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Titre : Vers une mobilité plus propre : développer une infrastructure de recharge pour véhicules électriques 

 

Mots clés : Véhicule électrique, infrastructure de charge, électromobilité, optimisation, économie 

Résumé : L’adoption à grande échelle de la mobilité 

électrique nécessitera une infrastructure de charge 

répondant aux nouveaux besoins émanant de ce défi. 

Actuellement, les infrastructures de recharge pour 

véhicules électriques sont encore au début de leur 

développement, notamment à cause du faible 

nombre de véhicules électriques. Les pouvoirs 

publics prévoient ainsi un investissement massif dans 

la filière de la mobilité électrique. Néanmoins, de 

nombreuses questions se posent quant au 

dimensionnement et à l’optimisation de ces 

infrastructures, à la fois du point de vue opérationnel 

et économique. Bien que cette optimisation ait fait 

l’objet de nombreuses études durant ces dix 

dernières années, des lacunes persistent, notamment 

en ce qui concerne le panachage de différentes 

solutions de recharge (normale, accélérée, rapide, 

piste à induction…) ainsi que sur les aspects 

économiques et opérationnels. De plus, le rapport de 

l’usager à la voiture particulière est en forte 

évolution, et les comportements de recharge des 

utilisateurs ne sont pas encore bien établis.  

Cette thèse vise à embrasser l’ensemble de ces 

considérations, pour contribuer au développement 

d’un outil d’aide à la décision pour les acteurs de la 

mobilité électrique afin d’optimiser le déploiement 

de cette nouvelle infrastructure de charge,  

qui se devra d’être adaptée aux besoins 

d’utilisateurs habitués à la facilité d'utilisation et de 

ravitaillement du véhicule thermique individuel.Elle 

présente une nouvelle méthode permettant 

d’évaluer, principalement pour des charges à 

destination, l’intérêt de déployer des stations à 

certains endroits, ainsi que de choisir celles qui 

seront les plus adéquates pour ces emplacements.  

Cette méthode de déploiement d’infrastructure 

s’appuie sur une approche multicritères basée sur 

des données de déplacement des conducteurs. Le 

but est de permettre un déploiement des stations 

à grande échelle, coordonné et en adéquation avec 

les besoins des conducteurs, tout en intégrant les 

contraintes d’installation et d’exploitation 

auxquelles font face les opérateurs de ces stations 

Les principaux résultats montrent que le 

déploiement des stations de charge lentes est 

prioritaire, de même que l’accès à une solution de 

charge résidentielle pour un maximum 

d’utilisateurs. Les stations de charge plus rapides, 

bien qu’ayant une vraie valeur assurantielle pour les 

utilisateurs craignant d’être à court de batterie 

avant de pouvoir se charger, ont surtout une utilité 

réelle pour des cas bien spécifiques tels que les 

longs trajets. 
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Title : Toward a cleaner mobility: Developing Charging Infrastructure for Electric Vehicle Transition 

Keywords : Electric vehicle, charging infrastructure, electromobility, optimization, economics 

Abstract : The widespread adoption of electric 

mobility will require a charging infrastructure that 

meets the new needs arising from this challenge. 

Currently, charging infrastructure for electric vehicles 

is still in the early stages of development, mainly due 

to the low number of electric vehicles. The public 

authorities are therefore planning a massive 

investment in the electric mobility sector. 

Nevertheless, many questions arise regarding the 

dimensioning and optimization of these 

infrastructures, both from an operational and 

economic point of view. Although this optimization 

has been the subject of numerous studies over the 

past ten years, there are still gaps, particularly with 

regard to the mix of different charging solutions 

(normal, accelerated, fast, induction track, etc.) as well 

as on the economic and operational aspects. 

Moreover, the relationship between the user and the 

private car is strongly evolving, and the charging 

behavior of the users is not yet well established.  

This thesis aims at covering all these considerations, 

in order to contribute to the development of a 

decision support tool for the actors of electric  

mobility in order to optimize the deployment of 

this new charging infrastructure, which will have to 

be adapted to the needs of users used to the ease 

of use and patterns of refueling of individual 

internal combustion engine vehicles. 

It presents a new method to evaluate, mainly for "at 

destination" charging, the interest in deploying 

charging stations at certain locations, as well as to 

choose the most suitable ones for these locations.  

This infrastructure deployment method is based on 

a multi-criteria approach based on driver travel 

data. The aim is to enable large-scale, coordinated 

deployment of stations in line with drivers' needs 

while integrating the installation and operational 

constraints the station operators face. 

The main results of this thesis show that the 

deployment of slow charging stations is a priority, 

as is access to a residential charging solution for a 

maximum number of users. Faster charging 

stations, while having a real value to decrease 

users' range anxiety, have actual usefulness for very 

specific cases such as long journeys. 
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Chapter 1

Introduction

1.1 Overview

1.1.1 Climate change and mobility

Climate change and air pollution are two of the most pressing environmental issues facing
the world today. Under the effect of increasing anthropogenic greenhouse gas emissions,
due to the use of fossil fuels, the greenhouse effect is intensifying. This causes an increase
in the average temperature at the surface of the planet, disturbing the balance of existing
ecosystems, causing among others melting of polar ice caps, rising sea levels, and more
frequent and intense natural disasters [4]. At the same time, the World Health Organiza-
tion points out air pollution as a major public health concern, with particulate matter,
nitrogen oxides, and sulfur dioxide being among the most harmful pollutants. This air
pollution is having a devastating impact on human health, causing respiratory problems
and other serious illnesses. These two problems are intricately linked and have a profound
impact on the world’s population, and the transport sector is a major contributor to those
issues.

Over the past century, transportation activity has considerably grown. For a long
time, the increase in transport flows was one of the driving forces behind the economic
growth of a globalized world where travel times were becoming shorter and shorter, and
this economic growth itself accentuated the need for transport [5]. The increase in mobility
is not without effects on the climate.

The transport sector relies heavily on fossil fuels, and the burning of those fuels by
ships, airplanes and especially road transports (cars, trucks, buses...) releases significant
amounts of carbon dioxide and other greenhouse gases into the atmosphere, contributing
to the warming of the planet. Additionally, emissions from transportation strongly con-
tribute to air pollution, particularly in densely populated urban areas where emissions

1



Chapter 1 – Introduction

are concentrated and trapped by tall buildings and other structures, creating localized air
pollution hotspots. [6]

Figure 1.1: Global CO2 emissions from transport by subsector, 2000-2030 [1]

APS: Announced Pledges Scenario ; NZE: Net Zero Emission by 2050 scenario [7]

To significantly reduce these emissions, profound changes in our travel habits are
needed. But over the past century, individual mobility has become so ingrained in our
habits and lifestyles that these changes are structural changes that will probably take
several decades [8]. This is particularly true for road transport, and especially for the
case of private cars. Private cars are responsible for nearly half of the emissions from
the transport sector, as shown in Figure 1.1. Nevertheless, it has been at the core of
land-use planning policies in recent decades and has therefore profoundly marked these
developments, making it essential. It has even become a symbol of freedom and social
success. Reducing its use is therefore likely to be one of the most time-consuming changes
to implement, since it affects many aspects of society’s organization and so involves the
transformation of an entire system, including infrastructure, regulations, and consumer
behavior.

Relying on traditional fossil-fuel vehicles during this transition period is absolutely
not compatible with the urgent need to decarbonize all parts of our economy. This is why
more sustainable transition solutions must be found.
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1.1.2 Electric vehicles

In order to accelerate this transition, the European Union has voted to ban the sale of
new Internal Combustion Engine Vehicles (ICEVs), with the aim of having a fleet without
any tailpipe emissions. To reach this goal of zero net tailpipe emissions, the actual trend
is the massive electrification of the transportation sector.

By definition, an electric vehicle is a vehicle powered by one or more electric motors.
These vehicles can be onboard energy vehicles, meaning that the energy needed for their
operation is stored inside the vehicle, or can be connected to an external source, as is
the case for the train. In this study, we will only consider onboard energy vehicles. This
definition can include several types of vehicles :

• The Battery Electric Vehicle (BEV), whose main energy source is an on-board
battery, that power an electric engine. These batteries can be charged from the
electrical grid, from domestic sockets, or from dedicated charging points.

• The Hybrid Electric Vehicle (HEV), a vehicle whose main engine is an internal
combustion engine vehicle. This main engine is assisted by one or more electric
motors, which are powered by a small battery. The battery is charged by recovering
energy while driving the vehicle. The electric motor is mainly used to start the
vehicle, for acceleration, and sometimes to drive at low speeds.

• The Plug-in Hybrid Electric Vehicle is in fact a Hybrid Electric Vehicle but has
a larger battery, which can be charged by connecting it to the electrical grid, as a
BEV. These vehicles generally run in full electric mode up to 50km/h (sometimes
faster), and the combustion engine takes over after a certain speed or if the vehicle
runs out of battery.

• The Fuel Cell Electric Vehicle is a rather particular type of electric vehicle. It
is only powered by an electric motor and the electricity necessary for its operation
is produced from a redox reaction between the oxygen contained in the air and the
hydrogen in its tank.

According to the zero net emission transport targets set by the European Commission,
HEVs and PHEVs will be banned from sale in the same way as internal combustion vehicles
by 2035.

Different formats of electric vehicles exist, ranging from electric scooters to semi-trailer
trucks. In this thesis, we will focus on light Battery Electric Vehicles, such as battery
electric cars or light-duty battery vehicles, which will be referred to as electric vehicles or
EVs in the rest of this dissertation.

3



Chapter 1 – Introduction

1.1.3 Electric Vehicles as a solution to more sustainable mobility

Electric vehicles, even if they are far from being a perfect solution, have many advan-
tages that make them an acceptable compromise as a first step towards more sustainable
mobility.

Firstly, and this is their main advantage, electric vehicles produce significantly less
greenhouse gas emissions and air pollutants than internal combustion vehicles, making
them a cleaner and more environmentally friendly option. Of course, their manufacture
has a non-negligible environmental impact, especially for the production of the battery, a
very energy-consuming process that uses many very polluting chemicals, in particular for
the refining of lithium and cobalt. However, once this manufacturing stage is over, the
electric vehicle is much less polluting than its internal combustion equivalent [9]. Over its
entire life cycle, an electric vehicle can halve the CO2 emitted compared to a combustion
vehicle, especially if it is used in countries with a low-carbon energy mix. This has an
effect on the global greenhouse effect, but also more locally, where air quality is greatly
improved. Indeed, the replacement of internal combustion engine vehicles by electric
vehicles reduces local concentrations of CO2, but also of fine particles, nitrogen oxides,
and other dangerous pollutants, which are not or not much emitted by electric vehicles.
By reducing air pollution, EVs can improve public health and reduce the incidence of
respiratory disease. In terms of public health, we can also note reduced noise pollution,
which is a significant improvement in urban areas and other densely populated areas.

Moreover, in a time of major tensions in the energy market, electric vehicles can in-
crease energy security. Having a transportation system that does not rely exclusively on
oil but on electricity, whose sources of production are much more diversified, allows to
be less dependent on oil-producing countries, and by extension on the prices they impose
on the world’s energy market. EVs reduce the need for imported oil, which can have
substantial geopolitical and economic benefits for countries [10]. This positive effect is
further enhanced by the massive adoption of renewable energies, which can itself be fa-
cilitated by the use of electric vehicles, while the energy sector is still by far the largest
emitter of greenhouse gases and must decarbonize at least as fast as the mobility sector
in this climate crisis. One of the obstacles to a more important renewable energy pro-
duction comes from its intermittent character, especially for solar and wind energy, and
the difficulty to store energy. Electric vehicles, through various mechanisms, can help to
absorb this intermittent nature, and thus facilitate the increase in the share of renewable
energy in the energy mix. Still, on the subject of energy, electric vehicles are more efficient
than combustion engine vehicles. According to the ADEME, the French Agency for the
Environment and Energy Management, taking into account the whole energy production
chain, the "well-to-wheel" energy efficiency of a thermal vehicle is around 30%, while that
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of an electric car is estimated at a little over 60% (these rates are respectively 40% and
90% if only the vehicle is taken into account).

Additionally, from an economic point of view, electric vehicles also have beneficial
effects. The development of the electric mobility sector creates new jobs and economic
growth, and drives innovation in many sectors, for example batteries, with positive effects
on other sectors than mobility.

And more anecdotally, but still important from a driver’s point of view, many EVs have
instant torque and responsive acceleration, providing an enjoyable driving experience.

So overall, the increased use of EVs is seen as a step towards a more sustainable and
environmentally friendly transportation future.

1.1.4 Barriers to massive EV adoption

However, all these advantages do not make the electric vehicle a perfect solution for more
sustainable mobility, and some challenges are still to be tackled.

First of all, even if it is not the subject of this thesis, we would like to remind that the
social and environmental impact of electric vehicles is far from zero. Even if EVs have no
tailpipe emissions and therefore bring improvements to the places where they are used,
their production, and more particularly the production of their batteries, represents a
significant social and environmental cost. Today, the rare earth needed to produce bat-
teries is mostly produced in countries where workers’ rights and environmental standards
are little or not at all respected. In addition, the construction of an electric vehicle uses
resources that are becoming increasingly scarce, and tensions in the supply of certain
materials are beginning to emerge. Moreover, the absence of tailpipe emissions should
not make forgotten that the electric energy produced upstream to operate the vehicle
must also be decarbonized if the switch to electric vehicles is to be truly beneficial for the
climate. A lot of work needs to be done on the entire supply chain and end of life of the
vehicle in order to make the electric vehicle socially and environmentally acceptable.

Even without considering these aspects, the transition from a fleet of ICE vehicles to
a fleet of electric vehicles raises several important issues on the consumer side [11, 12].

The first barrier is the price of electric vehicles, combined with the lack of alternative
offers for all uses: today, an electric vehicle still costs at least 30% more than its internal
combustion engine equivalent. But public subsidies already exist for the purchase of
electric vehicles, and their price is set to fall in the next few years to converge in the
medium term with that of internal combustion vehicles, and in some markets, fuel and
maintenance savings are already making them less expensive over their entire life cycle.
Moreover, if the options of EVs connected to their environments in bidirectional mode
develop at the level of electricity transmission networks, distribution networks, individual
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homes, and buildings, then the costs of using these EVs should fall even further, thereby
erasing this obstacle to the electrification of vehicles.

The second barrier is range anxiety. This notion refers to the fear of drivers that they
will not be able to travel in an electric vehicle as they would with a combustion engine
vehicle, because of their lesser autonomy and the difficulty of finding a charging solution.
This fear is a much more structural barrier than the price of the vehicles. To remove this
barrier, there are two main solutions. The first solution is to increase the autonomy of
each car by increasing the capacity of the battery... which only shifts the problem a few
kilometers, since the fear of not being able to charge when needed remains. Moreover,
increasing the autonomy of vehicles, and therefore the size of their battery, which is
already sufficient for most daily trips, increases the selling price of these vehicles as well
as their environmental impact. The second possible solution is to increase the supply of
charging points. If EV drivers can be sure that they will be able to find charging solutions
corresponding to their needs when they need them, range anxiety will be greatly reduced.
There is a trade-off between battery capacity per EV and investment in infrastructure,
but in any case, the democratization of EVs will necessarily require the deployment of a
network of charging stations adapted to the needs of users, who do not all have access to
an electrified parking space [13].

1.1.5 Charging infrastructure

An EV charging station infrastructure is a coherent set of charging solutions that ensure
an efficient charging solution for electric vehicles present on or using, the roads of the
concerned territory. This package of solutions includes an assortment of charging stations
that can be roughly classified into three categories: slow, intermediate, or fast. Slow
charging stations, with a power of 1.5 to 7 kW, fully charge a vehicle in about ten hours;
intermediate charging stations, often with a power of 22 kW to 50 kW, achieve this in
about 3 hours; finally, fast charging stations, with a power of 150 to 350 kW, are able to
charge a battery in a few minutes, which can be very interesting for urgent uses. However,
the installation price of a fast-charging station can be more than 100 times higher than
that of a slow charging one. This is due to the price of the charging station itself, but also
to all the costs related to the electrical and IT environment and the operational security
of the charging point[14]. For example, the installation of a 350 kW charging point -
which corresponds to the power consumed by 20 houses - requires more precautions and
investment in terms of user safety than a 3 kW charging point (about the power of a
washing machine), knowing that 4-10 charging points are usually installed in the same
place rather than one!

The fastest charging stations, generally from 50kW upwards, are most often "DC"
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stations, meaning that the electrical power they deliver is transferred directly to the
battery in the form of direct current. The lower power chargers are rather "AC" chargers,
which means that they deliver an alternating current to the vehicle. This alternating
current is then transformed into direct current in the vehicle thanks to an onboard charger,
then used to charge the battery.

These different types of chargers are not compatible with all vehicles. While almost
all vehicles accept AC charges of up to 7kW, a significant proportion does not support
high-power DC charges. In addition to these compatibility problems, there are also chal-
lenges in standardizing connectors and communication protocols of the charging stations.
Even though standardization is beginning to emerge on a regional scale, an international
standard is not yet in place.

1.1.6 Charging infrastructure and economic issues

The financial stakes for charging infrastructure are very high. The electric vehicle (EV)
charging infrastructure market is projected to grow significantly in the coming years as
the demand for EVs increases. According to a report by Precedence Research, the global
EV charging station market size is expected to grow from around $30 billion in 2020 to
more than 400 billion by 2030.

Investment in electric vehicle charging stations can come from several sources.
First, governments can provide subsidies and tax incentives to encourage the devel-

opment of charging infrastructure. For example, in many countries, governments have
established subsidy programs for companies and individuals who install charging stations.
Governments may also directly fund the construction of charging stations.

Local public services can also invest in charging infrastructure to meet the growing
demand for electric energy. They can also offer special charging rates to encourage the
use of electric energy and help fund the installation of new charging stations.

Then, electric vehicle manufacturers can invest in charging infrastructure to support
demand for their vehicles. Some electric vehicle manufacturers have partnered with charg-
ing companies to facilitate the installation of charging stations, such as in the Ionity con-
sortium, a fast charging station deployment initiative created by five of the world’s largest
automakers.

Finally, companies specializing in the sale of charging solutions can of course invest in
their own charging infrastructure to meet the growing demand for electric vehicle charging
services. These companies can also offer partnerships with other companies to install
charging stations in locations frequented by electric vehicle drivers. Private investors may
also invest in electric vehicle charging infrastructure, such as venture capital funds that
invest in charging companies, or individual investors who fund the construction of new
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charging stations.

While this may be an opportunity, as it multiplies the opportunities for infrastructure
development, this diversity of players in this still immature and growing market requires
a lot of coordination between them.

This extremely rapid growth of the market, regarding the costs involved, is quite risky,
especially because of the upfront costs associated with installation. The cost of installing
an EV charging station can range from a few thousand dollars to hundreds of thousands
of dollars, for very different services provided, and inappropriate decisions can result in
a significant waste of resources, or even doom the profitability of the infrastructure in a
market still full of uncertainties. One of the biggest challenges for businesses and property
owners is generating revenue from EV charging infrastructure. While some companies offer
free charging to attract customers, most businesses charge a fee for using their charging
stations, and the revenue generated from charging fees may not be sufficient to cover the
upfront and ongoing costs of the charging infrastructure in case of wrong investments.

Finally, there is the issue of geographic coverage. Today, while electric vehicle sales
are increasing rapidly, the number of charging stations is not keeping pace. This means
that in some areas, there may be a shortage of charging stations, which can discourage
consumers from purchasing EVs. In order to encourage the adoption of electric vehicles, it
is important to ensure that charging infrastructure is widely available and easily accessible.

1.2 Contributions of this dissertation

The development of a charging infrastructure, which is crucial for the electrification of
the vehicle fleet, is therefore not trivial, and the issues related to it are very important.
This development responds in particular to economic, technical, social, psychological, and
regulatory issues.

This dissertation explores the development of charging infrastructure through a multi-
criteria approach, primarily centered around the interests of current and potential users
of the infrastructure. It is organized into 3 chapters. In what follows, we describe the
research problems addressed in the 3 chapters. This dissertation ends with a concluding
chapter that summarizes the contributions of the thesis and highlights future research
directions.
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1.2.1 Too much or not enough? Planning electric vehicle charging

infrastructure: A review of modeling options

This chapter focuses on the analysis of the deployment methods of an electric vehicle
charging infrastructure on a territory, through a literature review.

It explores some of the technical, economic and psychological issues of the links be-
tween the development of the electric vehicle and the associated charging infrastructure.

First, we reviewed the issues related to the development of a charging infrastructure in
a transitioning mobility landscape, particularly its link to the acceptability of the electric
vehicle as a main vehicle. The different uses of the infrastructure are listed, then the
objectives and methods used to develop a charging infrastructure capable of meeting these
uses are classified and compared. This helps us to define which type of deployment model
is best suited to achieve an infrastructure that accompanies and supports the development
of the electric vehicle.

This chapter has been published in Renewable and Sustainable Energy Reviews (Else-
vier) [15].

1.2.2 From user to operator: Rationalizing the charging infras-

tructure deployment.

Based on the analysis made in the previous chapter, we propose in this section a new
deployment model for coordinated charging infrastructure at the scale of a large territory.
This multi-criteria model is centered on the needs of the users. It integrates a progressive
dimension of the infrastructure deployment, by proposing a step-by-step optimization
of the infrastructure at each stage of its development. This optimization model also
integrates the possibility of deploying different types of charging stations, always with the
aim of going hand in hand with the progressive electrification of the vehicle fleet.

We then apply this model to the Berlin region using a MATSim multi-agent simulation,
in order to analyze the effects of our model on the population under consideration and to
draw lessons on infrastructure deployment.

This chapter is under a submission process in Transportation Research Part. B (El-
sevier)

1.2.3 Tenerife’s Infrastructure Plan for Electromobility: A MAT-

Sim Evaluation

This third chapter is a case study of the deployment of charging infrastructure in the
Canary Islands (Spain). The government is pushing for the complete decarbonization of
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the transportation system on the islands by 2040, while there are still very few charging
solutions, which cannot support a 100-electric vehicle fleet.

In this study, we apply our model to the island of Tenerife, still using a MATSim multi-
agent simulation. We introduce two main novelties compared to the previous study. First,
we take into account the charging stations already existing on the island and develop the
infrastructure from this base. Second, we progressively introduce electric vehicles during
the deployment stages, using a probabilistic model based on the agents’ income.

This chapter has been published in Energies (MDPI) [16]
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Chapter 2

Too much or not enough? Planning
electric vehicle charging infrastructure:
A review of modeling options

*

While the transportation sector is responsible for a growing share of greenhouse gas emis-
sions, electric vehicles (EVs) offer solutions for greener mobility. The proportion of electric
vehicles in transportation fleets is increasing, but wider adoption will not be possible with-
out an appropriate charging infrastructure. The deployment of such infrastructure should
follow a strategy that considers both the environment in which it is deployed and the
behavior patterns of electric vehicle users. If these aspects are not taken into considera-
tion, there is a risk of failing to meet users’ needs and generating additional costs. Here
we review the literature on location problems for electric vehicle charging stations. We
aim to draw up a comparative overview of approaches that have been used up to 2020
for optimizing the locations of charging infrastructure. We first briefly review the issues
raised by the deployment of charging infrastructure, namely technical, economic and user
acceptance concerns. We then look at the goals of the infrastructure location models in
the literature. Schematically, those goals fall into two categories: minimizing the cost of
charging infrastructure for a given level of service, or maximizing the service provided for
a given cost. Finally, we focus on the approaches used to achieve these goals. Three cat-
egories of approaches are identified: node, path, and tour- or activity-based approaches.
We then discuss these approaches in relation to technical, economic and user acceptance
factors in order to provide a comprehensive analysis for stakeholders involved in EV charg-
ing infrastructure planning. Directions are given for future research to develop models
that better reflect the real-world picture.
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2.1 Introduction

The climate emergency requires a drastic and rapid reduction in anthropogenic greenhouse

gas (GHG) emissions, which are the cause of the fastest global warming ever observed [17].

The transportation sector is responsible for about 15% of global GHG emissions (27% in

the European Union), and this rate is expected to increase in the coming years [18]. A

transition from internal combustion engine (ICE) vehicles to greener transportation could

be a major lever for reducing global GHG emissions.

For road transportation and individual mobility, which account for the largest share of

transportation-sector emissions, electric vehicles (EVs) emerge as a major alternative to

ICE vehicles. Considering the whole lifetime of the vehicle, EVs have a lower global warm-

ing potential than ICE vehicles, especially if they are coupled with low-carbon electricity

production systems [19]. Moreover, EVs have many other benefits, such as no tailpipe

emissions—which could help avoid air pollution and exposure to nitrogen oxides, volatile

organic compounds, and carbon monoxide in urban areas, and reduce particulate matter

emissions—and far less noise than ICE vehicles.

Despite all these benefits, large-scale uptake of EVs is bottlenecked by a number of

different barriers [12]. A first major barrier is the high purchase price of EVs compared to

ICE vehicles, although the purchase price impact is expected to diminish shortly. When

considering total cost of ownership over the whole life cycle, an EV is already less expensive

than an ICE vehicle in countries such as Norway or France [20]. Moreover, the purchase

price of EVs is projected to drop below that of ICE vehicles by 2025 [21]. The second

main barrier for users is tied to range anxiety. Most EVs have a lower driving range than

ICE vehicles. Even though the range offered by a full-charge battery is sufficient for daily

use for a large majority of users, they fear that they will run out of battery before being

able to finish their trips or find a charging point. User anxiety is thus the main problem to

address to enable large-scale EV adoption. The way forward could be to increase battery

capacity to improve EV range or to provide an efficient charging infrastructure to better

cover charging needs. However, even with a larger range, the fear of not being able to
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charge EVs when the battery is empty is still the same [22], so large-scale EV deployment

cannot be achieved without a prior appropriate charging infrastructure [13]. Furthermore,

research shows that investing in charging infrastructure is more efficient than subsidizing

larger batteries as long as the investments in charging infrastructure are not sufficient to

cover the whole territory [23, 24, 25].

However, deploying a charging infrastructure is hugely expensive and comes with sev-

eral technical and economic constraints. The Energy Transition for Green Growth act

in France sets a target of 7 million EV charging stations (public and private) by 2030,

which corresponds to a minimum cost of around 2 billion euros [26] while an International

Council on Clean Transportation (ICCT) report projects an estimated 1 billion dollars in

investment over the 2019–2025 period for the USA to fill its public charging infrastructure

gap [3]. These huge costs warrant a proper deployment strategy to efficiently locate and

scale new charging stations in order to favor large-scale EV adoption while avoiding re-

source waste or underinvestment for infrastructure investors. This deployment, with the

costs it entails, also faces a chicken-and-egg problem: drivers will be reluctant to buy an

EV without adequate infrastructure, while operators will refuse to invest in infrastructure

until there is sufficient demand to make it profitable. To ease this bottleneck, the first

step must be taken by operators [27].

Once the first step has been taken, the issue of optimal deployment of a vehicle refu-

eling infrastructure is not a new challenge. Coverage and location models, such as those

of Toregas [28] or Hodgson [29], have been around for a relatively long time and are

perfectly applicable to gas refueling stations. However, EVs have different demands to

ICE vehicles (charging takes longer than refueling), which makes these coverage models

incompatible with routine EV use. Models taking these specificities into account have

thus been developed since the end of the 2000s.

Nevertheless, few of them seem to take advantage of the benefits offered by electric

vehicle charging, which does not require the user to be present during charging time.

Moreover, the deployment of such an infrastructure does not happen all at once, partly
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because of the problem of the development costs it would generate without a guaranteed

return on investment from a demand that will take a long time to come, which brings us

back to the previous chicken-and-egg problem. An incremental and over-time deployment

must be considered, considering the early stages of the infrastructure already present in

the territory.

This literature review aims to provide an overview of the timely problem of EV charg-

ing infrastructure planning in terms of the optimization models used to determine opti-

mal locations of charging points, and sizing. It explores and compares a rapidly growing

scientific literature proposing strategies and simulation models for deployment of electric

charging infrastructures, considering the technical, economic and user-side aspects of EVs.

To identify the first relevant articles, the Google Scholar database was searched with

combination of keywords : {EV, electric vehicles, charging infrastructure, charging sta-

tions} and {planning, location, model, optimization}. We kept a sample of 287 articles

containing literature reviews and papers on infrastructure optimisation and deployment

models cited as references in this field. The articles cited in these papers and the articles

also citing them were then screened, and we added 63 relevant articles to our review.

The paper is structured as follows. Section 2.2 explains the different charging technolo-

gies and the issues involved in deploying charging infrastructure. Section 2.3 presents the

objectives and targets of infrastructure deployment. Section 2.4 then covers the methods

for locating and sizing infrastructure in a territory, and Section 2.5 highlights gaps in the

literature and avenues for future research.

2.2 Background on charging infrastructure and the al-

lied issues

The issue of deploying charging infrastructure for EVs is set in the following framework:

EV users with limited autonomy travel the road network. Making these trips consumes

energy, which in turn decreases the state of charge of the EV battery and creates a need to

15



Chapter 2 – Too much or not enough? Planning electric vehicle charging infrastructure:
A review of modeling options

charge, which can be met in two ways: either through home/office charging, or through

public (or semi-public) charging infrastructure. This infrastructure needs to stay at a

reasonable cost for operators, who have limited investment capacity, while giving EV

users the transportation network coverage they need. The goal is to enable drivers to

use their EVs with less range anxiety, knowing that they can rely on public charging

infrastructure when they need it. As public charging infrastructure supplies energy from

the grid, infrastructure deployment needs to consider the constraints linked to power grid

operation.

Figure 2.1: Overview of the charging infrastructure framework

In this framework, three main types of issues are to consider when deploying charging

infrastructure : technical, economic and user-centred issues.

2.2.1 Technical overview of charging devices

Charging devices provide the link between electricity grid and EVs by converting AC

power into DC power, which can charge a battery. They can be on-board or off-board,

depending on the type of charging.

The International Electrotechnical Commission (IEC) defines four charging modes [30].

In the first three modes, the EV is directly connected to the AC distribution network, and

the conversion to DC is done through the vehicle’s onboard charger. The main difference
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between these three levels lies in the level of safety and charging control, which allow the

vehicle battery to be charged with more or less power. For example, mode 1, which is

used for low-power charging, is equivalent to plugging the vehicle into an electrical outlet,

while mode 3 allows advanced charging control and higher charging power. The mode

4 is mostly used for fast charging applications. Unlike the three first modes, here the

connection of EVs to the AC grid is not direct: the AC power is converted into DC power

in an off-board charger, and then used to charge the EV’s battery. Figure 2.2 gives a

simplified illustration of EV charging.

Figure 2.2: Simplified architecture of EV charging

2.2.2 Charging infrastructure and EV acceptance

Charging EVs generally requires much more time than filling up an ICE vehicle gas tank.

Charging times go from a few dozen minutes for the fastest chargers up to more than 20

hours for the slow ones [31]. Charging stations thus have different design and management

imperatives to conventional gas stations. EVs have different refueling behaviors due to

different required charge-times and charging locations, especially when taking into account

one of the major conveniences offered by EVs, i.e. that EV batteries can charge while

the vehicle is not in use for mobility purposes (while parked at home, the workplace, in

mall parking, etc.). Home EV charging does not require any effort from the driver other
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than plugging in the EV. It also does not require any specific installation—at least not

for slow charging [30] - even if the majority of EV drivers install specific equipment to

increase charging speed and for safety aspects. Moreover, in 90% of cases, trips do not

exceed 80 km, whereas the typical range for an EV is about 200 km 1 [33, 34]. Thus, home

charging should be sufficient for a large majority of users: with a fully charged battery

when leaving home, they could complete their daily trips and charge their EV once back

home, ready for the next day.

However, home charging has some limits. First, if trips—or a succession of trips—exceed

the EV range, then drivers need to be able to charge their EV elsewhere than at home.

If this is not possible, then EVs will remain as a second car for the wealthiest percentiles

of the population, since users will not be able to use it to make occasional long journeys

and will therefore prefer an ICE vehicle [13]. Moreover, in many countries, a large part of

the population do not have a single-family home with a private parking space where they

can install a charging point [35]. This illustrates that relying solely on home charging for

the transition from ICE vehicles to EVs will leave important barriers to the adoption of

electric mobility, justifying the need for an appropriate public charging infrastructure.

The range and charging constraints of EVs make it illusory to envisage the broad

diffusion of EVs without sufficient charging infrastructure. At the same time, if there are

not enough EVs on the road, there will not be enough interest in setting up an expensive,

unprofitable charging infrastructure. But without this infrastructure, it is illusory to

envisage the democratization of EVs... The chicken-and-egg problem in this two-sided

market has been studied by Delacretaz et al. [36] who show that an initial infrastructure

has little immediate positive effect on EV adoption but that positive effect does increase

over time. They also show a snowball effect: the demand elasticity for EVs relative

to charging infrastructure provision increases with infrastructure development. In other

1Note : This is valid for the European market, where the population densities are rather high and the

distances to be travelled relatively small. In the case of the US or similar markets, the distances involved

may be higher. However, they remain well below 200km, which is already a pessimistic estimate of the

range of a standard electric vehicle. [32]
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words, the more charging stations there are, the greater the increase in EV demand with

further investment in charging infrastructure.

This raises the question of marginal—or incremental—infrastructure development. An

infrastructure is deployed in a spatial context, but also in a temporal one, and it is

unrealistic to consider instantaneous deployment of a complete set [37]. It is therefore

important to define a temporal deployment sequence along with a spatial set of locations

to determine the most cost-effective investments [38]. Otherwise, the risk is to end up with

an infrastructure unsuited to driver needs at the beginning, which would not allow the

diffusion of EVs to start and thus discourage additional investments in infrastructure, and

so on (again, a chicken-and-egg paradigm). In addition, even though charging stations

are often deployed without a global vision, they nevertheless already exist in the territory,

and it would be a mistake not to consider this existing resource. We must therefore think

about the problem of placing ‘one more charging station’ and the value of this station

when there is already a set of operational stations, while almost all the models focus on

optimising the final charging infrastructure without considering the process to get there.

2.2.3 Economical issues

A naive approach would be to consider the best option is to put fast chargers everywhere,

as people value the option to charge quickly [39]. However, a DC fast charging station

costs much more than a slower one. The average cost for a level 2 public charging station

is $3000, while the average cost of a DC fast charging station is nine times more (Table

2.1).
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Table 2.1: Electric vehicle supply equipment (EVSE) purchase and installation costs in
the U.S. [3]

EVSE Type Average public installation cost Average home installation cost

Level 1 $4000 $400 -$900

Level 2 $6000 $680-$4100

DC Fast Charging (50 kW) $73,000 Not available

DC Fast Charging (150 kW) $120,000 Not available

DC Fast Charging (350 kW) $205,000 Not available

Since more expensive infrastructure should lead to more expensive charging service

for users, a poor choice of electric vehicle supply equipment (EVSE) penalizes not just

the consumer but also the operator for whom a charging station adapted to local needs

guarantees a better return on investment. Let us explain this with a simple example.

Suppose a charger able to fully charge an EV in three hours is placed in a site where

parking times are usually eight hours. A person who leaves their EV parked and plugged

in will charge for a maximum of three hours but then unnecessarily occupy the terminal

for the remaining time. However, for the same budget, several slower charging stations

could have been installed which would maximize the profit for the operator and the level

of service for users.

Finally, it is important in the case of several operators that they coordinate with each

other to ensure interoperability and good global coverage. But it is also important to put

in place regulations to prevent the creation of local private monopolies in public parking

areas, which would be harmful to users [40].

2.2.4 Power grid issues

Another issue in charging station location concerns the power grid. Level 1 infrastructure

only requires about 3kW from the power network, which is no more than common house-

hold appliances. This should not have a big impact on the wider grid, even when several

EVs are simultaneously charging, or at least not one that a small tariff incentive could
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not solve. However, current fast chargers can require up to 150kW from the grid, which

is not necessarily scaled for that, especially if there are several fast chargers at the same

place, as is the case with charging hubs. Placing chargers requiring too much power in

non-adapted locations can stress the existing infrastructure and lead to the need for grid

reinforcement, which can be very expensive [41].

The choice of charging station type and placement can therefore be a source of cost

inefficiencies. To control the total cost of the infrastructure, this choice must be considered

in relation to the real needs of users, as well as the capacity of the power grid.

Charging EVs is not simply a source of grid stress but also a potential source of

grid stability if combined with smart grid management to exploit positive synergy with

renewable energy production. Renewable energies are a source of stress for the electricity

grid, as they are not or only partially controllable. Therefore, they sometimes produce

too much energy with respect to the needs, and this surplus of energy has to be used. The

batteries of EVs can then store this surplus energy produced by renewables to smooth out

excess power output. Scheduling the charging of vehicles according to the constraints of

the electrical grid is often called "smart charging".

EVs can also provide additional power to the grid during grid stress episodes by

injecting electrical power from their battery into the grid, like a generator [42]. This

bi-directional mechanism is commonly called Vehicle-to-Grid (V2G). Through this mech-

anism, EVs can notably flatten consumption peaks and play a role in regulating grid

incidents by providing ancillary services to the grid, such as frequency regulation, re-

source adequacy, network deferral, energy arbitrage, spinning reserve, etc. [? ] They can

also directly fast-charge other vehicles, avoiding power demand peaks from fast charging

on the distribution network [43].

2.2.5 Summary

In summary, the charging infrastructure for EVs needs to address technical issues linked

to the technology used and the constraints it places on existing grid infrastructures. It
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also meets financial challenges: the costs related to charging infrastructure are relatively

high, so it is important for operators to avoid making unnecessary investments and to be

assured of a return on their investments. Finally, charging infrastructure needs to respond

to user demand in order to garner user acceptance of EVs.

The financial stakes and public acceptance of EVs are closely linked: insufficient cov-

erage of the territory, i.e. underinvestment or unwise investment, will discourage users

from buying and using an EV. This in turn will have consequences on return on invest-

ment, as would prohibitively high utilization cost of the infrastructure. The technical

constraints linked to the charging station energy supply can lead to significant additional

costs linked to the electrical network. Finally, the adoption of EVs requires a charging

infrastructure technology that meets users’ expectations. Users expect to have at their

disposal an infrastructure that suits their needs in a convenient way, and that they can

rely on.

2.3 Overview and scope of planning simulation models

An appropriate EV charging infrastructure has to satisfy technical, economic and accept-

ability constraints. The infrastructure must address a threefold issue: its location, i.e. its

distribution on the transport network, its capacity, i.e. the demand it can serve, and its

users. In addition, infrastructure deployment can serve different goals depending on the

interests of those deploying it on the transportation network.

To describe a transportation network in a location problem, we decompose it into

nodes and paths (or links). The simplest strategy is to define one in relation to the other:

a path or route is a link between two nodes, and a node is the intersection point of two

paths, or can be the end of a path too.

Users make trips in the transportation network, i.e. they travel between two nodes.

They also make tours, i.e. series of trips. During those trips, EV users use energy from

their batteries, and sometimes need to charge their EVs with charging infrastructure in
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public space.

2.3.1 Users and charging infrastructure utilization

Location and sizing of the charging infrastructure must meet user demand. The literature

mainly focuses on three types of charging-infrastructure users: buses, taxis, or private

vehicles. A classification has been made in the table in the Appendix A.

Charging infrastructure is easier to design for buses, as buses have fixed tours with

(more or less) precise time schedules, so uncertainties about their state of charge, avail-

ability or itinerary is quite low. For this problem, there are two options. If the buses

have enough autonomy to run all day long without being charged, they can simply be

charged at the end of their shift at charging stations installed at the depot. The second

option is to place fast charging stations at bus stops to allow all buses to complete their

tours, as described by Wang et al. [44]. The stops at charging points do not even have to

be longer than at other bus stops, as current flash charging technology is able to charge

two or three kWh into bus batteries in a couple of seconds. In this case, the choice could

even be made to place a fast charging point at each bus stop, allowing the buses to be

equipped with low-capacity batteries. These two options are not mutually exclusive, and

it is possible to charge buses at night and add charging stations for buses that are unable

to complete their tours.

For taxis, as fuel is a large part of their costs and they mainly make short trips, EVs

could be an excellent option, and taxis could become a good showcase for the usefulness

of EVs2, but the charging infrastructure has to meet specific requirements. First, electric

taxis cannot charge during trips with a customer: they have to charge during idle time.

However, these downtimes must be as short as possible. This is why it is critical here

to consider the time spent at the charging station (waiting time and charging time), as

2Note: In Amsterdam Airport Schiphol, where there is the largest Tesla taxi fleet, taxis are massively

using the free infrastructure provided by the car company, making it the most intensively used charging

infrastructure in the world.
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it is idle time for the driver. Taxis already have many idle time situations, typically

when waiting for customers. Charging time should not be an additional heavy constraint.

Ideally, it should be available where and when taxis have idle time. Then, because it

is common for taxi drivers to share a vehicle, home charging is not always an option:

the charging infrastructure for taxis must allow them to operate continuously. The fast

charging option is therefore often preferred for taxis.

Most of the literature focuses on private vehicles, which account for the biggest share of

the vehicle fleet, or at least considers that an infrastructure can be developed for all light

vehicles. Private vehicle owners have a wide variety of uses for their vehicles depending

on their environment (rural, urban), travel habits (distance from their main points of

interest, frequency of travel), and many other factors. The different ways of looking at

the case of private vehicles are detailed in the rest of the paper.

2.3.2 Optimization goals

The literature has considered several optimization goals to effectively meet user charging

demand.

Many studies aim to minimize the infrastructure costs for meeting a given demand,

thus taking demand as a constraint. Like infrastructure costs, some papers only take the

installation costs into account. These can be a simple fixed cost for any charging station,

which can be actualized considering its life-cycle as in Dong et al. [45]. In this case, the

objective narrows down to finding the configuration that allows to have as few stations

as possible. The cost of charging infrastructure can also be made more complex if we

consider the different costs of chargers and the construction costs, land costs as in Mehar

et al. [46], or network reinforcement costs as in Rajabi-Ghahnavieh et al. [47]. Others

take into account both investment and operation costs, such as maintenance costs or cost

of electricity (Jia et al. [48]).

With a view to achieving profitability, several papers also aim to maximize the utili-

sation of chargers (Cai et al. [49], Pevec et al. [50]).
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Other studies choose to deal not with the infrastructure cost but with minimizing

the user’s costs. User costs are mainly tied to time spent waiting at charging stations

(Hanabusa et al. [51], Tu et al. [52]), and the trip—or the deviation from their original

path—they have to make to charge their vehicle (Ge et al. [53], Xu et al. [54]).

Some papers choose to focus on maximizing the number of EVs that could be charged

at the station. In other words, the objective is to maximize EV flow at the charging

station, based on the rationale that the more people have access to the infrastructure, the

more useful it is. Some models only consider a location problem and provide a geographical

coverage of the demand (Wang and Wang [55], Motoaki [56]). In this case, the objective

is to have a maximum number of EVs with access to a potentially available station, and

the charging station locations are uncorrelated to the charging station sizes. Other works

consider the availability of the station, by introducing charging time during which the

station is unavailable (Sun et al. [57]), or queuing models (Yang et al. [58]). This allows

to address the question of sizing the infrastructure.

An alternative to maximizing EV flow is to maximize the amount of energy charged

by the EVs (Chen et al. [59], Csizar et al. [60]) or the global distance they can travel

(Wang et al. [61]), which is almost the same. This prevents many vehicles being covered

by a single station, as can be the case with the previous objective. However, in this case

charging 10 kWh in a single EV is the same as charging 1 kWh in ten vehicles, regardless of

whether the intended trip is feasible for the vehicles. This is why some papers aim to build

a charging infrastructure that minimizes failed—or maximize feasible—trips (Asamer et

al. [62], Micari et al. [63]).

These optimization objectives are implemented using various location methods, as

detailed in Section 2.4.

2.3.3 Sizing charging infrastructure

With the problem of location comes the problem of sizing the charging stations at the

chosen locations. This is mainly a matter of answering two questions: how many charg-
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ing points should be placed at a location, and which charging speed should be chosen.

Locations are also dependent on station capacity, i.e. the number of vehicles that can be

served within a certain period. For example, if a station with a large service capacity is

installed at one location, there is limited interest in placing another station near it.

Some studies only focus on the problem of locating charging stations, sometimes con-

sidering an infinite capacity [55, 64] which does not represent a real situation where

charging points can only accommodate a limited number of vehicles. But once locations

have been found without considering this limited capacity, charging stations can be sized

according to the demand at each station, as in Micari et al. [63]. The sizing can be

done simply with the number of EVs likely to need each station, or by more sophisticated

models such as queuing models that can consider the randomness of charging demand, as

in Zhu et al. [65]. However, not considering the capacity of charging stations in a first

step of charging station location planning can lead to sub-optimal results, as the size of

the stations influences their distribution over a territory.

Some models directly take into account limited capacity of their charging stations as a

constraint, like the models proposed by Upchurch et al. [66] or Gavranovic et al. [67]. By

doing so, it is possible to consider disparities in demand and avoid, for example, an area

with a high concentration of demand being covered by only one station that will not be

able to satisfy all the demand in its area. In addition, multiplying the number of stations in

areas of high demand reduces the impact of a failure of one of them, which is important for

the reliability of the infrastructure. Unlike the previous method, however, this approach

leaves little flexibility in terms of the size of each station, since this parameter must be

set beforehand.

Sizing the charging infrastructure is not just a matter of deciding the number of

vehicles that can be accommodated, but also the time spent at the station. It is not

always inconvenient that the charging process takes several hours, but this is not always

acceptable, such as during long journeys requiring a quick charge to reach the destination.

That is why it is also important to wisely choose the power level of charging stations based
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on the use case, and many models incorporate power sizing (You et al. [68], Wang et al.

[69]). This sizing can also be done with each type of station chosen according to the type

of targeted route, which allows fast charging stations to be placed where a quick charge

is most useful. Indeed, even if increasing the charging speed of a station also increases its

capacity as it serves EVs faster, slow charging stations are a more cost-effective option to

meet the needs of a whole territory (Sun et al. [57]).

Finally, charging stations must be sized by considering grid capacity at the location

of the charging points. As explained earlier, a large number of charging points at the

same place or high power charging points cannot be installed where the electrical grid is

too weak, at the risk of causing instabilities due to excessive power demand [70]. Some

studies choose to take the characteristics of the electrical grid as a constraint (Zhu et al.

[65], Zhang et al. [71]), and a few consider the possibility of reinforcing the electrical grid

(Sadeghi-Barzani et al. [72], Guo & Zhao [73]). Other grid-related issues, such as peaks

in demand or power quality, may also arise because of charging infrastructure that does

not take the power grid into account [74] or because of a power grid that does not take

the charging infrastructure into account, depending on the point of view.

2.4 Location methods

Several methods to locate charging infrastructure have been developed, and most can be

grouped into three main categories: node, path, or tour-based approaches [75].

The node-based approach is the most popular method for locating charging stations. It

deals with the location problem as a facility location problem, which has been extensively

studied for many applications [76]. The problem to be solved is formulated as follows.

Given candidate locations which are the nodes, the objective is to place facilities, i.e. the

charging stations, to meet the demand at the nodes. Even if it seems a simple formulation,

this problem belongs to the NP-hard class, meaning that we are not able to find exact

solutions in a reasonable time because the corresponding resolution algorithms have an
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execution time that increases exponentially in the problem dimension. Heuristic methods

are often used to provide approximate solutions in a reasonable computing time. The

principle of the method is illustrated in Figure 2.3.

Figure 2.3: Simplified principle of a node-based approach

A second approach that has been considered is the path-based approach, introduced

by Hodgson [29] and illustrated in Figure 2.4. This approach relies on a flow-capturing

model: the objective is to place charging stations along paths with the highest flows of

vehicles, considering origin–destination trips, in order to serve as many users as possible.

It considers effects that only emerge from the demand emanating from vehicle flows,

whereas the node-based approach offers a relatively static view of demand.

Figure 2.4: Simplified principle of a path-based approach

Last, the tour-based approach, illustrated in Figure 2.5, does not just consider indi-

vidual origin–destination trips but the entire activity of an agent and its vehicle during a

period. It considers origin, destination, distance traveled, vehicle paths and dwell times,

to choose the best places to put charging infrastructures according to users’ behavior.
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Figure 2.5: Simplified principle of a tour-based approach

2.4.1 Node-based approach

The Set Covering Location Model (SCLM) is a facility location model that aims to min-

imize the number of facilities while covering all the demand from the customers [28]. In

this model, facilities are located in such a way that all demand points are not further

from a plant than a certain determined distance. It assures all the consumers that they

can find a facility under this distance, but does not consider the demand: all the demand

points have the same weight, they just have to be covered. Wang and Lin [77] adapted this

method and proposed a refueling-station-location model using a mixed integer program-

ming method based on vehicle-routing logics with the aim of making all transportation

network nodes accessible to each other. Later, Wang and Wang [55] used an SCLM to

cover the maximum demand for both intra- and inter-city trips while minimizing cost,

assuming that the capacity of each station is unlimited.

Another node-based approach is the Maximum Covering Location Model (MCLM)

[78]. Its objective is to locate a given number of facilities to maximize coverage of the

demand, considering a critical distance as the SCLM does: a facility covers a demand

node if the distance from facility to node is under this critical distance. Unlike the

SCLM, the MCLM allows some demand nodes to not be covered, so can be used when

resources are insufficient to cover all the demand nodes, as is often the case in reality.

However, both SCLM and MCLM consider the distance to determine if the demand node
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is geographically covered by the facility, without taking into account the impact of that

distance: placing a plant at a demand node or at the node’s critical distance is the same

thing. Frade et al. [79] used the MCLM in a case study in Lisbon, Portugal to determine

the locations of charging stations and then sized the stations according to the demand in

each zone covered. Sun et al. [57] used a node-based maximum coverage model to locate

slow charging stations in competition with fast charging stations placed with a flow-

capturing model (see later). Wagner et al. [80] used a maximum coverage optimization

and quantified the value of putting a charging station at points of interest such as schools

or stores.

The p-median model first introduced by S. Hakimi [81] is now one of the most widely-

used models in facility location problems. The objective of a p-median problem is to

determine where to place p facilities among candidate locations to minimize the trans-

portation cost (or weighted distance) between customers and facilities, with each customer

assigned to a facility. The problem can be capacitated, meaning that the facilities have

capacity restrictions on the amount of demand they can serve, and so the demand from

customers assigned to this facility cannot exceed this capacity. In the case of charging sta-

tions, this means that only a limited number of cars can be served within a certain period,

and therefore the availability of the station depends directly on its capacity. Gavranovic

et al. [67] used this model on a subset of potential locations in Turkey, considering the

demand and the preferences of local stakeholders. Jia et al. [82] separated the need for

fast and slow charging, and used the p-median model to locate fast-charging stations.

Jung et al. [83] also used the p-median in a bi-level problem to locate charging stations

for taxis, while minimizing both distance to travel to the station and queue at the station.

He et al. [84] estimated charging demand through socio-demographic data in Beijing and

used this estimation as an input for all three node-based models (SCLM, MCLM and

p-median). They found that the p-median model outperform SCLM and MCLM, and

gives more stable solutions. An et al. [85] developed a two-stage optimization framework

that considers the disruptions that could lead to charging demand changes.
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Table 2.2 gives an overview of the node-based methods applied to EV charging stations

location.

Table 2.2: Summary of articles using the node-based approach

Method Problem Main optimization goal Paper

MCLM Location
Maximize the number of

EVs charged

Frade et al. (2011)

[79]

MCLM Location
Maximize the number of

EVs charged

Guo & Zhao (2015)

[73]

MCLM

Location and

sizing (capacity

3)

Maximize the number of

EVs charged

Wang et al. (2013)

[69]

MCLM
Location and

sizing (capacity)

Maximize the number of

EVs charged

Gopalakrishnan et al.

(2016) [86]

MCLM

Location and

sizing (power4and

capacity)

Minimize the

infrastructure cost for a

given demand

Yang et al. (2017)

[58]

MCLM
Location and

sizing (power)

Maximize the amount of

energy charged

Wagner et al. (2013)

[80]

MCLM
Location and

sizing (power)

Maximize the number of

EVs charged
Liu, J. (2012) [87]

MCLM
Location and

sizing (power)

Minimize the

infrastructure cost for a

given demand

Deb et al. (2019) [88]

p-median Location

Minimize the distance (or

deviation) to a charging

station

Xu et al. (2013) [54]
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Table 2.2: Summary of articles using the node-based approach

Method Problem Main optimization goal Paper

p-median Location

Minimize the distance (or

deviation) to a charging

station

Gavranović et al.

(2014) [67]

p-median Location

Minimize the

infrastructure cost for a

given demand

Jia et al. (2014) [82]

p-median
Location and

sizing (capacity)

Minimize the distance (or

deviation) to a charging

station

Ge et al. (2011) [53]

p-median
Location and

sizing (capacity)

Minimize the

infrastructure cost for a

given demand

Mehar et al. (2013)

[46]

p-median
Location and

sizing (capacity)

Minimize the

infrastructure cost for a

given demand

Sadeghi-Barzani et al.

(2014) [72]

p-median
Location and

sizing (capacity)

Minimize the

infrastructure cost for a

given demand

Zhu et al. (2017) [65]

SCLM Location
Maximize the number of

EVs charged

Wang & Lin (2009)

[77]

SCLM Location
Maximize the number of

EVs charged

Wang & Wang (2010)

[55]

SCLM
Location and

sizing (capacity)

Maximize the amount of

energy charged

Csiszár et al. (2019)

[60]
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Table 2.2: Summary of articles using the node-based approach

Method Problem Main optimization goal Paper

SCLM
Location and

sizing (capacity)

Minimize the

infrastructure cost for a

given demand

Andrenacci et al.

(2016) [89]

SCLM
Location and

sizing (capacity)

Minimize the

infrastructure cost for a

given demand

Ghamami et al.

(2016) [90]

SCLM
Location and

sizing (capacity)

Minimize the

infrastructure cost for a

given demand

Davidov & Pantoš

(2017) [91]

SCLM
Location and

sizing (capacity)

Minimize the

infrastructure cost for a

given demand

Vazifeh et al. (2019)

[92]

SCLM
Location and

sizing (power)

Minimize the

infrastructure cost for a

given demand

Li et al (2011) [93]

Unclassified

(node-based)
Location

Maximize charger

utilization

Pevec et al. (2018)

[50]

Unclassified

(node-based)
Location

Minimize the

infrastructure cost for a

given demand

Rajabi-Ghahnavie &

Sadeghi-Barzani

(2017) [47]

Unclassified

(node-based)

Location and

sizing (capacity)

Maximize the number of

EVs charged
He et al. (2016) [84]

Unclassified

(node-based)

Location and

sizing (power)

Maximize the distance

traveled

Wang et al. (2019)

[61]
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2.4.2 Path-based approach

Instead of dealing with demand at nodes, Hodgson [29] introduced a path-based version

of the MCLM called the Flow-Capturing Location Model (FCLM) with the hypothesis

that traffic in a network can be served by several facilities located on common paths.

The FCLM considers origin–destination pairs and aims to maximize the flow captured on

the shortest path between origins and destinations. In this model, the path is considered

covered if it passes through at least one node with a charging station.

The FCLM was later extended. Kuby and Lim [94] developed the Flow-Refueling Lo-

cation Problem (FRLM) especially for alternative-fuel vehicles that considers the limited

range of the vehicles, as a vehicle may have to stop at more than one refueling station

in order to complete a path. They found that placing charging stations only at nodes

would not be sufficient to provide total coverage, and then developed a method to locate

stations on links [95]. Then, with Upchurch [66], they went on to develop the CFRLM,

which is a FRLM with capacity constraints on the refueling stations. Wang et al. [69]

used this model to place different kinds of stations, as previous models only take into

account one type of charging stations. Kim and Kuby [96] then devised an optimization

model that considers the deviations from the shortest path that drivers should have to

make to refuel their vehicle, and Huang et al. [97] proposed a model with the possibility

of multiple deviation paths. Li et al [38] proposed a ‘multi-period multi-path’ FRLM with

the objective to minimize the total cost of installations while making each trip feasible via

at least one path between origin and destination within a reasonable tolerance compared

to the shortest path, and considering the dynamics of the network over time. Further,

Wu and Sioshansi [98] developed a stochastic FCLM model that takes into account the

uncertainty of EV charging demand as soon as the infrastructure is built in anticipation

of future EV adoption. Table 2.3 gives an overview of path-based methods.

3The sizing in capacity refers to number of EVs that can be served per unit of time
4The sizing in power refers to charging speed (higher charging power means higher charging speed
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Table 2.3: Summary of articles using the path-based approach

Method Problem Main optimization goal Paper

FCLM Location
Maximize number of EVs

charged

He et al. (2018)

[99]

FCLM Location
Maximize number of EVs

charged

Motoaki, Y

(2019) [56]

FCLM Location
Maximize number of EVs

charged

Riemann et al.

(2015) [100]

FCLM Location
Maximize number of EVs

charged

Wu & Sioshansi

(2017) [98]

FCLM Location

Minimize the

infrastructure cost for a

given demand

Li et al (2016)

[38]

FCLM Location
Minimize waiting time at

the station

Hanabusa &

Horiguchi (2011)

[51]

FCLM
Location and

sizing (capacity)

Minimize failed trips (or

maximize number of

possible trips)

Micari et al.

(2017) [63]

FCLM
Location and

sizing (capacity)

Minimize the

infrastructure cost for a

given demand

Dong et al.

(2016) [45]

FCLM
Location and

sizing (capacity)

Minimize the

infrastructure cost for a

given demand

Xiang et al.

(2016) [101]

FRLM Location
Maximize number of EVs

charged

Kuby et al.

(2005) [94]
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Table 2.3: Summary of articles using the path-based approach

Method Problem Main optimization goal Paper

FRLM Location
Maximize number of EVs

charged

Kuby et al.

(2007) [95]

FRLM Location

Minimize the

infrastructure cost for a

given demand

Huang et al.

(2015) [97]

FRLM Location

Minimize the

infrastructure cost for a

given demand

Li & Huang

(2014) [25]

FRLM
Location and

sizing (capacity)

Maximize number of EVs

charged

Upchurch et al.

(2009) [66]

FRLM
Location and

sizing (capacity)

Maximize number of EVs

charged

Zhang et al.

(2018) [71]

Hybrid approach:

node and

path-based

Location

Minimize failed trips (or

maximize number of

possible trips)

Upchurch &

Kuby (2010)

[102]

Hybrid approach:

path-based (fast

charging) and

node-based (slow

charging)

Location

Minimize the

infrastructure cost for a

given demand

Huang et al.

(2016) [103]

Hybrid approach:

path-based (fast

charging) and

node-based (slow

charging)

Location and

sizing (power)

Maximize number of EVs

charged

Sun et al. (2018)

[57]
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2.4.3 Tour-based approach

The third method is the tour-based approach, sometimes also called activity-based. Jia et

al. [48] proposed a model with the estimation of vehicle charging demand based on parking

demand, measured in vehicle-hours. They assumed that the more occupied the parking

slots are, the more charging demand there will be, regardless of turnover. Chen et al. [59]

developed a parking-based model that considers the duration of parking time but excludes

home parking. Cavadas et al. [104] also considered the possibility of demand transference

between charging sites for users, meaning that the charging demand on distinct places can

be transferred between those sites according to the users’ activities. You et al. [68] adopted

a strategy based on missed trips in tours. Their optimization model tries to minimize the

number of tours that could not be done due to a lack of charging stations. Andrews

et al. [105] adopted a similar approach on missed trips but considering the available

charging infrastructure. They developed a ‘user charging model’ that determines where

and how EV users need to charge given the available charging methods. If a vehicle

fails its trip due to a lack of infrastructure, it is taken as an input in an optimization

program to place new charging stations. Cai et al. [49] proposed a data-driven method

based on taxi data to put charging stations in existing gas stations. They extracted stop

events to find charging opportunities at the different stations and estimated the potential

charging demand for stop points in gas stations by evaluating state of charge according to

previous tours. Shahraki et al. [106] used a similar method but focused on plug-in hybrid

electric vehicles (PHEV). They looked at dwelling time between trips and estimated the

state of charge of batteries after each trip, then placed charging stations to minimize the

distance traveled by PHEV in combustion-engine mode. Gonzalez et al. [107] adopted a

similar approach from simulation data, with an optimization concerning vehicles not able

to complete their daily trips without modifying their initial behavior to charge their EV

while considering electricity price fluctuations in order to minimize charging cost. He et al.

[64] determined a bi-level tour-based model with traffic network equilibrium considering

interactions between trips and charging needs in the lower level and aiming to maximize
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social welfare in the upper level. Xi et al. [108] adopted a lower-resolution model, dividing

a region into sub-regions for which the trip data between sub-regions is available. Their

aim was to maximize the number of EVs that charge, or the amount of battery charged,

with a trade-off between level 1 and 2 infrastructures under a budget constraint. They

found that the efficiency of privileging level 1 or 2 infrastructure depends on the objective

chosen, but that level 1 chargers are more cost-efficient if sufficient funds are unavailable.

An overview of the tour-based literature is given in Table 2.4. The tour-based methods

are not really categorized, so the "Method" column does not appear contrary to the two

previous tables.

Table 2.4: Summary of articles using the tour-based approach

Problem Main optimization goal Paper

Location
Maximize distance

traveled

Shahraki et al. (2015)

[106]

Location
Maximize number of EVs

charged
He et al. (2015) [64]

Location

Minimize the distance (or

deviation) to a charging

station

Andrew et al. (2013) [105]

Location

Minimize failed trips (or

maximize number of

possible trips)

Asamer et al. (2016) [62]

Location

Minimize the

infrastructure cost for a

given demand

Wang et al. (2017) [44]

Location
Minimize waiting time at

the station
Jung et al. (2014) [83]
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Table 2.4: Summary of articles using the tour-based approach

Problem Main optimization goal Paper

Location
Minimize waiting time at

the station
Tu et al. (2016) [52]

Location and sizing

(capacity)

Maximize charger

utilization
Cai et al. (2014) [49]

Location and sizing

(capacity)

Maximize number of EVs

charged

Cavadas et al. (2015)

[104]

Location and sizing

(capacity)

Minimize failed trips (or

maximize the number of

possible trips)

Dong et al. (2012) [109]

Location and sizing

(capacity)

Minimize the

infrastructure cost for a

given demand

Han et al. (2016) [110]

Location and sizing

(capacity)

Minimize the

infrastructure cost for a

given demand

Jia et al. (2012) [48]

Location and sizing

(power and capacity)

Maximize the amount of

energy charged
Chen et al. (2013) [59]

Location and sizing

(power and capacity)

Maximize number of EVs

charged or maximize the

amount of energy charged

Xi et al. (2013) [111]

Location and sizing

(power)

Minimize failed trips (or

maximize number of

possible trips)

You & Hsieh (2014) [68]

Location and sizing

(power)

Minimize waiting time at

the station

Kameda & Mukai (2011)

[112]
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Tour-based models often require a lot of data, which is often difficult to access for

privacy reasons. Agent-based models—or multi agent models—can informatively simulate

data and analyze traffic dynamics [61]. Chen et al.[113] used an agent-based model with

autonomous EVs to place charging stations. This kind of model can be built from real

travel data (travel surveys, etc.) and be used to compare users’ behaviors among different

charging infrastructure deployment strategies. Agent-based models can also be built to

scenarios for study, which can be useful if there is insufficient data to validate a model

principle. This can be valuable in the case of data-greedy tour-based models. Multi-agent

models make it possible to track each agent in a studied population individually, and

therefore carry out analyses in relation to the activities of that population, and provide

explicit representations of tours [114]. Moreover, modeling tools like the MATSim project

[115] have been developed to simulate populations’ behavior with regard to the transport

system, and they can be used to model energy demand[116].
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2.4.4 Discussion

To sum up, Figure 2.6 gives an overview of the methods previously discussed.
Location method

Tour-

based

approach

Node-

based

approach

SCLM

Minimize

the number

of facilities

while

covering all

the demand

MCLM

Maximize

the number

of locations

covered

for a given

number of

stations

p-

median

Minimize

the

distance

between

demand

and

stations

for a given

number of

stations

Path-

based

approach

FCLM

Maximize

the amount

of vehicles

passing in

front of

stations

FRLM

Maximize

the flow

and take

into

account

the limited

range of

vehicles

Figure 2.6: Overview of location methods

The main advantage of the node-based approach is that it needs little data, only

requiring population density, which is relatively accessible. This makes the node-based

approach an easy first estimate of charging station locations. However, there are limits

to this type of coverage. For instance, the uncapacitated models only deal with coverage

without considering the amount of demand. Second, this resolution pathway offers a static

vision of the charging demand, which is not the case in reality: as previously stated, one

41



Chapter 2 – Too much or not enough? Planning electric vehicle charging infrastructure:
A review of modeling options

of the main advantages of a flow-based model over a nodal approach is that it can take

into account issues that only emerge from the description of vehicle flows. Another issue is

that node-based coverage can lead to a poor representation of charging needs. According

to Hodgson [29], the demand in a network is not always expressed at nodes, as people

generally will not make a trip from home to the charging station just to charge their

vehicle. Furthermore, a node-based approach fails to deal with issues emerging from

traffic flows such as cannibalization, meaning that charging stations cut into each other’s

coverage areas. In addition, Upchurch et al. [102] found that the flow-based method is

more stable as the number of charging stations to place increases, which is really important

when planning over time. That is why many studies explicitly integrate the effect of flows

into the location of charging stations [38].

However, this flow-based approach is not suitable for all cases. Flow-based methods

consider that EV charging will be done quickly before continuing the trip to the primary

destination, just as any ICE vehicle user would do. While this solution is possible with fast

charging stations, which can refuel an EV in a dozen minutes, it is not possible for slow

charging stations where EV batteries can take several hours to charge. Thus, the flow-

based approach is not a substitute for the node-based approach, but complementary to it,

depending on objective, territory, type of charging stations, etc. However, many studies

only use one or the other category. Sun et al.[57] used a mixed-method approach, with

location of fast charging stations for vehicle interception and a node-based approach to

place slow charging stations in places where a long charging time is acceptable. However,

flow-capturing models often fail to capture the uncertainty of EV charging demand, which

can lead to less robust locations [98].

Given the issues with the flow-based approach, the tour-based approach is based not

only on user driving patterns but more generally on user behaviors. This type of approach

is sometimes also referred to as ‘activity-based’. By considering events around the details

of the sequence of trips, it allows a better representation of drivers’ charging needs than

the two previous approaches. By using real and individual data, the tour-based approach
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captures the randomness in the behavior of users, and allows to serve all users, which

cannot be done with aggregated data, as illustrated in Figure 2.7. In this case, both

green and yellow paths pass through nodes 1 and 2, and the red path passes through node

3. If two stations were placed based on aggregated data, they would be at nodes 1 and

2 that have the most traffic passing through, but the green and yellow vehicles would be

served twice and the red one would not be served at all, which could have been avoided

if using individual data.

Figure 2.7: Example of three paths

However, as noted in most of the tour-based works, this method is often data-driven,

with real or at least simulated data. It requires a large amount of highly detailed data,

drilling down to at least the detail of individual trips and stops for a sufficiently large

sample size to make the model realistic. This data can be hard to obtain. The mains

points of comparison between approaches are summarized in Table 2.5

43



Chapter 2 – Too much or not enough? Planning electric vehicle charging infrastructure:
A review of modeling options

Table 2.5: Main points of comparison between location methods

Criteria

Method
Node-based Path-based Tour-based

Urban territory +++ −−−−−− ++++++

Highways −−− ++++++ +++

Representation of charging needs −−−/+++ +++ ++++++

User behavior −−− −−−/+++ ++++++

Data requirements Very low Low Very high

To conclude this section, note that many studies have been conducted for the purpose

of planning the best possible charging infrastructure. They have been carried out with

different criteria to be optimized according to the desired objective. However, while it is

easy to check whether chosen criteria have been optimized, it is harder to measure the

impact of this model on the population, in other words whether the criteria chosen are the

right ones. The high cost of the infrastructure makes large-scale testing unfeasible. To

overcome this problem, multi-agent models can help, as explained above. However, these

models may be subject to simulation bias, and may therefore give an erroneous view of

user behaviour.

2.5 Conclusion

This paper analyzed models for deploying charging infrastructure and discussed the allied

technical, economic, and user behavior-related issues.

The wide diffusion of EVs is a step towards greener mobility, which is one of today’s

big challenges. This transition from ICE vehicles to EVs cannot take place without in-
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frastructure that greatly reduces early users’ range anxiety and reassures potential future

users that EVs are capable of providing the same services as ICE vehicles. For the time

being, infrastructures have been developed with a limited real coherent overarching strat-

egy. However, the underlying costs of necessary infrastructure to meet the needs of a large

number of EV users, as well as the physical limitations of the electricity grid, make it

imperative to coordinate and optimize the large-scale deployment of an electric charging

infrastructure, failing which there is a risk of wasting valuable resources and of ending up

with an infrastructure that is not adapted to user needs.

The scholarship has used several approaches for optimizing the deployment of charging

infrastructure. These approaches can be collapsed into three categories: node-based, path-

based, and tour-based. Although not specific to EV charging infrastructure planning,

these approaches can readily adapt to consider the specificities of EVs instead of copying

the gas station model, and facilitate the transition from ICE vehicles to EVs easier by

minimizing the constraints of using EVs.

The node-based approach is easy to implement and suitable for certain areas such

as residential neighborhoods, but it fails to capture the problems arising from vehicle

flows. The path-based approach can address this gap, but it is better suited for highway

use-cases and has the downside of leading to time-consuming infrastructure, which may

prove a barrier for users to make the transition from ICE vehicles to EVs. The tour-

based approach requires a lot of data and is therefore more difficult to implement, but

it is able to consider user activities in order to get the best-adapted and least-restrictive

infrastructure possible for users. With data on the activities of users, points of interest

can be exploited to provide charging solutions at locations where there is demand, without

users having to change their behavior [117].

The methods adopt different response strategies, regardless of the approach used.

Some focus on maximizing served demand for a fixed budget, which can be expressed in

terms of the number of vehicles to be charged, volume of energy to be charged, time saved

or number of feasible trips. Others consider charging demand as the primal condition
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and try to minimize the budget needed to satisfy it. While early work focused on the

geographical placement of charging stations to meet charging demand, more recent models

now also integrate the service capacity of the stations, introducing station sizing into the

results. Charging speed used is rarely considered: many models consider only one type

of charging station, thus defining only the number (and not quality) of charging points

needed.

Few of the models other than node and parking-based models look to take advantage of

the benefits offered by EV charging, which does not require the user to be present during

charging time. This key advantage should be considered in order to plan a charging

infrastructure that matches charging opportunities, to make EV use as unrestrictive as

possible and thus encourage EV diffusion .

To conclude, the optimization models reviewed in this manuscript do not consider any

temporality in deployment: for a given budget, the infrastructure is optimized as if all

the stations were placed simultaneously. However, this kind an infrastructure does not

get deployed all in one go, partly because of the development costs it would generate

without a guaranteed return on investment from a demand that will take a long time to

come. Charging infrastructure deployment will take place over a period that may last

several years, and this factor should now be explored in order to have an infrastructure

that provides acceptable coverage from the very beginning of its deployment, and not just

once the last charging points have been installed. An incremental ‘over-time’ deployment

must therefore be considered, factoring in the early-stage infrastructure already present

in the territory, which very few models do (see Appendix A), and the action of ’adding

one more station’.
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*

The environmental objectives set by the various international summits call for greening

the transportation sector, which is responsible for a significant share of greenhouse gas

emissions. The current trend is a transition from the current fleet of vehicles to a fleet of

electric vehicles. To allow this transition, it is necessary to ensure the acceptance of the

electric vehicle among its users. This acceptance requires the deployment of a charging

infrastructure adapted to user needs. In this study, we propose a multi-criteria charging

infrastructure deployment model, not only geographically but also incrementally, to reflect

the timing of the deployment of such an infrastructure. The model is oriented to meet

the needs of users, assuming that charging demand will follow if a suitable infrastructure

is proposed. We then apply the proposed methodology to the Berlin region, using a

MATSim multi-agent simulation. Our main results show that slow chargers are more

cost-efficient than faster ones. They also show that home - or residential -charging is key

for electric vehicle acceptance and that a coherent deployment agenda helps reduce the

range anxiety faster and ensure the coherence of the final charging infrastructure.

*
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3.1 Introduction & literature review

The current climate issue requires a drastic reduction in anthropogenic greenhouse gas

emissions. Among the highest emitting sectors, road transport accounts for between

20 and 25% of these emissions in Europe and the US [18]. A transition in this sector

towards greener mobility is therefore an important lever to reducing global greenhouse gas

emissions. The solution currently at work is to transform the fleet of internal combustion

vehicles into a fleet of electric vehicles (EVs), with much lower emissions, especially if

used in an environment with clean electricity production [19]. Even if it is not a perfect

solution, it represents a significant improvement necessary for a more sustainable mobility.

But such a transformation cannot take place without the acceptance of electric vehicles

by users. This acceptance among the whole population is slowed down by a number of

barriers, the two main ones being the price of vehicles and the range anxiety [12], i.e the

fear for an electric vehicle user that the car’s battery will run out of power before they

can be able to reach their destination or a suitable charging point.

As the high price of electric vehicles is mainly explained by the (relative) youth of the

technology, which is still in development, this barrier is expected to disappear in a quite

short term according to several car manufacturers and consulting firms analyses [118].

But the range anxiety barrier is tougher. To overcome this fear of not being able to finish

trips without running out of battery, there are two solutions: either increase the size of

the batteries or improve the charging infrastructure. However, increasing battery size is

a false solution to the problem, for at least three reasons.

First, the electric battery accounts for about one-third of the cost of an electric vehicle.

Increasing the size of the battery would therefore substantially increase the price of electric

vehicles, resurrecting a disappearing barrier. It seems that current battery capacities

(around 50kWh) are more than enough for typical daily use and that advances in battery

technology should rather be used to lower costs at constant capacity than to increase

battery size at constant price [119]. The price difference caused by a bigger battery could

be smoothed out by subsidizing the purchase of electric vehicles, but EVs are already
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highly subsidized in many places, and even if more investments are made, subsidizing a

charging infrastructure is today more economically efficient than subsidizing electric cars

[120].

Second, this leads to an ecological problem, while electric vehicles are supposed to

contribute to more sustainable mobility. Even if the total carbon footprint of an electric

vehicle is better than that of a thermal vehicle, EVs are not a perfect solution for sustain-

able mobility. This better solution should not make us forget that the manufacturing of an

electric vehicle represents a very high environmental cost both in terms of CO2 emissions

and in terms of soil and water pollution, pollution mainly due to the manufacturing of the

battery. Increasing the size of the battery means increasing the negative environmental

impact of the electric vehicle, which would not be coherent for an ecological solution.

And third, this does not solve the final problem: even with a battery providing the

same driving range as a combustion engine vehicle, there will come a time when the vehicle

will have to be charged. If the infrastructure is not adapted, the problem will remain the

same: the user will perceive risks regarding the impossibility of charging. This anxiety,

although reduced, will therefore remain a brake on the acquisition of an electric vehicle

as a primary vehicle.

The solution is therefore to be found on the infrastructure side. However, sufficient

charging infrastructure is more of a structural issue and requires a real effort on the part of

the actors in the field. To achieve user acceptance, electric vehicles must be as convenient

as internal combustion engine vehicles (ICEV) in their daily use, including for those who

cannot charge their vehicle at home. A critical step required to achieve this goal is the

existence of a public charging infrastructure adapted to the behavior of vehicle users [13].

And such an infrastructure is not so simple to implement. It is not enough to put charging

stations everywhere: not only would it be a waste of resources, but we will see that the

simple criterion of geographical coverage is not sufficient to ensure the appropriateness of

the infrastructure.

Several types of charging stations exist, allowing more or less long charging times, but
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also imposing different constraints on the electrical network, on costs... It is sometimes

essential to have fast charging solutions. We have seen that one of the major problems

in the transition from an ICEV to an electric vehicle is the range anxiety. For this,

fast chargers can play an important role. An experiment by the Tokyo Electric Power

Company showed that the presence of a fast charger paradoxically increased the use of

other chargers, without the fast charger being used very much: its mere presence reassured

drivers, who therefore used their electric vehicle to go to places where they would not

otherwise have gone, simply because they knew they had the possibility of charging if

they needed to (even if this need turned out to be non-existent) [121]. Fast chargers

therefore have a strong insurance value that may be essential for the democratization of

EVs. In addition to this insurance value, fast chargers are essential to solve the problem

of long journeys in electric vehicles, where the time spent charging is lost time, and

therefore where charging stations must be used like conventional service stations [117].

The same is true for taxis and emergency services, which cannot afford to spend several

hours charging and must have vehicles quickly available and fully functional [61]. Facing

these issues, several models to specifically place fast charging stations have been proposed

[47, 82, 45, 98, 49, 44]. However, these fast chargers are very expensive, cannot be used by

every vehicle, and represent an important constraint for the power grid [122], in addition

to causing accelerated degradation of the batteries compared to a slower charge [123].

This is why, while it is sometimes essential to have fast charging solutions, a slower

charger can be sufficient for users’ needs. One of the major advantages of the electric

vehicle is that it is not necessary to be at the vehicle during charging. So when EVs are

parked for several hours, their charge can be spread over several hours. A slow charger,

which is much cheaper and less constraining for the power grid and the vehicle, is much

easier to install and can satisfy the charging needs if it is placed in the right place. Several

models also exist to place slow charging stations, although most are not specifically made

for slow charging stations, but rather for one type of charging station, without specifying

which one, while using the features of slow chargers [50, 79, 73, 54, 104].
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Based on these different utilities, characteristics, and constraints, it is necessary to

carefully choose the right charging stations at the right places, in order to ensure the

adequacy between charging needs and resource allocations, and thus maximize the utility

of the infrastructure while avoiding a waste of resources that could be used for improving

the infrastructure. Models proposing to deploy different types of stations in a coordinated

way on the same territory exist, but are already less numerous when talking about spatial

deployment and often centered on which power to choose [84, 80, 93, 103].

To tackle the charging infrastructure deployment problem, the existing literature lists

a wide range of models with different goals. Those goals can be minimizing the waiting

time at the charging stations [52, 83], as charging an electric car is longer than charging

a conventional one and no one wants to spend hours waiting in the queue at the charging

station. Some models also try to maximize the number of EVs that can be served under

cost considerations [55, 99], or also to maximize the feasible trips with an electric car also

with cost constraints [63, 102]. Conversely, some models try to minimize the costs for a

certain level of service given [58, 48]. Here, we gave a quick overview, but a lot of other

infrastructure goals can be found in the literature [15].

In order to achieve these goals, the approaches taken can broadly be clustered into

three approaches [75].

First, the node-based approach transforms the charging station location problem into

a land coverage problem, very close to the classical facility location problem. In this

approach, the idea is to minimize the distance between the demand points and the charging

stations. A variant is to consider that a station covers a certain zone, and try to get the

most possible part of the demand (or all the demand) inside those covered areas. This

model is rather well suited for city centers, where demand is dense and rather static. On

the other hand, it fails to capture the demand coming from traffic flows.

Second, the path-based approach, which sees the problem as a flow capture problem.

The models with this approach try to capture the maximum amount of vehicle flows,

i.e placing charging stations where there are the biggest vehicle flows. This model is
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particularly well suited for highways, where stops are made "en route" when the battery’s

state of charge becomes insufficient. It is also quite suitable for the fastest charging

stations, where charging an electric vehicle does not take much longer than filling up a

conventional car. On the other hand, it is much less suitable for slower charging stations

and short trips: stopping for several tens of minutes, or even several hours, in the middle

of a trip is clearly not an option if electric vehicles want to guarantee a comfort of use

which is comparable to that of an internal combustion engine vehicle (ICEV).

And third, the tour-based approach, or activity based; consists of capturing the charg-

ing opportunities for the vehicles. To explain it simply, in this type of approach we consider

several parameters (routes, parking time, state of charge of the battery...) on a succes-

sion of trips called tours. According to these parameters, we place charging stations at

the places where they will be the most useful. Those kinds of approaches are mainly

data-driven.

But due to the high cost of deploying full charging infrastructure, it cannot be a

prerequisite for the pre-eminence of electric vehicles in the fleet on the road: as electric

vehicles on one side and charging stations on the other form a two-sided market, the

infrastructure cannot precede the democratization of electric vehicles but must go with it,

as the lack of certainty of a return on investment and the high costs involved in achieving

a final charging infrastructure prevent it to be deployed all at once. [23]. However, the

existing literature mainly focuses on the final optimality of the charging infrastructure,

without taking into account its development according to a temporal pattern consistent

with user needs [15]. This mismatch with users’ needs during the charging infrastructure

deployment risks slowing down the adoption of electric vehicles, and therefore investment

in the charging infrastructure, which may never exist in its final version because of this

vicious circle [36]. So the deployment of the infrastructure must be done according to

coherent planning to be as useful as possible to the users, and this as soon as the first

charging stations are installed, in order to ensure the growth of the fleet of EVs necessary

for the growth of the infrastructure.
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In this chapter, we propose a new model for infrastructure deployment. This model

focuses on the development of the infrastructure according to users’ needs. We optimize

the deployment of the infrastructure for charging at the destination: the objective being

that electric vehicle drivers have stations where they need them and that charging is not a

waste of time for them. Therefore, in our model, we do not allow for "en-route" charging.

In order to take into account these users’ needs as accurately as possible, we use five

criteria to quantify the need for charging. The criteria are based on parking data and on

the coverage of the territory by the infrastructure.

In order to account for EV users needs, since the charging needs are not the same

everywhere, several types of stations can be deployed. In this study, we limit ourselves to

three types of stations deployed on the territory: slow (7kW), medium (22kW), and fast

(100kW), without distinguishing between brands or compatibility with certain vehicles.

The sizing of the charge points is done at the same time as the choice of their location:

several charging stations can be placed in the same place, potentially of several types,

and not necessarily at the same stage of infrastructure deployment. We consider a single

operator, but in the case of several players, this can lead to competition that may be

interesting to study in future research.

As explained above, a complete infrastructure is deployed in a spatial, but also a tem-

poral context. In order to integrate the sequential aspect of the infrastructure deployment,

which is crucial, we adopt a marginal approach. We propose a stepwise deployment of

the infrastructure so that it is as useful as possible from the first stations installed, taking

into account at each step of the deployment the new data due to the previously added

stations.

Our results show that for an optimal infrastructure, the slowest chargers -which are

also the cheapest- are to be preferred, although fast chargers remain required for some

particular cases. Home charging is a determining factor in the acceptability of the electric

vehicle, but it is not possible everywhere and is not necessarily the most efficient in

terms of overall costs. However, it must be taken into account in the deployment of the
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infrastructure, at the risk of having under-used stations. Finally, in order to maximize its

usefulness, investment in charging infrastructure must be coupled with investment in the

education of electric vehicle drivers, so that they adopt the best possible practices.

In the rest of this chapter, we present our methodology for the deployment of the

charging infrastructure. We then apply this methodology to the Berlin region through a

MATSim multi-agent simulation, and draw lessons and key points from the results.

3.2 Model formulation

We need to think the development of charging infrastructure in a way that accompanies

the democratization of electric vehicles. We, therefore, need a deployment model that

offers an infrastructure that best suits the needs of users. This model must integrate

not only the spatial and quantitative aspect of the charging infrastructure - basically

where, how many, and which type of charging stations are placed - but also a temporal

aspect: when to place these stations, or more exactly in what order, so that the number of

charging stations and electric vehicles grows together? And this with taking into account

the existing infrastructure, since many places are already starting to have charging stations

not considering them may result in wrong investments.

3.2.1 Method overview

While most of the existing methods in the literature aim to find a final infrastructure

optimized according to a chosen criterion, the placement methodology we propose follows

an incremental logic. Here we want the deployment of the infrastructure to accompany

the growth in the number of electric vehicles and to follow the evolution of the users’

needs. This justifies an incremental approach according to the system evolution rather

than a one-shot optimization.

It is expected that the placement of a new charging point at a location will induce a

change in the behavior of users. For example, some drivers may change their usual route
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if a charging station is on their way, which may change the choice of the next charging

station to be placed. It is therefore important not to plan the deployment of the entire

charging infrastructure and then blindly deploy it. It is rather better to wait for the

behavior change to happen after each step of the deployment, in order to make the best

choice in choosing the next station to be deployed. This would lead to an infrastructure

that supports effectively the increase of the proportion of electric vehicles.

The overall principle of the method we propose is shown in Figure 3.1. The steps of

the model are given below.

Figure 3.1: Model principle overview

1. First of all, we start by pre-selecting candidate locations for receiving a charging

station in the area under consideration. This pre-selection is not mandatory, but it

reduces the size of the problem. In our case, the pre-selection is made according to

the attendance of the considered places. A budget is also set for each deployment

step.

2. A score is calculated for each of the candidate locations. This score represents the

interest in placing a station at a location and is calculated according to the criteria

detailed later.

3. According to these scores, we choose the stations to place in order to maximize the
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total score of the infrastructure, under budget constraints. The model allows for

the choice of different types of stations (slow, medium, fast...).

4. Then the scores are updated with the new data, which may have changed due to

the addition of the new stations. It is important to note that a location where a

station was placed is not removed from the list of candidate locations, its score is

just updated according to the new data. Therefore, several stations can be placed

at the same candidate location.

5. Now the scores are updated, we choose again charging stations to place under a

budget constraint.

6. And so on, until the last step of the infrastructure deployment.

This incremental approach allows us to model the effect of a step-by-step development

of the infrastructure, and the choices to be considered when extending it. It then remains

to calculate the score to assess the usefulness of placing stations at certain locations

according to relevant criteria.

3.2.2 Score calculation

In order to optimize the deployment of the infrastructure, we seek to evaluate the interest

in placing a station at a candidate location. To do so, we calculate a score for each

candidate location.

For this purpose, we have selected 5 criteria that will determine the usefulness of

placing a charging station at a location. Those criteria are the number of vehicles that

park at the considered location, the number of distinct vehicles that park at the location,

the parking duration at the location, the state of charge of the vehicles when parking,

and finally the land coverage of the considered region.

Each of these criteria is evaluated individually with a score between 0 and 1, and the

sum of all those normalized scores associated with each criterion gives the overall score
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of the location to be evaluated. The advantage of having such a modular function is that

it is easy to give more or less importance to a criterion by playing on the coefficients of

each one. For example, the criterion relating to the number of distinct vehicles can be

increased if we aim to serve as many different people as possible, or the one related to the

land coverage can be reduced if we want to give more importance to the profitability of

the infrastructure (at least on the short term).

Number of parking events

This selection criterion is quite intuitive: if we want a charging point to benefit the greatest

number of people, it makes sense to place it where the most cars are parked. In order to

evaluate the interest of a candidate location, the number of vehicles parking at a location

is a common criterion in station placement models [59, 49]. To evaluate the utility Un

relative to the number of cars, we simply count the number of vehicles that park at each

location over the period being evaluated, and bring this count between 0 and 1 for the

normalized score function:

Un(p) =
Nn(p)

max
r∈R

Nn(r)
, (3.1)

with

• Nc the number of parking events at the considered location p,

• max
r∈R

Nn(r) the maximum number of parking events in a location in the considered

region R.

In this way, the location with the most parking events over the studied period gets

the maximum score of 1, and the others a lower relative score. One way of preselecting

candidate locations for charging stations is to calculate this score for all locations, which

is relatively fast, and eliminate those below a certain threshold, which will not receive

sufficient traffic.

57



Chapter 3 – From user to operator: Rationalizing the charging infrastructure deployment

Number of distinct vehicles parking events

This criterion is relatively similar to the previous one. The only difference is that instead

of counting the number of parking events, each user is counted only once. Although it

seems redundant with the first one, this criterion ensures that it is not always the same

people who have access to a station. Thus, the infrastructure benefits as many users as

possible, which serves the goal of the democratization of EVs.

The score function Uv is slightly the same as the previous one:

Uv(p) =
Nv(p)

max
r∈R

Nv(r)
, (3.2)

with

• Nv(p) the number of distinct users that park at the considered location p,

• max
r∈R

Nv(r) the maximum number of distinct users that park at a location in the

considered region R.

This way of doing also gives a score between 0 and 1, with 1 reached by the most

interesting place according to this criterion.

In order to maximize the number of different vehicles served, we can also consider the

interdependencies of the locations. If a large number of people pass through the same

places, it may be more interesting if these places are a little less equipped, since users will

be able to charge in other visited places.

To do this, we can add to U ′
v a function that takes into account the users’ tours:

U ′
v =

1

Ne

Na∑
i=1

1

Ni

, (3.3)

with
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• Ni the number of places already equipped visited by the agent i during his whole

trip,

• Ne the number of parking events at the considered place.

Thus, with this additional function, the score is maximal if no agent parking at the

considered location has access to a charging station during his journey, and the more

agents have had access to charging stations, the more it decreases. At first, we will not

include this part in our model, because the calculation of the tours adds a non-negligible

complexity, but it could be considered in further extensions.

Parking duration

The parking time score mainly determines what type of station is most useful to deploy.

Given the price differences between the different types of stations and the constraints

inherent to faster charging, the choice of suitable charging stations is crucial for good

resource allocation. As an example, if the average parking time at a location is 6 hours,

installing a costly fast charger that can charge a vehicle in 30 minutes would be a waste

of resources, as a fifty times less expensive slow charger could have been sufficient to meet

users’ needs.

Based on this observation, we built a function Ud to quantify the usefulness of installing

a certain type of station according to the time spent by users on the location considered.

It is given by

Ud(p)=
∑
j∈T

bjGj(tp) =
∑
j∈T

bje
−

(tp−µj)
2

2σ2
j , (3.4)

with

• tp the mean parking time at the location p,

• µj the time needed to charge 80% of a standard battery with the type of station j,
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• σj that is set at µj

3
, so as to have the value of the 3 sigma Gaussian corresponding

to a stop of no duration,

• T the set of the different types of stations available,

• bj ∈ {0; 1} and
∑
j∈T

bj = 1. The variable bj is a boolean equal to 1 if the chosen

station type is j, it represents the choice of the type of charging station we want to

place at the considered location.

In the absence of a previously constructed function, it seems appropriate at first sight

to construct a three-part Gaussian function, with each part centered on the average time

of a vehicle load for a station type.

Let’s explain what is hidden behind this scoring function. In simple terms, if the

time required to charge 80% of a battery with a charging station corresponds to the

mean parking time at a location, the choice of the corresponding station is valued. If the

charging station takes too much time to charge the vehicle, users’ needs are not met so

the score is low. And if the charger is too fast, already charged vehicles will continue

to occupy charging stations, which means that there has been an overinvestment, thus

wasting resources that could have been used elsewhere in the infrastructure. The score

will therefore be lower. We choose the time to charge 80% of a standard battery capacity

as a reference because users usually never arrive with an empty battery at a location,

and it is very rare to have to charge a vehicle from 0% to 100%. Having to charge 80%

of a battery in a charge is therefore more realistic. Even if this is still higher than the

charging behavior observed today, with users often charging less than half of their battery,

a significant amount of EV users are charging more [124]. It is therefore preferable to

keep a safety margin, as a charge that is too slow may be badly perceived by users, unlike

a charge that is a little too fast.

To illustrate this reasoning, let’s take as an example three types of chargers: fast,

medium, and slow. They can charge a standard vehicle to 80% in 30 minutes, 3 hours,

and 10 hours, respectively (these values are commonly observed charging times). The
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possible values of the utility function are shown in Figure 3.2.

Now, we consider a place where the average parking time is 4 hours, represented in

Figure 3.2 by the vertical red mixed dotted line.

Figure 3.2: Parking duration scoring function

In this case, choosing to place a fast charging station, whose score function is rep-

resented by the blue curve, will not be valued at all. With such a station, on average

users would charge for 30 minutes and would monopolize the station for nothing during

the remaining 3h30 of parking. Given the much higher cost of a fast charging station

compared to others, this choice would not be very efficient.

In contrast, choosing to place a medium station, whose score is represented by the

orange curve, would be highly valued. Here, the average parking time almost corresponds

to the charging time that would be required to charge 80% of a battery, which would be

the most efficient allocation of resources: users are served adequately and at a minimal

cost.

Opting for a slower station, whose score is represented by the green curve, would be

less valuable, but still interesting. In addition, the low cost of these stations (about 50 or

100 times less than fast charging stations) makes them very interesting, so their interest
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is increased in a logic of limited budget. However, for short parking times, they do not

correspond at all to the needs of users.

State of charge

The state of charge criterion responds to a very simple logic, which is sometimes used in

the literature: a charging station is most useful where users have their batteries empty.

On the contrary, even if there are a lot of vehicles parked in a place, there is no point

in offering them charging if they all have their battery full for one reason or another

(for example, a supermarket near a residential area where all the customers have home

charging, or at the proximity of a company offering charging solutions to its employees).

If the targeted users do not need to charge at a place, putting a charging station there

represents a waste of resources that could be better used to achieve a more useful infras-

tructure for the user, in addition to an economic loss for the operator, who could have a

more profitable station.

To quantify the usefulness of placing a station according to the state of charge (SOC)

of vehicles at a location, we chose the simplified function Usoc to quantify the user’s range

anxiety, and so his willingness to charge. It is given by:

Usoc(p) = (1− SOCp)
a, (3.5)

with

• SOCp the average state of charge of the vehicles at the considered location p (in %

of their total battery capacity),

• a a number that represents the tolerance to range anxiety of users (a > 0). The

higher a is, the higher the user tolerance to range anxiety (i.e the less users fear

having a low remaining SOC).
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As we did not find a model quantifying the range anxiety and the need to charge,

we have chosen to build a realistic model. As illustrated in Figure 3.3, the utility is a

decreasing function of the remaining SOC, and for the same SOC value, the score can be

higher or lower depending on the sensitivity of the users to the range anxiety. For a = 1,

i.e., a fairly high sensitivity, the need to charge is strong, and therefore the placement of

a terminal is valued. On the other hand, for a = 4, i.e., a quite low sensitivity, this same

investment is clearly less valued

Figure 3.3: SOC scoring function

For the sake of simplicity, in our model a will be constant for all our locations and

all our agents1. In a more refined model, it can be adapted according to the location

considered, and to groups of agents. For example in an isolated location with no charging

solution around, the sensitivity of users to range anxiety may be greater than in a location

already well-equipped with charging stations. It can also be adapted according to each

user, but this requires an extremely detailed understanding of the behavior of each agent,

which seems to us to be rather unrealistic.

1In this first exploratory approach, this exponent will be fixed at 1. The calibration of this exponent
should be subject to a sensitivity analysis which could be the subject of a future whole study, so we
choose to set it arbitrarily in this study.
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Land coverage

As we explained earlier, the major challenge of charging infrastructure for electric vehicles

is to prevent range anxiety, i.e., the fear that users will not have sufficient range and

will not be able to charge their vehicles when needed. It is therefore important, when

developing a charging infrastructure, to ensure that there are no "white zones", i.e., parts

of the region that have no charging stations and are therefore not very accessible for

electric vehicles.

This is the objective of this part of the score. As the problems of spatial coverage at

minimal cost are NP-complete problems, we have chosen instead an approach consisting

in valuing the placement of stations in areas with little charging infrastructure. For this,

we assign the following score to the candidate locations:

Uc(p) =
1

Ns(rc) + 1
, (3.6)

with Ns(rc) the number of already existing stations within a characteristic range rc of

the location p. By doing so, we have a maximum score if no stations are already present

under this range, which encourages the placement of stations in uncovered areas. Initially,

for the sake of simplification, we will set rc arbitrarily and equally over the entire region

under consideration, but we can later imagine a calculation based for example on the

population density or the typical distances traveled by users.

Final scoring function

The total score associated with a candidate location is calculated by a weighted summation

of the terms described above, using coefficients that reflect the importance that we want

to give to each criteria. We have
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U(p) = αUn(p) + βUv(p) + γUd(p) + ηUsoc(p) + µUc(p), (3.7)

with α, β, γ, η, µ ∈ [0, 1].

Each candidate location is therefore assigned a total score, corresponding to the use-

fulness of placing a certain type of station there according to our model.

3.2.3 Optimization model

Now we use the calculated scores to determine which stations to place. As a reminder,

we adopt an iterative deployment approach, in order to model the progressive aspect of

the development of a charging infrastructure. At each step of this iterative process, a

budget is set. This budget must then be used in the best possible way to place stations.

Mathematically, this results in the following optimization problem:

max

(∑
r∈R

∑
j∈T

bj(r)Uj(r)

)
(3.8)

subject to:∑
r∈R

∑
j∈T

bj(r)cj(r) < Cmax, (3.9)

with :

• R the set of the candidates locations over the map,

• T the set of the different types of stations available,

• bj(r) a boolean equal to 1 if we choose to put a station of type j at location r, and

0 otherwise. We still have
∑
j∈T

bj = 1,

• Uj(r) the score of the considered location r for the station type j, calculated as

described above,
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• cj(r) the cost of putting a station of type j at location r.

• Cmax the maximum budget for this deployment step

In order to take into account that several stations could be placed at the same location,

we have multiplied the locations for each candidate location. So, in practice, for N

candidate locations, in the model we actually have kN locations to put a station in,

with k being the maximum number of stations that can be placed in a location during

a deployment step (this does not mean that more cannot be added in further steps). To

account for the change in score within the step due to adding a station, we divide the

land coverage part of the score. For instance, for a candidate location with several station

slots, there will be a land coverage score Uc for the first slot, Uc

2
for the second slot, Uc

3

for the third, and so on.

This optimization problem follows a knapsack problem formulation. It is then NP-

hard, and realistic problem instances need to be solved more likely through approximate

methods.

3.3 Case study: a MATSim simulation of Berlin

We apply our proposed methodology to a large territory in order to evaluate the effects

of such a deployment for electric vehicle drivers. As a reminder of the key points, this

optimization method is multi-criteria and is centered around the needs of the driver or

future driver of an electric vehicle. It proposes a marginal (or step-by-step) deployment of

the charging infrastructure, in order to reflect its evolving aspect, and offers the possibility

of deploying several types of charging stations. For this case study, we focus on the Berlin

region.
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3.3.1 Simulation model (based on the MATSim OpenBerlin sce-

nario)

We simulate the Berlin area using MATSim, an "open-source framework for implementing

large-scale agent-based transport simulations" [115]. In this type of multi-agent model,

individual agents make decisions in order to maximize their own interest - represented by

a score - but still interact with other agents. For example, too many agents deciding to

take the same road thinking to decrease their own travel time will create a traffic jam,

and thus increase the travel time of each agent who took this decision.

In this framework, the MATSim Open Berlin Scenario is a transportation simula-

tion scenario for the Berlin metropolitan area [125]. The scenario is designed by cross-

referencing several travel databases and is calibrated to realistically represent the traffic

in the region. It takes into account all significant transport modes (car, public transport,

bicycle, walking...) used by people over 18 years old living in the Berlin area, with possible

modal shifts between these different modes. The calibration of this model was performed

for a number of agents representing a sample of 10% of the Berlin population. However,

mainly for computational time reasons, we will use a sample of 1% of the population,

adapting the capacities of the transportation network.

We simulate agent trips over a 5-day period. The OpenBerlin scenario we use models

a typical day in the Berlin area, which is not sufficient to obtain charge and discharge

cycles of electric vehicle batteries, as most daily trips can be covered by a single battery

charge. Therefore, we extended this scenario to 5 days to model a week, without the

weekend since agent behaviors are different during the two weekend days, and we did not

have weekend traveling data.

Electric vehicles

We then introduce electric vehicles in the Berlin area simulation. We consider in our

simulation that all individual cars are electric, for several reasons:

The first one is the aim of the study. We are looking for a way to democratize EVs as
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much as possible, and as explained in the introduction, this democratization necessarily

requires a charging infrastructure that is adapted and accessible to everyone, not only to

the pioneers of EVs who already own one.

Second, with the various subsidies and the development of the second-hand market,

EVs are beginning to be accessible to an increasingly large part of the population, and the

number of sales increases year after year [126]. Households who need to buy a car may

therefore switch to an electric vehicle if an acceptable infrastructure is offered, generating

a new charging demand, which would benefit to the operators.

Third, many western countries are in the process of banning the sale of new ICE

vehicles by 2035, or even 2030 for some [127]. At the end of this very short period of time

given the work to be made, the charging infrastructure must be adapted so that anyone

can have an electric vehicle. In addition, car manufacturers anticipate this ban on ICE

vehicles and sometimes go faster than the regulations.

And last, although electric vehicle charging infrastructure is still in its early stages,

it has developed significantly in recent years. As today’s infrastructure uses are not

necessarily tomorrow’s (e.g today EVs are the prerogative of a rather well-to-do fringe

of the population that can often charge their vehicles at home, which will potentially

not be the case for more modest future EV users, who will have to rely on the public

infrastructure), it may be useful to now consider an all-electric fleet to start thinking

about the future of the infrastructure

For at least these reasons, it makes sense to study the impact of a 100% electric fleet.

However, we are aware that the economic reality of infrastructure deployment dictates

that charging stations should be placed in priority where the demand already exists.

In order to make the electric fleet evolves we could have introduced a growing share of

electric vehicles over the simulation. Still, we would not have been able to simulate a

realistic evolution of this share without an in-depth sociological study on the adoption of

electric vehicles2, which is why we are postponing this work for further studies. In the

2randomly distributing EVs within the total fleet of vehicles without taking into account user profiles
is not much more realistic than having all vehicles be electric
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meantime, we consider 100% of the fleet to be electric, which allows us to see the impact

of the infrastructure we propose on each potential electric vehicle, and thus to be able to

estimate in which areas EVs are more likely to develop independently of the income of

the studied populations. A comparison between the impact of a "universal" development

and that of a targeted development in areas of demand with realistic electric vehicle fleet

evolution will be carried out in future work, in order to study the positive externalities of

such infrastructure on EV adoption.

In this study, all the electric vehicles have a standard 50kWh battery and start the

week with a random state of charge centered at 45kWh, i.e., 90% of the battery. We

made this choice because it is observed that most electric car users start the week with

the battery charged or almost charged according to diverse representations of EV charging

3 [128, 129, 130], hence an average value close to 100%.

Also, a specificity of our study is vehicles that run out of battery in the simulation

do not break down and stop: they continue their journeys as if they were hybrids. We

will use this number of kilometers driven without a battery (which in reality cannot be

driven) as an indicator of the efficiency of the infrastructure.

Charging infrastructure and charging behavior

We do not want users to have to adapt their behaviors to the proposed infrastructure

in order to use an electric vehicle, but the infrastructure must be developed to match

their behaviors - otherwise, the adoption of electric vehicles would be greatly hindered.

This is why we prohibit charging-specific stops in our simulation: only charging at the

destination is allowed, so the user’s plans are not altered in any way compared to those

of an ICE vehicle. We are aware that a classical charging behavior includes charges "at

destination" and "en-route" charges, but the en-route charge is an additional time to a

trip. We want to optimize the system to do without and consider the en-route charge as

3It is quite difficult to find studies directly on the state of charge of batteries, but by observing the
charging profiles and in particular a peak on Sunday evening, we can easily deduce that the batteries are
charged on Monday morning
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a very particular solution.

In order to model the charging behavior, agents receive a small penalty on their score

when they travel with range anxiety, i.e when agents drive below a certain battery thresh-

old which corresponds to the state of charge at which drivers would start to experience

range anxiety. This penalty increases as the battery state of charge decreases. In this

way, the agents, who each want to maximize their score, are encouraged to charge up

as soon as they start to feel range anxiety, i.e to be under their range anxiety battery

threshold, and even avoid reaching this threshold so as not to be penalized. They also

receive a large penalty when their battery charging level reaches zero, which corresponds

to a failure, so they are encouraged to avoid running out of battery at all costs.

Another study prohibiting vehicles with empty batteries from continuing their journeys

but allowing charging "en route" and evaluating the time lost due to this charging and

the number of breakdowns will be conducted in future work.

We simulate 5 iterations for the development of the infrastructure. Each iteration is

allocated a maximum budget to place charging stations at the candidate locations that

are in the given territory.

Simulation parameters

The simulation model has many parameters. We have selected and varied the 4 parameters

that stand out as the most important in terms of their impact on the users’ charging

behaviors.

The first one is the range anxiety threshold, i.e the battery threshold at which

electric vehicle users start to experience range anxiety. A lower range anxiety threshold

should lead to more cautious charging behavior and higher utilization of the charging

infrastructure by users, as they will tend to want to charge earlier. Second, the home

charging rate, i.e the rate of users who can do home charging. This should have an

impact on the use of public infrastructure, as well as on the number of vehicles that

run out of battery, since access to charging will be easier for those who can rely on
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home charging Third, the searching range, i.e the search radius in which users look

for a charging station around the destination. As we are developing a model exclusively

based on charging at the destination, this should also have an influence. And last, the

max budget, i.e the maximum budget per stage to deploy charging stations. For the

installation costs, we used three types of stations, with the standard prices practiced by

European operators: 4 500€ for a 7kW charging station, 6 000€ for a 22kWh charging

station, and 100 000€ for a 150kWh charging station. As a simplification, we use the

same costs for all the stations of the same type, wherever the place we put it (i.e we

assume that the electric grid is able to cope with the charging infrastructure)4.

It should be noted that, apart from the maximum budget, each of these parameters

is difficult to control in reality. Indeed, if it is possible to choose the budget allocated

to the deployment of an infrastructure, it is more difficult, if not impossible, to choose

when users will worry about the state of charge of their battery, or how many car owners

will have a charger at home. However, it is possible to estimate these parameters in a

population, which makes it interesting to study those parameters and the effects they have

on the optimal infrastructure and its usages: since depending on them, different optimal

deployment choices can be made.

Also, in reality, endogenous effects can occur. For example, the range anxiety threshold

may depend strongly on the existing charging infrastructure: a better infrastructure will

increase the confidence of users, who may then accept a lower battery state of charge

without any range anxiety. An interesting work would be to establish a relationship

between the existing infrastructure and these parameters and to make them evolve during

the deployment steps.

Here we have kept these parameters fixed during the deployment steps. The values

taken by the parameters are described in Table 3.1.

4Overcoming this approximation is feasible, but requires a lot of data, especially on the costs of land,
the costs of reinforcing the electrical network, and the capacity of the electrical network
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Table 3.1: Values of simulations parameters

Parameters
Range anxiety threshold

(% of remaining battery)

Home charging rate

(% of population)

Searching range

(m)
Max budget

Possible

values

20

50

0

25

500

1000

500 000

1 000 000

We ran a simulation for each of the combinations of these different parameter values,

for a total of 16 simulations, each simulation being a 5 steps infrastructure deployment.

Scoring parameters

For our first case study, for simplicity reasons each of the coefficients α, β, γ, η, µ in the

final scoring function 3.7 presented in section 3.2 is set to 1, so each criterion has the same

weight. Further analysis would allow us to refine the value of these coefficients according

to the specific criteria of each situation.

3.3.2 Observations and lessons learned from results

During all the steps of these 16 simulations, we have collected a certain number of data,

of which we have grouped all the observations in the table in Appendix B. We present

here the main findings from our analysis.

Charger types : Are fast chargers useless ?

The first thing that stands out is the type of chargers installed. Regardless of the set of

parameters considered, there are no fast chargers 5.

This result can be explained quite simply: a fast charger costs about 20 times more

than a slow charger. Even if it can be very useful at a specific location, it will be very

5We noted that in a quick test with a 1 billion max budget per step a few fast chargers started to
appear
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difficult for a fast charger to be more useful6 than 20 slow chargers, unless slow chargers

has already equipped all the critical locations, which would require a much higher budget.

However, this result should be taken with caution. As explained in the introduction,

even if they are not the most useful, fast chargers are a required component of the accept-

ability of electric vehicles, and these chargers may be the key for the switch from ICEVs

to EVs. They are also essential to respond to the problem of long journeys on highways,

during which it is not acceptable to have charging times of several hours.

So what we can draw from this result is not that fast chargers are useless, but rather

that they are not intended to be daily chargers for intra-regional travel, which is the

framework of our study. Rather, they should be reserved for highways, where quick "en

route" charging is required, with optionally a few fast chargers in key points for emergency

situations. Today, fast chargers are installed in urban and peri-urban areas for daily use,

and appear to be profitable. However, it is important to remember that the charging

infrastructure is still in its beginning stages, and so that those fast chargers are often the

only option available. The widespread introduction of other chargers that are slower but

cheaper for the energy they provide and consistent with the needs of the users at locations

where they are installed may greatly reduce the usefulness of fast chargers. Fast chargers

might then have more of an insurance value - certainly essential, but not profitable - than

a commercial one. It could be then interesting to think of a remuneration mechanism

for fast chargers, on the same principle as the remuneration of production reserves for

electricity producers.

6According to our criterion of course
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Figure 3.4: Example of charging infrastructure after 5 iterations

Range anxiety threshold 20%, Home charging rate 25%, Searching range 1000m, Max. budget 1 000 000.

Red dots are 150kWh chargers, orange dots 22kWh chargers and green dots 7kWh chargers

As we can see in the example of Figure 3.4, 22kWh chargers are also underrepresented,

especially when the budget is lower. When the budget is doubled, we observe a few more

22kWh chargers, but the vast majority of chargers remain slow chargers, despite a small

difference in cost between the two. In a logic of maximizing the utility of the infrastructure,

slow chargers seem to be initially more cost-effective than medium chargers, despite the

time savings that they bring. However, there are some cases where the 22kWh chargers

utility is indisputable, as shown by the deployment pattern found in all the simulations. In

each of them, three medium chargers are systematically installed during the first iteration,

i.e., despite their higher cost, they are more useful than slow chargers in other places.

Then, in the following deployment steps, only slow chargers are installed, and only in

the simulations with the largest budgets do new medium chargers reappear, once the

base of the charging infrastructure is laid with slow chargers. The evolution to the final

infrastructure shown in Figure 3.4 is presented in Figure 3.5.
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1st step 2nd step

3rd step

4th step 5th step

Figure 3.5: Evolution of the charging infrastructure over steps

Range anxiety : Can we do without home charging ?

Range anxiety is a major obstacle to the acceptance of electric vehicles. It is therefore

important that the charging infrastructure effectively reduces this anxiety. We therefore

collected two indicators related to this range anxiety: the number of people falling below

their range anxiety threshold, and the number of kilometers traveled by agents with range

anxiety.

First, we notice that the decrease in range anxiety is not linear. The more the infras-

tructure is developed, the higher the marginal cost to decrease the range anxiety. This
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shows that the critical points are covered first by our deployment model, which was our

goal7. It would appear that on average there is a tendency towards a linear relationship

once the initial stages have been passed, but more deployment stages would be required

to state this with certainty.

Figure 3.6: Number of agents with range anxiety and variation of this number over
deployment steps

Figure 3.7: Distance driven with range anxiety and variation of this distance over deploy-
ment steps

In both Figures 3.6 and 3.7, on the left-hand side showing the number of people

experiencing range anxiety and the number of kilometers traveled, we clearly observe 4

distinct groups of simulations. Logically enough, the two highest groups correspond to

the simulations where the range anxiety threshold is the highest: the more sensitive the

agents are to range anxiety, the more likely they are to feel it.

7A counter-simulation performed as a test with a single set of parameters shows that a different order
of terminal installation leads to a slower start of the range anxiety decrease.
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For the same range anxiety threshold, we have two quite distinct subgroups of simula-

tions, which correspond to the access or not to home charging. We see that the number of

agents falling below their range anxiety threshold decreases sharply when there is a pos-

sibility of home charging8. The same is true for the number of kilometers travelled by the

agents under range anxiety. Home charging is thus a key lever for reducing this feeling of

range anxiety. It is therefore important to invest in residential areas where private home

charging is not possible, e.g. because of the lack of private parking spaces. In addition,

having charging stations near agents’ homes increases the visibility of the infrastructure

and reassures agents about their ability to charge their EVs, which helps to lower their

range anxiety threshold, and thus mechanically its perception, making residential invest-

ment even more efficient. This effectiveness is further reinforced by the observation we

made that when the range anxiety threshold is lower, the same investment contributes

slightly more to reducing the number of kilometers driven with range anxiety than when

the threshold is high.

More anecdotally, we find that increasing the search radius of a charger significantly

decreases the feeling of range anxiety and makes infrastructure investments more efficient:

at the last step, with a searching range of 500, doubling the budget allocated to the

infrastructure reduces the distance travelled under range anxiety by 10%, and up to 20%

if the searching range is 1000m. So education on the best practices to have with an electric

vehicle to reinforce the investments in the infrastructure can only be beneficial.

8Again, a test simulation was run with a reduced number of agents and 100 percent home charging.
(Home charging significantly increases simulation times, hence the need to reduce the population). With
this test with 100% of the population able to charge at home, we observe extremely few agents below
their range anxiety threshold
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Table 3.2: Simulation results - Users with range anxiety - Final infrastructure

Range anxiety

threshold

Home charging

rate

Searching

range
Max budget

Nb users with

range anxiety

Total distance

driven with

range anxiety

0.2 0 500 500000 7401 1519147

0.2 0 500 1000000 6803 1340603

0.2 0 1000 500000 6848 1337198

0.2 0 1000 1000000 5894 1070990

0.2 0.25 500 500000 5885 1165318

0.2 0.25 500 1000000 5336 1028968

0.2 0.25 1000 500000 5239 999897

0.2 0.25 1000 1000000 4487 785348

0.5 0 500 500000 10540 2266606

0.5 0 500 1000000 10125 2065109

0.5 0 1000 500000 10311 2120862

0.5 0 1000 1000000 9676 1830319

0.5 0.25 500 500000 8892 1804692

0.5 0.25 500 1000000 8578 1642919

0.5 0.25 1000 500000 8576 1662729

0.5 0.25 1000 1000000 8106 1435630

Vehicles out of battery: a problem of range anxiety ?

If range anxiety generates discomfort, running out of battery is the concretization of this

anxiety, which is more problematic.

The management of empty batteries in our simulations is a bit special: vehicles that

run out of battery continue to drive. In reality, any driver will try to charge before running

out of battery, but we want to adapt the infrastructure to the users, not the other way

around. So we do not allow en route charging, nor do we allow an agent to change their

plans to charge their EV. Agents should behave according to their initial plans, and charge

only if they have the opportunity to do so during their usual trips. It is therefore normal
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for some agents to end up with empty batteries during the simulation, and to drive miles

with an empty battery (sometimes called "missed miles"). These missed miles would

obviously not be driven in reality, but we use them as an indicator of the performance of

our charging infrastructure.

As for range anxiety, the number of vehicles running out of battery as well as the

number of missed miles is very dependent on home charging: access to home charging is

the principle factor that drastically reduces the number of vehicles with empty batteries,

as it can be seen with the two distinct groups in Figures 3.8 and 3.9. The infrastructure

budget is the second most important factor, with a doubling of the budget reducing the

number of out-of-battery cars by 10 to 20% depending on the searching range, and the

number of missed miles by 13 to 25 percent.

Figure 3.8: Number of agents running out of battery and variation of this number over
deployment steps

Figure 3.9: Distance driven with empty batteries and variation of this distance over
deployment steps
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The range anxiety threshold has a surprising effect on the number of cars running out

of battery: while a higher threshold encourages drivers to charge earlier, there are more

vehicles running out of battery when the range anxiety threshold is high! Actually, this

counter-intuitive result can be explained by the availability of chargers. As users are more

anxious, they tend to occupy the chargers more. This means that there are fewer chargers

available for those who need them most. This can be seen by comparing the average dis-

tance to a charger and the average distance to an available charger when parked: at equal

home charging rate, max budget and searching range, the average distance to a charger

is slightly lower for a range anxiety threshold of 0.5 than for a range anxiety threshold

of 0.2, but the average distance to an available charger is about 100 meters higher. This

again shows the importance, in parallel with infrastructure development, of the education

of electric vehicle users so that they adopt charging behavior that is beneficial both to

them and to all drivers. We also remind that a good charging infrastructure will tend to

lower the range anxiety threshold, thus improving the charging infrastructure increases

even more its marginal efficiency. This can even be seen in the simulation results: with a

lower range anxiety threshold, an increase in the infrastructure budget seems to decrease

the number of vehicles running out of battery slightly more than when the threshold is

high.
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Table 3.3: Simulation results-Vehicles out of battery

Range anxiety

threshold

Home charging

rate

Searching

range
Max budget

Nb vehicles

out of battery

Total distance

driven with

empty battery

0.2 0 500 500000 5749 1169249

0.2 0 500 1000000 5169 1015316

0.2 0 1000 500000 5057 1000144

0.2 0 1000 1000000 4120 776668

0.2 0.25 500 500000 4475 881088

0.2 0.25 500 1000000 3951 770926

0.2 0.25 1000 500000 3759 740361

0.2 0.25 1000 1000000 3042 558302

0.5 0 500 500000 5819 1190603

0.5 0 500 1000000 5245 1036093

0.5 0 1000 500000 5263 1053403

0.5 0 1000 1000000 4397 834484

0.5 0.25 500 500000 4486 901440

0.5 0.25 500 1000000 4063 780782

0.5 0.25 1000 500000 3984 776450

0.5 0.25 1000 1000000 3363 611968

Given the results presented in this section and the previous one, it is clear that home

charging has a huge impact on the acceptability and practicality of electric vehicles. Thus,

we could believe that it would be more useful to subsidize home charging than to develop

the public infrastructure. This is not necessarily true for at least two reasons. First, home

charging is not possible everywhere, especially in dense urban environments. Second, the

share of home charging considered in this simulation is 25 percent, which represents about

10,000 stations, at an average unit cost of about $1,500, well above the budget for public

infrastructure (only 2.5 or 5 million over the 5 stages depending on the max budget set).

These results rather highlight the importance of investing in residential, i.e. near-to-home

public charging, especially in locations where home charging would be impossible.
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Charging infrastructure accessibility

The accessibility of the charging infrastructure is another key point to ensure that it meets

the needs of the users. The infrastructure should not only be sufficient to allow charging

when needed but also easy to access and convenient to use in daily life. Having a large

number of chargers in only one place is theoretically sufficient to meet the energy demand,

however, it is not convenient for users, so, it does not meet the charging demand. As our

simulations only use "at destination" charging, the results on range anxiety and battery

short vehicles already give a first idea of the accessibility of the charging infrastructure.

We will have a closer look at it.

Table 3.4: Simulation results-Average distance to a charger when a vehicle stops

Range

anxiety

threshold

Home

charging

rate

Searching

range

Max

budget

Avg. distance

to closest

charger

(m)

Avg. distance to

closest available

charger

(m)

Avg. walking

distance to

destination

(m)

0.2 0 500 500000 1978 2205 285

0.2 0 500 1000000 1381 1507 277

0.2 0 1000 500000 2040 2641 525

0.2 0 1000 1000000 1428 1787 503

0.2 0.25 500 500000 1989 2148 51

0.2 0.25 500 1000000 1408 1508 70

0.2 0.25 1000 500000 2030 2481 162

0.2 0.25 1000 1000000 1441 1705 197

0.5 0 500 500000 1945 2316 287

0.5 0 500 1000000 1340 1554 276

0.5 0 1000 500000 1960 2755 529

0.5 0 1000 1000000 1385 1831 512

0.5 0.25 500 500000 1959 2238 61

0.5 0.25 500 1000000 1344 1495 81

0.5 0.25 1000 500000 2023 2617 170

0.5 0.25 1000 1000000 1397 1773 225
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An interesting point to observe is the average distance to the nearest public charger

when a vehicle stops (without taking into account home chargers). Indeed, this gives an

idea of the accessibility of the stations when parking as it allows to see how accessible

the stations are from the points of interest with a compromise on the proximity of the

parking. This is a good indicator of the feeling users have that they can charge wherever

they may need to for minimal constraint and so enhance the comfort of using an electric

vehicle.

Not surprisingly, the maximum budget allocated to the infrastructure is the most

decisive criterion for reducing this distance: since an increase in the budget favors an

increase in the number of charging stations rather than an increase in the power of the

stations, a higher budget will result in a higher density of stations, and thus on average the

stations will be closer to the users’ destinations: we have an average distance to a charger

of 2km with the smallest budget, and an average distance of 1.4km for the biggest. The

other parameters do not seem to have a real influence on this result. On the other hand,

if we are only interested in the available stations, the budget factor remains predominant,

but the searching range seems to also plays a role: for the same budget, the available

chargers are closer when the searching range is low. However, this has nothing to do with

the layout of the stations. It is rather explained by the charger occupancy rate: this rate

is lower when the searching range is small (see Table 3.6), and therefore the chargers tend

to be more available.
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Table 3.5: Simulation results- Average number of chargers under the searching range when
a vehicle stops

Range

anxiety

threshold

Home

charging

rate

Searching

range

Max

budget

Nb.

chargers

under

range

Nb.

available

chargers

under

range

Nb. chargers

under

range

with r.a*

Nb. available

chargers

under

range

with r.a

0.2 0 500 500000 0.1 0.08 0.08 0.08

0.2 0 500 1000000 0.15 0.13 0.13 0.12

0.2 0 1000 500000 0.26 0.17 0.24 0.2

0.2 0 1000 1000000 0.39 0.28 0.38 0.32

0.2 0.25 500 500000 0.28 0.26 0.14 0.14

0.2 0.25 500 1000000 0.35 0.33 0.2 0.19

0.2 0.25 1000 500000 0.46 0.38 0.3 0.26

0.2 0.25 1000 1000000 0.6 0.51 0.46 0.4

0.5 0 500 500000 0.11 0.09 0.11 0.1

0.5 0 500 1000000 0.18 0.15 0.18 0.17

0.5 0 1000 500000 0.29 0.18 0.29 0.21

0.5 0 1000 1000000 0.45 0.31 0.46 0.36

0.5 0.25 500 500000 0.29 0.27 0.22 0.2

0.5 0.25 500 1000000 0.37 0.34 0.28 0.27

0.5 0.25 1000 500000 0.47 0.38 0.38 0.32

0.5 0.25 1000 1000000 0.66 0.53 0.57 0.48
(*r.a = range anxiety)

Still on the topic of charger accessibility, it may be interesting to look at the number

of chargers available in the searching range. Our results show that home charging is the

most important way to ensure that a charger is available close to users’ centers of interest:

for the same search radius, we triple the average number of chargers at the destination.

Once again, where it is possible, developing home charging remains a good idea (while

always keeping in mind that this solution is not the most efficient in terms of overall cost,

since a charger serves only one vehicle). About the budget allocated to the infrastructure,
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it plays, as for the average distance to the chargers, an important role in the access to

the public infrastructure. In the scenarios without home charging, we see an increase in

the number of chargers in the search radius of between 65 and 75% when we double the

allocated budget: the leverage effect is certainly less than 1, but it is still significant. In

the end, however, the most effective effect lies once again in the goodwill of the users (and

therefore in their education): all other parameters being equal, doubling the searching

range more than doubles the number of chargers available under the searching range.

However, we see a result that is contradictory to the deployment philosophy of our

model: it is supposed to result in infrastructure that is available when and where users

need it. But when comparing the columns of the Table 3.6, we see that the number

of chargers available when users feel range anxiety, i.e., when they need a charger, is

systematically lower than the number of chargers available, which can be considered as a

failure if we want to minimize user anxiety. In this respect, the state of charge of the users

should have been taken into account more. This is confirmed by the results of a simulation

in which we increased the weight of the state of charge criterion in the utility function of

the infrastructure (equation 3.7). These results reverse this relationship and favor station

placement in locations with higher range anxiety. However, this changes other results:

for example, the number of kWh provided by the public infrastructure, and thus its

profitability, decreases. This shows the importance of calibrating the utility function of the

infrastructure according to the objective in which the charging infrastructure is deployed:

our model does not give "the" optimal charging infrastructure, but "an" optimal way

of developing the charging infrastructure on the Pareto front of optimal infrastructures

according to the choices made for its development.

Charging infrastructure utilisation

Finally, it can be interesting to look at the way the infrastructure is used, and what

lessons a charging station operator could learn from it.

First of all, we notice that the lower the budget, the higher the occupancy rate of the
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stations: as the budget is more or less proportional to the number of stations, putting

fewer stations makes them individually more profitable. An operator who is not in a

monopoly situation will therefore have to take into account this drop in revenue in the

event of additional stations being installed by potential competitors, at the risk of ending

up with stations operating at a loss. On the other hand, all other things being equal,

doubling the number of stations does not halve their occupancy rate, even at the last

stage of deployment, i.e., when there are the most stations, and therefore in theory when

the marginal utility of an additional station is the lowest: there is still potential demand

for new stations.

The second notable thing is the effect of home charging, which competes directly

with the public charging infrastructure: when it is available, there is quite logically a

drop in the occupancy of public chargers and a lower proportion of charging on public

infrastructure. However, this occupancy rate does not fall so drastically, by about 10%

in the worst case. Rather, it is the amount of energy supplied by the infrastructure for

a charge that is affected: it can be halved, which represents a big loss for the station

operators. Several strategies are therefore possible for operators. One is to abandon areas

where home charging has a high potential for development, but at the risk of creating

white zones for travellers outside the area. Conversely, they can choose to invest and be

ahead of demand in these areas, and thus propose an offer that allows electric vehicle

users to do without home charging. It should be noted, however, that this strategy,

although economically viable if we consider rational agents, will probably not withstand

a psychological analysis, due to an endowment effect.
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Table 3.6: Simulation results- Average number of chargers under the searching range when
a vehicle stops

Range

anxiety

threshold

Home

charging

rate

Searching

range

Max

budget

Charger

occupancy

(% of time)

Share of

public

charging

(% of all

charges)

Average

SoC at

charge start

(kWh)

Average

energy

supplied

per charge

(kWh)

0.2 0 500 500000 44 100 24,5 11,9

0.2 0 500 1000000 34 100 25 12

0.2 0 1000 500000 69 100 23,8 10.5

0.2 0 1000 1000000 53 100 24,8 10.6

0.2 0.25 500 500000 35 26 33,4 6,1

0.2 0.25 500 1000000 28 35 33 6,7

0.2 0.25 1000 500000 58 37 32,4 6,5

0.2 0.25 1000 1000000 44 46 31,8 7

0.5 0 500 500000 56 100 28,1 10.1

0.5 0 500 1000000 45 100 29,1 10.1

0.5 0 1000 500000 80 100 27,1 9

0.5 0 1000 1000000 65 100 28,3 8,9

0.5 0.25 500 500000 47 27 35,8 6,2

0.5 0.25 500 1000000 37 37 35,3 6,5

0.5 0.25 1000 500000 69 35 34,6 6,3

0.5 0.25 1000 1000000 56 47 34,1 6,8

Finally, it is interesting to point out that the drop in the use of public infrastructure due

to home charging is certainly significant, but nevertheless much less than if home charging

is not taken into account during deployment: in a test simulation with an infrastructure

developed without home charging, and the introduction of home charging afterwards, we

observe a drop of almost 20% in the occupancy rate of chargers, and of more than 25%

in average energy supplied per charge.
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3.4 Conclusion

In this chapter, we proposed a model for the development of a charging infrastructure

on a territory, centered on the behavior of potential users of this infrastructure. This

model is multi-criteria, and integrates the progressive aspect of the deployment of such

an infrastructure by its incremental aspect. This particularity allows the development of

an infrastructure on a territory without any installation, as well as taking into account

the already existing charging stations to develop a coherent infrastructure.

We applied our model to the city of Berlin, using data from a representative sample

of the population, i.e., more than 30 000 agents, over a typical week. We collected this

data for 16 different parameter configurations. Among the main results, we note the

absence of fast chargers in the final infrastructure. Although essential for their insurance

value, they are not very effective from a purely business point of view. We also note that

home charging and more broadly residential charging are the keys to EV acceptability.

They considerably reduce range anxiety, which is the ultimate proof of the efficiency of

an infrastructure on the consumer side. The decrease in range anxiety in the population

even increases the efficiency of the infrastructure through a positive externality effect. On

the other hand, home charging considerably reduces the utility and profitability of public

stations. It is therefore very important to take this into account when installing chargers.

Finally, investing in the education - or the orientation, via nudges for example - of the

users would considerably increase the efficiency of a public infrastructure.

However, this model obviously has its limitations. First of all, it is an incremental

method, whereby we try to maximise the utility of the next station to be installed. This

approach is therefore not a global optimisation of the problem. The aim of this method is

to propose a path towards a complete infrastructure that favours the adoption of electric

vehicles, so concessions are made on the final infrastructure obtained, which may be

sub-optimal. Secondly, while this model is very "user-friendly", it is not very "operator-

friendly". We are not trying to maximise the profit of the charging station operators, but

the utility of the infrastructure for the users, regardless of who provides the service. This
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method may repel private operators in competition, who naturally seek to maximise their

own profit, and not the global one.

There are also some limitations in the calculation of the score. As we briefly mentioned,

the calibration of the score function is quite complex. We also identified a weakness in

the calculation of the score as a function of parking time. We reason on an average

parking duration at locations, but if there are two groups of people with totally different

behaviours in one place the average of these behaviors may not represent anything. Still

on the subject of parking, the capacity and availability of parking was not taken into

account, while in practice it is not always possible to park in a place.

For the same reasons, this way of calculating the score leads to almost always have

only one type of charging station in one place, when a mix could be interesting. Further

statistical work seems necessary to solve this problem.

There may also be side effects on the calculation of the battery score, for example with

parking close to homes where home charging would be available: people with a low state

of charge could park in a place close to their home, and not need to charge since they can

do it at home, but this will not be identified by the model.

And to finish, one of the strong assumptions of the chapter is that the infrastructure

can be developed, and the number of electric cars will follow. The simulations are done to

have an infrastructure that meets the needs of a given number of electric cars estimated

according to predictive models. We would like to examine this aspect in more detail by

studying the real impact of a deployment as proposed on the evolution of the electric

vehicle population, rather than taking it as an input parameter.
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Chapter 4

Tenerife´s infrastructure plan for

electromobility: a MATSim evaluation

*

According to the Canarian government’s plans, a complete decarbonization of the Canary

Islands economy is foreseen from 2040 onwards, which includes the electrification of land

transport in the archipelago. However, due to the current low penetration rate of electric

vehicles (EVs) on the islands, the number of EVs in circulation is expected to grow sig-

nificantly in the coming years. Despite this, the network of charging points in Tenerife is

currently totally insufficient, which is why it is essential to carry out a study to design

the network of charging points in such a way that it can absorb the entire fleet of EVs

that is expected to be in place by 2040. To this end, there are studies on the capacity,

in terms of parking space, available for the installation of these charging points. Still, to

date, there are no studies on this subject supported by mobility data. For this reason, a

traffic simulation in Tenerife in 2040 has been carried out using MATSim (Multi-Agent

Transport Simulation) to determine the ideal places to install these charging points and

find the number of charging points needed for the network.

*
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4.1 Introduction

Faced with the challenge posed by the current climate emergency, it is essential to accel-

erate the so-called Energy Transition to mitigate the harmful effects on the planet caused

by the increase in greenhouse gas emissions in its atmosphere over the last few decades

[131]. One of the main pillars of this transition is the decarbonization of the economy,

which includes the electrification of the transport sector, accompanied by a commitment

to the generation of energy from 100% renewable sources.

In order to carry out this electrification of transport, the Spanish Government has

committed in its Climate Change and Energy Transition Law (LCCTE) [132] to the

complete decarbonization of the transport sector throughout the national territory by

2050, following the Communication of the European Green Pact of December 2019 [133].

This Pact establishes a new growth strategy that aims to transform the economy of the

European Union in a competitive and efficient way in the use of its resources, with the aim

of achieving climate neutrality in the continent by that year. It is in this context that this

national legislation is framed, which in turn contemplates the development of regulations

and laws at the regional level, such as the Preliminary Draft Bill of the Canary Islands

Climate Change and Energy Transition Law approved by the Canary Islands Government

in November 2021 [134]. This bill sets the complete decarbonization of the economy of

the archipelago for 2040, i.e. ten years earlier than in the rest of the national territory.

In line with this Draft Bill, a series of energy planning instruments are included in the

Canary Islands Energy Transition Plan 2030 (PTECan) [135], which establishes the main

strategies to be followed in energy matters in the Canary Islands.

Against this background and anticipating the growing market demand for electric vehi-

cles (EVs), which according to government plans will replace current internal combustion

vehicles (ICEs) by 2040, it is essential to design a network of charging points capable of

supporting the technical viability of the transport sector in the future. To design such a

network, it must be considered that there are different types of electric vehicle charging

points, with different charging power. It will therefore be necessary to dimension the
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charging infrastructure and power networks according to the maximum power that will

be required during a given period. For practical purposes, electric vehicles are seen by the

electricity grid as batteries that demand a certain amount of energy, assuming a charging

power that is established according to the type of connector to which it is plugged in

(with slow charging normally at 3.7 kW; semi-fast charging at 11-22 kW and fast charging

at 40-80 kW. Thus, in order to charge an electric vehicle battery, slow charging requires a

continuous flow of energy between the vehicle and the power grid of 5-7 hours, semi-fast

charging of 2-4 hours, and fast charging of less than 30 minutes [2]. In addition to being

classified by charging speed, charging infrastructures could also be differentiated according

to the point at which the system is installed, with the following three possibilities:

• Origin: Located at the starting point of the trip, these are usually slow-charging

systems located in the garages of private homes or community buildings.

• Destination: Located at the end point of the trip, these are also usually slow charging

systems, located in workplace parking lots.

• In itinerant: These are semi-fast or fast charging systems located in shopping cen-

ters, public roads, or parking lots. This group also includes the so-called charging

stations, which always consist of fast charging systems.

Due to the relationship between the speed of charging systems and their location, it

will be necessary to consider that the nature of vehicle travel will condition the type of

charging system to be installed at each site. By elaborating our study, based on open-

source software, we will provide a new approach to the need to infrastructure deployment

based on mobility needs and compare it with the actual methodology used by the local

government. By doing so, we will provide a counter-evaluation of the needs and show the

limit of the current policy analytical frame.

Given the absence of studies to date based on the analysis of existing traffic for the

design of a network of charging points, this study aims to provide a clear methodology for

that purpose, so that charging points are not placed randomly but according to mobility
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criteria, achieving an optimized network. In this way, users will not have to change their

usual behavior to charge their vehicles, but rather the charging points will be strategically

located where they are best suited to their needs. This methodology will be developed in

this paper, which is structured as follows.

First, the current status and potential of the electrification of land transport in the

case study, Tenerife (Spain), will be analyzed. In addition, the main strategies proposed

by the Government of the Canary Islands to achieve the goal of complete electrification

of the vehicle fleet will be examined. Subsequently, the principles on which the transport

simulation software used for the development of this methodology, MATSim, is based will

be detailed. The supplementary material will also explain in more detail the procedure

followed to carry out the simulation. Finally, the results obtained will be presented,

which include both an analysis of the geographical distribution of charging points for

a specific configuration of the software parameters, in order to check the feasibility of

the methodology used, and a comparison between two case studies, one with progressive

electric vehicle penetration quotas and the other with non-progressive quotas.

4.2 Analysis of EVs potential in Tenerife.

Given the scenario presented, in which a large increase in the volume of EVs in circulation

in Tenerife is foreseen, it is essential to design the charging infrastructure that will support

this future transport network on the island. The study carried out by the Canary Islands

Technological Institute (ITC), which depends on the Canary Islands Government, has

been taken as a reference, setting out the main strategies to be followed in terms of

EVs with the aim of achieving the complete decarbonization of land transport in the

archipelago by 2040 [2]. This study, which is part of the PTECan 2030 [135], will allow

a comparative analysis between the plans proposed by the Government of the Canary

Islands and the results obtained by our study.
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4.2.1 Case study

The island of Tenerife, located in the Atlantic Ocean in southwestern Spain, 330 km from

the coast of Morocco and with coordinates 28°28’ N, 16°15’ W, has a population of 927,993

inhabitants in 2021 [136]. This population is distributed and dispersed mainly along the

coastline of the island, as can be seen in Figure 4.1. The main areas with the highest

concentration of population are the metropolitan area formed by Santa Cruz de Tenerife

and San Cristóbal de La Laguna located to the northeast, the Orotava Valley located to

the north and the southwest of the island, where most tourist activity is concentrated.

Figure 4.1: Distribution of the population on the island of Tenerife.

At present, with the latest available data for 2019, Tenerife’s vehicle fleet is dominated

by gasoline ICE (internal combustion engine) vehicles (67.18%) and, to a lesser extent,

diesel (32.57%). EVs are relegated to a third position with only 7,827 units out of a total

of 751,702, which implies a penetration rate of 1.04%, and surpassing only the group of

LPG (liquefied petroleum gas) vehicles [137], which barely account for 0.11% of the total
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[138]. It should be noted that considering the population of the island and the total

number of vehicles, the rate of vehicles per inhabitant for that year was 0.828, which is

considerably higher than the average for Spain.

These figures, together with the goal of complete electrification of the vehicle fleet by

2040, highlight the foreseeable large increase in the number of EVs in circulation on the

island in the coming years, with the consequent need for planning and construction of

an architecture of charging points for this increase in EV demand, which has yet to be

realized.

It should be noted that, given the insular nature of the case study, the implementation

of such a network, with the consequent increase in energy demand that will be associated

with it, may pose a great challenge, not only for the case of Tenerife but for the whole

of the Canary Islands in general. However, this fragmentation of the territory should

not be seen as an added disadvantage, but as a window of opportunity in which the

massive implementation of EVs, together with intelligent mechanisms for demand control,

energy generation and storage, can help to provide the electric grid with greater flexibility,

reliability and compensate for the current weaknesses associated with the isolation of its

electric systems, both among themselves and from the rest of the national territory [139].

Furthermore, under this scenario, the Canary Islands could become a test bench which,

if successful, could export this energy model of sustainable mobility to any continental

region of Europe [140]

4.2.2 Impact of transport electrification on electricity generation

The complete electrification of the transport sector in Tenerife will lead to an increase in

the demand for electricity. Specifically, it has been estimated that, for the year of com-

plete electrification, 2040, the increase in this demand will be 2510 GWh/year, which,

considering that current electricity consumption on the island is 3514 GWh/year, repre-

sents an increase in demand of 71.2%, as can be seen in Figure 4.2 [2]. However, this

increase in electricity demand should not be considered as a negative point, since the final
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impact will mainly depend on the type of management carried out with the massive entry

of EVs in Tenerife [141].

Figure 4.2: Electricity consumption increase in Tenerife associated with the transport
sector between 2018-2040 [2]

Therefore, in addition to supplying this increase with non-manageable energy, mainly

wind and photovoltaic energy, it would be desirable to apply an autonomous energy

management system which, considering the state of charge of the vehicle’s battery and the

signal generated by the electricity system, and according to energy predictions, prioritises

EV charging at times when it is faced with a scenario of the greatest possible amount

of renewable energy [142]. If this management system is also combined with the use of

V2G technology, in which EVs go from being mere loads for the system to also becoming

electricity suppliers during peak demand hours [143]. V2G, would provide the electricity

system with a great capacity for manageability, helping to flatten the demand curve and

therefore optimising the energy production system. Additional benefits are also expected

by reducing the storage capacity required and minimising renewable energy curtailments

[144]. It is therefore advisable that the charging points to be installed are, whenever

possible, slow charging points, as these are the ones that allow the system to be more

manageable for the reasons mentioned above [15].

On the other hand, in view of the increase in demand [145], the transmission, and

distribution networks as well as the generation on the island will have to be repowered.
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To this end, and according to the estimates made by the Instituto Tecnológico de Canarias

S.A. (hereafter ITC) using the ISLA (Insular Energy System Long-term Assessment tool)

optimisation model, the necessary renewable power equivalent to 1,600 MW has been

obtained, in addition to a storage capacity of approximately 600 MW/15,000 MWh. Such

a system would produce annually about 3,554 GWh of which 1084 GWh could not be

consumed, since despite taking into account the improvements with smart grids mentioned

above, this surplus would be required to ensure the demand for EVs even at the worst

possible time, i.e., when the available resource is minimal [146]. However, this surplus

energy should not be considered as a waste as it could be absorbed by the system for

other uses such as the production of hydrogen by electrolysis, which in turn could be used

in a complementary way in land vehicles or maritime transport.

Finally, also according to the forecasts of the ITC, it should be noted that the complete

electrification of the land transport system in Tenerife, under the scenario in which this

electrification is supported entirely by renewable energies, would mean an annual saving

in pollutant emissions into the atmosphere of 674,915 kt of CO2 eq. Figure 4.3 shows a

pie chart of the reduction of CO2 emissions to the atmosphere by type of vehicle.

Figure 4.3: Reduction of CO2 emissions to the atmosphere by type of vehicle.
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4.2.3 Analysis of the strategies and policies on EVs of the Canary

Islands Government

As mentioned, the starting point was the ITC study on the strategy to be followed for

the electrification of land transport in the Canary Islands, the main objective of which

was to calculate the number of EV charging points of each type to be installed on all the

islands. In our study, we have focused on the case of Tenerife, so that after obtaining

our own results, a comparative analysis can be made between the latter and those of the

ITC study. The main steps followed by this study to arrive at the desired result will be

detailed below.

Firstly, the total number of vehicles in circulation in Tenerife in the year 2040 was

estimated. To do this, the latest data available at the time of the study was used, which

is from 2019, with a total of 751,702 vehicles on the island. Subsequently, a multivariate

regression model was applied to describe the relationship between a series of socioeconomic

variables and the vehicle fleet, to estimate the vehicle fleet in 2040. Specifically, the

historical evolution of the population and the Gross Domestic Product (GDP) have been

used as variables, and the Machine Learning technique known as Random Forest has

been applied to find patterns between the evolution of these variables that can be used to

estimate the vehicle fleet [2]. Figure 4.4 shows the data on the evolution and projections

of the population on the island of Tenerife from the year 2000 to 2050 and Figure 4.5

shows the same data, but for the case of GDP.
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Figure 4.4: Evolution of the population on the island of Tenerife between 2000-
2050.

Figure 4.5: Evolution of GDP on the island of Tenerife between 2000-2050.

Finally, to evaluate the correlation, a linear correlation analysis was carried out using

Pearson’s method, obtaining a correlation between population and GDP with the vehicle

fleet of more than 70% in both cases. Figure 4.6 shows the data obtained on the estimation

of the car fleet in Tenerife up to 2050, giving a total of 693,439 vehicles in the year 2040,

in which the simulations will be carried out. It will be assumed, given the regulations,
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that the totality of this fleet corresponds to EVs.

Figure 4.6: Evolution of the electric car fleet on the island of Tenerife between 2018-2040
[2].

Once the fleet of electric vehicles had been estimated, the number of charging points

required for this volume of vehicles was calculated. To do this, we used the information

available from the Dirección General de Catastro del Ministerio de Hacienda [147] relating

to data on buildings, plots and infrastructures. On the other hand, data collected by the

Instituto Geográfico Nacional (IGN) [148] and published in the Spanish Land Occupancy

Information System (SIOSE) [149], related to service stations in Tenerife, as well as access

to the entire road network of the island and parking areas in buildings and above ground,

were also used.

In the case of private buildings, whether residential, commercial or workplace, the

number of parking spaces available was estimated based on data obtained from the DGC

and occupancy rates, which were determined by means of telephone surveys in the case of

residential buildings and via web-based information in the case of commercial buildings.

A total of 252,873 parking spaces were made available in homes (charging systems at

source) and 108,800 in shops, hotels, and workplaces (charging systems at destination),

which will be used as far as possible as slow charging points, covering 52.16% of Tenerife’s

total vehicle fleet in 2040.
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Subsequently, it was checked that the parking capacity on urban and conventional

roads was sufficient to cover the remaining demand corresponding to 47.84%, which would

use the "in itinerant" charging system. In this case, priority would also be given to slow

charging systems, although it is foreseeable that in this group of charging points a higher

proportion of semi-fast charging points, and even fast charging points in some cases, would

be necessary. The total capacity of these roads was found to be 1,626,103 charging points,

which is more than sufficient for the unmet demand of 331,766 vehicles.

Finally, the study carried out by the ITC also includes additional analysis of the

current service stations as a complement to the network, as these will provide a network of

fast charging points that will support the network in the event of possible contingencies.

Specifically, a total of 205 stations were counted in Tenerife, which would provide the

system with 4,315 fast charging points, considering that the surface area of the stations

for this use accounts for approximately 40% of the total. This figure is considered sufficient

to ensure that the support provided to the network is of sufficient quality to deal with

the contingencies mentioned above.

4.3 Software preparation

After the analysis of the study explained in the previous section, we proceeded to the

correct configuration of the simulation software, MATSim (Multi-Agent Transport Sim-

ulation), and the subsequent launching of its simulation to obtain the expected results.

This section will describe the fundamentals of this software, as well as the process nec-

essary for its preparation before proceeding to perform the relevant simulations. This

procedure will be further detailed in the supplementary material part.

4.3.1 MATSim Fundamentals

MATSim is an open-source multi-agent simulation framework implemented in Java lan-

guage. It is based on the principle of coevolution, i.e., each agent (vehicle in our case)

102



Chapter 4 – Tenerife´s infrastructure plan for electromobility: a MATSim evaluation

repeatedly optimizes its daily activity schedule while competing for the same time slots

with all other agents in the transportation infrastructure [150]. Each MATSim run con-

tains a configurable number of iterations consisting of the following stages summarized in

Figure 4.7.

Figure 4.7: MATSim simulation principle

On the one hand, the initial demand comes from the population’s daily activity chains.

The people modelled are called agents, who have daily plans, where in turn each plan is

composed of a daily activity chain and a score associated with that activity, known as an

econometric utility function. On the other hand, there is the mobility simulation itself,

known as Mobsim. This stage consists mainly in that, in each iteration, each agent selects

a plan from its memory according to the scores assigned to each plan, which are calculated

in each mobsim run. Finally, the replanning module produces the modifications of the

plans, with the objective of finding the optimal option. For this, MATSim considers

four characteristic parameters of the simulation: the departure time, the planned route,

the way in which it will be carried out and the destination of the activity. The described

iterative process is repeated completely until the average score of the population stabilises

[115].

Another important note is that since MATSim is designed for large-scale scenarios,

the software adopts the queuing approach, i.e., an agent enters a network link or road

segment from an intersection and is added to the queue. Such an agent will remain there

until the time to traverse the link has elapsed, it is at the head of the queue and the next

link allows it to enter. Therefore, the MATSim traffic model is based on two attributes

of the links: on the one hand, the storage capacity, which denotes the number of cars

entering a link in the network, and on the other hand, the flow capacity, which is nothing
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more than the exit capacity of a link, i.e., the number of agents that can leave the link

per unit of time.

It should be noted that to carry out the simulations, the MATSim model needs at

least the following files as inputs:

• Config: It contains all the possible MATSim configuration options. In this section

you will specify among other parameters, the "controller", the number of itera-

tions, the type of parameters and the configuration of the parameters of the utility

function, which will assign scores to the different plans, which will be used proba-

bilistically for the choice of each plan by the software.

• Network: It is the infrastructure where agents can move, which consists of a set of

nodes and links. The simplest network format should contain information regarding

the length of the link, the link capacity, the number of lanes available in the specified

direction and the list of modes allowed on the link.

• Population: The population contains the data of the set of agents and their plans.

Specifically, the files contain a list of people, which in turn each person contains a

list of plans, and each plan contains a list of different activities. Each population

file needs at least one plan associated with each person, for which it is not necessary

to have a certain score assigned, as this can be obtained by MATSim. In addition,

the activities can be located only by their coordinates and the section only needs

one mode, so it is not necessary to specify the routes.

The procedure followed to obtain each of the files will be detailed in the supplementary

material.

4.3.2 Mobility data

Before the simulations could be carried out, it was necessary to prepare the model, specif-

ically the three files described above. For this purpose, the following methodology has

been followed as detailed in this section.

104



Chapter 4 – Tenerife´s infrastructure plan for electromobility: a MATSim evaluation

We started from the mobility study conducted by the Cabildo de Tenerife in October

2018 [115] to analyse travel on the island and to allow access to citizenship, through a series

of applications, of the data obtained, after processing and debugging them. Specifically,

the information obtained from the geolocation records of mobile terminals, travel data

from the Ten+ island public transport card, capacity data and surveys of both residents

and non-residents were used.

For this purpose, the island was divided into 150 zones, called transport zones, which

can be seen in Figure 4.8. Since the study carried out by the Cabildo does not include

information on these zones anywhere, a name has been assigned to each one of them, as

well as the municipality to which they belong, and they are presented in Annex C in an

orderly fashion.

Figure 4.8: Transport zones into which Tenerife has been divided.

The result of the mobility study is a square matrix of rank 150, which describes the

number of journeys made between the different transport zones during the month of

105



Chapter 4 – Tenerife´s infrastructure plan for electromobility: a MATSim evaluation

October 2018, the period covered by the study, with the rows being the transport zones

of origin of each journey and the columns being the transport zones of destination. In

addition, the study carried out by the Cabildo also allows the information to be filtered

by time of the start of each journey or by distance, in the latter case it is only possible

to filter the information into two different groups: journeys whose distance is equal to or

less than 1 km and journeys with distances greater than 1 km.

All this information will be very important to consider when creating the necessary

input files required by MATSim to carry out the simulation, which is why it has been de-

tailed in this section. As mentioned above, this procedure is detailed in the supplementary

material section.

4.4 Results and Discussion

This section will present the results obtained after the simulation, the methodology of

which has been defined above, as well as in the supplementary material. Specifically, for

this simulation, the model has been configured with about 250 iterations, which, as can be

seen in Figure 4.9, are sufficient for the statistics of the utility function scores to stabilize,

so that they can provide reliable results. Furthermore, the full simulation period is 5 days,

which corresponds to a typical week between Monday and Friday.
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Figure 4.9: MATSim simulation scores statistics

Before obtaining the results corresponding to the location of the charging points, a

dynamic representation of the mobility has been obtained, corresponding to the 5 days

of simulation considered, and for which a synthetic population has been used. As an

example, Figure 4.10 shows a screenshot of the synthetic agents in movement visualized

in Simunto Via, corresponding to the town of San Isidro, municipality of Granadilla de

Abona.
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Figure 4.10: Screenshot of the synthetic agents in movement visualised in Simunto Via,
in San Isidro, municipality of Granadilla de Abona.

4.4.1 Simulation with progressive EV quotas

In this simulation, the penetration rates of electric vehicles estimated by the ITC were

used [2]. A three-year budget of 5 million euros was considered for this case. In addition,

the power of the chargers is not fixed, so that MATSim determines the charging power

point accordingly.

Once the simulation process was completed, for this configuration described, the fol-

lowing points were obtained, as shown in Table 4.1.
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Table 4.1: Number of EV charging points per power.

Years
Share

of EVs (%)

Accumulated

budget (€)

Number of

7kW chargers

Number of

22kW chargers

2022 2.29 5,000,000 781 141

2025 8.40 10,000,000 1,883 144

2028 18.10 15,000,000 2,988 144

2031 31.36 20,000,000 4,09 144

2035 49.65 25,000,000 5,191 144

2037 72.20 30,000,000 6,294 144

It can be seen that in the first step, 141 semi-fast chargers (22 kW power) and the

rest slow chargers are obtained (7 kW power). These semi-fast chargers will practically

remain constant while the slow chargers will increase over time.

Figure 4.11 show the distribution of charging points throughout the island of Tenerife

in the different years, where each red dot corresponds to a charging point.
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Figure 4.11: Maps of the distribution of the charging points obtained in Tenerife over
time.

These previous maps have been elaborated after applying a data treatment in Python

to the results provided by MATSim.

In total, with a budget of 30,000,000 euros, 6,294 EV charging points with a power of

7 kW and 144 points with a power of 22 kW were obtained, corresponding to slow and

semi-fast charging points respectively. These points have been grouped by municipality

by means of data processing to obtain Table 4.2, which shows the exact number of EV

charging points obtained in each municipality of the island of Tenerife and in each step

of the simulation.
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It should be noted that these results do not correspond to census population crite-

ria, but to the simulation built by synthetic agents from the mobility data available in

the study conducted by the Cabildo de Tenerife in October 2018 [24]. Moreover, these

results correspond to the optimal distribution of charging points for an available budget

of 30,000,000 euros, and this parameter could have varied and, therefore, different results

could have been obtained. Therefore, the possibility of adapting the results according to

the specific needs of each moment remains open.

Table 4.2: Number of EV charging points per municipality

Municipality Years
2022 2025 2028 2031 2034 2037

Santa Cruz de Tenerife 259 477 666 844 1014 1178
La Laguna 200 416 614 812 993 1166

Arona 39 133 229 320 408 485
Adeje 69 127 203 276 344 415

Granadilla de Abona 33 88 144 208 266 329
La Orotava 61 130 181 225 266 302

Puerto de la Cruz 59 102 158 205 253 296
Los Realejos 14 59 111 157 205 253

Guía de Isora 10 43 77 116 165 214
Tegueste 13 47 74 105 146 182

Tacoronte 17 48 77 111 143 179
Icod de los Vinos 25 44 73 105 139 177

San Miguel de Abona 14 34 66 101 138 174
Güímar 8 30 50 79 113 151

Santa Úrsula 22 42 63 87 110 131
Arico 6 22 40 62 92 124

El Rosario 6 29 50 72 95 118
Candelaria 27 50 68 81 96 113
El Sauzal 3 16 38 59 82 107

La Guancha 9 18 28 38 48 59
Santiago del Teide 2 17 24 32 44 54

El Tanque 1 5 9 22 29 40
Buenavista del Norte 6 16 24 29 32 39

Garachico 3 5 12 16 20 29
Fasnia 3 0 2 8 14 27

La Matanza de Acentejo 5 10 13 16 20 26
Arafo 4 5 10 11 15 20

La Victoria de Acentejo 6 11 13 15 18 19
San Juan de la Rambla 1 2 9 8 13 14

Los Silos 0 1 3 5 7 9
Vilaflor 0 0 3 7 7 8
Total 922 2027 3132 4234 5335 6438
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It can be seen, both visually on the map and in Table 4.2, that there are 2 municipal-

ities that stand out above the rest, such as the metropolitan area formed by Santa Cruz

de Tenerife and La Laguna, which between them account for 36.41% of the total charging

points on the whole island in 2037. Other areas with significant concentrations of points

are the tourist municipalities in the south of the island, with the following standing out

in particular Arona, Adeje and Granadilla de Abona with third, fourth and fifth place

respectively in the ranking of municipalities with the highest concentration of points. The

municipalities of the Orotava Valley, i.e. La Orotava, Puerto de la Cruz and Los Realejos,

also stand out, occupying in this case the sixth, seventh and eighth positions, all of them

with more than 200 charging points in the year 2037. The rest of the municipalities of

Tenerife have a lower concentration of charging points, although it should be noted that

of the 31 municipalities, the simulation results show more than 10 charging points in

29 municipalities, with Los Silos and Vilaflor being the only municipalities with a lower

concentration of points, with 9 and 8 chargers respectively. This information can be seen

more graphically in Figure 4.12, where the two municipalities of the metropolitan area

clearly dominate: Santa Cruz de Tenerife and La Laguna.
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Figure 4.12: Concentration of charging points by municipality on the island of
Tenerife in 2037.

To better visualize these areas where there is a higher density of points, it has been

decided to represent, with a higher resolution and in urban-type map, the places where the

charging points obtained are located in the year 2037. These maps are shown in Figures

4.13 to 4.18, which correspond to the metropolitan area (formed by the most populated

areas of the municipalities of Santa Cruz de Tenerife and La Laguna), La Orotava Valley

(formed by the municipalities of La Orotava, Puerto de la Cruz and Los Realejos), the most

touristic areas in the South of the island (corresponding to the municipalities of Arona

and Adeje), the municipalities of Granadilla and San Miguel de Abona, Güímar Valley

(formed by Candelaria, Arafo and Güímar) and the northeast region (comprising Santa

Úrsula, La Victoria and La Matanza de Acentejo, El Sauzal and Tacoronte), respectively.
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Figure 4.13: Distribution of charging points in the metropolitan area of Tenerife.

Figure 4.14: Distribution of charging points in La Orotava Valley.
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Figure 4.15: Distribution of charging points in the touristic areas of the South
of Tenerife (Arona - Adeje).
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Figure 4.16: Distribution of charging points in Granadilla and San Miguel de
Abona.

Figure 4.17: Distribution of charging points in Güímar Valley.
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Figure 4.18: Distribution of charging points in the northeast region of Tenerife.

4.4.2 Comparison between a simulation with progressive and non-

progressive EV quotas

In this case, a simulation was carried out in which the initial percentage of EVs in the

year 2022 was considered to be 100%, so the differences between the previous simulation

in which the population gradually acquired an EV and this latest simulation in which the

land-based vehicle fleet is purely electric will be analyzed. For this case, the same budget

of 5 million euros per step was set, starting in 2022, and 3 steps were simulated, with

each step again being triennial. The results are presented in Table 4.3.
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Table 4.3: Number of EV charging points per power with progressive and non-progressive
EVs quotas.

Years Accumulated budget (€) Progressive EVs quotas Non-progressive EVs quotas

Number of

7kW chargers

Number of

22kW chargers

Number of

7kW chargers

Number of

22kW chargers

2022 5,000,000 781 141 1,111 0

2025 10,000,000 1,883 144 2,215 3

2028 15,000,000 2,988 144 3,326 3

It can be seen that while in the case of the simulation with progressive VE quotas

141 semi-fast chargers (22 kW) are obtained in the first step, in the case of the non-

progressive simulation none are obtained. This is probably due to the fact that not being

progressive, all users have an electric vehicle and therefore MATSim will prioritise slow

chargers (7kW), which are cheaper than semi-fast chargers and therefore a greater number

of points is obtained, in order to place a charging point for the greatest possible number

of agents.

This would explain why in the case of the above simulation, as in the first step the

share of electric vehicles was small (2.29%), there was enough budget to place several

semi-fast chargers, but as the share of electric vehicles increased, and not in a way that

would have been possible in the first step, there would have been enough budget to place

several semi-fast chargers.

Finally, it is noteworthy that for the second step of the non-progressive simulation, 3

semi-fast chargers appear, which is the same increase of this type of chargers as in the

progressive simulation, so it may be due to a residual error of MATSim.

Figure 4.19 shows the distribution of points for 2028 for both cases, progressive and

non-progressive, where it can be seen that in the latter there is a greater number of points

distributed more homogeneously throughout the island, as the semi-fast charging points

are disregarded compared to the slow charging points.
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Figure 4.19: Distribution of charging points in Tenerife in 2028 for the progressive and
non-progressive cases.

4.5 Conclusions

In this study we first obtained the most efficient geographical distribution of electric vehi-

cle charging points to be installed on the island of Tenerife for a budget of 30,000,000 euros

and with a horizon until 2037. For this purpose, a simulation of the island’s traffic was

carried out using MATSim, a multi-agent traffic simulation software. For the elaboration

of such simulation, a synthetic population elaborated in Python was used from the data

obtained from a mobility study carried out by the Cabildo de Tenerife in October 2018.

Prior to the elaboration of the simulation, the different governmental plans and studies

carried out to date in the Canary Islands on the preparation of the network of charging

points for the growing number of EVs expected in the coming years were analyzed. In

fact, these government plans contemplate that by the year 2040 all land vehicles will be

electric, with the consequent preparation and design of the network of charging points

that this entails, which is still pending.

With the allocated budget, the results obtained satisfy 10% of the synthetic popu-

lation of the island, reflecting the optimal location of the 6,438 charging points to be

installed. This budget has been intentionally assigned to cover this percentage of the

119



Chapter 4 – Tenerife´s infrastructure plan for electromobility: a MATSim evaluation

population and not to excessively lengthen the computation time of the simulations, since

it has been considered a sufficient percentage to check the suitability of the results. This

distribution of points, as can be seen in the paper, is coherent with the distribution of

population density on the island, so it is deduced that it will make sense according to

population mobility criteria. Therefore, the initial objective of the study, which was to

obtain a methodology that could design the network of charging points for EVs based on

mobility studies, and that is reliable, yielding consistent results, so that the model can be

extrapolated to other regions, has been demonstrated.

Furthermore, these results represent an advance over the governmental plans prepared

by ITC, since the latter are based solely on available parking space, whereas this study

incorporates the analysis of population movements, allowing the network to be designed

based on technical criteria. On the other hand, having carried out the study with pro-

gressive quotas of electric vehicle penetration and having obtained results every 3 years,

it is possible to check how the installation of charging points would be gradual.

However, this study is subject to future improvements and extensions in order to

achieve greater accuracy of its results for the design of an adequate electromobility in-

frastructure plan on the island of Tenerife. It would be desirable to have new, more

up-to-date mobility studies carried out over a longer period, so that the synthetic popu-

lation constructed for the simulations is as close as possible to the real population. The

study was conducted with the data available to date corresponding to October 2018, but

since it is data prior to the Covid-2019 pandemic, it would be convenient to have sub-

sequent mobility studies to check how the mobility of the island has changed. It is also

open to the possibility of considering the charging demand as the primary condition and

trying to minimize the budget needed to satisfy it or also considering the charging speed

as a variable, combining charging points with different power, and therefore with different

charging speed, as was done in the second part of the results where we compared the case

of progressive EV quotas with non-progressive quotas.

In addition to these improvements in the configuration of the simulations, another
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series of factors that may condition the reliability of the results must also be pondered.

Firstly, it is necessary to estimate the future number of public transport users, which

is expected to increase due to the planning of new infrastructures under development,

such as the railroad lines in the north and south of the island. Moreover, a possible

modal change in mobility is expected, where the use of carpooling, bicycle transport for

short distances or the option of teleworking for those cases in which it is feasible. All

of this could lead to a reduction in the number of vehicles per inhabitant, which should

be considered. Another variable to be studied is the construction of new road transport

infrastructures, as is the case of the highway island ring, which may cause changes in

mobility and therefore also in the results obtained in relation to charging points.

Finally, according to ITC estimates, the complete electrification of road transport in

Tenerife will mean an increase in energy demand of 71.2%, which will have to be covered

by renewable energies, mainly photovoltaic and wind. However, this increase in energy

demand is not necessarily a negative point; on the contrary, it will serve to make the

electricity system more robust, since in an energy production system where renewable

energies account for around 100% of production, the correct management of this increase

in demand associated with the electrification of the transport system makes it possible

to prioritize the charging of electric vehicles at times of greater availability of renewable

energy, thus avoiding spills and energy losses. This flattens the energy demand curve by

shifting the increase in energy demand to the off-peak hours of the curve, making the

electricity system more efficient.

Moreover, the positive effect on the grid will be even greater if V2G technology is added

to this, which considers cars as batteries as well and thus also avoids oversizing energy

storage. In this way, EVs would act as manageable loads that absorb electricity from the

grid during off-peak hours and supply energy during peak hours. Having a V2G network

is more costly than a simple one-way charging infrastructure and this additional cost need

to be carefully evaluated to exhibit a positive final contribution for the electricity system.

However, studies have shown that if government support is provided through subsidies
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to offset the initial investment losses, the use of V2G technology is economically viable,

and the optimal case, i.e., the one requiring minimal financial support, is when the V2G

service operator adds AC chargers.

For all these reasons explained, this study is essential to lay the foundations for the

preparation of an adequate network of EV charging points in Tenerife, as the methodology

has been shown to work in the sense that it yields consistent and coherent results, and

can be applied to other different case studies. Such a charging infrastructure, as explained

above, will not only be necessary due to the expected increase in the number of EVs in

circulation, but will also improve the electricity system, helping to correct the weakest

points of non-manageable energies.
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General conclusion

*

This dissertation investigated key elements of the development of a charging infrastruc-

ture, in a context of transition of our mobility habits motivated by the urgency to reduce

our impact on the climate.

We explored the link between charging infrastructure and electric vehicle acceptability,

to propose a model for the deployment of this infrastructure that adapts to the behaviors

of electric vehicle drivers in order to reduce their range anxiety.

We present here a summary of the key takeaways from each chapter, as well as pro-

posals for future research.

*
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5.1 Chapter 2: Too much or not enough? Planning

electric vehicle charging infrastructure: A review

of modeling options

The massive adoption of electric vehicles as a primary mode of transport goes hand in

hand with the development of a network of charging stations allowing the use of these

vehicles. These charging stations, whether slow or fast, are the link between the electric

grid and the vehicles. The deployment of these charging stations must be done in such a

way as to make electric vehicles acceptable to those who can charge at home, as well as

those who cannot. For this, the charging stations and their locations must be carefully

chosen, taking also into account the technical and economic constraints faced by the

operators of these stations.

Most of the time, the proposed models for the placement of charging stations focus

on a particular goal. They can be mainly divided into two categories: models with a

predetermined demand, which seek to meet this demand by minimizing investment and/or

operational costs, and models with a maximum cost constraint and seeking to maximize

the service provided. To meet this goal, different localization approaches are used, which

can be separated into three groups:

• The node-based approach, which sees this goal as maximizing geographic coverage.

Vehicles generate demand points, and stations must cover these points - or be as

close to them as possible. This static approach to demand is appropriate for urban

environments.

• The path-based approach, which sees this objective as capturing vehicle flows. Vehi-

cles drive past the stations and stop when needed. This vision is particularly suited

for deployment on highways for fast charging stations.

• The tour-based approach, which sees this objective as a problem of capturing charg-

ing opportunities. Tours are successions of trips, and charging opportunities appear
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during these tours. This often data-intensive approach is adaptable to any territory

and allows for territory-wide infrastructure coordination.

Regardless of the approach used, existing deployment models focus on the optimality of

the final infrastructure, without integrating the time aspect of infrastructure deployment,

which is spread over several years.

5.2 Chapter 3: From user to operator: Rationalizing

the charging infrastructure deployment.

Based on the analysis of the previous chapter, we conclude that the deployment of a

charging infrastructure must be done in a way that supports the democratization of the

electric vehicle. In this chapter, we propose a multi-criteria, tour-based model, centered

around the potential users of the infrastructure, and which integrates the incremental

aspect of the development of a charging infrastructure on a territory scale.

To integrate the incremental aspect, this model works under an iterative way. A set

of locations where charging stations can be placed is defined beforehand. Then, a score

is assigned to each of these locations, calculated from travel data according to several

criteria, notably related to the frequency of use of the locations considered. Based on

these scores, the stations are selected and placed, under the constraint of a maximum

budget. These new stations modify the users’ behaviors, and new scores are calculated

from the new data collected. The new scores are used to determine the new stations to

be deployed, and so on until the last step of the infrastructure deployment.

The application of this model to the Berlin area, through a multi-agent simulation

performed with MATSim, under the assumption that all vehicles in the simulation are

the same electric vehicle and various parameter variations, gives us several results. The

most notable is that slow charging stations are to be preferred, at least in the first stages

of infrastructure deployment, and that fast charging stations are not very interesting

for daily use and should be restricted to specific purposes. We also note that access
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to residential charging, whether by a public or private charger, is an essential aspect of

electric vehicle acceptability.

5.3 Chapter 4: Tenerife’s Infrastructure Plan for Elec-

tromobility: A MATSim Evaluation

The model developed in the previous chapter was applied to the island of Tenerife, Spain.

For this purpose, a mobility model of the island was built, based on open-source data.

Such an island model is a closed system, and no vehicles are simply in transit.

In the previous chapter, the presented results were based on the strong assumption

that 100% of the vehicles were electric. This choice was justified, among other things,

by the fact that the purpose of the model was to allow the democratization of electric

vehicles, and therefore that the infrastructure should serve both early adopters and create

opportunities for future electric vehicle users. However, this vision is not very compatible

with the economic reality of the deployment of charging infrastructure by private actors,

who will seek to maximize their return on investment by targeting electric vehicle hotspots.

A gradual transformation of the fleet from internal combustion engine to electric vehicles

was therefore modeled, by building a probabilistic model of electric vehicle adoption based

on the income of agents in each zone. A rate of 2 percent electric vehicles in 2022 was

assumed, rising to nearly three-quarters of the fleet being electric in 2037. The first stages

of this phased deployment scenario were also compared with a all-electric vehicle scenario

from the start.

The main difference observed is in the types of chargers deployed. While the absence

of fast chargers is still notable, the number of "semi-fast" chargers installed during de-

ployment with a growing fleet of electric vehicles is much higher than when all vehicles

are electric, and they are almost all installed in the first stage of deployment. These

charging stations are therefore most useful in the early stages of deployment, and then

their usefulness diminishes as the number of stations and electric vehicles increases.
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In this scenario, the chargers are also more concentrated with almost one-third of the

chargers concentrated in two of the 31 municipalities in Tenerife.

5.4 Future work

The work done in this thesis is only the beginning of a vast field of research, which opens

the way to many possible developments. Here are the main points we would like to

explore, in addition to those related to the model and raised in the second chapter of this

manuscript.

First, it would be interesting to integrate a competition game between charging in-

frastructure operators. The studies done during this thesis aim at coordinating the in-

frastructure at a territorial scale, but do not care about the station where the vehicles

charge as long as they can charge, which more or less amounts to an implicit assumption

of monopoly on the infrastructure. In reality, the infrastructure will not be owned by a

single player, but by several competing players. Such a competition game raises the issue

of the profitability not of a global infrastructure, but of several infrastructures distributed

differently over the territory, with potential cannibalization effects between competitors.

This, therefore, raises the issue of information sharing between competitors, or even a

market for vehicle charging information. This information sharing could also be extended

to include price signals not only from operators to users but also from energy producers

and suppliers to operators so that the latter can adapt their offers according to local and

global tensions in the electrical system.

A second area of research to be explored would be the integration of the operational

constraints of infrastructure deployment. First of all, taking into account the constraints

related to the electrical network. We have chosen to integrate a constraint on the network

by an additional cost for the installation of a station, but in the absence of easily accessible

data, we had to use identical installation costs for all stations of the same type. The

integration of these data can bring a real addition to this model, without really increasing
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its complexity. Secondly, our model considers that charging stations can be installed at

any location, and that the parking capacity of a location is more or less unlimited. In

practice, especially in urban environments, a parking space is not always available, nor is

a space to install a charging station. A more detailed geographical analysis is needed for

this aspect, which is crucial for a truly applicable deployment model.

Finally, there are the operating constraints of the infrastructure. Our model focuses

on the deployment of the infrastructure, and considers that a terminal in place is always

operational. Practice shows that this is far from being the case. The robustness of the

infrastructure to operational hazards, which is inevitable for a system of this size, is also

a subject of study that deserves to be pursued.
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Appendix B

Appendix to Chapter 3: Simulation

results

We present here all the results of the Chapter 3 extracted from our simulations at each

stage of the infrastructure deployment, in the form of raw data tables.
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Pekpostalci, and Önder Tombuş. Optimizing the electric charge station network of
EŞARJ. Procedia Computer Science, 31:15–21, 2014.

[68] Peng Sheng You and Yi Chih Hsieh. A hybrid heuristic approach to the problem
of the location of vehicle charging stations. Computers and Industrial Engineering,
2014.

[69] Ying Wei Wang and Chuah Chih Lin. Locating multiple types of recharging stations
for battery-powered electric vehicle transport. Transportation Research Part E:
Logistics and Transportation Review, 58:76–87, 2013.

[70] C. H. Dharmakeerthi, N. Mithulananthan, and T. K. Saha. Impact of electric vehicle
fast charging on power system voltage stability. International Journal of Electrical
Power and Energy Systems, 57:241–249, 2014.

[71] Hongcai Zhang, Scott J. Moura, Zechun Hu, and Yonghua Song. PEV Fast-Charging
Station Siting and Sizing on Coupled Transportation and Power Networks. IEEE
Transactions on Smart Grid, 9(4):2595–2605, 2018.

[72] Payam Sadeghi-barzani, Abbas Rajabi-ghahnavieh, and Hosein Kazemi-karegar.
Optimal fast charging station placing and sizing. Applied Energy, 125:289–299,
2014.

[73] Sen Guo and Huiru Zhao. Optimal site selection of electric vehicle charging sta-
tion by using fuzzy TOPSIS based on sustainability perspective. Applied Energy,
158:390–402, 2015.

[74] Hussain Shareef, Md Mainul Islam, and Azah Mohamed. A review of the stage-
of-the-art charging technologies, placement methodologies, and impacts of electric
vehicles. Renewable and Sustainable Energy Reviews, 64:403–420, 2016.

[75] Sanchari Deb, Kari Tammi, Karuna Kalita, and Pinakeswar Mahanta. Review
of recent trends in charging infrastructure planning for electric vehicles. Wiley
Interdisciplinary Reviews: Energy and Environment, 7(6):1–26, 2018.

[76] Susan Hesse Owen and Mark S. Daskin. Strategic facility location: A review.
European Journal of Operational Research, 111(3):423–447, 1998.

[77] Ying Wei Wang and Chuah Chih Lin. Locating road-vehicle refueling stations.
Transportation Research Part E: Logistics and Transportation Review, 45(5):821–
829, 2009.

168



Chapter C – BIBLIOGRAPHY

[78] Richard L. Church and Charles Revelle. The maximal covering location problem.
Papers of the Regional Science Association, 32:101–118, 1974.

[79] Inês Frade, Anabela Ribeiro, Gonçalo Gonçalves, and António Antunes. Optimal
location of charging stations for electric vehicles in a neighborhood in Lisbon, Por-
tugal. Transportation Research Record, (2252):91–98, 2011.

[80] Sebastian Wagner, Markus Götzinger, and Dirk Neumann. Optimal location of
charging stations in smart cities: A point of interest based approach. International
Conference on Information Systems (ICIS 2013): Reshaping Society Through In-
formation Systems Design, 3:2838–2855, 2013.

[81] S. L. Hakimi. Optimum Locations of Switching Centers and the Absolute Centers
and Medians of a Graph. Operations Research, 12(3):450–459, 1964.

[82] Long Jia, Zechun Hu, Wenju Liang, Wenzuo Lang, and Yonghua Song. A novel
approach for urban electric vehicle charging facility planning considering combina-
tion of slow and fast charging. POWERCON 2014 - 2014 International Conference
on Power System Technology: Towards Green, Efficient and Smart Power System,
Proceedings, (Powercon):3354–3360, 2014.

[83] Jaeyoung Jung, Joseph Y J Chow, R Jayakrishnan, and Ji Young. Stochastic dy-
namic itinerary interception refueling location problem with queue delay for electric
taxi charging stations. Transportation Research Part C, 40:123–142, 2014.

[84] Sylvia Y. He, Yong Hong Kuo, and Dan Wu. Incorporating institutional and spatial
factors in the selection of the optimal locations of public electric vehicle charging
facilities: A case study of Beijing, China. Transportation Research Part C: Emerging
Technologies, 2016.

[85] Yu An, Bo Zeng, Yu Zhang, and Long Zhao. Reliable p-median facility location
problem: Two-stage robust models and algorithms. Transportation Research Part
B: Methodological, 64:54–72, 2014.

[86] Ragavendran Gopalakrishnan, Arpita Biswas, Alefiya Lightwala, Skanda Vasude-
van, Partha Dutta, and Abhishek Tripathi. Demand prediction and placement
optimization for electric vehicle charging stations. IJCAI International Joint Con-
ference on Artificial Intelligence, 2016-January:3117–3123, 2016.

[87] Jian Liu. Electric vehicle charging infrastructure assignment and power grid impacts
assessment in Beijing. Energy Policy, 51:544–557, 2012.

169



Chapter C – BIBLIOGRAPHY

[88] Sanchari Deb, Kari Tammi, Karuna Kalita, and Pinakeswar Mahanta. Charging
Station Placement for Electric Vehicles: A Case Study of Guwahati City, India.
IEEE Access, 7:100270–100282, 2019.

[89] N. Andrenacci, R. Ragona, and G. Valenti. A demand-side approach to the opti-
mal deployment of electric vehicle charging stations in metropolitan areas. Applied
Energy, 182:39–46, 2016.

[90] Mehrnaz Ghamami, Yu (Marco) Nie, and Ali Zockaie. Planning charging infrastruc-
ture for plug-in electric vehicles in city centers. International Journal of Sustainable
Transportation, 10(4):343–353, 2016.

[91] Sreten Davidov and Miloš Pantoš. Planning of electric vehicle infrastructure based
on charging reliability and quality of service. Energy, 118:1156–1167, 2017.

[92] Mohammad M. Vazifeh, Hongmou Zhang, Paolo Santi, and Carlo Ratti. Optimizing
the deployment of electric vehicle charging stations using pervasive mobility data.
Transportation Research Part A: Policy and Practice, 2019.

[93] Yanqing Li, Ling Li, Jing Yong, Yuhai Yao, and Zhiwei Li. Layout Planning of
Electrical Vehicle Charging Stations. pages 661–668, 2011.

[94] Michael Kuby and Seow Lim. The flow-refueling location problem for alternative-
fuel vehicles. Socio-Economic Planning Sciences, 39(2):125–145, 2005.

[95] Michael Kuby and Seow Lim. Location of alternative-fuel stations using the Flow-
Refueling Location Model and dispersion of candidate sites on Arcs. Networks and
Spatial Economics, 7(2):129–152, 2007.

[96] Jong Geun Kim and Michael Kuby. The deviation-flow refueling location model
for optimizing a network of refueling stations. International Journal of Hydrogen
Energy, 37(6):5406–5420, 2012.

[97] Yongxi Huang, Shengyin Li, and Zhen Sean Qian. Optimal Deployment of Alter-
native Fueling Stations on Transportation Networks Considering Deviation Paths.
Networks and Spatial Economics, 15(1):183–204, 2015.

[98] Fei Wu and Ramteen Sioshansi. A stochastic flow-capturing model to optimize the
location of fast-charging stations with uncertain electric vehicle flows. Transporta-
tion Research Part D, 53:354–376, 2017.

170



Chapter C – BIBLIOGRAPHY

[99] Jia He, Hai Yang, Tie Qiao Tang, and Hai Jun Huang. An optimal charging station
location model with the consideration of electric vehicle’s driving range. Transporta-
tion Research Part C: Emerging Technologies, 86(December 2016):641–654, 2018.

[100] Raffaela Riemann, David Z.W. Wang, and Fritz Busch. Optimal location of wire-
less charging facilities for electric vehicles: Flow capturing location model with
stochastic user equilibrium. Transportation Research Part C: Emerging Technolo-
gies, 58(Part A):1–12, 2015.

[101] Yue Xiang, Junyong Liu, Ran Li, Furong Li, Chenghong Gu, and Shuoya Tang.
Economic planning of electric vehicle charging stations considering traffic constraints
and load profile templates. Applied Energy, 178:647–659, 2016.

[102] Christopher Upchurch and Michael Kuby. Comparing the p-median and flow-
refueling models for locating alternative-fuel stations. Journal of Transport Ge-
ography, 18(6):750–758, 2010.

[103] Kai Huang, Pavlos Kanaroglou, and Xiaozhou Zhang. The design of electric vehicle
charging network. Transportation Research Part D: Transport and Environment,
49:1–17, 2016.

[104] Joana Cavadas, Gonçalo Homem de Almeida Correia, and João Gouveia. A MIP
model for locating slow-charging stations for electric vehicles in urban areas account-
ing for driver tours. Transportation Research Part E: Logistics and Transportation
Review, 2015.

[105] Matthew Andrew, Mustafa K. Dogru, John D. Hobby, Yue Jin, and Gabriel H.
Tucci. Modeling and optimization for electric vehicle charging infrastructure. 2013.

[106] Narges Shahraki, Hua Cai, Metin Turkay, and Ming Xu. Optimal locations of electric
public charging stations using real world vehicle travel patterns. Transportation
Research Part D: Transport and Environment, 41(2015):165–176, 2015.

[107] Jairo González, Roberto Alvaro, Carlos Gamallo, Manuel Fuentes, Jesús Fraile-
Ardanuy, Luk Knapen, and Davy Janssens. Determining electric vehicle charging
point locations considering drivers’ daily activities. Procedia Computer Science,
32:647–654, 2014.

[108] Xiaomin Xi, Ramteen Sioshansi, and Vincenzo Marano. Simulation-optimization
model for location of a public electric vehicle charging infrastructure. Transportation
Research Part D: Transport and Environment, 22:60–69, 2013.

171



Chapter C – BIBLIOGRAPHY

[109] Jing Dong, Changzheng Liu, and Zhenhong Lin. Charging Infrastructure Planning
for Promoting All-Electric Vehicle Market: An Activity-Based Assessment Using
Multiday Travel Data Jing Dong (Corresponding author). Phone, (865):946–1308,
2012.

[110] Daehee Han, Yongjun Ahn, Sunkyu Park, and Hwasoo Yeo. Trajectory-interception
based method for electric vehicle taxi charging station problem with real taxi data.
International Journal of Sustainable Transportation, 10(8):671–682, 2016.

[111] Xiaomin Xi, Ramteen Sioshansi, and Vincenzo Marano. Simulation – optimization
model for location of a public electric vehicle charging infrastructure. Transportation
Research Part., 22:60–69, 2013.

[112] Hisashi Kameda and Naoto Mukai. Optimization of Charging Station Placement
by Using Taxi Probe Data for On-Demand. pages 606–615, 2011.

[113] T. Donna Chen, Kara M. Kockelman, and Josiah P. Hanna. Operations of a shared,
autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure
decisions. Transportation Research Part A: Policy and Practice, 94:243–254, 2016.

[114] J. D. Hunt and K. J. Stefan. Tour-based microsimulation of urban commercial
movements. Transportation Research Part B: Methodological, 41(9):981–1013, 2007.

[115] Kay W. Axhausen, Andreas Horni, and Kai Nagel. The Multi-Agent Transport
Simulation MATSim. 2016.

[116] T. Novosel, L. Perković, M. Ban, H. Keko, T. Pukšec, G. Krajačić, and N. Duić.
Agent based modelling and energy planning - Utilization of MATSim for transport
energy demand modelling. Energy, 92:466–475, 2015.

[117] Rick Wolbertus and Robert Van den Hoed. Electric Vehicle Fast Charging Needs
in Cities and along Corridors. World Electric Vehicle Journal, 10(2):45, jun 2019.

[118] Bloomberg New Energy Finance. Electric Vehicle Outlook 2022.

[119] Andrew W Thompson. Essais sur la participation des véhicules électriques sur les
marchés de l’énergie : aspects économiques véhicule-à-réseau (V2X) et considéra-
tions relatives à la dégradation des batteries. 2020.

[120] Mads Greaker. Optimal regulatory policies for charging of electric vehicles . Trans-
portation Research Part D, 97(June):102922, 2021.

172



Chapter C – BIBLIOGRAPHY

[121] Charles Botsford and Adam Szczepanek. Fast Charging vs . Slow Charging : Pros
and cons for the New Age of Electric Vehicles 20 Years of EV History 1989 to 2009.
EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium,
pages 1–9, 2009.

[122] Lu Wang, Zian Qin, Tim Slangen, Pavol Bauer, and Thijs Van Wijk. Grid Impact of
Electric Vehicle Fast Charging Stations: Trends, Standards, Issues and Mitigation
Measures - An Overview. IEEE Open Journal of Power Electronics, 2(February):56–
74, 2021.

[123] Anna Tomaszewska, Zhengyu Chu, Xuning Feng, Simon O’Kane, Xinhua Liu, Jingyi
Chen, Chenzhen Ji, Elizabeth Endler, Ruihe Li, Lishuo Liu, Yalun Li, Siqi Zheng,
Sebastian Vetterlein, Ming Gao, Jiuyu Du, Michael Parkes, Minggao Ouyang, Mon-
ica Marinescu, Gregory Offer, and Billy Wu. Lithium-ion battery fast charging: A
review. eTransportation, 1:100011, 2019.

[124] Ahmad Almaghrebi, Fares Aljuheshi, Mostafa Rafaie, Kevin James, and Mahmoud
Alahmad. Data-driven charging demand prediction at public charging stations using
supervised machine learning regression methods. Energies, 13(6), 2020.

[125] Dominik Ziemke, Ihab Kaddoura, and Kai Nagel. The MATSim open Berlin sce-
nario: A multimodal agent-based transport simulation scenario based on synthetic
demand modeling and open data. Procedia Computer Science, 151(2018):870–877,
2019.

[126] IEA. Global EV Outlook 2022 Securing supplies for an electric future, Part 1:
Trends and developments in EV markets. 2022.

[127] IEA. Global EV Outlook 2022 Securing supplies for an electric future, Part 2:
Policies to promote EV deployment. 2022.

[128] Jairo Quiros-Tortos, Alejandro Navarro-Espinosa, Luis F. Ochoa, and Tim Butler.
Statistical representation of EV charging: Real data analysis and applications. 20th
Power Systems Computation Conference, PSCC 2018, pages 2013–2015, 2018.

[129] Stavros G. Mitrakoudis and Minas C. Alexiadis. Modelling Electric Vehicle Charge
Demand: Implementation for the Greek Power System. World Electric Vehicle
Journal, 13(7), 2022.

[130] Jun Su, T. T. Lie, and Ramon Zamora. Modelling of large-scale electric vehicles
charging demand: A New Zealand case study. Electric Power Systems Research,
167(October 2018):171–182, 2019.

173



Chapter C – BIBLIOGRAPHY

[131] John Cook, Dana Nuccitelli, Sarah A. Green, Mark Richardson, Bärbel Winkler,
Rob Painting, Robert Way, Peter Jacobs, and Andrew Skuce. Quantifying the con-
sensus on anthropogenic global warming in the scientific literature. Environmental
Research Letters, 8(2), 2013.

[132] España. Ley 7/2021, de 20 de mayo, de cambio climático y transición energética.
Boletín Oficial del Estado, 21 de mayo de 2021, núm. 121, pp. 62009 a 62052. 2021.

[133] European Comission. Communication from the Commission. The European Green
Deal, 11 December 2019, COM (2019) 640 final.

[134] Canarias. Proyecto de Ley 10L/PL-0018 de 12 de noviembre, de Cambio Climático
y Transición Energética de Canarias. Boletín Oficial del Parlamento de Canarias,
13 de noviembre de 2021, núm. 524, pp. 1 a 43. 2021.

[135] Lucha contra el Cambio Climático y Planificación Territorial del Gobierno de Ca-
narias. Consejería de Transición Ecológica. Plan de Transición Energética de Ca-
narias 2030 (PTECan). Observatorio de la Energía de Canarias (OECan). 2021.

[136] ISTAC Instituto Canario de Estadística. “población según sexos. municipios por
islas de canarias y años” [database]. 2022.

[137] J. Barrera-Santana A. Ramírez-Díaz, F. J. Ramos-Real. Fuel life cycle analysis for
different types of vehicles in the canary islands. IAEE 2021, 2022.

[138] ISTAC Instituto Canario de Estadística. Parque de vehículos en circulación según
tipos de vehículo por municipios de canarias y periodos [database]. 2022.

[139] Alfredo Ramírez Díaz, Francisco J. Ramos-Real, Gustavo A. Marrero, and Yannick
Perez. Impact of electric vehicles as distributed energy storage in isolated systems:
The case of tenerife. Sustainability (Switzerland), 7(11):15152–15178, 2015.

[140] Francisco M. Arrabal-Campos, Juan Martínez-Lao, Francisco G. Montoya, Alfredo
Alcayde, and Raúl Baños. Impact on the Spanish electricity network due to the
massive incorporation of electric vehicles. Renewable Energy and Power Quality
Journal, 19(19):540–545, 2021.

[141] Alfredo Ramirez-Diaz, Francisco Javier, Ramos Real, Gustavo Alberto, and Marrero
Díaz. Electromobility as enhancer of renewable share in electric power system for
isolated regions: the case of Canary Islands [Tesis doctoral, Universidad de La
Laguna]. pages 1–100, 2018.

174



Chapter C – BIBLIOGRAPHY

[142] Quentin Hoarau and Yannick Perez. Interactions between electric mobility and
photovoltaic generation: A review. Renewable and Sustainable Energy Reviews,
94(February):510–522, 2018.

[143] Junhyung Kim, Jinho Kim, and Hwanmin Jeong. Key Parameters for Economic
Valuation of V2G Applied to Ancillary Service: Data-Driven Approach. Energies,
15(23), 2022.

[144] Tobias Boström, Bilal Babar, Jonas Berg Hansen, and Clara Good. The pure PV-
EV energy system – A conceptual study of a nationwide energy system based solely
on photovoltaics and electric vehicles. Smart Energy, 1, 2021.

[145] Francisco J. Ramos-Real, Alfredo Ramírez-Díaz, Gustavo A. Marrero, and Yannick
Perez. Willingness to pay for electric vehicles in island regions: The case of Tener-
ife (Canary Islands). Renewable and Sustainable Energy Reviews, 98(November
2017):140–149, 2018.

[146] S.A Instituto Tecnológico de Canarias. Estrategia de la generación gestionable de
canarias (vol. 1). dirección general de energía del gobierno de canarias.

[147] Dirección General de Catastro del Ministerio de Hacienda. Sede electrónica del
catastro. Ministerio de Hacienda y Función Pública del Gobierno de España, 2021.

[148] Instituto Geográfico Nacional (IGN). Cartografía y datos geográficos. Ministerio
de Transportes, Movilidad y Agenda Urbana del Gobierno de España.

[149] Plan Nacional de Observación del Territorio. Sistema de información de ocupación
del suelo de españa (siose). Ministerio de Transportes, Movilidad y Agenda Urbana
del Gobierno de España.

[150] Christopher Tchervenkov, Sebastian Hörl, Milos Balac, Thibaut Dubernet, and
Kay W. Axhausen. An improved replanning strategy for congested traffic conditions
in MATSim. Procedia Computer Science, 170:779–784, 2020.

175



Titre: Vers une mobilité plus propre : développer une infrastructure de recharge
pour véhicules électriques
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Résumé:
L’adoption à grande échelle de la mobil-
ité électrique nécessitera une infrastruc-
ture de charge répondant aux nouveaux
besoins émanant de ce défi. Actuelle-
ment, les infrastructures de recharge pour
véhicules électriques sont encore au début
de leur développement, notamment à
cause du faible nombre de véhicules élec-
triques. Les pouvoirs publics prévoient
ainsi un investissement massif dans la fil-
ière de la mobilité électrique. Néanmoins,
de nombreuses questions se posent quant
au dimensionnement et à l’optimisation
de ces infrastructures, à la fois du point de
vue opérationnel et économique. Bien que
cette optimisation ait fait l’objet de nom-
breuses études durant ces dix dernières
années, des lacunes persistent, notam-
ment en ce qui concerne le panachage
de différentes solutions de recharge (nor-
male, accélérée, rapide, piste à induc-
tion. . . ) ainsi que sur les aspects
économiques et opérationnels. De plus,
le rapport de l’usager à la voiture parti-
culière est en forte évolution, et les com-
portements de recharge des utilisateurs ne
sont pas encore bien établis.
Cette thèse vise à embrasser l’ensemble
de ces considérations, pour contribuer
au développement d’un outil d’aide à
la décision pour les acteurs de la mo-
bilité électrique afin d’optimiser le dé-

ploiement de cette nouvelle infrastructure
de charge, qui se devra d’être adaptée aux
besoins d’utilisateurs habitués à la facil-
ité d’utilisation et de ravitaillement du
véhicule thermique individuel.
Elle présente une nouvelle méthode per-
mettant d’évaluer, principalement pour
des charges à destination, l’intérêt de dé-
ployer des stations à certains endroits,
ainsi que de choisir celles qui seront
les plus adéquates pour ces emplace-
ments. Cette méthode de déploiement
d’infrastructure s’appuie sur une ap-
proche multicritères basée sur des don-
nées de déplacement des conducteurs. Le
but est de permettre un déploiement des
stations à grande échelle, coordonné et
en adéquation avec les besoins des con-
ducteurs, tout en intégrant les contraintes
d’installation et d’exploitation auxquelles
font face les opérateurs de ces stations.
Les principaux résultats montrent que le
déploiement des stations de charge lentes
est prioritaire, de même que l’accès à une
solution de charge résidentielle pour un
maximum d’utilisateurs. Les stations de
charge plus rapides, bien qu’ayant une
vraie valeur assurantielle pour les utilisa-
teurs craignant d’être à court de batterie
avant de pouvoir se charger, ont surtout
une utilité réelle pour des cas bien spéci-
fiques tels que les longs trajets.



Title: Toward a cleaner mobility: Developing Charging Infrastructure for Electric
Vehicle Transition
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Abstract: The widespread adoption of
electric mobility will require a charging
infrastructure that meets the new needs
arising from this challenge. Currently,
charging infrastructure for electric vehi-
cles is still in the early stages of develop-
ment, mainly due to the low number of
electric vehicles. The public authorities
are therefore planning a massive invest-
ment in the electric mobility sector.
Nevertheless, many questions arise re-
garding the dimensioning and optimiza-
tion of these infrastructures, both from an
operational and economic point of view.
Although this optimization has been the
subject of numerous studies over the past
ten years, there are still gaps, particularly
with regard to the mix of different charg-
ing solutions (normal, accelerated, fast,
induction track, etc.) as well as on the
economic and operational aspects. More-
over, the relationship between the user
and the private car is strongly evolving,
and the charging behavior of the users is
not yet well established.
This thesis aims at covering all these con-
siderations, in order to contribute to the
development of a decision support tool

for the actors of electric mobility in order
to optimize the deployment of this new
charging infrastructure, which will have
to be adapted to the needs of users used
to the ease of use and patterns of refueling
of individual internal combustion engine
vehicles.
It presents a new method to evaluate,
mainly for "at destination" charging, the
interest in deploying charging stations at
certain locations, as well as to choose
the most suitable ones for these locations.
This infrastructure deployment method is
based on a multi-criteria approach based
on driver travel data. The aim is to en-
able large-scale, coordinated deployment
of stations in line with drivers’ needs
while integrating the installation and op-
erational constraints the station operators
face.
The main results of this thesis show that
the deployment of slow charging stations
is a priority, as is access to a residential
charging solution for a maximum number
of users. Faster charging stations, while
having a real value to decrease users’
range anxiety, have actual usefulness for
very specific cases such as long journeys.
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