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Devant le jury, composé de:
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Simone Göttlich, Professeure, Universität Mannheim
Carolina Osorio, Professeure, HEC Montréal
Benedetto Piccoli, Professeur, Rutgers University
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Abstract

In this thesis, we focus on the modeling of traffic flow by means of hyperbolic conservation
laws and statistical approaches. The presented results belong to two different areas of math-
ematical research: the analytical and numerical study presented in the first part builds the
theoretical foundation for the second part, which is devoted to traffic model calibration, traffic
reconstruction and prediction based on data.

First of all, we study the initial boundary value problem for generalized second order models,
which consist in non-strictly hyperbolic 2 × 2 systems of conservation laws on an interval
with characteristic boundaries, modeling traffic dynamics including vacuum states on a road
stretch. After giving a detailed characterization of the admissible states at the boundary in
terms of Riemann solver and entropy conditions, we prove existence of entropy weak solu-
tions for data of bounded variation in the Riemann invariant coordinates by convergence of
wave-front tracking approximations.
For computing numerically the solutions, we extend an upwind type finite volume scheme to
second order traffic flow models. The scheme is shown to satisfy some maximum principle
properties on the density. We provide numerical tests illustrating the behavior at vacuum,
which coincides in the density component with the considered Riemann solution.

We then present different calibration approaches for parameter identification and traffic speed
reconstruction, comparing the performances of first order models, consisting in the sole mass
conservation equation, and second order ones, including a second equation accounting for
speed evolution. All the approaches use aggregate measurements of vehicles moving on a
highway, provided by magnetic loop detectors at fixed locations. In addition, they include
a bias term, modeled as a Gaussian process, in order to account for the traffic flow models
limitations.
Once the calibration parameters are obtained, our analysis distinguishes between travel time
estimation and prediction, where the former is related to already realized traffic scenarios.
For the second one, we integrate the partial differential equations of the hyperbolic system
into the Gaussian process modeling in order to predict future traffic conditions at boundary
loop detector locations and sparse time points. These serve as boundary data to simulate the
traffic conditions at a finer scale, which enables travel time prediction. Thus, our approach
combines physical and statistical knowledge, supporting the thesis that the physics provide
useful information helping to improve the prediction results.
Finally, we compare the reconstructed traffic speeds and travel times between the ground
truth and simulated data. Due to limited access to both trajectory and average loop detector
data, we perform our analysis not only on real world traffic scenarios but also on synthetic
data generated by a microscopic simulator. In general, we observe that the combination of a
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physical model and a Gaussian process delivers the most reliable results compared to other
tested methods.

Keywords: Macroscopic traffic flow models; hyperbolic systems of conservation laws; weak
boundary conditions; wave-front tracking; Godunov scheme; parameter calibration; Gaussian
process modeling; loop detector and trajectory traffic data; travel time prediction.
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Résumé

Dans cette thèse, nous nous concentrons sur la modélisation du flux de trafic au moyen des
lois de conservation hyperboliques et d’approches statistiques. Les résultats présentés ap-
partiennent à deux domaines différents de la recherche mathématique: l’étude analytique et
numérique présentée dans la première partie constitue la base théorique pour la deuxième
partie, qui est consacrée à la calibration, la reconstruction et la prédiction de modèles de
trafic basées sur des données.

Tout d’abord, nous étudions le problème aux limites pour des modèles généralisés du second
ordre, qui consistent en des systèmes de lois de conservation non strictement hyperboliques de
dimension 2×2 sur un intervalle avec des frontières caractéristiques, modélisant la dynamique
du trafic, y compris les zones de vide. Après avoir donné une caractérisation détaillée des
conditions aux limites en termes de solveur de Riemann ou d’entropie, nous prouvons par la
méthode de suivi de fronts l’existence de solutions faibles entropiques pour des données de
variation totale bornée dans les coordonnées des invariants de Riemann.
Pour calculer numériquement les solutions, nous étendons un schéma de volume fini de type
“upwind” aux modèles de flux de trafic du second ordre. Le schéma satisfait un principe du
maximum sur la densité. Nous effectuons des tests numériques illustrant le comportement
près du vide, qui coincide dans la composante de densité avec la solution de Riemann con-
sidérée.

Ensuite, nous présentons différentes approches de calibration pour l’identification des para-
mètres et la reconstruction de la vitesse du trafic, en comparant les performances des modèles
du premier ordre, consistant en la seule équation de conservation de la masse, et des modèles
du second ordre, comprenant une deuxième équation tenant compte de l’évolution de la
vitesse. Toutes les approches utilisent des mesures agrégées des véhicules circulant sur une
autoroute, fournies par des détecteurs à boucle électromagnétique placés en des lieux fixes.
De plus, elles incluent un terme de biais, modélisé par un processus gaussien, afin de pallier
les limites des modèles de flux de trafic.
Une fois les paramètres de calibration obtenus, notre analyse distingue entre l’estimation et
la prédiction des temps de trajet, où le premier cas étudie des scénarios de trafic déjà réalisés.
Pour le second, nous prenons en compte les équations aux dérivées partielles du système
hyperbolique dans le modèle du processus gaussien afin de prédire les conditions de trafic
futures au niveau des boucles aux bords de la section considérée, ainsi qu’à différents temps
fixés. Ceux-ci servent de données aux bords pour simuler l’évolution du trafic à une échelle
plus fine, ce qui nous permet de prédire les temps de trajet. Ainsi, notre approche combine
des connaissances physiques avec des statistiques, appuiant la thèse que la physique fournit
des informations utiles pour améliorer les prédictions.
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Enfin, nous comparons les vitesses de circulation et les temps de trajet reconstruits entre les
données réelles et simulées. En absence de données de trajectoire et donnée boucle sur le
même secteur d’étude, nous effectuons notre analyse non seulement sur des scénarios de trafic
réels, mais aussi sur des données synthétiques générées par un simulateur microscopique. En
général, nous constatons que la combinaison d’un modèle physique et d’un processus gaussien
produit les résultats les plus fiables par rapport aux autres méthodes testées.

Mots clés: Modèles de trafic macroscopiques; systèmes de conservation hyperboliques; con-
ditions aux limites faibles; méthode de suivi de fronts; schéma de Godunov; calibration des
paramètres; modélisation par processus gaussiens; données de détecteur de boucles électro-
magnétiques et de trajectoires; prédiction des temps de trajet.
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Introduction

Macroscopic traffic flow models, consisting of hyperbolic partial differential equations (PDEs)
and based on the mass conservation principle, are employed since several decades [PG06,
TK14] to describe vehicular traffic dynamics. Reliable and realistic traffic models are gaining
more and more importance, not only in mathematical research but also in transportation
departments, particularly in response to rising traffic flow [FSS18] and thereby induced con-
gestion. In general, a reduced congestion occurrence leads to shorter travel times and less
pollution, which in turn improves human health, the environment and economic efficiency
[WYG+22]. Compared to microscopic models, which track each vehicle individually by ordi-
nary differential equations [FHS14, Wag10], macroscopic models describe the spatio-temporal
evolution of aggregate quantities such as vehicle density, flow and mean velocity. Since they
offer the advantage of involving few parameters and being computationally less expensive,
they can be easily adapted to large road networks. In addition, their analytical properties
make them suitable for solving optimal control problems in order to provide a good route
guidance and to manage reasonably the traffic volume and congestion.

The best known macroscopic traffic flow model was proposed in the mid fifties by Lighthill-
Whitham-Richards (LWR) [LW55, Ric56]. It describes via a PDE the conservation of the
number of cars on the road as well as the spatio-temporal evolution of measured traffic
quantities. The key assumption behind the model is that the mean traffic speed v is described
by the density ρ via a function V, i.e. v = V(ρ), which is referred to as the fundamental
diagram. Moreover, the traffic flow q is linked with the other quantities by the so called
hydrodynamic flow relation q(ρ) = ρV(ρ) [DGDMF22]. Since the model consists in one scalar
equation for the traffic density, which reads as

∂tρ+ ∂x
(
ρV(ρ)

)
= 0,

it belongs to the first order models. In general, the LWR model allows to distinguish between
free flow and congested traffic regimes, but it is less suitable for describing more complex
situations, such as capacity drops and stop-and-go waves. Additionally, a single fundamental
curve is not able to capture complex dynamics observed in congested regimes, where the same
density value can correspond to several speeds. This can be explained by different driving
characteristics of road users. The problem can be addressed by considering the so called
“second order” models, whose prototype is the Payne-Whitham (PW) model [Pay71, Whi74].
However, this model can show non physical effects in the traffic context, such as negative
speeds and wave speeds faster than car velocity [Dag95]. Therefore, the Aw-Rascle-Zhang
(ARZ) model [AR00, Zha02] was developed, which corrects the drawbacks of PW model by
integrating an anticipation term describing an average driver reaction.

1



Introduction

In this thesis, we will focus on the Generic Second Order traffic flow Model (GSOM), which
was introduced in [LMHS07b] and provides a general framework for macroscopic traffic flow
modeling. In particular, it generalizes the classical LWR model and includes the widely used
ARZ system. In contrast to the first order model, the speed function depends not only on
the density but also on a Lagrangian vehicle property which is often interpreted as an empty
road velocity, i.e. the speed that would be chosen by the driver if the road was empty. Thus, a
driver dependent behavior is integrated in the model. This results in a family of fundamental
curves, which can capture better the spread of the data in the congested region.
From a mathematical point of view, the GSOM consists in the 2×2 hyperbolic system whose
conservative form reads{

∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ R, t > 0, (I)

defined on a domain Ω ⊂
{
(ρ, w) ∈ R2, ρ ≥ 0, w ≥ 0

}
, where ρ = ρ(t, x) denotes the traffic

density and w = w(t, x) the Lagrangian vehicle property. As pointed out in [WYG+22], the
first equation represents the physical law, namely the conservation of vehicles. However, the
second equation, which accounts for the dynamics in the traffic mean velocity, is less inter-
pretable and only an approximation for the traffic evolution. In analogy with gas dynamics,
it is typically referred to as the momentum equation [Fan13].
The average speed of vehicles v = V(ρ, w) is given by a function V : Ω → R≥0, which is
required to satisfy the following hypotheses [FHS14]:

V(ρ, w) ≥ 0, V(0, w) = w, (II.a)

2Vρ(ρ, w) + ρVρρ(ρ, w) < 0 for ρ ∈ ]0, R(w)[ and w > 0, (II.b)

Vw(ρ, w) > 0 for ρ ∈ ]0, R(w)[ and w > 0, (II.c)

∀w > 0 ∃ R(w) > 0 : V(R(w), w) = 0, (II.d)

where R(w) represents the density for which the street is fully congested and vehicles cannot
move. We may have R(w) = R for all w > 0, meaning that there is only one maximum
density R on the road independently of the users, which is indeed realistic. Moreover, as in
[CFGG20, FHS14], we observe that (II.b) implies that Q(ρ, w) := ρV(ρ, w) is strictly concave
and Vρ(ρ, w) < 0 for w > 0, if V is a C2 function in ρ. If we now choose V(ρ, w) = w−p(ρ) for
a suitable “pressure” function p, the system (I) corresponds to the ARZ model [AR00, Zha02].
Moreover, by taking w = constant, we recover the LWR model since only the first equation
remains.
Under the assumptions (II), it holds that the two eigenvalues of the above system (I) differ if
we assume ρ > 0. However, we want to integrate the interesting case of ρ = 0, because this so
called vacuum scenario typically induces instabilities [AR00, Section 4]. By taking vacuum
states into account, we are still in the setting of a hyperbolic system, but we loose strict hy-
perbolicity. It is therefore not possible to define uniquely the solutions of Riemann problems
involving vacuum states, even enforcing entropy conditions, as pointed out in [ADR16]. It
is also worth mentioning that one characteristic field is genuinely non-linear with coinciding
shock and rarefaction curves and the other one is linearly degenerate (but not straight). Thus,
the GSOM system belongs to the Temple class systems [Tem83].

In traffic flow applications, it is natural to consider the initial boundary value problem (IBVP)
for (I) on a bounded interval ]xin, xout[⊂ R, where the variables ρ and w are equipped with
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prescribed initial and boundary data at t = 0 and x = xin, x = xout. In the literature, two
definitions of boundary conditions for systems of conservation laws are commonly considered:
a boundary entropy inequality derived by viscosity approximation [BlRN79, Ben86] and a
Riemann boundary condition based on the Riemann solver associated to (I). Dubois and
Le Floch [DLF88] showed that the two formulations are equivalent for scalar conservation
laws, linear systems and a 2 × 2 system whose fields are both linearly degenerate. For non-
linear hyperbolic systems, Benabdallh and Serre [BS87] proved that the Riemann boundary
condition implies the entropy one, and equivalence holds in the case of 2 × 2 systems with
straight-line characteristic fields and never vanishing eigenvalues. This result was further
extended to n× n strictly hyperbolic Temple class systems with non-characteristic boundary
in [AG02, Section 8]. We just note that [PH13, Section 4] gives a characterization of the
boundary entropy set for the ARZ model with Chaplygin pressure (fully linearly degenerate).
Well-posedness results for the IBVP with both characteristic and non-characteristic boundary
for general, strictly hyperbolic systems of conservation laws were provided in [Ama97, AC97]
for data with small total variation. For strictly hyperbolic Temple class systems with data
of bounded variation (BV), no monotonicity assumption on the eigenvalues along the Lax
curves and possibly characteristic boundary, we refer to [CG04] and with L∞ data, genuinely
non-linear characteristic fields and non-characteristic boundary see [AG02].
Concerning second order traffic flow models, and in particular the ARZ model with vac-
uum (i.e. non-strictly hyperbolic), existence results for the Cauchy problem were provided
in [ADR16, GHO08], while L1 stability is provided in [BR03, GHO10] for the system in
Lagrangian coordinates. We notice that, to avoid problems at vacuum, several “phase-
transition” or “collapsed” models were introduced in the literature, see e.g. [BWG+11, Col02,
FSP+17, Goa06]. Vacuum issues can also be avoided by suitably modifying the speed function
near the vacuum, as proposed in [LMHS07a].
We remark that all these results do not apply in the present setting, since the system (I) is
non-strictly hyperbolic and the boundary conditions can be characteristic [Ama97].

Before employing traffic flow models for real world applications, they must be calibrated
and validated against real traffic data in order to reproduce the reality as good as possible
[SPP+17]. Parameter identification can be seen as an example of an inverse problem [Gra20].
In the case of GSOM, calibration is needed to determine unknown parameters appearing in
the speed function V. After the parameters are identified, the model needs to be validated,
i.e. to be tested on data sets which were not considered in the calibration procedure. A good
mathematical model should be able to both appropriately match real data and predict the
system evolution in the future [WYG+22].
Classically, the model parameters are identified by fitting the fundamental diagram, i.e.
the density-flow or density-speed mapping described by the model flux function (see e.g.
[DGK+09, Fan13, FHS14, FSP+17]). Another possibility to specify the unknown values is to
minimize some error measure of the simulation output, against either data provided by loop
detectors at fixed locations [NH03, SPN+18, Wag10] or trajectory data, where we refer to
[CB11, PHF+15, WBT+10]. Since we focus on macroscopic models, average and aggregated
data are necessary to produce the simulation output, obtained by the numerical solution of
the discretized version of the system (I). For a good approximation, [KGG17, LHSM05] con-
sider the Godunov scheme [God59], which is based on an implementation of density or flow
boundary conditions, as discussed in [BCO23]. The coarser grained data are typically mea-
sured by fixed sensors which usually count the vehicles passing by and possibly also measure
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there speed or occupancy rate.
Moreover, it turns out that the inherent simplification of the dynamics induced by the models,
their non-linearity and the data noise are all sources of challenging difficulties when dealing
with parameter identification. In particular, [TW15] emphasizes that the simulation output
can rarely fit the physical response perfectly, even if the true values of the calibration pa-
rameters are known. Therefore, it is a natural idea to improve the simulator by extending
the model in order to better match the reality. In [PS15], the authors propose to correct
the misestimate of the system state by a Bayesian learning algorithm. Specifically, they fo-
cus on quantifying the uncertainty of the road capacity, considering solely the LWR model
with a triangular fundamental diagram, where the bias correction is applied after fixing cal-
ibration parameters. Also, data information can be leveraged to improve existing models or
design new ones, as proposed by [DMCC+21, Fan13, FHS14, FSP+17, HFV18, MDdWS19].
Nevertheless, up to our knowledge, few works have been devoted to evaluate the inherent
uncertainty of both models and data and its impact on model-based predictions. Thus, we
adopt the statistical framework proposed in [HKC+04, KO01] by introducing a bias term to
better account for possible discrepancies between the mathematical models and reality. This
generic framework has been applied in a variety of fields, ranging e.g. from physics [HKC+04]
to engineering [BBK+09, HGBL20] or biology [Plu17]. See also [CBC+19] for a recent review
of the methods and [BO14] for a discussion on the model discrepancy. Following [KO01], we
model the bias by a Gaussian process (GP), which is a classical choice when dealing with
computer simulations [Gra20, RW06], since it provides a flexible nonparametric framework.
In general, GPs are completely specified by their mean and covariance, which involves some
hyper-parameter tuning. In [LLW+23], they consider a Newton method for the parameter
estimation, however in this work we will rely on a simple maximum likelihood estimation
in a 2-level nested optimization procedure. Finally, it is also worth mentioning the paper
[Plu17], whose approach forces the bias to be orthogonal to the derivative of the simulator.
This modeling trick should overcome some drawbacks which are observed in [Gra20, TW15]
probably due to a too high flexibility in the original bias modeling.

Calibrated models can be used for traffic state estimation and prediction. The former con-
sists in reconstructing traffic states for already realized traffic scenarios, whereas the second
one turns out to be more challenging because it deals with the prediction of the unknown
future. However, it is also the more interesting case since a good traffic prediction can lead
to better traffic control and management, which reduces congestion [AEG+16]. In general,
we can distinguish between model-driven and data-driven approaches.
In the first case, physical knowledge and therefore also the calibration parameters are used
to estimate and predict the traffic state [MHG21]. In order to run the simulation code in the
setting of prediction, it is also necessary to forecast boundary data, which is often a challeng-
ing task. Moreover, the purely model-driven approach is often criticized to reflect only those
dynamics in traffic situations that are explainable by the functional assumptions of the model
[SMD21]. Therefore, it is often seen as an over-simplification of the reality [BCO23].
In contrast, when considering data-driven approaches, the estimation of the traffic state is
only based on real (historical) data. This alternative is said to be capable to deal with irregu-
larities such as noisy data or individual driving behaviors [BCO23]. In [MK18], they compare
four different approaches based on machine learning for short time traffic flow prediction.
Also, less expensive regression models can be used as in [KCB00], where they estimate travel
times from detector measurements, or in [RVZ04], where they assume a linear relationship
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between future, current and historical travel times. In [IK09], they use a GP regression in
order to predict travel times along an unknown path. However, these approaches typically
need a large amount of good quality data [MHG21], which are often not available. Moreover,
they fail to predict non-recurring traffic situations such as accidents, because they cannot be
learned from empirical data [AEG+16].
Thus, a natural idea is to consider hybrid approaches for vehicular traffic determination to
overcome the drawbacks of the two previous ones [AEG+16, BCO23]. Currently, the so called
physics-informed neural networks (PINNs) are gaining more and more attention in the litera-
ture (see e.g. [RPK17, SMD21]). They consist of the combination of model- and data-driven
components. In PINNs, neural networks are trained to solve any kind of PDEs whose residual
is integrated in the training loss function. The applied machine learning components help
to learn the solution of the equations and they can be also used for identifying calibration
parameters. Analogously to our work, [SMD21] focuses on the reconstruction of vehicular
traffic dynamics as well as the fundamental diagram, which is replaced by a neural network.
However, they deal only with traffic estimation and do not consider the prediction part. An-
other way to combine data- and model-driven approaches in the macroscopic traffic context
is proposed by [BCO23], where they first run a recursive neural network, whose results are
then used to predict boundary loop detector data. However, approaches based on neural
networks usually require a large amount of data and are often difficult to tune. This moti-
vates a new form of hybrid approaches, focusing on combining the physics with GPs, as in
[CCZW22, CHOS21, LWK+22]. These methods can be also easily employed for prediction
(and not only estimation). They have in common that they use a GP in order to model
the observed data. Moreover, the physics are injected by forcing the PDE to be satisfied at
virtual, i.e. unobserved points.
We emphasize that all the above mentioned hybrid approaches are only tested for reproducing
and predicting average and aggregated data. In order to obtain travel times which are often
the main focus in real world applications, further steps have to be conducted which will be
detailed in this work.

At last, we wish to point out the difficulties of dealing with real traffic data. From an ap-
plication point of view, traffic departments and drivers are typically interested in reasonable
travel time predictions for a better traffic management. Thus, a good speed reconstruction
performance of the model is desirable. However, the traffic speed is sometimes not directly
measured by loop and other fixed detectors and it is therefore a derived quantity. For this
reason, a performance evaluation based on the speed can be challenging [WYG+22]. Addi-
tionally, the access to real travel times is mostly restricted or even not available [KCB00],
limiting the validation of the model against real data. As a replacement, the travel times can
be reconstructed by average loop detector data (see e.g. [RVZ04]), which is not always easy
to justify, especially in complex traffic scenarios involving congestion, lane changes and ramps
[TK14]. As a result, several papers test their approach by considering artificially constructed
data as in [PS15, SMD21]. There, the data are either simulated by a macroscopic model,
where some noise is typically added to create more realistic scenarios. Otherwise, data can
also be generated by a microscopic simulator as in this thesis and for example in [IK09], where
they exploit an agent-based traffic simulator developed at IBM in Tokyo.
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Contribution and structure of the thesis

In Chapter 1, we prove the existence of entropy weak solutions of the IBVP for (I) with
possibly characteristic boundaries for BV initial and boundary data on domains including
vacuum states. After introducing the Riemann solver based on [ADR16] in Section 1.1,
in Section 1.2 we describe the sets of admissible traces at the boundaries given both by
the Riemann solver and the boundary entropy inequality. Based on the available entropy
families, we can prove the equivalence of these conditions at the right boundary, while at the
left boundary the two sets differ for a subset of the vacuum states. This analysis ensures that
the wave-front tracking approximations constructed in Section 1.3.1 are approximate entropy
weak solutions in the sense of [CF99a, CF99b]. Finally, uniform BV bounds allow to pass
to the limit in the sequence of approximate solutions in Section 1.3.2, thus guaranteeing the
desired existence result. The content of this chapter is published as

[GW23] P. Goatin and A. Würth. The initial boundary value problem for second or-
der traffic flow models with vacuum: existence of entropy weak solutions. Nonlinear
Analysis, 2023.

In Chapter 2, we introduce the numerical schemes used to compute approximate solutions
of the IBVP. In addition to the classically applied Godunov scheme (see Section 2.1) includ-
ing ramp contributions, we recall in Section 2.2 the approximate Godunov method based on
Harten, Lax and van Leer [HLvL83]. Then, in Section 2.3, we extend the finite volume nu-
merical scheme proposed by Hilliges and Weidlich [HW95] to second order traffic flow models
consisting in 2×2 systems of non strictly hyperbolic conservation laws of Temple class. It can
be seen as a cheap and easy to implement scheme, which performs faster than the previous
ones while showing a similar performance. This is demonstrated in the numerical tests in
Section 2.6. Moreover, in Section 2.4 we state two possible implementations of boundary
conditions, followed by a projection algorithm in case of data outliers in Section 2.5. Parts of
this chapter are published as

[WBG23] M. Binois, P. Goatin and A. Würth. Validation of calibration strategies for
macroscopic traffic flow models on synthetic data. MT-ITS 2023 Proceedings, 2023.

[WGV23] P. Goatin, L. M. Villada and A. Würth. A cheap and easy-to-implement
upwind scheme for second order traffic flow models. HYP2023 Proceedings, 2023.

[WBGG22] M. Binois, P. Goatin, S. Göttlich and A. Würth. Data-driven uncertainty
quantification in macroscopic traffic flow models. Advances in Computational Mathe-
matics, 2022.

After introducing some notation, Chapter 3 provides an introduction to GP modeling. We
explain in Section 3.2.1 how the typically considered formulas can be exploited for a per-
formance gain and prediction improvement. Then, we give an overview of the calibration
approaches that will be applied in the last chapters. In general, we distinguish the classical
fundamental fit approach from methods involving the PDE system. We emphasize that the
presented approaches refers to off-line (and not real-time) parameter identification for traffic
state reconstruction, which is usually addressed with other data assimilation techniques such
as extensions of Kalman filter (see e.g. [WP05]) or more general particle filtering [PS15].
Parts of this chapter are published as
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[WBGG22] M. Binois, P. Goatin, S. Göttlich and A. Würth. Data-driven uncertainty
quantification in macroscopic traffic flow models. Advances in Computational Mathe-
matics, 2022.

Chapter 4 introduces the concepts of traffic estimation and prediction, focusing on prediction.
As already pointed out, real travel time data are rarely available; this problem is addressed
in Section 4.1: if trajectory data are available, an averaging procedure is performed to gen-
erate the travel times used in the validation; otherwise, methods based on aggregated data
are considered, as discussed in 4.1.2. We then present the statistical approaches used to
approximate the reference travel times. For this, we distinguish between data- and model-
driven approaches. Finally, we propose a hybrid method, which overcomes some difficulties
appearing in already existing approaches (see e.g. [CCZW22, CHOS21, LWK+22]): it is ap-
plicable to all kind of (non-)linear PDEs and the set of unknown parameters do not increase
compared to the pure GP modeling. The method is based on multi-objective optimization
(MOO), where the second objective reminds of the residual function in the PINNs approach.
However, in our case, we integrate a GP, which is computationally very efficient, especially
when dealing with large amount of data.

In Chapter 5, we describe two traffic data sets that will be considered for the validation of the
proposed calibration and prediction approaches in Chapter 6. The analysis will be performed
with purely synthetic data generated by a microscopic simulator. This enables us to have
access to reference travel times to validate our prediction approaches. Additionally, we also
consider a real world traffic data set from a highway section in Minnesota (USA). However,
in this case, trajectory data are not available, thus we can solely test our approaches for
the reconstruction of coarser grained data. We remark that this work is only applicable to
short stretches of roadways, otherwise more complex models would be necessary to capture
sufficiently the road dynamics.

Finally, we close this thesis by stating a conclusion and presenting topics for future work.
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Chapter 1

The initial boundary value problem
for second order traffic flow models
with vacuum: existence of entropy
weak solutions

In this chapter we prove the existence of entropy weak solutions of the initial boundary value
problem (IBVP) for (I) on a bounded interval ]xin, xout[⊂ R, namely{

∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ ]xin, xout[ , t > 0, (1.0.1a)

(ρ, w)(0, x) = (ρ0, w0)(x), x ∈ ]xin, xout[ , (1.0.1b)

(ρ, w)(t, xin) = (ρin, win)(t), t > 0, (1.0.1c)

(ρ, w)(t, xout) = (ρout, wout)(t), t > 0, (1.0.1d)

for initial and boundary data of bounded variation on domains including vacuum states.
This study has been detailed in [GW23]. To the best of our knowledge previous results in the
literature concerning IBVPs do not apply in the present setting, since (1.0.1a) is non-strictly
hyperbolic and the boundaries (1.0.1c) and (1.0.1d) can be characteristic [Ama97].

1.1 The Riemann solver for the GSOM model

The invariant domain of our IBVP setting (1.0.1) has the form

Ω :=
{
U = (ρ, w) ∈ R2 : ρ ∈ [0, R(wmax)], w ∈ [wmin, wmax]

}
, (1.1.1)

for some 0 < wmin ≤ wmax < +∞.

Under the above hypotheses (II), system (I) is non-strictly hyperbolic with eigenvalues

λ1(ρ, w) = V(ρ, w) + ρVρ(ρ, w), λ2(ρ, w) = V(ρ, w), (1.1.2)
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which coalesce at vacuum states, i.e. ρ = 0, leading to instabilities [AR00, Section 4]. The
corresponding eigenvectors

r1(ρ, w) =

(
−1

0

)
, r2(ρ, w) =

(
Vw(ρ, w)

−Vρ(ρ, w)

)
. (1.1.3)

Moreover, the GSOM system can be related to the Temple class [Tem83] since the first
characteristic field is genuinely non-linear (i.e. ∇⊤λ1(ρ, w) · r1(ρ, w) ̸= 0 for all (ρ, w) ∈ Ω
[Bre00]) with coinciding shock and rarefaction curves and the second one is linearly degenerate
(i.e. ∇⊤λ2(ρ, w) · r2(ρ, w) = 0 for all (ρ, w) ∈ Ω) but not straight. The associated Riemann
invariants [Daf05, Chapter 7.3] are

z1(ρ, w) = V(ρ, w), z2(ρ, w) = w .

Due to Vρ(ρ, w) < 0 and V(0, w) = w, the range of v = V(ρ, w) is given by v ∈ [0, w] for
any w ∈ [wmin, wmax]. Therefore, the inverse function ρ = R(v, w) is uniquely defined in the
invariant domain

W :=
{
W = (v, w) ∈ R2 : 0 ≤ v ≤ w,w ∈ [wmin, wmax]

}
. (1.1.4)

Following [ADR16], the vacuum set, i.e. ρ = 0, corresponds to W0 := {(v, w) ∈ W : v = w}
and the non-vacuum set is denoted Wc

0 = W \W0.
For later use in the definition of boundary conditions and in the construction of approximate
solutions, we recall in this section the definition of the Riemann solver for the GSOM model
(I) with initial conditions of the form

(ρ, w)(0, x) =

{
UL = (ρL, wL) if x < 0,

UR = (ρR, wR) if x > 0,
(1.1.5)

and their corresponding velocities denoted by vL = V(ρL, wL), vR = V(ρR, wR).
It is well known that the solution of a Riemann problem is based on the theory of elementary
waves [Lax57], such as rarefaction waves, shock waves and contact discontinuities. To define
the solution, we introduce the notion of intermediate state UM = (ρM , wM ): in general, the
left state UL is connected to UM by a first family wave (rarefaction or shock), i.e. z2(ρL, wL) =
z2(ρM , wM ), while UM is connected to the right state UR by a contact-discontinuity with
z1(ρM , wM ) = vM = V(ρM , wM ) = vR = z1(ρR, wR). Thus, the intermediate state UM is
identified by the system of equations

wM = wL,

vM = vR,

ρM = R(vR, wL).

If wL ≤ vR, we set ρM = 0, meaning that UM corresponds to the vacuum. This case is treated
separately in Definition 1 (see case 6).

Remark 1. The propagation speed σs of a shock wave between two states U− and U+ is
given by the Rankine-Hugoniot condition

σs(U−, U+) =
ρ+v+ − ρ−v−

ρ+ − ρ−
. (1.1.6)

10



1.1. The Riemann solver for the GSOM model

In this work, we will rely on the following solutions of (I), (1.1.5).

Definition 1 ([ADR16]). For any UL, UR ∈ Ω, the Riemann solver

RS : Ω× Ω → C0
(
]0,+∞[;L1

loc(R; Ω)
)
, (UL, UR) 7→ RS(UL, UR)

is defined as follows:

1. If (vL, wL), (vR, wR) ∈ Wc
0, wL = wR and vL > vR, then

RS(UL, UR)(t, x) =

{
UL if x < σs(UL, UR)t,

UR if x > σs(UL, UR)t,

with σs defined in (1.1.6).

2. If (vL, wL), (vR, wR) ∈ Wc
0, wL ̸= wR and vL > vR, then

RS(UL, UR)(t, x) =


UL if x < σs(UL, UM )t,

UM if σs(UL, UM )t < x < vRt,

UR if x > vRt,

with σs defined in (1.1.6).

3. If (vL, wL), (vR, wR) ∈ Wc
0, wL = wR and vL < vR, then

RS(UL, UR)(t, x) =


UL if x < λ1(ρL, wL)t,

Û if λ1(ρL, wL)t < x < λ1(ρR, wR)t,

UR if λ1(ρR, wR)t < x,

with Û = (ρ, wL) solving λ1(ρ, wL) =
x
t .

4. If (vL, wL), (vR, wR) ∈ Wc
0, wL ̸= wR and vL < vR < wL, then

RS(UL, UR)(t, x) =


UL if x < λ1(ρL, wL)t,

Û if λ1(ρL, wL)t < x < λ1(ρM , wM )t,

UM if λ1(ρM , wM )t < x < vRt,

UR if x > vRt,

with Û = (ρ, wL) solving λ1(ρ, wL) =
x
t .

5. If (vL, wL), (vR, wR) ∈ Wc
0 and v := vL = vR, then

RS(UL, UR)(t, x) =

{
UL if x < vt,

UR if x > vt.
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6. If (vL, wL), (vR, wR) ∈ Wc
0 and wL ≤ vR, then

RS(UL, UR)(t, x) =


UL if x < λ1(ρL, wL)t,

Û if λ1(ρL, wL)t < x < λ1(ρM , wM )t,

UM if λ1(ρM , wM )t < x < vRt,

UR if x > vRt,

with Û = (ρ, wL) solving λ1(ρ, wL) =
x
t and UM = (0, wL).

7. If (vL, wL) ∈ W0 and (vR, wR) ∈ Wc
0, then

RS(UL, UR)(t, x) =

{
UL if x < vRt,

UR if x > vRt.
(1.1.7)

8. If (vL, wL) ∈ Wc
0 and (vR, wR) ∈ W0, then

RS(UL, UR)(t, x) =


UL if x < λ1(ρL, wL)t,

Û if λ1(ρL, wL)t < x < λ1(0, wL)t,

ŨR if λ1(0, wL)t < x,

(1.1.8)

with Û = (ρ, wL) solving λ1(ρ, wL) =
x
t and ŨR = (0, wL).

9. If (vL, wL) ∈ W0 and (vR, wR) ∈ W0, then

RS(UL, UR)(t, x) ≡ UL. (1.1.9)

Remark 2. We emphasize that in case 7 of Definition 1, if ρM ̸= 0 (i.e. wL > vR) the solution
is either a juxtaposition of a shock wave and a contact discontinuity (if wL ̸= wR) or a shock
wave with UR = UM (if wL = wR). The speed of the wave connecting UL to UM is given by

σs(UL, UM ) = ρMvM−ρLvL
ρM−ρL

ρL=0
= vM = vR. Thus, the solution can be also seen as a contact

discontinuity. This justifies the definition of the Riemann solver in (1.1.7).

Remark 3. Case 8 of Definition 1 is based on [ADR16], see also [AR00, Section 3, Case
4]. The solution in the right vacuum case is obtained by a rarefaction wave independent of
vR = wR. The right state ŨR of the solution is not the original state UR anymore since
the speed v and the Lagrangian vehicle property w are set equal to wL (see Figure 1.1).
This choice is the one best matching real observations: if the road is empty downstream, for
example when a traffic light turns green, the solution is expected to be a rarefaction wave,
and not a juxtaposition of a rarefaction wave and contact discontinuity or vacuum wave as it
is proposed in [Fan13] (see Figure 1.2a and 1.2b). Nevertheless, this choice is not compatible
with Case 7: the solution to piece-wise constant initial data consisting of threes states UL, UM

and UR, with UM = (0, wM ), can be constructed by gluing together the Riemann solutions
defined in Cases 7 and 8 if and only if wM = wL. This is why, for the construction of
approximate solutions in Section 1.3.1, we will need well-prepared initial data (see Remark
13), as in [ADR16, Section 2.1]. Moreover, the choice made in Case 8 do not provide a
L1-stable Riemann solver close to the vacuum.
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1.1. The Riemann solver for the GSOM model

The solution for the case vL = vR = wR (resp. vR = wR < vL) could also consist of a contact
discontinuity (resp. shock wave and contact discontinuity) to UR (see resp. Figure 1.2c and
Figure 1.2d) instead of a rarefaction wave to the state ŨR. This would be consistent with
the structure of the solutions corresponding to UR close to the vacuum (with ρR > 0),
guaranteeing the L1 continuity of the Riemann solver. We emphasize that, as remarked
in [ADR16], the set of entropies considered later does not allow to select a unique solution
when vacuum is involved. However, the above mentioned alternative choices look unrealistic
for traffic applications.

Remark 4. Case 9 of Definition 1 is motivated by coherence with case 8. In general, from a
practical point of view, the interpretation of the speed v and the Lagrangian vehicle property
w is lost in the vacuum.

v

w
v = wwmax

UR

UL ŨR

vL vR

wL

wR

(a) vR = wR < wL

v

w
v = wwmax

UR

UL ŨR

vL vR

wL

wR

(b) wL ≤ vR = wR

Figure 1.1: Definition 1, case 8: the solution consists of a rarefaction wave from UL to ŨR.
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v

w
v = wwmax

UR

UL UM

vL vR

wL

wR

ρ

ρv

UR

UM
UL

(a) vR = wR < wL

v

w
v = wwmax

UR

UL UM

vL vR

wL

wR

ρ

ρv

UR

UL

(b) wL ≤ vR = wR

v

w
v = wwmax

UR

UL

vR

wL

wR

ρ

ρv

UR

UL

(c) vL = vR = wR

v

w
v = wwmax

UR

ULUM

vLvR

wL

wR

ρ

ρv

UR

UM
UL

(d) vR = wR < vL

Figure 1.2: Alternative solutions for the right vacuum case illustrated in (v, w)-plane (left
column) and (ρ, ρv)-plane (right column). (a) A rarefaction wave from UL to UM and a
contact discontinuity from UM to UR. (b) A rarefaction wave from UL to UM and a vacuum
wave from UM to UR. (c) A contact discontinuity from state UL to UR. (d) A shock wave
from UL to UM and a contact discontinuity from UM to UR.
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1.2. Admissible boundary sets

1.2 Admissible boundary sets

Since we are dealing with an initial boundary value problem, we describe in this section the
sets of admissible values for both the left and right boundaries of (1.0.1).
In the literature, two definitions of boundary conditions for systems of conservation laws
are commonly considered: a boundary entropy inequality derived by viscosity approxima-
tion [BlRN79, Ben86] and a Riemann boundary condition based on the Riemann solver as-
sociated to (I). In [AG02, BS87, DLF88] several results are provided in order to prove the
equivalence between those two. However, we emphasize that these results do not apply
in the present setting, since (1.0.1a) is non-strictly hyperbolic and the boundaries (1.0.1c)
and (1.0.1d) can be characteristic [Ama97] meaning that waves can be parallel to the bound-
ary, so λ1(ρ, w) = 0.

1.2.1 Riemann boundary sets

On the left boundary, only the states (ρ0, w0) reachable from a constant boundary datum
(ρB, wB) with non-positive waves in the Riemann problem (I), (1.1.5) with data

(ρ, w)(0, x) =

{
(ρB, wB) if x < xin,

(ρ0, w0) if x > xin,

are admissible. Since second family wave speeds are positive, except those with zero speed,
the remaining admissible waves are shock or rarefactions of the first family with non-positive
speed. In this case, the admissible states at the left boundary belong to the curve

w = wB. (1.2.1)

From (II.b) we know that the curve (1.2.1) is strictly concave in the (ρ, ρv)-plane. In partic-
ular, there exists a critical density ρcr(w) which maximizes the flow ρv on the curve (1.2.1),
i.e.

ρcr(w) = argmax
ρ

Q(ρ, w) = argmax
ρ

(
ρV(ρ, w)

)
for any w ∈ [wmin, wmax]. (1.2.2)

Additionally, there exists a unique density τ(ρ) ̸= ρ such that Q(τ(ρ), w) = Q(ρ, w) for each
ρ ̸= ρcr(w) and any w ∈ [wmin, wmax].

Remark 5. From a geometrical point of view, it is worth noticing that the slope of the
tangent to the curve (1.2.1) in the (ρ, ρv)-plane coincides with the first eigenvalue, indeed

Qρ(ρ, w) = V(ρ, w) + ρVρ(ρ, w) = λ1(ρ, w) for any w ∈ [wmin, wmax].

Moreover, the slope of the secant between any two points, U− and U+, in the (ρ, ρv)-plane is
given by the shock wave speed (1.1.6).

Proposition 1 describes the admissible states on the left boundary (see also [HB07, HMR06]):

Proposition 1. Let UB := (ρB, wB) ∈ Ω with ρB > 0 be the left boundary datum at x = xin.
The Riemann admissible boundary set BRie

L (ρB, wB) is composed of the following states U0 =
(ρ0, w0):

15
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• w0 = wB and

1. if ρB < ρcr(wB): U0 = UB or ρ0 ≥ τ(ρB) (see Figure 1.3a);

2. if ρB ≥ ρcr(wB): ρ0 ≥ ρcr(wB) (see Figure 1.3b);

• the set of points {U0 = (R(w0), w0) : w0 ∈ [wmin, wmax]}, which can be reached from UB

with a negative 1-shock to (R(wB), wB), followed by a contact discontinuity with zero
speed.

In the vacuum case ρB = 0 and vB = V(0, wB) = wB, then the admissible states are U0 =
UB and {U0 = (R(w0), w0) : w0 ∈ [wmin, wmax]} (contact discontinuity with zero speed) (see
Figure 1.3c).

ρ

ρv

0

UB

BRie
L (ρB , wB)

R(wmin) R(wmax)ρB(ρcr(wB)τ(ρB)

w = wB

(a) 0 < ρB < ρcr(wB)

ρ

ρv

0

UB

BRie
L (ρB , wB)

R(wmin) R(wmax)R(wmin) ρB(ρcr(wB)

w = wB

(b) ρB ≥ ρcr(wB)

0
ρ

ρv

UB

R(wmin) R(wmax)

BRie
L (ρB , wB)

w = wB

(c) ρB = 0

Figure 1.3: Riemann admissible boundary sets BRie
L (ρB, wB) at the left boundary.

Concerning the right boundary, first and second family curves with non-negative wave speeds
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are admissible when solving the Riemann problem (I), (1.1.5) with data

(ρ, w)(0, x) =

{
(ρ0, w0) if x < xout,

(ρB, wB) if x > xout .

The admissible set will thus be 2-dimensional.

Proposition 2. Let UB := (ρB, wB) ∈ Ω with ρB > 0 be the right boundary datum at
x = xout. Then, the Riemann admissible boundary set BRie

R (ρB, wB) is composed of the states
U0 = (ρ0, w0) such that (see Figure 1.4a):

• z1(ρ0, w0) = vB;

• V(ρcr(w0), w0) ≤ vB and ρ0 ≤ ρcr(w0);

• V(ρcr(w0), w0) > vB and ρ0 ≤ τ(R(vB, w0)).

In the vacuum case ρB = 0 and vB = V(0, wB) = wB, then U0 is admissible if and only if
ρ0 ≤ ρcr(w0) (rarefaction wave with non-negative speed, see Figure 1.4b).

Remark 6. We emphasize that in Proposition 2 we do not need to distinguish between two
different cases for the vacuum case ρB = 0 (in contrast to ρB > 0), due to the definition of
the Riemann solver (case 8 in Definition 1): the solution is always a rarefaction wave.

Remark 7. In the case ρB > 0, any state on the curve {z1(ρ, w) = vB} is admissible since
we can connect it to ρB by a contact discontinuity (see case 5 in Definition 1).

Remark 8. We note that the right Riemann boundary set BRie
R (ρB, wB) is independent

of the variable wB, i.e. BRie
R (ρB, wB) = BRie

R

(
R(vB, w), w

)
for all w ∈ [wmin, wmax], with

vB = V(ρB, wB). This holds for all (ρB, wB) ∈ Ω.

1.2.2 Entropy boundary sets

Defining u = (ρ, ρw)⊤ ∈ Ω̃ with Ω̃ =
{
(ρ, ρw) ∈ R2 : ρ ∈ [0, R(wmax)], w ∈ [wmin, wmax]

}
and

f(u) = (ρv, ρwv)⊤, system (I) can be written more compactly as

∂tu+ ∂xf(u) = 0, x ∈ R, t > 0 . (1.2.3)

The definition of admissible values at the boundary is based on the notion of boundary entropy
inequality [BlRN79, DLF88]:

Definition 2. For each boundary state uB = (ρB, ρBwB) ∈ Ω̃, the set of entropy admissible
values at the left (resp. right) boundary, denoted by BEnt

L (ρB, wB) (resp. BEnt
R (ρB, wB)), is

defined as all the states u = (ρ, ρw) ∈ Ω̃ satisfying

β(u, uB) = Q(u)−Q(uB)−∇E(uB) · {f(u)− f(uB)} ≤ (≥) 0, (1.2.4)

for each entropy-flux pair (E ,Q).
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ρ

ρv

0

UB

w = wmax

(a) ρB > 0

ρ

ρv

0

w = wmax

UB

(b) ρB = 0

Figure 1.4: Riemann admissible boundary sets BRie
R (ρB, wB) at the right boundary for

Q(ρ, w) = ρ(w − ρ).
(a) The green (resp. orange) region refers to case V(ρcr(w0), w0) ≤ vB (resp. V(ρcr(w0), w0) >
vB) in Proposition 2. The blue line represents the admissible points on the curve {z1(ρ, w) =
vB}.
(b) The admissible region for the vacuum boundary datum is indicated in blue.

Following [Daf05, Section 7.4], we seek for entropy-flux pairs (Ej ,Qj), j ∈ {1, 2}, which are
functions of the Riemann invariants W = (v, w), then setting u = u(W ). In particular, we
consider the family of entropy-flux pairs derived in [ADR16, Equation 2.13]:

E1(u(W )) =

0 if v ≤ v̄,

1− R(v,w)
R(v̄,w) if v > v̄,

(1.2.5a)

Q1(u(W )) =

0 if v ≤ v̄,

v̄ − vR(v,w)
R(v̄,w) if v > v̄,

(1.2.5b)

for any v̄ ∈ [0, wmax].

Additionally, we consider the pairs identified by the left eigenvector l2(u(W )) =
(
w −1

)
(see [Ser96, Chapter 13]):

E2(u(W )) = |l2(u(W̄ )) ·
(
u(W )− u(W̄ )

)
| = R(v, w)|w̄ − w|, (1.2.6a)

Q2(u(W )) = l2(u(W̄ )) ·
(
f(u(W ))− f(u(W̄ ))

)
sgn

(
l2(u(W̄ )) ·

(
u(W )− u(W̄ )

))
= vR(v, w)|w̄ − w|, (1.2.6b)

for any w̄ ∈ [wmin, wmax].
For notational simplicity, throughout this section we will drop the u-variable dependency and
we write Ej(W ) = Ej(v, w) (resp. Qj(W ) = Qj(v, w)) instead of Ej(u(W )) (resp. Qj(u(W )))

and f(W ) = f(v, w) =

(
R(v, w)v

R(v, w)wv

)
instead of f(u(W )) when possible. Thus, the entropy

boundary condition (1.2.4) expressed in Riemann invariants reads
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βj(W,WB) := Qj(W )−Qj(WB)−∇uEj(WB) · (f(W )− f(WB)) ≤ (≥)0 , (1.2.7)

for j ∈ {1, 2}, where

∇uEj(W ) = ∇uEj(v, w) =

(
∂v
∂ρE

j
v(v, w) +

∂w
∂ρ E

j
w(v, w)

∂v
∂yE

j
v(v, w) +

∂w
∂y E

j
w(v, w)

)
,

with y = ρw and

∂v

∂ρ
(v, w) =

∂V(ρ, yρ)
∂ρ

= Vρ(ρ,
y

ρ
)− y

ρ2
Vw(ρ,

y

ρ
) = Vρ(R(v, w), w)− w

R(v, w)
Vw(R(v, w), w) ,

∂v

∂y
(v, w) =

∂V(ρ, yρ)
∂y

=
1

ρ
Vw(ρ,

y

ρ
) =

1

R(v, w)
Vw(R(v, w), w) ,

∂w

∂ρ
(v, w) = − y

ρ2
= − w

R(v, w)
,

∂w

∂y
(v, w) =

1

ρ
=

1

R(v, w)
.

In the case v ̸= v̄, the partial derivatives of E1 are given by

E1
v (v, w) =

0 if v < v̄,

−Rv(v,w)
R(v̄,w) if v > v̄,

E1
w(v, w) =

0 if v < v̄,

−Rw(v,w)R(v̄,w)−R(v,w)Rw(v̄,w)
R(v̄,w)2

if v > v̄.

If v = v̄, the sub-differential of E1 reads as

E1
v (v, w) =

{
α : α ∈

[
0,−Rv(v, w)

R(v, w)

]}
,

E1
w(v, w) = 0.

By (1.2.6a), the gradient of E2 can be computed directly by

∇E2
u(W ) =

{
l2(u(W̄ )) sgn

(
l2(u(W̄ )) · (u(WB)− u(W̄ ))

)
if u(WB) ̸= u(W̄ ),

{γl2(u(W̄ )); γ ∈ [−1, 1]} if u(WB) = u(W̄ ).

Remark 9. Deriving V(R(v, w), w) = v with respect to v, we get

Vρ(R(v, w), w)Rv(v, w) = 1 and thus Rv(v, w) =
1

Vρ(R(v, w), w)
.

Moreover, deriving V(R(v, w), w) = v with respect to w, we obtain

Vρ(R(v, w), w)Rw(v, w) + Vw(R(v, w), w) = 0 and thus Rw(v, w) = −Vw(R(v, w), w)

Vρ(R(v, w), w)
.
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Using the above identities, we can prove that (1.2.5) and (1.2.6) satisfy

Qj
v = λ1(v, w)Ej

v(v, w), Qj
w = λ2(v, w)Ej

w(v, w),

with λ1(v, w) = v +R(v, w)Vρ(R(v, w), w) and λ2(v, w) = v, and are therefore entropy-flux
pairs, see [Daf05, Equation (7.4.12)].

Finally, for j = 1 we obtain

β1(W,WB) =



ρv
(

1
R(v̄,wB) −

1
R(v̄,w) +

1
R(v̄,wB)2

Vw(R(v̄,wB),wB)
Vρ(R(v̄,wB),wB) (w − wB)

)
if v > v̄,

−v̄ + ρv
(

1
R(v̄,wB) +

1
R(v̄,wB)2

Vw(R(v̄,wB),wB)
Vρ(R(v̄,wB),wB) (w − wB)

)
if v ≤ v̄,

if vB > v̄,

{
v̄ − ρv 1

R(v̄,w) if v > v̄,

0 if v ≤ v̄,
if vB < v̄,

(1.2.8a)
if v̄ ̸= vB and

β1(W,WB) =



ρv
(

1
ρB

− 1
R(vB ,w) +

1
ρ2
B

Vw(ρB ,wB)
Vρ(ρB ,wB) (w − wB)

)
if v > vB ,

−vB + ρv
(

1
ρB

+ 1
ρ2
B

Vw(ρB ,wB)
Vρ(ρB ,wB) (w − wB)

)
if v ≤ vB ,

if α = −Rv(vB , wB)

R(vB , wB)
,

{
vB − ρv 1

R(vB ,w) if v > vB ,

0 if v ≤ vB ,
if α = 0,

(1.2.8b)

if v̄ = vB .

For j = 2, it holds

β2(W,WB) = ρv(w − w̄)
(
sgn

(
R(vB, wB)(w̄ − wB)

)
− sgn

(
ρ(w̄ − w)

))
, (1.2.9a)

if u(W̄ ) ̸= u(WB) and

β2(W,WB) =



{
0 if w > wB,

2ρv(wB − w) if w ≤ wB,
if γ = −1,

{
2ρv(w − wB) if w > wB,

0 if w ≤ wB,
if γ = 1,

(1.2.9b)

if u(W̄ ) = u(WB).

We now verify that the Riemann boundary condition implies the entropy one, as already
proven in [BS87, Theorem 1].

Proposition 3. The admissible states defined by the Riemann solver satisfy the entropy
boundary condition, i.e. BRie

i (ρB, wB) ⊆ BEnt
i (ρB, wB) for i ∈ {L,R}.

Proof. We start considering BRie
L (ρB, wB), which is described by Proposition 1.

Let us assume first that ρB > 0 and wB = w, which implies β2(W,WB) = 0. For j = 1, it
suffices to consider the case v̄ ∈ [min{v, vB},max{v, vB}], since otherwise β1(W,WB) = 0.
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• If ρB < ρcr(wB), it holds (ρ, w) = (ρB, wB) or ρ ≥ τ(ρB). Therefore, we have v ≤ v̄ ≤
vB, ρB ≤ R(v̄, wB) ≤ ρ and R(v̄, wB)v̄ ≥ ρv (see Figure 1.3a). Thus,

β1(W,WB) = −v̄ +
ρv

R(v̄, wB)
≤ 0.

• If ρB ≥ ρcr(wB), it holds ρ ≥ ρcr(wB). Thus, we either have v ≤ v̄ ≤ vB with
R(v̄, wB)v̄ ≥ ρv and again β1(W,WB) ≤ 0 or vB ≤ v̄ < v, ρ < R(v̄, wB) ≤ ρB and
R(v̄, wB)v̄ < ρv (see Figure 1.3b), leading to

β1(W,WB) = v̄ − ρv

R(v̄, wB)
< 0.

Finally, we consider the set of points{
(R(w), w) : w ∈ [wmin, wmax]

}
.

Since v = 0, it holds β2(W,WB) = 0. Concerning β1(W,WB), the only possible cases are
0 = v ≤ v̄ ≤ vB and 0 = v ≤ vB < v̄. In any case, we obtain β1(W,WB) ≤ 0.
Let us now consider the vacuum case, i.e. ρB = 0 (see Figure 1.3c). Since v = V(R(w), w) = 0,
we get β2(W,WB) = 0.
If v̄ ̸= vB, it holds that Q1(W ) = 0,

Q1(WB) =

{
0 if vB ≤ v̄,

v̄ if vB > v̄,

and f(W ) = f(WB) = 0, implying β1(W,WB) = −Q1(WB) ≤ 0.
If v̄ = vB, it holds Q1(W ) = Q1(WB) = 0 and

β1(W,WB) = −α

(
∂v
∂ρ(WB)
∂v
∂y (WB)

)
· {f(W )︸ ︷︷ ︸

(0,0)⊤

−f(WB)}

= α

(
∂v
∂ρ(WB)
∂v
∂y (WB)

)
· f(WB)

= − 1

Vρ(ρB, wB)ρB
Vρ(ρB, wB)ρBvB = −vB ≤ 0 .

If instead ρ = 0, implying again β2(W,WB) = 0, we know from the Riemann solver (Defini-
tion 1, case 9) that (ρ, w) = (0, w) = (0, wB) = (ρB, wB) which directly leads to β1(W,WB) =
0.
This shows that BRie

L (ρB, wB) ⊆ BEnt
L (ρB, wB).

We now consider the right boundary case, i.e. i = R (see Proposition 2). We recall that
BRie
R (ρB, wB) = BRie

R (R(vB, w), w) for all w ∈ [wmin, wmax], with vB = V(ρB, wB) (see Re-
mark 8). Therefore we can assume w = wB, leading to β2(W,WB) = 0 due to w = wB or
ρ = 0.
We first look at the case ρB > 0. As for the left boundary, it suffices to treat the cases
v̄ ∈ [min{v, vB},max{v, vB}], otherwise we directly obtain β1(W,WB) = 0.
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• If V(ρcr(w), w) ≤ vB and ρ ≤ ρcr(w), we either have vB ≤ v̄ < v with R(v̄, wB)v̄ > ρv
and

β1(W,WB) = v̄ − ρv

R(v̄, wB)
≥ 0,

or it holds v ≤ v̄ ≤ vB, ρB ≤ R(v̄, wB) ≤ ρ together with R(v̄, wB)v̄ ≤ ρv, which
implies

β1(W,WB) = −v̄ +
ρv

R(v̄, wB)
≥ 0.

• If V(ρcr(w), w) > vB and ρ ≤ τ(R(vB, w)), we have vB ≤ v̄ ≤ v, ρ ≤ R(v̄, wB) ≤ ρB
and R(v̄, wB)v̄ ≥ ρv. Thus, we have again

β1(W,WB) = v̄ − ρv

R(v̄, wB)
≥ 0.

Concerning the vacuum case, i.e. ρB = 0, which implies sgn
(
ρB(w̄ − wB)

)
∈ [−1, 1], we know

that the admissible points satisfy ρ ≤ ρcr(w).
Moreover, since BRie

R (ρB, wB) = BRie
R (R(vB, w), w), we can again consider w = wB. For

j = 2, we have to distinguish between w̄ > w, w̄ < w and w̄ = w = wB. In any case, we
obtain β2(W,WB) ≥ 0 in (1.2.9).
Next, assuming ρ = R(v, w) > 0, we know that v < vB = wB.
It suffices now to consider the case v ≤ v̄ ≤ vB (and v < vB) and thus ρv ≥ R(v̄, wB)v̄. It
holds

β1(W,WB) = −v̄ +
ρv

R(v̄, w)
≥ 0.

On the other hand, if ρ = 0, we can set (ρB, wB) = (0, wB) = (0, w) = (ρ, w), which directly
leads to β1(W,WB) = 0.
This shows that BRie

R (ρB, wB) ⊆ BEnt
R (ρB, wB).

Finally, we end this section by verifying the following Proposition.

Proposition 4. The following equalities hold for the boundary sets:

BEnt
L (ρB, wB) = BRie

L (ρB, wB) ∪ B∗
L(ρB, wB),

BEnt
R (ρB, wB) = BRie

R (ρB, wB),
(1.2.10)

with B∗
L(ρB, wB) = {(ρ, w) | ρ = 0, w < wB,V(ρ, w) ≤ V(ρB, wB)}.

Proof. Due to Proposition 3, it suffices to prove

1. B∗
L(ρB, wB) ⊂ BEnt

L (ρB, wB);

2. BEnt
L (ρB, wB) ⊆ BRie

L (ρB, wB) ∪ B∗
L(ρB, wB);

3. BEnt
R (ρB, wB) ⊆ BRie

R (ρB, wB).

We treat separately the above points.

1. We observe that β2(W,WB) = 0 in (1.2.9a) for any w̄ ∈ [wmin, wmax] since ρ = 0.
Moreover, for any v̄ ∈ [0, wmax], it holds in (1.2.8a) and (1.2.8b) that β1(W,WB) ≤ 0
due to v ≤ vB and ρ = 0.
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To prove inclusion 2 and 3, we will show that for any (ρ, w) ̸∈ BRie
i (ρB, wB) (and (ρ, w) ̸∈

B∗
L(ρB, wB) if i = L), there exists a v̄ ∈ [0, wmax] or w̄ ∈ [wmin, wmax] for which

(ρ, w) ̸∈ BEnt
i (ρB, wB), i ∈ {L,R}.

2. From Proposition 1, we observe that Ω\
(
BRie
L (ρB, wB) ∪ B∗

L(ρB, wB)
)
=

5⋃
i=1

Ki
L(ρB, wB),

where

K1
L(ρB, wB) = {(ρ, w) | ρ ∈ [0, ρB[, w = wB, 0 < ρB < ρcr(wB)},

K2
L(ρB, wB) = {(ρ, w) | ρ ∈ ]ρB, τ(ρB)[, w = wB, 0 < ρB < ρcr(wB)},

K3
L(ρB, wB) = {(ρ, w) | ρ < ρcr(wB), w = wB, ρB ≥ ρcr(wB)},

K4
L(ρB, wB) = {(ρ, w) | V(ρ, w) > 0, w ̸= wB, ρB ≥ 0} \ B∗

L(ρB, wB),

K5
L(ρB, wB) = {(ρ, w) | V(ρB, wB) ̸= V(ρ, w) > 0, w = wB, ρB = 0}.

Thus, (ρ, w) ̸∈
(
BRie
L (ρB, wB) ∪ B∗

L(ρB, wB)
)
if and only if (ρ, w) ∈

5⋃
i=1

Ki
L(ρB, wB).

Let (ρ, w) ∈ K1
L(ρB, wB). Since v > vB, it holds ρv < ρBvB. Choosing vB < v̄ < v, we

have R(v̄, w) > ρv and thus, by (1.2.8a), β1(W,WB) > 0.
If (ρ, w) ∈ K2

L(ρB, wB), it holds v < vB. Setting v̄ = vB, we obtain ρv > ρBvB =
R(v̄, wB)v̄ and, by (1.2.8b), again that β1(W,WB) > 0.
If (ρ, w) ∈ K3

L(ρB, wB), we have v > vB. Choosing v̄ = V (ρcr(wB), wB), it holds
vB ≤ v̄ < v leading to ρv < R(v̄, w)v̄ and therefore β1(W,WB) > 0.
If (ρ, w) ∈ K4

L(ρB, wB), we distinguish between the following two cases:

– w > wB:

∗ If v > vB, we either have R(vB, w) ≤ ρcr(w), resulting in R(vB, w)vB > ρv.
Choosing v̄ = vB < v, we obtain β1(W,WB) > 0. Or it holds R(vB, w) >
ρcr(w), leading to R(v̄, w)v̄ > ρv by considering v̄ = V(ρcr(w), w). Thus, it
holds again β1(W,WB) > 0.

∗ If 0 < v ≤ vB, we know that ρ ̸= 0. Choosing w̄ ∈]wB, w[ implies, by (1.2.9a),
β2(W,WB) > 0.

– w < wB:

∗ If v > vB, we obtain with the same argumentation as in the case w > wB that
β1(W,WB) > 0.

∗ If 0 < v ≤ vB, ρ ̸= 0 implies β2(W,WB) > 0 by choosing w̄ ∈]w,wB[.

Finally, let (ρ, w) ∈ K5
L(ρB, wB). It holds w = wB = vB > v (otherwise (ρ, w) =

(ρB, wB) ∈ BRie(ρB, wB)). Since 0 = ρBvB < ρv and considering v̄ = vB, we conclude
β1(W,WB) > 0.
This shows that BEnt

L (ρB, wB) ⊆ BRie
L (ρB, wB) ∪ B∗

L(ρB, wB).

3. By Proposition 2, we observe that Ω \ BRie
R (ρB, wB) =

3⋃
i=1

Ki
R(ρB, wB), where

K1
R(ρB, wB) = {(ρ, w) | ρ > ρcr(w), V (ρcr(w), w) ≤ vB},

K2
R(ρB, wB) = {(ρ, w) | ρ > R(vB, w), V (ρcr(w), w) > vB},
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K3
R(ρB, wB) = {(ρ, w) | ρ ∈ ]τ(R(vB, w),R(vB, w)[, V (ρcr(w), w) > vB}.

Thus, (ρ, w) ̸∈ BRie
R (ρB, wB) if and only if (ρ, w) ∈

3⋃
i=1

Ki
R(ρB, wB). Moreover, as in

Remark 8, it holds Ki
R(ρB, wB) = Ki

R(R(vB, w), w) for i ∈ {1, 2, 3}, since the sets are
defined by vB. Thus it suffices to consider w = wB.

Let (ρ, w) ∈ K1
R(ρB, wB). Since v < vB, we choose v < v̄ = V(ρcr(w), w) ≤ vB implying

v̄R(v̄, wB) > ρv and leading to β1(W,WB) < 0.
If (ρ, w) ∈ K2

R(ρB, wB) we consider v̄ = vB > v which results in ρBvB > ρv and thus
β1(W,WB) < 0.
Finally, let (ρ, w) ∈ K3

R(ρB, wB). Thus, taking v̄ = vB < v, it follows vBR(vB, w) < ρv
and again β1(W,WB) < 0.
This shows that BEnt

R (ρB, wB) ⊆ BRie
R (ρB, wB).

Remark 10. The family of entropy-flux pairs (E2,Q2) defined by (1.2.6) are essential to
obtain the first equality in (1.2.10). If we considered only the family (E1,Q1) constructed
by (1.2.6), there would be points (away from the vacuum) which are admissible for the left
entropy but not for the left Riemann boundary set: as a demonstration, we choose Q(ρ, w) =
ρ(w − ρ) (see Figure 1.4), WB = (vB, wB) = (1, 1.6), W = (v, w) = (0.4417, 1.8). In this
specific case, we observe for any v̄ ∈ [0, wmax] that β

1(W,WB) ≤ 0 (see Figure 1.5). However,
(ρ, w) ̸∈ BRie

L (ρB, wB) since w ̸= wB.

(a) 0 ≤ v̄ < v (b) v ≤ v̄ ≤ vB

Figure 1.5: Illustration of the entropy boundary condition β1(W,WB) for a point (ρ, w) which
is not admissible for the left Riemann boundary set. The case v̄ > vB is not depicted in the
Figure since it holds β1(W,WB) = 0 due to (1.2.8a).

Remark 11. The chosen entropy families (1.2.5) and (1.2.6) do not provide the equality
between the left Riemann and entropy boundary sets. In fact, the two sets differ for points
in the vacuum positioned as in Figures 1.2c and 1.2d with respect to the boundary datum
(vL = vB ≥ v = vR and wL = wB > w = wR), which are described by the set B∗

L(ρB, wB).
We emphasize that this is the only case, where the two sets do not coincide. Possibly, the
selection of further entropies could allow to remove these unphysical states.
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One could avoid this problem by setting w = wmax whenever ρ = 0. However, even if
this choice would allow to prove the equivalence between the two boundary sets, it cannot
be guaranteed when passing to the limit in approximate solutions (as done in the proof of
Proposition 7), since we can end up with vacuum states U = (0, w), w ̸∈ wmax, which do not
belong to the Riemann solver.

Nevertheless, if we consider an invariant domain not including the vacuum, i.e.

W :=
{
W = (v, w) ∈ R2 : 0 ≤ v < w,w ∈ [wmin, wmax], v ∈ [vmin, vmax], vmax < wmin

}
,

for some 0 ≤ vmin < vmax, it holds BRie
i (ρB, wB) = BEnt

i (ρB, wB) for i ∈ {L,R} (and not only
i = R). This is a new result compared to [AG02, BS87, DLF88], since it applies to a Temple
class system whose characteristic lines of the second family are not straight (see Remark 12)
and the boundary is possibly characteristic (the first eigenvalue can change sign).

Remark 12. Unlike in [AG02], the family of functions

η(u(W )) = |l1(u(W̄ )) ·
(
u(W )− u(W̄ )

)
|, W̄ ∈ W,

corresponding to the first left eigenvector l1(u) =
(
ρVρ(ρ, w)− wVw(ρ, w) Vw(ρ, w)

)
, are

not of use in this setting, since the level sets of the first Riemann invariant z1(ρ, w) are not
straight lines in the conservative variables u = (ρ, y), see for example [AR00] in the case of
the ARZ model.

1.3 Existence of entropy weak solutions

In the literature, several well-posedness results for IBVP of systems of conservation laws do
already exists. We emphasize again that these results do not apply in our present setting,
due to the non-strict hyperbolicity and possibly characteristic boundaries.

In the following sections, we prepare the existence proof for problem (1.0.1). Since we are
dealing with entropy-flux pairs (E ,Q) expressed in Riemann invariants, it is convenient to
rewrite (1.0.1) into the same variables, and on a limited time interval, i.e.

∂tu(W ) + ∂xf(u(W )) = 0, x ∈ ]xin, xout[, t ∈ ]0, T [, (1.3.1a)

W (0, x) = W0(x), x ∈ ]xin, xout[, (1.3.1b)

W (t, xin) = Win(t) = (vin, win)(t), t ∈ ]0, T [, (1.3.1c)

W (t, xout) = Wout(t) = (vout, wout)(t), t ∈ ]0, T [, (1.3.1d)

where u(W ) = (R(v, w),R(v, w)w)⊤, f(u(W )) = v · u(W ). Observe that problem (1.3.1),
set on a bounded time interval, is equivalent to (1.0.1) since we deal with solutions in weak
(distributional) sense. We remark that, as usual with hyperbolic equations, solutions have to
be intended in the weak sense. In particular, the boundary conditions may not be satisfied
in the classical sense, i.e. the traces of the solutions at the boundaries may not be equal the
corresponding boundary values.
We also introduce the notation for the total variation with respect to a 1-dimensional variable
(here the space x or time t) of a function W : ]a, b[→ R2 [Bre00], which is given by TV(W ).
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Moreover, if the total variation is bounded, we say that W has bounded total variation,
denoted by W ∈ BV(]a, b[;R2). It is also convenient, for the existence proof, to set W0(x+) =
(w0(x−), w0(x−)) whenever W0(x+) ∈ W0, assuming W0 ∈ BV

(
]xin, xout[;W

)
(see Remark

13) and therefore traces are defined at each point x ∈ ]xin, xout[. Indeed, this does not change
the initial condition in conservative variables, since u(W1) = u(W2) = (0, 0)⊤ if W1,W2 ∈ W0.
Moreover, we set Wout(t) = (wmax, wmax) whenever Wout(t) ∈ W0. This does not impact the
solution, which is independent of wout (as BEnt

R (ρB, wB) = BRie
R (ρB, wB) is independent of

wB).

Remark 13. We remark that if W0 = W−
0 ∈ BV

(
]xin, xout[ ;W

)
before the above mentioned

replacement of vacuum states, then also the new initial datumW0 = W+
0 ∈ BV

(
]xin, xout[;W

)
.

Indeed, for each state W−
M ∈ W0 of W−

0 (·), let WL,WR the left and right values involved in

the computation of the total variation (so that W−
M is replaced by W+

M = (wL, wL)). Then
we have, applying twice the triangle inequality,{

|WL −W+
M |+ |W+

M −WR|
}
−
{
|WL −W−

M |+ |W−
M −WR|

}
=
{
|vL − wL|+ |wL − vR|+ |wL − wR|

}
−
{
|vL − w−

M |+ |wL − w−
M |+ |w−

M − vR|+ |w−
M − wR|

}
≤
{
|wL − vR|+ |wL − wR|

}
−
{
|w−

M − vR|+ |w−
M − wR|

}
≤ |wL − vR|+ |wL − wR|
≤ 2|wL − w−

M |+ |w−
M − vR|+ |w−

M − wR|

≤ 2
{
|WL −W−

M |+ |W−
M −WR|

}
,

leading to the bound TV(W+
0 ) ≤ 3TV(W−

0 ).

In the following sections, we construct a sequence of approximate solutions and we show that
it converges to an entropy weak solution of (1.3.1), which is defined below. First, we need to
recall the notion of boundary entropy pairs, see [CF99a, Definition 4.1], where we drop the
convexity assumption.

Definition 3 (Boundary entropy pair). An entropy pair(
α(u(W1), u(W2)), β(u(W1), u(W2))

)
, W1,W2 ∈ W,

is called a boundary entropy pair if for every fixed W2 ∈ W it satisfies

α
(
u(W2), u(W2)

)
= β

(
u(W2), u(W2)

)
= ∇1α

(
u(W2), u(W2)

)
= (0, 0)⊤.

Definition 4 (Entropy weak solution). A function W ∈ L∞
((

]0, T [× ]xin, xout[
)
;W
)
is

an entropy weak solution of IBVP (1.3.1) if

• for any entropy-flux pair (E ,Q) and any test function

ϕ ∈ C∞
c

((
]−∞, T [× ]xin, xout[

)
;R≥0

)
, it holds

∫ T

0

∫ xout

xin

{
E(u(W ))∂tϕ+Q(u(W ))∂xϕ

}
dxdt +

∫ xout

xin

E(u(W0(x)))ϕ(0, x) dx ≥ 0;

(1.3.2)
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• for any boundary entropy pair (α, β) and any γ(t) ∈ L1
(
]0, T [;R≥0

)
, it holds

ess lim
x→xin+

∫ T

0
β(u(W (t, x)), u(Win(t)))γ(t)dt ≤ 0,

ess lim
x→xout−

∫ T

0
β(u(W (t, x)), u(Wout(t)))γ(t)dt ≥ 0.

(1.3.3)

For future reference, we also recall the corresponding definition of a weak solution [Bre00].

Definition 5 (Weak solution). We call W ∈ L∞
((

]0, T [× ]xin, xout[
)
;W
)
a weak solution

to the IBVP (1.3.1), if for any test function ϕ ∈ C∞
c

((
]−∞, T [× ]xin, xout[

)
;R
)
it satisfies

∫ T

0

∫ xout

xin

{
u(W )ϕt + f(u(W ))ϕx

}
dxdt +

∫ xout

xin

u(W0(x))ϕ(0, x)dx = 0. (1.3.4)

We can now state the main result of this chapter:

Theorem 1. Let us assume W0 ∈ BV
(
]xin, xout[;W

)
, Win,Wout ∈ BV

(
]0, T [;W

)
. Then, for

any T > 0, the IBVP (1.3.1) admits an entropy weak solution W ∈ L∞ (]0, T [× ]xin, xout[;W
)

in the sense of Definition 4. Additionally, W satisfies the following bounds:

TV(W (t, ·)) ≤ γ0 and ∥W (t)∥∞ ≤ ∥W0∥∞ ∀ t ∈ [0, T [ and x ∈ ]xin, xout[ ,

where γ0 = TV(W0)+
∣∣Win(0)−W0(xin+)

∣∣+∣∣vout(0)− v(0, xout−)
∣∣+3TV

(
Win(s); s ∈ ]0, T [

)
+TV

(
vout(s); s ∈ ]0, T [

)
.

The proof is postponed to Section 1.3.2 (see Propositions 6 and 7).

1.3.1 Wave-front tracking (WFT) algorithm

The WFT algorithm [Daf72, Ris93] allows to construct piece-wise constant approximate en-
tropy weak solutions W h of the IBVP problem (1.3.1) by means of an approximate Riemann
solver obtained by approximating the rarefaction waves by piece-wise constant functions with
values in a fixed grid of mesh size εh, see [AG02, ADR16] for an implementation in the case
of Temple and ARZ systems. This strategy allows to avoid the cumbersome technicalities
related to a limiting procedure involving the solution boundary traces, see e.g. [Ama97]. The
procedure is briefly summarized below.

1. Fix h ∈ N sufficiently large, εh = 2−h∥W0∥∞, Wh = W ∩ [εhN2] (see Figure 1.6).

2. Approximate the initial and boundary data with piece-wise constant functions, i.e.

W h
0 ∈ PC

(
]xin, xout[;Wh

)
, W h

in,W
h
out ∈ PC

(
]0, T [;Wh

)
such that [Ama97]:

• TV(W h
0 ) ≤ TV(W0), TV(W

h
in) ≤ TV(Win), TV(W

h
out) ≤ TV(Wout),

• lim
h→∞

∥W0 −W h
0 ∥1 = 0, lim

h→∞
∥Win −W h

in∥1 = 0, lim
h→∞

∥Wout −W h
out∥1 = 0,

• W h
0 (x+) = (wh

0 (x−), wh
0 (x−)) whenever W h

0 (x+) ∈ W0,
|W h

in(0+)−W h
0 (xin+)| ≤ |Win(0+)−W0(xin+)|,

|W h
out(0+)−W h

0 (xout−)| ≤ |Wout(0+)−W0(xout−)|,
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v

w

wmin

wmax

vmin vmax

v = w

Figure 1.6: Illustration of the discretized domain Wh. The grid points are illustrated in blue.

• ∥W h
0 ∥∞ ≤ ∥W0∥∞, ∥W h

in∥∞ ≤ ∥Win∥∞, ∥W h
out∥∞ ≤ ∥Wout∥∞.

3. Approximately solve the Riemann problem at x = xin, xout and at every jump disconti-
nuity in the approximate initial data. Notice that the total variation of these approxi-

mations is bounded by TV(W h
0 ) +

∣∣∣W h
in(0)−W h

0 (xin+)
∣∣∣+ ∣∣∣vhout(0)− vh(0, xout−)

∣∣∣ even
in the presence of vacuum states.

4. Glue together these solutions to obtain a piece-wise constant approximate solution
W h = (vh, wh) defined up to the first time t̂ at which an interaction between two
or more wave-fronts takes place, or a wave hits the boundary, or a jump discontinuity
occurs in the boundary data (see [AC97, page 240] or [CR05, page 690]).

5. Solve the new Riemann problem arisen at t = t̂ and prolong the solution until the next
interaction.

This process can be extended to any time t > 0, as proven by the following result.

Proposition 5. For any h fixed, the number of waves in the approximate solution W h is
finite for all t ∈ ]0, T [ and the functional γh : [0, T ] → R≥0 defined by

γh(t) = TV(W h(t, ·)) +
∣∣∣W h

in(t)−W h(t, xin+)
∣∣∣+ ∣∣∣vhout(t)− vh(t, xout−)

∣∣∣
+ 3TV

(
W h

in(s); s ∈ ]t, T [
)
+TV

(
vhout(s); s ∈ ]t, T [

) (1.3.5)

is non-increasing.

Remark 14. Note that (1.3.5) does not depend on the total variation of wh
out, which is in

line with the fact that the set BRie
R (UB) is independent of the w-variable (see Remark 8).

Proof. By construction, W h is a piece-wise constant function, i.e.

W h(t, ·) ∈ PC
(
]xin, xout[;Wh

)
for all t ≥ 0 for which it is defined. By slightly changing the

wave positions, it is not restrictive to assume that at any interaction time t̂, either two waves
interact in the interior of the domain, or a single wave hits the boundary, or a change in the
boundary state occurs.
Regarding interactions not involving vacuum states occurring in ]xin, xout[, the number of
waves can increase only if one of the outgoing waves is a rarefaction. However, for Temple
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class systems, a rarefaction wave can only occur if one of the incoming waves already was
a rarefaction. Thus, the number of waves does not increase. Additionally, we know from
the standard theory of Temple class systems that the space total variation in the Riemann
invariants is non-increasing [BB97, GHO08] as long as the waves have finite speeds.
Therefore it suffices to focus on the following three cases that may occur at t = t̂:

(A) an interaction between waves in ]xin, xout[ involving at least a vacuum state;

(B) a wave hitting the boundary at x = xin or x = xout;

(C) a jump in the approximate boundary data W h
in or W h

out .

For notational simplicity, we will drop the h, t and x dependencies in the rest of the proof,
thus writing W instead of W h(t, x), ε instead of εh and γ instead of γh. Additionally, we still
denote the critical density, defined in (1.2.2), as ρcr(w) (instead of expressing it in Riemann
invariant coordinates). We also set

∆γ = γ(t̂+)− γ(t̂−)

for the variation of the functional (1.3.5) at t = t̂. Finally, we recall that the absolute
difference between a left (non-vacuum) state WL = (vL, wL) ∈ Wc

0 and a right (vacuum) state
WR ∈ W0 is computed by

|WL −WR| = |vL − wL|+ |wL − wL| = |vL − wL|.

Remark that, since the vacuum states in the interior of the domain are the results of Riemann
problem solutions, we must have wR = wL by case 8 in Definition 1.

Let us first consider case (A). Following [ADR16], we will look at the solution of the Riemann
problem after the interaction of a wave connecting the state WL to WM and a wave connecting
WM to WR (see Figure 1.7).

(A.1) If WL = (wL, wL) ∈ W0 , we know that WM ∈ Wc
0 (otherwise case 9 in Definition 1

implies WM = WL). By case 7 in Definition 1, it holds that the first wave travels with
propagation speed vM . If the second wave was a contact discontinuity, it would travel
with the same speed of propagation leading to no interaction between the waves. Thus,
the second wave must be either a shock or a rarefaction, i.e. wM = wR. Moreover it
holds that WR ∈ Wc

0 otherwise the solution of the Riemann problem between the states
WM and WR ∈ W0 would be an ε-step size rarefaction with the same speed as the first
wave (→ no interaction). Finally, the solution of the Riemann problem associated to
the interaction is a discontinuity travelling with speed vR. Thus, the number of waves
does not increase and it holds by means of the triangle inequality

∆γ =
{
|wL − vR|+ |wL − wR|

}
−
{
|wL − vM |+ |wL − wM︸︷︷︸

=wR

|+ |vM − vR|
}
≤ 0.

(A.2) If WM ∈ W0, we know with the same argument as in (A.1) that WL ∈ Wc
0 and WR ∈

Wc
0. The first wave, connecting WL to WM = (wL, wL), is an ε-step size rarefaction

with propagation speed vL = wL − ε. The propagation speed of the second wave
(discontinuity) is vR. Moreover it must hold that vR < wL − ε (otherwise the waves do
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not interact). Finally, the solution of the Riemann problem associated to the interaction
is a shock-wave travelling from WL to an intermediate state WM ′ , followed by a contact
discontinuity from WM ′ to WR with propagation speed vM ′ = vR. Thus, the number of
waves does not increase and it holds by means of the triangle inequality

∆γ =
{
|vL − vM ′︸︷︷︸

=vR

|+ |wM ′︸︷︷︸
=wL

−wR|
}
−
{
|vL − wL|+ |wL − vR|+ |wL − wR|

}
≤ 0.

t = t1 WL

WM ∈ W0

WR

WM ′

Figure 1.7: Sample illustration of the interacting waves in the vacuum case (A.2).

(A.3) If WR ∈ W0, the second wave connecting WM to WR = (wM , wM ) is an ε-rarefaction
with speed vM = wM − ε. Thus, the first wave cannot be a contact discontinuity
since it would have the same speed as the second wave (→ no interaction), this implies
wL = wM . However, an interaction between the two waves can only occur if the first
wave travels faster than wM − ε which is not possible.

(A.4) If WM ′ ∈ W0 (and WL ∈ Wc
0, WM ∈ Wc

0, WR ∈ Wc
0), we know by the Riemann solver

that WM ′ = (wL, wL) with vM ′ = wL > vL. Moreover, we have that vL < vM ′ ≤ vR,
otherwise WM ′ ∈ W c

0 . Since the speed of the first wave before the interaction is higher
than the second wave speed, it must be a contact discontinuity (from WL to WM )
followed by a ε-rarefaction fromWM = (vL, wR) toWR with vR = vL+ε. Assuming that
vM ′ < vR, we obtain a contradiction due to our ε-discretization: vL < vM ′ < vR = vL+ε.
Thus, it must hold wL = vM ′ = vR = vL + ε and WM ′ = (vR, wL). Finally, the number
of waves does not increases (since we only have an ε-rarefaction wave) and it holds

∆γ =
{
|vL − vR|+ |wL − wR|

}
−
{
|wL − wM︸︷︷︸

=vR

|+ | vM︸︷︷︸
=vL

−vR|
}
= 0.

Next, we consider case (B). For the left (resp. right) boundary case, the states before the
interaction will be denoted by WB,WM and WR (resp. WL) (see Figure 1.8a (resp. 1.8b)). To
prove that the functional γ is non-increasing, it suffices to show that

∆γ =
{
|WB −WM ′ |+ |WM ′ −WR|

}
−
{
|WB −WM |+ |WM −WR|

}
≤ 0

(resp.

∆γ =
{
|WL −WM ′ |+ |vM ′ − vB|

}
−
{
|WL −WM |+ |vM − vB|

}
≤ 0).

Moreover, we assume that UM = (R(vM , wM ), wM ) ∈ BRie
i (UB) with i ∈ {L,R} and

UB = (R(vB, wB), wB).
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t̂

x

t

x = xin

WB

WM

WR

WM ′

(a) Illustration of the states and the cor-
responding interacting waves at the left
boundary (B.L).

t̂

x

t

x = xout

WL

WM

WB

WM ′

(b) Illustration of the states and the cor-
responding interacting waves at the right
boundary (B.R).

Figure 1.8: Case (B).

In the left boundary case (B.L), i.e. i = L, we define the subset of the admissible states with
zero speed (see Proposition 1) as

WL = {(v, w) ∈ Wc
0 | v = 0}. (1.3.6)

(B.L.1) If WB ∈ Wc
0, WM ̸∈ WL and R(vB, wB) < ρcr(wB), we know that wB = wM =

wR = wM ′ . By case 1 in Proposition 1, it follows that WB is connected to WM by a
negative shock. Thus, the only possible wave with negative speed (joining WM to WR)
leading to a visible wave (with positive speed) after the interaction has to be a negative
rarefaction, i.e. vR = vM + ε and R(vR, wR)vR > R(vB, wB)vB. Finally, the solution of
the Riemann problem associated to the interaction is a positive shock-wave travelling
from WB = WM ′ to WR. Thus, the number of waves does not increase and it holds by
means of the triangle inequality

∆γ =
{
|vB − vR|

}
−
{
|vB − vM |+ |vM − vR|

}
≤ 0.

(B.L.2) If WB ∈ Wc
0, WM ̸∈ WL and R(vB, wB) ≥ ρcr(wB), we know that wB = wM = wR. It

holds that both the wave connecting WM to WR and the wave travelling from WB via
WM ′ to WR are negative. Therefore, no wave emerges from the interaction and ∆γ ≤ 0.

Additionally, as shown later in the cases (C.L.1) and (C.L.3), it can appear the situation,
where UM ̸∈ BRie

L (UB). However, applying the same argumentation as before, the result
does not change.

(B.L.3) If WB ∈ Wc
0, WM ∈ WL (see Figure 1.9), it holds that vM = 0 and wM = wR. Thus,

the boundary wave travelling from WM to WR is a negative ε-rarefaction, implying
vR = vM + ε = ε. The solution of the Riemann problem associated to the interaction
is a first family wave travelling from WB to WM ′ = (vM ′ , wB) followed by a contact
discontinuity from WM ′ to WR, i.e. vM ′ = vR. If WM ′ ̸= WB is admissible (see Figure
1.9b), we have only one outgoing wave, the number of waves does not increase and it
holds by means of the triangle inequality

∆γ =
{
|vB − vM ′︸︷︷︸

=vR

|+ |wM ′︸︷︷︸
=wB

−wR|
}
−
{
|vB − vM |+ |wB − wM︸︷︷︸

=wR

|+ |vM − vR|
}
≤ 0.
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v

w

wmin

wmax

v = w

vR = ε vB

wR

wB

WM

WR

WM′ WB

(a) (v, w)-plane.

ρ

ρv

vR = ε

WB

WM′

WR

WM

(b) (R(v, w),R(v, w)v)-plane.

Figure 1.9: Sample illustration of the states in the case (B.L.3) in two different planes.
(a) waves before (resp. after) the interaction are drawn in green (resp. red).
(b) the admissible states for UB are indicated in light blue.

Otherwise, we have two outgoing waves (see Figure 1.10). We thus consider an additional
intermediate state WM ′′ between WM ′(= WB) and WR. The first wave is a positive
shock (from WB to WM ′′ ), followed by a contact discontinuity (from WM ′′ to WR). It
holds vB > vR ̸= 0. Thus, the number of waves increases by one, but it holds that

∆γ =
{
vB − vR + |wM ′︸︷︷︸

=wB

−wR|
}
−
{
vB + vR + |wB − wM︸︷︷︸

=wR

|
}
= −2vR = −2ϵ.

ρ

ρv

vR = ε

WB = WM
′

WM
′′

WR

WM

Figure 1.10: Illustration of case (B.L.3) with UM ′′ = (R(vR, wB), wB) ̸∈ BRie
L (UB), i.e.

R(vB, wB)vB < R(vR, wB)vR. The admissible states for UB are indicated in light blue.

(B.L.4) IfWB = (wB, wB) ∈ W0, it holds that vM = 0 and wM = wR. Thus again, the boundary
wave travelling from WM to WR is a negative ε-rarefaction, i.e. vR = vM + ε = ε. The
solution of the Riemann problem associated to the interaction is a discontinuity from
WB = WM ′ to WR travelling with speed vR. Hence, the number of waves does not
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increase and it holds by means of the triangle inequality

∆γ =
{
|wB − vR|+ |wB − wR|

}
−
{
|wB − vM |+ |wB − wM︸︷︷︸

=wR

|+ |vM − vR|
}
≤ 0.

We now focus on the right boundary case (B.R), i.e. i = R.

(B.R.1) IfWB ∈ Wc
0 and the boundary wave fromWL toWM is a contact discontinuity travelling

with speed vM = vL (see Figure 1.11), the solution to the boundary Riemann problem
associated to the interaction displays at most a first family-curve travelling with negative
speed from WL to WM ′ = (vM ′ , wL). It holds either that vL < vM ′ ≤ vB (rarefaction
wave from WL to WM ′) or vM ′ = vB < vL (shock wave from WL to WM ′ = W̃ ). In the
first case, the number of waves can increase; in the second case, the number of waves
does not change. By means of the triangle inequality it follows that

∆γ =
{
|vL − vM ′ |+ |vM ′ − vB|︸ ︷︷ ︸

=|vL−vB |

}
−
{
|wL − wM |+ | vM︸︷︷︸

=vL

−vB|
}
≤ −ε < 0,

since WL ̸= WM .
Remark: In the case of a negative rarefaction wave from WL to WM ′ (only possible
if R(vL, wL) > ρcr(wL)) and vM ′ ̸= vB, then WM ′ will be the point the propagation
speed of the rarefaction wave changes from negative into positive speed. If the state
Ucr = (ρcr(wL), wL) ∈ BRie

R (UB) is lying on the grid, we know that Ucr = UM ′ =
(R(vM ′ , wL), wL). On the contrary, if the state Ucr is not lying on the grid (see Figure
1.11b), then it can appear the situation that UM ′ ̸∈ BRie

R (UB). However, since we move
with an ε-step size along the v−variable on the grid, it holds that |vM ′ − vcr| < ε and
vcr = V(ρcr(wL), wL).

Due to the previous remark (and also case (C.R.2)), we can also have UM ̸∈ BRie
R (UB).

However, applying the same argumentation as before, the result does not change.

(B.R.2) If WB ∈ Wc
0 and the boundary wave from WL to WM is a first family curve, i.e.

wM = wL, travelling with positive speed, the boundary solution after the interaction
displays at most a negative shock-wave travelling from WL to WM ′ . Thus, the number
of waves does not increase and it holds by means of the triangle inequality

∆γ =
{
|vL − vM ′︸︷︷︸

=vB

|
}
−
{
|vL − vM |+ |vM − vB|

}
≤ 0.

As we have seen in the case (B.R.1) (see also (C.R.2)), it can happen that UM ̸∈
BRie
R (UB). However, due to R(vB, wM ) < ρcr(wM ), there will be no visible solution.

(B.R.3) If WB = (wmax, wmax) ∈ W0, we know that the wave travelling from WL to WM is either
a positive first family curve or a contact discontinuity. In the first case, the solution to
the Riemann problem after the interaction will be a positive rarefaction wave which is
not visible in the domain. However, in the case of a contact discontinuity, the solution
to the boundary Riemann problem between WL and WB may consist of a negative
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v = w

vM = vL vB
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WM′
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(a) (v, w)-plane.

ρ

ρv

ρcr(wL)

vM = vL

vB

WB

WM′

W̃

WL

WM

(b) (R(v, w),R(v, w)v)-plane.

Figure 1.11: Sample illustration of the states in the case (B.R.1) in two different planes.
(a) waves before (resp. after) the interaction are drawn in green (resp. red).
(b) the admissible states for UB are indicated in light blue. In this case, WM ′ ̸∈ BRie

R (UB).

rarefaction fan, travelling from WL to WM ′ and it holds vL = vM < vM ′ < wB = wmax.
Thus, the number of waves can increase, but

∆γ =
{
|vL − vM ′ |+ |vM ′ − wmax|︸ ︷︷ ︸

=|vL−wmax|

}
−
{
|wL − wM |+ | vM︸︷︷︸

=vL

−wmax|
}

= −|wL − wM | ≤ −ε.

We remark that in this case, we use the assumption of wB = wmax (if WB ∈ W0) in
order to obtain a negative value for ∆γ.

As shown later in the case (C.R.4), we may have UM ̸∈ BRie
R (UB). However, this does

not change the above argumentation.

Finally, we consider case (C): we analyse the solution of the boundary Riemann problem after
a jump discontinuity in the boundary state from W−

B to W+
B . From Figure 1.12, we see that

in this scenario the number of waves can increase. However, since there is a finite number
of jumps in the approximate boundary states, the total number of new waves remains finite.
Therefore, it is sufficient to prove that the functional γ is non-increasing, i.e.

∆γ =
{∣∣∣W+

B −WM ′

∣∣∣+ |WM ′ −WR|
}
−
{∣∣∣W−

B −WR

∣∣∣+ 3
∣∣∣W−

B −W+
B

∣∣∣} ≤ 0

(resp.

∆γ =
{
|WL −WM ′ |+

∣∣∣vM ′ − v+B

∣∣∣}−
{∣∣∣vL − v−B

∣∣∣+ ∣∣∣v−B − v+B

∣∣∣} ≤ 0).

Moreover, we assume that UR = (R(vR, wR), wR) ∈ BRie
L (U−

B ) and
UL = (R(vL, wL), wL) ∈ BRie

R (U−
B ) with U−

B = (R(v−B , w
−
B), w

−
B).

First, we consider the left boundary case (C.L), i.e. i = L.

(C.L.1) If W−
B ∈ Wc

0, W
+
B ∈ Wc

0 and WR ̸∈ WL (defined in (1.3.6)), it holds that W−
B and

WR are connected by a first family wave (possibly null if W−
B = WR), i.e. w

−
B = wR.
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t̂
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WM ′

(a) Illustration of the states and the corre-
sponding waves at the left boundary (C.L).

t̂

x

t

x = xout

W+
B

W−
BWL

WM ′

(b) Illustration of the states and the cor-
responding waves at the right boundary
(C.R).

Figure 1.12: Case (C).

The solution of the Riemann problem, associated to the change of the boundary state,
is a first family curve from W+

B to WM ′ , i.e. w+
B = wM ′ , followed by either a contact

discontinuity, travelling with propagation speed vM ′ = vR, or a first family wave, i.e.
w−
B = wR = wM ′ = w+

B , from the state WM ′ to WR.
The boundary Riemann problem consists than in (a first family wave followed by) a
contact discontinuity, it holds by means of the triangle inequality

∆γ =
{
|v+B − vM ′︸︷︷︸

=vR

|+ |wM ′︸︷︷︸
=w+

B

−wR|
}
−
{∣∣∣v−B − vR

∣∣∣+ 3|v−B − v+B |+ 3|w−
B︸︷︷︸

=wR

−w+
B |
}

≤ −2
{
|v−B − v+B |+ |w−

B − w+
B |
}
≤ −2ε < 0.

Remark: We can have two outgoing waves, this means having an additional state
WM ′′ = (vR, w

+
B) between WM ′ and WR. This can happen in two situations: either if

R(v+B , w
+
B) < ρcr(w

+
B) and WM ′ = W+

B or if R(v+B , w
+
B) ≥ ρcr(w

+
B) and R(vR, w

+
B) <

ρcr(w
+
B). In the first case, we observe a positive shock wave (from W+

B to WM ′′ ) and a
contact discontinuity (from WM ′′ to WR). In the second case, the wave connecting WM ′

to WM ′′ is a positive rarefaction followed again by a contact discontinuity (from WM ′′

to WR). However, both scenarios do not change the computation of the total variation,
hence it still holds ∆γ ≤ 0.

Assuming the solution is a first family shock wave which implies W+
B = WM ′ , it holds

∆γ =
{
|v+B − vR|

}
−
{∣∣∣v−B − vR

∣∣∣+ 3|v−B − v+B |+ 3|w−
B − w+

B︸ ︷︷ ︸
=0

|
}
≤ 0.

Finally, assuming the outgoing wave is a first family rarefaction, the only possible solu-
tion, which is visible in the domain, leads to WR = W−

B . Thus,

∆γ =
{
|v+B − vM ′ |+ |vM ′ − vR|︸ ︷︷ ︸

|v+B−vR|

}
−
{
|v−B − vR︸ ︷︷ ︸

=0

|+ 3| v−B︸︷︷︸
=vR

−v+B |+ 3|w−
B − w+

B︸ ︷︷ ︸
=0

|
}
≤ 0.
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Remark: For the first (resp. third) case above, if we are in the case of a positive
rarefaction wave from WM ′ to WM ′′ (resp. WR) (only possible if R(v+B , w

+
B) > ρcr(w

+
B)),

then WM ′ will be the point the propagation speed of the rarefaction wave changes
from negative into positive speed. If the state Ucr = (ρcr(w

+
B), w

+
B) ∈ BRie

L (U+
B ) with

U+
B = (R(v+B , w

+
B), w

+
B) is lying on the grid, we know that Ucr = UM ′ = (R(vM ′ , w+

B).
On the contrary, if the state Ucr is not lying on the grid, then it can appear the situation
that UM ′ ̸∈ BRie

L (U+
B ). However, since we move with an ε-step size along the v−variable

on the grid, it holds that |vM ′ − vcr| < ε and vcr = V(ρcr(w+
B), w

+
B).

By the remark above (and also case (C.L.3)), it may happen that UR ̸∈ BRie
L (U−

B ).
However, the computations for the contact discontinuity and first family shock do not
change. The rarefaction case cannot appear anymore since WR ̸= W−

B .

(C.L.2) If WR ∈ WL, we have that WR ∈ BRie
L (U+

B ) and no new wave is created, thus ∆γ ≤ 0.

(C.L.3) If W−
B = (w−

B , w
−
B) ∈ W0 and W+

B ∈ Wc
0 (see Figure 1.13), it follows that WR ∈

WL ∪{W−
B }. If WR ∈ WL, then case (C.L.2) applies. If WR = W−

B , the visible solution
of the Riemann problem after the change of the boundary state will be the positive part
of the rarefaction fan wave travelling from W+

B to W+
R = (w+

B , w
+
B). In particular, we

have an infinite speed wave jump from WR = W−
B = (w−

B , w
−
B) to W+

R = (w+
B , w

+
B)

(see case 8 in Definition 1 and Figure 1.14).
If R(v+B , w

+
B) > ρcr(w

+
B), it can exist an intermediate state WM ′ = (vM ′ , w+

M ) with
vM ′ > v+B . Otherwise, it holds vM ′ = v+B , implying WM ′ = W+

B . Thus, it holds by
means of the triangle inequality

∆γ =
{
|v+B − vM ′ |+ |vM ′ − w+

B |︸ ︷︷ ︸
=|v+B−w+

B |

}
− 3
{
|w−

B − v+B |+ |w−
B − w+

B |
}

≤ −2
{
|w−

B − v+B |+ |w−
B − w+

B |
}
≤ −2ε < 0.

v

w

wmin

wmax

v = w

v+B w−
B w+

B

w−
B

w+
B

W−
B = WR

W+
B = WM′

W+
R

Figure 1.13: Sample illustration of the states in the case (C.L.3) with R(v+B , w
+
B) ≤ ρcr(w

+
B),

i.e. WM ′ = W+
B . The waves before (resp. after) the interaction are drawn in green (resp. red).

Due to the presence of the infinite speed wave between WR and W+
R , we additionally

have to check the change of the total variation when this wave interacts with others
in the interior of the domain. Thus, we are interested in the solution of the Riemann
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problem from the state W+
R to a state Ŵ = (v̂, ŵ) after the interaction of the wave

between WR and Ŵ , which travels with propagation speed v̂ (by case 7 in Definition 1).
The solution of the new Riemann problem is again a discontinuity with speed v̂. This
scenario is illustrated in Figure 1.14.

t̂

x = xin

t

W+
B

W−
B WR

W+
R

Ŵ

WM ′

Figure 1.14: Interaction of an infinite speed wave with a wave in the interior of the domain.

Finally, thanks to the triangle inequality, we have:

∆γ =|W+
B −WM ′ |+ |WM ′ −W+

R |+ |W+
R − Ŵ |−{

|W−
B −WR︸ ︷︷ ︸

=0

|+ |WR − Ŵ |+ 3|W−
B −W+

B |
}

= |v+B − vM ′ |+ |vM ′ − w+
B |︸ ︷︷ ︸

=|v+B−w+
B |

+|w+
B − v̂|+ |w+

B − ŵ|−

{
|w−

B − v̂|+ |w−
B − ŵ|+ 3|w−

B − v+B |+ 3|w−
B − w+

B |
}
≤ −2|w−

B − v+B | ≤ 0.

Remark: WM ′ is the point the propagation speed of the rarefaction wave changes
from negative to positive (only possible if R(v+B , w

+
B) > ρcr(w

+
B)). If the state Ucr =

(ρcr(w
+
B), w

+
B) ∈ BRie

L (U+
B ) is lying on the grid, it holds Ucr = UM ′ = (R(vM ′ , w+

B), w
+
B).

Otherwise, we may have UM ′ ̸∈ BRie
L (U+

B ). However, since we move with an ε-step size
along the v−variable on the grid, it holds that |vM ′−vcr| < ε and vcr = V(ρcr(w+

B), w
+
B).

(C.L.4) If W−
B ∈ Wc

0, W
+
B = (w+

B , w
+
B) ∈ W0 and WR /∈ WL, we know that w−

B = wR. Thus,
the solution of the Riemann problem associated to the change of the boundary state is
a discontinuity from W+

B = WM ′ to WR travelling with speed vR. Thus, a new wave is
produced and it holds

∆γ =
{
|w+

B − vR|+ |w+
B − wR︸︷︷︸

=w−
B

|
}
−
{
|v−B − vR|+ 3|v−B − w+

B |+ 3|w−
B − w+

B |
}

≤ −2
{
|v−B − w+

B |+ |w−
B − w+

B |
}
≤ −2ε < 0.

As seen in cases (C.L.1) and (C.L.3), it can happen that UR ̸∈ BRie
L (U−

B ). However, the
computation above remains unchanged.

(C.L.5) If W−
B ∈ W0 and W+

B ∈ W0 , it follows that WR ∈ WL ∪ {W−
B } and no new wave is

produced and ∆γ ≤ 0.
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We now turn to the study of the right boundary case (C.R), i.e. i = R.

(C.R.1) If W−
B ∈ Wc

0, W
+
B ∈ Wc

0 and R(vL, wL) ≤ ρcr(wL), then the solution of the boundary
Riemann problem associated to the change of the boundary state displays at most a
negative shock-wave travelling from WL to an intermediate state WM ′ with vM ′ = v+B .
Thus, the number of waves may increase and it holds by means of the triangle inequality

∆γ = |vL − vM ′︸︷︷︸
=v+B

| −
{
|vL − v−B |+ |v−B − v+B |

}
≤ 0.

(C.R.2) If W−
B ∈ Wc

0, W
+
B ∈ Wc

0 and R(vL, wL) > ρcr(wL), we know that vL = v−B . Thus,
the solution to the Riemann problem is a first family-curve travelling with negative
propagation speed from WL to WM ′ , possibly continued by another (first family) curve
travelling with positive speed fromWM ′ to the point W̃ = (v+B , wM ′) and finally followed
by a contact discontinuity from W̃ to W+

B . It holds either that vL < vM ′ ≤ v+B (rarefac-
tion wave from WL to WM ′) or vM ′ = v+B < vL (shock wave from WL to WM ′ = W̃ ).
By means of the triangle inequality it follows that

∆γ =
{
|vL − vM ′ |+ |vM ′ − v+B |︸ ︷︷ ︸

=|vL−v+B |

}
− | v−B︸︷︷︸

=vL

−v+B | = 0.

Remark: If the solution is a negative rarefaction wave from WL to WM ′ and vM ′ ̸= v+B ,
then WM ′ will be the point the propagation speed of the rarefaction wave changes from
negative into positive speed. If the state Ucr = (ρcr(wL), wL) ∈ BRie

R (U+
B ) is lying on

the grid, we know that Ucr = UM ′ = (R(vM ′ , wL). On the contrary, if the state Ucr

is not lying on the grid, then we may have UM ′ ̸∈ BRie
R (U+

B ). However, since we move
with an ε-step size along the v−variable on the grid, it holds that |vM ′ − vcr| < ε and
vcr = V(ρcr(wL), wL).

Due to the previous remark (and also case (B.R.1)), we can have UL ̸∈ BRie
R (U−

B ). In
contrast to above, it holds v−B > vL which still leads to the desired inequality, i.e.

∆γ = |vL − v+B | − {|vL − v−B |+ |v−B − v+B |} = −2(v−B − vL) ≤ −2ε < 0.

(C.R.3) IfW−
B = (wmax, wmax) ∈ W0 andW+

B ∈ Wc
0, then the solution of the boundary Riemann

problem from WL to W+
B is at most a negative shock wave from WL to WM ′ = (vM ′ , wL)

with vM ′ = v+B . Thus, again, the number of waves can increase and

∆γ = |vL − vM ′︸︷︷︸
=v+B

| −
{
|vL − wmax|+ |wmax − v+B |

}
= −2(wmax − vL) ≤ −2ε.

As we will see in case (C.R.4), we can have UL ̸∈ BRie
R (U−

B ). However, this does not
change anything in the above argumentation.

(C.R.4) If W−
B ∈ Wc

0 and W+
B = (wmax, wmax) ∈ W0, new waves are produced only if vL = v−B .

In this case, we may have a negative rarefaction wave travelling fromWL toWM ′ Finally,
it holds

∆γ =
{
|vL − vM ′ |+ |vM ′ − wmax|︸ ︷︷ ︸

=|vL−wmax|

}
− | v−B︸︷︷︸

=vL

−wmax| = 0.
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Remark: Again, if WM ′ is the point the propagation speed of the rarefaction wave
changes from negative into positive speed and if the state Ucr = (ρcr(wL), wL) is not
lying on the grid, it may happen that UM ′ ̸∈ BRie

R (U+
B ) with UM ′ = (R(vM ′ , wL), wL)

and U+
B = (0, wmax). However, since we move with an ε-step size along the v−variable

on the grid, it holds that |vM ′ − vcr| < ε and vcr = V(ρcr(wL), wL).

As we have seen in the cases (B.R.1) and (C.R.2), we may have UL ̸∈ BRie
R (U−

B ). Since
it also holds that v−B > vL, no new wave emerges from the interaction and ∆γ ≤ 0.

The proof of Proposition 5 is now complete. In particular, the number of waves can increase
only a finite number of times and we have the following uniform bound for γ:

γ(t) ≤ γ(0) = TV(W h
0 ) +

∣∣∣W h
in(0)−W h

0 (xin+)
∣∣∣+ ∣∣∣vhout(0)− vh(0, xout−)

∣∣∣ (1.3.7)

+ 3TV
(
W h

in(s); s ∈ ]0, T [
)
+TV

(
vhout(s); s ∈ ]0, T [

)
.

1.3.2 Convergence to an entropy weak solution

We first prove the convergence of the sequence of approximate solutions constructed in Sec-
tion 1.3.1.

Proposition 6. The sequence {W h}h converges up to a subsequence to a function W in
L1

loc.

Proof. In our case, we cannot apply Helly’s Theorem in the form of [Bre00, Theorem 2.4] to
prove the convergence to W . This is due to the possible occurrence of infinite speed waves in
the case (C.L.3) of Proposition 5, which prevents us from obtaining the L1 Lipschitz continuity
in time of approximate solutions. Therefore, we have to prove explicitly the space-time BV
bounds, which will lead to convergence (see e.g. [EGH00, Lemma 5.6]). To this end, we need
to show that for every x ∈ ]xin, xout[, t ∈ ]0, T [, it holds

∥W h∥L∞(]0,T [× ]xin,xout[) ≤ M, (1.3.8a)

TV(t,x)(W
h) ≤ C, (1.3.8b)

where the constants C, M > 0 are independent of h and TV(t,x) denotes the total variation
in time and space, defined as

TV(t,x)(W
h) := sup

{∫ T

0

∫ xout

xin

Wh · (∂tϕ+ ∂xϕ) dx dt : ϕ ∈ C1
c

(
]0, T [× ]xin, xout[;R2

)
, ∥ϕ∥∞ ≤ 1

}
.

To prove that W h has uniformly bounded total variation, it is therefore sufficient to show
that there exists C such that∣∣∣∣∣

∫ T

0

∫ xout

xin

W h · (∂tϕ+ ∂xϕ) dx dt

∣∣∣∣∣ ≤ C∥ϕ∥∞, (1.3.9)

for all ϕ ∈ C1
c

(
]0, T [× ]xin, xout[;R2

)
(see [Bre00, Equation 2.29]).
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The L∞-bound (1.3.8a) follows easily from the invariance of the domain Wh ⊂ W, which is
bounded by wmin, wmax > 0, vmin ≥ 0 and vmax = wmax (see Figure 1.6).
To prove (1.3.8b), it suffices to prove the boundedness of the total variation in time and space
separately.
Proposition 5 guarantees that the approximate solutions are uniformly BV in space for all
t ∈ [0, T [:

TV(W h(t, ·)) ≤ TV(W0) +
∣∣Win(0)−W0(xin+)

∣∣+ ∣∣vout(0)− v(0, xout−)
∣∣

+ 3TV
(
Win(s); s ∈ ]0, T [

)
+TV

(
vout(s); s ∈ ]0, T [

)
:= γ0.

Therefore, we have in (1.3.9)∣∣∣∣∣
∫ T

0

∫ xout

xin

W h · ∂xϕ dx dt

∣∣∣∣∣ =
∣∣∣∣∣ limh→0

∫ T

0

∫ xout

xin

W h · ϕ(t, x+ h)− ϕ(t, x)

h
dx dt

∣∣∣∣∣
=

∣∣∣∣∣ limh→0

∫ T

0

∫ xout

xin

W h(t, x)−W h(t, x− h)

h
· ϕ(t, x) dx dt

∣∣∣∣∣
≤
∫ T

0

{
lim sup
h→0

1

h

∫ xout

xin

∣∣∣W h(t, x)−W h(t, x− h)
∣∣∣dx} ∥ϕ∥∞ dt

≤ γ0 T ∥ϕ∥∞. (1.3.10)

Concerning the time component, let us assume first that in the interval [s, t] ⊂ ]0, T [ there are
no infinite speed waves (see case (C.L.3) of Proposition 5). In this case the L1- continuity in
time holds, i.e.

∥∥∥W h(t)−W h(s)
∥∥∥
1
=

xout∫
xin

∣∣∣W h(t, x)−W h(s, x)
∣∣∣dx

≤ γh(0) max
Wh∈Wh

{∣∣∣λ1(W
h)
∣∣∣, ∣∣∣λ2(W

h)
∣∣∣}︸ ︷︷ ︸

=: Λ

|t− s|

≤ L|t− s|, (1.3.11)

with L = γ0 Λ.
Let us assume now that a wave with infinite speed occurs at time ti, i = 1, . . . , Zh, which
can only happen through a change in the left boundary state. Since the number of changes
is bounded by construction, Zh is finite. Referring to case (C.L.3), Figure 1.14, and fixing
x ∈ ]xin, xout[, we compute

TV(W h(·, x)) = TV(W h(s, x); s ∈ ]0, t1[) + TV(W h(s, x); s ∈ ]tZ , T [)+

Zh∑
i=1

TV(W h(s, x); s ∈ ]ti, ti+1[) +
Zh∑
i=1

∣∣∣W h(t−i , x)−W h(t+i , x)
∣∣∣︸ ︷︷ ︸

=2|wh
in(ti+)−wh

in(ti−)|
≤ LT + 2TV(Win).

Acting as in (1.3.10), we recover the estimate for the time-component of (1.3.9), thus showing
that the sequence {W h}h has uniformly bounded total variation.
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1.3. Existence of entropy weak solutions

Hence, by Helly’s Theorem [EGH00, Lemma 5.6], there existsW ∈ L∞ (]0, T [× ]xin, xout[;W
)

and a subsequence, still denoted by {W h}h, which converges to W in
L1
loc

(
]0, T [× ]xin, xout[;W

)
as h → ∞. Additionally, W satisfies the following inequalities:

TV(W (t, ·)) ≤ γ0 and ∥W (t, ·)∥∞ ≤ M ∀ t ∈ [0, T [ and x ∈ ]xin, xout[ .

At this point, we emphasize that, in contrast to [Bre00, Theorem 2.4], we loose the L1-
continuity in time for the limit function W .

We are now left to show that the limit function W is indeed an entropy weak solution of the
IBVP (1.3.1).
As in Section 1.2.2, we drop the u-variable dependency for notational simplicity, i.e. we write
W instead of u(W ). Following [CF99a, Theorem 4.1], we consider the following boundary
entropy pairs:

αj(W1,W2) = Ej(W1)− Ej(W2)−∇uEj(W2) (W1 −W2) , (1.3.12)

βj(W1,W2) = Qj(W1)−Qj(W2)−∇uEj(W2)
(
f(W1)− f(W2)

)
, (1.3.13)

where Ej ,Qj are defined as in (1.2.5) for j = 1 and (1.2.6) for j = 2. We remark that, by
setting W2 = WB = (vB, wB) in (1.3.13), we obtain the entropy boundary condition defined
in (1.2.7).

Proposition 7. The limit function W defined in Proposition 6 is an entropy weak solution
of the IBVP (1.3.1) in the sense of Definition 4.

Proof. We follow [CF99a, Theorem 4.1]. We start by verifying that W h satisfies Definition 4
up to an error which decreases to 0 for h going to infinity.

We know that W h ∈ L∞. Let us now consider ϕ ∈ C∞
c

((
]−∞, T [× ]xin, xout[

)
;R≥0

)
. Since

ϕ(0, x) ≥ 0 and, for our choice of the entropies, Ej(W ) ≥ 0 for all W ∈ W and j ∈ {1, 2} (see
Equation (1.2.5a) and (1.2.6a)), we directly obtain

∫ xout

xin
Ej(W h

0 (x))ϕ(0, x)dx ≥ 0. Regarding
the term ∫ T

0

∫ xout

xin

{
Ej(W h)∂tϕ+Qj(W h)∂xϕ

}
dx dt, (1.3.14)

following the proof of [ADR16, Proposition 5.2], we need to consider the three different types
of discontinuities (i.e. shocks, contact discontinuities and rarefaction shocks) that may arise
at some point xi ∈ ]xin, xout[ with left and right values Wi and Wi+1 respectively. By the
Green Gauss-Formula, (1.3.14) is equivalent to∫ T

0

{∑
i

ẋi(t)∆Ej
i (t)−∆Qj

i (t)
}
ϕ(t, xi(t)) dt,

where ∆Ej
i = Ej(Wi+1) − Ej(Wi), ∆Qj

i = Qj(Wi+1) −Qj(Wi) and ẋi = σs(Wi,Wi+1) is the
speed of the discontinuity given by the Rankine-Hugoniot condition (1.1.6). Neglecting the
time dependence, we set

ŝji := ẋi∆Ej
i −∆Qj

i ,

and we consider separately the different types of waves in the following.
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1. If the discontinuity is a shock, it holds wi = wi+1 and vi > vi+1.
For j = 1:

• If v̄ < vi+1, it follows that also v̄ < vi. Thus,

ŝ1i =
R(vi+1, wi)vi+1 −R(vi, wi)vi

R(vi+1, wi)−R(vi, wi)

{
1− R(vi+1, wi)

R(v̄, wi)
−
(
1− R(vi, wi)

R(v̄, wi)

)}

−

{
v̄ − R(vi+1, wi)vi+1

R(v̄, wi)
−
(
v̄ − R(vi, wi)vi

R(v̄, wi)

)}
= 0.

• If v̄ ≥ vi, it follows that v̄ > vi+1 and we directly obtain ŝ1i = 0 since
E1(Wi) = E1(Wi+1) = Q1(Wi) = Q1(Wi+1) = 0.

• If v̄ ∈ [vi+1, vi[ and thus E1(Wi+1) = Q1(Wi+1) = 0, it holds

ŝ1i = Q1(Wi)− ẋiE1(Wi) = v̄ − R(vi, wi)vi
R(v̄, wi)

− ẋi

(
1− R(vi, wi)

R(v̄, wi)

)
≥ 0, (1.3.15)

since R(v̄, wi)v̄ ≥ R(vi, wi)vi + ẋi
(
R(v̄, wi)−R(vi, wi)

)
≥ 0 by concavity of ρ 7→

Q(ρ, wi) = ρV(ρ, wi), which is illustrated by Figure 1.15.

R(v, w)

R(v, w)v

R(vi, wi) R(vi+1, wi)

R(v̄, wi)

R(v̄, wi)v̄

R(vi, wi)vi

Figure 1.15: Graphical proof of inequality (1.3.15). The slope of the blue line is given by ẋi.

For j = 2:

ŝ2i =
R(vi+1, wi)vi+1 −R(vi, wi)vi

R(vi+1, wi)−R(vi, wi)

{
R(vi+1, wi)|w̄ − wi| − R(vi, wi)|w̄ − wi|

}
−
{
R(vi+1, wi)vi+1|w̄ − wi| − R(vi, wi)vi|w̄ − wi|

}
= 0.

2. If the jump is a contact discontinuity, it holds ẋi = vi = vi+1.
For j = 1:
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1.3. Existence of entropy weak solutions

• If vi = vi+1 ≤ v̄, we directly obtain ŝ1i = 0,
since E1(Wi) = E1(Wi+1) = Q1(Wi) = Q1(Wi+1) = 0.

• If vi = vi+1 > v̄, then

ŝ1i = ẋi

{
1− R(vi+1, wi+1)

R(v̄, wi+1)
−
(
1− R(vi, wi)

R(v̄, wi)

)}

−

{
v̄ − R(vi+1, wi+1)ẋi

R(v̄, wi+1)
−
(
v̄ − R(vi, wi)ẋi

R(v̄, wi)

)}
= 0.

For j = 2:

ŝ2i = ẋi
{
R(vi+1, wi+1)|w̄ − wi+1| − R(vi, wi)|w̄ − wi|

}
−
{
R(vi+1, wi+1)ẋi|w̄ − wi+1| − R(vi, wi)ẋi|w̄ − wi|

}
= 0.

3. Finally, if the discontinuity is a ε-rarefaction, it holds wi = wi+1 and vi < vi+1 with
vi+1 = vi + ε. By similar calculations as for the shock case, we obtain that ŝ2i = 0,
and ŝ1i = 0 if v̄ < vi or v̄ ≥ vi+1. However, if v̄ ∈ [vi, vi+1[, it follows that E1(Wi) =
Q1(Wi) = 0 and, by the same concavity argument as above, we compute that ŝ1i ≤ 0.
Moreover,

ŝ1i = ẋi E1(Wi+1)−Q1(Wi+1)

=
R(vi+1, wi+1)vi+1 −R(vi, wi)vi

R(vi+1, wi+1)−R(vi, wi)

(
1− R(vi+1, wi+1)

R(v̄, wi+1)

)
− v̄ +

R(vi+1, wi+1)vi+1

R(v̄, wi+1)
.

Let us set φ(ρ) := R(V(ρ, wi), wi)V(ρ, wi) = ρV(ρ, wi), which is a strictly concave
function by assumption (II.b), and rewrite the above quantity as

ŝ1i =
φ(ρi+1)− φ(ρi)

ρi+1 − ρi

(
1− ρi+1

ρ̄

)
− V(ρ̄, wi) +

φ(ρi+1)

ρ̄

= φ̇(ρi+1/2)
ρ̄− ρi+1

ρ̄
− φ(ρ̄)− φ(ρi+1)

ρ̄

= φ̇(ρi+1/2)
ρ̄− ρi+1

ρ̄
− φ̇(ρ̃)

ρ̄− ρi+1

ρ̄

= φ̈(ρ̂)(ρi+1/2 − ρ̃)
ρ̄− ρi+1

ρ̄

≥ min
ρ∈[0,R(wi)]

φ̈(ρ) (ρi − ρi+1)

≥ −C(vi+1 − vi),

for some constant C > 0, with 0 ≤ ρi+1 < ρ̃ < ρ̂ < ρi+1/2 < ρi and ρi+1 < ρ̃ < ρ̄ ≤ ρi.

Above, we observed that ρ̄−ρi+1

ρ̄ < 1.

Applying the same argument as in the proof of [ADR16, Proposition 5.2], we conclude that
for any fixed δ > 0, there exists ĥ > 0 such that for all h ≥ ĥ it holds∫ T

0

∫ xout

xin

{
Ej(W h)∂tϕ+Qj(W h)∂xϕ

}
dxdt +

∫ xout

xin

Ej(W h
0 (x))ϕ(0, x)dx ≥ −δ. (1.3.16)
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Concerning the entropy boundary condition (1.3.3), we observe that it is guaranteed by Propo-
sition 3 for those cases in Proposition 5, where it holds W h(t, xin+) ∈ BRie

L (ρhin(t), w
h
in(t))

⊂ BEnt
L (ρhin(t), w

h
in(t)) and W h(t, xout−) ∈ BRie

R (ρhout(t), w
h
out(t)) = BEnt

R (ρhout(t), w
h
out(t)).

However, due to the discretization of the domain Wh, in some cases the approximate so-
lution’s traces (vh, wh) are states that do not belong to the admissible Riemann set, but
|vh − vhcr| < ε. In these cases, it holds

βj(W h(t, xin+),W h
in(t)) ≤ Cε or βj(W h(t, xout),W

h
out(t)) ≥ −Cε,

for some constant C > 0. We refer to Appendix A for a detailed analysis of these cases.
Therefore, for any fixed δ > 0, there exists ĥ > 0 such that for all h ≥ ĥ it holds

ess lim
x→xin+

∫ T

0
βj(W h(t, x),W h

in(t))γ(t)dt ≤ δ,

ess lim
x→xout−

∫ T

0
βj(W h(t, x),W h

out(t))γ(t)dt ≥ −δ.

Thus, following the proof of [CF99a, Theorem 4.1], the approximate WFT-solution W h sat-

isfies for any test function ϕ ∈ C∞
c

(
]−∞, T [×R;R0+

)
and any W2 ∈ W the inequality∫ T

0

∫ xout

xin

{
αj(W h(t, x),W2)∂tϕ+βj(W h(t, x),W2)∂xϕ

}
dxdt+

∫ xout

xin

αj(W h
0 (x),W2)ϕ(0, x)dx

+K

{∫ t

0

∣∣∣W h
in(t)−W2

∣∣∣ϕ(t, xin)dt + ∫ t

0

∣∣∣W h
out(t)−W2

∣∣∣ϕ(t, xout)dt} ≥ −3δ,

(1.3.17)

for some K > 0 and h sufficiently large.
Moreover, since the construction of W h is based on the Riemann solver (see Definition 1)
and the Rankine-Hugoniot conditions hold at rarefaction fronts, the approximate solution is
a weak solution in the sense of Definition 5. Therefore, letting h → ∞, we show that W is a
weak solution.
Letting now h → ∞ in (1.3.17), due to the L1 convergence of {W h}h to W , the equation
yields to∫ T

0

∫ xout

xin

{
αj(W (t, x),W2)∂tϕ+ βj(W (t, x),W2)∂xϕ

}
dxdt +

∫ xout

xin

αj(W0(x),W2)ϕ(0, x)dx

+K

{∫ t

0
|Win −W2|ϕ(t, xin)dt +

∫ t

0
|Wout −W2|ϕ(t, xout)dt

}
≥ 0,

for j ∈ {1, 2}. Using again [CF99a, Theorem 4.1], we conclude that the limit function W is
indeed a entropy weak solution in the sense of Definition 4.

We emphasize again that, with our choice of the entropy-flux pairs, the entropy weak solution
W can include vacuum states which do not belong to the Riemann boundary set.

Remark 15. We remark that our definition of the entropy weak solution is a weaker for-
mulation than the one in [CF99a, Definition 4.2] due to the loss of the L1 continuity in
time. Moreover, our entropies E1 in (1.2.5a) are not strictly convex. However, [CF99a, The-
orem 4.1] still applies, since convexity there is only needed to deal with the strong initial
condition [CF99a, equation (4.8)], which we consider in weak form.
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Appendix A

Remark 16. The choice of the Riemann solver of Definition 1, Case 8, although inspired
by reality, induces some extra difficulties in treating the problem, as the presence of infinite
speed waves and the need of “well-prepared” initial data, see Remark 3. We conjecture that
a similar existence result could be proved, maybe with less adjustments, using the Riemann
solver proposed in Figure 1.2.

Appendix A

Approximate entropy boundary condition

In cases (B.R.1), (C.L.1), (C.L.3), (C.R.2) and (C.R.4) of Proposition 5, we may observe
boundary states W h

M ′ of the discretized solution not belonging to the boundary Riemann set,
i.e. W h

M ′ ̸∈ BRie
i , i ∈ {R,L}. For these particular cases, we prove below that the entropy

boundary condition (1.2.7) is satisfied up to an error which vanishes with the discretization
grid mesh when passing to the limit in Proposition 7. Again, for notational simplicity, we
drop the h-index in the following.
Starting with the left boundary cases ((C.L.1) and (C.L.3)), we defineWin = (vin, win) = W+

B .
It holds ρin = R(vin, win) > ρcr(win), but we may have ρM ′ = R(vM ′ , win) < ρcr(win), which
implies vM ′ > vin. Therefore, it suffices to consider in Equation (1.2.8) the case v̄ ∈ [vin, vM ′ [,
otherwise we directly obtain that β1(WM ′ ,Win) = 0. Since we reach WM ′ from Win by a
negative rarefaction wave, it must hold that ρM ′vM ′ ≥ ρinvin. If v̄ ∈ [vin,V(τ(ρM ′), win)], we
also have ρM ′vM ′ ≥ R(v̄, win)v̄ = ρ̄v̄ which leads to β1(WM ′ ,Win) ≤ 0 in (1.2.8). However, if
v̄ ∈ ]V(τ(ρM ′), win), vM ′ [, it holds ρM ′vM ′ < ρ̄v̄ and β1(WM ′ ,Win) > 0.
By defining φin(ρ) := R(V(ρ, win)), win)V(ρ, win), we compute

β1(WM ′ ,Win) =
1

ρ̄
(φin(ρ̄)− φin(ρM ′))

=
1

ρ̄
φ̇in(ρ̂)(ρ̄− ρM ′)

=
1

ρ̄
φ̇in(ρ̂)(R(v̄, win)−R(vM ′ , win))

=
1

ρ̄
φ̇in(ρ̂)Rv(ṽ, win)(v̄ − vM ′)

≤ 1

ρ̄
max

ρ∈[0,R(wmax)]

∣∣φ̇in(ρ)
∣∣ max
v∈[0,wmax]

∣∣Rv(v, win)
∣∣(vM ′ − v̄)

≤ Cε,

for some C > 0, ρM ′ < ρ̂ < ρ̄ and v̄ < ṽ < vM ′ .
Moreover, since wM ′ = win and therefore sgn

(
R(vin, win)(w̄ − win)

)
=

sgn
(
R(vM ′ , wM ′)(w̄ − wM ′)

)
in (1.2.9a), we compute β2(WM ′ ,Win) = 0.

Considering now the right boundary cases (B.R.1), (C.R.2) and (C.R.4), we define

Wout = (vout, wout) =

{
WB if (B.R.1),

W+
B if (C.R.2), (C.R.4).

Moreover, we use again the fact that BRie
R (R(vout, wout), wout) = BRie

R (R(vout, w), w)) (see
Remark 8).

45



Chapter 1. The initial boundary value problem for second order traffic flow models with
vacuum: existence of entropy weak solutions

It holds R(vout, wM ′) < ρcr(wM ′), but we may have ρM ′ = R(vM ′ , wM ′) > ρcr(wM ′), which
implies vM ′ < vout. As before, it suffices to consider the case v̄ ∈ ]vM ′ , vout] in (1.2.8), otherwise
we directly obtain that β1(WM ′ ,Wout) = 0. Since we reach Wout from WM ′ by a positive
rarefaction wave, it must hold that ρM ′vM ′ ≥ R(vout, wM ′)vout. If v̄ ∈ [V(τ(ρM ′), wM ′), vout],
we also have ρM ′vM ′ ≥ R(v̄, wM ′)v̄ = ρ̄v̄, which leads to β1(WM ′ ,Wout) ≥ 0. However,
if v̄ ∈ ]vM ′ ,V(τ(ρM ′), wM ′)[, we obtain ρM ′vM ′ < ρ̄v̄ and β1(WM ′ ,Wout) < 0. By defining
φout(ρ) := R(V(ρ, wM ′), wM ′)V(ρ, wM ′), we compute, as in the left boundary case,

β1(WM ′ ,Wout) = −1

ρ̄
(φout(ρ̄)− φout(ρM ′))

= −1

ρ̄
φ̇out(ρ̂)Rv(ṽ, wM ′)(v̄ − vM ′)

≥ −1

ρ̄
max

ρ∈[0,R(wmax)]

∣∣φ̇out(ρ)
∣∣ max
v∈[0,wmax]

∣∣Rv(v, wM ′)
∣∣(v̄ − vM ′)

≥ −Cε,

for some C > 0, ρ̄ < ρ̂ < ρM ′ and vM ′ < ṽ < v̄.
Finally, we have β2(WM ′ ,Wout) ≥ 0, since it holds wM ′ = wout in (B.R.1) and (C.R.2), and
ρout = 0 in (C.R.4).

46



Chapter 2

Numerical methods

After proving the existence of an entropy solution to the IBVP (1.0.1), we introduce in this
chapter some numerical schemes that have been used in [WBG23, WBGG22, WGV23] for
computing its approximate solutions.

As typically done when constructing finite volume approximations of hyperbolic systems of
conservation laws, we start by discretizing the space-time domain: given a (possibly non-
uniform) spatial discretization {x0, . . . , xM} of the interval ]xin, xout[ with x0 = xin and
xM = xout, we set the cell sizes ∆xj := xj − xj−1 for j ∈ {1, . . . ,M} and a time step ∆t
satisfying a suitable stability condition which will be specified later.
As introduced in Section 1.2.2, we denote by u = (ρ, y)⊤ the vector of the conservative
variables (where we set y = ρw). Thus, we construct a finite volume [LeV02] approximate
solution of (1.0.1) of the form u∆xj (t, x) = unj = (ρnj , ρ

n
jw

n
j )

⊤ = (ρnj , y
n
j )

⊤ for (t, x) ∈ Cn
j =

[tn, tn+1[×[xj−1, xj [ and n ∈ N. The approximate traffic speed in section j at time n∆t is
given by vnj = V(ρnj , wn

j ), where the speed function V satisfies the assumptions in (II).
To this end, we approximate the initial data with piece-wise constant functions

ρ0j =
1

∆xj

∫ xj

xj−1

ρ0(x) dx, y0j =
1

∆xj

∫ xj

xj−1

ρ0(x)w0(x) dx, for j ∈ {1, . . . ,M},

and we iterate in time according to the conservation formulas

un+1
j = unj − ∆t

∆xj

(
Fn
j − Fn

j−1

)
, for j ∈ {2, . . . ,M − 1}, (2.0.1)

where

Fn
j = (F ρ,n

j , F y,n
j )⊤ = (F ρ,n

j , wn
j F

ρ,n
j )⊤ (2.0.2)

denotes the numerical fluxes at the space position x = xj and in the time interval [tn, tn+1[.
In the following sections, we present different choices for the computation of the flux F ρ,n

j

and two different implementation possibilities for the boundary conditions at j ∈ {1,M}.

2.1 Godunov scheme

The most widely used numerical scheme for traffic flow macroscopic simulations is the finite
volume Godunov scheme [God59] in its Cell Transmission Model (CTM) version [Dag94],
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where the fluxes across cell interfaces are given by the minimum of the sending capacity
(demand D) of the upstream cell and the receiving capacity (supply S) of the downstream
one. This supply-demand formulation of the Godunov scheme, see e.g [LHSM05], allows for
sharp approximations since the underlying Riemann problem is solved explicitly for each time
step and between each cell [Fan13, PS15].
Thus, the flux F ρ,n

j in Equation (2.0.2) is computed for j ∈ {1, . . . ,M − 1} by

F ρ,n
j = min

{
Dρ(unj ), S

ρ(unj+1;w
n
j )
}
,

where the demand D is defined by D(uj) =
(
Dρ(uj) , wjD

ρ(uj)
)⊤

with

Dρ(uj) =

{
Q(ρj , wj) if ρj ≤ ρcr(wj),

Q(ρcr(wj), wj) if ρj > ρcr(wj),

and the supply S given by S(uj+1;wj) =
(
Sρ(uj+1;wj) , wjS

ρ(uj+1;wj)
)⊤

with

Sρ(uj+1;wj) =

Q(ρcr(wj), wj) if ρj+ 1
2
≤ ρcr(wj),

Q(ρj+ 1
2
, wj) if ρj+ 1

2
> ρcr(wj) .

The critical density ρcr is defined in (1.2.2). Moreover, ρj+ 1
2
corresponds to the density of

the intermediate state in the solution of the Riemann problem corresponding to (ρj , wj) and
(ρj+1, wj+1), implicitly defined by V(ρj+ 1

2
, wj) = V(ρj+1, wj+1) if V(ρj+1, wj+1) < wj and by

ρj+ 1
2
= 0 if V(ρj+1, wj+1) ≥ wj [LHSM05].

Note that, taking wn
j = constant in the above equations, we recover the first order LWR

model in its CTM version. Moreover, to ensure the stability of the numerical solution, in
particular unj ∈ Ω̃, we consider the following Courant-Friedrichs-Lewy (CFL) condition

∆t ≤
min

j∈{1,...,M}
∆xj

max
(ρ,w)∈Ω

{
∣∣λ1(ρ, w)

∣∣, ∣∣λ2(ρ, w)
∣∣} . (2.1.1)

2.1.1 Ramp implementation

It is also possible to integrate on- and off-ramp contributions in the second order Godunov
scheme implementation by taking the measured on-ramp and off-ramp fluxes, rρ,nj and sρ,nj

respectively, at position xj and time n∆t into account. To this end, the extended discrete
GSOM equations read for j ∈ {2, . . . ,M − 1}:
if rρ,nj ≥ 0 and sρ,nj = 0 (and rρ,nj−1 = sρ,nj−1 = 0):

un+1
j = unj − ∆t

∆xj

[
min

{
D(unj ),max

{
PjS(u

n
j+1;w

n
j ),S(u

n
j+1;w

n
j )− rnj

}}
− Fn

j−1

]
,

un+1
j+1 = unj+1 −

∆t

∆xj+1

[
Fn
j+1 −min

{
D(unj ) + rnj ,S(u

n
j+1;w

n
j )
}]

;
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if sρ,nj > 0 and rρ,nj = 0 (and rρ,nj−1 = sρ,nj−1 = 0):
un+1
j = unj − ∆t

∆xj

[(
min

{
max

{
D(unj )− snj , (0, 0)

⊤
}
,S(unj+1;w

n
j )
}
+

min{D(unj ), s
n
j }
)
− Fn

j−1

]
,

un+1
j+1 = unj+1 −

∆t

∆xj+1

[
Fn
j+1 −min

{
max

{
D(unj )− snj , (0, 0)

⊤
}
,S(unj+1;w

n
j )
}]

,

where rnj :=
(
rρ,nj , wn

j r
ρ,n
j

)⊤
, snj :=

(
sρ,nj , wn

j s
ρ,n
j

)⊤
. The priority parameter Pj ∈ [0, 1] is

approximated by the number of lanes of cell j divided by the number of lanes of cell j plus
the number of lanes of the corresponding on-ramp. Moreover, we choose the discretization in
such a way that we cannot have two ramps on subsequent cell interfaces.
Regarding the boundary cell values, they will be implemented as explained in Section (2.4.1)
assuming that we cannot have ramps lying on the boundary interfaces.

2.2 Harten-Lax-van-Leer scheme

A cheaper alternative to compute the numerical fluxes in (2.0.1) is to employ the approxi-
mate Harten, Lax and van Leer (HLL) [HLvL83] Riemann solver, as done by Fan and Seibold
[Fan13, FHS14]. Indeed, the explicit computation of the Riemann solution at every time step
can be quite expensive. Instead, the HLL solver approximates the exact Riemann solution by
a single constant intermediate state. Although the approximated scheme entails drawbacks
due to the averaging over the actual wave structure, it can give good quality solutions in the
context of 2×2 hyperbolic systems. Furthermore, the method constructed by the HLL scheme
converges to a weak entropy solution which was proven by Harten, Lax and van Leer [HLvL83].

In this case, the numerical flux F ρ,n
j in (2.0.2) is calculated for j ∈ {1, . . . ,M − 1} by

F ρ,n
j =


Q(ρnj , w

n
j ) if Sn

1,j ≥ 0,

Qn
HLL,j if Sn

1,j < 0 ≤ Sn
2,j ,

Q(ρnj+1, w
n
j+1) if Sn

2,j < 0,

(2.2.1)

where S1,j < S2,j are the approximate wave speeds at cell interface j. In the literature, one
can find a variety of approximations for the wave speeds. In this work we refer to [Dav88,
Equation 4.5] and we make use of the characteristic speeds (1.1.2) of the 2 × 2 hyperbolic
system, i.e.

S1,j = min {λ1(ρj , wj), λ1(ρj+1, wj+1)},
S2,j = max {λ2(ρj , wj), λ2(ρj+1, wj+1)}.

(2.2.2)

Moreover, the HLL-flux Qn
HLL,j is given by

QHLL,j =
S2,jQ(ρj , wj)− S1,jQ(ρj+1, wj+1) + S1,jS2,j(ρj+1 − ρj)

S2,j − S1,j
.

We remark that since λ2(ρ, w) = V(ρ, w) ≥ 0 for all (ρ, w) ∈ Ω, the case Sn
2,j < 0 in Equa-

tion (2.2.1) never occurs. Additionally, in the specific scenario of two subsequent vacuum
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states, i.e. ρnj = 0 = ρnj+1, it holds that S
n
1,j = min {wn

j , w
n
j+1} = max {wn

j , w
n
j+1} = Sn

2,j and
F ρ,n
j = 0.

For numerical stability, we impose the same CFL condition (2.1.1) as for the Godunov scheme.

2.3 Hilliges-Weidlich scheme

For the scalar case, i.e. taking w = constant, a much easier and cheaper alternative is offered
by an upwind type finite volume scheme proposed in [HW95] and more extensively studied
in [BGKT08] for multi-class models. In this section, we propose an extension of this scheme
to second order models, which we will refer to as Hilliges-Weidlich (HW) scheme [HW95].
Moreover, we prove that the scheme is positivity preserving and obeys a maximum principle
under the hypothesis of a unique zero-speed density.

Under the CFL condition

∆t ≤
min

j∈{1,...,M}
∆xj{∥∥V(ρ, w)∥∥

L∞(Ω)
+R(wmax)

∥∥Vρ(ρ, w)
∥∥
L∞(Ω)

} , (2.3.1)

the numerical flux in (2.0.2) is chosen to be

F ρ,n
j = ρnj V+(ρnj+1, w

n
j+1), (2.3.2)

where we only consider the non-negative part of the speed function V, thus
V+(ρ, w) := max{V(ρ, w), 0}. Indeed, since contact discontinuity waves have positive speed
and the variable w is advected with ρv, the choice (2.0.2), (2.3.2) gives a good approximation
of the flux at the interface, which corresponds to the Riemann problem given by UL = (ρnj , w

n
j )

and UM = (ρn
j+ 1

2

, wn
j ). Here, UM defines the intermediate state of the solution to the Riemann

problem corresponding to UL and UR = (ρnj+1, w
n
j+1), where ρn

j+ 1
2

is implicitly defined by

V(ρn
j+ 1

2

, wn
j ) = V(ρnj+1, w

n
j+1), see Figure 2.1. Therefore we have

F ρ,n
j = ρnj V+(ρnj+1, w

n
j+1) = ρnj V+(ρn

j+ 1
2

, wn
j ),

which reduces to the scalar case [BGKT08, HW95].

Proposition 8. Under the CFL condition ∆t ≤
min

j∈{1,...,M}
∆xj∥∥V(ρ, w)∥∥
L∞(Ω)

, which is weaker than (2.3.1),

the numerical scheme (2.0.1),(2.0.2),(2.3.2) is positivity preserving.

Proof. Let us assume that at time t = tn, the approximate solution satisfies ρnj ≥ 0 for all
j ∈ {1, . . . ,M}. Then we get

ρn+1
j = ρnj − ∆t

∆xj

(
ρnj V+(ρnj+1, w

n
j+1)− ρnj−1 V+(ρnj , w

n
j )
)

= ρnj

(
1− ∆t

∆xj
V+(ρnj+1, w

n
j+1)

)
+

∆t

∆xj
ρnj−1 V+(ρnj , w

n
j ) ≥ 0,

since ∆tV+(ρnj+1, w
n
j+1) ≤ ∆xj by assumption.
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ρ

ρv

Un
j

Un
j+1

0

Un
j+ 1

2

tn

x

tn+1

xj

Un
j Un

j+1

Un
j+ 1

2

Figure 2.1: Left: Phase-plane representation of an example of solution to the Riemann prob-
lem corresponding to UL = Un

j = (ρnj , w
n
j ) and UR = Un

j+1 = (ρnj+1, w
n
j+1), consisting of a

shock joining UL to UM = Un
j+ 1

2

= (ρn
j+ 1

2

, wn
j ) and a contact discontinuity from UM to UR.

Right: Space-time representation of the Riemann solution at the corresponding cell interface.

Proposition 9. Under the CFL condition (2.3.1) and if R(w) =Rmax for all w∈ [wmin, wmax],
the approximate solution constructed by (2.0.1),(2.0.2),(2.3.2) satisfies ρnj ≤ Rmax for all
j ∈ {1, . . . ,M} and n ∈ N. In particular it holds that V(ρnj , wn

j ) ≥ 0 for all j ∈ {1, . . . ,M}
and n ∈ N.

Proof. We assume that at time t = tn, the approximate solution satisfies ρnj ≤ Rmax for all
j ∈ {1, . . . ,M}. Then we get

ρn+1
j = ρnj − ∆t

∆xj

[
ρnj V+(ρnj+1, w

n
j+1)− ρnj−1 V+(ρnj , w

n
j )
]

= ρnj − ∆t

∆xj

[
ρnj V(ρnj+ 1

2

, wn
j )− ρnj−1 V(ρnj , wn

j )

]
= ρnj − ∆t

∆xj

[
ρnj V(ρnj+ 1

2

, wn
j )± ρnj V(ρnj , wn

j )− ρnj−1 V(ρnj , wn
j )

]
= ρnj − ∆t

∆xj

[
ρnj Vρ(ξ

n
j , w

n
j )

(
ρn
j+ 1

2

− ρnj

)
+ V(ρnj , wn

j )
(
ρnj − ρnj−1

)]

= ρnj

[
1− ∆t

∆xj

(
bnj + anj

)]
+ ρn

j+ 1
2

∆t

∆xj
bnj + ρnj−1

∆t

∆xj
anj ,

for some ξnj ∈ [min{ρnj , ρnj+ 1
2

},max{ρnj , ρnj+ 1
2

}] and setting anj := V(ρnj , wn
j ) ≥ 0 and bnj :=

−ρnj Vρ(ξ
n
j , w

n
j ) ≥ 0 for all j ∈ {1, . . . ,M}. Moreover, by (2.3.1), we get 1− ∆t

∆xj
(anj + bnj ) ≥ 0

and therefore we conclude

ρn+1
j ≤ Rmax

[
1− ∆t

∆xj

(
bnj + anj

)]
+Rmax

∆t

∆xj
bnj +Rmax

∆t

∆xj
anj = Rmax.

We remark that, in the general case where R(w) ̸= Rmax for all w ∈ [wmin, wmax], the
positivity of the speed cannot be guaranteed. This is why we take V+ in (2.3.2).
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2.4 Boundary cell implementation

In the Godunov scheme, the boundary conditions are typically given in terms of flow. This is
motivated by the fact that the traffic flow is usually the most reliable quantity measured by
magnetic loop detectors. Consequently, we expect a lower error in our simulation when using
better quality data.
In the following, we denote by q(t, xin) = qnin (resp. q(t, xout) = qnout) the inflow (resp. outflow)
for t ∈ [tn, tn+1[, measured by the left (resp. right) boundary loop detector. Thus, the
boundary conditions (1.0.1c) and (1.0.1d) are taken into account by setting

un+1
1 = un1 − ∆t

∆x1

Fn
1 −min

{
qnin, S

ρ(ũn;wn
in)
}
·

(
1

wn
in

) ,

un+1
M = unM − ∆t

∆xM

min
{
Dρ(unM ), qnout

}
·

(
1

wn
M

)
− Fn

M−1

 ,

(2.4.1)

where wn
in = w(t, xin), t ∈ [tn, tn+1[ and ũn = (ρ̃n, ρ̃nwn

in)
⊤ with ρ̃n = R(vn1 , w

n
in) if v

n
1 < wn

in

and ρ̃n = 0 otherwise.
However, since the HLL and HW scheme are not implemented in demand and supply for-
mulation, the boundary data are given in terms of the density ρ and the Lagrangian vehicle
property w. Analogously to the initial data, they are approximated by piece-wise constant
functions, thus the numerical scheme reads for j ∈ {1,M} as

un+1
1 =

1

∆t

∫ tn+1

tn
uin(t) dt,

un+1
M =

1

∆t

∫ tn+1

tn
uout(t) dt,

(2.4.2)

where ub =
(
ρ(t, xb), ρ(t, xb)w(t, xb)

)⊤
and b ∈ {in, out}.

We remark that the implementation of the boundary data can be also done by adding ghost
cells to the edges of the domain, see e.g. [Fan13, PS15]. However, in our later considered
traffic scenarios, the position of the boundary loop detectors will coincide with the boundary
cell interfaces, therefore we decide for the implementation as stated in (2.4.2).

Remark 17. The implementation of density boundary conditions is not only restricted to
the HLL and HW scheme. It can also be applied to the Godunov scheme and it has an
effect on the simulation output. If the application is traffic flow reconstruction, the flow data
lead naturally to better results. However, if we are interested in travel time predictions, the
density data implementation can be more favorable (see Section 6.1).

2.5 Data projection

Since initial and boundary conditions provided by data can lie outside the domain Ω (1.1.1), we
perform a data projection whenever such an outlier occurs. In the data projection Algorithm
1, illustrated in Figure 2.2, we differentiate between the options where the density ρ exceed
the maximum density R(wmax) (see Case 1) and where the Lagrangian vehicle property w
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exceed wmax (see Case 2 and Case 3). In the latter option, the projected data point depends
finally on the absolute distance between the original flux ρv and the projected one.

Algorithm 1 Data projection algorithm for IBVP (1.0.1).

Require: Initial or boundary data U = (ρ, w) with corresponding speed v;
if ρ > R(wmax) then

Case 1: replace U by Û = (R(v, wmax), wmax);
end if
if w > wmax then

compute ρ̂ = R(v, wmax) and v̂ = V(ρ, wmax);
if |ρ̂v − ρv| < |ρv̂ − ρv| then

Case 2: replace U by Û = (ρ̂, wmax);
else

Case 3: replace U by Û = (ρ, wmax) and v by v̂.
end if

end if

ρ

ρv

0
R(wmax)

v
U

Û

(a) Case 1.

ρ

ρv

0
R(wmax)

v
U

Û

(b) Case 2.

ρ

ρv

0
R(wmax)

v

U

Û

(c) Case 3.

Figure 2.2: Illustration of the three cases in the data projection algorithm 1.

Remark 18. Due to the fact that the numerical scheme is run by using only initial and
boundary data, the data projection is only necessary for outliers in ρ0, w0, win and possibly
also ρb, b ∈ {in, out}, if the boundary data are given in terms of density. Moreover, we remark
that the quantity w cannot be directly measured by the loop detectors, instead it is calculated
by inverting the velocity function V whose inverse is well-defined due to the properties stated
in (II).

2.6 Numerical tests

In this section, we provide some tests exploring the behavior of solutions to the Riemann
problem for (I) with the ARZ speed function V(ρ, w) = w − p(ρ) with p(ρ) = ρ and initial
data of the form (ρ, w)(0, x) = UL = (ρL, wL) if x ≤ 0.5 and (ρ, w)(0, x) = UR = (ρR, wR)
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if x > 0. We compare the solutions at T = 0.5 computed on the space interval [0, 1] by the
Godunov, HLL and HW schemes with uniform cell sizes ∆xj = ∆x for j ∈ {1, . . . ,M} and
with absorbing boundary conditions, i.e.

un+1
1 = un1 − ∆t

∆x1

(
Fn
1 − Fn

0

)
, un+1

M = unM − ∆t

∆xM

(
Fn
M − Fn

M−1

)
,

where Fn
0 = (ρn1v

n
1 , w

n
1 ρ

n
1v

n
1 )

⊤ and Fn
M = (ρnMvnM , wn

MρnMvnM )⊤. The numerical solutions
are also compared with the entropy admissible analytical solutions defined in Definition 1
(denoted as Analytical Solution 1 - AS1).
The code is implemented in Matlab [MAT22] on a laptop with a 4 core 8 thread 2.3 GHz
Intel Core i7 processor and 16GB of RAM.

2.6.1 Solutions without vacuum states

In the following, we compare the solutions of the numerical schemes for Riemann problems
where vacuum situations do not occur. This analysis refers to Cases 1-5 in Definition 1. Since
a shock wave (Case 1), rarefaction wave (Case 3) and a contact discontinuity (Case 5) appear
also in Cases 2 and 4, it is sufficient to consider these two.
To compare the performance of the proposed schemes, we consider the L1-error L1(∆x) and

the numerical order of accuracy γ(∆x) for different cell sizes ∆x ∈
{

1
100 ,

1
200 ,

1
400 ,

1
800 ,

1
1600

}
at time T , defined respectively by

L1(∆x) =
1

M

M∑
j=1

{∣∣∣ρ T
∆t
j − ρ̄

∣∣∣+ ∣∣∣y T
∆t
j − ȳ

∣∣∣},
γ(∆x) = log2

(
L1(2∆x)

L1(∆x)

)
,

(2.6.1)

where ρ̄ and ȳ denote the cell averages of the exact Riemann solution AS1 at time T . Addi-
tionally, we also compare the times tc (in seconds) which are needed to compute the numerical
solutions at T . To this end, we choose the initial data as follows:

• Test 1: UL = (0.3, 0.5), UR = (0.7, 0.8) (see Figure 2.3 and Table 2.1),
whose solution corresponds to a shock followed by a contact discontinuity (see Case 2).

• Test 2: UL = (0.5, 0.7), UR = (0.3, 0.9) (see Figure 2.4 and Table 2.2),
whose solution corresponds to a rarefaction wave followed by a contact discontinuity
(see Case 4).

We observe in Figure 2.3 and 2.4 that all three numerical schemes capture well AS1, however
the graphs referring to the HW scheme are slightly more diffusive due to higher numerical
viscosity. Therefore, its L1-error and order of convergence exceed the ones of the other schemes
(see Table 2.1 and 2.2). The performance of the Godunov and HLL scheme are very similar
noting that the Godunov scheme leads to a lower L1-error in Test 1 (except for ∆x = 1

1600)
and a higher L1-error in Test 2. Moreover we emphasize that, as expected for first order
schemes with discontinuous solutions, the order of convergence is about 0.5. Concerning the
computation time, we observe for all schemes an increasing time tc for decreasing mesh sizes
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∆x. Moreover, the HW scheme is the cheapest among the schemes, whereas the HLL scheme
is slightly more expensive than the Godunov scheme which can be explained by the need to
calculate the eigenvalues of the system (see Equations (2.2.2)).

0.2 0.3 0.4 0.5 0.6 0.7

x

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(a) Density ρ.

0.2 0.3 0.4 0.5 0.6 0.7

x

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

w

Godunov
HLL
HW
AS1

(b) Lagrangian marker w.

0.2 0.3 0.4 0.5 0.6 0.7

x

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

v

(c) Speed v.

Figure 2.3: Test 1. Solutions of the Riemann problem with UL = (0.3, 0.5), UR = (0.7, 0.8),
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to
the analytical solution.

Godunov HLL HW

1/∆x L1(∆x) γ(∆x) tc L1(∆x) γ(∆x) tc L1(∆x) γ(∆x) tc

100 13.52 · 10−3 − 0.002 13.63 · 10−3 − 0.003 15.37 · 10−3 − 0.001

200 9.46 · 10−3 0.515 0.007 9.51 · 10−3 0.520 0.008 10.66 · 10−3 0.528 0.004

400 6.67 · 10−3 0.505 0.010 6.69 · 10−3 0.508 0.011 7.32 · 10−3 0.543 0.005

800 4.74 · 10−3 0.495 0.027 4.74 · 10−3 0.497 0.048 5.02 · 10−3 0.544 0.024

1600 3.37 · 10−3 0.490 0.082 3.37 · 10−3 0.491 0.117 3.47 · 10−3 0.530 0.051

Table 2.1: Test 1. L1-error, numerical order of accuracy and computation time (in seconds)
for the Godunov, HLL and HW scheme at T = 0.5.
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Figure 2.4: Test 2. Solutions of the Riemann problem with UL = (0.5, 0.7), UR = (0.3, 0.9),
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to
the analytical solution.
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Godunov HLL HW

1/∆x L1(∆x) γ(∆x) tc L1(∆x) γ(∆x) tc L1(∆x) γ(∆x) tc

100 17.84 · 10−3 − 0.002 16.56 · 10−3 − 0.003 28.05 · 10−3 − 0.001

200 11.64 · 10−3 0.617 0.003 10.85 · 10−3 0.610 0.005 17.63 · 10−3 0.670 0.003

400 8.03 · 10−3 0.534 0.008 7.47 · 10−3 0.539 0.009 10.77 · 10−3 0.710 0.005

800 5.89 · 10−3 0.447 0.019 5.58 · 10−3 0.421 0.039 6.89 · 10−3 0.646 0.015

1600 4.29 · 10−3 0.458 0.068 4.12 · 10−3 0.438 0.095 4.74 · 10−3 0.540 0.051

Table 2.2: Test 2. L1-error, numerical order of accuracy and computation time (in seconds)
for the Godunov, HLL and HW scheme at T = 0.5.

Next, we are also interested in comparing the performances of the schemes when considering
smooth initial data which is studied in Test 3:

• Test 3: ρ(0, x) = 0.45 exp
(
− (x−0.5)2

2·0.12

)
+ 0.2, w(0, x) = 1.12(x− 0.5)2 + 0.7,

whose solution is smooth (see Figure 2.5 and Table 2.3).

This time, the numerical solutions are compared to the cell averages of a reference solution
which is computed numerically by the Godunov scheme with a fine cell size ∆x = 1

3200 .
Finally, we can reinforce the observations from Test 1 and Test 2, meaning that we observe
again a higher L1-error for the HW scheme and a similar performance between the Godunov
and HLL scheme. This time, the order of convergence is about 1, where HW and HLL showing
in general a slightly higher order than Godunov’s. Moreover, as expected, the HW scheme is
again the fastest performing scheme, followed by the Godunov and finally the HLL one.
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Figure 2.5: Test 3. Solutions of the Riemann problem for smooth initial data
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to a
reference solution.

Summarizing the results for the numerical tests, we come to similar performances in terms of
L1-error and order of convergences for all proposed numerical schemes. Thus, the quality of
the approximation is not significantly impacted by the choice of the numerical scheme since
the slightly higher L1-error in the HW scheme can be neglected. However, if the simulations
need to be executed several times, e.g in an optimization algorithm as in [WGV23, Section
4.2], the choice of the HW can be indeed favorable due to a sensibly lower computation time.
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Godunov HLL HW

1/∆x L1(∆x) γ(∆x) tc L1(∆x) γ(∆x) tc L1(∆x) γ(∆x) tc

100 10.25 · 10−3 − 0.007 10.15 · 10−3 − 0.011 20.85 · 10−3 − 0.005

200 5.37 · 10−3 0.932 0.014 6.72 · 10−3 0.594 0.014 12.36 · 10−3 0.750 0.011

400 2.76 · 10−3 0.963 0.020 3.35 · 10−3 1.006 0.014 6.23 · 10−3 0.988 0.012

800 1.37 · 10−3 1.009 0.058 1.59 · 10−3 1.074 0.060 3.06 · 10−3 1.024 0.036

1600 0.65 · 10−3 1.068 0.085 0.70 · 10−3 1.185 0.129 1.44 · 10−3 1.086 0.056

Table 2.3: Test 3. L1-error, numerical order of accuracy and computation time (in seconds)
for the Godunov, HLL and HW scheme at T = 0.5.

2.6.2 Solutions involving vacuum states

In the following, we analyse the behavior of the numerical schemes when vacuum states oc-
cur. However, as seen in Chapter 1, there is no unique entropy admissible analytical solutions
when vacuum is involved. Thus, we compare the numerical solutions not only with AS1 but
also with the ones proposed by [Fan13], denoted as AS2.
Since the numerical schemes are expressed in conservative variables (ρ, y = ρw)⊤, the La-
grangian vehicle property w is not defined whenever ρ = 0. Therefore, we demonstrate in
this section that, whenever ρnj = 0, setting

wn
j =

wn
k with k = max

i<j
{i : ρni > 0} if ∃ i < j with ρi > 0 and j ∈ {2, . . . ,M},

wn−1
j otherwise,

is coherent with the density component of the Riemann solution stated in Cases 6-9 in Defini-
tion 1. Notice that, due to numerical viscosity, density at vacuum states may not be exactly
zero, affecting the w and v = V(ρ, w) components.
The results for different initial data are discussed in the following tests:

• Test 4: middle vacuum state ρM = 0 (see Figure 2.6).
AS1 consists of a rarefaction from UL = (0.4, 0.5) to (0, 0.5) followed by a contact
discontinuity to UR = (0.1, 0.9) travelling with speed V(UR) = 0.8 (see Case 6).
AS2 is composed of a rarefaction wave connecting UL to (0, 0.5), followed by a vacuum
wave and a contact discontinuity between (0, 0.8) and UR.
While the ρ component is the same for all solutions, the w and v components of the
numerical solutions match AS2, which is L1-stable in the Riemann invariants.

• Test 5: left vacuum state ρL = 0 (see Figures 2.7 and 2.8).
(A) Both analytical solutions are the juxtaposition of a shock from UL = (0, 0.7)
to (0.5, 0.7) and a contact discontinuity, moving at the same speed V(UR) = 0.2 to
UR = (0.3, 0.5) (see Case 7).
(B) AS1 consists of a discontinuity between UL = (0, 0.4) and UR = (0.2, 0.8) travelling
with speed V(UR) = 0.6 (see Case 7).
AS2 is a vacuum wave from UL to (0, 0.6) followed by a contact discontinuity.
We observe that the numerical schemes capture the ρ component, but there is a discrep-
ancy in the Riemann invariants: indeed, due to numerical viscosity, the approximate
solutions consist of a stationary vacuum discontinuity followed by a shock from (0, 0.5)
(resp. (0, 0.8)) to UR.
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• Test 6: right vacuum state ρR = 0 (see Figures 2.9, 2.10 and 2.11).
(A) AS1 consists of a rarefaction wave from UL = (0.3, 0.5) to (0, 0.5) (see Case 8 and
Figure 1.1b).
In AS2, the rarefaction is followed by a vacuum wave from (0, 0.5) to UR = (0, 0.7) (see
Figure 1.2b).
(B) AS1 consists of a rarefaction wave from UL = (0.5, 0.7) to (0, 0.7) (see Case 8 and
Figure 1.1a).
AS2 is composed of a rarefaction from UL to (0.3, 0.7), followed by a contact disconti-
nuity to UR = (0, 0.4) moving with speed V(UR) = 0.4 (see Figure 1.2a).
(C) AS1 consists of a rarefaction wave from UL = (0.3, 0.8) to (0, 0.8) (see Case 8).
AS2 is composed of a shock from UL to (0.5, 0.8) with 0 speed, followed by a contact
discontinuity to UR = (0, 0.3) moving with speed V(UR) = 0.3 (see Figure 1.2d).
In all the cases, the numerical solutions capture AS1 by construction.

• Test 7: two vacuum states ρL = ρR = 0 (see Figures 2.12 and 2.13).
(A) In AS1, the solution is UL = (0, 0.8) (see Case 9).
AS2 is a juxtaposition of a shock shock from UL to (0.6, 0.8) and a contact discontinuity,
moving at the same speed V(UR) = 0.2 to UR = (0, 0.2).
(B) In AS1, the solution is UL = (0, 0.2) (see Case 9).
AS2 consists of a vacuum wave from UL to UR = (0, 0.8).
In all the cases, the numerical solutions capture AS1 by construction.

We observe that in all tests the three numerical schemes show the same behavior for the ρ, w
and v component, whereas we observe again more diffusive graphs for the HW scheme.
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Figure 2.6: Test 4. Solutions of the Riemann problem with UL = (0.4, 0.5), UR = (0.1, 0.9),
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to
the analytical solutions.
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Figure 2.7: Test 5 (A). Solutions of the Riemann problem with UL = (0, 0.7), UR = (0.3, 0.5),
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to
the analytical solutions.
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Figure 2.8: Test 5 (B). Solutions of the Riemann problem with UL = (0, 0.4), UR = (0.2, 0.8),
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to
the analytical solutions.
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Figure 2.9: Test 6 (A). Solutions of the Riemann problem with UL = (0.3, 0.5), UR = (0, 0.7),
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to
the analytical solutions.
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Figure 2.10: Test 6 (B). Solutions of the Riemann problem with UL = (0.5, 0.7), UR = (0, 0.4),
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to
the analytical solutions.
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Figure 2.11: Test 6 (C). Solutions of the Riemann problem with UL = (0.3, 0.8), UR =
(0, 0.3),
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to
the analytical solutions.
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Figure 2.12: Test 7 (A). Solutions of the Riemann problem with UL = (0, 0.8), UR = (0, 0.2),
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to
the analytical solutions.
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Figure 2.13: Test 7 (B). Solutions of the Riemann problem with UL = (0, 0.2), UR = (0, 0.8),
computed by the Godunov, HLL and HW scheme at T = 0.5 with ∆x = 1

800 , compared to
the analytical solutions.
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Chapter 3

Calibration approaches

One important ingredient for macroscopic traffic flow models is the fundamental diagram
which describes a functional relationship between the traffic density and speed or flow. There-
fore, it is necessary to select a suitable speed function V, satisfying the assumptions stated
in Equations (II), in order to implement the model. Usually, this function involves some
unknown parameters which have to be calibrated. In first order macroscopic traffic flow
models a common choice is the triangular flux function, as in [DGK+09, PS15], where the
unknown parameters are the critical density, the capacity, i.e. maximum expected flow on a
road stretch, and the maximum density. In [FHS14], they consider a smooth speed function,
involving again three parameters which are, however, more difficult to interpret from a traffic
viewpoint. Thus, we consider the speed function

V(ρ, w) = w

1− exp

(
C

V

(
1− R

ρ

)) , (3.0.1)

which is derived from Newell-Franklin [Fra61, New61] and where the parameters to be iden-
tified are summarized in the vector θ = (V,C,R) with V > 0 the maximum speed, R > 0 the
maximum density and C > 0 the wave propagation speed in congestion. Indeed we can prove
that for this choice it holds that

V(ρ, w) ≥ 0, V(0, w) = lim
ρ→0

V(ρ, w) = w, V(R,w) = 0,

Qρρ(ρ, w) = 2Vρ(ρ, w) + ρVρρ(ρ, w) = −w exp

(
C

V

(
1− R

ρ

))
C2

V 2

R2

ρ3
< 0 and

Vw(ρ, w) = 1− exp

(
C

V

(
1− R

ρ

))
> 0.

In particular, the condition V(0, w) = w identifies the Lagrangian marker w as a driver de-
pendent empty road velocity, meaning that the higher w, the more aggressive the driver tends
to be. We emphasize that the speed function for the first order LWR model is obtained by
fixing w = V in (3.0.1).
The fundamental diagrams, i.e. the density-speed or density-flow mapping described by the
model speed function (3.0.1), are illustrated in Figure 3.1, where the lower and upper bound-
ary curves correspond to wmin and wmax respectively. Note that all curves are equipped with
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the same maximum density R and critical density ρcr since for our choice of V it holds that
R(w) = R and ρcr(w) = ρcr for all w ∈ [wmin, wmax]. We observe that there can occur two
cases such that the traffic flow is null: either if the road is empty (density is null) or the
road is fully congested (density reaches its maximum value and speed is zero). Moreover, we
call the part for densities lower (resp. higher) than the critical one free flow (resp. congested)
region. This separation allows the Godunov scheme with its supply-demand formulation to
efficiently solve the equations.

density

sp
ee

d

w
max

w
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R density

flo
w

w
max

w
min

R
cr

Figure 3.1: Illustration of the fundamental speed and flow diagrams for the GSOM speed
function (3.0.1) with θ = (80, 30, 300). In red: curves corresponding to the choice w = V .

A fundamental point for model validation and real world implementation is to calibrate the
parameter θ from measured data. The remaining question is now, how to identify the pa-
rameter θ from these data. This is why we will focus in the following sections on different
deterministic and statistical approaches for parameter calibration, which is often a challeng-
ing task due to model limitations and data noise. In general, the idea of calibration is to find
a set of suitable parameters such that the modeling result fits well with the real traffic data.
Once the parameters are found, a good model can be used for reconstructing and predicting
traffic flow. Some of the presented results are detailed in [WBGG22].

Remark 19. We note that, in contrast to [Fan13, FHS14], we do not set a-priori the value
of the maximum density R, but we calibrate it along with V and C.
Moreover, we point out that the data projection Algorithm 1 requires the knowledge of the
maximum empty road velocity wmax, which can be either integrated in the calibration problem
or set to a reasonable value beforehand. In this work, we decide for the second option because
we did not observe an improvement of the results in preliminary tests when treating wmax as
unknown. Additionally, this simplification reduces the dimension of the optimization problem.

3.1 Preliminaries

Before presenting the different calibration approaches, we introduce some notation which is
used throughout the work. In the following, we denote by P the real process under study,
F the so called “field”, where P is physically observed, both depending on time t and 1-
dimensional space x. The mathematical model, a function of (t, x) and additionally the
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3.2. Gaussian process modeling

calibration parameter θ, is indicated by M . Moreover, XN =
(
(t1, x1), . . . , (tN , xN )

)
denotes

the set of time-space points where observations have been recorded.
By yF (t, x) we express the field observations at time t and position x of the real output
yP (t, x). It is generally assumed that the field observations are noisy measurements of the
real data, thus P and F are related as

yF (t, x) = yP (t, x) + ε,

where the observation error ε is assumed to be independent and identically normally dis-
tributed (iid) with zero mean, i.e. ϵ ∼ N (0, σ2

ε) and σ2
ε > 0.

Kennedy-O’Hagan (KOH) [KO01] propose to additionally take into account the inadequacy
between the mathematical model with optimal parameter θ∗ = (V ∗, C∗, R∗) and reality, via
an additional discrepancy (or bias) term b, meaning that

yP (t, x) = yM (t, x, θ∗) + b(t, x, θ∗), (3.1.1)

where b depends also on the calibration parameter and yM represents the numerical solution
of the macroscopic traffic flow model. We note that the data yk, k ∈ {F, P,M}, can stand
for any quantity of interest, typically the flow, speed or density in the traffic context.
Finally, it holds for all i ∈ {1, . . . , N}:

yF (ti, xi) = yM (ti, xi, θ
∗) + b(ti, xi, θ

∗) + ε.

Remark 20. We remark that it is common to have two types of inputs in computer experi-
ments, see for instance [Gra20, Plu17], namely

1. the time and space variables, t and x, which occur in both the mathematical model, the
real and field data and

2. the calibration parameter θ which is adjustable for the simulation code but fixed (and
mostly unknown) for the real and field observations.

3.2 Gaussian process modeling

To estimate the bias function, introduced in Equation (3.1.1), we rely on a Gaussian process
(GP) regression [HKC+04, KO01], which amounts to assume a multivariate normal (MVN)
distribution for the discrepancy.

Remark 21. KOH also models yM with a Gaussian process as yM is computationally ex-
pensive in their setup. This is not necessary here since the mathematical model evaluation is
relatively cheap. Therefore, we stick to the simpler framework described in [HKC+04].

Given a set of observations of the field (resp. simulated) data yF (XN ) =(
yF (t1, x1), . . . , y

F (tN , xN )
)
(resp. yM (XN , θ∗) =

(
yM (t1, x1, θ

∗), . . . , yM (tN , xN , θ∗)
)
) at N

observation points XN , we compute the set of observed (noisy) biases bN by

bN = yF (XN )− yM (XN , θ∗).

The GP assumption considers bN as a realization of a (zero-mean) MVN distribution:

bN ∼ N (0N ,KN ) with KN = σ2CN + σ2
εIN = σ2(CN + gIN ) and g =

σ2
ε

σ2
,
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where IN is theN×N identity matrix. Here, KN (resp.CN ) denotes the covariance (resp. cor-
relation) matrix between the observed biases; the hyper-parameter σ2 stands for the process

variance. More precisely, the matrix entries of CN are computed by Corr
(
b(t, x), b(t′, x′)

)
=

c
(
(t, x), (t′, x′)

)
, where c(·, ·) is a positive definite function, typically from a parametric family,

such as the Gaussian kernel:

c
(
(t, x), (t′, x′)

)
= exp

(
−(t− t′)2

l21

)
· exp

(
−(x− x′)2

l22

)
, (3.2.1)

among others like Matérn kernels, see e.g. [Ste99]. The (hyper-)parameters l1 and l2 denote,
respectively, the length-scales for the time and space variables. The higher the value of li,
i ∈ {1, 2}, the stronger the correlation between two different observed points, whereas a
low value of li leads to less correlation. Moreover, the parameterization using g instead of
σ2
ε allows to reduce the number of hyper-parameters. This term accounts for the unknown

measurement noise in the bias, assuming an iid Gaussian distribution, as it is typical with
physical measurements.

Remark 22. We consider a stationary kernel by the Gaussian covariance function, meaning
that it only depends on distances between observed data points. This choice is motivated by
the length of the road stretch and the time window considered in the later introduced traffic
scenarios (see Chapter 5), where road conditions are supposed to be homogeneous.
Additionally, we note that the correlation between two observation points decreases when
their distance increases.

We emphasize that the bias is fully characterized by its covariance structure since the mean
is chosen to be zero, which is typically done unless there is some prior knowledge available
[BCO21, BG21]. To illustrate the GP dependency on its covariance hyper-parameters, we

construct 1-dimensional toy-examples, i.e. considering c(t, t′) = exp
(
− (t−t′)2

l2

)
, with different

choices of σ and l on an equally spaced grid in [0, 1]. The values b(t1), . . . , b(tN ) are then
sampled from N (0N , σ2CN ), where we set N = 2001. Moreover, the diagonal entries of CN

are equipped with a small term (10−6) in order to improve the condition number of the covari-
ance matrix [Gra20]. In Figure 3.2 we indeed observe that the higher the length-scale l, the
more similar the values between close observation points. However, if l is comparatively low
as in Figure 3.2a, strong fluctuations exist even between close bias observations. Considering
the process variance, the figure emphasizes higher amplitudes for the bias if the variance is
high. Thus, for example in Figure 3.2c, the purple line, i.e. σ2 = 10, is lying above the other
ones which refer to lower values for σ2. Especially the curve where σ2 = 0.1 is quite flat since
the variance is relatively low and additionally the length-scale parameter high.

A reason why GPs are widely used in current statistical research, ranging from physics
[HKC+04] to engineering [BBK+09, HGBL20] or biology [Plu17], is its predictive power. More
precisely, we know from the properties of the MVN distribution, if a (N̂ + N)-dimensional
random multivariate normal vector Y ∼ N (µ,Σ) is partitioned as

Y =

(
Y1
Y2

)
with sizes

(
N̂ × 1

N × 1

)
,

and accordingly µ and Σ are partitioned as
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Figure 3.2: Bias evolution of a 1-dimensional toy-example for different choices of the length-
scale hyper-parameter l and process variance σ2.

µ =

(
µ1

µ2

)
with sizes

(
N̂ × 1

N × 1

)
and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
with sizes

(
N̂ × N̂ N̂ ×N

N × N̂ N ×N

)
,

that Y1 | Y2 ∼ N (µ̄, Σ̄) [Gra20] where µ̄ = µ1 +Σ12Σ
−1
22 (Y2 − µ2) and Σ̄ = Σ11 − Σ12Σ

−1
22 Σ21.

Thus, the GP prediction of the bias at new locations X̂N̂ =
(
(t̂1, x̂1), . . . , (t̂N̂ , x̂N̂ )

)
, given the

observations bN , is just a particular case of those conditional MVN equations by taking

Y1 = b(X̂N̂ ), Y2 = bN , µ = 0N̂+N , Σ11 = k(X̂N̂ , X̂N̂ ), Σ21 = Σ⊤
12 = kN (X̂N̂ ), Σ22 = KN ,

where kN (X̂N̂ ) := σ2cN (X̂N̂ ) := σ2

(
c
(
(ti, xi), (t̂j , x̂j)

))
1≤i≤N,1≤j≤N̂

∈ RN×N̂ and

k(·, ·) = σ2c(·, ·).
To this end, the conditional process b(·) | bN is still a GP and the predictive, so called kriging
equations are given by

b(X̂N̂) | bN ∼ N
(
mN (X̂N̂ ), s2N (X̂N̂ , X̂N̂ )

)
with (3.2.2a)

mN (X̂N̂ ) := E[b(X̂N̂)|bN ] = kN (X̂N̂ )⊤K−1
N bN , (3.2.2b)

s2N (X̂N̂ , X̂N̂ ) := Cov[b(X̂N̂),b(X̂N̂)|bN ] = k(X̂N̂ , X̂N̂ )− kN (X̂N̂ )⊤K−1
N kN (X̂N̂ ), (3.2.2c)

where the predictive variance are the diagonal elements of s2N (X̂N̂ , X̂N̂ ). Formulas (3.2.2)
describe the best linear unbiased predictor (BLUP) [Gra20].

Going back to the 1-dimensional toy-example, we want to illustrate the predictive formulas.
For this, we construct bias values by a realization of a GP with fixed σ = 1, l = 0.2 on a fine
grid X . This function serves as the underlying ground truth and is assumed to be unknown.
Then, we select randomly a small number of bias observations bN from the ground truth values
on the grid XN ⊂ X with N = 7. In Figure 3.3, we depict the predictive mean and 95%
predictive intervals together with some draws of the corresponding conditional multivariate
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(a) g = 0
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(b) g = 0.01

Figure 3.3: Illustration of bias observations and its predictions for a 1-dimensional toy example
with σ = 1 and l = 0.2.

distribution. Moreover, we differentiate between the two cases, namely g = 0 and g > 0,
in order to emphasize the impact of the noise parameter g. In both cases, we observe a
wider range for the predictive intervals if we are further away from the observed points due
to the increased uncertainty, whereas the predictions are more precise the closer we are to
an observation. In the case g = 0, the predictive mean and the random draws additionally
interpolate the observation points which does not apply for Figure 3.3b since there is a positive
noise. The choice g > 0 has also a striking effect on the range of the predictive intervals which
are visibly larger than the ones in Figure 3.3a.

As typically done in the context of GPs in order to estimate the hyper-parameters of the
kernel function, we maximize the likelihood, the probability density of the observations given
the parameters: P[b(XN ) = bN ]. As bN ∼ N (0N ,KN ), the likelihood L is given by the MVN
density, i.e.

L(σ2, l1, l2, g,bN ) =
1√

(2π)N |σ2(CN + gIN )|
exp

(
−1

2
b⊤
N

(
σ2(CN + gIN )

)−1
bN

)
,

where | · | stands for the determinant. Taking the logarithm, this gives

logL(l1, l2, σ2, g,bN ) = −N

2
log 2π− N

2
log σ2− 1

2
log |CN + gIN | − 1

2σ2
b⊤
N (CN + gIN )−1bN .

(3.2.3)
We can compute the optimal variance σ̂2 by differentiating the resulting expression so that

∂ logL
∂σ2

= − N

2σ2
+

1

2(σ2)2
b⊤
N (CN + gIN )−1bN = 0,

which gives

σ̂2(l1, l2, g,bN ) =
b⊤
N (CN + gIN )−1bN

n
. (3.2.4)
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Plugging σ̂2 in (3.2.3), we obtain the concentrated log-likelihood, denoted by log L̃:

log L̃(l1, l2, g,bN ) = −N

2
log 2π − N

2
log σ̂2(l1, l2, g,bN )− 1

2
log |CN + gIN | − N

2
, (3.2.5)

where the correlation matrix CN also depends on the hyper-parameters l1, l2. We note that,
in contrast to the process variance σ̂2, it is generally not possible to compute the remaining
hyper-parameters l1, l2 and g explicitly, therefore numerical optimization methods, such as
the local Matlab optimization solver fmincon, are mandatory to complete the estimation of
the hyper-parameters.

3.2.1 Reduction of computational costs using Kronecker structure

In this section, we describe some possibilities to speed up the computation time in the pro-
gramming code. If the data are given in a grid structure, i.e. regular measurements at the
same loop locations, the computational cost of fitting GPs can be reduced by exploiting
the resulting Kronecker structure, see e.g. [CML+17]. Thus, the separable structure of the
correlation matrix, i.e. c

(
(t, x), (t′, x′)

)
= c(t, t′) · c(x, x′), allows us to compute the corre-

lation matrix CN by CN = Cnx ⊗ Cnt , where ⊗ indicates the Kronecker product between
Cnx =

(
c(xi, xj)

)
1≤i,j≤nx

and Cnt =
(
c(ti, tj)

)
1≤i,j≤nt

. Here, nx (resp. nt) denotes the num-

ber of loop detectors (resp. time measurement points) satisfying N = nx ·nt. By the properties
of Kronecker it holds that

C−1
N = C−1

nx
⊗C−1

nt
and |CN | = |Cnx |nx · |Cnt |nt .

Speedups can be significant since these O(N3) = O
(
(nx · nt)

3
)
operations [Gra20] become

O(n3
x+n3

t ). Moreover, due to the positive definiteness and symmetry of the matrices Cnx and
Cnt , they can be decomposed into UnxDnxU

⊤
nx

and UntDntU
⊤
nt

respectively. The columns of
the orthogonal matrix Uk, i.e. U

⊤
k Uk = Ik, k ∈ {nt, nx}, are composed of the eigenvectors of

Ck, whereas Dk is a diagonal matrix with the eigenvalues of Ck on its diagonal. By applying
again the Kronecker properties, we obtain

Cn = Cnx ⊗Cnt=(UnxDnxU
⊤
nx
)⊗ (UntDntU

⊤
nt
) = (Unx ⊗Unt)(Dnx ⊗Dnt)(Unx ⊗Unt)

⊤,

which yields to

Cn + gIN = (Unx ⊗Unt)
(
(Dnx ⊗Dnt) + gIN

)
(Unx ⊗Unt)

⊤.

The inverse and determinant of the matrix CN + gIN are then respectively given by

(Cn + gIN )−1 =
(
(Unx ⊗Unt)

⊤
)−1 (

(Dnx ⊗Dnt) + gIN
)−1

(Unx ⊗Unt)
−1

= (Unx ⊗Unt)
(
(Dnx ⊗Dnt) + gIN

)−1
(Unx ⊗Unt)

⊤,

(3.2.6)

∣∣∣Cn + gIN

∣∣∣ = ∣∣∣(Unx ⊗Unt)
(
(Dnx ⊗Dnt) + gIN

)
(Unx ⊗Unt)

⊤
∣∣∣

=
∣∣∣Unx ⊗Unt

∣∣∣∣∣∣(Dnx ⊗Dnt) + gIN

∣∣∣∣∣∣(Unx ⊗U⊤
nt
)
∣∣∣

=
∣∣∣Unx

∣∣∣nt
∣∣∣Unt

∣∣∣nx
∣∣∣(Dnx ⊗Dnt) + gIN

∣∣∣∣∣∣Unx

∣∣∣nt
∣∣∣Unt

∣∣∣nx

=
∣∣∣(Dnx ⊗Dnt) + gIN

∣∣∣.
(3.2.7)
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Both equations are used in the concentrated likelihood formula (3.2.5) and the inverse (3.2.6)
additionally in the kriging equations (3.2.2).
In a next step, we state a formula to compute more efficiently the matrix-vector product
between (Cn+gIN )−1 and bN which appears in the process variance (3.2.4) and the predictive
mean (3.2.2b), by applying the identity [CML+17]

(A⊗B)x = vec(B vec−1(x)A⊤).

The operator vec(·) stacks the columns of a m1 ×m2 matrix into a m1m2-dimensional vector
and vec(·)−1 reshapes it back into a matrix of dimension m1 × m2. Thus, we use this trick
three times in the expression (Cn+gIN )−1bN since it holds by (3.2.6) that (Cn+gIN )−1bN =

M1

(
M2

(
M⊤

1 bN

))
, where M1 = Unx ⊗Unt and M2 =

(
(Dnx ⊗Dnt) + gIN

)−1
.

Finally, to calculate the diagonal elements of the predictive covariance (3.2.2c), the diagonal
entries of

kN (X̂N̂ )⊤K−1
N kN (X̂N̂ ) =

1

σ2

(
kN (X̂N̂ )⊤(Unx ⊗Unt)M3

)(
kN (X̂N̂ )⊤(Unx ⊗Unt)M3

)⊤
are obtained by summing up the squared row entries of kN (X̂N̂ )⊤(Unx ⊗Unt)M3, where the
matrix M3 is given by the square root of the elements of the diagonal matrix(
(Dnx ⊗Dnt) + gIN

)−1
. Whereas the diagonal of k(X̂N̂ , X̂N̂ ) is simply given by σ21N̂ ∈

RN̂×1.

3.2.2 Supporting average observations in the correlation

If the traffic data are recorded by magnetic loop detectors, they are usually aggregated over
time, for example the number of vehicles which passed a detector in a certain time interval.
In order to take into account in the GP modeling that these are actually average measure-
ments, we extend the proposed Gaussian correlation matrix (3.2.1) by averaging over the
observations. Due to the properties of GPs, the integral and also derivative process are still
GPs and the resulting processes are jointly Gaussian with the original one [Osb10, WB16].
In formulas, we obtain for the Gaussian kernel

Corr
(

1

∆t

t+∆t∫
t

b(s, x)ds,
1

∆t′

t′+∆t′∫
t′

b(s′, x)ds′
)

=

 1

∆t′
1

∆t

t′+∆t′∫
t′

t+∆t∫
t

exp

(
−(s− s′)2

l21

)
ds ds′

 · exp

(
−(x− x′)2

l22

)

=
1

∆t′
1

∆t

√
π

2
l21

( t′ − t+∆t

l1

)
erf

(
t′ − t+∆t

l1

)
+

1√
π
exp

(
−(t′ − t+∆t)2

l21

)

+

(
t′ − t−∆t′

l1

)
erf

(
t′ − t−∆t′

l1

)
+

1√
π
exp

(
−(t′ − t−∆t′)2

l21

)

−
(
t′ − t+∆t−∆t′

l1

)
erf

(
t′ − t+∆t−∆t′

l1

)
− 1√

π
exp

(
−(t′ − t+∆t−∆t′)2

l21

)
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−
(
t′ − t

l1

)
erf

(
t′ − t

l1

)
− 1√

π
exp

(
−(t′ − t)2

l21

) · exp

(
−(x− x′)2

l22

)
, (3.2.8)

and

Corr
(

1

∆t

t+∆t∫
t

b(s, x) ds, b(t′, x′)

)

=

 1

∆t

t+∆t∫
t

exp

(
−(s− t′)2

l21

)
ds

 · exp

(
−(x− x′)2

l22

)
(3.2.9)

=
1

∆t

√
π

2
l1

 erf

(
t− t′ +∆t

l1

)
− erf

(
t− t′

l1

) · exp

(
−(x− x′)2

l22

)
,

where equation (3.2.8) is used to calculate KN and (3.2.9) to compute kN (X̂N̂ ) in the kriging
equations (3.2.2). The function erf(·) refers to the error function [Wei94] which is defined as

erf(t) = 2√
π

t∫
0

exp(−s2) ds.

Next, we also state the formulas for the correlations between an average observation and an
observation of the derivative at t′ or x′ which reads as

Corr
(

1

∆t

t+∆t∫
t

b(s, x) ds,
d

dt′
b(t′, x′)

)

=

 1

∆t

t+∆t∫
t

d

dt′
exp

(
−(s− t′)2

l21

)
ds

 · exp

(
−(x− x′)2

l22

)
(3.2.10)

=
1

∆t

exp

(
−(t− t′)2

l21

)
− exp

(
−(t− t′ +∆t)2

l21

) · exp

(
−(x− x′)2

l22

)
,

and

Corr
(

1

∆t

t+∆t∫
t

b(s, x) ds,
d

dx′
b(t′, x′)

)

=

 1

∆t

t+∆t∫
t

exp

(
−(s− t′)2

l21

)
ds

 · d

dx′
exp

(
−(x− x′)2

l22

)
(3.2.11)

=
1

∆t

√
π

2
l1

 erf

(
t− t′ +∆t

l1

)
− erf

(
t− t′

l1

) · 2(x− x′)

l22
exp

(
−(x− x′)2

l22

)
.

These correlation matrices will be used later in Chapter 4.
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3.2.3 Modeling change in the traffic regime

The traffic community typically differentiates between a free flow and a congested regime.
Looking at the fundamental diagram, the free flow regime is defined for the part whenever
ρ ≤ ρcr(w), i.e. v ≥ V(ρcr(w), w) = vcr(w), and the congested situation whenever ρ > ρcr(w),
i.e. v < vcr(w). Such a regime change can easily happen in a traffic scenario, even if the
considered time range is short, for example due to bottlenecks. Osborne [Osb10] proposes
several options in order to take this change into account in the covariance modeling.
We focus on the following approaches:

1. Adding a second noise hyper-parameter (see Figure 3.5b).
This turns the covariance matrix into

KN = σ2
(
CN + diagN (g)

)
,

where the i-th element, i ∈ {1, . . . , N}, of the vector g is computed by

g(i) =

{
gF if v(ti, xi) ≥ vcr

(
w(ti, xi)

)
,

gC otherwise.

The operator diagN (·) transforms a N -dimensional vector into a N×N diagonal matrix.
Here, gF (resp. gC) denotes the free flow (resp. congestion) noise parameter. Moreover,
we point out that the computation of the matrices kN (X̂N̂ ) and k(X̂N̂ , X̂N̂ ) in the
predictive Equations (3.2.2) do not differ from the classical approach due to the fact
that the noise parameter g only affects the calculation of the symmetric matrix KN .

2. Adding a second process variance (see Figure 3.5c).
Instead of considering two noise parameters and one process variance, as above, we now
look at the opposite case which is motivated by [Osb10, Section 4.4.4]. In this case, the
two traffic regimes are described by different variances, but they are modeled by the
same GP. The covariance is then defined by

KN =σ2
F

(
CN ⊙ ZF

N

)
+ σ2

C

(
CN ⊙ ZC

N

)
+
√
σ2
Fσ

2
C

(
CN ⊙

(
1N×N − (ZF

N + ZC
N )
))

+

σ2
εIN ,

where 1N×N denotes the N × N matrix containing only ones and ⊙ represents the
point-wise matrix product. The matrix entries of the N ×N -dimensional matrices ZF

N

and ZC
N are respectively computed by

ZF
(
(t, x), (t′, x′)

)
=

{
1 if v(t, x) ≥ vcr

(
w(t, x)

)
and v(t′, x′) ≥ vcr

(
w(t′, x′)

)
,

0 otherwise,

and

ZC
(
(t, x), (t′, x′)

)
=

{
1 if v(t, x) < vcr

(
w(t, x)

)
and v(t′, x′) < vcr

(
w(t′, x′)

)
,

0 otherwise.
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3.2. Gaussian process modeling

Here, σ2
F (resp. σ2

C) describes the variance in the free flow (resp. congested) regime.
Regarding the predictive Equations (3.2.2), we define

kN (X̂N̂ ) = σ2
F

(
cN (X̂N̂ )⊙ ZF

N (X̂N̂ )
)
+ σ2

C

(
cN (X̂N̂ )⊙ ZC

N (X̂N̂ )
)
+√

σ2
Fσ

2
C

(
cN (X̂N̂ )⊙

(
1N×N̂ −

(
ZF
N (X̂N̂ ) + ZC

N (X̂N̂ )
)))

and

k(X̂N̂ , X̂N̂ ) = σ2
F

(
c(X̂N̂ , X̂N̂ )⊙ ZF (X̂N̂ , X̂N̂ )

)
+ σ2

C

(
c(X̂N̂ , X̂N̂ )⊙ ZC(X̂N̂ , X̂N̂ )

)
+√

σ2
Fσ

2
C

(
c(X̂N̂ , X̂N̂ )⊙

(
1N̂×N̂ −

(
ZF (X̂N̂ , X̂N̂ ) + ZC(X̂N̂ , X̂N̂ )

)))
,

where Zk
N (X̂N̂ ) :=

(
Zk
(
(ti, xi), (t̂j , x̂j)

))
1≤i≤N,1≤j≤N̂

∈ RN×N̂ and k ∈ {F,C}.

However, the speed values v(X̂N̂ ), which are needed to construct Zk
N (X̂N̂ ) and

Zk(X̂N̂ , X̂N̂ ), are usually not measured. Thus, they need to be predicted which is done
by modeling the observed measurements v(XN ) by a GP, i.e.

v(XN ) ∼ N (v̄N ,Kv
N ) ,

where the mean v̄N is calculated by taking the average of the observed data. The
hyper-parameters of the covariance Kv

N are obtained by maximizing the concentrated
likelihood function (3.2.5), where bN is replaced by v(XN ). Consequently, the predic-
tions v(X̂N̂ ) follow also a GP and the values are computed by exploiting the predictive
mean formula, more precisely

v(X̂N̂ ) := v̄N̂ + kv
N (X̂N̂ )⊤(Kv

N )−1
(
v(XN )− v̄N

)
,

where the constant entries of the N̂ -dimensional vector v̄N̂ coincide with the ones in
v̄N .

3. Adding a second set of hyper-parameters (see Figure 3.5d).
In this approach, based on [Osb10, Section 4.4.1], we consider two distinct sets of hyper-
parameters for the two traffic regimes. Unlike the previous approach, we apply this
modeling if the two regimes are assumed to be independent and modeled by different
GPs. This results in the following covariance matrix:

KN = σ2
F

(
CN (lF1 , l

F
2 )⊙ ZF

N

)
+ σ2

C

(
CN (lC1 , l

C
2 )⊙ ZC

N

)
+ σ2

εIN ,

where lF1 , l
F
2 (resp. lC1 , l

C
2 ) refers to the length-scale parameters in the free flow (resp.

congested) regime. Note that, compared to the second approach, we do not assume
any correlation between two observations belonging to different regimes. Moreover, the
predictive equations are computed analogously as before, namely modeling the observed
speed measurements by a GP.

We point out that, except for the first approach, we cannot make use of the Kronecker
trick (see Section 3.2.1) to reduce the computation time. This is due to the point-wise
matrix products. Moreover, all the proposed methods lead to heteroskedastic GPs, which are
typically applied if the underlying scenarios are not stationary [BG21].
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Chapter 3. Calibration approaches

Remark 23. The optimal critical speed values vcr depend both on the calibration parameter
θ and w. In order to prevent numerical issues in the optimization, we will consider in the
following work only one threshold value which is computed by the fundamental diagram where
vcr = vcr(V

∗) (see Figure 3.4).

density

flo
w

w
max

w
min

R
cr

(V*)

w = V*

v
cr

(V*)

Figure 3.4: Illustration of the flow curve corresponding to w = V ∗ together with its critical
speed value vcr(V

∗) and θ∗ = (80, 30, 300).

In Figure 3.5, we compare the performances between the three above presented approaches
and the classical one, which considers only the original set of hyper-parameters l1, l2 and g.
In the illustration, field data are drawn in red and simulated data in gray. After adding the
kriging mean to the simulated data, we obtain the so called corrected data which are depicted
in blue color. We observe that the bias correction in the classical approach does not work
well due to a drastic change in the traffic regime. Also, the version with a second g parameter
leads almost to the same correction. Next, looking at the approaches proposed by [Osb10],
we clearly see that the jump in the data can be captured by the bias, resulting in a clear
improvement compared to Figures 3.5a and 3.5b.
However, we need to admit that this 1-dimensional example is a simplification of a real-
istic road scenario since the space position is fixed. Experimental tests show that adding
the location of several loop detectors in the GP modeling, decreases the performance of all
approaches but especially the ones illustrated in Figures 3.5c and 3.5d. Further research is
needed to accommodate more dimensions, see e.g. [HWN+16]. Thus, our final results pre-
sented in Chapter 6, are based on the classical approach since it is computationally much less
expensive and the difference in the performances negligible.
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3.3. Fundamental fit approach for calibration

(a) Classical approach. (b) Second noise parameter.

(c) Second process variance. (d) Second set of hyper-parameters.

Figure 3.5: Comparison of covariance modeling approaches. The classical approach consists of
the three hyper-parameters l1, l2 and g. The critical speed vcr(V

∗) is drawn by the horizontal
black line.

3.3 Fundamental fit approach for calibration

Classically, macroscopic traffic flow models are calibrated by the intuitive approach of fitting
data to the fundamental diagram (see e.g. [DGK+09, Fan13, FHS14, FSP+17]). More pre-
cisely, given the flow, speed and density observations, denoted by yFk (ti, xi), i ∈ {1, . . . , N},
k ∈ {q, v, ρ} respectively, a least squares method is performed to fit the parameter function
to historical measured data. Thus, the calibration parameter θ is obtained by either solving
the optimization problem

min
θ

{ N∑
i=1

∣∣∣yFq (ti, xi)−Q
(
yFρ (ti, xi), w = constant

)∣∣∣2},
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if we consider the flow as the quantity of interest or by solving

min
θ

{ N∑
i=1

∣∣∣yFv (ti, xi)− V
(
yFρ (ti, xi), w = constant

)∣∣∣2},
if the speed is the quantity of interest. We point out that in the fundamental fit approach, the
fundamental diagram is naturally fit on the key traffic quantities. This is due to the fact that
the rather abstract quantity w cannot be measured by the detectors and can be only derived
by inserting the density and speed data in the inverted velocity function (see end of Remark
18). Thus, we fix w = constant for fitting the data to the fundamental diagram which leads
back to the first order model with only one curve. Typically, w is chosen as the maximum
speed resulting in w = V .

Next, instead of minimizing over the sum of squares of each measured observation, the data
can be grouped first into several bins, which reduces the number of data points to be fitted. Of
course, this is only possible if enough (historical) data are available. Then, the minimization
is executed using only average values of these bins. This extended approach is especially
useful when the amount of historical data is large, because the grouping of the data points
reduces the computational cost. The calibration algorithm for the flow quantity of interest is
summarized in the following steps [DGK+09]:

1. Order the flow, speed and density observations with respect to increasing density values.

2. Divide the data into bins, each containing xb data points.

3. For each bin j ∈ {1, . . . , ⌈N
xb
⌉},

• compute the mean density ȳF,jρ and

• determine the maximal non-outlier flow ȳF,jq , where the maximum is taken over all
flow values within a bin which do not exceed Q3 + 1.5(Q3 − Q1) and where Q3

(resp. Q1) denotes the 75th (resp. 25th) percentile of the bin data points.

4. Solve the optimization problem

min
θ

{ ⌈ N
xb

⌉∑
j=1

∣∣∣ȳF,jq −Q(ȳF,jρ , w = constant)
∣∣∣2}.

We point out that this approach proposed by [DGK+09] computes in the second part of step
3 upper flow values which leads to an “upper envelope” instead of a mean curve. However,
motivated by experimental tests, if the quantity of interest is the speed, we compute the mean
speed ȳF,jv instead of the maximum non-outlier speed.

Remark 24. In macroscopic traffic flow models, the key traffic quantities are the flow, speed
and density. In contrast to flow data, densities cannot be directly measured by the loop
detectors but are instead derived by using occupancies. Thus, they are usually not used as a
quantity of interest and the optimization is often executed on the flow. However, as stated
in the literature [WYG+22], reconstructing the flow seems not as challenging as the speed.
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Moreover, depending on the application, an adequate speed matching can be more favorable.
This motivates us to consider the equations also for the speed as a quantity of interest,
supported by the fact that the flow estimations show mostly a reasonable performance if the
speed is reconstructed well.

3.4 Model-driven approaches for calibration

The fundamental fit approach is purely based on measured data and the fundamental dia-
gram. However, in congested regions traffic data do not usually follow closely the shape of
this function and are often widely spread (see for example Figure 5.11b). Moreover, data are
not necessarily measured on the whole diagram and the number of observations are often im-
balanced between the two traffic regimes. All of this complicates the parameter identification
process by the fundamental fit approach. Thus, instead of calibrating on the fundamental dia-
gram, one can additionally take the physics into account by integrating the numerical solution
yM in the optimization process. The approaches are detailed in the following sections.

3.4.1 L2 approach

We denote the first presented method the L2 approach, which is based on the assumption
that the mathematical model can capture perfectly the real dynamics, meaning that

yF (ti, xi) = yM (ti, xi) + ε.

Then, the calibration parameters are obtained by minimizing a cost function C(θ) which is
based on the most widely used error metric in parameter estimation [WYG+22], namely the
root mean square error (RMSE) between the field and simulated data:

θ∗ = argmin
θ

C(θ) = argmin
θ


√√√√ 1

N

N∑
i=1

∣∣∣yF (ti, xi)− yM (ti, xi, θ)
∣∣∣2
 . (3.4.1)

Remark 25. Since we do not deal with covariance computations in the L2 optimization, the
critical speed determination is not integrated in the optimization process. Thus, if necessary,
it can be computed after obtaining the optimal calibration parameter θ∗ by simply inserting
w = V ∗ into vcr(w).

3.4.2 Kennedy O’Hagan approach

However, in reality, models are used to emulate the real system but they are not exact
[Plu17]. Even if the true values of the calibration parameters are known, the mathematical
model behaves imperfectly [TW15]. Therefore, we adjust the too strong assumption in the
L2 method by applying the statistical framework proposed by [HKC+04, KO01] and refer to
it as KOH approach. As introduced in Equation (3.1.1), the idea is to correct the simulation
error by a discrepancy term. Since this bias depends on the unknown calibration parameter
θ, i.e. bN (θ), the process variance σ̂2 and finally l1, l2 and g also depend on θ. Thus, the
optimal calibration parameters are obtained by maximizing the concentrated log-likelihood
function (3.2.5):

max
l1,l2,g,θ

log L̃
(
l1, l2, g,bN (θ)

)
.
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Following the principle of modularization [LBB09], we apply a 2-step optimization to isolate
the GP fitting and thus preventing confounding effects in the calibration. In the so called
inner-level, we maximize the concentrated log-likelihood function dependent on θ, thus ob-
taining the hyper-parameters l1(θ), l2(θ), g(θ). These hyper-parameters are then inserted into
(3.2.5) and the concentrated likelihood is maximized with respect to θ, giving the optimized
calibration parameter θ∗. We call the second step the higher-level. Finally, the corresponding
bilevel optimization problem writes:

max
θ

[
max
l1,l2,g

log L̃(l1, l2, g,bN (θ))

]
. (3.4.2)

Remark 26. In contrast to the L2 approach, the optimal calibration parameter θ∗ obtained
by the KOH approach is not necessarily the one which minimizes the bias. Instead, it is rather
chosen jointly together with the bias in order to achieve the best correction of the simulated
output [Gra20].

3.4.3 Plumlee approach

As shown in [TW16], the calibration results obtained by the KOH approach can lead to
unrealistic parameters since the impact of the bias modeling may be too strong compared to
the simulations. Thus, Plumlee proposes in [Plu17] to integrate an orthogonality condition
between the bias function and the mathematical model which reduces the influence of the bias
and puts more weight on the physical model. The optimization problem reads analogously
as the one in (3.4.2) except that the computation of the correlation matrix changes. More

precisely, we denote the correlation matrix in the Plumlee approach by Cplum
N reading as

Cplum
N = CN −CN δyM

(
(δyM )⊤CN δyM

)−1
(δyM )⊤CN , (3.4.3)

and the expression cN (X̂N̂ ) and c(X̂N̂ , X̂N̂ ), appearing in the kriging equations, are computed
respectively by

cplumN (X̂N̂ ) = cN (X̂N̂ )−CN δyM
(
(δyM )⊤CN δyM

)−1
(δyM )⊤cN (X̂N̂ ),

and

cplum(X̂N̂ , X̂N̂ ) = c(X̂N̂ , X̂N̂ )− cN (X̂N̂ )⊤ δyM
(
(δyM )⊤CN δyM

)−1
(δyM )⊤cN (X̂N̂ ).

Here, δyM ∈ RN×p represents the derivative matrix of the simulation output yM , where the p
columns refer to the number of calibration parameters (here p = 3 since θ = (V,C,R)). If there
is no derivative of the simulator available, the quantity δyM has to be approximated. Choosing
the finite difference method as an approximation, the i-th column of (δyM )⊤, i ∈ {1, . . . , N},
is then computed by

(
δyM (ti, xi, θ)

)⊤
=

1

h

yM (ti, xi, θ + he⃗1)− yM (ti, xi, θ)

yM (ti, xi, θ + he⃗2)− yM (ti, xi, θ)

yM (ti, xi, θ + he⃗3)− yM (ti, xi, θ)

 ,

where e⃗j , j ∈ {1, 2, 3}, is a unit vector containing 1 on its j-th row entry.
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Remark 27. Due to the more complex structure of the correlation matrix (3.4.3), we cannot
make use of the Kronecker tricks presented in Section 3.2. Thus, the computational cost in
the Plumlee approach is clearly higher than the one in the KOH approach. This leads more
easily to numerical issues, especially if the matrix δyM has to be approximated. Moreover,
the reliability of the computed (approximated) derivative is often questionable, e.g. in the
case of highly noisy data [MW14].

3.4.4 Bayesian parameter identification by MCMC

In [KO01], the authors further proposed a Bayesian framework to estimate the best calibration
parameter θ∗. Due to the Bayesian estimation procedure, uncertainty quantification is directly
available in the form of a posterior distribution on the calibration parameters, rather than
scalar values as in the previous sections.
In general, a posterior probability law describes a probability regarding a set of parameters
conditioned on given data yF [CMV15]. It measures our beliefs that θ∗ is the true value under
yF . This posterior distribution, denoted by π(θ∗ | yF ), can be related to the computation of
other probabilities [BBS09] which are the likelihood function L(yF | θ∗), the prior probability
π(θ∗) and the marginal likelihood π(yF ). The likelihood function quantifies how well the
computer model, given the calibration parameter θ, fits to the experimental data, whereas the
prior induces uncertainty about the simulated data. The marginal likelihood is a normalizing
constant that does not depend on θ. Finally, Bayes’ rule expresses the posterior as

π(θ∗ | yF ) = L(yF | θ∗) · π(θ∗)
π(yF )

.

Analytical expressions of posterior distributions are seldom available, leading to a variety of
estimation techniques. In this work, we use a standard Markov chain Monte Carlo (MCMC)
method, the Metropolis algorithm [HKC+04] stated in Algorithm 2.

Algorithm 2 Metropolis algorithm with symmetric proposal distribution.

Require: Proposal covariance matrix Σp, prior distribution π(·), maximum number of iter-
ations N iter;

1: initialize θ∗0 (sample from the prior distribution π(θ∗));
2: initialize l01, l

0
2, g

0 (by maximizing (3.2.5)) and subsequently σ̂2
0 (by (3.2.4));

3: for each i in {1, ..., N iter} do
4: generate θ̂ from a symmetric distribution, e.g. θ̂ ∼ N (θ∗i−1,Σ

p);
5: compute li1, l

i
2, g

i, σ̂2
i ;

6: compute the ratio α := min

{
1, π(θ̂|yF )

π(θ∗i−1|yF )

}
;

7: generate a uniform random number u ∼ U([0, 1]);
8: if u ≤ α then
9: θ∗i = θ̂ (acceptance);

10: else
11: θ∗i = θ∗i−1 (rejection);
12: end if
13: end for
14: Return θ∗ = (θ∗1, . . . , θ

∗
N iter).
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In every iteration loop, the algorithm computes a ratio which compares the posterior likeli-
hood π(· | yF ) between a proposed calibration parameter θ̂ and the previous one θ∗i−1. The
proposed parameters are forced to lie close to the current value by using a symmetric proposal
distribution centered on θ∗i−1. If the likelihood of the proposal is bigger than the likelihood
of the previous parameter, the proposal point will be accepted. Whereas if the likelihood of
the proposal is smaller, the acceptance depends on the magnitude of the ratio. The closer
it is to 1, the more likely the point will be accepted. Finally, the algorithm generates a se-
quence θ∗ = (θ∗1, . . . , θ

∗
N iter) of (optimal) calibration parameters from the unknown posterior

distribution π(θ∗ | yF ). In a next step, the samples are thinned out, keeping only 1 out of
ps samples, to reduce autocorrelation, which is defined as the correlation between two con-
secutive members of the Markov chain [Hof09]. We note that the number of iterations N iter

should be chosen large enough such that the chain can move into higher probability regions
and also switch between different regions of higher probability. Moreover, it is not necessary
to compute the marginal likelihood in step 6 of Algorithm 2 since it does not depend on θ
and thus it cancels out in the ratio.

Remark 28. We remark that Bayesian calibration via MCMC estimation can be quite time
consuming. Usually, several thousands steps are needed to generate properly the posterior.
Simplifications have been proposed in the literature, such as relying on particle filtering as in
[PS15] or approximate Bayesian computation (ABC) methods as in [Bea19].
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Prediction approaches

In this chapter, we present several statistical approaches for traffic prediction.
First of all, we need to clarify what we mean with the term traffic prediction, because it can
be interpreted in various ways. In this work, we are interested in predicting travel times,
which are defined as the average time it takes a vehicle to pass a road segment [xin, xout].
Thus, our aim is to reconstruct reasonable traffic speeds along a given road stretch and time
window by the help of numerical simulations. Once the speed evolution is known, we solve
the ordinary differential equation {

dx
dt = v(t, x(t)),

x(t0) = xin,

to determine the travel time which will be given by the first time τ̂ = τ̂(t0) > t0 such that
x(τ̂) = xout. The whole procedure is summarized in Algorithm 3.

Algorithm 3 Computation of travel times from speed simulation output.

Require: Departure time t0 of a vehicle starting at position xin and going to position xout,
simulated speed v(t, x) at time t and position x, time step size ∆t of numerical simulation;

1: initialize space position by x = xin;
2: initialize travel time by τ̂ = 0;
3: while x < xout do
4: update space position by x = x+∆t · v(t0 + τ̂ , x);
5: update travel time by τ̂ = τ̂ +∆t;
6: end while
7: return travel time τ̂ .

The reconstructed travel time τ̂ is then compared to the real recorded travel time, derived at
best from Global Positioning System (GPS) data, probe vehicles or video recordings. However,
since these measurements are in reality often not available or accessible [KCB00], aggregated
loop detector measurements can serve as an approximation to the ground truth (see Section
4.1.2).
As an error metric we consider the RMSE, comparing the true and reconstructed travel times
for the same road stretch at Nτ different departure instants. Thus, the total travel time error
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Eτ is given by

Eτ =

√√√√ 1

Nτ

Nτ∑
i=1

(τi − τ̂i)2 , (4.0.1)

where τi denotes the real recorded travel time and τ̂i the travel times computed by Algorithm
3.

4.1 Reference travel times

In the following two sections, we explain how we compute the reference travel time τi in the
RMSE (4.0.1), which is not an evident task. In the best case, trajectory data are available
and serve as a ground truth (see Section 4.1.1). However, if we do not have access to these
data or they simply do not exist, we need to decide how to approximate them by using only
the aggregated loop detector measurements (see Section 4.1.2).

4.1.1 A method for trajectory data

In reality, travel times fluctuate a lot during the day due to different traffic situations such as
congestion and free flow regimes, due to different driving behaviors or due to external factors
such as weather conditions. Even if we compare the travel times for a given road stretch
between vehicles starting at a similar or the same time, the results can be very different.
This is also due to the existence of various vehicle types, such as trucks or sport cars, which
can drive at different speeds. However, in our mathematical model we do not distinguish
between vehicle types when feeding the simulations by boundary loop detector data. This is
why we obtain average travel times by Algorithm 3, which raises the question how to treat
the trajectory data in order to compare the travel times by the RMSE (4.0.1) in a meaningful
way.
A simple method is to take the mean travel times over a predefined time window: for comput-
ing the average travel time for a vehicle starting at time t, we take the mean over all recorded
travel times between t− ε and t+ ε, where ε > 0. Thus, in the case of trajectory data, this
average travel time serves from now on as our reference travel time.

Remark 29. Naturally, the value of the reference travel time depend on the size of the chosen
time window 2ε. The higher ε, the more smoothed out the fluctuations between the travel
times. However, we emphasize that the results in Chapter 6 only depend slightly on the choice
of ε, as long as it is reasonably chosen. What is finally important is to use the same reference
basis for all approaches.

4.1.2 Methods for aggregated data

If there are no or only a few trajectory data available, it is also possible to approximate
travel times by using the aggregated loop detector data, which can indeed serve as a good
replacement, as shown in earlier works [KCB00].
The method of N-curves [TK14, Section 19.3] represents one way to do this. It uses accumu-
lated vehicle counts, which are derived by summing up the aggregated flow data measured by
loop detectors. Naturally, these counts increase over time and the resulting time dependent
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function is called the vehicle’s N-curve. Then, in order to estimate the travel time between two
loop detectors A and B for a vehicle starting at time tA at loop detector A, we first compute
their N-curves, denoted by NA and NB respectively. Second, we calculate the corresponding
number of accumulated vehicle counts N∗ for loop A at time tA. Finally, we intersect this
number with the N-curve of loop B in order to compute the arrival time tB. The travel time
is then given by the difference of tA and tB, i.e. τ = tB − tA. The method is visualized in
Figure 4.1.
We point out that this approach leads directly to average travel times, due to the usage of
aggregated data. Thus, there is no need to apply the smoothing procedure described in Sec-
tion 4.1.1. Moreover, the finer the aggregation time window of the data, the more accurate
the results.

t

N

τ = tB − tA

NA

NB

tA tB

N∗

Figure 4.1: Travel time computation by the method of N-curves.

However, a major source of error for the N-curve method is the appearance of intersecting
curves. This can be explained by the existence of on- and off-ramps, lane changes and over-
taking maneuvers [TK14]. To reduce this error, [TK14] suggest in Section 19.4 a hybrid
method which combines the use of floating car and average loop detector data which should
be preferably accumulated over all lanes. Of course, this extended approach is only feasible
if floating car data are available.
An alternative to reconstruct travel times can be the application of Algorithm 3, where the
entries of the field v(t, x) are given by the average speed measurements. Thus, they are con-
stant between the aggregated time intervals and detector mid points. We refer to this as
the baseline method. Foreshadowing a discussion in Chapter 5, we point out that, compared
to the N-curve approach, relying on flow data measurements, the baseline method only uses
speed data, which are not obvious to deal with.

4.2 Reconstructed travel times

In order to reconstruct the travel times by Algorithm 3, we need to provide boundary data for
running the numerical simulation. For this, it is important to distinguish if we are in the case
of travel time estimation or travel time prediction. The first one refers to the computation
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of travel times for already realized traffic scenarios [VL04], implying that we have access to
the data corresponding to the whole considered time period. Consequently, nothing needs
to be predicted and we can simply use the real measured aggregated boundary data in the
algorithm. However, in the more interesting and complex case of travel time prediction, some
boundary data are not yet available and need to be forecasted. This leads to the question
of how to generate the missing data in order to run the simulation also in the future time
period. The rest of this chapter will be devoted to answer this question.
Thus, we present in the following several approaches to predict the future (boundary) loop
detector data, denoted by ŷB. The methods can be divided into two categories: the first
one is purely data driven, using historical data (see Section 4.2.1); whereas the other one
considers only data of a (short) preceding time window (see Section 4.2.2) and which might
be additionally model-driven. We remark that the length of the time window for both the
preceding and predicted data is variable and has to be fixed before running the approaches.
More details for our choices will be given in Chapter 6.
Despite this main distinction between the categories, all approaches follow the same scheme
in order to compute the travel times, namely

Step 1 Calibration of θ = (V,C,R) by one of the approaches detailed in Chapter 3.

Step 2 Determination of predicted boundary data ŷB by one of the methods in Section
4.2.

Step 3 Computation of simulated data by one of the numerical schemes proposed in
Chapter 2 (using the boundary data from Step 2) and possible correction of the
simulations by a discrepancy term introduced in Section 3.4.2.

Step 4 Calculation of travel times by Algorithm 3.

We emphasize that after running the above scheme, our travel time prediction result is not
only based on measured data but also integrates the physical knowledge by Step 3 and
possibly Step 2. This is why we can speak of a hybrid travel time prediction method. To
the best of our knowledge, this is a new contribution since previous works either deal with
average loop detector data prediction (see e.g. [MK18, PS15]) or travel time prediction based
on purely data driven methods (see e.g. [KCB00, RVZ04]).
We claim that the integration of the physical knowledge in the prediction process improves
the results. This will be shown later in Chapter 6.

4.2.1 Loop detector data prediction from historical data

In the literature, we can find several prediction methods which use historical traffic data
such as in [KCB00, RVZ04], where they rely on linear regression. However, we focus on two
approaches which we consider as the most intuitive ones (see Section 4.2.1.1) or a nowadays
frequently used one (see Section 4.2.1.2).
In the following, the historical traffic data form the train data set which is scaled by first
subtracting its mean and then dividing by its standard deviation. This normalization is done
for each loop detector separately. Moreover, we deal with multi-dimensional data, where the
dimension represents the number of loop detectors.
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4.2.1.1 Dynamic Time Warping approach

The Dynamic Time Warping (DTW) approach aims to find a time series in the train data set
which behaves similarly to the data which immediately precede the prediction time slot. We
will call these data test data, also normalized by the mean and standard deviation of the train
data. To measure the similarity between two sequences, we follow [All08] and use the DTW-
metric DTW from Matlab, which computes a predefined distance, such as the Euclidean one,
between aligned time series [RG21]. This alignment allows to find also similarities between
time series with shifted patterns or which evolve differently in time. A comparison with the
non-aligned version is illustrated in Figure 4.2. The DTW approach leads to a good match
between the two depicted time series TS1 and TS2 which follow clearly the same pattern.
However, the non-aligned version, presented in Figure 4.2a, does not detect this shift and
leads therefore to higher distances compared to the ones in the right graphic in Figure 4.2b.

TS1

TS2

(a) Non-aligned approach.

TS1

TS2

TS1

TS2

(b) DTW approach.

Figure 4.2: Comparison of the distance between two time series TS1 and TS2 by the non-
aligned and DTW approach. Solid lines: distances between the time series; dotted lines:
illustration of similar pattern detection by the DTW approach.

To conclude, the reference time series in the train data set is the one with the smallest
DTW-distance with respect to the test data. Once it is found, we perform a linear least
square regression between the reference and test data, leading to the 2-dimensional parameter
β̂ = (β̂1, β̂2)

⊤. Then, the succeeding observations of the reference time series, adapted by
the regression parameter β̂, form the predicted data in Step 2. The complete predicting
procedure is summarized in Algorithm 4.
We remark that in step 5 of the algorithm, we create the 1-dimensional version of the time
series by stacking them along their time dimension.

Remark 30. We point out that Algorithm 4 compares time series with the same number of
observations, which is not necessarily required for applying the DTW-metric. However, the
execution of a least square regression compensate this simplification. Indeed, as observed in
experimental tests, the simpler version proposed above does not lead to significant differences
in the results.

85



Chapter 4. Prediction approaches

Algorithm 4 Dynamic Time Warping approach.

Require: Normalized (multi-dimensional) test time series d test = (d test
1 , d test

2 . . . , d test
nt

) with
nt observations, set of m (multi-dimensional) normalized train time series d i,train =
(d i,train

1 , d i,train
2 . . . , d i,train

nt ), i ∈ {1, . . . ,m};
1: for each i in {1, ...,m} do
2: compute the Euclidean DTW-distance: dist i = DTW(d test, d i,train);
3: end for
4: find index ∗ of reference time series: ∗ = find

(
dist == min(dist)

)
;

5: perform an ordinary least square fit: β̂ = argmin
β=(β1,β2)⊤

(Y −Xβ)⊤(Y −Xβ), where

X =

(
1, 1 , . . . , 1

vec(d test)

)⊤

, Y = vec(d ∗,train)⊤;

6: return the predicted time series d̂ with n̂t̂ future observations:

d̂ = (d ∗,train
nt+1 , d ∗,train

nt+2 , . . . , d ∗,train
nt+n̂t̂

) · β̂2 + β̂1.

4.2.1.2 LSTM approach

After presenting a rather intuitive approach in Section 4.2.1.1, we now focus on a machine
learning (ML) algorithm belonging to the class of recurrent neural networks (RNN). In the
literature, the long short-term memory RNN (LSTM) turns out to be the most frequently
used neural network since it is proven to be effective in the context of time series analysis
[BCO23]. Moreover, it is capable to detect long-term dependencies between time series. In
order to create a LSTM regression network, we follow the example taken from Matlab1.
First, we need to define the LSTM architecture, where the size of the sequence input layer
coincides with the number of considered loop detectors. The number of hidden units of
the LSTM layer is set to 128. Indeed, we observe in experimental tests that taking a higher
number of hidden units increases the computation time and does not improve the performance
during the training. For the output time series, we consider a fully connected layer with the
same size as the input layer and finally we include a regression layer.
Second, we specify the training options, where the adam-optimizer is used with 400 epochs
and a learning rate of 0.001. Moreover, the SequencePaddingDirection (resp. Shuffle)
specification is set to left (resp. every-epoch).
Then, taking the train data set, the network is trained on the above defined architecture with
the training options. Once it is carried out, we use the trained network to predict future time
steps. Here, we need to differentiate between open and closed loop forecasting. The first one
predicts only one time step ahead. Thus, when we want to predict subsequent steps, we wait
until the data are available and we use them for the next prediction. However, in order to
do ad hoc travel time predictions, we need to consider the closed loop forecasting algorithm,
meaning that we predict several time steps in the future without updating the predictions by
true values. Thus, we predict the data by iteratively transmitting the non-updated predicted
values to the predictAndUpdateState function from Matlab.

1See https://fr.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learn

ing.html. Accessed on 06/13/2023.
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4.2. Reconstructed travel times

Remark 31. In Physics-informed neural networks (PINNs), which have recently gained more
attention in the literature (see e.g. [RPK17, SMD21]), the physics model is typically injected
during the training process of the network. However, we emphasize that in our approach
we decouple the two parts meaning that the physics are injected after the ML approach (see
separation of Step 2 and Step 3 above), as it is also done in [BCO23].

4.2.2 Loop detector data prediction without historical data

Assuming that historical data are not available, we present in the following several options to
predict the future boundary data ŷB based on a (short) preceding time window. The simplest
idea that comes to mind is to keep the data constant which is also considered by [BCO23]
as a comparative method. As a choice for this constant, one could set it to the last recorded
measurement or an average of the last observed data. Later in Chapter 6, we will see that
this rather naive approach, which obviously takes no information about the traffic evolution
into account, does not lead to convincing results. This motivates us to develop approaches
which exploit better the traffic dynamics of the available past data.

4.2.2.1 A pure GP approach

The pure GP approach belongs to the class of data driven approaches, where we model the
measured traffic data by a GP. This reads in formulas as

yF (XN ) ∼ N (ȳN ,KN ) with KN = σ2(CN + gIN ),

where the mean ȳN is computed by taking the average of all the observed data. The hyper-
parameters, needed to construct the covariance, are obtained by maximizing the likelihood
function and differ naturally in their values from those of the KOH approach presented in
Section 3.4.2.

Remark 32. We point out that the choice of the mean is not evident. Since predicted data
reverts typically to its prior mean [LO18], we believe that ȳN is a reasonable and especially
simple-to-implement choice. A more advanced suggestion can be found in [LO18], where they
propose the so called Single Nugget Kriging method in order to reduce the influence of the
prior mean on the predictions.

Then, as elaborated in Section 3.2, the predicted data still follow a GP, meaning that

yF (X̂N̂ ) | yF (XN ) ∼ N
(
my

N (X̂N̂ ), (syN )2(X̂N̂ , X̂N̂ )
)
,

whose predictive equations are given by

my
N (X̂N̂ ) = ȳN̂ + kN (X̂N̂ )⊤K−1

N

(
yF (XN )− ȳN

)
, (4.2.1)

(syN )2(X̂N̂ , X̂N̂ ) := k(X̂N̂ , X̂N̂ )− kN (X̂N̂ )⊤K−1
N kN (X̂N̂ ),

and the constant entries of the N̂ -dimensional vector ȳN̂ coincide with the ones in ȳN .

Then, denoting by X̂N̂B
the set of observation points in the future time slot and at bound-

ary loop detector positions, xin and xout, the desired boundary data ŷB are extracted from
Equation (4.2.1), resulting in

ŷB = my
N (X̂N̂B

).
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We note that we do not make use of the predictive covariance (syN )2, but it can be also
included in the analysis, e.g. for uncertainty quantification purposes.

Remark 33. As discussed in Section 2.4, the boundary data in the numerical scheme for the
GSOM are either given in terms of the density ρ(t, xB) or the flow q(t, xB), together with the
Lagrangian vehicle property w(t, xB). In any case, two traffic quantities have to be predicted,
which increases tremendously the uncertainty of the results. This is why a consideration of
the first order LWR model in the prediction part seems more convincing because only one
quantity (density or flow) needs to be determined.

4.2.2.2 Hybrid GP approaches

Motivated by our conviction that the physical model provides useful information helping to
improve the prediction results, we now consider methods that integrate the PDE into the GP
modeling. This is the reason why we call them hybrid GP approaches.
In [CCZW22], they propose a method to create points, where the PDE has to be satisfied.
This can be only applied to non-linear PDEs taking a specific form (see [CCZW22, Equation
2.16]): the non-linear term consists only in products of derivatives which is not satisfied in our
case due to the choice of a non-linear speed function. Moreover, in [CHOS21] they suggest
another method in order to force the PDE to be satisfied at a finite set of points. This idea
requires the strong existence of the solution for their convergence proof. However, as proven
in Theorem 1, our IBVP admits entropy solutions in a weak sense (see Definition 4). A more
general approach is suggested in [LWK+22], which has no restrictions on the form of the PDE
or its solution. The idea is to construct two likelihoods, a data and a virtual one. The first
likelihood serves to fit the observations and the second one to fulfil the PDE equation at so
called virtual points. Since there is no closed form for the posterior distribution available,
they end up with a variational posterior expression. Finally, this results in solving a high
dimensional optimization problem, where the number of parameters depends on the number
of observations and virtual points. Thus, the approach is not very practical in real world
scenarios. Additionally, it is not clear how their algorithm performs in true prediction cases
because the optimal set of hyper-parameters are based on a RMSE computed by considering
also the (unavailable) prediction data.
This motivates us to create our own hybrid approach in order to overcome the shortcomings
of the previous ones: it applies to all kind of differential equations and the set of hyper-
parameters do not increase compared to the pure GP modeling. The method is based on
multi-objective optimization (MOO) and it is detailed in the following.

MOO approach
In the MOO appoach, we require two objective functions to be minimized.
First, we again model the data by a GP resulting in the minimization of the negative concen-
trated log-likelihood function which reads as

min
l1,l2,g

fobj
1 (l1, l2, g) = min

l1,l2,g

(
− log L̃

(
l1, l2, g, y

F (XN )
))

,

where the function log L̃ is defined in Equation (3.2.5). Then, we additionally want the

system of PDEs to be satisfied at virtual points, denoted by X̃Ñ =
(
(t̃1, x̃1), . . . , (t̃Ñ , x̃Ñ )

)
.
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This leads to the formulation of the second objective, namely to minimize the PDE residuals
at X̃Ñ :

min
l1,l2,g

fobj
2 (l1, l2, g) = min

l1,l2,g

∣∣∣∂t yF (X̃Ñ ) + ∂x f
(
yF (X̃Ñ )

)∣∣∣,
where yF (X̃Ñ ) = my

N (X̃Ñ ) and f defined in Equation (1.2.3). The derivative expressions are
computed by deriving the kernels, thus it holds

∂t y
F (X̃Ñ ) = ∂tm

y
N (X̃Ñ ) = ∂t

(
kN (X̃Ñ )

)⊤
K−1

N

(
yF (XN )− ȳN

)
,

∂x y
F (X̃Ñ ) = ∂xm

y
N (X̃Ñ ) = ∂x

(
kN (X̃Ñ )

)⊤
K−1

N

(
yF (XN )− ȳN

)
,

where ∂z

(
kN (X̃Ñ )

)
= σ2

(
Corr

(
b(ti, xi),

d
dz b(t̃j , x̃j)

))
1≤i≤N,1≤j≤Ñ

and z ∈ {t, x},

or in case of the integral extension (see Section 3.2.2),

where ∂z

(
kN (X̃Ñ )

)
= σ2

Corr

(
1
∆t

ti+∆t∫
ti

b(s, xi) ds,
d
dz b(t̃j , x̃j)

)
1≤i≤N,1≤j≤Ñ

.

Remark 34. The choice of virtual points is not evident and it has an influence on the
prediction. In our application, we generate uniformly distributed random numbers which
seems to deliver reasonable results. However, we cannot deny that improvements might
be achieved by considering more involved methods, as the “active PDE-informed Kriging”
(APIK) approach proposed in [CCZW22].

As already pointed out in Remark 33, the consideration of the GSOM would imply to predict
two traffic quantities. Moreover, we have to conform to a system of PDEs, which also increases
the number of objective functions. As observed in our tests, the LWR model turns out to
perform better compared to the GSOM since less traffic quantities have to be predicted.
Then, by considering this first order model, the second objective is expressed only in terms
of the density. Consequently, it is natural to implement density boundary conditions in the
numerical scheme. This is why we consider

yF (XN ) =
(
ρ(t1, x1), . . . , ρ(tN , xN )

)
,

in the case of the MOO approach which implies f
(
yF (XN )

)
= yF (XN ) · V

(
yF (XN )

)
.

Finally, to complete this section, we need to deal with the question of how to compute the
optimal hyper-parameters, since we obtain a set of non-dominated optimal solutions rather
than a single one. This set represents the Pareto front meaning that there exists no solution
which is better in at least one of the objectives and not worse in any of them [Mie99].
We rely on the simple knee-point method which allows us to determine a solution on the
Pareto front without any prior knowledge [SNI15]. For this, we connect the extreme points of
the Pareto front by a line (in the 2-dimensional case). Then, the knee-point is the one which
maximizes the Euclidean distance among all points on the front and this line. It is considered
as a reasonable solution since moving on the Pareto front would lead to a large deterioration
in one of the objectives. The method is illustrated in Figure 4.3.
After the knee-point is determined, the optimal hyper-parameters l1, l2 and g, are known.
This enables us to compute the desired boundary loop detector data, again by exploiting the
predictive mean formula, namely ŷB = my

N (X̂N̂B
).
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fobj
1

fobj
2

knee-
point

extreme point

extreme pointPareto front

Figure 4.3: Illustration of the knee-point method for a 2-dimensional MOO problem.

Remark 35. The second objective function fobj
2 reminds of the residual function in the PINNs

approach, where the traffic state variable is approximated by a neural network. More precisely,
the approximate solution of the PDE is obtained by training a loss function consisting of both
a data and a residual error, where the second one typically has to be calculated by using a
large amount of so called auxiliary points. However, in our case, we use the GP predictive
equations, which are computational less expensive.
Moreover, analogously to [LWK+22], we consider two terms in the MOO approach, where
one refers to the observations and the other one to the PDE equation. Unlike them, we keep
the two terms separated in the multi-objective optimization, instead of modeling both by a
likelihood function and combine them via multiplication.
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Chapter 5

Description of traffic data sets

In order to validate our proposed models and statistical approaches, we need to introduce
some traffic data. Thus, this chapter is devoted to the description of two data sets: one is
composed of purely synthetic data (see Section 5.1) and the other one of real world traffic
data (see Section 5.2).
In any case, we consider data which are recorded by loop detectors providing aggregated
information over time. Therefore, we have access to temporal data averages, typically the
traffic flow q and the occupancy O, which is defined as the percentage of time a detector
is occupied by a vehicle [PS15]. From the occupancy measurement, we can then derive the
traffic density ρ by using the formula

ρ =
O

l
, (5.0.1)

where l denotes the average vehicle length. Obviously, this formula gives only an approxima-
tion for the density due to the estimation of l.
If two detectors are installed in very close succession, the traffic speed v can be also directly
computed. In this case, the measurements provide the temporal (also called arithmetic) mean
speed which is the average speed of the vehicles passing a road section during the aggregated
time interval [TK14]. In reality however, the speed is mostly not measured and must be
derived, which can be done by using the fundamental diagram equation

v =
q

ρ
, (5.0.2)

leading finally to a spatial rather than a temporal average value. We point out that contrary
to the flow (resp. density) which belongs to the class of temporal (resp. spatial) traffic data,
the speed can be defined as both a temporal and a spatial quantity. However, these two
definitions differ from each other, thus they naturally lead to different results in applications
such as travel time predictions [TK14].

Remark 36. If the detectors provide flow and speed traffic data (and not occupancy data),
we point out that the density can be only approximated by ρ = q

v which leads to an error
since v is measured by its temporal mean and the density is a spatial quantity. In any case,
the flow data are the most reliable ones, since there is no need of deriving them by a formula.

Next, if we consider scenarios with several lanes, the overall flow at a fixed detector position
is calculated by summing the measured flow values of the individual lanes. The computation
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of the overall density is done in the same way, assuming that the occupancy is given. The
derivation of the overall speed is detailed in Section 5.1.

We remark that all the presented scenarios will have homogeneous road conditions. This
means that both the number of lanes and the speed limit do not change. If we considered
more complex scenarios, the proposed models and approaches would need to be adapted, e.g.
by generalizing the model and increasing the number of parameters, since they do not account
for changing conditions along the road stretch [KCB00].
Moreover, every considered scenario, regardless if it is an artificial or real one, covers a period
of 3 hours and includes congestion phases. Since the calibration and prediction process is
more difficult and interesting for dense traffic situations, we are particularly interested in the
performance of our models for such congested situations.

5.1 Synthetic microscopic traffic data

The quality of the data coming from real world traffic situations is often questionable. This
may be due to non-functioning sensors or measurement errors. Thus, before testing our
approaches on real world scenarios, we want to validate them on synthetic data. We focus
on data generated by microscopic simulations created by the open source package Simulation
of Urban MObility (in short SUMO) [LBBW+18]. In contrast to data derived by simulations
based on a macroscopic traffic flow model, the microscopic simulator models each vehicle
individually. This enables us to have access to trajectory data, from which we can then
directly derive the travel times, as explained in Section 4.1.

Remark 37. In [WBG23], we propose a method to generate data by numerical simulations
based on macroscopic traffic flow models. This paper is a first approach to validate our pro-
posed statistical methods. After having obtained satisfactory results, we are now interested in
considering a microscopic simulator, assuming that it can create more realistic road scenarios.

In the following, we describe three traffic scenarios created by SUMO. All of them simulate
a highway traffic situation for a 10km road stretch with three lanes and a constant speed
limit of 100km/h. The traffic flow consists of three different vehicle types which differ in their
desired maximum speed. The length of all vehicles is set to 5m. Next, we equip the road with
30 loop detectors, one for each lane at ten different, non-equidistant locations. Moreover, the
sensor data are aggregated every 6 minute.
Thanks to SUMO, we have access to all possible measurable traffic quantities: the flow,
occupancy and speed. Thus, the density needs to be derived by applying Equation (5.0.1)
and setting l = 0.005km. Moreover, the speed is given in two versions: the arithmetic and
harmonic mean speed, where the second one can be seen as an approximation for the spatial
average of the speed at a fixed loop detector position [TK14]. In order to compute the average
speed over the three lanes, we use the space mean formula

v =

3∑
i=1

ρivi

ρ
, (5.1.1)

where the sum is taken over each lane speed vi and density ρi, i ∈ {1, 2, 3}.
The remaining question is now how to choose vi. If the raw traffic data are not available,
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which is often the case, the harmonic mean speed cannot be computed. This is why we
exclude its consideration for the determination of vi. However, if we use the arithmetic speed,
which always exceeds the harmonic one [TK14], travel times will be usually underestimated.

Thus, computing vi by the fundamental diagram formula vi =
qi
ρi
, where qi denotes the flow

on lane i, is the most reasonable choice. This finally leads back to equation (5.0.2).
A schematic representation of the road is illustrated in Figure 5.1, where the blue vertical
lines indicate the coarse segmentation used in the numerical schemes. In order to avoid
confounding effects, each segment contains at most one global loop detector which includes
the data of the corresponding lane detectors.

Loop:

km: 0

S1

0.6

S2

1.9

S3

2.8

S4

3.95

S5

5.5

S6

6.55

S7

7.4

S8

8.85

S9

10

S10

Figure 5.1: Schematic representation of the 10km road stretch generated by SUMO.
Loop detectors are illustrated by black circles, the on- (resp. off-) ramps by green (resp. red)
vertical arrows and the coarse segmentation of the numerical scheme by blue vertical lines.

5.1.1 SUMO scenarios

In a next step, we give more details on the three considered SUMO scenarios:

1A) SUMO-1A:

The first one does not consider the ramps depicted in Figure 5.1. It deals with a highly
congested traffic situation generated by reducing gradually the speed limit on the last 0.01km
of the road stretch. By this, vehicles are forced to slow down at the downstream boundary
inducing a backward moving congestion wave, which dissipates after the considered time
window of 3 hours. In Figure 5.2a we depict the speed values measured by the loop detectors
for the 6 minute aggregated time intervals. We point out that the first three loop detectors
are not affected by the congestion wave. The distribution of all the data points is visualized
by the fundamental diagrams in Figure 5.2b. By the peak of the flow diagram at the critical
density, it is well visible that data are lying in both traffic regimes: the free flow and congested
one. Additionally, in contrast to the lower density region, the data in the congested part are
more widely spread, which is typical of real traffic scenarios [Fan13, FHS14].

1B) SUMO-1B:

Keeping exactly the same left boundary inflow and speed reduction as before, we equip
SUMO-1A additionally with two on-ramps and one off-ramp located after 2.6km, 4.7km and
6.9km respectively. In Figure 5.3a we observe that the contribution of the on-ramp inflows
increases traffic congestion tremendously, especially in the first half of the road stretch. Now,
the congestion spills back until the very first loop detector, which was not the case in the
rampless version. Moreover, the fundamental diagrams in Figure 5.3b emphasize the denser
situation because more data points are lying in the congested region. This time, the maximum
density almost reaches a value of 450veh/km which is indeed higher than in SUMO-1A,
where it does not exceed 280veh/km.
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(b) Fundamental diagrams.

Figure 5.2: Traffic scenario SUMO-1A.
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(b) Fundamental diagrams.

Figure 5.3: Traffic scenario SUMO-1B.

2.) SUMO-2:

The second constructed rampless scenario simulates an accident. We implement this in SUMO
by closing the rightmost lane after 1 hour between kilometer 6 and 9 for a duration of 80
minutes. In contrast to SUMO-1A and SUMO-1B, we observe in Figure 5.4a that the
congestion is less present. Consequently, there are only a few data points in the congested
region in Figure 5.4b and the maximum density does not exceed 200veh/km. However, we
observe a sudden change in the traffic regime, especially for the loop detector which is placed
after 5.5km, right before the lane closure. This drastic jump is emphasized by the speed
profile of loop detector S6 in Figure 5.5. From a modeling point of view, such scenarios are
interesting to analyze since these sudden changes are often difficult to capture. Additionally,
the numerical schemes, as proposed in Chapter 2, can struggle to reconstruct the scenario
appropriately since the last boundary detector is not affected by this lane closure.
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(b) Fundamental diagrams.

Figure 5.4: Traffic scenario SUMO-2.
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Figure 5.5: SUMO-2. Sudden change in speed profile for loop detector S6.

In the last part of this synthetic data section, we illustrate the evolution of the travel times
for the artificially created scenarios. Thanks to SUMO, we have access to the exact travel
times for each individually modeled vehicle.
We are interested in the average time taken by a vehicle to pass the 10km long road stretch.
As explained in Section 4.1.1, we compute this mean travel time for a vehicle starting at time
t by averaging over the recorded times in the interval ]t− ε, t+ ε[, where we choose ε = 10s.
Then, these travel times serve as our reference values and they will be compared with the
two methods for aggregated data, introduced in Section 4.1.2. We note that, due to a later
implemented initialization period, we look at travel times for cars which departs after the
first 6 minutes. The last considered departure time is after 2 hours and 30 minutes which
finally results in the consideration of 865 vehicle trajectories.

Starting with SUMO-1A, we observe in Figure 5.6a a steadily increasing travel time up to
τ = 27min due to the artificially created congestion. The results for the method of N-curves
(resp. baseline method) is depicted in black (resp. blue) color. It is clearly visible that the
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black dashed line reflects better the ground truth than the blue dotted one which is also
confirmed by the RMSEs (in minutes): Eτ

N-curve = 0.43 < Eτ
baseline = 0.84. Thus, the method

of N-curve outperforms the baseline approach, certainly due to the consideration of flow data
which are directly given by the detectors. Instead, the baseline approach uses piece-wise
constant speed data to approximate the travel times. As already pointed out, the speed data
are not unique and not directly measurable which leads finally to worse approximations.
Additionally, by Figure 5.6b, we emphasize the worse performance of the baseline method
when using the arithmetic mean speed in Equation (5.1.1). As expected, the travel times are
clearly underestimated and the RMSE exceeds the one in the fundamental diagram version.

(a) Speed by fundamental relation. (b) Speed by arithmetic mean.

Figure 5.6: SUMO-1A. Comparison of travel times derived by trajectory and aggregated
data. Left (resp. right) column: baseline method is based on speed values given by the
fundamental equation (resp. arithmetic mean speed).

Next, analyzing the travel times of SUMO-1B in Figure 5.7, we come to the same conclusion
as before:

1. The method of N-curve outperforms the baseline approach.

2. The use of the arithmetic mean speed in Equation (5.1.1) underestimates the travel
times compared to the fundamental Equation.

Moreover, due to the presence of ramps and the denser traffic situation, the average duration
of travelling through the road is now higher than in SUMO-1A. This time the travel time
can exceed τ = 30min. Additionally, all the RMSEs are higher than the corresponding ones
of the rampless scenario. However, it is remarkable that the method of N-curve still leads to
a good approximation (Eτ

N-curve = 0.54). Thus, assuming good quality data, this approach
could serve as a reasonable travel time approximation for real world scenarios when trajectory
data are not available.

96



5.1. Synthetic microscopic traffic data

(a) Speed by fundamental relation. (b) Speed by arithmetic mean.

Figure 5.7: SUMO-1B. Comparison of travel times derived by trajectory and aggregated
data. Left (resp. right) column: baseline method is based on speed values given by the
fundamental equation (resp. arithmetic mean speed).

It remains to consider the travel time results for SUMO-2, illustrated in Figure 5.8. Due
to less congestion, the travel times are in a lower range than in the two previously presented
cases. The jump of the traffic regime is well reflected by the sudden increase of the travel
time which has its peak approximately after 1 hour. This is exactly the time instant when the
rightmost lane is getting closed. Finally, for this scenario the RMSE of the baseline method
lies closer to the one of the N-curve approach. However, it still performs worse, especially if
we consider the arithmetic mean, emphasized by Figure 5.8b.

(a) Speed by fundamental relation. (b) Speed by arithmetic mean.

Figure 5.8: SUMO-2. Comparison of travel times derived by trajectory and aggregated data.
Left (resp. right) column: baseline method is based on speed values given by the fundamental
equation (resp. arithmetic mean speed).
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Chapter 5. Description of traffic data sets

Remark 38. Although the method of N-curve seems to perform well in every considered
scenario, it remains a questionable choice for travel time reconstructions. More complex
scenarios, as longer road stretches including more ramps, lane changes and overtaking ma-
neuvers, will decrease the reliability on the N-curve approach [TK14]. This is why traffic flow
models, as proposed in this work, can be seen as a replacement.

5.2 Real traffic data

We continue now by considering a real world data set which is referred to as the RTMC data
set [Min], provided by the Minnesota Department of Transportation (MnDOT). Analogously
to the artificial SUMO data, the RTMC data are 6 minute averages obtained by single loop
detectors measuring the traffic flow and the occupancy. Moreover, the MnDOT transforms
the recorded occupancy values into densities by using the so called average field length1 of
the traffic sensor which consists of the average vehicle length and the sensitivity of a sensor.
For the tests, we consider a 4.85km long road stretch on the northbound direction of the
interstate highway I-35W equipped with 8 sensors on the mainlane (IDs: S54, S1706, S56,
S57, S1707, S59, S60, S61), 2 at on-ramps (IDs: 129, 130) and 3 at off-ramps (IDs: 169, 170,
171). The road stretch has in total five lanes and the speed limit is 55miles/hour (≈ 90km/h).
To visualize the position of the sensors along the road, we refer to Figure 5.9.

Loop:

km: 0

S54

0.75

S1706

1.25

S56

2.05

S57

3.05

S1707

3.45

S59

4.25

S60

4.85

S61

Figure 5.9: Schematic representation of a section of highway I-35W in Minnesota.
Loop detectors are illustrated by black circles, the on- (resp. off-) ramps by green (resp. red)
vertical arrows and the coarse segmentation of the numerical scheme by blue vertical lines.

5.2.1 Data pre-processing

We extract all the sensor data measured in the year 2013, serving as the historical train data,
and some selected days in 2014. Instead of extracting single lane data, we consider directly
the accumulated measurements over the five lanes which are also provided by the MnDOT.
For our later analysis, however, we need to pre-process these raw-data in order to remove
abnormalities [LMLR06].
In a first step, we detect missing data which are indicated by negative values. In this case, we
note that the detectors did not work properly for several hours. Thus, we decided to discard
the following eight days completely from our analysis: 06/21/2013-06/24/2013, 08/25/2013-
08/26/2013 and 09/08/2013-09/09/2013. Next, motivated by the fundamental diagram, we
replace all measured flow (resp. density) values by zero if the corresponding density (flow)
is zero. Naturally, a zero flow could also correspond to a fully congested road, however this
is never the case for our extracted RTMC data, which can be easily verified by comparing
the data measured by nearby loop detectors. Then, we compute the average speed values
by the fundamental Equation (5.0.2) and they are set to 200km/h in the case of ρ = q = 0.

1See http://data.dot.state.mn.us/datatools/Density.html. Accessed on 09/15/2023.
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5.2. Real traffic data

Moreover, we verify that the computed speeds never exceed the threshold of 200km/h, which
is true except for two ramp observations due to very low measured density (and flow) values.
In those two rare cases we set v = 200km/h.

5.2.2 Data clustering

To get more insight into the historical data, we perform a clustering technique which is based
on the well-known K-means method [Llo82]. Here, we measure the distance between the
centroids and train time series again by the DTW-metric. In general, the clustering can
be performed on any of the traffic quantities. However, as previously pointed out, we are
interested in a good speed reconstruction, therefore we consider the historical speed data in
the algorithm. Moreover, the results of the clustering will be later used in Chapter 6 when
testing the fundamental fit approach, introduced in Section 3.3.
The complete procedure is summarized in Algorithm 5, where we set N iter = 30 (number of
iterations per random initialization), ε = 10−6 (stopping criteria), m = 365−8 = 357 (number

of days in the training set) and nt = 24 · 60
6

= 240 (number of daily time observations).

Algorithm 5 K-means clustering with DTW-distance.

Require: Set of m normalized (multi-dimensional) train time series d i,train =
(d i,train

1 , d i,train
2 . . . , d i,train

nt ) with nt observations, i ∈ {1, . . . ,m}, number of clusters K,
maximum number of iterations N iter, stopping criteria ε;

1: initialize iteration counter p = 1 and error E = 1;
2: initialize K centroid time series c k,p = (c k,p1 , c k,p2 , . . . , c k,pnt ), k ∈ {1, . . . ,K}, by choosing

randomly K time series from the training set;
3: while E > ε and p ≤ N iter do
4: for each i in {1, ...,m} do
5: for each k in {1, ...,K} do
6: compute the Euclidean DTW-distance by dist k = DTW(c k,p, d i,train);
7: end for
8: assign time series d i,train to cluster k by k = argmin

k∈{1,...,K}
dist k;

9: end for
10: for each k in {1, ...,K} do
11: update centroids by taking the mean over the set of Nk time series, denoted by

d j,k, j ∈ {1, . . . , Nk}, belonging to cluster k: c k,p+1 =
1

Nk

Nk∑
j=1

d j,k;

12: end for

13: E =
K∑
k=1

∥c k,p+1 − c k,p∥F ;

14: p = p+ 1;
15: end while

16: return inertia =
K∑
k=1

Nk∑
j=1

∥c k,p − d j,k∥2F .

Since we deal with 8-dimensional time series, where each dimension corresponds to a loop
detector, we consider the Frobenius norm in step 14 and 17. Moreover, in order to compute
the updated centroid in step 12, the mean is calculated for each loop detector and each time
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point separately such that the dimensions of c k,p+1 and d j,k coincide.
This algorithm is executed 50 times since the result depends on the random initialization in
step 3. Finally, we pick the initialization which leads to the lowest inertia, defined as the
Frobenius norm between every train time series and its corresponding cluster centroid. Of
course, the number of optimal clusters K is not known in advance. Thus, the whole procedure
has to be repeated for different choices of K. In Figure 5.10a, we plot the inertia value against
the number of clusters. Typically, one tries to find the “elbow” of this curve, which in this
case could correspond to K = 2 or K = 3. Comparing the daily time series for these two
options, we decide for K = 2 since a third cluster shows no behavior that has not already
been captured by the other two. Finally, we illustrate all the 357 daily time series from 2013
recorded by loop detector S59 in Figure 5.10b, where the time series belonging to cluster 1
(resp. cluster 2) are drawn in red (resp. black). In total, 201 (resp. 156) out of 357 time series
are assigned to cluster 1 (resp. cluster 2).

(a) Elbow plot. (b) Daily time series.

Figure 5.10: Illustration of clustering results by Algorithm 5. Left column: inertia dependent
on the number of clusters. Right column: daily time series for loop detector S59 and K = 2.

Generally speaking, the data belonging to cluster 1 exhibit two rush hour periods, one in the
morning and the other one in the afternoon. In contrast, the second cluster captures a more
steady traffic situation with only a few cases with peaks. Thus, it is not surpising that the
first (resp. second) cluster is mainly represented by weekdays (resp. Saturdays and Sundays),
where the traffic is typically more dense (resp. less dense).

5.2.3 RTMC scenarios

In the following section, we describe two sample scenarios for the RTMC data set which will
be later used to test our models and statistical approaches. The data are chosen from the
year 2014, so they are not integrated in the clustering procedure. We pick the scenarios in a
way such that they belong to the two different clusters.

Remark 39. In order to determine which cluster a test day belongs to, we compare the
DTW-distance between the two centroids and the test time series. Then, we pick the cluster
which leads to the lowest value of the DTW-metric. Moreover, we point out that the time
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5.2. Real traffic data

slot between 8am-9am will later be considered as the prediction time slot, so all the data
after 8am are treated as unknown. This is why the cluster assignment and also the DTW
Algorithm 4 involves only the data of the first 8 hours of the test and centroid time series.

1.) RTMC-1:

The first scenario belongs to cluster 1 and covers the morning time slot from 6am to 9am of
Wednesday, 11/05/2014. In the speed evolution depicted in Figure 5.11a, a free flow situation
is well recognizable in the first 30 minutes. Then, the traffic is getting more dense almost
until the end of the considered time period. In particular, the fundamental flow diagram in
Figure 5.11b emphasizes these two traffic regimes since data are present for both lower and
higher densities. Moreover, the congested part is well recognizable due to the larger spread
of the data for densities higher than 110veh/km.
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(b) Fundamental diagrams.

Figure 5.11: Traffic scenario RTMC-1.

2.) RTMC-2:

In contrast, the second scenario which belongs to cluster 2, refers to a much less intense
traffic situation. The data are recorded on Monday, 02/10/2014, again from 6am-9am and
they belong most of the time to the free flow regime which is pointed out by the two graphics
in Figure 5.12: first, in the left column, there are only a few points drawn in darker orange or
red color; second, in the right column, the measured flow data are mainly distributed around
the increasing part of the fundamental flow diagram. Consequently, the maximum measured
density is lower than in RTMC-1 and does not exceed 200veh/km.
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(b) Fundamental diagrams.

Figure 5.12: Traffic scenario RTMC-2.

Analogously to the SUMO data, we study the travel times for the presented RTMC scenarios
in a final part of this section. However, this time we do not have access to trajectory data, so
the reference travel time can be only estimated by using the aggregated loop detector data.
As before, we compare the method of N-curves and the baseline approach.
The initialization of the N-curves belonging to the first and last loop detector are based on a
free flow assumption at 6am. Thus, we shift the N-curve for sensor S61 by a fictive computed
travel time towards the future. This time is computed by dividing the length of the road
stretch (4.85km) by the mean of the speeds, measured by the eight sensors, at 6am. We point
out that in the artificial data case, the execution of this shift was not necessary because it
was known at the beginning of the time slot how many cars have already passed the first loop
and not reached the last one. In Figure 5.13, we illustrate the results of the two approaches
for vehicles departing during the first 2 hours. In both scenarios, the method of N-curve fails
since the travel time decreases constantly, which will finally result in negative values. Indeed,
we observe intersecting N-curves after more than 2 hours which is a typical drawback of this
approach when dealing with real world data (see Remark 38). Instead, the baseline approach
shows an increasing behavior in the travel time, which seems to be realistic due to lower
measured speeds for both scenarios in the second part of the time slot. However, it is not
clear how much we can rely on this simple method because in RTMC-2 the two approaches
produces different results already in the very beginning. Moreover, for the SUMO data, the
difference in the travel times between the two methods is in a much lower range, where we
finally observe a worse performance for the baseline method. Thus, in case of the RTMC
data, it is hard to know which of the two methods actually gives more reasonable results in
the first period.
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(a) RTMC-1.
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(b) RTMC-2.

Figure 5.13: RTMC data. Comparison of travel times between N-curve and baseline method.

Due to the uncertainty in the latest observations, we decided not to carry out further inves-
tigations on the reconstruction of travel times for the RTMC data in Chapter 6. However,
we will still evaluate the goodness of our approaches for the prediction of aggregated data at
loop detector positions, since these are the data which are actually available.
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Chapter 6

Validation of calibration and
prediction approaches

In this chapter, we validate the calibration and prediction approaches presented in Chapter
3 and Chapter 4. The whole analysis is carried out on both synthetic (SUMO) and real
(RTMC) traffic data scenarios, which have been described in Chapter 5. Moreover, we also
compare the performance of the different numerical methods introduced in Chapter 2.
Throughout the following study, we consider the homoskedastic approach, meaning that we do
not differentiate in the noise hyper-parameter modeling between the two traffic regimes (see
Section 3.2.3). Additionally, we apply the classical Gaussian kernel (see Equation (3.2.1))
without the integral extension presented in Section 3.2.2. Both choices are based on pre-
liminary experimental tests, which showed a negligible performance gain for the advanced
methods and the strikingly lower computational cost of the original approaches.
In all the experiments, we fix the maximum empty road velocity to wmax = 200km/h, thus
reducing the number of calibration parameters, as pointed out in Remark 19.

6.1 Traffic calibration results

The calibration parameter θ = (V,C,R) appearing in the speed function (3.0.1) is not only
dependent on the traffic scenario [PS15] but also on the choice of the traffic flow model,
the numerical scheme and the statistical approach. As a short reminder, we compactly list
in the following all the proposed possibilities which can be taken into account during the
calibration. First, we need to decide for the macroscopic traffic flow model (LWR model (1st)
or GSOM (2nd)), for the numerical scheme (Godunov (Godu), HLL, HW) and, in the case of
the Godunov scheme, the way to implement the boundary data (by density ρ or flux q). A
summarized overview of all the options is given in Diagram 6.1.

Next, we have to decide between one of the below stated calibration approaches:

fundamental fit (FF), L2, KOH, Plumlee or MCMC.

As emphasized in the previous chapters, our final application are travel time reconstructions,
thus it seems natural to us to consider the speed as our quantity of interest in the optimization.
As a solver we use the local optimizer fmincon provided by Matlab together with its default
option interior-point. This solver aims to find a minimum of a non-linear multivariable
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Figure 6.1: Overview of setting combinations defined in Chapter 2.

function. For applying fmincon, we need to specify admissible intervals for the parameters
which are listed in Table 6.1.

V C R l1 l2 g

lower bound 55 10 150 10−3 10−3 10−3

upper bound 150 100 600 3 L 5

Table 6.1: Upper and lower bounds for the calibration and hyper-parameters used in the
calibration approaches. The upper bound for l2 is given by the length of the road stretch L.

Moreover, we have to provide an initial guess, whose choice is typically crucial for the result
of a local solver. Thus, in order to reduce the probability of being stuck in a local minimum,
we compute the objective function beforehand for 200 randomly chosen θ values. Then, we
decide for the parameter combination which leads to the best objective. Analogously, we
do the same for GP the hyper-parameter determination. Since the computation time of the
likelihood is strikingly faster (for a fixed θ) than the execution of the simulation code, we
can easily propose here 500 randomly chosen values for the initial guess procedure. We point
out that considering a global solver, for example pso (particle swarm optimization), does not
lead to better results but to more computational effort. Finally, we remind that in the KOH
and Plumlee approaches, we follow the principle of modularization [LBB09] by applying the
2-step optimization detailed in Section 3.4.2.
The optimization code is executed on the first 2 hours for each presented 3 hour scenario. The
last hour will be only considered in Section 6.3 for the prediction tests. The piece-wise constant
initial condition in the numerical scheme is taken from traffic data. However, to overcome
the difficulty of precisely reconstructing the initial condition from loop measurements, we run
the traffic model through an initialization phase of 6 minutes (see [FHS14]).
Next, in order to compare numerically the predictive accuracy of the results between the
different proposed models with and without statistical approaches, we define an error metric
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E which is given by the RMSE between the field and simulated speed data:

E =

√√√√ 1

N

N∑
i=1

∣∣∣yF (ti, xi)− yM (ti, xi, θ∗)
∣∣∣2. (6.1.1)

Additionally, we are also interested in the performance between the field data and the kriging
mean corrected simulated data yMc , defined as

yMc (t, x, θ∗) = yM (t, x, θ∗) +mN (t, x).

The related error is denoted by Ec which is obtained by replacing yM with yMc in Equation
(6.1.1).

Remark 40. Since the direct simulation output of the numerical schemes from Chapter 2
are the density ρ and w, we compute the average speed by the fundamental function (5.0.2),
where the flow is given by q = Q(ρ, w). This is also coherent with the speed data treatment
for the field data.

Finally, in order to underline the benefit coming from the physical model, we define a third
error, EGP , where this time the simulation yM is completely replaced by the kriging mean
of yF (XN ) ∼ N (ȳN ,KN ) with KN = σ2(CN + gIN ) (see notation in Section 4.2.2.1). By
this, the speed data are directly modeled by a GP without taking the physical model and its
calibration parameter into account. We will see later that Ec always outperforms EGP .

Now, we are ready to present the calibration results for each traffic scenario:

SUMO-1A:

The calibration parameters computed by the L2, KOH and FF approach are summarized
in Table 6.2, where we indicate in blue the parameter which will lead later to the best
performance (see Table 6.3) and which will be referred to as the best approach.

L2 KOH

V C R V C R

1st −Godu− q 71 78 315 78 33 357

1st −Godu− ρ 96 24 344 96 22 356

2nd −Godu− q 77 88 309 115 32 413

2nd −Godu− ρ 140 40 344 146 40 352

2nd −HLL 131 25 383 117 32 353

2nd −HW 146 27 390 95 21 373

Table 6.2: SUMO-1A. Calibration results.
Fundamental fit approach: θ∗ = (89, 34, 326). In blue: best approach.

First, we observe that we obtain different outcomes for the statistical approaches. Moreover,
the two traffic flow models lead to parameters lying in completely different ranges. Especially
the second order models with density boundary cell implementation lead to high V values.
Additionally, comparing the second order Godunov, HLL and HW results, the parameters are
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not necessarily close to each other although the schemes are considered to perform similarly.
Indeed, in [WGV23] they lead to almost the same parameters, however the underlying traffic
scenario was less congested and the road stretch only 1.1km long.
At this stage, the only possible statement which can be given is that there might exist an
anti-correlated behavior between C and R, meaning that a calibration approach with higher
C values tends to have a lower R value and vice-versa.
In order to emphasize the different ranges of the calibration parameters obtained by the
approaches, we illustrate the fundamental diagrams for the 1st − Godu − ρ and 2nd − HW
parameters in Figure 6.2 which reports the same data as Figure 5.2b. For the first order
model, many flow data points are lying above the curve, whereas the speed data are following
the shape better. In contrast, in the second order model the representation of the flow curve
corresponding to w = V ∗ is more convincing, whereas the maximum speed V = 146km/h
is clearly overestimated. We point out that the first order model cannot capture the whole
spread of the data in the congested regime due to its single curve. Thus, in order to come
to a meaningful conclusion about the best performance, it will be necessary to compare the
error metrics.

(a) 1st −Godu− ρ : θ∗ = (96, 24, 344). (b) 2nd −HW : θ∗ = (146, 27, 390).

Figure 6.2: SUMO-1A. Fundamental flow and speed diagrams. L2 approach.
In red: curves corresponding to w = V ∗. Parameter in blue: best approach.

Next, we also apply the MCMC sampling approach to obtain a posterior probability distri-
bution of the model parameters. In the following, we introduce the formulas used in the
Metropolis Algorithm 2:
The prior π(θ) for θ = (V,C,R) is given by a multivariate normal distribution, thus it holds

π(θ) ∝ 1√
|Σθ|

exp
{
−0.5 (θ − µθ)

⊤Σ−1
θ (θ − µθ)

}
,

with mean µθ = (96, 24, 344) and covariance matrix Σθ = diag(103, 103, 104).
The proposal distribution for θ̂ is also defined as a multivariate normal distribution, θ̂ ∼
N (θ∗i−1,Σ

p), with covariance matrix Σp = diag(5, 2, 15). To run the algorithm, we set the
number of iterations to N iter = 6 · 104. It is a common approach to remove the first MCMC

108



6.1. Traffic calibration results

outputs in order to reduce the dependence of the proposal distribution on the initial guess.

We set this burn-in phase to
100

6
% of the N iter-iterations. Then, in order to minimize auto-

correlations, we reduce the sample chain to N̂ESS = 103 computed by using the multivariate
effective sample size (ESS) function multiESS in the R package mcmcse [FHVD20]. For a
graphical representation of the results, we consider in Figure 6.3 both the histograms and the
2-dimensional density contour plots, which are smoothed by a kernel density estimator. In
the histogram graphics, we additionally add the probability density of the prior distribution
for the calibration parameters (green line) and the kernel smoothed posterior distribution
which is computed by the Matlab command fitdist (red line). This operator fits a kernel
probability distribution object to the sample data. The parameters for the kernel distribu-
tion object in Matlab are chosen to be normal by default. Now, the previously assumed
negative correlation between C and R becomes more evident, due to the clear diagonal shape
of the C − R contours. Moreover, it gets obvious that the 1st − Godu − ρ KOH approach
leads to completely different results in terms of C and R parameters. This is emphasized
by the black vertical line which indicates the KOH optimization result and which lies out
of the range of the MCMC samples. Indeed, the mode parameter of the MCMC approach
is θm = (91, 17, 443). Finally, for all parameters we can conclude that the mostly flat prior
distributions always differ from the more peaked or shifted posteriors.

Figure 6.3: SUMO-1A. 1st − Godu − ρ. MCMC approach. Histograms and 2-dimensional
density contour plots. Black vertical line: parameter estimate obtained by KOH approach.

Remark 41. We expect that the posterior probability depends mainly on the likelihood func-
tion because we assume that the given data are representative and the parameter boundaries
are chosen properly [CMV15]. In other words, the choice of the prior distribution should not
affect the posterior distribution in a sensitive way. In practice, the prior is often chosen for
reasons of computational convenience [Hof09].

After dealing with the calibration parameters, it is now time to analyse the results of the
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above defined error metrics in order to come to a well-founded decision for the best approach.
In Table 6.3, we state the RMSEs for all possible combinations.

FF L2 KOH

E Ec E Ec E Ec

1st −Godu− q 12.53 5.33 11.76 4.47 13.41 3.46

1st −Godu− ρ 10.99 5.41 5.46 2.46 6.05 2.93

2nd −Godu− q 15.40 4.93 13.68 5.37 14.06 4.29

2nd −Godu− ρ 10.92 4.91 9.40 2.82 9.77 3.76

2nd −HLL 10.89 4.77 9.16 3.13 9.77 3.59

2nd −HW 9.96 3.41 8.90 2.80 9.07 2.57

Table 6.3: SUMO-1A with θ∗ = (96, 24, 344). EGP = 4.53.
Comparison of speed RMSE between calibration approaches. In blue: best approach.

First, we point out that all the values listed in the FF column rely on the same calibration
parameter since the fundamental fit approach does not involve the mathematical model.
Comparing its errors with the corresponding ones of the L2 and KOH approach, we detect
almost everywhere a worse performance, which emphasizes the advantage of using a physical
model. Therefore, we will discard the fundamental fit approach in the following analysis.
Second, we conclude that both errors E and Ec are noticeably worse when the implementation
of the numerical schemes is done by flow boundary conditions instead of density ones.
Focusing now on the comparison between the L2 and KOH approach, we observe in all cases
a lower simulation error for the former one. This is indeed not surprising, since the objective
of this method is to minimize exactly the RMSE E (see Equation (3.4.1)). However, what
is much more astonishing is that also after the bias correction the L2 corrected error Ec is
often lower. Intuitively, one would have assumed a better performance for the KOH approach
because it takes into account the bias in its modeling. This rather disappointing behavior of
the KOH approach was also observed in [TW15]. They point out that the KOH modeling
might lead to unreasonable estimates in contrast to the consistent and computationally more
efficient L2 method. Also Gramacy remarks in [Gra20] that the flexibility in the KOH method
could be even too high and the coupling of the bias and the mathematical model with θ might
not work properly. This induces unrealistic results in the parameter identification process.
Consequently, we are curious to see if the Plumlee approach for 1st −Godu− ρ works better
because the idea is to put more emphasis on the model in order to reduce confounding
effects. We obtain θ∗plum = (91, 29, 329), E = 5.30 and Ec = 3.13. Thus, it provides even

a smaller simulation error than the L2 approach, whereas Ec is higher. As pointed out in
Remark 27, the possible performance gain by the Plumlee approach comes together with
much more computational effort, since we cannot exploit the Kronecker structure in the
covariance modeling. Moreover, it often suffers from a bad approximation of the derivative
of the simulator. Although it seems promising in this particular case, we will discard the
approach later because the results are inconclusive. Additionally, also the MCMC mode
parameter does not lead to a better performance (E = 15.67, Ec = 3.02), thus it should
not be considered as a replacement for the other approaches. Instead, it can be seen as an
additional source of information that provides insights into the posterior distribution of the
calibration parameters.
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Next, we compare also the performance between the first and second order models, observing
that the first order ones lead usually to lower errors. This observation was also made in
[PHF+15, SMD21, WBG23], but it is in contrast with [WBGG22]. Intuitively, the second
order model should reconstruct the speed better, at least before the bias correction, because
it is equipped with more information. However, the lack of information on the additional w
parameter and the increase in the dimension seem to have negative effects on the calibration
process.
Finally, we want to point out that the performance of the second order schemes (Godu, HLL,
HW) with density boundary conditions is very similar. Although the calibration parameters
differ, the resulting errors are close to each other. However, the HW-scheme, seen as the
cheapest and easiest-to-implement scheme among them, provides slightly better results.
As a conclusion, the simplest model 1st −Godu− ρ together with the L2 approach seems to
work best in this case. Before proceeding in the analysis for the other traffic scenarios, we
also compare the parameters and error metrics when removing some loop detectors in the
calibration process. More precisely, we choose

loop =


S1, S6, S10 if nx = 3,

S1, S4, S6, S8, S10 if nx = 5,

S1, S2, S4, S6, S7, S9, S10 if nx = 7,

where nx denotes the number of detectors. In Table 6.4 we observe a convergent behavior for
θ when increasing the number of loops. Regarding the errors, an improvement of Ec and EGP

is clearly detectable, where the first one always beats largely the second one. In contrast,
the simulation error E seems rather stable, thus it does not really benefit from the additional
data information (except in the change from nx = 3 to nx = 5). Moreover, it is outperformed
by EGP when considering nx = 10 detectors, which is not surprising since the model alone is
not able to describe the traffic dynamics.

nx V C R E Ec EGP

3 103 24 355 6.78 5.69 14.88

5 90 34 317 5.41 4.66 8.23

7 96 24 345 5.48 3.94 6.02

10 96 24 344 5.46 2.46 4.53

Table 6.4: SUMO-1A. 1st −Godu− ρ, L2 approach.
Calibration and speed RMSE results for different number of loop detectors nx ∈ {3, 5, 7, 10}.

SUMO-1B:

We remind that in the construction of the artificial scenario SUMO-1B we include the
ramps, which increases further the congestion with respect to SUMO-1A. Thus, we test two
settings in the calibration: one where we run the code considering the ramp data and the
other without this additional information. Table 6.5 provides the results for the calibration
parameters. We remind that in the case of ramp consideration, there are no results available
for 2nd − HLL and 2nd − HW since the ramp implementation in its demand and supply
notation (see Section 2.1.1) is only applicable for the Godunov scheme.
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The 1st −Godu− ρ seems to perform similarly in the two settings, however in all other cases
no obvious pattern can be derived.

L2 KOH

V C R V C R

1st −Godu− q 75 100 315 61 96 315

1st −Godu− ρ 86 37 281 89 13 546

2nd −Godu− q 109 15 441 68 15 405

2nd −Godu− ρ 138 38 326 139 40 326

2nd −HLL - - - - - -

2nd −HW - - - - - -

(a) With ramp consideration.

L2 KOH

V C R V C R

75 100 274 73 42 310

89 33 277 105 24 301

60 66 278 137 14 188

74 11 345 123 21 337

75 14 330 122 23 330

111 27 310 121 27 322

(b) Without ramp consideration.

Table 6.5: SUMO-1B. Calibration results.
Fundamental fit approach: θ∗ = (90, 34, 330). In blue: best approach.

We thus focus on the error metrics in Table 6.6, getting to the same conclusion as for SUMO-
1A: the fundamental fit approach is outperformed by L2 and KOH, the density boundary
implementation leads mostly to a lower E and Ec, and the L2 method delivers always (resp.
often) a better simulation (resp. corrected simulation) error than the KOH one. Moreover,
the performance between the second order models is similar, with sightly better results for
the HW numerical method but still worse compared to the first order ones.
Next, comparing additionally the two versions (with and without ramp consideration), it
seems that the second order schemes lead to lower errors when including the ramp data.
However, the best E is provided by the rampless L2 setting with 1st − Godu − ρ, which
delivers also a convincing Ec = 3.47 value. We remark that the value Ec = 3.30 of the version
with ramps is almost 5% lower than the rampless one, however the simulation error E = 7.91
is 29% higher. This justifies the blue highlighted version as our choice for the best approach.
In order to point out the slightly distinct performance between the two versions, we visualize
in Figure 6.4 their space-time speed evolution and also their difference. In fact, there is only
one striking deviation: at the border of the congested regime, indicated by the yellow color
in Figure 6.4c. Otherwise, it is remarkable that the simpler implementation without ramps
can capture the dynamics so well (or even better).
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FF L2 KOH

E Ec E Ec E Ec

1st −Godu− q 15.59 4.42 11.73 4.70 15.81 4.47

1st −Godu− ρ 21.10 3.88 7.91 3.30 18.89 2.93

2nd −Godu− q 16.78 4.43 13.32 4.00 13.51 4.16

2nd −Godu− ρ 17.78 3.80 8.49 2.78 8.70 3.40

2nd −HLL - - - - - -

2nd −HW - - - - - -

(a) With ramp consideration.

FF L2 KOH

E Ec E Ec E Ec

1st −Godu− q 12.21 3.92 11.29 4.52 13.36 4.15

1st −Godu− ρ 24.24 3.59 6.13 3.47 6.73 4.24

2nd −Godu− q 15.25 4.43 14.33 4.52 29.47 3.73

2nd −Godu− ρ 23.18 3.98 9.77 4.49 10.01 4.59

2nd −HLL 23.56 3.66 9.91 4.22 10.01 4.48

2nd −HW 22.30 3.46 9.61 3.29 9.65 3.50

(b) Without ramp consideration.

Table 6.6: SUMO-1B with θ∗ = (89, 33, 277). EGP = 4.02.
Comparison of speed RMSE between calibration approaches. In blue: best approach.
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(a) With ramps. E = 7.91.
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(b) Without ramps. E = 6.13.
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(c) Speed difference.

Figure 6.4: SUMO-1B. 1st −Godu− ρ, L2 approach. Real data: see Figure 5.3.
Space-time speed visualization of the simulated speeds and their difference.

Remark 42. We point out that in contrast to the measured loop detector data, the numerical
solution enables us to reconstruct the traffic quantities along a finer space-time dimension.
This is also of interest from an application point of view, such as travel time estimation (see
Section 6.2), since we obtain detailed information on traffic dynamics, illustrated as in Figure
6.4, compared to the coarse version as in Figure 5.3a.
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SUMO-2:

The last synthetic scenario which remains to analyze is SUMO-2, characterized by a sudden
change of the traffic regime due to a lane closure. In general, we observe for this case lower
maximum densities R, which is reasonable due to less congestion. We refer to Table 6.19 in
Appendix B for a summary of the obtained calibration parameters.
By Table 6.7, we detect the same behavior as for the two previous scenarios. Moreover we
remark that this time the values for Ec are lying in a lower range compared to the two
more congested situations. However, the simulation error of the best approach, E = 8.17, is
remarkably higher than before. Indeed, in this traffic scenario, the simulation cannot reflect
the traffic dynamics properly since the model is not designed to capture the lane closure. Thus,
SUMO-2 represents a good toy example to emphasize the benefit of the bias modeling.

FF L2 KOH

E Ec E Ec E Ec

1st −Godu− q 21.32 4.85 12.89 2.76 13.46 2.84

1st −Godu− ρ 8.32 2.61 8.17 2.34 8.29 2.41

2nd −Godu− q 22.18 4.06 15.09 3.94 13.46 3.00

2nd −Godu− ρ 9.05 2.34 8.60 3.77 8.70 2.30

2nd −HLL 9.02 2.31 8.65 2.30 9.39 2.46

2nd −HW 8.92 2.34 8.65 2.32 9.22 2.43

Table 6.7: SUMO-2 with θ∗ = (93, 31, 300). EGP = 5.76.
Comparison of speed RMSE between calibration approaches. In blue: best approach.

This is also emphasized by the space-time speed illustration in the left and middle graphics
of Figure 6.5. Indeed, in the corrected version we recognize the traffic jam created around
loop detector S6, which is not visible in the pure simulation. Additionally, the speed profile
for sensor S6 in the right column reinforces this last statement: the blue line (yM ) does
not capture the sudden change in the traffic regime, however the green one (yMc ) convinces,
although we consider the homoskedastic modeling.
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(a) Simulation. E = 8.17.
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(b) Corrected simulation.
Ec = 2.34.
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(c) Speed profile.

Figure 6.5: SUMO-2. 1st −Godu− ρ, L2 approach. Real data: see Figure 5.4.
Space-time speed visualization and speed profile for loop detector S6.
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Now, we continue our analysis by considering the real world highway traffic scenarios which
include naturally on- and off-ramps. First, we present the results of the fundamental fit
approach applied on the historical data of the year 2013. We remark that compared to the
synthetic data, the resulting parameters do not depend only on the data of the considered
day. Instead, we obtain a set of parameters for a whole traffic cluster. In Figure 6.6, we
illustrate the shape of the fundamental curves for the two clusters, together with the historical
RTMC data measured by detector S59. It seems that this approach leads to curves lying in
the middle of the data cloud which can be explained by considering the mean speeds for
each bin of the algorithm. We refer to Section 3.3 for a more detailed explanation of the
fundamental fit approach applied on historical data. Additionally, cluster 1 is presented by a
lower maximum speed V and higher maximum density R which is natural since it consists of
the more congested scenarios. In a next step, we describe the results in more detail for the
RTMC scenarios introduced in Section 5.2.

(a) Cluster 1: θ∗ = (101, 59, 324). (b) Cluster 2: θ∗ = (107, 80, 260).

Figure 6.6: Fundamental flow and speed diagrams with historical RTMC data measured by
loop detector S59. Parameters obtained by fundamental fit approach based on [DGK+09].
In red: curves corresponding to w = V ∗.

RTMC-1:

For RTMC-1, belonging to the first cluster, we state the calibration parameters in Table 6.8
in order to see if we observe differences compared to the synthetic scenarios. However, the
parameter ranges still depend crucially on the choice of the model and calibration approach.
This time, even the L2 calibration with 1st − Godu − ρ leads to completely different results
for the options with and without ramps.

By illustrating the fundamental flow and speed curves together with the measured data in
Figure 6.7, we recognize again a good fit of the data on the speed curve for the L2 approach
with 1st − Godu − ρ. However, the flow data lie mostly above the line which was also the
case for SUMO-1A (see Figure 6.2). Moreover, the curves corresponding to w = V ∗ for the
second order model are again disappointing, since both the speed and flow data are completely
underestimated, also in the free flow region. Even if considering the whole family of curves,
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L2 KOH

V C R V C R

1st −Godu− q 104 100 261 81 60 345

1st −Godu− ρ 107 86 290 109 100 237

2nd −Godu− q 79 91 260 69 24 355

2nd −Godu− ρ 64 98 203 122 89 280

2nd −HLL - - - - - -

2nd −HW - - - - - -

(a) With ramp consideration.

L2 KOH

V C R V C R

127 32 379 150 34 212

120 54 291 111 59 272

138 11 378 103 15 171

78 56 221 90 17 510

76 58 221 75 38 275

95 72 224 134 50 306

(b) Without ramp consideration.

Table 6.8: RTMC-1. Calibration results.
Fundamental fit approach (cluster 1): θ∗ = (101, 59, 324). In blue: best approach.

several data points are not captured well in the congested regime.

(a) 1st −Godu− ρ : θ∗ = (120, 54, 291). (b) 2nd −HW : θ∗ = (95, 72, 224).

Figure 6.7: RTMC-1 without ramp consideration. Fundamental flow and speed diagrams.
L2 approach. In red: curves corresponding to w = V ∗. Parameter in blue: best approach.

As before, we also verify if the MCMC calibration gives us more insight. For the multi-
variate normal distributed prior we pick µθ = (120, 54, 291) and covariance matrix Σθ =
diag(103, 103, 104), whereas the proposal covariance matrix is given by Σp = diag(12, 5, 30).
Then, after determining the effective sample size by multiESS, N̂ESS = 436 samples remain
in the reduced chain. For this scenario, we can conclude that the 1st − Godu − ρ KOH cal-
ibration parameter (without ramp consideration) coincides more with the mode parameter
θm = (106, 65, 260) since the black vertical lines in the histograms in Figure 6.8 are closer
to the peak of the posterior distributions. Moreover, the anti-correlated behavior between C
and R appears again, underlined by the diagonal shape of their contour plots. Indeed, the
thinned chain consists of quite high C values compared to relatively low maximum densities
R. Finally, due to the nicely peaked red curves, we conclude that the posterior distribution
gives us a clear indication which θ values explain the data best.
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6.1. Traffic calibration results

Figure 6.8: RTMC-1. 1st − Godu − ρ, MCMC approach. Histograms and 2-dimensional
density contour plots. Black vertical line: parameter estimate obtained by KOH approach.

Next, looking at the more easily interpretable results of the error metric computations in
Table 6.9, we detect first a bad performance of the simulation error of the fundamental fit
approach, where we used the historical data. This result is not very surprising because the
approach provides rather an average calibration parameter, suitable for all the scenarios in the
cluster, but it does not emphasize specifically the dynamics of RTMC-1. Second, the error
EGP = 8.77 is higher than any other corrected error Ec in the table. Consequently, there
is indeed a benefit in the calibration process induced by the consideration of the physical
model. Third, the bias correction seems to work better in the KOH approach compared
to the results for the synthetic data. However, our aim is not to find an approach which
leads only to a good corrected error, because this does not mean at the same time that the
simulation code works reasonably. Indeed, the KOH approach gives almost everywhere a
strikingly worse simulator error E compared to the L2 method. Thus, as already observed in
SUMO-1A and in [TW15], the influence of the bias can be too large in the KOH modeling,
leading to confounding effects. Moreover, also the Plumlee calibration (θ∗plum = (81, 45, 434))

fails to improve the results, since E = 19.65 and Ec = 5.71 (1st − Godu − ρ without ramp
consideration) are visibly higher than the corresponding values in the L2 and KOH columns.
This seems to be an example, where the Plumlee optimization suffers from the derivative
approximations and from possible numerical issues in the covariance calculations.

Remark 43. For reconstructing traffic scenarios at loop detector positions and aggregated
time intervals, a good working bias suffices to produce convincing results. However, a poorly
working simulation typically causes problems when dealing with travel time predictions (in
the future). This is why one should always choose an approach where both errors, E and Ec,
perform reasonably.

Next, we observe that the two errors are generally lying in higher ranges than the ones for
the synthetic data. This can be an indication that measurement errors always remain when
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FF L2 KOH

E Ec E Ec E Ec

1st −Godu− q 25.64 6.44 21.40 7.90 30.19 6.26

1st −Godu− ρ 17.62 6.62 15.61 4.86 14.46 5.56

2nd −Godu− q 23.93 7.42 22.07 6.67 26.57 6.83

2nd −Godu− ρ 15.21 5.47 11.54 6.11 14.04 5.37

2nd −HLL - - - - - -

2nd −HW - - - - - -

(a) With ramp consideration.

FF L2 KOH

E Ec E Ec E Ec

1st −Godu− q 24.80 5.29 20.86 4.74 22.67 5.76

1st −Godu− ρ 17.22 3.74 15.58 4.71 16.02 4.69

2nd −Godu− q 28.46 7.45 21.41 5.83 26.07 5.80

2nd −Godu− ρ 19.85 5.55 16.22 6.70 20.82 5.23

2nd −HLL 19.75 5.56 16.81 6.77 17.90 5.73

2nd −HW 18.99 5.50 16.77 6.58 17.68 5.57

(b) Without ramp consideration.

Table 6.9: RTMC-1 with θ∗ = (120, 54, 291). EGP = 8.77.
Comparison of speed RMSE between calibration approaches. In blue: best approach.

dealing with real traffic scenarios, also despite data pre-processing. In contrast, we expect the
SUMO data to be perfect; still, an error persists since the macroscopic model cannot fit them
perfectly. Moreover, it is remarkable again that the errors are rather similar for the second
order model with density boundary conditions, although the calibration parameters do not
coincide. By the space-time speed evolution illustrations in Figure 6.9, we aim to emphasize
the slightly different performances between the 2nd − Godu − ρ and 2nd − HW simulation
applied on the same calibration parameter.
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(a) 2nd −Godu− ρ. E = 19.85.
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(b) 2nd −HW . E = 18.99.
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(c) Speed difference.

Figure 6.9: RTMC-1 without ramp consideration. Real data: see Figure 5.11.
Space-time speed visualization of the simulated data and their difference. Calibration param-
eter chosen from fundamental fit approach: θ∗ = (101, 59, 324).
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The behavior is similar but the HW scheme is more diffusive along the transition between
the two traffic regimes. Additionally, the Godunov method creates a slight congestion at the
end of the road stretch after 45 minutes, which is not observed in reality (see Figure 5.11a).
Finally, we conclude that the best approach is again the simplest combination, namely the L2

approach without ramp consideration and with 1st−Godu−ρ. Thus, also in this scenario, the
additional information provided by ramps does not seem necessary to improve the simulations.

In a very last step, we conduct the same experimental test as for SUMO-1A by reducing
the number of loop detectors. We consider

loop =


S54, S57, S61 if nx = 3,

S54, S56, S59, S61 if nx = 4,

S54, S1706, S57, S1707, S60, S61 if nx = 6.

Analysing Table 6.10, we cannot observe a convergence for the parameters this time. Even
if we consider 6 or 8 loops, the parameters do not lie in the same ranges. However, for the
error metrics, we make a similar observation as before: the more information we use in the
calibration, the lower the errors. Again, especially Ec and EGP benefit from the augmentation
of the amount of data, whereas the simulation error E remains more stable. Finally, we point
out that Ec outperforms EGP except in the case nx = 3.

nx V C R E Ec EGP

3 118 46 369 18.58 16.16 15.25

4 127 53 303 16.18 13.08 13.41

6 101 83 259 15.77 9.62 10.93

8 120 54 291 15.58 4.71 8.77

Table 6.10: RTMC-1. 1st −Godu− ρ, L2 approach without ramp consideration.
Calibration and speed RMSE results for different number of loop detectors nx ∈ {3, 4, 6, 8}.

RTMC-2:

To complete this section, it remains to consider RTMC-2. The list of calibration parameters
can be found in Table 6.19 in Appendix B. It is surprising that the values of maximum
density R are often higher than the ones in the previous scenario, although this case belongs
to the cluster with less congestion. This time however, the second order model with the
implementation of density boundary conditions leads in the L2 approach to almost the same
parameters, which has never been observed before.
Next, the error Table 6.11 does not provide many new insights except that we notice a very
bad behavior of the KOH simulation in the first order model with ramp consideration. In
contrast, the 1st −Godu− ρ L2 approach with ramps performs nicely, also compared to the
version without ramps. This shows again that the KOH calibration method is more error-
prone and less reliable. Additionally, we remark that RTMC-2 is the only scenario where the
best approach takes the ramp information in the simulation into account. It seems that the
additional data provided by the ramp detectors have a positive impact on scenarios with less
dense traffic occurrences, while in congested situations the loop detector measurements on the
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main road seem to be sufficient. Indeed, the simulation error E = 12.74 in the 2nd−Godu−ρ
L2 approach with ramps is lower than any other one computed in a rampless version.

FF L2 KOH

E Ec E Ec E Ec

1st −Godu− q 32.43 4.94 21.68 10.17 51.64 5.30

1st −Godu− ρ 18.66 5.00 13.76 2.62 51.65 5.00

2nd −Godu− q 24.13 7.93 22.03 8.17 23.08 4.90

2nd −Godu− ρ 14.21 5.52 12.74 4.44 15.26 2.53

2nd −HLL - - - - - -

2nd −HW - - - - - -

(a) With ramp consideration.

FF L2 KOH

E Ec E Ec E Ec

1st −Godu− q 26.19 3.80 21.92 3.48 21.97 4.91

1st −Godu− ρ 15.83 4.47 15.10 5.24 26.90 4.80

2nd −Godu− q 29.37 3.62 20.47 4.05 22.20 4.88

2nd −Godu− ρ 16.63 4.61 14.75 4.17 18.89 4.52

2nd −HLL 16.52 4.56 14.75 4.15 18.71 4.48

2nd −HW 16.18 4.67 14.74 4.17 17.41 2.44

(b) Without ramp consideration.

Table 6.11: RTMC-2. 1st −Godu− ρ with θ∗ = (99, 92, 298). EGP = 5.35.
Comparison of speed RMSE between calibration approaches. In blue: best approach.

To conclude, we summarize the main observations obtained by the analysis of all traffic
scenarios above:

1. The calibration parameters are highly scenario dependent.

2. The implementation of density boundary conditions leads in general to lower speed
simulation errors.

3. The first order model is sufficient for a reasonable traffic speed reconstruction.
Possible but rare performance gains by second order models can be mostly compensated
by the bias modeling.

4. The L2 approach is not only the most efficient but also the most consistently performing
one among scenarios.

5. The contribution of ramp data remains unclear. In congested cases it seems sufficient
to use only main loop detector measurements.

6. The physical model improves the speed reconstruction results.
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6.2 Traffic estimation results

After having presented the calibration results on traffic reconstruction for every single scenario
in detail, we continue by analyzing the traffic estimation outcomes. As explained in Chapter
4, by traffic estimation we denote the reconstruction of travel times for vehicles which ended
their trip in the past. This “past” period consists of the 2 hours during which the calibration
methods are executed. To this end, we consider 505 fictive trajectories, starting every 10
seconds after an initialization period of 6 minutes. The last vehicle departs after 90 minutes,
such that the reconstruction time window covers its whole trip. Then, in order to compare
the simulated travel times with the real ones, we use the travel time error metric, stated
in Equation (4.0.1). Following the previous section, we also define a corrected travel time
error, denoted by Eτ

c , which is obtained by replacing τ̂ with the result of Algorithm 3 when
considering the corrected simulation as an input. In the same way, by using the pure GP
constructed data, we define the error Eτ

GP .
In the following, we detail the results for the best approach of each SUMO scenario. We point
out that we cannot give insights in the RTMC traffic estimation performances since there are
no reasonable reference data available.

SUMO-1A:

In Figure 6.10 we compare the travel time profiles computed by the simulation, corrected
simulation and N-curve method with the reference data.

Figure 6.10: SUMO-1A. 1st −Godu− ρ, L2 approach. Eτ
GP = 0.70, Eτ

baseline = 0.66.
Travel time estimation results.

As concluded in Chapter 5, the N-curve method delivers convincing results in the synthetic
data cases. Indeed, it performs slightly better than our approach since Eτ

N-curve = 0.33 <
0.39 = Eτ

c . However, we have also seen before that this approach can fail, especially when
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dealing with real world data (see Figure 5.13). Considering now the pure simulation result,
we observe an underestimation of the speed towards the end of the considered time window.
However, the bias corrected version adjusts this deviation. This better performance goes
along with the previous observations where also Ec outperformed E. Moreover, we point
out that the results for both the pure GP and baseline method are beaten by the corrected
simulation since Eτ

GP = 0.70 > Eτ
baseline = 0.66 > Eτ

c = 0.39. This observation will hold
also for the following SUMO scenarios, which justifies again the consideration of the physical
model.
Next, we conduct the same experimental test as in the calibration section, namely we reduce
the number of loop detectors and compare the performance between the corrected simulation,
the GP and baseline method. Figure 6.11 emphasizes that the corrected simulation is able
to reconstruct reasonable travel times even when only a few data are available, while the
baseline and pure data based GP method clearly suffer from this. The exact values of the
travel time errors are given in Table 6.12.

Figure 6.11: SUMO-1A. 1st −Godu− ρ,
L2 approach. Travel time estimation results.

nx Eτ
c Eτ

GP Eτ
baseline

3 0.56 1.97 2.78

5 0.84 1.73 1.60

7 0.64 0.69 0.79

10 0.39 0.70 0.66

Table 6.12: Travel time errors
illustrated in Figure 6.11.

SUMO-1B:

The travel time profiles in Figure 6.12 for SUMO-1B resemble the ones of SUMO-1A,
except that the travel time is in average higher due to the ramp contribution. Additionally,
we observe that all the illustrated approaches perform worse than before, especially the pure
simulation whose error increases by 150%. Again, the N-curve approach provides the lowest
travel time error.

SUMO-2:

The last scenario to present is the one with the sudden change in the traffic regime which
is well visible in Figure 6.13. As already emphasized before, the simulation fails to capture
this jump, therefore it is not surprising that the travel time profile does not follow the red
curve of the reference data. We remark that the scale of the y-axis (travel time in minutes) is
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Figure 6.12: SUMO-1B. 1st −Godu− ρ, L2 approach. Eτ
GP = 0.53, Eτ

baseline = 0.67.
Travel time estimation results.

much lower than in the previous cases, therefore an error of E = 1.05 is comparatively high.
Finally, we point out that SUMO-2 is the only scenario where the corrected simulated version
outperforms slightly the N-curve method which mostly underestimates the travel times in this
particular case.

Figure 6.13: SUMO-2. 1st −Godu− ρ, L2 approach. Eτ
GP = 0.81, Eτ

baseline = 0.62.
Travel time estimation results.
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6.3 Traffic prediction results

In the last part of this chapter, we present the traffic prediction results which can be divided
in two parts:

1. The prediction of future boundary loop detector data for running the simulation code.

2. The computation of predicted travel times for comparison with the reference data.

Again, the second part is only possible for the synthetic data set. In the first part, we have
the option between the following approaches:

DTW, LSTM, pure GP, MOO and constant boundary data,

where the DTW and LSTMmethod can only be applied if historical data are available, namely
in the RTMC data setting. In the rather naive case of treating the boundary conditions as
constant, we fix the value to the last recorded measurement before the beginning of the pre-
diction window.
Due to the results obtained in Section 6.1, we focus in the numerical schemes on the imple-
mentation of density boundary conditions. Therefore, it is natural to predict density data by
the above listed prediction approaches. Moreover, we point out that they lead to exactly the
same bias correction within a scenario because the computation of the (future) bias kriging
mean is based only on the data in the past (2 hours) and not the choice of the prediction
method. However, the methods naturally differ in their predicted (corrected) simulations,
due to the difference in their boundary data. We will see that it is indeed important to define
the best approach as the one with a low E and not only Ec value, because the prediction
results rely heavily on the goodness of the simulation (see Remark 43).
Next, we provide more details for the MOO approach, which is executed by the Matlab
function paretosearch considering 100 points on the Pareto front. For the determination of
the number of virtual time points which are used in the second objective function, we differ-
entiate between the time and space dimension: for the first one, we double the size of the 6

minute aggregated data in the 3 hours, thus sampling
180

6
· 2 = 60 points from the uniform

distribution. The virtual space points however are not sampled, instead they match exactly
the position of the main loop detectors. We observe that sampling the space points lead to
worse results in our case. As pointed out in Remark 34, it is certainly possible to improve
the choice of these virtual points, however for our purpose the simple and easy-to-implement
proposed version above seems to perform sufficiently well.
Next, we also want to point out that in the pure GP and MOO approaches, the kriging mean
formula can lead to negative or too high densities. Such unrealistic cases can be prevented by
choosing suitable hyper-parameter bounds, which is often a challenging task [BG21]. Instead,
in the MOO method we can ensure reasonable densities by penalizing the second objective
fobj
2 whenever my

N (t̃, x̃) < 0 or my
N (t̃, x̃) > R.

As a last prerequisite before presenting the prediction results, we define the error metrics that
we need to compare numerically the above listed approaches. First, we are interested in the
goodness of the predicted density boundary data, thus the error is defined as

Êρ
B =

1

2n̂t̂

∥∥∥yFρ (X̂N̂B
)− ŷB

∥∥∥
F
,
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where yFρ (X̂N̂B
) (resp. ŷB) denotes the aggregated measured (resp. predicted) density data at

2n̂t̂ predicted boundary observation points. We remind that the future time window consists
of 1 hour, thus n̂t̂ = 10 in our case of 6 minute aggregated data. Next, after the simulation
has been performed, we also compare the simulated speed with the available coarse field data
at loop detector positions and aggregated future times which leads to the metric Ê, given by

Ê =

√√√√ 1

n̂t̂ · nx

n̂t̂·nx∑
i=1

∣∣∣yF (t̂i, x̂i)− yM (t̂i, x̂i, θ∗)
∣∣∣2,

where nx denotes the number of loop detectors. Again, replacing yM by yMc , we obtain the
corrected version of this error, denoted by Êc. These metrics should give us an indication
for a good travel time prediction, because we assume that the lower Ê or Êc the better the
predictions. As another comparison, we compute the two speed metrics using real measured
boundary data yFρ (X̂N̂B

) in the simulation. This will be referred to as the oracle boundary
case.
Finally, in the SUMO data case, we will also compare the travel time metrics Eτ and Eτ

c with
the reference data. This time the metric considers the vehicles departing between t = 90min
and t = 150min which leads to 361 trajectories.

SUMO-1A:

Starting with the first SUMO scenario, we highlight in Table 6.13 the lowest value for each
considered error metric in bold. First, we observe that, compared to the previous estimation
section, the difference between the predicted speed errors E and Ec are negligible, meaning
that the bias correction in the future time slot has almost no or even a negative impact.
Second, the MOO density boundary RMSE Êρ

B outperforms clearly the other ones. We remind
that this value is obtained by the knee-point heuristic, illustrated in Figure 6.14a. Although
the heuristic does not lead to the lowest possible value (see right column of the Figure), the
performance is acceptable since only a few points on the Pareto front undercut this point.
Third, unlike expectations, a good density boundary prediction does not necessarily lead to
the lowest speed Ê value, which is emphasized by the oracle boundary case. Here it holds
Êρ

B = 0 but Ê is outperformed by the one of the pure GP method. This underlines the
difficulty when dealing with different traffic quantities. Since the numerical scheme is written
in terms of densities, a good reconstruction of the density does not necessarily result in a good
speed estimation. Similarly, if using the flow boundary conditions, we can nicely reconstruct
the traffic flow but, as seen in Section 6.1, it performs poorly for our case, namely when the
speed is the quantity of interest. However in contrast to our assumption, the lowest Ê value
is no indication for the best travel time prediction result: the MOO approach outperforms
the other cases although its coarse speed reconstruction is worse. As a final remark, we point
out that the naive approach keeping the boundary values constant fails completely. Every
error metric is largely beaten by the other strategies.
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pure GP MOO constant
boundary

oracle
boundary

Êρ
B 41.88 31.41 62.30 0

Ê 20.68 23.87 33.06 22.14

Êc 20.28 23.39 32.58 21.25

Eτ 2.30 1.75 8.81 3.50

Eτ
c 2.48 1.83 8.59 3.26

Table 6.13: SUMO-1A. 1st −Godu− ρ, L2 approach.
Prediction RMSE and travel time results for different prediction approaches.

Next, in order to understand the rather disappointing performance of the oracle boundary
case, we illustrate in Figure 6.14b the profiles for the results of the MOO and oracle boundary
method, where Eτ

oracle represents the corrected version of the oracle boundary case error. By
the black vertical line, we highlight the starting point of the 361 considered trajectories, used
in the travel time error computation. Naturally, the oracle boundary curve and corrected
simulated curve coincide in the past because the simulation is executed with the same bound-
ary data. Towards the future, the oracle boundary case starts to overestimate the travel
times, thus it shows exactly the same behavior as the simulation in Figure 6.10. In contrast,
the (corrected) simulation both under- and overestimates the speed which leads therefore in
average to a lower RMSE. Due to the increasing uncertainty, it is clear that the correction
tends to go back to the pure simulation, which in turn explains the behavior of the oracle
boundary curve. The graphic depicts nicely this convergent behavior, thus also the two errors
Eτ and Eτ

c are quite similar and they would get even closer if we moved the first considered
vehicle trajectory more towards the future.

(a) Knee-point. (b) Predicted travel time.

Figure 6.14: SUMO-1A. 1st −Godu− ρ, L2 and MOO-approach.
Travel time prediction results.
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Remark 44. We point out that in practice, the right graph in Figure 6.14a is not available
because the metric Êρ

B involves the (unknown) future boundary density data. The illustration
serves to showcase the knee-point heuristic’s performance.

SUMO-1B:

SUMO-1B represents our most involved case because the ramp contributions increase the
traffic volume tremendously. This scenario is especially difficult to predict because the oc-
currence of the congestion in the left boundary loop detector starts in the prediction window
(see Figure 5.3a), which is impossible to forecast. Figure 6.15b emphasizes this by several
underestimated future travel times for the converging blue and green curves. Thus, it is not
surprising that the predicted boundary values in Table 6.14 are lying in a higher range than
in the previous case. We observe that the pure GP and MOO approaches lead almost to the
same error, also regarding the speed RMSE. Moreover, this is the only scenario where the
pure GP gives the best performance for the travel time prediction errors Eτ and Eτ

c . Since
this artificial scenario represents an extreme case, it remains unclear if these results are very
meaningful. Besides, an average error of Eτ = 1.71 minutes, obtained by the MOO approach,
is still acceptable in situations of very dense traffic.
Regarding the case of constant boundary data, we come to exactly the same conclusion as
before: it delivers clearly the worst results. Moreover, for the oracle boundary case, we obtain
this time very good speed predictions, but again not satisfying travel time errors. As before,
this can be traced back to the convergence towards the pure simulation, which underestimates
the speed (see Figure 6.12). Thus, the travel times are overestimated, which finally leads to
this comparatively high errors. Of course, the question remains why the simulation tends to
show this behavior. One possible answer might be the overall speed quantity problem which
is detailed in the beginning of Chapter 5: calculating the speed by the fundamental equation

v =
q

ρ
certainly also induces errors. However, using the arithmetic or even the harmonic

versions do not lead in general to better results.

pure GP MOO constant
boundary

oracle
boundary

Êρ
B 192.53 192.50 220.50 0

Ê 16.45 16.20 29.92 10.04

Êc 16.28 16.02 29.90 9.92

Eτ 1.55 1.71 10.78 3.50

Eτ
c 1.31 1.89 10.12 2.89

Table 6.14: SUMO-1B. 1st −Godu− ρ, L2 approach.
Prediction RMSE and travel time results for different prediction approaches.

To conclude, we mention the graphical results for the knee-point algorithm in Figure 6.15a.
The heuristic convinces also in this setting, it leads almost to the best possible option.
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(a) Knee-point. (b) Predicted travel time.

Figure 6.15: SUMO-1B. 1st −Godu− ρ, L2 and MOO-approach.
Travel time prediction results.

SUMO-2:

Comparing the previous results of the congested scenarios with SUMO-2, we come to differ-
ent observations. Now, all four proposed methods perform very similarly in terms of travel
time prediction. The oracle boundary case shows a slight outperformance, although its speed
RMSEs are worse than the other ones. Looking at the traffic volume in the prediction hour
(see Figure 5.4a), the good results are easily explainable: the congestion induced by the lane
closure has almost no impact on the future, consequently it is easier to predict the boundary
data. The scenario stays almost all the time in the free flow regime, therefore also the naive
case of constant boundary data delivers reasonable results: indeed Eτ and Eτ

c are even lower
than in the pure GP approach.

pure GP MOO constant
boundary

oracle
boundary

Êρ
B 23.52 23.20 25.21 0

Ê 8.88 8.16 9.56 10.20

Êc 8.51 7.75 9.21 9.68

Eτ 0.56 0.54 0.54 0.52

Eτ
c 0.37 0.34 0.34 0.31

Table 6.15: SUMO-2. 1st −Godu− ρ, L2 approach without ramp consideration.
Prediction RMSE and travel time results for different prediction approaches.

Next, in Figure 6.16a we demonstrate that also in light traffic situations the knee-point al-
gorithm proposes a good candidate point, whose value lies closely to the minimum. Finally,
Figure 6.16b underlines nicely the typical convergent behavior of the corrected simulation. Ad-
ditionally, the already well-known overestimation of the travel time when using real boundary
data (oracle boundary case) is visible for the last trajectories. In contrast, the MOO method
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rather underestimates the trip duration, because it fails to forecast the slightly lower speeds
in the left boundary loop detector.

(a) Knee-point. (b) Predicted travel time.

Figure 6.16: SUMO-2. 1st −Godu− ρ, L2 and MOO-approach.
Travel time prediction results.

In the following, we continue by discussing the real data results, where we do not have access
to the travel times. Instead, we can analyze additionally the DTW and LSTM method.

RTMC-1:

By looking at Table 6.16, the results are more difficult to interpret: the DTW approach,
which provides clearly the lowest Êρ

B, performs the worst in terms of speed RMSE. In contrast,
although the boundary predictions obtained by the LSTM network are disappointing, its speed
prediction power is convincing. The different boundary profile reconstructions corresponding
to these two approaches is depicted in Figure 6.17b. Here, the DTW algorithm creates a time
series which tries to match the reality and which performs well for the left boundary loop
detector. However, the LSTM network predicts almost a flat line, leading finally to the bad
observed error.

pure GP MOO DTW LSTM constant
boundary

oracle
boundary

Êρ
B 37.16 30.29 22.79 38.96 24.78 0

Ê 17.48 11.21 20.31 12.85 18.91 16.95

Êc 17.72 11.67 20.16 14.53 18.77 16.39

Table 6.16: RTMC-1. 1st −Godu− ρ, L2 approach without ramp consideration.
Prediction RMSE for different prediction approaches.

Going back to Table 6.16, we also emphasize that the MOO approach leads to the best
performance in terms of speed RMSE. Its knee-point heuristic provides again almost the
lowest possible Êρ

B value (see Figure 6.17a). Furthermore, the oracle boundary case takes
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this time an average ranking: it performs better than the pure GP, DTW and constant
boundary approach, but worse than the MOO and LSTM method.
Finally, we also underline in this scenario the similar performance of Eτ and Eτ

c , which
reinforces again that the additional information provided by the bias vanishes as we predict
further into the future.

(a) Knee-point. (b) Density boundary profiles.

Figure 6.17: RTMC-1. 1st −Godu− ρ, L2 approach.
Left column: MOO-approach. Right column: LSTM and DTW approach.

RTMC-2:

At first, we remind that RTMC-2 is the only scenario where we integrate the measured ramp
detector data in the calibration process. However, due to their questionable impact, we set
the ramp data to zero in the prediction time slot. This avoids to forecast the ramp data by
one of the proposed methods.
Looking at Table 6.17, we obtain similar results as for RTMC-1. Thus, the MOO approach
leads again to the lowest Eτ and Eτ

c errors. Moreover, the DTW method clearly outperforms
the LSTM network with respect to Êρ

B, but it underperforms in terms of speed RMSE.

pure GP MOO DTW LSTM constant
boundary

oracle
boundary

Êρ
B 29.37 18.97 9.06 29.66 66.09 0

Ê 18.24 14.23 17.80 15.60 35.81 17.53

Êc 18.05 14.67 18.46 16.05 35.53 18.30

Table 6.17: RTMC-2. 1st −Godu− ρ, L2 approach with ramp consideration.
Prediction RMSE for different prediction approaches.

The profiles in Figure 6.18b show the same behavior as before: a more realistic DTW predic-
tion and a flat LSTM forecast. Also the oracle boundary case executes analogously, namely
it can be ranked after the MOO and LSTM results. The only striking difference is the great
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failure of the constant boundary data method.
Considering finally Figure 6.18a, we see for the first time a fluctuating behavior of the Êρ

B

value in the knee-point algorithm. However, the heuristic still achieves to propose an accept-
able point.

(a) Knee-point. (b) Density boundary profiles.

Figure 6.18: RTMC-2. 1st −Godu− ρ, L2 approach.
Left column: MOO-approach. Right column: LSTM and DTW approach.

From the last observations of the RTMC scenarios, we conclude that, without additional in-
formation on travel times, the results are quite hard to explain. However, it seems that this
non-logical anti-correlated behavior of the metrics Êρ

B and Ê can be traced back to the speed
quantity problem, as already pointed out in the discussion of SUMO-1B. It seems that in
the real world data case this strange behavior is even more pronounced, probably induced
by measurement errors from loop detectors, which are not assumed to occur in the synthetic
data scenarios.

As an overall conclusion of this section, we get to the following summary:

1. The correction of the bias in the future can be neglected due to its convergence behavior
towards the pure simulation.

2. The MOO method delivers in general the most robust results. Indeed, in every test it
convinces by its competitive Êρ

B , Eτ and Eτ
c values.

3. The choice of the speed data treatment has an impact on the error metrics. By applying

the fundamental equation v =
q

ρ
, travel times are mostly overestimated.

Remark 45. We point out that the difficulty of predicting the speed is a frequently mentioned
problem (see for example [LLW+23, TK14, WYG+22]). Instead, convincing flow predictions
seem to be much easier to obtain, as shown by various results found in the literature (see for
example [MK18, PS15, SLY+16]). This can be supported by the following two arguments:
the usually better flow data quality and the implementation of flow boundary conditions in
the Godunov scheme.
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Appendix B

Calibration results for selected scenarios

L2 KOH

V C R V C R

1st −Godu− q 118 40 158 141 23 200

1st −Godu− ρ 93 31 300 89 49 222

2nd −Godu− q 145 21 180 136 15 186

2nd −Godu− ρ 69 25 182 84 84 169

2nd −HLL 80 88 167 86 73 166

2nd −HW 83 85 170 116 100 166

Table 6.18: SUMO-2. Calibration results.
Fundamental fit approach: θ∗ = (92, 47, 221). In blue: best approach.

L2 KOH

V C R V C R

1st −Godu− q 99 95 283 60 81 202

1st −Godu− ρ 99 92 298 62 14 410

2nd −Godu− q 60 100 185 81 76 240

2nd −Godu− ρ 76 81 231 124 68 347

2nd −HLL - - - - - -

2nd −HW - - - - - -

(a) With ramp consideration.

L2 KOH

V C R V C R

137 56 169 137 52 150

116 28 486 90 20 468

107 15 221 119 18 156

60 123 209 123 16 536

60 129 209 140 15 581

59 129 209 141 26 479

(b) Without ramp consideration.

Table 6.19: RTMC-2. Calibration results.
Fundamental fit approach: θ∗ = (107, 80, 260). In blue: best approach.
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In this thesis, we compared various calibration and prediction approaches for parameter iden-
tification and traffic reconstruction in macroscopic traffic flow models, exploiting synthetic
and real world loop detector data sets. We started from a mathematical viewpoint by study-
ing the underlying traffic flow model in order to build the theoretical foundation for the
subsequent, more applied chapters considering real data.
Regarding the calibration techniques, we applied a modularized version of KOH calibra-
tion [LBB09, TW16], alleviating some of the shortcomings of the original approach. However,
due to the strong flexibility of this framework, we observed that a simple least square opti-
mization usually performs better. Additionally, our results pointed to the benefit of correcting
the simulation output by a bias in order to compensate model limitations in reproducing real
data. Moreover, the obtained calibration parameters are highly scenario dependent, thus the
calibration procedure has to be performed on each individual traffic case.
Regarding traffic reconstruction, we were interested in a good performance of the speed quan-
tity, since our aim is to provide travel time predictions. However, trajectory data are rarely
available, therefore reference travel times are typically approximated by methods considering
average loop detector data. In the synthetic data case, the N-curve approximation delivered
the best results, while it failed in more complex (real) traffic situations. Thus, we proposed
the MOO method, which belongs to the class of hybrid approaches and which combines
physical knowledge and GPs. More precisely, we force the PDE to be satisfied at virtually
created points, whereas the observed measurements are modeled by a GP. Although the ap-
proach does not achieve to completely satisfy the PDE by its knee-point heuristic (see for
example Figure 6.14a), we could forecast reasonable boundary data in the prediction window,
which are necessary to simulate the speed data at a finer scale in order to do travel time
predictions. The study has highlighted that the method we propose delivers the most robust
results. Finally, we also compared the performance of different numerical methods, coming to
the conclusion that the Godunov scheme, implemented for the LWR model and with density
boundary conditions, leads to the most convincing results in terms of speed reconstruction.

This thesis opens several perspectives for future research. Since we could only perform our
travel time analysis on synthetic data, a natural next step is to validate the obtained results
in real world situations. This requires both loop detector and trajectory data for the same
traffic scenario.
From the traffic modeling point of view, further investigations should consider more complex
situations including the presence of road junctions and traffic lights. Moreover, a generaliza-
tion of the numerical methods and statistical approaches to road networks and multi-class
models are certainly worth to analyze. In particular, it could be also interesting to consider
a time or space dependency for some parameters [PBKL22], as well as local variations of the
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bias on the road.
Obviously, GP improvements are possible, as the extension of current physics based GPs
to our setup. Moreover, modeling the prior mean by more advanced methods [LO18] could
reduce the influence of the prior information on the predictions. Additionally, the choice of
virtual points in the MOO approach can be improved by considering for example the “active
PDE-informed Kriging” (APIK) approach proposed in [CCZW22]. Another extension is to
index the GP by graphs as proposed in [EGL14], which would allow to integrate more in-
volved network situations while avoiding the numerical scheme to become too complex. Also,
as pointed out in Section 3.2.3, further research is needed to accommodate more dimensions
in the heteroscedastic GP modeling (see e.g. [HWN+16]) in order to take better into account
the different traffic regimes.
Last but not least, it would be also interesting to compare the performance of our proposed
MOO approach with the PINNs method.
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