
HAL Id: tel-04326141
https://hal.science/tel-04326141

Submitted on 6 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Meeting in Harsh Conditions
Yoann Dieudonne

To cite this version:
Yoann Dieudonne. Meeting in Harsh Conditions. Distributed, Parallel, and Cluster Computing
[cs.DC]. Université de Picardie Jules Verne (UPJV), Amiens, FRA., 2023. �tel-04326141�

https://hal.science/tel-04326141
https://hal.archives-ouvertes.fr


UNIVERSITY OF PICARDY JULES VERNE
DOCTORAL SCHOOL

OF
SCIENCES, TECHNOLOGY AND HEALTH

HABILITATION THESIS
Specialty : Computer Science

Defended by

Yoann Dieudonné
on December 4, 2023

Meeting in Harsh Conditions

prepared at the MIS Laboratory (UR UPJV 4290)

Jury :

Reviewers: Pierre Fraigniaud - Director of research, CNRS
David Peleg - Professor, Weizmann Institute of Science
Sébastien Tixeuil - Professor, Sorbonne University

Examiners: Ahmed El Hajjaji - Professor, University of Picardy Jules Verne
Stéphane Devismes - Professor, University of Picardy Jules Verne





i

Preamble

Any researcher who undertakes to write an HDR manuscript is faced with the task
of synthesizing their work and tying it together with a common thread, even if it
means leaving out some parts for the sake of coherence. And, for my part, I have
been no exception. My main area of research concerns mobile distributed systems
and, although my work has covered a wide range of topics related to this domain,
I chose, by virtue of the principle given above, to focus on the results I obtained
for the rendezvous problem and some of its variants – the gathering problem and
the treasure hunt problem. This choice was a natural one, as I believe these are the
problems to which I have made my most significant contributions since my PhD.
This decision was further strengthened by the fact that all of my publications related
to rendezvous, gathering, and treasure hunting share a common denominator: they
have all been studied under extreme assumptions, making the problems even more
challenging, thus justifying the title of this manuscript.

As the style for an HDR is relatively free, I took the approach of presenting my
results from a perspective emphasizing the underlying ideas and intuitions, while
skipping the formal proofs and pseudocodes: the reader wishing to delve further
into this matter will be simply referred to the publications in which all the demon-
strations supporting my work have already been published. Actually, my goal, in
addition to obtaining the HDR of course, is to provide in a single manuscript an
intuitive understanding of all my work, in order to facilitate its reuse by other re-
searchers as well as students. Indeed, I am firmly convinced that the appropriation
of any algorithmic concept, and by extension its application to lead to new dis-
coveries, cannot be done properly without becoming intimately familiar with the
intuitions underlying it. To close this preamble, I then cannot resist reiterating this
opinion, by quoting Henri Poincaré, who perfectly sums it up: “C’est avec la logique
que nous prouvons, mais avec l’intuition que nous trouvons” (It is by logic that we
prove, but by intuition that we discover).
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1.1 Context

The study of cohorts of mobile robots cooperating with each other to accomplish a
common task began to receive renewed attention in the early 2000s. One of the main
reasons for this renewed interest was that, for a long time, the tendency had been to
use a single robot to perform a given task. However, it must be recognized that such
robots are complex, difficult to program and build, and therefore very expensive.
This is why the trend has gradually shifted towards systems consisting of several
independent and autonomous robots whose capabilities are very limited but which
are easy to program, manufacture (because they are simpler and less expensive),
and deploy. Under the terms “independent” and “autonomous”, we precisely mean
that the robots form a full distributed system, i.e., a system in which the entities
do not depend on a central controlling mechanism. Despite their limitations, these
autonomous robots should be able to accomplish non-trivial tasks together. In fact,
such systems are generally preferable to a single complex robot for many reasons.
Among them, we can mention a faster execution speed, the ability to solve tasks
that would otherwise be impossible for a single entity, or the fact that the system is
likely to exhibit some form of resilience to malfunctions, i.e., the deficiency of one
or more entities does not necessarily lead to mission failure. In literature, this last
point is generally referred to as fault tolerance.

Obviously, there is a flip side to this coin. It is that the use of multiple entities,
instead of a single one, poses a new problem, which is that of coordination. How
to communicate effectively? How to subdivide the work and divide it up? How
can we ensure that each of the decisions taken locally contributes, in the end, to
the achievement of the objectives at the global level? How to react if some robots
break down? All these questions are examples of difficulties that can arise and are
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direct consequences of the problem of coordination that is inherent to all distributed
systems. Answering them is often far from trivial, and sometimes turns out to be a
real challenge.

When I started my research in the field of Robotics, these problematics were
essentially approached from an empirical point of view. Existing algorithms mainly
used heuristics, and were then simply tested either through simulations or on a hand-
ful of real robots. Few or no formal proofs of validity (or even only of termination)
of the solutions were proposed, let alone proofs of complexity. It is with the interest
of complementarity at heart that studies then began to emerge under what we can
call a formal computational approach. One of the common features of these formal
computational studies was the focus on some elementary tasks such as leader elec-
tion, pattern formation, meeting, etc. The task of leader election consists in making
the robots elect exactly one of them as a leader (which can subsequently play the
role of an orchestra conductor in order to obtain the central controlling mechanism
that is initially lacking), while the task of pattern formation consists in making the
robots arrange themselves so that their positions coincide with the points of a given
pattern. As for the task of meeting, the goal, as the name suggests, is to make
the robots gather at the same location. Basic only apparently, these tasks actually
turn out to be both building blocks and essential prerequisites to accomplish much
more complex missions. In other words, their feasibility (resp. unfeasibility) in a
given context automatically leads to the feasibility (resp. unfeasibility), in the same
context, of a whole class of problems. Hence, far from being a loss of generality, the
focus on just a bunch of elementary but nonetheless fundamental tasks, helps bring
about a better understanding of what can be achieved or not by a cohort of robots.
Not only is this statement applicable to robots, but it also extends to other forms
of mobile entities, such as drones, software agents (i.e, pieces of software navigating
in a network), human-operated ground vehicles, and so on. This diverse range of
entities, which encompasses robots, is frequently referred to as agents, a generic
term that we will thus adopt throughout the remainder of this document.

Following the aforementioned formal approach, after my PhD, I decided to set my
sights on the task of meeting. In the literature, this task has been extensively studied
under three major variants that are known as rendezvous, gathering and treasure
hunting. The rendezvous problem consists in making a team made of exactly two
mobile agents eventually meet in a given environment. Gathering is a generalization
of this problem to a situation where there are two or more agents in the team, while
treasure hunting is a restriction to a situation where one of the two agents of the
team (called the treasure) is assumed to always remain stationary.

Depending on the models and the considered assumptions, these variants may
be more or less difficult to handle. In this respect, what constitutes the originality of
our studies and also what links them together is that they have been carried out by
assuming drastic conditions, thus transforming the problem of meeting into a real
challenge. By “drastic conditions”, we mean, for example, an erratic asynchronism
between the agents, the possibility of having to face Byzantine faults (which are
considered, in the field of fault tolerance, as the worst ones that can occur), the
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absence of direct means of communication, or the fact that agents can be equipped
with fuel tanks of small capacity. Of course, some conditions sometimes turned
out to be too restrictive, and thus, when appropriate, we demonstrated results of
impossibility. Nevertheless, and perhaps surprisingly, we were also able to establish
many positive results, including algorithms with reasonable complexities.

Another common thread in all our work is the essentially deterministic approach
we adopted to analyze the problem of meeting, which contrasts with the probabilistic
approach based on well-known methods such as Monte Carlo, Las Vegas or Atlantic
City. Although these methods may offer significant advantages in terms of speed
or ease of design and analysis, they may not offer absolute guarantees in terms of
complexity and/or accuracy of the resulting solution. By opting for a deterministic
approach, we wanted to give the highest priority to these guarantees, keeping in
mind that our solutions could potentially be used in turn in critical applications.
Therefore, in this regard, whenever an algorithm is mentioned in the manuscript, it
will always be assumed to be deterministic, unless explicitly stated otherwise.

A crucial question that arises, when we want to adopt a particular formalism
to study mobile agents, is to decide how to model the environment in which they
navigate. The two most commonly used possibilities in the literature are a network
modeled as a graph, or a terrain modeled as a plane. In both cases, the agents can
be considered as points. In the first case, they navigate in the graph by traversing
its edges and visiting its nodes, while in the second case they simply move across the
plane. Obviously, defining the environment is not enough in order to obtain a com-
plete model. We also need to define some parameters such as the possible behavior
of the agents, their features, their capacities, their total number, etc. Depending on
the aspects we wish to analyze, there are many different ways of doing this, leading
to a lot of distinct models, as it is the case in all of our contributions. Nevertheless,
all of our contributions essentially derive from two root models, one for each of the
two environments of navigation, i.e., a graph-based root model, which we will call
GBM, and a planar-based root model, which we will call PBM. Therefore, rather than
providing a complete description of each model in which we contributed, it is more
convenient to fully describe only the two root models. This way, when presenting
a particular contribution, we can just detail the few changes/derivations that need
to be made from GBM or PBM in order to obtain the model that is related to that
contribution.

If nothing else is stated, solving the task of meeting in GBM (resp. PBM), or in a
model deriving from it, will always mean, throughout this manuscript, getting the
agents to share the same position (resp. node) at the same time and never move
thereafter.

The rest of this chapter is made of two sections. The former of these sections
gives a presentation of the two root models GBM and PBM, while the latter provides
an overview of our contributions that have been done in models deriving from them
and that will be subsequently addressed in more details in the next chapters.
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1.2 Two root models

1.2.1 GBM

The present model, in the exact form given below, was first introduced in
[Dessmark et al. 2006], but without calling it GBM as we do in our manuscript. In
GBM, the network is viewed as a finite, connected, undirected graph G = (V,E) within
which, two agents are placed arbitrarily at two distinct nodes. Initially, the agents
know neither the topology of the graph, nor an upper bound on its size, i.e., its
number of nodes, which is denoted by ∣G∣. We assume that the agents can see each
other only when they share the same node, which is of course not the case initially.

Two assumptions are made about the labeling of the two main components
of the graph, namely nodes and edges. The first assumption is that nodes are
anonymous, i.e., they do not have any kind of labels or identifiers allowing them to
be distinguished from one another. The second assumption is that edges incident
to a node v are locally ordered with a fixed port numbering ranging from 0 to
deg(v) − 1 where deg(v) is the degree of v. Therefore, each edge has exactly two
port numbers, one for each of both nodes it links. The port numbering does not
have to be consistent: a given edge {u, v} ∈ E may be the ith edge of u but the jth
edge of v, where i ≠ j. Given a node v of G and a port i at this node, succ(v, i) will
denote the node that is reached by taking port i from node v. Given two adjacent
nodes v and v′ of G, port(v, v′) will denote the port that must be taken from v to
reach v′.

The two above labeling assumptions are not fortuitous. The primary motivation
of the first one is that if each node can be identified by a label, the task of meeting
becomes quite easy to solve, as it is then reducible to a simple graph exploration.
Precisely, it is then enough for each agent to execute a breadth-first search and stop
at the node having the smallest label. While the first assumption is made so as
to avoid making the problem of meeting trivial, the second assumption is made in
order to avoid making the problem impossible to solve. Indeed, in the absence of
a way of distinguishing locally the edges incident to a node, it is impossible for an
agent to simply designate which edge to take in order to exit its current node.

Time is discretized into an infinite sequence of instantaneous rounds. At the
beginning, every agent is said to be dormant. While an agent is dormant, it does
nothing. A dormant agent can be woken up only in two different ways: either by
an adversary, or as soon as a non-dormant agent enters the starting node of the
dormant agent. The adversary can choose to wake up only one agent or both (not
necessarily in the same round). For consistency, we need to assume that at least one
agent is woken up by the adversary. Initially, the adversary also assigns a positive
integer, called label, to each agent so that the labels of the two agents are different.
Each agent knows its label, but does not know a priori the label of the other agent.
While the labels are different, the algorithm executed by the agents is the same.

When entering (resp. located at) a node v, a non-dormant agent learns the
incoming port number (resp. can only see the degree of v and, if it also occupies v,
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the other agent). In each round r, every non-dormant agent executes its algorithm,
which instructs it either to stay idle at its current node or to exit by a specific port
number. This decision is based only on the state of the (finite but not bounded in
advance) memory of the agent, which is made of everything it has seen and learned
since its wake-up (including its label). Once the instruction of leaving by a port p
(resp. waiting) is completed, the agent is in round r + 1 at node succ(v, p) (resp.
at node v). When traversing an edge, an agent is supposed to be “blind”, i.e., if
both agents traverse the same edge simultaneously in different directions, they do
not notice this fact.

Note that in the absence of a way of distinguishing the agents, as we do through
the use of labels, the problem of rendezvous would not be solvable deterministically
in some graphs. This is especially the case in a ring in which at each node the edge
going clockwise has port number 0 and the edge going counterclockwise has port 1:
if both agents are woken up in the same round, start from different nodes of this ring
and have the same label (or equivalently, no label at all), then within each round
they always act identically and thus always remain in a configuration in which they
occupy distinct nodes.

1.2.2 PBM

Numerous variants of PBM can be found in the literature, but the model,
in the exact form in which it is presented below, was first introduced in
[Dieudonné & Pelc 2014b]. In PBM, the environment is modeled as a spatial uni-
verse, here assumed to be R2, in which two agents are placed at arbitrary but
distinct positions. Each of them is provided with an algorithm, a clock, a compass
showing the cardinal directions, and a unit of length. The algorithm as well as the
clock rate is the same for both agents. It is also the case of the cardinal directions
and the unit of length, which permit to define for each member of the team a local
coordinate system whose the origin is its initial position.

Moreover, the agents have a limited sensory radius (also referred to as radius of
vision), the value of which is denoted by ε, which allows them to sense (or, to see)
all the surroundings at distance at most ε from their respective current locations.
The value of ε is positive and is known a priori to the agents. On the other hand,
they have no prior knowledge of the distance that separates their initial positions.

The model shares some similarities with GBM. First, the agents are also assigned
arbitrary but pairwise distinct labels, corresponding to non-negative integers. As in
GBM, this is done in order to avoid symmetries that would be impossible to break
deterministically, and, although each agent knows its own label, it does not know
a priori the label of the other. Second, we can also find the distinction between
dormant and non-dormant agents. The way of becoming a non-dormant agent is
analogous to that introduced in GBM: the two agents are initially dormant, and each
of them can become non-dormant either by an adversary that has to wake up at
least one agent (it may wake up the two agents but not necessarily at the same
time), or when it gets within the range of vision of the other agent.
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In this model, agents can execute instructions of two types: “go in direction dir
at distance x” and “stay put for time t”. When an agent moves, it travels at speed 1

and the execution of any of the above instructions can be interrupted by the agent
as soon as it gets at distance ε from its fellow. Once the agents are able to see each
other, they can easily solve rendezvous by moving towards the midpoint between
their current positions. The instruction ordered by the algorithm depends only on
the label of the executing agent and of its memory, on which we do not impose any
restriction.

We close the presentation of PBM by noting that it is necessary to have ε > 0,
because otherwise it is impossible to design an algorithm allowing the agents to get
together, whatever their starting positions. Evidence of this can be easily provided
when the adversary wakes up exactly one agent. In this case, the algorithm must
be designed to construct a trajectory passing through each given point after a finite
time. Such a trajectory is composed of a possibly infinite but countable sequence of
segments S1, S2, S3, . . . and the moving agent can find the other when traversing a
segment Si only if the sum of the slopes of the first i segments is equal to the slope
between the starting points of the agents. However, since the number of possible
slopes is uncountable, there is one for which the necessary condition will never be
fulfilled, which proves the impossibility.

1.3 Overview of the contributions

As explained earlier, we will not discuss the task of meeting directly in GBM or PBM,
but within models deriving from them.1 In this section as well as in the rest of the
manuscript, we sometimes refer to GBM and PBM, or their derivations, simply by their
navigation environment. These metonyms are used in order to lighten the text and
when it is clear from the context.

The quality of our meeting algorithms is often measured in terms of the time
elapsed in the worst case between the wake-up of the first agent and the completion
of the task: we then speak of time complexity. However, it may sometimes be more
relevant to evaluate the efficiency of a meeting algorithm with respect to the worst-
case total distance traveled by all agents or the worst-case number of edge traversals
made by all agents, depending on the navigation environment. In such cases, we
refer to this evaluation as the cost complexity of the algorithm.

Among all the possible derivations, one of the most basic but crucial one is
that concerning the total number of mobile agents, as it influences the definition

1Aside from the task of meeting, I also studied other fundamental tasks such as leader election,
pattern formation, exploration, etc., which, as explained in the preamble, will not be discussed
in the present manuscript. However, in case the reader would also be interested by them,
here are the references to these studies: in [Dieudonné & Petit 2007, Dieudonné & Petit 2008,
Dieudonné et al. 2008a, Dieudonné et al. 2008b, Dieudonné & Petit 2009, Dieudonné et al. 2009a,
Dieudonné et al. 2009b, Dieudonné et al. 2010b, Dieudonné et al. 2010c, Dieudonné et al. 2010a,
Dieudonné et al. 2012a, Dieudonné & Pelc 2012b, Dieudonné & Pelc 2012a,
Dieudonné et al. 2013a, Dieudonné & Pelc 2014a, Dieudonné & Pelc 2017, Dieudonné et al. 2019,
Dieudonné & Pelc 2019].
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itself of the variant of meeting. Playing with this number can bring us to consider
three distinct variants, namely rendezvous, gathering and treasure hunt. In the
rendezvous problem, the number of mobile agents is simply left unchanged at two,
i.e., as originally defined in GBM and PBM, while in the gathering problem (resp.
treasure hunt problem) we consider that the team may be made of more than two
mobile agents (resp. is exactly made of one mobile agent and one inert agent). Since
we have obtained significant results for each of these three variants, it seems natural
to dedicate one entire chapter to each of them.

We begin by presenting our contributions [Dieudonné & Pelc 2015,
Dieudonné et al. 2015, Chalopin et al. 2016, Bouchard et al. 2018c,
Bouchard et al. 2019] to the problem of rendezvous in Chapter 2 (preliminary ver-
sions of these papers appeared in [Dieudonné & Pelc 2013b, Dieudonné et al. 2013b,
Chalopin et al. 2014, Bouchard et al. 2017]). For this problem, we worked both in
GBM and PBM, but by weakening the level of synchrony between the agents. We will
detail what we precisely mean by this in the next chapter, but roughly speaking,
instead of assuming that the agents traverse edges in synchronous rounds or move
in the plane at speed 1, we consider, in our four contributions, different scenarios
where it is not the case. In particular, we consider a scenario where the adversary
can initially assign possibly different speeds to each agent and an even harder
scenario in which the adversary can arbitrarily vary the speed of each agent during
each of its moves. In both cases, rendezvous gets significantly more complicated.
Yet, in the first scenario, we give a rendezvous algorithm working in the plane
[Dieudonné & Pelc 2015] (resp. in an arbitrary graph [Bouchard et al. 2018c])
with a time complexity that is polynomial in the initial distance D separating
the agents (resp. in the size of the graph), in the logarithm of the smaller label,
and in the inverse of the faster assigned speed. In the second scenario, we give an
algorithm working in the plane [Bouchard et al. 2019] (resp. in an arbitrary graph
[Dieudonné et al. 2015]) with a cost that is polynomial in D (resp. in the size of the
graph) and in the logarithm of the smaller label. It should be however noted that
the algorithm of [Dieudonné et al. 2015] only solves a relaxed version of rendezvous
in which the meeting can occur at a node or inside an edge, as the original version
allowing meetings only at nodes is impossible to solve in graphs with an adversary
as powerful as that of the second scenario.

Orthogonally, we have also studied the problem of rendezvous in GBM, but by
assuming that the agents are subject to delay faults [Chalopin et al. 2016]: if an
agent incurs a fault in a given round, then it remains in the current node, whether
it was supposed to move or not. If it was supposed to move and the fault happened,
the agent is aware of it. In [Chalopin et al. 2016], we consider three scenarios of fault
distribution: random (independently in each round and for each agent with constant
probability 0 < p < 1), unbounded adversarial (the adversary can delay an agent for
an arbitrary finite number of consecutive rounds) and bounded adversarial (the
adversary can delay an agent for at most c consecutive rounds, where c is unknown
to the agents).

For random faults, we show an algorithm with a time complexity polynomial
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in the size of the network, which achieves rendezvous with very high probability
in arbitrary networks. By contrast, for unbounded adversarial faults, we provide a
negative result by showing that rendezvous is not possible, even in the class of rings.
For bounded adversarial faults, we give a rendezvous algorithm having a time (resp.
cost) complexity polynomial in the size of the network, in the bound c and in the
larger label (resp. in the logarithm of c and in the logarithm of the larger label).

In Chapter 3, we present our contributions [Dieudonné et al. 2014,
Dieudonné & Pelc 2016, Bouchard et al. 2016, Bouchard et al. 2022,
Bouchard et al. 2023b] to the problem of gathering (preliminary versions of
these papers appeared in [Dieudonné et al. 2012b, Dieudonné & Pelc 2013a,
Bouchard et al. 2015, Bouchard et al. 2018a, Bouchard et al. 2020a]). All
of them have been made in models deriving only from GBM and, except in
[Bouchard et al. 2023b], we always assume that in each round the agents sharing
the same node can exchange all currently held information. Unless explicitly stated
otherwise, in our work, solving the gathering problem always goes hand in hand
with its detection: not only do the agents solve the gathering, but they also end up
being aware of it.

We start in Chapter 3 with the paper [Dieudonné & Pelc 2016], in which we
investigate the problem of gathering assuming that the agents are all anonymous.
This particularly means that the agents are entirely identical and have no labels
allowing to distinguish them. As pointed out at the end of the presentation of GBM,
we then give rise to initial configurations from which the problem cannot be solved
due to symmetry considerations. In [Dieudonné & Pelc 2016], we characterize com-
pletely the set Π of all the configurations from which gathering is possible and gave
two universal gathering algorithms, i.e., algorithms working from every configura-
tion of Π. The first algorithm operates under the assumption that a common upper
bound on the size of the network is known to all agents. In this case, our algorithm
guarantees the existence of a round for any configuration of Π such that gathering
is solved. If no upper bound on the size of the network is known, we show that
a universal algorithm for gathering with detection does not exist. Hence, for this
harder scenario, we construct a second universal gathering algorithm guaranteeing,
for any configuration of Π, that all agents eventually get to one node and stop,
although they can never determine if gathering is over. The time complexity of the
first (resp. second) universal algorithms is polynomial in the known upper bound
on the size of the network (resp. in the size of the network).

In [Dieudonné et al. 2014], we address the problem of gathering for a team of
agents all having distinct labels (the label of any given agent can be seen only by
those sharing the same node as it), but by assuming that up to f of them may be
Byzantine, i.e., prone to Byzantine faults. We consider in [Dieudonné et al. 2014]
two types of Byzantine agent: (1) the strongly Byzantine agent, which can choose
an arbitrary port when it moves, convey arbitrary information to other agents and
forge any label, and (2) the weakly Byzantine agent, which can do the same, except
changing its label. No matter the type, we cannot count on the Byzantine agents to
cooperate. Hence, in such a context, we can just hope to gather only the good agents,
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i.e., those that are not Byzantine. This naturally raises the following question: what
is the minimum number of good agents that guarantees gathering of all of them? In
the above paper, we bring exact answers to this question when coping with weakly
Byzantine agents, and give approximate ones when coping with strongly Byzantine
agents, both when an upper bound on the size of the network is known and when
it is not. For weakly Byzantine agents, we show that any number of good agents
permit to solve the problem when an upper bound on the graph size is known. If no
such upper bound is known, then this minimum number is f +2. More precisely, we
show a polynomial algorithm that gathers all good agents in an arbitrary network,
provided that there are at least f + 2 of them. We also provide a matching lower
bound: we prove that if the number of good agents is at most f + 1, then they are
not able to solve the gathering problem in some networks.

For strongly Byzantine agents, we come up with negative and positive results
too. On the negative side, we give a lower bound of f + 1, when the graph size is
known: we show that f good agents cannot gather in the presence of f Byzantine
agents even in a ring of known size. When no upper bound on the graph size is
known, the lower bound of f +2 that holds for weakly Byzantine agents, is obviously
also true for strongly Byzantine agents. On the positive side, we give gathering
algorithms for at least 2f +1 good agents when an upper bound on the graph size is
known, and for at least 4f + 2 good agents when no such upper bound is known. In
[Bouchard et al. 2016], we significantly improve on these positive results: when an
upper bound on the size of the network is known (resp. no upper bound on the size
of the network is known), we provide an algorithm working with at least a number
of good agents that perfectly matches the lower bound of f +1 (resp. f +2) identified
in [Dieudonné et al. 2014].

Unfortunately, the algorithms dealing with strongly Byzantine agents in the
above two papers, all have the major disadvantage of having a time complexity that
is exponential in the size of the network and the largest label of a good agent. To
circumvent this problem, we propose in [Bouchard et al. 2022] to make a concession
on the proportion of strongly Byzantine agents within the team, in order to get an
algorithm offering a significantly lower complexity. Precisely, in this paper, we design
a gathering algorithm working in all graphs of size at most n in time polynomial
in n and the logarithm of the smallest label ` of a good agent, provided the agents
are in a strong team, i.e., a team where the good agents are at least some quadratic
polynomial in f . Our algorithm requires that the agents are initially provided with
a common input that can be coded in O(log log logn) bits. However, we prove that
this size of input is asymptotically optimal to obtain a polynomial time complexity
in n and `.

As can be seen, we have essentially analyzed the task of gathering assuming that
the agents at the same node can exchange information. In [Bouchard et al. 2023b],
we ask if this ability of talking is needed. The answer turns out to be no. In sup-
port of this, we describe in [Bouchard et al. 2023b] two algorithms that accomplish
gathering in PBM with a team of agents having distinct labels, assuming that they
are entirely silent and unable to see the labels of the others even when sharing the
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same node. Actually, in each round, a non-dormant agent just sees how many agents
are at the node that it currently occupies and the degree of this node. Our first
algorithm assumes that agents know some upper bound on the size of the network,
and works in time polynomial in this upper bound and in the length of the smallest
label. Our second algorithm does not assume any knowledge about the network,
but its complexity is at least exponential in the size of the network and in the la-
bels of the agents. Its purpose is to show feasibility of gathering under this harsher
scenario.

As a by-product of our techniques we obtain, in the same weak model, solutions
to two fundamental problems, whether the agents initially know some upper bound
on the size of the network or not. The first problem is that of leader election: one
agent is elected as a leader, and all agents learn its identity. The second problem
is that of gossiping: each agent has a message at the beginning, and all agents
must end up learning all messages. This result about gossiping is perhaps our most
surprising finding: agents devoid of any transmitting devices can solve the most
general information exchange problem, as long as they can count the number of
agents present at visited nodes.

In Chapter 4, we describe our contributions [Bouchard et al. 2020b,
Bouchard et al. 2023a] to the last remaining variant of meeting, which is trea-
sure hunt (preliminary versions of these papers appeared in [Bouchard et al. 2018b,
Bouchard et al. 2021]). This problem involves a duo of agents that are initially sep-
arated by a distance at most D (unknown to them). In this problem, only one agent
is authorized to move, while the other, referred to as the treasure, simply waits to
be discovered by staying always idle. The fact of being woken up or not by the ad-
versary becomes obsolete in these circumstances, because, in order for this problem
to be meaningful, we necessarily need to suppose that the only mobile agent ends
up starting the execution of its algorithm.

The paper [Bouchard et al. 2020b] investigates the problem in the plane, as-
suming that in the beginning and after each move the mobile agent gets only an
approximated hint consisting of a positive angle smaller than 2π whose vertex is
at the current position of the agent and within which the treasure is contained.
The main question that is then raised is how these hints permit the mobile agent
to lower the length of its trajectory before finding the treasure. It is well known
that, without any hint, the optimal cost complexity is Θ(D2). We show that if all
angles given as hints are at most π, then the cost can be lowered to O(D), which
is asymptotically optimal. If all angles are at most β, where β < 2π is a constant
unknown to the agent, then the cost is at most O(D2−ε), for some ε > 0. For both
these positive results, we present algorithms achieving the above cost complexities.
In the case where angles given as hints can be arbitrary, smaller than 2π, we show
that cost complexity Θ(D2) cannot be beaten.

Finally, in [Bouchard et al. 2023a], we bring one of our most significant results
to the community by contradicting a conjecture made more than two decades ago
by Awerbuch, Betke, Rivest and Singh in [Awerbuch et al. 1999].

Precisely, Awerbuch, Betke, Rivest and Singh considered treasure hunt in a
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model corresponding to GBM, but by assuming that the nodes all have pairwise
distinct labels and that the mobile agent has a fuel tank that can be replenished
only at its starting node s. The size of this tank is B = 2(1 +α)r, for some positive
real constant α, where r, called the radius of the graph, is the maximum distance
from s to any other node. The tank imposes an important constraint as it forces
the agent to make at most ⌊B⌋ edge traversals before having to refuel at node s,
or otherwise, the agent will be left with an empty tank and unable to move, pre-
venting further exploration of the graph. Let e(D) be the number of edges whose
at least one endpoint is at distance less than D from s. Awerbuch, Betke, Rivest
and Singh conjectured that it is impossible to find a treasure hidden in a node at
distance at most D at cost nearly linear in e(D). In [Bouchard et al. 2023a], we re-
fute this conjecture by designing a treasure hunt algorithm having a cost complexity
of O(e(D) logD). We also observe that no treasure hunt algorithm can beat cost
Θ(e(D)) for all graphs, and thus our algorithm turns out to be almost optimal.
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2.1 Introduction

Historically, the first mention of the rendezvous problem appeared in The Strategy
of Conflict [Schelling 1960], which is a classic text in game theory and international
relations. The book explores how individuals and nations interact in situations of
conflict, and how they can use strategic thinking to achieve their goals. In his book,
Schelling introduces the problem of rendezvous through a scenario in which two
individuals need to coordinate their actions to meet at a specific time and place,
without communicating with each other and agreeing beforehand. In particular, he
uses the example of two individuals who need to meet in New York City. They each
have a choice of two landmarks to meet at - Grand Central Station or the Empire
State Building. In the absence of communication, the most likely outcome is that
they will both choose the Empire State Building as their meeting place, because it
is a more distinctive landmark.

The rendezvous problem allows Schelling to illustrate a concept that is dear to
him, that of the “focal point” - a solution to which players tend to converge, even if
it is not necessarily the most rational or optimal outcome. In the absence of prior
coordination, individuals will often choose a solution that is socially salient, or that
seems more obvious or recognizable. By understanding the concept of focal points,
individuals can improve their chances of coordinating their actions and achieving
their goals, even in situations where communication is not possible.

After Schelling’s book, the problem of rendezvous has been extensively stud-
ied, resulting in a vast literature on the subject. This is partly due to the fact
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that the problem can be applied to other fields beyond distributed algorithms,
as we have seen with game theory, but also because, within the domain of dis-
tributed algorithms, which concerns us directly, there are many possible combi-
nations for addressing the problem, such as playing on the navigation environ-
ment, using deterministic or randomized sequences of instructions, allowing agents
to leave traces in visited locations or not, etc. Since we are specifically inter-
ested in deterministic scenarios where agents cannot leave any marks or indica-
tors in the visited locations, we will essentially focus on studies related to these
in the remainder of this introduction. However, for the curious reader wishing
to consider the matter in greater depth, including aspects that we will discuss, a
good starting point is to go through the following excellent surveys on rendezvous
[Alpern 2002, Alpern & Gal 2003, Kranakis et al. 2006, Pelc 2019].

The literature on the deterministic scenarios in which we are concerned, can be
roughly divided according to two ways of modeling the navigation environment - a
graph or a plane.

Concerning rendezvous in graphs, many papers have explored the problem
through model GBM (cf. Section 1.2.1) in which agents move in synchronous rounds.
One such paper is [Dessmark et al. 2006], which provides a deterministic proto-
col that guarantees the meeting of the two agents after a number of rounds that
is polynomial in the size n of the graph, the length ` of the shorter of the two
labels and the delay τ between their wake-up times. As an open problem, the
authors ask whether it is possible to obtain a polynomial solution to this prob-
lem depending only on the first two parameters. In [Kowalski & Malinowski 2008],
a positive answer is brought to this question, by providing an algorithm ensur-
ing rendezvous in time O(log3 ` n15 log12 `). This complexity is subsequently im-
proved in [Ta-Shma & Zwick 2014] with an algorithm working in time O(n5 log l),
which is currently the most time-efficient method for solving rendezvous in GBM.
This must be contrasted with the best known lower bound of Ω(n log `) proven in
[Dessmark et al. 2006], which leaves a challenging gap to bridge.

While the three above algorithms ensure rendezvous in polynomial time, they
also ensure it at polynomial cost. Indeed, a polynomial time always implies a
polynomial cost in GBM, because each agent can make at most one edge traversal
per round. The reciprocal is not true, as the agents can have very long waiting
periods, sometimes interrupted by a movement. Thus, these parameters of cost
and time are not always necessarily linked to each other. This is highlighted in
[Miller & Pelc 2016] where the authors study the tradeoffs between these parame-
ters for rendezvous in GBM. In parallel with this, some efforts have been dedicated
to analyzing the impact on time complexity of rendezvous when in every round the
agents are provided with some pieces of information by making a query to some
device or some oracle [Das et al. 2014, Miller & Pelc 2015]. Along with the work
aiming at optimizing the parameters of time and/or cost of rendezvous, some other
work examines the amount of required memory to solve the problem, with two
anonymous agents, e.g., [Fraigniaud & Pelc 2008, Fraigniaud & Pelc 2013] for tree
networks and in [Czyzowicz et al. 2012a] for general networks.
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On the fault-tolerant side, a self-stabilizing rendezvous algorithm is provided
in [Ooshita et al. 2017]. Self-stabilization is an elegant concept of fault tolerance
in distributed systems, introduced by E. W. Dijkstra in [Dijkstra 1974]. Roughly
speaking, an algorithm is said to be self-stabilizing for a problem P if it solves P
starting from any arbitrary configuration (which permits, in particular, to tolerate
any kind of transient faults such as temporal memory corruption). Hence, in the
context of rendezvous in arbitrary graphs, the algorithm of [Ooshita et al. 2017]
guarantees the meeting of the two agents regardless of their initial memory states
and starting nodes. However, the time complexity of their algorithm cannot be
bounded.

Some studies have been also dedicated to the scenario in which the agents move
asynchronously in a network [Marco et al. 2006, Czyzowicz et al. 2012b], i.e., as in
GBM, but assuming that the agents’ speed may vary, controlled by the adversary. In
[Marco et al. 2006], the authors investigate the cost of rendezvous for both infinite
and finite graphs. In the former case, the graph is reduced to the (infinite) line
and polynomial bounds are given depending on whether the agents know the initial
distance between them or not. In the latter case (finite graphs), similar bounds are
given for ring shaped networks. They also propose a rendezvous algorithm for an
arbitrary graph, provided that the agents initially know an upper bound on the size
of the graph. This assumption is subsequently removed in [Czyzowicz et al. 2012b].
However, in both [Marco et al. 2006] and [Czyzowicz et al. 2012b], the cost of ren-
dezvous in an arbitrary graph is exponential in its size and in the larger of the la-
bels. Other work has been made on asynchronous rendezvous (in the wider context
of gathering) in networks [Cicerone et al. 2019] but by assuming a specific topology
for the underlying graph (e.g., a ring, a tree or a grid) and/or assuming the agents
are able to see the whole network.

Concerning rendezvous in the plane, we also find the same dichotomy
of synchronicity vs. asynchronicity. The synchronous case is introduced
in [Suzuki & Yamashita 1999]. In [Izumi et al. 2012], rendezvous in the plane
is studied for oblivious agents equipped with unreliable compasses under syn-
chronous and asynchronous models. Asynchronous rendezvous, as well as asyn-
chronous gathering, is also studied in various settings in [Flocchini et al. 2005,
Cohen & Peleg 2005, Cohen & Peleg 2008, Cieliebak et al. 2012, Pagli et al. 2015].
However, the common feature of all these papers is that the agents can observe all
the positions of the other agents or at least the global graph of visibility is always
connected (i.e., the team cannot be split into two groups so that no agent of the
first group can detect at least one agent of the second group).

The problem of asynchronous rendezvous in the plane, where the agents
have a limited range of vision and cannot see each other initially, is addressed
in [Collins et al. 2010, Bampas et al. 2010, Czyzowicz et al. 2012b]. In the first
two papers, algorithms having a cost polynomial in the initial distance D sepa-
rating the agents are proposed. However, they use a powerful assumption that
each agent knows its starting position in a global system of coordinates. In
[Czyzowicz et al. 2012b], the authors give a solution that does not rely on such
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an assumption, but that has the major disadvantage of having a cost exponential in
D and in the larger of the labels.

What did we do about the problem of rendezvous? When examining our
literature review on deterministic rendezvous where agents cannot leave any marks
or indicators in the visited locations, two significant observations can be made.
Firstly, there is no algorithm that can solve efficiently asynchronous rendezvous
in graphs or in the plane without making strong assumptions related to positioning
(i.e., being able to position itself either in a global and common coordinate system or
relative to the position of the other). Secondly, fault-tolerant algorithms dedicated
specifically to rendezvous in arbitrary graphs have not been much studied.1

Actually, these gaps correspond to places where there was originally
some “darkness” and where we made our substantial contributions on
rendezvous [Dieudonné & Pelc 2015, Dieudonné et al. 2015, Chalopin et al. 2016,
Bouchard et al. 2018c, Bouchard et al. 2019]. This is further developed in the fol-
lowing two sections.

2.2 Asynchronous rendezvous

This section is made of two subsections. The first subsection is dedicated to the
description of our work on asynchronous rendezvous in the plane, published in
[Dieudonné & Pelc 2015, Bouchard et al. 2019], while the second subsection is ded-
icated to the description of our work on asynchronous rendezvous in graphs, pub-
lished in [Dieudonné et al. 2015, Bouchard et al. 2018c].

2.2.1 In the plane

In [Dieudonné & Pelc 2015], we show a rendezvous algorithm working in PBM, but by
assuming that the agents are initially assigned, by the adversary, possibly different
speeds: each agent knows its speed but does not know the speed of the other. Hence,
each time an agent moves, it does so at its assigned velocity. Under these settings,
our algorithm accomplishes rendezvous in time polynomial in the initial distance
separating the agents, in the logarithm of the smaller label and in the inverse of the
faster assigned speed. As for its cost, it is polynomial in the first two parameters
and does not depend on the third.

In [Bouchard et al. 2019], we show a rendezvous algorithm working in the plane
in an even more difficult scenario. Precisely, each time an agent chooses to move
from a position a to a position b, the adversary can arbitrarily vary the speed of the

1It should be noted that the problem of meeting may often lead to quick results of possibility or
impossibility in fault-prone environments when exactly two agents are involved, while it is no longer
the case with more than two agents. This may be especially true with crash or Byzantine faults. As
explained in Chapter 3, that is certainly why, most of the studies assuming the occurrence of faults
have been conducted in the more general context of gathering, rather than specifically focusing on
rendezvous. Of course, there are also types of faults for which the problem of rendezvous cannot
be easily swept aside, notably (and fortunately) the delay faults that underlie our contribution
[Chalopin et al. 2016] that is presented in Section 2.3 ,.
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agent, stop it and even move it back and forth as long as the trajectory of the agent
is continuous, does not leave the segment [a, b], and ends at b. Despite this harsh
scenario of asynchrony, our algorithm guarantees rendezvous at a cost polynomial
in the initial distance separating the agents and in the logarithm of the smaller
label. Note that speaking of time complexity would not have any sense here, as
the time of meeting remains at the discretion of the adversary, which can delay it
for an arbitrarily long but finite period (without, however, being able to prevent it
indefinitely).

Below, we detail only the intuitions behind the algorithm of
[Bouchard et al. 2019] coping with full asynchrony, because it can be proven
that, in the scenario where agents are initially assigned arbitrary velocities, it has
a time complexity and a cost complexity that are roughly comparable to those of
the algorithm of [Dieudonné & Pelc 2015].

Informal description in a nutshell

Instead of studying directly the problem of asynchronous rendezvous in the plane,
we study the problem of asynchronous rendezvous in a slightly different scenario.
Precisely, we consider the problem in GBM but by assuming:

1. The graph is an infinite square grid in which every node u is adjacent to 4

nodes located North, East, South, and West and reachable from node u by
taking ports 0, 1, 2 and 3 respectively.

2. The agents do not move in synchronous rounds. When an agent chooses to
exit a node u by some port p, the adversary can arbitrarily vary the speed of
the agent, stop it and even move it back and forth as long as the trajectory of
the agent is continuous, does not leave the edge linking u and succ(u, p), and
ends at succ(u, p).

3. Rendezvous inside an edge is allowed. If two agents meet inside an edge, they
can detect this event and stop.

Note that, while the route of an agent, i.e., the sequence (with possible repeti-
tions) of the traversed edges, is controlled by the algorithm, its walk, i.e., its way of
moving on the edges, is controlled by the adversary.

We proceed to this switch of scenarios, because that of the infinite square grid is
easier to handle and because we know from [Czyzowicz et al. 2012b] that we have the
following implication: if there is an algorithm solving the problem of asynchronous
rendezvous in the infinite square grid at a cost polynomial in the logarithm of the
smaller label and in the initial distance (in the Manhattan metric) separating the
agents, then there is an algorithm solving the problem of asynchronous rendezvous
in the plane at a cost polynomial in the same parameters (but with the initial
distance expressed in the Euclidean metric). Hence, we focus in the sequel on the
ideas allowing to design an algorithm satisfying the first part of the implication.
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It is well known that solving rendezvous deterministically is impossible in some
symmetric graphs (including our square grid) unless both agents are given distinct
identifiers, called labels. We use them to break the symmetry, i.e., in our context,
to make the agents follow different routes. The idea is to make each agent “read”
the binary representation of its bit, one bit at a time from the most to the least
significant bits, and for each bit it reads, follow a route depending on the read
bit. Our algorithm ensures rendezvous during some of the periods when they follow
different routes, i.e., when the two agents process two different bits.

Furthermore, to design the routes that both agents will follow, our approach
would require to know an upper bound on two parameters, namely the initial dis-
tance between the agents and the length (of the binary representation) of the shortest
label. As we suppose that the agents have no knowledge of these parameters, they
both perform successive “assumptions”, in the sequel called phases, in order to find
out such an upper bound. Roughly speaking, each agent attempts to estimate such
an upper bound by successive tests, and for each of these tests, acts as if the upper
bound estimate is correct. Both agents first perform phase 0. When phase i does
not lead to rendezvous, they perform phase i + 1, and so on. More precisely, within
phase i, the route of each agent is built in such a way that it ensures rendezvous if
2i is a good upper bound on the parameters of the problem. Hence, in our approach
two requirements are needed: both agents are assumed (1) to process two different
bits (i.e., 0 and 1) almost concurrently and (2) to perform phase i = α almost at
the same time—where α is the smallest integer such that the two aforementioned
parameters are upper bounded by 2α.

However, in order to meet these requirements, we have to face two major issues.
First, since the adversary can vary both agents’ speeds, the idea described above
does not prevent the adversary from making the agents always process the same type
of bit at the same time. Moreover, the route cost depends on the phase number, and
thus, if an agent were performing some phase i, where i is exponential in the initial
distance and in the length of the binary representation of the smaller label, then our
algorithm would not be polynomial. To tackle these two issues, we use a mechanism
that prevents the adversary from making one agent execute the algorithm arbitrarily
faster than the other without meeting. Each of both these issues is circumvented via
a specific “synchronization mechanism”. Roughly speaking, one of both mechanisms
ensures that the agents start phase α at almost the same time, while the other makes
the agents read and process, within phase α, the bits of the binary representation of
their labels at nearly the same speed. This is particularly where our feat of strength
is: orchestrating in a subtle manner these synchronizations in a fully asynchronous
context while ensuring a polynomial cost. Now that we have described the very
high-level idea of our algorithm, let us give more details.

Under the hood.

The approach described above allows us to solve rendezvous when there exists an
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index for which the binary representations of both labels differ. However, this is not
always the case, especially when one binary representation is a prefix of the other one
(e.g., 100 and 1000). Hence, instead of considering its own label, each agent will con-
sider a transformed label. The transformation borrowed from [Dessmark et al. 2006]
will guarantee the existence of the desired difference over the new labels, while pre-
serving asymptotically the same lengths for their binary representations. In the rest
of this description, we assume for convenience that the initial Manhattan distance
D separating the agents is at least the length of the shortest binary representation
of the two transformed labels (the complementary case adds an unnecessary level of
complexity to understand the intuition).

As mentioned previously, our solution works in phases numbered 0,1,2, . . . Dur-
ing phase i, the agent supposes that the initial distance D is at most 2i and processes
one by one the first 2i bits of its transformed label. In the case where 2i is greater
than the binary representation of its transformed label, the agent will consider that
each of the last “missing” bits is 0. When processing a bit, the agent executes a
particular route that depends on the bit value and the phase number. The route
related to bit 0 and the route related to bit 1 are obviously different and are de-
signed in such a way that if both these routes are executed almost simultaneously by
two agents within a phase corresponding to a correct upper bound, then rendezvous
occurs by the time any of them has been completed.

In the light of this, if we denote by α the smallest integer such that 2α ≥ D, it
turns out that an ideal situation would be that the agents concurrently start phase α
and process the bits at quite the same rate within this phase. Indeed, we would then
obtain the occurrence of rendezvous by the time the agents complete the process
of the λth bit of their transformed label in phase α, where λ is the smallest index
for which the binary representations of their transformed labels differ. However,
getting such an ideal situation in presence of a fully asynchronous adversary appears
to be really challenging. This is where the two synchronization mechanisms briefly
mentioned above come into the picture.

If the agents start phase α approximately at the same time, the first synchro-
nization mechanism permits to force the adversary to make the agents process their
respective bits at similar speed within phase α, as otherwise rendezvous would oc-
cur prematurely during this phase before the process by any agent of the λth bit.
This constraint is imposed on the adversary by dividing each bit process into some
predefined steps and by ensuring that after each step s of the kth bit process, for
any k ≤ 2α, an agent follows a specific route that forces the other agent to complete
the step s of its kth bit process. This route, on which the first synchronization
is based, is constructed by relying on a simple principle that enables one agent to
“push” the other. The principle is as follows: if an agent performs a given route X
included in a given area S of the basic grid, then the other agent can force it to
finish route X by covering S as many times as there are edge traversals in X. More
precisely, each covering of S permits to traverse all the edges of X at least once: so,
in each covering, the agent executing X must complete at least one edge traversal
or rendezvous occurs. Hence, by leaving aside the few extra technicalities involved
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in implementing the first synchronization around this basic principle, one of the
major difficulties we have to face lies in the setting up of the second synchronization
mechanism guaranteeing that the agents start phase α at roughly the same time. At
first glance, it might be tempting to use an analogous principle to the one used for
dealing with the first synchronization. Indeed, if an agent a1 follows a route covering
r times an area Y of the grid, such that Y is where the first α−1 phases of an agent
a2 take place and r is the maximal number of edge traversals an agent can make
during these phases, then agent a1 pushes agent a2 to complete its first α−1 phases
and to start phase α. Nevertheless, a strict application of this principle to the case
of the second synchronization directly leads to an algorithm having a cost that is
superpolynomial in D and the length of the smaller label, due to a cumulative effect
that does not appear for the case of the first synchronization. As a consequence,
to force an agent to start its phase α, the second synchronization mechanism does
not depend on the kind of route described above, but on a much more complicated
route that permits an agent to “push” the second one. This works by considering the
“pattern" that is drawn on the grid by the second agent rather than just the number
of edges that are traversed. This is the most tricky part of our algorithm, one of
the main ideas of which relies in particular on the fact that some routes made of an
arbitrarily large sequence of edge traversals can be pushed at a relatively low cost
by some other routes that are of comparatively small length, provided they are judi-
ciously chosen. Let us illustrate this point through the following example. Consider
an agent a1 following from a node v1 an arbitrarily large sequence of Xi, in which
each Xi corresponds to either AA or BB, where A and B are any routes (A and
B corresponding to their respective backtrack, i.e., the sequence of edge traversals
followed in the reverse order). An agent a2 starting from an initial node v2 located
at a distance at most d from v1 can force agent a1 to finish its sequence of Xi (or
otherwise rendezvous occurs), regardless of the number of Xi, simply by executing
AABB from each node at distance at most d from v2. To support this claim, let us
suppose by contradiction that it does not hold. At some point, agent a2 necessarily
follows AABB from v1. However, note that if one agent starts following AA (resp.
BB) from node v1 while the other is following AA (resp. BB) from node v1, then
the agents meet. Indeed, this implies that the more ahead agent eventually follows
A (resp. B) from a node v3 to v1 while the other is following A (resp. B) from v1

to v3, which leads to rendezvous. Hence, when agent a2 starts following BB from
node v1, agent a1 is following AA, and is not in v1, so that it has at least started
the first edge traversal of AA. This means that when agent a2 finishes following
AA from v1, a1 is following AA, which implies, using the same arguments as before,
that they meet before either of them completes this route. Hence, in this example,
agent a2 can force a1 to complete an arbitrarily large sequence of edge traversals
with a single and simple route. Actually, our second synchronization mechanism
implements this idea. This was the most complicated thing to set up, as each part
of routes in every phase had to be orchestrated very carefully to permit, in the end,
this low cost synchronization while still ensuring rendezvous. However, it is through
this way of moving that we finally get the desired polynomial cost.
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While the cost is polynomial, we made no attempt at optimizing it. The expo-
nent of the polynomial being quite large (it is made of three digits), there seems to
be room to make significant improvements. Consequently, a natural open problem
is to find out the optimal cost to solve the task of rendezvous in the plane under the
full asynchrony. This would be all the more important as in turn we could compare
this optimal cost with the cost of solving the same task with agents that can posi-
tion themselves in a global system of coordinates (as indicated in Section 2.1, the
almost optimal cost for this case is given in [Collins et al. 2010]) in order to deter-
mine whether the use of such a system (e.g., GPS) is finally relevant to minimizing
the traveled distance.

2.2.2 In graphs

In [Dieudonné et al. 2015], we give a rendezvous algorithm working in GBM but by
weakening drastically the level of synchrony. More precisely, the agents no longer
move in synchronous rounds: when an agent is at a node u, its algorithm selects
the port p by which it will exit, but the way of moving on the edge connecting u
to succ(u, p) is completely under the control of the adversary. As in the scenario
of the asynchronous rendezvous in the infinite square grid presented in the previous
subsection, the adversary can arbitrarily vary the speed of the agent during its edge
traversal from u to succ(u, p), stop it and even move it back and forth as long
as the trajectory of the agent remains continuous, does not leave the edge, and
ends at succ(u, p). With such a powerful adversary, the task becomes so complex
that even in the case of a simple two-node graph, we cannot design an algorithm
guaranteeing the agents will meet at a node. That is why, we need here to relax the
rendezvous requirement by allowing the agents to meet at a node or inside an edge.
In particular, when the agents cross each other inside an edge, they can detect this
event and stop. Although meetings inside an edge are allowed, we want to avoid the
agents to meet accidentally when traversing two distinct edges that cross each other.
Hence, we assume in [Dieudonné et al. 2015] that the agents move in an embedding
of the underlying graph in the three-dimensional Euclidean space, with nodes of
the graph being points of the space and edges being pairwise disjoint line segments
joining them.

In this context, our algorithm of [Dieudonné et al. 2015] solves the problem of
rendezvous at a cost polynomial in the size of the network and in the logarithm
of the smaller label. The only previous algorithm solving the same asynchronous
rendezvous problem [Czyzowicz et al. 2012b] is exponential in the size of the network
and in the larger label. Thus, with our result, we decrease the cost exponentially in
the size of the network and doubly exponentially in the labels of agents.

Besides, we show that our rendezvous algorithm can be used as a building block
to solve fundamental problems, involving two or more agents, for which there were
previously no solution in the asynchronous setting described above. Among them
are the following problems: team size, in which every agent has to find the total
number of agents, leader election, in which all agents have to output the label of a
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single agent, perfect renaming in which all agents have to adopt new different labels
from the set {1, . . . , k}, where k is the number of agents, and gossiping, in which
each agent has initially a piece of information (value) and all agents have to output
all the values. Using our rendezvous algorithm, we solve all these problems at cost
polynomial in the size of the network and in the logarithm of the smallest label
among the participating agents.

To illustrate one of the key principles that is at work in our asynchronous ren-
dezvous algorithm, consider an ideal situation in which the agents are labeled 0 and
1 and initially know an upper bound n on the size of the network. Let Explo(n)
be a procedure that consists in executing an effective part followed by a backtrack
part. The effective part allows the executing agent to visit every node of any graph
of size at most n by making a polynomial number p(n) of edge traversals, while
the backtrack part makes the agent return to its starting node by traversing in
the reverse order the entire sequence of edges it has traversed during the effective
part (some edges may be traversed several times). (The effective part of proce-
dure Explo(n) can be derived from the result of [Reingold 2008], which is based on
Universal eXploration Sequences, better known by the acronym, UXS.2)

In our ideal situation, rendezvous can be ensured at polynomial cost in n, by
asking the agent to execute the following instructions.

• If the agent has label 0, then it applies (2p(n)+1)2 times procedure Explo(n)
from its starting node u.

• If the agent has label 1, then it applies Explo(n) from each node w of the
graph. This is done by executing procedure Explo(n) but interrupting it at
the beginning and after each edge traversal to just execute Explo(n) from the
current node.

Rendezvous must indeed occur by the time an agent terminates to process its
instructions. It is the case, if the agent with label 1 finishes to follow the round-
trip trajectory induced by the execution of Explo(n) from node u before the agent
having label 0 finishes its instructions, because this latter agent only repeats the
same round-trip trajectory from node u: roughly speaking, it means the agent with
label 1 ends up “catching” the agent with label 0. Otherwise, it is also the case
as the number of edge traversals made by the agent with label 1 is smaller than
the number of times the agent with label 0 traverses entirely the network: roughly
speaking, it means the agent with label 0 ends up “catching” the agent with label 1.

Of course, the agents are not in such an ideal situation. However, keep in mind
that the binary representations of their (distinct) labels are composed of 0 and 1.
Hence, using similar strategies to those introduced in Section 2.2.1 for asynchronous
rendezvous in the plane (e.g., acting in phases in which we make assumptions on
the graph size and the smaller label, transforming the labels and letting, within
each phase, the agents process the resulting bits one by one, etc.), we can recreate

2We detail what is behind such sequences in the introduction of Chapter 4.
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approximately the same ideal conditions at a cost polynomial in the graph size and
in the logarithm of the smaller label.

Although, they share some similarities, it should be stressed that our asyn-
chronous rendezvous algorithm in the infinite square grid of [Bouchard et al. 2019]
(leading to a solution in the plane) and our asynchronous rendezvous algorithm of
[Dieudonné et al. 2015] in arbitrary finite graphs are not comparable and that one
cannot be used to design the other. First, the algorithm of [Dieudonné et al. 2015]
does not have a cost polynomial in the initial distance separating the agents and
in the logarithm of the smaller label. Actually, ensuring rendezvous at this cost
is even impossible in an arbitrary graph, as witnessed by the case of the clique
with two agents labeled 0 and 1: the adversary can hold one agent at a node and
make the other agent traverse Θ(n) edges before rendezvous, in spite of the ini-
tial distance 1. Second, the validity of the strategy outlined above, which is based
on procedure Explo(n), closely relies on the fact that both agents must evolve in
the same finite graph, which is clearly not the case in [Bouchard et al. 2019]. In
particular, even when considering the task of rendezvous in an infinite oriented
grid, the natural attempt consisting in making each agent apply the algorithm from
[Dieudonné et al. 2015] within bounded grids of increasing size and centered in its
initial position, does not permit to claim that rendezvous ends up occurring. Indeed,
the bounded grid considered by one agent is never exactly the same as the bounded
grid considered by the other one (although they may partially overlap), and thus
the agents never evolve in the same finite graph which is a necessary condition to
ensure the validity of the solution of [Dieudonné et al. 2015] and by extension of
this natural attempt. Finally, in [Bouchard et al. 2019], the agents have a common
orientation, which is completely absent in [Dieudonné et al. 2015].

In [Bouchard et al. 2018c], we analyze the question of whether we can avoid
relaxing the requirement of rendezvous and ensure a meeting at a node in a scenario
with slightly less asynchrony. More precisely, we assume that the agents have a
common measure of time but for each agent X and for each edge e of the graph,
the adversary initially assigns a positive real t(X,e). During the execution of an
algorithm, agent X can wait at the currently visited node for a time of its choice, or
it can choose a port to traverse the corresponding edge e. In the latter case, agent
X traverses this edge in time t(X,e), getting to the other end of the edge after this
time. In this more lenient scenario, we give in [Bouchard et al. 2018c] an algorithm
achieving rendezvous (at a node) and having a time complexity that is polynomial
in the size n of the network, the logarithm ` of the smaller label and the maximum
τ of all values t(X,e) assigned by the adversary, over all edges e of the graph, and
over all agents X.

It is natural to ask if it is possible to construct a rendezvous algorithm whose
time depends on n, ` and τ ′, where τ ′ is the minimum of all values t(X,e) assigned
by the adversary, over all edges e of the graph, and over all agents X. The answer
is trivially negative, if time is counted, as we do, since the wake-up of the earlier
agent. Indeed, suppose that there exists such an algorithm working in some time
F (n, `, τ ′). The adversary assigns t(X1, e) > F (n, `, τ ′), for the first edge e taken by
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agent X1, wakes up X1 at some time t0 and delays the wake-up of the second agent
until time t0 + t(X1, e). Rendezvous cannot happen before time t0 + t(X1, e), which
is a contradiction.

It turns out that the answer is also negative in the easier case where time would
be counted since the wake-up of the agent that is woken up later.

To be convinced of this, consider even a simplified situation, where the adversary
assigns to the agent having the smaller (resp. larger) label the same speed t1 (resp.
t2) for all edges. In other words, each of the agents has a constant speed, and thus,
τ = max(t1, t2) and τ ′ = min(t1, t2). Call the agent for which the constant speed is
larger the slower agent, and the other – the faster agent.

We now show that for any rendezvous algorithm A, there exists a behavior of
the adversary for which this algorithm takes time at least τ since the wake-up of
the later agent.

Denote by β (resp. by γ) the waiting time imposed by A between the wake-up
of the faster (resp. slower) agent and the time when it starts the first edge traversal.
Let d = ∣β − γ∣.

If β ≥ γ, the adversary wakes up the faster agent at some time t0 and wakes up
the slower agent at time t0 + d. Both agents start traversing their first edge at the
same time t0 + β and cannot meet before time t0 + β + τ . Since both agents were
awake at time t0 + β, our claim follows.

If β < γ, the adversary wakes up the slower agent at some time t0 and wakes up
the faster agent at time t0 + d. Both agents start traversing their first edge at the
same time t0 + γ and cannot meet before time t0 + γ + τ . Since both agents were
awake at time t0 + γ, our claim follows. This concludes the justification that it is
impossible to guarantee rendezvous in time depending on n, ` and τ ′, even if time
is counted since the wake-up of the later agent.

2.3 Rendezvous with delay faults in graphs

In [Chalopin et al. 2016], we consider rendezvous in GBM but by assuming that agents
are subject to delay faults: if an agent incurs a fault in a given round, it remains in
the current node, regardless of its decision. When a fault happens in a round r, the
agent is aware of it if, and only if, it planned to move in round r.

Under these circumstances, three scenarios of fault distribution are analyzed:
random (independently in each round and for each agent with constant probability
0 < p < 1), unbounded adversarial (the adversary can delay an agent for an arbitrary
finite number of consecutive rounds) and bounded adversarial (the adversary can
delay an agent for at most c consecutive rounds, where c is unknown to the agents).
We present our results in the following three subsections.

2.3.1 Random faults

For random faults, we give an algorithm with a time complexity polynomial in
the size of the network, which achieves rendezvous with very high probability in
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arbitrary networks (the algorithm is deterministic, but, due to the stochastic nature
of faults, the estimate of its time can be only given with some probability).

The high-level idea behind this rendezvous algorithm relies on the well-known
fact that two random walks operating in an n-node network, without faults, meet
after polynomial time with probability 1 − n−c, for some positive constant c. This
follows, e.g., from the fact that the cover time of a random walk is polynomial
in any graph and from [Aldous 1991]. By suitably changing the polynomial, the
probability can be raised to very high, i.e., the error probability decreased to inverse-
exponential in n. The problem with applying this fact is that it concerns random
walks, i.e., an algorithm in which the agents have access to random bits, while we
want a deterministic algorithm working with very high probability in the presence
of random independent delay faults. Thus, the issue is how to simulate a random
walk by a deterministic algorithm in this faulty environment. Actually, this can be
done by harvesting randomness from the random independent faults occurring in
the network.

To do so, our rendezvous algorithm makes use of a procedure called unbiased
random bit production (URBP). Let u be a position of the executing agent and let v
be an adjacent node. The procedure works in two rounds as follows. In each round,
the agent attempts a move along the edge {u, v}. In the case where exactly one of
these two attempts is successful, the procedure outputs bit 1 if the first attempt is
successful and outputs bit 0 if it is the second attempt that is successful. Otherwise,
the procedure outputs nothing. Clearly, a bit obtained in this way is unbiased (has
probability 1

2).
Let Q(.) be a polynomial such that for every integer n ≥ 2, two simultaneous

random walks meet in any n-node network, with very high probability, after time
at most Q(n) rounds. Our rendezvous algorithm based on random walks works
in epochs n = 2,3,4 . . .. Each epoch is divided into two parts: bit preparation and
execution. The bit preparation part of the nth epoch consists of repeating procedure
URBP nk ⋅Q(n) times, where k = ⌈logn⌉. By Chernoff bound, for a sufficiently large
constant q depending on fault probability p, repeating procedure URBP qk ⋅ Q(n)

times is enough in order to produce k ⋅Q(n) random independent unbiased bits with
very high probability. Hence, for n large enough (i.e. n ≥ q), at least k ⋅Q(n) such
bits are obtained with very high probability at the end of the bit preparation part
of the nth epoch.

The execution part of the nth epoch is as follows. In a given round of this epoch,
some prefix of the sequence of k ⋅Q(n) bits prepared in the bit preparation part is
already used. The agent, currently located at a node of degree d takes the first
unused r bits, where r = ⌈log d⌉. If this string of bits is the binary representation of
an integer i < d, then the agent attempts a move by port i. Otherwise, the agent
stays at the current node. The string of r bits is added to the prefix of used bits. The
execution part of the nth epoch lasts Q(n) rounds. If the total string of prepared
bits is of length at least k ⋅Q(n), there are enough bits to execute Q(n) rounds of
the execution phase, regardless of the degrees of the nodes. If there are not enough
bits to perform the execution part, the agent waits inert at the node at which it ran
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out of the bits to perform the rest of the random walk, until Q(n) rounds of the
execution part have elapsed. If rendezvous does not occur by the end of the nth
epoch, the agent starts the (n + 1)th epoch.

It follows from the above description that the execution part of the nth epoch
is a random walk in which the agent, currently located at a node of degree d takes
each port with equal probability (1 − p)/2⌈log d⌉ and stays inert with probability
1 − d(1 − p)/2⌈log d⌉. Let m be the maximum value between the graph size and the
constant q (note that since q and the graph size are unknown to the agents, so is
value m). If the later agent is not woken up before the earlier agent finishes its
mth epoch, then the meeting occurs with high probability at the starting node of
the later agent before the earlier agent starts its (m+ 1)th epoch. Otherwise, when
the later agent wakes up, the earlier agent executes a round of the k-th epoch for
some k ≤m. Hence, it can be shown that there exists a polynomial K(m) for which
by the time the earlier agent executes the last round of the K(m)th epoch, both
agents performed simultaneously random walks during at least Q(m) consecutive
rounds, with very high probability. Consequently, in all cases, our algorithm ensures
rendezvous with very high probability at a time polynomial in m, and thus at a time
polynomial in the graph size.

2.3.2 Unbounded adversarial faults

As mentioned earlier, we also consider in [Chalopin et al. 2016], a scenario in which
the agents can face unbounded adversarial faults: the adversary can delay each
of the agents for any finite number of consecutive rounds. Under this harsh fault
scenario, it turns out that feasibility of rendezvous is usually not guaranteed, even
for quite simple graphs. For the sake of intuition, we provide below a sketch of the
arguments allowing to prove this impossibility result.

Consider the family F of oriented rings of even size: a ring is said to be oriented
if at each node the edge going clockwise has port number 0 and the edge going coun-
terclockwise has port 1. Also consider a solo execution3 of a (supposed) rendezvous
algorithm A by an agent A in a ring G ∈ F . In each round r of its solo execution,
agent A can either decide to stay at the current node or try to traverse an edge by
choosing some port. This decision depends on the label of the agent and its history
before round r, i.e., on the entire knowledge it has in this round. Since the port
labeling is homogeneous, the agent does not learn anything about the graph during
navigation: it can differentiate neither G from any ring G′ ∈ F , nor any two nodes
in G (recall that we do not assume knowledge of any upper bound on the size of the
graph). It follows that the history of the agent before round r can be coded by the
sequence of previous round numbers in which the agent made a move. (The agent
made a move in a previous round if, and only if, it tried to traverse an edge and
the adversary allowed the move by not imposing a fault in this round.) Hence, if
the algorithm, the agent’s label and the adversary’s behavior are fixed, the agent’s

3A solo execution of an algorithm by some agent is an execution in which this agent is alone in
the graph.
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history, in any round, is necessarily the same in any graph of F and for any starting
node.

Now, consider the decisions of agent A starting in some round t and before its
next move. We say that the agent attacks since round t, if, from round t on, it tries
an edge traversal in each round until it makes the next move. Note that, within a
given attack, the edge which the attacking agent attempts to traverse, is not always
necessarily the same. We say that the agent does not attack after round t, if there
does not exist a round t′ > t in which the agent starts attacking. In other words it
means that, after round t, the agent decides to stay at the current node in rounds
with arbitrarily large numbers, interleaved with possible attempts at a move, all of
which can be prevented by an adversary.

It is important to note that an adversary must eventually allow an agent that
attacks to make a next move, but it is capable of preventing an agent that never
attacks after a given round from making any further move by imposing faults in all
rounds in which the agent tries an edge traversal.

Using the above observations and explanations, we can show there exists a be-
havior of the adversary inducing an infinite increasing sequence X = τ1, τ2, . . . , τi, . . .

of positive integers, such that, for every integer 1 ≤ λ ≤ 3, one of the following con-
ditions is respected in every solo execution, by an agent with label λ, of Algorithm
A in every graph of F :

• Condition 1: the agent attacks only a finite number k ≥ 0 of times, in which
case the agent either does not move if k = 0, or moves exactly in rounds
τ1, τ2, . . . , τk otherwise;

• Condition 2: the agent attacks infinitely many times, in which case it moves
exactly in rounds τi, for all positive integers i.

These two conditions can then be used to show contradictions in two comple-
mentary cases.

The first case is when there exist two positive integers λ1 ≠ λ2 that are most
equal to 3 such that the solo executions, induced by X, of agents with labels λ1

and λ2 in any ring of F respect Condition 1. In this case, if these agents are
placed at antipodal nodes in an oriented ring of F having a sufficiently large size,
then the adversary, acting against each of them as in their respective solo execution
induced by X, can make the agents stop forever before the total number of their
moves is equal to half the size of the ring. Hence, the agents never meet, which is a
contradiction.

The second case is when there exist two positive integers λ1 ≠ λ2 that are most
equal to 3 such that the solo executions, induced by X, of agents with labels λ1

and λ2 in any ring of F respect Condition 2. If the agents with these labels start
simultaneously at an odd distance in a ring of F , then both agents can be forced
by the adversary to move in exactly the same rounds, i.e., the rounds of sequence
X and they remain at an odd distance forever (since an even ring is bipartite, the
parity of their distance never changes), which is again a contradiction.
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2.3.3 Bounded adversarial faults

The last kind of fault that is considered in [Chalopin et al. 2016] corresponds to
what we call bounded adversarial faults. Here, the adversary can delay each of the
agents for at most c consecutive rounds, where c is a positive integer, called the fault
bound. In this scenario, we show an algorithm solving rendezvous in any arbitrary
networks, which does not require the agents to know initially the fault bound c.

In order to grasp some of the basic ideas of this algorithm, let us just focus here
on a simpler situation in which this bound c is initially known to all agents. In
this situation, given any synchronous rendezvous algorithm A working for arbitrary
networks with a time complexity T when there are no faults, it is possible to obtain
an algorithm working for bounded adversarial faults and for arbitrary networks with
time complexity O(cT ). Let us explain how.

Consider the following algorithm A(c) working for bounded adversarial faults
with parameter c. Each agent replaces each round r of the execution of Algorithm A
(in the scenario without any faults) with a segment of 2c+1 rounds (in the scenario
with faults). If in round r of the execution of A the agent is idle, this round is
replaced by 2c + 1 consecutive rounds in which the agent is idle. If in round r the
agent leaves its current node by port p, this round is replaced by a segment of 2c+1

rounds in each of which the agent makes an attempt to leave the current node v by
port p until it succeeds, and in the remaining rounds of the segment it stays idle at
the node adjacent to v that it has just entered.

Note that, if the later agent does not move before the earlier agent finishes
processing its T th segment, then the meeting necessarily occurs at the starting node
of the later agent at most (2c+ 1)T ∈ O(cT ) rounds after the wake-up of the earlier
agent. Hence, we can assume in the rest of our explanations that the later agent
makes at least a move before the earlier agent finishes processing its T th segment.
This permits in turn to make the associations given below.

We associate the first segment of the later agent with the (unique) segment of
the earlier agent that it intersects in at least c+ 1 rounds. Let it be the ith segment
of the earlier agent. We then associate the jth segment of the later agent with the
(j + i − 1)th segment of the earlier agent, for j > 1. Hence, regardless of the delay
between starting rounds of the agents, corresponding segments intersect in at least
c + 1 rounds. If the agents met at node x in the jth round of the later agent, by
applying Algorithm A in the scenario without faults, then, by applying A(c) in the
scenario with faults, in the last c + 1 rounds of its jth segment the later agent is at
x and in the last c + 1 rounds of its (j + i − 1)th segment the earlier agent is at x.
Since these segments intersect in at least c + 1 rounds, there is a round common to
both these segments in which both agents are at node x during the execution by
the agents of Algorithm A(c), regardless of the actions of the adversary, which are
permitted by the bounded adversarial fault scenario. This shows that Algorithm
A(c) is correct and solves rendezvous in time O(cT ) as each segment has length
2c + 1 and i + j is necessarily at most equal to T . Moreover, the cost complexity
of Algorithm A(c) is the same as that of Algorithm A, because in each segment
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corresponding to an idle round in the execution of Algorithm A, the agent stays idle
in the execution of Algorithm A(c) and in each segment corresponding to a round in
which an agent traverses an edge in the execution of Algorithm A, the agent makes
exactly one traversal in the execution of Algorithm A(c). Consequently, since there
are algorithms working in GBM with a time complexity polynomial in the size of the
network and in the logarithm of the smaller label (see, e.g., [Bouchard et al. 2018c]),
we can guarantee for A(c) a cost (resp. time) complexity that is polynomial in the
size of the network and in the logarithm of the smaller label (resp. polynomial in
the size of the network, the bound c and in the logarithm of the smaller label).

Things become more complex when c is unknown. However, by using the above
principles and additional algorithmic components allowing, under certain conditions,
the agent to “guess” bound c, we show in [Chalopin et al. 2016] an algorithm solving
rendezvous in presence of bounded adversarial faults at a cost polynomial in the
network size and in the logarithms of c and of the larger label. By contrast, the
time complexity of this algorithm is slightly worse as it is polynomial in the network
size, in c and in the larger label. It remains open whether there exists a rendezvous
algorithm with bounded adversarial faults, working for arbitrary graphs, whose both
cost and time are polynomial in the size n of the graph, and polylogarithmic in the
fault bound c and in the smaller label.
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3.1 Introduction

The problem of gathering is a generalization of the rendezvous problem to a situation
where there are two or more agents to bring together. Both these problems being
inherently close to each other, most of the related work presented in the introduction
of the previous chapter could also have had its place here. Thus, we will be naturally
much less expansive in the introduction of the present chapter.

At first glance, one might be tempted to think that this generalization is not
particularly intriguing: after all, would it not be easy to derive solutions for the
gathering problem using algorithms initially dedicated to rendezvous?

While this may be true in lots of situations, there are situations where such
derivations may not be that easy (or even possible). For instance, this may be
the case when agents do not know beforehand the size of the team to which they
belong, and do not have any material capacities allowing them to determine it
directly. Indeed, this kind of situation raises the delicate question of termination
detection, which consists in deciding if everyone is together. Answering this question
is trivial for an agent in the context of rendezvous,1 as the task is simply terminated

1Provided that it can at least detect in some way whether it is with another agent or not.
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as soon as it is no longer alone, but it may become a real challenge, depending on
the considered assumptions, in the more general context of gathering. In fact, in
some cases, the termination detection cannot simply be achieved, as the agents may
never be sure whether there are any other agents that would be somewhere else, far
“away”, also looking for their peers.

Another situation in which the generalization can become interesting is when we
explore scenarios for which the problem of meeting is trivial or conversely impossible
to solve with only two agents. An emblematic illustration of this kind of situation is
given in the seminal paper [Suzuki & Yamashita 1999]. In this paper, the authors
show a fundamental impossibility result in a well-known semi-synchronous model
(a.k.a. SYm that stands for Suzuki and Yamashita’s model) where the agents move
in the plane, as in PBM, but are anonymous, have unlimited visibility and operate
in synchronous cycles in which they are not necessarily always active. Precisely,
in this model, they show it is impossible to gather deterministically two agents if
they are oblivious (i.e., remember nothing from the previous cycles) and devoid
of a common orientation. On the other hand, in the same context, but with at
least three agents all starting from distinct positions, there exists a deterministic
algorithm solving the gathering problem (provided the agents have the ability to
detect, at any point on the plane, whether there are more than one agent present or
not). These results remain true even when adding some level of asynchrony among
the agents [Cieliebak et al. 2012].

The case where there may be faulty agents is also an illustration where gath-
ering often brings a special “flavor” to the problem of meeting that is lacking
with rendezvous. Besides, the scale-up when considering numerous agents is ob-
viously tied to the occurrence of faults among them, which makes important, if
not essential, to be provided with studies dedicated to gathering in fault-prone
environment. This is witnessed by the large number of studies on the subject,
both in graphs and in the plane, e.g., [Agmon & Peleg 2006, Défago et al. 2006,
Dieudonné & Petit 2012, Bouzid et al. 2013, Park & Hutchinson 2017, Pelc 2018,
Das et al. 2019, Pattanayak et al. 2019, Défago et al. 2020, Miller & Saha 2020,
Bramas et al. 2023]. For more information about this matter, the curious reader
is referred to the survey [Défago et al. 2019], which gives a good overview of the
fault-tolerance literature (albeit mainly in plane environments) for gathering but
also for some other fundamental tasks in mobile distributed systems such as leader
election, scattering or flocking.

What did we do about the problem of gathering? As in most of the
aforementioned studies, our research efforts focused on specific settings in which
gathering becomes really much more interesting than just rendezvous. When we
started to study this problem in the early 2010s, all deterministic gathering al-
gorithms working in anonymous graphs required the agents to either see all the
nodes (e.g., [Klasing et al. 2008, Klasing et al. 2010, D’Angelo et al. 2012]) or have
the capability to mark nodes using either whiteboards or pebbles/tokens (e.g.,
[Yu & Yung 1996, Flocchini et al. 2004, Barrière et al. 2007, Chalopin et al. 2007]).

In the light of this, we then investigated the problem in arbitrary anonymous
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graphs assuming the agents were devoid of both these capabilities, but also assuming
additional constraints making the task of meeting even more hard to solve. Precisely,
in [Dieudonné & Pelc 2016] (resp. [Dieudonné et al. 2014, Bouchard et al. 2016,
Bouchard et al. 2022]), we studied the task of gathering in GBM for a team made of
two or more agents under the constraint that they are all anonymous (resp. they all
have pairwise distinct labels but are infiltrated by at most f Byzantine agents): the
obtained results are described below in Section 3.2 (resp. Section 3.3). In all these
studies, the agents sharing the same node are supposed to be able to exchange all cur-
rently held information. Is this ability really necessary? In [Bouchard et al. 2023b],
we embraced this question and provided interesting answers that are detailed in
Section 3.4.1.

In the rest of this chapter, when we speak of an algorithm solving the gathering
problem, it will always be understood that it includes the termination detection by
all the agents, through a declaration that the gathering is done, unless explicitly
stated otherwise.

3.2 Anonymous gathering

In [Dieudonné & Pelc 2016], we study the problem of gathering anonymous agents
in arbitrary graphs. Concretely, we consider model GBM, but under the assumptions
that:

• The team is made of two or more agents that are all unlabeled and that all
start from distinct nodes.

• The adversary wakes up some of the agents (at least one) in possibly different
rounds.

• When several agents are at the same node in the same round, they can ex-
change all information they currently have.

An initial configuration of agents is called gatherable if there exists a deterministic
algorithm, even dedicated to this particular configuration, that achieves meeting of
all agents in one node. Which configurations are gatherable and how to gather all
of them deterministically by the same algorithm?

In our paper, we give a complete solution to this problem in arbitrary networks.
We characterize all gatherable configurations and give two algorithms. The first
algorithm works under the assumption that a common upper bound n on the size
of the network is known to all agents and guarantees gathering (with detection),
in polynomial time in n, from any gatherable configuration. If no upper bound on
the size of the network is known, we show that no algorithm can solve gathering
with detection from all gatherable configurations. Hence, for this harder scenario,
we construct a second gathering algorithm, which guarantees, for any gatherable
configuration, that all agents eventually get to one node and stop, although they
cannot tell if gathering is over. The time complexity of this second algorithm is
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polynomial in the (unknown) size of the network. Further insights about these
results are distilled in Sections 3.2.1 and 3.2.2.

It is worth noting that while gathering only two anonymous agents in the present
context is a relatively easy task when feasible (cf. [Czyzowicz et al. 2012a]), our
problem of gathering an unknown team of anonymous agents presents the following
major difficulty. The asymmetry of the initial configuration because of which gath-
ering is feasible, may be caused not only by non-similar locations of the agents in
the graph (e.g., when the degrees of the starting nodes are different), but also by
their different situation with respect to other agents. Hence, a new algorithmic idea
is needed in order to gather: agents must make decisions based on the memories
of other agents met to date, in order to distinguish their future behavior. In the
beginning, the memory of each agent is a blank slate and in the execution of the
algorithm it records what the agent has seen in previous steps of the navigation and
what it heard from other agents during meetings. Even a slight asymmetry occur-
ring in a remote part of the graph must eventually influence the behavior of initially
distant agents. Notice that agents in different initial situations may be unaware of
this difference in early meetings, as the difference may be revealed only later on,
after meeting other agents. Hence, for example, an agent may mistakenly "think"
that two different agents that it met in different stages of the algorithm execution,
are the same agent. Confusions due to this possibility are a significant challenge
that is absent when we deal with only two anonymous agents.

3.2.1 Known upper bound on the size of the graph

The aim of this subsection is to give the characterization of the gatherable configu-
rations as well as the high-level idea of our algorithm that ensures gathering (with
detection) from all of them, when an upper bound on the size of the graph is known
to the agents.

The condition that must be met by a configuration to be gatherable is
based on two notions. The first notion is that of view (firstly introduced
in [Yamashita & Kameda 1996]). Let v be a node of the underlying graph G. The
view of node v is defined recursively. The view of depth 0 T 0(v) of node v, consists
of a single node called the root. The view of depth k ≥ 1 of v, T k(v), is a port-labeled
tree that is constructed by taking a node x0, which will become the root of the re-
sulting tree, and, for every neighbor vi of v in G, connecting the tree T k−1(w) of root
xi to node x0 with an edge between x0 and xi such that port(x0, xi) = port(v, vi)

and port(xi, x0) = port(vi, v). Now, the view T (v) of node v is the infinite rooted
tree with labeled ports, such that its truncation to depth l is T l(v) for every integer
l ≥ 0. The second notion is that of enhanced view that is similar to that of view but
reflecting the positions of agents in an initial configuration. Precisely, the enhanced
view of node v is the couple (T (v), f), where f is a binary valued function defined
on the set of nodes of T (v), such that f(w) = 1 (resp. f(w) = 0) if by following from
node v in G, the same shortest sequence of ports that leads to w from the root of
T (v), we reach a node that is occupied (resp. is not occupied). Loosely speaking,
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the enhanced view of a node of G corresponds to its view in which we additionally
mark the nodes representing the occupied positions in G. By misuse of language,
we will use the expression “view of an agent” (resp. “enhanced view of an agent”) to
designate the view (resp. enhanced view) of its initial starting node.

How are these notions involved in our characterization? In fact,
in [Dieudonné & Pelc 2016] we show that any initial configuration is gatherable if,
and only if, it respects the following condition Φ: there exist agents with different
views, and each agent has a unique enhanced view.

Let us start explaining why condition Φ is necessary. First, suppose that an
initial configuration C does not satisfy the first part of condition Φ, i.e., that the
views of all agents are identical. If the adversary wakes up every agent in the same
round in configuration C, then no pair of agents can meet. Indeed, assume, for
the of contradiction, that some agents A1 and A2 are the first to meet at some
round t (counted from the common start). Since the initial views of the agents are
identical and they execute the same deterministic algorithm, we can easily show
that they take the exact same decisions and see the exact same things in each round
till round t, and hence they both enter the node at which they first meet by the
same port. This implies that A1 and A2 are already together in round t − 1, which
is a contradiction showing that the first part of condition Φ must be verified.

Now, suppose that a configuration C does not satisfy the second part of condition
Φ, i.e., that there exists two distinct agents A and A′ that have identical enhanced
views. Let B ≠ A be any agent, and suppose that q is a sequence of port numbers
that leads from the initial position of agent A to that of agent B in the enhanced
view of agent A. (Notice that there may be many such sequences, corresponding
to different paths leading from A to B.) Then there exists an agent B′ ≠ A′ such
that q is a sequence of port numbers that leads from the initial position of agent A′

to that of agent B′ in the enhanced view of agent A′. It can be easily shown that
agent B′ has the same enhanced view as agent B and, since agents A and A′ are
different, agents B and B′ are different as well. Thus, for every agent, there exists
another agent whose enhanced view is identical. Call such agents homologs.

If the adversary wakes up all agents in the same round in configuration C, then,
although some meetings of agents are possible, homologs will never meet. Indeed,
suppose by contradiction that two homologs A and A′ meet for the first time in
some round t. Since A and A′ have the same enhanced view at the beginning, it
can be shown by induction on the round number that their memory will be identical
in every round (in particular, it can be shown that whenever A meets an agent B
in some round, its homolog A′ meets a homolog B′ of B in the same round). This
means that they both enter the node at which they first meet in round t by the same
port. Hence, A and A′ are already together in round t − 1, which is a contradiction
proving that the second part of condition Φ, and by extension condition Φ itself,
must be verified by any gatherable configuration.

Showing that respecting condition Φ is sufficient for a configuration to be gather-
able is much more difficult. In [Dieudonné & Pelc 2016], it is shown by constructing
an algorithm that takes as input an upper bound on the size of the graph and that
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accomplishes gathering with detection of all agents, when executed by agents start-
ing from any initial configuration satisfying condition Φ. (Note that, this is enough
to prove that condition Φ is sufficient, as for any specific configuration satisfying this
condition even a gathering algorithm dedicated to this specific configuration does
the trick to show that it is gatherable, and such a dedicated algorithm “knows” the
exact size of the graph. Of course, our algorithm accomplishes much more: knowing
just an upper bound on the size of the graph, it gathers all configurations satisfying
condition Φ.) Our algorithm works in time polynomial in the upper bound on the
graph size given as input. Therefore, if this upper bound is polynomial in the graph
size, the algorithm is polynomial in the graph size as well.

We close this subsection by outlining below some of the ideas that are behind
this algorithm.

At a high level, the algorithm works in two stages. The aim of the first stage
for any agent is to meet another agent, in order to perform later an exploration in
which one of the agents will play the role of a token and the other the role of an
explorer (roles will be decided comparing memories of the agents: any two agents
that first meet in a round t at a node v, necessarily enter this node in round t

by distinct ports or exactly one of both agents already occupies node v in round
t− 1). To this end, once it is woken up, an agent starts an exploration of the graph
using procedure Explo(n) (introduced in Section 2.2.2), where n is the known upper
bound on the graph size. The aim of this exploration is to wake up all, possibly still
dormant agents. Afterward, in order to create meetings, agents use a procedure from
[Ta-Shma & Zwick 2014], that aims at gathering two agents with distinct labels in
GBM, assuming they appear at their starting positions in possibly different rounds
(originally, it is assumed in GBM that all agents are initially present in the network
and thus the scenario of [Ta-Shma & Zwick 2014] is harder to handle). We call
this procedure TZ(l), where l is a positive integer given as input parameter. If
two agents with distinct labels execute this procedure by assigning their label to the
input parameter (they do not need to know an upper bound on the number of nodes),
then the meeting of the two agents is guaranteed in a polynomial time PTZ in the
network size and in the logarithm of the smaller of both labels after the appearance
of the later agent (the polynomial increases in each of the variables). This remains
true even if one of the agents never move after its appearance. However, our agents
have no label... One way to differentiate some agents and give them labels is to
find their views: the views (truncated to n) from the initial positions of the agents
could serve as labels because the first part of condition Φ ensures that there are at
least two distinct views, and thus this would lead to get at least two distinct labels,
which is enough for our purpose. Nevertheless, it is a priori not at all clear how
to find the view of an agent (truncated to n) in time polynomial in n (the size of
the view truncated to n is exponential in n). To circumvent this issue, we use a
procedure from [Czyzowicz et al. 2012a] that we call Sign(n), where n is the known
upper bound on the graph size given as input parameter. The time complexity of
this procedure is polynomial in n and it allows an agent to construct a label of
polynomial size in n such that the obtained labels of two agents are different if their
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views are initially different. Then, performing procedure TZ for a sufficiently long
time with such constructed labels, can enable us to guarantee a meeting for every
agent.

In the second stage, each explorer explores the graph using procedure Explo(n)
and then backtracks to its token left at the starting node of the exploration. After
the backtrack, memories of the token and of the explorer are updated to check for
anomalies caused by other agents meeting in the meantime either the token or the
explorer. Note that, due to the fact that some agents may have identical memories
at this stage of the algorithm, an explorer may sometimes falsely consider another
token as its own, due to their identical memories. By contrast, an end of each
backtrack is a time when an explorer can be sure that it is on its token and the
token can be sure that its explorer is with it.

Explorers repeat these explorations with backtrack again and again, with the aim
of creating meetings with other agents and detecting anomalies. As a consequence
of these anomalies, some agents merge with others, mergers being decided on the
basis of the memories of the agents. Each explorer eventually either merges with
some token or performs an exploration without anomalies. In the latter case it
waits a prescribed amount of time with its token: if no new agent comes during the
waiting time, the end of the gathering is declared, otherwise another exploration is
launched. It can be proved that eventually, due to the second part of condition Φ,
all agents merge with the same token A and then, after the last exploration made
by the explorer of A and after undisturbed waiting time, the end of the gathering
is correctly declared.

3.2.2 Unknown upper bound on the size of the graph

If no upper bound on the size of the graph is known, then we show there is no
algorithm for gathering with detection all gatherable configurations. Nevertheless,
we still show in this case an algorithm that gathers all gatherable configurations: all
agents from any gatherable configuration eventually stop forever at the same node
(although no agent is ever sure that gathering is over). Our algorithm is polynomial
in the (unknown) size of the graph. Below, we offer a closer look at these results,
and we start with the negative one.

Consider the following initial configurations. In configuration C, the graph is a
4-cycle with clockwise oriented ports 0,1 at each node, and with additional nodes of
degree 1 attached to two non-consecutive nodes. There are two agents starting at a
node of degree 2 and at its clockwise neighbor, (cf. Fig. 3.1 (a)). In configuration
Dk, where k is a positive integer, the graph is constructed as follows. Take a cycle
of size 4k with clockwise oriented ports 0,1 at each node. Call clockwise consecutive
nodes of the cycle v0, . . . , v4k−1 (names are used only to explain the construction)
and attach two nodes of degree 1 to v0 and one node of degree 1 to every other node
with even index. Initial positions of agents are at nodes vi, where i = 4j or i = 4j−1,
for some j (cf. Fig. 3.1 (b)).

Each of the configurations C and Dk, for k ≥ 2, is gatherable. Indeed, in each
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 (a)     CONFIGURATION     C  (b)     CONFIGURATION     D8

Figure 3.1: An illustration of configurations C and D8. Black nodes correspond to
nodes occupied by agents

of these configurations there exist agents with different views (agents starting at
nodes of degree 2 and of degree 3) and each agent has a unique enhanced view
(this is obvious for configuration C and follows from the existence of a unique node
of degree 4 for configurations Dn). Hence, each of these configurations satisfies
condition Φ and consequently, there is an algorithm for gathering with detection
each of them (cf. Section 3.2.1). However, there is no algorithm that gathers with
detection all configurations C andDk for every k ≥ 2, in the absence of any additional
knowledge. Indeed, suppose, for contradiction, that A is such an algorithm. Also
suppose that the adversary always wakes up all agents simultaneously, and let t ≥ 1

be the time after which agents in configuration C stop at the same node and declare
that gathering is over. Consider the configuration D2t and two consecutive agents
antipodal to the unique node of degree 4, i.e., starting from nodes v4t and v4t−1.
Call X the agent starting at a node of degree 2 in configuration C and call Y the
agent starting at its clockwise neighbor (of degree 3) in this configuration. Call
X ′ the agent starting at node v4t−1 and call Y ′ the agent starting at node v4t in
configuration D2t.

In the first t rounds of the executions of algorithm A starting from configurations
C and D2t the memories of the agents X and X ′ and of the agents Y and Y ′ are the
same. This easily follows by induction on the round number. Thus, after t rounds,
agents X ′ and Y ′ starting from configuration D2t stop and declare that gathering
is over. However, this is impossible, as the distance between the agents that are
initially at nodes v0 and v4t is at least 2t in round t, which contradicts the existence
of Algorithm A.

We now turn our attention to our positive result, by describing the high-level idea
of our algorithm that accomplishes gathering without detection from any gatherable
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configuration, in the absence of any additional knowledge.
Since in our present scenario, no upper bound on the size of the graph is known,

already guaranteeing any meeting between agents must be done differently than
when such an upper bound is initially known. Hence, after waking up, each agent
proceeds in phases i = 1,2, . . . , where in phase i it “supposes” that the graph has size
at most 2i. In each phase, an appropriate label based on procedure Sign(2i) (cf.
Section 3.2.1) is computed and, using this label, procedure TZ (cf. Section 3.2.1)
is performed sufficiently long to guarantee a meeting at most at the end of phase
⌈log2m⌉, where m is the real size of the graph. If no meeting occurs in some phase
for a sufficiently long time, the agent starts the next phase.

Another important difference occurs after the meeting, when one of the agents
becomes an explorer and the other its token. Unlike in the case of a known upper
bound on the size of the graph, there is no way for any explorer to be sure at any
point of the execution that it has already visited the entire graph. Clearly procedure
Explo involved in the previous scenario (cf. Section 3.2.1), would be of no use to
guarantee that, as it requires as input an upper bound on m that is alas unknown.
True, the explorer can somehow simulate BFS using as a marker the agent playing
the role of its token, which does not require the knowledge of an upper bound. In
fact, there exists a procedure based on BFS [Chalopin et al. 2010], which we will call
EST (standing for Exploration With a Stationary Token), that allows an exploring
agent to learn the graph size m and visit all the nodes in polynomial time in m, if it
can always distinguish unambiguously its starting node. Thus, simulating EST, by
considering to be at the starting node when encountering the agent playing the role of
its token, may sound like the perfect idea. Unfortunately, in our context, an explorer
cannot be always sure that it visits its own token, because memories of several
agents playing the role of tokens can be identical at various stages of the execution,
and hence these “tokens” may be indistinguishable for the explorer. Nevertheless,
our algorithm succeeds in accomplishing the task by using a mechanism which is
analogous to the “butterfly effect”. By repeating simulations of EST, even a slight
asymmetry in a remote part of the graph is eventually communicated to all agents
and ensures that at some point some explorer will visit the entire graph (although
in some graphs no explorer can ever be sure of it at any point of an execution)
and then all agents will eventually be able to gather at the token of one of these
explorers. Making all agents eventually decide on the same token is made possible
by condition Φ, and demonstrating it is one of the main difficulties to overcome in
the proof of correctness and complexity of our algorithm.

3.3 Byzantine gathering

In this section, we present our contributions [Dieudonné et al. 2014,
Bouchard et al. 2016, Bouchard et al. 2022] to the problem of gathering that
have been made in model GBM, but by assuming:

• The team is made of two or more agents that all have distinct pairwise labels
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and distinct pairwise starting nodes.

• Among the agents, at most f are Byzantine.

• The adversary wakes up some of the agents, at least one of which is good (i.e.,
not Byzantine), in possibly different rounds.

• When several agents are at the same node v in the same round t, they see, for
each agent x at node v, the label of agent x and all information it wants to
share with the others in round t. This transmission of information is done in a
“shouting” mode at the beginning of the round: all the transmitted information
by all agents at node v at the beginning of round t becomes common knowledge
for agents that are currently at node v in round t.

What do we mean precisely by “Byzantine agent”? In fact, throughout our
studies, we have been led to distinguish two kinds of Byzantine agents: the strongly
Byzantine and the weakly Byzantine ones. A strongly Byzantine agent can choose
an arbitrary port when it moves, can change its label in every round (in particular
by forging the label of another agent or by creating a completely new one) and can
convey arbitrary information to other agents, while a weakly Byzantine agent can
do the same, except changing its label. Needless to say, that the strongly Byzantine
agents are much more difficult to handle than the weakly Byzantine ones.

No matter the type, we cannot count on the Byzantine agents to cooperate.
Hence, in such a context, we can just hope to gather only the good agents. (Thus,
when referring to gathering in the remainder of this section, it is always understood
that it concerns the gathering of the good agents only.) This naturally raises the
following question: what is the minimum number of good agents that guarantees
gathering of all of them? In [Dieudonné et al. 2014], we study this question, assum-
ing that f is initially known to all agents: we bring exact answers when coping with
weakly Byzantine agents, and give approximate ones when coping with strongly
Byzantine agents, both when an upper bound on the size of the network is known
and when it is not. For weakly Byzantine agents, we show that any number of
good agents permit to solve the problem when an upper bound on the graph size
is known. If no such upper bound is known, then this minimum number is f + 2.
More precisely, we show a polynomial algorithm that gathers all good agents in an
arbitrary network, provided that there are at least f + 2 of them. We also provide a
matching lower bound: we prove that if the number of good agents is at most f +1,
then they are not able to solve the gathering problem in some networks.

For strongly Byzantine agents, we come up with negative and positive results
too. On the negative side, we give a lower bound of f + 1, when an upper bound on
the graph size is known: we show that f good agents cannot gather in the presence
of f Byzantine agents even in a ring of known size. When no upper bound on
the graph size is known, the lower bound of f + 2 that holds for weakly Byzantine
agents, is obviously also true for strongly Byzantine agents. On the positive side,
we give gathering algorithms for at least 2f + 1 good agents when an upper bound
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on the graph size is known, and for at least 4f + 2 good agents when no such
upper bound is known. In [Bouchard et al. 2016], we significantly improve on these
positive results: when an upper bound on the size of the network is known (resp. no
upper bound on the size of the network is known), we provide an algorithm working
with at least a number of good agents that perfectly matches the lower bound of
f + 1 (resp. f + 2) identified in [Dieudonné et al. 2014]. Consequently, in each of
the considered scenarios, we get the exact minimum number of good agents that
guarantees gathering of all of them: these results are summarized in Table 3.1. It
is worth noticing that when an upper bound on the graph size is known, the gap
between the number of good agents permitting gathering with weakly and with
strongly Byzantine agents is very significant (1 vs. f +1), while this gap completely
disappears when such an upper bound is unknown: the minimum number of good
agents is then f + 2, regardless of whether the bad agents are weakly or strongly
Byzantine.

Weakly Byzantine Strongly Byzantine

Known upper bound on the graph size 1 f + 1

Unknown upper bound on the graph size f + 2 f + 2

Table 3.1: Exact minimum numbers of good agents guaranteeing gathering of all of
them, in various scenarios, in presence of at most f Byzantine agents.

Unfortunately, the algorithms dealing with strongly Byzantine agents in our two
papers [Dieudonné et al. 2014, Bouchard et al. 2016], all have the major disadvan-
tage of having a time complexity that is exponential in the size of the network
and the largest label of a good agent. To circumvent this problem, we propose in
[Bouchard et al. 2022] to make a concession on the proportion of strongly Byzantine
agents within the team, in order to get an algorithm offering a significantly lower
complexity. Precisely, in this paper, we design a gathering algorithm working in all
graphs of size at most n in time polynomial in n and the logarithm of the smallest
label ` of a good agent, provided the agents are in a strong team, i.e., a team where
the good agents are at least some quadratic polynomial in f . Our algorithm re-
quires that the agents are initially provided with a common input that can be coded
in O(log log logn) bits. Nevertheless, we prove this size of input is asymptotically
optimal to obtain a polynomial time complexity in n and `.

The rest of this section is organized as follows. First, in Section 3.3.1, we give
the high-level ideas of our algorithms allowing to solve gathering, in the presence of
at most f weakly Byzantine agents, with at least one good agent (resp. at least f +2

good agents) when an (resp. no) upper bound on the graph size is initially known.
Next, in Section 3.3.2, we do a similar thing but with strongly Byzantine agents.
Precisely, we give the high-level ideas of our algorithms allowing to solve gathering,
in the presence of at most f strongly Byzantine agents, with at least f + 1 agents
(resp. at least f + 2 good agents) when an (resp. no) upper bound on the graph
size is initially known. Then, in Section 3.3.3, we explain why our algorithms are
optimal in terms of required number of good agents. Finally, in Section 3.3.4, we
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provide the intuitions that are behind our algorithm of [Bouchard et al. 2022] that
solves gathering in polynomial time provided the agents are in a strong team.

3.3.1 Algorithms dealing with weakly Byzantine agents.

In this subsection, we describe the core ideas that are behind our two algorithms from
[Dieudonné et al. 2014] dealing with weakly Byzantine agents. The first algorithm,
which will be called here WeakByzKnownUpperBound, permits to solve gathering with
any (positive) number of good agents,2 when an upper bound n on the graph size
is a priori known. It works in polynomial time in n and in the logarithm of the
largest label within the team.

In Algorithm WeakByzKnownUpperBound, when an agent is woken up by the ad-
versary, it starts executing the procedure TZ (cf. Section 3.2.1), by using its label l
as input parameter. At the first meeting with one or more agents, the current pro-
cedure TZ(l) is interrupted, and the agent starts executing procedure TZ(l′), where
l′ is the minimum of labels among the colocated agents. This way, if all agents are
good, they will start traveling together, with the objective of continuing this process
in order to get groups of increasing size, till achieving finally the gathering. How-
ever, this idea cannot be implemented directly, due to the presence of Byzantine
agents. Indeed, the agent of the group with the smallest label l′ can be Byzan-
tine and leave the group. Continuing TZ(l′) is then dangerous because that agent
could join another group, thus causing two groups to execute the same TZ(l′), and
possibly preventing them from meeting each other due to symmetry considerations.
Thus, we want to interrupt the current TZ and switch to TZ(l′′), where l′′ is the
smallest remaining label. However, this solution is vulnerable to another danger.
A Byzantine agent with label 1 could meet another agent with label x, leave it,
then meet it again, and so on. According to the idea described above, the agent
with label x would alternate between executing TZ(x) and TZ(1), interrupting the
current procedure whenever the Byzantine agent labeled 1 joins or leaves. This
could go forever, creating a vicious circle, and, by extending this behavior to other
agents, the gathering of all good agents might never be accomplished. Hence, we
need a mechanism that permits a group of good agents marching together to disre-
gard “rogue” agents that already compromised themselves as Byzantine. To do so,
we make use of blacklists to indicate such rogue agents. Informally, the blacklist of
an agent at a given round t is the largest subset B of agents currently at the same
node, such that other agents at this node have collectively seen each element of B
leave the group in the past, possibly at different times. This definition guarantees
that the blacklists of all good agents at a node in a given round are identical. In
Algorithm WeakByzKnownUpperBound, we adopt the rule that whenever a group of
agents changes, they interrupt the current TZ and restart it with the smallest label

2Note that if there is only one good agent, this means that at the time of stopping for good it
may be alone, in which case it learns that there are no other good agents, or it may meet some
agents, in which case it only knows that if there are other good agents, they are at the same node.
In the latter case, the only good agent cannot deduce that there are no other good agents.
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belonging to the kernel of the group, which corresponds to the set of all agents’
labels of the group that are not blacklisted. Again, good agents will travel together.

Using such an approach, we can prove that the number of times when an agent
is interrupted in the execution of procedure TZ is less than 2n2. Therefore, in view
of the definition of the polynomial PTZ (cf. Section 3.2.1), which is related to
procedure TZ, it can be proven that if a group of agents execute together TZ(µ), for
some label µ belonging to their kernel, without interruption for 2n2 ⋅PTZ(n, ⌈logµ⌉)

rounds, then gathering of all good agents is achieved. (In fact, gathering has been
already achieved at the beginning of the execution of this TZ(µ), but we are sure
the agents in the group become aware of it after time 2n2 ⋅PTZ(n, ⌈logµ⌉).) Since µ
is at most equal to the largest label L, we can show that such an event necessarily
occurs by round 4n4 ⋅ PTZ(n, ⌈logL⌉). Besides, when occurring, all good agents of
the group (which must now contain all good agents) can detect it because they all
know n, and thus can declare the completion of gathering and stop.

The second algorithm, which will be called here WeakByzUnknownUpperBound,
permits to solve gathering, when no upper bound on the graph size is known, pro-
vided there are at least f + 2 good agents. It works in polynomial time in the graph
size and in the logarithm of the largest label within the team.

In Algorithm WeakByzUnknownUpperBound, each agent of a group also maintains
and updates, similarly as in the previous algorithm, a blacklist and a kernel. The
algorithm essentially consists of three parts. The aim of part 1 is to gather a group
of agents with a kernel of size at least f + 2. Once such a group is formed,3 the
second part of the algorithm starts. It aims at exploring the graph and constructing
its map, and in particular, finding an estimate on the graph size. Once such an
estimate is known to the good agents, they start the third part of the algorithm,
which is similar to Algorithm WeakByzUnknownUpperBound.

Let us go a little bit deeper into the description of these parts. The first part
is a variation of WeakByzUnknownUpperBound, except that its completion for a good
agent A is not determined by meeting any particular deadline (such a deadline is
yet impossible to establish, as no upper bound on the size of the graph is known).
Rather, it occurs when the kernel size of its group becomes at least f + 2. More
precisely, whenever its kernel changes, an agent starts executing TZ(µ), where µ is
the smallest label in the new kernel. This is iterated until the kernel gets to size
at least f + 2, and another technical condition, given later in this description (when
presenting some complications), is satisfied.

The second part is where the current algorithm differs most significantly from
Algorithm WeakByzKnownUpperBound, and where the main technical difficulties are.
The goal of this part is to discover the size of the underlying graph. At a high level,
it is performed by implementing a fault-tolerant version of the exploration procedure
EST (cf. Section 3.2.2), in which a group of at least f +1 agents plays the role of the
token and one agent plays the role of the explorer. Multiple such explorations are
performed: agents from the kernel of the group of size at least f + 2 assume in turn

3Recall that the good agents initially know f .
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the role of the explorer, all others playing the role of the token for this exploration.
Once all explorations are performed, all good agents in the group know the graph
size. It is in part 2 where the assumption that there are at least f +2 good agents is
crucial. This assumption permits to guarantee the creation of a group with a kernel
of size at least f +2. In contrast, using a kernel of size f +1 would necessitate using
a token of size f , and such a token cannot be used reliably, as it may be composed
of Byzantine agents that have not yet compromised themselves, and might suddenly
move to another node during exploration, thus enticing a good explorer to learn a
wrong graph size.

The third part mainly differs from Algorithm WeakByzUnknownUpperBound in
the following two points. First, whenever the kernel changes, a good agent restarts
the algorithm from the very beginning, rather than restarting only the third part.
More precisely, it starts executing TZ(µ), where µ is the smallest label in the new
kernel. Second, the time bound ∆ after which good agents know that the gathering
is over, is now different and particularly has to take into account also an upper
bound on the exploration part of the algorithm.

As the acute reader will have quickly guessed, the implementation of the above
algorithm has to take care of a lot of complications that have not been addressed
here. For instance, what happens when an agent executing the first part encounters
an agent playing the role of an explorer or a token? Or what happens when agents
playing the role of a token see bad behaviors when the explorer is absent? In
fact, most of the complications can be easily swept away with technical ingredients
which it is not relevant to dwell on here to understand the main intuitive ideas.
Two difficulties seem nevertheless worth explaining. They are both related to the
implementation of the second part of Algorithm WeakByzUnknownUpperBound.

The first difficulty is that, when an explorer is a Byzantine agent, it may not
come back to its group. Hence, all agents in the group must have a time bound
after which they “give up” on this explorer, treat it as Byzantine and restart the
algorithm. If they knew the graph size, they could obviously easily compute such
a time bound, but it is not the case at this stage. To tackle this, the agents of
the group will act in steps i = 1,2,3, . . .. In each step i, the agents compute an
upper bound on the time required for an explorer to visit all nodes of the graph
via procedure EST, assuming that the graph size is at most 2i. Of course, this time
must be enough to let an explorer come back to its token if it realizes that 2i is not
a good upper bound. Therefore, in each step i, agents from the kernel of the group
will perform time-limited explorations. If at some point an explorer does not come
back from its exploration after the time limit, then it is Byzantine. In this case,
the agents in the token blacklist the Byzantine explorer and restart the algorithm.
Otherwise, if at the end of step i everything has gone “smoothly”, then the agents
start the third part of Algorithm WeakByzUnknownUpperBound (resp. step i + 1) if
they realize that 2i is (resp. is not) a good upper bound on the graph size.

The second difficulty is even more serious. It may occur when there are some
Byzantine agents among the agents playing the role of a token. Consider the situa-
tion when one agent of a group, the explorer, left a node v in round t, where a group
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T of at least f + 1 agents belonging to the kernel of the group remains playing the
role of the token for this explorer. Obviously, if during its exploration the explorer
meets the entire group T , it can deduce that it has arrived at node v. Indeed,
f + 1 agents could not move when the algorithm instructs them to stay (recall that
according to the algorithm, the size of T is at least equal to f +1, when the explorer
starts its exploration). However, if the explorer meets only a subset X ⊂ T at node
w, two cases are possible.

The first case occurs when the size of T , in round t, is at least 2f + 1. In this
case, since there are at most f Byzantine agents in the token, we know that, after
the explorer has left, at most f agents can leave the token and at least f + 1 agents
remain idle at v. Consequently, if the size of X is strictly smaller than f +1 then the
explorer does not consider X and continues as if nothing happened: it is sure that
w ≠ v. Otherwise, the explorer is sure that it reached node v, i.e., that v = w. Both
the explorer and the agents in X change state to regular, blacklist all the agents
belonging to T ∖ X and restart the algorithm from scratch.

The second case occurs when the size of T is strictly smaller than 2f + 1. If
the size of X is at least f + 1, the agents apply the same mechanism as above:
the missing agents are blacklisted and the agents restart the algorithm from the
beginning. If ∣X ∣ < ∣T ∣−f (where ∣X ∣ and ∣T ∣ are the sizes of X and T respectively),
then the explorer does not consider X and continues as if nothing happened: it is
sure that v ≠ w. Otherwise, we have ∣T ∣ − f ≤ ∣X ∣ ≤ f and it might be impossible for
the explorer to decide whether it arrived at v or not, i.e., whether v = w or v ≠ w.
Indeed, there are at least two possible situations:

• X is the set of good agents that remained at v and the agents belonging to
T ∖ X are Byzantine. In this case, v = w.

• X is a set of Byzantine agents and the other agents belonging to T ∖X remained
at v. In this case, v ≠ w.

This kind of ambiguity could possibly arise when the explorer reaches a node
occupied by this group X via a new port. It cannot decide whether this node
is v or another node w and it cannot pinpoint any Byzantine agent. The error
resulting from a possibly wrong identification of the node occupied by the token
could potentially lead a good agent to a wrong estimate of the graph size. We now
describe how to prevent this.

Whenever the above ambiguity arises, the explorer backtracks to the original
node v by the previously used path, informs the remaining agents of this ambiguity
and marks the kernel of the original group from which it started the exploration, as
well as all its subsets, as grey. Notice that the explorer may be unable to blacklist
any particular agent as Byzantine if all agents that left v in the absence of the
explorer returned to v before the explorer. Nevertheless, the explorer knows that
there are Byzantine agents in the kernel of the original group from which it started
the exploration.
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On the side of the token whose members learned from an explorer that an am-
biguity occurred, the reaction is the following. If the ambiguity is plausible, i.e.,
if ∣T ∣ < 2f + 1 and during the absence of the explorer there was a round in which
a subset Y ⊂ T of size between ∣T ∣ − f and f was separated from the rest of the
token, then agents in the token mark the kernel of the original group, as well as all
its subsets, as grey and restart the algorithm from scratch. Otherwise, the agents
in the token know that the explorer is Byzantine. They blacklist the explorer and
restart the algorithm.

Notice that a kernel K is marked grey when it becomes known that it contains
Byzantine agents, but at no time all agents in K have necessarily seen together
a faulty behavior of a particular agent from K, and hence nobody in K can be
blacklisted.4 In addition to marking the kernel grey, if after the return of the explorer
to the token, there are agents missing from the original kernel, both the explorer
and the agents remaining in the token blacklist the missing agents and restart the
algorithm from scratch.

Marking a kernel as grey has the following effect. When a new group of at least
f + 2 agents will be formed in the future during part 1 of the algorithm, but the
kernel of the good agents in the group is either smaller than f + 2 or is grey then,
instead of switching to the second part of Algorithm WeakByzUnknownUpperBound,
the first part is continued because certainly at least one other good agent is outside
of the group. This part will continue until a group is formed in some round t, such
that, for each good agent a in this group, the kernel is of size at least f +2 and is not
grey. This prevents a vicious circle which would result if kernels were not marked
grey.

It can be shown that at some point the kernel will be such as to prevent the
above ambiguity. This will permit all good agents to find the correct graph size
needed to start the third part of the algorithm.

3.3.2 Algorithms dealing with strongly Byzantine agents.

The mechanism of blacklist, that is used with weakly Byzantine agents and that
permits to maintain lists of labels corresponding to agents having exhibited an “in-
consistent” behavior, becomes obsolete in a context in which faulty agents can always
change their label. Hence, when facing strongly Byzantine agents, we need to de-
vise completely new strategies. It is what we have done in [Bouchard et al. 2016],
by designing an algorithm, which will be called here StrongByzKnownUpperBound
(resp. StrongByzUnknownUpperBound), which allows the good agents to solve the
problem of gathering, provided that they are at least f + 1 (resp. f + 2), when an
(resp. no) upper bound n on the size of the underlying graph G is known. Below,

4When a kernel is marked as grey, all its subsets are also marked as grey. However, when a
kernel S is grey, this does not imply that a superset S′ of S is grey. In fact, unless S′ or one of its
supersets have been marked as grey, S′ is not grey even if there exists a subset S ⊊ S′ such that
S is marked as grey. In particular, if S′ contains some other agents not seen before, it is not grey,
even if there is a subset of S′ which is grey.
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we give an informal description of these algorithms and we start with Algorithm
StrongByzKnownUpperBound.

Let us first assume an ideal situation in which each agent would have as input
its label, value f , and, instead of n, a parameter ρ = (G∗, L∗) corresponding to the
initial configuration of the agents in the graph such that:

• G∗ represents graph G with all port numbers, in which each node is assigned
an identifier belonging to {1,⋯, ∣G∣}, so that the node identifiers are pairwise
distinct. (Note that the representation G∗ contains more information than
there is in the actual graph G as it also includes node identifiers that do not
exist in G.)

• L∗ = {(v1, l1), (v2, l2),⋯, (vk, lk)} where (vi, li) ∈ L
∗ iff there is a good agent

having label li which is initially placed in G at the node having identifier vi
in G∗. Remark that k ≥ f + 1.

Let us also assume that all the agents in the graph are woken up at the same
time by the adversary. In such an ideal situation, gathering all good agents can be
easily achieved by ensuring that each agent moves towards the node v where the
agent having the smallest label is located. Each agent can indeed do that by using
the knowledge of ρ = (G∗, L∗) and its own label. Of course, all the good agents do
not necessarily reach node v at the same time. However, each agent can compute the
remaining time which is required to wait at node v in order to be sure that all good
agents are at node v: again, this time can be computed using ρ = (G∗, L∗) and the
fact that all agents are woken up in the same round. Unfortunately, the agents are
not in such an ideal situation. First, every agent is not necessarily woken up by the
adversary, and for those that are woken by the adversary, this is not necessarily in
the same round. Second, the agents do not have configuration ρ as input of the algo-
rithm. In Algorithm StrongByzKnownUpperBound, we cope with the first constraint
by requiring the first action to be a traversal of the entire graph using procedure
Explo (cf. Section 2.2.2) with the known upper bound n as input, which permits to
wake up all encountered agents that are still dormant. In this way, the agents are
“almost synchronized”, as the delay between the starting times of any two agents is
at most the time complexity of Explo(n): the waiting time periods can be adjusted
regarding this maximum delay. The second constraint, i.e., the non-knowledge of
ρ, is more complicated to deal with. To handle the lack of information about ρ, we
use a technique that is an extension of ideas introduced in [Czyzowicz et al. 2012b]
for the case of two agents evolving in a fault-free environment. Through this tech-
nique, agents make successive assumptions about it that are “tested” one by one.
More precisely, let P be the recursively enumerable set of all the configurations
ρi = (G∗

i , L
∗
i ) such that G∗

i is a connected graph of at most n nodes and ∣L∗i ∣ ≥ f +1.
Let Θ = (ρ1, ρ2, ρ3,⋯) be a fixed enumeration of P (all good agents agree on this
enumeration). Each agent proceeds in phases numbered 1,2,3,⋯. In each phase i,
an agent supposes that ρ = ρi and, similarly as in the ideal situation, tries to go
to the node which is supposed to correspond to node v, where v is the node where
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the agent having the smallest label is initially located (according to ρi). For some
reasons, when ρi ≠ ρ some agents may be unable to make such a motion or some
others may realize that the current hypothesis ρi is incorrect (it is for instance the
case, if an agent is supposed to exit a node by a port that does not exist, or if it
sees a node having a degree too large according to ρi). As a consequence, these
agents will consider that, rightly, ρi ≠ ρ. On the other hand, whether ρi ≠ ρ or not,
some other good agents may reach a node for which they had no reason to think
it is not v (and thus ρi ≠ ρ). The danger here is that when reaching the supposed
node v these successful agents could see all the ∣L∗i ∣ labels of ρi (with the possible
“help” of some Byzantine agents). At this point, it may be tempting to consider that
gathering is over, but this could be wrong, especially in the case where ρi ≠ ρ and
some good agents did not reach a supposed node v in phase i. To circumvent this
problem, the idea is to get the good agents that think ρi = ρ to fetch the (possible)
others for which ρi ≠ ρ via a traversal of the entire graph using procedure Explo(n).
To allow this, an agent for which ρi ≠ ρ will wait a prescribed amount of rounds in
order to leave enough time for possible good agents to fetch it. For our purposes,
it is important to prevent the agents from being haphazardly fetched by any group,
especially those containing only Byzantine agents. Hence, our algorithm is designed
in such a way that within each phase at most one group, called a tower and made up
of at least f + 1 agents (supposedly thinking that ρi is the correct hypothesis), will
be allowed to fetch the other agents via an entire traversal of the graph. Why f +1?
Because a set of f + 1 agents has some conviction power: if at least f + 1 agents are
together and claim that they form a tower, then we can believe them, because there
is at least one good agent among them. When a tower has finished the execution of
procedure Explo(n) in some phase i, our algorithm guarantees that all good agents
are together and declare gathering is over at the same time (whether the assumed
configuration ρi corresponds to the real initial configuration or not). On the other
hand, in every phase i, if a tower is not created or “vanishes” (because there are
not at least f + 1 agents inside of it anymore) before the completion of its traversal,
no good agent will declare that gathering is over in phase i. In the worst case, the
good agents will have to wait until assuming a good hypothesis about the real initial
configuration, in order to witness the creation of a tower that will proceed to an
entire traversal of the network (and thus declare gathering is over).

Let us now provide some of the main intuitive ingredients on which
StrongByzUnknownUpperBound is based. This algorithm inevitably shares some sim-
ilarities with Algorithm StrongByzknownUpperBound, but it also presents several
major differences to tackle the lack of knowledge about the network size. Among
the most notable differences, there is the way of enumerating the configurations.
Previously, the agents were considering the enumeration Θ = (ρ1, ρ2, ρ3,⋯) of P
where P is the set of every configuration corresponding to a graph in which there
are at least f + 1 robots with pairwise distinct labels and whose size is at most the
given upper bound n. Now, instead of considering Θ, the agents will consider the
enumeration Ω = (φ1, φ2, φ3,⋯) of Q where Q is the set of all configurations corre-
sponding to graphs of any size (instead of size at most n only) in which there are at
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least f + 2 agents (instead of at least f + 1) with pairwise distinct labels. Note that,
as for set P, set Q is also recursively enumerable.

Another difference stems from the function performed by a tower, which we also
find here. In Algorithm StrongByzknownUpperBound, the role of a tower is to fetch
all awaiting good agents (which know that the tested configuration is not good)
via procedure Explo(n): in the new algorithm, we keep the exact same strategy.
However, to be able to use procedure Explo with a parameter corresponding to an
upper bound on the size of the network, it is necessary, for the good agents that
are members of a tower, to get an estimate of such an upper bound. Hence, in
our solution, before being considered as a tower and then authorized to make a
traversal of the graph, a group of agents will have to learn the size of the graph. To
do this, at least each good agent of the group will be required to make a simulation
of procedure EST (cf. Section 3.2.2) by playing the role of an explorer and using the
others as its token, as in the second part of Algorithm WeakByzUnknownUpperBound
(cf. Section 3.3.1). To carry out these simulations, it is also required for the group of
agents to contain initially at least f+2 members (explorer + token), even though it is
subsequently required for a group of agents forming a tower to contain at least f +1

members. Why f + 2? Because, as with Algorithm WeakByzUnknownUpperBound,
Algorithm StrongByzknownUpperBound is designed in such a way that if during the
simulation of procedure EST by an agent playing the role of an explorer, we have the
guarantee there are always at least f +1 agents playing the role of its token, then the
explorer will be able to recognize its own token without any ambiguity (and thus will
act as if it performed procedure EST with a “genuine” token). Of course, the agents
will not always have such a guarantee (especially due to the possible bad behavior
of Byzantine agents when testing a wrong configuration) and will not be able to
detect in advance whether they will have it or not. Besides, some other problems
may arise including, for example, some Byzantine explorers which take too much
time to explore the graph (or even worse, “never finish” the exploration). However,
in all cases, we can make sure that the good agents never learn an erroneous size
of the graph (even with the duplicity of Byzantine agents when testing a wrong
configuration). We can also make sure that the good agents will learn the size of the
network when testing a good configuration at the latest (as the creation of a group
of at least f + 2 agents and the aforementioned guarantee are ensured when testing
a good configuration). As for Algorithm StrongByzknownUpperBound, in the worst
case the good agents will have to wait until assuming a good hypothesis about the
real initial configuration, in order to declare gathering is over.

3.3.3 Lower bounds on the minimum number of good agents.

In order to show that our algorithms presented in Sections 3.3.1 and 3.3.2 are op-
timal in terms of required number of good agents, it is enough to demonstrate two
properties. The first (resp. second) property is that, in the presence of at most f
strongly (resp. weakly) Byzantine agents, there is no deterministic algorithm per-
mitting to solve the gathering problem with a team containing at most f (resp. f+1)



50 Chapter 3. Gathering

good agents, when the graph size is initially known (resp. when no upper bound on
the graph size is initially known). Below, we sketch the arguments underlying the
proofs of these two properties, which are given in [Dieudonné et al. 2014].

We start with the first one. For the sake of simplicity, we voluntarily restrict
our explanations to the case where there are exactly f good agents and f strongly
Byzantine agents, as the ideas involved in this particular case can be easily extended
to fully demonstrate the first property. Suppose, towards contradiction, that there
exists a gathering algorithm A for f good agents in the presence of f strongly
Byzantine ones. Take an oriented ring of n = 2f nodes v0, . . . , v2f−1, with port
0 (resp. 1) leading clockwise (resp. counterclockwise) and place f good agents,
labeled 1, . . . , f , in nodes v0, . . . , vf−1 respectively. Also place in this ring, f faulty
agents, labeled 1, . . . , f , in nodes vf , . . . , v2f−1 respectively. We obtain an initial
configuration I. For notational convenience, we will refer to the kth faulty agent as
k̂. Now, consider an execution EX1 from I in which all the agents are woken up in
the same round and in which the faulty agents behave as good agents (except for the
fact that they use a false label), namely, agent k̂ (whose label is k) acts according
to the instructions of Algorithm A for label k.

Observe that due to symmetry, the agents k and k̂ will act symmetrically for
every k, and subsequently will remain at diametrically opposing nodes throughout
the execution. Since A is a gathering algorithm, it is guaranteed to gather the
good agents 1, . . . , f at some node vi in some round t. By symmetry, in the same
round, the faulty agents 1̂, . . . , f̂ are gathered at the diametrically opposing node
vi+f mod 2f .

Now, take an initial configuration I ′ that is similar to I, except that the starting
node of agent 1 (resp. k̂) is vf (resp. v0), and consider an execution EX2 in which,
as in EX1, the agents are woken up in the same round and the faulty agents, apart
from lying about their label, behave as good agents. Necessarily, this execution will
also end in round t with the agents 1̂,2, . . . , f gathered at node vi, and the agents
1, 2̂, . . . , f̂ gathered at node vi+f mod 2f . Hence, in execution EX2 the algorithm fails
to gather the good agents. This is a contradiction proving the first property.

The explanations about the first property being done, we can turn our attention
to the second property stipulating that in the presence of at most f weakly Byzantine
agents, there is no deterministic algorithm permitting to solve the gathering problem
with a team containing at most f + 1 good agents, when no upper bound on the
graph size is initially known. Suppose, by contradiction, that there exists such an
algorithm and call it B. For the sake of simplicity, we narrow down our arguments to
the case in which there are exactly f = 1 faulty agents and f + 1 = 2 good agents, as
the ideas involved in this particular case, once understood, can be easily generalized.

Take a clique of 6 nodes in which the port numbering is symmetric, i.e., for
any nodes u and v, port(u, v) = port(v, u), and place at distinct nodes two good
agents labeled 1 and 2 and a weakly Byzantine agent labeled 3. From such an initial
configuration, it can be proved that there exists an execution EX3 of B in which
the good agents end up solving the gathering problem in some round t without ever
having seen the bad agent.
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Now, take a ladder graph made of 4t + 3 rungs, labeled rg1, rg2, . . . , rg4t+3 from
bottom to top, and first place a good agent with label 3 at one of the nodes of rg1.
Second, place a good agent with label 1 at one of the nodes of rung rg2t+2 and a
weakly Byzantine agent with label 2 at the other node of rg2t+2. Third, for every
integer 1 ≤ i ≤ 4t + 3 and for each node ui of rgi, add an edge from ui to the node
of rgi+1 to which it is not adjacent. Finally, assign numbers to edges’ ports so that
the port numbering is symmetric. From the resulting configuration C, consider an
execution EX4 of B where the adversary wakes up all agents in the same round and
the Byzantine agent labeled 2 acts as follows. For each round s = 1,2, . . . , t, if the
agents labeled 1 and 2 are (resp. are not) together in round k of execution EX3

(execution in which both these agents are good), then the agents labeled 1 and 2

are together (resp. occupy different nodes of the same rung) in round s of execution
EX4 (execution in which the agent having label 2 is Byzantine). This is always
possible, in view of the structure of the graph in configuration C and the fact that
agents labeled 1 and 2 start from the same rung in execution EX4. Moreover, in
each round s = 1,2, . . . , t, the Byzantine agent in round s of execution EX4 gives
exactly the same information to agent 1, as the agent with label 2 in round s of
execution EX3. Hence, using the fact that, by round t in EX4, agent 1 can neither
meet agent 3 nor being in a node with a degree different from 5, it can be proved,
from the point of view of agent 1, that the first t rounds of execution EX3 look
exactly identical to the first t rounds of execution EX4. Therefore, in round t of
execution EX4, agent 1 consider the task of gathering is terminated and stops the
execution of B. This is a contradiction with the definition of B, which closes our
argumentation about the second property.

3.3.4 An efficient algorithm dealing with strongly Byzantine agents

The algorithms presented in Sections 3.3.2, dealing with strongly Byzantine agents,
have very huge complexities. As explained, these solutions are all based on a com-
mon strategy that consists in enumerating the possible initial configurations, and
successively testing them one by one. Once the testing reaches the correct initial
configuration, the gathering can be achieved. However, in order to get a signifi-
cantly more efficient algorithm, such a costly strategy must be abandoned in favor
of a completely new one. It is what we have done in [Bouchard et al. 2022] with a
gathering algorithm that will be called here GatherStrongTeam.

In this subsection, we give the high-level idea of this algorithm. It works in
all graphs of size at most n, in time polynomial in n and in the logarithm of the
smallest label ` of a good agent, provided the agents are in a strong team, i.e., the
number of good agents is at least 5f2 + 6f + 2. Unlike the algorithms presented
in Sections 3.3.2, Algorithm GatherStrongTeam does not require the agents to get
initially, as global knowledge, the value of f , but just the value ⌈log logn⌉.5

5We will not detail it in the present manuscript, but in [Bouchard et al. 2022], we show that
the size of this global knowledge, which belongs to O(log log logn), is asymptotically optimal to
get a gathering algorithm polynomial in n and ` with strong teams.
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Algorithm GatherStrongTeam relies on procedure Explo(n), presented in Sec-
tion 2.2.2, allowing an agent to visit every node of any graph of size at most n in a
number of rounds polynomial in n, which will be denoted here by X(n). Algorithm
GatherStrongTeam also relies on two other technical procedures. The first proce-
dure, called Group(T , n, β), guarantees that a group of at least 4f + 2 good agents
terminate the execution of this procedure in the same round and at the same node
if (1) the graph size is at most n, (2) all good agents start executing Group(T , n, β)
within an interval of at most T consecutive rounds, and (3) the good agents are
partitioned into two sets: those for which β = 1 and those for which β = 0. The
execution by each good agent of Group(T , n, β) lasts at most a number of rounds
that is polynomial in n and T , which will be denoted here by Q(n,T ).

The second technical procedure, called Merge(T , n), guarantees that all good
agents finish the execution of this procedure at the same node and in the same round
if (1) the graph size is at most n, (2) all good agents start executing Merge(T , n)

within an interval of at most T consecutive rounds, and (3) at least 4f + 2 of them
even do so in the same round and from the same node. The execution by each good
agent of Merge(T , n) lasts at most a number of rounds that is polynomial in n and
T .

We now see how these procedures are involved in the design of Algorithm
GatherStrongTeam and, in order to better describe the high-level idea, we first
consider a situation that would be ideal to solve gathering with a strong team and
that would be as follows. Instead of assigning distinct labels to all agents, the ad-
versary assigns to each of them just one bit β ∈ {0,1}, so that there is at least one
good agent for which β = 0 and at least one good agent for which β = 1. Such a
situation would clearly constitute an infringement of our model, but would allow
the simple protocol described in Algorithm 1 to solve the problem in a time that is
polynomial in n when global knowledge GK = ⌈log logn⌉. Let us briefly explain why.

Algorithm 1: Algorithm executed by every good agent in the ideal situa-
tion.
1 β ∶= the bit assigned to me by the adversary;
2 Execute A(β);

3 Declare that gathering is achieved;

Algorithm 2: A(β) executed by a good agent.

1 N ∶= 2(2
GK);

2 Execute Explo(N);
3 Execute Group(X(N),N, β);

4 Execute Merge(X(N) +Q(X(N),N),N)

Algorithm 1 consists mainly of a call to A(β) that is given by Algorithm 2.
Since GK = ⌈log logn⌉, we know that at the first line of Algorithm 2, N is a poly-
nomial upper bound on n, and the execution of Explo(N) in a call to A(β) by
the first woken-up good agent permits to visit every node of the graph and to
wake up all dormant agents. As a result, the delay between the starting times of
Group(X(N),N, β) by any two good agents of the strong team is at most X(N).
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According to the properties of procedure Group, this guarantees in turn that the de-
lay between the starting times of Merge(X(N)+Q(X(N),N),N) by any two good
agents is at most X(N) +Q(X(N),N), and at least 4f + 2 good agents start this
procedure at the same time from the same node. Hence, in view of the properties
of procedure Merge, all good agents declare gathering is achieved after a polynomial
number of rounds (w.r.t. n).

Unfortunately, we are not in such an ideal situation. At first glance, one might
argue that it is not really a problem because all agents are assigned distinct la-
bels that are, after all, distinct binary strings. Thus, by ensuring that each good
agent applies on its label a transformation that is similar to that mentioned in Sec-
tion 2.2.1, and then processes one by one each bit bi of its transformed label by
executing A(bi), we can guarantee (with some minor technical adjustments) that
the conditions of the ideal situation are recreated when the agents process the jth
bit of their transformed label, for some j ∈ O(`), and by extension, the fact that all
good agents end up being together after at most a time polynomial in n and `.

Unfortunately, it is not enough for our purpose. Indeed, in the ideal situation,
there is just one bit to process: thus, de facto every good agent knows that every
good agent knows that gathering will be done at the end of this single process.
However, it is no longer the case when the agents have to deal with sequences of bit
processes: the good agents have a priori no mean to detect collectively when they
are gathered.

To circumvent this problem, we want to reach a round in which every good agent
knows that every good agent knows that gathering is done. To do so, we put in
place a strategy in which we need the agents to consider a transformed label slightly
different to that used in Section 2.2.1. Precisely, each agent applies a transformation
permitting to obtain a new label for which the binary representation is even, has
asymptotically the same size as the original label and that has the following property.
Given any two agents, for which the sizes of their transformed labels are s and s′,
there exists a positive integer i ≤ min(s,s′)

2 (resp. min(s,s′)
2 < j ≤ min(s, s′)) such

that the ith bits (resp. jth bits) of their transformed labels are different. How
does it help solve the gathering? To understand this, let us return to our sequence
of bit processes, but now applied to labels transformed in this way. When a good
agent has finished reading the first half of its transformed label – call such an agent
experienced – it has the guarantee that the gathering of all good agents has been
done at least once. Hence, when an experienced agent starts to process the second
half of its transformed label, it actually knows an approximation of the number of
good agents with a margin of error of f at the most. For the sake of convenience,
let us consider that an experienced agent knows the exact number µ of good agents:
the general case adds a slight level of complexity that is unnecessary to understand
the intuition. So, each time an experienced agent completes the process of a bit in
the second half of its transformed label, it is at a node containing either less than µ
agents or at least µ agents. In the first case, the experienced agent is sure that the
gathering is not achieved. In the second case, the experienced agent is in doubt. In
our solution, we build on this doubt. How do we do that? So far, each bit process
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was just made of one call to procedure A: now at the end of each bit process, we add
a waiting period of some prescribed length, followed by an extra step that consists in
applying A again, but this time according to the following rule. If during the waiting
period it has just done, an agent Y was at a node containing, for a sufficiently long
period, an agent pretending to be experienced and in doubt (this agent may be Y
itself), then agent Y is said to be optimistic and the second step corresponds to the
execution of A(0). Otherwise, agent Y is said to be pessimistic and the second step
corresponds to the execution of A(1).

If at least one good agent is optimistic within a given second step, then the
gathering of all good agents is done at the end of this step. Indeed, through similar
arguments of partition to those used for the ideal situation, we can show it is the
case when at least another agent is pessimistic. However, it is also, more curiously,
the case when there are no pessimistic agents at all. This is due in part to the fact
that two good experienced agents cannot have been in doubt at two distinct nodes
during the previous waiting period (otherwise, we would get a contradiction with
the definition of µ). Thus, all good agents start A(0) from at most f + 1 distinct
nodes (as the Byzantine agents can mislead the good agents in at most f distinct
nodes during the waiting period), which implies by the pigeonhole principle that at
least 4f + 2 good agents start it from the same node. Combined with some other
technical arguments, we are able to show that the conditions, given earlier, for a
proper execution of procedure Merge, are fulfilled when the agents execute it at the
end of A(0), thereby guaranteeing again gathering of all good agents.

As a result, the addition of an extra step to each bit process gives us the following
interesting property: when a good agent is optimistic at the beginning of a second
step, at its end the gathering is done and, more importantly, the optimistic agent
knows it because its existence ensures it. Note that, it is a great progress, but
unfortunately it is not yet sufficient, particularly because the pessimistic agents
do not have the same kind of guarantee. The way of remedying this is to repeat
once more the same kind of algorithmic ingredient as above. More precisely, at the
end of each second step, we add again a waiting period of some prescribed length,
followed by a third step that consists in applying A in the following manner. If
during the waiting period it has just done, an agent Y was at a node containing, for
a sufficiently long period, an agent pretending to be optimistic, then the third step
of agent Y corresponds to the execution of A(0) and it becomes optimistic if it was
not. Otherwise, the third step of agent Y corresponds to the execution of A(1) and
the agent stays pessimistic.

By doing so, we made a significant move forward. To understand why, we want
to invite the reader to reconsider the case when there is at least one good agent that
is optimistic at the beginning of a second step. As we have seen earlier, at the end
of this second step, all good agents are necessarily gathered and every optimistic
agent knows it. In view of the last changes made to our solution, when starting
the third step, every good agent is then optimistic. As explained above the absence
of pessimistic good agent is very helpful, and using here the same arguments, we
are sure that when finishing the third step, all good agents are gathered and every
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good agent knows it because all of them are optimistic. Actually, it is even a little
more subtle: the optimistic agents of the first generation (i.e., those that were
already optimistic when starting the second step) know that the gathering is done
and know that every good agent knows it. Concerning the optimistic agents of the
second generation (i.e., those that became optimistic only when starting the third
step), they know that the gathering is done, but do not know whether the other
agents know it or not. (Recall that we want to reach a round in which every good
agent knows that every good agent knows that gathering is done.) However, we are
very close to such a consensus. To reach it, at the end of a third step, the optimistic
agents of the first generation make themselves known to all agents. Note that if there
were at least f +1 agents declaring to be optimistic agents of the first generation and
if f were part of GK, the consensus would be reached. Indeed, among the agents
declaring to be optimistic of the first generation, at least one is necessarily good and
every agent can notice it: at this point we can show that every good agent knows
that every good agent knows that gathering is done.

However, the agents do not know f . That being said, at the end of a third step,
note that an optimistic agent knowing that the gathering is done can compute an
approximation f̃ of the number of Byzantine agents. More precisely, if the number
of agents gathered at its node is p, the optimistic agent knows that the number of
Byzantine agents cannot exceed f̃ = max{y∣(5y + 1)(y + 1) + 1 ≤ p} according to the
definition of a strong team. Based on this fact, we are saved. Indeed, our algorithm
is designed in such a way that all good agents correctly declare that the gathering
is achieved in the same round after having computed the same approximation f̃

and noticed at least f̃ + 1 agents that claim being optimistic of the first generation
during a third step. We show that such an event necessarily occurs before any
agent finishes the kth bit process of its transformed label, for some k ∈ O(l), which
permits to obtain the promised polynomial complexity. This is where our feat of
strength is: obtaining such a complexity with a small amount of global knowledge,
while ensuring that the Byzantine agents cannot confuse the good agents in any way.
Actually, our algorithm is judiciously orchestrated so that the only thing Byzantine
agents can really do is just to accelerate the resolution of the problem.

A natural open question that may come to mind is whether we could do the same
thing by reducing the ratio between the good agents and the Byzantine agents. For
example, could it be still possible to solve the problem in polynomial time with
a global knowledge of size O(log log logn) if the number of good agents is at most
o(f2)? Note that the answer to this question may be negative, but then may become
positive with a little bit more global knowledge. Actually, we can even easily show
that the answer is true if the agents are initially given a complete map of the graph
with all port numbers, and in which each node v is associated to the list of all labels
of the good agents initially occupying node v. However, the size of GK is then huge
as it belongs to Ω(n2). In fact, in this case what is really interesting is to find the
optimal size for GK. This observation allows us to conclude with the following open
problem that is more general and appealing.

What are the trade-offs among the time complexity, the ratio good/Byzantine
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agents and the amount of global knowledge to solve gathering?
Bringing an exhaustive and complete answer to this question appears to be really

challenging, but would turn out to be a major step forward in our understanding of
the problem.

3.4 Gathering without any direct means of communica-
tion

In all the contributions that have been exposed so far in the present chapter, agents
sharing the same node can exchange information. In [Bouchard et al. 2023b], we ask
if this ability of talking is needed to solve the gathering problem, and the answer
turns out to be no. In support of this, we design two deterministic algorithms that
accomplish gathering in a model, deriving from GBM, in which:

• The team is made of two or more agents that all have distinct pairwise labels
and that all start from distinct nodes.

• The adversary wakes up some of the agents (at least one) in possibly different
rounds.

• In each round, the only information an agent can get about those sharing the
same node as it, is their number (in particular, it cannot talk or see the labels
of the other co-located agents).

Our first algorithm, called GatherKnownUpperBound, assumes that agents know
some upper bound n on the size of the network, and works in time polynomial
in n and in the length ` of the smallest label. Our second algorithm, called
GatherUnknownUpperBound, does not assume any knowledge about the network,
but its complexity is at least exponential in the size of the network and in the labels
of agents. Its purpose is to show feasibility of gathering under this harsher scenario.

As a by-product of our techniques we obtain, in the same weak model, solutions
to two fundamental problems, whether the agents initially know some upper bound
n on the size of the network or not. The first problem is that of leader election: one
agent is elected as a leader and all agents learn its identity. The second problem
is that of gossiping: each agent has a message at the beginning, and all agents
must end up learning all messages. This result about gossiping is perhaps our most
surprising finding: agents devoid of any transmitting devices can solve the most
general information exchange problem, as long as they can count the number of
agents present at visited nodes.

In the absence of direct communication, a natural idea that comes to mind to
solve the gathering problem, is to emulate the unavailable mechanism of commu-
nication using moves of agents. In fact, this is the basic approach that we adopt.
However, this idea, while natural, turns out to be very delicate to put in use. Indeed,
without special care, one gets soon to a dangerous situation where communication
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movements of one group of agents can interfere with communication movements
of another closely located group. On top of this difficulty we have another one:
movements of agents must serve to accomplish two different goals, one is to commu-
nicate with other agents, and the other is to travel in order to meet. Hence, we face
the danger of “travelling” movements interfering with “communication” movements.
Moreover, it should be stressed that an agent does not, in fact, “see” another agent
entering or leaving its node: it can only see the cardinality of the set of agents
occupying its current node, and, e.g., notice changes in it while waiting at a node.
Hence, for example, an agent will not notice any change, if one other agent leaves
its node trying to communicate something, and another agent enters its node sim-
ply navigating in the graph. Of course, all the above challenges are entirely absent
when co-located agents can directly exchange information. Overcoming these dif-
ficulties in the design of our algorithms is the main technical contribution of our
paper [Bouchard et al. 2023b].

The intuitions that are behind Algorithms GatherKnownUpperBound and
GatherUnknownUpperBound are presented blow, in Section 3.4.1 and 3.4.2 respec-
tively.

3.4.1 Known upper bound on the size of the graph

In order to better describe the high-level idea of Algorithm GatherKnownUpper-
Bound, working when an upper bound n on the network is known, let us assume an
ideal situation in which all the agents have labels of the same length µ. Let us also
assume that all agents are initially woken up at the same time by the adversary.

In such an ideal situation, we can solve the gathering problem via a strategy made
up of consecutive steps 1,2,3, etc. The agents start each step i simultaneously. At
the beginning of step i they are distributed over ki distinct nodes. The intended
goal is either to get the agents to declare gathering at the same time once step i

is completed if ki = 1, or otherwise to get all agents to start simultaneously step
i+ 1 from at most ki+1 ≤ ⌊

ki
2 ⌋ distinct nodes. Since the beginning of step 1 coincides

with the round when the adversary wakes up all agents, we can consider a step i ≥ 1

initiated at the same time by all agents from ki distinct nodes, and explain how
to reach the intended goal mentioned above. This is the purpose of the following
paragraphs in which we will use the notion of invisibility that can be intuitively
defined as follows: two agents (or two groups of agents), executing the same sequence
of instructions X starting at the same round but from two distinct nodes, are said
to be invisible to each other if they do not meet when executing X.

At the beginning of step i, an agent first applies the simple procedure described in
Algorithm 3 that is based on the graph traversal routine Explo(n) (cf. Section 2.2.2),
whose time complexity is a polynomial in n that will be denoted by X(n). This
procedure consists of two successive parts of equal durations: the effective part, in
which each node is visited at least once, and the backtrack part, in which the agent
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executes in reverse order all edge traversals made during the effective part.

Algorithm 3:
1 c ∶= the number of agents at my current node;
2 execute Explo(n) and interrupt it as soon as there are more than c agents

in my node;
3 wait until the time spent executing Algorithm 3 is precisely X(n) rounds;

It should be noted that the agents that are initially together remain so during
the execution of Algorithm 3. Hence, after having applied this algorithm, an agent
is either (1) with more agents than at the beginning of the step or (2) with exactly
the same number of agents.

Let us first focus on the former situation. This situation necessarily implies that
two groups of agents starting step i from two distinct nodes are not invisible to each
other during the execution of the procedure Explo(n), and thus even not invisible
to each other during the effective part of Explo(n), due to symmetry arguments.
Therefore, as soon as the first X(n)

2 rounds of the execution of Algorithm 1 are
elapsed, we get at most two kinds of groups: the old ones (if any) that have not met
any group yet and the new ones (at least one exists) that result from the merge of at
least two old groups. In view of the fact that the old groups, which have not merged
yet, were invisible to each other when executing the effective part of Explo(n) and
the fact that every new group remains idle during the last X(n)

2 rounds, we have
the guarantee that each remaining old group meets a new one when executing the
backtrack part of Explo(n). Thus, the execution by every agent of Algorithm 3
lasts exactly X(n) rounds: when it is completed, the agents are all situated in at
most ⌊

ki
2 ⌋ distinct nodes. Note that all agents know this, and know that every agent

knows this because if an agent ends up sharing its node with more agents than at
the beginning of the step, it follows from the above explanations that this is the
case for the other agents as well. Hence, we can fulfill our intended goal by just
requiring an agent to start step i + 1 if, after having applied Algorithm 3, it is with
more agents than at the beginning of the step.

Now, let us focus on the latter situation in which, after applying Algorithm 3, an
agent is exactly with the same number of agents as at the beginning of step i. For
an agent experiencing this situation, it could be tempting to think that everyone is
together as, after all, it has not met any new agent when executing Algorithm 3.
However, at this stage, this would be premature and thus dangerous. In fact, it can
be shown that the current situation implies that: either ki = 1 (i.e. all agents are
indeed together), or ki ≥ 2 but the ki groups are pairwise invisible to each other when
executing Algorithm 3 (the procedure Explo(n) does not guarantee rendezvous of
two agents starting at different nodes). However, these possible invisibilities that
could appear detrimental at first glance, we turn them to our advantage. Indeed,
we are actually in a convenient situation to allow each agent, using movements, to
communicate with the agents of its group, without being disturbed by the agents
of the other groups. Those communications aim at ensuring that in each group the
agents end up knowing the label of one of them.
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To achieve this, still in step i, the agents will act in phases 1,2,3 . . . , µ, each
lasting 2 ⋅X(n) rounds. At the beginning of phase k, we have the following property
Q(k): in every group Gr, there is an agent with label L such that all agents of Gr
know the prefix pk−1 of length k−1 of the binary representation of L (note that Q(1)

is trivially satisfied at the beginning of the first phase). Let us see how these agents
proceed to have the property Q(k + 1) satisfied when phase k is completed.

During the first (resp. last) X(n) rounds of phase k, the agents having a label
whose prefix is pk−10 execute Explo(n) (resp. remain idle) while the others remain
idle (resp. execute Explo(n)). The respective invisibilities of the groups come into
the picture as they imply the following crucial property: two agents belonging to two
distinct groups and executing Explo(n) in the first (resp. last) X(n) rounds cannot
meet each other within phase k. This is crucial because it means that when a set
of agents belonging to the same group move together by executing Explo(n), they
visit a node that contains only agents belonging to this set. Hence, by comparing
the number of agents sharing its node at the beginning of phase k to the minimum
number of agents with which it was at some node when executing Explo(n), every
agent can determine the number of agents of its group for which pk−10 is a prefix.
Once phase k is completed, if an agent concludes that there is at least one agent in
its group that has a label prefixed by pk−10, then all agents of the group conclude
the same, and then pk is set to pk−10, otherwise pk is set to pk−11.

After phase µ, in each group Gr all agents know the same label pµ of an agent
belonging to Gr: this label can now be used to break the invisibility of Gr via
procedure TZ and its associated polynomial PTZ , both introduced in Section 3.2.1.
Indeed, by requiring each agent, once its execution of phase µ is completed, to
execute Algorithm 4 that relies on procedure TZ and the polynomial PTZ , we can
show, using similar arguments as before, that we reach a configuration where: either
(1) the number of groups is at most ⌊

ki
2 ⌋ and the cardinality of each of them has

increased, or (2) there is only one group and its cardinality has remained unchanged
since the beginning of the phase. Note that every agent can detect in which of these
two situations it is, just by looking at the cardinality of its group. If the agents are
in the first situation, then they start step i+1, otherwise they declare that gathering
is over: whichever is the case, they can do it at the same time in view of the last
line of Algorithm 4. Hence, in our ideal scenario, we can prove that gathering is
declared after at most ⌈logn⌉ steps, leading to a time complexity polynomial in n
and µ.

Of course, things get more complicated when we are in a scenario that is not nec-
essarily ideal. However, it is through those conceptual principles, together with extra
algorithmic ingredients (to circumvent the possible desynchronizations between the
wake-ups of the agents as well as the possible different label lengths) that we finally
obtain a gathering algorithm working in the general case with a time complexity
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polynomial in n and in the length of the smallest label among the agents.

Algorithm 4:
1 c ∶= the number of agents at my current node;
2 pµ ∶= the label learned when phase µ is completed;
3 execute TZ(pµ) and interrupt it as soon as there are more than c agents in

my node or the execution has lasted PTZ(n,µ) rounds;
4 if there are c agents in my node then
5 execute Explo(n) and interrupt it as soon as there are more than c

agents in my node;
6 wait until the time spent executing Algorithm 4 is precisely
PTZ(n,µ) +X(n) rounds;

3.4.2 Unknown upper bound on the size of the graph

We now turn our attention to the high-level idea of Algorithm GatherUnknownUpper-
Bound, which permits to solve gathering without direct means of communication in
the case where they are not initially given any upper bound on the graph size.

A preliminary question that may come to mind when considering this harsher
scenario, is how to guarantee gathering even if in each round an agent had the
capacity to exchange all information available to it with the other agents sharing
its node. Actually, an answer to this question have already been provided in Sec-
tion 3.3.4, when describing a general mechanism, to solve gathering in presence of
strongly Byzantine agents when no upper bound on the network size is initially
known, which is based on the following simple observation. If the agents were wo-
ken up at the same time by the adversary and were initially given the description of
the initial configuration φ (i.e., the complete map of the underlying graph, with all
port numbers, in which a node v is labeled L iff v is the starting node of the agent
labeled L), then the problem could be solved by applying a simple rule: upon its
wake-up, each agent moves, using the map, towards the node containing the smallest
label, and then declares that gathering is over when all agents are in that node.

One of the main goal of the general mechanism outlined in Section 3.3.4 is
to solve Byzantine gathering (with communication) by trying to recreate similar
favorable conditions to those given in the above observation. As it will be really
useful for our purpose, let us briefly reformulate here how it works at a high level, by
removing the Byzantine agents from the picture. Let Ω = (φ1, φ2, φ3,⋯) be a fixed
enumeration of the (recursively enumerable) set of all initial configurations. An
agent proceeds in consecutive phases h = 1,2,3,⋯, where in each phase h, an agent
tries to achieve gathering by making a hypothesis that the initial configuration φ is
φh. This assumption will be called hypothesis h. When making hypothesis h, the
agent first executes Explo(nh) (cf. Section 2.2.2) where nh is the supposed graph
size (in the hope of waking up the remaining dormant agents, if any), and then, if
its label belongs to φh, tries to go to the node that supposedly corresponds to the
starting node vh of the agent having the smallest label in φh. Once an agent reaches



3.4. Gathering without any direct means of communication 61

a node that supposedly corresponds to vh, it waits some amount of time sufficient to
allow the other agents to join it if the hypothesis h is good (i.e., correct). Note that
in the case where the hypothesis h is not good, some agents may notice it more or
less rapidly, for instance if φh does not contain their label or if the path they have to
follow to reach vh simply does not exist in the real network. Hence, the process of
a phase h we have described so far can lead to one of the following three situations:
(1) the hypothesis h is good and all agents think rightly that gathering is over, (2)
the hypothesis h is not good and all agents know it, or (3) the hypothesis h is not
good, but some agents do not know it because for some of them everything appears
to have gone very well (in particular they are at the node supposedly corresponding
to vh with agents having the labels they should have w.r.t φh). The third situation
may especially occur if the number of supposed agents or the supposed size of the
graph in φh is lower than it actually is. At this point, an “optimistic” agent may
think that it is in the first situation, while really it is in the third. This is why
each time a phase is completed, the optimistic agents, if any, execute a checking
protocol based on a simulation of the exploration protocol EST (cf. Section 3.2.2),
in which the role of the token is played by some of them. If after having executed the
checking protocol, the optimistic agents notice they have constructed a map of the
graph corresponding to that of φh and they have not encountered agents thinking
that hypothesis h is wrong (before switching to the next phase, these agents stay
idle enough time in order to be detected by possible optimistic agents), they can
be sure to have accomplished gathering. Otherwise, the agents that were optimistic
join the camp of the agents knowing that hypothesis h is wrong, and after a certain
time, each agent goes back to its initial node in order to start phase h + 1.

The high-level idea of our algorithm consists in emulating this general mechanism
in a context in which the agents are devoid of direct means of communication.
However, this turns out to be much easier said than done. Indeed, to settle properly
such an emulation, we have to face numerous challenges. For instance, how can
an agent become optimistic about a supposed configuration φh, if it cannot see the
labels of the agents sharing its node? Or, how can an agent recognize its token
played by some agents during an execution of the checking protocol? In the next
subsection, we bring algorithmic solutions to solve these problems. However, one
particular problem was really more important than the others, in the sense that its
resolution appeared as a sine qua non condition to solve most of the other problems
raised by our emulation. The problem is this: in order to emulate the mechanism
outlined above in a correct way, an agent has to avoid confusing another agent
acting under the same hypothesis as itself, with an agent acting under a different
hypothesis. While this is not at all an issue when an agent can exchange arbitrary
messages with the other agents sharing its current node (indeed, it is then enough
to ignore the agents that indicate processing a different hypothesis), this becomes a
real difficulty in our context. To tackle it, we put in place two fundamental schemes.

The first scheme consists in slowing down every agent more and more as it pro-
gresses through successive hypotheses, so that an agent processing a hypothesis h
avoids being misled by an agent processing a hypothesis h′ > h. Actually, using
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various strategies of moves such as, for example, some “dancing” protocols (that
consist in leaving and entering the same node in carefully chosen rounds), and by
interleaving, between each step of every hypothesis h > 1, waiting periods lasting
the time of processing the hypotheses 1 to h − 1 in the worst case, every agent can
detect an agent that processes a hypothesis larger than its own current hypothesis.
However, this turns out to be ineffective to protect an agent from being confused
by agents processing smaller hypotheses. This is why we introduce a second scheme
that divides the processing of each hypothesis into two parts: the main part cor-
responding, strictly speaking, to the emulation of the general mechanism with, in
particular, the previously mentioned slowdowns and dances, that is preceded by a
preprocessing part, the heart of the second scheme, and which relies on the notions
of kernel and ball defined below.

A kernel K(v, h) is the set of all nodes that may be visited by an agent processing
the main part of hypothesis h, starting from a node v. In our solution, the set K(v, h)
does not depend on the label of the executing agent: in fact, the label can influence
the way the nodes of K(v, h) are visited, but not the set of visited nodes. Given a
kernel K, its ball is the set of all its critical nodes. A node u is said to be critical
for a kernel K(v, h) if u belongs to K(v, h), or if an agent, when initially located at
node u, may visit a node of K(v, h) before processing hypothesis h, either during a
preprocessing part or during a main part of some hypothesis h′ < h. These notions
are used within the second scheme, in the following way. An agent executing the
preprocessing part of a hypothesis h performs the following actions, without paying
attention to other agents: first, it visits all nodes of the ball of K(v, h), where v
is the node it occupies at the beginning of the preprocessing and of the main part
of hypothesis h, then it goes back to v, and finally it waits the maximum time
required for an agent, which would have just been woken up, to begin the execution
of hypothesis h (in our solution the time to reach hypothesis h is bounded by some
function depending only on the supposed graph sizes of the previous hypotheses).
By doing so, we have the guarantee that an agent A executing the main part of a
hypothesis h, the kernel of which is K, cannot encounter any agent executing the
preprocessing part or the main part of a previous hypothesis. Indeed, otherwise this
would imply that an agent, initially located at a node belonging to the ball of K,
has been woken up after the traversal by agent A of the ball of K, which would be
a contradiction. Note that, visiting all nodes of the ball of K(v, h) can be made by
following all the (not necessary simple) paths of length d1 + d2 from node v, where
d1 (resp. d2) is the maximum distance between two nodes visited during the main
part of hypothesis h (resp. during the processing of the hypotheses 1 to h − 1).
Also note that the executing agent will abort the traversal of the ball of K(v, h) as
soon as it occupies a node having a degree at least equal to the graph size of φh.
This precaution does not cause any problem because if such an event occurs the
agent has the guarantee that φh ≠ φ, and before starting phase h + 1, it no longer
has to worry about agents processing hypotheses different from its own. This is
nonetheless crucial, as we need the agents to know in advance the worst-case time
to process any given hypothesis (to settle consistently some of the aforementioned
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waiting periods).
To get all of this to work, we must not forget to link the schemes to each other:

in particular, the slowdowns of the first scheme have to be also added between the
steps of the preprocessing parts, and every ball traversal of the second scheme has
to take into account the dancing protocols of each main part resulting from the first
scheme.

In order to illustrate the importance of the joint application of the two presented
schemes, let us close our intuitive explanations by considering one of the problems,
mentioned earlier, encountered in putting in place our emulation: that of an explo-
ration, during which an agent plays the role of an explorer while the others play the
role of a token, performed to check whether a supposed hypothesis is good or not.
Actually, our solution is designed so that for each hypothesis h, such explorations
can be triggered by at most one group Gh of agents located at the same node uh,
those thinking that hypothesis h may be good: the role of explorer is assigned in
turn to all agents of Gh using the order over the labels that are in φh. Note that
these explorations must be seen as the last part of the process that consists in testing
hypothesis h. They are launched by agents that think hypothesis h may be good
but that have not acquired yet any guarantee about the validity of the hypothesis
(the other agents also test hypothesis h but do not go as far as the agents of Gh in
the process of this test because they “soon realize" that this hypothesis is wrong).

When an agent becomes explorer, it executes protocol EST using as a token the
other agents of Gh, which then stay idle at node uh. As soon as the execution of
EST is completed or as soon as the explorer notices that the map under construction
of the network does not match that of φh, it goes back to its token to let the other
agents, which have not yet done so, execute EST and reach the same conclusion about
the validity of hypothesis h. The key thing for an explorer is to perform a “clean”
exploration, i.e., not to confuse the group of agents representing its token with
another group, as otherwise it might reach a wrong conclusion. Such a confusion
can be avoided by requiring the agents of Gh to perform twice together a traversal
of all the nodes located at distance at most d + 1 from node uh before starting the
simulations of EST, where d is the maximal distance that may separate an explorer
from its token during a simulation of EST from uh. If some agents are encountered
during one of these two collective traversals, which can be easily detected through a
rise of cardinality, then all the agents of Gh have the guarantee that φh is not good
and they do not even need to proceed further with the simulations of EST. On the
other hand, if no other agent is encountered during any of these traversals, then in
view of the two schemes, we have the guarantee that each simulation of EST by an
agent of Gh will be clean. Indeed, the second scheme ensures that an explorer cannot
meet an agent processing a hypothesis h′ < h. Moreover, an explorer cannot meet
an agent processing a hypothesis h′ > h because the first scheme ensures that such
an agent is too slow to reach or to be already in the zone of the nodes at distance at
most d from uh (in which the successive simulations of EST are done) without having
been detected during one of the previous two traversals. Of course, one might still
argue that an explorer could be bothered by agents that also test hypothesis h but
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that do not belong to Gh. However, this kind of situation will never occur. In fact,
the agents that do not belong to Gh, will quickly notice that the hypothesis h is not
good, when processing the main part of hypothesis h, and thus by adding judicious
waiting periods as we did in Algorithm GatherUnknownUpperBound, we can prove
they will be detected by all agents of Gh during one of their two collective traversals.
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4.1 Introduction

The treasure hunt problem can be viewed as a variant of the rendezvous problem
in which one of the agents, called the treasure, is always stationary. To the best
of our knowledge, this problem was first introduced by Richard E. Bellman in his
seminal paper [Bellman 1963]. Since then, the problem has been investigated un-
der various scenarios, in which the search can be deterministic or randomized, and
the environment may be a graph or a plane (or a portion of it). The best sur-
veys on treasure hunt are certainly [Alpern & Gal 2003] and [Ghosh & Klein 2010],
although the former is mainly concerned with randomized search strategies.

When devising a treasure hunt algorithm, the aim is often to provide a solu-
tion that optimizes the asymptotic cost complexity, or even the competitive ratio,
which is, in our current context, the worst-case cost incurred by the algorithm, for
which the treasure’s location is unknown, divided by the worst-case cost incurred by
the optimal algorithm working with knowledge of the treasure’s location. Roughly
speaking, it can be interpreted as a measure of the additional distance that is trav-
eled due to the lack of knowledge on the position of the treasure.

One of the most famous result of the field is given by the following paper
[Beck & Newman 1970], in which the authors show that the best competitive ra-
tio for deterministic treasure hunt, with no range of vision, in a one-dimensional
space (i.e., an infinite line) is 9. This optimal competitive ratio is obtained by a
doubling zigzag strategy, known as cow path: go left at distance 1, then right at
distance 2, left at distance 4, and so on. If randomization is allowed, then there is
a strategy with a smaller competitive ratio [Kao et al. 1996]. Instead of doubling
the search distance, the strategy uses a ratio r that is approximately equal to 3.59
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and a random number ε belonging to [0,1). More precisely, till finding the treasure,
the agent acts in steps 1,2,3, . . ., where in each step i, the probability of going left
(resp. right) at distance riε is 0.5. If the treasure is not found by the end of the
step, the agent goes back to its initial position and starts the next step. Such a
strategy is proven to be optimal in [Kao et al. 1998] and the expected competitive
ratio is around 4.5911, which is almost twice as good as the best that can be done
deterministically.

Still in the infinite line, if the agent initially knows the exact distance D that
separates it from the treasure, we can get a significantly lower competitive ratio
by asking the agent to walk a distance D to the right and, if the treasure is not
found, then to walk a distance 2D to the left. Indeed, it can be easily observed
that the competitive ratio of this straightforward algorithm is 3, which is optimal
when the agent has prior knowledge of D. As a result, in a scenario where the
agent initially knows an upper bound ∆ on D, the competitive ratio of an optimal
treasure hunt algorithm must lie somewhere between 3 and 9. A more accurate
answer is brought by [López-Ortiz & Schuierer 2001], in which the authors not only
show that the competitive ratio of any search strategy is at least 9−O( 1

log2 ∆
) when

an upper bound ∆ is known by the agent, but also construct an algorithm achieving
this competitive ratio (albeit with a different constant factor in the “big-Oh” term).

The problem can be generalized to find a target in the plane. In this case, the
agent needs to have a radius of vision of any positive value ε, allowing it to see
all its surroundings at distance at most ε from its current location, or otherwise
the treasure hunt problem is impossible to solve due to enumerability reasons (cf.
Section 1.2.2). It is well known that the optimal cost to find a treasure located at
distance at most D > ε in the plane belongs to Θ(D2), if the agent does not have
any prior information on the location of its target. Indeed, a cost of O(D2) can
be reached by tracing a square spiral starting at the initial position p of the agent
in which the length of each edge increases by ε for every half-turn, while the lower
bound Ω(D2) can be proven using the fact that after having followed any trajec-
tory of length D2

4ε , there exists necessarily a point in the disc of area πḊ2 centered
at p that has not been seen by the agent. In order to circumvent this bound of
Ω(D2), some studies have investigated the problem by assuming that additional in-
formation is initially provided to the agent and by analyzing the effect of decreasing
its amount [Baeza-Yates et al. 1993, Pelc & Yadav 2019, Pelc & Yadav 2021], while
others studies have supposed the search is restricted to some polygons [Klein 1991,
Kleinberg 1994, Lee et al. 1997, Kranakis & Spatharis 1997, Icking et al. 2004].
In [Lu et al. 2016] (resp. [Chrobak et al. 2015]) the problem is extended to a sce-
nario in which there are several searchers that cooperate to find a treasure in the
plane (resp. in an infinite line), and then further studied assuming the agents
may be prone to faults in [Czyzowicz et al. 2019a] (resp. in [Czyzowicz et al. 2019b,
Czyzowicz et al. 2021]).

Apart from the two surveys [Alpern & Gal 2003] and [Ghosh & Klein 2010],
all the aforementioned studies are exclusively related to continuous environments.
However, a lot of effort has also been dedicated to studying the problem in discrete
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environments modeled as graphs, for which treasure hunt and exploration are
closely interrelated. The primary focus of past research on graph exploration
has predominantly been on labeled graphs (i.e., the same as in GBM, but by
assuming that all nodes have distinct pairwise labels that permit to distinguish
them unambiguously). The fastest exploration algorithm to date for arbitrary
labeled graphs is the one given in [Panaite & Pelc 1999], which allows an agent
to traverse all edges of a graph G = (V,E) using at most ∣E∣ + O(∣V ∣) moves.
Indeed, the “penalty” of the algorithm of [Panaite & Pelc 1999], i.e., the worst-case
number of traversals made in excess of the trivial lower bound ∣E∣, is linear in ∣V ∣,
which is significantly better than the other classic strategies of exploration that
all have a penalty that is at least super-linear with respect to this parameter (for
instance, the standard Depth-First Search algorithm, which takes 2∣E∣ moves, has
a penalty that is quadratic in ∣V ∣). In [Betke et al. 1995], the authors introduce
the problem of fuel-constrained exploration of a labeled graph in which the mobile
agent has a fuel tank that can be replenished only at its starting node s. The
size of this tank is B = 2(1 + α)r, for some positive real constant α, where r,
called the radius of the graph, is the maximum distance from s to any other
node. The tank imposes an important constraint, as it forces the agent to make
at most ⌊B⌋ edge traversals before having to refuel at node s, otherwise the
agent will be left with an empty tank and unable to move, preventing further
exploration of the graph. The authors of [Betke et al. 1995] give fuel-constrained
algorithms running in O(∣E∣ + ∣V ∣) but for some classes of graphs only. The study
is continued in [Awerbuch & Kobourov 1998] and in [Awerbuch et al. 1999], in
which are provided an O(∣E∣ + ∣V ∣1+o(1)) algorithm and an O(∣E∣ + ∣V ∣log2 ∣V ∣) that
both work in arbitrary graphs. A fuel-constrained exploration algorithm requiring
at most O(∣E∣ + ∣V ∣) edge traversals is finally obtained in [Duncan et al. 2006].
Although the authors of [Awerbuch et al. 1999] and [Duncan et al. 2006] are mainly
interested in exploration of finite unknown graphs, they also get interesting corol-
laries for the treasure hunt problem, still under the same fuel constraint, assuming
that a treasure is located at distance at most D ≥ 1 from node s. Precisely, in
[Awerbuch et al. 1999] (resp. [Duncan et al. 2006]), a treasure hunt algorithm
working at cost O(e(D + o(D)) + (s(D + o(D))1+o(1)) (resp. O(e((1 + α)D))) is
provided, where, for any positive integer x, s(x) is the number of nodes at distance
at most x from node s and e(x) is the number of edges whose at least one endpoint
is at distance less than x from s. However, the cost of both these algorithms
cannot be bounded by any function of e(d) (as e(D + o(D)) and e((1 + α)D)

may be arbitrarily larger than e(d)), seeming to confirm the following conjec-
ture of Awerbuch, Betke, Rivest and Singh, formulated for the fuel-restricted model:

Conjecture ([Awerbuch et al. 1999]): Is it possible (we conjecture not) to find
a treasure in time nearly linear in the number of those vertices and edges whose
distance to the source is less than or equal to that of the treasure?1

1Time in this conjecture is what we call cost, i.e., the worst-case number of edge traversals until
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When the nodes of the graphs have no label (i.e., as in GBM), the task of treasure
hunt becomes undeniably harder to solve. Nonetheless, it remains feasible, whether
probabilistically or deterministically. If randomization is allowed, we know from
[Aleliunas et al. 1979] that a simple random walk can cover, with high probability,
all vertices of an unlabeled graph (and thus can find the treasure) at a cost polyno-
mial in its size. If randomization is not allowed, an entire exploration can still be
conducted, using the universal exploration sequences (known as UXS) introduced
in [Koucký 2002], to which we briefly alluded in Section 2.2.2. Formally, a sequence
of integers x1, x2, . . . , xk is said to be a UXS for a class G of graphs, if it allows an
agent, starting at any node of any graph G ∈ G, to visit at least once every node of
G in k + 1 steps as follows. In step 1, the agent leaves its starting node v1 by port
0 and enters node v2 = succ(v,0). In step 2 ≤ i ≤ k + 1, the agent leaves its current
node vi by port q = (p+xi−1) mod deg(vi), where p is the port by which it entered
vi in step i − 1, and enters node vi+1 = succ(vi, q). In [Reingold 2008], it is proven
that for any positive integer n, a UXS of polynomial length in n, for the class of
all graphs of size at most n, can be computed deterministically in logarithmic space
and in polynomial time in n, thus implying a deterministic solution for finding a
treasure in any unlabeled graph at a cost polynomial in its size (whether this size
is initially known or not).

What did we do about the problem of treasure hunt? We contributed
to the treasure hunt problem both in the plane and in arbitrary graphs. For the
plane, we considered a scenario in which the searching agent gets hints to find
the treasure [Bouchard et al. 2020b]. However, contrary to other studies related to
treasure hunt with advice, the agent does not get all the hints at the start: instead,
they are provided at the beginning and at the end of each of its moves under the
form of a positive angle that is supposed to contain the treasure. We investigated
the problem of how these hints permit the agent to lower the cost of finding the
treasure and obtained interesting results depending on how large are the hints.

For arbitrary graphs, we refuted the conjecture, given above, of Awerbuch,
Betke, Rivest and Singh by showing an algorithm [Bouchard et al. 2023a] for the
fuel-constraint model that permits to find a treasure at distance at most D from
a source node using at most O(e(D) logD) edge traversals (which is indeed nearly
linear in e(D)).

All of this is further described in the following two sections.

4.2 Treasure hunt in the plane with angular hints

In [Bouchard et al. 2020b], we address the problem of treasure hunt in the plane
with angular hints. More precisely, we consider model PBM, but by assuming:

• The adversary wakes up exactly one agent, called the searching agent, while

finding the treasure.
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the other, called the treasure and initially located at distance at most D from
the searching agent, always remains dormant/idle.

• In the beginning and after each move, the searching agent gets a hint consisting
of a positive angle smaller than 2π whose vertex is at its current position and
within which the treasure is contained.

Without any hints, the cost of finding the treasure would be Θ(D2). But with
them, we can beat this cost. Indeed, we show that if all angles given as hints are at
most π, then the cost can be lowered to O(D), which is the optimal complexity. We
also show that if all angles are at most β, where β < 2π is a constant unknown to
the searching agent, then the cost is at most O(D2−ε), for some ε > 0. Finally, we
observe that arbitrary angles smaller than 2π given as hints cannot be of significant
help: using such hints the cost complexity Θ(D2) cannot be beaten.

For both our positive results, we give deterministic algorithms achieving the
above costs. Both algorithms work in phases “assuming” that the treasure is con-
tained in increasing squares centered at the initial position of the agent. The com-
mon principle behind both algorithms is to move the agent to strategically chosen
points in the current square, depending on previously obtained hints, and some-
times perform exhaustive search of small rectangles from these points, in order to
guarantee that the treasure is not there. This is done in such a way that, in a
given phase, obtained hints together with small rectangles exhaustively searched,
eliminate a sufficient area of the square assumed in the phase to eventually permit
finding the treasure.

In both algorithms, the points to which the agent travels and where it gets hints
are chosen in a natural way, although very differently in each of the algorithms.
The main difficulty is to prove that the distance travelled by the agent is within the
promised cost. In the case of the first algorithm, it is possible to cheaply exclude
large areas not containing the treasure, and thus find the treasure asymptotically
optimally. For the second algorithm, the agent eliminates smaller areas at each time,
due to less precise hints, and thus finding the treasure costs more.

The next two subsections are dedicated to the presentation of the intuitions that
are behind the two algorithms.

4.2.1 Angles at most π

In this section, we consider the case when all angles given as hints are at most π.
Without loss of generality, we can assume that they are all equal to π, completing
any smaller angle to π in an arbitrary way: this makes the situation even harder
for the agent, as hints become less precise. For such hints we show an algorithm,
called TreasureHunt1, that finds the treasure at cost O(D). This is of course an
optimal complexity, as the treasure can be at any point at distance at most D from
the starting point of the agent.

For angles of size π, every hint is in fact a half-plane whose boundary line L
contains the current location of the agent. For simplicity, we can code such a hint
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as a couple (L, right) or (L, left), whenever the line L is not horizontal, depending
on whether the indicated half-plane is to the right (i.e., East) or to the left (i.e.,
West) of L. For any non-horizontal line L this is non-ambiguous. Likewise, when
L is horizontal, we can code a hint as a couple (L,up) or (L,down), depending on
whether the indicated half-plane is up (i.e., North) from L or down (i.e., South)
from L.

In view of the work on φ-self-approaching curves (cf. [Aichholzer et al. 2001])
we first note that there is a big difference of difficulty between obtaining our result
in the case when angles given as hints are bounded by some angle φ0 strictly smaller
than π and when they are at most π, as we assume. A φ-self-approaching curve is a
planar oriented curve such that, for each point B on the curve, the rest of the curve
lies inside a wedge of angle φ with apex in B. In [Aichholzer et al. 2001], the authors
prove the following property of these curves: for every φ < π there exists a constant
c(φ) such that the length of any φ-self-approaching curve is at most c(φ) times
the distance D between its endpoints. Hence, for hints bounded by some angle
φ0 strictly smaller than π, our result could possibly be derived from the existing
literature: roughly speaking, the agent should follow a trajectory corresponding
to any φ0-self-approaching curve to find the treasure at a cost linear in D. Even
then, transforming the continuous scenario of self-approaching curves to our discrete
scenario presents some difficulties. However, the crucial problem is this: the constant
c(φ) from [Aichholzer et al. 2001] diverges to infinity as φ approaches π, hence the
result from [Aichholzer et al. 2001] cannot be used when hints are arbitrary angles
smaller than π. Moreover, the result of [Aichholzer et al. 2001] holds only when
φ < π (the authors also emphasize that for each φ ≥ π, the property is false), and
thus the above derivation is no longer possible for our purpose when φ = π. Actually,
this is the real difficulty of our problem: handling angles equal to π, i.e., half-planes.

We further observe that a rather straightforward treasure hunt algorithm of cost
O(D logD), for hints being angles of size π, can be obtained using an immediate
corollary of a theorem proven in [Grünbaum 1960]: each line passing through the
centroid of a convex polygon cuts the polygon into two convex polygons with areas
differing by a factor of at most 5

4 . Suppose for simplicity that D is known. Starting
from the square of side length 2D, centered at the initial position of the agent, this
permits to reduce the search area from P to at most 5P

9 in a single move. Hence,
after O(logD) moves, the search area is small enough to be exhaustively searched by
procedure RectangleScan at cost O(D). However, the cost of each move during the
reduction is not under control and can be only bounded by a constant multiple of D,
thus giving the total cost bound O(D logD). By contrast, our algorithm controls
both the remaining search area and the cost incurred in each move, yielding the
optimal complexity O(D) of the cost.

Now, let us turn our attention to the high-level idea of Algorithm
TreasureHunt1. In this algorithm, the agent acts in phases j = 1,2,3, . . . where
in each phase j the agent “supposes” that the treasure is in a straight square Rj
centered at the initial position of the agent, and of side length 2j . When executing
a phase j, the agent successively moves to distinct points with the aim of using the
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hints at these points to narrow the search area that initially corresponds to Rj . In
our algorithm, this narrowing is made in such a way that the remaining search area
is always a straight rectangle. Often this straight rectangle is a strict superset of
the intersection of all hints that the agent was given previously. This would seem
to be a waste, as we are searching some areas that have been previously excluded.
However, this loss is compensated by the ease of searching description and subse-
quent analysis of the algorithm, due to the fact that, at each stage, the search area
is very regular.

During a phase, the agent proceeds to successive reductions of the search area by
moving to distinct locations, until it obtains a rectangular search area that is small
enough to be searched directly at low cost using a brute-force procedure that we
called RectangleScan, which permits to see all the points within a given rectangle at
a cost linear in its area. In our algorithm, such a final execution of RectangleScan
in a phase is triggered as soon as the rectangle has a side smaller than 4. If the
treasure is not found by the end of this execution of procedure RectangleScan, the
agent learns that the treasure cannot be in the supposed straight square Rj and
starts the next phase from scratch by forgetting all previously received hints. This
forgetting again simplifies subsequent analysis. The algorithm terminates at the
latest by the end of phase j0 = ⌈log2D⌉ + 1, in which the supposed straight square
Rj0 is large enough to contain the treasure. Hence, if the cost of a phase j is linear
in 2j , then the cost of the overall solution is linear in the distance D.

In order to give the reader deeper insights in the reasons why our solution is valid
and has linear cost, we need to give more precise explanations on how the search
area is reduced during a given phase j ≥ 2 (when j = 1, the agent makes no reduction
and directly scans the small search area using procedure RectangleScan). Suppose
that in phase j ≥ 2 the agent is at the center p of a search area corresponding to
a straight rectangle R, every side of which has length between 4 and 2j (note that
this is the case at the beginning of the phase), and denote by A,B,C and D the
vertices of R starting from the top left corner and going clockwise. In order to
reduce rectangle R, the agent uses the hint at point p. The obtained hint denoted
by (L1, x1) can be of two types: either a good hint or a bad hint. A good hint is
a hint whose line L1 divides one of the sides of R into two segments such that the
length y of the smaller one is at least 1. A bad hint is a hint that is not good.

If the received hint (L1, x1) is good, then the agent narrows the search area to
a rectangle R′ ⊂ R having the following three properties:

1. R ∖R′ does not contain the treasure.

2. The difference between the perimeters of R and R′ is 2y ≥ 2.

3. The distance from p to the center o of R′ is exactly y
2 .

and then moves to the center o of R′.
An illustration of such a reduction is depicted in Figure 4.1(a), in which the

reduced search area R′ is the rectangle ABde.
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Figure 4.1: In Figure (a) the agent received a good hint (L1, right) at the center p
of a rectangular search area R = ABCD and hence it moved to the center o of the
rectangle R′ = ABde. In Figure (b) it received a bad hint (L1, right) at the point
p and hence it moved to point p′ from which it got a hint (L2, left). From there, it
will scan the two rectangles ss′d′d and gg′h′h using procedure RectangleScan, and
then it will move to the center o of the rectangle R′ = Agpm. In both figures, the
half-planes excluded by the hints are shaded.
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If the agent receives a bad hint, say (L1, right), at the center of a rectangular
search area R, we cannot apply the same method as the one used for a good hint:
this is the reason for the distinction between good and bad hints. If we applied
the same method as before, we could obtain a rectangular search area R′ such that
the difference between the perimeters of R and R′ is at least 2y. However, in the
context of a bad hint, the difference 2y may be very small (even null), and hence
there is no significant reduction of the search area. In order to tackle this problem,
when getting a bad hint at the center p of R, the agent moves to another point p′

which is situated in the half-plane (L1, right) at distance 2 from p, perpendicularly
to L1. This point p′ is chosen in such a way that, regardless of what is the second
hint, we can ensure that two important properties described below are satisfied.

The first property is that by combining the two hints, the agent can decrease
the search area to a rectangle R′ ⊂ R whose perimeter is smaller by 2 compared
to the perimeter of R, as it is the case for a good hint, and such that R ∖ R′

does not contain the treasure. This decrease follows either directly from the pair
of hints, or indirectly after having scanned some relatively small rectangles using
procedure RectangleScan. In the example depicted in Fig. 4.1 (b), after getting
the second hint (L2, left), the agent executes procedure RectangleScan in rectangle
ss′d′d followed by RectangleScan in rectangle gg′h′h, and moves to the center o
of the new search area R′ that is the rectangle Agpm. Note that the part of R′

not excluded by the two hints and by the procedure RectangleScan executed in
rectangles ss′d′d and gg′h′h is only the small quadrilateral bounded by line L2 and
the segments [AB], [s′d′] and [gh]. However, in order to preserve the homogeneity
of the process, we consider the entire new search area R′ which is a straight rectangle
whose perimeter is smaller by at least 2, compared to that from R. This follows
from the fact that no side of R has length smaller than 4. The agent finally moves
to the center of R′.

The second property is that all of this (i.e., the move from p to p′, the possible
scans of small rectangles and finally the move to the center of R′) is done at a cost
linear in the difference of perimeters of R and R′. The two properties together
ensure that, even with bad hints, the agent manages to reduce the search area in
a significant way and at a small cost. So, regardless of whether hints are good or
not, we can show that the cost of phase j is in O(2j) and the treasure is found
during this phase if the initial square is large enough. The difficulty of the solution
is in showing that the moves prescribed by our algorithm in the case of bad hints
guarantee the two above properties, and thus ensure the correctness of the algorithm
and the cost linear in D.

4.2.2 Angles bounded by β < 2π

In this section, we give the high-level idea of our algorithm called TreasureHunt2
that permits to find the treasure at a cost subquadratic when all hints are angles
upper bounded by some constant β < 2π, unknown to the agent. Note that the way
of defining a hint in the previous subsection is no longer appropriate here: we need
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a more general definition. Hence, in this context, a hint given to the agent currently
located at some point a is formally described as an ordered pair (P1, P2) of half-lines
originating at a such that the angle clockwise from P1 to P2 (including P1 and P2)
contains the treasure. For a hint (P1, P2) we denote by (P1, P2) the complement of
(P1, P2).

In Algorithm TreasureHunt2, similarly as in the previous algorithm, the agent
acts in phases j = 1,2,3, . . ., where in each phase j the agent “supposes” that the
treasure is in the straight square centered at its initial position and of side length
2j . The intended goal is to search each supposed square at relatively low cost, and
to ensure the discovery of the treasure by the time the agent finishes the first phase
for which the initial supposed square contains the treasure. However, the similarity
with the previous solution ends there: indeed, the hints that may now be less precise
do not allow us to use the same strategy within a given phase. Hence, we adopt a
different approach that we outline below and that uses the following notion of tiling.
Given a square S with side of length x > 0, Tiling(i) of S, for any non-negative
integer i, is the partition of square S into 4i squares with side of length x

2i
. Each of

these squares, called tiles, is closed, i.e., contains its border, and hence neighboring
tiles overlap in the common border.

Let us consider a simpler situation in which the angle of every hint [P1, P2] is
always equal to the bound β: the general case, when the angles may vary while being
at most β, adds a level of technical complexity that is unnecessary to understand
the intuition. In the considered situation, the angle of each excluded zone [P1, P2]

is always the same as well. The following property holds in this case: there exists an
integer iβ such that for every square S and every hint [P1, P2] given at the center
of S, at least one tile of Tiling(iβ) of S belongs to the excluded zone [P1, P2].

In phase j, the agent performs k steps: we will indicate later how the value of
k should be chosen. At the beginning of the phase, the entire square S is white.
In the first step, the agent gets a hint [P1, P2] at the center of S. By the above
property, we know that [P1, P2] contains at least one tile of Tiling(iβ) of S, and
we have the guarantee that such a tile cannot contain the treasure. All points of all
tiles included in [P1, P2] are painted black in the first step. This operation does not
require any move, as painting is performed in the memory of the agent. As a result,
at the end of the first step, each tile of Tiling(iβ) of S is either black or white, in
the following precise sense: a black tile is a tile all of whose points are black, and a
white tile is a tile all of whose interior points are white.

In the second step, the agent repeats the painting procedure at a finer level.
More precisely, the agent moves to the center of each white tile t of Tiling(iβ) of
S. When it gets a hint at the center of a white tile t, there is at least one tile
of Tiling(iβ) of t that can be excluded. As in the first step, all points of these
excluded tiles are painted black. Note that a tile of Tiling(iβ) of t is actually a tile
of Tiling(2iβ) of S. Moreover, each tile of Tiling(iβ) of S is made of exactly 4iβ

tiles of Tiling(2iβ) of S. Hence, as depicted in Figure 4.2, the property we obtain
at the end of the second step is as follows: each tile of Tiling(2iβ) of S is either
black or white.
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(a) At the end of a first step

for a hint [P1, P2]

(b) At the end of a second step

Figure 4.2: White and black tiles at the end of the first and the second step of a
phase, for square S = ABCD and iβ = 2.

In the next steps, the agent applies a similar process at increasingly finer levels
of tiling. More precisely, in step 2 < s ≤ k, the agent moves to the center of each
white tile of Tiling((s − 1)iβ) of S and gets a hint that allows it to paint black at
least one tile of Tiling(s ⋅ iβ) of S. At the end of step s, each tile of Tiling(s ⋅ iβ) of
S is either black or white. We can show that at each step s the agent paints black
at least 1

4
iβ
th of the area of S that is white at the beginning of step s.

After step k, each tile of Tiling(k ⋅ iβ) of S is either black or white. These steps
permit the agent to exclude some area without having to search it directly, while
keeping some regularity of the shape of the black area. The agent paints black a
smaller area than excluded by the hints but a more regular one. This regularity
enables in turn the next process in the area remaining white. Indeed, the agent
subsequently executes a brute-force searching that consists in moving to each white
tile of Tiling(k ⋅ iβ) of S in order to scan it using the procedure RectangleScan. If,
after having scanned all the remaining white tiles, it has not found the treasure, the
agent repaints white all the square S and enters the next phase, i.e., phase j + 1.
Note that if the treasure is initially in S, the agent necessarily sees it by the end
of phase j because, during the brute-force searching mentioned above, the agent
gets at distance at most 1 of all points belonging to a white tile of Tiling(k ⋅ iβ)
of S. Thus, we have the guarantee that the agent finds the treasure by the end
of phase ⌈log2D⌉ + 1, as in this phase the initial supposed square is large enough
to contain the treasure. The question is: how much do we have to pay for all of
this? In fact, the cost depends on the value that is assigned to k in each phase j.
The value of k must be large enough so that the distance travelled by the agent
during the brute-force searching is relatively small. At the same time, this value
must be small enough so that the distance travelled during the k steps is not too
large. A good trade-off can be reached when k = ⌈log

4
iβ

√
2j⌉. Indeed, as proven in
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[Bouchard et al. 2020b], it is due to this carefully chosen value of k that we can beat
the cost Θ(D2) necessary without hints, and get a complexity of O(D2−ε), where ε
is a positive real depending on iβ , and hence depending on the angle β.

4.3 Refutation of Awerbuch, Betke, Rivest and Singh’s
conjecture

The main result of our paper [Bouchard et al. 2023a] is the refutation of Awerbuch,
Betke, Rivest and Singh’s conjecture (given in the introduction of this chapter).
This conjecture has been formulated for a variant of model GBM. The differences
between this variant and GBM are precisely as follows:

• The adversary wakes up exactly one agent, called the searching agent, while
the other, called the treasure, always remains dormant/idle.

• The nodes of the underlying graphs have distinct pairwise labels.

• The searching agent has a fuel tank that can be replenished only at its starting
node s. The size of this tank is B = 2(1 +α)r, for some positive real constant
α, where r, called the radius of the graph, is the maximum distance from s

to any other node. Each edge traversal consumes one unit of fuel. When the
fuel tank is full, the agent can make at most ⌊B⌋ edge traversals before having
to refuel at node s, as with less than one unit of fuel, the agent cannot move
anymore.

Our refutation is conducted in two steps. The first step consists in designing
a deterministic treasure hunt algorithm working in the above model variant, but
without the fuel constraint, at cost O(e(D) logD), where D is an upper bound on
the distance between s and the treasure. The second step consists in showing how
to modify this algorithm so that it works at an asymptotically equal cost even with
the additional fuel constraint, i.e., in the model in which the conjecture has been
established. Since we observe that no treasure hunt algorithm can beat cost Θ(e(d))

for all graphs in the models of the first and the second step, it turns out that our
algorithms are also almost optimal, i.e., optimal up to a logarithmic factor (indeed,
D < e(D) and thus logD < log e(D)), which leaves open the question of whether it
is possible to get rid of the factor O(logD).

The major difficulty of our work residing in the first step, the purpose of the rest
of this section will essentially be to sketch an intuitive overview of our algorithm that
permits to find the treasure at an almost-optimal cost in the above model variant
but deprived of the fuel constraint. To this end, and to simplify the discussion, we
will assume that the underlying graph G is countably infinite with nodes of finite
degrees. We will rely on the notion of largest explored ball. Given a non-negative
integer k, the ball Bk(G,s) is the subgraph of G induced by nodes at distance at
most k from the source node s without edges for which the two endpoints are at
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distance exactly k from s in G (thus the number of edges in Bk(G,s) is e(k)).
Now, by “largest explored ball”, at a given phase of treasure hunt, we mean the ball
Bf(G,s) where f is the largest integer such that each edge of Bf(G,s) has been
traversed at least once. This largest integer f is the radius of the largest explored
ball.

At a high level, our algorithm works in phases i = 1,2,3, . . . and immediately
stops as soon as the treasure is found. At the beginning of phase i, the agent is
located at node s and the radius of the largest explored ball is equal to fi. The goal
for the agent is to terminate the phase at node s while satisfying at least one of the
following three conditions unless, of course, the treasure has been found before.

• Condition 1. The agent has entirely explored ball Bfi+1(G,s), e(fi+1) ≥ 2e(fi)

and the cost of the phase is O(e(fi + 1)).

• Condition 2. The agent has entirely explored ball B2fi(G,s), fi ≥ 1 and the
cost of the phase is O(e(fi)).

• Condition 3. The agent has entirely explored ball Bfi+k(G,s) for some pos-
itive integer k, e(fi + k + 1) ≥ 2e(fi), fi ≥ 2, and the cost of the phase is
O(e(fi) log fi).

Actually, the conditions we really seek to meet in our algorithm are a little
more intricate than those presented above, because we needed stronger technical
requirements in order to be subsequently able to show the transformation of the
second step mentioned earlier. However, this would add an unnecessary level of
complexity to understand the intuition, hence we omit these technical details here.

The radius of the largest explored ball at the beginning of phase i + 1, i.e., fi+1

is guaranteed to have a minimal value that depends on the condition that is fulfilled
at the end of phase i. Precisely, if it is Condition 1 or Condition 3 that is fulfilled
at the end of phase i, then there is a positive integer k such that Bfi+k(G,s) is
entirely explored at the end of phase i, which means that fi+1 ≥ fi + k. And, if it is
Condition 2 that is fulfilled at the end of phase i, then B2fi(G,s) is entirely explored
at the end of phase i, which means that fi+1 ≥ 2fi. Note that, the fact that fi ≥ 1

in Condition 2 guarantees that the radius of the largest explored ball increases by
at least one at the end of any phase in which the treasure is not found. Also note
that, in Condition 3, the requirement fi ≥ 2 is due to the presence of log fi within
the big O notation.

Before seeing how we implement our strategy, let us briefly examine why it
permits us to get a cost quasi-linear in e(D). Since f1 = 0 and the radius of the
largest explored ball increases by at least one during each phase in which the treasure
is not found, the agent necessarily finds the treasure by the end of some phase λ ≤D,
and fi < fλ <D for every 1 ≤ i < λ. During each phase satisfying Condition 1, the size
of the largest explored ball at least doubles, which means that the total cost of these
phases is upper bounded by twice the worst-case cost of the last phase satisfying
Condition 1 i.e., O(e(fλ + 1)). Concerning the phases fulfilling Condition 2, their
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number is at most O(log(fλ+1)) and the cost of each of them cannot be more than
O(e(fλ)), which implies that their total cost is O(e(fλ) log(fλ + 1)). It remains
to consider the case of the phases satisfying Condition 3. Given such a phase i,
we have the guarantee that the size of the largest explored ball at least doubles
between the beginning of phase i and the end of phase i + 1, provided phase i + 1

exists and is not prematurely interrupted by the discovery of the treasure. Indeed,
at the end of phase i, the agent has at least entirely explored ball Bfi+k(G,s) for
some positive integer k and e(fi + k + 1) ≥ 2e(fi), while at the end of the (not
prematurely interrupted) phase i + 1 the agent has at least entirely explored ball
Bfi+1+1(G,s) with fi+1 ≥ fi + k. Using this, it can be shown that the total cost of
the phases satisfying Condition 3 is at most four times the worst-case cost of the
last phase satisfying this condition, i.e.,O(e(fλ) log(fλ + 1)). Given that the last
phase λ can be viewed as a truncated phase that should have normally satisfied one
of the three conditions, our sketch of analysis leads to the conclusion that the cost
incurred by the agent till the discovery of the treasure is in O(e(fλ +1) log(fλ +1)),
which is O(e(D) logD) and is in line with our expectations.

Having justified the pertinence of such a strategy, we can turn our attention to
its implementation. To do so, we need to introduce a technical building block, called
GlobalExpansion(l,m) to which we will go back at the end of this section to give
additional details. Always executed from the source node s, it is a function that
returns a boolean and whose two input parameters are positive integers except m
that may be sometimes equal to the special symbol ⊥. Assuming that Bf(G,s) is the
largest explored ball, the execution of GlobalExpansion(l,⊥) permits the agent to
traverse all the edges of Bf+l(G,s) that are outside of Bf(G,s) before coming back
to node s. Under the same assumption, the execution of GlobalExpansion(l,m),
when m is a positive integer, consists for the agent in acting as if m was ⊥ but
with the following extra requirement: as soon as more than m distinct edges outside
of Bf(G,s) have been traversed during the execution of the function, the agent
backtracks to node s and aborts this execution. If m is ⊥ or at least large enough to
avoid an aborted execution, the agent ends up exploring Bf+l(G,s) and the function
returns true. Otherwise, the function returns false. It should be stressed that all of
this is made while guaranteeing two properties. The first one is that the agent is
always in Bf+2l−1(G,s) during the execution of GlobalExpansion(l,m). The second
is that the cost of the execution of GlobalExpansion(l,m) is O(e(f +2l−1)) (resp.
O(min{e(f) +m,e(f + 2l − 1)})) when m =⊥ (resp. m ≠⊥). Both these properties
will turn out to be crucial to ensure a proper design of the phases. Finally, even if
by chance the agent could explore a larger ball, we will assume for the ease of our
intuitive explanations that Bf+l(G,s) (resp. Bf(G,s)) is the largest ball explored
by the agent at the end of GlobalExpansion(l,m) in the case where the returned
value is true (resp. false).

Let us consider a phase i of our algorithm and, in order not to burden the
text with a lot of “unless the treasure is found”, let us assume that the treasure
will not be found by the end of it. Phase i is made of at most three successive
attempts, each of them aiming at fulfilling at least one of the three conditions
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described earlier, with the help of our building block. In the first attempt, the agent
executes GlobalExpansion(1,⊥) from node s, the cost of which is O(e(fi + 1)). At
the end of this execution, the agent is at node s and Bfi+1(G,s) has been entirely
explored by the agent. If e(fi + 1) ≥ 2e(fi) or fi ≤ 1, the first attempt is a success
as Condition 1 or Condition 2 is fulfilled, and the agent directly switches to phase
i + 1. Otherwise, the attempt is a failure, but we can nonetheless observe that the
cost incurred because of the attempt is just O(e(fi)) because e(fi + 1) < 2e(fi).

If the first attempt has failed, the agent starts the second attempt of phase i
that consists of an execution of function GlobalExpansion(fi − 1, e(fi)). The hope
here is to expand by a distance of fi − 1 the radius of the largest explored ball,
which is Bfi+1(G,s). According to the properties of GlobalExpansion and the fact
that e(fi + 1) < 2e(fi), the cost of this execution, and thus of the second attempt,
is O(e(fi)). If GlobalExpansion(fi − 1, e(fi)) returns true, then at the end of the
second attempt, the radius of the largest explored ball is 2fi. Hence, the cost of the
first two attempts being equal to O(e(fi)) and fi being at least 2, Condition 2 is
satisfied and the agent starts phase i + 1 without making the third attempt.

On the other hand, if GlobalExpansion(fi−1, e(fi)) returns false, it is a different
story. Indeed, the largest explored ball is still only Bfi+1(G,s) and we cannot ensure
the fulfillment of Condition 1 or Condition 2. This is exactly where Condition 3
comes into the picture. In order to remedy the failures of the two previous attempts,
the agent will start a third and last attempt which consists of a binary search that
is described in Algorithm 5. At the end of this process, Condition 3 is guaranteed
to be satisfied.

Algorithm 5: Third attempt

1 floor ∶= fi + 1; ceil ∶= 3fi − 2; l ∶= ⌊
ceil−floor

2 ⌋;
2 while l ≥ 1 and ∣Bfloor(G,s)∣ < 2e(fi) do
3 success ∶= GlobalExpansion(l, e(fi));
4 if success = true then
5 floor ∶= floor + l; l ∶= ⌊

ceil−floor
2 ⌋;

6 else
7 ceil ∶= floor + 2l − 1; l ∶= ⌊ l2⌋;

In order to better understand why we can get such a guarantee, let us take a
look at the properties that are satisfied during the third attempt and at its end.

Since the execution of GlobalExpansion(fi − 1, e(fi)) returned false, the agent
has explored at least e(fi) distinct edges outside of ballBfi+1(G,s) during the second
attempt. Moreover, during this execution, the agent was always in B3fi−2(G,s)

according to the properties of GlobalExpansion. As a result, in view of the first
line of Algorithm 5, we necessarily have the following feature before the execution of
the while loop of Algorithm 5: Bfloor(G,s) is the largest explored ball and e(ceil) ≥
2e(fi). Actually, by carefully examining the pseudocode of the while loop and using
again the properties of GlobalExpansion, it can be inductively proven that this
feature is a loop invariant. Alone, this loop invariant is not enough to bring the
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sought guarantee, but as highlighted below, it is of precious help to do the job.

The number of iterations of the while loop can be shown to beO(log fi). Further-
more, at the beginning of each iteration, Bfloor(G,s) has size smaller than 2e(fi)

in view of the condition of the while loop, and is the largest explored ball in view
of the loop invariant. Hence, according to the cost property of GlobalExpansion,
each execution of GlobalExpansion(l, e(fi)) costs at most O(e(fi)) like the pre-
vious two attempts, which gives a total cost of O(e(fi) log fi) of the whole phase.
This corresponds exactly to the target value of Condition 3. Along with this, at the
end of the while loop, the size of Bfloor(G,s) is at least 2e(fi), or l < 1. In the first
case, we immediately have e(floor + 1) ≥ 2e(fi), while in the second case it can be
shown that ceil ≤ floor + 1. This, combined with the fact that e(ceil) is always at
least 2e(fi) (by the loop invariant) and the fact that floor is always at least fi + 1,
allows us to show the last missing piece of the puzzle, which is precisely this: when
Algorithm 5 terminates, ball Bfi+k(G,s) is entirely explored and e(fi+k+1) ≥ 2e(fi)

for some integer k ≥ 1.

To conclude with the intuitive explanations, let us give, as promised, some
more insight concerning the building block GlobalExpansion(l,m). At first glance,
one might think that GlobalExpansion could be directly derived from the explo-
ration algorithm CFX(v, r,α) of [Duncan et al. 2006], which permits to explore a

ball Br(G,v) at a cost of O(
∣B(1+α)r(G,v)∣

α ) for any given real α > 0 (this corre-

sponds to a cost of O(
e((1+α)r)

α ) when v = s) provided αr ≥ 1. Indeed, the task
of GlobalExpansion(l,m) that consists in expanding the radius f of the largest
explored ball by a distance l in the case where m is appropriately set, can be done
with CFX(s, f + l, α). However, in this case we want the cost of this expansion to
be O(e(f + 2l − 1)), which is an important property of our strategy. This can-
not be guaranteed using CFX(s, f + l, α) because, in order to get a cost depending
on e(f + 2l − 1), we would have to set α to a value lower than l−1

f+l , which cannot
lead to a cost that is linear in e(f + 2l − 1), as l−1

f+l can be arbitrarily small. True,
during the design we could have been “less demanding” about some of the proper-
ties of GlobalExpansion(l,m), but not significantly enough to permit the use of
CFX(s, f + l, α) without spoiling the validity or the cost complexity of our strategy.
Another solution that may come to mind would be to apply CFX(v, l, α) from each
node v located on the boundary of the largest explored ball Bf(G,s). Visiting each
node of the boundary can be done in O(e(f)). Hence, this solution looks attractive
because by setting α to 1

2 or less (which overcomes the above problem of the arbi-
trarily small value) and provided the zones explored by the different executions of
CFX do not overlap, we would get a cost that is linear in e(f +2l−1). The bad news
is that there may be overlaps. Of course, some overlaps can be easily avoided, es-
pecially those appearing within Bf(G,v), but some others cannot without running
the risk of missing some nodes of Bf+l(G,s) that are outside of Bf(G,s). These
“necessary overlaps” may be pernicious and may occur in a way that prevents us
from guaranteeing a cost of O(e(f + 2l − 1)).
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So, what did we do? Although it was not possible to use CFX as a black box, we
managed to tailor GlobalExpansion by adapting to our needs an elegant algorithmic
technique used in CFX. Through a set of judiciously pruned trees spanning some
already explored area, it allowed us to satisfy the desired cost property of Global-
Expansion by controlling and amortizing efficiently the number of times the same
edges are traversed.





Chapter 5

Conclusion and perspectives

Throughout this manuscript, we have presented most of our work that has been
made over the past ten years, by adopting, to the extent possible, an intuitive point
of view. The main guiding thread of all this work can actually be summarized by
the following central thematic question:

“What can and cannot be achieved by a group of mobile agents when they operate
under difficult conditions?”

We have seen that behind the term “difficult”, we understand, for example, a com-
pletely erratic asynchrony, the eventuality of having to deal with Byzantine faults,
the possible lack of direct means of communication, the fact of being strongly lim-
ited in terms of energy, etc. We have addressed this question by focusing essentially
on the problem of rendezvous and some of its variants, which are the problems
of gathering and treasure hunting. This focus does not constitute a restriction as
drastic and fundamental as one might think at first sight on the scope of our re-
sults, since meeting is a prerequisite building block for solving more sophisticated
tasks in mobile distributed systems. The existing results in the literature related to
this problem, including in particular those we have obtained and presented in the
previous sections, allow us to outline some answers to the question raised above.
Nevertheless, there are still aspects that have not been sufficiently explored. This
is particularly the case for the optimal complexity of rendezvous and its variants
under the various constraints that have been previously mentioned, and, more gen-
erally, for the precise interrelation between the magnitude of these constraints and
the complexity that can then be expected. This observation forms the main basis
of our medium- and long-term research project, which is articulated around three
distinct axes.

The first of these axes consists in finding new original strategies to significantly
beat the complexities, under the same restrictive assumptions, of the existing results
concerning the rendezvous, gathering, and treasure hunt problems. Ideally, the goal
is to obtain algorithms of optimal complexity that will improve those already es-
tablished. The best candidates for such improvements are certainly the algorithms
of [Bouchard et al. 2019, Bouchard et al. 2023b], which are described in Chapters 2
and 3, because they are, for most of them, either exponential or polynomial but
with exponents having... three digits. And there is a good reason explaining this
situation: in both cases, most of our work merely consisted in demonstrating feasi-
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bility, or even polynomiality, but without seeking to optimize complexity. And what
is true for these two results, is also true in a general way, although sometimes to a
lesser extent, for lots of the algorithms from the literature concerning rendezvous
and its variants under the difficult constraints listed above. In other words, although
the latest rendezvous algorithms in highly constrained environments have allowed
substantial progress to be made, there is still a long way to go in order to optimize
them, and thus, this is naturally a very promising avenue of research.

Asking the question of improving the existing complexities, in order to reach
optimality, also implies asking the question of the fundamental limits of the possible
improvements. For this first axis, it is therefore also important to shed light on the
lower bounds of the complexities that can be achieved. In fact, most of the lower
bound results that exist in the literature concerning rendezvous in harsh conditions,
either are quite elementary or do not take advantage of harshness. Thinking about
it, this can seem quite surprising. Indeed, we know that demonstrating a lower
complexity bound implies, in a manner of speaking, demonstrating the impossibility
for any algorithm to “do less”. However, when we are faced with difficult conditions
such as asynchrony or the occurrence of Byzantine faults, to name just a few, we
have a much larger number of possible combinations to cause any algorithm to fail
than if we were in conditions that can be qualified as standard.

In this regard, a result of great beauty would be, for example, to show a lower
bound that perfectly matches the quasi-linear complexity of our treasure hunt al-
gorithm [Bouchard et al. 2023a], which contradicts the conjecture of B. Awerbuch,
M. Betke, R.L. Rivest and M. Singh [Awerbuch et al. 1999] (cf. Chapter 4). The
only lower bound that has been demonstrated stipulates that the problem cannot be
solved at a sublinear cost, and it is quite easy to prove. Of course, one could argue
that perhaps it is the complexity of the algorithm that should be further improved
to achieve linearity. However, up to now, almost all efforts have been focused on
the development of an efficient algorithm which is very complex, and almost none
on the lower bound, for which the only existing proof is almost trivial. Thus, even
if no eventuality can be ruled out, it seems that it is most likely on the side of the
lower bound that improvements should be made.

The second axis of research is to rigorously determine the influence of difficult
conditions on the efficiency that can be expected from a meeting algorithm. For
example, we do not currently know what the additional cost on efficiency is of
asynchrony or lack of communication. Does this translate into a constant, polylog-
arithmic or polynomial factor on complexity, or even more?

In one of our papers [Dieudonné & Pelc 2014b], which has not been covered in
the previous chapters, we lay a first stone for such analyses in the context of mobile
agents. In this paper, we show that for the problem of rendezvous in PBM, the
optimal cost of its deterministic solution in the asynchronous scenario has higher
order of magnitude than that in the synchronous scenario, when the agents know
the initial distance D separating the agents. More precisely, we prove that in the
synchronous scenario rendezvous can be performed at cost O(D`), where ` is the
length of the binary representation of the smaller label, while cost Ω(D2 + D`)
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is needed for asynchronous completion of rendezvous. Hence, for instances with
` = o(D), the optimal cost of asynchronous rendezvous is asymptotically larger than
that of synchronous rendezvous. However, while the upper bound O(D`) for the
cost of synchronous rendezvous is tight, the tightness of the lower bound Ω(D2+D`)

for the cost of asynchronous rendezvous remains fully open. Indeed, the best known
algorithm solving asynchronous rendezvous in PBM with cost polynomial inD and ` is
our algorithm of [Bouchard et al. 2019] presented in Chapter 2, and the polynomial
describing the cost of this algorithm is very large. True, this algorithm works in a
case where the agents do not know D initially, and adding the knowledge of D would
likely decrease its cost significantly. But bringing the exponents even to single digits
seems to be a challenging problem.

It is important to emphasize that the knowledge by the agents of the ini-
tial distance D separating them plays a crucial role in our arguments used
in [Dieudonné & Pelc 2014b]. Without this knowledge the cost of even synchronous
rendezvous in PBM is at least D2 and the gap between it and our lower bound for
the asynchronous rendezvous disappears. It is still open if any gap in cost between
synchrony and asynchrony remains in this case, as no result concerning such a gap
has been shown for the task of rendezvous before or after this work.

It should be also underlined that the result from [Bampas et al. 2010] (already
discussed in the introduction of Chapter 2) permits to show that if knowledge of D
is replaced by each agent knowing its own position in a global system of coordinates,
then the gap between synchrony and asynchrony must be smaller than in our case.
Indeed, under this scenario (often referred to as rendezvous with GPS), an asyn-
chronous rendezvous algorithm with cost O(D2polylog(D)) is given by the authors
of [Bampas et al. 2010]. (In this paper, the initial positions in a global system of
coordinates also play the role of distinct labels of agents.) On the other hand, with-
out knowledge of D, the cost of even synchronous rendezvous in the plane is Ω(D2),
even with GPS. So, under this scenario, we do not know if a gap in cost between
synchrony and asynchrony exists, but if it does, it is at most polylogarithmic, while
under our scenario without GPS but with the knowledge of D it is polynomial for
instances in which ` = O(Dα), for α < 1.

Apart from these snippets of observations and results, the mystery surrounding
the real impact of asynchrony on the cost of rendezvous (but also of other tasks
executed by mobile agents) remains complete, and the same is true for the other
constraints we discussed earlier. Thus, what would be involved here, is examining
the ratio between the optimal cost of an algorithm under a given constraint and that
of an optimal algorithm without this constraint. At first, it might be too ambitious to
show exact ratios, but defining non-trivial bounds on them would already represent
a significant step forward.

Another relevant line of research, which can also be included in this second axis,
consists in determining the trade-offs that can be made between the efficiency of
the gathering and the degree of intensity of the constraints. To illustrate our point,
let us consider the scenario we discussed in Chapter 3 in which the agents do not
have direct means of communication. As explained, we have shown that, despite the



86 Chapter 5. Conclusion and perspectives

difficulties inherent to this scenario, the gathering remains always possible. Nev-
ertheless, it must be recognized that the assumed conditions are extreme. A more
realistic scenario would certainly be one in which the agents could exchange infor-
mation directly using dedicated devices, but in a relatively limited way. In this case,
though, a question naturally comes to mind: it is the one concerning the link that
may exist between the amount of information that agents are able to exchange and
the cost that can be expected from a gathering algorithm. In other words, how
can the complexity of gathering vary according to the maximum volume of data
that is allowed to be shared? An ideal result would be the characterization of the
whole spectrum and, in particular, the identification of possible threshold effects.
However, it should be acknowledged that establishing such a result is a daunting
task, as it requires bringing to light some of the parametric functions underlying the
complexity, which are, in essence, very difficult to handle. Be that as it may, such
a result would be fundamental, since one could then not only rule out inefficient or
inappropriate algorithms, but also precisely adjust, according to the desired final
complexity, the communication capacities of the agents, and by extension, minimize
the manufacturing costs.

We are certainly not limited to the context of communication, and if we let
our imagination run wild, we are quickly led to similar questions in lots of distinct
contexts, including for example when agents are limited in terms of energy or sus-
ceptible to crashes. How does the resolution time vary depending on the amount of
energy that can be spent by the agents? And how does it vary depending on the
number of failures? These are also questions that deserve to be thoroughly studied.

The third and last axis of our research project aims at identifying possi-
ble relationships among the models used for mobile agents. In fact, some stud-
ies have recently investigated this aspect [Flocchini et al. 2019, Buchin et al. 2021,
Buchin et al. 2022], but limited themselves to models in which the agents have unre-
stricted vision and little or no memory of their past actions. Conversely, our research
has been made assuming the agents have little or no vision but unrestricted mem-
ory. These couples “strong memory/weak vision” and “weak memory/strong vision”
appear to be at the root of an important dividing line among the studies in the
field and thus, it would be particularly interesting to widen the scope and find some
comparisons between models from both sides. Is there some kind of equivalence be-
tween these couples? To what extent could they be interchanged without affecting
the expressive power of the models? What about the relationships with models that
would lie between the two extremes, i.e., where each agent has some reasonable
memory of past events and can have a partial perception of the network and/or
the positions of the team? And, more fundamentally, between the two capabilities,
memory and vision, is one more important than the other? These are examples of
interesting avenues worth exploring.

We can go beyond just highlighting mere comparisons, by giving even possible
reductions between models. This would be especially useful, from models with diffi-
cult constraints to models with more lenient constraints (e.g., from asynchronous to
synchronous ones), even if the reductions are only valid for some classes of problems.
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In the field of classical distributed systems (in which the entities composing the
networks are fixed), a common way to compare the expressive power of two models
M and M ′ is to try to design a meta-algorithm, called a transformer, which takes
as input an algorithm A written for modelM and produces an algorithm T (A) that
achieves the same specification as A but in M ′. If such a transformer exists, then
M is at least as powerful as M ′: any problem that can be solved in M can also be
solved inM ′, and any impossibility result inM ′ is also an impossibility result inM .
When transformers exist in both directions and without any additional assumptions,
the two models M and M ′ are considered equivalent in terms of expressive power,
which means that we can use either one without any loss of generality regarding
feasibility issues. What is worth noting is that even if models M and M ′ have
the same expressive power, one may be easier to manipulate than the other for
designing algorithms, establishing proofs of validity, constructing counterexamples,
etc. Depending on the use case, one will therefore choose the model that appears
to be the most appropriate: this is where the real value of knowing clear reductions
between models lies. In particular, reductions from models with harsh constraints to
models with softer constraints, through transformers, would be considerable assets
that would greatly facilitate future research in the field of mobile agents, in which
they are currently lacking. Of course, the use of transformers can result in additional
costs on the final obtained complexities, which cannot be ignored. Nonetheless, this
does not alter the crucialness of this research path, which should be regarded as
orthogonal to our first two axes focusing on complexity issues. This is our strong
conviction, and we will work towards this goal in the coming years.
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