
HAL Id: tel-04326015
https://hal.science/tel-04326015v1

Submitted on 6 Dec 2023 (v1), last revised 24 Jan 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact computations with quasiseparable matrices and
polynomial matrices with a displacement structure

Hippolyte Signargout

To cite this version:
Hippolyte Signargout. Exact computations with quasiseparable matrices and polynomial matrices
with a displacement structure. Computer Science [cs]. École Normale Supérieure de Lyon, 2023.
English. �NNT : �. �tel-04326015v1�

https://hal.science/tel-04326015v1
https://hal.archives-ouvertes.fr

THESE

en vue de l'obtention du grade de Docteur, délivré par

l’ECOLE NORMALE SUPERIEURE DE LYON

Ecole Doctorale N° 512
École doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 05/10/2023, par :

Hippolyte Signargout

Calcul exact avec des matrices
quasiséparables et des matrices polynomiales

à structure de déplacement

Devant le jury composé de :

BOITO Paula Professeure Università Di Pisa Rapporteure
BOSTAN Alin Directeur de recherche Université Paris-Saclay Rapporteur
LECERF Grégoire Directeur de recherche École Polytechnique Examinateur
GUERRINI Eleonora Maître de conférences Université Montpellier Examinatrice
PERNET Clément Professeur des universités Université Grenoble Alpes Codirecteur
VILLARD Gilles Directeur de recherche ÉNS de Lyon Directeur
THOMASSÉ Stéphan Professeur des universités ÉNS de Lyon Examinateur

Exact computations with quasiseparable matrices and
polynomial matrices with a displacement structure

Hippolyte Signargout

October 2020 - September 2023

Contents

1 Introduction 1
1.1 Exact structured linear algebra . 1

1.1.1 Exact linear algebra . 1
1.1.2 Models of computation . 2
1.1.3 Structured linear algebra . 4

1.2 Computing the determinant of polynomial matrices with a displacement
structure . 5
1.2.1 The displacement structures we consider 5
1.2.2 Computing with polynomial structured matrices 7
1.2.3 Techniques used for the computation of the determinant of polyno-

mial structured matrices . 8
1.2.4 Contributions in computing terms of the series expansion 11
1.2.5 Possible improvements for the computation of structured polyno-

mial determinants . 13
1.3 Comparative study of existing formats for quasiseparable matrices 14

1.3.1 Quasiseparable matrices and rank-revealing factorisations of sub-
matrices . 15

1.3.2 Efficient storage formats for numerical quasiseparable matrices . . . 16
1.3.3 Quasiseparable matrices in exact linear algebra 17
1.3.4 Contributions and comparisons . 17
1.3.5 Further improvements for Bruhat and SSS 19

2 Computing the Characteristic Polynomial of Generic Toeplitz-like
and Hankel-like Matrices 21
2.1 Introduction . 21
2.2 Rank displacement structures . 23

2.2.1 Product of Structured Matrices . 24
2.2.2 Reconstruction of a Toeplitz+Hankel-like matrix from its generators 26

2.3 Matrix Polynomials . 27
2.4 A randomised algorithm with the baby-steps/giant-steps method 28

i

CONTENTS

2.4.1 Description of the algorithm . 28
2.4.2 Detailed cost analysis . 29

2.5 Using structured inversion . 31
2.5.1 Generic Toeplitz-like Matrices . 32
2.5.2 Generic Toeplitz+Hankel-like Matrices 34

2.6 Special matrices for genericity . 35
2.6.1 A Toeplitz Point . 37
2.6.2 A Hankel Point . 38

3 High-order lifting for polynomial Sylvester matrices 39
3.1 Introduction . 39

3.1.1 Tools from previous works . 41
3.1.2 Overview of the contribution . 45
3.1.3 Related questions: resultants, characteristic polynomials and bi-

variate ideals . 47
3.1.4 Model of computation and notations 48

3.2 Baby steps/giant steps for high-order lifting 49
3.2.1 High-order lifting . 49
3.2.2 Baby steps/giant steps . 53

3.3 Matrices with a displacement structure . 55
3.4 Displacement structure of Sylvester matrices and its residues and high-

order components . 58
3.4.1 Sylvester matrices over K . 59
3.4.2 Structure of high-order components 61
3.4.3 Structure of residues . 63

3.5 Structured middle and truncated products 67
3.5.1 Middle product: computation of the right generator 68
3.5.2 High-order components . 71

3.6 Giant steps . 72
3.6.1 Concatenated middle and truncated products 72
3.6.2 Cost bound for the giant steps . 75

3.7 Complete expansion algorithm . 75
3.8 Resultant algorithm . 79

3.8.1 Matrix fraction reconstruction . 79
3.8.2 Resultant algorithm . 81

4 Exact computations with quasiseparable matrices 85
4.1 Introduction . 85

ii

CONTENTS

4.1.1 Rank revealing factorisations . 86
4.1.2 Contributions . 86

4.2 Presentation of the formats . 87
4.2.1 SSS generators . 87
4.2.2 HSS generators . 89
4.2.3 Bruhat generators . 90

4.3 Construction of the generators . 91
4.3.1 SSS generator from a dense matrix 91
4.3.2 HSS generator from a dense matrix 92
4.3.3 Bruhat generator from a dense matrix 94
4.3.4 Bruhat generator from a sparse matrix 96
4.3.5 Experimental comparison . 98

4.4 Application to a block vector . 99
4.4.1 SSS × dense . 99
4.4.2 Bruhat × dense . 101
4.4.3 Experimental comparison . 101

4.5 Sum of quasiseparable matrices . 103
4.5.1 SSS sum . 103
4.5.2 Bruhat sum . 104

4.6 Product in SSS . 106

Bibliography 109

iii

Chapter 1 | Introduction

Algorithms in linear algebra are tools that can be used in a large spectrum of applied
fields, from engineering to computational mathematics. Techniques vary depending on
the nature of the elements that are handled. This thesis focuses on exact computations, in
which all digits of each number have the same importance and all need to be correct. More
precisely, we study algorithms which handle matrices with a structure which allows for
easier storage and faster operations. We present new fast algorithms in structured exact
linear algebra, specifically algorithms for quasiseparable matrices in different formats,
and algorithms for the computation of the determinant of polynomial matrices with a
displacement structure.

1.1 Exact structured linear algebra

We detail in this section the framework to which this thesis contributes. We define exact
linear algebra and compare the field to numerical analysis, explain our choices for cost
analysis and present the structures of the matrices our algorithms handle.

1.1.1 Exact linear algebra

The study of algorithms can be seen as a goal in itself for a better understanding of math-
ematical structures, or as a tool for scientific computations. Depending on the domain
for which computations will be done, algorithms in linear algebra can be separated into
two types. The first one is algorithms designed for numerical analysis. They work over
approximations of real and complex numbers, which can be represented in the machine
with floating-point arithmetic. A strong focus needs to be maintained on avoiding nu-
merical instability in order to recover approximations with precision close to the storage
precision.

On the other hand, computer algebra is used when the numbers that are handled need
to be exact and approximations would make no sense. This can be the case for example
with integers, rationals and finite fields. Exact algorithms are usually slower than approx-

1

Chapter 1.

imated algorithms for use in physical and engineering applications. However, they have
direct applications in other fields, namely cryptology and computational mathematics
(e.g. number theory, algebraic topology or graph theory). Additionally, no special care
needs to be taken to avoid numerical instability. This allows better partitioning of data
and fast methods which are harder to use with approximations.

The framework of this thesis is that of exact linear algebra. Our work is based both on
tools specifically designed for this framework and on algorithms designed in a numerical
context, that we adapt and analyse under this perspective.

1.1.2 Models of computation

The theoretical cost bounds given in this thesis are for the number of arithmetic opera-
tions. The matrices and polynomials we handle are defined over a field K and we count
the number of additions, subtractions, multiplications and divisions over K. Note that
this may not be suited for algorithms over integers or rationals, for which the time spent
on an operation depends on the bitsize of the input. Computing exact values does not
mean counting the exact number of operations and the cost analysis of algorithms can be
done at different granularities, depending on how close the costs are to that of competitive
algorithm and how precise we want to be.

Most of the theoretical cost bounds in algorithm analysis are asymptotic and given
with the big O notation. Recall f(n) = O(g(n)) if f(n)/g(n) is bounded when n tends to
infinity. Sometimes, when the given cost bounds show an improvement in the exponent in
n for a polynomial cost, the soft-O notation is used to avoid handling logarithmic factors
which are negligible compared to the exponent improvement. We say f(n) = Õ (g(n)) if
there exists k for which f(n) = O

(
g(n)(log n)k

)
. A good asymptotic cost bound is often

an indicator of practical efficiency: consider that if n operations are done in a second on a
modern laptop (this is very roughly taking n equal to a billion), doing n2 operations can
take centuries. Compensating such a gain with a multiplicative constant hidden with the
O notation is uncommon, yet it happens. Algorithms have been developed which are said
to be galactic as even though their asymptotic cost is better than practical algorithms,
they would be faster in practice only for inputs of size larger than the number of atoms
in the universe (see for example [65]).

Moreover, when multiple algorithms share the same asymptotic cost, the next step
in the comparison is to get the leading constants of the cost, that is the multiplicative
constant of the term in the big O, hidden by this notation.

We do not give more precise theoretical cost bound estimates. However, we back up
some of our analyses with practical experiments. While extrapolating from experimental
timings may be less trustworthy than from theoretical cost bounds, they may reveal costs

2

Chapter 1.

that are not captured by the cost with leading constant, such as non-arithmetic operations,
cache misses or even simply a non-negligible second term in the cost expression.

The costs of our algorithms depend on the cost of subroutines that we use as building
blocks. One of these blocks is polynomial multiplication. The product of two polynomials
of degree n on any field can be computed in O(n log n log log n) by [10]. As we only use
this bound within soft-O complexity analysis, we simply consider the cost of polynomial
multiplication to be Õ (n). Algorithms achieving this soft bound are used in practice.

The case of square matrix multiplication is slightly more complex. In the analysis
of our algorithms we consider that the product of two n × n matrices is computed in
O(nω), where 2 < ω ≤ 3 depends on the algorithm used for the computation. The lowest
ω one can use as of today is that given by the algorithm of [18], which is lower than
2.38. Restricting to algorithms used in practice one can take 2.79 < ω ≤ 3, where the
lower bound is achieved by the algorithm of Strassen [19, 78]. Even when we consider
that in practice matrix multiplications will be done on blocks of dimensions too small to
use algorithms with subcubic costs, reducing our algorithms to matrix products is a step
towards practical efficiency. First, the most efficient matrix multiplication algorithms can
be used for each purpose, but also reducing to matrix blocks is more efficient in terms of
memory access.

We choose to use square matrix multiplication even for matrices that are not square:
the product of an l ×m matrix by an m× n matrix can be computed in

O
(
lmnγω−3

)
(1.1)

operations with γ = min(l,m, n) by dividing both matrices in blocks of size γ × γ. There
exist asymptotically faster algorithms for computing rectangular products [55] which could
be used to lower further the asymptotic and practical costs of our algorithms. This
would however be achieved only by revisiting all the techniques our work is based on
and integrating the possibility of using the fastest rectangular product algorithms in the
intermediate algorithms that we use as subroutines, which is out of the scope of this thesis.

We also use rank-revealing factorisations as subroutines. The algorithms which use
this building block are correct for multiple factorisations, most of which can be achieved
in the asymptotic time of matrix multiplication but with different leading constants. We
give cost bounds depending on the leading constant of the factorisation that is used. An
overview of existing constants is given in [71].

3

Chapter 1.

1.1.3 Structured linear algebra

Matrices can be represented in multiple ways in linear algebra. The most basic is the
dense representation, where an m × n matrix is stored as its nm entries. When most
of the entries of a matrix are zeros, a sparse representation can be used in which each
nonzero entry is stored alongside its row and column indices.

Matrices that arise in applications may show a structure that is not seen by the amount
of zeros. This thesis deals with structured matrices which can be uniquely generated by
relations between a number of field elements which is lower than the number of entries.
Although basic, the example of low-rank matrices is typical as the structures we deal with
depend on low ranks. An m × n matrix A of rank r can be stored with r(m + n) field
elements as r independent columns and n linear relations between them to generate the
remaining columns. As a generalisation we use a rank-revealing factorisation, that is a set
of matrices of dimensions depending on m,n and r whose product is equal to A. A basic
example is a pair of matrices L ∈ Km×r, R ∈ Kr×n such that LR = A. Multiple types of
factorisations exist with different numbers of matrices, dimensions and constraints. For
example an LU factorisation is a pair L ∈ Km×r, U ∈ Kr×n such that LU = A, L is lower-
triangular and U is upper-triangular. It exists only if A has generic rank profile (all its
principal minors are nonzero) and in general a PLUQ factorisation exists: the matrices P
and Q are permutations of the rows of L and columns of U .

It is useful to consider classes of structured matrices that generalise a simple structure
and are stable through multiple operations. This is the case of quasiseparable matrices,
which are defined as matrices whose submatrices strictly over or under the main diagonal
have low rank. The class includes band and low-rank matrices but also their inverses,
their sums and products and inverses of these sums.

Often, storages for structured matrices use rank-revealing factorisations to store in-
formation specific to the matrix. For example, a Toeplitz matrix, whose entries are equal
along each diagonal, can be transformed by a specific linear operator to get a low-rank
matrix. It is one of the multiple classes of displacement structures, for which matrices are
stored as a rank-revealing factorisation of their image through a linear operator.

Note that a field of linear algebra treats structured matrices as black-boxes. Consid-
ering the application of the matrix to a vector as the only given operation and that it
can be done fast, black-box algorithms are designed to be used on any type of sparse
or structured matrices. In an orthogonal direction, we focus on the specific structure
of the matrices we handle and design algorithms which use other properties than fast
matrix-vector products to their advantage.

4

Chapter 1.

1.2 Computing the determinant of polynomial matrices with a
displacement structure

Displacement structures are characterised by rank constraints on transformations of ma-
trices. When the dimension is n and the rank of the transformation is α, a structured
matrix can be stored with O(nα) elements. When matrices are considered on a field,
most operations can be done with a dependence in n for their cost within a logarithmic
factor from the storage size. When dealing with matrices with polynomial entries of de-
gree at most d, the techniques used for computing products can be directly adapted to
get costs quasi-linear in n and d. However, directly using on polynomial entries the most
efficient techniques used to compute determinants induce the computation of fractions
whose degrees may become too high to guarantee such costs.

We explore the computation of the determinant for specific polynomial structured
matrices. We first detail the displacement structures which we will consider and the
behaviour of matrices benefitting from this structure over a field. We then cover the
existing methods used for the computation of determinants of polynomial structured
matrices. We finally present our contributions for the computation of the characteristic
polynomial of Toeplitz-like and Hankel-like matrices and of the resultant of bivariate
polynomials that we detail in Chapters 2 and 3.

1.2.1 The displacement structures we consider

We will introduce the general displacement rank theory with the example of Toeplitz
matrices. An m × n Toeplitz matrix is a matrix whose entries are equal along each
diagonal:

T =



t0 t−1 · · · t1−n

t1 t0
. . .

...
. . .

. . . t−1

tm−1 t1 t0


. (1.2)

T can be stored with m+ n− 1 field elements, but it would not be clear how to use this
storage for operations other than applying T to a vector or adding T to another Toeplitz

matrix. Now for Zm =


0

1
. . .
. . .

. . .
1 0

 ∈ Km×m and T the transposition symbol, consider the

5

Chapter 1.

matrix

τ = T − ZmTZnT =



t0 t−1 · · · t1−n

t1
...

tm−1

 . (1.3)

The rank of τ is at most 2 and T can be stored as a rank-revealing factorisation of τ with
2(m+n) field elements. The class of Toeplitz-like matrices can be defined as the matrices
whose images through the operator ∆Zm,Zn

T : T 7→ T − ZmTZnT has low rank [42] (note
that the same class can be defined with other operators). This class includes the inverse,
sums and products of Toeplitz matrices, which allows the use of this representation for
a large panel of operations. The operator ∆Zm,Zn

T is called a displacement operator, the
rank α of τ is the displacement rank of T and a pair of matrices G ∈ Km×α, H ∈ Kn×α

such that τ = GHT is called a generator for T .
Taking ∆Zm,Zn

T(A) = GHT as an equation in A it can be shown [66, Example 4.4.1]
that we get the unique solution

A =
α∑
i=1

LiUi (1.4)

where Li is the Toeplitz lower triangular matrix with G∗,i as its first column, and Ui is the
Toeplitz upper triangular matrix with H∗,iT as its first row. Applying a Toeplitz matrix
to a vector is equivalent to computing a polynomial product, at a cost almost linear
in the dimension of the vector (see Section 1.1.2). The link between Toeplitz matrices
and polynomials can easily be seen for a lower triangular Toeplitz matrix: consider the
application that multiplies a polynomial in the ring K[y]/(yn) by ∑n−1

i=0 l
(i)yi. The matrix

L =
[

l(0)

...
. . .

l(n−1) ··· l(0)

]
is the matrix of this application in the basis (1, . . . , yn−1). By permuting

the entries of the vector, the same is true for an upper-triangular Toeplitz matrix and the
product of a Toeplitz-like matrix represented by a generator of length α is then reduced
to 2α polynomial products. We thus get that the cost of applying a Topelitz-like matrix
to a vector is Õ (nα). The product of a Toeplitz-like matrix by an n× t dense matrix can
thus be done in Õ (nαt); introducing fast matrix arithmetic [8, 9], a cost of Õ (nαtω−2)
can be guaranteed when t = O(α).

Operations which take Toeplitz-like matrices as input and output thus generally work
with generators, as the cost of these operations can be lower than the storage size of a
dense matrix. Namely, computing a generator for the inverse of a Toeplitz-like matrix
and for the product of two matrices of displacement rank α can be done in Õ (nαω−1) [8].
When needed, the dense form of a matrix can be recovered from a generator in Õ (nmα)
using Eq. (1.4).

Specific examples of Toeplitz-like matrices include matrices of modular multiplication:

6

Chapter 1.

for any f ∈ K[y] of degree n and a ∈ K[y]/(f(y)), the n × n matrix of the application
that multiplies a polynomial by a modulo f in the basis (1, . . . , yn−1). We will also be
particularly interested in Sylvester matrices which are the specific block Toeplitz matrices
defined by two polynomials p(y) = ∑np

i=0 p
(i)yi and q(y) = ∑nq

i=0 q
(i)yi as

S =



p(np) q(nq)

p(np−1) . . . q(nq−1) . . .
... p(np) ... q(nq)

p(0) p(np−1) q(0) q(nq−1)

. . .
...

. . .
...

p(0) q(0)


. (1.5)

It can be noticed that if p(0) 6= 0, the Sylvester matrix defined by p and q is the matrix
of multiplication by the mirror p̄(y) = ynpp(1/y) of p modulo the polynomial f such that
ynq p̄(y) = q̄(y) mod f(y).

Toeplitz-like matrices are not the only class of displacement structures. Those are
defined as the matrices which have low rank through a displacement operator ∆M,N :
A 7→ A − MAN or ∇M,N : A 7→ MA − AN . We will also focus on Hankel matrices
which are matrices whose entries are equal along each anti-diagonal. The class is gen-
eralised to Hankel-like matrices by the operator ∇Zm,Zn,1 , where Zn,1 = Zn + e1en

T and
ei is the i-th canonical vector of appropriate dimension. The sum of a Hankel matrix
and a Toeplitz matrix (for example the characteristic matrix of a Hankel matrix) is a
Toeplitz+Hankel matrix [31] and the generalisation to Toeplitz+Hankel-like matrices is
done by the operator ∇Um,Un , where Un = Zn + Zn

T [66].
While Hankel-like matrices behave mainly in the same way as Toeplitz-like matrices,

Toeplitz+Hankel-like matrices show a particularity in the fact that the operator ∇Um,Un

is singular and a matrix can not be recovered directly from its generator. As detailed
in Section 2.2.2, an irregularity set such as the first column of the matrix needs to be
given for unique reconstruction, which introduces an additional difficulty to algorithms
handling this class of matrices.

1.2.2 Computing with polynomial structured matrices

When the entries of a matrix with a displacement structure are polynomial, its structure
can be linked to bivariate polynomials. For example the determinant of a polynomial
Sylvester matrix defines the resultant of two bivariate polynomials, and a matrix of mul-
tiplication in a bivariate ideal is a univariate polynomial Toeplitz-like matrix. In this
section we will consider matrices with constant displacement rank, as in the two examples

7

Chapter 1.

above. For an n × n matrix of degree d, its storage size as a generator is O(nd) and
the cost of multiplication, with a dense or structured matrix, remains within logarithmic
factors of this cost using the simple technique presented in the previous section. On the
other hand, the algorithms used for matrices over a field that need inversion of elements,
such as those which compute the determinant, can not be directly applied to polynomial
matrices for a quasi-linear cost. The difficulty lies in the fact that the inverse of a poly-
nomial entry has to be seen in the field of fractions and unlike polynomials, the degrees
of the fractions increase in sums and may become high.

Consider the determinant of such a matrix. It is a polynomial of degree and storage
size nd but in most cases the best option to compute it is to use evaluation-interpolation,
for a cost quasi-quadratic in the dimension of the matrix, Õ (n2d). Two improvements
over this cost have been obtained recently for specific determinants. In the case of a
Sylvester matrix, the computation of the determinant, or equivalently of the resultant
in y of two generic bivariate polynomials of degrees n in y and d in x, can be done in
Õ
(
n2−1/ωd

)
field operations by the algorithm of [83] on a generic input. By generic

we mean here, and in the rest of this thesis, that the algorithm is correct for an input
outside a hypersurface of the input space. Using a bit complexity model, this problem can
generically be solved in quasi-linear time with the algorithms of [35,84] but the techniques
are not directly adaptable to general fields. The second improvement is given in the case
of the characteristic matrix of a matrix of modular multiplication. The computation of
its determinant, or equivalently of the characteristic polynomial in a bivariate ideal, costs
Õ (n1.43) with the generic algorithm of [63] (the degree of the matrix in this case is d = 1).

The results we present in this thesis build upon the algorithms of [63,83] in two different
directions. We first adapt both algorithms for computing the characteristic polynomial of
larger classes of matrices in Chapter 2. We then dive deeper in the structure of polynomial
Sylvester matrices to propose an adaptation of the second algorithm which improves the
bound on the complexity of computing bivariate resultants in Chapter 3.

The following sections detail the techniques we use in our algorithms (Section 1.2.3)
and how we combine and adapt them to our purposes (Section 1.2.4).

1.2.3 Techniques used for the computation of the determinant of polyno-
mial structured matrices

Our work builds upon previous improvements in the computation of polynomials struc-
tured determinants, and related tools. The main framework is given by the block projec-
tions method of [47], inspired by Coppersmith’s block-Wiedemann method [15]. It reduces
the computation of a characteristic polynomial to the computation of the determinant of
a smaller matrix of higher degree. This matrix is the denominator of a fraction that is

8

Chapter 1.

reconstructed from the first terms of its series expansion. The terms of this series can be
computed either by inversion in a modular ring, the baby-steps/giant-steps method, or
high-order lifting.

One of the main ideas behind the cost improvements of [47] to compute the deter-
minant of M(x) = xIn − T for T ∈ Kn×n (the notation In is for the identity matrix
of dimension n) is to project the inverse of the input matrix on the left and the right
in order to compute the result as the determinant of a smaller matrix. It is shown
in [47, Thm. 2.12] that there exist projections U, V ∈ Kn×m and an irreducible fraction
N(x)D−1(x) = UTM(x)−1V ∈ Km×m(x) such that the first m invariant factors of M
are the same than that of D. The dense matrix D(x) can be reconstructed from enough
terms of the series expansion UTM(x)−1V = ∑

i≥0Cix
i. IfM(x) hasm or fewer non-trivial

invariant factors then the determinant of D(x) is that ofM(x) up to a multiplicative con-
stant. Another interpretation of this method for any polynomial matrix M(x) ∈ K[x]n×n,
given in [83], distinguishes three steps:

1. Compute enough terms of the series expansion of UTM(x)−1V ∈ Km×m[[x]];

2. From these terms reconstruct the fraction N(x)D(x)−1 = UTM(x)−1V ∈ Km×m(x);

3. Compute the determinant ofD(x) and the multiplicative constant detM(a)/ detD(a)
for some a ∈ K.

Item 2 can be done with Padé approximation, for example using σ-bases [26], and Item 3
is done with fast arithmetic on dense polynomial matrices [52]. Our contributions focus
on computing the terms of the series in Item 1. We detail the existing methods for the
computation of these terms in the following.

The method chosen in [83] for the computation of λ terms of the series is to simply see
the truncated series UTM(x)−1V mod xλ as a polynomial matrix over the ring K[x]/(xλ).
The terms of the series to be computed are then the coefficients of the polynomial matrix,
which are given by successively computing the inverse of M(x) ∈ K[x]/(xλ) (under the
condition detM(0) 6= 0) and applying the projections U and V . The projections need to
be chosen themselves structured instead of random to avoid a dominant cost for dense
matrix products but it is shown that the following steps remain correct for generic input
matrices.

When M(x) is the characteristic matrix of a matrix T , the series UTM(x)−1V has the
following special shapes for expansions at zero (if T is invertible) and infinity:

UT(xIn − T)−1V = −
∑
k≥0

UTT−k−1V xk (1.6)

=
∑
k≥0

UTT kV x−k−1. (1.7)

9

Chapter 1.

Item 1 is then the computation of λ powers of T or T−1 projected on UT and V . The
baby-steps/giant-steps strategy used in [47] consists of four steps for r, s such that rs ≥ λ

(the following steps detail the computation of projected powers of T):

1. Successively apply T on the right to UT to compute the UTT i for 0 ≤ i < r;

2. Compute R = T r, for example with fast exponentiation;

3. Successively apply R on the left to V to compute the T rjV for 0 ≤ j < s;

4. Compute all the products between the UTT i and the T rjV to get UTT i+rjV for
i < r and j < s.

This approach is used in [63] where its efficiency relies on the fast multiplication algo-
rithms that are available for structured matrices in the four steps above and on the use
of structured projections as in [83].

Another technique that is used to compute terms of a series and determinants in
dense linear algebra is the high-order lifting method of [77]. It deals with the inverse
of a general polynomial matrix M(x) ∈ K[x]n×n of degree d projected only to the right
(similarly, take U = In), with projection V polynomial of degree < d. The expansion of
M−1V is computed by slices of degree d as a z-adic expansion with z ∈ K[x] of degree d
such that gcd(detM, z) = 1.

The principle is the following. Consider the first k terms of the z-adic expansion of
M−1V are already computed. Let Rk be the residue at order k defined by

M
(
M−1V mod zk

)
= V − zkRk. (1.8)

Notice that Rk has degree at most d− 1 and can be computed from only the last term of
the z-adic truncated expansion. Now by rearranging Eq. (1.8) as

M−1V =
(
M−1V mod zk

)
+M−1Rkz

k (1.9)

we see that the i-th term of M−1Rk is the (k + i)-th term of M−1V . Taking V = In, the
(k + i+ 1)-th term of M−1 = ∑

k≥0Ckz
k can be computed as

a+ Ck+i+1z + bz2 = (Ci + zCi+1)Rk (1.10)

with a and b of degree < d. We hence have a way to compute from a term of the series a
residue at the same order, and from these a term of the series at a higher order. In order
to compute a full truncated series, residues at order that are powers of 2 are computed

10

Chapter 1.

first, before the rest is given by successively applying, for increasing i, the operation

[
C0 · · · C2i−1

]
R2i =

[
C0 · · · C2i+1−1

]
. (1.11)

One can already notice the similarity between the operation which computes a residue
at order k + i from a residue at order k and an expansion term at order i and the
product of two powers of a matrix at orders k and i which results in the matrix at power
k + i. The method described just above can be seen as fast exponentiation followed by
Keller-Gehrig expansion [51]. We will use this similarity to replace power products in the
baby-steps/giant-steps method when no matrix powers appear, i.e. when computing a
determinant that is not a characteristic polynomial.

1.2.4 Contributions in computing terms of the series expansion

The techniques presented in the previous sections can be combined to make fast deter-
minant algorithms, as those from which we extract these techniques. To sum up, we
have seen that a baby-steps/giant-steps algorithm within the block-Wiedemann scheme
was given in [47]; another interpretation of the scheme for the determinant of polynomial
Sylvester matrices is given in [83] with the use of structured projections and the structured
projections have then been included in the baby-steps/giant-steps strategy to compute a
characteristic polynomial in [63].

The determinant algorithms we propose explore further the combinations of these
building blocks. They remain in the three-step scheme presented above (computation
of the terms of the series; reconstruction of an irreducible fraction; computation of the
denominator’s determinant) and our contributions focus on the first step, the computation
of the terms of the series. We remark however that when using structured projections
the computed terms are themselves structured and that the fraction reconstruction tools
that we use do not exploit this structure (see Section 1.2.5).

We present three main algorithms, whose cost bounds are represented in Table 1.1.

• Algorithm ToeplitzLikeExpansion and Algorithm THLikeExpansion adapt
the method of [83] to compute the terms of the truncated series using direct inversion
of the input matrix modulo xλ and structured projections in the case where it is the
characteristic matrix of a Toeplitz-like or Hankel-like matrix, hence broadening the
scope of the method. This results in lowering the cost bound for the computation
of the characteristic polynomial of such matrices: for generic input matrices, the
algorithms give a cost bound that matches that of [83]. If we consider an input
matrix that satisfies the requirements of both algorithms (this forces a matrix of
degree 1 and displacement rank 2), both achieved cost bounds are Õ

(
n2−1/ω

)
, and

11

Chapter 1.

the best exponent is below 1.58.

• The baby-steps/giant-steps strategy was used in a block-Wiedemann context for
the computation of the characteristic polynomial of dense matrices in [47]. It was
then combined with structured projections in [63] to achieve for the computation of
the characteristic polynomial of generic matrices of modular multiplication the cost
bound of Õ (n1.43).

Trying to apply the same method to general Toeplitz-like or Hankel-like matrices is
not as effective. Powers of matrices of modular multiplication remain matrices of
modular multiplication and keep a constant displacement rank. On the other hand,
powers of general Toeplitz-like and Hankel-like matrices, while remaining Toeplitz-
like or Hankel-like, progressively lose their structure and their displacement rank
increases with the exponent. The structure is lost too soon in a baby-steps/giant-
steps scheme to allow an improvement in the cost.

However, using dense projections as in [47] allows for a randomised algorithm pre-
sented in Algorithm StructuredBSGS for the computation of Toeplitz-like and
Hankel-like minimal polynomials with a cost sub-quadratic in the dimension of the
matrix. The characteristic polynomial is obtained generically. The improvement
compared to [47] is the use of fast algorithms to handle structured matrices.

• We saw that a Sylvester matrix was a matrix of multiplication and hence the charac-
teristic polynomial algorithms of [63, Sec. 10.1] can be used to compute the resultant
of two bivariate polynomials if their associated Sylvester matrix is the characteristic
matrix of a constant Sylvester matrix. In this special case we get cost bounds of
Õ (n1.43) for the computation of the bivariate resultant, or Õ (n1.46) when using the
bound of Eq. (1.1) for the cost of rectangular matrix multiplication instead of using
the fast algorithms of [55]. With a more general degree 1 matrix the best bound we
have is that of [83], Õ (n1.58).

In Chapter 3 Algorithm StructuredResultant fills this complexity gap (except
for the slight improvement given by the use of fast rectangular matrix multiplication)
by extending the scope of the baby-steps/giant-steps and structured projections of
[63] when the terms of the series are not powers of matrices by using high-order lifting
and the special structure of Sylvester matrices. As mentioned in Section 1.2.3 we
replace the computation of matrix (or polynomial) powers in the baby-steps/giant-
steps with the computation of high-order components and residues, the structure of
which needed to be precisely examined to guarantee fast operations.

12

Chapter 1.

Table 1.1: Comparison of the asymptotic cost of various methods for computing the
determinant of polynomial matrices with displacement structures. All algorithms have
genericity conditions on the input. The new algorithms allowing the costs in bold are
presented in this thesis, and citations are given for the existing cost bounds. The last
column gives the costs when fast rectangular matrix multiplication (FRMM) is used.

Direct
Inversion

Baby Steps
Giant Steps

Modular composition [63]
Multiplication matrix (d = 1) - Õ (n1.46) FRMM: Õ (n1.43)

Bivariate resultant
Sylvester matrix Õ (n1.58d) [83] Õ (n1.46d) → for d = O

(
n1/3

)
Characteristic polynomial (d = 1)
Toeplitz/Hankel-like (dsp. rk. α) Õ (n1.58α1.16) Õ (n1.86α0.52)

1.2.5 Possible improvements for the computation of structured polynomial
determinants

Our algorithms compute the expected determinant only for matrices that are generic, i.e.
matrices whose entries are outside a variety of the input space. This means that they
give a correct output when the input parameters (either the entries of the matrix or that
of the generator) are not a root of a given polynomial. This polynomial depends on the
genericity conditions given for our algorithms.

One genericity condition is shared by all algorithms as it is inherent to the block-
Wiedemann method. This is the condition on the number of non-trivial invariant factors.
The other conditions are specific to the computation of the terms of the series.

We show that the genericity varieties of our algorithms are not the entire input spaces
by showing the genericity polynomial is nonzero. We also give a randomised algorithm
using Algorithm StructuredBSGS for the computation of the characteristic polynomial
when the input meets the condition on invariant factors. Future improvements could be
to try to give probabilistic versions of Algorithm ToeplitzLikeExpansion, Algorithm
THLikeExpansion and Algorithm StructuredResultant.

What is needed is a randomised transformation of the input such that the transformed
matrix is outside of the genericity hypersurface with nonzero probability and the fetched
result can be recovered from the output of the algorithm on the transformed matrix.
The first condition is equivalent to the existence of a nonzero polynomial such that the
algorithm is correct when the random elements of the transformation are not one of its
roots.

Take the schoolbook example of a characteristic polynomial algorithm A which is

13

Chapter 1.

correct only for non-singular matrices. The genericity polynomial is the determinant
of the matrix, and its variables are the entries of the matrix. Consider the random
transformation f : A 7→ A + cIn for c chosen at random in a subset of the input field.
For a given A, applying A on A + c will give the correct result if c is not a root of
P (x) = det (A+ x). The characteristic polynomial of χA of A can then be recovered from
that of f(A), χf(A), as χA(x) = χf(A)(x− c).

We were not able to find such a transformation, which would at least lower our gener-
icity conditions, despite looking into various transformations, including multiplying by
random Toeplitz matrices or adding low-rank Toeplitz-like matrices. However, the algo-
rithm of [63] has been made probabilistic with highly non-trivial techniques and a similar
improvement could be possible at least for the resultant if not for the characteristic poly-
nomial of more general Toeplitz-like matrices.

In terms of improving further the cost bound, one can notice that when using struc-
tured projections, the terms of the series that are obtained are themselves structured.
It intuitively seems inefficient to reconstruct the dense forms of these terms before com-
puting the associated fraction. Improving the cost of reconstructing the fraction from
structured terms would improve the overall cost of the computation of the determinant.
The resulting fraction denominator could then itself be also structured.

Also, as mentioned in Section 1.1.2, we do not take advantage of fast rectangular
matrix multiplication as this would need to revisit the basic routines of the displacement
rank theory. It could however lead to an improvement in the cost of the computation of
the resultant, and make the cost match that of [63] for d = 1.

1.3 Comparative study of existing formats for quasiseparable ma-
trices

From a unique structure definition arise multiple storage methods. Quasiseparable ma-
trices are matrices with rank constraints on their submatrices, which can be stored in
space linear in the largest dimension. At least four different storage formats achieve this
space bound and allow for operations such as applying a matrix to a vector with cost
linear in the storage space. These formats were developed independently, most of them
for numerical applications.

We propose in Chapter 4 a comparative study of three storage formats for quasisepa-
rable matrices in exact linear algebra: SSS, HSS and Bruhat. The comparisons are made
with detailed asymptotic cost (with leading constants) and practical experiments. In or-
der to pursue this comparison we defined the HSS and SSS formats in an exact linear
algebra framework, designed a new algorithm for the computation of a Bruhat generator

14

Chapter 1.

and implemented the main kernel routines of the SSS format in the linear algebra library
fflas-ffpack [27].

1.3.1 Quasiseparable matrices and rank-revealing factorisations of subma-
trices

The order of quasiseparability s of an n × n matrix is the maximal rank of its subma-
trices that are strictly over or under its main diagonal. We call a matrix quasiseparable
when s << n. Note that definitions of quasiseparable matrices are sometimes more flexi-
ble and use more parameters (see the definition in [23] for an example). We chose not to
take into account more general cases as it would make the framework harder to understand
while we do not expect adaptations to be difficult to arrange in practice.

This class is a generalisation of many structured matrices. They include band matrices,
whose quasiseparability order is the width of the band, their inverses which have the same
quasiseparability order, low-rank matrices and semiseparable matrices which are defined
as the sum of the lower triangular part of a low-rank matrix and the upper triangular
part of another low-rank matrix.

These structures were first studied independently in numerical analysis and multi-
ple storage formats thus emerged. Perhaps the most intuitive one is the H format (for
Hierarchical), in which a quasiseparable matrix is recursively divided into four blocks.
The off-diagonal ones have low rank and are stored in rank-revealing factorisations, while
the diagonal ones are quasiseparable and are subdivided recursively until their off-diagonal
blocks have full rank. For a matrix of order s and dimension n the storage size in this
format is O(ns log n).

This is not entirely satisfactory as none of the structures that quasiseparability gener-
alises need storage space higher than O(ns). However, it gives the main idea for efficient
storage of quasiseparable matrices: the structure resides in the rank of matrix blocks,
which can be stored as rank-revealing factorisations.

For most of our algorithms the factorisation that is used makes no notable difference
(it is possible that choosing a specific factorisation could lead to a slight improvement in
our algorithms, see Section 1.3.5). An exception is the Bruhat format which depends on
factorisations revealing information on the rank profiles (see Section 1.3.3), for example
the CRE factorisation [20], where a matrix A is factorised as A = CRE with C and E in
echelon form and R is a permutation.

We here need to make a distinction between the rank-revealing factorisations that are
used in an exact context and the ones used for numerical linear algebra. The exact rank
of an approximation of a real or complex matrix will often be full despite a clear structure
in the matrix that it approximates. The notion of numerical rank is then used, which

15

Chapter 1.

can be defined in multiple ways. The first one uses a threshold for when negligible values
can be treated as zeros. It is sometimes defined as the number of singular values above a
certain threshold in the singular value decomposition (SVD) of a matrix , which indicates
that the notion of numerical rank and the chosen factorisation are interdependent.

For quasiseparable matrices, the factorisation that is most often used is the compact
SVD: A = UΣV ∗ where Σ is diagonal, U and V are semi-unitary (UU∗ = Ir) and U∗ is
the Hermitian transpose of U . The numerical rank is in this context a fixed parameter
that is chosen to approximate a matrix with a factorisation [29]. In the case of the SVD,
only the r largest singular values (elements of the diagonal matrix Σ) will be kept and the
rest set to 0, whatever the exact rank. In order to adapt algorithms using such a notion
of rank, a main contribution is to show that the algorithms remain correct when the rank
of a matrix is no longer a fixed parameter but a value given by the problem itself.

1.3.2 Efficient storage formats for numerical quasiseparable matrices

Redundancy of information can be observed in theH format, which explains the difference
in storage costs with band and low-rank matrices. Consider the block matrix

A =


· A12 A13 A14

· A23 A24

· A34

·

 (1.12)

of order s whose blocks are stored in factorisations as A12 = L12R12 and
[
A13 A14
A23 A24

]
=[

L1
L2

]
[R1 R2]. While

[
A12 A13 A14

]
has rank at most s, it is stored in two independent

factorisations. It should intuitively be possible to make L1 and L12 interdependent.
This is what theH2 format achieves for a storage cost linear in n and s. It is also called

HSS for Hierarchically Semi-Separable. The idea, presented in more details in Section 4.2.2,
is to represent low-rank blocks recursively with rank revealing factorisation as in the H
format and to also store concatenations of the matrices forming the factorisations as rank-
revealing factorisations. In the example of Eq. (1.12), this means using a rank-revealing
factorisation for

[
L1 L12

]
and for all factorisation factors which are linearly dependent.

The SSS format, for Sequentially Semi-Separable, was developed independently but
uses the same techniques. The block divisions differ, as matrices are seen as an iterative
grid of blocks instead of a recursive block division [23]. It is however interesting to
notice that in its earliest versions the SSS format [22] was very different from H as each
entry was defined separately and there was no block by block vision with rank revealing
factorisations.

16

Chapter 1.

1.3.3 Quasiseparable matrices in exact linear algebra

The interest in quasiseparable matrices is recent in exact linear algebra. Quasiseparable
matrices arise for example in problems related to linearisation of polynomial linear algebra.
A simple example is the companion matrix of a polynomial which has quasiseparability
order 1.

In [72] the RRR format is introduced as an adaptation of H and the Bruhat format
is defined explicitly for exact computations. It uses the rank profile matrix (RPM), an
invariant based on rank profiles. The column rank profile of a matrix of rank r is the
lexicographically minimal set of r independent columns. The row rank profile of a matrix
is defined similarly. Knowledge of the rank profile of a matrix A, or any set C of r
independent columns (or rows), is useful as a rank-revealing factorisation of A can easily
be computed from that of A∗,C (the columns of A with indices in C).

A tool introduced in [20] to combine and complete the information given in the rank
profiles is the rank profile matrix. The unique rank profile matrix R of A has zeros and r
ones placed so that all its leading submatrices have the same ranks as the ones of A. The
information is basically where a set of pivots of A can be found during an elimination: it
pairs each row and column of the rank profiles.

The rank profile matrix induces a new rank-revealing factorisation known as CRE fac-
torisation, which associates each pivot of the RPM to a rank 1 outer product. We have
A = CRE where C and E are in echelon form and R is the nonzero rows and columns of
the RPM.

This CRE factorisation can be used to store a quasiseparable matrix A. Take the upper-
triangular or lower-triangular part of A and switch the order of the rows or columns to get
a left triangular matrix L (its entries under the anti-diagonal are zero). The quasiseparable
constraints on the ranks on the submatrices of A are transferred to the leading submatrices
of the RPM of L. This means that the number of pivots of its left triangular part constrains
how close they must be to the diagonal: a pivot near the diagonal counts in the rank of
only few submatrices of the left-triangular part while a pivot in the top-left corner counts
for all submatrices. Consider also that the parts of the C and E matrices of the CRE
factorisation of L that impact only the right-triangular part do not need to be stored.
Hence for a specific pivot, the closer it is to the diagonal, the smaller the parts are of C
and E that need to be stored.

1.3.4 Contributions and comparisons

From this succinct presentation of the previous work on quasiseparable matrices from
the point of view of exact computations a main question arises: when quasiseparable

17

Chapter 1.

matrices need to be handled to solve a problem, what storage format is the best suited?
As the existing asymptotic cost bounds are the same for most operations, a more detailed
comparison needs to be done taking in consideration the theoretical leading constants and
practical experiments. It can also be useful to understand what are the specificities of
each formats in terms of flexibility for example, and what use cases they are most adapted
to.

In order to handle this comparison, the formats coming from the numerical context
need to be adapted to exact computations (as mentioned earlier, the use of numerical
rank revealing factorisation needs adaptation). Cost comparisons need to be made on
problems which are solved by existing algorithms in each format, or new algorithms need
to be developed.

In Chapter 4 we chose to compare three formats: HSS, SSS and Bruhat. We do not work
with RRR and H as we estimate the logarithmic factor in the storage and operation costs
dominates a possible improvement on the leading constant too fast when the dimensions
increase. Indeed, taking a large margin by saying the leading constants of the costs could
be 10 times better for RRR than for HSS, the logarithmic factor would compensate for this
improvement as soon as n gets close to 1000, which is a dimension for which operations
are already extremely fast in any case. We also avoid the format based on Givens weights
of [16] as its reliance on orthogonal transformations with complex numbers made it unclear
to us how to adapt it to general fields (in particular those with positive characteristic),
although the storage cost is linear.

The comparisons we chose to make are on the storage cost and the cost of multiple
operations: construction of generators from dense and sparse matrices (Section 4.3), ap-
plication of a quasiseparable matrix to a block of vectors (Section 4.4) and addition and
multiplication of two quasiseparable matrices (Sections 4.5 an 4.6).

It soon became clear to us that the HSS format was not adapted to our framework
as the first comparisons we made showed a factor at least 2 in the cost with no more
flexibility than the SSS format, hence we chose to focus on Bruhat and SSS after the first
basic operations. We also did not manage to produce fast algorithms for the product
of two matrices in Bruhat format and construction of an SSS generator from a general
sparse matrix at a reasonable cost, so no results are presented for these operations. The
efforts made in the direction of a sub-quadratic algorithm for the product in Bruhat are
presented in the following section.

For the other operations, we give algorithms with asymptotic cost bounds including
the leading constants. We also make practical experiments for the cost of computing SSS
and Bruhat generators from a dense matrix and applying a matrix given in these formats
to a block of vectors. For these practical experiments, we use the implementation that was

18

Chapter 1.

already available in fflas-ffpack for the Bruhat format and implemented the necessary
algorithms and benchmark routines for SSS.

A table summarising the theoretical cost bounds is given in Table 4.1 while the results
of the practical experiments are shown in Sections 4.3.5 and 4.4.3.

1.3.5 Further improvements for Bruhat and SSS

The logarithmic factor in the cost of addition of two quasiseparable matrices in Bruhat
form is not inherent to the operation, as it can be done faster with matrices in SSS form.
It is a priori not inherent to the format either, since it has a storage cost lower than that
of SSS. We believe it is possible to avoid this cost with a better use of the quasiseparable
structure in our algorithm.

The logarithmic factor appears at multiple steps. We managed to avoid it in all steps
which make eliminations and products by designing divide-and-conquer algorithms which
take into account the echelon forms of intermediary matrices. Our algorithm also requires
the computation of the rank profile of a concatenation of two echelon forms, which we did
not manage to do at a cost which does not induce a logarithmic factor. A similar issue
arises for the product and seems even more complex as the matrices for which we want to
compute rank profiles show less structure. The best cost bound today is quadratic. It is
our belief that once a linear or quasi-linear algorithm exists for the product, it should be
possible to develop linear or quasi-linear algorithms based on divide-and-conquer and/or
Krylov iterations for solving quasiseparable linear systems and computing the determinant
and inverse of a matrix given in Bruhat form.

On the SSS side, the implementation in fflas-ffpack is made using PLUQ as the
rank-revealing factorisation. The factorisation is made in place, which means that the
result is stored in the memory slots of the input. The triangular parts of this result are
then extracted to be stored in the SSS generator. It became clear to us while implementing
the compression algorithm that a significant portion of the square matrices in the output
generator were actually triangular, although this property is not used. Deeper study
of the shape of the SSS generator when using PLUQ factorisation could lead to a new
compression algorithm using specific storage for triangular matrices and with a lower
leading constant for the storage cost. This improvement would also be seen in the cost of
computing products.

19

Chapter 2 | Computing the Characteristic
Polynomial of Generic Toeplitz-
like and Hankel-like Matrices

This chapter is derived from a joint work with Clément Pernet, Pierre Karpman and
Gilles Villard presented at the 2021 edition of the International Symposium on Symbolic
and Algebraic Computation [49].

2.1 Introduction

We consider the problem of computing the minimal or the characteristic polynomial of
Toeplitz-like and Hankel-like matrices, which include Toeplitz and Hankel ones. The
necessary definitions about those structures are given in Section 2.2.

Throughout the chapter T ∈ Kn×n is non-singular and either Toeplitz-like or Hankel-
like, where K is a commutative field. The structure is parameterised by the displacement
rank 1 ≤ α ≤ n of T [42,66]. In particular a Toeplitz or a Hankel matrix has displacement
rank α = 2.

The determinant of T can be computed in Õ (αω−1n) operations in K, where ω ≤ 3 is
a feasible exponent for square n × n matrix multiplication. For the best known value of
ω one can take ω ≈ 2.373 [1, 53]. When T has generic rank profile (the leading principal
submatrices are non singular) a complexity bound Õ (α2n) for the determinant is derived
from [66, Cor. 5.3.3]. In the general case, for ensuring the rank profile one uses rank-
regularisation techniques initially developed in [43,46] that lead to randomised Las Vegas
algorithms assuming that the cardinality of K is large enough; see [66, Sec. 5] and [8] for
detailed studies in our context. Taking advantage of fast matrix multiplication is possible
using the results in [8,9], where fundamental matrix operations, including the determinant,
are performed in time Õ (αω−1n) for a wide spectrum of displacement structures. In this
approach the determinant is revealed by the recursive factorisation of the inverse.

The characteristic polynomial det(xIn − T) of T is a polynomial of degree n. Using

21

Chapter 2.

an evaluation-interpolation scheme it follows that it can be computed in Õ (αω−1n2) op-
erations in K. We also refer to [66, Ch. 7] for a Newton-Structured iteration scheme in
time Õ (α2n2).

For a Toeplitz or Hankel matrix these complexity bounds for computing the char-
acteristic polynomial were quadratic; our contribution establishes an improved bound
Õ
(
n2−1/ω

)
for generic matrices (given in compressed form), which is sub-quadratic in-

cluding when using ω = 3. We build on the results of [83] where especially the case of
a Sylvester matrix was treated, and show that the approach can be generalised to larger
displacement rank families. In particular, the Hankel-(like) case requires the use of so-
phisticated techniques in order to handle the Toeplitz+Hankel structure [31, 33] and its
generalisations [66].

The algorithms we propose fit into the broad family of Coppersmith’s block Wiede-
mann algorithms; we refer to [47] for the necessary material and detailed considerations
on the approach. Another interpretation in terms of structured lifting and matrix fraction
reconstruction is given in [83].

From T ∈ Kn×n, the problem is to compute the determinant (or a divisor) of the
characteristic matrixM(x) = xIn−T . For 1 ≤ m ≤ n and well chosen projection matrices
V and W in Kn×m, the principle is to reconstruct an irreducible fraction description
P (x)Q−1(x) of V TM(x)−1W ∈ K(x)m×m, where P,Q ∈ K[x]m×m, from a truncated series
expansion of the fraction. The denominator matrix Q carries information on the Smith
normal form of M(x) [47, Thm. 2.12]. Using random V and W allows to recover the
minimal polynomial of T from the largest invariant factor of M(x), and for a generic
matrix T the characteristic polynomial is obtained [47,83].

The matrix Q is computed from a truncation S(m) ∈ K[x]m×m of the series expansion
of V TM(x)−1W ,

S(m)(x) = −
2dn/me∑
k≥0

V T(T−k−1)Wxk, (2.1)

using for example matrix fraction reconstruction [3, 26]. We will not detail these latter
aspects in this chapter since they can be found elsewhere in the literature: see [47, 83]
for the general techniques involved; [82, Cor. 6.4] for the power series truncation and
[48] for alternative fraction reconstruction possibilities. The results we need on matrix
polynomials are recalled in Section 2.3.

We focus on the computation of the power series terms Hk = V T(T−1)kW of Eq. (2.1).
The idea for improving the complexity bounds is to use structured projections V and W
in order to speed up the computation of the expansion, as has been done in [21, 83].
A typical choice is such that the matrix product by V and W is reduced. The central
difficulty is to show that the algorithm remains correct; special choices for V andW could

22

Chapter 2.

prevent a fraction reconstruction with appropriate cost, or give a denominator matrix Q
with too little information on the invariant structure of T .

For a generic input matrix and our best exponent, in Section 2.5 we follow the choice
of [83] and work with V = W = X where X =

(
Im 0

)T
∈ Kn×m. An n × n Toeplitz or

a Hankel matrix is defined by 2n− 1 elements of K, and our algorithm is correct except
on a certain hypersurface of K2n−1. The same way, a Toeplitz-like or Hankel-like matrix
of displacement rank α is defined by the 2nα coefficients of its generators, and our algo-
rithm is correct for all values of K2nα except for a hypersurface. If T is Hankel, the matrix
M(x) = xIn − T is Toeplitz+Hankel and the algorithm involves a compressed form that
generalizes the use of generators associated to displacement operators [33, 66]. The algo-
rithm computes a compressed representation of M(x)−1 modulo x2dn/me+1, and exploits
its structure to truncate it into a compressed representation of S(m)(x) = XTM(x)−1X

mod x2dn/me+1 at no cost. The parameter m can be optimised to get an algorithm using
Õ
(
n2−1/ω

)
operations when the displacement rank is considered constant.

Before considering the fast algorithm for the generic case, in Section 2.4 we consider
the baby steps/giant steps algorithm of [47]. Indeed, thanks to the incorporation of fast
matrix multiplication in basis structured matrix operations [8, 9], the overall approach
with dense projections V and W already allows a slight exponent improvement. Taking
into account that the input matrix T is structured, a direct cost analysis of the algorithm
of [47] improves on the quadratic cost for Toeplitz and Hankel matrices as soon as one takes
ω < 3. However it is unclear to us how to compute the characteristic polynomial in this
case (see the related Open Problem 3 in [44]). The algorithm we propose is randomised
Monte Carlo and we compute the minimal polynomial in Õ

(
nω−c(ω)

)
operations with

c(ω) = ω−1
5−ω . For Toeplitz-like and Hankel-like matrices with displacement rank α, the

cost is multiplied by Õ
(
αc(ω)

)
.

Notation Indices of matrix and vectors start from zero. The vectors of the n-dimensional
canonical basis are denoted by en0 , . . . , enn−1. For a matrix M , Mi,j denotes the coefficient
(i, j) of this matrix, Mi,∗, its row of index i and M∗,j its column of index j.

2.2 Rank displacement structures

A wide range of structured matrices are efficiently described by the action of a displace-
ment operator [42]. There are two types of such operators: the Sylvester operators of the
form

∇M,N : A 7→MA− AN,

23

Chapter 2.

and the Stein operators of the form

∆M,N : A 7→ A−MAN,

where M and N are fixed matrices. A Toeplitz matrix T is defined by 2n− 1 coefficients
t−n+1, . . . , tn−1 ∈ K such that T = (ti−j)i,j. Its image through ∆Zn,Zn

T , where Zn =
(δi,j+1)0≤i,j≤n−1 has rank at most 2. Similarly, a Hankel matrix H is defined by 2n − 1
coefficients h0, . . . , h2n−2 such that H = (hi+j)i,j and its image through ∇Zn,Zn,1T , where
Zn,1 = Zn + en0e

nT
n−1 has rank at most 2.

As a generalisation, the class of Toeplitz-like (resp. Hankel-like) matrices is defined
as those matrices whose image through ∆Zn,Zn

T (resp. ∇Zn,Zn,1T) has a bounded rank
α [32,66], called the displacement rank, and can be represented by a product GHT, where
G,H ∈ Kn×α are called generators. These operators are non-singular and a matrix can
be uniquely recovered from its generators.

Lastly, any sum of a Toeplitz and a Hankel matrix, (forming the class of Toeplitz+Hankel
matrices) has an image of rank at most 4 through the displacement operator ∇Un,Un where
Un = Zn + Zn

T [31]. This operator is singular and the low rank image does not suffice to
uniquely reconstruct the initial matrix: additional data (usually a first or a last column)
is required for a unique reconstruction [33,66]. The class of Toeplitz+Hankel-like matrices
is formed by those matrices whose image through ∇Un,Un has a bounded rank.

2.2.1 Product of Structured Matrices

Proposition 2.2.1 ([8, Theorem 1.2]). Let A ∈ Kn×n be a Toeplitz-like or Hankel-like
matrix with displacement rank α given by its generators and B ∈ Kn×m be a dense matrix.
The multiplication of A by B can be computed in Õ (nmax(α,m) min(α,m)ω−2) operations
in K.

Proposition 2.2.2. Let A,B ∈ Kn×n be two Toeplitz-like matrices of displacement rank
α and β respectively, then their product AB is a Toeplitz-like matrix of displacement rank
at most α + β + 1. Furthermore, given generators for A and B w.r.t. ∆Zn,Zn

T, one can
compute generators for AB w.r.t. the same operator in Õ (n(α + β)ω−1) field operations.

Proof. Let GA, HA and GB, HB be the generators of A and B respectively. They satisfy
A-ZnAZnT = GAHA

T and B − ZnBZnT = GBHB
T. Consequently

AB = (ZnAZnT +GAHA
T)(ZnBZnT +GBHB

T)
= ZnABZ

T
n − ZnA∗,n−1Bn−1,∗Zn

T + (ZnAZnTGB)HB
T

+GA(HA
TZnBZn

T +HA
TGBHB

T),

24

Chapter 2.

and therefore AB − ZnABZnT = GABHAB
T for

GAB =
(
GA ZnAZn

TGB −ZnA∗,n−1

)
HAB =

(
ZnB

TZn
THA +HBGB

THA HB ZnBn−1,∗
T
)
,

thus showing that AB has displacement rank at most α + β + 1.
Computing these generators involves applying A on a dense n× β matrix and B on a

dense α× n matrix, and computing the product of an α× n by an n× β matrix and the
product of an α × β by a β × n matrix. Using [8, Thm 1.2], these cost Õ (n(α + β)ω−1)
field operations.

Proposition 2.2.3. Let A,B ∈ Kn×n be two Hankel-like matrices of displacement rank α
and β respectively, then their product AB is a Toeplitz-like matrix of displacement rank at
most α + β + 2. Furthermore, given generators for A and B w.r.t. ∇Zn,Zn,1T, generators
for AB w.r.t. ∆Zn,Zn

T can be computed in Õ (n(α + β)ω−1).

Proof. Let GA, HA and GB, HB be the generators of A and B respectively, satisfying
ZnA − AZn,1

T = GAHA
T and ZnB − BZn,1

T = GBHB
T. Using a similar reasoning as

for Proposition 2.2.2 we can deduce that
AB − ZnABZnT = GABHAB

T for

GAB =
(
GA AZn,1

TGB A∗,n−1 AZn,1
TB∗,n−1

)
HAB =

((
HBGB

T −BTZn
T + en0B∗,n−1

T
)
HA HB Bn−1,∗

T en0

)
,

thus showing that AB has displacement rank at most α + β + 2. Computing these
generators again costs Õ (n(α + β)ω−1) field operations.

Proposition 2.2.4. Let A ∈ Kn×n be a Toeplitz-like (resp. Hankel-like) matrix of dis-
placement rank α, then for an arbitrary (resp. even)r, Ar is a Toeplitz-like matrix of
displacement rank at most (α + 1)r and its generators can be computed from the genera-
tors of A in Õ (n(αr)ω−1) field operations.

Proof. Using fast exponentiation one computes Ar as:

Ar =
blog rc∏
k=0

(
A2k

)lk where the lk satisfy
log r∑
k=0

lk2k = r,

which only requires squarings and products between matrices of the form A2k . When A
is Toeplitz-like the result is a straightforward consequence of Proposition 2.2.2; when it is
Hankel-like the product A2 is computed using Proposition 2.2.3, the remaining products
are between Toeplitz-like matrices, and the result again follows from Proposition 2.2.2.

25

Chapter 2.

2.2.2 Reconstruction of a Toeplitz+Hankel-like matrix from its generators

The operator ∇Un,Un is defined in [66, Section 4.5] as partly regular, which means that
a Toeplitz+Hankel-like matrix is completely defined by its generators and its irregularity
set that may be all the entries in its first column.

A formula to recover a dense representation of the matrix from its generators and its
first column is given in [66].

Theorem 2.2.5 ([66, Thm. 4.5.1]). Let M ∈ Kn×n be a Toeplitz+Hankel-like matrix,
G,H ∈ Kn×α its generators and c0 = Men0 its first column, then

M = τUn(c0)−
α−1∑
j=0

τUn(G∗,j)τZn(ZnH∗,j)T (2.2)

where for an n × n matrix A and a vector v of length n τA(v) denotes the matrix of the
algebra generated by A which has v as its first column.

We show that one can derive a fast reconstruction algorithm for a Toeplitz+Hankel-like
matrix from Eq. (2.2) and first detail the structure of the various τA(v) matrices.

Lemma 2.2.6. τZn(v)T is the Toeplitz upper-triangular matrix with vT as its first row.

Lemma 2.2.7. τUn(v) =
n−1∑
i=0

viQi(Un) where Q0(x) = 1, Q1(x) = x and Qi+1(x) =
xQi(x)−Qi−1(x).

Proof. The first column of Qi(Un) is eni .

Corollary 2.2.8. Column j of τUn(v) is Qj(Un)v.

Proof. With Lemma 2.2.7 and after checking the property for j ∈ {0, 1}, it suffices to
prove Qi(Un)∗,j+1 = UnQi(Un)∗,j −Qi(Un)∗,j−1. This is true for i ∈ {0, 1} and if it is for i
and i− 1, then

Qi+1(Un)∗,j+1 = U2
nQi(Un)∗,j − UnQi(Un)∗,j−1

− UnQi−1(Un)∗,j +Qi−1(Un)∗,i−1

From these we can write the following proposition, inspired by [31, Prop. 4.2]. It
enables fast recursive reconstruction of the columns of a Toeplitz+Hankel-like matrix
from the first one.

26

Chapter 2.

Proposition 2.2.9. Let M ∈ Kn×n be a Toeplitz+Hankel-like matrix, G,H ∈ Kn×α its
generators for ∇Un,Un and c0 = Men0 its first column. With the notation c−1 = 0, the
columns (ck)0≤k≤n−1 of M follow the recursion:

ck+1 = Unck − ck−1 −
α−1∑
j=0

Hk,jG∗,j. (2.3)

Proof. Let C be the matrix defined by the recursion formula and initial conditions of
Proposition 2.2.9, we will prove C = M .

By definition c0 is the first column of M ; assume now that for i ≤ k, ci is column i of
M . Using Lemma 2.2.6 and Corollary 2.2.8 on Eq. (2.2) that is

ci = Qi(Un)c0 −
α−1∑
j=0

i−1∑
l=0

Hi−1−l,jQl(Un)G∗,j (2.4)

and Eq. (2.3) can be detailed as

ck+1 = Un

Qk(Un)c0 −
α−1∑
j=0

k−1∑
i=0

Hk−1−i,jQi(Un)G∗,j


−

Qk−1(Un)c0 −
α−1∑
j=0

k−2∑
i=0

Hk−2−i,jQi(Un)G∗,j

− α−1∑
j=0

Hk,jG∗,j

= Qk+1(Un)c0 −
α−1∑
j=0

k∑
i=0

Hk−i,jQi(Un)G∗,j

2.3 Matrix Polynomials

We rely on the material from [47, 83]. For matrix polynomials and fractions the reader
may refer to [41]. The rational matrix H(x) = V TM(x)−1W over K(x) can be writ-
ten as a fraction of two polynomial matrices. A right fraction description is given by
square polynomial matrices P (x) and Q(x) such that H(x) = P (x)Q(x)−1 ∈ K(x)m×m,
and a left description by Pl(x) and Ql(x) such that H(x) = Ql(x)−1Pl(x) ∈ K(x)m×m.
Degrees of denominator matrices are minimised using column-reduced forms. A non-
singular polynomial matrix is said to be column-reduced if its leading column coefficient
matrix is non-singular [41, Sec. 6.3]. We also have the notion of irreducible and minimal
fraction descriptions. If P and Q (resp. Pl and Ql) have unimodular right (resp. left)
matrix gcd’s [41, Sec. 6.3] then the description is called irreducible. If Q (resp. Ql) is

27

Chapter 2.

column-reduced then the description is called minimal.
For a given m, define 1 ≤ ν ≤ n to be the sum of the degrees of the first m largest

invariant factors of M(x) = xIn − T (equivalently, the first m diagonal elements of its
Smith normal form). The following will ensure that the minimal polynomial of T , which
is the largest invariant factor of M(x), can be computed from the Smith normal form of
an appropriate denominator Q(x).

Theorem 2.3.1. ([47, Thm. 2.12] and [82].) Let V and W be block vectors over a
sufficiently large field K whose entries are sampled uniformly and independently from a
finite subset S ⊆ K. Then with probability at least 1− 2n/|S|, H(x) = V TM(x)−1W has
left and right irreducible descriptions with denominators of degree dν/me, of determinan-
tal degree ν, and whose ith invariant factor (starting from the largest degree) is the ith

invariant factor of M(x).

The next result we need is concerned with the computation of an appropriate denom-
inator Q as soon as the truncated power series in Eq. (2.1) is known. We notice that
H(x) = V TM(x)−1W is strictly proper in that it tends to zero when x tends to infinity.
For fraction reconstruction we use the computation of minimal approximant bases (or
σ-bases) [3, 79], and the algorithm with complexity bound Õ (mω−1n) in [26,39].

Theorem 2.3.2. ([26, Lem. 3.7].) Let H ∈ K(x)m×m be a strictly proper power series,
with left and right matrix fraction descriptions of degree at most d. A denominator Q of a
right irreducible description H(x) = P (x)Q(x)−1 can be computed in Õ (mωd) arithmetic
operations from the first 2d+ 1 terms of the expansion of H.

In our case, from Theorem 2.3.1 we will obtain the existence of appropriate fractions of
degree less than dn/me, and use Theorem 2.3.2 for bounding the cost of the computation
of Q.

2.4 A randomised algorithm with the baby-steps/giant-steps method

In this section, we propose a direct adaptation of the baby steps/giant steps variant
of Coppersmith’s block-Wiedemann algorithm developed in [47, Sec. 4] to the case of
structured matrices. In order to compute the terms of the series (2.1), we will assume
that the input matrix T has been inverted, using [8, Theorem 6.6]. In this section we will
therefore denote by T this inverse and compute the projections of its powers.

2.4.1 Description of the algorithm

Let U, V ∈ Kn×m be the block vectors used for the projections. Algorithm Struc-
turedBSGS performs r baby steps and s giant steps to compute the first terms of the

28

Chapter 2.

sequence Hk = UTT k+1V = UT(T r)jT i+1V for 0 ≤ k ≤ 2dn/me, 0 ≤ i < r, 0 ≤ j < s

and rs ≥ 2dn/me+ 1.

Algorithm 2.4.1 StructuredBSGS
Input: A generator for T ∈ Kn×n, Toeplitz-like or Hankel-like
Input: m, r, s ∈ N s.t. rs ≥ 2dn/me+ 1, r even if T is Hankel-like
Input: U, V ∈ Kn×m

Output: H = (Hrj+i)j<s,i<r where Hk = UTT k+1V
1: V0 ← TV
2: for 1 ≤ i ≤ r − 1 do
3: Vi ← TVi−1

4: R← T r

5: U0 ← U
6: for 1 ≤ j ≤ s− 1 do
7: Uj

T ← Uj−1
TR

8: H ←
(
U0 . . . Us−1

)T (
V0 . . . Vr−1

)

This algorithm relies on three main matrix operations:

1. The product of a structured matrix by a dense rectangular matrix, supported
by Theorem 3.3.2 for Steps 1, 3 and 7;

2. The exponentiation of a structured matrix, supported by Proposition 2.2.4 for Step 4;

3. The product of two dense rectangular matrices for Step 8.

2.4.2 Detailed cost analysis

Proposition 2.4.1. Algorithm StructuredBSGS runs in Õ
(
nω−

ω−1
5−ωα

ω−1
5−ω

)
operations

in K for well chosen m, r and s.

Proof. Using Theorem 3.3.2, applying an n×m block to T uses Õ (nmax(m,α) min(m,α)ω−2)
field operations. Hence the r baby steps, Step 3, computing the (T iW)0≤i<r cost overall

Õ
(
nrmax(m,α) min(m,α)ω−2

)
(2.5)

field operations.
By Proposition 2.2.4, the initialisation of the giant steps at Step 4 is the computation

of a structured representation for T r, which can be done in

Õ
(
nrω−1αω−1

)
(2.6)

operations in K.

29

Chapter 2.

Then each of the giant steps, at Step 7, is a product of an m× n dense matrix by an
n× n matrix of displacement rank αr. From Theorem 3.3.2, these s steps cost

Õ
(
nsmax(m,αr) min(m,αr)ω−2

)
(2.7)

Lastly, the number of operations needed for computing the product resulting in H at
Step 8 is Õ (nmax(mr,ms) min(mr,ms)ω−2), or equivalently

Õ
(
nmω−1 max(r, s) min(r, s)ω−2

)
. (2.8)

Let m =
⌈
n

ω−3
ω−5α

2
5−ω

⌉
and set r = s =

⌈√
2n/m

⌉
. Note that α ≤ m ≤ αr, therefore the

bound of Eq. (2.5) is dominated by the one of Eq. (4.13). Moreover the bound of Eq. (2.7)
can be rewritten as Õ (n2mω−3α), and from Eq. (4.13) we have Õ

(
n

ω+1
2 m

ω−1
2
)
, and these

two quantities are
Õ
(
nω−

ω−1
5−ωα

ω−1
5−ω

)
.

Finally, the bound of Eq. (2.6) can be rewritten as Õ
(
n

ω+1
2 (α2

m
)ω−1

2
)
, which is dominated

by the one of Eq. (4.13).

When the displacement rank α is constant, and with the best known estimate ω =
2.373 [1,53] the cost bound given in Proposition 2.4.1 becomes Õ (n1.851), while it is Õ (n2)
for ω = 3.

Let us now suppose that the entries of V and W are sampled uniformly and indepen-
dently from a finite subset S ⊆ K, we then have the following.

Theorem 2.4.2. The minimal polynomial of an n×n Toeplitz-like or Hankel-like matrix
with displacement rank α can be computed by a randomised Monte Carlo algorithm using

Õ
(
nω−

ω−1
5−ωα

ω−1
5−ω

)
field operations, with probability of success at least 1− (n2 + 3n+ 2n5/3α2)/|S|.

Proof. The first step is to compute the inverse of T , using [8, Theorem 6.6] in Õ (nαω−1)
operations inK. Then running Algorithm StructuredBSGS on T−1 costs Õ

(
nω−

ω−1
5−ωα

ω−1
5−ω

)
which dominates Õ (nαω−1) since α ≤ n. From the sequence of matrices (Hk)0≤k≤2n/m,
one can compute a minimal denominator Q for H(x) = V T(xIn − T)−1W ∈ K[x]m×m in
Õ (nmω−1) field operations, by Theorem 2.3.2.

Using Theorem 2.3.1, the minimal polynomial is then obtained as the first invariant
factor in the Smith form of Q, computed by [77, Proposition 41]. This step also costs

30

Chapter 2.

Õ (nmω−1) field operations and since m ≤ n we have

nmω−1 ≤ n
ω+1

2 m
ω−1

2

which shows that the cost of these last two computations will always be dominated by
the cost of the product in Eq. (4.13). The probability of failure for the computation of
T−1 is at most n(n + 1)/|S| by [8, Lemma 6.2]. For the computation of the minimal
polynomial it is at most 2m2n ≤ 2n5/3α2, from [77, Concl.] and [45, Thm3.3]. A union
bound combining this probability and the failure probability of Theorem 2.3.1 yields a
probability of failure of (n2 + 3n+ 2n5/3α2)/|S|.

Note that this result carries over to the computation of the characteristic polynomial
of any Toeplitz-like or Hankel-like matrix T having fewer than m invariant factors in its
Frobenius normal form.

2.5 Using structured inversion

In this section we develop a new approach for computing the characteristic polynomial
of generic structured polynomial matrices T ∈ Kn×n with displacement rank α. Follow-
ing [83, Sec. 7], in the Toeplitz-like case the idea is to exploit the structure of the ΣLU
representation [42]. For Hankel-like matrices (see the discussion after Theorem 2.5.4),
we generalize the approach using both generators and irregularity sets that has been
introduced in Section 2.2.2 [66].

Principle of the approach Here, rather than using successive applications and power-
ing of T−1 as in Section 2.4, the first terms of the sequence {Hk}k = {V TT−k−1W}k are ob-
tained as the matrix coefficients of the series expansion of V TM(x)−1W . Since 2dn/me+1
terms are required, and with the special choice V = W = X =

(
Im 0

)T
∈ Kn×m, this

boils down to computing a dense representation of the m×m leading principal submatrix
of M(x)−1 mod x2dn/me+1. The outline of the algorithm is as follows.

1. Compute the inverse M(x)−1 mod x2dn/me+1 in a compressed representation;

2. Crop this representation to form a representation of the m × m leading principal
submatrix;

3. Extract S(m)(x) = XTM(x)−1X mod x2dn/me+1 in dense form.

Below we specialize the approach for the two classes of interest. Our algorithms
in Theorems 2.5.2 and 2.5.4 are correct for generic matrices T (in the Zariski sense),

31

Chapter 2.

see Assumptions (A1) and (A2) in Section 2.6 to which the discussion on genericity is
deferred.

2.5.1 Generic Toeplitz-like Matrices

If T is Toeplitz-like, so is M(x) = xIn − T which can be represented in ΣLU form by
generators G,H ∈ K[x]n×α such that M(x) = ∑α−1

i=0 L(G∗,i)L(H∗,i)T , where L(v) is the
lower triangular Toeplitz matrix with v as its first column [42, 43]. The m ×m leading
principal submatrix of any product L(v)L(w)T is the product of the m × m leading
principal submatrix of these factors, which in turn is L(v0..m−1)L(w0..m−1)T. Algorithm
ToeplitzLikeExpansion relies on this property to produce S(m) from the m first rows
of the generators of M−1.

Algorithm 2.5.1 ToeplitzLikeExpansion
Input: G,H a generator for M ∈ K[x]n×n, a Toeplitz-like matrix of displacement rank α
Output: S(m) = XTM−1X mod x2dn/me+1 in dense form
1: (E,F)← a generator for M−1 mod x2dn/me+1

2: E ′ ← XTE; F ′ ← FX
3: S(m) ← ∑α−1

i=0 L(E ′∗,i)L(F ′∗,i)
T mod x2dn/me+1

Proposition 2.5.1. Algorithm ToeplitzLikeExpansion is correct forM(x) = xIn−T ;
if T has generic rank profile it uses Õ (αω−1n2/m+ αnm) operations in K.

Proof. From the discussion at the beginning of the section, E ′ = E0..m−1,∗ and F ′ =
F0..m−1,∗ are generators for S(m) = XTM−1X. We use the algorithm of [9, Prop. 5]
for computing the generators of the inverse. Note that no division by x in the ring
K[x]/〈x2dn/me+1〉 will occur in Step 1 since M(0) = T has generic rank profile, and con-
sequently all leading principal minors of M(x) are not divisible by x which shows the
correctness.

By [9, Prop. 5], computing the generators of M−1 at Step 1 can be done in Õ (nαω−1)
operations over K[x]/〈x2dn/me+1〉 which in turn is

Õ

(
n2

m
αω−1

)
(2.9)

operations in K.
The dense reconstruction of S(m) in Step 3 is achieved by α products of an m × m

Toeplitz matrix L(E ′∗,i) by an m×m dense matrix L(F ′∗,i)
T for a total cost of

Õ (nmα) (2.10)

32

Chapter 2.

operations in K.

From the efficient computation of the first terms of the expansion of XTM(x)−1X and
using fraction reconstruction, the characteristic polynomial of T is obtained.

Theorem 2.5.2. The characteristic polynomial of a generic n × n Toeplitz-like matrix
with displacement rank α (assumptions (A1) and (A2) in Section 2.6) can be computed
in Õ

(
n2− 1

ωα
(ω−1)2

ω

)
operations in K when α = O

(
n

ω−2
−ω2+4ω−2

)
, and Õ

(
n

3
2α

ω
2
)
otherwise.

Proof. From Lemma 2.6.1 (genericity assumption (A2)), irreducible left and right fraction
descriptions of XTM−1X have degree at most dn/me. Thus Theorem 2.3.2 ensures that
a denominator Q of a right description can be computed from S(m)(x) = XTM(x)−1X

mod x2dn/me+1. By Lemma 2.6.1 again, the determinant of Q gives the characteristic
polynomial of T .

Besides the computation of S(m) by Proposition 2.5.1 (genericity assumption (A1)),
the computation of the denominator Q of its irreducible right fraction description costs

Õ
(
nmω−1

)
(2.11)

operations by Theorem 2.3.2. Computing the determinant of Q has same cost using the
algorithm in [52]. The total cost depends on α.

Case 1: α = O
(
n

ω−2
−ω2+4ω−2

)
. We set m = n

1
ωα

ω−1
ω so that α = O(mω−2) and the term

in Eq. (2.10) is dominated by the one in Eq. (2.11). For the chosen value of m the terms
in Eq. (2.9) (decreasing in m) and Eq. (2.11) (increasing in m) are equal, leading to a full
cost of Õ

(
n2− 1

ωα
(ω−1)2

ω

)
operations in K.

Case 2: α = Ω
(
n

ω−2
−ω2+4ω−2

)
. We set m = n

1
2α

ω−2
2 so that α = Ω(mω−2). In this case the

term in Eq. (2.11) is dominated by the one in Eq. (2.10) and for this value of m we have
equality between the terms in Eq. (2.9) and Eq. (2.10), leading to a full cost of Õ

(
n

3
2α

ω
2
)

operations in K.

The exponent in Theorem 2.5.2 is O(n1.579) (resp. O(n1.667)) for α constant and
ω = 2.373 (resp. ω = 3). When α = Θ

(
n

ω−2
−ω2+4ω−2

)
and taking ω = 2.373 (resp. ω = 3),

both expressions become Õ (n1.74) (resp. Õ (n3)). The complexity bound when α is small
can also be written as

Õ
(
nω−f(ω)αf(ω)

)
,

similarly as in Proposition 2.4.1, which can be interpreted as a transfer of part of the
exponent from n to α by using the structure of the matrix.

33

Chapter 2.

2.5.2 Generic Toeplitz+Hankel-like Matrices

We now adapt the previous approach to more general structures. If T is Hankel-like then
M(x) = xIn − T is Toeplitz+Hankel-like. In this section we consider generic matrices
with such a structure.

Compared to the Toeplitz case in Section 2.5.1, only the computation of the truncated
expansion of XTM(x)−1X is modified. Computing the characteristic polynomial from
there does not depend on the structure of M or T (dense matrix polynomial operations).

In addition to the generators one has to consider an irregularity set forM−1. This data
is computed by Algorithm THLikeExpansion at Step 1 using the recursive matrix de-
composition in [66, Ch. 5]. The irregularity set we consider is the first column. The dense
form of S(m)(x) = XTM(x)−1X mod x2dn/me+1 is then recovered from its compressed
representation using Proposition 2.2.9.

Algorithm 2.5.2 THLikeExpansion
Input: (G,H, v) a generator and irregularity set ofM ∈ K[x]n×n, a Toeplitz+Hankel-like

matrix of displacement rank α.
Output: S(m) = XTM−1X mod x2dn/me+1 in dense form
1: (E,F, c) ← a generator and irregularity set for M−1, the irregularity set is the first

column (Mc = en0)
2: c0 ←

(
I2m−1 0

)
c

3: c1 ← U2m−1c0 −
α−1∑
j=0

E0,jF0...2m−2,j

4: for 1 ≤ k ≤ m− 2 do
5: ck+1 ← U2m−1ck − ck−1 −

α−1∑
j=0

Fk,jE0...2m−2,j

6: S(m)(x) =
(
Im 0

)
(c0 · · · cm−1)

Proposition 2.5.3. Algorithm THLikeExpansion is correct for M(x) = xIn − T and
if T has generic rank profile it uses Õ (α2n2/m+ αnm) operations in K.

Proof. As discussed in the proof of Proposition 2.5.1, no division by x occur in the ring
K[x]/〈x2dn/me+1〉 since sinceM(0) = T has generic rank profile. Step 1 can be performed in
Õ(α2n) operations on truncated power series, so Õ

(
n2

m
α2
)
operations in K [66, Corollary

5.3.3]. Each step of the for loop consists of a number of polynomial operations modulo
x2dn/me+1 linear in mα as U2m−1 has only two nonzero entries on each row. Lines 2 to 5
can be performed in Õ(m2α) power series operations, so Õ(nmα) operations in K. By
Proposition 2.2.9, if the first 2m−k coefficients of ck−1 are equal to the ones of column k−1
of M−1, then the first 2m − k − 1 coefficients of ck are equal to the ones of column k

of M−1. Since c0 gives the 2m − 1 first coefficients of column 0 of M−1, Step 6 outputs
S(m)(x).

34

Chapter 2.

The characteristic polynomial is then obtained following our general strategy.

Theorem 2.5.4. The characteristic polynomial of a generic n × n Toeplitz+Hankel-like
matrix with displacement rank α (assumptions (A1) and (A2) in Section 2.6) can be com-
puted in Õ

(
n2− 1

ωα
2(ω−1)

ω

)
field operations when α = O

(
n

ω−2
4−ω

)
, and Õ

(
n

3
2α

3
2
)
otherwise.

Proof. The arguments are similar to those of the proof of Theorem 2.5.2, we do not repeat
them here. We have only have to discuss the slightly different cost bound. The overall
cost is that for computing the matrix denominator Q and its determinant in Õ (nmω−1)
operations in K, plus the cost of computing the sequence {Hk}k. We distinguish two
cases:

If α = O
(
n

ω−2
4−ω

)
: we take m = n

1
ωα

2
ω so that α = O(mω−2), with overall cost bound

Õ
(
n2− 1

ωα
2(ω−1)

ω

)
.

If α = Ω
(
n

ω−2
4−ω

)
: we take m = n

1
2α

1
2 so that α = Ω(mω−2), with overall cost bound

Õ
(
n

3
2α

3
2
)
.

Given ∇Zn,Zn,1T-generators of length α for a Hankel-like matrix T, ∇Un,Un-generators
of length O(α) can be computed in time Õ (nα). T can be written as a sum of α terms
of the form LUJn, where L and U are Toeplitz and Jn = (δi,n−1−j)0≤i,j≤n−1 [66, Example
4.4.4]. Constant-length ∇Zn,Zn

T- and ∇Zn
T,Zn

-generators for each of the α terms can then
be derived from ∇Zn,Zn- and ∇Zn

T,Zn
T-generators for the products LU using [66, Theorem

1.5.4] and the fact that Jn is in the kernel of ∇Zn,Zn
T and ∇Zn

T,Zn
. Concatenation of the

obtained generators yields the result.
Note that the complexity bound in n in Theorem 2.5.4 is the same as in the Toeplitz-

like case (Theorem 2.5.2), we obtain however a stronger dependence in α. Indeed, we have
used a Toeplitz+Hankel-like inversion in O(nα2) [66], a better cost bound in O(nαω−1)
would require to generalize the results of [8, 9] to partly regular operators.

2.6 Special matrices for genericity

In order to identify the matrices T for which the algorithms of Section 2.5 output the
characteristic polynomial (Theorems 2.5.2 and 2.5.4), we use the rank of the block Hankel
matrix [47]

Hkm,dn/me =
(
XTT i+jX

)
0≤i,j≤dn/me−1

.

We indeed have the following.

35

Chapter 2.

Lemma 2.6.1. Let T ∈ Kn×n. If rankHkm,dn/me = n then the irreducible left and right
fraction descriptions of XT(xIn − T)−1X have degree at most dn/me. Furthermore, the
determinant (made monic) of the denominator Q ∈ K[x]m×m of such a right irreducible
description is the characteristic polynomial of T .

Proof. The determinant of a denominator Q of an irreducible right fraction description of
XT(xIn − T)−1X is a divisor of the characteristic polynomial of T [47, Thm2.12], hence
has degree at most n. The claims then follow from [83, Lem. 2.4] since Hkm,dn/me has
maximal rank n.

Genericity Assumptions. To apply Theorems 2.5.2 and 2.5.4, a matrix T is “suffi-
ciently” generic if it satisfies the following assumptions:

(A1) T has generic rank profile, so that the truncated generators of M(x)−1 can be
computed fast [9, 66];

(A2) there exists an n × n submatrix Hk(n) of Hkm,dn/me whose determinant is nonzero,
so that Lemma 2.6.1 can be applied.

The genericity in the Zariski sense can be expressed either based on the coefficients of T
or on its generators. Indeed, the determinant of an n×n submatrix Hk(n) of Hkm,dn/me is a
polynomial in the coefficients of T . Toeplitz and Hankel matrices have 2n−1 independant
coefficients. With non-singular displacement operators, the coefficients of a Toeplitz-like
or Hankel-like matrix of displacement rank α are themselves polynomials in the coefficients
of its generators, so det Hk(n) is by composition a polynomial on the 2nα coefficients of
the n× α generators of T .

In Sections 2.6.1 and 2.6.2, we show that we can construct an n× n submatrix Hk(n)

of Hkm,dn/me such that det Hk(n) is not uniformly zero on the space of Toeplitz (resp.
Hankel) matrices, by finding one Toeplitz (resp. Hankel) matrix for which Hkm,dn/me has
rank n. This establishes that assumption (A2) is satisfied for all matrices of each class
except for those with coefficients in a certain hypersurface of K2n−1. As the displace-
ment rank of the matrices we show is at most 2, they are Toeplitz-like (resp. Hankel-
like) and can be represented with larger generators (padded with zeros). (A2) is thus
also satisfied for matrices with displacement rank α ≥ 2 whose generators’ coefficients
are not in a certain hypersurface of K2nα. The special matrices we construct are also
Toeplitz+Hankel and Toeplitz+Hankel-like so the same reasoning shows that (A2) is
satisfied for all Toeplitz+Hankel matrices except for those with coefficients in a cer-
tain hypersurface of K4n−2 and all Toeplitz+Hankel-like matrices with displacement rank
α ≥ 4 except for those on a certain hypersurface of K2nα. Using the fact that in the
Toeplitz+Hankel-like case the operator is partly regular [66, Sec. 4.5], the hypersurface

36

Chapter 2.

can also be defined by considering the coefficients of the generators together with the
irregularity set.

The generic rank profile condition (A1) can be handled similarly by considering the
product ∆ of the principal minors of T , though we omit details. This polynomial in the
coefficients of T is nonzero for T = In in the Toeplitz case. For the Hankel case, the
determinant of an n×n Hankel matrix H defined by h0, . . . , h2n−2 such that H = (hi+j)i,j
has a unique term in hnn−1, hence is a nonzero polynomial in the hi’s; the same holds
for ∆.

From the polynomial (det Hk(n)) ·∆ in the entries of T , one can then define the general
hypersurfaces outside of which our algorithms are correct.

2.6.1 A Toeplitz Point

Let

T =
 0 Im

In−m 0


and M(x) = xIn − T . Let P (x) ∈ K[x]n×m defined by:

Pn−m+k,k = 1, for 0 ≤ k < m;
Pi,k = xPi+m,k, for 0 ≤ k ≤ m, 0 ≤ i ≤ n−m− 1.

With

D(x) =
 0 xbn/mcIn mod m

xbn/mc−1I−n mod m 0


we can write P (x) =

(
D(x)T R(x) Im

)T
for some polynomial matrix R. From there

we have M(x)P (x) =
(
xD(x)T − Im 0

)T
and thus

XTM−1(x)X = XTP (x) (xD(x)− Im)−1 .

That is XTM−1(x)X = D(x)Q−1(x) (we have used the form of P) with Q(x) = xD(x)−
Im. As (xIm) ·D(x)− Im ·Q(x) = Im, the fraction DQ−1 is irreducible and

detQ(x) = ±x(bn/mc+1)(n mod m)+bn/mc(−n mod m) − 1

from which we get deg detQ = n. By [83, Lemma 2.4], Hkm,dn/me has rank n.

37

Chapter 2.

2.6.2 A Hankel Point

Consider the n × n Hankel matrix H = (In + Zn
m)Jn (with Jn = (δi,n−1−j)0≤i,j≤n−1).

For j such that 2j ≤ dn/me − 1, rows jm to (j + 1)m − 1 of H2jX are Im and the
following rows are 0. This can be seen by recursively applying the band matrix H2 =
Zn

m + In + Zn
mZn

mT + Zn
mT to X. By applying H to H2jX we get that the rows

n− (j + 1)m to n− jm− 1 of H2j+1X are Jm, and the preceding rows are 0.
Let Kr be the first n columns of

(
X|HX| . . . |Hdn/me−1X

)
. This matrix Kr is non-

singular, as its columns can be permuted to get a matrix of the form L1
T 0

0 L2


where L1 and L2 are lower triangular with ones on the diagonal. Since H is symmetric,
the n× n principal submatrix of Hkm,dn/me is Kr

TKr, hence Hkm,dn/me has rank n.

38

Chapter 3 | High-order lifting for polyno-
mial Sylvester matrices

This chapter is derived from a joint work with Clément Pernet and Gilles Villard submitted
for publication in the Journal of Complexity [69].

3.1 Introduction

In this chapter, we propose a new algorithm for computing the resultant of two generic
bivariate polynomials over a commutative field K. For two polynomials p, q ∈ K[x, y], the
resultant Resy(p, q) with respect to y is the determinant of the Sylvester matrix associated
to p and q overK[x] (see Eq. (3.2)). The reader may refer to the books [2,24], and to [25,56]
and references therein on the whole subject.

As well as for many fundamental operations on univariate polynomials over K (multi-
plication, division with remainder, multipoint evaluation, greatest common divisor, etc.),
the resultant of two univariate polynomials of degree at most n can be computed using
Õ(n) arithmetic operations in K [24, Chap. 11]. (The soft-O notation is used to omit loga-
rithmic factors: c′ = Õ(c) if there exists k ∈ N for which c′ = O(c logk c).) In the bivariate
case, and since the early 1970’s, the best known complexity bound for the computation
of the resultant in the general case is Õ(n2d) for p, q of degree bounded by d in x and n
in y [24, Chap. 11]. The resultant with respect to y is a polynomial of degree at most 2nd
in K[x], we therefore see that the latter bound is within a factor of the order of n from
the input/output size.

Usual solutions for the resultant of two polynomials are most often based on the
extended Euclidean algorithm and polynomial remainder sequences [25,56,73].

By going beyond this path, complementary reductions of the complexity gap with
respect to the input/output size were recently obtained [37,83,84]. These approaches ex-
ploit the properties of appropriate families of polynomials in the ideal I = 〈p, q〉 in K[x, y]
or structured matrix operations (see Section 3.1.3), and rely on genericity assumptions
on p and q in the Zariski sense. Throughout the chapter, a property is generic if it holds

39

Chapter 3.

except on a hypersurface of the corresponding parameter space.
Given bivariate polynomials p, q of degree d in x and n in y, it is shown in [83] that the

resultant Resy(p, q) can be computed generically with respect to p and q using Õ(n2−1/ωd)
arithmetic operations, where ω ≤ 3 is a feasible exponent for the cost of square matrix
multiplication (two n× n matrices over a ring can be multiplied using O(nω) arithmetic
operations). For example in the case d = n this gives the first subcubic complexity
estimate for the problem. The algorithm is mainly based on polynomial matrix operations
and our work builds upon it (see Section 3.1.1.1).

On the other hand, using a bit complexity model and in the specific case of a finite field
F, consider p and q of respective total degrees n1 ≥ n2. If p and q are sufficiently generic
then Resy(p, q) can be computed in expected time O((n1n2 log |F|)1+ε)+Õ(n2

1 log |F|) using
a randomised Las Vegas algorithm [37] (a few more details are given in Section 3.1.3).
Even if limited to certain fields, the latter bound is a major milestone since it is quasi-linear
in the input/output size. It has been extended in [84] to the case of degree conditions
on x and y individually (other situations than the one with the total degree). However,
it is unclear to us whether these approaches, which use a bit complexity model, could be
exploited for general fields.

Despite these recent advances, we see that the algebraic complexity question of low-
ering the exponent of the complexity estimate for the resultant over a general field K
remains a long-standing open problem.

The starting point of our progress is to notice that, at least for d = 1 and p and q

with a particular shape, the approach of [83] can be improved, and a better complexity
bound can be obtained. Indeed if p = x − a and q = f for a, f univariate in K[y], then
the resultant can be obtained from the characteristic polynomial χa of the multiplication
by a modulo f . For such a and f of degree n, let c = (−1)nen where e is the leading
coefficient of f , then we have (see for instance [2, Thms 4.26 (resultant from the roots of
p and q) & 4.69 (Stickelberger)]:

Resy(p, q) = c χa. (3.1)

It follows that the resultant can be computed generically with respect to a using Õ(n(ω+2)/3)
arithmetic operations from the characteristic polynomial algorithm of [63, Sec. 10.1]. In
this special case, the latter algorithm is the first one that allows to break the barrier 3/2
in the exponent of n. The cost bound can be slightly improved using rectangular matrix
multiplication [63].

A key ingredient for obtaining the better estimate Õ(n(ω+2)/3) compared to Õ(n2−1/ω)
in [83] for d = 1, is the possibility of setting up a baby steps/giant steps strategy from
the powers of a modulo f [67]. One of the main difficulties that we overcome is the

40

Chapter 3.

development of such a strategy for polynomials p and q having degree d and no special
shape.

When d is not too large in relation to n our new algorithm also allows to cross the
3/2 barrier in the exponent of n for the general resultant. As long as d = O(n1/3),
what we get is reconciled with the case d = 1, indeed we establish that the resultant
of two sufficiently generic polynomials can be computed using Õ(n(ω+2)/3d) arithmetic
operations. One might also expect a slight improvement by using fast rectangular matrix
multiplication [54, 55, 85]. This would require technical developments for adapting the
core arithmetic on structured matrices on which we rely [8].

More precisely, we prove the following (Section 3.8):

Theorem 3.1.1. Let p, q ∈ K[x, y] be of degree d in x and n in y. Except if the coefficients
of p and q are on a certain hypersurface of K2(n+1)(d+1), Algorithm StructuredResul-
tant computes the resultant of p and q with respect to y using:

• Õ(n(ω+2)/3d) arithmetic operations in K if d = O(n1/3);

• Õ(nθdτ) arithmetic operations with θ = ω2−2
3ω−4 and τ = 5ω−6

3ω−4 , otherwise.

With the known bound ω < 2.372 [1, 18, 85] and d = O(n1/3), the cost of the al-
gorithm is O(n1.458d). In particular, as long as d = O(n0.47) our complexity estimate
improves on the best previous one for generic polynomials over an arbitrary field, namely
Õ(n2−1/ωd) [83] (see Fig. 3.1 in Section 3.8).

3.1.1 Tools from previous works

We elaborate our algorithm from three complementary points of view. In this section we
present the algorithmic ideas they each bring and that we combine.

3.1.1.1 Minor of the inverse and matrix fraction reconstruction

From this point on, we will rather use n to denote the dimension of the Sylvester matrix,
which corresponds, in the context of Theorem 3.1.1, to polynomials p and q of y-degree
n/2. In a more general way, let p, q ∈ K[x, y] be polynomials of x-degree bounded by d,
and respective y-degrees np and nq, with n = np + nq. Given a polynomial t ∈ K[y], we
denote by t(j) its coefficient in yj (and by tj the coefficient in xj of a polynomial t ∈ K[x]).

41

Chapter 3.

The Sylvester matrix

S =



p(np) q(nq)

p(np−1) . . . q(nq−1) . . .
... p(np) ... q(nq)

p(0) p(np−1) q(0) q(nq−1)

. . .
...

. . .
...

p(0) q(0)


∈ K[x]n×n (3.2)

associated to p and q is formed by two adjacent Toeplitz matrices such that with i =
1, . . . , n, Si,j = p(np+j−i) for j = 1, . . . , nq, Si,j+nq = q(nq+j−i) for j = 1, . . . , np, and the
remaining entries are zero. The resultant Resy(p, q) ∈ K[x] of p and q is the determinant
of S. In the same vein as [83] our algorithm reduces the computation of this determinant
to the computation of the determinant of a smaller matrix, while controlling the x-degree
of the latter. The Sylvester matrix is assumed to be invertible for x = 0.

Given a parameter m� n, chosen at the end for optimizing the overall cost, consider
the projections X = [Im 0]T and Y = [0 Im]T in Kn×m where Im ∈ Km×m is the identity
matrix (its dimension will be omitted when clear from context). The first step of the algo-
rithm of [83] consists in computing sufficiently many terms of the power series expansion
of XTS−1Y . Coprime matrices N,D ∈ K[x]m×m, with D nonsingular, such that

XTS−1Y = ND−1 (3.3)

are then deduced in a second step using matrix fraction reconstruction [3, 26]. For
np = nq = n/2, let λ = 4dn/(2m)e. Generically in p and q, λd terms of the expan-
sion of XTS−1Y are sufficient for the computation of an m×m denominator matrix D of
degree λd/2 (Section 3.8.1). The total size of D is therefore O(mnd), which for m� n is
below the previously known complexity bound Õ(n2d) for the resultant. The computation
of the truncated expansion of XTS−1Y can be obtained from four solutions of Sylvester
linear systems modulo xλd, using Õ(n× λd) = Õ(n2d/m) arithmetic operations [83]. By
looking at the determinants of the denominator matrices in Eq. (3.3), exploiting generic-
ity, and by involving appropriate properties of irreducible fractions [41, Lem. 6.5-9, p. 446],
the desired resultant is then obtained from

Resy(p, q) = detS = c detD

for some c ∈ K (a scalar obtained separately at a negligible cost). The determinant of D
is computed using a fast algorithm on polynomial matrices [52,77]. This general strategy

42

Chapter 3.

is suitable for handling more general structures than that of the Sylvester matrix, such
as that of Toeplitz-like and Hankel-like matrices [49].

3.1.1.2 Characteristic polynomials and baby steps/giant steps approach

Equations of the type of Eq. (3.3) are at the heart of block Krylov-Wiedemann schemes
for the computation of minimal or characteristic polynomials of scalar matrices, see [47]
and references therein. For A ∈ Kn×n and projections U, V ∈ Kn×m (1 ≤ m ≤ n), the
central core of these schemes is the computation of coprime matrices N,D ∈ K[x]m×m,
with D nonsingular, such that

UT(xI− A)−1V =
∑
k≥0

UTAkV x−k−1 = ND−1. (3.4)

The matrix fraction ND−1 is obtained from a truncated expansion using fraction re-
construction as mentioned previously, or by computing minimal polynomials of matrix
sequences [47, 48]. The invariant factors of the denominator matrix D then provide in-
formation on those of xI − A [47, Thm2.12]. In particular, for generic U and V , the
characteristic polynomial det(xI−A) can be recovered from the determinant of D as soon
as it coincides with the minimal polynomial.

An advantage here is given by the shape of xI−A compared to the situation of Eq. (3.3)
where the entries of S are general polynomials. Using the explicit form of the expansion of
(xI−A)−1, a baby steps/giant steps strategy can be used from the powers of A to compute
sufficiently many UTAkV terms. For λ = 2dn/me terms, consider r = dλ1/2e, s = dλ/re
and the precomputation of Ar. The UTAi+rjV terms for 0 ≤ i < r and 0 ≤ j < s can be
computed by [47]:

- getting UTAi for i = 0, 1, . . . , r − 1 by repeated multiplications by AT (baby steps);
(3.5a)

- getting AjrV for j = 0, 1, . . . , s− 1 by repeated multiplications by Ar (giant steps);
(3.5b)

- multiplying (UTAi)(AjrV) for i = 0, 1, . . . , r − 1 and j = 0, 1, . . . , s− 1. (3.5c)

In relation with the special resultant case with d = 1 seen at Eq. (3.1), let a, f ∈ K[y]
with deg f = n, and let A ∈ Kn×n be the matrix of multiplication by a modulo f in the
basis (1, y, . . . , yn−1). The above baby steps/giants steps approach can be made efficient
using modular polynomial operations. Generically in a (A is invertible, and its minimal
polynomial and characteristic polynomial coincide), and using for technical reasons an

43

Chapter 3.

expansion
UT(xI− A)−1V =

∑
k≥0
−UTA−k−1V xk = ND−1 (3.6)

at zero rather than at infinity, this leads to a fast algorithm for computing the charac-
teristic polynomial of a modulo f [63, Sec. 10.1]. It can be shown that λ terms of the
expansion in Eq. (3.6) are sufficient for the reconstruction of a suitable description ND−1.
Further, these terms can be computed using Õ(m(1−ω)/2n(ω+1)/2) arithmetic operations,
which is less than the estimate Õ(n2/m) of Section 3.1.1.1 for d = 1 as soon as ω < 3.

3.1.1.3 Series solutions of polynomial linear systems

ConsiderM ∈ K[x]n×n, V ∈ K[x]n×m (1 ≤ m ≤ n) and z ∈ K[x] such that gcd(detM, z) =
1. For any given integer λ ≥ 0, the high-order lifting method of [77] allows to compute
the truncated z-adic expansion of M−1V modulo zλ. For an integer k ≥ 0, the z-adic
expansion of M−1V is written in the form

M−1V = lower order terms + zkM−1Rk (3.7)

where Rk is a polynomial matrix called residue of V at order k. Noticing that computing
the z-adic expansion ofM−1Rk is a problem of the same type as computing that ofM−1V ,
the idea is to compute the expansion of M−1V recursively using residues of V at various
orders.

We denote by K[x]<d the set of polynomials in K[x] and degree less than d. If degM ≤
deg z = d and V ∈ K[x]n×m<d , then the K-linear map

ρ : K[x]n×m<d → K[x]n×m<d

that sends V to ρ(V) = R1 is well defined, and Rk is obtained from the functional power
ρk as ρk(V) (Lemmas 3.2.2 and 3.2.3).

A central point of the high-order lifting method is that the order of a residue can be
efficiently increased from k to k+ i, for an integer i ≥ 0, using only two consecutive terms
of the z-adic expansion of M−1. These two terms, whose orders depend on i only, form a
matrix E(i) ∈ K[x]n×n<2d called high-order component of M−1 that can be computed using
Õ(nωd) arithmetic operations if i ∈ O(n) [77, Prop. 12]. For two polynomials f, g ∈ K[x]
with deg f ≤ 2d, deg g ≤ d and fg = ∑3d

k=0 hkx
k (recall we write indices for coefficients in

x of polynomials, as a distinction with superscripts for coefficients in y), let us denote by

f � g = hd + hd+1x+ . . .+ h2d−1x
d−1 (3.8)

44

Chapter 3.

the middle product operation. For univariate polynomial matrices F and G with appro-
priate dimensions and degrees at most 2d and d respectively, the middle product F � G
is defined to be the matrix obtained by extracting the middle coefficients of the entries of
FG. Then we have (Lemma 3.2.5):

ρi(ρk(V)) = ρk+i(V) ≡M(E(i) � ρk(V)) mod z. (3.9)

The ability to increase the residue orders thanks to high-order components leads to
the following iteration [77, Sec. 8], in the style of the one of Keller-Gehrig for Krylov
subspaces [51, Sec. 3]:

ρ2i([V, ρ(V), ρ2(V), . . . , ρ2i−1(V)]) = [ρ2i(V), ρ2i+1(V), ρ2i+2(V), . . . , ρ2·2i−1(V)], i = 0, 1, . . .
(3.10)

By considering i = 0, 1, . . . dlog λe − 1, this iteration allows to compute the residues
Rk = ρk(V) of V at all orders up to λ− 1. According to Eq. (3.9) only dlog λe high-order
components ofM−1 are required. Finally, we see from Eq. (3.7) that the coefficients of the
z-adic expansion ofM−1V modulo zλ are obtained from the residues asM−1Rk mod z for
k = 0, 1, . . . , λ− 1. All the ingredients of the lifting needed for our algorithm are recalled
in Section 3.2.

3.1.2 Overview of the contribution

Our resultant algorithm follows the line of Section 3.1.1.1 and is completely described and
analyzed in Section 3.8. For technical reasons (simplification of the giant steps) we slightly
modify the projections and rather consider the fraction Y TS−1X. The different aspects
of our contribution are about the reduction of the cost of the first step that computes
λd = 4dn/(2m)ed terms of the x-adic expansion of Y TS−1X. The other steps are treated
in the same way as in [83] and are not discussed in this section.

Assuming that detS(0) 6= 0 (see Section 3.8), we use the high-order lifting tools with
z = xd and compute the z-adic expansion of Y TS−1X modulo zλ. For M = S and
V = X, the high-order lifting method focuses on an expansion of S−1X. If we consider
that each coefficient of a power of x in the expansion has size Ω(n) elements in K, then
the output has size Ω(n2d/m) and this lower bound will also apply to the time complexity
of this approach. This lower complexity bound is reached by the algorithm of [83]., up
to logarithmic factors. In order to get a better complexity estimate, we design a baby
steps/giant steps version of the lifting which takes into consideration the left projection
by Y . Based on the role played by A in Section 3.1.1.2, we introduce the high-order
component E(r) of S−1 for r = dλ1/2e. Rather than handling all the residues up to order

45

Chapter 3.

λ−1 as in Section 3.1.1.3, we consider s = dλ/re of them. We first implement giant steps
and compute the residues

ρr(X), ρ2r(X), . . . , ρ(s−1)r(X) (3.11)

using a Keller-Gehrig iteration of the type of the one of Eq. (3.10) (Lemma 3.2.7). From
Eq. (3.7) and for 0 ≤ j ≤ s− 1, these residues satisfy

Y TS−1X = lower order terms + zjrY TS−1ρjr(X), (3.12)

where we have taken ρ0(X) = X. Our algorithm then obtain the target z-adic expansion
of Y TS−1X in the form of s successive pieces of length r. Following Eq. (3.12), the piece
that gives the coefficients of zjr, zjr+1, . . . , z(j+1)r−1 in the expansion of Y TS−1X is indeed
the result of the multiplication modulo zr, of the projection Y TS−1 by the residue ρjr(X).
For taking advantage of fast polynomial matrix multiplication, these multiplications for
0 ≤ j ≤ s − 1 are performed by cutting Y TS−1 mod zr itself into r pieces. Obtaining
these pieces corresponds to the baby steps.

This approach is detailed in Section 3.2, by highlighting the relations between block-
Krylov and high-order lifting points of view. We give a template of the final expansion
algorithm which at this stage does not take into account the structure of the matrices
that are manipulated (Algorithm ProjectedExpansion).

Next, a main contribution is to exploit the fact that S is a polynomial Sylvester matrix
and its consequences on the other matrices involved. The class of structure that we are
facing is the one of Toeplitz-like polynomial matrices, we recall all necessary tools around
this class in Section 3.3. Toeplitz-like matrices over a field are commonly handled using
the notion of displacement rank [42]. The notion allows to have a concise matrix repre-
sentation through which matrix arithmetic can be implemented efficiently [66]. Typically,
by extending the ΣLU form defined over fields [43], a polynomial Toeplitz-like matrix
T ∈ K[x]n×n can be represented as

T (x) =
α∑
i=1

Li(x)Ui(x) (3.13)

for a parameter α “small” compared to n, and where the Li’s and the Ui’s are respectively
lower and upper triangular polynomial Toeplitz matrices (Section 3.3). If α is minimal
then α is precisely what is called displacement rank of T , and corresponds to the dis-
placement rank over the field of rational fractions. We show in Section 3.4 that under
genericity conditions on p and q (assumptions (A1) to (A3) in Section 3.8.2), the polyno-
mial matrices involved in the high-order lifting with S are Toeplitz-like (the residues and

46

Chapter 3.

the high-order components). They further have displacement rank at most d + 2 with
a ΣLU representation as in Eq. (3.13) of degree at most d. Since these matrices have
dimension n, using the structure is cost-effective when d = o(n). This leads us to consider
that d < n for what follows.

The ΣLU form with factored terms in Eq. (3.13) is however not fully appropriate for
the reduction modulo xd (remember that z = xd) and middle product operations as in
Eq. (3.9). For example, deriving the ΣLU representation of T modulo xd from the one of
T may necessitate explicit matrix products to reconstitute the summands in Eq. (3.13).
We show that a stronger representation can actually be used in our case, especially for the
high-order components of S−1 (Section 3.4.2) and the residues (Section 3.4.3). Truncations
and middle products are facilitated by the fact that for every i in Eq. (3.13), either Li ot
Ui can be chosen as a scalar matrix. Under the genericity conditions we have mentioned
above, this representation is defined uniquely and is qualified as canonical. Moreover, a
Toeplitz-like by Toeplitz-like matrix product generally leads to an increase in displacement
rank (see Lemma 3.3.1). In contrast, the matrices involved in the lifting maintain the same
structure and displacement rank. Canonical representations can thus be either computed
directly or recovered by compressing results of products, thereby allowing to keep the
costs contained. We describe in Section 3.5 how we can rely on canonical representations
for all matrix operations involved.

Once efficient matrix arithmetic is available, we implement the giant steps for the
computation of the residues of Eq. (3.11) in Section 3.6, then the expansion algorithm in
Section 3.7.

From there, the complexity estimate for the whole resultant algorithm is established
in Section 3.8, where we also specify the genericity hypotheses. The displacement rank
that quantifies the structure on which we rely and from which we can benefit, is a function
of the degree bound d. This is what determines the range d = O(n0.471) for which our
complexity estimate improves over previous ones.

3.1.3 Related questions: resultants, characteristic polynomials and bivari-
ate ideals

As seen in a special case with Eq. (3.1), the resultant problem is related to the problem
of computing characteristic polynomials in quotient algebras. This relation has been used
in particular for the diamond product in [7], and for the resultant algorithms in [37, 84]
which have already been quoted in the introduction.

The algorithm in [37] resulted in the first quasi-linear complexity bound over finite
fields F for sufficiently generic p and q, with respect to the total degree. It relies on the
concise representation of a Gröbner basis of the bivariate ideal I = 〈p, q〉 [36]. Such a

47

Chapter 3.

representation has size Õ(n2) elements in F, and allows multiplication in K[x, y]/I in
quasi-linear time [36]. This fast multiplication then leads to an efficient reduction of
the resultant problem to a bivariate modular composition problem, in turn reduced to a
multivariate multipoint evaluation problem [37]. Thanks to efficient multipoint evaluation
algorithms over finite fields [4, 50], a quasi-linear bit complexity bound is established for
the resultant. This work has been extended to the case of generic polynomials of degree d
in x and n in y in [84], by developing a method of multiplication in K[x, y]/I which uses
polynomial matrix division.

Our improvement for a general field K is based on a structured polynomial matrix
formalism. We note however that the general approach we follow, as well as the charac-
teristic polynomial algorithm of the case d = 1, can be interpreted in terms of operations
on bivariate polynomials, see [83, Sec. 7] and [63, Sec. 1.6.2]. The denominator matrices
D in Eqs. (3.3), (3.4) and (3.6) indeed give sets of m small degree polynomials in the
corresponding ideals I.

3.1.4 Model of computation and notations

Throughout this chapter, K is an effective field. We analyze our algorithms by bounding
the number of arithmetic operations from K required for large enough inputs. Addition,
subtraction, multiplication and nonzero division are considered as unit cost operations.
Our complexity bounds are often given as a function of ω, which is a feasible exponent
for square matrix multiplication [1, 18, 85].

Given a bivariate polynomial t ∈ K[x, y], we can either view it as a polynomial in y,
t = ∑

j t
(j)yj with t(j) ∈ K[x] or as a polynomial in x, t = ∑

i tix
i where ti ∈ K[y]. In what

follows, t(j)i denotes the constant coefficient for monomial xiyj. As we will sometimes
use simultaneously x-adic and xd-adic representations, we introduce in such situations a
dot over the coefficient variable when it refers to the x-adic representation (Sections 3.4.2
and 3.4.3). If t is a power series in K[[x]] then the notation t mod xk for k ≥ 0 indicates
that the terms of degree k or higher are ignored.

The m-th canonical vector will be denoted by em, as its dimension is always clear
from the context. For a matrix M ∈ Km×n, and two sets of row and column indices
I ⊆ {1 . . .m}, J ⊆ {1 . . . n}, we denote by MI,J the submatrix of M formed by the rows
of indices in I and columns of indices in J . Similarly, Mi,k..l will denote the submatrix of
M formed by row i and columns comprised between k and l.

48

Chapter 3.

3.2 Baby steps/giant steps for high-order lifting

A key ingredient of our resultant algorithm is the high-order lifting method of Storjo-
hann [77]. Throughout this section, M is a nonsingular matrix in K[x]n×n, and z ∈ K[x]
is of degree d > 0 such that gcd(z, detM) = 1 (the resultant algorithm uses z = xd).

For a given V ∈ K[x]n×m, the aim of the lifting is the efficient computation of parts
of the z-adic expansion

M−1V = B0 +B1z +B2z
2 +

Two types of matrices play a central role for this computation: the residue terms (Defi-
nition 3.2.1) and the high-order components of the inverse (Eq. (3.20)). These notions,
as well as all the elements which are the basis of the approach and that we need later
on, are detailed in Section 3.2.1 where we essentially follow [77]. We however propose an
adaptation of the definition of the residues, based on a linear map (Lemma 3.2.3), which
allows us to highlight the relations between high-order lifting and Krylov iteration points
of view.

For efficiency reasons we then also consider a left projection U ∈ Kn×m, and focus on
computing parts of the expansion

UTM−1V = H0 +H1z +H2z
2 +

In section Section 3.2.2 we introduce Algorithm ProjectedExpansion for computing
this expansion up to an arbitrary order, by using a baby steps/giant steps strategy. Our
approach somewhat interpolates between the power series expansion algorithms of [77],
and the block Krylov-Wiedemann approaches mentioned in Section 3.1.1.2.

At this stage we do not take into account the structure of the matrices that are
manipulated. Algorithm ProjectedExpansion should be seen as a template of which
our structured expansion algorithm of Section 3.7 is a specialisation. We therefore delay
the complexity analyses of the algorithms presented here to Sections 3.5, 3.6 and 3.7 where
the structure of the matrices is detailed.

3.2.1 High-order lifting

Given any h ∈ K(x) whose denominator is coprime with z, we consider its z-adic expansion
h = h0 + h1z + h2z

2 + . . . and define two operations. For an integer k ≥ 0,

dhek = h0 + h1z + . . .+ hk−1z
k−1

49

Chapter 3.

corresponds to the truncation operation, and

bhck = hk + hk+1z + hk+2z
2

denotes the quotient of the division of h by zk. These notations are extended to matrices
entry-wise. The core of high-order lifting is to compute the expansion ofM−1V recursively
from intermediate terms called residues (the residues play a role analogous to the one of
residual terms in e.g. numerical iterative refinement [34, Chap. 12]).

Definition 3.2.1. ([77, Dfn. 5]) For V ∈ K[x]n×m and an integer k ≥ 0, the matrix
Rk ∈ K[x]n×m such that

M−1V = dM−1V ek + zkM−1Rk (3.14)

is called the residue of V at order k.

With appropriate degree conditions, obtaining the residue at order k = 1 may be
viewed as the application of a linear map ρ.

Lemma 3.2.2. If d = deg z and degM ≤ d then the residue at order 1 induces the
K-linear map

ρ : K[x]n×m<d → K[x]n×m<d

V 7→ bV −MdM−1V e1c1.
(3.15)

Proof. From Definition 3.2.1, ρ(V) is the residue of V at order 1. The map is well defined
since from [77, Cor. 10] we know that with the assumptions the residue has degree less
than d; ρ is a K-linear map by linearity of the operations d·e1 and b·c1.

Then, the residue at order k is obtained from the functional power ρk.

Lemma 3.2.3. Assume degM ≤ deg z = d. If k ≥ 0 and V ∈ K[x]n×m<d then ρk(V) is the
residue of V at order k.

Proof. We have ρ0(V) = V and ρ(V) is the residue at order 1. We proceed by induc-
tion and assume that ρk is the residue at order k. For k + 1 we get M−1ρk+1(V) =
M−1ρ(ρk(V)) = bM−1ρk(V)c1, where the second equality is from Eq. (3.14) (which can
be written bM−1V ck = M−1Rk) with k = 1. The induction hypothesis and Eq. (3.14)
at order k then leads to M−1ρk+1(V) = bbM−1V ckc1 = bM−1V ck+1, which proves the
assertion.

IfM(x) = xIn−A with A nonsingular in Kn×n, z = x, and V ∈ Kn×m, then the residue
of V is ρ(V) = A−1V and ρk(V) = A−kV . The expansion (see Eq. (3.6) in Section 3.1.1.2)

(xIn− A)−1V =
∑
k≥0
−A−k−1V xk

50

Chapter 3.

is generalised as follows. Taking C0 = dM−1e1, for V ∈ K[x]n×m<d the z-adic expansion of
M−1V is

M−1V =
∑
k≥0
dC0ρ

k(V)e1zk. (3.16)

Since ρk(V) is the residue at order k, we indeed know from Eq. (3.14) that dC0ρ
k(V)e1 =

dM−1ρk(V)e1 is the coefficient of zk in the z-adic expansion of M−1V .
We see from Eq. (3.16) that the role of the matrix powers in Krylov type methods can

now be assigned to the powers of ρ, hence we now focus on how to increase the order of
a given residue. Using the notation

M−1V =
∑
k≥0

Bkz
k

for the z-adic expansion of M−1V , from Eq. (3.16) we obtain

ρk(V) = dMBke1, (3.17)

which reduces the computation of ρk+i(V) for a given i ≥ 0, to the computation of Bk+i.
Note that another formulation of Eq. (3.17) could be [77, Thm. 9]:

ρk(V) = b−MBk−1c1. (3.18)

Using Eq. (3.14) for writing the z-adic expansion of M−1ρk(V) at order k + i we further
have that Bk+i satisfies

M−1ρk(V) = dM−1ρk(V)ek+i + zk+iBk+i + (3.19)

Then the ingredient given by Lemma 3.2.4 below is that, knowing ρk(V), only a few terms
of the expansion ofM−1 are sufficient in Eq. (3.19) for computing Bk+i, and therefore then
ρk+i(V). These few terms form what is called a high-order component of M−1 [77, Sec. 6].
A high-order component is a piece of length 2 of the z-adic expansion of M−1 defined as
follows. Writing M−1 = ∑

i≥0Ciz
i, we let E(0) = zC0 and for i ≥ 1 we take

E(i) = Ci−1 + Ciz ∈ K[x]n×n<2d . (3.20)

For two polynomial matrices F and G with appropriate dimensions, remember also
the definition of the middle product operation F �G = dbFGc1e1 (see Eq. (3.8)). Then,
using E(i), Bk+i is computed as follows from ρk(V).

Lemma 3.2.4. Assume degM ≤ deg z = d, and deg V < d. Let M−1V = ∑
k≥0Bkz

k.
For k, i ≥ 0 we have E(i) � ρk(V) = Bk+i.

51

Chapter 3.

Proof. We first claim that E(i) � ρk(V) is the coefficient of zi in the z-adic expansion of
M−1ρk(V). For i = 0, E(0) � ρk(V) = dC0ρ

k(V)e1 is the coefficient of z0. For i ≥ 1,
the claim follows from [77, Thm. 8]. Then we conclude using Eq. (3.14) since indeed, the
coefficient of zi in the expansion of M−1ρk(V) is the coefficient of zk+i in the expansion
of M−1V .

In the way we have anticipated we can now compute ρk+i(V) from ρk(V), this operation
is a main brick in [77, Algo. 3] for computing selected parts of the expansion of M−1V .
Note that from Lemma 3.2.4 we could write Bk+i = E(0) � ρk+i(V), hence the effect of
the multiplication by M at Step 2 of Algorithm 3.2.1 is to “discard” E(0) from Bk+i.

Algorithm 3.2.1 FurtherResidue
Input: The high-order component E(i) of M−1 and the residue ρk(V) for some V ∈

K[x]n×m<d , with k, i ≥ 0
Output: The residue ρk+i(V)
1: B ← E(i) � ρk(V)
2: return dMBe1

Lemma 3.2.5. Assume degM ≤ deg z = d, and deg V < d. Given the residue ρk(V)
of order k ≥ 0, i ≥ 0, and the high-order component E(i) of M−1, Algorithm Further-
Residue computes the residue ρk+i(V) of order k + i.

Proof. From Lemma 3.2.4 we know that B is the coefficient of zk+i in the z-adic expansion
of M−1V , and we conclude using Eq. (3.17).

For computing the expansion of M−1V efficiently as in [77, Algo. 3] as well as in our
baby steps/giant steps approach, the application of Lemma 3.2.5 relies on the availability
of high-order components of few selected orders (an amount logarithmic in the length of
the expansion). The high-order component at some order can be computed by a sort
of binary powering from components at lower orders [77, Algo. 1]. Consider indeed two
high-order components E(i) and E(j). The residue ρi of the identity matrix involved in
E(i) = (E(0) � ρi−1(I)) + (E(0) � ρi(I)) (Lemma 3.2.4), combined with ρj−1, ρj that are
found in E(j) (after having discarded E(0)), allows to construct the high-order component
at order i+ j.

Lemma 3.2.6. Assume degM ≤ deg z = d. Given the high-order components E(i) and
E(j) of M−1, with i ≥ 0 and j ≥ 1, Algorithm ComponentProduct computes the
high-order component E(i+j) of M−1.

Proof. From Eq. (3.17) we have Rj−1 = ρj−1(I) and Rj = ρj(I), then Lemma 3.2.4 allows
to conclude.

52

Chapter 3.

Algorithm 3.2.2 ComponentProduct
Input: Two high-order components E(i) and E(j) = Cj−1 + Cjz of M−1, with i ≥ 0 and

j ≥ 1
Output: The high-order component E(i+j) of M−1

1: Rj−1 ← dMCj−1e1
2: Rj ← dMCje1
3: return (E(i) �Rj−1) + (E(i) �Rj)z

It can be noticed that Algorithm 3.2.2 is slightly different from the procedure of
Storjohann in [77, Algo. 1]. The application of Eq. (3.18) rather than Eq. (3.17) at Step 1
could be used in order to compute E(i+j+1) from E(i) and E(j).

3.2.2 Baby steps/giant steps

We now apply the tools of Section 3.2.1 for computing parts of the z-adic expansion
UTM−1V = H0 + H1z + H2z

2 + . . . , where the left projection U is in Kn×m. Algorithm
ProjectedExpansion is designed as an extension to the lifting context of the three
phases (3.5a)-(3.5c) of the block Krylov approach.

First we focus on the giant steps, that is on the extension of step (3.5b). For some
given r, s ≥ 0, the purpose is to compute the residues ρjr(V) for j = 0, 1, . . . s − 1.
Following Storjohann [77, Sec. 8], the combination of Algorithm FurtherResidue and
Algorithm ComponentProduct allows to compute such a sequence of residues à la
Keller-Gehrig for the computation of Krylov subspaces [51, Sec. 3]. This is what Algorithm
FurtherResidues does, computing s residues in dlog2 se recursive steps. Taking % = ρr,
we proceed with an iteration of the type:

%2i([V, %(V), %2(V), . . . , %2i−1(V)]) = [%2i(V), %2i+1(V), %2i+2(V), . . . , %2·2i−1(V)] (3.21)

for i = 0, . . . , l − 1, which generalizes the Krylov iteration

A2i [v, Av,A2v, . . . , A2i−1v] = [A2i

v,A2i+1v,A2i+2v, . . . , A2·2i−1v]

for A ∈ Kn×n and v ∈ Kn.

Lemma 3.2.7. Assume degM ≤ deg z = d. Algorithm FurtherResidues is correct.

Proof. From Lemma 3.2.6, for any given 0 ≤ i ≤ dlog2 se− 1, at Step 4 we have that E is
the high-order component computed at Step 6 for i−1, hence E = E(2(i−1)r+2(i−1)r) = E(kr).
Then from Lemma 3.2.5, considering Bkr+jr = E�ρjr(V) for 0 ≤ j ≤ k−1, we know that
dMBkr+jre1 is ρkr+jr(V), which shows that the residues of orders kr, kr+r, . . . , kr+(k−1)r

53

Chapter 3.

Algorithm 3.2.3 FurtherResidues
Input: The high-order component E(r) of order r, V ∈ K[x]n×m<d , and s ∈ N>0

Output: R = [V ρr(V) ρ2r(V) . . . ρ(s−1)r(V)] ∈ K[x]n×(sm)
<d

1: E ← E(r)

2: for i = 0, . . . , dlog2 se − 1 do
3: k ← 2i
4: . New coefficients of the z-adic expansion of M−1V , Lemma 3.2.4

B ← E � [V ρr(V) ρ2r(V) . . . , ρ(k−1)r(V)]
5: . New residues, Eq. (3.17)

[ρkr(V) ρ(k+1)r(V) ρ(k+2)r(V) . . . ρ(2k−1)r(V)]← dMBe1
6: . Obtaining E(2i+1r)

if 2k < s then E ← ComponentProduct(E,E)
7: return [V ρr(V) ρ2r(V) . . . ρ(s−1)r(V)]

are computed from those of orders 0, r, . . . , (k − 1)r at Step 5. This gives the residues
ρjr(V) for every 0 ≤ j ≤ (s− 1) as soon as k ≥ s/2.

With r = 1, the iteration of Eq. (3.21) is dual to the one used by Storjohann for
computing a truncated expansion of M−1V [77, Sec. 8]. As soon as ρj(V) is known for
every 0 ≤ j ≤ (s− 1), then the truncated expansion M−1V mod zs can be deduced using
Eq. (3.16).

By relying on Algorithm FurtherResidues for the giant steps, we now have all the
necessary ingredients for combining the approach of [47] for Krylov sequences with lifting
techniques.

Algorithm 3.2.4 ProjectedExpansion
Input: M ∈ K[x]n×n, z ∈ K[x] with degM ≤ deg z = d and gcd(z, detM) = 1,

U ∈ Kn×m, V ∈ K[x]n×m<d , r, s ∈ N>0
Output: dUTM−1(x)V ers
1: for i = 0, . . . , r − 1 do . Baby steps, compare to (3.5a)
2: D(i) ← UTE(i)

3: Compute E(r)

4: [P (0), . . . , P (s−1)]← FurtherResidues(E(r), V, s) . Giant steps, compare to (3.5b)
5: for i = 0, . . . , r − 1 do . Final products, compare to (3.5c)
6: for j = 0, . . . , s− 1 do
7: Hi+rj ← D(i) � P (j)

8: return H0 + zH1 + z2H2 + . . .+ zrs−1Hrs−1

Proposition 3.2.8. Let M be a nonsingular matrix in K[x]n×n, and z ∈ K[x] be of degree
d such that degM ≤ d and gcd(z, detM) = 1. Given block projections U ∈ Kn×m, V ∈
K[x]n×m<d , and positive integers r, s, Algorithm ProjectedExpansion computes the ex-
pansion of UTM−1(x)V truncated at order rs.

54

Chapter 3.

Proof. From P (0) = V = ρ0(V) and using Lemma 3.2.5, arriving at Step 5 the algorithm
has computed D(i) = UTE(i) for 0 ≤ i ≤ r − 1, and P (j) = ρrj(V) for 0 ≤ j ≤ s − 1.
Since U has scalar coefficients we have (UTE(i))�ρrj(V) = UT(E(i)�ρrj(V)), hence from
Lemma 3.2.4 we know that Hi+rj = UTBi+rj. With 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ s− 1 the
output gives therefore the rs appropriate terms of the expansion of UTM−1V .

Algorithm 3.2.4 mimics for a general M ∈ K[x]n×n what has been seen in Sec-
tion 3.1.1.2 for M = xI − A. Every step will be detailed in next sections and optimised
by taking into considerations the specific structure and properties of Sylvester matrices.

3.3 Matrices with a displacement structure

We characterize the structure of the matrices which we handle using the customary notion
of displacement rank [42]; the reader may refer e.g. to [32] and [66] for comprehensive
overviews of the domain, and detailed introductions to the tools we use. We especially rely
on [8] for the integration of asymptotically fast matrix multiplication in the algorithms.

In this chapter we define the displacement rank of a matrix from the specific Stein
operator

∆m,n : A ∈ Km×n 7→ A− ZmAZT
n (3.22)

where Zm ∈ Km×m is the lower shift matrix (δi,j+1)1≤i,j≤m (δa,b is 1 if a = b and 0
otherwise), and ZT

n is the transpose of Zn ∈ Kn×n (we will simply write ∆ and Z when
the dimensions are clear from the context). The displacement rank of A is defined as the
rank of ∆(A), and A is called Toeplitz-like if its displacement rank is “small” compared
to m and n. In particular, Toeplitz and Sylvester matrices are Toeplitz-like matrices of
displacement rank at most 2 (see Section 3.4 for the Sylvester case).

If A has displacement rank α (or bounded by α), then a pair of matrices G ∈ Km×α

and H ∈ Kn×α such that
∆m,n(A) = GHT (3.23)

is called a generator of length α for A, and G and H are respectively called left and right
generator. As soon as α is small enough, such generators (G,H) with size (m+ n)α� mn

are used as concise representations of Toeplitz-like matrices. Our central procedures for
matrix operations take generators as input and return generators, in place of the corre-
sponding matrices (Sections 3.5 and 3.6). When needed, matrices can be explicitly and
uniquely recovered from their generator based representation. Indeed, the displacement
operator ∆ is invertible [66, Thm. 4.3.2], which means that for given G and H, Eq. (3.23)

55

Chapter 3.

viewed as an equation in A has a unique solution

A =
α∑
i=1
L(G∗,i)U(H∗,i) (3.24)

where for u ∈ Km and v ∈ Kn, L(u) ∈ Km×m is the lower triangular Toeplitz matrix
whose first column is u, and U(v) ∈ Km×n is the upper triangular Toeplitz matrix whose
first row is vT. The expression in Eq. (3.24) is called a ΣLU representation of A [43].

The multiplication of a Toeplitz matrix in Kn×n by a vector in Kn reduces to univariate
polynomial multiplication [66, Sec. 2.4], and polynomial multiplication is computed in
softly linear time over any algebra [10]. From the ΣLU representation in Eq. (3.24) we
therefore deduce that the multiplication of A or AT by a scalar vector may be computed
from 2α products of Toeplitz matrices by vectors. The resulting cost is Õ(max(m,n)α).

An important property of Toeplitz-like matrices that we use for our algorithm is the
fact that their product remains Toeplitz-like. As shown by the following, if A and B have
respective displacement ranks bounded by α and β then AB has displacement rank at
most α + β + 1.

Lemma 3.3.1 ([66, Thm1.5.4]). For A ∈ Kl×m and B ∈ Km×n the product AB satisfies

∆(AB) = ∆(A)B + ZlAZ
T
m∆(B)− ZlAememTBZT

n .

Proof. From the second item in [66, Thm1.5.4] we have ∆l,n(AB) = ∆l,m(A)B+ZlA∇(B)
where ∇(B) = ZT

mB−BZT
n . The assertion of the lemma follows by noticing that ∇(B) =

ZT
m∆(B)− emeT

mBZ
T
n .

Lemma 3.3.1 may not lead to a generator of minimal length for AB. When AB is
known to have displacement rank less than α+β+1, a shorter generator can be recovered
by a compression mechanism [66, Sec. 4.6]. This will be the case in Section 3.5 where the
compression method we use on polynomial generators also guarantees specific properties
for the resulting shorter generator.

We rely on the following complexity bound for the cost of applying a Toeplitz-like
matrix to a dense matrix.

Theorem 3.3.2 ([8, Theorem 1.2]). Let A ∈ Kl×m be Toeplitz-like given by a generator
of length α ≤ min(l,m) and B ∈ Km×β. The product AB ∈ Km×β can be computed using
Õ(max(l,m) max(α, β) min(α, β)ω−2) arithmetic operations in K.

The following corollary expands the scope of Theorem 3.3.2 to the cases of structured
matrix by dense matrix products when the structured matrix is applied on the right

56

Chapter 3.

and/or when the generator representation is larger than the size of the matrix (which
may happen in our algorithms for extreme choices of parameters).

Corollary 3.3.3. Let A ∈ Kl×m be Toeplitz-like given by a generator of length α =
O(max(l,m)), B ∈ Km×β and C ∈ Kβ×l. The products AB ∈ Kl×β and CA ∈ Kβ×m can
be computed using

Õ
(
max(l,m) max(α, β) min(α, β)ω−2

)
arithmetic operations in K.

Proof. The conditions of Theorem 3.3.2 are recovered by padding the generators to ap-
propriate dimensions. Let A be represented by (G,H) such that GHT = ∆ (A) as in
Eq. (3.23), and γ = max (l,m, α). Construct G′ = [GT 0]T ∈ Kγ×α, H ′ = [HT 0]T ∈
Kγ×α, B′ = [BT 0]T ∈ Kγ×β and consider A′ ∈ Kγ×γ such that ∆ (A′) = G′(H ′)T.
Then since γ = O(max(l,m)), AB = (A′B′)1..l,∗ can be computed from G′, H ′ and B′

in Õ(max(l,m) max(α, β) minα, β)ω−2) by Theorem 3.3.2. Note that G′, H ′, and B′ are
free to construct, and that there is no need to explicitly have A′.

If A is Toeplitz-like with generator (G,H), then AT has a similar structure with
generator (H,G), hence the product CA can be performed in a similar way.

Note that by taking β = 1 in Corollary 3.3.3 we find the cost given earlier for the
matrix-vector multiplication.

The previous definitions and properties are valid for any commutative field and can
thus be applied to polynomial matrices, if seen over the field K(x). Note that in this case,
generators of minimal length can always be taken as polynomial matrices themselves.
Indeed, if T ∈ K[x]m×n of degree has displacement rank α (over the field of rational
functions), then there exists a unimodular matrix U ∈ K[x]n×n such that ∆(T)U = [G 0]
with G ∈ K[x]m×α (consider for example the Hermite normal form of ∆(T), see e.g. [64,
Ch. II, Sec. 6]). Hence a polynomial generator of minimal length for T is given by
∆(T) = G(U−1)1..α,∗.

Throughout the chapter, the Toeplitz-like polynomial matrices we handle are repre-
sented using polynomial generators. When the degree of the matrix is less than d, the
generator we use will also be of degree less than d (see Sections 3.4.2 and 3.4.3). By
extending Eqs. (3.23) and (3.24) we thus consider matrices T ∈ K[x]m×n<d such that

∆m,n(T) = G(x)H(x)T,

where G ∈ K[x]m×α<d and H ∈ K[x]n×α<d , whose ΣLU representation is

T =
α∑
i=1
L(G∗,i(x))U(H∗,i(x)).

57

Chapter 3.

The products involving such matrices are treated from Theorem 3.3.2 and Corollary 3.3.3
as follows.

Theorem 3.3.4. Let T ∈ K[x]l×m<d be Toeplitz-like represented by a generator of degree
less than d and length α = O(n) with n = max(l,m). For matrices V ∈ K[x]m×β<d and
W ∈ K[x]β×l<d , the products TV and WT can be computed using Õ(MMn,d(α, β)) arithmetic
operation in K with

MMn,d(α, β) = ndmax(α, β) min(α, β)ω−2. (3.25)

Proof. The matrix products can be computed by running the algorithm which underpins
Corollary 3.3.3 with coefficients truncated modulo x2d−1. In our case, [8, Thm. 1.2] re-
lies on the algorithm mul of [8, Section 5.2], followed by the polynomial products in [8,
Thm. 3.1, Cor. 3.2]. The only arithmetic operations performed in the case of the dis-
placement operator ∆l,m from Eq. (3.22) are additions, subtractions, multiplications, and
possibly tests to zero, which can be handled in K[x]/(x2d−1) using Õ(d) operations in
K [10].

In particular, taking β = 1 in Eq. (3.25), we consider that the product of T or TT

by a vector with entries in K[x]<d has cost Õ(MMn,d(α, 1)) = Õ(nαd). We will keep
using the notation MM in the complexity analyses when computing structured matrix
products. Beyond the product, the class of nonsingular Toeplitz-like matrices is closed
under inversion [42], [66, Thm. 1.5.3]. Our approach exploits this property in the special
case of Sylvester matrices that are studied in detail in Section 3.4.

3.4 Displacement structure of Sylvester matrices and its residues
and high-order components

For p, q ∈ K[x, y] the resultant is Resy(p, q) = det(S) where S is the associated Sylvester
matrix with entries in K[x]. By taking z = xd, the first step of our resultant algorithm
proceeds to do high-order lifting by implementing Algorithm ProjectedExpansion
of Section 3.2 with M = S and z-adic expansions. The algorithms in Section 3.2 are
given for general polynomial matrices. In this section we show that in the case of a
polynomial Sylvester matrix of degree at most d, the residues (Definition 3.2.1) and high-
order components (Eq. (3.20)) involved are Toeplitz-like with displacement rank at most
d + 2. This allows later in the chapter to represent these matrices by their generators,
as we explained in Section 3.3. Since matrices have dimension n, the bound on the

58

Chapter 3.

displacement rank is useful when d is relatively smaller than n; the content of this section
remains however correct for arbitrary degrees.

The polynomial case relies on properties of scalar Sylvester matrices and their inverses
that are given in Section 3.4.1. However, operations such as truncation and middle product
need a special attention. Especially consider the question of truncating a matrix given by
its generator. Let typically A ∈ K[x]n×n be of degree 2d and represented by a generator
(G,H), with G and H of degree d in K[x]n×α such that ∆ (A) = GHT. Without additional
assumptions, we are not aware of a way to compute a generator for the truncation dAe1
of A modulo xd which does not involve the reconstruction of a dense n×n matrix, and/or
an expensive compression mechanism.

Our solution is obtained thanks to the fact that, in the Sylvester case, high-order
components and residues can be represented by generators with a specific shape that
makes the operations much easier. Indeed, it turns out that we can use a variation of
the simple fact that if e.g. G (resp. H) is scalar, then a generator for dAe1 is (G, dHe1)
(resp. (dGe1, H)). These specific generators which we call canonical are introduced in
Section 3.4.2 for the coefficients of the z-adic expansion of S−1 and the high-order com-
ponents, and in Section 3.4.3 for the residues.

3.4.1 Sylvester matrices over K

Here we detail the structure properties we need for Sylvester matrices and their inverses
over K, the polynomial matrix case is treated using this in next sections. We consider
polynomials p, q ∈ K[y] of respective degrees np and nq, with n = np + nq. The entries of
the Sylvester matrix S ∈ Kn×n associated to p and q are, in row 1 ≤ i ≤ n: Si,j = p(np+j−i)

for j = 1, . . . , nq, Si,j+nq = q(nq+j−i) for j = 1, . . . , np, and zero otherwise (see Eq. (3.2)).
We study the structure of S by noticing that it can be viewed as a matrix of mul-

tiplication in a quotient algebra (we do not know whether this remark has been used
previously). We omit the elementary proof of the following.

Lemma 3.4.1. Consider the reverse polynomials a = ynpp(1/y) and b = ynqq(1/y), and
define f = b− ynqa. If p(0) 6= 0 then deg f = n and S is the matrix of multiplication by a
modulo f in the basis (1, y, . . . , yn−1).

This characterisation of Sylvester matrices allows us to highlight what makes these
matrices special in the class of Toeplitz-like matrices. The fact that their displacement
rank does not increase by raising to power makes the connection with the algorithm in [63]
for d = 1 (see Eq. (3.1)), and gives an intuition about the displacement structure of high-
order components and residues in the next sections. The characterisation also allows us to

59

Chapter 3.

directly deduce the structure of the inverse matrix, and more easily write the generators
of Propositions 3.4.4 and 3.4.7 in terms of polynomial coefficients.

Matrices of modular multiplication are in particular Toeplitz-like matrices, the follow-
ing recalls recurrence relations on its rows and columns, and the form of their generators
(see Eq. (3.23) in Section 3.3). For t ∈ K[y], we let v(t) = [t(0) t(1) . . . t(n−1)]T ∈ Kn be
the vector of the coefficients of t mod yn in the basis (1, y, . . . , yn−1).

If T is the matrix of multiplication by t modulo f then the j-th column of T is
v(yj−1t rem f) (the rem operation returns the remainder of the Euclidean division). Fur-
ther, if f (0) 6= 0 then for any integer i one has

(t rem f)(i) = (yt rem f)(i+1) − c(f (i+1)/f (0)) (3.26)

where c is the coefficient of degree 0 of yt rem f . We can first deduce by replacing t with
yjt for j = 0, . . . , n− 2 in Eq. (3.26) that the rows of T follow the recursion

eT
i T − eT

nTi,n = eT
i+1TZ −

f (i)

f (0) e
T
1TZ. (3.27)

This recursion is used in Section 3.7 for reconstructing a whole submatrix of a multiplica-
tion matrix from only two of its rows. On other hand, we have a similar relation between
the columns of T :

Tej+1 = ZTej −
Tn,j
f (n)v(f) , j = 1, . . . , n− 1. (3.28)

From there we deduce a generator expression for T [66, Sec. 2.7], which can therefore also
be applied to S with a and f as in Lemma 3.4.1.

Lemma 3.4.2. Given f ∈ K[y] of degree n and t ∈ K[y]<n, the matrix T ∈ Kn×n of
multiplication by t modulo f satisfies

∆(T) = v(t) eT
1 − v(f)wT

t , (3.29)

where wt = ZTTen/f
(n).

Proof. The first column of ∆ (T) is equal to the first column of T , that is v(t). By
definition, wT

t is the last row of T , shifted to the right and divided by f (n); its first
entry is thus 0, which ensures that the first column of v(t) eT

1 − v(f)wT
t is v(t). For

j = 1, . . . , n− 1, the (j + 1)-th column of ∆ (T) is such that ∆(T)ej+1 = Tej+1 − ZTej,
hence from Eq. (3.28) we have ∆(T)ej+1 = −Tn,jv(f) /f (n) and Tn,j/f (n) is precisely the
(j + 1)-th entry of wt.

Since S is a multiplication matrix, we know that it is invertible if and only if a is
invertible modulo f , and in that case S−1 is the matrix of multiplication by g ∈ K[y]<n

60

Chapter 3.

such that ag ≡ 1 mod f . The following then gives useful relations between the rows 1,
nq + 1 and n of S−1.

Lemma 3.4.3. Assume that S is invertible with p(0) 6= 0, and note that q(nq) 6= 0 by degree
hypothesis. Viewing S as the matrix of multiplication by a modulo f , let g ∈ K[y]<n be
such that ag ≡ 1 mod f . We have

eT
1S
−1 = g(0)eT

1 − f (0)wT (3.30)

eT
nq+1S

−1 = 1− a(0)g(0)

f (0) eT
1 + a(0)wT (3.31)

eT
nS
−1ZT = f (n)wT, (3.32)

where w = ZS−Ten/f
(n) with the notation S−T for the transpose of S−1.

Proof. Since f (0) = q(nq) and f (n) = −p(0), all the quantities are well defined. As the first
row of ∆(S−1) is the first row of S−1, Eq. (3.30) is a consequence of Lemma 3.4.2, and
Eq. (3.32) is the definition of w in the same lemma. For Eq. (3.31) we use the fact that S
is a Sylvester matrix. Considering eT

1SS
−1 = eT

1 we have a(0)eT
1S
−1 + b(0)eT

nq+1S
−1 = eT

1 ,
then we note that b(0) = f (0) and conclude using Eq. (3.30).

3.4.2 Structure of high-order components

We move to the structured polynomial matrix case. Let now p, q ∈ K[x, y] be of degree at
most d > 0 in x and respective degrees nq and np in y, with n = nq + np. The associated
Sylvester matrix S is in K[x]n×n≤d . Taking z = xd and assuming that gcd(detS, z) = 1, we
write S−1 = ∑

k≥0Ckz
k with Ck ∈ K[x]n×n<d . We thereafter also use the name slices for

the coefficients of the z-adic expansion. From Eq. (3.20), the high-order components are
formed by two consecutive slices. This section is devoted to the description of the slices,
and in doing so, the one of the high-order components.

Whenever an ambiguity between x-adic and z-adic expansions may appear, we distin-
guish them by denoting with a dot the x-adic coefficients of a series (hence of a polyno-
mial). In particular we have S−1 = ∑

i≥0 Ċix
i with Ċi ∈ Kn×n and Ck = ∑d−1

i=0 Ċkd+ix
i.

Further, we use a bar notation for the scalar matrices involved in the generators to mark
their difference from general polynomial matrices.

Rather than polynomials of K[y] as in Lemma 3.4.1 we now have bivariate polynomials

a = ynpp(1/y), b = ynqq(1/y), f = b− ynqa, (3.33)

and we write e.g. f = ∑d
j=0 ḟjx

j with ḟj ∈ K[y]≤n. Recall that for bivariate polynomials,
indices name coefficients in x while superscripts are used for coefficients in y. Assuming

61

Chapter 3.

that p(0) is nonzero, S is the matrix of multiplication by a modulo f . Then the identities
of Lemma 3.4.3 are considered on power series, assuming f (0) is invertible. Using that S
is invertible we know there exists g ∈ K(x)[y]<n such that

ag ≡ 1 mod f.

Since gcd(detS, z) = 1, the x-adic and z-adic expansions of g can be considered in the
form g = ∑

k≥0 gkz
k = ∑

i≥0 ġix
i where the gk’s in K[x, y] have respective degrees less than

d in x and n in y, and the ġi are in K[y]<n. We also assume that the constant terms q(nq)
0

and p(0)
0 , of q(nq) and p(0) respectively, are nonzero. Hence the expansions of f (0) and f (n)

are well defined and we write

w = ZS−Ten/f
(n) =

∑
k≥0

wkz
k =

∑
i≥0

ẇix
i ∈ K[[x]]n (ẇi = 0 for i < 0). (3.34)

The following proposition describes the displacement structure of S−1 and the specific
representation we take for its z-adic slices. We keep the notation previously used by
associating with a polynomial t in y over an arbitrary domain of coefficients, the vector
v(t) of the coefficients of t mod yn in the basis (1, y, . . . , yn−1).

Proposition 3.4.4. Assume that the constant terms of detS, p(0) and q(nq) in K[x] are
nonzero. Let F̄ ∈ Kn×(d+1) be the matrix whose j-th column is v(ḟj). For any k ≥ 0, the
slice Ck of S−1 is Toeplitz-like (over the field K(x)) with displacement rank at most d+ 2
and one of its generators is given by

∆(Ck) = v(gk) eT
1 − F̄ WT

k ∈ K[x]n×n<d , (3.35)

where the j-th column of Wk ∈ K[x]n×(d+1)
<d is ∑d−1

i=0 ẇkd−(j−1)+ix
i. A generator in this form

is called canonical. The matrix Wk can be fully constructed in O(nd2) operations from its
first and last column, which are the coefficients wk and wk−1 of the z-adic expansion of
w.

Proof. Since S−1 is the matrix of multiplication by g modulo f , Eq. (3.29) gives ∆(S−1) =
v(g) eT

1 − v(f)wT, hence for i ≥ 0 we get ∆(Ċi) = v(ġi)eT
1 − F̄ [ẇi ẇi−1 · · · ẇi−d]T. Com-

bining the Ċj’s into slices of size d, we obtain the z-adic coefficient in Eq. (3.35). We can
check thatWk is fully determined by its first and last column. Indeed, every column ofWk

is a sum of d vectors among the ẇ(k−1)d+i for 0 ≤ i ≤ 2d− 1, each multiplied by a distinct
power of x. All these vectors appear as coefficient vectors either in the first column of
Wk which is the coefficient wk of the z-adic expansion of w, or in the last column which
is wk−1; the cost bound is given by the size of Wk.

62

Chapter 3.

High-order components have generators directly given by those of the slices. For k ≥ 0,
the high-order component E(k) of S−1 for z = xd is indeed a sum of two slices (Eq. (3.20)).
From Proposition 3.4.4 we can write

∆(E(k)) = v(gk−1 + gkx
d)eT

1 − F̄ (WT
k−1 +WT

k x
d) ∈ K[x]n×n<2d , (3.36)

which gives a generator in canonical form for E. Generators in canonical form are uniquely
defined and have properties that will be useful for lowering the computational cost. We
remark that the first entry of w is zero (see Eq. (3.34)) and the first column of a canonical
generator is the first column of the matrix itself. This will be exploited by separating
the computation of first columns from the computation of the remaining parts of the
generators. The fact that generators are polynomials only on one side allows to directly
represent a truncated matrix using truncations of parts of its generator. Further, we are
going to take advantage of the structure of the Wk’s by restricting computations to only
two of their columns.

Remark 3.4.5. Note that F̄ and Wk in Eq. (3.35) do not necessarily have full rank, which
means that the slice may have displacement rank less than d+ 2. Genericity assumptions
on p and q ensure that F̄ has rank d + 1 (see Section 3.8), which is used in Section 3.5
for the efficient computation of canonical generators for matrix middle products.

3.4.3 Structure of residues

We work under the same assumptions as in Section 3.4.2 and study the displacement
structure of residues (Definition 3.2.1). Since we apply high-order lifting for an expansion
of Y TS−1X, where Y = [0 Im]T, X = [Im 0]T and 1 ≤ m ≤ n (see Section 3.7), only
residues of the type ρk(I) as in Algorithm ComponentProduct and ρk(V) = ρk(X) as
in Algorithm FurtherResidues are involved for integers k ≥ 0. From Definition 3.2.1
we also see that ρk(X) = ρk(I)X, therefore noticing that any n × n matrix M satisfies
∆(MX) = ∆(M)X (Eq. (3.22)) we deduce that

∆(ρk(X)) = ∆(ρk(I))X.

This allows us to limit ourselves in this section, to the description of canonical generators
for residues ρk(I) of the identity matrix. From Eq. (3.17), these matrices are obtained as
truncated products of S and slices of S−1: ρk(I) = dSCke1. The following describes the
displacement structure for the scalar summands of this product. We use the notation of
Section 3.4.2 for a, b ∈ K[x, y] as in Eq. (3.33) and w as in Eq. (3.34), as well as the dot
convention for the x-adic coefficients of expansions and polynomials.

63

Chapter 3.

Lemma 3.4.6. Assume that the constant terms of detS, p(0) and q(nq) in K[x] are
nonzero. For i, j ∈ N the product ṠjĊi ∈ Kn×n is Toeplitz-like with displacement rank
at most d+ 1. One of its generators is given by

∆(ṠjĊi) =
(
ṠjĊie1

)
eT

1 +
d∑
l=0
l 6=j

v(l,j)ẇT
i−l (3.37)

where v(l,j) = v(ȧlḃj − ȧj ḃl) ∈ Kn for l ∈ N.

Proof. We describe the generator for the product using Lemma 3.3.1:

∆(ṠjĊi) = ∆(Ṡj)Ċi + ZṠj
(
ZT∆(Ċi)− eneT

nĊiZ
T
)
. (3.38)

From Lemma 3.4.2 we have that ∆(S) = v(a) eT
1 +v(f) eT

nq+1 and hence ∆(Ṡj) = v(ȧj)eT
1 +

v(ḟj)eT
nq+1. Since S−1 is the matrix of multiplication by g modulo f , one can derive the

x-adic coefficients eT
1 Ċi and eT

nq+1Ċi, of eT
1S
−1 and eT

nq+1S
−1, by applying Lemma 3.4.2 on

power series. Here we have used the assumptions for having nonzero coefficients at x = 0
hence the existence of the expansions. From Eqs. (3.30) and (3.31) and for some v̄ ∈ Kn,
the first term of the sum in Eq. (3.38) can be written as

∆(Ṡj)Ċi = v̄eT
1 − v(ȧj)

d∑
l=0

ḟ
(0)
l ẇT

i−l + v(ḟj)
d∑
l=0

ȧ
(0)
l ẇT

i−l.

On other hand, Lemma 3.4.2 on power series gives ∆(Ċi) = v(ġi) eT
1 + ∑d

l=0 v(ḟl)ẇT
i−l.

Therefore from Eq. (3.32), the term being multiplied by ZṠj in Eq. (3.38) is

ZT∆(Ċi)− eneT
nĊiZ

T = ZTv(ġi) eT
1 −

d∑
l=0

ZTv(ḟl)ẇT
i−l −

d∑
l=0

ḟ
(n)
l enẇ

T
i−l,

and Eq. (3.38) becomes

∆(ṠjĊi) = Ḡ [e1 ẇi ẇi−1 . . . ẇi−d]T

with a matrix Ḡ ∈ Kn×(d+2) that we now study. The first column of Ḡ is the first column
of ∆(ṠjĊi), that is ṠjĊie1. For l = 0, . . . d, the remaining columns of Ḡ can be expressed
as

Ḡel+2 = −ḟ (0)
l v(ȧj) + ȧ

(0)
l v(ḟj)− ZṠj

(
ZTv(ḟl) + ḟ

(n)
l en

)
.

From
ZṠjZ

T = Ṡj −
(
v(ȧj)eT

1 + v(ḟj)eT
nq+1

)
,

64

Chapter 3.

we get

Ḡel+2 = −ḟ (0)
l v(ȧj) + ȧ

(0)
l v(ḟj)− Ṡjv(ḟl) + v(ȧj)f (0)

l + v(ḟj)eT
nq+1v(ḟl)− ḟ (n)

l ZṠjen,

and since eT
nq+1v(ḟl) = ḃl

(nq) − ȧl(0) (one has f = b− ynqa), we arrive at

Ḡel+2 = ḃ
(nq)
l v(ḟj)− Ṡjv(ḟl)− ḟ (n)

l ZṠjen. (3.39)

Then consider each of the three summand vectors in this equation from the corresponding
polynomials modulo yn:

ḃ
(nq)
l v(ḟj) = v

(
ḃ

(nq)
l

(
ḃj − ynq(ȧj mod ynp)

))
,

Ṡjv(ḟl) = v
(
ȧj
(
ḃl mod ynq

)
+ ḃj

(
ḃ

(nq)
l − (ȧl mod ynp)

))
,

ḟ
(n)
l ZṠjen = v

(
−ȧ(np)

l ynp(ḃj mod ynq)
)
.

By viewing Eq. (3.39) on polynomials modulo yn this allows to assert that Ḡel+2 =
v(ȧlḃj − ȧj ḃl). Hence Ḡ = [ṠjĊie1 v

(0,j) v(1,j) · · · v(d,j)], which by noticing that v(j,j) = 0
concludes the proof.

Lemma 3.4.6 reveals a structure similar to the one of the slices in Proposition 3.4.4:
the first column can be separated from the remaining ones; the left remaining part of
the generator does not depend on the considered order in the expansion of S−1; the right
part of the generator is given by the z-adic coefficient wk of w. From there we define a
canonical representation for the residues which retains these properties.

Proposition 3.4.7. Assume that the constant terms of detS, p(0) and q(nq) in K[x] are
nonzero, and for indices i, j ∈ N consider the v(i,j)’s as in Lemma 3.4.6. For any k ≥ 0
and z = xd, the residue ρk(I) = dSCke1 (see Eq. (3.17)) is Toeplitz-like (over the field
K(x)) with displacement rank at most d+ 1. One of its generators is given by

∆(ϕk (I)) = dSCke1e1e
T
1 + LW̄T

k−1 ∈ K[x]n×n<d , (3.40)

where the l-th column of L ∈ K[x]n×d<d is ∑d−1
i=0 x

i∑i
j=0 v

(i+l−j,j) and the l-th column of
W̄k−1 ∈ Kn×d is ẇkd−l. A generator in this form is called canonical. The left part L of
the generator does not depend on k and can be computed using Õ(nd2) operations.

Proof. By looking at the x-adic coefficients of dSCke1 we can write

∆(ρk(I)) =
d−1∑
i=0

xi
i∑

j=0
∆
(
ṠjĊkd+i−j

)
.

65

Chapter 3.

From Lemma 3.4.6 and since w has its first entry zero we have

∆(ρk(I)) = ρk(I)e1e
T
1 + δ,

where δ = ∆(ρk(I))ZZT has first column zero. Hence it remains to study the structure of
δ which gives the last n − 1 columns of ∆(ρk(I)). From Lemma 3.4.6 (omitting to write
l 6= j since v(j,j) = 0) and by substituting l by i− j − l we obtain

δ =
d−1∑
i=0

xi
i∑

j=0

d∑
l=0

v(l,j)ẇT
kd+i−j−l =

d−1∑
i=0

xi
i∑

j=0

i−j∑
l=i−j−d

v(i−j−l,j)ẇT
kd+l,

then by swapping the sums the contribution of w can be factored out:

δ =
d−2∑
l=−d

d−1∑
i=0

xi
i∑

j=0
j≤i−l,j≥i−l−d

v(i−j−l,j)

 ẇT
kd+l. (3.41)

This sum can be divided into two parts, for l < 0 and l ≥ 0. We show that the latter sum
is zero. It is indeed given by

d−2∑
l=0

d−1∑
i=0

xi
i∑

j=0
j≤i−l, j≥i−l−d

v(i−j−l,j)

 ẇT
kd+l =

d−2∑
l=0

d−1∑
i=l

xi
i−l∑
j=0

v(i−j−l,j)

 ẇT
kd+l. (3.42)

Now notice that v(i,i) = 0 and v(i,j) +v(j,i) = 0. It follows that for all l and i the summands
of ∑i−l

j=0 v
(i−j−l,j) cancel each other out (one summand is zero for even values of i− l), and

the sum in Eq. (3.42) is zero.
By substituting l by −l, the nonzero terms in Eq. (3.41) then give δ = LW̄T

k−1 where
for l = 1, . . . , d the l-th column of L ∈ K[x]n×d<d is

d−1∑
i=0

xi
i∑

j=0,j≥i+l−d
v(i+l−j,j),

and W̄k−1 is as asserted (the constraints in the sum over j have vanished as v(i+l−j,j) = 0
for i+l−j > d). The matrix L can then be computed in time Õ(nd2) from O(d2) products
of the ȧi’s by the ḃj’s modulo yn.

Remark 3.4.8. The columns of W̄k−1 in Proposition 3.4.7 are the scalar coefficient vec-
tors of the z-adic coefficient wk−1. It follows from Proposition 3.4.4 that the last d columns
(the first one is e1) of the right generator for ρk(I) are the linearisation of the last column
of the right generator for the slice Ck. As L can be precomputed once and used for all

66

Chapter 3.

residues (Section 3.6.2), the computation of the canonical generator for ϕk (I) from the
one for Ck is essentially the computation of its first column.

3.5 Structured middle and truncated products

Our specialisation of high-order lifting to the Sylvester case represents all high-order com-
ponents of S−1 and residues by their canonical generators as in Sections 3.4.2 and 3.4.3.
In this section we show that these representations allow to lower the cost of the two
central matrix operations on which we rely: middle and truncated products. We work
with z = xd under the assumptions of Propositions 3.4.4 and 3.4.7, and consider that
0 < d < n (the displacement rank structure does not directly enable faster operations for
degrees that reach the dimension). We keep using a bar notation for the scalar matrices
involved in the generators.

Typically, consider a high-order component E of S−1 at some arbitrary order. From
Eq. (3.36) we know that E satisfies

∆(E) = vEe
T
1 + F̄ WT

E ∈ K[x]n×n<2d , (3.43)

with vE ∈ K[x]n, F̄ ∈ Kn×(d+1) and WE ∈ K[x]n×(d+1). Consider also a residue R = ρk(I)
at some other arbitrary order k, from Eq. (3.40) we have

∆(R) = vRe
T
1 + LW̄T

R ∈ K[x]n×n<d , (3.44)

where vR ∈ K[x]n, L ∈ K[x]n×d, and W̄R ∈ Kn×d. Then a central brick of the high-order
lifting approach is the computation of the middle product

C = E �R ∈ K[x]n×n<d ,

where, according to Lemma 3.2.4, C is a coefficient of the z-adic expansion of S−1. Hence
using the canonical form Eq. (3.35) again, we know there exists a matrixWC ∈ K[x]n×(d+1)

<d

such that
∆(C) = vCe

T
1 + F̄WT

C ∈ K[x]n×n<d , (3.45)

with vC ∈ K[x]n<d. For the computation of C, we exploit the fact that the generator parts
F̄ and W̄T

R are scalar matrices, which allows us to perform the middle product without
resorting to a change of representation (Lemma 3.5.2). Further, several middle products
will follow one another. We therefore ensure that the resulting C is itself represented by
its canonical generator, which by the way also avoids the increase of the sizes of the rep-
resentations (inherent, in general, to the product of structured matrices, see Section 3.3).

67

Chapter 3.

We note that the first column of a left canonical generator (e.g. vE, vR, vC) is the first
column of the matrix itself. In addition, the last n− 1 columns of the displaced matrices
of Eqs. (3.43) to (3.45) are associated with the “W” parts WE, W̄R,WC of the generators
(whose first rows are zero). This leads us to separate the computation of first columns of
generators from the computation of their W parts. In Section 3.5.1 we start by focusing
on the computation of the right generator partWC of the middle product as in Eq. (3.45);
Lemma 3.5.1 actually deals with a slightly more general situation that is required later
for the concatenation of several products. An additional advantage is that, according
to Proposition 3.4.4, the right generator for a slice is determined by its first and last
column. This allows us to further decrease the exponent of d in the complexity bound,
and compute these two columns of WC using Õ(MMn,d(d, 1)) operations with MMn,d from
Eq. (3.25). This is essentially the cost of multiplying a matrix of displacement rank d in
K[x]n×n<d by a vector in K[x]n<d. Here the left part F̄ of the generator for the slices will be
assumed to have rank d+ 1, which corresponds to generic situations (see Remark 3.4.5).

The whole generator for C is deduced in Section 3.5.2, also in time Õ(MMn,d(d, 1))
(Lemma 3.5.2). We will use for that (computation of the first column), and in some other
places, the fact that for a vector b, the middle product E� b does not cause any difficulty
compared to the matrix middle product. Indeed, E� b can simply be computed from the
regular product Eb, by extracting the middle coefficients.

Besides the middle product, high-order lifting involves the truncated product oper-
ation as for instance at Step 5 of Algorithm FurtherResidues or Steps 1 and 2 of
Algorithm ComponentProduct. These truncated products are used for the computa-
tion of residues. From Remark 3.4.8 the right generator for a residue dSCe1 is directly
known from that of C, and in the same way as for a slice of the inverse, the first column
can be computed separately. Combining this with the middle product, in Section 3.5.2 we
derive the cost bound Õ(MMn,d(d, 1)) for high-order components handling (Lemma 3.5.3).

3.5.1 Middle product: computation of the right generator

Given a high-order component E ∈ K[x]n×n<2d of S−1, we consider the computation of a
right generator for a middle product E�R, for R ∈ K[x]n×c<d a residue or a concatenation
or several residues. The latter case is addressed for performing the giant steps which we
will discuss in Section 3.6.

We let E be a matrix in Kc×s whose columns are s distinct canonical vectors ei1 , . . . , eis
such that 1 ≤ i1, . . . is ≤ c, and W̄R be a matrix in Kc×d whose submatrix (W̄R)I,∗ ∈ Ks×d

is zero for I = {i1, . . . , is}. Then generalizing Eq. (3.44), we consider R such that

∆(R) = VRET + LW̄T
R ∈ K[x]n×c<d , (3.46)

68

Chapter 3.

with VR ∈ K[x]n×s<d . For c = n and s = 1 we are in the case of a unique residue as in
Eq. (3.44). We assume that the middle product B = E �R satisfies

∆(E �R) = VBET + F̄WT
B (3.47)

with VB ∈ K[x]n×s<d and WB ∈ K[x]c×(d+1)
<d , and focus on the computation of the first and

last column ofWB. Note that assuming the generator form as in Eq. (3.47) is appropriate
for covering the case s = 1. This indeed generalizes the canonical form for a single slice
as in Eq. (3.45). Focusing on the first and last column of the generator part is to be put
in correspondence with the last assertion of Proposition 3.4.4.

From Lemma 3.3.1, for the product ER we have

∆(ER) = ∆(E)R+ ZEZT∆(R)− ZEeneT
nRZT,

which can also be decomposed according to

∆(ER) = vE(eT
1R)+F̄ (WT

ER)+(ZEZTVR)ET+(ZEZTL)W̄T
R−(ZEen)(eT

nRZT), (3.48)

where we have kept the notation ∆(E) = vEe
T
1 + F̄ WT

E introduced in Eq. (3.43).

We then focus on the c − s columns of ∆(E � R) with indices in Ī = {1, . . . , c} \ I.
Since F̄ and W̄R have entries in K, and using that ∆(E � R) = db∆(ER)c1e1, these
columns can be deduced from Eq. (3.48) in the following form:

∆(E�R)∗,Ī = vE�(eT
1R)Ī+F̄ ·(WT

E�R∗,Ī)+(ZEZT�L)·(W̄T
R)∗,Ī−(ZEen)�(eT

nRZT)Ī .
(3.49)

The right hand side of Eq. (3.49) can be rewritten as a generator. For the second term
we simply let Ḡ1 = F̄ ∈ Kn×(d+1) and HT

1 = dbWT
ER∗,Īc1e1 ∈ K[x](d+1)×(c−s). Then

the first and last terms in Eq. (3.49) are partially linearised. For a polynomial vector
r = ∑2d−1

i=0 rix
i ∈ K[x]n<2d, we denote by Mr the matrix in K[x]n×d<d whose j-th column is∑d−1

i=0 rd+i−j+1x
i. Likewise, for t = ∑d−1

i=0 tix
i ∈ K[x]c−s<d we denote by M̄t the matrix in

K(c−s)×d whose j-th column is tj−1. We these notations we have

r � tT = Mr · M̄T
t . (3.50)

Applying Eq. (3.50) allows to write the last c− s columns of vE � (eT
1R) and −(ZEen)�

(eT
nRZT) as G2H̄

T
2 and G3H̄3

T, with G2, G3 ∈ K[x]n×d<d and H̄2, H̄3 ∈ K(c−s)×d. Finally,
we let G4 = dbZEZTLc1e1 ∈ K[x]n×d<d and take H̄T

4 = (W̄T
R)∗,Ī . The construction leads to

69

Chapter 3.

the generator expression:

∆(E �R)∗,Ī =

 Ḡ1 G2 G3 G4





H1
T

H̄T
2

H̄T
3

H̄T
4


∈ K[x]n×(c−s)

<d . (3.51)

Now, WB as in Eq. (3.47) can be obtained by compression of above right-hand side
matrices. Let G = [G2, G3, G4] ∈ K[x]n×3d

<d and H̄ = [H̄2, H̄3, H̄4]T ∈ K(c−s)×3d. From
Eq. (3.51) we indeed have

F̄ (WT
B)∗,Ī = F̄ HT

1 +GH̄T,

hence
(WT
B)∗,Ī = HT

1 + Ū−1GJ,∗ H̄
T, (3.52)

where we assume that F̄ has rank d+1 and Ū is a (d+1)× (d+1) nonsingular submatrix
of F̄ constructed from row indices forming the set J . Since the rows of WB whose indices
are in I are zero, the first and last columns of WB can be fully obtained from Eq. (3.52),
the nonzero rows of these columns are given by:

eT
i (WT

B)∗,Ī = eT
i H

T
1 + eT

i Ū
−1GJ,∗ H̄

T ∈ K[x]c−s<d , for i ∈ {1, d+ 1}. (3.53)

Lemma 3.5.1. For 0 < d < n, assume that the inverse of a (d+ 1)× (d+ 1) submatrix
of F̄ as in Proposition 3.4.4 is given, with the corresponding set of row indices J . From
a high-order component E of S−1 and R ∈ K[x]n×c<d with c = O(n), respectively given
by their generators as in Eq. (3.43) and Eq. (3.46), one can compute the first and the
last column of WB for E �R as in Eq. (3.47) using Õ(MMn,d(s + d, 1)) = Õ (nd(s+ d))
operations.

Proof. For i = 1, the first term eT
1H

T
1 in Eq. (3.53) is computed from eT

1W
T
E ∈ K[x]n by

multiplication by R, then extraction of the middle coefficients. From Eq. (3.46), R is seen
as a Toeplitz-like matrix of degree less than d and displacement rank bounded by s + d,
which from Theorem 3.3.4 gives a cost Õ(MMn,d(s+ d, 1)) for those first computations.

The target cost bound is valid for obtaining the generators G2, H̄2, G3 and H̄3 from E

and R. This is indeed equivalent to having the first (vE is part of the generators) and last
column of E, and the first and last row of R. The required products involving canonical
vectors and E and R can be computed in time Õ(MMn,d(s+ d, 1)).

Then, let u ∈ Kd+1 be the first row of Ū−1. From uT(G2)J,∗ and uT(G3)J,∗ in K[x]d,
uT(G2)J,∗H̄T

2 and uT(G3)J,∗H̄T
3 are deduced in time O(nd2) by matrix times vector prod-

70

Chapter 3.

ucts using that H̄T
2 and H̄T

3 are matrices in Kd×(c−s) and c = O(n). Here, recall that
MMn,d(d, 1) = nd2. It thus remains to verify the cost bound for the computation of
uT(G4)J,∗H̄T

4 . Since u has scalar entries we can first compute uT(ZEZT)J,∗ ∈ K[x]n, then
multiply the result by L ∈ K[x]n×d<d , and multiply the middle coefficients of the latter by
H̄4 using a total of Õ(nd2) operations. What we have just said with e1 is also valid with
ed+1, which concludes the proof.

The inversion of an appropriate submatrix of F̄ that is required for Lemma 3.5.1 will
be done only once for all products in Section 3.6.2.

3.5.2 High-order components

By combining Lemma 3.5.1 in the case s = 1 and a direct computation of the first column
we can perform the middle product of a high-order component by a residue as shown by
next lemma.

Lemma 3.5.2. Under the assumptions of Lemma 3.5.1 for F̄ , consider a high-order
component E of S−1 and a residue R = ρk(I) for some k ≥ 0, both represented by their
generators as in Eq. (3.43) and Eq. (3.44). A generator for E � R as in Eq. (3.45) can
be computed using Õ(MMn,d(d, 1)) = Õ(nd2) operations.

Proof. The first column vC = dbEvRc1e1 of C can be computed by applying E to vR in
Õ(MMn,d(d, 1)) operations, and by extracting the middle coefficients. The assertion of
the lemma then follows from Lemma 3.5.1 with s = 1 and i1 = 1 for the computation of
the first and last column of WC , and from Proposition 3.4.4 for the whole generator.

Given a slice C of S−1, the right generator for the residue at the same order is obtained
using Remark 3.4.8 and allows to manipulate high-order components in the following way.

Lemma 3.5.3. Under the assumptions of Lemma 3.5.1 for F̄ , we consider further that
L as in Proposition 3.4.7 is given. For two high-order components E(i) and E(j) with
i ≥ 0 and j ≥ 1, both represented by their generators as in Eq. (3.43), Algorithm Compo-
nentProduct computes generators having the same shape for the high-order component
E(i+j) using Õ(MMn,d(d, 1)) = Õ(nd2) operations.

Proof. We keep the notation used for Algorithm ComponentProduct. Since F̄ is a
scalar matrix, the generators for E(j) directly give generators for Cj−1 and Cj, which from
Proposition 3.4.4 give in particular wj−2 and wj−1. Therefore from Remark 3.4.8 we have
right generators for Rj−1 and Rj, which are residues of order j−1 and j, respectively. The
first columns of Cj−1 and Cj are available from the generators, by truncated multiplication
by S these two columns give the first columns of Rj−1 and Rj. Hence the whole generators
for Rj−1 and Rj are known and we finally apply Lemma 3.5.2 twice.

71

Chapter 3.

3.6 Giant steps

In order to perform the giant steps (Step 4 in Algorithm ProjectedExpansion) we
specialize Algorithm FurtherResidues to the Sylvester case. The successive products
that involve high-order components and concatenated residues as in Eq. (3.21) are imple-
mented thanks to middle and truncated products. As before, high-order components and
residues are represented by their generators as those in Sections 3.4.2 and 3.4.3. Their
respective orders do not matter in this section. We work under the assumptions of Propo-
sitions 3.4.4 and 3.4.7, and following Section 3.5 we take 0 < d < n. The representation
for concatenated matrices, which for technical reasons is a little bit different, is specified
in Section 3.6.1.

Taking advantage of the special shape of the generators we can split up the middle
products into regular matrix products for obtaining their left parts, and apply the strategy
of Section 3.5.1 for computing their right parts. Then, truncated products are used for the
computation of residues from slices of the inverse according to Eq. (3.17). Remark 3.4.8
actually implies that the right generator parts for residues are directly deduced from those
of the slices; in the same way as for middle products we compute their left generator parts
by regular matrix product.

We proceed to high-order lifting with the projection V = X = [Im 0]T, where 1 ≤
m ≤ n. Considering a number s of giant steps, our purpose in this section is to bound
the cost of a call to FurtherResidues with input the high-order component E of order
r of S−1, which computes the matrix

R =
[
X ρr(X) ρ2r(X) . . . ρ(s−1)r(X)

]
∈ K[x]n×(sm)

<d . (3.54)

We first study in Section 3.6.1 the two central products at Steps 4 and 5 of Algorithm
FurtherResidues, and then bound the overall cost in Section 3.6.2.

3.6.1 Concatenated middle and truncated products

Let us first specify the representation we use for the block residue matrices involved.
Noting that the residue map satisfies ρk(X) = ρk(I)X, for k = 1, 2, 3, . . . , 2l−1 the right
operand at Step 4 of Algorithm FurtherResidues is of the type

P =
[
P (0)X P (1)X · · · P (k−1)X

]
∈ K[x]n×km<d , (3.55)

72

Chapter 3.

where for j ≥ 0 each P (j) ∈ K[x]n×n is some residue of the identity. The displacement
operator applied to such a P gives

∆(P) = P−ZnPZT
km = P−

[
(ZnP (0)XZT

m) . . . (ZnP (k−1)XZT
m)
]
−
k−1∑
j=1

ZnP
(j−1)emε

T
1+jm,

(3.56)
here, in order to avoid confusion, we have em ∈ Kn and we use ε1+jm for the canonical
vectors in Kkm. On the other hand, from Eq. (3.40) we can write

∆(P (j)X) = ∆(P (j))X = pje
T
1 + LW̄T

P (j) , (3.57)

where pj is the first column of P (j), L ∈ K[x]n×d<d , and W̄P (j) ∈ Km×d. Equations (3.56)
and (3.57) then give

∆(P) = VPET + LW̄T
P , (3.58)

such that: VP ∈ K[x]n×k has first column p0 and column j being pj−1 − ZnP (j−2)em for
2 ≤ j ≤ k; E ∈ Kkm×k has column j being ε1+(j−1)m; W̄P ∈ Kkm×d has k blocks of rows
with j-th block being W̄P (j) .

For a high-order component E of S−1, let B = E � P . Then the resulting matrix
Q = dSBe1 at Step 5 of Algorithm FurtherResidues involves residues Qj at further
orders for j = 0, . . . , k − 1 such that

∆(Q(j)X) = qje
T
1 + LW̄T

Q(j) , (3.59)

where qj is the first column of Q(j) and W̄Q(j) ∈ Km×d. In accordance with Eq. (3.58) we
have

∆(Q) = VQET + LW̄T
Q, (3.60)

with: VQ ∈ K[x]n×k has first column q0 and column j being qj−1 − ZnQ(j−2)em for 2 ≤
j ≤ k; W̄Q ∈ Kkm×d has k blocks of rows with j-th block being W̄Q(j) .

Equations (3.58) and (3.60) lead us to represent P and Q as follows. To ensure that
a canonical representation is maintained throughout the algorithm, hence following our
approach in Section 3.5, we separate out left and right generator parts. The right parts
are given by W̄P and W̄Q. Besides L and from the characterisations of VP and VQ, we
slightly modify the representation of the left generator parts. They are represented by the
first and m-th columns of the P (j)’s and Q(j)’s. This is temporarily slightly different from
the canonical representation with VP and VQ in order to simplify the following statement.

Lemma 3.6.1. For d < n, assume that the inverse of a (d + 1) × (d + 1) subma-
trix of F̄ is given, with the corresponding row indices set J , also assume that L and

73

Chapter 3.

the canonical generator for E is given. Consider P represented by {P (j)e1}j=0,...k−1,
{P (j)em}j=0,...k−2 and W̄P as in Eq. (3.58). If P has km = O(n) columns, then Steps 4
and 5 of Algorithm FurtherResidues compute {Q(j)e1}j=0,...k−1, {Q(j)em}j=0,...k−2 and
W̄Q using Õ(MMn,d(d, k)) operations.

Proof. The specification of the output is from Lemma 3.2.7, we have to prove the cost
bound. The matrix B = E � P has k blocks of columns E � P (j)X, each of which is the
projection of a slice C(j) = E � P (j) of S−1 (Lemma 3.2.4). From Eq. (3.35) we can thus
write:

∆(E � P (j)X) = ∆(C(j)X) = cje
T
1 + F̄WT

C(j) , (3.61)

where cj is the first column of C(j), and WC(j) ∈ K[x]m×(d+1)
<d . Hence by doing the same

manipulation as for P and Q, we arrive at

∆(B) = VBET + F̄WT
B , (3.62)

involving matrices such that: VB ∈ K[x]n×k has first column c0 and column j being
cj−1 − ZnC(j−2)em for 2 ≤ j ≤ m; W ∈ Kkm×(d+1) has k blocks of rows with j-th block
being WC(j) .

Using that Q = dSBe1, we first detail the whole computation of the first and m-th
columns of the Q(j)’s from the representations of P and E. We then conclude with the
right generator part for Q.

For j = 0, . . . k− 1 and i = 1,m we have C(j)ei = E� (P (j)ei). All these middle prod-
ucts can be computed from the regular product E · [P (0)ei . . . P

(k−1)ei] by extraction of
the middle coefficients. From Theorem 3.3.4 this can be performed using Õ(MMn,d(d, k))
operations. For all j we then have Q(j)ei = dSC(j)eie1, products which can computed by
extraction of the coefficients of S · [C(0)ei . . . C

(k−1)ei] within the same cost bound.
We now deduce the right generator part W̄Q as in Eq. (3.60) from the corresponding

WB of Eq. (3.62). The last column of WB can indeed be computed using Lemma 3.5.1:
the generator for P given by Eq. (3.58) has the shape of the one for R as in Eq. (3.46);
the generator for B in Eq. (3.62) corresponds to the one for E�R in Eq. (3.47). Remark
that the application of Lemma 3.5.1 explicitly requires the generator part VP for P as in
Eq. (3.58): VP can be reconstructed from {P (j)e1}j=0,...,k−1 and {P (j)em}j=0,...,k−2 in time
O(nkd). Taking c = km in Lemma 3.5.1, the last column of WB is therefore obtained in
time Õ(MMn,d(k + d, 1)), which is Õ(MMn,d(d, k)).

By definition of WB, we now know for j = 0, . . . , k − 1 the last column of WC(j) given
by Eq. (3.61) for the projected slice C(j)X of S−1. For any fixed j let κ be the z-adic
order of C(j)X, and remark that WC(j) must be the projection of the full right generator
part for C(j). It follows from Proposition 3.4.4 that the last column of WC(j) provides us

74

Chapter 3.

with the z-adic coefficient XTwκ−1 of the first m entries XTw of w. We conclude using
Remark 3.4.8. Indeed, from Eq. (3.17), Q(j) = dSC(j)e1 is the residue ρκ(I), hence its
right generator part is directly deduced from wκ−1. Equivalently, by projection using X,
W̄Q(j) as in Eq. (3.59) is deduced from XTwκ−1 in O(md2) operations. Finally, since we
have been working for an arbitrary 0 ≤ j ≤ k − 1, all the blocks of rows for W̄Q as in
Eq. (3.60) are obtained in O(kmd2), which does not dominate the cost.

3.6.2 Cost bound for the giant steps

We can now bound the cost of Algorithm FurtherResidues in the case of the Sylvester
matrix, with input some high-order component E of the inverse and V = X.

Lemma 3.6.2. Let E be the high-order component E of order r of S−1 represented by
its canonical generator, and assume that F̄ has rank d + 1 ≤ n. With input E and
the projection X = [Im 0]T for 1 ≤ m ≤ n, Algorithm FurtherResidues computes
a generator as in Eq. (3.46) for the matrix R = [X ρr(X) ρ2r(X) . . . ρ(s−1)r(X)] ∈
K[x]n×(sm)

<d . If sm = O(n) the cost of the computation is Õ (MMn,d(d, s)).

Proof. From Lemma 3.2.7 we know that the algorithm correctly computes R. The cost
bound comes from log s applications of Lemma 3.6.1 for the representations of the new
residues at Steps 4 and 5 with k ≤ s and (log s) − 1 applications of Lemma 3.5.3 for
the generators for the new high-order components at Step 6. For the first application
of Lemma 3.6.1, P (0) = X is represented using ∆(X) = e1ε1

T (here ε1 is the canonical
vector in Km). Both Lemma 3.6.1 and Lemma 3.5.3 require the preliminary computation
of L whose cost is Õ(nd2) operations from Proposition 3.4.7. They also rely on the
inverse of a (d + 1) × (d + 1) submatrix of F̄ ; such an inverse can be computed in
O(ndω−1) operations [38, 40], which does not dominate since for d < n and s ≥ 1 we
have MMn,d(d, s) ∈ Ω(nd2).

Lemma 3.6.1 uses a representation of the matrices slightly different from here. The
left generator part VR of Eq. (3.46) still needs to be recovered from {ρjr(e1)}j=0,...s−1,
{ρjr(em)}j=0,...s−2 and the right generator. From the shape of the left generator given by
Eq. (3.58), we deduce that the latter can be reconstructed from O(s) polynomial vector
additions with cost O(nsd).

3.7 Complete expansion algorithm

From the preceding sections we have all the ingredients for giving the cost of the special-
isation of Algorithm ProjectedExpansion to the Sylvester case. For X = [Im 0]T and

75

Chapter 3.

Y = [0 Im]T in Kn×m, Algorithm StructuredExpansion computes the truncated ex-
pansion of Y TS−1X at the z-adic order rs, following the three main phases of the general
approach of Section 3.2.2.

First, the baby steps are performed based on two linear system solutions computed
using the seminal lifting methods of [17, 61]. (The high-order lifting as in Section 3.2 is
not required for this step.) The loop at Step 1 of Algorithm ProjectedExpansion can
indeed be implemented by computing the expansion of Y TS−1 at the order r, of which
coefficients give the projections of the high-order components. We actually compute only
truncations of eT

1S
−1 (at order r + 1 as it will also be used to compute a high-order

component at order r) and of eT
nS
−1, since by using the recursion of Eq. (3.27), these two

rows are sufficient to recover the expansion of Y TS−1X at the end. These polynomial
vectors of degree rd are linearised as r vectors of degree d in order to take advantage of
fast structured matrix multiplication.

The special structures we have identified for the high-order components and the
residues are then used in the giant steps as well as in the third phase which computes
the final product. This product is applied on the linearised rows of the baby steps,
which are combined together in the following step. In anticipation of the reconstruction
of the expansion of Y TS−1X, the two latter phases actually use a modified projection
X ′ = [I2m−1 0]T on the right, and give the first and last row of the expansion of S−1X ′

(this trick is taken from [63, Sec. 3.4.3]). Finally, the whole target expansion of Y TS−1X

is reconstructed using Eq. (3.27) as mentioned above.

Proposition 3.7.1. Let p and q in K[x, y] be of respective y-degrees np and nq, and of
x-degree at most d < n = np + nq. Assume that the constant terms of p(0), q(nq) and
detS in K[x] are nonzero, where S ∈ K[x]n×n≤d is the Sylvester matrix associated to p

and q, and also that F̄ ∈ Kn×(d+1) as defined in Proposition 3.4.4 has rank d + 1. For
X = [Im 0]T and Y = [0 Im]T with 2m − 1 ≤ n, z = xd, and positive integers r, s,
Algorithm StructuredExpansion computes the expansion of Y TS−1X modulo zrs. If
s = O(r) and mr = O(n), then it uses Õ(MMn,d(r+ d, r) +m2rsd) arithmetic operations
in K.

Proof. Step 1 computes truncated expansions of eT
1S
−1 and eT

nS
−1 which are used for

constructing the generators for E(r) and for the final products. This can be done by x-
adic lifting using that S(0) is nonsingular [17,61]. We follow the description of the method
in [17], carried over to the caseK[x]. The cost is essentially that of O(rd) multiplications of
the transpose inverse S(0)−T by a vector. Using a displacement rank-based representation
of S(0)−T— see e.g. [83, Sec. 5] and references therein, such a multiplication costs Õ(n);
this gives a total of Õ(nrd) operations for Step 1. The rows of A and B are the z-adic
coefficients of the computed expansions.

76

Chapter 3.

Algorithm 3.7.1 StructuredExpansion
Input: p, q ∈ K[x, y] of respective y-degrees np and nq and of x-degree at most d < n =

np + nq, m ≤ (n+ 1)/2, r, s ∈ N∗
Assumptions: the constant terms of p(0), q(nq) and detS in K[x] are nonzero, where S ∈

K[x]n×n≤d is the Sylvester matrix associated to p and q, and F̄ ∈ Kn×(d+1) as defined in
Proposition 3.4.4 has rank d+ 1.

Output: dY TS−1Xers where Y = [0 Im]T and X = [Im 0]T
1: . Baby steps
z ← xd; a← eT

1S
−1 mod zr+1 ; b← eT

nS
−1 mod zr

A← [aT
0 aT

1 . . . aT
r−1]T; B ← [bT

0 bT
1 . . . bT

r−1]T . Both in K[x]r×n<d

2: . Generator for E = E(r) ∈ K[x]r×n<2d of length d+ 2: ∆(E) = veT
1 + F̄ WT

f ← ynqq(1/y)− ynqynpp(1/y) . f =
∑d
j=0

∑n
i=0 ḟ

(i)
j xjyi

F̄ ← [ḟ (i−1)
j−1]1..n,1..d+1 . In Kn×(d+1)

v ← S−1e1 mod zr+1 ; v ← bvcr−1
w ← −a/f (0) mod zr+1 ; w ← [0 w2..n] . See Eq. (3.30)
Construct W from wr−2 + zwr−1 and wr−1 + zwr . See Proposition 3.4.4 and Eq. (3.36)

3: . Giant steps
m′ ← 2m− 1 ; X ′ ← [Im′ 0]T

R ← (FurtherResidues(E,X ′, s))∗,1..sm′ . In K[x]n×(sm′)
<d , see Lemma 3.6.2

4: . Final products
A′ ← A · R ; A′r,∗ ← A′r,∗ mod z . Matrices in K[x]r×sm′<2d
B′ ← B · R ; B′r,∗ ← B′r,∗ mod z

5: . Reconstruction of the first and last row of dS−1X ′ers ∈ K[x]n×m′

H ′ ← 0 ∈ K[x]m′ ;H ← 0 ∈ K[x]m×m′

for i = 0, . . . , r − 1 . See Proposition 3.7.1 and proof thereof
for j = 0, . . . , s− 1
H ′1..m′ ← H ′1..m′ + zi+rjA′i+1,(jm′+1)..(jm′+m′)
Hm,1..m′ ← Hm,1..m′ + zi+rjB′i+1,(jm′+1)..(jm′+m′) . Remaining rows left to 0

6: . Obtaining dY TS−1Xers ∈ K[x]m×m using truncated power series operations
for i = m− 1, . . . , 1 . See Proposition 3.7.1 and proof thereof
c← m+ i− 1
Hi,1..c ← Hi+1,2..c+1 − f (i)(H ′2..c+1/f

(0)) mod zrs . See Eq. (3.63)
7: return H1..m,1..m

77

Chapter 3.

Step 2 computes the canonical generator for E(r) ≡ bS−1cr−1 mod z2. The first column
v is computed in the same way as in Step 1. +(Note that the multiplication of S(0)−1

by a vector could also be computed by using the +extended Euclidean algorithm in
K[x] [24, Sec. 4.5].) Then according to Eq. (3.36), the left generator part F̄ is given by f ,
and the right generator requires wr−2, wr−1 and wr. The first entry of w is zero and from
Eq. (3.30) the remaining ones modulo zr+1 are deduced as (eT

1S
−1)2...n/f

(0) using the first
row of S−1 obtained at previous step (the inverse of f (0) exists from f(0, 0) = q(nq)(0) 6= 0).
From Proposition 3.4.4, this leads to the wanted z-adic coefficients of w and the generator
for E(r) in time Õ(nrd) +O(nd2).

We then deduce from Lemma 3.6.2 that with X ′ = [Im′ 0]T, a generator for R =
[X ′ ρr(X ′) ρ2r(X ′) . . . ρ(s−1)r(X ′)] is correctly computed in allotted time at Step 3 as
s = O(r). This generator is as in Eq. (3.46), hence of length at most s + d. Using the
bounds s = O(r) and thus sm′ = O(n) in Theorem 3.3.4, the matrix products A · R and
B · R are computed using Õ(MMn,d(r + d, r)) operations.

Then let a′i,j be the (i + 1)-th row of A′∗,(jm′+1)..(jm′+m′) at Step 4. From the product
with the block of columns corresponding to ρrj(X ′) in R and Definition 3.2.1 we have

r−1∑
i=0

a′i,jz
i+rj ≡ (

r−1∑
i=0

aiz
i) ρrj(X ′) mod zr

≡ (eT
1S
−1 mod zr) ρrj(X ′) mod zr

≡ beT
1S
−1X ′crj mod zr,

hence the sums at Step 5 give H ′1..m′ ≡ eT
1S
−1X ′ mod zrs; in an equivalent manner, with

B′ we get that the last row of H is Hm,1..m′ ≡ eT
nS
−1X ′ mod zrs. The cost is bounded

by the one of rs additions of polynomial vectors of dimension m′ and degree d, which is
dominated by the previous step.

We conclude at Step 6 by following the trick in [63, Sec. 3.4.3], which consists in using
the recursion given by Eq. (3.27) for reconstructing the whole expansion of Y TS−1X from
those of eT

1S
−1X ′ and eT

nS
−1X ′. For the inverse C of S which is a matrix of multiplication

and 1 ≤ i, c < n, Eq. (3.27) indeed leads to:

Ci,1..c = Ci+1,2..c+1 − f (i)(C1,2..c+1/f
(0)). (3.63)

From C1,2..2m−1 and Cm,1..2m−1, given by eT
1S
−1X ′ and eT

nS
−1X ′, the application of Eq. (3.63)

for i = m − 1,m − 2, . . . 1 on truncated power series modulo zrs provides with the m2

entries of Y TS−1X using Õ(m2rsd) operations.

78

Chapter 3.

3.8 Resultant algorithm

Following the previous works in Section 3.1.1.1 and Section 3.1.1.2, once sufficiently many
terms of the expansion of Y TS−1X ∈ K(x)m×m are known then a matrix fraction descrip-
tion ND−1 with coprime matrices N,D ∈ K[x]m×m is computed. For generic polynomials
p and q of degree d in x and np = nq = n/2 in y, we recall in Section 3.8.1 how such a
fraction description can be reconstructed from only O(n/m) terms of the xd-adic expan-
sion of Y S−1X. Furthermore, the denominator matrix D that is obtained is such that its
determinant is the resultant of p and q up to a scalar factor. Together with Algorithm
StructuredExpansion this leads us to the resultant algorithm given in Section 3.8.2,
and to the proof of Theorem 3.1.1.

3.8.1 Matrix fraction reconstruction

The number of terms sufficient for reconstructing a matrix fraction depends on the degrees
of its possible descriptions. First, let us recall a few notions on matrix fractions (the reader
may refer to the comprehensive material in [41, Chap. 6] and its applications in [83], [63,
Sec. 5]). For a matrix F ∈ K(x)m×m, a description F = ND−1 with N,D ∈ K[x]m×m is
said to be minimal if N and D are right coprime (have unimodular right matrix gcd’s),
and D has minimal column degrees among all possible denominators. The fraction F is
said to be describable in degree δ if it admits both a left description F = D−1

L NL and
a right description F = ND−1 with denominators DL and D of degree at most δ [63,
Sec. 5.1.1]. Generically, we have the following for the fraction Y TS−1X we are interested
in. This is an adaptation of [83, Prop. 4.1] which used slightly different projections. Indeed
we chose to switch the role of the projections X and Y , in order to make the giant steps
simpler.

Proposition 3.8.1. For any even n and integers d,m ∈ {1, . . . , n} there exists a nonzero
polynomial Φ in 2(n/2 + 1)(d + 1) variables over K and of degree O(n3d2) such that for
p = ∑

0≤i≤d,0≤j≤n/2 p
(j)
i xiyj and q = ∑

0≤i≤d,0≤j≤n/2 q
(j)
i xiyj of y-degree n/2 in K[x, y], if

Φ(p(0)
0 , . . . , p

(n/2)
d , q

(0)
0 , . . . , q

(n/2)
d) 6= 0 then:

i) S is invertible and S−1 is strictly proper (each entry has its numerator degree less
than its denominator degree);

ii) Y TS−1X is describable in degree δ = 2dn/(2m)ed;

iii) if Y TS−1X = ND−1 is a minimal description then detD = cResy(p, q) for some
nonzero c ∈ K.

79

Chapter 3.

Proof. Consider q̂ = yn/2q(1/y), p̂ = yn/2p(1/y), and the associated Sylvester matrix
Ŝ ∈ K[x]n×n. From [83, Sec. 4], there exists a nonzero polynomial Φ̂ in 2(n/2 + 1)(d+ 1)
variables and of degree O(n3d2), such that if the coefficients of q̂ and p̂ do not form a zero
of Φ̂, then: q̂ and p̂ have degree n/2; Ŝ is invertible and Ŝ−1 is strictly proper; XTŜ−1Y

is describable in degree δ; a minimal description

XTŜ−1Y = N̂D̂−1 (3.64)

has a denominator that satisfies det D̂ = ĉResy(q̂, p̂) for some ĉ ∈ K∗.
Let Φ be the polynomial obtained from Φ̂ by swapping variables so that evaluating Φ

at the coefficients of p and q is evaluating Φ̂ at the coefficients of q̂ and p̂. We show that
Φ is appropriate.

Assume that the coefficients of p and q do not form a zero of Φ. We have Ŝ = JnSJn,
where Jn is the reversal matrix of dimension n. Since i) is satisfied with Ŝ as q̂ and p̂ do
not form a zero of Φ̂ we have that i) is also satisfied with S.

We then show that if XTŜ−1Y is describable in degree δ, then Y TS−1X is also de-
scribable in degree δ. From Eq. (3.64) and using Ŝ−1 = JnS

−1Jn we get

Y TS−1X = JmN̂(JmD̂)−1, (3.65)

which shows the existence of an appropriate right description for Y TS−1X. Indeed,
deg D̂ ≤ δ since D̂ is a minimal denominator of XTŜ−1Y . In a similar way, a left denom-
inator of degree at most δ for Y TS−1X is obtained from a left denominator of degree at
most δ for XTŜ−1Y .

Item iii) is finally proved by noticing that JmD̂ is minimal in Eq. (3.65) if and only
if D̂ is minimal in Eq. (3.64). A minimal denominator D for Y TS−1X hence gives a
minimal denominator D̂ = JmD for XTŜ−1Y , and detD = ± det D̂ = ±ĉResy(q̂, p̂) =
cResy(p, q).

If Y TS−1X satisfies the first two items in Proposition 3.8.1, then a minimal description
ND−1 can be computed from 2δ terms of its expansion. We follow [26,63], and perform the
reconstruction of the fraction using minimal approximant bases [3,79]. We especially refer
to [63, Sec. 5.2, 5.3] for a detailed treatment of the reconstruction, which we do not repeat
here, Algorithm FractionReconstruction being exactly Step 2 of [63, Algorithm 5.1].
Note that the latter algorithm is applied to a fraction that is constructed in a different
way than Y TS−1X but this does not intervene for the reconstruction itself.

Lemma 3.8.2. Assume that Y TS−1X satisfies i) and ii) in Proposition 3.8.1. Given
H = dY TS−1Xe2δ/d (xd-adic notation here), Algorithm FractionReconstruction

80

Chapter 3.

Algorithm 3.8.1 FractionReconstruction
Input: δ ∈ N, H ∈ K[x]m×m<2δ
Output: (N,D) ∈ K[x]m×m≤δ such that ND−1 ≡ H mod x2δ

1: F ← [H − Im] ∈ K[x]m×2m

2: . Computation of a minimal approximant basis P ∈ K[x]2m×2m
≤2δ , see [26, Thm. 2.4], [39,

Prop. 3.2]
P ← PM-Basis(FT, 2δ, 0), with P in weak Popov Form; P ← PT . PM-Basis
from [26]

3: return (Pm+1..2m,1..m, P1..m,1..m)

computes a minimal description Y TS−1X = ND−1 using Õ(mωδ) arithmetic operations
in K.

Proof. Item (iii) of [63, Proposition 5.4] proves the correctness as soon as a correct ap-
proximant basis is computed at Step 2. This basis is obtained using Õ(mωδ) opera-
tions [26, Thm. 2.4], [39, Prop. 3.2]. Following [63], transposes are used at Step 2 because
in [26,39] approximant bases are considered row-wise rather than column-wise.

3.8.2 Resultant algorithm

We now present our Algorithm StructuredResultant that computes the resultant
of two generic polynomials p and q whose Sylvester matrix is S. Once sufficiently many
terms of the expansion of Y TS−1X are computed with Algorithm StructuredExpan-
sion, Algorithm FractionReconstruction is called to compute a fraction description
Y TS−1X = ND−1 whose denominator’s determinant is the resultant up to a constant
factor. This determinant is obtained using dense polynomial linear algebra [52], and the
multiplicative constant is retrieved by comparing the determinant with the resultant at
x = 0.

Our improved complexity bound is proved for generic p and q of degree d < n in x and
np = nq = n/2 in y. More precisely, the resultant algorithm is correct with the prescribed
cost if the following assumptions are satisfied.

(A1) detS(0) 6= 0. This allows to choose x = 0 as expansion point. (Note that a trun-
cated resultant algorithm which avoids this hypothesis is studied in [62].)

(A2) p(0)(0) 6= 0 and q(nq)(0) 6= 0. These conditions are introduced in Section 3.4 in
order to identify the structure of the high-order components and residues.

(A3) F̄ ∈ Kn×(d+1) as defined in Proposition 3.4.4 has rank d + 1. This is assumed
in Lemma 3.5.1 in order to compress the results of middle products into canonical
generators.

81

Chapter 3.

(A4) The coefficients of p and q do not form a zero of the polynomial Φ of Proposi-
tion 3.8.1. This assumption ensures that an appropriate description of Y TS−1X

can be recovered from a small number of terms in the expansion of the matrix
fraction.

Algorithm 3.8.2 StructuredResultant
Input: p, q ∈ K[x, y] of degree d < n in x and degree n/2 in y (n even), and S ∈ K[x]n×n≤d

their associated Sylvester matrix; m ≤ n/2, r, s ∈ N∗ such that rs ≥ 4dn/(2m)e
Genericity assumptions: (A1) to (A4)
Output: Resy(p, q) ∈ K[x]≤nd
1: H ← StructuredExpansion(p, q,m, r, s) . H = dY TS−1Xers
2: (N,D)← FractionReconstruction(rsd,H) . ND−1 = Y TS−1X

3: t← detD ∈ K[x]≤nd . Determinant computation from [52, Thm. 1.1]
c← det(S(0))/t(0) ∈ K∗ . Nonzero scalar to obtain the resultant

4: return ct

Lemma 3.8.3. Let p, q ∈ K[x, y] of degree d < n in x and degree n/2 in y (n even)
and m ≤ n/2, r, s ∈ N∗. If the assumptions (A1) to (A4) hold and rs ≥ 4dn/(2m)e then
Algorithm StructuredResultant computes the resultant of p and q with respect to y.
With s = O(r), mr = O(n) the algorithm uses Õ (MMn,d(r + d, r) +mωrsd) arithmetic
operations in K.

Proof. The truncated expansion H = dY TS−1Xers is computed at Step 1 in Õ(MMn,d(r+
d, r) + m2rsd) from Proposition 3.7.1, here we have used assumptions (A1) to (A3).
Assumption (A4) ensures that Proposition 3.8.1 can be applied. Items i) and ii) of the
latter proposition and Lemma 3.8.2 ensure that Step 12 is performed in time Õ(mωrsd)
since rs ≥ 4dn/(2m)e = 2δ/d. Items iii) of the same proposition shows that Resy(p, q) =
ct for some nonzero c ∈ K, which is computed by considering the constant terms of both
polynomials at negligible cost. Note that by (A1) we know that det(S(0)) 6= 0, hence
t(0) = det(D(0)) 6= 0. From ii) in Proposition 3.8.1, the degree of D ∈ K[x]m×m is
bounded by δ, its determinant is also computed in time Õ(mωrsd) [52, Thm. 1.1].

The input parameters m, r and s of Algorithm StructuredResultant can be op-
timised with respect to n and d, which allows us to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Now taking p and q of y-degree n, for every m ∈ {1, . . . , n} we
can associate to each of the assumptions (A1) to (A4) a non identically zero polynomial
in 2(n+1)(d+1) variables over K, whose zeros are the inputs which do not meet the con-
ditions. An appropriate hypersurface is defined by the product of these polynomials for a
well chosen value ofm. Consider s = r andm such thatmr2 ∼ 2n. From Lemma 3.8.3 and

82

Chapter 3.

Eq. (3.25), the resultant can be computed generically using Õ(nd(mω−1 + rω−1 + drω−2))
operations. When d ≤ r the optimal choice for the parameters leads to m = r, and
we arrive to the announced bound in the case d = O(n1/3). For greater values of d, we
consider m = n

ω−2
3ω−4d

2
3ω−4 and keep the same relations between r, s and m.

Figure 3.1: Comparison of known asymptotic cost bounds for the resultant of generic
polynomials. Exponents in n with d = nγ and ω = 2.372.

0 10

1

2

3

0.33 0.471

1

1.46
1.58
1.79

22.05

γ

Ex
po

ne
nt

in
n

Generic block resultant [83]
Algorithm StructuredResultant
Modular composition (d = 1) [63]
Finite field resultant (d = n) [37]

Finite field resultant [84]
Õ(n2d) resultant [24, Chap. 11]

On Fig. 3.1 we compare the asymptotic exponent of Algorithm StructuredResul-
tant to the exponents of existing algorithms for d varying in comparison to n. Note
that the genericity conditions (in the Zariski sense) differ for each algorithm. When
d = O(n1/3), our algorithm has an exponent in n that coincides with the one of [63]
(without fast rectangular matrix multiplication), and allows to be essentially linear in the
degree. In that case, Algorithm StructuredResultant compares favorably to [83] as
soon as ω < 3: the cost is Õ(n1.458d) with ω < 2.372 [1, 18, 85]. Our new estimate breaks
Õ(n1.5d), which is the cost estimate for [83] in the best possible case where ω would be 2.
The cost bound in the second item of Theorem 3.1.1 has a stronger dependence in d,
hence our new algorithm is not better for large values of d compared to n. However, it
remains faster as long as d = O(n(ω−1)(4−ω)/(2ω)), hence d = O(n0.47) for ω = 2.372.

Algorithm StructuredResultant may be viewed as a generalisation of [63, Sec. 10.1]
for structured polynomial matrices with arbitrary degrees. On the other hand it also gen-
eralises the resultant algorithm of [83] (up to a minor technical change in projections),

83

Chapter 3.

which can be revealed by taking s = 1. With this parameter choice we have no more giant
steps, neither application of high-order lifting. The computation of the expansion is essen-
tially done in the baby steps at Step 1; this may be compared to the use of [83, Prop. 5.1]
with truncated power series. For s = 1, the displacement rank of R at Step 3 is constant,
and our bound s+ d for this rank (proof of Proposition 3.7.1) leads to an overestimation
of the cost of the reconstruction from Step 4 to Step 6. Nevertheless, by taking into ac-
count the displacement rank simplification in this degenerate case, the resultant algorithm
in [83] is recovered.

84

Chapter 4 | Exact computations with qua-
siseparable matrices

This chapter is derived from a joint work with Clément Pernet and Gilles Villard pre-
sented at the 2023 edition of the International Symposium on Symbolic and Algebraic
Computation [70].

4.1 Introduction

Quasiseparable matrices arise frequently in various problems of numerical analysis and
are becoming increasingly important in computer algebra, e.g. by their application to
handle linearisations of polynomial matrices [6]. Structured representations for these
matrices and their generalisations have been widely studied but to our knowledge they
have not been compared in detail with each other. In this chapter we aim to adapt
SSS [22] and HSS [13, 57], two of the most prominent formats of numerical analysis to
exact computations and compare them theoretically and experimentally to the Bruhat
format [72]. These formats all have linear storage size in both the dimension and the
structure parameter. We do not investigate the Givens weight representation [16] as it
strongly relies on orthogonal transformations in C, which is more challenging to translate
in the algebraic setting. See [29, 80, 81] for an extensive bibliography on computing with
quasiseparable matrices.

Definition 4.1.1. An n × n matrix A is s-quasiseparable if rank(A1..k,k+1..n) ≤ s and
rank(Ak+1..n,1..k) ≤ s for all k ∈ J1, nK.

Complexity bound notation. We consider matrices over an abstract commutative field K,
and count arithmetic operations in K. Our comparison focuses on the leading term in
the complexities, namely a function TXXX(n, s) such that running Algorithm XXX with
parameters (n, s) costs TXXX(n, s) + o(TXXX(n, s)) asymptotically in n and s. We proceed
similarly for the space cost bounds with the notation SXXX(n, s). We denote by ω a feasible
exponent for square matrix multiplication, and Cω the corresponding leading constant;

85

Chapter 4.

namely, using above notation, TMM(n) = Cωn
ω. The straightforward generalisation gives

TMM(m, k, n) = Cωmnkmin(m, k, n)ω−3 for the product of an m× k by a k × n matrix.

4.1.1 Rank revealing factorisations

Space efficient representations for quasiseparable matrices rely on rank revealing factori-
sations: a rank r matrix A ∈ Km×n is represented by two matrices L ∈ Km×r, R ∈ Kr×n

such that A = LR. In exact linear algebra, such factorisations are usually computed using
Gaussian elimination, such as PLUQ, CUP, PLE, CRE decompositions [20,40,76], which
we will generically denote by RF.

Cost estimates of the above factorisation algorithms are either given as O(mnrω−2)
or with explicit leading constants TRF(m,n, r) = Kωn

ω under genericity assumptions:
m = n = r and generic rank profile [20, 40]. We refer to [71] for an analysis in the non-
generic case of the leading constants in the cost of the two main variants of divide and
conquer Gaussian elimination algorithms. We may therefore assume that TRF(m,n, r) =
CRFmnr

ω−2 for a constant CRF, for ω ≥ 1+log2 3, which is the case for all practical matrix
multiplication algorithm. Note that for ω = 3, these costs are both equal to 2mnr.
Unfortunately, the non-predictable rank distribution among the blocks being processed
leads to an over-estimation of some intermediate costs which forbids tighter constants (i.e.
interpolating the known one K3 = 2/3 in the generic case). The algorithms presented
here are still valid for smaller values of ω, but for the sake of clarity, we will not state
their more sophisticated constants.

Our algorithms for SSS and HSS can use any rank revealing factorisation. On the
other hand, the Bruhat format requires one revealing the additional information of the
rank profile matrix, e.g. the CRE decompositions used here (See [20]).

Theorem 4.1.2 ([20, 58]). Any rank r matrix A ∈ Km×n has a CRE decomposition
A = CRE where C ∈ Km×r and E ∈ Kr×n are in column and row echelon form, and
R ∈ Kr×r is a permutation matrix.

The costs related to Bruhat generator therefore rely on constants CRF from factorisa-
tions allowing to produce a CRE decomposition, like the ones in [71].

4.1.2 Contributions

In Section 4.2 we define the SSS, HSS and Bruhat formats. We then adapt algorithms
operating with HSS and SSS generators from the literature to the exact context. The HSS
generation algorithm is given in a new iterative version and the SSS product algorithm
has an improved cost. We focus for SSS on basic bricks on which other operations can

86

Chapter 4.

be built. This opens the door to adaptation of fast algorithms for inversion and system
solving [11, 12, 23] and format modeling operations such as merging, splitting and model
reduction [12]. In Section 4.3.3 we give a generic Bruhat generation algorithm from which
we derive new fast algorithms for the generation from a sparse matrix and from a sum of
matrices in Bruhat form.

Table 4.1 displays the best cost estimates for different operations on an n × n s-
quasiseparable matrix in the three formats presented in the chapter. The best and op-
timal storage size is reached by the Bruhat format which also has the fastest generator
computation algorithm. However, this is not reflected in the following operation costs
as applying a quasiseparable matrix to a dense matrix is least expensive with an SSS
generator and addition and product of n×n matrices given in Bruhat form is super-linear
in n. We notice in Proposition 4.2.5 that HSS is twice as expensive as SSS and gives no
advantage in our context. We thus stop the comparison at the generator computation. We
still give in Table 4.1 the cost of quasiseparable × dense product which is proportional to
the generator size [57]. We complete this analysis with experiments showing that despite
slightly worse asymptotic cost estimates, SSS performs better than Bruhat in practice for
the construction in Section 4.3.5 and the product by a dense block vector in Section 4.4.3.

4.2 Presentation of the formats

4.2.1 SSS generators

Introduced in [22], SSS generators were later improved independently in [23] and [12]
using block-versions, which we present here. In particular, the space was improved from
O(ns2) to O(ns).

An s-quasiseparable matrix is sliced following a grid of s × s blocks. Blocks on, over
and under the diagonal are treated separately. On one side of the diagonal, each block is
defined by a product depending on its row (left-most block of the product), its column
(right-most block), and its distance to the diagonal (number of blocks in the product).

Definition 4.2.1. Let A =
[
A1,1 ··· A1,N

...
...

AN,1 ··· AN,N

]
∈ Kn×n with t× t blocks Ai,j for i, j < N and

N = dn/te. A is given in sequentially semi-separable format of order t (t-SSS) if it is
given by the t× t matrices (Pi, Vi)i∈J2,NK, (Qi, Ui)i∈J1,N−1K , (Ri,Wi)i∈J2,N−1K , (Di)i∈J1,NK s.t.

Ai,j =


PiRi−1 . . . Rj+1Qj if i > j

Di if i = j

UiWi+1 . . .Wj−1Vj otherwise
(4.1)

87

Chapter 4.

Table 4.1: Summary of operation and storage costs

ω
ω

=
3

SSS
HSS

Bruhat
SSS

HSS
Bruhat

Storage
7n
s

18n
s

4n
s

7n
s

18n
s

4n
s

G
en.

from
D
ense

2C
RF n

2s
ω
−

2
2
ω
C

RF n
2s
ω
−

2
C

RF n
2s
ω
−

2
4n

2s
16n

2s
2n

2s
×

D
ense

block
vector(n

×
v)

7C
ω
n
sv

ω
−

2
18C

ω
n
sv

ω
−

2
8C

ω
n
sv

ω
−

2
14n

sv
36n

sv
16n

sv

A
ddition

(10
+

2
ω)C

ω
n
s
ω
−

1
(

9·2
ω
−

2−
8

2
ω
−

2−
1
C
ω

+
2C

RF)
n
s
ω
−

1log
n
/s

36n
s

2
24n

s
2log

n
/s

Product
(31

+
2
ω)C

ω
n
s
ω
−

1
78n

s
2

88

Chapter 4.

Proposition 4.2.2. Any n × n s-quasiseparable matrix has an s-SSS representation. It
uses SSSS(n, s) = 7ns field elements.

Proof. Direct consequence of Proposition 4.3.1.

4.2.2 HSS generators

The HSS format was first introduced in [14], although the idea originated with the uniform
H-matrices of [28] and in more details with theH2-matrices of [30], with algorithms relying
on [75]. The H2 format is slightly different from HSS, more details in [29].

The format is close to SSS (see Proposition 4.2.4) as the way of defining blocks is
similar. Yet, the slicing grid is built recursively and the definition of blocks product
depends on the path to follow in the recursion tree. Also, both sides of the diagonal are
treated jointly and the format is therefore less compact, which as will be shown makes
HSS less efficient.

The structure is complex and notations differ in the literature. We made the following
choices: we avoid the recursive tree definition inherited from the Fast Multipole Method
[14] and thus only consider constant-depth recursive block divisions. We made this choice
to focus on linear algebra and quasiseparable matrices with no pre-requisites (no notion of
where the rank is). For the same reason we focus on uniform subdivisions. Most literature
on HSS uses non-uniform grids in order to adapt to matrices with a structure within the
quasiseparable rank structure [14]. Despite being more general, this adds confusion which
is not needed in our case.

We use a notation similar to [86] with transition matrices.

Definition 4.2.3. Let A ∈ Kn×n and the uniform block divisions

A =
 Ak;1,1 ··· A

k;1,2k

...
...

A
k;2k,1 ··· Ak;2k,2k

 . (4.2)

A is given in hierarchically semi-separable format of order t (t-HSS) if it is given by
the t × t matrices (UK;i, VK;i, Di)i∈J1,NK, (Rk;i,Wk;i)k∈J2,KK

i∈J1,2kK
and (Bk;i)k∈J1,KK

i∈J1,2kK
with N =

dn/te and K ≥ logN such that for i ∈ J1, NK, AK;i,i = Di and if we define recur-

sively for k from K − 1 to 1 and i ∈ J1, 2kK, Uk;i =
Uk+1;2i−1Rk+1;2i−1

Uk+1;2iRk+1;2i

 and Vk;i =[
Wk+1;2i−1Vk+1;2i−1 Wk+1;2iVk+1;2i

]
then

Ak;2i−1,2i = Uk;2i−1Bk;2i−1Vk;2i

Ak;2i,2i−1 = Uk;2iBk;2iVk;2i−1
(4.3)

89

Chapter 4.

The HSS generator can be seen as a recursive SSS generator with two differences : the
use of the B matrices, and the distribution of the translation matrices. The similarity is
made clear in Proposition 4.2.4.

Proposition 4.2.4. Let UK;i, VK;i, Di, Rk;i,Wk;i, Bk;i for appropriate k ≤ K, i ≤ 2k a
t-HSS generator for A. Let I, J ∈ J1, 2KK and k the highest level of recursion for which
AK;I,J is not included in a diagonal block. For i1 = bI/2K−k−1c, i0 = bI/2K−kc and
j1 = bJ/2K−k−1c we have

AK;I,J = UK;IRK;I ...Rk+1;i1Bk;i0Wk+1;j1 ...WK;JVK;J . (4.4)

Proof. By induction on Equation (4.3).

Proposition 4.2.5. Any n × n s-quasiseparable matrix has a 2s-HSS representation.
This is the optimal block parameter and the representation uses SHSS(n, s) = 18ns field
elements.

Proof. Consequence of Proposition 4.3.2. For optimality let A be s-quasiseparable given
in t-HSS form. We use Proposition 4.2.4:

[
AK;3...4,1...2 AK;3...4,5...6

]
=
UK;3RK;3

UK;4RK;4

H (4.5)

where H ∈ Kt×4t. The quasiseparability of A bounds the rank of the left part of Eq. (4.5)
by 2s while the one of the right side is bounded by t. When the first bound is tight we
get t ≥ 2s.

4.2.3 Bruhat generators

The Bruhat generator was first defined in [68, 72]. Contrarily to SSS and HSS, it does
not use a pre-defined grid but relies on the rank profile information contained in the rank
profile matrix [20] of the lower and upper triangular parts of the quasiseparable matrix.

Recall from [72] that a matrix is t-overlapping if any subset of t + 1 of its nonzero
columns (resp. rows) contains at least one whose leading nonzero element is below (resp.
before) the trailing nonzero element of another. We call Jn the anti-identity matrix of
dimension n and define the Left operator : Kn×n → Kn×n s.t.

(A)i,j =
Ai,j if i+ j ≤ n

0 otherwise
. (4.6)

Definition 4.2.6. An n×n matrix A is represented in t-Bruhat format if it is given by a
diagonal matrix D ∈ Kn×n and 6 matrices C(L), R(L), E(L), C(U), R(U), E(U)where C(L) ∈

90

Chapter 4.

Kn×u and C(U) ∈ Kn×v are in column echelon form and t-overlapping, E(L) ∈ Ku×n and
E(U) ∈ Kv×n are in column echelon form and t-overlapping and R(L) ∈ Ku×u, R(U) ∈ Kv×v

are permutation matrices and satisfy

A = D + Jn
(
C(L)R(L)E(L)

)
+

(
C(U)R(U)E(U)

)
Jn

Proposition 4.2.7. Any n × n s-quasiseparable matrix has an s-Bruhat representation.
It uses SBruhat(n, s) = 4ns field elements which is optimal.

Proof. By [72, Theorem 20]. As 2ns coefficients are necessary to represent all rank s

triangular matrices, 4ns is optimal.

4.3 Construction of the generators

4.3.1 SSS generator from a dense matrix

We recall in Algorithm DenseToSSS the construction of an SSS generator from a dense
s-quasiseparable matrix A ∈ Kn×n. It is adapted from [12, §6.1] and [23, Alg. 6.5] where
the SVD based numerical rank revealing factorisations are replaced by RF.

The blocks Di are directly extracted from the dense matrix in Step 3. Each block-
triangular part is then compressed independently. Each step eliminates a chunk made of
a block-row of A and a remainder from the previous step. The result is three blocks of
the generator and a remainder to be eliminated at the subsequent step.

Algorithm 4.3.1 DenseToSSS
Input: A an n× n s-quasiseparable matrix with s ≤ t
Output: Pi, Qi, Ri, Ui, Vi,Wi, Di for appropriate i ∈ J1, NK a t-SSS representation of A

1: A =
[
A1,1 ··· A1,N

...
...

AN,1 ··· AN,N

]
, H =

[
H0,1 ··· H0,N

...
...

HN,1 ··· HN,N

]
← 0

2: for k = 1 . . . N − 1 do
3: Dk ← Ak,k

4:

([
Wk

Uk

]
,
[
Vk+1 Hk,k+2...N

])
← RF

([
Hk−1,k+1...N
Ak,k+1...N

])

5:

([
Qk+1

Hk+2...N,k

]
,
[
Rk Pk

])
← RF ([Hk+1...N,k−1 Ak+1...N,k])

6: DN = AN,N

Proposition 4.3.1. Algorithm DenseToSSS computes a t-SSS generator for an s-
quasiseparable matrix (s ≤ t) in TDenseToSSS(n, t) = 2CRFn

2sω−2 field operations.

91

Chapter 4.

Proof. For k ∈ J1, N − 1K, the dimensions of the output of Lines 4 and 5 are sufficient
since the input of the factorisation is a concatenation of a block of A with a rank-revealing
factor of another block of A on the same side of the diagonal, and is hence of rank at
most s.

Let i, j ∈ J1, NK. If i = j Step 3 for k = i gives Di = Ai,i. If i < j, Step 4 gives

Wj−1Vj = Hj−2,j (4.7)
WkHk,j = Hk−1,j (k ∈ J1, j − 2K) (4.8)
UiHi,j = Ai,j (i < N) (4.9)
UiVi+1 = Ai,i+1 (4.10)

which combines to UiWi+1 . . .Wj−1Vj = Ai,j. The same way, if i > j then Ai,j =
PiRi−1 . . . Rj+1Qj.

The cost is ∑N−1
k=1 2TRF(t(N − k), 2t, s) = 2CRFn

2sω−2.

4.3.2 HSS generator from a dense matrix

The first construction algorithm for a general quasiseparable matrix is presented in [14].
We present in Algorithm DenseToHSS an iterative version of the faster and simpler
algorithm of [86].

Each step of the loop on k passes block-row-wise and block-column-wise on the matrix
inherited from the previous step, factorising block rows and block columns two by two.
At each step each block is hence factorised twice, producing transition matrices R andW ,
the remainder being either passed to the following step or finally stored as a B matrix.

Proposition 4.3.2. Algorithm DenseToHSS computes a t-HSS generator for an s-
quasiseparable matrix if 2s ≤ t in CRFn

2tω−2 field operations. Taking t = 2s, this is
TDenseToHSS(n, s) = 2ωCRFn

2sω−2.

Proof. Let k ∈ J1, KK, i 6= j ∈ J1, 2kK. The dimensions of the output in Lines 6 and 7 are
sufficient since the matrices being factorised are each time a concatenation of two blocks
of rank at most s and are hence of rank at most 2s ≤ t. If |i − j| = 1, the instructions
give

Hk;i,j =
Rk+1;2i−1

Rk+1;2i

Bk;i
[
Wk+1;2j−1 Wk+1;2j

]
. (4.11)

Otherwise,

Hk;i,j =
Rk+1;2i−1

Rk+1;2i

H ′′k;i,j

[
Wk+1;2j−1 Wk+1;2j

]
. (4.12)

92

Chapter 4.

Algorithm 4.3.2 DenseToHSS
Input: A an n× n quasiseparable matrix of order s
Output: UK;i, VK;i, Di, Rk;i,Wk;i, Bk;i for appropriate k ≤ K, i ≤ 2k a t-HSS representa-

tion of A with t ≥ 2s
1: H ← A . Use the block division of Eq. (4.2) with k = K

2: for i = 1 . . . 2K do
3: Di ← AK;i,i

4: for k = K . . . 1 do
5: for i = 1 . . . 2k do . All operations are in this loop
. RK+1;2i (resp. WK+1;2i) has row (resp. column) dimension 0

6:

([
Rk+1;2i−1
Rk+1;2i

]
,
[
H ′′k;i,1...i−1 H ′k;i,i+1...2k

])
← RF ([H′k;i,1...i−1 H

k;i,i+1...2k])

7:
([

H′′k;1...i−1,i

H′
k;i+1...2k,i

]
, [Wk+1;2i−1 Wk+1;2i]

)
← RF

([
H′k;1...i−1,i

H
k;i+1...2k,i

])
8: for i = 1 . . . 2k−1 do . Only renaming from here
9: Bk;2i−1 ← H ′′k;2i−1,2i

10: Bk;2i ← H ′′k;2i,2i−1
11: for j = 1 . . . 2k−1, j 6= i do

12: Hk−1;i,j ←
[
H ′′k;2i−1,2j−1 H ′′k;2i−1,2j
H ′′k;2i,2j−1 H ′′k;2i,2j

]

13: Hk−1:j,i ←
[
H ′′k:2j−1,2i−1 H ′′k:2j−1,2i
H ′′k:2j,2i−1 H ′′k:2j,2i

]
14: for i = 1 . . . 2K do
15: UK;i ← RK+1;2i−1
16: VK;i ← WK+1;2i−1

93

Chapter 4.

Let now I, J ∈ J1, NK. If I = J , Step 3 gives DI = AK;I,J . Otherwise, let k be the highest
level of recursion for which AK;I,J is not included in a diagonal block. From Step 1,
AK;I,J = HK;I,J . Equation (4.12) can be used K − k times, together with Step 12 to get

AK;I,J = RK+1;2I−1 . . . Rk+2;i2H
′′
k+1;i1,j1Wk+2;j2 . . .WK+1;2J−1 (4.13)

where i2 = bI/2K−k−2c, i1 = bI/2K−k−1c, j1 = bJ/2K−k−1c and j2 = bJ/2K−k−2c. The
matrices RK+1;2I−1, WK+1;2J−1 and H ′′k+1;i1,j1 can be replaced in Eq. (4.13) using Lines
15 and 16 and Eq. (4.11) (from the definition of k we have |i1 − j1| = 1) in order to get
Eq. (4.4); this concludes the proof of correctness.

Step 6 at k < K and i performs a rank revealing decompositions on an input formed by
the 2t×(i−1)t block H ′k;i,1...i−1 and the 2t×2t(2k−i) block Hk;i,i+1...2k at cost TRF(t(2k+1−
i), 2t, t). The cost is equal for Step 7. The overall cost is then ∑log2

n
t

k=1
∑2k

i=1 4CRF(2k+1 −
i)tω ≤ 4CRFn

2tω−2 ≤ 2ωCRFn
2sω−2.

Because the blocks of each side of the diagonal are defined by the same matrices,
Algorithm DenseToHSS and any HSS construction algorithm applies rank revealing
factorisations on blocks with rank bounded by 2s for s-quasiseparable matrices instead of
s in Algorithm DenseToSSS. The optimal HSS block size of s-quasiseparable matrices
is thus 2s, which makes HSS less efficient in terms of storage and operation cost.

As the costs are higher and HSS has the same drawbacks as SSS, namely needing a
fixed slicing grid and a previously computed quasiseparability order, we do not detail more
algorithms for HSS. For information in the numerical context we mainly refer to [57,74].
Note that faster construction algorithms exist, probabilistic in [59] and with constraints
on the input in [14].

4.3.3 Bruhat generator from a dense matrix

The construction of a Bruhat generator from a dense matrix is achieved by [72, Alg. 12]
run twice, once for each of the upper and lower triangular parts of the input matrix, and
the diagonal matrix D is directly extracted from the dense matrix.

We give in Algorithm LBruhatGen an updated version of [72, Alg. 12], where Schur
complement computations are delayed until they are needed. This allows for faster com-
putations when the input is not given as a dense matrix and will be used for computing
the sum of two matrices in Bruhat form and generators from a sparse matrix.

Algorithm LBruhatGen can be as input a matrix under any structured format,
provided we have a way to compute for any submatrix B of the input matrix

1. CRE(B,G,H) a CRE decomposition of B −GHT;

94

Chapter 4.

2. for R a set of indices, BR,∗ and B∗,R the rows and columns of B with indices in R.

We use the notation TRSM for TRiangular Solve Matrix: TRSM(L,A) outputs L−1A for
L triangular.

Algorithm 4.3.3 LBruhatGen
Input: A ∈ Km×m left triangular sA-quasiseparable
Input: G,H ∈ Km×t . t = 0 on the first call
Output: C,R,E a left-Bruhat generator for A−

(
GHT

)
1: Split A =

[
A(11) A(12)

A(21)

]
, G =

[
G(1)

G(2)

]
, H =

[
H(1)

H(2)

]
where A(11) ∈ Km

2 ×
m
2

2: C0, R0, E0 ← CRE(A(11), G(1), H(1))
3: R ← RRP(C0); C ← CRP(E0); r0 ← #R
4:
[
U V

]
← E0QC where U ∈ Kr0×r0 is upper triangular.

5:

[
L
M

]
← PRC0 where L ∈ Kr0×r0 is lower triangular.

6: X ← A
(12)
R,∗ −G

(1)
R,∗H

(2)T

7: B(12)← (TRSM (L,X))R,∗ . A(12)
R,∗ =

(
LB(12) +G

(1)
R,∗H

(2)T)
R,∗

8: Y ← A
(21)
∗,C −G(2)H

(1)
C,∗

T

9: B(21)T ←
(
TRSM(UT, Y T)

)
∗,C

. A(21)
∗,C =

(
B(21)U +G(2)H(1)T

∗,C

)
∗,C

10: C1, R1, E1 ←
LBruhatGen

(
A

(21)
∗,C IC,∗, [G(2) B(21)] , I∗,C

[
H

(1)
C,∗

V T
])

11: C2, R2, E2 ←
LBruhatGen

(
I∗,RA

(12)
R,∗ , I∗,R

[
G

(1)
R,∗

M
]
, [H(2) B(12)T]

)
12: P01 ← the permutation which sorts the rows of E0 and E1 by increasing column of

pivot
13: P02 ← the permutation which sorts the columns of C0 and C2 by increasing row of

pivot
14: C ←

[
C0 C2

B(21)R0T C1

] [
P02

I

]
15: R←

[
P02T

I

] [R0
R2

R1

] [
P01T

I

]
16: E ←

[
P01

I

] [E0 R0TB(12)

E1
E2

]
17: return C,R,E

Proposition 4.3.3. An s-Bruhat generator can be computed from an n × n dense s-
quasiseparable matrix in TDenseToB(n, s) = CRFn

2sω−2.

Proof. Algorithm LBruhatGen is adapted from [72, Alg. 12]; we therefore refer to the
proof of [72, Theorem 24] for its correctness. Apart from the order in which they are made,
the operations are the same in both algorithms when the input is dense and the cost is

95

Chapter 4.

hence the same. Computing a Bruhat generator from a dense matrix is two applications
of Algorithm LBruhatGen. The cost satisfies:

TLBG(n, s) ≤ CRF/4n2sω−2 + 2TLBG(n/2, s) ≤ CRF/2n2sω−2.

4.3.4 Bruhat generator from a sparse matrix

In applications, matrices are often presented in a sparse structure. In order to detect
and/or harness their quasiseparable structure, it is crucial to exploit the sparsity in the
construction of the quasiseparable generators. For the construction of a Bruhat genera-
tor, the generic algorithm Algorithm LBruhatGen can be applied on a sparse matrix,
provided two operations are specialised:

1. the extraction of a subset of ≤ s rows or columns into a dense format, which is
straightforward for a sparse matrix;

2. the computation of a CRE decomposition, which is specialised in Algorithm Spar-
seCRE which in turn uses Algorithm SparseRankProfiles

Algorithm 4.3.4 SparseCRE
Input: A ∈ Km×m a rank ≤ s sparse matrix
Input: G,H ∈ Km×t

Output: C,R,E such that A = CRE +GHT

1: R, C ← SparseRankProfiles(A,G,H)

2: P =
[
IR,∗
IR,∗

]
; Q =

[
I∗,C I∗,C

]
. With Ā(11) ∈ K|R|×|R| write P

(
A−GHT

)
Q =

[
Ā(11) Ā(12)

Ā(21) Ā(22)

]
−
[
Ḡ(1)

Ḡ(2)

] [
H̄(1)

H̄(2)

]T

3: M (11) ← Ā(11) − Ḡ(1)(H̄(1))T

4: M (12) ← Ā(12) − Ḡ(1)(H̄(2))T

5: M (21) ← Ā(21) − Ḡ(2)(H̄(1))T

6: (L,R, U)← DenseCRE
(
M (11)

)
7: C ← TRSM(L, M̄ (12)) . C = L−1(Ā(12) −G(1)H(2))
8: D ← TRSM(Ā(21), UT) . D = (Ā(21) −G(2)H(1))U−1

9: E ←
[
U RTC

]
QT

10: C ← PT
[
L

DRT

]
11: return (C,R,E)

Lemma 4.3.4. Algorithm SparseRankProfiles is correct with probability at least 1−
2r/|S| and runs in TSparseRP(n, r) = 2(Cω + CRF)nrω−1 + 2r|A| with r = t+ s.

96

Chapter 4.

Algorithm 4.3.5 SparseRankProfiles
Input: A ∈ Kn×n a sparse matrix of rank ≤ s.
Input: G,H ∈ Kn×t dense matrices
Output: RA, CA the row and column rank profiles of A−GHT

1: T (1) ← a unif. random n× (s+ t) Toeplitz matrix from S ⊆ K
2: T (2) ← a unif. random (s+ t)× n Toeplitz matrix from S ⊆ K
3: K ← HTT (1)

4: L← T (2)G
5: P ← AT (1) −GK
6: Q← T (2)A− LHT

7: return RowRankProfile(P), ColRankProfile(Q)

Proof. Applying the Toeplitz preconditioners in Steps 3 and 4 costs nt
r
Õ(r) which is

dominated by nrω−1.

Proposition 4.3.5. Algorithm SparseCRE computes a CRE decomposition of A−GHT

with probability at least 1− 2r/|S| in TSparseCRE(n, r) =
(

2ω−3
2ω−2−1Cω + 2CRF

)
nrω−1 + 2r|A|

field operations for s+ t ≤ r.

Proof. Let ρ be the rank of A−GHT.

TSparseCRE(n, r) = 2TMM(n, r, t) + TCRE(ρ, ρ, ρ) + 2TTRSM(n− ρ, ρ)
+ TSparseRP(n, r)

≤ nrω−1
(

4Cω + 2Cω
2ω−1 − 2 + 2CRF

)
+ 2r|A|.

Proposition 4.3.6. Algorithm LBruhatGen computes a Left-Bruhat generator from a
sparse s-quasiseparable matrix A ∈ Kn×n in

TSpGenB(n, s, |A|) =
(

2ω+1 − 9
2ω−1 − 2Cω + CRF

)
nsω−1 log n/s+ 2s|A|

field operations with probability at least 1− 2n/|S|.

Proof. First, remark that the G and H matrices correspond to delayed Schur complement
updates for pivots processed in the previous calls. Hence, in every call to Algorithm
LBruhatGen, these pivots are located to the left, to the top or in the left-top corner of
the work matrix. The quasiseparable condition imposes that there are t ≤ 2s of them.
Moreover, in the call to Algorithm SparseCRE, the ranks verify rA + rB + t ≤ s. Hence
we can bound t and write the cost of Algorithm LBruhatGen only in terms of n the
dimension of the matrix, s the initial quasiseparability order, and | · | the amount of

97

Chapter 4.

nonzero coefficients of the submatrices we consider.

T (n, s, |A|) ≤ T (n/2, s, |A2|) + T (n/2, s, |A3|)
+ TSparseCRE(n/2, s, |A1|)
+ 2TMM(s, 2s, n/2) + 2TTRSM(s, n/2)

≤ T (n/2, s, |A2|) + T (n/2, s, |A3|) + 2s|A1|

+
(

2ω+1 − 9
2ω−1 − 2Cω + CRF

)
nsω−1.

The failure probability is obtained by a union bound on the failure probability of each of
the n/s calls to Algorithm SparseCRE.

We are not aware of any similar algorithm for computing an SSS or HSS generator
using the sparsity of the input matrix and can hence only compare our result to the
quadratic generation from a dense matrix.

4.3.5 Experimental comparison

To complement the asymptotic cost analysis, we present in Fig. 4.1 experiments comparing
the computation time for the construction of SSS and Bruhat generators. The experiments
are made on an implementation of algorithms handling SSS and Bruhat generators over a
finite field in the fflas-ffpack library [27], at commit 33474b31aa. This library provides
efficient dense basic linear algebra routines, such as matrix multiplication, TRSM and
Gaussian elimination revealing the rank profile matrix. It was compiled with the GNU
C++ compiler g++ version 9.3.0 and linked with the OpenBLAS library version 0.3.81.The
benchmarks are run on a single core of an Intel i5-i7300U@2.6GHz running a Linux Mint-
20 system.

For all experiments, the matrices have a fixed dimension n = 3000, over the finite field
Z/131071Z. We draw the computation times depending on the quasiseparability orders,
on three type of instances, indexed by a rank parameter r ∈ {1000, 1500, 1750}. This
parameter informally measures the rank of the lower and upper triangular parts. It is
defined as the number of pivots in the left triangular part of the rank profile matrix of
JL and UJ , where L and U are the lower and upper triangular part of the matrix. For
a given quasiseparability order, a larger rank parameter forces pivots to be closer to the
main diagonal.

Each point corresponds to the mean of the running times of 50 random instances with
same parameters. Figure 4.1 compares the running times for the generation from a dense

1https://www.openblas.net

98

https://github.com/linbox-team/fflas-ffpack/tree/33474b31aaf81487978be06dedbc3a408d4b8bfc
https://www.openblas.net

Chapter 4.

matrix. We did not consider in these experimental comparisons the straightforward divide
and conquer formats such as RRR [72] or H [29], for they incur at least a logarithmic
overhead in their cost estimates. However recent work by [60] suggests that these formats
may be competitive for small dimensions, as this overhead may be compensated by a
smaller leading constant.

The timings for Bruhat are sub-linear in s, as could be expected from Proposition 4.3.3
but also slightly depends on r which comes from neglected costs arising e.g. from the
numerous permutations. The SSS cost is constant on our values for reasons we are unable
to explain yet. It is almost always lower than the Bruhat cost. Yet remember that
Algorithm DenseToSSS takes the quasiseparable order as input, so it has to be computed
first (for example with Algorithm LBruhatGen).

4.4 Application to a block vector

We study here the application of an s-quasiseparable matrix A ∈ Kn×n given by its
generators (SSS or Bruhat) to a block of v vectors B ∈ Kn×v. We give the costs for v ≤ s

(they can be otherwise deduced by slicing B in blocks of s columns).

4.4.1 SSS × dense

We here recall the algorithm of [12, §2] for computing the product of an SSS matrix with
a dense matrix (independently published in [23, Alg. 7.1]). For simplicity, Algorithm
LowSSSxDense only details the computations with a strictly lower-block-triangular SSS
matrix, that is a matrix whose SSS representation is zero except for the Pi, Qi and Ri.
Extrapolating from there to the product with any SSS matrix can be done by transposing
the algorithm for the upper-block-triangular part, and adding the product with the block-
diagonal matrix made of the Di.

Algorithm 4.4.1 LowSSSxDense
Input: Pi, Qi, Ri for i ∈ J1, NK an s-SSS generator for a strictly lower-block-triangular

matrix A; B and C dense n× v matrices
Output: C+ = AB

1: Split B =


B1
...
BN

, C =


C1
...
CN

 in s× s blocks

2: H1 ← Q1B1
3: for i = 2 . . . N do
4: Hi ← QiBi +RiHi−1
5: Ci ← Ci + PiHi−1

99

Chapter 4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 200 250 300 350 400 450

Ti
m

e
 i
n
 s

Quasiseparability order

Generation from a dense matrix r=1000

DenseToSSS
DenseToBruhat

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 300 350 400 450 500 550 600 650 700

Ti
m

e
 i
n
 s

Quasiseparability order

Generation from a dense matrix r=1500

DenseToSSS
DenseToBruhat

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 400 450 500 550 600 650 700 750 800 850

Ti
m

e
 i
n
 s

Quasiseparability order

Generation from a dense matrix r=1750

DenseToSSS
DenseToBruhat

Figure 4.1: Experimental timings for the computation of SSS and Bruhat generators with
n = 3000 over Z/131071Z

100

Chapter 4.

Proposition 4.4.1. The product of an n×n matrix given by its s-SSS generator with an
n× v dense matrix with v ≤ s can be computed in TSxDense(n, s, v) = 7Cωnsvω−2.

Proof. In Algorithm LowSSSxDense we have by induction that

for i ∈ J1, NK, Hi =
i∑

j=1
Ri . . . Rj+1QjBj. (4.14)

As the blocks of the product follow

Ci = Pi
i−1∑
j=1

Ri−1 . . . Rj+1QjBj, (4.15)

Hi−1 can be multiplied once by Pi to compute Ci and once by Ri to compute the following
blocks. The cost isN×Cωs2vω−2 for the diagonal blocks and two applications of Algorithm
LowSSSxDense in which each step costs 3Cωs2vω−2.

4.4.2 Bruhat × dense

Proposition 4.4.2. The product of an n× n matrix given by its s-Bruhat generator by a
dense n× v matrix with v ≤ s can be computed in TBxDense(n, s, v) = 8Cωnsvω−2.

Proof. This is given by [72, Alg. 14] called twice on the lower and upper triangular part
of the quasiseparable matrix.

Note that in order to benefit from fast matrix multiplication, the Bruhat generator
(using 4ns space) needs to be transferred into a Compact-Bruhat form, by storing each
echelon from into two block diagonal matrices using twice as many field elements (addi-
tional ones being zeros). This compression can be done online, hence the space storage
remains 4ns, but the cost of the product by a dense matrix becomes 8Cωnstω−2 hence
losing the advantage over the SSS format (with cost 7Cωnsvω−2 for the same operation).

4.4.3 Experimental comparison

Experimental results are given in Fig. 4.2, which compares the running times for the
product by a random dense n × 500 block vector, using the generators resulting from
the experiments of Section 4.3.5, in the same experimental framework. As expected from
Propositions 4.4.1 and 4.4.2 we obtain costs that are linear in s; we can also observe the
same slight dependance in r of the Bruhat cost as in Section 4.3.5. On the parameters
we chose, SSS is about four times faster than Bruhat. This can be explained by the
compactification of the Bruhat generator needed for the product. This operation involves

101

Chapter 4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 200 250 300 350 400 450

Ti
m

e
 i
n
 s

Quasiseparability order

Application to a dense matrix r=1000

SSS
Bruhat

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 300 350 400 450 500 550 600 650 700

Ti
m

e
 i
n
 s

Quasiseparability order

Application to a dense matrix r=1500

SSS
Bruhat

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 400 450 500 550 600 650 700 750 800 850

Ti
m

e
 i
n
 s

Quasiseparability order

Application to a dense matrix r=1750

SSS
Bruhat

Figure 4.2: Experimental timings for the computation of SSS and Bruhat times a dense
matrix with n = 3000 and v = 500 over Z/131071Z

102

Chapter 4.

numerous data transfers, nonnegligible in practice, although they they do not appear in
the cost of Proposition 4.4.2.

4.5 Sum of quasiseparable matrices

The sum and product of two quasiseparable matrices of order sB and sC are quasiseparable
matrices of order at most sB+sC . In this section we show how to compute SSS and Bruhat
generators for the sum of two quasiseparable matrices.

The result we give in Proposition 4.5.1 for the sum of matrices given in SSS form can
only be used on two generators defined on the same grid. This is a drawback of most
operations in SSS which is avoided with the Bruhat format. As a consequence, in a large
sequence of operations, the SSS grid size needs to be chosen according to the maximal
quasiseparability order among all intermediate results, while the Bruhat always fits to the
current quasiseparable order. This can impact the overall cost. The slower original SSS
format of [22] avoids this issue, at the expense of multiplying space and time costs by the
quasiseparability order, as in [5, 6].

4.5.1 SSS sum

Consider two matrices B and C with the same order s. We first note that the concate-
nation of the blocks of both input generators leads to matrices which satisfy Eq. (4.1) for
A = C +B [12, §10.2].

Let P (K)
i , V

(K)
i , Q

(K)
i , U

(K)
i , R

(K)
i ,W

(K)
i , D

(K)
i for appropriate i ∈ J1, NK be an s-SSS

representation of K for K ∈ {B,C}. The following matrices satisfy Eq. (4.1) with
A = B + C:

Pi =
[
P

(B)
i P

(C)
i

]
, Qi =

Q(B)
i

Q
(C)
i

 , Ri =
R(B)

i

R
(C)
i

 (4.16)

Ui =
[
U

(B)
i U

(C)
i

]
, Vi =

V (B)
i

V
(C)
i

 ,Wi =
W (B)

i

W
(C)
i

 (4.17)

Di = D
(B)
i +D

(C)
i (4.18)

Such sets of matrices with these dimensions satisfying Eq. (4.1) will be called an (s, 2s)-
SSS generator for A. The granularity of their description remains that of s×s blocks, but
the dimension of the matrices in the representation is doubled and leads to a suboptimal
storage size. A second step therefore uses Algorithm SssCompression to form a 2s-SSS
generator and reduce the storage size by 4s(n− 2s).

103

Chapter 4.

Algorithm 4.5.1 SssCompression
Input: Pi, Qi, Ri, Ui, Vi,Wi, Di for appropriate i ∈ J1, NK, an (s, 2s)-SSS generator for

A ∈ Kn×n

Output: P ′i , Q′i, R′i, U ′i , V ′i ,W ′
i , D

′
i for appropriate i ∈ J1,MK, a 2s-SSS representation of

A with M = dN/2e
1: for i← 1 . . .M do
2: P ′i ←

[
P2i−1

P2iR2i−1

]
3: Q′i ←

[
R2iQ2i−1 Q2i

]
4: R′i ← R2iR2i−1

5: U ′i ←
[
U2i−1W2i
U2i

]
6: V ′i ←

[
V2i−1 W2i−1V2i

]
7: W ′

i ← W2i−1W2i

8: D′i ←
[
D2i−1 U2i−1V2i
P2iQ2i−1 D2i

]

Proposition 4.5.1. A 2s-SSS representation of B + C ∈ Kn×n can be computed from
s-SSS representations of B and C in time TS+S(n, s) = (10 + 2ω)Cωnsω−1.

Proof. For any s× s block Ai,j of A = B + C, it can be checked that the representation
in the output of Algorithm SssCompression called on the generator of Section 4.5.1
matches. The additions of Eq. (4.18) are dominated by the call to Algorithm SssCom-
pression whose cost is of M steps with four 2s × 2s by 2s × s products, two 2s × 2s
square products, and two s× 2s by 2s× s products.

Note that the (s, 2s)-SSS generator is intermediate between the SSS form and the
original definition of quasiseparable matrices given in [22], where the generators are s× s
matrices but the granularity of the description is of dimension 1.

4.5.2 Bruhat sum

As with SSS, the sum of two matrices in Bruhat form can be computed by first concate-
nation of both generators, then by retrieving the Bruhat format in a second step.

Given two left triangular matrices A and B given by Bruhat generators C(A), R(A), E(A),
C(B), R(B), E(B), their sum indeed writes

A+B =
[C(A) C(B)

] R(A)

R(B)

E(A)

E(B)

 . (4.19)

A Bruhat generator for the right side in Eq. (4.19) can be obtained from a call to Algorithm
LBruhatGen, viewed here as a compression algorithm. This relies on a specific CRE

104

Chapter 4.

decomposition (Algorithm BruhatSumCRE), and on having DR,∗ for D a submatrix of
a sum given as in Eq. (4.19) and R a set of row indices (Proposition 4.5.3).

Algorithm 4.5.2 BruhatSumCRE
Input: A,B ∈ Kn×n of rank ≤ rA and ≤ rB given by generators

C(A), R(A), E(A), C(B), R(B), E(B) s.t. A = C(A)R(A)E(A) and B = C(B)R(B)E(B) which
are submatrices of Bruhat generators of matrices comprising A and B

Input: G,H ∈ Kn×t

Output: C,R,E such that A+B = CRE +GHT

1: C(R), R(R), E(R) ← DenseCRE
([

R(A)E(A)

R(B)E(B)

−HT

])
2: C(L), R(L), E(L) ← DenseCRE ([C(A) C(B) G])
3: X ← R(L)E(L)C(R)R(R)

4: C(X), R(X), E(X) ← DenseCRE(X)
5: C ← C(L)C(X)

6: R← R(X)

7: E ← E(X)E(R)

Proposition 4.5.2. Algorithm BruhatSumCRE computes a CRE decomposition of A+
B −GHT in TBSumCRE(n, r) = (3Cω + 2CRF)nrω−1 for rA + rB + t ≤ r.

Proof. The matrices C and E are in column and row echelon form respectively as they are
products of two echelon forms. The cost is that of two dense CRE decompositions of size
n×(rA+rB+t) and products of an n×(rA+rB+t) matrix by two (rA+rB+t)×(rA+rB+t)
and one (rA + rB + t)× n matrices.

Proposition 4.5.3. For D ∈ Kn×n a submatrix of a the left-triangular part of a sum as in
Eq. (4.19) and R a set of s row indices, DR,∗ can be computed in TSumExp(n, s) = Cωns

ω−1.

Proof. There are at most sA (resp. sB) pivots of A (resp. B) impacting D. We can
thus write D = CRE with C made of n rows and sA + sB columns of

[
C(A) C(B)

]
, R a

permutation and E made of n columns and sA rows of E(A) and sB rows of E(B).

Proposition 4.5.4. The Bruhat form of the sum of two n × n matrices of respective
quasiseparable orders sA and sB given in Bruhat form can be computed in TB+B(n, s) =(

9·2ω−2−8
2ω−2−1 Cω + 2CRF

)
nsω−1 log n/s field operations for s = sA + sB.

Proof. Each lower and upper triangular part is converted to a left triangular instance and
computed independently. Algorithm LBruhatGen is then called twice with t = 0 on an
input matrix in factorised form as in (4.19).

The proof is the same as for Proposition 4.3.5 except that in the cost, the TSparseCRE

terms are replaced by TBruhatSumCRE terms and the rows and columns of the submatrices

105

Chapter 4.

are computed at a cost given by TSumExp. Then we have

T (n, s) ≤ 2T (n/2, s) + TBSumCRE(n/2, s) + 2TSumExp(n/2, s, s)
+ 2TMM(s, 2s, n/2) + 2TTRSM(s, n/2)

≤ 2T (n/2, s) +
(

9 · 2ω−3 − 4
2ω−2 − 1 Cω + CRF

)
nsω−1

for one call to Algorithm LBruhatGen.

4.6 Product in SSS

The product of two matrices given in SSS form uses two tricks we have seen previously.
The first one is to start by computing an (s, 2s)-SSS representation before compression,
as in the sum. Unlike the sum, computations are needed in addition to concatenation to
get this representation. The second trick is to speed up these computations by using a
Horner-like accumulation as in Algorithm LowSSSxDense. This accumulation will be
done on both sides for the computation of all necessary products Ai,kBk,j where Ai,k is
under (resp. over) the diagonal and Bk,j is over (resp. under) it.

Algorithm SSSxSSS details these computations, using the Gi and Hi as accumulators.
It presents an improvement over the algorithm of [12, §3] and [23, Alg. 7.2]: 4 products
have been avoided at each step by keeping them in memory in the Ti and Si. They can
also be avoided in the numerical context.

Theorem 4.6.1. Algorithm SSSxSSS computes a 2s-SSS generator for the product of
two n× n matrices given in s-SSS form in TSSSxSSS(n, s) = (31 + 2ω)Cωnsω−1.

Proof. Using Lines 2 and 4 for Gi and Lines 10 and 14 for Hi, induction on i shows that

Gi =
i−1∑
k=1

R
(A)
i−1 . . . R

(A)
k+1Q

(A)
k U

(B)
k W

(B)
k+1 . . .W

(B)
i−1 (4.20)

Hi =
N∑

k=i+1
W

(A)
i+1 . . .W

(A)
k−1V

(A)
k P

(B)
k R

(B)
k−1 . . . R

(B)
i+1 (4.21)

Combining these results with Step 3 for Si, Step 11 for Ti and finally Step 12, we get that
D

(C)
i = ∑N

k=1Ai,kBk,i = Ci,i.
When i < j, the products Ai,kBk,j take five shapes: lower block of A × upper block of

B, diagonal block × upper block, upper × upper, upper × diagonal and upper × lower.

106

Chapter 4.

Algorithm 4.6.1 SSSxSSS

Input: For both M ∈ {A,B}, P (M)
i , Q

(M)
i , R

(M)
i , U

(M)
i , V

(M)
i ,W

(M)
i , D(M)

i for appropriate
i ∈ J1, NK an s-SSS generator for M

Output: A 2s-SSS generator for C = AB
. All values not given as input are initialised to 0

1: for i← 1 . . . N do
2: Gi ← Q

(A)
i−1U

(B)
i−1 + Ti−1W

(B)
i−1

3: Ti ← R
(A)
i Gi

4: Si ← P
(A)
i Gi

5: Qi ←

 Q
(B)
i

Q
(A)
i D

(B)
i + TiV

(B)
i


6: Ri ←

 R
(B)
i 0

Q
(A)
i P

(B)
i R

(A)
i


7: Ui ←

[
U

(A)
i D

(A)
i U

(B)
i + SiW

(B)
i

]
8: Wi ←

W (A)
i V

(A)
i U

(B)
i

0 W
(B)
i


9: for i← N . . . 1 do
10: Hi ← V

(A)
i+1 P

(B)
i+1 + Ti+1R

(B)
i+1

11: Ti ← U
(A)
i Hi

12: Di ← D
(A)
i D

(B)
i + SiV

(B)
i + TiQ

(B)
i

13: PC
i ←

[
D

(A)
i P

(B)
i + TiR

(B)
i P

(A)
i

]
14: Ti ← W

(A)
i Hi

15: Vi ←

V (A)
i D

(B)
i + TiQ

(B)
i

V
(B)
i


16: return SssCompression((Pi, Qi, Ri, Ui, Vi,Wi, Di)i∈J1,NK)

The equality

U
(C)
i W

(C)
i+1 . . .W

(C)
j−1V

(C)
j =

N∑
k=1

Ai,kBk,j (4.22)

and its counterpart when i > j can be checked with tedious but straightforward calcula-
tions.

The cost is that of 21 products and 8 sums of s × s matrices at each of the N steps
and on call to Algorithm SssCompression.

Again the result of Theorem 4.6.1 is limited to matrices defined on the same grid and
the result always has the same storage size, whatever its quasiseparability order. This is
also true for product with HSS generators in numerical analysis [74]. The Bruhat format
can avoid these issues, but to our knowledge no sub-quadratic algorithm exists for the

107

Chapter 4.

product of two Bruhat generators. The method used for the sum in Section 4.5.2 opens the
door towards a linear or quasi-linear product algorithm using Algorithm LBruhatGen.

108

Bibliography

[1] J. Alman and V. V. Williams. A Refined Laser Method and Faster Matrix Multipli-
cation. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021.

[2] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer,
1rst edition, 2003.

[3] B. Beckermann and G. Labahn. A uniform approach for the fast computation
of matrix-type Padé approximants. SIAM J. Matrix Analysis and Applications,
15(3):804–823, 1994.

[4] V. Bhargava, S. Ghosh, Z. Guo, M. Kumar, and C. Umans. Fast multivariate mul-
tipoint evaluation over all finite fields. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pages 221–232, 2022.

[5] P. Boito, Y. Eidelman, and L. Gemignani. Implicit QR for rank-structured matrix
pencils. BIT Numerical Mathematics, 54(1):85–111, Mar. 2014.

[6] P. Boito, Y. Eidelman, and L. Gemignani. A real QZ algorithm for structured com-
panion pencils. Calcolo, 54(4):1305–1338, Dec. 2017.

[7] A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast computation of special resul-
tants. J. Symb. Comput., 41(1):1–29, 2006.

[8] A. Bostan, C.-P. Jeannerod, C. Mouilleron, and É. Schost. On matrices with dis-
placement structure: generalized operators and faster algorithms. SIAM J. on Matrix
Analysis and Applications, 38(3):733–775, 2017.

[9] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving structured linear systems with
large displacement rank. Theoretical Computer Science, 407(1-3):155–181, 2008.

[10] D. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica, 28(7):693–701, 1991.

109

BIBLIOGRAPHY

[11] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A. J. van der Veen, and
D. White. Some fast algorithms for sequentially semiseparable representations. SIAM
Journal on Matrix Analysis and Applications, 27(2):341–364, 2005.

[12] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A. J. van der Veen. Fast
stable solver for sequentially semi-separable linear systems of equations. In High
Performance Computing — HiPC 2002, pages 545–554, 2002.

[13] S. Chandrasekaran and M. Gu. Fast and stable algorithms for banded plus semisepa-
rable systems of linear equations. SIAM J. Matrix Analysis Applications, 25:373–384,
2003.

[14] S. Chandrasekaran, M. Gu, and T. Pals. A fast ULV decomposition solver for hi-
erarchically semiseparable representations. SIAM Journal on Matrix Analysis and
Applications, 28(3):603–622, 2006.

[15] D. Coppersmith. Solving homogeneous linear equations over GF(2) via block Wiede-
mann algorithm. Math. Comput., 62(205):333–350, 1994.

[16] S. Delvaux and M. Van Barel. A Givens-weight representation for rank structured
matrices. SIAM Journal on Matrix Analysis and Applications, 29(4):1147–1170, 2008.

[17] J. Dixon. Exact solution of linear equations using p-adic expansions. Numerische
Mathematik, 40(1):137–141, 1982.

[18] R. Duan, H. Wu, and R. Zhou. Faster Matrix Multiplication via Asymmetric Hashing.
arXiv:2210.10173, 2022.

[19] J. G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra subroutines. In
Proceedings of the 2002 International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’02, page 63–74, 2002.

[20] J.-G. Dumas, C. Pernet, and Z. Sultan. Fast computation of the rank profile ma-
trix and the generalized Bruhat decomposition. Journal of Symbolic Computation,
83:187–210, 2017. Special issue on the conference ISSAC 2015: Symbolic computation
and computer algebra.

[21] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard. Faster in-
version and other black box matrix computation using efficient block projections.
In Proceedings of the ACM on International Symposium on Symbolic and Algebraic
Computation, pages 143–150. ACM Press, 2007.

110

BIBLIOGRAPHY

[22] Y. Eidelman and I. Gohberg. On a new class of structured matrices. Integral Equa-
tions and Operator Theory, 34:293–324, 1999.

[23] Y. Eidelman and I. Gohberg. On generators of quasiseparable finite block matrices.
Calcolo, 42:187–214, 12 2005.

[24] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 1999. Third edition 2013.

[25] J. von zur Gathen and T. Lücking. Subresultants revisited. Theoretical Computer
Science, 297(1-3):199–239, 2003.

[26] P. Giorgi, C. Jeannerod, and G. Villard. On the complexity of polynomial matrix
computations. In Proceedings of the ACM on International Symposium on Symbolic
and Algebraic Computation, pages 135–142. ACM Press, 2003.

[27] T. F.-F. group. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines / Pack-
age, v2.5.0 edition, 2021. http://github.com/linbox-team/fflas-ffpack.

[28] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction
to H-matrices. Computing, 62:89–108, 1999.

[29] W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer Publishing
Company, Incorporated, 1st edition, 2015.

[30] W. Hackbusch, B. Khoromskij, and S. A. Sauter. On H2-matrices. In H.-J. Bungartz,
R. H. W. Hoppe, and C. Zenger, editors, Lectures on Applied Mathematics, pages
9–29, 2000.

[31] G. Heinig, P. Jankowski, and K. Rost. Fast inversion algorithms of toeplitz-plus-
hankel matrices. Numerische Mathematik, 52(6):665–682, 1988.

[32] G. Heinig and K. Rost. Algebraic Methods for Toeplitz-like Matrices and Operator.
Springer, Birkhäuser Basel, 1984.

[33] G. Heinig and K. Rost. New fast algorithms for Toeplitz-plus-Hankel matrices. SIAM
J. Matrix Analysis and Applications, 25(3):842–857, 2004.

[34] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.

[35] J. v. d. Hoeven and G. Lecerf. Fast computation of generic bivariate resultants. J.
of Complexity, 2020.

111

http://github.com/linbox-team/fflas-ffpack

BIBLIOGRAPHY

[36] J. van der Hoeven and R. Larrieu. Fast Gröbner basis computation and polynomial
reduction for generic bivariate ideals. Appl. Algebr. Eng. Comm., 30(6):509–539,
2019.

[37] J. van der Hoeven and G. Lecerf. Fast computation of generic bivariate resultants.
J. of Complexity, 62, 2021.

[38] O. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decompo-
sition algorithm and applications. Journal of Algorithms, 3(1):45–56, 1982.

[39] C.-P. Jeannerod, V. Neiger, and G. Villard. Fast computation of approximant bases
in canonical form. J. Symbolic Computation, 98:192–224, 2020.

[40] C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank-profile revealing Gaussian
elimination and the CUP matrix decomposition. J. Symb. Comput., 56:46–68, 2013.

[41] T. Kailath. Linear Systems. Prentice-Hall, 1980.

[42] T. Kailath, S. Kung, and M. Morf. Displacement ranks of matrices and linear equa-
tions. J. Mathematical Analysis and Applications, 68(2):395–407, 1979.

[43] E. Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear systems.
In Proceedings of the ACM on International Symposium on Symbolic and Algebraic
Computation, pages 297–304. ACM Press, 1994.

[44] E. Kaltofen. Challenges of symbolic computation: my favorite open problems. J.
Symbolic Computation, 29(6):891–919, 2000.

[45] E. Kaltofen, M. Krishnamoorthy, and B. Saunders. Parallel algorithms for matrix
normal forms. Linear Algebra and its Applications, 136:189–208, 1990.

[46] E. Kaltofen and B. Saunders. On Wiedemann’s method of solving sparse linear
systems. In Proc. AAECC-9, LNCS 539, Springer Verlag, pages 29–38, 1991.

[47] E. Kaltofen and G. Villard. On the complexity of computing determinants. Comput.
Complex., 13(3):91–130, 2005.

[48] E. Kaltofen and G. Yuhasz. On the matrix Berlekamp-Massey algorithm. ACM
Trans. Algorithms, 9(4):33:1–33:24, 2013.

[49] P. Karpman, C. Pernet, H. Signargout, and G. Villard. Computing the characteristic
polynomial of generic Toeplitz-like and Hankel-like matrices. In Proceedings of the
2021 on International Symposium on Symbolic and Algebraic Computation, pages
249–256, 2021.

112

BIBLIOGRAPHY

[50] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composi-
tion. SIAM J. on Computing, 40(6):1767–1802, 2011.

[51] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theoretical
computer science, 36:309–317, 1985.

[52] G. Labahn, V. Neiger, and W. Zhou. Fast, deterministic computation of the Hermite
normal form and determinant of a polynomial matrix. J. Complexity, 42:44–71, 2017.

[53] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the
ACM on International Symposium on Symbolic and Algebraic Computation, pages
296–303. ACM Press, 2014.

[54] F. Le Gall. Faster Rectangular Matrix Multiplication by Combination Loss Analysis.
arXiv:2307.06535, 2023.

[55] F. Le Gall and F. Urrutia. Improved rectangular matrix multiplication using powers
of the Coppersmith-Winograd tensor. In Proc. ACM-SIAM SODA, pages 1029–1046,
2018.

[56] G. Lecerf. On the complexity of the Lickteig-Roy subresultant algorithm. J. Symb.
Comput., 92:243–268, 2019.

[57] W. Lyons. Fast algorithms with applications to PDEs. University of California, Santa
Barbara, 2005.

[58] W. Manthey and U. Helmke. Bruhat canonical form for linear systems. Linear
Algebra and its Applications, 425(2–3):261–282, Sept. 2007.

[59] P. Martinsson. A fast randomized algorithm for computing a hierarchically semisep-
arable representation of a matrix. SIAM J. Matrix Analysis Applications, 32:1251–
1274, 2011.

[60] S. Massei, L. Robol, and D. Kressner. hm-toolbox: MATLAB software for HODLR
and HSS matrices. SIAM Journal on Scientific Computing, 42(2):C43–C68, 2020.

[61] R. Moenck and J. Carter. Approximate algorithms to derive exact solutions to
systems of linear equations. In Proc. EUROSAM, LNCS 72, pages 63–73, 1979.

[62] G. Moroz and É. Schost. A fast algorithm for computing the truncated resultant.
In Proceedings of the ACM on International Symposium on Symbolic and Algebraic
Computation, pages 341–348. ACM Press, 2016.

113

BIBLIOGRAPHY

[63] V. Neiger, B. Salvy, É. Schost, and G. Villard. Faster modular composition. CoRR,
abs/2110.08354, 2021.

[64] M. Newman. Integral Matrices. Academic Press, 1972. First edition.

[65] V. Y. Pan. Strassen’s algorithm is not optimal. Trilinear technique of aggregating,
uniting and canceling for constructing fast algorithms for matrix operations. In 19th
Annual Symposium on Foundations of Computer Science (sfcs 1978), pages 166–176,
1978.

[66] V. Y. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms.
Springer-Verlag, Berlin, Heidelberg, 2001.

[67] M. Paterson and L. J. Stockmeyer. On the Number of Nonscalar Multiplications
Necessary to Evaluate Polynomials. SIAM J. Comput., 2(1):60–66, 1973.

[68] C. Pernet. Computing with quasiseparable matrices. In Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation, ISSAC ’16, pages
389–396, New York, NY, USA, 2016. ACM.

[69] C. Pernet, H. Signargout, and G. Villard. High-order lifting for polynomial Sylvester
matrices. working paper or preprint, Oct. 2022.

[70] C. Pernet, H. Signargout, and G. Villard. Exact computations with quasiseparable
matrices. In Proceedings of the 2023 on International Symposium on Symbolic and
Algebraic Computation, 2023.

[71] C. Pernet, H. Signargout, and G. Villard. Leading constants of rank deficient Gaus-
sian elimination. Technical report, 2023. hal:03976168.

[72] C. Pernet and A. Storjohann. Time and space efficient generators for quasiseparable
matrices. Journal of Symbolic Computation, 85:224 – 246, 2018. Special issue on the
41th International Symposium on Symbolic and Algebraic Computation (ISSAC’16).

[73] D. Reischert. Asymptotically fast computation of subresultants. In Proceedings of
the ACM on International Symposium on Symbolic and Algebraic Computation, pages
233–240. ACM Press, 1997.

[74] Z. Sheng, P. Dewilde, and S. Chandrasekaran. Algorithms to Solve Hierarchically
Semi-separable Systems, volume 176, pages 255–294. 2007.

[75] H. P. Starr. On the Numerical Solution of One-Dimensional Integral and Differential
Equations. PhD thesis, USA, 1992. UMI Order No. GAX92-35558.

114

https://hal-cnrs.archives-ouvertes.fr/hal-03976168

BIBLIOGRAPHY

[76] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Institut für
Wissenschaftliches Rechnen, ETH-Zentrum, Zürich, Switzerland, Nov. 2000.

[77] A. Storjohann. High-order lifting and integrality certification. J. Symbolic Compu-
tation, 36(3-4):613–648, 2003.

[78] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13(4):354–356, aug
1969.

[79] M. Van Barel and A. Bultheel. A general module theoretic framework for vector
M-Padé and matrix rational interpolation. Numerical Algorithms, 3:451–462, 1992.

[80] R. Vandebril, M. V. Barel, G. H. Golub, and N. Mastronardi. A bibliography on
semiseparable matrices. CALCOLO, 42:249–270, 2005.

[81] R. Vandebril, M. Van Barel, G. H. Golub, and N. Mastronardi. Matrix Computations
and Semiseparable Matrices: Linear Systems. Johns Hopkins University Press, 2008.

[82] G. Villard. A study of Coppersmith’s block Wiedemann algorithm using matrix
polynomials. RR 975 IM IMAG, 1997.

[83] G. Villard. On computing the resultant of generic bivariate polynomials. In Proceed-
ings of the ACM on International Symposium on Symbolic and Algebraic Computa-
tion, pages 391–398. ACM Press, 2018.

[84] G. Villard. Elimination ideal and bivariate resultant over finite fields. In International
Symposium on Symbolic and Algebraic Computation (ISSAC), pages 526–534. ACM
Press, 2023.

[85] V. V. Williams, Y. Xu, Z. Xu, and R. Zhou. New Bounds for Matrix Multiplication:
from Alpha to Omega. arXiv:2307.07970, 2023.

[86] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Fast algorithms for hierarchically
semiseparable matrices. Numerical Linear Algebra with Applications, 17(6):953–976,
2010.

115

