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Contributions to formal modelling and analysis of stochastic
models

Mémoire d’habilitation o diriger des recherches

Paolo Ballarini

Abstract

This manuscript describes a number of contributions, I had the opportunity to work on, in
the field of formal methods for stochastic models. Research in formal methods is concerned
with defining mathematically rigorous formalisms that allows for specification, development
and verification of the correctness of complex systems. In the case of stochastic systems
modelling formalisms need to account for stochasticity and verification algorithms needs
to address also quantitative properties other than qualitative ones.

The first contribution included in the manuscrit overviews a statistical model checking
framework, named Hybrid Automata Specification Language (HASL), which targets a gen-
eral class of stochastic processes and that, by employing hybrid automata as machineries
to specify the behavior to be analysed, leads to a powerful property specification language
which surpasses the expressiveness of classical stochastic temporal logic languages such as
CSL.

The second contribution is concerned with the parametrised extension of the stochastic
model checking problem, namely the realisation of a procedure to estimate the (proba-
bilistic) dependency of the satisfaction of a property ¢ w.r.t. the parameters of a stochas-
tic model. By introducing a satisfiability distance measure that quantifies how distant
a property ¢ is from being satisfied by a model’s instance and relying on the expressive
of HASL property language, we adapted classical Approximated Bayesian Computation
(ABC) schemes so to assess the satisfaction probabilistic distribution of ¢ against the pa-
rameter space © of the considered model.

The third contribution is about the application of model checking approaches to the
analysis of stochastic oscillators, i.e. a prominent class of systems in systems biology.
Classical temporal logic languages have proven limited success in detecting/assessing os-
cillations, whereas effective procedures can be obtained through automata-based model
checking. The contribution we present is twofold: on one hand we show how sophisticated
oscillation-related indicators can be assessed through HASL based model checking and
on the other hand we show how to assess the dependency of such indicators (period and
amplitude) against the parameters of a stochastic oscillator.

As a final contribution we illustrate a framework for building stochastic models that
adequately reproduce periodic phenomenon from a dataset, with data about visits at a
hospital Emergency Department (ED) as the reference case study. We considered different



families of stochastic processes, Markov renewal processes, Markov arrival processes (MAP)
and hidden Markov models (HMM) and through fit them so that they match meaningful
statistical indicators computed on the dataset.
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Chapter 1

Introduction

Modern engineering is a wide, pervasive and multi-disciplinary field which revolves around
the notion of system, where a system may be thought of as aggregation of interacting parts
(i.e. objects, things, components) which are combined by nature or humans to form a
whole that performs a certain function. Examples of systems can be found in just about
any possible field. They may be distinguished according with their kind, as in, for example,
natural systems (e.g. the system of biochemicals reactions which controls the Eukaryotic
cell’s reproduction cycle), or human-made systems, (e.g. embedded systems consisting of
interacting electronic devices that allow an aircraft to be safely flown, or smart devices,
as in modern Internet of Things context allowing remote control for home utilities), or
abstract systems (e.g. an ecosystem of beings interacting with each other for preserving their
species). The development of model-based methodologies to support the design, validation,
performance analysis, testing and maintenance is fundamental in system engineering. A
model is a mathematical, abstract representation of a system, that, depending on its nature,
may serve diverse purposes the main of which is to reliably mimic the system’s dynamics,
while possibly allowing for performance analysis, and/or verification of requirements. As
our society relies more and more on complex software controlled critical systems the need
to employ formal methods to design, validate and certify them becomes paramount.

Model-based methods

My work is mainly focused on model-based methods, namely, the area of research whose
goal is the development of formal modelling frameworks which allows one to unambigu-
ously build a model of a real-life system and, based on rigorous mathematical foundations,
assess the model’s properties. The overall goal is to establish whether the modelled system
functions correctly, which, depending on the nature of the model, may entail the verifica-
tion of some qualitative requirement and/or the evaluation of some quantitaive performance
indicator.
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Model-checking. Amongst model-based methods model checking, quickly became a
prominent one as it gives the modeller the possibility to automatically verify a system’s re-
quirements, formally expressed as temporal logic properties, against a system’s model. The
seminal work of Pnueli [Pnu77] on the verification of sequential and concurrent programs
set the ground for the formalisation of algorithms for model-checking of non-probabilistic
systems introduced by Emerson and Clarke [EC80] and also, independently, by Quelles and
Sifakis [QS82] (resulting in the 2007 Turing award awarded to the authors) and eventu-
ally leading to many extensions targeting different classes of models including probabilistic
ones [ASSB96, ASSB00, BHHKO03a]. The attractiveness of model checking is mainly due to
its practical simplicity as, while keeping the conception of the model separated from that of
the requirements (i.e. separation of concerns), it provides the user with a push-button ma-
chinery for certifying that the system is correct (i.e. if the model satisfies the requirements).

Classes of models. The variety of real-life systems calls for models to account for different
features including timing contraints, probabilities and unknown parameters.

Timing constraints are crucial for safety-critical systems, examples of which can be
found in domains such as aircraft controlling, nuclear power plants and the automotive
industry, to mention a few. Timed automata [AD94]| and timed Petri, for instance, are
formalisms suitable to account for time dependent behavior and where timing requirements
are expressed through dense-time variables that evolve all at the same speed and that can
be used to capture either the delay since the last occurrence of an event or how long a
given transition has been enabled for.

Other kind of systems instead are characterised by a probabilistic behaviour, that is, a
behaviour which can not be certainly predicted in advance. We may distinguish between
systems that are probabilistic by design as, for example, WiFi protocols which employ
probabilistic algorithms to reduce packet collisions, as opposed to systems that are proba-
bilistic by nature, as the dynamics of the real-life phenomenons they depend upon can only
be expressed through some probability law, like for example for failure rates of physical
components.

Finally most often models depend on a number of parameters whose value is not neces-
sarily known a priori. For example, for a model of queuing system the maximum number
of clients standing in a queue for a given service might not necessarily be known, or, for a
model of a manufacturing system the probability that a given workstation breaks down in
the next time unit may not be known. Whenever some parameters are unknown the model
becomes parametric and any analysis technique also needs to be adapted to account for the
effect that parameters have on the behavior. In model checking terms this entails adapting
verification algorithms so to assess the effect that parameters have on the satisfaction of
the model’s requirements.

Trading off expressiveness with tractability. The realm of model-based techniques is
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affected by two opposing forces i) the expressiveness of the modelling framework and of the
corresponding analysis techniques and i) the tractability of the models. These two aspects
are in opposition as, generally speaking, the more expressive the modelling framework, the
more complex and computationally costly are the mathematical tools necessary to analyse
its behaviour.

In model checking terms, for example, such an antagonism entails considering to what
extent the relevant characteristic of a system’s behaviour can be accounted for by the mod-
eller through a formally expressed property. This depends both on the kind of model (e.g.
transition-system, timed-automaton, Markov-chain) and of the mathematical means on top
of which an algorithm for verifying the formulae of the corresponding property language
can be defined.

Contents of this thesis

Over the last decade I have been focusing on research in the area of complex systems taking
into account several amongst the above described aspects. My contributions are twofold:
methodological/theoretical as well as applicative. From a methodological perspective the
core of my work is in the area of probabilistic systems and revolves around the probabilistic
model checking problem, that is, looking at how to improve on one hand the scalability
and on the other the expressiveness of approaches for the verification of probabilistic sys-
tems. Although the probabilistic model checking has been at the core of my interests,
progressively my activities diversified towards other areas, including that of parameter in-
ference as well as that of introducing novel timed-automata based formalisms. From an
applicative perspective the focus of my work has been mainly in demonstrating the benefit
that the methodological novelties I have introduced brought in different application areas
including that of biological systems, that of manufacturing systems and that of wireless
communication networks.

Chapter 2 gives an overview of an important contribution in the field of probabilistic
model checking. Specifically we introduce a statistical model checking (SMC) framework
which relies on a novel automata-based formalism, namely the Hybrid Automata Stochastic
Logic (HASL), for expressing properties of a probabilistic model. This set of works started
through a collaboration with Serge Haddad, Nihal Pekergin and Marie Duflotwhich was
then further extended to Benoit Barbotand resulted with the introduction of the HASL for-
malism [BDD%11c, BDD*11a, BBD"15a] as well as with the development of the COSMOS
software tool [BDD*11a, BB22, COS].

In Chapter 3 we report on a newly introduced approach for parametric verification of
temporal properties against stochastic models, i.e., a framework which addresses the prob-
lem of estimating the satisfaction probability of a given temporal logic property in func-
tion of a model’s parameters. This is achieved through adaptation of the Approximation
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Bayesian Computation (ABC) method, a technique for calibrating a model’s parameters
according to observations of the actual system under study. The adaptation we introduced
is based on the notion of satisfiability distance' used to quantify “how far” (the model
instance corresponding to) a parameter set is from satisfying the considered property. In
practical terms the framework uses stochastic simulation for sampling paths of a a model’s
instance and an HASL monitor automaton (of Chapter 2) for measuring the satisfiability
distance of the sampled trajectories. This contributions have been developed as part of
the PhD thesis work of Mahmoud Bentriou [Ben21] which I supervised with Paul-Henry
Cournede and have led to the publications of papers [BBC19, BBC21].

In Chapter 4 we present contributions addressing the problem of formal analysis
of stochastic oscillators. Although established mathematical approaches, such as Fourier
transform and autocorrelation analysis are commonly employed for the analysis of the pe-
riodic signals here we face the problem from a different perspective: we look for a logical
characterisation of periodicity which can be used 7) to assess oscillation related indica-
tors against a discrete event stochastic model and i) to search the parameter space of a
stochastic oscillator so that the resulting model meets given periodicity constraints (e.g. the
average duration of the period). Inspired by the PhD thesis work of David Spieler [Spil3]
we extend the characterisation of noisy periodicity by introducing rich hybrid automaton
specifications for assessing both the period and the amplitude of oscillations. Based on
those automata we then further adapt the automata-based adaptation of ABC parameter
inference outline in Chapter 3 to the case of oscillatory models. The contributions presented
in this chapter are based on the following papers [BMM09, BMR12, BD15, Ball5a].

In Chapter 5 we describe a number of contributions in the field of performance analysis
of stochastic models in different domains, including that of biological systems, of telecom-
munication networks and of manufacturing systems. The overall goal of this chapter is
to demonstrate, by taking into account diverse type of systems, to what extent one can
take advantage of formal model-based approached to address relevant performance analysis
questions.

Although conclusive remarks concerning research directions on each topic are given
at the end of the respective chapters in Chapter 7 a few general perspectives I wish to
consider as directions to guide my future research work are discusssed.

Finally in Chapter 6 we give a brief overview of other contributions I have worked on
and that are not described in this manuscript. Those contributions span rather heteroge-
nous domains, including that of compositional approaches to stochastic model analysis, that
of modelling formalisms for timed, stochastic, concurrent systems, that of improvements to
the approximate Bayesian computation approach, that of formal performance modelling of
manufacturing systems and also of wireless network protocols. A brief description of each
of these other contributions is given together pointers with the corresponding publications.

!The dual of space-time robustness used in approaches for assessing the robust satisfaction of MITL
formulae over non-probabilistic models [DM10].



Chapter 2

Expressive statistical model
checking

Since its introduction in the late-70s/early-80s model checking became a prominent tech-
nique for the automatic verification of a system’s properties. Given a property formally
stated through a temporal logic property language, algorithms are provided that allow one
for establishing whether the property is satisfied by a given model of the considered sys-
tem. The popularity of model checking is mainly due to three factors: (1) the ability to
express specific properties by formulas of an appropriate logic, (2) the firm mathematical
foundations based on automata theory and (3) the simplicity of the verification algorithms
which has led to the development of numerous tools.

With its seminal work [Pnu77] Pnueli set the ground for model checking by introduc-
ing the verification of linear-time temporal logic (LTL) properties against discrete-state,
untimed models of computer programs. LTL semantics gave rise to so-called linear-time
reasoning as properties are evaluated w.r.t. linear sequences of states (i.e. paths) that
represent possible executions of the system under analysis. The original work of Pnueli
was further developed by both Emerson and Clarke [EC80] and Quelles and Sifakis [QS82],
with the introduction of the computation tree logic (CTL), a temporal logic for branching
time properties, i.e. properties that allows for taking into account possible branching along
a model’s execution, and hence are evaluated against trees (rather than paths) issued by a
model. Both LTL and CTL properties are inherently qualitative as they evaluate to either
true or false against a transition system model. Example of properties that can be verified
through LTL or CTL model checking are 1) “absence of concurrent access to a mutually
exclusive shared resource” (safety), or 2) “possibility to access a shared resource infinitely
often” (liveness). Such kind of properties are called qualitative as, by definition, they can-
not include any form of quantification. For example, one can state that “every message
that is sent will eventually be received” but cannot quantify within which delay it will be
received.
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Notice that LTL and CTL are distinct property languages (some LTL properties have
no CTL equivalent) with a non-empty intersection (some LTL properties have a CTL
equivalent and vice versa) and that they are both subsumed by the CTL* [EH86] temporal
logic.

Probabilistic model checking. As of the mid 90s researchers started to get interested
in extending the model checking approach to the verification of probabilistic models. The
seminal work of Hansson and Jonnson [HJ90] extended CTL model checking to the veri-
fication of discrete-time Markov chains (DTMC), through the introduction of the PCTL
temporal logic, namely the probabilistic version of CTL. PCTL allows modellers to express
properties which refer to the probability of (discretely) time-bounded events (e.g. once a
message is sent there is at least a 95% probability it will be delivered within 5 time units).
Later on Aziz [ASSBO00] first, and Baier et al. [BHHKO03a] then, further extended CTL
model checking to continuous-time Markov chains (CTMCs) by introducing the Continuous
Stochastic Logic (CSL) hence allowing for reasoning about the probability of continuously
time-bounded events (e.g. when the queue contains 5 jobs there is at most a 25% chance
of a further job arrival within the next 2.75 seconds). As CTL is a branching time logic, so
are PCTL and CSL, which means that formulae from both PCTL and CSL are interpreted
over the tree consisting of all trajectories unfolded from the considered Markov chain model
(either a DTMC for PCTL or a CTMC for CSL). Verifying that a PCTL or CSL speci-
fication ¢ holds against a given Markov chain requires assessing the probability measures
of the sub-tree that satisfies ¢, which is well-defined based on the characterisation of the
probability space for the trajectories of Markov chains [Kull6]. Specifically, formulae of
a probabilistic temporal logic, require comparing the probability that a condition ¢ holds
against a probability bound p, denoted P.p[¢], with ~€ {<,<,>,>} and p € [0,1]. The
qualitative fragment of PCTL/CSL is that resulting when the considered probability bound
p is either 0 or 1, conversely the quantitative fragment is that in which p €]0,1[. , they
are called CSL model checking has then been further extended by Kwiatkowska, Norman
and Parker [KNP07a] giving the modeller the possibility to attach (state and/or transi-
tion) rewards to Markov chain models and to assess reward based properties all of which is
supported by PRISM [PRI] arguably the most popular probabilistic model checking tool.

Numerical probabilistic model checking of Markovian models. Probabilistic model
checking mainly targeted Markov chains models only and consisted of exhaustive procedures
(i.e., algorithms requiring the complete storage of the Markov chain’s transition matriz),
which is in line with the actual notion of wverification that inherently entails the truth of
a formula must be established by considering a model in its entirety. The definition of
erhaustive probabilistic model checking algorithms for Markov chain models is relatively
straightforward thanks to two main factors: 1) the memoryless property of exponential
distribution which characterises Markovian models and 2) the (somewhat) limited expres-
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siveness of the considered temporal logics (e.g. PCTL and CSL). From an algorithmic
point of view the verification of a temporal logic formula against a Markov chain model
is obtained by a combination of mathematical methods that depend on the kind of for-
mula. For example for DTMC models the verification of untimed PCTL properties boils
down to solving of a system of linear equations whereas for time-bounded PCTL properties
it amounts to matrix-vector multiplications. On the other hand for CTMC models the
verification of untimed CSL formulae reduces to a PCTL problem on the corresponding
embedded DTMC, whereas the verification of time-bounded CSL properties boils down to
a transient-state analysis problem for CTMC which is numerically approximated through
uniformisation.

Beyond Markovian models. Whenever the timing of stochastic events that charac-
terise the considered system’s cannot be reasonably assumed to follow an exponential
distribution then the underlying stochastic process is no longer Markovian and hence the
definition of probabilistic model checking algorithms becomes cumbersome. In this con-
text the transient stochastic state classes method, by Horvath, Paolieri, Ridi and Vicario
(i.e., a method that allows for keeping track of the evolution in time of the transient-state
distribution for non-Markovian models) has been showed an effective means for adapting
algorithms for the verification of time-bounded properties against Generalised Semi Markov
Process (GSMP) models [HPRV11].

The curse of scalability. Independently of the targeted class of models and of the ex-
pressiveness of the property language the main limitation of exhaustive approaches to model
checking is their scalability: as the space complexity of exhaustive algorithms depends on
the size of the model they can only be applied to models of “reasonable” size, thus‘ ruling
out many real-life applications.

Statistical model checking. In order to overcome the scalability issue of exhaustive
algorithms, as of the mid 2000s, a novel kind of non-exhaustive approach, named statistical
model checking (SMC), has been introduced by the pivotal work of Younes [YS06]. The
main idea with SMC is to employ a finite number of model’s simulations in order to obtain
an approximated answer to the question of whether a probabilistic temporal logic formula
P[] (where p € [0,1] and ~€ {<,<,>,>}) holds against a stochastic model M which
boils down at deciding whether the probability Pr(M,) ~ p of those paths satisfying
1 comply with ~ p. In this respect there exist two families of SMC approaches: those
which aim at deciding whether Pr(M,) ~ p without actually estimating Pr(M,) (by
application of hypothesis testing), and those which aim at computing an estimate p’ of
Pr(M,) (by application of confidence interval methods) and hence establish whether
Pr(M,) ~ p by comparing the estimate p’ ~ p.

The clear advantage of SMC is that one does not even need to build (hence store) a
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system’s model, it suffices that a syntactical representation, in terms of some modelling
language (equipped with an operational semantics), is available so that a stochastic simula-
tion algorithm can be devised for sampling (finite) trajectories from the model’s state-space.
Each trajectory sampled from M either satisfies (i.e. is accepted) or does not satisfy (i.e.
is rejected) 1 and therefore it corresponds to a realisation of a Bernoulli experiment. As a
consequence assessing the probability of 1 against M in the context of SMC corresponds
to estimating the distribution of a Binomial random variable which, in turns, boils down
to computing the ratio of sampled trajectories that satisfy .

SMC approaches. Ever since its introduction a number of SMC formalisms, algorithms
and tools have been proposed and their effectiveness demonstrated through analysis of
large-scale systems in a variety of fields, including computer networks, manufacturing sys-
tems, and biological processes [AP18]. Younes opened the way by introducing an hypothesis
testing based approach to decide, with arbitrary approximation, whether the probability
that a CSL property ¢ is satisfied by a model M comply with a threshold p. An alternative
solution to the same kind of problem has then been proposed by Peyrronet et al. [HLMP04]
by introducing a randomized approrimation scheme to establish whether the probability
that an LTL property ¢ is satisfied by a DTMC match a given constraint p (which has then
been integrated amongst the statistical engines of PRISM model checker). Alternatively
confidence interval approaches have been proposed to solve the SMC estimation problem
(i.e. the problem of estimating what is the probability that ¢ is satisfied by M) with
dedicated efficient sequential schemes discussed by Jegourel et al. [JSD18] which have been
adopted in many SMC tools (PRISM included).

Expressiveness: Numerical versus Statistical model checking. The use of sta-
tistical methods instead of numerical ones allows for relieving the limitations inherent to
stochastic model checking procedures based on numerical methods, both in terms of the
family of stochastic models as well as of the type of properties that can be considered. If
numerical model checking (NMC) is mainly targeting Markovian models (because of the
nice mathematical properties of the Exponential distribution), statistical model checking
(SMC) permit one to trespass the Markvovian perimiter, hence to use a very wide range of
distributions, and to synchronise such a model with an automaton that includes linearly
evolving variables, complex updates and constraints. In terms of the properties that one
can target SMC allows for a much increased expressiveness. In fact since with NMC the
verification of temporal logic properties boils down to either a transient-state or steady-
state distribution computation, the kind of properties that one can formulate are limited:
NMC algorithms can only cope with the evaluation of the probability of paths which are
characterised by the temporal evolution of state conditions (something which goes under
the name of state-based reachability problems). With SMC, on the other hand, one is com-
pletely freed from the state-based reachability perimeter which constrains NMC, therefore
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one can easily combine state-conditions with other-conditions, e.g. constraints on given
indicators evaluated along the path (e.g. such as waiting time, number of clients in a
system, production cost of an item), for characterising the target random variable whose
mean value is the target of the SMC verification process. As a result SMC is naturally
suited for easily conceive and compute sophisticated performability parameters.

In quest for performance oriented property languages. Despite their success the
vast majority of SMC frameworks are based on temporal logic languages (such as PCTL or
CSL) that are limited to state-based properties, that is, properties that use state-conditions
as criteria to characterise the behaviour (i.e. the executions) of interest. For example, in a
systems consisting of 2 queues where different kind of jobs arrive and compete to access a
shared resource an example of property based on state-conditions is “what is the probability
that the shared resource is busy when the number of jobs in the first queue does not exceed
N ?7 In standard performance evaluation problems, however, it makes sense to allow for a
wider, performance-oriented, class of properties to be considered, i.e., properties that may
use quantitative statistics (evaluated along a path) as criteria for selecting the executions
of interest. For instance, the average length of a waiting queue during a busy period or the
mean waiting time of a client are typical examples of criteria that cannot be expressed by
the quantitative logics that use state-conditions as the only kind of criteria to characterise
the executions whose probability shall be assessed.

Outline of contribution. This chapter reports on our contribution in the field of ex-
pressive SMC. We introduced a novel, hybrid-automata-based, property specification lan-
guage named Hybrid Automata Specification Language (HASL) [BDD*10, BBD*15b] for
expressing temporal-dependent performance indicators referred to a discrete-event stochas-
tic model and we introduced the statistical model checking procedure to assess them to-
gether with an associated software tool named COSMOS [BDD*11a, COS] to use it. HASL
is the evolution of the time-automata (TA) extension of CSL, namely the CSL™4 [DHS07]
logic (by Donatelli, Haddad and Sproston), in that it replaces TA which, within CSLT4
are used as a machinery for specifying the behaviour of interest that one want to study on
a system, with linear hybrid automata (LHA). Employing LHA in place of TA opens up to
a much increased expressiveness, as more sophisticated criteria for specifying the behavior
of interest can be formulated through an LHA. As it turns out the family of properties that
can be taken into account through HASL go beyond those of most popular temporal logic
languages rendering HASL a specification language more suited for performance analysis
as demonstrated by several applications presented in Chapter 4 and Chapter 5.
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2.1 Preliminaries

2.1.1 Discrete event stochastic processes

We target a very broad class of discrete-state, continuous-time stochastic processes which
we generically refer to as Discrete Event Stochastic Processes (DESP), but which is often
referred to as generalised semi- Markov processes (GSMPs) [Gly83, ACD91]. Differently
from the most common probabilistic model checking frameworks such those supported by
the PRISM [KNP11] and Storm [HJK*22] tools, with DESPs we get rid of any restriction
about the type of probability distribution allowed for modelling events’ delay, therefore we
are free to leave the realm of memorylessness and consider also processes with memory.
Syntactically speaking this comes to the price of a more cumbersome formalism as we need
to 1) specify the probability distribution associated to each event of the process, 2) account
for (time) memory in the specification of an event’s occurence and 3) disambiguate between
concurrently occurring events, which, within DESPs, may have a non null probability to
occur.

Definition 2.1. A Discrete Event Stochastic Process (DESP) is a tuple M = (S, 7o, F,Ind,
enabled,delay,choice,target) where S is a countable set of states, mo € dist(S) is the initial
state distribution, F is a finite set of events, Ind : S — R is a set of state indicator functions,
enabled : S — 2F denotes the events enabled in each state, delay : S x E — dist(R")
characterises the probability distribution of the delay of occurence of an event e in state
s, choice: S x 2F x RT — dist(F) characterises the probability distribution over the set of
concurrently occurring events in a given state and target: SxE x R™ — S describes which
state is entered when from state s an enabled event e € enabled(s) occurs with a delay d.

Given a state s € S of a DESP M, enabled(s) is the set of events enabled in s. For an
event e € enabled(s), delay(s,e) is the distribution of the delay between the enabling of e
and its possible occurrence. If d € R™ is the earliest delay in some configuration of the pro-
cess with state s, and E' Cenabled(s) the set of events with minimal delay, choice(s, E’, d)
describes how the conflict is randomly resolved: for all ¢’ € E', choice(s, E',d)(€’) is the
probability that e’ will be selected among E’ after waiting for the delay d. The function
target(s,e,d) denotes the target state reached from s on occurrence of e after waiting for
d time units.

DESP semantics. As the dynamics of a DESP is not necessarily memoryless we need
to carry on extra information about a system’s state along the unfolding of an execution.
Therefore a DESP path amount to a sequences configurations, where a configuration con-
sists of a triple (s, 7, sched) with s € S the current state, 7 € R™ the current time and
sched : E — RT U {400} the function that describes the occurrence time of each enabled
event (+oo if the event is not enabled). From a given configuration (s, T, sched) a path
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is unfolded by iteratively selecting the next event e € enabled(s) to occur together with
its occurence delay d leading to the next configuration (s, 7, sched) 4 (s', 7", sched).
e

The next transition to fire is determined through the following steps. First function sched
determines E™" = {e € enabled(s) | Ve' € enabled(s), sched(e) < sched(e')}, i.e., the set
of enabled events with minimal delay d,, = sched(e) — 7, Ve € E’. Then, if E™ contains
more than 1 element, the probability distribution choice(s, E™" d,,) is used to randomly
pick the actual next event e,, € F,, to fire. The next state s’ is then determined by fir-
ing the previously selected next event to fire e,,, i.e. s = target(s,en,dy) and also by
updating the configuration’s time accordingly, i.e., 7/ = 7 + d,,. Finally the schedules of
currently enabled events is updated by application of function sched as follows: first for all
events € # e, that are still enabled, sched(€’) is maintained (i.e. sched'(e’) = sched(e),
Ve' € enabled(s") Nenabled(s), such that €’ # e,,) while for all other “newly” enabled event
¢’ € enabled(s’), a new delay d’ is sampled according to the distribution delay(s’,e’) and
sched(e€') is set to T+ d + d'. Finally for all disabled events €’ & enabled(s’) the sched’(€)
is set to +o0.

Operational semantics of a DESP. The characterisation of the operational seman-
tics of a DESP reduces to showing that a sound definition of probability for a generic

path o : (s¢, 0, schedy) i, (s1, 71, schedy) %2, of a DESP exists. This, in turns,
el €2

boils down to formally characterising a number of relevant families of random variables,

namely: the family eq,...,e,,... (events associated to o) with support the set of events
E, the family sg,...,sp,... (the states of o) with support the set S of M, the family
70 < -+ <7 < -+ (the occurrence time of the events on o) with support R, the family

{sched(e)o, ... sched(e)y, ...} with support RT U{+o0} (the events’ queue along o) and the
family {EJ"",... E™" ...} (the set of events with minimal delay along o). The character-
isation of such families of random variables is inductive w.r.t. the length n of the o and is
formally given in [BBDT15b).

2.1.2 DESP as Non Markovian Generalised Stochastic Petri Nets

For the sake of practicality within HASL we adopt the non-Markovian extension of Gen-
eralised Stochastic Petri Net (NMGSPNs) as high level modelling language to represent
DESP models. This has two main motivations: 1) to prevent the user from the tedious
and error prone need to specifiy a DESP by explicit listing of all of its elements (as of Def-
inition 2.1) and 2) to take advantage of the Petri nets semantics which is particularly well
suited to yield highly efficient stochastic simulation algorithms. In essence a NMGSPNSs is
a generalised stochastic Petri nets [AMBCT95], that is a Stochastic Petri net formalism
which combines stochastic timed transitions with probabilistic immediate ones, extended
with the possibility to associate generic probability distributions (non necessarily Expo-
nential ones) with stochastic timed transitions, and therefore, according to Definition 2.1,
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must be equipped with necessary means to probabilistically disambiguate between events
that might occur at the same time.

NMGSPN models and token game. A NMGSPN model is a bipartite graph consist-
ing of places (circles) and transitions (bars) nodes. Places may contain tokens (representing
the state of the modelled system) while transitions indicate how tokens “flow” within the
net (encoding the model dynamics). The state of a NMGSPN (hence of the DESP it rep-
resents) consists of a marking indicating the distribution of tokens among the places (i.e.
how many tokens each place contains). A transition ¢ is enabled whenever every input
place of t contains a number of tokens greater than or equal to the multiplicity of the
corresponding (input) arc. An enabled transition may fire, consuming tokens (in a number
indicated by the multiplicity of the corresponding input arcs) from its input places, and
producing tokens (in a number indicated by the multiplicity of the corresponding output
arcs) in its output places. Transitions can be either timed (denoted by thick bars) or imme-
diate (denoted by thin filled-in bars, see Figure 2.1). Transitions are characterised by: (1)
a distribution which randomly determines the delay before firing it; (2) a priority which
deterministically selects among the transitions scheduled the soonest, the one to be fired;
(3) a weight, that is used in the random choice between transitions scheduled the soonest
with the same highest priority. With the original GSPN formalism [AMBC*95] the delay
of timed transitions is assumed exponentially distributed, whereas with our NMGSPN it
can be given by any distribution. Thus a NMGSPN timed-transition is characterised by a
tuple: t= (type, par, pri,w), where type indicates the type of distribution (e.g. uniform),
par indicates the parameters of the distribution (e.g [, 3]), pri € RT is a priority assigned
to the transition and w € R is used to probabilistically choose between transitions occur-
ring with equal delay and equal priority. The information associated with a transition (i.e.
type, par, pri,w) is exploited in different manners depending on the type of transition. For
example for a transition with a continuous distribution the priority (pri) and weight (w)
records are superfluous (hence ignored) since the probability that the schedule of the corre-
sponding event is equal to the schedule of the event corresponding to another transition is
null. Similarly, for an immediate transition (denoted by a filled-in bar) the specification of
the distribution type (i.e. type) and associated parameters (par) is irrelevant (hence also
ignored). Therefore these unnecessary informations are omitted in Figure 2.1.

Example 1 (Mutual exclusive shared resource). The NMGSPN model of Figure 2.3 (top)
describes the behaviour of an open system where two classes of clients (processes) (namely
1 and 2) compete to access a shared resource (e.g. the memory). Class i-clients (i€ {1,2})
enter the system according to a Poisson process with parameter \; (corresponding to the
exponentially distributed timed transition Arr; with rate \;, represented by thick empty
bars). On arrival, clients cumulate in places Req; waiting for the resource to be free (a
token in place Free witnessing that the resource is available). The exclusive access to
the shared resource is regulated either deterministically or probabilistically by the priority
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Arry (Exp,A1) (Exp,A2) Arr
Free

Req Req
Start; (priv,wr) | \(priz, wa) Starts
Accy Acep
Servy Servy
(Unif, (a1, £1]) (Unif,[az, 52])

Figure 2.1: The NMGSPN description of a shared resource system.

(pri;) and the weight (w;) of immediate transitions Start; and Starts. Thus in presence
of a competition (i.e. one or more tokens in both Req; and Regs) a class i client wins the
competition with a class j # ¢ client with probability 1 if pri; >pri;, and with probability
w; /(wi+wj) if pri; =pri;. The occupation time of the resource by a class i client is assumed
to be uniformly distributed within the interval [cy, ;] (corresponding to the thick filled-in
transitions Serv;). Thus on firing transition Serv; the resource is released and a class i
client leaves the system. Notice that graphically Exponential, respectively non-Markovian,
timed transitions are represented by thick empty, respectively filled-in, bars).

2.2 Hybrid Automata Stochastic Language

Alur and Henzinger’s hybrid automata [ACHH92, ACHH93| are a popular formalism for
modelling linear hybrid systems, i.e. systems consisting of interacting digital and analog
components. Although reachability problems for hybrid automata are, generally speaking,
undecidable, Henzinger et al. proved that under certain conditions reachability decidability
can be established [HKPV98] leading to the development of dedicated model checkers
such as the HyTech tool [HHWT97]. Here we consider hybrid automata from a different
perspective, that is, as a language to specify properties of a system rather than as a
language to model a system. To this aim we introduce the Hybrid Automata Stochastic
Language (HASL) [BDD*11b, BBD*15a], the basic idea it being to employ a tailored linear
hybrid automaton (LHA) A as a monitor for selecting relevant paths of a DESP model M,
based on sophisticated selection criteria. This allows one to conceive very sophisticated
performance indicators of a model M, by means of a dedicated automaton A and to assess
them through synchronisation, that is, through a process by which paths ¢ € Path(M)
are processed on-the-fly and are either accepted or rejected by A, while relevant statistics
are maintained in the automaton’s variables and are eventually used to produce estimates
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Discrete Event LHA EXPR.
Stochastic Process
M A Z
conf: € HASL
width: & |7 MODEL

CHECKER

[Z—-6,Z+3]

Figure 2.2: HASL-SMC schema: sampled paths are filtered by a LHA and the accepted
ones are used for a confidence interval estimate of the target measure Z.

of the performance indicators of interest.

In practical terms a HASL formula ¢ consists of two components ¢ = (A, Z), where
A is the monitor LHA and Z is an expression that specifies the quantity to be evaluated
(based on the A’s data variables).

HASL model checking scheme. The synchronisation between a DESP model M and
a LHA A naturally leads to definition of a statistical model checking procedure for the
HASL formalism which is outlined in Figure 2.2. A HASL model checker takes a DESP
model M and a HASL formula (A, Z) as inputs together with two auxiliaries parameters,
i.e., the confidence level (€) and the width (J) of the confidence interval estimation process.
The LHA part of a HASL formula is used to select, via synchronisation, the paths sampled
on the DESP model and while so doing the (real-valued) variables of the LHA are updated
with relevant statistics of the synchronising path. Such statistics are then employed for
producing a confidence-interval estimation of the mean value of the considered expression
Z (i.e. the second part of the HASL formula). Z is the quantity the modeller wants to
assess w.r.t. the paths accepted by LHA.

2.2.1 Synchronised Linear Hybrid Automata

In the context of HASL model checking we introduce an adaptation of Alur and Henzinger’s
hybrid automata [ACHH92] which we refer to as synchronised LHA the main difference
being that HASL automata are designed to interact with a DESP model, hence they must
fulfil certain syntactical as well as semantical constraints. From a syntactical perspective
there are two elements that impact the syntax of a HASL hybrid automaton definition:
first, an automaton edges are now labeled either with events of the DESP model, indicating
that the edge traversal takes place only through synchronised occurrence of a corresponding
DESP event or, alternatively, through a special label §, indicating that the edge traversal
happens autonomously without synchronisation with any DESP event, and second, an
automaton’s variables can evolve at a rate which depends on the current state of the
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DESP model (i.e. the rate of a variable is given by a DESP indicator function). From a
semantical perspective we need to establish a number of determinism-related constraints
so to guarantee the unicity of synchronisation, that is, the fact that there exists always a
single execution of the synchronised product process (M x A). All of these aspects are
covered by the following Definition.

Definition 2.2. A synchronised linear hybrid automaton, referred to a DESP model M
with states S, events E and indicator functions Ind : S — R, is defined by a tuple A =
(E,L,A\, Init, Final , X , flow, —) where: FE is a finite alphabet of events (the events
of M); L is a finite set of locations; A : L — Prop denotes the locations’ invariants';
Init, Final C L denotes the initial, resp. final, locations; X = (z1,...x,) is a n-tuple of
data variables, and:

e flow: L — Ind™ associates with each location one indicator per data variable repre-
senting the evolution rate of the variable in the location.

o —C L x ((2¥ x Const) & ({#} x IConst)) x Up x L is a set of edges, where Const,
(resp. IConst), denotes the set of linear constraints, (resp. left-closed constraints)
consisting of a boolean combination of inequalities of the form ), ., ojz; +¢ <0
where o, c € Ind are DESP indicator functions and <€ {=, <, >, <, >}, & denotes
the disjoint union and Up denotes the set of n-tuples of update functions with the
following form x = >, -, cix; + ¢ where again «;, c€ Ind.

Furthermore A fulfils the following conditions.

o Initial determinism: VI # I’ € Init, A() ANA(l') & false. This must hold whatever
the interpretation of the indicators occurring in A(l) and A(l').

o Determinism on events: VE|, F; C Es.t. By N Ey # (0, VI,I',1" € L, if I” By

Eq '\ U’ . . s .
and 1" 222 |" are two distinct transitions, then either A(l) A A(I') < false or

v A~ & false. Again this equivalence must hold whatever the interpretation of the
indicators occurring in A(1), A(I"), v and 7.

U U
e Determinism on #: VI,I',l" € L, if I"” BV 1 and 17 ECYS 1 are two distinet

transitions, then either A(l) A A(I') & false or y Ay & false.

e No f-labelled loops: For all sequences
Eo,70,Uo E1,m,01 En—1,m-1,Un—1
lo I

that B # f.

I, such that Iy = [,,, there exists ¢ < n such

In the remainder we write | =22% I’ to denote an edge (I, E',v,U,l") €= of an LHA,

7E/7U .
furthermore we refer to an edge such as | 2="= I, where E’ C E is a subset of events,

"Where Prop C Ind is the subset of DESP indicator functions that evaluates to {0, 1}
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.. 4,U .
as a synchronising edge as opposed to an edge such as [ L " which we refer to as an

autonomous edge.

Example 2. The two automata 4; and A in Figure 2.3 are designed to be synchronised
with the NMGSPN model of mutual exclusion of Example 1. Both A; and As consists of

NMGSPN model M of mutually exclusive shared resource

Arry (Bxp,\1) (Exp,A2) Arry
? Free ?

Req Reqa
Start; (priv, wr) [ \ (priz, w2) Starty
Acey 9 9 Accsy
Seruvy Seruvy
(Unit, a1, £u]) (Unif, [z, Ba])
Ay Ay

{Servi },t<T,{z2++}
tart1, T,{z3++}

Servy, T {z2++}

lo
i:1
z1:Reqq,72:0

lo
z1:Req1
r2:0, x£3:0

#,t=T{x1/=T} fy22>k,0

E\{Servi},t<T,0 E\{Servi,Start:},T,0

L={lp,l1},Init={lo}, Final={l1}
E = {Arr1, Start1, Servi, Arra, Starta, Serva}
X ={t,z1,22}
Flow(lp)=(1, Req1,0), Flow(l1)=(0,0,0)
A)=T,vleL

L={lo, 11}, Init={lo}, Final={l1}
E = {Arr1, Starty, Servi, Arra, Starta, Serva}
X ={z1,x2,23}
Flow(lp)=(Req1,0,0), Flow(l1)=(0,0,0)

A =T,VIeL

Figure 2.3: Examples of two LHA referred to mutual exclusion NMGSPN model

2 locations L={lp,!1}, an initial one Init={lp} and a final one Final={l1}. They both
refer to the same event set E = {Arry, Start;, Servi, Arrg, Starts, Servs} i.e. that of the
transitions of the NMGSPN model of mutual exclusion and both are equipped with 3 data
variables, though 4; has a clock variable (t) whereas A5 is not equipped with any clock.
The flow of variables is conventionally null in the final location (Flow(l1) = (0,0,0)) as once
in the final location the synchronisation ends?, whereas is non-null (for certain variables)

2in fact the flow of variables in any final location could equivalently be set to an arbitrary value as
it cannot affect the synchronisation process given the synchronisation stop precisely on entering a final
location
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in the initial location ly: variable x; (for both A; and Ag) evolves at a rate given by
the marking of place Req; of the NMGSPN model, whereas the clock ¢, for Ay, naturally
has constant rate of 1. As for the edges .A4; has 2 synchronising self-loop edges on I,

S A<T, +4+ . . . ips
lo {Servi} teatt) lp, which synchronises with the occurrences of the Serwv; transition

of the NMGSPN model (and in so doing it stores the occurrences of Serv; in variable o,
E\{Servy },t<T,0
S

lop which synchronises with any other transition (without registering

any information in the variables of A;) plus an autonomous edge w [1 which
establishes the end of the synchronisation as soon as the clock is ¢ = T (where T is a
parameter of Aj), therefore paths accepted by A; are time-bounded. Similarly Ay has
3 synchronising self-loop edges on [y, one for counting the occurrences of Serv; (stored
in z2), one for counting the occurrences of Start; (stored in x3) and the remaining for
ignoring any other transition occurring during the synchronisation. Ay autonomous edge
establishes the ending of the synchronisation as soon as k (where k is a parameter of calAsg)
occurrences of the Serv; transition have been observed, therefore paths accepted by Ao
are event-bounded.

and [

LHA semantics Intuitively

Real-valued variables with linear flow. An LHA is equipped with a n-tuple of real-
valued variables z1,...,x, € R (called data variables) whose value evolves with a linear
rate that depends both on the location of the automaton and on the current state of the
DESP3. More precisely, a flow function associates with each location I of the automaton
an n-tuple of real-valued indicator functions (one for each variable) which define how the
value of each variable evolves, in function of the current state of the DESP, while the LHA
spends time in I. For example flow;(1)(s) (where flow;(l) is the i*" component of flow(l))
denotes the flow of variable x; while the LHA is in [ and the DESP in s.

Autonomous versus synchronised transitions. An edge of a LHA is characterised
by 3 components: (eventSet,constraint,update), where eventSet denotes either a subset
of E, the event set of the DESP, or the special sympbol # (denoting a pseudo-event that
is not included in the event set FE), constraint is a boolean proposition composed of lin-
ear inequalities on the LHA variables z; and update denotes a set of equations describing
how the value of variables z; is updated when the edge is traversed. Edges are enabled
(depending on the LHA variables and possibly also on the state of the DESP) as soon as
the constraint condition is satisfied. Depending on eventSet we distinguish between two
type of edges: autonomous and synchronised. When enabled an autonomous () edge can
be traversed autonomously (i.e. without synchronisation with the occurrence of a corre-
sponding DESP event). On the contrary a synchronised edge is associated to a subset of

3the value of z; evolves in a location of the LHA according to a rate defined by a real-valued linear
function of some model’s indicator
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events eventSet C F, meaning that, when enabled, it can be traversed only through syn-
chronisation with the occurrence of a DESP event e € eventSet. Notice that autonomous
edges have priority on synchronised ones: if both are enabled the autonomous edge will
be traversed before the synchronous. Because of the co-existence of autonomous and syn-
chronised edges an LHA is thus capable of taking into account, on one hand the system
behaviour, through synchronised transitions, but also to autonomously move the automa-
ton to another location, through autonomous transitions, as soon as specific conditions
captured by the data variables x; take place.

A constraint of an LHA edge is a boolean combination of inequalities of the form
Y 1<i<n @i%i + ¢ < 0 where «;, c € Ind are indicators, and <€ {=, <,>, <, >}. The set of
constraints is denoted by Const. Given a location and a state, an expression of the form
Y q<j<n i + ¢ linearly evolves with time. An inequality thus gives an interval of time
during which the constraint is satisfied. We say that a constraint is left closed if, whatever
the current state s of the DESP (defining the values of indicators), the time at which the
constraint is satisfied is a union of left closed intervals. These special constraints are used
for the “autonomous” edges, to ensure that the first time instant at which they are satisfied
exists. We denote by [Const the set of left closed constraints.

An update is more general than the reset of timed automata. Here each data variable
can be set to a linear function of the variables’ values. An update U is then an n-tuple of
functions wy, ..., u,, where each wy, is of the form xy, =), ., a;x; + ¢ where the o; and ¢
are indicators. The set of updates is denoted by Up. o

Finally each location of an LHA is also associated with an invariant (through a la-
belling function A), i.e. a boolean valued proposition built on top of DESP indicators. A
location invariant plays also a role in the enabling of LHA edges (autonomous and syn-

chronised): given in the current location [ the constraint ¢ of an edge [ =% I/ is satisfied,
Cc,u

—&

the edge | == [’ is actually enabled only if the invariant of A(l") will also be satisfied
after traversing | == [/ (hence after applying the update u to the LHA variables).

Remark 1 (Unique synchronisation). The four constraints outlined in Definition 2.2 let
the automata we consider deterministic in the following (non usual) sense. Given a path
o of a DESP, there is at most one synchronisation with the linear hybrid automaton. The
three first constraints ensure that the synchronised system is still a stochastic process. The
fourth condition disables “divergence” of the synchronised product, i.e. the possibility of
an infinity of consecutive autonomous events without synchronisation.

Remark 2 (Linearity). We stress that the linearity restriction that concerns different
elements of an LHA (i.e. the guards and the updates of an arcs as well as the flow of the
variables) can be relaxed, as long as those elements do not concern autonomous transitions.
Polynomial evolution of constraints could easily be allowed for synchronised edges for which
we would just need to evaluate the expression at a given time instant. Since the best
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algorithms solving polynomial equations operate in PSPACE [Can88], such an extension
for autonomous transitions cannot be considered for obvious efficiency reasons.

Example 3. Figure 2.4 depicts two slight variants of an LHA for measures related to the
time the shared resource of the mutual exclusion model is occupied by class 1 clients or by
class 2 clients. Both automata employ 2 variables: zg that counts the number of completed
occupation by either class of clients and x; dedicated to measuring the difference between
the time the resource is occupied by clients of type 1 minus the time it is occupied by clients
of type 2, and to this aim variable z; has flow 1 (resp. -1) when the resource is used by class
1 (resp. 2) clients, and 0 when the resource is not used. The termination condition, given
in the constraint of arcs leading to the final location I3, is defined so that synchronisation
ends on observing the k-th occurrence of either Servy or Serve (corresponding to the
completion of occupation of the shared resource by either type of client), i.e. % being
the sum of completed occupation of the resource. The most peculiar characteristic of the
automata in Figure 2.4 is that they both use location invariants, (i.e. state-dependent
proposition, corresponding to function A of Definition 2.2) associated with the non-final
locations: proposition Accy > 0 (there is at least a token in place Acc;) associated to I,
Accy > 0 (there is at least a token in place Acca) associated to [y and Free > 0 (there
is no token neither in Acc; nor in Accg) associated with the initial location ly. Hence,
starting from location [y (assuming initially the resource is free), no matter which precise
event occurs in the system, the automaton will switch from [y to I; and [ depending on
which class of clients has access to the resource. The fact that for example three different
transitions labelled with E without any constraint are available in location [y does not
induce non determinism as only one of these transitions is possible at a time thanks to
the location invariants. The synchronisation terminates in location l3 on observation of
the k-th departure of (any) client from the system and on condition that type 1 clients
have used the resource longer than type 2’s (constraint x; > 0 for As,) or viceversa on
condition that type 2 clients have used the resource longer than type 1’s (constraint z; < 0
for Agp). This allows to assess, through a corresponding HASL expression Z = PROB()
(see Section 2.2.2) the probability that type 1 (resp. type 2) clients use the resource longer
than type 2 (resp. type 1).

Operational Semantics: synchronised process M x A. The formal characterisation
of such synchronisation process boils down to showing that the synchronised process is
itself a DESP (equipped with absorbing accept/reject states) and by providing its formal
definition (Definition 2.3) in function of the synchronising components, that is the DESP
model M and the LHA A.

Notations. Given a DESP model M = (S, g, E, Ind, enabled, delay, choice, target) and
an LHA automaton A = (E, L, A, Init, Final, X, flow,—) in the remainder we adopt the



Chapter 2. Expressive statistical model checking

NMGSPN model M of mutually exclusive shared resource

Arry 3 (Exp,\1) (Exp,\2) 1 Arrg

Servy Servs

(Unif, oy, £1]) (Unif,[a, B82])

L="{lo, 11,12, 13}, Init={lo}, Final={I3}
E = {Arry, Start1, Servi, Arra, Starte, Serva}
X =A{zo,z1}
Flow(lp)=(0,0), Flow(l1)=(0, 1), Flow(l2) = (0, —1), Flow(l3) = (0, 0)
A(lo)=Free>0,A(lo) =Acc1 >0,A(l2) =Acca >0,A(I3) =T

Figure 2.4: An LHA to assess the probability that class 1 (resp. class 2) clients use the
shared resource longer than class 2’s. (resp. class 1’s).

following notations:

e LHA variables valuations: we denote v : X — R a waluation of the LHA variables
and Val the set of all possible valuations. For v € Val and x; € X we denote v(z;)
the value of x; in v. We denote v = 0 the valuation that assigns 0 to each variables
z;, € X.

e LHA constraints valuations: let v € Val be a valuation, s € S a state of M and
erp = Y qci<p Qi%; + ¢ an expression related to variables x; € X and indicators
a;,¢c € Ind we denote exp(s,v) the interpretation of exp w.r.t. v and s where
exp(s,v) is defined by exp(s,v) = > 1<, @i(s)v(zs) + c(s).

e LHA constraints satisfaction: let v € Val be a valuation, s € S a state of M
and v = exp < 0 € (Const U IConst) a constraint built on top of an expression
eTp = Y1 cicn Qii + ¢, we write (s,v) |y (Le. (s,v) satisfies v) if exp(s,v) < 0.
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e« LHA updates valuation: let v € Val be a valuation, s € S a state of M and U =
(u1,...,uy) € Up be an update (appearing on some edge) of the LHA we denote by
U (s, v) the valuation defined by U(s,v)(zx) = uk(s,v) for 1 <k < n.

« state proposition satisfaction: Let s € S be a state of M and o = ., i +¢ <0
be a state proposition (i.e. a constraint built on an expression that involves only
indicators of M and no variables of the LHA). We write s = ¢ (i.e. ¢ is satisfied in
s) if p(s) = true.

e Time elapsing: Given a state s € S of M a non final location [ € L and a valuation v
of A, we define the effect of time elapsing by: Elapse(s,l,v,d) = v/ where, for every
variable g, V' (zg) = v(zg) + flowy,(1)(s) x 4.

o Earliest autonomous delay: Given a state s € S of M a non final location [ € L and
a valuation v of A we denote Autdel(s,l,r) the minimum delay which enables an
outgoing autonomous edge originating in [,

Autdel(s,l,v) = min(é | 3l LN T E A(l') A (s, Elapse(s,l,v,0)) =)
Remark: Whenever Autdel(s,l,v) is finite, we know that there is at least one exe-
cutable transition with minimal delay and, thanks to the “determinism on #” (Def-
inition 2.2), we know that this transition is unique. We call the transition with
such earliest delay the earliest and we denote Next(s,l,v) its target location and
Umin(s,l,v) its update.

Definition 2.3 (M x A synchronised process). Let M = (S, 7y, E, Ind, enabled, delay,
choice, target) be a DESP and A = (E, L, A, Init, Final, X, flow, —) a corresponding LHA
we define M’ = (S, x|, E', Ind', enabled', target’, delay’, choice’) as the DESP correspond-
ing to the synchronisation of M with A as follows:

o "= (S x L x Val)W{L} among which (S x Final x Val) W {L} are the absorbing
states.

mo(s) if (l€InithsE=A(l)Av=0)

0 otherwise

and my(L) = 1 — Ssesiervevamy(s, 1, v).

o (s, lv) =

Note that this definition gives a distribution since, due to “initial determinism” (Def-
inition 2.2), for every s € S, there is at most one [ € Init such that s = A(l).

. B'=Buif)

o Ind = 0. In fact Ind’ is useless since there is no more synchronisation to make.
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o enabled(s,1,v) enabled(s) U{t}, if Autdel(s,l,v) # oo
enabled(s), otherwise
o delay/((s,1,0),¢) de.lay(s, e), ?f e € enabled(s) N § & enabled'(s,1,v)
Dirac(Autdel(s,l,v)) if § € enabled'(s,,v)
Notice that the Dirac distribution centred on the earliest autonomous delays indicates
the priority of autonomous transitions over synchronised ones.

1, if (e E'Ne=1H)
0, if £
e choice'((s,l,v), E' d)(e) = 0 . ;uEE/ her

choice(s, E',d)(e) otherwise
Again this is coherent since, as soon as ff ¢ E’, then E’ is a subset of enabled(s) on
which choice is thus defined.

o target for occurrence of a synchronising event e €

( E' U

AElapse(s,l,v,d) = v
target'((s,l,v),e,d) = Atarget(s,e,d) E A(l)
AV = U(Elapse(s,l,v,d))

1 otherwise

Notice that due to the determinism constraints there is at most one such transition.

o target for occurrence of an autonomous event f
(s,I',v)), if (3 LNy €—) A (8 € enabled (s,1,v))
Nl = Next(s,l,v)
AV = Umin(s,l,v)(Elapse(s,l,v, Autdel(s,1,v)))

1 otherwise

target’((s,1,v),4) =

e In order to get a DESP, for any absorbing state one adds a special event tick only
enabled in absorbing states with Dirac distribution on value 1 (so that time diverges
in these states).

Summary remarks. Roughly speaking the formal characterisation of synchronised (M x
A) process given above (Definition 2.3) tells us that as long as the automaton is not in
a final state, the synchronisation of M with A waits for the first (synchronised or au-
tonomous) transition to occur. If an autonomous transition occurs then only the location

(target(s,e,d),l',v"), if (3 ——=1 €—) A (e € E'Nenabled(s))
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of the automaton A and the valuation v of its variables change, whereas, if a synchronis-
ing event of M occurs then, either the LHA can take a corresponding transition and the
system goes on with the next transition or the system goes to a dedicated rejecting state
L implying the immediate end of the synchronisation. In case of a conflict between two
transitions, an autonomous and a synchronised one, the autonomous transition is taken
first. Furthermore note that, by initial determinism, for every s € S there is at most one
I € Init such that s satisfies A(l). In case there is no such [ the synchronisation starts and
immediately ends up in the additional state L. Determinism on events (resp. on f) ensures
that there is always at most one synchronised (resp. autonomous) transition fireable at a
given instant.
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Figure 2.5: Example of synchronisation of a NGGSPN model with a LHA.
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Example 4 (LHA and DESP synchronisation). Figure 2.5 depicts an example of syn-
chronisation between the NMGSPN model M (top left) of the mutual exclusion system
(Example 1) with the LHA A; of Example 2 (top right). The example shows a path o
(sampled from M and whose projection ogeq, over the Req; place is depicted as the blue
step-like plot in the bottom picture) and the corresponding path ogeq, X A; induced by o
on the synchronised product process M x A;. The bottom picture includes also a plot (i.e.
red linear plot) of the corresponding time evolution (induced by synchronisation with o)
of the x1 variable of A4; that is the variable storing the value of the integral of the number
of class 1 processes waiting for the shared resource.

We quickly recall that A1 uses a clock variable t to measure time elapsing and a variable
x1 which, while spending time in [y, register the integral of class 1 processes waiting to
get access to the shared resource (Flow(lp)(z1) = Reqi). The initial state of path o is
assumed to be (Reqy : 1, Reqa : 1, Free : 1, Accy : 0, Accy : 0)2, i.e. we assume that initially
1 process of each class is waiting to access the shared resource and that the resource is
free hence the initial corresponding configuration of the Mg, x A; product process is
(1,1o,[t=0,21=0,29=0]) denoting that the marking of Regq; is 1, the location of A; is Iy
and that in the initial valuation all A; variables are null [t =0, 27 =0,z =0]. The initial
state of o does not change until the first event (Arry) occurs after 0.5 time units yielding a
change to state (2,1,1,0,0), i.e. an increment in the tokens in Req; (the number of class 1
processes waiting increases by 1). While o is sojourning in the initial state the automaton
spends time in /g hence z; increased is value with rate Req; =1 hence at ¢ = 0.5, its value
is 1 = 0.5, which corresponds to the transition to the second configuration of Mpge,, x A1,

that is (2,lo, [t = 0.5,x1 = 0.5, 292 = 0]). Notice that as long as t < 4 the autonomous

t=4,x1 /=4 . .
transition g % I1 of A; is not enabled hence the synchronisation cannot stop. The

next transition in o (again Arry) happens after further 1.5 time units, at that moment the
clock is ¢ = 2, while x; continued to grow but at a greater rate #; = 2 as for ¢ € [0.5, 2]
the marking of place is Req; = 2. Therefore the occurrence of the second Arry events
yields the third configuration of Mpe,, x Aj, that is (3,1, [t = 2,21 = 3.5, 29 =0]). The
following event in ¢ is the occurrence of the immediate transition Starts representing the
fact that a class 2 process starts to occupy the shared resource: notice that the occurrence
of Starty although yields a synchronisation with the automaton does not actually change
the configuration of the product process as neither the location nor the variables of A; are
affected by the occurrence of Starty. The synchronisation goes on in a similar fashion and
ends with an autonomous transition through which the final location /; of A; is reached
from configuration (2, ly, [3.5,7.5,1]) after a delay of 0.5 units, which corresponds with the

=4,21 /=4
clock reaching the value t = 4 hence fulfilling the constraint for the [y % Iy of Ay
edge. By traversing such edge x; is updated to 1 = 8/4 = 2 which indeed corresponds
with the mean number of class 1 process that have been waiting to access the resource in

‘we represent states of M as 5-tuples with the following correspondence with the places name
(Reg1, Reqa, Free, Servi, Servs)
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the time interval [0, 4].

Remark 3 (Almost-sure termination of the synchronisation process). A necessary condi-
tion for establishing a statistical model checking framework based on the HASL formalism
is the guarantee that a stochastic simulation algorithm that (based on the operational se-
mantics outlined in Definition 2.3) samples paths from the synchronised M x A product
process always terminates. Generally speaking HASL model checking consists of an iter-
ative procedure for samping infinite path of M x A however the quantity Z of interest
(see Section 2.2.2) is evaluated on the finite prefix that ends when the path reaches an
absorbing state. In the general case, it would be possible that an infinite path does not
admit such a prefix. Here we assume that given a DESP M and a HASL formula (A, Z),
with probability 1, the synchronising path generated by a random execution path of M
reaches an absorbing configuration. This semantical assumption can be ensured by struc-
tural properties of A and/or M. For instance, the time bounded Until of CSL guarantees
this property. As a second example, the time unbounded Until of CSL also guarantees
this property when applied on finite CTMCs where all terminal strongly connected com-
ponents of the chain include a state that either fulfils the target sub-formula of the Until
operator or falsifies the continuing sub formula. This (still open) issue is also addressed
in [SVAO5a, HIB'10].

2.2.2 HASL expressions

The second component of an HASL specification is an expression, denoted Z, given by
grammar (2.1). Z is associated to a LHA A and expresses the target measure whose
confidence interval should be estimated based on the paths accepted by A.

Zu= EY)|Z+Z|ZxZ| Pdist

Pdist ::= PDF(Y, step, start, stop)) | CDF (Y, step, start, stop) | PROB()
Yiu=c|Y+Y |Y XY |Y/Y |last(y) | min(y) | max(y)
yu=clalytylyxylyly

(2.1)

There are two main types of expressions Z: E(Y) (where E° indicates mean value of, i.e.
the first moment of) and Pdist (indicating a probability distribution or probability value
expression). Y represent a random variable built on top of algebraic combination of some
path operators applied to an algebraic expression composed of LHA variables y, i.e. last(y)
(i.e. the last value that y has at the end of an accepted path, min(y)(resp.max(y)), the min
(resp. max) value of y along an accepted path. Conversely Z expressions of Pdist type in-
clude PDF (Y, step, start, stop), which allows for estimating the PDF of random variable Y’

5Notice that within the COSMOS tool E is actually denoted AV G, therefore HASL expressions may
equivalently be formulated using either E(Y") or AVG(Y).
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computed by discretisation of the support set [start, stop] C R>g in (stop— start)/step sub-
intervals of size step and similarly CDF (Y, step, start, stop). Finally expression PROB()
allows for estimating the probability that a path is accepted, otherwise said PROB() is
used to estimating the probability of the paths event set represented by the considered
automaton 4. Notice that one can then define sophisticated probability measures by con-
sidering specific conditions as constraints of the edge(s) leading to an accepting location of
A.

Notice that since Z can be a composed expression obtained by algebraic operators (e.g.
Z 4+ Z, Z x Z) built on top of the first moment of Y (AVG(Y)) it is possible to take
into account diverse significant characteristics of Y (apart from its expectation) as the
quantity to be estimated, including, for example, the variance Var[Y]=E[Y?] — E[Y]? and
the covariance Covar[Y,Ys] = E[Y1Ys] — E[Y1]E[Y2]. Furthermore we point out that for
efficiency reasons, in the implementation of the COSMOS software tool (Section 2.4), we
have considered a restricted version of grammar (2.1), where products and quotients of
data variables (e.g. z1 X zo and z1/x2) are allowed only within the scope of the LAST
operator (i.e. not with MIN, MAX, INT). Indeed, allowing products and quotients
as arguments of path operators such as M AX or MIN requires the solution of a linear
programming problem during the generation of a synchronised Mx.A4 path which, although
feasible, would considerably affect the computation time.

Example 5 (HASL expressions). Referring to the automata .4; and Ay of Example 2.3 and
Asq and Asp of Example 3 let us consider a few examples of complete HASL specifications
together with their informal description.

o ¢14 = (A1, E(last(x1))): the mean number of class 1 processes waiting to access the
shared resource within the time interval [0, 4]

o ¢1p = (A1, E(max(ze))): the max number of class 1 processes that got access the
shared resource within the time interval [0, 4]

o ¢oq = (A2, E[LAST(x1)/k): the upper bound on the waiting time of the first k
instances of class 1 processes arrived in the system.

o ¢op = (Ao, E[LAST (21)/LAST (x3)): the upper bound on the waiting time of the
first k instances of class 1 processes arrived in the system.

o ¢34 = (A3, E[PROB()): the probability that type 1 clients have used the shared
resource longer than type 2’s, given that k clients (of any kind) have used the shared
resource.

o ¢3p = (Asp, E[PROB()): the probability that type 2 clients have used the shared
resource longer than type 1’s, given that k clients (of any kind) have used the shared
resource.
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Remark 4 (Existence of expectation E(Y)). We emphasise that the (conditional) expec-
tation of a path random variable is not always defined. There are two obvious necessary
conditions on the synchronised product (M x A): (1) almost surely the random execution
ends either in a final state of the LHA or in the rejecting state, and (2) with positive
probability the random execution ends in a final state of the LHA. However these condi-
tions are not sufficient. Different restrictions on the path formula ensure the existence of
expectations. For instance, when the formula only includes bounded data variables and
the operator INT and the division are excluded, the expectation exists. Divisions may
be allowed when the path expression is lower bounded by a positive value: for example
w.r.t. formula ¢g,, LAST (z3) is lower bounded by LAST(x2) which is lower bounded by
k. The existence of regeneration points of the synchronised product may also entail the
existence of such expectations. We do not detail the numerous possible sufficient conditions
for the expectation of a path expression Z to exist but for all applications discussed is this
manuscrit the existence of such expectation can be easily shown.

2.3 Expressiveness of HASL

As arguably the most relevant feature of the HASL formalism is its expressiveness it is
important to address how it compares with respect to related formalisms. In the remain-
der we briefly overview temporal logic based frameworks for the verification of stochastic
models, referring to [BBD'15a] for a more in depth discussion.

2.3.1 Comparison with logics for numerical stochastic model checking

CSL and variants. A number of temporal logic formalisms have been introduced for
model checking of CTMCs. These include the seminal Continuous Stochastic Logic (CSL),
first introduced by Aziz et al. [ASSB00] and further extended by Baier et al. [BHHKO03a].
CSL extended CTL branching-time state-based reachability reasoning to the realm of
CTMCs, by 1) introducing densely time-bounded temporal operators, hence allowing for
time-bounded reachability verification, and 2) by allowing for steady-state reasoning through
the introduction of a dedicated steady-state modality. In an effort to extending model
checking with performance analysis capabilities several variants of CSL have been intro-

duced that operate on reward enriched Markov models, such as Baier et al. 's CSRL [BHHKO00],

that extends the CSL approach to Markov reward models, i.e. CTMCs with a single re-
ward on states or Cloth et al. ’s [CKKPO05] that further extended that approach with
impulse rewards on actions. Kwiatkowska et al. [KNP07b] then combined those advances
by equipping the PRISM model checker [PRI] with complete state and transition reward-
based analysis facilities which is achieved by giving the possibility to the modeler to enrich
CTMCs with multiple state and/or transition rewards and to analyse them through dedi-
cated reward based operators which allow for assessing their expected value either at given
instant of time, at steady-state or cumulated over finite paths.
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Another significant evolution of CSL is Baier et al. asCSL logic [BCH'07] through which
the time-bounded Until of CSL is replaced by a regular expression with a time interval
constraint. These path formulas can express elaborated functional requirements as in CTL*
but the timing requirements are still limited to a single interval globally constraining the
path execution.

Remark 5 (CSL expressiveness). Despite the considerable effort to evolve CSL logic the
expressiveness of all CSL-like formalisms is limited to state-based, singly time-bounded
reachability reasoning, that is: with CSL we can only consider state conditions and at most
a single time interval as constraining factors to characterise the paths whose probability
measure we wish to account for.

Timed automata based CTMC model checking. In order to increase the expressive-
ness of CSL-like temporal reasoning timed-automata based model checking of CTMCs has
been proposed. Haddad et al. introduced the overall idea with the logic CSL™A [DHS09],
whereby path formulae are defined by a single-clock deterministic timed automaton (DTA).
This logic has been shown to be strictly more expressive than CSL and also more expres-
sive than asCSL when restricted to path formulas. A generalisation of CSL™has been
introduced by Chen et al. [CHKMO09], deterministic timed automata with multiple clocks
are considered and the probability for random paths of a CTMC to satisfy a formula is
shown to be the least solution of a system of integral equations. The cost of this more
expressive model is both a jump in the complexity as it requires to solve a system of partial
differential equations, and a loss in guaranty on the error bound.

Remark 6 (Timed-automata temporal logic expressiveness). The employment of (single or
multiple-clock) timed-automata as paths specifiers increases the expressiveness of temporal
reasoning as one can now not only combine state and event conditions but also consider
multiple time-intervals as criteria to specify the paths of interest, therefore effectively
moving beyond CSL expressiveness. However the proposed timed automata based model
checking approaches do not provide any support for reward-based analysis as clocks being
the only kind of variable supported by timed automata they do not allow to neither measure
any reward nor consider cumulated rewards as criteria to characterise the paths of interest.

M(I)TL.  Several logics based on linear temporal logic (LTL) have been introduced to
consider timed properties, including Metric (Interval) Temporal logic in which the Until
operator is equipped with a time interval. Chen et al. [CDM11] have designed procedures
to approximately compute desired probabilities for time bounded verification, but with
complexity issues. The question of stochastic model checking on (a sublogic of) M(I)TL
properties, has also been tackled see e.g. [ZC13].
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Remark 7 (Limited expressiveness for numerical model checking). All of the above men-
tioned CSL and timed-automata logics have been designed so that numerical methods can
be employed to assess the probability measure of a formula. This very constraint is at the
basis of their limited expressive scope which has two aspects: first the targeted stochastic
models are necessarily CTMCs; second the expressiveness of formulas is constrained by
decidability /complexity issues. Furthermore the evolution of stochastic logics based on
CTL seems to have followed two directions: one targeting temporal reasoning capability
(in that respect the evolutionary pattern is: CSL — asCSL — CSLTA— multi-clock DTA),
the other targeting performance evaluation capability (evolutionary path: CSL — CSRL
— CSRL-+impulse rewards). A unifying approach is currently not available, thus, for ex-
ample, one can calculate the probability for a CTMC to satisfy a sophisticated temporal
condition expressed with a DTA, but cannot, assess performance evaluation queries at the
same time (i.e. with the same formalism).

Hybrid automata based model checking. As HASL is inherently based on stochastic
simulation, it naturally allows for releasing the constraints imposed by logics that rely on
numerical solution of stochastic models and therefore broaden the class of target stochastic
models to DESP which includes, but is not limited to, CTMCs. From an expressiveness
point of view, the use of LHA, i.e. a generalisation of DTA, allows for generic variables,
which include, but are not limited to, clock variables. That opens up to a much wider
expressiveness as by combining real-valued, boolean, integer-valued variables one can now
take into account sophisticated reward measure that can not only be estimated per se but,
most importantly, can be used as selection criteria of the paths of interest. This means that
sophisticated temporal conditions as well as elaborate performance measures of a model can
be accounted for in a single HASL formula, rendering HASL a unified framework suitable
for both model-checking and performance and dependability studies. Note that the nature
of the (real-valued) expression Z (2.1) generalises the common approach of stochastic model
checking where the outcome of verification is (an approximation of) the mean value of a
certain measure (with CSL, asCSL, CSL™ and DTA a measure of probability).

More specifically it is also worth noting that the use of data variables and extended
updates in the LHA enables to compute costs/rewards naturally. The rewards can be both
on locations and on actions. First using an appropriate flow in each location of the LHA,
possibly depending on the current state of the DESP we get “state rewards”. Then, by
considering the update expressions on the edges of the LHA, we can model sophisticated
“action rewards” that can either be a constant, depend on the state of the DESP and/or
depend on the values of the variables. Thus HASL extends the possibilities of CSRL (and
extensions [LKKPO05]). The extension does not only consist of the possibility to define
multiple rewards (that can be handled, for example, through the reward-enriched version
of CSL supported by the PRISM tool) but rather of their use. First several rewards can
be used in the same formula, and last but not least these rewards have a more active
role, as they can not only be evaluated at the end of the path, but they can also take an
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important part in the selection of enabled transitions, hence of accepted paths. It is for
example possible and easy to characterise the set of paths along which a reward reaches a
given value and after that never goes below another value, a typical example that neither
PRISM-CSL nor CSRL can handle.

Limitations of HASL. Finally, we briefly discuss two features that are available in
the above mentioned stochastic logics but not in HASL. First HASL does not allow to
properly model nesting of probabilistic operators. The key reason is that this nesting is
meaningful only when an identification can be made between a state of the probabilistic
system and a configuration (comprising the current time and the next scheduled events).
While this identification was natural for Markov chains, it is not possible with DESP and
general distributions that have no memoryless property, and therefore this operation has
not been considered in HASL. Furthermore, even for Markovian systems, the complexity
of the statistical method on formulas with nesting is quite high [YS06] as the verification
time per state along a path is no longer constant.

A similar problem arises for the steady state operator. The existence of a steady state
distribution raises theoretical problems, except for finite Markov chains. With HASL we
allow for not only infinite state systems but also non Markovian behaviours. However,
when the DESP has a regeneration point, various steady state properties can be computed
considering the sub-execution between regeneration points.

In conclusion it is worth noting that these limitations are rather due to the verification
method (statistical in our case) and to the expressiveness of the model (allowing non
Markovian systems) than to a particular tool. All this information given, particularly
concerning nested and steady state formulae, we can now state and prove our claim about
the respective expressiveness of HASL, CSRL and CSLTA:

Proposition 1. Given a non nested transient CSRL formula F.,¢ and a system described
as a Markov Reward Model, it is possible to build an LH A to estimate the probability
p for ¢ to hold, and then decide whether it fulfils the bound required (i.e. p < ¢ with
e {<, >, <, >1).

Proof. See [BBD"15a]

Proposition 2. Given a non nested transient CSL™ formula PugA(¢1,...,$,) and a
system described as a Continuous Time Markov Chain, it is possible to build an LHA to
estimate the probability p for an execution to be accepted by the DTA A(¢q, ..., ¢,), and
then decide whether it fulfills the bound required (i.e. pi<i g with e {<,>, <, >}).

Proof. See [BBD*15a]
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2.3.2 A couple of meaningful applications

The expressive power of the HASL formalism has been demonstrated through a number of
applications in different domains, including that of biological modelling [BGGM14, BD15],
that of performance analysis of manufacturing systems [BDD*11d, BH21a, BH21b)], that of
verification of wireless network protocols [BBV19, MMB™17], in medicine [BKMP15] and
in autonomous vehicle safety analysis [BBDH17] (a list of publications related to HASL is
available at [COS]). To illustrate HASL expressiveness below we briefly overview a couple
of meaningful applications.

Analysis of gene expression models with stochastic delayed dynamics

Gene expression is a fundamental biological intra-cellular process by which proteins are
synthesised from a gene, i.e., a sequence in the DNA. It consists of two main phases:
transcription, i.e., the copying of a sequence in the DNA strand by an RNA polymerase
(RNAp) into an RNA molecule, followed by translation, i.e., the process by which proteins
are synthesised from the (transcribed) RNA sequence. The rate of expression of a gene
is usually regulated at the stage of transcription, by repressor molecules that can bind to
the operator sites (generally located at the promoter region of the gene) and then inhibit
transcription initiation. Evidence suggests that this is a highly stochastic process since
usually, the number of molecules involved, e.g. transcription factors and promoter regions,
is very small, ranging from one to a few at a given moment, which motivates the application
of stochastic modelling to the analysis of gene expression dynamics. Ribeiro et al. [RZKO06]
argued that the dynamics of chemical reactions involved in the gene expression process
exhibits a stochastic delayed nature, meaning that the appearance of a reaction’s product
may be subject to a further (non Markovian) stochastic delay after the actual occurrence of
the reaction which, in turns, is selected stochastically in a standard manner, i.e., through
Gillespie’s SSA [Gil77].

In [BMR12] we formally analysed the dynamics of a single gene reaction network taken
from [RZKO06] whose stochastic Petri net encoding is depicted in Figure 2.6. The six
reactions are modelled by small subnet blocks consisting of few timed Exponential timed
transitions (depicted as empty rectangles) and non-Markovian timed transitions (grey filled
rectangles). Place Pro represent the single promoter area of the gene and a token in it
indicates the promoter is not occupied. Expression begins with the initialisation reaction
Ry, whereby an RNAp binds to a promoter (Pro), which remains unavailable for more
reactions until reaction transc occurs. Following reaction transc both the promoter and
the ribosome binding site RBS become available although the production of an RNA is
not terminated until a further delay given by (the Gamma distributed) reaction termin
(notice that the number of RNA molecules produced corresponds with the marking of place
RNA). As soon as the RBS site of the RNA is completed (through reaction transc) the
translation process begins by binding (reaction transl) of a ribosome molecule Rib to the
RBS. This processes terminates only after further delays: a Gamma distributed timed
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Figure 2.6: Stochastic Petri net model of the single-gene expression network

transition representing the release the Rib molecule from the the RBS, another Gamma
distributed timed transition modelling the termination of translation hence the synthesis
of the product proteins P and finally a Dirac distribution for freeing the RBS. The model
is completed by few further Markovian transitions: one modelling the RBS decay (R4) and
a pair of transitions (Rs and Rg) modeling the periodic occupation of the promoter by a
repressor molecule which inhibits the whole expression process.

11

rbsd (RBS decay rate)

Figure 2.7: Sustainment of translation during repression intervals.

In order to analyse the dynamics of gene expression process we conceived a few prop-
erties which depend on non trivial random variables such as:

o ¢1: “duration of translation process given that translation ends within a repression
interval”.

o P9: “probability of the number of translation events occurring in between two consec-
utive transcription events given at least N translations occur between two consecutive
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transcriptions”.

Random variable ¢; quantifies the inertia (sustainment) of the translation phase in
terms of how long translation keep going since expression is turned off (through repression).
The overall idea is illustrated in Figure 2.7 (left) where a repression interval is the time
interval between the occurrence of a repression event (Rj) and the corresponding un-
repression event (Rg) and a “positive” repression interval is one in which the translation
process actually completely terminated (i.e. by releasing a P molecule and detaching the
Rib molecule from the RBS) whereas a “negative” interval is one in which translation did
not terminate. Figure 2.7 (right) shows the average value of ¢; measured over a time-
bounded horizon (through a dedicated HASL formula on COSMOS) in function of RBS
decay rate.
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INTER-TRANSCRIPTION TRANSLATIONS unr(eg -------
rep(1) =-=----
04 | rep(2) eeeeee .
transc transc transc trans - =
AV4 AV4 AVALVARN N/ - = 03} 7 . .
78 78 INTTITN i 2 P
Q 3
! ! ! ! TIME 8 ool/ " |
I >l >l > o i .
transcription-interval g “'-—w.,h .
01| 11-..',\,,“’ ,
. s T ey
with N=2 "positive"-interval: S N_om — . S B R |
2 translations occurred with N=2 "negative-interval: 0 I I I I LTy, PR dioned
0 1 2 3 4 5 6 7 8 9 10

N (completed translations)

Figure 2.8: Completed translations between consecutive transcriptions.

On the other hand random variable ¢ is meant as an indicator of the relative frequency
of the transcription and translation processes. Figure 2.8 (left) illustrates intuitively the
meaning of measures related to ¢o, where a “positive” interval is one in which at least N = 2
transcriptions event occurred as opposed to a “negative” interval is one in which less than
N transcriptions occurred. Figure 2.7 (right) shows the value of ¢ measured (through
a dedicated HASL formula on COSMOS) in function of N and w.r.t. to unrepressed and
differently repressed setting of the single-gene model.

We stress that ¢1 and ¢o are meaningful witnesses of the expressive power of the HASL
formalism: an equivalent formulation in terms of popular temporal logic formalisms such
as, e.g., the reward-extension of CSL supported by the PRISM model checker, could hardly
be obtained.

Analysis and computation of passage-time measures

In performance modelling the passage time distribution is a specific type of performance
index particularly useful when reasoning about properties related with Service Level Agree-
ments (SLA) or safety requirements. Generally speaking a passage time measure is con-
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cerned with tracking the duration for a single instance of a process to complete, for example
the time it takes for an order to be treated (archived) since it is placed on a selling platform
(see model in Figure 2.9). In practice passage time measures can be formulated as the dis-
tribution of the time required to reach a goal state from any entry state possibly without
hitting any forbidden or equivalently by matching the occurrence of a start with a corre-
sponding end event. Notice that classical performance measures based on mean values,
like the average response time, are not sufficient to estimate a passage time distribution,
whose calculation requires dedicated methods and tools [Kul95, DHKO04].
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Figure 2.9: A NMGSPN model for an order-handling process.

From a modelling standpoint measuring of passage time distribution induces some
difficulties, as it requires the ability to track the start and end of a specific process instance.
In Petri nets terms this corresponds to the ability of tracking a specific token (e.g. the
one corresponding to a specific order) as it flows through the Petri net up until it reaches
the place that correspond to the end of the monitored process instance®. That lead to
the extension of standard Petri net formalisms as is the case with the Tagged extension of
GSPN [BDPF09] (TGSPN) where tokens can be tagged in order to follow their traversal
of the net. The evaluation of passage time measures on TGSPN models boils down to a
transient analysis problem of the underlying CTMC.

Alternatively passage times can be accounted for by combining a “standard” model
with an automata-based monitor where the latter is used as a machinery to track the
beginning and end of the activity of interest. Examples of this approach are the Extended
Stochastic Probes (XSP [CGO8], operating on PEPA models [Hil05]), Path Automata (PA,

5Notice that tracking tokens in a Petri net is not trivial as soon as several tokens, representing parallel
instances of the monitored process, are permitted.
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operating on Stochastic Activity Networks [OS99]) or Probe Automata (PrA [ABDF11]
operating on GSPN models, where PrA are a kind of deterministic, untimed automata).

In [ABB*13] we introduced the use of the HASL formalism for the specification of
passage time measures over NMGSPN models and showed that HASL allows for specifying
and assessing more sophisticated passage time measures than those supported by Probe
Automata, more specifically conditional passage times measures obtained by a combination
of time, state and events constraints.

For example, referring to the order-handling model of Figure 2.9, we the introduced
the following HASL-expressed conditional passage time measures which we assessed (see
Figure 2.10) through a number of experiments run on the COSMOS tool (see Section 2.4):

e Measure wl: the CDF of the passage-time for an ordered good to be delivered.

e Measure w2: the CDF of the passage-time for an ordered good to be delivered given
that it was out-of-stock.

e Measure w3: the CDF of the passage-time for an ordered good to be delivered given
that it is mot out-of-stock and that the total delay for checking its availability and
shipping it does not exceed K .

e Measure w4: the CDF of the passage-time for an ordered good to be delivered given
that the total delay for reordering and updating the stock does not exceed K .
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Figure 2.10: Passage times for the workflow properties w; to w4 assessed over time interval
[0, 100].

It is worth stressing that apart from the increased expressiveness in [ABB*13] we also
demonstrated the effectiveness of a general purpose performance analysis framework, such
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as HASL model checking, in treating of a type of problem that otherwise is solved through
customised formalisms. In fact assessment of passage time measures on a GSPN model
through the Probe Automata approach is obtained through a quite cumbersome procedure
which involves first constructing the tangible reachable graph of the GSPN, than composing
it by considering the product with the Probe Automaton and finally solving the transient
state distribution of the product model.

2.4 Software support: the Cosmos tool

In order to provide software support to the HASL formalism we developed
CosMos” [BDDT11a, COS, BB22] a software platform for statistical model checking of
HASL formulae. COSMOS is based on the SMC scheme outlined in Figure 2.2 hence it im-
plements the stochastic simulation algorithm for the synchronised product process (M x .A)
and supports different statistical methods for estimating the target measure Z of a HASL
formula ¢ = (A, Z), including confidence interval estimation as well as hypothesis testing.

2.4.1 A model driven code generation architecture

COSMOS is implemented in C++ and relies on the Boosr libraries for random number
generation functionalities. In an effort to obtain a performant tool COSMOS is designed ac-
cording to a model driven code generation scheme (Figure 2.11): the inputs M (NMGSPN)
and A (LHA) are parsed in order to generate an efficient customised C++ implementation
of the simulation engine of the synchronized product M x A. The generated code is linked

Statistical
Evaluation

Command Line

Command line —
Parser

Boost Random
Generator
model.grml _’ "GSPN.cpp |

property.grml —| LHA Parser Generator

Figure 2.11: COSMOS’s model-driven code generation scheme

Parameters

Simulator

with a library containing parts of the simulator that are independent of M and A. This
library contains the main function that determines the next event to occur by means of
an event heap and the generated code. In addition a pseudo random generator computes
delays for the new events that are put into the heap.

TCOSMOS is an acronym of the french sentence “ Concept et Outils Statistiques pour le MOdéles Stochas-
tiques” whose english translation would sound like: “Tools and Concepts for Statistical analysis of Stochastic
MOdels™.
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Parallel threads of execution. When an experiment is launched on a given model-
automaton pair (M, A) COSMOS generate the C4++ code for the corresponding SMC
engine, compiles it and launches several threads of the resulting executable code in parallel
that repeatedly generate trajectories and send back the evaluation of the formulas on these
trajectories. COSMOS aggregates these evaluations and stops the simulation depending on
the selected statistical method (see below). The code generation and compilation time is
generally negligible compared to the simulation runtime.

2.4.2 CosMos statistical engines

COSMOS is equipped with a number of statistical engines that are applied depending on
the nature of the quantity to be estimated. Specifically confidence interval techniques,
are used for quantitative experiments, i.e. experiments whose goal is to estimate the mean
value of a given (real-valued) random variable, as opposed to hypothesis testing methods,
which are applied for qualitative experiments, i.e. experiments whose goal is to establish
how the mean value of random variable compares w.r.t. a given threshold.

Confidence interval methods. Confidence Interval (CI) methods works by collecting
a number of samples Z1,... 7, of an unknown random variable, in order to produce an
estimate of an interval which is likely to contain the exact mean value pz of the considered
random variable (Z in the case of HASL). The accuracy of the estimate is controlled w.r.t.
two complementary aspects: i) the confidence level (o€ (0,1)) which expresses how reliable
the produced estimate is and ii) the admitted error bound (i.e. expressed as the width § of
the resulting interval). This means that if we repeatedly estimate the interval for a given
0 we are guaranteed that the (possibly different) resulting intervals will contain the actual
value of Z in a proportion corresponding to (1 — «). Given an n-sized sample Z1,...Z,
the general form of the 100(1 — a)% confidence-interval for the expected value pz of Z,
denoted CIT , is:

kz?
CI}, = (PE,,) + EBy

where PE,,, is a Point Estimate of pz and E B, is the Error Bound, which corresponds to

the semi-width of the CI interval, i.e. EB, = 6/2. The sample mean Z = # is used
as (unbiased) Point Estimator of pz. The execution of CI experiment depends on three
parameters: the sample size n, the confidence level o and the error bound §. Generally
speaking one can fix two of them and get the corresponding value of the remaining one in
function of the previous two, however the actual choice of the two parameters to be fixed
depend on the nature of variable to be estimated: in some case the sample size must be
fixed a priori.

Static sample size estimation. With respect to CI estimation COSMOS distinguish
between i) indicator variables (Bernoulli variables) used for evaluation of unknown prob-
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abilities, ii) bounded variables used for evaluation of proportions, ratios, mean number of
clients in a system with finite capacity and iii) general variables without any additional
knowledge. For indicator variables and bounded variables COSMOS allows the user to chose
2 out of 3 of the CI parameters and automatically establishes the value of the remaining
one in function of the fixed two parameters. For general variables however the sample
size must be provided leaving free choice of one among the two remaining parameters. In
general when the user fixes the sample size n and the confidence level a COSMOS compute
the corresponding error bound based on the following statistical methods:

e Indicator variables: the error bound is obtained through the Clopper-Pearson
method [CP34].

e Bounded variables the error bound is obtained through the Chernoff-Hoeffding
method [Hoe63].

o General variables: an asymptotically correct error bound is obtained as approxima-
tion of a normal distribution with unknown mean and variance.

Dynamic sample size estimation. On the other hand, when estimating a general
variable, the user may chose a priori the confidence oo and the error bound § and in this
case cases COSMOS applies sequntial CI scheme through which the number of samples (i.e.
trajectories) is established at runtime depending on a stopping condition (normally the
convergence of the sample standard deviation). More specifically COSMOS supports the
following CI sequential schemes: Chow and Robbins [CR65] Clopper-Pearson [CP34] and
Chernoff-Hoeffdin [Hoe63].

Hypothesis testing. In case the user is interested in a qualitative formula, i.e. in
establishing whether the average value of a given quantity Z fulfils a given contraint then
COSMOS adopt a hypothesis testing approach. Specifically if the considered variable is a
Bernoulli of unknown mean p, and given two probabilities py < p1 (the maximal probability
of false positive and true negative results), COSMOS‘applies the Sequential Probability
Ratio Test (SPRT) [Wal45] method (i.e. an optimal sequential test method) for deciding
whether p > pg or p < p; holds.

Related Tools

Numerous tools that support statistical model checking have been developed over the
years, some of which also support numerical model checking engines. These in-
clude CosMOS [BDD™1lc|, Prasma [JLS12], PrRisM [KNP11], UpraaL [BDL'12],
MARcIE [HRS13], STorM [HJK'22], Apmc [HLP06], YMER [You05], MrMC [KZHT09]
and VESTA [SVAO5b]. An in depth comparison of these tools would certainly be an in-
teresting task in which one would need to take into account several aspects including the
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supported family of models, the solution engines, the expressive power of the property
language but also how they perform w.r.t. some benchmark case studies. In an attempt
to tackle such a goal in [BBD*15¢| we provided a tentative comparative analysis limited
to the YMER, PRISM, UPPAAL, PLASMA, MARCIE and COSMOS tools.

2.5 Perspectives

The HASL model checking framework effectively widen the ability of modellers to analyse
the systems under study. By employing a rich automata-based formalism as a means to
monitor a model’s executions one may conceive sophisticated properties (by freely com-
bining state-conditions, event-conditions and reward-based conditions) that allow one to
capture complex aspects of a system’s dynamics that could not be accounted for with “clas-
sical” temporal logic formalisms. A further positive consequence of such expressive power
is that it yields a “full” separation of concerns meaning that modelling and properties con-
ception are independent efforts in the sense that a model does not need to be enriched with
complementary elements (rewards and/or dedicated monitor variables) which are otherwise
necessary to overcome the deficits of less expressive formalisms and whose goal would be
to register relevant statistics that one wants to account for during model checking.

If the expressive power is undoubtedly the strongest point in favour of the HASL for-
malism there are a number of factors worth considering for improving things. First the
unsurprising cost of such an expressive power is the unfriendliness of the formalism: in-
deed the design of a hybrid automaton to capture a given temporal dynamics is a delicate
and error prone task requiring expertise. In this respect it would be worth to come up
with a workaround, in terms of a user friendly (syntax based) language to express a target
property of the system under study (e.g. “what is the mean period of oscillation of species
A?”) which is suitable to automatic translation into a corresponding (HASL) hybrid au-
tomaton monitor. The conversion of temporal logic formulae into a corresponding (timed)
automata formalism has been discussed by Donatelli, Sproston and Haddad [DHS07] as
well as by ourselves [BBD " 15a]. It is known that commonly used not-nested, (bounded /un-
bounded) reachability properties based on the Until temporal operator (and its variants)
can straightforwardly be encoded in HASL terms while encoding of formulae involving
nested temporal operators is more cumbersome. Generally speaking an in depth treatment
of this matter is missing. It would therefore be worth figuring out to what extent one can
outline an approach to automatically generate hybrid automaton monitors that represents
relevant properties expressed through a more user friendly syntax.

Another aspect worth considering in order to evolve the HASL framework concerns the
speed up of the statistical model checking engine. Although, differently from the memory
constrained numerical model checking scheme, SMC allows for taking into account very
large (even infinite state) models, the runtime of a SMC experiment can be huge given that
sampling of a model’s path through exact stochastic simulation can be very computational
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intensive (depending on the stochasticity as well as of the size of the model). In recent
time I got interested in investigating whether, within a SMC framework, one could take
advantage of accelerated, approxrimated stochastic simulation algorithms, e.g., those based
on the 7-leaping scheme [Gil01]. Roughly speaking that entails investigating what is the
effect of the error induced by approzimated paths on the (confidence-interval) estimation of
the mean value of the property ¢ which is targeted by the SMC experiments. A preliminary
prototype implementation developed as part of a student’s research project seems to provide
promising results in this respect.



Chapter 3

A Bayesian approach to
parametric model checking

The automated verification of formally expressed properties by model checking have proved
a successful achievement in theoretical computer science as demonstrated by numerous ap-
plications in heterogenous domains. One limitation of model checking though is that it
does not come with natural means to analyse how the satisfaction of the considered prop-
erty ¢ is affected by the model’s parameters. Given that a system’s model M normally
depends on a set of parameters! § = (01,...,6,) € R® what model checking does is to
establish whether a given model’s instance My (i.e. the instance of M obtained by replac-
ing the parameters with the values 8 € R™) complies with ¢, denoted My = ¢. A trivial
approach to study how the satisfaction of ¢ is affected by parameters 6 € R” would be to
systematically run a model checking experiment for every possible instance My. Given the
parameter space is normally dense such a brute force exhaustive approach would hardly be
feasible other than being very inefficient given the computational cost for iterating single
model checking experiments My = ¢, V0 € R™.

Here we are interested in parametric model checking of continuous-time probabilistic
systems (particularly Markov chains) and therefore parameters correspond with the rates
of the probability distributions that characterise the random delays of state transitions.
The relevant question we wish to answer is: given a stochastic model with parametric rates
for which sets of rate values a given temporal logic specification is satisfied? There are two
families of approaches to answer such question: those that rely on numerical methods as
opposed to those that rely on statistical methods.

Numerical approaches. Numerical approaches for model checking parametric CTMCs

!'Example of which may be, the rate at which clients arrive in a given queue of a queueing system, or the
maximum size of a mailbox in a message receiving server, or the probability at which a production machine
in a manufacturing system breaks down in the next time unit, or yet the rate at which a given protein is
synthesised when its corresponding gene is not inhibited.
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rely on basic findings in CTMC model checking [BHHKO03a/, that is: the verification of time-
bounded CSL specifications against a CTMC instance can be reduced to a transient-state
distribution problem whose solution, in turn, is approximated through uniformisation. To
deal with parametric CTMC a parametrised version of uniformisation has been proposed
leading to algorithms for parameter synthesis. Initially limited to qualitative non-nested
CSL specifications [HKMO8], (i.e. boolean valued formulae of the form P.,[¢] where ¢ is a
non-nested path formulae and ~€ {<,<,>,>}, p € [0, 1]) they have then been extended to
the entire CSL spectrum including quantitative formulae (i.e. formulae of the form P_-|[¢]
whose verification requires assessing the probability that condition ¢ is met) [CDP*17].
The positive aspects of parametrised-uniformisation synthesis schemes is that they im-
plement an exhaustive search of the parameter space yielding regions in which either a
qualitative CSL formula is guaranteed to be satisfied or, alternatively, regions in which
the probability of a quantitative CSL formula is ensured to fall within a bounded interval
(of arbitrary width). The downside however is their computational cost? and hence their
inability to scale up other than their limitation to the Markov chains realm.

Statistical approaches. Statistical approaches to parametric verification constitute a
computationally cheaper alternative to numerical ones, the basic idea being to obtain an
approximation of the satisfaction probability of ¢ through non-exhaustive exploration of
the parameter space. The prominent contribution in this still relatively young area of
research is that of smoothed model checking [BMS16] in which Bortolussi and Sanguinetti
demonstrated that the satisfaction function of a Metric Interval Temporal Logic (MITL)
formula against a parametric CTMC is (under mild conditions over the nature of the
parameters) a smooth function of the CTMC parameters. This leads to algorithms where
an arbitrarily precise approximation of the satisfaction function is derived via a Gaussian
Process based on its smoothness.

Outline of contribution. In this chapter we present a statistical approach for approxi-
mating the satisfaction probability of temporal properties in function of a stochastic model’s
parameters. Differently from smoothed model checking our approach relies on Bayesian
statistics, specifically on the Approximated Bayesian Computation (ABC) method, i.e.,
a well established method that given a set of observations of the modelled system and
an initial prior distribution over the model’s parameter space allows to approximate the
posterior distribution by selecting parameters based on their their distance from the sys-
tem’s observations. Here we adapt ABC schemes by replacing the observations with a
formal machinery (consisting in a linear hybrid automata of the HASL formalism) through
which we assess how far a set of parameters is from satisfying the considered temporal
property, hence letting ABC algorithms select only those parameters that match the de-
sired behaviour. Since we use HASL linear hybrid automata as machinery to assess the
distance of parameters we name Automaton-ABCthe parametric model checking adapta-

2in the general case parametrised uniformisation boils down to solving a nonlinear programming problem.
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tion of ABC. Differently from standard ABC schemes, the automaton-ABC procedure is
observations free, in that it does not require any dataset in order to drive the parameter
selection process, however it relies on the existence of a notion of distance between the
paths of a model instance My and the property ¢ which is the target of the parameter
search. We demonstrate the effectiveness of the automaton-ABC scheme by introducing
a formal definition of distance for a classical time-bounded reachability problems and we
give the corresponding distance-monitor LHA automata. This contribution has been at
the core of Mahmoud Bentriou PhD which I co-directed with Paul-Henry Cournede and
whose results have been published in [BBC19, BBC21].

Structure of the chapter. The chapter is organised as follows: Section 3.1 gives an
overview of necessary background material including the class of parametric Markov models
which we consider, the property language we refer to, the classical ABC algorithms which
we aim to extend and finally the Kernel estimation method which we resort to for recon-
structing the satisfaction probability of a property ¢ from the posterior distribution issued
by the Automaton-ABCalgorithm. In Section 3.2 we introduce the notion of satisfiability
distance for reachability problems and introduce the novel Automaton-ABC framework
based on such distance measure is developed while in Section 3.3 the effectiveness of the
framework is demonstrated through a couple of case studies.

3.1 Preliminaries

3.1.1 Markov Population Models

Before looking at the basics of how the ABC method works we start by overviewing the class
of models we are going to consider, namely that of (parametric) Markov population models
(pMPM), a (parametrised) form of continuous-time Markov chain (CTMC) [Kull6, BC19]
suitable for modelling of population processes, i.e. systems whose states represent the
number of individuals of different species and whose transitions correspond to adding/re-
moval of individuals. Since we target modelling of biological systems we also overview
the Chemical Reaction Networks (CRNs) formalism as a means for expressing population
models.

Definition 3.1 (Markov Population Model). A Markov population model (MPM) for
n € N population species is a triple M = (5, Q, m) such that:

e S C N" is a countable set of states

e Q : S x S8 — R: is the infinitesimal generator matrix (with Q(s;,s;) =
— 2252 Qlsis 55))

e m: S —[0,1] is the initial state probability distribution® (i.e. Y g mo(s) = 1).

3Whenever 3s, € S : mo(s0) = 1 we use M = (S, Q, s0) to denote an MPM.
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Because of the memoryless property Markov models allows for a compact analytical
expression of the probability for timed state transitions: given that the system is in state s
at time ¢, the probability of observing a transition to state s’ within time ¢’ is Pr((s,t) —
(s, 1)) =P(s,8) - (1 — e UV where E(s) = D525 Q(s, 8') is the exit rate of state
s, and P(s,s") = Q(s,s’)/E(s) is the (time-independent) probability of jumping from s to
s’. Such basic property induces naturally a probability measure over the space of paths of
a MPM model.

Whenever matrix Q is dependent on a d-dimensional vector of parameters § € © C R?
we talk of parametric MPM (pMPM).

Paths of a MPM. Since our final goal is to be able to estimate Pr(p|My), i.e. the
probability that a temporal property ¢ is satisfied in function of the parameters of a
parametric MPM My, we first recall that Pr(p|My) corresponds with the probability of
those paths of My that satisfy ¢ and then revise how, thanks to the memoryless property of
MPMs, such probability enjoys a nice analytical expression leading to a compact a measure
of probability* on the set of paths [BHHKO3b].

A path of an MPM model My is a (possibly infinite) sequence o= s to, $1 b,
Sp ..., with ¢; € Ry being the sojourn-time in state s; € S. We denote Pathp, the set
of all possible paths of My originating in the initial state so. For o € Pathaq,, i € N and
t € R>o, we denote ofi] = s; the i-th state of o, d(0,7) = t; the sojourn-time of ¢ in the
i-th state, o; the suffix of o starting at state o[i], T}, = Zf:o d(o,1) the sum of the sojourn
times up to state k, 0@t the state of o at time ¢ and olt) the t-shifted suffix of o, i.e.

-
the suffix of o that starts at time ¢. Formally o[t) = o[k+1] SklaN oy, where k is the

. 0.25 0.5 0.15 1
greatest index such that T < t. For example, for o =59 — 8§17 —> $9 —> 83 — ...

we have o[1] = s1, d(0,2) = 0.15, T} = 0.75, T» = 0.9 and ¢[0.8) = s 2L ss b . and
o[l.5) = s3 94, .. Notice that trajectories of an MPM are cadlag (i.e. step) functions of

time. In order to indicate the reaction event that yielded a transition of the path of a CRN
0.25 0.5 0.15 1

model, we sometimes adopt the following notation o = sg s1 S9 > S3 e
Ry; Ro; Rs; Ru;

where R;; indicates that reaction R; occurred on the i-th transition of the path.

Paths probability space. For sg,s1,...,5; a sequence of states of My such that

Q(si,si41) >0 (0<i<k) and Ip,...,Ix_1 a sequence of non-empty time intervals in R>g,

we let C'(so, lo, S1,--.,Ik1,Sk) be the cylinder set consisting of all paths o € Patha (M)

such that o[i] = s; (i<k) and d(0,7) € I; (i<k). Furthermore we let F(Paths) denote the

smallest o algebra containing all sets C'(so, Io, $1,- -, k1, Sg). The probability measure on

tn—1

“Notice that the notion of probability measure for paths of an MPM naturally extends to parametric
MPMs which we target in the remainder.
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F(Pathp) is inductively defined by:

1, ifk=0
Pra (C(SO’ Io, ..., Ij1, Sk)) = P(Sk—la Sk’) : (e_E(Skfl)‘t - e_E(Skfl)lt,)' (3'1)
Pra(C(so, Loy .-y Ip2,8K1)), otherwise

where t = inf(Ix_1) and t' = sup(I;_1). In essence Pr4 states that for a MPM M the
probability of a path is given by the product of the probability to observe each constituent
transitions s; — s;+1 with a delay that falls in the corresponding binding interval I;. In
terms of vocabulary a subset of trajectories of Path (M) may be referred to as an event
of M and its probability is given by Pras. In the realm of probabilistic model checking,
temporal logic languages provide the modeller with a powerful language for characterising
relevant events of an MPM model in terms of formulae (i.e. formal properties). The
probability that a temporal logic property ¢ is satisfied by an MPM model M is defined
in terms of the probability measure Pr4 (see Definition 3.5).

In the remainder we consider Chemical Reaction Networks (CRNs) as a formalism for
expressing population models.

Definition 3.2 (Chemical Reaction Network). A (parametric) chemical reaction network
(pCRN) with n species and m reaction channels is a triple Ny = (X, Ry, 0, X?) defined
as follows:

o X, ={Xy,...,X,,} is a set of species

e Ry ={R1,...,Rn} is a set of reaction channels where each R; (j € {1,...,m}) is
characterised by an equation with the following form:

n n
RS ap X, 3 ah X,
g - ;g Q524
i=1 i=1
where Qs ajj € N are the stoichiometric coefficients of the reaction’s reactants, re-

spectively, products. Furthermore R; is characterised by a pair R; : (v;,7;) with

— vj = [11j, ...,V ] the change vector,

— 1n; : N x © = R>¢ is the propensity function of R;.

o 0 =1[0,...,04] is a d-dimensional vector of parameters affecting the kinetic rate of
the reaction channels, with € © ¢ R.

e X9 € N” is the initial state
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Although in the literature CRNs are often inherently mapped on their continuous-
deterministic semantics (i.e., a system of differential equations) here we focus on their
discrete-stochastic semantics, hence we assume the dynamics of a CRN to correspond with
a (cadlag) step-function governed by its reactions channels R;. Assuming the system is in
state X € N at time ¢ € R>( reaction R; : (v;,7;) may occur, moving the system to state
X" =X +vj, at time ¢’ > ¢, with the delay ¢’ — ¢ which is stochastically dependent on both
the current state X and the actual value of the parameters 6.

Remark. For the sake of simplicity in our framework we assume reactions to obey
the mass-action law. That means that the propensity functions are proportional to the
product of the non-null stoichiometric coefficients of a reaction’s reactants.

Definition 3.3 (pMPM semantics of a CRN). A pMPM model My = (S,Qq,m) of a
CRN Ny = (X, R, 0) is defined as follows:

¢ S C NV is a countable set of states whose elements are vectors X = [X1,..., X,]€S
where X; is the population of the i-th species.

e Qp: 5 x5 — R: is the infinitesimal generator matrix whose entries are defined as:

Qu(X,Y) = Z{Rg‘\ij:Y} n;(X,0), EX#Y
B ZZ¢X Q(X,Z), otherwise

o m:S — [0,1] is defined as m(X°%) = 1

Notice that by construction, the non-diagonal entries of Qg are given by the sum of
the propensities of those reactions whose occurrence leads the CRN to move from state
X to state Y. This is in line with the semantics of Markovian events, according to which
the distribution of the minimum between a set of concurrent exponentially distributed
reactions is itself exponentially distributed with rate given by the sum of the rates of the
racing events.

Example 6 (CRN of infection spreading). As a first example of CRN let us con-
sider the SIR compartmental model [KM27], which describes the spread of infectious
disease among a constant population. The CRN for the SIR is defined as Ngr =
({S,I,R},{R1, Ra},{ki, kr}) where species S represents the susceptible individuals, I the
infected and R the recovered ones. The system’s dynamics is given by two reactions chan-
nels encoded by chemical equations (3.2).

Ri:S+I% 091 Ry:TtR (3.2)

Reaction R; describes the infection step: a susceptible person meets an infected person
and gets infected. Reaction Re models the recovering step: infected may become immune
from the disease. The parameter vector of the model is § = (k;, k). The CRN of the
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SIR yields a finite-state MPM with the following kinds of state-dependent transitions. For
X = (Xg,X;,XR) a state such that Xg>0 A X; >0 two kinds of transitions are possible,
ie. Qo((Xs,Xs,XR), (Xs—1,X;+1,Xg)) = Xg-X;-k; and Qy((Xs, X1, XR), (X5, X7~
1,Xr+1)) = X - k. For states such that Xg=0 A X; >0 only one transition is possible
ie. Qo((Xs,Xs,XRr), (Xs,X7—1,Xr+1)) = X7 - k-, whereas any state such that X;=0

is absorbing.

Regions of an MPM. In the remainder, we refer to the notion of region associated with an
MPM. A region, respectively a time-bounded region, of an n-dimensional MPM is any subset
of N", respectively N" x R>g, characterised by a collection of hyper-rectangles of dimension
no larger than n. A region is elementary if it is characterised by a single hyper-rectangle.
For example for a bi-dimensional MPM with state space X = {X1, Xao}, R1 = [[1,2]] x N is
an elementary region (X in [[1,2]] while X3 is unbounded), Ry = [[0, 3]] U [[5, 8]] x [[5, oo[[
is a non-elementary region (X is either in [[0, 3]] or [[5,8]], X2 is larger than 5), whereas
TRy = ([[1,2]] x N) x [0.2,1.41] is an elementary time-bounded region (similar to R;, but
with the supplemental condition that the time is in [0.2,1.41]).

3.1.2 Linear-time temporal properties

To express properties of a MPM we refer to the Metric Interval Temporal Logic
(MITL [MNO04]), i.e. a linear-time temporal logic which allows for stating time-bounded
reachability problems by combining state-conditions (expressed through inequalities on
state variables) through classic time-bounded temporal operators. We choose MITL in
order to formally set up reachability problems, however since we eventually employ hybrid
automata as meters to measures the satisfiability distance of a MPM instance from a MITL
formula, in practice this gives us the possibility to trespass the MITL expressiveness (e.g.
by analysing oscillations properties).

MITL syntax. MITL formulae are terms of the following grammar:

o u= Tl u| - | piAes | g UEL g

where T stands for the true formula, p denotes an atomic proposition (i.e. an inequality
built on top of model’s state-variables), — and A are the basic negation and conjunction
connectives of propositional logic and Ultrt2] ig the time-bounded until temporal operator
with [t1,f2] € R>o being the bounding interval.

We consider the truth of an MITL formula to be established w.r.t. to a path ¢ of an
MPM model through a so-called satisfaction relationship, denoted |=.

MITL semantics for temporal formulae. For o € Pathay, a path of MPM model My,
t € R>o a time instant the satisfaction relation |= of MITL temporal formula is defined as
follows:
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(o, t) ET & true

(0,t) & oQtEp

(07 t) ): -y And (U7t) % %

(0,t) = @1 A o2 & (0,1) Ep1and (oft,t) = p2
(0,t) = o Ult2lpy o 3t et4ty,t+to]

(0,1)) Ep2 AV €L, 1],
(0, 1") =1

Intuitively MITL semantics states that an atomic proposition p is satisfied by a path o
as of time ¢ if the state condition y is satisfied in the state in which o is at time ¢ (cQt |= p).
On the other hand, a time-bounded until formula ¢; Uttt o, is satisfied by o as of time
t if and only if 9 is satisfied by ¢ as of a future time instant ¢ which is no further than the
time-bounding interval, (i.e. t’ € [t+11,t+1t2]) while o1 is sustainedly satisfied beforehand
(i.e. V" e[t t']).

As usual, we consider two derivations of the time-bounded until operator: the time-
bounded eventuality Flttt2lp = T Ulttt2ly which stands for “at some point within [t1,t2] @
is satisfied” and the time-bounded globally G112l = —Flt1t2l- which stands for “p is al-
ways satisfied within [t1,t2]”. In the remainder we assume that a path o € Pathpy, satisfies
an MITL formula ¢, denoted o = ¢, if it does so starting from ¢ = 0, i.e. 0 = ¢ <= o[0)¢p.
Furthermore, we restrict our focus to the non-nested fragment of MITL, i.e., we consider
only formulae such that the operands of a temporal modality are boolean combinations of
atomic propositions p. While bearing a definite limitation in terms of expressiveness, this
constraint still allows us to treat the most common reachability problems.

MITL formulae and MPM regions. In the remainder we refer to the notion of
untimed/time-bounded reachability regions associated with a MITL propositional for-
mula. Specifically we point out that MITL propositional formulae induce untimed regions
over the state space of an MPM. For example, for a bi-dimensional MPM the formula
p1 = x1 > 1 Az < 2 induces the region Ry = [[1,2]] x N while ps = [(z1 < 3) V (21 >
5 Az < 8)] Axzg > 4 induces the region Ry = [[0, 3]] U [5,8] x [[5, 00]. By a slight abuse of
vocabulary, we say that two formulae p1, pus are disjoint if the corresponding regions are.
In the remainder, we assume regions are characterised by MITL propositional formulae in
disjunctive normal form (DNF).

On the other hand we may associate a time-bounding interval to a MITL propositional
formula and in this case we talk of time-bounded reachability region.

Definition 3.4 (Time-bounded reachability region). Given an n-dimensional MPM pop-
ulation model My with state-space S CIN™, a propositional formula p and a time-interval
I C R>o we define Sﬁ CS x R>q the time-bounded reachability as:

Sﬁ ={(s,t) € SxR>o | sEuNtel}

If I = [0,00) then we omit the time interval and use S, = U{s € S | sl=p}
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Note that depending on pu, we distinguish between elementary reachability regions, i.e.
regions that consist of a single hyperrectangle (e.g. u = x1 > 2 Axy < 4), as opposed to
non-elementary regions, i.e. regions that consist of the union of several hyperrectangles
(eg. p=z1 <2Vzl>4).

Definition 3.5 (Satisfaction probability of an MPM). For My an MPM and ¢ an MITL
formula, the satisfaction probability of ¢ w.r.t. My is defined as:

Pr(p|Mp) = Pru,({(0,0)  ¢,0 € Pathp, })

where Pr 4, is the probability measure (3.1) induced by My over Patha,.

Notice that assessing Pr(¢|Mey) is indeed the target of probabilistic model check-
ing and that its value can be obtained either exactly through numerical model check-
ers [KNP02, DJKV17] or being approximated through statistical model checkers [You05,
LST16, BDD"11a, SVA05a]. However since here we are interested in estimating how the
satisfaction probability of ¢ changes with the model’s parameters we introduce the notion
of satisfaction probability function.

Definition 3.6 (Satisfaction probability function). Let (Mj)gpco be a parametric MPM
and ¢ a MITL formula, the function:

fo:© —=[0,1]
0 — Pr(p|My)

is called the satisfaction probability function.

We will see how through an adaptation of the ABC method we manage to obtain an
approximation of f, for a parametric MPM model M.

3.1.3 Bayesian inference: the ABC method

Given a parametric model My and an MITL formula ¢, our goal is to estimate the sat-
isfaction probability function fy, i.e. the function that characterises how the probability
that ¢ is satisfied by My varies w.r.t. the parameter 6 € ©.

Given a set of observations y.p; Bayesian inference is concerned with learning prob-
ability distributions over the parameters space © of a parametrised model My. Relying
on the Bayesian interpretation of probability, initial beliefs on the parameters expressed
via a prior distribution w over © are progressively updated, via y.ps, based on the model’s
dynamics encoded by a likelihood function p(yops|6@) which expresses how probable yups is
to be observed given the model’s parameters § € ©. The output of the inference procedure
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consists of the posterior distribution 7(0|yeps) computed over © based on the observed data
Yobs and which is defined by

(yobs IG)W( )

0 0o0s

For realistic models the likelihood function p(yeps|@), necessary to derive the posterior
distribution, is too expensive to compute or even intractable. For this reason likelihood-
free methods, such as Approximate Bayesian Computation [MPRR12, SFB18], have been
introduced to obtain an approximation, denoted w4 pc ¢ (0|yobs), of the posterior distribution
7(0|yops). With ABC schemes the likelihood is approximated by matching trajectories y
sampled, through simulation, from the likelihood y ~ 7w (y|#) with the observations y,ps via
a distance metric p(y, Yobs). This lead first to the simple ABC rejection sampling algorithm
which has then been improved yielding the faster converging ABC-SMC algorithm.

ABC rejection sampling. The simplest form of ABC, known as rejection sampling,
operates by iteratively sampling parameters ¢’ from the prior distribution 6’ ~ x(.). For
each 0" a trajectory 3y’ ~ p(.|#") is simulated from the corresponding model instance My
and ¢ is accepted if p(v', yops) < € (i.e. if it is sufficiently matching observations yops)
or rejected if p(y',yobs) > €, where € € R>g represents a chose tolerance. The accepted
parameters 6; together with the corresponding traces y; give samples (6;,y;) drawn from the
joint distribution: mapc,e(0,y | Yobs) X LA, (y,y,,.)PYI0)7(0) where Ac(y,yops) = {y € V|
P(Y, Yobs) <€} (With T4y, ) denoting the indicator function representing the set of traces
whose distance from ygs is within the tolerance €). mapc, approximates the posterior
distribution: the smaller the ¢, the closer the simulations y; are to the observations y.ps,
the better the approximation.

Algorithm 1 ABC rejection sampling
Require: N: number of particles, y.ps observations, tolerance e, distance p, summary
statistics n
Ensure: (0;)1<i<y drawn from mapc,
fori=1:N do
repeat
0 ~7(.)
y' ~p(.]6)
until p(n(y'), n(Yobs)) < €
Gi — ¢
Yyi Y
end for

Notice that in Algorithm 1, : Y — S C R¥! represents summary statistics® computed on

5The choice of summary statistics is a crucial point in ABC (see for example [ANJB10]).
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the observations y.s and on the simulated trace 3/, while p: S x S — R* is a distance in
the space of summary statistics.

ABC Sequential Monte Carlo method. The chosen value of ¢ is crucial for the perfor-
mance of the simple ABC algorithm: a small € is needed to achieve a good approximation.
However, this may result in a high rejection rate leading to cumbersome computations. To
overcome this issue, the more elaborate algorithm known as ABC Sequential Monte Carlo
(ABC-SMC), has been proposed [BCMRO09]. It is an SMC based approach [DMDJ06]
through which a population of N particles is iteratively sampled with increasing accuracy
until the targeted level of accuracy ej; is obtained. At the first iteration, the particles
are initialised through the simple ABC rejection sampling algorithm using a large enough
€1 to limit the computation cost. €; possibly equals infinity, which is equivalent to only
sampling from the prior distribution. Then, at each step ¢, i = 2,..., M, the particles are
moved by a transition kernel K(.|.) (for example, a Gaussian one [DMDJO06]) until they
match the tighter, next level, approximation constraint ¢;. At iteration M, we finally get
N particles that fulfil the desired approximation €;;. Some ad-hoc strategies are proposed
to find a proper sequence (€;);,<,, ensuring an efficient convergence towards the posterior
distribution. o

Algorithm 2 ABC Sequential Monte Carlo
Require: N : number of particles, yops, (€i)1<i<ir, p, 0
Ensure: (wj)i<j<n, (0j)1<j<n weighted samples drawn from mapc,e,,

Iteration i =1 : find (9§1))1§j§ ~ with ABC rejection sampling with tolerance €1
Wwj %
fori=2:M do
for j=1: N do
repeat
Take 9;- from (0§Z_1))1§j§N with probabilities (w;)1<j<n
6\ ~ K(.|6))
y ~ p(16")
until p(n(y,)an(yobs)) <€
7r<9§.i)>
Wj

(i=1) g (i) gli—1)
e VK0

end for
Normalize (wj);
end for

Remark: ABC a distance related class of methods. A basic point about ABC
algorithms is that, by definition, they all rely on a distance metric (between the simulations
y' and observations y.ps). It is precisely based on this characteristic that we extend ABC
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statistical inference to the model checking problem. In Section 3.2, we first introduce
the notion of satisfiability distance, which quantifies how far a model instance My is from
satisfying a temporal logic property ¢ and then we exploit such a novel distance for adapting
ABC schemes to the estimation of fy, i.e. the satisfaction probability function for property
. In practice we do so by plugging a distance automaton in the ABC procedure and use
it as a machinery to assess how far trajectories issued by an MPM model with parameter
# are from satisfying an MITL formula ¢. Furthermore, as we will demonstrate, distance
automata yield a null distance for any simulation that satisfy the considered formula ¢
therefore with the HASL-based extension of ABC, we actually estimate the ABC-posterior
using a zero tolerance, i.e. with € = 0.

3.1.4 Kernel density estimation

Given that ABC methods only deliver samples (6;); drawn from the ABC posterior distri-
bution (mapc,e(0]Yobs)) and that our end goal, instead, is to obtain an approximation of a
continuous probability density function, namely the probability satisfaction f,, we need to
resort to methods for reconstructing a density function given a set of samples. Specifically
we resort to kernel density estimation (KDE), which allow one to derive an approximation
7 of an unknown probability density function 7 given a finite number of samples of a ran-
dom variable. The approximation 7 is obtained as the sum of the application of a kernel
function K to the samples, i.e. a continuous function which quantify the contribution,
in terms of probability mass, brought by a sample to the density 7 to be estimated (i.e.
essentially, a kernel is a manner to weight data samples).

Definition 3.7 (Kernel function). A function K : R — R>q is called a kernel if:
L [ K(u)du=1
2. Vu e R,K(u) = K(—u)
Based on kernel functions, one can define a kernel density estimator [Sil86].

Definition 3.8 (Kernel density estimator). Let 6. ..., 0™ be N ii.d samples from an
unknown density m on ©. The kernel density estimator 7 associated with a kernel function
K on X is:

N i
Vo € ©,7(0) = NihZK(H —h9< ))
=1

K is a kernel function, h is a smoothing parameter called the bandwidthS.

SWhere h is either a scalar, a vector or a matrix, depending on the dimension of © and the choice of K.
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The rationale behind estimator 7(#) is that each value 6 contributes to the probability
mass over the whole set ©, with the idea that the further  is from the observation 8,
the lower is its contribution to the probability mass. The selection of the kernel K and
the calibration of the bandwidth h are crucial points in KDE and several possibilities
exist [Sil86], [CD18]. In Section 3.2.4 we adapt the KDE approach to the Automaton-
ABC method more specifically by employing the minimisation of the Least Squares Cross-
Validation as criterion for selecting the bandwidth A jointly with Gaussian and Beta kernels
[Che99).

3.2 Automaton-ABC

We introduce an adaptation of the ABC methodology, named automaton-ABC, aimed at
approximating the satisfaction probability function f, (Definition 3.6) of a MITL formula
©. It relies on the following four aspects: ¢) the formalisation of the notion of satisfiability
distance expressing how far a model’s path is from satisfying the considered formula ¢ i)
the introduction of the corresponding HASL meter automaton to measure such distance,
i17) the definition of a novel ABC algorithm whose convergence is driven by assessment
of the satisfiability distance and, finally, 7v) the derivation of the normalisation constant
through which the KDE approximation of the probability satisfaction function f, is ob-
tained from the ABC posterior density. In the remainder we present the automaton-ABC
approach taking into account simple, non-nested, time-bounded reachability problems only.
Its extension to the full MITL spectrum could intuitively be straightforwardly obtained as
long as the notion of satisfiability distance can be reasonably extended to the entire MITL
spectrum.

3.2.1 Satisfiability distances for reachability problems

The basic idea behind the notion of satisfiability distance is that a time-bounded temporal
logic specification ¢, which depends on atomic propositions p; and time intervals I; C R>o,

identifies a set of spatio-temporal regions S{jl C S x R>p (see Definition 3.4) that a path
o € Patha, should (partially or totally) traverse in order to satisfy ¢. Therefore one
can sensibly introduce a satisfiability distance, denoted d : Pathag, x ® — R>o, which
quantifies how far a path ¢ is from satisfying ¢ by taking into account some form of
Euclidean distance of o from the relevant regions S{;Z To characterise d(o, ¢) we consider
the following guidelines: i) d(o, ¢) should evaluate to zero whenever o |= ¢ and i) d(o, )
should favour the convergence of the ABC algorithm.

Before formally introducing it (Definition 3.9), we illustrate, in Figure 3.1, the notion of
distance for the three kind of (non-nested) temporal MITL formulae, namely F/ (eventual
reachability), G’y (global reachability) and 3 U s (conditional reachability), assuming,
for simplicity, that u, u1 and ue corresponds each to a single elementary region, hence that
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both F/yi and G!p induce a simple satisfiability region Sﬁ, whereas 111 U2l 5 induce a
compound satisfiability region given by S,[Pl’tl] U S,[E 2l S,[fll’tzl.

distance = 0

g O0——

o O /?1
' o— o} 0= O I 1.y
O ] | 1 [ 6—
i o—;ﬁ- oo | bR — A
1 = [~
t1 o— {3 1 2 t1 ¢ to
t1,t t1,t t1,t
]_:‘[1,2],u G[Lz}u MIU[l’Q]MQ

(a) (b) (©)

distance > 0

<=

1| Dot
0_:1 2

F[t17t2]’u
(d)

Figure 3.1: Examples of trajectories with zero-distance (left) and positive distance (right)
from an F, a G and a U region (positive distances are depicted in red).

Plots in the top row of Figure 3.1 depict cases in which a path ¢ has to have a null
satisfiability distance from a given formula. For F/y distance has to be 0 if and only if o has
at least one point traversing region S}f Lta] (Figure 3.1a), for Gltvt2ly if and only if within

t € [t1,12] all points @t fall in S,[fl’tQ] (Figure 3.1b) while for g Ult#2l 5 the distance is

0 if and only if there exists ¢’ € [t1, 5] such that c@t’ is in S}E’m while is consistently in

S}?l’t/] beforehand (Figure 3.1c)”.

The bottom row of Figure 3.1 instead depicts cases in which a path ¢ has to have a
positive distance, illustrating the rationale we adopted in the characterisation of the metric
d(o, @) given in Definition 3.9. Specifically for Fl‘tt2l; (Figure 3.1d), assuming o does not

enter S;[f l’tﬂ, the distance corresponds with the minimal Euclidian distance between o and

S}f”tﬂ (Equation (3.3)), whereas for Gl (Figure 3.1e), assuming o leaves S;[fl’tﬂ, the
distance corresponds with the volume of the hyperrectangles delimited by the segments of o
that lie outside Sl[fl’tﬂ (Equation (3.4)). Finally, for p, Ultt#2l, (Figure 3.1f) the distance
of o (Equation (3.5)) bears 3 components: d(o, G%1[;;) which accounts for the fact that
a path satisfying (u1 U2 115) must never leave region S, before tq, d(o, Flt%2l15) that
accounts for the fact that o must enter region S,,, within [t1, 2] and d(o, Gl (g V pa))

"Note that for some t” > t' c@t” ¢ S,,, but this is uninfluential, as the satisfaction of p; U215 by o
is established as of what happens before ¢' not what happens after.
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that accounts for the fact that there must be a time ¢’ where o switch from region 1 to
region po directly, i.e. without spending time in any intermediate S_, region: if that
[t1,t2]

—(u1Vp2)
then Equation (3.5) yields a positive value which accounts for the sum of the minimal

distances of each such point from either regions S, or S, .

(M1 Vp2)
is not the case (i.e. if o within [t1,t3] has points in the complementary region S

Definition 3.9 (Satisfiability metrics). Given a path o € Patha of a n-dimensional MPM
M a closed time-bounding interval [t1,t2] C R>o, an elementary propositional formulae
i, pi1, 2, we define the distance d(o, ) from the satisfiability region for the following
kinds of temporal formulae:

1) p=Flutaly,
(do((0@t(t2), ti(t2)), Si"))
if t(t2) < t1 A o@Qt(t2) = p
d(o, Fltvtl ) = (33)
min(d.(o@t(t1), SE), min d,((o@t,t), SE')))
tE[tl,tQ]
otherwise

where #;(t*) = min{t€[0,t*] : V¢’ €[t,t*],cQt’ = 0@t} is the time instant of the last jump
occurred on o before t* and de((s,t),S1 x T1) = F}nin < \/(t — )2+ 0 (s[i] — 8[i])2
t'eTy,s'€S1
denotes the euclidean distance of a point (s,t) € S x R>g from the closest point of a
time-bounded region S7 x T7.
For non-elementary propositional formulae p = \/ p;, we define the distance:

d(o, F 2\ / 1) = mind(o, F%)p)

where p; are elementary formulae.

2) p=Gltly,
to
d(o, Glivt2l ) = / de(c@t, S,)dt (3.4)
t1
where d¢(s, S1)= mln \/ ZZ 1( §'[i])? denotes the euclidean distance of a point s€ S

from the closest state of a state space subset S; C S C N d(o, G[tl’tﬂ,u) is the integral of
the Euclidean distance from S,, of any point of ¢ that occurs within [t1, t2],
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Similarly, for non-elementary propositional formulae, we define the distance
d(o, GI2I\/ p13) = mind(o, GI121 ;)
(2

where p; are elementary formulae.

3) = Ultrt2l

d(o, iUl o) =d(o, GIOly) + d(o, Fl2 )+
d(o, GI"bminl (g v pip))
where ¢, = min(arg min d.(c@t, S,,)) is the earliest time corresponding to the closest

te(t1,ta]
point between o and region pus.

(3.5)

Satisfiability metric and ABC convergence aspects. In order to be employed
in ABC frameworks, satisfiability distances shall account for the convergence of the ABC
algorithms, in the first place by ensuring that each path is ranked with an as large a
value of distance as the path is further from satisfying the considered formula, which,
indeed (3.3), (3.4) and (3.5) do. Experimental evidence showed that the convergence of
ABC algorithms for eventual formulae Flt1:2]; is affected by a peculiar aspect of a model’s
path o, that is, the presence/lack of jumps within the bounding interval [t1, t2]. Specifically
if, within [t1,%2], o does not contain any jump (and lies outside region S‘[fl’tﬂ) then it is
more convenient (from a convergence standpoint) that the distance d(o, F'tt2l), ie. (3.3),
is set to the Euclidian distance between region SE1,t2] and the point entered by o at the
last jump occurred before entering [t1, 2] even if within [t1, ¢2] the path is actually closer to
SE 1t2] (e.g. Figure 3.2a). Such an aspect ensures that the ABC-driven parameter search is
not mislead by anomalous situations such as, e.g. parameters § € © that yield a model My
for which there is a non-null probability of reaching an absorbing state in S-,, before £;. On
the other hand, if o contains jumps in [ty, to], then it is more convenient that d(c, Flttt2]y,)
is set to the Euclidian distance of the closest point amongst the point corresponding to the
last jump before ¢; and those corresponding to jumps occurring in [t1, t2] (e.g. Figure 3.2c).

An essential aspect of the satisfiability metrics introduced in Definition 3.9 is their
soundness, i.e., to prove that they yield a null distance d(o, ¢) = 0 if and only if o = .

Proposition 3 (Soundness of satisfiability metric for elementary F, G and U). For o €
Path g a path of an MPM M and p, p1, o are MITL propositional formulae in DNF then

o = Flotly s q(o, Fitaly) = o
o E Gl — d(o, Gl =0
o UMl <= d(o, 1 U2l ps) = 0
where d is as per Definition 3.9.

Proof. see [BBC21] O
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#(x1>nVn>zo)A(t<ty),

[P ety {di=min(y/(t—t1)2 +(n—29)2 \/(t—t1) 2 +(n—=1)?)
£:1

#,(z1 <n<mo)A(t1<t<tg), f,(x1<n<zz),{d:=0}

{d:=0}
~
#,(d>0)A(t>12),0

#,(z1>nVvn>ao)A(t1 <t<tg,

{di=min(d,min(|n—=q|,In—z31))}
ALL, T, {n:=xp}

#,(d=0)A(t=t1),0
f,t>t2,{2}

Xo Xo

Figure 3.2: Automaton Ap (top) for measuring the distance of a path o for an eventual
property concerning observed species Xp and examples (bottom) of measured distance d:
positive distance (a), null distance (b), selection of the minimum distance (c¢) in case of
presence of jumps in [t1,¢2] and evolution of the computed distance d along a path (d).

3.2.2 HASL specifications for satisfiability distances

Having established the notion of satisfiability metric for non-nested MITL reachability
properties we introduce hybrid automata meters for assessing them. For simplicity in the
remainder we present automata for mono-dimensional reachability properties (i.e. temporal
formulae built on top of elementary conditions such as u= x1 <xp <x9, where xp denotes
the population of an observable quantity O and z; <x3 € N), bearing in mind that distance
automata for formulae based on n-dimensional regions are straightforward adaptations of
those discussed below.

Meter automaton Ap. Automaton Ap (Figure 3.2) is designed to measure the dis-
tance (3.3) of a path o from the region associated with Fl'vt2l(z) < 2o < 29), ie. the
region corresponding to the observed species zo € [x1, 2] within time ¢ € [t1,t2]. It uses
4 variables: d (computed distance), t (current time along the path), n (population of the
observed species O after the most recent occurrence of a reaction) and n’ (population of
O before the most recent occurrence of a reaction). The synchronisation of o with Ap
is managed through a number of mutually exclusive autonomous transitions (from [y to
l3), plus a single synchronised transition (from I3 to 1), which results in the automaton
looping between [; and Il3 up until a termination condition is fulfilled. It is straightfor-
ward to show that Ap complies with the HASL determinism constraints (Chapter 2) and
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therefore the synchronisation of an arbitrary path ¢ yields a unique path in the product
process M x Ap. Specifically, synchronisation of o with Ap works as follows. At the start
(lop = [1) the distance is initialised to d := oo and the initial value of the observed species
are stored in n:=xp. Once in [y, the analysis of ¢ begins and is driven by seven mutually
exclusive autonomous transitions. If initially o is inside the region (and this include even

initially with ¢ = 0 in case t; = 0 too), then transition Iy dr St2to e Snses) {d:=0) lo
occurs immediately and the synchronisation stops with distance d = 0. On the other hand
if, while in {y, the path has not entered [z, x2], distance d must be computed depending
on different conditions (that correspond to 4 mutually exclusive autonomous transitions
linking [; — [3). Specifically: in case t < ¢; (i.e. o has not yet temporally reached the time
interval [t1,2]) then either o has entered [x1, 5], in which case d is correctly set to d := 08
f,(t<=t1)A(z1>nVn>z2)
{d:=0,n":=n}
the Euclidian distance of the current point of the path from the nearest corner of the region
f,(t<=t1)A(z1>nVn>x2)

{d:=min(y/(t—t1)2+(n—22)2,4/(t—t1)2+(n—21)2)}
On the other hand if ¢ > t;, in accordance with (3.3), the distance of the current point of
ﬁ,(tztl)/\(n:n’)m/\(rl>n\/n>x2) 13)’ if the
last occurred reaction had not produced a jump w.r.t. the observed species (i.e. n’ = n),
or, conversely, ii) to the minimum between the previous value of d and the distance of
ﬁ,tZtl/\(n;én’)/\(xl>nVn>:I:2) l3) lf the last

through firing of [; I3 or, o has not entered [z1, z2] and then d is set to

(either (t1,21) or (t1,x2)) through firing of [; I3.

the path is either: i) left unchanged (by firing of I3

the current point from , by firing of [
trrent pot : [1'1 132] ( v IS ! {d:=min(d,min(|n—z1|,|n—z2|))}

occurred reaction did produce a jump w.r.t. O.

Meter automaton Ag. Automaton Ag (Figure 3.3) is designed to measure the distance
of a path o w.r.t. to a formula Gl#2l(z; < 2o < ), based on (3.4). It uses the same
variables as Ap (hence d stores the measured distance corresponding with the integral of the
segments that, within [¢1, t2], fall outside the region) plus an extra timer ¢, to measure the
duration of a segment falling outside the region within [¢1, 2], and a boolean flag in, which
is set to true if the last segment of the path originates in [t1, t2] outside of the region [z1, z2].
in is used to distinguish cases where the path is out of the region [z1, 23] with ¢ < t; and a
new event occurs after a time t” > ¢1, in order to add (¢ —t1)xmin(|n—x1]|, |n—2x2|) instead
of (" —t') * min(|n — x1|, |n — x2|). After the initialisation of variables (lp — l1), analysis
begins in [y: for events occurring before t1, we distinguish two cases. If 0@t € [z1, x2], the
distance is set to zero (I — I3 top arc). Otherwise, d is the distance of c@t from [x1, z2]
otherwise (I; — I3 midway arc). Indeed, if, for example, the next jump of o happens at
t > to, then the final distance is given by d - (ta — t1) (l1 — l2 bottom arc). For events
occurring at t € [tq, to], if cQt & [x1, x2] (sequence I3 — 4 — 1), the distance is incremented

8this is because MPM paths are cidldg functions of time, if the next reaction occurs at time ¢ > ¢; then

it is certain that the current path has at least one point within the considered region hence the path will
#,(d=0)A(t>t1
Ty

be then accepted (I1 ) l2) and the finally measured distance will be d = 0).
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f,t<tiA(n<ziVn>z2), {d:=min(|zq—nl|,|xg—n]|),n:=1}

#,—inAty <t<toA(xq1 <n<zg)

{d:i=d-(t—t1),t':=0
#,t<t1 A(z1 <n<wg)
:=0,in:=
fyinAty <t<tgA(z1<n<z3), {t':=0}

#,t>to, {d+=t -min(|le; —nl,lwa—nl))}

Figure 3.3: Automaton Ag for global property.

by the surface defined by the path segment (of duration t') laying outside [z1,x2] and
the closest border of [z1,z2]. The distance is left unchanged if cQt € [z1, z2] (sequence
ll — l3 — ll).

Having introduced the meter automata for formulae ¢ = F and ¢ = G we prove their
soundness. i.e. we demonstrate that the value stored in the automaton’s variable d at the
end of the synchronisation with a path o corresponds with the distance d(o, ) given in
Definition 3.9.

Proposition 4. Let Xp be a species of an MPM model M, Ar be the distance LHA
corresponding to the MITL reachability formula ¢ = F[tl’tﬂxl < xzp < a9 and o € Path
be a path of M, then:

last(Ap(o).d) = d(o, Fv2lz, < 26 < 2)
last(Aq(0).d) = d(o, G2z < 20 < 9)

where last(Ap(0).d) (resp. last(Ag(o).d)) is the value stored in variable d of automata
Ap (resp Ag) at the end of the synchronisation between Ap (resp. last(Ag(o).d)) and o
while d(o, Flh2lg) < 25 < ) (vesp. d(o, Gtz < 20 < ) is the distance of ¢ from
Fltut2ly, < o < X9 (G[tl’tﬂml < xp < x2) as per the metric in Definition 3.9.

Proof. See [BBC21]. O

Meter automaton for other formulae. We stress that automata for other kind of
temporal formulae such as U and the conjunction of a G A F have been obtained [Ben21]
following a similar approach to that outlined for F and G formulae. Specifically the
automaton for MITL formula: Gltt2] (x1 <z <m32) A Flts:ta] (3 <zor <x4) With ty < t3
(i.e. the G region precedes the F' region) while x1,x9, 23,24 € N and zo, resp. Xor,
denotes the population of species O, resp. O’ is shown to correspond to a combination of
automata Ag and Ap [Ben2l].
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3.2.3 Automaton-ABC: ABC with satisfiability distance

Based on the notion of satisfiability distances and on the corresponding automata meters
to measure them, we introduce the Automaton-ABC algorithms, i.e. the adaptation of
the ABC-algorithms to estimate the satisfaction probability of a MITL formula ¢ by a
parametric MPM (Mpy)y. The basic idea behind Automaton-ABC schemes is to inject
a model-automaton synchronisation procedure through which trajectories of the product
process My x A, are sampled and rejected if the distance measured by A, through syn-
chronisation is non-null. The accepted parameter samples 6; constitute a sample to be used
for estimating Automaton-ABC posterior distribution which we denote m,_4pc. We point
out the estimation of the Automaton-ABC posterior distribution, differently from classical
ABC schemes, is no longer computed as a limit approximation (i.e. 21_13(1) TaBC,(-|Yobs)), but

rather as an estimation of the exact distribution, since paths are accepted exclusively if
their distance to the satisfiability regions for the considered formula ¢ is zero.

Automaton-ABC rejection sampling. Algorithm 3 introduces a modified version of
the rejection sampling ABC Algorithm 1 adapted to satisfiability distances. The algorithm
takes as inputs a parametric MPM (Mpy)gco, a prior distribution 7w over © and a satisfia-
bility distance automaton A, corresponding to a MITL formula ¢. The workflow is as for
classical ABC rejection sampling hence at each iteration, a parameter 6’ is drawn from the
prior 7(.), however now a path ¢’ is sampled from the product process Mgy x A, and the
corresponding satisfiability distance d(o’, ¢) is stored in one variable of A,; ¢ is accepted
only if the distance from ¢ is d(o/, ) =0. (i.e. if ¢/ = ¢ by Proposition 3).

Algorithm 3 Automaton-ABC rejection sampling
Require: (M)sco a pMPM, 7(.) prior, A, satisfiability distance automaton for MITL
formula ¢, N number of particles
Ensure: (6;)1<i<y drawn from m,_apc
fori=1:N do
repeat
0 ~m(.)
Ao’ ) ~ (Mg x A,)
until d(o’,¢) =0
92' — ¢
end for

Automaton-ABC sequential montecarlo. The Automaton-ABC rejection sampling
(Algorithm 3) suffers from slow convergence in an even stronger fashion than its stan-
dard counterpart given the strict acceptance condition (i.e. only parameters that yield
a null satisfiability distance are accepted). To improve convergence we introduce the se-
quential Monte Carlo version of Automaton-ABC (Algorithm 4), through which we insert
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a decreasing (distance) tolerance € € R for accepting parameters. In essence we rank
parameters according to the satisfiability distance of the corresponding paths and accept
only parameters whose corresponding satisfiability distance is within tolerance € (even if
the corresponding paths do not necessarily satisfy ¢). This can lead to a faster convergence
of the parameter inference process hence resulting in an algorithm with a reduced runtime
(w.r.t. Algorithm 3) but that still yields samples from the posterior satisfiability density
function m,_apc (as per Proposition 1).

Algorithm 4 Automaton-ABC Sequential Monte Carlo
Require: (M)gco a pMPM,, 7(.) prior, A, satisfiability distance automaton for MITL formula ¢,
N number of particles, a € (0,1), K kernel distribution
Ensure: (wj,0;)1<;<n weighted samples drawn from 7,_apc
(6, )1<jen ~ ()
Vi€el,...,N,dj~(Mya x Ap)
J
€ < quantile(c, (dj)1<j<n)
1
(Wj)gg)jgzv — %
142
while ¢ > 0 do
for j=1:N do
repeat ‘ ‘
Take 6 from (Gy_l))lgjgjv with probabilities (wj(»l_l))lngN
(2) !
0;" ~ K(.6;)
dj ~ (MG;” X A@)
until d; < e
71'(9;1))

N G- i) p(i—
TR

Wwj <

end for _
Normalise (wj(l))j
€ < quantile(o, (dj)1<j<n)
i 1+1
end while

The Automaton-ABC SMC algorithm (Algorithm 4), takes the same inputs as the
Automaton-ABC rejection sampling (Algorithm 3), i.e. a parametric MPM Mj, a sat-
isfiability distance automaton A, the size N € N of parameters’ sample to be drawn at
each iteration and a prior distribitution 7 (.), plus two additional ones: a kernel distribution
K and a hyperparameter « €]0, 1[ used to control how fast the tolerance e decreases along
with the iterations. The algorithm operates iteratively following the ABC-SMC schemes
of Algorithm 2 yet with a few peculiarities. Initially, N parameters (0;1))1§j§ N are drawn

from the prior 7(.), their corresponding satisfiability distances (d])§1<) j<n are computed

rough synchronised simulatlons (1) X . arameters : (@) 1S Initial sample
through synchronised simulations M, x A). Parameters 6" of this initial 1
J

J
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are all accepted (regardless of their distance (dj)(l)) and coupled with weights purposely

uniformly set to (wj)&) <N % to form the first draw from the posterior distribution

Ty—ABc- Furthermore 0](-1) are the used to establish the first tolerance level € which is set

to the a-quantile of the distances (dj)§1<)3<N (i.e. € « quantile(c, (dj)§1<)j<N))9‘ Notice
v e di (

that the first tolerance level € may actually result in a quite large value of distance djl) as

)

no control is imposed on the selection of the initial sample Qj . The convergence of the
parameter search process is then driven through the iterative loop. At each iteration ¢ > 2

a new sample of parameters 9](.“ )

previous iteration through the kernel distribution K. Each newly sampled parameters 0](-i
is accepted only if its corresponding distance dg-i) (assessed through synchronised simulation
M ) X Ay) is below the tolerance level e established at previous iteration. The accepted
J
@)
‘] .
the distances (d;z))lgjg ~. The iterations end as soon as the last tolerance level € = 0 is
reached. The introduction of several steps with positive decreasing tolerances leads to an

efficient exploration of the parameter space driven by A,,.

accepted at the
)

is obtained by moving parameters 03(;‘—1

N parameters 6’ are then used to establish the next tolerance level € as the a-quantile of

Theorem 1. For (My)pco a parametric MPM, ¢ an MITL formula and 7 a prior distribu-
tion over the parameter set ©, the (6;)1<i<n issued by either Algorithm 3 or Algorithm 4
are drawn from a density function m,_4pc:

7(6;)
K

where f, : © — [0,1] (ie. f,(0) = Pr(¢ | Mp)) is the probability satisfaction function of
¢ (Definition 3.6) and K € R>q is a positive constant.

To—aBc(0:) = fp(0i) -

Proof. See [BBC21]. O

Theorem 1 links the Automaton-ABC algorithms (Algorithm 3 and 4) with the satis-
faction probability function f, (Definition 3.6). It establishes that with Automaton-ABC
the regression of a smooth function, i.e. the likelihood function targeted by classical ABC
schemes, is transformed into the regression of a probability density function, i.e. the prob-
ability satisfaction function f,. In this respect we observe that each parameter (6;)i<i<n
sampled (through the Automaton-ABC method) from the m,_4pc is informative as it
corresponds to a path that verifies ¢. Furthermore, as m,_4pc is a probability density
function, the relative position of accepted parameters is highly informative w.r.t. the esti-
mation of the satisfaction probability function: the denser a subset of accepted parameters,
the higher the satisfaction probability function over the subset.

9Therefore € is set to the distance € = dj, with 1 < k < N such that the empirical cumulative distribution
computed over (dj)§1<)]<N is > a.
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3.2.4 Estimation of the satisfaction probability function

Following Theorem 1 we have that:

. Ty_aBc(t;)

PO =10

This implies that if from the parameter’s samples (G(i))lgig M Wwe obtain by application of
either Automaton-ABC algorithm we can derive an estimate of the ABC posterior density
Tp—Aapc(.) and if we can then further estimate the constant K then we inherently obtain
an estimate of the satisfaction probability function f,(.) as the product K - m,_apc(.)
divided by the (known) prior m(.) (the one which has been employed in the application of
the Automaton-ABC algorithm).

Estimation of the ¢ — ABC posterior distribution. To obtain an estimate of the
Automaton-ABC posterior distribution m,_4pc(.) we apply kernel density estimation (Sec-
tion 3.1.4) to the samples (6;)1<i<n issued by an Automaton-ABC algorithm. Specifically
we considered two different kind of kernels: Gaussian and Beta [Che99]. Beta kernels
are useful when we have to estimate densities over bounded supports with positive prob-
abilities on the boundaries, but are more computationally expensive for the calibration
of the bandwidth. The optimal bandwidth is obtained by Least Squares Cross-Validation
minimisation [Sil86].

Estimation of K. An estimate of K can be obtained directly as the ratio between a
single-point estimation of Pr(¢|Mpg-) and m,_apc(0*) where 8* € © is a specifically chosen
value in the parameter space. Since we propose to estimate Pr(p|My-) through (standard)
statistical model checking, 6* should be chosen so that the runtime to statistically model
check My« |= ¢ (hence to estimate Pr(p|Mpg+)) is not eccesively high, i.e. which is the case
as long as Pr(p|Mg+) > 0. Therefore, based on the estimate of the posterior distribution
To—ABc one should chose §* wisely in a high probability region of m,_apc. Alternatively,
in order to improve kernel density estimation stability, one could select several 0%, estimate
the corresponding constants K* and compute their mean value.

3.3 Experiments

We demonstrate the effectiveness of parametric model checking via the automaton-ABC
method through a few examples of biological systems .
3.3.1 Enzymatic reaction system

We consider a simple model of enzymatic reaction (ER) system in which a substrate species
S is converted into a product P through mediation of an enzyme E. The dynamics is given
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by chemical equations (3.6) which depend on the parameters 6 ={k1, k2, k3}, i.e. the kinetic
rate constants of reactions Ry, Re, Rs.

Ri:E+S™ES Ry:ES™ E+S Ry:ESE E+ P (3.6)

The dynamics of the ER system is such that the totality of the substrate (initially Sy = 100)
is converted into the product at a speed dependent on parameters 6. For example with
60=(1,1,1), the totality of S is converted to P before time = 5 (Figure 3.4 left), whereas
with a tenfold speed reduction in the formation of the E'S complex and synthesis of P (i.e.
60=(0.1,1,0.1)), only about 30% of S has been converted at time = 5 (Figure 3.4 right).

100
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Figure 3.4: Trajectories of the ER system with 6iep, = (1,1, 1), Opigns =(0.1,1,0.1).

Satisfaction probability function estimation. As a case study we consider the estima-
tion of the satisfaction probability function f,, for two sets of time-bounded reachability
formulae o1, 2, p3 (Figure 3.6) that we use for mono-dimensional experiments and ¢y,
vs5, ve (Figure 3.7) which we use for bi-dimensional experiments. While @1, 2, 3, ¢4 and
w5 refer to “simple” time-bounded reachability conditions, i.e. they are concerned with
the probability that the population of a single species (i.e. species P for o1, p2, ¢3, ¢4
and E for p5) enter a specific elementary spatio-temporal regions (i.e. Ry, Ra, Rs, Ry
and Rs), ¢ consists of a conjunction of time-bounded conditions involving two different
species, namely E and P, thus corresponds with a combination of 2 elementary regions
one constraining the F-projection the other concerning P-projection of paths issued by
the ER model. Before discussing the outcome of f,,, estimation we point out the effect
that parameter k3 has on the dynamics of the P species by showing few paths (Figure 3.5
left) sampled from the ER model by varying parameter k3 € {10,20,50} while keeping
k1 = ko =1 (i.e. equally coloured plots correspond to the same parameter set). Intuitively
one can point out that parameter set 6;:(1,1,50) induces a high probability that trajecto-
ries enter region R; (which corresponds to formula ¢1), while 2 =(1, 1,20) induces a high
probability on region Re and 63=(1,1,10) on region Rj.
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kl=k2=1, k3=10,20,50 (Ne=100, Ns=100)

Loso 01 : F[O'025’0'05](50 <zp<T5) =Ry
K3=20 0o : F[O.05,0.075](50 <zxp< 75) =Ry
k=10 03 F[O.05,0.O75](25 <zp< 50) = R3

Product

0.000 0.025 0.050 0.075 0.100
Time

Figure 3.5: Projection of trajectories of ER system along P-dimension, and three spatial-
temporal regions with corresponding MITL formulae encoding.

Mono-dimensional experiments. Figure 3.6 illustrates the estimated posterior dis-
tribution 7y, apc and corresponding satisfaction probability function f,, in function of
parameter k3 (1D experiments) obtained by application of the automaton-ABC method
(Algorithm 3 and 4) to formulae ¢1, @2 and @s.

o1 F[O‘025’0'°5](503P§ 75) 02 : F[O‘05'0'075](50§P§ 75) 03 : F[O'05'0'075](25§P§50)

aaaaaaaa bw = 2.5109 KDE gaussian, bw = 1.3832

KDE cheng9, bw = 0.01677018205
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Figure 3.6: Weighted histograms of posterior distribution 7,,_apc for ER system
obtained with Automaton-ABC-SMC using constant k; = ko = 1, prior distributions
Ty (-) ~ U(0,100) and using 1000 particles. The red plot depicts the estaimated satisfac-
tion probability function obtained through kernel density estimation method, while the
blue plot depicts the “true” satisfaction probability function estimated on a selection of
points through statistical model checking (at 95% confidence semi-interval width 0.01). In
red: the satisfaction function estimated through kernel density estimation method.

The marginal for 7, _apc exhibits a rather uniform profile with the 95% credibility
interval that ¢ is satisfied for k3 € [20,100] (approximately) whereas the marginals for
Tps—ABC and Ty, apc, instead, result in narrower 95% credibility intervals with k3 €
[15,50] (p2) resp. ks€[5,25] (p3). The estimation of the satisfaction probability function
(red plot in Figure 3.6) from the posterior 7, _apc has been obtained using Beta kernels
for ¢ (to handle boundary constraints) and Gaussian kernels for 9, 3. Bi-dimensional
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experiments. Figure 3.7 depicts the results of the 2D experiments on the ER system
for formulae @y, 5, pg. The triangular profile of the joint posterior in experiments for ¢4
and @5 (computed with k3 =1 and m, (.), 7, (.) ~ U(0,100)) indicates that only very low
values of k1 (k1 <0.015 for ¢4, k1 <1 for ¢5) combined with rather high-values of ko (i.e.
ko € [40,100] for ¢g4, ko € [50,100] for ¢5) result in trajectories entering R4, resp. never
leaving R5, which means that the algorithm managed to catch the correlation between
the parameters. This is intuitively correct in both cases, in fact R4 corresponds to a
very low synthesis of P which is not compatible with fast creation of the ES complex (i.e.
only very small k; are not ruled out) and even the compensation effect obtained by fast
decomplexation (i.e. large ko) will not suffice for trajectories to stay in R4. Similarly, R5
limits the speed of the initial decrease of E (which initially is Ey=100), to 50 within ¢ < 0.8,
which again is compatible only with slow ES complexation and cannot be compensated
by fast decomplexation. The R6 experiment caught an even more important correlation
between parameters, in fact the posterior for ¢g is contained in that for s (which is
expected because if a trajectory verifies g then it also verifies ¢3).

Algorithm selection remarks. The selection of either version of the Automaton-ABC
algorithm, i.e. the Automaton-ABC rejection sampling or Automaton-ABC-SMC algo-
rithm, depends very much on the computational complexity of the estimation problem,
which in turns depends on the proportion between the support of the posterior distribu-
tion 7y, _apc(.) to be estimated and the support for the considered prior distribution (.),
ie. |mp,—aBc(.)|/|m(.)|, where we denote |m,,—apc(.)| (resp. |7(.)|) the size of the support
of m,,—apc(.) (resp. 7(.)). Since there is no way to predict |7,,—apc| the only way to
proceed is by empirically monitoring the runtime of the considered experiment settings.
For the mono-dimensional experiments, i.e. those concerning formulae @1, @2 and 3, we
noticed no notable differences of performance between Automaton-ABC rejection sampling
(Algorithm 3) and Automaton-ABC-SMC (Algorithm 4): both can be applied and results
in comparable runtime. This is because of the fairly large ratio |m,,—apc(.)|/|7(.)| between
the support of the obtained posterior distributions, and the size of the sampling support
given the prior for the single parameter is ks ~ U(0,100). Conversely for the bi-dimensional
experiments (@4, @5 and @g), we point out that Automaton-ABC rejection sampling algo-
rithm is not worth using because of its extremely large runtime. In fact for those experi-
ments the support for the prior distribution is [0, 100]x]0, 100] while the region with non-null
probability of satisfying the considered formula corresponds with, in the worst case (i.e.
the support of m,,_apc in Figure 3.7 top left), the area of a triangle with sides roughly
90 and 0.03. Therefore the probability of sampling a bi-dimensional parameter (k1,k2) in
the resulting posterior-distribution is roughly |m,—apc(.)|/|7(.)| = 290 . L~ 107
This results in an infinitesimal probability of drawing from the prior N = 1000 particles
that fall in such a narrow distribution let alone the fact that even a parameter sampled
in the obtained distribution could produce paths that don’t satisfy ¢. By adding several
transitional steps with Algorithm 4, the problem becomes treatable. The results for ¢4
required about 2 x 10° simulations of the model (i.e. the highest number of simulations
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for experiments on the ER model).

Further case studies. We tested the Automaton-ABC method on other systems in-
cluding the popular SIR model of infection spreading and a model of intracellular viral
infection (see [BBC21]).

3.4 Perspectives

We introduced a novel approach for parametric verification of temporal logic specifica-
tions against probabilistic models based on an adaptation of the ABC parameter inference
scheme. As the original ABC scheme is based on a notion of distance (between the sys-
tem’s observations and an instance of the model’s parameters) the parametric verification
extension relies on the adaptation of the distance notion to the satisfiability distance, which
quantifies how far a model’s instance is from satisfying a given temporal logic condition.
We have then shown that dedicated hybrid automaton monitor can be defined and plugged
in within an adapted ABC scheme in order to assess on-the-fly the satisfiability distance of
a temporal property, yielding an approximation of the satisfaction probability distribution
for the considered property. The presented approach suffers from lack of generality as, in
its current formulation, the satisfiability distance is custom-defined and restrained to non-
nested time-bounded temporal specifications, rather than covering the entire syntactical
spectrum of a temporal logic formalism as done by Donzé and Maler in similar approaches
that target the robustness of MITL formulae against deterministic (ODEs) models [DM10].
On the other hand the fact we employ hybrid automata to monitor the paths issued by a
model’s instance allows us to widen the realm of parametric verification problems by taking
into account much more sophisticated behaviours such as e.g. that of tuning of stochastic
oscillators, as discussed in Chapter 4.

One aspect worth investigating in order to evolve this contribution is how to generalise
the satisfiability distance adaptation of the ABC scheme to the entire MITL spectrum.
Intuitively that would entail working out a reformulation of the satisfiability distance def-
inition based on the recursive syntax of MITL temporal formulae, similar to Donze and
Maler’s approach to tackle robustness of MITL properties [DM10]. Given a recursive defi-
nition of satisfiability distance can be obtained then it’d also necessary to figure out how
it can be conveniently encoded in hybrid automata terms.
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Figure 3.7: Top: bi-dimensional weighted histograms of posterior distribution 7, apc for
ER system obtained with Automaton-ABC-SMC using constant ks = 1, prior distributions
Ty (1), Thy (1) ~ U(0,100) and using 1000 particles. Mid: kernel density estimation of the
satisfaction probability function. Bottom: validation through estimation of the satisfaction
probability function by statistical model checking (95% confidence semi-interval with half-
width 0.01).



Chapter 4

Formal analysis of stochastic
oscillators

4.1 Introduction

Many real life systems are characterised by some form of oscillatory dynamics examples of
which can be found in many domains, ranging, from ecology, e.g. with the early Lotka-
Volterra prey-predator model [Lot09, Vol28], to social systems, where periodic behaviour
can be observed in many social context for example with the arrivals of patients at hos-
pital’s emergency department [BDHA20] and, specially, in biology where oscillations are
prominent dynamics at the core of many fundamental biological processes [Gol02].

Here we focus on two complementary aspects related to modelling oscillators: the
assessment of meaningful indicators (e.g. the period and amplitude of oscillations) from an
oscillator model and the reverse engineering of an oscillator (i.e. how to tune an oscillator
model so that it meets a given a target oscillatory behaviour). As for the first aspect,
the analysis of mathematical models of oscillators is a well established problem in the
literature, which typically boils down to limit-cycle analysis for deterministic oscillators
(i.e., oscillators modelled as a systems of Ordinary Differential Equations), or, alternatively
is achieved by application of signal processing methods such as Fast Fourier Transformation
(FFT) or autocorrelation analysis. In this contribution we focus on discrete-state stochastic
oscillators and propose an alternative approach, which differently from classical signal
processing, is based on finding a temporal logic characterisation of periodicity for noisy
signals issued by a stochastic model. With such a formal characterisation of what we
name noisy periodicity we can then take advantage of the model checking framework so to
automatically assess the period and amplitude of oscillations.

As for the second aspect we look at analysing the relationship between the model’s
parameters and the character of the oscillations. More specifically we tackle the problem
of how to reverse engineer an oscillator, that is, given a target oscillatory behavior, e.g.
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a desired period of oscillation, we aim at inferring the model’s parameters that match the
desired behaviour. We obtain such a framework based on the automaton-ABC approach
outlined in Chapter 3.

Outline of the contribution. This chapter report on the contribution in the mat-
ter of formal analysis of stochastic oscillators. We demonstrate the effectiveness of the
HASL formalism as a means for specifying and automatically estimate oscillation related
measures, such as the period and amplitude of noisy oscillators. We do so by introduc-
ing two alternative characterisations of noisy periodicity, one relying on a pair of selected
observational thresholds, the other based on the detection of (noisy) local maxima and
minima. We then provide a formal encoding in terms of linear hybrid automata (LHA)
of the HASL logic for both characterisations of periodicity, which we demonstrate being
capable of detecting the periods, respectively the peaks, of the stochastic oscillator they
target and to estimate on-the-fly “classical” indicators such as the average duration and
the average amplitude of the oscillations as well as more sophisticated ones like the pe-
riod variance, which allow for assessing the regularity of the oscillator. Differently from
Spieler’s approach [Spil3], which allows one for qualitatively establishing whether a CTMC
model is a sustained oscillator and, if so, to assessing some quantitative characteristics (e.g.
the average period duration), the methodology we introduce here is limited to assessing
quantitative characteristics of a stochastic model which is known (or believed to) oscillates.

4.2 Formal analysis of stochastic oscillators

Intuitively an oscillation is the periodic variation of a quantity around a given value. In
mathematical terms this is associated with the definition of (non-constant) periodic func-
tion. i.e. a function f : R™ — R for which 3¢, € R such that V¢ € RT, f(t) = f(t +tp),
where t, is called the period as in e.g., Figure 4.1(a). In the context of stochastic models
such a “deterministic” characterisation of periodicity is of little relevance, as the trajec-
tories of a stochastic oscillator being strictly periodic (as in f(t) = f(t + tp)), will have
(unless in degenerative cases) zero probability. More generally the paths of (discrete-state)
stochastic oscillators are characterised by a remarkable level of noise: period occurrences
differ in duration as well as in amplitude as in e.g., Figure 4.1(b).

The difficulty we face is that of finding a suitable characterisation of what should be
considered as a period realisation which agrees with the intuitive notion of periodicity,
while copying with the noisy nature of stochastic oscillator paths. The relevant question
in this respect is “what shall one consider as a period realisation”? We propose two
complementary approaches to determine what is a noisy period realisation. With the first,
inspired by Spieler [Spil3] and further developed in [BD15], one has to consider a partition
of the domain of the oscillating quantity in three region: two “extreme” regions (low,
respectively, high) separated by an intermediate region (mid). A period realisation is then
considered as the delay between the beginning of two consecutive sojourns in either of the
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Figure 4.1: Deterministic versus stochastic oscillations

extreme regions, interleaved by a sojourn in the opposite extreme region (see Figure 4.2(b)).
With the second one, introduced in [BD15, Ballbal, a period realisation is considered as
the delay between two consecutive local mazima (or equivalently local minima), bearing
in mind that the characterisation of local maxima and minima in a noisy oscillator is not
trivial as one has to be able to distinguish between actual local maxima/minima points
and critical points that correspond to noisy spikes.

4.2.1 Temporal logic characterisation of oscillations

The possibility to automatically assess the periodic character of a system has attracted
the attention of researchers in model checking community in recent times, the basic idea
being to identify suitable temporal logic formulae that can be fed in to a model checker
to qualitatively establish the existence of periodicity and (possibly) to quantitatively assess
relevant indicators (e.g. period duration, amplitude of oscillations).

In an early work Fages, et al. [CRCD'04] tackled the problem w.r.t. transition system

models of cell cycle and proposed the following (branching-time) CTL formula to capture
the existence of periodicity:

EG((p= EF(-p)) A (-p = EF(p))) (4.1)

Formula (4.1) essentially states that there should exist an execution of the model such
that infinitely often if a condition p is satisfied then it will be not satisfied and vice-versa
if it is not satisfied it will be satisfied

In a seminal work with Mardare and Mura [BMMO09] we considered a similar CTL-
like reasoning to query whether a CTMC population model of a simple 3-way synthetic
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Figure 4.2: Noisy periodic trajectories of stochastic oscillators

biochemical oscillator exhibits sustained oscillations consisting of the following formula:
AG(((Xi = k) = EF(X; # k) A ((Xi # k) = EF(X; = k)))) (4.2)

Formula (4.2) represents a stricter version of (4.1) and establishes, by replacing the
outermost existential path quantifier F with the stricter universal quantifier A and by
instantiating p with (X; = k), that if the system’s evolution reaches a state where the i-th
species is X; = k (k € N being a constant) then it has to be possible to reach a future
state such that (X; # k) and vice versa. Through basics equivalences we then derived a
probabilistic CSL counterpart of (4.2), that is:

PeoF(((Xi = k) A P<o[F(Xi # K)]) V (X # k) A P<o[F(Xi = K)])))] - (4.3)

which can be used to rule out states which allow for converging evolutions, that is states
for which there’s a positive probability to reach a state X; = k and never leave it!.

The problem with formulae for capturing sustained oscillations of population models,
such as (4.2) and its CSL counterpart (4.3), is that they account also for those trajectories
whose infinite oscillations around & corresponds to stochastic noise spikes (e.g. trajectories
such as 0; : (x;=Fk,x; =k + 1)*) rather than to actual oscillations therefore we proposed a
slight variant formula:

AG(((XZ = k) = EF(XiSk—nAXi Zk—l—n)) A ((()QS/{Z—TL/\XVZ Zk—i—n) = EF(XZ =

which is meant to rule out oscillations corresponding to an arbitrary level of noise n.

'Notice that (4.3) relies on the assumption that all trajectories hit the level of exactly k molecules, that
is, the maximum change of the molecule number is one.
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In a follow up work [BG10] we proposed an evolved qualitative characterisation of
periodicity by considering notions of paths’ monotonicity, specifically by identifying the
monotonic increase, respectively decrease, of the i-th species along a path by enriching the
CTMC model with dedicated boolean variables named inc_ i, respectively dec_i. That
resulted in the following probabilistic LTL formula

P_slinc_i U(X; =k A (dec_i U (X; =j))] (4.5)

which can be used to measure the probability of paths whose initial state X; = 7 and that
exhibit a one-period prefix of amplitude k— j consisting of monotonic increase up to X; = k
followed by a monotonic decrease back to the initial level X; = j.

P_olinc_i UX;=kAN(k—n<X;<k+n) U (dec_i U (X; =j))))] (4.6)

To relax the quite strict characterisation given by (4.5) we introduced the variant for-
mula (4.6) that allows the fluctuation to stay at the peak, that is, around a molecule
level of k (module noise band n), for an unlimited amount of time, before beginning the
monotonic descent to X; = j.

Unfortunately all previously discussed attempts to come up with a temporal logical
characterisation of oscillations only partially comply with the start goal of this investi-
gation. For example qualitative CSL formulae like (4.3) although will be unsatisfied by
damped oscillators, will also be satisfied by any ergodic CTMC model no matter if the model
actually oscillates. On the other hand quantitative CSL formulae like (4.5) and (4.6) help
us quantifying how likely oscillations of given amplitude are, but they do not actually help
to disambiguate between sustained and damped oscillations as they inherently account for
a finite number periods.

A major progress in this respect is given by the PhD work of David Spieler which
lead to the publication of paper [Spil3]. The main idea of Spieler was to characterise
noisy oscillations by partitioning the state space of the oscillating quantity in 3 regions,
a high region where the maxima points of the oscillations are supposedly located, a low
region where the minima are located and an intermediate mid region which is traversed
in between each consecutive pair of minimum and maximum. Given such characterisation
Spieler introduced a corresponding period detector deterministic timed automaton (DTA),
i.e. a DTA capable of accepting noisy periodic paths corresponding to the considered
low-mid-high state-space partition. Spieler then demonstrated that deciding whether a
Markov population model (MPM) admits sustainable oscillations corresponds to check
whether a specific steady-state condition holds over the corresponding, so-called, period
detector Markov population model (PDMPM), i.e. the (DTA x MPM) product process.
Undoubtably a major step forward Spieler’s approach suffers nonetheless of some drawback:
firstly being based on numerical model checking approaches it is affected by state-space
explosion, even more so given the size of the product process PDMPM is at least thrice?

2The period detector DTA consists of 3 states.
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the size of the MPM alleged oscillator. Secondly it does not naturally comply with the
separation of concern modelling philosophy, as it requires the integration of the detector
DTA within the model, something which probabilistic model checking tools (e.g. PRISM)
that do not support automata based property languages suffer of. Finally the choice of
relying on numerical model checking inherently limits the expressiveness of the oscillation
related indicators that one may want to consider: Spieler’s outline a transient-analysis
based algorithm to approximate the PDF /CDF of the oscillation’s period duration however
extending such an approach so that other indicators such as, e.g., the variance of the period
and/or the PDF/CDF of the oscillation’s amplitude looks non trivial if feasible at all.

In the remainder we outline our contribution in this context, specifically, we describe
how, by taking advantage of the more expressive hybrid automata based HASL model
checking approach, we extended Spieler’s DTA period detection analysis so that more
sophisticated oscillation related indicators can be assessed.

4.2.2 Partition based noisy periodicity

In the remainder we consider n-dimensional DESP population models, that is, models
whose state space is contained in N™ and we introduce the notion of noisy periodicity w.r.t.
to one dimension of the model which, for the sake of simplicity, we often refer to as as
the A dimension, where A is the name of a generic biochemical species. Therefore given a
species A whose periodicity we want to assess the idea behind such characterisation is to
establish a partition (w.r.t. to the A dimension) of the model state-space induced by two
threshold levels L, H € N with L < H and we say that, a path of the model oscillates (w.r.t.
A) or, equivalently is noisy periodic, if it the projection of path over the A-dimension
infinitely often alternate between a traversal of the [0, L] and of the [H, oo) regions. This
is formalised by Definition 4.1.

Definition 4.1 (noisy periodic trajectory). For My an n-dimensional DESP population
model, let dom(My) be its state space, and dom;(Mpy) the projection of dom(My) along
the i*" dimension 1 <i < n of My. Let L,H € N, L < H, be two levels establishing the
partition dom;(My) =lowUmidUhigh with low = [0, L), mid = [L, H) and high = [H, c0).
A path o € Path(My) is said noisy periodic w.r.t the i*" dimension, and the considered
L, H induced partition of dom;(My) if the projection o; visits the intervals low, mid and
high infinitely often.

H/L-crossing points. Given a noisy periodic trace o4 we denote 7| ( 7j), the instant of
time when o4 enters for the j-th time the low (high) region. T| =U;7;, (resp. Th=U;7;1)
is the set of all low-crossing points (reps. high-crossing points). Observe that T| and T4
reciprocally induce a partition on each other. Specifically T| =UT},| where T}, is the subset
of T containing the k-th sequence of contiguous low-crossing points not interleaved by any
high-crossing point. Formally Ty, ={Tiy, ..., Tpn) |3K, T—1)y <ot < Tils Taarh)), < T(kig)1)-
Similarly T4 is partitioned T4 = UpTy4 where Tjy is the subset of T containing the k-th
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sequence of contiguous high-crossing points not interleaved by any low-crossing point. For
path o4 in Figure 4.2(b) we have that T, =Ty U553 ... with Ty = {Tu, Tgi}, Ty, = {Tgi},
T3, = {7’4¢}, while T4 =T14UToUT54 . .. with Ty = {Tn}, Tor= {TQT}, T3 = {TgT}. Based on
H/L crossing points we formalise the notion of period realisation for a noisy period path.

Definition 4.2 (k''noisy period realisation). For o4 a noisy periodic trajectory with
crossing point times T = Up>1T}| , respectively T} = Up>1T}4, the realisation of the kth
noisy period, denoted ¢y, , is defined as t,, =min(T(g1y,) — min(Ty)?.

Figure 4.2(b) shows an example of period realisations: the first two period realisations,
denoted pl and p2, are delimited by the mid-to-low crossing points corresponding to the
first entering of the low region which follows a previous sojourn in the high region and
their duration (as per Definition 4.2) is t,, =73, — 71 respectively t,, =74 — 73;. Notice
that the time interval denoted as p0 does not represent a complete period realisation as
there’s no guarantee that ¢t = 0 corresponds with the actual entering into the low region.
Definition 4.2 correctly does not account for the first spurious period p0. Relying on the
notion of period realisation we characterise the period average and period variance of a
noisy periodic trace. Observe that the period variance allows us to analyse the regularity
of the observed oscillator, that is, a “regular” (‘irregular”) oscillator is one whose traces
exhibit little (large) period variance.

Definition 4.3 (period mean). For o4 a noisy periodic trajectory the period average of
the first n € N period realisations, denoted %,(n), is defined as t,(n) = % > p—qtp,, where
tp, is the k-th period realisation.

Observe that for a sustained oscillator, the average value of the noisy-period, in the
long run, corresponds to the limit ¢, = lim,,_,o t,(n).

Definition 4.4 (period variance). For o4 a noisy periodic trajectory the period variance of
the first n € N period realisations, denoted s?p (n), is defined as s%p (n)=1 30 (tp.—p(n))?,
where ¢, is the k-th period realisation and Z,(n) is the period average for the first n period
realisations.

We introduce an HASL specification which consists of an LHA automaton, named A,
which allows for estimating on-the-fly* the period mean and variance, that is, as the noisy
periodic traces are generated and scanned by Ay, .

3tp,, could alternatively be defined as t,, =min(T(j1)) —min(Tky), that is, w.r.t. crossing into the high
region, rather than into the low region. It is straightforward to show that both definitions are semantically
equivalent, i.e., the average value of ¢,, measured along a trace is equivalent with both definitions.

4Based on an adaptation of the so-called online algorithm [Knu97] for computing the mean and variance
out of a sample of observations.
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Figure 4.3: The Ay, LHA for selecting noisy periodic traces (with respect to an observed
species A) related to partition low = (—oo, L], mid = (L, H) and high = [H, +00).

The Ay, automaton. We introduce a LHA named A, (Figure 4.3) for assessing the
mean value (as per Definition 4.3) and the variance (as per Definition 4.4) of the first N
noisy period realisations (as per Definition 4.2) measured on paths of a DESP oscillator
Mpy. The automaton consists of three main locations low, mid and high corresponding
to the regions of the partition of A’s domain induced by thresholds L < H: location low
corresponds to region low = (—o0, L], location mid to region mid = (L, H) and location
high to region high = [H,+00). The functioning of A,., is as follows: processing starts
in either of the 3 initial locations (low,mid,high) depending on the initial state of the
oscillator (variable ny registers the population of oscillating species A and is initialised
through autonomous transitions before unfolding of a path begins). While a path of the
considered oscillator is simulated the A, automaton follows the oscillation by moving
between locations low and high, passing through mid, following the profile of the observed
species A. The completion of a loop from low to high and back to low corresponds to
detection of a period realisation (as of Definition 4.2). During period detection a number
of relevant information is stored in the data variables of Ay, (Table 4.1) which are then
exploited for estimating the considered target expressions. The analysis of the simulated
trajectory ends by entering location end as soon as the N-th period has been detected.

An execution of A4,.,. Let us assume that initially 4., is in location low. From low the
automaton follows the profile exhibited by the observed population A, thus moving to mid
(and possibly back) as soon as the population of A grows and a state of the mid = (L, H)
region is entered (i.e., corresponding to the L < A< H invariant of mid location becoming
satisfied), and then to high (and possibly back) as soon as the population of A enters
the high = [H,+o0) region (corresponding to the A > H invariant of high location). On
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name | domain update definition description
t R>o reset total time elapsed
n N increment counter of detected periods
tp R>o0 reset duration last period
tp R>o fEp,tp,n) = t””ﬁ'iILtp period mean
2 2 7 n—1 __2 (Tp—tp)? - .
st R>o 9(8t,stpy tp,n) = 75 - 8¢, + PP period variance

Table 4.1:  Variables of the A,., automaton.

entering the high location the boolean variable top is set to true (i.e., top=1). This allows

E.(...Atop=1),...
then for distinguishing between the mid-to-low transitions of kind midw——)low,

which correspond to an actual closure of a period realisation (i.e., those 7;, preceded by

a sojourn in the high = [H,+0o0) region), from those of kind mid B(..-10p=0)... low which

correspond to a return to low without having previously sojourned in high. Observe
that from mid location there are four possible (mutually exclusive) ways of entering the

low location. If the sojourn in mid has not been preceded by a sojourn in high edge
E,(n<N Atop=0),..

mid >low is enabled. On the other hand if the sojourn in mid has been
preceded by a sojourn in high but low is going to be re-entered for the first time (i.e.,
n = —1) then the timer ¢ is reset (representing the start time of actual period detection)
and the counter of detected periods n is set to zero (again representing the actual beginning
of counting of period detection). Furthermore if the sojourn in mid has been preceded by
a sojourn in high and the period to be detected is the first one (i.e., 0< n<1Atop=1)
then we increment the counter n of detected period, we reset the flag top and update the
value of the average duration of detected period fp while we do not update the variable
S%p as in order to update the value of the variance of the detected period duration we need
that at least two periods have been detected. Finally if the period to be detected is the
n-th with n>2 (i.e., corresponding to guard 2< n< N A top=1) we do the same update
operations of the previous case but also update s%p.

The automata uses variable n to count the number of noisy periods detected along a
trajectory, and stops as soon as the N period is detected (i.e. event bounded measure).
The boolean variable top, which is set to true on entering of the high location, allows for
detecting the completion of a period (i.e. crossing from mid to low when top is true).
Two clock variables, ¢ and t,, maintains respectively the total simulation time as of the
beginning of the first detected period (t) and the duration of the last detected period (¢).
Finally variable ,, maintain the average duration of all (so far) detected periods while sfp
stores the variance (or variability) of duration (i.e. how far the duration of each detected
period is distant from its average value computed along a trajectory) of all (so far) detected
periods.

Theorem 2. If a trace o4 is noisy periodic w.r.t. amplitude levels L, H € IN then it is
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accepted by automaton Ay, with parameters L, H and N € N.
Proof. See [Ball5b]. O

HASL expressions associated to A,... We define different HASL expressions to be
associated to automaton .Aper.

o Zj = Ellast(tp)]: corresponding to the mean value of the period duration for the first
N detected periods.

e Zy=PDF(tp,s,l,h): corresponding to the PDF of the average period duration over
the first NV detected periods, where [I, h] represents the considered support of the
estimated PDF, and [l, h] is discretized into uniform subintervals of width s

o Z3=F [last(sfp)]: corresponding to the variance of the period duration.

Expression Z; represents the expected value assumed by variable ¢,, that is, the average
duration of the first N periods detected along a trace, at the end of accepted trajectory
(i.e., a trajectory that contains N periods). Similarly expression Zy evaluates the PDF of
the average duration of the first IV periods by assuming the interval [I, h] as the support of
the PDF and considering that [I, h] is discretised in (h —1)/s uniform subintervals of width
s. On the other hand Z3 is concerned with assessing the expected value that variable sfp
has at the end of a trace consisting of N noisy periods. By definition (see Table 4.1) sfp
corresponds to the wvariance of the duration of the detected periods, (i.e., how much the
N periods detected along a trace differ from their average duration). Observe that the
measured period variance (i.e. Z3) provides us with a useful measure of the irregularity,
from the point of view of the period duration, of the observed oscillation.

4.2.3 Peaks-detection based noisy periodicity

The drawback of the partition based period detection scheme discussed in the previous
section is that, the detected periods depend on the chosen L, H thresholds, and these
have to be chosen by the modeller manually beforehand, i.e., normally by looking at the
shape of a sampled trajectory and then choosing where to “reasonably” set the L and H
values before executing the measurements with automaton A,.,. To improve things here
we propose a different approach which is aimed at identifying where the peaks (i.e., the
local maxima/minima) of oscillatory traces are located.

Since traces of a DESP consist of discrete increments/decrements of at least one unit,
it is up to the observer to establish what should be accounted for as a local maximum
(minimum) during such detection process. Intuitively a local max/min of a trace o4 is a
state o 4[i] (i € IN) that corresponds to a change of trend in the population of A. This is
formally captured by the following definition.



Chapter 4. Formal analysis of stochastic oscillators

Definition 4.5 (local maximum/mininimum of a trace). For o4 the projection w.r.t. to
species A of a path o of an n-dimensional DESP D population model, state o4[i] is a
maximum, if o4[i — 1] <oa[i] >0ali + 1], or a minimum, if o4[i — 1] >o0ali]<oali + 1].

m[1] T|' m[1] ms[2] ?
(a) local maxima (M[i]) and minima (ml[i]) of (b) S-separated local maxima (Ms[i]) and min-
an alternating trajectory o4. ima (msli]) of an alternating trajectory o 4.

Figure 4.4: Local maxima/minima and J-separated local maxima/minima.

In the remainder we refer to a trace that consists of an infinite sequence of local maxima
interleaved with an infinite sequence of local minima as an alternating trace (Definition 4.6).

Definition 4.6 (alternating trajectory). A trajectory o of an n-dimensional DESP D
population model is said alternating with respect to the it" (1< i<n) observed species of
D, if o; contains infinitely many local minima (or equivalently local maxima).

For o4 an alternating trace we denote ol = MJ1], M[2],..., respectively o} =
m[1],m[2], ..., the projection of o4 consisting of the local maxima, respectively minima, of
o4. Figure 4.4(a) shows the local maxima and minima for an example of alternating trace
4. In the following we point out two simple properties relating the definition of noisy
periodic and alternating trace.

Proposition 5. If 04 is a noisy periodic trace (as of Definition 4.1) then it is also alter-
nating.

Proposition 5 is trivially true as by definition a noisy period trace visit infinitely often
the low and high region of the state space, thus necessarily it contains an infinite sequence
local maxima interleaved with local minima.

Proposition 6. If 04 is an alternating trace (as of Definition 4.6) then it is not necessarily
noisy periodic.

Proposition 6 simply points out that, by definition, an alternating trajectory may be
diverging (for example if it consist of increasing steps which are always larger than the
decreasing ones), in which case clearly it is not noisy periodic.
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In the remainder we introduce a HASL based procedure for detecting the local maxima
and local minima of alternating traces. However rather than considering detection of
“simple” local maxima/minima as in Defintion 4.5, we refer to detection of a generalised
notion of local maxima/minima of a trace, that is, maxima and minima which are distanced,
at least, by a certain value §. We formalise this notion in the next definition.

Definition 4.7 (d-separated local maxima). Let § € RT, and o4 the A projection of a
trace o of an n-dimensional DESP D population model. A state o4[i] is the j-th, j €N,
d-separated local maximum (minimum), denoted M;s[j] (msli]), if 4) it is the largest local
maximum (smallest local minimum) whose distance from the preceding d-separated local
minimum mg[j — 1] (maximum M;[j — 1]) is at least § and 4z) from it, it is possible to reach
a smaller (larger) d-separated state.

To understand the meaning of §-separated minima and maxima definition let us consider
the example in Figure 4.4(b). The nature of the first J-separated point (either a maximum
or a minimum) depends on the initial profile of the trace: if the trace, from its initial
state 04[0], first enters the region o4[0] + ¢ than the first d-separated point will be a
maximum (conversely if it first enters the o4[0] — ¢ region it will be a minimum). For the
trace in Figure 4.4(b) the first d-separated point is the maximum Ms[1] since none of the
preceding local minima m/[1],m[2] and local maximum M [1] is sufficiently far apart from the
initial state 0 4[0] (i.e. m[1],m[2] and M[1] have distance less than ¢ from o 4[0]). Observe
that the detection of M;s[1] as the actual first d-separated maximum is completed only on
entering the (M;[1]—d) region, which happens on observing the downward jump that follows
local maximum M [3]. To better understand that detection of d-separated minima/maxima
may involve a “temporary detection” phase followed by a “detection finalisation” let us
continue the unfolding of the trace. Having entered the M;s[1] — § region we encounter the
local minimum m/[4], which is temporarily detected as the first é-separated minimum, since
in fact it is distanced more than ¢ from Ms[1]. However ml4] is followed by m/[5] a smaller
local minimum reached without exiting the (m[4]49) region. Thus m[5] replaces m[4] as
temporary first -separated minimum. m|5] becomes the actual first d-separated minimum
only on entering the (m[5]+0) region (which in this case corresponds with reaching of state
M;5[2]) since no smaller local minima has been detected before entering (m/[5]44).

Definition 4.8 (0-separated alternating trace). A trajectory o of an n-dimensional DESP
D population model is said d-separated alternating with respect to the i*" (1 < i < n)
observed species of D, if it contains contains infinitely many d-separated local minima (and
equivalently d-separated local maxima), where § € R™.

For o4 a d-separated alternating trace we denote ‘7,]4\1/[5 = Mj[1], Ms[2], ..., respectively
o')? =ms[1],ms[2],. .., the projection of o4 consisting of the d-separated local maxima,
respectively minima, of 04. Observe that the d-separated max/min (Figure 4.4(b)) are a

subset of the “simple” max/min (Figure 4.4(a)). Furthermore the following property holds:
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Proposition 7. For §=1 the sequence of J-separated maxima (minima) of an alternating
My

trace o4 coincides with the list of local maxima (minima), that is: oy* =o'} and o’y* =0"}.

The detection of the d-separated local maxima (minima) for a trace o4 can be de-
scribed in terms of an iterative procedure through which the list of detected max/min are
constructed as o4 unfolds. Such a procedure is formally implemented by the LHA Apcqxs
(Figure 4.5) which we introduce later on. Here, based on the example illustrated in Fig-
ure 4.4(b), we informally summarise how detection of d-separated max/min works. The
detection requires storing of the most recent (temporary) d-separated max (min) into a
variable named xp; (), while once detection of a J-separated maximum (minimum) is
completed the corresponding variable x s (x,,) is copied into a dedicated list, named Lmazx,
resp. Lmin (see Table 4.2), which is filled in with the detected J-separated max/min points.
To understand how detection through automaton A,c.rs works let us consider again the
sample path in Figure 4.4(b). The first element encountered is the local minimum m/[1]
which is then stored into x,, = m[l]. As the trace further unfolds the subsequent maxima
(green points) are ignored as long as their distance from the temporary minimum x,, is
less than ¢, as is the case with M[1]. Similarly any local minimum m/[i] (yellow point) that
is encountered after that stored in z,, is ignored (e.g., m|[2]), unless it is smaller than z,,,
in which case x,, is updated with the newly found smaller minimum. As o4 unfolding
proceeds we find the next local max M[2] which is distant more than § from the temporary
minimum ,,: this means that x,, currently holds an actual d-distanced minimum hence
its value is appended to Lmin and the procedure starts over, in a symmetric fashion, for
the detection of the next maximum.

The rational behind the notion of d-separated max/min is that for locating the actual
peaks of a stochastically oscillating trace it is important to be able to distinguish between
the minimal peaks corresponding to stochastic noise, the actual peaks of oscillation. With
the d-separated max/min characterisation we provide the modeller with a means to es-
tablish an observational perspective: by choosing a specific value for the § parameters the
modeller establishes how big a level of noise he/she wants to ignore when detecting where
the oscillation peaks are located.

In the remainder we introduce the LHA A, 45 which formally implements the detection
of the §-separated peaks of alternating traces.

The automaton Ap..s. We introduce an LHA, denoted Apeqrs (Figure 4.5), designed
for detecting d-distanced local maxima/minima along alternating traces of a given observed
species called A. It requires a parameter J (the chosen noise level) and the partition of
the event set E=FE,sUE_q4UE_4 where FE,4 (respectively E_4, E_4) is the set of events
resulting in an increase (respectively decrease, no effect) of the population of A.

The rationale behind the structure of Apeqrs is to mimic the cyclic structure of an
alternating trace through a loop of four locations, two of which (i.e. Max and Min) are
targeted to the detection of local maxima, resp. minima. The simulated trace yields the
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Figure 4.5: The Apeqrs LHA for detecting local maxima/minima (for observed species A)
of noisy periodic traces where local maxima/minima are detected with respect to a chosen
level of noise 4.

automaton to loop between Max and Min hence registering the minima/maxima while
doing so. The detailed behavior of Apcqrs is as follows. Processing of a trace starts with
a configurable filter of the initial transient (represented as a box in Figure 4.5) through
which a simulated trace is simply let unfolding for a given init1 duration.The actual
analysis begins in location start from which we move to either Max or Min depending
whether we initially observe an increase (i.e. © < A—0) or a decrease (i.e. x > A+90)
of the population of the observed species A beyond the chosen level of noise §. Once
within the Max—noisyDec —Min— noisylnc loop the detection of local maxima
and minima begins. Location Max (Min) is entered from noisyInc (noisyDec) each
time a sufficiently large (w.r.t. J) increment (decrement) of A is observed. On entering
Max (Min), we are sure that the current value of A has moved up (down) of at least §
from the last value stored in z while in Min (Max), hence that value (x) is an actual
local minimum (maximum) thus we add it up to Smin (Smaz), then we increment the
frequency counter corresponding to the level of the detected minimum Lmin[z] (maximum
Lmaz[z])® before storing the new value of A in x and finally increase ny; (ny,) the

Swith a slight abuse of notation we refer to Lmin[] and Lmaz[] as arrays whereas in reality within
COSMOS/HASL they correspond to a set of variables Lmin;, Lmazx;, each of which is associated to a
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Data variables

name domain | update definition description

t R>o reset time elapsed since beginning
measure (first non-spurious
period)
nar(Nm) N increment counter of detected local
maxima (nas), minima (n.,)
x N current value of ob- | (overloaded) variable storing
served species A most recent detected maxi-
mum/minumum
Smax(Smin) N sum of detected maxima
(minima)
Lmaz[](Lmin[)) N™ array of frequency of heights
of detected maxima (min-
ima)

Table 4.2:  The data variables of automaton Apeqis of Figure 4.5 for locating the peaks of
a noisy oscillatory traces

counter of detected maxima (minima). Once in Max (Min) we stay there as long as
we observe the occurrence of reactions which do not decrease (increase) the value of A,
hence either reactions of F,4 (E_4) or of E_4. While in Max (Min) if we observe a
reaction of F14 (E_4), then we store the new increased (decreased) value of A in z, which
becomes the new potential next local maximum (minimum). On the other hand while
in Max (Min) if a “decreasing” (“increasing”) reaction E_4 (E44) occurs we move to
noisyDec (noisyInc) from which we can either move back to Max (Min), if we observe
a new increase (decrease) that makes the population of A overpass x (z overpass A), or
eventually entering Min (Max) as soon as the observed decrease (increase) goes beyond
the chosen § (see above). For the automaton Apeq;s depicted in Figure 4.5, the analysis of
the simulated trace ends, by entering the end location either from noisyDec or noisylInc,
as soon as N maxima (or minima, depending on whether the first observed peak was a
maximum or a minimum) have been detected. Notice that A,..ks can straightforwardly
be adapted to different ending conditions. The data variables of A,cqks are summarised
in Table 4.2.

HASL expressions associated with A,.,;;. We define different HASL expressions to
be associated with automaton Apeqps-

given level of the observed population, thus Lmin; counts the frequency of observed minimum at value 1,
Lmingy the observed minima at value 2 and so on. The number of required Lmin;, Lmax; variables, which
is potentially infinite, can be actually bounded without loss of precision to a sufficiently large value Lmin,
(resp. Lmawx,,) which must be established manually beforehand, for example by observing few previously
generated traces.
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o Zmaz = Ellast(Smazx)/np]: corresponding to the expected value of the average
height of the maximal peaks for the first NV detected maxima.

o Zmin = Ellast(Smin)/ny,]: same as Z,4, but for minima.

o ZppFmaz = E(last(Lmax)/nyr): enabling to compute the PDF of the height (along
a path) of the maximal peaks

o Zpprmin = E(last(Lmin)/n,,): enabling to compute the PDF of the height (along
a path) of the maximal peaks

Expression Zp,qz (Zmin) represents the average value of the detected d-separated maxima
(minima). This is obtained by considering the sum of all detected d-separated local maxima
(minima), which is stored in Smaz (Smin) and dividing it by the number of detected
maxima n,, (nm,). Expression Zpprmar (Zpprmin) allows to estimate the PDF of the
height of the detected d-separated local maxima (minima). This is achieved by dividing
the frequency counters of each detected maximal (minimal) peak’s height, whose values are
stored in array Lmax (Lmin), by nys (n,,), the number of detected maxima (minima).

Theorem 3. If 04 is a d-separated (with § € R™) alternating trace then it is accepted by
automaton Ajeqrs With parameters 6 and NV €IN.

Proof. See [Ballbal. O

4.2.4 Case study: circadian clock

In order to demonstrate the HASL based analysis of stochastic oscillator we introduced
through the Ape, et Apeqrs automata we considered a popular example of oscillator, the so-
called circadian clock, a biological mechanism responsible for keeping track of daily cycles
of light and darkness. Specifically the circadian clock model we considered is that proposed
by Vilar et al. [VKBLO02]: it consists of a genetic circuit responsible for the expression of
two co-related proteins schematically depicted in Figure 4.6 and formally expressed by 16
chemical reactions in Equation (4.10). Protein expression is a two steps process: in the
first phase a gene transcribes a messenger RNA (mRNA) molecule; in the second phase
the mRNA molecule is translated into the target protein. For the model of circadian clock
we consider here we denote M4, the mRNA species transcribed by gene D4, and Mp
the mRNA transcribed by gene Dgr. M4 and Mp are then translated into proteins A,
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Figure 4.6: Circadian Clock oscillator network: gene D4 expresses activator protein A
through transcription of mRNA My, while gene Dy expresses the repressor protein R
through transcription of mRNA Mg.

respectively R.
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Protein A acts as an activator for both genes by attaching to promoter region of D4
and Dp (i.e. when A is attached to a gene the mRNA transcription increases). Species D'y
and D, represent the state of gene D4, respectively Dp, when an activator molecule (A)
is attached to their promoter. Note that gene Dg acts as a repressor of D4 since when A
bounds to its promoter Dg sequesters the activator A and, as a result, the transcription
of D4 slows down. The repressing role of Dpg is further due to the fact that the expressed
protein R inactivates the activator A by binding to it and forming the complex C. Finally
the model in Figure 4.6 accounts for degradation of all species: thus the mRNAs M, and
Mp, as well as the expressed proteins A and B degrades with given rates (see Table 4.3).
Notice that protein A degrades also when attached to R (i.e. when in complex C), and, as
a consequence, C' turns into R at a rate equivalent to the degradation rate of A.
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Table 4.3: reactions’ rates for the circadian oscillator

Figure 4.7: GSPN encoding of the system (4.10) of chemical equations corresponding to
the circadian-clock.

The model of Figure 4.6 corresponds to the system of chemical equations (4.10), whose
(continuous) kinetic rates (taken from [VKBL02]) are given in Table 4.3.

Stochastic model Equations (4.10) can give rise to either a system of ODEs or to a
stochastic process. Here we focus on the discrete-stochastic semantics: Figure 4.7 shows
the GSPN encoding of equations (4.10) developed with COSMOS. The configuration of
the GSPN (i.e. the stochastic process) requires setting the initial population and the
rates of each transition (i.e. reaction). For the initial population, following [VKBLO02],
we observe that the model comprises one gene D4 and one Dpg, which can either be in
free-state (no activator A is attached to the promoter) or in activator-bound state, i.e.
D', respectively DY%. As a consequence the population of species D4 and Dp is bounded
by the following invariant constraints: Dy + D’y = 1 and Dg + D}, = 1 (in fact places
DA, DA and DR, DR’ of net in Figure 4.7 are the only places covered by P-invarriants).
The remaining species are initially supposed to be “empty”, hence they are initialised to 0.
Concerning the transition rates, for simplicity we assume a unitary volume of the system
under consideration, hence all continuous rates in Table 4.3 can be used straightforwardly
as rates of the corresponding discrete-stochastic reactions. In this case we assume all
reactions following a negative exponential law.

The oscillatory dynamics of the GSPN model of Figure 4.7 can be observed by plotting
of a simulated trajectory (Figure 4.8). Observe that the frequency of oscillations varies
considerably with the degradation rate of the repressor (R) protein: a faster degradation
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Figure 4.8: Single trajectory showing the oscillatory character of activator A and repressor
B dynamics with normal repressor’s degradation rate g =0.2 (left) and with 10X speed-up,
i.e. dp =2 (right).

of R (right), intuitively, results in a higher frequency of oscillations. In the remainder we
formally assess the oscillatory characteristics (i.e. the period and the peaks of oscillations)
of the circadian clock model by application of the previously described approach, i.e. by
analysing the stochastic process deriving from synchronisation of the circadian clock GSPN
model with the Ape, and Ajeqrs automata.

Measuring the period of the circadian clock. We performed a number of experi-
ments aimed at assessing the effect that the degradation rate of the repressor protein (dr)
has on the period of the circadian oscillator. Figure 4.9 (right) shows three plots represent-
ing the PDF of the period (obtained through the HASL formula (Ape,, PDF (Last(t)/N))
for three values of dg. With 0 = 0.2 (i.e. the original value as given in [VKBLO02]) the
PDF is centred at t = 24.9, i.e. slightly more of the standard 24 hours period expected for
a circadian clock. On the other hand speeding up the repressor degradation of 10 times
(i.e. dp = 2) yields a slightly more than halved oscillation period (i.e. PDF centred at
T = 10.8). Finally slowing down the degradation rate of a half (i.e. dg = 0.1) yields a
less than doubled oscillation period (i.e. PDF centred at 7' = 40.7). Notice that plots in
Figure 4.9 (right) also indicate that slowing down of the degradation of the repressor R
affects as well the variability of the oscillation period as witnessed by the increasing width
of the bell-shape form of the PDF plots in Figure 4.9 (right).

Figure 4.9 (left) shows plots for the period mean value (red plot) and the period
variance (blue plot) obtained through by iterative evaluation of the HASL formulae
(Aper, Ellast(ty)]), respectively, (Aper, E [last(s?p)]) in function of the degradation rate dg.
They indicate that slowing down the degradation of the repressor yields, on one hand, to a
lower the period of oscillations, and on the other, augmenting the irregularity of the periods
(i.e. augmenting the period’s variances). All plots in Figure 4.9 result from sampling of
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Figure 4.9: The PDF (left) and the mean value vs the variance (right) of the period
of oscillations of protein A of the circadian clock measured with Ay, in function of the
repressor’s degradation rate.

finite trajectories consisting of N = 100 periods, where periods have been detected using
L=1and H=1000 as partition thresholds, and target estimates have been computed with
confidence level 99 and confidence-interval width of 0.01. Furthermore the PDF plots in
Figure 4.9 (right) have been computed using a discretisation of the period support interval
[0, 50] into subintervals of width 0.1.

Measuring the peaks of oscillations of the circadian clock. We performed a num-
ber of experiments aimed at assessing the effect that the degradation rate of the repressor
protein (dr) has on the peaks of oscillation for both protein A and R. Figure 4.10 shows
plots for the mean value of the minimal and maximal peaks of oscillations for both A and
R. Results indicate that while the degradation rate dr has no effect on the oscillation
peaks of A (both maximal and minimal peaks of A are constant independently of dr), it
affects the maximal peaks (only) of R. Specifically the mean value of R’s maximal peaks
decreases with the increasing of dr (while the minimal peaks of R are constantly at 0),
notice that this is in agreement with what indicated by the single trajectories depicted
in Figure 4.8, as these show that the oscillations of both A and R consist of positive
half-period (where the population is positive) interleaved by zero half-period (where the
population is zero). Notice that Figure 4.10 contains also plot for the absolute maximum
of population of A and R measured along the sampled trajectories through trivial HASL
expressions Z = AVG(max(zx)) (where z is a variable used to record the population of the
observed species along a synchronising path). All plots in Figure 4.10 result from sampling
of finite trajectories containing of N = 100 maximal peaks and using a noise parameter
0=10%AV G(max(z)), meaning that for evaluating the mean value of maximal peaks we
discarded all critical points (i.e. the noise spikes) distanced one another less than 10%
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Figure 4.10: The mean value of the minimal and maximal peaks of proteins A and R of
the circadian clock measured with Apcqis in function of the repressor’s degradation rate.

of the absolute maximum of the observed species. Finally, again points of every plot in
Figure 4.10 have been computed with confidence level 99 and confidence-interval width of
0.01.

4.3 Tuning stochastic oscillators

The second contribution described in this chapter is that of a framework for tuning of
stochastic oscillators, that is, a framework that allows for searching the parameter space
of an oscillator model so to identify the parameter’s values that comply with a target
oscillation period. Such framework combines the partition based HASL characterisation
of noisy periodicity outlined in the first part of this chapter with the Automaton-ABC
parameter inference framework outlined in Chapter 3. As we have seen the adaptation
of the ABC parameter inference scheme to HASL relies on the existence of a notion of
distance between the paths sampled from a given instance of a model and the sought
(target) behaviour. Therefore, in this case, we need to identify a suitable distance that can
effectively drive the inference of parameters according to a desired oscillation character, in
this case the oscillation period.

Definition 4.9 (distance from target period). For o4 a noisy periodic trajectory and
t;(ObS) € R-g a target mean period duration we define the distance of o4 from t;)(Obs) W.I.t.

the first n €N period realisations as

t_p(')’L) B t—p(obs) S?p (TL)

)

dist(o 4,7, t;(Obs)) = dist(tp(n), s?p (n), t_p(ObS)) = min( o) o) ) (4.8)
P P
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where t,(n) (sfp (n)) denotes the sample mean value (the variance) computed w.r.t. the
first n periods detected along o4 (as per Definition 4.2 and Definition 4.4).

Notice that distance (4.8) establishes a form of multi-criteria selection of parameters as
both the mean value and the variance of the detected periods are constrained. For example
with a 10% tolerance (i.e. € = 0.1 in ABC terms) only the parameters 6 € O that issue a
relative error (w.r.t. the target mean period) not beyond 0.1 are selected.

4.3.1 An automaton for the distance from a target period

~ (obs)
In Figure 4.11 we introduce the automaton AZ%,« , i.e, an adaptation of the A, (Fig-

ure 4.3), suitable for assessing the distance (as per Definition 4.9) between the mean period
measured on paths of DESP oscillator My and a target period duration t;,((’bs). The au-

% 7
E,(n<N),{top:=1,na=A} high

na=
E,(0<n<1Atop=1), {n++,top:=0
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Figure 4.11: A,,: an LHA for selecting noisy periodic traces (with respect to an observed
species A) related to partition low = (—oo, L], mid = (L, H) and high = [H, +00).
tomaton AZ%;OE)S) differs from Ay, only in the autonomous arcs that leads to the accepting
location end: differently from A, those arcs are equipped with an update through which
a dedicated extra varaible, named d, is set with the value of the measured distance as per
Equation (4.8) (see Table 4.4 for the list of variables).

4.3.2 Case studies

We demonstrate the HASL-ABC for tuning stochastic oscillator through a couple of case
studies.
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name | domain update definition description
n N increment counter of detected periods
tp R>o reset duration last period
— — Tp, N+t .
tp R>o0 f@p tp,n) = Pt period mean
52 R ( 2 ot _ n—1 2 (tp—tp)? iod :
7, >0 g(st,, tp,tp,n) = =5 - 8¢, + period variance
e . :
d R>o mm(%, G)(TI:)) distance from target period

— (obs)
Table 4.4: Variables of the .A]tfer automaton.

A synthetic 3-ways oscillator

The CRN in (4.9) represents a simple model of sustained oscillator called doping 3-way
oscillator [Car09].

Ri:A+B 1% 2B Ry:B+C 2 2C R3:C+A 1% 24
Ry:Ds+C 1S Dy+A Rs:Dp+A- 2 Dg+B Rg:Do+B -2 De+C

Oscillatory trajectory of Doping3wayOscillatorModel ABC posterior
o b
. s \
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(a) Synchronisation of a path of the 3- (b) Posterior distribution for the r4 pa-
way oscillator with Aper: coloured seg- rameter obtained by application of the
ments represent the corresponding Aper automaton-ABC with Aper.

location, while n is the period counter
variable.

Figure 4.12: A sampled trajectory of the 3-way oscillatory (left) with coloured highlights
of Aper corresponding location transitions and the resulting posterior distribution (right)
obtained for r4 while keeping rg=rc=1.

It consists of 3 main species A, B and C forming a positive feedback loop (through
reactions Ry, Ra, R3) plus 3 corresponding invariant (doping) species D4, Dp, Do whose
goal is to avoid extinction of the main species (through reactions Ry, Rs5, Rg). It can be
shown that the total population is invariant and that the model yields sustained noisy
oscillation for the 3 main species, whose period and amplitude depend on the model’s
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parameters 74, rp and r¢ (as well as on the total population). Figure 4.12(a) depicts a
path sampled from (a given configuration of) model (4.9).

Experiment 1 (one-dimensional). In this experiment we considered sy =
(Ao, Bo, Co, (Da)o, (Dp)o, (Dc)o) = (333,333,333,10, 10, 10) as initial state, we fixed the
rate constants rg = r¢ = 1.0, and estimated the posterior distribution for r4 considering
a uniform (0, 10) prior and a target mean period £, = 0.01. For the automaton Ape,
the noisy-period dependent partition we considered is L = 300 and H = 360 while for
each trajectory we observed N = 4 periods. For the ABC algorithm we used N = 1000
particles and considered a 20% tolerance (e = 0.2). Figure 4.12(b) shows the resulting
automaton-ABC posterior. We observe that 1) the posterior support being included in the
prior is [0.0,4.0] C [0,10.0], i.e., we have reduced the parameter space to a subset where it
is probable to obtain trajectories with a mean period of 0.01 (relative to a 20% tolerance)
and 2) the posterior has only one mode, which is quite sensible, as having fixed rp and
rc, one would expected the mean period duration being directly linked to the kinetics of
reaction R, hence to its only parameter, the kinetic rate constant 7 4.
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Figure 4.13: Correlation plot of automaton-ABC posterior with Aper posterior for the 3D
experiment of doping 3-way oscillator.

Experiment 2 (three-dimensional). Here we performed a 3-dimensional version of
the previous experiment assuming the same Uniform prior distribution for all 3 param-
eters, that is, r4,rp,rc ~ U(0,10), however considering a different target mean period
t},(ObS) = 20. Figure 4.13 shows the correlation plot of the resulting posterior distribution
obtained by application of the automaton-ABC method with A,.,.. The one-dimensional
histogram on the diagonal of Figure 4.13 represents the marginal distribution of each pa-
rameter while the plots in the upper triangular submatrix show the histograms of the
two-dimensional marginal distribution (e.g., plot on position (1,3) refers to the marginal
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distribution p(ra, rc|t;(0bs))), whereas the lower triangular matrix show the scatter plots of
the two-dimensional marginal distributions. Based on the diagonal plots we observe that
most of the parameters that results in a period close to the target one (t;(Obs) = 20) are
within the support [0,4] x [0, 3] x [0, 4] and, furthermore the particles form a 3D parabolic
shape since the three two-dimensional projections have a parabolic shape, according to
plots in the upper triangular part of Figure 4.13. Also, one can notice that for each two-
dimensional histogram, the region near point (1,1) is a high probability one, which is
consistent with the previous one-dimensional experiment.

Repressilator

We consider a model (4.10) of a synthetic genetic network known as Repressilator which
was developed to reproduce oscillatory behaviours within a cell [EL00]. It consists of 3
proteins P, P», P3 forming a negative feedback loop, with P; repressing P»’s transcription
gene (9, P, repressing Ps’s transcription and so on.

R1:G1 5% G+ M,y
RA: M, 25 M+ Py
R7:M; 50
RI0: P, 50

R2: Gy 22 Gy + M,
R5: My, 2 My + Py
RS: My 50
RI1L: P, 50

R3:Gs 2 Gy + M
R6: Ms 25 My + Py
RO : My 50
R12:P; 50

(4.10)

Following [EL00] we assumed mass-action dynamics with a common rate constant 5 for
translations reactions (Ry, R5, Rg) and constant rate 1 for species degradation (R7 to Ri2).
Conversely transcription dynamics (R1, Rg, R3) is assumed to follow a Hill function dy-

namics given by the follow parameter definitions r; = ﬁ + ag, 7o = ﬁ + ag and
r3 = ﬁ + ag, where n is the Hill coefficient, « is related to transcription growth and

«g is the parameter related to the minimum level of transcription growth. The parameter
space is therefore 4-dimensional with 6 = («, 3,1, ag) € R%.
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Figure 4.14: Pj-projections of paths simulated with (8,n,a0) = (2,2,0) and « €

{50,200, 1000}.

Each parameter affects the resulting oscillation, e.g., Figure 4.14 shows examples of
noisy periodic paths corresponding to different values of «, with (5,n,ap) = (2,2,0).
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Figure 4.15: Correlation plot of automaton-ABC posterior with Aper posterior for the 3D
experiment of repressilator model.

Experiment 1. This is a 3-dimensional experiment in which we considered sg =
((Ml)o, (Mz)o, (Mg)o, (Pl)O, (PQ)O, (Pg)o) = (0, O, O, 5, 0, 15) as initial state, we fixed g = 0,
and estimated the posterior distribution for the remaining parameters considering the fol-
lowing prior o ~ U(50,5000), 5 ~ U(0.1,5.0), n ~ U(0.5,5.0). The target mean period was
t_p(ObS) =20, L = 50 and H = 200 the noisy-period dependent partition For the ABC algo-
rithm we used N = 1000 particles and considered a 10% tolerance (e = 0.1). Figure 4.15
shows the correlation plot of the resulting automaton-ABC posterior. We observe that
with this setting the Repressilator oscillations are most sensitive to parameter n whose
marginal posterior is much narrower than that of a and 5 (i.e. varying n induces more
instability than « and f).

Experiment 2. This is a 4-dimensional version of the previous experiment in which we
considered also a uniform prior for ag ~ 4(0.1,5.0). Figure 4.16 shows the correlation plot
of the resulting automaton-ABC posterior. We observe that adding a degree of freedom
on «q has changed the correlation between o and 5 as well as « and n whereas correlation
between 5 and n seems to have the same shape.

4.4 Perspectives

As a first contribution in this chapter (Section 4.2) we tackled the problem of using an
automata-based formalism to formally analyse stochastic oscillators. In this respect the
contribution is twofold. Firstly we have generalised Spieler’s time-automata noisy period-
icity detection, and shown that through HASL one can assess oscillation related indicators
that could not be accounted for otherwise. Secondly we have outlined an alternative
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Figure 4.16: Correlation plot of automaton-ABC posterior with Aper posterior for the 4D
experiment of repressilator model.

automata-based approach for analysing periodicity which is aimed at identifying the peaks
of stochastic oscillations leading to the characterisation of amplitude related indicators. Al-
though the proposed HASL-based framework opens up to gaining detailed insights about
the characteristics of a stochastic oscillators, it provides little help for establishing whether
the considered system oscillate sustainably or not. As shown by Spieler the existence of
sustained oscillation can be established by checking of a steady-state property on the prod-
uct Markov chain®, i.e. the ergodic-by-construction Markov chain given by the product
of the considered model and the DTA period detector. An interesting perspective would
be to investigate whether the HASL framework for oscillation analysis could be adapted
to establishing whether the oscillations are sustained. Intuitively that would entail the
integration, within the HASL model checking framework, of simulation based methods for
the verification of steady-state measures, such as perfect sampling [RP09], which indeed
is an aspect I am very much willing to investigate. Another interesting evolution of this
contribution would be to move towards a full automatisation of periodicity detection. In
fact the partition based period detection approach depend upon the (manually) chosen
constant parameters L and H that characterise the partition and therefore both the period
detection and the measured indicators (period mean value and variance) are very much

5the model oscillate sustainably if converging paths of the product process have zero probability at
steady-state
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affected by the chosen L and H values. As a consequence if one choses too “extreme”
L and H values the detection of a period may become a very unlikely (possibly a zero
probability) event, therefore, in practice, one must have an idea about the amplitude (and
location) of the high and low peaks of the oscillation, in order to correctly set the L and
H parameter of the detector automata beforehand. A partition independent detection of
the oscillation periods, intuitively, could be worked out following the peaks based period
detection approach outlined in Section 4.2.3, although the integration of partition-based
with peak-based period detection has not yet been investigated so far.

As a second contribution of this chapter (Section 4.3) we have shown how to adapt
the ABC-based parametric verification framework outlined in Chapter 3 to the problem
of tuning of stochastic oscillators, that is, to identifying the probability distribution with
which the parameters of a stochastic oscillator match a given period of the oscillations.
Such contribution currently only take into account the oscillation period as the constraining
factor driving the parameter search. An interesting perspective would be to extend this
work so that also the oscillation amplitude can be accounted for during the parameter search
process, something that intuitively could be achieved based on the amplitude related HASL
specifications outlined in Section 4.2.



Chapter 5

Data-driven predictive modeling of
periodic phenomena

As argued in the previous chapter many real life phenomena exhibit some form of period-
icity, examples of which can be found in different domains e.g., road traffic, patient arrival
to an emergency department or photovoltaic energy production. In Chapter 4 we tackled
the problem of how to automatically assess (probabilistic) periodicity related indicators of
a formally given stochastic oscillator model and also how to tune the parameters of such
a model so that it exhibits a desired periodicity. In this chapter we consider a comple-
mentary aspect, namely, the derivation of (stochastic) models based on observations of
periodic phenomena. We stress that the ability to derive models that accurately reproduce
the periodicity exhibited by data samples issued by periodic systems is vital for predictions,
planning and finally optimisation of such systems. Here we report on a contribution in the
context of optimisation of hospitals’ emergency department (ED), for which periodicity is
indeed relevant as evidenced by datasets we had access to.

Outline of the contribution. In collaboration with Andras Horvath, Roberto Ar-
inghieri and in the context of the PhD thesis work of Davide Duma (all three of them
from University of Turin) we studied the problem of deriving a stochastic model of the pa-
tient arrivals (to an ED) that is capable of correctly reproducing the statistical character
of a given arrivals dataset. To this aim we considered a real dataset relative to the activity
of the ED of an hospital of the city of Cantu in northern Italy and which contains different
data including the complete set of timestamps of the arrival of each patients over one year
(i.e. the year 2015). Based on the statistical analysis of the dataset, which evidenced the
periodic character of the arrival process, we derived different instances of Markovian mod-
els belonging to different classes (i.e. Markov renewal processes, Markov arrival processes,
hidden Markov models) and showed that only one family of model, amongst those consid-
ered, is capable of fully reproducing the periodic statistical character of the dataset. To
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further validate the derived models we developed a formal encoding in terms of stochastic
Petri nets. This allowed us to compare the performances of each arrival models, coupled
with a model of ED services, through assessment of a key performance indicator (KPI)
formally encoded and accurately assessed through HASL statistical model checking. The
obtained results evidenced that one amongst the derived arrival models faithfully match the
dataset behaviour hence it can reliably be used for analysing the performances of different
ED services.

Structure of the chapter. The chapter is organised as follows: Section 5.1 reports
on the results of statistical analysis of the ED dataset, evidencing the periodic nature
of patients arrivals. In Section 5.2 we provide a comparative analysis of how different
families of stochastic models, i.e., Markov renewal processes, Markov arrival processes and
hidden Markov model, derived from dataset are capable of adequately reproducing the
periodic nature of the observations. Finally in Chapter 5.3 we tackled the validation of
derived models. To this aim we considered a simple model of ED services (representing the
services a ED patient undergoes after triage), we combined it with each derived model as
well as a with a model reproducing exactly the dataset arrivals and by assessing relevant
performance indicators on the arrivals/service combined models we established that only
one kind of derived model is capable of adequately matching the dataset.

5.1 Statistical analysis of an emergency department dataset

The first goal of our study was to gain an understanding on relevant characteristics of
the patient’s arrival process by analysing the one year timespan dataset we had access
to. We considered two perspectives: that of the patients’ inter-arrival time and that of
the patients’ number of arrivals per time frame, which we represented through different
families of random variables given in the following definition.

Definition 5.1. For D a dataset spanning over several weeks time frame and whose entries
are equipped with timestamps relative to the occurrence of a given type of event we consider
the following families of random variables:

e X; (1=1,2,3,...): the i-th inter-arrival time, i.e., the time elapsed between the i-th
and (i+1)-th occurrence of the considered kind of event.

e Y3, Ypiand Yy, (i =1,2,3,...): the number of occurrences of the considered event
during the i-th hour (Yy,), day (Yp), respectively week (Yyy ;).

Clearly, variables of families Y3, ;, Yp; and Yy ; are less informative than those of family
X; and yet they are relevant as they allow us for easily investigate the periodic nature of
the ED’s patient arrival process. For example, the variables Y3;3424; with j = 0,1,2,...
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refer to the number of arrivals between 2am and 3am during the 1st, the 2nd, the 3rd day,
and so on.

For both families of variables we computed statistical indicators such as the sample
mean, the sample variance, the sample probability distribution and the sample autocor-
relation function, the latter aimed at investigating the periodic character of the patient
arrival process.

Arrival per hour of the day. Based on variables of the Yy ; family we esti-
mated the mean value Ey; = E[{Y3i1247 =0,1,2,...}] and the variance Vary, =
Var [{Ya,i4245]7 = 0,1,2,...}] of the number of patient arrivals during the i-th hour of
the day which are both depicted in Figure 5.1 in function of 7. The highest mean number
of patient arrivals is about 5.9 per hour and is registered between 9am and 10am whereas
the lowest number of arrivals is instead less than 1 patient per hour and takes place be-
tween bam and 6am: as expected, the time of the day has a strong impact on the number
of patient arrivals. We observe that the variance, Vary ;, has very similar values to those of
the mean F4; ;, which is compatible with a well-known characteristic of the Poisson process,
hence suggesting that the patient arrival process may be adequately modelled through a
Poisson process with time inhomogeneous intensity. To further investigate this aspect, we
compare in Figure 5.2 the probability distribution of the number of arrivals during a given
hour of the day computed over the dataset with the corresponding Poisson distribution
i.e. that with the same mean'. Plots in Figure 5.2 compare the resulting probability mass
function (pmf) for two different time intervals: 1pm-2pm which is the hour of the day
where the Poisson distribution differs most? from the actual distribution of the number
of arrivals and the interval 5am-6am is the hour where the Poisson distribution is most
similar to the experimental distribution.

To investigate the periodicity of one-hour intervals we considered the hourly autocor-

'the Poisson distribution with mean given by the Ey ; for the corresponding hour i.
2the difference is calculated as the sum of absolute differences in the pmf.
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relation function (acf) defined as:

E[(Ya,i — E[Y3]) Yaitn — E[Yai])]

ithn=1,2,3,...
Var[Yy ] Wi

RH,n =

and whose value is depicted in Figure 5.3 in function of n. The persistent periodicity of
the hourly arrivals is proved by the sustained oscillation exhibited by the autocorrelation
plot. The periodic nature of the autocorrelation plot is justified by the non-constant
hourly patient arrival intensity (as proved by the mean value plot in Figure 5.1) and
its sustained character is evidenced by the fact that autocorrelation oscillations remain
unaltered even for very large values of n.

Arrival per day of the week. To figure out whether the periodicity is present also
w.r.t. the day of the week we performed the same type of analysis but taking into
account variables Yp;. In Figure 5.4 we depict Ep; = E[{Yp,it7j[j =0,1,2,...}] and
Varp;, = Var[{Yp,y7il7=0,1,2,...}] with ¢ = 1,2,...,7 and observe that the mean
number of arrivals is essentially constant over the days of the week whereas the variance
differs to a large extent from the mean on most days of the week (which makes the daily
arrival process incompatible with a Poisson process). Furthermore the autocorrelation
calculated also w.r.t. Yp; (not shown here) exhibited only a very mild correlation between
number of arrivals of consecutive days therefore we may assert the absence of periodicity
when considering arrivals per day of the week, which indicates we will not have to account
for it when developing models aimed at reproducing the statistical character of the dataset.

Inter-arrival analysis. Finally, we considered the family of random variables X; (i =
1,2,3...) representing the patients’ inter-arrival times and computed the same statistical
indicators. The resulting mean inter-arrival time is E [X;] = 19.43 (minutes), the variance
Var [X;] = 483.18, while the shape of the probability density function computed over X;
is depicted in Figure 5.5. Figure 5.6 instead depicts the autocorrelation computed for Xj.
The damped oscillation profile exhibited by the autocorrelation is due to the fact that
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although periodicity exists between the inter-arrivals The autocorrelation present in X; is
depicted in Figure 5.6 where there is oscillation due to the fact that a period with high
arrival intensity (8am-22pm) are followed by a period with low arrival intensity (22pm-
8am). This oscillation however is less easy to interpret than that in Figure 5.3 and fades
away as n grows because for large values of n there is no deterministic connection between
the time of the day of the ith and the (i + n)th arrival.

5.2 Deriving adequate models of patient arrivals

We seek to derive adequate stochastic models capable of reproducing the statistical char-
acter of a dataset (in our case the Cantu hospital ED patients’ arrival dataset) including
the sustained periodicity of the number of arrivals per hour it exhibits. The search for an
adequate model involves selecting a suitable family of stochastic processes and, by appli-
cation of a parameter estimation approach, identifying a model instance that adequately
approximate the dataset. The choice of the target family of stochastic process depends
very much on the statistical perspective one wishes to mimic.

For example to adequately reproduce the PDF of the inter-arrival time we may con-
sider the family of Markov renewal processes (MRPs) and derive the parameters of the
corresponding continuous phase-type (CPH) distribution. Although MRPs can be used to
obtain an arbitrarily precise approximation of the inter arrival time PDF they fall short
when it comes to reproduce periodicity as they do not allow to account for existing corre-
lation in the observed inter arrival times, as is indeed the case with the considered dataset
(Figure 5.6). In this respect the family of Markov arrival processes (MAPs) constitute an
improvement as they do allow one to account for correlation between inter-arrival times
hence they allow for generating arrivals that not only match the inter-arrival PDF but that
are also correlated. However if the considered dataset exhibits correlation also w.r.t. the
number of arrivals per time-frame (as in our case), MAPs may not be a convenient option
to mimic both kind of correlation. In fact the ability of MAPs to cope with correlated
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data affects the size of the the model (i.e. the number of phases it consists of). In the
remainder we show that the size of a MAP capable of reproducing (to some extent) the
correlation between inter-arrivals times is already critical, hence if we wanted to reproduce
also the correlation between the number of arrivals per hour we would need an even larger
MAP for which, however, fitting techniques would not be applicable due to the too large
number of states. Therefore in order to obtain a model capable of matching the hourly
periodicity of the arrival process, we resort to the class of hidden Markov models (HMMs)
and we apply learning approaches to derive models’ instances from the dataset.

5.2.1 Markovian renewal process approximation

The first family of models we consider for approximating the arrival process is that of
Markov renewal process, i.e. a kind of process suitable for modelling independent and
identically distributed inter-arrival times. With a MRP the dataset inter-arrival time dis-
tribution is approximated by a degree-n phase type (PH) distribution, i.e. the distribution
of the time to absorption of a (continuous-time) Markov chain consisting of n transient
states (the phases) and one absorbing state [Neu75]. A degree-n CPH distribution is con-
veniently described by the vector a € [0, 1]" of initial probabilities of the transient states?
and the matrix @ € R™*™ consisting of the transition intensities among the transient states
and the opposite of the sum of the intensities of the outgoing transitions in the diagonal
(this allows to determine the transition intensities toward the absorbing state). Based on
basic properties of CTMCs the analytical expression of the pdf of the time to absorption
f:RT = [0,1] of a CPH is given by f(z) = ae¥®(—Q)T where T is the column vector of
1s, and, consequently, that of its i-th (i € NT) moment is given by m; = ila(—Q) 1.

Figure 5.7 illustrates a toy example of a degree-3 CPH whose initial probability vector
a and intensities matrix A are given in the left, the corresponding state-transition graph
is depicted in the middle (the probability values inside the states indicates the initial
probability of the state while real values labelling the arcs represent transition intensities
and the gray state is the absorbing one) and the corresponding PDF of the time to reach
the absorbing state is shown on the right.

Having fixed the degree n for the target CPH, our goal is to derive o and @ such
that the pdf of the associated CPH distribution is a good approximation of the patient
inter-arrivals pdf. There are two families of approaches to face this problem, i.e., those
based on the maximum likelihood method as opposed to those based on moments matching
methods. Maximum likelihood methods are computationally more hungry as they require
to consider the entirety of the parameters (the n parameters of o and the n? of Q) whereas
moments matching approaches only needs to match 2n — 1 moments [BHTO08] in order to
obtain an estimate of the target n+mn? parameters of a and @ (based on the moments every
entry of @ and @ is determined directly), hence, in this work we used moment matching
methods, as they considerably reducing the computational cost.

3we assume in this work that the initial probability of the absorbing state is 0
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Figure 5.7: A degree-3 CPH: initial probability vector «, intensities matrix @), state-graph
(middle) and corresponding time-to-absorption PDF (right).

The approaches proposed in [HT07, ACH11] construct a degree-n CPH distribution
matching 2n — 1 moments if the moments can be realized by a degree-n CPH distribution.

Figure 5.8 shows the resulting initial probability vector o and transition matrix ) for
a degree-n CPH (with n = 1,2 and 3) obtained from the Cantu hospital dataset through
the BuTools package [BUT], a software tool that implements the CPH moment matching
approach.

2n —1 .

n (moments matched) estimated a and )

1 1 o= (1)
@ = (—0.051453)
a = (0.0409229, 0.959077)

2 3 [ —0.0213213  0.0213213
@= < 0 —0.0570911 >
a = (0.0284672,0.881506, 0.0900266)

3 5 —0.699657 0 0
Q=1 0.0667986 —0.0667986 0

0 0.0260063  —0.0260063

Figure 5.8: Results of moment matching of degree-n CPH processes w.r.t. the patient’s
arrivals dataset.

From the estimated degree-n CPH (Figure 5.8) we computed (through uniformisation)
the PDF of the time-to-absorption for the 3 cases n = 1,2,3 and compared them with
the inter-arrival PDF computed over the dataset (Figure 5.9). We point out that only the
degree-3 CPH provides a good approximation of the dataset PDF, whereas the 2-phases
CPH is capable of approximating only the front of the PDF while the 1-phase CPH fails
to approximate the front too.

It is evident that, even if the inter-arrival time distribution is well approximated, a
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Figure 5.9: Front (left) and tail (right) of pdf of CPH distribution approximations of the
inter-arrival time distribution based on moment matching.

renewal process is significantly different from the data set under study because it cannot
exhibit correlation and periodicity. Nevertheless, as we will show in Section 5.3.2, the
renewal process with a proper PH distribution can give good approximation of some per-
formance indices. In the following we propose models in which there is correlation in the
inter-arrival time sequence.

5.2.2 Markovian arrival processes

To overcome the limitations of MRPs, i.e. the impossibility that they generate corre-
lated arrivals, we turned to the family of continuous time Markovian arrival processes
(MAP) [Neu79]. A MAP is a kind of process in which the emulation of events of interest
(arrivals in our case) is governed by a background CTMC, that is, a CTMC whose states
are used to model Poisson processes of given arrival intensities, and whose state-transitions
allows to switch between different Poisson processes hence to model correlations. As a
result a MAP allows for modelling of non-exponential and correlated inter-arrival times
and may be seen as the generalization of Poisson point process.

The infinitesimal generator matrix of the underlying CTMC of an n-state MAP will be
denoted by the n x n matrix D. Arrivals can be generated in two ways. First, in each state
1 of the CTMC a Poisson process with intensity \; is active and can give rise to arrivals
during a sojourn in the state. Second, when in the CTMC a transition from state ¢ to j
occurs an arrival is generated with probability p; ;. A convenient and compact notation to
describe a MAP is obtained by collecting all intensities in two matrices, D© and DM, in
such a way that D(© contains the transition intensities that do not generate an event and
DWW those that give rise to one, including the intensities of the Poisson processes in the
diagonal of D). Moreover, the diagonal entries of D(©) are set in such a way that we have
DO 4+ DM = D. Accordingly, the entries of D(® and DM are

Vi, j, i # j Dgg’) = (1 = pij ) Dy, Dg,lj) = pijDi;
vi: DY =- 3 Dij-x, D=\
Vj,j#i
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In most of the literature, the vector of steady state probabilities of the background chain,
denoted by v = (71, ..., 7n), is used as initial probability vector of the model*. In this paper
we will do the same. As an example, consider the 2-state MAP described by

D(U):(a?’ 1_7) D(l):(g ;) D:(;S 32> (5.1)

which implies that during a sojourn in state 1 no arrivals are generated while during
a sojourn in state 2 a Poisson process with intensity equal to 5 is active. Moreover, a
transition from state 1 to state 2 generates an arrival with probability 2/3 while transitions
from state 2 to 1 are always associated with an arrival. The steady state probabilities of
the background chain are v = (0.4,0.6).

The well-known Poisson process is a MAP with a single state (n = 1). The renewal
process used in Section 5.2.1 can be expressed in terms of a MAP by setting D) =
Q, DO = (—=Q)Ia. The Markov modulated Poisson process, in which a Poisson process
is active in every state of a background CTMC, is a MAP whose DY) matrix contains
non-zero entries only in its diagonal.

As for CPH distributions, two families of parameter estimation methods have been
developed in the literature: the first based on the maximum-likelihood principle ([Ryd96,
Buc03, OD09]) and the second based on matching a few statistical parameters of the arrival
process. The representation given by D(© and DM contains 2n? — n parameters (in every
row of D = D 4+ D the sum of the entries must be zero) and it is redundant as an
n-state MAP is determined by n? 4+ 2n — 1 parameters (2n — 1 moments of the inter-arrival
times and n? joint moments of consecutive inter-arrival times; see [THO7] for details).
Maximume-likelihood based methods suffers from the same drawbacks described before in
case of CPH distributions. In this paper we experiment with methods that belong to the
second family of approaches.

A 2-state MAP is determined by 3 moments of the inter-arrival times and the lag-
1 auto-correlation of the inter-arrival time sequence [BHHTO08, TH07]. Our sequence has
however such a lag-1 auto-correlation that cannot be realized with only 2 states. In [Hor13]
a method was proposed that creates a MAP with any 3 inter-arrival time moments and
lag-1 auto-correlation. This method, implemented in the BuTools package, provides the
following 6-state MAP:

—0.0293  0.0293 0 0 0 0
0 —0.1883 0 0 0 0
(0) _ 0 0 —0.0103  0.0103 0 0
D= 0 0 0 —0.0989  0.0989 0 -2)
0 0 0 0 —0.0989  0.0989
0 0 0 0 0 —0.0989

“Notice that v exists and is independent of the initial state as the background CTMC is, by definition,
ergodic.
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0. 0. 0. 0. 0. 0.
0.023 0.1288 0.0002 0.0362 0. O.
) _ 0. 0. 0. 0. 0. o
D= 0. 0. 0. 0. 0. 0. (5:3)
0. 0. 0. 0. 0. 0.
0.0037 0.0207 0.0004 0.074 0. O.

with which the steady state probability vector of the background Markov chain is v =
(0.149503, 0.153343,0.0126432, 0.22817, 0.22817, 0.22817).

As opposed to the approach used in Section 5.2.1, in the arrival process generated by
a MAP there can be correlation between subsequent inter-arrival times. In Figure 5.10 we
depict the acf in the inter-arrival time sequence generated by the above 6-state MAP and
that computed on the available dataset. As guaranteed by the applied method for n = 1
the auto-correlation is matched exactly but then it fails to follow the auto-correlation of
the data. The acf of the sequence counting the number of arrival per hour generated by
the same MAP is given instead in Figure 5.11 which is very different from the that of the
dataset. In the number of patients per day sequence the auto-correlation of the 6-state
MAP with n = 1 is 0.00469433, i.e., it is negligible, as opposed to that in the data where
it is 0.22.

As seen above, 6 states are necessary to match three moments and just the lag-1
autocorrelation of the inter-arrival times. This indicates that a MAP with large number of
states is necessary to capture the peculiar statistical features of the patient arrival process.
General purpose MAP fitting techniques are not applicable however with such large number
of states.

5.2.3 Hidden Markov processes

A Hidden Markov model (HMM) [Rab90] can be thought of as a generalisation of a DTMC
for which an external observer cannot directly see the states but only observe some output
whose probability to be emitted depends on the state. In practice an HMM is characterised
by: i) a set of states S = {s1,...,sp}; 7)) a set of possible observations O = {o1,...,0mn};
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ili) a n x n state-transition probability matrix A = {a;;} with a;; being the probability of
transitioning from state s; to s;; ) a n x m state-observation probability matrix B = {b;;}
where b;; is the probability of observing o; when the chain enters state s;; v) an initial
distribution over the set of states S denoted by a. Accordingly, an HMM is completely
determined by the triple (o, A, B).

There exist three classical problems for HMM, all of which requiring a sequence of
observations O = (01, ...0g). The first one is the evaluation problem: given an HMM by
(o, A, B) and a sequence O, calculate the probability that the HMM produces O. The
second, called decoding problem, consists of determining the most probable state sequence
given a HMM and a sequence O. The third one, the learning problem, has only O as input
and is about finding such triple (a, A, B) with which observing O is most probable.

In this paper we focus on the third type of problem and in particular we develop
and study two HMMs aimed at reproducing the statistical characteristics of the patients’
arrival dataset (described in Section 5.1). We start off with a rather coarse-grained (only
3-state) but general HMM, which reveals to be capable of reproducing only marginally
the auto-correlation characteristics of the patients arrivals data. Then we propose a HMM
with particular underlying DTMC that shows good agreement with the dataset from a
statistical point of view.

A 3 states HMM

Here we consider a 3 state HMM in which every time slot corresponds to one hour and the
possible observations are O = {0,1,...,14} interpreted as the number of patient arrivals
per hour®. This means that the sequence generated by the HMM has to be post-processed
if we need to specify the exact arrival instance for each patient. This post-processing will
consist of distributing the arrivals in uniform manner inside the hour.

There are 2 free parameters in m, 3 x 2 = 6 in A and 3 x 14 = 42 in B (because 7
must be normalized and also the rows both in A and B must be normalized). We applied
the Baum-Welch algorithm [BPSW70] to determine the optimal parameters starting from
several initial parameter sets chosen randomly. With this relatively small model, the final
optimal parameters obtained by the Baum-Welch algorithm are independent of the initial
values (apart from permutations of the states). The obtained HMM is with 7 = (0,1,0)
and

0.865 0.135 0 0.0007 0.0227 0.0807 0.1569 0.1756 0.1731
A= 0 0.835 0.165 B = 0.024 0.1103 0.2237 0.2249 0.19 0.1323
0.134 0  0.866 0.3533 0.3752 0.1989 0.0583 0.0116 0.0025
0.1652 0.0991 0.0625 0.0292 0.0177 0.009 0.0058 0.0006 0.0006
0.0544 0.0303 0.0052 0.0025 0 0  0.0004 0 0 (5.4)
0 0 0 0 0 0 0 0 0

5More than 14 patients per hour are very rare in our dataset.
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The mean number of arrivals per hour with the above HMM is 3.0862 and its variance
is 5.67669 while in the data trace the mean and the variance are 3.08676 and 5.69061,
respectively.

In Figure 5.12 (left) we depict the autocorrelation of the number of arrivals per hour.
As one can expect, the 3-state HMM is not able to reproduce the sustained oscillation
present in the data shown in Figure 5.3 (autocorrelation is negligible for n > 10) but does
much better than the 6-state MAP given in (5.2-5.3) (see Figure 5.11).

A 24 states HMM

In order to have a model that is able to exhibit oscillation in the autocorrelation function
of the number of arrivals per hour, we define a 24-state HMM in which each state cor-
responds to an hour of the day and the transition probabilities are such that the process
deterministically cycles through the 24 states. Accordingly, A is 24 x 24 and its entry in
position (i,7) is 1 in j = (i + 1) (mod 24) and it is 0 otherwise. The initial probability
vector is set to m = (1,0, ...,0). As before, the possible observations are O = {0, 1, ...,14}.

The Baum-Welch algorithm is such that parameters set to 0 initially remain 0. Conse-
quently, the algorithm does not change the matrix A and the vector m and has an effect
only on the entries of B. The number of parameters is larger, it is 24 x 14 = 336, but
thanks to the deterministic behavior of the underlying DTMC the Baum-Welch algorithm
determines the parameters in a single iteration. With the resulting HMM the mean number
of arrivals per hour is 3.08619 while the variance is 5.67465. The hourly autocorrelation is
shown in Figure 5.12 (center). This model provides very similar hourly autocorrelation to
that of the data set.

We experimented also with a 24-state HMM letting the Baum-Welch algorithm to
change any entry of the matrix A (i.e., the initial entries of A are random strictly greater
than 0 and strictly smaller than 1). This way the number of free parameters is 24 x
23 4+ 24 x 14 = 888. With this large number of parameters the Baum-Welch algorithm
performs 4798 iterations and requires about 3 minutes of computation time on a standard
portable computer. The resulting HMM has mean and variance equal to 3.08539 and
5.67468, respectively. The matrix A has a similar structure to the one before but the
probabilities of going to the next state is not 1 but a value between 0.6 and 0.99. The
resulting autocorrelation structure is depicted in 5.12 (right). With the non-deterministic
underlying Markov chain the autocorrelation cannot exhibit sustained oscillation and the
autocorrelation vanishes after about 150 hours (i.e., 6-7 days).

5.3 Empirical validation of derived models

In the previous section we analysed the adequacy of each kind of arrival model derived from
the dataset in “isolation”, that is: we used each model to generate arrivals observations
and compared relevant statistics (e.g. pmf of inter-arrivals, auto-correlations of number of
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Figure 5.12: Comparing the autocorrelation function (acf) of the dataset with that of the
3-state HMM (left), the 24-state HMM with deterministic (center) and non-deterministic
(right) underlying Markov chain.

arrivals per hour) computed on model’s generated arrivals against that computed on the
original dataset. To extend the validation of the derived models here we consider a simple
ED service model (Figure 5.14) representing the services a patient may go through during
his permanence at the ED and we “stimulate” it with arrivals generated on one hand by
each of the arrival models derived from the dataset as well as with the arrivals of the
actual dataset. We then compare meaningful service related statistics computed w.r.t. the
combined arrival /service models against that computed by stimulating the service model
with the original (arrivals) dataset.

For convenience we resort to the HASL model checking platform for the validation of
the combined arrival/service models, hence we rely on stochastic Petri net® encoding of
both the arrival and the service process. The Petri net encoding of the Markovian arrival
models derived from the dataset is pretty straightforward however the complexity of the
resulting Petri net increases with that of the considered model. For the Markov renewal, the
MAP and the 3-states HMM the resulting Petri net is pretty simple however the complex
structure of the 24-states HMM arrival model resulted in a Petri net consisting of 63 places
and 398 transitions (15 x 24 of which are immediate, 14 are timed with uniform distribution
over [0, 1] and 24 are timed deterministic with delay equal to 1).Therefore, below we outline
a formal Petri net encoding of periodic HMM models based on which we implemented an
automatic generator of the corresponding NMGSPN models in terms of an input file for the
COSMOS model checker. Similarly from the actual dataset consisting of IV arrival events
we also generate automatically its the Petri net encoding, which trivially corresponds with
a Petri net consisting of N concurrently enabled deterministically timed transition whose
deterministic delay is set to that of the corresponding arrival in the dataset.

5.3.1 Petri Net encoding of HMM arrival models

We introduce a Petri net formal encoding of an HMM that representing an arrival process
whose arrivals are supposed to occur per discrete time unit. Such encoding allows us to

Sspecifically the NMGSPN outlined in Chapter 2.1.2.
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automatically translate an arrival HMM model into a corresponding NMGSPN that can
then be composed with a Petri net model that represents the services required by arrived

entities.

Definition 5.2 (Petri net encoding of an n-states HMM). Let H = (7, A, B) be an n-state
m~observations HMM whose observations per discrete time unit are assumed to follow a
uniform distribution and where 7 is the initial state distribution vector of H, A is the
n X n state-transition probability matrix of the background chain and B is the n x m state-
observation probability matrix. We define Ny = (P,T,1,0, M) the NMGSPN encoding
of H as follows:

o« P=

{Po, P1,..., Py, 01, ...,O0,, W, Arrs} is the set of places whose elements are:

Py is the initial place used to start the model according to the initial probabilities
7T

P; (1 <i < n) corresponds with the i-th state of the background chain of H

O; (1 <1i < n) models the triggering of observations that can occur while H is
in the i-th state.

W is used to collect the observations (i.e. number of arrivals) triggered while H
is in a given state and that has to occur in the next discrete time unit

Arrs used to gather that actual observations occurred in the last discrete time
unit

o T = TI,I UuTpu TI,2 U {tdist}

Tr1 =A{to; : 1 <i < n,m > 0}, set of immediate transitions used to proba-
bilistically start the process according to m, i.e. the weight of ¢y ; is given by
(7).

Tp={tij:1<14,7<n,A;; >0} set of timed transition whose transitions are
associated with fixed delay of one time unit and where ¢; ;, if present, represents
the probabilistic transition from state ¢ to j as per the matrix A, hence ¢;; is
assigned with weight A; ;.

I7o = {tl((;) 01 <i<n,1<j<m,B;; > 0} set of immediate transitions in

which tl(oj) models the probabilistic occurence of j-th observation while in the
(0)
i,J
taist 1S a timed transition associated with a Uniform distribution over time in-
terval [0, 1] used to model the actual delay of occurrence of each observation in
the next time unit. Transition t4;4 is associated with infinite server policy.

i-th state of H as per matrix B, hence ¢, is assigned weight B; ;.
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e I:T — Bag(P) is the set of input arcs of transitions in 7'

(P} ift=tosiec{l,n}Anr(i)>0

{0}, ift =1, (i.5) € {Ln} x {Lm} A Bij >0

e O:T — Bag(P) is the set of output arcs of transitions in T

{P}+{0:} ift=to;,ie{l,n}An(i)>0
O(t) = {Pj}‘l‘{Oj}, ift:tiyj,(i,j) € {1,n} X {l,m}/\AiJ >0
G—D{W}, ift=1t (i,5) € {1,n} x {I,m} ABi; >0

7/7] ’

o My = {Py} C Bag(P) is the initial marking

tio
0.0007

taist: 0,1]

Arrs

Figure 5.13: Petri net encoding of the 3-state HMM model given in (5.4).

Example 7 (Encoding of 3-states HMM derived from ED dataset). Figure 5.13 shows
the NMGSPN encoding of the 3-state HMM given in (5.4) which we derived from the ED
dataset. It consists of 8 places and 41 transitions, 7 of which are timed the rest immediate.
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Timed deterministic transitions of T’p are depicted as filled-in gray thick rectangles, the
single timed uniform transition t4;4 is drawn as a black rectangle and labeled with its firing
interval while immediate transitions of T7; U 172 are depicted as thin black rectangles.
The label of each timed deterministic transitions as well as that of the immediate transi-
tions contains the “weight” of the transition (i.e. a positive real-value used to determine
the probability with which the transition fires when concurrently enabled with other tran-
sitions) which corresponds with entry A;;, for timed deterministic transitions ¢; ; € Tp,

with entry B; ;, for the immediate “output” transitions t( %) € Tz7o and with entry m; for
initial state transitions to; € 171, where A, B are the matrices in (5.4) and ™ = (0, 1,0).
In conformance with the initial distribution of the 3-states HMM = = (0,1,0), the
initial marking My has a single token in place P, and accordingly transition tgo weight
is set to 1. On firing of ¢y a token is placed in P, representing the activation of the
(periodic) background chain by enabling the competing timed deterministic transitions
t2,3 and to 2. Notice that the timed timed transitions ¢; ; coupled with the corresponding
tii (i € {1,...,n},j = (i + 1)mod(n)) model the competition between the occurrence of
an observation-less transition to the “next” state of the background chain and an obser-
vation filled permanence in the i-th state of the chain in the next 1-time-unit, with the
competition being solved probabilistically through the weights of ¢; ; and ¢;;. Whenever
the competition between ¢; ; and t;; is won by t;; a token is added to O; activating a

probabilistic choice between the immediate transitions t( (k € {1,...,m}) which model

0)

different possible number of arrivals to occur in the next time unit, with t( ;.0 representing 0
arrivals to be observed in the next time unit. Notice that the number of ex1st1ng immediate
transitions tgf;g activated by a token in O; depends on the number of non-null entries in
the i-th row of matrix B. For example for the 3-states HMM we know that the maximum
number of arrivals per hours is m = 14 therefore at most 15 immediate transitions t( %)

(i.e. k €{0,...14}) can be activated by a token in O;. However in the NMGSPN model

in Figure 5.13 only O is equipped with all 15 output transitions tg ,)c while for Oy we only

(0) (0)

have 11 output transitions t2 . (eg t; 1o and tz(,O1)1 are missing as the corresponding entries

(0)

of B are 0) and similarly for O3 we only have 6 transitions 5 .
Notice that the number of occurrences of arrivals to be generated in the next time unit
is modelled by setting to k the multiplicity of tl(.ok) output arc. Finally the actually occurred

arrivals are represented by the tokens collected in the sink place Arrs.

Petri net model of ED services. For the sake of simplicity we assumed the ED
patient flow consisting of a simple pipeline of 3 services: triage, visit and discharge for
each of which we considered exponentially distributed service time with the following
settings ": triage~ Exp(12), the visit~ Exp(6) and discharge~ Exzp(60) (i.e. visit
is assumed to be the slowest while discharge the fastest service). Figure 5.14 shows

"The rates have been devised form statistical analysis of the Cantii dataset.
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Figure 5.14: A simple NMGSPN model of ED services consisting of 3 pipelined services
(to be composed by overlapping of place Arrs with an NMGSPN model of the patients
arrivals).

the NMGSPN encoding of the ED service model: notice that place Arrs is shared
with the NMGSPN models of the patient arrivals (representing the composition of
the two models). To validate each arrival model we compared their performance with
that resulting by the simulation of the ED service model (Figure 5.14) with the actual
arrivals of the dataset (for this we generated an NMGSPN encoding of the dataset arrivals).

5.3.2 KPI assessment

In order to compare the performances of the different patient arrival models coupled with
the ED services we considered the following key performance indicator (KPI):

o1 = pmf of the number of patients in the ED during a periodic time-window.

We formally specified ¢1 by means of the Hybrid Automata Specification Language
(HASL) (see Chapter 2) and assessed it through the statistical model checking platform
Cosmos [BDD"11a, COS].

Figure 5.15 depicts the HASL specification for ¢;. The LHA consists of 4 states
(lo,lonlogrslena), 1 clock variable (), 2 stopwatches (tq, t,), M +1 real valued variables
x; (0 < i < M), whose final value is the probability that ¢ patients have been observed
in the ED during the periodic time windows), plus a number of auxiliary variables and
parameters.

The LHA is designed so that measuring, along a trajectory, is periodically switched
ON/OFF (parameter TP being the ON period duration) and stops as soon as the NP-

th period has occurred. In the initial state lp the occurrence of any transition is ig-

ALL, t<init T, " . .
nored (lo ALL t<init 7.0, lp) for an initial transient of duration initT" (initT being a pa-

rameter of the LHA) at the end of which the LHA moves to l,, (lo M lon)-
In [,, the LHA reacts to the occurrence of patients arrival as well as patients dis-
charge events. When a patient arrives (resp. 1is discharged) while ¢ patients are in
the ED (lon {tarr},n=iAtp<TPAtp<TPAnp<NP lon, resp. lon {discharge},n=i Anp<NP

{n+=1,2;+=tq,ta=0} {n—=1,z;+=tq,t,=0}
tients counter n is incremented (resp. decremented), the duration of the last time in-
terval on which the ED contained ¢ patients is added up to x;, and the arrival stop-
watch t, is reset. Any event different from a patient’s arrival/discharge is ignored in I,y

lon) the pa-



Chapter 5. Data-driven predictive modeling of periodic phenomena

114

tarr}, n=0A tp< TP A np< NP, }ta'rr}, n=M ANtp<TP A np< NP,
n+=1,20 += ta,t, =0} n+=1zy +=t4,t.=0} d, np=NP,

S

ALL, ¢ < initT, §

& T M
{xozizgwi,--wlm:zﬁ -

A/_L_tp:%if TP {t,=0}
. f, np< NPAtp=TPAn=0,
: {np+=1,20+=t4,1,=0}
npx NPAtp=TPAn=M
{np+=1,xp +=tq,t, =0}
ALL, tp< 24— TP,
ischarge}, n=M N tp< TP A np< NP,
n—=1xp+=ts,t,=0

#, t > indtT, ()
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|HASL expressions: Zy = AVG(last(x0)),...,Zu = AVG(last(xM))|

Figure 5.15: Automaton for measuring the pmf of the number of patients in the ED.

ALL\{tarr,discharge}

(lon lon). As soon as the ON-period expires (¢, = TP) the LHA
tp<TP Anp<NP,t,< TP,

moves from l,, to [,y where it suspends registering the duration of different number of
patients in the ED. In that respect observe that if the end of an ON-period corresponds
with 4 patients being in the ED, the variable x; (which accumulates the durations of 4
patients being in the ED) is added up with the time elapsed since the arrival of the last
#,np<NPNp=TPN=i

npt=l,z+=tq,t;=0}
ing with the end of the duration of having 7 patients in the ED. In [, the automata
ALL,tp<2{—TP,0
e N

patient (I, logr), hence the end of the ON-period is made correspond-

ignores any event (I, logr) while it switches back to l,, as soon as the

reciprocal (w.r.t. 24 hours) of the ON-period duration elapsed (I, bip2d TP, {ta=0} lon)
and in so doing the timer ¢, (which stores the duration of the occupation at i patients
since the last arrival/departure) is reset so that it can correctly be used in the freshly
started ON-period. Finally, the LHA stops monitoring as soon as NP ON-periods have
been observed along the monitored trajectory: at that moment each x; is normalised w.r.t.
the sum of all z;, hence on ending the monitoring of trajectory x; is assigned with the
probability that the ¢ patients have been observed in the ED during N P observed periods
ﬂ,np:NP,{xo:ﬁ,.,.,xM:%}

(lon = "3 leng). Observe that such an LHA can also be used
for “non-periodic” measures: it suffices to set TP =0. The HASL specification for ¢; is
completed by the list of HASL expressions AVG(last(z;)) which indicate that a confidence
interval for average of the last value that x; has at the end of an accepted trajectory is
computed by COSMOS.

Figure 5.16 depicts plots computed with the COSMOS tool and resulting from assessing
specification ¢; (i.e., the pmf of the number of patients in the ED) against the NMGSPN

models of the patient arrivals coupled with the 3-services model of the ED (Figure 5.14).
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Figure 5.16: Pmf of the num. of patients in the ED computed through 3-phases PH renewal
model, 6-state MAP, 3-state HMM and 24-state HMM versus dataset model over the whole
day (top left), during a low-arrival hour (top right) and high-arrivals hour (bottom).

Plotted results refer to a 1-year (365 days) observation window and have been computed
as 99.99% confidence interval of 102 width. The top-left plot refers to the pmf measured
without taking into account any specific time-window over the day (continuous measuring
over 24h for 365 days), while the top-right and bottom plots refer to periodic measuring
over a 1-hour period, at low arrival intensity (from 2am to 3am, top-right plot) and at high
arrival intensity (from 1lam to 12pm, bottom plot), respectively. The obtained results
witness the clear advantage of the HMM24 model over the rest: if when no specific hour
of the day is considered the pmf of the 3-phases renewal model and of the 6-states MAP
provide an acceptable approximation of the pmf computed w.r.t. to dataset (red dashed
plot) and the pmf of the HMM3 and HMM24 are essentially indistinguishable, this is no
longer the case when the pmf is computed on a specific time window as shown in the top-
right and bottom plots. Only the pmf of the HMM24 matches that of the dataset during
a low-arrivals [2am,3am]| window and a high-arrival [11am,12pm] window: the pmf of the
renewal and map models instead are essentially identical to those measured continuously
while that for the HMM3 exhibits a slight tendency towards matching the pmf of the
dataset at low-arrivals but completely fails to do so when arrivals become intense.
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5.4 Perspectives

The contribution presented in this chapter tackles the problem of deriving stochastic mod-
els capable of reproducing the periodic character of observations of a real-life phenomenon
exhibiting periodicity. Based on a specific dataset that registered observations of patients
arrivals to the emergency department of an hospital in northern Italy we derived different
instances of Markovian models which we proved able, to different extent, to generate ar-
rivals events reproducing relevant statistical indicators assessed on the dataset itself. More
specifically we showed that, amongst different families of Markov models, the class of dou-
bly stochastic processes such as, e.g. Hidden Markov models (HMMs) is worth considering
as it has the potential to accurately reproduce the periodic character of the dataset, given
it is “properly” set. In fact, generally speaking, classical hidden Markov models fail to ade-
quately capture periodic behaviours because, even if a large number of states is used, after
an initial transient phase where the process might be able to mimic the periodicity of the
observed phenomenon, as the behavior of the Markov chain, at steady state, “smooths out”
and the correlation of the probability of a given state and the elapsed time disappears. To
face this problem we forced the background Markov chain of an HMM to be periodic, i.e.,
any return to any state occurs in multiples of a given number of time steps. Such chains
are capable to act as a clock, and hence maintain the periodic pattern of the phenomenon
we aim to study, as we demonstrated for the patients arrival dataset. Although promising,
the approach outlined in this chapter is somehow limited as it only considers arrival of
discrete quantities (arrivals of patients to an ED, or cars to a traffic light), although many
real life systems are rather concerned with continuous quantities observations (e.g. energy
produced by a photovoltaic system or the amount of yogurt produced in a dairy industry).
Therefore it’d be worth to consider how to generalise the proposed approach so that it can
cope with other family of periodic phenomena. In practice that implies studying what are
the implications of considering different kind of arrival processes while sojourning in the
states of the periodic background chain of an HMM. A number of different situations seem
worth considering in this respect, including using of deterministic arrival intensity as op-
posed to random arrival intensity and also using of continuous and/or discrete phase-type
distributions to models observations of continuous or discrete observations.

In particular a number of open questions need to be tackled related to parameter
estimation algorithms for HMMs with periodic background chain, including: 1) would it be
possible to adapt/improve expectation-maximization parameter estimation approaches to
HMMs whose background chain is periodic ? (experience suggests that special background
structure, like a periodic chain, can lead to more efficient calculation for what concerns
the expectation step); 2) would it possible to adapt/improve moment fitting approaches to
HMM when phase-type distributions are used to generate observations while sojourning in
the states of the periodic background chain 7 Those research questions have been integrated
within a PhD project proposal that Andras Horvath and myself have written and for which
we are currently looking for suitable PhD candidate.



Chapter 6

Other contributions

In this chapter we provide the reader with a brief overview of other contributions not
included in this manuscript.

Compositional approaches for stochastic models. Together with Andras Horvath
from University of Turin (Italie) we worked on compositional approaches for assessing
probabilistic properties of structured Markov chain models. This entails looking at how to
exploit the compositional structure of a model in order to alleviate the memory needs of
techniques for assessing the model’s properties. In a preliminary work [BHO8] we focused
on the Boucherie product processes, a specific class of product form continuous time
Markov chains and showed that the compositional constraints that lead to the product
form result for such class, can be exploited, to a limited extent, in the model-checking
problem as well, leading to a decomposed semantics for a fragment of the Continuous
Stochastic Logic. As a follow up we looked at a more general class of structured Markov
chains those whose state-space can be partitioned in an arbitrary number of disjoint
subsets, called macro-states, where macro-states represent the concurrent execution of
independent jobs. These kind of chains typical arise from commonly used formalisms
such as stochastic Petri nets or stochastic process algebras where the stochastic activities
are modelled through phase type distributions. We showed that the computation of the
probability that this kind of process passes through a given sequence of macro-states,
i.e. the probability of a path consisting of macro-states, can be calculated in a memory
efficient manner by means of Laplace transform techniques [BH09a, BH0O9b].

Transient analysis of stochastic timed automata networks. Together with Nathalie
Bertrand of INRIA Bretagne/Atlantique (France), Enrico Vicario and Marco Paolieri
from University of Florence (Italie) and Andras Horvath from University of Turin (Italie)
we introduced a novel formalism for modelling of concurrent stochastic systems, namely
that of interacting stochastic timed automata (STA) and equipped it with an operational
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semantics that allow for transient-state analysis [BBHT13]. We introduced STA as an
extension of timed automata in which both delays and actions are chosen at random
through probability distributions. By imposing specific rules on the transition firing,
i.e. from the current state first we randomly select the next action to occur and then
we sample the sojourn time (i.e. the delay of occurrence of the selected transition)
we ensure that the underlying semantics can be described by means of the stochastic
state classes method [BPSVO05], that is, a method formerly introduced in the context of
stochastic timed Petri nets and that allows for evaluation of steady-state, transient-state
and quantitative model checking queries of stochastic processes with regeneration points.

Improved Bayesian parameter estimation. Chapter 3 reports about merging of
Bayesian parameter estimation with statistical model checking yielding a novel Approx-
imate Bayesian Computation (ABC) algorithm for parametric verification of temporal
logic specifications. That work actually originated from a previous project in which in
collaboration with Konstantinos Koutroumpas, Paul-Henry Cournede and Irene Votsi we
developed a novel variant of the ABC sequential Monte Carlo (ABC-SMC) scheme, a
popular algorithm for data-based parameter estimation of a mathematical (deterministic
or stochastic) model. Given a (set of) observation(s) y.s of a given parametric system
My the goal of ABC-SMC approaches is to estimate the parameters 6 that yields a good
approximation of the observations. ABC-SMC schemes operate iteratively by progressively
increasing the precision of the estimate and employ Kernel distributions to propagate (i.e.
“move’ around”) the parameters within the parameter space. The propagation phase of
ABC-SMC turns out to be crucial to the performance of the algorithm, and in this respect
the chosen sequence of Kernel distributions can be fundamental. In our contribution,
which has been published on the Bioinformatics journal [KBVC16], we introduced a novel
version of the ABC-SMC scheme which employs a specific family of stochastic processes,
namely the Dirichlet process mixture, as Kernel distributions to move the parameters
during the parameters space exploration. We showed that this results in a reduced
runtime (i.e. a faster convergence) of ABC-SMC scheme particularly when the posterior
distribution of the parameters to estimate is multi-modal. We validated the proposed
approach w.r.t. a complex biological network model, that of the Wnt signalling pathway.

Temporal logic based reverse-engineering of genetic regulatory networks. As
part of the PhD thesis work of Emmanuelle Gallet, which I co-supervised with Pascale Le
Gall, we developed a method for reverse-engineering of parametric, discrete-state, genetic
regulatory network (GRN) models. Generally speaking GRN models are sensed to cap-
ture the possible evolutions of a population of interdependent proteins whose expression
is regulated by activation/inhibitation of the corresponding genes. In their discrete ab-
straction a GRN is modelled by a transition system (also called a dynamics) whose states
encodes the proteins’ counts (or levels) and whose transitions represent the effect that
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concurrent regulation dependencies have on the proteins’ counts. In this respect the René
Thomas formalism constitutes an underspecified (parametric) form of GRN model, one
in which level dependent genes’ inter-dependencies are represented through an interaction
graph without specifying what is the combined effect that (potentially concurrent) regu-
lators have on the overall state of the network. Such an effect depends on the so-called
parameters of the Thomas’ GRN, which, once instantiated, allow to obtain a correspond-
ing dynamics (i.e. transition system). A relevant problem considered in the literature
is that of the identification of GRNs’ parameters instances yielding a transition system
that fulfil specific behaviours expressed by formulae of the LTL logic. Such a problem
suffers from combinatorial explosion as the number of parameters is exponential in the
number of genes (and levels) of the network. Solutions have been proposed (e.g. Bernot
et al. [BCRGO04]) that exhaustively search the parameter space and that are implemented
by the SMBionet tool [KCABO09], however they are affected by scalability issues. Within
Emmanuelle Gallet’s PhD thesis we proposed an alternative approach in which we em-
ploy symbolic execution techniques to solve a parametric LTL model checking problem, the
one resulting by considering the product of a parametric (Thomas) GRN with the Biichi
automata corresponding to an LTL formula. By so doing we avoid the costly parameter
space exhaustive search and obtain a tool that scale up remarkably better than SMBionet.
Results of this research line have lead to the following publications [GMGB14, GMGB15],
other than to realisation of a prototype software tool named SPuTNIk.

Framework for formal modelling of manufacturing systems. The design of modern
industrial production systems is strongly affected by product quality and delivery reliability
requirements: the ability to guarantee that products are issued within given time deadlines
and that they match given quality standards are essential factors. As part of a research
project in a recent collaboration with Andras Horvath (University of Turin) we developed
a probabilistic model checking framework for formal modelling and performance analysis
of so-called synchronous production lines that is, production systems consisting of a multi-
stage working line where a workpiece is progressively transformed into the end product
through a sequence of processing stages performed by dedicated pipelined workstations
(i.e. a workpiece outputted by one workstation is fed in to the next downstream station).
Workstations are assumed to be unreliable (can break down hence requiring repairing)
and are separated by finite-size buffers (where pieces are temporally stored throughout the
intermediate phases of manufacturing) which may induce the blocking of a workstation
(e.g if the downstream buffer is full). Furthermore the overall dynamics of such systems is
assumed to be strongly synchronous: the state of machines (working or broken) as well as
that of the buffers evolve synchronously according to the elapsing of discrete units of time.

It has been shown [CT12, CAH14, AHC14, CHA15, ACHG16] that this kind of produc-
tion systems are suitable to be modelled through discrete-time Markov chains (DTMCs)
and that relevant key performance indicators (KPIs), such as the lead time distribution
(i.e. the probability distribution of the time taken by the system to output one product),
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can be assessed by application of classical transient-analysis of Markov chain models. The
downside of those kind of approaches is that they are based on an explicit matrix repre-
sentation of the DTMC that represents the considered production line, hence they provide
little support from a modeller point of view. Furthermore the type of KPIs that one can
take into account with this approaches is somehow limited.

In order to tackle these limitations we introduced (two versions of) a model-checking
based framework which allows one to automatically generate a DTMC model, through an
adequate modelling formalism, for a production line of arbitrary size while, at the same
time, a number of relevant KPIs expressed in terms of some temporal logic formalism are
also generated. The generated model and KPIs can then be promptly used to run model
checking experiments relying on the model checking platform targeted by the framework
hence proving an effective means for customised performance analysis of production lines.
A first version of such framework [BH21a] is aimed at the PRISM model checking platform
and relies on the Continuous Stochastic Logic for expressing relevant KPIs. With this we
provide the user with a generator of PRISM models as well as of relevant KPIs expressed as
CSL formulae and we further take advantage of model checking to validate the generated
models through the verification of a number of sanity checks properties. Although effective
this first version of the production line modelling framework is undermined by the limited
expressiveness of the CSL property language which restrain the KPIs that one can take into
account. To overcome this issue we developed a second version of such framework [BH21b]
which targets the COSMOS model checking platform hence taking advantage of the
much more expressive HASL [BBD"15b] property language. Since COSMOS models are
expressed through a stochastic extension of the Petri nets formalism the model generator
of this version of the framework generates stochastic Petri nets encoding of production
lines of arbitrary size as well as a number of sophisticated KPIs encoded as HASL formulae.

Formal analysis of wireless network protocols. The exchange of information between
computing nodes over a wireless network is regulated through Medium Access Control
(MAC) algorithms implementing so-called carrier sense multiple access collision avoidance
(CSMA-CA) schemes. The basic idea is to employ probabilistic backoff procedures in
order to reduce collisions between concurrently transmitting nodes, therefore letting a
transmitting node hold on, for a probabilistically chosen duration, if the shared (wireless)
medium is already occupied. This backoff mechanism is at the basis of popular IEEE
wireless network standards, ranging from the basic 802.11 standard that addresses wireless
local area networks (WLAN), to its prioritised extensions in which prioritised traffic classes
are introduced to support QoS in broadband wireless network, as is the case with the
802.16 (WiMAX) standard or with the 802.11p standard for Vehicular Ad Hoc Networks
(VANETS), i.e. a relavant class of networks in the realm of Intelligent Transportation
Systems.

Performance analysis of wireless network systems based on IEEE MAC protocols at-
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tracted the attention of researchers also in the formal methods community. Inspired from a
study by Jeremy Sproston et al. [KNS02] where performance properties of the basic access
(BA) version of the 802.11 MAC were formally assessed through the PRISM model checker
over a (toy) single-hop wireless network, together with Alice Miller (University of Glas-
gow) we addressed formal performance analysis of the more complex ready-to-send/clear-
to-receive (RT'S/CTS) version of 802.11 MAC and considered the comparison against its
energy saving version, namely S-MAC i.e. a backoff collision avoidance mechanism oper-
ating on top of a sleep-awake cycle through which the nodes’ radio is periodically turned
off so to preserve the battery consumption in energy constrained wireless sensor nodes.
To account for more realistic situations we considered a larger three-hops network and
assessed how performance indicators (transmission latency) trade off against energy indi-
cators (energy consumption) for transmission of data packets over a 3-hops [BM06]. The
main limitation of such performance modeling effort is in terms of scaling as the complexity
of the underling discrete-time Markov chain model (encoded in the PRISM model checking
language) is affected by the network size yielding the necessity to generate very large, error
prone, PRISM code which also quickly lead to saturating the memory when model checking
algorithms are run on them.

In order to allow the modellers to take into account for larger networks consisting of
an arbitrary number of stations, in collaboration with Nicolas Vasselin and Benoit Barbot
(Université Paris-Est Créteil), we developed a novel modelling framework for performance
analysis of protocols of the IEEE 801.11 MAC family and specifically suitable for com-
paring the standard RTS/CTS 802.11 MAC for wireless local area networks (WLAN)
against its prioritised version used in Vehicular Ad Hoc Networks (VANETs) [BBV19].
This framework relies on statistical model checking (the COSMOS platform) hence removes
the memory limitations numerical model checking approaches suffer of, and is based on a
high-level stochastic Petri net formalisms, namely the so-called symmetric stochastic nets,
which provides for a compact representation of complex systems consisting of a multi-
tude of components copies. Based on the expressiveness of coloured Petri nets formalism
the framework’s is highly configurable as, for example, the number of stations the net-
work consists of corresponds with a color domain of the Petri net model. Therefore the
framework can account for i) an arbitrarily large number of stations, ii) different traffic con-
ditions (saturated/non-saturated), iii) different hypothesis concerning the shared channel
(ideal/non-ideal).

Another relevant class of protocols is the 802.16 WiMAX standard, which addresses
QoS needs in broadband networks by means of dedicated mechanisms, such as the Ad-
mission Control (AC), the Traffic Policer (TP) and the Traffic Shaper (T'S) with different
responsibility in the QoS management process. The AC which resides on the base-station
(BS), establishes whether to accept or reject an incoming connection request according to
the negotiated QoS parameters (maximum sustained traffic rate, minimum reserved traffic
rate, and maximum latency), the TP, which resides on subscriber-stations (SSs), drops
incoming requests that violate a pre-negotiated QoS agreements, while the TS, as opposed
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to the TP, delays (rather than dropping) incoming requests violating a pre-negotiated QoS
agreement. More specifically the role of TS is to send packets into the network according
to the QoS needed by each service class and avoiding congestion. In collaboration with
Lynda Mokdad (University Paris-Est Créteil) and Jalel Ben-Othman (University Paris
13) we analysed QoS tradeoffs between strict (deterministic) prioritised TS versus a novel
probabilistic TS policy [BBM12].

Another relevant issue related to the security of (the energy constrained) wireless
sensor networks is that of detection of denial-of-service (DoS) attacks. A DoS attack takes
place when an intruder manages to get control of a network node and inject a mischievous
behaviour for example by flooding the network with unwanted traffic leading to draining
of the nodes’ batteries hence ceasing the network functioning. Mechanisms for detection
of DoS attacks in hierarchically clustered WSNs assign a node a control responsibility of
analysing the traffic inside a cluster and to send warnings to the cluster head whenever an
abnormal behavior (e.g., high packets throughput) is detected. It is therefore paramount
to avoid control nodes (cNodes) to run out of battery leaving the network unprotected.
As part of the PhD thesis work of Quentin Monet (University Paris-Est Créteil), we
proposed new mechanisms for DoS detection. In a first work [BMM13] we proposed a
novel dynamic cNodes displacement scheme according to which cNodes are periodically
elected, at random, among ordinary nodes of each cluster in order to improve the cNode
battery lifetime hence the network’s w.r.t. the classical mechanisms whereby cNodes are
statically displaced in strategic positions within the network topology. In a follow up work
we extended that approach by proposing additional dynamic cNode election schemes in
which residual energy level is also taken into account amongst the criteria for periodically
electing a cluster’s cNode. We demonstrated the effectiveness of the newly introduced
dynamic cNode schemes through experiments run on the network simulation platform
ns-2 whose outcomes showed improvements of the load balancing in the network, while
maintaining good detection coverage, w.r.t. static cNode schemes [MMB™*17].

Jump-diffusion approximated analysis of density dependent Markov chains.
Density dependent (continuous time) Markov chains (DDMC) is a subclass of CTMC used
to model populations of interacting objects whereby the intensity of the interactions (state-
transitions) can be expressed as a function of a parameter N that represents the density
of the objects present in a given volume (e.g a cell’s volume), which makes chemical re-
action networks (i.e. systems consisting of biochemical species interacting within a cell
of given volume) a typical case of system suitable for DDMC modelling. It has been
shown that DDMCs can be approximated by less computationally hungry processes with
a “fluid” state space, i.e. either by ordinary differential equations (ODESs) or by stochastic
differential equations (SDE) [Kur76]. Differently from ODEs approximation, SDE approx-
imation of DDMC, known as diffusion approximation, preserve the stochasticity of the
original DDMC, which on the contrary is lost with ODE approximation. A limitation of
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the DDMC diffusion approximation is that it can be applied only to models where the
probability of reaching a boundary of the state space of the process is negligible, which
motivated the introduction of so-called jump diffusion approximation where essentially the
SDE used to approximate a given DDMC is enriched with a (discrete) Poisson counting
component that gives rise to jumps that mimic the behavior of the original CTMC at the
boundaries [BS17, BBH'14].

In collaboration with Marco Beccuti, Enrico Bibbona, Andrias Horvath, Roberta
Sirovich and Jeremy Sproston from University of Turin we developed a framework to esti-
mate the probability of timed properties via jump diffusion approzimation of large DDMC
models of biological pathways [BBB™17]. More specifically we demonstrated that statisti-
cal estimation of probabilistic time-bounded properties against DDMC models of chemical
reaction networks can take advantage of jump-diffusion approximations. Specifically we
showed that by replacing (costly) “exact” trajectories sampled from the DDMC through
Gillespie’s stochastic simulation algorithm (SSA) with “approximated” trajectories sampled
through jump-diffusion approximation one can obtain a remarkable speed up in estimating
the probability of time bounded measures.



Chapter 7

Conclusion and perspectives

This thesis manuscript summarised some of my contributions in the domain of formal
modelling for complex systems featuring probabilities and parameters. More specifically
Chapter 2 gave an overview of an expressive, hybrid automata based, framework for statisti-
cal model checking that targets a very generic class of stochastic processes, while Chapter 3
tackled the problem of reverse-engineering of parametric Markov chains model, by intro-
ducing a framework that allows the modeller to tune a stochastic model’s parameters so
that the model’s meets given, formally expressed, requirements. Chapter 4 then showed
the relevance of the approaches discussed in Chapter 2 and Chapter 3, by considering a
non-trivial problem, that is, the formal analysis of stochastic oscillators. Finally Chapter 5
presented a recent contribution tackling the problem of deriving stochastic models capable
of reproducing the periodic behaviour of a dataset representing an observed phenomenon.
Ongoing work and perspectives were given at the end of each chapter, I recall the main
ones here and more generally discuss directions I envision for my research in the coming
years.

Speeding up statistical model checking. Despite low space complexity SMC runtime
can be remarkably high due to the cost of sampling (large amount of) paths through
stochastic simulation algorithms. Indeed existing SMC frameworks use ezact stochastic
simulation sampling schemes, such as Gillespie’s [Gil77], through which each jump in a
path as a random duration and is obtained through a stochastic race between all enabled
events. In this manner the unfolding of a path can become extremely costly particularly
for models with a high degree of concurrency. In an attempt to reduce the simulation
runtime approximate stochastic simulation algorithms, the basic idea being to speed up
the simulation process by replacing the “exact” random long jumps of a path with discrete
jumps of arbitrary fixed duration yielding an approximated path. Such approximated
algorithms have been introduced in the system’s biology community as means to simulate
large chemical reaction networks but, at the best of my knowledge, have not been considered
in the SMC context. I have been starting looking at the problem of taking advantage of
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approximated simulation scheme within SMC, the main problem to tackle in this respect is
to figure out how to compensate or limit the inherent error that approximated paths induce
on the estimation of the satisfaction probability of a temporal logic formula. A promising
approach in this respect is the multi-level simulation algorithm [LBGY16] which based
on the thickening property of Poisson random variables, allows for cleverly generating, in
parallel, paths at different level of precision and progressively compensating the error of
approximated paths hence to obtain precise estimations at lower computational cost than
exact schemes.

Evolution of the automaton-ABC parametric verification framework. The para-
metric model checking framework presented in Chapter 3 is, in its current formulation,
limited to non-nested spatio-temporal properties. Even though this kind of properties is
that found in most case studies in the literature it would be worth to work out a generali-
sation to the full MITL spectrum, similarly to what has been done in studies that address
the robustness of MITL against real valued signals of non-probabilistic models [DM10].
This would entail to investigate the possibility to come up with a satisfiability distance
definition based on the recursive syntax of MITL formulae, and then to work out a machin-
ery for assessing distances of nested formulae against trajectories sampled from a CTMC
model, which might not be an easy task considering that in automata-based model check-
ing approaches, the characterisation of automata capable of accepting paths that satisfy
nested temporal formulae turned out not an easy task. Another relevant evolution I wish to
engage with is that of integration of the automaton-ABC framework within the COSMOS
tool. To this day only a prototype implementation (written in the Julia programming
language https://gitlab-research.centralesupelec.fr/2017bentrioum/tcs2021) of
the parametric verification framework exists, which although computationally efficient is
little user friendly (i.e. the necessary distance automata must be user as objects of some
Julia class). The integration within the COSMOS platform is highly desirable as it would
allow the user to rely on the HASL formalism all together, hence allowing one to express
models as stochastic Petri nets and to encode the distance automata directly as a LHA.

Stochastic process mining. As part of the PhD work of Pierre Cry (first year PhD
student at MICS laboratory of CentraleSupélec I am co-supervising since October 2022)
I recently got interested in the extensions of process mining to the realm of stochastic
models. Process mining algorithms are concerned with the derivation of formal models,
usually in form of a workflow Petri net, capable of matching observations stored in event
logs (collections of traces consisting of sequences of events witnessing executions of the
observed process). The quality of mined models is established by comparing the behavior
seen in the event-log with that exhibited by the model, w.r.t. different criteria including
fitness (how much of the event-log behavior is reproduced by the model) and precision
(how much of the model’s behavior is not contained in the event-log). The vast majority
of process mining frameworks aim untimed, non-probabilistic behaviour, i.e., they only
account for the temporal order of events observed in the log while completely ignoring
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timing and probability of event occurrence. The extension of process mining to stochastic
models seems little explored so far in the literature. From a theoretical point of view two
type of problems seem relevant for extending process mining to the stochastic realm. First
one have to adapt mining algorithms so that they issue stochastic models based on “timed”
event logs, something which, intuitively, seem to require a fitting phase where the stochastic
distributions to be used in the stochastic (Petri net) model are established based on the
timing information contained in the log. Secondly conformance checking of mined models
will also need to be adapted to the stochastic case, and that likely will entail adaptation of
methods for comparing stochastic languages, such as, e.g. the (Wasserstein distance) earth
movers method.

Data-driven predictive modeling of periodic phenomena. In Chapter 5 we pre-
sented preliminary results about the derivation of models that reproduce the periodicity
exhibited by observations stored in a dataset. Following a rather empirical approach we
showed that the periodicity of the data can be accurately mimicked by imposing a corre-
sponding “periodicity” in the structure of the background chain of a hidden Markov model
and more specifically that sustained periodicity can be obtained by means of a “clock”
background chain, i.e., a “deterministic” chain consisting of as many states as the number
of (discretised) intervals in which observations are grouped and whose states form a loop
through a sequence of probability 1 transitions. These preliminary findings calls for further
developments. First of all it is worth investigating whether the using of less constrained
periodic background chain (not necessarily clock chains) can still lead to reproduce the sus-
tained periodicity of the data. Also through our experiments we observed that parameter
estimation (expectation maximisation) algorithms used to fit the HMM to the dataset seem
to converge immediately, which suggests that an explicit solution for parameter estimation
might exist for this specific class of models, that is, for HMM with periodic background
chain. Furthermore the overall approach should be generalised so to address other cases,
such as, that of continuous data as opposed to discrete data (i.e. number of arrivals) we
took into account so far. In this respect it will also worth considering the use of more
generic stochastic processes in order to generate the actual observations in each state of
the background chain. So far, since we addressed discrete dataset only, we only considered
point Poisson process as the type of process to generate the observations. It’d be worth
considering Phase type distribution both discrete (in case of discrete dataset) and con-
tinuous (in case of continuous dataset). That would entail also investigating how known
expectation maximisation and moments fitting methods would cope with fitting the pa-
rameters in the case of this particular class of (periodic) structured HMM. In collaboration
with Andras Horvath (University of Turin) we have submitted a PhD project proposal to
a funding program for a co-supervising (cotutelle) PhD thesis between University of Turin
and University Paris Saclay for which we hope to get funded.

The expected outcome fo such a PhD project is twofold. From a practical point of view
we expect that an effective framework is developed for mining of models based on periodic
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dataset. Such framework should allow for (semi) automatic derivation of stochastic models
that accurately reproduce the periodic character of the dataset and should be validated
through different datasets we have access to, both from hospital emergency department
as well as from manufacturing industry domain. From a theoretical standpoint we expect
that the working out of such a framework will likely lead to novel theoretical results, such
as, for example, the introduction of novel parameter estimation procedure optimised to the
case of structured periodic stochastic models.
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