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Résumé

Le paradigme de Fiat-Shamir permet la création systématique de schémas de signa-
ture à partir de protocoles d’identification. Ces derniers sont des protocoles interactifs
en trois messages, entre un prouveur possédant une information secrète et un vérifi-
cateur avec une information publique corrélée. La transformation de Fiat-Shamir est
simple et flexible, ce qui explique sa popularité, notamment lorsqu’elle est combinée
avec des protocoles d’identification efficaces. Malheureusement, son utilisation dans
le cadre de la cryptographie fondée sur les réseaux Euclidiens se révèle plus compli-
quée, et on lui préfère sa variante dite avec rejet. Cette thèse propose une étude de
cette variante et de son utilisation en conjonction avec les réseaux Euclidiens. Nous
commençons par recouvrer sa sécurité après avoir identifié des erreurs dans les pré-
cédentes preuves de sécurité proposées. On étudie aussi le temps d’exécution d’une
signature ainsi que les propriétés de non-divulgation de connaissance du protocole
de Lyubahsevsky, qui est le plus célèbre à reposer sur les réseaux Euclidiens.

Nous l’étudions ensuite plus en détail. Ce protocole repose sur l’échantillonnage
par rejet, qui peut être utilisée avec une très grande variété de paires “proches” de
distributions : on échantillonne depuis l’une pour rejeter vers l’autre. Étant donné
un nombre moyen d’itérations du protocole, nous minimisons la norme Euclidienne
moyenne de la signature résultante, en choisissant soigneusement la paire de distribu-
tions source et cible. Cela diminue la taille de la signature, et la rend plus résistante
aux attaques, ce qui permet de réduire les paramètres pour la même sécurité.

Nous proposons ensuite HAETAE, une implémentation de la version bimodale
avec des distributions uniformes sur des boules Euclidiennes de la signature de Lyu-
bashevsky. Si nous la comparons rapidement avec les signatures réseaux sélectionnées
par le NIST pour être standardisées, on s’aperçoit que nous avons des tailles de si-
gnatures près de 40% plus petite que Dilithium, même si nous signons jusqu’à 8 fois
plus lentement. Cela reste pourtant plus grand en taille mais plus rapide en vitesse
de signature que Falcon. De plus, notre implémentation est en temps constant et
n’utilise que de l’arithmétique à virgule fixe.

Enfin, nous proposons d’éviter l’échantillonnage par rejet en utilisant à la place
des convolutions de Gaussiennes discrètes. Contrairement aux autres techniques
connues, cette solution semble préserver les tailles de signatures et de clés de vé-
rification du protocole pour des paramètres concrets, et elles sont même meilleures
asymptotiquement. Bien que cette technique requiert d’échantillonner à partir d’une
Gaussienne discrète elliptique, celle-ci est indépendante du message. Pour corriger
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cette distribution du premier message, un centre aléatoire est choisi et le résultat sera
indépendant du secret, ce qui est le problème critique qui avait mené à l’introduction
du rejet en premier lieu.
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Abstract

The Fiat-Shamir paradigm enables the systematic design of signature schemes from
identification protocols. The latter are three-moves interactive protocols between a
prover holding onto some secret information and a verifier with a correlated public
information. There are efficient and elegant designs for them and as the Fiat-Shamir
transform is simple and flexible, its popularity is easily explained. Unfortunately,
its use in the lattice setting turns out to be more difficult and researchers usually
rely on a variant, the Fiat-Shamir with aborts transform. This thesis proposes a
study of this paradigm and its use in conjunction with Euclidean lattices. First, we
recover the security of this transform after identifying flaws in the previous security
reductions. This is also a pretense to study the runtime of the signature as well
as discuss the zero-knowledge flavor satisfied by Lyubashevsky’s scheme, the most
famous aborting identification protocols based on Euclidean lattices.

We then move on to study it in more details. This scheme relies on a generic
technique called rejection sampling, and can be adapted to work with a wide range
of pairs of distributions to sample from and to reject to, as long as these two dis-
tributions are “close”. Under a target average number of iterations of the scheme,
we minimize the average Euclidean norm of the final signature, by wisely choos-
ing the pair of source and target distributions. This directly decreases the size of
the signature and also makes forgery attacks harder, allowing for smaller parameter
choices.

Next we propose HAETAE, an implementation of the bimodal, uniform over Eu-
clidean balls, version of Lyubashevsky’s signature scheme. Let us quickly compare it
with the two lattice-based signature schemes selected by NIST for standardisation.
Contrary to Dilithium, which aimed for easy implementation, we aimed for low sig-
nature sizes. This results in a scheme with up to 40% smaller signature sizes than
Dilithium but up to 8 times signing runtime. When compared to Falcon, however,
we still have bigger signature sizes but lower signing runtime. Our implementation
is constant-time and relies only on fixed-point arithmetic.

Finally, we propose a novel way to avoid rejection sampling by using discrete
Gaussian convolutions. Contrary to flooding, this solution appears to preserve the
signature and verification key size of the signature scheme and can even be proven
to be asymptotically smaller. While it requires sampling from an elliptical discrete
Gaussian, this distribution can be made independent from the message. Our tech-
nique can be seen as a generalisation of the bimodal technique, where instead of
relying on two centers, we randomly pick one over a line with a discrete Gaussian
distribution. This center corrects the distribution of the first message, making the
last message independent from the secret, which was the critical problem that led to
the introduction of rejection sampling in the first place.
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Résumé substantiel en Français

La cryptographie moderne a pour but de fournir un ensemble de primitives et proto-
coles sécurisés correspondant à n’importe quelle situation où une forme de sécurité
est requise lors de communications. Parmi eux, les protocoles de signature numérique
permettent à un signataire, en possession d’une clé secrète, de produire une signature
pour un message quelconque. N’importe qui en possession de la clé de vérification
correspondante peut vérifier la cohérence de la signature produite avec le message.
De plus, il est difficile pour quelqu’un sans la clé de signature de contrefaire une
signature pour un autre message de son choix en un temps raisonnable. Depuis leur
introduction par Diffie et Hellman en 1976 [DH76], de nombreuses applications re-
posent sur les signatures numériques et il est difficile de surestimer leur importance.
Le premier cas d’usage, et peut-être le plus évident, est en tant que remplacement
des signatures manuscrites. Plusieurs pays, notamment les États Unis et les membres
de l’Union Européenne, accordent une valeur légale aux signatures numériques dans
plusieurs situations, telles que la signature de contrat entre entreprises. Une seconde
application est la prévention d’usurpation d’identité lors de la mise à jour d’un lo-
giciel. Plus précisément, un développeur peut adjoindre une clé de vérification à un
logiciel lors de sa sortie initiale. Lors de mises à jour futures, il signera celles-ci, ce
qui permettra aux utilisateurs d’être convaincus quant à l’intégrité de la mise à jour
qu’ils viennent de télécharger.

Plus généralement, dans le contexte du chiffrement à clé publique, les signatures
numériques permettent de distribuer les clés publiques nécessaires pour mettre en
place un canal de communication sécurisé. En effet, lors de la transmission d’une
telle clé publique, on peut démontrer son authenticité en la signant, en supposant
que le destinataire possède notre clé de vérification pour la signature. C’est peut-être
une fuite en avant mais il faut pourtant reconnaître que ce problème de l’échange de
clé n’apparaît maintenant plus qu’une seule fois, lors de l’échange des clés de vérifi-
cation. Il devient ensuite possible d’utiliser autant de clés publiques que nécessaire,
notamment en cas de compromission de session. C’est d’ailleurs le rôle des autori-
tés numériques et des certificats numériques, qui peuvent être vus comme la “carte
d’identité” d’un ordinateur. En signant une clé de vérification en plus d’une adresse
IP ou même physique, ces autorités certifient l’origine d’une clé de vérification, qui
peut ensuite être librement utilisée ailleurs.

Un exemple crucial est la poignée de main TLS. Pendant celle-ci, un client et un
serveur tentent d’établir un canal de communication sécurisé (HTTPS) en générant
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ensemble une clé symétrique. Pour commencer, ils échangent leurs certificats, avec
les clés de vérifications correspondantes. Ils peuvent ensuite les utiliser pour échanger
une clé publique, qui leur permettra enfin d’échanger secrètement une clé symétrique.
Au total, trois signatures et deux clés de vérification sont échangées pendant ce
protocole, ce qui représente de nos jours quelques kilooctets de données transmises.
En perspective, le poids moyen d’une page web atteint 2,3 Mégaoctets en mai 20231.
Ainsi, le coût actuel de ce protocole est infime par rapport au coût du téléchargement
d’une page web.

Cependant, la sécurité des standards actuels repose sur la difficulté à factoriser
de très grands entiers, ou encore la difficulté à calculer le logarithme discret dans un
groupe. Or, ces deux problèmes sont menacés par l’avènement du calcul quantique,
car ils sont résolus en temps polynomial grâce à l’algorithme de Shor. L’institut na-
tional américain des standards et de la technologie (NIST) a lancé en 2016, comme
mesure préventive, une compétition pour trouver de nouveaux standards, ceux-ci
résistants aux attaques par ordinateur quantique. Ces nouveaux standards doivent
allier sécurité sur le long terme, efficacité calculatoire et tailles de signature raison-
nables.

Différentes familles d’hypothèses sont pour le moment supposées résister aux al-
gorithmes quantiques. Parmi elles, les problèmes reposant sur les réseaux Euclidiens,
ou sous-groupes discrets de Rn, sont particulièrement remarquables par leur grande
flexibilité et leurs bonnes performances, qui sont encore accrues quand on les consi-
dère dans la version “module”. Les problèmes Short Integer Solution (SIS) et Learning
with Errors (LWE) sont d’un intérêt particulier pour la cryptographie. Le premier
consiste à trouver un petit vecteur (pour la norme Euclidienne) dans le noyau d’une
matrice A sur un groupe quotient Z/qZ, tirée uniformément. Le second consiste,
étant donné A et un vecteur b, à retrouver si b = As+ e pour de petits s et e, ou
si b a été tiré uniformément.

Certains choix de paramètres bénéficient de réductions pire cas-moyen cas, renfor-
çant la confiance en la difficulté de ces problèmes, telles que prouvées pour la première
fois dans [Ajt96,Reg09]. De plus, pour les paramètres considérés en pratique, mal-
gré plusieurs décennies de cryptanalyse, aucun algorithme quantique n’arrive à les
résoudre efficacement. Ces arguments, parmi d’autres, ont conduit le NIST à choisir
deux protocoles de signature fondés sur les réseaux, parmi les trois protocoles qui
seront standardisés. Le premier, Falcon [FHK+17], découle d’une branche dénommée
“Hash-and-Sign” (hacher puis signer). Le second, Dilithium [BDK+20], est construit
à partir du paradigme de Fiat-Shamir. C’est à celui-ci que nous allons nous intéres-
ser dans cette thèse. Il a été introduit par Fiat et Shamir en 1987 [FS87] et offre
de multiples avantages : il est flexible, efficace et part d’une primitive plus simple
conceptuellement. Nous allons maintenant brosser un bref portrait des innovations
qui ont abouti à Dilithium.

Une Brève Histoire de Fiat-Shamir et des Réseaux

Le principal ingrédient de la transformation de Fiat-Shamir est un protocole d’identi-
fication. C’est un protocole interactif entre un prouveur, qui possède une information

1https://httparchive.org/reports/page-weight?start=2023_03_01&end=latest&view=
list
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secrète, et un vérificateur détenant une information publique corrélée. L’objectif du
prouveur est de convaincre le vérificateur qu’il est bel et bien en possession de l’infor-
mation secrète, sans la révéler. Cet objectif peut être réalisé en trois étapes. De tels
protocoles peuvent être réalisés de manière simple et pourtant efficace, ce qui per-
mettra ensuite d’obtenir une signature hautement efficace. Le protocole de Schnorr
pour le logarithme discret est particulièrement intéressant dans notre cas, et nous
verrons comment il est adapté au cas des réseaux.

Le Protocole de Schnorr pour le Logarithme discret

Étant donné un groupe cyclique G d’ordre p très grand, un générateur g ainsi qu’un
élément quelconque du groupe gx, le problème du logarithme discret consiste à cal-
culer x. En supposant que ce problème est difficile, on comprend qu’on peut alors
cacher des informations à l’intérieur de l’exposant, tandis que la cohérence des calculs
peut être vérifiée en manipulant les éléments du groupe.

Le protocole de Schnorr [Sch91] profite de cette flexibilité pour être efficace et
sécurisé. La clé publique du vérificateur est un élément du groupe gs, tandis que la
clé secrète du prouveur est son logarithme discret s. L’interaction se déroule alors
comme suit. D’abord, le prouveur échantillonne y ←↩ U(Zp) et envoie gy comme
engagement. Il reçoit ensuite un défi c échantillonné uniformément sur Zp. Sa réponse
est enfin z = y + sc mod p. Notons ici qu’aucune information n’est révélée sur s. En
effet, comme y est caché au vérificateur (à moins qu’il ne résolve une instance du
problème du logarithme discret), la réponse z est a priori uniforme et indépendante
du secret. Cependant, il est convaincu que le prouveur connaît s en vérifiant la
véracité de l’équation gz = gy(gs)c.

La Transformée de Fiat-Shamir

Nous décrivons maintenant la technique utilisée par Fiat et Shamir [FS87] pour
transformer un protocole d’identification en une véritable signature. L’algorithme de
génération de clé est exactement le générateur d’instance du protocole d’identifica-
tion. L’algorithme de signature va dérouler le protocole interactif en jouant le rôle à la
fois du prouveur et du vérificateur. Pour éviter qu’un adversaire ne puisse contrefaire
une signature, le défi est calculé de manière déterministe en hachant l’engagement
et le message. La signature est alors la retranscription complète de l’échange. Enfin,
l’algorithme de vérification n’accepte que si deux conditions sont réunies. D’abord,
le vérificateur doit accepter la retranscription. Ensuite, le défi doit avoir été calculé
honnêtement : l’algorithme de vérification re-hache le message et l’engagement et
vérifie que le haché obtenu est le même que le défi.

Heuristiquement, utiliser une fonction de hachage “force” le signataire à utiliser
un défi uniforme, qui peut être vérifié publiquement, afin de l’empêcher de le modifier
selon ses besoins. On peut alors prouver la sécurité de la signature dans le modèle
de l’oracle aléatoire (la fonction de hachage est remplacée par une fonction dont
les sorties sont tirées uniformément et qui est gérée par le challenger, l’attaquant
n’ayant qu’un accès à celle-ci par “oracle”). Pour cela, il est nécessaire que le protocole
d’identification satisfasse les propriétés suivantes :
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• Min-entropie de l’engagement : si le protocole est utilisé à plusieurs reprises, la
probabilité d’utiliser plusieurs fois le même engagement doit être négligeable.
Dans le cas de Schnorr, c’est le cas comme l’ordre du groupe est grand.

• Sans Divulgation de Connaissance pour un Vérificateur Honnête (HVZK) : un
vérificateur honnête ne devrait rien apprendre à propos du secret détenu par
le prouveur. Cela se traduit par l’existence d’un simulateur capable de géné-
rer une retranscription, étant donné un défi, tel que la distribution de cette
retranscription est proche de celle d’une vraie retranscription, conditionnée
sur ce défi. Le simulateur pour Schnorr commence par échantillonner unifor-
mément z ←↩ U(Zp) et pose gy = gz(gs)−c comme engagement. On remarque
alors que la distribution de cette simulation est exactement celle d’une véritable
retranscription.

• Sûreté : il doit être difficile de convaincre le vérificateur pour une personne
n’ayant pas le secret. Grâce à une technique dite de rembobinage, on peut
montrer qu’un attaquant pouvant convaincre le vérificateur une fois peut en
fait le convaincre deux fois, pour le même engagement mais deux défis diffé-
rents. On obtient alors (gy, c, c′, z, z′) tel que gy = gz(gs)−c = gz

′
(gs)−c

′ et on
retrouve s = (z − z′)/(c− c′) mod p.

La réduction de sécurité utilise un jeu hybride, où le challenger rend les signa-
ture indépendantes de la clé secrète en les simulant à l’aide du simulateur. Il doit
aussi reprogrammer l’oracle aléatoire pour qu’il reste cohérent avec le défi qu’il aura
échantillonné. Il devient donc impossible pour un adversaire d’apprendre quoi que
ce soit au sujet de la clé secrète à partir de signatures. Enfin, on peut utiliser cet
adversaire pour contredire la propriété de sûreté du protocole d’identification, en
construisant un attaquant contre la sûreté qui joue le rôle du challenger pour le pre-
mier adversaire, sans avoir besoin de la clé secrète. Il doit par contre reprogrammer
la fonction de hachage au bon endroit afin qu’il puisse utiliser la signature contrefaite
pour convaincre le vérificateur.

Notons que le protocole de Schnorr satisfait une propriété supplémentaire : le
recouvrement de l’engagement, ce qui sera le cas pour les autres protocoles considérés
dans cette thèse. En effet, si l’on omet l’engagement de la signature, on peut le
recalculer en sachant que gy = gz(gs)−c. Cela permet de réduire considérablement la
taille de la signature. La vérification va alors commencer par recouvrer l’engagement,
avant de vérifier la cohérence du haché, et enfin de vérifier que la retranscription est
convaincante. Dans le cas de Schnorr, on peut omettre cette dernière étape car elle
sera automatiquement valide, vu la manière dont on a récupéré l’engagement.

Du Log Discret aux Réseaux Euclidiens : Introduction de
l’Échantillonnage par Rejet

Un but de longue date dans la cryptographie à base de réseaux Euclidiens est de pro-
poser une adaptation efficace du protocole de Schnorr au contexte des réseaux. Lyu-
bashevsky en a proposé la première [Lyu09,Lyu12]. Celle-ci implique une matrice pu-
blique A ∈ Zn×m

q , qui remplace le générateur g et définit une instance SIS. La clé se-
crète est une matrice S ∈ Zm×k, dont chaque colonne a une petite norme Euclidienne,
par rapport à q. En remplacement de gs, la clé de vérification est T = AS mod q.
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Dans le protocole d’identification, le prouveur échantillonne un petit vecteur de mas-
quage y ∈ Zm et calcule un engagement pseudo-uniforme w = Ay mod q. Il reçoit
ensuite un défi c ∈ Zk choisi uniformément parmi les vecteurs de norme infinie bornée
par un paramètre du protocole. Enfin, après un test, dont nous parlerons plus tard,
il renvoie z = y + Sc si celui-ci est réussi, sinon, il faut recommencer. Étant donné
une retranscription σ = (w, c, z), le vérificateur accepte si Az −Tc = w mod q, et
si z est petit, ce qui est spécifique aux réseaux. Le lecteur trouvera une description
détaillée en Anglais du protocole en Figure 2.5.

Contrairement au protocole de Schnorr, la clé de signature et le masque n’appar-
tiennent pas à un groupe fini, ce qui empêche y de complètement cacher le terme
sensible Sc. Au contraire, en fournissant un effort proportionnel à la valeur moyenne
de ∥y∥, des attaques statistiques génériques permettent de récupérer la clé secrète.
Une possibilité (voir par exemple [DPSZ12]) est de choisir y exponentiellement plus
large que Sc en tant que fonction du paramètre de sécurité, ce qui contrecarre l’at-
taque précédente et permet même de prouver la sécurité. En effet, la distance sta-
tistique entre y et y + Sc devient alors négligeable. Étant donné que q doit être
plus grand que y et que la petitesse de S par rapport à q impacte la sécurité, cette
approche par flooding (noyade) donne de très grands paramètres. À la place, Lyu-
bashevsky propose une notion de Fiat-Shamir avec rejet. C’est ici qu’intervient le
test que passe z dans le protocole. Il sert à faire en sorte que la distribution de z ne
dépende plus de Sc.

Une application classique du rejet (cf. [Dev86, Chapitre 2]) est l’échantillonnage
d’une distribution P “difficile” à partir d’une distribution plus simple à échantillon-
ner Q. Ici, le rejet est détourné de son utilité première : on part d’une distribution
pré-source Q qu’on décale par Sc, ce qui donne une distribution source Q+Sc. On la
rejette ensuite vers une distribution P qui ne dépend pas de Sc. L’objectif ici alors
est de cacher Sc. Des choix divers ont été faits jusqu’à présent pour P et Q : uniforme
dans des hypercubes [Lyu09], gaussiennes discrètes de même écart type [Lyu12]. L’ef-
ficacité de ces choix est contrôlée par deux paramètres : le nombre d’itérations en
moyenne M , et la distance statistique ε entre le résultat du rejet et la distribution
cible P . Grâce à cette flexibilité, il existe donc une myriade de possibilités pour
adapter le protocole de Schnorr aux réseaux Euclidiens. Cela nous mène donc à la
question suivante :

Q1. Étant donné un nombre moyen d’itérations, quelle stratégie de rejet permet
d’obtenir les signatures les plus compactes ?

L’équipe de Dilithium avait choisi de répondre à une autre question, leur but
étant de produire une signature “facile à implémenter”. Leur choix s’est alors porté
sur P et Q uniformes dans des hypercubes, ce qui permet d’échantillonner chaque co-
ordonnée indépendamment dans un intervalle. De plus, la condition de rejet consiste
à simplement calculer la norme infinie de z et à le rejeter si elle est trop grande. La
question Q1 reste alors ouverte.

Nous considérons aussi le cas de BLISS [DDLL13], qui note que le rejet de gaus-
sienne à gaussienne est inexact à cause des queues de celles-ci. Ses auteurs considèrent
alors une Gaussienne bimodale comme distribution source, ce qui règle ce problème.
C’est à dire qu’au lieu de calculer z = y + Sc, ils calculent z = y + (−1)bSc, où b
est un bit uniforme. Non seulement le rejet devient exact, mais il devient aussi plus
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efficace. Pour le même nombre moyen d’itérations, on peut prendre des écarts-type
plus faibles. Malheureusement, le bit b ne peut être révélé à moins de retomber dans
le cas unimodal. On change alors de module, de q à 2q, et changer la génération de
clé afin que AS = qI mod 2q, pour que la vérification puisse fonctionner quelle que
soit la valeur de b.

Nos Contributions

Pour conclure cette introduction, nous allons brièvement présenter les différentes
contributions de chaque chapitre de cette thèse.

Chapitre 3 : Une Analyse Détaillée de Fiat-Shamir avec Rejet

Dans un premier temps, nous étudions les preuves de sécurité de la transformation de
Fiat-Shamir avec rejet. Les preuves de sécurité proposées, par exemple dans [Lyu12,
KLS18, AFLT16], diffèrent des preuves standards pour la transformation de Fiat-
Shamir. En effet, si le protocole d’identification doit être appelé à plusieurs reprises
avant d’obtenir une signature, ce n’est plus la transformation de Fiat-Shamir mais
une transformation différente, que nous dirons de Fiat-Shamir avec rejet. Les preuves
doivent alors être modifiées pour prendre ce changement en compte. En particulier,
la notion de HVZK peut être abordée de deux manières : doit-on pouvoir simuler les
retranscriptions rejetées ? Les réductions précédentes considèrent que non, tandis que
nous considérons que oui. Notons au passage qu’elles étudient une version modifiée
de la transformation, où le protocole est appelé au plus B fois, quitte à ce que la
signature échoue, ce qui ne correspond pas aux signatures utilisées en pratique.

Dans un premier temps, nous avons identifié une erreur commune à toutes les
preuves précédentes. Toutes ces preuves considèrent un premier jeu hybride où un
défi uniforme est échantillonné et une signature est générée, jusqu’à en avoir une non-
rejetée (ou atteindre B itérations), puis l’oracle aléatoire est reprogrammé pour la
signature acceptante uniquement. C’est un problème, car dans la signature originale,
les itérations sont corrélées, à cause de la fonction de hachage, et ici elles ne le sont
pas. Contrairement à ce qui est affirmé, on ne peut pas conclure que les deux jeux
sont identiques.

Nos contributions portent alors sur trois fronts. Le premier est de corriger ces
preuves en considérant que la propriété HVZK doit permettre la simulation de re-
transcriptions rejetées. Le second est d’étendre les réductions au cas où le nombre
d’itérations n’est pas borné, comme c’est le cas en pratique. Nous identifions alors
quelques difficultés dans les définitions car un contre-exemple montre les limites de
celles-ci pour des questions de temps d’exécution. Enfin, nous montrons que le pro-
tocole de Lyubashevsky satisfait notre propriété plus forte de HVZK. Au final, les
bornes de sécurité dans les preuves sont quasiment identiques à celles qui étaient
mises en avant auparavant.

Chapitre 4 : Optimisation des Protocoles d’Identification fondés
sur les Réseaux Euclidiens

Dans ce chapitre, nous étudions l’utilisation de l’échantillonnage par rejet dans les
protocoles d’identification fondés sur les réseaux Euclidiens, et nous cherchons à mi-
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nimiser la taille (ou compacité) d’une signature, mesurée par la norme Euclidienne
moyenne d’un élément, étant donné un nombre d’itérations moyen M donné, ce qui
répond à la question Q1. Dans un premier temps, nous nous intéressons à l’échan-
tillonnage par rejet lui-même, et nous prouvons que cette procédure est optimale
pour minimiser le nombre moyen d’itérations, étant donné un choix de distribu-
tions. Ensuite, nous prouvons une borne inférieure dans les cas unimodal et bimo-
dal sur la compacité d’une signature. Pour cela, nous avons besoin de remarquer
que la contrainte M sur le nombre moyen d’itérations se traduit par une condi-
tion M ≥ R∞(P∥Q+Sc) sur la divergence de Rényi entre P et n’importe quelle trans-
latée de Q. Cette divergence est définie comme étant maxx∈Supp(P ) P (x)/Q+Sc(x).
En manipulant avec prudence les différentes équations que cela donne, nous trouvons
ces bornes inférieures.

Ensuite, nous explorons des instanciations de P et Q afin de trouver des choix
pouvant atteindre ces bornes. Nous en isolons deux. Le premier, les gaussiennes
discrètes, est un choix standard en cryptographie fondée sur les réseaux. Le second,
la distribution uniforme dans une boule Euclidienne, est nouveau. Bien que ces deux
choix offrent la même compacité, le second choix est intéressant car la condition de
rejet est plus simple : il s’agit de calculer une norme et de vérifier si la signature est
suffisamment petite dans le cas unimodal. Enfin, pour les comparer plus en détail,
nous proposons plusieurs jeux de paramètres concrets ainsi que des estimations de
tailles, qui sont similaires pour ces deux choix de distributions. Elles sont en revanche
bien meilleures que pour les distributions uniformes dans des hypercubes, comme
considérées dans Dilithium : jusqu’à 40% de gains.

Chapitre 5 : HAETAE, une Nouvelle Implémentation de
Fiat-Shamir avec Rejet Fondée sur les Réseaux

Afin de concrétiser les résultats des deux premiers chapitres, nous proposons une
implémentation, dénommée HAETAE. Celle-ci implémente la variante bimodale de la
signature de Lyubashevsky qui repose sur la distribution uniforme dans des boules
Euclidiennes. Dans ce chapitre, nous détaillons principalement les optimisations, lar-
gement présentes déjà dans Dilithium [BDK+20], que nous adaptons au cas bimodal.
Nous présentons aussi les différents choix qui permettent de passer d’une distribu-
tion théorique à une implémentation concrète d’un échantillonneur ainsi que d’une
condition de rejet. En particulier, l’un des défis d’une telle implémentation est de
permettre l’utilisation d’arithmétique à virgule fixe tout au long de la procédure de
signature. Finalement, nous présentons brièvement les performances et paramètres
de l’implémentation.

L’équipe de HAETAE est composée d’une dizaine de membres et les informations
complémentaires du projet peuvent être trouvées sur la page web2. Notons que cette
signature est soumise à deux concours de standardisation, l’un organisé par la Corée
du Sud et l’additionnel quatrième tour des signatures post-quantiques du NIST.

Cette signature étant le résultat d’un travail d’équipe, ce chapitre se focalisera
sur les parties où mon implication a été la plus forte, tout en n’en omettant aucun
aspect. Il en résulte que, bien que HAETAE soit plus compliqué conceptuellement
que Dilithium, le gain en terme de tailles de signature et de clé de vérification est

2https ://kpqc.cryptolab.co.kr/haetae
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largement en notre faveur : jusqu’à 40% de gain pour les signatures. D’un autre côté,
par rapport à l’autre finaliste du NIST reposant sur les réseaux, Falcon, HAETAE
reste conceptuellement plus simple, est plus rapide, mais a des tailles de signature et
clé de vérification plus grandes.

Chapitre 6 : G+G, un Premier Pas vers un Fiat-Shamir Efficace
Fondé sur les Réseaux

Dans ce dernier chapitre, nous explorons une solution permettant d’éviter l’échan-
tillonnage par rejet, qui consiste à utiliser une propriété de convolution des gaus-
siennes discrètes. On note que dans le mode bimodal, la relation vérifiée par les clés
de vérification et secrète est AS = qJ mod 2q. Or, le défi c est toujours multiplié
par S à gauche dans la signature, ce qui signifie que lors de la vérification, le secret
est réduit modulo 2. C’est cette remarque qui permet au mode bimodal de fonc-
tionner, en prenant un représentant de c qui est soit c soit c − 2c. Si on cherche
à aller encore plus loin, on peut tirer un représentant de c suivant une gaussienne
discrète sur 2Zk + c sans centre de matrice de covariance s2Ik. Maintenant, si y est
échantillonné suivant une gaussienne discrète de covariance σ2In − s2SS⊤, il résulte
que z = y + Sc′ suit une Gaussienne discrète sphérique sans centre.

Nous proposons alors G+ G, un protocole d’identification fondé sur les réseaux
Euclidiens, qui ne nécessite pas de rejet, et qui peut être transformé en une signa-
ture en utilisant la transformation de Fiat-Shamir (sans rejet). Le retrait du rejet
est quelque chose qui avait déjà été exploré précédemment [DPSZ12], mais le résul-
tat était loin d’être pratique au vu des tailles qui en résultent. Ici, nous montrons
que les tailles sont non seulement similaires à HAETAE pour des jeux de paramètres
concrets, mais aussi les tailles de signature asymptotiques sont meilleures d’un fac-
teur

√
λ/ log(λ) par rapport aux meilleurs signatures avec rejet.
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Chapter 1

Introduction

Modern cryptography aims at providing users with a toolkit of secure primitives
and protocols which suits any communication setting where some form of security
is desired. Among them, digital signature protocols allow a signer in possession of
a secret key to produce a signature for any input message. Anyone in possession of
the corresponding verification key may check the consistency of the signature with
the message. Moreover, security guarantees prevent anyone from forging another
signature for any message of their choice without the signing key in a reasonable
time. Since their introduction by Diffie and Hellman in 1976 [DH76], digital signa-
tures have found applications in numerous domains and it is hard to overstate their
importance. The most obvious use case is as replacement for written signatures.
Multiple countries, including members of the European Union and the USA, give
legal value to digital signatures for contracts or other business applications. Another
application is to prevent spoofing for software updating. Namely, a company bun-
dles a verification key with a software in its initial release, and signs further updates.
Users are then assured of the integrity of the update they downloaded, i.e., it has
not been tampered with.

More broadly, in the context of public key encryption, digital signatures allow
for secure distribution of public keys. When broadcasting a public key to someone
in possession of the verification key, signing it allows to demonstrate its authenticity.
Granted, this pushes back the problem one step before, as the verification key of the
signature needs to be distributed beforehand. However, this problem now only hap-
pens at most once: with one verification key, one may then broadcast as many public
keys as necessary. Digital authorities also use signatures to issue digital certificates.
By signing an e-mail or an address, digital certificates can be seen as “identity cards”
of servers and computers across the internet. They also embed a verification key to
enable the previous usage.

This is particularly visible during TLS handshakes. In those, a client and a server
come together to exchange a symmetric key, thus enabling secure communication and
HTTPS web browsing. They first exchange their certificates, with the corresponding
verification keys. They use the latter to sign the further messages they send each
other in order to agree on a symmetric encryption key. In total, three signatures and
two verification keys are sent, which amounts to a few kilobytes of data transmission
nowadays. To put it into perspective, the average website page weighs 2.3MB as of
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1. Introduction

May 20231. Thus the cost of signing is but a negligible fraction of the total cost of
connecting to a website.

However, current standards rely on the hardness of factoring large integers or the
hardness of computing the discrete logarithm in a group. With the ever-rising threat
of quantum computing, the long term security of current standards for digital signa-
tures is at stake, as these two problems are broken in polynomial time with Shor’s
algorithm. As a preventive measure, the American National Institute of Standards
and Technology (NIST) launched in 2016 a competition to look for new, quantum-
resistant, standards that should ally long-term security, computing efficiency and
reasonable signature size.

Different families of assumptions are currently assumed to resist to quantum at-
tacks. Among them, problems based on Euclidean lattices (discrete subgroups of Rn)
are particularly remarkable for the great design flexibility and good performance they
offer, even more so when considered in their so-called “module” version. Of particular
interest are the Short Integer Solution (SIS) problem and the Learning with Errors
(LWE) problem. The former asks, given a matrix A over a finite field, to find a
short (for the Euclidean norm over representatives centered around 0) element in its
kernel. The latter asks to distinguish between As+ e for short, random s and e and
a uniform vector over the finite field, given A.

Certain settings benefit from worst-case to average-case reductions, strengthening
the belief that those problems are hard to solve, as first shown in [Ajt96, Reg09].
Moreover, for settings considered in practice, despite more than a decade and a
half of research, no polynomial time quantum algorithm can solve the problems yet.
These arguments, among others, led the NIST to elect, out of the three winners of
the competition for standardization of post-quantum digital signatures, two lattice-
based schemes. The first one, Falcon [FHK+17], results from a first line of signatures,
following the “Hash-and-Sign” design. The second one, whose line of work we are
interested in in this thesis, is called Dilithium [BDK+20]. It relies on a paradigm
introduced by Fiat and Shamir in 1987 [FS87], which offers multiple advantages: it
is flexible, efficient and starts from a conceptually easier building block. We now
briefly recall the results that ultimately led to Dilithium.

1.1 Brief History of Fiat-Shamir and Lattices

The main building block of the Fiat-Shamir transform is called an identification
protocol. It is an interactive protocol between a prover, which holds some secret in-
formation, and a verifier, holding some related public information, where the prover
tries to convince the verifier that it knows the secret information, without revealing
it. The interaction is 3-round: the prover first sends a first message, the “commit-
ment”, the verifier replies with a “challenge” and the prover answers with a “response”.
The verifier checks the whole transcript and decides if it is convinced or not. More-
over, there is an efficient instance generator, which samples a random instance of
related secret and public information. Simple yet efficient designs for such protocols
arose, which in turn led to highly efficient and versatile signature schemes. We are

1https://httparchive.org/reports/page-weight?start=2023_03_01&end=latest&view=
list
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1.1. Brief History of Fiat-Shamir and Lattices

particularly interested in Schnorr’s protocol for the discrete logarithm, which is then
adapted to the lattice setting.

1.1.1 Schnorr Protocol for Discrete Logarithm

The discrete logarithm problem asks one, given a cyclic group G of large order p, a
generator g and an element of the group gx, to compute x. Based on the difficulty
of solving this problem, one can hide secret information in the exponent, while the
consistency of said private information can be checked through various operations
over the group.

Schnorr’s identification protocol [Sch91] takes advantage of this flexibility to offer
an efficient design. The prover’s public verification key is simply a group element gs,
whose discrete logarithm s forms the prover’s secret key. The identification protocol
proceeds as follows: the prover first commits to some uniform y ←↩ U(Zp) by send-
ing gy to a verifier. The latter returns some uniform challenge c ∈ Zp, to which the
prover replies with the response z = y + cs mod p. Here, no information about s is
revealed as z is still uniform modulo p as y is hidden from the verifier. Indeed, it
cannot compute the discrete logarithm of gy by assumption. However, a verifier is
convinced that the prover knows s as it can verify gz = gy(gs)c.

1.1.2 The Fiat-Shamir Transform

We now describe the technique Fiat and Shamir used [FS87] to turn an identification
protocol into a full-fledge signature scheme. The key generation algorithm is the
instance generator of the identification protocol. The signing algorithm runs the
interactive protocol. Instead of sampling a uniform challenge, which an attacker
could maliciously choose, it hashes the commitment along with the message and
obtains the challenge. The signature is comprised of the whole transcript. The
verification algorithm accepts if the challenge is consistent with the hash of the
commitment and the message, and if the verifier of the identification protocol accepts
the transcript.

Heuristically, relying on the hash function “forces” the signer to use a uniform
challenge, which can be publicly verified, to prevent it from tampering with it. The
resulting signature can be proven unforgeable in the random oracle model (where the
hash function is replaced with a function with uniform outputs) under the assumption
that the identification protocol satisfies a few properties. Namely:

• Commitment min-entropy: if the protocol is ran multiple times, the probabil-
ity of using the same commitment twice should be negligible. In the case of
Schnorr’s protocol, since the group order is large, gy has large min-entropy.

• Honest Verifier Zero-Knowledge (HVZK): a honest verifier should not learn
anything about the secret held by prover. In particular, if the challenge is
known in advance, transcripts can be simulated by someone who does not
hold the secret key. The distribution of the simulation must be statistically
close to the real one. Schnorr’s simulator samples a uniform z ←↩ U(Zp) and
sets gy = gz(gs)−c, which does not require knowing the secret key. Moreover,
the distribution of the transcript is exactly the same as a real one.
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• Soundness: it must be hard for someone who does not hold the secret key to
convince the verifier. Convincing Schnorr’s verifier without knowing s implies
computing the discrete logarithm of gs via rewinding techniques, which yields
two accepting transcripts with the same commitment but different challenges.
This gives (gy, c, c′, z, z′) such that gy = gz

′
(gs)−c

′
= gz(gs)−c. The discrete

logarithm of gs is then s = (z − z′)/(c− c′) mod p.

The security reduction uses an hybrid game, where the signatures are indepen-
dent from the secret key, rendering impossible to learn the secret key by observing
signatures. To do so, the challenger generates a signature using the HVZK simu-
lator, and then reprograms the random oracle accordingly, as it manages it. From
here, the unforgeability of the signature scheme is reduced to the soundness of the
identification protocol.

Schnorr’s identification protocol further satisfies the commitment-recoverability
property, as do all other identification protocols discussed in this thesis. Given
the challenge c and its answer z, one can recover the commitment gy = gz(gs)−c.
This is used to reduce the signature size by omitting the commitment from the
signature. Verification is achieved by recovering it during verification and checking
the consistency of the challenge with the hash function.

1.1.3 From Discrete Logarithm to Lattices: Introduction of
Rejection Sampling

A long-standing goal in lattice-based cryptography is proposing efficient adaptations
of Schnorr’s protocol to lattices. Lyubashevsky proposed famous adaptations [Lyu09,
Lyu12] of this protocol for lattices. Lyubashevsky’s scheme involves a publicly shared
matrix A ∈ Zn×m

q (note that other algebraic setups are possible, but this is not
relevant to the present discussion), which replaces the group generator g and defines
a SIS instance. The secret key is a matrix S ∈ Zm×k. It is small in the sense
that all its entries have absolute values significantly smaller than q. Instead of a
group element whose discrete logarithm is s, the verification key associated to S
is T = AS mod q. In the identification protocol, the prover samples a small masking
vector y ∈ Zm and computes a random-looking commitment w = Ay mod q. It
receives a uniform c ∈ Zk challenge with small values from the verifier. Finally, if
some (possibly probabilistic, later defined) test passes, it outputs z = y + Sc, and
else it restarts from scratch. Given a transcript σ = (w, c, z), the verifier accepts if
and only if Az − Tc = w mod q, as in Schnorr’s protocol, and if z is small, which
is particular to the lattice setting. We refer the reader to Figure 2.5 for a formal
description.

Compared to Schnorr’s signature scheme, the signing key and mask do not belong
to a finite set, preventing the use of a uniform mask y to hide the sensitive term Sc.2

On the contrary, with an effort proportional to the expected value of ∥y∥, generic
statistical attacks allow for key recovery. One possibility (see, e.g., [DPSZ12]) is to
sample y exponentially larger than Sc as a function of the security parameter, so
that the distributions of y and y + Sc have exponentially small statistical distance.

2If we view y and S over Zq rather than Z, then they do belong to a finite set; but for security,
the masking should preserve smallness relative to q, which the uniform distribution modulo q does
not achieve.
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As q must be larger than y and the smallness of S relative to q impacts security, this
flooding approach leads to large parameters. Instead, Lyubashevsky [Lyu09,Lyu12]
put forward the notion of Fiat-Shamir with aborts. This is the reason for the test
concerning z in the signing algorithm: it is so that the output signature (z, c) follows
a distribution that is independent of the sensitive term Sc.

A classic application of rejection sampling (see, e.g., [Dev86, Chapter 2]) is to use
a source distribution Q that is convenient to sample from, to create samples from a
target distribution P . In Lyubashevsky’s scheme, the purpose differs: we start from
a pre-source distribution Q for y; it is shifted by Sc, leading to a distribution Q+Sc

for y+Sc; the latter is the source distribution; it is rejected to a target distribution P
for z that does not depend on the signing key S. The purpose of rejection sampling
here is to hide the sensitive data Sc. Diverse choices of pairs of distributions have
been put forward in the literature: uniform in hypercubes [Lyu09], Gaussian with
the same standard deviation while allowing for some small statistical inaccuracy in
the target distribution [Lyu12]. The efficiency of these choices is constrained by
two parameters: the expected number of iterations M and the statistical distance ε
between the the resulting distribution and the target one. Due to its flexibility, the
rejection sampling technique allows us to adapt the Schnorr protocol to the lattice
setting in multiple ways. This gives rise to the following question:

Q1. Given signing runtime requirements, which rejection sampling strategy
leads to the most compact signatures?

Dilithium chose to answer a different question: which rejection sampling strategy
leads to the “easier to implement” signature? Their approach was to choose P and Q
uniform in hypercubes, i.e. each coordinate is uniform over a centered range. This
leads to a rejection condition which only depends on the infinite norm of z. Thus,
obtaining randomness for the scheme can be done very efficiently as well as comput-
ing the rejection condition. An interesting observation from [DDLL13] is that the
statistical inaccuracy from Gaussian to Gaussian rejection sampling stems from the
tails of the distributions. In particular, while one tail from the source (shifted) Gaus-
sian behaves nicely, the other cannot be rejected correctly to the target distribution.
Then, one can consider bimodal Gaussian as the source distribution. Namely, instead
of setting z = y + Sc, one sets z = y + (−1)bSc for some uniform bit b. Now, the
two tails of the source distribution behave nicely, which leads to a smaller expected
number of rejections for the same standard deviation. Equivalently, given a target
expected number of iterations, it is achieved with a smaller standard deviation than
in the unimodal setting. However, the bit b cannot be revealed or we fall back in
the unimodal setting. The key generation algorithm is then tweaked in order to
produce A and S such that AS = −AS mod p for some integer p. In [DDLL13],
the authors aim at setting AS = qI mod 2q, where I is the identity matrix. A care-
ful analysis however reveals that setting AS = qJ mod 2q for any nonzero binary
rectangular J is enough for the security reduction to go through.

1.2 Contributions

The findings of this thesis are part of the aforedescribed paradigm. We start by ana-
lyzing and fixing the security proofs of Fiat-Shamir with Aborts (Chapter 3) before
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carefully choosing a new pair of source and target distributions in order to minimize
the expected norm of the signature (Chapter 4). We then propose an implementa-
tion and analyze its performances (Chapter 5) before proposing a rejection-free yet
efficient, new lattice-based adaptation of Schnorr protocol (Chapter 6).

1.2.1 Chapter 3: A Detailed Analysis of Fiat-Shamir with Aborts

This chapter focuses on proving the security of Fiat-Shamir with Aborts. Indeed,
previous proofs suffer from a common flaw, which we now describe.

1.2.1.1 A Flaw in Previous Proofs

An important caveat of rejection sampling is that with an aborting identification
protocol, simply applying the Fiat-Shamir transform does not yield a correct sig-
nature, because of the rejection probability. However, one can adapt the transform
by rerunning the signing algorithm until a non-aborting transcript is found: this is
the Fiat-Shamir with aborts transform. Of course, this change of setting renders
the generic security reductions of Fiat-Shamir useless in this case. This raises the
question of the HVZK property needed: do we need to simulate aborting transcripts?
Previous reductions [Lyu12,KLS18,AFLT16] only required to simulate non-aborting
transcripts. However, those reductions only consider a specific case, where the num-
ber of aborts is bounded, for simplicity. Indeed, up to outputting ⊥, they assume
that the signing algorithm is run at most B times: we call this Fiat-Shamir with
Bounded Aborts (FSwBA).

An unsubstantiated intuition. We start by describing a first flaw appearing
in all existing analyses. These analyses start as follows: in the genuine security
experiment (denoted Game 0), all (successful or not) transcripts generated during
a sign query use a challenge that is computed with the hash function. Then, a
first hybrid (Game 1) changes the sign algorithm by sampling a uniformly random
challenge and programming the hash function consistently with the successful proof
transcript only. All proofs immediately conclude these two games are identical:
the (unsubstantiated) intuition is that the adversary does not have access to the
aborted transcripts, and hence programming these transcripts does not impact the
adversary’s view.

F1. Assume the challenger in the genuine CMA (or even CMA1) security game
answers a sign query µ using a sequence of commitments w1, w2, . . . . Assume
that rejecting is a deterministic function of w and c (this is for example the
case for Lyubashevsky’s signatures with the parameters considers in [AFLT16]).
Then, as soon as w1 fails to produce a valid transcript, the hash value H(w1∥µ)
is fixed and the sign oracle can no longer return a valid signature which uses
commitment w1. This is not the case in Game 1, since the hash value H(w1∥µ)
is not programmed by the failed attempt, and the sign query could return a
signature (w1, c

′, z′) for c′ ̸= c.

FSwBA has been analyzed and used numerous times (we focus here on the most
detailed analyses), yet the above flaw F1 appears in [Lyu12, Lemma 5.3], [Lyu16,
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Lemma 4.1], [KLS18, Theorem 3.2], and [Kat21, Lemma 4.6]. Moreover it appears
in [AFLT16] though not in Game 1 but in Game 0: in the proof of [AFLT16, The-
orem 1], the authors directly start with the above Game 1 rather than with the
correct Game 0. Finally, the difficulty with the hash function inconsistencies seems
identified in [ABB+17, Appendix B.4], but the authors do not handle the case of
inconsistencies between different sign queries for the same message.

The fact that the adversary can make hash queries on superpositions of all inputs
in the Quantum Random Oracle Model (QROM) makes it even more difficult to
argue that the adversary cannot detect random oracle programmings, which induces
additional errors.

1.2.1.2 A New, Complete Analysis of Fiat-Shamir with Aborts

Our first set of results concerns FSwBA. We assume that the identification protocol
satisfies a stronger notion of HVZK, where one can simulate any transcript, even
aborting ones. This notion of HVZK is closer to the standard definition in the case
of non-aborting identification protocols. In particular, with this notion of HVZK, we
can show that if we apply the Fiat-Shamir transform on the identification protocol,
then the resulting signature may not be correct, but is at least unforgeable according
to standard reductions such as [GHHM21]. We can then consider the reduction
which on FSwBA signature queries forwards these queries at most B times to the
Fiat-Shamir signature oracle, which gives rise to a tight reduction. This is in essence
what we do, except that we need to do it from scratch as the details of the reduction
will help to prove the expected polynomial runtime of the signing algorithm in the
case of Fiat-Shamir with Unbounded Aborts (FSwUA).

Our second set of results concerns FSwUA, i.e. the flavor of Fiat-Shamir with
Aborts without an artificial bound on the number of iterations. On the negative
side, we exhibit an interactive proof system such that applying FSwUA to it leads
to a signature scheme such that:

• for all signing keys, with non-zero probability over the random oracle random-
ness, signing loops forever for all messages; in particular, the expected signing
runtime is infinite;

• with overwhelming probability over the random oracle randomness, for all mes-
sages and all signing keys, the expected runtime of signing over its own ran-
domness is below a fixed polynomial.

This suggests a modification of the signing efficiency requirement, in which the run-
time expectation is not taken over the randomness of the random oracle, but should
be bounded by a polynomial with overwhelming probability over the randomness of
the random oracle. On the positive side, we give analyses of correctness, signing
efficiency (with respect to the modified definition) and security for FSwUA in the
ROM.

The main applications of these results are the Lyubashevsky and BLISS iden-
tification protocols. We show that they satisfy the stronger notion of HVZK we
consider. Simulating a non-aborting transcript is done as usual: first sample z ac-
cording to the target distribution, and then compute w = Az − Tc mod p, as c is
given as an input of the simulator. In the case of aborting transcripts, we have to
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compute w = Ay mod p with y sampled from the source distribution conditioned
on z being rejected. We show that in usual cases, the entropy of y is sufficiently
large, even with the conditioning, and the leftover hash lemma allows us to replace w
with some uniform vector modulo p.

Throughout the chapter, we give an adaptation of the setting for another flavor
of HVZK. We note that the simulator we exposed above can be decomposed in two
parts: one part for non-aborting transcripts, and one part for aborting ones. We
consider a specific case, where the simulator for non-aborting transcripts is close to
real non-aborting transcripts in the sense of the Rényi divergence (aborted transcripts
are still measured using the statistical distance). Given two distributions P and Q,
the Rényi divergence of infinite order is the maximal ratio of their probability mass
function. We recall its properties in Section 2.2.2.1. Sections pertaining to this
specific case have a name starting with “Rényi Divergence Approach”.

To understand its usefulness, we go back to the rejection sampling technique.
We notice that for a given pair of source and target distribution, the proof that
shows that the statistical distance between the rejection sampling output and the
target distribution is ≤ ε also shows that their Rényi divergence of infinite order
is (roughly) ≤ 1 + ε. Hence, both approaches can be applied to the Lyubashevsky
identification protocol3. It turns out that by comparing them, we notice that the
Rényi Divergence allows for larger ε, i.e. for a broader class of pairs of source and
target distributions. Namely, the Rényi divergence approach gives useful reductions
up to ε = O(1/Qs), the number of signature queries, while the statistical distance
approach is only meaningful up to ε = negl(λ).

While our results can be extended to the QROM, this chapter focuses on the
ROM and classical adversaries, as the quantum part of this joint work was handled
by a coauthor.

1.2.2 Chapter 4: Optimizing Lattice-based Identification
Protocols

Equipped with the previous result, which gives us a class of admissible pairs of source
and target distributions, we aim in this chapter at answering the question Q1. This
chapter addresses it with a particular goal in mind: minimizing the expected norm
of z. Indeed, as z makes up for (almost all of) the signature, minimizing its norm
minimizes the signature size. Moreover, this also minimizes the verification bound,
which in turns makes the signature harder to forge. To further formalize the question,
we need to address how we model the expected signing time. We make the following
assumptions in this chapter:

• We have a bound M ≥ 1 on the expected number of iterations under which we
want to minimize the above.

• The runtime of one iteration is independent from the number of previous iter-
ations and the choice of source and target distribution. Namely, the runtime
is a linear function of M .

• The set of shifts {Sc} is modelled as a set of the form {v|∥v∥ ≤ t}, i.e. an
hyperball.

3We could also apply it for BLISS, but it turns out that ε = 0 in this case.
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On Alternative Rejection Sampling Strategies. In Section 4.2, we first investigate
rejection sampling itself. Indeed, the classical rejection sampling algorithm has an
expected runtime of R∞(P∥Q) when rejecting from distribution Q to distribution P .
If there is a way to make it faster, then we could look for even smaller distributions
under the same time constraints. We consider the following setting. The goal is to
sample from a distribution P given access to a sampler from a distribution Q, and we
consider a sequence of samples (Xi)i≥1 from distribution Q. Any strategy is allowed
as long as we output one of the Xi’s. A strategy is given by a sequence of algorithms
(Ai)i≥1 that take samples (Xj)j≤i as input and return either an index j ∈ [i], which
corresponds to halting with output Xj , or a special symbol r which corresponds
to rejecting and moving to Ai+1. We restrict ourselves to the case of procedures
that terminate with probability 1. Considering i∗ the random variable denoting the
number of samples observed in a strategy, our objective is then to measure how small
E(i∗) can be. We prove that for any P,Q, we have E(i∗) ≥ R∞(P∥Q). This result
is obtained by proving that for any x, we have P (x) ≤ E(i∗) · Q(x), leading to the
former inequality by definition of R∞.

Lower Bounds. In Section 4.3, we prove lower bounds on achievable compactness
in the case of exact rejection sampling in both unimodal and bimodal settings. These
lower bounds are obtained following a similar path. In what follows, we focus on the
unimodal setting.

Our lower bounds are obtained in three steps: (1) considering the same set-
ting with continuous distributions, we first prove that we can restrict ourselves to
the case of isotropic distributions over Rm, where isotropic means that their densi-
ties only depend on the norm. (2) Starting with f and g isotropic, we show that
Ex←↩f (∥x∥) = µm/µm−1 where µk =

∫∞
0 rkf(r) dr. Our lower bound is then obtained

by applying the Cauchy-Schwarz inequality |E(XY )|2 ≤ E(X2)E(Y 2) to random
variables X = ∥x∥m/2 and Y = ∥x∥(m−2)/2, where x ←↩ f . Indeed, it immediately
leads to inequality µm ·µm−2 ≥ (µm−1)

2, which results in µm/µm−1 ≥ µm−1/µm−2 ≥
(t/M1/(m−1) − 1). (3) A similar lower bound in the discrete setting is obtained by
considering the continuous density p(x) = P (⌈x⌋) with P being a discrete probabil-
ity. These lower bounds provide us with a target to reach, and we can compare them
with the signature size obtained when instantiating the above scheme with various
distributions.

• Considering Lyubashevsky’s scheme with perfect rejection sampling to the tar-
get distribution P (as in [Lyu09]), the relevant quantity measuring the signing
runtime is then given by M = maxS,cR∞(P∥Q+Sc). We show (under a mild
assumption discussed below) that for all P and Q such that M is finite, the
expected norm Ex←↩P (∥x∥) is Ω((m/ logM) ·maxS,c ∥Sc∥).

• In the case of perfect rejection with the accommodating arithmetic modifica-
tion from [DDLL13], then the relevant quantity for measuring the signing run-
time is M = maxS,cR∞(P∥Q±Sc), where Q±Sc denotes the balanced mixture
of Q+Sc and Q−Sc. In this case, we show (under the same mild assumption)
that for all P and Q such that M is finite, the expected norm Ex←↩P (∥x∥)
is Ω(

√
m/ logM ·maxS,c ∥Sc∥).

Usual Choices. We recall in Section 4.4.3 results on two usual choices for source
and target distributions. Namely, the uniform distribution in hypercubes and the
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discrete Gaussian distribution. Gaussian distributions provide better signature com-
pactness in the bimodal and imperfect unimodal regimes, than uniforms in hyper-
cubes in the perfect unimodal regime. In the perfect unimodal setting, our lower
bound is a factor

√
m lower than the hypercube result, while Gaussian distribu-

tions are incompatible with this setting. In the bimodal setting, our lower bound
is actually reached (up to a constant factor) by discrete Gaussian distributions as
in [DDLL13].

However, uniforms in hypercubes are sometimes preferred (see, e.g., Dilithium),
because they lead to a simpler implementation, which in turn makes protection
against timing attacks easier.

Hyperball Uniforms. We show that (continuous) uniform distributions over hy-
perballs reach the signature compactness lower bound (up to constant factors) in
both unimodal and bimodal settings, as shown in Section 4.4.1. We also show that
they are experimentally as good as Gaussians for imperfect rejection sampling. These
results reduce to Rényi divergence computations, which involve geometric properties
of hyperballs. We emphasize that while Gaussian distributions also achieve similar
signature size in both unimodal and bimodal settings (but only in the case of imper-
fect rejection sampling with polynomial loss for the unimodal case), using uniform
distributions over hyperballs makes the rejection test as simple as computing ∥z∥ in
the unimodal case since it consists only in checking that z is in the hyperball of the
target distribution P . In the bimodal case, the rejection test involves computing two
norms and flipping a coin. In order to use this distribution in a signature, we propose
a generalization of Lyubashevsky’s signature that allows for continuous source and
target distributions, by adding a rounding step after accepting a sample. Its security
relies on the same mechanisms as the discrete case. This strategy could also benefit
to Gaussian distributions, by allowing to replace discrete Gaussian sampling with
possibly simpler continuous Gaussian sampling. To assess the practicality of this
new choice of distributions, we propose parameters for a variant of Dilithium with
uniform distributions in hyperballs. If considering the sum of bitsizes of a verifica-
tion key and a signature, the gains range from ∼ 25% to ∼ 30%, depending on the
security level, just like for the Gaussian variant, whose parameters we also update.

The results concerning signature compactness for unbounded (perfect and imper-
fect) rejection sampling are summarized in Table 1.1. For practical estimations, we
give in Table 1.2 the estimated sizes for the signatures based on unimodal Gaussian
rejection sampling and unimodal hyperball rejection sampling, assuming that they
integrate various standard optimizations, such as relying on polynomial modules in-
stead of Zn, and considering compression of the signature via truncation of its lower
bits.

1.2.3 Chapter 5: HAETAE, A New Implementation of
Lattice-based Fiat-Shamir with Aborts

As a natural follow-up to the two previous chapters, we propose HAETAE4, an
implementation of the hyperball-uniform bimodal variant of Lyubashevsky’s sig-

4The haetae is a mythical Korean lion-like creature with the innate ability to distinguish right
from wrong.
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Unimodal (ε = 0) Unimodal
(ε ≥ 2−o(m) and ε = o(1/m))

Bimodal (ε = 0)

Hypercube tm3/2

logM
tm3/2

logM
tm3/2

logM

Gaussian ∞
t
√
m
√

log 1
ε
+logM

logM
t
√
m√

logM

Hyperball
tm

logM

(Lemma 4.10)

t
√
m
√

log 1
ε
+logM

logM

(Lemma 4.10)

t
√
m√

logM

(Lemma 4.11)

Lower bound
tm

logM

(Corollary 4.6)
?

t
√
m√

logM

(Corollary 4.9)

Table 1.1: Optimal asymptotic expected Euclidean norm of z for different pairs of
source and target distributions. Parameter M quantifies the expected number of
iterations, ε quantifies the accuracy of the rejection sampling, m is the dimension
of z and t is an upper bound on ∥Sc∥. Multiplicative constants are omitted and we
assume that logM ≤ m. The last row corresponds to the lower bounds we computed.

nature. This implementation features various optimizations, already present in
Dilithium [BDK+20] and which we adapt to the bimodal setting.

The HAETAE team is comprised of ten members and informations about the
project can be found on the website5. It is a submission to the Korean post-quantum
competition6 and to the fourth round of the NIST post-quantum signature compe-
tition7.

It implements the bimodal hyperball setting from Chapter 4. We adapted the
following optimizations, which were already considered in multiple schemes, e.g.,
Dilithium, Kyber, Saber, to the bimodal setting for our implementation. We also
adapted continuous hyperball sampling to discrete hyperball sampling in order to
enable fixed-point arithmetic in the signature algorithm.

Polynomial modules. Instead of working over Zm, we rely on polynomial modules
over a power-of-two cyclotomic ring, thus speeding up computations and decreasing
the sizes.

Modulus and truncating the verification key. First, as we noted in the previous
chapter, the bimodal hyperball setting leads to the smallest for the Euclidean norm
signatures. For the same SIS security than Dilithium, we are thus able to aggressively
decrease the modulus, from 23 to 16 bits. As the verification key bit-size is propor-
tional to the logarithm of the modulus, this helps reducing it. Moreover, we adapt
Dilithium’s verification key truncation to our setting. However, as we already enjoy
the modulus reduction, our adaptation turns out to be less efficient than Dilithium’s
as we only cut at most 1 bit per coordinate.

Compression techniques to lower the signature size. We use two techniques to
compress the signatures. First, as the verification key A is in (almost)-HNF, we rely
on the Bai-Galbraith technique [BG14]. Namely, the second part of the signature,
which is multiplied by 2Id in the challenge computation and verification algorithm,
can be aggressively compressed by cutting its low bits. This requires in turn mod-
ifying the computation of the challenge c and the verification algorithm, in order

5https://kpqc.cryptolab.co.kr/haetae
6https://www.kpqc.or.kr/
7https://csrc.nist.gov/projects/pqc-dig-sig/
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to account for this precision loss. Usually, this is done by keeping only the high
bits of Ay in the computation of the challenge. However, as we multiply everything
by 2, we do not keep the lowest bit of those high bits and keep the (overall) least
significant bit instead. As in Dilithium, our decomposition of bits technique is a
Euclidean division with a centered remainder, and we choose a representative range
for modular integers that starts slightly below zero to further reduce the support
of the high bits. The second compression technique, suggested in [ETWY22] in the
context of lattice-based hash-and-sign signatures, concerns the choice of the binary
representation of the signature. As the largest part of it consists in a vector that is
far from being uniform, we can choose some entropic coding to obtain a signature
size close to its entropy. In particular, as in [ETWY22], we choose the efficient range
Asymmetric Numeral System to encode our signature, as it allows us to encode the
whole signature and not lose a fraction of a bit per vector coordinate, like with Huff-
man coding. We can further apply the two techniques to the hint vector h, which is
also a part of the signature, to reduce the signature sizes.

Fixed-point algorithm for hyperball sampling. Unlike uniform Gaussian sampling
or uniform hypercube sampling, uniform hyperball sampling has not been considered
in the cryptographic protocols before the suggestion of [DFPS22]. To narrow the
gap between the hyperball uniforms sampled in the real and the ideal world, we
discretize the hyperball and bound the numerical error and their effect by analyzing
their propagation. This leads to a fixed-point hyperball sampling algorithm and,
therefore, the fixed-point implementation of the whole signing process.

Let us briefly compare the resulting scheme with Dilithium and Falcon.
Comparison with Dilithium. Once the design rationale was set, I was mainly

involved with the parameter computations. We chose the core-SVP methodology,
a conservative approach to security estimation. Our signature size is 25% to 40%
smaller than Dilithium’s while the verification key is 20% to 25% smaller as seen
in Table 1.2. This comes at the price of having a less efficient signature algorithm.
However, we note that the hyperball sampling takes up to 80% of the total runtime,
and thus any improvement on this sampler would lead to massive gains in the signing
time. Finally, we note that our design is based on Dilithium-G, which appears
in a preliminary version of [DKL+18], and its design has a few subtle differences
with Dilithium when it comes to the role of the hint and in the definition of the
commitment, where both are optimized for hypercubes in Dilithium.

Comparison with Hash and Sign lattice signatures. In terms of ease of implemen-
tation, our scheme favorably compares to lattice signatures based on the hash and
sign paradigm such as Falcon [FHK+17] and Mitaka [EFG+22]. HAETAE, Falcon and
Mitaka all three rely on some form of Gaussian sampling, which are typically diffi-
cult to implement and protect against side-channel attacks. Falcon makes sequential
calls to a Gaussian sampler over Z with arbitrary centers. Mitaka also relies on an
integer Gaussian sampler with arbitrary centers, but the calls to it can be massively
parallelized. It also uses a continuous Gaussian sampler, which is arguably simpler.
HAETAE, however, only relies on a (zero-centered) continuous Gaussian sampler, used
to sample uniformly in hyperballs. The calls to it can also be massively parallelized.
This difference makes HAETAE possible to have a fixed-point signing algorithm and
easier maskings. Further, in the randomized version of the signature scheme, these
samples can be computed off-line as they are independent from the message to be
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signed. The on-line tasks are far simpler than those of Falcon and Mitaka. Finally,
we note that key-generation is much simpler for HAETAE than in Falcon and Mitaka.

While HAETAE is simpler from an implementation perspective, its verification
key and signature sizes are larger than Falcon’s and Mitaka’s.

1.2.4 Chapter 6: Towards Efficient Lattice-based Fiat-Shamir

In this last chapter, we introduce a new paradigm for adapting Schnorr’s identifica-
tion protocol to the lattice setting. It relies on Gaussian convolution, rather than
flooding or rejection sampling. Our G+ G (Gaussian Plus Gaussian) identification
protocol can be compiled into a signature using the Fiat-Shamir heuristic (without
aborts), in the QROM.

G+ G involves two Gaussian samples that are being summed. The first one is y
and the second one corresponds to Sc. The first difficulty that we face is that S is
fixed and c is publicly known as part of the resulting signature and hence cannot be
assumed random for the sake of studying the distribution of z.

To introduce the required new randomness, we start from BLISS [DDLL13].
Recall that the verification key A ∈ Zm×k

2q and the signing key S ∈ Zk×m satisfy the
relation AS = qIm mod 2q. Among the variants of Lyubashevsky’s signature, it is
a specificity of BLISS to work modulo 2q, which is particularly useful in our case.
The commitment of the prover is w = Ay mod 2q, and upon receiving c ∈ {0, 1}m,
the prover replies with either z = y + Sc or z = y − Sc with probability 1/2 each.
The verifier checks that z is short and Az = w + qc mod 2q. This check works for
both values of z that the prover chose from. This can be explained by observing
that the verification views c modulo 2, i.e., as a coset of Zm/2Zm, and negating it
does not change the coset. This observation was used in [Duc14] to take negations
of individual coordinates of c to minimize the Euclidean norm of Sc and hence
decrease the standard deviation of y necessary to hide Sc via rejection sampling.
We go further and let the prover extend the coset c sent by the verifier to a Gaussian
sample with support 2Zm + c. The verification equation above still holds, and we
now have our second Gaussian.

At this stage, the prover samples a Gaussian y over Zk, transmits w = Ay mod
2q, receives a uniform coset c ∈ Zm/2Zm from the verifier, produces a Gaussian
sample x with support 2Zm+c and computes z = y+Sx. Equivalently, it samples k
Gaussian with support 2SZm + Sc and returns z = y + k. In order to obtain the
zero-knowledge property (i.e., be able to simulate signatures without knowing the
signing key), we aim to prove that the distribution of the Gaussian convolution z
can be sampled from publicly. If y and k were continuous Gaussians, we would
set their covariance matrices Σy and Σk such that Σy + Σk = Σz for a known
covariance matrix Σz for z. To fix the ideas, we could set Σz = σ2I for some σ > 0,
i.e., the distribution of z is a spherical Gaussian, and set Σy = σ2I − Σk. If we
sample x from a spherical Gaussian with standard deviation s > 0, then Σk = s2SS⊤

and Σy = σ2I − s2SS⊤ (by taking σ sufficiently large, the latter is indeed definite
positive). This is the choice we actually make for G+ G, but there is flexibility.

The above over-simplifies the situation as the Gaussians we manipulate are dis-
crete rather than continuous. Further, their supports do not have the same dimen-
sions. Indeed, the support of y is Zk whereas the support of k is exactly 2SZm+Sc
whose span has dimension m < k: the second Gaussian lives in a smaller dimension
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1. Introduction

+ =

Figure 1.1: The sum of two Gaussians with compensating covariance matrices is a
spherical Gaussian, even when the second Gaussian is rank-deficient. In the G+ G
identification protocol and signature, the first Gaussian corresponds to y, the second
Gaussian is associated to Sc and the resulting one corresponds to z.

and its support is sparser. This is illustrated in Figure 1.1. Convolution of discrete
Gaussians has been studied in [BF11], but restricted to the case of full-dimensional
supports. As a technical contribution, we extend their result to rank-deficient Gaus-
sians with co-diagonalizable covariance matrices.

Thanks to the above, if the covariance matrices are set appropriately, then G+ G
is honest-verifier zero-knowledge (HVZK). The proofs of completeness and soundness
are adapted from [DDLL13]. To apply the Fiat-Shamir heuristic, we also need the
commitment Ay to have sufficiently high min-entropy. This is technically more com-
plex than for Lyubashevsky’s signatures as y is distributed from a skewed Gaussian.
The properties satisfied by G+ G allow a conversion to a secure signature scheme,
using completeness and commitment-recoverability to obtain the correctness of the
signature, HVZK and commitment-min-entropy to reduce security against chosen-
message attacks to security against no-message attacks, and computational sound-
ness (resp. lossy-soundness) which implies security against no-message attacks for
different parametrizations.

Comparison with BLISS. Among variants of Lyubashevsky’s signatures, BLISS
provides the smallest z: its expected norm can be as small as σ1(S)m/

√
logM (up

to a constant factor), where σ1(S) is the largest singular value of S and M is the
expected number of repetitions (see Lemma 4.16). Further, following Corollary 4.9,
this is essentially optimal for Lyubashevsky’s signatures, even if we allow to optimize
over the choice of source and target distributions. In the case of G+ G, the strongest
constraint on parameters is essentially that the standard deviation σ of z be suffi-
ciently large to “smooth out” the lattice 2SZm. By using the variant of the HVZK
property based on the Rényi divergence rather than the statistical distance defined
in Definition 3.3, where we further set p = 0 as no rejection is involved, it suffices
that σ be above σ1(S)

√
logQS , up to a constant factor, where QS is the maximum

number of signature queries that the adversary is allowed to make. As a result, the
expected norm of z in G+ G is σ1(S)

√
m logQS . We conclude by observing that

logQS is typically much smaller than m, and that the
√
logM term from BLISS

cannot grow sufficiently to compensate for the difference. More concretely, if we
set M = λΘ(1), QS = λΘ(1) and m = Θ(λ), where λ is the security parameter, then
the expected norms of z in BLISS and G+ G respectively grow as σ1(S) · λ/

√
log λ

and σ1(S) ·
√
λ log λ.

Optimization and concrete parameters. While all key generation techniques pre-
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1.3. Other Contributions and Publications

Bit Security 120 160 260
NIST Level II III V

Size sig. vk sig. vk sig. vk

Dilithium 2420 1312 3293 1952 4595 2592
Chapter 4 (Unimodal Gaussian) 1921 800 2462 1056 3553 1760
Chapter 4 (Unimodal Hyperball) 1903 800 2473 1056 3461 1760
Chapter 5 (Bimodal Hyperball) 1463 992 2337 1472 2908 2080

Chapter 6 (Rejection-free) 1542 1120 2033 1568 2518 2336

Table 1.2: Signature sizes in bytes from across this thesis and Dilithium for com-
parison. All results can be reproduced using the scripts found in their respec-
tive folder at https://github.com/jdevevey/thesis and are all modifications
of https://github.com/pq-crystals/security-estimates.

sented in [DDLL13] can be used with our G+ G protocol, we present alternative
versions which offer more flexibility. A first improvement is that we can set AS =
qJ mod 2q, where J ∈ Zm×ℓ

q is only rectangular and full column-rank rather than set
to the identity. Departing from the BLISS setting, when instantiating G+ G with the
MLWE and MSIS hardness assumptions [BGV12,LS15] over a ringR = Z[x]/(xn+1)
with n a power of 2, we take j = (xn/2 + 1, 0, . . . , 0). This allows us to replace the
lattice 2sR with (xn/2 − 1)sR, and to decrease the standard deviation of z by a
factor

√
2. Overall, we obtain signature sizes that are between 20% and 30% smaller

than those from Chapter 4, or 35% to 45% smaller than Dilithium [DKL+18]. We
recall that Table 1.2 summarizes all the different sizes for the different signatures
presented in this thesis.

1.3 Other Contributions and Publications

The various results from this thesis and complimentary findings resulted in the fol-
lowing publications.

[DFPS23] A detailed Analysis of Fiat-Shamir with Aborts.
J. Devevey, P. Fallahpour, A. Passelègue, D. Stehlé. Crypto 2023.
This work contains additional results for Chapter 3, which includes QROM
proofs as well as a fix for the [KLS18] proof.

[DFPS22] On Rejection Sampling in Lyubashevsky’s Signature Scheme.
J. Devevey, O. Fawzi, A. Passelègue, D. Stehlé. Asiacrypt 2022.
This work contains additional results for Chapter 4. It includes more details as
well as a section on bounded rejection sampling strategies, which are a hybrid
between rejection-free signatures and rejection sampling.

[CCD+23] HAETAE: Shorter Lattice-based Fiat-Shamir Signatures.
J. H. Cheon, H. Choe, J. Devevey, T. Güneysu, D. Hong, M. Krausz, G. Land,
M. Möller, D. Stehlé, and M. Yi. Preprint.
This work contains additional results for Chapter 5. I played two main roles
in the project. First, as I brought the bimodal hyperball idea, I worked on
adapting the optimizations we will discuss next to the bimodal setting. Second,
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1. Introduction

I was in charge of computing the parameter sets. The tools I used can be found
on the project website or on the dedicated git repository for this thesis8. The
full version includes the whole documentation of HAETAE, including parts
where I was less involved, such as practical security assessment, longer report
on performances and implementation techniques. It also includes reminders
which were already present in Chapter 3 and Chapter 4.

In preparation G+ G: A Fiat-Shamir Lattice Signature Based on Con-
volved Gaussians.
J. Devevey, A. Passelègue, D. Stehlé. Submitted.
The last chapter of this thesis, Chapter 6, is currently in review process for
publication. The version presented in this thesis is already the full version and
no content was omitted.

Additionally, three more publications resulted from these PhD years. They are
omitted from this manuscript for consistency as they approach different topics.

[DSSS21] On the Integer Polynomial Learning with Errors Problem.
J. Devevey, A. Sakzad, D. Stehlé, R. Steinfeld. PKC 2021.
Consider a polynomial ring Z[x]/f(x) and a prime q. We compare the hardness
of the LWE problem over this ring with the hardness of the problem where
each polynomial is evaluated at q and reduced modulo f(q) before doing any
operation. This allowed to prove the hardness of a variant of ThreeBears,
a round 2 key-exchange mechanism submission to the NIST post-quantum
competition.

[DLN+21] Non-interactive CCA2-secure Threshold Cryptosystems:
Achieving Adaptive Security in the Standard Model without Pair-
ings.
J. Devevey, B. Libert, K. Nguyen, T. Peters, M. Yung. PKC 2021.
This work proposes two constructions of threshold public key encryption, where
the decryption key is split among multiple parties. One is based on the DCR
assumption and the second one on lattice assumptions. The adaptive IND-
CCA2 security model allows an adversary to adaptively corrupt parties as well
as query partial decryption for non-corrupted ones. Before this work, this was
not achieved in the standard model except for pairing-based constructions.

[DLP22] Rational Modular Encoding in the DCR setting: Non-
interactive Range Proofs and Paillier-based Naor-Yung in the Stan-
dard Model.
J. Devevey, B. Libert, T. Peters. PKC 2022.
This work proposes a new construction of range proofs in the standard model
under the DCR assumption. As an application, we recover the security of a
Naor-Yung construction of threshold encryption under the DCR setting. The
previous proof contained a flaw which was fixed using our new construction of
range proofs.

8https://github.com/jdevevey/thesis
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Chapter 2

Preliminaries

We start by introducing all the notations we use and we recall the previous results
we rely on and give some extensions.

2.1 Notations

Matrices are denoted in bold font and upper case letters (e.g., A), while vectors are
denoted in bold font and lowercase letters (e.g., y or z1). The i-th component of a
vector is denoted with subscript i (e.g., yi for the i-th component of y).

Vectors are column vectors. We let (u,v) denote concatenation between matrices
and/or vectors by putting the rows below and (u|v) the columns on the right.

When we consider a probability density, this is with respect to the canonical (i.e.,
Lebesgue or counting) measure µ over their support. We may identify the notion
of probability distribution and probability density in the discrete case. Given two
probability distributions F and G with densities f and g, we let x←↩ F denote the
sampling of x according to F . We let Supp(F ) denote the smallest (for inclusion)
set such that for any set X, we have F (X ∩ Supp(F )) = F (X). In particular, in the
case where F is discrete, then we have Supp(F ) = {x|F (x) ̸= 0}. Given a set S ⊆
Supp(F ), we let FS denote the distribution F cut to S, i.e., the measure F/F (S)
restricted to S. We let F ⊗ G denote the distribution of (x, y) where x ←↩ F
and y ←↩ G are independent and f⊗g one of its density. Moreover given an element x,
we let F+x (respectively F±x) denote the distribution with density f+x : y 7→ f(y−x)
(respectively f±x : y 7→ (f(y−x)+f(y+x))/2). Given a finite or measurable set S,
we let U(S) denote the uniform distribution over S. We let N (µ, σ) denote the
normal distribution centered at µ with standard deviation σ. By notation abuse, we
use algorithm names to denote the random variable associated to their output.

Given a dimension m ≥ 1, a center c ∈ Rm and a radius r > 0, we let Bpm(r, c)
(resp. Spm(r, c)) denote the p-norm ball (resp. sphere) of radius r and center c for
any p ∈ [1,+∞]. When p = 2 (resp. c = 0), we omit it. Let Vm(r) := πm/2

Γ(m/2+1)r
m

denote its volume as well as Sm = m · Vm(1) denote the surface of the unit sphere.
Given a set and a subset S ⊆ Y we let χS : x 7→ {1 if x ∈ S, 0 if x ∈ Y \ S}

denote the indicator function of S. Let ⌈·⌋ : R → Z be the rounding operator that
maps x to the nearest integer (in case of a tie, it is rounded downwards). It is
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2. Preliminaries

naturally extended to Rn by coordinate-wise application. The notation log refers to
the natural logarithm, except in Chapter 3.

For some λ going to infinity, we let negl(λ) = λ−ω(1) as well as poly(λ) = λO(1).
Let H : D → R be a function with finite R. It is modeled as a random oracle by
replacing it by a uniformly sampled function among those from D to R. We call this
the random oracle model (ROM). To denote that it is reprogrammed at input x to
the value y we use the notation Hx 7→y.

For a positive integer α, we let r mod± α denote the unique integer r′ satisfying
the relation r = r′ mod α in the range [−α/2, α/2). We also define r mod+ α as
the unique integer r′ in the range [0, α) satisfying r = r′ mod α. We let LSB(r)
denote the least significant bit of an integer r. We naturally extend this to integer
polynomials and vectors, by applying it component-wise.

2.2 Probabilities

This section introduces commonly-used probability tools.

2.2.1 Min-Entropy and Statistical Distance

We recall the definition of min-entropy and conditional min-entropy.

Definition 2.1 (Min-Entropy). Let X = (Y, Z) be a random variable. Let pX , pZ be
the densities of X and Z, and pY |Z=z the density of Y conditioned on Z = z. The
min-entropy of Y is H∞(Y ) = maxy∈Supp(pY ) pY (y). The conditional min-entropy
of Y on Z is:

H∞(Y |Z)pX = − log

(∫
Supp(pZ)

pZ(z) max
y∈Supp(pY |Z=z)

pY |Z=z(y) dµ(z)

)
.

To quantify similarities between distributions, we consider the statistical distance.

Definition 2.2 (Statistical Distance). Let P,Q be two probability distributions with
respective densities p, q. Their statistical distance is

∆(P,Q) :=
1

2

∫
Supp(P )∪Supp(Q)

|p(x)− q(x)|dµ(x).

We recall the Leftover Hash Lemma, which we use in Chapter 3.

Lemma 2.1 (Leftover Hash Lemma). Let n,m > 0 and q be a prime and define the
set H = {A ∈ Zn×m

q : y 7→ Ay}. Then for any random variable X over Zm
q and ε > 0

such that H∞(X) ≥ log qn + 2 log(1/ε), the distributions (h, h(X)) and (h, U(Zn
q ))

are within statistical distance ε.

2.2.2 Rényi Divergence and Extension

The Rényi Divergences form a class of divergences which play a central role in this
work. Indeed, in the case of lattice-based signatures, it often gives tighter security
bounds than what is obtained through the use of the statistical distance. Moreover,
the Rényi divergence of infinite order shares a strong link with rejection sampling,
which we explicit in Section 2.2.3.

18



2.2. Probabilities

2.2.2.1 Rényi Divergence

We start by recalling the definition of the Rényi divergence of order a ∈ (1,+∞].

Definition 2.3 (Rényi divergence). Let a ∈ (1,+∞). Let P,Q be two probability
distributions with P absolutely continuous with respect to Q. Their Rényi divergence
of order a, assuming that it exists, is

Ra(P∥Q) :=

(∫
Supp(P )

(
dP

dQ
(x)

)a−1
dP (x)

) 1
a−1

.

Their Rényi divergence of infinite order is

R∞(P∥Q) := ess sup
x∈Supp(P )

dP

dQ
(x).

By notation abuse, we may use random variables instead of probability densities
as arguments, for the notions defined above.

The following lemma lists standard properties of the Rényi divergence.

Lemma 2.2 ( [vEH14]). Let X and Y be two random variables with probability
distributions PX and PY such that Supp(PX) ⊆ Supp(PY ). The following holds for
any order a ∈ (1,+∞].

• Log. Positivity: Ra(PX∥PY ) ≥ Ra(PX∥PX) = 1.

• Data Processing Inequality:

Ra(Pf(X)∥Pf(Y )) ≤ Ra(P∥Q) (2.1)

for any map f , where Pf(Z) denotes the distribution of f(Z) for Z = X or Y .

• Multiplicativity: Let X = (X1, X2) and Y = (Y1, Y2). Let PX1 and PY1

denote the probability distribution of X1 and Y1. Let PX2|X1=x and PY2|Y1=x

denote the distribution of X2 conditioned on X1 = x as well as Y2 conditioned
on Y1 = x. If X1 and X2 are independent and Y1 and Y2 are independent, then

Ra(PX∥PY ) = Ra(PX1∥PY1)Ra(PX2∥PY2).

Otherwise

Ra(PX∥PY ) ≤ R∞(PX1∥PY1) · max
x∈Supp(PX1

)
Ra(PX2|X1=x∥PY2|Y1=x).

• Probability Preservation: For any event E ⊆ Supp(PY ),

PY (E) ≥ PX(E)
a

a−1

Ra(PX∥PY )
. (2.2)

The Rényi divergence is non-decreasing and continuous as a function of a ∈
[1,+∞], as long as it is finite.
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2. Preliminaries

The following result is used in Chapter 6.

Lemma 2.3. Let ε < 1. Let P and Q be two random variables taking values in some
countable set Ω. Let c ∈ R be a constant such that

∀a ∈ Ω : Pr[Q = a] = c(1− δ(a)) Pr[P = a] ,

for some function δ : Ω→ [0, ε]. Then it holds that:

R∞(P∥Q) ≤ 1

1− ε
, R∞(Q∥P ) ≤ 1

1− ε
and ∆(P,Q) ≤ ε

1− ε
.

Proof. Let us first note that (1 − ε)c ≤ 1 ≤ c, by summing the above equality over
all a ∈ Ω and applying the bounds on δ(a). Then we have

R∞(P∥Q) = sup
a∈Ω

Pr[P = a]

Pr[Q = a]
= sup

a∈Ω

1

c(1− δ(a))
≤ 1

1− ε
.

We also have

R∞(Q∥P ) = sup
a∈Ω

Pr[Q = a]

Pr[P = a]
= sup

a∈Ω
c(1− δ(a)) ≤ c ≤ 1

1− ε
.

Finally, we refer to [BF11, Lemma A.2] for the third bound.

2.2.2.2 Smooth Rényi Divergence

We introduce a relaxed version of the Rényi divergence, termed the smooth Rényi
divergence, where one is able to remove a few problematic points from the support,
including those that may lie in Supp(p)\Supp(q). Doing so, we can compare a wider
set of probability distributions. For instance, while the Rényi divergence of infinite
order between the discrete Gaussian distributions DZm,σ and DZm,σ,v (as defined in
Section 2.3) is infinite when v ̸= 0, their smooth divergence is finite, as we show
in Lemma 4.15 and is implicit in [Lyu12]. We could give this definition for any
order a ∈ [1,+∞]. However, only the case a = +∞ is relevant for this work.

This definition is useful to link previous works on rejection sampling and the
Rényi divergence. A similar quantity has been previously defined in the quantum
information literature [Ren05, Dat09], though the specific notion of smoothing we
consider here is slightly different.

Definition 2.4 (Smooth Rényi Divergence). Let ε ≥ 0. Let p, q be two probability
densities such that

∫
Supp(q) p(x) dµ(x) ≥ 1 − ε. Their ε-smooth Rényi divergence of

infinite order is

Rε
∞(p∥q) := inf

S⊆Supp(q)∫
S p(x) dµ(x)≥1−ε

ess sup
x∈S

p(x)

q(x)
.

This definition is equivalent to

Rε
∞(p∥q) := inf{M > 0 | Pr

x←↩p
(p(x) ≤Mq(x)) ≥ 1− ε}.

By convention, if
∫
Supp(q) p(x) dµ(x) < 1− ε, we define Rε

∞(p∥q) = +∞.
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2.2. Probabilities

We first prove that the two definitions of Definition 2.4 are indeed equivalent.

Proof. Let Rε
∞(p∥q) be the first quantity and Rε

∞(p∥q) be the second one.
Let S ⊆ Supp(q) such that

∫
S p(x) dµ(x) ≥ 1− ε. Let M = supx∈S

p(x)
q(x) , i.e.

Pr
x←↩p

[p(x) ≤Mq(x)] ≥
∫
S
p(x) dµ(x) ≥ 1− ε.

Then Rε
∞(p∥q) ≤M . By definition of Rε

∞(p∥q), this implies the first inequality

Rε
∞(p∥q) ≤ Rε

∞(p∥q).

Now let M > 0 such that Prx←↩p(p(x) ≤Mq(x)) ≥ 1− ε. Define

S :=
{
x ∈ Supp(p) ∪ Supp(q) | p(x) ≤Mq(x)

}
.

Then
∫
S p(x) dµ(x) ≥ 1 − ε by definition. Note that if we choose S′ = S ∩ Supp(p)

we have
∫
S′ p(x) dµ(x) =

∫
S p(x) dµ(x) as we only removed elements that were not in

the support of p. Moreover, assume that there exists x ∈ S′ such that x ̸∈ Supp(q).
We would have p(x) ≤ M · 0 = 0, contradicting the fact that x ∈ Supp(p). Then it
holds that S′ = {x ∈ Supp(q)|p(x) ≤Mq(x)}. We have

M ≥ sup
x∈S′

p(x)

q(x)
,

∫
S′
p(x) dµ(x) ≥ 1− ε and S′ ⊆ Supp(q).

This implies, by definition of Rε
∞(p∥q) that M ≥ Rε

∞(p∥q). By definition of the
second quantity, we have the inequality Rε

∞(p∥q) ≤ Rε
∞(p∥q), thus completing the

proof of the equality.

We now give a few properties of the smooth Rényi divergence. The probabil-
ity preservation and multiplicativity properties are used in the security proof of our
signature variant with a bounded number of rejection steps as we define in Chap-
ter 4. The comparison to the Rényi divergence is used to bound the smooth Rényi
divergence between Gaussian distributions.

We start by proving a probability preservation property.

Lemma 2.4 (Probability Preservation). Let P,Q be two distributions. For any ε ≥ 0
such that Rε

∞(P∥Q) is finite, the following holds.

∀E ⊆ Supp(P ), P (E) ≤ Rε
∞(P∥Q) ·Q(E) + ε.

Proof. Let S := {x ∈ Supp(P )|P (x) ≤ Rε
∞(P∥Q)·Q(x)}. We decompose the event E

into the disjoint union (E ∩ S) ∪ (E \ S). The following holds:

• P (E ∩ S) ≤ Rε
∞(P∥Q) ·Q(E ∩ S) ≤ Rε

∞(P∥Q) ·Q(E), by definition of S,

• P (E \ S) ≤ ε, by definition of Rε
∞(P∥Q).

Combining both inequalities yields the result.

In the case of Fiat-Shamir signatures, the security loss bound may depend on the
number of signing queries. The following result then proves useful.
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2. Preliminaries

Lemma 2.5 (Multiplicativity). Let (X1, X2) (resp. (Y1, Y2)) be a random variable
with probability density pX1X2 (resp. pY1Y2). Let pX1 (resp. pY1) be the density of X1

(resp. Y1). For any x, let pX2|X1=x (resp. pY2|Y1=x) denote the probability density
of X2 (resp. Y2) conditioned on X1 = x (resp. Y1 = x). For any ε1, ε2 ≥ 0 it then
holds that

Rε1+ε2
∞ (pX1X2∥pY1Y2) ≤ Rε1

∞(pX1∥pY1) · sup
x∈Supp(pX1

)

∩Supp(pY1 )

Rε2
∞(pX2|X1=x∥pY2|Y1=x).

Proof. Let R1 = Rε1
∞(pX1∥pY1) and R2 = supx∈S1

Rε2
∞(pX2|X1=x∥pY2|Y1=x), where we

let S1 = Supp(pX1) ∩ Supp(pY1). If R1 = +∞, the statement is vacuously true.
Assuming that this is not the case, we now define R = R1 ·R2 and

S =
{
(x, y) ∈ Supp(pX1X2) | pX1X2(x, y) > R · pY1Y2(x, y)

}
.

Any pair (x, y) ∈ S satisfies pX1(x)pX2|X1=x(y) > RpY1(x)pY2|Y1=x(y) or it holds
that x ̸∈ Supp(PY1). This implies that it either holds that pX1(x) > R1 · pY1(x)
or pX2|X1=x(y) > R2pY2|Y1=x(y). We then have, using the union bound,∫

S
pX1X2(x) dx ≤ Pr

x←↩pX1

[pX1(x) > R1 · pY1(x)]

+
∑
x∈S1

pX1(x) · Pr
y←↩pX2|X1=x

[
pX2|X1=x(y) > R2 · pY2|Y1=x(y)

]
≤ ε1 +

∑
x∈S1

pX1(x)ε2

≤ ε1 + ε2.

Define the set

S := Supp(pY1Y2) \ S = {(x, y) ∈ Supp(pY1Y2)|pX1X2(x, y) ≤ R · pY1Y2(x, y)}.

We have S = (Supp(pX1X2) ∪ Supp(pY1Y2)) \ S, as Supp(pX1X2) \ Supp(pY1Y2) ⊆ S.
Then it satisfies

∫
S pX1X2(x) dx ≥ 1 − ε1 − ε2. The first definition of the smooth

divergence provides the result.

Noticing that Ra(P∥Q)a−1 = Ex←↩P ((p(x)/q(x))
a−1), we can apply concentration

inequalities to compare the smooth divergence and the Rényi divergence, as was done
in [RW04] for entropies. We however recall that the smooth Rényi divergence may
be finite for pairs of random variables for which the Rényi divergence is infinite, in
which case our bound is trivial.

Lemma 2.6. Let X,Y be two discrete random variable with probability distribu-
tions PX and PY . For any ε ≥ 0 and order a ∈ (1,+∞) it holds

Rε
∞(PX∥PY ) ≤

Ra(PX∥PY )

ε1/(a−1)
and Rε

∞(PX∥PY ) ≤ R∞(PX∥PY ).

Proof. Markov’s inequality gives that for any t > 0,

Pr
x←↩PX

((
PX(x)

PY (x)

)a−1
≥ t

)
≤ Ra(PX∥PY )

a−1

t
.
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2.2. Probabilities

Algorithm Areal:
1: x←↩ ps

with probability min
(

pt(x)
M ·ps(x) , 1

)
,

2: return x
3: return ⊥

Algorithm Breal∞ :
1: z ←⊥
2: while z =⊥ do
3: z ← Areal

4: end while
5: return z

Algorithm Aideal:
1: x←↩ pt

with probability 1
M ,

2: return x
3: return ⊥

Algorithm Bideal∞ :
1: z ←⊥
2: while z =⊥ do
3: z ← Aideal

4: end while
5: return z

Figure 2.1: Rejection sampling algorithms.

Setting t0 such that Ra(PX∥PY )
a−1/t0 = ε, we have:

Pr
x←↩PX

[PX(x) ≥ t
1/(a−1)
0 · PY (x)] ≤ ε.

By the second definition of Rε
∞(PX∥PY ), this shows

Rε
∞(PX∥PY ) ≤ t

1/(a−1)
0 =

Ra(PX∥PY )

ε
1

a−1

.

To conclude the proof, recall that the Rényi divergence is continuous as a function
of a. Taking the limit of this upper bound when a tends to +∞ gives the second
result.

2.2.3 Rejection Sampling

Given two close enough densities pt and ps, either both continuous or both discrete,
rejection sampling is a way to generate samples from pt given access to samples
from ps, as explained for instance in [Dev86]. It was used mainly to generate sam-
ples from complex distributions that were “close” to easier-to-sample distributions.
However, in cryptography and particularly in the line of works started with [Lyu09],
it found a peculiar use that diverged from its primary use. Given a family of densi-
ties (p(v)s ), rejection sampling can be used to hide the parameter v given a density pt
that is close to every density in this family. It was later observed in [Lyu12] that an
“imperfect” rejection procedure is sufficient for this use and leads to smaller param-
eters, notably standard deviation of ps.

We consider the following algorithms from Figure 2.1, which take some M ≥ 1
as a parameter. Algorithm Breal∞ is the rejection sampling algorithm and Areal is
one iteration. Algorithm Bideal∞ is the target distribution, which we break down for
analysis. The following lemma, phrased here in full genericity and in terms of smooth
Rényi divergence, expresses the closeness of the outputs of the algorithms both in
terms of statistical distance and Rényi divergence.
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Lemma 2.7 (Adapted from [Lyu12, Lemma 4.7]). Let M ≥ 1 and ε ∈ [0, 1/2] such
that

Pr
z←↩pt

(pt(z) ≤M · ps(z)) ≥ 1− ε,

which can be rewritten in terms of smooth Rényi divergence as Rε
∞(pt∥ps) ≤ M .

Then the probability Areal(⊥) that Areal aborts is such that

M − 1

M
≤ Areal(⊥) ≤ M − 1 + ε

M
.

We have ∆(Areal,Aideal) ≤ ε/M and ∆(Breal∞ ,Bideal∞ ) ≤ ε as well as

R∞(Areal∥Aideal) ≤ 1 +
ε

M − 1
and R∞(Breal∞ ∥Bideal∞ ) ≤ 1

1− ε
.

Proof. Let S = Supp(pt) ∪ Supp(ps). Let us write for any x ∈ Supp(ps):

min

(
pt(x)

Mps(x)
, 1

)
=

1
C ·min (pt(x),M · ps(x))

M
C · ps(x)

,

where C is normalization constant defined as

C =

∫
Supp(ps)

min (pt(x),M · ps(x)) dx.

Notably, we have 1 ≥ C ≥ 1− ε, by giving pt(x) as an upper bound of the integrand
in the first inequality, and by keeping only the set of x’s such that pt(x) ≤ Mps(x)
in the second inequality. We have that the function p′t : x 7→ min(pt(x),Mps(x))/C
is a probability density satisfying R∞(p′t∥ps) ≤ M/C. Then algorithm Areal is a
perfect rejection sampling algorithm with target density p′t and source density ps.
The output density of Breal is exactly p′t, as explained in [Dev86, Chapter II.3] (see
in particular [Dev86, Theorems 3.1 and 3.2]). Moreover, the probability that Areal

outputs nothing is

Areal(⊥) = 1− C

M
∈
[
M − 1

M
,
M − 1 + ε

M

]
,

and the density of Areal is x 7→ (1−Areal(⊥)) · p′t(x) = min(pt(x)/M, ps(x)).
Let us then bound the statistical distance.

∆(Areal,Aideal) =
1

2

∫
S

∣∣∣∣pt(x)M
−min

(
pt(x)

M
,ps(x)

)∣∣∣∣dx+
1

2

∣∣∣∣Areal(⊥)− M − 1

M

∣∣∣∣
≤ 1

2

∫
S

∣∣∣∣max

(
0,

pt(x)

M
− ps(x)

)∣∣∣∣ dx+
ε

2M

≤ 1

2

∫
{x∈S|ps(x)≤pt(x)/M}

(
pt(x)

M
− ps(x)

)
dx+

ε

2M

≤ ε

2M
+

ε

2M
,

by assumption on ps and pt.
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To bound the statistical distance between Breal∞ and Bideal∞ , we first note that their
distributions actually correspond to the distributions of Areal and Aideal conditioned
on the fact that they do not abort. Let a = 2(1−Areal(⊥)). We have

∆(Breal∞ ,Bideal∞ ) =
1

2

∫
Supp(pt)

∣∣∣∣pt(x)− 1

1−Areal(⊥)
min

(
pt(x)

M
,ps(x)

)∣∣∣∣dx
=

1

a

∫
Supp(pt)

∣∣∣∣(1−Areal(⊥))pt(x)−min

(
pt(x)

M
,ps(x)

)∣∣∣∣ dx
=

1

a

[∫
Supp(pt)

ps(x)≥pt(x)/M

∣∣∣∣1−Areal(⊥)− 1

M

∣∣∣∣pt(x) dx
+

∫
Supp(pt)

ps(x)<pt(x)/M

∣∣∣(1−Areal(⊥))Pt(x)− Ps(x)
∣∣∣dx ].

Given the upper and lower bounds on Areal(⊥), the first integral is bounded with:∫
x∈Supp(pt)

ps(x)≥pt(x)/M

∣∣∣∣1−Areal(⊥)− 1

M

∣∣∣∣pt(x) dx ≤ ε

M

∫
x∈Supp(pt)

ps(x)≥pt(x)/M

pt(x) dx.

We now observe that:

1−Areal(⊥) ≥

∫
{x∈Supp(Pt)|Ps(x)≥Pt(x)/M} pt(x) dx

M
.

Then, when we multiply the left integral by 1/a, we obtain:

1

a

∫
x∈Supp(pt)

ps(x)≥pt(x)/M

∣∣∣∣1−Areal(⊥)− 1

M

∣∣∣∣pt(x) dx ≤ ε

2
.

Next, we study the right integral. Note that since ε ≤ 1/2, it holds that

0 ≤ ps(x) ≤
pt(x)

M
≤ 2(1−Areal(⊥))pt(x),

as 1−Areal(⊥) ≥ (1− ε)/M ≥ 1/(2M). Hence the right integral satisfies∫
x∈Supp(pt)

ps(x)<pt(x)/M

∣∣∣(1−Areal(⊥))pt(x)− ps(x)
∣∣∣dx ≤ (1−Areal(⊥))ε.

Finally, when divided by 2(1−Areal(⊥)), we get ε/2 as an upper bound.
We move on to studying the divergences.

Ra(Areal∥Aideal)a−1=

∫
Supp(ps)

(
ps(x)min

(
pt(x)

M ·ps(x) , 1
))a

(pt(x)/M)a−1
dx

+ (Areal(⊥))a

(Aideal(⊥))a−1

≤
∫
Supp(ps)

(
ps(x)

pt(x)
M ·ps(x)

)a
(pt(x)/M)a−1

dx+
(1− (1− ε)/M)a

(1− 1/M)a−1

=

∫
Supp(ps)

pt(x)

M
dx+

M − 1 + ε

M
·
(
M − 1 + ε

M − 1

)a−1

≤ 1

M
+

M − 1 + ε

M
·
(
1 +

ε

M − 1

)a−1
.
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Game Reprogramb :

1: H0 ← U(Y X1×X2)
2: H1 := H0

3: b′ ← AHb, Reprogram(·) return b′

Reprogram(x2) :

1: (x1, x
′)← D

2: y ← U(Y )

3: H1 := H
(x1,x2) 7→y
1 return (x1, x

′)

Figure 2.2: The reprogramming game.

We move on to bounding the second divergence. For any x ∈ Supp(ps):

Breal∞ (x) =
Areal(x)

1−Areal(⊥)
.

This also holds for Bideal∞ with Aideal instead of Areal. We obtain:

Ra(Breal∞ ∥Bideal∞ )a−1 =

∫
Supp(ps)

1

Ma−1 ·

(
ps(x)min

(
pt(x)

M ·ps(x) , 1
))a

(Areal(⊥))a(pt(x)/M)a−1

≤ M

(1− ε)a

∫
Supp(ps)

(
ps(x)min

(
pt(x)

M ·ps(x) , 1
))a

(pt(x)/M)a−1
.

This sum was already computed just above and is at most 1/M .
The continuity of a 7→ Ra(Pt∥Ps) at a = +∞ gives the last bounds.

2.2.4 Reprogramming the Random Oracle

We state the classical variant of [GHHM21, Proposition 2], used in Chapter 3.

Lemma 2.8 (Classical Adaptive Reprogramming). Let X1, X2, X
′ and Y be finite

sets, and let D be a distribution on X1 × X ′. Let A be a distinguisher playing in
the reprogramming game in Figure 2.2 and making q classical queries to the random
oracle and r classical queries to the Reprogram function. Then∣∣Pr[1⇐ ReprogramA0 ]− Pr[1⇐ ReprogramA1 ]

∣∣ ≤ rq · 2−α,

where α is the min-entropy of the first component of D.

Proof. Note that the adversary makes q random oracle queries, implying that at
most q input-output pairs of the random oracle are being revealed. If a reprogram-
ming query does not coincide with these values, then the view of the adversary is
identical for b = 0 and b = 1. For each reprogramming query, the probability of
having a collision with the known random oracle values is at most q · 2−α since the
input min-entropy of each reprogramming call is α. One can complete the proof by
using the union bound.

2.3 Gaussian Distributions and Smoothing Parameter

We recall properties of the discrete Gaussian distribution, a widely used distribution
in lattice-based cryptography.
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Definition 2.5 (Gaussian Distribution). Let m ≥ 1, σ > 0, v ∈ Rm and C = 1/2
in Chapter 4 or C = π everywhere else. Define

ρσ : x 7→ exp

(
−C ∥x∥

2

σ2

)
.

The discrete Gaussian distribution with standard deviation parameter σ and center
parameter v is defined as

DZm,σ,v : z 7→ ρσ(z− v)

ρσ,v(Zm)
,

where we let ρσ,v(Zm) denote
∑

x∈Zm ρσ(x−v). If v = 0, we omit it in the subscript.

The divergence between two discrete Gaussian distributions is well-known (see,
e.g., [LSS14, Lemma 4.2] for a = 2). We give a formulation that includes every
order ≥ 1, while restricting our case to the Zm lattice. It is proven by adapting their
proof.

Lemma 2.9. Let m ≥ 1, σ > 0 and v ∈ Zm. Then for any a ∈ [1,+∞):

Ra(DZm,σ∥DZm,σ,v) = exp

(
aC
∥v∥2

σ2

)
.

We also have R∞(DZm,σ∥DZm,σ,v) = +∞ if v ̸= 0.

We also consider bimodal Gaussian distributions in Chapter 4.

Definition 2.6 (Bimodal Gaussian Distribution). Let m ≥ 1. The bimodal Gaussian
distribution BDZm,σ,v with parameters σ > 0 and v ∈ Rm is the distribution obtained
by sampling b←↩ U({−1, 1}), and returning x←↩ DZm,σ,bv. It can be expressed as

BDZm,σ,v : z 7→ 1

2
(DZm,σ,v(z) +DZm,σ,−v(z)) .

In particular, since ρσ,v(Zm) = ρσ,−v(Zm) (which can be seen by reordering the
sum), we can write

BDZm,σ,v(z) =
1

ρσ,v(Zm)
exp

(
−∥z∥2 − ∥v∥2

2σ2

)
cosh

(
|⟨z,v⟩|
σ2

)
.

For spherical Gaussians, the upper and lower part of a vector are statistically
independent. This is not the case anymore for general covariance matrices. The
following lemma give the conditional distribution of the lower part of a Gaussian
vector, given the upper part. The proof is adapted from the continuous setting.

Lemma 2.10 (Conditional distribution). Let k ≥ m > 0, Σ ∈ Rk×k be a symmetric
positive-definite matrix and c ∈ Rk. Write

c =

(
c1
c2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where c1 ∈ Rk−m and Σ11 ∈ R(k−m)×(k−m). Let (Y ⊤1 |Y ⊤2 )←↩ DZk,Σ,c, where Y1 takes
values in Zk−m. Given any y1 ∈ Zk−m, the conditional distribution of Y2 conditioned
on Y1 = y1 is DZm,Σ,c, where

c = c2 +Σ21 Σ
−1
11 (y1 − c1 ) and Σ = Σ22 −Σ21 Σ

−1
11 Σ12 .
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Proof. As Σ is symmetric and positive-definite, both Σ11 and Σ22 are also symmetric
and positive-definite and thus invertible. This is shown by considering vectors of the
form (x⊤|(0m)⊤)⊤ or ((0k−m)⊤|y⊤)⊤. Let us write the block inverse of Σ as follows:

Σ−1 =

(
Σ−111 +Σ−111 Σ

−1
12 Σ

−1
Σ21 Σ

−1
11 −Σ−111 Σ

−1
12 Σ

−1

−Σ−1Σ21 Σ
−1
11 Σ

−1

)
=

(
S11 S12

S21 S22

)
.

This formula also ensures that Σ is invertible, as it is a diagonal block of the positive
definite symmetric matrix Σ−1.

Let y2 ∈ Zm. The probability that Y2 = y2 conditioned on Y1 = y1 is

ρΣ,c

(
y1

y2

)/ ∑
y∈Zm

ρΣ,c

(
y1

y

)
.

Let us then study ρΣ,c((y
⊤
1 |y⊤)⊤) by expanding it and completing the square.

ρΣ,c

(
y1

y

)
∼ exp

(
−π
(
(y − c)⊤S22(y − c)

))
= ρΣ,c(y),

where the notation ∼ hides terms that do not depend on y. Using the fact that
the probability mass sums to 1, we obtain that the distribution of Y2 conditioned
on Y1 = y1 is DZm,Σ,c.

As showed in [GPV08], Gaussian distributions can be sampled from by using
Klein’s algorithm [Kle00]. We will rely on the following variant.

Lemma 2.11 (Adapted from [BLP+13, Lemma 2.3]). There is a ppt algorithm
that, given a basis B = (b1, . . . ,bℓ) of a full-rank ℓ-dimensional lattice Λ, a positive
definite symmetric matrix Σ and c ∈ Rℓ returns a sample from DΛ,Σ,c, assuming
that

√
ln(2ℓ+ 4)/π ·maxi ∥Σ−1/2bi∥ ≤ 1.

Given a lattice Λ ⊆ Rk and ε > 0, the smoothing parameter ηε(Λ) of the lattice Λ
is defined as the smallest σ such that ρ1/σ(Λ∗ \ {0}) ≤ ε. The smoothing parameter
satisfies the following two properties.

Lemma 2.12 ( [ZXZ18, Theorem 2]). Let k > 1 and ε < 0.086k. Let Λ ⊆ Rk be a
full-rank lattice with basis B = (b1, . . . ,bk). It holds that

ηε(Λ) ≤
√

ln(k − 1 + 2k/ε)

π
·max

i≤k
∥bi∥ .

Lemma 2.13 ( [MR07]). Let Λ be a k-dimensional full-rank lattice. Let ε > 0
and Σ ∈ Rk×k be a definite positive symmetric matrix with all singular values larger
than ηε(Λ) and c ∈ Rk. We have

ρΣ,c(Λ) ∈
√
detΣ

detΛ
· [1− ε, 1 + ε] and

ρΣ,c(Λ)

ρΣ(Λ)
∈
[
1− ε

1 + ε
, 1

]
.
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The following lemma (adapted from [MKMS22, Lemma 1]) is at the core of
Chapter 6. While [MKMS22] does not give explicit statistical bounds, we note that
Lemma 2.13 above, which is applied at the end of the proof from [MKMS22], allows
us to do so when combined with Lemma 2.3. A further adaptation is the use of
the smoothing parameter bound from Lemma 2.12. In their setting of rank-deficient
Gaussian distributions, we note that Lemma 2.13 is extended by using the lattice
rank in the bound instead of the dimension, by considering an appropriate rotation
of the lattice, contrary to [MKMS22, Lemma 4], which considers undefined quantities
as ρΣ(Zn) is infinite if Σ is not full rank.

Lemma 2.14 (Gaussian decomposition, [MKMS22, Lemma 1]). Let k ≥ ℓ, ε ∈ (0, 1)
and S ∈ Zk×ℓ. Let s ≥

√
8 ln(ℓ− 1 + 2ℓ/ε)/π and σ ≥

√
2σ1(S) · s. Define

Σ(S) = σ2Ik − s2SS⊤ ,

and let y ←↩ DZk,Σ(S) and k ←↩ DZℓ,s,−c/2 for any c ∈ Zℓ. Then Σ(S) is positive
definite and the distribution Pz of z = y + S(2k+ c) satisfies

R∞(Pz∥DZk,σ) ≤
1 + ε

1− ε
and ∆(Pz, DZk,σ) ≤

2ε

1− ε
.

Note that the matrix Σ(S) is positive definite since σ ≥
√
2σ1(S) · s ensures that

all singular values of σ2Ik are larger than those of s2SS⊤.

2.4 Cryptographic Primitives

We recall the definitions of the cryptographic primitives of interest in this work.
Namely, digital signatures and Σ-protocols, which are turned into signatures via the
Fiat-Shamir transform, which we also recall.

2.4.1 Signatures

Here we briefly recall the formalism of digital signatures.

Definition 2.7 (Digital Signature). A signature scheme is a tuple of PPT algo-
rithms (KeyGen, Sign,Verify) with the following specifications:

• KeyGen : 1λ → (vk, sk) outputs a verification key vk and a signing key sk;

• Sign : (sk, µ)→ σ takes as inputs a signing key sk and a message µ and outputs
a signature σ;

• Verify : (vk, µ, σ) → b ∈ {0, 1} is deterministic, takes as inputs a verification
key vk, a message µ, and a signature σ and outputs a bit b ∈ {0, 1}.

Let γ > 0. We say that it is γ-correct if for any pair (vk, sk) in the range of KeyGen
and µ,

Pr[Verify(vk, µ,Sign(sk, µ)) = 1] ≥ γ,

where the probability is taken over the random coins of the signing algorithm. We
say that it is correct in the ROM if the above holds when the probability is also taken
over the randomness of the random oracle modeling the hash function used in the
scheme.
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We also recall the definition of existential unforgeability against chosen message
attacks (UF-CMA).

Definition 2.8 (Security). Let T, δ ≥ 0. A signature scheme (KeyGen,Sign,Verify)
is said to be (T, δ)-UF-CMA secure in the ROM if for any PPT adversary A with
runtime ≤ T given access to a signing oracle and random oracle H, it holds that

Pr
(vk,sk)←KeyGen(1λ)

[Verify(vk, µ∗, σ∗) = 1|(µ∗, σ∗)← AH,Sign(vk)] ≤ δ,

where the randomness is also taken over the random coins of A. The adversary
should also not have issued a sign query for m∗. The above probability of forging a
signature is called the advantage of A and denoted by AdvUF-CMA

SIG (A). If A does not
output anything, then it automatically fails.

If we allow the adversary to forge a new signature for a previously queried mes-
sage, the security is called strong existential unforgeability against chosen message
attack (sUF-CMA). Existential unforgeability against one-per-message (resp. no-
message) chosen message attack, denoted by UF-CMA1 (resp. UF-NMA) is defined
similarly except that the adversary is allowed to query at most one (resp. not allowed
to query any) signature per message. Further, one can similarly define sUF-CMA1

by taking the conjunction of sUF-CMA and UF-CMA1.

Note that for deterministic signatures, the UF-CMA1 and UF-CMA security no-
tions coincide.

2.4.2 Σ-Protocols and Identification Protocol

We start by recalling various definitions pertaining to identification protocols.

Definition 2.9 (Σ-Protocol with Aborts). Let X ,Y be two finite sets. A Σ-protocol
for a relation R ⊆ X × Y with commitment set W, challenge set C and response
set Z is a 3-round interactive proof system between a prover written as P = (P1,P2)
and a verifier V = (V1,V2) with the following specifications:

• P1 : (x, y) → (w, st) is a PPT algorithm that takes as input a pair of strings
in X × Y and outputs a commitment w ∈ W and a state st ∈ {0, 1}∗;

• V1 : (x,w) → c is a PPT algorithm that takes as inputs a string x ∈ X and
a commitment w ∈ W and outputs a challenge c ←↩ U(C) independent of its
input;

• P2 : (x, y, w, c, st)→ z is a PPT algorithm that takes as inputs a pair of strings
in X ×Y, a commitment w ∈ W, a challenge c ∈ C, and a state st and outputs
a response z ∈ Z ∪ {⊥} (we say that P2 aborts if it outputs ⊥);

• V2 : (x,w, c, z) → b ∈ {0, 1} is a deterministic polynomial-time algorithm that
takes as inputs a string x ∈ X , a commitment w ∈ W, a challenge c ∈ C, and
a response z ∈ Z and outputs a bit b which represents acceptance or rejection;
in the case that z = ⊥, it returns 0.

A Σ-protocol is said to be public-coin if V1 outputs a challenge string c that is
uniformly sampled from the challenge space C, independently from its input.
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Note that the above definition (and the following ones) is implicitly parameterized
by the security parameter λ, that we omit for the sake of simplicity.

For cryptographic purposes, we must be able to efficiently generate the statement
and the witness. This is captured in the following definition.

Definition 2.10 (Identification Protocol). An identification protocol is a Σ-protocol
for an NP relation R, where the prover and verifier are dealt their statement and
witness by a PPT instance generator IGen.

Given a language L = {x ∈ X | ∃y ∈ Y : (x, y) ∈ R} for a relation R ⊆ X × Y,
we are interested in the following properties of an identification protocol.

Definition 2.11 (Completeness and commitment-recoverability). Let γ, β > 0.
An identification protocol ID = (IGen, (P1,P2), (V1,V2)) is (γ, β)-correct if for ev-
ery (vk, sk)← IGen(1λ) the following holds.

• If the response of the prover is not ⊥, the verifier accepts with probability at
least γ:

Pr

V2(vk, w, c, z) = 1

∣∣∣∣∣
(w, st)← P1(vk, sk),
c← V1(vk, w), z ← P2(vk, sk, w, c, st),
z ̸= ⊥

 ≥ γ.

• The probability that the prover aborts is bounded by β:

Pr

[
z = ⊥

∣∣∣∣∣ (w, st)← P1(vk, sk),
c← V1(vk, w), z ← P2(vk, sk, w, c, st)

]
≤ β.

The scheme satisfies commitment-recoverability if for any public key vk, chal-
lenge c ∈ C, and answer z, there is at most one commitment w such that the tran-
script (w, c, z) is valid, and there is a PPT algorithm Rec such that w = Rec(vk, c, z).

We let β denote the probability of aborting and we omit it if it is 0. We are inter-
ested in the regime of parameters in which γ ≥ 1−λ−ω(1) and β ≤ 1−1/poly(λ). Note
that by repeating the protocol poly(λ) times, the parameter β is pushed toward 0,
whereas γ stays close to 1.

We refer to the following definition as the one that is usually used in the lit-
erature of Fiat-Shamir with aborts. We however do not use it and we discuss our
modifications in Section 3.4.1.

Definition 2.12 (No-Abort Statistical Honest-Verifier Zero-Knowledge). Let εzk>0
and T ≥ 0. An identification protocol is (εzk, T )-naHVZK if there exists a simu-
lator Sim with runtime at most T , that given x, outputs a transcript (w, c, z) such
that the distribution of (w, c, z) has statistical distance at most εzk from a honestly
generated transcript (w′, c′, z′) produced by the interaction conditioned on z ̸= ⊥.

We then recall the definitions of honest-verifier zero-knowledge in the case of non-
aborting identification protocols, which allow to reduce EU-CMA security of FS[ID, H]
to its EU-NMA security.
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Definition 2.13 (HVZK). An identification scheme ID = (IGen,P,V) is Honest-
Verifier Zero-Knowledge if there exists a PPT simulator Sim such that one of the
following holds for (vk, sk)← IGen(1λ):

• ∆((w, c, z) ← (P(sk, vk) ↔ V(vk)) , Sim(c, vk)) ≤ ε. In this case, we say
that ID is ε-HVZK.

• R∞((w, c, z)← (P(sk, vk)↔ V(vk)) ∥ Sim(c, vk)) ≤ 1 + ε. In this case, we say
that ID is (1 + ε)-divergence HVZK.

The challenge c can be sampled uniformly from the challenge space C and passed
over as input to the simulator Sim.

A necessary statistical property of an identification protocol is the min-entropy
of the commitments.

Definition 2.14 (Commitment Min-Entropy). Let α > 0. An identification scheme
ID = (IGen,P,V) satisfies α-Min-Entropy or has α bits of commitment min-entropy
if for any (vk, sk) in the range of IGen:

H∞

(
w|(w, c, z)← (P(sk, vk)↔ V(vk))

)
≥ α .

Note that we could accommodate our results to schemes for which the above
holds only with overwhelming probability over the randomness of IGen.

2.4.2.1 Additional properties for non-aborting Identification Schemes

Finally, we recall the notions of lossiness and lossy-soundness, which allow to prove
EU-NMA security of FS[ID, H] in the QROM.

Definition 2.15 (Lossiness and lossy-soundness). An identification scheme ID =
(IGen,P,V) is lossy and εls-lossy sound for some εls > 0 if there exists a PPT
lossy key generation algorithm LossyIGen that, on input a security parameter, outputs
a verification key vkls such that vkls is indistinguishable from a verification key vk
generated by IGen.

Moreover, for any (unbounded) P∗ interacting with V, we have:

Pr
[
V(vkls, (w, c, z)) = 1 | (w, c, z)← (P∗(vkls)↔ V(vkls))

]
≤ εls .

If we only consider classical adversaries, EU-NMA security of FS[ID, H] can be
argued by relying on the simpler notion of special soundness.

Definition 2.16 (Special soundness). Let ID = (IGen,P,V) be an identification
scheme. It is special sound if for any PPT adversary A, the quantity

Pr
[
V(vk, (w, c0, z0)) = 1 ∧ V(vk, (w, c1, z1)) = 1 | (w, c0, z0, c1, z1)← A(vk)

]
is negl(λ), where the probability is over the randomness of (vk, sk)← IGen(1λ) and A.
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KeyGen(1λ):

1: (x, y)← IGen(1λ)
2: (vk, sk) = (x, (x, y))
3: return (vk, sk)

Sign(sk, µ):
1: κ := 1
2: while z = ⊥ and κ ≤ B
3: (w, st)← P1(sk)
4: c = H(w∥µ)
5: z ← P2(sk, w, c, st)
6: κ := κ+ 1
7: if z = ⊥ return ⊥
8: return σ = (w, z)

Ver(vk, µ, σ):
1: Parse σ = (w, z)
2: c = H(w∥µ)
3: return V2(vk, w, c, z)

Figure 2.3: Signatures SIGB = FSB[ID, H] and SIG∞ = FS∞[ID, H]. Signature SIGB

uses blocks highlighted with the blue color, whereas SIG∞ does not.

2.4.3 Fiat-Shamir Transforms

In this section, we recall the Fiat-Shamir transform, which allows to transform an
identification scheme into a digital signature. It removes interaction by sampling the
challenge as a hash function evaluation H(w, µ) with w being the prover’s commit-
ment and µ the signed message. The hash function is then modeled as a random
oracle in the analysis. The signature is the pair (w, z), which is verified by checking
validity of the transcript (w,H(w, µ), z).

As the challenge c being typically much shorter than w, it is desirable to re-
place w by c in the signature. This is possible if the underlying identification scheme
is commitment-recoverable (see Definition 2.11). Verification simply starts by recov-
ering w ← Rec(vk, c, z). Our protocols satisfy this property, thus we describe the
signature obtained applying this version of the Fiat-Shamir transform.

2.4.3.1 The Fiat-Shamir with Aborts Transform

Let ID = (IGen, (P1,P2), (V1,V2)) be an identification protocol for a binary rela-
tion R. Further, let H : {0, 1}∗ → C be a hash function where C is the chal-
lenge space of ID. Then, for every positive integer B, one can construct a signature
scheme SIGB = FSB[ID, H] by applying the Fiat-Shamir transform with bounded
aborts (FSwBA) as in Figure 2.3. We are particularly interested in applying the
Fiat-Shamir transform without imposing a bound on the number of iterations in the
rejection sampling as it is the case for Dilithium [DKL+18], among other schemes.
One can define the unbounded version SIG∞ = FS∞[ID, H] of the Fiat-Shamir trans-
form as in Figure 2.3. Note that the signing algorithm of SIG∞ may not be PPT as
required in Definition 2.7. Ideally, it would still be expected polynomial-time.

Chapter 3 is dedicated to proving the properties that a signature resulting from a
Fiat-Shamir with aborts transform inherits from its underlying identification proto-
col. For more details, we refer the reader to prior works (e.g., [Lyu09,Lyu12,AFLT16,
DFMS19]).

• In [AFLT16, KLS18], the authors consider lossy identification schemes They
reduce UF-NMA security of a signature based on the Fiat-Shamir transform
to the εls-soundness of the underlying identification scheme and the indistin-
guishability of the outputs of IGen and IGenls.
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KeyGen(1λ) :

1: (vk, sk)← IGen(1λ)
2: return vk and sk

Sign(sk, µ) :

1: (w, st)← P1(sk)
2: c← H(w, µ)
3: z ← P2(sk, st, w, c)
4: return (c, z)

Verify(vk, (c, z), µ) :

1: w ← Rec(vk, c, z)
2: if c ̸= H(w, µ) then
3: return 0
4: end if
5: return V(vk, (w, c, z))

Figure 2.4: Fiat-Shamir Signature FS[ID, H].

• In [DFMS19] and implicitly in [Lyu09, Lyu12], the authors reduce UF-NMA
security of a signature based on the Fiat-Shamir transform to the proof of
knowledge property of the underlying identification protocol. Their reduction
is less tight than the one of [KLS18].

2.4.3.2 The Fiat-Shamir Transform

We now describe the Fiat-Shamir with aborts when the identification protocol has
probability 0 of aborting as well as its known properties.

For the sake of completeness, we state the following lemma arguing correctness
of the signature scheme FS[ID, H], which immediately follows from the completeness
and commitment-recoverability of the underlying identification scheme.

Lemma 2.15. Let ID = (IGen,P,V) denote an identification scheme. Further as-
sume that ID is ε-complete and commitment-recoverable. Then the signature scheme
FS[ID, H] described in Figure 2.4 is ε-correct in the ROM.

Security of FS[ID, H] can be proven by successive claims. First, one can reduce
EU-CMA security of FS[ID, H] to its EU-NMA security assuming ID has large commit-
ment min-entropy and is honest-verifier zero-knowledge (see Definition 2.13). This
can be shown by relying on the following theorem.

Theorem 2.16 (Adapted from [GHHM21, Theorem 3]). Let ID be an identifica-
tion scheme which has α-min-entropy and satisfies ε-statistical HVZK. Let H a hash
function modeled as a random oracle. Then, for any (possibly quantum) adversary A
against the EU-CMA security of FS[ID, H] making at most QS (classical) sign queries
and at most QH (possibly quantum) hash queries, there exists an adversary B against
the EU-NMA security of FS[ID, H] such that:

AdvEU−CMA(A) ≤ AdvEU−NMA(B) +Qsε+ 3
QS

2
·
√
(QH +QS + 1) · 2−α .

Furthermore, if ID is (1 + ε)-divergence HVZK, the following bound applies:

AdvEU−CMA(A) ≤ (1 + ε)QsAdvEU−NMA(B) + 3QS/2 ·
√
(QH +QS + 1) · 2−α .

The result can be adapted to sEU-CMA security by adding QS2
−α to the bounds.

It remains to prove EU-NMA-security. It can be argued via the following state-
ment for lossy identification schemes (see Definition 2.15).
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Theorem 2.17 ( [KLS18, Theorem 3.4]). Let ID be a lossy identification scheme
satisfying εls-lossy soundness for some εls > 0. Let H a hash function modeled as
a random oracle. For any (possibly quantum) adversary A against the EU-NMA
security of FS[ID, H] making at most QH (possibly quantum) hash queries, there
exists a quantum adversary B against the lossiness of ID such that

Adv(A) ≤ Adv(B) + 8(QH + 1)2 · εls .

Finally, we describe a reduction in the (classical) ROM which relies on weaker
properties compared to the above QROM reduction. Various folklore reductions are
known in this setting, and we consider a variant based on special soundness (see
Definition 2.16), which is first reduced to the soundness as recalled below.

Definition 2.17 (Soundness). Let ID = (IGen,P,V) be an identification scheme. It
is sound if for any PPT adversary A, the quantity

Pr
[
V(vk, (w, c, z)) = 1 | (w, c, z)← A(vk)

]
is negl(λ), where the probability is over the choice of vk and the coins of A.

We recall the Reset Lemma, which is a reduction from special soundness to
soundness.

Lemma 2.18 (Reset Lemma [BP02]). Let ID = (IGen,P,V) be an identification
scheme. Given any adversary A against the soundness of ID, there exists an adver-
sary B against the special soundness of ID such that

Advspecial−sound(B) ≥
(
Advsound(A)− 1

|C|

)2

.

And we show that special soundness implies EU-NMA security in the ROM.

Lemma 2.19. Let ID be an identification scheme and H a hash function modeled as
a random oracle. For any adversary A against the EU-NMA security of FS[ID, H]
making QH classical hash queries, there exists an adversary B against the special
soundness of ID such that:

AdvEU−NMA(A) ≤ QH ·
(√

Advspecial−sound(B) + 2

|C|

)
.

Proof. We first reduce the soundness of ID to the EU-NMA security of FS[ID, H].
First, if A outputs a forgery (µ∗, (c∗, z∗)) such that H(Rec(vk, c∗, z∗), µ∗) was never
queried, it has probability at most 1/|C| of outputting a valid forgery.

The reduction B′ guesses the hash query H(w∗, µ∗) made by A which is used
in A’s forgery. When this query is made, B′ answers it by running sending w∗ as
commitments to its challenger. The latter replies with a challenge c∗ and B′ programs
H(w∗, µ∗) as c∗. With probability 1/QH , B′’s guess is correct and the adversary A
halts with a forgery (µ∗, (c∗, z∗)) with Rec(vk, c∗, z∗) = w∗. We then have

Advsound(B′) ≥ 1

QH
· AdvEU−NMA(A)− 1/|C| .
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Finally, Lemma 2.18 gives an adversary B against the special soundness such that

Advspecial−sound(B) ≥
(
Advsound(B′)− 1

|C|

)2

,

which completes the proof.

2.5 Lattice-based Security Assumptions

The Learning With Errors (LWE) and Short Integer Solution (SIS) problems serve as
security foundation of Lyubashevsky’s signature schemes. In the parameter instan-
tiation section, we will use their module counterparts (see [LS15]).

Definition 2.18 (SIS). Let m ≥ n ≥ 1, q ≥ 2 and β > 0. The SIS problem with
parameters m,n, q, β is as follows: given as input A ← U(Zn×m

q ), the goal is to
find x ∈ Zm such that Ax = 0 mod q and 0 < ∥x∥ ≤ β.

Definition 2.19 (LWE). Let m ≥ n ≥ 1, q ≥ 2 and χ a distribution over Zq.
The LWE problem with parameters m,n, q, χ consists in distinguishing between the
distributions (A,As + e) and (A,u), where A ← U(Zm×n

q ), u ← U(Zn
q ), s ← χn

and e← χm.

2.6 The Lyubashevsky and BLISS Σ-protocols

All the following parameters are functions of a security parameter λ. Let k,m, n ≥ 1
and q ≥ 2 specify matrix spaces over Zq, with m > n. The distribution PS over Zm×k

is for signing keys and has support S = Supp(PS). Let M be the message space.
Let C ⊂ Zk finite and H : Zn

q ×M → C a hash function, which is modeled as a
random oracle in the signature scheme analysis. The parameter γ > 0 is used in
the verification algorithm to quantify the smallness of the answer. To obtain a 2λ

security against known attacks, one typically sets m,n, k = Ω(λ) and γ, q = poly(λ).
Let ε ≥ 0 and M ≥ 1 be parameters related to rejection sampling, for a source

distribution Q and a target distribution P over Zm. Most works directly instantiate
these distributions. For example, uniform distributions in well-chosen hypercubes
are used in [Lyu09] and P = Q Gaussian are used in [Lyu12,DDLL13]. We assume
that the support of Q is contained in (−q/2, q/2]m.

We consider the Σ-protocols presented in Figure 2.5 borrowed from both [Lyu09]
and [DDLL13] with the aforementioned rejection sampling generalization. For sim-
plicity, we assume that the verification key A ∈ Zn×m

q is in Hermite normal form, i.e.,
we have A = (B|In) for some matrix B and with In ∈ Zn×n

q denoting the identity
matrix. Up to mild conditions on k, n,m, q, this is without loss of generality.

For Lyubashevsky’s and BLISS [DDLL13] Σ-protocols, the public key is T = AS
and A. In the case of BLISS, it holds that T = −T mod q, which is usually achieved
by setting q = 2q′ with q′ > 2 a prime and generating A,S such that T = qId.
Correctness of the Fiat-Shamir with aborts transform follows from the lemma below.

Lemma 2.20 (Correctness). Let ε ≥ 0 and M ≥ 1. Let P and Q such that it holds
that max(S,c)∈S×C R

ε
∞(P∥Q+Sc) ≤ M . Let (y⊤0 |y⊤1 )⊤ ←↩ Q, where y0 takes value
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P(A,S) V(A,T)

y←↩ Q
w← Ay

w−−→
c←−− c←↩ U(C)

z← y+Sc

w.p. P (z)
M ·Q(y)

z−−→ Accept if
else Az=w+Tc

abort and ∥z∥ ≤ γ

P(A,S) V(A,T)

y←↩ Q
w← Ay

w−−→
c←−− c←↩ U(C)

b←↩ U({−1, 1})
z← y + bSc

w.p. P (z)
MQ±Sc(z)

z−−→ Accept if
else Az=w+Tc

abort and ∥z∥ ≤ γ

Figure 2.5: Left-hand side: Lyubashevsky’s Σ-protocol. Right-hand side: BLISS
underlying Σ-protocol. All computations are done modq.

in Zn. Further assume that 2−H∞(y0|y1)Q ≤ negl(λ), ε ≤ negl(λ) and the probability
that Sign terminates is ≥ 1− negl(λ). Then, in the ROM, Lyubashevsky’s signature
is correct if γ ≥ γP with γP such that Prz←↩P (∥z∥ ≥ γP ) ≤ negl(λ).

The statement holds for BLISS by replacing Q+Sc with Q±Sc. Runtime and
security are studied in Chapter 3.
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Chapter 3

Security Analysis of Fiat-Shamir
with Aborts

While many different proofs of the Fiat-Shamir with Aborts (FSwA) paradigm have
been proposed, we found that many of them were flawed. This chapter proposes
a way to fix them. In this chapter, we use the notations FSwBA (Fiat-Shamir
with Bounded Aborts) when there is a bound B on the number of iterations of
the signature algorithm. If this threshold is reached, then the signature algorithm
fails. When there is no such bound, we use the notation FSwUA (Fiat-Shamir with
Unbounded Aborts).

As we discussed in the introduction, Definition 2.12 is not sufficient for our pur-
poses. Instead we consider the following statistical HVZK definition, which bene-
fits from a simulator even for aborting transcripts of the Σ-protocol. One can see
this modification as a return to the classic definition in the literature of the zero-
knowledge interactive proof systems.

Definition 3.1 (Statistical Honest-Verifier Zero-Knowledge). Let εzk, T ≥ 0. A Σ-
protocol is (εzk, T )-HVZK if there exists a simulator Sim with runtime at most T , that
given x, outputs a transcript (w, c, z) such that the distribution of (w, c, z) has sta-
tistical distance at most εzk from a honestly generated transcript (w′, c′, z′) produced
by the interaction. This includes aborting transcripts, i.e., those for which z = ⊥.

The challenge c can be sampled uniformly from the challenge space C and passed
over as input to the simulator Sim.

We give a corrected analysis of FSwBA in Section 3.1. We extend this result
to FSwUA with a tweak in the runtime definition in Section 3.3, as we also show
that the usual definition may not be satisfied in Section 3.2. Finally, we show that
the Lyubahsevsky and BLISS identification protocols satisfy Definition 3.1 in Sec-
tion 3.4. In parallel, we study the benefits of a Rényi divergence-based approach
in Sections 3.1.2 and 3.4.1.3. This chapter focuses on the ROM analysis of the
transform. However, further results concerning the QROM analyses can be found
in [DFPS23].
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3.1 ROM Analysis of FSwBA

In this section we discuss the security of the Fiat-Shamir transform with bounded
aborts. We prove the UF-CMA security of the signature in the ROM based on the
adaptive reprogramming technique from [GHHM21].

We also propose a tweak of the analysis which relies on the Rényi divergence
instead of the statistical distance, as we show that in the case of Lyubashevsky’s
signature, this leads to increased performances.

3.1.1 The Adaptive Reprogramming Approach

We show how to reduce UF-CMA security and sUF-CMA security of the signature
to UF-NMA security in the ROM. We use the framework for adaptive reprogramming
(Lemma 2.8). Also, we note that our proof is crucially based on our new zero-
knowledge simulator.

Theorem 3.1. Let εzk, α, TSim ≥ 0, B ≥ 0 and H a hash function modeled as a
random oracle. Assume that Σ = ((P1,P2), (V1,V2)) is a (εzk, TSim)-HVZK public-
coin identification protocol and that the commitment message of the prover has min-
entropy α. Let A be a ppt adversary against UF-CMA security of SIGB = FSB[Σ, H]
that issues at most QH queries to the random oracle H and QS queries to the signing
oracle. Let X ∈ {UF, sUF}; we define ∆X as follows: ∆UF = 0 and ∆sUF = BQS ·2−α.

In the ROM, there exists an adversary B against UF-NMA security of SIGB with
runtime Time(A) +O((TSim ·B ·QS +QH) log(B ·QS +QH)) such that

AdvX-CMA
SIGB

(A) ≤ AdvUF-NMA
SIGB

(B) + 2−α ·B ·QS · (B ·QS +QH + 1)

+ εzk ·B ·QS +∆X .

The result also holds if we replace HVZK by sc-HVZK and assume εzk to be
negligible in the security parameter.

Proof. The proof is based on a sequence of hybrid games.
Game G0. The first game is the UF-CMA security game (Figure 3.1).
Game G1. In this game, the challenges of the transcripts are not computed by the
random oracle anymore, but sampled independently and uniformly each time. Then,
the random oracle is reprogrammed according to the new challenges as in Figure 3.2.

To bound the distance between Game0 and Game1, we construct a wrapper D
around A that uses A to solve a reprogramming game. It works as in Figure 3.3.

Note that if b = 0 in Figure 3.3, then D perfectly simulates G0, and otherwise it
perfectly simulates G1. Therefore,∣∣Pr[1⇐ GA0 ]− Pr[1⇐ GA1 ]

∣∣ ≤ ∣∣Pr[1⇐ ReprogramD0 ]− Pr[1⇐ ReprogramD1 ]
∣∣.

During the game, distinguisher D makes B ·QS reprogramming queries and B ·
QS +QH +1 random oracle queries. In the ROM, Lemma 2.8 bounds the advantage
of D by B ·QS · (B ·QS +QH + 1)2−α.
Game G2. Let Sim be the zero-knowledge simulator for Σ. In this game we mod-
ify GetTrans such that the transcripts are now produced by Sim and without the
secret key. See Figure 3.4.
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Game :

1: M := ∅
2: (vk, sk)← KeyGen(1λ)
3: (µ∗, σ∗)← AH, Sign(sk,·)(vk)
4: Parse σ∗ = (w∗, z∗)
5: c∗ := H(w∗∥µ∗)
6: return [[µ∗ ̸∈ M]] ∧ V2(vk, w

∗, c∗, z∗)

Sign(sk, µ) :

1: M :=M∪ {µ}
2: (w, c, z)← GetTrans(µ)
3: if z = ⊥ return ⊥
4: return σ = (w, z)

GetTrans(µ) :

1: κ := 0
2: while z = ⊥ and κ ≤ B
3: (w, st)← P1(sk)
4: c := H(w∥µ)
5: z ← P2(sk, w, c, st)
6: κ := κ+ 1
7: return (w, c, z)

Figure 3.1: Game G0

Game :

1: M := ∅
2: (vk, sk)← KeyGen(1λ)
3: (µ∗, σ∗)← AH, Sign(sk,·)(vk)
4: Parse σ∗ = (w∗, z∗)
5: c∗ := H(w∗∥µ∗)
6: return [[µ∗ ̸∈ M]] ∧ V2(vk, w

∗, c∗, z∗)

Sign(sk, µ) :

1: M :=M∪ {µ}
2: (w, c, z)← GetTrans(µ)
3: if z = ⊥ return ⊥
4: return σ = (w, z)

GetTrans(µ) :

1: κ := 0
2: while z = ⊥ and κ ≤ B
3: (w, st)← P1(sk)
4: c← U(C)
5: z ← P2(sk, w, c, st)

6: H = Hw∥µ7→c

7: κ := κ+ 1
8: return (w, c, z)

Figure 3.2: Game G1. The difference from G0 is highlighted in blue.

We would like to bound the distance between games G1 and G2 using the zero-
knowledge property. Suppose that we are given a B ·QS transcripts that are either
sampled honestly or sampled by the simulator. We use them to simulate G1 or G2,
respectively, by simulating H with the lazy sampling technique. Note that in both
games, after each transcript, the random oracle is reprogrammed according to the
transcript. In order to simulate the reprogrammed random oracle perfectly, we keep
track of a list D of the values in which the random oracle must be reprogrammed.
We describe the details in Figure 3.5.

Note that C can perfectly simulate G1 or G2 with its respective transcripts.
Furthermore, it is given B · QS transcripts. By the statistical HVZK property of
the Σ-protocol, it follows that∣∣Pr[1⇐ GA1 ]− Pr[1⇐ GA2 ]

∣∣ ≤ B ·QS · εzk.

Game G3. In this game, we add one more statement to the winning conditions.
Let (µ∗, (w∗, z∗)) be the forgery. If the value w∗∥µ∗ has been programmed in the
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DHb,Reprogram :

1: M := ∅
2: (vk, sk)← KeyGen(1λ)
3: (µ∗, σ∗)← AHb, Sign(sk,·)(vk)
4: Parse σ∗ = (w∗, z∗)
5: c∗ := Hb(w

∗∥µ∗)
6: return [[µ∗ ̸∈ M]] ∧ V2(vk, w

∗, c∗, z∗)

Reprogram(µ, sk) :

1: (w, st)← P1(sk)
2: c← U(C)
3: H1 := H

(w∥µ) 7→c
1

4: return (w, st)

Sign(sk, µ) :

1: M :=M∪ {µ}
2: κ := 0
3: while z = ⊥ and κ ≤ B
4: (w, st)← Reprogram(µ, sk)
5: c := Hb(w∥µ)
6: z ← P2(sk, w, c, st)
7: κ := κ+ 1
8: if z = ⊥ return ⊥
9: return σ = (w, z)

Figure 3.3: The distinguisher D.

Game :

1: M := ∅
2: (vk, sk)← KeyGen(1λ)
3: (µ∗, σ∗)← AH, Sign(sk,·)(vk)
4: Parse σ∗ = (w∗, z∗)
5: c∗ := H(w∗∥µ∗)
6: return [[µ∗ ̸∈ M]] ∧ V2(vk, w

∗, c∗, z∗)

Sign(sk, µ) :

1: M :=M∪ {µ}
2: (w, c, z)← GetTrans(µ)
3: if z = ⊥ return ⊥
4: return σ = (w, z)

GetTrans(µ) :

1: κ := 0
2: while z = ⊥ and κ ≤ B
3: c← U(C)
4: (w, z)← Sim(vk, c)

5: H := Hw∥µ7→c

6: κ := κ+ 1
7: return (w, c, z)

Figure 3.4: Game G2. The difference from G1 is highlighted in blue.

random oracle H during the game, then we abort. The value w∗∥µ∗ would be
programmed during the game if the adversary has made a sign query with µ∗. As
the winning condition in the UF-CMA game already requires a forgery for a message
that has not been queried before, the adversary’s view is identical to that of the
previous one.

It remains to reduce G3 to UF-NMA security. The signing algorithm does not use
the signing key anymore and uses the zero-knowldege simulator to answer the sign
queries. The last remaining technicality lies in how to simulate the random oracle.
In the ROM, we use the lazy sampling method. At each query to the random oracle,
we return a match if there exists any in the database, otherwise we return a fresh
sampled element from the range of H and add it in the database.

Strong Unforgeability. For the sUF-CMA security, we modify the above games. Now,
the challenger maintains the list M of message-signature pairs that were queried
by the adversary via the signature oracle. Each game, at its final step, also checks
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C|H′⟩({wi,κ, ci,κ, zi,κ}i∈[QS ],κ∈[B]) :

1: M := ∅
2: i := 0
3: D := ∅
4: (vk, sk)← KeyGen(1λ)
5: (µ∗, σ∗)← A|H⟩, Sign(sk,·)(vk)
6: Parse σ∗ = (w∗, z∗)
7: c∗ := Hb(w

∗∥µ∗)
8: return [[µ∗ ̸∈ M]] ∧ V2(vk, w

∗, c∗, z∗)

H(w∥µ) :
1: if ∃c such that (w, µ, c) ∈ D
2: return c
3: return H ′(w∥µ)

Sign(sk, µ) :

1: M :=M∪ {µ}
2: i := i+ 1
3: κ := 0
4: while z = ⊥ and κ ≤ B
5: (w, c, z) = (wi,κ, ci,κ, zi,κ)
6: if ∃c′ such that (w, µ, c′) ∈ D
7: D := D \ (w, µ, c′)
8: D := D ∪ (w, µ, c)
9: κ := κ+ 1

10: if z = ⊥ return ⊥
11: return σ = (w, z)

Figure 3.5: The distinguisher C for real and simulated transcripts of Σ based on A.

whether the forgery (µ∗, (w∗, z∗)) belongs to this list or not, and if it is it returns
0. With these modifications, everything remains the same up to Game G2. The
last two games G2 and G3 behave differently only if we have the following condi-
tions: (µ∗, (w∗, z∗)) ̸∈ M, the random oracle has been reprogrammed on input w∗∥µ∗,
and V2(vk, w

∗, c∗, z∗) = 1. The input w∗∥µ∗ has been reprogrammed only if the ad-
versary has made a sign query on µ∗. The probability of w∗ appearing in any given
loop iteration of the rejection sampling of Sign(sk, µ∗) is bounded by 2−α. In total,
there are at most B iterations per sign query, and the adversary makes at most QS

queries. By the union bound, the probability that w∗∥µ∗ has been reprogrammed
is bounded by BQS · 2−α. The reduction from G3 to the UF-NMA game works as
before.

Runtime. In the ROM, each sign query requires to run the zero-knowledge simulator
up to B times. For each hash (resp. sign) query, the reduction performs 1 (resp. up
to B) programming operation. It maintains a sorted data structure D in order to
search and insert in O(log(B ·QS +QH)) steps. The runtime of the reduction is of
order Time(A) +O(TSim · (B ·QS +QH) · log(B ·QS +QH)).

3.1.2 Rényi Divergence Approach: FSwBA Security Analysis

In this section, we start the Rényi divergence-based analysis of Fiat-Shamir with
Aborts. This allows us to achieve smaller signature sizes in Section 4.4.5. We note
however that the Rényi divergence is useful for non-aborting transcripts, meanwhile
for aborting transcripts the statistical distance analysis is sufficient. To take this into
account, we introduce the following definition.

Definition 3.2 (Decomposable Simulator). Let p ∈ [0, 1]. Let Sim be a zero-
knowledge simulator for a Σ-protocol. We say that Sim admits a p-decomposition
if there exist two algorithms Sim⊥ and Sim̸⊥ such that the former only outputs tran-
scripts with z = ⊥, the latter only outputs transcripts with z ̸= ⊥, and Sim can be
defined as in Figure 3.6
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Sim(x) :

1: with probability p
2: (w, c, z)← Sim⊥(x)
3: with probability 1− p
4: (w, c, z)← Sim ̸⊥(x)
5: return (w, c, z)

Figure 3.6: Simulator decomposition.

With this formalism, we are able to extend the HVZK definition to the Rényi
divergence.

Definition 3.3 (Decomposable Divergence HVZK). Let Rzk ≥ 1, εzk > 0, p ∈ [0, 1]
and T⊥, T̸⊥ ≥ 0. A Σ-protocol is said to be (εzk, T⊥, Rzk, T̸⊥)-DDHVZK if there exists
a p-decomposable simulator Sim = (Sim⊥, Sim̸⊥) such that

• algorithm Sim⊥ is (εzk, T⊥)-HVZK (or sc-HVZK) simulator for the Σ-protocol
transcript (w′, c′, z′) conditioned on z′ = ⊥,

• algorithm Sim̸⊥ has runtime T̸⊥, and given x outputs a transcript (w, c, z) such
that its distribution and the one of a transcript (w′, c′, z′) of the Σ-protocol
conditioned on z′ ̸= ⊥ are such that

R∞

(
(w, c, z)∥(w′, c′, z′)

)
≤ Rzk .

Note that p can possibly differ from β, but we are interested in the case where
their difference is negligible (as in the following theorem). We adapt Theorem 3.1
and its proof to this new setting.

Theorem 3.2. Let Rzk ≥ 1, εzk, T⊥, T̸⊥ ≥ 0, p ∈ [0, 1] and H a hash function
modeled as a random oracle. If Σ = ((P1,P2), (V1,V2)) is an (εzk, T⊥, Rzk, T̸⊥)-
DDHVZK public-coin identification protocol with a p-decomposable simulator and
probability of aborting β, then we have the following updates on Theorem 3.1. In
the ROM, there exists an adversary B against UF-NMA security of SIGB with run-
time Time(A) +O((T⊥(B − 1)QS + T̸⊥QS) log(B ·QS +QH)) such that

AdvX-CMA
SIGB

(A) ≤ RQS

zk · (Adv
UF-NMA
SIGB

(B) + (εzk + |p− β|) ·B ·QS +∆X)

+ 2−α ·B ·QS · (B ·QS +QH + 1) .

Proof. The proof is almost identical to the one of Theorem 3.1. We replace Game G2

with three different games G2.1, G2.2 and G2.3. The other changes between games
remain similar. Let Sim = (Sim⊥,Sim ̸⊥) be the decomposition of the zero-knowledge
simulator. We proceed as follows.
Game G1. It is the same as in the proof of Theorem 3.1.
Game G2.1 In this game, we change the signing algorithm. As soon as a tran-
script (w, c, z) with z ̸= ⊥ is being sampled during the rejection sampling loop, we
discard it and replace it with a transcript generated by Sim ̸⊥. The multiplicativity
of the Rényi divergence implies that

Pr[1⇐ GA1 ] ≤ (1 + εzk)
QS · Pr[1⇐ GA2.1].

44



3.2. Concrete Analysis of FSwUA: Negative Result

Game G2.2. We modify the signing algorithm one step further. Let Bernoulli(β)
denote the Bernoulli distribution with parameter β (i.e., the probability of sampling 1
is β). We replace the honestly generated transcripts with the following distribution.
Sample b← Bernoulli(β) and c← U(C). If b = 1 run (w, z)← Sim⊥(pk, c), and if b =
0 run (w, z) ← Sim ̸⊥(pk, c). Since the transcripts are being sampled independently
from each other in both games G2.1 and G2.2, one can bound the advantage of the
distinguisher by εzk · (B − 1) ·QS .

Game G2.3. We replace Bernoulli(β) with Bernoulli(p). The distinguishing advantage
of the adversary between G2.2 and G2.3 would be less than |p− β| · (B − 1) ·QS .

The rest of the proof is similar to that of Theorem 3.1.

3.2 Concrete Analysis of FSwUA: Negative Result

In the two last sections of this chapter, we focus on analyzing formally signatures
constructed from combining an identification protocol with the Fiat-Shamir with
unbounded aborts paradigm. To the best of our knowledge, this is the first complete
analysis of FSwUA.

In this first section, we exhibit a signature constructed using FS∞ for which the
signing runtime is infinite for an instantiation of the hash function H. Therefore,
the expected runtime is also infinite and the standard definition of runtime must
be changed. We propose minor updates to the signature definitions so that they
support such pathological behaviors. Note that FSwUA is the main paradigm used
in practice: there is no reason to add a bound for the number of loop iterations in
the code if the algorithm never reaches it except with negligible probability, but the
latter statement thus needs to be proven.

In Section 3.3, we prove Fiat-Shamir with unbounded aborts does yield signatures
which satisfy all correctness, runtime, and security requirements. Correctness of
FSwBA is also addressed in Section 3.3 as a corollary of our analysis.

3.2.1 Infinite Signing Runtime in the Worst Case of FSwUA

In this section, we aim to prove the following theorem.

Theorem 3.3. There exists a parametrization of dk-LWEm,n,q,Q such that the fol-
lowing holds assuming the hardness of dk-LWEm,n,q,Q. There exists a public-coin
identification protocol Σ with instance generator IGen such that, with overwhelming
probability over the randomness of IGen, there exists a hash function Hbad such that
the signing algorithm of SIG∞ := FS∞[Σ, Hbad] on inputs the signing key and any
message does not halt.

The proof relies on constructing the appropriate identification protocol, and then
identifying a specific bad instantiation for the hash function. The main idea is
to instantiate Lyubashevsky’s signature scheme with source distribution Q being
the uniform distribution over a ball B and target distribution being the uniform
distribution over a corona C, as illustrated in Figure 3.7. For a keypair A,S, a loop
iteration samples y ← U(B), defines a commitment w ← Ay mod q, and returns
y + Sc with c← H(Ay mod q∥µ), if and only if y + Sc ∈ C.
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The cornerstone of our proof is to show that there exists a hash function Hbad

such that, for every message µ and every y, the challenge c = H(Ay mod q∥µ) is
such that y+Sc /∈ C. This implies that the signing algorithm of FS∞[Σ, Hbad] never
halts on any input message.

Theorem 3.3. We instantiate Lyubashevsky’s signature in the low-density regime.
We first construct the identification protocol, and then explain how to instanti-
ate Hbad to obtain the result.

We use the following parameters:

• dimensions n > 0 and m = 2n ≥ 14;

• a challenge bound τ > 24
√
m;

• a good conditioning parameter d = 300;

• a crust width t = dτ and a corona width t′ = dτ/3− (d+ 1)
√
m;

• a radius r = m(t+ t′);

• a prime modulus q ≤ poly(n) that satisfies q ≥ 16(r +
√
m)4.

We define the following relation R:

R :=
{
((A,AS),S) | A ∈ Zn×m

q ,S =
2

3
dIm +E ∈ Zm×m, σ1(E) ≤ d

3

}
,

where σ1(E) denotes the largest singular value of E (when viewed as a real-valued
matrix). Note that d is a multiple of 3 so that S is indeed integral.
Our choice of matrix S makes it so that σ1(S) ≤ d and S is full-rank (note that
this is a real-valued matrix). We have S−1 = (2d/3)−1

∑
k≥0(−(2d/3)−1E)k, which

satisfies σ1(S
−1) ≤ 3/d. The matrix S is the relation witness. We now consider the

challenge space C. We set:

C := {c ∈ Zm|∥c∥ ≤ τ}.

As t = dτ , we have t ≥ ∥Sc∥ for all c ∈ C and all S ∈ Zm×m with σ1(S) ≤ d.
We further define the ball B and corona C as follows.

B := Bm(r) and C := Bm(r − t) \ Bm(r − t− t′) .

A graphical representation is given in Figure 3.7.
We instantiate Lyubashevsky’s signature scheme as recalled in Section 3.4.1, with

the source distribution Q set as the uniform distribution over Zm∩B and the target
distributions P set as the uniform distribution over Zm ∩C. The norm bound check
of the verification algorithm is instantiated to ∥z∥ ≤ r, where z is the vector output
by the prover. Finally, the rejection parameter M is set to M = 100.

Lemma 3.4. The identification protocol Σ obtained by instantiating Figure 2.5 as
described above is (1, 1/M)-correct. Under the dk-LWEm,n,q,Q hardness assumption,
it is sc-HVZK.
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t′

C
B

t

r

Figure 3.7: The sets B and C in dimension 2.

Proof. We prove each property as follows:
Correctness. The perfect correctness (γ = 1) follows from the fact that if the prover
outputs something, it is by definition a rounding of an element belonging to C and
satisfies the relation that the verifier checks. By design, the probability that the
verifier outputs some z ̸= ⊥ is 1/M .

Zero-Knowledge. We now aim at using Theorem 3.15 to argue the zero-knowledge
of the protocol. It suffices to show that for all c ∈ C and all z ∈ Zm ∩ C, we have
that P (z) ≤M ·Q(z− Sc).

Note first that for the considered S’s and c’s, if z belongs to the support of P ,
then z− Sc belongs to the support of Q. For such a z, we have:

Q(z− Sc)

P (z)
=
|Zm ∩ C|
|Zm ∩B|

≥ Vol(B(r − t−
√
m))− Vol(B(r − t− t′ +

√
m))

Vol(B(r +
√
m))

=
(
1− t+ 2

√
m

r +
√
m

)m
−
(
1− t+ t′

r +
√
m

)m
.

By expanding the difference of powers, we then obtain:

Q(z− Sc)

P (z)
=

t′ − 2
√
m

r +
√
m
·
m−1∑
k=0

(
1− t+ 2

√
m

r +
√
m

)m−1−k(
1− t+ t′

r +
√
m

)k
≥ t′ − 2

√
m

r +
√
m
·m ·

(
1− t+ t′

r +
√
m

)m−1
≥ t′ − 2

√
m

t+ t′ + 1
·
(
1− 1

2m

)m
.

In the last inequality, we use the fact that r = m(t+ t′). Now, using the definitions
of t and t′, we obtain that the latter is ≥ 1/100.

Let us now consider the probability β that some answer is output by P2. Note
that our choice of t is such that for any S and challenge c, it holds that

C ⊆ B + Sc.
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Therefore, the probability that a uniform element from B + Sc belongs to C is:

β =
Vol(C)

Vol(B)
=

(
1− t

r

)m

−
(
1− t+ t′

r

)m

=

(
1− t

r
− 1 +

t+ t′

r

)
·
m−1∑
k=0

(
1− t

r

)m−1−k (
1− t+ t′

r

)k

≥ t′

r
·m ·

(
1− t+ t′

r

)m−1

≥ t′

t+ t′
·
(
1− 1

m

)m

.

For the last inequality, we used the fact that r = m(t + t′) and 1 − 1/m < 1. By
using the definitions of t and t′, we obtain:

β ≥ t′

4(t+ t′)
≥ 1

4
· τ − 3(1 + 1/d)

√
m

4τ − 3(1 + 1/d)
√
m

.

We claim that the latter is ≥ 1/20. Indeed, having this inequality is equivalent to
τ ≥ 12(1 + 1/d)

√
m, which is satisfied when τ ≥ 24

√
m.

We then show that, for any choice of A,S such that ((A,AS),S) ∈ R, there exists
a hash function H such that, using H to instantiate FWsUA, the signing algorithm
of FS∞[Σ, H] never halts on any input message. That is, for every message µ and
every y, the challenge c = H(Ay mod q∥µ) is such that y + Sc /∈ C.

Fix the matrices A and S. We now show how to instantiate the hash function H
so that the above holds. A first important observation is that multiplication by A of
a short integer vector is injective. Note that Ay = Ay′ mod q for some y ̸= y′ ∈ B
implies that there exists an integer vector x ∈ Zm (namely y − y′) such that Ax =
0 mod q and 0 < ∥x∥ ≤ 2r. Applying the following lemma with B = 2r, it holds
that with probability at least 1−2−Ω(n) over the random choice of A, such a vector x
does not exist, by our choices of m and q.

Lemma 3.5. Let m,n > 0 and q a prime. Let B < q. Then:

Pr
A∈Zn×m

q

(
λ1(Λ

⊥
q (A)) < B

)
≤ Vol(Bm(1))

(B +
√
m/2)m

qn
.

Proof. The following relations follow from a union bound, the statistical indepen-
dence of the rows of A and the fact that every short enough integer vector is non-zero
modulo q.

Pr
A←↩U(Zn×m

q )
(λ1(Λ

⊥
q (A)) < B) ≤

∑
y∈Zm

0<∥y∥≤B

Pr
A←↩U(Zn×m

q )
(Ay = 0 mod q)

=
∑
y∈Zm

0<∥y∥≤B

(
Pr

a←↩U(Zm
q )
(a⊤y = 0 mod q)

)n

=
∑
y∈Zm

0<∥y∥≤B

1

qn
.

48



3.2. Concrete Analysis of FSwUA: Negative Result

Finally, we note that the volume of the m-dimensional hyperball of center 0 and
radius B +

√
m/2 is an upper bound on the number of summands.

As a consequence, we can define H as a function of y as Ay uniquely deter-
mines y. Based on the protocol, it suffices to find a challenge c ∈ C for each y ∈
Zm ∩B, it holds that y + Sc ̸∈ C. We then set H(Ay mod q, µ) to be this c for all
messages µ.

First, note that if y ̸∈ C, then setting c := 0 leads to y + Sc being rejected.
Thus, we focus on the other case. Let Λ(S) be the full-rank lattice generated by
the matrix S (recall that S is full-rank). Define the scaling λ = t′/∥y∥ and note
that ∥λy∥ = t′. Let x ∈ Λ(S) be such that λx ∈ y + P(S), where P(S) = S · [0, 1]n
denotes the (closed) fundamental parallelepiped spanned by S. In particular there
exists a lattice point e ∈ x+ P(S) such that

⟨e− λy, λy⟩ ≥ 0 , (3.1)

since otherwise there would exist an affine hyperplane separating λy ∈ x + P(S)
from λy, which would contradict the definition of x. Note that ∥e − λy∥ ≤ d

√
m:

indeed, when written in the basis S, all of its coordinates belong to [−1, 1], and we
have σ1(S) ≤ d. Since e ∈ Λ(S), there exists k ∈ Zn such that e = Sk. We set the
challenge c as k. To conclude, we prove the following statements.

∥c∥ ≤ τ and y + e ̸∈ C .

The first one follows from the following (recall that t′ = dτ/3− (d+ 1)
√
m):

∥c∥ = ∥S−1e∥ ≤ σ1(S
−1)[∥e− λy∥+ ∥λy∥]

≤ 3

d
(d
√
m+ t′ +

√
m) = τ .

By using Equation (3.1), we obtain the following.

∥y + e∥2 = ∥λy + y + (e− λy)∥2

= ∥λy∥2 + ∥y∥2 + ∥e− λy∥2

+ 2⟨λy,y⟩+ 2⟨λy, e− λy⟩+ 2⟨e− λy,y⟩
≥ ∥λy∥2 + ∥y∥2 + 2⟨λy,y⟩
= ((λ+ 1)∥y∥)2 .

Using the definition of λ and the lower bound on ∥y∥, we obtain that

∥y + e∥ ≥ (t′ + r − t− t′) = r − t .

This completes the proof: instantiated with this hash function, the signing algorithm
of the Fiat-Shamir transform of the above Σ-protocol never halts.

So far, this only exhibits a single bad choice for the hash function, while signatures
based on FSwUA support messages of unbounded length. Hence, there are infinitely
many possible hash functions (functions with domain W×{0, 1}∗ and range C, with
W being the commitment space). As a consequence, it is not immediate that a single
bad hash function implies an infinite expected runtime for the signature scheme in
the ROM, and one could think that simply considering the runtime when H is a
random oracle could be sufficient to fix it.
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Corollary 3.6. We have PrH [∀w ∈ W, H(w∥µ) = Hbad(w∥µ)] ≥ |C|−|W| for any
message µ. Therefore, the expected runtime of Sign(sk, µ) over the choice of the
random oracle H is infinite.

Our result relies on the hardness of the dk-LWE problem when the weight vector
is sampled from the uniform distribution over a hyperball. This is an unusual dis-
tribution for dk-LWE. However, it can be checked that for appropriate parameters,
the proof of [BLR+18, Section 5] that decision LWE is hard for a noise distribution
that is uniform in a hypercube carries over to the hyperball setting.

3.2.2 Updated Signature Definition

As shown in Section 3.2.1, there are instances of identification protocols that yield
signature schemes with infinite expected runtime of the signing algorithm. This
requires relaxing the runtime requirement in the definition to be expected polynomial
time with overwhelming probability over the choice of the hash function. Yet, there
is another subtlety doing so: in the security game, an adversary might make a sign
query that never halts. In the case of the above construction, the challenger, which is
unbounded, can still notice it as the commitment space is bounded and the rejection
step is deterministic. Once all the potential commitments have failed to produce
a valid signature, the challenger knows that it cannot answer the query. This is
however not the case of every signature scheme. To take such event into account,
we consider that an attacker automatically wins if the challenger takes more than T ′

time to answer a signature query, for some parameter T ′. An alternative choice could
be to consider that an adversary which makes a non-terminating sign query loses,
since the challenger does not answer anymore. We prefer to add this parameter T ′ as
this makes the definition stronger by further guaranteeing that an adversary cannot
find a query which forces the signer to run for a long time, which could be desirable
in practice as well.

We now state our updated definition for signatures. It is highly similar to the
standard Definition 2.7 and we only highlight the differences.

Definition 3.4 (Modified Digital Signature in the ROM). Let H be a random
oracle to which all algorithms have oracle access. A signature scheme is a tu-
ple (KeyGen, Sign,Verify) of algorithms with the following specifications. Everything
is as in Definition 2.7, except for the runtime of Sign, which we define below, and a
minor tweak in the security game.

• SignH : (sk, µ) → σ is a probabilistic algorithm that takes as inputs a sign-
ing key sk and a message µ ∈ M and outputs a signature σ. We denote
with TSignH(sk,µ) the runtime of Sign(sk, µ).

Let γ > 0, T = poly(λ) and ε = negl(λ). We say that the signature scheme is γ-
correct if for any pair (vk, sk) in the range of KeyGen and µ,

Pr[Verify(vk, µ,Sign(sk, µ)) = 1 | Sign(sk, µ) halts] ≥ γ,

and we say that it is (T, ε)-efficient if for any pair (vk, sk) in the range of KeyGen
and µ,

Pr
H
[TSignH(sk,µ) > T ] < ε.
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where both probabilities are taken over the random coins of the two algorithms and
the random oracle.

In addition, we update the security game as follows. Let T ′ be another function
of λ. We define T ′-UF-CMA security exactly as UF-CMA security in Definition 2.8,
except that we further make the adversary win as soon as it makes a sign query for
which the signing algorithm takes more than T ′ steps to halt.

Definition 3.4 does not forbid the situation described in Subsection 3.2.1 from
occurring but guarantees that it should be hard to find non-halting queries.

3.3 Concrete Analysis of FSwUA: Positive Results

Equipped with this updated definition, we prove that signatures constructed from
applying FSwUA to an identification protocol yields a signature scheme that satisfies
all three correctness, runtime, and security requirements. This result extends to
prove that FSwBA signatures satisfy correctness.

Theorem 3.7 (Runtime). Let γ > 0, β ∈ (0, 1) and H a hash function modeled
as a random oracle. Let Σ = ((P1,P2), (V1,V2)) be an identification protocol that
is (γ, β)-correct and has commitment min-entropy α. Let SIG∞ = FS∞[Σ, H]. LetM
be the message space and ISignH (sk, µ) denote the random variable counting the num-
ber of iterations of the signing algorithm on input (sk, µ) using a random oracle H
where µ ∈ M. It holds that for any (vk, sk) ← KeyGen(1λ), any message µ ∈ M,
and any integer i:

Pr
H
(ISignH (sk, µ) > i) ≤ βi +

2−α

(1− β)3
.

Proof. Let us start by introducing the random variables (wi, ci, zi, acci)i≥1. It de-
notes an infinite sequence of transcripts, where acci is the random variable denoting
whether the transcript is accepted or not. It takes value in {0, 1}, where 0 denotes
rejection and 1 acceptance. For the sake of the proof, let the sequence continue
regardless of whether a prior transcript was accepted or not. Let N = ISignH(sk,µ).
It denotes the index of the first accepting transcript, i.e., N = argmini({acci = 1}).
Let us denote by M the index of the first collision, i.e., M = min{i|∃j < i, wj = wi}.
Note that once H is fixed, a transcript is a deterministic function of wi.

Let i ≥ 1. Let us decompose:

Pr
H
(N > i) = Pr

H
(N < M) · Pr

H
(N > i|N < M)

+ Pr
H
(N ≥M) · Pr

H
(N > i|N ≥M)

≤ 1 · Pr
H
(N > i|N < M) + Pr

H
(N ≥M) · 1.

We now focus on studying each of these probabilities. The second one can be rewrit-
ten as

Pr
H
(N ≥M) =

∞∑
k=2

Pr
H
(M = k) · Pr

H
(N ≥M |M = k).

Let us first focus on PrH(M = k). The random variable M only depends on
the wi’s, which are i.i.d.: we can bound the collision probability with their min-
entropy: PrH(M = k) ≤ k2 · 2−α−1. Next, as long as no collision occurred, all ci’s
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can be seen as “fresh” randomness, i.e., all ci’s are uniform over the challenge space
and most importantly, they are independent. Hence conditioned on M = k, we know
that the probability of rejecting the first k − 1 samples is βk−1. Then

Pr
H
(N ≥M) ≤

∞∑
k=2

k2 · 2−α−1 · βk−1 = 2−α−1 · β + 1− (1− β)3

(1− β)3

≤ 2−α · 1

(1− β)3
,

where the equality comes from the fact that
∑

k≥1 k
2·βk−1 = (β+1)/(1−β)3. Now, as

we previously stated, conditioned on N < M , the distribution of N is geometric with
parameter 1 − β. Hence, we have PrH(N > i|N < M) = βi. Plugging everything
together, we obtain

Pr
H
(N > i) ≤ βi +

2−α

(1− β)3
.

Assume that α = ω(log(λ)). Setting i = ω(log(λ)/ log(1/β)) ensures that with
overwhelming probability over the choice of H, signing runs in polynomial time. We
note that this bound does not contradict the previous (negative) result. Indeed, it
does not imply any statement on the finiteness of the expected value of TSignH , which
is infinite in the previous section.

We move on to checking that FSwUA satisfies the new γ-correctness property,
assuming that the underlying identification protocol is (γ, β)-correct.

Theorem 3.8. Let γ > 0, β ∈ (0, 1) and let H denote a hash function modeled
as a random oracle. Let Σ = ((P1,P2), (V1,V2)) be an identification protocol that
is (γ, β)-correct. Let T denote the runtime of one interaction in the worst-case.
Let α > 0 be its commitment min-entropy. Let SIG∞ = FS∞[Σ, H]. Then for
any i = ω(log(λ)/ log(1/β)), it is γ-correct as well as (iT, βi+2−α/(1−β)3)-efficient.

Proof. Let (sk, vk) ← KeyGen and µ ∈ M. Conditioned on Sign(sk, µ) halting, the
output transcript follows the same distribution as a transcript from the identification
protocol conditioned on not being ⊥. In particular, the challenge is uniform over C,
as it is a hash that comes from the random oracle. Only its marginal distribution
is important here, as well as the fact that it is independent from the first and last
message of the prover. Hence, this transcript is accepted with probability γ over the
random coins of Sign and the random oracle.

With FSwBA, the problem is reversed: bounding the runtime becomes easy,
whereas proving the correctness becomes mildly more tedious, as one needs to check
that ⊥ is not output too often.

Theorem 3.9. Let γ > 0, β ∈ (0, 1) and B > 0. Let H be a hash function modeled a
random oracle. Let Σ = ((P1,P2), (V1,V2)) be an identification protocol that is (γ, β)-
correct and has commitment min-entropy α. Let SIGB = FSB[Σ, H]. Then, for
any (vk, sk)← KeyGen(1λ) and any message µ ∈M, we have

Pr[Verify(vk, µ,Sign(sk, µ)) = 1] ≥ γ ·
(
1− βB − 2−α

(1− β)3

)
,
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where the randomness is taken over H as well as the coins of Sign.

Proof. The result follows from Theorem 3.7. Indeed, assuming that Sign did not
output ⊥, then the final challenge that it outputs is uniform over the challenge
space C. It may not be independent from previous executions of the identification
protocol, but nonetheless its marginal distribution is uniform over C. Hence, assum-
ing that Sign did not output ⊥, it outputs a signature that is accepted by Verify
with probability at least γ, by correctness of the identification protocol. In the case
where Sign outputs ⊥, this signature is of course rejected by Verify. Hence, by the
law of total probabilities we have

Pr[Verify(vk, µ,Sign(sk, µ)) = 1] ≥ γ ·
(
1− βB − 2−α

(1− β)3

)
.

We finally prove the security of the unbounded version of the Fiat-Shamir trans-
form in the ROM. We reduce the T ′-UF-CMA security of the unbounded signature
scheme to the UF-CMA security of the bounded one in the ROM.

Theorem 3.10. Let α ≥ 0, β ∈ (0, 1), and let H be a hash function modeled as a
random oracle. Assume that Σ = ((P1,P2), (V1,V2)) is a (γ, β)-correct identification
protocol, and that the commitment message of P1 has min-entropy α. Let T denote
the runtime of one iteration of the protocol with the hash function. Let T ′ > BT . For
any arbitrary adversary A against T ′-UF-CMA security of SIG∞ = FS∞[Σ, H] that
issues at most QH queries to the random oracle H and QS classical queries to the
signing oracle and for any fixed integer B, the same adversary A against UF-CMA
security of SIGB = FSB[Σ, H] is such that |AdvT ′-UF-CMA

SIG∞ (A) − AdvUF-CMA
SIGB

(A)| is
bounded as

QS · βB +
βB · 2−α

(1− β)3
+ 2−α ·B ·QS · (B ·QS +QH + 1).

This also holds replacing UF-CMA with UF-CMA1 or sUF-CMA security.

Proof. We proceed with three hybrid games.
Game G0. We define Game G0 as the UF-CMA security of SIGB.
Game G1. Let Game G1 be game T ′-UF-CMA in which the adversary is promised
to not make any sign query that takes more than T ′ steps to halt. In the ROM,
if the advantage of the adversary A to distinguish these games is non-zero, then A
must have queried a message µ such that Sign(sk, µ) = ⊥ in Game G0. Note that
we cannot assume A is a purified quantum circuit since the queries to the signing
oracle must be classical and cannot be purified. Nevertheless, we can purify A
between the sign queries (the random oracle queries are quantum and would cause
no problem for purification). This is equivalent to saying that after the i-th sign
query µi, and receiving σi as the outcome, the adversary applies Ui, where Ui comes
from a distribution derived from {σj}j≤i, and then measures one of its registers to
obtain µi+1. It repeats this process QS times. By doing so, we can prove the above
statement. As long as Sign(sk, µi) ̸= ⊥, the distributions of σi and thus Ui are
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identical. It follows that the mixed state of the adversary remains identical in both
games.

Let RG0,A be an algorithm that runs G0 with A as a subroutine, records the sign
queries of A, and wins if one of them is answered by ⊥. We have∣∣Pr[1⇐ GA1 ]− Pr[1⇐ GA0 ]

∣∣ ≤ Pr[win(RG0,A)].

We aim at bounding the winning probability of R. Remember G1 from Figure 3.2,
which we rename G′0 in this proof. In Theorem 3.1, we proved that∣∣Pr[1⇐ GA0 ]− Pr[1⇐ G′A0 ]

∣∣ ≤ 2−α ·B ·QS · (B ·QS +QH + 1),

in the ROM. It follows that we can replace Game G0 in Pr[win(RG0,A)] with G′0 and
only lose the above terms in their corresponding random oracle models.

Finally, using the union bound and the β-correctness of the identification proto-
col, the winning probability of the algorithm R relative to G′0 is bounded by QS ·βB.
Game G2. This is the genuine T ′-UF-CMA game. The distinguishing advantage of A
is bounded by the probability that A makes a sign query that takes more than T ′

steps to halt. Theorem 3.7 implies that this probability is bounded by βT ′/T +
2−α/(1− β)3 ≥ βB + 2−α/(1− β)3. This completes the proof.

3.4 Application to Lyubashevsky’s Σ-Protocol

While we consider in this chapter generic Σ-protocols, our central application of
the Fiat-Shamir with aborts paradigm is Lyubashevsky’s signature scheme [Lyu09,
Lyu12]. We show here that the underlying Σ-protocol satisfies the zero-knowledge
property of Definition 3.1, i.e., admits an efficient simulator for all transcripts in-
cluding the aborting ones.

3.4.1 A Simulator for Lyubashevsky’s Σ-protocol

We consider the simulator Sim described in Figure 3.8 for the underlying Σ-protocol
of Section 2.6. For the rest of this section, we drop the runtime considerations, and
note that the simulator runs in roughly the time necessary to sample from P and
compute two matrix multiplications in the non-aborting case or the time necessary
to sample a uniform w in the aborting case.

Sim(T, c) :

with probability 1/M
1: z← P
2: w := Az−Tc

else
3: w← U(Zn

q )
4: z := ⊥
5: return (w, z)

Figure 3.8: Simulator Sim of Lyubashevsky’s Σ-protocol.

The proof that the simulation is correct in the non-aborting case is quite standard
and derives from the rejection sampling. For the aborting case, our proof relies on the
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leftover hash lemma and requires the source distribution Q to have high min-entropy.
The case of low min-entropy source distributions Q is handled later on.

3.4.1.1 High Min-Entropy Source Distributions

We first consider the case where Q has high min-entropy. In that case, we obtain
statistical zero-knowledge as per Definition 3.1.

Theorem 3.11. Let m ≥ n, k> 0, q prime, ε, βSIS > 0 and η ∈ [0, 12 ]. Assume that

H∞(Q) ≥ n log q + log
(
1− 1− η

M

)
+ 2 log

1

ε
.

Let (S,T) ∈ Rm,n,k,q,βSIS
(A) for some A← U(Zn×m

q ). Assume that

∀c ∈ C : Rε
∞(P∥Q+Sc) ≤M.

Then Lyubashevsky’s Σ-protocol satisfies the ε+ η(1 + 1/M)-HVZK property.

Observe that c ←↩ U(C) in both genuine and simulated transcripts. It hence
suffices to study the distribution of the rest of the transcript conditioned on the
value of c.

The first part of the following result derives from Lemma 2.7, and the second
part derives from the description of Sim. The claim ensures that the probabilities of
the event z = ⊥ in the genuine and simulated transcripts are close-by.

Lemma 3.12. For all c output by V1, the probability (over the random coins of P1

and P2) that P2 outputs ⊥ belongs to [1−1/M, 1−(1−η)/M ]. For all c, the probability
(over its random coins) that the last component of Sim is equal to ⊥ is 1− 1/M .

We now consider the transcript distribution conditioned on the event z ̸= ⊥.

Lemma 3.13. Conditioned on z ̸= ⊥, the distribution of the transcript (w, c, z)
generated by (P, V) is within statistical distance η from the simulated distribution.

Proof. For all c and conditioned on z ̸= ⊥, the distribution of z output by P2 is
within statistical distance η from P (see Lemma 2.7). The latter is exactly the
distribution of z conditioned on z ̸= ⊥.

To complete the proof of Lemma 3.13, we argue that when z ̸= ⊥, the first
coefficient of the triple is fully determined by the two others, and equal to Az −Tc
in both transcript and simulation.

Finally, we consider the statistical distance of the distributions conditioned on z =
⊥.

Lemma 3.14. Conditioned on z = ⊥, the distribution of the transcript (w, c, z)
generated by (P, V) is within statistical distance ε from the simulated distribution.

Proof. It suffices to prove that for all c and conditioned on z = ⊥, the distribution
of w in the transcript generated by (P, V) is statistically close to uniform over Zn

q .
Thanks to the first claim above, we have:

H∞[y|c ∧ z = ⊥] ≥ H∞[y]− log Pr[z = ⊥|c]

≥ H∞[y]− log
(
1− 1− η

M

)
.
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We conclude by using the leftover hash lemma (Lemma 2.1).

Theorem 3.11 follows from the above lemmas by term collection.

3.4.1.2 Low Min-Entropy Source Distributions

The above handles many settings of Lyubashevsky’s signature, as the source distri-
bution Q is often chosen to have high min-entropy so that the map y 7→ Ay mod q
is (very) surjective. In some cases, however, it is chosen of lower entropy and the
map y 7→ Ay mod q is very far from surjective. For example, this allows to avoid
the forking lemma in the security proof [AFLT16], which both leads to a tight se-
curity proof and facilitates unforgeability proofs in the QROM. Our pathological
construction from Section 3.2.1 also relies on this regime.

We explain how this can be handled, for some distributions. First, we consider
computational zero-knowledge rather than statistical zero-knowledge. As one needs
to be able to replace real transcripts of (many) sign queries by simulated ones in
the security proof, we consider a strong notion of computational zero-knowledge:
computational indistinguishability is required to hold even when the distinguisher is
given the witness (of course, the simulator does not use the witness). This definition
is compatible with our Fiat-Shamir with aborts analyses. In the analysis based on
adaptive reprogramming (Section 3.1.1), transcripts can be replaced one at a time
by simulated ones using a hybrid argument, since the witness allows to generate real
signatures. In particular, our definition implies the notion of computational HVZK
for multiple transcripts used in [GHHM21, Definition 2], which they use to argue that
all transcripts can be replaced by simulated ones in a single step. In our reduction,
when using the zero-knowledge property, the witness x is available to the challenger.

Definition 3.5 (Strong Computational HVZK). Let εzk, T ≥ 0 with εzk a negligible
function of the security parameter. A Σ-protocol ((P1,P2), (V1,V2)) for a relation R
is (εzk, T )-sc-HVZK if there exists a simulator Sim with runtime at most T such that
for all polynomial-time algorithm A and all (x, y) ∈ R, the following is ≤ εzk:

Adv(A) =

∣∣∣∣∣Pr
A((w, c, z), y) = 1

∣∣∣∣∣∣
(w, st)← P1(x, y),

c← V1(x,w),
z ← P2(x, y, c, w, st)


−Pr

[
A((w, c, z), y) = 1

∣∣∣(w, c, z)← Sim(x)
] ∣∣∣∣∣.

One may consider classical or quantum adversaries A.

As in the statistical case, if the Σ-protocol is public-coin, then without loss of
generality, the challenge c can be sampled uniformly from the challenge space C and
passed over as input to the simulator Sim. In the following, we use this formalism.

The computational assumption that we rely on is the Learning With Errors
problem [Reg09]. We use its knapsack form, introduced in [MM11].

Definition 3.6 (k-LWE). Let m ≥ n ≥ 1, q ≥ 2 and D a distribution over Zm
q .

The search knapsack-LWE problem sk-LWEm,n,q,D with parameters m,n, q,D con-
sists in recovering e from (A,Ae), where A← U(Zn×m

q ) and e← D. The decision
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knapsack-LWE problem dk-LWEm,n,q,D with parameters m,n, q,D consists in distin-
guishing between the distributions (A,Ae) and (A,u), where A← U(Zn×m

q ), e← D
and u← U(Zn

q ).

We argue that for some distributions Q, it is possible to prove computational
zero-knowledge in the sense of Definition 3.5, with the above simulator (Figure 3.8).

Theorem 3.15. Let m ≥ n and k > 0, q ≤ poly(m,n) prime and βSIS > 0. Let Q
be such that the dk-LWEm,n,q,Q problem is hard. Let (S,T) ∈ Rm,n,k,q,βSIS

(A) for
some A← U(Zn×m

q ). Assume that

∀c ∈ C : Pr
z←P

[
P (z) ≤M ·Q(z− Sc)

]
≥ 1− η,

where 1 + 1/poly(m,n) ≤M ≤ poly(m,n) and η ≥ 0 is negligible.
Then the distribution of the transcript (w, c, z) generated by ⟨P(S),V(T)⟩ is com-

putationally indistinguishable from the distribution of the triple (w, c, z) obtained by
sampling c←↩ U(C) and (w, z)← Sim(T, c), even if the distinguisher is given S.

The first two claims (Lemmas 3.12 and 3.13) of the proof of Theorem 3.11 still
hold. It hence suffices to prove the statistical indistinguishability of the genuine and
simulated transcripts (w, c, z) conditioned on z = ⊥.

We first show that the genuine distribution of y conditioned on z being rejected
resembles the distribution Q of y.

Lemma 3.16. Assume that M > 1. Consider the execution ⟨P(S),V(T)⟩. Let Q⊥

denote the distribution of y conditioned on z = ⊥. Then we have:

R∞(Q⊥∥Q) ≤ M

M − 1
.

Proof. For all y, we have

Q⊥(y) =
Pr[y ∧ z = ⊥]
Pr[z = ⊥]

≤ Q(y)

Pr[z = ⊥]
.

Lemma 3.12 ensures that the denominator is at least 1− 1/M .

The following result states that if (A,Ay) is pseudo-random for y ← D, then
so is it for y ← D′ for any distribution D′ such that R∞(Q′∥Q) is polynomially
bounded.

Lemma 3.17. Let m ≥ n ≥ 1. Let q ≤ poly(m,n) prime. Let D and D′ be
two distributions over Zm such that R∞(D′∥D) ≤ poly(m,n). Then dk-LWEm,n,q,D

reduces to dk-LWEm,n,q,D′ .

Proof. Note first that dk-LWEm,n,q,D reduces to sk-LWEm,n,q,D. Moreover as we
have R∞(D′∥D) ≤ poly(m,n), the probability preservation property (see Lemma 2.2)
implies that sk-LWEm,n,q,D reduces to sk-LWEm,n,q,D′ . Finally, as shown by [MM11,
Theorem 3.1], sk-LWEm,n,q,D′ reduces to dk-LWEm,n,q,D′ . The composition of these
reductions leads to the above claim.

Theorem 3.15 now follows from combining Lemmas 3.16, 3.17, 3.12 and 3.13.
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3.4.1.3 Rényi Divergence Approach: DDHVZK Property

As a conclusion to Section 3.1.2, we prove the following statement.

Theorem 3.18. Let m ≥ n, k> 0, q prime, η, βSIS > 0 and ε ∈ [0, 12 ]. Assume that

H∞(Q) ≥ n log q + log
(
1− 1− ε

M

)
+ 2 log

1

η
.

Let (S,T) ∈ Rm,n,k,q,βSIS
(A) for some A← U(Zn×m

q ). Assume that

∀c ∈ C : Rε
∞(P∥Q+Sc) ≤M.

Then Lyubashevsky’s Σ-protocol satisfies the (η, 1/(1− ε))-DDHVZK property.

Proof. We use the same simulator from Figure 3.8 and we note that by construction,
it is decomposable. The analysis in the aborting case is already done in Lemma 3.14,
while we change the proof of Lemma 3.13, where we use the Rényi divergence bounds
from Lemma 2.7 in the non-aborting case.

In conclusion, while the two approaches lead to similar bounds, we note that the
reductions are stateful when ε = negl(λ) in the statistical distance analysis, while
the Rényi divergence approach allows for ε = O(1/Qs).
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Chapter 4

Optimized Use of Rejection
Sampling in Fiat-Shamir with

Aborts

This chapter takes a theoretical approach on the use of rejection sampling in Lyuba-
shevsky’s and BLISS signatures. Namely, we study the expected number of iterations
and show that it is optimal in the “perfect” setting (Section 4.2). We then look for
a choice of source and target distributions minimizing the expected Euclidean norm
of the signature. To do so, we first give lower bounds on the compactness of the
signature for a fixed target number of rejections (Section 4.3). Finally, we compare
three choices of distributions: discrete gaussians, hypercube-uniform and hyperball-
uniform, both in theory and for practical parameters (Section 4.4). Further results,
in particular a bounded rejection technique, can be found in [DFPS22].

4.1 Preliminaries: Beta Function and Hyperspherical
Cap

The beta function is a special function related to the gamma function. Its link with
hyperballs is necessary when considering imperfect rejection sampling, as seen in
Lemma 4.10.

Definition 4.1 (Regularized Incomplete Beta Function). The incomplete beta func-
tion is defined over [0, 1]× R+ × R+ as

B : (x; a, b) 7→
∫ x

0
ta−1(1− t)b−1 dt.

When x = 1, this is the Beta function, and we use the notation B(a, b) in that case.
For fixed a, b, the function I·(a, b) : x 7→ B(x; a, b)/B(a, b) is invertible.

The function x 7→ Ix(a, b) and its inverse are useful when we consider the area of
a hyperspherical cap, as defined below.
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Lemma 4.1 (Hyperspherical Cap). Let n > 1, η > 1 and x ∈ Sn(1). Then the
set {y ∈ Bn(1)|⟨y,x⟩ ≥ 1/η} is the intersection of a half-space and the unit hyperball.
It is called a hyperspherical cap and has volume Vη and area Aη satisfying

Vη =
Vn(1)

2
· I1− 1

η2

(
n+ 1

2
,
1

2

)
and Aη =

Sn

2
· I1− 1

η2

(
n− 1

2
,
1

2

)
.

From [MV10, Lemma 4.1], by placing an appropriate cone in the hyperspherical
cap:

I1− 1
η2

(
n+ 1

2
,
1

2

)
>
(
1− 1

η2

)n− 1
2 ·

1− 1
η

n
.

By placing the hyperspherical cap into a cylinder of 1-dimensional height 1− 1/η:

I1− 1
η2

(
n+ 1

2
,
1

2

)
<
(
1− 1

η2

)n−1
· n ·

(
1− 1

η

)
.

Letting ε denote I1−1/η2(
n+1
2 , 12), we obtain the following consequence of the above

two inequalities, which we use to estimate the smooth Rényi divergence between
uniform distributions in hyperballs:

1− (2nε)
1

n+1/2 <
1

η2
< 1−

( ε
n

) 1
n−1

.

For ε = 2−c·n for a constant c > 0, we obtain that 1/η2 tends to 1 − 2−c when n
goes to infinity. For ε satisfying ε ≥ 2−o(n) and ε = o(1/n) with n going to infinity,
we obtain that 1/η2 ∼ − ln(ε)/n.

4.2 Optimality of Generic Rejection Sampling

This section focuses on rejection sampling itself, before instantiating it in the case of
Lyubashevsky’s signature. We show the optimality of its expected runtime. We first
recall another designs for rejection sampling, namely the greedy technique described
in [HJMR07], which optimizes the expected value of the logarithm of number of
iterations. However, when we want to minimize the expected number of iterations,
we show that rejection sampling as described in Section 2.2.3 is optimal.

4.2.1 Another Rejection Sampling Algorithm

In this section, we study the rejection sampling procedure described in [HJMR07].
Let m > 0, Pt and Ps two probability distributions over Zm with R1(Pt∥Ps) <∞.

Let p0(z) = 0 for any z ∈ Zm and recursively define the following:
αi(z) = min(Pt(z)− pi−1(z), (1− p∗i−1)Ps(z)),

pi(z) = pi−1(z) + αi(z),

p∗i =
∑

(z)∈Zm pi(z).

Finally, define βi(z) = min
(

Pt(z)−pi−1(z)
(1−p∗i−1)Ps(z)

, 1
)
.
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A:
1: i← 1
2: z←↩ Ps

3: u←↩ [0, 1]
4: if u ≤ βi(z) then
5: return z
6: else
7: i← i+ 1
8: go to 2
9: end if

A′:
1: Sample z←↩ Pt.
2: Return z.

Figure 4.1: Greedy rejection sampling

Lemma 4.2 (Correctness). For any i > 0 and z ∈ Zm, let r(i, z) be the proba-
bility that A returns z after exactly i iterations. Then it holds that r(i, z) = αi(z)
and

∑∞
j=1 r(j, z) = Pt(z). Put differently, the statistical distance between the distri-

bution of the output of A and A′ is 0.

Proof. The probability that (i, z) is output is Ps(z)p̄i−1 · βi(z), where p̄i−1 denotes
the probability that the i − 1 first values are rejected. We then show by induction
that p̄i = 1− p∗i for any i ∈ N. In the case i = 0, we have p̄0 = 1 = 1− p∗0.

Let us now assume that this holds for some i ∈ N. By induction, let us com-
pute p̄i+1 = p̄i ·

∑
z∈Zm(1− βi+1(z))Ps(z). We have:

p̄i+1 = (1− p∗i )
∑
z∈Zm

(1− βi+1(z))Ps(z)

= 1− p∗i −
∑
z∈Zm

min(Pt(z)− pi(z), Ps(z)(1− p∗i ))

= 1− p∗i −
∑
z∈Zm

αi+1(z)

= 1− p∗i+1.

Then ∀z ∈ Zm,∀i ∈ N, r(i, z) = αi(z). As pi(z) =
∑i

j=1 αi(z), we study these
partial sums and show that they indeed converge to Pt(z). To do so, we recall the
proof from [HJMR07, Claim IV.1]. We reproduce it here for completeness.

Let us first show that αi(z) ≥ (Pt(z)− pi−1(z))Ps(z). We have

1− p∗i−1 =
∑
z∈Zm

(Pt(z)− pi−1(z))

≥ Pt(z)− pi−1(z).

The above holds by definition of αi(z): both Pt(z) − p−1(z) and (1 − p∗i−1)Ps(z)
are ≥ (Pt(z)− pi−1(z))Ps(z). From that, we find that

Pt(z)− pi(z) ≤ (Pt(z)− pi−1(z))(1− Ps(z)),

and a straightforward induction show that this is ≤ Pt(z)(1 − Ps(z))
i. Finally, by

definition of pi−1(z), it holds that Pt(z)− pi(z) ≥ 0.
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4.2.2 Optimality of the Expected Number of Iterations

We now analyze to which extent the expected number of iterations of the rejection
step could be reduced in the case of exact rejection sampling from P to Q, and prove
the classical strategy to be optimal. This question arises from the variety of rejection
sampling techniques that have been studied in other fields.

There exist multiple variants of rejection sampling. For instance, the aforemen-
tioned procedure described in [HJMR07] takes a greedy approach to rejection sam-
pling and differs from the one we presented up until now. We are in the setting
where we have access to a sampler from distribution Q. These samples are denoted
by (Xi)i≥1 with Xi ∈ X for some set X and we are required to output a sample
from the distribution P over X . Any design of procedure is allowed, as long as the
output is one of the observed samples Xi. Let i∗ be the random variable denoting the
number of samples observed by an algorithm and we wish to determine how small
E(i∗) can be. We note that the work of [HJMR07], establishes that there exists a
rejection sampling algorithm achieving E(log i∗) = logR1(P∥Q) up to lower order
terms in R1(P∥Q), and that this is optimal. Here, we show that the minimum value
for E(i∗) is R∞(P∥Q).

In this section, we model a rejection sampling algorithm by a family of randomized
functions Ai : X i → {1, . . . , i}∪{r}. At step i, it sees the new sample Xi and based on
X1, . . . , Xi it computes Ai(X1, . . . , Xi). If it is equal to r, the algorithm asks for one
more sample and otherwise if Ai(X1, . . . , Xi) ∈ {1, . . . , i}, the algorithm terminates
and outputs the sample XAi(X1,...,Xi). Note that the running time of the algorithm
is defined by i∗ = inf{i ≥ 1 : Ai(X1, . . . , Xi) ̸= r}. We only consider algorithms for
which i∗ <∞ almost surely. Define the random variable J = Ai∗(X1, . . . , Xi∗) ∈ N+,
note that J ≤ i∗ and the output of the algorithm is XJ (i.e., the output sample may
not be the last one that was generated).

Theorem 4.3. Let P,Q be two discrete probability distributions. Any rejection sam-
pling algorithm (Ai)i≥1 sampling from P satisfies E(i∗) ≥ R∞(P∥Q).

Proof. We have by assumption for any x ∈ X ,

P (x) = Pr[XJ = x] =

∞∑
j=1

Pr[J = j,Xj = x] ≤
∞∑
j=1

Pr[i∗ ≥ j,Xj = x],

where we used the fact that the event [J = j] is contained in [i∗ ≥ j]. Now, observe
that the event [i∗ < j] only depends on X1, . . . , Xj−1 and as such it is independent
of the event [Xj = x]. This implies that [i∗ ≥ j] is independent of [Xj = x]. Then

P (x) ≤
∞∑
j=1

Pr[i∗ ≥ j] Pr[Xj = x] = E(i∗)Q(x) .

In the context of Lyubashevsky’s signature schemes with source distribution Q′,
target distribution P ′, challenge set C and signing key S, we have P = P ′ ⊗ U(C)
and Q would be the distribution of the pair (z, c) obtained by sampling y from Q′,
as well as c from U(C) and defining z = y + Sc.

The above proof can be adapted in the setting where P and Q are continuous
distributions by considering a sequence of balls converging to {x} instead of x.
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4.3 Lower Bounds for Perfect Rejection Sampling

We start by studying the case of perfect rejection sampling, which corresponds to the
setting of [Lyu09,DDLL13]. That is, we set ε = 0 in the formalism of Section 2.6.
We prove two lower bounds: (1) regarding signature size in both unimodal and
bimodal settings (Sections 4.3.1 and 4.3.2), and (2) regarding the expected number
of iterations of the rejection step (Section 4.2.2).

First, we analyze to which extent the expected norm of a distribution P can
be decreased, under the constraint that we can reject to it using shifted samples
from Q, where the Euclidean norm of the shift is bounded from above. This gives
lower bounds on the norm of the signature vector z in Lyubashevsky’s signature
scheme, as recalled in Section 2.6. We start by studying the easier case of continuous
distributions, and then provide a way to discretize the results.

Second, we prove than the classical rejection sampling strategy described above
is optimal if one aims to minimize the expected number of iterations of the rejec-
tion step in the case of perfect rejection sampling from P to Q. Specifically, the
expected number of iterations of any strategy is at least R∞(P∥Q), which is reached
by classical rejection sampling.

4.3.1 Optimal Compactness in the Unimodal Setting

The main result of this subsection is the following.

Theorem 4.4. Let m > 1, t > 0, V = Bm(t) and M > 1. Let f, g : Rm → [0, 1]
be two probability densities over Rm such that supv∈V R∞(f∥g+v) ≤ M . Then we
have:

Ex←↩f (∥x∥) ≥
t

M1/(m−1) − 1
.

Note that we place ourselves in a setup where shifts belong to a hyperball. In
the context of Lyubashevsky’s signature scheme, the shift is Sc, where S is the
signing key and c is the challenge (which is part of the signature). As S is unknown,
replacing the set of Sc’s by a hyperball seems to be a reasonable approach. Refining
this approximation would lead to significant difficulties in the proof, with unlikely
gains.

We now discuss the parameters M and m. As we exhibit later in Lemma 3.7, the
variable M is related to the rejection probability. The smaller M , the faster we expect
signing to be. To obtain a signing algorithm that terminates in polynomial time with
overwhelming probability, we are interested in M ≤ poly(λ). Recall that m = Ω(λ).
In this parameter regime, we have t/(M1/(m−1) − 1) ≈ t(m− 1)/ logM .

The role of distribution g in Theorem 4.4 may seem puzzling, as it does not ap-
pear in the result. It acts as a control of the discrepancy of f : distribution f must be
sufficiently wide to hide (in the Rényi divergence sense) a version of V that is blurred
by g. This forces Ex←↩f (∥x∥) to be rather large. The proof proceeds in two steps. The
first one consists in showing that there is no point favoring any direction and that we
can restrict the study to isotropic distributions, i.e., distributions whose density is a
function of the norm of the vector. The proof proceeds by averaging on shells. Theo-
rem 4.4 is then obtained by integrating the local constraint supv∈V R∞(f∥g+v) ≤M
over the whole support, with appropriate scaling.
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Lemma 4.5. Let m ≥ 1, t > 0 and V = Bm(t). Let f, g : Rm → [0, 1] be two
probability densities over Rm and define M = supv∈V R∞(f∥g+v). Then there exist
two probability densities f∗, g∗ that satisfy

• supv∈V R∞(f∗∥g∗+v) ≤M ,

• ∥x∥ = ∥y∥ =⇒ g∗(x) = g∗(y) and f∗(x) = f∗(y),

• Ez←↩f (∥z∥) = Ez←↩f∗(∥z∥).

Proof. Let us first take care of the m = 1 case. Define g∗ : x 7→ (g(x) + g(−x))/2
as well as f∗ : x 7→ (f(x) + f(−x))/2. First, for any x ∈ R and v ∈ [−t, t],
we have f(x) ≤ M · g(x − v) as well as f(−x) ≤ M · g(−x + v). This implies
that R∞(f∗∥g∗) ≤ M . Now, by construction, these two functions are even. More-
over, they are normalized and are thus probability densities. Finally, we have the
equality Ex←↩f∗(|x|) = (Ex←↩f (|x|) + Ex←↩f (|−x|))/2 = Ex←↩f (|x|).

In the following, we assume that m ≥ 2. To define f∗ and g∗, we switch from
Cartesian to hyperspherical coordinates. Let (x1, . . . , xm) and (ρ, θ1, . . . , θm−1) both
representing x in respectively Cartesian and hyperspherical coordinates. They satisfy
the relations

∥x∥ = ρ

x1 = ρ cos(θ1)

x2 = ρ sin(θ1) cos(θ2)

... =
...

xm−1 = ρ
( ∏
i≤m−2

sin(θi)
)
cos(θm−1)

xm = ρ
( ∏
i≤m−1

sin(θi)
)
.

Let θ⃗ = (θ1, . . . , θm−1) and x(ρ, θ⃗) be the vector whose coordinates are defined as
above. Notice that the absolute value of the determinant of the variable change
Jacobian is of the form ρm−1D(θ⃗) for some D : [0, π)m−2 × [0, 2π) → R≥0, as all
columns except the first one are of the form ρ · yi(θ⃗), and the first column does not
depend on ρ. It then holds that

1 =

∫
Rm

f(x) dx =

∫ ∞
0

ρm−1
∫
[0,π]m−2×[0,2π]

f(x(ρ, θ⃗))D(θ⃗) dθ⃗ dρ.

We then define:

f∗ : z 7→

∫
[0,π]m−2×[0,2π] f(x(∥z∥, θ⃗))D(θ⃗) dθ⃗∫

[0,π]m−2×[0,2π]D(θ⃗) dθ⃗
.

This is a probability density, as it is integrable and
∫
Rm f∗(x) dx = 1. The latter can

be seen by switching once more to hyperspherical coordinates. By construction, it
is isotropic. We also have Ez←↩f (∥z∥) = Ez←↩f∗(∥z∥), which is also seen by applying
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the same change of variables. We define g∗ in the same way. It remains to prove
that supv∈V R∞(f∗∥g∗+v) ≤M .

Let z ∈ Rm and v ∈ V . Let λ = ∥z−v∥/∥z∥. We consider the scaling s : y 7→ λ·y.
For any y ∈ Sm(∥z∥) (i.e., any y ∈ Rm with ∥y∥ = ∥z∥), we have f(y) ≤M ·g(s(y))
as s(y) can be written as y−v′, where v′ ∈ V . Indeed, using the triangle inequality:

∥s(y)− y∥ = |λ− 1|∥z∥ = |∥z− v∥ − ∥z∥| ≤ ∥v∥ ≤ t.

Decomposing every element y ∈ Sm(∥z∥) in hyperspherical coordinates as above
with ρ = ∥z∥ for unique (θ1, . . . , θm−1) ∈ [0, π]m−2 × [0, 2π], we multiply both sides
by D(θ⃗), which is nonnegative, and we integrate over [0, π]m−2 × [0, 2π] to get:∫

[0,π]m−2×[0,2π]
f(x(∥z∥, θ⃗))D(θ⃗) dθ⃗ ≤M

∫
[0,π]m−2×[0,2π]

g(λx(∥z∥, θ⃗))D(θ⃗) dθ⃗.

We recall the definition of λ and divide both sides by
∫
[0,π]m−2×[0,2π]D(θ⃗) dθ⃗.

We finally move on to proving Theorem 4.4.

Theorem 4.4. Thanks to Lemma 4.5, we can, without loss of generality, assume that
both f and g are isotropic. For k ≥ 0, we define µk =

∫∞
0 rkf(r) dr, which is the k-th

order moment of f . In particular, we have µm−1 = 1/Sm and µm = Ex←↩f (∥x∥)/Sm.
Indeed, using a hyperspherical variable change, we see that, for any β ∈ {0, 1}:

Ex←↩f (∥x∥β) =
∫
Rm

∥x∥βf(x) dx

=

∫ ∞
0

ρm−1+βf(ρ)

∫
[0,π]m−2×[0,2π]

D(θ⃗) dθ⃗ dρ

= Sm · µm−1+β.

The above implies that Ex←↩f (∥x∥) = µm/µm−1.
For any x ≥ 0 and u ∈ [−t, t], it holds that f(x) ≤M · g(|x− u|). In particular,

for x ≥ t, we have f(x − t) ≤ M · g(x). Let us multiply both sides by xm−1 and
integrate over [t,+∞). With a change of variable on the left-hand side, this gives∫ ∞

0
(x+ t)m−1f(x) dx ≤M ·

∫ ∞
t

xm−1g(x) dx

≤M ·
∫ ∞
0

xm−1g(x) dx

= M ·
∫ ∞
0

xm−1f(x) dx,

by recognizing that the right-hand side is M ·µm−1 (which is the same for f and g).
Grouping everything on the same side, we have

0 ≤
∫ ∞
0

(
Mxm−1 − (x+ t)m−1

)
f(x) dx. (4.1)
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Let C = t/(M1/(m−1) − 1). For m > 2, we rewrite the integrand as

Mxm−1 − (x+ t)m−1 =
(
M

1
m−1x− (x+ t)

)
·
m−2∑
k=0

(
xM

1
m−1

)k
(x+ t)m−2−k

=
(
M

1
m−1 − 1

)
(x− C) ·

m−2∑
k=0

(
xM

1
m−1

)k
(x+ t)m−2−k.

For m = 2, the above holds by replacing the sum by 1. Now, note that the inequal-
ity xM1/(m−1) ≥ x+ t holds if and only if x ≥ C. Hence the following upper bound
holds for any x ≥ 0, if m > 2:

(x− C) ·
m−2∑
k=0

(xM
1

m−1 )k(x+ t)m−2−k ≤ (x− C)(m− 1)M
m−2
m−1xm−2.

When m > 2, we divide by (M1/(m−1)−1)M (m−2)/(m−1)(m−1) > 0 in Equation (4.1):

C ·
∫ ∞
0

xm−2f(x) dx ≤
∫ ∞
0

xm−1f(x) dx.

Note that it also holds for m = 2. This can be rewritten as µm−1/µm−2 ≥ C.
Observe that µm ·µm−2 ≥ (µm−1)

2. Indeed, the Cauchy-Schwarz inequality states
that for any real random variables X,Y , it holds that |E(XY )|2 ≤ E(X2)E(Y 2).
We instantiate it with the two (non-independent) random variables X = ∥x∥m/2

and Y = ∥x∥(m−2)/2, where x ←↩ f . Then XY = ∥x∥
m
2
+m−2

2 = ∥x∥m−1. To
conclude, note µm · µm−2 ≥ (µm−1)

2 implies that µm/µm−1 ≥ µm−1/µm−2 ≥ C.
This completes the proof.

For the discrete case, given a discrete distribution P , we let f : x 7→ P (⌈x⌋) be
a probability density over Rm, and we have, by the triangle inequality

Ex←↩f (∥x∥) ≤ Ex←↩P (∥x∥) +
√
m

2
.

Theorem 4.4 can then be adapted to the discrete case, up to subtracting
√
m/2

from the lower bound. In all setups considered in this work, this term is significantly
smaller than t/(M1/(m−1) − 1).

Corollary 4.6. Let m,M > 1, t > 0, and V = Bm(t)∩Zm. Let P and Q be two
discrete probability distributions over Zm such that supv∈V R∞(P∥Q+v) ≤M . Then:

Ex←↩P (∥x∥) ≥
t

M1/(m−1) − 1
−
√
m

2
.

4.3.2 Optimal Compactness in the Bimodal Setting

The following result holds in the bimodal setting, with a similar proof to Theorem 4.4.

Theorem 4.7. Let m ≥ 3, t > 0, V = Bm(t) and M > 1. Let f, g : Rm → [0, 1] be
two probability densities over Rm such that supv∈V R∞(f∥g±v) ≤ M , where g±v is
the density x 7→ 1

2(g(x− v) + g(x+ v)). Then the following holds:

Ex←↩f (∥x∥) ≥
t√

M
2

m−2 − 1

.
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As in the unimodal case, we first radialize the densities.

Lemma 4.8. Let m ≥ 1, t > 0 and V = Bm(t). Let f, g : Rm → [0, 1] be two
probability densities over Rm and define M = supv∈V R∞(f∥g±v), where g±v is as
in Theorem 4.7. Then there exist two probability densities f∗, g∗ that satisfy

• supv∈V R∞(f∗∥g∗±v) ≤M ,

• ∀x,y ∈ Rm, ∥x∥ = ∥y∥ =⇒ f∗(x) = f∗(y) and g∗(x) = g∗(y),

• Ez←↩f (∥z∥) = Ez←↩f∗(∥z∥).

Proof. We proceed as in the proof of Lemma 4.5 to define f∗ and g∗, and use the
same notations. Let

f∗ : z 7→

∫
[0,π]m−2×[0,2π] f(x(∥z∥, θ⃗))D(θ⃗) dθ⃗∫

[0,π]m−2×[0,2π]D(θ⃗) dθ⃗
.

We define g∗ in the same way, swapping f with g. As for Lemma 4.5, the first two
claims hold.

Let z ∈ Rm and v ∈ V . For any y ∈ Sm(∥z∥), let sy be the rotation that
maps z to y. It is an isometry, so for any b ∈ {0, 1}, it holds ∥y + (−1)bsy(v)∥ =
∥z+ (−1)bsy(v)∥. We also have ∥sy(v)∥ = ∥v∥, implying that sy(v) ∈ V . Then for
any y ∈ Sm(∥z∥):

f(sy(z)) ≤
M

2
(g(sy(z− v)) + g(sy(z+ v))) .

By construction, there exist θ⃗0 such that s
x(∥z∥,θ⃗)(z) = x(∥z∥, θ⃗ + θ⃗0). We multiply

both sides with D(θ⃗), which is nonnegative, and integrate over [0, π]m−2× [0, 2π]. It
yields the first claim, up to dividing by the normalisation constant.

We finally move on to proving the main result.

Theorem 4.7. Thanks to Lemma 4.8, we assume without loss of generality that
both f and g are isotropic. We define the moments of f, g by µ

(ϕ)
k :=

∫∞
0 xk ·ϕ(x) dx

for k ≥ 0 and ϕ ∈ {f, g}. We have µ
(ϕ)
m = Ex←↩ϕ(∥x∥)/Sm and µ

(ϕ)
m−1 = 1/Sm as in

the proof of Theorem 4.4. For any r ≥ 0, u ∈ [0, t] and θ ∈ [0, 2π), it holds that:

f(r) ≤ M

2

(
g
(√

r2 + u2 − 2ru cos(θ)
)
+ g

(√
r2 + u2 + 2ru cos(θ)

))
.

We will only consider θ = π/2 as it will suffice to obtain the bound. This gives
for any r ≥ 0 and u ∈ [0, t]:

f(r) ≤Mg
(√

r2 + u2
)
.

Let us then multiply both sides by r
(√

r2 + t2
)m−2

and integrate over R≥0. On

the right-hand side, we use the change of variable y =
√
r2 + t2, which yields in

turn dy = r/
√
r2 + t2dr, to obtain:∫ ∞
0

r
(√

r2 + t2
)m−2

f(r) dr ≤M ·
∫ ∞
t

ym−1g(y) dr.
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Since y 7→ ym−1g(y) takes values in R≥0, we have that M/Sm = Mµ
(g)
m−1 is an upper

bound for the right-hand side. By reordering terms, we obtain:

0 ≤
∫ ∞
0

r

[(
M

2
m−2 r2

)m−2
2 −

(
r2 + t2

)m−2
2

]
f(r) dr.

Now, note that for m ≥ 4, we have:(
M

2
m−2 r2

)m−2
2 −

(
r2 + t2

)m−2
2

=
M

2
m−2 r2 − r2 − t2

M
1

m−1 r +
√
r2 + t2

m−3∑
k=0

(
M

2
m−2 r2

) k
2
(r2 + t2)

m−3−k
2 .

This also holds for m = 3 if replacing the sum by 1. Note that for r ≥ 0, we
have M

1
m−1 r+

√
r2 + t2 ≥ t. Let C = t/(M

2
m−2 −1)1/2. Note that r2+t2 ≤M

2
m−2 r2

holds if and only if r ≥ C. Then for r ≥ 0 and m ≥ 4, we have(
M

2
m−2 r2

)m−2
2 −

(
r2 + t2

)m−2
2 ≤ (M

2
m−2 − 1)(r2 − C2)

m− 2

t
·M

m−3
m−2 rm−3.

Since all constants are positive, we obtain (including for m ≥ 3):

0 ≤
∫ ∞
0

(rm − C2rm−2)f(r) dr.

Equivalently, µ(f)
m ≥ C2µ

(f)
m−2, which we rewrite as (µ(f)

m /µ
(f)
m−1) · (µ

(f)
m−1/µ

(f)
m−2) ≥ C2.

As we have seen in the proof of Theorem 4.4, the Cauchy-Schwarz inequality implies
that µ

(f)
m−1/µ

(f)
m−2 ≤ µ

(f)
m /µ

(f)
m−1. This leads to the desired lower bound.

For M ≤ poly(λ) and m = Ω(λ) as in the discussion following Theorem 4.4, we
have t/(M2/(m−2) − 1)1/2 ≈ t

√
(m− 2)/(2 logM). Similarly to the unimodal case,

the lower bound can be adapted to integer distributions with limited loss (for all
setups considered in this work).

Corollary 4.9. Let m ≥ 3, t > 0, V = Bm(t) ∩ Zm and M > 1. Let P and Q be
two discrete probability distributions over Zm such that supv∈V R∞(P∥Q±v) ≤ M ,
where Q±v is as in Theorem 4.7. Then the following holds:

Ex←↩P (∥x∥) ≥
t√

M
2

m−2 − 1

−
√
m

2
.

4.4 Approaching the Lower Bounds with Hyperballs

We show that continuous uniform distributions in hyperballs almost reach the lower
bounds in both the unimodal and bimodal perfect rejection sampling settings. We
also consider the imperfect unimodal setting and find parameters that are asymp-
totically at least as good as the ones obtained for the Gaussian distribution (using
our analysis described in Section 3.4.1.3). As continuous hyperball uniform distri-
butions are easier to study than their discrete counterpart, Further, we show that
a slight modification of Lyubashevsky’s signature allows for the target and source
distributions to be continuous.

We also compare this choice of distributions with the uniform distributions in
hypercubes and with Gaussians, both asymptotically and with concrete parameters.
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4.4.1 Uniform Distributions in Hyperballs

The first step is to compute the divergence in the three settings: unimodal, either
perfect or imperfect rejection sampling and bimodal perfect rejection sampling. The
first case can actually be seen as a particular case of the second one, and we sum-
marize both in the following lemma. The function I appearing in the statement is
defined in Section 4.1, and comes into play when dealing with hyperspherical caps.

Lemma 4.10 (Smooth Divergence). Let m ≥ 1 and v ∈ Rm. Let η > 1 and
let ε = I1−1/η2(

m+1
2 , 12)/2 ∈ [0, 1/2). Let r, r′ > 0 with r′2 ≥ r2 + ∥v∥2 + 2r∥v∥/η.

Then:

Rε
∞

(
U(Bm(r))∥U(Bm(r′,v))

)
=
(r′
r

)m
.

Let M > 1. The above is ≤M if r ≥ ∥v∥ ·
1
η
+
√

1
η2

+M2/m−1

M2/m−1 and r′ = M1/mr.

For ε = 0, we have η = 1. In that case, we can set r = ∥v∥/(M1/m − 1),
which almost matches the lower bound from Theorem 4.4. As seen in Section 4.1,
for ε = 2−c·m with a constant c > 0, we have that 1/η2 −−−−−→

m→+∞
1 − 2−c. For ε

satisfying ε ≥ 2−o(m) and ε = o(1/m) with m going to infinity, we have that 1/η2 ∼
− log(ε)/m.

Proof. Assume that there exists some cut C with vol(C)/Vm(r) ≤ ε such that the
divergence is defined, i.e., with Bm(r)\C ⊆ Bm(r′,v). Then the divergence is (r′/r)m,
as the ratio of densities is constant and equal to (r′/r)m over Bm(r) \ C. To prove
the first claim, it hence suffices to show that such a cut C exists.

Let Cη := {x ∈ Bm(r)|⟨x,v⟩ ≥ −∥v∥r/η}. This is the intersection of a ball with
an affine half-space, i.e., an m-dimensional hyperspherical cap. By Lemma 4.1, its
volume is Vm(r)

2 ·I1−1/η2(m+1
2 , 12). The definition of η ensures that vol(Cη)/Vm(r) = ε.

We now check that Bm(r) \ Cη ⊆ Bm(r′,v). Let x ∈ Bm(r) \ Cη. We have

∥x− v∥ ≤
√
r2 + ∥v∥2 + 2r∥v∥/η.

By assumption, the latter is no larger than r′, implying that x ∈ Bm(r′,v).
Finally, by combine the condition on r and r′ and the equality r′ = M1/mr, we

get

r2 + ∥v∥2 + 2
r∥v∥
η
≤M2/mr2,

which is a degree-2 inequality on r. Solving it completes the proof.

Lemma 4.11 (Divergence in the Bimodal Setting). Let m ≥ 1 and v ∈ Rm.
Let r, r′ > 0 such that r′2 ≥ r2 + ∥v∥2. Let U(Bm(r′),±v) denote the distribution
of z where b←↩ U({0, 1}) and z←↩ U(Bm(r′, (−1)bv)). Then:

R∞

(
U(Bm(r))∥U(Bm(r′),±v)

)
=
(
1 + χ<r+∥v∥(r

′)
)
·
(r′
r

)m
,

where χ<r+∥v∥ denotes the indicator function of the set {x ∈ R|x ≤ r + ∥v∥}.
Let M > 1. The above is ≤M if r ≥ ∥v∥/

√
(M/2)2/m − 1 and r′ = (M/2)1/mr.
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Note that the choice of r almost matches the lower bound from Theorem 4.7.

Proof. The support of U(Bm(r′),±v) is exactly Bm(r′,v) ∪ Bm(r′,−v) and its den-
sity is z 7→ (χBm(r′,v)(z) + χBm(r′,−v)(z))/(2Vm(r′)). Thus, the divergence is finite
when Bm(r) ⊆ Bm(r′,v) ∪ Bm(r′,−v). It is the case if any x with ∥x∥ ≤ r satis-
fies ∥x − v∥ ≤ r′ or ∥x + v∥ ≤ r′. We assume, w.l.o.g., that ∥x − v∥ ≤ ∥x + v∥.
Then

∥x− v∥ =
√
∥x∥2 + ∥v∥2 − 2⟨x,v⟩ ≤

√
∥x∥2 + ∥v∥2.

Thanks to the assumption on r and r′, we conclude that the divergence is finite.
Now, the ratio of the densities only takes three values. If x ̸∈ Bm(r) then the

ratio is 0. If x ∈ Bm(r)∩Bm(r′,v)∩Bm(r′,−v) then the ratio is (r′/r)m. Finally, if x
belongs to Bm(r)∩Bm(r′,v) but not to Bm(r′,−v), then the ratio is 2(r′/r)m. This
last case only occurs if Bm(r) ̸⊆ Bm(r′,−v). This is the case only if r′ < r + ∥v∥.
This completes the proof of the first claim.

For the second claim, note that the assumption on r and r′ is satisfied, and that
the divergence bound is indeed ≤M .

In this bimodal case, the rejection test is as follows. One computes the norms
of both z and z − 2(−1)bv, where z = y + (−1)bv. If only the first one is ≤ r,
then the sample is accepted. If both are ≤ r, then it is accepted and rejected with
probability 1/2.

Finally, in order to use the uniform distribution in a hyperball, we verify that
there is sufficient min-entropy in the first n coordinates given the remaining m − n
coordinates.

Lemma 4.12. Let m ≥ 6, n ≥ 1 and r ≥ 2
√
m. Let x = (x⊤0 |x⊤1 )⊤ be a random

variable over Rm whose distribution is U(Bm(r)), where x0 has dimension n. It holds
that

H∞
(
⌈x0⌋|⌈x1⌋

)
U(Bm(r))

≥
(
log2

1

0.85

)
· n .

Proof. We omit the U(Bm(r)) subscripts for the min-entropies. First, note that we
have H∞(⌈x0⌋|⌈x1⌋) ≥ H∞(⌈x0⌋|x1). By definition of the conditional min-entropy,
we have

2−H∞(⌈x0⌋|x1) =

∫
x1∈Bm−n(r)

max
xint
0 ∈Zn

 ∫
x0∈B∞n (1/2,xint

0 )

px0,x1(x0,x1) dµ(x0)

 dµ(x1) ,

where the density satisfies

p(x0,x1)(x0,x1) =
1

Vm(r)
χ<r2(∥x0∥2 + ∥x1∥2).

Recall that χ<r2(y) = 1 if y ≤ r2 and 0 otherwise and that Vm(r) is the volume of
the Euclidean ball of radius r in dimension m.

70



4.4. Approaching the Lower Bounds with Hyperballs

The maximum is achieved when xint
0 = 0. Indeed, for any xint

0 ∈ Zm, we have∫
x0∈B∞n (1/2,xint

0 )
χ<r2(∥x0∥2 + ∥x1∥2) dµ(x0)

=

∫
x0∈B∞n (1/2,0)

χ<r2(∥x0 + xint
0 ∥2 + ∥x1∥2) dµ(x0)

≤
∫
x0∈B∞n (1/2,0)

χ<r2(∥x0∥2 + ∥x1∥2) dµ(x0) ,

where we used the fact that if ∥x0∥∞ ≤ 1
2 and xint

0 ∈ Zn, then ∥x0 + xint
0 ∥ ≥ ∥x0∥.

As a result, we can write

2−H∞(⌈x0⌋|x1) = Pr

[
∥x0∥∞ ≤

1

2

]
.

Now we use the sub-independence of the coordinates slabs in the Euclidean ball
(see [BP98]), i.e., denoting x0 = (x01, x02, . . . , x0n)

T , we have

Pr

[
∥x0∥∞ ≤

1

2

]
≤

n∏
i=1

Pr

[
|x0i| ≤

1

2

]
.

We now use Lemma 4.13 below to get

Pr

[
|x01| ≤

1

2

]
= Pr

[
|x01|
r
≤ 1

2r

]
≤ Pr

[
|x01|
r
≤ 1

4
√
m

]
≤ 0.843 + 2 exp(−m) ≤ 0.85 ,

for r ≥ 2
√
m and m ≥ 6.

As we used it in the proof above, we prove the following result.

Lemma 4.13. Let (x1, . . . , xm)T be uniformly chosen in the m-dimensional Eu-
clidean ball of radius 1. Then

Pr

[
|x1| ≤

1

4
√
m

]
≤ 0.843 + 2 exp(−m) .

Proof. To show this, we use the fact (see [BGMN05]) that we can obtain sam-
ples (x1, . . . , xm)T by first sampling m independent Gaussian variables g1, . . . , gm

with densities t 7→ ρ1/
√
2(t)/

√
π and then setting (x1, . . . , xm)T = (g1,...,gm)T√∑

i≤m g2i +z
,

where z is independent and has an exponential distribution (density t 7→ exp(−t)).
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With this notation, we have, for all δ > 0:

Pr

[
x21 >

δ2

m

]
= Pr

[
g21∑

i≤m g2i + z
>

δ2

m

]

≥ Pr

g21 > 4δ2 and
∑
i≤m

g2i ≤ 3m and z ≤ m


≥ Pr [|g1| > 2δ]− Pr

∑
i≤m

g2i > 3m

− Pr [z > m]

≥ Pr [|g1| > 2δ]− exp(−m)− exp(−m) .

For the last inequality, note that the distribution of 2
∑

i≤m g2i is the chi-squared
distribution of parameter m. If F denotes its cumulative density function, then we
have the tail bound 1− F (x) ≤ ((x/m) exp(1− x/m))m/2 for x > m, which we use
with x = 6m. Taking δ = 1/2 and numerically evaluating the first term allows to
complete the proof of the lemma.

4.4.2 Lyubashevsky’s Signature with Continuous Distributions

We consider continuous distributions over hyperballs, which are not directly com-
patible with Lyubashevsky’s signature scheme, as recalled in Section 2.6. We argue
that it is possible to extend Lyubashevsky’s signature scheme to the case of contin-
uous distributions, and that this comes with very limited complications (in the case
of Gaussians, it could be simpler to use continuous Gaussians with this modified
scheme, than using discrete Gaussians with the original scheme).

We use the same notations as in Section 2.6, with the source density g and the
target density f being with supports over Rm rather than Zm. The modified signature
scheme handling continuous source and target distributions is presented in Figure 4.2.
Key generation is unchanged from Figure 2.5. Concretely, the changes compared to
the construction described in Figure 2.5 are as follows: (i) y is now sampled from
a continuous distribution with density g, (ii) c is now computed as H(A⌈y⌋, µ),
(iii) with z still being defined as y+Sc, if the test passes, and the returned signature
is now (⌈z⌋, c). Note that if f and g were actually discrete densities, then we would
exactly recover the scheme from Figure 2.5. For correctness, note that

A⌈z⌋ −Tc = A⌈y + Sc⌋ −Tc = A (⌈y⌋+ Sc)−Tc = A⌈y⌋,

where the second equality holds because Sc is an integer vector.
Looking back to Chapter 3, we explain how to tweak the analysis from Sec-

tion 3.4.1 to the continuous case. Having large commitment min-entropy is implied
by having that H∞(⌈x0⌋|⌈x1⌋) is large, where x = (x⊤0 |x⊤1 )⊤ is a random variable
over Rm whose distribution is g and x0 has dimension n. In the case of the uniform
distribution in a hyperball, this is provided by Lemma 4.12. We obtain the same
flavor of zero-knowledge, as the data processing inequality of the statistical distance
and the Rényi divergence are used similarly.

Finally, we note that the modified scheme involves computations over real num-
bers. These can be securely replaced by finite precision computations, using standard
techniques such as described in [Pre17] and as we apply in Chapter 5.
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Sign(µ,A,S) :

1: y←↩ g
2: c← H(A⌈y⌋, µ)
3: z← y + Sc
4: u←↩ U([0, 1])

5: if u ≤ min
(

f(z)
M ·g(y) , 1

)
then

6: return (⌈z⌋, c)
7: else
8: go to Step 1
9: end if

Verify(µ, z, c,A,T = AS) :

1: if ∥z∥ ≤ γ and c = H(Az−Tc, µ)
then

2: return 1
3: else
4: return 0
5: end if

Figure 4.2: Lyubashevsky’s signature scheme with continuous distributions.

4.4.3 Comparison with other Distributions

Let t = maxS,c∥Sc∥. In Table 4.1, we summarize the expected norm of signatures
(up to a constant factor) for diverse distributions P and Q, and for a target expected
number of iterations M . We consider three specific pairs of distributions, two of them
being previously considered distributions (Gaussians and uniforms in hypercubes),
and the last one being uniform distributions in hyperballs, introduced above. We
consider three different scenarios:
• unimodal distributions and perfect rejection sampling, in column ε = 0;

• unimodal distributions and imperfect rejection sampling – we use approxima-
tions specific to the choice of ε ≥ 2−o(m) and ε = o(1/m);

• bimodal source distribution, perfect rejection sampling, in column “Bimodal”.
Note that the second scenario relies on our improved analysis relying on the Rényi
divergence for the imperfect case (see Section 3.4.1.3). This parameter range for ε is
not appropriate when using the analysis relying on the statistical distance.

In the last column, we emphasize if the rejection test is simple or not. For
hyperballs, it consists in comparing the norm of the sample with the radius of the
target hyperball in the unimodal case. For the bimodal case, one needs to compute
two norms, and if necessary, to flip a coin (as discussed after Lemma 4.11).

The entries in the table are approximations for m→∞, t = ω(1) and M = 2o(m),
and for a given choice of P , we optimize the parametrization of Q (e.g., the radius
in case of a hyperball) to minimize the signature norm.

The values of the table are obtained by computing the parameters for the underly-
ing distributions (radii r, r′ of the hypercubes or hyperballs and standard deviation σ
of Gaussians) for our constraints M and t. This is done by computing their (smooth)
Rényi Divergence, as done in Lemmas 4.10 and 4.11 for hyperballs. Proofs for hy-
percubes and Gaussians can be found in Section 4.4.4. Given these parameters, the
expected norm immediately follows (r

√
m for a hypercube of radius r, σr for a Gaus-

sian of standard deviation σ, and r for a hyperball of radius r). To conclude this
section, we emphasize the following points:

• Gaussians and Hyperballs are asymptotically equivalent and reach the lower
bounds in the bimodal setting; Hyperballs further reach our lower bound in
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Choices for ε = 0 ε ≥ 2−o(m) and ε = o(1/m) Bimodal Rejection
P and Q Test

Hypercubes tm3/2

logM
tm3/2

logM
tm3/2

logM Simple

Gaussians ∞
t
√
m
√

log 1
ε
+logM

logM
t
√
m√

logM
Complex

Hyperballs tm
logM

t
√
m
√

log 1
ε
+logM

logM
t
√
m√

logM
Simple

Table 4.1: Expected norm of signatures depending on the choice of distributions and
(im)perfectness of rejection sampling.

the exact unimodal setting as well;

• Hyperballs enjoy a significantly simpler rejection test compared to Gaussians;

• The bimodal setting (in both Gaussian and Hyperballs cases) leads to the most
compact signatures.

4.4.4 Divergence of Usual Distributions

Lastly, we bound the (smooth) Rényi divergence for distributions classically used in
Lyubashevsky’s signatures. This lets us build Table 4.1.

4.4.4.1 Uniform Distribution in Hypercubes

For simplicity and ease of implementation, some applications rely on uniform distri-
butions in hypercubes. The following result is implicit in [Lyu09].

Lemma 4.14 (Rényi Divergence). Let m ≥ 1 and v ∈ Zm. Let r, r′ ≥ 1/2 such
that r′ ≥ r + ∥v∥∞. Then it holds that

R∞

(
U(B∞m (r) ∩ Zm)∥U(B∞m (r′,v) ∩ Zm)

)
≤
(
2r′ + 1

2r − 1

)m

.

Let M > 1. The above is ≤M if r ≥ ∥v∥∞+(M1/m+1)/2

M1/m−1 and r′ = r + ∥v∥∞.

Proof. For the divergence to be defined, we need B∞m (r)∩Zm ⊆ B∞m (r′,v)∩Zm. This
is ensured by the constraint r′ ≥ r + ∥v∥∞. In that case, the divergence is the ratio
of the number of elements in each support, leading to the upper bound. The second
claim follows by elementary calculations.

The downside of the infinite norm is its lack of geometry: the use of the scalar
product induced by the Euclidean norm is crucial to improve the bounds for the
smooth divergence and the divergence with a bimodal version of the distribution,
both for Gaussian distributions and uniforms in hyperballs. In contrary, these
two setting do not bring significant improvements to the radius condition from
Lemma 4.14 when considering the hypercube-uniform distribution.
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4.4.4.2 Gaussian Distributions

By Lemma 2.9 and the fact that lima→+∞Ra(P∥Q) = R∞(P∥Q), we see that the
Rényi divergence of infinite order between two Gaussian distributions with same
standard deviation but different centers is infinite. However Lemma 2.6 gives us
a finite upper bound on the smooth divergence. The result is of the same flavour
as [Lyu12, Lemma 4.5], but our proof clearly states the influence of ε on the bound.

Lemma 4.15 (Smooth Rényi Divergence). Let m > 0,v ∈ Rm, ε ∈ (0, 1) and σ > 0.
We have:

Rε
∞

(
DZm,σ∥DZm,σ,v

)
≤ exp

∥v∥2
2σ2

+
∥v∥

√
2 log 1

ε

σ

 ,

Let M > 1. The above is ≤M if

σ ≥ ∥v∥√
2 log(M)

(√
log

1

ε
+

√
log

1

ε
+ logM

)
.

Proof. Combining Lemmas 2.9 and 2.6, we obtain that for any a ∈ (1,+∞):

Rε
∞(P∥Q) ≤ exp

(
a∥v∥2

2σ2
+

1

a− 1
log

1

ε

)
.

Let a = 1 + σ
∥v∥

√
2 log 1

ε , which minimizes the above quantity. This yields

Rε
∞(P∥Q) ≤ exp

(
∥v∥2

2σ2
+
√
2
∥v∥
σ

√
log

1

ε

)
.

To find when this is ≤M , we take the logarithm and multiply by σ2 on both sides.
Solving a degree-2 equation in σ leads to the second claim.

The following is borrowed from [DDLL13]. We prove it for the sake of complete-
ness.

Lemma 4.16 (Rényi Divergence with a Bimodal Gaussian). Let m ≥ 1, v ∈ Rm

and σ > 0. Then the following holds:

R∞

(
DZm,σ∥BDZm,σ,v

)
≤ exp

(
∥v∥2

2σ2

)
.

It is an equality if v ∈ Zm. Let M ≥ 1. The bound is ≤M if σ ≥ ∥v∥/(2
√
logM).

Proof. Let z ∈ Zm. We have:

DZm,σ(z)

BDZm,σ,v(z)
=

ρσ,v(Zm)

ρσ(Zm)
·

exp
(
−∥z∥2
2σ2

)
exp

(
−∥z∥2−∥v∥2

2σ2

)
cosh

(
|⟨z,v⟩|
σ2

)
=

ρσ,v(Zm)

ρσ(Zm)
·

exp
(
∥v∥2
2σ2

)
cosh

(
|⟨z,v⟩|
σ2

)
≤ ρσ,v(Zm)

ρσ(Zm)
· exp

(
∥v∥2

2σ2

)
,
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Hypercube-Uniform Previous Gaussian
Medium Recommended Very High Medium Recommended Very High

Ring dimension ℓ 256 256 256 256 256 256
q 8380417 8380417 8380417 918529 918529 918529

(n,m− n) (4, 4) (6, 5) (8, 7) (3, 4) (4, 5) (6, 7)
η 2 4 2 1 1 1
S N/A N/A N/A 50 55 65
τ 39 49 60 39 49 60

t = S ·
√
τ N/A N/A N/A 312 385 503

B N/A N/A N/A 386K 313K 457K
γ2

q−1
88

q−1
32

q−1
32

q−1
256

q−1
256

q−1
128

d 13 13 13 12 11 11
M 4.25 5.1 3.85 4 4 4

BKZ block-size b to break SIS 423 (417) 638 (603) 909 (868) 408 (350) 639 (552) 1018 (887)
Best known classical bit-cost 123 (121) 186 (176) 265 (253) 119 (102) 186 (161) 297 (259)
Best known quantum bit-cost 108 (107) 163 (157) 233 (223) 104 (89) 164 (141) 261 (227)

BKZ block-size b to break LWE 422 622 860 471 619 934
Best known classical bit-cost 123 181 251 137 181 273
Best known quantum bit-cost 108 159 221 121 159 240

Expected signature size 2420 3293 4595 2009 2571 3706
Expected public key size 1312 1952 2592 800 1184 1760

Table 4.2: Parameters for Dilithium and updated Dilithium-G.

where the last inequality comes from the fact that cosh(x) ≥ 1 for any x ∈ R. Note
that for z ∈ Zm orthogonal to v, this upper bound is reached. Finally, using [MR07,
Lemma 2.9], we have that ρσ,v(Zm)

ρσ(Zm) ≤ 1. If v ∈ Zm this is actually an equality.

As a side note, we observe that this result can be extended to any order and
compared to standard results between two Gaussian distributions.

Corollary 4.17. Let m ≥ 1, v ∈ Rm and σ > 0. Then the following holds:

∀a ∈ [1,+∞], Ra(DZm,σ∥BDZm,σ,v) ≤ exp

(
∥v∥2

2σ2

)
= (Ra(DZm,σ∥DZm,σ,v))

1
a .

Proof. The Rényi divergence is increasing in its order. Thus the upper bound from
Lemma 4.16 is also an upper bound for any order a ∈ [1,+∞].

4.4.5 Concrete Parameters

In this section, we use the core-SVP methodology introduced in [ADPS16], a con-
servative security estimation method in lattice cryptography.

To study the concrete impact of the choice of distributions on signature size, we
consider Dilithium. The left side of Table 4.2 shows the parameters for three security
levels of the round-3 documentation of the CRYSTALS-Dilithium submission to the
NIST post-quantum project [BDK+20]. The right side of Table 4.2 gives updated
parameters for Dilithium-G, which relies on Gaussian distributions whose description
is available in the first version of the eprint version of [DKL+18]. For this update, we
set the value of M to 4 and aim for security levels consistent with those of Dilithium.
We update the quantum costs by plugging in the improvements from [CL21].

In these schemes, the verification key is a module-LWE sample Bs1+s2 where s1
and s2 have ℓ∞-norms ≤ η. For each coordinate, the lowest d bits are dropped. A
parameter τ is used to control the ℓ1-norm of any hashed value c, so that c has suffi-
cient min-entropy. In Dilithium-G, the bound t is S

√
τ , where S is the median over
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Hyperball-Uniform Improved Gaussian
Medium Recommended Very High Medium Recommended Very High

Ring dimension ℓ 256 256 256 256 256 256
q 520193 520193 520193 758273 758273 758273

(n,m− n) (3, 4) (4, 5) (6, 7) (3, 4) (4, 5) (6, 7)
η 1 1 1 1 1 1
S 50 55 65 50 55 65
τ 39 49 60 39 49 60

t = S ·
√
τ 312 385 503 312 385 503

B 197K 259K 246K 367K 265K 375K
γ2

q−1
16

q−1
8

q−1
8

q−1
256

q−1
256

q−1
256

d 11 11 10 12 11 11
M 4 4 4 4 4 4

BKZ block-size b to break SIS 447 (381) 628 (541) 1091 (946) 404 (347) 650 (560) 1041 (906)
Best Known Classical bit-cost 130 (111) 183 (158) 319 (276) 118 (101) 190 (163) 304 (264)
Best Known Quantum bit-cost 114 (97) 161 (139) 280 (243) 103 (89) 167 (143) 267 (232)
BKZ block-size b to break LWE 494 650 977 478 629 948
Best Known Classical bit-cost 144 190 285 140 183 277
Best Known Quantum bit-cost 127 167 251 123 161 243

Expected signature size 1903 2473 3461 1921 2462 3553
Expected public key size 800 1056 1760 800 1184 1760

Table 4.3: Parameters for hyperball-uniform and improved Dilithium-G.

the key generation randomness of the largest singular value of (rot(s1)⊤, rot(s2)⊤)⊤.
A rejection step is added in KeyGen to check that the key satisfies it. The value of
the SIS bound for unforgeability is computed using [BDK+20, Equation (6)]. We
multiply it by 2 to get the strong unforgeability bound. The security is estimated
using block-size optimized BKZ to break the module-SIS or module-LWE instances.

For Dilithium, i.e., the hypercube version, we take t∞ = τη as a bound on the
ℓ∞-norm of the secret key, which drives the radius of the hypercube and subsequently
the unforgeability SIS bound (in ℓ∞-norm).

It was argued in [DKL+18] that it seems difficult for BKZ to solve SIS with ℓ∞-
norm bound close to q, i.e., ℓ2-norm above q. To analyze the runtime of BKZ in
the case of an ℓ2-norm bound B ≥ q, one can remove the trivial vectors of the
input basis (i.e., the vectors with coordinates in qZ) by some randomizing step.
This approach was however not considered for Dilithium-G and q was chosen such
that B < q, leading to bigger parameters overall. We keep this constraint, as it is
difficult to analyze the effectiveness of the attack presented in [DKL+18] when B > q
for Euclidean norm.

Finally, the computation of the verification key and signature sizes (in bytes) is
performed as in [BDK+20] and [DKL+18], respectively, with a different encoding.
Namely, to compute signature sizes for the Gaussian version, we rely on a strategy
explained in [ETWY22, Section 5], called range Asymmetric Numeral System, which
allows one to encode the signature with an average bit-length reaching its entropy
plus some constant overhead that we ignore. This technique is used to obtain the
sizes in the right hand side of Table 4.2.

Next, we apply to Dilithium-G two modifications introduced in this work and
introduce the Hyperball variant. In Table 4.3 (right side), we show the improvements
we obtain when the standard deviation σ is computed using our refined bound from
Lemma 4.15 on the smooth Rényi divergence between two Gaussians and instantiated
with ε = 2−64 (we set Qs = 264) instead of ε = 2−λ, as allowed by the use of Rényi
divergence (as discussed in Section 3.1.2 and Section 3.4.1.3). Keeping M = 4, the
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standard deviation σ drops from 11t to 6.85t and leads to an additional saving on
the signature size. When compared to Dilithium, if we consider the sum of signature
and verification key sizes, we obtain up to ≈ 30% savings for the ‘Recommended’
parameter set, and ≈ 25% for the others.

Finally, we explore the use of the continuous uniform distributions in hyperballs.
We take the algorithms from Dilithium-G, which are adapted to radial distributions
and replace the Gaussians with the continuous uniform distributions in hyperballs,
adding coefficient-wise rounding to integers when computing commitments. To set
parameters, the bound B is computed using the radius of the hyperball instead of
the probabilistic upper bound on the norm of a Gaussian vector. In Table 4.3 (left
side), we provide the instantiations that we obtained. We note that the signature
sizes are very similar to the ones obtained with Gaussians.
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Chapter 5

HAETAE: Hyperball bimodAl
modulE rejecTion signAture

schemE

This chapter presents HAETAE, a signature implementation relying on modules, bi-
modal hyperballs and Fiat-Shamir with aborts, whose complete specification can be
found in [CCD+23]. HAETAE is a candidate to the Korean post-quantum compe-
tition1 and NIST post-quantum signature competition2. In Section 5.2, we discuss
the various optimisations we considered in the implementation. We give the full
description of the scheme in Section 5.3 and discuss its performances in Section 5.4.

5.1 Additional Preliminaries

Before describing the scheme, we introduce a few additional notations.

5.1.1 Additional Notations

Let R = Z[x]/(xn + 1) where n is a power of 2. For any q > 0 let Rq = R/qR =
Zq[x]/(x

n+1). We identify R2 with the set of elements in R with binary coefficients.
Let RR = R[x]/(xn +1). Given y = (

∑
0≤i<n yix

i, . . . ,
∑

0≤i<n ynk−n+ix
i)⊤ ∈ Rk

R ⊃
Rk, we define its ℓ2-norm as the ℓ2-norm of its corresponding coefficient vector, i.e.
we let ∥y∥2 = ∥(y0, · · · , ynk−1)⊤∥2. For an integer η, we let the set of polynomials of
degree less than n with coefficients in [−η, η]∩Z be denoted by Sη. Let BR,m(r, c) =
{x ∈ Rm

R |∥x− c∥2 ≤ r} (resp. B(1/N)R,m(r, c) = (1/N)Rm ∩ BR,m(r, c)) denote the
continuous (resp. discretized) hyperball with center c ∈ Rm and radius r > 0 in
dimension m > 0 (resp. for some integer N). When c = 0, we omit the center.

5.1.2 High and Low Bits

An important compression technique introduced by [BG14] and implemented by the
Dilithium team [DKL+18], consists in seding only the high bits of the lower part of

1https://www.kpqc.or.kr/
2https://csrc.nist.gov/projects/pqc-dig-sig
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the signature vector z. Moreover, we also rely on bit decomposition to encode the
signature. We first recall the Euclidean division with a centered remainder.

Lemma 5.1. Let a ≥ 0, b > 0. Writing a = bq + r, r ∈ [−b/2, b/2) is unique and:

a =

⌊
a+ b/2

b

⌋
· b+ (a mod± b).

We define our base decomposition function.

Definition 5.1 (High and low bits). Let r ∈ Z and α be a power of two. Successively
define r1 = ⌊(r + α/2)/α⌋ and r0 = r mod± α. Finally, define the tuple:

(LowBits(r, α),HighBits(r, α)) = (r0, r1).

We extend these definitions to vectors by applying them component-wise. This
decomposition lets us recover the original element and we bound its components.

Lemma 5.2. Let α = 2d, d > 0, q = 2d−1 · p+1 be a prime and r ∈ Z. It holds that

r = α · HighBits(r, α) + LowBits(r, α),

LowBits(r, α) ∈ [−α/2, α/2),
r ∈ [0, 2q − 1] =⇒ HighBits(r, α) ∈ [0, (2q − 1)/α] .

Proof. By Lemma 5.1, there exists a unique representation

r = ⌊(r + α/2)/α⌋α+ (r mod± α).

Identifying HighBits(r, α) and LowBits(r, α) above yields the first result.
Next, by definition of mod ±, we have that r′ ∈ [−α/2, α/2).
For the second range, since ⌊(r + α/2)/α⌋ is a non-decreasing function, we only

show that ⌊(2q − 1 + α/2)/α⌋ ≤ ⌊(2q − 1)/α⌋. We have (2q − 1 + α/2) ≤ ⌊(2q −
1)/α⌋α + α − 1 by assumption on q. Dividing by α and taking the floor yields the
result.

We define HighBitsz1(r) = HighBits(r, 256) and LowBitsz1(r) = LowBits(r, 256).

5.1.2.1 High and low bits for hint

To produce the hint that we send instead of the lower part of z, we could use the
previous bit decomposition. However, as noted in a preliminary version of [DKL+18,
Appendix B], a modification allows to further reduce the entropy of the hint.

We pack the high bits in the range [0, 2(q− 1)/αh). This is possible if we use the
range [−αh/2− 2, 0) to represent the integers that are close to 2q − 1.

Definition 5.2 (High and low bits for hint). Let q be a prime and αh|2(q − 1) be a
power of two. Let m = 2(q − 1)/αh and r ∈ Z. Define

r1 = HighBits(r mod+ 2q, αh) and r0 = LowBits(r mod+ 2q, αh).

If r1 = m, let (r′0, r
′
1) = (r0 − 2, 0). Else, (r′0, r

′
1) = (r0, r1). We define:

(LowBitsh(r),HighBitsh(r)) = (r′0, r
′
1).
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As before, we extend these definitions to vectors by applying them component-
wise. This decomposition lets us recover the original element and we bound its
components.

Lemma 5.3. Let r ∈ Z. Let q be a prime, αh|2(q − 1) be a power of two and
define m = 2(q − 1)/αh. It holds that

r = αh · HighBitsh(r) + LowBitsh(r) mod 2q,

LowBitsh(r) ∈ [−αh/2− 2, αh/2),

HighBitsh(r) ∈ [0,m− 1] .

Proof. Let r ∈ [0, 2q − 1]. Let r0, r1, r′0, and r′1 defined as in Definition 5.2. The
equality r′0 + r′1 · αh = r0 + r1 · αh mod 2q holds vacuously if r′0 = r0 and r′1 = r1.

If not, then r′0 = r0−2 and r′1 = r1−2(q−1)/αh and r′0+ r′1αh = r0+ r1αh−2q.
By Lemma 5.2, we get the first equality.

The second property stems from the second property in Lemma 5.2. The modi-
fications to r0 make r′0 lie in the range [−αh/2− 2, αh/2).

The last property stems from the third property in Lemma 5.2 and the fact that
if r1 = m, then we have r′1 = 0.

5.2 Design Specifications

This section details all optimisations applied to HAETAE as well as the sampling
algorithm used to sample y during signing.

5.2.1 Key Generation

The bimodal rejection sampling relies on having a key pair (A, s) ∈ Rk×(k+ℓ)
p ×Rk+ℓ

p

such that As = −As mod p. To generate such a pair, following [DDLL13], we
choose p = 2q and aim at As = qj mod 2q for j = (1, 0, . . . , 0)⊤.

5.2.1.1 Key Generation and Encoding

To build a key pair, we start from an MLWE sample b − a = A0s0 + e0 mod q,
where A0 ← U(Rk×(ℓ−1)

q ), a← U(Rk
q ) and (s0, e0)← U(Sℓ−1

η ×Sk
η ). Let b = b1+b0,

we define A = (2(a − b1) + qj|2A0|2Ik) as well as s = (1|s0|(e0 − b0)). One sees
that As = qj mod 2q. The verification key is comprised of b1 and the seed that allows
generating A0 and a. The secret key is the seed used to generate s and (A0,a).

It remains to choose the decomposition of b, that we see as an nk-dimensional
vector with coordinates in [0, q − 1]. We choose b0 with coordinates in {−1, 0, 1}
such that if a coordinate of b is odd, then it is rounded to the nearest multiple of 4.
We can then write b = b0 + 2b1, where b1 is encoded using ⌈log2(q) − 1⌉ bits per
coordinate. This is computed coordinate-wise with b0 = (−1)⌊b/2⌋ mod 2b mod 2,
i.e. one less bit than b. In all of the following, we let (LowBitsvk(b),HighBitsvk(b))
denote (b0,b1). When b is uniform, we notice that the coordinates of b0 roughly
follow a (centered) binomial law with parameters (2, 1/2), which experimentally leads
to smaller choices for β, which we discuss and introduce now.

81



5. HAETAE: Hyperball bimodAl modulE rejecTion signAture schemE

5.2.1.2 Rejection Sampling on the Key

A critical step of our scheme is bounding ∥sc∥2, where s is generated as before
and c ∈ R is a polynomial with coefficients in {0, 1} and has less than or equal to τ
nonzero coefficients. The lower this bound is, the smaller the signature is, which in
turn leads to harder forging. In the key generation algorithm, we apply the following
rejection condition for some heuristic value β:

τ ·
m∑
i=1

i-th
max

j
∥s(ωj)∥22 + r ·

(m+1)-th
max

j
∥s(ωj)∥22 ≤

nβ2

τ
,

where m = ⌊n/τ⌋ and r = n mod τ . We argue that the left hand side is a bound
on n

τ · ∥sc∥
2
2 and that this condition leads to asserting ∥sc∥2 ≤ β.

Lemma 5.4. Let n, τ > 0 and m = ⌊n/τ⌋ and r = n mod τ . For any c ∈ {0, 1}n
with hamming weight τ and any secret s ∈ Sk+ℓ

η , the quantity n∥cs∥22 is bounded by

τ2 ·
m∑
i=1

i-th
max

j
∥s(ωj)∥22 + r · τ ·

(m+1)-th
max

j
∥s(ωj)∥22.

Proof. We first rewrite ∥sc∥2 as:

∥sc∥22 =
∑

i |c(ωj)|2 · ∥s(ωj)∥22
n

,

where s(ωj) = (s1(ωj), · · · , sk+ℓ(ωj)), and ωj ’s are the primitive 2n-th roots of unity.
For n = m · τ + r, let m = ⌊n/τ⌋ and r = n mod τ . Since

∑n
j=1 |c(ωj)|2 = nτ and

|c(ωj)|2 = | ωj,1 + · · ·+ ωj,τ |2 ≤ τ2,

we bound
∑n

j=1 |c(ωj)|2 ·∥s(ωj)∥22 by rearrangement: let m = ⌊n/τ⌋ be the maximum
number of |c(ωj)|2’s that can be τ2. By sorting ∥s(ωj)∥2 in decreasing order,

∥s(ωσ(1))∥2 ≥ ∥s(ωσ(2))∥2 ≥ · · · ≥ ∥s(ωσ(n))∥2,

where σ is a permutation for the indices, we have

n∑
j=1

|c(ωj)|2 · ∥s(ωj)∥22 ≤
m∑
j=1

|c(ωσ(j))|2 · ∥s(ωσ(j))∥22+
n∑

j=m+1

|c(ωσ(j))|2 · ∥s(ωσ(m+1))∥22.

Its maximum is reached when the m largest ∥s(ωj)∥22’s are multiplied with τ2’s, i.e.

n∑
j=1

|c(ωj)|2 · ∥s(ωj)∥22 ≤
m∑
j=1

τ2 · ∥s(ωσ(j))∥22 +
( n∑

j=1

|c(ωj)|2 −mτ2
)
· ∥s(ωσ(j))∥22

= τ2 ·
m∑
j=1

∥s(ωσ(j))∥22 + r · τ · ∥s(ωσ(j))∥22.
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5.2.2 Fix-point-friendly Bimodal Hyperball Rejection Sampling

Rejected values are highly sensitive data. We adapt rejection sampling in order to
make that step easier to mask and implement in constant-time.

5.2.2.1 Rejection Sampling

A first step towards this goal is to use discrete hyperball samples instead of continuous
ones. This allows for a removal of floating-point arithmetic in the rejection step and
replace it with an exact computation of the squared norm.

Lemma 5.5 (Bimodal Hyperball Rejection Sampling). Let n be the degree of R,
c > 1, r, t,m > 0, and r′ ≥

√
r2 + t2. Define M = 2(r′/r)mn and set

N ≥ 1

c1/(mn) − 1

√
mn

2
·

(
c1/(mn)

r
+

1

r′

)
.

Let v ∈ Rm ∩ B(1/N)R,m(t). Let p : Rm → {0, 1/2, 1} be defined as follows

p(z) =


0 if ∥z∥ ≥ r,
1/2 else if ∥z− v∥ < r′ ∧ ∥z+ v∥ < r′,
1 otherwise.

Then there exists M ′ ≤ cM such that the output distributions of the two algorithms
from Figure 5.2 are identical.

−v v

Figure 5.1: The HAETAE eyes

Figure 5.1 illustrates this rejection sampling technique. The black circles have
radii equal to r′ and the pink circle has radius r. We sample a vector z uniformly
inside one of the black circles (with probability 1/2 for each) and keep z if it lies
inside the pink circle but not in the blue zone. We reject it if it outside the circle,
and keep it with probability 1/2 if it lies in the blue zone.

5.2.2.2 Discrete Hyperball-uniform Sampling

We first explain how to get continuous hyperball-uniform samples, using a folklore
technique which yields such a n-dimensional sample using only n + 2-dimensional
continuous Gaussians.
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A(v) :
1: y←↩ U(B(1/N)R,m(r′))
2: b←↩ U({0, 1})
3: z← y + (−1)bv

with probability p(z)
4: return z
5: return ⊥

B :

1: z←↩ U(B(1/N)R,m(r))
with probability 1/M ′

2: return z
3: return ⊥

Figure 5.2: Bimodal hyperball rejection sampling

y←↩ U(BR,k(r
′′)):

1: yi ←↩ N (0, 1) for i = 0, . . . , nk + 1
2: L← ∥(y0, . . . , ynk+1)

⊤∥2
3: y← r′′/L · (

∑n−1
i=0 yi x

i, . . . ,
∑n−1

i=0 ynk−n+i x
i)⊤ ▷ y ∈ Rk

R
4: return y

Figure 5.3: Continuous hyperball uniform sampling

Lemma 5.6 ( [VGS17]). The distribution of the output of the algorithm in Figure 5.3
is U(BR,k(r

′′)).

Then, from a continuous sample, we get a discretized one by rounding it, and
slightly reducing its radius.

y←↩ U(B(1/N)R,m(r′)):

1: y←↩ U(BR,m(Nr′+
√
mn/2))

if ∥⌊y⌉∥2 ≤ Nr′

2: return ⌊y⌉/N
else

3: restart

Figure 5.4: Discrete hyperball uniform sampling

Lemma 5.7. Let n be the degree of R, M0 ≥ 1, r′,m > 0 and set

N ≥
√
mn

2r′
· M

1/(mn)
0 + 1

M
1/(mn)
0 − 1

.

At each iteration, the algorithm from Figure 5.4 succeeds with probability ≥ 1/M0.
Moreover, the distribution of the output is U(B(1/N)R,m(r′)).

Finally, in the complete specification of HAETAE [CCD+23], we explain how to
replace the continuous Gaussian with a discrete one as well as the necessary precision
for those steps to succeed, using only fix-point arithmetic and standard techniques.

5.2.3 Challenge Sampling

The challenges we use are polynomials c ∈ R2 with τ nonzero coefficients. The
challenge space has size

(
n
τ

)
. To sample them, we rely on the SampleInBall algorithm

from Dilithium, which we recall in Fig. 5.5.
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SampleInBall(ρ, τ):
1: c← c0c1 . . . c255 = 00 . . . 0
2: For i = 256− τ to 255
3: j ← {0, . . . , i}
4: ci = cj
5: cj = 1
6: return c

Figure 5.5: Challenge sampling algorithm

For the highest security, however, we require 255 bits of entropy for the challenge,
which cannot be reached with

(
256
τ

)
. To achieve it, we replace the challenge sampling

for the parameter set with the following. Given a 256-bits hash w0 . . . w255 with
Hamming weight w, do the following. If w < 128, return

∑255
i=0wix

i. If w = 128,
return

∑255
i=0wi ⊗ w0x

i. Otherwise, return
∑255

i=0wi ⊗ 1xi. Exactly half of all binary
polynomials are reachable this way and the challenge set has size 2255 as desired.

5.2.4 Signature Encoding

A signature is comprised of three elements (h, c, z1). We first split z1 into low and
high bits such that the low bits are distributed almost uniformly. The high bits how-
ever can be compressed using the range Asymmetric Numeral System from [Dud13],
which allows for a better compression rate than Huffman coding when encoding a
stream of data. Furthermore, it is possible to avoid arithmetic operations altogether
and realize high-speed implementations using lookup tables (tANS).

Definition 5.3 (Range Asymmetric Numeral System (rANS) Coding). Let n > 0
and S ⊆ [0, 2n − 1]. Let g : [0, 2n − 1] → Z ∩ (0, 2n] such that

∑
x∈S g(x) ≤ 2n

and g(x) = 0 for all x /∈ S. We define the following:

• CDF : S → Z, defined as CDF(s) =
∑s−1

y=0 g(y).

• symbol : Z→ S, where symbol(y) 7→ s such that CDF(s) ≤ y < CDF(s+ 1).

• C : Z× S → Z, defined as C(x, s) =
⌊

x
g(s)

⌋
· 2n + (x mod+ g(s)) + CDF(s).

The rANS encoding/decoding for S and frequency g/2n is defined in Figure 5.6.

Lemma 5.8 (Adapted from [Dud13]). The rANS coding is correct, and the size of
the rANS code is asymptotically equal to Shannon entropy of the symbols. That is,
for any choice of s = (s1, · · · , sm) ∈ Sm, Decode(Encode(s)) = s. Moreover, for any
positive x and any probability distribution p over S, it holds that∑

s∈S
p(s) log(C(x, s)) ≤ log(x) +

∑
s∈S

p(s) log

(
g(s)

2n

)
+

2n

x
.

Last, the cost of encoding the first symbol is ≤ n i.e. for any s ∈ S, log(C(0, s)) ≤ n.

We determine the frequency of the symbols experimentally, by executing the
signature computation and collecting several million samples. Finally, we apply
some rounding strategy to compute g such that the average extra cost per coordinate
caused by this rounding is almost negligible.
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Encode((s1, . . . , sm) ∈ Sm):
1: x0 = 0

for i = 0, . . . ,m− 1 do
2: xi+1 = C(xi, si+1)
3: return xm

Decode(x ∈ Z):
1: y0 = x
2: i = 0

while yi > 0 do
3: ti+1 = symbol(yi mod+ 2n)
4: yi+1 = ⌊yi/2n⌋ · g(ti+1) + (yi mod+ 2n)− CDF(ti+1)
5: i← i+ 1
6: m = i− 1
7: return (tm, . . . , t1) ∈ Sm

Figure 5.6: rANS encoding and decoding procedures

5.3 Description of HAETAE

We give the description of the signature scheme HAETAE in Figure 5.7 with the
following building blocks, implemented with symmetric primitives:

• Hash function Hgen to generate the seeds and hashing the messages,

• Hash function H to sign, returning ρ, a seed for challenge sampling,

• Extendable output function expandA to derive a and AKeyGen from seedA,

• Extendable output function expandS to derive (sgen, egen) from (seedsk, countersk),

• Extendable output function expandYbb to derive (y, b, b′) from (seedybb, counter),

For the rest of this chapter, we let j = (1, 0, . . . , 0) ∈ Rk. The parameters ρ0
and αh refer to the size of the seed and the compression factor, respectively. The
parameter β is the bound for ∥cs∥, which will be checked by bounding

f(s) := τ ·
m∑
i=1

i-th
max

j
∥s(ωj)∥22 + r ·

(m+1)-th
max

j
∥s(ωj)∥22

by nβ2/τ . The parameters B, B′, and B′′ refer to the radii of hyperballs. At
Step 2 of the Sign algorithm, the variable y0 ∈ RR refers to the first component
of the vector y ∈ Rk+ℓ

R . At Step 3 of the Sign algorithm, the vector z ∈ Rk+ℓ
R is

decomposed as z = (z1, z2) with z1 ∈ Rℓ
R and z2 ∈ Rk

R. At Step 4 Verify, the variable
z̃0 ∈ R refers to the first component of the vector z̃ ∈ Rk+ℓ. We assume that αh

divides 2q − 1. At Step 6 of Verify, the division by 2 is over Z and well-defined as
the operand is even and defined modulo 2q.

We also give a randomized signing of HAETAE in Figure 5.8. We observe that
in the randomized version signing process, significant part of signing including the
hyperball sampling algorithms for y can be performed “off-line”, i.e., before receiving
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KeyGen(1λ):
1: seed← {0, 1}ρ0
2: (seedA, seedsk,K) = Hgen(seed)
3: (a| Agen) ∈ Rk×ℓ

q := expandA(seedA)
4: countersk = 0
5: (sKeyGen, eKeyGen) := expandA(seedsk, countersk)
6: b = a+Agen · sgen + egen mod q // b ∈ Rk

q

7: (b0,b1) = (LowBitsvk(b),HighBitsvk(b))

8: A = (2(a− b1) + qj| 2AKeyGen| 2Idk) mod 2q // A ∈ Rk×(k+ℓ)
2q

9: s = (1, sgen, egen − b0) // s ∈ Sk+ℓ
η

10: if f(s) > nβ2/τ then go to 5
11: return sk = (s,K), vk = (seedA,b1)

Sign(sk,M):
1: µ = Hgen(seedA,b1,M)
2: seedybb = Hgen(K,µ)
3: counter = 0
4: (y, b, b′) := expandYbb(seedybb, counter)
5: w = A ⌊y⌉
6: ρ = H(HighBitsh(w), LSB(⌊y0⌉), µ)
7: c = SampleInBall(ρ, τ)
8: z = (z1, z2) = y + (−1)bc · s
9: h = HighBitsh(w)− HighBitsh(w − 2 ⌊z2⌉) mod+ 2(q−1)

αh

10: if ∥z∥2 ≥ B′, then counter++ and go to 4
11: else if ∥2z− y∥2 < B and b′ = 0, then counter++ and go to 4
12: else return σ = (Encode(HighBitsz1(⌊z1⌉)), LowBitsz1(⌊z1⌉),Encode(h), c)

Verify(vk,M, σ = (x,v, h, c)):

1: z̃1 ← Decode(x) · a+ v and h̃ = Decode(h)
2: (a| AKeyGen) = expandA(seedA)
3: A1 = (2(a− 2b1) + qj| 2AKeyGen)

4: w1 = h̃+ HighBitsh(A1z̃1 − qcj) mod+ 2(q−1)
αh

5: w′ = LSB(z̃0 − c)
6: z̃2 = [w1 · αh + w′j− (A1z̃1 − qcj)]/2 mod± q
7: z̃ = (z̃1, z̃2)
8: µ̃ = HKeyGen(seedA,b1,M)
9: Return (c = SampleInBall(H(w1, w

′, µ̃), τ)) ∧ (∥z̃∥ < B′′)

Figure 5.7: Deterministic version of HAETAE

a message M to be signed. It holds for computations such as w = A ⌊y⌉ and
HighBitsh(w). In the “on-line” phase of signing, we can use y and the corresponding
pre-computed components by choosing them randomly among the pre-sampled list.

Lemma 5.9. We borrow the notations from Figure 5.7. If we run Verify(vk,M, σ) on
the signature σ returned by Sign(sk,M) for an arbitrary message M and an arbitrary
key-pair (sk, vk) returned by KeyGen(1λ), then the following relations hold:
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Sign(sk,M):
// can be done off-line: using vk, make a list L of (y,w,w1)

1: y← U(B(1/N)R,(k+ℓ)(B))
2: w = A ⌊y⌉
3: w1 = HighBitsh(w)

// can be done on-line: using sk, M and pre-computed (y,w,w1) sampled
from L

4: µ = Hgen(seedA,b1,M)
5: b, b′ ← {0, 1}
6: c = SampleInBall(H(w1, LSB(⌊y0⌉), µ), τ)
7: z = (z1, z2) = y + (−1)bc · s
8: h = w1 − HighBitsh(w − 2 ⌊z2⌉) mod+ 2(q−1)

αh

9: if ∥z∥2 ≥ B′, then
10: go to 5 with resampled (y,w,w1) // resample (y,w,w1)← L
11: else if (∥2z− y∥2 < B) ∧ (b′ = 0), then
12: go to 5 with resampled (y,w,w1) // resample (y,w,w1)← L
13: else return σ = (Encode(HighBitsz1(⌊z1⌉)), LowBitsz1(⌊z1⌉),Encode(h), c)

Figure 5.8: Randomized signing of HAETAE. On/offline signing can accelerate the
signing process. Note that the signing can also be accelerated even if y is sampled
offline alone.

1. w = HighBitsh(w),

2. w′j = LSB(⌊y0⌉) · j = LSB(w) = LSB(w − 2 ⌊z2⌉).

3. 2⌊z2⌉ − 2z̃2 = LowBitsh(w)− LSB(w) assuming B′ + αh/4 + 1 ≤ B′′ < q/2,

Proof. Let m = 2(q − 1)/αh. Let us prove the first statement. By definition of h, it
holds that w1 = HighBitsh(w) mod m. However, both parts of the equality already
lie in [0,m− 1] by definition and Lemma 5.3. Hence, the equality stands over Z too.

We move on to the second statement. By considering only the first component
of z = y + (−1)bc · s, we obtain, modulo 2:

z̃0 = ⌊z0⌉ = ⌊y0⌉+ (−1)bc = ⌊y0⌉+ c.

This yields the result. Moreover, by reducing A mod 2, we obtain that

w = A1⌊z1⌉ − qcj = (⌊z0⌉ − c)j mod 2.

For the last statement, let us use the two preceding results. In particular, we note

w1 · αh + w′j = w − LowBitsh(w) + LSB(w).

We note that the last two elements have same parity, as the former one has the same
parity as LowBits(w, αh). By Lemma 5.3 their sum has infinite norm ≤ αh/2 + 2.
Hence from its definition, it holds that

2z̃2 = 2⌊z2⌉ − LowBitsh(w) + LSB(w) mod ±2q.

Finally, this identity holds over the integers as the right-hand side has infinite norm
at most 2B′ + αh/2 + 2 < q.

88



5.4. Parameters and Performance Analysis

Theorem 5.10 (Completeness). Let B′′ = B′ +
√
n(k + ℓ)/2 +

√
nk(αh/4 + 1) <

q/2. Then the signature schemes of Figures 5.7 and 5.8 are complete, i.e., for every
message M and every key-pair (sk, vk) returned by KeyGen(1λ), we have:

Verify(vk,M, Sign(sk,M)) = 1.

Proof. We use the notations of the algorithms. We focus on the deterministic version
in Fig. 5.7, since Fig. 5.8 also has almost the same proof. The two first equations
from Lemma 5.9 state that ρ = ρ̃ and thus c = SampleInBall(ρ, τ). On the other
hand, we use the last equation from Lemma 5.9 to bound the size of z̃. We have:

∥z̃∥ ≤ ∥z∥+ ∥z− ⌊z⌉∥+ ∥⌊z⌉ − z̃∥

≤ B′ +
√
n(k + ℓ) · ∥z− ⌊z⌉∥∞ + ∥⌊z2⌉ − z̃2∥

≤ B′ +

√
n(k + ℓ)

2
+
√
nk · ∥LowBitsh(w)∥∞

≤ B′ +

√
n(k + ℓ)

2
+
√
nk ·

(αh

4
+ 1
)
= B′′.

5.4 Parameters and Performance Analysis

Finally, we give our choice of parameters and the performance of the implementation.

5.4.1 Parameter Sets

We instantiate the HAETAE signature scheme to reach the NIST PQC security levels
2, 3, and 5. The instantiations are set to be at least as secure as the corresponding pa-
rameter sets for Dilithium and Falcon. We keep the methodology from Section 4.4.5.
Namely, we set B′′ ≪ q and use the core-SVP methodology. The parameters are
provided in Table 5.1. The figures between parentheses are for the strong unforge-
ability security in the case of the randomized signing version of HAETAE (in the
deterministic version, strong and weak unforgeability are the same). More details on
the practical attacks and theoretical security reduction are provided in the complete
specification [CCD+23]. They are similar to the ones from Dilithium [BDK+20] and
the reduction from Chapter 3.

5.4.2 Performance Analysis

The C reference implementation of HAETAE can be found on team HAETAE website3.
In Table 5.2, we give the performance results of the reference implementation and

the sizes. All benchmarks were obtained on one core of an Intel Core i7-10700k, with
TurboBoost and hyperthreading disabled. All cycle counts reported are the median
and average of the cycle counts of 1,000 executions of the respective functions.

Due to the key and the signature rejection steps, the median and the average
values for KeyGen and Sign differ clearly. The two values are much closer for Verify.

3https://kpqc.cryptolab.co.kr/haetae
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Parameter set HAETAE-120 HAETAE-180 HAETAE-260
NIST Security level 2 3 5

q 64513 64513 64513
M 6.0 5.0 6.0

Key Rate 0.1 0.25 0.1
β 354.82 500.88 623.72
B 9388.97 17773.21 22343.66
B′ 9382.26 17766.15 22334.95
B′′ 12320.79 21365.10 24441.49
(k, ℓ) (2,4) (3,6) (4,7)
η 1 1 1
τ 58 80 128
αh 512 512 256
d 1 1 0

Forgery
BKZ block-size b 409 (333) 617 (512) 878 (735)
Classical hardness 119 (97) 180 (149) 256 (214)
Quantum hardness 105 (85) 158 (131) 225 (188)

Key-Recovery
BKZ block-size b 428 810 988
Classical hardness 125 236 288
Quantum hardness 109 208 253

Signature size 1463 2337 2908
Public key size 992 1472 2080

Sum 2455 3809 4988
Private key size 1376 2080 2720

Table 5.1: Parameter choices for 120, 180, 260 bits of core-SVP hardness

Parameter set KeyGen Sign Verify

HAETAE-120 med 1,384,274 6,253,166 387,594
ave 1,832,973 8,903,852 388,377

HAETAE-180 med 2,333,614 9,472,724 718,010
ave 3,464,004 11,763,246 719,400

HAETAE-260 med 1,693,776 8,989,980 913,378
ave 2,129,737 12,459,046 914,336

Table 5.2: Median and average cycle counts of 1000 executions for HAETAE.

Based on the profiling and benchmarking of subcomponents, we here discuss the
most expensive parts during key generation and signing. During the key generation,
the complex Fast Fourier Transformation, used for computing f(s), consumes nearly
50% of the total cycles. Among the components of the signing process, we remark
that the hyperball sampling is the most significant part, using almost 80% of the
total signing cost, mainly because of randomness sampling via the extendable output
function.

In addition, we expect that the on/offline approach will reduce the (online) sign-
ing time by 12% to 20%, except for the time spent reading from the list.
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Chapter 6

G + G: Compact Lattice-Based
Fiat-Shamir Signatures

The previous chapters were focused on lattice-based Fiat-Shamir with aborts signa-
tures. In this chapter, we propose an identification scheme based on the same lattice
assumptions as before, except that it has an aborting probability of zero. While this
was already achieved in previous works (see [ASY22] for example), our work departs
from these as this comes at no cost in terms of signature compactness. On the con-
trary, the asymptotic size of the signature is lower by a factor

√
m/
√
logQs, where m

is the dimension of the vector acting as the signature. We describe the scheme in
Section 6.1 and show that it can be turned into an unforgeable signature scheme. In
Section 6.2, we give concrete parameters for an optimized implementation relying on
modules and using the compression techniques from [BG14].

6.1 The G+ G Identification Protocol

In this section, we first describe the G+ G identification protocol, then prove the
required properties to compile it into a signature using the Fiat-Shamir heuristic,
and then discuss asymptotic parameters.

6.1.1 Description of the Scheme

Let us first introduce the parameters of the scheme as well as some notations.
Let m ≥ ℓ > 0, k > m + ℓ and J = Jm,ℓ. Let χ be a distribution over Z.
Let C ⊆ Zℓ be the challenge space, which we assume to be finite. Let σ, s ≥ 0
and define Σ : Zk×ℓ → Rk×k as

Σ : S 7→ σ2Ik − s2SS⊤.

The scheme is also parametrized by an odd modulus q and an acceptance bound γ.
The G+ G identification protocol is described in Figure 6.1. The instance gener-

ation algorithm samples a verification key A ∈ Zm×k
2q and a secret key S ∈ Zk×ℓ with

small-magnitude coefficients such that A · S = qJ mod 2q. In the first phase of the
interaction, the prover samples a vector y with well-crafted covariance matrix, and
sends the commitment w = Ay mod 2q to the verifier. The protocol is public-coin,
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IGen(1λ):

1: A1 ←↩ U(Zm×(k−m−ℓ)
q )

2: (S1,S2)←↩ χ(k−m−ℓ)×ℓ × χm×ℓ

3: B← A1S1 + S2 mod q
4: A← (qJ− 2B|2A1|2Im) ∈ Zm×k

2q

5: S← (Iℓ|S⊤1 |S⊤2 )⊤ ∈ Zk×ℓ

6: vk← A, sk← S
7: return (vk, sk)

P(A,S) V(A)

y←↩ DZk,Σ(S)

w← Ay mod 2q
w−−−−−→
c←−−−− c←↩ U(C)

k←↩ DZℓ,s,−c/2
z← y + 2Sk+ Sc mod 2q

z−−−−→ Accept if
Az = w + qJc mod 2q

and ∥z∥ ≤ γ

Figure 6.1: The G+ G Identification Protocol.

i.e., the verifier just samples c uniformly in the challenge space and sends it to the
prover. After receiving c, the prover samples a Gaussian vector k over the lattice
coset 2SZℓ+c. The covariance matrices of y and k are set so that the Gaussian plus
Gaussian sum is statistically close to a spherical Gaussian distribution.

The first sampling that the prover has to perform is well-defined only if Σ(S)
is definite positive, which we show in Lemma 2.14. The first sampling is imple-
mented using Lemma 2.11, which requires σ2−s2σ1(S)

2 ≥
√
ln(2ℓ+ 4)/π, where we

let σ1(S) denote the largest singular value of S. The protocol can then be executed
in polynomial time.

Combining this identification protocol with the Fiat-Shamir (without aborts)
paradigm, we then obtain a lattice-based signature FS[G+ G, H], as stated in the
following Theorem. The correctness and security of the scheme are inherited from
the properties of the underlying identification protocol.

Theorem 6.1. Let m ≥ ℓ > 0, k > m + ℓ, ε ∈ (0, 1/2], s ≥
√
8 ln(ℓ− 1 + 2ℓ/ε)/π

and σ ≥
√
2σ1(S) · s for all S ∈ Zk×ℓ in the range of IGen. Let γ and εc be such

that Prz←↩DZk,σ
[∥z∥ > γ] ≤ εc/3. Let q > max(2γ, σ · ηε(Zm)) be an odd modulus.

Then the signature scheme FS[G+ G, H] is:
• εc-correct;

• sEU-CMA-secure in the ROM under the SISm,k,q,2γ assumption;

• sEU-CMA-secure in the QROM under the LWEk−m−ℓ,m,ℓ,χ,q assumption, assum-
ing that 1/|C|+ (|C|2(2γ + 1)2k)/qm is negligible.

The proof of Theorem 6.1 follows from Corollaries 6.3, 6.5, 6.7, and 6.8, which
are derived from the properties of the underlying identification protocol proved in
Sections 6.1.2, 6.1.3, and 6.1.4, by applying the Fiat-Shamir transform.
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6.1. The G+ G Identification Protocol

6.1.2 Completeness and Commitment Recoverability

We first show that the G+ G protocol is complete and commitment recoverable. As
a corollary, we obtain that the resulting Fiat-Shamir signature scheme FS[G+ G, H]
is correct.

Theorem 6.2. Let m ≥ ℓ > 0, k > m + ℓ, ε ∈ (0, 1/2], s ≥
√
8 ln(ℓ− 1 + 2ℓ/ε)/π

and σ ≥
√
2σ1(S) · s for all S ∈ Zk×ℓ in the range of IGen. Let γ and εc be such

that Prz←↩DZk,σ
[∥z∥ > γ] ≤ εc/3. Let q > 2γ be an odd modulus. Then the G+ G

identification protocol is εc-complete and achieves commitment-recoverability.

Proof. First, we note that AS = qJ mod 2q holds for any matrix pair output by IGen.
Then, in order to pass the first verification step, a transcript (w, c, z) must satisfy:

Az = A(y + 2Sk+ Sc) = w + 0+ qJc mod 2q . (6.1)

In particular, this implies a commitment w = Az − qJc mod 2q, which is unique,
such that (w, c, z) can be a valid transcript, and w is efficiently recoverable, by
defining Rec as Rec(A, c, z) := Az− qJc mod 2q.

Now, we note that a honestly generated transcript (w, c, z) always satisfies Equa-
tion 6.1. The probability preservation property of the Rényi divergence (Equa-
tion 2.2) and Lemma 2.14 then immediately imply that the probability that a honest
transcript (w, c, z) be rejected at most ≤ 3 · Prz←↩DZk,σ

[∥z∥ > γ].

We then obtain the following corollary.

Corollary 6.3. Using the same assumptions as in Theorem 6.2, the resulting signa-
ture scheme FS[G+ G, H] is εc-correct.

Note that correctness of FS[G+ G, H] does not require to assume that H is mod-
eled as a random oracle. As Lemma 2.14 holds without relying on the randomness
of c. This is in contrast to Lemma 2.15 that generically considers completeness of
signatures obtained using the Fiat-Shamir transform.

6.1.3 Honest-Verifier Zero-Knowledge and Commitment
Min-Entropy

We now show that the G+ G protocol is HVZK and has large commitment min-
entropy. As a corollary, we obtain that the signature scheme FS[G+ G, H] is EU-
CMA-secure provided it is EU-NMA-secure.

Theorem 6.4. Let m ≥ ℓ > 0, k > m + ℓ, ε ∈ (0, 1/2], s ≥
√
8 ln(ℓ− 1 + 2ℓ/ε)/π

and σ ≥
√
2σ1(S) · s for all S ∈ Zk×ℓ in the range of IGen. Let q > σ · ηε(Zm) be an

odd modulus. Then the G+ G identification protocol satisfies:

• (1 + ε)/(1− ε)-divergence HVZK,

• 2ε/(1− ε)-HVZK.

In addition, its commitment min-entropy is ≥ m · log(sσ1(S))/3).
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Proof. We prove both properties separately. We start by proving HVZK, which is
inherited from Lemma 2.14 and then focus on commitment min-entropy.
HVZK. The simulator on input a challenge c ∈ C and a public matrix A sam-
ples z ←↩ DZk,

√
2σ, sets w = Az − qJc and returns (w, c, z) as a transcript. As

everything here is a function of z and c, we can rely on Lemma 2.14. The bounds
from the above claim are immediately inherited from the latter lemma by applying
the data processing inequalities (which we recall in Equation 2.1 for the Rényi diver-
gence – the same inequality holds replacing the Rényi divergence by the statistical
distance). This concludes the zero-knowledge analysis.
Commitment Min-Entropy. Let w ∈ Zm

2q and (Y ⊤1 , Y ⊤2 )⊤ ←↩ DZk,Σ(S), where Y1

takes values in Zk−m. Given a matrix A = (A0|2Im) ∈ Zm×k
2q , it holds that

Pr
(Y1,Y2)

[A0Y1 + 2Y2 = w mod 2q] = Pr
(Y1,Y2)

[2Y2 = w −A0Y1 mod 2q]

≤ Pr
(Y1,Y2)

[Y2 = (w −A0Y1)ζ mod q] ,

where ζ is the modular inverse of 2 mod q. Hence, the min-entropy of the commit-
ment is ≥ H∞(Y2 mod q|Y1) and we move on to bounding the latter quantity from
below. Note that there exist σ ≥ σ1 ≥ · · · ≥ σm ≥ (σ2−s2σ1(S)2)1/2 and Q ∈ Rm×m

orthogonal such that

Σ(S) = Q

σ2
1

. . .
σ2
m

Q⊤.

Let y1 ∈ Zk−m be fixed. The distribution of Y2 conditioned on Y1 = y1 is
exactly DZm,Σ,c, as defined in Lemma 2.10 (with c = 0). Let σ2

1 (resp. σ2
m) be the

largest (resp. smallest) eigenvalue of Σ and c = (c1, . . . , cm)⊤. We are interested in
obtaining an upper bound on ρΣ,c(z+ qZm)/ρΣ,c(Z

m) for all z ∈ (−q/2, q/2]m.

As Σ
−1 is the bottom right submatrix of Σ−1 of size m ×m, it holds that for

any y ∈ Rm, we have y⊤Σ
−1

y ∈ ∥y∥2 · [1/σ2
1, 1/σ

2
m]. Hence all singular values σi

of Σ lie in [(σ2 − s2σ1(S)
2)1/2, σ]. Thanks to the theorem assumptions, we obtain

that all σi’s are above ηε(Zm). Using Lemma 2.13, it holds that

ρΣ,c(Z
m) ≥ (1− ε) ·

√
detΣ ≥ (1− ε) ·

(
σ2 − s2σ1(S)

2
)m/2

.

The latter is ≥ (1− ε) · (sσ1(S))m, by assumption on σ. For the numerator, we first
use Lemma 2.13 once more, to obtain:

ρΣ,c(z+ qZm) ≤ ρΣ(qZ
m) = 1 + ρΣ(qZ

m \ {0}) ≤ 1 + ρσ(qZm \ {0}) .

By assumption on q, the latter is ≤ 1 + ε. The result follows.

We then obtain the following corollary as an application of Theorem 2.16.

Corollary 6.5. Using the same assumptions as in Theorem 6.4 the resulting signa-
ture scheme FS[G+ G, H] is EU-CMA-secure (and sEU-CMA-secure) in the QROM,
provided it is EU-NMA-secure.

94



6.1. The G+ G Identification Protocol

6.1.4 Special Soundness and Lossy Soundness

To complete the analysis, we show that (i) G+ G is special-sound, and that (ii) G+ G
is a lossy identification scheme with lossy-soundness. As a corollary, we obtain that
the signature scheme FS[G+ G, H] is EU-NMA-secure in the ROM, and in the QROM
under some parameters constraint.

Theorem 6.6. Let m ≥ ℓ > 0, k > m + ℓ, ε ∈ (0, 1/2], s ≥
√

8 ln(ℓ− 1 + 2ℓ/ε)/π
and σ ≥

√
2σ1(S) · s for all S ∈ Zk×ℓ in the range of IGen. Let γ > 0 and q > 2γ be

an odd modulus. Then the G+ G identification protocol is:

• special-sound, under the SISm,k,q,2γ assumption,

• lossy, under the LWEk−m−ℓ,m,ℓ,χ,q assumption,

• εls-lossy sound for

εls =
1

|C|
+
|C|2(2γ + 1)2k

qm
.

Proof. We first prove G+ G achieves special soundness, and then explain how to set
our identification scheme in lossy mode.

Special soundness. Assume there exists a PPT adversary A which, given the verifi-
cation key vk = A, produces two valid transcripts (w, c0, z0), (w, c1, z1) with c0 ̸= c1.
It can be turned into an SISm,k,q,2γ solver. Indeed, by definition, such transcripts
satisfy A(z0 − z1) = qJ(c1 − c0) mod 2q.

Notice that we have A(z0 − z1) = 0 mod q, which implies that z0 − z1 is a
solution to the SIS instance defined by A. In addition, when reducing modulo 2,
we also have A(z0 − z1) = J(c1 − c0) mod 2, which implies that z0 ̸= z1. Finally,
note that the condition on γ implies that ∥z0 − z1∥ ≤ 2γ (as transcript validity
implies ∥z∥ ≤ γ), and that z0 − z1 ̸= 0 mod q.

Hence, there exists an adversary B against the SISm,k,q,2γ problem such that:

Adv(A) ≤ AdvSISm,k,q,2γ (B) .

Let us now focus on lossy-soundness. We first define a lossy key generation
algorithm, and then argue about lossy-soundness.

Lossiness. The lossy key generation algorithm LossyIGen only modifies the gener-
ation of B. Let us recall that in IGen, the latter is defined as B ← A1S1 + S2,
with A1 ←↩ U(Zm×(k−m−ℓ)

q ) and (S1,S2)←↩ χ(k−m−ℓ)×ℓ
η × χm×ℓ

η . The lossy key gen-
eration algorithm LossyIGen samples it as B←↩ U(Zm×ℓ

q ). Lossy verification keys are
computationally indistinguishable from non-lossy ones, under the LWEk−m−ℓ,m,ℓ,η,q

assumption.

εls-lossy Soundness. First note that, if the lossy verification key A is such that,
for all commitment w, there exists at most one challenge c such that there exists z
with (w, c, z) passing verification, then, as the challenge is sampled uniformly and
independently of w, an (unbounded) prover cannot pass verification, except with
probability at most 1/|C|.

We focus on proving that the above holds with overwhelming probability over
the choice of the lossy key A. By contradiction, assume there exists w, c0, c1, z0, z1
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with ∥z0∥, ∥z1∥ ≤ γ and c0 ̸= c1 ∈ C, such that we have both Az0 = w+qJc0 mod 2q
and Az1 = w + qJc1 mod 2q. Then, we have:

A(z0 − z1) = qJ(c1 − c0) mod 2q .

Recall that A is of the form (qJ−2B|2A1|2Im), with A1,B uniform over Zq. Hence,
the matrix A mod q is of the form (B|A1|Im), since q is odd. Then the above implies
that (B|A1|Im)(z0 − z1) = 0 mod q with z0 − z1 ̸= 0 mod q. This happens with
probability at most 1/qm.

To conclude, note that there are at most (2γ + 1)2k · |C|2 choices for z0, z1, c0
and c1. A union bound therefore implies that the probability over A that there
is a commitment with at least two challenges permitting valid transcripts is at
most |C|2(2γ + 1)2k/qm. Our lossy identification scheme is then εls-lossy-sound,
with

εls ≤
1

|C|
+
|C|2(2γ + 1)2k

qm
,

which completes the proof of the theorem.

We then obtain the following corollary as an application of Lemma 2.19.

Corollary 6.7. Using the same assumptions as in Theorem 6.6, the resulting signa-
ture scheme FS[G+ G, H] is EU-NMA-secure, in the ROM.

We also obtain the following corollary as an application of Theorem 2.17.

Corollary 6.8. Using the same assumptions as in Theorem 6.6, and if εls is negli-
gible, the signature scheme FS[G+ G, H] is EU-NMA-secure, in the QROM.

To conclude this section, we introduce an additional assumption of a similar
flavour as the SelfTargetMSIS assumption [KLS18], which allows to directly prove
EU-NMA-security of FS[G+ G, H] in the QROM as it is (up to LWE) the EU-NMA
security game of the resulting signature. As for SelfTargetMSIS, this problem can be
related in the ROM to SIS, using the special soundness property of the scheme.

Definition 6.1 (GpGSelfTargetSIS). Let m ≥ ℓ > 0, k > m+ℓ. Let γ > 0 and q > 2γ
be an odd modulus. The GpGSelfTargetSISm,k,ℓ,γ,q assumption states that given a
matrix A := (qJ− 2B|2A1|2Im) ∈ Zm×k

2q , where the matrices A1 ←↩ U(Zm×(k−m−ℓ)
q )

and B ←↩ U(Zm×ℓ
q ), and oracle access to a hash function H, it is computationally

hard to find c ∈ C, z ∈ Zk and µ ∈ {0, 1}⋆ such that H(Az−qJc, µ) = c and ∥z∥ ≤ γ.

6.1.5 Asymptotic Parameters Analysis

Our analysis above is applicable to the following instantiation of parameters, as a
function of the security parameter λ and the number of signature queries QS . We
assume QS to be a large polynomial in λ. We consider k, ℓ,m linear in λ. We set χ
as DZ,

√
k with tail-cutting to get samples in {−k, . . . , 0, . . . , k} with overwhelming

probability. We let ε = 1/Qs.
We make the security of the G+ G scheme rely on the following two assumptions.

First, the LWEm−k−ℓ,k,ℓ,q,χ assumption, where
√
k = αq. This LWE parametrization

is compatible with the reduction from worst-case lattice problems from [Reg09].
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KeyGen(1λ) :

1: A0 ←↩ U(Rm×k−m−1
q )

2: do (s1, s2)←↩ Sk−m−1
η ×Sm

η

3: s← (1|s⊤1 |s⊤2 )⊤ ∈ Rk
2q

4: while ∥ζs∥ ≥ S
5: b← A0s1 + s2 mod q
6: A← (−2b+ qj|2A0|2Im)
7: return (vk, sk) = (A, s)

Sign(A, s, µ) :

1: y←↩ DRk,Σ(s)

2: w← Ay mod 2q
3: c← H(w, µ)
4: u←↩ DR,s,−c/2
5: z← y + (ζu+ c)s
6: return (z, c)

Verify(A, µ, z, c) :

1: w← Az− qcj mod 2q
2: if c = H(w, µ)
3: and ∥z∥ ≤ γ then
4: return 1
5: end if
6: return 0

Figure 6.2: The Module G+ G Signature Scheme.

Second, the SISm,k,β assumption, where β = O(
√
kσ). The SIS parametrization is

compatible with the reductions from worst-case lattice problems from [MR07,GPV08]
when q ≥ Ω(

√
kβ). Finally, the hardness of both problems is balanced out when α ≈

1/β.
The distribution of z is Gaussian with standard deviation σ = 2ηε(2SZℓ), which

is O(σ1(S)
√
log(Qsλ)). As σ1(S) = O(λ), the norm of z is (almost) always at

most β = O(λ3/2 log1/2Qs). Finally, we set q = Θ(λ2 log1/2Qs).
Verification keys and signatures have bit-sizes O(λ2 log λ) and O(λ log λ).

6.2 Optimizations and Concrete Parameters

In order to decrease the sizes of a lattice-based scheme, a common approach is to
replace Z with a cyclotomic polynomial ring of the form R = Z[x]/(1+xn), where n
is a power of 2, and to rely on the intractability of the module versions of SIS
and LWE [BGV12, LS15]. Gaussian distributions are extended by considering the
coefficients of the polynomials.

6.2.1 Description of the Module-Based Scheme

In this section, we propose parameters for an optimized, module version of the G+ G
signature, that we present in Figure 6.2.

As in Section 6.1, let m > 0, k > m+ 1 and ℓ = 1. Let j = (ζ∗, 0, . . . , 0) ∈ Rm,
where ζ = 1 + xn/2 and ζ∗ = xn/2 − 1 satisfy ζ∗ζ = 2 mod 1 + xn. The challenge
space is R/ζ∗R. We let η > 0 and χη = U({y ∈ R| ∥y∥∞ ≤ η}). Given an
element s ∈ R, we define rot(s) as the n × n matrix whose (i, j)-th entry is the
coefficient of degree n− 1− j of xi · s mod 1 + xn. This matrix maps the coefficient
embedding of a polynomial c to the coefficient embedding of sc. We extend this
definition to vectors coordinate-wise and we define Σ(s) = Σ(rot(s)), where Σ is
borrowed from Section 6.1. This gives rise to the signature scheme presented in
Figure 6.2.

Beyond relying on polynomial rings, we consider various improvements and op-
timizations, which we discuss now.

KeyGen: The key generation step includes a rejection sampling step. The thresh-
old S will be set such that about 50% of the keys will be rejected. This helps

97



6. G+ G: Compact Lattice-Based Fiat-Shamir Signatures

Target Security 120 180 260
n 256 256 256
q 95233 48640 202753
S 23.33 27.59 32.97
s 14.22 14.22 14.22
σ 331.91 392.57 469.12
γ 13885.1830 18857.9404 33367.4202

(m, k −m) (2,4) (3,5) (4,7)
η 1 1 1
α 128 128 1024

BKZ block-size b to break SIS 415 (338) 616 (510) 924 (777)
Best Known Classical bit-cost 121 (98) 180 (149) 270 (227)
Best Known Quantum bit-cost 106 (86) 158 (131) 237 (199)
BKZ block-size b to break LWE 411 617 895
Best Known Classical bit-cost 120 180 261
Best Known Quantum bit-cost 105 158 230

Signature size with rANS 1542 2033 2518
Expected public key size 1120 1568 2336

Sum 2662 3601 4854
Signature size (Chapter 4) 1903 2473 3461

Public Key size 800 1056 1760
Sum 2703 3529 5221

Table 6.1: Parameter sets for the Optimized G+ G Signature Scheme. Numbers in
parentheses for SIS security are for strong-unforgeability.

controlling the upper bound on the smoothing parameter of the secret lattice.

Sign: Instead of computing z = y+ (2u+ c)s, we compute z = y+ (ζu+ c)s. Still,
as As = j mod 2q, we have ζAs = 0 mod 2q by definition of j. Thus, the
identity Az− qcj = Ay mod 2q still holds. The main advantage of this modi-
fication is that the secret lattice is now ζsR instead of 2sR, whose smoothing
parameter is a factor

√
2 smaller.

Verify: The verification bound is set to γ = 1.01 ·
√
nkσ, and the signer may verify

that its signature is accepted before outputting it, up to restarting in the
somewhat rare event that it is not.

6.2.2 Concrete Parameters

We now give concrete parameters and estimates of the public key and signature
sizes resulting from these optimizations in Table 6.1. This gives rise to the following
estimates. We note that the compression techniques from Chapter 5 can be used in
this setting too. Namely, the high and low bits decomposition from Section 5.1.2,
which increases the verification to γ = 1.01 ·

√
nkσ +

√
nm(1 + α/4), as well as the

rANS technique described in Section 5.2.4.
For comparison, we include in Table 6.1 a reminder on estimated sizes of opti-

mized Lyubashevsky signatures from Table 4.3. As far as we are aware of, these
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6.2. Optimizations and Concrete Parameters

KeyGen(1λ) :

1: do (f, g)←↩ U({x ∈ R2[∥x∥∞ ≤ η})
2: while ∥(ζf |2xn/2g+ζ)∥ ≥ S or f non-invertible mod q
3: h← [ζg + 1]/f mod q
4: A← (ζ∗(q − 1)h | ζ∗) mod 2q
5: s← (f | ζg + 1)⊤

6: return vk = A and sk = (A, s)

Figure 6.3: NTRU KeyGen for G+ G

are the lowest signatures and key sizes provided in the literature for Lyubashevsky’s
signatures (when using the core-SVP hardness methodology to estimate security).
We note that the resulting signature sizes are 20% to 30% lower than the ones from
Chapter 4. The asymptotic gain of our signature is observable when comparing the
signature sizes with Haetae, as the trade-off is first in its favor but ends up in favor
of G+ G for the higher security level, up to 16% of savings. However, the sum of the
public key and the signature sizes is somewhat similar across the three signatures.
This is due to the fact that in the non-bimodal setting, a practical optimization
due to [DKL+18] consists in truncating the low bits of the public key, at the cost
of increasing the verification bound. While such a technique is also implemented
in Haetae, its efficiency is relative in this setting, and we chose not to incorporate it
in G+ G for the sake of simplicity.

6.2.3 Optimized NTRU Key Generation Algorithm

We can alternatively use the NTRU-based key generation algorithm from [DDLL13].
In our setting, it is possible to improve it, by relying on the aforementioned technique
based on the divisibility of 2 by (1+xn/2). This leads to the key generation algorithm
presented in Figure 6.3.

The algorithm outputs keys A and (A, s) satisfying As = ζ∗q mod 2q as it holds
that (q−1)hf = (q−1)(ζg+1) mod 2q since (q−1) is even. It that ζAs = 0 mod 2q,
and the lattice in needs of smoothing is ζsR where ζs⊤ = (ζf |2xn/2g+ ζ). We then
propose two sets of parameters in Table 6.2, for ring dimensions 512 and 1024. The
former leads to only around 90 bits of security, but the latter allows to reach NIST
security level III. Focusing on the latter, while the sum |vk|+|sig| is similar to those of
the other schemes, we note that the signature size is further decreased, compared to
module G+ G. The resulting signature is 40% smaller than in Section 4.4.5 and 55%
smaller than Dilithium.
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6. G+ G: Compact Lattice-Based Fiat-Shamir Signatures

Target Security 90 180
n 512 1024
q 32257 45569
S 43.73 36.11

KeyGen acceptance rate 0.25 0.5
s 14.32 14.42
σ 626.49 520.75
B 21719.152 40218.387
η 2 1
α 256 2048

BKZ block-size b to break SIS 314 (238) 740 (622)
Best Known Classical bit-cost 91 (69) 216 (181)
Best Known Quantum bit-cost 80 (61) 190 (159)
BKZ block-size b to break LWE 305 616
Best Known Classical bit-cost 89 180
Best Known Quantum bit-cost 78 158

Signature size with rANS 974 1497
Expected public key size 992 2080

Sum 1966 3577

Table 6.2: Parameter Sets for NTRU G+ G.
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Chapter 7

Conclusion

In this thesis, we explored many aspects of the Fiat-Shamir (with Aborts) paradigm
in the lattice setting. By a careful analysis, we discovered that the previous generic
security reductions missed subtle issues, which underlines that the paradigm had yet
to be fully understood. We fixed the proofs and thankfully recovered similar security
loss bounds. This also let us clean up a missing link, in the sense that we proved the
first reduction for the Fiat-Shamir with Unbounded Aborts transform. Moreover,
our simulator for both aborting and non-aborting transcripts may prove useful for
more advanced applications. In particular, any multiparty setting where multiple
players have to agree during a first round on a challenge by each outputting their
commitments.

In a second time, we aimed at making rejection sampling more efficient. It turned
out that the generic technique is already essentially optimal in terms of expected run-
time, which means that there was nothing to gain from this side. However, when we
consider the specific case of the Lyubashevsky and BLISS identification protocols,
we found that using uniform distributions in hyperballs led to the smallest expected
norm of the answer, given a target number of repetitions, in both unimodal and
bimodal setting. As a side bonus, the rejection condition consists of roughly one
Euclidean norm computation and comparison. This is in stark contrast with the
rejection condition for the discrete Gaussian distribution, which requires transcen-
dental function evaluations.

However, optimized implementations such as Dilithium rely on more techniques
to compress even further the signature size such as the Bai-Galbraith compres-
sion [BG14]. For comparison, we proposed HAETAE, which relies on the above
findings as well as adaptations of the standard compression techniques. It further
shows that relying on hyperball-uniforms is realistic, as we implement such a sampler.

Finally, we showed how to depart from rejection sampling, while retaining similar
concrete sizes and improved asymptotic sizes. The G+ G signature scheme instead
relies on adding randomness to the reply to the verifier’s challenge, similarly to
BLISS, but with more randomness involved. This paves the way for improvement
of more advanced protocols, whose efficiency may have been limited due to rejection
sampling. These findings raise multiple questions.

1. Can we improve the hyperball sampler for HAETAE?
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7. Conclusion

Namely, we measured that hyperball sampling could take up to 80% of the sign-
ing process. Any improvement to the sampler would have a huge impact on the
performance of HAETAE, as it clearly currently drives the signing cost. One of its
downsides is its randomness consumption due to the necessary precision. Alterna-
tively, improving the sampler could also come in the form of reducing the necessary
precision, via a refined precision analysis. A third path could be to re-use random-
ness. Indeed, strategies exist for Dilithium that allow to reuse some part of the
randomness (see, e.g. [SW20]). They however cannot be directly applied to our set-
ting, as our distribution has a shape less compatible with coordinate-wise sampling,
contrary to hypercubes.

2. What concrete performance could G+ G achieve?

The main concern is the first Gaussian sampling, as the covariance matrix is skewed.
Making it competitive with other schemes in terms of efficiency is far from trivial.
Moreover, it has been a long standing problem to efficiently protect Gaussian sam-
pling against side-channel attacks via masking. However, we note that if we consider
an offline/online scenario, then we could sample the two Gaussian samples before-
hand: we would need to sample the second gaussian twice, the first time assuming
that c = 0ℓ and the other times assuming that it is c = 1ℓ. Indeed, we may not be
aware of the challenge yet, but when we obtain it, we can compose the appropriate
sample from these two samples, coordinate-wise. Moreover, the leftover randomness
is not lost and it can be used for the next signature.

3. What impact can G+ G have on advanced protocols?

The Fiat-Shamir with aborts paradigm is more versatile than just compiling identi-
fication protocols into signature schemes. More advanced cryptographic primitives
have been built from Dilithium, such as multisignatures [DOTT21], blind signa-
tures [ASY22], advanced proof systems [LNP22], to cite a few. These proof systems
rely on the unimodal setting, where one does not have to tweak the public key.
Our G+ G scheme is closer to the bimodal setting, for which it is not immediate to
adapt these constructions. This downside is thus inherited by G+ G.

4. Is there a link between G+ G and hash-and-sign signatures?

Hash-and-Sign is another paradigm of signatures, out of which Falcon [FHK+17]
was created. Falcon is the other winner of the NIST PQC and the hash-and-sign
paradigm is also very successful in terms of further applications. It recently appeared
in [CLMQ21] that the first lattice based hash-and-sign signature [GPV08] could be
seen as a Fiat-Shamir signature with a very specific instantiation of the hash function.
This raises the question of whether there exists an equivalent of G+ G in the hash-
and-sign world, maybe obtained through the same hash function instantiation.
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