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Résumé

Les développeurs de logiciels critiques cherchent à concevoir des logiciels fonctionnellement
corrects, dotés de propriétés telles que la confidentialité. Cependant, la confidentialité
n’est pas une conséquence directe de la correction fonctionnelle, car il peut y avoir des
fuites par canaux auxiliaires, comme le temps d’exécution, qui peuvent aider l’attaquant
à récupérer des données secrètes.

Par exemple, un algorithme de comparaison de chaînes de caractères qui compare deux
chaînes caractère par caractère et se termine en cas de non-concordance ou renvoie un
succès lorsque les chaînes sont égales est un algorithme fonctionnellement correct pour
vérifier un mot de passe. Cependant, un attaquant peut deviner la longueur du mot de
passe en mesurant le temps d’exécution de l’algorithme, ce qui montre qu’il n’est pas
protégé contre les attaques par mesure de temps. Plus généralement, le branchement sur
des secrets peut entraîner une fuite de données secrètes, car les deux branches peuvent
avoir des temps d’exécution différents. Les processeurs modernes utilisent la prédiction
de branchement pour maximiser la performance des programmes. Par exemple, si la des-
tination d’une condition de branchement conduit à une lecture en mémoire, le processeur
contourne la vérification de la condition et exécute l’opération de lecture en mémoire de
manière spéculative. En cas d’erreur de prédiction, le processeur revient en arrière et
recommence l’exécution avec le résultat correct de l’évaluation de la condition. Bien que
le retour en arrière corrige les résultats spéculatifs, il laisse cependant une trace dans le
cache, que l’attaquant peut exploiter pour accéder aux données secrètes (illustré dans les
attaques Spectre). Ainsi, la spéculation améliore la performance globale au détriment de
la sécurité. Les effets des canaux auxiliaires ne sont pas pris en compte dans la séman-
tique formelle classique des programmes et, par conséquent, cette sémantique ne peut
pas être utilisée pour raisonner sur les hyperpropriétés telles que les attaques par canaux
auxiliaires basées sur le temps. Sans la notion de modèles formels prenant en compte les
effets secondaires produits au cours de l’exécution d’un programme, les développeurs ne
peuvent que corriger manuellement le programme pour s’assurer qu’il prenne toujours le
même temps pour s’exécuter et supposer que le compilateur ne casse pas la propriété lors
de la compilation, sans garantie formelle, du programme vers l’assembleur. Tradition-
nellement, les cryptographes ont utilisé la propriété de temps constant pour se défendre
contre les attaques par canaux auxiliaires basées sur le temps. Un programme à temps
constant n’effectue pas d’accès mémoire ni de branchement dépendant du secret. Mal-
heureusement, les optimisations effectuées par le compilateur pour accroître l’efficacité
du programme ont tendance à casser la propriété de temps constant. Tout ceci plaide
pour l’existence d’un modèle formel qui capture les effets secondaires produits pendant
l’exécution d’un programme. Cette thèse vise à fournir des modèles formels prenant en
compte les effets secondaires produits lors de l’exécution d’un programme, ainsi que des
définitions formelles de propriétés de sécurité, comme le temps constant et le temps con-
stant spéculatif. La thèse inclut le développement d’un compilateur sécurisé, formellement
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vérifié, qui préserve la propriété de temps constant, et des méthodologies pour ajouter des
protections contre différentes formes d’attaques Spectre. Elle définit des systèmes de types
qui permettent de vérifier l’utilisation correcte de ces protections et illustre une méthode
efficace de protection contre les attaques Spectre v1 appelée Selective Speculative Load
Hardening. Tous ces travaux sont formellement vérifiés en utilisant l’assistant de preuve
Coq, leur donnant la solidité des preuves vérifiées par ordinateur.

Keywords : Vérification formelle, Preuves sur ordinateur, Cryptographie vérifiée, Com-
pilation



Abstract

Developers of high-assurance software aim to design functionally correct software with
properties like confidentiality. However, confidentiality is not a direct consequence of
functional correctness, as there could be unintentional side-channel leaks like execution
time that might help the attacker to retrieve secret data.

For example, a string-comparison algorithm that compares two strings character by
character and exits in case of a mismatch or return success when strings are equal is a
functionally correct algorithm to verify a password. However, an attacker can guess the
password’s length by measuring the execution time of the algorithm, which means the
latter is not secure against timing attacks. More generally, branching on secrets may leak
secret data as the two branches may have different execution times. Modern processors
use branch prediction to maximize the performance of the program. For example, if
the destination of a branch condition leads to a memory read, the processor bypasses
the condition check and executes the memory read operation speculatively. In case of
misprediction, the processor backtracks and starts the execution again with the correct
condition’s result. Though backtracking corrects the misspeculated results, it still leaves
a trace in the cache, which the attacker can exploit to get to the secret data (illustrated
in Spectre attacks). Thus, the speculation improves overall efficiency at the expense of
security.

Side-channel effects are not captured in the classic formal semantics of programs, and
hence, these semantics cannot be used to reason about hyperproperties like timing-based
side-channel attacks. Without the notion of formal models capturing side-effects produced
during a program’s execution, the developers can only manually fix the program to ensure
it always takes the same time to execute and assume that the compiler does not break the
property while compiling the program to assembly with no formal guarantees. Tradition-
ally, to defend against timing-based side-channel attacks, cryptographers have used the
constant-time property to develop programs that do not perform secret-dependent mem-
ory access and branching at the source level. Unfortunately, the optimizations performed
by the compiler to increase the efficiency of the program tend to break constant-time
property. This calls for the existence of a formal model that captures the side effects
produced during a program’s execution.

This thesis aims to provide formal models for capturing the side-effects produced
during a program’s execution together with a formal notion of security properties like
constant-time and speculative constant-time. The thesis incorporates the development of
a formally verified secure compiler that preserves the constant-time property and method-
ologies to add protections against various kinds of Spectre attacks. It defines type sys-
tems that help check the correct usage of these protections and also illustrates an efficient
method to protect against Spectre v1 attacks called Selective Speculative Load Hardening.
All these works are formally verified using the interactive theorem prover Coq, leading to
machine-checked proofs rather than relying on human assurances.
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Chapter 1

Introduction

Today’s world is evolving to be increasingly dependent on using software. Software is
used in every field, like medicine, the banking industry, embedded systems, mission-
critical systems, cryptography, etc. Various characteristics must be considered during
the development phase of a software, like functional correctness, usability, maintainabil-
ity, reliability, portability, efficiency, integrity, etc. Out of all these characteristics, the
functional correctness of software is the most important one because software is useless
without it. Functional correctness refers to the ability of the software to behave exactly
as intended in all scenarios. Imagine having a super-fast software producing the wrong
result. Software’s correctness helps support other characteristics like maintainability, re-
liability, etc. Software should only be trusted with evidence of satisfying specifications
describing its behavior.

Let us discuss functional correctness and other properties related to software using a
simple example present in Figure 1.1. Figure 1.1 presents a transaction send between two
parties Alice and Bob. Execution of the send[1, Alice, Bob] transaction should produce
the state where the balance corresponding to Bob should increase by 1 and the balance
corresponding to Alice should decrease by 1.

Figure 1.1 – A simple example showing a transaction between Alice and Bob

To ensure functional correctness, there is a need to provide a description of the func-
tionality and behavior of the send transaction. This behavioral description is often mod-
eled using formal mathematical notations, referred to as specifications. The goal is to
capture the properties of interest through these specifications and provide evidence or
proof that these specifications capture the properties of interest correctly.

The specifications corresponding to the send transaction can be as follows: (1) The
balances of all parties not involved (Alice and Bob) remain unchanged. While Figure 1.1
presents two parties, assume the potential for more than two. (2) The transferred amount
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is deducted from the sender’s account (Alice), at least when this sender’s account differs
from the recipient’s account (Bob), and the sender’s balance is greater than or equal to
the transferred amount. (3) The transferred amount is added to the recipient’s account
(Bob) when the sender’s account differs. (4) The sender’s account remains unchanged if
it is the same as the recipient’s account.

An additional property is that the overall balance in the chain remains unaltered
after executing the send transaction. This property cross-validates the four previously
defined specifications concerning the send transaction’s behavior. These five specifications
collectively describe the behavior expected from the send transaction to achieve functional
correctness. Ensuring this functional correctness can be accomplished through various
methods such as testing, auditing, fuzzing, program analysis, and formal techniques like
theorem provers and automatic solvers. Formal method techniques, like theorem provers,
provide more reliable guarantees due to formally verified certification about bug absence.
This is discussed in greater detail in Section 1.2.

Functional correctness is a vital part but not a sufficient part of the software devel-
opment process, as it does not give any guarantees about other security properties. For
example, the functional correctness of the example presented in Figure 1.1 does not as-
sure the data security of the send transaction, and neither the specifications defined above
capture confidentiality.

Apart from functional correctness, one of the prime goals of any software system is
to ensure data security and privacy. Cryptography is often used to enhance user privacy
and secure the data transferred between parties over an unsecured network. For example,
a cryptographic algorithm like RSA [Rivest et al., 1978] is widely used to secure data
transfer over an insecure network. Let us talk about the RSA decryption scheme in
detail. The RSA decryption algorithm computes Cd mod n where C is the cipher-text
obtained by applying the encryption algorithm on the data being sent, n is the public
modulus number (product of two big prime numbers), and d is the secret key, also called
as the RSA private key known only to the receiver at the other end.

A functionally correct implementation of modular exponentiation (computes Cd mod n)
is present in Figure 1.2. It is functionally correct but its execution time depends on
whether the bit j of d (dj) is 1 or 0. As we can see in lines 4-5, the algorithm performs
extra computation when dj = 1, resulting in longer computation time. The attacker can
compute R = Cd mod n for different values of C and by precisely measuring and analyzing
the time the algorithm takes to execute, the bits of secret key d can be recovered. Hence,
even though the RSA algorithm is functionally correct, it was feasible to recover the secret
key without breaking RSA [Kocher, 1996a].

1 R = C;
2 for { j = 0; j <= w -1; j++ } {
3 R = mod(R2, n);
4 if dj == 1
5 { R = mod(R * C, n); }
6 }
7 return R;

Figure 1.2 – RSA decryption algorithm

A similar security vulnerability based on timing variation was seen in the implemen-
tation of zero-knowledge proof [Goldwasser et al., 1985]. Cryptosystems like Zcash or
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Monero use zero knowledge proof technique to protect the secret information involved
during a transaction. The zero knowledge proof is a method of proving the validity of a
statement without revealing any information about it. For example, in the transaction
between Alice and Bob, Bob can authenticate the amount received from Alice by using the
zero-knowledge proof, even if the transaction does not reveal the amount sent or Alice and
Bob’s identities. It was possible to exploit the time taken (side-effect produced by the
implementation) to generate a zero-knowledge proof as it varies depending on the secret
transaction data [Tramèr et al., 2020]. These attacks are possible because of how a cryp-
tographic algorithm is implemented, even though it is functionally correct. This shows
that functionally correct and efficient software is still vulnerable and cannot be trusted
for its confidentiality.

From the preceding discussions, it is evident that the confidentiality of any software
system can be compromised via effects produced during its execution. When any software
is executed, it produces measurable physical effects that can leak secret information. For
example, via execution time, power consumption, noise, etc., the outside world can extract
information about secret data if the software produces variations in these physical effects
for different secret inputs. To avoid these attacks, the development of software systems
(especially cryptographic systems, whose prime goal is security and privacy) must follow
specific programming disciplines to design the algorithm which produces the same physical
effects when executed on different inputs. In a nutshell, protecting secret information in
any software system is hard, and guarantees like functional correctness, memory safety,
etc., do not extend easily to give protection against security vulnerabilities.

Lastly, the safety property is another desired stability requirement of any software
system. Safety properties provide that a program execution does not reach a “bad state".
These properties often deal with reasoning about a single execution trace. However,
other security properties exist, like protecting the software from attackers, which cannot
be expressed using a single execution trace. These come in the category of hyperproper-
ties [Clarkson and Schneider, 2008] and need to be expressed using a set of traces. The
traditional compilers are not designed to preserve these hyperproperties and need to be
adapted to support them. The compiler responsible for producing the binaries should not
break these hyperproperties during the compilation process.

This thesis aims to provide a methodology for developing a formally verified secure
compiler (preserving hyperproperties representing mitigation against timing-based side-
channel attacks). The later sections in this chapter give an overview of timing-based
side-channel attacks, possible mitigations against them, and the importance of formal
verification in ensuring security.

1.1 Side-channel attacks
Side-channel attacks extract secret information from a program without targeting the
program itself but by exploiting characteristics of the execution environment. These at-
tacks are done by measuring or analyzing various side-effects produced during program
execution, like execution time (cache hit/miss), power consumption, etc. One of the
most common attacks of this kind is timing attacks [Kocher, 1996b]. In timing attacks,
the attacker analyzes an algorithm’s time to execute. Another type is electromagnetic
attacks [Sayakkara et al., 2019] that measure (by performing some signal analysis) the
electromagnetic radiations emitted from a device. Another kind is simple power analysis,
in which the attacker studies the power consumption of a machine. Similarly, other types
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of side-channel attacks exist, like profiling attacks [Picek et al., 2021], acoustic crypt-
analysis [Genkin et al., 2016], etc. This thesis focuses on timing-based attacks. Timing
attacks cover a broad category of side-channel attacks. For example, it includes attacks
like cache-based attacks, Spectre attacks, and attacks based solely on timing variations
without involving cache exploitation.

1.1.1 Cache-based attacks

Cache-based attacks are carried out by monitoring the time variation in accessing data
from cache or physical memory. A cache is an essential part of modern architecture as it
greatly improves the program’s performance, and the cache’s effectiveness is based on the
cache hit or cache miss. In the occurrence of a cache miss, the data needs to be fetched
from the main memory, reducing the program’s performance. Cache-based attacks exploit
cache-hits and cache-misses to get to secret data.

There are several kinds of cache-based attacks discussed in prior works [Ge et al., 2018].
In the PRIME+PROBE [Tromer et al., 2010] attack, the attacker primes the cache by
filling one or more cache lines. When the victim program is executed, the attacker
tries to determine which cache lines were evicted by the victim. By noticing the dif-
ference in the time to access the memory address that the victim evicted in the cache
set, the attacker can get to the memory index accessed by the victim. Another attack
is FLUSH+RELOAD [Yarom and Falkner, 2014], which uses shared memory (such as
shared libraries) between the attacker and the victim. First, the attacker flushes a cache
line of interest to the attacker and the victim using dedicated instruction like cflush and
later measures the execution time of reloading the data. Based on the time variation, the
attacker comes to know whether the victim has reloaded a memory address or not. An-
other kind of attack is FLUSH+FLUSH [Gruss et al., 2016], which exploits the execution
time of the cflush instruction. The time taken by cflush will be shorter if the data is not
brought to the cache, and it will take longer if it has been brought to the cache by the
victim program. Another kind of attack is EVICT+TIME [Osvik et al., 2006]. In this
attack, the attacker waits for the victim program to run, which might bring some data
into the cache. The attacker then evicts a cache line (due to the limited size of the cache)
and reruns the victim’s program. The difference in the execution time helps the attacker
to get to the memory address being accessed by the victim.

1 x = 4;
2 if secret {
3 x = x + 1;
4 }
5 else
6 while (x != 0) { x = x - 1; }

Figure 1.3 – Branch on secret

All the attacks discussed in the previous paragraph perform cache-based exploitation.
There are also timing-based attacks that can be possible without involving a cache. Fig-
ure 1.3 presents a simple program that gives room for performing timing-based attacks
without involving cache. The program has a conditional instruction that branches on a
secret. The true branch consists of only an assignment instruction, and the false branch



Side-channel attacks 5

consists of a while loop (which takes longer to execute than a single assignment instruc-
tion). Depending on the value of secret passed to the branch, its execution time will vary;
that, in turn, helps the attacker to predict the secret.

A more realistic example discussed by Kocher in his paper [Kocher, 1996b] is: by
measuring the time required to perform the private key operations in the RSA decryp-
tion, the attacker can get to the private key. There is various recent work in liter-
ature like [Canella et al., 2019b] [Bernstein, 2005] [Osvik et al., 2006] [Lipp et al., 2018]
[Schwarz et al., 2019] [van Schaik et al., 2019] [Bulck et al., 2018] [Canella et al., 2019a]
etc., that explains how timing-based attacks have helped the attacker to get to the secret
data.

1.1.2 Spectre attacks

Spectre attack [Kocher et al., 2019a] is also a timing-based side-channel attack. Modern
processors are designed to perform speculative execution to improve performance. Modern
processors aggressively use branch, address, and value prediction to process the execu-
tion without awaiting the result of the prior computation. Once the prior computation is
done, the real value is computed and must be checked against the guessed value. If the
predicted path is correct, the microprocessor commits speculatively computed results to
the architectural state, increasing the overall performance. If the predicted path is incor-
rect, the microprocessor backtracks to the last correct state by discarding all speculatively
computed results like resetting the registers involved, resetting the program counter, etc.
In this case, the results of misspeculation are never committed to the micro-architectural
state, but they still leave traces such as leaving a trace in the cache, modifying the content
in the cache, etc.

Figure 1.4 presents two code snippets, which show how an attacker can exploit branch
misprediction to leak the data from the secret part of memory.

p[10] s[5]

1 if i < 10 {
2 x = p[i];
3 y = p[x];
4 }

(a)

s[5] p[10]

1 if i < 5 {
2 s[i] = sec;
3 x = p[0];
4 p[x] = 0;
5 }

(b)

Figure 1.4 – Array p is public and array s is secret.

Figure 1.4a presents a consecutive fragment of memory where the memory cells till
index 9 (represented as p[10]) are public parts, and the following five cells (represented as
s[5]) are secret parts. The attacker first primes the branch to predict that the condition
i < 10 is true by executing the code several times with a value of i less than 10. Then
the attacker provides the value of i as 13. Based on the old heuristics, the processor
mispredicts the branch in line 1 and proceeds to execute the true branch; hence loads
data from memory at index 13, i.e. s[2] into the variable x. In other words, variable x
becomes transient (speculatively depends on the secret). On line 3, the attacker performs
a read operation based on the value of x, which brings x to the cache. Once the processor
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evaluates the condition of the branch, it rolls back the computations, but the cache
persists. The attacker can later exploit the cache to infer the value of s[2].

Figure 1.4b presents a consecutive fragment of memory where the memory cell till
index 4 (represented as s[5]) are secret parts, and the following ten cells are public. The
processor can speculate for the value of i as 6. The processor mispredicts and will write
secret data sec in the public part of the memory at p[0]. In line 3, the load operation will
load sec in the variable x. Line 4 leaks sec by performing a store operation at index x.

a[. . . ]

1 fun STL(int sec, int pub) {
2 int i r;
3 a[0] = sec; Store secret value
4 a[0] = pub; Store public value
5 i = a[0]; Speculatively load secret value
6 r = a[i]; Secret-dependent access
7 return r;
8 }

Figure 1.5 – Store bypass load

Figure 1.5 presents another example where the store operation on the memory frag-
ment a is speculatively bypassed. In this example, the attacker exploits the memory
disambiguator, which predicts Store To Load (STL) data dependencies and gets to the
secret data. The function STL takes arguments sec and pub and allocates them on mem-
ory array a. Line 3 allocates sec at index 0, and line 4 assigns pub at the same location.
Line 5 loads the value at index 0 into i, and then at line 6, the value of the array at index i
is accessed. Without speculation, at line 5, the variable i is supposed to get the value pub.
However, i can be equal to sec if the memory disambiguator incorrectly predicts that the
store to a[0] at line 4 is unrelated to the load into i at line 5 and hence ends up loading
the secret-dependent memory location a[sec] into the cache at line 6.

Spectre attacks can be of different types. An overview of different kinds of Spectre
attacks is as follows:

Spectre v1 Spectre v1 is triggered by exploiting conditional branches. Attackers mis-
train the CPU’s branch predictor to proceed in the wrong direction, which helps the
attacker read secret information. Figure 1.4 presents program vulnerable to Spectre v1.
These kinds of attacks are also called Spectre-PHT (pattern history table) attacks.

Spectre v2 Spectre v2 is triggered by exploiting indirect branches. The indirect branch
predictor’s job is to guess the target of indirect branches. In the case of direct branches,
the instruction includes the jump destination address (either stored as full or an offset
that can help in calculating the destination address). In the case of indirect branches, the
instruction includes a pointer to a memory address, and this location in memory stores
the destination address. The attacker can mistrain the branch predictor with malicious
destinations, making the speculative execution lead to these malicious memory addresses.
This influences the target of the indirect branches, causing the processor to carry on with
the speculated indirect branch prediction and exposing the secret data. Eventually, the
attacker can exploit the traces left in the cache.
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Spectre v4 Specter v4 is also called Speculative Store Bypass. In this attack, specula-
tively, data is read from the memory address, which was not ready. For example, if a store
operation precedes a load operation, the result of the store operation depends on the prior
instructions. The load operation can be executed speculatively (ignoring or bypassing the
store), reading the data at the memory location, which does not contain the valid data
yet as the store has yet to be executed. This leads to the exposure of the secret data.
Eventually, the processor recovers from the misspeculation, but the exposed secret data
is still present in the cache which the attacker can further exploit. The program present
in Figure 1.5 that is discussed earlier is one of the examples of Spectre v4.

Spectre v3/Meltdown Meltdown works differently than Spectre attacks. It does not
involve branch prediction; instead, it observes when an instruction causes a “trap". A trap
occurs when the processor encounters an undefined instruction—for example, an error in
instructions like division by zero or performing an illegal memory access. An attacker can
train a speculatively executed instruction to bypass memory protection. This might even
help the attacker to access kernel memory from the user space. This scenario will create
a trap, but before the trap is issued, the instruction that caused the trap will leak the
accessed memory address.

1.1.3 Possible mitigation against side-channel attacks

An essential goal of any software system, especially the cryptographic system, is to ensure
data security and privacy with efficient implementation. Timing attacks are a significant
hurdle in ensuring data security and privacy. The most reliable and popular way to deal
with timing-based side-channel attacks is via constant-time programming. For example,
to deal with Spectre attacks, the program should be written so that it does not leak secret
information, even in case of speculation. The terminology often used to describe this is
speculative constant-time programming discipline, which ensures that a constant-time
program should not leak secret information even when the processor speculates.

Constant-time

Constant-time programming is a programming discipline used in many cryptographic
systems and algorithms to make them secure against timing-based attacks. Timing-based
attacks can result due to exploitation of control flow or exploitation due to memory
access. A constant-time program should not branch on secrets and should not perform
any secret-dependent memory accesses.

In today’s world, most libraries are public, meaning anyone has access to various
cryptographic implementations. The developer’s goal is to write those implementations
so that secret information does not influence the execution time of those implementations.
The exploitation due to control flow can be mitigated by doing a manual or a tool-
based transformation of a branching instruction into a straight-line code. This can be
achieved by replacing conditional instructions with constant-time bit-masking operations.
Similarly, exploitation due to memory accesses should be avoided.
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1 fun isnotCT(int x, int y, bool secret) {
2 if secret
3 then return x;
4 else return y;
5 }
6

(a) Non constant-time version

1 fun isCT(int x, int y, bool secret) {
2 return ((x ∧ (0 - secret))
3 ∨ (y ∧ ∼(0 - secret))) }
4

(b) Constant-time version

Figure 1.6 – From non constant-time to constant-time version.

Figure 1.6 presents a function isnotCT on the left, which is prone to exploitation due
to control flow. The function returns x or y depending on the secret bit. As it performs a
secret-dependent branching, the program is not constant-time. The function isCT on the
right in Figure 1.6 replaces the branching with logical bitwise operations to select x or y.
The two functions are functionally equivalent and the function isCT is constant-time.

Writing a constant-time program requires complex thinking, as one needs to think
about how the program will behave in terms of its execution time, which in turn brings
a need to think about the low-level details. Before and after transforming the program
to be constant-time, the program should be functionally correct and produce the same
desired behavior. Another major issue when relying on manual transformation to produce
a constant-time program is the false belief that the program is constant-time. These facts
give rise to the need for some sound mechanism or a formally verified tool that offers a
more robust guarantee that a program is a constant-time program and hence does not
leak secrets.

There are specific pre-existing tools [Barthe et al., 2013] [Cauligi et al., 2017], guaran-
teeing that a program follows constant-time programming discipline and is secure against
timing-based attacks. Another way to prevent exploitation due to control flow or memory
access is by designing a information-flow based type system to derive facts about the secu-
rity types of the program. An information-flow-based type system can be used to derive
facts about the security types of the program. The variables in the program should be
annotated with security types like secret (variable storing secret information) and public
(variables storing public information). The typing rules for each instruction should ensure
that when the instruction is executed, it does not leak any secret information. For exam-
ple, the index of the memory access should be annotated as public so that the attacker
can not infer any information about the secret data by exploiting the cache.

Speculative constant-time

As discussed in Section 1.1.2, modern processors generally optimize the execution of the
code by relying on speculation. Hence more than constant-time programming is needed
in the world of speculation, where the execution can go out of order. The constant-time
programming is applicable to provide mitigation against timing-based attacks only when
the instructions are executed in order. A constant-time program can still reach the secret
part of the memory if executed speculatively. Speculative constant-time programming
goes beyond constant-time programming discipline and ensures that the secret data is
not leaked even in case of speculation. There are various existing countermeasures for
writing speculative constant-time programs. They are broadly divided into two categories:

• Hardware countermeasures: A straightforward solution to avoid cache-based
side-channel attacks in case of speculation is to stop the speculation. Processors
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provide some hardware features to stop the speculation. One of them is lfence
instruction. An lfence instruction at a program point forces the processor to eval-
uate all the prior instructions before that program point. For example, putting a
lfence instruction right after the conditional guard (or before an indirect branch),
the processor must evaluate the guard before proceeding to one of its branches.
The lfence instruction is supported by architectures like AMD [AMD, 2018] and
Intel [Intel, 2018]. Though current processors do not provide any in-built solution
to stop the speculation completely, it is the programmer’s job to correctly insert
lfence instruction. This solution has a significant impact on performance as it stops
speculation.

As discussed in the work [Intel, 2018] by Intel, a better approach would be to use
static analysis to reduce the number of lfence instructions to be inserted because
many paths (including speculation) in the program do not have potential threats
to leak the secret data. As discussed in Microsoft’s C compiler, MSVC [Spe, 2018]
misses many vulnerable places in the code post static analysis. The reason is that
it is hard for the compiler to statically determine the faulty spots that might be
vulnerable to timing attacks. It is necessary to avoid unreliable mitigation as even
a single exploitable code might leak the entire memory content.

• Software countermeasures: Speculative load hardening is a compiler-based soft-
ware countermeasure for Spectre v1 attacks. The program’s execution keeps track
of misspeculation by maintaining a predicate indicating whether a program is mis-
speculating. The compiler uses this predicate to check whether the load operation
is part of a speculating or non-speculating path. When data is being loaded from a
speculated source, the output of the load operation (loaded value) or the input of
the load operation (memory address) are masked to a default value. Both of these
variants are supported by the LLVM compiler [Chandler Carruth, 2021].

1 fun withoutSLH(int* address) {
2 if condition {
3 . . .
4 x = a[address]; }
5 }
6

(a) Without SLH

1 fun withSLH(int* address) {
2 all zero mask = 0;
3 all one mask = 1 . . . 1; size of address
4 if condition {
5 predicate = !condition ? all zero mask : all one mask;
6 . . .
7 address = address & predicate;
8 x = a[address]; }
9 }

10

(b) With SLH

Figure 1.7 – Speculative load hardening

Figure 1.7 presents two code snippets describing speculative load hardening. Fig-
ure 1.7a presents a simple function withoutSLH that might leak the address spec-
ulatively. Depending on the condition, the load operation in line 4 might lead to
out-of-bound access and leak the secret address. Figure 1.7b presents the same pro-
gram that adds a predicate to check the speculation. The variable predicate gets the
value all zero mask in case of misspeculation (!condition) and all one mask in case
of no misspeculation (when condition is satisfied). all one mask is a sequence of size
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address pointer containing all 1s. Line 7 calculates the address based on the predicate.
It uses a bit-wise and operator (&) to compute the address. In misspeculation, the
address will be masked to 0. In case of no speculation, the address will remain the
same. Hence the safe masked value of the address will be leaked in line 8 instead of
the secret address.

1.1.4 Verification of constant-time and speculative constant-
time

Verifying a property at the source level is often much easier than at the low level.
A lot of information gets lost during the compilation process, and it is much easier
to reason with high-level code syntax than at assembly. A wide range of tools are
available in literature and practice to verify the constant-time property. These tools
can be a dynamic tool or a static tool.

Dynamic tools observe the run-time behavior with various inputs to evaluate whether
different run-time executions produce the same or different visible observations for
the outside world. Static tools usually use formal method techniques like static
analysis, program transformation, etc., to reason about the program against some
abstract model. This abstract model represents the visible effects produced during
the program’s execution. Static analysis tools based on symbolic execution, abstract
interpretation, taint analysis, etc., are often designed to find program bugs, do not
aim to provide completeness, and often need help with state-explosion issues. For-
mal method techniques like formally verifying software against some mathematical
description of its behavior aim to justify the absence of specific categories of bugs.
They are more complete and sound than static analysis tools.

Another point to consider before choosing any tools is the kind of input they need,
i.e., whether they work at the source or target level. Several tools like FlowTracker
[Rodrigues et al., 2016b], FaCT [Cauligi et al., 2019a], etc. work on the source level.
Some tools work on low-level language like ct-verif [Almeida et al., 2016a], Bin-
sec/Rel [Daniel et al., 2020], etc.

The tools working at the source-level language do not provide an end-to-end guaran-
tee against timing-based side-channel attacks. The source-level language is present
above in the compilation chain to the assembly/binaries. The secure source-level
code is still vulnerable to leaking secret information at the lower level because the
compiler can introduce timing attacks. This is because general-purpose compilers
like LLVM do not provide side-channel resistance. This makes the tools working
directly at the low-level language to have a stronger guarantee against side-channel
attacks.

Another concern about these tools are regarding their usability and versatility. For
example, tools like EasyCrypt [Barthe et al., 2011a] take Jasmin (a language de-
signed to write highly-efficient cryptography programs that target x86 architecture)
as input. To verify using EasyCrypt (proving constant-time property), the user
needs to develop the program in Jasmin or directly in EasyCrypt domain-specific
language, which requires rewriting the existing libraries.
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State-of-art of some of the existing tools This paragraph discusses some of the
tools available in the literature and in practice, with their usability and soundness
to reason about constant-time property

– ct-verif[Almeida et al., 2016a]: A static tool that verifies the constant-time
property and works on the level of LLVM-IR with source-code annotation. It
ensures that the code does not perform secret-dependent branching, secret-
dependent memory access, or timing-variable operations. The approach is
proved to be sound and complete using Coq proof assistant. The tool’s usabil-
ity depends on many other tools like Boogie, Z3, etc.

– FlowTracker[Rodrigues et al., 2016b]: A static tool that ensures the constant-
timeness by analyzing the Program Dependence Graph at the target level
(LLVM-IR form). The approach does not guarantee completeness.

– FaCT[Cauligi et al., 2019a]: FaCT provides a domain-specific language for
writing a constant-time program that removes the possibilities of leakage by
program transformation. The language is close to C and is compiled to LLVM-
IR. The program needs to be annotated with secret keyword that triggers the
compiler to perform the transformation, which makes the program constant
time. The soundness of the FaCT framework is proved on paper.

– Binsec/Rel[Daniel et al., 2020]: It is a symbolic verification analysis tool that
works on a binary level. It targets x86 and ARM architecture and does not
rely on the source code.

All these tools have been used to verify constant-time properties for several Cryp-
tographic algorithms. Yet, this still leaves an open question: Can we trust these
tools? For example, EasyCrypt also takes translated Jasmin code as input, but the
translation is still a trusted base. Similarly, the translation used in ct-verif and
other tools is also a trusted base. For the tools like Binsec/Rel, the state explosion
problem is always a concern. The FaCT gives no machine-checked guarantee about
the correctness of its framework. An ideal situation would be to formally verify
these tools using some machine-checked proofs. But as it is well-known that formal
verification is expensive, it is often skipped.

1.2 Formal verification

Software is correct if it behaves exactly as intended; hence, while designing any software,
understanding the specification is crucial. A program specification is a mathematical
description of the program’s behavior, and it should specify the properties of interest
related to the software concerned. A situation can arise where the correct software is
unreliable if the specification does not capture the behavior correctly and vice-versa.
Hence, a formal mathematical demonstration is needed to write these specifications, and
it is necessary to capture the properties of interest through those specifications correctly.
After coming up with the correct sets of specifications, the software needs to be proven
or tested to satisfy those specifications.

Developer uses various methods to verify the correctness of their software. The classic
approach to ensure software’s correctness is to test them. This involves developing soft-
ware, running it on sample data to generate the result, and verifying these results to see
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if they are as expected. But it is well-known fact that the real-world use cases are so vast
that it is almost infeasible to test the software for all possible scenarios. Hence, the test-
ing mechanism does not guarantee the software’s correctness; it needs more completeness.
Another approach is to use auditing or perform a manual reviewing the software to find if
there are any bugs in its implementation. The auditing process might involve automated
techniques like fuzzing that cover broader test cases. Automated testing, like fuzzing, is
widely used to help find the presence of bugs rather than their absence. It might help in
reporting that the software did not fail for a broader set of samples generated using some
automated tool. Still, it also does not guarantee the software’s correctness, as it needs
more completeness.

Formal method-based techniques can be essential in achieving soundness and com-
pleteness in software correction, security, and privacy. The formal method helps us to
reason about software or hardware by mathematically specifying the model and its spec-
ifications and eventually verifying that these specifications are valid for all sample data
sets. Functional correctness is one of the essential properties of any software application,
but security and privacy play an equally important role, especially in any cryptographic
system. As an application of this thesis is cryptography, it is essential to discuss the
significance of formal methods in cryptographic systems.

Correct software is a basic requirement in the world of cryptography. Cryptography
software should satisfy three properties: confidentiality, integrity, and authenticity. It
is a challenging task to carry out formal verification in cryptography. Cryptography
implementations are designed to be highly optimized code, making the formal verification
much more difficult because the implementation is often written in a mixture of high-level
language and assembly. This means that the verification tool should model the high-level
language, assembly, and their interaction to reason about the program written using
both. Also, each optimization needs a separate verification proof showing the process is
sound. Cryptographic implementations often work on inputs and outputs of enormous
size; hence the state space can be too ample for program verification tools, which makes
the tool questionable about their performance and usability in real-world cryptography.

This thesis focuses on reasoning about non-interference security properties like constant-
time and speculative constant-time for cryptography algorithms.

A taste of formal model for verifying constant-time property To prove constant-
timeness, there is a need to establish an abstract model of the system. A specification
representing the constant-time property can be stated formally as “a program executing
from two indistinguishable (differ only in secret parts) states always produces the same
visible effects". Since the visible effects will be the same for the external observer, the
attacker cannot differentiate between the two traces. To model these visible effects, a
formal model needs to be developed. Traditionally, the semantics of a program is described
to capture the program’s input-output (functional) behavior.

p : s ⇓ s′

A program starting from state s produces state s′ where the state captures the memory
updates done by the program. The semantics needs to be instrumented to capture the
non-functional properties like constant-time.

p : s ⇓` s′
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The notation ` (also often called leakages) represents the visible effects produced by
the program. The outside world can see ` when the program p executes. To reason
about cache-based attacks, ` represents a language describing the program effects that
might lead to timing-variation attacks. For example, in case of conditional instruction
if b then c1 else c2, ` will consist of b and effects produced during the execution of c1 or
c2. As discussed in Section 1.1.3, a constant-time program should not branch on secrets;
hence ` contains b in case of conditional instruction, making it public and visible to the
outside world. Similarly, the memory accesses leak the index at which memory is accessed.

The formal model helps establish an abstract model for reasoning about the constant-
time property. It is better compared to manual reviewing, testing, or automated testing
methods because it helps in giving a complete solution of representing all possible sit-
uations that may give rise to timing-variation attacks. After establishing the formal
model of the program’s effects (leakages), the goal is to verify that the program is indeed
constant-time formally. Formally it is stated as follows:

p : s1 ⇓`1 s′1 ∧ p : s2 ⇓`2 s′2 ∧ s1 ∼ s2 =⇒ `1 = `2.

The above statement presents that two executions of program p produce the same visible
effects i.e. `1 = `2 when they start their execution from two indistinguishable ∼ states
s1 and s2. The indistinguishability relation ∼ induces an equivalence relation on states,
ensuring that the two states only differ in their secret parts.

1.2.1 Preservation

The preservation is a property about the semantics of the language and compiler, which
helps establish that if we evaluate a program satisfying a set of specific properties of
interest, all the intermediate evaluation steps yield a valid program satisfying those prop-
erties as well. The end goal of a software development process is to build a bridge that
resembles a connection between the high-level specification and the actual machine code
implementation of the software that gets executed. The compiler is a complex part of the
whole software framework as it takes care of many features like transforming source code
into executable, optimizations, etc. Hence, a buggy compiler might produce an executable
that does not produce the same output as the source. However, bugs introduced by the
compiler are negligible compared to the bugs issued in the source program by the devel-
oper. However, the situation differs for safety-critical or mission-critical systems where
human lives and information are at stake. Hence, the software used in these areas must
be carefully reviewed and should leave no room for bugs. Unfortunately, most formal
method tools operate at the source code level and do not provide formal guarantees for
correctness. A buggy compiler still has the opportunity to invalidate the properties proved
at the source and produce executable code that no longer guarantees those properties.

1.2.2 Certified compiler

We need to switch to a certified compiler to develop more trust in the compiler. A
certified compiler guarantees that if a property holds for the source program and the
source program compiles successfully to the target program, then the target program also
satisfies those properties. A formally verified compiler has machine-checked proof for its
correctness. In other words, the executable code it produces is formally proved to behave
exactly as specified by the source-level code. These formally verified proofs help achieve
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1 int sprog(int b, int x, int y) {
2 int result;
3 result = b ? x : y;
4 return result;
5 }

Figure 1.8 – Example program: source program

high assurance compared to manual testing. The formally verified compiler has been in
the literature for a long time , and there exists formally verified compilers like CompCert
[Leroy, 2009], Jasmin [Almeida et al., 2017] etc., that work for real-world programming
languages. Their correctness proof shows that the compiler preserves the safety and
behavior of the source-level programs. A certified compiler guarantees the preservation
of functional correctness or memory safety but does not guarantee the preservation of
security properties. Functional correctness or safety properties are represented using a
single execution trace. To reason about the preservation of functional correctness or safety,
two executions must be considered (one at the source and one at the target level). But
to reason about security properties like constant-time, a set of traces is required at the
source and target levels. Often the source and target states are not the same; hence the
reasoning about security properties like constant time requires deriving indistinguishable
relations between the target states from the source. Due to these limitations, traditional
compiler proofs need to be adapted to reason about security properties.

1.2.3 Certified secure compiler

A compiler is designed to transform the source-level program into the executable program
and also performs a range of optimizations on the source code to improve overall efficiency.
In the process, it may transform a source program that satisfies the constant-time property
to a target program that is not constant-time.

Figure 1.8 presents a simple program, which chooses between x and y based on b
using the ternary operator. The value is assigned to the variable result using a ternary
operator in line 3. The ternary operator b ? x : y is a constant-time operator as it
does not leak the condition (assuming it will be compiled to a conditional move). Hence
source program sprog is constant-time. Unfortunately, the compiled code in Figure 1.9
is not constant-time. The assembly program is generated using the x86-64 clang 15.0.0
compiler without any compiler option. The compiled program used a jmp instruction in
line 11, which transfers the program control to a different point in the set of instructions
based on the condition b. jmp is not a constant-time instruction as it leaks the condition
and the instruction pointer. Hence the compiled code is not constant-time, even though
the source program was constant-time. Another example is compiling a program that
performs equality operations on strings. In programming languages like C, equality of
string is performed using strcmp() build-in function provided in the String library. The
strcmp() function is considered constant-time at the source-level, but it is compiled to a
code that compares the strings character by character. The compiled semantics will not
be constant-time as it uses a loop that exits early when two characters of input strings
differ. The low-level compiled program may reveal the first index where the two characters
of strings differ; hence, it is not constant-time if the input strings are secret.

Another example is presented in the paper [Kaufmann et al., 2016], where they build
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1 sprog(int, int, int):
2 push rbp
3 mov rbp, rsp
4 mov dword ptr [rbp - 4], edi
5 mov dword ptr [rbp - 8], esi
6 mov dword ptr [rbp - 12], edx
7 cmp dword ptr [rbp - 4], 0
8 je .LBB0_2
9 mov eax, dword ptr [rbp - 8]

10 mov dword ptr [rbp - 20], eax
11 jmp .LBB0_3
12 .LBB0_2:
13 mov eax, dword ptr [rbp - 12]
14 mov dword ptr [rbp - 20], eax
15 .LBB0_3:
16 mov eax, dword ptr [rbp - 20]
17 mov dword ptr [rbp - 16], eax
18 mov eax, dword ptr [rbp - 16]
19 pop rbp
20 ret

Figure 1.9 – Example program: compiled program

a timing attack against an implementation of a scalar product on an elliptical curve. A
64-bit multiplication is assumed to be constant-time in an architecture like x86 (it does
not leak information about its operands). But in an architecture like ARM, the compiler
optimizes the multiplication to take less execution time when operated on smaller values
than large ones and leaks the information about the operands.

The program present in the left-hand side in Figure 1.6 is compiled to a program
using the x86-64 gcc compiler (without any optimization enabled) that contains a jmp
instruction (clearly not a constant-time program), while the program present in the right-
hand side in Figure 1.6 is compiled to a constant-time assembly that contains the cmov
instruction.

These examples show a need to prove or justify that a compiler does not break the
constant-time property while transforming the source-level code into binaries. It is harder
to reason about these properties at the low-level code due to their complexity and loss of
information during the transformation from the high-level to the low-level code. Hence
it is essential to preserve these properties from the high-level code to the low-level code
that guarantees end-to-end protection against timing-based side-channel attacks.

To make the code immune to timing-based side-channel attacks, it should be ensured
that no unauthorized memory reads occur during a speculative execution or if it occurs.
The values read are only utilized by safe operations (that do not leak any information).
In addition, it should also be ensured that these guarantees are not broken by compiler
optimizations and are carried out at the assembly level. A classic formally verified com-
piler must be extended to reason about non-functional properties like preservation of
constant-timeness, etc. As the definition of preservation of functional correctness is based
on semantics preservation (a notion of classic simulation), this can be further extended
to discuss the preservation of security properties without breaking the functional correct-
ness. A supporting machine-checked proof for preserving these properties will give a high
assurance against timing-based attacks.
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Figure 1.10 – Jasmin architecture

1.3 Background on Jasmin
As discussed in Section 1.2, the formal method plays an essential role in producing high-
assurance cryptographic software that will be functionally correct and secure against
timing-based side-channel attacks. On the practical side, there should be a sound connec-
tion between formal verification methods and a framework that can be used to produce
efficient cryptographic implementations. In practice, it is often seen that a low-level pro-
gramming language is used to write cryptographic algorithms as it gives programmers the
freedom to choose between low-level details that, in turn, provide knowledge about where
the data flows and help produce more efficient code. But it is not very easy to implement
big complex algorithms in low-level language.

Another norm followed while developing cryptographic software is that the develop-
ers first produce an implementation that is very close to the mathematical specification
(called reference implementation). The reference implementation can be compiled to
be executed on different architectures and is considered reasonably efficient. A more
optimized, architecture-specific, or generic implementation is produced later, taking the
reference implementation as the base. This optimized implementation can be produced by
directly implementing the algorithm in assembly or using low-level instructions directly
at the source code level. Unfortunately, this approach is much harder in practice as it
takes a lot of effort to directly implement any algorithm in assembly. Due to this, the
optimized implementation is prone to more bugs as compared to reference implementa-
tions and hence receives efficiency at the expense of security. All these factors lead us
to the need for a framework that makes sure that all the properties, such as functional
correctness, efficiency, memory safety, security against timing-based side-channel attacks,
etc. of cryptographic software is satisfied, with an ease of implementation in a high-level
language for developers.

Jasmin was developed to meet all these requirements. Jasmin [Almeida et al., 2017]
[Almeida et al., 2020] is a framework that consists of a Jasmin language, a formally-
verified compiler (proved to be functionally correct using Coq proof assistant), and support
of verification tools for proving memory safety, constant-time, etc. at source-level. The
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formally verified Jasmin compiler currently supports AMD64 architecture and AVX/AVX2
(support for ARM is in progress). The source-level language’s verification features rely
on a tool called EasyCrypt. The Jasmin source-level program is translated to the Easy-
Crypt program (a trusted base), and various security proofs like constant-time properties
can be carried out on the translated EasyCrypt programs (a set of modules). EasyCrypt
program is a one-to-one mapping of the Jasmin program; hence any property satisfied
by the EasyCrypt program is also valid for the Jasmin program. The proof script in
EasyCrypt depends on the complexity of the specification (specifying the property) and
implementation to be verified against that specification.

1.3.1 Jasmin language

The Jasmin language is a mixture of high-level constructs and low-level features. It
is a verification-friendly programming language that supports “assembly in head" design.
“Assembly in head" design means that the programmer writing a program in Jasmin knows
what assembly instructions will be generated after the compilation. Jasmin language can
be used to write highly efficient implementations due to the level of control it provides
to the developers. In Jasmin, the developer gets to decide which variables are placed on
registers or in memory. Jasmin also supports high-level language constructs like function
calls, control flow, and arrays. Jasmin supports three different types of functions: inline,
local, and export functions. A function annotated with inline keyword is fully inlined at
the caller site. Export functions can be called from external implementations (at this
moment, System V AMD64 ABI calling convention is supported). In Jasmin, it is not
possible to call externally defined functions. The reason behind this is various proofs
related to security are needed for cryptographic algorithms, and it becomes messy if we
call untrusted functions from outside. In terms of control-flow structures, Jasmin supports
if, while, and for loops.

A variable in Jasmin is declared with annotations specifying the storage class and type.
The storage class (stack, reg, inline, global) resembles whether the variable will be stored
in the stack or register. For example, if the storage class of a variable is stack, it will
be stored in the program’s stack frame, and the compiler calculates its relative address
with respect to the stack pointer and the type of the variable. A variable allocated on the
register is always present in the register. It is the job of the stack allocation and register
allocation pass to share the stack or register between the live variables. This means
a Jasmin program that is semantically valid might fail if there are more live variables
whose storage class is reg than the number of registers. The developer must allocate some
variables to the stack to compile these kinds of programs. The inline variable is always
declared with statically known values that can be used as immediate values in the program
while performing some computation. The global variable is placed in the .data section and
is also declared with statically known values. These design choices are important in the
case of implementing Cryptographic algorithms as it greatly improves performance. For
example, accessing the variables in registers is always faster than accessing them from
memory. The basic types Jasmin supports are words, boolean, and integers. Words range
from 8 to 256 bits and are represented as u8, u16, u32, u64, u128 and u256 (u stands
for unsigned). Boolean type is represented as bool in Jasmin and can be used to handle
operations related to flags (the developer cannot directly manipulate these flags, but the
compiler updates them). An integer is represented as int, and it represents an unbounded
integer that should be statically known. Jasmin supports arrays that can be declared of
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e ∈ Expr ::= x variable
| b boolean
| a[n] array init
| c constant
| a[e] array access
| [e] memory load
| op(e, . . . , e) operator
| if e then e else e conditional

d ∈ Lval ::= x variable
| a[e] array store
| [e] memory store

i ∈ Instr ::= d := e assignment
| if e then i else i conditional
| while i e i while loop
| for x r i for loop
| call ii xs fn e call
| {i; . . . ; i} sequencing

a ∈ A ranges over array variables; x ∈ X ranges over scalar variables

Figure 1.11 – Syntax of programs

storage class reg and stack, and they are treated as first-class values: functions can take
them as arguments and return them as results. Arguments are passed by value: an array
passed to a function is not modified unless this function also returns it. This considerably
simplifies the reasoning about program behaviors.

The syntax of the Jasmin language is present in Figure 1.11 that is later used for
formal definitions and reasoning in the later chapters. It is a grammar describing the
Jasmin source-level language. The Jasmin semantics is formally specified using Coq proof
assistant. Hence, given a Jasmin program and initial memory, we can run the program
and investigate the resulting memory. This gives more freedom to test and validate any
specification related to the program.

1.3.2 Jasmin compiler

The Jasmin compiler compiles the high-level language into assembly (x86 64). The Jas-
min compiler is mainly written using the Coq programming language; however, some parts
are written in OCaml. The overall compilation chain is present in Figure 1.10 and is for-
mally verified for its correctness in Coq, except the front-end (parsing, type checking, and
expansion of parameters) and the assembly pretty-printer that are trusted. Throughout
the compilation, five different intermediate representations (IR) are used. At the highest
level, the Jasmin source language is verification-friendly: it is structured and has clean
semantics. Formal verification of Jasmin programs is done on this intermediate represen-
tation. The middle end manipulates the Jasmin IR. The Jasmin IR has the same syntax
(presented in Figure 1.11) as the Jasmin source but more flexible semantics that allow
more optimizations. The last pass of the middle-end uses Jasmin-stack as output: this
IR again has the same structured syntax but also features an explicit stack pointer. The
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back-end outputs unstructured IR: Jasmin-linear with labels and gotos after linearization
and assembly at the end.

The first two passes parse the source program and type-checks them. Then, the expand
params pass replaces parameters by their values.

Inlining compiler pass replaces the function call annotated with keyword inline with
its body (assigning their corresponding arguments and result variables between the caller
and the inlined callee).

Dead call elimination (also called Remove unused functions) eliminates the functions
that are never called.

Unrolling compiler pass thoroughly unrolls for-loops. The bounds are statically deter-
mined for the loops. There might be a case where the range of the loop is not constant
and can only be known after constant propagation. Hence this pass iterates a sequence of
unrolling, constant propagation, and dead-code elimination until the program stops chang-
ing or the maximum number of iterations is reached. It also introduces new assignments
in the program to set the values of the variables involved in the range of the loop.

The constant propagation compiler pass replaces the variables and parameters with
their constant values and propagates these values to expressions that contain them.

Dead code elimination pass removes all the unused variables; all the variables that are
assigned some values but are not read/used afterward in the program.

Stack sharing pass optimizes the memory layout of local variables. This pass allocates
the variables allocated on the stack but not alive simultaneously to overlapping stack
regions.

The register array expansion pass translates arrays into register variables (collection of
registers represented as arrays) or stack (array representing contiguous memory addresses)
variables. It ensures that all array accesses are done through statically determined indices.

Lowering/Instruction selection pass translates the high-level Jasmin instructions into
low-level architecture-specific instructions. For example, assignment is translated into
low-level operations (for instance, x = x + 1 is replaced by x = #INC(x)), conditional
expressions are translated into architecture-specific flag-based conditional instructions,
etc.

The register allocation pass allocates the register variables on the architecture registers.
This pass does not spill any variable to memory if there are insufficient registers for the
live register variables. It infers the mapping from all variables annotated with reg storage
class to the available architecture registers. The compiler returns an error if there are not
enough registers. It also considers the architecture-based constraints; for example, some
architecture-specific instructions require that the output register is the same as one of its
arguments, precise handling of flags, and so on. It is based on an algorithm derived from
linear scan algorithm [Poletto and Sarkar, 1999].

Stack allocation pass assigns all local stack variables into a single memory region at
a function’s entry and frees those regions after their exit. All arrays are removed at the
end of this compiler pass, and memory operations are introduced. The correctness of the
pass ensures that a program can only be executed correctly and safely if there are enough
memory regions to be allocated to the stack variables. This phase also marks the end of
the middle IR, its syntax is the same as that of the source level, but it introduces the
notion of stacks.

Next comes the linearization pass that transforms the program into an unstructured
list of instructions where high-level control structures are translated to instructions with
goto and labels.
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The last pass is assembly generation; it generates assembly programs and enforces
architecture-level constraints. Finally, the assembly can be pretty-printed using pretty
printer that can be used by any assembler or inlined into programs written in other
languages like C, Rust, etc.

Discussion on trusted base of the Jasmin framework A few passes like typing,
parsing, parameter expansion, and assembly pretty-printer are trusted base and is not
formally verified in Coq. The extraction from the Jasmin source program to the EasyCrypt
program is also a trusted base. The safety checker is also a trusted base. The source-level
cost analysis later explained in this thesis involves using the safety checker to perform the
static analysis on the source code, which again falls in the category of the trusted base.

Discussion The significant contribution of this thesis is to provide mitigation against
timing-based side-channel attacks. This kind of attack is mostly seen in the domain of
Cryptography, which is also one of the applications of the findings of this thesis. Though
cryptography may represent a small part of the software world in general, it is one of
the critical parts. All methodology, evaluation, and development are done on the Jasmin
framework.

1.4 Contributions of this thesis

This section describes the contribution of this thesis, chapter by chapter, stating related
publications. This thesis aims to produce a formally-verified secure compiler against
timing-based side-channel attacks.

Chapter 2 Chapter 2 presents a formally-verified secure Jasmin framework for writing
sequential constant-time code and producing constant-time assembly. The Jasmin com-
piler is formally verified using Coq proof assistant to preserve the constant-time property
till the end. The semantics of the Jasmin language and compiler are instrumented to pro-
duce observable behavior (called “leakages") and functions to transform the source-level
leakages to the target-level leakages (called “leakage transformers"). A novel design of
data structure resembling the leakages closely aligned with the operational semantics of
programs and a novel approach of explicitly producing the leakage transformers during
the compilation phases helped in reasoning about other non-functional properties like the
program cost described in Chapter 4.

My contribution: I designed the structured notion of leakages and leakage transform-
ers. I instrumented the Jasmin compiler with leakages and leakage transformers and
formally verified that the Jasmin compiler preserves constant-time property. Hence, it
sums up that I did all the work. Paper writing was a joint effort.

Published in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2021

Chapter 3 Chapter 3 presents a fine-grained version of the leakage model discussed
in Chapter 2. The leakage model in Chapter 2 provides mitigation against timing-based
attacks where the operators are assumed to be constant-time irrespective of their actual
behavior in various architectures. And also, in terms of memory accesses, the complete
address is leaked instead of the cache line of the address being accessed. The fine-grained
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leakage model makes the analysis challenging and error-prone because of the modular
arithmetic reasoning required for proving the equality of leakages. Chapter 3 provides
a mechanized proof in Coq proof assistant that the Jasmin compiler preserves a class of
fine-grained constant-time policies. This class extends the baseline constant-time policies
discussed in Chapter 2 to provide mitigation against the timing-based attacks caused due
to time-variable instructions and cache-line conflicts.

My contribution: I extended the baseline constant-time preservation method to rea-
son about fine-grained constant-time policies. I also contributed to patching the extrac-
tion mechanism from Jasmin to EasyCrypt to incorporate reasoning about fine-grained
constant-time policies. Paper writing was a joint effort.

Published in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2022

Chapter 4 Chapter 4 presents a sound-certified algorithm to transform the source-level
cost analysis of a program to the target level. It is a byproduct of the novel approach
taken to prove the preservation of constant-time property discussed in chapter 2.

My contribution: I contributed to designing the function computing the cost at source
and target levels and deducing the cost transformers from leakage transformers. Paper
writing was a joint effort.

Published in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2021

Chapter 5 The work explained in Chapter 2 and Chapter 3 guarantee protection against
timing attacks if the execution is sequential. But in reality, we want to provide security
guarantees where processors speculate. Chapter 5 explains a sound, formally verified veri-
fication method (paper-based proofs) for speculative constant-time. It defines a framework
to analyze Jasmin’s programs in the speculative context and establishes that reasoning
about semantics that terminates during misspeculation is enough to reason about se-
mantics that backtracks. This drastically reduces the number of execution paths to be
considered.

My contribution: I presented the formal notion of speculative execution (with and
without backtracking). I also provided the formal proofs for all the claims made in the
chapter. Paper writing was a joint effort.

Published in IEEE Symposium on Security and Privacy (S&P), 2021.

Chapter 6 Chapter 6 discusses an information flow-based security type system ap-
proach that guarantees protection against timing-based side-channel attacks. The type
system tracks security levels, ensuring no secret-dependent branching or secret-dependent
memory accesses for a well-typed program. It also provides the programmer with extra
primitives that can help them write more efficient constant-time programs compared to
the work explained in Chapter 5 and includes soundness proof of the type system (done
using Coq). This approach is carried out for a toy language and later extended in Chapter
7 for Jasmin.

My contribution: All the work in this chapter was completely done by me.

Chapter 7 Chapter 5 provides protection against Spectre attacks but suffers from per-
formance overhead and has some limitations, like the requirement of memory safety.
Chapter 7 explains how Jasmin is extended with new primitives that the programmer
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can use to add protections against Spectre v1 attacks with significantly less performance
overhead. It allows the programmer to add targeted protections like Speculative Load
Hardening and Selective Load Hardening, which minimizes the performance overhead.
An information flow-based security type system, as explained in Chapter 6, is extended
for Jasmin, and it guarantees the correct usage of these primitives.

My contribution: I contributed to extending the idea from Chapter 6 for Jasmin. I
also worked on the paper-based formal proofs for proving the soundness of the type system
and the correctness of the new primitives. Paper writing was a joint effort.

Published in IEEE Symposium on Security and Privacy (S&P), 2023.



Chapter 2

Enforcing constant-time policies

2.1 Introduction

Timing-based side-channel attacks are a class of side-channel attacks that is a primary
source of security vulnerabilities in cryptographic implementations as discussed in Sec-
tion 1.1 of Chapter 1. An approach to minimize these attacks is ensuring that observable
behavior during a program’s execution does not depend on secrets, using an idealized
leakage model. A leakage model defines a language describing the visible effects pro-
duced during a program’s execution. Many cryptographic libraries adopt this approach
under the generic umbrella of constant-time cryptography. For instance, a memory access
([i]) at an address i leaks the accessed memory address (i). A conditional instruction
if e then c1 else c2 produces the leakage that includes the visible effects produced during
the evaluation of the condition (e), the value of the condition itself, and the visible effects
produced during the evaluation of then (c1) or else (c2) branch. To ensure constant-time
property, a program’s memory access should not depend on the secrets, and conditional
instruction should not branch on secrets. Hence, the leakage model ensures that the
memory address is always produced as visible effects during the execution of the memory
access, and the condition is always produced as visible effects during the execution of
conditional instruction. Having the address as leakage during the execution of memory
access means the address is ensured to be public. Having the condition as part of the
leakage produced during the execution of conditional instruction implies the condition is
ensured to be public.

Modern compilers are designed to transform the source-level program into the target-
level program and also to carry out aggressive program optimization while respecting
the input-output behavior of programs. In simpler settings, where behaviors are mod-
eled as execution traces, compiler correctness is thus stated as inclusion between the set
of traces of the target program and the set of traces of source programs. As discussed
in Section 1.2.1, this approach needs to be revised in a security context, as the in-
clusion of instrumented traces fails for most common compiler optimization. To address
these shortcomings, the researchers have developed the foundations of secure compilation,
where compilers are required to preserve the functional behavior and security properties
like constant-timeness. Certified compilers come with machine-checkable proof that the
compiler is correct, i.e., preserve the behavior of programs. The statement of compiler
correctness relies on operational semantics, which formalizes the execution of source and
assembly programs. The semantics are expressed as judgments of the form: p : s ⇓ s′
(resp. p : s ⇓ s′ ), stating that execution of source program p (resp. target program p)
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on initial state s terminates with final state s′. Compiler correctness is informally stated
using this notation: for all source programs p with the compilation p, and all states s and
s′.

p : s ⇓ s′ =⇒ p : s ⇓ s′.

The formal notion above assumes that the source and target programs operate over the
same state space. But in reality, the source and target programs operate over different
state spaces and is considered while developing these kinds of theorems in Coq. The Coq
development for this work also considers different state spaces concerning the source and
target programs.

Security properties like constant-time are expressed relative to instrumented seman-
tics, which tracks visible effects of program execution (called leakages). The instrumented
semantics is based on the leakage model describing what is leaked during program execu-
tion, leading to a judgment of the form: p : s ⇓` s′, stating that executing program p on
initial state s yields a final state s′ and leaks `.

2.1.1 Possible design decisions for leakage model

There is various methodology to design a leakage model.

• Sequence of atomic leakages: One kind is where the leakages of a program P are
defined as a sequence of atomic leakages where each leakage is generated by single-
step execution of the program. For example, an expression of the form (0 + e) + 1
produces leakage of the form [] ++ `e ++ [] that result to `e because concatenation
with empty sequence results in the original sequence.

• Set of atomic leakages: One kind is where a program P leakages are defined as a
set of atomic leakages. For example, an expression of the form (0 + e) + 1 produces
leakage of the form {•; `e; •}.

• Structured leakage: The word structured resembles the fact that the syntax of leak-
age is closely related to the operational semantics of the programs. The expression
(0 + e) + 1 produces leakage of the form ((•, `e), •).

Discussion: Different notions of leakage models have various advantages and dis-
advantages over others.

– Sequence of atomic leakages: In the case of leakages defined as a sequence
of atomic leakages, it is hard to identify the leakages belonging to the sub-
components of an expression or an instruction from the flattened sequence. For
example, an expression of the form (0 + e) + 1 produces the final leakage as `e

because concatenation with empty sequence results in the original sequence.
The overall goal is to transform the source leakage into the target leakage
using some function, and a flattened sequence makes it hard to construct such
a function. But also, there is a possibility of using all the existing libraries
defined for the sequence data structure in Coq, and there is no need to redefine
the various functions operating on the sequence.

– Set of atomic leakages: In the case of leakages defined as a set of atomic
leakages, it is hard to identify the leakages belonging to the sub-components
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of an expression or an instruction from the set because a set is an unordered
collection of elements. Again, it will be hard to define the transformation
functions. But also, from the usability point of view, a set data structure is
more powerful as many libraries in Coq defined for sets exist.

– Structured leakage: Structured notation of leakages presents a notion closely
related to the syntax and semantics of the instructions. By looking at the
leakage produced during the program execution, we can extract a lot of infor-
mation about the operational semantics of the program. Here, in the case of
leakage ((•, `e), •), • resembles that the expression’s execution produces empty
leakage; hence, the expression is either a constant or a variable. Hence, the
intuitive nature of the leakage helps us to reason about the program without
looking at the actual program. Also, it is easier to design a set of transfor-
mation functions. For example, the compiler passes like constant-propagation
will transform the expression (0 + e) + 1 to e + 1. The transformation func-
tion should remove the leakage corresponding to 0. The notion of leakage is
so intuitive that designing a function that eliminates • (leakage corresponding
to 0) is very straightforward.

But in the end, the choice of the leakage model depends on the purpose for which it
is used. In this work, the structured notion is used because it helped in reasoning
about various properties in a structured manner.

2.1.2 Constant-time

The constant-time (CT) is an instance of observational non-interference that is formalized
as a leakage model such that the control-flow instructions leak the condition and memory
accessing instructions leak the address being accessed. The constant-time property is
based on the indistinguishability relation, stating that the indistinguishable states only
differ in their private parts. The constant-time property for a program p is stated as: for
all initial state s1 and s2,

p : s1 ⇓`1 s′1
p : s2 ⇓`2 s′2

}
=⇒ s1 ∼ s2 =⇒ `1 = `2.

Under this formalization, preservation of constant-time for a program p with compilation
p is stated as: for all initial states s1 and s2,

p : s1 ⇓`1 s′1
p : s2 ⇓`2 s′2
p : s1 ⇓`1 s

′
1

p : s2 ⇓`2 s
′
2

 =⇒ s1 ∼ s2 =⇒ `1 = `2 =⇒ `1 = `2.

2.1.3 Function to transform source leakage to target leakage

As seen in Section 2.1.2, preserving constant-time requires proving equality between the
target leakages. A compiler consists of various passes that transform the source to the
target program. For most compiler passes, source and target programs have different
leakages because the source and target programs differ. The various compiler passes
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introduce, remove, or reorder instructions according to the compiled program. Hence, the
target leakage should also correspond to these transformations.

There is a need for a transformation function that transforms the source leakage into
the target leakage. The compiler correctness should also ensure that this transformation
function converts the source leakage correctly. There are various ways to exhibit such
function F . One approach is to say that there exists such function F and while doing the
correctness proof of the compiler, an instance of such a function is provided.

∀s s′ `, p : s ⇓` s′ =⇒ ∃ F, p : s ⇓F (`) s
′

Another approach is that the compiler produces the function F .

∀s s′ ` F, p : s ⇓` s′ =⇒ p : s ⇓F (`) s
′

Discussion Both methods have their benefits; for example, the first approach does
not affect the compilation time. As the compiler does not do any extra computation to
produce the transformation function F , compilation time does not change. The second
approach is more applicable as the function generated by the compiler can be used to
reason about other properties and makes reasoning about constant-time property much
more straightforward. The transformation function gives an intuition about the changes
made to the source leakage to produce the target leakage. Hence, it provides a recipe to
transform the source-level information into target-level information. This recipe can be
used to reason about other properties of the program.

Focus on preservation of constant-time considering both approaches To pre-
serve constant-time property, we must deal with various compiler passes that transform
the source into the target program. When the compiler is not obliged to produce the
transformation function F , there is no information (even at the abstract level) about how
the program is transformed according to that particular compiler pass.

Carrying out the proof of preservation becomes harder in such cases, as discussed in
[Barthe et al., 2020] and [Barthe et al., 2018]. The compiler pass that preserves the trace
and leakage can easily be extended to include the reasoning about the preservation of
constant time, as the leakage is the same at the source and target level. The compiler
pass-like dead-code elimination that might erase some leakage at the target level needs
some extra attention because there is a need to establish a relationship that predicts the
number of steps at the target level as shown in Figure 2.1a. The proof of preservation for
such passes needs to establish judgments about the correctness of this relationship. But
when the compiler produces the leakage transformer, the transformer gives information
about how the program is transformed. For example, the source-level instruction i; c is
transformed to c during the dead-code elimination. The dead-code elimination compiler
pass produces the leakage transformer of the form remove; id that gives information that
the leakage corresponding to i is removed and the leakage associated with c is preserved.
There is no need to establish a relation between the source and target states; the assump-
tion that the source-level program is constant-time will show the constant-time property
after the dead-code elimination at the target level. As explained in [Barthe et al., 2020],
they need to establish a cube for reasoning about the constant-time property for compiler
pass-like linearization. The cube diagram presented in Figure 2.1b shows a need to de-
velop a counting simulation between source and target states, and reasoning about four
traces was required to prove the preservation of constant time.
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Overall, the disadvantage of not explicitly producing the transformation function as
a byproduct of compilation makes the proof harder as it can only use the correctness
proof of the compiler, but it cannot be extended easily to reason about the number of
possible steps at the target level. For example, in the case of linearization, it is more
difficult as the high-level control flow is transformed to linear instructions full of gotos
and labels, and it makes it harder to reason about the number of steps at the target level
in relation with the source; hence the cube diagram (present in Figure 2.1b) is necessary.
In the case where the compiler pass explicitly produces the transformation function, the
transformation function gives an abstract overview of the transformation. Also, the proof
methodology varies for different compiler passes; hence, the preservation of constant-
time needs to be done separately for each compiler pass as one proof methodology is
not enough for reasoning about all compiler passes, which is unlikely the case where the
compiler explicitly produces the transformation function.

(a) Leakage Preservation/Erasure (b) CT cube diagram

Figure 2.1 – CT simulation diagrams.

In this work, function F is generated by the compiler and is called a leakage trans-
former. The proof of preservation of constant-time becomes straightforward and only
involves reasoning about the two traces at the target level (assuming that the source pro-
gram is constant-time). It did not require generating a relationship between the source
and target states as the leakage transformer captures the information about the transfor-
mation, and there is no need to establish the connection between the number of steps at
the source and target. The proof is a consequence of the correctness proof of the leakage
transformers (later explained in Section 2.5).

2.1.4 Contributions

This chapter proposes a methodology for formally verifying the preservation of constant-
time property. All the work is being carried out around the Jasmin compiler, and all
the proofs are machine-checked using theorem prover Coq. The development is present
here: https://github.com/jasmin-lang/jasmin/tree/constant-time. Technical contributions
in nut-shell:

• The definitions of structured leakage and leakage transformers;

• Formal proofs of correctness of leakage transformers for all the passes of Jasmin
compiler;

• A mechanized proof showing that the Jasmin compiler preserves Cryptographic
constant-time

https://github.com/jasmin-lang/jasmin/tree/constant-time
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2.1.5 Illustrative example

This section presents a few examples to give an intuition about structured leakages and
leakage transformers.

Expressions Figure 2.2 introduces two code snippets representing the source and target
code for addition operations and their associated leakages. Figure 2.2 also presents the
leakage transformer produced during this transformation. The first addition operation
adds 0 to the value present at index 0 in the array a, and the second addition adds
1 to the result obtained from the first addition. The compiler knows statically that
the result of the first operation will be a[0]; hence, the target code is just one addition
operation with operands a[0] and 1. The leakage for (0 + a[0]) + 1 is ((•, (•, [0])), •)
representing that evaluation of a constant produces no leakage, and array access leaks
the index accessed. The leakage for the compiled expression a[0] + 1 is ((•, [0]), •). The
compiler produces leakage transformer (π2, id) where π2 projects the leakage at index 2
from the source leakage (•, (•, [0])) and id preserves the leakage. If the leakage produced
by the addition operation was represented as a concatenation of its subpart’s leakages, it
would be difficult to project at the corresponding index, as concatenating with an empty
leakage returns the original leakage. The flattened source leakage of the above example
will be the concatenation of •, •, [0] and •, which will get reduced to [0]. From the
flattened list, it is hard to identify the leakages belonging to the sub-parts.

( , )

( , )

• ( , )

• [0]

•

( , )

( , )

• [0]

•

( , )

π2 id(0 + a[0]) + 1 a[0] + 1

Figure 2.2 – Example: Structured leakage and leakage transformer for expression

Instructions Figure 2.3 presents a conditional instruction with a tt guard, that is re-
duced to its then branch after compilation. This kind of transformation is carried out
when the compiler statically knows the value of the boolean condition. The leakage for
conditional instruction at the source level is iftt(•, opl((•, [0]); •)). The structure of the
source leakage is closely aligned with the structure of the conditional instruction, with
tt indicating that the boolean condition is satisfied and opl((•, [0]); •) (opl is represented
as := in the figure for better readability) indicating that the then branch is an assign-
ment instruction. The target leakage is opl((•, [0]); •), which gives us information that the
conditional instruction is reduced to an assignment instruction. The leakage transformer
produced during this transformation is cevaltt (op(id, id)), where tt indicates the branch
taken and op(id, id) transforms the leakage for the then branch from the source. Designing
the leakage transformer was straightforward because of the structured notion of leakages.
If the leakage generated from conditional instruction were a concatenation of its sub-parts,
then it would be hard to detect which part in the list belongs to the then or else branch.
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iftt

• :=

( , )

• [0]

•

:=

( , )

• [0]

•

cevaltt

:=

id idif tt then x[0] := 0 else x[0] := 1 x[0] := 0

Figure 2.3 – Example: Structured leakage and leakage transformer for instruction

2.2 Stuctured leakage and instrumented semantics

This section presents the formal notion of structured leakages and how they are used in
instrumented operational semantics of the Jasmin language shown in Figure 1.11.

2.2.1 Instrumented semantics

The instrumented semantics is produced from the original semantics by annotating the
judgments with leakage. The semantic uses three judgments. The first, e ↓s`e v, provides
the semantic of the expression e in the state s, it produces a leakage `e and a value v.
The second, d := v ↓s`e s

′ provides semantics of assigning a value v to a destination d in
a state s; it generates a new state s′ and some leakage `e. The last judgment, i, s ⇓` s′,
provides semantics of instructions; it takes an instruction i and a state s and returns an
instruction’s leakage ` and a state s′. The three judgments are presented in Figure 2.4.

A state is a pair of a memory (a mapping from address to values) and a valuation
for variables (a mapping from variables to values). s(x) is the value associated to x in s
(which can be an array). s[p] loads the value stored in memory at an address p. When a
value v is an array, v[i] denotes the value at index i in this array. s{x← v} updates the
value associated to x with v and s{p← v} writes v in memory at address p.

2.2.2 Structured leakage

The leakage model is an abstract mechanism to capture visible effects produced during a
program’s execution. To enforce the preservation of constant-time policies, one important
goal is to relate source programs’ leakage and their compilation. There are four kinds of
leakages: two for the high-level Jasmin language: `e and `, one for the intermediate-level
`i and one for the assembly-level `a.

Structured leakage for the source level

The syntax of leakage is closely related to programs’ syntax and semantics. Figure 2.5
presents the leakages for expressions and instructions. In the case of expressions, `e can
be •, an array index [z], a memory address ∗p or a tuple of leakage (`1

e, . . . , `
n
e ). In the

case of instructions, there is one constructor per semantic rule.
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Expression semantics:

c ↓s• c b ↓s• b a[n] ↓s• a[n]

v = s(x)

x ↓s• v
v = gd(g)

g ↓s• v

e ↓s`e z s(a) = t

a[e] ↓s(`e,[z]) t[z]

e ↓s`e p
∗e ↓s(`e,∗p) s[p]

ei ↓s`ie vi v = op(v1, . . . , vn)

op(e1, . . . , en) ↓s(`1e,...,`ne ) v

e ↓s`e b et ↓s`tte vtt e ↓s
`ffe
vff

if e then ett else eff ↓s(`e,`tte ,`ffe )
if b then vtt else vff

Assignment semantics:

x := v ↓s• s{x← v}

e ↓s`e z s(a) = t t′ = t{z ← v}
a[e] := v ↓s(`e,[z]) s{a← t′}

e ↓s`e p
∗e := v ↓s(`e,∗p) s{p← v}

Instruction semantics:

{} : s ⇓{} s
i : s ⇓`i s1 {c} : s1 ⇓{`c} s2

{i; c} : s ⇓{`i;`c} s2

e ↓s`e v d := v ↓s`d s
′

d := e : s ⇓opl(`d;`e) s
′

e ↓s`e b cb : s ⇓`c s′

if e then ctt else cff : s ⇓ifb(`e,`c) s
′

c, s ⇓`c s1 e ↓s1`e ff
while c e c′ : s ⇓whilef(`c,`e) s

c, s ⇓`c s1 e ↓s1`e tt c′, s1 ⇓`c′ s2 while c e c′ : s2 ⇓`w s3

while c e c′ : s ⇓whilet(`c,`e,`′c,`w) s3

r ↓s`r wr forsem i wr c : s ⇓`f s1

for i r c : s ⇓for `r `f s1

args ↓s`e;...;`e vs callsem fn vs : s ⇓`f s1 xs := vs ↓s1`w;...;`w
s2

call ii xs fn args : s ⇓call (`e;...;`e) `f (`w;...;`w) s2

For semantics:

forsem i {} c : s ⇓{} s
s{i← w} = s1 c, s1 ↓`c s2 forsem i ws c ↓`w s3

forsem i (w :: ws) c : s ⇓(`c,`w) s3

Call semantics:

fd(P, fn) = f s{fparams(f)← args} = s1 fbody(f), s1 ⇓`c s2

callsem fn args : s ⇓(fn,`c) s2

Figure 2.4 – Instrumented semantics.
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`e ::= • empty
| [z] index
| ∗p address
| (`e, . . . , `e) sub-leakage

` ::= opl(`e; `e) assignment
| ifb(`e, `) conditional
| whilet(`, `e, `, `) iteration
| whilef(`, `e) loop end
| for `e {{`; . . . ; `}; . . . ; {`; . . . ; `}} for
| call (`e, . . . , `e) (fn, {`; . . . ; `}) (`e, . . . , `e) call
| {`; . . . ; `} sequence

Figure 2.5 – Syntax of structured leakages

The instrumented semantics of expressions is presented in Figure 2.4. Variables, con-
stants, booleans, array initialization, and global variables leak •, i.e., a mark indicating
that a variable has been evaluated. The evaluation of an array access a[e] leaks a pair
(`e, [z]) where `e is the leakage corresponding to the evaluation of the index e and z is the
value of e. The evaluation of memory access [e] leaks a pair (`e, ∗p) where `e is the leakage
corresponding to the evaluation of the address e and p is the value of e. Operators leak
the tuple composed by the leakages of their arguments. The evaluation of the conditional
expression if e then ett else eff leaks a sequence consisting of `e, `tte and `ffe where `e is
the leakage corresponding to the evaluation of the boolean expression e, `tte is the leakage
corresponding to the evaluation of the then branch and `ffe is the leakage corresponding
to the evaluation of the else branch.

A destination can be either a variable, an array, or a memory destination. The se-
mantic of assignment also generates leakages due to memory and array stores. When the
destination is a variable, the leakage is •. In case of an array destination a[e], (`e, [z]) is
leaked where `e is the leakage corresponding to the evaluation of the index e and z is the
value of e. Similarly, in the case of memory destination [e], (`e, ∗p) is leaked where `e is
the leakage corresponding to the evaluation of the address e and p is the value of e.

Except for the leakage, the non-instrumented rules are mostly standard; hence, the
discussion focuses on the leakage part. The leakage of a sequence is composed of the
leakage of each of its components. An assignment instruction d := e produces a leakage
opl(`e; `d) composed of the leakage generated during the evaluation of the expression e
and the one generated during the evaluation of the assignment d := v where v is the
value obtained after the evaluation of e. For conditional if e then ctt else cff , the leakage
is ifb(`e, `cb), so it contains the leakage `e generated by the evaluation of the condition
e, the value b of the condition and the leakage `cb generated by the evaluation of the
taken branch. In Jasmin, the while loop is represented as while c e c′ and works like
a do-while loop in C language. If the condition evaluates to false, the loop exits and
the leakage is whilef(`c, `e) where `c is the leakage generated during the execution of c,
and `e is the leakage generated during the evaluation of the condition. Otherwise the
leakage is whilet(`c, `e, `

′
c, `w), where `c is the leakage generated during the execution of c,

`e is the leakage generated by the boolean condition, `′c is the leakage generated during
the evaluation of c′, and `w is the leakage obtained during the loop iteration. A for-loop
for i r c produces a leakage of the form for `r `f where the leakage `r represents the leakage
generated during the evaluation of the range of the loop and `f is obtained during the
iteration of the for loop’s body. A function call call ii xs fn args produces a leakage of
the form call `e `f `w composed of the leakage `e generated during the evaluation of the
arguments (args) passed to the function call, `f generated during the evaluation of the
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function body and `w generated while assigning the results to corresponding destinations
(xs := JargsKρ). The instrumented semantics are deterministic, both with respect to
states and with respect to leakages.

Structured leakage for the intermediate level

The intermediate language consists of five kinds of instructions. goto n jumps to the
location labeled as n. label n creates a label name n and align aligns the instruc-
tion. opi(xs, o, es) represents the intermediate-level operations, and ifi(e, n) represents
the intermediate-level conditional instruction where e represents the guard, and n rep-
resents the label of the instruction that will be executed when the guard evaluates to
tt.

il ::= align align
| goto n goto
| label n label
| opi(xs, o, es) operation
| ifi(e, n) cond

`i ::= • empty
| i pc
| op `e operation
| ifl i `e b conditional

Figure 2.6 – Syntax of intermediate language and leakages

Auxiliary functions:

〈ρ, µ, ic, n〉mem = µ 〈ρ, µ, ic, n〉rmap = ρ

〈ρ, µ, ic, n〉cmd = ic 〈ρ, µ, ic, n〉pc = n

setpc(s, n) = 〈smem, srmap, scmd, n〉

islbl(n, i) =

{
true i = label n′ ∧ n′ = n

false i 6= label n′

findlbl(n, ic) =

{
ok idx ∃idx : [ic]idx = i ∧ islbl(n, i) = true ∧ idx ≤ |ic|
error idx > |ic|

tos〈ρ, µ, ic, n〉 = 〈ρ, µ〉 ofs(〈ρ, µ〉, ic, n) = 〈ρ, µ, ic, n〉

Figure 2.7 – Auxiliary functions used in intermediate level semantics

The high-level instruction is compiled to the intermediate-level instruction during the
linearization compiler pass that transforms the program into an unstructured list of in-
structions. The linearization pass is explained in detail in Section 2.3.3. The instrumented
intermediate-level semantics is produced from the original intermediate-level semantics by
annotating the judgments with intermediate leakage `i present in the right side of Fig-
ure 2.6. The intermediate-level semantic uses the judgment of the form: si ⇓`i s′i. The
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intermediate state comprises a register map, memory, intermediate-level command (seq of
intermediate-level instructions), and program counter. A set of auxiliary functions defined
in Figure 2.7 are used in the instrumented semantics. For example, findlbl(n, scmd) returns
the position of instruction label n in a sequence of intermediate-level instructions scmd.
setpc(s, pc

′) sets the program counter field of the state s to pc′. The function islbl(n, i)
checks if the instruction i is a label instruction and if it is equal to n. The function tos
and ofs define the transformation of the intermediate-level state to the source-level state
and vice-versa. The intermediate-level instrumented semantics is present in Figure 2.8.

Intermediate-level instruction semantics:

spc = pc

align : s ⇓• setpc(s, pc+ 1)
[Align]

spc = pc

label : s ⇓• setpc(s, pc+ 1)
[Label]

findlbl(n, scmd) = pc′ ∧ spc = pc

goto n : s ⇓(pc′+1)−pc setpc(s, pc
′ + 1)

[Goto]

e ↓toss
`e

tt ∧ findlbl(n, scmd) = pc′ ∧ spc = pc

ifi(e, n) : s ⇓ifl ((pc′+1)−pc) `e tt setpc(s, pc
′ + 1)

[Condt]

e ↓toss
`e

ff ∧ spc = pc

ifi(e, n) : s ⇓ifl 1 `e ff setpc(s, pc+ 1)
[Condf]

xs := o(es) ↓toss
`o

s′ ∧ spc = pc

opi(xs, o, es) : s ⇓op `o ofs(s
′, scmd, pc+ 1)

[Op]

Figure 2.8 – Instrumented semantics of intermediate language

Both align and label instruction increment the program counter by using the auxiliary
function setpc(s, pc + 1) (where s is the initial intermediate state and pc is the program
counter stored in it) and does not leak anything. goto n finds the program counter of the
instruction associated with the label n and sets the program counter to pc′ + 1 where pc′ is
the program counter of instruction with label n. Evaluation of goto n leaks (pc′ + 1)− pc
where pc is the current program counter. ifi(e, n) sets the program counter to the instruc-
tion associated with label n when the guard e evaluates to tt else, it sets the program
counter to the next instruction. It leaks ifl i `e b where i is the difference between the new
and old program counter, `e is the leakage obtained during the evaluation of the condition
e, and also leaks the boolean (either tt or ff). opi(xs, o, es) uses the high-level semantics
of operations and produces the leakage `o that is produced during the evaluation of es
and assigning it to xs.

Structured leakage for the assembly level

The assembly-level language consists of five different kinds of instructions presented in
Figure 2.9. labela n and aligna works in similar manner like intermediate-level instructions.
jump n represents unconditional jump to the instruction with label n and jcc(n, cond)
represents conditional jump to the instruction with label n. asmop(o, es) represents the
assembly-level operations.
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ia ::= aligna align
| jump n jump
| labela n label
| jcc(n, cond) jump on condition
| asmop(o, es) assembly operation

`a ::= • empty
| i pc
| ifa i b conditional
| (∗p, . . . , ∗p) pointers

Figure 2.9 – Syntax of assembly-level instructions and leakages

The assembly-level instructions operate on a state consisting of assembly-level memory,
a sequence of assembly-level instructions, and an instruction pointer. The state is of
the form 〈mema, ac, ip〉 where mema is represented as {ρ, µ, ρx, ρf} (ρx maps the extra
registers like mmx to their values and ρf maps the flag registers to their values). The
state parameters are updated using the auxiliary functions defined in Figure 2.10, and
their semantics are very similar to the auxiliary functions of the intermediate level.

Auxiliary functions:

〈mema, ac, n〉ip = n 〈mema, ac, n〉acmd = ac 〈{ρ, µ, ρx, ρf}, ac, n〉flag = ρf

setip(s, n) = 〈mema, ac, n〉 〈mema, ac, n〉mem = mema

islbla(n, i) =

{
true i = labela n′ ∧ n′ = n

false i 6= labela n′

findlbla(n, ac) =

{
ok idx ∃idx : [ac]idx = i ∧ islbla(n, i) = true ∧ idx ≤ |ac|
error idx > |ac|

Figure 2.10 – Auxiliary functions used in assembly level semantics

The original assembly level’s semantics are instrumented to produce leakages of the
form `a present in Figure 2.9. The `a can be •, i (where i represents the instruction
pointer that is a natural number), ifa i b (where i represents the instruction pointer,
and b represents the evaluation of the guard of a conditional jump) and (∗p, . . . , ∗p)
represents a sequence of memory addresses. The judgment of the form: sa ⇓`a s′a defines
the instrumented semantics of assembly-level instructions present in the Figure 2.11.
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Assembly-level instruction semantics:

sip = ip

aligna : s ⇓• setip(s, ip+ 1)
[Align]

sip = ip

labela : s ⇓• setip(s, ip+ 1)
[Label]

findlbla(n, sacmd) = ip′ ∧ sip = ip

jump n : s ⇓(ip′+1)−ip setip(s, ip′ + 1)
[Jump]

[cond]sflag ↓ tt ∧ findlbla(n, spc) = ip′ ∧ spc = ip

jcc(n, cond) : s ⇓ifa ((ip′+1)−ip) tt setip(s, ip′ + 1)
[Jcct]

[cond]sflag ↓ ff ∧ spc = ip

jcc(n, cond) : s ⇓ifa 1 ff setip(s, ip+ 1)
[Jccf]

o(es) ↓smem

(∗p,...,∗p) m
′ ∧ spc = ip

asmop(o, es) : s ⇓(∗p,...,∗p) 〈m′, sacmd, ip+ 1〉
[Op]

Figure 2.11 – Instrumented semantics of assembly-level language

The semantics of assembly-level aligna, labela n, and jump n are similar to the semantics
of intermediate-level instructions. The jcc(n, cond) instruction jumps to the instruction
with instruction pointer n if the condition cond evaluates to tt. It leaks the difference
between the instruction pointer and the boolean tt (of the form ifa ((ip′ + 1) − ip) tt).
The guard represented by cond is evaluated using the judgment [cond]sflag that uses sflag

(flag map parameter of state s) to evaluate the cond where cond represents various flag
conditions like equal, not equal, carry set, overflow, signed less than etc. Similarly, in
the case where cond evaluates to ff , the instruction jcc(n, cond) proceeds to the next
instruction and leaks ifa 1 ff . The evaluation of asmop(o, es) leaks the memory addresses
touched during the application of operation o (x86 operations) on the arguments es (it
can be implicit, explicit registers, immediate value or memory addresses).

2.3 Leakage transformers

The job of leakage transformers is to transform the source-level leakage to the target-level
leakage. Five kinds of leakage transformers are introduced to instrument all compilation
passes of the Jasmin compiler from source to assembly. Three kinds for high-level compiler
passes, and two kinds corresponding to linearization and assembly generation passes. In
most cases, these functions are independent of the program except for the stack-allocation
pass, which needs access to the stack pointer. The syntax of leakage transformers τe for
expressions and τs for accessed addresses are shown in Figure 2.12. The formal semantic
of τe and τs are interpreted using the notations JτeK`ee (for expressions) and JτsK

vsp
s (for

accessed addresses) where vsp is the value of stack pointer. Their formal definitions are
provided Figure 2.14. The syntax of leakage transformers τ for instructions are shown in
Figure 2.13, and their formal definitions are provided in Figure 2.21. The formal semantic
of τ is interpreted as JτK`.
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τe ::= • remove
| id identity
| τe ◦ τe composition
| πi projection
| (τe, . . . , τe) map
| rev reverse
| (τe; . . . ; τe) sequence
| C(τs) constant addr
| I(x 7→ τs) indexed addr

τs ::= cst(p) constant
| sp stack pointer
| τs + τs addition
| τs × τs multiplication
| x variable

Figure 2.12 – Leakage transformers for expressions

τ := keep keep
| op(τe, . . . , τe) op
| if(τe, τ, τ) cond
| while(τ, τe, τ) while
| for(τe, (τ ; . . . ; τ)) for
| call(fn, (τe; . . . ; τe), (τe; . . . ; τe)) call
| (τ ; . . . ; τ) sequence
| remove remove
| cevalb τ cond-eval
| forunroll(n, τ) for-unroll
| condlow((τe; . . . ; τe), τe, (τ ; . . . ; τ), (τ ; . . . ; τ)) cond-low
| whilelow((τe; . . . ; τe), τe, (τ ; . . . ; τ), (τ ; . . . ; τ)) while-low
| oplow (τe; . . . ; τe) op-low

Figure 2.13 – Leakage transformers for instructions

2.3.1 Leakage transformers for expressions

The leakage transformer • erases the leakage and produces • leakage. id is used where
the compiler does not modify the expression; hence, leakage must also be preserved. The
leakage transformer τe ◦ τe allows the composition of leakage transformers. The leakage
transformer πi returns the leakage at index i from the set of leakages. (τe, . . . , τe) maps a
set of leakage transformers to a set of leakages. rev reverses the set of leakages. (τe; . . . ; τe)
generates the target leakage by applying a sequence of leakage transformers to a source
leakage. The transformer C(τs) introduces fresh memory access leakages. C(τs) is used in
stack-allocation compiler pass where a new leakage is created, and their semantics depend
on the value of the stack pointer. Similarly, I(x 7→ τs) introduces a new leakage based
on the free variable x that denotes the actual value of the index. Both I(x 7→ τs) and
C(τs) take a type τs as an argument that denotes the accessed addresses. The semantics
of leakage transformers τe and τs are present in Figure 2.14. The semantics of leakage
transformers C(τs) and I(x 7→ τs) only need the value of stack pointer to compute the
target leakage because they are involved in transforming source-level read and write to
actual memory store and load (in stack-allocation pass, the variables are allocated in the
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Leakage transformers for expressions:

J•K`ee = • JidK`ee = `e JrevK(`1,...,`n)
e = (`n, . . . , `1)

JπiK(`1,...,`n)
e = `i

JτiK`e = `′i

J(τ1; . . . ; τn)K`e = (`′1, . . . , `
′
n)

JτiK`ie = `′i

J(τ1, . . . , τn)K(`1,...,`n)
e = (`′1, . . . , `

′
n)

Jτ1K`ee = `′e

Jτ1 ◦ τ2K`ee = Jτ2K`
′
e
e

JτsK
vsp
s = p

JC(τs)K`ee = ∗p
Jτs[i/x]Kvsp

s = p

JI(x 7→ τs)K[i]
e = ∗p

Transformers creating address leakage:

Jcst(p)Kvsp
s = p Jτs1 + τs2K

vsp
s = Jτs1K

vsp
s + Jτs2K

vsp
s

JspKvsp
s = vsp Jτs1 × τs2K

vsp
s = Jτs1K

vsp
s × Jτs2K

vsp
s

Figure 2.14 – Semantics for leakage transformers

stack). The rest of the leakage transformers only need the source leakage to compute the
target leakage.

Illustrative example Here is a table illustrating some examples that show how various
leakage transformers produce target leakages from source leakages.

Expression Leakage Leakage
source target transformer source target

0× e 0 • (•, `) •
0 + e e π2 (•, `) `
e1 + e2 e′1 + e′2 (τ 1

e , τ
2
e ) (`1, `2) (`′1, `

′
2)

e1 + e2 e′2 π2 ◦ τ 2
e (`1, `2) `′2

In the first line, the compiler knows statically that multiplication of 0 to an expression
e results in 0, hence the source leakage (•, `) corresponding to 0 and e transforms to • by
the leakage transformer • (because the target expression is just a constant 0, which does
not produce any leakage during its evaluation). In the second line, the source expression
0+e is transformed to e (which means the leakage associated with e must be preserved at
the target level), so the leakage transformer is a projection π2. In the third line, both the
expression e1 and e2 present in the source expression are transformed to e′1 and e′2; hence,
the leakage corresponding to e1 i.e., `1 and leakage corresponding to e2 i.e., `2 needs to
be transformed to the leakage corresponding to e′1 i.e. `′1 and the leakage corresponding
to e′2 i.e. `′2. The leakage transformer in the above case is a map consisting of leakage
transformers (τ 1

e , τ
2
e ) where τ 1

e transforms the leakage `1 to `′1 and τ 2
e transforms the

leakage `2 to `′2. In the fourth line, the addition is removed (as in the second line), and
the second sub-expression is recursively transformed, so we compose a projection with the
leakage transformer for the sub-expression.
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2.3.2 Transformers creating accessed addresses

In compiler pass like stack-allocation, new leakage is created. In the stack-allocation pass,
some variables are allocated into the stack memory, replacing the corresponding accesses
(read and write) with memory operations (load and store). This, in turn, creates new
leakages as memory operations are involved. Given a variable x allocated at constant
offset ox in the stack, a read from this variable will be compiled into the memory load
[sp + ox] where sp is the stack pointer value register. At the source level, the leakage of
x is •. It becomes (•, ∗(vsp + ox)) at the target level where • corresponds to the leakage
associated with the evaluation of the offset ox and vsp is the value of the stack pointer.

The case of an array variable a, allocated at a constant offset oa works similarly. The
source level array access a[e] is compiled into [sp + oa + n × e] where n is the size of an
array element. At the source level, a[e] leaks (`e, ve) where `e is the leakage obtained
while evaluating the expression e and ve is the value of the index. At the target level,
the leakage is ∗(vsp + oa + n × ve). oa and n are statically known values provided to the
leakage transformer. So, in this transformation, the target leakage will further depend on
the value ve that can be recovered from the source leakage and on the dynamic value of
sp.

These two cases described above are the cases where the new leakage is created by not
only using the source leakage but also requiring some extra information, like the value of
the stack pointer. Hence, the leakage transformers depend not only on the source leakage
but also on the stack pointer, which has some consequence for preserving constant-time
that is explained in Section 2.5. As the leakage transformer needs to be parameterized
by the stack pointer value, it must be considered as public input.

To capture these kinds of transformations, the syntax of leakage transformers includes
transformers that can construct new leakages, and their semantics depend on the value of
the stack pointer. New memory accesses that are introduced during stack allocation are
constructed using the leakage transformer C(τs) and I(x 7→ τs). They depend on τs that
represents the accessed address. x is a free variable representing the index’s actual value.
The τs can be computed by performing some operations like + and × whose semantics
are explained in Figure 2.14.

Brief introduction of stack allocation pass

The stack allocation pass consists of an analysis that computes the stack frame’s layout
and introduces memory operations. As far as leakage transformers are concerned, only the
second part is relevant. The leakage transformation only concerns the second part, which
involves transforming the read/write operations to load/store operations. The leakage
transformation involves transforming leakages due to expression, left values, and instruc-
tions. The transformation of expressions and left values is done similarly. Here, a code
snippet (Coq encoding) is presented in Figure 2.15 that represents the transformation
of expressions in the stack allocation pass. alloc e is recursively defined that depends on
memory m (result of the analysis part that is done to compute the stack frame’s layout)
and an expression e. The function alloc e succeeds (and returns the compiled expression
and leakage transformer) or returns an error (in the case of stack frames not aligned
properly).
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Fixpoint alloc e (m: map) (e: pexpr) : cexec (pexpr × leak e tr) :=1

match e with2

| Pconst | Pbool | Parr init | Pglobal ⇒ ret e id3

| Papp1 o e ⇒4

Let: (e, r) := alloc e m e in5

ret (Papp1 o e) r6

7

| Pload ws x e ⇒ . . .8

Let: (e, r) := alloc e m e in9

ret (Pload ws x e) [ r, id ]10

11

| Pvar x ⇒12

if . . . (* x has size ws and is allocated at offset ofs *) then13

ret (Pload ws stk ofs) [ id; C (sp + cst ofs) ]14

else . . . (* x is a register *)15

ret e id16

17

| Pget ws x e ⇒18

Let: (e, r) := alloc e m e in19

if . . . (* x is allocated at offset ofs *) then20

let: (ofs’, t) := mk ofs ws e ofs in21

ret (Pload ws stk ofs’ ) [ r ◦ t, I (x 7→ sp + cst x × cst ws + cst ofs) ]22

else . . . ret (Pget ws x e) [ r, id ]23

24

| . . . ⇒ . . .25

end.26

Figure 2.15 – Pseudo-code of the stack-allocation of expressions

Definition mk ofs ws e ofs : pexpr × leak e tr :=27

let sz := wsize size ws in28

if is const e is Some i then29

((cast const (i × sz + ofs)),30

I (x 7→ sp + cst x × cst sz + cst ofs))31

else32

let: (e, t) := cast word e in33

(add (mul (cast const sz ) e) (cast const ofs), [ [ • ; t ] ; • ]).34

end.35

Figure 2.16 – Pseudo-code of the mk ofs

Compiling expressions like constant, boolean, array initialization, or global variable
declaration is straightforward (line 3), as the compiled expression is the same as the
source. Hence, in these cases, the leakage transformer will be id (that will preserve the
source leakage). In the case of a variable (represented as Pvar x in line 12-16), if the
variable is of type stack (and is bound to an offset ofs in the memory m) then it is
transformed to a memory load operation else its compilation remains the same. In the
case of stack variable, the leakage transformer is id;C(sp+ ofs) where sp is the value of
stack pointer and ofs is the offset at which the variable will be assigned on the stack. In
the case of the register variable, the leakage transformer is id as it just preserves the same
leakage. The compilation of read (line 18-23) of size ws from an array x at an index e
is transformed to a memory load with an offset recursively calculated from e. The ofs is
calculated using a function mk ofs, which simplifies the expression e and returns leakage
transformers corresponding to it. In the case of array access, the leakage transformer
is a sequence of composition of two leakage transformers related to the offset (the first
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part of composition is the leakage transformer obtained by recursively applying alloc e
to e. The second part is the leakage transformer obtained by function mk ofs), and
I(x 7→ sp + cst(x) ∗ cst(ws) + cst(ofs)) where x represents the index, ws represents the
size and ofs represents the offset.

Compiling the rest of the expressions works similarly by recursively applying the func-
tion alloc e to its sub-parts. For example, in the case of unary operators o (Papp1 in
line 4-6) applied to a sub-expression e produce the same leakage as produced by the
sub-expression; therefore, the leakage transformer corresponds to the leakage transformer
produced during the compilation of the sub-expression e. Compiling a load expression
recursively transforms the address expression but preserves its value (lines 8-10).

The transformation of instructions is pretty straightforward as it applies the function
alloc e and the function transforming the left value on the sub-parts and recursively
applies itself to the part concerning the instructions. Hence, the leakage transformers
generated by these sub-parts are collectively used to produce the leakage transformer for
each kind of instruction.

1 fn foo() −→ reg u64 {
2 stack u64[2] t;
3 reg u64 p r;
4 t[0] = 0;
5 t[1] = 1;
6 p = 0;
7 r = t[(int)(p + 1)];
8 return r; }

1 fn foo() −→ u64 {
2 stack: 16
3 [RSP + 0] = MOV(0);
4 [RSP + 8] = MOV(1);
5 RAX = MOV(0);
6 RAX = MOV([RSP + (8 * (RAX + 1) + 0)]);
7 return RAX; }

Figure 2.17 – Example program: source and after stack-allocation

Illustrative example Figure 2.17 presents a small program that stores two literal
values 0 and 1 in an array t and later reads the value from the array an index p + 1
where p is assigned to value 0. The leakage associated with the source program present
in the left side of Figure 2.17 is: { (•, [0]) := •; (•, [1]) := •; • := •; • := ((•, •),
[1]) } (present in Figure 2.18). After the stack allocation, the compiled program is on
the right side of Figure 2.17. The type of variable t in the source program is stack,
which means the programmer wants the array to be stored in the stack. Hence af-
ter the stack allocation pass, the write operation t[0] = 0 and t[1] = 1 are transformed
to [RSP + 0] = MOV(0) and [RSP + 8] = MOV(1) where the memory addresses are com-
puted using the stack pointer, held in register RSP. The write operation r = t[(int)(p + 1)]
is transformed to RAX = MOV([RSP + (8 ∗ (RAX + 1) + 0)]) where the address is com-
puted using the index, scaling multiplication, constant offsets, and the stack pointer
RSP. The leakage transformer produced by the stack allocation pass is presented in Fig-
ure 2.20. As explained in Section 2.3.2, the leakage transformer consists of transformers
like C(τs) and I(x 7→ τs) to compute the new memory addresses. The target leakage
produced by the application of the leakage transformer to the source leakage is of the
form: {(•, ∗vsp) := •; (•, ∗(vsp + 8)) := •; • := •; • := (((•, (•, •)), •), ∗(vsp + 8))}, where
vsp is the value of the stack pointer stored in RSP (present in Figure 2.19). The array
index leaked during the evaluation of the source code is replaced by leaking the memory
address at the target level.
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Figure 2.18 – Structured leakage for source code
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Figure 2.19 – Structured leakage for compiled code
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Figure 2.20 – Leakage transformer

2.3.3 Leakage transformers for instructions

There are different kinds of compiler passes. A set of leakage transformers is defined to
cover the functionality of different compiler passes. The syntax of leakage transformers
is present in Figure 2.13, and their semantics are defined in Figure 2.21. Many com-
piler passes preserve the program’s structure and are defined recursively on the program’s
structure. For such passes, the compilation of instructions consists of applying a trans-
formation on its sub-expression and sub-instructions. In these cases, the source leakages
are transformed similarly. The target leakage after the compilation will have the same
structure as the source leakage, and only its sub-components will be modified. To account
for these cases, the syntax of leakage transformers includes a constructor per instruction.
This constructor recursively transforms leakage without modifying its structure and only
applying the transformation to the sub-leakages. The leakage transformers like op(τd, τe),
if(τe, τtt, τff ), while(τ, τe, τ

′), for(τe, τ) and call(fn, τe, τ
′
e) fall in the above category. The

target leakage produced by these leakages has the same structure as the source leakage.
For example, the leakage transformer op(τd, τe) will expect a leakage of the form opl(`d; `e)
and will apply its sup-transformers to the sub-leakages so that the resulting leakage will
be of the form opl(JτdK`de ; JτeK`ee ). For conditional instructions, the leakage transformer
if(τe, τtt, τff ) is built from leakage transformers for the condition and each branch. Notice
that only τtt or τff will be used to transform the leakage (depending on which branch will be
taken, but this cannot be known at compile-time). It is the interpretation of Jif(τe, τtt, τff )K
that selects which leakage transformer should be used. The leakage transformer for the
loop works similarly. For function calls, the leakage transformer call(fn, τe, τ

′
e) is built

using the function name fn (helps in accessing the leakage transformer, which is used to
transform the leakage associated with the body of the function), τe (transformer for the
arguments) and τ ′e (transformer for leakages obtained while writing the result back).
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Leakage transformers for instructions:

JkeepK` = ` JremoveK` = {}
JτdK`de = `′d JτeK`ee = `′e

Jop(τd, τe)Kopl(`d;`e) = opl(`
′
d; `
′
e)

JτeK`ee = `′e JτbK`b = `′b

Jif(τe, τtt, τff )Kifb(`e,`b) = ifb(`
′
e, `
′
b)

JτK`c = `′′c JτeK`ee = `′e Jτ ′K`
′
c = `′′′c Jwhile(τ, τe, τ)K`w = `′w

Jwhile(τ, τe, τ
′)Kwhilet(`c,`e,`′c,`w) = whilet(`

′′
c , `
′
e, `
′′′
c , `
′
w)

JτK`c = `′c JτeK`ee = `′e

Jwhile(τ, τe, τ
′)Kwhilef(`c,`e) = whilef(`

′
c, `
′
e)

JτeK`ee = `′e JτK`c = `′c

Jfor(τe, τ)Kfor `e `c = for `′e `
′
c

JτeK`ee = `′′e getlt(fn) = τ JτK`c = `′c Jτ ′eK
`′e
e = `′′′e

Jcall(fn, τe, τ
′
e)K

call `e (fn,`c) `′e = call `′′e (fn, `′c) `
′′′
e

JτiK`i = `′i

Jτ1; . . . ; τnK`1;. . . ;`n = `′1; . . . ; `′n

JτK`b = `′b

Jcevalb τKifb(`e,`b) = `′b

JτK`c = `′c

Jcevalb τKwhilef(`c,`e) = `′c

JτK`c = `′c `′c = `c′1 ; `c′2 ; . . . ; `c′n

Jforunroll(n, τ)Kfor `e `c = (opl(•; •); `c′1 ; . . . ; opl(•; •); `c′n)

Figure 2.21 – Semantics for leakage transformers

There is also a second category of compiler passes that changes the program’s struc-
ture. Hence, the leakage transformer produced by this kind of compiler pass also trans-
forms the structure of the source leakage. The leakage transformers like remove, cevalb τ ,
forunroll(n, τ), etc. fall in the category which transforms the structure of the source leakage.
remove is used when an instruction is removed, e.g., in dead-code elimination. Assume
that we have a program of the form i; c, let c′ and τ be the code and leakage transformer
obtained by compilation of c. If the compiler can detect that the instruction i is redun-
dant statically, then the compiler will remove it, and the compilation of i; c will be c′. In
this scenario, the leakage transformation should also remove the leakage associated with
instruction i. The source leakage for i; c is li; lc, and the target leakage for c′ is l′c. The
leakage transformer will be of the form remove; τ . The job of remove is to throw away
the leakage li, and τ will transform lc to l′c.

The leakage transformer cevalb τ is used when a conditional instruction is replaced by
one of its branches. This is used when an instruction if e then ctt else cff is replaced by ctt
or cff (when the compiler statically knows the value of conditional guard to be equal to
true or false) by the compiler. It can also be utilized where the result of the condition of
the while loop is statically known.

Loop unrolling replicates the loop’s body as many times as the range of the loop. The
instruction of the form for i r c is compiled to i := 1; ci; . . .; i := n; cn where n is the range
of the loop. The source leakage corresponding to the for loop is of the form for `e `c where
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`e is the leakage produced during the evaluation of the range and `c is the leakage produced
during the evaluation of the loop’s body. After unrolling, the target leakage will be of
the form (op(•, •); `c′1 ; . . . ; op(•, •); `c′n) where opl(•; •) corresponds the leakage associated
with the assigning the range (left-hand side is a variable which produces • leakage and
the right-hand side is a constant which also produces • leakage). `i represents the leakage
associated with the loop body where i ranges from 1 to n (range of the loop). The
leakage transformer forunroll(n, τ) is produced during unrolling where n is the number of
instructions produced by the compiler after unrolling the for loop and τ transforms source
leakage `c to {`c′1 ; . . . ; `c′n}.

Brief introduction of lowering/instruction selection

The compiler produces another kind of leakage transformer during the lowering/instruc-
tion selection, where a sequence of instructions replaces one instruction. Lowering/In-
struction selection replaces high-level instruction with low-level instructions closer to the
assembly. The following table illustrates two examples where a single instruction is low-
ered to more than one instruction.

Instruction
source target

x := 0;x := x+ 1 x := MOV(0); (OF, SF,PF,ZF,x) := INC(x)
if x < y then c1 else c2 (. . . , CF, . . .) := CMP (x, y); if CF then c1 else c2

Leakage
source target

opl((•, •); •); opl((•, •); (•, •)) opl((•, •); •); opl((•; •; •; •; •); •)
ifb((•; •), `ci) opl((•; •; •; •; •); (•, •)) ifb((•; •), `ci)

For example, the sequence of instructions (x := 0;x := x+1) in the first row is transformed
to x := MOV(0); (OF, SF,PF,ZF,x) := INC(x) where assigning 0 is replaced by MOV
and +1 is replaced by low-level instruction INC. The low-level instruction INC performs
addition by 1 and computes extra flags like overflow-flag, sign-flag, parity-flag, and zero-
flag. Similarly, the instruction if x < y then c1 else c2 in the second row is transformed
to two instructions (. . . , CF, . . .) := CMP (x, y) and if CF then c1 else c2. The first
instruction (. . . , CF, . . .) := CMP (x, y) represents the lowering of the guard that uses
a low-level CMP instructions (it performs an unsigned comparison of x and y and also
assigns extra flags like comparison-flag). The second instruction uses the CF flag to decide
whether to take the true or false branch.

The leakage obtained from these instructions before and after lowering is present in
the table above. The assignment of the flags will create extra • leakage that has to be
justified. Similarly, the leakage generated by the expression x < y must be used to develop
the leakage for the CMP instruction. Therefore, this pass relies on leakage transformers
that can, on the one hand, split leakages into smaller parts and, on the other hand,
construct fresh leakages from these parts.
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Leakage transformers for constructing instruction’s leakage from expression’s leakages:

JτiK`e = `′i

J(τ1; . . . ; τn)K`ei = opl(`
′
1, . . . ; `

′
n)

Leakage transformers for lowering compiler pass:

JτiK`eei = `′i JτeK`ee = `′e Jif b then τtt else τff K`c = `′c

Jcondlow(τi, τe, τtt, τff )Kifb(`e,`c) = `′i; ifb(`
′
e, `
′
c)

JτiK`eei = `′i Jτff K`c = `′′c JτeK`ee = `′e JτttK`
′
c = `′′′c Jwhilelow(τi, τe, τtt, τff )K`w = `′w

Jwhilelow(τi, τe, τtt, τff )Kwhilet(`c,`e,`′c,`w) = whilet((`
′′
c ; `
′
i), `

′
e, `
′′′
c , `
′
w)

JτiK`eei = `′i Jτff K`c = `′′c JτeK`ee = `′e

Jwhilelow(τi, τe, τtt, τff )Kwhilef(`c,`e) = whilef((`
′′
c ; `
′
i), `

′
e)

Figure 2.22 – Semantics for leakage transformers used in lowering

The semantics of leakage transformers used in the lowering compiler pass are in the Fig-
ure 2.22. It uses an interpretation JτK`eei that transforms the leakages of a kind `e (leakages
produced during the evaluation of expressions) to leakages of a kind ` (leakages produced
during the evaluation of instructions). In lowering, the guard of a branching instruction
that is represented using an expression at high-level is transformed into an assignment
instruction that assigns various flags and replaces the high-level operation with a low-level
operation. The semantics of condlow and whilelow are very similar and are explained be-
low with the help of the example used in the above paragraph. The leakage transformer
produced by the lowering compiler pass during the transformation of the instruction x :=
0;x := x+ 1 is op(id, id); op((remove; remove; remove; remove; π1), remove). The extra leak-
age • generated due to the flags’ computations needs to be justified using the leakage trans-
former remove, and the rest of the leakages are similar to the source. During the transfor-
mation of the instruction if x < y then c1 else c2, the leakage transformer produced during
lowering is condlow((op(remove; remove; remove; remove; remove, id)), remove, τ1, τ2). condlow

takes four parameters (τi, τe, τtt and τff ). τi represents the leakage transformer needed to
transform the leakage associated with guard expression to leakage associated with assign-
ment instruction at the target level (as the guard is transformed to a CMP instruction and
assigns extra flags). In the example, τi is op(remove; remove; remove; remove; remove, id)
where remove creates fresh • leakages for flags and id preserves the leakage associated
with x and y from the source. τe (remove) transforms the leakage associated with the
guard from the source to the target level. τtt or τff (τ1 or τ2) transform the leakage asso-
ciated with the true or the false branch. The leakage transformers produced during the
loop transformation are similar to the conditional.

Brief introduction of linearization

In linearization compiler pass, the high-level control-flow instructions are replaced by a
linear set of instructions with explicit branches and labels explained in Section 2.2.2.
Figure 2.23 presents a code snippet showing a source program consisting of branching
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1 fn bar() −→ reg u64 {
2 reg u64 x;
3 reg u64 y;
4 x = 0;
5 y = 1;
6 if (x < y)
7 { y = y + 1; }
8 else
9 { y = 0; }

10 return y;
11 }

1 fn bar() −→ (u64) {
2 stack: 0
3 RCX.62 = MOV_64(((64u) 0));
4 RAX.60 = MOV_64(((64u) 1));
5 OF.94, CF.92, SF.96, PF.95, ZF.97 = CMP_64(RCX.62, RAX.60);
6 If CF.92
7 Goto 1;
8 RAX.60 = MOV_64(((64u) 0));
9 Goto 2;

10 Label 1;
11 OF.94, SF.96, PF.95, ZF.97, RAX.60 =
12 INC_64(RAX.60);
13 Label 2
14 return RAX.60
15 }

Figure 2.23 – Example program: source and after linearization

τl := opl τe opl
| iftt(τe, τ) condtt

| ifff (τe, τ) condff

| if∗(τe, τ, τ
′) cond

| while(a, τ, τ ′) while
| while τ whileff

| while(a, τ) whilett

Figure 2.24 – Leakage transformers produced during linearization

instruction at the source level and a code snippet of the same program after lineariza-
tion compiler pass. The branching instruction present in line 6 at the source program
is transformed to linear-level branching, which uses goto and label intermediate-level in-
structions defined in Figure 2.6. The leakages (present in Figure 2.6) obtained during the
evaluation of the intermediate-level language are also of a different kind as compared to
the leakages (present in Figure 2.5) obtained during the evaluation of high-level language
(as the two languages also have different structures). Figure 2.24 presents the syntax of
leakage transformers that transform the high-level leakage to intermediate-level (linear)
leakages. The interpretation JτK`l presented in Figure 2.25 defines the transformation
where the leakage transformer τ transforms the high-level leakage ` to intermediate-level
leakage. The leakage transformer opl τ transforms the high-level leakage associated with
assignment or operators to intermediate-level leakage of kind op `′1, . . . `

′
n where the leak-

ages `i is obtained by applying the leakage transformer τ to the sub-parts of high-level
leakage. In Jasmin, the linearization of conditional instructions like if-else and while is
defined using more than one case to increase the overall performance. For example, there
is one dedicated case to transform the instruction of the form if e then c1 else [::] (the else
branch is empty) to ifi(e, n1); c1; label n1. These design decisions are made to optimize the
transformation process. The generalized case is discussed here. The high-level instruction
if e then c1 else c2 is transformed to ifi(e, n1); c2; goto n2; label n1; c1; label n2 where source-
level control flow is transformed into explicit labels and gotos. The leakage transformer
generated during this transformation is of the form if∗(τe, τi, τ

′
i) where τe transforms the
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Auxiliary functions:

csize(τ) =

{
1 τ = opl τ

csize(τi) + csize(τ
′
i) + 4 τ = if∗(τe, τi, τ

′
i)

Leakage transformers:

JτK`1,...,`ne = `′1, . . . , `
′
n

Jopl τK
opl(`1,...;`n)
l = op `′1, . . . `

′
n

JτeK`ee = `′e JτiK`cl = `′c Jτ ′iK
`c
l = `′′c

Jif∗(τe, τi, τ
′
i)K

ifb(`e,`c)
l = if b then ((ifl (csize(τ

′
i) + 3) `′e b), `

′
c, •) else

((ifl 1 `′e b), `
′′
c , (csize(τi) + 3))

Figure 2.25 – Semantics for leakage transformers used in linearization

source leakage obtained during the evaluation of the guard e, τi or τ ′i transform the source
leakage associated with the true or false branch. The target leakage leaks some extra
information compared to the source level leakage. Along with the guard, it also leaks the
position where the control flow jumps to. For example, if the guard e evaluates to true,
the control must go to the instruction after the label n1, and hence, it must take the n
+ 3 steps where n is the number of instructions present in the linear transformation of
c2. The number of instructions present in a set of instructions obtained after linearization
is calculated using the auxiliary function csize(), which calculates the steps based on the
leakage transformers and does not need the actual program. The leakage transformers
play an important role here because they give an intuition about the structure of instruc-
tion before and after the transformation. The leakage transformer generated for loops is
defined in a similar manner and is not explained here.

2.4 Instrumented correctness

The Jasmin compiler is formally proved to be functionally correct, but there were no
guarantees for the correctness of the leakage transformers. Hence, there is a need to
verify the instrumented Jasmin compiler’s correctness formally. The correctness of the
leakage transformer is closely related to the correctness proof for the compiler. A correct
compiler is necessary for proving the correctness of the leakage transformer because, in
the end, the leakage transformer transforms the leakage associated with the execution of
an instruction. The correctness proof of leakage transformers is stated as follows: For
each source program p, if the compilation succeeds and produces target program p and
leakage transformer τ , then for every instrumented execution of the source producing a
leakage `, the instrumented execution of the target program is defined and produces a
target leakage, which is equal to the leakage obtained by applying the leakage transformer
τ to the source leakage `.
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Theorem 1 (Instrumented correctness).

p : s ⇓` s′ =⇒ p : s ⇓JτK` s
′.

Proof. As presented in the Figure 1.10, the Jasmin compiler consists of a set of compiler
passes. The correctness proof of the compiler is done independently for each compiler pass.
Similarly, the correctness proof for the leakage transformer is also done for each compiler
pass. All the correctness theorems are updated to instrumented correctness, and proof for
the correctness of leakage transformers is added to them. The proof for the correctness
of the leakage transformer boils down to proving the correctness of the functions J.K.e and
J.K. that they compute the correct target leakage from the source leakage,

There are various kinds of compiler passes in Jasmin. Some of the compiler’s passes
preserve the program’s structure, some modify the structure, and some completely remove
instructions. The leakage transformers are designed by keeping the semantics of these
compiler passes in mind, and hence, they also transform the source leakages similarly.
The correctness proof for these leakage transformers is straightforward if their semantics
are correctly defined.

2.5 Preservation of constant-time
The constant-time property is a software-based countermeasure against side-channel at-
tacks. Even if the programmer succeeds in writing a constant-time program, there still
exists a chance of vulnerabilities that the compiler might introduce. Several optimizations
introduced by the compiler, as discussed in Section 1.2.3, might introduce vulnerabilities
in the program that support constant-time property at the source level. For example, a
compiler optimization might introduce branching into the source code that is originally
branchless, or a compiler can also introduce time-variable operations like division or mod-
ulus, which might break the constant-time property. The solution is to manually inspect
the assembly generated at the end to determine whether the constant-time property is
preserved. This approach is quite tricky as much information is lost along the way to the
assembly, and as the process is manual, it is prone to human error. Hence, there is a need
to have a certified way to preserve the constant-time property till the end.

Preserving constant-time property helps certify that the Jasmin compiler does not
break the constant-time property. Though it transforms the control flow and introduces
memory accesses, it never removes the constant-time property. We need a formal notion
of constant-time property to carry out the preservation proof.

Formally, constant-time is defined as follows:

Definition 1 (Constant-time). A program p is constant-time w.r.t. the indistinguisha-
bility relation · ∼ · when the following holds:

∀s1 s2, s1 ∼ s2 =⇒ ∃s′1 s′2 `, p : s1 ⇓` s′1 ∧ p : s2 ⇓` s′2.

The definition of constant-time is parameterized by an indistinguishability relation on
the initial states s1 and s2. The indistinguishability relation ∼ states that the program
states only differ in their secret part.

The constant-time definition is used in the preservation of constant-time property.
Informally, preservation of constant-time says that if the source program is constant-time
with respect to the indistinguishability relation ∼ then the compiled program will also be
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constant-time with respect to indistinguishability relation ∼. But in reality, the source
states and target states are different. In the case of the Jasmin compiler, an initial source
state is made of a memory m and a list of values v (the arguments of the main function),
whereas the target state is made of a memory m and a register bank r. From the design
of target states, we can see that the source states can be computed from the target states
as the memory is kept, and the values of the arguments can be read from the appropriate
registers. Hence, we can relate the target states by linking the corresponding source states.

As we have seen in the discussion about the stack-allocation compiler pass, the target
leakage presented in Figure 2.19 depends on the value of the initial stack pointer. Also,
the leakage transformer shown in Figure 2.20 depends on the stack pointer to compute
the target leakage from the source leakage. Hence, we must make the value of the stack
pointer public. This requires constant-time preservation for the target language must
consider that the stack pointers are equal in both states.

A few issues need to be considered to prove constant-time preservation for a realistic
programming language like Jasmin.

• Source and target programs (states) are syntactically and semantically different.

• The semantics or interpretation of the leakage transformers is parameterized by
parts of the initial state (mainly the stack pointer)

• The compiler correctness has side conditions, like there should be enough free mem-
ory in the initial target state to allocate the local variables.

Hence, the target states must be in indistinguishable relation ∼̄ with each other defined
as follows:

Definition 2 (Indistinguishability of target states). Given an equivalence relation ∼
between source states, its lifting to target states ∼̄ is defined as follows. We say that two
target states (m1, r1) and (m2, r2) are indistinguishable, and note (m1, r1)∼̄(m2, r2), when
all the following conditions hold:

• corresponding initial source states are indistinguishable, noted: (m1, ~v1) ∼ (m2, ~v2)
(where ~v1, resp. ~v2, denotes the program arguments extracted from register bank r1,
resp. r2);

• stack pointers agree: r1[sp] = r2[sp];

• there is enough free stack space to allocate the local variables in both memories m1

and m2.

We can formally define constant-time preservation after defining indistinguishable re-
lations for both source and target states. The constant time preservation is formally
defined as follows:

Theorem 2 (Constant time preservation). Given a source program p that is constant
time w.r.t. ∼, if the Jasmin compiler succeeds and produces a target program p̄, then the
target program is constant time w.r.t. ∼̄.

Proof. The proof of constant time preservation directly results from the instrumented
correctness proof. The leakage transformers are compositional. All the compiler passes
produce leakage transformers that can be composed to transform source leakage to the

https://github.com/jasmin-lang/jasmin/blob/ec1373c3cba97459108edf37eb3db912912e7b72/proofs/compiler/compiler_proof.v#L220
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target leakage. As the instrumented correctness formally verifies that the compiler passes
to produce the correct leakage transformer, the target leakage is also correctly calculated
using the composition of these leakage transformers.

A particular remark: the leakage transformer must only exist to prove the preserva-
tion of constant time. The approach of having an existential quantifier for the leakage
transformer, as discussed in Section 2.1.3 can prove preservation without the compilation
passes producing it. But to reason about other properties like the cost of the assembly
program from the cost of the source program explained in the next chapter, these leakage
transformers need to be explicitly produced by the compiler. Hence, leakage transformers
as a product of the compilation can be valuable artifacts: looking at the leakage trans-
former for a particular program, one can get precise information about the compilation
of this program.

2.6 Evaluation

This section evaluates the methodology in terms of proof effort and compile-time overhead.

2.6.1 Proof effort

The Jasmin compiler consists of 16 compilation passes verified for correctness in Coq.
To reason about constant-time, all semantics have been instrumented with leakages as
described in Section 2.2. All compilation passes are also instrumented to produce the
leakage transformers as described in Section 2.3. The validator infers the correct leakage
transformer for the passes implemented as an external oracle and validated in Coq. The
program analyses and transformations that are implemented in OCaml have remained the
same.

The correctness theorem for each pass has been modified, and their proofs are updated
accordingly. The constant time preservation theorem stated in Section 2.5 is stated and
proved only once for the whole compiler, and proofs are only a few lines long as it is
just a corollary of the correctness theorem. The changes made to the Coq files modify 5
thousand lines and add 6 thousand new lines. It is a 20 percent increase in the overall
Coq development.

2.6.2 Compiler behavior

The instrumented compiler produces an extra parameter called leakage transformer; hence,
it needs to compute more data. To measure the compile-time overhead of the computation
of leakage transformers, a set of Jasmin programs is compiled with two versions of the Jas-
min compilers (with and without instrumentation). The experiment is done on a machine
running Ubuntu Linux on an Intel® Xeon® processor (E5-2687W v3 @ 3.10GHz) using
a sample of Jasmin implementations of cryptographic primitives from various sources.
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Table 2.1 – Compilation times (s) of selected implementations of cryptographic primitives
with (LT) and without (Ref.) computation of leak-transformers

Name Ref. (s) LT (s)

xxhash64 0.06 0.06
poly1305 (ref) 0.06 0.06
gimli (avx2) 0.09 0.11
chacha20 (ref) 0.16 0.18
poly1305 (avx2) 0.29 0.32
gimli (ref) 0.8 0.9
bash (avx2) 2.4 2.6
blake2b 2.8 3.0
chacha20 (avx2) 3.9 4.0
bash (ref) 6.5 7.4
curve25519 7.6 8.3

The compilation times are reported in Table 2.1. The compile-time overhead is about
10 %. The run-time overhead is zero (not shown in the table): the generated assembly is
identical with the two versions of the compiler.

2.7 Related work

Compilation and Cryptographic Constant-Time The preservation of constant
time is first considered in [Barthe et al., 2018], and proved formally (in Coq) for a toy
compiler inspired by Jasmin. The proof is based on CT-simulation. CT-simulation estab-
lishes that the equality of leakage in two source executions entails equality of leakage in the
corresponding target executions. In general, CT-simulation requires reasoning about four
executions and is more difficult to establish than the classic simulations. By introducing
the notion of structured leakage and leakage transformers, this work simplifies the overall
reasoning of preserving constant time and altogether foregoing the use of CT-simulations.
In [Barthe et al., 2020], they use a direct method based on proving that the leakage of
target programs is identical (up to erasure) to the leakage of the corresponding source
programs. They used their method to establish the preservation of constant time for a
patched version of CompCert. Their work does not handle expression leakages: the first
verified pass of [Barthe et al., 2020] is C#minorgen. In contrast to [Barthe et al., 2020],
our work can reason about expression leakages. In [Barthe et al., 2020], they use CT-
simulation in linearization pass, and they can use their direct method for passes that
preserve or erase leakages. In contrast, leakage transformers do not impose restrictions
on how transformations modify leakage, and the proof for linearization is straightforward.
The notion of instrumented correctness introduced in this chapter is new and simplifies
the proof. In [Barthe et al., 2020], each compiler pass must be independently proved
correct and constantly preserved. Instead, each pass is independently proved correct in
our work, and constant-time preserving proof is done only once. The FACT compiler
[Cauligi et al., 2019b] transforms an information flow secure program into cryptographic
constant-time programs protected against cache-based timing side channels. Motivated
by Spectre and other recent micro-architectural attacks, recent works explore compiler-
based mitigations under speculative execution. [Patrignani and Guarnieri, 2021] shows
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(in)security of several common compiler-based mitigation techniques, including fence in-
sertion and speculative load hardening, against these attacks. Their analysis is based on
speculative variants of CCT. [Vassena et al., 2021b] designs and implements a provably
sound automated compiler-based method for mitigating the BCB (bound check bypass)
variant of Spectre attacks. The correctness of their approach needs to be machine-checked.

Secure compilation [Abate et al., 2018] provides a systematic classification and com-
parison of the different notions of secure compilation. This work is primarily foundational;
it does not target any specific compiler and does not address the problem of deploying
secure compilers. To address the latter problem, [Namjoshi and Tabajara, 2020] develop
a translation validation framework for hyperproperties, and illustrate its application to
several common optimizations.

The interaction between information-flow and compilation has been studied exten-
sively. There exists information flow types preserving compilers, e.g., [Barthe et al., 2006,
Chen et al., 2010]. In short, these works define information-flow type systems for source
and target programs and show that typable source programs are transformed into typable
target programs. [Sison and Murray, 2019] follow a different approach: they define an
information flow type system for source programs and develop secure refinement methods
to prove that typable source programs are compiled into programs that satisfy (timing-
sensitive) non-interference. Their proof is mechanized using the Isabelle proof assistant.
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Chapter 3

Enforcing fine-grained constant-time
policies

3.1 Introduction

As discussed in Chapter 1 and Chapter 2, cryptographic constant-time is a popular pro-
gramming discipline used by cryptographers to protect their libraries against timing at-
tacks. It aims to enforce that program execution does not leak secret information. Many
tools exist to enforce or check the constant-time property, but most focus on a base-
line (BL) leakage model. In the BL leakage model, leakages are defined based on the
assumption:

• branching statement leak values of their guards.

• memory operations leak the addresses accessed.

• nothing else leaks

But in reality, there can be more than one kind of leakage model, as there can be different
architectures to accommodate different kinds of security vulnerabilities. The leakage
models differ subtly based on the considered threat model, the intended target platform,
and the tractability of the constant-time verification problem. The formal leakage model
described in Section 2.2 of Chapter 2 focuses only on the baseline leakage model. This
model is the basis of the constant-time policy, which mandates that leakage does not
depend on secrets. But it does not include other attack possibilities which might arise
due to time-variable operations or a more granular level of memory accesses.

However, in practice, there could be vulnerabilities due to other leakage models and
constant-time cryptography is based on a family of leakage models rather than a single
model. There is less development of mitigation against a more advanced leakage model.
Figure 3.1 gives an overview of some of the key leakage models. For example, in contrast
to the BL model, the CL leakage model leaks the cache line of the address accessed during
a memory access operation instead of leaking the exact address. In contrast to the BL
model, the TV leakage model leaks some extra information based on the operator instead
of assuming operators to be constant time. These models are explained in detail in later
sections.

Cryptography libraries like OpenSSL optimize their implementation for each leakage
model, providing one implementation per leakage model. Unfortunately, the multiplicity
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Program Counter (PC) Conditionals leak their guards
Baseline (BL) PC + Memory R/W leak addresses
Cache line (CL) PC + Mem. accesses leak cache lines
Time-Variable (TV) BL + TV arithmetic operators leak
TV + CL TV arithmetic operators leak + CL

Figure 3.1 – Common leakage models

of implementations and leakage models can lead to a false sense of security. For example,
here are two potential scenarios:

• A library is verified for constant-time but only for a specific leakage model, so
only functions relevant to this model are checked. For instance, OpenSSL provides
multiple implementations of the same crypto routines optimized for different leakage
models. Therefore, when a library such as OpenSSL is verified for constant-time;
it is likely that only functions relevant to the BL leakage model are checked. In
contrast, no guarantee is given for functions that target the CL model, which is
harder to verify.

• A library is verified for constant-time in a weaker leakage model than intended
because of limitations in the verification technology. Consequently, it may still
leak in the intended leakage model. For instance, some crypto routines in (the
earlier version) of OpenSSL are provable and secure in the BL leakage model but
are insecure in the TV model and vulnerable to practical timing attacks—such as
Lucky13 [Al Fardan and Paterson, 2013].

These two scenarios reflect the existence of a potentially dangerous gap in computer-
aided cryptography. This chapter explains a methodology for generalizing existing works
on verification and secure compilation of the constant-time policy to cover different leakage
models.

3.1.1 Contributions

This chapter proposes a methodology for formally verifying the preservation of fine-grained
constant-time property. All the work is being carried out around the Jasmin compiler,
and all the proofs are machine-checked using theorem prover Coq. The development
is present here: https://github.com/jasmin-lang/jasmin/tree/constant-time-op. Technical
contributions in nut-shell:

• The mechanized proof in the Coq proof assistant showcases that the Jasmin compiler
preserves a class of fine-grained constant-time policies.

• A discovered bug in OpenSSL implementation of MEE-CBC and a proposed fix.

• A set of formal proofs that previously unverified cryptographic code is constant-time
in a (non-baseline) leakage model. This includes formally verifying Langley’s patch
to Lucky13 and the proposed fix of OpenSSL. The proofs are carried out via embed-
ding Jasmin’s source code into EasyCrypt and using EasyCrypt’s implementation
of relational Hoare logic.

https://github.com/jasmin-lang/jasmin/tree/constant-time-op
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Figure 3.2 – Timing behavior of the div instruction on an x86 microprocessor (amd epyc
7f52) with 64-bit (left) and 32-bit (right) operands. It computes at once both quotient
and modulo of its arguments a and b. Different microprocessor models exhibit different
timing profiles.

3.2 Fine-grained constant-time leakage models

This section gives a brief overview of the leakage models:

• Baseline (BL) leakage model: This is the simplest leakage model but not the
weakest. This model assumes:

– branching statements leak values of their guards;

– memory operations leak the address accessed;

– nothing else leaks.

This model is the basis of the baseline constant-time, which mandates that leak-
age does not depend on secrets. It captures many timing attacks in literature.
The model is quite tractable and can be used effectively by cryptographic engi-
neers to guide their implementations. Also, there is a large spectrum of auto-
mated tools [Barbosa et al., 2021] for (dis)proving that programs satisfy the base-
line constant-time property, i.e., their leakage is independent of secrets. There is
a recent line of work [Barthe et al., 2020, Barthe et al., 2021b] that establishes the
preservation of the baseline constant-time policy for some realistic compilers.

• Time-variable (TV) leakage model: The baseline leakage model does not cap-
ture leakage resulting from time-variable instruction. Time-variable instructions leak
information about their operands and are widely used in all modern architectures.
For example, division and modulo operators are time-variable operators in x86 ar-
chitecture. As shown in the Figure 3.2, the timing behavior of div instruction on
x86 microprocessor varies depending on the size of operands. Consequently, a pro-
gram that is constant-time in the baseline leakage model may still leak through their
time-variable instructions. In specific circumstances, this leakage may be exploited
to recover secret data. To address this issue, the TV leakage model strengthens the
BL leakage model by making time-variable arithmetic instructions leak a function of
their operands. For instance, modulo operation leaks the base-2 integer algorithm
of its operands.
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Figure 3.3 – Memory layout of a decrypted SSL3 record

• Cache line (CL) leakage model: The baseline leakage model assumes that the
memory operations leak the address of the memory accessed. This assumption
helps in protecting cache-bank conflicts (when two instructions access data from the
same cache bank) but also makes programs harder to write and less efficient. As a
consequence, cryptographic libraries often provide the implementation for the CL
leakage model. In this leakage model, memory accesses leak the cache line of the
addresses being accessed. In reality, a memory is bigger in size as compared to a
cache. Data are moved from memory to cache in blocks (cache line) that help in
spatial locality. We bring data that the program requires to the cache and data that
is close to them. The typical cache block sizes are 32 bytes and 64 bytes. In this
work, memory accesses leak the address divided by the length of the cache line (32,
64, ...).

3.3 Motivating Example

MEE-CBC (MAC-then-Encode-then-CBC-Encrypt) is an authenticated encryption scheme
used in the TLS 1.2 cipher-suite. Lucky13 [Al Fardan and Paterson, 2013], a sophisticated
timing attack against several open-source cryptographic libraries supporting MEE-CBC.
In response to the attack, several libraries developed new implementations of MEE-CBC
that loosely follow the constant-time programming discipline. However, proving that these
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1 /* public: md size, scan start */
2 /* secret: mac start */
3 fn rotate offset BL(reg u32 md size, mac start, scan start) −→ reg u32 {
4 reg u32 rotate offset;
5 rotate offset = mac start;
6 rotate offset -= scan start;
7 rotate offset = rotate offset % md size;
8 return rotate offset;
9 }

1 /* pre: 16 ≤ md size ≤ 64 ∧ 0 ≤ mac start - scan start < 256 */
2 /* public: md size, scan start */
3 /* secret: mac start */
4 fn rotate offset TV(reg u32 md size, mac start, scan start) −→ reg u32 {
5 reg u32 div spoiler;
6 reg u32 rotate offset;
7 div spoiler = md size;
8 div spoiler <<= 23;
9 rotate offset = mac start;

10 rotate offset -= scan start;
11 rotate offset += div_spoiler;
12 rotate offset = rotate offset % md size;
13 return rotate offset;
14 }

Figure 3.4 – Two implementations computing the rotation offset

implementations are constant-time according to the baseline leakage model is not always
possible, as some implementations use time-variable instructions or optimize code in a
way that degrades security to a weaker model.

CBC decoding Figure 3.3 provides a pictorial description of inputs to the function
ssl3 cbc copy mac. This function aims to extract MAC from the record in constant-time.
It copies the bytes representing the MAC of size md size from the ssl3 record to an out
buffer. This function takes four arguments: 1. rec pointer to an ssl3 record structure,
which contains a pointer to the data buffer and a secret length field which denotes the
length after removing padding overhead; 2. out buffer, where the extracted message
authentication code (MAC) will be copied to; 3. md size denoted the MAC size and
4. orig len representing the record’s original length, including padding. Initially, cipher-
text is decrypted into a data buffer containing the payload, the MAC, and finally, the
padding overhead. Unfortunately, copying the MAC is not straightforward as mac start
and mac end are secret. Also, we do not want to scan the whole data buffer for efficiency
reasons.

However, we know that orig len is public and that the padding overhead is at most
256 bytes long. Therefore, it suffices to begin copying from scan start = max(0, orig len−
(md size + 256)). The copied MAC might yield byte-wise rotated values. Therefore, to
recover the original MAC, one must compute the offset and perform the rotation relative
to this offset in constant-time.

Computing the rotation offset Figure 3.4 shows the functions rotate offset BL and
rotate offset TV for computing the offset. For readability, information about the se-
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curity types of the variables is present at the top of the functions. The first function
rotat offset BL is a simple arithmetic program that computes the offset as (mac start −
scan start) % md size. This function is trivially constant-time in the baseline (BL) leakage
model, as it does not branch nor perform memory accesses on any secret data. However,
the variablemac start is secret; hence the function is not constant-time in the time-variable
(TV) leakage model. The reason behind this is the usage of the modulo operator while
calculating the rotate offset and we know that the modulo operator is not constant-time
in the TV leakage model.

The second function rotate offset TV is a Jasmin implementation of Langley’s original
fix to Lucky13 and is constant-time in the TV leakage model. This is achieved by making
the first argument large enough, by first setting div spoiler = md size << 23 and by setting
rotate offset to div spoiler+(mac start−scan start). Note that the denominator (md size)
is a public value, so only the numerator (rotate offset) needs to be patched in such a way.
Under the assumptions on the parameters set by the precondition, we can prove that the
change does not affect the instruction result and makes leakage independent of mac start.
As discussed in the prior section, module operation leaks the base-2 integer algorithm of its
operands. Hence, the leakage is equal to the following: log2 (md size×223), log2(md size)
and hence only depends on public values. To justify the above claim, note that by
definition of the leakage model, the first component of the leakage is log2(md size ×
223 + (mac start− scan start)) = log2(md size× 223). The equality above follows from the
precondition.

Rotating the MAC Figure 3.5 presents the two Jasmin implementations for rotat-
ing the MAC. The first implementation performs a nested loop. Before the loop ro
is set to (−rotate offset) mod mid size (line 9). For each i, the inner loop writes to
out buffer; if j equals rotate offset, the new value obtained at line 15 is written, else
the old value is rewritten. The selection is done at line 16 using a conditional assign-
ment and will be compiled using a constant-time CMOVcc instruction. Line 20 computes
(rotate offset + 1) mod md size in constant-time.

This implementation is constant-time in the baseline leakage model since the branching
statement (the while loop) only depends on public data (i, j and md size), and similarly
for memory and array accesses, which only depend on i, j and out. The drawback is that
the implementation performs a nested loop, so the copy is quadratic in md size.

In contrast, the second implementation rotated mac CL performs a single loop. The
leakage corresponding to the branching (while loop) instruction depends only on the pub-
lic data (i and md size). The memory access in line 13 only depends on public data (out
and i) and hence does not leak secrets. However, the instruction at line 12 leaks the
secret index rotate offset in the first iteration. Hence, the function is not constant-time
in the baseline leakage model. On the other hand, rotate mac CL is constant-time in
the CL leakage model assuming that rotated mac is 64-byte aligned memory pointer, and
the MAC data will fit in a cache line–these assumptions correspond to the precondition.
This is because in this model, the instruction leaks: b(rotated mac + ro) / 64c. Since
rotated mac mod 64 = 0 and 0 <= ro <= md size <= 64, it follows:

b(rotated mac + ro) / 64c = brotated mac/64c.

Since the value of the pointer rotated mac is public, the leakage does not depend on
secrets.
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1 /* public: md size, out */
2 /* secret: rotate offset */
3 fn rotate mac BL (reg u32 md size, rotate offset,
4 reg u64 out, stack u8[128] rotated mac) {
5 reg u64 i, j;
6 reg u32 old, new, zero, ro;
7 zero = 0;
8 // ro = (-rotate offset) % md size
9 ro = opp mod(rotate offset, md size);

10 i = 0;
11 while (i < md size) {
12 j = 0;
13 while (j < md size) {
14 old = (32u) (u8)[out + j];
15 new = (32u) rotated mac[(int) i];
16 new = old if j 6= ro;
17 (u8)[out + j] = new;
18 j += 1;
19 }
20 ro += 1; ro = zero if md size <= ro;
21 i += 1;
22 }
23 }

1 /* rotated mac % 64 = 0 ∧ 0 ≤ rotate offset ≤ mdsize ≤ 64*/
2 /* public: md size, out, rotated mac */
3 /* secret: rotate offset */
4 fn rotate mac CL (reg u32 md size, rotate offset,
5 reg u64 out, rotated mac) {
6 reg u8 new;
7 reg u64 i, zero, ro;
8 zero = 0;
9 ro = (64u) rotate offset;

10 i = 0;
11 while (i < md_size) {
12 new = (u8)[rotated mac + ro];
13 (u8)[out + i] = new;
14 ro += 1; ro = zero if md_size <= ro;
15 i += 1;
16 }
17 }

Figure 3.5 – Two implementations of MAC rotation

OpenSSL bug Figure 3.6 shows the code used by OpenSSL in the CL leakage model
to accommodate CPUs with 32-byte cache lines. Here, rotated mac is a 64-byte aligned
buffer (i.e., its address is 64q for some q) and assumed that this data would fit into two
32-byte cache lines. The developer has added a dummy unoptimizable first access to
load rotate mac[rotate offset^32] and then the actual load to ensure that they touch both
lines in every iteration to make it look like constant-time. Since the volatile keyword is
added in line 5, the compiler will not remove an unused load operation in the deadcode
elimination pass. The comment in the line says it will touch the “second line". However,
this is incorrect, and it touches “other line". According to the 32-byte cache line model,
the address divided by 32 is leaked. Thus, for the two load operations, when 0 <=
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1 #i f de f ined (CBC_MAC_ROTATE_IN_PLACE)
2 j = 0 ;
3 f o r ( i = 0 ; i < md_size ; i++) {
4 /∗ in case cache−l i n e i s 32 bytes , touch second l i n e ∗/
5 ( ( v o l a t i l e unsigned char ∗) rotated_mac ) [ r o t a t e_o f f s e t ^ 3 2 ] ;
6 out [ j++] = rotated_mac [ r o t a t e_o f f s e t ++];
7 r o t a t e_o f f s e t &= constant_time_lt_s ( r o ta t e_o f f s e t , md_size ) ;
8 }
9 #e l s e . . .

Figure 3.6 – Buggy C implementation of rotate offset

rotate offset < 32, values 2q + 1 and 2q are leaked (i.e., the second cache line is touched
first and then the first line) and when 32 <= rotate offset < 64, values 2q and 2q + 1 are
leaked (i.e., the first line is touched first and then the second). This has been reported to
OpenSSL, and a later section discusses a fix.

3.4 Fine-Grained Policies in Jasmin

This section presents the approach taken to extend the baseline (BL) leakage model
(discussed in Chapter 2) to include other leakage models in the context of Jasmin.

3.4.1 Syntax and Semantics

The syntax of Jasmin language is presented in Figure 1.11. To enable a wide range of
policies corresponding to various hardware and adversary capabilities, the definition of
leakage is layered in two stages. The first layer corresponds to the syntactic shape of the
leakage. The baseline leakage model’s leakage is presented in Figure 2.5 of Chapter 2.
This structure is fixed and corresponds to the “BL" leakage model. The leakage model
can be fine-tuned by leaking more or less precise values. The second layer consists of
two parameters: A�(v1, . . . , vn) defines the leakage produced by the evaluation of the
operator � applied to arguments (v1, . . . , vn); andM(p) defines the leakage produced by
memory access at address p.

Figure 2.4 in Chapter 2 presents the rules of instrumented semantics of the Jasmin
language. The rules represent the baseline leakage (BL) model. We updated the instru-
mented semantics to make the leakage model more fine-grained. There are three kinds of
judgments: 1. e ↓s`e v corresponds to the evaluation of expression e in state s producing
value v and leakage `e; 2. d := v ↓s`e s

′ corresponds to the assignment of value v into the
left-value d in state s producing the updated state s′ and leakage `e; 3. i : s ⇓` s′ corre-
sponds to the execution of instruction i starting in state s and ending in state s′ while
producing leakage `. We extend the semantics of operators and memory accesses with the
notation s ⇓A,M` s′ to make explicit the dependency of the semantic on the leakage model.
For a given program p, an initial state s is said to be safe when there exists an execution
from this state, ending in some final state s′ and producing some leakage `. The point to
note here as compared to instrumented semantics presented in Chapter 2 are: 1. memory
accesses leak according toM; 2. the leakage for arithmetic operators correspond to the
leakage of the evaluation of their arguments followed by one of the computations of the
operator (as defined by A). The parameterM defines the leakage for memory load and
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Parameters:

M(v),Aop(v1, . . . , vn) ∈ `e

Expression semantics:
e ↓s`e p

∗e ↓s(`e,M(p)) s[p]

ei ↓s`ie vi op(v1, . . . , vn) = v Aop(v1, . . . , vn) = `e

op(e1, . . . , en) ↓s((`1e,...,`ne ),`e)
v

Assignment semantics:
e ↓s`e p

∗e := v ↓s(`e,M(p)) s{p← v}

e ↓s`e p s[p] = v

x := ∗e ↓s(`e,M(p)) s{x← v}

Figure 3.7 – Instrumented fine-tuned semantics.

store as they involve memory accesses.
The parameters A and M play an important role in generating a generic leakage

model that can be instantiated by different kinds of leakage models.

Generalization of leakage models in Coq The type class LeakOp implements the
leakage class, which includes the parameters A andM. This class can be instantiated by
giving witness to the function A andM and can represent different leakage models like
BL, TV, or CL.

Class LeakOp :=
{ A : signedness → forall (sz:wsize), word sz → word sz → word sz → leak e;
M : word Uptr → word Uptr; }.

Figure 3.8 – Leakage Class

For example, the leakage obtained during the execution of division and modulo is
now based on the function A in the type class LeakOp. It uses a generalized instance of
function A called divleak. Given a signdness parameter s, size sz and words hi, lo and
div of size sz, divleak computes the leakage A s hi lo div. The operators like division and
modulo use divleak to compute the leakage.

3.4.2 Instances of leakage class

This section presents various instances of the leakage class.

Baseline leakage model In the BL model, arithmetic operations produce an • leakage
and memory accesses leak the whole address. This can be expressed by instances ABL
andMBL.
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A�BL(a) = •
MBL(p) = p.

Here a is the set of arguments provided to the operator, and p is the accessed memory
address.

Time-variable leakage model The time-variable leakage model captures the leakages
generated during the execution of division and modulo operators. This can be expresses
by instances ATV andMTV .

A÷TV (a, b) = (log2(a), log2(b)) A%
TV (a, b) = (log2(a), log2(b))

MTV (p) = p.

The point to note here is the leakages are generated only for division and modulo. For
other operators, their execution still produced • leakage and is modeled as constant-time.
For example, A×TV (a, b) = •. This work only focuses on making the division and modulo
operator (other operators are assumed to be constant-time) constant-time as Jasmin only
supports x86 architecture. However, the current methodology can be extended to support
other operators. For example, once Jasmin is extended to support ARM architecture, the
current methodology can be extended to remove the assumption that multiplication is
constant time and add leakages corresponding to the multiplication operator.

Cache-line leakage model The cache-line leakage model assumes that the truncated
address is leaked instead of leaking the whole address.

MCL64(p) = bp/64c
MCL32(p) = bp/32c.

Here 64 and 32 are the (byte) granularity of cache lines.

Combining models We can combine these leakage instances to yield combinations of
different models like the TV + CL leakage model, where operations like division and
modulo leak a function of their arguments, and memory accesses leak the truncated
address.

3.5 Leakage transformers

As discussed in Section 2.3 of Chapter 2, the Jasmin compiler is instrumented to produce
leakage transformers. To model the translation of leakages corresponding to fine-grained
leakage models into the target leakage, we need to consider the extra leakages produced
during the evaluation of an operation and the different kinds of leakages produced during
memory access (depending on the model it is targeting). Hence, the semantics of some
of the leakage transformers are slightly changed to incorporate the fine-grained leakage
model. Here, the set of leakage transformers that need to be adapted for supporting verifi-
cation of fine-grained leakage models is only discussed (the rest of the leakage transformers
have the same syntax and semantics as presented in Chapter 2).
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Leakage transformers for expressions:

JτsK
vsp
s = p

JC(τs)K`ee = ∗M(p)

Jτs[i/x]Kvsp
s = p

JI(x 7→ τs)K[i]
e = ∗M(p)

Figure 3.9 – Semantics for adapted leakage transformers

In the case of leakage transformers for expressions, the semantics of C(τs) and I(x 7→ τs)
are updated (presented in Figure 3.9) as these leakage transformers are involved during
the stack allocation pass to generate fresh leakage corresponding to memory load and
store. After the stack allocation passes, the transformed leakage involves leaking the
memory address; hence, it should be computed using the functionM.

Next, there are changes in the leakage transformers related to transforming the leak-
age associated with operators. As discussed in Section 2.3 of Chapter 2, the leakage
transformer concerning operations is of the form (τe; . . . ; τ

′
e) where τe . . . τ ′e are used to

transform the leakage associated with the operands. But we know that the operators can
also leak to enforce fine-grained leakage models. In this work, only division and modulo
leak something extra than • leakage, and the rest of the operators leak • leakage; we
need an extra leakage transformer in the set to transform the leakage associated with the
operators.

Definition snot (e: pexpr) : (pexpr × leak e tr) :=36

match e with37

| Pbool b ⇒ (Pbool(negb b), remove)38

| Papp1 Onot e’ ⇒ (e’, π1 ◦ π1)39

| ⇒ (Papp1 Onot e, id)40

end.41

Figure 3.10 – Pseudo-code of the constant propagation

Figure 3.10 presents a simple example featuring the semantics of not operation. The
case of applying not operation twice is discussed here (not(not e) = e) as the operation is
simplified further by the constant-propagation pass. In the case of the application of oper-
ation Onot on Onot(e′), the operation Onot should also leak according to the fine-grained
leakage model. Hence in the constant propagation pass, the leakage transformer produced
is π1◦π1 because we need to compute leakage of e′ from the leakage of Onot(Onot(e′)). At
the source level, the leakage associated with Onot(Onot(e′)) is ((`′e, •), •) but the target
instruction is e′; hence we need to extract the leakage associated with e′ (using the leakage
transformer π1 ◦π1) and ignore the leakage associated with Onot. In contrast, the leakage
transformer produced in this case in the work described in Chapter 2 is just id as there
was no leakage associated with Onot at the source level (in the BL model, operators do
not leak). This example shows that the leakage transformers produced during various
compiler pass needs to be adjusted to consider the fine-grained leakage model.

The point to note here is that the development in this work focuses on division and
modulo operators (leak more than empty leakage depending on the target leakage model).
Still, it can be extended to incorporate more operators. For example, the support of ARM
architecture in Jasmin will require making the multiplication operator constant-time. The
execution time of multiplication opcode in ARM Cortex-M3 depends on the size of one or
both operands. The development and proof of preservation of constant time (explained
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in Section 3.7) in this work are generic. They are carried out based on the leakage class
that can be extended to incorporate more operators to leak something meaningful, not
just empty leakage.

3.6 Instrumented correctness
The Jasmin compiler is formally proved to be functionally correct and also includes
machine-checked proofs for the correctness of the leakage transformers as discussed in
Chapter 2. The proofs for the correctness of the leakage transformers need to be updated
to incorporate the fine-grained leakage models.

Theorem 3 (Instrumented correctness for fine-grained leakage models).

p : s ⇓A,M` s′ =⇒ p : s ⇓A,MJτK` s′.

The implementation of the compiler does not depend on the instance of the leakage
model. It just needs to be parameterized over the leakage class. The correctness proof is
done independently for each compiler pass, where the proof for the correctness of leakage
transformers is added to them. The proof is adapted to include the new changes in
the leakage transformers and leakages as discussed in Section 3.5. Overall, the proof of
instrumented correctness boils down to proving the functional correctness of the leakage
transformers.

3.7 Preservation of fine-grained constant-time policies
Definition 3 (Constant-time). A program p is constant-time w.r.t. the indistinguisha-
bility relation ∼ when the following holds:

∀s1 s2 A M, s1 ∼ s2 =⇒ ∃s′1 s′2 `, p : s1 ⇓A,M` s′1 ∧ p : s2 ⇓A,M` s′2.

The definition of constant-time is similar to as used in Chapter 2, but it needs to be
parameterized by A M. The indistinguishability relation for source and target states is
the same as defined in Section 2.5 of Chapter 2.

Theorem 4 (Constant time preservation). Given a source program p that is constant
time w.r.t. ∼ and A M, if the Jasmin compiler succeeds and produces a target program p̄,
then the target program is constant time w.r.t. ∼̄ and A M.

This theorem entails that the Jasmin compiler preserves fine-grained constant-time
policies. The proof is similar to as explained in Section 2.5 of Chapter 2.

3.8 Deductive Enforcement of fine-grained constant-time
policies

We need to instantiate the leakage models to prove the fine-grained constant-time policies
at the source level. The Jasmin program is extracted to EasyCrypt. EasyCrypt is used
to prove functional correctness and cryptographic security of Jasmin programs. The
EasyCrypt development is made parametric in the leakage models to prove the constant-
time property at the source level.

https://github.com/jasmin-lang/jasmin/blob/f70a7d3f545d358bd79c4581b762f623ecd7b42b/proofs/compiler/compiler_proof.v#L222
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3.8.1 Example of instances of the leakage model

This section presents a development of the instances (as discussed in Section 3.4.2) of
the leakage class to model BL, TV , and CL models. It describes one way to instantiate
the leakage class, but there can be other ways to define the instance depending on the
developer’s need and purpose.

Focus on BL and TV model instances

÷leakkind ::= dlknone | dlknumlog

÷leakkind is a type describing the two constructors to represent the leakages obtained
while evaluating the division or modulo. dlknone represents the BL leakage model where
the division and modulo does not leak and dlknumlog

represents the TV leakage model.

build÷leak
(dlk, s, sz, h, l, div) =


• dlk = dlknone

[log2(|h× sz + lo|+ 1)] s = Unsigned ∧ dlk = dlknumlog

[log2(|h× sz + lo|+ 1)] s = Signed ∧ dlk = dlknumlog

build÷leak
is a function to compute the leakage based on the variant kind dlk. In the

case where dlk = dlknone, it computes • leakage because ÷ is not supposed to leak in
this model (BL). In the case where dlk = dlknumlog

, it computes the leakage by taking the
logarithm of the operand (the operand is computed using the high and low bits and uses
the signdness). The div instruction in the X86 instruction set always divides the 64 bits
value across EDX : EAX (low 32 bits are in EAX and high 32 bits are in EDX) by value,
and the result is stored in EAX and the remainder is stored in EDX. The semantics div
in Jasmin represents the same notation where the dividend is represented using high (h),
low (lo) bits and size (for example, sz equals 256 for the case of 1 byte). To avoid the case
of computing the logarithm of 0, 1 is added to the operand.

Focus on BL and CL model instances

memleakkind
::= mlkfull | mlk÷32 | mlk÷64

memleakkind
is a type describing three constructors to represent the possible leakages

obtained while accessing a memory location.

buildmemleak
(mlk, p) =


∗p mlk = mlkfull

∗(p÷ 32) mlk = mlk÷32

∗(p÷ 64) mlk = mlk÷64

buildmemleak
is a function to compute the leakage for memory access based on the memory

address and the target leakage model. For example, if the cache-line is 32-byte aligned
and the target leakage model is CL, the leakage obtained while evaluating memory access
p is ∗(p÷ 32).

Using these two functions, we can build a generalized model that is an instance of the
class LeakOp.

buildmodel(dlk,mlk) ::= {|A := build÷leak
(dlk);M := buildmemleak

(mlk)|}
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In EasyCrypt, an abstract theory represents the class in Coq (resembles the leakage
class LeakOp). A theory in EasyCrypt is used to group definitions that can be cloned to
represent different kinds of specialization. Theory cloning is used to instantiate a theory
with a particular implementation (similar to instances of a class in Coq).

As discussed in Section 3.2, in the BL leakage model, the operators do not leak, and
the memory accesses reveal the full address. To prove any implementation against the
BL leakage model, the theory LeakOp should be cloned to an instance represented as
{|A := build÷leak

(dlknone, s, sz, h, l, div);M := buildmemleak
(mlkfull, ∗p)|}. Similarly, to prove

an implementation against the TV leakage model, the theory LeakOp should be cloned to
an instance {|A := build÷leak

(dlknumlog
, s, sz, h, l, div);M := buildmemleak

(mlkfull, ∗p)|}. This
cloning mechanism gives freedom to the developer to define their instances depending on
their need and purpose. In this work, the instances are defined to target fine-grained
leakage models and how they can help mitigate against timing-based attacks based on
time-variable operators and cache-line.

3.9 Instrumentation of programs in EasyCrypt

The instrumentation of programs is generic and transforms every source program p into
an extracted program in EasyCrypt represented as [p]. The semantics of p and [p] are
same except [p] accumulates the leakages generated by the evaluation of p in a special
fresh program variable named leak.

The instrumentation relies on expressions to capture the leakages in a fresh variable
called leak. For verifying fine-grained constant-time policies at the source level, the expres-
sions defining the leakages are extended to add functionalities ofM and A. e represents
the expressions. A�(e, . . . , e) resembles the leakage associated with division or modulo.
For example, depending on the division operators (unsigned or signed) present in x86
architecture, A�(e, . . . , e) computes the leakage using the operands. ] is used for the
concatenation of leakages.

The instrumentation of expressions {e} is present in Figure 3.11. The instrumentation
computes a new expression that will evaluate the leakage generated by e: if e : s ↓A,M`e

v then {e} : s ↓ `e. The expressions like constant, boolean, variable, and global variables
produce no leakage. For array accesses a[e], the leakage contains the index e and the
leakage {e} generated during the evaluation of e. For memory accesses ∗e, the leakage
contains the address computed usingM and also leaks {e} generated during the evaluation
of e. In the case of operators, their leakage contains the leakage of their arguments and
the leakage due to the operation. The conditional expression leaks {e} (leakage obtained
during evaluation of condition) and also the leakage obtained during the evaluation of
true ({ett}) or false ({eff}) branch. The point to note in the case of conditional expression
is it does not leak the value of the condition because the Jasmin compiler will compile
it using a conditional move instruction, which is constant-time. The leakages associated
with the instrumentation of left-values are similar to expressions.
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Extended expressions:

Expr ::= . . . | M(e) | A�(e, . . . , e) | ∅ | e ] e

Translation of expressions:

{c} = {x} = {b} = {a[n]} = {g} = ∅
{∗e} = M(e) ] {e}
{a[e]} = e ] {e}

{�(e1, . . . , en)} = A�(e1, . . . , en) ] {e1} ] . . . ] {en}
{if e then ett else eff} = {e} ] {ett} ] {eff}

Translation of left values:

{x} = ∅
{∗e} = M(e) ] {e}
{a[e]} = e ] {e}

Translation of instructions:

[d := e] = leak := {d} ] {e} ] leak; d := e

[if e then ctt else cff ] = leak := e ] {e} ] leak;

if e then [ctt] else [cff ]

[while e do c] = leak := e ] {e} ] leak;

while e do [c]; leak := e ] {e} ] leak
[i1; . . . ; in] = [i1]; . . . ; [in]

Figure 3.11 – Program instrumentation with explicit leakage

Figure 3.11 provides the instrumentation for the instructions [c]. The instrumentation
of an assignment instruction [d := e] is a sequence of two assignments; the first extends
the variable leak with {d} and {e} and then do the assignment d := e. For conditional
instructions, the leak variable leak is extended with the value of condition e, the leakage
obtained during the evaluation of condition i.e., {e}. The instrumentation of the while
loop works in a similar manner as if-else. In case of while, the leak is updated once before
the loop (to capture the leakage of conditional for the first iteration) and then at the end
of each loop iteration.

3.9.1 Correctness of instrumentation

This section explains the correctness of the instrumentation.

Theorem 5 (Correctness of the instrumenation). For all program c, if its evaluation
starting from a state s generates a leakage ` and a state s′, then the evaluation of its
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instrumentation [c] starting from the state s extended with `0 for the variable leak leads
to the state s′ extended with ` ] `0 for the variable leak:

∀c s s′ ` `0 A M, c : s ⇓A,M` s′ =⇒
[c] : s+ {leak← `0} ⇓A,M s′ + {leak← ` ] `0}

where the notation s + {leak ← `0} represents the state s extended with a fresh variable
leak and its associated value `0.

The above theorem shows that the instrumented program correctly accumulates the
leakage in the variable leak. As the semantics in EasyCrypt is a one-to-one mapping of
the semantics of Jasmin, the proof boils down to computing the leakage correctly using
the rules stated in Figure 3.11.

3.9.2 Fine-grained constant-time policies for the extracted pro-
grams in EasyCrypt

Fine-grained constant-time policies are 2-safety properties and can be enforced using re-
lational program logics, such as Relational Hoare Logic [Benton, 2004]. Relational Hoare
Logic naturally captures the information flow properties, which is enough for representing
the properties of interest presented in this chapter. Other kinds of logic, like probabilistic
Relational Hoare Logic, derive claims about the probability of events occurring during a
program’s execution (also supported in EasyCrypt [Barthe et al., 2011b]) are not neces-
sary to prove claims about constant-time policies. Hence, this chapter only focuses on
Relational Hoare Logics. The Relational Hoare Logic manipulates judgments of the form:

c1 ∼ c2 : ϕ =⇒ ψ (3.1)

where c1, c2 are programs and ϕ is a relational pre-condition and ψ is a relational post
condition. Both the pre-condition and post-condition are interpreted as relations over the
states of the two programs. Concretely, the interpretation of such a judgment is:

∀s1, s
′
1, s2, s

′
2,


s1 ϕ s2

c1 : s1 ⇓ s′1
c2 : s2 ⇓ s′2

=⇒ s′1 ψ s′2

In other words, if we start the evaluation of c1 and c2 in two states that are in relation
for the pre-condition (s1 ϕ s2), the final states will be in relation for the post-condition
(s′1 ψ s′2). Note that the validity of a judgment is implicitly parameterized by an inter-
pretation of operators. A,M |= c1 ∼ c2 : ϕ =⇒ ψ reflects a judgment is valid w.r.t. an
interpretation of operators and memory leakage.

Theorem 6 (Fine-grained constant-time, relationally). If A,M |= [c] ∼ [c] : ϕ∧ ={leak}
=⇒ ={leak} then [c] is constant-time program with respect to A,M and ϕ.

The above theorem shows that relational Hoare logic can verify fine-grained constant-
time policies. The proof is a direct consequence of theorem 5 and of the interpretation
of relational Hoare logic. It follows that any soundproof system for relational Hoare logic
can be used for proving fine-grained constant-time.
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3.10 Description of the various proofs done using Easy-
Crypt

This section describes a high-level idea of proving fine-grained constant-time policies for
various examples. As discussed in Section 3.9, the extraction to the EasyCrypt model is
generic, and the proof can be instantiated to target a particular leakage model.

3.10.1 Proving ssl3 cbc copy mac

This section presents a detailed explanation of the proof of the ssl3 cbc copy mac imple-
mentation. The function mainly comprises rotated offset and rotate mac. Since there are
two implementations for each one (rotate offset BL, rotate offset TV, rotate mac BL,
rotate mac CL), there are a total of four implementations presented in Section 3.3.

Focusing on implementation to be proved for BL leakage model The program
at the top of Figure 3.5 presents the functions rotate mac BL. The function is constant-
time in the BL leakage model (and also in the CL model). Using the relational Hoare
logic, explained in Section 3.9.2, the constant-time property is stated as follows:

rotate mac BL ∼ rotate mac BL : ={leak,out,md size} =⇒ ={leak} (3.2)

The above judgment states that if we start the execution of the function rotate mac BL
from two states in which values of the variable leak, out and md size are equal, then
the evaluations will end in two states where the value of the variable leak will be equal.
From the assumptions of the program, we know that md size and out buffer (pointer to
where data is stored after rotating it back) are public. According to the definition of ∼ or
state-equivalence explained in Chapter 2, we know that the equivalence relation between
two states resembles the fact that they should be equal on public data. The judgment
requires no assumptions for the value of the variable rotate offset as we know it can be
secret dependent. For the case of rotate offset BL, the pre-conditions are similar, and the
modulo operator does not leak anything in the BL model.

The generated program after extraction consists of the EasyCrypt program corre-
sponding to the Jasmin implementation of ssl3 cbc copy mac. It consists of an abstract
theory called LeakageModel, where the theory LeakageModel is a signature of the various
leakage models that can be instantiated in the proof. Programs in EasyCrypt are stated
as modules that consist of global variables and procedures that consist of local variables
and a sequence of instructions. Hence, it consists of a module M that contains the variable
leakages (stores the leakage generated by various instructions) and extracted EasyCrypt
procedures for various functions used in ssl3 cbc copy mac.

Here is a snippet of the proof script for proving ssl3 cbc copy mac to be constant-time
in EasyCrypt:

The first two lines represent importing various libraries that are required to carry out
the proof. To prove a program to be constant-time, we need to specify which leakage
model it should target. In this case, the implementation of ssl3 cbc copy mac needs to
be secure in the BL leakage model. Hence, using the keyword “clone", we clone the theory
LeakageModel with the theory LeakageModelBL that represents the actual implementation
of the BL leakage model adhering to the abstract theory LeakageModel. The concept of
cloning allows the generic design of the leakage model to be instantiated in various ways,
like for the BL, TV, or CL leakage model.
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Figure 3.12 – Proof of ssl3 cbc copy mac BL BL in BL model

The lemma is stated using the keyword “equiv" and is called l final. The procedure
ssl3 cbc copy mac BL BL used in the lemma is present in the module M. The proof in
EasyCrypt is interactive; hence, various tactics can be used to reduce a goal into zero or
more subgoals.

Focusing on implementation to be proved for TV leakage model To prove the
implementation of rotate mac and rotate offset present in the top and bottom of Figure 3.5
and Figure 3.4 in the TV leakage model, the theory describing the leakage model where
the operators leak should be cloned. For the rotate mac BL, the proof is similar as
it needs to be constant-time for the BL model. To prove the TV implementation of
rotate offset (present at the bottom of Figure 3.4), we need to show equivalence between
the leak variable where it holds the leakage associated with the modulo operator used
in the program. Line 12 of the function rotate offset TV uses a modulo operator where
the divisor (md size) is public but the operand rotate offset is secret as it depends on
mac start that is a secret data. The rotate offset is made a bigger number using the
computation mac start− scan start + (md size << 23). The constant-time property for
the TV implementation is stated as:

=leak, md size, scan start

∧ (0 ≤ mac start{1} − scan start{1} < 256)

∧ (0 ≤ mac start{2} − scan start{2} < 256)

∧ 16 ≤ md size{1} ≤ 64

and the post-condition is simply =leak. The notation x{1} refers to the value of the
variable x in the left state while x{2} refers to its value in the right state. Through the
pre-condition, we add enough relations so that we will be able to show equivalence on leak
after the final execution. The point to note is that the pre-condition relation defined on
mac start does not require its equivalence because it is a secret data, but it requires its
distance from scan start to be bounded on both sides.

The proof requires about 25 lines of EasyCrypt code. It requires basic results on non-
linear arithmetic. In the implementation, the div spoiler is shifted by 23 to match the
OpenSSL implementation, but a shift by eight would suffice. In the original implementa-
tion of OpenSSL, the shift was of the form (md size >> 1) << 24. As md size is even, it
is equivalent to md size << 23, but compilers cannot infer it. The idea of writing it in this
form by OpenSSL developer was to prevent the compiler from optimizing the code by re-
moving introduced countermeasure (i.e., replace ((md size << 23) + rotate offset) % md size
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1 f o r ( j = 0 , i = 0 ; i < md_size ; i++) {
2 aux1 = rotated_mac [ r o t a t e_o f f s e t & ~32 ] ;
3 aux2 = rotated_mac [ r o t a t e_o f f s e t | 3 2 ] ;
4 mask = constant_time_eq_8 ( r o t a t e_o f f s e t & ~32 , r o t a t e_o f f s e t ) ;
5 aux3 = constant_time_select_8 (mask , aux1 , aux2 ) ;
6 out [ j++] = aux3 ;
7 r o t a t e_o f f s e t++;
8 r o t a t e_o f f s e t &= constant_time_lt_s ( r o ta t e_o f f s e t , md_size ) ;
9 }

Figure 3.13 – Fixed C implementation of OpenSSL rotate offset

by (rotate offset) % md size, this replacement is functionally correct but does not preserve
constant-time hyperproperty).

Focusing on implementation to be proved for CL leakage model To prove the
implementation of rotate mac and rotate offset present at the bottom of Figure 3.5 and
Figure 3.4 in the CL leakage model, the theory describing the leakage model where the
memory operation does not leak the full address but leak according to the size of the
cache line. The function rotate mac CL present in the bottom of the Figure 3.5 is proved
constant-time in the CL leakage model.

To prove this function to be constant-time in the CL leakage model, it requires stronger
pre-conditions:

={leak, out, md size, rotated mac}

∧ rotated mac{1}%64 = 0

∧ 16 ≤ md size{1} ≤ 64

∧ 0 ≤ rotate offset{1} < md size{1}
∧ 0 ≤ rotate offset{2} < md size{1}

In this implementation rotated mac is a pointer to a buffer of length md size, which
should be public (= rotated mac) and 64 byte aligned (it is the role of the caller of
rotate mac CL to ensure this condition). The proof follows the intuition provided in
Section 3.3. Since the specification also requires that rotate offset{1} < md size{1}, the
specification of rotate offset TV needs to be extended to ensure that the result will satisfy
this condition.

3.10.2 Verified countermeasure on rotating MAC with 32-byte
cache line

OpenSSL implementation of rotate mac CL for 32-byte cache line model has a bug (see
Figure 3.6 for original code). Two load operations are present within a loop as the data
will fit in two cache lines. When trying to prove it against the CL32 model, we realized
that this is incorrect and it is dependent on secret rotate offset. A counterexample using
Jasmin evaluator was created. With a 64-byte aligned rotated mac buffer, rotate offset
with value 31 touches the second cache line first and then the first. However, rotate offset
with value 63 touches the first cache line first and then the second.

Figure 3.13 shows the verified fix where it always accesses the first cache line and then
the second cache line. Later, the correct value is selected in constant-time. This incurs
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an overhead of 5.9% at ssl3 cbc copy mac function granularity. However, the overhead is
negligible in OpenSSL macro benchmarks.

3.11 Implementation
The implementation work is carried out in the Jasmin framework. The implementation
consists of:

• a Coq formalization of fine-grained leakage and a formal proof that the Jasmin
compiler preserves fine-grained constant-time policies;

• an OCaml implementation that extracts an EasyCrypt program from a Jasmin pro-
gram;

• an OCaml implementation of an evaluator for testing constant-timeness.

The first two components of the implementation preserve the workflow for Jasmin
programs:

• Jasmin programs are checked for safety and compiled;

• proofs of constant-timeness are carried on source Jasmin programs via an embedding
into EasyCrypt. Program instrumentation is performed during the embedding in a
way similar to what is presented in Section 3.9.

The last component adds an additional functionality (testing for constant-timeness),
which is extremely helpful when dealing with fine-grained policies, which have consid-
erably more complex proofs.

3.11.1 Coq formalization

The work explained in Chapter 2 is extended to reason about the fine-grained constant-
time policies. The instrumented semantics are adapted to take into account the fact that
each division-like operator � generates a leakage depending on its arguments A� whereas,
in Chapter 2, this leakage was assumed to be constant. Also, the leakage for memory
access has been made generic to support weaker models. All the proofs of the compiler
have been adapted and generalized over the leakage model. As discussed in Section 3.5,
the leakage transformers described in Chapter 2 are reused with modifications to the ones
that are used in the compiler passes like constant folding and instruction selection as they
deal with propagation and lowering of operators. The correctness theorem and its proofs
are updated accordingly.

The overall adaptation in the formalization made the Coq development grow from
about 37 × 103 lines to 38 × 103 lines.

3.11.2 Extraction to EasyCrypt & Jasmin evaluator

Jasmin provides different ways to extract programs to EasyCrypt. EasyCrypt extraction
is proven for constant-time property. This part is made parametric in the leakage model.
The extraction is done generically, independently of the model, and then the user can
specify their model in EasyCrypt (as discussed in Section 3.10). This work presents some
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example models, but the users are also free to define their own models. As the proof
of preservation of constant-time is generic in the model, any new model will also be
supported.

The extraction to EasyCrypt is implemented in OCaml, and the overall changes with
respect to the work discussed in Chapter 2 amounts to around 50 lines of code. The eval-
uator is also implemented as an OCaml wrapper; it uses an automatically generated file
(from the extraction of the Jasmin semantic defined in Coq), and the wrapper represents
around 200 lines of code.

3.12 Evaluation

This work also evaluates to check that a program that has a fully automated proof for
BL constant-time in Chapter 2 also has an automated proof with fine-grained leakage
models, and programs that have an interactive proof of BL constant-time in Chapter 2
have a similar interactive proof of constant-time in the fine-grained models. A set of
examples from the Jasmin libraries is checked and validated.

Also, the evaluation focuses on validating the cost of providing programs constant-
time with respect to other policies. As discussed in prior sections, proving fine-grained
constant-time policies involves arithmetic and, hence, is more complex than proofs that
focus on data dependencies. A set of examples that target fine-grained constant-time
policies are implemented and proved or disproved that these examples satisfy their in-
tended policies. The number of lines of code is reported to indicate the difference with
the baseline leakage mode.

The last emphasis is on the fact that formal methods can be used in the early phase
of development, which can help achieve constant-time policies. A development of modulo
that is proved to be secure in the TV model is provided.

3.12.1 Impact on verifying the baseline policy

For the evaluation, the motivating examples from Section 3.3 (ssl3 cbc copy mac BL BL
and ssl3 cbc copy mac TV BL) that have been adapted for this work from OpenSSL, all
implementations taken from previous works [Almeida et al., 2019, Almeida et al., 2020]
are considered. They consist of three versions of the ChaCha20 [Bernstein et al., 2008]
stream cipher (a reference implementation and two optimized ones targeting specific vec-
tor instruction set extensions, namely avx and avx2); three versions of the Poly1305
authenticator; three versions of the Keccak1600 (SHA3 [Bertoni et al., 2013]) hashing al-
gorithm (a reference implementation, an optimized one using avx2 vector instructions,
and an optimized one using scalar instructions only); two versions of MAC extraction
based on the functions shown in Figure 3.4.

The results of this case study are reported in the first rows of Table 3.1. Here are a
few observations. Eight out of the ten implementations can be proved secure in any of
the considered policies in a proof script of seven lines only. The proof is a one-line call
to a fully automatic tactic. The other lines are the statement of the theorem. The proof
script for the vectorized version of Keccak1600 is much longer: this implementation uses
in-memory tables and its proof involves a lot of reasoning about pointers, similar to what
is done in the proof of functional correctness. This suggests possible improvements to the
Jasmin programming language.
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Table 3.1 – Compliance of examples with fine-grained policies. The table reports the size
(lines of code) of each version of examples and for each model whether it can be proved
constant-time (number of lines of the proof) or if there is a counter-example (marked with
a 8) witnessing a security violation.

Example Implementation Leakage model

size (loc) CL32 CL64 BL TV + CL32 TV + CL64 TV

ChaCha20 (ref) 396 7 7 7 7 7 7
ChaCha20 (avx) 900 7 7 7 7 7 7
ChaCha20 (avx2) 1006 7 7 7 7 7 7
Poly1305 (ref) 239 7 7 7 7 7 7
Poly1305 (avx) 1065 7 7 7 7 7 7
Poly1305 (avx2) 1037 7 7 7 7 7 7
keccak1600 (ref) 392 7 7 7 7 7 7
keccak1600 (avx2) 446 361 361 361 361 361 361
keccak1600 (scalar) 469 7 7 7 7 7 7
ssl3 cbc copy mac BL BL 469 16 16 16 8 8 8

ssl3 cbc copy mac TV BL 103 16 16 16 59 59 59
ssl3 cbc copy mac BL CL64 82 8 56 8 8 8 8

ssl3 cbc copy mac TV CL32 89 153 156 8 159 162 8

ssl3 cbc copy mac TV CL64 86 8 59 8 8 90 8

pmac verify hmac 78 118 118 8 118 118 8

coding wolfSSL 34 8 58 8 8 58 8

The last example also has a very short proof script (sixteen lines): since the precon-
dition of the security statement involves the contents of the initial memory, the proof
requires the user interaction in a couple of places; it is, nonetheless, straightforward and
mostly automatic.

In all cases, the proof can be carried once in the BL model, and the same script can
be reused as-is in any weaker model (CL32 and CL64). Also, for implementations that do
not use time-variable instructions, proof extends without modification to the stronger TV
and TV + CL models.

3.12.2 Verification effort of other policies

In this second case study, we consider implementations designed to be secure in non-
baseline policies. They either target the TV model and ensure that time-variable opera-
tions only leak public information or target one of the CL32 and CL64 models and make
sure that only the least significant bits of pointers may be secret. We studied 10 cryp-
tographic libraries; out of them, we found eight libraries that contain such code, and we
selected three examples that are the most representative or challenging. The corpus con-
sists of four implementations of MAC extraction as explained in Section 3.3, one MAC
verification, and the char2val routine used in base64 decoding. All of them are new ports
to Jasmin of existing code: the first five from OpenSSL and the last one from WolfSSL.
Moreover, all of these examples are out of reach of the previous Jasmin pipeline.

The MAC verification (coined pmac verify hmac) accesses a 32-byte-aligned buffer of
length at most twenty using secret dependent indices. Its security, therefore, relies on
the assumption that the size of a cache line is at least 32 bytes. The base64 decoding
excerpt (coding wolfSSL) uses a table lookup at a secret dependent index: said table is
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64-byte-aligned, with a size of 80 bytes, and assumed to fit in two cache lines.
The sizes of the proofs corresponding to these examples are reported in the last six lines

of Table 3.1. These proofs are generally longer than the ones for the baseline model: some
arithmetic invariants about the arguments to time-variable operations and constraints on
the base address and offsets for secret-dependent memory accesses must be established.

As illustrated by the coding wolfSSL case, which does not use time-variable operations,
the proof script for the CL32 model can be reused without modification in the stronger
TV + CL32 model.

Overall, the complexity of these proofs matches our expectations and is reasonable.
For comparison, functional correctness proofs of ChaCha20 and SHA3 (to be found in
earlier works) need hundreds and thousands of lines, respectively; the security proof of
SHA3 needs tens of thousands of lines.

3.12.3 Efficient Constant-Time Modulo

The methodology discussed in this chapter can be used to guide the design of efficient
constant-time code. The code for computing the modulus in constant-time manner (func-
tion rotated offset TV) works only because the value of the numerator (resp. the de-
nominator) is small, less than 256 (resp. 64). This section shows that it is possible to
implement a constant-time modulus without any requirement on the arguments except
that the denominator needs to be public.

In certain circumstances, Modulo might be implemented without using the time-
variable operations (by using bitwise operators). Here we present a different approach:
the inputs to the time-variable operations are tweaked to ensure that they always fall into
a restricted domain that is too small to exhibit a noticeable variable time behavior.

Jasmin implementation

Here is an implementation with the following assumptions: a is private, b is public, and
the goal is to compute the (unsigned) remainder of the division of a by b. As the divisor
is public, the timing behavior of the hardware modulo instruction only depends on the
size of the dividend. Therefore, before calling this instruction, the first argument of the
division or modulo operator has a particular (public) size: its most significant bit must
be set. This means that the modulo instruction is always called with its first argument
in the range [263; 264 − 1].

An integer n is computed to get a meaningful result so that a′ = b · 2n + a falls in the
expected range. In this way, the computation of a′ mod b will give the expected result.

The complete implementation in Jasmin is given in Figure 3.14. It relies on an auxiliary
function lzcnt (lines 1–6) that counts the number of leading zeros of its argument and also
returns a boolean flag telling if this number is null. The code in lines 11–16 computes lzb
the number m of leading zeros of b and in the variable flag an integer whose value is one
if a is already in the range and zero if a is not in the range but b is. A first attempt (lines
18–21) is to compute in variable dividend the value b ·2m−1 +a. Using the lea instruction is
an optimization that saves a copy. This value may be too small to fall in the target range;
therefore, a second attempt (lines 22–23) computes in variable temp2 the value b · 2m + a.
This value is used as a dividend only if the addition did not overflow (line 24). In case
b is in the range and a is not, then the result is a: in this case, a dummy division of
the maximal 64-bit unsigned integer is computed (lines 25–27) and the result accordingly
corrected (line 30) using a conditional move.
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1 inline fn lzcnt(reg u64 x) −→ reg bool, reg u64 {
2 reg u64 result;
3 reg bool zf;
4 , , , , zf, result = #LZCNT(x);
5 return zf, result;
6 }
7 export fn mod TV(reg u64 a, reg u64 b) −→ reg u64 {
8 reg u64 flag, one, zero, dividend, modulo, result;
9 reg u64 lzb, lzb m1, b lzb, b lzb m1, temp2;

10 reg bool lzaz, lzbz, cf;
11 flag = 0x1234;
12 one = 1;
13 zero = 0;
14 lzbz, lzb = lzcnt(b);
15 flag = zero if lzbz;
16 lzaz, = lzcnt(a);
17 flag = one if lzaz;
18 lzb m1 = #LEA(lzb - 1);
19 b lzb m1 = b;
20 b lzb m1 = b lzb m1 << lzb m1;
21 dividend = #LEA(b lzb m1 + a);
22 b lzb = b lzb m1 << 1;
23 cf, temp2 = b lzb + a;
24 dividend = temp2 if ! cf;
25 dividend = a if flag == 1;
26 temp2 = 0xFFFFFFFFFFFFFFFF;
27 dividend = temp2 if flag == 0;
28 modulo = dividend % b;
29 result = modulo;
30 result = a if flag == 0;
31 return result;
32 }

Figure 3.14 – Generic constant-time modulus operation

Figure 3.15 – Timing behavior of the mod TV function on one x86 microprocessor (same
experimental setup as in Figure 3.2).
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Functional correctness

This implementation is correct (i.e., it always computes the modulo of its arguments).
Correctness can be formally stated in EasyCrypt as follows:

{a = a0 ∧ b = b0 ∧ b 6= 0}mod TV {result = a0 mod b0} .

This is a Hoare triple with universally quantified logical variables a0 and b0 that allow
referring to the initial values of the arguments. The proof shows that no overflow badly
interferes with the computation and is about 60 lines long.

As illustrated in Figure 3.15, the experiment shows that there is no longer any timing
variation while changing the private input. The execution time of the whole function may
still vary depending on the size of the public input. Notice on the right-hand-side plot
that the execution times of the secure implementation range between 14 and 45 cycles,
which is the same as the range of execution times of the lone hardware modulo instruc-
tion reported on the left of Figure 3.2 (for this particular microprocessor). Reproducing
the same experiment on a different microprocessor (Intel Xeon e5-2687w) leads to the
same conclusion: although the div instruction is time-variable, the execution time of the
mod TV function does not depend on the value of its first argument.

Constant-time security

This implementation is secure in the TV model, under the precondition that argument b is
public and non-zero. Formally, the security is stated as follows, where the instrumentation
of the mod TV function is interpreted in the TV model:

mod TV ∼ mod TV={leak,b} ∧b{1} 6= 0={leak}

The proof methodology is similar to the other examples discussed earlier. The central
argument is that the leakage produced by the execution of this function is a known function
of b (hence independent of the value of the first argument a). Thanks to the simplicity of
the control-flow structure of this program, the EasyCrypt machinery for computing the
weakest preconditions can transform the program-verification task into a pure arithmetic
formula. Discharging this proof is a bit tedious, as usual with machine arithmetic, due to
the possible overflows. The proof script is about 130 lines long.

3.13 Related work
There is a large spectrum of tools for analyzing side-channel attacks. Several of those tools
are also discussed in Chapter 1 and Chapter 2. Tools like ct-verif [Almeida et al., 2016b],
flowtracker [Rodrigues et al., 2016a], virtualcert [Barthe et al., 2014a], and binsec/rel
[Daniel et al., 2020] explicitly target the baseline constant-time policy. These tools are
supported by soundness claims. Only CacheD [Wang et al., 2017] considers a weaker leak-
age model where the cache line is leaked. CacheD favors automation and precision over
soundness and is therefore not supported by a soundness claim. As noted by Bernstein,
no tool supports time-variable operations. There are many other tools, such as CacheAu-
dit [Doychev et al., 2013] or CacheFix [Chattopadhyay and Roychoudhury, 2018], which
use automated techniques to reason about cache behavior. However, these tools do not tar-
get a constant-time policy. In particular, they do not consider control-flow leakage and do
not allow values to carry a security level. We refer to [Barbosa et al., 2021, Jancar, 2021]
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for a description of other tools. In addition, there are general-purpose tools that can also
be applied to side-channel analysis. This is the case of Themis [Chen et al., 2017], which
introduces QCHL, a quantitative variant of Cartesian Hoare Logic [Sousa and Dillig, 2016]
and uses QCHL to reason about side-channels of Java bytecode. Another (earlier) in-
stance is Blazer [Antonopoulos et al., 2017], which introduces a proof technique to rea-
son about hypersafety and applies the proof technique to reason about side-channels of
Java bytecode. Another line of work develops constraint-based methods for verifying
relational properties of hardware and applies these methods to reason about constant-
time [von Gleissenthall et al., 2019, von Gleissenthall et al., 2021]. There is also a large
body of work that develops automated transformation methods for making programs
constant-time, see e.g. [Cauligi et al., 2019a, Borrello et al., 2021], or that develops frame-
works that are secure by design: [Zhang et al., 2012] features a language with mechanisms
to control timing channels and a type system that quantitatively bound the informa-
tion leakage of well-typed programs; [Zagieboylo et al., 2019] introduces a timing-channel
aware ISA that serves as the contract between software and hardware.



Chapter 4

Cost Analysis

4.1 Introduction

This chapter presents an application of the leakages and leakage transformers presented
in Chapter 2. It explains how they can be used to justify a program’s execution cost.
The instruction counting model that tracks how often each instruction is executed in a
program run is one of the simplest cost models. It is also the basis of many approaches
for computing the upper bounds on the program’s cost. These approaches are mainly
developed for source programs, and transferring the source-level analysis result to target
programs is not straightforward.

The computation of the run-time cost of a program - computational complexity, worst-
case execution time, peak memory usage, etc. - crucially depends on low-level details;
hence, it involves decisions made at compile-time: control-flow transformations and code
layout, register spilling, and memory layout of local variables, instruction selection, and
scheduling. Therefore, a precise static cost analysis must be carried out near the end of
the compilation pipeline (ideally on assembly code or even at the binary level). However,
the estimation of the run-time cost relies on loop bounds or other flow information, either
inferred by static analysis or provided by the programmer as annotations. In both cases,
these flow facts are provided at the source level: programmers are more inclined towards
annotating source code than target code, and static analyses are much more precise and
efficient when they can rely on high-level abstractions from the source language.

This chapter explains how the findings described in Chapter 2 offer a means to trans-
fer the source-level analysis results to the target level. The instruction counting model is
designed based on the leakage model described in Chapter 2. The leakages give an under-
standing of the program’s structure as it is closely related to the syntax and semantics of
the program. It is possible to compute the cost of execution as a function of its leakage,
i.e., κ = tocost(`), where p : s ⇓` s′. The leakage corresponding to an instruction helps to
compute its execution cost. Also, the Jasmin compiler emits a function F called leakage
transformers described in Section 2.3 of Chapter 2. The explicit representation of leakage
transformers makes it possible to compute the cost of a Jasmin target program by analyz-
ing the source program. Therefore, any function F that correctly transforms the leakage
of p satisfies κ = tocost(F (`)). This approach is precise because, for most optimization
passes, one can compute the target program’s cost from the source program’s cost. The
cost of the target program is exact if the cost of the source program is exact. Moreover,
the cost of the target program is a sound overapproximation if the cost of the source
program is a sound approximation. The overall beauty of the methodology explained in
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this chapter is that the complete cost analysis (either at the source or target level) only
depends on leakages and leakage transformers; it does not require the program.

4.2 Contribution

• The definition of cost and cost transformers;

• A certified algorithm for computing the cost of assembly programs from the cost of
Jasmin programs.

4.3 Cost analysis

This section describes how leakage transformers presented in Chapter 2 can be used to
transport the source-level cost information down to the assembly level. A cost model is
introduced as an abstraction of leakages and a methodology to deduce the “cost trans-
formers" from leakage transformers.

4.3.1 Cost models

The cost of program execution at the source or target level is modeled as the number
of times each instruction is executed. In other words, cost is a finite map between the
program points and natural numbers. The program point is a position in the program
text for unstructured intermediate language (like linear level or assembly). For structured
language, a language of paths is described to define a program point in the abstract syntax
tree. The cost is defined by means of a function that evaluates a leakage trace into a cost
map. The structure of leakage plays an important role here; as it reveals a lot about the
semantics of the program, it helps compute the cost without looking at the program.

Definition 4 (Cost). Each intermediate language is equipped with a tocost(.) function
that, given a leakage, computes a cost, i.e., a count for each program point. p : s ⇓` s′, its
cost is tocost(`)

4.3.2 Cost model for source level

This section describes the cost model for the source level language of Jasmin defined in
Figure 1.11. There are various notations defined that are used to describe a path in the
abstract syntax tree of the source program. The cost of a source-level instruction is a
mapping from the path to a natural number. The path is computed using labels lbl de-
fined as follows:

lbl := lblF fn | lblB b | lblL bpath := (lbl, n) path := (bpath, n)

The labels lbl define the tag for labeling function calls, conditional, and non-branching
instructions. For example, the label to a function is of the form lblF fn where fn is the
function name.

The source-level language is equipped with a function called tocosts(p, `), given a
source-level leakage ` (where ` is of the form defined in Figure 2.5) and path p, computes
a cost, i.e., a count for each source-level instruction. Given an execution, p : s ⇓` s′,
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its cost is tocosts(p, `). The semantics of tocosts(p, `) are defined as rules present in
Figure 4.1.

Auxiliary functions:

nextp(p) = λ p.(p.1, p.2 + 1) pathb(b, p) = λ b p.((lblB b, p.2) :: p.1)

pathfun(fn, p) = λ b p.((lblF fn, p.2) :: p.1)

pathfor p = λ p.((lblL, p.2) :: p.1)

Cost of source level instructions:

tocosts(p, •) = { → 0}
[Emptycost]

tocosts(p, `i) = ci ∧ nextp(p) = np ∧ tocosts(np, `c) = cc

tocosts(p, {`i; `c}) = ci(p) + cc(p)
[Seqcost]

tocosts(p, opl(`d; `e)) = { → 0}
[Assigncost]

tocosts(p, ifb(`e, `c)) = {pathb(b, p)→ 1}+ tocosts((pathb(b, p), 0), `c)
[Condcost]

tocosts(p,whilef(`c, `e)) = {pathb(ff, p)→ 1}+ tocosts((pathb(ff, p), 0), `c)
[WhileFcost]

{pathb(ff, p)→ 1}+ tocosts((pathb(ff, p), 0), `c) = c1∧
{pathb(tt, p)→ 1}+ tocosts((pathb(tt, p), 0), `′c) = c2 ∧ tocosts(p, `w) = c3

tocosts(p,whilet(`c, `e, `
′
c, `w)) = c1(p) + c2(p) + c3(p)

[WhileTcost]

tocosts(p, call (`e; . . . ; `e) (fn, `f ) (`w; . . . ; `w)) =
{pathfun(fn, p)→ 1}+ tocosts((pathfun(fn, p), 0), `f )

[Callcost]

Figure 4.1 – Function computing cost for source-level instructions.

The cost of an assignment instruction is null as per the cost model defined in this work.
Condcost explains how to compute the cost of a conditional instruction. It is computed
using the leakage of the form ifb(`e, `c). It merges the cost associated while entering the
branch (entering the branch updates the cost related to the label lblB b to 1) and the
cost of the basic block corresponding to the true or false branch (it is computed using the
leakage associated with true or false branch). The cost of a while loop is defined (similar
to the conditional) using two rules: WhileFcost and WhileTcost.

Callcost explains how to compute the cost of a function call. It is computed using the
leakage of the form call (`e; . . . ; `e) (fn, `f ) (`w; . . . ; `w). It merges the cost associated
while entering the function call (entering the function call updates the cost related to the
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label lblF fn to 1) and the cost of executing the body of the function (it is computed
using the leakage associated with the body).

The rules to calculate the cost for various instructions are computed using multi-
ple auxiliary functions. The rule Seqcost defines how to compute the cost of a sequence
of instructions. It uses the sequences of leakages {`i; `c} corresponding to the instruc-
tions, computes cost related to the first instruction using tocosts(, ) and then recursively
computes the cost of the rest of the instructions. pathb(b, p) computes the position cor-
responding to the conditional instruction present in a program with a path p, and it
assigns the label lblB b to the position. Similarly, pathfun(fn, p) computes the position
corresponding to the function call in a program.

4.3.3 Cost model for linear level

This section describes the cost analysis carried out for the linear-level language. The
linear level language is described in Figure 2.6 present in Chapter 2. The cost of a
linear instruction is a mapping from a program counter to a natural number. An update
function is defined to update the cost of a program point. Given a program counter n
and a linear cost map m, the update function increases the cost associated with n by
1 (m{n → (m(n) + 1)}). A merge function merges the cost associated with a program
counter. Given a program counter n and two mapsm1 andm2, the merge function returns
m1(n) +m2(n).

The intermediate language is equipped with a tocostl(., .) function that, given a leakage
li (where li is of the form defined in Figure 2.6 of Chapter 2) and a program counter n,
computes a cost, i.e., a count for each program counter. Given a execution, p : s ⇓li s′,
its cost is tocostl(n, li). As the program counter plays a role in computing the cost, the
tocostl(., .) function also returns the next program counter that can be used to compute
the cost of a sequence of linear instructions.

nextpc(n, li) is a function that computes the next program counter for a given program
counter n and a leakage li.

nextpc(n, li) =


n+ 1 li = •
|n+ i| li = i

n+ 1 li = op `e

|n+ i| li = ifl i `e b

The function tocostl(n, li) computes the cost corresponding to a single linear instruc-
tion and is defined as follows:

tocostl(n, li) = λ n li.({n→ 1}, nextpc(n, li))

The function tocostl(n, li) computes the cost corresponding to a sequence of linear
instructions li and is defined as follows:
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tocostl(., .) rules:

tocostl(n, •) = ({ → 0}, n)

tocostl(n, li) = (m,n′) ∧ tocostl(n
′, l′i) = (m′, n′′)

tocostl(n, li :: l′i) = (m(n) +m′(n), n′′)

Figure 4.2 – Semantics of tocostl(., .) function

4.3.4 Cost model for assembly level

This section describes the cost analysis for the assembly level. The assembly level language
is described in Figure 2.9 present in Chapter 2. The cost of an assembly instruction is
a mapping from the instruction pointer to a natural number. The assembly language is
also equipped with a tocosta(., .) function that, given a leakage la (where la is of the form
defined in Figure 2.9 of Chapter 2) and a program counter n, computes a cost, i.e., a
count for each instruction pointer. Given a execution, p : s ⇓la s′, its cost is tocosta(n, la).

nextpc(n, li) is a function that computes the next program counter for a given instruc-
tion pointer n and a leakage la.

nextpc(n, la) =


n+ 1 la = •
|n+ i| la = i

n+ 1 li = (∗p, . . . , ∗p)
|n+ i| la = ifa i b

The function tocosta(n, la) computes the cost corresponding to a single assembly in-
struction and is defined similarly to tocostl(., .). The function tocosta(n, la) computes the
cost corresponding to a sequence of assembly instructions la and is defined similarly as
the rules presented in Figure 4.2.

4.4 Cost Transformers

Program transformations found in compilers introduce, remove, or reorder instructions
according to the program being compiled; they do not makeup instructions out of the
blue. Even though predicting how many times each instruction emitted by a compilation
pass will be executed at run-time is usually not possible, the execution counts for target
instructions can be related to execution counts for the corresponding source executions.
More precisely, for most transformations found in the Jasmin compiler, the target costs
can be precisely described by relating each target program point to one basic block of the
source program. This link is to be interpreted as follows: the instruction at this program
point is executed in the target execution as often as the basic block is executed in the
source execution. Unfortunately, the predicted target count is an upper bound for some
compilation passes.

Definition 5 (Cost Transformers). A cost transformer maps the target program point to
source basic blocks. It, therefore, enables the translation of source-level cost into target-
level cost. A leakage transformer can be seen as a cost transformer by an interpretation
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function J.K.κ; such an interpretation is sound when for all (source) leakage `, and the
matching leakage transformer τ the following holds (where v is a partial order of costs):

tocost(JτK`) v JτKtocost(`)κ . (4.1)

The interpretation of a leakage transformer as a cost transformer is defined from the
leakage transformer only: it neither depends on the program nor the compilation pass. It
is a sound way to transport source-level cost information down to the assembly level.

Cost transformers are monotone; therefore, they can be soundly composed. Indeed,
given two leakage transformers τ 1 and τ 2 corresponding to two successive compilation
passes, the following inequality holds:

tocost(Jτ 2KJτ1K`) v Jτ 2KJτ1Ktocost(`)κ
κ .

It means that a sequence of two leakage transformers can be interpreted as a sound cost
transformer by composing their interpretation.

The actual definition of the interpretation functions (for each of the three languages
of leakage transformers described in this work) is tedious but unsurprising.

As already mentioned, the cost transformers for all but one pass are exact: the sound-
ness relation (equation (4.1) above) holds even when the partial order on costs v is
equality. For loop unrolling, however, it only holds for the slightly less precise pointwise
ordering of counters (with natural numbers ordered as usual).

4.5 Evaluation
With accurate leakage transformers at hand, a range of source-level reasoning becomes
possible. A source-level cost analysis is combined with the leakage transformers to stat-
ically compute the upper bounds of the run-time cost of target programs. The result is
compared with actual run-time measurements. This experiment aims to assess the preci-
sion of the leakage transformers and not to design a cycle-accurate cost analysis for x86
assembly programs. In particular, the cost model explained in this work is fairly simple:
we count the (total) number of executed instructions.

Methodology

A sample of representative Jasmin programs (permutations, hash functions, etc.) is se-
lected to experiment. For each program, the source-level cost analysis computes a set
of linear constraints between execution counters (at the granularity of basic blocks) and
initial values of the (main) function arguments. The leakage transformers produced at
compile-time yield cost transformers that map each target instruction to a source basic
block. From this cost-transformer, a symbolic upper bound of the total run-time cost is
computed: an affine combination of source execution counters.

By fixing some run-time parameters (typically, the size of the inputs) and solving the
resulting integer linear program: The maximal cost satisfying the constraints is obtained.
This gives a static numerical estimate of the cost for the given input size.

Each compiled program is evaluated on inputs of the corresponding sizes and mea-
sures1 the number of executed instructions and elapsed CPU cycles. Elapsed time is

1by reading Linux performance counters on a laptop running Linux 5.4 on a Intel® Core™ i7-8665U
CPU @ 1.90GHz.

https://github.com/jasmin-lang/jasmin/blob/ec1373c3cba97459108edf37eb3db912912e7b72/proofs/compiler/compiler_proof.v#L245
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Figure 4.3 – Run-time cost analysis (blue line is 2.9 instr/cycle)

estimated by a Rust program that calls the Jasmin functions; it is built on top of Crite-
rion.rs [Criterion Developers, 2019], a “statistics-driven micro-benchmarking tool”.

Results

Experimental results are shown in Figure 4.3. Each point of the graph corresponds to
one program and one choice of input size. The programs Gimli and Bash are permu-
tations: their inputs have fixed sizes. Both come in two versions: a reference and one
optimized for platforms with avx2 vectorized instructions (the capital V at the end of
the names mark the vectorized versions). The xxhash64 and poly1305 programs are a
(non-cryptographic) hash algorithm and a MAC function (respectively). In both cases
the control-flow structure is slightly complex as there are two different paths for short
and long messages, and there are many loops to handle the input message in chunks of
decreasing sizes. Finally, the program blake2b is a cryptographic hash algorithm that can
produce digests of any size between 1 and 64 bytes. It is also made of several loops to
first consume the message and then produce the digests of the appropriate size. In all
cases, the measured number of executed instructions is exactly predicted by the static
analysis (not shown on the graph). The measurement shows that the processor executes
between 2 and 4 instructions per cycle. The plain line on the graph, obtained through
linear regression of the measurements, has a slope of 2.9 instructions per cycle (with a
correlation coefficient of 0.999).

Remark on precision loss

As mentioned in Section 4.4, the cost-transformer for loop unrolling may lose some pre-
cision, as illustrated in the (artificial) example depicted in Figure 4.4. When the loop is
unrolled, its body is replicated, and each copy is executed as many times as the original
loop. However, at most, a single copy of the nested basic block (labeled A) is executed,
but the compiler cannot predict which one, hence the loss of precision, assuming that
each copy may be executed.

Such pathological cases do not occur in practice as conditions that are nested in
unrolled loops and involve the loop counters are usually resolved at compile-time.

.
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1 param int N = 10;
2
fn inc(reg u64 x) −→ reg u64 {
3 inline int i;
4 reg u64 r;
5 r = x;
6 for i = 0 to N {
7 if x == i {
8 r += 1; // A
9 }

10 }
11 return r;
12 }
13

Exact cost: 21 + A instructions; computed bound: 21 + 10 · A.

Figure 4.4 – Precision loss in cost transformation

4.6 Related work
There is a vast body of work on automatically analyzing program efficiency. In particular,
the fields of WCET (Worst-Case Execution Time) and cost analyses aim to provide esti-
mates (upper and lower bounds) of program execution. These estimates use a broad range
of cost models. One of the simplest models is the instruction counting model considered
in this paper. However, many works in the WCET community also consider very precise
cost models that account for underlying micro-architectural features. Analyses are carried
out on source programs (prevailing for cost analysis) and low-level programs (prevailing
for WCET), but only a few works connect the costs of source and target programs. One
of the first works in this direction is [Crary and Weirich, 2000], which develops a time
bounds-certifying compiler from a safe dialect of C to assembly. However, their work
focuses on upper rather than exact bounds for assembly programs and follows the prin-
ciples of certifying compilation. In contrast, our work is more focused on transferring
the results of source-level cost analysis. In this sense, our work is more closely related
to the CerCo compiler [Armadio et al., 2011], which connects a cost analysis for source
programs with the cost of target programs. Their work goes beyond the goals of our
present study, as their compiler provides, via annotations in the source program, realistic
estimates of the time and space cost of basic blocks of the target programs. A simi-
lar approach is taken by Carbonneaux et al. [Carbonneaux et al., 2014] to provide upper
bounds on stack usage of assembly programs generated by the CompCert verified compiler.
In a functional setting, Paraskevopoulou and Appel [Paraskevopoulou and Appel, 2019]
prove preservation of stack space by closure conversion, whereas Gómez-Londoño et al.
[Gómez-Londoño et al., 2020] prove a similar result for the CakeML compiler. To the
exception of [Crary and Weirich, 2000], all these works support mechanized correctness
proofs using proof assistants.



Chapter 5

High-Assurance Cryptography in the
Spectre Era

5.1 Introduction

As discussed in Chapter 2 and Chapter 3, constant-time is a programming discipline to
avoid timing-based attacks in programs featuring sequential execution semantics. How-
ever, this semantics is not aligned with the behavior of modern processors that make use
of speculative execution to improve performance. The prior chapters’ results do not guar-
antee against Spectre-style attacks discussed in Section 1.1.2 of Chapter 1. This chapter
presents an end-to-end methodology for proving constant-time property for cryptographic
software under speculative execution.

High-assurance cryptography leverages methods from program verification and cryp-
tographic engineering to deliver cryptographic software with machine-checked proofs of
memory safety, functional correctness, provable security, and the absence of timing at-
tacks. Cryptography implementations must achieve the Big Four guarantees: (i) It should
be memory safe to prevent leaking secrets due to illegal memory accesses, (ii) It should be
functionally correct with respect to a standard specification, (iii) provable secure to avoid
important class of attacks, and (iv) protected against timing-based side-channel attacks
that can be carried out remotely without physical access to the device under attack.
Cryptographers use high-assurance cryptography techniques to implement efficient cryp-
tography libraries to achieve these goals. Unfortunately, the guarantees provided by
Big Four can still be vulnerable to micro-architectural side-channel attacks, such as Spec-
tre attacks [Kocher et al., 2019b], which exploit speculative execution in modern CPU
because these properties established under a sequential execution cannot be extended
blindly for the speculative semantics.

Contributions

• A formalization of an adversarial semantics of speculative execution and a notion of
speculative constant-time for a core language with support for software-level coun-
termeasures against speculative execution attacks.

• A weaker “forward" semantics definition is introduced, which means an execution is
forced into early termination when misspeculation is detected instead of backtrack-
ing.
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• A proof of a key property called “secure forward consistency", that shows that a
program is speculative constant-time iff forward executions do not leak secrets via
timing side-channels.

• A verification method for speculative constant-time. The method is decomposed
into two steps: (i) check that the program does not perform illegal memory accesses
under speculative execution (speculative safety), and (ii) check that leakage does
not depend on secrets.

• An implementation of the approach in the Jasmin verification framework.

5.1.1 Methodology

This section gives an overview of the methodology described in this work.

Threat model The sequential semantics described in the previous chapters model the
scenario where an attacker observes all branch decisions and the addresses of all memory
accesses throughout the course of program execution. An extension to this threat model
assumes that an attacker can make the same observations about the speculatively executed
code. The semantics described in Chapter 2 do not take into account how to capture
attackers that deliberately influence predictors. Hence, it is necessary to model how code
is speculatively executed and what kind of values can be speculatively retrieved by load
instructions.

In this work, an approach is taken where an active attacker is taken into account that
controls branch and load decisions. Whereas in sequential semantics described in previous
chapters, a passive attacker is taken into account. The well-known approach to limit the
attacker is by using fence instruction. The active attacker model helps in capturing
attackers that not only mount traditional timing attacks [Kocher, 1996a] discussed in
Section 1.1.1 of Chapter 1, but also helps in capturing different kinds of Spectre attacks
described in Section 1.1.2 of Chapter 1. The threat model described in this work explicitly
assumes that the execution platform enforces control flow and memory isolation, and
fences act effectively as a speculative barrier. Attackers cannot read the values of arbitrary
memory addresses, cannot force execution to jump to arbitrary program points, and
cannot bypass or influence the execution of fence instructions.

Memory fences as a Spectre mitigation Memory fence instructions act as specula-
tive barriers, preventing further speculative execution until prior instructions have been
completed. For example, placing a fence after the conditional branch (between line 1 and
line 2) in Figure 1.4a and Figure 1.4b, prevents the processor from speculatively read-
ing from p until the branch condition has resolved, at which point any misspeculation
will have been caught. Similarly, placing a fence in Figure 1.5 before loading a[i] on line
6 forces the processor to commit all prior stores to memory before continuing, leaving
nothing for the attacker to mispredict.

Unfortunately, inserting fences after every conditional and before each load instruction
severely hurts the performance of programs. An experiment inserting LFENCE instruc-
tions around the conditional jumps in the main loop of SHA-256 implementation showed
a nearly 60% decrease in performance. Also, minimizing the use of fences without the
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support of any formal reasoning or verification mechanism showing their sufficient inser-
tions might lead to shaky security guarantees (e.g., Microsoft’s C/C++ compiler-level
countermeasures against conditional-branch variants of Spectre v1) [Spe, 2018].

Speculative constant-time The notion of constant-time defined in Section 2.5 of
Chapter 2 aims to protect cryptographic code against the standard timing side-channel
threat model [Jean-Philippe Aumasson, 2019]. To carry out the formal reasoning, the
semantics presented in Section 2.2 of Chapter 2 is instrumented with explicit leakages/ob-
servations that represent what values are leaked to an attacker during the execution of an
instruction. Unfortunately, this notion falls short in the presence of speculative execution.

The formalization of speculative constant-time is based on the same idea of leakages as
for constant-time, but is defined under an adversarial semantics of speculation. To reflect
active adversarial choices, each step of execution is parameterized with an adversarially
issued directive indicating the next course of action. For example, to model the attacker’s
control over the branch predictor upon reaching a conditional, the attacker issues either a
step directive to follow the due course of execution or a force b directive to speculatively
execute a target branch b. The set of directives is described in the later section.

Under the adversarial semantics, a program is speculative constant-time if, for every
set of directives, the observations accumulated over the course of the program’s execution
do not depend on the values of secret inputs. Importantly, this notion is independent of
cache and predictor models and delivers stronger, more general guarantees that are also
easier to verify.

This work proves that programs are speculative constant-time using a relatively stan-
dard dependency analysis. The soundness proof of the analysis is non-trivial and relies on
a key property of the semantics, which is called secure forward consistency. This shows
that a program is speculative constant-time iff forward executions (rather than arbitrary
speculative executions) do not leak secrets via timing side-channels. The forward execu-
tion forces the processor to halt in case of misspeculation; hence, no semantics backtracks
to restart the execution from the state that produced the wrong result. This result greatly
simplifies the verification of speculative constant-time, drastically reducing the number of
execution paths to be considered. Moreover, with secure forward consistency, code that is
proven functionally correct and provable secure in sequential semantics also enjoys these
properties in speculative semantics.

Speculative safety The semantics in this work assume that unsafe memory accesses,
whether speculatively or not, leak the entire memory µ via an observation unsafe µ. There-
fore, programs that perform unsafe memory accesses cannot be speculative constant-time.
Programs are proved to be speculatively safe, i.e., do not perform illegal memory accesses
for any choice of directives, using a value analysis. The analysis relies on standard ab-
stract interpretation techniques [Cousot and Cousot, 1977], but with some modifications
to reflect speculative semantics.

Jasmin integration The methodology described in this work is integrated into Jas-
min’s framework. Jasmin is extended with a fence instruction. The Jasmin language
is extended to include speculative semantics (backtracking and no backtracking). All
the proofs showing the equivalence between various semantics and the soundness of the
analysis are done on paper and are explained in later sections. The Jasmin language is
extended with a fence instruction. All the checkers, like for memory safety, functional
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correctness, etc., are extended to include speculative semantics and are written in OCaml
(their correctness is proved on paper and explained in the later sections).

5.2 Adversarial semantics
This section presents the language and its adversarial semantics and defines speculative
safety and constant-time.

5.2.1 Language

The language is present in Figure 1.11 and is extended with a fence instruction.

5.2.2 Memory

For sequential semantics, memory consists of the main memory m: A × V → V (maps
addresses (pairs of array names and indices) to values) and a register map ρ: X → V
(map registers to values). A buffered memory is used instead of the main memory to
represent out-of-bound memory operations. A buffered memory adds a write buffer, or
a sequence of delayed writes to the main memory. Every delayed write is of the form
[(a, w) := v], representing a pending write of value v to an array a at an index w. The
buffered memory is of the form [(a1, w1) := v1] . . . [(an, wn) := vn]m, where the sequence
of updates represent the pending writes not yet committed to main memory.

Buffered Memory
Main memory m : A× V → V

Buffered memory µ ::= m | [(a,w) := v]µ

Location access
mL(a,w)Mi = m[(a,w)],⊥ w ∈ [0, |a|]
[(a,w) := v]µL(a,w)M0 = v,⊥ w ∈ [0, |a|]
[(a,w) := v]µL(a,w)Mi+1 = v′,> µL(a,w)Mi = v′,

[(a′, w′) := v]µL(a,w)Mi = µL(a,w)Mi (a′, w′) 6= (a,w)

Flushing Memory
m = m

[(a,w) := v]µ = µ{(a,w) := v}

Figure 5.1 – Formal definitions of buffered memory, location access, and flushing

The memory writes are applied as delayed writes to the write buffer, and memory reads
may look up values in the write buffer instead of the main memory. As the semantics
models the steps taken by the attacker, the memory read or write should also allow the
attacker to read any value from the write buffer or from the main memory of his choice.
Hence, memory reads may not always use the value from the most recent write to the same
address. The adversary can force load instructions to read any compatible values from
the write buffer or even skip the buffer entirely and load from the main memory. Buffered
memory access is denoted as µL(a, w)Mi where array a is being read at offset w, and i is
an integer specifying which entry in the buffered memory to use (0 represents the most
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recent write to that address in the buffer). The access returns the corresponding value
and a flag representing whether the fetched value is correct concerning non-speculative
semantics. If i is 0 the flag is ⊥, signifying that the value is correct; otherwise, the flag
is >. When the program encounters a fence instruction, the write buffer is flushed to the
main memory. Each delayed write is committed to the main memory in order, and the
write buffer is cleared. This operation is represented as µ.

The formal definitions of buffered memories, accessing a location, and flushing the
write buffer are present in Figure 5.1. The notation m[(a, w)] represents memory lookup
and m{(a, w) := v} represents updating the memory with value v.

[(a, 9) := pub; (a, 9) := sec]m

1 fun foo(int sec, int pub) {
2 if (x < 8) {
3 a[x] = sec; Speculatively load secret
4 a[x] = pub; Speculatively load public
5 r = a[x]; Speculatively leaks secret
6 }
7 return r;
8 }

Figure 5.2 – Spectre-PHT attack

The example in the Figure 5.2 presents the function foo, which speculatively leaks
the secret at line 5. The condition x < 8 is bypassed speculatively, and two stores are
performed at lines 3 and 4. These store operations add two delayed writes to the write
buffer, and the attacker can read any value from the write buffer. In line 5, the read can
be performed at secret index (leaking the secret) because the attacker can decide to read
the not recent write but the old one, which stores sec.

5.2.3 States

States are a set of configurations. A configuration is a tuple of the form 〈c, ρ, µ,ms〉,
where c is a command, ρ is a register map, µ is a buffered memory, and ms is a boolean.
The boolean ms represents the misspeculation flag and is > in case of misspeculation and
is ⊥ in case of no misspeculation.

5.2.4 Semantics

The one-step execution of programs is instrumented to add observations (leakages) and
directives: S o−→

d
S ′. o represents the visible observations to the outside world. The set of

observations is defined as follows:

o ∈ Obs ::= • | read a, v, b | write a, v | bool b | bt b | unsafe µ

The • observation means there is no visible observation to the outside world during an
execution. The observation read a, v, b and write a, v represents the memory accesses
leakages. The control-flow leaks the boolean that is represented by bool b. bt b is leaked
during the backtrack semantics that backtracks depending on the boolean b where b is
the value of the misspeculation flag. The unsafe access leaks an observation represented
by unsafe µ where µ is the whole buffered memory.
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The program execution depends on directives d issued by an adversary. The set of
directives is defined as follows:

d ∈ Dir ::= step | force b | load i | backtrack | ustep

The step directive allows execution to proceed normally while the force b directive forces
execution to follow the branch b. The directive load i determines the step taken by the
attacker to read previously stored value from the buffered memory. The backtrack checks if
misspeculation has occurred and backtracks in case of misspeculation. The ustep directive
captures the unsafe memory action.

Instruction semantics:

S →ε
ε S

0-STEP

S
o−→
d
S′ S′

O
�
D n

S′′

S
o::O
�
d::D

S′′
S-STEP

C = 〈x := e; c, µ, ρ,ms〉
C :: S

•−−→
step
〈c, ρ{x← JeKρ}, µ,ms〉 :: S

ASSGN

C = 〈x := e; c, µ, ρ,ms〉 µL(a, JeKρ)Mi = (v,msv)

C :: S
read a,JeKρ,msv−−−−−−−−−→

load i
〈c, ρ{x← JeKρ}, µ,ms ∨msv〉 :: C :: S

LOAD

C = 〈a[e] := e′; c, µ, ρ,ms〉 JeKρ ∈ [0, |a|)

C :: S
write a,JeKρ−−−−−−−→

step
〈c, ρ, [(a, JeKρ) := Je′Kρ]µ,ms〉 :: S

STORE

C = 〈i; c, µ, ρ,ms〉 JeKρ /∈ [0, |a|) i = a[e] := e′ ∨ x := a[e]

C :: S
unsafe µ−−−−−→

ustep
〈c, ρ′, µ′,ms〉 :: S

UNSAFE

C = 〈if t then c> else c⊥; c, µ, ρ,ms〉 b′ = if d = force b then b else JtKρ

C :: S
bool JtKρ−−−−−→

d
〈c′b; c, ρ, µ, b ∨ b′ 6= JtKρ〉 :: C :: S

COND

C = 〈while t do c0; c, µ, ρ,ms〉 c> = c0; while t do c0; c c⊥ = c
b′ = if d = forceb then b else JtKρ

C :: S
bool JtKρ−−−−−→

d
〈c′b; c, ρ, µ, b ∨ b′ 6= JtKρ〉 :: C :: S

WHILE

〈c, ρ, µ,>〉 :: C :: S
bt >−−−−−→

backtrack
C :: S

BTT
〈c, ρ, µ,⊥〉 :: C :: S

bt ⊥−−−−−→
backtrack

〈c, ρ, µ,⊥〉 :: ε
BTF

〈fence; c, ρ, µ,⊥〉 :: S
•−−→

step
〈c, ρ, µ,⊥〉 :: S

FENCE

Figure 5.3 – Instrumented semantics of language with speculation



Speculative safety and Speculative constant-time 93

One-step execution The relation S o−→
d
S ′ means under the directive d; the state S ex-

ecutes in one step to state S ′ and yields leakage o. The rules are present in Figure 5.3. All
rules, except those executing the fence instruction or a backtrack directive, either modify
the top configuration on the stack (assignment and stores) or push a new configuration
onto the stack (instructions that can lead to misspeculation like conditionals, loops, and
load).

The rule ASSGN evaluates the expression e and assigns it to register x. It only updates
the top configuration and does not produce any leakage.

The rule LOAD creates a new configuration in which the buffered memory remains
unchanged, and the register map is updated with a value read from memory. The directive
is load i, indicating that the memory load happens at index i. The leakage is of the form
read a, JeKρ,msv. This rule assumes that the memory access is in bounds.

The rule STORE stores the value at a memory location. It leaks the memory address
(write a, JeKρ) and assumes that the memory access is inbound.

The rule UNSAFE resembles an unsafe memory read or write. The accessed address can
be out of bounds; hence, the whole buffered memory is leaked unsafe µ. This rule is non-
deterministic due to unsafe memory access; therefore, µ′ and ρ′ are non-deterministically
computed.

The rule COND creates a new configuration with the same register map and memory
map as the top configuration of the current state. It updates both the command and
misspeculation flag according to the directive. If the adversary uses the directive force b
with b ∈ {⊥,>}, then the execution proceeds into the corresponding branch (cb). If
the adversary uses the step, the condition is evaluated, and execution enters the correct
branch. The misspeculation flag is updated accordingly depending on the directive chosen
by the attacker. The rule WHILE follows the same pattern.

The rule BTT and BTF defines the semantics of backtrack directives. These directives
can occur at any point during execution. If the execution encounters the backtrack di-
rective and misspeculation flag is >, then the rule BTT pops the top configuration and
restarts execution from the next configuration. It also leaks bt >. If the adversary wants
to backtrack further, they may issue multiple backtrack directives. In the situation where
the execution encounters a backtrack directive, and the misspeculation flag is ⊥, then the
rule BTF clears the stack so that only the top configuration remains. The observation
bt ⊥ is leaked in this case.

The rule FENCE resembles the execution of the fence instruction. The fence instruction
is executed only with step directive if the misspeculation flag is ⊥ (no prior misspecula-
tion). After executing a fence instruction, all pending writes in µ are flushed to memory,
resulting in the updated memory µ.

Multi-step execution The multi-step execution is represented using the relation S
O
�
D

S ′. The rules 0-STEP and S-STEP represent the multi-step execution and present in Fig-
ure 5.3.

5.3 Speculative safety and Speculative constant-time

This section presents the formal definition of speculative safety and speculative constant
time.
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Speculative safety Speculative safety states that executing a command, even specu-
latively, should not lead to illegal memory access.

Definition 6 (Speculative safety).

• An execution S
O
�
D

S ′ is safe if S ′ is not of the form 〈i; c, ρ, µ,ms〉 :: S0, with
i = x := a[e] or i = a[e] := e′, and JeKρ /∈ [0, |a|).

• A state S is safe iff every execution S
O
�
D
S ′ is safe.

• A command c is safe, written c ∈ safe iff every initial state 〈c, ρ, µ,ms〉 :: ε is safe.

Speculative constant-time Speculative constant-time states that if we execute a com-
mand from two initial states that do not differ on their public data, we should not be able
to distinguish between the sequence of visible observations (provided that the executions
can be speculative).

Definition 7 (Speculative constant-time). Let φ be an indistinguishable relation on reg-
ister maps and memories stating that all variables with public data in register maps and
memories are equal. A command c is speculatively constant-time w.r.t. φ, written c ∈
φ− SCT , iff for every two executions 〈c, ρ1,m1,⊥〉 :: ε

O1

�
D
S1 and 〈c, ρ2,m2,⊥〉 :: ε

O2

�
D
S2

such that (ρ1,m1) φ (ρ2,m2) we have O1 = O2.

5.4 Consistency
The adversarial semantics is called sequentially consistent if it coincides with the standard
semantics of programs. From the set of directives {load i, step, force b, backtrack, ustep},
subset of directives can be derived. They are defined as follows:

• S = {load 0, step} : sequential directives

• F = {load i, step, force b} : forward directives

• L = {load i, step, force b, backtrack} : legal directives

Three different fragments of the semantics can be defined using these directives and are
represented using the relation S

O
�X
D

S ′, where X is the subset of directives. X can be

S, F , or L. The definitions of safe and φ − SCT can also be adapted to the subset of
directives and are represented as safeX and φ− SCTX

5.4.1 Equivalence relation between configurations

A configuration equivalence relation is defined using the relation ≡

Definition 8 (Configuration equivalence). Two configurations C1 (〈c1, ρ1,m1,ms1〉) and
C2 (〈c2, ρ2,m2,ms2〉) are equivalent if c1 = c2 and ms1 = ms2.

Theorem 7 (Configuration equivalence after one-step in forward semantics). If C1
O→F
D

C ′1

and C2
O→F
D

C ′2 and C1 ≡ C2 then C ′1 ≡ C ′2.
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Proof. Assume C1 = 〈c, ρ1,m1,ms〉 and C2 = 〈c, ρ2,m2,ms〉. The proof follows by doing
a case analysis on the first instruction in c. The reasoning involves only forward directives
({load i, step, force b}).

• x := e, a[e] := e′ or fence: The assignment, store, and fence instructions do not
update the misspeculation flag and semantics is deterministic under the same set of
directives. Hence, it is trivial that C ′1 ≡ C ′2.

• x := a[e]: The load instruction uses the same directive in both the execution and
also generates the same leakage o. ms is updated according to memory access done
at index JeKρ. Since the directive is the same in both executions, the misspeculation
flag obtained during loading data from the buffered memory is also the same. This
makes the misspeculation flag in C ′1 and C ′2 equal as they are computed using the
same value. Hence, it is concluded that C ′1 ≡ C ′2.

• if t then c1 else c2 or while t do c: The conditional and loop instructions use the
same directive in both the execution and produce the same leakages o that suffices
to show that JtKρ1 = JtKρ2 . The same directive in both executions suffices to show
that the misspeculation flag is updated in a similar manner in both executions as it
depends on the directive taken (force or step). An equal directive in both executions
also shows that the new state will have the same command. Hence, it is concluded
that C ′1 ≡ C ′2.

Theorem 8 (Configuration equivalence after multi-step in forward semantics). If C1

O
�F
D

C ′1 and C1

O
�F
D

C ′2 and C1 ≡ C2 then C ′1 ≡ C ′2.

Proof. The proof follows by doing induction on D.

• D = []: This case is trivial.

• D 6= []: This case is proved using the theorem 7 for one step and induction hypothesis
for the rest of the steps.

Theorem 9 (Legal to forward execution). If 〈c, ρ1,m1,⊥〉 :: ε
O
�L
D

C1 :: S1 and 〈c, ρ2,m2,⊥〉 ::

ε
O
�L
D

C2 :: S2 and 〈c, ρ1,m1,⊥〉 ≡ 〈c, ρ2,m2,⊥〉 then there exists D′ and O′ such that

〈c, ρ1,m1,⊥〉 :: ε
O′

�F
D′

C1 :: S1 and 〈c, ρ2,m2,⊥〉 :: ε
O′

�F
D′

C2 :: S2.

Proof. The proof follows by doing induction on D.

• D = []: This case is trivial.

• D = D1 :: d: For this case there exists O1 and o such that

〈c, ρ1,m1,⊥〉 :: ε
O1

�L
D1

C ′1 :: S ′1
o→L
d
C1 :: S1

〈c, ρ2,m2,⊥〉 :: ε
O1

�L
D1

C ′2 :: S ′2
o→L
d
C2 :: S2
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The induction hypothesis consists of the first n − 1 steps. From the induction

hypothesis, we can conclude that 〈c, ρ1,m1,⊥〉 :: ε
O′

1

�F
D′

1

C ′1 :: S ′1 and 〈c, ρ2,m2,⊥〉 ::

ε
O′

1

�F
D′

1

C ′2 :: S ′2. Now focusing on the last step corresponding to o and d. The proof

follows by doing a case analysis on d:

– d 6= backtrack: The case where d is not a backtrack directive, the proof is
trivial as the directive d will also exist in the directive set F .

– d = backtrack: From theorem 8 applied to 〈c, ρ1,m1,⊥〉 :: ε
O1

�F
D1

C ′1 :: S ′1,

〈c, ρ2,m2,⊥〉 :: ε
O1

�F
D1

C ′2 :: S ′2 and the hypothesis 〈c, ρ1,m1,⊥〉 ≡ 〈c, ρ2,m2,⊥〉,

we know that C ′1 :: S ′1 ≡ C ′2 :: S ′2. From the definition of ≡ present in 8, we
know that commands and misspeculation flags of C ′1 and C ′2 are equal. Since
the misspeculation flags are same in both the configuration C ′1 and C ′2, the
semantics rule C ′1 :: S ′1

o→L
d

C1 :: S1 and C ′2 :: S ′2
o→L
d

C2 :: S2 can use BTT or

BTF in both the executions.

∗ BTF rule: In this case we know that C1 = C ′1 and C2 = C ′2, hence
concluded.

∗ BTT rule: In this case, the semantics backtrack to C ′1 and C ′2. The proof
follows in this case by doing induction on D′1.

· D′1 = []: This case is not possible as we know that there exists
another step next to it that uses BTT rule.

· D′1 = D′′1 :: d′′1: There are various cases to analyze based on d′′1.
1. case 1: When d′′1 corresponds to assignment, store, or fence se-

mantics, the misspeculation flag is set to true before this step
because these instructions do not update the misspeculation flag.
Hence, it is proved by the induction hypothesis that there already
exists such execution in the forward semantics.

2. case 2: When d′′1 corresponds to fence instruction, this case is not
possible as fence instruction requires the misspeculation flag to
be false, but it is true.

3. case 3: When d′′1 corresponds to load, cond, or while semantics,
the misspeculation flag can be updated to true depending on the
speculative load or forced branching. According to the semantics
of these instructions, the updated configuration is pushed on the
top of the stack, and in case of encountering backtrack, the top
configuration is popped that is already present in the forward
semantics. Hence concluded.

5.4.2 Sequential consistency

This section shows that the adversarial semantics is equivalent to the sequential semantics
of commands. Sequential semantics does not allow misspeculation. The directive set S
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does not use force b or backtrack or ustep directives. It only uses the top configuration,
always loads the correct value from the memory, and does not modify the misspeculation
flag. The sequential semantics is represented as 〈c, ρ, µ,⊥〉 :: S

O
�S
D
〈c′, ρ′, µ′,⊥〉 :: S ′. For

readability, it is represented as 〈c, ρ, µ〉
O
�S
D
〈c′, ρ′, µ′〉 because sequential semantics does

not update the misspeculation flag and the configurations in S. The sequential consistency
can be achieved because any command that is functionally correct under the sequential
semantics will be also functionally correct under the adversarial semantics.

Theorem 10 (Sequential consistency). If 〈c, ρ,m,⊥〉 :: ε
O1

�
D
〈[], ρ′, µ,⊥〉 :: S then there

exists O2 such that 〈c, ρ,m〉
O2

�S 〈[], ρ′, µ〉.

Proof. According to the definition of �S , we need to consider only the executions, which
do not involve backtrack, force b and ustep directives but only uses the directive in the set
S. The proof follows by doing case analysis on c and is very trivial because the execution
does not consider any misspeculation.

The above theorem shows that any functionally correct under the sequential semantics
command is also functionally correct under the adversarial semantics.

5.4.3 Secure forward consistency

Proving properties about semantics with speculation is more complex than establishing
them for sequential semantics because there are more execution paths to be considered.
Also, the execution may backtrack at any point, making verifying speculative safety and
constant-time more complex. This section shows a way to reason about speculative se-
mantics by only considering the semantics with directives present in set F . The directive
set F is enough to reason about speculative safety and speculative constant-time for
executions with backtracking.

Theorem 11 (Safe legal to forward consistency). A command c is safeL iff c is safeF .

Proof. The formal definition of safe is present in 6, and safeF is the same definition
applied to the directive set F . There are two goals to prove:

• c ∈ safeL =⇒ c ∈ safeF : In this case, the goal is to prove that for all ρ, m and C
if 〈c, ρ,m,⊥〉

O
�F
D

C then C is a safe configuration. We know from the assumption

that c is safeL, which shows 〈c, ρ,m,⊥〉 is safe, 〈c, ρ,m,⊥〉
O
�L
D

C is a safe execution

and resultant command C is also safe. This suffices to show that c will never use
the UNSAFE rule. Since c cannot execute using the UNSAFE rule, the execution of c
will always produce a safe command.

• c ∈ safeF =⇒ c ∈ safeL: In this case, the goal is to prove that for all ρ, m and
C, if 〈c, ρ,m,⊥〉

O
�L
D

C then C is a safe configuration. We know that 〈c, ρ,m,⊥〉

≡ 〈c, ρ,m,⊥〉 by reflexivity. Applying the theorem 9 twice on 〈c, ρ,m,⊥〉
O
�L
D

C

and 〈c, ρ,m,⊥〉 ≡ 〈c, ρ,m,⊥〉, we know that there exists D′ and O′ such that
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〈c, ρ,m,⊥〉
O′

�F
D′

C. Also by assumption we know that C is a safe configuration

and c ∈ safeF . Since C is a safe configuration, we can conclude c ∈ safeL because
C is obtained by evaluating the command c, and an unsafe command cannot lead
to a safe configuration.

Theorem 12 (Safe legal consistency). A command c is safe iff it is safeL.

Proof. There are two goals to prove: (i) c ∈ safe =⇒ c ∈ safeL. (ii) c ∈ safeL =⇒
c ∈ safe.

• c ∈ safe =⇒ c ∈ safeL: From the assumption, we know that c is safe; hence it
will lead to a configuration C which will be a safe configuration. Since c is safe, it
will never use the UNSAFE rule. Hence concluded that c ∈ safeL.

• c ∈ safeL =⇒ c ∈ safe: We need to show that forall ρ, m and C, if 〈c, ρ,m,⊥〉 ::

ε
O
�
D
C :: S then C is a safe configuration. From the assumption, we know that c

∈ safeL which means it never uses the UNSAFE rule. Since it never uses UNSAFE

rule, it can never lead to unsafe configuration; hence, C is a safe configuration that
suffices to show that c ∈ safe.

Theorem 13 (Safe forward consistency). A command c is safe iff it is safeF .

Proof. There are two goals to prove: (i) c ∈ safe =⇒ c ∈ safeF . (ii) c ∈ safeF =⇒
c ∈ safe.

• c ∈ safe =⇒ c ∈ safeF : Applying the theorem 12 to the hypothesis c ∈ safe,
we know that c ∈ safeL. Applying the theorem 11 to the result of theorem 12 i.e.,
c ∈ safeL, we conclude that c ∈ safeF .

• c ∈ safeF =⇒ c ∈ safe: Applying the theorem 11 to the hypothesis c ∈ safeF ,
we know that c ∈ safeL. Applying the theorem 12 to the result of the theorem 11
i.e., c ∈ safeL, we conclude that c ∈ safe.

Theorem 14 (Secure forward consistency). For any speculative safe command c, c is
φ− SCT iff c is φ− SCTF .

Proof. By contraposition, we will prove if c is not φ − SCT then c is not φ − SCTF .
From the assumption, we know that c is a speculative safe command; hence, it suffices to
replace the statement “c is not φ − SCT" with “c is not φ − SCTL" because speculative
safe command c will never execute using ustep directive. c /∈ φ − SCTL implies there
exists two derivations such that:

• (ρ1,m1)φ(ρ2,m2)

• 〈c, ρ1,m1,⊥〉 :: ε
O
�L
D

C ′1 :: S ′1
o1→L
d
C1 :: S1
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• 〈c, ρ2,m2,⊥〉 :: ε
O
�L
D

C ′2 :: S ′2
o2→L
d
C2 :: S2

• o1 6= o2

By theorem 9, there existsD′ andO′ such that: 〈c, ρ1,m1,⊥〉 :: ε
O′

�F
D′

C ′1 and 〈c, ρ2,m2,⊥〉 ::

ε
O′

�F
D′

C ′2. Now, the proof follows by doing a case analysis on d.

• d 6= backtrack: From assumption we know that o1 6= o2. Hence for the whole

execution 〈c, ρ1,m1,⊥〉 :: ε
O′::o1
�F
D′

C1 :: S1 and 〈c, ρ2,m2,⊥〉 :: ε
O′::o2
�F
D′

C2 :: S2, we can

conclude O′ :: o1 6= O′ :: o2.

• d = backtrack: From the theorem 8 applied to 〈c, ρ1,m1,⊥〉 :: ε
O

�F
D

C ′1 and

〈c, ρ2,m2,⊥〉 :: ε
O′

�F
D′

C ′2, we know that C ′1 ≡ C ′2 that means the misspeculation

flag of C ′1 and C ′2 are equal. It also suffices to show that the leakages o1 and o2

during the two execution will be the same (either bt ⊥ or bt >) as the directive is
a backtrack directive. Hence, this contradicts our assumption o1 6= o2.

{I} c {O} I ⊆ I ′ O′ ⊆ O

{I ′} c {O′}
[SCT-Conseq]

{O} fence {O}
[SCT-Fence]

O \ {x} ⊆ I x ∈ O =⇒ fv(e) ⊆ I

{I} x := e {O}
[SCT-Assign]

(O \ {x}) ∪ fv(i) ⊆ I x ∈ O =⇒ a ∈ I
{I} x := a[i] {O}

[SCT-Load]

O ∪ fv(i) ⊆ I a ∈ O =⇒ fv(e) ⊆ I

{I} a[i] := e {O}
[SCT-Store]

{I} c1 {O} {I} c2 {O} fv(e) ⊆ I

{I} if e then c1 else c2 {O}
[SCT-Cond]

{O} c {O} fv(e) ⊆ O

{O} while e do c {O}
[SCT-While]

{O} [] {O}
[SCT-Empty]

{X} c {O} {I} i {X}
{I} i; c {O}

[SCT-Seq]

Figure 5.4 – Proof system for speculative constant-time.
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5.5 Verification of speculative safety and speculative
constant-time

This section overviews the verification methods for speculative safety and speculative
constant-time. The speculative constant-time analysis is a fully automated analysis and
is presented using a declarative style by means of a proof system.

5.5.1 Speculative safety

The speculative safety checker developed in this work is based on abstract interpreta-
tion techniques [Cousot and Cousot, 1977]. The checker executes programs by soundly
over-approximating the semantics of every instruction. Sound transformations of the ab-
stract state must be designed for every instruction of the language. The program is then
abstractly executed using these sound abstract transformations.

The checker differs from the Jasmin safety analyzer. It modifies the abstract semantics
of conditional and memory operations to include speculative semantics. For example,
when entering the then branch of an if statement, the condition of the if is not assumed
to hold always. This modification supports the adversary’s behavior (soundly accounting
for misspeculation). Only weak updates are performed on values stored in memory to
resemble the delay in memory writes. For example, a memory store a[i] := e will update
the possible value of a[i] to any possible value (the abstract evaluation) of e or any possible
old value of a[i]. This soundly reflects the adversary’s ability to pick stale values from the
write buffer.

To model fences, the analyzer computes simultaneously a pair of abstract values
(Astd#,Aspec#), where Astd# follows the non-speculative semantics, while Aspec# follows
the speculative semantics. On the execution of fence, the speculative abstract value is
replaced by the standard abstract value.

The goal of the analysis is to check that there are no memory safety violations through-
out the execution of the program (carried out on abstract values). The soundness of the
abstraction mechanism suffices to show that a safe program under abstract semantics
entails safety under concrete (speculative) semantics.

5.5.2 Speculative constant-time

The speculative constant-time analysis manipulates a judgment of the form {I} c {O},
where I and O are sets of variables (registers and arrays) and c is a command. Informally,
it ensures that if two executions of c start on equivalent states w.r.t I, then the resulting
states are equivalent w.r.t. O, and the generated leakages are equal. The methodology
is based on dependency analysis that produces constraints based on the executions of
commands. The dependency analysis is a bit different from the analysis done for constant-
time property as it needs to define equivalence relation, considering the speculation.

The proof rules are present in Figure 5.4. The rule [SCT-CONSEQ] is the rule for the
consequence that says that we can use the subset relation of input and output variables
to reason about the bigger set of variables.

The rule [SCT-FENCE] states that equivalence w.r.t O is preserved by executing a
[fence] instruction. The semantics of the [fence] instruction ensures that the buffer
memory is flushed to the main memory; hence, the declarative rule is the direct conse-
quence of it.
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The rule [SCT-ASSGN] requires that O \ {x} ⊆ I. This guarantees that equivalence
on all arrays and registers in O except x already holds prior to this execution. It also
requires that if x ∈ O, then fv(e) ⊆ I where fv(e) are the free variables of e. This inclusion
ensures that evaluations of e will be the same in both executions, giving equal values for
x as well.

The rule [SCT-Load] also requires thatO\{x} ⊆ I. Additionally, it requires fv(i) ⊆ I,
which resembles the memory access does not leak. Finally, it requires that if x ∈ O, then
a ∈ I. The latter enforces that the buffered memories coincide on a, and the same values
are stored in x.

The rule [SCT-Store] requires that O ⊆ I and fv(i) ⊆ I. The first inclusion guar-
antees that equivalence on all arrays in O and on all registers in O already holds before
executing the store. The second inclusion guarantees that both execution of the index i
will be equal, i.e., that the access does not leak. Moreover, it requires that if a ∈ O, then
fv(e) ⊆ I. This ensures that both evaluations of e give equal values so that (together with
fv(i) ⊆ I) equivalence of buffered memories is preserved.

The rule [SCT-Cond] requires that fv(e) ⊆ I (so that the conditions in the two
executions are equal) and that the judgments {I} ci {O} hold for i = 1, 2. The rule
[SCT-While] requires that fv(e) ⊆ O and O is an invariant, i.e. the loop body preserves
O-equivalence.

5.5.3 Soundness of the declarative judgment for Speculative constant-
time

Definition 9 (Equivalence ≈). Equivalence between the states must satisfy the following:

• Two register maps ρ1 and ρ2 are equivalent w.r.t O, written as ρ1 ≈o ρ2, iff ρ1[x] =
ρ2[x] for all x ∈ X ∩O.

• Two buffered memories µ1 and µ2 are equivalent w.r.t O, written as µ1 ≈o µ2 is
derivable from the rules

∀a ∈ A ∩O, ∀v ∈ [0, |a|),m1[a, v] = m2[a, v]

m1 ≈O m2

µ1 ≈O µ2 a ∈ O ⇒ v1 = v2

[(a,w) := v1]µ1 ≈O [(a,w) := v2]µ2 .

• The relation ≈O is defined by the clause ρ1, µ1 ≈O ρ2, µ2 iff ρ1 ≈O ρ2 and µ1 ≈O µ2.

Theorem 15. If µ1 ≈X µ2 then µ1 ≈X µ2.

Theorem 16. If ρ1 ≈X ρ2 and fv(e) ⊆ X then JeKρ1 = JeKρ2.

Theorem 17 (Subject Reduction). Let C1 = 〈i; c, ρ1, µ1, b〉 and C2 = 〈i; c, ρ2, µ2, b〉. If
the following holds

• {I} i {X} and {X} c {O}

• C1 ≈I C2

• C1
o1→F
d
C ′1 and C2

o2→F
d
C ′2
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where C ′1 = 〈c′, ρ′1, µ′1, b′〉, then there exists I ′ such that {I ′} c′ {O} and C ′1 ≈I′ C ′2 and
o1 = o2.

Proof. The proof proceeds by doing induction on {I} i {X}. There are various sub-goals
to prove depending on the set of rules defined in Figure 5.4.

• [SCT-Conseq]: there exists I1 and X1 such that {I1} i {X1}, I1 ⊆ I ′ and X ⊆ X1.
We can trivially conclude using the induction hypothesis on {I1} i {X1}, notice that
we have {X1} c {O}.

• [SCT-Fence]: we have I = X and C1
o1→F
d
C ′1 and C2

o2→F
d
C ′2 necessarily correspond

to an application of the rule [Fence] (so o1 = o2 = •). We conclude using I ′ = X
and by applying Proposition 15.

• [SCT-Assign]: we have i = x := e, X \ {x} ⊆ I and x ∈ X =⇒ fv(e) ⊆ I.
C1

o1→F
d
C ′1 and C2

o2→F
d
C ′2 correspond to the rule [Assign], so

C ′j = 〈c, ρj{x := JeKρj}, µj, bj〉

and o1 = o2 = •. ρ1 ≈I ρ2 and conditions X \ {x} ⊆ I and x ∈ X =⇒ fv(e) ⊆ I
implies ρ1{x := JeKρ1} ≈X ρ2{x := JeKρ2}. This allows to conclude using I ′ = X.

• [SCT-Load]: we have i = x := a[e] and (X\{x})∪fv(e) ⊆ I and x ∈ X =⇒ a ∈ I.
C1

o1→F
d
C ′1 and C2

o2→F
d
C ′2 correspond to the rule [Load], so

d = load(i,)
µjL((a, , )JeKρj)Mi = (vj, b

j
v)

C ′j = 〈c, ρj{x := vj}, µj, bj ∨ bjv〉
oj = read a, JeKρj, bjv

ρ1 ≈I ρ2 and fv(e) ⊆ I implies JeKρ1 = JeKρ2 . µ1 ≈I µ2 implies b1
v = b2

v and so o1 = o2.
Furthermore if x ∈ X we have a ∈ I and so v1 = v2 and ρ1{x := v1} ≈X ρ2{x := v2}.
We conclude using I ′ = X.

• [SCT-Store]: we have i = a[e] := e′ and X ∪ fv(e) ⊆ I and a ∈ X =⇒ fv(e′) ⊆ I.
Both evaluations use the [Store] rule, so

C ′j = 〈c, ρj, [(a, JeKρρj) := Je′Kρj ]µj, bj〉
oj = write a, JeKρj

fv(e) ⊆ I implies JeKρ1 = JeKρ2 , so o1 = o2. Furthermore, we prove that

[(a, JeKρ1) := Je′Kρ1 ]µ1 ≈X [(a, JeKρ2) := Je′Kρ2 ]µ2

and we can conclude using I ′ = X.

• [SCT-Cond]: we have i = if e then c> else c⊥ and {I} c> {X}, {I} c⊥ {X}, and
fv(e) ⊆ I. Both evaluations use the [Cond] rule with d, so we have

C ′j = 〈cb′ ; c, ρj, µj, bj ∨ b′j 6= JeKρj〉
oj = branch JeKρj

fv(e) ⊆ I implies JeKρ1 = JeKρ2 which concludes b′1 = b′2 and o1 = o2. Remark that
{I} c>; c {O} and {I} c⊥; c {O} are derivable. So, we conclude using I ′ = I.
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• [SCT-While]: We have I = X. This case is similar to the previous one; the key
point is to show that {I} c0; while e do c0; c {O}.

Theorem 18 (Forward Soundess). Let C1 = 〈c, ρ1, µ1, b〉 and C2 = 〈c, ρ2, µ2, b〉. If the
following holds

• {I} c {O}

• C1 ≈I C2

• C1

O1

�F
D

C ′1 and C2

O2

�F
D

C ′2

where C ′1 = 〈c′, ρ′1, µ′1, b′〉, then there exists I ′ such that {I ′} c′ {O} and C ′1 ≈I′ C ′2 and
O1 = O2.

Proof. By induction on D, using theorem 17. The base case D = φ is trivially proved by
taking I = I ′.

Theorem 19 (Soundness). If c is speculative safe and {I} c {∅} is derivable then c ∈
≈I-SCT.

Proof. The proof is a direct consequence of theorem 18.

5.6 Integration into the Jasmin compiler
As discussed in Chapter 1, the Jasmin compiler consists of several compiler passes. The
Chapter 2 shows that the Jasmin compiler preserves the constant-time property, but we
cannot guarantee this for the Jasmin programs that can speculate. The problem lies with
the stack sharing compiler pass. The stack sharing compiler passes try to reduce the
stack size by merging different stack variables. This transformation can create Spectre-
STL vulnerabilities. Here are two examples showing the possibilities of vulnerabilities.

1 a[0] = s; store secret value
2 . . .
3 b[0] = p; store public value at a diff location
4 x = b[0]; can only load public value p
5 y = c[x]; secret independent memory access

1 a[0] = s; store secret value
2 . . .
3 a[0] = p; store public value at same location
4 x = a[0]; can speculatevily load secret s
5 y = c[x]; secret dependent memory access

Figure 5.5 – Example program: before and after stack sharing

Figure 5.5 presents two programs; on the left is the program before the stack sharing,
and on the right is the program after the stack sharing. The variable s is of type secret,
and the variable p is of type public. In the program on the left, the memory access c[x]
leaks no information related to secret data because x is assigned the value p, which is
public.

If the array a is dead after line 2, then the stack-sharing transformation preserves the
semantics of programs, leading to the transformed program on the right. Due to stack
sharing transformation, the arrays a and b from the program on the left now share the
array a. Now, the program can speculatively reach to the secret data in the last line c[x].
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One solution is to modify this pass to restrict the merging of stack variables, i.e., by
requiring that only stack variables isolated by a fence instruction are merged. Unfortu-
nately, this solution incurs a significant performance cost and is not aligned with Jasmin’s
philosophy of keeping the compiler predictable. Instead, in this work, Jasmin is modified
to check speculative safety and speculative constant-time after stack sharing. This will
prevent any insecure variable merging.

After stack sharing passes, each stack variable corresponds to exactly one stack po-
sition. As a result, the remaining compiler passes in Jasmin all preserve speculative
constant-time and safety. Lowering replaces high-level Jasmin instructions with low-level
assembly equivalent instructions. The only new variables that may be introduced are
register variables, mainly boolean flags, so there is no issue. The register allocation re-
names register variables to actual register names. This pass leaves stack variables and
the leakages untouched. The deadcode compiler pass does not exploit the branch condi-
tion, leaving the program’s speculative semantics untouched. The stack allocation pass
maps stack variables to stack positions. Since each stack variable corresponds to ex-
actly one stack position after stack sharing, there is no further issue. In stack allocation,
new leakages are introduced due to transforming the stack variables into memory loads,
but we have already proved the leakages are preserved by this pass in chapter 2. Then,
linearization removes structured control-flow instructions and replaces them with jumps
that preserve leakages in a direct way. The final pass is assembly generation, which also
preserves leakage.

5.6.1 Integration into the Jasmin workflow

The typical workflow for Jasmin verification is to establish functional correctness, safety,
provable security, and timing side-channel protection of Jasmin implementations and then
derive the same guarantees for the generated assembly programs. By theorem 10, there
exists a sequential semantics for every semantics with speculation. We know that the
properties need to be established only for the sequential semantics of the source as it will
also be carried to the speculative semantics of the source. Arguing that the guarantees
extend to the speculative semantics of assembly programs requires a bit more work. First,
we need to define the adversarial semantics of assembly programs and prove that the
assembly-level counterpart of theorem 10. Since the Jasmin compiler is proved to be
functionally correct for the sequential semantics and together with theorem 10, it entails
that the Jasmin compiler is also correct for the speculative semantics. This, in turn,
suffices to obtain the guarantees for the speculative semantics of assembly programs.

The proofs of functional correctness and provable security can simply use the ex-
isting poof infrastructure, based on the interpretation of Jasmin programs to Easy-
Crypt [Barthe et al., 2011a] [Barthe et al., 2014b]. Proving functional correctness and
provable security of new (speculative secure) implementations can be significantly simpli-
fied when verified implementations already exist with proofs of functional correctness and
provable security for the sequential semantics. Specifically, it suffices to show functional
equivalence between the two implementations.

5.7 Evaluation

The evaluation of the approach described in this chapter answers two questions:
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• How much development and verification effort is required to harden implementations
to be speculatively constant-time?

• What is the runtime performance overhead of code that is speculatively constant-
time?

The answers to these questions are based on benchmarking the Jasmin implementations
of ChaCha20 and Poly1305.

5.7.1 Methodology

Benchmarks The baselines for benchmarks are Jasmin-generated/verified assembly im-
plementations of ChaCha20 and Poly1305 developed by Almeida et al. [Almeida et al., 2020].
Each primitive has a scalar implementation and an AVX2-vectorized implementation.
The scalar implementations are platform-agnostic but slower. Conversely, the AVX2 im-
plementations are platform-specific but faster, taking advantage of Intel’s AVX2 vector
instructions that operate on multiple values simultaneously. All of these implementa-
tions have mechanized proofs of functional correctness, memory safety, and constant-time,
and have performance competitive with the fast, widely deployed (but unverified) imple-
mentations from OpenSSL [Openssl, 2013]—it includes the scalar and AVX2-vectorized
implementations of ChaCha20 and Poly1305 from OpenSSL in benchmarks to serve as
reference points.

Experimental setup Experiments are conducted on one core of an Intel Core i7-8565U
CPU clocked at 1.8GHz with hyperthreading and TurboBoost disabled. The CPU is
running microcode version 0x9a, i.e., without the transient-execution-attack mitigations
introduced with update 0xd6. The machine has 16 GB of RAM and runs Arch Linux with
kernel version 5.7.12. We collect measurements using the benchmarking infrastructure
offered by SUPERCOP [Bernstein and Lange, 2009].

Benchmarks are collected on an otherwise idle system. As the cost for LFENCE
instructions typically increases on busy systems with large cache-miss rate, the relative
cost for the countermeasures reported should be considered a lower bound.

5.7.2 Developer and verification effort

For ensuring that the Jasmin source code is speculative constant-time, two different meth-
ods are used in practice. First, use of a fence-only approach, where the fence is added
after every conditional in the program. In particular, this requires a fence at the begin-
ning of the body of every while loop. This approach has the advantage of being simple
and trivially leaves the non-speculative semantics of the program unchanged, leading to
simpler functional correctness proofs. However, using the fence method sometimes leads
to a large performance penalty. We also examined another, more subtle approach using
conditional moves (movcc) instructions: In certain cases, it is possible to replace a fence
with a few conditional move instructions, which can reset the program’s state to safe
values whenever misspeculation occurs. This recovers the lost performance but requires
marginally more functional, correctness-proof effort.
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1 while(inlen >= 16){
2 h = load add(h, in);
3 h = mulmod(h, r);
4 in += 16;
5 inlen -= 16;
6 }

1 while(inlen >= 16){
2 #LFENCE;
3 h = load add(h, in);
4 h = mulmod(h, r);
5 in += 16;
6 inlen -= 16;
7 }

1 stack u64 s in;
2 s in = in;
3 if (inlen >= 16) {
4 #LFENCE;
5 while{
6 in = s in
7 if inlen < 16;
8 inlen = 16
9 if inlen < 16;

10 h = load add(h, in);
11 h = mulmod(h, r);
12 in += 16;
13 inlen -= 16;
14 } (inlen >= 16)
15 }

Figure 5.6 – Speculative safety violation in Poly1305 (top-left) and countermeasures
(bottom-left and right). By convention, inlen is a 64-bit register variable.

Speculative safety Most of the development effort for protecting implementations is
in fixing speculative safety issues. This section presents some examples in Figure 5.6 to
illustrate the changes required to prove speculative safety. Top-left in Figure 5.6 presents
the main loop of the Poly1305 scalar implementation. Initially, the pointer in points to
the beginning of the input (to be authenticated), and inlen is the message length. At each
iteration of the loop, a block of 16 bytes of the input is read using load add(h, in), the
message authentication code h is updated by mulmod(h, r), and finally the input pointer
in is increased so that it points to the next block of 16 bytes, and inlen is decreased by 16.

While this code is safe under sequential semantics, it is unsafe under adversarial se-
mantics. If the condition of while loop is misspeculated, then the loop will execute the
body even when the guard is unsatisfied. Misspeculation might cause a buffer overflow on
the input. More precisely, if we misspeculate k times, then we overflow by 16.(k − 1) + 1
to 16.k bytes.

The program on the bottom-left and right-side of Figure 5.6 presents two different
countermeasures to give protection against speculative overflow. The fence-based coun-
termeasure (bottom-left) adds a fence instruction at the beginning of each loop iteration
to ensure that the loop condition has been correctly evaluated. The program in the right
of Figure 5.6 first stores the initial value of the input pointer in the stack variable s in. The
fence at the beginning of the if statement ensures that the store to the s in is correctly
performed when entering the loop. The costly fence is replaced by conditional moves,
which resets the pointer and length to safe values if misspeculated. The if instruction
ensures safety by checking that the inlen is at least 16, even for misspeculating execution.

Speculative constant-time We found that, after addressing speculative safety, there
was relatively little additional work needed to achieve speculative constant-time, aside
from occasional fixes necessary to address stack sharing issues (see Section 5.6). This is
perhaps not surprising, since the speculative constant-time checker differs little from the
classic constant-time checker. Stack-sharing issues showed up just once throughout our
case studies in the scalar implementation of ChaCha20, and only required a simple code
fix to prevent the offending stack share.
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Functional correctness and provable security The functional correctness of the
implementations is proved by equivalence checking with the implementations present in
the paper [Almeida et al., 2020], for which functional correctness is already established.
The equivalence proofs are mostly automatic, except for the proof of the movcc version
of Poly1305, which requires providing a simple invariant.

5.7.3 Performance overhead
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Figure 5.7 – ChaCha20 benchmarks, scalar and AVX2. Lower numbers are better.
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Figure 5.8 – Poly1305 benchmarks, scalar and AVX2. Lower numbers are better.

Figures 5.7 and 5.8 show the benchmarking results for ChaCha20 and Poly1305, respec-
tively. They report the median cycles per byte for processing messages ranging in length
from 32 to 16384 bytes.

For both the scalar and AVX2 implementations of ChaCha20, the movcc method
resulted in nearly identical performance as the fence method, so we only report on the
latter. For the ChaCha20 scalar implementations, the baseline Jasmin implementation
enjoys performance competitive with OpenSSL, even slightly beating it. As expected, the
SCT implementation is slightly slower across all message lengths, with the gaps being more
prominent at the smaller message lengths. For the ChaCha20 AVX2 implementations, all
implementations, whether SCT or not, enjoy a similar performance at the mid to larger
message lengths. For small messages, however, the baseline Jasmin implementation is the
fastest, while the other implementations trade positions in the range of small message
lengths.

For the Poly1305 scalar implementations, the baseline Jasmin implementation outper-
forms OpenSSL across all message lengths, with the gaps being more prominent at the
smaller message lengths. The Jasmin-SCT-movcc implementation enjoys performance



108 High-Assurance Cryptography in the Spectre Era

competitive with OpenSSL. The Jasmin-SCT-fence implementation, however, is consid-
erably slower than the rest. For Poly1305 AVX2 implementations, the baseline Jasmin
implementation outperforms OpenSSL and Jasmin-SCT-movcc, which are comparable at
the smaller message lengths, but enjoy a similar performance at the mid to larger message
lengths. Again, the Jasmin-SCT-fence implementation is considerably slower, but the gap
is less apparent than in the scalar case.

Overall, the performance overhead of making code SCT is relatively modest. Inter-
estingly, platform-specific, vectorized implementations are easier to protect due to the
availability of additional general-purpose registers, leading to fewer (potentially danger-
ous) memory accesses. Consequently, SCT vectorized implementations incur less overhead
than their platform-agnostic, scalar counterparts. Moreover, the best method for protect-
ing code while preserving efficiency varies by implementation. For ChaCha20, the movcc
and fence methods fared similarly. For Poly1305, the movcc method performed signifi-
cantly better.

5.8 Discussion

This section discusses limitations, generalization, complementary problems, and compar-
ison with other approaches.

5.8.1 Machine-checked guarantees

The adversarial semantics is not mechanized and hence is not formally verified for correct-
ness. In contrast to this, the sequential semantics is mechanized and proved for its cor-
rectness using the Coq proof assistant. Formalization of adversarial semantics is required
to provide machine-checked proofs for all the theorems defined in the above sections.

The constant-time property involves sequential semantics, and its preservation is also
machine-checked, as explained in Chapter 2. However, mechanizing a proof of preservation
of speculative constant-time seems simpler and less work than preservation of constant-
time because the analysis is carried out at a lower level. It requires developing methods for
proving the preservation of speculative constant-time; however, it will not be challenging
to adapt the techniques from Chapter 2 on constant-time preserving compilation. A
well-adapted methodology with full machine-checked proof is presented in Chapter 6 for
providing guarantees against timing-based side-channel attacks where the semantics are
speculative and revolve around a simple language. The same approach is extended for
the Jasmin framework in Chapter 7, but the proof for soundness is done on paper.

5.8.2 Requirement of memory safety

The approach explained in this chapter requires the programs to be memory-safe in order
to achieve speculative constant-time property. The reasons are:

• The dependency analysis explained in Figure 5.4 is not expressive enough to reason
about speculative constant-time in case of out-of-bound memory accesses.

• The operational semantics of unsafe load and store leak the whole memory. Proving
equivalence on leakages in case of unsafe load and store is not desirable because it
is impossible to prove equivalence over the entire memory.
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Proving memory safety for each implementation requires some extra work, and it
can be resolved by using a more expressive information-flow-based type system and se-
mantics that do not leak whole memory in case of out-of-bound access (Chapter 6 and
Chapter 7 explain methodology to enforce speculative constant-time without a need of
memory safety).

5.8.3 Other speculative execution attacks

The adversarial semantics primarily covers Spectre-PHT and Spectre-STL attacks (falls
in the category of Spectre v1 and Spectre v4), but it does not cover Spectre-BTB (falls
in the category of Spectre v2) [Kocher et al., 2019a]. It is a variant of Spectre in which
the attacker mistrains the Branch Target Buffer (BTB), which predicts the destinations
of indirect jumps. Spectre-BTB attacks can speculatively redirect control flow. The
development is carried out for Jasmin, and in Jasmin, there was no support for indirect
jumps (during the time of development of this work) because the design decision is made
to write efficient and correct cryptographic code that tends to have simple structures
control flow. For the cases where the software must include indirect jumps, hardware
manufacturers have developed CPU-level mitigations to prevent an attacker from Spectre-
BTB [Intel, b, Intel, a].

Spectre-RSB [Koruyeh et al., 2018] [Maisuradze and Rossow, 2018] attacks abuse the
Return Stack Buffer (RSB) to speculatively redirect control flow similar to a Spectre-BTB
attack. The RSB may misdirect the destinations of return addresses when the call and
return instructions are unbalanced or when there are too many nested calls and the RSB
overflows or underflows. These kinds of attacks are not considered in this development
as the Jasmin compiler inlines all code into a single function; the generated assembly
consists of a single flat function with no call instructions. So, in the case of Jasmin
and its compiler, no RSB attacks are possible. There also exist efficient hardware-based
mitigations such as Intel’s shadow stack [Shanbhogue et al., 2019] for protecting code that
may be susceptible to Spectre-RSB.

5.8.4 Beyond high-assurance cryptography

Speculative constant-time is a necessary step to protect cryptographic keys and other
sensitive material. However, it does not suffice because non-cryptographic (and unpro-
tected) code living in the same memory space may leak. Carruth [Carruth, 2020] pro-
poses to address this issue by putting high-value (long-term) cryptographic keys into a
separate crypto-provider process and using inter-process communication to request cryp-
tographic operations rather than just linking against cryptographic libraries. This mod-
ification should preserve functional correctness and speculative constant-time, assuming
that inter-process communication can be implemented in a way that respects speculative
constant-time. This integration into Jasmin is left for future work.
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Chapter 6

Formally verified type checker for
constant-time and speculative
constant-time

6.1 Introduction

This chapter explores a different methodology to enforce mitigation against timing-based
side-channel attacks using an information-flow-based type system. Information-flow-based
type systems help us include rules for deriving facts about types of expressions and in-
structions in a program. The type system helps capture the security levels of any variable
present in the program that is useful in reasoning about security properties like constant-
time and speculative constant-time. As discussed in Section 1.1.3 of Chapter 1, there
are various programming choices made by the programmer to provide mitigation against
timing-based side-channel attacks. An information-flow-based type system can be used
to track that these choices made by the programmer are correctly used. For example, in
the case of providing mitigation like Speculative load hardening [Chandler Carruth, 2021],
extra primitives are used by the programmer to mask the value obtained during a memory
load in case of misspeculation. The type system approach can help in ensuring whether
these primitives are used at the right place by the programmer or not.

Type system methodology differs from methodology discussed in Chapter 2 because
it gives no guarantees about the compiler. It guarantees the program is secure against
timing attacks instead of the compiler preserving the security properties. The low-level
program also needs a type system to ensure the compiler does not break the constant-time
property.

The work described in this chapter also differs from the work described in Chapter 5
in several ways. In Chapter 5, there is a declarative-style judgment of the form {I} c {O}
that uses dependency analysis to produce constraints based on the execution of commands
in a speculative setting. This type system helps in ensuring that a typable program
is speculative constant-time but requires the program to be Speculative memory safe
(described in Section 5.3 of Chapter 5). Speculative memory safety is required due to
the way operational semantics of load and store and their typing derivatives are designed.
In case of unsafe load/store (where the access does not respect the bound), the whole
memory is leaked instead of leaking a particular address as presented in Section 5.2.4.
Hence, reasoning about the equality of the entire memory is not desirable. Also, the
possible mitigation against Spectre attacks in Chapter 5 is inserting fence instruction at
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the potential threat program points, which is not an efficient solution.
The methodology described in this chapter does not need memory safety even in the

speculative setting because the information-flow-based type system is more powerful and
expressive. It is explained in detail by referring to the two code snippets in Figure 6.1.
Figure 6.1 presents two straightforward examples where the load and store operations
are based on the guard (i <= |a|). In the code snippet present in Figure 6.1a, the types
of x and a are public, and the program is assumed to be constant-time (i is also public).
In case of misspeculation, the memory access will go out-of-bound and might load a
secret data into the variable x. The type system present in this chapter ensures that the
type of a[i] should be transient. The compiler ensures that the speculatively loaded value
will be hardened before flowing into x. Hence, even if secret data is speculatively read
from memory, it will never flow into the public variable x; instead, some default value
will be assigned to x. The type derivative of load operation ensures no direct data flow
under speculative execution by assigning type transient to the data loaded from memory.
Similarly, the code snippet present in Figure 6.1b can bypass the guard (i <= |a|) and
write in some other part of memory. The type system ensures that the type of all different
arrays is at least the type of the loaded value (e′).

1 if (i <= |a|) {
2 x := a[i]; x and a are public
3 }

(a) Load operation

1 if (i <= |a|) {
2 a[i] = e; e is secret
3 }

(b) Store operation

Figure 6.1 – Illustrative example showcasing how to avoid the requirement of memory
safety

The type system present in this chapter is more expressive than the one present in
Chapter 5. It helps in avoiding the necessity of having memory safety. This chapter
includes more efficient mitigation (as compared to inserting fence) against Spectre attacks,
and together with the type system, their correct usage is established.

6.1.1 Necessity to prove the soundness of the type system

The type systems developed in this work help to ensure statically that the program written
in the language L present in Figure 6.2 is secure against timing-based side-channel attacks.
There are three sets of typing rules defined in the following sections. These typing rules
help to provide the guarantee that if the program is typable, then the program is secure
against timing-based side-channel attacks. The type soundness theorem for programming
language L will prove that if a program P written in programming language L successfully
type-checks, then P should be guaranteed to be secure against timing-based side-channel
attacks. There is a need to prove the soundness of these type systems because a human
can make mistakes while designing or implementing these type systems. The soundness
proof in Coq will give formal guarantees that a typable program is indeed constant-time.

6.1.2 Contribution

• A formal language and core primitives to support protection against timing-based
side-channel attacks.
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v ∈ V al := nat e ∈ Expr ::= x variable
| op(e, e) operator

op ∈ Bop := + plus
| − minus
| < lessthan
| > greaterthan
| = equal

i ∈ Instr ::= x := e assignment
| if be then i else i′ conditional
| x := a[e] load
| a[e] := e′ store

c ∈ Cmd := i s ∈ State := 〈c, ρ, µ〉 state

Figure 6.2 – Syntax of simple language

• An extension to the formal language to support “declassify" that can be used to
construct intensional leakages.

• A set of type systems to enforce constant-time and speculative constant-time poli-
cies.

• A mechanized proof in Coq showing the soundness of type systems.

6.2 Language
Figure 6.2 presents a language consisting of expressions and instructions. An expression
can be a variable or a binary operator (<, > or = that operates on boolean values
and + and − that operates on naturals). Instructions can be an assignment x := e, a
conditional if be then i else i where be represents boolean operators applied to expressions,
a load x := a[e] or a store a[e] := e′ instruction. A program operates on a state made
up of register map ρ (maps the registers to the values stored in it) and memory µ (maps
the memory addresses to the values). The language featuring declassify is presented in
Section 6.5. The language is extended with new primitives to support protection against
speculative constant-time in Section 6.4.2.

6.2.1 Operational Semantics

This section presents the operational semantics of the language described in Figure 6.2.
To reason about constant-time property, the semantics is instrumented to produce visible
observations called leakages. Leakages can be empty •, an index index i or a boolean
bool b.

o ∈ Obs ::= • | index i | bool b

The operational semantics of the program are represented using the judgment: 〈c, s〉 `−→
〈c′, s′〉 that represents the execution of c starting from state s producing the observation `,
command c′ and updated state s′. Expressions do not produce any leakage. Evaluating a
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variable x produces a value v, obtained from the register map ρ. Evaluation of an operator
op involves evaluating its operands and applying the operator to obtain the result.

Expression semantics:

JxKρ = v
Variable

Je1Kρ = v1 Je2Kρ = v2

Jop(e1, e2)Kρ = op(v1, v2)
Operator

Instruction semantics:

〈{}, s〉 →ε
ε s

0-STEP

〈i, s〉 o−→ s1 〈c, s1〉
O
�
n
s2

〈{i; c}, s〉
o::O
�
n+1

s2

S-STEP

〈x := e; c, ρ, µ〉 •−→ 〈c, ρ{x← JeKρ}, µ〉
ASSGN

Je1Kρ = v1 Je2Kρ = v2 Jbop(v1, v2)Kρ = b′

〈if bop(e1, e2) then ctt else cff ; c, ρ, µ〉 bool b′−−−−→ 〈if b′ then ctt else cff ; c, ρ, µ〉
COND

JeKρ = i µ(a, i) = v

〈x := a[e]; c, ρ, µ〉 index i−−−−→ 〈c, ρ{x← v}, µ〉
LOAD

JeKρ = i Je′Kρ = v

〈a[e] := e′; c, ρ, µ〉 index i−−−−→ 〈c, ρ, µ(a, i)← v〉
STORE

Figure 6.3 – Instrumented semantics.

The semantics for instructions are defined as small-step semantics and are present in
Figure 6.3. The assignment instruction x := e produces • leakage and assigns the evalua-
tion of e to the variable x. Evaluation of a conditional instruction if bop(e1, e2) then ctt else cff
leaks the guard that is obtained by applying the operator bop on the evaluation of e1 and
e2. Depending on the guard, it takes step to either the true or false branch. Loading a
value from memory x := a[e] (a is an array that represents the memory that is accessed
at an index represented by the expression e) to a variable x leaks the index i that is
obtained by evaluation of expression e and also assigns the value v (present at index i in
the memory) to the variable x in the register map ρ. Store a[e] := e′ works similarly as
load and leaks the index. More than one step is defined using the judgment of the form
c : s1

o
�
n
s2 where n is the number of steps taken to reach state s2 from state s1.

6.3 Enforcing constant time policy
This section presents a type system that enforces constant-time. The security types in
this work are inspired by the work Volpano and Smith [Volpano and Smith, 1997]. The
motive behind the type system is to ensure that if the program written in the language
described in Figure 6.2 type checks using the type system defined in Figure 6.4 then the
program is constant-time.
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Expressions:

Γv(x) = Some t

Γv ` x : t
VAR

Γv ` e1 : t1 Γv ` e2 : t2

Γv ` op(e1, e2) : t1 U t2
OP

Array:

Γv(a) = Some t Γv ` e : Public

Γv ` a[e] : t
ARRAY

Instructions:

Γv,Γa ` {}
0-STEP

Γv,Γa ` i Γv,Γa ` c
Γv,Γa ` {i; c}

S-STEP

Γv(x) = t Γv ` e : te te <= t

Γv,Γa ` x := e
ASSGN

Γv ` b : Public Γv,Γa ` ctt Γv,Γa ` cff
Γv,Γa ` if b then ctt else cff

COND

Γv(x) = Some tx Γv,Γa ` a[e] : ta ta <= tx

Γv,Γa ` x := a[e]
LOAD

Γv,Γa ` a[e] : ta Γv ` e′ : te te <= ta

Γv,Γa ` a[e] := e′
STORE

Figure 6.4 – Typing rules

6.3.1 Security types

There are two security types {Secret, Public} with order Public <= Secret. The following
grammar defines the security types:

t ::= Secret | Public

The union of two types t1 and t2 is represented as t1 U t2 is defined as follows:

t1 U t2 =

{
Secret t1 = Secret

t2 t1 = Public

The typing environment is a partial map between string (representing variables in a pro-
gram) and option type.

6.3.2 Typing rules

The type system manipulates a judgment of the form:

Γv ` e : t Γv,Γa ` c
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where Γv and Γa are security environments for variables and arrays.
Figure 6.4 provides the typing rules for the language introduced in Figure 6.2. The

convention Γ(x) = Some t is used to indicate that the type of variable x is obtained from
the environment Γ.

The typing rule VAR and OP are used for typing expressions. They use the judgment
of the form: Γv ` e : t. The rule VAR inspects the type from the context Γv and generates
no constraint. The rule OP for binary operators collects type for both operands e1 and e2

and generates the new type that is the maximum of the security type of e1 and e2.
The rule ASSIGN requires that the security type of value assigned (e) is a sub-type of

the type of variable x. The rule COND checks that the guard b has security type Public
and also ensures that both the branches ctt and cff are typable in environment Γv and Γa.
The rule LOAD ensures that the array is accessed with index e of type Public and the
type of x is greater than or equal to the type of array access. The rule STORE ensures
that the accessed index e is of type Public. The relation te <= ta ensures that the array
type ta is at least the type of the stored expression. Rules 0-STEP and S-STEP are pretty
straightforward and ensure that a sequence of instructions is typable if all the instructions
present in the sequence type-checks.

6.3.3 Soundness

The type system is sound, i.e., it only accepts constant-time programs. This section
defines the statement of soundness and other definitions used in it. Informally, soundness
states that if a program p type checks using the judgment Γv,Γa ` p, then p is constant-
time. The soundness of the type system depends on the definition of state equivalence
and constant time.

Definition 10 (State equivalence). State equivalence relation =(Γv ,Γa) between two states
〈c1, ρ1, µ1〉 and 〈c2, ρ2, µ2〉 is defined as follows:

〈c1, ρ1, µ1〉 =(Γv ,Γa) 〈c2, ρ2, µ2〉 ≡


∀x,Γv(x) = Public =⇒ ρ1(x) = ρ2(x)

∀a,Γa(a) = Public =⇒ µ1(a) = µ2(a)

c1 = c2

Two states are said to be equivalent if they do not differ in their public data. Equiva-
lence on public data is stated using the type system that ensures whether data is public
or secret. In terms of reasoning about expression, for readability =(Γv ,Γa) is written as
=Γv .

Definition 11 (Safe). A pair of state and command ssafe is called safe if it satisfies one
of these properties: c = φ ∨ ∃ l s′, s l−→ s′ where c is the command in the state s.

Definition 12 (Constant time). A program c is constant time with respect to state s1

and s2

=CT
(Γv ,Γa,s1,s2)≡

{
〈c, s1〉 =(Γv ,Γa) 〈c, s2〉 ∧ 〈c, s1〉

l1
�
n
s′1 ∧ 〈c, s2〉

l2
�
n
s′2 =⇒ l1 = l2 ∧ s′1safe ↔ s′2safe

The constant time property is stated formally as above. It states that two executions
of a program c starting from state s1 and s2 that are equivalent produce the same visible
observations, and also, the execution leads to a safe state.
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Soundness for expressions The soundness of the type system for expressions is neces-
sary to prove soundness for instructions. It states that the evaluation of public expression
e in two equivalent states is equal. This will play a major role in proving the equality of
leakages, as leakages are mostly constructed using expressions.

Theorem 20 (Soundness for expressions).

∀ρ1 ρ2 e t, ρ1 =Γv ρ2 ∧ Γv ` e : Public =⇒ JeKρ1 = JeKρ2

Proof. The proof follows by doing induction on type derivation of e. There are two cases:

• Variable case: This case is trivial as the state equivalence justifies that the public
variables are equal in the register map ρ1 and ρ2.

• Operator case: The induction hypothesis says that the type of expression op(e1, e2)
is the maximum of types of e1 and e2 represented as t1 U t2. From the hypothesis we
know that t1 U t2 = Public, which means t1 = t2 = Public. Using the equivalence
relation, we know that the evaluation of e1 in ρ1 will be equal to the evaluation of e2

in ρ2 as they are of type Public. Since the evaluation of operands is equal, applying
operator op on them will result in the same value.

Preservation Preservation justifies that after any number of steps, a well-typed pro-
gram will remain well-typed.

Theorem 21 (Preservation).

∀ Γv Γa s1 s
′
1 l1 c c

′,

Γv,Γa ` c ∧ 〈c, s1〉
l1−→ 〈c′, s′1〉 =⇒ Γv,Γa ` c′

Proof. The proof follows by doing induction on the step-reduction for commands c,
which produces different cases for the instruction at the head of c. In all the cases,
the proof is pretty straightforward. The only interesting case is conditional instruction
if bop(e1, e2) then ctt else cff ; c where we need to justify two cases: Γv,Γa ` ctt; c and
Γv,Γa ` cff ; c. The typing derivation for conditional instruction generates the hypothesis
Γv,Γa ` ctt and Γv,Γa ` cff and then using the typing rule S-STEP present in Figure 6.4
we prove Γv,Γa ` ctt; c and Γv,Γa ` cff ; c.

One-step soundness We first establish the soundness of the type system for one-step
execution and, in the later section, use the following lemma to prove soundness for multi-
step execution.

Theorem 22 (One-step soundness).

∀ Γv Γa s1 s2 s
′
1 s
′
2 l1 l2 c1 c2 c

′
1 c
′
2,

Γv,Γa ` c1 ∧ 〈c1, s1〉 =(Γv ,Γa) 〈c2, s2〉 ∧ 〈c1, s1〉
l1−→ 〈c′1, s′1〉 ∧ 〈c2, s2〉

l2−→ 〈c′2, s′2〉 =⇒
l1 = l2 ∧ 〈c′1, s′1〉 =(Γv ,Γa) 〈c′2, s′2〉.

https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs.v?ref_type=heads#L83
https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs.v?ref_type=heads#L182
https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs.v?ref_type=heads#L204


118
Formally verified type checker for constant-time and speculative

constant-time

Proof. The proof follows by doing a case analysis on c. Also for readability, states are
unfolded as: s1 = 〈ρ1, µ1〉, s2 = 〈ρ2, µ2〉, s′1 = 〈ρ′1, µ′1〉 and s′2 = 〈ρ′2, µ′2〉. The equality
over the commands c′1 and c′2 is trivial as the language is deterministic in nature.

• x := e. The equality on leakages is trivial as the assignment produces • leakage. The
semantics of update function {x← JeKρ} helps in justifying the proof by reasoning
about the type of x. The update is done based on the fact that the register x is
present in the register map or not. If it is not present, then we return the same
register map; else, we update it with the value JeKρ.

– x′ = x. Since we know that the type of x′ is Public and x = x′, this gives us the
information Γv(x) = Public. The typing rule of assignment instruction also
suffices that the type of expression e should be less than the type of x. Hence,
the type of e is Public. According to the semantics of assignment instructions
we also know that s′1 = 〈ρ1{x ← JeKρ1}, µ1〉 and s′2 = 〈ρ2{x ← JeKρ2}, µ2〉.
Now using theorem 20, we know that JeKρ1 = JeKρ2 that suffices ρ′1(x) = ρ′2(x).
The memory map equivalence is trivial as the assignment does not update the
memory.

– For x′ 6= x. We know that the type of x′ is Public and Γv(x) = t. Since
x is not equal to x′, we know from the semantic of assignment instruction
that ρ′1(x′) = ρ1{x ← JeKρ1}(x′) and ρ′2(x′) = ρ2{x ← JeKρ2}(x′). And from
the assumption 〈c1, s1〉 =(Γv ,Γa) 〈c2, s2〉, we know that ρ1(x′) = ρ2(x′). Hence
from transitivity we know that ρ′1(x′) = ρ′2(x′) which suffices to prove that
〈c′1, s′1〉 =(Γv ,Γa) 〈c′2, s′2〉.

• if bop(e1, e2) then ctt else cff : Here bop is a boolean operator that operates on two
operands. From the typing rule of conditional, we know that the type of bop(e1, e2)
is Public, which shows that the type of e1 and e2 are also Public. The two executions
leaks the guard which is Jbop(e1, e2)Kρ1 and Jbop(e1, e2)Kρ2 . Since theorem 20 justifies
Je1Kρ1 = Je1Kρ2 and Je2Kρ1 = Je2Kρ2 , we can say that Jbop(e1, e2)Kρ1 = Jbop(e1, e2)Kρ2 .
Hence, the leakages are equal, and as the semantics of conditional does not update
the register and memory maps, the new state s′1 and s′2 are trivially equivalent.

• x := a[e]: The typing rule of load instruction gives the information that the type of
index e is Public. The two executions leak the index JeKρ1 and JeKρ2 . Using theorem
20, we know that JeKρ1 = JeKρ2 that suffices to prove that leakages are equal. The
semantics of load instruction updates the register with the value present at index
JeKρi in the memory map µ at cell a. Precisely, s′1 = 〈ρ1{x← µ1(a, JeKρ1)}, µ1〉 and
s′2 = 〈ρ2{x ← µ2(a, JeKρ2)}, µ2〉. The update function, as discussed above, gives us
two cases:

– x′ = x and JeKρ1 = JeKρ2 . Since we know that the type of x′ is Public and
x = x′, this gives us the information Γv(x) = Public. Also, the sub-type
relation ensures Γa(a) = Public. From the assumption 〈c1, s1〉 =(Γv ,Γa) 〈c2, s2〉,
we know that µ1(a) = µ2(a). Hence 〈c′1, s′1〉 =(Γv ,Γa) 〈c′2, s′2〉 as µ1(a) = µ2(a)
and JeKρ1 = JeKρ2 .

– x′ 6= x and JeKρ1 = JeKρ2 . We know that the type of x′ is Public and Γv(x) = t.
Since x is not equal to x′, we know from the semantic of load instruction that
ρ′1(x′) = ρ1{x ← µ1(a, JeKρ1)}}(x′) and ρ′2(x′) = ρ2{x ← µ2(a, JeKρ2)}}(x′).
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And from the assumption 〈c1, s1〉 =(Γv ,Γa) 〈c2, s2〉, we know that ρ1(x′) =
ρ2(x′). Hence from transitivity we know that ρ′1(x′) = ρ′2(x′) which suffices to
prove that 〈c′1, s′1〉 =(Γv ,Γa) 〈c′2, s′2〉.

• a[e] = e′: The typing rule of store instruction gives the information that the
type of index e is Public. The two executions leak the index JeKρ1 and JeKρ2 .
Using theorem 20, we know that JeKρ1 = JeKρ2 that suffices to prove that leak-
ages are equal. The semantics of store instruction updates the memory µ (cell a)
at index JeKρi with the value Je′Kρi . Precisely, s′1 = 〈ρ1, µ(a, JeKρ1)← Je′Kρ1〉 and
s′2 = 〈ρ2, µ(a, JeKρ2)← Je′Kρ2〉. The update function of the memory map works in a
similar manner. It checks for the string equality to update the array cell.

– a′ = a and JeKρ1 = JeKρ2 . Since we know that the type of a′ is Public and
a = a′, this gives us the information Γv(a) = Public. Also, the sub-type
relation ensures Γv(e

′) = Public. From the assumption 〈c1, s1〉 =(Γv ,Γa) 〈c2, s2〉,
we know that µ1(a) = µ2(a). Theorem 20 ensures that Je′Kρ1 = Je′Kρ2 . Hence
〈c′1, s′1〉 =(Γv ,Γa) 〈c′2, s′2〉 because µ1(a) = µ2(a), JeKρ1 = JeKρ2 and Je′Kρ1 = Je′Kρ2
and register map is not updated.

– a′ 6= a and JeKρ1 = JeKρ2 . We know that the type of a′ is Public and Γa(a) = t.
Since a is not equal to a′, we know from the semantic of store instruction that
µ′1(a′) = µ1((a, JeKρ1)← Je′Kρ1)(a′) and µ′2(a′) = µ2((a, JeKρ2)← Je′Kρ2)(a′)
And from the assumption 〈c1, s1〉 =(Γv ,Γa) 〈c2, s2〉, we know that µ1(a′) =
µ2(a′). Hence, from transitivity, we know that µ′1(a′) = µ′2(a′) and it does not
update the register map that suffices to prove that 〈c′1, s′1〉 =(Γv ,Γa) 〈c′2, s′2〉.

Multi-step soundness The final soundness theorem is stated as follows:

Theorem 23 (Multi-step soundness).

∀ Γv Γa s1 s2, c

Γv,Γa ` c =⇒ c =CT
(Γv ,Γa,s1,s2)

where c start executing from equivalence state s1 and s2

Proof. The proof follows by unfolding the definition of =CT
(Γv ,Γa,s1,s2) that generates two

goals and set of hypothesis 〈c, s1〉 =(Γv ,Γa) 〈c, s2〉, 〈c, s1〉
l
�
n
s′1 and 〈c, s2〉

l′

�
n
s′2 . The

first goal concerns the equivalence of leakages, and the second is proving that states s′1
and s′2 are safe. The second goal is trivial, as the language never gets stuck. The proof
for proving the equivalence on leakages follows by doing induction on n, where n is the
number of steps taken during the multi-step semantics.

• n = 0: This case is trivial as there will be no leakage as the number of steps taken
by the command c from s1 and s2 are 0.

• n = n′ + 1: This case produces the goal l = l′ where l = l1 :: l2 and l′ = l′1 :: l′2.
More precisely, l1 and l2 are leakages produced during one-step execution, and l2
and l′2 are the leakages produced during the rest of the steps. Using the theorem 22,

https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs.v?ref_type=heads#L312
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we conclude l1 = l′1. Using theorem 21, we know that the command obtained after
one-step execution is also well-typed. Generalizing the induction hypothesis on the
result of 21, we conclude l2 = l′2.

Hence, soundness helped establish that the type system for checking constant time
property presented in Figure 6.4 is correct.

6.4 Enforcing speculative constant time policy
To enforce speculative constant time, we need to consider the processor’s speculative
behavior.

6.4.1 State extension

The state 〈c, ρ, µ〉 is extended to include an extra variable called ms variable. The extended
state is of the form 〈c, ρ, µ,ms〉. The ms variable keeps track of whether execution is
misspeculating or not. The ms variable is of type boolean and represents misspeculation
when set to true.

6.4.2 Language extension

The language present in Figure 6.2 is extended to include an extra primitive called
protect(x,ms). For illustration, this notation of protect is used. But in the Coq de-
velopment, the ms value is included in the state, and protect instruction has notation
as protect x y where y represents the correct value which is assigned to x in case of no
speculation. The use of protect is illustrated using following example:

1 foo (int length) {
2 if (length < bound) {
3 x := a[length]; a is public, length is public
4 y := b[x]; leaks secret index
5 }

1 fooProtect (int length) {
2 if (length < bound) {
3 x := a[length];
4 x := protect(x, ms);
5 y := b[x];
6 }

Figure 6.5 – Example program: Illustration of protect primitive

In the program on the left side of Figure 6.5, the attacker can pass any value of length
and speculatively reach the secret part of memory by bypassing the guard. Program
foo is constant time as there is no secret dependent branching or memory access, but
speculatively, it can still leak the secret data through public loads. The attacker can load
an arbitrary value from memory into x, which is later leaked via the memory access b[x].
Inserting fence instruction after line 2 is one of the solutions to avoid leaking secrets due
to speculation. Fence instruction is inefficient as it stops speculations of all instructions,
not only for the instructions that leak. The program fooProtect adds protect at line 4.
protect(x,ms) protects the public load. In case of misspeculation (when ms is true), x
gets a dummy value instead of loading the secret data. Hence, in line 5, no secret data is
loaded in y, and the leaked index x does not depend on the secret.
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Expression semantics:

JxKρ = v
Variable

Je1Kρ = v1 Je2Kρ = v2

Jop(e1, e2)Kρ = op(v1, v2)
Operator

Instruction semantics:

〈{}, s〉 →ε
ε s

0-STEP

〈i, s〉 o−→
d
s1 〈c, s1〉

o
�
D n

s2

〈{i; c}, s〉
o::O
�

d::D n+1
s2

S-STEP

〈x := e; c, ρ, µ,ms〉 •−−→
step
〈c, ρ{x← JeKρ}, µ,ms〉

ASSGN

Je1Kρ = v1 Je2Kρ = v2 Jbop(v1, v2)Kρ = b′

〈if bop(e1, e2) then ctt else cff ; c, ρ, µ,ms〉 bool b′−−−−−→
force bf

〈if bf then ctt else cff ; c, ρ, µ, if b′ = bf then ms else true〉

COND

JeKρ = i µ(a, i) = v

〈x := a[e]; c, ρ, µ,ms〉 index i−−−−−→
load(a,i)

〈c, ρ{x← v}, µ,ms〉
LOAD

JeKρ = i Je′Kρ = v

〈a[e] := e′; c, ρ, µ,ms〉 index i−−−−−→
store(a,i)

〈c, ρ, µ(a, i)← v,ms〉
STORE

ρ′ = if ms then ρ{x← 0} else ρ{x← ρ(y)}
〈protect(x, y); c, ρ, µ,ms〉 •−−→

step
〈c, ρ′, µ,ms〉

PROTECT

Figure 6.6 – Instrumented semantics with speculation

6.4.3 Operational semantics

To reason about speculations, the operational semantics presented in Figure 6.3 is enriched
with directives to model the steps taken by the attackers. The directive d represents the
attacker’s decision before the instruction is executed.

d ∈ Dir ::= step | force b | load(a, i) | store(a, i)

The attacker uses the directive step when the execution proceeds normally. During a
step directive, a conditional branch does not speculate, and the program enters the cor-
rect branch. The attacker issues the directive force to force execution to enter into a
misspeculated branch. The force directive is the only directive that updates the misspec-
ulation flag. The directives load(a, i) and store(a, i) allows the attacker to read or write
to addresses of its choice speculatively. The leakages are similar to the one defined in
Section 6.2.

The judgment defines the operational semantics:

〈c, s〉 `−→
d
〈c′, s′〉
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where ` is the observation visible to the outside world obtained while executing the com-
mand c, d is the directive, and s and s′ are the initial and final states.

The operational semantics is present in Figure 6.6. The semantics is very similar to
the one presented in Figure 6.3, except it is instrumented with directives. The instruc-
tions like assignment, load, and store do not update the misspeculation flag; hence, their
semantics are similar to as described in Section 6.2.1. In conditional instruction, the ms
flag is updated based on the directive force bf where bf indicates whether the attacker
speculatively takes the true or false branch. In the case of b′ 6= bf (b′ shows the correct
guard value), the ms flag is set to true, indicating the program is misspeculating. The
semantics of protect x y ensures that x gets the dummy value 0 in case of misspeculation
and gets the value y where the ms flag is false.

Expressions:

Γv(x) = Some t

Γv ` x : t
VAR

Γv ` e1 : t1 Γv ` e2 : t2

Γv ` op(e1, e2) : t1 U t2
OP

Array:

Γv(a) = Some t Γv ` e : Public

Γv ` a[e] : t
ARRAY

Instructions:

Γv,Γa ` {}
0-STEP

Γv,Γa ` i Γv,Γa ` c
Γv,Γa ` {i; c}

S-STEP

Γv(x) = t Γv ` e : te te <= t

Γv,Γa ` x := e
ASSGN

Γv ` b : Public Γv,Γa ` ctt Γv,Γa ` cff
Γv,Γa ` if b then ctt else cff

COND

Γv(x) = Some tx Γv,Γa ` a[e] : ta totv(ta) <= tx

Γv,Γa ` x := a[e]
LOAD

Γv,Γa ` a[e] : ta Γv ` e′ : te te <= totv(ta)

Γv,Γa ` a[e] := e′
STORE

Γv(x) = Some Public Γv(y) = Some t t <= Transient

Γv,Γa ` protect x y
Protect

Figure 6.7 – Typing rules for speculative instructions

6.4.4 Security types

The type system is extended to enforce speculative constant time with a new type called
Transient. Data with Transient type indicate that it is public under sequential semantics
but may depend on secrets under the speculative semantics. There are two types of arrays:
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Public and Secret (arrays are used to represent memory).

tv ::= Secret | Public | Transient
ta ::= Secret | Public

The U relation is extended to add the fact that Transient U Public = Transient,
and similarly, the <= is extended to add the fact that Public <= Transient and
leads to the order Public <= Transient <= Secret. A function totv(ta) is defined to
transform the array type to the value type. It returns the Transient type when the array
type is Public and the Secret type when the array type is secret. This function helps
in reasoning about the instructions like load and store, where secret data can be leaked
speculatively through public loads.

6.4.5 Typing rules

The typing rules for speculative language are present in Figure 6.7. It is defined using the
same typing judgment described in Section 6.2. It is similar to the typing rules explained
in Figure 6.4 and adds a new typing rule for protect instruction. The typing rule LOAD

and STORE uses the function totv(ta) that ensures that in terms of public-loads or public-
stores, the type assigned to the value obtained by public memory access is Transient.
A protect instruction is used to avoid leakages through public loads and stores. At the
semantic level of protect instruction, all the variables with Transient types are assigned
a default value in case of misspeculation and the actual value through the load in case of
no misspeculation.

The typing rule PROTECT ensures that the type of y is either Transient or Public.
We are only interested in protecting public loads and stores because the secret loads are
already covered using the constant-time property.

6.4.6 Soundness

The type system is sound, i.e., it only accepts speculative constant-time programs. Infor-
mally, soundness states that if a program p type checks using the judgment Γv,Γa ` p,
then p is speculative constant-time. The soundness of the type system depends on the
definition of state equivalence and speculative constant-time.

Definition 13 (State equivalence). State equivalence relation =s
(Γv ,Γa) between two states

〈c1, ρ1, µ1,ms1〉 and 〈c2, ρ2, µ2,ms2〉 is defined as follows:

〈c1, ρ1, µ1,ms1〉 =s
(Γv ,Γa) 〈c2, ρ2, µ2,ms2〉 ≡



ms1 = ms2

c1 = c2

∀x,Γv(x) = Public =⇒ ρ1(x) = ρ2(x)

(!ms1 =⇒
∀x,Γv(x) = Transient =⇒ ρ1(x) = ρ2(x)

∀a,Γa(a) = Public =⇒ µ1(a) = µ2(a))

State equivalence for speculative programs differs slightly from sequential programs as
we must consider speculative semantics. Two states are equivalent if they do not differ
in their public data stored in registers in the case of speculation. They do not differ
on transient and public data in case of no speculation. State equivalence for speculative
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semantics also adds an extra condition for misspeculation flags ms1 and ms2 that should
be equal. In terms of reasoning about expression, for readability =s

(Γv ,Γa) is written as
=s

Γv
.

Definition 14 (Speculative constant time). A program c is speculative constant time with
respect to state s1 and s2

=SCT
(Γv ,Γa)≡

{
〈c1, s1〉 =(Γv ,Γa) 〈c2, s2〉 ∧ 〈c1, s1〉

l1
�
d n

s′1 ∧ 〈c2, s2〉
l2
�
d n

s′2 =⇒ l1 = l2 ∧ s′1safe ↔ s′2safe

Speculative constant-time ensures that in the presence of the same set of directives,
the leakages should be equal if the executions start from equivalent states.

Soundness for expressions The soundness of the speculative type system for expres-
sions is necessary to prove the soundness of the type system for instructions. It states that
the evaluation of expression e in two equivalent states is equal if the type of expression is
Public in case of misspeculation and Transient in case of no speculation. This will play
a significant role in proving the equality of leakages, as leakages are mostly constructed
using expressions.

Theorem 24 (Soundness of expressions).

∀ ρ1 ρ2 µ1 µ2 ms1 ms2 e t, 〈ρ1, µ1,ms1〉 =s
Γv 〈ρ2, µ2,ms2〉 ∧

Γv ` e : if ms1 then Public else Transient =⇒ JeKρ1 = JeKρ2

Proof. The proof follows by doing induction on type derivation of e. There are two cases:

• Variable case: There are two cases:

– ms1 = ms2 = true: This is the case where the semantics is speculative. We
know that Γv(x) = Some Public. ρ1(x) = ρ2(x) is direct consequence of state
equivalence.

– ms1 = ms2 = false: This is where the semantics is not speculative. We know
that Γv(x) = Some Transient. This is also a direct consequence of state
equivalence as it ensures that transient data are equal in case of no speculation.

• Operator case: The induction hypothesis states that the type of expression op(e1, e2)
is the maximum of types of e1 and e2, and it also says that the resultant type is
Public or Transient depending on the value of ms1. Let t1 and t2 be the type of e1

and e2.

– ms1 = ms2 = true: According to the union relation, t1 U t2 = Public means
t1 = Public and t2 = Public. Using the equivalence relation, we know that
the evaluation of e1 will be equal to the evaluation of e2 as they are of type
Public and semantics is speculative. Since the evaluation of operands is equal,
the evaluation of operator op on them will also be equal in ρ1 and ρ2.

https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs_spec.v?ref_type=heads#L192
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– ms1 = ms2 = false: According to the union relation, t1 U t2 = Transient
means t1 <= Transient and t2 <= Transient (the subtyping relation ensures
that t1 and t2 can be either Public or Transient). Using the equivalence
relation, we know that the evaluation of e1 will be equal to the evaluation of
e2 as they are of type Public or Transient. Since the evaluation of operands
is equal, the evaluation of operator op on them will also be equal in ρ1 and ρ2.

Preservation Preservation justifies that after any number of steps, a well-typed pro-
gram will remain well-typed. This property is used to prove soundness for multi-step.

Theorem 25 (Preservation).

∀ Γv Γa s1 s
′
1 l1 c c

′,

Γv,Γa ` c ∧ c : s1
l1−→
d1

c′ : s′1 =⇒ Γv,Γa ` c′

Proof. The proof is similar to the proof of preservation in Section 6.2. It only adds the
preservation proof for protect instruction, which is very trivial.

One-step soundness We first establish the soundness of the type system for one-step
execution and, in the later section, use the following lemma to prove soundness for multi-
step execution.

Theorem 26 (One-step soundness).

∀ Γv Γa s1 s2 s
′
1 s
′
2 l1 l2 c1 c2 c

′
1 c
′
2,

Γv,Γa ` c1 ∧ 〈c1, s1〉 =s
(Γv ,Γa) 〈c2, s2〉 ∧ 〈c1, s1〉

l1−→
d
〈c′1, s′1〉 ∧ 〈c2, s2〉

l2−→
d
〈c′2, s′2〉 =⇒

l1 = l2 ∧ 〈c′1, s′1〉 =s
(Γv ,Γa) 〈c′2, s′2〉.

Proof. The proof follows by doing a case analysis on c1 and unfolding the definition
of =s

(Γv ,Γa). The c′1 = c′2 is trivial to prove as the language is deterministic, and the
set of directives in both traces are equal. Also for readability, states are unfolded as:
s1 = 〈ρ1, µ1,ms1〉, s2 = 〈ρ2, µ2,ms2〉, s′1 = 〈ρ′1, µ′1,ms′1〉 and s′2 = 〈ρ′2, µ′2,ms′2〉. State
equivalence proof for all the instructions is similar to the proof explained in 6.3.3. The
proof is tweaked to consider both cases: speculation and sequential. The proof for equality
on the ms value is added for each case. For all the instructions except the conditional
instruction, ms variable is never updated, so the proof is trivial. In the case of conditional,
thems variable is updated similarly in both the semantics because directives are the same;
hence, they are equal.

Proof for protect x y: The equality on leakages is trivial as protect produces • leakage.
The semantics of protect depends on thems flag to decide whether x gets value 0 or y. The
semantics used the update function to update the value of x ({x ← 0} or {x ← ρ(y)}).
There are two cases to consider:

• ms1 = true: This ensures that the semantic is speculative and x gets the value 0.
There are two cases to consider based on the semantics of update:

https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs_spec.v?ref_type=heads#L303
https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs_spec.v?ref_type=heads#L303
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– x = x′: This case is trivial as 0 = 0.

– x 6= x′: The type of x′ is Public and x is t. From the semantics of protect,
we know that ρ′1(x′) = ρ1{x ← 0}(x′) and ρ′2(x′) = ρ2{x ← 0}(x′). From
hypothesis we know that 〈c1, s1〉 =s

(Γv ,Γa) 〈c2, s2〉 which ensures ρ1(x′) = ρ2(x′).
Hence from transitivity it follows that ρ′1(x′) = ρ′2(x′). Also, memory map
equivalence is trivial as it is not updated during protect. Hence 〈c′1, s′1〉 =s

(Γv ,Γa)

〈c′2, s′2〉.

• ms1 = false: This ensures that the semantics is not speculative and x gets the
value of y. There are two cases to consider based on the semantics of update:

– x = x′: We know that type of x′ is Transient. Also, from the typing rule
of protect, we know that the type of y is less than the Transient type. This
ensures that the type of y can be Public or Transient. From the hypothesis
〈c1, s1〉 =s

(Γv ,Γa) 〈c2, s2〉, we know that in case of no speculation variables of
type Transient and Public are equal in register maps ρ1 and ρ2. This ensures
that ρ1(y) = ρ2(y). The semantics of protect updates the register maps as
ρ′1 = ρ1{x ← ρ1(y)} and ρ′2 = ρ2{x ← ρ2(y)}. As ρ1(y) = ρ2(y), we conclude
ρ′1(x) will be equal to ρ′2(x). The memory map equivalence is trivial as it is
not updated during protect

– x 6= x′: The type of x′ is Transient and x is t. From the semantics of protect,
we know that ρ′1(x′) = ρ1{x ← ρ1(y)}(x′) and ρ′2(x′) = ρ2{x ← ρ2(y)}(x′).
From hypothesis we know that 〈c1, s1〉 =s

(Γv ,Γa) 〈c2, s2〉 which ensures ρ1(x′) =

ρ2(x′). Hence from transitivity it follows that ρ′1(x′) = ρ′2(x′). Also, mem-
ory map equivalence is trivial as it is not updated during protect. Hence
〈c′1, s′1〉 =s

(Γv ,Γa) 〈c′2, s′2〉.

Multi-step soundness The final soundness theorem is stated as follows:

Theorem 27 (Multi-step soundness).

∀ Γv Γa s1 s2 c,

Γv,Γa ` c =⇒ c =SCT
(Γv ,Γa,s1,s2)

Proof. The proof is similar to the proof explained in 6.3.3.

6.5 Language with Declassify

This section adds a declassify feature to the language. The cryptographic ciphertexts
are computed from secret data and are viewed as secret by information flow analysis like
the type system discussed above. The declassify construct can make these kinds of data
public so that it is no longer sensitive.

https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs_spec.v?ref_type=heads#L578
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i ∈ Instr ::= xd := e assignment
| if be then i else i′ conditional
| xd := a[e] load
| a[e]d := e′ store
| protect x y protect

Figure 6.8 – Syntax of language with declassify

The language with declassification is present in the Figure 6.8. The set of instructions
like assignment, load, and store is updated with a boolean called d that represents the
declassify feature. For example, in case of load operation xd := a[e] if the boolean d is
set to true, then the value a[e] is declassified (after declassification, it is treated as public
value).

6.5.1 Illustrative example showing potential leakage due to de-
classification

This section presents an example of vulnerability caused by declassification in the case
where speculations are allowed. In cryptography, data is encrypted into ciphertext and
sent over the insecure network. The type system classifies data like ciphertext as secret
because they are computed from the secret data. The “declassify" primitive can be used
to make these kinds of data public as it is no longer secret in the theoretical concept of
encryption and decryption. The program present in Figure 6.9 illustrates how declassi-
fication in programs that can speculate could leak to potential leakages. The program
encryptFun encrypts a secret message m to produce a cipher-text called cipher.

1 encryptFun (secret int m, secret int key) −→int {
2 secret int cipher;
3 public int i;
4 public int d;
5 cipher = m;
6 for (i = 0; i <= 8; i++) {
7 cipher[i] = m[i] ⊕ key[i] ;
8 }
9 d = declassify(cipher);

10 return d;
11 }

Figure 6.9 – Example program

The secret message m is encrypted by performing a bit-wise operation on secret message
m and key in line 7. Since cipher is computed using the secrets m and key, the type of cipher
will also be secret. Using the declassify mechanism, the cipher is converted to type public
and returned as a result. In the sequential execution, there is no chance of leaking the
information related to the secret message m as there is no secret-dependent branching or
memory access. But consider the case where speculation is allowed. In case of speculation,
the condition i <= 8 in for-loop is ignored, and declassify will leak the cipher, which is set
to the secret message m in line 5. We have seen in Section 1.1.3 of Chapter 1 that there
are various mitigation mechanisms possible against Spectre attacks, like Speculative load
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hardening, that are more efficient than the insertion of fence. But unfortunately, applying
Speculative load hardening to the program in Figure 6.9 does not offer any protection, as
the attack does not happen due to speculative load operation.

This work analyzes these undesirable leakages caused due to declassification. It
presents a type system to enforce mitigation against timing attacks for the program writ-
ten in a language that features a “declassify" operation.

6.5.2 Operational Semantics

This section presents the operational semantics of the language with declassification. The
semantics are presented in the Figure 6.10. The leakage language present in Section 6.2.1
is extended to include a new kind of leakage called db(option v). The leakage db(option v)
represents the declassified value that will be visible to the outside world as it is no longer
secret data after declassification.

Instruction semantics:

〈{}, s〉 →ε
ε s

0-STEP

〈i, s〉 o−→
d
s1 〈c, s1〉

o
�
D n

s2

〈{i; c}, s〉
o::O
�

d::D n+1
s2

S-STEP

〈xd := e; c, ρ, µ,ms〉 if d then db(some JeKρ) else •−−−−−−−−−−−−−−−−−−−→
step

〈c, ρ{x← JeKρ}, µ,ms〉
ASSGN

Je1Kρ = v1 Je2Kρ = v2 Jbop(v1, v2)Kρ = b′

〈if bop(e1, e2) then ctt else cff ; c, ρ, µ,ms〉 bool b′−−−−−→
force bf

〈if bf then ctt else cff ; c, ρ, µ, if b′ = bf then ms else true〉

COND

JeKρ = i µ(a, i) = v

〈xd := a[e]; c, ρ, µ,ms〉 if d then index i;db(some v) else index i−−−−−−−−−−−−−−−−−−−−−−−−−→
load(a,i)

〈c, ρ{x← v}, µ,ms〉
LOAD

JeKρ = i Je′Kρ = v

〈a[e]d := e′; c, ρ, µ,ms〉 if d then index i;db(some v) else index i−−−−−−−−−−−−−−−−−−−−−−−−−→
store(a,i)

〈c, ρ, µ(a, i)← v,ms〉
STORE

ρ′ = if ms then ρ{x← 0} else ρ{x← ρ(y)}
〈protect(x, y); c, ρ, µ,ms〉 •−−→

step
〈c, ρ′, µ,ms〉

PROTECT

Figure 6.10 – Instrumented semantics of language with declassification and speculation

The operational semantics only presents the semantics of instructions. The declassifi-
cation feature is only added to the instructions. There are different ways to add a declassi-
fication feature. For example, it can be added as a separate instruction: x := declassify(e).
But all different designs resemble the same semantics. The semantics is very similar to
the original semantics presented in Section 6.4.3 except the execution of ASSGN, LOAD

and STORE also leaks the declassified value along with the original leakage in case of de-
classification (if declassify d boolean is set to true). For example, execution of a[e]d := e′
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leaks both the index (JeKρ) and also the declassified value that is Je′Kρ when d is set to
true. In case of no declassification, the execution of a[e]d := e′ only leaks the index (JeKρ).

6.5.3 Typing rules

This section presents the typing rules for the instructions with declassification. The
typing rules are similar to those presented in Section 6.4.5 except that in the case of
declassification, the declassified value gets the Transient type. This helps in making a
decision to protect them so that there are no transient attacks due to them. For example,
in the example present in Figure 6.9, the value declassify(cipher) gets the type Transient
that helps in determining the compiler-level mitigation like putting a protect instruction
after line 9; hence d will be protected and will not leak the secret value m.

Instructions:

Γv,Γa ` {}
0-STEP

Γv,Γa ` i Γv,Γa ` c
Γv,Γa ` {i; c}

S-STEP

Γv(x) = t Γv ` e : te if d then Transient else te <= t

Γv,Γa ` xd := e
ASSGN

Γv ` b : Public Γv,Γa ` ctt Γv,Γa ` cff
Γv,Γa ` if b then ctt else cff

COND

Γv(x) = Some tx Γv,Γa ` a[e] : ta if d then Transient else totv(ta) <= tx

Γv,Γa ` xd := a[e]
LOAD

Γv,Γa ` a[e] : ta Γv ` e′ : te if d then Transient else te <= totv(ta)

Γv,Γa ` a[e]d := e′
STORE

Γv(x) = Some Public Γv(y) = Some t t <= Transient

Γv,Γa ` protect x y
PROTECT

Figure 6.11 – Typing rules for instructions with declassify and speculation

The rule ASSGN ensures that in the case where d is true in xd := e, the declassified
value e gets the type Transient instead of type te and also its type should be less than the
type of x. The rule LOAD ensures that in the case where d is true in xd := a[e], the type
of a[e] should be Transient instead of totv(ta) and also its type should be less than the
type of x. The typing rule for store instruction is similar to the load instruction. There
is no declassification involved in conditional instruction; hence, the typing rule remains
the same as described in Section 6.4.5.

6.5.4 Soundness

The type system is sound, i.e., it only accepts speculative constant-time programs (with
declassification). Informally, soundness states that if a program p with declassification
type checks using the judgment Γv,Γa ` p, then p is speculative constant-time. The
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soundness of the type system depends on the definition of state equivalence and speculative
constant-time. State equivalence for the speculative programs is the same as described
in the definition 13. Speculative constant-time definition is also the same as described in
the definition 14. The declassification process makes the data public that is also leaked
during the execution of instructions like assignment, load, or store. Hence, to prove that
leakages are equal, we need the assumption that the declassified values are the same in
both executions.

Declassify specification 〈c1, s1〉 =DSPEC 〈c2, s2〉 is defined as follows:

Definition 15 (Declassify Specification).

〈c1, s1〉 =DSPEC 〈c2, s2〉 ≡

〈c1, s1〉 =(Γv ,Γa) 〈c2, s2〉 ∧ 〈c1, s1〉
l
�
d n

s′1 ∧ 〈c2, s2〉
l′

�
d n

s′2 =⇒

ldec = l′dec ∧ s′1safe ↔ s′2safe

Declassification specification states that if the program c starts its execution from two
equivalent states s1 and s2 produces leakage l and l′ then the declassified value present in
l and l′ will be equal. The declassified value is extracted from the leakage l and l′ using
the function ldec.

ldec =

{
v l = db(v)

None l 6= db(v)

The definition lsdec is recursively defined using ldec to extract the declassified value
from the sequence of leakages ls.

Soundness for expressions The Soundness of the type system of expression is required
to prove the soundness of the type system for instructions. It states that the evaluation
of expression e in two equivalent states is equal if the type of expression is Public in case
of misspeculation and Transient in case of no speculation.

Theorem 28 (Soundness of expressions).

∀ s1 s2 e t, s1 =s
Γv s2 ∧ Γv ` e : if ms1 then Public else Transient =⇒ JeKs1 = JeKs2

Proof. The proof of soundness for expressions does not change, and it is the same as
described in 24 because the declassification feature is only added to the instructions.

Auxiliary functions and lemmas To prove the soundness of the type system, this
section defines some auxiliary functions and lemmas that are used in the final proof.

Definition 16 (lbuild). The function lbuild builds the sequence of leakages for a given
instruction i, starting state s (s = 〈ρ, µ,ms〉) and a set of declassified values vs:

lbuild(〈i, s〉, vs) =



if d then {db(vs0)} else {•} i = xd := e

if d then {index JeKρ; db(vs1)} else {index JeKρ} i = xd := a[e]

if d then {index JeKρ; db(vs1)} else {index JeKρ} i = a[e]d := e′

{bool (bop(Je1Kρ, Je2Kρ)} i = if bop(e1, e2) then i1 else i2

{•} i = protect x y

https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs_spec_declassify.v?ref_type=heads#L239
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The definition lbuild helps in constructing the leakage corresponding to an instruction
for a given set of declassified values.

Lemma 1 (Leakages build from the same set of declassified values are equal).

∀ Γv Γa c1 c2,Γv,Γa ` c =⇒ (∀ s1 s2 vs, 〈c1, s1〉 =s
Γv ,Γa 〈c2, s2〉 =⇒

lbuild(〈c1, s1〉, vs) = lbuild(〈c2, s2〉, vs))

Proof. The proof follows doing induction on the typing derivation and unfolding the
definition of lbuild. State s1 and s2 are unfolded as 〈ρ1, µ1,ms1〉 and 〈ρ2, µ2,ms2〉.

• xd := e: In the case of assignment, the leakage constructed using the lbuild function
depends on the declassified value vs or is • depending on the value of d. Since the
same declassified value vs is provided to lbuild function on both sides, the proof is
trivial.

• xd := a[e]: In the case of load, the leakage constructed by the function lbuild on
the left-hand side is if d then {index JeKρ1 ; db(vs1)} else {index JeKρ1} and on the
right-hand side is if d then {index JeKρ2 ; db(vs1)} else {index JeKρ2}. The second
element db(vs1) of the sequence of leakages is trivially equal. The typing derivation
of load instruction ensures that the type of e is Public. Using the theorem 28 on the
hypothesis Γv ` e : Public and 〈c1, s1〉 =s

Γv ,Γa
〈c2, s2〉, we know that JeKρ1 = JeKρ2

which suffices to prove that index JeKρ1 = index JeKρ2 .

• a[e]d := e′: The proof for store is similar to the above case.

• if bop(e1, e2) then i1 else i2: In the case of conditional, the leakage constructed using
the lbuild on the left-hand side is {bool (bop(Je1Kρ1 , Je2Kρ1)} and on the right-hand
side is {bool (bop(Je1Kρ2 , Je2Kρ2)}. From the typing derivation, we know that the type
of e1 and e2 is Public. Using the theorem 28 on the hypothesis Γv ` e1 : Public and
〈c1, s1〉 =s

Γv ,Γa
〈c2, s2〉, we know that Je1Kρ1 = Je1Kρ2 . Similarly, using the theorem 28

on the hypothesis Γv ` e2 : Public and 〈c1, s1〉 =s
Γv ,Γa

〈c2, s2〉, we know that Je2Kρ1 =
Je2Kρ2 . This suffices to prove {bool (bop(Je1Kρ1 , Je2Kρ1)} = {bool (bop(Je1Kρ2 , Je2Kρ2)}.

• protect x y: This case is trivial because protect produces • leakage.

Lemma 2 (Leakages build from the extracted declassified value from a leakage produce
the same leakage).

∀ s s′ c c′ l d, 〈c, s〉 l−→
d
〈c′, s′〉 =⇒ lbuild(〈c, s〉, ldec) = l

Proof. The proof follows by doing induction on the typing derivation and unfolding the
definition of lbuild. The proof is trivial and boils down to proving the correctness of the
function ldec (that it correctly extracts the declassified value from the leakage l) and
lbuild.

To prove the above lemmas 1 and 2 for multi-step executions, we need to establish
the definition lbuild for constructing the leakages for a set of instructions from a set of
set of declassified values. The function to construct leakages corresponding to a set of
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instructions i; c for a given set of declassified value v :: vs is called lbuildc. The semantic
of the function lbuildc is present in Figure 6.12.

lbuildc(〈{}, s〉, {}) = {}
B-EMPTY

lbuild(〈i, s〉, v) = l sbuild(〈i, s〉, v, d) = s′ lbuildc(〈c, s′〉, vs) = ls

lbuildc(〈{i; c}, s〉, {v; vs}) = {l; ls}
B-S-STEP

lbuildc(〈{}, s〉, {v; vs}) = {}
B-EC-STEP

lbuildc(〈{i; c}, {}〉, s) = {}
B-ED-STEP

Figure 6.12 – Function to construct leakages corresponding to a set of instructions for a
given set of declassified values

The rule B-S-STEP represents the semantics of lbuildc to build the leakage for the set
of instruction {i; c} from a set of set of declassified values {v; vs}. It uses lbuild function
defined in 16 to calculate the leakage l for instruction i for a state s and declassified value
v. To calculate the leakages for the rest of the instructions in the sequence i.e. c, we need
to compute the updated state. It uses sbuild function to compute the next state. With
the updated state s′, lbuildc recursively computes the leakage for c using the declassified
values vs. The semantics of sbuild is pretty straightforward and based on the instructions’
operational semantics. The rules of sbuild is present in Figure 6.13.

ρ′ = ρ{x← if d then vs else JeKρ}
sbuild(〈xd := e; c, ρ, µ,ms〉, vs, step) = 〈c, ρ′, µ,ms〉

S-ASSGN

ρ′ = ρ{x← if d then vs else µ(a, JeKρ)}
sbuild(〈xd := a[e]; c, ρ, µ,ms〉, vs, load(a, JeKρ)) = 〈c, ρ′, µ,ms〉

S-LOAD

µ′ = µ(a, JeKρ)← if d then vs else Je′Kρ)
sbuild(〈xd := a[e]; c, ρ, µ,ms〉, vs, store(a, JeKρ)) = 〈c, ρ′, µ,ms〉

S-STORE

ms′ = if bop(Je1Kρ, Je2Kρ) = bf then ms else true

sbuild(〈if bop(e1, e2) then c1 else c2; c, ρ, µ,ms〉, vs, force bf) =
〈if bf then c1 else c2, ρ, µ,ms

′〉

S-IF

ρ′ = if ms then ρ{x← 0} else ρ{x← ρ(y)}
sbuild(〈protect x y; c, ρ, µ,ms〉, vs, step) = 〈c, ρ′, µ,ms〉

S-PROTECT

Figure 6.13 – Function to construct updated state from a given set of declassified values

Lemma 3 (Build next state from declassified values).

∀ s s′ c′ l d, 〈c, s〉 l−→
d
〈c′, s′〉 =⇒ sbuild(〈c, s〉, ldec, d) = 〈c′, s′〉
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Proof. The proof follows by doing a case analysis on c and unfolding the definition of
sbuild. The proof is trivial and boils down to proving the correctness of the function sbuild
(i.e., it correctly computes the next state).

Lemma 4 (After a single step execution, the resultant states are also in equivalence).

∀ s1 s2 c1 c2 s
′
1 s
′
2 c
′
1 c
′
2 l d,

Γv,Γa ` c1 ∧ 〈c1, s1〉 =s
(Γv ,Γa) 〈c2, s2〉 ∧

sbuild(〈c1, s1〉, vs, d) = 〈c′1, s′1〉 ∧ sbuild(〈c2, s2〉, vs, d) = 〈c′2, s′2〉 =⇒
〈c′1, s′1〉 =s

(Γv ,Γa) 〈c′2, s′2〉.

Proof. The proof follows by doing induction on the type derivation. The states are un-
folded as s1 = 〈ρ1, µ1,ms1〉, s2 = 〈ρ2, µ2,ms2〉, s′1 = 〈ρ′1, µ′1,ms′1〉 and s′2 = 〈ρ′2, µ′2,ms′2〉.
The two resultant commands c′1 and c′2 are equal because sbuild function builds the next
state using the same set of directive d.

• xd := e: The state equivalence definition generates two cases:

– With speculation: In this case, ms1 = ms2 is trivially true as the assignment
does not update the misspeculation flag. According to the semantics of sbuild
function represented by rule S-ASSGN in Figure 6.13, ρ′1 and ρ′2 are calculated as,
ρ′1 = ρ1{x← if d then vs else JeKρ1} and ρ′2 = ρ2{x← if d then vs else JeKρ2}.
The rest of the proof follows by doing a case analysis on d.

∗ d = true: For the case where declassification is enabled: ρ′1 = ρ1{x← vs}
and ρ′2 = ρ2{x← vs}. The typing derivation of the assignment gives the
relation Transient <= t, where t is the type of x. The type t can be
Secret or Transient.

· t = Secret. There are two cases according to the update function:
1. x = x′ and Γv(x

′) = Public. This is trivially proved by contra-
diction.

2. x 6= x′ and Γv(x
′) = Public. The goal in this case is ρ′1(x′) =

ρ′2(x′). The proof follows by using the induction hypothesis
s1 =s

(Γv ,Γa) s2.
· t = Transient. The proof is similar to the above case.
· t = Public. This case is trivial as we get Transient <= Public in

the hypothesis, which is a false assumption.
∗ d = false: For the case where declassification is disabled: ρ′1 = ρ1{x← JeKρ1}

and ρ′2 = ρ2{x← JeKρ2}. The type derivation gives the relation t′ <= t,
where t′ is the type of e and t is the type of x. Based on the semantics
of the update, there are two cases:
1. x = x′ and Γv(x

′) = Public. Using these two hypothesis, we know
Γv(x) = Public and t′ <= Public (this also ensures that t′ = Public
and Γv ` e : Public). By applying the theorem 28 on the hypothesis
Γv ` e : Public, we get JeKρ1 = JeKρ2 that suffices to prove ρ′1 = ρ′2.
Since there is no change in the memory map, we conclude s′1 =s

(Γv ,Γa)

s′2
2. x 6= x′ and Γv(x

′) = Public. The goal in this case is ρ′1(x′) = ρ′2(x′).
The proof follows by using the induction hypothesis 〈c1, s1〉 =s

(Γv ,Γa)

〈c2, s2〉 and transitivity.
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– With no speculation: The proof is similar to the above case except that the
type of x′ will be Transient. Based on the type of x′, the type of x will be
Trasient in the case of x = x′. This will generate an extra case for the type
of e as it should be less than equal to Transient (the type of e can be Public
or Transient). Overall, the proof structure is very similar to the above case.

• xd := a[e]: According to the semantics of sbuild function represented by rule S-LOAD

in Figure 6.13, ρ′1 = ρ1{x ← if d then vs else µ(a, JeKρ1)} and ρ′2 = ρ2{x ←
if d then vs else µ(a, JeKρ2)}. The proof structure is similar to the above case.

• a[e]d := e′: According to the semantics of sbuild function represented by rule S-STORE

in Figure 6.13, µ′1 = µ1(a, JeKρ1)← (if d then vs else Je′Kρ1) and µ′2 = µ2(a, JeKρ2)←
(if d then vs else Je′Kρ2). The proof follows a similar style as described above.

• if b then c1 else c2 and protect x y: The proof is similar to as explained in theorem
6.4.6 as there is no declassification in these two instructions.

Preservation Preservation justifies that after any number of steps, a well-typed pro-
gram will remain well-typed. This property is used to prove soundness for multi-step.

Theorem 29 (Preservation).

∀ Γv Γa s1 s
′
1 l1 d1 c c

′,

Γv,Γa ` c ∧ 〈c, s1〉
l1−→
d1
〈c′, s′1〉 =⇒ Γv,Γa ` c′

Proof. The proof is similar to the proof of preservation is Section 2.5.

Multi step soundness The final soundness theorem is stated as follows:

Theorem 30 (Multi-step soundness).

∀ Γv Γa s1 s2 c1 c2,Γv,Γa ` c1 ∧ 〈c1, s1〉 =DSPEC 〈c2, s2〉 =⇒ c1 =SCT
(Γv ,Γa,s1,s2) .

Proof. The proof follows by unfolding the definition of =DSPEC and =SCT and doing
induction on n. It generates two goals and a set of hypothesis 〈c1, s1〉 =(Γv ,Γa) 〈c2, s2〉,

〈c1, s1〉
l
�
n
s′1 and 〈c2, s2〉

l′

�
n
s′2 . The first goal concerns the equivalence of leakages,

and the second is proving that states s′1 and s′2 are safe. The second goal is trivial, as
the language never gets stuck. The proof for proving the equivalence on leakages follows
by doing induction on n, where n is the number of steps taken during the multi-step
semantics.

• n = 0: This case is trivial.

• n 6= 0: The goal is to prove l1; l2 = l′1; l′2 where l1 and l2 are leakages from single-
step execution corresponding to the head of sequence c1 and l2 and l′2 are the rest
of the leakages obtained during multi-step execution. From lemma 2, we know
that lbuild(〈c1, s1〉, l1dec) = l1 and lbuild(〈c2, s2〉, l2dec) = l′1. Also, from the hypothe-
sis 〈c1, s1〉 =DSPEC 〈c2, s2〉, we know that the declassified values l1dec and l2dec are

https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs_spec_declassify.v?ref_type=heads#L239
https://gitlab.inria.fr/spriya/simple_lang_sslh/-/blob/main/coq/proofs_spec_declassify.v?ref_type=heads#L1036
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equal. Substituting l1dec with l2dec , the final goal transforms to lbuild(〈c1, s1〉, l1dec); l2
= lbuild(〈c2, s2〉, l1dec); l′2. Also, from the lemma 1, we know that if the two starting
states for c1 are in equivalence, then the leakages build from same set of declassi-
fied values are equal i.e. lbuild(〈c1, s1〉, l1dec) = lbuild(〈c2, s2〉, l1dec). Hence substituting
lbuild(〈c1, s1〉, l1dec) with lbuild(〈c2, s2〉, l1dec) generates equality on the head of the se-
quence of leakages.

Now rest of the proof focuses on proving l2 = l′2. The lemma 3 applied to the
single-step execution (the execution of the head of c1 starting from s1 and s2) gives
the relation (using the sbuild function) to build the next initial state for the execu-
tion of the rest of the commands in c1. Applying lemma 4 on typing derivation,
state equivalence relation (corresponding to s1 and s2), and results of lemma 3
(i,e. sbuild(〈c1, s1〉, l1dec , d) = s′′1 and sbuild(〈c2, s2〉, l2dec , d) = s′′2 ) gives the result
s′′1 =s

(Γv ,Γa) s
′′
2. From the preservation theorem 29, we know that commands present

in state s′′1 and s′′2 are also well-typed. Generalizing the induction hypothesis on the
above results concludes l2 = l′2.
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Chapter 7

Typing High-Speed Cryptography
against Spectre v1

7.1 Introduction

This chapter extends the work presented in Chapter 6 to provide mitigation against
Spectre v1 attacks for the Jasmin language. There are other existing solutions to protect
cryptographic implementations from Spectre v1 attacks, like inserting fences after the
guard expression, but it incurs a significant performance overhead. An efficient method
of protection is based on (value or address) hardening, including all forms of Speculative
Load Hardening [Chandler Carruth, 2021] discussed in Section 1.1.3 of Chapter 1.

Chapter 6 explains the approach of using a new primitive called protect to harden
the values in case of speculative loads in Section 6.4.2. The approach in Chapter 6 is
applied for a simple language and has only one level of transformation compared to a
more realistic language where we need to take care of many transformations and other
programming details related to registers and stacks. Hence, in reality, applying these
methods takes work. To write highly efficient cryptography algorithms, we intend to use
as many available resources as possible to increase the overall performance. For example,
we are aware of the fact that accessing data stored in a register is faster as compared
to accessing from main memory. Hence, cryptographers tend to use registers as much
as possible to avoid loads and storage from memory. However, the number of registers
provided in a particular architecture is limited; hence, applying efficient mitigation based
on hardening is difficult. The implementation needs to be rewritten so that one regis-
ter is always reserved for a misspeculation flag (not necessarily one fixed register, as a
misspeculation flag can be moved back and forth between the available registers). This
register will help to decide whether a program is misspeculating; based on it, masking is
performed to avoid speculative read/write.

This chapter presents a realistic and extended version of the approach presented in
Chapter 6. The approach presented in this manuscript protects the cryptographic im-
plementation written in Jasmin against Spectre v1 attacks with minimal performance
overhead. For example, the cost of protecting a highly-optimized AVX2 implementation
of Kyber768 against Spectre v1 is less than 1%.
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7.1.1 Contributions

• A set of primitives that support fine-grained protection against Spectre v1 attacks
by encoding both compiler-level mitigation, including Speculative Load Harden-
ing [Chandler Carruth, 2021] and [Shivakumar et al., pear] Selective Speculative
Load Hardening , and algorithm-specific mitigation. An interface to update and use
misspeculation flags. Programmers can use these flags to track whether program
execution is normal or misspeculating.

• A type system to track that primitives are correctly used. Type-system uses a
value-dependent information flow analysis, where security levels depend on the mis-
speculation flag.

• An idea about how to prove the soundness of the type system: typable programs
are speculative constant-time.

• An implementation of the approach in the Jasmin framework and modified exist-
ing implementations of several cryptographic algorithms so that they can be type-
checked using the type system (protected against Spectre v1).

7.1.2 Discussion

Section 1.1.2 of Chapter 1 presents an introduction and various examples showing the
possibilities of Spectre v1 attacks. There are many ways to protect constant-time pro-
grams against Spectre v1 attacks. As seen in Section 5.1.1 of Chapter 5, one simple
countermeasure is to insert fence instruction after each conditional guard. As discussed in
Section 6.1 of Chapter 1, this approach suffers from some limitations like the requirement
of speculative memory safety and performance overhead.

Another more efficient alternative is to insert enough fence instructions so that there is
always a speculative barrier between when a register becomes transient and when it leaks
via control-flow or memory accesses [Vassena et al., 2021a]. This ensures that a program
is speculative constant-time and performs better, but it is still not a great solution due
to its noticeable performance overhead. It is better to minimize the use of fences.

The LLVM compiler implements an alternative approach called Speculative Load
Hardening [Chandler Carruth, 2021] as discussed in Section 1.1.3 of Chapter 1. It is more
efficient than the methods discussed in prior paragraphs, but it focuses on hardening all
loads.

Another more efficient approach is to perform selective speculative load hardening by
protecting only transient values assigned to public registers. Selective speculative load
hardening minimizes the performance overhead by only masking transient values. This
work implements selective speculative load hardening.

7.1.3 Illustrative Example

This section presents examples that show how new primitives can be used to implement
countermeasures and algorithm-specific protections which guarantee speculative constant-
time for the programs present in Figure 1.4.
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p[10] s[5]

1 ms = init msf();
2 b = i < 10;
3 if b {
4 ms = set msf(b, ms);
5 x = p[i];
6 x = protect(x, ms);
7 y = p[x];
8 } else {
9 ms = set msf(! b, ms);

10 }

(a) Protected v1-read

s[5] p[10]

1 ms = init msf();
2 b = i < 5;
3 if b {
4 ms = set msf(b, ms);
5 s[i] = sec;
6 x = p[0];
7 x = protect(x, ms);
8 p[x] = 0;
9 } else {

10 ms = set msf(! b, ms);
11 }
12

(b) Protected v1-write

Figure 7.1 – Protected v1

Speculative Load Hardening Figure 7.1a shows a speculative load hardening process
that protects the program present in Figure 1.4a against Spectre V1 attacks. Line 1 uses
an instruction called init msf() that ensures that the program’s execution starts with a
non-speculating state (sequential execution and misspeculation flag is set to ⊥). Line 4
and Line 9 set the misspeculation flag based on the condition i < 10 using the primitive
set msf(b,ms) and set msf(!b,ms). This ensures that the ms register is updated correctly
after entering the branch. Line 6 uses primitive protect(x,ms) to mask the speculatively
loaded value (p[i]) in the variable x. This ensures that in case of misspeculation, the value
from the secret part (s) of the array does not reach the attacker (instead, the attacker
gets the default value when i = 13). Hence, the program is protected against Spectre
v1. A similar procedure is applied to example Figure 1.4b and makes its speculative
constant-time.

1 i = 0;
2 while (i < 8) {
3 t1 = msg[i];
4 t2 = key[i];
5 t1 ^= t2;
6 msg[i] = t1;
7 i += 1;
8 }

(a) Unprotected

1 ms = init ms();
2 i = 0;
3 while (i < 8) {
4 ms = set msf(i < 8, ms);
5 t1 = msg[i];
6 t1 = protect(t1, ms);
7 t2 = key[i];
8 t2 = protect(t2, ms);
9 t1 ^= t2;

10 msg[i] = t1;
11 i += 1;
12 }
13 ms = set msf(i >= 8, ms);

(b) SLH

1 ms = init ms();
2 i = 0;
3 while (i < 8) {
4 ms = set msf(i < 8, ms);
5 t1 = msg[i];
6 t2 = key[i];
7 t1 ^= t2;
8 msg[i] = t1;
9 i += 1;

10 }
11 ms = set msf(i >= 8, ms);

(c) selSLH

Figure 7.2 – Protected one-time pad

Selective Speculative Load Hardening Figure 7.2a presents an example that can
perform secret loads from two secret arrays msg and key. The program is assumed to be
constant-time which means the index i is public. Figure 7.2b presents the protected version
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of the program Figure 7.2a by applying speculative load hardening. It adds init msf() at
the beginning of the program in line 1 to ensure that the program’s execution starts with
ms set to ⊥. In lines 4 and 13, the ms register is set correctly according to the guard (i <
8). In lines 6 and 8, protect primitive is used to mask the value speculatively assigned to t1
and t2. Figure 7.2b presents another protected version of the program Figure 7.2a where
no protect primitive is added to the program because as the type of t1 and t2 are secret;
there is no need to protect the secret loads (as they will be protected by constant-time
programming discipline).

7.2 Programming hardened implementation

This section presents the methodology in detail.

7.2.1 Threat model and security notion

To provide mitigation against micro-architectural attacks, we need to model the threat
model. The threat model is designed to implement the attacker’s actions. It assumes that
the attacker can observe branching decisions and addresses of memory accesses and has
full control of branching. An attacker can also misuse all unsafe reads and values of all
unsafe writes, which was restricted in the work presented in Chapter 5.

7.2.2 Extenison to the Jasmin language and its semantics

Figure 1.11 presents the Jasmin language. The Jasmin language is extended to include
four more primitives:

• ms := init msf() sets the misspeculation flag ms to 0. This primitive is typically used
at the beginning of a program to ensure that the program starts executing from a
state that is not misspeculating.

• x := mov msf(ms) moves the misspeculation flag value to variable x

• ms := set msf(e, ms) updates the misspeculation flag. This primitive may be used
immediately after a branching instruction conditioned on e. However, it is sometimes
possible to postpone updating the flag or even not update it without compromising
security.

• x := protect(x, ms) conditionally masks the register x depending on the value of ms.
Specifically, the value of x remains unchanged in a correct execution and is set to
−1 in a misspeculated execution.

Semantics

To reason about the speculative semantics, the semantic is instrumented to include ob-
servations o, directives d.

p : s
o−→
d
p′ : s′

The misspeculation flag tracks whether the semantic is misspeculating or not. In case of
no speculation, the value of misspeculation flag is set to false.
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Instruction semantics:

{} : s→ε
ε s

0-STEP

i : s
o−→
d
s1 c : s1

o
�
d
s2

{i; c} : s
o::O
�
d::D

s2

S-STEP

x := e; c : 〈ρ, µ, b〉 •−−→
step

c : 〈ρ{x← JeKρ}, µ, b〉
ASSGN

JeKρ = i i ∈ |a| µ(a, i) = v

ssafex := a[e]; c : 〈ρ, µ, b〉 read(a,i)−−−−−→
step

c : 〈ρ{x← v}, µ, b〉
SAFE LOAD

JeKρ = i i /∈ |a| i′ ∈ |α| µ(α, i′) = v

x := a[e]; c : 〈ρ, µ,>〉 read(a,i)−−−−−−→
load(α,i′)

c : 〈ρ{x← v}, µ,>〉
LOAD

JeKρ = i i ∈ |a|

ssafe a[e] := e′; c : 〈ρ, µ, b〉 write(a,i)−−−−−→
step

c : 〈ρ, µ{(a, i)← Je′Kρ}, b〉
SAFE STORE

JeKρ = i i /∈ |a| α ∈ A, i′ ∈ |α|

ssafe a[e] := e′; c : 〈ρ, µ,>〉 write(a,i)−−−−−−→
store(α,i′)

c : 〈ρ, µ{(α, i′)← Je′Kρ},>〉
STORE

e = if (d = force) then ¬JeKρ else JeKρ

if e then ctt else cff ; c : 〈ρ, µ, b〉 branch e−−−−−→
d

ce; c : 〈ρ, µ, b ∧ d = force〉
COND

e = if (d = force) then ¬JeKρ else JeKρ ctt = cff ; while cff e ctt; c cff = cff ; c

while cff e ctt; c : 〈ρ, µ, b〉 branch e−−−−−→
d

ce; c : 〈ρ, µ, b ∧ d = force〉
WHILE

ρ′ = ρ{ms← 0}
ms = init msf(); c : 〈ρ, µ,⊥〉 •−−→

step
c : 〈ρ′, µ,⊥〉

INIT

m = if (JeKρ = >) then JmsKρ else −1

ms = set msf(e,ms); c : 〈ρ, µ, b〉 •−−→
step

c : 〈ρ{ms← m}, µ, b〉
SET

v = if (JmsKρ = −1) then −1 else JxKρ
y = protect(x,ms); c : 〈ρ, µ, b〉 •−−→

step
c : 〈ρ{y ← v}, µ, b〉

PROTECT

x = mov msf(ms); c : 〈ρ, µ, b〉 •−−→
step

c : 〈ρ{x← ms}, µ, b〉
MOVE

Figure 7.3 – Instrumented semantics.
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The directive d represents the attacker’s move before executing the instruction, and the
observation o represents the information that will be observed/visible when the instruction
is executed. Formally, the sets of directives and observations are defined as follows:

d ∈ Dir ::= step | force | load(a, i) | store(a, i)
o ∈ Obs ::= • | read(a, v) | write(a, v) | branch b

The attacker uses the directive step in case of sequential execution. In the case of step
directive issued by the attacker, the guard for the conditional instruction is evaluated
first, then proceeds to either the true or false branch, depending on the guard’s value.
The directive force is used by the attacker to force execution to enter into a misspeculated
branch; hence, in turn, it also modifies the misspeculation flag. The directives load(a, i)
and store(a, i) are used by the attacker to read from and write to addresses of their choice
in case of a (speculatively) unsafe memory read or write.

The semantics is defined as a small-step relation represented as p : s
o−→
d
p′ : s′. It

states that a single step of execution of the program p starting from state s produces the
state s′ and observation o with the remaining program p′ under the directive d. The state
s is defined as a triplet 〈ρ, µ, b〉 where ρ is the register map (assigns values to registers), µ
is the memory map (gives value to the valid addresses) and b is the misspeculation flag.

Also, as discussed in Chapter 5, we know that adversarial semantics with backtracks
are equivalent to forward semantics (semantics without backtracks). Following a number
of lemmas in Section 5.4.3 of Chapter 5 has successfully proved that the directive set
without backtrack is enough to reason about speculative constant-time. Hence, this work
considers the semantics without backtracking. The rules are present in Figure 7.3.

The ASSGN rule defines the semantics of assignment instruction. It updates the register
map by assigning the value obtained by evaluating e to the register x under the directive
step. It does not produce any observation (as it involves only computation on registers).
The SAFE LOAD rule defines the semantics of safe load operation. It ensures that the
evaluation of the expression e (the index of the array being accessed) is always less than
the array length |a|. The value present at the index i in the memory map µ is assigned
to the register x and produces the observation read(a, i) (leaking the address). The load
is carried out under ssafe annotation, so the execution is carried out under step directive.
The LOAD rule defines the semantics of unsafe load. It updates the register with the
value obtained by any arbitrary address (index i′ present in array α) present in the
memory as governed by the attacker using the directive load(α, i′). It also leaks the
address (read(a, i)), which is obtained by evaluating the index e. Because the value can
be loaded speculatively from any arbitrary address, the speculation flag is set to > (true),
and it should also start from the state where the program is misspeculating. We assume
that all programs are safe; hence, unsafe execution can only happen under speculative
execution (b = >). The semantics of safe and unsafe store is very similar to the load
operation and is presented in the rule SAFE STORE and STORE.

The COND rule defines the semantics of conditional instruction. The conditional in-
struction gives the freedom to the attacker to force the execution to any of the two
branches irrespective of the evaluation of the guard. The misspeculation flag is updated
by evaluating the condition (b ∧ d = force). If the execution is carried out under the
force directive, then the misspeculation flag is set to >. Both in case of speculation or
sequential, evaluation of guard is leaked. The WHILE rule defines the semantics of the
while loop, and it is similar to the conditional instruction.

The INIT rule defines the semantics of initialization of the ms variable to 0, and it
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operates like a lfence instruction present in x86. It ensures the execution is non-speculating
and ms state is set to ⊥. The SET rule defines the semantics of set msf(e,ms), which
updates the value of ms based on the evaluation of the boolean expression e.

The PROTECT rule defines the semantics of protect(x,ms). It protects the value of x
in case of misspeculation. It assigns the default value to x when the misspeculation flag
ms contains the value -1 and assigns the correct value to x in case of no speculation. The
MOVE rule defines the semantics of x := mov msf(ms), which moves the value of ms to a
variable x.

7.3 Type system

This section presents a constraint-based type system that enforces speculative constant-
time.

7.3.1 Security types

The security lattice is defined as {H, L}, with order L ≤ H. The high-security level H is
used to classify secret data and the low-security level L is used to classify public data.
The formal notation of security level is defined as

T := t | H | L

where t ranges over level (or type) variables. A security type is a pair T = (Tn, Ts) of
security levels. Tn represents the security level under normal (sequential) execution, and
Ts represents the security level under all executions. The relation Tn ≤ Ts can always be
justified in both sequential and speculative execution. The formal definition is as follows:

• (L, L) denotes the public data in both sequential and speculative executions.

• (H, H) denotes the secret data.

• (L, H) denotes the transient data. Transient data is public under sequential execu-
tion but may depend on secrets under speculative execution.

7.3.2 Constraint sets

A constraint set is a set of inequalities of the form t1 ≤ t2 where t1 and t2 are security
levels.

Definition 17 (Closure). The closure C of a constraint C is the smallest set of constraints
that contains C and is closed under transitivity.

Definition 18 (Consistent). The constraint set C is consistent if (H, L) /∈ C and iff there
exists a valuation θ which maps level variables to {L, H} such that for every constraint
(t1 ≤ t2) ∈ C, θ(t1) = θ(t2) or θ(t1) = L and θ(t2) = H.
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7.3.3 Misspeculation type (MSF-type)

The type system assigns different types depending on whether execution is misspeculating
or not. The following grammar defines the MSF-type:

Σ := unknown | ms | ms|e

Informally speaking, these misspeculation types are defined to represent these scenarios:

• During misspeculation, a situation might arise where the states are not known to
be misspeculating. No register variables are expected to contain this information.
The unknown state represents such a scenario.

• The type ms resembles the state when the execution is misspeculating. The other
known fact about the misspeculating state is that the register containing the mis-
specualtion flag ms contains -1. The type ms is used to ensure that the values are
correctly masked.

• The type ms|e resembles the state when the execution is misspeculating and the
boolean expression e is assumed to be true, the register containing the misspeculation
flag ms is set to -1. The type ms|e is used by the type system to postpone the update
of misspeculation flag ms after a branching instruction.

There are various operations defined on the misspeculation type:

Σ1 ⊆ Σ2 := Σ1 = unknown ∨ Σ1 = Σ2

Σ1 ∩ Σ2 := if Σ1 = Σ2 then Σ1 else unknown
Σ|x := if x ∈ fv(Σ) then unknown else Σ
Σ=x := if Σ = ms then x else unknown
Σ|b := if Σ = ms then ms|b else unknown

These operations are used in maintaining the MSF type during the program’s execution.

7.3.4 Typing rules

The typing judgments are of the form:

Σ,Γ ` c : Σ′,Γ′ | C Γ ` e : Γ′ | C

where Γ and Γ′ are security environments, Σ and Σ′ are MSF-types, and C is the set
of constraints. The typing rules for expressions and instructions of Jasmin (language
presented in Figure 1.11) is presented in Figure 7.4.

There are two sets of typing rules: one for expressions and one for instructions.

Typing rules for expressions The typing rules for expressions use the judgment of
the form (does not mention MSF-type):

Γ ` e : Γ′ | C

The typing rules CONST, BOOL and ARRAY INIT are used for typing constants, booleans
and array initialization. They are all public and do not generate any constraints. The
typing rule VAR obtains the type from the context and does not generate any constraints.
The rule OP presents the rule for operators; it collects the constraints from each of its
arguments and generates a new constraint, which forces the security level of op(e1, . . . , e2)
to be maximum of the security levels of arguments.
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Typing rule for instructions The typing rules for instructions use the judgment of
the form (does not mention MSF-type):

Σ,Γ ` c : Σ′,Γ′ | C

The typing rule INIT type checks the init msf() primitive. It ensures that the MSF-
type is set to ms after initialization. The security level of ms is set to (L, L) as the value
assigned to ms variable during initialization is 0, and the security level of all remaining
variables is set to (Γn(x),Γn(x)) as transient values are committed during initialization.
The typing rule SET type checks the set msf(e,ms) primitive. It updates the ms depending
on the value of e. The MSF-type before the update is ms|e, and ensures that the MSF-type
after the update is ms.

The typing rule PROTECT type checks the protect(x,ms) primitive. It requires that
the MSF-type is ms and ensures that the output type of y is (Γn(x),Γn(x)). The protect
primitive copies the value of x to y in case of sequential execution, and in the case of
misspeculation, the value of y is set to default value. The speculative type of y is not set
to L to ensure τn ≤ τs. In the case y = ms, the output type of y is set to unknown.

The typing rule MOVE type checks the mov msf(ms) primitive. It requires that the
MSF-type is ms. The security level of x is set to (L,L) as the value assigned to the ms
variable is always public, and the security level of all remaining variables does not change.
The output MSF-state ms=x ensures that x is added to the set of ms variables.

The typing rule ASSGN describes the typing of an assignment instruction. It enforces
the absence of direct flow by not restricting the subtyping relation between e and x. If
x := ms or x occurs in b, the rule sets the result MSF-type to unknown. This ensures
that only x := mov msf(ms) can move the ms value from one variable to another.

The typing rule LOAD ensures that the array is accessed with an index e, which is
assigned the type (L,L). The value obtained after array access is assigned to the variable
x, which gets the fresh type tnx , tsx . tna ≤ tnx constraint prevents the direct flow in case of
sequential execution, and H ≤ tsx constraint prevents direct flow in speculative execution
(as in case of speculation, the array access may lead to load from an unsafe location).
This shows that there might be the case that a public load in sequential semantics turns
into loading a secret in the subject of speculation, and there is a need to protect such
loads. It helps avoid the necessity of memory safety because even if out-of-bound access
happens during a load operation, the types (L, H) ensure that the variable x needs to be
protected.

The typing rule SAFE LOAD considers the case where the load is speculatively safe
(ssafe annotation distinguishes a safe load from an unsafe load). The constraint for the
index is similar to the unsafe load, but the constraint for the variable x (H ≤ tsx) can be
replaced by Γs(a) ≤ ts.

The typing rule STORE ensures that the array is accessed at an index i which is assigned
the type (L,L) and the stored expression is assigned type (tne , tse) which should be less
than equal to the type of a. As this can lead to an unsafe store because the store can be
performed at an arbitrary address, the type system creates a fresh environment Γ′ and
adds some constraints. The constraint Γ ≤ Γ′ ensures that the type in Γ′ is at least the
one in Γ. The constraint tne ≤ Γ′(a) and tse ≤ Γ′(a) ensures that the type assigned to a
is at least at the level of the stored expression. The constraint tse ≤ Γ′s(a

′) captures the
fact that the speculative type of all other arrays should be at least the speculative type
tse of the stored value due to a speculatively unsafe store.
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Typing rules for expressions:

Γ ` c : (L,L) | φ
CONST

Γ ` b : (L,L) | φ
BOOL

Γ ` x : Γ(x) | φ
VAR

Γ ` a[n] : (L,L) | φ
ARRAY INIT

Γ ` ei : (tni , tsi) | Ci t(fresh)

Γ ` op(e1, . . . , e2) : t | Ci ∪ (tni , tsi) ≤ t
OP

Typing rules for instructions:

Σ,Γ ` ε : Σ,Γ | φ
EMPTY

Σ,Γ ` i : Σi,Γi | Ci Σi,Γi ` c : Σc,Γc | Cc
Σ,Γ ` i; c : Σc,Γc | Ci ∪ Cc

SEQ

Σ,Γ ` e : Σ, (tne , tse) | C
Σ,Γ ` x := e : Σ|x,Γ{x← (tnx , tsx)} | C

ASSGN

Γ′(ms) = L ∀x 6= ms,Γ′(x) = Γn(x)

Σ,Γ ` ms := init msf() : ms,Γ′ | φ
INIT

ms|e,Γ ` ms := set msf(e,ms) : ms,Γ | φ
SET

Γ′ = Γ{y ← (Γn(x),Γn(x))}
ms,Γ ` y := protect(x,ms) : ms|y,Γ′ | φ

PROTECT

Γ′(x) = L

ms,Γ ` x := mov msf(ms) : ms=x,Γ′ | φ
MOVE

Γ ` e : (tne , tse) | Ci (tnx , tns)(fresh)

Σ,Γ ` x := a[e] : Σ|x,Γ{x← (tnx , tsx)} |
Ci ∪ {tne ≤ L, tse ≤ L,Γn(a) ≤ tnx , H ≤ tsx}

LOAD

Γ ` e : (tne , tse) | Ci t(fresh)

Σ,Γ ` ssafe x := a[e] : Σ|x,Γ{x← t} |
Ci ∪ {tne ≤ L, tse ≤ L,Γ(a) ≤ t}

SAFE LOAD

Γ ` i : (tni , tsi) | Ci Γ ` e : (tne , tse) | Ce Γ′(fresh)

Σ,Γ ` a[i] := e : Σ,Γ′ | Ci ∪ Ce ∪ {Γ ≤ Γ′} ∪
{tni ≤ L, tsi ≤ L, tne ≤ Γ′(a), tse ≤ Γ′(a)} ∪ {tse ≤ Γ′s(a

′)|a′ ∈ A, a′ 6= a}

STORE

Γ ` i : (tni , tsi) | Ci Γ ` e : (tne , tse) | Ce Γ′(fresh)

Σ,Γ ` ssafe a[i] := e : Σ,Γ′ |
Ci ∪ Ce ∪ {Γ ≤ Γ′} ∪ {tni ≤ L, tsi ≤ L, tne ≤ Γ′(a), tse ≤ Γ′(a)}

SAFE STORE

Γ ` b : (tnb , tsb) | Cb Σ|b,Γ ` c1 : Σ1,Γ1 | C1

Σ|¬b,Γ ` c2 : Σ2,Γ2 | C2 Γ′(fresh)

Σ,Γ ` if b then c1 else c2 : Σ1 ∩ Σ2,Γ
′ |

Cb ∪ C1 ∪ C2 ∪ {tnb ≤ L} ∪ {tsb ≤ L} ∪ {Γ1 ≤ Γ′} ∪ {Γ2 ≤ Γ′}

COND

Γ′ ` b : (tnb , tsb) | Cb Σ′|b,Γ
′ ` c : Σ0,Γ0 | C Γ′(fresh) Σ′ ⊆ Σ Σ′ ⊆ Σ0

Σ,Γ ` while b do c : Σ′|¬b,Γ
′ |

Cb ∪ C ∪ {tnb ≤ L} ∪ {tsb ≤ L} ∪ {Γ ≤ Γ′}{Γ0 ≤ Γ′}

WHILE

Figure 7.4 – Type system
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The typing rule SAFE STORE ensures that the store is speculatively safe and relaxes a
lot of constraints, as discussed in the unsafe store. In this case, we do not have to deal
with all other arrays and assign them types based on unsafe speculation.

The typing rule COND ensures that the boolean guard is public; hence, it assigns the
type (L, L) to it. Both the branches are typed with MSF-type Σ|b and Σ|¬b respectively.
The output MSF-type is (Σ1 ∩ Σ2), which ensures that the result MSF-type is unknown
if both branches disagree on their result MSF-type. The output security type is Γ′, a
maximum of Γ1 and Γ2. The typing rule WHILE follows the same idea.

Figure 7.5 presents a function branch that illustrates how Jasmin programs are anno-
tated with security types.

1 export fn branch(#transient reg u64 a, #secret reg u64 b c) −→#secret reg u64 {
2 reg u64 r;
3 = #init msf();
4 if a == 0 {
5 r = b;
6 } else {
7 r = c;
8 }
9 return r;

10 }

Figure 7.5 – Illustrative example with type annotation

The function branch takes three arguments a, b and c. The variables taken as argu-
ments to the export function should be atleast transient to protect the Jasmin code from
the non-trusted code that might be misspeculating. The type of local variables are in-
ferred using the type associated with the function’s arguments. The #init msf() primitive
at line 3 ensures that the misspeculating path is backtracked to proceed with correct value
at the beginning of the function.

7.4 Speculative constant-time

The load and store operations with ssafe annotations are assumed to be speculatively
safe, which means the attacker cannot speculatively load or store at any arbitrary address.
This property is stated formally as “Speculative Safety" and is presented as follows:

Definition 19 (Speculative Safety). A load or a store instruction of the form ss(a, e)
= x := a[e] or ss(a,e) = a[e] := e’ is speculatively safe in a configuration consisting of

program p and state s if ∀p s, p : s
l
�
d
ssafe ss(a, e); p′ : s′ then JeKρ ∈ |a|.

All the loads and stores with “ssafe" notation in the input program are assumed to
verify this property.

Definition 20 (Speculative constant-time). Let φ be an equivalence relation on states.
A program c is speculative constant-time with respect to φ (or φ− SCT ),
iff ∀ D ρ1 µ2 ρ2 µ2, 〈ρ1, µ1,⊥〉 φ 〈ρ2, µ2,⊥〉 ∧ c : 〈ρ1, µ1,⊥〉

O1

�
D
c1 : s1 ∧ c : 〈ρ2, µ2,⊥〉

O2

�
D

c2 : s2, implies O1 = O2.
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A program suffices to be speculative constant-time if the observations produced during
its executions starting from state 〈ρ1, µ1,⊥〉 and 〈ρ2, µ2,⊥〉 (which are in equivalence
relation φ, presented as =Σ

θΓ and is defined below) are equal. Equality of the observations
ensures that there are no leakages that the attacker can predict from two executions. To
carry out the proof, we also require that the resulting states will be in equivalence. The
result that a program is speculative constant-time also implies that it is constant-time,
but the vice-versa is not true. The constant-time property corresponds to cases where
directives can be any directive except the force directive.

Definition 21 (Equivalence). Equivalence relation =Σ
θΓ between two states 〈ρ1, µ1, b1〉 and

〈ρ1, µ1, b1〉 is defined as follows:

〈ρ1, µ1, b1〉 =Σ
θΓ 〈ρ2, µ2, b2〉 ≡



b1 = b2

∀x,Γs(x) = L =⇒ ρ1(x) = ρ2(x)

¬b1 =⇒ ∀x,Γn(x) = L =⇒ ρ1(x) = ρ2(x)

∀a,Γs(a) = L =⇒ µ1(x) = µ2(x)

¬b1 =⇒ ∀a,Γn(a) = L =⇒ µ1(x) = µ2(x)

ρ1, b1 � Σ

ρ2, b2 � Σ

the MSF state correspondence is defined as follows:

• ρ, b � ⊥ is always valid.

• ρ, b � ms ≡ b⇐⇒ JmsKρ = −1

• ρ,> � ms|e ≡ JeKρ = ⊥ ⇒ JmsKρ = −1

• ρ,⊥ � ms|e ≡ JeKρ = > ∧ JmsKρ 6= −1

7.5 Soundness

The type system is sound, i.e., it only accepts speculative constant-time programs. The
soundness theorem proves the correctness of the type system stated in Figure 7.4. For
soundness, we show that if p is safe and

Σ,Γ ` p : Σ′,Γ′ | C

then p is speculative constant-time. Informally, the partial equivalence relation =Σ
Γ,C is

defined as setting in relation states that coincide on their public parts, as defined by
necessity from C and Γ, and are furthermore compatible with the MSF type Σ.

The first step of the proof is to show that for every two executions

p : s1
o1−→
d
p1 : s′1

p : s2
o2−→
d
p2 : s′2

such that s1 =Σ
Γ,C s2, we have o1 = o2, p1 = p2 and s′1 =Σ0

Γ0,C0
s′2. There exist such

Σ0,Γ0, C0 such that Σ0,Γ0 ` p1 : Σ′,Γ′ | C0 and s′1 =Σ0
Γ0,C0

s′2. Using the latter, we can
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prove by induction on the set of directives that executions started in related states yield
equal leakage, as required.

The proof will be similar to as explained for the simple language in Chapter 6. The
overall proof script and idea are very similar; it only needs to be extended for a more
realistic compiler than the toy-level compiler.

7.6 Integration in Jasmin

This methodology is implemented on top of the latest version of the Jasmin framework.

7.6.1 New extensions in Jasmin framework

Section 1.3 of Chapter 1 describes the Jasmin framework. A recent extension to Jasmin
allows array variables to have another optional attribute: ptr, along with reg and stack.
The type ptr indicates that the variable contains a pointer to an array. It can also be
combined with reg to form type reg ptr, which means the variable is a pointer stored in
a register. Similarly, it can also be a stack ptr, meaning the variable is a pointer stored
in the stack.

Another recent extension is first-class functions. In the initial development of Jasmin,
all functions were automatically inlined. However, such inlining is inappropriate for im-
plementations with a non-trivial call graph. It is worth noting that function calls use reg
ptr commonly as arguments.

Finally, the Jasmin language was extended with a system call randombytes. Previously,
randomness was passed as a parameter. However, this is not viable for implementations
that may need an arbitrary amount of randomness or to implement widely used crypto-
graphic APIs. A call to randombytes takes a reg ptr as an argument (a pointer to an array
of fixed length) and fills the array with random bytes. The random bytes are assumed to
be safe for this work.

7.6.2 Implementation details

The Jasmin framework is enriched with an intra-procedural analysis that implements the
type system presented in Figure 7.4. Some key aspects are discussed below:

Functions To enable intra-procedural analysis, the type-system implementation infers
the security levels for the function’s inputs and outputs together with a security effect.
This level is an upper bound for the speculative stored potentially performed by the
function outside its expected memory scope. The security effect is used in the rule for
function calls to update the speculative type of the caller’s local variables, similar to
what is done by the STORE rule. This is similar to the handling of effectful functions in
information-flow-type systems.

Pointer variables The implementation associates two types, i.e., two pairs of security
levels, to ptr variables. The first type is for the pointer, while the second type is for
the pointed data. The use of two types can be exploited by programmers when spilling
pointers into stack memory. Again, having two security types for pointers is common in
information-flow type systems for pointer languages.
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System calls The type system requires that the pointer and the length argument of
randombytes be public L and considers that the output is secret H. The type system as-
sumes that the stack effect of the system call is high, which sets to secret H the speculative
types of all arrays—similar to a speculatively unsafe store.

Declassification The type system implements a declassify construct that the program-
mer can use to declare intended leakage. However, the guarantees made by this work
do not include declassification, and it only type-checks the program without declassifica-
tion. But in general, the techniques explained in the section Section 6.5 of Chapter 6 and
[Shivakumar et al., pear] will apply to this setting as well and will help to yield a proof
of relative non-interference for typable programs.

Constraint generation In the type system explained in Figure 7.4, there are con-
straints to represent inequality between security levels. A set of constraints can be repre-
sented with a directed graph where there is an edge between between `1 and `2 iff `1 <=
`2. Constraint generation can be implemented efficiently using a union-find data struc-
ture. Each time a constraint is added, the constraint generation algorithm checks if it
creates a cycle. If a cycle is found, either it contains L and H, and an error is immediately
reported (providing a relatively good location error), or all the variables of the cycle are
merged, allowing us to reduce the size of the graph.

7.6.3 Integration in Jasmin

The Jasmin language is extended with new primitives and security annotations to tag
variables and arrays with security levels. Once written, programs are checked for safety
using the Jasmin safety checker to guarantee that programs are safe. All array accesses of
the form a[n] where n is a constant within the array’s bounds are considered annotated as
speculatively safe. The implementation of the type system is typically used for checking
speculative constant-time before compiling programs. Typing source programs generally
simplifies analysis but may occasionally cause a loss of precision due to the inability to
verify side conditions such as speculative safety or variable conditions on MSF-type. This
is easily compensated by using compilation passes such as inlining, loop unrolling, and
constant propogation to reveal which array accesses have constant indices and can be
marked as speculatively safe, or to make sure that information on MSF-type is not lost.

The lowering pass of the compiler is also extended to lower down the new primitives.

• ms = init msf() is compiled into lfence; ms = 0;

• ms = set msf(e,ms) into branchless conditional move ms = −1 if !e, where !e is the
negation of e, and thus is not subject to speculation on x86 architectures;

• x = protect(x,ms) is compiled into x | = ms, where x is updated with bitwise OR
operation between x and ms.

7.6.4 Application to crypto software

The type system described in Figure 7.4 is used to protect high-performance implementa-
tions of cryptographic primitives. The various implementations protected against specu-
lative constant-time in this work are ChaCha20, Poly1305, secretbox, X25519, and Kyber.
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7.6.5 Benchmarking and results

The cost of protecting cryptographic software against Spectre v1 is monitored for evalua-
tion. The cost in terms of developer effort is evaluated, and then the cost of type-checking
Jasmin software with protections is discussed in this work. Finally, the computational
overhead is also measured to evaluate the execution of new primitives. The evaluation
is carried out on the code written in Jasmin that is already protected against traditional
timing attacks.

The implementation done in this work targets libjade, a cryptographic library that
is currently in development and is written entirely in Jasmin. It implements multiple
symmetric primitives (hash functions, stream ciphers, and authenticators); elliptical-curve
scalar multiplication using X25519 [Bernstein, 2006]; and lattice-based key encapsulation
using Kyber [Bos et al., 2018].

The original libjadelibrary1 consists of about 16 k lines of Jasmin code and provides
72 entry points. For most primitives, it has multiple implementations, including reference
implementations and optimized implementations using different instruction-set extensions
(e.g., the AVX2 vector-instruction extension). At the moment, Jasmin only supports
AMD64 as the target architecture, so all implementations are targeting this architecture.

7.6.6 Development effort

The complete library is adapted to protect each entry point against Spectre v1. In to-
tal this required inserting 79 init msf, 74 set msf, and 73 protect primitives. Insertion
of init msf is straightforward: one such primitive is needed for each entry point before
performing any leaking operation (e.g., a load, store, or branch) on any data. Addition-
ally one init msf is needed after each call to randombytes; libjade has a total of 4 such
calls, all in the implementations of Kyber. The remaining 3 init msf primitives are in 3
different implementations of secretbox; the misspeculation flag is not chosen to be tracked
up to the declassification, but place an init msf right after declassify instead. Insertion
of set msf and protect is not quite as straight-forward, but guided by the type system
and corresponding compiler errors. Overall, the developer effort is remarkably low. This
efficiency is made possible by the enhanced type system in Jasmin. Without the help of
this type system, insertion of protections would be much more cumbersome and, more
importantly, error-prone.

7.6.7 Performance of the type-checker

Type-checking SCT all implementations from the whole libjade library takes a total of a
few seconds on a developer’s laptop. For reference, the complete compilation of libjade
from Jasmin to assembly takes a couple of minutes on the same laptop.

7.6.8 Compilation overhead

To assess the run-time impact of our Spectre v1 protections added to libjade, the execution
time of each primitive is measured; for primitives with variable-length input a sample of
representative message sizes is considered.

1Publicly available on the web: https://github.com/formosa-crypto/libjade/tree/
ece99a3bbd8ebd831f285da0c909daba1ce2972d.

https://github.com/formosa-crypto/libjade/tree/ece99a3bbd8ebd831f285da0c909daba1ce2972d
https://github.com/formosa-crypto/libjade/tree/ece99a3bbd8ebd831f285da0c909daba1ce2972d
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Table 7.1 – Benchmark results of the fastest implementations of select primitives in libjade
without Spectre v1 protections (“constant-time”, CT) and with Spectre v1 protections
(“speculative constant-time”, SCT) on an Intel Core i7-10700K (Comet Lake) CPU

Primitive Impl. Op. CT SCT overhead [%]

ChaCha20

avx2 32B 314 352 12.10
avx2 32B xor 314 352 12.10
avx2 128B 330 370 12.12
avx2 128B xor 338 374 10.65
avx2 1KiB 1190 1234 3.70
avx2 1KiB xor 1198 1242 3.67
avx2 1KiB 18872 18912 0.21
avx2 16KiB xor 18970 18994 0.13

Poly1305

avx2 32B 46 78 69.57
avx2 32B verif 48 84 75.00
avx2 128B 136 172 26.47
avx2 128B verif 140 170 21.43
avx2 1KiB 656 686 4.57
avx2 1KiB verif 654 686 4.89
avx2 16KiB 8420 8450 0.36
avx2 16KiB verif 8416 8466 0.59

secretbox

avx2 32B 1104 1138 3.08
avx2 32B open 1862 1950 4.73
avx2 128B 1198 1234 3.01
avx2 128B open 1960 2044 4.29
avx2 1KiB 3066 3110 1.44
avx2 1KiB open 3886 3950 1.65
avx2 16KiB 31298 31376 0.25
avx2 16KiB open 32146 32208 0.19

X25519 mulx smult 98352 98256 -0.098
mulx base 98354 98262 -0.094

Kyber512
avx2 keypair 25694 25912 0.848
avx2 enc 35186 35464 0.790
avx2 dec 27684 27976 1.055

Kyber768
avx2 keypair 42768 42888 0.281
avx2 enc 54518 54818 0.550
avx2 dec 43824 44152 0.748
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All measurements were performed on a single core of a machine featuring an Intel
Core i7-10700K (Comet Lake) CPU with hyperthreading and TurboBoost turned off.
Each reported cycle count is the median of 8192 runs for primitives with fixed input
length and 1024 runs for each input length for primitives with variable input length. The
standard practice of carrying out the benchmarks on an otherwise idle machine is followed
in this work. While this helps to reduce variance in cycle counts, it also means that the
cost of fence instructions is measured on the optimistic side and may be larger on systems
under full load.

Table 7.1 reports the measurements for the fastest implementation of each of the
cryptographic primitives. The fastest implementation of each primitive is focused here
because this is the most relevant number for performance-critical applications.

The central result is that for sufficiently long cryptographic computations in Jasmin
(i.e., when the constant overhead of the init msf()becomes negligible), the performance
impact is extremely low, typically less than 1%. The benchmark numbers that require
explanation are the somewhat larger overhead for Poly1305 and the slightly negative over-
head for X25519. We started investigating the reasons for these numbers, and preliminary
results suggest that they are due to different code alignments. We will continue to look
into this.

7.7 Related work
There is a large body of work on enforcing and mitigating Spectre attacks. Follow-
ing [Cauligi et al., 2021], this work can be classified according to its target policy. Typi-
cally, the target policy is some variant of [Cauligi et al., 2020] speculative constant-time
(SCT), or relative constant-time (RCT) [Guarnieri et al., 2018], a weaker property which
ensures that speculative execution does not leak more than sequential execution—note
that RCT is also called speculative non-interference in the literature.

Spectector [Guarnieri et al., 2018] and Pitchfork [Cauligi et al., 2020] use symbolic ex-
ecution to enforce RCT and SCT for programs with fences. Their symbolic semantics
over-approximates the behavior of programs and cannot be used to verify programs that
use Speculative Load Hardening. BinsecRel [Daniel et al., 2021] uses relational symbolic
execution to enforce SCT for programs with fences and index masking. In principle,
the relational symbolic execution of BinsecRel is sufficiently precise to verify programs
that Speculative Load Hardening protects. However, BinsecRel does not support all the
language features required for high-speed cryptography.

Blade [Vassena et al., 2021a] is an automated tool that enforces SCT using fence and
index masking—the latter can be more efficient than fencing but requires that the size
of arrays is known statically, which excludes algorithms that take arbitrary length inputs
as parameters. Blade is sound, i.e., it transforms every program that is typable with
a constant-time system is transformed into a speculative constant-time program. The
salient feature of Blade is that it carefully minimizes the number of protections. Precisely,
Blade constructs a data-flow graph where nodes can be annotated as sources, i.e., they
create a transient value, or sinks, i.e., they use a transient value in a leaking instruction.
Blade then uses a classic min-cut algorithm to protect every path from sources to sinks.
However, the protected programs obtained by Blade are less efficient than programs based
on Selective Speculative Load Hardening.

[Barthe et al., 2021a] defines an information-flow type system to protect Jasmin pro-
grams against Spectre attacks. Their type system enforces a stronger form of SCT that
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covers against v1 and a very limited form of v4 attacks. However, their approach is based
on fences, which impose a high-performance overhead and require programs to be specula-
tively safe, which also incurs some performance overhead. In contrast, our type system is
significantly more elaborate and accepts protected programs using (Selective) Speculative
Load Hardening. Finally, our type system is implemented for the latest version of Jasmin,
which includes many new challenging features.

[Shivakumar et al., pear] formalizes Selective Speculative Load Hardening. They also
define a constant-time type system for a core language with fences and a declassify con-
struct, and show that selSLH transforms typable programs into programs that satisfy
RCT—it also follows from their results that typable programs without declassify are
transformed into programs that satisfy SCT. In contrast, we offer mechanisms that can
be implemented but are not limited to selSLH, and we prove that typable programs satisfy
SCT. In addition, [Shivakumar et al., pear] uses Pitchfork to estimate the performance
benefits of Selective Speculative Load Hardening on three examples: ChaCha, Donna,
and Ed25519. Our implementations are better than their predicted overhead.
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Conclusion

Timing-based side-channel attacks are an essential class of vulnerability that needs to
be addressed separately as functional correctness and memory safety do not guarantee
protection against them. This thesis aims to protect programs against a broad range of
timing-based attacks.

The work in this thesis starts with a formally-verified Jasmin compiler, which is ex-
tended to produce constant-time assembly programs in sequential settings. It explains a
methodology on how to turn a formally-verified Jasmin compiler into a formally-verified
secure Jasmin compiler that guarantees the preservation of constant-time property. The
methodology is unique as it does not break the functional-correctness proofs and can be
easily extended for new compiler passes. The notion of leakages and leakage transformers
used in this work captures the syntax and semantics of programs in an abstract manner
that can also be useful to reason about other properties like the cost of programs. This
thesis also extends the work on constant-timeness to include more fine-grained policies
like the model where operators like division or modulo are not considered constant-time
but leaks based on the size of their operands.

Furthermore, formal models to reason about speculative constant-time are developed.
The formal definition of constant-time reasoning about timing-based attacks is extended
from sequential semantics to the speculative domain by incorporating speculation into
the formal semantics. This thesis also includes a formal type-system (dependency anal-
ysis style and information-flow-based style) to reason about speculative constant-time at
the source level. Also, it checks the correct usage of compiler-level mitigation against
Spectre attacks like insertion of fence and selective speculative load-hardening. The de-
pendency analysis helps ensure protection against Spectre v1. Ensuring protection against
Spectre v4 has some limitations, like the requirement of memory safety and significant
performance overhead. We later developed another more expressive type-system based on
information flow that does not require memory safety and has significantly less overhead
due to selective speculative load hardening adaption. The soundness of these type-systems
is proved on paper. We also developed a toy language that supports declassification and
an information-flow-based type system to reason about Spectre attacks. The soundness
of the type-system is formally verified using the Coq theorem prover and will help in the
future to carry out the soundness of the type-system for the Jasmin language.

Overall, the thesis aims to help cryptographic developers to write efficient and se-
cure algorithms without worrying about the compiler breaking the security property like
constant-time on the way to assembly. This thesis presents a formally verified method
to preserve constant-time and a sound type system to ensure Speculative constant-time
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at the source level with a future goal of preservation of the Speculative constant-time
property from the source to assembly.

The work presented in this thesis can be further extended to provide more efficient
mitigation against transient execution attacks; for example, selective speculative load-
hardening only helps in providing protection against Spectre v1, and protection against
Spectre v4 is provided by insertion of fence which could be more efficient. A more efficient
mitigation against Spectre v4 will be desirable. The methodology presented in this thesis
for the preservation of constant-time property can be further extended to support it for
different architectures like ARM, RISC-V, etc. This thesis mainly focuses on timing-based
side-channel attacks, which can be further extended to support other side-channel leaks,
such as power consumption. The goal would be to make the leakage model parametric so
that different side-channel models can be instantiated and used to reason about various
side-channel leakages like timing, power consumption, etc.
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