronisation vector to do addressing: it is easy to synchronise a
process indexed by n with the action a(v, n) of another process. This is very
convenient to model systems and encode futures or message routing.

pNets have been used to model distributed components using the Grid Com-
ponent Model, illustrating the expressiveness of the model [2]. These works show
that pNets are convenient to express the behaviour of a system in a composi-
tional way. Unfortunately, the semantics of pNets and the existing tools at that
point were only able to deal with a closed and completely instantiated system:
pNets could be used as composition operators in the definition of the semantics,
which was sufficient to perform finite-state model checking on a closed system,
but there was no theory for the use of pNets as operators and no tool for proving
properties on open system. Consequently, much of the formalisation efforts did
not use holes and the interplay between holes, sorts, and synchronisation vector
was not formalised. In previous works [2], only closed pNets were equipped with
a semantics, which was defined as labelled transition systems. The theory of
pNets as operators for open systems is given in the following sections. Compar-
ing formally the existing direct operational semantics and the semantics derived
from open automata in the current article would be an interesting partial proof
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of soundness for our semantics. The proof could only be partial as the formal
semantics that exists only consider closed and fully instantiated pNets. Proving
an equivalence between the semantics presented in this article and the opera-
tional one shown in [2] is outside the scope of this article because we focus here
on the modelling of holes that were not considered in the previous semantics.
It is however easy to see that, in case there is no hole the structure of the open
automaton that defines the semantics here is very close to the pLTS that is used
to define the semantics, even though the formalisms are slightly different.

2.5. Running example
To illustrate this work, we use a simple communication protocol, that pro-

vides safe transport of data between two processes, over unsafe media.
Figure 1 (left) shows the example principle, which corresponds to the hier-

archical structure of a pNet: two unspecified processes P and Q (holes) commu-
nicate messages, with a data value argument, through the two protocol entities.
Process P sends a p-send(m) message to the Sender; this communication is
denoted as in(m). At the other end, process Q receives the message from the
Receiver. The holes P and Q can also have other interactions with their envi-
ronment, represented here by actions p-a and q-b. The underlying network is
modelled by a medium entity transporting messages from the sender to the re-
ceiver, and that is able to detect transport errors and signal them to the sender.
The return ack message from Receiver to Sender is supposed to be safe. The
final transmission of the message to the recipient (the hole Q) includes the value
of the “error counter” ec.

Figure 1 (right) shows a graphical view of the pNet SimpleProtocolSpec that
specifies the system. The pNet is made of the composition of two pNets: a
SimpleSystem node, and a PerfectBuffer sub-pNet. The full system implemen-
tation should be equivalent (e.g. weakly bisimilar) to this SimpleProtocolSpec.
The pNet has a tree-like structure. The root node of the tree SimpleSystem is
the top level of the pNet structure. It acts as the parallel operator. It consists of
three nodes: two holes P andQ and one sub-pNet, denoted PerfectBuffer. Nodes
of the tree are synchronised using four synchronisation vectors, that express the
possible synchronisations between the parameterised actions of a subset of the
nodes. For instance, in the vector < p-send(m), in(m),_ >→ in(m) only P
and PerfectBuffer nodes are involved in the synchronisation. The synchronisa-
tion between these processes occurs when process P performs p-send(m) action
sending a message, and the PerfectBuffer accepts the message through an in(m)
action at the same time; the result that will be returned at upper level is the
action in(m).

Figure 2 shows the pNet model of the protocol implementation, called
SimpleProtocolImpl. When the Medium detects an error (modelled by a lo-
cal τ action), it sends back a m-error message to the Sender. The Sender
increments its local error counter ec, and resends the message (including ec) to
the Medium, that will, eventually, transmit m, ec to the Receiver.
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P

Q

Sender

ack

send(m, ec)

error

p-a

q-b

send(m, ec)

out(m, ec)

q-recv(m,ec)

in(m)

p-send(m)

Medium

Receiver b0 b1

P Q
<-, out(m,ec), q-recv(m,ec)> → out(m,ec)

SVSimpleSystem =

<p-send(m), in(m), -> → in(m)

<p-a, -, -> → p-a [∀x. p-a 6= p-send(x)]

<-, -, q-b> → q-b [∀x,y. q-b 6= q-recv(x,y)]

<-, τ , -> → τ

vars:
b ec: Nat
b msg: Data

PerfectBuffer

SimpleSystem

in(?m){b_ec := 0, b_msg := m}

{b_ec := b_ec+ 1}
out(b_msg,b_ec)

τ

Figure 1: pNet structure of the example and its specification expressed as a pNet called
SimpleProtocolSpec

3. A model of process composition

The semantics of open pNets will be defined as an open automaton. An
open automaton is an automaton where each transition composes transitions of
several LTSs with action of some holes, the transition occurs if some predicates
hold, and can involve a set of state modifications. This section defines open
automata and a bisimulation theory for them. This section is an improved
version of the formalism described in [30], extending the automata with a notion
of global variable, which makes the state of the automaton more explicit. We
also adopt a semantics and logical interpretation of the automata that intuitively
can be stated as follows: “if a transition belongs to an open automaton, any
refinement of this transition also belongs to the automaton”. Our open automata
are clearly inspired by the work of De Simone on formatting of SOS rules [16].
A precise comparison with related works can be found in Section 6.

3.1. Open automata
Open automata (OA) are not composition structures but they are made of

transitions that are dependent of the actions of the holes, and they can use
variables (potentially with only symbolic values).

Definition 5 (Open transitions). An open transition (OT) over a set J of
holes with sorts Sortj∈Jj , a set V of variables, and a set of states S is a structure
of the form:

·································βj∈J
′

j ,Pred,Post
s
α−→ s′

where J ′ ⊆ J is the set of holes involved in the transition; s, s′ ∈ S are states of
the automaton; and βj is a transition of the hole j, with Sort(βj) ⊆ Sortj . α is
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s0 s1

s2

r0 r1

r2

m1m0

m2

P Q

vars:
s ec: Nat
m, s msg: Data

vars:
ec, m ec: Nat
m, m msg: Data

{r_ec := ec, r_msg := m}

r-ack

r-recv(?m,?ec)

r-send
(r_msg,r_ec)

vars:
ec, r ec: Nat
m, r msg: Data

<-, out(m,ec), q-recv(m,ec)> → out(m,ec)

SVSimpleSystem =

<p-send(m), in(m), -> → in(m)

<p-a, -, -> → p-a [∀x. p-a 6= p-send(x)]

<-, -, q-b> → q-b [∀x,y. q-b 6= q-recv(x,y)]

<-, τ , -> → τ

SVSimpleProtocol =

<s-recv(m), -, -> → in(m)

<s-send(m,ec), m-recv(m,ec), -> → τ

<-, m-send(m,ec), r-recv(m,ec)> → τ

<s-error, m-error, -> → τ

<s-ack, -, r-ack> → τ

<-, -, r-send(m,ec)> → out(m,ec)

<-, τ , -> → τ

Sender

{s_ec := 0, s_msg := m}
s-recv(?m)

{s_ec := s_ec+ 1}
s-error

Receiver

s-send
(s_msg,s_ec)s-ack

Medium

m-error

m-send
(m_msg,m_ec)

m-recv(?m,?ec)

{m_ec := ec, m_msg := m}

τ

SimpleSystem

SimpleProtocol

Figure 2: The SimpleProtocolImpl pNet resulting from the composition of the SimpleSystem
and the SimpleProtocol pNets.

the resulting action of this open transition. Pred is a predicate, Post is a set of
assignments that are effective after the open transition, and are represented as
a substitution function: (xk ← ek)k∈K . Predicates and expressions of an open
transition can refer to the variables inside V and the different terms βj and α.
More precisely:

vars(Pred) ⊆ V ∪ vars(α) ∪
⋃

j∈J′

vars(βj) ∧

∀k. xk ∈ V ∧ ∀k. vars(ek) ⊆ V ∪ vars(α) ∪
⋃

j∈J′

vars(βj)

The assignments are applied simultaneously because the variables in V can be
in both sides (xks are distinct). Open transitions are identified modulo logical
equivalence on their predicate.

It is important to understand the difference between the red dotted rule and
a classical inference rule. They correspond to two different logical levels. On one
side, classical (black) inference rules act at the mathematical level of the paper
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proofs (as e.g. the rules in Definition 13). They use an expressive logic (like any
other computer science article). On the other side, open transition rules (with
dotted lines) are logical implications that belong to the open automata algebra.
Their logic has a specific syntax that can be mechanized; this logic includes the
boolean expressions B, boolean operators, and term equality.

An open automaton is an automaton where transitions are open transitions.

Definition 6 (Open automaton). An open automaton is a structure
A = 〈〈J,S, s0, V, T 〉〉 where:

• J is a set of indices.

• S is a set of states and s0 is an initial state belonging to S.

• V is a set of variables of the automaton and each v ∈ V may have an
initial value init(v).

• T is a set of open transitions and for each t ∈ T there exists J ′ with
J ′ ⊆ J , such that t is an open transition over J ′ and S.

While the definition and usage of the open transition can be considered
purely syntactically, we take in this article a semantics and logical understanding
of open automata. We see open transitions as logical formulas with a constrained
syntax and logics rather than purely syntactical terms. Consequently, the open
transition sets in open automata are closed by a simple form of refinement
that allows us to refine the predicate, or substitute any free variable by an
expression. Formally, for each predicate Pred for each partial function Post, if
V ∩dom(Post) = ∅, we have:

·····························β,Pred ′,Post ′

s
α−→ s′

∈ T =⇒ ·····················································································
β{{Post}},Pred ′{{Post}} ∧ Pred,Post�Post ′

s
α{{Post}}−−−−−−→ s′

∈ T

Because of the semantic interpretation of open automata, the set of open
transition of an open automaton is infinite (for example because every free
variable can be substituted by any term). This raises an issue when a finite
representation is needed, which is the case both in our tools, and when writing
examples. When needed, we can rely on a canonical representation of the open
automaton, provided that a finite subset of the open transitions is sufficient to
generate, by substitution, the other ones. Thus, we use this canonical represen-
tation in our examples. In the following, we will abusively write that we define
an “open automaton” when we provide its canonical representation.

Another aspect of the semantic interpretation is that we consider terms up
to semantic equivalence, i.e. equivalence of two predicates Pred and Pred ′ can
be denoted Pred = Pred ′, where the = symbol is interpreted semantically.

Though the definition is simple, the fact that transitions are complex struc-
tures relating events must not be underestimated. The first element of theory
for open automata, i.e. the definition of a strong bisimulation, is given below.
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3.2. Bisimulation for open Automata
We define now a bisimulation relation tailored to open automata and their

parametric nature. This relation relates states of the open automata and guar-
antees that the related states are observationally equivalent, i.e. equivalent
states can trigger transitions with identical action labels. Its key characteristics
are 1) the introduction of predicates in the bisimulation relation: the relation
between states may depend on the value of the variables; 2) bisimulation relates
elements of the open transitions and takes into account predicates over variables,
actions of the holes, and state modifications. We name it FH-bisimulation, as
a short cut for the “Formal Hypotheses” over the holes behaviour manipulated
in the transitions, but also as a reference to the work of De Simone [16], that
pioneered this idea. Indeed, our definition uses both hypotheses on the be-
haviour of holes, as in [16], and symbolic manipulation of action expressions, as
in symbolic bisimulations of [27].

One of the original aspects of FH-bisimulation is due to the symbolic na-
ture of open automata. Indeed, a single state of the automaton represents a
potentially infinite number of concrete states, depending on the value of the
automaton variables, and a single open transition of the automaton may also
be instantiated with an unbounded number of values for the transition param-
eters. Consequently it would be too restrictive to impose that each transition
of one automaton is matched by exactly one transition of the bisimilar automa-
ton. Thus the definition of bisimulation requires that, for each open transition
of one automaton, there exists a matching set of open transitions covering the
original one. Indeed depending on the value of action parameters or automaton
variables, different open transitions might simulate the same one.

The parametric nature of the automata entails a second original aspect of
FH-bisimulation: the nature of the bisimulation relation itself. A classical re-
lation between states can be seen as a function mapping pairs of state to a
boolean value (true if the states are related, false if they are not). An FH-
bisimulation relation maps pairs of states to boolean expressions that use vari-
ables of the two systems. Formally, a relation over the states of two open au-
tomata 〈〈J,S1, s0, V1, T1〉〉 and 〈〈J,S2, t0, V2, T2〉〉 has the signature S1 ×S2 → B.
We suppose without loss of generality that the variables of the two open au-
tomata are disjoint. We adopt a notation similar to standard relations and
denote it R = {(s, t|Preds,t)}, where: 1) For any pair (s, t) ∈ S1 × S2, there
is a single (s, t|Preds,t) ∈ R stating that s and t are related if Preds,t is True,
i.e. the states are related when the value of the automata variables satisfy the
predicate Preds,t. 2) The free variables of Preds,t belong to V1 and V2, i.e.
vars(Preds,t) ⊆ V1 ∪ V2. FH-bisimulation is defined formally4:
Definition 7 (Strong FH-bisimulation).
Suppose A1 = 〈〈J,S1, s0, V1, T1〉〉 and A2 = 〈〈J,S2, t0, V2, T2〉〉 are open automata
with identical holes of the same sort, with disjoint sets of variables (V1∩V2 = ∅).

4In this article, we denote βjx a double indexed set, instead of the classical βj, x. Indeed
the standard notation would be too heavy in our case.
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Then R is an FH-bisimulation if and only if for all states s ∈ S1 and t ∈ S2,
(s, t|Preds,t) ∈ R, we have the following:

• For any open transition OT in T1:

·············································βj∈J
′

j ,PredOT ,PostOT
s
α−→ s′

there exists an indexed set of open transitions
OT x∈Xx ⊆ T2:

················································βj∈Jx

jx ,PredOTx
,PostOTx

t
αx−−→ tx

....

PredOT

J J J

PredOTx

ts R

PredOT1

s
′

t1

tx

Preds,t

R

R

Preds′,t1

Preds′,tx

such that ∀x. J ′ = Jx and there exists some Preds′,tx such that
(s′, tx|Preds′,tx) ∈ R and

Preds,t ∧ PredOT =⇒
∨

x∈X
(∀j.βj = βjx ∧ PredOTx ∧ α=αx ∧ Preds′,tx{{PostOT ]PostOTx}})

• and symmetrically any open transition from t in T2 can be covered by a
set of transitions from s in T1.

Two open automata are FH-bisimilar if there exists an FH-bisimulation that
relates their initial states5. We call this relation FH-bisimilarity.
Classically, Preds′,tx{{PostOT ]PostOTx

}} applies in parallel the substitution de-
fined by the partial functions PostOT and PostOTx (parallelism is crucial inside
each Post set but not between PostOT and PostOTx that are independent), ap-
plying the assignments of the involved rules. We can prove that bisimilarity is
an equivalence relation.

Example 2. The simulation of one transition by many others is one non-
standard aspect of this definition. This is made necessary by the parameterised
nature of our model. Consider the following open transition.

···································
β,True, {{y ← x}}

s1
α(x)−−−→ s′1

Bisimulation should allow it to be matched by the two following ones (depending
on the value of x), to prove that the relation R = {(s1, s2,True), (s′1, s′2,True)}
is a bisimulation.

····································
β, x ≥ 0, {{y ← x}}

s2
α(x)−−−→ s′2

····································
β, x < 0, {{y ← x}}

s2
α(x)−−−→ s′2

5In other words, the predicate relation associated to the initial states is True.
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This example illustrates the necessity of multiple transitions in the definition of
bisimulation in a naive and minimalistic way. It can easily be extended into a
non-trivial example with more states and different usage of the variables.

Theorem 1 (FH-bisimularity is an equivalence). FH-bisimilarity is re-
flexive, symmetric and transitive.

The proof of this theorem can be found in [3]. The only non-trivial part of
the proof is the proof of transitivity. It relies on the following elements. First,
the transitive composition of two relations with predicate is defined; this is not
exactly standard as it requires to define the right predicate for the transitive
composition and producing a single predicate to relate any two states. Then the
fact that one open transition is simulated by a family of open transitions leads
to a doubly indexed family of simulating open transition; this needs particular
care, also because of the use of renaming (Post) when proving that the predicates
satisfy the definition (property on Preds,t ∧ PredOT in the definition).

Finite versus infinite open automata, and decidability
As mentioned in Definition 15, we adopt here a semantic view on open

automata. More precisely, in [31], we define semantic open automata (infinite
as in Definition 6), and structural open automata (finite) that can be generated
as the semantics of pNets (see Definition 9), and used in their implementation.
Then we define an alternative version of our bisimulation, called structural FH-
bisimulation, based on structural open automata, and prove that the semantic
and structural FH-bisimulations coincide. In the sequel, all mentions of finite
automata, and algorithms for bisimulations, implicitly refer to their structural
versions.

If we assume that everything is finite (states and transitions in the open
automata), then it is easy to prove that it is decidable whether a relation is a
FH-bisimulation, provided the logic of the predicates is decidable (a proof of
this claim can be found in [30]). Formally:

Theorem 2 (Decidability of FH-bisimulation). Let A1 and A2 be finite
open automata and R a relation over their states S1 and S2 constrained by a set
of predicates. Assume that the predicate inclusion is decidable over the action
algebra A. Then it is decidable whether the relation R is an FH-bisimulation.

4. Semantics of Open pNets

This section defines the semantics of an open pNet via translation into an
open automaton. In this translation, the states of the open automaton are
obtained as products of the states of the pLTSs at the leaves of the composition.
The predicates on the transitions are obtained both from the predicates on the
transitions of the pLTSs, and from the synchronisation vectors involved in the
transition.
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The definition of bisimulation for open automata allows us to derive a bisim-
ilarity relation for open pNets. As pNets are composition structures, it then
makes sense to prove compositionality lemmas: we prove that the composition
of strongly bisimilar pNets are themselves bisimilar.

4.1. Deriving an open automaton from an open pNet
To derive an open automaton from a pNet, we first describe the set of states

of the automaton. Then we show the construction rule for transitions of the
automaton, which relies on the derivation of predicates unifying synchronisation
vectors and the actions of the pNets involved in a given synchronisation.

States of open pNets are tuples of states. We denote them as / . . . . for
distinguishing tuple states from other tuples.

Definition 8 (States of open pNets). A state of an open pNet is a (not
necessarily finite) tuple of the states of its leaves.

For any pNet P, let Leaves(P ) = 〈〈Si, si0, V,→i〉〉i∈L be the set of pLTS at
its leaves, then States(P ) = {/si∈Li . |∀i ∈ L.si ∈ Si}. A pLTS being its own
single leave: States(〈〈S, s0, V,→〉〉) = {/s . |s ∈ S}.

The initial state is defined as: InitState(P ) = /si0
i∈L..

To be precise, the state of each pLTS is entirely characterized by both the state
of the automaton, and the values of its variables V .

Predicates. We define a predicate Predsv relating a synchronisation vector (of
the form (α′i)

i∈I
, (β′j)

j∈J → α′[eb]), the actions of the involved sub-pNets and
the resulting actions. This predicate verifies:

Predsv
((

(α′i)
i∈I
, (β′j)

j∈J → α′[eb]
)
, αi∈Ii , βj∈Jj , α

)
⇔

∀i ∈ I. αi = α′i ∧ ∀j ∈ J. βj = β′j ∧ α = α′ ∧ eb

Somehow, this predicate entails a verification of satisfiability in the sense
that if the predicate Predsv is not satisfiable, then the transition associated
with the synchronisation will not occur in the considered state, or equivalently
will occur with a False precondition. If the action families do not match or if
there is no valuation of variables such that the above formula can be ensured
then the predicate is undefined.

The definition of this predicate is not constructive. In our tool [46], we
construct a logical formula encoding the matching and unification condition
involved, and we let an SMT engine (in the current implementation Z3 [35])
decide its satisfiability.

Example 3 (An open-transition). At the upper level, the SimpleSystem
pNet of Figure 2 has 2 holes and SimpleProtocol as a sub-pNet, itself containing
3 pLTSs. One of its possible open transitions (synchronizing the hole P with
the Sender within the SimpleProtocol) is:
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s
〈α, eb, (xj:=ej)j∈J 〉−−−−−−−−−−−−−→ s′ ∈→

〈〈S, s0,→〉〉 |= ······································
∅, eb, {xj ← ej}j∈J

/s .
α−→ / s′.

Tr1

and

Leaves(〈〈Pm∈Im ,Sort,SV k∈K
k 〉〉)=pLTS l∈Ll k∈K

SVk=(α′m)m∈I1]I2]J → α′[eb]

∀m∈I1. Pm |= ····················································
βj∈Jm

j ,Predm,Postm

/si∈Lm
i .

αm−−→ / (s′i)i∈Lm.

∀m∈I2. Pm |= ···································
∅,Predm,Postm
/sm .

αm−−→ / s′m.
J ′ =

⊎

m∈I1

Jm ] J

Pred =
∧

m∈I1]I2

Predm ∧ Predsv(SVk, αm∈I1]I2
m , βj∈Jj , α)

∀i ∈ L\
( ⊎

m∈I1

Lm ] I2

)
. s′i = si fresh(α′m, α′, β

j∈J
j , α)

〈〈Pm∈Im ,Sort,SV k∈K
k 〉〉 |= ····················································

βj∈J
′

j ,Pred,
⊎

m∈I1]I2

Postm

/si∈Li .
α−→ / (s′i)i∈L.

Tr2

Figure 3: Rules Tr1 and Tr2 defining the semantics of open pNets

OT1 = ··········································································
{P7→p-send(m)}, [m=m’], (s_msg← m)

/s0,m0, r0 .
in(m’)−−−−→ / s1,m0, r0.

The global states here are triples, the product of states of the 3 pLTSs
(holes have no state). The assignment performed by the open transition uses
the variable m from the action of hole P to set the value of the sender variable
named s_msg.

We build the semantics of open pNets as an open automaton over the states
given by Definition 8. The open transitions first project the global state into
states of the leaves, then apply pLTS transitions on these states, and compose
them with the sort of the holes. The semantics instantiates fresh variables using
the predicate fresh(x), additionally, for an action α, fresh(α) means all variables
in α are fresh.

Definition 9 (Semantics of open pNets). The semantics of a pNet P is an
open automaton A= 〈〈Holes(P ),States(P ), InitState(P ), vars(P ), T 〉〉 where T is
the smallest set of open transitions such that T = {OT |P |= OT} and P |= OT
is defined by the rules in Figure 4.1
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• The rule Tr1 for a pLTS checks that the guard is verified and transforms
assignments into post-conditions.

• The rule Tr2 deals with pNet nodes: for each possible synchronisation
vector (of index k) applicable to the rule subject, the premises include one
open transition for each sub-pNet involved, one possible action for each
hole involved, and the predicate relating these with the resulting action of
the vector. The sub-pNets involved are split between two sets, I2 for sub-
pNets that are pLTSs (with open transitions obtained by rule Tr1), and
I1 for the sub-pNets that are not pLTSs (with open transitions obtained
by rule Tr2), J is the set of holes involved in the transition67.

A key to understand Tr2 is that the open transitions are expressed in terms of
the leaves and holes of the whole pNet structure, i.e. a flattened view of the
pNet. For example, L is the index set of the Leaves, Lm the index set of the
leaves of one sub-pNet indexed m, so all Lm are disjoint subsets of L. Thus the
states in the open transitions, at each level, are tuples including states of all the
leaves of the pNet, not only those involved in the chosen synchronisation vector.

Note that the construction is symbolic, and each open transition deduced
expresses a whole family of behaviours, for any possible value of the variables.

In [30], we have shown a detailed example of the construction of a complex
open transition, building a deduction tree using rules Tr1 and Tr2. We have
also shown in [30] that an open pNet with finite synchronisation sets, finitely
many leaves and holes, and each pLTS at leaves having a finite number of
states and (symbolic) transitions, induces a finite automaton. The algorithm
for building such an automaton can be found in [45].

b1

b0p-a
SS1 :

{P7→p-a}, [∀x.p-a 6= p-send(x)], ()

τ
{}, T rue, (b_ec← b_ec+ 1)SS4 :

{Q7→q-recv(b_msg,b_ec)},True, ()
out(b_msg,b_ec)

SS7 :

vars:
b ec: Nat
m, b msg: Data

q-b

{Q7→q-b}, [∀x,y.q-b 6= q-recv(x,y)], ()SS6 :

in(m)

{P7→p-send(m)}, T rue, (b_ec← 0, b_msg← m)SS3 :

{Q7→q-b}, [∀x,y.q-b 6= q-recv(x,y)], ()
q-b

SS2 :

{P7→p-a}, [∀x.p-a 6= p-send(x)], ()
p-a

SS5 :

Figure 4: Open automaton for SimpleProtocolSpec

6Formally, if SVk = (α′)m∈M
m → α′[eb] is a synchronisation vector of P then J = M ∩

Holes(P ), I2 = M ∩ Leaves(P ), I1 = M \ J \ I2
7We could replace I1 and I2 by their formal definition in Tr2 but the rule would be more

difficult to read.
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Example
Figure 4 shows the open automaton computed from the SimpleProtocolSpec

pNet given in Figure 1. For later references, we name SSi the transitions of this
(strong) specification automaton while transitions of the SimpleProtocolImpl
pNet are labelled SIi. In the figures we annotate each open automaton with
the set of its variables.

202 210

220

000 100

201

τ

{}, T rue, ()SI
τ
:

τ

{}, T rue, ()SI5 :

τ

(m_msg← s_msg, m_ec← s_ec)
{}, T rue,

SI4 :

{Q7→q-recv(r_msg,r_ec)}, T rue, ()SI8 :
out(r_msg,r_ec)

SI1 :
{P 7→p-a}, [∀x. p-a 6= p-send(x)], ()

p-a

in(m)

(s_msg← m, s_ec← 0)
{P7→p-send(m)}, T rue,

SI3 :

q-b

{Q 7→q-b}, [∀x,y. q-b 6= q-recv(x,y)], ()SI2 :

τ
SI6 :

(s_ec← s_ec+1)
{}, T rue,

{}, T rue,
(r_msg← m_msg, r_ec← m_ec)

τ
SI7 :

vars:
s ec, m ec, r ec: Nat
m, s msg, m msg, r msg: Data

SI1

SI2

SI2

SI1

SI1

SI1

SI2

SI1

SI2

SI2

Figure 5: Open automaton for SimpleProtocolImpl

Figure 5 shows the open automaton of SimpleProtocolImpl from Figure 2. In
this drawing, we have short labels for states, representing /s0,m0, r0. by 000.
Note that open transitions are denoted SIi and tau open transition by SIτ . The
resulting behaviour is quite simple: we have a main loop including receiving a
message from P and transmitting the same message to Q, with some intermedi-
ate τ actions from the internal communications between the protocol processes.
In most of the transitions, you can observe that data is propagated between the
successive pLTS variables (holding the message, and the error counter value).
On the right of the figure, there is a loop of τ actions (SI4, SI5 and SI6) showing
the handling of errors and the incrementation of the error counter.

4.2. pNet Composition Properties: composition of open transitions
The semantics of open pNets allows us to prove two crucial properties re-

lating pNet composition with pNet semantics: open transition of a composed
pNet can be decomposed into open transitions of its composing sub-pNets, and
conversely, from the open transitions of sub-pNets, an open transition of the
composed pNet can be built.

We start with a decomposition property: from one open transition of P [Q]j0 ,
we exhibit corresponding behaviours of P and Q, and determine the relation
between their predicates.
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Lemma 1 (Open transition decomposition). Consider two pNets P and
Q that are not pLTSs8. Let Leaves(Q) = p

l∈LQ

l and suppose:

P [Q]j0 |= ······································
βj∈Jj ,Pred,Post

/si∈Li .
α−→ / s′ i∈Li .

with J ∩ Holes(Q) 6= ∅ or ∃i ∈ LQ. si 6= s′i, i.e. Q takes part in the reduction.
Then there exist αQ, Pred ′, Pred ′′, Post ′, Post ′′ s.t.:

P |= ·······························································
β
j∈(J\Holes(Q))∪{j0}
j ,Pred ′,Post ′

/s
i∈L\LQ

i .
α−→ / s

′ i∈L\LQ

i .

and Q |= ······················································
β
j∈J∩Holes(Q)
j ,Pred ′′,Post ′′

/s
i∈LQ

i .
αQ−−→ / s

′ i∈LQ

i .

and Pred ⇐⇒ Pred ′ ∧ Pred ′′ ∧ αQ = βj0 , Post = Post ′ ] Post ′′ where Post ′′
is the restriction of Post over variables of Q.

Lemma 2 is combining an open transition of P with an open transition of Q,
and building a corresponding transition of P [Q]j0 by assembling their elements.

Lemma 2 (Open transition composition). Suppose j0 ∈ J and:

P |= ······································
βj∈Jj ,Pred,Post

/si∈Li .
α−→ / s′ i∈Li .

and Q |= ··············································
β
j∈JQ

j ,Pred ′,Post ′

/s
i∈LQ

i .
αQ−−→ / s

′ i∈LQ

i .

Then, we have:

P [Q]j0 |= ·······································································································
β

(j∈J\{j0})]JQ

j ,Pred ∧ Pred ′ ∧ αQ = βj0 ,Post ] Post ′

/s
i∈L]LQ

i .
α−→ / s

′ i∈L]LQ

i .

Note that this does not mean that any two pNets can be composed and
produce an open transition. Indeed, the predicate Pred ∧ Pred ′ ∧ αQ = βj0 is
often not satisfiable, in particular if the action αQ cannot be matched with βj0 .
Note also that βj0 is only used as an intermediate term inside formulas in the
composed open transition: it does not appear as global action, and will not
appear as an action of a hole.

4.3. Bisimulation for open pNets – a composable bisimulation theory
As our symbolic operational semantics provides an open automaton, we can

apply the notion of strong (symbolic) bisimulation on automata to open pNets.

Definition 10 (FH-bisimulation for open pNets). Two pNets are FH-
bisimilar if their associated open automata are bisimilar.

8A similar lemma can be proven for a pLTS Q
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We can now prove that pNet composition preserves FH-bisimilarity. More
precisely, one can define two preservation properties, namely 1) when one hole
of a pNet is filled by two bisimilar other (open) pNets; and 2) when the same
hole in two bisimilar pNets are filled by the same pNet, in other words, com-
posing a pNet with two bisimilar contexts. The general case will be obtained
by transitivity of the bisimilarity relation (Theorem 1).

Theorem 3 (Congruence). Consider an open pNet
P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉. Let j0 ∈ J be a hole. Let Q and Q′ be two FH-
bisimilar pNets such that9 Sort(Q) = Sort(Q′) = Sortj0 . Then P [Q]j0 and
P [Q′]j0 are FH-bisimilar.

Theorem 4 (Context equivalence). Consider two open pNets
P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 and P ′ = 〈〈P ′i∈Ii ,Sortj∈Jj ,SV’〉〉 that are FH-bisimilar
(they thus have the same holes). Let j0 ∈ J be a hole, and Q be a pNet such
that Sort(Q) = Sortj0 . Then P [Q]j0 and P ′[Q]j0 are FH-bisimilar.

Finally, the previous theorems can be composed to state a general theorem
about composability and FH-bisimilarity.

Theorem 5 (Composability). Consider two FH-bisimilar pNets with an ar-
bitrary number of holes, when replacing, inside those two original pNets, a subset
of the holes by FH-bisimilar pNets, we obtain two FH-bisimilar pNets.

This theorem is quite powerful, as it somehow implies that the theory of open
pNets can be used to study properties of process composition. Open pNets can
indeed be applied to study process operators and process algebras, as shown
in [30] where compositional properties are extremely useful. In the case of in-
teraction protocols [13], compositionality of bisimulation can justify abstractions
used in some parts of the application.

5. Weak bisimulation

Weak symbolic bisimulation [26] was introduced to relate transition systems
that have indistinguishable behaviour, with respect to some definition of in-
ternal actions that are considered local to some subsystem, and consequently
cannot be observed, nor used for synchronisation with their context. The notion
of non-observable actions varies in different contexts, e.g. tau in CCS [42, 43],
and i in Lotos [11]. We could define classically a set of internal/non-observable
actions depending on a specific action algebra. However in this paper, to sim-
plify the notations, we will simply use τ as the single non-observable action;
the generalisation of our results to a set of non-observable actions is trivial.
Naturally, a non-observable action cannot be synchronised with actions of other

9Note that Sort(Q) = Sort(Q′) is ensured by strong bisimilarity.
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systems in its environment. We show here that under such assumption of non-
observability of τ actions, see Definition 11, we can define a weak bisimulation
relation that is compositional, in the sense of open pNet composition. In this
section we will first define a notion of weak open transition similar to open tran-
sition. In fact a weak open transition is made of several open transitions labelled
as non-observable transitions, plus potentially one observable open transition.
This allows us to define weak open automata, and a weak bisimulation relation
based on these weak open automata. Finally, we apply this weak bisimulation
to open pNets, obtain a weak bisimilarity relation for open pNets, and prove
that this relation has compositional properties.

5.1. Preliminary definitions and notations
We first specify in terms of open transition, what it means for an action to be

non-observable. We first define (in Definition 11) systems that cannot observe
τ actions of sub-systems; namely pNets that cannot change their state, or emit
an observable action when one of its holes emits a τ action.

More precisely, we state that τ is not observable if the automaton always
allows any τ transition from holes, and additionally the global transition result-
ing from a τ action of a hole is a τ transition not changing the pNet’s state. We
define Id(V ) as the identity function on the set of variables V .

Definition 11 (Non-observability of τ actions for open automata).
An open automaton A = 〈〈J,S, s0, V, T 〉〉 cannot observe τ actions if and only
if for all j in J and s in S we have:

1.
·····································(j 7→τ),True, Id(V )

s
τ−→ s

∈ T

and

2. for all βj , J , α, s, s′, Pred, Post such that

································βj∈Jj ,Pred,Post
s
α−→ s′

∈ T

If there exists j such that βj = τ then we have:

α = τ ∧ s = s′ ∧ Pred = True ∧ Post = Id(V ) ∧ J = {j}

The first statement of the definition states that the open automaton must allow
a hole to do a silent action at any time, and must not observe it, i.e. it cannot
change its internal state because a hole did a τ transition. The second statement
ensures that there cannot be in the open automaton other transitions that would
be able to observe a τ action from a hole: statement (2) states that all the open
transitions where a hole does a τ action must be of the shape given in statement
(1). In this second statement, the condition J = {j} is a bit restrictive, it could
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safely be replaced by ∀j ∈ J. βj = τ , allowing the other holes to perform τ
transitions too (because these τ actions cannot be observed). This possible
synchronisation of τ actions would not be a problem as condition 1 still ensures
that each process can do a τ separately.

By definition, one weak open transition contains several open transitions,
where each open transition can require an observable action from a given hole,
the same hole might have to emit several observable actions for a single weak
open transition to occur. Consequently, for a weak open transition to trigger, a
sequence of actions from a given hole may be required.

Thus, we let γ range over sequences of action terms and use ⊕ as the concate-
nation operator that appends sequences of action terms: given two sequences of
action terms γ ⊕ γ′ concatenates the two sequences. The operation is lifted to
indexed sets of sequences: at each index i, γ1 ⊕ γ2 concatenates the sequences
of actions at index i of γ1 and the one at index i of γ2

10. [a] denotes a sequence
with a single element.

As required actions are now sequences of observable actions, we need an
operator to build them from set of actions that occur in open transitions, i.e.
an operator that takes a set of actions performed by one hole and produces a
sequence of observable actions.

Thus we define (β)∇ as the mapping β with only observable actions of the
holes in I, but where each element is either empty or a list of length 1:

(βi∈Ii )∇ = [βi]i∈I
′
where I ′ = {i|i ∈ I ∧ βi 6= τ}

As an example the (β)∇ built from the transition OT1 in Example 3, page 19
is P7→[p-send(m)]. Remark that in our simple example no τ transition involves
any visible action from a hole, so we have no β sequences of length longer than
1 in the weak automaton.

5.2. Weak open transition definition
Because of the non-observability property (Definition 11), it is possible to

add any number of τ transitions of the holes before or after any open transition
freely. This property justifies the fact that we can abstract away from τ transi-
tions from holes in the definition of a weak open transition. We define weak open
transitions similarly to open transitions except that holes can perform sequences
of observable actions instead of single actions (observable or not). Compared to
the definition of open transition, this small change has a significant impact as
a single weak transition is the composition of several transitions of the holes.
Definition 12 (Weak open transition (WOT)). A weak open transition
over a set J of holes with sorts Sortj∈Jj and a set of states S is a structure
of the form:

·································γj∈J
′

j ,Pred,Post
s
α=⇒ s′

10One of the two sequences is empty when i 6∈ dom(γ1) or i 6∈ dom(γ2) .
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····························∅,True, Id(V )
s
τ=⇒ s

∈ WT WT1 and
·························β,Pred,Post

s
α−→ s′

∈ T

·······························(β)∇,Pred,Post
s
α=⇒ s′

∈ WT
WT2

and

·······························γ1,Pred1,Post1
s
τ=⇒ s1

∈ WT ·······························γ2,Pred2,Post2
s1

α=⇒ s2
∈ WT

·······························γ3,Pred3,Post3
s2

τ=⇒ s′
∈ WT γ = γ1 ⊕ γ2{{Post1}} ⊕ γ3{{Post2�Post1}}

α′ = α{{Post1}} Pred = Pred1 ∧ Pred2{{Post1}} ∧ Pred3{{Post2�Post1}}

·························································
γ,Pred,Post3�Post2�Post1

s
α′
=⇒ s′

∈ WT
WT3

Figure 6: Weak transition definition

Where J ′ ⊆ J , s, s′ ∈ S and γj is a list of transitions of the hole j, with each
element of the list in Sortj . α is an action label denoting the resulting action
of this open transition. Pred and Post are defined similarly to Definition 5. We
use WT to range over sets of weak open transitions.

A weak open automaton 〈〈J,S, s0, V,WT 〉〉 is similar to an open automaton
except that WT is a set of weak open transitions over J and S.

A weak open transition labelled α can be seen as a sequence of open tran-
sitions that are all labelled τ except one that is labelled α; however conditions
on predicates, effects, and states must be verified for this sequence to be fired.

We are now able to build a weak open automaton from an open automaton.
This is done in a way that resembles the process of τ saturation: we add τ open
transitions before or after another open transition, regardless of whether it is
observable or not.

Definition 13 (Building a weak open automaton).
Let A = 〈〈J,S, s0, V, T 〉〉 be an open automaton. The weak open automaton
derived from A is an open automaton 〈〈J,S, s0, V,WT 〉〉 where WT is derived
from T by saturation, applying the rules of Figure 6.

Rule WT1 states that it is always possible to perform a non-observable transi-
tion, where the state is unchanged and the holes perform no action. Rule WT2
states that each open transition is a weak open transition. Finally, Rule WT3
allows any number of τ transitions before or after any weak open transition.
This rule carefully composes predicates, effects, and actions of the holes. In-
deed, predicate Pred2 manipulates variables of s1 that result from the first weak
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open transition. Their values thus depend on the initial state but also on the
effect (as a substitution function Post1) of the first weak open transition. In the
same manner, Pred3 must be applied the substitution defined by the composi-
tion Post2�Post1. Similarly, effects on variables must be applied to obtain the
global effect of the composed weak open transition, to observable actions of the
holes, and to the global action of the weak open transition.

b0b1

b1 b0

out(b_msg,b_ec)

{Q7→q-recv(b_msg,b_ec)}, T rue, ()

τ

{}, T rue, (b_ec← b_ec+ n)
∀n ≥ 0

τ

{}, T rue, (b_ec← b_ec+ 1)

True, (b_ec← b_ec+ n)
{Q7→q-recv(b_msg,b_ec){{b_ec← b_ec+ n}}},

out(b_msg,b_ec){{b_ec← b_ec+ n}}
∀n ≥ 0

W
τ

W
τ

Figure 7: Construction of an example of weak open transition

Example 4 (A weak open-transition). Figure 7 shows the construction of
one of the weak transitions of the open automaton of SimpleProtocolSpec. On
the top we show the subset of the original open automaton (from Figure 4)
considered here, and at the bottom the generated weak transition. For read-

ability, we abbreviate the weak open transitions encoded by ·······················
{}, T rue, ()
s
τ=⇒ s′

as Wτ .

The weak open transition shown here is the transition delivering the result of
the algorithm to hole Q by applying rules: WT1,WT2, and WT3. First rule
WT1 adds a WTτ loop on each state. Rule WT2 transforms each 2 OTs into
WOTs. Then consider application of Rule WT3 on a sequence of 3 WOTs.

·························································{}, T rue, (b_ec← b_ec + 1)
b1 τ=⇒ b1

; ·························································
{}, T rue, (b_ec← b_ec + 1)

b1 τ=⇒ b1
; ·······················
{}, T rue, ()

b1 τ=⇒ b1
. The

result will be: ·························································
{}, T rue, (b_ec← b_ec + 2)

b1 τ=⇒ b1
. We can iterate this construction an

arbitrary number of times, getting for any natural number n a weak open tran-

sition: ··············································
∅, T rue, (ec← ec + n)

b1 τ=⇒ b1
∀n ≥ 0. Finally, applying again WT3, and using

the central open transition having out(b_msg,b_ec) as α, we get the resulting
weak open transition between b1 and b0 (as shown in Figure 7). Applying the
substitutions finally yields the weak transitions family WS7 in Figure 8.

Example 5 (Weak open automata). Figures 8 and 9 respectively show the
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weak automata of SimpleProtocolSpec and SimpleProtocolImpl. We encode weak
open transitions by WS on the specification model and by WI on the imple-
mentation model.

b0

b1

(b_ec← b_ec+ n)
∀n ≥ 0WS5 :

p-a

{P7→p-a}, [∀x.p-a 6= p-send(x)],

{Q7→q-recv(b_msg,b_ec+ n)}, T rue,
(b_ec← b_ec+ n)

out(b_msg,b_ec+ n)
∀n ≥ 0WS7 :

WS1 : p-a

{P7→p-a}, [∀x. P-a 6= p-send(x)], ()

q-b

(b_ec← b_ec+ n)
{Q7→q-b}, [∀x,y. q-b 6= q-recv(x,y)],

∀n ≥ 0WS6 : τ

{}, T rue, (b_ec← b_ec+ n)
∀n ≥ 0WS4 :

in(m)

(b_ec← n, b_msg← m)
{P7→p-send(m)}, T rue,

WS3 : ∀n ≥ 0

q-b

{Q7→q-b}, [∀x,y. q-b 6= q-recv(x,y)], ()
WS2 :

vars:
b ec: Nat
m, b msg: Data

W
τ

W
τ

Figure 8: Weak Open Automaton of SimpleProtocolSpec

For readability, we only give names to the weak open transitions of
SimpleProtocolImpl in Figure 9; we detail some of these transitions below and
the full list is included in the extended version [3] . Let us point out that the
weak OT loops (WI1,WI2 and Wτ ) on state 000 are also present in all other
states, we did not repeat them. Additionally, many WOTs are similar, and
numbered accordingly as 3, 3a, 3b, 3c and 8, 8a, 8b, 8c respectively: they only
differ by their respective source or target states; the "variant" WOTs appear in
blue in Figure 9.

100000

201

202

210

220

WI6

WI7

WI4

WI5

WI8c

WI7b

WI8b

WI8a

WI3a

WI7a

WI3c

WI456

WI645

WI6a

WI5a

WI564

WI4aWI3b

WI1

WI2

WIτ

WI8

WI3

Wτ

WI1

WI2

s ec, m ec, r ec: Nat

m, s msg, m msg, r msg: Data

vars:

Figure 9: Weak Open Automaton of SimpleProtocolImpl
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Now let us give some details about the construction of the weak automaton
of the SimpleProtocolImpl pNet, obtained by application of the weak rules as
explained above. We concentrate on weak open transitions WI3 and WI4. Let
us denote as postn the effect (as a substitution function) of the strong open
transitions SIn from Figure 5:

post3 = (s_msg← m, s_ec← 0)
post4 = (m_msg← s_msg, m_ec← s_ec)
post5 = ()
post6 = (s_ec← s_ec+1)

Then the effect of one single 100 OT4−−−→ 210 OT5−−−→ 220 OT6−−−→ 100 loop is11:

post456 = post6� post5� post4 = (s_ec← s_ec + 1)

So if we denote post456∗ any iteration of this loop, we get post456∗ = (s_ec←
s_ec + n) for any n ≥ 0, and the Post of the weak OT WI3 is:
Post3 = post456∗� post3 = (s_msg← m, s_ec← n),∀n ≥ 0 and Post of WI3a
is:
post4�post456∗� post3 = (m_msg← m, m_ec← n),∀n ≥ 0.

We can now show some of the weak OTs of Figure 9 (the full table is included
in the extended version [3]). As we have seen above, the effect of ruleWT3 when
a silent action have an effect on the variable ec will generate an infinite family
of WOTs, depending on the number of iterations through the loops. We denote
these families using a "meta-variable" n, ranging over Nat.

WI1 = ·····································································
{P7→p-a}, [∀x.p-a 6= p-send(x)], ()

s
p-a==⇒ s

(for any s ∈ S)

∀n ≥ 0.WI3(n) = ····························································································
{P 7→p-send(m)},True, (s_msg← m, s_ec← n)

000 in(m)===⇒ 100

∀n≥0.WI4(n)= ······················································································································
{},True, (m_msg←s_msg, m_ec←s_ec+n, s_ec←s_ec+n)

100 τ=⇒ 210

∀n ≥ 0.WI456(n) = ·························································
{},True, (s_ec← s_ec + n)

100 τ=⇒ 100
The Post of the weak OT WI6a is:

Post6a= post4� post456∗� post6
=(m_msg←s_msg, m_ec←s_ec)�(s_ec←s_ec+n)�(s_ec←s_ec+1)
=(m_msg← s_msg, m_ec← s_ec + 1+n, s_ec← s_ec + 1+n)

So we get:

∀n ≥ 0.WI6a(n) = ·············································································································
{}, T rue, (m_ec← s_ec + 1 + n, s_ec← s_ec + 1 + n)

220 τ=⇒ 210

11when showing the result of Posts composition, we will omit the identity substitution
functions introduced by the� definition in page 7
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5.3. Composition properties: composition of weak open transitions
We now have two different semantics for open pNets: a strong semantics,

defined as an open automaton, and as a weak semantics, defined as a weak
open automaton. Like the open automaton, the weak open automaton features
valuable composition properties. We can exhibit a composition property and a
decomposition property that relate open pNet composition with their semantics,
defined as weak open automata. These are however technically more complex
than the ones for open automata because each hole performs a set of actions,
and thus a composed transition is the composition of one transition of the
top-level pNet and a sequence of transitions of the sub-pNet that fills its hole.
Composition and decomposition properties can be found as Lemma 6, Lemma 7,
and Lemma 8 in [3].

5.4. Weak FH-bisimulation
For defining a bisimulation relation between weak open automata, two op-

tions are possible. One option is that we define a simulation similar to the
strong simulation but based on weak open automata, this would look like the
FH-simulation but would need to be adapted to weak open transitions. Al-
ternatively, we could define directly and classically a weak FH-simulation as a
relation between two open automata, relating the open transitions of the first
one with the transitions of the weak open automaton derived from the second
one.

The definition below specifies how a set of weak open transitions can simulate
an open transition, and under which condition; this is used to relate, by weak
FH-bisimulation, two open automata by reasoning on the weak open automata
that can be derived from the strong ones.

Definition 14 (Weak FH-bisimulation).
Let A1 = 〈〈J,S1, s0, V1, T1〉〉 and A2 = 〈〈J,S2, t0, V2, T2〉〉 be open automata with
disjoint sets of variables. Let 〈〈J,S1, s0, V1,WT 1〉〉 and 〈〈J,S2, t0, V2,WT 2〉〉 be
the weak open automata derived from A1 and A2 respectively. Let R a relation
over S1 and S2, as in Definition 7.

Then R is a weak FH-bisimulation iff for any states s ∈ S1 and t ∈ S2 such
that (s, t|Preds,t) ∈ R, we have the following:

• For any open transition OT in T1:

·············································βj∈J
′

j ,PredOT ,PostOT
s
α−→ s′

there exists an indexed set of weak open transitions WOT x∈X
x ⊆ WT 2:

················································γj∈Jx

jx ,PredOTx ,PostOTx

t
αx=⇒ tx
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such that ∀x. {j ∈ J ′|βj 6= τ} = Jx, (s′, tx|Preds′,tx) ∈ R; and

Preds,t ∧ PredOT =⇒
∨

x∈X

(
∀j ∈ Jx.(βj)∇=γjx∧PredOTx

∧α=αx∧Preds′,tx{{PostOT ] PostOTx
}}
)

• and symmetrically any open transition from t in T2 can be covered by a
set of weak transitions from s in WT 1.

Two open automata are weak FH-bisimilar if there exists a weak FH-
bisimulation relation that relates their initial states. This relation is called
weak FH-bisimilarity. Two pNets are weak FH-bisimilar if their associated open
automata are weakly bisimilar.

Compared to strong bisimulation, except the obvious use of weak open tran-
sitions to simulate an open transition, the condition on predicate is slightly
changed concerning actions of the holes. Indeed only the visible actions of the
holes must be compared and they form a list of actions, but of length at most
one.

Our first important result is that weak FH-bisimilarity is an equivalence in
the same way as strong FH-bisimilarity.

Theorem 6 (Weak FH-bisimilarity is an equivalence). Weak FH-
bisimilarity is reflexive, symmetric and transitive.

The proof is detailed in [3], it follows a similar pattern as the proof that strong
FH-bisimilarity is an equivalence, but technical details are different, and in
practice we rely on a variant of the definition of weak FH-bisimilarity; this
equivalent version simulates a weak open transition with a set of weak open
transition. The careful use of the best definition of weak FH-bisimilarity makes
the proof similar to the strong FH-bisimilarity case.

Proving bisimulation in practice
In practice, we are dealing with finite representations of the (infinite) open

automata. In [31], we defined a slightly modified definition of the “coverage”
proof obligation, in the case of strong FH-bisimulation. This modification is
required to manage in a finite way all possible instantiations of an OT. In the
case of weak FH-bisimulation, the proof obligation from Definition 14 becomes:

∀fvOT .
{

Preds,t ∧ PredOT =⇒
∨

x∈X

[
∃fvOTx .

(
∀j∈Jx.(βj)∇=γjx∧PredOTx ∧α=αx∧Preds′,tx {{PostOT ]PostOTx }}

)]}

where fvOT denotes the set of free variables of all expressions in OT .
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5.5. Weak FH-bisimilation for open pNets
Before defining a weak open automaton for the semantics of open pNets, it

is necessary to state under which condition a pNet is unable to observe silent
actions of its holes. In the setting of pNets this can simply be expressed as a
condition on the synchronisation vectors. Precisely, the set of synchronisation
vectors must contain vectors that let silent actions go through the pNet, i.e.
synchronisation vectors where one hole does a τ transition, and the global visible
action is a τ . Additionally, no other synchronisation vector must be able to react
on a silent action from a hole, i.e. if a synchronisation vector observes a τ from
a hole it cannot synchronise it with another action nor emit an action that is
not τ . This is formalised as follows:

Definition 15 (Non-observability of silent actions for pNets).
A pNet 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 cannot observe silent actions if it verifies:
∀i ∈ I ] J. (i7→τ)→ τ [True] ∈ SV and

∀
(

(αi)i∈I
′
→ α′[eb] ∈ SV

)
,∀i ∈ I ′ ∩ J. αi = τ =⇒ α′ = τ ∧ I ′ = {i}

With this definition, it is easy to check that the open automaton that gives
the semantics of such an open pNet cannot observe silent actions in the sense
of Definition 11.

Property 1 (Non-observability of silent actions). The semantics of a
pNet, as provided in Definition 9, that cannot observe silent actions is an open
automaton that cannot observe silent actions.

Under this condition, it is safe to define the weak open automaton that
provides a weak semantics to a given pNet. This is simply obtained by applying
Definition 13 to generate a weak open automaton from the open automaton that
is the strong semantics of the open pNet, as provided by Definition 9.

Definition 16 (Semantics of pNets as a weak open automaton). Let
A be the open automaton expressing the semantics of an open pNet P ; let
〈〈J,S, s0, V,WT 〉〉 be the weak open automaton derived from A; we call this
weak open automaton the weak semantics of the pNet P . Then, we denote
P |= WOT whenever WOT ∈ WT .

From the definition of the weak open automata of pNets, we can now study
the properties of weak bisimulation concerning open pNets.

5.6. Properties of weak bisimulation for open pNets
When silent actions cannot be observed, weak FH-bisimilarity is a congru-

ence for open pNets: if P and Q are weakly bisimilar to P ′ and Q′ then the
composition of P and Q is weakly bisimilar to the composition of P ′ and Q′,
where composition is the hole replacement operator: P [Q]j and P ′[Q′]j are
weak FH-bisimilar. This can be shown by proving the two following theorems.
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The detailed proof of these theorem can be found in [3]. The proof strongly
relies on the fact that weak FH-bisimulation is an equivalence, but also on the
composition properties for open automata.

Theorem 7 (Congruence for weak FH-bisimilarity). Consider an open
pNet P that cannot observe silent actions, of the form P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉.
Let j0 ∈ J be a hole. Let Q and Q′ be two weak FH-bisimilar pNets such that12

Sort(Q) = Sort(Q′) ⊆ Sortj0 . Then P [Q]j0 and P [Q′]j0 are weak FH-bisimilar.

Theorem 8 (Context equivalence for weak FH-bisimilarity). Consider
two open pNets P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 and P ′ = 〈〈P ′i∈Ii ,Sortj∈Jj ,SV’〉〉 that
are weak FH-bisimilar (recall they must have the same holes to be FH-bisimilar)
and that cannot observe silent actions. Let j0 ∈ J be a hole, and Q be a pNet
such that Sort(Q) ⊆ Sortj0 . Then P [Q]j0 and P ′[Q]j0 are weak FH-bisimilar.

Finally, the previous theorems can be composed to state a general theorem
about composability and weak FH-bisimilarity.

Theorem 9 (Composability of weak FH-bisimilarity). Consider two
weak FH-bisimilar pNets with an arbitrary number of holes, such that the two
pNets cannot observe silent actions. When replacing, inside those two original
pNets, a subset of the holes by weak FH-bisimilar pNets, we obtain two weak
FH-bisimilar pNets.

Example 6 (CCS Choice). Consider the + operator of CCS, shown in Ex-
ample 1. The pNet does not satisfy Definition 15. Indeed, if a or b is τ then
the + operator can observe the τ transition. It is well-known that weak bisim-
ularity is not a congruence in CCS, this corresponds to the fact that the +
operator can observe the τ transitions. Thus, even if we can define a weak FH-
bisimilarity for CCS with + it does not verify the necessary requirements for
being a congruence.

On the other side, the parallel operator defined similarly satisfies Defini-
tion 15, and indeed bisimilarity is a congruence for the parallel operator in
CCS.

Running example
In Section 5 we have shown the full saturated weak automaton for both

SimpleProtocolSpec and SimpleProtocolImpl. We will show here how we can
check if some given relation between these two automata is a weak FH-
bisimulation.
Preliminary remarks:

• Both pNets trivially verify the “non-observability” condition: the vectors
having τ as an action of a sub-net are of the form “< −, τ,− >→ τ”.

12Note that Sort(Q) = Sort(Q′) is ensured by weak FH-bisimilarity.
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• We must take care of variable name conflicts: in our example, the variables
of the 2 systems already have different names, but the action parameters
occurring in the transitions (m, msg, ec) are the same, that is not correct.
In the tools, this is managed by the static semantic layer; in the example,
we rename the only conflicting variablesm intom1 for SimpleProtocolSpec,
and m2 for SimpleProtocolImpl.

Now consider the relation R defined by the following triples:
SimpleProtocolSpec

states
SimpleProtocolImpl

states Predicate

b0 000 True
b0 202 True
b1 100 b_msg = s_msg ∧ b_ec = s_ec
b1 210 b_msg = m_msg ∧ b_ec = m_ec
b1 220 b_msg = s_msg ∧ b_ec = s_ec
b1 201 b_msg = r_msg ∧ b_ec = r_ec

Checking thatR is a weak FH-bisimulation means checking, for each of these
triples, that each (strong) OT of one the states corresponds to a set of WOTs of
the other, using the conditions from Definition 14. We give here one example:
consider the second triple from the table, and transition SS3 from state b0. Its
easy to guess that it will correspond to WI3(0) of state 202 (and equivalently
state 000, see Figure 9):

SS3 = ·································································································
{P 7→p-send(m1)}, T rue, (b_msg← m1, b_ec← 0)

b0 in(m1)−−−−→ b1

WI3(0) = ·································································································
{P 7→p-send(m2)}, T rue, (s_msg← m2, s_ec← 0)

000 in(m2)====⇒ 100
Let us check formally the conditions:

• Their sets of active (non-silent) holes is the same: J ′ = Jx = {P}.
• Triple (b1, 100, b_msg = s_msg ∧ b_ec = s_ec) is in R.
• The verification condition
∀fvOT . {Pred ∧ PredOT
=⇒

∨

x∈X

[
∃fvOTx .

(
∀j ∈ Jx.(βj)∇=γjx∧PredOTx∧α=αx∧Preds′,tx{{PostOT ]PostOTx}}

)]
}

Gives us:
∀m1. {True ∧ True =⇒ ∃m2.
([p-send(m1)] = [p-send(m2)] ∧ True ∧ in(m1) = in(m2) ∧
(b_msg = s_msg ∧ b_ec = s_ec){{(b_msg ← m1, b_ec ← 0) ] (s_msg ←
m2, s_ec←0)}})}

That is reduced to:
∀m1.∃m2. (p-send(m1) = p-send(m2)∧in(m1) = in(m2)∧m1 = m2∧0 = 0)

That is a tautology.
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6. Related Works

To the best of our knowledge, there are not many research works on Weak
Bisimulation Equivalences between such complicate system models (open, sym-
bolic, data-aware, with loops and assignments). We give a brief overview of other
related publications, focussing first on Open and Compositional approaches,
then on Symbolic Bisimulation for data-sensitive systems.

Open and compositional systems
In [36, 35], the authors investigate several methodologies for the compo-

sitional verification of software systems, with the aim to verify reconfigurable
component systems. To improve scaling and compositionality, the authors de-
compose the verification problem that is to be resolved by a SMT (satisfiability
modulo theory) solver into independent sub-problems on independent sets of
variables. These works clearly highlight the interest of incremental and compo-
sitional verification in a very general setting. In our own work on open pNets,
adding more structure to the composition model, we show how to enforce a com-
positional proof system that is more versatile than independent sets of variables
as the composition is structured and allows arbitrary synchronisations between
sub-entities. Our theory has also been encoded into an SMT solver and it would
be interesting to investigate how the examples of evolving systems studied by
Johnson et al. could be encoded into pNet and verified by our framework. How-
ever, the models of Johnson et al. are quite different from ours, in particular
they are much less structured, and translating them is clearly outside the scope
of this article.

In previous work [20], we also have shown how (closed) pNet models could be
used to encode and verify finite instances of reconfigurable component systems.

Methodologies for reasoning about abstract semantics of open systems can be
found in [5, 6, 18], authors introduce behavioural equivalences for open systems
from various symbolic approaches. Working in the setting of process calculi,
some close relations exist with the work of the authors of [5, 6], where both
approaches are based on some kinds of labelled transition systems. The distin-
guishing feature of their approach is that the transitions systems are labelled
with logical formulae that provides an abstract characterization of the struc-
ture that a hole must possess and of the actions it can perform in order to
allow a transition to fire. Logical formulae are suitable formalisms that cap-
ture the general class of components that can act as the placeholders of the
system during its evolution. In our approach we purposely leave the algebra
of action terms undefined but the only operation we allow on action of holes is
the comparison with other actions. Defining properly the interaction between
a logical formulae in the action and the logics of the pNet composition seems
very difficult. mCRL2 [22] is another effective model for specifying and prov-
ing properties of concurrent systems. mCRL2 has an established tool-suite and
share similarities with pNets. However, pNets feature hierarchical composition
with more structure than mCRL2 that composes processes with a parallel op-
erator. Synchronisation of processes is expressed very differently; it is difficult
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to precisely compare multi-actions of mCRL2 with synchronisation vectors of
pNets but synchronisation vector ogf pNets enforce a synchronisation based on
the structure while in mCRL2 synchronisation is specified in a versatile, flexible,
but less structured way.

In the same vein as context systems [38], pNets is a formalism for mod-
ular and possibly incomplete description of concurrent systems. The two for-
malisms are however different as the theory of contexts relies on a form of rewrite
rules, while pNets rely on parametric automata to express the system behaviour.
pNets have similar features as context systems [38] and static constructs [33].
Indeed all these approaches allow for modular and possibly incomplete descrip-
tion and structural composition of systems. The main originality of pNets com-
pared to these other compositional approaches is the parameterised nature of
the specification, which enables reasoning on value-passing systems but also on
rich synchronisations that depend on the value of parameters.

Decomposition techniques
Quotienting of process algebras [38] and decomposition techniques for

mCRL2 [39] share similarities with our approach; they propose to overcome the
state-space-explosion problem by decomposing formulas to be verified according
to the process composition. The decomposed problem must be equivalent to the
original one. However these techniques are expressed in a very different setting
from ours and it is difficult to precisely relate them to the more structural and
parameterised point of view we adopt here. We could try to apply such auto-
matic decomposition techniques to open pNets, but deriving a decomposition
for systems synchronised in a very parameterised way like we do requires further
investigations. Both parallel composition [38] and mCRL2 [39] feature a con-
crete verification setting where decomposition is useful, while open automata
provide a more general setting that could be used to represent both frameworks
and hopefully generalise process decomposition results of [38, 39].

Logical and semantics approaches
Among the approaches for modelling open systems, one can cite [8] that

uses transition conditions depending on an external environment, and introduce
bisimulation relations based on this approach. The approach of [8] is highly
based on logics and their bisimulation theory is richer than ours in this aspect,
while our theory is highly structural and focuses on relation between structure
and equivalence. Also, we see composition as a structural operation putting
systems together, and do not focus on the modelling of an unknown outside
world. Overall we believe that the two approaches are complementary but
comparing precisely the two different bisimulation theories is not trivial.

There is also a clear relation with the seminal works on rule formats for
Structured Operational Semantics, e.g. De Simone format, GSOS, and condi-
tional rules with or without negative premises [16, 10, 24, 47]. The Open pNets
model provides a way to define operators similar to these rules formats, but
with quite different aim and approach. A formal comparison would be inter-
esting, though not trivial. What we can say easily is that: the pNet format
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syntactically encompasses De Simone, GSOS, and conditional premises rules.
Then our compositionality result is more powerful than their classical results,
but this is not a surprise, as we rely on a (sufficient) syntactic hypothesis on a
particular system, rather than the general rules defining an operator. Last, we
intentionally do not accept negative premises, that would be more to put into
practice in our implementation. This extension could be studied in future work.

Symbolic and data-sensitive systems
As mentioned in the Introduction, we were substantially inspired by the

works of Lin et al. [34, 26, 40]. They developed the theory of symbolic transition
graphs (STG), and the associated symbolic (early and late, strong and weak)
bisimulations. Moreover, they studied STGs with assignments as a model for
message-passing processes. Our work extends those contributions in several
ways: first our models are compositional, and our bisimulations come with
effective conditions for being preserved by pNet composition (i.e. congruent),
even for the weak version. This result is more general than the bisimulation
congruences for value-passing CCS in [34]. Then our settings for management
of data types are much less restrictive, thanks to our use of satisfiability engines,
while Lin’s algorithms were limited to data-independent systems.

In a similar way, [1] presents a notion of ”data-aware” bisimulations on data
graphs, in which computation of such bisimulations is studied based on XPath
logical language extended with tests for data equality.

Research related to the keyword "Symbolic Bisimulation" refer to two very
different domains, namely BDD-like techniques for modelling and computing
finite-state bisimulations, that are not related to our topic; and symbolic se-
mantics for data-dependant or high-order systems, that are very close in spirit
to our approach. In this last area, we can mention Calder’s work [15], that
defines a symbolic semantic for full Lotos, with a symbolic bisimulation over it;
Borgstrom et al., Liu et al, Delaune et al. and Buscemi et al. providing sym-
bolic semantics and equivalence for different variants of pi calculus respectively
[12, 17, 41, 14]; and more recently Feng et al. provide a symbolic bisimulation
for quantum processes [19]. All the above works are based on models definitely
different from ours, and none of them allows system to be as much parameterised
as open pNets; this additional expressiveness is due to the open and symbolic
nature of our constructs.

7. Conclusion and discussion

pNets (Parameterised Networks of Automata) is a formalism adapted to
the representation of the behaviour of parallel or distributed systems. One
strength of pNets is their parameterised nature, making them suitable for to
the representation of systems of arbitrary size, and making the modelling of
parameterised systems possible. Parameters are also crucial to reason about
interaction protocols that can address one entity inside an indexed set of pro-
cesses. pNets have been successfully used to represent behavioural specification
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of parallel and distributed components and verify their correctness [2, 29]. VCE
is the specification and verification platform that uses pNets as an intermediate
representation. In this platform we have developed tool support for computing
the symbolic semantics in term of open automata; this is presented in [45, 46],
together with a case-study based on the on-board control software of satellites.
In [9] we present how to encode reactive systems from the BIP specification
language and check their temporal properties using VCE. In [31, 32] we de-
scribe our strong bisimulation algorithms, with illustration on the equivalence
of different encodings of operators.

Open pNets are pNets with holes; they are adapted to represent processes
parameterised by the behaviour of other processes, like composition operators
or interaction protocols that synchronise the actions of processes that can be
provided afterwards. Open pNets are hierarchical composition of automata with
holes and parameters. We defined here a semantics for open pNets and a com-
plete bisimulation theory for them. The semantics of open pNets relies on the
definition of open automata that are automata with holes and parameters, but
no hierarchy. Open automata are a flattened view of the pNet; their behaviour
is expressed as open transitions that allow for a more semantic interpretation
of process parameters (holes) than pNets. In the end, open automata are la-
belled transition systems with parameters and holes, a notion that is useful to
define semantics, but makes less sense for the high level modelling of a system,
compared to pNets. Open automata is the formalism that makes it possible to
define FH-bisimilarity.

This article defines a strong and a weak bisimulation relation that
are adapted to parameterised systems and hierarchical composition. FH-
bisimulation handles pNet parameters in the sense that two states might be
or not in relation depending on the value of parameters. Strong FH-bisimilarity
is compositional in the sense that it is maintained when composing processes.
We also identified a simple and realistic condition on the semantics of non-
observable actions that allows weak FH-bisimilarity to be also compositional.
Overall we believe that this article paved the way for a solid theoretical foun-
dation for compositional verification of parallel and distributed systems.

The pNets formalism supports the refinement checking at the automaton
level through a simulation, with symbolic evaluation of guards and transitions.
The definition of simulation on open automata should be stronger than a clas-
sical simulation since it matches a transition with a family of transitions. Such
a relation should be able to check the refinement by taking into account state
duplication, transition removal, guard strengthening, variable modification. Ad-
ditionally, composition of pNets gives the possibility to either add new holes to
a system or fill holes. A useful simulation relation should thus support the com-
parison of automata that do not have the same number of holes. Designing such
a simulation relation is a non-trivial extension that we leave for future work.

We are currently looking at further properties of FH-bisimulation, but also
the relations with existing equivalences on both closed and open systems. In
particular, our model being significantly different from those considered in [34],
it would be interesting to compare our “FH” family of bisimulations with the
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hierarchy of symbolic bisimulations from those authors. We also plan to apply
open pNets to the study of complex composition operators in a symbolic way,
for example in the area of parallel skeletons, or distributed algorithms.

Recently we published preliminary work on methods for checking weak FH-
bisimulation [48]. The challenges here, in the context of our symbolic systems,
are not so much algorithmic complexity, as was the case with classical weak
bisimulation on finite models, but decidability and termination. The naive
approach, using an explicit construction of the weak transition, may in itself
introduce non-termination, so we prefer a direct implementation of the weak
bisimulation definition, without constructing the weak automata beforehand,
but searching on demand to construct the required weak transitions. We illus-
trate this approach on a simple error-correcting transport protocol case-study.
Beside, we explore in [49] more pragmatic approaches using weak bisimulation
preserving (pattern-based) reduction rules.

References

[1] Sergio Abriola, Pablo Barceló, Diego Figueira, and Santiago Figueira.
Bisimulations on data graphs. Journal of Artificial Intelligence Research,
61:171–213, 2018.

[2] Rabéa Ameur-Boulifa, Ludovic Henrio, Oleksandra Kulankhina, Eric
Madelaine, and Alexandra Savu. Behavioural semantics for asynchronous
components. Journal of Logical and Algebraic Methods in Programming,
89:1–40, 2017.

[3] Rabéa Ameur-Boulifa, Ludovic Henrio, and Eric Madelaine. Compositional
equivalences based on open pnets. CoRR, abs/2007.10770, 2020.

[4] André Arnold. Synchronised behaviours of processes and rational relations.
Acta Informatica, 17:21–29, 1982.

[5] Paolo Baldan, Andrea Bracciali, and Roberto Bruni. Bisimulation by unifi-
cation. In AMAST 2002 - Algebraic Methodology and Software Technology,
9th International Conference, volume 2422 of Lecture Notes in Computer
Science, pages 254–270. Springer, 2002.

[6] Paolo Baldan, Andrea Bracciali, and Roberto Bruni. A semantic framework
for open processes. Theoretical Computer Science, 389(3):446–483, 2007.

[7] Tomás Barros, Rabéa Ameur-Boulifa, Antonio Cansado, Ludovic Henrio,
and Eric Madelaine. Behavioural models for distributed fractal compo-
nents. Annales des Télécommunications, 64(1-2):25–43, 2009.

[8] Harsh Beohar, Barbara König, Sebastian Küpper, and Alexandra Silva.
Conditional transition systems with upgrades. Science of Computer Pro-
gramming, 186:102320, 2020.

40

65



[9] Simon Bliudze, Ludovic Henrio, and Eric Madelaine. Verification of con-
current design patterns with data. In Hanne Riis Nielson and Emilio Tu-
osto, editors, COORDINATION 2019 - 21st International Conference on
Coordination Models and Languages, volume LNCS-11533, pages 161–181.
Springer International Publishing, 2019.

[10] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be
traced. Journal of the ACM, 42(1):232–268, 1995.

[11] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specifica-
tion language LOTOS. Computer Networks, 14(1):25–59, 1987.

[12] Johannes Borgström, Sébastien Briais, and Uwe Nestmann. Symbolic
Bisimulation in the Spi Calculus. In CONCUR 2004 - Concurrency Theory,
15th International Conference, volume 3170 of Lecture Notes in Computer
Science, pages 161–176. Springer, 2004.

[13] Rabéa Ameur Boulifa, Raluca Halalai, Ludovic Henrio, and Eric Madelaine.
Verifying safety of fault-tolerant distributed components. In FACS 2011 -
8th International Symposium on Formal Aspects of Component Software,
Lecture Notes in Computer Science. Springer, 2011.

[14] Maria Grazia Buscemi and Ugo Montanari. Open Bisimulation for the Con-
current Constraint Pi-Calculus. In ESOP 2008 - Programming Languages
and Systems, 17th European Symposium on Programming, volume 4960 of
Lecture Notes in Computer Science, pages 254–268. Springer, 2008.

[15] Muffy Calder and Carron Shankland. A symbolic semantics and bisimula-
tion for full LOTOS. In FORTE 2001 - 21st International Conference on
Formal Techniques for Networked and Distributed Systems, pages 185–200.
Springer, 2001.

[16] Robert De Simone. Higher-level synchronising devices in MEIJE-SCCS.
Theoretical Computer Science, 37:245–267, 1985.

[17] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Symbolic Bisimulation
for the Applied Pi Calculus. In FSTTCS 2007 - Foundations of Software
Technology and Theoretical Computer Science, 27th International Confer-
ence, volume 4855 of Lecture Notes in Computer Science, pages 133–145.
Springer, 2007.

[18] Jérémy Dubut. Bisimilarity of Diagrams. In RAMiCS 2020 - Relational and
Algebraic Methods in Computer Science, 18th International Conference,
volume 12062 of Lecture Notes in Computer Science, pages 65–81. Springer,
2020.

[19] Yuan Feng, Yuxin Deng, and Mingsheng Ying. Symbolic bisimulation for
quantum processes. ACM Transactions on Computational Logic (TOCL),
15(2):14, 2014.

41

66



[20] Nuno Gaspar, Ludovic Henrio, and Eric Madelaine. Formally reasoning on
a reconfigurable component-based system - A case study for the industrial
world. In FACS 2013 - Formal Aspects of Component Software, 10th Inter-
national Symposium,, volume 8348 of Lecture Notes in Computer Science,
pages 137–156. Springer, 2013.

[21] Jan Friso Groote. Transition system specifications with negative premises.
Theoretical Computer Science, 118(2):263–299, 1993.

[22] Jan Friso Groote, Jeroen J. A. Keiren, Bas Luttik, Erik P. de Vink, and
Tim A. C. Willemse. Modelling and analysing software in mcrl2. In Farhad
Arbab and Sung-Shik Jongmans, editors, Formal Aspects of Component
Software, pages 25–48, Cham, 2020. Springer International Publishing.

[23] Jan Friso Groote, Mohammad Reza Mousavi, and Michel A. Reniers. A
hierarchy of SOS rule formats. Electronic Notes in Theoretical Computer
Science, 156(1):3–25, 2006. Proceedings of the Second Workshop on Struc-
tural Operational Semantics.

[24] Jan Friso Groote and Frits Vaandrager. Structured operational seman-
tics and bisimulation as a congruence. Information and Computation,
100(2):202–260, 1992.

[25] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming., 8(3):231–274, 1987.

[26] Matthew Hennessy and Huimin Lin. Symbolic bisimulations. Theoretical
Computer Science, 138(2):353–389, 1995.

[27] Matthew Hennessy and Humin Lin. Symbolic bisimulations. Theoretical
Computer Science, 138(2):353–389, 1995. Meeting on the mathematical
foundation of programing semantics.

[28] Matthew Hennessy and Julian Rathke. Bisimulations for a calculus of
broadcasting systems. Theoretical Computer Science, 200(1-2):225–260,
1998.

[29] Ludovic Henrio, Oleksandra Kulankhina, Siqi Li, and Eric Madelaine. In-
tegrated environment for verifying and running distributed components. In
FASE 2016 - 19th International Conference on Fundamental Approaches to
Software Engineering, pages 66–83. Springer Berlin Heidelberg, 2016.

[30] Ludovic Henrio, Eric Madelaine, and Min Zhang. A Theory for the Com-
position of Concurrent Processes. In FORTE 2016 - 36th International
Conference on Formal Techniques for Distributed Objects, Components,
and Systems, volume 9688, pages 175 – 194. Springer, 2016.

[31] Zechen Hou and Eric Madelaine. Symbolic Bisimulation for Open and
Parameterized Systems. In PEPM 2020 - Workshop on Partial Evaluation
and Program Manipulation. ACM SIGPLAN, 2020.

42

67



[32] Zechen Hou, Eric Madelaine, Jing Liu, and Yuxin Deng. Symbolic Bisimu-
lation for Open and Parameterized Systems - Extended version. Research
Report RR-9304, Inria & Université Cote d’Azur, CNRS, I3S, Sophia An-
tipolis, France ; East China Normal University (Shanghai), November 2019.

[33] Hans Hüttel and Kim Guldstrand Larsen. The use of static constructs in
A modal process logic. In Logic at Botik ’89, Symposium on Logical Foun-
dations of Computer Science, volume 363 of Lecture Notes in Computer
Science, pages 163–180. Springer, 1989.

[34] Anna Ingólfsdóttir and Huimin Lin. A symbolic approach to value-
passing processes. In Handbook of Process Algebra, pages 427–478. North-
Holland/Elsevier, 2001.

[35] Kenneth Johnson and Radu Calinescu. Efficient Re-resolution of SMT
Specifications for Evolving Software Architectures. In QoSA 2014 - 10th
International ACM Sigsoft Conference on Quality of Software Architec-
tures, pages 93–102. ACM, 2014.

[36] Kenneth Johnson, Radu Calinescu, and Shinji Kikuchi. An incremental
verification framework for component-based software systems. In CBSE
2013 - 16th International ACM Sigsoft Symposium on Component-based
Software Engineering, pages 33–42. ACM, 2013.

[37] Kim G. Larsen. A context dependent equivalence between processes. The-
oretical Computer Science, 49:184–215, 1987.

[38] Kim Guldstrand Larsen and Liu Xinxin. Compositionality through an oper-
ational semantics of contexts. Journal of Logic and Computation, 1(6):761–
795, 1991.

[39] Maurice Laveaux and Tim A. C. Willemse. Decomposing monolithic pro-
cesses in a process algebra with multi-actions. In ICE, volume 347 of
EPTCS, pages 57–76, 2021.

[40] Huimin Lin. Symbolic transition graph with assignment. In CONCUR’96
- Concurrency Theory, 7th International Conference, volume 1119, pages
50–65. Springer Berlin Heidelberg, 1996.

[41] Jia Liu and Huimin Lin. A Complete Symbolic Bisimulation for Full Ap-
plied Pi Calculus. In SOFSEM 2010 - 36th Conference on Current Trends
in Theory and Practice of Computer Science, volume 5901, pages 552–563.
Springer, 2010.

[42] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag,
Berlin, Heidelberg, 1982.

[43] Robin Milner. Communication and Concurrency. Int. Series in Computer
Science. Prentice-Hall, Englewood Cliffs, New Jersey, 1989. SU Fisher
Research 511/24.

43

68



[44] Gordon D. Plotkin. A structural approach to operational semantics. Jour-
nal of Logic and Algebraic Programming, 60-61:17–139, 2004.

[45] Xudong Qin, Simon Bliudze, Eric Madelaine, and Min Zhang. Using SMT
engine to generate symbolic automata. In AVOCS 2018 - 18th Interna-
tional Workshop on Automated Verification of Critical Systems, volume
076. Electronic Communications of the EASST, 2018.

[46] Xudong Qin, Simon Bliudze, Eric Madelaine, and Min Zhang. Using SMT
engine to generate Symbolic Automata -Extended version. Research Report
RR-9177, Inria & Université Cote d’Azur, CNRS, I3S, Sophia Antipolis,
France ; inria, June 2018.

[47] Robert Jan Van Glabbeek. The meaning of negative premises in transition
system specifications II. The Journal of Logic and Algebraic Programming,
60-61:229–258, 2004.

[48] Biyang Wang, Eric Madelaine, and Min Zhang. New symbolic model and
equivalences checking for open automata. In SMC 2021 - IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, pages 2360–2367.
IEEE, 2021.

[49] Biyang Wang, Eric Madelaine, and Min Zhang. Symbolic Weak Equiva-
lences: Extension, Algorithms, and Minimization - Extended version. Re-
search Report RR-9389, Inria, Université Cote d’Azur, CNRS, I3S, Sophia
Antipolis, France; East China Normal University (Shanghai), 2021.

44

69



Compositional Equivalences Based on Open pNets

Rabéa Ameur-Boulifa

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Ludovic Henrio∗

Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France.

Eric Madelaine
INRIA Sophia Antipolis Méditérannée, UCA, BP 93, 06902 Sophia Antipolis, France

Abstract

Establishing equivalences between programs is crucial both for verifying cor-
rectness of programs and for justifying optimisations and program transforma-
tions. There exist several equivalence relations for programs, and bisimulations
are among the most versatile of these equivalences. Among bisimulations one
distinguishes strong bisimulation that requires that each action of a program is
simulated by a single action of the equivalent program, and weak bisimulation
that allows some of the actions to be invisible, and thus not simulated.

pNet is a generalisation of automata that model open systems. They fea-
ture variables and hierarchical composition. Open pNets are pNets with holes,
i.e. placeholders that can be filled later by sub-systems. However, there is
no standard tool for defining the semantics of an open system in this context.
This article first defines open automata that are labelled transition systems with
parameters and holes. Relying on open automata, it then defines bisimilarity
relations for the comparison of systems specified as pNets. We first present
a strong bisimilarity for open pNets called FH-bisimilarity. Next we offer an
equivalence relation similar to the classical weak bisimulation equivalence, and
study its properties. Among these properties we are interested in compositional-
ity: if two systems are proven equivalent they will be indistinguishable by their
context, and they will also be indistinguishable when their holes are filled with
equivalent systems. We identify sufficient conditions to ensure compositionality
of strong and weak bisimulation. The contributions of this article are illustrated
using a transport protocol as running example.
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1. Introduction

In the nineties, several works extended the basic behavioural models based
on labelled transition systems to address value-passing or parameterised sys-
tems, using various symbolic encodings of the transitions [16, 37]. These works
use the term parameter to designate variables whose value have a strong influ-
ence the system structure and behaviour. In parameterised systems, parameters
can typically be the number of processes in the system or the way they inter-
act. In [34, 26], Lin, Ingolfsdottir and Hennessy developed a full hierarchy of
bisimulation equivalences, together with a proof system, for value passing CCS,
including notions of symbolic behavioural semantics and various symbolic bisim-
ulations (early and late, strong and weak, and their congruent versions). They
also extended this work to models with explicit assignments [40]. Separately
Rathke [28] defined another symbolic semantics for a parameterised broadcast
calculus, together with strong and weak bisimulation equivalences, and devel-
oped a symbolic model-checker based on a tableau method for these processes.
Thirty years later, no verification platform use this kind of approaches to provide
proof methods for value-passing processes or open process expressions, perhaps
because of the difficulty to apply these methods on industrial systems.

This article provides a theoretical background that allows us to implement
such a verification platform. We build upon the concept of pNets that we have
employed to give a behavioural semantics of distributed components and verify
the correctness of distributed applications in the past 15 years. pNets is a low
level semantic framework for expressing the behaviour of various classes of dis-
tributed languages, and as a common internal format for our tools. pNets sup-
port the specification of parameterised hierarchical labelled transition systems:
labelled transition systems with parameters can be combined hierarchically.

We develop here a semantics for a model of interacting processes with pa-
rameters and holes. Our approach is originally inspired from Structured Op-
erational Semantics with conditional premises as in [21, 47]. But we aim at a
more constructive and implementable approach to compute the semantics (in-
tuitively transitions including first order predicates) and to check equivalences
for these open systems. The main interest of our symbolic approach is to de-
fine a method to prove properties directly on open structures; these properties
will then be preserved by any correct instantiation of the holes. As a conse-
quence, our model allows us to reason about composition operators as well as
about realistic distributed systems. The parametric nature of the model and
the properties of compositionality of the equivalence relations are thus the main
strengths of our approach.

pNets. pNet is a convenient model to model concurrent systems in a hierarchical
and parameterised way. The coordination between processes is expressed as
synchronisation vectors that allow for the definition of complex and expressive
synchronisation patterns. Open pNets are pNets for which some elements in the
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hierarchy are still undefined, such undefined elements are called holes. A hole
can be filled later by providing another pNet. This article first defines pNets
and illustrates with an example how they can be used to provide the model of
a communicating system.

A semantics for open pNets based on open automata. The semantics of pNets
can be expressed as a translation to a labelled transition system (LTS), but only
if the pNet has no parameter and no hole. Adding parameters to a LTS is quite
standard [40] but enabling holes inside LTSs is not a standard notion.

To define a semantics for open pNets we thus need LTSs that have both
standard variable parameters, and process parameters, i.e. holes that can be
filled by processes. We call such LTSs with parameters and holes open automata.
The main goal of this article is to define the theory behind open automata and
to use them to provide a semantics and prove compositionality properties for
open pNets. The transitions of open automata are much more complex than
transitions of an LTS as the firing of a transition depends on parameters and
actions that are symbolic. This article defines the notion of open transition,
namely a transition that is symbolic in terms of parameters and coordinated
actions.

Beware that even if open transitions may look similar to the notion of Tran-
sition System Specification [24, 23] and other forms of SOS rules, they are not
structural rules, but rules defining the behaviour of the global states of the
system.

Unlike pNets, open automata are not hierarchical structures, we consider
them here as a mathematical structure that is convenient for formal reasoning
but not adapted to the definition of a complex and structured system. Open
transitions are expressed in terms of logics while the communication in pNets
is specified as synchronisation vectors that specify synchronised actions. Open
automata could alternatively be seen as an algebra that can be studied inde-
pendently from its application to pNets but their compositionality properties
make more sense in a hierarchical model like pNets.

Previous works and contribution
While most of our previous works relied on closed, fully-instantiated se-

mantics [7, 2, 29], it is only recently that we could design a first version of a
parameterised semantics for pNets with a strong bisimulation equivalence [30].
This article builds upon this previous parameterised semantics and provides a
clean and complete version of the semantics with a slightly simplified formalism
that makes proofs easier. It also adds a notion of global state to automata.
Moreover, in [30] the study of compositionality was only partial, and in particu-
lar the proof that bisimularity is an equivalence is one new contribution of this
article and provides a particularly interesting insight on the semantic model
we use. The new formalism allowed us to extend the work and define weak
bisimulation for open automata, which is entirely new. This allows us to define
a weak bisimulation equivalence for open pNets with valuable compositionality
properties. To summarise, the contribution of this paper are the following:

3



• The definition of open automata: an algebra of parameterised automata
with holes, and a strong bisimulation relation. This is an adaptation of [30]
with an additional result stating that strong FH-bisimilarity is indeed an
equivalence relation.

• A semantics for open pNets expressed as translation to open automata.
This is an adaptation of [30] with a complete proof that strong FH-
bisimilarity is compositional.

• A theory of weak bisimulation for open automata, and a study of its
properties. It relies on the definition of weak open transitions that are
derived from transitions of the open automaton by concatenating invisible
action transitions with one (visible or not) action transition. The precise
and sound definition of the concatenation is also a major contribution of
this article.

• A resulting weak FH-bisimilarity equivalence for open pNets and a simple
static condition on synchronisation vectors inside pNets that is sufficient
to ensure that weak FH-bisimilarity is compositional.

• An illustrative example based on a simple transport protocol, showing
the construction of the weak open transitions, and the proof of weak FH-
bisimulation.

What is new about open automata bisimulation?
Bisimulation over a symbolic and open model like open pNets or open au-

tomata is different from the classical notion of bisimulation because it cannot
rely on the equality over a finite set of action labels. Classical bisimulations
require to exhibit, for each transition of one system, a transition of the other
system that simulates it. Instead, bisimulation for open automata relies on the
simulation of each open transition of one automaton by a set of open transitions
of the other one, that should cover all the cases where the original transition
can be triggered. This is similar to the early and late symbolic bisimulation
equivalences for value-passing CCS [27], though we use more general definitions
in our setting.

Compositionality of bisimilarity in our model comes from the specification
of the interactions, including actions of the holes. This is quite different from
the works on contextual equivalences, e.g. [37, 38]; we will provide a detailed
comparison in Section 6. In pNets, synchronisation vectors define the possible
interactions between the pNet that fills the hole and the surrounding pNets.
In open automata, this is reflected by symbolic hypotheses that depend on the
actions of the holes. This additional specification is the price to pay to obtain
the compositionality of bisimilarity that cannot be guaranteed in traditional
process algebras.

This approach also allows us to specify a sufficient condition on allowed
transitions to make weak bisimilarity compositional; namely it is not possible to
synchronise on invisible actions from the holes or prevent them to occur. This
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is loosely related to works on the syntactic conditions on SOS rules to check
whether weak bisimulation is a congruence for some process algebra operators
[24]. Our approach is semantical and more global: our sufficient condition
applies to all the synchronisations at a given composition level of an (open)
system and not on individual rules. It is expressed on the open automaton (see
Definition 15).

Structure
This article is organised as follows. Section 2 provides the definition of pNets

and introduces the notations used in this paper, including the definition of open
pNets. Section 3 defines open automata, i.e. automata with parameters and
transitions conditioned by the behaviour of “holes”; a strong bisimulation equiv-
alence for open automata is also presented in this section. Section 4 gives the
semantics of open pNets expressed as open automata, and states composition-
ality properties of strong bisimularity for open pNets. Section 5 defines a weak
bisimulation equivalence on open automata and derives weak bisimilarity for
pNets, together with compositionality properties of weak bisimilarity. Finally,
Section 6 discusses related works and Section 7 concludes the paper.

2. Background and Notations

This section introduces the notations we will use in this article, and recalls
the definition of pNets [30] with an informal semantics of the pNet constructs.
The only significant difference compared to our previous definitions (from [30])
is that we remove here the restriction that was stating that variables should be
local to a state of a labelled transition system.

2.1. Notations
Term algebra. Our models rely on a notion of parameterised actions, which are
symbolic expressions using data types and variables. As our model aims at
encoding the low-level behaviour of possibly very different programming lan-
guages, we do not want to impose one specific algebra for denoting actions, nor
any specific communication mechanism. So we leave the constructors of the
algebra that will be used to build expressions and actions unspecified. More-
over, we use a generic action interaction mechanism, based on (some sort of)
unification between two or more action expressions, to express various kinds of
communication or synchronisation mechanisms.

Formally, we assume the existence of a term algebra T, and denote as Σ the
signature of the data and action constructors. Within T, we distinguish a set
of data expressions E, including a set of boolean expressions B (B ⊆ E), and a
set of action expressions called the action algebra A, with A ⊆ T,E ∩ A = ∅;
naturally action terms will use data expressions as sub-terms1. The function
vars(t) identifies the set of variables in a term t ∈ T.

1In our tools, we use datatypes for the different kinds of terms. In this article, we use
different sets of variables for terms of different kinds.
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We let ei range over expressions (ei ∈ E), a range over action labels, op be
operators, and xi and yi range over variable names. We additionally rely on a
set of action names, ranged over by a, b, . . .

We define two kinds of parameterised actions. The first kind supports two
kinds of parameters: input parameters that are variables and output parameters
that can be any expression. The second kind makes no distinction between input
and output parameters. The actions that distinguish input variables will be used
in the definition of pLTS below and are defined as follows:

α ∈ A ::= a(p1, . . . , pn) action terms
pi ::= ?x | ei parameters (input var or expression)
ei ::= Value | x | op(e1, .., en) Expressions

The input variables in an action term are those marked with a ?. We addi-
tionally impose that each input variable does not appear anywhere else in the
same action term: pi =?x⇒ ∀j 6= i. x /∈ vars(pj). We define iv(t) as the set of
input variables of a term t (without the ’?’ marker). Input variables are used
in guards and to update the local state, they can only appear in well-identified
expressions. Action algebras can encode naturally usual point-to-point message
passing calculi (using a(?x1, ..., ?xn) for inputs, a(v1, .., vn) for outputs), but
they also allow for more general synchronisation mechanisms, like gate negoti-
ation in Lotos, or broadcast communications.

The set of actions that do not distinguish input variables is denoted AS , it
will be used in synchronisation vectors of pNets:

α ∈ AS ::= a(e1, . . . , en)

Indexed sets. This article extensively uses indexed structures (maps) over some
countable indexed sets. The indices can typically be integers, bounded or not.
We use indexed sets in pNets because we want to consider a set of processes, and
specify separately how to synchronise them. Roughly this could also be realised
using tuples, however indexed sets are more general, can be infinite, and give a
more compact representation than using the position in a possibly long tuple.

An indexed family is denoted as follows: ti∈Ii is a family of elements ti
indexed over the set I. Such a family is equivalent to the mapping (i 7→ti)i∈I , and
we will also use mapping notations to manipulate indexed sets. To specify the
set over which the structure is indexed, indexed structures are always denoted
with an exponent of the form i ∈ I.

Consequently, ti∈Ii defines first I the set over which the family is indexed,
and then ti the elements of the family. For example ti∈{3}i is the mapping with
a single entry t3 at index 3; exceptionally, for mappings with only a few entries
we use the notation (37→t3) instead. In this article, sentences of the form “there
exists ti∈Ii ” means there exist I and a function that maps each element of I to
a term ti.

When this is not ambiguous, we shall abuse notations for sets, and typically
write “indexed set over I” when formally we should speak of multisets, and
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“x ∈ Ai∈Ii ” to mean ∃i ∈ I. x = Ai. To simplify equations, an indexed set can
be denoted t instead of ti∈Ii when I is irrelevant or clear from the context.

The disjoint union on sets is ] and we only use A ] B when A and B are
disjoint. We extend it to union of indexed sets provided they are indexed over
disjoint families; is ] is then defined by the merge of the two sets. The elements
of the union of two indexed sets are then accessed by using an index of one
of the two joined families. The subtraction operation on indexed sets is \, it
reduces the set of indexes such that dom(A \B) = dom(A) \B.

Substitutions. This article also uses substitutions. Applying a substitution in-
side a term t is denoted t{{yi ← ei}}i∈I and consists in replacing in parallel all the
occurrences of variables yi in the term t by the terms ei. Note that a substitution
is defined by a partial function that is applied on the variables inside a term.
We let Post range over partial functions that are used as substitution and use
the notation {yi ← ei}i∈I to define such a partial function2. These partial func-
tions are sometimes called substitution functions in the following. Thus, {{Post}}
is the operation that applies, in a parallel manner, the substitution defined by
the partial function Post. � is a composition operator on these partial func-
tions, such that for any term t we have: t{{Post � Post′}} = (t{{Post′}}){{Post}}.
This property must also be valid when the substitution does not operate on all
variables. We thus define a composition operation as follows:

(xk←ek)k∈K � (x′k′ ← e′k′)k
′∈K′

=(xk ← ek{{(x′k′←e′k′)k
′∈K′}})k∈K

∪ (x′k′←e′k′)k
′∈K′′

where K ′′ = {k′ ∈ K ′|x′k′ 6∈ {xk}k∈K}

2.2. The principles of Parameterised Networks (pNets)
pNets are tree-like structures, where the leaves are either parameterised la-

belled transition systems (pLTSs), expressing the behaviour of basic processes,
or holes, used as placeholders for unknown processes. Every node of the tree is a
pNet, it acts as a synchronising artefacts, using a set of synchronisation vectors
that express the possible synchronisation between the parameterised actions of
a subset of the sub-trees. The pNets model is hierarchical in the structure of the
processes, in contrast to the Statecharts formalism [25], which is widely used to
model high-level behaviour, that organises the states (but not processes) in a
hierarchy.

We introduce the notion of pNets through a simple example below, and
define formally pLTSs and pNets afterwards:

Example 1 (CCS choice). Here is the encoding of a choice operator.

2When using this notation, we suppose, without loss of generality that each yi is different.
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< −, b, r >→ b
< a, −, l >→ a

SV+ = It consists of one pNet (Definition 2
below) with two holes and a sub-
net. The pNet is represented by
the top box with three circles and
two synchronisation vectors on the
right. The sub-net is a pLTS that is
represented by the bottom box.

Each hole is represented by an empty disc, when the hole is filled it becomes
a black disc. The left hole is indexed L the right hole R. The sub-net is an
labelled transition system (LTS) with three states and emitting actions l and r.

The behaviour of the pNet is defined with synchronisation vectors also shown
on the figure. In the examples, we write them on the form < a,−, l >→ a. This
states that if the first hole L performs the action a and the third sub-net, i.e.
the LTS, performs the action l, both of them progress synchronously, and an
action a is emitted by the pNet. The symbol − at the second position denotes
that the second hole does nothing. On the formal side, numbering and ordering
the vectors is cumbersome, this is why we adopt indexed families of actions.
The LTS is sometimes called the “control part”, it controls the evolution of the
rest of the pNet. The first action of one of the holes decides which branch of
the LTS is activated; all subsequent actions will be performed by the same side.

2.3. Parameterised Labelled Transition systems (pLTS)
A pLTS is a labelled transition system with variables; variables can be used

inside states, actions, guards, and assignments. Note that we make no assump-
tion on finiteness of the set of states nor on finite branching of the transition
relation. Compared to our previous works [30, 2] make variables global, which
makes the model easier to use.

Definition 1 (pLTS). A pLTS is a tuple pLTS , 〈〈S, s0, V,→〉〉 where:

• S is a set of states.

• s0 ∈ S is the initial state.

• V is a set of global variables for the pLTS.

• →⊆ S ×L× S is the transition relation and L is the set of labels. Labels
have the form:
〈α, eb, (xj := ej)j∈J〉, where α ∈ A is a parameterised action, eb ∈ B is
a guard, and the variables xj (that are pairwise distinct) are assigned the

expressions ej ∈ E. If s 〈α, eb, (xj:=ej)j∈J 〉−−−−−−−−−−−−−→ s′ ∈→ then vars(α)\iv(α)⊆V ,
vars(eb)⊆V ∪ vars(α), and ∀j∈J. (vars(ej)⊆V ∪ iv(α) ∧ xj ∈ V ).

A set of assignments between two states is performed in parallel so that their
order do not matter and they all use the values of variables before the transition
or the values received as action parameters.
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2.4. Parameterised Networks (pNets)
Now we define pNet nodes as constructors for hierarchical behavioural struc-

tures. A pNet has a set of sub-pNets that can be either pNets or pLTSs, and
a set of holes, playing the role of process parameters. A pNet is thus a compo-
sition operator that can receive processes as parameters; it expresses how the
actions of the sub-processes synchronise.

Each sub-pNet exposes a set of actions, called internal actions. The syn-
chronisation between global actions exposed by the pNet and internal actions
of its sub-pNets is given by synchronisation vectors: a synchronisation vector
synchronises one or several internal actions, and exposes a single resulting global
action.

We now define the structure of pNets, the following definition relies on the
definition of holes, leaves and sorts formalised below in Definition 3. Informally,
holes are process parameters, leaves provide the set of pLTSs at the leaves of
the hierarchical structure of a pNet, and sorts give the signature of a pNet, i.e.
the actions it exposes.

Definition 2 (pNets). A pNet P is a hierarchical structure where leaves are
pLTSs and holes

P , pLTS | 〈〈P i∈Ii ,Sortj∈Jj ,SVk∈Kk 〉〉
We denote vars(P ) the set of variables used by the pLTSs inside P and Sort(P )
the signature of the actions emitted by P ; both are defined below, in Definition 3.
A pNet is composed of the following:

• I is a set of indices and P i∈Ii is the family of sub-pNets indexed over I.
vars(Pi) and vars(Pj) must be disjoint for i 6= j.

• J is a set of indices, called holes. I and J are disjoint: I∩J = ∅, I∪J 6= ∅.

• Sortj ⊆ AS is a set of action terms, denoting the sort of hole j.

• SVk∈Kk is a set of synchronisation vectors.
∀k ∈ K.SVk = αl∈Ik]Jk

l → α′k[ek] where α′k ∈ AS , Ik ⊆ I, Jk ⊆ J ,
∀i∈Ik. αi∈Sort(Pi), ∀j∈Jk. αj ∈Sortj , and vars(α′k) ⊆ ⋃l∈Ik]Jk

vars(αl).
The global action of a vector SVk is α′k. ek ∈ B is a guard associated to
the vector such that vars(ek) ⊆ ⋃l∈Ik]Jk

vars(αl).

Synchronisation vectors are identified modulo renaming of variables that appear
in their action terms, e.g. the vectors < a(x), b(x) >→ τ and < a(y), b(y) >→ τ
are equivalent.

The preceding definition relies on the auxiliary functions defined below:

Definition 3 (Sorts, holes, leaves, variables of pNets).

9



• The sort of a pNet is its signature, i.e. the set of actions in AS it can
perform, where each action signature is an action label plus the arity of
the action.

Sort(〈〈S, s0, V,→〉〉) = {Sort(α)|s 〈α, eb, (xj:=ej)j∈J 〉−−−−−−−−−−−−−→ s′ ∈→}
Sort(〈〈P,Sort,SV 〉〉) = {Sort(α′)|α→ α′[eb] ∈ SV }
Sort(α(p1, .., pn)) = (α, n)

• The set of variables of a pNet P , denoted vars(P ) is disjoint union the set
of variables of all pLTSs that compose P .

• The set of holes Holes(P ) of a pNet is the set of indices of the holes of the
pNet itself plus the indices of all the holes of its sub-pNets. It is defined
inductively (we suppose that those index sets are disjoints):

Holes(〈〈S, s0, V,→〉〉)=∅
Holes(〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉) = J ]

⋃

i∈I
Holes(Pi)

∀i ∈ I. Holes(Pi) ∩ J = ∅
∀i1, i2 ∈ I. i1 6= i2 ⇒ Holes(Pi1) ∩Holes(Pi2) = ∅

• The set of leaves of a pNet is the set of all pLTSs occurring in the structure,
as an indexed family of the form Leaves(P ) = 〈〈Pi〉〉i∈L.

Leaves(〈〈S, s0, V,→〉〉)=∅
Leaves(〈〈P i∈Ii ,Sort,SV 〉〉) =

⊎

i∈I
Leaves(Pi) ] {i7→Pi|Pi is a pLTS}

For example, the controller of Example 1 has the sort {l, r} and holes {L,R}.
Note that Holes(P )is a set of indexes because holes are characterized only by
their indices, while entities at the leaves ar pLTSs and thus Leaves(P ) is a set
of pLTSs. A pNet Q is closed if it has no hole: Holes(Q) = ∅; else it is said to
be open. Sort comes naturally with a compatibility relation that is similar to a
type-compatibility check. We simply say that two sorts are compatible if they
consist of the same actions with the same arity. In practice, it is sufficient to
check the equality of the two sets of action signatures of the two sorts3.

The informal semantics of pNets is as follows. pLTSs behave more or less
like classical automata with conditional branching and variables. The actions
on the pLTSs can send or receive values, potentially modifying the value of
variables. pNets are synchronisation entities: a pNet node composes several
sub-pNets and defines how the sub-pNets interact, where a sub-pNet is either

3A more complex compatibility relation could be defined, but this is out of the scope of
this article.
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a pNet or a pLTS. The synchronisation between sub-pNets is defined by syn-
chronisation vectors (originally introduced in [4]) that express how an action of
a sub-pNet can be synchronised with actions of other sub-pNet, and how the
resulting synchronised action is visible from outside of the pNet. The synchro-
nisation mechanism is very expressive, including pattern-matching/unification
between the parameterized actions within the vector, and an additional predi-
cate over their variables. Consider a pNet node that assembles several pLTSs,
the synchronisation vectors specify the way that transitions of the composed
pNet are built from the transitions of the sub-nets. This can be seen as “condi-
tional transitions” of the pNet, or alternatively, as a syntax to encode structural
operational semantics (SOS rules) [44] of the system: each vector expresses not
only the actions emitted by the pNet but also what transitions of the composed
pLTSs must occur to trigger this global transition. Synchronisation vectors can
also express the exportation of an action of a sub-pNet to the next level, or to
hide an interaction and make it non-observable. Finally, a pNet can leave sub-
pNets undefined and instead declare holes with a well-defined signature. Holes
can then be filled with a sub-pNet. This is defined as follows.

Definition 4 (pNet composition). An open pNet: P =〈〈P i∈Ii ,Sortj∈Jj ,SV 〉〉
can be (partially) filled by providing a pNet Q to fill one of its holes. Suppose
j0 ∈ J and Sort(Q) ⊆ Sortj0 , then:

P [Q]j0
= 〈〈P i∈Ii ] {j0 7→Q},Sortj∈J\{j0}

j ,SV 〉〉

pNets are composition entities equipped with a rich synchronisation mecha-
nism: synchronisation vectors allow the expression of synchronisation between
any number of entities and at the same time the passing of data between pro-
cesses. Their strongest feature is that the data emitted by processes can be used
inside the synchronisation vector to do addressing: it is easy to synchronise a
process indexed by n with the action a(v, n) of another process. This is very
convenient to model systems and encode futures or message routing.

pNets have been used to model distributed components using the Grid Com-
ponent Model, illustrating the expressiveness of the model [2]. These works show
that pNets are convenient to express the behaviour of a system in a composi-
tional way. Unfortunately, the semantics of pNets and the existing tools at that
point were only able to deal with a closed and completely instantiated system:
pNets could be used as composition operators in the definition of the semantics,
which was sufficient to perform finite-state model checking on a closed system,
but there was no theory for the use of pNets as operators and no tool for proving
properties on open system. Consequently, much of the formalisation efforts did
not use holes and the interplay between holes, sorts, and synchronisation vector
was not formalised. In previous works [2], only closed pNets were equipped with
a semantics, which was defined as labelled transition systems. The theory of
pNets as operators for open systems is given in the following sections. Compar-
ing formally the existing direct operational semantics and the semantics derived
from open automata in the current article would be an interesting partial proof
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of soundness for our semantics. The proof could only be partial as the formal
semantics that exists only consider closed and fully instantiated pNets. Proving
an equivalence between the semantics presented in this article and the opera-
tional one shown in [2] is outside the scope of this article because we focus here
on the modelling of holes that were not considered in the previous semantics.
It is however easy to see that, in case there is no hole the structure of the open
automaton that defines the semantics here is very close to the pLTS that is used
to define the semantics, even though the formalisms are slightly different.

2.5. Running example
To illustrate this work, we use a simple communication protocol, that pro-

vides safe transport of data between two processes, over unsafe media.
Figure 1 (left) shows the example principle, which corresponds to the hier-

archical structure of a pNet: two unspecified processes P and Q (holes) commu-
nicate messages, with a data value argument, through the two protocol entities.
Process P sends a p-send(m) message to the Sender; this communication is
denoted as in(m). At the other end, process Q receives the message from the
Receiver. The holes P and Q can also have other interactions with their envi-
ronment, represented here by actions p-a and q-b. The underlying network is
modelled by a medium entity transporting messages from the sender to the re-
ceiver, and that is able to detect transport errors and signal them to the sender.
The return ack message from Receiver to Sender is supposed to be safe. The
final transmission of the message to the recipient (the hole Q) includes the value
of the “error counter” ec.

Figure 1 (right) shows a graphical view of the pNet SimpleProtocolSpec that
specifies the system. The pNet is made of the composition of two pNets: a
SimpleSystem node, and a PerfectBuffer sub-pNet. The full system implemen-
tation should be equivalent (e.g. weakly bisimilar) to this SimpleProtocolSpec.
The pNet has a tree-like structure. The root node of the tree SimpleSystem is
the top level of the pNet structure. It acts as the parallel operator. It consists of
three nodes: two holes P andQ and one sub-pNet, denoted PerfectBuffer. Nodes
of the tree are synchronised using four synchronisation vectors, that express the
possible synchronisations between the parameterised actions of a subset of the
nodes. For instance, in the vector < p-send(m), in(m),_ >→ in(m) only P
and PerfectBuffer nodes are involved in the synchronisation. The synchronisa-
tion between these processes occurs when process P performs p-send(m) action
sending a message, and the PerfectBuffer accepts the message through an in(m)
action at the same time; the result that will be returned at upper level is the
action in(m).

Figure 2 shows the pNet model of the protocol implementation, called
SimpleProtocolImpl. When the Medium detects an error (modelled by a lo-
cal τ action), it sends back a m-error message to the Sender. The Sender
increments its local error counter ec, and resends the message (including ec) to
the Medium, that will, eventually, transmit m, ec to the Receiver.
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P

Q

Sender

ack

send(m, ec)

error

p-a

q-b

send(m, ec)

out(m, ec)

q-recv(m,ec)

in(m)

p-send(m)

Medium

Receiver b0 b1

P Q
<-, out(m,ec), q-recv(m,ec)> → out(m,ec)

SVSimpleSystem =

<p-send(m), in(m), -> → in(m)

<p-a, -, -> → p-a [∀x. p-a 6= p-send(x)]

<-, -, q-b> → q-b [∀x,y. q-b 6= q-recv(x,y)]

<-, τ , -> → τ

vars:
b ec: Nat
b msg: Data

PerfectBuffer

SimpleSystem

in(?m){b_ec := 0, b_msg := m}

{b_ec := b_ec+ 1}
out(b_msg,b_ec)

τ

Figure 1: pNet structure of the example and its specification expressed as a pNet called
SimpleProtocolSpec

3. A model of process composition

The semantics of open pNets will be defined as an open automaton. An
open automaton is an automaton where each transition composes transitions of
several LTSs with action of some holes, the transition occurs if some predicates
hold, and can involve a set of state modifications. This section defines open
automata and a bisimulation theory for them. This section is an improved
version of the formalism described in [30], extending the automata with a notion
of global variable, which makes the state of the automaton more explicit. We
also adopt a semantics and logical interpretation of the automata that intuitively
can be stated as follows: “if a transition belongs to an open automaton, any
refinement of this transition also belongs to the automaton”. Our open automata
are clearly inspired by the work of De Simone on formatting of SOS rules [16].
A precise comparison with related works can be found in Section 6.

3.1. Open automata
Open automata (OA) are not composition structures but they are made of

transitions that are dependent of the actions of the holes, and they can use
variables (potentially with only symbolic values).

Definition 5 (Open transitions). An open transition (OT) over a set J of
holes with sorts Sortj∈Jj , a set V of variables, and a set of states S is a structure
of the form:

·································βj∈J
′

j ,Pred,Post
s
α−→ s′

where J ′ ⊆ J is the set of holes involved in the transition; s, s′ ∈ S are states of
the automaton; and βj is a transition of the hole j, with Sort(βj) ⊆ Sortj . α is
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s0 s1

s2

r0 r1

r2

m1m0

m2

P Q

vars:
s ec: Nat
m, s msg: Data

vars:
ec, m ec: Nat
m, m msg: Data

{r_ec := ec, r_msg := m}

r-ack

r-recv(?m,?ec)

r-send
(r_msg,r_ec)

vars:
ec, r ec: Nat
m, r msg: Data

<-, out(m,ec), q-recv(m,ec)> → out(m,ec)

SVSimpleSystem =

<p-send(m), in(m), -> → in(m)

<p-a, -, -> → p-a [∀x. p-a 6= p-send(x)]

<-, -, q-b> → q-b [∀x,y. q-b 6= q-recv(x,y)]

<-, τ , -> → τ

SVSimpleProtocol =

<s-recv(m), -, -> → in(m)

<s-send(m,ec), m-recv(m,ec), -> → τ

<-, m-send(m,ec), r-recv(m,ec)> → τ

<s-error, m-error, -> → τ

<s-ack, -, r-ack> → τ

<-, -, r-send(m,ec)> → out(m,ec)

<-, τ , -> → τ

Sender

{s_ec := 0, s_msg := m}
s-recv(?m)

{s_ec := s_ec+ 1}
s-error

Receiver

s-send
(s_msg,s_ec)s-ack

Medium

m-error

m-send
(m_msg,m_ec)

m-recv(?m,?ec)

{m_ec := ec, m_msg := m}

τ

SimpleSystem

SimpleProtocol

Figure 2: The SimpleProtocolImpl pNet resulting from the composition of the SimpleSystem
and the SimpleProtocol pNets.

the resulting action of this open transition. Pred is a predicate, Post is a set of
assignments that are effective after the open transition, and are represented as
a substitution function: (xk ← ek)k∈K . Predicates and expressions of an open
transition can refer to the variables inside V and the different terms βj and α.
More precisely:

vars(Pred) ⊆ V ∪ vars(α) ∪
⋃

j∈J′

vars(βj) ∧

∀k. xk ∈ V ∧ ∀k. vars(ek) ⊆ V ∪ vars(α) ∪
⋃

j∈J′

vars(βj)

The assignments are applied simultaneously because the variables in V can be
in both sides (xks are distinct). Open transitions are identified modulo logical
equivalence on their predicate.

It is important to understand the difference between the red dotted rule and
a classical inference rule. They correspond to two different logical levels. On one
side, classical (black) inference rules act at the mathematical level of the paper
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proofs (as e.g. the rules in Definition 13). They use an expressive logic (like any
other computer science article). On the other side, open transition rules (with
dotted lines) are logical implications that belong to the open automata algebra.
Their logic has a specific syntax that can be mechanized; this logic includes the
boolean expressions B, boolean operators, and term equality.

An open automaton is an automaton where transitions are open transitions.

Definition 6 (Open automaton). An open automaton is a structure
A = 〈〈J,S, s0, V, T 〉〉 where:

• J is a set of indices.

• S is a set of states and s0 is an initial state belonging to S.

• V is a set of variables of the automaton and each v ∈ V may have an
initial value init(v).

• T is a set of open transitions and for each t ∈ T there exists J ′ with
J ′ ⊆ J , such that t is an open transition over J ′ and S.

While the definition and usage of the open transition can be considered
purely syntactically, we take in this article a semantics and logical understanding
of open automata. We see open transitions as logical formulas with a constrained
syntax and logics rather than purely syntactical terms. Consequently, the open
transition sets in open automata are closed by a simple form of refinement
that allows us to refine the predicate, or substitute any free variable by an
expression. Formally, for each predicate Pred for each partial function Post, if
V ∩dom(Post) = ∅, we have:

·····························β,Pred ′,Post ′

s
α−→ s′

∈ T =⇒ ·····················································································
β{{Post}},Pred ′{{Post}} ∧ Pred,Post�Post ′

s
α{{Post}}−−−−−−→ s′

∈ T

Because of the semantic interpretation of open automata, the set of open
transition of an open automaton is infinite (for example because every free
variable can be substituted by any term). This raises an issue when a finite
representation is needed, which is the case both in our tools, and when writing
examples. When needed, we can rely on a canonical representation of the open
automaton, provided that a finite subset of the open transitions is sufficient to
generate, by substitution, the other ones. Thus, we use this canonical represen-
tation in our examples. In the following, we will abusively write that we define
an “open automaton” when we provide its canonical representation.

Another aspect of the semantic interpretation is that we consider terms up
to semantic equivalence, i.e. equivalence of two predicates Pred and Pred ′ can
be denoted Pred = Pred ′, where the = symbol is interpreted semantically.

Though the definition is simple, the fact that transitions are complex struc-
tures relating events must not be underestimated. The first element of theory
for open automata, i.e. the definition of a strong bisimulation, is given below.
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3.2. Bisimulation for open Automata
We define now a bisimulation relation tailored to open automata and their

parametric nature. This relation relates states of the open automata and guar-
antees that the related states are observationally equivalent, i.e. equivalent
states can trigger transitions with identical action labels. Its key characteristics
are 1) the introduction of predicates in the bisimulation relation: the relation
between states may depend on the value of the variables; 2) bisimulation relates
elements of the open transitions and takes into account predicates over variables,
actions of the holes, and state modifications. We name it FH-bisimulation, as
a short cut for the “Formal Hypotheses” over the holes behaviour manipulated
in the transitions, but also as a reference to the work of De Simone [16], that
pioneered this idea. Indeed, our definition uses both hypotheses on the be-
haviour of holes, as in [16], and symbolic manipulation of action expressions, as
in symbolic bisimulations of [27].

One of the original aspects of FH-bisimulation is due to the symbolic na-
ture of open automata. Indeed, a single state of the automaton represents a
potentially infinite number of concrete states, depending on the value of the
automaton variables, and a single open transition of the automaton may also
be instantiated with an unbounded number of values for the transition param-
eters. Consequently it would be too restrictive to impose that each transition
of one automaton is matched by exactly one transition of the bisimilar automa-
ton. Thus the definition of bisimulation requires that, for each open transition
of one automaton, there exists a matching set of open transitions covering the
original one. Indeed depending on the value of action parameters or automaton
variables, different open transitions might simulate the same one.

The parametric nature of the automata entails a second original aspect of
FH-bisimulation: the nature of the bisimulation relation itself. A classical re-
lation between states can be seen as a function mapping pairs of state to a
boolean value (true if the states are related, false if they are not). An FH-
bisimulation relation maps pairs of states to boolean expressions that use vari-
ables of the two systems. Formally, a relation over the states of two open au-
tomata 〈〈J,S1, s0, V1, T1〉〉 and 〈〈J,S2, t0, V2, T2〉〉 has the signature S1 ×S2 → B.
We suppose without loss of generality that the variables of the two open au-
tomata are disjoint. We adopt a notation similar to standard relations and
denote it R = {(s, t|Preds,t)}, where: 1) For any pair (s, t) ∈ S1 × S2, there
is a single (s, t|Preds,t) ∈ R stating that s and t are related if Preds,t is True,
i.e. the states are related when the value of the automata variables satisfy the
predicate Preds,t. 2) The free variables of Preds,t belong to V1 and V2, i.e.
vars(Preds,t) ⊆ V1 ∪ V2. FH-bisimulation is defined formally4:
Definition 7 (Strong FH-bisimulation).
Suppose A1 = 〈〈J,S1, s0, V1, T1〉〉 and A2 = 〈〈J,S2, t0, V2, T2〉〉 are open automata
with identical holes of the same sort, with disjoint sets of variables (V1∩V2 = ∅).

4In this article, we denote βjx a double indexed set, instead of the classical βj, x. Indeed
the standard notation would be too heavy in our case.
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Then R is an FH-bisimulation if and only if for all states s ∈ S1 and t ∈ S2,
(s, t|Preds,t) ∈ R, we have the following:

• For any open transition OT in T1:

·············································βj∈J
′

j ,PredOT ,PostOT
s
α−→ s′

there exists an indexed set of open transitions
OT x∈Xx ⊆ T2:

················································βj∈Jx

jx ,PredOTx
,PostOTx

t
αx−−→ tx

....

PredOT

J J J

PredOTx

ts R

PredOT1

s
′

t1

tx

Preds,t

R

R

Preds′,t1

Preds′,tx

such that ∀x. J ′ = Jx and there exists some Preds′,tx such that
(s′, tx|Preds′,tx) ∈ R and

Preds,t ∧ PredOT =⇒
∨

x∈X
(∀j.βj = βjx ∧ PredOTx ∧ α=αx ∧ Preds′,tx{{PostOT ]PostOTx}})

• and symmetrically any open transition from t in T2 can be covered by a
set of transitions from s in T1.

Two open automata are FH-bisimilar if there exists an FH-bisimulation that
relates their initial states5. We call this relation FH-bisimilarity.
Classically, Preds′,tx{{PostOT ]PostOTx

}} applies in parallel the substitution de-
fined by the partial functions PostOT and PostOTx (parallelism is crucial inside
each Post set but not between PostOT and PostOTx that are independent), ap-
plying the assignments of the involved rules. We can prove that bisimilarity is
an equivalence relation.

Example 2. The simulation of one transition by many others is one non-
standard aspect of this definition. This is made necessary by the parameterised
nature of our model. Consider the following open transition.

···································
β,True, {{y ← x}}

s1
α(x)−−−→ s′1

Bisimulation should allow it to be matched by the two following ones (depending
on the value of x), to prove that the relation R = {(s1, s2,True), (s′1, s′2,True)}
is a bisimulation.

····································
β, x ≥ 0, {{y ← x}}

s2
α(x)−−−→ s′2

····································
β, x < 0, {{y ← x}}

s2
α(x)−−−→ s′2

5In other words, the predicate relation associated to the initial states is True.
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This example illustrates the necessity of multiple transitions in the definition of
bisimulation in a naive and minimalistic way. It can easily be extended into a
non-trivial example with more states and different usage of the variables.

Theorem 1 (FH-bisimularity is an equivalence). FH-bisimilarity is re-
flexive, symmetric and transitive.

The proof of this theorem can be found in [3]. The only non-trivial part of
the proof is the proof of transitivity. It relies on the following elements. First,
the transitive composition of two relations with predicate is defined; this is not
exactly standard as it requires to define the right predicate for the transitive
composition and producing a single predicate to relate any two states. Then the
fact that one open transition is simulated by a family of open transitions leads
to a doubly indexed family of simulating open transition; this needs particular
care, also because of the use of renaming (Post) when proving that the predicates
satisfy the definition (property on Preds,t ∧ PredOT in the definition).

Finite versus infinite open automata, and decidability
As mentioned in Definition 15, we adopt here a semantic view on open

automata. More precisely, in [31], we define semantic open automata (infinite
as in Definition 6), and structural open automata (finite) that can be generated
as the semantics of pNets (see Definition 9), and used in their implementation.
Then we define an alternative version of our bisimulation, called structural FH-
bisimulation, based on structural open automata, and prove that the semantic
and structural FH-bisimulations coincide. In the sequel, all mentions of finite
automata, and algorithms for bisimulations, implicitly refer to their structural
versions.

If we assume that everything is finite (states and transitions in the open
automata), then it is easy to prove that it is decidable whether a relation is a
FH-bisimulation, provided the logic of the predicates is decidable (a proof of
this claim can be found in [30]). Formally:

Theorem 2 (Decidability of FH-bisimulation). Let A1 and A2 be finite
open automata and R a relation over their states S1 and S2 constrained by a set
of predicates. Assume that the predicate inclusion is decidable over the action
algebra A. Then it is decidable whether the relation R is an FH-bisimulation.

4. Semantics of Open pNets

This section defines the semantics of an open pNet via translation into an
open automaton. In this translation, the states of the open automaton are
obtained as products of the states of the pLTSs at the leaves of the composition.
The predicates on the transitions are obtained both from the predicates on the
transitions of the pLTSs, and from the synchronisation vectors involved in the
transition.
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The definition of bisimulation for open automata allows us to derive a bisim-
ilarity relation for open pNets. As pNets are composition structures, it then
makes sense to prove compositionality lemmas: we prove that the composition
of strongly bisimilar pNets are themselves bisimilar.

4.1. Deriving an open automaton from an open pNet
To derive an open automaton from a pNet, we first describe the set of states

of the automaton. Then we show the construction rule for transitions of the
automaton, which relies on the derivation of predicates unifying synchronisation
vectors and the actions of the pNets involved in a given synchronisation.

States of open pNets are tuples of states. We denote them as / . . . . for
distinguishing tuple states from other tuples.

Definition 8 (States of open pNets). A state of an open pNet is a (not
necessarily finite) tuple of the states of its leaves.

For any pNet P, let Leaves(P ) = 〈〈Si, si0, V,→i〉〉i∈L be the set of pLTS at
its leaves, then States(P ) = {/si∈Li . |∀i ∈ L.si ∈ Si}. A pLTS being its own
single leave: States(〈〈S, s0, V,→〉〉) = {/s . |s ∈ S}.

The initial state is defined as: InitState(P ) = /si0
i∈L..

To be precise, the state of each pLTS is entirely characterized by both the state
of the automaton, and the values of its variables V .

Predicates. We define a predicate Predsv relating a synchronisation vector (of
the form (α′i)

i∈I
, (β′j)

j∈J → α′[eb]), the actions of the involved sub-pNets and
the resulting actions. This predicate verifies:

Predsv
((

(α′i)
i∈I
, (β′j)

j∈J → α′[eb]
)
, αi∈Ii , βj∈Jj , α

)
⇔

∀i ∈ I. αi = α′i ∧ ∀j ∈ J. βj = β′j ∧ α = α′ ∧ eb

Somehow, this predicate entails a verification of satisfiability in the sense
that if the predicate Predsv is not satisfiable, then the transition associated
with the synchronisation will not occur in the considered state, or equivalently
will occur with a False precondition. If the action families do not match or if
there is no valuation of variables such that the above formula can be ensured
then the predicate is undefined.

The definition of this predicate is not constructive. In our tool [46], we
construct a logical formula encoding the matching and unification condition
involved, and we let an SMT engine (in the current implementation Z3 [35])
decide its satisfiability.

Example 3 (An open-transition). At the upper level, the SimpleSystem
pNet of Figure 2 has 2 holes and SimpleProtocol as a sub-pNet, itself containing
3 pLTSs. One of its possible open transitions (synchronizing the hole P with
the Sender within the SimpleProtocol) is:
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s
〈α, eb, (xj:=ej)j∈J 〉−−−−−−−−−−−−−→ s′ ∈→

〈〈S, s0,→〉〉 |= ······································
∅, eb, {xj ← ej}j∈J

/s .
α−→ / s′.

Tr1

and

Leaves(〈〈Pm∈Im ,Sort,SV k∈K
k 〉〉)=pLTS l∈Ll k∈K

SVk=(α′m)m∈I1]I2]J → α′[eb]

∀m∈I1. Pm |= ····················································
βj∈Jm

j ,Predm,Postm

/si∈Lm
i .

αm−−→ / (s′i)i∈Lm.

∀m∈I2. Pm |= ···································
∅,Predm,Postm
/sm .

αm−−→ / s′m.
J ′ =

⊎

m∈I1

Jm ] J

Pred =
∧

m∈I1]I2

Predm ∧ Predsv(SVk, αm∈I1]I2
m , βj∈Jj , α)

∀i ∈ L\
( ⊎

m∈I1

Lm ] I2

)
. s′i = si fresh(α′m, α′, β

j∈J
j , α)

〈〈Pm∈Im ,Sort,SV k∈K
k 〉〉 |= ····················································

βj∈J
′

j ,Pred,
⊎

m∈I1]I2

Postm

/si∈Li .
α−→ / (s′i)i∈L.

Tr2

Figure 3: Rules Tr1 and Tr2 defining the semantics of open pNets

OT1 = ··········································································
{P7→p-send(m)}, [m=m’], (s_msg← m)

/s0,m0, r0 .
in(m’)−−−−→ / s1,m0, r0.

The global states here are triples, the product of states of the 3 pLTSs
(holes have no state). The assignment performed by the open transition uses
the variable m from the action of hole P to set the value of the sender variable
named s_msg.

We build the semantics of open pNets as an open automaton over the states
given by Definition 8. The open transitions first project the global state into
states of the leaves, then apply pLTS transitions on these states, and compose
them with the sort of the holes. The semantics instantiates fresh variables using
the predicate fresh(x), additionally, for an action α, fresh(α) means all variables
in α are fresh.

Definition 9 (Semantics of open pNets). The semantics of a pNet P is an
open automaton A= 〈〈Holes(P ),States(P ), InitState(P ), vars(P ), T 〉〉 where T is
the smallest set of open transitions such that T = {OT |P |= OT} and P |= OT
is defined by the rules in Figure 4.1
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• The rule Tr1 for a pLTS checks that the guard is verified and transforms
assignments into post-conditions.

• The rule Tr2 deals with pNet nodes: for each possible synchronisation
vector (of index k) applicable to the rule subject, the premises include one
open transition for each sub-pNet involved, one possible action for each
hole involved, and the predicate relating these with the resulting action of
the vector. The sub-pNets involved are split between two sets, I2 for sub-
pNets that are pLTSs (with open transitions obtained by rule Tr1), and
I1 for the sub-pNets that are not pLTSs (with open transitions obtained
by rule Tr2), J is the set of holes involved in the transition67.

A key to understand Tr2 is that the open transitions are expressed in terms of
the leaves and holes of the whole pNet structure, i.e. a flattened view of the
pNet. For example, L is the index set of the Leaves, Lm the index set of the
leaves of one sub-pNet indexed m, so all Lm are disjoint subsets of L. Thus the
states in the open transitions, at each level, are tuples including states of all the
leaves of the pNet, not only those involved in the chosen synchronisation vector.

Note that the construction is symbolic, and each open transition deduced
expresses a whole family of behaviours, for any possible value of the variables.

In [30], we have shown a detailed example of the construction of a complex
open transition, building a deduction tree using rules Tr1 and Tr2. We have
also shown in [30] that an open pNet with finite synchronisation sets, finitely
many leaves and holes, and each pLTS at leaves having a finite number of
states and (symbolic) transitions, induces a finite automaton. The algorithm
for building such an automaton can be found in [45].

b1

b0p-a
SS1 :

{P7→p-a}, [∀x.p-a 6= p-send(x)], ()

τ
{}, T rue, (b_ec← b_ec+ 1)SS4 :

{Q7→q-recv(b_msg,b_ec)},True, ()
out(b_msg,b_ec)

SS7 :

vars:
b ec: Nat
m, b msg: Data

q-b

{Q7→q-b}, [∀x,y.q-b 6= q-recv(x,y)], ()SS6 :

in(m)

{P7→p-send(m)}, T rue, (b_ec← 0, b_msg← m)SS3 :

{Q7→q-b}, [∀x,y.q-b 6= q-recv(x,y)], ()
q-b

SS2 :

{P7→p-a}, [∀x.p-a 6= p-send(x)], ()
p-a

SS5 :

Figure 4: Open automaton for SimpleProtocolSpec

6Formally, if SVk = (α′)m∈M
m → α′[eb] is a synchronisation vector of P then J = M ∩

Holes(P ), I2 = M ∩ Leaves(P ), I1 = M \ J \ I2
7We could replace I1 and I2 by their formal definition in Tr2 but the rule would be more

difficult to read.
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Example
Figure 4 shows the open automaton computed from the SimpleProtocolSpec

pNet given in Figure 1. For later references, we name SSi the transitions of this
(strong) specification automaton while transitions of the SimpleProtocolImpl
pNet are labelled SIi. In the figures we annotate each open automaton with
the set of its variables.

202 210

220

000 100

201

τ

{}, T rue, ()SI
τ
:

τ

{}, T rue, ()SI5 :

τ

(m_msg← s_msg, m_ec← s_ec)
{}, T rue,

SI4 :

{Q7→q-recv(r_msg,r_ec)}, T rue, ()SI8 :
out(r_msg,r_ec)

SI1 :
{P 7→p-a}, [∀x. p-a 6= p-send(x)], ()

p-a

in(m)

(s_msg← m, s_ec← 0)
{P7→p-send(m)}, T rue,

SI3 :

q-b

{Q 7→q-b}, [∀x,y. q-b 6= q-recv(x,y)], ()SI2 :

τ
SI6 :

(s_ec← s_ec+1)
{}, T rue,

{}, T rue,
(r_msg← m_msg, r_ec← m_ec)

τ
SI7 :

vars:
s ec, m ec, r ec: Nat
m, s msg, m msg, r msg: Data

SI1

SI2

SI2

SI1

SI1

SI1

SI2

SI1

SI2

SI2

Figure 5: Open automaton for SimpleProtocolImpl

Figure 5 shows the open automaton of SimpleProtocolImpl from Figure 2. In
this drawing, we have short labels for states, representing /s0,m0, r0. by 000.
Note that open transitions are denoted SIi and tau open transition by SIτ . The
resulting behaviour is quite simple: we have a main loop including receiving a
message from P and transmitting the same message to Q, with some intermedi-
ate τ actions from the internal communications between the protocol processes.
In most of the transitions, you can observe that data is propagated between the
successive pLTS variables (holding the message, and the error counter value).
On the right of the figure, there is a loop of τ actions (SI4, SI5 and SI6) showing
the handling of errors and the incrementation of the error counter.

4.2. pNet Composition Properties: composition of open transitions
The semantics of open pNets allows us to prove two crucial properties re-

lating pNet composition with pNet semantics: open transition of a composed
pNet can be decomposed into open transitions of its composing sub-pNets, and
conversely, from the open transitions of sub-pNets, an open transition of the
composed pNet can be built.

We start with a decomposition property: from one open transition of P [Q]j0 ,
we exhibit corresponding behaviours of P and Q, and determine the relation
between their predicates.
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Lemma 1 (Open transition decomposition). Consider two pNets P and
Q that are not pLTSs8. Let Leaves(Q) = p

l∈LQ

l and suppose:

P [Q]j0 |= ······································
βj∈Jj ,Pred,Post

/si∈Li .
α−→ / s′ i∈Li .

with J ∩ Holes(Q) 6= ∅ or ∃i ∈ LQ. si 6= s′i, i.e. Q takes part in the reduction.
Then there exist αQ, Pred ′, Pred ′′, Post ′, Post ′′ s.t.:

P |= ·······························································
β
j∈(J\Holes(Q))∪{j0}
j ,Pred ′,Post ′

/s
i∈L\LQ

i .
α−→ / s

′ i∈L\LQ

i .

and Q |= ······················································
β
j∈J∩Holes(Q)
j ,Pred ′′,Post ′′

/s
i∈LQ

i .
αQ−−→ / s

′ i∈LQ

i .

and Pred ⇐⇒ Pred ′ ∧ Pred ′′ ∧ αQ = βj0 , Post = Post ′ ] Post ′′ where Post ′′
is the restriction of Post over variables of Q.

Lemma 2 is combining an open transition of P with an open transition of Q,
and building a corresponding transition of P [Q]j0 by assembling their elements.

Lemma 2 (Open transition composition). Suppose j0 ∈ J and:

P |= ······································
βj∈Jj ,Pred,Post

/si∈Li .
α−→ / s′ i∈Li .

and Q |= ··············································
β
j∈JQ

j ,Pred ′,Post ′

/s
i∈LQ

i .
αQ−−→ / s

′ i∈LQ

i .

Then, we have:

P [Q]j0 |= ·······································································································
β

(j∈J\{j0})]JQ

j ,Pred ∧ Pred ′ ∧ αQ = βj0 ,Post ] Post ′

/s
i∈L]LQ

i .
α−→ / s

′ i∈L]LQ

i .

Note that this does not mean that any two pNets can be composed and
produce an open transition. Indeed, the predicate Pred ∧ Pred ′ ∧ αQ = βj0 is
often not satisfiable, in particular if the action αQ cannot be matched with βj0 .
Note also that βj0 is only used as an intermediate term inside formulas in the
composed open transition: it does not appear as global action, and will not
appear as an action of a hole.

4.3. Bisimulation for open pNets – a composable bisimulation theory
As our symbolic operational semantics provides an open automaton, we can

apply the notion of strong (symbolic) bisimulation on automata to open pNets.

Definition 10 (FH-bisimulation for open pNets). Two pNets are FH-
bisimilar if their associated open automata are bisimilar.

8A similar lemma can be proven for a pLTS Q
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We can now prove that pNet composition preserves FH-bisimilarity. More
precisely, one can define two preservation properties, namely 1) when one hole
of a pNet is filled by two bisimilar other (open) pNets; and 2) when the same
hole in two bisimilar pNets are filled by the same pNet, in other words, com-
posing a pNet with two bisimilar contexts. The general case will be obtained
by transitivity of the bisimilarity relation (Theorem 1).

Theorem 3 (Congruence). Consider an open pNet
P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉. Let j0 ∈ J be a hole. Let Q and Q′ be two FH-
bisimilar pNets such that9 Sort(Q) = Sort(Q′) = Sortj0 . Then P [Q]j0 and
P [Q′]j0 are FH-bisimilar.

Theorem 4 (Context equivalence). Consider two open pNets
P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 and P ′ = 〈〈P ′i∈Ii ,Sortj∈Jj ,SV’〉〉 that are FH-bisimilar
(they thus have the same holes). Let j0 ∈ J be a hole, and Q be a pNet such
that Sort(Q) = Sortj0 . Then P [Q]j0 and P ′[Q]j0 are FH-bisimilar.

Finally, the previous theorems can be composed to state a general theorem
about composability and FH-bisimilarity.

Theorem 5 (Composability). Consider two FH-bisimilar pNets with an ar-
bitrary number of holes, when replacing, inside those two original pNets, a subset
of the holes by FH-bisimilar pNets, we obtain two FH-bisimilar pNets.

This theorem is quite powerful, as it somehow implies that the theory of open
pNets can be used to study properties of process composition. Open pNets can
indeed be applied to study process operators and process algebras, as shown
in [30] where compositional properties are extremely useful. In the case of in-
teraction protocols [13], compositionality of bisimulation can justify abstractions
used in some parts of the application.

5. Weak bisimulation

Weak symbolic bisimulation [26] was introduced to relate transition systems
that have indistinguishable behaviour, with respect to some definition of in-
ternal actions that are considered local to some subsystem, and consequently
cannot be observed, nor used for synchronisation with their context. The notion
of non-observable actions varies in different contexts, e.g. tau in CCS [42, 43],
and i in Lotos [11]. We could define classically a set of internal/non-observable
actions depending on a specific action algebra. However in this paper, to sim-
plify the notations, we will simply use τ as the single non-observable action;
the generalisation of our results to a set of non-observable actions is trivial.
Naturally, a non-observable action cannot be synchronised with actions of other

9Note that Sort(Q) = Sort(Q′) is ensured by strong bisimilarity.
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systems in its environment. We show here that under such assumption of non-
observability of τ actions, see Definition 11, we can define a weak bisimulation
relation that is compositional, in the sense of open pNet composition. In this
section we will first define a notion of weak open transition similar to open tran-
sition. In fact a weak open transition is made of several open transitions labelled
as non-observable transitions, plus potentially one observable open transition.
This allows us to define weak open automata, and a weak bisimulation relation
based on these weak open automata. Finally, we apply this weak bisimulation
to open pNets, obtain a weak bisimilarity relation for open pNets, and prove
that this relation has compositional properties.

5.1. Preliminary definitions and notations
We first specify in terms of open transition, what it means for an action to be

non-observable. We first define (in Definition 11) systems that cannot observe
τ actions of sub-systems; namely pNets that cannot change their state, or emit
an observable action when one of its holes emits a τ action.

More precisely, we state that τ is not observable if the automaton always
allows any τ transition from holes, and additionally the global transition result-
ing from a τ action of a hole is a τ transition not changing the pNet’s state. We
define Id(V ) as the identity function on the set of variables V .

Definition 11 (Non-observability of τ actions for open automata).
An open automaton A = 〈〈J,S, s0, V, T 〉〉 cannot observe τ actions if and only
if for all j in J and s in S we have:

1.
·····································(j 7→τ),True, Id(V )

s
τ−→ s

∈ T

and

2. for all βj , J , α, s, s′, Pred, Post such that

································βj∈Jj ,Pred,Post
s
α−→ s′

∈ T

If there exists j such that βj = τ then we have:

α = τ ∧ s = s′ ∧ Pred = True ∧ Post = Id(V ) ∧ J = {j}

The first statement of the definition states that the open automaton must allow
a hole to do a silent action at any time, and must not observe it, i.e. it cannot
change its internal state because a hole did a τ transition. The second statement
ensures that there cannot be in the open automaton other transitions that would
be able to observe a τ action from a hole: statement (2) states that all the open
transitions where a hole does a τ action must be of the shape given in statement
(1). In this second statement, the condition J = {j} is a bit restrictive, it could
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safely be replaced by ∀j ∈ J. βj = τ , allowing the other holes to perform τ
transitions too (because these τ actions cannot be observed). This possible
synchronisation of τ actions would not be a problem as condition 1 still ensures
that each process can do a τ separately.

By definition, one weak open transition contains several open transitions,
where each open transition can require an observable action from a given hole,
the same hole might have to emit several observable actions for a single weak
open transition to occur. Consequently, for a weak open transition to trigger, a
sequence of actions from a given hole may be required.

Thus, we let γ range over sequences of action terms and use ⊕ as the concate-
nation operator that appends sequences of action terms: given two sequences of
action terms γ ⊕ γ′ concatenates the two sequences. The operation is lifted to
indexed sets of sequences: at each index i, γ1 ⊕ γ2 concatenates the sequences
of actions at index i of γ1 and the one at index i of γ2

10. [a] denotes a sequence
with a single element.

As required actions are now sequences of observable actions, we need an
operator to build them from set of actions that occur in open transitions, i.e.
an operator that takes a set of actions performed by one hole and produces a
sequence of observable actions.

Thus we define (β)∇ as the mapping β with only observable actions of the
holes in I, but where each element is either empty or a list of length 1:

(βi∈Ii )∇ = [βi]i∈I
′
where I ′ = {i|i ∈ I ∧ βi 6= τ}

As an example the (β)∇ built from the transition OT1 in Example 3, page 19
is P7→[p-send(m)]. Remark that in our simple example no τ transition involves
any visible action from a hole, so we have no β sequences of length longer than
1 in the weak automaton.

5.2. Weak open transition definition
Because of the non-observability property (Definition 11), it is possible to

add any number of τ transitions of the holes before or after any open transition
freely. This property justifies the fact that we can abstract away from τ transi-
tions from holes in the definition of a weak open transition. We define weak open
transitions similarly to open transitions except that holes can perform sequences
of observable actions instead of single actions (observable or not). Compared to
the definition of open transition, this small change has a significant impact as
a single weak transition is the composition of several transitions of the holes.
Definition 12 (Weak open transition (WOT)). A weak open transition
over a set J of holes with sorts Sortj∈Jj and a set of states S is a structure
of the form:

·································γj∈J
′

j ,Pred,Post
s
α=⇒ s′

10One of the two sequences is empty when i 6∈ dom(γ1) or i 6∈ dom(γ2) .
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····························∅,True, Id(V )
s
τ=⇒ s

∈ WT WT1 and
·························β,Pred,Post

s
α−→ s′

∈ T

·······························(β)∇,Pred,Post
s
α=⇒ s′

∈ WT
WT2

and

·······························γ1,Pred1,Post1
s
τ=⇒ s1

∈ WT ·······························γ2,Pred2,Post2
s1

α=⇒ s2
∈ WT

·······························γ3,Pred3,Post3
s2

τ=⇒ s′
∈ WT γ = γ1 ⊕ γ2{{Post1}} ⊕ γ3{{Post2�Post1}}

α′ = α{{Post1}} Pred = Pred1 ∧ Pred2{{Post1}} ∧ Pred3{{Post2�Post1}}

·························································
γ,Pred,Post3�Post2�Post1

s
α′
=⇒ s′

∈ WT
WT3

Figure 6: Weak transition definition

Where J ′ ⊆ J , s, s′ ∈ S and γj is a list of transitions of the hole j, with each
element of the list in Sortj . α is an action label denoting the resulting action
of this open transition. Pred and Post are defined similarly to Definition 5. We
use WT to range over sets of weak open transitions.

A weak open automaton 〈〈J,S, s0, V,WT 〉〉 is similar to an open automaton
except that WT is a set of weak open transitions over J and S.

A weak open transition labelled α can be seen as a sequence of open tran-
sitions that are all labelled τ except one that is labelled α; however conditions
on predicates, effects, and states must be verified for this sequence to be fired.

We are now able to build a weak open automaton from an open automaton.
This is done in a way that resembles the process of τ saturation: we add τ open
transitions before or after another open transition, regardless of whether it is
observable or not.

Definition 13 (Building a weak open automaton).
Let A = 〈〈J,S, s0, V, T 〉〉 be an open automaton. The weak open automaton
derived from A is an open automaton 〈〈J,S, s0, V,WT 〉〉 where WT is derived
from T by saturation, applying the rules of Figure 6.

Rule WT1 states that it is always possible to perform a non-observable transi-
tion, where the state is unchanged and the holes perform no action. Rule WT2
states that each open transition is a weak open transition. Finally, Rule WT3
allows any number of τ transitions before or after any weak open transition.
This rule carefully composes predicates, effects, and actions of the holes. In-
deed, predicate Pred2 manipulates variables of s1 that result from the first weak

27



open transition. Their values thus depend on the initial state but also on the
effect (as a substitution function Post1) of the first weak open transition. In the
same manner, Pred3 must be applied the substitution defined by the composi-
tion Post2�Post1. Similarly, effects on variables must be applied to obtain the
global effect of the composed weak open transition, to observable actions of the
holes, and to the global action of the weak open transition.

b0b1

b1 b0

out(b_msg,b_ec)

{Q7→q-recv(b_msg,b_ec)}, T rue, ()

τ

{}, T rue, (b_ec← b_ec+ n)
∀n ≥ 0

τ

{}, T rue, (b_ec← b_ec+ 1)

True, (b_ec← b_ec+ n)
{Q7→q-recv(b_msg,b_ec){{b_ec← b_ec+ n}}},

out(b_msg,b_ec){{b_ec← b_ec+ n}}
∀n ≥ 0

W
τ

W
τ

Figure 7: Construction of an example of weak open transition

Example 4 (A weak open-transition). Figure 7 shows the construction of
one of the weak transitions of the open automaton of SimpleProtocolSpec. On
the top we show the subset of the original open automaton (from Figure 4)
considered here, and at the bottom the generated weak transition. For read-

ability, we abbreviate the weak open transitions encoded by ·······················
{}, T rue, ()
s
τ=⇒ s′

as Wτ .

The weak open transition shown here is the transition delivering the result of
the algorithm to hole Q by applying rules: WT1,WT2, and WT3. First rule
WT1 adds a WTτ loop on each state. Rule WT2 transforms each 2 OTs into
WOTs. Then consider application of Rule WT3 on a sequence of 3 WOTs.

·························································{}, T rue, (b_ec← b_ec + 1)
b1 τ=⇒ b1

; ·························································
{}, T rue, (b_ec← b_ec + 1)

b1 τ=⇒ b1
; ·······················
{}, T rue, ()

b1 τ=⇒ b1
. The

result will be: ·························································
{}, T rue, (b_ec← b_ec + 2)

b1 τ=⇒ b1
. We can iterate this construction an

arbitrary number of times, getting for any natural number n a weak open tran-

sition: ··············································
∅, T rue, (ec← ec + n)

b1 τ=⇒ b1
∀n ≥ 0. Finally, applying again WT3, and using

the central open transition having out(b_msg,b_ec) as α, we get the resulting
weak open transition between b1 and b0 (as shown in Figure 7). Applying the
substitutions finally yields the weak transitions family WS7 in Figure 8.

Example 5 (Weak open automata). Figures 8 and 9 respectively show the
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weak automata of SimpleProtocolSpec and SimpleProtocolImpl. We encode weak
open transitions by WS on the specification model and by WI on the imple-
mentation model.

b0

b1

(b_ec← b_ec+ n)
∀n ≥ 0WS5 :

p-a

{P7→p-a}, [∀x.p-a 6= p-send(x)],

{Q7→q-recv(b_msg,b_ec+ n)}, T rue,
(b_ec← b_ec+ n)

out(b_msg,b_ec+ n)
∀n ≥ 0WS7 :

WS1 : p-a

{P7→p-a}, [∀x. P-a 6= p-send(x)], ()

q-b

(b_ec← b_ec+ n)
{Q7→q-b}, [∀x,y. q-b 6= q-recv(x,y)],

∀n ≥ 0WS6 : τ

{}, T rue, (b_ec← b_ec+ n)
∀n ≥ 0WS4 :

in(m)

(b_ec← n, b_msg← m)
{P7→p-send(m)}, T rue,

WS3 : ∀n ≥ 0

q-b

{Q7→q-b}, [∀x,y. q-b 6= q-recv(x,y)], ()
WS2 :

vars:
b ec: Nat
m, b msg: Data

W
τ

W
τ

Figure 8: Weak Open Automaton of SimpleProtocolSpec

For readability, we only give names to the weak open transitions of
SimpleProtocolImpl in Figure 9; we detail some of these transitions below and
the full list is included in the extended version [3] . Let us point out that the
weak OT loops (WI1,WI2 and Wτ ) on state 000 are also present in all other
states, we did not repeat them. Additionally, many WOTs are similar, and
numbered accordingly as 3, 3a, 3b, 3c and 8, 8a, 8b, 8c respectively: they only
differ by their respective source or target states; the "variant" WOTs appear in
blue in Figure 9.

100000

201

202

210

220

WI6

WI7

WI4

WI5

WI8c

WI7b

WI8b

WI8a

WI3a

WI7a

WI3c

WI456

WI645

WI6a

WI5a

WI564

WI4aWI3b

WI1

WI2

WIτ

WI8

WI3

Wτ

WI1

WI2

s ec, m ec, r ec: Nat

m, s msg, m msg, r msg: Data

vars:

Figure 9: Weak Open Automaton of SimpleProtocolImpl
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Now let us give some details about the construction of the weak automaton
of the SimpleProtocolImpl pNet, obtained by application of the weak rules as
explained above. We concentrate on weak open transitions WI3 and WI4. Let
us denote as postn the effect (as a substitution function) of the strong open
transitions SIn from Figure 5:

post3 = (s_msg← m, s_ec← 0)
post4 = (m_msg← s_msg, m_ec← s_ec)
post5 = ()
post6 = (s_ec← s_ec+1)

Then the effect of one single 100 OT4−−−→ 210 OT5−−−→ 220 OT6−−−→ 100 loop is11:

post456 = post6� post5� post4 = (s_ec← s_ec + 1)

So if we denote post456∗ any iteration of this loop, we get post456∗ = (s_ec←
s_ec + n) for any n ≥ 0, and the Post of the weak OT WI3 is:
Post3 = post456∗� post3 = (s_msg← m, s_ec← n),∀n ≥ 0 and Post of WI3a
is:
post4�post456∗� post3 = (m_msg← m, m_ec← n),∀n ≥ 0.

We can now show some of the weak OTs of Figure 9 (the full table is included
in the extended version [3]). As we have seen above, the effect of ruleWT3 when
a silent action have an effect on the variable ec will generate an infinite family
of WOTs, depending on the number of iterations through the loops. We denote
these families using a "meta-variable" n, ranging over Nat.

WI1 = ·····································································
{P7→p-a}, [∀x.p-a 6= p-send(x)], ()

s
p-a==⇒ s

(for any s ∈ S)

∀n ≥ 0.WI3(n) = ····························································································
{P 7→p-send(m)},True, (s_msg← m, s_ec← n)

000 in(m)===⇒ 100

∀n≥0.WI4(n)= ······················································································································
{},True, (m_msg←s_msg, m_ec←s_ec+n, s_ec←s_ec+n)

100 τ=⇒ 210

∀n ≥ 0.WI456(n) = ·························································
{},True, (s_ec← s_ec + n)

100 τ=⇒ 100
The Post of the weak OT WI6a is:

Post6a= post4� post456∗� post6
=(m_msg←s_msg, m_ec←s_ec)�(s_ec←s_ec+n)�(s_ec←s_ec+1)
=(m_msg← s_msg, m_ec← s_ec + 1+n, s_ec← s_ec + 1+n)

So we get:

∀n ≥ 0.WI6a(n) = ·············································································································
{}, T rue, (m_ec← s_ec + 1 + n, s_ec← s_ec + 1 + n)

220 τ=⇒ 210

11when showing the result of Posts composition, we will omit the identity substitution
functions introduced by the� definition in page 7
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5.3. Composition properties: composition of weak open transitions
We now have two different semantics for open pNets: a strong semantics,

defined as an open automaton, and as a weak semantics, defined as a weak
open automaton. Like the open automaton, the weak open automaton features
valuable composition properties. We can exhibit a composition property and a
decomposition property that relate open pNet composition with their semantics,
defined as weak open automata. These are however technically more complex
than the ones for open automata because each hole performs a set of actions,
and thus a composed transition is the composition of one transition of the
top-level pNet and a sequence of transitions of the sub-pNet that fills its hole.
Composition and decomposition properties can be found as Lemma 6, Lemma 7,
and Lemma 8 in [3].

5.4. Weak FH-bisimulation
For defining a bisimulation relation between weak open automata, two op-

tions are possible. One option is that we define a simulation similar to the
strong simulation but based on weak open automata, this would look like the
FH-simulation but would need to be adapted to weak open transitions. Al-
ternatively, we could define directly and classically a weak FH-simulation as a
relation between two open automata, relating the open transitions of the first
one with the transitions of the weak open automaton derived from the second
one.

The definition below specifies how a set of weak open transitions can simulate
an open transition, and under which condition; this is used to relate, by weak
FH-bisimulation, two open automata by reasoning on the weak open automata
that can be derived from the strong ones.

Definition 14 (Weak FH-bisimulation).
Let A1 = 〈〈J,S1, s0, V1, T1〉〉 and A2 = 〈〈J,S2, t0, V2, T2〉〉 be open automata with
disjoint sets of variables. Let 〈〈J,S1, s0, V1,WT 1〉〉 and 〈〈J,S2, t0, V2,WT 2〉〉 be
the weak open automata derived from A1 and A2 respectively. Let R a relation
over S1 and S2, as in Definition 7.

Then R is a weak FH-bisimulation iff for any states s ∈ S1 and t ∈ S2 such
that (s, t|Preds,t) ∈ R, we have the following:

• For any open transition OT in T1:

·············································βj∈J
′

j ,PredOT ,PostOT
s
α−→ s′

there exists an indexed set of weak open transitions WOT x∈X
x ⊆ WT 2:

················································γj∈Jx

jx ,PredOTx ,PostOTx

t
αx=⇒ tx
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such that ∀x. {j ∈ J ′|βj 6= τ} = Jx, (s′, tx|Preds′,tx) ∈ R; and

Preds,t ∧ PredOT =⇒
∨

x∈X

(
∀j ∈ Jx.(βj)∇=γjx∧PredOTx

∧α=αx∧Preds′,tx{{PostOT ] PostOTx
}}
)

• and symmetrically any open transition from t in T2 can be covered by a
set of weak transitions from s in WT 1.

Two open automata are weak FH-bisimilar if there exists a weak FH-
bisimulation relation that relates their initial states. This relation is called
weak FH-bisimilarity. Two pNets are weak FH-bisimilar if their associated open
automata are weakly bisimilar.

Compared to strong bisimulation, except the obvious use of weak open tran-
sitions to simulate an open transition, the condition on predicate is slightly
changed concerning actions of the holes. Indeed only the visible actions of the
holes must be compared and they form a list of actions, but of length at most
one.

Our first important result is that weak FH-bisimilarity is an equivalence in
the same way as strong FH-bisimilarity.

Theorem 6 (Weak FH-bisimilarity is an equivalence). Weak FH-
bisimilarity is reflexive, symmetric and transitive.

The proof is detailed in [3], it follows a similar pattern as the proof that strong
FH-bisimilarity is an equivalence, but technical details are different, and in
practice we rely on a variant of the definition of weak FH-bisimilarity; this
equivalent version simulates a weak open transition with a set of weak open
transition. The careful use of the best definition of weak FH-bisimilarity makes
the proof similar to the strong FH-bisimilarity case.

Proving bisimulation in practice
In practice, we are dealing with finite representations of the (infinite) open

automata. In [31], we defined a slightly modified definition of the “coverage”
proof obligation, in the case of strong FH-bisimulation. This modification is
required to manage in a finite way all possible instantiations of an OT. In the
case of weak FH-bisimulation, the proof obligation from Definition 14 becomes:

∀fvOT .
{

Preds,t ∧ PredOT =⇒
∨

x∈X

[
∃fvOTx .

(
∀j∈Jx.(βj)∇=γjx∧PredOTx ∧α=αx∧Preds′,tx {{PostOT ]PostOTx }}

)]}

where fvOT denotes the set of free variables of all expressions in OT .
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5.5. Weak FH-bisimilation for open pNets
Before defining a weak open automaton for the semantics of open pNets, it

is necessary to state under which condition a pNet is unable to observe silent
actions of its holes. In the setting of pNets this can simply be expressed as a
condition on the synchronisation vectors. Precisely, the set of synchronisation
vectors must contain vectors that let silent actions go through the pNet, i.e.
synchronisation vectors where one hole does a τ transition, and the global visible
action is a τ . Additionally, no other synchronisation vector must be able to react
on a silent action from a hole, i.e. if a synchronisation vector observes a τ from
a hole it cannot synchronise it with another action nor emit an action that is
not τ . This is formalised as follows:

Definition 15 (Non-observability of silent actions for pNets).
A pNet 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 cannot observe silent actions if it verifies:
∀i ∈ I ] J. (i7→τ)→ τ [True] ∈ SV and

∀
(

(αi)i∈I
′
→ α′[eb] ∈ SV

)
,∀i ∈ I ′ ∩ J. αi = τ =⇒ α′ = τ ∧ I ′ = {i}

With this definition, it is easy to check that the open automaton that gives
the semantics of such an open pNet cannot observe silent actions in the sense
of Definition 11.

Property 1 (Non-observability of silent actions). The semantics of a
pNet, as provided in Definition 9, that cannot observe silent actions is an open
automaton that cannot observe silent actions.

Under this condition, it is safe to define the weak open automaton that
provides a weak semantics to a given pNet. This is simply obtained by applying
Definition 13 to generate a weak open automaton from the open automaton that
is the strong semantics of the open pNet, as provided by Definition 9.

Definition 16 (Semantics of pNets as a weak open automaton). Let
A be the open automaton expressing the semantics of an open pNet P ; let
〈〈J,S, s0, V,WT 〉〉 be the weak open automaton derived from A; we call this
weak open automaton the weak semantics of the pNet P . Then, we denote
P |= WOT whenever WOT ∈ WT .

From the definition of the weak open automata of pNets, we can now study
the properties of weak bisimulation concerning open pNets.

5.6. Properties of weak bisimulation for open pNets
When silent actions cannot be observed, weak FH-bisimilarity is a congru-

ence for open pNets: if P and Q are weakly bisimilar to P ′ and Q′ then the
composition of P and Q is weakly bisimilar to the composition of P ′ and Q′,
where composition is the hole replacement operator: P [Q]j and P ′[Q′]j are
weak FH-bisimilar. This can be shown by proving the two following theorems.
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The detailed proof of these theorem can be found in [3]. The proof strongly
relies on the fact that weak FH-bisimulation is an equivalence, but also on the
composition properties for open automata.

Theorem 7 (Congruence for weak FH-bisimilarity). Consider an open
pNet P that cannot observe silent actions, of the form P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉.
Let j0 ∈ J be a hole. Let Q and Q′ be two weak FH-bisimilar pNets such that12

Sort(Q) = Sort(Q′) ⊆ Sortj0 . Then P [Q]j0 and P [Q′]j0 are weak FH-bisimilar.

Theorem 8 (Context equivalence for weak FH-bisimilarity). Consider
two open pNets P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 and P ′ = 〈〈P ′i∈Ii ,Sortj∈Jj ,SV’〉〉 that
are weak FH-bisimilar (recall they must have the same holes to be FH-bisimilar)
and that cannot observe silent actions. Let j0 ∈ J be a hole, and Q be a pNet
such that Sort(Q) ⊆ Sortj0 . Then P [Q]j0 and P ′[Q]j0 are weak FH-bisimilar.

Finally, the previous theorems can be composed to state a general theorem
about composability and weak FH-bisimilarity.

Theorem 9 (Composability of weak FH-bisimilarity). Consider two
weak FH-bisimilar pNets with an arbitrary number of holes, such that the two
pNets cannot observe silent actions. When replacing, inside those two original
pNets, a subset of the holes by weak FH-bisimilar pNets, we obtain two weak
FH-bisimilar pNets.

Example 6 (CCS Choice). Consider the + operator of CCS, shown in Ex-
ample 1. The pNet does not satisfy Definition 15. Indeed, if a or b is τ then
the + operator can observe the τ transition. It is well-known that weak bisim-
ularity is not a congruence in CCS, this corresponds to the fact that the +
operator can observe the τ transitions. Thus, even if we can define a weak FH-
bisimilarity for CCS with + it does not verify the necessary requirements for
being a congruence.

On the other side, the parallel operator defined similarly satisfies Defini-
tion 15, and indeed bisimilarity is a congruence for the parallel operator in
CCS.

Running example
In Section 5 we have shown the full saturated weak automaton for both

SimpleProtocolSpec and SimpleProtocolImpl. We will show here how we can
check if some given relation between these two automata is a weak FH-
bisimulation.
Preliminary remarks:

• Both pNets trivially verify the “non-observability” condition: the vectors
having τ as an action of a sub-net are of the form “< −, τ,− >→ τ”.

12Note that Sort(Q) = Sort(Q′) is ensured by weak FH-bisimilarity.
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• We must take care of variable name conflicts: in our example, the variables
of the 2 systems already have different names, but the action parameters
occurring in the transitions (m, msg, ec) are the same, that is not correct.
In the tools, this is managed by the static semantic layer; in the example,
we rename the only conflicting variablesm intom1 for SimpleProtocolSpec,
and m2 for SimpleProtocolImpl.

Now consider the relation R defined by the following triples:
SimpleProtocolSpec

states
SimpleProtocolImpl

states Predicate

b0 000 True
b0 202 True
b1 100 b_msg = s_msg ∧ b_ec = s_ec
b1 210 b_msg = m_msg ∧ b_ec = m_ec
b1 220 b_msg = s_msg ∧ b_ec = s_ec
b1 201 b_msg = r_msg ∧ b_ec = r_ec

Checking thatR is a weak FH-bisimulation means checking, for each of these
triples, that each (strong) OT of one the states corresponds to a set of WOTs of
the other, using the conditions from Definition 14. We give here one example:
consider the second triple from the table, and transition SS3 from state b0. Its
easy to guess that it will correspond to WI3(0) of state 202 (and equivalently
state 000, see Figure 9):

SS3 = ·································································································
{P 7→p-send(m1)}, T rue, (b_msg← m1, b_ec← 0)

b0 in(m1)−−−−→ b1

WI3(0) = ·································································································
{P 7→p-send(m2)}, T rue, (s_msg← m2, s_ec← 0)

000 in(m2)====⇒ 100
Let us check formally the conditions:

• Their sets of active (non-silent) holes is the same: J ′ = Jx = {P}.
• Triple (b1, 100, b_msg = s_msg ∧ b_ec = s_ec) is in R.
• The verification condition
∀fvOT . {Pred ∧ PredOT
=⇒

∨

x∈X

[
∃fvOTx .

(
∀j ∈ Jx.(βj)∇=γjx∧PredOTx∧α=αx∧Preds′,tx{{PostOT ]PostOTx}}

)]
}

Gives us:
∀m1. {True ∧ True =⇒ ∃m2.
([p-send(m1)] = [p-send(m2)] ∧ True ∧ in(m1) = in(m2) ∧
(b_msg = s_msg ∧ b_ec = s_ec){{(b_msg ← m1, b_ec ← 0) ] (s_msg ←
m2, s_ec←0)}})}

That is reduced to:
∀m1.∃m2. (p-send(m1) = p-send(m2)∧in(m1) = in(m2)∧m1 = m2∧0 = 0)

That is a tautology.
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6. Related Works

To the best of our knowledge, there are not many research works on Weak
Bisimulation Equivalences between such complicate system models (open, sym-
bolic, data-aware, with loops and assignments). We give a brief overview of other
related publications, focussing first on Open and Compositional approaches,
then on Symbolic Bisimulation for data-sensitive systems.

Open and compositional systems
In [36, 35], the authors investigate several methodologies for the compo-

sitional verification of software systems, with the aim to verify reconfigurable
component systems. To improve scaling and compositionality, the authors de-
compose the verification problem that is to be resolved by a SMT (satisfiability
modulo theory) solver into independent sub-problems on independent sets of
variables. These works clearly highlight the interest of incremental and compo-
sitional verification in a very general setting. In our own work on open pNets,
adding more structure to the composition model, we show how to enforce a com-
positional proof system that is more versatile than independent sets of variables
as the composition is structured and allows arbitrary synchronisations between
sub-entities. Our theory has also been encoded into an SMT solver and it would
be interesting to investigate how the examples of evolving systems studied by
Johnson et al. could be encoded into pNet and verified by our framework. How-
ever, the models of Johnson et al. are quite different from ours, in particular
they are much less structured, and translating them is clearly outside the scope
of this article.

In previous work [20], we also have shown how (closed) pNet models could be
used to encode and verify finite instances of reconfigurable component systems.

Methodologies for reasoning about abstract semantics of open systems can be
found in [5, 6, 18], authors introduce behavioural equivalences for open systems
from various symbolic approaches. Working in the setting of process calculi,
some close relations exist with the work of the authors of [5, 6], where both
approaches are based on some kinds of labelled transition systems. The distin-
guishing feature of their approach is that the transitions systems are labelled
with logical formulae that provides an abstract characterization of the struc-
ture that a hole must possess and of the actions it can perform in order to
allow a transition to fire. Logical formulae are suitable formalisms that cap-
ture the general class of components that can act as the placeholders of the
system during its evolution. In our approach we purposely leave the algebra
of action terms undefined but the only operation we allow on action of holes is
the comparison with other actions. Defining properly the interaction between
a logical formulae in the action and the logics of the pNet composition seems
very difficult. mCRL2 [22] is another effective model for specifying and prov-
ing properties of concurrent systems. mCRL2 has an established tool-suite and
share similarities with pNets. However, pNets feature hierarchical composition
with more structure than mCRL2 that composes processes with a parallel op-
erator. Synchronisation of processes is expressed very differently; it is difficult
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to precisely compare multi-actions of mCRL2 with synchronisation vectors of
pNets but synchronisation vector ogf pNets enforce a synchronisation based on
the structure while in mCRL2 synchronisation is specified in a versatile, flexible,
but less structured way.

In the same vein as context systems [38], pNets is a formalism for mod-
ular and possibly incomplete description of concurrent systems. The two for-
malisms are however different as the theory of contexts relies on a form of rewrite
rules, while pNets rely on parametric automata to express the system behaviour.
pNets have similar features as context systems [38] and static constructs [33].
Indeed all these approaches allow for modular and possibly incomplete descrip-
tion and structural composition of systems. The main originality of pNets com-
pared to these other compositional approaches is the parameterised nature of
the specification, which enables reasoning on value-passing systems but also on
rich synchronisations that depend on the value of parameters.

Decomposition techniques
Quotienting of process algebras [38] and decomposition techniques for

mCRL2 [39] share similarities with our approach; they propose to overcome the
state-space-explosion problem by decomposing formulas to be verified according
to the process composition. The decomposed problem must be equivalent to the
original one. However these techniques are expressed in a very different setting
from ours and it is difficult to precisely relate them to the more structural and
parameterised point of view we adopt here. We could try to apply such auto-
matic decomposition techniques to open pNets, but deriving a decomposition
for systems synchronised in a very parameterised way like we do requires further
investigations. Both parallel composition [38] and mCRL2 [39] feature a con-
crete verification setting where decomposition is useful, while open automata
provide a more general setting that could be used to represent both frameworks
and hopefully generalise process decomposition results of [38, 39].

Logical and semantics approaches
Among the approaches for modelling open systems, one can cite [8] that

uses transition conditions depending on an external environment, and introduce
bisimulation relations based on this approach. The approach of [8] is highly
based on logics and their bisimulation theory is richer than ours in this aspect,
while our theory is highly structural and focuses on relation between structure
and equivalence. Also, we see composition as a structural operation putting
systems together, and do not focus on the modelling of an unknown outside
world. Overall we believe that the two approaches are complementary but
comparing precisely the two different bisimulation theories is not trivial.

There is also a clear relation with the seminal works on rule formats for
Structured Operational Semantics, e.g. De Simone format, GSOS, and condi-
tional rules with or without negative premises [16, 10, 24, 47]. The Open pNets
model provides a way to define operators similar to these rules formats, but
with quite different aim and approach. A formal comparison would be inter-
esting, though not trivial. What we can say easily is that: the pNet format
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syntactically encompasses De Simone, GSOS, and conditional premises rules.
Then our compositionality result is more powerful than their classical results,
but this is not a surprise, as we rely on a (sufficient) syntactic hypothesis on a
particular system, rather than the general rules defining an operator. Last, we
intentionally do not accept negative premises, that would be more to put into
practice in our implementation. This extension could be studied in future work.

Symbolic and data-sensitive systems
As mentioned in the Introduction, we were substantially inspired by the

works of Lin et al. [34, 26, 40]. They developed the theory of symbolic transition
graphs (STG), and the associated symbolic (early and late, strong and weak)
bisimulations. Moreover, they studied STGs with assignments as a model for
message-passing processes. Our work extends those contributions in several
ways: first our models are compositional, and our bisimulations come with
effective conditions for being preserved by pNet composition (i.e. congruent),
even for the weak version. This result is more general than the bisimulation
congruences for value-passing CCS in [34]. Then our settings for management
of data types are much less restrictive, thanks to our use of satisfiability engines,
while Lin’s algorithms were limited to data-independent systems.

In a similar way, [1] presents a notion of ”data-aware” bisimulations on data
graphs, in which computation of such bisimulations is studied based on XPath
logical language extended with tests for data equality.

Research related to the keyword "Symbolic Bisimulation" refer to two very
different domains, namely BDD-like techniques for modelling and computing
finite-state bisimulations, that are not related to our topic; and symbolic se-
mantics for data-dependant or high-order systems, that are very close in spirit
to our approach. In this last area, we can mention Calder’s work [15], that
defines a symbolic semantic for full Lotos, with a symbolic bisimulation over it;
Borgstrom et al., Liu et al, Delaune et al. and Buscemi et al. providing sym-
bolic semantics and equivalence for different variants of pi calculus respectively
[12, 17, 41, 14]; and more recently Feng et al. provide a symbolic bisimulation
for quantum processes [19]. All the above works are based on models definitely
different from ours, and none of them allows system to be as much parameterised
as open pNets; this additional expressiveness is due to the open and symbolic
nature of our constructs.

7. Conclusion and discussion

pNets (Parameterised Networks of Automata) is a formalism adapted to
the representation of the behaviour of parallel or distributed systems. One
strength of pNets is their parameterised nature, making them suitable for to
the representation of systems of arbitrary size, and making the modelling of
parameterised systems possible. Parameters are also crucial to reason about
interaction protocols that can address one entity inside an indexed set of pro-
cesses. pNets have been successfully used to represent behavioural specification
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of parallel and distributed components and verify their correctness [2, 29]. VCE
is the specification and verification platform that uses pNets as an intermediate
representation. In this platform we have developed tool support for computing
the symbolic semantics in term of open automata; this is presented in [45, 46],
together with a case-study based on the on-board control software of satellites.
In [9] we present how to encode reactive systems from the BIP specification
language and check their temporal properties using VCE. In [31, 32] we de-
scribe our strong bisimulation algorithms, with illustration on the equivalence
of different encodings of operators.

Open pNets are pNets with holes; they are adapted to represent processes
parameterised by the behaviour of other processes, like composition operators
or interaction protocols that synchronise the actions of processes that can be
provided afterwards. Open pNets are hierarchical composition of automata with
holes and parameters. We defined here a semantics for open pNets and a com-
plete bisimulation theory for them. The semantics of open pNets relies on the
definition of open automata that are automata with holes and parameters, but
no hierarchy. Open automata are a flattened view of the pNet; their behaviour
is expressed as open transitions that allow for a more semantic interpretation
of process parameters (holes) than pNets. In the end, open automata are la-
belled transition systems with parameters and holes, a notion that is useful to
define semantics, but makes less sense for the high level modelling of a system,
compared to pNets. Open automata is the formalism that makes it possible to
define FH-bisimilarity.

This article defines a strong and a weak bisimulation relation that
are adapted to parameterised systems and hierarchical composition. FH-
bisimulation handles pNet parameters in the sense that two states might be
or not in relation depending on the value of parameters. Strong FH-bisimilarity
is compositional in the sense that it is maintained when composing processes.
We also identified a simple and realistic condition on the semantics of non-
observable actions that allows weak FH-bisimilarity to be also compositional.
Overall we believe that this article paved the way for a solid theoretical foun-
dation for compositional verification of parallel and distributed systems.

The pNets formalism supports the refinement checking at the automaton
level through a simulation, with symbolic evaluation of guards and transitions.
The definition of simulation on open automata should be stronger than a clas-
sical simulation since it matches a transition with a family of transitions. Such
a relation should be able to check the refinement by taking into account state
duplication, transition removal, guard strengthening, variable modification. Ad-
ditionally, composition of pNets gives the possibility to either add new holes to
a system or fill holes. A useful simulation relation should thus support the com-
parison of automata that do not have the same number of holes. Designing such
a simulation relation is a non-trivial extension that we leave for future work.

We are currently looking at further properties of FH-bisimulation, but also
the relations with existing equivalences on both closed and open systems. In
particular, our model being significantly different from those considered in [34],
it would be interesting to compare our “FH” family of bisimulations with the
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hierarchy of symbolic bisimulations from those authors. We also plan to apply
open pNets to the study of complex composition operators in a symbolic way,
for example in the area of parallel skeletons, or distributed algorithms.

Recently we published preliminary work on methods for checking weak FH-
bisimulation [48]. The challenges here, in the context of our symbolic systems,
are not so much algorithmic complexity, as was the case with classical weak
bisimulation on finite models, but decidability and termination. The naive
approach, using an explicit construction of the weak transition, may in itself
introduce non-termination, so we prefer a direct implementation of the weak
bisimulation definition, without constructing the weak automata beforehand,
but searching on demand to construct the required weak transitions. We illus-
trate this approach on a simple error-correcting transport protocol case-study.
Beside, we explore in [49] more pragmatic approaches using weak bisimulation
preserving (pattern-based) reduction rules.
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Chapter 5

Refinement of Open Systems

5.1 Summary

As introduced in the previous chapter, the open au-
tomata models, which express the semantics of open
pNets, are themselves convenient to model parallel
systems that are parameterised. They express value-
passing communication and have parallel composition
as a basic operation. But they also offer the possibility
to talk about unknown processes, and to reason with-
out their specification. An open automaton is a clas-
sical labelled transition system (LTS) with variables
and holes. Similarly to modal LTSs (e.g. [26, 78, 83]),
which add information on transitions in order to distin-
guish allowed and required behaviours, open automata
use labelled transitions between states to model be-
haviours. But unlike modal LTSs, they distinguish in-
ternal and environmental actions, which makes them
a suitable semantic model for modelling reactive sys-
tems [100], i.e. systems which continuously interact
with their environment, such as process controllers.

The notion of holes enables a form of compositional
verification approach, since once an appropriate par-
tial specification has been developed for a component
of a system, one must only verify an implementation
with respect to this specification – the remainder of
the system is irrelevant. Indeed, holes enable the com-
position of automata: an automaton with a hole is
an operator that takes another automaton as param-
eter and reacts to the actions it emits; the composed
automaton is a more precise automaton where the be-
haviour of one “process parameter”. For their part,
variables make automata symbolic and allow them to
encode infinite state systems.

Intuitively, the composition operation of open au-
tomata can be viewed as a specific way to connect au-
tomata and to fill holes. The holes, which are endowed
with a signature, can be filled with compatible open
automata. The open automaton which fills a hole may
itself carry several holes, and thus create several other
holes on the automaton resulting from the composi-
tion. Therefore, although the composition operation
allows to specify more, it does not necessarily reduce
the number of holes.

Example

To illustrate the expressiveness and the composability
of open automata, we use as example a specification
of the traffic light system that controls traffic at an
intersection. The open automaton modelling this sys-
tem is illustrated in Figure 5.11. This automata shows
a model of an incomplete specification of the system,
the timer is not specified. It accepts an unimplemented
control circuit in the hole which gives the timings and
an also unimplemented counter in the hole to count
external tick actions. As the automaton shows, it has
three states remembering which coloured light is on
(Red, Yellow or Green). It includes two holes: a con-
troller (ctl) and a counter (cnt) depicting together the
behaviour of the timer. The color switches when the
counter and the controller components agree that the
time is over. The new time limit can be set by the
counter component and the exposed action to the en-
vironment is an unobservable action τ .

1Note that we have slightly modified the notations form the
previous chapter. The predicate is noted > instead of True and
the assignments in braces instead of parentheses.
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{cnt 7→tick},>, {}
tick

{},>, {}
onRed

{cnt 7→set(x), ctl 7→θ(x)},>, {}
τ

{cnt 7→over(x), ctl 7→δ(x)},>, {}
TurnGreen

{cnt 7→tick},>, {}
tick

{},>, {}
onGreen

{cnt 7→set(x), ctl 7→θ(x)},>, {}
τ

{cnt 7→over(x), ctl 7→δ(x)},>, {}
TurnYellow

{cnt 7→tick},>, {}
tick

{},>, {}
onYellow

{cnt 7→set(x), ctl 7→θ(x)},>, {}
τ

{cnt 7→over(x), ctl 7→δ(x)},>, {}
TurnRed

Figure 5.1: The specification of a Traffic Light system

Recall that the particular form of the open tran-
sitions encodes the informations about the context,
which that are required to execute it. For instance,
the following open transition of the traffic light au-
tomaton:
{cnt 7→set(x), ctl 7→θ(x)},>, {}

R τ−→ R
expresses that the automa-

ton executes unconditionally (the predicate is true >)
an unobservable action when the controller ctl and the
counter cnt execute their actions θ(x) and set(x) re-
spectively; and the execution has no effect on the sys-
tem variables (the set of assignments is empty {}).

Examples of specifications, that can be used to
complete the model of traffic light system and fill its
holes, are provided as open automata, they are shown
in Figure 5.2. On the left (a), the controller compo-
nent designed to be connected in the hole ctl. Its role
is to decide the duration before switching the lights.
We control the time interval for each light by setting
them by prior knowledge: 17s for the first duration, 3s
for the second, and 20s for the third. On the right (b),
the tick counter component designed to be connected
in the hole cnt.

In Figure 5.3 is shown the result of the composition
of the main system, namely the traffic light system,
with the example given of a counter. The result of the
composition is also an open automaton. In this case,
the result of the composition is an open automaton
with only one hole because the filling automaton has
no hole. In general, the resulting automaton contains
the number of holes of the encompassing automaton,

plus those of the filling automaton minus one (the hole
that is filled by the composition).

In Figure 5.4 is shown the result of the composi-
tion of the three automata. Each state of the result
of the composition consists of a state of traffic light
system together with a state of controller component
and one of counter component. The composed au-
tomaton takes over the same steps as the traffic light
automaton but it also includes new steps, indicating
the change of states for the setting of timer. Its τ
transitions involve both the traffic light automaton
and the holes automata, they correspond to a joint
step of sending time thresholds of the controller, the
time setting of the counter. For instance, the τ open
transition starting from R1S is the result of the com-
position of three open transitions: the composition
of the open transition of the traffic light automaton
{cnt 7→set(x), ctl 7→θ(x)},>, {}

R τ−→ R
, the open transition of the

controller
{},>, {}

1 θ(17)−−−−→ 2
, and the open transition of the

counter
{},>, {t← x, c← 0}

S set(x)−−−−−→ C
.

It is important to emphasize, as one can notice,
that not all open transitions are composable. For in-

stance, the open transition
{cnt 7→set(x), ctl 7→θ(x)},>, {}

R τ−→ R
of traffic light system, cannot be composed with the

controller transition
{},>, {}

2 δ(x)−−−−→ 3
. The second does not

meet the expectations of the first. Indeed, the first
open transition expresses that the traffic light system
is waiting for the controller to execute action θ(x). On
its side, the controller by the considered open transi-
tion transition offers the action δ(x), so the composi-
tion cannot be performed. In the technical definition
(presented in the paper below) and the tool, the com-
position will produce an open transition whose guard
is unsatisfiable, it will then be discarded.

Through this example, we have shown that the se-
mantics of partially defined systems (partial processes)
can be conveniently expressed via open labelled tran-
sition systems whose states are terms over a certain
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{},>, {}
θ(17)

{},>, {}
δ(x)

{},>, {}
θ(3)

{},>, {}
δ(x)

{},>, {}
θ(20)

{},>, {}
δ(x) S

C

{},>, {t← x, c← 0}
set(x)

{}, c < t, {c← c+ 1}
tick

{}, c = t, {}
over(c)

Figure 5.2: (a) An example of controller component (b) An example of counter component
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{},>, {}
onRed

{ctl 7→θ(x)},>, {t← x, c← 0}
τ
{},>, {}
onRed

{}, c < t, {c← c+ 1}
tick

{ctl 7→δ(x)}, c = t, {}
TurnGreen

{},>, {}
onGreen

{ctl 7→θ(x)},>, {t← x, c← 0}
τ

{},>, {}
onGreen

{}, c < t, {c← c+ 1}
tick

{ctl 7→δ(x)}, c = t, {}
TurnYellow

{},>, {}
onYellow

{ctl 7→θ(x)},>, {t← x, c← 0}
τ

{},>, {}
onYellow

{}, c < t, {c← c+ 1}
tick

{ctl 7→δ(x)}, c = t, {}
TurnRed

Figure 5.3: The partially instantiated of the Traffic
Lights system

algebra and whose labels describe some abstract be-
havioural information. This way of composing open
automata, by adding information (and details) to the
enclosing automaton from the filling open automata is
comparable to the notion of refinement which also con-
sists in adding implementation details, which should
ideally imply compatibility.

The key feature of the refinement techniques is that
they enable incremental reasoning. Indeed, they pro-
vide a step-wise refinement process for developing sys-
tems by starting with a high-level specification of what
the system is required to do. The simplified version
of the system is then refined into a corresponding con-
crete version by gradually adding details and function-
alities.

It appears clearly that the open automata provides
a foundation for the analysis of systems whose be-

haviour interacts with the environment. It also emerges
that this formalism supports incremental specification
and verification methodologies through refinement and
composition. We believe powerful tools could be de-
veloped using this formalism. Tools that can support
the vertical and the horizontal dimension of composi-
tional verification in an uniform and compatible way,
helping to improve the capabilities of existing tools.
For instance, for the analysis of reactive applications
(e.g. [45]) or for the adaptation and integration of open
components (e.g. [89, 101]).

The paper included in this chapter reports the pre-
liminary results of our research work that investigate
the potential of open automata for the refinement ap-
proach and the incremental verification techniques. In
support of this idea of incremental verification, we de-
fine a refinement relation for open automata that has
the following characteristics:

• Classical simulation characterisation but also an
additional criterion ensuring that refinement does
not introduce deadlocks when following a trace
from the simulated automaton.

• Good properties in regards to composition: we
proved that filling the same hole with the same
automaton preserves the refinement relation.

• Ability to take into account both composition and
transitivity: this is a major issue because compo-
sition changes the set of holes of the open automa-
ton and refinement takes into account the actions
of the holes.

More specifically, on the basis of the defined refine-
ment relation over open automata, we have proved the



R1S

R2C

G3S

G4C

Y5S

Y6C

{},>, {}
onRed

{},>, {t← 17, c← 0}
τ {},>, {}

onRed

{}, c < t, {c← c+ 1}
tick

{}, c = t, {}
TurnGreen

{},>, {}
onGreen

{},>, {t← 3, c← 0}
τ

{},>, {}
onGreen

{}, c < t, {c← c+ 1}
tick

{}, c = t, {}
TurnYellow

{},>, {}
onYellow

{},>, {t← 20, c← 0}
τ

{},>, {}
onYellow

{}, c < t, {c← c+ 1}
tick

{}, c = t, {}
TurnRed

Figure 5.4: The full Traffic Lights system

transitivity and compositionality properties. These
properties imply the independent implementability, which
is the core features of the incremental component-based
approach. More details and technical definitions about
this relation are given in the enclosed paper. The re-
finement relation that we discuss in this paper is called
extension relation in the literature (e.g. [58]) . This
was because in this kind of refinement, the specifica-
tion is a partial specification and the implementation
(concretisation) extends the specification to comply
with other constraints, not mentioned in the partial
specification. This relation is the complement of re-
duction relation, which on the contrary is used to re-
duce nondeterminism in the specification. The notion
of extension was introduced in [36] to deal with partial
specifications in LOTOS [30]. And it has been used in
other work on the context of incremental modelling
approach (e.g. [88, 102]).

The principle of this refinement is that it enables
the implementation to exhibit more behaviour than
the specification, provided that the new traces are
built only on the new actions, i.e., the filling automa-
ton can introduce completely different new actions.
Meaning that the implementation deadlocks less often
than the specification for the traces that they have in
common, since the implementation cannot refuse more
than the specification for those traces.

5.2 Paper Accepted to SEFM
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Abstract. Establishing equivalence and refinement relations between
programs is an important mean for verifying their correctness. By es-
tablishing that the behaviours of a modified program simulate those of
the source one, simulation relations formalise the desired relationship
between a specification and an implementation, two equivalent imple-
mentations, or a program and its optimised implementation. This article
discusses a notion of simulation between open automata, which are sym-
bolic behavioural models for communicating systems. Open automata
may have holes modelling elements of their context, and can be composed
by instantiation of the holes. This allows for a compositional approach
for verification of their behaviour.
We define a simulation between open automata that may or may not
have the same holes, and show under which conditions these refinements
are preserved by composition of open automata.

Keywords: Labelled transition systems · Simulation · Composition.

1 Introduction

Compositional design is a highly convenient approach for specifying and veri-
fying large systems. Automata are often used as the basic formalism for this
approach, but most automata definitions allow only the specifications of finite
closed systems. These systems can be verified efficiently, but programming of-
ten consists in writing systems that should be interfaced with others, and with
potentially unbound behaviours. We investigate in our works the reasoning on
open symbolic systems, with a strong focus on compositionality of properties.
More precisely, we say that a system is open if it contains a “hole” to be filled by
another system. Open systems are typically composition operators [16] or com-
ponentised systems where some of the components are yet to be provided [6].
This form of composition is more complex to handle than top-level interaction
usually found in process algebra, as the behaviour of each entity in the system
is parameterised both by classical symbolic variables and by process variables.
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Symbolic systems and their bisimulation raises additional challenges [15,16].
Reasoning on a symbolic automaton allows one to represent an infinite system
in a finite manner, but then the state of the system is not only characterised by
an automaton state but also by the value of the different variables representing
the system. In parameterised systems, it is necessary to guard state transitions
depending on the system state and on the input values. This is why in previous
works and in this article, it we extend the classical form of bisimulation relation:
in a symbolic setting a bisimulation relation relates classically states of two
systems but it is additionally parameterised by a formula that must be verified
by the state variables. This has been introduced in details in previous works [6]
and will be recalled briefly in Section 2.2. We have shown in previous works
that open symbolic systems are particularly convenient to model process algebra
operators and open component systems with infinite behaviour [6,16].

The refinement concept plays an important role in software engineering. In
addition to helping to cope with the complexity of requirements and design, re-
finement provides a foundation for ensuring system correctness. The correctness
of a system can be established by proving, that a system refines its specification
with the idea that some properties of the specification are preserved in the re-
fined system. Refinement entails that one system can be considered as a more
precise version of another one that is considered to be the specification. The
refined model features all the specified behaviours with more concrete details.
From a formal point of view, refinement is a mathematical relations between a
specification and its implementation, with trace inclusion or simulation being
frequently used relations [21,19].

In this article, we design a simulation theory for open symbolic systems.
We build a very generic theory that should allow us to reason on simulation-
based verification for most concurrent systems, as our base theory merely relies
on automata parameterised by both variables and processes. As we shall see,
our composition of automata is also very generic to account for any interaction
mechanism found in concurrent systems. While our contribution is theoretical, it
establishes the foundations for to the verification of any compositionally designed
system, like component systems, algorithmic skeletons.

Open automata (that we abbreviate OA) were defined as a way to provide a
semantics for open parameterised hierarchical labelled transition systems (abbre-
viated LTS). They were proposed as a theoretical foundation for parametrised
automata used in verification tools and called pNets. An OA [16] is similar to
a classical automaton but with variables and holes. Variables make automata
symbolic and allow them to encode infinite-state systems. Holes enable the com-
position of automata: an automaton with a hole is an operator that takes another
automaton as parameter and reacts to the actions it emits; the composed au-
tomaton is an automaton where the behaviour of one “process parameter” of the
main automaton has been provided. Due to their generic nature, the notion of
OA model is quite abstract but we already illustrated previously how to derive
OAs for process algebra operators [16] or for component systems [6,5].
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In previous works [6,23] a bisimulation relation was defined for OA and open
parameterised hierarchical LTSs. It exhibited good properties concerning bisim-
ulation, but refinement relations were not studied. In this article we go further
to define a theory of simulation for OA. The simulation relation we introduce in
the paper is based on the notion of simulation, in a similar way to that defined in
classical automata theory [20,8]. It possesses the common behaviour-preserving
property: all the behaviour of the abstract specification must be followed by its
(complex) implementation but additional behaviours may exist. However we also
ensure that a whole scenario, made of several steps, of the specification can also
be simulated by the refined system, which is slightly richer than the traditional
simulation relation and allows us to obtain a compositionality result.

Our contribution in this paper is the definition of a simulation relation for
OA that has the following characteristics:
– Classical simulation characterisation but also an additional criteria ensuring

that simulation does not introduce deadlocks when following a trace from
the simulated automaton.

– Good properties relatively to composition: we prove that composition pre-
serves the simulation relation.

– Ability to take into account both composition and transitivity: this is a chal-
lenge because composition changes the set of holes of the OA and simulation
takes into account the actions of the holes.

The simulation relation is introduced in two steps. First we define a simulation
that relates two automata with the same holes, which allows us to focus on the
automaton aspect. Second we introduce a relation that relates two automata
with different sets of holes, which allows us to take into account the open nature
of OA, and to deal with composition. Properties of the simulation are stated and
proven on the second, more general version of the relation, thus also being valid
for the first simpler simulation relation.

This paper is organized as follows. Section 2 recalls the definition of OA and
defines their composition. We then define a simulation relation for OA, first only
considering two automata with the same set of holes in Section 3 and generalize
it to automata with a different set of holes in Section 4. Section 5 is dedicated
to formalize and prove basic properties of the simulation defined, including the
proof that simulation is a preorder and has nice composability properties. In
Section 6 we review related works, and Section 7 concludes the paper.

2 Open Automata and their Composition

This section presents our notations and the principles of automata. Except for
minor changes in the notations, compared to previous works [6] the only new
contribution is the definition of a composition operator for OA.

2.1 Preliminaries and notations

Countable families of values (equivalent to maps) will be noted xiPIi , ti ÞÑxi | i P Iu,
or tiÐ xi | i P Iu, depending on what is more convenient (e.g. i Ð xi is used
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for maps that are used as substitution). Statements like DcjPJj defines both J
and the mapping j ÞÑcj . The disjoint union on sets is noted Z. Disjoint union
is also used on maps. There are several ways of ensuring a union is disjoint,
we will indifferently either suppose sets are disjoint or rename conflicting ob-
jects (useful for variables). In a formula, a quantifier followed by a finite set
will be used as a shorthand for the quantification on every variable in the set:
@ta1, . . . , anu, Dtb1, . . . , bmu, P means @a1, . . . ,@an, Db1, . . . , Dbm, P .

Our expression algebra E is the disjoint union of terms, actions, and formulas
E “ T ZAZ F . T and A are term algebras. The set of formulas F contain at
least first order formulas and equality4 over T and A. For e P E, varspeq is the
set of variables in e that are not bound by a binder. An expression is closed if
varspeq “ H. The set P denotes values which is a subset of closed terms. FV is
the set of formulas f that only uses variables in V , i.e., the formulas such that
varspfq Ď V . The parallel substitution of variables in e by a map ψ : V Ñ T is
denoted ettψuu.

We suppose given a satisfiability relation on closed formulas, denoted |ùf .
We will use two variants of the satisfiability relation:

– The satisfiability of a formula f P F under some valuation σ : V Ñ P is
defined as follows: σ |ù f ðñ $ Dvarspfttσuuq, fttσuu

– The satisfiability of a formula f P F with some variable set V as context is
defined as follows: V $ f ðñ $ @V, Dpvarspfqr V q, f

2.2 Open Automata (OA)

OA are labelled transition systems with variables that can be used to compose
other automata: they are made of transitions that are dependent on the actions of
“holes”, a composition operation consists in filling a hole with another automaton
to obtain a more complex automaton. The variables makes the OA symbolic, and
the holes allow for a partial definition of the behaviour.

Definition 1 (Open transition, Open automaton). An open automaton is
a tuple 〈S, s0, V, σ0, J, T〉 with S a set of states, s0 P S the initial state, V the
finite set of variable names, σ0 : V Ñ P the initial valuation of variables, J the
set of hole names and T the set of open transitions.

An open transition is a structure ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β
jPJ 1
j , g, ψ

s
αÝÑ s1

made of several composing en-

tities, equivalent to a tuple. In an open transition s, s1 P S are the source and
target states, α P A is the resulting action that can be observed from the outside,
J 1 Ď J are the holes involved in the transition, g P F is the guard that may
constraint the transition, and ψ : V Ñ T are the variable assignments that have
an effect on the state of the automaton. Each βj P A is an action of the holes j,
To be well-formed, an open transition should use only variables of the automaton

4 Equality does not need to be only syntactic.
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and variables appearing in the involved actions, formally:

varspgq Ď varspαq Y
ď

jPJ 1
varspβjq Y V

@v P V. varspψpvqq Ď varspαq Y
ď

jPJ 1
varspβjq Y V

A pair consisting of a state and a valuation is called a configuration (of the
automaton). We use two operators to access pieces of information of the OA.

Definition 2 (Out-transition, Transition variables). Let 〈S, s0, V, σ0, J, T〉
be an automaton and let r be a state in S. OTT prq Ă T are the transition out-
going from state r5. The local variables of a transition varsptq are all variables
appearing in transition t except the variables of the automaton. Outgoing tran-
sitions and variables are formally defined as follows.

OTT prq “
$
&
%¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈
β
jPJ 1
j , g, ψ

s
αÝÑ s1

P T
ˇ̌
ˇ̌
ˇ̌ s “ r

,
.
-

vars

¨
˝¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β

jPJ 1
j , g, ψ

s
αÝÑ s1

˛
‚“

˜
varspαq Y

ď

jPJ 1
varspβjq

¸
r V

Example 1 (prod-cons). As a running example, we consider a classical producer-
consumer pair interacting through FIFO buffer, named prod-cons. Fig. 1 reflects
the overall structure of the system involving a producer process, a consumer pro-
cess and an orchestrator that coordinates their activities.

put

compute

P Orchestrator get

compute

Q put

print

ττ

pop

push

Fig. 1. Structure of the example. Each box corresponds to a process whose ports are
the actions it can perform. The actions observable by the environment are push, which
indicates the enqueuing of an element, pop which indicates the dequeuing, and print

which indicates the production of results.

The OA modelling the behaviour of such a system using an unbounded cir-
cular/ring buffer is depicted in Fig. 2. The automaton has a single state with

5 When the set T is clear from the context, it will be omitted and we will use OTprq
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{Q 7→ compute}, T rue, ()
τ

{Q 7→ get(M[f])}, l 6= f, (f← (f+ 1)%N)

pop

{P 7→ put(m)}, (l+ 1)%N 6= f, (M[(l+ 1)%N]← m; l← (l+ 1)%N)
push

f← 0

print(m)

τ
{P 7→ compute}, T rue, ()

l← 0

r0
{Q 7→ put(m)}, T rue, ()

Fig. 2. OA for the prod-cons system using FIFO circular buffer.

two holes: P and Q that are the two interacting processes. l (as last) indicates
the next available position for enqueuing an element and f (as first) is the posi-
tion that contains the next element to be dequeued. The buffer reacts to a push
from P and enqueues it. Similarly, whenever Q pops an element, it dequeues it.
Additionally, whenever Q produces an item, it is exposed as an external observ-
able print action. When any process do its internal computation, it is exposed
externally as unobservable action τ .

The example uses several kinds of data. Variable m holds a message (we can
leave the message type abstract here). We additionally use arrays of messages
with a syntax of the form M[l] for array accesses; M is an array of N elements,
from 0 to N´ 1. Finally we use addition and modulo operation (%) on integers.

[\
Open automata composition. OA are partially specified automata, the partiality
arises from the holes. A hole can be seen as a port in which we can plug an
OA. The plugging operation is called composition. The composition of OA was
already implicitly defined by the means of composition on pNets in previous
work [16]. We provide here a (new) direct definition of composition for OA.

Definition 3 (Composition of OA). Let Ac “ 〈Sc, s0c, Vc, σ0c, Jc, Tc〉 be an
OA and k one of its holes, k P Jc. Let Ap “ 〈Sp, s0p, Vp, σ0p, Jp, Tp〉 be another
OA, the composition AcrAp{ks that fills the hole k of the context OA Ac with the
parameter OA Ap is defined as follows:

AcrAp{ks ::“ 〈Sc ˆ Sp, ps0c, s0pq, Vc Z Vp, σ0c Z σ0p, Jp Z Jc r tku, T 〉
with

T “
$
&
% ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈
β
jPJ 1

pZJ 1
c

j , gc ^ gp ^ αp “ βk, ψc Z ψp
psc, spq αcÝÑ `

s1c, s1p
˘

ˇ̌
ˇ̌
ˇ̌ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈
β
jPJ 1

cZtku
j , gc, ψc

sc
αcÝÑ s1c

PTc, ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈
β
jPJ 1

p

j , gp, ψp

sp
αpÝÝÑ s1p

PTp
,
.
-

Y
$
&
% ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈

β
jPJ 1

c
j , gc, ψc

psc, spq αcÝÑ `
s1c, sp

˘

ˇ̌
ˇ̌
ˇ̌ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨
β
jPJ 1

c
j , gc, ψc

sc
αcÝÑ s1c

P Tc, k R J 1c, sp P Sp
,
.
-

The first OA decides when the second can evolve by involving its hole in a
transition: the action emitted when Ap makes a transition is synchronised with

124



Refinements for Open Automata 7

p0

put(m)

compute

{}, T rue, (m← new())

p1

{}, T rue, ()
compute

{}, T rue, (Res← f(m))

put(Res)

{}, T rue, ()
get(m)

{}, T rue, ()

q2 q1

q0

Fig. 3. (Left) A producer. It produces one item at a time and pushes it. (Right) A
consumer. It pops an item, does some work and pushes the result.

τ
{}, T rue, (m← new())

{Q 7→ compute}, T rue, ()
τ

{Q 7→ put(m)}, T rue, ()
print(m)

{Q 7→ put(m)}, T rue, ()
print(m)

pop

{Q 7→ get(M[f])}, l 6= f, (f← (f+ 1)%N)

{Q 7→ compute}, T rue, ()
τ

push

{}, (l+ 1)%N 6= f, (M[(l+ 1)%N]← m; l← (l+ 1)%N)

{Q 7→ get(M[f])}, l 6= f, (f← (f+ 1)%N)
pop

00 10

l← 0
f← 0

Fig. 4. OA for filling the hole P in prod-cons: prod-cons[P/producer].

the action of the hole k in transitions of Ac. The condition αp “ βk ensures that
the action emitted by the automaton Ap filling the hole is the one expected in
the hole k of the open automaton Ac.

Example 2. Fig. 3 shows a producer automaton and a consumer automaton that
can be used to fill the holes P and Q of prod-cons defined in Example 1.

The OA on Fig. 4 is the composition of the system in Fig. 2 and the producer
in Fig. 3 (left). The composition consists of two states (the product of the states
of both automata). The transitions from one state to another come from the
synchronisation of the transitions of the encompassing automaton with those of
the producer filling the hole P, this is why there is no more action from hole P in
the composed automaton. Only elements related to the hole P are changed and
in particular, transitions involving Q remain unchanged. [\

2.3 Relations between Open Automata

Establishing semantic equivalences and simulation relations between different
OA requires to compare their states. For this purpose, we suppose that the
variables of the two OA are disjoint (a renaming of variables may have to be
applied before comparing OA states).

Definition 4 (Relation on open automata configurations). Suppose V1
and V2 are disjoint. A relation on configurations of two OA 〈S1, s01, V1, σ01, J1, T1〉
and 〈S2, s02, V2, σ02, J2, T2〉 is a function R : S1 ˆ S2 Ñ FV1ZV2

.
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The idea is that two states are related depending on the satisfiability of the
expression relying their variables, i.e., if the variables of the OA verify a certain
formula. In other words, to each pair of states is attached a boolean formula that
may refer to the variables of each of the two OA, stating whether the two states
are related or not. Additionally, we say that the relation R relates the initial
states of the automata if: σ01 Z σ02 $ Rps01, s02q. We illustrate such a relation
over automata with bisimulation relation below.

2.4 A Bisimulation for Open Automata

Bisimulation between OA was defined in [6]. We show below the principles of this
bisimulation. We first recall the usual definition of bisimulation. Bisimulation can
be defined as follows for standard transition systems:

Definition 5 (Classical Bisimulation). A bisimulation is a relation R such
that if s R t then:

@l s1, s lÝÑ s1 ùñ Dt1. s1 R t1 ^ t lÝÑ t1

and conversely

@l t1, t lÝÑ t1 ùñ Ds1. s1 R t1 ^ s lÝÑ s1
i.e.

s R t

s1
l

R t1
l

s and t are bisimilar, written s „ t iff there is a bisimulation relation R such
that s R t. If only the first one of the two implications above is verified, we say
that s simulates t and denote it s ď t.

A bisimulation relation relates pair of states and ensures that any behaviour
of one automaton can be performed by the other one while staying in relation.
We informally explain here the symbolic nature of the bisimulation for OA and
the related complexity of its definition. The notion of symbolic bisimulation, as
it was introduced in [15], is aimed at computing bisimulation of value-passing
systems, i.e. systems made of processes exchanging data with their environment
and between processes, where data are values from a possibly infinite domain.
The presence of holes in fact raises no strong difficulty but the variables must
be handled carefully. Consider the two following simple OA:

s

t

t1

¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈th ÞÑβpxqu, x ă 0, py Ð ´xq
αpxq

¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨thÞÑβpxqu, x ě 0, py Ð xq
αpxq

s2 t2

¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨th ÞÑβpxqu,True, pz Ð xq
αpxq

We should be able to consider these two OA as bisimilar. Both can input
any βpxq input on their hole and stores the value of x, emitting αpxq along the
transition. The difference is the way x is stored. We can then define a configu-
ration relation R such that Rps, s2q is true and Rpt, t2q holds when z ě 0 and
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y “ z, while Rpt1, t2q holds when z ă 0 and y “ ´z. This illustrates relation on
configurations, but also shows that bisimulation on OA is more complex than
in the classical case. Indeed, we need two transitions on the left OA to simulate
a single one on the right OA. We should check that these two transitions cover
all the cases accepted by the right hand side OA, and of course that destination
states are in relation. Formally, FH-bisimulation is defined as follows [6]:

Definition 6 (Strong FH-bisimulation).
Suppose 〈S1, s01, V1, σ01, J1, T1〉 and 〈S2, s02, V2, σ02, J2, T2〉 are OA with identi-
cal holes of the same sort, with disjoint sets of variables (V1 X V2 “ H).

Then R, a relation on configurations of OA, is an FH-bisimulation if and
only if for any states s P S1 and t P S2, we have the following:

– For any open transition OT in T1: ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨βjPJ
1

j , gOT , ψOT

s
αÝÑ s1

there exists an indexed

set of open transitions OT xPXx Ď T2: ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈βjPJxjx , gOTx
, ψOTx

t
αxÝÝÑ tx

such that the follow-

ing holds

Rps, tq ^ gOT ùñ
ł

xPX

`@j.βj “ βjx ^ gOTx
^ α“αx ^R

`
s1, tx

˘ ttψOTZψOTx
uu˘

– and symmetrically any open transition from t in T2 can be covered by a set
of transitions from s in T1.

Two automata are bisimilar if there exists a strong FH-bisimulation R that
relates their initial states.

Note that this definition matches an open transition t1 to a family of covering
open transitions txPX2x . Intuitively, this means that for every pair of related states
ps1, s2q of the two automata, and for every transition of the first automaton
from s1, there is a set of matching transitions of the second automaton from
s2 such that the produced action match, the actions of the same holes and the
successors are related after variable update. Technically, the following sections
do not rely on the definition of strong bisimulation on OA, but they follow the
same principles and in particular the same way to faithfully simulate an open
transition by a set of other open transitions.

2.5 Reachability

We finally define a new predicate abstracting state reachability for OA, it allows
us to reason on reachable states in an automaton. It can be seen as an abstraction
of the reachable states under the form of a predicate that must stay verified along
the execution of the OA.
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10 Rabéa Ameur-Boulifa et al.

Definition 7 (Reachability). For any OA A “ 〈S, s0, V, σ0, J, T〉, a reacha-
bility predicate XA : S Ñ FV is any predicate on states that is valid on initial
state, and preserved across transitions:

σ0 $ XAps0q ^ @t “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β
jPJ 1
j , g, ψ

s
αÝÑ s1

P T, varsptq $ `
XApsq ^ g ùñ XA

`
s1
˘ttψuu˘

Reachability takes into account all paths, and can over-approximate the
reachable configurations. From an automation point of view, finding the most
precise reachability predicate for a given automaton is not decidable because of
the symbolic nature of OA, but only an over-approximation is necessary.

3 Simulation for Automata with the Same Holes

Similarly to FH-bisimulation [6] we are interested in finding simulation relations
between configurations of two OA that contain variables and holes. When deal-
ing with open systems it is common to define simulation in terms of a simulation
relation. We rely on a classical notion of simulation and perform the same ex-
tension as in [6], i.e., we start from a simulation relation and add holes and
symbolic. The idea is to consider two configurations related by a relation; if one
state can do a transition, then the other can also make this transition. Like
for bisimulation, a simulation relation characterises when two states are related,
and this characterisation is expressed as a predicate on the variables of the two
automata. Simulation defines conditions on a relation R such that Rps1, s2q is
a predicate (possibly involving variables of the automata) that is true when the
state s1 of A1 simulates the state s2 of A2.

However here we want to build a simulation relation that also guarantees that
no deadlock is introduced when refining the automaton. This property is quite
frequent in simulation relation, and referred to as lack of new deadlocks [19] or
complete simulation [22]. The notion of deadlock should however be specialised
to our OA. Indeed, it is not very useful to check the existence of a transition,
instead it makes more sense to use the guards to check if a transition can be
taken. We thus define a deadlock reduction criterion based on how the outgoing
transitions are guarded. As such, a simulation does not introduce deadlocks if
in the conditions where no transition is possible in the refined automaton, no
transition were already possible in the more general one. More formally, for any
pair of states s1 and s2 we introduce a criterion of the form:

@ps1, s2q P S1 ˆ S2,

V1 Z V2 $
ˆ
Rps1, s2q ^  

´ł

t1POTps1q
guardpt1q

¯
ùñ  

´ł

t2POTps2q
guardpt2q

¯˙

Which can be rewritten as:

@ps1, s2qPS1ˆS2, V1ZV2 $
ˆ
Rps1, s2q ùñ

´ł

t1POTps1q
guardpt1q

¯
_ 

´ł

t2POTps2q
guardpt2q

¯̇
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Both statements being equivalent, as each of them may reveal more intuitive
than the other in different situations, we use them interchangeably. We can now
state the definition of simulation between OA that have the same set of holes.

Definition 8 (Hole-equal simulation). Consider two OA with identical set of
holes: A1 “ 〈S1, s01, V1, σ01, J, T1〉 and A2 “ 〈S2, s02, V2, σ02, J, T2〉, the relation
on configurations R : S1 ˆ S2 Ñ FV1ZV2 is a hole-equal simulation from A1 to
A2 if the following conditions hold :

(1) σ01 Z σ02 $ Rps01, s02q
(2) @ps1, s2q P S1 ˆ S2,

@t1 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β
jPJ 1

1
1j , g1, ψ1

s1
α1ÝÑ s11

P OTps1q. D
¨
˝t2x“¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈

β
jPJ 1

2x
2xj , g2x, ψ2x

s2
α2xÝÝÑ s12x

˛
‚
xPX

P OTps2q.

`@x P X, J 12x “ J 11
˘^

V1ZV2Zvarspt1q $ Rps1, s2q^g1 ùñ
ł
xPX

¨
˝
α2x “ α1 ^

ľ

jPJ 1
1

β2xj “ β1j^

g2x ^R
`
s11, s12x

˘ttψ2x Z ψ1uu

˛
‚

(3) Deadlock reduction:

@ps1, s2qPS1ˆS2, V1ZV2 $
ˆ
Rps1, s2q ùñ

´ł

t1POTps1q
guardpt1q

¯
_ 

´ł

t2POTps2q
guardpt2q

¯̇

If there is a hole-equal simulation from A1 to A2, then we say that A2 simulates
A1; we denote it A2 ď A1.

The first and second conditions coincide with the natural way to prove induc-
tively that an automaton simulates another by starting with the initial state. The
third condition ensures that simulation prevents the introduction of deadlocks.
Similarly to bisimulation, the second condition states that, for any transition
of the simulating automaton A1, it corresponds to a transition of the automa-
ton A2 that does the same thing and ends up in a similar state. However a
family is needed in A2 because of the symbolic nature of transitions, and be-
cause depending on the values of the variables, t1 may correspond to different
transitions in A2. Our definition captures a simple simulation for OA with the
same holes that is more expressive than a strict simulation since it matches a
transition with a family of transitions. For example, with such a relation we are
able to check the simulation between two OA that differ by duplicated states,
removed duplicated transitions, reinforced guards, different variables, etc. We
will show in Section 5 that this simulation relation has good properties in terms
of transitivity, compositionality, and reflexivity.

Example 3. To illustrate the simulation of OA, we consider a variation on the
prod-cons example. Namely, we suppose that the two processes P and Q com-
municate through a one-place buffer. Fig. 5 shows the OA modelling this sim-
pler version of the system, that we refer to as simprod-cons. We can easily
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12 Rabéa Ameur-Boulifa et al.

check that this automaton simulates the one of Fig. 2. Indeed, one can see that
R “ tpr0, s0q ÞÑl “ f, pr0, s1qÞÑf “ l ` 1%Nu is a simulation relation. It follows
that simprod-cons ď prod-cons. [\

The simulation relation defined above is insufficient in the setting of compo-
sition which is the main advantage of the OA-based approach. Indeed, it should
be possible to refine an automaton by filling its hole, providing a concrete view
of a part of the application that was not specified originally. More generally, it
should be possible to relate automata that do not have the same holes because
composition is a crucial part of system specification. However, filling holes can
result in a system with more or less holes than the original system because the
plugged subsystem can contain itself many holes. Next section defines a more
powerful simulation relation able to reason on automata with different sets of
holes.

4 A Simulation Relation that Takes Holes into Account

This section extends the preceding relation to automata where the set of holes
is not the same. This is particularly useful to state whether the automaton
after composition is a simulation of the original automaton or not. Indeed, when
composing the set of holes changes. Being able to compare automata with only
some of their holes in common seems useful in general.

One major challenge in the extension of simulation to different sets of holes
is to maintain a form of transitivity while being able to take into account the
actions of some of the holes. A naive definition of simulation would ensure that
only the holes that are identical in the two OA are taken into account in the
simulation. Unfortunately, considering all the common holes does not ensure
transitivity of the simulation for the following reason. If A1 simulates A2 and A2

simulates A3, and one hole j appears in A3 and in A1 but not in A2 then we have
no guarantee on the way A1 and A3 take the actions of this hole into account,
thus a simulation between and A1 and A3 would require conditions involving
actions of the hole j which cannot be ensured. The way we solve this issue is
to remember in the simulation relation which holes have been compared. This
makes the relation parameterised by a subset of the set of holes that belong to
the two automata that we want to take into account. This way, in the example

s0
s1

pop
{Q 7→ get(M)}, T rue, ()

τ
{P 7→ compute}, T rue, ()

τ
{Q 7→ compute}, T rue, ()

τ
{P 7→ compute}, T rue, ()

τ
{Q 7→ compute}, T rue, ()

print(m)

{Q 7→ put(m)}, T rue, ()
print(m)

{Q 7→ put(m)}, T rue, ()

push
{P 7→ put(m)}, T rue, (M← m)

Fig. 5. The simprod-cons OA: the system using one-place buffer.
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above, we would have no guarantee on actions the hole j by transitivity but can
state a simulation relation with guarantees on the actions of the other holes.

In the following definition we add a parameter H which is the set of holes
tracked by the simulation relation and adapt the definition by ignoring actions
of the holes that are not in H.

Consequently, there is no guarantee related to the actions of the holes outside
H. We provide compositionality properties when plugging an automaton inside
a hole in H but cannot state anything when plugging an automaton outside H.
The principle is that any property concerning holes that are not in H should be
proven specifically for the considered automaton or the considered composition
of automata.

Definition 9 (Hole-tracking simulation). For two OA
A1 “ 〈S1, s01, V1, σ01, J1, T1〉 and A2 “ 〈S2, s02, V2, σ02, J2, T2〉, A1 is a simula-
tion of A2 tracking holes H, noted A1 ďH A2, with H Ď J1 X J2, if there is a
relation on configurations R : pS1 ˆ S2q Ñ FV1ZV2

such that6:
(1) σ01 Z σ02 $ Rps01, s02q
(2) @ps1, s2q P S1 ˆ S2,

@¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β
jPJ 1

1
1j , g1, ψ1

s1
α1ÝÑ s11

P OTps1q,D
¨
˝¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β

jPJ 1
2x

2xj , g2x, ψ2x

s2
α2xÝÝÑ s12x

P OTps2q
˛
‚
xPX

,

`@x P X, J 12x XH “ J 11 XH
˘^

V1 Z V2 Z varspt1q $¨
˝Rps1, s2q ^ g1 ùñ

ł
xPX

¨
˝
α1 “ α2x ^

ľ

jPJ 1
1XH
β1j “ β2xj^

g2x ^R
`
s11, s12x

˘ttψ1 Z ψ2xuu

˛
‚
˛
‚

(3) Deadlock reduction:

@ps1, s2qPS1ˆS2, V1ZV2 $
ˆ
Rps1, s2q ùñ

´ł

t1POTps1q
guardpt1q

¯
_ 

´ł

t2POTps2q
guardpt2q

¯̇

Note that every action of the holes outside H is unconstrained according to the
simulation relation.

Property 1 (Relating simulations). Hole-equal simulation is a particular case of
hole-tracking simulation when J1 “ J2 “ H.

In particular, if an OA has no hole, the two definitions are equivalent and
result in a “symbolic simulation”, if additionally there is no variable in the OA,
this corresponds to classical simulation.

Example 4. Consider the automata of Examples 1 and 3. As we saw above,
simprod-cons ď prod-cons, therefore prod-cons ďtP,Qu simprod-cons.
6 Note that the definition below is identical to the hole equal simulation except XH

is added in a few places.
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Property 2 (Tracked holes). By construction, if an automaton is the simulation
of another one, it is also a simulation by tracking less holes.

A1 ďH A2 ^H 1 Ď H ùñ A1 ďH1 A2

Now that we have a simulation relation that takes both variable parame-
ters and process parameters into account, we would like to ensure that it has
properties one would expect for a simulation relation.

5 Properties of our Simulation Relations

Before reasoning on the properties of simulation, we need to introduce one ad-
ditional notion that characterises when the composition of two automata does
not introduce new blocked transitions.

5.1 Non-blocking Composition

Unfortunately, the deadlock reduction property in the definition of simulation is
not compositional: the composition operator can itself introduce a deadlock. In
other words, when filling the hole of two related automata with a third one, even
if there is a deadlock reduction between the two original automata, there might
not be a deadlock reduction in the composed ones. The same problem may arise
when two related automata are composed in the same hole of a third one.

This creates a conflict between deadlock reduction and the properties involv-
ing composition. We call non-blocking composition a composition that can safely
be used to compose OA that are involved in a deadlock reducing relation.

Definition 10 (Non-blocking composition). Consider two OA:
A1 “ 〈S1, s01, V1, σ01, J1, T1〉 and A2 “ 〈S2, s02, V2, σ02, J2, T2〉. Let A be the
OA resulting from the composition A “ A1rA2{ks “ 〈S, s0, V, σ0, J, T〉. The
composition A1rA2{ks is non-blocking if A has a reachability predicate such that,
for each reachable configuration, if there is a possible transition in A1 then there
is a possible transition in A:

@s “ ps1, s2q P S, V Z
ě

tPOTps1q
varsptq $

ˆ
XApsq ^

ł

tPOTps1q
guardptq ùñ

ł

tPOTpsq
guardptq

˙

Like in the definition of simulation (Definition 8) we use guards to ensure that
the transition can occur. In general, one would not want to only consider non-
blocking composition as it may reveal a bit restrictive, but it is the best necessary
condition that we could identify for compositionality of simulation. It will be
used to prove composition theorems given below. In absence of non-blocking
composition, simulation may also be checked specifically for a given composed
automaton.
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5.2 Properties

We now state the properties of our simulation, their formal proofs can be found in
the appendices. We express these properties in terms of hole-tracking simulation
because, thanks to Property 1 all the properties of hole-tracking simulation are
also valid for hole-equal simulation. The first crucial theorem of simulation is
that it is a preorder on the set of OA. This latter enables stepwise refinement.

Theorem 1 (Simulation is a preorder). Hole-tracking simulation is reflexive
and transitive: it is a preorder on the set of OA.

Proof sketch. The relationďH is reflexive, A ďH A. This is shown by considering
the relation R such that Rps1, s2q fi s1 “ s2 ^

ľ

vPvarsps1q
v “ v we can prove the

conditions for Definition 9. Appendix A gives the proof of transitivity. It is done
classically by identifying the relation between A1 and A3 that is a simulation.
What is less classical is the definition of this relation because it is a boolean
formula. For each couple of states s1 and s3 of A1 and A3 we build a formula
that defines the simulation. To do this, we take the disjunction of formulas
relating s1 and s3, and passing by all states s2 of A2. More precisely, we define
a relation of the following form:

R13ps1, s3q “
ł

s2PS2

pR12ps1, s2q ^R23ps2, s3qq

We then prove that this relation is a simulation, according to Definition 9. [\
The next theorem states that if two automata are in simulation relation and

the same automaton is placed in the same hole of the two automata, then the
simulation is preserved. This is the first step toward proving that simulation
is compositional in the sense that it is sufficient to prove simulation for the
composed automata separately to obtain a simulation relation.

Theorem 2 (Context refinement). Let A1, A2 and A3 be three OA with
A1 ďH A2. Let J3 be the set of holes of A3 and suppose that k P H. Suppose
additionally that A1rA3{ks is non-blocking. We have:

A1rA3{ks ďJ3ZHrtku A2rA3{ks
Proof sketch. The proof relies on a simulation relation that we consider is the
one that makes A1 and A2 similar, complemented with identity of configura-
tions for A3. Then, by construction, all transitions of the composed automaton
A1rA3{ks are specified by open transitions of A1. For the transitions that do not
involve hole k, the transition of A1rA3{ks is the same and simulation between
A1 and A2 allows us to conclude directly. If the hole k is involved the considered
relation implies that valuations in A3 are equal (i.e., the value for each variable
are the same in both valuations), after a transition we should obtain “equal” val-
uations because post-conditions are deterministic. The requirement “A1rA3{ks
is non-blocking” ensures the deadlock reduction property holds. More precisely,
if A1rA3{ks is stuck, then A1 is stuck, and thus A1rA2{ks is also stuck. [\
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16 Rabéa Ameur-Boulifa et al.

Example 5. Consider again the prod-cons and simprod-cons automata given
in the examples above. Since prod-cons ďtP,Qu simprod-cons, then according
to Theorem 2, prod-cons[producer/P] ďtQu simprod-cons[producer/P]. The
automaton of prod-cons[producer/P] is shown in Fig. 4. The automaton re-
sulting from the composition of simprod-cons and producer is bigger and not
shown here. [\
Theorem 3 (Congruence). Let A1, A2 and A3 be three OA with A2 ďH A3.
Let J1 be the set of holes of A1 and suppose that k P J1. Suppose additionally
that the composition A1rA2{ks is non-blocking. We have:

A1rA2{ks ďJ1ZHrtku A1rA3{ks
Consequently, as the simulation is transitive we can compose the previous

theorems and state the following:

Theorem 4 (Composability). Let A1, A2, A3 and A4 be four OA with A1 ďH
A2 and A3 ďH1 A4. Suppose that k P H. We have:

A1rA3{ks ďHZH1rtku A2rA4{ks
Example 6. As an example of the use of this theorem, if we design a refined ver-
sion of the producer process of Example 2 called Refproducer. According to The-
orem 4, we have prod-cons[producer/P]ďtQu simprod-cons[Refproducer/P].

Note that the substitution operation can be extended to a multiple substitu-
tion that fills several holes at the same time, and the theorems can be adapted
accordingly.

6 Related Work

The origins of refinement are in the approach of programming that aims to
provide solid foundations for building correct programs [12]. Many work con-
tributed to the development of elaborated notions of refinement in various area
(e.g. [7,1,10,8]). In the context of process algebra, refinement between processes
can be defined in terms of simulations relation (e.g. ([18,21]). However, the con-
cept of simulations presented so far has focused on the refinement of systems that
are inherently closed, i.e., systems which are bounded and without environment,

The simulation ensures the preservation of safety properties as deadlock-
freeness and, more generally, all linear temporal logic properties [1,19]. The dif-
ference between the existing refinement principles have been studied in [13], for
example the authors explain in what sense failure semantics is different from
(bi)simulation in the compared systems and properties ensured. In this paper
we particularly focus on the compositionality of simulation-based refinement.

There are not a lot of works that study refinement for open systems. Defin-
ing refinement of open systems as trace inclusion is addressed as a notion of
subtyping in type theory (e.g. [14,9]). The definition of refinement is based on a
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connection between session types and communicating automata theories – a no-
tion of session automata based on Communicating Finite-State Machines, that
are used for modelling processes communicating through FIFO channels. The
refinement of open systems is also defined in terms of alternating simulation
[4,3]. Alternating simulation is originating from the game theory [2], it allows
the study of relation between individual components by viewing them as alter-
nating transition systems. In particular, a refinement of game-based automata
expresses that the refined component can offer more services (input actions) and
fewer service demands (output actions). However, the composition of such au-
tomata may lead to illegal states, where one automaton issues an output that is
not acceptable as input in the other one. The theory of alternating simulation
provides an optimistic approach to compute compatibility between automata
based on the fact that each automaton expects the other to provide legal inputs,
i.e., two components can be composed if there is an environment where they can
work together. Our approach has some commonalities with the above mentioned
simulation [3]: both are process-oriented approaches even if they are not based
on the same notion of simulation, and both include in the model how to com-
pose and interact with processes that are accepted as parameters. Nevertheless,
they differ in that our approach focuses on the compositional properties of the
simulation, and not on the fact that entities can be composed.

Previous works on OA focused on equivalence relations compatible with com-
position. In [17], a computable bisimulation is introduced, while in [6] a weak
version of the bisimulation is introduced. In this paper we tackle the refinement
relation in the form of simulation, as is the case for the corresponding relations
on labelled transition systems [8]. Unlike the standard simulation we deal with
symbolic and open models. In [24], the authors exploit transition systems to
reason about the systems that are partially specified by using variables, making
the state space potentially infinite.

Some work target component-based refinement with the concern of preserving
deadlock freedom (e.g. [11,19]). These works are not concerned with the theory
of open symbolic systems, and therefore do not focus on the same modularity as
we do, in particular we provide preservation of refinement by composition.

7 Conclusion

In this article we investigated the notion of refinement for a symbolic and open
model: open automata. OA are convenient for compositional software verifica-
tion. Indeed, OA model parallel systems that are parameterised both by the use
of variables and by the possibility to compose automata. The formalism supports
compositional specification through the simulation paradigm. In this paper, we
introduce a refinement relation between open automata. It relies on a simulation
relation between the two automata; it specifies that the refined process must fol-
low the behaviour of the simulated one. We finally showed that simulation is a
preorder that is preserved by composition, both when filling a hole and when
placing automata in comparable contexts.
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A Proof of Transitivity for Refinement (Theorem 1)

If A1 ďH A2 and A2 ďH1 A3, then A1 ďHXH1 A3.

Proof. If A1 ďH A2 then there is R12 a relation between states of A1 and of A2;
If A2 ďH1 A3 then there is R23 a relation between states of A2 and of A3. We
build a relation between states of A1 and of A3 as follows: for each pair of states
s1, s3, for each state s2 such that R12 relates s1 and s2, and R23 relates s2 and
s3. Let R13 be the relation:

R13ps1, s3q “
ł

s2PS2

pR12ps1, s2q ^R23ps2, s3qq

We will show that A1 ďHXH1 A3 by exhibiting R13 as a hole-tracking simu-
lation of A1 by A3.

We have to prove that the relation R13 satisfies the three conditions of the
definition of a refinement of OA.

1. Firstly, we have to R13 satisfies initial configurations:

σ01 Z σ03 $ R13ps01, s03q
By knowing that substitutions only have an effect on the variables of the
OA they belong to, they also produce terms containing only variables of the
OA they belong to. We have:

pσ01 Z σ02 $ R12ps01, s02qq ^ pσ02 Z σ03 $ R23ps02, s03qq ùñ
R12ps01, s02qttσ01 Z σ02uu ^R23ps02, s03qttσ02 Z σ03uu ùñ

R12ps01, s02qttσ01 Z σ02 Z σ03uu ^R23ps02, s03qttσ01 Z σ02 Z σ03uu ùñ
R12ps01, s02q ^R23ps02, s03qloooooooooooooooooomoooooooooooooooooon

ùñ R13ps01,s03q
ttσ01 Z σ02 Z σ03uu

Since σ02 has no effect on variables of s01 and s03 thus we get the expected
result.

2. Secondly, we need to prove that for any open transition t1 in T1 originating
from s1:

¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β
jPJ 1

1
1j , g1, ψ1

s1
α1ÝÑ s11

P OTps1q

there exists an indexed family of OTs originating from s3:

V1 Z V3 Z varspt1q $
¨
˝R13ps1, s3q ^ g1 ùñ

ł
zPZ

¨
˝
α1 “ α3z ^

ľ

jPJ 1
3zXpHXH1q

β1j “ β3jz^

g3z ^R12

`
s11, s13z

˘ttψ1 Z ψ3zuu

˛
‚
˛
‚

The proof of this simulation step follows the same principles as the one given
in [6] for the proof of transitivity of bisimulation7. It relies on the fact that

7 In particular, the bisimulation relation exhibited for proving transitivity is the same.
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one open transition of A1 is simulated by a family of open transitions of
A2, and one open transition of A2 is simulated by a family of open transi-
tions of A3. Transitivity leads to a doubly indexed family of simulating open
transition.

3. Lastly, we have to prove the satisfaction of the deadlock reduction condition.
To build R13 we need to rely on the disjunction of all possible paths to relate
s1 and s3, which leads to

R13ps1, s3q “
ł

pPP
pR12ps1, s2pq ^R23ps2p, s3qq

Consider any ps1, s3q P R13 there is a set of states ps2pqpPP of A2 relating s1
and s3.
First, according to the relation between A1 and A2 OA, for all ps1, s2pq P
S1 ˆ S2 we have:

V1 Z V2 $ R12ps1, s2pq ùñ
ł

t1POTps1q
guardpt1q _  p

ł

t2pPOTps2pq
guardpt2pqq

Second, according to the relation between A2 and A3 OA, for all ps2p, s3q P
S2 ˆ S3 we have:

V2 Z V3 $ R23ps2p, s3q ùñ
ł

t1POTps2pq
guardpt2pq _  p

ł

t3POTps3q
guardpt3qq

With the conjunction of both, we get:

V1 Z V2 Z V3 $ R12ps1, s2pq ^R23ps2p, s3q ùñł

t1POTps1q
guardpt1q _  p

ł

t3POTps3q
guardpt3qq

This is valid for all s2p P ps2pqpPP , then we have:

V1 Z V2 Z V3 $
ł

pPP
pR12ps1, s2pq ^R23ps2p, s3qq

loooooooooooooooooooomoooooooooooooooooooon
R13ps1,s3q

ùñ

p
ł

t1POTps1q
guardpt1qq _  p

ł

t3POTps3q
guardpt3qq

By removing the A2 variables that have not effect on A2 et A3, we get the
desired result:

V1 Z V3 $ R13ps1, s3q ùñ p
ł

t1POTps1q
guardpt1qq _  p

ł

t3POTps3q
guardpt3qq

[\
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B Proof of Context Refinement (Theorem 2)

Suppose that A1 ďH A2, k P H and that A1rA3{ks is non-blocking. We
have:

A1rA3{ks ďJ3ZHrtku A2rA3{ks

Pictorially, the theorem states the following result:

≤
=⇒ ≤

Proof. Let us denote by A13 (resp. A23) the OA resulting from A1rA3{ks (resp.
A2rA3{ks), to prove the theorem it is sufficient to prove that there exists a
relation between states of the two OA that satisfies the conditions of Defini-
tion 9. We denote A1 “ 〈S1, s01, J1, V1, σ01, T1〉, A2 “ 〈S2, s02, J2, V2, σ02, T2〉
and A3 “ 〈S3, s03, J3, V3, σ03, T3〉. The proof requires to rename the variables of
one instance of the two A3 automata to avoid clashes in variable names (this is
required by the definition of refinement). In practice we will use superscripts 1

and 2 to distinguish elements of the two instances of A3.
Let R be the refinement relation relating states of A1 and A2. Let us denote

with t1 and t2 the elements of A1 and A2 respectively. Consider any two states
s13 “

`
s1, s

1
3

˘
and s23 “

`
s2, s

2
3

˘
(s13 and s23 are the same with renaming). We

define a relation R1 relating states of s13 and s23 as follows:

R1ps13, s23q “ Rps1, s2q ^XA13ps13q ^
ľ

v3PV3

v13 “ v23 ^ s13 “ s23

We want to prove that pR1, H Z J3 r tkuq is a hole-tracking simulation of
A13 and A23. In the following we denote H 1 “ H Y J3 r tku.
1. First, we have to prove the relation for initial states:

σ013 Z σ023 $ R1ps013, s023q
with σ013 “ σ01 Z σ1

03, σ023 “ σ02 Z σ2
03, s013 “ ps01, s103q, and s023 “

ps02, s202q.
By using the fact that R relates initial configurations of A1 and A2, we have:

pσ01 Z σ02 $ Rps01, s02qq
Considering that initial valuations σ1

03 and σ2
03 associate the same values to

the “same” variables modulo renaming, so the following holds:˜ ľ

v3PV3

v13 “ v23 ^ s13 “ s23

¸
  
σ1
03 Z σ2

03

((
.
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Additionally, because the domains of the substitution function are disjoint,
the substitution function has an effect only on the related elements, we get:

pσ01 Z σ02 $ Rps01, s02qq

ùñ Rps01, s02qttσ01 Z σ02uu ^
˜ ľ

v3PV3

v13 “ v23 ^ s13 “ s23

¸
  
σ1
03 Z σ2

03

((

ùñ
˜
Rps01, s02q ^

ľ

v3PV3

v13 “ v23 ^ s13 “ s23

¸
  
σ01 Z σ02 Z σ1

03 Z σ2
03 Z σ013

((

ùñ σ013 Z σ023 $ R1ps013, s023q
The last step comes from the additional fact that XA13

ps013q.
2. Second, we need to prove for any open transition t13 in T13 originating from
s13:

¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨β
jPJ 1

13
13j , g13, ψ13

s13
α13ÝÝÑ s113

P OTps13q

there exists an indexed family t23x of OTs originating from s23 that simulate
it:

¨
˝ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨β

jPJ 1
23x

23xj , g23x, ψ23x

s23
α23xÝÝÝÑ s123x

P OTps23q
˛
‚
xPX

such that
`@x P X, J 123x XH 1 “ J 113 XH 1

˘
and

V13 Z V23 Z varspt13q $

R1ps13, s23q ^ g13 ùñ
ł
xPX

¨
˝
α13 “ α23x ^

ľ

jPJ 1
23xXH1

β13j “ β23xj^

g23x ^R1
`
s113, s123x

˘ttψ13 Z ψ23xuu

˛
‚

Recall that by definition of composition and OA refinement we have:

V13 “ V1 Z V 1
3 and V23 “ V2 Z V 2

3

H 1 Ď J3 Z pJ1 X J2qr tku “ pJ3 Z J1 r tkuq X pJ3 Z J2 r tkuq

First of all, we have by hypothesis A1 ďH A2, then for any open transition
t1 in T1 originating from s1:

¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β
jPJ 1

1
1j , g1, ψ1

s1
α1ÝÑ s11

P OTps1q
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24 Rabéa Ameur-Boulifa et al.

there exists an indexed family of OTs originating from s2:

¨
˝ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β

jPJ 1
2x

2xj , g2x, ψ2x

s2
α2xÝÝÑ s12x

P OTps2q
˛
‚
xPX

such that @x P X,J 12x XH “ J 11 XH and

V1 Z V2 Z varspt1q $

Rps1, s2q ^ g1 ùñ
ł
xPX

¨
˝
α1 “ α2x ^

ľ

jPJ 1
2xXH

β1j “ β2xj^

g2x ^R
`
s11, s12x

˘ttψ1 Z ψ2xuu

˛
‚ p˚q

Consider any transition t13 in A13. Based on the definition of composition
t13 can be obtained from two different cases, we will consider the two cases
separately.

First case: Both automata perform a transition. The transition t13 is ob-

tained by the composition of transitions t1 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈
β
jPJ 1

1
1j , g1, ψ1

s1
α1ÝÑ s11

P OTps1q and

t13 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨
pβ1

3jqjPJ
11
3 , g13 , ψ

1
3

s13
α1

3ÝÑ s13
1 P OT

`
s13
˘

when k P J 11

The result is:

t13 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈
β
jPJ 1

1rtku
1j Z pβ1

3jqjPJ
11
3 , g1 ^ g13 ^ α1

3 “ β1k, ψ1 Z ψ1
3

`
s1, s

1
3

˘ α1ÝÑ
´
s11, s13

1¯ where k P J 11

We then obtain a family of OTs by the simulation of A1 by A2 (as stated
above). By hypothesis we have k P H, so in the case where k P J 11, we
deduce that k P J 12x we can then build a family of OTs txPX23x with the same
transitions of A3 (up to renaming) as those used to build t13.

t23x “
¨
˝ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β

jPJ 1
2xrtku

2xj Z pβ2
3jqjPJ

21
3 , g2x ^ g23 ^ α2

3 “ β2xk, ψ2x Z ψ2
3

`
s2, s

2
3

˘ α2xÝÝÑ
´
s12x, s23

1¯
˛
‚
xPX
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Recall that in this case k P J 11, so @x P X we have

J 123x XH 1 “ ppJ 12x r tkuq Z J21
3 q X pH Z J3 r tkuq

“ ppJ 12x X pH Z J3qq Z pJ21
3 X pH Z J3qqqr tku

“ ppJ 12x XHq Z pJ21
3 X J3qqr tku
since J3 X J 12x “ H and H X J21

3 “ H
“ ppJ 12x XHq Z J21

3 qr tku since J21
3 Ď J3

“ ppJ 11 XHq Z J11
3 qr tku since J11

3 “ J21
3 and J 11 XH “ J 12x XH

“ ppJ 11 XHq Z pJ11
3 X J3qqr tku since J11

3 Ď J3

“ pJ 11 X pJ3 ZHqq Z ppJ11
3 X pJ3 ZHqqr tku

since J3 X J 11 “ H and H X J11
3 “ H

“ `pJ 11 Z J11
3 qr tku

˘X ppJ3 ZHqr tkuq
“ J 113 XH 1

In this case the composition gives:

g13 ô g1 ^ g13 ^ α1
3 “ β1k and g23x ô g2x ^ g23 ^ α2

3 “ β2xk

As k P H we have β1k “ β2xk then we deduce:

g13 ^ α1
3 “ β1k ô g23 ^ α2

3 “ β2xk

The proof of the rest is based on the following facts:

(a) By construction of t13 and t23x we have α13 “ α1 and α23x “ α2x. So
we deduce: α1 “ α2x ñ α13 “ α23x.

(b) By composition we have also:

β
jPJ 1

13
13j “ β

jPJ 1
1rtku

1j Z pβ1
3jqjPJ

11
3 and β

jPJ 1
23

23xj “ β
jPJ 1

2xrtku
2xj Z pβ2

3jqjPJ
21
3

Therefore, we have for all j P J 113 (recall that J 113 “ J 123):

β13j “ β23xj ñ pj P J 11 ^ β1j “ β2xjq _ pj P J11
3 ^ β1

3j “ β2
3jq

(c) Considering β1
3j and β2

3j are the same (up to renaming) we have:

V 1
3 Z V 2

3 Z varspt13q $
ľ

v3PV3

v13 “ v23 ùñ
ľ

jPJ21
3

β1
3j “ β2

3j

Then we compose by disjunction with the following hypothesis (part of
formula p˚q).
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V1 Z V2 Z varspt1q $
ľ

jPJ 1
2xXH

β1j “ β2xj

V1 Z V2 Z V 1
3 Z V 2

3 Z varspt13q $
ľ

v3PV3

v13 “ v23 ùñ
ľ

jPJ 1
2xXH

β1j “ β2xj _
ľ

jPJ21
3

β1
3j “ β2

3j

ñ V13 Z V23 Z varspt13q $
ľ

v3PV3

v13 “ v23 ùñ
ľ

jPpJ 1
2xXHqZJ21

3

β13j “ β23xj

ñ V13 Z V23 Z varspt13q $
ľ

v3PV3

v13 “ v23 ùñ
ľ

jPppJ 1
2xXHqZJ21

3 qrtku
β13j “ β23xj

ñ V13 Z V23 Z varspt13q $
ľ

v3PV3

v13 “ v23 ùñ
ľ

jPpJ 1
23xXH1q

β13j “ β23xj

We can extend the valuation context of the variables to cover the variables
of the transitions t3 and the variables in V 1

3 and V 2
3 in the formula p˚q. By

using the statements resulting from the cases (a), (b) and (c), we get:

V13 Z V23 Z varspt13q $
Rps1, s2q^

`
g1 ^ g13 ^ α1

3 “ β1k
˘^

ľ

v3PV3

v13 “ v23 ùñ

ł
xPX

¨
˝
α13 “ α23x ^

ľ

jPpJ 1
23xXH1q

β13j“β23xj^

g2x ^R
`
s11, s12x

˘ttψ1 Z ψ2xuu

˛
‚^ g23 ^ α2

3 “ β2xk

That can be re-written as follows:

V13 Z V23 Z varspt13q $

Rps1, s2q^g13^
ľ

v3PV3

v13 “ v23 ùñ
ł
xPX

¨
˝
α13 “ α23x ^

ľ

jPJ 1
23xXH1

β13j “ β23xj^

g23x ^R
`
s11, s12x

˘ttψ1 Z ψ2xuu

˛
‚

Moreover, we have for any transition t3 in A3 relating s3 and s13 the following:

V13 Z V23 Z varspt13q $ľ

v3PV3

v13 “ v23 ^ s13 “ s23 ùñ
ľ

v3PV3

ψ13pv13q “ ψ13pv23q ^ s113 “ s213

Furthermore, according to the Definition 7 (reachability applied to the com-
posed automaton A1rA3{ks) we have, for all t13 P T13:

varspt13q $
`
XA13

ps13q ^ g13 ùñ XA13

`
s113

˘ttψ13uu
˘
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Thus, we get:

V13 Z V23 Z varspt1q X varspt13q $
Rps1, s2q ^ g13^XA13

ps13q ^
ľ

v3PV3

v13 “ v23 ^ s13 “ s23 ùñ

ł
xPX

¨
˚̊
˝

α13 “ α23x ^
ľ

jPJ 1
23xXH1

β13j “ β23xj^ g23x ^R
`
s11, s12x

˘ttψ1 Z ψ2xuu

^XA13

`
s113

˘ttψ13uu^
ľ

v3PV3

ψ13pv13q “ ψ13pv23q ^ s113 “ s213

˛
‹‹‚

From the two previous formulas, we get:

V13 Z V23 Z varspt13q $
Rps1, s2q ^ g13 ^XA13

ps13q^
ľ

v3PV3

v13 “ v23 ^ s13 “ s23 ùñ

ł
xPX

¨
˚̊
˝

α13 “ α23x ^
ľ

jPJ 1
23xXH1

β13j “ β23xj^ g23x ^XA13

`
s113

˘ttψ13uu^

R
`
s11, s12x

˘ttψ1 Z ψ2xuu ^
ľ

v3PV3

ψ13pv13q “ ψ13pv23q ^ s113 “ s213

˛
‹‹‚

Because of the independence of the substitution domains, we simplify and
get the expected formula:

V13 Z V23 Z varspt13q $

R1ps13, s23q ^ g13 ùñ
ł
xPX

¨
˝
α13 “ α23x ^

ľ

jPJ 1
23xXH1

β13j “ β23xj^

g23x ^R1
`
s113, s123x

˘ttψ13 Z ψ23xuu

˛
‚

Second case: Only the encompassing automaton performs a transition. t13

is obtained by the transition t1 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β
jPJ 1

1
1j , g1, ψ1

s1
α1ÝÑ s11

alone with the state s13 un-

changed, if k R J 11
t13 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈

β
jPJ 1

1
1j , g1, ψ1`

s1, s
1
3

˘ α1ÝÑ `
s11, s13

˘

As stated above, from the simulation of A1 by A2 we get a family of OTs
txPX2x . The composition of this family of OTs with the same transitions of A3

(up to renaming) as those used to build t13 produces a family of OTs txPX23x

in the form:

t23x “
¨
˝ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β

jPJ 1
2x

2xj , g2x, ψ2x`
s2, s

2
3

˘ α2xÝÝÑ `
s12x, s23

˘

˛
‚
xPX
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By hypothesis we have k P H, since k R J 11, we deduce k R J 12x.
@x P X we have:

J 123x XH 1 “ J 12x X pJ3 ZH r tkuq
“ `

J 12x XH
˘

since J 12x X J3 “ H^ k R J 12x
“ `

J 11 XH
˘

since J 11 XH “ J 12x XH
“ `

J 113 XH 1
˘

since J3 X J 11 “ H^ k R J 11
The proof of the rest of the formula follows the same steps as the previous
case the only argument that change is that by composition we obtain: g13 is
the same as g1 and g23x is the same as g2x and the actions of α13, resp. α23x,
is the same as α1, resp. α2x. Similarly β13j and β23xj that are the same as
β1j and β2xj respectively. We also apply the reachability definition but only
on the automaton A1

3. Lastly, we have to prove the satisfaction of the deadlock reduction condition,
i.e., for all ps13, s23q P S13 ˆ S23

V13 Z V23 $ Rps13, s23q^  p
ł

t13POTps13q
guardpt13qq ùñ  p

ł

t23POTps23q
guardpt23qq

By hypothesis the composition A1rA3{ks is non-blocking, then according to
the Definition 10 we have for all state s13:

V13Z
ě

t1POTps1q
varspt1q $

¨
˝XA13ps13q ^

ł

t1POTps1q
guardpt1q

˛
‚ ùñ

ł

t13POTps13q
guardpt13q

From this we can infer:

V13Z
ě

t1POTps1q
varspt1q $  p

ł

t13POTps13q
guardpt13qq ùñ  p

ł

t1POTps1q
guardpt1qq_ XA13ps13q

Furthermore, from the second hypothesis stating that A1 ďH A2, we have
for all ps1, s2q P S1 ˆ S2

V1 Z V2 $ Rps1, s2q^  p
ł

t1POTps1q
guardpt1qq ùñ  p

ł

t2POTps2q
guardpt2qq

From the two previous formula can deduce:

V13 Z V2 Z
ě

t1POTps1q
varspt1q $

Rps1, s2q^  p
ł

t13POTps13q
guardpt13qq ùñ  p

ł

t2POTps2q
guardpt2qq _  XA13

ps13q
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By definition of the composition of open automata, each guard of automaton
A23 is of the form guardpt23q “ guardpt2q ^ t, thus we have:

V23 $  p
ł

t1POTps2q
guardpt2qq ùñ  p

ł

t23POTps23q
guardpt23qq

From the two previous formula and by introducing the following tautology˜ ľ

v3PV3

v13 “ v23 ^ s13 “ s23

¸
, we get:

V13ZV23 $Rps1, s2q^XA13ps13q^
˜ ľ

v3PV3

v13“v23 ^ s13“s23
¸

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon
R1ps13,s23q

^ 
ł

t13POTps13q
guardpt13q

ùñ
¨
˝ 

ł

t23POTps23q
guardpt23q _  XA13

ps13q
˛
‚̂ XA13

ps13q ùñ  
ł

t23POTps23q
guardpt23q

which gives the expected result. [\

C Proof of Congruence (Theorem 3)

Suppose A2 ďH A3 and k P H. and the composition A1rA2{ks is non-
blocking. We have:

A1rA2{ks ďJ1ZHrtku A1rA3{ks
Pictorially, the theorem states the following result:

≤ ≤⇒
A2

A1
A1

k k
A3

A3

A2

Proof. Let us denote by A12 (resp. A13) the OA resulting from A1rA2{ks (resp.
A1rA3{ks), to prove the theorem it is sufficient to prove that there exists a rela-
tion between states of the two OA that satisfies the conditions of the Definition 9.

We denote A1 “ 〈S1, s01, J1, V1, σ01, T1〉 and
A2 “ 〈S2, s02, J2, V2, σ02, T2〉 and A3 “ 〈S3, s03, J3, V3, σ03, T3〉.

Let R be the refinement relation relating states of A2 and A3. Let us denote
with t2 and t3 the elements of A2 and A3 respectively. Consider any two states
s12 “

`
s11, s2

˘
and s13 “

`
s21, s3

˘
(s11 and s21 are the same with renaming). We

define a relation R1 relating states of s12 and s13 as follows:

R1ps12, s13q “ Rps2, s3q ^XA12ps12q ^
ľ

v1PV1

v11 “ v21 ^ s11 “ s21
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Let us denote H 1 “ H Y J1 r tku. We want to prove that pR1, H 1q is a hole-
tracking simulation of A12 and A13. As for the previous proof we deal with
cases:

1. First, we have to prove the relation for initial states:

σ012 Z σ013 $ R1ps012, s013q
with σ012 “ σ1

01 Z σ03, σ013 “ σ2
01 Z σ03, s012 “ ps101, s02q, and s013 “

ps201, s03q.
The proof of this point is similar to that of Theorem 2.

2. Second, we need to prove for any OT t12 in T12 originating from s12

¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨β
jPJ 1

12
12j , g12, ψ12

s12
α12ÝÝÑ s112

P OTps12q

there exists an indexed family t13x of OTs originating from s13 that simulates
it:

¨
˝ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨β

jPJ 1
13x

13xj , g13x, ψ13x

s13
α13xÝÝÝÑ s113x

P OTps13q
˛
‚
xPX

such that p@x P X, J 113x XH 1 “ J 112 XH 1q and

V12 Z V13 Z varspt12q $

R1ps12, s13q ^ g12 ùñ
ł
xPX

¨
˝
α12 “ α13x ^

ľ

jPJ 1
13xXH1

β12j “ β13xj^

g13x ^R1
`
s112, s113x

˘ttψ12 Z ψ13xuu

˛
‚

By definition of composition and OA refinement we have:

V12 “ V 1
1 Z V3 and V13 “ V 2

1 Z V3
H 1 “ H Z J1 r tku Ď J1 Z pJ2 X J3qr tku “

`
J1
1 Z J2 r tku

˘X `
J2
1 Z J3 r tku

˘

“ J12 X J13
We have by hypothesis A2 ďH A3, then for any open transition t2 in T2
originating from s2:

¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β
jPJ 1

2
2j , g2, ψ2

s2
α2ÝÑ s12

P OTps2q

there exists an indexed family of OTs originating from s3:

¨
˝ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈β

jPJ 1
3x

3xj , g3x, ψ3x

s3
α3xÝÝÑ s13x

P OTps3q
˛
‚
xPX
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such that @x P X,J 13x XH “ J 12 XH and

V2 Z V3 Z varspt2q $

Rps2, s3q ^ g2 ùñ
ł
xPX

¨
˝
α2 “ α3x ^

ľ

jPJ 1
3xXH

β2j “ β3xj^

g3x ^R
`
s12, s13x

˘ttψ2 Z ψ3xuu

˛
‚ p˚q

Consider any transition t12 in A12. Based on the definition of the composition
t12 can be obtained from two different cases, we will consider the two cases
separately.

First case: Both automata perform a transition. The transition t12 is ob-

tained by the composition of transition t2 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈
β
jPJ 1

2
2j , g2, ψ2

s2
α2ÝÑ s12

and a transition

t11 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨
pβ1

1jqjPJ
11
1 , g11 , ψ

1
1

s11
α1

1ÝÑ s11
1 when k P J1

1
1

The result:

t12 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈
β1
1j
jPJ11

1 rtku Z pβ2jqjPJ 1
2 , g11 ^ g2 ^ α1

1 “ β2k, ψ
1
1 Z ψ2

`
s11, s2

˘ α1
1ÝÑ
´
s11
1
, s12

¯ where k P J1
1
1

We then obtain a family of OTs by the simulation of A2 by A3 (as stated

above). By hypothesis we have k P H, so in the case where k P J1
1
1
, we

deduce that k P J 13x we can then build a family of OTs txPX13x with the same

transition, up to renaming, as the one used to build t12 (i.e., t11), where s21
1

is the same as s11
1

up to renaming.

t13x “
¨
˝ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈
pβ2

1jqjPJ
21
1 Z βjPJ 1

3xrtku
3xj , g3x ^ g21 ^ α2

1 “ β3xk, ψ3x Z ψ2
1

`
s21, s3

˘ α2
1ÝÑ
´
s21
1
, s13x

¯

˛
‚
xPX
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Recall that in this case k P J1
1
1
, so @x P X we have:

J 113x XH 1 “ ppJ 13x r tkuq Z J21
1 q X pH Z J1 r tkuq

“ ppJ 13x X pH Z J1qq Z pJ21
1 X pH Z J1qqqr tku

“ ppJ 13x XHq Z pJ21
1 X J1qqr tku
since J1 X J 13x “ H and H X J21

1 “ H
“ ppJ 13x XHq Z J21

1 qr tku since J21
1 Ď J1

“ ppJ 12 XHq Z J11
1 qr tku

since J11
1 “ J21

1 and J 12 XH “ J 13x XH
“ ppJ 12 XHq Z pJ11

1 X J1qqr tku since J11
1 Ď J1

“ pJ 12 X pJ1 ZHqq Z ppJ11
1 X pJ1 ZHqqr tku

since J1 X J 12 “ H and H X J11
1 “ H

“ `pJ 12 Z J11
1 qr tku

˘X ppJ1 ZHqr tkuq
“ J 112 XH 1

In this case the composition gives:

g12 ô g11 ^ g2 ^ α1
1 “ β2k and g13x ô g21 ^ g3x ^ α2

1 “ β3xk

As k P H we have α1
1 “ α2

1 then we deduce:

g11 ^ α1
1 “ β2k ô g21 ^ α2

1 “ β3xk

The proof of the rest is based on the following facts:

(a) By construction of t12 and t13x we have α12 “ α1
1 and α13x “ α2

1. Since
α1
1 and α2

1 are the same (up to renaming) we deduce: α12 “ α13x.

(b) By composition we have also:

β
jPJ 1

12
12j “ pβ1

1jqjPJ
11
1 rtkuZpβ2jqjPJ 1

2 and β
jPJ 1

13
13xj “ pβ2

1jqjPJ
21
1 rtkuZβjPJ 1

3xrtku
3xj

Therefore, we have for all j P J 112 (recall that J 112 “ J 113):

β12j “ β13xj ñ pj P J11
1 ^ β1

1j “ β2
1jq _ pj P J 12 ^ β2j “ β3xjq

(c) Considering β1
1j and β2

1j are the same (up to renaming) we have:

V 1
1 Z V 2

1 Z varspt12q $
ľ

v1PV1

v11 “ v21 ùñ
ľ

jPJ21
1

β1
1j “ β2

1j

We compose by disjunction with the following hypothesis (part of for-
mula p˚q).
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V2 Z V3 Z varspt2q $
ľ

jPJ 1
3xXH

β2j “ β3xj

V2 Z V3 Z V 1
1 Z V 2

1 Z varspt12q $
ľ

v1PV1

v11 “ v21 ùñ
ľ

jPJ 1
3xXH

β2j “ β3xj _
ľ

jPJ21
1

β1
1j “ β2

1j

ñ V12 Z V13 Z varspt12q $
ľ

v1PV1

v11 “ v21 ùñ
ľ

jPpJ 1
3xXHqZJ21

1

β12j “ β13xj

ñ V12 Z V13 Z varspt12q $
ľ

v1PV1

v11 “ v21 ùñ
ľ

jPppJ 1
3xXHqZJ21

1 qrtku
β12j “ β13xj

ñ V12 Z V12 Z varspt12q $
ľ

v1PV1

v11 “ v21 ùñ
ľ

jPpJ 1
13xXH1q

β12j “ β13xj

We can extend the valuation context of the variables to cover the variables
of the transitions t1 and variables V 1

1 and V 2
1 in the formula p˚q. By using

the statements resulting from the cases (a), (b) and (c), we get:

V13 Z V13 Z varspt12q $
Rps2, s3q^

`
g2 ^ g11 ^ α1

1 “ β2k
˘^

ľ

v1PV1

v11 “ v21 ùñ

ł
xPX

¨
˝
α12 “ α13x ^

ľ

jPpJ 1
13xXH1q

β12j“β13xj^

g3x ^R
`
s12, s13x

˘ttψ2 Z ψ3xuu

˛
‚^ g21 ^ α2

1 “ β3xk

That can be re-written as follows:

V12 Z V13 Z varspt12q $

Rps2, s3q^g12^
ľ

v1PV1

v11 “ v21 ùñ
ł
xPX

¨
˝
α12 “ α13x ^

ľ

jPJ 1
13xXH1

β12j “ β13xj^

g13x ^R
`
s12, s13x

˘ttψ2 Z ψ3xuu

˛
‚

Moreover, we have for any transition t1 inA1 relating s11 and s11
1
the following:

V12 Z V13 Z varspt12q $ľ

v1PV1

v11 “ v21 ^ s11 “ s21 ùñ
ľ

v1PV1

ψ12pv11q “ ψ13xpv21q ^ s111 “ s211
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From the two previous formula, we get:

V12 Z V13 Z varspt12q $
Rps2, s3q ^ g12 ^

ľ

v1PV1

v11 “ v21 ^ s11 “ s21 ùñ

ł
xPX

¨
˚̊
˝

α12 “ α13x ^
ľ

jPJ 1
13xXH1

β12j “ β13xj^ g13x^

R
`
s12, s13x

˘ttψ2 Z ψ3xuu ^
ľ

v1PV1

ψ12pv11q “ ψ13xpv21q ^ s111 “ s211

˛
‹‹‚

Furthermore, according to the Definition 7 (reachability, applied to the com-
posed automaton A1rA2{ks) we have, for all t12 P T12:

varspt12q $
`
XA12

ps12q ^ g12 ùñ XA12

`
s112

˘ttψ12uu
˘

Thus, we get:

V12 Z V13 Z varspt12q $
Rps2, s3q^g12^XA12

ps12q^
ľ

v1PV1

v11 “ v21^s11 “ s21 ùñ

ł
xPX

¨
˚̊
˚̊
˝

α12 “ α13x ^
ľ

jPJ 1
13xXH1

β12j “ β13xj^ g13x^

R
`
s12, s13x

˘ttψ2 Z ψ3xuu ^XA12

`
s112

˘ttψ12uu
^
ľ

v1PV1

ψ12pv11q “ ψ13xpv21q ^ s111 “ s211

˛
‹‹‹‹‚

Because of the independence of the substitution domains, we simplify and
get the expected formula:

V12 Z V13 Z varspt12q $ R1ps12, s13q ^ g12 ùñł
xPX

ˆ
α12 “ α13x ^

ľ

jPJ 1
13xXH1

β12j “ β13xj^ g13x ^R1
`
s112, s113x

˘ttψ12 Z ψ13xuu
˙

Second case: Only the encompassing automaton performs a transition. t12

is obtained by the transition t11 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨
pβ1

1jqjPJ
11
1 , g11 , ψ

1
1

s11
α1

1ÝÑ s11
1 alone with the state s2

unchanged, if k R J1
1
1

t12 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨
pβ1

1jqjPJ
11
1 , g11 , ψ

1
1

`
s11, s2

˘ α1
1ÝÑ
´
s11
1
, s2

¯
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The hole is not involved we can define t13 with the same transition t1 of A1

(where elements of t1 are the same as above modulo renaming of variables):

t13 “ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨
pβ2

1jqjPJ
2
1

1
, g21 , ψ

2
1

`
s11, s3

˘ α2
1ÝÑ
´
s21
1
, s3

¯

We thus take pt13xqxPX “ tt13u. @x P X we have J 113x “ J2
1
1

and trivially:

J 113x XH 1 “ J21
1 X pJ1 ZH r tkuq

“ J11
1 X pJ1 ZH r tkuq since J21

1 “ J11
1

“ `
J 112 XH 1

˘

Moreover, we have by definition

R1ps12, s13q “ Rps2, s3q ^XA12ps12q ^
ľ

v1PV1

v11 “ v21 ^ s11 “ s21

Thus, because transitions t11 and t21 are the same:

R1ps12, s13q ùñ Rps2, s3q ^XA12
ps12q ^

ľ

v1PV1

v11 “ v21 ^ s111 “ s21
1

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon
R1ps1

12,s
1
13q

Moreover, we have the following:

V12 Z V13 Z varspt12q $ľ

v1PV1

v11 “ v21 ^ s11 “ s21 ùñ
ľ

v1PV1

ψ12pv11q “ ψ13pv21q ^ s111 “ s211

Furthermore, according to the Definition 7 (reachability, applied to the com-
posed automaton A1) we have, for all t12 P T12:

varspt12q $
`
XA12

ps12q ^ g12 ùñ XA12

`
s112

˘ttψ12uu
˘

Because α12 and α13 are the same, and also β12 and β13 are the same (mod-
ulo renaming of variables), we deduce from the above the expected formula
(instantiated with X a singleton):

V12 Z V13 Z varspt12q $ R1ps12, s13q ^ g12 ùñ¨
˝α12 “ α13 ^

ľ

jPJ 1
13XH1

β12j “ β13j^ g13 ^R1
`
s112, s113

˘ttψ12 Z ψ13uu
˛
‚

3. Lastly, we have to prove the satisfaction of the deadlock reduction condition,
i.e., for all ps12, s13q P S12 ˆ S13

V12 Z V13 $ R1ps12, s13q^  p
ł

t12POTps12q
guardpt12qq ùñ  p

ł

t13POTps13q
guardpt13qq
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Let’s start with the hypothesis of the theorem stating that A2 ďH A3, thus
we have for all ps2, s3q P S2 ˆ S3

V2 Z V3 $ Rps2, s3q^  p
ł

t2POTps2q
guardpt2qq ùñ  p

ł

t3POTps3q
guardpt3qq

By hypothesis the composition A1rA2{ks is non-blocking, then according to
the Definition 10 we have for all state s12:

V12Z
ě

t1POTps1q
varspt1q $

¨
˝XA12ps12q ^

ł

t1POTps1q
guardpt1q

˛
‚ ùñ

ł

t12POTps12q
guardpt12q

Which implies

V12Z
ě

t1POTps1q
varspt1q $  

ł

t12POTps12q
guardpt12q ùñ

¨
˝ XA12ps12q _ 

ł

t1POTps1q
guardpt1q

˛
‚

Additionally, each transition t13 of OTps13q is of the form g1 ^ g3 ^ g with
g1 a guard of a transition t1 of OTps1q. Thus we have

 
ł

t1POTps1q
guardpt1q ùñ  p

ł

t13POTps13q
guardpt13qq

Thus we have, as R contains the reachability of state s12:

V12 Z V13 $ R1ps12, s13q^  p
ł

t12POTps12q
guardpt12qq ùñ

¨
˝XA12ps12q ^

¨
˝ XA12ps12q _ p

ł

t13POTps13q
guardpt13qq

˛
‚ ùñ  p

ł

t13POTps13q
guardpt13qq

˛
‚

[\
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Conclusion

The work reported in this manuscript mirrors some
of my research activities over the last few years. It
follows a work that I have started since my Phd the-
sis, which continues to raise further exploration. Our
long term goal is to provide a theoretical and practical
framework for the design and development of reliable
distributed and embedded systems.

While many approaches and techniques have been
proposed to ease the reasoning about large scale dis-
tributed systems, and solutions have been effectively
implemented to overcome the current limitations of
verification techniques, it remains a real challenge to
combine the results of such specialized techniques and
to foresee their impact on open systems. Each tech-
nique exploits the characteristics of the formalism on
which it is based. Some of them, use symbolic models
for explicit data manipulation, to overcome the finite-
ness limit constraints, others allow the compositional
description of systems to enable compositional verifi-
cation methods. To the best of our knowledge, there is
no work that combines all these techniques together.
It could be because most of the languages on which
they are based are not rich enough to cover all as-
pects, which is especially the key strength of the open
pNets (and open automata) formalism.

A further important dimension of the open pNets
(and open automata) model, it provides a rigorous
methodology for the design of concurrent and distributed
systems; it supports the vertical and the horizontal di-
mension of systems development through refinement
and composition. However, there are very few ap-
proaches that combine both (e.g. [69]).

The work discussed in this document provides the-
oretical foundations for a fully tool-equipped approach
and relies on the proposed bisimulation engines [111]
and SMT Solving algorithms [53]. Practically, the ad-
vocated framework is based on an approach combining

symbolic operational semantic and bisimulation equiv-
alences with deductive reasoning on the data part, and
in practice combining bisimulation algorithms with SMT
solvers to get automatic procedures proving behavioural
properties of these open systems.

Work still needs to be done in that field, we en-
visage several directions for extending our proposal,
both theoretically and practically. Some future re-
search that can be considered in the short term:

• Despite the rich language of pNets, simply express-
ing parametrized topologies (vectors, rows, rings,
matrices,. . . ) that are very useful in real appli-
cations is still very difficult. Expressing them re-
quires to concretely extend the pNets model, by
introducing a notion of topological parameters and
spatial structures. Doing so requires enriching the
automata description formalism, but also the syn-
chronization mechanism.

• The composition operation of open automata is a
kind of refinement that allows for an extension of
the functionality. However, this refinement is not
safe with respect to trace safety, because it is pos-
sible to introduce new traces in the implementa-
tion (necessarily because the intended use is that
the specification model is a partial specification
that is completed). However, the ability to com-
plete the specification and preserve behaviours is
a property that is sometimes required in some ap-
plications (e.g. [96]). There is a need to investigate
under what conditions (structural or syntactic re-
strictions) the preservation can be guaranteed.

• The development of practical tools that supports
equivalence checking of open pNets (open automata)
models for verifying real-life concurrent systems.
In fact, bisimulation algorithms have already been

155



implemented but they require further improvement.
The challenges for the implementation, in the con-
text of our symbolic systems, are not so much algo-
rithmic complexity, as was the case with classical
weak bisimulation on finite models, but decidabil-
ity and termination. The naive approach, using an
explicit construction of the weak transition, may
in itself introduce non-termination, so the adopted
solution was a direct implementation of the weak
bisimulation definition [111], without construct-
ing the weak automata beforehand, but searching
on demand to construct the required weak tran-
sitions. It may be more effective to explore other
more pragmatic approaches of weak bisimulation
over weak automata.
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