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achieves a certain objective, such as the minimization of the total cost, earliness and/or tardiness, and production makespan.

.1) seeks to optimally answer the following questions:

-What tasks must be executed to satisfy the given demand (lots processed ) ? -How should the given resources be utilized (task-resource assignment) ?

-In what order are mapping/lots processed (sequencing and/or timing) ?

.2): presents the most widely used autonomous electronic and computer system in the world. Without this system, there is no Internet of Things, no autonomous vehicles, no Smart City and no Industry 4.0. This latest technology will automate production. We are going to have automated manufacturing lines which adapt to external conditions and which are controlled by cyber-physical systems (CPS). These systems are a natural evolution of embedded systems, we added connectivity (to make the Internet of things industrial) and intelligence (to make them autonomous.) The cyber part refers to their digital power, and the physical part to their grip on the real world. The emergence of CPS brings up new solving opportunities to industrial problems since it integrates computational with physical processes, including coordination, monitoring and control of physical operations and engineering systems. A typical example of an industrial opportunity of this kind is scheduling (FJSP), whose goal is to achieve resource optimization and minimization of the total execution time. To use these components, you must take into account their limits: low CPU and RAM capacity. Although its CPU and memory resources are therefore limited, an embedded system is often necessary to meet performance criteria.

ABSTRACT

Technological developments along with the emergence of Industry 4.0 allow for new approaches to solve industrial problems, such as the Flexible Job-shop Scheduling Problem (FJSP). The scheduling should deal with a smart and distributed manufacturing system supported by novel and emerging manufacturing technologies such as Cyber-Physics Systems (connected embedded systems). The scheduling research needs to shift its focus to smart distributed scheduling modeling and optimization. In order to transferring traditional scheduling into smart distributed scheduling, we aim to answer these question first: what traditional scheduling methods and optimization algorithm ca n be combined and reused with connected embedded systems. In this sense, develop an adaptable optimization algorithm into Embedded system is a highly promising approach to solve this problem before a distributed solution.

The objective of this thesis is to provide a flexible optimization algorithm, able to make decisions to adapt to changes in the work environment (to communicate with the dynamic environment) and deal promptly with unexpected and internal uncertainties failures. In order to accomplish these goals, we move forward in the following way:

• First, we supply an effective solution resolution to the FJSP by utilizing population based metaheuristics (P-metaheuristics) and make a comparison of these algorithms to eventually find out that the edited model of basic PSO (MPSO) might be the most suitable method to resolve problems. An improvement of the run-time of the serial PSO and a simulation-based comparison of P-metaheuristics for FJSP either with or without a fuzzy processing time are done. We are essentially studying sensitivity to the population size and generations number.

• Second, we provide the MPSO to solve FJSP: Firstly, we make an analysis and improve the particle coding under the problem (PSO-OMS and PSO-JMS for FJSP are proposed). The results of the experiment prove that PSO-OMS gives the best results in a minimum run time with a guarantee of particles convergence. Optimization of CPU time is taken into account and the general framework is addressed i with the five types of constraints which are considered here: 1) the task execution time constraint (MS) 2) the machine load constraint (workload) 3) CPU time 4) the number of particles that reaches the minimum (global best) 5) and the nature of convergence of the particles.

• Third, we introduce the FJSP with machine breakdown problem. Then we use the PSO-OMS and enhance this algorithmic performance to solve the FJSP under machine breakdown. The robustness and stability of the rescheduling are guaranteed with the quality of result obtained.

• Fourth, a modified version of PSO-OMS called Two-level PSO is proposed for the purpose of preparing a PSO variant for embedded applications.

• Finally, we are interested to migrate this implementation (Two-level PSO) to an embedded platform. Then we propose an embedded two-level PSO (E2L-PSO) variant adaptive to a dynamic embedded system under these constraints: 1) the task execution time (MS) 2) the machine load (workload) 3) CPU time 4) memory constraint 5) and feasibility in real time. L'objectif de cette thèse sera de fournir un algorithme d'optimisation flexible, capable de prendre des décisions pour s'adapter aux changements de l'environnement de travail (pour communiquer avec l'environnement dynamique) et faire face rapidement aux pannes imprévues et aux incertitudes internes.

Key

Pour atteindre ces objectifs, nous avançons de la manière suivante:

• Premièrement, nous allons fournir une solution efficace au FJSP en utilisant la P-métaheuristique , puis nous allons faire une comparaison de ces algorithmes pour finalement découvrir que le modèle édité de PSO de base (MPSO) pourrait être la méthode la plus appropriée pour résoudre les problèmes. Une amélioration du temps d'exécution du PSO en série et une comparaison basée sur la simulation des P-métaheuristiques pour FJSP avec ou sans temps de traitement flou sont effectuées. Nous étudions essentiellement la sensibilité à la taille de la population et au nombre de générations. iii • Deuxièmement, nous allons apporter le MPSO pour résoudre le FJSP: Une analyse et une amélioration du codage des particules sous le problème (PSO-OMS et PSO-JMS pour FJSP sont proposés) a été effectuée. Les résultats de l'expérience prouvent que PSO-OMS donne les meilleurs résultats dans un temps d'exécution minimum avec une garantie de convergence des particules. L'optimisation du temps CPU est prise en compte.

Le cadre général est abordé avec les contraintes suivantes :1) le temps de l'exécution de la tâche (MS), 2) la charge de la machine (charge de travail), 3) le temps CPU, 4) le nombre de particules qui atteint le minimum (MS) (global best), 5) la nature de la convergence des particules.

• Troisièmement, nous allons introduire le FJSP avec un problème de panne de machine, puis utiliser le PSO-OMS (après avoir améliorer ses performances algorithmiques) pour le résoudre. La robustesse et la stabilité du ré-ordonnancement sont garanties avec la qualité du résultat obtenu.

• Quatrièmement, une version modifiée du PSO-OMS appelée PSO à deux niveaux est proposée dans le but de préparer une variante PSO pour les applications embarquées.

• Enfin, nous allons effectuer une migration de cette implémentation (PSO à deux niveaux) vers une plateforme embarquée. Nous proposerons ensuite une variante PSO embarquée à deux niveaux (E2L-PSO) adaptable à un système embarqué dynamique sous les contraintes suivantes: 1) le temps d'exécution de la tâche (MS), 2) la charge de la machine (charge de travail), 3) le temps CPU, 4) la mémoire, 5) la faisabilité en temps réel. 4.9 CPU time (s) Comparison between A5 , [START_REF] Xing | A knowledgebased ant colony optimization for flexible job shop scheduling problems[END_REF] and [START_REF] Zhang | An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[END_REF] (1) . . . . . . . . . . . .
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Comparison between A5 , [START_REF] Wang | A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem[END_REF] and [START_REF] Li | An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[END_REF] (1) . . . . . . . . . . . . Scheduling Problem (FJSP) and involves the combination of intelligent and adaptive systems using shared knowledge among diverse heterogeneous platforms for computational decision-making, within Cyber-Physical Systems (Connected embedded system). At this step, we can define our optimization problem and environment.

Understanding FJSP means analyzing and formulating the problem and requires primarily a definition of the settings, the variables, the search space and the functions to get optimized. Once the problem is modelled and formulated, a suitable method for solving the problem will be chosen:

• Optimization algorithm: at this level, different approaches can be chosen and used to obtain optimal solutions using exact methods or "heuristic or metaheuristic methods". We focus in this thesis to deal with metaheuristics. Tabu Search, Simulated Annealing, Genetic algorithms, Ant/Bee Colonies Optimization and Particles However, previous approaches, have limits, they are not adapted to dynamic situations. The adaptation of operational research methods to dynamic systems raises many problems. This is the general context of our research that articulate in the real-world scheduling problems in embedded environment.

• FJSP: Real-world scheduling problems are intrinsically complex because of the dynamic nature of industrial environments, conflicting organizational goals, the existence of operational constraints and preferences that are difficult to represent in a computational model. The demand for flexible manufacturing is also rising within the Industry 4.0 activities. Now under the Industry 4.0 environment, the scheduling should deal with a smart manufacturing system supported by novel and emerging manufacturing technologies. These problems (in the industrial sector) are at the top of the most studied optimization problems. Improving the job scheduling robustness and stability is a constant concern for manufacturers. This thesis revolves around the problem of scheduling in flexible production: FJSP. Main goal of all scheduling problems is to propose a schedule that reaches the production targets, while respecting all operational, logistical and technical constraints, and

Thesis contributions

The objective is to provide a flexible algorithm, able to make decisions to adapt to changes in the environment and deal promptly with unexpected and internal uncertainties failures. We propose to developed an optimization process using embedded systems. So the final solution will be an embedded optimization intelligent algorithm in communication with the working environment. In order to accomplish these goals, we move forward in the following way (Fig. 1.3): Second, we provide the MPSO to solve FJSP: Firstly, we make an analysis and improve the particle coding under the problem (PSO-OMS and PSO-JMS for FJSP are proposed).

The results of the experiment prove that PSO-OMS gives the best results in a minimum run time with a guarantee of particles convergence. Optimization of CPU time is taken into account and the general framework is addressed with the five types of constraints which are considered here: 1) the task execution time constraint (MS); 2) the machine load constraint (workload); 3) CPU time; 4) the number of particles that reaches the minimum (global best); 5) and the nature of convergence of the particles.

Third, we introduce the FJSP with machine breakdown problem. Then we use the 

Thesis organization

The second chapter presents the metaheuristics algorithms. A brief history will allow as to return to the origins of these algorithms and its evolution until now. C H A P T E R 2

STATE-OF-THE-ART: METAHEURISTICS Abstract

This chapter presents metaheuristics algorithms. A brief history will allow as to return to the origins of this algorithm and its evolution until now. Later, classifications and taxonomies of metaheuristics are to be outlined in the second section. A specific optimization algorithm, "Particle Swarm Optimization" will be detailed in section three. Also, we will present the considered system and all the fixed problems related to our thesis. We will present in a first step the role of scheduling in intelligent manufacturing (Industry 4.0). Then we defined the Flexible Job Shop Problem (FJSP) with and without fuzzy processing time. After that, we defined the FJSP under machine breakdown problem. This chapter is organized as follows:

Section 1 presents metaheuristic definition. Section 2 presents Classifications and taxonomies of metaheuristics. Modifications of Particle Swarm Optimization is done in the next section before a literature analysis. Section 5 present the application domain (Scheduling for Industry 4.0). The conclusion is drawn in Section 6.

Definition

Metaheuristics mainly represent a category of estimated techniques that are planned to strike difficult combinatorial optimization issues where classical heuristics have failed to be competent and efficient. Many definitions are existed in the literature:

According to [START_REF] Glover | Metaheuristics[END_REF], "a metaheuristic is a high-level problem-independent algorithmic CHAPTER 2. STATE-OF-THE-ART: METAHEURISTICS framework that provides a set of guidelines or strategies to develop heuristic optimization algorithms".

According to [START_REF] Osman | Metaheuristics: A bibliography[END_REF] "A metaheuristic is formally defined as an iterative generation process which guides a subordinate heuristic by combining intelligently different concepts for exploring and exploiting the search space, learning strategies are used to structure information to find efficiently near-optimal solutions".

According to [START_REF] Voss | Meta-heuristics: Advances and trends in local search paradigms for optimization[END_REF] "A metaheuristic is an iterative master process that guides and modifies the operations of subordinate heuristics to produce high-quality solutions efficiently. It may manipulate a complete (or incomplete) single solution or a collection of solutions at each iteration. The subordinate heuristics may be high (or low) level procedures, or a simple local search, or just a constructive method".

In [START_REF] Sörensen | A history of metaheuristics[END_REF] a recent survey of metaheuristics algorithms gives a brief description of the history of metaheuristics within five main parts, which started long before the first utilization of the term and ending a long time within the near future.

Classifications and taxonomies of metaheuristics

There are several metaheuristics classifications and taxonomies in the literature. Here, we tend to classify these algorithms mainly as follows: trajectory-based methods, populationbased methods, and hybridization of these previous methods. 

Path (Trajectory) based methods

These strategies manipulate one point at a time and continue to enhance this point.

They build a path in the area of the solutions points whereas attempting to manoeuvre towards solutions. For example : Local Search (LS), Simulated Annealing (SA), Tabu Search (TS), Variable Neighbourhood Search (VNS), etc.

Local Search

Local Search (LS) sequence playacting a local shifting within a primary resolution that, on each run, improve this solution until the finding of a local optimum. That is, at every iteration associate degree improved solution within the Neighbourhood of the present solution is obtained, till no more enhancements are found.

Tabu Search

Tabu Search (TS) consist to use information on the progress of the search and saved this information in memory structures. TS used various types of memory structures.

Throughout the run, a tabu list contain solutions that are forbidden from being visited again as long as they are on the list. Alternatively, the tabu list may also record the last moves that are created for the aim of preventing them from being reversed. A long-term memory is used in this algorithm.

Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) explores additional and additional distant Neighbourhoods of the present incumbent solution, associated jumps from there to a brand new one if and as long as an improvement was created. In this way often favourable characteristics of the incumbent solution, e.g. that almost all variables are already at their best solution, and used to obtain promising neighbouring solutions. Moreover, to urge from these neighbouring solutions to local optima, a Neighbourhood search routine is applied repeatedly.

Population based methods

All algorithms within such categories are naturally inspired. We have two Branches.

First, algorithms that make use of mechanisms that are influenced by biological evolution, namely reproduction, mutation, recombination, and selection. Among these algorithms: Population-based metaheuristics (P-metaheuristics) begin from an initialization phase.

Then, a replacement phase of the current population by the generation of a new community. a new population of solutions is created and a range is moved from the present and the new population. This process loops until a given stopping criteria is reached.

The generation and the replacement phases may be memory-less. In this case, the two procedures are based only on the current population. Otherwise, some history of the search stored in a memory can be used in the generation of the new population and the replacement of the old population. Algorithm-1 illustrates the so-called high-level template of P-metaheuristics, where the population is to be noted as P . In this section, we introduce the more popular P-metaheuristic algorithms. P-metaheuristics differ in the Algorithm 1 High-level template of P-metaheuristics way they perform the generation and the selection procedures and the search memory they are using during the search.

P = P 0 ; /*

Genetic Algorithms

Genetic algorithms (GA) is inspired generally by the concept of genetics and natural selection. It is founded based on the classic view of a chromosome as a string of genes. The basic approach of GA is as follows: 1-start with initialization of algorithm parameters and production of initial population, in which every generations are produced based on the fittest individuals of the last generation, 2-apply mutation and crossover on the fittest individual of previous generation in order to produce new generation. This phase is kept in repetition until a criterion of stopping is to be found.

Ant Colony Optimization

Ant colony optimization (ACO) [START_REF] Dorigo | Ant colony optimization: a new meta-heuristic[END_REF] is built upon the ants' behavior of foraging. To a given optimization problem, ACO defined a group of software agents known as "artificial ants" to look for beneficial resolutions. After transformed the optimization problem into the problem of finding the best path on a weighted graph, the artificial ants incrementally build solutions by moving on the graph in parallel. Once each ant has constructed a solution, the pheromone level1 of each element in this solution is updated to allocate more pheromone to elements that lie in better solutions. This information is then used in the construction process of ACO, which selects elements based on a combination of the value of that element and its pheromone level. The pheromone level of all elements is reduced periodically to reflect evaporation.

Cuckoo Search

Cuckoo Search (CS) algorithm is a metaheuristic algorithm proposed by Xin-she Yang and Suash Deb in 2009 [START_REF] Yang | Cuckoo search via lévy flights[END_REF]. The algorithm was inspired from the behavior of the cuckoo bird aggressive reproduction strategy. Yang and Deb implement this strategy as an optimization tool using three ideal rules cited in [START_REF] Yang | Cuckoo search via lévy flights[END_REF]. In view of these three rules, a new solution X t+1 c for the ith cuckoo is produced using levy flight as follows:

(2.1)

X t+1 c = X t c + α ⊗ Lev y(β)
where α > 0 is the step size could be figured out through the problem scales. The product ⊗ refers to entry-wise multiplication. Levy flights mainly give production of a random CHAPTER 2. STATE-OF-THE-ART: METAHEURISTICS walk and the lengths of their random step are mainly pulled from the Levy distribution:

(2.2)

Lev y ∼ u = t -β (1 < β ≤ 3) (2.3) β = β m in + (β max -β min ) max iter * current iter
Which holds an immense variation. The successive steps/jumps of cuckoo are mainly made of the procedure of a random walk, which adheres to a power-law step-length distribution with a heavy tail. A division of Pa of the worst nests could be disposed of and build up new nests at new spots through the use of random walk.

FireFly

Firefly algorithm is a new swarm intelligence optimization technique based on the social behavior of fireflies. FF was developed and represented by Yang [START_REF] Yang | Firefly algorithms for multimodal optimization[END_REF] in 2009. The idea of the algorithm is based on the rhythmic flashes production by the fireflies. These particles (fireflies) are attracted to each other by flash intensity. The distance between any two fireflies is the Cartesian distance as:

(2.4)

r f i f j (t) = X f i (t) -X f j (t) = d k=1 (X f i ,k (t) -X f j ,k (t)) 2
Where X f i well as X f j represent the positions of the fireflies ( f i and f j ).

FF attractiveness is proportional to the light intensity seen by adjacent fireflies. It can be stated as:

(2.5)

β(r) = β 0 * e -γr 2
Where β 0 is the initial attractiveness at r = 0; and γ is the light absorption coefficient which is fixed during the execution of the algorithm. Firefly f i is displaced towards the more attractive firefly f j as:

(2.6)

X f i (t) = X f i (t -1) + β 0 * e -γr 2 (X f i (t -1) -X f j (t -1)) + α(rand - 1 2 ) 
The coefficient α is a haphazard variable figured out by the problem of interest, on the other hand, rand is a haphazard number generator divided out into space in a uniformed way [0, 1].

Bat

The Bat algorithm was developed by Xin-She Yang in 2010 [START_REF] Xin-She | A new metaheuristic bat-inspired algorithm[END_REF]. This algorithm makes use the so-called echolocation of the Bats. The new location X b (t+1) and velocity V b (t+1) of Bat "b" at the time step (t+1) as it is shown:

(2.7) V b (t + 1) = V b (t) + (x b (t) -x * )F b (2.8) X b (t + 1) = X b (t) + V b (t)
(2.9) 

F b = F min + (F max -F min ) * β whereβ ∈ [0,

Particle Swarm Optimization

PSO is much simpler to implement and is more controllable due to its fewer parameters.PSO searches for good, if not optimal, solutions to a problem by having a population of particles move around in the search space according to simple mathematical formulae expressing the particle's position and velocity. Algorithm_1 explain PSO steps'. Each particle has a subset of particles with which it can exchange information; this subset is called swarm topology, which can be fully connected topology, a ring topology, a von

Neumann topology, etc. The movements of a particle are guided by its own best-known position in the search space as well as the best-known position of its neighbors. At each instant, a particle p takes a new position vector, X p (t + 1), and a new velocity vector, V p (t + 1), calculated as follows:

V p (t + 1) = wV p (t) + c 1 R 1 (X best p (t) -X p (t)) + c 2 R 2 (X nbest p (t) -X p (t)) (2.10) X p (t + 1) = X p (t) + V p (t + 1) (2.11)
where w is a parameter called inertia weight; c 1 and c 2 are two parameters called, respectively, the cognitive factor (or self-recognition factor) and social factor (or socialcomponent factor); and R 1 and R 2 are two square diagonal matrices in which the entries on the main diagonal are random numbers in the interval [0,1]. X best p (t) is the best position reached by a particle p up to time t. X nbest p (t), referred to as the neighborhood best, is the best position that was found by the neighbors of p. The swarm size, the topology and the values assigned to the PSO parameters (i.e., w, c 1 and c 2 ) influence the relative importance of exploration versus exploitation, i.e., the ability to test various points in the search space (exploration) and the ability to focus the search around a promising area (exploitation) to refine a candidate solution ( [START_REF] Khalgui | Analytical and empirical study of particle swarm optimization with a sigmoid decreasing inertia weight[END_REF][START_REF] Lynn | Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation[END_REF]).

Many survey and reviews [START_REF] Bonyadi | Particle swarm optimization for single objective continuous space problems: a review[END_REF][START_REF] Harrison | Selfadaptive particle swarm optimization: a review and analysis of convergence[END_REF][START_REF] Jain | A review of particle swarm optimization[END_REF][START_REF] Mavrovouniotis | A survey of swarm intelligence for dynamic optimization: Algorithms and applications[END_REF][START_REF] Mirjalili | Particle swarm optimization: Theory, literature review, and application in airfoil design[END_REF][START_REF] Sengupta | Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives[END_REF][START_REF] Zhang | A comprehensive survey on particle swarm optimization algorithm and its applications[END_REF] have focused on the analysis and the appropriate settings of these parameters (see previous section). In [START_REF] Zhang | A comprehensive survey on particle swarm optimization algorithm and its applications[END_REF] a comprehensive survey on PSO algorithm and Its Applications was proposed. In [START_REF] Harrison | Selfadaptive particle swarm optimization: a review and analysis of convergence[END_REF], authors presented an analysis of various self-adaptive PSO algorithms which adapt their control parameters throughout execution. A majority of the examined algorithms demonstrated immediate divergence, whereby nearly all particles exited the feasible region.

In this thesis we will foxed to study only PSO and in the next section, an analysis of the most important modification PSO variants are presented.

Algorithm 2 PSO steps' (in its canonical form)

• Setp_ 1 Initialization: randomly initialize all particle positions and velocities.

• Step_2 Fitness evaluation: calculate the fitness of every particle's position. If the current fitness is better than all the previous reach fitness by the particle, then update its best position.

• Step_3 Fitness comparison: determine among all particles, the position of the particle with the highest fitness.

• Step_4 Velocity updating: update the velocity of every particle p for every dimension i;

• Step_5 Position updating: update the position of every particle p for every dimension i. Repeat steps 2-5 until reaching the termination condition (number of iterations or precision). 

Modifications of Particle Swarm Optimization

Parameters setting modification

Two main opposite approaches for setting parameters of an evolutionary algorithm might be considered: parameter control and/or parameter tuning. Parameter control, however, refers to the design of a strategy that changes the value of parameters during the run.

Parameter tuning refers to set parameters of an algorithm through experiments to some constant values. In this subsection, articles that have studied different parameters for PSO (topology, coefficients, and population size) are reviewed.

Topology

The term topology in PSO has mainly been derived out of population behaviours, the area of study of the way people conduct themselves within a population. A bunch of various topologies has been clarified for PSO till now [START_REF] Mendes | Population topologies and their influence in particle swarm performance[END_REF], a suitable example for that, global best topology, ring topology, wheel topology, pyramid topology, each one of these topologies contains both benefits and drawbacks. Topology actually defines the group of particles deriving from which a particle should link (connect to).

Probably the earliest attempt to modify the topology in PSO was conducted in [START_REF] Kennedy | Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance[END_REF]. The concept was mainly that topology has to influence both explorative and exploitative comportment of the swarm as various topologies force the diverse speed of engendering of data among particles.

In [START_REF] Kennedy | Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance[END_REF], authors tested the main four topologies (local best or ring, start, global best and random edge topology). Analyses indicated that the global best topology is the quickest correspondence topology, while the ring topology is the slowest in the tried benchmark set. This study was further studied in [START_REF] Kennedy | Population structure and particle swarm performance[END_REF] [START_REF] Kennedy | Population structure and particle swarm performance[END_REF] and later in [START_REF] Mendes | Population topologies and their influence in particle swarm performance[END_REF].

Authors proposed a more general formulation for the "Constriction Coefficient Particle Swarm Optimization" (CCPSO) known as "Fully Informed Particle Swarm," FIPS, and various topologies have been studied under that formula. They study the importance of the social organization of the particles and the way the contribution of the neighbours of a particle are combined. Also, a Hierarchical Particle Swarm Optimization (HPSO) was suggested through [START_REF] Middendorf | A hierarchical particle swarm optimizer and its adaptive variant[END_REF]. Particles in HPSO were masterminded in a tree structure with an order. The tree was refreshed, at every cycle, in light of the nature of the individual best of particles such that better particles were put at more elevated levels.

In [START_REF] Zhang | Scale-free fully informed particle swarm optimization algorithm[END_REF], a "Scale-Free Fully Informed Particle Swarm Optimization", (SFIPSO) was proposed. The idea was to divide the particles of the swarm into two types: dynamic and latent. The dynamic particles move around the quest space and search for optima, while inert particles are not refreshed until they gotten enacted. At every emphasis, every latent molecule is actuated by interfacing with one of the current dynamic particles.

A few analyses were led to look at the decent variety of particles when the proposed topology, ring topology, or global best topology is utilized. It was discovered that the proposed topology offers a superior assorted variety for particles in the inquiry space contrasted with two other tried topologies. In [START_REF] Elsayed | Particle swarm optimizer for constrained optimization[END_REF], where two PSO variations with various topologies, the global best topology and an arbitrary competition topology were utilized in two autonomous populaces. As indicated by the presentation of these populaces, the particles were taken from one populace what's more, added to the next to utilize the 2.3. MODIFICATIONS OF PARTICLE SWARM OPTIMIZATION populace that shows better execution. In [START_REF] Engelbrecht | Particle swarm optimization: Global best or local best?[END_REF] an examination between the global best and neighbourhood best topologies was led. Trials (on 60 test capacities) indicated that these two topologies perform nearly the equivalent with slight support toward the global best topology regarding the nature of the last arrangements. In [START_REF] Gong | Small-world particle swarm optimization with topology adaptation[END_REF], the methodology of "six degrees of partition" defined in [START_REF] Newman | The structure and dynamics of networks[END_REF] (any two discretionary people are associated with one another by at most six stages in the system of their companions) was utilized to decide associations between particles in PSO.

Population size

The primary endeavour to plan a versatile populace size in a transformative calculation was presented in 1994 by [START_REF] Arabas | Gavaps-a genetic algorithm with varying population size[END_REF]. Adapting populace size was embraced [START_REF] Chen | Particle swarm optimization with adaptive population size and its application[END_REF] for PSO later in 2009 through a technique called "Ladder Particle Swarm Optimization" (LDPSO). In LDPSO, at each predefined time-frame, the assorted variety of the swarm was assessed and the swarm size was balanced in like manner.

Writers in [START_REF] Hsieh | Efficient population utilization strategy for particle swarm optimizer[END_REF] were proposing a PSO variation called "Efficient Population Utilization PSO" (EPUS-PSO). EPUS-PSO is dependent on a populace chief, a solution sharing method, and an inquiry range sharing methodology. The populace director balanced the populace size by initially expelling a particle from the swarm when the global best vector was improved at any rate once in the past k continuous emphasis. At that point, adding another particle to the swarm if the global best vector didn't change in the past k consecutive iterations.. At long last, if the upper bound of the number of particles in the swarm has been come to, a current particle was supplanting.

After that, in 2011, the authors in [START_REF] De Oca | Incremental social learning in particle swarms[END_REF] was proposed two variations of PSO dependent on an equivalent methodology to set the populace size during the run. This procedure recommends an expanding populace size methodology that, at times, encourages the adaptability of frameworks made out of various learning operators. In the primary variation, called IPSO, at whatever point the calculation couldn't locate an agreeable arrangement, another particle was added to the populace. In the subsequent variation (called IPSOLS), a local search approach was run to gather local information around the current position. Results demonstrated that the proposed strategy is fit for discovering excellent arrangement.

Coefficients

The presentation of PSO is influenced by changing the estimations of its coefficients, that is, increasing speed coefficients (cognitive acceleration c 1 and the social acceleration CHAPTER 2. STATE-OF-THE-ART: METAHEURISTICS c 2 and inertia weight w). Thus, several attempts were made to adjust the values of the latter coefficients. All these BPSO variants were called "Adaptive Particle Swarm

Optimization" (APSO) algorithms that fall extensively into two classifications, to be specific time-variation approaches and self-versatile methodologies.

Time-variation approaches change the control parameters dependent on the quantity of emphases which have passed. At the start, it was demonstrated that, for steady increasing speed coefficients, bigger qualities for w in a superior investigation and littler qualities for w bring about a superior abuse [START_REF] Shi | A modified particle swarm optimizer[END_REF]. Therefore, a "Particle Swarm

Optimization with Time-variant inertia weight" (PSO-TVIW) was proposed in [START_REF] Shi | Empirical study of particle swarm optimization[END_REF].

Authors were tested a linear decreasing (from 0.9 to 0.4 during the run) of w, that was defined as follows:

(2.12)

w p (t) = w min + (w max -w min ) t I 1
where, w max = 0.9 and w min = 0.4 are both the maximum and minimum inertia weights,

c 1 = c 2 = 1.49618.
Later, authors in [START_REF] Zheng | Empirical study of particle swarm optimizer with an increasing inertia weight[END_REF] tested an opposite approach, increasing w (from 0.4 to 0.9 during the run) where the equation was as follows:

(2.13)

w p (t) = w max + (w min -w max ) t I 1
where, w min = 0.2, w max = -0.3 and c 1 = c 2 = 1.49618.

From the results of these two previous works, we can say that increasing w works better than decreasing w value on some experiments.

In [START_REF] Ratnaweera | Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[END_REF] authors work to modify the acceleration coefficients during the run. A "Time Varying Acceleration Coefficient Particle Swarm Optimization" (PSO-TVAC) was proposed.

Within such a technique, the value of c 1 decreased while the value of c 2 increased during the run.

In [START_REF] Liu | Improved particle swarm optimization combined with chaos[END_REF] "Particle Swarm Optimization with adaptive inertia weight factor" (PSO-AIWF) algorithm has been proposed. PSO-AIWF adapts the w in light of a particle's wellness comparative with the normal wellness as pursues:

(2.14)

w p (t) = w min + (w max -w min )(X best p (t-1)-minBest(t)) avgBest(t)-minBest(t) , i f X best p avgBest(t) w max , otherwise
Within which avgBest(t) (resp. minBest(t)) is the average objective value (minimum objective value ) at the current iteration, w max = 1.2, w min = 0.2 and c 1 = c 2 = 2, which leads to a range of 1 3 < w p (t) < 1 2 .

MODIFICATIONS OF PARTICLE SWARM OPTIMIZATION

To conclude, we can say that all previous concentrates found that the best qualities for the latency weight fall in [0.4, 1.1] while the best qualities for increasing speed coefficients fall in [1.5, 3] on generally tests.

Editing of the velocity/position updates rules

The main adjustment of the speed in the first algorithm is developed in [START_REF] Shi | A modified particle swarm optimizer[END_REF]. From that point forward, numerous endeavours were made to improve the speed and position update rule of BPSO further. After BPSO study, authors in [START_REF] Van | A cooperative approach to particle swarm optimization[END_REF] was identified an issue called "two steps forward one step back" in BPSO: As all elements of the situation of particles are refreshed at each cycle, quite possibly a few segments in this vector draw nearer to a superior arrangement, while others really move away from that great arrangement. To address this issue, creators were proposed a "Cooperative Particle Swarm Optimization" (CPSO) to isolate the pursuit space to d sub-issues (every factor turns into a sub-issue) and various factors are refreshed by various sub-swarm. Based on CPSO, authors are defined an hybrid method that combined BPSO with CPSO.

Hence, particles in BPSO are usually more focused around X nbest p (t), which helps decrease the diversity of the swarm [START_REF] Liang | Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[END_REF]. In order to solve such a problem, a variant of PSO known as "Comprehensive Learning Particle Swarm Optimization" (CLPSO) was proposed [START_REF] Liang | Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[END_REF]. In this variant, the velocity update rule was modified to the following form:

(2.15)

V p (t + 1) = wV p (t) + φr(t)(X best p (t) -X p (t))
where φ = c 1 +c 2 2 and r(t) is a haphazard number between [0,1]. X best p (t) is the best fitness of all reached personal best (X best p (t)). To improve the capacity of the calculation for misuse, CLPSO was reconsidered by [START_REF] Huang | Example-based learning particle swarm optimization for continuous optimization[END_REF] such that it underscored gaining from first-class particles (the particles with the best close to home best vectors in the swarm).

The new variation was designated "Model-based Learning Particle Swarm Analyzer" (ELPSO), where Eq. 2.15 was amended as pursues:

(2.16)

V p (t + 1) = wV p (t) + c 1 r 1 (t)(X best p (t) -X p (t)) + c 2 r 2 (t)(X nbest p (t) -X p (t))
where, X nbest p (t) is randomly taken from a set of previously reached global (X nbest p (t)).

Authors in [START_REF] Arumugam | A novel and effective particle swarm optimization like algorithm with extrapolation technique[END_REF], proposed a PSO variant known as "extrapolation Particle Swarm Optimization" (ePSO) in which the position update rule was revised as follows:

(2.17)

X p (t + 1) = X nbest p (t) + αX nbest p (t) + γ(X nbest p (t) -X p (t))
where:

α = k 1 r t γ = k 1 e k 2 β β = X nbest p (t) -X p (t) X nbest p (t) with k 1 = k 2 = e curent t
max t ( curent t and max t are current and maximum iteration). There is no velocity vector within this variant.

To counteract BPSO from the untimely combination, the speed update rule of BPSO was modified [START_REF] Xinchao | A perturbed particle swarm algorithm for numerical optimization[END_REF] and a strategy called "perturbed PSO" (pPSO) was proposed. In pPSA, the vector X nbest p (t) in the velocity update rule of the standard PSO was substituted for N(X nbest p (t), σ 2 I), where N is the ordinary distribution and σ is the standard deviation.

The value of σ was set through a basic time-changing system:

(2.18) V p (t+1) = wV p (t)+c 1 r 1 (t)(X best p (t)-X p (t))+c 2 r 2 (t)(N(X nbest p (t), σ 2 I)-X p (t))
An assorted variety of particles is identified with the explorative and exploitative conduct of the particles. A algorithm called ""Diversity enhanced with VNS-PSO" (DNSPSO),

was proposed [START_REF] Wang | Diversity enhanced particle swarm optimization with neighborhood search[END_REF] in which the explorative conduct was constrained by upgrading the assorted variety of the particles in the swarm. At every cycle, the position and speed of every particle are refreshed by the guidelines in SPSO. The new position X p (t + 1) is then joined with X p (t) to create a preliminary particle. This is finished by taking either the estimation of X p (t + 1) or X p (t) for every iteration with likelihood. The individual best of the particle is refreshed by the preliminary particle.

Hybridization

The literature on hybrid PSO (HPSO) algorithms is very rich and developing continuously. In [START_REF] Sengupta | Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives[END_REF], a detailed study of the HPSO is done. Some of the most notable works as well as a few recent approaches have been outlined. Table 2.3 show a statistics of HPSO articles presented in this survey.

Many hybridizing GA and PSO [START_REF] Li | Optimization of a heliostat field layout using hybrid pso-ga algorithm[END_REF][START_REF] Shi | Hybrid evolutionary algorithms based on pso and ga[END_REF][START_REF] Valdez | Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making[END_REF][START_REF] Yang | A hybrid evolutionary algorithm by combination of pso and ga for unconstrained and constrained optimization problems[END_REF] include using the two approaches sequentially or in parallel or by utilizing GA operators such as selection, mutation and reproduction inside the PSO algorithm. In [START_REF] Shi | Hybrid evolutionary algorithms based on pso and ga[END_REF], when a predetermined number of iterations has been surpassed GA is ended. The best particles from GA populate the particle pool in PSO and the vacant positions are filled utilizing random generations. In [START_REF] Yang | A hybrid evolutionary algorithm by combination of pso and ga for unconstrained and constrained optimization problems[END_REF], authors work on hybrid evolutionary algorithm (HEA), the evolution procedure of particles utilizes a two stage system where the evolution strategy is quickened by using PSO and assorted variety is kept up by utilizing GA.

Other hybridizing PSO and DE [START_REF] Gomes | Hybrid discrete evolutionary pso for ac dynamic transmission expansion planning[END_REF][START_REF] Hao | A particle swarm optimization algorithm with differential evolution[END_REF][START_REF] Xiao | Multi-depso: A de and pso based hybrid algorithm in dynamic environments[END_REF][START_REF] Xie | Depso: hybrid particle swarm with differential evolution operator[END_REF] exist in the literature, some of which are expounded in what follows. In [START_REF] Gomes | Hybrid discrete evolutionary pso for ac dynamic transmission expansion planning[END_REF], authors depicted a hybrid evolutionary tool to solve the transmission expansion arranging problem. They utilize a heuristic algorithm to choose the primary populace and a DEPSO for final arranging. In [START_REF] Xie | Depso: hybrid particle swarm with differential evolution operator[END_REF] instead of a mix of the two algorithms (PSO and DE) simultaneously, their system utilized one of them at random. In [START_REF] Hao | A particle swarm optimization algorithm with differential evolution[END_REF] a particular updates for the particles' positions by utilizing a DE approach partly, a PSO approach was utilized and tried, partly, on a suite of benchmark problems. Authors in [START_REF] Das | Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives[END_REF] change the cognitive component of the velocity update condition in PSO with a weighted contrast vector of positions of any two different particles picked haphazardly from the populace . Authors in [START_REF] Xiao | Multi-depso: A de and pso based hybrid algorithm in dynamic environments[END_REF] utilized a multi-swarm methodology to populace the population and utilize each sub-swarm to an alternate pinnacle, in this manner utilizing hybrid DEPSO in each to discover the optima.

Hybridization of PSO and SA take place in few works [START_REF] Nazari | A new hybrid particle swarm and simulated annealing stochastic optimization method[END_REF][START_REF] Shieh | Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification[END_REF][START_REF] Wang | The study of k-means based on hybrid sa-pso algorithm[END_REF] like in [START_REF] Shieh | Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification[END_REF] formulated a hybrid SA-PSO approach to deal with taking case of combinatorial and nonlinear optimization problems. In [START_REF] Wang | The study of k-means based on hybrid sa-pso algorithm[END_REF], authors applied a hybrid SA-PSO to the K-Means grouping problem. Recently work [START_REF] Nazari | A new hybrid particle swarm and simulated annealing stochastic optimization method[END_REF] contributed a hybrid PSO-SA wherein SA contributes to refreshing the global best particle just when PSO does not show upgrades in the performance of the global best particle, which may happen a few times during the iteration cycles.

PSO and ACO have blended in various works [START_REF] Lu | A hybrid algorithm based on particle swarm optimization and ant colony optimization algorithm[END_REF][START_REF] Mahi | A new hybrid method based on particle swarm optimization, ant colony optimization and 3-opt algorithms for traveling salesman problem[END_REF][START_REF] Shelokar | Particle swarm and ant colony algorithms hybridized for improved continuous optimization[END_REF]. Authors in [START_REF] Shelokar | Particle swarm and ant colony algorithms hybridized for improved continuous optimization[END_REF] proposed PSACO (Particle Swarm ACO). The initial segment of the algorithm works on PSO to There are some different examples where the PSO has been hybridized with other regularly utilized social metaheuristic optimization algorithms for use in a variety of engineering applications. Common techniques incorporate CS [START_REF] Chi | A hybridization of cuckoo search and particle swarm optimization for solving optimization problems[END_REF][START_REF] Li | A particle swarm inspired cuckoo search algorithm for real parameter optimization[END_REF], ABC [START_REF] Li | Ps-abc: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems[END_REF][START_REF] Vitorino | A mechanism based on artificial bee colony to generate diversity in particle swarm optimization[END_REF],

Bat Algorithm [START_REF] Manoj | Hybrid bat-pso optimization techniques for image registration[END_REF] and Firefly Algorithm [START_REF] Xia | A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm[END_REF]. Fully informed topology [START_REF] Middendorf | A hierarchical particle swarm optimizer and its adaptive variant[END_REF][START_REF] Kennedy | Population structure and particle swarm performance[END_REF][START_REF] Mendes | Population topologies and their influence in particle swarm performance[END_REF][START_REF] Zhang | Scale-free fully informed particle swarm optimization algorithm[END_REF] This topology is very heavy (huge memory and huge CPU time) because the particles update its position taking into account all the neighbours instead of the best staff. It has been argued that this rule induces random behaviour of the particle swarm.

Literature analysis

Population size Adapting population size [START_REF] Arabas | Gavaps-a genetic algorithm with varying population size[END_REF] The proposed adaptation strategy is very heavy [START_REF] Hsieh | Efficient population utilization strategy for particle swarm optimizer[END_REF] (too much time wasted) Adding particle if global [START_REF] De Oca | Incremental social learning in particle swarms[END_REF] Possibility of having a large number of population best don't improve if we fell in a local minimum.

Coefficient

w Linear decreasing Eq.2.12 [START_REF] Shi | A modified particle swarm optimizer[END_REF][START_REF] Shi | Empirical study of particle swarm optimization[END_REF] Possibility of not converging to the area of the wLinear increasing Eq.2.13 [START_REF] Zheng | Empirical study of particle swarm optimizer with an increasing inertia weight[END_REF] search space that contains best or near best solutions Time varying acceleration [START_REF] Ratnaweera | Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[END_REF] Both MS value and particle convergence are (c 1 and c 2 ) ensure but a lot of computation is done, which increases the CPU time.

Adaptive w Eq.2.14 [START_REF] Liu | Improved particle swarm optimization combined with chaos[END_REF] Best equation found to make the weight of inertia adaptable. During our thesis, we worked with this equation. Velocity Eq.2.15 [START_REF] Liang | Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[END_REF] This equation based only on the personal best of the particle while neglecting the global best Eq.2.16 [START_REF] Huang | Example-based learning particle swarm optimization for continuous optimization[END_REF] Most used in the literature. During our thesis, we worked with this equation because it is based on a self-learning strategy Eq.2.18 [START_REF] Xinchao | A perturbed particle swarm algorithm for numerical optimization[END_REF] Position Eq.2.17 [START_REF] Arumugam | A novel and effective particle swarm optimization like algorithm with extrapolation technique[END_REF] The previous work which is based on this equation of position, eliminates the velocity equation. This strategies does not give minimum MS value. 

Component

Description Reference Notes Hybridization PSO-GA [START_REF] Li | Optimization of a heliostat field layout using hybrid pso-ga algorithm[END_REF][START_REF] Shi | Hybrid evolutionary algorithms based on pso and ga[END_REF][START_REF] Valdez | Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making[END_REF][START_REF] Yang | A hybrid evolutionary algorithm by combination of pso and ga for unconstrained and constrained optimization problems[END_REF] Our thesis used a standalone PSO PSO-DE [START_REF] Gomes | Hybrid discrete evolutionary pso for ac dynamic transmission expansion planning[END_REF][START_REF] Hao | A particle swarm optimization algorithm with differential evolution[END_REF][START_REF] Xiao | Multi-depso: A de and pso based hybrid algorithm in dynamic environments[END_REF][START_REF] Xie | Depso: hybrid particle swarm with differential evolution operator[END_REF] rather than a hybrid PSO so that PSO-SA [START_REF] Nazari | A new hybrid particle swarm and simulated annealing stochastic optimization method[END_REF][START_REF] Shieh | Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification[END_REF][START_REF] Wang | The study of k-means based on hybrid sa-pso algorithm[END_REF] the implementation (on hardware PSO-ACO [START_REF] Lu | A hybrid algorithm based on particle swarm optimization and ant colony optimization algorithm[END_REF][START_REF] Mahi | A new hybrid method based on particle swarm optimization, ant colony optimization and 3-opt algorithms for traveling salesman problem[END_REF][START_REF] Shelokar | Particle swarm and ant colony algorithms hybridized for improved continuous optimization[END_REF] or software) of the nested PSO can PSO-CS [START_REF] Chi | A hybridization of cuckoo search and particle swarm optimization for solving optimization problems[END_REF][START_REF] Li | A particle swarm inspired cuckoo search algorithm for real parameter optimization[END_REF] be kept simple in order to avoid PSO-ABC [START_REF] Li | Ps-abc: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems[END_REF][START_REF] Vitorino | A mechanism based on artificial bee colony to generate diversity in particle swarm optimization[END_REF] additional consumption PSO-BAT [START_REF] Manoj | Hybrid bat-pso optimization techniques for image registration[END_REF] of memory or CPU time. PSO-FF [START_REF] Xia | A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm[END_REF] work is done to make all the components of PSO adaptable to the execution environment.

Compared to previous work our thesis originality is:

• Optimization of several constraints at the same time: minimization of task execution time (MS), minimization of total machine load (workload), minimization of CPU time and minimization of memory usage;

• New measures, i.e reduction in CPU time consumption and memory allocation, are added;

• The adaptation of the population size and number of generations to the result of MS found, is defined to solve the sensitivity of PSO to the dimensions of problem to solve, in order to ensure a robust version;

• Proposal of new rescheduling strategies with guarantee of robustness and stability of solution;

• Proposal of a PSO version adaptable to the change of on-board system in real time.

• Several experiments are carried out to examine the effectiveness of the proposed approach.

Application domain: Scheduling for Industry 4.0

Industry 4.0 refers to the 4 th industrial revolution that is currently taking place in manufacturing companies. We can explain the fourth revolution (industry 4.0) as being the implementation of new technologies and techniques (sensor, Cloud, analysis of big data, etc.) in order to obtain better communication between the different objects and / or Many reviews are mainly focused on various Flexible Job Shop Problem (FJSP) optimization techniques, under the new Industry 4.0. In [START_REF] Zhang | Review of job shop scheduling research and its new perspectives under industry 4.0[END_REF], authors present a review of job shop scheduling (JSP) research and its new perspectives under Industry 4.0, in order to transferring traditional scheduling into Smart Distributed Scheduling (SDS), In order to solving the JSP in the Industry 4.0 Era, authors in [START_REF] Leusin | Solving the job-shop scheduling problem in the industry 4.0 era[END_REF] propose a data exchange framework in order to deal with the JSP considering the state-of-the-art technology regarding Multi Agent Systems (MAS), CPS and industrial standards. In order to fully understand intelligent manufacturing in the context of Industry 4.0, authors in [START_REF] Zhong | Intelligent manufacturing in the context of industry 4.0: a review[END_REF] provide a comprehensive review of intelligent manufacturing topic key technologies: IoT and CPSs. After the identification of the importance of scheduling for Industry 4.0, we should develop the characteristics of existing optimization algorithms to solve FJSP on an embedded environment.

Flexible Job Shop Problem

This section presents a whole study of the FJSP problem and what follow is a formally definition.

FJSP

The FJSP is defined by a five-tuple, (J, O, M, a, d), where: O ji is operation i of job j;

• J = {J 1 , J 2 , . . . , J n } is
• M = {M 1 , M 2 , . . . , M k } is a set of machines; • a : O × M → {0, 1}, a(O ji , M l ) = 1 if O ji can be processed by M l ; • d : O × M → N, d(O ji , M l ) defines the duration of O ji on M l .
Two categories of FJSP instances are addressed: total and partial [START_REF] Kacem | Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[END_REF]. An FJSP instance is total (noted as F JSP T ) if any operation is processed by any machine; otherwise, it is partial (noted as F JSP P ):

(2. [START_REF] Elsayed | Particle swarm optimizer for constrained optimization[END_REF])

F JSP = F JSP T , i f a(O ji , M l ) = 1; ∀i, j, l F JSP P , otherwise
The flexibility degree (FD) of an FJSP instance is defined as:

(2.20)

FD = j=1...|J| i=1...|J j | l=1...|M| a(O ji , M l ) |M|.|O|
where |J j | is the number of operations in job j.

At least one optimization criteria can be set for the FJSP, for example the makespan (MS) in Eq.2.21 that estimates the completion time of all jobs, the robustness measure (RM) in Eq.2.22 that estimates the schedule insensitivity to disruptions, the sum of delays (SD) in Eq.2.23, and the workload (WL) of all machines in Eq.2.24:

MS = max{C 1 , C 2 , . . . , C n } (2.21) RM = ST -MS (2.22) SD = n j=1 (C j -E j ) (2.23) W L = k l=1 d(O ji , M l ) | O ji is affected to M l (2.24)
where C j is the completion time of job j, E j is the minimal duration of job j, and ST is the rest time of all machines (also called slack time). An example of F JSP T instance is given in Table 2.5. Table 2.5: F JSP T instance: 3 jobs, 10 operations and 4 machines

Job Operation

Processing time

M 1 M 2 M 3 M 4 1 1 1 2 3 1 1 2 1 2 3 5 1 3 3 2 2 1 2 1 3 4 1 4 2 2 3 1 3 2 2 3 2 1 3 4 3 1 4 1 2 2 3 2 1 3 3 4 3 3 2 4 1 3 3 4 1 2 1 2

FJSP with fuzzy processing time

In order to make the issue a lot nearer to the genuine applications, the preparing time becomes fuzzy factors, so another issue is presented: fFJSP. The preparing time of O ji on machine M k is spoken to as a triangular fuzzy number (TFN): t i, j,k = (t 1 i, j,k , t 2 i, j,k , t 3 i, j,k ) where t 1 i, j,k is the best handling time, t 2 i, j,k is the most likely handling time and t 3 i, j,k is the worst processing time. Table 2 gives a fFJSP instance with 3 jobs, 3 machines and 6 operations. So also, the fuzzy completion time of O ji is displayed as a TFN:

(2.25) C i, j = (C 1 i, j , C 2 i, j , C 3 i, j )
where C 1 i, j is the best completion time, C 2 i, j is the most likely completion time and C 3 i, j is the worst completion time. The fuzzy machine workload of machine M k is additionally a TFN as pursues:

(2.26)

w k = (w 1 k , w 2 k , w 3 k )
where w 1 k and w 3 k are the minimum and maximum likely machine workloads of m k . w 2 k is the most likely machine workload of machine m k . Since the MS is related to C i, j of all jobs and the machine effectiveness, the maximum machine workload, denoted by w M , can be determined by:

(2.27)

W M = max (1≤k≤m) W k
In a fuzzy setting, it's important to characterize certain fuzzy number tasks to deliver a schedule. These operations incorporate addition operation, max operation of two fuzzy numbers and the positioning method of fuzzy numbers. The expansion operation is utilized to ascertain the fuzzy completion time of operation. The Max operation is utilised to decide the fuzzy starting time of the activity and the positioning technique is utilized to analyze the maximum fuzzy completion time. Every one of these equations is displayed in [START_REF] Lei | Fuzzy job shop scheduling problem with availability constraints[END_REF][START_REF] Sakawa | Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms[END_REF]. Contingent upon the issue instance, different suppositions can be set for the FJSP.

Those made in this paper are the most as often as possible suspicions: all machines are accessible at time zero; jobs are discharged at time zero; the setting-up time of machines and the transportation time between operations are unimportant; and operations are not preemptible.

Machine breakdown Problem

Assumptions

Here we make the following assumptions and definitions:

• We classify any operation finished before the breakdown occurrence as completed.

The completed operations do not need to be considered in the rescheduling.

• Any operation that needs to be relocated due to the interruption is classified as affected. The set of affected operations is generated based on the precedence relationships of the operations. For any instance, if the shifting of an operation (because of breakdown) does not affect its successor operation, then the successor operation is not considered as affected.

• Reactive schedules consist of the affected operations which begin from a revised starting time of each machine. The starting times are calculated from the finishing time of the completed operations.

• Only one machine can be breakdown, which only one disruption can be occurring.

Formulation

In this section the flexible job shop environment with random machine breakdowns during schedule execution is considered here. During a scheduling, a shop floor may have several of machine breakdowns.

As the time of machine failure is not predictable, a probability distribution can identify

Algorithm 3 The breakdown disruption

Step 1 : identify which machine to breakdown according to Eq. 2.28

Step 2 : identify the repair time according to Eq. 2.29

Step 3 : identify the time of the breakdown according to Eq. 2.30

on the basis of historical data. Assume the probability of machine breakdown (BD) is subjected to the ratio between the individual machine workload with the total workload of all machines [START_REF] Elmekkawy | Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm[END_REF].

(2.28)

P k = BT k /W L
Where P k is the probability of machine k to fail, BT k is the workload of machine k.

(2.29) 

RT k = β 1 BT k β 2 BT k

Stability and Robustness Scheduling

As a definition of robustness, Dooley and Mahmoodi (1992) [START_REF] Dooley | Identification of robust scheduling heuristics: application of taguchi methods in simulation studies[END_REF] stated that the robustness of a schedule refers to its ability to perform well under different operational environments including dynamic and uncertain conditions. And a schedule is considered to be robust if:

• It has low cost relative to other schedule when facing disruption. This definition is suitable for the offline (static) scheduling.

• It can absorb the external events (disruption) without loss of consistency while keeping the pace of execution. This definition is suitable for the online (dynamic) scheduling.

El Hinai et al 2011 [START_REF] Elmekkawy | Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm[END_REF] define the robustness as follow:

(2.31)

RM1 = MS r -MS p MS p * 100 
Where MS r is the real makespan or rescheduling makespan and MS p is the makespan of prescheduling.

In [START_REF] Elmekkawy | Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm[END_REF] three measures of stability are defined:

1. The difference between the completion times of the predicted operations and the realized ones:

(2.32)

SM1 = n i=1 qi j=1 |CO i jP -CO i jR | 30 2.6. SUMMARY 2.
The average difference between the completion times of the predicted operations and the realized ones :

(2.33)

SM2 = n i=1 qi j=1 |CO i jP -CO i jR | n i=1 O i 3.
The average difference between the completion times of the affected predicted operations and the affected realized ones:

(2.34)

SM3 = n i=1 qi j=1 |CO i jP -CO i jR | n i=1 q j=1 i AO i
Where n is the number of jobs, qi the number of operations of job i, CO i jP the predicted completion time of operation j of job i, CO i jR the realised completion time of operation j of job i, and O i the total number of operations of job i. AO i is the total number of affected operations of jobs i.

The study of Jian Xiong et al in 2013 [START_REF] Xiong | Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns[END_REF] addresses only robust scheduling for a flexible job shop scheduling problem with random machine breakdowns. Robustness is indicated by the expected value of the relative difference between the deterministic and actual makespan. Utilizing the available information about machine breakdowns, the robustness measure is denoted as RM2 and is formally described as follows:

(2.35)

RM2 = O m=1 BT k W L * P t m
Where O is the number of operations and P t m denotes the processing time of the m th operation.

Summary

In this chapter, we have presented a description of the metaheuristic algorithms. Specifically, we have described and analyzed the most popular algorithm (Particle Swarm Optimization): process, modification and application. Then, we have presented a proof analysis of some previous work was cited for summarize and prove our thesis originality.

additional to that, we have well presented the FJS problem as an application domain.

Then, FJSP with machine breakdown is studied.

During next chapter, we will start by studying some optimization algorithms for the resolution of FJSP. Then, we will move on to preparing a FJSP solution in an embedded environment. 

Metaheuristics for FJSP

An overview

Many problem in the real live are solved using metaheuristics: Travelling salesman problem are solved using PSO-ACO [START_REF] Mahi | A new hybrid method based on particle swarm optimization, ant colony optimization and 3-opt algorithms for traveling salesman problem[END_REF]. Optimization of a heliostat field layout problem [START_REF] Li | Optimization of a heliostat field layout using hybrid pso-ga algorithm[END_REF] and biodiesel engine performance optimization [START_REF] Zhang | A comparative study of biodiesel engine performance optimization using enhanced hybrid pso-ga and basic ga[END_REF] are solved using PSO-GA.

Using PSO-DE, transmission expansion planning problem [START_REF] Gomes | Hybrid discrete evolutionary pso for ac dynamic transmission expansion planning[END_REF], mobile robot localization [START_REF] Huo | Hybrid algorithm based mobile robot localization using de and pso[END_REF] and clustering problem [START_REF] Xu | Clustering with differential evolution particle swarm optimization[END_REF] are solved. More than this problem, Flexible Job Shop Problem (FJSP) are solved using different metaheuristic.

FJSP is an extension of the classical job shop scheduling problem, where each operation can be processed on more than one machine, and each machine can process several operations. The scheduling problem is to assign operations to machines and to order the starting time of operations while minimizing a certain objective function, such as the maximal completion time of all operations or the total machining time. There is a great variety of real-world problems that can be modeled as an FJSP. They occur, e.g., in simulation and optimization of transport systems and in scheduling in manufacturing systems. The FJSP is NP-hard in the strong sense [START_REF] Garey | The complexity of flowshop and jobshop scheduling[END_REF]. Consequently, even for very small FJSP instances, an optimal solution cannot be guaranteed. For some fields, typically in manufacturing-related industries, near optimal solutions play an important role in improving efficiency and productivity.

Metaheuristics such as trajectory methods or population based methods are widely recognized as efficient approaches for many hard optimization problems. Extended research surveys on the use of exact approaches and metaheuristic approaches to solve the FJSP can be found in [START_REF] Genova | A survey of solving approaches for multiple objective flexible job shop scheduling problems[END_REF] and [START_REF] Chaudhry | A research survey: review of flexible job shop scheduling techniques[END_REF]. Among Population based metaheuristics (P-metaheuristics) algorithms, we can find Particle Swarm Optimization (PSO), Bat, Cuckoo Search (CS)

and FireFly (FF). In this chapter, we are interested in the P-metaheuristics for solving the Flexible Job Shop scheduling Problem (FJSP) and the fuzzy FJSP (fFJSP). In the 3.1. METAHEURISTICS FOR FJSP literature, some work has been done for the resolution of FJSP with the FF algorithm, like in [START_REF] Karthikeyan | A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems[END_REF]. There, a hybrid discrete FF was presented to solve the multi-objective FJSP.

Some other work has used the Bat algorithm like in [START_REF] Xu | Solving dual flexible job-shop scheduling problem using a bat algorithm[END_REF]. The authors utilized Bat to solve the dual flexible job shop scheduling problem. Only in 2016 with [START_REF] Al-Obaidi And | Two improved cuckoo search algorithms for solving the flexible job-shop scheduling problem[END_REF], the authors used the CS algorithm to solve the FJSP.

PSO for the FJSP has been used in a standalone mode and in a hybrid mode that combines PSO with other metaheuristics. In the standalone mode, [START_REF] Mekni | Tribes optimization algorithm applied to the flexible job shop scheduling problem[END_REF] use the multiswarm PSO variant, where each subswarm represents a fully connected topology. The algorithm adapts the number of particles and the details of the topology according to the performance of the swarm. For the most promising obtained schedule of operations, an additional local search is performed by slightly varying the obtained schedule of operations. In [START_REF] Pongchairerks | Particle swarm optimization algorithm with multiple social learning structures[END_REF], the position of some particles is updated using a crossover operation instead of their velocities. In [START_REF] Girish | A particle swarm optimization algorithm for flexible job shop scheduling problem[END_REF], a mutation operation is performed on all the elements of each particle based on a probability of mutation, while in [START_REF] Singh | A quantum behaved particle swarm optimization for flexible job shop scheduling[END_REF], the mutation operation is performed on some particles selected randomly from the swarm. Crossover and mutation are also used for the multiobjective PSO-FJSP [START_REF] Liu | A multi-swarm approach to multi-objective flexible job-shop scheduling problems[END_REF][START_REF] Lin | A multi-objective pso for job-shop scheduling problems[END_REF]. [START_REF] Singh | Particle swarm optimization algorithm embedded with maximum deviation theory for solving multi-objective flexible job shop scheduling problem[END_REF] use the Pareto front and the crowding distance for the multiobjective FJSP. [START_REF] Grobler | Metaheuristics for the multi-objective fjsp with sequence-dependent set-up times, auxiliary resources and machine down time[END_REF] solve an FJSP variant with sequence-dependent setup times, auxiliary resources and machine downtime. They proposed a priority-based algorithm, where the PSO algorithm evaluates over time priority values that drive the scheduling of operations.

Hybridization of PSO with other metaheuristics has been used mostly to solve multiobjective FJSPs rather than single-objective FJSPs. In a PSO-SA hybridization [START_REF] Kamble | Hybrid multi-objective particle swarm optimization for flexible job shop scheduling problem[END_REF][START_REF] Shao | Hybrid discrete particle swarm optimization for multi-objective flexible job-shop scheduling problem[END_REF][START_REF] Xia | An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems[END_REF] and a PSO-GA hybridization [START_REF] Tang | A hybrid algorithm for flexible job-shop scheduling problem[END_REF], the PSO was utilized for the global search, and SA or GA was utilized as local search. In a PSO-ABC hybridization [START_REF] Muthiah | Hybridization of artificial bee colony algorithm with particle swarm optimization algorithm for flexible job shop scheduling[END_REF], PSO was used for updating the velocity and the position of the bee colony. In a PSO-TS hybridization [START_REF] Gao | Solving flexible job shop scheduling problem using general particle swarm optimization[END_REF][START_REF] Zhang | An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[END_REF], PSO was used to produce a swarm of candidate solutions explored by TS. The use of a metaheuristic for fine-tuning another metaheuristic as a two-level algorithm has been investigated in [START_REF] Gao | A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion[END_REF][START_REF] Lei | A two-phase meta-heuristic for multiobjective flexible job shop scheduling problem with total energy consumption threshold[END_REF][START_REF] Pisut | A two-level particle swarm optimisation algorithm for open-shop scheduling problem[END_REF].

Various particle objective functions have been proposed for the FJSP, such as the disjunctive graph [START_REF] Singh | A quantum behaved particle swarm optimization for flexible job shop scheduling[END_REF], the priority rule [START_REF] Girish | A particle swarm optimization algorithm for flexible job shop scheduling problem[END_REF][START_REF] Moslehi | A pareto approach to multi-objective flexible jobshop scheduling problem using particle swarm optimization and local search[END_REF], the matrix scheme [START_REF] Lin | A multi-objective pso for job-shop scheduling problems[END_REF] and the operationmachine scheme [START_REF] Liu | A multi-swarm approach to multi-objective flexible job-shop scheduling problems[END_REF][START_REF] Song | Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization[END_REF][START_REF] Tang | A hybrid algorithm for flexible job-shop scheduling problem[END_REF][START_REF] Xia | An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems[END_REF][START_REF] Zhang | An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[END_REF]. All previous PSO-FJSP works are done to solve the classic FJS problem. However, there has been some work that used PSO for FJSP with fuzzy processing time. In [START_REF] Niu | Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time[END_REF], PSO combined with genetic operators was used for fFJSP. The authors in [START_REF] Huang | An improved version of discrete particle swarm optimization for flexible job shop scheduling problem with fuzzy processing time[END_REF] designed an improved version of discrete PSO to solve fFJSP.

In contrary of PSO, Bat, CS and FF works in the literature review, has been used to solve FJSP and not to solve fFJSP.

In this chapter, we intend to evaluate and compare the performance of P-metaheuristics: PSO, FF, CS and Bat. These procedures are tested on thirteen references problems, for FJSP, and are tested on a single problem for fFJSP, where the objective function is to minimize the makespan and total machines' workload and compare the run time of the different algorithms.

Discussion

After these observations in the literature, we count a multitude of studies working on metaheuristics and particularly on PSO. From these related works we work to develop several versions of PSO standard nd not on hybridization's with thinking of the enormous execution time. In fact, we note that the related work has flaws:

• Most of them do not deal with the sensitivity of PSO to its parameters. We are essentially studying sensitivity to the population size and generations number.

• Even compared to the works which considered the modification of inertia weight and of the two cognitive and social factors, we made our choices of the equations differently all taking into account the constraints of our system.

• Optimization of CPU time is not taken into account in the literature. Despite the importance of their contributions, none of this work addresses the general framework with the five types of constraints which are considered here: 1) the task execution time constraint (MS); 2) the machine load constraint (workload); 3) CPU time; 4) the number of particles that reaches the minimum (global best); 5) and the nature of convergence of the particles.

Simulation-Based Comparison of P-Metaheuristics for FJSP with and without

Fuzzy Processing Time

The basic PSO (BPSO) starts by initializing the swarm, and then sequentially computes the velocity and the position of each particle . These steps are repeated a prefixed number of iterations or until a convergence condition is reached. Each particle keeps track of its previous position , the best position that it reached and the fitness value for this best position.

The complexity of the problem is as follows:

• The dimension of the solutions space: 2|O|

• The size of the solutions space: |O|!|M| |O|

• The size of the search space: |O|!|M| O|

• Maximum number of visited solutions: Swarm_size* Max_iteration (if no solution is either revisited by a particle or visited by more than one particle)

In some PSO implementations, X nbest p (t) update is done once all particles' fitness has been evaluated. This is known as a synchronous PSO. In the asynchronous PSO, a particle computes its fitness then immediately updates X nbest p (t). Asynchronous update process may give, depending on the optimization problem, better results and convergence speed but it is a costly choice as a particle needs to wait for the whole swarm to be updated before it can move to the new position and continue its search. The PSO flowchart used in this paper is shown in the Fig. 3.1.

Proposed technique (MPSO)

Scheduling function modification

The operating procedure of the scheduling function in BPSO is as follows:

Each particle operation is scheduled according to their order in the vector X p,o ; i.e. the operation coded by X p,o [l] is scheduled before the one coded by X p,o [l + 1]. A Modified PSO (MPSO), with a reduced search space, has a special scheduling function that helps the population to follow a well-defined research trajectory, thus a reduced solution space.

The operating procedure of the scheduling function is as follows: The i th operations of all jobs are scheduled before the i + 1 th operations (i.e. all O ji are scheduled before any O j+1,i and the operations are handled according to the order of elements in the vector

X p,o .
The choice of this strategy is due firstly to the dependence constraint of the operations of the same job required in FJSP and fFJSP. Secondly, this method helps the particles to follow a well-defined path during scheduling, which means avoiding particles to move to a bad position and forcing them to move to another well close to the best. Vector form [START_REF] Jia | An improved particle swarm optimization for multiobjective flexible job-shop scheduling problem[END_REF] and string form [START_REF] Zhang | An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[END_REF] are examples of PSO-FJSP coding.

This section presents the vector-form coding as used in this thesis. The F JSP T instance given in Table 2.5 is used for illustration. This instance is composed of three jobs (J 1 , J 2 , J 3 ), having, respectively, 3, 3 and 4 operations, and four machines (M 1 , M 2 , M 3 , M 4 ). The last four columns of Table 2.5 give the duration of operations on the different machines. At time t+1, X p,o (t + 1) and X p,m (t + 1) are computed as follows. Two temporary vectors, X p,o (t + 1) and X p,m (t + 1), are computed according to Eq. 2.10. Then, X p,o (t + 1) is set equal to X p,o (t), sorted according to ascending order of X p,o (t + 1). X p,m (t + 1) is also sorted according to the ascending order of X p,o (t + 1). If an element of X p,m (t + 1) is out of range or fractional, it will be replaced by the closest machine number. An illustration of this transformation is given in Fig. 3.3. As X p,o (t + 1)[1] = 0.5 (the second rank) and 

Vector

X p,o (t)[1] = 2, X p,o (t + 1)[2] is set to 2.

Experimental results

Experimental procedure

In this chapter, all the optimization algorithms are using a random method to initialize their populations positions: X p (t) (Eq.2.11), X b (t) (Eq.2.8), X f (t) (Eq.2.6) or X c (t) (Eq.2.1).

For the initial velocity vector: V p (t) (Eq.2.10) and V b (t) (Eq.2.7), all particles have random values between 0 and 1. The optimization algorithms developed and tested in this work are: BPSO, MPSO, BAT, CS and FF algorithms. The parameters of these algorithms are presented in table 3.1.

Population size is fixed to 500 for all algorithms and the maximum generations is equal to 500 iterations. The following experiments were carried out:

• Experiment-1 P-metaheuristics for FJSP For comparative measurements of the makespan MS defined in Eq.2.21, workload total W L (Eq.2.24), the CPU time C t and the percentage of the particles who reached the best position over all the iterations R p with BPSO, BAT, CS, FF and our approach (MPSO). Simulations are done with 10 benchmarks of Brandimarte (MK01-MK10) [START_REF] Brandimarte | Routing and scheduling in a flexible job shop by tabu search[END_REF] and three benchmarks (4*5, 8*8 and 10*10) of [START_REF] Kacem | Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[END_REF] using 500 particles and 500 iterations.

All instances were set in table 3.2.

• Experiment-2 P-metaheuristics for fFJSP -For comparative measurements of the MS and the maximum machine workload (Eq.2.27) with MPSO, BPSO, BAT, CS and FF, simulations are done with the four fFJSP instances (Table 3.3) [START_REF] Deming | A genetic algorithm for flexible job shop scheduling with fuzzy processing time[END_REF], using 500 particles and 500 iterations. -Compare the results of MPSO with the results of other authors [START_REF] Deming | A genetic algorithm for flexible job shop scheduling with fuzzy processing time[END_REF][START_REF] Huang | An improved version of discrete particle swarm optimization for flexible job shop scheduling problem with fuzzy processing time[END_REF][START_REF] Lei | Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling[END_REF][START_REF] Xia | An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems[END_REF] and other metaheuristic algorithms, in term of MS for more measured the effectiveness of our proposed approach.

Experimental results

The experiments are performed on a dual core machine at 2.8 GHz and 8 GB of RAM. All results are obtained after 10 trials; the scheduler is implemented in C language and all run times are given in seconds.

• Experiment-1 P-metaheuristics for FJSP:

From Table 3.4 and 3.5, We notice that MPSO gives the best fitness, a minimum workload and a maximum R p (Greater than 3 times the R p of the other algorithms) and it has a CPU time comparable to the others. Compared to BPSO, our approach reduces a 50% CPU time in all benchmarks and a minimum MS for 80 % of benchmarks. For the small instances, FF has the best results in all the objective functions, but not in the Brandimarte instances. Since our main goal is the minimization of the makespan and the total workload, the best population based metaheuristic is MPSO.

• Experiment-2 P-metaheuristics for fFJSP: Table 3.6 compares the results of the 5 P-metaheuristic in terms of MS for a more measured effectiveness of our proposed approach.

From Table 3.6, it can be seen that MPSO is the best P-metaheuristic among all the algorithms in solving the instances. Compared with other algorithms, MPSO gives the best values in terms of average value (AV), best value (BV) and worst value (WV), which implies that MPSO is the most effective one.

In addition, the average CPU time of 20 different runs is listed in Table 3.7. It can be seen that MPSO is the most efficient among all algorithms. Table 3.8 compares the results of MPSO with previous work [START_REF] Deming | A genetic algorithm for flexible job shop scheduling with fuzzy processing time[END_REF][START_REF] Huang | An improved version of discrete particle swarm optimization for flexible job shop scheduling problem with fuzzy processing time[END_REF][START_REF] Lei | Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling[END_REF] in terms of MS for a more measured effectiveness of our proposed approach. From Table 3.8, is noted that MPSO has the best results among all other work in terms of AV, BV and WV. Therefore, we can say that our approach is outperform compared to other metaheuristics.

Performance evaluation of Particles Coding in PSO with self-adaptive parameters for FJSP

Self-adaptive parameters

In [START_REF] Yang | An improved particle swarm optimization based on difference equation analysis[END_REF], the authors developed a self-adaptive weight w(t) particle swarm optimization to improve the search ability of the PSO (Eq.2.14). However, every particle calculated its own inertia coefficient according to its fitness value. And according to [START_REF] Song | Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization[END_REF], the learning factors (c 1 (t) and c 2 (t)) were dynamically calculated as a function of w(t) value (Eq.5.7 and 5.8). In the two cited papers, the authors improved the efficiently of these dynamic parameters to solve the traditional functions (sphere, griewank, schaffer, etc..), but in our thesis, we apply these equations to solve FJSP and we prove that the dynamic and self adaptive w, c 1 (t) and c 2 (t), are more efficient than the static ones. 

Proposed technique

Particle coding procedures refer to the mapping between the particle position in PSO and the scheduling solution in FJSP. It is an important step to be carried out so that According to the processing constraints of the problem, each operation in the operation sequence of all the jobs is assigned to each machine in turn to form a scheduling solution.

The particle representation can ensure that the decoded scheduling solutions are feasible and can follow the particle swarm optimization algorithm model. In this chapter, at any iteration t, the position vector X p (t) of a particle p models a feasible schedule of the FJSP instance. The length of this vector is varied according to the coding type. The particle coding is done by two forms: operation-machine-based (job-machine schema) or only machine-based (only-machine schema).

Basic Job-Machine schema

In the Job-Machine Schema (JMS), X p (t) has 2|O| elements. The first |O| elements, noted X p o (t), represents a partial order of operations, the second |O| elements, noted X p m (t), represents the allocated numbers of machines. Fig. 3.4 represents a X p (t) vector for a FSJP instance represented in Table 2.5. This figure shows the two parts X p o (t) and X p m (t). In this example, the operations assigned to machine 3 are: the first operations of job 2 and the third and fourth operations of job 3. The operations of job 1 are presented by number 1 and the green color, and operations of job 2 are presented by number 2 and the blue color. Job 3 and 4 operations' are presented by numbers 3 and 4 respectively and by the red and purple colors respectively.

The operating procedure of the scheduling function in basic PSO-JMS is as follows:

Each particle operation is scheduled according to their order in the vector X p o (t); i.e, the operation coded by X p o (t)[l] is scheduled before the one coded by X p o (t)[l + 1].

Only-Machine Schema

In the Only-Machine Schema (OMS), the X p (t) vector has |O| elements. This vector represents the Ids of the allocated machines. This method helps the particles to follow a well-defined path during scheduling, i.e.

avoiding particles to move to a bad position and forcing it to move to another that is well close to the best position. 

Experimental results

Experimental procedure

In this thesis, 50% of the populations are using the localization approach, [START_REF] Kacem | Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[END_REF] and the other 50% are using a random method to initialize the particles positions X p (t).

For the initial velocity vector V p (t), all particles have random values between 0 and 1. We work with asynchronous PSO where every particle computes its fitness, then immediately updates X nbest. The asynchronous update process may give, depending on the optimization problem, better results and better convergence.

The PSO variants developed and tested in this work are:

• PSO with job-machine coding: PSO-JMS.

• PSO with only-machine coding: PSO-OMS.

The parameters of PSO-JMS and PSO-OMS are: the number of particles, number of iterations, the optimization problem and the size of the problem.

We have worked with 10 benchmarks (MK01. . . MK10) of [START_REF] Brandimarte | Routing and scheduling in a flexible job shop by tabu search[END_REF] and three benchmarks (4*5, 8*8 and 10*10) of [START_REF] Kacem | Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[END_REF]. The parameters of the instances are set in Table 3.2. The following experiments are carried out:

Experiment 1: For comparative measurements of the makespan (MS) defined in Eq.2.21, the workload total WL Eq.2.24, the CPU time and the percentage of the particles converge to the best position over all iterations (%conv) with PSO-JMS and PSO-OMS.

Simulations are done for 4*5, 8*8, 10*10 and for the 10 benchmarks of Brandimarte using 500 particles and 500 iterations. All results are obtained after 30 runs.

Experiment 2: To compare our solution to the others ones [START_REF] Gao | Solving flexible job shop scheduling problem using general particle swarm optimization[END_REF][START_REF] Girish | A particle swarm optimization algorithm for flexible job shop scheduling problem[END_REF][START_REF] Li | An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[END_REF][START_REF] Li | An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[END_REF][START_REF] Moslehi | A pareto approach to multi-objective flexible jobshop scheduling problem using particle swarm optimization and local search[END_REF][START_REF] Song | Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization[END_REF][START_REF] Tang | A hybrid algorithm for flexible job-shop scheduling problem[END_REF][START_REF] Tang | A hybrid algorithm for flexible job-shop scheduling problem[END_REF][START_REF] Wang | A novel genetic algorithm for flexible job shop scheduling problems with machine disruptions[END_REF].

Experiment 3: To evaluate the impact of the number of iterations on the final MS, we fixe the swarm size (500 particles), vary the number of iterations (from 10 to 5000) for the benchmark MK01 and visualize the evolution of the standard deviation.

Experiment 4: To evaluate the impact of the number of particles on the final MS, we fixe the Max_iteration (500 iterations), vary the number of particles (from 10 to 5000) for the benchmark MK01 and visualize the evolution of the standard deviation.

In experiences 3 and 4, to better prove the fitness results of PSO-OMS, 30 runs are done and standard deviations (regarding the mean position, regarding the best position, regarding the worst position) are computed as follows:

The :

(3.3) σ 1 = 1 N . N i=1 (MS i -MS M ean ) 2 (3.4) σ 2 = 1 N . N i=1 (MS i -MS Best ) 2 (3.5) σ 3 = 1 N . N i=1 (MS i -MS W orst ) 2
where

MS Best = min{MS i | i = 1, 2, ...N} MS W orst = max{MS i | i = 1, 2, ...N} MS M ean = N i=1 MS i /N

Simulation results

The experiments are performed on a dual core machine at 2,8 GHz and 8 GB of RAM. All results are obtained after 30 trials, the scheduler is implemented in C language and all run times are given in seconds.

Experiment 1: Table 3.9 presents for each benchmark and for each PSO variant the best obtained fitness, the CPU time, the total workload and the number of particles, with have reached the best position. We notice that PSO-OMS gives the best fitness, a minimum workload and a maximum %conv (Greater than 2 to 10 times). Since our main goal is the minimization of the makespan and the total workload, the best choice is the PSO with OMS.

Experiment 2: Table 3.10 and table 3.11 compare the best fitness obtained by the PSO-OMS (Grey columns) to the other ones. The grey columns are our results. We notice that PSO-OMS gives the best fitness in 70% of the benchmarks compared to [START_REF] Gao | Solving flexible job shop scheduling problem using general particle swarm optimization[END_REF] and 100% better than the other references. of PSO-JMS and PSO-OMS, for the benchmark MK01 when we vary the iteration number from 10 to 5000, while the population size is set to 500.

When we fixe the swarm size at 500 particles and we change the iterations number, we note that: • When the number of iteration is between 50 and 1000 iterations, the percentage of worst and mean values is close to the best values.

• When the number of iteration exceeds 1000 particles, the behavior of the algorithms is improved and the percentage of best fitness values increases. of PSO-JMS and PSO-OMS, for the benchmark MK01 when we varied the population size from 10 to 5000, whereas the iteration number is set to 500. Each simulation is repeated 10 times.

When we fixe the number of iterations numbers at 500 and we change the swarm size, we note that:

• When the number of particles is less than 500, the percentage of MS values close to the worst value is high compared to good and mean values.

• When the number of particles is between 500 and 1000 iterations, the percentage of worst and means values is close to the best values.

• When the number of particles exceeds 1000 particles, the behavior of the algorithms is improved and the percentage of best fitness values rises. 

Summary

Many population-based metaheuristics have been applied to FJSP and fFJSP. This chapter is divided into two part. In first one, BPSO, MPSO, Bat, FF and CS are used to solve both FJSP and fFJSP and try to prove their efficient. The main contribution of this part is to provide an effective solution to the problem using P-metaheuristics and compare these algorithms to finally realize that the modified version of basic PSO is the best way to solve problems. In the second part, an improved version of PSO is provided to solve FJSP. Firstly, we analyze and improve PSO with job-machine schema (PSO-JMS) for FJSP. Then, we define and improve PSO with only machine schema (PSO-OMS) for FJSP. We analyze and reduce the solution and search spaces. In the above description, the PSO-OMS for FJSP has proved to be the best variant for solving FJSP benchmarks.

The experimental results have confirmed that this variant gives the best makespan and total workload in a minimum run time with a guarantee of particles convergence.

In the next chapter, we will be interested in some more realistic features, e.g., maintenance and breakdowns of machines, which can also be incorporated in the FJSP and solved with the PSO. complicate the problem. El hinai et al [START_REF] Elmekkawy | Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm[END_REF] insert idle times in the predictive schedule to serve as time buffering to absorb the effects of disruptions. A method of type mAOR (modified Affected Operations Rescheduling) is used to reschedule operations after the occurrence of a breakdown. This method is implemented in a hybrid genetic algorithm.

He et al [START_REF] Sun | Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies[END_REF] use a rescheduling genetic algorithm that combine two methods: RSS (right shift strategy [START_REF] Yahyaoui | New shifting method for job shop scheduling subject to invariant constraints of resources availability[END_REF]), and RCS (route changing strategy [START_REF] Kutanoglu | Routing-based reactive scheduling policies for machine failures in dynamic job shops[END_REF]). Jian et al [START_REF] Xiong | Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns[END_REF] set new equations to model robustness and stability and use an evolutionary algorithm to solve the scheduling problem under machine breakdown. In an other work He et al [START_REF] Sun | Scheduling flexible job shop problem subject to machine breakdown with game theory[END_REF] reused the RSS and the RCS methods, but considers that the two objectivesrobustness and makespan -cannot be optimized simultaneously and therefore they add a Nash Equilibrium (NE) step to ensure a robust and stable schedule. Authors in [START_REF] Wang | A novel genetic algorithm for flexible job shop scheduling problems with machine disruptions[END_REF] proposed a genetic algorithm using chromosome encoding to handle FJS scheduling that can adapt to disruption. They used just-in-time machine assignment assuming that the end time of a disruption was known at the time it starts. Manas et al [START_REF] Singh | Robust scheduling for flexible job shop problems with random machine breakdowns using a quantum behaved particle swarm optimisation[END_REF] use an RSS rescheduling algorithm based on the Quantum PSO (QPSO) algorithm. Recently, PSO for the FJSP under machine breakdowns [START_REF] Nouiri | Two stage particle swarm optimization to solve the flexible job shop predictive scheduling problem considering possible machine breakdowns[END_REF] and under uncertain processing time [START_REF] Jamrus | Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing[END_REF] has been studied. In this chapter, we propose a modified RSS and two other scheduling alternatives: random route changing and historic-based route changing.

Discussion

After these short observations in the literature, we count a multitude of studies working on the PSO to solve FJSP taking into account cases of machine failure. In fact, we note that the related work has flaws.

• The majority of the proposed approaches dealing with the problem without guaranteeing the robustness and stability of the reordering result, in parallel with the quality of result obtained (best MS and minimum workload machine with minimum lost time).

• Even in relation to the work which proposes rescheduling strategies to resolve failure cases, we have proposed different rescheduling strategies, all taking into account the constraints of our system.

Proposed technique 4.2.1 MPSO-FJSP variants for CPU time reduction

Let A0 denotes the basic PSO presented in Fig. 3.1. Five variants of A0 are proposed:

• Variant_A1. It aims to reduce the time spent by a particle in the scheduling step (i.e. step 4 in Algorithm_2). In this variant, a particle will interrupt the scheduling step as soon as it detects that the current fitness is going to be worse than the best one.

• Variant_A2. This variant aims to reduce the dimension of the problem after some iteration. After running N iterations of the PSO we fix the scheduling solutions of some selected jobs and then we pursuit the PSO on remain jobs.

• Variant_A3. This variant aims also to reduce the dimension of the problem after some iteration: the selected jobs to be removed are those that their schedules are the most stable during the first N iterations.

• Variant_A4. It mixes A1 and A2.

• Variant_A5. It mixes A1 and A3.

The Rescheduling Step

Three rescheduling variants are proposed: a random PSO-based rescheduling (RPSO), PSO Historic Route Changing (PSO-HRC) and a Modified Shifting Strategy (MSS). These variants assume that the prescheduling is computed using PSO and that the optimization criteria for the prescheduling are the total workload and the makespan. Let X pt the set of operations that are already triggered before the breakdown and X pr the set of operations not triggered yet. At the occurrence of a breakdown on a machine m, the RPSO simply reruns the PSO on the set X pr .

The RRCA determines the set of operations affected by a breakdown, then for each operation in S, randomly choose a position vector for operations in S. Then, the rescheduling will be started according to Algorithm_4.

The MSS starts by determining the operation AO i jk directly affected by the breakdown, the indirectly affected operations O i+1, jk of the same job j, and the indirectly affected operations O i j k mapped to the same machine k. Then the MSS performs a guided right shift according to Algorithm_5.

Algorithm 7 Idle Time Insertion (ITI)

Calculate the duration of idle we will add: t i d l e Determine the set of operations affected by breakdown denoted by S. for each operation in S do if (S t between AO i j k affected and O i+1, j k ≤t i d l e ) or ( S t between AO i j k affected and O i j k ≤t i d l e ) then Add the idle time after the end of AO i j k end if end for Calculate the new completion time.

when the best fitness is reached (#it). We notice that: the six implementations return almost the same fitness, while A4 and A5 have the smallest CPU time. Tables 4.2 and ). The Min column states the number of particles that reach the best fitness, while the NearMin column states the number of particles that reach a near best fitness. We notice that the maximum number of particles that have reached the best fitness is obtained with the variants A3 and A5. This is due to the fact that these two variants force jobs to keep their best schedules. ACO [START_REF] Liouane | Ant systems & local search optimization for flexible job shop scheduling production[END_REF][START_REF] Wang | A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem[END_REF][START_REF] Xing | A knowledgebased ant colony optimization for flexible job shop scheduling problems[END_REF], TS [START_REF] Li | An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems[END_REF][START_REF] Li | A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling problem[END_REF][START_REF] Li | An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[END_REF] and by GA [START_REF] Kacem | Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[END_REF][START_REF] Li | A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling problem[END_REF][START_REF] Motaghedi-Larijani | Solving flexible job shop scheduling with multi objective approach[END_REF]. We notice that, our results are comparable with the others results whatever the optimization algorithm (GA, ACO, TS) that used for the resolution of the FJS problem.

Tables 4.9 and 4.10 compare the CPU time between the A5 variant and some previous works [START_REF] Li | An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[END_REF][START_REF] Wang | A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem[END_REF][START_REF] Xing | A knowledgebased ant colony optimization for flexible job shop scheduling problems[END_REF][START_REF] Zhang | An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[END_REF] that our results are better compared to others, although the comparison cannot be very objective since the platforms are not the same. 

Machines Breakdown resolution

In this section, we present the simulation results of the proposed rescheduling algorithms MSS, RPSO and PSO-HRC, and then we compare them with the results of the idle time insertion (ITI) [START_REF] Elmekkawy | Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm[END_REF] and the random route changing (RRC). The comparison criteria are the robustness RM1 (Eq.2.31) and RM2 (Eq.2.35), the stability SM1 (Eq.2.32), SM2 (Eq.2.33), and SM3 (Eq.2.34), the makespan MS (Eq.2.21) and the total workload (Eq.2.24). We present the experimental results for three FJSP instances: 4*5 instance with a total flexibility, 8*8 instance with a partial flexibility and 10*10 instance with a total flexibility. the PSO algorithm after 20 trials using 500 particles and 500 iterations, for the three benchmarks. The probability of machine breakdowns, the machine repair period, the machine breakdowns occurrence time and the four disruption scenarios (SN) are chosen in a similar manner as in [START_REF] Elmekkawy | Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm[END_REF]. These scenarios are listed in Table 4.11.

Tables 4.12, 4.13 and 4.14 compare the fitness, the workload and the robustness obtained by the five rescheduling algorithms (MSS, RPSO, PSO-HRC, RRPS, ITI). We notice that PSO-HRC give the best results. The RPSO's results are not always stable and comparing to PSO-HRC but are better than ITI makespan value. RRCA and ITI give good results

when there is only one affected operation (case of SN2 and SN4). Tables 4.15, 4.16 and 4.17 compare the stability of the five rescheduling algorithms. We notice that MSS gives the best stability but not the best fitness. In summary, we notice that when there is only one affected operation the MSS and ITI are the most efficient. In all other cases, the PSO-HRC offers better results. 
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Summary

In this chapter, we have presented variants of the basic PSO-FJSP that aims to reduce the CPU time. The experimental results showed that these variants are able to reach the goal without a big loss on performance. Specially the last variant (A5) provides the best fitness and the best CPU time, and most of the swarm particles reached the best fitness.

Then we elaborated three rescheduling variants (RPSO, PSO-HRC and MSS) to handle FJSP under a single machine breakdown in a curative way. all proposed approaches and its analyzes are in order to find a valid approach to the problems of embedded environment.

PSO VARIANT FOR EMBEDDED ENVIRONMENT Abstract

Embedded systems have become an essential part of our lives, mainly due to the evolution of technology in the last years. However, the power consumption of these devices is one of their most important drawbacks. It has been proven that an efficient use of the CPU of the device also improves its energy performance.

This chapter presents, as a first variant, a two-level particle swarm optimization algorithm for the flexible job shop scheduling problem. The two-level PSO uses a standalone PSO rather than a hybrid PSO so that the implementation (on hardware or software) of the nested PSO and the lower-bound filter can be kept simple. This approach uses the operation-machine scheme because, on the one hand, its overhead on computation time is small, and on the other hand, its ease of adaptation to the proposed algorithm is desirable. The Two-level PSO is proposed for the purpose of preparing a PSO variant for embedded applications. As a second variant, embedded two-level PSO-FJSP (E2L-PSO) is proposed to be adaptable to embedded environments. This chapter is organized as follows. Section 1 present an overview of the PSO for embedded applications. An analysis of the standard PSO for FJSP is done in section 2. The proposed two-level PSO with experimental results are presented in section 3 and 4 respectively. The proposed E2L-PSO with experimental results are presented in section 5 and 6 respectively. The conclusion is drawn in Section 7.

PSO for embedded applications

An overview

Embedded systems have become an essential part of our lives, mainly due to the evolution of technology in the last years. However, the power consumption of these devices is one of their most important drawbacks. It has been proven that an efficient use of the memory of the device also improves its energy performance. For the resolution of optimization problems in such system, many metaheuristics are used. In this field, particle swarm optimization (PSO) has long been attracting wide attention from researchers. Many embedded system are used PSO such navigation of mobile sensors [START_REF] Venayagamoorthy | Navigation of mobile sensors using pso and embedded pso in a fuzzy logic controller[END_REF], virtual network embedding applications [START_REF] Rubio-Loyola | Enhancing metaheuristic-based online embedding in network virtualization environments[END_REF], multi-robot (swarm-robot) applications [START_REF] Couceiro | Benchmark of swarm robotics distributed techniques in a search task[END_REF][START_REF] Hereford | Multi-robot search using a physically-embedded particle swarm optimization[END_REF], hardware software partitioning problem in Embedded System Design [START_REF] Bhattacharya | Hardware software partitioning problem in embedded system design using particle swarm optimization algorithm[END_REF], dynamic virtual cellular manufacturing systems [START_REF] Rezazadeh | Linear programming embedded particle swarm optimization for solving an extended model of dynamic virtual cellular manufacturing systems[END_REF],virtual cellular manufacturing system (VCMS) [START_REF] Rezazadeh | Linear programming embedded particle swarm optimization for solving an extended model of dynamic virtual cellular manufacturing systems[END_REF], etc.

The physically embedded PSO (pePSO) algorithm was proposed by [START_REF] Hereford | Bio-inspired search strategies for robot swarms[END_REF] and employs two search strategies. First, the swarm robot moves throughout the search space and take measurements as they move towards their targets. Second, the concept of trophallactic, which is the exchange of vomited partially digested food that occurs between adults and larvae in colonies of social insects, was translated into an algorithm and utilized for the search. This algorithm is based on "no robot-to-robot" communication. Also, the robots do not have to know their position explicitly. The pePSO does not make use of any main agent to direct the movements and behaviours of the robots in the swarm, so the volume of information interchange among the robots is decrease. In [START_REF] Sheikholeslami | A survey of chaos embedded meta-heuristic algorithms[END_REF] the authors present a comprehensive review of chaos embedded metaheuristic optimization algorithms and describes the evolution of these algorithms along with some improvements, their combination with various methods as well as their applications. A survey on multi-robot search inspired by swarm intelligence by further classifying and discussing the theoretical advantages and disadvantages of the existing studies, is presented in [START_REF] Couceiro | Benchmark of swarm robotics distributed techniques in a search task[END_REF]. Subsequently, the most attractive techniques are evaluated and compared by highlighting their most relevant features. Experiments conducted to benchmark five state-of-the-art algorithms (Robotic Darwinian PSO (RDPSO), Extended PSO -EPSO-, Physically-embedded PSO Etc...), for cooperative exploration tasks. The simulated experimental results show the superiority of the RDPSO. The authors in [START_REF] Mistry | A micro-ga embedded pso feature selection approach to intelligent facial emotion recognition[END_REF] proposes a PSO variant embedded with the concept of a micro genetic algorithm (mGA), called mGA embedded PSO, is proposed to perform feature selection to Intelligent facial emotion recognition. It incorporates a non-replaceable memory, a small-population secondary swarm and a cooperation of In [START_REF] Xu | Set-based particle swarm optimization for mapping and scheduling tasks on heterogeneous embedded systems[END_REF] authors use PSO variant to solve mapping and scheduling problems on a complex and heterogeneous MPSoC. All previous work are just used PSO for the resolution of problems on a complex and heterogeneous embedded systems.

So, we noted that modern heterogeneous embedded platforms is important for the high volume markets that have strict performance and metaheuristics are commonly used to solve different optimization problems on these environments. However, it presents many challenges that need to be addressed in order to be efficiently utilized for embedded systems. Since memory and CPU used problems are the main problem to these systems, common methods used to solve this kind of problem usually fail. In this paper, this problem was formally defined as follows: given a application that has to be executed by a circuit, the objective is to fit that application in memory in such a way that the computing time required to execute it is minimized. We propose a PSO approach (embedded two-level PSO) adaptable to the need of embedded environments to avoid memory and CPU used problems.

Discussion

After these short observations in the literature, we count a multitude of studies working on the PSO to solve embedded problems. In fact, we note that the related work has flaws.

• Most of them do not deal with the use of its algorithms in embedded systems.

• Even compared to the works which envisage the adaptive PSO, they spoke about the adaptability to a dynamic problem and not to a dynamic environment.

• The related work which uses the PSO to solve an optimization problem in an embedded environment does not give importance to the behaviours of this algorithm but they used it as a tool only and do not take into account the losses of CPU and memory time that we can have. In fact, they do not provide a version of PSO adaptable to the change of on-board system in real time.

• Despite the importance of their contributions, none of this work addresses the general framework with the five types of constraints which are considered here: 1) the task execution time constraint (MS); 2) the machine load constraint (workload);

3) CPU time; 4) memory constraint; 5) and feasibility in real time; the search space is not decomposed into regions, while in Fig. 5.2(b) and Fig. 5.2(c), the search space is decomposed into four and three regions, respectively.

For a given optimization problem there may exist multiple clustering criteria.

One clustering criterion for the FJSP is the scheduling policy: solutions generated according to the same predefined scheduling policy compose a region. Another clustering criterion is the machines-operations mapping: solutions having the same machinesoperations mapping compose a region. The one-level PSO-FJSP refers to the standard It is important to note that regions may overlap and that the time spent to explore each region, i.e., the number of movements in that region, may be set the same for all regions or adaptable.

The flowchart of the improved one-level PSO-FJSP is given in Fig. 5.4. In addition to the region-based exploration, a search space reduction is performed as follows. For each potential solution and before computing the final schedule, lower bounds on makespan (LB MS ) and lower bounds on the total workload (LB W L ) are analytically computed. If one lower bound turns out to be larger than the best found value, then the schedule corresponding to the current position will not be computed. LB MS and LB W L are computed as:

LB MS (t) = max{max j E j , max M l W M l } (5.3) LB W L (t) = k l=1 d(O ji , M l ) /O ji is affected to M l at t (5.4)
where E j and W M l are, respectively, the minimal duration of job j and the charge of machine M l , according to the mapping given by X p,m (t).

Proposed technique: two-level-PSO

The two-level PSO-FJSP aims to further reduce the search space and to improve its exploration ability. The two-level PSO-FJSP runs a PSO twice in a nested manner: modeling for each machine the order of operations mapped to it. There is a one-to-one prefixed correspondence between the indices of X p,s and machines. Fig. 5.5 illustrates this coding. X p,m (t) states that operations 1-2-3 of J 1 are mapped to machines M 1 -M 1 -M 4 , operations 1-2-3 of J 2 are mapped to M 3 -M 2 -M 2 , etc. X p,s (t) states that M 1 sequentially performs operation 1 of J 1 , operation 2 of J 1 , and then operation 2 of J 3 .

Let S 1 and I 1 (S 2 and I 2 ) denote the number of particles and the number of iterations used in level one (level two).

The flexibility degree of an FJSP instance drives the values assigned to S 1 and I 1 : The lower the flexibility degree is, the smaller the values of S 1 and I 1 will be. The values assigned to S 2 and I 2 may be set constant or adaptable to the found lower bound value: if the difference between the current best objective value and the lower bound is high (low), then S 2 and I 2 will be set high (low).

The two-level PSO-FJSP updates the elements of the position vectors (i.e., X p,m and 

n = I 1 * S 1 (|O| + q), with q ≤ I 2 * S 2 * |O|
whereas the one-level PSO-FJSP updates the elements of its position vectors (i.e., X p,o and X p,m ) m times, where

m = 2 * I * S * |O| (5.6) 
Thus, even for the same number of movements (i.e., I * S = I 1 * S 1 * I 2 * S 2 ), the two-level PSO is computationally more efficient than the one-level PSO-FJSP.

The flowchart of the two-level PSO-FJSP is given in Fig. 5.6. The reduction of the search space is achieved throughout the computation of lower bounds at the end of the mapping phase and prior to the scheduling phase. If the lower bound is greater than the best found objective value , then the scheduling phase will be skipped.

Two-level PSO -Experimental results

In this section, the standard PSO and the one-level PSO-FJSP are compared to the two-level PSO-FJSP. Then, the two-level PSO-FJSP is compared to previous work.

Experiment design

Six PSO-FJSP variants are developed: a standard PSO (with and without lower bound control), the one-level PSO-FJSP (with and without lower bound control) and the twolevel PSO-FJSP (with and without lower bound control). The standard PSO is developed only for comparison purposes. The control parameters are summarized in Table 5.1.

Noting that in the two-level PSO, the first level uses a time-varying inertia weight (Eq.2.12), while the second level uses a different adaptive inertia weight (Eq. 2.14).

c 1 (t) = 0.5 (w p (t) + 1) 2 (5.7) c 2 (t) = min(4, 2(w min + 1)) -0.5 (w p (t) + 1) 2 -0.000001 (5.8) where avgBest(t) (resp. minBest(t)) is the average objective value (minimum objective value ) at the current iteration, w max = 0.9 and w min = 0.4. The initialization of particles' positions is performed as follows: 50% of the population is initialized to feasible solutions (i.e., feasible schedules) using the localization approach [START_REF] Kacem | Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[END_REF], and 50%, using random values. Thirteen benchmarks [START_REF] Brandimarte | Routing and scheduling in a flexible job shop by tabu search[END_REF][START_REF] Kacem | Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[END_REF] are used to evaluate the performance of the algorithms. and S 2 constant or variable).

• Experiment #4 compares the performance of our best variant (i.e., the two-level PSO-FJSP) against published results of eleven metaheuristics. Five of these metaheuristics are PSO-based [START_REF] Gao | Solving flexible job shop scheduling problem using general particle swarm optimization[END_REF][START_REF] Girish | A particle swarm optimization algorithm for flexible job shop scheduling problem[END_REF][START_REF] Kamble | Hybrid multi-objective particle swarm optimization for flexible job shop scheduling problem[END_REF][START_REF] Song | Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization[END_REF][START_REF] Tang | A hybrid algorithm for flexible job-shop scheduling problem[END_REF], and six are from various categories:

TS [START_REF] Li | An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems[END_REF], GA [START_REF] Wang | A novel genetic algorithm for flexible job shop scheduling problems with machine disruptions[END_REF]130], TS+GA [START_REF] Li | An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[END_REF], Bat [START_REF] Zhua | Modified bat algorithm for the multi-objective flexible job shop scheduling problem[END_REF] and ACO [START_REF] Wang | Flexible job shop scheduling problem using an improved ant colony optimization[END_REF].

Each simulation run is repeated 30 times.

Simulation results

Experiment #1 (standard PSO vs. one-level PSO-FJSP vs. two-level

PSO-FJSP)

The same swarm size of 55 particles is used for all the comparisons. The swarm size was determined as follows. Starting with 200 particles, we gradually reduced the population size by twenty each time while observing the performance of the two-level PSO-FJSP variant. At 40 particles, the performance dropped, so we gradually increased the population in steps of five particles until it reached 55 (i.e. S 1 + S 2 = 55). For standard-PSO and one-level PSO-FJSP, the swarm size is also set to 55 (i.e., S = 55). The number of iterations (I, I 1 , I 2 ) are set so that the number of visited solutions in each variant is approximately equal to 80000 (i.e., I * S = I 1 * S 1 * I 2 * S 2 = 80000). Table 5.3 presents the simulation results for the algorithms not using a lower bound filter. Compared to the standard PSO, the one-level PSO-FJSP yields better results for MS and W L but not for the percentage of particles reaching the final best position (%Conv < 1%). On the other hand, the two-level PSO-FJSP provides better results on all criteria for all benchmarks.

For convergence and CPU time, the improvement is impressive: the percentage of particles converging to the best position is at least 10 times greater than for other variants, and the CPU time decreases by 2 to 5 times, due to the size reduction of the position vectors.

Table 5.4 presents a comparison between the three makespan values (mean, best and worst) of the three PSO-variants. In all cases, the two-level PSO-FJSP presents the best results.

We rerun the same simulations with the codes using lower bound filter. The results are given in Table 5.5. We obtain a reduction in the CPU time from 10% to 20% without any degradation of the solution quality (i.e., MS and W L), and an improvement of up to 40% of converging particles.

Experiment #2 (Stability analysis of the two-level PSO-FJSP)

Table 5.6 shows the results of the two-tailed Mann-Whitney tests comparing the three PSO-FJSP variants. The first two columns show that there are significant differences between the one-level PSO-FJSP and the standard PSO-FJSP (U = 0 and p < 0.05) on seven benchmarks. The third and the fourth columns show that the difference between the two-level PSO-FJSP and the standard PSO-FJSP is very significant on all benchmarks except two (MK03 and MK08). The last two columns state that the two-level PSO-FJSP is still different from the one-level PSO-FJSP on all benchmarks.

The standard deviations (σ 1 , σ 2 and σ 3 ) of the three PSO-FJSP variants are given in Table 5.7. We observe that the two-level PSO-FJSP yields minimal values on the three standard deviations, and its standard deviation regarding the best value (σ 1 ) is the smallest. This testifies to the stability of the two-level PSO-FJSP. To confirm this stability, two other simulations are run. In the first simulation, the population size is varied from 15 to 205, whereas the iteration number is set constant at 500. However, in the second simulation, the iteration number is varied from 100 to 2000, whereas the population size is set constant at 55. The obtained curves of σ 1 , σ 2 and σ 3 values are displayed in Fig. 5.7. We note that the three standard deviations decrease whenever the number of iterations or particles becomes high.

Experiment #3 (Sensitivity of the two-level PSO-FJSP to its control parameters)

These simulations measure the sensitivity of the two-level PSO-FJSP with respect to the portion of time spent in each level. For the purpose of analysis, we added to the list of thirteen benchmarks one test case (MK11), having 4 jobs, 10 machines, 46 operations and with no flexibility (i.e., each operation is supported by a unique machine). Simulations are performed with various values of I 1 , S 1 , I 2 , S 2 , whereas the maximal number of visited solutions is constant (i.e., I 1 * S 1 * I 2 * S 2 is constant). Table 5.9 presents the simulation results. We observe that better results are generally obtained when the number of explored mappings of operations-to-machines (i.e., I 1 * S 1 ) is high. However, when the flexibility degree is low (as in MK08 and MK11), there is no added value in exploring many mappings. To identify whether the time spent in level 2 should be static or dynamic, two simulation runs are used. In the first run, all parameters are set constant (I 1 = 64, S 1 = 50, I 2 = S 2 = 5). In the second run (I 1 = 64, S 1 = 50), while I 2 and S 2 are set according to the gap between the computed lower bound and current global-best: if the lower bound value is much smaller than the global-best, then high values are assigned to I 2 and S 2 to explore more positions; otherwise, low values will be assigned. In both runs, the overall number of visited positions is kept constant at 80000. Table 5.8 presents the simulation results and confirms that the use of dynamic values for I 2 and S 2 , combined with the use of a lower bound, produce better results in terms of MS in all cases.

Experiment #4 (Comparison with previous metaheuristics)

These simulations compare the performance of the two-level PSO-FJSP (in its lower bound version) against eleven previous metaheuristics: five are PSO-based, and six are from other categories (GA, TS, etc.). All comparisons are evaluated using the same global settings (iteration number times swarm size) as in the previous work. Table 5.10 presents the comparison against the PSO-based metaheuristics (n.a states the nonavailability of data). A bold value states that the result of the two-level PSO-FJSP is either optimal or the best. We observe that for all the benchmarks, the two-level PSO-FJSP returns the best makespan except in two cases (MK06 and MK10 [START_REF] Gao | Solving flexible job shop scheduling problem using general particle swarm optimization[END_REF]).

Table 5.11 details the comparison against [START_REF] Gao | Solving flexible job shop scheduling problem using general particle swarm optimization[END_REF] by adding two criteria: the CPU time and the number of visited solutions. It can be observed that for the same setting of the number of movements (I * S = I 1 * S 1 * I 2 * S 2 = 5000), the two-level PSO-FJSP uses much less CPU time and less visited solutions (due to the lower bound filter). For a much larger setting (I 1 * S 1 * I 2 * S 2 = 125000), the CPU time of the two-level PSO-FJSP remains smaller, and its makespan becomes much better on all benchmarks except one, i.e., MK06.

Table 5.12 presents a comparison with [START_REF] Song | Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization[END_REF] on three criteria: makespan, workload and CPU time. The first observation is that for the same number of 30000 potential movements, the two-level PSO-FJSP yields comparative results in terms of makespan and workload but with much less CPU time due to the use of the lower-bound criteria. Second, when we increase the potential number of movements such that I 1 * S 1 * I 2 * S 2 = 750000 (then, 3000000), the finesses improve for 40% (50%) of the benchmarks, while the CPU time is still much smaller. This is due to the use of the lower-bound criteria that allows visited to obtain it. For example, for benchmark MK06, the best makespan found by the two-level PSO-FJSP is 60.4 after visiting 3130 points, and a makespan of 62.3 is achievable after visiting 1057 points. The values of makespan are decimal because they are an average over 30 runs. Bench.
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First Performance

Second Performance particle. In the stopping process, if the number of active particle (p active ), is more than the number of particle to be stopped (p inactive ), and if the size of "worsts sub-swarm" is more than p inactive , then we should put p inactive particles in the "worsts sub-swarm" randomly in inactive mode. Else, we should put ("worsts sub-swarm" size -1) particles in inactive mode and a randomly put (p inactive -size "worstssub-swarm" ) particles from the "followers sub-swarm" in inactive mode. This process is represented in Algorithm_2. In the wake up process, if the number of particle in inactive mode is more than zero, so we should put 50% of T otal inactive particles in an active mode by initializing according to the global best (X nbest) coordinates and put 50% in an active mode by randomly initializing. We should adding it to the "followers sub-swarm". This process is presented in Algorithm_3.
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E2L-PSO -Experimental results

Experiments were performed on micro-controller (STM32F407VGT6) and a ARM-based mono-processor nano-computer (Raspberry Pi B+):

• STM32F407VGT6 has 32-bit ARM Cortex-M4F core, 1 MB Flash, 192 KB RAM.

• Raspberry Pi B+ has a Broadcom BCM2837 SoC with a 1.2 GHz 64-bit quad-core ARM Cortex-A53 processor and 1 GB of RAM.

Experiment design

The PSO variants developed and tested in this work are:

• Standard PSO (is developed only for comparison purposes).

• The one-level PSO (is utilized only for comparison purposes).

• The two-level PSO without use of lower bound (is utilized only for comparison purposes).

• Embedded two-level PSO (E2L-PSO).

Three sets of experiments are defined: tween E2L-PSO without CPU reduction needed and adaptive E2L-PSO with medium reduction needed.

Each simulation run is repeated 30 times.

The control parameters of E2L-PSO are summarized in Table 5.16.

The initialization of particles' positions is performed as follows: 50% of the population is initialized to feasible solutions (i.e., feasible schedules) using the localization approach [START_REF] Zarrouk | A two-level particle swarm optimization algorithm for the flexible job shop scheduling problem[END_REF], and 50%, using random values. Ten benchmarks [START_REF] Brandimarte | Routing and scheduling in a flexible job shop by tabu search[END_REF] are used to evaluate the performance of the algorithms. Table 5.17 specifies for each benchmark the number of jobs, number of machines, number of operations, the flexibility degree (Eq. 2.20) and the lower bound on makespan [START_REF] Geiger | Test instances for the flexible job shop scheduling problem with work centers[END_REF].

Simulation results

Experiment #1 (Standard PSO vs. one-level PSO-FJSP vs. two-level

PSO-FJSP on STM32 F407VGT6 and Raspberry Pi B+

To better compare the different PSO variants, first, we start working with the same parameters like in [START_REF] Zarrouk | A two-level particle swarm optimization algorithm for the flexible job shop scheduling problem[END_REF] (I1=64; I2=5; S1=50; S2=5) (i.e. The number of iterations (I, I 1 , I 2 ) are set so that the number of visited solutions in each variant is approximately equal to 80000). Results are presents in Table 5.18 for simulations in the STM32F407VGT6 and in Table 5.19 for simulations in Raspberry Pi B+.

From Table 5.18 and Table 5.19 , we note that compared to the standard PSO, the one-level PSO-FJSP yields better results for MS but not for the CPU time. On the other hand, the two-level PSO-FJSP provides better results on the two criteria for all benchmarks. The CPU time decreases by 2 to 8 times, due to the size reduction of the position vectors.

In Table 5.20 and Table 5.21, we decrease the number of visited solutions at 5000 points. We find that two-level PSO remains the best. We note that the two-level PSO-FJSP provides better results on the two criteria for all benchmarks. The CPU time decreases by 2 to 7 times.

Experiment #2 (Adaptive E2L-PSO on Raspberry Pi B+)

To better visualize the results we increased the number of visited points in 3000000

(I 1 =100 S 2 =200 I 2 =10 S 2 =10).

Table 5.22 presents the simulation results of the E2L-PSO without particle reduction on Raspberry Pi B+ card. This table is used only for comparison reasons.

Results in Table 5.23, Table 5.24 and Table 5.25 are done under this assumption: reduction needed request is 90%, 40% and 20% respectively, occur every 20 seconds after the first request_Period. These Tables present the simulation results of the E2L-PSO with hard, medium and soft particle reduction on Raspberry Pi B+ card.

From Table 5.23, we noted that compared to the results in Table 5.22:

• Case 1: E2L-PSO give acceptable results for MS with 26% to 70% of CPU time gain.

• Case 2: E2L-PSO give acceptable results for MS and best MS for 50% of benchmarks. E2L-PSO give 15% to 44% of CPU time gain.

• Case 3: E2L-PSO give best results for MS in all benchmarks, with 10% of CPU time gain.

From Table 5.24, we noted that compared to the results in Table 5.22:

• Case 1: E2L-PSO give acceptable results for MS and best MS for 60% of benchmarks. A 21% to 66% of CPU time gain are obtained.

• Case 2: E2L-PSO give acceptable results for MS and best MS for 80% of benchmarks. A 11% to 30% of CPU time gain are obtained.

• Case 3: E2L-PSO give best results for MS in all benchmarks, with 4% to 5% of CPU time gain.

From Table 5.25, we noted that compared to the results in Table 5.22:

• Case 1: E2L-PSO give best MS for 100% of benchmarks. A 10% to 49% of CPU time gain are obtained.

• Case 2: E2L-PSO give best MS for 100% of benchmarks with 6% to 9% of CPU time gain.

• Case 3: E2L-PSO give best results for MS in all benchmarks, with a poor CPU time gain (1%).

To conclude, we can say that the E2L-PSO give best MS results with reduction of CPU time according to the flexibility of the problems, CPU reduction needed and the request Period.

Experiment #3 (Stability analysis of adaptive E2L-PSO)

Table 5.26 shows the results of the two-tailed Mann-Whitney tests comparing the results of the second case (Table 5.24: adaptive E2L-PSO with medium reduction and E2L-PSO without CPU reduction needed.

The symbols U and p are the calculation of a statistics where: U is the minimum value between the decisions variables of two groups and p is a non-parametric measure of the overlap between two distributions; it can take values between 0 and 1. We chose to work with a significance level = 0.05 and a number of samples (run) = 10 then the critical value of U at p < 0.05 is 23. To understand the results obtained it must be said that when the U-value increases (p increases) the difference between the two variants increases (i.e. high U-value = high similarity): U = 0 implies no similarity and U = 50 implies total similarity.

In the first case (Request_Period = 20%): the results show that there are total differences between the two variants on five benchmarks (U = 0 and p < 0.05), significant differences on MK04 (U = 10 < 23 and p = 0.0027 < 0.05), significant similarity on MK01 (U = 30 > 23 and p = 0.1415 > 0.05) and a total similarity on four benchmarks.

In the second case (Request_Period = 50%): the results show that there are total differences between the two variants on three benchmarks (U = 0 and p < 0.0001), significant similarity on FOUR benchmarks (U > 23 and p > 0.05) and a total similarity on three benchmarks. 

CONCLUSION

Optimizing problems in the industrial sector is a key issue for increasing productivity and efficiency. However, in the face of a dynamic and increasingly uncertain environment, approaches to solving this problem need to be more flexible and adaptive to meet the pressing demands of the applications environments. It is in this context that our thesis is written.

The industrial sector is the most dynamic environment. So the optimization of the scheduling problem in this sector is NP-hard. Solving the scheduling problem of the flexible job shop workshops without and with a fuzzy processing time is the main application area of the work recorded in this thesis.

The first task undertaken was the familiarization with the different metaheuristics algorithms. Flexible job-shop problem and Particle Swarm Optimization are the focus of this thesis. Also the notion of scheduling, modeling and analysis of the FJS production are done. State of the art is then carried out on metaheuristic optimization methods.

Specifically, a description and analyses (process, modification and application) of the PSO is done. Then, a detailed presented of the flexible job shop with and without fuzzy processing time (FJSP and fFJSP) as an application domain is realized.

After that an overview is then carried out on the metaheuristics that were applicable to solve FJSP and fFJSP. A brief history of different PSO variants for solving FJSP is done.

To improve that PSO is the best metaheuristic, that gives the best makespan and total workload in a minimum run time with an assurance of particles convergence, basic PSO (BPSO), modified version of BPSO (MPSO), Bat, Firefly and Cuckoo search are utilized to solve both FJSP and fFJSP and attempt to prove their effectiveness. From the results we understand that MPSO is the ideal approach to tackle these of problems. Thereafter, analyses of particle coding in the MPSO algorithm is carried out Firstly, MPSO with job-machine schema (PSO-JMS) for FJSP is analyzed and improved. Then, MPSO with just machine composition (PSO-OMS) for solving FJSP is characterized and improved.

At this stage, we find that MPSO is appropriate to solve FJSP then the MPSO with a change of particle coding (PSO-OMS) is the most dominant with powerful and stable solutions.

Another overview is additionally done on one of the most challenging problems in the industrial field: tackling FJSP subject to machines breakdowns. In this stage, a few variations of the PSO-OMS (A1-A5) that intend to lessen the CPU time are created to show that these variations can arrive at the objective without a major misfortune on execution with least CPU time. At that point, three rescheduling variations (RPSO, PSO-HRC and MSS) to deal with FJSP under a single machine breakdown in a predictive manner, in a curative manner, in a non-resumable mode and in a resumable mode. All proposed methodologies and its examines are so as to locate a substantial way to deal with the issues of embedded environment.

Mainly due to the development of technology, embedded systems have become a basic part of our life. It has been demonstrated that an efficient use of the CPU of the embedded device also improves its energy performance. For sure, according to all previous work that we have done, there is no technique based on the PSO algorithm able to solve the problems of embedded environments without a huge use of memories and without loss of time. In other words to say that there is not an optimization algorithm straightforwardly related to the characteristics of the embedded environment (need of CPU, memory, etc).

For this reasons, another contribution in this work is devoted to present a PSO variant adaptive (versatile ) to dynamic environment. At the first step, a two-level PSO algorithm for solving FJSP is presented. The algorithm is based on the subdivision of the search space into regions sharing common properties, on the fact that going back-and-forth to the same region is avoided, and on skipping regions that do not contain good values by the use of a lower bound filter. Experiments run using our two-level PSO algorithm on benchmark problems returned better results than those previously obtained by other metaheuristics in a much smaller amount of CPU time. All solutions found by the twolevel PSO are robust and stable solutions. At the next step, and as a last contribution, the embedded two-level PSO (E2L-PSO) approach is developed to be the standard variant dedicated to the dynamic environment. The results obtained, showed the efficiency of our metaheuristic, to be adaptable to the changes of the environment as well as to the memory and CPU needs of the execution equipment.

Finally, the work carried out within the framework of this thesis, opens the way to new perspectives for the exploitation of our contributions in the future studies, theoretical (research), methodological or practical (applications):

• Consider other constraints during the resolution: such as the transport time considered negligible in this work.

• Optimize another important criterion namely energy consumption in a remote distributed system composed of embedded systems.

• Consider other types of uncertainties other than machine breakdown.

• Integrate the rescheduling method developed with E2L-PSO on an embedded system.

• Apply the E2L-PSO in the fields of sensor networks and IoT.
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 2 1 presents a diagram of the different classifications of metaheuristics that exists in the literature. In this chapter, we will study in-depth population-based metaheuristics.
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 21 Figure 2.1: Diagram of the different classifications of metaheuristics.
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 2 Figure 2.3 presents the different PSO components that must be studied to have a suitable version for use in an embedded environment (less CPU time and memory used). Table
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 24 Figure 2.4: Industry 4.0

C H A P T E R 3 METAHEURISTICS

 3 FOR SOLVING FLEXIBLE JOB SHOP PROBLEM Abstract This chapter presents, as a first section a brief history of different metaheuristics for solving the Flexible Job Shop Problem (FJSP). As a second section, a simulation-Based comparison of P-Metaheuristics for FJSP with and without Fuzzy Processing Time is done, as follows : study the particle representation in FJSP, present a modified variant of the basic PSO, compare five P-metaheuristics (Bat, Firefly, Cuckoo search, basic Particle Swarm Optimization (BPSO) and a modified PSO (MPSO)) for solving FJSP without and with fuzzy processing time (fFJSP). Thirteen benchmarks for FJSP and four benchmarks for fFJSP are used. The results demonstrate the superiority of the MPSO algorithm over the other techniques to solve both FJSP and fFJSP. After that, we noted that a suitable particle representation should importantly impact the optimization results and performance of this algorithm and the chosen representation has a direct impact on the dimension and content of the solution space. So, in the third section, a performance evaluation of Particles Coding in PSO with self-adaptive parameters for FJSP is done as follows: intend to evaluate and compare the performance of two different variants of PSO with different particle representations (PSO with Job-Machine coding Scheme (PSO-JMS) and PSO with Only-Machine coding Scheme (PSO-OMS)) for solving FJSP. These procedures have been tested on thirteen benchmark problems, where the objective function is to mini-CHAPTER 3. METAHEURISTICS FOR SOLVING FLEXIBLE JOB SHOP PROBLEM mize the makespan and total workload and to compare the run time of the different PSO variants. This chapter is organized as follows: Section 1 presents the related previous work. Section 2 presents Simulation-Based Comparison of P-Metaheuristics for FJSP with and without Fuzzy Processing Time. Section 3 presents the performance evaluation of particles Coding in PSO with self-adaptive parameters. The conclusion is drawn in Section 4. Based on the experimental results, it is clear that PSO-OMS gives the best performance in solving all benchmark problems.

Figure 3 . 1 : BPSO flowchart 3 . 2 . 1 . 2 MPSO

 313212 Figure 3.1: BPSO flowchart

  -form coding: Each particle p has a position vector of 2|O| integer elements (O is the set of operations). The first |O| elements, noted X p,o , define one scheduling order of operations. The operation referred to by X p,o [i] is scheduled before the one referred to by X p,o [i + 1]. The second |O| elements, noted X p,m , define an operationsto-machines mapping. Fig.3.2(a) shows an example of X p,o and X p,m . X p,o states that the first operation of J 3 is the first to be scheduled, followed by the first and the second operations of J 2 and then the second operation of J 3 , etc. X p,m states that the three operations of job J 1 are assigned to machines M 2 -M 3 -M 3 , the three operations of J 2 are 3.2. SIMULATION-BASED COMPARISON OF P-METAHEURISTICS FOR FJSP WITH AND WITHOUT FUZZY PROCESSING TIME assigned to M 4 -M 1 -M 4 , and the four operations of J 3 are assigned to M 1 -M 2 -M 2 -M 2 . Fig. 3.2(b) depicts the final schedule.
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 32 Figure 3.2: Vector form representation and the implicit schedule
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 33 Figure 3.3: Two successive position vectors
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 1232 c 1 (t) = 0.5 * (w + 1) c 2 (t) = min(4.2 * (w min + 1)) + c 1 (t) + 0.000001
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 334 Figure 3.4: JMS -Example of a schedule for three jobs, nine operations on four machines
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 3 [START_REF] Arumugam | A novel and effective particle swarm optimization like algorithm with extrapolation technique[END_REF] shows an example of a result
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 3536 Figure 3.5: OMS-Example of a schedule for 4 jobs, 11 operations on 4 machines
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 3 PERFORMANCE EVALUATION OF PARTICLES CODING IN PSO WITH SELF-ADAPTIVE PARAMETERS FOR FJSP

Experiment 3 :

 3 Figure 3.7 shows the curves of the three standard derivations (σ1, σ2, σ3)

3. 3 .Figure 3 . 7 :

 337 Figure 3.7: The standard deviations values for 30 runs with 500 particles

Experiment 4 :

 4 Figure 3.8 shows the curves of the three standard derivations (σ1, σ2, σ3)

Figure 4 .

 4 Figure 4.1 shows the three prescheduling solutions (i.e. before breakdown) founded by

O

  

5. 1 .

 1 PSO FOR EMBEDDED APPLICATIONS local exploitation and global exploration search mechanism to mitigate the premature convergence problem of conventional PSO.
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 52 Figure 5.2: Search space subdivisions: (a) a single region (b) multiregion (c) hierarchical multiregion
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 54 Figure 5.4: Flowchart of the one-level PSO-FJSP
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 55 Figure 5.5: Illustration of particle representation in the two-level PSO-FJSP
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 56 Figure 5.6: Flowchart of the two-level PSO-FJSP
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 5 Comparison_2 between the three developed PSO-FJSP variants with use of a lower bound filter.
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  Later, classifications, taxonomies and application domains of metaheuristics are presented. Particle Swarm Optimization is described in detail. FJSP is presented as an application domain.FJSP with machine breakdown is studied and embedded system is detailed with real system examples. In the third chapter, different metaheuristics to resolve the Flexible Job Shop Problem (FJSP) with and without a fuzzy processing time. Modified variants of the

basic PSO (MPSO and PSO-OMS) are presented in this context. Chapter four describes PSO-OMS for solving FJSP under the machine breakdown assumption algorithm. In chapter five, a modified PSO-OMS (two-level PSO) for FJSP is presented. The Two-level PSO was mainly proposed for the purpose of preparing a PSO variant for embedded applications. The last variant, is proposed to be adaptable to embedded applications (embedded two-level PSO). Finally, the last chapter concludes this thesis and presents future research directions.

Table 2 .

 2 

		1: P-metaheuristics/Search Memory
	P-metaheuristics Search Memory
	Particle Swarm	Generation of particles, both global and local solution
	Ant Colonies	Pheromone matrix
	BAT	Echolocation of the bats
	Cuckoo Search	Levy flights production
	Firefly	Rhythmic flashes produced by fireflies (flash intensity)

  1] is a random number. F b is the update frequency of Bat 'b and F min and F max represent the minimum and maximum values of the update frequency. x * is the current global optimal solution.

  Merging the algorithm with the rest of the algorithms denotes the hybridization of PSO with other techniques. Within the following section, we will give a review of the PSO alternatives that have enhanced the production of basic PSO by some certain techniques of its settings (Section 2.3.1), shifting of the velocity/position upgrade rules (Section 2.3.2), and hybridization of the algorithm (Section 2.3.3).

	the optimum local problem, to enhance the exploration and particle convergence. We can
	decompose this works into three categories based in basic PSO: Parameters setting modi-
	fication, Modifying components and hybridization. Three of the various major types of
	methods were deemed to improve basic PSO: putting the settings, shifting the algorithm
	components, and integrating the algorithm with the best ones. Fig.2.2 illustrates these
	different categories. Fixing parameters denotes fixing the topology, coefficients (accel-
	eration coefficients or inertia weight), and community size. Shifting elements denote
	shifts of the velocity or state update rule (including adding new components, shifting
	how they are computed). Figure 2.2: Three categories of PSO variants.
	PSO has always been captivating wide attention from research workers in the commu-
	nity. What remains open questions have been subjects of many types of research: how
	to deal with the weak exploration ability and premature convergence of PSO, in other
	words, how to make PSO adaptable to the problem? Many authors work in the goal to
	respond to these questions. So, many PSO variants are developed in goals to overcome
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 2 2: Statistics of articles speaking on hybrid PSO analyzed in[START_REF] Sengupta | Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives[END_REF] 

	Hybridization with. References numb. Time margin
	GA	13	2002-2008
	DE	15	2001-2017
	SA	18	2005-2017
	ACO	15	2007-2017
	CS	9	2012-2017
	ABC	9	2010-2017
	BAT	2	2015-2016
	Firefly	2	2015-2018

Table 2 .

 2 3 and Table2.4 present an analysis of the literature. The previous works required in our thesis are cited and discussed. None of the previous work has talked about the sensitivity of PSO to its population size and the number of generations to run. Also no

2.4. LITERATURE ANALYSIS
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 2 3: Literature analysis -previous work required in our thesis[START_REF] Khalgui | Analytical and empirical study of particle swarm optimization with a sigmoid decreasing inertia weight[END_REF] 

				Topology	Component
			ring, neighbourhood...	Global best,	Description
				[20, 47]	Reference
	topology that ensures fast convergence.	The global best topology is the best	worked well synchronously (asynchronously PSO).	Throughout reading we found that this topology	Notes
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 2 4: Literature analysis -previous work required in our thesis[START_REF] Elmekkawy | Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm[END_REF] 
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			6: fFJSP instance
	Job operation		Processing time
			M1	M2	M3
	1	1	(1, 4, 5) (2, 3, 4) (4, 5, 6)
	1	2	(3, 5, 6) (1, 2, 5) (4, 6, 7)
	2	1	(2, 4, 5) (2, 3, 6) (1, 2, 5)
	2	2	(1, 3, 5) (1, 2, 4) (1, 3, 5)
	3	1	(3, 4, 5) (5, 6, 7) (2, 4, 7)
	3	2	(2, 3, 5) (1, 3, 4) (1, 4, 5)
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 2 

		7: Breakdown Combinations		
	Scenario Disruption level and occurrence time β 1	β 2	α 1 α 2
	SN1	Low, early	0.1	0.15 0	0.5
	SN2	Low, late	0.1	0.15 0.5 1
	SN3	High, early	0.35 0.4	0	0.5
	SN4	High, late	0.35 0.4	0.5 1
	RT k is the machine breakdown duration (repair time), where β 1 and β 2 are disruption
	level coefficient between [0, 1].			
	(2.30)	TB k =	α 1 BT k α 2 BT k		
	TB				

K machine breakdown occurrence time, where α 1 and α 2 are coefficient between [0, 1]. Four scenarios of disruptions exist, according to values of β and α

[START_REF] Khalgui | Analytical and empirical study of particle swarm optimization with a sigmoid decreasing inertia weight[END_REF]

:
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		1: Population based metaheuristic parameters
	BAT		BPSO/MPSO	CS		FF
	F min 1	W max	0.9 α	1	α	1.0
	F min 0	W min	0.4 β max 3	γ	0.1
	α	0.9	K 1	1.2 β min 1.1 β	10
	γ	0.9	K 2	0.2		
	A	0.25				
	W max 0.96				
	W min 0.36				

Table 3 .
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				2: FJSP instances	
	Instance #Jobs #Machines #Operations FJSP categories
	MK01	10	6	55	F JSP P
	MK02	10	6	58	F JSP P
	MK03	15	8	150	F JSP P
	MK04	15	8	90	F JSP P
	MK05	15	4	106	F JSP P
	MK06	10	15	150	F JSP P
	MK07	20	5	100	F JSP P
	MK08	20	10	225	F JSP P
	MK09	20	10	240	F JSP P
	MK10	20	15	240	F JSP P
	4*5	4	5	12	F JSP T
	8*8	8	8	27	F JSP P
	10*10	10	10	30	F JSP T
	10*6	10	6	55	F JSP P
	15*10	15	10	56	F JSP T

Table 3 .

 3 

				3: fFJSP instances	
	Instance #Jobs #Machines #Operations fFJSP categories
	I1	10	10	40	F JSP T
	I2	10	10	40	F JSP T
	I3	10	10	50	F JSP T
	I4	10	10	50	F JSP T

Table 3 .

 3 4: Different population-based metaheuristic algorithms for FJSP instances[START_REF] Khalgui | Analytical and empirical study of particle swarm optimization with a sigmoid decreasing inertia weight[END_REF] 

				Bat				CS					FF
		MS W L R p	Ct	MS W L R p	Ct	MS W L R p	Ct
	4*5	11	32	21	6.01	11	32	18	2.33	11	32	30	3.6
	8*8	16	77	11 12.51	16	75	12	6.01	14	77	21	6.75
	10*10	8	49	10	14.2	10	46	12	7.41	7		42	15	9.2
	MK01 40	148 12	24.6	40	146	7	18.09	57	148	6	20
	MK02 27	154 19 21.08	29	151	10	17	45	154 17 18.36
	MK03 204 852	1	101.9 204 852	1	90.98 268 852	6	91.03
	MK04 66	364	5	41.77	66	345	1	38.31	89	403 10 39.23
	MK05 173 686	5	70.40 173 683	1	57.18 206 687 10	61.8
	MK06 63	403	7 150.65 63	424	6	112.7 142 424	8 100.65
	MK07 139 693	1	98.71 139 693 < 1 43.64 223 693	5	40.9
	MK08 523 2524 1 279.54 523 2524 < 1 213.02 589 2524 2 205.36
	MK09 307 2294 1 359.13 307 2275 < 1 311.37 485 2514 1 298.68
	MK10 205 2053 1 341.25 205 1989 < 1 299.6 406 1989 1	265.7
	Table 3.5: Different population-based metaheuristic algorithms for FJSP instances (2)
					BPSO			MPSO			
				MS W L R p	Ct	MS W L R p		Ct	
		4*5		11	32	10	2.33	11	32	20		1.65	
		8*8		16	75	9	10.25	14	73	16		5.33	
		10*10 10	49	8	13.01	7	46	11		6.69	
		MK01 40	146	5	30.24	39	146	9	15.09	
		MK02 27	154	1	32.98	26	151 10 16.77	
		MK03 204 852	1 169.65 204 852	1	85.98	
		MK04 62	345	1	84.21	60	345	3	36.02	
		MK05 173 686	1 111.03 170 683	3	52.21	
		MK06 63	424	1 190.58 60	398	9	92.05	
		MK07 139 693	1	95.66 139 693	1	42.73	
		MK08 523 2524 1	190.2 523 2524 1 190.27	
		MK09 307 2275 1 221.14 307 2275 1 221.14	
		MK10 205 1989 1 203.29 201 1957 2 203.29	

Table 3 .

 3 

	9: Comparisons between different coding presentations
	MK10 252 2053 < 1 219.63 205 1989 < 1 203.29 205 1957 7 117.60	MK09 341 2514 < 1 245.16 307 2290 1 221.14 307 2275 10 125.80	MK08 523 2524 < 1 198.96 523 2524 < 1 190.279 523 2524 11 101.36	MK07 150 717 < 1 47.12 139 693 < 1 42.73 139 693 14 22.22	MK06 78 424 < 1 96.18 63 403 1 92.05 63 398 19 50.17	MK05 177 702 < 1 58.54 173 687 1 52.21 173 683 14 27.61	MK04 67 466 < 1 39.55 62 352 1 36.02 62 345 34 19.30	MK03 204 855 < 1 84.03 204 852 1 85.98 204 852 7 42.30	MK02 29 155 < 1 19.56 27 154 2 16.77 26 151 19 9.36	MK01 42 171 < 1 15.87 40 148 2 15.09 39 146 23 7.91	10*10 12 56 2 7.86 10 56 5 6.69 8 46 27 2.61	8*8 19 81 5 6.21 16 76 16 5.33 15 75 18 2.01	4*5 11 32 10 1.79 11 37 20 1.65 11 32 39 0.93	MS WL %conv CPU time MS WL %conv CPU time MS WL %conv CPU time	Basic PSO PSO-JMS PSO-OMS

Table 4 .
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	1: Comparison between our PSO variants (using 500 particles, 500 iterations)
			A0	A1	A2	A3	A4	A5
	4*5	MS	11	11	11	11	11	11
		Ct	1.56	1.00	1.27	1.36 1.09 1.13
		#it	07	06	05	04	05	05
	8*8	MS	16	16	15	16	16	16
		Ct	4.6	3.75	4.07	4.15 3.06 3.22
		#it	30	28	26	24	16	18
	10*10 MS	08	08	08	08	08	08
		Ct	6.31	4.9	4.9	5.1	3.10 3.97
		#it	06	17	47	82	31	56
	15*10 MS	39	39	40	40	39	40
		Ct 13.93 10.02 11.82 11.90 9.24 9.93
		#it	39	38	47	45	43	98
	10*6 MS	41	40	41	41	40	40
		Ct	9.91	7.21	9.09	9.17 6.28 6.64
		#it	10	06	16	21	18	19
	4.3 present the number of particles, among 500, those reach an acceptable fitness (for
	benchmarks 8*8 and 4*5						

Table 4 .

 4 2: Number of particles that have reached the minimum fitness, (Benchmark 8*8)

	Variants	Min	NearMin
	A0	1%	23.65%
	A1	28%	23.45%
	A2	6.86%	57.89%
	A3	35.17% 27.49%
	A4	31.67% 58.91%
	A5	51.4%	31.32%
	Table 4.3: Number of particles that have reached the minimum fitness, (Benchmark 4*5)
	Variants	Min	NearMin
	A0	1%	3.91%
	A1	21.7%	22.8%
	A2	7.98%	73.37%
	A3	33.47% 29.37%
	A4	20.09% 64.41%
	A5	23.29% 54.35%

4.3.1.2 Comparison to previous results

Tables 4.4 to 4.8 compare the best fitness obtained by the A5 variant (grey columns) to the ones obtained by some previous PSO implementations

[START_REF] Moslehi | A pareto approach to multi-objective flexible jobshop scheduling problem using particle swarm optimization and local search[END_REF][START_REF] Song | Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization[END_REF][START_REF] Tang | A hybrid algorithm for flexible job-shop scheduling problem[END_REF][START_REF] Wang | A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem[END_REF][START_REF] Xia | An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems[END_REF][START_REF] Zhang | An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[END_REF]

,

Table 4 .

 4 

	4: Makespan comparison between A5 and PSO-based solutions (1)
			[101]		[98]
		Swarm Size: 500	Swarm Size: 100
		# of iterations: 1000 # of iterations: 300
	4*5	-	11	11	11
	8*8	14	16	16	16
	10*10 7	8	8	8
	10*6	40	39	40	39
	15*10	-	11	11	11

Table 4 .

 4 

		8: Makespan comparison between A5 and TS -based solutions
		[44]		[74]
		Swarm Size: 100 4*5:200/100; 8*8:100/500; 10*10:500/500;
		#of iterations 500	10*6:600/500; 15*10:600/500;
	4*5	-	11	12	11
	8*8	14	16	14	16
	10*10 7	8	7	8
	10*6	40	40	40	39
	15*10 11	11	11	11
	Table 4.9: CPU time (s) Comparison between A5 , [117] and [129] (1)
			[129]			[117]
	Language		C++			Matlab
	PC characteristic PC Pentium IV 1.8 G CPU PC Pentium IV 2.4 G CPU and 1G RAM
	Swarm size		100			100
	Iteration		50			100
	4*5	0.34	0.012	1.50	0.021
	8*8	1.67	0.051	6.47	0.098
	10*10	2.05	0.080	11.07	0.123
	10*6	-	0.117	7.82	0.201
	15*10	10.88	0.160	15.84	0.296
	Table 4.10: CPU time (s) Comparison between A5 , [109] and [57] (1)
			[109]		[57]
	Language		C++		C++
	PC characteristic 2.83-GHz PC, 3.21-GB of RAM 2.0 GHz PC, 8.0 GB of RAM
	Swarm size		100		400
	Iteration		1000		200
	4*5	9.87	0.150	-	0.029
	8*8	10.88	0.913	0.01	0.506
	10*10	13.85	0.987	0.10	0.532
	10*6	-		1.680	0.06	0.9
	15*10	-		1.917	0.33	1.08

Table 4 .

 4 11: The Breakdown Scenarios

Table 4 .

 4 12: Fitness, Robustness and Workload (Problem 4*5)

	ITI 16 32 45.4 7.06 19 32 72.7 7.06 30 32 172.7 7.06 10 32 0 7.06	MSS 13 32 18.1 7.06 16 32 45.4 7.06 18 32 63.6 7.06 14 32 36.36 7.06	RRCA 19 32 72.7 12.5 16 32 45.4 8.43 18 32 63.6 8.43 17 32 45.45 8.43	PSO-HRC 13 33 18.1 8.75 17 33 54.5 7.78 18 32 63.6 7.68 10 32 0 7.78	RPSO 16 32 45.4 6 17 39 54.5 5 27 41 145 5 17 38 54.54 1.33	MS WL RM1 RM2 MS WL RM1 RM2 MS WL RM1 RM2 MS WL RM1 RM2	SN_1 SN_2 SN_3 SN_4

Table 4 .

 4 13: Fitness, Robustness and Workload (Problem 8*8)

	MS	
	WL RM1 RM2 MS WL RM1 RM2 MS WL	SN_1 SN_2
	RM1 RM2 MS WL RM1 RM2	SN_3 SN_4

Table 4 .

 4 14: Fitness, Robustness, Workload (Problem 10*10)

					SN_1					SN_2
			MS WL RM1 RM2		MS	WL	RM1 RM2
	RPSO	13	41	30	4.7		15	41	66.66	6.9
	PSO-HRC 10	44 11.11 5.5	11 47 11.11	5.5
	RRCA	15	41 66.66 6.9		12	41	20	6.9
	MSS		9	41 22.22 4.7		18	41	80	4.7
	ITI		13	41	30	4.7		28	41	211.11 4.7
				Table 4.15: Stability (Problem 4*5)
		SN_1			SN_2			SN_3	SN_4
	RPSO	72 6.33 12	62 5.16 10.33 61 5.08 10.16 16 1.33 16
	PSO-HRC 22 1.83 3.66 33 2.75	5.5		31 3.25	6.5	5	0.4	5
	RRCA	17 32	19	28 2.33 4.66	36	3	6	14 1.16 14
	MSS	17 1.41 2.83 35 2.9	5.83	47 3.91 7.83	4 0.33 4
	ITI	23 1.19 3.83 38 3.16 6.33 7.5 6.25 12.5	0	0	0
			Table 4.16: Stability (Problem 10*10)
					SN_1				SN_2
				SM1 SM2 SM3 SM1 SM2 SM3
		RPSO		15	0.5	2.5		46	1.53 7.66
		PSO-HRC	23	0.76 3.27		31	1.03 4.42
		RRCA		46	1.53 7.66		68	2.26	8.5
		MSS		8	0.86 1.33		24	0.8	3
		ITI			15	0.5	2.5		76	2.53	9.5
				Table 4.17: Stability (Problem 8*8)
			SN_1			SN_2			SN_3	SN_4
	RPSO	60 2.22 3.93 28 1.03 2		70 2.03 6.88 25 0.92 25
	PSO-HRC 60 2.22 4.61 20 0.74 20 59 2.18 7.37 12 0.44 12
	RRCA	60 2.22 4.01 28 1.03 28 71 2.62 7.88 25 0.92 25
	MSS	29 1.07 1.93 2 0.07 2		48 1.77 5.33	5 0.18 5
	ITI	86 3.18 5.73 2 0.07 2 123 4.55 13.66 5 0.18 5

Table 5 .

 5 

			1: PSO parameters
		Standard PSO One-level PSO-FJSP	Two-level PSO-FJSP
	c 1	0.4	0.4	1.49618 for level 1, Eq. 5.7 for level 2
	c 2	0.9	0.9	1.49618 for level 1, Eq. 5.8 for level 2
	w	0.7	Eq. 2.12	Eq. 2.12 for level 1, Eq. 2.14 for level 2

Table 5

 5 .2 specifies for each benchmark the flexibility mapping. Two simulation sets are performed. The first tries to answer the question regarding where the most time should be spent (in level 1 or in level 2). The second set considers whether the time spent in level 2 should be static or dynamic (i.e., I 2

Table 5 .

 5 3: Comparison_1 between the three developed PSO-FJSP variants without use of lower bound filter.

	MK10 252 2053 < 1 44.28 205 1989 < 1 75.24 205 1957 17 12.53	MK09 341 2514 < 1 49.51 309 2290 < 1 73.71 307 2290 21 10.76	MK08 523 2524 < 1 31.66 523 2524 < 1 65.12 523 2524 26 10.33	MK07 148 706 < 1 13.91 144 698 1 16.33 139 693 11 2.69	MK06 78 424 < 1 32.03 64 403 < 1 31.98 60 398 16 7.21	MK05 177 702 < 1 13.14 173 687 < 1 18.06 173 683 21 3.29	MK04 69 463 < 1 8.70 62 352 < 1 14.07 60 344 44 2.61	MK03 204 855 < 1 33.06 204 852 < 1 30.51 204 852 11 4.65	MK02 33 159 < 1 4.42 29 154 1 7.02 27 151 32 1.30	MK01 44 178 < 1 3.23 40 149 2 6.43 39 146 26 1.36	10*10 12 56 < 1 3.47 10 56 2 4.19 7 46 35 0.58	8*8 19 82 5 1.93 16 76 10 2.23 14 75 20 0.53	4*5 12 37 8 0.67 11 32 10 0.36 11 32 58 0.23	MS W L %Conv CPU time MS W L %Conv CPU time MS W L %Conv CPU time	Bench. I=1454 S=55 I=1454 S=55 I 1 =64 S 2 =50 I 2 =5 S 2 =5	Standard PSO One-level PSO-FJSP Two-level PSO-FJSP

Table 5 .

 5 4: Comparison between PSO variants (worst, mean, and best; without use of lower bound filter) =64 S 1 =50 I 2 =5 S 2 =5 MS W orst MS M ean MS Best MS W orst MS M ean MS Best MS W orst MS M ean MS Best

	I=1454 S=55	Standard-PSO
	I=1454 S=55	One-level PSO-FJSP
	I 1	Two-level PSO-FJSP

Table 5 .

 5 6: Results of two-tailed Mann-Whitney tests

		One-level PSO-FJSP Two-level PSO-FJSP	Two-level PSO-FJSP
		vs. standard PSO	vs. standard PSO	vs. one-level PSO-FJSP
		U	p		U	p		U	p
	4*5	60	1,56e-9	0	7,02e-13	270	0,000123
	8*8	0	1,17e-11	0	8,73e-12	97.5	2,33e-8
	10*10	15	3,83e-11	0	9,17e-12	30	6,47e-11
	MK01	0	5,12e-12	0	1,61e-12	40	5,19e-11
	MK02	0	1,88e-12	0	1,99e-12	102	2,40e-8
	MK03 298.5	0,015522	105	3,95e-9	315	0,001252
	MK04 104	2,20e-7	0	8,33e-12	50	6,42e-10
	MK05	0	1,06e-10	0	7,58e-13	270	0,000135
	MK06	0	1,60e-11	0	7,23e-12	105	3,14e-8
	MK07 22.5	3,16e-11	0	1,53e-11	0	3,27e-12
	MK08 225	0,000057	180	4,94e-7	405	0,078040
	MK09	0	8,35e-12	0	8,35e-12	100	1,44e-8
	MK10	0	6,80e-12	0	7,58e-13	315	0,001252
			Table 5.7: Standard deviations for PSO variants
		Standard PSO	One-level PSO-FJSP	Two-level PSO-FJSP
		I=1454 S=55	I=1454, S=55	I 1 =64, S 1 =50, I 2 =5, S 2 =5
		σ 1	σ 2	σ 3	σ 1	σ 2	σ 3	σ 1	σ 2	σ 3
	4*5	2.586 2.768 4.041 0.489 0.632 0.774	0	0	0
	8*8	2.121 4.339 3.582 0.745 1.000 1.527 0.991 1.316	1.632
	10*10 2.675 3.572 5.325 0.667 0.856 1.702 0.921 1.064	2.633
	MK01 2.109 2.828 2.828 1.326 1.632 2.462 0.339 0.365	0.930
	MK02 0.374 0.912 0.408 0.489 0.774 0.632 0.991 1.505	1.316
	MK03 3.724 6.645 5.842 4.582 5.477 8.366	0	0	0
	MK04 3.341 5.170 6.077 3.600 6.000 5.495 0.942 1.154	1.632
	MK05 1.699 2.886 2.380 1.521 1.870 3.244	0	0	0
	MK06 1.316 1.932 2.921 3.264 5.131 5.163 1.833 3.346	2.190
	MK07 4.364 7.312 6.011 1.489 1.632 3.651 0.771 1.183	1.316
	MK08 0.979 1.549 1.264 0.600 0.632 1.897	0	0	0
	MK09 2.768 4.082 4.864 2.355 2.886 4.081 0.942 1.154	1.632
	MK10 4.642 6.582 7.852 4.135 4.929 7.529	0	0	0

Table 5 .

 5 8: Behavior_1 of the two-level PSO-FJSP S 1 =50 I 1 =64 S 2 =5 I 2 =5 S 1 =50 I 1 =64 S 2 and I 2 adaptable MS # Visited solutions CPU time MS # Visited solutions CPU time

	MK01	39	8823	0.15	36	3.08
	MK02	27	15801	0.29	26	2.31
	MK03 204	8532	0.40	204	11.64
	MK04	60	14307	0.40	60	7.93
	MK05 173	16539	0.72	170	5.02
	MK06	60	19140	1.76	60	9.87
	MK07 139	19117	0.62	139	4.50
	MK08 523	2330	2.29	523	11.31
	MK09 307	2497	0.33	307	17.03
	MK10 205	10814	1.62	197	31.60

Table 5 .

 5 9: Behavior_2 of the two-level PSO (fixed control parameters)

Table 5 .

 5 10: Comparison of the two-level PSO-FJSP against five PSO-based metaheuristics.

Table 5 .

 5 15: Simulation result synthesis

	Our

Table 5 .

 5 18: Comparison_1 between the three developed PSO-FJSP variants on STM32 F407VGT6

	5.7. SUMMARY

Table 5 .

 5 19: Comparison_2 between the three developed PSO-FJSP variants on Raspberry Pi B+

	Bench. Standard PSO One-level PSO-FJSP	Two-level PSO-FJSP
		I=1454 S=55		I=1454 S=55	I 1 =64 S 2 =50 I 2 =5 S 2 =5
		MS CPU time MS	CPU time	MS	CPU time
	4*5	12	16.08	11	7.2	11	4.14
	8*8	19	40.51	16	36.71	14	9.54
	10*10	12	71.06	10	79.61	7	11.40
	MK01	44	64.60	40	122.17	39	25.84
	MK02	33	83.98	29	133.38	27	24.44
	MK03 204	826.5	204	579.69	204	81.52
	MK04	69	174	62	217.33	60	49.59
	MK05 177	275.95	173	303.14	173	62.51
	MK06	78	658.2	64	607.62	60	144.20
	MK07 148	264.86	144	310.27	139	49.42
	MK08 523	569.88	523	1107.04	523	196.27
	MK09 341	891.18	309	1290.77	307	197.86
	MK10 252	974.16	205	1300.75	205	258.07
	Table 5.20: Comparison_3 between the three developed PSO-FJSP variants on STM32
	F407VGT6						
	Bench. Standard PSO One-level PSO-FJSP	Two-level PSO-FJSP
		I=100 S=50		I=100 S=50	I 1 =20 S 2 =10 I 2 =5 S 2 =5
		MS CPU time MS	CPU time	MS	CPU time
	4*5	12	4.25	12	1.87	11	1.30
	8*8	22	12.56	18	12.31	16	3.12
	10*10	12	27.06	12	19.56	9	3.25
	MK01	44	23.68	42	50.93	39	6.31
	MK02	33	2.06	30	48	29	8.75
	MK03 204	206.37	204	194.34	204	27
	MK04	72	49.93	64	69.06	62	17.5
	MK05 179	95	174	123.12	173	31.93
	MK06	70	207.31	64	203.25	62	43.68
	MK07 151	110.80	144	127	139	12.56
	MK08 523	188	523	386.68	523	62.50
	MK09 341	312.99	309	520.81	309	69.87
	MK10 254	288.31	205	490.12	205	91.25

Table 5 .

 5 21: Comparison_4 between the three developed PSO-FJSP variants on Raspberry

	Pi B+						
	Bench. Standard PSO One-level PSO-FJSP	Two-level PSO-FJSP
		I=100 S=50		I=100 S=50	I 1 =20 S 2 =10 I 2 =5 S 2 =5
		MS CPU time MS	CPU time	MS	CPU time
	4*5	12	1.05	11	0.45	11	0.25
	8*8	19	2.53	16	2.15	14	0.59
	10*10	12	4.44	10	1.07	7	0.71
	MK01	44	4.03	40	5.78	39	1.61
	MK02	33	5.59	29	6.74	27	1.52
	MK03 204	45.91	204	34.09	204	5.09
	MK04	69	9.87	62	11.58	60	3.09
	MK05 177	17.24	173	17.94	173	3.90
	MK06	78	41.13	64	37.97	60	9.01
	MK07 148	13.94	144	16.37	139	3.08
	MK08 523	29.99	523	49.13	523	12.26
	MK09 341	55.69	309	67.93	307	12.36
	MK10 252	60.88	205	81.29	205	16.12

Table 5 .

 5 22: E2L-PSO without CPU reduction needed on Raspberry Pi B+

	MS	CPU
	MK01 39	50.28
	MK02 26	144.1
	MK03 204 167.4
	MK04 60	91.25
	MK05 170 125.02
	MK06 62 252.35
	MK07 139 94.15
	MK08 523 372.21
	MK09 307 387.36
	MK10 205 451.08
	110	

Table 5 .

 5 23: E2L-PSO Hard CPU reduction needed (60%) on Raspberry Pi B+

	Beginning (20%) Middle (50%)	End (90%)
	MS	CPU	MS	CPU	MS	CPU
	MK01 40	20.06	40	35.2	39	50.28
	MK02 28	37.66	28	80.05	26 129.60
	MK03 204	98.23	204 118.3	204 150.30
	MK04 62	67.60	60	78.12	60	82.07
	MK05 172	70.33	172	97.6	170 114.31
	MK06 64	110.18	64 186.17	62 225.01
	MK07 140	42.87	140 70.86	139 80.15
	MK08 523	205.63	523 279.44 523 334.8
	MK09 309	199.15	307 283.65 307 346.26
	MK10 205	220.44	205 332.45 205 410.99

Table 5 .

 5 24: E2L-PSO medium CPU reduction needed (40%)

	Beginning (20%) Middle (50%)	End (90%)
	MS	CPU	MS	CPU	MS	CPU
	MK01 39	37.71	39	48.10	39	46.19
	MK02 28	62.90	27	99.17	26 139.50
	MK03 204	111.60	204 133.80 204 158.02
	MK04 60	72.03	60	81.52	60	88.17
	MK05 172	90.60	171 100.87 170 120.03
	MK06 64	140.17	62 191.98	62 238.40
	MK07 140	63.34	140 81.55	139 87.81
	MK08 523	241.70	523 299.02 523 353.11
	MK09 309	264.98	307 318.47 307 361.74
	MK10 205	282.53	205 374.67 205 439.60
	Table 5.25: E2L-PSO soft CPU reduction needed (20%)
	Beginning (20%) Middle (50%)	End (90%)
	MS	CPU	MS	CPU	MS	CPU
	MK01 39	40.50	39	44.33	39	48.70
	MK02 26	73.15	26 130.66	26 142.55
	MK03 204	93.82	204 148.02 204 161.21
	MK04 60	81.77	60	86.12	60	90.01
	MK05 170	100.03	170 111.64 170 123.33
	MK06 62	188.4	62 207.01	62 249.46
	MK07 139	70.48	139 84.21	139 91.63
	MK08 523	260.70	523 300.65 523 368.01
	MK09 307	282.24	307 344.89 307 381.37
	MK10 205	310.70	205 399.57 205 446.99

Table 5 .

 5 26: Results of two-tailed Mann-Whitney tests

	Beginning 20% Middle (50%) End (90%)
	U	p	U	p	U	p
	MK01 30	0.1415	40	0.4175	50 0,9681
	MK02 0	0.0001	0	0.0001	50 0,9681
	MK03 50	0,9681	50	0,9681	50 0,9681
	MK04 10	0.0027	35	0.2713	50 0,9681
	MK05 0	0.0001	0	0.0001	50 0,9681
	MK06 0	0.0001	25	0.0643	50 0,9681
	MK07 0	0.0001	0	0.0001	50 0,9681
	MK08 50	0,9681	50	0,9681	50 0,9681
	MK09 0	0.0001	25	0.0643	50 0,9681
	MK10 50	0,9681	50	0,9681	50 0,9681

A pheromone is a chemical factor that triggers a social response to other animals of the same species.

2.3. MODIFICATIONS OF PARTICLE SWARM OPTIMIZATION

In optimization,

3-opt is a simple local search algorithm for solving optimization problems. 3-opt analysis involves deleting 3 connections (particles) in a network (or swarm), to create 3 sub-particles.

2.5. APPLICATION DOMAIN: SCHEDULING FOR INDUSTRY 4.0

Varied according to Benchmark size.
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Abstract

One of the most challenging problems in manufacturing field is to solve the FJSP subject to machines breakdown. This chapter aims to solve the FJSP under machine breakdown assumption using a PSO-based algorithm. The proposed approach handles machine breakdowns in a predictive way and in a curative way:

(1) it minimizes the risk of machine breakdown by not overloading machines, and

(2) it minimizes the wasted time caused by the breakdown if it occurs. We handle both non-resumable mode and resumable mode. In the non-resumable mode, if a breakdown occurs, then the entire operation has to be restarted. In the resumable mode the operation will continue from the breakdown. This chapter is organized as follows: Section 1 presents the related previous work. Section 2 presents the proposed algorithms to solve FJSP with machine breakdown. Section 3 presents the experimental results. The conclusion is drawn in Section 4.

PSO-FJSP under machine breakdown

An overview

As we mentioned in the previous chapter the classical job shop scheduling problem is a strongly NP-hard problem [START_REF] Garey | The complexity of flowshop and jobshop scheduling[END_REF] and handling random machine breakdowns further

In the PSO-HRC variant, a leader historic table is maintained during the prescheduling phase. This table contains the best scheduling solutions reached by leading particles.

Once a machine is broken down, the position vector X p is divided into two parts X pt and X pr , then a search of X pt in the historic-table is performed followed by an update of X pr .

Algorithm_6 presents the main steps of PSO-HRC.

The RRCA determines the set S of operations affected by a breakdown in X pr , then for each operation in S, randomly chooses a position vector for operations in S. Then, the rescheduling will be started. Algorithm_7 corresponds to the idle time insertion approach (ITI) used for comparison purpose only. The idle time is added directly after the affected operation to absorb the breakdown, and then a right shift is done.

Experimental results

We performed simulations on a machine having a 2.8 GHz processor and 8 GB RAM. The PSO code is written in C. Simulations are done on the five FJSP benchmarks used in [START_REF] Zhang | An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[END_REF] and listed in Table 3.2.

CPU Time improvement 4.3.1.1 Comparison between the six variants

For each benchmark and for each PSO variants, we rerun the simulation 20 times using at each run 500 particles and 500 iterations. 

The one-level PSO-FJSP

The size of the search space (SS) for an FJSP instance is equal to the combinatorial number of operations-to-machines mappings multiplied by the combinatorial number of operation orderings:

(5.1)

In the standard PSO-FJSP, within the same movement, the particle updates both the mapping of operations to machines and the order of operations. The standard PSO-FJSP has at least three weaknesses:

• The search space is explored in an ad hoc manner: particles are moving throughout the solution space with the possibility of going back-and-forth many times to the same family of scheduling solutions. To illustrate this point, Fig. 5.1 shows three successive positions of a particle and their corresponding scheduling solutions. In the first schedule (Fig. 5.1(a)), jobs are not interrupted. In the second schedule (Fig. 5.1(b)), jobs are executed in an ascending order according to their number of operations, i.e., the job having the greatest number of operations is scheduled first.

In the third schedule (Fig. 5.1(c)), the i th operations of all jobs are scheduled before their (i + 1) th operations. Therefore, no strategy links the three movements. Let I and S, respectively, denote the number of iterations and the swarm size of PSO (i.e., I.S the number of visited solutions). If SS I.S, then there is a low probability that the one-level PSO-FJSP finds an optimal or a near-optimal solution.

• A general weighted aggregation approach is used for multi-criteria optimization, i.e.,

(5.2)

where n 0 is the number of criteria, and λ i is the weight of criterion f i

• The flexibility degree (Eq. 2.20) of the FJSP instance is not taken into consideration.

The search space for optimization problems is defined as the set of all possible solutions.

Exploration of the search space on a region basis will guide subsequent optimization.

A region defines a cluster of solutions. In a region-oriented PSO, particles explore the search space sequentially, region per region. Each region in the second plane can be further subdivided into subregions sharing the same criteria.

The coding of particles is performed as follows. A particle p of the upper level has a position vector X p,m of |O| elements, modeling one operations-to-machines mapping.

There is a one-to-one prefixed correspondence between the indices of X p,m and the jobs' operations. A particle of the lower level has a position vector X p,s of |O| elements, degree (Eq. 2.20), the lower bound on makespan [START_REF] Geiger | Test instances for the flexible job shop scheduling problem with work centers[END_REF] (n.a: not available), and the range of the makespan values obtained in previous work [START_REF] Gao | Solving flexible job shop scheduling problem using general particle swarm optimization[END_REF][START_REF] Girish | A particle swarm optimization algorithm for flexible job shop scheduling problem[END_REF][START_REF] Moslehi | A pareto approach to multi-objective flexible jobshop scheduling problem using particle swarm optimization and local search[END_REF][START_REF] Tang | A hybrid algorithm for flexible job-shop scheduling problem[END_REF]. Four sets of experiments are defined:

• Experiment #1 evaluates the performance gap (with respect to the makespan value) between the three PSO-FJSP variants (standard PSO-FJSP, one-level PSO-FJSP, and two-level PSO-FJSP). Four comparison criteria are used: makespan as defined by Eq. 2.21, workload as defined by Eq. 2.24, the percentage of particles converging to good solutions, and the used CPU time.

• Experiment #2 analyzes the stability of the two-level PSO-FJSP. First, Mann-Whitney tests are used to measure the statistical significance of the difference in performance between the three PSO-FJSP variants. Second, three standard deviations of makespan are computed: deviation from the mean value (σ 1 ) (Eq.

3.

3), deviation from the best value (σ 2 ) (Eq. 3.4) and deviation from the worst value (σ 3 ) (Eq. 3.5). Finally, a set of tests are carried out to measure the impact of the swarm size and the iteration number on the performance stability of the two-level PSO-FJSP.

• Experiment #3 focuses on the sensitivity of the two-level PSO-FJSP regarding the portion of time spent in each level. Recall that level 1 explores the mapping of operations to machines, while level 2 explores the ordering of operations for a given the two-level PSO-FJSP to skip regions that do not contain good solutions. and the rest identical. Under the same parameters, the performance of the two-level PSO-FJSP is better than GA [START_REF] Wang | A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem[END_REF] and Bat [START_REF] Zhua | Modified bat algorithm for the multi-objective flexible job shop scheduling problem[END_REF] and quite similar to ACO [START_REF] Wang | Flexible job shop scheduling problem using an improved ant colony optimization[END_REF]. The remaining simulation result analyses are given hereafter.

Simulation result analysis

From the performed simulations, we conclude the following. First, the proposed twolevel PSO-FJSP provides good results in terms of the quality of the solutions and of CPU time. The high quality of the solutions is due to the efficient exploration of the solution space. The low CPU time is due to the use of the lower bound filter. Second, the comparison between metaheuristics should take into account the number of visited solutions in addition to the number of iterations (I) and to the swarm size (S) because a smart algorithm (such as the two-level PSO-FJSP) may not visit all the solutions (I * S).

Based on this observation, we present in Table 5. 

Proposed technique: embedded two-level PSO-FJSP

Our solution is an automatic adaptation of the asynchronous two-level PSO algorithm to CPU needs by other tasks that run in parallel (embedded two-level PSO E2L-PSO).

Several variants can be envisaged such as the suspension of certain threads or the reduction of the number of particles. The efficiency and reliability of the method always lie in the choice of particles to suspend. It is therefore necessary to designate the particles that return a fitness furthest away from the X nbest (global best), because the particles, which have the best solution, are probably closer to the global optimum. In this work, We are inspired by the migration method of dividing the swarm into subsets. We divided the swarm into a "leaders sub-swarm", a "worsts sub-swarm" and two "followers sub-swarms".

Each sub-swarm is a thread. All threads run in parallel.

The migration process is as follow:

• "leaders sub-swarm" began with only one particle: the particle that have the best MS in the initialisation phase. "X L " is his maximum number of particles.

• "worsts sub-swarm" began with only one particle: the particle that have the worst MS in the initialisation phase. "X W " is his maximum number of particles.

• Particles that have best solutions will be migrated from the "followers sub-swarm" to the "leaders sub-swarm". If number of particles in this subset is equal to "X L " so one of these particles must migrate to a "follower sub-swarm" randomly to empty the space for the new particle.

• Particles that have worst solutions will be migrated from the "followers sub-swarm" to the "worsts sub-swarm". If number of particles in this subset is equal to "X W " so one of these particles must migrate to a "followers sub-swarm" randomly to empty the space for the new particle.

In this paper, we chose to work with a swarm size reducing based solution. This solution allows us to release both the CPU time and the memory. Indeed, we remove particles from the "worsts sub-swarm". Algorithm_1 present the steps of the adaptive E2L-PSO, where need is an external variable contains the request to free memory or the CPU need.

In this approach the minimum number of particles in the swarm is defined from the start of the program. The flowchart of the E2L-PSO is given in Fig. 5.8.

Two process are used in this algorithm, one for stopping particle and one for waking up Put 50% of T otal inactive particles in an active mode by initializing according to the X nbest coordinates, adding it to the "followers sub-swarm". Put 50% of T otal inactive particles in an active mode by randomly initializing, adding it to the "followers sub-swarm".

• Experiment #1 Standard PSO vs. one-level PSO-FJSP vs. two-level PSO-FJSP on STM32 F407VGT6 and Raspberry Pi B+. Two comparison criteria are used: makespan as defined by Eq. 2.21 and the used CPU time.

• Experiment #2 Adaptive E2L-PSO on Raspberry Pi B+.

Three scenario are done:

-Scenario 1 : "Hard reduction" 60% reduction in CPU usage.

-Scenario 2 : "Medium reduction" 40% reduction in CPU usage.

-Scenario 3 : "Soft reduction" 20% reduction in CPU usage.

Under each scenario we have three possible cases:

the reduction request has arrived after only 20% of the iterations is completed (Request_Period = 20%).

the reduction request has arrived after 50% of the iterations is completed (Request_Period = 50%).

the reduction request has arrived after 90% of the iterations is completed (Request_Period = 90%).

• Experiment #3 Adaptive E2L-PSO stability analyses. Mann-Whitney tests are used to measure the statistical significance of the difference in performance be-In the third case (Request_Period = 90%): the results show that there are no differences (total similarity) between the two variants on all benchmarks (U = 50 and p = 0.9681).

Summary

In this chapter, we presented a two-level PSO algorithm for the FJSP in the first step.

The algorithm is based on the subdivision of the search space into regions sharing common properties (same operations-to-machines mapping, same partial order schedule, etc.), on the fact that going back-and-forth to the same region is avoided, and on skipping regions that do not contain good values by the use of a lower bound filter. Experiments run using our two-level PSO algorithm on benchmark problems returned better results than those previously obtained by other metaheuristics in a much smaller amount of CPU time. The two-level PSO is applicable to other optimization problems for which the criteria for the subdivision of regions can be identified. An example of such optimization problems is the cell layout problem in FPGA circuit design, that is decomposable into a placement problem and a routing problem. Another example is the Steiner tree optimization problem, that is decomposable into the problem of finding sub graphs with maximal non-exclusive edges and the problem of computing the optimal Steiner tree within a sub graph.

At a second step, we presented an embedded adaptive two-level PSO (E2L-PSO) algorithm for the FJSP. The E2L-PSO approach is developed to be the standard variant dedicated to the dynamic environment. The experiments run using our E2L-PSO algorithm on Raspberry Pi B+ and STM32F407VGT6. The results obtained, showed the efficiency of our metaheuristic, to be adaptable to the changes of the environment as well as to the memory and CPU needs of the execution equipment. The high quality of the solutions is due to the efficient exploration of the solution space. The low CPU time is due to the use of the lower bound filter and the adaptive process.

As future work, the rescheduling method, developed for the breakdowns cases, should be include with E2L-PSO on an embedded system and be applied in the fields of sensor networks and IoT. 
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