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DES RECHERCHES
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Résumé

Ce document est un résumé d’une partie des recherches que j’ai menées de
2018 à 2023 afin d’obtenir le diplôme d’Habilitation à Diriger des Recherches.
L’ensemble des résultats mentionnés est discuté plus en profondeur dans les
publications correspondantes.

Les sujets des recherches dont je vais discuter portent sur les notions d’appren-
tissage distribué, d’apprentissage local et d’apprentissage de représentation pro-
fonde sur des variétés. Un des points central que je cherche à développer est la
création d’algorithme distribué d’entrainement de réseau de neurones profond,
efficace, tant du point de vu du temps de calcul que de la quantité d’opération
nécessaire pour l’entrainement. Le premier chapitre correspond à une introduc-
tion à ces domaines ainsi qu’à mes activités de recherche. Le second chapitre
discute des relations entre le matériel informatique et les paradigmes exis-
tants d’entrainement. Ces interactions sont importantes car elles permettent de
promettre ou d’obtenir des améliorations significatives des coûts d’entrainement
des réseaux profonds. Le troisième chapitre décrit des éléments initiaux d’une
recherche pour créer des représentations profondes sur variété et graphe. En
particulier, nous avons essayé de réfléchir à des principes pour modéliser de
telles architectures. Le quatrière chapitre discute des résultats en apprentis-
sage local que j’ai obtenu, et notamment en apprentissage glouton couche par
couche. Cela correspond à l’idée d’entrâıner des réseaux en proposant des mises
à jour des poids d’une couche basées uniquement sur des informations locales
à cette couche, et en utilisant le moins possible d’information globale liée à
toutes les couches. Le cinquième chapitre résume des résultats obtenus en
apprentissage asynchrone décentralisé, dans des cadres d’optimisation convexe
et d’optimisation de poids de réseaux de neurones profonds. Un des intérêts
de ce type d’approche est leur potentielle supériorité, tant d’un point de vue
d’implémentation pratique que d’un point de vue algorithmique. Enfin, le
dernier chapitre propose des perspectives futures sur ma recherche.



Summary

This document is a summary of some of the research I conducted from 2018
to 2023 to obtain the Habilitation à Diriger des Recherches. All the results
mentioned are discussed in greater depth in the corresponding publications.

The research topics I will discuss focus on the concepts of distributed learn-
ing, local learning, and deep representation learning on manifolds. A central
point I aim to develop is the creation of efficient distributed algorithms for train-
ing deep neural networks, both in terms of computation time and the number
of operations required for training. The first chapter provides an introduction
to these fields and my research activities. The second chapter discusses the
interplay between computer hardware and existing training paradigms. These
interactions are crucial as they promise or achieve significant reductions in the
training costs of deep networks. The third chapter outlines initial elements of re-
search to create deep representations on manifolds and graphs. In particular, we
have sought principles for modeling such architectures. The fourth chapter dis-
cusses the local learning results I have obtained, especially layer-by-layer greedy
learning. This corresponds to the idea of training networks by proposing weight
updates for a layer based solely on local information to that layer, using as little
global information related to all layers as possible. The fifth chapter summarizes
results obtained in decentralized asynchronous learning, within frameworks of
convex optimization and optimization of deep neural network weights. One of
the interests of such approaches is their potential superiority, both from a prac-
tical implementation standpoint and from an algorithmic perspective. Finally,
the last chapter provides future perspectives on my research.



Chapter 1

Introduction

Deep Learning has revolutionized various scientific fields in under a decade.
When I embarked on my PhD journey in 2013 on ”Learning invariants for Im-
age Classification” whose goal was to understand the Deep Learning black-box
machinery, I initially viewed Deep Learning as merely another tool to address
Machine Learning challenges. However, its incomparable flexibility, efficiency,
and generalization capabilities—unseen in other paradigms—soon positioned it
as a go-to solution. Today, the research landscape around Deep Learning is
vast, teeming with more questions than answers regarding the inner workings
of these models. Instead of delving deep to understand them, many researchers
are making their routine algorithms differentiable and integrating them with
Deep Learning. This approach often sidesteps theoretical considerations but
consistently delivers enhanced performance. Observing this trend prompted me
to shift my research focus in 2020. My primary aim now is to devise innovative,
task-agnostic algorithms that enable faster, larger, deeper, and more efficient
training of Deep Neural Networks, broadening their potential applications.

1.1 Scientific context

Training Deep Neural Networks demands considerable computational resources
owing to the size and complexity of modern models and the extensive amounts
of data required for training [Krizhevsky et al., 2012]. Researchers have explored
various parallelization techniques to expedite the training process and manage
these challenges. The primary focus has been on two complementary and con-
current strategies: model parallelism [Shoeybi et al., 2019] and data parallelism
[Subhlok et al., 1993] (see Figure 1.1). These strategies enable efficient use of
multiple processors or computing nodes to distribute the workload and enhance
Deep Neural Network training speed. In this manuscript, I intend to concen-
trate on algorithmic solutions to the following hardware bottlenecks, aimed at
reducing:

• Total number of computations,
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Figure 1.1: Illustration of the difference of paradigm between model and data
parallelism.

• Overall communication volume,

• Local bandwidth usage,

• Overall training time,

while avoiding any degradation in final accuracy or performance. This last
point is the most challenging, as any attempt to modify standard Deep Learning
pipelines requires to run a a large collection of challenging benchmarks. Note
that all those elements have an impact on the ecological footprint of Deep Neural
Network training [Patterson et al., 2022].

Beyond parallel computing for training Deep Neural Networks: dis-
tributed algorithms for Deep Neural Network training. Parallel com-
puting [Atre et al., 2021] represents the current standard paradigm for designing
and structuring Deep Neural Network training pipelines. Typically implemented
via either pipeline-parallelism or data-parallelism, this approach essentially con-
siders the standard Stochastic Gradient Descent (SGD) training algorithm and
segments the training data into smaller chunks that can be processed in parallel
(potentially, by modules in parallel, leading to an extra model-parallelism) and
results are aggregated in a shared memory. This paradigm exemplifies a par-
allel algorithm, as it necessitates the use of a global orchestrator (e.g., a node
or an implicit set of instruction such as wait barriers) to concurrently execute
a sequential list of instructions, resulting in a gradient step.

While this enables parallelization of computations [Dean and Ghemawat,
2008], this training paradigm often remains unchallenged. Rather than focus-
ing on innovative training methods, most efforts to speed up training involve
using larger GPUs connected with high-bandwidth links, enabling nearly in-
stantaneous computation. This allows the cluster to function as a synchronous
machine, which is appealing but limits the size, hardware, and topology of the
utilized network [Sze et al., 2017]. This limit is physical [Milton and Zarkesh-
Ha, 2023]: it means that it can be ignored up to a certain point and pushed
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away, yet it will always come back when requiring larger machines. Moreover,
by its very nature, a Deep Neural Network model is a sequential composition of
layers with distinct purposes and potentially different convergence properties,
which is not well-aligned with parallel-computing approaches.

Distributed computing [Bal et al., 1989] represents a broader paradigm for
developing training algorithms: instead of assuming shared memory, it posits
that each computation can be performed on a local node with its own memory.
This lack of shared memory removes communication and bandwidth bottleneck
[Campbell et al., 1983], that would inevitably surface beyond a certain scale in
parallel computing paradigm. Parallel computing, therefore, can be understood
as a specific instance of distributed computing, whereas distributed computing
can operate in much larger-scale settings as these algorithms can be designed
to work on large scale environments where latency, communications, and het-
erogeneity are key factors [Dean et al., 2012]. Neither of these approaches takes
into account the heterogeneous nature of Deep Neural Network layers or minor
hardware fluctuations that could make distributed computing more efficient, i.e.,
an approach that segments the problem into smaller, distinct instances that do
not require constant communication or synchronization.

Removing global orchestrator. To be truly effective and allow parallel
computations, distributed computing must eliminate any global orchestration
while maintaining high final accuracy. This implies that there should be no wait
barriers and at the same time, no performance degradation. This leads us to
the concept of decoupled computations and communications, where communi-
cation or computations need not be synchronous or executed in a specific order.
For modeling the independent behavior of each computational unit, the no-
tion of decentralized algorithm becomes important. This approach is inherently
asynchronous and, therefore, does not require any central units, as no shared
memory would exist. Although the advantage of asynchrony is the absence of
synchronization steps, it can also make the procedure more unstable, posing a
challenge for Deep Neural Network training, which my research is attacking.

Moving forward, we will model asynchrony, communications, and computa-
tions within a common framework inspired by Even et al. [2021]. We assume
the existence of n nodes, each with local memory capable of performing com-
putations specific to node i. The topology guiding the order of communications
is given by potentially time-varying graphs E(t) where t ∈ R+ is a (often con-
tinuous) time index. Our goal is to study the parameter dynamic xi(t), which
evolves according to the following delayed equations

dxi(t) = computationsi(xi(t− τi(t)))dMi(t) (1.1)

+
∑

j,(ij)∈E(t)

communicationsij(xi(t−τij (t)), xj(t− τij(t)))dNij(t) .

(1.2)

Here, Mi, Nij are pointwise processes (either deterministic or stochastic) that
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depend upon time, and τi, τij model delays due to machine lag or distance be-
tween workers. I would like to emphasize that xi does not necessarily represent
the parameters of the whole model: in fact it could correspond to the parameter
of a specific module or to individual slice of parameters. For now, we consider
computationsi and computationsij as black-box operations encapsulating any
kind of operations mixing, that would manipulate and communicate those slice
of parameters xi or pair of parameters {xi, xj}. This framework can accommo-
date back-propagation (using a line graph aligned with the feedforward nature
of the Deep Neural Network), layer-wise communication and synchronous com-
munications as well as mini-batch SGD computations. Thus, this extremely
general setup will form the foundational framework of this manuscript and my
research.

Asynchrony in optimization offers not only the aforementioned practical ad-
vantages but also theoretical superiority compared to synchronous algorithms:
this is because asynchrony allows a notion of randomness or pseudo-randomness
[Even et al., 2021]. At a first approximation, it is reasonable to assume that
Mi, Nij are independent stochastic processes. In this case, several works [De-
fazio et al., 2014, Woodworth and Srebro, 2017] have observed that an additional
theoretical acceleration can be achieved, compared to the synchronous determin-
istic setting. However, it should be noted that, at the time of writing and to my
knowledge, no one has theoretically reached the optimal rates for strongly and
smooth convex functions. One of my belief is that this advantage of asynchrony
can transpose to Deep Neural Network training, in the specific setting of primal
methods (there is no notion of duality for Deep Neural Networks). However, for
obtaining asynchronous algorithms, it is necessary to ”break” any synchronous
barrier and instructions of a training algorithm: in other words, we need to be
able to process independent part of the network in parallel and to effectively
handle how those parts interact.

For increasing potential parallelization, Machine Learning offers two
paradigms (see Figure 1.1), that can be potentially combined together:

• Model-parallelism [Shoeybi et al., 2019]: the principle of splitting a Deep
Neural Network model into subsequent layers, which can be processed in
parallel.

• Data-parallelism [Subhlok et al., 1993]: the principle of splitting a data in
batches, which can be processed in parallel.

In both case, this requires to have additional buffer variables and communi-
cations for:

• Communicating and storing features between subsequent layers (which
can be highly-dimensional) with other clients,

• Communicating and storing parameters of copy of layers of a given depth.

Intricate Intersections of Graph Concepts Decentralized learning inher-
ently intertwines with graph theory, as graphs serve as natural models for the
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interactions among nodes [Boyd et al., 2006b]. One captivating aspect of this
overlap is the concept of graph resistance [Klein and Randić, 1993], which pro-
vides a straightforward yet powerful framework for understanding gossip algo-
rithms. This connection has inspired me to integrate my work on manifold
learning into this manuscript. Essentially, manifolds can be approximated as
graphs [Hammond et al., 2011, Coifman et al., 2005, Bronstein et al., 2021],
establishing a seamless and intellectually stimulating link between insights for
manifold learning and decentralized training methods.

1.2 Research Activity

I will now enumerate some of my scientific contributions since the inception
of my research career. Certain publications do not neatly fit into any of the
aforementioned categories. For instance, my first publication was in the journal
IPOL [Oyallon and Rabin, 2015] and it remains a pivotal milestone for which I
owe immense gratitude to Prof. Jean-Michel Morel and Prof. Julien Rabin for
setting me on my research journey.

1.2.1 Contributions not discussed in this manuscript

I will begin by discussing my work on the Scattering Transform, which can be
understood as a predefined Neural Network with mathematical guarantees. This
framework offers considerable flexibility for working with various structures,
including manifolds [Gama et al., 2019].

Scattering Transform: an empirical contribution during my Ph.D.
During my PhD which started in 2012 (see [Oyallon, 2017a]), I had the oppor-
tunity to work on the Scattering Transform [Bruna and Mallat, 2013, Mallat,
2012, 2010]. Taking foundations in signal processing, it is a non-linear opera-
tor which consists in a cascade of point-wise modulus non-linearity and wavelet
transform [Mallat, 1999]. The main principle of the Scattering Transform is
to create invariance w.r.t. a group of geometric variabilities: the two major
examples being the finite group of translation and the non-compact group of
diffeomorphism. In this context, I have mainly worked from the image process-
ing perspective: image classification [Oyallon et al., 2013, Oyallon and Mallat,
2015, Oyallon et al., 2017], image detection [Oyallon, 2016], for which geometric
variabilities are naturally embedded in the Euclidean group. One of my main
contribution to this area is the notion of hybrid networks, which mix predefined
Scattering Transforms with End-to-End learned Deep Neural Networks. Indeed,
the a priori Incorporated in the Scattering Transform transfer favorably to the
Deep Neural Networks, allowing for instance more stable Deep Neural Networks,
an improvement in limited labeled data settings or a small computation gain by
not requiring early layers learning via back-propagation.

This has been possible thanks to the development of Kymat.io [Andreux
et al., 2020], for which I am one of the main contributor. This is a library which
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is commonly used as a standard implementation of the Scattering Transform,
and which results from an international collaboration. It can be used to solve a
wide range of problems, from inverse problems of the Scattering coefficients [Han
and Lostanlen, 2020], to image detection [Oyallon et al., 2017].

The Scattering Transform has allowed me to ask a nice, simple question: how
competitive with Deep Neural Networks can we be with a no learning baseline?

Exploring Non-Deep Learning Methods: In an era dominated by Deep
Learning research, I have deliberately pursued work that either avoids or min-
imizes the use of Deep Learning techniques, as exemplified by [THIRY et al.,
2021]. One such study employs random patch-based architectures for classifying
images in the ImageNet dataset. This approach removes the need for a Deep
Neural Network, by encoding each image patch using a random dictionary and
employing a linear classifier for the final classification. The dictionary itself
consists of random patches, and the encoding relies on a straightforward hard
nearest neighbor assignment. Remarkably, this elementary method achieves a
45% top-1 accuracy on ImageNet, which stands in contrast to the 60% typically
achieved by more complex approaches. Note that this approach is competitive
with results prior the Deep Learning era. This is a quite intriguing result.

Notably, this technique not only outperforms Deep Neural Networks but
also bests Scattering Networks [Oyallon, 2016]. This phenomenon calls into
question the conventional wisdom surrounding the choice of appropriate invari-
ance modeling through theoretical considerations versus empirical data-driven
improvements.

In collaboration with Dr. Gaël Varoquaux, I have also explored the analysis
of tabular data [Grinsztajn et al., 2022]. Our published study rigorously com-
pares Random Forests and Deep Learning across standard benchmarks. This
research serves to elucidate the distinct assumptions that each algorithm makes
about the data, thereby providing insights into conditions that yield similar or
disparate performance outcomes, valuable for both Machine Learning practi-
tioners and researchers.

Neural Network Analysis and Interpretability: In my pursuit to under-
stand the foundational principles behind the success of Deep Learning, I have
explored and proposed a significant number of architectures through various
paradigms and concepts. My research in this area commenced during my Ph.D.
with Oyallon [2017b], where I conducted empirical analyses of Convolutional
Neural Networks to understand the types of invariance implemented in their in-
ner layers. These findings align with existing works [Szegedy et al., 2014, Zeiler
and Fergus, 2014]. In Jacobsen et al. [2018], we empirically demonstrated that
the Information Bottleneck, as introduced by Tishby et al. [2000], is not nec-
essarily present in state-of-the-art trained Deep Neural Networks. We achieved
this by designing the first class of invertible supervised Deep Neural Networks
for classification. While this contribution involved only a minor architectural
modification, its implications are substantial. Additionally, we examined the
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progressive linear separability of classes across the network’s depth, finding that
it exhibited ongoing improvement, in contrast to mutual information metrics.
In collaboration with Dr. Francis Bach and Dr. Lénäıc Chizat, I investigated
the empirical effectiveness of lazy training [Chizat et al., 2019]. The concept
suggests that under certain regimes, Neural Networks behave as if they are
linearized around their initialization, leading to suboptimal performance. Pre-
vious work by these co-authors showed that this regime can be circumvented
with appropriate initialization, thus enabling ”feature learning.” I have syn-
thesized several theoretical ideas and proposals based on these concepts in my
online lectures [Oyallon, 2021].

Federated Learning: In this paradigm, heterogeneous workers transmit their
gradients to a central worker for aggregation. The primary challenges involve en-
suring privacy and minimizing communication overhead. Recognizing the field’s
significance, I was introduced to Federated Learning by Eugene, with a specific
emphasis on communication reduction strategies. In Tenison et al. [2022], we
demonstrated that proper initialization of the head of a Convolutional Neural
Network could significantly reduce the need for gradient communication. Addi-
tionally, in Legate et al. [2023], we proposed a non-linear aggregation method
based on weight masking, which proved beneficial in heterogeneous environ-
ments.

This diverse body of work has enabled me to gain knowledge in Signal Pro-
cessing, Optimization, PyTorch, and Machine Learning, providing me with orig-
inal and necessary tools to address the challenges of distributed training.

1.2.2 Contributions of this manuscript

I will now list the contributions I will discuss in this manuscript. The Chapter
2 proposes a brief introduction to the field of distributed training. The three
other chapters involve graphs and/or distributed aspects of training a Neural
Network.

Manifold Learning: Owing to the generality of the ”manifold hypothesis,”
manifold models offer promising initial solutions for a broad range of problems,
from predicting chemical potentials [Atz et al., 2021] to image analysis [Ham-
mond et al., 2011]. The majority of my findings in this field have been counter-
intuitive (to me, at least), suggesting that geometric Deep Learning requires a
robust, principled framework—likely exceeding the scope of simplistic harmonic
analysis, as I initially believed. For example, in Oyallon [2020], I demonstrated
that learning analytical filters (e.g., filters designed to smooth the signal’s enve-
lope) could produce transformations analogous to Fourier Transforms. However,
subsequent experiments indicated that these ideas were highly specific to graph
settings, as elaborated in a similar paper I later found Venkitaraman et al. [2019].
In Sergeant-Perthuis et al. [2022], we showed that the only non-linear operators
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for vector fields that commute with diffeomorphisms are scalar operators. This
stands in contrast to signals defined over a manifold, where the corresponding
operator can be point-wise non-linear—a phenomenon well-understood in the
context of Euclidean translations. Despite these challenging findings, I chose
to include this line of research in my manuscript. It provides the rationale for
my transition to distributed training and continues to offer valuable insights
into distributed learning and graph theory. Chapter 3 will delve into these
developments.

Local Learning: The concept underpinning Local Learning is the training of
Neural Network layers using solely local feedback, eschewing the need for ad-
hoc global variables that depend on a global computational step. Conventional
back-propagation, though an undebated and well-established baseline, poses
challenges in parallelization due to its intrinsically sequential nature. Since
2019, a primary objective of my research has been to devise high-performance
alternatives to back-propagation. In Belilovsky et al. [2019], we reexamined
a prevalent algorithm, Greedy Learning. Despite its simplicity, the scalability
of greedy strategies for high-performance tasks, particularly in vision datasets,
remained uncertain until our investigation. This foundational work inspired us
to create the Decoupled Greedy Learning [Belilovsky et al., 2020] algorithm—a
parallelized version of Greedy Learning designed for module-based training. Our
approach has demonstrated competitive performance and computational bene-
fits. However, in scenarios requiring extensive parallelization, we have observed
performance degradation. To mitigate this decline, we introduced a mechanism
based on Forward Gradient in Fournier et al. [2023] to align the local train-
ing dynamics more closely with end-to-end training dynamics. Chapter 4 will
elaborate on the various facets of Greedy Learning.

Decoupled Asynchronous Decentralized Algorithms: My ANR JCJC
Adonis grant has enabled me to initiate a promising line of research, focus-
ing on the integration of asynchrony and decentralized learning, in particular
for the training of Deep Neural Networks. This research focus falls under a
class of distributed algorithms designed to independently process communica-
tions and gradient computations on each worker node. The ultimate aim is to
develop efficient implementations capable of overcoming limitations inherent to
current hardware, which is by design highly synchronous and, in some senses,
constrained to a local maximum in term of computational possibility. In Nabli
and Oyallon [2023b], we introduced DADAO, an algorithm for convex objec-
tives that leverages asynchronous updates and communications. This algorithm
represents a fruitful blend of the continuized framework [Even et al., 2021] and
concepts from ADOM+ [Kovalev et al., 2021b]. While its convergence rates
surpass those of concurrent methods, questions about its optimal performance
remain. Subsequently, we explored approaches to accelerate the convergence
of asynchronous gossip algorithms in Nabli and Oyallon [2023a] by optimizing
communication rates based on network-specific constraints. We also developed a
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relaxation technique to further enhance this optimization. In Nabli et al. [2023],
we proposed an acceleration method for peer-to-peer asynchronous communi-
cations, specifically in the context of Deep Neural Network training, which led
to performance improvements. This work demonstrates empirically that asyn-
chronous communications can indeed be expedited, even in the domain of Deep
Learning. Unlike other methods such as those in Hsieh et al. [2023], which only
utilized peer-to-peer communications, our approach incorporates an additional
layer of acceleration that has proven to be substantially beneficial. Chapter 5
will delve deeper into these contributions.

1.3 Academic service

Supervision. Since 2020, I had the chance to be surrounded by excellent
students, and I list now those with whom I had a supervision leading to publi-
cations:

• Louis Fournier, who is co-supervised with Pr. Sylvain Lamprier and is
working on the specific topic of Local Learning via Local losses,

• Léo Grinsztajn, who is co-supervised with Dr. Gaël Varoquaux and tack-
les the problem of learning from tabular data and in non-differentiable
settings,

• Jakob Maier, a master student who had allows me to quickly explore
several areas related to Geometric Deep Learning, and even obtained a
NeurIPS paper!

• Adel Nabli, who is co-suprevised with Pr. Eugene Belilovsky and works
mainly on asynchronous decentralized learning,

• Dr. Stéphane Rivaud, who is my first postdoctoral research, working on
scaling-up alternatives to back-propagation, with one of the ambitions to
provide fast implementations for distributed training.

International collaborations. Through the last 10 years of research, I had
the privilege to meet exceptional researchers with whom I built strong interna-
tional collaborations, and the most noticable collaborations are:

• Dr. Michael Eickenberg mainly on the topic of Greedy Learning and,

• Pr. Eugene Belilovsky on the topic of Greedy Learning and the Scattering
Transform.

Grants. I had the chance to obtain several grants which allowed me to hire
most of my students, and in particular, to be:

• PI of an ANR JCJC (2022-2025) and Emergence SU ”ADONIS” (2021-
2023), which allowed me to hire for 2 years a post-doctorate researcher
and one PhD student.
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• Collaborator of VHS (2021-2025), which is an interdisciplinary project
involving in particular Dr. Mathieu Aubry, for which the goal is to use AI
on historical data

• Partner of SHARP (2023-2027), which is a PEPR (consortium) between
multiple university and which will lead to new results on frugal learning.

Teaching. Since the end of my PhD, I had the opportunity to teach a couple
of lectures about Deep Learning, the most notable being:

• Deep Learning in practice, with Dr. Guillaume Charpiat at the ”Mathématiques,
Vision, Apprentissage” master (master MVA) in 2019-2020, at Ecole Nor-
male Supérieure de Cachan.

• Advanced topics in Deep Learning in 2020-2023, at Institut Polytechnique
de Paris, for the master of Data Science (master M2S) hosted by Ecole
Polytechnique.

I have been recruited as a Lecturer at Ecole Polytechnique from 2020 to 2023,
where I was mainly a TA: I taught Deep Learning and Machine Learning classes
mainly. At Sorbonne University, from 2021 to 2022, I have been teaching the
Advanced Machine Learning & Deep Learning class. From 2018 to 2019, I was
also an Assistant Professor at CentraleSupélec, where I also taught a Reinforce-
ment Learning class. I’ve also organized some corporate lectures with Sébastien
Loustau right after my Ph.D about Deep Learning and one tutorial about Deep
Learning with the Société Française de Statistique.
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Chapter 2

A short discussion on
Distributed Deep Learning

The focus of this manuscript will be devoted on distributing training method
for Deep Learning, and thus, I believe a bit more of context is required to
understand in more depth the Chapter 4 and Chapter 5.

Within the realm of High Computing Performance environments and dis-
tributed algorithms, performance assessment and enhancement are deeply in-
tertwined with hardware, implementation, and algorithmic aspects. These com-
ponents are closely interconnected, and for instance, a significant reason behind
the success of Deep Learning lies in the effective interplay of these elements.
This motivates the next discussions in next following three sections.

2.1 Hardware Ontology

Understanding the variety of available hardware types for training Deep Neu-
ral Networks enables us to identify the most suitable computational resources
for specific algorithms or potential of improvements [Bertsekas and Tsitsiklis,
2015]. This understanding is critical when considering the hardware’s local
memory, global memory, number of cores, and the connectivity between those
cores or other components, as this might introduce significant computational
overhead or performance drop [LeCun, 2019]. Although certain algorithms are
best suited for specific hardware types [Bertsekas and Tsitsiklis, 2015], there
are also algorithms for which the ideal hardware has not yet been developed,
and in particular those involving distributing asynchronously Neural Networks
layers [Lacey et al., 2016]. This section offers a brief ontology of hardware that
is by no means exhaustive but aims to provoke thoughtful questions about al-
gorithm design. One take-home message is that most of the available hardware
is highly synchronous and aims at behaving like a single machine [Choquette,
2023, 2022].
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Multi-core CPUs. From a general perspectives, central Processing Units
(CPUs) serve as fundamental computational units characterized by few cores,
and rapid access to a large, global, and shared memory pool. Consequently,
CPUs are most compatible with sequential algorithms which demand fast mem-
ory access, as for instance, given by a MapReduce procedure Dean and Ghe-
mawat [2008]. Until the ”GPUs hack” [Krizhevsky, 2014] which allowed to
unlock GPUs strength, hundreds of machines were combined together as in the
seminal paper Le [2013].

GPUs. Before the 2010s, Graphics Processing Units (GPUs) were primarily
engineered by NVIDIA for computer graphics applications, excelling in scenar-
ios where tasks could be executed in parallel without the need for shared local
memory [Krizhevsky, 2014]. Matrix multiplication, a fundamental operation in
Machine Learning, is a classic example of an ”embarrassingly parallel” prob-
lem [Fung and Mann, 2005]. In recent years, connectivity bottlenecks between
CPUs and GPUs have been alleviated through hardware and software advance-
ments, creating improved computational environment for a wider range of GPUs
friendly algorithms [Mittal and Vetter, 2015].

Multi-GPUs - Multi-nodes with Infiniband Setting. The notion of ”infi-
nite bandwidth” emerged as a theoretical ideal in distributed systems. Although
actual bandwidth is always finite, advancements in interconnect technologies
have significantly expanded data transfer rates, effectively allowing for near-
instantaneous data exchange between GPUs in a cluster. NVIDIA’s NVLink,
for instance, can provide a bandwidth of up to 300 GB/s, radically exceeding
the capabilities of older PCI Express interfaces [Li et al., 2019a].

This paradigm shift towards an ”infinite bandwidth” setting has been a
cornerstone in the evolution of scalable Deep Learning algorithms and has dra-
matically influenced the architecture and feasibility of modern Deep Learning
systems: in current clusters, it is standard to have an InfiniBand hardware.
While continuously puhsing limitical physics of such clusters, they constrain a
lot its architecture.

TPUs (and NPUs, FGPAs...). Tensor Processing Units (TPUs) are de-
signed specifically for Google Deep Learning training tasks. TPUs excel at
handling the matrix operations commonly found in Neural Network training,
making them an attractive choice for specific Machine Learning algorithms: they
almost allow a linear scaling in the number of machines involved [Wang et al.,
2019], pushing further the limits of GPUs. There are numerous alternatives
to TPUs and Deep Learning dedicated hardware, which all aim at proposing
extremely optimized low-level routines.

IPUs. Intelligent Processing Units (IPUs) are, to my knowledge, one of the
most different type of dedicated hardware to Deep Learning and developed by
Graphcore. In theory, they allow more parallelization between kernels [Louw
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and McIntosh-Smith, 2021] and seem to be a more plausible hardware for asyn-
chronous computations combining model parallelism. However, currently, such
hardware would benefit from more training algorithms that would maximize its
utility while obtaining high-performance.

And beyond... Emerging technologies like quantum computing represent the
frontier of computational hardware. While they are not yet fully practical for
most tasks, their potential for solving specific types of problems—like optimiza-
tion seems huge [Humble et al., 2021].

2.2 Contrasts of Parallelization Principles

Despite the dominance of synchronous-parallel-computing hardware, I see an
opportunity to develop novel, more scalable algorithms. I will proceed to con-
trast various parallelization principles. At times, the nature of an algorithm
may be ambiguous, making it easier to understand one concept in juxtaposition
with another. Indeed, it is noteworthy that most algorithms can be articu-
lated in one style or another. For example, a parallel algorithm can be adapted
to a distributed setting; however, it may not efficiently and fully utilize this
paradigm.

Model VS Data Parallelism. Model parallelism and data parallelism are
two distinct approaches to parallelizing and implementing algorithms. In model
parallelism, a large model is divided into smaller components, and each compo-
nent is processed independently by different workers. For instance, pipelining
[Allan et al., 1995, Huang et al., 2019] is an example of such instance which
allows to compute a batch of data per slice of the model, in parallel on poten-
tially multiple GPUs or nodes and which can result in a faster implementation
with memory saving. On the other hand, data parallelism involves distributing
copies of the model to multiple workers, each processing different subsets of the
data, which is aligned GPU computations. While those two approaches focus
on different aspect of Neural Networks training, they can also be potentially
combined together.

Parallel VS Distributed Computing. (see Chapter 1 of Bertsekas and
Tsitsiklis [2015]) Parallel computing refers to the simultaneous execution of
tasks using multiple processors to solve a single problem efficiently, and corre-
sponds typically to a situation with highly well-connected GPUs. Distributed
computing, on the other hand, involves coordinating multiple machines to work
on related tasks, often tackling larger problems by dividing them into smaller
subproblems (e.g., mapreduce [Dean and Ghemawat, 2008]). While parallel
computing focuses on speeding up a single task, distributed computing empha-
sizes solving bigger problems by harnessing the collective power of intercon-
nected machines. As discussed above, the parallel computing paradigm has
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often influenced the design of architectures and computing clusters for Deep
Neural Networks.

Synchronous VS Asynchronous Algorithms. Synchronous algorithms en-
sure that all participating processes are synchronized at predefined points during
computation. This synchronization can lead to efficient coordination, useful to
guarantee a result, but may also introduce bottlenecks if some processes are
slower than others. Asynchronous algorithms, on the contrary, allow processes
to operate independently without strict synchronization requirements. While
this can increase overall throughput (potentially with units like IPUs), it also
results in challenges related to consistency and convergence [Dean et al., 2012].

Deterministic VS Randomized Algorithms. Closely related to the notion
of asynchronous algorithms, the distinction between deterministic and stochastic
algorithm is important as the latter provides potential important benefits. De-
terministic algorithms produce the same output for a given input and execution
conditions every time they are run. In contrast, randomized algorithms benefit
from the uncertainty of randomness. While deterministic algorithms guarantee
reproducibility, randomized algorithms can often provide faster and more effi-
cient solutions, both from a theoretical and practical point of view [Mishchenko
et al., 2022, Defazio et al., 2014, Leblond et al., 2017].

Centralized VS Decentralized Algorithms. Centralized algorithms rely
on a central worker to make decisions and coordinate processes of plethora of
workers [Li et al., 2020]. For instance, a synchronous algorithm is necessarily
centralized, as a global orchestrator guarantees that each instruction stops at
a given step. On the contrary, decentralized environments only rely on local
information available on a given node [Nedic and Ozdaglar, 2009].

Convex VS Deep Models. Convex objectives are much better understood
than their deep counter part: typically, the convexity allows to derive guaran-
tees for the convergence of the algorithm [Nesterov, 2003]. On the contrary, it is
pretty difficult to obtain a convergence result for a Deep Neural Network algo-
rithm, whose analysis in general is bounded to obtain a lower-bound via a local
analysis of the norm of the gradient ‖∇f(x)‖ of an objective f with parameter
x [Bousquet et al., 2004].

A word on 3D/4D Parallelism. Emerging paradigms such as 3D or even
4D parallelism [Lai et al., 2023, Li et al., 2021] offer possibilities for enhanc-
ing training speed by fusing various levels of low-level parallelization. While
these approaches hold significant promise and constitute an important research
direction, they do not affect the training dynamic: they consist in improved im-
plementation to compute gradients; by contrast, I would like to propose novel
training dynamics with computational advantage, and which could be poten-
tially combined with those approaches.
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2.3 A brief discussion on decentralized learning
algorithms.

Now, that I clarified several concepts I will use widely through this manuscript,
I will simply propose a short description of decentralized algorithms (not nec-
essarily asynchronous), starting first with dual ascent, to finally conclude with
gradient-based methods, more amenable to Deep Learning.

Problem setting. In this manuscript, we study problems of the type

inf
x∈Rd

n∑
i=1

fi(x) , (2.1)

where each fi : Rd → R is a function with some regularity, e.g., L-smooth.
Typically, in those finite sum structure Machine Learning problems, each fi can
be written for some labeled data (θi, yi)

fi(x) , `(f(x; θi), yi) , (2.2)

where f is some Machine Learning models, e.g., a Deep Neural Network or a
linear layer. If fi is convex, incorporating a `2 regularization to Eq. (2.1) given
by

inf
x∈Rd

n

2
µ‖x‖2 +

n∑
i=1

fi(x) , (2.3)

could also be obtained by assuming that each fi is at least µ-strongly convex.

Connectivity. In a typical decentralized context, one has a network of n
nodes, whose topology is determined by a (potentially directed) graph with
edges given by E ⊂ {1, ..., n} × {1, ..., n}. In this case, one often introduces the
concept of connectivity matrice [λij ]ij , where λ is a n×n matrix so that λij = 0
iff (ij) 6∈ E .

From the weights λij , we introduce the corresponding symmetric Laplacian
given by

Λ =
∑

(ij)∈E

λij(ei − ej)(ei − ej)
T . (2.4)

This quantity is key to model connectivity, and will be discussed in more depth
in Chapter 5.

Dual decomposition. A decentralized problem has typically a separable ex-
pression, with a linear constraint (see Bertsekas and Tsitsiklis [2015, Section
3.4]), and one typically considers a problem of the type

minimize

n∑
i=1

fi(xi) (2.5)

subject to Λx = 0,
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whose Lagrangian is given by, writing Λ = [Λ1, ...,Λn] by (see Boyd et al. [2011,
Chapter 2.2])

L(x, y) =

n∑
i=1

Li(xi, y) =

n∑
i=1

fi(x) + yTΛixi . (2.6)

Then an algorithm would be naturally for some αk

xt+1
i = arg min

x
Li(xi, y) (2.7)

yk+1 = yk + αkΛxk+1 . (2.8)

If Λ represents the constraint of a decentralized problem, then this aims at solv-
ing a distributed optimization task with communication constraints. Agarwal
et al. [2010] is one of the first works to relate the spectral gap to the con-
vergence speed, when Scaman et al. [2017] derives optimal, synchronous, dual
algorithm which reaches optimal rates, in particular thanks to Chebychev ac-
celeration [Saad, 1984] and the standard Nesterov quadratic for deterministic
lower-bounds [Nesterov, 2003]. The key is to observe that

inf
Λx=0

n∑
i=1

fi(xi)⇐⇒ sup
y
−

n∑
i=1

f∗i (eT
i y
√

Λ) . (2.9)

Unfortunately, such approaches (e.g., relying on problem structure) are gen-
erally not primal gradient based, which makes them difficult to transpose to a
Deep Learning setting. Alternating Direction Method of Multipliers (ADMM,
introduced in Boyd et al. [2011]) represents a widely used framework aimed at
splitting a problem into subproblems via an augmented Lagrangian. While it
relies on a proximal step, the idea of using auxiliary variables has application
beyond, e.g. Choromanska et al. [2019], Taylor et al. [2016], Zhang et al. [2016].

Primal methods. Two seminal works can be considered to distribute com-
putations: on one side Tsitsiklis et al. [1986] which considers

inf
x1,...,xn

f(x1, ..., xn) ,

so that each worker has its own xi and access to f . On the other side, Nedic and
Ozdaglar [2009] is one of the seminal works which introduce an optimization pro-
cedure which alternates between gradients computations and communications
to solve

inf
Λx=0

∑
i

fi(xi) .

Koloskova et al. [2020] is a tight analysis of such algorithms in the stochastic
heterogeneous setting. Methods like DiGing [Li et al., 2019b], EXTRA [Shi
et al., 2015] are examples of algorithms leading to linear rates. A technique to
synchronize gradient average is Gradient Tracking [Song et al., 2023], studied
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also in the stochastic setting [Koloskova et al., 2021]. Each of these methods
can be extended to Deep Learning settings [Lian et al., 2017], yet those methods
are highly sequential and synchronous: in this manuscript, we will try to add
an additional layer of parallelization, either by parallelizing the algorithm to
compute ∇fi(x), either by deriving more asynchronous algorithms.
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Chapter 3

Exploring Geometric Deep
Learning: A Harmonic
Analysis Perspective

This chapter draws upon the following key publications or preprints:

• Edouard Oyallon. Interferometric graph transform: a deep unsupervised
graph representation. In International Conference on Machine Learning,
pages 7434–7444. PMLR, 2020, whose main idea is presented in Section
3.1

• Grégoire Sergeant-Perthuis, Jakob Maier, Joan Bruna, and Edouard Oy-
allon. On non-linear operators for geometric deep learning. Advances
in Neural Information Processing Systems, 35:10984–10995, 2022, whose
results are explained in Section 3.2,

• Nathan Grinsztajn, Louis Leconte, Philippe Preux, and Edouard Oyallon.
Interferometric graph transform for community labeling. arXiv preprint
arXiv:2106.05875, 2021a and,

• Nathan Grinsztajn, Philippe Preux, and Edouard Oyallon. Low-rank pro-
jections of gcns laplacian. ICLR Workshop GTRL, 2021b which are two
preprints discussed in Section 3.3.

The main students and collaborators involved are Pr. Grégoire Sergeant-
Perthuis, Jakob Maier, Nathan Grinsztajn and Pr. Joan Bruna.

Manifold learning provides an intriguing framework for capturing intricate
data structures, particularly those with weak inherent regularity [Shuman et al.,
2013, Coifman et al., 2005]. One salient aspect of manifolds Ω ⊂ Rd is their
frequent representation as sparse graphs, encapsulating local interactions be-
tween n points on the manifold, via a n × n matrix. Another representation
consists in explicitly encoding the action of a group of symmetries reflected by
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the manifold data [Satorras et al., 2021]. For both cases, such representations
are not arbitrary; they often lead to a smoother representation with respect to
the (local) Euclidean metric.

The scientific community has made concerted efforts toward developing a
comprehensive mathematical framework for manifold learning on graphs, and
in particular to transpose Deep Learning results on graphs [Bronstein et al.,
2017, 2021]. A key objective is to develop models with inductive biases leading
to favorable properties; this construction is very often done by analogy with
the Convolutional Neural Networks class of models. In doing so, three primary
approaches have gained prominence:

• Direct Encoding of the Underlying Geometric Structure : This
approach is predicated on obtaining an explicit mathematical model that
captures the group of variabilities [Cohen and Welling, 2016] (or syme-
tries) inherent in the manifold structure. Subsequently, an objective is
to design architectures that are inherently invariant to these variabilities.
For instance, Convolutional Networks specifically tailored to operate on
spherical geometries have been proposed [Cohen et al., 2018]. Further
advancements in this direction include architectures that work along par-
allel transport, thereby encapsulating complex geometric transformations
[Bodnar et al., 2022].

• Leveraging Local Euclidean Norms: Here, the aim is to encode the
manifold’s intrinsic geometric structure into an adjacency matrix [Saul
and Roweis, 2000], thereby facilitating the application of Graph Convolu-
tional Neural Networks [Kipf and Welling, 2016]. This approach effectively
amalgamates local information based on the Euclidean norms, enabling
the Neural Network to adapt to the manifold’s topology.

• Utilizing the Spectrum of the Laplacian Matrix [Hammond et al.,
2011]: In this paradigm, the focus shifts to spectral methods, particularly
those involving the Laplacian matrix. One commonly employed strategy
is to construct filters as sparse linear combinations of Laplacian eigenvec-
tors. This approach has proven efficacious in a range of applications, as
demonstrated in recent studies [Wang and Zhang, 2022].

Discussion and Organization of this Chapter: In this chapter, I dis-
cuss the outcomes of my efforts to apply principles from harmonic analysis
to manifold learning (see Section 3.1), and in particular, to develop architec-
tures and principles simpler for learning on manifold structures. The Section
3.3 will briefly mention some attempt to extend those ideas to generic prob-
lems on graphs. In particular, we obtain a negative result to construct generic
non-linearity in Section 3.2. While this research spans multiple years, a pivotal
juncture was reached during the supervision of a Master’s student, Jakob Maier.
It was through this collaboration that several significant milestones in this line
of inquiry were achieved.
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3.1 Interferometric Graph Transform: a Deep
Unsupervised Graph Representation

In Oyallon [2020], I proposed to study a simple, straightforward question: can we
generalize Fourier Transform to manifolds? Defining a notion of Fourier Trans-
form in manifolds is a difficult question because researchers have tried to obtain
from the Eigen-vectors of the Laplacian. However, by design, standard spectral
methods suffer from several inherent issues, which also apply to the Euclidean
domain. A first issue is the lack of topology of the Laplacian’s eigenvectors.
For the sake of illustration, observe that for a smooth f ∈ L2(Rk), k ≥ 0, the
Fourier transform of its Laplacian satisfies

∀ω ∈ Rk, ∆̂f(ω) = −‖ω‖2f̂(ω) .

Here, the topology of the eigenbasis (e.g., a cosine family) is difficult to
exhibit from its corresponding eigenvalues. For instance, two rather different
frequencies (e.g., ω1 6= ω2) with the same amplitude (e.g., ‖ω1‖ = ‖ω2‖) will
not be distinguished by a spectral clustering algorithm based solely on ‖ω‖.
This typically leads to filters which are isotropic and not selective to a spe-
cific direction, which also holds for spatial methods [Bronstein et al., 2017]. A
second issue is that the graph convolution employs filters which are built from
local operators such as a Laplacian matrix: this typically leads to a smoothing
operator [Kampffmeyer et al., 2019, Li et al., 2018, NT and Maehara, 2020,
Wu et al., 2019]. Thus, in those settings, spectral GCNN lose the ability to
discriminate high-frequency attributes of a signal, which are also usually unsta-
ble and thus difficult to capture [Mallat, 1999]. In our work, we address those
two issues by learning a complex-valued isometry in the spectral domain, which
has, for instance, the ability to recover the spectral topology of 2D frequencies,
without incorporating any specific prior: the filters are anisotropic and smooth
in frequencies. The main idea is to form some pairs of conjugated filters, as
a cosine eigen-vectors can be deduced from a sine eigen-vectors via a Hilbert
Transform [Cizek, 1970].

A criterion based on the eigen-vectors smoothness. In Oyallon [2020],
I proposed a criterion to pair real-valued basis of eigen-vectors, in order to
further propose an ordering of the eigen-vectors. To do so, for a permutation π
of {1, ..., 2d}, we introduce the pairing cost

C(π) =

d∑
i=1

2d+1∑
k=1

√
eπ[2i][k]2 + eπ[2i−1][k]2

=

d∑
i=1

‖eπ[2i] + jeπ[2i−1]‖1 .

(3.1)

We then consider the matrix F = {Fi}i≤2d+1 whose columns are defined by
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∀1 ≤ i ≤ d, 
Fi = eπ∗[2i] + jeπ∗[2i−1] ,

F2d+1−i = eπ∗[2i] − jeπ∗[2i−1] ,

F2d+1 = e2d+1 .

(3.2)

Observe that if i ≤ d, then Fi = F2d+1−i ∈ C2d+1. It is clear that the matrix
F is unitary on C2d+1. For illustration purpose, consider the graph G of a grid
of length 2d+ 1 with periodic boundary condition, an eigenbasis of its discrete
Laplacian is clasically given, for k ≤ d,m ≤ 2d+ 1, by

e2k−1[m] =

√
1

2d+ 1
cos(

π

2d+ 1
(m− 1

2
)2k) , (3.3)

e2k[m] =

√
1

2d+ 1
sin(

π

2d+ 1
(m− 1

2
)2k) , (3.4)

e2d+1[m] =
1√

2d+ 1
. (3.5)

In this case, we know that an optimal permutation π∗ is given by π∗[n] = n,

which leads to pair of eigen-vectors: Fi[m] =
√

1
2d+1e

j π
2d+1 (m− 1

2 )2i, i ≤ d.

This thus justifies the terminology Fourier Transform for F (up to a phase
multiplication) as one can recover the Discrete Fourier Transform: our method
has a natural interpretation in the Euclidean case. Pairing those eigen-vectors
allows to introduce an asymetry between the real and imaginary part of our
spectral operator, which will be useful and necessary for learning a complex
unitary operator.

Limitations: My work Oyallon [2020] has been applied successfully on sim-
plistic task by learning a very similar transform to a Scattering Transform [Oy-
allon et al., 2018]. Unfortunately, I found out with Jakob Maier that this type
of strategy was numerically unable to recover any interesting pairing beyond
the case of Rd: the case of the spherical harmonics of Sd−1 totally fails to pair
the real and complex parts of the spherical harmonics. Furthermore, it would
be dependent on the coordinate system. This limits a lot this method, which I
initially believed to be principled.

3.2 On Non-Linear operators for Geometric Deep
Learning

Convolutional Neural Networks are particularly effective due to the inherent
benefits of convolutional operators [Mallat, 2016]. Firstly, these operators nat-
urally align with the symmetries present in the data, which allows to build
relevant invariants. Secondly, they introduce useful inductive biases that enable
efficient computations and reduce the atmount of parameters to learn: it allows
to reduce the sample complexity of the learning task.
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In the case of data defined on manifolds, these symmetries are not as straight-
forward. There are, however, two types of objects that can have meaningful
actions with objects defined manifold Ω. These objects are based on diffeomor-
phisms, denoted by φ ∈ Diff(M).

• On one hand, the action of the diffeomorphism group on signals x ∈ L2(Ω)
(meaning that x(u) ∈ C, for u ∈ Ω), which can naturally act via

Lφx(u) , x(φ−1(u)) . (3.6)

• On the other hand, the vector fields x ∈ L2(Ω, TΩ) (meaning that x(u) ∈
TuΩ for u ∈ Ω, and TΩ is the tangent bundle of Ω), whose push-forward
action is then given by

Lφx(u) , dφ(u).x(φ−1(u)) . (3.7)

We ask the simple question: can we build Neural Networks which are co-
variant with those actions? For instance, in the case Ω = Rd, Neural Networks,
restricting the group of symmetries to translations, the only affine operators
which commute with the action of translations are convolutions. In fact, Bruna
[2013] showed that the only operators of L2(Rd) which commute with the group
of deformations are pointwise non-linearities. Such operators also naturally com-
mute with the translation group, as it is a subgroup of diffeomorphism. This
justifies the discussion about Convolutional Neural Networks above.

Getting back to the general setting, in fact, any symmetry group is by con-
struction a subgroup of Diff(Ω). However, there is a distinction between groups
which are locally compact and groups which are not: for instance, [Yarotsky,
2022] observed that Convolutional Neural Networks are a class of dense opera-
tors in the commutant with translations. To be amenable to any neural networks
designed on a manifold, a non-linearity will thus have to commute with Diff(Ω).
In a collaboration with Jakob Maier, Pr. Grégoire Sergeant-Perthuis and Pr.
Joan Bruna, we focused on those settings. We extended the results of Pr. Joan
Bruna’s PhD:

Theorem 3.2.1 (Scalar case). Let M be a connected and orientable mani-
fold of dimension d ≥ 1. We consider a Lipschitz continuous operator M :
Lpω(M,R)→ Lpω(M,R), where 1 ≤ p <∞. Then,

∀φ ∈ Diff(M) : MLφ = LφM

is equivalent to the existence of a Lipschitz continuous function ρ : R→ R that
fulfills

M [f ](m) = ρ(f(m)) a.e.

In that case, we have ρ(0) = 0 if ω(M) =∞.

This result is consistent with the result of Bruna [2013], and corresponds to a
generalization to manifolds. This result does not mean that for any group, point-
wise non-linearities are optimal. For instance, Eickenberg et al. [2022] used a
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`2-pooling to combine spherical harmonics which allows to smooth the enveloppe
after a specific class of convolutions. However, the following result, was to me
a negative result: it indicates that the only generic operator on vector fields
which commute with the action of diffeomorphism is a scalar multiplication.
This indicates that for vector field, the non-linearity will have to be selected in
a per case basis:

Theorem 3.2.2 (Vector case). Let M be a connected and orientable manifold
of dimension d ≥ 1. We consider a continuous operator M : Lpω(M, TM) →
Lpω(M, TM), where 1 ≤ p <∞. Then,

∀φ ∈ Diff(M) : MLφ = LφM

is equivalent to the existence of a scalar λ ∈ R such that

∀f ∈ Lpω(M, TM) : M [f ](m) = λf(m) a.e.

A brief comment on the proof technique: Probably novel, the main idea
of the proof we found was to consider diffeomorphisms with compact support,
and to show that a sequence of diffeomorphism can ”contract” a neighborhood
into a point. This is very similar to a homotopy, where simply connected set
can be contracted to a point - except that we had the constraint to have a local
support.

Relation of this result with Geometric Deep Learning. In this work, we
have fully characterized non-linear operators which commute under the action
of smooth deformations. In some sense, it settles the intuitive fact that commu-
tation with the whole diffeomorphism group is too strong a property, leading to
a small, nearly trivial family of non-linear intrinsic operators. While on their
own they have limited interest for geometric deep representation learning, find-
ing commutants can ‘upgrade’ any family of linear operators associated with
any group G ⊂ Diff(M) into a powerful non-linear class — the so-called GDL
Blueprint in Bronstein et al. [2021]. Also, this result is a first step towards char-
acterizing the non-linear operators which commute with Gauge transformations
and could give useful insights for specifying novel Gauge invariant architectures.

3.3 Follow-up works

Mainly with Nathan Grinsztajn, I started investigating if this research could be
also extended to Graph Neural Networks, and in particular to the task of com-
munity detection: typical models assume a low-rank structure of the Laplacian
using a Stochastic Block model [Abbe, 2017], which similarly to a Laplacian
defined over a manifold suggests that the very first eigen-values are important
and contain most of the discriminative information. Unfortunately, there is a
lack of good numerical benchmarks to really demonstrate an advantage for the
method: the standard tasks can very often be solved with simple methods which
almost do not use the graph structure.
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Low rank laplacian In Grinsztajn et al. [2021b], we find that one can achieve
comparable performance using only a subset of the graph’s spectral frequencies,
thereby reducing computational complexity. We make two additional contribu-
tions. First, we demonstrate that much of the information leveraged by Graph
Convolutional Networks for community detection is concentrated in the earliest
eigenvectors of the Laplacian matrix. Second, we find that a simple Multi-Layer
Perceptron model, when fed with hand-crafted features representing these low-
frequency eigenvalues, is capable of handling transductive datasets effectively.
These observations suggest a more efficient, yet equally effective, approach to
community detection.

Low rank community In Grinsztajn et al. [2021a], we develop a simplified
framework for analyzing node labeling tasks. It focuses on a toy example that
relies on the rank of the Laplacian matrix to provide both theoretical and em-
pirical validations for our methods. This framework is backed by concentration
bounds and is supported by numerical evidence. To showcase the framework’s
capabilities, we extend the representation method of Oyallon [2020] so that it is
suitable for graphs. This new method is effective for community labeling tasks
and does not require any prior community labels. Our results show that our
method performs better than existing Graph Convolutional Networks (GCNs)
in certain settings and is competitive in standard benchmark tests.
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Chapter 4

Model-parallelism: Local
Learning

This chapter is based on the following work:

• Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy
layerwise learning can scale to imagenet. In International conference on
machine learning, pages 583–593. PMLR, 2019 which is discussed in Sec-
tion 4.1,

• Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled
greedy learning of cnns. In International Conference on Machine Learning,
pages 736–745. PMLR, 2020,

• Eugene Belilovsky, Louis Leconte, Lucas Caccia, Michael Eickenberg, and
Edouard Oyallon. Decoupled greedy learning of cnns for synchronous and
asynchronous distributed learning. arXiv preprint arXiv:2106.06401, 2021
are both showcased in Section 4.2,

• Louis Fournier, Stéphane Rivaud, Eugene Belilovsky, Michael Eickenberg,
and Edouard Oyallon. Can forward gradient match backpropagation? In
Fortieth International Conference on Machine Learning, 2023 is finally
discussed Section 4.3.

The main students and collaborators involved are Louis Fournier, Dr. Stéphane
Rivaud, Pr. Eugene Belilovsky and Dr. Michael Eickenberg.

Local Learning is a strategy to propose layer updates only based on local
information available on a specific layer (e.g., a single module or a cascade
of modules), without the need for a global orchestration which would require
a synchronization from upper, and, bottom layers. Typically, Local Learning
allows us to assume that a layer is fully stored on a given machine, and has lim-
ited feedbacks with the previous and next layers. In the context of distributed
training, the ultimate goal of a local learning strategy is to distribute, asyn-
chronously, communication and computations to train a Deep Neural Network.
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Figure 4.1: Progressive separability as measured by a Nearest Neighbor or a
Linear SVM classifier, for a ResNet-152 on the ImageNet dataset, at a depth
3j. The figure si collected from Jacobsen et al. [2018].

In this chapter, we discuss my contributions to Local Learning and in particular
via Greedy Learning, which is the idea of using a greedy, layer-per-layer training
strategy.

Local Learning: A Step Towards Distributed Computing for Deep
Neural Network Training Mini-batch SGD is typically sped-up on GPUs
and this procedure is often called ”embarassingly-parallel” [Bottou and Bous-
quet, 2007]. This is innacurate as the back-propagation of each sample still
requires a significant amount of memory and by essence, backpropagation is
a highly synchronous procedure [LeCun et al., 1989]. In fact, the backprop-
agation algorithm is well-known for this computational inefficiency [Jaderberg
et al., 2017a, 2014], particularly due to its limited ability to parallelize computa-
tions between subsequent layers (model parallelism). This makes it challenging
to develop a distributed version of backpropagation for training Deep Neural
Networks. Additionally, there are theoretical gaps in our understanding of the
algorithm’s dynamics, even for networks with simply one hidden layer: the ob-
jective of the inner layers is unclear, making it even more difficult to design an
appropriate optimizer [Szegedy et al., 2014]. In fact, the training dynamic can
have complex behavior leading to very different solutions [Godfrey et al., 2022].

Progressive linear separability Deep Neural Networks are composed of
cascading affine operators and point-wise nonlinearities, which together con-
struct classification invariants. However, the specific process by which these
invariants are created remains an open question. Several works [Oyallon, 2017b,
Zeiler and Fergus, 2014, Jacobsen et al., 2018] have already observed that Deep
Neural Networks designed for image classification naturally establish progres-
sive invariance to various forms of image variability (see Figure 4.1, obtained
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from my work [Jacobsen et al., 2018]). This means that the degree of invari-
ance improves as one measures it across the layers of the network. One of the
simplest forms of invariance to assess is linear separability [Han et al., 2021].
Specifically, linearization is a commonly observed phenomenon, particularly in
supervised Convolutional Neural Networks, for creating the final classification
invariant. However, the question of whether this property of linear separability
serves reciprocally as a good criterion for state-of-the-art classification perfor-
mance was left unanswered until the work Belilovsky et al. [2019].

Discussion and Organization of This Chapter: The chapter begins with
Section 4.1, which explores the concept of Greedy Learning, a method that trains
a Deep Neural Network one layer at a time using a specialized auxiliary classifier.
Following that, Section 4.2 delves into an extension of Greedy Learning that is
geared towards distributed training, referred to as Decoupled Greedy Learning.
This approach enables the parallel training of individual layers. Finally, Section
4.3 presents various attempts to improve the accuracy of Decoupled Greedy
Learning, using a forward gradient technique.

4.1 Greedy Learning

Algorithm 2 This a simple and concise description of a Greedy Layerwise train-
ing of Convolutional Neural Networks, for obtaining the parameters obtained
from our optimization procedure {(θ∗j , γ∗j )}j≤J over one pass of the data D

Input: Training samples D = {(xn0 , yn)}n≤N
Initialize: Parameters {θj , γj}j≤J .
for j ∈ 0..J − 1 do

Compute {xnj }n≤N (via Equation (4.1))
θ∗j , γ

∗
j = argminθj ,γj

∑
n `j(θj , γj , x

n) (via Equation (4.2))
end for

Motivation Rooted in Neural Network Theory: This research aims to
delve into the mechanics of Deep Neural Network optimization. We wanted
to challenge the implicit suggestion of Bengio et al. [2006] that greedy train-
ing of Deep Neural Networks is infeasible, our team—comprising Pr. Eugene
Belilovsky, Dr. Michael Eickenberg, and myself—sought to understand the un-
derlying limitations and potentially propose a remedy. There is a wide line of
attempt to get this type of methods to work, as suggested by: [Ivakhnenko and
Lapa, 1965, Greff et al., 2016, Huang et al., 2018, Malach and Shalev-Shwartz,
2018, Arora et al., 2014]. Initially, this was a long-term research direction that
I had planned to pursue for several years. However, this simple greedy strategy
appeared to be surprisingly effective at training state-of-the-art architectures on
the large scale ImageNet dataset.
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Re-examining Greedy Layer-wise Training: In our paper Belilovsky et al.
[2019], we took a fresh look at the foundational concept of training a Deep Neural
Network layer by layer. The core idea revolves around pre-training each layer
with a supervised criterion obtained from labeled data (x, y), defined recursively
for parameters θj and layer fj by

xj+1 = fj(xj , θj) , (4.1)

and an intermediary loss `j is introduced for this process, as well as an auxiliary
neural network gj which is parametrized by γj , so that

`j(θj , γj , x, y) , `(gj(fj(xj , θj), γj), y) . (4.2)

Each of these intermediary losses, `j , is used to train one block of layers
fj ◦ gj at a time, progressing sequentially to ensure complete convergence. This
procedure is detailed in Algorithm 4.1. While the function fj is dictated by the
architecture we’re aiming to train (usually representing a single layer or a block
of layers), gj serves as an auxiliary classifier, directing the learning signal (here,
supervision via labels) during its training.

Key Components: Interestingly, our approach enables the training of high-
performing Neural Networks for large-scale image classification tasks. Tradition-
ally, such layer-wise methods were mainly used for initializing neural networks
and often relied on unsupervised learning. For our experiments, we consider
{fj}j≤J to represent architectures like VGG or ResNet. We find that the choice
of auxiliary classifiers, denoted as {gj}j≤J , plays a critical role in the overall
performance. Specifically, the design of the final ”head” (e.g., the last linear
layer and pooling) has a substantial impact. More precisely, we discovered that
reducing the spatial windows of the averaging module in these auxiliary net-
works was key to achieving high performance. This observation aligns well with
the understanding that the composed functions {gj ◦ fj}j≤J lead to neurons
with smaller receptive fields. A second key element is the depth of gj , which
can significantly boost performance without requiring very wide hidden layers.

Results Figure 4.2 presents the results of our Greedy Learning strategy when
applied to ImageNet, for which we varied the depth of the corresponding aux-
iliary classifiers gj . Before training each variants, we fixed the architecture of
the gj , only adapting the input size to the output of the layer fj . We report the
accuracy for 1, 2 and 3 hidden layers, at various depths. Increasing the depth
of the auxiliary leads to good results: as aligned with standard empirical ob-
servations, depth matters. There is also a quite different behavior between the
one layer auxiliary training and others, which performs significantly worse. We
obtain the surprising result that training a sequence of 1-hidden layer Convolu-
tional Neural Networks allows to compete with the AlexNet baseline [Krizhevsky
et al., 2012]. The validation accuracy saturates after 6 layers, which is expected.
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Figure 4.2: Training and validation accuracy of a VGG-like architecture trained
on the ImageNet dataset, as classifier by the auxiliary classifier gj .

Theoretical Significance: Our research successfully demonstrates that Neu-
ral Networks with a single hidden layer can achieve noteworthy performance,
which is of interest for current theoretical understandings of Deep Neural Net-
works. Indeed, existing studies point to an asymptotic regime when the width
grows arbitrarily, often referred to as a mean-field regime [Chizat and Bach,
2018], that is closely connected to the problem of training a single-layer Neural
Network. These theoretical insights combined with some level of performance
guarantees have spurred a substantial body of research [Barak et al., 2022, Er-
gen and Pilanci, 2021, Malach and Shalev-Shwartz, 2019]. The empirical results
of our work serve as a practical validation for this theoretical line of inquiry,
emphasizing its importance.

4.2 Decoupled Greedy Learning

Via a modification of the previous algorithm, we introduce a parallelization
strategy for parallel, layer-wise training as opposed to the conventional sequen-
tial approach. Specifically, the model forwards activations through subsequent
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Algorithm 4 This is a synchronous Decoupled Greedy Learning algorithm for
updating model parameters {(θj , γj)}j≤J during one pass over a dataset D.

Input: Training samples D = {xn0 , yn}n≤N
Initialize: Parameters {θj , γj}j≤J .
for (x0, y) ∈ D do

for j ∈ {1, ..., J} do
xj+1 ← fj(xj , θj).
Compute ∇(γj ,θj)`j(θj , γj , y, xj).
(θj , γj)← Update parameters (θj , γj).

end for
end for

layers without interruption, enabling the simultaneous training of multiple lay-
ers. The efficiency of this parallelized approach is empirically validated in our
work Belilovsky et al. [2020], where we report not only improved accuracy on
the ImageNet dataset but also an enhancement in computational resource uti-
lization.

Model (training method) Top-1 Top-5
VGG-13 (K = 10) 64.4 85.8
VGG-13 (K = 4) 67.8 88.0

VGG-13 (backprop) 66.6 87.5

VGG-19 (K = 4) 69.2 89.0
VGG-19 (K = 2) 70.8 90.2

VGG-19 (backprop) 69.7 89.7

ResNet-152 (K = 2) 74.5 92.0
ResNet-152 (backprop) 74.4 92.1

Table 4.1: Top-1 and Top-5 accuracy on the ImageNet datasets of respectively a
VGG-13, a VGG-19 and a ResNet-152 for various split K. In bold, we indicated
the best performance, and we remind that our models have been trained with a
reduced learning rate scheduler, which explain the fluctuations with the numbers
reported in the works we reproduced.

The three locks to remove which limit back-propagation paralleliza-
tion. Traditional back-propagation algorithms have several inherent bottle-
necks identified by Jaderberg et al. [2017b], making them less suited for parallel
and distributed computing environments. First among these is the ’backward
lock,’ a constraint that prohibits the updating of model weights until a com-
plete propagation of forward and backward activations and gradients has been
completed. This lock makes makes difficult model parallelism beyond pipelin-
ing [Lai et al., 2023], as weight updates have to wait for the entire cycle to
finish. Several concurrent works address this issue with a relative success, see
Huo et al. [2018c,a], Choromanska et al. [2019], Nøkland [2016a].
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Second, the ’update lock’ specifies that a model cannot be updated until the
forward signal has passed through all layers to reach the network’s output. This
restriction limits the adaptability of the model, as it can not incorporate new
information until the existing data has been fully processed. Again, this con-
straint limits the speed and requires an additional synchronization step which
is not desirable. At the same time that this work was submitted, several inter-
esting approaches based on delayed gradients have appeared, namely Huo et al.
[2018b], Zhuang et al. [2021a,b]

Lastly, the ’forward lock’ is less well-defined but constrains how information
can propagate forward in the network, creating additional hurdles for efficient
computation. The forward lock basically states that a forward pass can only
happen in a specific and sequential order. It maintains a synchrony and a need
for a global orchestration, as each step of the backpropagation must be processed
in a specific order and this is not again desirable.

Removing those three locks have been a key motivation for this research, in
the specific setting of supervised Deep Neural Networks.

Related Research on Feedback Alignment and Direct Feedback Align-
ment: Feedback Alignment [Lillicrap et al., 2014b] and Direct Feedback Align-
ment [Nøkland, 2016b] are alternative training methods that circumvent the
need for traditional back-propagation to update neural network weights. Feed-
back Alignment employs a layer-wise strategy that uses random feedback to
approximate the gradients needed for back-propagation. Direct Feedback Align-
ment, a direct extension of Feedback Alignment, distinguishes itself by sending
the output of the final layer directly to each individual preceding layer, instead
of operating on a layer-wise basis.

Though these methods successfully overcome the ’backward lock’ by enabling
weight updates without waiting for a complete forward-backward cycle, they do
not alleviate the ’update lock,’ which requires the forward signal to reach the fi-
nal layer before model updates can occur. While both Feedback Alignment and
Direct Feedback Alignment have been evaluated in Deep Learning contexts [Lau-
nay et al., 2020], the efficacy and potential extensions of these methods on more
demanding benchmarks remain ambiguous [Han et al., 2020]. This suggests that
while these methods may offer some advantages in specific scenarios, they have
limitations that prevent them from fully replacing traditional back-propagation
in broader applications. We thus had explorer Decoupled Greedy Learning as
a potential solution that can harness the benefits of Feedback Alignment and
Direct Feedback Alignment without the associated performance compromises.

Method: avoiding the reliance on upper modules A major obstacle to
update unlocking is the heavy reliance on the upper modules for feedback. To
address this issue, we the joint learning objective of Greedy Learning to not
require global feedback: the Algorithm 3 is naturally update and backward un-
lock. Our greedy learning objective can be then thought as being solved with
an alternative optimization algorithm, which permits decoupling the computa-
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tions and achieves backward and update unlocking. It can be augmented with
replay buffers [Lin, 1992] to permit forward unlocking which is a challenge not
effectively addressed by any of the prior work.

Results of Decoupled Greedy Learning For our experiments, we utilized
a streamlined training scheduler that operated over a condensed 45-epoch train-
ing period. Our experimental validation was primarily conducted on the stan-
dard ImageNet dataset, and the outcomes are elaborated in Table 4.1. We
selected three well-established neural network architectures for this purpose:
VGG-13, VGG-19, and ResNet-152. The parameter K signifies the number of
subdivisions or ’slices’ into which a given Convolutional Neural Network was
partitioned. Our results indicate a clear trade-off: increasing the number of
splits K generally led to a noticeable decline in the model’s accuracy. This
effect was particularly pronounced in the case of VGG-13.

Practical Advantages of Decoupled Greedy Learning Upon implement-
ing the Decoupled Greedy Learning strategy, we identified two distinct advan-
tages. The first is related to computational distribution: Decoupled Greedy
Learning allows for the execution of the algorithm across multiple machines in
a model parallelism fashion, each dedicated to the computations related to a
specific layer of the neural network. This facilitates a form of horizontal scaling
that is particularly beneficial for large-scale applications. The second advantage
is more nuanced but equally impactful. Decoupled Greedy Learning enables
model parallelism, offering the flexibility to dynamically load and unload net-
work weights. This allows for the training of substantial neural architectures
even on hardware with limited resources. For instance, we successfully trained
a ResNet-152 model on a single GPU by dividing the model into two halves,
achieving this with only a negligible loss in accuracy, as indicated in Table 4.1.

Significance for Biological Plausibility Decoupled Greedy Learning offers
a solution to the weight transport problem, an issue that has long been a point
of contention in the quest for biologically plausible neural networks. This is-
sue is most often cited in critiques of the back-propagation algorithm, which
is widely considered biologically implausible due to the weight transport prob-
lem and other factors [Bartunov et al., 2018, Nøkland, 2016a, Lillicrap et al.,
2014a, Lee et al., 2015, Ororbia et al., 2018, Ororbia and Mali, 2019]. While
alternative methods such as Directed Feedback Alignment have been proposed
to sidestep this problem, these approaches have yet to demonstrate scalability
to large datasets. For example, existing methods have achieved a top-5 accu-
racy of only 17.5% on ImageNet, in contrast to the reference model’s 59.8%
accuracy [Bartunov et al., 2018]. Concurrently, there has been work focused
on biologically plausible models, such as the studies by Nøkland and Eidnes
[2019], which build upon previous results from Mostafa et al. [2018]. Further-
more, note that these models have not explored the capabilities for unlocking
or asynchronous training and currently lack the scalability to manage datasets
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as large as ImageNet. Therefore, the development and application of Decoupled
Greedy Learning present an avenue for achieving biologically plausible, scalable
models, filling an interesting gap in the existing literature.

4.3 Improving Decoupled Greedy Learning with
Forward Gradient

One of the central questions in my research on Decoupled Greedy Learning in-
volves closing the performance gap with traditional End-to-End training. More
specifically, I tried to answer to the following question: can DGL be competitive
using solely a limited amount of resources? Preliminary experiments indicated
that if gj is designed so that gj ◦ fj has equivalent depth to the targeted ar-
chitecture, then it becomes feasible to match the performance of a standard
End-to-End setting. This suggests that the quality of the approximation of the
End-to-End gradient may be a key criterion for local learning to reach End-to-
End levels of accuracy. However, this approach is not without its drawbacks, as
it incurs considerable computational overhead without a clear justification.

In Fournier et al. [2023], our work started with the simple observation that
a well-defined goal of a local method at depth j would be to approximate ∇(` ◦
fJ ◦ ... ◦ fj+1) with ∇(` ◦ gj), or in another words, to obtain that

∇(` ◦ gj) ≈ ∇(`J ◦ fJ ◦ ... ◦ fj+1) . (4.3)

However, in a Greedy Learning setting, a layer has a limited access to feedbacks
from upper layers, which makes this approximation task almost infeasible. In
the following, we will write Fj , ` ◦ fJ ◦ ... ◦ fj+1.

Dataset CIFAR-10 ImageNet32
Space (Method) Activ. Weight Activ. Weight

End-to-End 94.3 ± 0.1 53.7
Local, CNN 79.0 ± 1.0 88.0 ± 0.4 7.3 40.0
Local, MLP 84.7 ± 0.3 88.7 ± 1.2 21.8 37.4

Local, Linear 46.7 ± 2.5 86.1 ± 1.4 10.0 23.3

NTK, CNN 37.7 ± 0.1 50.1 ± 1.0 2.0 3.6
NTK, MLP 50.3 ± 0.4 49.7 ± 0.6 7.5 3.9

NTK, Linear 49.9 ± 1.0 48.3 ± 0.7 4.2 3.9

Gaussian 38.9 ± 0.9 50.0 ± 0.8 4.9 4.9
Rademacher 38.0 ± 1.5 49.8 ± 0.2 5.5 4.6

Table 4.2: Accuracy on CIFAR-10 and ImageNet-32 using a Forward gradient
for either the weight update or the activation update. Best performances are
highlighted in bold.
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Introduction to the Forward-Gradient Algorithm. The Forward-Gradient
Algorithm [Franceschi et al., 2017] offers a way to compute directional deriva-
tives along a given direction u, which is represented as 〈∇f(x), u〉u. While
back-propagation is commonly used for this purpose, the Forward-Gradient Al-
gorithm achieves the same result using only forward passes, which involve prop-
agating both activations and directional derivatives. Essentially, the algorithm
applies the chain rule to compute d(f ◦ g)(x).u = df(g(x)).(dg(x).u) through a
straightforward forward computation, which involves first computing g(x) and
dg(x).u, which are then propagated to the next layer, which is here f . This
method adds a slight computational overhead due to the propagation of gradi-
ents. In Ren et al. [2023], the Forward-gradient algorithm has been proposed
as a plausibly biological alternative to back-propagation, which scales on Ima-
geNet, as it leads to an unbiased estimate of the gradient. Indeed, as also noted
in Silver et al. [2021], Baydin et al. [2022] if u ∼ N (0, Id), it is straightforward
to note that

E[〈∇f(x), u〉u] = ∇f(x) . (4.4)

Applicability to Local Learning In the context of local learning, this opens
the way to obtaining improved estimates of the End-to-End gradient solely via
forward passes. Indeed, we can now compute with a forward pass based on a
guess uj the directional derivative given by

〈Fj , uj〉uj . (4.5)

While several ”gradient guesses” could be used, a relatively natural candidate
to the gradient ”guess” is thus

uj =
∇(`j ◦ gj)
‖∇(`j ◦ gj)‖

.

In this context, Equation 4.5 serves as the best linear approximation of Fj
along the given direction uj . Despite extensive experimentation, we were unable
to identify a setting where this approximation proved advantageous. As an
alternative approach, we conducted an ablation study to evaluate the impact of
various components.

With two students, Louis Fournier and Dr. Stéphane Rivaud, we carried out
a comprehensive analysis of this method across multiple datasets and algorith-
mic variations which we discuss next.

Ablation experiments to understand the limit of Forward Gradient
A sample of result can be seen in Table 4.2, obtained from the numerous exper-
iments performed in Fournier et al. [2023]. We studied several potential guesses
uj on the CIFAR-10 and ImageNet-32 datasets, using a layer-wise split. Three
classes were used: the Local refers to a supervised auxiliary Neural Network,
potentially a Convolutional Neural Network, or a Multi-Layer Perceptron or a
Linear Layer. Second, we also investigated if such supervision could lead to
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anything effective if we make this random neural network random (in practice,
we simply reinitialize at every iterations the model) - this approach is very sim-
ilar to consider a finite width random Neural Tangent Kernel (see Jacot et al.
[2018]. Thirdly, we proposed to use random guesses as in Silver et al. [2021],
Satorras et al. [2021]. The weight or activation depends if the correction has
been applied on the gradients computed w.r.t. the weights or the activations.
Without any surprise, the more prior we incorporate, the better are the results.
The Multi-Layer Perceptron appears to be quite competitive, yet the best per-
formance on ImageNet 32are obtained with a gradient weight estimation via a
Convolutional Neural Network.

The limit of Local Losses While local losses allow a great amount of paral-
lellization, there are at least two outcomes: (a) local losses still lack the gradient
estimate quality of end-to-end (b) sometimes, it is difficult to infer an appro-
priate local-losses: in the case of generative model, finding a good layerwise
criterium is an open question.
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Chapter 5

Data-parallelism:
Asynchronous
Decentralized Algorithms

This chapter is based on the works:

• Adel Nabli and Edouard Oyallon. Dadao: Decoupled accelerated decen-
tralized asynchronous optimization. In International Conference on Ma-
chine Learning, pages 25604–25626. PMLR, 2023b which is discussed in
Section 5.3,

• Adel Nabli and Edouard Oyallon. Decentralized asynchronous optimiza-
tion with dadao allows decoupling and acceleration. preprint, 2023a is an
extension which studies particularly graphs and discussed in Section 5.2,

• Adel Nabli, Eugene Belilovsky, and Edouard Oyallon. A2CiD2: Accel-
erating asynchronous communication in decentralized deep learning. Ad-
vances in Neural Information Processing Systems, 2023 is an algorithm
which focuses on acceleration communications for Deep Learning settings,
discussed in Section 5.4.

The main student involved is Adel Nabli.
The over goal of this chapter is to propose asynchronous procedures to solve

problems with a separable structure

inf
x∈Rd

n∑
i=1

fi(x) , (5.1)

where each fi : Rd → R is a function with some regularity, e.g., L-smooth and
µ-strongly convex. Solving Equation 5.1 via a first-order method can be com-
putationally intense, as it requires calling n data queries or gradient oracles per
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gradient step: this is why stochastic gradient procedures are employed [Bottou
and Bousquet, 2007]. Typically, a gradient estimate is given by ∇fi(x) where
i follows a uniform distribution on {1, .., n}. In this case, it is an unbiased
estimate of 1

n

∑
i=1∇fi(x).

Optimization in decentralized context In a typical decentralized context,
one has a network of n nodes, whose topology is determined by a (potentially
directed) graph with edges given by E ⊂ {1, ..., n} × {1, ..., n}. In this case, one
often introduces the concept of connectivity matrice [λij ]ij , where λ is a n× n
matrix so that λij = 0 iff (ij) 6∈ E .

Each node has a local memory, and has a gradient oracle access to ∇fi. In
most of the decentralized works, the communication corresponds to a global
communication step, meaning that all edges involved simultaneously spike dur-
ing a communication.

Local SGD and mini-batch SGD While mini-batch SGD relies on a an
aggregation of results on a central worker, local SGD [Stich, 2018, Woodworth
et al., 2020] takes the approach to perform more local steps in order to avoid
communication overhead. Yet, local SGD does not enjoy a variance reduction
as mini-batch SGD.

Counting communication. While most decentralized works count the num-
ber of communication rounds, this metric does not make sens in an asynchronous
setting. Instead, we propose to count the expected number of edges which are
spiking (i.e., are activated), as in Boyd et al. [2006b].

Toward asynchrony: stochastic algorithms in decentralized context?
In Table 5.1, I summarize the lower bounds, that I am aware of, for decentralized
and centralized algorithms with a finite sum structure (obtained from Scaman
et al. [2017] and Woodworth and Srebro [2016]). In the case of the centralized
setting, local SGD could allow to reduce the communication rate (i.e., less than
one communication per gradient), yet I am unaware of lower bounds. Similarly,
the limit of stochastic algorithms in the decentralized learning is slightly unclear
to me. In the centralized setting, stochastic algorithm lower the number of gra-
dient oracle calls by using variance reduction: however, it is slightly unclear how
to apply this technique in a decentralized algorithm optimal in communication,
where there is no common buffers to share information... Asynchrony brings
an additional challenge, as the gradients are potentially neither computed w.r.t.
the same time, nor the same parameters. Filling this table could correspond to
future exciting research directions.

Discussion and organization of this chapter The first Section 5.1 of this
chapter will discuss randomized gossip algorithm, which highly motivates the
concept of asynchronous algorithm and this research. We explain in Section
5.2 how to further accelerate those algorithms. Based on the very exciting
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Table 5.1: Summary of lower-bounds for communication and gradient oracle
costs for L-smooth and µ-strongly convex functions, to solve Equation (5.1).
Here, n is the number of workers (and the length of the finite sum), while γ is
the spectral gap. Note that for a star-graph, γ = n.

Decentralized Centralized
Stochastic Deterministic Stochastic Deterministic

Grad. ? log 1
εn
√

L
µ log 1

ε (n+
√
nLµ ) log 1

εn
√

L
µ

Comm. ? |E|√γ log 1
ε

√
L
µ ? ?

works Kovalev et al. [2021a], Even et al. [2021], we designed DADAO in Nabli
and Oyallon [2023b], as it is an example of asynchronous algorithm which gives
a practical and theoretical benefits, and Section 5.4 explains to apply this tech-
nique to a Deep Learning setting.

Reminders on Stochastic Differential Equation For Ξ a measurable
space, let x : R+ × Ξ → Rd be a random process adapted to the filtration
{Ft}t generated by a Poisson Process Nt, whose dynamic follows (with a small
abuse in notations)

dxt = f(xt)dt+ g(xt)dNt . (5.2)

In this case, for any smooth potential V : Rd → R+, we have via Itô’s for-
mula [Karatzas and Shreve, 1991]

V (xt)−V (x0) =

∫ T

0

〈∇V (xu), f(xu)〉+
(
V (xu+g(xu))−V (xu)

)
du+Mt , (5.3)

where Mt ,
∫ T

0

(
V (xu + g(xu))− V (xu)

)
dNu −

∫ T

0

(
V (xu + g(xu))− V (xu)

)
du

is a martingale adapted to the filtration of xt, meaning that for s ≤ t, we have

E[Mt|Fs] = Ms . (5.4)

In particular, this implies that E[Mt] = 0,∀t. The proofs of this chapter are
almost exclusively based on Itô’s formula. In other words: we have a discrete
stochastic algorithm, combined with a continuous proof which is an extremely
elegant finding of Even et al. [2021].

5.1 Basic of asynchrony: graphs and gossips

5.1.1 Non-accelerated setting

Let us consider a directed graphs with weights λij > 0 iff (ij) ∈ E . We introduce
its symmetric Laplacian given by

Λ =
∑

(ij)∈E

λij(ei − ej)(ei − ej)
T . (5.5)
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It is pretty easy to see that 1 is in the kernel of Λ and that if the graph is
connected, then the kernel is reduced to span(1). The major quantity used
to analyze gossip algorithm rates of convergence is the inverse of the smallest
eigenvalue of matrix in Equation 5.5, given by

χ1 , sup
‖x‖=1,x⊥1

1

xTΛx
≤ ∞ . (5.6)

If the graph is connected, then χ1 <∞. A consensus optimization problem
consists in finding x̄ = 1

n

∑n
i=1 xi only with pair-wise, independent communica-

tions. A standard algorithm obtained by Boyd et al. [2006b] consists simply in
studying the dynamic

dxi(t) = −1

2

∑
(ij)∈E

(xi(t)− xj(t))dNij(t) , (5.7)

where Nij is a Poisson Process with intensity λij . In this case, noting that the
dynamic also writes dE[xt] = − 1

2ΛE[xt]dt, and, we get

E[‖πxt‖2] ≤ e−
t

2χ1 ‖πx0‖2 .

In this context, to reach a specific accuracy ε, the total number of activated
edges is proportional to χ1Tr Λ log 1

ε . Interestingly, this value is invariant by
rescaling of Λ by a constant.

Comparison to the synchronous setting. For the sake of comparison,
consider a synchronous gossip algorithm that updates its state xt+1 as follows

xt+1 = Dxt − αΛxt .

Here, D is a diagonal matrix, ensuring that each update is local, and α is a non-
negative constant. Basic analysis shows that D should be the identity matrix
I, leading to a constraint on α given by

0 4 αΛ 4 2I,

and thus α ≤ 2
‖Λ‖ . This condition results in the total number of activated

edges being proportional to |E|‖Λ‖χ1 log 1
ε , which also remains invariant under

scaling. Furthermore, Tr Λ ≤ n‖Λ‖ ≤ |E|‖Λ‖, proving that asynchronous gossip
algorithms necessarily require less spiking edges compared to their synchronous
counter-part. This inequality can be large, as shown for the star graph.

Finally, let γ , ‖Λ‖χ1, which is also referred to as the spectral gap [Scaman
et al., 2017] and guide the convergence rate of decentralized algorithms. Note
that if the sum of the weights of each node is 1, then I − Λ is a contractive
matrix due to the Perron-Frobenius theorem with spectral radius 1. In other
words, ‖Λ‖ is simply to compute, and this is a standard assumption [Boyd et al.,
2006b].

The fact that stochastic communications lead to faster algorithms is not sur-
prising: stochastic algorithms demonstrate superiority over deterministic ones
[Woodworth and Srebro, 2017, Defazio et al., 2014].
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Time-varying setting. It is possible to use some time-varying weights λij(t),
The current analysis then considers that the communication speed is guided by
the most poorly connected graph, and they thus rely on

χ∗1 , sup
t>0

sup
‖x‖=1,x⊥1

1

xTΛ(t)x
. (5.8)

5.1.2 The graph resistance

For a graph with Laplacian Λ, we remind that its Moore-Penrose pseudo inverse
Λ+ is also a symmetric positive semi-definite matrix. We define the resistance
Rij between two nodes i, j (not necessarily connected by an edge) via

Rij = (ei − ej)
TΛ+(ei − ej) . (5.9)

The maximal resistance of Λ is then given by

χ2 , sup
(ij)∈E

Rij . (5.10)

We now discuss the interpretation of these quantities. The reason we will get
acceleration is that we have clearly

χ2 ≤ χ1 . (5.11)

This quantity can be substantially smaller as discussed later in Table 5.2.

First parallel: electricity. The graph resistance allows us to draw an exact
parallel with electrical resistance. Setting rij = 1

λij
, Ohm laws and Kirchhoff

laws apply [Chandra et al., 1996] and the resistance between two nodes of the
network is exactly the electrical resistance. It also means that symmetry, as
used in electricity, can be used to compute the resistance. The resistance of a
graph, thanks to the rich invariant geometric it encodes, has wide applications
in crystallography [Klein and Randić, 1993].

Second parallel: commute time. Another interpretation comes from ran-
dom walks with reversible Markov chains: let us show that the comute time
between two nodes i, j of a random walk is actually the graph resistance be-
tween i, j, up to a multiplicative constant. To stress the simplicity of our
framework, we give a simple proof. Let us assume that λij = λji. Indeed,

let us write p(i|j) =
λij∑
i λij

the reversible transition kernel from i to j. Let Hij

be the hitting time of j starting at i, which is thus in expectation defined as
Hij = E[arg inft{xt = j}|x0 = i], and Hii = 0 by convention. Stated simply,
we have the basic recursion, by considering the path i → j and i → k → j for
k ∈ N (i) so that

Hij = 1 +
∑

k∈N (i)

p(k|i)Hkj . (5.12)
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One would get with a bit of work a similar equation satisfied by Rij , however
there is no unicity to the solutions. Letting d = [

∑
k λik]i ∈ Rn and D be the

corresponding diagonal matrix, then Equation (5.12) also rewrites

∀j 6= i, 1 = [
1

2
D−1ΛH]ij or 2eTi d = eTi ΛHej . (5.13)

In other words, as Λ1 = 0, this writes

1

2
ΛHej = d− (dT1)ej or

1

2
Hej = Λ+(d− (dT1)ej) + ((Hej)

T1)1 . (5.14)

And since eTjHej = 0, this also writes

1

2
Hej = Λ+(d− (dT1)ej)− (eTj Λ+(d− (dT1)ej))1 . (5.15)

And at the end, we get

eTi Hej = 2(ei − ej)TΛ+(d− (dT1)ej) . (5.16)

Combining, we have

Hij +Hji = 2Tr Λ(ei − ej)Λ+(ei − ej) = 2Tr ΛRij . (5.17)

5.1.3 Acceleration

Tchebychev acceleration As explained in Section 5.1, cascading several
steps of gossip communication allow to obtain a contracting communication
operator: ‖(I − αΛ)bO(γ)cx‖ ≤ 1

2‖πx‖. In this case, about γ gossip steps are
needed, and this contracting step is key to most of decentralized works [Scaman
et al., 2017, Kovalev et al., 2022]. However, it is possible to compute a much
more efficient contraction, using Chebychev polynomial of order n, written Pn.
In this case, replacing (I− αΛ)bO(γ)c by Pn(I− αΛ), where n = b√γc, one also
gets ‖Pn(I − αΛ)x‖ ≤ 1

2‖πx‖. A Chebychev polynomial Pn can be computed
in roughly n communications, which reduces the number of global gossip steps
from γ to

√
γ which is a significant improvement. However, it has at least two

issues: first, it requires a synchronous rounds of communications where each
nodes spike. Second, it is also unclear how to accelerate randomly sampled
and/or time-varying graphs.

Accelerating Randomized gossip In the cas of accelerated gossip, Even
et al. [2021] showed that the following dynamic

dxt = α(x̃t − xt)dt− β
∑

(i,j)∈E
(ei − ej)(ei − ej)

TxtdMij(t)

dx̃t = α(xt − x̃t)dt− β̃
∑

(i,j)∈E
(ei − ej)(ei − ej)

TxtdMij(t) .
(5.18)
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Under appropriate parameters, which depends on χ1, χ2, this dynamic leads
to an accelerated rate of Tr Λ

√
χ1χ2 log 1

ε communications in expectations. It
is possible to show that λijRij ≤ 1 [Nabli and Oyallon, 2023b]. Thus if λij = 1,
we note that this leads to a number of exepected spiking edges of |E|√χ1 log 1

ε ,
which improves over the synchronous accelerated algorithm which will lead to
|E|
√
χ1‖Λ‖ log 1

ε activated edges.

Open questions In the time varying setting, Metelev et al. [2023] constructs
a sequence of time varying graphs, for which no acceleration is possible. This
strongly suggests that the same property should hold for randomized accelerated
gossips.

5.2 Faster gossips

We now discuss a simple relaxation that we derived in Nabli and Oyallon [2023a].
For the sake of accelerating further gossip algorithms, we considered the follow-
ing problem

minimize Tr Λ(λ)
√

2χ1[Λ(λ)]χ2[Λ(λ)] (5.19)

subject to λ ∈ C ∩ RE+ .

where we stress here the dependency of χ1(Λ(λ)) and χ2(Λ(λ)) in λ, and RE+ =
{λij ≥ 0, λij = 0 if (ij) 6∈ E} and C is a constraint on the conneectivity. For
the sake of simplicity, we will consider the contraint Tr Λ = 1 to have a global
bandwidth condition. In this case, we can show that

Lemma 1 (log-convexity lemma, from Nabli and Oyallon [2023a]). Fix ‖u‖ = 1,

u ⊥ 1 and let λ = (λij) ∈ Rn2

+ such that Λ(λ) =
∑

1≤i,j≤n λij(ei− ej)(ei− ej)T,
and let

ψ(λ, u) = uTΛ(λ)+u .

Then, λ → ψ(λ, u) is log-convex on Rn2

+ . Furthermore, λ → ψ(λ, u) is strictly
convex on the convex set {λ, χ1[Λ(λ)] <∞} of the connected graphs.

While important, this Lemma does not imply that λ→ χ2[Λ(λ)] is convex.
Indeed, the supremum is taken over a set of edge dynamically defined through
λ, E(λ) , {(i, j), λij > 0} which makes it non-convex: an optimal solution
might lead to removing some edges from the graph and consider the maximum
effective resistance of this sub-graph. In fact, it also shows that contrary to
the situation of minimizing χ1[Λ(λ)] in Boyd et al. [2006a], there might be no
unique minimum. This forces us to slightly relax this condition by taking the
supremum over a predefined fixed set of edges, and we introduce for any λ ∈ RE+

χE2 (λ) ,
1

2
max

(i,j)∈E
(ei − ej)>Λ+(λ)(ei − ej) .
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This function is convex, and we note that by definition χE2 (λ) ≥ χ2[Λ(λ)]. We
have the following Lemma, obtained using Lemma 1, that shows that relaxing
χ2 with χE2 leads to a convex problem:

Lemma 2 (Strict convexity of the relaxed communication rate, from Nabli
and Oyallon [2023a]). Fix a directed graph E so that Ē is connected. Then,

λ→
√
χ1[Λ(λ)]χE2 (λ) is strictly convex on RE+.

Table 5.2: Communication rates using uniform weights and optimal rates under
the condition C1. To reach ε-precision, multiply the complexities by a O(log( 1

ε )).
Type Renormalization by the degree Optimal weights
Graph Star Line Complete d-grid Barbell Star Line Complete d-grid Barbell

Sync Gossip n2 n3 n2 n1+ 2
d n4 n2 n3 n2 n1+ 2

d n2

Acc. Sync. Gossip n
3
2 n2 n2 n1+ 1

d n3 n
3
2 n2 n2 n1+ 1

d n2

Async. Gossip n n3 n n1+ 2
d n3 n n3 n n1+ 2

d n

Acc. Async. Gossip n n2 n n1+ 1
d n5/2 n n2 n n1+ 1

d n

In this case, it can be shown that minimizing Equation (5.2) is equivalent
to minimizing the following SDP

minimize t1 + t2

subject to λ ∈ uC, u ≥ 1, λij ≥ 0 ∀ (i, j) ∈ E
Λ =

∑
ij λij(ei − ej)(ei − ej)T(

Λ u(ei − ej)
u(ei − ej)T t1

)
< 0 ∀ (i, j) ∈ E

(
Λ I− 1

n11T

I− 1
n11T t2I

)
< 0 .

Some results are provided in Figure 5.2, which indicate substantial improve-
ment thanks to our method compared to predefined weights, and Table 5.2
summarizes some thereotical rates and a comparison with synchronous algo-
rithms.

5.3 DADAO: Decoupled Accelerated Decentral-
ized Asynchronous Optimization

The goal of this joint work with Adel Nabli, was to propose a theoretical frame-
work for asynchrony, published at ICML [Nabli and Oyallon, 2023b]. The basis
of DADAO follows an observation stated in Kovalev et al. [2020, 2021a], Salim
et al. [2022], Hendrikx [2022], that the Objective (5.1) can be rewritten equiva-
lently, for 0 < ν < µ,

inf
x∈Rn×d

sup
y∈Rn×d
z∈Rn×d

n∑
i=1

fi(xi)−
ν

2
‖x‖2 − 〈x, y〉 − 1

2ν
‖πz + y‖2. (5.20)
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Figure 5.1: Comparison between Standard Randomized Gossip, Accelerated
Randomized Gossip, using both a Gossip matrix optimized via SDP and the
one with uniform edge weight. Average of 50 runs on random geometric graphs
of size, from left to right, for n = 12 nodes. Note that, systematically, our
method leads to a substantial speed improvement.

Studying the saddle points of this problem have led to propose the following
dynamic, where N(t) is a Poisson Process, Mij(t) are Poisson Processes deter-

mined by Λ, and η, η̃, γ, γ̃, α, α̃, β, β̃, δ, δ̃ are scalar parameters

dxt = η(x̃t − xt)dt− γ(∇f(xt)− νxt − ỹt) dN(t)

dx̃t = η̃(xt − x̃t)dt− γ̃(∇f(xt)− νxt − ỹt) dN(t)

dỹt = −θ(yt + zt + νx̃t)dt+ (δ + δ̃)(∇f(xt)− νxt − ỹt)dN(t)

dyt = α(ỹt − yt)dt (5.21)

dzt = α(z̃t − zt)dt− β
∑

(i,j)∈E
(ei − ej)(ei − ej)

T(yt + zt)dMij(t)

dz̃t = α̃(zt − z̃t)dt− β̃
∑

(i,j)∈E
(ei − ej)(ei − ej)

T(yt + zt)dMij(t) .

This dynamic shares some similarity with Kovalev et al. [2021a], as it relies
also on the saddle points of Equation (5.20). However, contrary to Kovalev
et al. [2021a], we do not employ a Forward-Backward algorithm, which requires
both an extra-inversion step and additional regularity on the considered proxi-
mal operator. Not only does this condition not hold in this particular case, but
this is not desirable in a continuized framework where iterates are not ordered
in a predefined sequence and require a local descent at each instant. Another
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major difference is that no Error-feedback is required by our approach, which
allows unlocking asynchrony while simplifying the proofs and decreasing the
required number of communications. It is worth noting the non-trivial term
(yt + zt + νx̃t)dt of line 3 of Equation (5.21) which appears crucial to synchro-
nize the couples of variables {xt, yt, x̃t, ỹt} and {zt, z̃t}. This mixing allows the
decoupling and the communication acceleration: indeed, without it, there would
be no interaction between communications (lines 4-6 of Equation (5.21)) and
computations (lines 1-3 of Equation (5.21)). Note also that no global ”ping”
routines, as in gradient tracking is required by this dynamic: it is a fully asyn-
chronous algorithm. The following theorem allows us to control the rate of
convergence of the dynamic of Equation (5.21):

Theorem 5.3.1 (Adapted from Nabli and Oyallon [2023b]). Assume each fi
is µ-strongly convex and L-smooth. If Λ is connected, then there exists some
parameters for the dynamic Eq. (5.21), such that for any initialization x0 ∈
ker(π), and x̃0 = x0, y0 = ỹ0 = ∇f(x0) − µ

2x0, z0 = z̃0 = −πy0, we get for
t ∈ R+

E[‖xt − x∗‖2] ≤ (
1

2
+

23

8

L

µ
+ 2

L2

µ2
)‖x0 − x∗‖2e

− t
16
√

2
√
χ1χ2

√
µ
L .

Complexity analysis: In this case, if the algorithm runs for a time t, the
expected number of gradient oracle calls is thus nt and the expected number
of communication is Tr Λt. In other words, to reach precision ε, one needs

n
√
χ1χ2

L
µ log 1

ε gradient oracle calls and Tr Λ
√
χ1χ2

L
µ log 1

ε communications.

In other words, replacing Λ by Λ̃ =
√
χ1χ2Λ (which leads to accelerating the

number of communication per unit time), leads to n
√

L
µ log 1

ε gradient oracle

calls and Tr Λ
√
χ1χ2

L
µ log 1

ε communications.

Open question and problems: The number of gradient calls for DADAO,

being a stochastic algorithm, to reach ε-precision corresponds to n
√

L
µ log 1

ε . At

the same time, Woodworth and Srebro [2017] have pointed out that the rate of

(n +
√
nLµ ) log 1

ε oracle calls to reach an ε level of precision, is a lower-bound

for stochastic algorithms. However, there might be two issues to overcome to
obtain this rate.

The first aspect pertains to the absence of shared variables for result aggrega-
tion. For variance reduction techniques, a common practice involves employing
a centralized buffer for aggregating variables or gradients. The absence of such
a shared variable questions the possibility of DADAO to reach this rate.

The second issue relates to worker synchronization. In DADAO, synchro-
nization among workers is generally avoided, allowing individual workers to
make independently compute gradients and communicate. This feature is at
odds with traditional variance reduction strategies in convex optimization, where
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Figure 5.2: Training loss for ImageNet using 128 batch size, with an equal num-
ber of communications and computations per worker. We display the training
loss for various number of workers (up to 64), using A2CiD2, for the challenging
ring graph.

Table 5.3: Training times on CIFAR10 (± 6s).
n 4 8 16 32 64

Ours t (min) 21.4 10.8 5.7 3.2 1.9
AR t (min) 21.9 11.1 6.6 3.2 1.8

simultaneous computation and aggregation are usually necessary for effective re-
duction of variance. Thus, reconciling the optimality of DADAO’s complexity,
particularly in a stochastic and decentralized context, is an open question.

5.4 A2CiD2: Accelerating Asynchronous Com-
munication in Decentralized Deep Learning

A major drawback of DADAO is its non applicability to Deep Learning settings,
as there is no equivalent of duality in Deep Learning: the formulation Equa-
tion (5.20) does not hold. However, in most of settings, communication is a
linear operation, which in fact results from a convex problem. A major limit of
Chebyshev acceleration is that it requires synchronous, sequential rounds, and
that nodes simultaneous spike. Consequently, this approach is not applicable
to an asynouc Deep Learning setting. The objective of Nabli et al. [2023] is
to accelerate approaches like Zhang et al. [2015], Blot et al. [2016], Daily et al.
[2018], Lian et al. [2018], Assran et al. [2019], which proposes a training algo-
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rithm whose particularity is to simultaneously perform asynchronous gradients
and communication in parallel.

Dynamic. In A2CiD2, we consider the following dynamic, using similar no-
tations to Section 5.3, for a setting with n workers

dxit = η(x̃it − xit)dt

− α
∑

j,(i,j)∈E

(ei − ej)(ei − ej)TxtdMij(t)

− γ
∫

Ξ

∇Fi(xit, ξi) dNi(t, ξi) , (5.22)

dx̃it = η(xit − x̃it)dt

− α̃
∑

j,(i,j)∈E

(ei − ej)(ei − ej)TxtdMij(t)

− γ
∫

Ξ

∇Fi(xit, ξi) dNi(t, ξi) . (5.23)

Here, Ξ is a measurable space and dNi(t, ξi) is a Poisson measure with intensity
dt⊗dP(ξ) defined over R+×Ξ, while Mij(t) is as above. If η = 0, this dynamic is
equivalent to a standard Stochastic Push algorithm, where spikes are modeled by
Poisson processes. However, by adding a second momentum variable, we are able
accelerate the communication. We will now consider two generic assumptions
obtained from Koloskova et al. [2020], which allow to specify our lemma to
convex and non-convex settings. Note that the non-convex Assumption 5.4.2
generalizes the assumptions of Lian et al. [2018], by taking M = P = 0.

Assumption 5.4.1 (Strongly convex setting). Each fi is µ-strongly convex and
L-smooth, and:

1

n

n∑
i=1

Eξi [‖∇Fi(x, ξi)−∇fi(x)‖2] ≤ σ2 and
1

n

n∑
i=1

‖∇fi(x∗)−∇f(x∗)‖2 ≤ ζ2 .

and

Assumption 5.4.2 (Non-convex setting). Each fi is L-smooth, and there exists
P,M > 0 such that:

∀x ∈ Rd,
1

n

n∑
i=1

‖∇fi(x)−∇f(x)‖2 ≤ ζ2 + P‖∇f(x)‖2 ,

and,

∀x1, ..., xn ∈ Rd,
1

n

n∑
i=1

Eξi‖∇Fi(xi, ξi)−∇fi(xi)‖2 ≤ σ2 +
M

n

n∑
i=1

‖∇fi(xi)‖2 .
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Now, we were able to obtain the following rate, which are further compared
in Table 5.4:

Theorem 5.4.3 (Convergence guarantees, adapted from Nabli et al. [2023]).
Assume that {xt, x̃t} follow the dynamic Equation (5.22) and the network con-
nectivity is given by χ1, χ2 as in Section 5.3. Assume that 1x̄0 = x0 = x̃0 and let
T the total running time. Then, under Assumptions 5.4.1 and 5.4.2, depending
if χ = χ1 or χ =

√
χ1χ2, there exists some parameters η, α and a step size such

that

• (strong-convexity) if each function is µ-strongly convex and L-smooth,
then γ < 1

16L(1+χ) and

E‖x̄T − x∗‖2 = ‖x̄0 − x∗‖2e−T
µ

128χL +
64

µ2T
(
√

2(
2

n
+ 1)σ2 + (

1

n
+ 8χ+ 1)ζ2) ,

• (non-convexity) if each function is L-smooth, there are some constants
a, b > 0 such that

1

T

∫ T

0

E‖∇f(xt)‖2 dt ≤
4aL(1 + χ)

T
(f(x0)− f(x∗))

+ b
(√L(f(x0)− f(x∗))

T
((1 +

1

n
)σ2 + (1 +

1

n
+ χ)ξ2) .

Also, the expected number of gradient step is nT and the number of communi-
cations is Tr (Λ)T .

Method Strongly Convex Non-Convex

Koloskova et al. [2020] σ2

nµ2ε +
√
L
χ1ξ+

√
χ1σ

µ2
√
ε

+ L
µχ1

Lσ2

nε2 + L
χ1ξ+

√
χ1σ

ε3/2
+ Lχ1

ε

Ours
σ2+
√
χ1χ2ξ

2

µ2ε + L
µ

√
χ1χ2 L

σ2+
√
χ1χ2ξ

2

ε2 +
L
√
χ1χ2

ε

Lian et al. [2018] - Lσ
2+ξ2

ε2 + nLχ1

ε

Table 5.4: Comparison of convergence rates for strongly convex and non-convex
objectives against concurrent works in the fixed topology setting. We neglect
logarithmic terms. Observe that thanks to the maximal resistance χ2 ≤ χ1, our
method obtains substantial acceleration for the bias term.

Implementation. As observed by a couple of students, implementing an effi-
cient Poisson Process simulator poses significant challenges. A straightforward
implementation fails to fully harness the method’s maximal speed. This limita-
tion is particularly due to the synchronous nature of the CUDA event manager,
which schedules events in a predetermined ordern which is suboptimal for our
use case. Therefore, we have adapted our simulator to mitigate these speed
limitations. The achieved speed-ups across various datasets are summarized in
Table 5.3, where we varied the number of workers from n = 4 to n = 64.
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Results. Figure 5.2 illustrates the acceleration gains achievable using A2CiD2.
As the number of workers increases, the equivalent batchsize increases [Goyal
et al., 2017], which leads to a performance drop, which is particularly visible
when scaling up to 64 workers. Although we employed the strategy suggested in
Goyal et al. [2017], a performance gap remains. However, our observations in-
dicate that A2CiD2not only minimizes this gap but also consistently enhances
performance across various settings. In particular, it also allows to reduce the
consensus distance between workers, as predicted by our theory.

Open Questions. Variance reduction techniques are generally not applicable
to Deep Learning, as indicated in Gower et al. [2020]. However, these techniques
aim to reduce the number of gradient calls, and thus a hybrid primal formulation
could be helpful, for doing so and remains an open question.
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Chapter 6

Conclusion and perspectives

6.1 Conclusion

Throughout this manuscript, I have proposed an exploration of various research
avenues that intertwine graphs and optimization. Chapter 3 presents multi-
ple negative outcomes from my efforts to implement Harmonic Analysis and
Signal Processing techniques in the realm of Geometric Deep Learning. Chap-
ters 4 and 5 address methods aimed at enhancing the parallelization potential
when training a Deep Neural Network, all while ensuring optimal performance.
Specifically, Chapter 4 delves into the back-propagation algorithm, emphasiz-
ing model parallelism. In contrast, Chapter 5 offers a systematic exploration
of decentralized asynchronous algorithms. Both chapters suggest techniques to
further distribute the computational tasks of training. Yet, there remain sev-
eral challenges that may limit their widespread adoption of the techniques that
I presented, notably:

• Lack of practical implementations. Many of the algorithms I have
introduced are based on simulators or pseudo-simulators rather than prac-
tical implementations, which reduce their impact and benefits.

• Limits of asynchronous/randomized decentralized methods. While
the deterministic decentralized framework appears well-understood [Sca-
man et al., 2017], the challenge of defining and achieving the lower bounds
for asynchronous methods remains an open question. This aims at filling
Table 5.1.

• Beyond supervised models and vision tasks. The majority of the
methodologies I have discussed are tuned for a supervised vision model,
which is a significant restriction.

• Identifying the inductive biases of Geometric Deep Learning.
The manipulation of many objects would be of interest for geometric Deep
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Learning (for instance, vector fields, Gauge, sheaf...), which would allow
to design differentiable models amenable to process supervise those data.

• Reducing accuracy gap. Surely, the most challenging lock is to find
techniques to reduce the current accuracy gap with End-to-End back-
propagation training.

6.2 Perspectives and Future Contributions

Looking ahead, I am deeply committed to further expanding my research in
distributed learning and the interactions with other discplines. A central long-
term goal of mine is to design a collaborative framework for training gigantic
models tailored to scientific applications. This approach would leverage collab-
orative resources, echoing initiatives seen in other domains, such as Anderson
et al. [2002], where users on the internet collaborate to annotate astronomical
datasets. With this in mind, I would like to outline several research directions
that I am eager to delve into, in the coming years:

Efficient Integration of Data-Parallelism and Model-Parallelism. Chap-
ters 4 and 5 delve into model-parallelism and data-parallelism, respectively.
These approaches segment layers and data into smaller portions for parallel
processing. While each two of those training methodology holds potential for
being independently combined, offering enhanced levels of parallelization, the
advantages and trade-offs of merging them are not always evident and there
should be some automatic algorithms to decide an optimal type of parallelism.
In fact, questions linger regarding the computational and performance optimal-
ity of such combinations, depending on the hardware. Furthermore, I would
like to design a unified solution, using both model and data parallelism, that
would improve upon the standard but independent combination of those two
paradigms.

For example, one scenario which interest me is to train large swarm of lay-
ers, i.e., Neural Networks whose multiple copies of layers are independently
processed yet which should behave as a single model. Here, I am curious to
explore the potential benefits of integrating Local SGD Stich [2018] with Local
Learning, such as the reduction in required communication compared to a cen-
tralized approach while maintaining a high level of parallelization. My future
research endeavors will focus on the formulation of this type of strategy, in order
to derive algorithms and methodologies to amplify parallelization and locality.

Investigating Alternatives to Greedy Learning. Although Greedy Learn-
ing, detailed in Chapter 4, offers distinct advantages, it is primarily suited to
supervised contexts, and in particular classification. This is attributed to the
necessity of having a preconceived notion of the end task when designing a lo-
cal objective. Indeed, it is well-known that traditional Deep Neural Networks
progressively achieve linear separability [Zeiler and Fergus, 2014]. However,
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in generative contexts, for example, integration of multiple image scales is es-
sential [Angles and Mallat, 2018] and there is no clear notion of progressive
linear separability. In other words, producing a high-quality image requires
an interplay of different scales, necessitating a refinement across these scales.
However, for a Local Learning procedure, a layer can only process one scale at
time. Such a requirement clashes with the inherent locality of Greedy Learning
strategies: indeed, auxiliary classifiers often use small receptive fields (spatially
local, without global interaction) or aggressive spatial averagings (which break
spatial localization, and thus dilute the notion of scale). U-net [Zhang et al.,
2018] could be a potential solution to overcome this issue, however, this makes
the solution architecture dependent, and thus less generic.

To make headway towards more generic decentralization and more distributed
algorithms, we thus must seek alternatives to Local Greedy Learning. An ideal
alternative would ensure that updates rely on localized information while pre-
serving pertinent layer-specific data without dilution from other layers’ com-
putations. The notion of stale gradients [Zhuang et al., 2021b] is a potential
contender. Being loss-agnostic, it paves the way for more parallelization and
it has demonstrated remarkable performance on standard benchmarks, as seen
in Xu et al. [2020]. This approach computes gradients in parallel, by storing
intermediary activations, resulting in updates governed by delayed gradients.
However, challenges like memory overhead, attributable to activation storage,
limit the broader adoption of such techniques. I would like to propose alterna-
tives to limit these overhead and to allow this strategy to be competitive, for
instance using compression or by unlocking the need to store activations.

Mitigating the Need for Grid Search. The promise of decentralized asyn-
chronous learning, as highlighted by Nabli et al. [2023] in Chapter 5, is unde-
niably compelling, due to the achieved reduction in communication consensus.
However, its practical realization has necessitated an extensive benchmarking,
which would add on top of the standard ad-hoc engineering trial and error of
Neural Network design. The later is primarily done to identify hyper-parameters
that avoid potential performance drops. This added computational overhead
is highly undesirable, especially given the frequent need to recalibrate hyper-
parameters when using a new datasets or new model. Note that for established
datasets and standard baselines, this procedure is often non-existent, as the
community consistently refines the ”optimal” hyper-parameters, ensuring top
performance [Paszke et al., 2019]. However, such collaborative optimization has
not yet been deployed in the realm of decentralized learning.

One of my objectives would be to propose a methodology to produce ro-
bust and generic starting hyper-parameters for decentralized learning. However,
given the lack of predictive theoretical results in decentralized Deep Learning,
this pursuit is challenging since current practices are predominantly empirical.
A promising direction seems to consider meta-learning tools, such as [Metz et al.,
2022]. These tools, despite tailored for centralized setups, train small Convolu-
tional Neural Networks across a variety of commonly encountered problems in
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application, faster than their hand-engineered counter-part. The basic idea is
to learn an optimizer to train faster a collection of models. In a decentralized
setting, such optimizers would have to be topology aware, while being local
and aiming at reducing communication, which is a significant difference with
this setting. Such tools could substantially reduce reliance on exhaustive grid
searches, setting the stage for less grid-search dependent fine-tuning of decen-
tralized frameworks in the future.

Collaborative Training with Guarantees. One ambitious goal of my re-
search, which I aspire to realize in the coming years, is to craft a novel collab-
orative training framework. Its goal would be to facilitate secure, efficient, and
dependable collaborative training across diverse organizations or computational
nodes and clusters. At present, ultra-scale computing remains exclusive to a
minority of people with access to super-computers and clusters. However, ini-
tiatives such as Anderson et al. [2002], which champion resource-sharing among
users, have catalyzed remarkable advancements in various fields (here, in as-
tronomy). Delving into asynchronous decentralized techniques and exploring
how to segment colossal models into more manageable fragments can pave the
way to scalability in such endeavors.

Thus an objective of my research is to introduce models and algorithms that
empower open-source platforms to agregate together a vast array of resources.
While initiatives like [Ryabinin and Gusev, 2020, team, 2020, Rao et al., 2020,
Diskin et al., 2021, Yuan et al., 2022, Borzunov et al., 2022] already exist, I am
convinced that an additional layer of parallelization and decentralization could
further improve what is currently available. Not only should those methods
be validated empirically in practical environments and, optimistically, yet they
should also lead to the development of valuable tools for the research community,
such as open-source libraries and softwares.

Machine Learning Models for Scientific Applications: One other of my
foremost objective is to harness the capabilities of large models and learning
algorithms for the advancement of scientific research. Indeed, Deep Learning
models have immense potential to push the boundaries of other disciplines [Rish,
2023, Taylor et al., 2022]. My aspiration is to reposition Deep Learning not just
as a supplementary engineering tool, but as an integral driver of innovation
across fields like biology, physics, mathematics, chemistry, and beyond. I posit
that Deep Learning can lead to novel ideas for researchers and offer ground-
breaking directions, thus serving as a catalyst in these scientific disciplines.

In the future, aligned with my endeavors in collaborative training, I believe in
the training of large-scale models (e.g., LLMs, foundation models...) tailored for
scientific data or even academic papers. By fine-tuning those models trained on
specific tasks that researchers try to solve, my aim is to enhance the processing
of voluminous scientific productions. This has already significantly sped up
scientific discoveries by reducing the time needed for data analytics, evaluation,
simulations and inferential reasoning [Reichstein et al., 2019, Choudhary et al.,
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2022, Bhatt et al., 2021, Lan et al., 2022, Bourilkov, 2019, Guest et al., 2018,
Angermueller et al., 2016, Silver et al., 2016, Goh et al., 2017].

Might we develop generic solvers and assistants for research scientists?
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Atılım Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip
Torr. Gradients without backpropagation. arXiv preprint arXiv:2202.08587,
2022.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layer-
wise learning can scale to imagenet. In International conference on machine
learning, pages 583–593. PMLR, 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled
greedy learning of cnns. In International Conference on Machine Learning,
pages 736–745. PMLR, 2020.

Eugene Belilovsky, Louis Leconte, Lucas Caccia, Michael Eickenberg, and
Edouard Oyallon. Decoupled greedy learning of cnns for synchronous and
asynchronous distributed learning. arXiv preprint arXiv:2106.06401, 2021.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. Advances in neural information process-
ing systems, 19, 2006.

Dimitri Bertsekas and John Tsitsiklis. Parallel and distributed computation:
numerical methods. Athena Scientific, 2015.

Chandradeep Bhatt, Indrajeet Kumar, V Vijayakumar, Kamred Udham Singh,
and Abhishek Kumar. The state of the art of deep learning models in medical
science and their challenges. Multimedia Systems, 27(4):599–613, 2021.

Michael Blot, David Picard, Matthieu Cord, and Nicolas Thome. Gossip train-
ing for deep learning. In Advances in Neural Information Processing Systems,
volume 30, 2016.

60



Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Liò,
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