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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Modellierung, Analysis und Simulation verschiedener
Anwendungen aus Biologie, Sozialwissenschaften und den Fußgängerdynamiken. Wir betrachten Mod-
ellierungsansätze auf mikroskopischer, mesoskopischer und makroskopischer Ebene. Wir gehen auf die
Verbindung der unterschiedlichen Ebenen und deren jeweiligen Vor- und Nachteile ein, beginnend mit
einer breiten Präsentation dieser Techniken in der Modellierung.

Im folgenden Kapitel 2 untersuchen wir ein soziologisches Phänomen in den Fußgängerdynamiken.
Wir modellieren das im Forschungszentrum Jülich durchgeführte Experiment auf mikroskopischer
Ebene und kalibrieren das Modell auch. Im Anschluss leiten wir eine partielle Differentialgleichung
her und analysieren diese. Die experimentell festgestellten Phänomene reproduzieren wir auf beiden
Skalen.
Im Kapitel 3 setzen wir Arbeiten zum ELO-Rating, dem verbreiteten Rating im Schachspiel, fort.

Wir erweitern vorige Arbeiten um einen Faktor der Performance-Schwankung. Numerische Simulatio-
nen auf beiden Skalen zeigen eine gute Übereinstimmung zwischen mikroskopischer und mesoskopische
Skala. Wir können die partielle Differentialgleichung nutzen, um analytisch zu zeigen, dass eine richtige
Wahl der Parameter zu einer Konvergenz des Ratings R zur erwartenden Stärke ρ führt.
Im letzten Kapitel 4 leiten wir einen neuen diffusiven Term auf makroskopischer Ebene aus mikroskopis-

chen Überlegungen her. Diese Herleitung ist rigorous und damit können wir die Existenz einer
schwachen Lösung auf makroskopischer Ebene zeigen. Wir unterstreichen unsere Erkenntnisse mit
Simulationen auf beiden Skalen.
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Abstract

The present work deals with modeling, analysis and simulation of various applications in biology,
social sciences and pedestrian dynamics. We consider modeling approaches at microscopic, mesoscopic,
and macroscopic levels. We address the connection between the different levels and their respective
advantages and disadvantages, beginning with a broad presentation of these techniques in modeling.

In the next Chapter 2, we study a sociological phenomenon in pedestrian dynamics. We model
the experiment conducted at the Jülich Research Center at the microscopic level and also calibrate
the model. Subsequently, we derive a partial differential equation and analyse it. We reproduce the
experimentally observed phenomena at both scales.
In Chapter 3, we continue work on the ELO rating, the widely used rating in chess. We extend

previous work to include a factor of performance-fluctuation. Numerical simulations on both scales
show good agreement between microscopic and mesoscopic scales. We can use the partial differential
equation to show analytically that a proper choice of parameters leads to a convergence of the rating
R to the expected strength of ρ.
In the last Chapter 4, we derive a new diffusive term at the macroscopic level from microscopic

considerations. We consider particles repelling each other within a finite radius. The macroscopic
derivation is rigorous and thus we can show the existence of a weak solution on the macroscopic level.
We emphasize our findings with simulations at both scales.
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1 General Introduction

The right understanding of any matter and
a misunderstanding of the same matter do
not wholly exclude each other.

Franz Kafka in The Trial
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The basic aim of mathematical modelling is to formulate, solve and, if necessary, extend or refine
a mathematical model for a real problem. A mathematical model can therefore be described as any
set of mathematical rules, equations and inequalities that can be calculated in a deterministic or
stochastic sense and that describe an aspect of a real process, see [34,126,229]. Basically, the process
of modelling contains the following steps,

• specification of the real problem

• choice of scales and the corresponding mathematical description

• development of the mathematical model

• analysis and solution of the model

1



1 General Introduction

• interpretation of the results and comparison with the real problem

• refinement or extension of the model

• presentation of the results

When choosing a model, we distinguish between qualitative and quantitative ones. The former are
models that are intended to give predictions for the qualitative structure of a process. The latter are
models that are to be used for quantitative predictions for the values of variables, see [34,126].

A distinction is also made in modelling between deterministic and stochastic models, see [34]. De-
terministic models are based on known physical laws or laws from another discipline. The same input
will always lead to the same result. In contrast, stochastic models contain probability distributions.
As a result, the same input can lead to different output values.
Modeling includes many different fields of mathematics. Examples are dynamical systems, differ-

ential equations, game theoretic approaches, or statistical models. The last two fields are widely used
in psychology, sociology, political science and economics, see [14, 176, 197]. Dynamical systems and
differential equations, on the other hand, are widely used in the natural sciences, e.g., physics, earth
sciences, chemistry, engineering and computer science, see [62, 168]. Mathematics has also found its
place in the aforementioned social sciences and biology, where many initially believed the phenomena
to be outside the realm of mathematical representation. Mathematical modeling did not become an
important research tool here until the second decade of the 20th century, but first examples from
modeling in genetics are in the curriculum of European schools through Mendel’s theory of heredity
and thus chronologically were 100 years earlier, see [90].
Before developing a mathematical model, one must be clear about the space and time scales. We

briefly discuss the different scales using an example of pedestrian dynamics. Many considerations
are based on microscopic ideas and interactions on that scale. The interacting objects, motivated by
physics, are often called particles; in the context of pedestrians and social sciences, also agents. Most
common microscopic models are 1st and 2nd ordinary differential equations (ODE) for position x
and velocity v, they are off-lattice based, therefore continuous in space. Also off-lattice are stochastic
differential equations (SDE). In comparison to ODEs one or more of the terms is a stochastic process,
resulting in a solution which is also a stochastic process. Therefore it is a non-deterministic model.
Often SDEs contain a variable which represents random white noise modelling some perturbation.
Lattice-based cellular automata (CA) are also widely used. They are discrete in time and space. There
are both deterministic and stochastic versions. John Conway’s Game of Life is a famous example of
the former. In the example of pedestrian dynamics, the latter is more common. On a microscopic
scale, we trace the trajectory, i.e., the location xi as a function of time t, of a single agent i depending
e.g. of its velocity vi and the position of other agents xj .
Mesoscopic or kinetic models are static representations of a density as a function of the so-called

single-particle distribution f representing states of the microscopic particles. Kinetic models are partial
differential equations. The best known example of a mesoscopic PDE is the now-called Boltzmann
equation, see [27]. Here f = f(x, v, t) is a probability density function defined to represent the number
of molecules having momentum v at position x at time t. In the previous context the function f(x, v, t)
then gives the probability of finding an agent with property/velocity v at position x at time t. More
precisely, f(x, v, t)dxdv gives the average number of pedestrians just mentioned in the reference space
dxdv.
The macroscopic scale also now represents the density ρ = ρ(x, t) of pedestrians at position x at

time t and not any longer distinguishes by e.g. velocity v, detecting just the collective mass. It can
be retrieved from a kinetic model via ρ(x, t) =

∫
f(x, v, t)dv.

2



1.1 Microscopic models

The particle description is the natural level to describe interactions of pedestrians, bacteria and
cells. Nevertheless, difficulties can arise both mathematically and for the applications. For systems
of ordinary differential equations a wide theory of existence and regularity was established that also
goes back a long way historically. However, this is not true, for example, in the case of cellular
automata, which are widely used in pedestrian dynamics. Also, on a microscopic level the long
term behaviour often needs to be predicted via simulations. Numerically systems with 50000 agents
(evacuation of a soccer stadium) become expensive or even impossible - in the context of gas dynamics,
see [63, 178]. The kinetic level considers a multidimensional partial differential equation. This has
numerical advantages over the microscopic, but often still involves a high dimensional problem. An
approximation of microscopic dynamics only works if the number of particles is large. In a certain way
it is still a microscopic description of the system, emergent phenomena often cannot be described by
it, see [58, 157]. The macroscopic level carries the least information. However, there is an established
theory for long-term- and stability-behaviour. Often faster numerical solvers exist.
Depending on the application, one of the three mentioned scales is more appropriate. But as we

will discuss in the context of pedestrian dynamics, even within a scale, different approaches have
different advantages and disadvantages, compare [157, 201]. In the following, we present the different
scales, their modeling approaches, and the changing of scales. We mention studied and occurring
phenomena. We motivate why a change of scale is often helpful in applications or for recreating
introduced phenomena.
We begin with a detailed overview of the various microscopic models and phenomena that occur.

We present a change of scale on three examples and mention other important techniques. A brief
overview of the relevant terms in the context of PDEs is followed by an overview of the applications
and the linkage of the different scales.

1.1 Microscopic models

Microscopic modeling is used not only in physics and mathematics but in many sciences. Among other
famous examples are economics, traffic flow, biology and medicine [139,155,196]. In physics we often
speak of particles, in the social sciences of agents and individuals, and in biology of cells or bacteria.

1.1.1 Pedestrian dynamics

The modeling of pedestrian dynamics has gained a lot of attention in recent years. First physics and
engineering were interested in those dynamics, now psychology, mathematics and sociology contribute
their share, see [227]. Especially due to the catastrophe at the Loveparade festival in Duisburg in
2010, a focus on evacuation scenarios and geometry optimization has emerged, see [107]. This also
plays a role in organizing demonstrations or the design of subway stations. Mathematical models have
been successfully applied in the pilgrim site of Mecca, where deaths have occurred repeatedly in the
past due to large crowds, see [123].
Models for pedestrian dynamics are often defined on a bounded domain Ω ⊂ R2 as in Figure (1.1a).

We distinguish in the boundary ∂Ω between walls ΓW , obstacles ΓO and entries and exits ΓI , ΓE .
These models can be discrete or continuous in space. Depending on the model, the boundary is
implemented differently. In evacuation models, the shortest path to a destination, e.g. ΓE , is an
important concept. In a domain Ω the distance of a point x to an exit ΓE is known to be given via

3



1 General Introduction

(a) Exit ΓE and the wall ΓW , mathematically seen
it is the boundary of Ω.

(b) An obstacle ΓO in front of the exit ΓE .

Figure 1.1: The effect of FRO means that the exit time t∗ is reduced by the obstacle ΓO. Thus,
obstacles accelerate an evacuation process.

the solution of the (uncoupled) Eikonal-equation:

‖∇V (x)‖2 = 1, for x in Ω,
V (x) = 0, on x in ΓE ,

(1.1)

with homogenous Dirichlet-boundary conditions on the exit ΓE . Pedestrians generally do not always
choose the shortest path to an exit. In [58] the authors discuss among others the shortest, the easiest
and the path with minimal angle change. In models that are discrete in space, one usually assumes a
quadratic grid, accordingly ∆x = ∆y. The distance measurement to an output ΓE is then motivated
either by the distance of the field centre point to ΓE via (1.1) or by the number of fields needed to be
passed to reach ΓE .

Effects and Phenomena

In the microscopic modeling of pedestrians, many effects occur that are not physically motivated
but whose cause is sociological; people are individuals who e.g. look out for each other, see [58,
157]. Therefore, an important requirement for modeling is to reflect these phenomena. We present
phenomena in pedestrian dynamics as well as modeling approaches in this Subsection. In the modelling
of pedestrians, size-exclusion is a key-element most approaches satisfy. Depending on the model,
this means microscopically that agents do not overlap.
The phenomena of a fluidizing role of an obstacle (FRO) is discussed to have physical and

sociological reasons, see [83,157]. It means that an object positioned in front of an emergency exit ΓE
as in Figure 1.1 accelerates the total duration of the evacuation process. This is a phenomena which
also occurs in real evacuation situations, see [87]. It can be seen as an example of Braess paradox,
see [58].
The next phenomena is the so-called Faster-is-Slower effect observed with pedestrians in exper-

iments, see [6, 88, 99]. Faster-is-Slower means that evacuation-times may be slower at higher speeds.
Therefore it also represents a Braess paradox, see [58]. It not only occurs in humans but also was inves-
tigated in mice, ants, see [152,208], and sheep, see [181,238], wherein they also proposed a mechanical
model based on rigid grains.
So-called Stop-and-go waves occur in traffic and pedestrian flows. It is believed that effects of

inertia and delay play an important role in this. This is being investigated experimentally and in
simulations, see [157].
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1.1 Microscopic models

In many models Faster-is-Slower also leads to the following phenomena. It can happen that the
particles get stuck and can no longer be loosened. This effect is called clogging and a minimal example
is visualized in Figure 1.3b. One scenario where clogging occurs are bottlenecks, see [104,239], which
are also investigated in Chapter 2. Clogging leads to high densities ρ and, in the context of pedestrian
dynamics, can lead to dangerous situations for individuals, see [6]. Therefore, it is of scientific relevance
to identify such situations e.g. via microscopic simulations, see [103]. However, unlike in e.g. granular
models, clogs dissolve again in situations with pedestrians.
Another phenomenon of self-organisation of pedestrians is that of Lane-formations. Lane-formation

occur in bi-directional flows. It is seen as a direct result of minimizing conflicts in the two different
streams and was investigated in multiple experiments [109,234]. In bidirectional flow situations, pedes-
trians self-organize into separate segregated lanes. Unlike in vehicle traffic, lanes form dynamically
and naturally in pedestrian dynamics. The mechanisms behind this seemingly organized separation of
the crowd are not known for certain and in many cases are random without external synchronization
or prior agreement between pedestrians. At the microscopic level, this phenomenon was studied in
bi-directional pedestrian walkways, see [25,85].
In the following we discuss different microscopic models for N + 1 individuals. We restrict the

presentation to 1D; its generalization to 2D is not necessarily straight forward.

Follow-The-Leader model

The Follow-The-Leader model (FTL) is widely used in traffic dynamics and is also used for pedes-
trians, see [91,237]. It is a continuous in space ODE-system. The agents are aligned in a straight line
as can be seen in Figure 1.2. The velocity of agent xi is then given by

d

dt
xi(t) = θ pxi+1(t)− xi(t)q , 0 ≤ i ≤ N − 1 (1.2)

and depending on xN it can be a periodic model. We then have xN = x0. Here θ is a non-negative
function, an example of such a function governing the dynamics is

θ(z) =
{
U(1− exp(− z−k

zs
)), z ≥ k

0, z < k
.

Here k denotes the minimal distance and U is the maximum value, therefore the desired speed. The
constant zs represents a typical distance and is for scaling reasons. Common values from the literature
are U = 1.25ms , k = 0.3m and zs = 0.9m.

System (1.2) is in Lagrangian coordinates. From a mathematical point of view existence of a solution
to this ODE system is granted by Picard-Lindelöf’s theorem when θ is Lipschitz, see [213]. While the
agents always move forward one can assume that in the long time behaviour distances between agents
become constant. Therefore it is common to introduce ωi+ 1

2
= xi+1−xi

∆s , here ∆s is a reference distance
in Lagrangian coordinates. We then have

d

dt
ωi+ 1

2
(t) = 1

∆s

´

θ(ωi+ 1
2
(t))− θ(ωi− 1

2
(t))

¯

, 1 ≤ i ≤ N − 1.

Therefore ω is dimensionless. Depending on θ different phenomena can be reproduced. For effects
like inertia or delays second-order FTL-models are investigated. For a critical discussion of the FTL
model and its extensions we refer to [157], and for its application in evacuation dynamics, see [106].
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Figure 1.2: N + 1 agents xi in the FTL in 1D. For the long-time behaviour we investigate the system
in ωi+ 1

2
.

Granular Media

From a physical point of view, when modelling the effect of size-exclusion, one approach is to model
it with granular mechanics (GM), see [31,156]. It is a continuous in space ODE-system. Here each
individual i can be seen as a hard disk with radius ri whereas there exist a non-overlapping constraint
with all neighbours. We reduce ourself to the cases ri = rj for all i, j. The non-overlapping assumption
reproduces the effect of size-exclusion. This leads to ~x = (x0, . . . , xN ) belonging to the set of feasible
configurations

K = {~x = (x0, . . . , xN ) ∈ Rn, xn+1 − xn ≥ 2r, ∀n = 0, . . . , N − 1}.

Every agent i has a velocity Ui where U = (U0, . . . , UN ) can be time-dependent. For stating the
dynamics we have to define the set of feasible velocities

Cx = {~v = (v0, . . . , vN ) ∈ Rn, xn+1 − xn = 2r ⇒ vn+1 − vn ≥ 0}.

The one-dimensional GM model then is given by
d

dt
xi(t) = PCx(Ui)

where PCx represents the Euclidian projection on the closed convex cone Cx. This makes the GM-model
a delicate model, especially in 2D, in order to preserve the non-overlapping constraint. We therefore
refer to [157] for mathematical details and mention below phenomena of pedestrian dynamics that can
be reproduced with the GM.
As mentioned a GM setting automatically fulfills the effect of size-exclusion due the definition of K

and Cx. For the question of mathematical well-posedness of some models we refer to [157, 158, 167].
Effective numerical algorithms are discussed in [156]. In general, the topic of granular media in
pedestrian dynamics is compared with other models e.g. here [105, 173] and a clear overview is given
in [157]. The authors also state a problem in simple GM models, namely the desired velocity field
of agent i does not depend on other agents. Therefore, in this form, it primarily provides a basis
for modelling collisions of particles. However, through this physical modelling, these basic models
already provide common phenomena in pedestrian dynamics. The fluidizing role of an obstacle was
investigated in [83, 157] for the GM. A GM also represents Faster-is-Slower due the occurrence of
clogs. Collision-free granular models were compared with other models in [232] when investigating
lane-formation.

Cellular automata

The just mentioned effect of Faster-is-Slower also occurs in other microscopic models like Cellular
Automaton (CA). A CA is a in time and in space discrete microscopic model. CAs are widely used
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(a) N + 1 agents (hard discs with radius r) xi in the
context of granular media in 1D.

(b) Two agents are stuck in front of an exit ΓE .

Figure 1.3: On the left agents in a GM in a feasible configuration. On the right, clogging occurs in
2D since two agents are stuck in front of the exit.

(a) A Moore neighborhood. (b) A Von Neumann neighbor-
hood.

(c) A hexagon neighborhood.

Figure 1.4: The three common neighborhoods for CAs.

in many sciences. In pedestrian dynamics, many commerce programs exist and their dynamics are
easy to visualize and understand, see [58, 201]. Nevertheless from a mathematical point of view e.g.
the long-term behaviour is difficult to predict, see [157,190].
In a CA the domain is split into squares with ∆x = ∆y; each square can by occupied by one agent

or not. Agents can move to neighbouring cells. In a so-called Von Neumann environment, as shown
in Figure 1.4, there are four possible neighbouring cells to move. A Moore environment also allows
the diagonal neighbouring cells. Hexagons are also used for more geometric options in complicated
domains, see [86,157].
In CAs, the effect of size-exclusion is generated in the so-called transition-rate T . A maximum of

one agent is allowed per field. However, this also does not allow a finer mesh size, because one field
must correspond approximately to one pedestrian. Depending on the context, fields with ∆x = 0.4m,
corresponding to a maximum density of ρmax = 6.25 pedestrians/m2, are therefore mostly used. Due
to calibration reasons, a field size of 0.3m is occasionally used as in Chapter 2. This is only a
slight deviation from the actual area of pedestrians, see [104]. This constraint on geometries severely
limits CAs, see [201]. Geometries like a round obstacle in Figure 1.1b are not possible and must be
approximated in those cases.
The numerical implementation allows several approaches. In the simplest approach, which is nev-

ertheless widely used, agents are updated sequentially. There are different update rules. The order is
shuffled every time step or remains frozen, see [201]. The effect of size-exclusion is then implemented
simply by the fact that an occupied field is not available as a possible option, see [157]. Sequential and
parallel updates differ in its behaviour, see [216]. While the latter is mathematically more obvious,
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1 General Introduction

(a) Transition-rates T in a Von
Neumann-neighborhood for an
agent in (x, y). The agent is
not allowed to jump to the
right due to the effect of size-
exclusion.

(b) SFF with exit ΓE correspond-
ing to a Moore neighborhood.

(c) SFF with exit ΓE correspond-
ing to a Von Neumann neigh-
borhood.

Figure 1.5: Transition-rates T in a Von Neumann-neighborhood and two different SFFs corresponding
to different neighborhoods.

the effect of size-exclusion then leads to possible conflicts, e.g. two agents want to go to a previously
unoccupied field in the same time-step. In case of an occurring conflict an algorithm decides if one
agent is chosen to move to the field. The agent is e.g. chosen via an uniform probability distribu-
tion. Alternatively the respective probabilities of the two agents wanting to move into the field are
re-weighted, see [43, 136]. Social mechanisms were also introduced via this conflict resolution such as
friction, see [135]. This implementation leads to Faster-is-Slower.

CAs are determined on a mathematical level by a so-called master-equation (ME), see [39,157,200].
In one dimension, this is given in the simplest case as follows:

ρ(x, t+ ∆t)− ρ(x, t) =− ρ(x, t)T +(x, t)− ρ(x, t)T −(x, t)
ρ(x+ ∆x, t)T −(x+ ∆x, t) + ρ(x−∆x, t)T +(x−∆x, t).

It is important to see that the ME does not describe the development for agents i but for the change
in density ρ in a field x at time t. Here ρ can only take discrete values ρ ∈ {0, 1}.
In the so-called transition-rate T the dynamics can be incorporated. In the simplest case T = const.

the CA corresponds to a random walk. The effect of size-exclusion is generated by a term (1−ρ(x, t))
in T , see [200]. We visualized this in Figure 1.5a. For more complicated dynamics the so-called Static
Floor Field (SFF) is embedded in the transition-rate T . It indicates the probability of moving to a
field for the agent to reach its goal. It therefore depends, for example, on the distance of the field to
the exit ΓE in evacuation scenarios. Accordingly, it is important whether a Moore or Von Neumann
neighborhood is used, we illustrated therefore a SFF in 2D for the two different neighborhoods in
Figure 1.5. On a microscopic level, we refer regarding SFF and multiple exits to [116].
While short-distance interactions are introduced in the transition-rate T via mentioned terms like

size-exclusion, more sophisticated long-range interactions can be implemented via a Dynamic-Floor-
Field (DFF). This makes the CA a kind of mixed-model and enables certain multi-scale approaches,
see [58]. Motivated by the wide-spread macroscopic Keller-Segel-model (KSM), see [132], Kirchner et.
al used the idea of chemotaxis to model interaction between pedestrians on a microscopic level via a
DFF, see [136]. In the context of lane-formation side-stepping was introduced for cellular automatons,
see [39]. A CA can reproduce the phenomena of lane-formation, see [174]. More complicated transition-
rates T can, for example, introduce local and global pushing in spite of size-exclusion, see [10,235].
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1.1 Microscopic models

Force-Based models

The previously mentioned collision-free granular models were compared with an anticipation model
in [232]. The latter is a force-based model. In them we consider N + 1 particle systems where the
dynamics of each particle is driven by Newton’s laws of motion. This results in first or second
order ODE models. Let in the latter xi, vi denote position and velocity of agent i. Then the general
form is

d

dt
xi(t) = vi(t), (1.3)

d

dt
vi(t) = Fi(~x(t), ~v(t)),

with ~x(t) = (x0(t), . . . , xN (t)), ~v(t) = (v0(t), . . . , vN (t)). Physically motivated from Coloumb’s Law is
the Magnetic Force Model (MFM) with Fi as the following

Fi(t) =
∑
j

Cqiqj
xi(t)− xj(t)
|xi(t)− xj(t)|3

. (1.4)

Here C is a constant and qj can be interpreted as the charge of a pedestrian j at position xi. Each
pedestrian i, obstacles ΓO and the boundary ΓW are positive point sources and desired zones as e.g.
the exit ΓE negative. The previously mentioned phenomenon of lane-formation can be reproduced
by this model, see [58, 212]. MFM allows overlapping of pedestrians, accordingly it does not fulfill
the effect of size-exclusion. The effect of clogging also occurs in force-based models and is a current
research topic at the microscopic level, see [233].
The most common force-based model is the so-called social force model (SFM), see [108,112,175,

212], with Fi as in the following

Fi(t) = Fi,d +
∑
j 6=i

F ji,r +
∑
A

FAi,a +
∑
O

FOi,o + ηi.

Here Fi,d corresponds to the desired velocity of agent i and Fi,r represents the repulsive force due to
other pedestrians. In some situations, agents group together, for example, due to friendship or in the
context of a tourism group. This is modelled by Fi,a. The last term Fi,o is a repulsive force due to
obstacles ΓO and the boundary ΓW , which usually decreases exponentially fast. The factor ηi models
some randomness. For more detailed modelling of the terms in Fi, we refer to [58], Chapter 4.1 or [112].
The SFM model reproduces the effect of Faster-is-Slower. While the individual parameters have a
physical meaning, the SFM is not suitable for evacuation situations, see [212]. One disadvantage of
ODE models is the oscillation of pedestrians that occurs in numerical simulations, making calibrations
difficult as well, see [201]. From the mathematical side, an advantage is the existence and uniqueness
of the solution of system (1.3), which can be deduced from Picard-Lindelöf’s theorem.

Stochastic differential equations

Other microscopic modelling approaches in pedestrian dynamics that we briefly mention for the sake
of completeness include those of stochastic ODEs (SDE). In the context of size-exclusion , see [32].
Hereby the evolution of agent i is given by

dxi(t) = vi(t)dt+
?

2dWi(t). (1.5)
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Here vi represents the optimal strategy for agent i, see also [190]. Volume exclusion effects can be
included in a force fi, e.g. vi = fi(~x), ensuring that the particles keep a certain distance to each other.
whereby Wi represents randomness via independent Brownian motion, see Figure 1.6a.
The authors in [31,32] analyse the so-called overdamped Langevin SDEs

dxi(t) = −∇V (xi)dt+
?

2DdWi(t) (1.6)

where V is an external potential and D a diffusion coefficient. The authors in [31, 190] investigated
system (1.6) in the context of lane formation.

Other modelling approaches and comments

In context of size-exclusion the authors in [12] work with a lattice-based model, i.e. discrete in space
and continuous in time.
Combining advantages of CA and ODEs, the optimal-step model has been introduced in [201]. It

is described as combining the merits of a sequential update with simple size-exclusion rules, borrowed
from CAs, but at the same time is continuous in space. It is continuous in space and sequentially
updated, therefore discrete in time. In the context of infection models, parameters for the repulsion
in social distancing-effects have been published, see [160].
In the context of the COVID-19 pandemic, models related to the SFM were used as the basis for

infection models, see [231]. Stochastic agent-based population models were also applied, which had
already been developed before COVID, for example, in the context of influenza, see [22, 162]. For a
broad overview of microscopic modelling, see [21].
Some of the previously mentioned modelling approaches like the Follow-the-Leader model are based

on traffic simulations. In traffic simulations fast CAs are used to model real time situations. As
previously mentioned a disadvantage of microscopic models is the required computation time when
compared with macroscopic models. The authors in [13] present a CA which can simulate 600 vehicles
at real-time frame-rates.

1.1.2 Biology

Occuring phenomena

In biology, many effects as e.g. the movement of cells as well as bacteria is modeled microscopically.
Here one tries to explain the occurrence of macroscopic structures from microscopic rules of the single
individuals similar to pedestrian dynamics. In general we call those phenomenons emergence. Self-
organization or the emergence of structures occurs in many models, for example flocks of birds, schools
of fish or the growth of tissue, see [164,165].
One effect studied in experiments is the aggregation of bacteria. One biological cause of this is

chemotaxis. Chemotaxis is a biological phenomenon in which cells or bacteria direct their velocity
according to the distribution of chemicals in the environment.
Chemotaxis is a reason for flocking. Another phenomena believed to cause flocking is alignment.

Plithotaxis can be mentioned as an example of current investigation. In collective cell migration,
plithotaxis is the tendency of each individual cell within a monolayer to migrate along the local
orientation of maximum principal stress. For a more biological introduction we refer to [219]. The
phenomena of alignment leads to collective motion and swarming.
During the swarming process of bacteria the phenomenon of rippling was observed. Rippling is

the occurrence of macroscopic propagating waves due aligned bacteria, see [119]. Colliding waves lead
to the reversal of the orientation of bacteria as individual bacteria-tracking shows, see [195].
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Wi

(a) Three evaluations of an independent
Wiener Process Wi

(b) Alignment of bacteria.

(c) Repulsion of bacteria.

Figure 1.6: On the left a Wiener process occurring in SDEs. It is a continuous in time stochastic process
and has normally distributed, independent increases. It represents a mathematical model
for Brownian motion, a form of random walk. On the right the two different interactions
of colliding Myxobacteria in (1.10), (1.11).

The pattern formation in bacteria has also been studied in the context of size-exclusion, an
effect already introduced in the context of pedestrians. Since bacteria motion - if surrounded by
enough media - is passive, it means that bacteria only repulse each other to avoid overlapping as they
grow in length and divide.

Force-based models for pattern-formations

From a mathematical point of view, the phenomenon plitothaxis was investigated numerically with a
second order differential equation system in [184,230]. They work with a force-based model comparable
to (1.3). Acting forces are the co-attraction, rotational turning, self-propulsion, contact, contact
damping and contact repolarization forces.
Repulsion of bacteria and the associated pattern formation can result from size-exclusion. Doumic

et al., see [66], work with steric forces as in (1.4) but also with asymmetric friction forces since bacteria
are approximated by a spherocylinder described by its centre xi. The authors therefore replace vi by
ϕi in a second order ODE-system. Here ϕ is the alignment angle. In this model the length l of bacteria
growths exponentially till it splits into two agents. Similar approaches for xi and ϕi when modelling
the motion of bacteria based on over-damped molecular dynamics were used in [73, 236]. Again the
dynamics in these works were investigated only numerically.
As already mentioned in the pedestrian dynamics, modelling on microscopic level is often not tar-

geted for a scale change but exclusively for the reproduction of occurring phenomena. The models
in [73, 184, 230, 236] are therefore not (yet) suitable for a change of scale. Their analysis often occurs
via calibrating and then analysing the numerical simulations. We therefore continue this Section with
a model that is ’as simple as possible, as complicated as necessary’.
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The Vicsek-model

Perhaps the most famous example introduced in 1995 is the now-called Vicsek-model, see [224]. It
reproduces collective motion and swarming. Originally formulated it is discrete in time and it, as
being minimal, assumes that flocking results due a combination of self-propulsion and alignment.
The model reads as the following,

xi(t+ ∆t) = xi(t) + v∆t pcosϕ(t), sinϕ(t)q , (1.7)
ϕi(t+ ∆t) = 〈ϕj〉|xi−xj |<r + ηi(t).

Here 〈ϕj〉|xi−xj |<r denotes the average position of angles of close agents and η represents uncertainty
due to a noise. The system is controlled by the amplitude of η and the ratio between the travel
distance v per time-step and the interaction radius r. Model (1.7) shows a phase transition from
disordered motion to a large-scale ordered motion, see [97]. It was investigated and expanded with
effects of local cohesion or accounting the fluid the particles are in, in [54]. Model (1.7) can be
seen as the discretisation of a system of SDEs of the form (1.5). The time-continuous Vicsek model
then is a system of stochastic differential equations modelling the collective motion of a swarm of
agents.

The Keller-Segel model and chemotaxis

TheKeller-Segel model (KSM) is one of the best known macroscopic models for bacteria and chemo-
taxis. We discuss it in Section 1.3. Similar to the heat equation, originally it was derived from macro-
scopic considerations only, see [82,132,172]. Nonetheless, there are microscopic models, related to the
KSM via a change of scaling. This can serve both as an approximation of the solution, see [102], but
can also be used to better understand the individual effects that occur. A microscopic version of KSM
is e.g. given by the system of SDEs, similar to (1.6),

dxi(t) = ξ

N − 1

N∑
j 6=i

F pxi(t)− xj(t)q +
?

2dWi(t), (1.8)

see [115]. Here ξ is a scaling constant, F models the pairwise interaction between particles i and j
and Wi represents again independent Brownian motion as in Figure 1.6a. System (1.8) reproduces
aggregation due effects of chemotaxis.
Purposefully away from macroscopic modelling and as a contrast to the well-known Keller-Segel

model, a system of SDEs was introduced in [192]. It can reproduce numerically macroscopic colony
patterns and mesoscopic collective dynamics. The authors also discuss microscopic advantages over
macroscopic models.

Molecular dynamics and Myxobacteria

In mathematical biology, the example of Myxcobacteria and pattern-formation due to alignment
has also been studied intensively. These bacteria, similar to the previously discussed pedestrians, are a
famous example of how interactions at the microscopic level lead to self-organization of the collective,
see [113, 129]. What is interesting about this type of bacteria is that they need to touch each other
for communication, see [129, 134]. Without going into biological details of this process a modelling
from the mathematical side via an approach similar to colliding particles and the ideas of Boltzmann
is natural, see [27].
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We start with a 2nd-order ODE system similar to (1.3), where the dynamics are interrupted by
instantaneous binary collisions. Collisions between particle i and j cause jumps in the velocity vi, vj
which follow invertible collision rules. Now similar to the granular media models in the previous
Subsection let K be the state space such that no overlapping between agents occurs. For this we
introduce a probability distribution P , with P p(x0, v0), . . . , (xN , vN ), tq ≥ 0. Deriving it with respect
to time leads to a Liouville equation, see [128]:

d

dt
P p(x0, v0), . . . , (xN , vN ), tq +

N∑
i=0

vi∇xiP p(x1, v1), . . . , (xN , vN ), tq = 0.

In statistical mechanics a Liouville equation describes the time evolution of the phase space distribution
function. It was first recognized by Josiah Willard Gibbs as the fundamental equation of statistical
mechanics, see [92]. We denote with P1 the first marginal of P . Assuming the particles-property of
indistinguishability one can derive for the then one-particle distribution function P1 the following
equation:

∂tP1(x, v, t) + v∇xP1(x, v, t) = Q(P2). (1.9)

Here now Q, depending on the two-particle distribution function P2, denotes an integral over the
boundary of K, where particles overlap due to a collision. It can be shown, that P2 depends on
pre-collision states (x, v) and also post-collision states denoted by (x∗, v∗),

x∗i = g1(xi, vi, xj , vj), v∗i = g2(xi, vi, xj , vj),
x∗j = g1(xj , vj , xi, vi), v∗j = g2(xj , vj , xi, vi).

The dependence on pre- and post-collision states makes (1.9) non-closed. One approach is deriving an
equation for P2 depending on P3 and so on. In continuing this approach one derives a completely cou-
pled system known as the BBGKY-hierarchy, see [51]. Solving the BBGKY hierarchy of equations
is highly non-trivial and similar to solving the original Liouville equation. However approximations
for the BBGKY hierarchy can be made. One of those is the Boltzmann-Grad limit, see [50,96]. We
sketch details in Section 1.2.
A good overview of the derivation and analysis of these models can be found in [51,183] and especially

for Myxobacteria we refer to [128]. Here they have the two update-rules alignment and reversal
of colliding bacteria depending on their angle of collision. We now consider exclusively bacteria with
velocity |v|= 1 in 2D, then v is given by

vi = (cosϕi, sinϕi).

We consider as before the system of ODEs

d

dt
xi = vi

d

dt
ϕi = 0.

If two bacteria i and j collide, the direction of motion and position change depending on the angle of
collision. In detail, the update rules are the following: for ϕi · ϕj > 0, alignment occurs.

x∗i = xi + xj
2 , ϕ∗i = ϕi + ϕj

2 , (1.10)

x∗j = xi + xj
2 , ϕ∗j = ϕi + ϕj

2 .
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In the case ϕi · ϕj < 0, bacteria repel each other

x∗i = xi, ϕ∗i = ϕi + π, (1.11)
x∗j = xj , ϕ∗j = ϕj + π.

Collision-rules in (1.10) and (1.11) were modelled motivated by the observation of alignment and
repulsion in [119,195]. We visualized this in Figure 1.6b, 1.6c.
Of course, this approach is highly simplified. On the mathematical level, equation (1.10) has to

be regularised, since the collision rules are otherwise not invertible. Non-micro-reversible processes
were investigated in [78]. Spontaneous alignments after collisions do not correspond to reality, in [130]
first insights into non-spontaneous collisions were investigated. For more details regarding microscopic
models and the derivations of kinetic equations we refer on the references therein [51,128,178].

1.1.3 Economics and social sciences
Microscopic modelling has application in economics, for example, in the stock market, see [151,196].
The long-term behavior of these models is difficult to predict. Kinetic theory has therefore not only
been used successfully in the life sciences, but also in social sciences and economics. In this context
collisions correspond to trading events, for example goods, opinions, and wealth, [8,36,56,68,72,179].
Research on opinion formation and wealth is a current topic also in the context of the Covid-19
pandemic, see [20,35].
The ELO rating system is one of the best known rating systems in the world - due to its widespread

use in chess. Starting from the Bradley-Terry model - named after R. A. Bradley and M. E. Terry,
see [1], who presented it in 1952, see [30], Arpad Elo developed an objective rating system for the US
chess federation USCF in 1960. Its basic idea is that in the case of two objects i, j rated λi, λj , object
i is preferred over j with probability λi

λi+λj . It was adopted by the world chess federation FIDE at the
1970 congress in Siegen. Elo himself checked his system only with statistical experiments, see [75].
In the context of rating-systems, the desired emergent behavior is, for example, the convergence

of an agent’s rating R against its strength ρ. In opinion formation an emergent behaviour is the
alignment of opinions while in the study of wealth distributions an investigated phenomena is the
occurrence of Pareto-distributions and their so called Pareto-tails which are introduced in the following.

Wealth distribution

In economics, much goes back toVilfredo Pareto. Pareto studied the income and wealth of European
and South American countries, starting in 1906 with the distribution of land ownership in Italy. He
found that about 20% of the population owned about 80% of the land. This pattern occurred again and
again, to quote him, ’it is a social law, [...] in the nature of man’, following [154]. Pareto distributions
in the analysis of wealth distribution correspond to the studied phenomena of emergence that occur
in biology. A Pareto-distribution has so-called fat-tails. Such overpopulated tails are a sign of the
existence of an upper class of very rich agents. Therefore an unequal distribution of wealth exists,
see [178]. A continuous random variable X is called Pareto distributed Par(α, k) with parameters
α > 0 and k > 0 if it has probability density f as follows

f(x) =
{

αxk

xα+1 , x ≥ k
0, x < k

. (1.12)

We visualized Pareto-distributions in Figure 1.7 for different parameters and in the limiting case
α→ 0.
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Figure 1.7: Pareto-distributions and corresponding cumulative distribution function. For α→∞ the
distribution approaches δ(x− k).

We start with a simple example of economics, the so-called the winner-takes-it-all. That is, if
two agents i, j with wealth x interact in the market, the winner gets all of it. It follows the linear
exchange rule

x∗i = xi + xj , (1.13)
x∗j = 0.

This model is conservative. Conservative models have the property that the average wealth over
time is conversed, that means

d

dt

∑
i

xi(t) = 0. (1.14)

This idea is the basis for so-called strictly conservative exchange models according to [53], in which

x∗i + x∗j = xi + xj

holds. Therefore the total wealth in an individual trade stays preserved. This does not hold true for
general linear exchange rules

x∗i = p1xi + q1xj , (1.15)
x∗j = q2xi + p2xj ,

where e.g. a difference (p1 − q2)xi is a relative gain or loss of wealth due to market risks.
Microscopic simulations show an aggregation of wealth for model (1.13). This corresponds to the

limiting case α → ∞, most wealth is aggregated with few agents. Because of its simplicity, we will
revisit the winner-takes-it-all model later again. It can be fully analysed on the macroscopic level via
an explicit solution of the corresponding model. For a broader overview of models of economics and
stock markets, we refer the reader to [178].

Opinion formation

In opinion dynamics xi corresponds to a continuous variable taking values in the interval [−1, 1].
Here the values ±1 correspond to extreme opinions, e.g. left and right wing political opinions in
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politics. The most prominent example was introduced in [214] by Toscani. It is of the following form:

x∗i = xi − γP (|xi|)(xi − xj) + ηiD(|xi|), (1.16)
x∗j = xj − γP (|xj |)(xj − xi) + ηjD(|xj |),

here P models the local relevance of compromise; the function D models the local diffusion of
opinion. It is multiplied by a random variable η with mean 0 and variance σ2. The compromise
constant γ ∈ (0, 1/2) is fixed. One idea modelled in (1.16) is, that extreme options, e.g. |x| close to 1,
are difficult to change. Therefore D and P are non-increasing. As a simple case, let us assume that
P = 1. Then the total mass and momentum is conserved. The expected outcome of the sum and
difference of opinion is given by

〈x∗i + x∗j 〉 = 0,
〈x∗i − x∗j 〉 = (1− 2γ)(xi − xj).

This confirms that (1.16) is indeed mass conserving. Since γ ∈ (0, 1/2) we see that (1.16) is therefore
leading to compromise. EAlready on the microscopic level one can make statements about the long-
term behavior for simple models. Alignment of the opinion occurs through averaging of opinions.

Elo

Originally proposed by Elo the binary update rule between players i and j is given by

R∗i = Ri + γ(Sij − b(Ri −Rj)),
R∗j = Rj + γ(−Sij − b(Rj −Ri)).

(1.17)

Here Sij ∈ {−1, 1} represents the outcome of the game between the players. In the simplest case
Sij ∈ {−1, 1} for win respective lose. The rating of players are represented by Ri, Rj before, and
R∗i , R

∗
j after the match. The constant γ is the rate at which ratings are adjusted and usually small

compared to R. The function b is bounded and odd. Therefore we have a conservative model, that is

R∗i +R∗j = Ri +Rj .

Here we have ruled out the possibility for a draw. However, as discussed in [121,141], Sij can even be
extended to a metric variable, for example [−1, 1]. Not specified in the update rule is the underlying
player strength ρi, ρj . From mathematical considerations the authors in [121] motivate that Sij
depends only on this inner playing strength ρi, ρj , that is

〈Sij〉 = b(ρi − ρj).

Rating systems are also designed to allow players with similar strength to play against each other with
a higher probability. We are introducing a weighting function w for this purpose, here w(Ri − Rj)
gives the probability, that i plays against j. This can be seen as the probability of collision via Q in
(1.9). If w is chosen constant, everyone happens to play everyone, other choices are e.g.

w(Ri −Rj) = pε− (Ri −Rj)q+ , (1.18)

therefore players only play against each other when their difference in rating is less than ε. Another
possibility for w would be a Gaussian.
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The first extension of this model was proposed by Krupp in a master thesis, see [141]. She introduced
a model where, additionally to (1.17), the initial strength ρ changes according to

ρ∗i = ρi + Zij γ̃,

ρ∗j = ρj + Zjiγ̃,
(1.19)

after every game due to the effect of learning. Here γ̃ is again a positive constant regulating the rate of
learning. The random variable Zij depends on the outcome Sij and takes values zl, zw ∈ N depending
if the player wins or looses. Therefore your strength increases by zl,wγ̃ but always increases. It is a
model with linear learning and not conservative in the strength ρ.

A more advanced model was introduced in [71], Wolfram et al. have generalized this approach and
introduced a microscopic model where players can learn. The learning effect depends on the strength
of the opponent and also underlies fluctuation. They modelled microscopically the following increase
in strength

ρ∗i = ρi + γh(ρj − ρi) + ηi,

ρ∗j = ρj + γh(ρi − ρj) + ηj .
(1.20)

where they have a non-linear learning-function h. It can be split into two components h1 and h2. Here
h1 models learning, while h2 models the loss of confidence due defeats. Additionally there is a factor
of randomness via η. Those variables are independent identically distributed (iid.) random variables
with mean zero and variance σ which model small fluctuations due to day-linked performance in the
mental strength or personal fitness. We refer to Section 1.2 and 1.3 where we discuss the derivation
of the corresponding kinetic PDEs and the energy-methods used in its analysis.

Other modelling approaches

Many of the previously presented models serve, in the spirit of this thesis, as a starting point for the
derivation of a macroscopic or kinetic model. While the microscopic description allows for a detailed
modelling, kinetic and macroscopic models are mathematically amendable. Starting with the goal of
moving to a PDE, one often has to enter a trade-off already at the microscopic level with complexity
and richness of detail.
Independent of macroscopic mathematics, however, microscopic modelling is found in a variety of

fields as mentioned above. We now mention a few more of them.

1.2 From micro- to meso- and macroscopic models

The change of scale from microscopic to macroscopic or mesoscopic level varies depending on the
microscopic model. We present briefly some approaches related to later Chapters 2-4. We start
with the Boltzmann-Grad limit in the previously mentioned microscopic model in the context of
mycobacteria. We obtain a kinetic model as a result. In the context of kinetics, we also list the derived
PDEs in the context of the Elo-rating. Using this approach, the investigated model in Chapter 3 was
derived. Afterwards we derive the heat-equation formally from a 1D-random walk discrete in time t
and space x. This approach serves as an introduction to the derivation of the models that have been
carried out in Chapter 2. In preparation for Chapter 4 we therefore also discuss a rigorous limit on a
simple periodic problem in 1D. If a rigorous limit is possible, existence results can be transferred from
the microscopic scale.
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1.2.1 The Boltzmann-Grad limit, deriving a kinetic PDE
We continue how to derive a mesoscopic PDE from the one-particle distribution function, that is (1.9),
and let the number of particles go to infinity, N →∞. At the same time we let the size of the particles
go towards 0. Here we let the ratio between the interaction range and the so-called mean free path
length (average distance between collisions) remain constant. For the derivation we also need the
assumption of molecular chaos. This goes back to Maxwell, see [159]. It states that the probability
of two particles i and j with given velocities vi and vj colliding can be calculated by considering each
particle separately. Therefore the velocities of colliding particles are uncorrelated, and independent
of position xi, xj . Historically we need to mention this leads to Boltzmann’s H-theorem of 1872,
see [28]. Biologically the assumption to neglect correlations between bacteria can be made but in
order to show a rigorous limit one has to prove propagation of chaos, see [143]. In the context of
the Elo-rating, this is a strong simplification. The collision, i.e. the match between two agents, is in
general not uncorrelated but depends on the ratings Ri, Rj of the players and is determined by the
function w defined in (1.18). For more technical details we refer to [51]. We now perform the formal
limit.
We assume that

P1(xi, vi, t)→ f(xi, vi, t), P2(xi, vi, xj , vj , t)→ f(xi, vi, t)f(xj , vj , t),

This refers to the indistinguishability of particles, that means interchanging two individuals i, j,
does not effect the dynamics of the system. Then the corresponding kinetic PDE is given by

∂tf + v∇xf = Q(f, f) (1.21)

since the choice of the particle’s index, with respect to which we defined the first marginal P1, is
independent. Equation (1.21) states the evolution of the expected particle density function f(x, v, t).
The left-hand side describes transport where the right-hand side accounts for interactions between
particles. In the following we will describe different kinetic equations with a focus on Q.
We recall that the dynamics of myxobacteria are driven by collision and their angles in pre-collision,

leading to alignment or repulsion. This results in a collision operator Q which is the sum of three
integral operators. The authors in [113] derive then the following operators:

Q(f, f) =2
∫

Al
|sin

`

(2ϕ− ϕ′)− ϕ′
˘

|f(x, 2ϕ− ϕ′, t)f(x, ϕ′, t)dϕ′

+
∫

Re
|sin

`

ϕ− ϕ′
˘

|f(x, ϕ+ π, t)f(x, ϕ′ + π, t)dϕ′

−
∫

T
|sin

`

ϕ− ϕ′
˘

|f(x, ϕ, t)f(x, ϕ′, t)dϕ′.

Here the first integral-operator is a gain-term due alignment of two bacteria. They integrate over
Al = (ϕ − π

4 , ϕ + π
4 ), based on (1.10). The second operator is also a gain-term due to collision of

bacteria and reverting itself to (x, ϕ), see (1.11). Therefore they integrate over Re = (ϕ+ π
2 , ϕ+ 3π

2 ).
The third integral-operator is a loss-term, it represents bacteria colliding or aligning with any other
bacteria, therefore integrating over the torus T.
In the context of the Elo-rating, the authors in [121] derived the following kinetic equation

∂tf(t, ρ, r) = Q(f, f)

with Q(f, f) = −∂r
ˆ

f(r, t, ρ)
∫

R2
w(r − r′)(b(ρ− ρ′)− b(r − r′))f(t, r′, ρ′)dρ′dr′

˙

.
(1.22)
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1.2 From micro- to meso- and macroscopic models

Here r and ρ represent rating and strength of players. The function w, as noted before, gives the
probability that players with ratings r and r′ play against each other. The Elo-rating can be seen as
a model without a transport term v, since players who do not play do not change their rating. In the
operator Q, gain and loss terms are implemented. The collision corresponds to a match between two
players, it leads to a change in rating r, r′.

The linear learning effect was introduced in the work of [141]. This leads to the linear Fokker-Planck
equation

∂tf(t, ρ, r) =Q(f, f)

with Q(f, f) =− ∂r
ˆ

f(r, t, ρ)
∫

R2
w(r − r′)[b(ρ− ρ′)− b(r − r′)]f(t, ρ′, r′)dρ′dr′

˙

− ∂ρ
ˆ

f(t, ρ, r)
∫

R2
w(r − r′)[zl2 (b(ρ− ρ′) + 1)− zw

2 (b(ρ− ρ′)− 1)]f(t, ρ′, r′)dρ′dr′
˙

based on the microscopic interaction rules (1.19). The extension made by the authors in [71] via (1.20)
leads to the following Focker-Planck equation

∂tf(r, ρ, t) =Q(f, f) (1.23)

with Q(f, f) =− ∂r
ˆ

f(r, t, ρ)
∫

R2
w(r − r′)[b(ρ− ρ′)− b(r − r′)]f(t, ρ′, r′)dρ′dr′

˙

− ∂ρ
ˆ

f(t, ρ, r)
∫

R2
w(r − r′)pαh1(ρ′ − ρ) + βh2(ρ′ − ρ)qf(ρ′, r′, t) dρ′dr′

˙

+ σ2

2

∫
R2
w(r − r′)f(ρ′, r′, t) dρ′dr′∂ρρf(r, ρ, t).

We would like to note for the reader that the derivations of the kinetic PDEs vary technically due to
microscopic considerations and the approach presented here corresponds to [71].

1.2.2 From cellular automatons to PDEs
As a simple example we consider a stochastic random walk in 1D without size-exclusion. It is a model
discrete in space x and time t with grid-size ∆x and time-step ∆t. Let ρ denote the probability of
finding a particle at position x at time-point t. The evolution of ρ is then determined by the following
difference-equation, the so-called master equation:

ρ(x, t+ ∆t)− ρ(x, t) =− 2T ρ(x, t) + T ρ(x+ ∆x, t) + T ρ(x−∆x, t). (1.24)

Here T is the constant jump probability. If one formally assumes that ρ has sufficient regularity, one
can replace ρ with its Taylor series,

ρ(x, t+ ∆t) = ρ(x, t) + ∆t d
dt
ρ(x, t) +O(∆t)2

ρ(x, t±∆x) = ρ(x, t)±∆x d
dx
ρ(x, t) + 1

2(∆x)2 d

dx

2
ρ(x, t) +O(∆x)3

Replacing these terms in (1.24) and assuming ∆t
(∆x)2 = const., we obtain as ∆t→ 0:

∂tρ(x, t) = T ∂2
xρ(x, t). (1.25)
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(a) We work with periodic boundary
conditions in model (1.26), this can
be seen as N agents xi repelling
each other on a circle.

(b) The piecewise defined ωN visualized. Dashed can be seen the
continuous initial data ω0 and the evolution of the discretization
ωN (s, t) for N = 10.

Figure 1.8: Visualization of the context in the rigorous limit.

The ratio of ∆x and ∆t determines the different scaling limits leads to different PDE models. The
previous ratio corresponds to a so-called parabolic limit. If ∆t = ∆x the so called hyperbolic
limit leads to a hyperbolic PDE. Examples for macroscopic models derived this way can be found
in [38, 39, 200, 207]. Also the models in Chapter 2 are derived this way. Assuming more complicated
master-equations lead to lengthy calculations. This approach can be supported by a CAS-system as
discussed in [138].

1.2.3 A rigorous limit from ODEs to a PDE

The formal derivation from macroscopic to microscopic models is not always trivial. Properties of
the system at the microscopic level cannot be transferred to the PDE level in a formal limit either.
However, in the case of a rigorous limit, this is possible. In the following, we show in the case of a
simplified problem how the existence of a solution on the microscopic level can be transferred to the
macroscopic level.
For this purpose, we consider a periodic system similar to the FTL-model (1.2) with N agents, a

system of ODEs. For reasons of simplicity we choose periodic boundary conditions x0 = xN , therefore
the agents can be seen as particles on a circle as visualized in Figure 1.8a. The particle xi is moved
to the left depending on the distance of xi to the right particle xi+1, respective to the right depending
on xi−1. The function θ controls the repulsion depending on the distance xi+1 − xi. The model then
reads

d

dt
xi(t) = p−θ pxi+1(t)− xi(t)q + θ pxi(t)− xi−1(t)qq , 1 ≤ i ≤ N − 1, (1.26)

d

dt
x0(t) = d

dt
xN (t) = p−θ px1(t)− x0(t)q + θ px0(t)− xN (t)qq ,

it can be seen as a repulsion-model. Furthermore in the following, all appearing test functions have
sufficient regularity to omit technical difficulties. Introducing again ωi+ 1

2
= xi+1−xi

∆s for i = 0, . . . , N−1,
∆s being the intrinsic length on our Lagrangian grid, this results in

d

dt
ωi+ 1

2
(t) = 1

∆s

´

θ(ωi+ 3
2
(t))− 2θ(ωi+ 1

2
(t)) + θ(ωi− 1

2
(t))

¯

, 0 ≤ i ≤ N − 1. (1.27)
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Now, in the simplest case, we assume that θ is directly proportional to ωi+ 1
2
, so θ(z) = T

∆sz, with T
being the repulsive constant. This changes (1.27) to

d

dt
ωi+ 1

2
(t) = T

∆s2

´

ωi+ 3
2
(t)− 2ωi+ 1

2
(t) + ωi− 1

2
(t)

¯

, 0 ≤ i ≤ N − 1. (1.28)

Existence and uniqueness for a finite time T of system (1.27) follows from Picard-Lindelöf. We assume
that the number N of agents and ∆s are directly proportional, i.e. N∆s = 1 holds. Formally for
∆s→ 0 resp. N →∞ equation (1.28) converges to the heat-equation (1.25).
Before we can now proceed with a rigorous limit, we need to consider the weak formulation of the

system. Let
⋃N−1

0 [si, si+1) be a partition of [0, 1] in N equilateral intervals of width ∆s. Let therefore
ϕ : [0, 1]×[0, T ]→ R be a suitable test-function and ϕN its discretization and let us define the sequence
{ωN (s, t)}N , s ∈ [0, 1], t ∈ R+ as

ωN (s, t) :=
N−1∑
i=0

ωi+ 1
2
(t)1[si,si+1)(s),

ϕN (s, t) :=
N−1∑
i=0

ϕi(t)1[si,si+1)(s).

This discretization can be viewed geometrically as a section-by-section alignment of the trajectories
of the microscopic system. We visualized this in Figure 1.8b. We denote in the following the discrete
weak formulation in s and t,∫ T

0
∆s

N−1∑
i=0

9ωi+ 1
2
ϕidt =

∫ T

0
∆s

N−1∑
i=0

T
∆s2

´

ωi+ 3
2
(t)− 2ωi+ 1

2
(t) + ωi− 1

2
(t)

¯

ϕidt

=T
∫ T

0
∆s

N−1∑
i=0

ϕi−1 − 2ϕi + ϕi+1
∆s2 ωi+ 1

2
(t)dt.

Here we omit the dependence of ϕ on t and have only rearranged within the sum. It is straight-forward
to show a Min-Max-principle for (1.27) and obtain boundedness of ωN for bounded initial data ω0.
Those bounds on ωN let us conclude that for all T > 0 there exists a subsequence, again denoted by
{ωN}N , and ω ∈ L1([0, 1]× [0, T ]) such that

ωN ⇀ ω, as N →∞ in L1([0, 1]× [0, T ]), for all T > 0.

Integrating now on the left-hand side with respect to time allows us to pass to the limit

−
∫ 1

0

∫ T

0
ωN (s, t) 9ϕN (s, t)dt+ ωN (s, T )ϕN (s, T )− ωN (s, 0)ϕN (s, 0)ds

→ −
∫ 1

0

∫ T

0
ω(s, t) 9ϕ(s, t)dtds−

∫ 1

0
ω(s, 0)ϕ(s, 0)ds.

Here we assumed ϕ vanishes at time T . Similar calculations hold for the right-hand side and we get
in the limit, that a subsequence of ωN converges against a solution of the equation∫ 1

0

∫ T

0
ω(s, t) 9ϕ(s, t)dtds−

∫ 1

0
ω(s, 0)ϕ(s, 0)ds = T

∫ T

0

∫ 1

0
∂2
sϕ(s, t)ω(s, t)dsdt.

This is the weak formulation of

∂tω(s, t) = T ∂2
sω(s, t) (1.29)

with periodic boundary-conditions. We can conclude that (1.29) has a weak solution in L1. Of course,
much stronger regularity results exist for the heat conduction equation, see e.g. [46, 77].
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1.2.4 Comments

The limit in our example could be performed without technical difficulties because of the linearity of
problem (1.28).

The formal derivation presented in Subsection 1.2.2 in the context of size-exclusion was generalized
for a multispecies-system in [200]. For the effect of side-stepping a 2-species system of conservation
laws was similarly derived in [39]. It is of the form

∂t

ˆ

r
b

˙

= div
ˆ

D(r, b)∇
ˆ

r
b

˙

−∇V (r, b)
ˆ

r
b

˙˙

(1.30)

where ρ = r+ b represent the different populations depending on their directions Vb and Vr which are
incorporated in V .
Many other limiting processes have been developed. A Boltzmann model in [217] was derived from

an FTL-model similar to (1.2). For an overview in the context of the Boltzman equation, we mention
the works in [63]. For an introduction to a probabilistic approach in transport processes, we refer
to [177].
The presented derivations of the presented Boltzman-Grad limit or derivation of the heat equation

are purely formal limits. This is the case in many models, often derivations of partial differential
equations are only formal. Formal derivations are then compared numerically on microscopic and
macroscopic level to see alignment on both scales, see [10, 95, 235]. A numerical comparison between
microscopic and macroscopic level is also done in Chapter 3.

A limit from SDE to PDE in the briefly mentioned equation (1.6) corresponds to a probability
density ρ for one particle being at position x at time-point t. It can be derived using the Ito-formula
following [89]. It is of Fokker-Planck-type:

∂tρ(x, t) = div pv(x)ρ(x, t) +∇(D(ρ(x, t))q . (1.31)

We now see the following. For a single agent, the probabilistic description at the particle level corre-
sponds exactly to the description of a population at the continuum level. This is not the case for a
larger number of particles, which is why additional assumptions about the correlations between the
particles must be made in order to derive a low-dimensional PDE. To state one example for models
with size-exclusion, the method of matched asymptotics was proposed in [32,33] and applied in [31].
Boundary conditions on a PDE-level can also be derived via the previous techniques. An overview

of how the heat equation with Robin-boundary conditions is derived from four different microscopic
models can be found in [76]. We will state some results briefly in the next Section 1.4.

In particular, we see in the context of the three models presented on the Elo-rating only the random
process in (1.20) led to a diffusion in (1.23). We also want to note the interesting fact, that for
different microscopic models, the random walk in (1.24) and the repulsion in (1.26) lead to the same
linear diffusion term on the PDE level.

1.3 PDE-Scale

1.3.1 Conservation Laws

In the following we state some typical features of the derived models. Let us first recall the microscopic
models. All models have a constant number of agents over time. On a macroscopic level, this means
that the derived models should satisfy the mass conservation principle. In detail a conservation
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law is of the form

∂tρ+ div · pρv(ρ)q = 0. (1.32)

Here ρ = ρ(x, t) is the particle density as before and v is a velocity field. More general the velocity
field v can often be written as

v = ∇(U ′(ρ) + V +W ∗ ρ),

where U is an internal energy, V is an external potential, and W is an interaction-potential.
We already introduced the Eikonal-equation in (1.1) as a possible choice for an external potential in
the context of pedestrian dynamics. Thus we rewrite (1.32) as

∂tρ+ div ·
`

ρ∇(U ′(ρ) + V +W ∗ ρ)
˘

= 0.

Setting V = W = 0 and U(ρ) = ρ log ρ results in

∂tρ = ∂2
xρ.

Therefore the heat equation is a so called conservation law which, of course, corresponds to the
physical concept of conservation of energy.
We see this property also immediately for model (1.31). Here D is diffusion caused by the internal

energy and v = ∇V corresponds to the drift term. In the context of lane-formation equation (1.30)
represents a two dimensional drift-diffusion PDE with drift ∇V and diffusion D. This PDE can be
seen as a cross-diffusion system. For analytical and numerical approaches of those systems we refer
to [31,38,127,148]
Including the effect of size-exclusion, in [200] the authors derived a multi-species conservation law

in ρ = (ρ1, . . . , ρn) of the following form

∂tρ+ div · p∇ρ+ (1− ρ)ρ∇V )q = 0.

Here on the macroscopic level the effect of size-exclusion leads to degenerate mobilities as the density
approaches the maximum density 1.
Conservation of mass can also be shown for the kinetic model (1.21), the model of myxobacteria,

after a short calculation. For this one has to introduce via

ρ(x, t) :=
∫

T
f(x, ϕ, t)dϕ, ρv :=

∫
T
v(ϕ)f(x, ϕ, t)dϕ

the number of bacteria and the flux.
A formal calculation for the Elo model (1.22) results in

∂t

∫
R2
f(r, ρ, t)drdρ = 0.

In this case, this means that the number of players remains constant over time. The operator Q in
(1.22) can be rewritten as

Q(f, f) = −∂r(fa[f ]),

a[f ] =
∫

R2
w(r − r′)(b(ρ− ρ′)− b(r − r′))f(t, r′, ρ′)dρ′dr′

Therefore (1.22) can be written in the form of (1.32) with the operator a corresponding to a velocity
field.
All presented models in later Chapters 2-4 are conservation laws. No new agents are created on the

microscopic level. Conservation of mass is therefore a phenomena, which is supposed to be fulfilled on
all scales. Accordingly, in the previous mentioned context of bacterial growth in [66], this is not the
case.
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1.3.2 Coupled systems
The Keller-Segel model (KSM) is one of the most widely used models of a coupled drift-diffusion PDE
for chemotaxis, originally introduced in [132]. It reads as follows

∂tρ = div p∇ρ− ρ∇cq
ε∂tc = ∆c− βc+ ρα.

In this model, the chemical c affects the drift of the bacteria ρ. At the same time, bacteria ρ and
the chemical c diffuse linearly. The chemical decays with constant β. It is produced by bacteria via
ρα. Linear and nonlinear diffusion D and the influence on volume filling effects, i.e. size-exclusion,
for the KSM has been studied for example in [37]. A review of the KSM can be found in [15]. The
author in [148] discusses continuous and discrete structure-preserving approximation of chemotaxis
and cross-diffusion systems, also the KSM. We will revisit the idea of chemotaxis in the applications
in Section 1.4 in the context of pedestrian dynamics.
The previously mentioned Eikonal-equation (1.1) can be embedded in a coupled model. Hughes

proposed in [117] a macroscopic approach via the following, now so-called coupled Hughes-model:

∂tρ = div
`

ρf2(ρ)∇V
˘

,

ρ(x, 0) = ρ0(x),

|∇V | = 1
f(ρ) ,

V (x) = 0, on x in ΓE .

(1.33)

A microscopic derivation for the coupled eikonal-equation can be found in [157], Chapter 8.2. A
common choice for f is f = 1 − ρ. However for ρ → 1 this leads to analytical challenges. In 1D this
problem was regularised and analysed in [65]. An approach for a regularisation of (1.33) in R2 is also
topic in [111] in the context of optimal control.

1.4 Applications
In the following, we mention applications of a change of scale. We would like to emphasize that
benefits of switching scales can occur in both directions, i.e. also from the PDE level to microscopic
models. We start with an example of this kind.

1.4.1 New effects on different scales
Motivated by the effect of chemotaxis at the macroscopic level in the KSM, the authors in [43, 137]
introduced a dynamic floor field V (DFF). It is a virtual trace left by the pedestrians. On a
microscopic scale it is governed by the following macroscopic equation

∂tV = D∆V − dV

which is discretized in a standard manner. Here D is the diffusion coefficient and d the decay constant.
When working on bounded domains Ω, typical boundary conditions are often imposed on PDEs.

Often they can be derived from microscopic models, see [42, 76]. Conservation laws for pedestrian
dynamics in evacuation scenarios have so-called No-Flux boundary conditions along the wall ΓW of
the domain Ω. Let j be the flux in an abbreviated model

∂tρ+ div(j(ρ)) = 0,

24



1.4 Applications

then typical derived boundary conditions are given via

j · n = 0, on ΓW ,
j · n = aρ, on ΓE .

Here a is a constant, controlling the linear outflow, see [42]. From microscopic considerations an
increasing non-linear outflow in the context of pushing was presented in [79],

j · n = aρ(1 + µρ), on ΓE .

The outflow increases since pedestrians are pushed out of the corridor with a constant µ governing
the motivation to push.
In [185] the homogeneous Laplace equation was proposed as an alternative potential. This

macroscopically motivated potential is a linear problem, consequently has advantages in terms of
computation time. It also has, in general, a higher regularity than the solution of the Eikonal-equation.

1.4.2 Analysis, energy methods and long-term behaviour
At the microscopic level, the validity of the Elo ranking was tested by its inventor using statistical
methods, see [75]. This method is common in the context of microscopic systems, see [178]. Stochastic
fluctuations are averaged out with Monte Carlo repetitions. However, this method allows the relation-
ship between parameters and, for example, the long-time behaviour in a simulation to be proven only
empirically. Analytical methods at the macroscopic level can provide information about the long-time
behaviour. As an example the authors in [42] analyse the existence of equilibria depending on
inflow and outflow parameters in the hyperbolic limit for pedestrian models.
In the context of the Elo-rating the authors in [121] introduced the relative energy

E(t) =
∫
R2

(r − ρ)2f(t, ρ, r) drdρ

and showed dE(t)
dt < 0 via a formal calculation, using the short hand notation f ′ = f(t, ρ′, r′):

d

dt

∫
R2

(r − ρ)2f dρdr = −
∫
R2

(r − ρ)2 d

dr
(a[f ]f) dρdrdρ′dr′

= −
∫
R4

(r − r′)b(r − r′)w(r − r′)ff ′ dρ′dr′dρdr

−
∫
R4

(ρ− ρ′)b(ρ− ρ′)w(r − r′)ff ′ dρ′dr′dρdr < 0.

For r − r′ < 0 we have b(r − r′) < 0, while the opposite holds true for r − r′ > 0. The same
applies to ρ. With this energy decay, they were able to show the exponentially fast convergence of the
rating r against the strength ρ, but only when w is strictly positive. Thus in some kind they proved
the functionality of the Elo-rating via macroscopic methods on the one hand and underlined the
importance of the interaction function w on the other hand. We visualized alignment of the two
scales and convergence in Figure 1.9.
In the context of economics we mentioned on a microscopic level conservation of wealth in (1.14).

On a macroscopic level this results in
d

dt

∫
R+
xf(x, t)dx = 0.
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(a) Microscopic dynamics for N = 200 agents
based on direct Monte Carlo simulation using
Bird’s scheme, see [178]

(b) Macroscopic dynamics, the convergence of
(1.22) against the diagonal was proven analyt-
ically in [121].

Figure 1.9: The microscopic and macroscopic scales align.

One can use the Fourier-transformation for the kinetic model of aforementioned winner-takes-it-all-
model (1.13) to derive its explicit solution. It can be used to show that the relative proportion of agents
with wealth 0 actually approaches 1, see [178]. Mathematically spoken it is a Dirac delta centred at
0. As mentioned before, a possible question in this field would be if a (microscopic) interaction model
has a Pareto distribution as a solution. Pareschi et al. showed in [178] existence and tails of steady
states of the corresponding kinetic models for general p, q in the case of linear exchange rules (1.15)
in conservative economic models.
In current research, starting from well-known Pareto tails in socio-economic phenomena, kinetic the-

ory is also used to link back to microscopic relationships, as an example, the distribution of populations
in towns is discussed in [98].
Due to the strong existence- and uniqueness-theory at the microscopic level resulting from Picard-

Lindelöf, for many ODE systems similar to (1.3) with right-hand side being Lipschitz regularity-
statements can be made. In performing a rigorous limit those results can be transferred to the
macroscopic scale. Rigorous limits of this kind have been extensively treated for e.g. the KSM, via
propagation of chaos for N → ∞, see [102]. For reviews of the topic on mean field limits we refer to
the works [47,122]. For e.g. the continuous version of the Vicsek-model (1.7) a rigorous limit to a PDE
was performed in [26] transferring regularity results to the macroscopic level. Therefore mentioned
rigorous limits from microscopic to macroscopic scales can serve to extend the theory of existence of
solutions at the PDE level, see [64].

1.4.3 Numerical advantages

In previous Subsection 1.4.2 we visualised the alignment between microscopic and kinetic model in
Figure 1.9. We mentioned the merits of the analytical proofs in terms of long-term behaviour. The
Elo-model is also an example of a saving in computing time. Although the multi-dimensional parabolic
equation (1.22) still has to be solved, the computing time is shorter than the microscopic simulations
including Monte Carlo runs, see [71].
In the context of pedestrian-dynamics the authors in [95] compare required computation times.

Therein the macroscopic model is solved faster by a factor of 6. It should be noted that the computation
time increases with an increase of agents N , this is not the case in the macroscopic model.
The Eikonal-equation (1.1) is solved on a squared grid with a fast sweeping scheme, see [189].
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(a) Different Fundamental diagrams of pedestrian
flow characteristics. Source: [61]
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(b) Fundamental diagram for Burgers equation.

Figure 1.10: Fundamental diagrams empirically derived and for a macroscopic PDE.

Alternatively fast marching algorithms exist, see [202]. However, both algorithms are costly. Fast
marching and fast sweeping have asymptotic complexity of O(n logn) and O(n) where the latter is
in praxis often slower due a large number of sweeps required, see [118]. In [57] the Heat method
was presented. It results in a computational cost of near-linear time. Slight modification of the heat
method allows to compute a smoothed distance function. Its idea is based on the heat-equation whose
solutions have high regularity. This macroscopic approach can be adapted to general meshes and the
microscopic scale.

1.4.4 Mixed models

An important tool in pedestrian dynamics is the so-called fundamental diagram, see [140, 222]. It
represents a relationship between density ρ and velocity v. In the hyperbolic limit of a microscopic
model this connection is visible, see [42]. Thus conclusions can be made about the microscopic model,
too. We visualized fundamental diagrams from the literature and for Burgers equation in Figure 1.10.
As mentioned before, microscopic simulations are not possible for some models due to the high

number of agents, here we mention e.g. gas dynamics. In general, as discussed briefly in Subsection
1.4.3, solvers for macroscopic problems are faster because they only have to solve one equation, see [63,
178]. Microscopic models, however, are more accurate as discussed in [192]. One way to combine the
advantages of macroscopic PDEs with microscopic models is to consider a mixed model. This is
discussed in detail in [58]. They link an ODE-system of i agents of the form

d

dt
xi(t) = vm[~x](xi) (1.34)

with a PDE

∂tρ(x, t) + div pvM [ρ(t, .)](x)ρ(t, x)q = 0. (1.35)

This multiscale model is connected via a suitable combination of the two velocity-fields vm and vM in
a so-called multiscale velocity field

v[~x, ρ] := lvm[~x] + (1− l)vM [ρ], l ∈ [0, 1].

The velocity-field v then replaces vm and vM in (1.34) and (1.35).
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In [94] a similar approach was followed for pedestrian dynamics by coupling an SDE with a PDE.
They discuss identifiability of the parameters appearing and introduce a Bayesian method to perform
the identification. As mentioned in [58], the model of a CA is easily couplable due to an external
potential V depending on ρ. In mentioned book they discuss a broad overview of ways to couple the
three scales and also point to applications in traffic dynamics and biology, see also [144,187].

1.5 Main Contributions
In this Section, we have presented the modelling in life- and social sciences at different scales and how
these scales are connected. The techniques presented show that this gives advantages both on the
mathematical side and in the applications. We conclude the introduction with an overview of how
this thesis contributes to the field.
In Chapter 2, we introduce a microscopic model with size-exclusion to model an evacuation situation,

based on a Cellular Automata. Due to the fact that this is a discrediting of a real-world experiment,
we address the issues in modelling the domain Ω and in particular the exit ΓE . We analyse problems
arising in calibration at the microscopic level in the context of stochastic models and Monte Carlo
methods. We discuss different potentials at the macroscopic level and their practical and analytical
properties. We derive a macroscopic model for shoving based on microscopic considerations and outline
its analysis based on an derived entropy. The model has a formal gradient flow structure with respect
to the Wasserstein metric. We compare the model numerically with simulations in the absence of
pushing.
In the following Chapter 3 we have extended the work of [71, 121]. We have incorporated at the

microscopic level a fluctuation factor σ in the performance-strength ρ. We motivated this in team
sports from possible different line-ups in soccer or due to random factors, for example dice rolls. We
have shown existence and regularity for the kinetic model, a Fokker-Planck equation. Subsequently, we
simplified the model to performance fluctuations in ρ of the same order of magnitude. We compared
this reduced kinetic model numerically with the microscopic model and showed strong agreement of
the two scales. Subsequently, under the choice of directions parameters depending on σ, we were able
to show the convergence of the rating r against the expected value θ of the playing strength ρ.

In Chapter 4 we derive a diffusion term with compact support from microscopic considerations. We
show existence and uniqueness for a regularized initial data using the strong theory for the so-called
Stefan problem. Using a rigorous limit, we also show the existence of weak solutions in the general
case independent of the jump condition occurring in the Stefan problem. Thus we extend the existence
theory for this class of PDEs. We emphasize our findings at both scales using numerical simulations.

1.6 Declaration of Authorship
Chapter 2 consists of joint work with Gaspard Jankowiak and Marie-Therese Wolfram and was pub-
lished in Networks & Heterogeneous Media, 15 (2021). Chapter 3 is joint work with Bertram Düring
and Marie-Therese Wolfram and was published in Kinetic and Related Models, 14 (2021). Chapter 4
contains results of an ongoing collaboration with Laura Kanzler and Christian Schmeiser. All three
Chapters are based on discussions and exchange of ideas with mentioned co-authors.
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You just keep pushing. You just keep
pushing. I made every mistake that could be
made. But I just kept pushing.

Rene Descartes
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Abstract
Experiments with pedestrians revealed that the geometry of the domain, as well as the incentive of
pedestrians to reach a target as fast as possible have a strong influence on the overall dynamics. In this
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paper, we propose and validate different mathematical models at the micro- and macroscopic levels to
study the influence of both effects. We calibrate the models with experimental data and compare the
results at the micro- as well as macroscopic levels. Our numerical simulations reproduce qualitative
experimental features on both levels, and indicate how geometry and motivation level influence the
observed pedestrian density. Furthermore, we discuss the dynamics of solutions for different modeling
approaches and comment on the analysis of the respective equations.

2.1 Introduction
In this paper, we develop and analyze mathematical models for crowding and queuing at exits and
bottlenecks, which are motivated by experiments conducted at the Forschungszentrum Jülich and the
University of Wuppertal, see [6]. In these experiments, student groups of different size were asked to
exit through a door as fast as possible. Each run corresponded to different geometries of the domain,
ranging from a narrow corridor to an open space, as well as different motivation levels, by giving more
or less motivating instructions. The authors observed that

• The narrower the corridor, the more people lined up. This led to a significantly lower pedestrian
density in front of the exit.

• A higher motivation level led to an increase of the observed densities. However its impact on the
density was smaller than changing the shape of the domain.

Adrian et al. [6] supported their results by a statistical analysis of the observed data as well as compu-
tational experiments using a force based model. We follow a different modeling approach in this paper,
proposing and analyzing a cellular automaton (CA) model which is motivated by the aforementioned
experiments. We see that these minimalistic mathematical models reproduce the observed behavior
on the microscopic as well as macroscopic level.

There is a rich literature on mathematical models for pedestrian dynamics. Ranging from microscopic
agent or cellular automaton based approaches to the macroscopic description using partial differential
equations. The social force model, see [108, 112, 175], is the most prominent individual based model.
Here pedestrians are characterized by their position and velocity, which change due to interactions
with others and their environment. More recently, the corresponding damped formulation, see [6], has
been considered in the literature. In cellular automata (CA), another much used approach, individuals
move with given rates from one discrete cell to another. One advantage of CA approaches is that the
formal passage from the microscopic to the macroscopic level is rather straight-forward based on a
Taylor expansion of the respective transition rates. This can for example be done systematically using
tools from symbolic computation, see [138]. CA approaches have been used successfully to describe
lane formation, as for example in [174], or evacuation situations, such as in [136]. The dynamics of
the respective macroscopic models was investigated in various situations such as uni- and bidirectional
flows or cross sections, see for example [39,42].
Macroscopic models for pedestrian dynamics are usually based on conservation laws, in which the
average velocity of the crowd is reduced due to interactions with others, see [185, 221]. In general
it is assumed that the average speed changes with the average pedestrian density, a relation known
as the fundamental diagram. In this context, finite volume effects, which ensure that the maximum
pedestrian density does not exceed a certain physical bound, play an important role. These effects
result in nonlinear diffusivities, which saturate as the pedestrian density reaches the maximum den-
sity, and cross-diffusion in case of multiple species, see for example [39]. One of the most prominent
macroscopic models is the Hughes model, see [65,117]. It consists of a nonlinear conservation law for
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the pedestrian density which is coupled to the eikonal equation to determine the shortest path to a
target (weighted by the pedestrian density). We refer to the textbooks by Cristiani et al., see [58] and
Maury and Faure, see [157], for a more detailed overview on pedestrian dynamics.

Many PDE models for pedestrian dynamics can be interpreted as formal gradient flows with respect
to the Wasserstein distance. In this context, entropy methods have been used successfully to analyze
the dynamics of such equations. For example, the boundedness by entropy principle ensures the global
in time existence of weak solutions for large classes of nonlinear partial differential equation systems,
see [127]. These methods have been proven to be useful also in the case of nonlinear boundary con-
ditions and were also used by Burger and Pietschmann [42] to show existence of stationary solutions
to a nonlinear PDE for unidirectional pedestrian flows with nonlinear inflow and outflow conditions.
The respective time dependent result was subsequentially presented in [94].

The calibration of microscopic pedestrian models is of particular interest in the engineering commu-
nity. Different calibration techniques have been used for the social force model, see [124, 170] and
CA approaches, see [198, 199]. Nowadays a large amount of data is publicly available - for example
the database containing data for a multitude of experimental setups at the Forschungszentrum in
Jülich, or data collected in a Dutch railway stations over the course of one year, see [55]. However,
many mathematical questions concerning the calibration of macroscopic and mean-field models from
individual trajectories are still open.

In this paper, we develop and analyze mathematical models to describe queuing individuals at exits
and bottlenecks. Our main contributions are as follows:

• Develop microscopic and macroscopic models to describe pedestrian groups with different motivation
levels and analyze their dynamics for various geometries.

• Calibrate and validate the microscopic model with experimental data in various situations.

• Compare the dynamics across scales using computational experiments.

• Present computational results, which reproduce the experimentally observed characteristic behavior.
This paper is organized as follows. We discuss the experimental setup and the proposed CA approach
in Section 2.2. In Section 2.3, we present the details of the corresponding CA implementation and
use experimental data to calibrate it. Section 2.4 focuses on the description on the macroscopic level
by analyzing the solutions to the corresponding formally derived PDE. We conclude by discussing
alternative modeling approaches in Section 2.5 and summaries our findings in Section 2.6.

2.2 The experimental setup and the microscopic model
2.2.1 The experimental setup
We start by discussing the experiments, which serve as the motivation for the proposed microscopic
model, see [6]. These experiments were conducted at the University of Wuppertal, Germany. The
respective data is available online, see [4].
The conducted experiments were designed to obtain a better understanding how social cues and
the geometry of the domain influence individual behavior. For this purpose runs with five different
corridor widths, varying from 1.2 to 5.6 meters, were conducted over the course of several days. For
each corridor, a group of students was instructed to reach a target. These runs were then repeated with
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varying instructions, for example suggesting that queuing is known to be more efficient or suggesting
to go as fast as possible. The instructions were given to vary the motivation level and see their effect
on the crowd dynamics. The number of students in the different runs (which corresponded to the
different corridor width) varied from 20 to 75. The trajectory of each individual was recorded and
used to compute the average density with the software package JuPedSim, available at [5]. The post-
processed data showed that the average pedestrian density becomes particularly high in a 0.8 × 0.8
meter area, 0.5 meters in front of the exit, highlighted in Figure 2.1. Within this area, average densities
up to 10 p/m2 (pedestrians per square meter) were observed. The densities varied significantly for
the different runs - they were much lower for narrow, corridor-like domains and increased with the
motivation level. Further details on the experimental setup can be found in [6].

ΓE ΓE

7m

wE

wCA

9.6m

Figure 2.1: Left: Sketch of experimental setup at the University of Wuppertal, showing the corridor
width wE in the experiments, the exit ΓE and the measurement area. Right: computational
domain with adapted width wCA to ensure a consistent discretization of the exit and an
increased length lCA = 9.6m.

2.2.2 The cellular automaton approach

In the following, we introduce a cellular automaton approach to describe the dynamics of agents
queuing in front of the bottleneck. The dynamics of agents is determined by transition rates, which
depend on the individual motivation level and the distance to the target.
We split the domain into squares with sides of length ∆x = 0.3m. This discretization corresponds to a
maximum packing density of 11.11 p/m2. Cell-sizes of 0.09m2 have a comparable area to ellipses with
semi-axes a = 0.23m and b = 0.12m - a reference measure for pedestrians commonly used in agent
based simulations, see [104]. The cellular automaton is implemented on a Moore neighborhood, see
Figure 2.2a. Agents are allowed to move into the eight neighboring sites. Their transition rates depend
on the availability of a site – a site can only be occupied by a single agent at a time – the potential ϕ,
which corresponds to the minimal distance to the exit, as well as the individual motivation level. The
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positions of all agents are updated simultaneously, which is known as a parallel update. To do so, we
calculate the transition rates for every agent and resolve possible conflicts. In case of a conflict, the
respective probabilities of the two agents wanting to move into the site are re-weighted, and one of
them is selected. This solution has been proposed by [43,136] and is illustrated in Figure 2.2b.
Particular care has to be taken when modeling the exit. In doing so, we consider the special Markov-
process, where a single agent is located at distance ∆x to the exit, see Figure 2.3a. We see that the
exit can stretch over two or three cells. However, each setting has different exit probabilities and
influences the exit rate. Figure 2.3b illustrates the different exit rates for the two situations in case
of a single agent. We observe that the exit rate is higher if the exit is discretized using two cells. To
ensure a consistent discretization of the exit for all corridor widths, we choose a discretization using
three cells for all corridors. Therefore, we changed the respective corridor widths in the presented
computational experiments from 1.2m, 3.4m and 5.6m to 0.9m, 3.3m and 5.7m, as illustrated in
Figure 2.1. Furthermore, we extended the corridor to 9.6m to ensure sufficient space for all agents
in case of larger groups. Note that in the actual experiments individuals were waiting behind the
corridor entrance.

(-,+)   (0,+)  (+,+)

(a) Moore neighborhood and selected elements of
I; the potential ϕ corresponds to the distance
to the exit.

(b) Conflict: Agent 1 wins with probability p̃1 =
p1/(p1 + p2), agent 2 with probability 1− p̃1.

Figure 2.2: Cellular automaton: transition rules.

(a) Two vs. three cells.
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(b) Two vs. three: comparison of the exit rate as a function of
time.

Figure 2.3: Discretization of the exit. In the case of an even number of cells, a central positioned agent
will leave the corridor faster than in the case of three cells.
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Transition-rates and the master equation

The transition rates are based on the following assumptions, which are motivated by the previously
detailed experiments:

• Individuals want to reach a target as fast as possible.

• They can only move into a neighboring site if it is not occupied.

• The higher the motivation level, the larger the transition rate.

Let ρ = ρ(x, y, t) denote the probability of finding an individual at site (x, y) at time t and let µ denote
the motivation level. We will use the following abbreviation to state the master equation in 2D. Let
I denote the Moore neighbourhood of the cell (x, y); then the neighboring cells are indexed using the
signs I := {−, 0,+}2 \ {(0, 0)}, see Figure 2.2a. The transition rate is given by

T ij(x, y) = 1
8(3− µ) exp pβ(ϕ(x, y)− ϕ(x+ i∆x, y + j∆x))q . (2.1)

The prefactor 1
8 is a scaling constant such that∑

(i,j)∈I∪{(0,0)}
T ij(x, y) = 1 +O((∆x)2)

holds. The parameter β plays an important role to weigh the transition rates to the neighboring
sites. For β = 0, the transition rates are equidistributed over the neighboring cells and therefore
the dynamics would correspond to a random walk. In the limit β → ∞, individuals will move in
direction of the steepest descent of ϕ, and the dynamics become deterministic. Since the potential
ϕ corresponds to the distance to the target, the parameter β has to scale as m−1. Maury suggests
in [157] that it should be proportional to the characteristic distance ∆x−1, which would correspond
to the value 3.33 in our setting. The prefactor (3 − µ)−1 changes the transition rates depending on
the motivation level µ ∈ (−∞, 1). The smaller µ, the less likely an agent is to move, see Remark
2.2.2. Additionally we consider size-exclusion, which corresponds to the prefactor (1− ρ(x+ ∆x, y, t))
in the following master-equation. It ensures that the target site is not already occupied. Then the
probability that a site (x, y) is occupied at time t+ ∆t, is given by

ρ(x, y, t+ ∆t) =ρ(t, x, y)− ρ(x, y, t)
∑

(i,j)∈I
T ij(x, y)(1− ρ(x+ i∆x, y + j∆x, t))

+
∑

(i,j)∈I
ρ(x+ i∆x, y + j∆x, t)T ij(x+ i∆x, y + j∆x)(1− ρ(x, y)).

(2.2)

In short, the first sum corresponds to all possible moves of an agent in (x, y) to neighboring sites. The
second sum all possible moves from neighboring agents into that site.
We recall that agents can leave the domain from all three fields in front of the exit. In a possible

conflict situation, that is two or three agents located in the exit cells want to leave simultaneously,
the conflict situation is resolved and the winner exists with probability pex.

Remark 2.2.1. The choice of a Moore neighborhood instead of a Neumann neighborhood (as in [174,
228]), is based on the experimental observations (individuals make diagonal moves to get closer to the
target). However, the choice of the neighborhood does not change the structure of the limiting partial
differential equation.
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Remark 2.2.2. Note that for the largest motivation level, that is µ = 1 the probability of staying is
given by

T 00(x, y) = 1−
∑

(i,j)∈I
T ij(x, y) = 2− µ

3− µ = 1
2 .

Such agents will move every second time-step. We see that the motivation µ has a direct influence on
the desired maximum velocity vmax on a microscopic level. It also ensures that it is very unlikely that
individuals step back in the case of a high number of agents between the agent and its target ΓE .

2.3 Validation and calibration of the CA model

2.3.1 Implementation of the CA approach

We start by briefly discussing the implementation of the CA, which will be used for the calibration in
the subsequent section. A CA simulation returns the average exit time (that is the time when the last
agent leaves the corridor) depending on the number of agents n, the corridor-width w ∈ {0.9, 3.3, 5.7},
the motivation µ, the length of a time-step ∆t and the parameter β. Each CA simulation is initialized
with a random uniform distribution of agents. For given parameters the returned average exit time
T̄ and maximum observed density is estimated by averaging over 5000 CA simulations. Note that we
calculate this density in the area highlighted in Figure 2.1.
We check the consistency of the estimated average exit time by varying the number of Monte-Carlo
simulations. We observe that the distribution of the exit time converges to a unimodal curve, see
Figure 2.4c. Similar results are obtained across a large range of parameter combinations.

(a) Distribution of
n = 40 agents at
time t = 0 and
t = 16∆t.

(b) The simulated
density.
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(c) Densities of exit times when increasing the num-
ber of Monte-Carlo runs.

Figure 2.4: Solutions of the CA approach.

2.3.2 Calibration

In this section, we discuss a possible calibration of the developed CA approach using the experimental
data available, see [4]. We wish to identify the parameter scaling parameter β, the timestep ∆t and
the exit rate pex. To do so, we make the following assumptions:
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2 Micro-and macroscopic modeling of crowding and pushing in corridors

• The outflow rate pex does not depend on the motivation level and the corridor width.

• There is a one-to-one relation between the parameter β and the time step ∆t.
We start by considering the dynamics of a single agent in the corridor. These dynamics, although
not including any interactions, give first insights and provide reference values for the calibration. Ve-
locities of pedestrians are often assumed to be Gaussian distributed. Different values for the mean
and variance can be found in the literature, see for example [67, 226]. We set the desired maximum
velocity of a single agent to vmax = 1.2ms , as for example in [67]. Hence a single motivated agent,
having motivation level µ = 1, needs approximately 8 seconds to travel the 9.6m long corridor.

Let N̄ denote the average number of time steps to the exit. We will see in the following that there
is a one to one relationship between the scaling parameter β and the exit time, which allows us to
estimate the time step ∆t.
Figure 2.5a illustrates the dynamics of this single agent for different values of β – we see that the larger
β, the straighter the path to the exit. We observe that the average number of time steps N̄ to the
exit of an agent starting at the same position converges as β increases, see Figure 2.5b. The observed

β=1 β=5 β=10 β=15

(a) Trajectories for different β - increasing β reduces
the randomness of the walk.

5 10 15
β

80

100

120

140

timesteps

(b) N̄ for different values of β. The dots mark ex-
perimental data, the curve is that of the rela-
tion (2.3).

Figure 2.5: Influence of the scaling parameter β on individual dynamics.

relation between the exit time and the value of β in Figure 2.5b can be estimated by a function of the
form

N̄(β, pex = 1.1) = 63.528 + 244.082
β1.38148 , (2.3)

which was computed using a least square-approach for a + b
βc . The functional relation captures the

asymptotic behavior correctly (converging to the minimum number of steps going straight to the exit)
and the sharp increase for small β.
This asymptotic relation allows us to estimate the time steps ∆t for a given value of β in case of a
single agent. Since a motivated agent moves on average every second step, it needs approximately 64
steps to exit the corridor, which corresponds to 32 vertical fields. A somehow similar approach was
proposed in [228], where the position of agents was updated according to the individual velocity.
We will now estimate the missing two parameters β and pex using three different data sets, see
Table 2.1. We restrict ourselves to these three datasets, since the number of individuals in each
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2.3 Validation and calibration of the CA model

Run µ = 1 µ0
01, n = 1 8s
02, n = 63, w = 1.2m 53s 64s
03, n = 67, w = 3.4m 60s 68s
04, n = 57, w = 5.6m 55s 57s

Table 2.1: exit times for different runs and different motivations from [6]. Run 01 is used to set the
desired maximum velocity vmax.

run is similar and their initial distribution is close to uniform, fitting the initial conditions of the CA
simulations best. For each run, we use the respective modified corridor width w, to ensure a consistent
discretization of the exit and the number of agents n as detailed in Table 2.1.

Reference values: We use the experimental data to obtain reference values for β and pex. For pex, we
use all data sets available, that is a total number of 980 trajectories recorded for corridors of different
widths and consider the respective exit times. This gives a first approximation pex = 1.1ps , which we
use as a reference value for the calibration later on. A similar value for pex was reported in [104]. We
will allow for estimates within a 50% deviation from that value. Furthermore, we restrict β to [0.5, 10]
(motivated by the observations in Figure 2.5a).

The calibration is then based on minimizing the difference between the observed exit time and the
computed average exit time T̄ . We define the the average exit time

T̄ = T̄ (β, pex,∆t, µ, n, w) : [0,∞)× R+ × R+ × (−∞, 1]× N× {0.9, 3.3, 5.7} → R+ ,

that is the time needed for the last agent to leave the domain, for n individuals in a corridor of width
w and parameters β, pex, ∆t and µ. The calibration is then based on minimizing the functional

Z =
´

(T̄ (β, pex, 63,∆t, 0.9)− 53)2 + (T̄ (β, pex, 67,∆t, 3.3)− 60)2

+ (T̄ (β, pex, 57,∆t, 5.7)− 55)2
¯0.5

,
(2.4)

using the data stated in Table 2.1. The functional Z is not differentiable, hence we used derivative
free methods to find a minimum. We first used a parallel Nelder-Mead, which did not converge. We
believe that this is caused by the stochasticity of the problem (since we average over 5000 Monte-Carlo
runs to compute the average exit time) as well as the form of the functional itself. Similar problems
were reported in [194]. Systematic computational experiments show that the parameter β has a small
influence on the exit time. In narrow corridors, increasing the value of β does not improve the exit
time, since the geometry restricts the range of jumps. In wider corridors, β plays a more important
role. However, we have seen that the exit time for a single agent converges as β increases. Therefore,
we can not expect a unique single optimal value. Furthermore, we believe that the parameter β has
a smaller influence the more agents are in the corridor.
Finally, we estimate the two parameters β and pex using a discrete search in the range [0.5, 10] ×
[0.55, 1.65]. In doing so, we see that the outflow parameter pex can be clearly estimated for a fixed value
of β, see Figure 2.6b. However, the parameter β is much more difficult to determine, as Figure 2.6a
shows. Using the three data sets stated in Table 2.1 we obtain the best fit using

(βmin, pmin
ex ) ' (3.84, 1.15) ,
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2 Micro-and macroscopic modeling of crowding and pushing in corridors

which leads to a deviation of 1.04 seconds in Equation (2.4). With a similar approach we then estimate
the parameter µ0 ' −1.22 for less motivated agents according to Table 2.1. This results in a speed of
0.57ms .
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(a) The average exit time for a discrete set of β/pex-
combinations.
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(b) T̄ as a function of pex for a fixed value of β.

Figure 2.6: Average exit time as a function of β and pex, or pex only.

Remark 2.3.1. At first glance, the value β = 3.84 may seem too small given the simulation results
shown in Figure 2.5a. However, Maury suggests a similar value in [157] - in particular β ≈ 1/(∆x)
where ∆x is the cell size. In our setting this would correspond to the value 3.33, which is close to the
value obtained through from the calibration. This can be explained by the fact that the effect of β is
smaller in crowded rooms.

2.3.3 Microscopic simulations

We conclude this section by presenting calibrated CA simulations, that are consistent with the exper-
imental data. We observe that wider corridors lead to a higher maximum density in front of the exit
for different motivation levels, see Figure 3.2. Note that this also the case when changing the outflow
rate pex. Higher motivation levels µ lead to higher densities in front of the exit as can be seen in
Figure 2.8b. A similar behavior was observed in the experimental results as well as the computational
experiments discussed in [6, 104].

Remark 2.3.2. Note that we observe similar results if we replace the exponential function in (2.1) by
max(0, ϕ(x, y)− ϕ(x+ ∆x, y)). However, this function does not satisfy the necessary regularity to at
least formally derive the corresponding macroscopic PDE model.

2.4 The macroscopic model

In this section, we derive and study the corresponding macroscopic PDE model, in particular existence
of solutions as well as different options to calculate the path to the exit.
The corresponding macroscopic PDE can be formally derived from the cellular automaton approach
discussed in Section 2.2.2. Here we use a Taylor expansion to develop the transition rates and functions
in x ±∆x and y ±∆x. This rather tedious calculation can be done in a systematic manner using a
similar approach as discussed in [138].
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2.4 The macroscopic model
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Figure 2.7: Impact of the corridor width on the maximum density. The CA approach yields comparable
results for high density regimes and low motivation level.

(a) Experimental results (with permission
from [104])
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(b) Maximum agent density using the CA model with n = 60.

Figure 2.8: Impact of the motivation level on the maximum pedestrian density: experimental (left)
vs. microscopic simulations (right).

2.4.1 The PDE and its analysis

We recall that ρ = ρ(x, y, t) denotes the density of pedestrians at position (x, y) and time t and
ϕ = ϕ(x, y) is the potential leading towards the exit ΓE . Let Ω ⊂ R2 denote the domain, ΓW the walls
and ΓE the exit with ΓW ∪ ΓE = ∂Ω and ΓW ∩ ΓE = ∅.
Then the pedestrian density ρ = ρ(x, y, t) satisfies a nonlinear Fokker-Planck equation for all (x, y) ∈ Ω:

∂tρ(x, y, t) = αµ div p∇ρ(x, y, t) + 2βρ(x, y, t)(1− ρ(x, y, t))∇ϕ(x, y)q

ρ(x, y, 0) = ρ0(x, y).

The parameter

αµ := 1
8(3− µ) (2.5a)
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2 Micro-and macroscopic modeling of crowding and pushing in corridors

depends on the motivation µ, while β corresponds to the ratio between the drift and diffusion. The
function ρ0 = ρ0(x, y) is the initial distribution of agents. Equation (2.5) is supplemented with the
following boundary conditions

j · n = 0, on ΓW ,
j · n = pexρ, on ΓE ,

(2.5b)

where j = ∇ρ + 2βρ(1 − ρ)∇ϕ and n is the unit outer normal vector. We recall that the parameter
pex is the outflow rate at the exit ΓE .
Remark 2.4.1. Note that the motivation parameter µ enters the PDE via αµ only. It corresponds to
a rescaling in time, accelerating or decelerating the dynamics.
First we discuss existence and uniqueness of solutions to (2.5). Stationary solutions of a similar
model were recently investigated by Burger and Pietschmann, see [42]. The existence of the respective
transient solutions was then shown in [94]. It is guaranteed under the following assumptions:

(A1) Let Ω ⊂ R2 with boundary ∂Ω in C2.

(A2) Let pex be in [0, 1].

(A3) Let ϕ be in H1(Ω).

Note that assumption (A1) is not satisfied in the case of a corridor. However, as pointed out in [42],
this condition could be relaxed to Lipschitz boundaries with some technical effort.

Theorem 2.1. (Existence of weak solutions) Let assumptions (A1)-(A3) be satisfied. Let S = {ρ ∈
L2(Ω) : 0 ≤ ρ ≤ 1} and the initial datum ρ0 : Ω→ So be a measurable function such that E(ρ0) <∞,
where entropy E is defined by

E(ρ) =
∫

Ω
rρ log ρ+ (1− ρ) log(1− ρ) + 2βρϕs dx .

Then there exists a weak solution to system (2.5) in the sense of∫ T

0

”

〈∂tρ, ϕ〉H−1,H1ds −

αµ

∫
Ω

((2βρ(1− ρ)∇ϕ+∇ρ))∇ϕdx+ pex

∫
ΓE
ρϕds

ı

dt = 0,

for test functions ϕ ∈ H1(Ω). Furthermore

∂tρ ∈ L2(0, T ;H(Ω)−1),
ρ ∈ L2(0, T ;H1(Ω)).

The existence proof is based on the formulation of the equation in entropy variables, that is

∂tρ(x, t) = div(m(ρ)∇u(x, t)),

where m(ρ) = ρ(1− ρ) is the mobility function and u = δE
δρ = (log ρ− log(1− ρ) + 2βϕ) the so-called

entropy variable. Note that the proof is a straightforward adaptation of the one presented in [94],
hence we omit its details in the following.
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2.4 The macroscopic model

2.4.2 Moving towards the exit

In the following we discuss different possible choices for the potential ϕ.

The eikonal equation

The shortest path to a target, such as the exit ΓE can be computed by solving the eikonal equation,
see [58]:

‖∇ϕE(x, y)‖2 = 1, for (x, y) in Ω,
ϕE(x, y) = 0, on (x, y) in ΓE .

(2.6)

Solutions to (2.6) are in general bounded and continuous, but not differentiable, see [16]. However, in
case of the considered corridor geometry we have the following improved regularity result.

Theorem 2.2. (Regularity of ϕE) Let Ω ⊂ R2 be a rectangular domain and ΓE ⊂ ∂Ω be a line segment
in one of the four edges. Then there exists a solution ϕE ∈ H1(Ω) to (2.6).

The proof can be found in the Appendix and is based on [16], Proposition 2.13.

The Laplace equation

Alternatively we consider an idea proposed by Piccoli and Tosin in [185]. Let ϕL = ϕ(x, y) denote the
solution of the Laplace equation on Ω ⊂ R2:

∆ϕL(x, y) = 0, for (x, y) in Ω,
ϕL(x, y) = d(x, y), for (x, y) on ∂Ω,

(2.7)

where d = d(x, y) corresponds to the Euclidean distance of the boundary points to the exit ΓE .
Note that in this case of the corridor the function d is not differentiable at the corners but Lipschitz
continuous. Hence standard methods for elliptic equations yield the following regularity result.

Theorem 2.3. (Regularity of ϕL) Let d ∈ C(∂Ω) defined as above, Ω ⊂ R2 be bounded. Then there
exists a unique solution ϕL ∈ H1(Ω) to (2.7).

The proof can be found in [142], Section 5.
In the following we discuss the similarities and difference of the potentials ϕE and ϕL. In case of a 1D
corridor with a single exit, that is a line with a single exit on one of the two endpoints, the potentials
are identical. However in the case of two exits at the respective endpoints, the Laplace equation gives
ϕL ≡ 0, which does not provide a sensible potential.
Figures 2.9 and 2.10 illustrate the differences between ϕL and ϕE in 2D. Note that we choose homo-
geneous Neumann boundary conditions at the obstacle walls when solving the Laplace equation (2.7).
We observe good agreement in case of convex obstacles, see Figure 2.9. In case of non-convex obstacles,
such as the U-shaped obstacle in Figure 2.10, individuals would first get trapped inside the U using
the Laplace equation. Solving the eikonal equation (2.6) is in general computationally more expensive
than the Laplace equation (2.7). However, these costs are negligible since the potential is stationary
and computed only once.
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2 Micro-and macroscopic modeling of crowding and pushing in corridors

(a) Eikonal equation. (b) Laplace equation (with Neumann bc at the obsta-
cle).

Figure 2.9: Comparison of the potentials ϕE and ϕL for a convex obstacle.

(a) Eikonal equation. (b) Laplace equation (with Neumann bc at the obsta-
cle).

Figure 2.10: Comparison of the potentials ϕE and ϕL for a non-convex obstacle.

2.4.3 Characteristic calculus
We now consider the corresponding inviscid macroscopic model, which can be derived using a different
scaling limit from the CA approach. We focus on the one dimensional case only as we can calculate
solutions explicitly. A similar problem (with different boundary conditions) was partially analyzed
in [65].

The inviscid PDE reduces to a scalar conservation law, posed on R+ of the form

∂tρ+ ∂xj(ρ) = 0 , (2.8)

where the flux function is j(ρ) = −ρ(1−ρ). Note that this flux corresponds to the potential ϕ(x) = x,
hence individuals move to the left. We consider the initial condition

ρ(x, 0) = ρ0 χ[0,L] ,

for some positive L, where χ denotes the characteristic function. At the origin, we wish to enforce a
similar outflow condition as in the viscid case and set j(0, t) = pex ρ, t > 0. This is equivalent to the
Dirichlet boundary condition ρ(0, t) = 1 − pex for all times t > 0, where we recall that 0 < pex ≤ 1.
This is an ill-posed problem in general [149], and the boundary condition must be relaxed.
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2.4 The macroscopic model

Away from discontinuities, the speed of characteristics is given by

j′(ρ) = −(1− 2ρ) .

We see that they either point in- or outside of the domain, depending on the magnitude of ρ. Recall
that for a shock located at s(t), the Rankine-Hugoniot condition reads Jj′(ρ)K = 9s(t)JρK, where JfK =
f− − f+, with f±(x) = f(x ± 0). For our choice for ρ0, there is an initial shock at xr = L, which is
moving (left) at a speed of

9xr = −(1− ρ0) .

The larger the initial pedestrian density, the slower the shock moves or the people get closer to the
exit. One can easily check that such a profile satisfies the so-called Lax entropy condition, since

−1 = j′(0) ≤ 9xr ≤ j′(ρ0) ,

is it therefore admissible.
Next we discuss the behavior of solutions at the exit x = 0. The proper way to enforce the Dirichlet
boundary condition is derived in [145,146], and reads as follows:

ρ+(0) ∈ E [1− pex] :=
{

r0, pexs ∪ {1− pex} if pex < 1
2 ,

“

0, 1
2
‰

if pex ≥ 1
2 .

(2.9)

Depending on the slope of the characteristics as well as the value of the outflow rate pex, we observe
three different cases, which are detailed below and illustrated in Figure 2.11.

• A constant profile for ρ0 ≤ pex < 1
2 or ρ0 ≤ 1

2 ≤ pex. In this case the characteristics have a negative
slope and ρ0 is an admissible boundary value. The function ρ vanishes when the shock originating
at x = L reaches the origin at time t = L

1−ρ0
. The situation is similar in the case 1

2 < ρ0 = 1− pex,
for which characteristics are going inwards but where ρ0 ∈ E [1− pex]. This case is illustrated on the
lower right in Figure 2.11.

• A shock originating at x = 0 for pex < 1
2 and pex < ρ0 < 1 − pex. In this case ρ0 /∈ E [1 − pex], but

1− pex ∈ E [1− pex] which we therefore set as a boundary value. This causes a shock at the origin,
which travels to the right with speed

9xl = −pex p1− pexq + ρ0 p1− ρ0q

1− pex − ρ0
,

until it collides with the back-shock. The collision time and position, t = t∗1 and x = x∗1 respectively,
can be calculated from x∗1 = 9xlt

∗
1 = L+ 9xrt

∗
1. We obtain

t∗1 = L

1− pex
, and x∗1 =

ˆ

1− 1− ρ0
1− pex

˙

L .

The resulting shock will then move to the left again, with speed −pex and reaches the origin at time
t = ρ0 L

pexp1−pexq
. This situation is shown in the center left part of Figure 2.11.

• A rarefaction wave originating at x = 0 for ρ0 >
1
2 or ρ0 > 1− pex. In this case a rarefaction wave

will connect the value at the boundary, that is ρ̄ = 1
2 ∨ 1− pex , with the state ρ0. The rarefaction
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Figure 2.11: Left: Bifurcation diagram detailing the behavior of the solution to (2.8)-(2.9). The
behavior along the interface lines is identical as in the bottom right corner. Right: exit
time corresponding to L = 1.

wave is of the form ρ(x, t) = x+t
2t . More precisely we have for any x > 0:

ρ(x, t) =


ρ̄ if xt ≤ p2ρ̄− 1q ,
x+t
2t if p2ρ̄− 1q < x

t < p2ρ0 − 1q ,

ρ0 if xt ≥ p2ρ0 − 1q .

(2.10)

Note that for 1 − pex > 1
2 , the constant value ρ̄ = 1 − pex is transported into the domain at speed

2ρ̄− 1. The crest the rarefaction wave travels at speed 2ρ0 − 1 until it hits the back-shock at time
t∗2 = L

ρ0
, for x∗2 =

´

2ρ0−1
ρ0

¯

L. This results at a new shock, which originates at position xs and with
velocity 9xs = −(1− ρ(xs)). From (2.10) we also have ρ(xs) = xs+t

2t . Solving the resulting equation
with initial condition xs(t∗2) = x∗2 yields

xs(t) = 2
a

Lρ0
?
t− t .

If 1− pex < 1
2 , this new shock reaches 0 at time t∗3 = 4ρ0L. Otherwise, the back-shock will meet the

constant state 1− pex at time t∗4 = Lρ0
(1−pex)2 , for x∗4 = Lp1−2pexqρ0

(1−pex)2 , resulting in a single constant state
ρ(x, t∗4) = (1− pex)χ[0,x∗4]. This constant profile then moves with speed −pex, and reaches the origin
at time t = ρ0 L

pexp1−pexq
, see upper right corner of Figure 2.11.

Figure 2.11 illustrates how the exit time changes with the initial pedestrian density and the outflow
rate. We see that for an outflow rate pex Á 1

2 , the initial density ρ0 has a much stronger influence on
the exit time compared to the value of pex. The situation is somehow reversed for small pex.

2.4.4 Numerical results
We conclude by presenting computational results on the macroscopic level. All simulations use the
finite element library Netgen/NgSolve.
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2.5 Alternative modeling approaches

We consider a rectangular domain with a single exit as shown in Figure 2.1 and discretize it using
a triangular mesh of maximum size h = 0.1. The potential ϕ is calculated in a preliminary step, by
either solving the eikonal equation (2.6) or the Laplace equation (2.7). We use a fast sweeping scheme
for the eikonal equation, as it can be generalized to triangular meshes, see [189]. The discretization of
the nonlinear Fokker-Planck equation (2.5) is based on a 4th order Runge-Kutta method in time and
a hybrid discontinuous Galerkin method in space, see [147].
We choose a constant initial datum ρ0, taken such that

∫
Ω ρ0dx = n

ρs
. We recall that ρs corresponds

to the typical pedestrian density ρs = 11.11 p
m2 and n to the number of individuals. The simulation

parameters are set to

β = 3.84, pex = 1.15, ∆t = 10−5, and αµ = 1
16

We calculate the densities in the rectangular area highlighted in Figure 2.1. The macroscopic simu-
lations confirm the microscopic results. Again higher densities for wider corridors are observed, see
Figure 2.12.
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(a) Microscopic simulations.
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(b) Macroscopic simulations.

Figure 2.12: Simulations for n = 60, β = 3.84, µ = 1. We observe a good agreement between the
CA (microscopic) and PDE (macroscopic) solutions. The effect of higher densities for
wider corridors also occur on a macroscopic scale. There is a clear difference in behavior
between narrow and wide corridors

2.5 Alternative modeling approaches

We have seen that the proposed CA approach proposed in Section 2.2.2 reproduces some features
of the observed dynamics on the microscopic as well as on the macroscopic level. In the following,
we discuss possible alternatives and generalizations, which we expect to result in even more realistic
results.

2.5.1 Density dependent cost

Hughes [117] proposed that the cost of moving should be proportional to the local pedestrian density.
In particular, moving through regions of high density is more expensive and therefore less preferential.
This corresponds to a density dependent (hence time dependent) right-hand side in (2.6). In particular,
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2 Micro-and macroscopic modeling of crowding and pushing in corridors

Hughes proposed a coupling via

‖∇ϕ(x, y, t)‖ = 1
1− ρ(x, y, t) , for (x, y) in Ω

ϕ(x, y) = 0, for (x, y) in ΓE .
(2.11)

We see that the right hand side, which corresponds to the cost of moving, becomes unbounded as ρ
approaches the scaled maximum density 1. Such density dependent cost should lead to more realistic
dynamics. However the analysis of the coupled problem (2.5)-(2.11) is open. Solutions to (2.11) have
a much lower regularity than required in Theorem 2.2. We expect this to lead to similar analytic
challenges as reported in [65].

2.5.2 Alternative ways to model motivation
In the following, we discuss different possibilities to include the influence of the motivation level on the
dynamics. First by modifying the transition rates and second by changing the transition mechanism,
allowing for shoving.

Alternative transition rates

In the transition rate (2.1), the motivation relates to the probability of jumping as detailed in Remark
2.2.2. It is therefore directly correlated to the agent’s velocity on a microscopic level. However, one
could assume that the motivation increases the probability to move along the shortest path. This
could be modeled by transition rates of the form

T ij(x, y) = 1
8 exp(µβ(ϕ(x, y)− ϕ(x+ i∆x, y + j∆x))).

Then the corresponding macroscopic model reads

∂tρ(x, y, t) = 1
8 div p∇ρ(x, y, t) + 2µβρ(x, y, t)(1− ρ(x, y, t))∇ϕ(x, y)q .

We see that the motivation level µ enters only in the convective term. Hence higher motivation is
directly correlated to a higher average velocity of the crowd on a macroscopic level.

2.5.3 Pushing and shoving
Microscopic modeling

In the previously proposed model, the transition rates depended on the availability of a site and the
motivation level. Another possibility to include the latter is by allowing individuals to push. Different
pushing mechanisms have been proposed in the literature. In local pushing models, individuals are
only able to push one neighbor into an adjacent vacant site, while in global pushing individuals can
push a given number of neighbors into a direction. However, since individuals can induce movements
of other individuals in some distance (and not only the neighboring sites), an implementation on
bounded domains is not straight forward. In particular, it is not clear how to adapt boundary condi-
tions in case of global pushing, as considered in [10]. In contrast, local pushing mechanisms, can be
translated one-to-one on bounded domains, see [235].
We will discuss the underlying CA approach for the sake of readability in 1D only, since its generaliza-
tion to 2D is obvious. We assume that individuals agents can move to a neighboring occupied cell with
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2.5 Alternative modeling approaches

(a) Local pushing mechanism. Top: pushing is
possible since the cell on the third column in
free. Bottom: pushing is forbidden since the
next site is occupied.

1

2αµβ

ρ

vmax γ = 0

γ = 1
10

γ = 1
4

γ = 1
2

(b) Impact of pushing on the average velocity.
Pushing leads to larger and increasingly con-
cave velocities.

Figure 2.13: Effects of pushing

a given probability, by pushing the neighbor one cell further, provided that it is free. Otherwise, such
a move is forbidden. This mechanism is illustrated in Figure 2.13a. In 1D, the previously introduced
transition rates are given by

T i(x) = αµ exp(β(ϕ(x)− ϕ(x+ i∆x))).

Since individuals can move to the right and left only, we will replace the superscript i by ± indicating
a jump to the respective neighboring sites. Then the master equation in 1D is given by (ignoring
constants):

ρ(x, t+ ∆t)− ρ(x, t) =− ρ(x)T +(x) p(1− ρ(x+ ∆x)) + γµρ(x+ ∆x)(1− ρ(x+ 2∆x))q

− ρ(x)T −(x) p(1− ρ(x−∆x)) + γµρ(x−∆x)(1− ρ(x− 2∆x))q

+ ρ(x+ ∆x)T −(x+ ∆x)(1− ρ(x))
+ γµρ(x+ ∆x)ρ(x+ 2∆x)T −(x+ 2∆x)(1− ρ(x))
+ ρ(x−∆x)T +(x−∆x)(1− ρ(x))
+ γµρ(x−∆x)ρ(x− 2∆x)T +(x− 2∆x)(1− ρ(x)) ,

in which we omit t for the sake of readability. Here γµ = γ(µ) ∈ [0, 1] denotes an increasing function
and corresponds to the probability of an agent pushing. Note that we obtain the original master
equation (2.2) for γµ = 0.

Mean-field limit

Using a formal Taylor expansion, we derive the limiting mean-field PDE where we generalized to 2D
the approach mentioned previously:

∂tρ(x, y, t) = αµ divp(1 + 4γµρ)∇ρ+ 2βρ(1− ρ)(1 + 2γµρ)∇ϕq

ρ(0, x) = ρ0(x, y).
(2.12)

Equation (2.12) is supplemented with no-flux and outflow conditions of type (2.5b) for a modified flux
j = (1 + 4γµρ)∇ρ+ 2βρ(1− ρ)(1 + 2γµρ)∇ϕ and αµ given by (2.5a).
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2 Micro-and macroscopic modeling of crowding and pushing in corridors

This equation has again a formal gradient flow structure with respect to the Wasserstein metric. The
respective mobility and entropy are given by

m(ρ) = αµρ(1− ρ)(1 + 2γµρ),

and

E(ρ) =
∫

Ω

”4γ + 1
2γ + 1(1− ρ) log(1− ρ)

+ ρ log ρ+ 2γρ+ 1
2γ + 1 log(2γρ+ 1) + 2βρϕ

ı

dx .

We observe that the local pushing increases the mobility and the average velocity, see Figure 2.13b.
Furthermore, the velocity decreases less in low density regimes and for higher motivation levels. Note
that in case of pushing, the average velocity always larger.
The local pushing weighs the (1− ρ) log(1− ρ) term and subsequently the finite volume effects much
more. Furthermore, it increases the entropy by an additional strictly positive term. Hence we expect a
faster equilibration speed compared to the model of Section 2.4.1. The expected behavior is confirmed
by macroscopic simulations, see Figure 2.14. We consider a corridor filled with 60 people, and where
we set β = 3.8. We observe that the individuals move faster towards the exit and that the congested
area in front of the exit builds up faster.
Again, we recover the original PDE model by setting γµ = 0. The proof of global existence to (2.12)

(a) t = 5s, γ = 0, no pushing (b) t = 15s, γ = 0, no pushing

(c) t = 5s, γ = 1, pushing (d) t = 15s, γ = 1, pushing

Figure 2.14: Comparison of the congestion at the exit in case of pushing (bottom row) and no-pushing
(top row) for 60 individuals: We observe that people move faster towards the exit and
the formation of a larger congested area in front of it.

follows arguments similar as for the original PDE model (2.5), since the pushing corresponds to a
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2.6 Conclusion

multiplicative prefactor in the mobility and a positive term in the entropy (which can be bounded).

2.6 Conclusion
In this paper, we discussed micro- and macroscopic models for crowding and queuing at exits and
bottlenecks, which were motivated by experiments conducted at the University in Wuppertal. These
experiments indicated that the geometry, ranging from corridors to open rooms, as well as the moti-
vation level, such as a higher incentive to get to the exit due to rewards, changes the overall dynamics
significantly.
We propose a cellular automaton approach, in which the individual transition rates increase with the
motivation level, and derive the corresponding continuum description using a formal Taylor expansion.
We use experimental data to calibrate the model and to understand the influence of parameters and
geometry on the overall dynamics. Both the micro- and the macroscopic description reproduce the
experimental behavior correctly. In particular we observe that corridors lead to lower densities and
that the geometry has a stronger effect than the motivation level. We plan to investigate the analysis
of the coupled Hughes type models as well as the dynamics in case of pushing in more detail in the
future.
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2.7 Appendix
Proof 1 of Theorem 2.2

We start by a recalling a standard existence and regularity result from the literature, see [16] and
[45]. Solutions to the eikonal equation (2.6) in R2 \ ΓE are given by the distance function

d(x,ΓE) = inf
b∈ΓE
|x− b|.

Hence we discuss the regularity of d in the following only. We define the set

M(x) = arg min
b∈ΓE

d(x,ΓE).

If ΓE is a straight, bounded line, the M is nonempty and consists of a single point for every x ∈ R2.
Since |(· − b)| is uniformly differentiable in b, and b 7→ Dx|x− b| is continuous, we can deduce that the
set Y

Y (x) := {Dx|x− b|: b ∈M(x)}
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2 Micro-and macroscopic modeling of crowding and pushing in corridors

is a singleton too. We now can apply Proposition 2.13 in [16] which states that d is differentiable at
x if and only if Y (x) is a singleton. Thus d is differentiable for R2 \ ΓE , to be more precisely, we have
d ∈ C1(R2 \ ΓE) ∩ C(R2).
Next we restrict d to the corridor Ω ⊂ R2 (being an open and bounded subset of Ω).
Hence, ϕE ∈ C(Ω̄) ∩ C1(Ω). Since the L2-norm of the first derivative of ϕE is bounded by the

equation (2.6) itself, we can deduce that ϕE ∈ H1(Ω) since

‖ϕE‖H1(Ω)=
∫

Ω
ϕ2
Edx+

∫
Ω

(DϕE)2dx ≤ |Ω|(maxϕE + 1).
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The process of rating players can be
compared to the measurement of the
position of a cork bobbing up and down on
the surface of agitated water with a yard
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Abstract
The Elo rating system, which was originally proposed by Arpad Elo for chess, has become one of the
most important rating systems in sports, economics and gaming nowadays. Its original formulation is
based on two-player zero-sum games, but it has been adapted for team sports and other settings.
In 2015, Junca and Jabin proposed a kinetic version of the Elo model, and showed that under certain
assumptions the ratings do converge towards the players’ strength. In this paper we generalise their
model to account for variable performance of individual players or teams. We discuss the underlying
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3 An Elo-type rating model for players and teams of variable strength

modelling assumptions, derive the respective formal mean-field model and illustrate the dynamics with
computational results.

3.1 Introduction
Rating systems have become an indispensable tool to rank unobservable quantities, such as a play-
ers’ strength based on observations, for example outcomes of games. Rating models were originally
developed for sports; but are nowadays also used in gaming and financial markets. The Elo-rating
system [75] is one of the most prominent rating systems – it is used in chess and other two-player zero
sum games. Versions of the Elo-rating have been adopted for many other sports, for example basket-
ball and football, see [188, 204]. Other prominent rating systems include the Glicko rating system or
Trueskill, see [93,110]. Elo and Glicko are based on two-player zero sum games (here a player can be
a single individual or an entire team), while Trueskill is used in multi-player situations, as for example
in online gaming, see [110,163].

Elo himself tried to confirm the validity of the proposed rating system using statistical experiments
[75]. It was not until 2014 that Jabin and and Junca [121] showed the convergence of ratings towards
the players’ strength for a continuous kinetic version of the model. Junca [125] later analysed the
convergence of discrete ratings in Robin-round tournament, in which players compete against all
others in a round and discrete ratings are updated after each such round. However, in this model
the players’ strength did not change in time. Düring et al. proposed a generalisation in [71], in
which players improve and loose skills based on the outcome of games as well as daily performance
fluctuations. A simpler but related learning mechanism was proposed by Krupp in [141].
Kinetic models have been used very successfully to describe the behaviour of large interacting agent

systems in economics and social sciences. In all these applications interactions between agents – such
as encounters in games, the trading of goods or the exchange of opinions – are modelled via binary
‘collisions’. Toscani [215] was the first to introduce kinetic models in the context of opinion formation.
His ideas were later generalised for more complex opinion dynamics [7, 9, 29, 59, 68, 69, 72, 180], or in
the context of wealth distribution [70, 179] or knowledge growth in societies [40, 41]. For a general
overview on interacting multi-agent systems and kinetic equations we refer to the book of Pareschi
and Toscani [178].
The kinetic formulation of the Elo-model by Jabin and Junca assumes that each player is char-

acterised by a constant strength ρ (being an unobservable quantity) and a rating R, which changes
based on the outcome of games. After each match between player i and j their respective ratings Ri
and Rj are updated as follows

R∗i = Ri + γ(Sij − b(Ri −Rj)),
R∗j = Rj + γ(−Sij − b(Rj −Ri)).

(3.1)

Here b is an odd, monotone, increasing function, usually chosen as b(z) = tanh(νz) with a scaling
constant ν ∈ R+. The parameter γ controls the speed of adjustment. The outcome of the game
is given by the random variable Sij , which takes the values {−1, 1}, corresponding to a win or loss
(other, more fine grained outcomes like a tie can be added in a natural way). It is assumed to equal
the expectation of b(ρi − ρj), that is

〈Sij〉 = 〈b(ρi − ρj)〉,

where ρi, ρj are the underlying unobservable players’ strength. Note that the interactions (3.1) are
invariant with respect to translations and both the rating update (3.1) and the expected game outcome
Sij depend only on the difference in ρ and R, respectively, so these variables are defined on R.
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3.2 A microscopic Elo-type rating for teams

Jabin and Junca then derived the corresponding macroscopic model for the distribution of players
f(t, r, ρ) with respect to their rating r and their strength ρ:

∂

∂t
f(t, ρ, r) + ∂

∂r
(a[f ]f(t, ρ, r)) = 0 (3.2)

with
a[f ] =

∫
R3

w(r − r′)pb(ρ− ρ′)− b(r − r′)qf(t, ρ′, r′)dρ′dr′

and initial condition f(0, ρ, r) = f0(ρ, r). Here, the even probability distribution w was introduced, to
account for ranking dependent pairings in tournaments. If w ≡ 1 we consider a so-called all-play-all
game. If w has compact support only teams with close ratings compete. Possible choices for w are

w(r − r′) = e
log 2

1+(r−r′)2 − 1 or w(r − r′) = χ{|r−r′|≤c}.

where χ denotes the indicator function (or smoothed variants thereof) and c > 0 is the maximal rating
difference between paired competitors. If w > 0 Jabin and Junca [121] showed that solutions to (3.2)
concentrate on the diagonal, providing the proof that the ratings indeed converge to the underlying
strength.

In this work we propose a generalisation of the Elo-model for teams of players with fluctuating
strengths. Our main contributions are the following

• We propose and analyse an Elo-rating for teams, which includes stochastic variations in the
team strength due to changes in the player setup.

• We formally derive the respective Fokker-Planck equations and analyse their behaviour for long
times.

• We investigate the behaviour of solutions in the special case of competing teams whose players’
strengths are distributed with a similar variance.

• We illustrate the behaviour of the micro- and macroscopic models with computational experi-
ments, consolidating and extending the analytical results.

This work is organised as follows: we propose a microscopic generalisation of the well-known Elo-
rating to teams of players and illustrate the behaviour with microscopic simulations in Section 3.2.
Section 3.3 focuses on the corresponding formally derived macroscopic model and its analysis. Next
we investigate the model in the case of homogeneous teams in Section 3.4 and report results of
computational experiments. Section 3.5 concludes.

3.2 A microscopic Elo-type rating for teams
We start by proposing a microscopic version of the Elo-rating for players with variable strength, which
can also be used in the context of teams.

3.2.1 Performance variations in teams and individual players
In the following we consider a microscopic model, which accounts for performance fluctuations in teams
as well as individuals. These fluctuations may be caused by varying individual or team performance
(due to different line-ups) or for example by card luck. We recall that small performance fluctuations
in the individual strength ρ were modelled in [71] by stochastic fluctuations in the strength. We will
follow a different approach and replace the constant strength ρ by a random variable λρ defined on
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3 An Elo-type rating model for players and teams of variable strength

a set of possible outcomes Ωρ, which can be a finite set as well as an interval. This then allows us
to define the stochastic process {λρ(t)}t∈R+ , whose expected value and variance will be denoted by
θ := 〈λρ〉, and σ2 := Var[λρ], respectively.
We consider competing teams Ti, Tj instead of individual players. The corresponding expected

value θ can be interpreted as the mean strength of the team with a chosen line-up, i.e. a subset of
the team’s players who will be playing in a particular game. We assume similar as in [121], that the
expected outcome of the game between Ti, Tj depends on the difference of teams’ strengths through b:

〈Sij〉 = 〈b(λρi − λρj )〉. (3.3)

If two teams Ti and Tj with ratings Ri and Rj meet, their ratings and strength after the game can
be updated using again (3.1) where γ is a scaling constant controlling the speed of adjustment. It is
usually chosen much smaller than the rating scores, in the hope that a player’s rating slowly converges
to its underlying strength. As discussed in the introduction we make the following assumption on b:

(B) The function b is C3(R), monotonically increasing, bounded, odd and Lipschitz.

Since b is non-linear the expected value and b cannot be interchanged. To calculate the expected value
of Sij in (3.3) we use the Law of the unconscious statistician [24], e.g. in the discrete case we obtain

〈Sij〉 =
∑

xi∈Ωρi

∑
xj∈Ωρj

b(xi − xj)p̃(xi, xj) =
∑

xi∈Ωρi

∑
xj∈Ωρj

b(xi − xj)p(xi)p(xj), (3.4)

where p̃ denotes the probability of a possible line up xi playing against a line up xj and the second
equality holds if this happens independently of each other. In the following we always assume this
independence of the stochastic processes for team Ti and Tj .
We can Taylor-expand 〈Sij〉 in (3.4) as described, for example, in [18]. Since we have 〈λρi − λρj 〉 =

θi − θj and Var[λρi − λρj ] = σi
2 + σj

2, it follows:

〈Sij〉 = 〈bpλρi − λρj q〉 ≈ b(θi − θj) + 1
2b
′′(θi − θj)(σi2 + σj

2)

=: b(θi − θj) +K(θi − θj , σi, σj).
(3.5)

Note that the function K is odd in the first argument and even in the other two. Similarly, the
following holds for the variance

Var[Sij ] ≈ pb′(θi − θj)q
2(σi2 + σj

2). (3.6)

3.2.2 Microscopic simulations

In the following we will illustrate the behaviour of the microscopic model with various simulations. We
consider N teams T1 . . . TN ; each team has M players with strengths ρik from which m < M distinct
players are selected as line-up for each match. Let ~ρi = (ρi1 , . . . , ρiM ) denote the vector of all players
in a team Ti. We assume without loss of generality that the vector ~ρi is ordered.
Let us consider first the case that the m players for the line-up are chosen from the set of M players

uniformly. This can be done by generating
`

M
m

˘

normalised vectors ~λik ∈ {0, 1}M with |~λik |= 1. Then
the stochastic process λt selects each vector ~λik with equal probability and we have

P (Sij = 1) = b(~λik · ~ρi − ~λjk · ~ρj),
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3.2 A microscopic Elo-type rating for teams

for a match between Ti and Tj . More realistic line-up selection would choose players directly pro-
portional to their strength. We recall that the Elo-rating is translation invariant, hence we shift the
expected values θ to the interval [0, 10] in the following.

As a first example consider the following football-inspired situation of N = 200 teams with M = 23
players each from which m = 11 players are selected per match. For any team Ti we then have
θi = 11

23
∑
ρik . We investigate two different initial setups for the teams:

(R1) For every team Ti, i = 1, . . . N , the players’ strengths ρik , k = 1, . . . 23, is chosen randomly from
the interval 1

11 [5− 5
200(i−1), 5 + 5

200(i−1)]. That is ρ11 = . . . ρ123 = 1
115 and ρ200k ∈ 1

11 [0, 10] for
every k. In other words all teams have an approximate team strength of θi ≈ 5 with increasing
variance σ2

i as can be seen in Figure 3.1a.

(R2) For every team Ti, i = 1, . . . N, the players’ strengths ρik are given by

1
11(4 + 6(i− 1)

197 + ηik), k ∈ {1, . . . , 23}, ηik ∈ N (0, 1).

The mean team strength of the first 198 teams is increasing from values around 4 to values
around 10 and the variances σ2

i are of the same order. In addition we consider two teams,
Germany (i = 199) and Brazil (i = 200), whose mean value and variance are motivated by the
2014 FIFA World Cup results, see [2]. We scale those values to θGer = 10 as well as θBra = 9.
However, we do not scale the variance - it is signficantly higher in the generated data set, as can
be seen in Figure 3.1b.
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(a) The standard deviation σ for every team
Ti based on rule (R1).
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(b) The standard deviation σ regarding θ
based on rule (R2).

Figure 3.1: The standard deviation of the two setups visualised, both calculated over 104 Monte Carlo
experiments per team.

We carry out direct Monte Carlo simulation using Bird’s scheme, see [178], for these two initial setups.
We choose time steps of ∆t = 0.1 and perform 25 matches per time step. The results were then
averaged over 50 realisations after 2 · 106 time-steps. Figure 3.2 shows the final distribution of teams
for the two different initial setups. In Figure 3.2a we see clustering around the point (θ,R) = (5, 5) as
expected for setup (R1). However, an interesting phenomenon is that teams with θ < 5 consistently
under-perform and conversely θ > 5 over-perform, as they lie above and below the line θ = R,
respectively. In Figure 3.2b, we see convergence towards a steady state for the 198 teams created
using the rule (R2). However, this straight line has a steeper slope than θ = R. Furthermore, the
German and Brazilian team are clear outliers, both are under-performing relative to their strengths.
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(a) Setup (R1) with increasing variance in
the team performance.
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(b) Setup (R2) with constant variance σ = 1
in the team performance.

Figure 3.2: Stationary team distribution for setup (R1) and (R2).

3.3 A macroscopic Elo-model for teams
In general, the expected value θ and variance σ2 of the microscopic model (3.1) are finite since they
result from discrete, finite random processes. Compared to the formal derivation of the macroscopic
model in previous works [121, 141], we need additional assumptions on the moments of σ because of
the unboundedness of K in (3.5) in the 2nd and 3rd argument when passing from micro to macro.

Let f(t, θ, σ, r) be the distribution of teams at time t with expected team performance θ, variance
σ2 and rating r. The derivation of the macroscopic model (3.7) below is based on the following
assumptions:

(A1) Let f0 ∈ H1(R3) with f0 ≥ 0 and having compact support. Furthermore, we assume:∫
R3
f0(θ, σ, r)dθdσdr = 1,

∫
R3
Rf0(θ, σ, r)dθdσdr = 0,

∫
R3
θf0(θ, σ, r)dθdσdr = 0,∫

R3
σf0(θ, σ, r)dθdσdr = 1,

∫
R3
σ2f0(θ, σ, r)dθdσdr = Cσ2 .

(A2) Let the interaction rate function w ≥ 0 be an even function with w ∈ C2(R3) ∩ L∞(R3).

In Appendix 3.6 we derive the following macroscopic Fokker-Planck equation for the distribution of
teams f = f(t, r, θ, σ):

∂

∂t
f(t, θ, σ, r) + ∂

∂r
(a[f ]f(t, θ, σ, r)) = 0, in [0, T )× R3,

f(t = 0, θ, σ, r) = f0(θ, σ, r), in R3,
(3.7)

with

a[f ] =
∫
R3

w(r − r′)pb(θ − θ′) + 1
2b
′′(θ − θ′)(σ2 + σ′

2)− b(r − r′)qf(t, θ′, σ′, r′) dθ′dσ′dr′.

Here b′′ is the second derivative introduced in (3.5). We note that the operator a[·] includes an
additional correction term resulting from the variance of the distribution of strengths. This term’s
sign depends on the sign of θ − θ′, either decreasing or increasing the adjustment of ratings. This is
consistent with the under- and over-performance of teams observed in the microscopic simulations in
Section 3.2.3.2.2.
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3.3 A macroscopic Elo-model for teams

3.3.1 Analysis of the Fokker-Planck equation
Since b and b′′ are odd, the total mass is conserved as

∂

∂t

∫
R3
f(t, θ, σ, r) dθdσdr = 0.

and therefore
∫

R3 f(t, θ, σ, r) dθdσdr =
∫

R3 f0(θ, σ, r) dθdσdr = 1 for all times t > 0.
Next, we show the existence of a classical solution to (3.7) following arguments from [19,203].

Theorem 3.1. Assume that the initial datum f0

1. is compactly supported in the phase space, i.e. supp(r,θ,σ) f
0 is bounded,

2. is C1-regular and bounded: ∑
0≤|α|≤1

∥∥∥∇αr f0
∥∥∥
L∞

<∞.

Then, for any t ∈ (0,∞), there exists a unique classical solution f ∈ C1p[0, t)× R3q to (3.7).

Proof. In the following we consider the ’all play all’ setting, that is w ≡ 1; our arguments can, however,
be generalised for interaction functions w satisfying (A2). We start by showing that the solution cannot
blow up in finite time. Next we prove local in time existence based on a priori estimates and a fixed
point argument. Global existence follows from a continuation argument using energy estimates.
First we show that the local solution f remains uniformly bounded. We rewrite (3.7) in a non-

conservative form,

∂

∂t
f(t, θ, σ, r) + a[f ] ∂

∂r
f(t, θ, σ, r) = −f(t, θ, σ, r) ∂

∂r
a[f ],

where we have

−f(t, θ, σ, r) ∂
∂r
a[f ] = f(t, θ, σ, r)

∫
R3

b′(r − r′)f(t, θ′, σ′, r′) dθ′dσ′dr′,

which yields ∥∥∥∥ ∂∂ra[f ]
∥∥∥∥
L∞
≤ L,

where L is the Lipschitz constant of b and we used that the total mass equals one. Next we consider
a trajectory starting at time τ0 ∈ R+ in (r0, θ0, σ0), then the characteristics are given by

∂

∂t
r(t) = a[f ], ∂

∂t
θ(t) = ∂

∂t
σ(t) = 0.

Therefore,

∂

∂t
f(t, θ, σ, r) ≤ Lf(t, θ, σ, r),

and Gronwall’s lemma gives

‖f(t)‖L∞ ≤ e
Lt
∥∥∥f0

∥∥∥
L∞

.
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3 An Elo-type rating model for players and teams of variable strength

Hence, the solution cannot blow up in finite time.
We continue with the existence of a local solution following Theorem 3.1 in [19]. To this end we

investigate the non-linear transport operator H:

H(f) = −f(t, θ, σ, r) ∂
∂r
a[f ], with H := ∂

∂t
+ a[f ] ∂

∂r
,

in the following. There exist positive constants C1, C2 such that

|H(f)|≤
∥∥b′∥∥L∞ |f |= C1|f |,

|H( ∂
∂r
f)|≤ |f |

∥∥b′′∥∥L∞ +
ˇ

ˇ

ˇ

ˇ

∂

∂r
f

ˇ

ˇ

ˇ

ˇ

∥∥b′∥∥L∞ = C2p|f |+
ˇ

ˇ

ˇ

ˇ

∂

∂r
f

ˇ

ˇ

ˇ

ˇ

q,
(3.8)

because of b being Lipschitz and therefore we have L∞ bounds for its derivatives. Moreover, the map
H defined by

H : C1p[0, t)× R3q→ C1p[0, t)× R3q, f 7→ (H)−1(−f ∂
∂r
a[f ])

is bounded since we can use the estimates (3.8) together with the bounded inverse theorem. Next we
consider the solution along the trajectories (θ(t), σ(t), r(t))

f(t, θ(t), σ(t), r(t)) = f(0, θ0, σ0, r0) +
∫ t

0

∂

∂r

ˆ

a[f(t, θ(t), σ(t), r(t))]f(t, θ(t), σ(t), r(t))
˙

dt.

We can then use the previous estimates to choose a t > 0 such that H is a contraction. Using Banach’s
fixed point theorem we obtain a unique local solution f ∈ C1p[0, t] × R3q. Let F be the W 1,∞-norm
of f(t),

F(t) =
∑

0≤|α|≤1
‖∇αr f(t)‖L∞ .

Using (3.8) and again Gronwall’s lemma we get

∂

∂t
F(t) ≤ C3F(t)

and therefore we have the upper bound

F(t) ≤ F(0)eC3t, ∀t ∈ [0, T ).

The energy bound in W 1,∞ allows us to use the standard continuation principle, giving the global
extension of the local solution.

We continue by analysing the behaviour of the moments of f . We define the s-th moment for s ∈ N
with respect to r (and similar the moments with respect to θ, σ),

ms,r(t) =
∫

R3
rsf dθdrdσ.
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3.3 A macroscopic Elo-model for teams

The evolution with respect to σ and θ is trivial, as the function does not change with respect to these
variables. The evolution of the second moment w.r.t. to r satisfies:

d

dt

∫
R3

r2f dθdrdσ = −
∫
R3

r2 d

dr
(a[f ]f) dθdrdσ

= 2
∫
R6

rw(r − r′)
´

b(θ − θ′) + σ2 + σ′2

2 b′′(θ − θ′)− b(r − r′)
¯

ff ′ dθ′dr′dσ′dθdrdσ

= −
∫
R6

rb(r − r′)w(r − r′)f ′f dθ′dr′dσ′dθdrdσ −
∫
R6

r′b(r′ − r)w(r′ − r)f ′f dθ′dr′dσ′dθdrdσ

+ 2
∫
R6

rw(r − r′)pb(θ − θ′) + σ2 + σ′2

2 b′′(θ − θ′)qff ′ dθ′dr′dσ′dθdrdσ

= −
∫
R6

(r − r′)b(r − r′)w(r − r′)ff ′ dθ′dr′dσ′dθdrdσ

< 0. (3.9)
Here, we used the short-hand notation f ′ = f(t, θ′, σ′, r′). Furthermore, we used that for r − r′ < 0
the function b(r − r′) < 0 is negative, since b is odd and monotonically increasing. The latter does
not hold in general for b+ b′′, however, the second integral vanishes since the integrand is still odd in
θ and r. Therefore, the second moment in r decreases over time and we expect convergence towards
a stationary state. Our computational experiments confirm this expected convergence. However, we
are not able to compute these stationary states explicitly as it was done in [121].

3.3.2 Numerical results for the macroscopic model
We perform several computational experiments illustrating the dynamics of (3.7) using a finite differ-
ence scheme. It is based on the generalisation of a finite difference scheme for conservation laws with
discontinuous flux presented by Towers in [218]. This generalisation is straight-forward, as (3.7) has
only transport in r direction. Let fnj,l,m denote the solution at the discrete points (j∆r, l∆θ,m∆σ),
j, l,m ∈ N, and time tn = n∆t, n ∈ N, with discrete positive increments ∆r,∆θ, ∆σ and ∆t. Then
the explicit scheme reads as follows:

fn+1
j,l,m = fnj,l,m −

∆t
∆r (anj+1/2,l,mh

n
j+1/2,l,m − a

n
j−1/2,l,mh

n
j−1/2,l,m),

with cell averages anj+1/2,l,m = 1
∆r
∫ j+1
j a[fn(r, l∆θ,m∆σ)] dr. The function h is chosen depending on

the sign of the averaged flux (as in the usual Godunov scheme) that is

hnj+1/2,l,m =

fnj,l,m, anj+1/2,l,m ≥ 0,
fnj+1,l,m, anj+1/2,l,m < 0.

In Figure 3.3 we visualise the first marginals
∫

R f(t, r, θ, σ) dσ and
∫

R f(t, r, θ, σ) dθ of the team dis-
tribution at time t = 5 using timesteps of size ∆t = 10−5 and ν = 1. The computational domain is
Ω = [0, 10] × [0, 10] × [0, 1] and the spatial discretisation was set to ∆r = ∆θ = ∆σ = 5 · 10−2, the
initial distribution of teams uniform and normalised. The left plot in Figure 3.3 shows that ratings
converge towards the mean strength for θ ∈ [6, 8], but are blurred for smaller and larger means. We
observe a similar over- and under-performance as in the microscopic simulations in Figure 3.2b. The
right plot illustrates the decrease of m2,r in the direction θ. The larger the uncertainty σ, the less
accurate the ratings as all teams get a similar rating (around 7).
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3 An Elo-type rating model for players and teams of variable strength

Figure 3.3: Second and third marginal of the team distribution f at time t = 5 for f0 = 1.

3.4 Special scaling limits and homogeneous player distributions
Our microscopic computational results suggest that if all teams have the same player variance, then
the ratings converge to the underlying mean team strength. In this case, however, the integral over σ
can be seen as a point evaluation and we can simplify (3.7) for constant σ ∈ R+

0 :

∂

∂t
f(t, θ, r) + ∂

∂r
(a[f ]f(t, θ, r)) = 0

f(t = 0, θ, r) = f0(θ, r),
(3.10)

with a changed to

a[f ] =
∫
R2

w(r − r′)pb(θ − θ′) + σ2b′′(θ − θ′)− b(r − r′)qf(t, θ′, r′)dr′dθ′.

We discuss the existence of a unique solution and the analysis of the moments. Furthermore we
consider the relative energy to prove convergence of the team strengths to ratings. The existence of a
classical solution itself follows from the same arguments as in Theorem 4.10.

Theorem 3.2. Assume that the initial datum f0

1. is compactly supported in the phase space, i.e. supp(r,θ)f
0 is bounded

2. is C1-regular and bounded: ∑
0≤|α|≤1

∥∥∥∇αr f0
∥∥∥
L∞

<∞.

Then, for any T ∈ (0,∞), there exists a unique classical solution f ∈ C1p[0, T )× R2) to (3.10).
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3.4 Special scaling limits and homogeneous player distributions

The proof of Theorem 4.11 can be easily adapted from the proof of Theorem 4.10 and is omitted here.
Equation (3.10) is conservative, hence the total mass is preserved, and the moments with respect to
θ is zero. Again, the second moment w.r.t. to r is decreasing (using similar arguments as in (3.9)):

d

dt

∫
R2

r2f dθdr = −
∫
R2

r2 d

dr
(a[f ]f) dθdrdθ′dr′

= −
∫
R4

(r − r′)pb(θ − θ′) + σ2b′′(θ − θ′)qw(r − r′)ff ′ dθ′dr′dθdr < 0,

using the short hand notation f ′ = f(t, θ′, r′).

The ratio of ν and σ is important in order to be able to show the convergence of the team ratings to
the average strength. This is the case under following assumption:

(B′) b+ σ2b′′ is monotonically increasing.

Note that (B′) holds for example for b(z) = tanh(νz) if 1 + ν2σ2(4 − 6 sech(zν)2) > 0. Then we can
use similar arguments as Jabin and Junca [121], who considered the relative energy

E(t) =
∫
R2

(r − θ)2f(t, θ, r) drdθ.

In the following we will show that

dE(t)
dt

< 0.

We calculate:

d

dt

∫
R2

(r − θ)2f dθdr = −
∫
R2

(r − θ)2 d

dr
(a[f ]f) dθdrdθ′dr′

= −
∫
R4

(r − r′)b(r − r′)w(r − r′)ff ′ dθ′dr′dθdr

−
∫
R4

(θ − θ′)pb(θ − θ′) + σ2b′′(θ − θ′)qw(r − r′)ff ′ dθ′dr′dθdr < 0.

For r − r′ < 0 we have b(r − r′) < 0, while the opposite holds true for (r − r′) > 0. Because of (B′)
the second term is positive, yielding the stated energy decay.
Assumption (B) together with (B′) gives us bounds for b′′′, whereas we can deduce b′′ being Lipschitz,

too, with constant L2. Following the arguments in Jabin and Junca, [121], we obtain:

Theorem 3.3. Let f0 be as in Theorem 4.11 and w ≥ wmin > 0 on suppf0. Then

E(t) ≤ E(0) exp(−2wmin(L+ σ2L2)t),

where L,L2 depend on b, b′′ (and therefore ν) and on suppf0.
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Proof. The proof is along the lines of [121, 141], adapted for the additional term related to b′′. We
define

D(f(t)) :=
∫
R4

(r − r′ − θ + θ′)w(r − r′)[b(θ − θ′) + σ2b′′(θ − θ′)− b(r − r′)]ff ′ dr′dθ′drdθ,

and by our previous calculations we have that −D(f(t)) = dE(t)
dt ď 0. Using similar symmetry argu-

ments as before we deduce that

−
∫
R4

(r − r′)wminσ2b′′(r − r′)ff ′ dθ′dr′dθdr < 0.

We now split the integrands of D to obtain

D(f(t)) ≥
∫
R4

(r − r′ − θ + θ′)wmin[b(θ − θ′)− b(r − r′)]ff ′ dr′dθ′drdθ

+
∫
R4

(r − r′ − θ + θ′)wminσ2[b′′(θ − θ′)− b′′(r − r′)]ff ′ dr′dθ′drdθ.

Using that b, b′′ are Lipschitz and odd we have

(r − r′ − θ + θ′)wmin[b(θ − θ′)− b(r − r′)] ≥ Lwmin|r − r′ − θ + θ′|2

(r − r′ − θ + θ′)wminσ2[b′′(θ − θ′)− b′′(r − r′)] ≥ σ2L2wmin|r − r′ − θ + θ′|2.

Therefore, it follows that

D(f) ě

∫
R4

(L+ σ2L2)wmin|r − r′ − θ + θ′|2f ′f dr′dθ′drdθ.

We assume w.l.o.g. (due to the translation invariance of the model)∫
R2

rf(t, r, θ) dr dθ =
∫
R2

θf(t, r, θ) drdθ = 0

which gives ∫
R4

(r − θ)(r′ − θ′) f ′f dr′drdθ′dθ = 0.

Then we can deduce

D(f) ě 2(L+ σ2L2)wmin
∫
R2

|r − θ|2 fdr dθ

and altogether

−D(f) = dE(t)
dt

ď −2Lwmin
∫
R2

|r − θ|2 f dr dθ = −2wmin(L+ σ2L2)E(t).

Using Gronwall’s lemma we conclude the proof as in [121,141].

We conclude by underpinning our analytical results with numerical simulations.
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3.5 Conclusion

Micro- and macroscopic simulations. For the microscopic simulation we consider N = 500 players
with fixed mean strengths θn, chosen uniformly distributed in [4, 10]. In every time-step we then choose
N (θn, σ) distributed values for the evaluation of Sij . We set ν = 0.5 and simulate 106 time-steps of
∆t = 0.1 and 25 collisions per time-step over 50 realisations as in the previous simulations described in
Section 3.23.2.2. On a macroscopic level, we use the algorithm presented in Section 3.33.3.2 reduced
by the dimension in σ.

We see a great agreement between the two models in Figure 3.4 and 3.5. In addition, we clearly see
the influence of σ on the ranking as discussed in Figure 3.3. If the variance σ is large, all teams are
rated equally, in particular the ratings converge to 7 for all values of θ. Or expressed differently: in
expectation weaker teams are over-performing and stronger teams under-performing. We see a similar
effect already in our first microscopic simulations in Figure 3.2.
Moreover, the numerical simulations show that ν can be used to balance the variance σ2 and obtain the
desired convergence of ratings to the teams’ average strength as discussed in the previous subsection.
If assumption (B′) holds the long-term behaviour of (3.10) will be similar to the original Elo model
(3.2) in [121]. This effect can also be observed on a microscopic level, see Figure 3.6, where we compare
the long-term behaviour for σ = 2 and different values of ν ∈ {1, 0.1, 0.01}. For ν = 1 all expected
values θ ∈ [4, 10] converge to 7 and we get an almost horizontal line in the long-term run. If we choose
ν = 0.1 we get the desired diagonal θ = r as time increases, as in the case ν = 0.01. However, the
smaller value of ν corresponds to a slower convergence towards the stationary state, as can be seen in
Figure 3.6, bottom right.
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Figure 3.4: Microscopic team distributions for ν = 0.5 and different values of σ.

3.5 Conclusion

In this paper we proposed a generalisation of the Elo-rating model for teams of players with varying
strengths, which includes fluctuations in the performance to account for example for variable line-ups
in team sports. Based on the microscopic interaction rules we then derived the corresponding kinetic
model, proved existence of a solution and analysed different moments of its solution. These analytical
insights indicate the formation of non-trivial steady states – a hypothesis that is supported by our
numerical results. Furthermore, we considered the special case of similar variance σ2, which allowed
to formally derive a lower dimensional equation. Under further smallness assumptions we could then
use techniques from Junca and Jabin, see [121], to show convergence of the rating r to the expected
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3 An Elo-type rating model for players and teams of variable strength

Figure 3.5: Macroscopic results for Ω = [4, 10]× [4, 10] for different values of σ and ν = 0.5.
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Figure 3.6: A smaller value of ν leads to slower convergence, however, we can retrieve the desired
convergence of R to the expected value θ by choosing ν sufficiently small. In all simulations
we set σ = 2.

value θ. The smallness assumption relates to practically relevant parameter values. For example, in
chess the scaling parameter ν in b is usually quite small, around 1

400 , as reported in [74, 75, 100]. We
were able to show numerically, both at the microscopic and kinetic level, that a large ν leads to the
loss of convergence of r → θ. Choosing ν according to (B′), we obtain the desired convergence and
were able to proof this analytically. This effect also occurs at the microscopic level.
Nevertheless, the microscopic simulations showed that a large σ has a strong impact on the ratings.

The question therefore remains whether fluctuations in the underlying strength should be included in
ρ, see [71], or incorporated in the outcome of the game Sij (as proposed in this paper). Following [71],
performance fluctuations could also be included via an additional random term in the microscopic
interactions. This leads to a PDE with a diffusive term which is of the following form:

∂f(r, θ, t)
∂t

= − ∂

∂r
pa[f ]f(θ,R, t)q + σ2

2 d[f ] ∂
2

∂θ2 f(θ, r, t),
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3.6 Appendix

with

a[f ] = a[f ](r, θ, t) =
∫

R2
w(r − r′)(b(θ − θ′)− b(r − r′))f(θ′, r′, t) dθ′dr′,

d[f ] = d[f ](r, θ, t) =
∫

R2
w(r − r′)f(r′, θ′, t) dθ′dr′

where the influence of diffusion is determined by the maximum variance σ2 of the team strengths.
Accounting for uncertainty in ratings through an additional functional dependence and not via

diffusion also happens in the Glicko rating [93], an extension of the Elo rating. However, here the
variable σ is the uncertainty of the rating. It is assumed that σ increases if players do not compete and
decreases if they participate in tournaments. This microscopic model could similarly be used to derive
a continuous kinetic rating model. Another interesting direction of future research is the combination
of performance fluctuations with learning effects, as considered in [71,141].
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3.6 Appendix
3.6.1 Derivation of the Boltzmann-type equation
We follow the derivation of [71] for the corresponding PDE of Fokker-Planck type to study the dynamics
of the corresponding model. We start with the evolution equation for the distribution of teams
fγ = fγ(θ, σ,R, t) with respect to their rating R, intrinsic team-strength ρ and the variance σi. For
a fixed number of teams, N , the interactions (3.1) induce a discrete-time Markov process with N -
particle joint probability distribution PN (θ1, σ1, R1, θ2, R2, . . . , θN , σN , RN , τ). Then we can state the
evolution of the first marginal from

P1(θ, σ,R, τ) =
∫
PN (θ, σ,R, θ2, σ2, R2, . . . , θN , σN , RN , τ)dθ2dσ2dR2 · · · dθNdσNdRN ,

where τ is the discrete time step using only the one- and two-particle distribution functions [50,51] in
a single time step,

P1(θ, σ,R, τ + 1)− P1(θ, σ,R, τ) =〈
1
N

«∫
R6
P2(θi, σi, Ri, θj , σj , Rj , τ)w(Ri −Rj)pδ0(θ − θi∗, R−R∗i ) + δ0(ρ− ρ∗j , R−R∗j )q·

· dθidσidRidθjdσjdRj − 2P1(θ, σ,R, τ)
ff〉

.

Here, 〈·〉 denotes the mean operator with respect to the random variables Sij and the function w(·)
corresponds to the interaction rate function which depends on the difference of the ratings. This yields
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a hierarchy of equations, the so-called BBGKY-hierarchy, see [50, 51], describing the dynamics of the
system of a large number of interacting agents.

A standard approximation is to neglect correlations and assume that

P2(θi, σi, Ri, θj , σj , Rj , τ) = P1(θi, σi, Ri, τ)P1(θj , σj , Rj , τ),

By scaling time as t = 2τ/N and performing the thermodynamical limit N →∞, we can use standard
methods of kinetic theory [50,51] to show that the time-evolution of the one-agent distribution function
fγ (corresponding to P1 and fγfγ to P2) is governed by the following Boltzmann-type equation:

d

dt

∫
Ω
ϕ(θ, σ, r)fγ(θ, σ, r, t)dθdσdr =

1
2

〈∫
Ω

∫
Ω

´

ϕ(θ, σ, r∗) + ϕ(θ′, σ′, r′∗)− ϕ(θ, σ, r)− ϕ(θ′, σ′, r′)
¯

·

· w(r − r′)fγ(θ, σ, r, t)fγ(θ′, σ′, r′, t)dθ′dσ′dr′dθdσdr
〉
,

(3.11)

where ϕ(·) is a (smooth) test function, with support supp(ϕ) ⊆ Ω.

3.6.2 Analysis of the Boltzmann-type equation

Conservation of mass

Setting ϕ(θ, σ, r) = 1 in equation (3.11) we have

d

dt

∫
R3
fγ(θ, σ, r, t)dθdσdr = 0.

Therefore, the total mass is conserved, that is∫
R3
fγ(θ, σ, r, t)dθdσdr = 1, for all times t ≥ 0.

Moments with respect to the rating

We define the s-th moment for s ∈ N with respect to r

ms,r(t) =
∫

R3
rsfγ(θ, σ, r, t)dθdσdr. (3.12)

Now choose ϕ(θ, σ, r) = r. Due to (B), (A1) and the symmetry of b(·) and b′′(·) we obtain

d

dt
m1,r(t) =1

2γ
∫

R6
fγ(θ, σ, r, t)fγ(θ′, σ′, r′, t)w(r − r′)·

·
ˆ

b(θ − θ′)− 1
2b
′′(θ − θ′)(σ2 + σ′

2)− b(r − r′)+

+ b(θ′ − θ) + 1
2b
′′(θ′ − θ)(σ2 + σ′

2)− b(r′ − r)
˙

dθ′dσ′dr′dθdσdr = 0.

(3.13)

Hence the mean value w.r.t. the rating is preserved in time and therefore m1,r = 0 for all times t ≥ 0.
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Moments with respect to the variance and expected value

We define ms,θ and ms,σ2 similar to (3.12) and also need the boundedness of the second momentm2,σ2 .

d

dt
m2,σ2(t) = 0 (3.14)

which follows directly from (3.11) when testing with ϕ(θ, σ, r) = σ2. Analogue we get
d

dt
m1,θ(t) = d

dt
m2,θ(t) = 0. (3.15)

3.6.3 Derivation of the Fokker-Planck equation
We now derive the limiting Fokker-Planck equation in the case γ → 0. Based on the interaction rules
(3.1), which define the outcome of a game, we compute the expected values of the following quantities:

〈r∗ − r〉 = γ(〈S〉 − b(r − r′))
Var[r∗ − r] = γ2Var[Sij ]
〈(r∗ − r)2〉 = γ2(〈S〉 − b(r − r′))2 + Var[r∗ − r] = γ2p〈S〉 − b(r − r′))2 + Var[S]q

with S analogue to (3.5) where we used 〈X2〉 = 〈X〉2 + Cov[X,X] = 〈X〉2 + Var[X]. Using Taylor
expansion of ϕ(θ, σ, r∗) up to order two around (θ, σ, r), we obtain

〈ϕ(θ, σ, r∗)− ϕ(θ, σ, r)〉 =〈r∗ − r〉 ∂
∂r
ϕ(θ, σ, r) + 1

2〈(r
∗ − r)2〉 ∂

∂r2ϕ(θ, σ, r)+

+ 〈Rγ(ϕ, θ, σ, r, τ)〉,

where the remainder term Rγ is given in the Peano-representation of Taylor’s formula via

〈Rγ(ϕ, θ, σ, r, τ)〉 = 1
2〈(r

∗ − r)2〉 ∂
∂r2 (ϕ(θ, σ, r̄)− ϕ(θ, σ, r))

= 1
2γ

2p〈S〉 − b(r − r′))2 + Var[S]q ∂

∂r2 (ϕ(θ, σ, r̄)− ϕ(θ, σ, r))

for some 0 ≤ c ≤ 1 with r̄ defined as

r̄ = cr + (1− c)r∗.

Next we rescale time as τ = γt and insert the expansion in (3.11). This yields
d

dτ

∫
R3
ϕ(θ, σ, r)fγ(θ, σ, r, τ)dθdσdr = 1

2γ

∫
R3
R̃γ(ϕ, θ, σ, r, τ)fγ(θ, σ, r, τ)dθdσdr+

+
∫

R6

ˆ

∂

∂r
ϕ(θ, σ, r)pb(θ − θ′) +K(θ − θ′, σ, σ′)− b(r − r′)q·

· w(r − r′)fγ(θ, σ, r, τ)fγ(θ′, σ′, r′, τ)
˙

dθ′dσ′dr′dθdσr

whereas the remainder R̃γ is given by

R̃γ(ϕ, θ, σ, r, τ) =
∫

R3
〈Rγ(ϕ, r′∗, θ′, σ′, r′, τ)〉w(r′ − r)fγ(θ′, σ′, r′, τ)dθ′dσ′dr′

+γ2
∫

R3

∂2

∂r′2
ϕ(θ′, σ′, r′)

ˆ

p〈S〉 − b(r′ − r)q
2 + Var[S]

˙

·

· w(r − r′)fγ(θ′, σ′, r′, τ)dθ′dσ′dr′.
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All summands will vanish for γ → 0 with similar arguments as in [71]. Let us assume that ϕ(θ, σ, r)
belongs to the space C2+δ(R3) = {h : R3 → R, ‖Dζh‖δ< +∞}, where 0 < δ ≤ 1, ζ is a multi-index
with |ζ|≤ 2 and the seminorm ‖·‖δ is the usual Hölder seminorm

‖f‖δ= sup
x,y∈R3

|f(x)− f(y)|
|x− y|δ

.

Equations (3.5),(3.6) together with conservation laws (3.14) and (3.15) guarantee the boundedness
of both expectation 〈S〉 and variance Var[S]. Then with this choice of ϕ(θ, σ, r), both summands
containing ∂

∂r2ϕ vanish using the same arguments as in [56,215].
Therefore, the density fγ(θ, σ, r, τ) converges to f(θ, σ, r, τ) which solves

d

dτ

∫
R3
ϕ(θ, σ, r)f(θ, σ, r, τ)dθdσdr =

∫
R3
f(θ, σ, r, τ) ∂

∂r
ϕ(θ, σ, r)·

·
„ ∫

R3
w(r − r′)(b(θ − θ′) +K(θ − θ′, σ, σ′)− b(r − r′))f(θ′, σ′, r′, τ)

dθ′dσ′dr′


dθdσdr

(3.16)

It remains to show that for suitable boundary conditions equation (3.16) gives the desired weak
formulation of the Fokker-Planck equation. We calculate∫

R

ˆ

f(θ, σ, r, τ)ϕ(θ, σ, r)p

∫
R3
w(r − r′)·

· (b(θ − θ′) +K(θ − θ′, σ, σ′)− b(r − r′))f(θ′, σ′, r′, τ)dθ′dσ′dr′q
˙r=+∞

r=−∞
drdσ

This term is zero, if

lim
|r|→+∞

f(θ, σ, r, τ) = 0

These boundary condition are guaranteed for the Boltzmann equation fγ(θ, σ, r, τ) by mass conser-
vation and preservation of the first moment m1,r, see (3.13). Then (3.16) is the weak form of the
Fokker-Planck equation

d

dτ

∫
R3
ϕ(θ, σ, r)f(θ, σ, r, τ)dθdσdr =

−
∫

R3
ϕ(θ, σ, r) ∂

∂r

„

f(θ, σ, r, τ)
∫

R3
w(r − r′)·

· pb(θ − θ′) +K(θ − θ′, σ, σ′)− b(r − r′))f(θ′, σ′, r′qdθ′dσ′dr′


dθdσdr.
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This chapter contains results of an ongoing collaboration with Laura Kanzler and Christian
Schmeiser which is close to submission.

That’s it. Evasion is key.

Stefan Zweig in The Royal Game
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Abstract

Repulsion within a finite radius is encountered in countless applications and is therefore highly rele-
vant. Examples for applications include cell exclusion, i.e. an overlap of particles to be avoided, or
microscopic pedestrian models. At the microscopic level, we define these particle dynamics in 1D. We
perform a rigorous limit from the microscopic to the macroscopic scale. At both scaling levels numer-
ical simulations are presented to underline the analytical results. We discuss the possible applications
of this new diffusion term.
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4.1 Introduction
In this paper, we aim to develop and analyze mathematical models on the microscopic and macroscopic
scale encoding repulsive effects between particles. We start at the individual based setting with an
ensemble of agents, each determined by its position xi, which are undergoing repulsive interactions
only occurring within a certain radius R. We work at the microscopic level in 1D with Lagrangian
coordinates. Therefore, our agents have ordered labels given by the index i and only neighbouring
individuals can interact via this repulsion. A sketch of these dynamics can be found in Figure 4.1.

Figure 4.1: The two agents are within the interaction radius R, they are pushed away from each other.

Repulsive effects with a finite radius are often used in microscopic particle systems and their corre-
sponding kinetic and macroscopic models. In flocking models, most important the Cucker-Smale- and
the Vicsek-model, see [60,224], they appear as part of an interaction between attraction and repulsion.
Example occur in the modelling of sheep, fish and birds, [48,49,186]. In our setting, only neighbouring
particles interact, therefore we have a mixture between a metric interaction radius and a topological
one as used in [101] or [23] in a kinetic context. A deterministic, Lagrangian many-particle system
was also investigated in [64].
This repulsion can also be used to model size exclusion effects. On the microscopic level, this has

been studied for the pattern formation in bacteria in [66, 73, 236]. In general, this new term of size
exclusion is a macroscopic alternative to models based on e.g. cellular automata, compare [200], or
microscopic asymmetric exclusion process, see [42], in which size exclusion has no influence on the
diffusive term, typically a linear diffusive-term is derived.
This diffusive term can be microscopically interpreted as particles trying to reach a desired density.

The desired density is similar to the desired velocity an important topic in pedestrian dynamics,
see [6, 94], gaining new focus in the context of social distancing [160], and cannot be calibrated in
other macroscopic models, see [94].
On a macroscopic level this diffusion on a compact support leads to a so called moving boundary

problem. It is closely related to the so-called Stefan-problem, see [11, 46] or the classical books
[161,193]. Analytically exact solutions are an ongoing topic, see [52,81] and also numerically challenges
occur e.g. also in cancer research, see [120,211]. On a agent-based level, cancer growth was investigated
in [169].
Rigorous limits from microscopic to macroscopic scales can serve to extend the theory of existence of

solutions at the PDE level, see [64]. For e.g. the continuos version of the Vicsek-model a rigorous limit
to a PDE was performed in [26], transferring regularity results to the macroscopic level. A bounded
total variation is a common tool in numerical analysis to show convergence of a discretisation against
the solution of a model, see [17,114,182,220].
The modelled repulsion can also be seen as a cut-off potential. On a microscopic level this is often

used for better computational speed and e.g. steadier movement of pedestrians as in the optimal-step-
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model, see [201].
Our main contributions are as follows:

• We develop a microscopic model in order to describe repulsion with a finite radius R.

• We formally derive corresponding macroscopic models.

• We present analytical investigations on both levels and compare dynamics across scales.

• We present existence results for the macroscopic model both with classical theory on regularised
initial data and via the rigorous limit from a special case on the microscopic level.

• We underlie our results with computational experiments.

This work is built up as follows. In the second section we introduce the microscopic system for
the positions xi and derive the corresponding system for ωi which can be interpreted as the discrete
derivate in Lagrangian coordinates s. The corresponding system can be seen as a discretization of the
heat-equation with a cut-off-effect. Based on this we introduce the discrete density ρ = 1/ω and analyse
the different systems and underlie our findings with numerical simulations. In the third section we
formally introduce the corresponding macroscopic PDEs both in Eulerian and Lagrangian coordinates.
We derive jump-conditions for the moving boundary present and present a global existence- and
uniqueness-theory for regularised initial data based on the theory for the mentioned Stefan-problem.
We show via a bounded total variation the rigorous limit in the general case. We present a stable
discretization of our problem and show simulations also having the correct shock-speed. We make the
formal limit in a special case rigorous. In the last section, we first address possible applications of this
newly derived diffusion. Subsequently, we address open problems and give ideas for solutions. Finally,
we summarize our findings.

4.2 The microscopic model, individual based dynamics in 1D
We aim to model an ensemble of particles distributed on the real line, where each individual interacts
with each closest two neighbors following a repulsive potential as sketched in Figure 4.1. More
precisely, we assume a number of N + 1 particles with position xi(t) ∈ R, i ∈ {0, . . . , N}, where the
numbering was chosen such that xi+1(t) > xi(t) for all i ∈ {0, . . . , N − 1}. The particle i interacts
with its direct neighbors i − 1 and i + 1, which additionally have to be within the interaction radius
R. Therefore particle i and i+ 2 do not interact even when xi+2(t)− xi(t) < R holds. The repulsion
function then is assumed to be directly proportional to the difference of the distance between the two
particles and the interaction radius. This leads to the following ODE-system

9xi = 1
τ

“

− pR− (xi+1 − xi)q+ + pR− (xi − xi−1)q+
‰

, i ∈ {1, . . . , N − 1},

9x0 = −1
τ

pR− (x1 − x0)q+ ,

9xN = 1
τ

pR− (xN − xN−1)q+ ,

(4.1)

where (z)+ stands for max(0, z). Here τ describes a characteristic time of system (4.1). We further
introduce an equidistant reference grid on the real line with grid points si := i∆s, such that xi = x(si).
With x0 = x(s0) we encode the leftest particle, similar xN is the rightist agent and we denote via L
a characteristic macroscopic length of system (4.1), L := xN (0) − x0(0). In the following we assume
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that the interaction radius R is small in comparison to the intrinsic space scale L. After performing
the macroscopic scaling

x→ Lx, t→ τ

∆s2 t,

we obtain the following individual based model for repulsive particles on the real line

9xi = 1
∆s

„

−
ˆ

1− xi+1 − xi
∆s

˙

+
+
ˆ

1− xi − xi−1
∆s

˙

+



, i ∈ {1, . . . , N − 1},

9x0 = − 1
∆s

ˆ

1− x1 − x0
∆s

˙

+
,

9xN = 1
∆s

ˆ

1− xN − xN−1
∆s

˙

+
.

(4.2)

We assume throughout the paper that ∆sN = const. and set this constant C.

4.2.1 Different notations and perspectives

With notation ω we now introduce the scaled distance between two neighbored points. It is given
via

ωi+ 1
2

:= xi+1 − xi
∆s , i ∈ {0, . . . , N − 1}. (4.3)

We notice that the assumption of strict ordered positions of particles implies ωi+ 1
2
> 0 and if xi

and xi+1 lie within the interaction radius, i.e. xi+1 − xi < ∆s after rescaling, we have ωi+ 1
2
≤ 1.

Equation (4.3) leads to the definition of the so called discrete density ρ, which is known e.g. from
the Follow-the-Leader model, see [91]:

ρi+ 1
2

:= 1
ωi+ 1

2

, i ∈ {0, . . . , N − 1}. (4.4)

Now let us consider the ODE systems associated with (4.3) and (4.4). For the dynamics of ω we
obtain from (4.2) the following system of N equations

9ωi+ 1
2

= 1
∆s2

„

2
´

1− ωi+ 1
2

¯

+
−
´

1− ωi− 1
2

¯

+
−
´

1− ωi+ 3
2

¯

+



, i ∈ {1, . . . , N − 2},

9ω 1
2

= 1
∆s2

„

2
´

1− ω 1
2

¯

+
−
´

1− ω 3
2

¯

+



,

9ωN− 1
2

= 1
∆s2

„

2
´

1− ωN− 1
2

¯

+
−
´

1− ωN− 3
2

¯

+



.

(4.5)

From (4.5) we can further deduce an ODE system for the masses ρi+ 1
2
since we have

9ρi+ 1
2

= −ρ2
i+ 1

2
9ωi+ 1

2
,

by differentiation of (4.4) with respect to t.
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9ρi+ 1
2

= − 1
∆s2 ρ

2
i+ 1

2

«

2
˜

1− 1
ρi+ 1

2

¸

+

−

˜

1− 1
ρi− 1

2

¸

+

−

˜

1− 1
ρi+ 3

2

¸

+

ff

, i ∈ {1, . . . , N − 2},

9ρ 1
2

= − 1
∆s2 ρ

2
1
2

«

2
˜

1− 1
ρ 1

2

¸

+

−

˜

1− 1
ρ 3

2

¸

+

ff

,

9ρN− 1
2

= − 1
∆s2 ρ

2
N− 1

2

«

2
˜

1− 1
ρN− 1

2

¸

+

−

˜

1− 1
ρN− 3

2

¸

+

ff

.

(4.6)

In Figure 4.2 we have the same initial datum visualized in terms of i∆s for the three different choices
of variables.
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Figure 4.2: Random initial data in Lagrange coordinates for x, ω and ρ.

4.2.2 Analysis of the microscopic model
Existence results and upper resp. lower bounds

We start with classical existence results that can be formulated for our ODE system.

Theorem 4.1 (Existence and Uniqueness). For every N ∈ N, ∆s ∈ R+, there exists a unique global
solution to (4.2).

Proof. The proof is based on the fact that the right-hand side of (4.2) is Lipschitz. Using Pi-
card–Lindelöf theorem in RN+1, following e.g. [213], finishes the proof.

In the following, we introduce a maximum principle for System (4.5).

Theorem 4.2 (Min-Max-principle). We define for system (4.5) via

ωmin := min
i

´

ωi+ 1
2
(0)

¯

, ωmax := max
´

max
i

´

ωi+ 1
2
(0)

¯

, 1
¯

,

minimum and maximum of our initial data.

1. The following Min-Max-principle holds

ωmin ≤ ωi+ 1
2
(t) ≤ ωmax, ∀i ∈ {1, . . . , N − 2}.

2. We have 9x0 ≤ 0 and 9xN ≥ 0. Depending on the initial datum x(0) we have upper respective
lower bounds on xN respective x0 given via

Cωmin ≤ xN (t)− x0(t) ≤ Cωmax.
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Proof. Assuming ωi+ 1
2
reaches ωmin, equation (4.5) reformulates to

9ωi+ 1
2

= 1
∆s2

„

2 p1− ωminq+ −
´

1− ωi− 1
2

¯

+
−
´

1− ωi+ 3
2

¯

+



≥ 1
∆s2

“

2 p1− ωminq+ − p1− ωminq+ − p1− ωminq+
‰

= 0,

therefore ωi+ 1
2
increases or stays constant. The upper bound is shown analogously.

We have

xN (t)− x0(t) = ∆s
ˆ

xN (t)− xN−1(t)
∆s + · · ·+ x1(t)− x0(t)

∆s

˙

and therefore

∆sNωmin ≤ xN (t)− x0(t) ≤ ∆sNωmax.

Using Theorem 4.4.1 finishes the second statement.

The previous Theorem provides positivity of ω for suiting ω0 and therefore well-posedness of system
(4.6) for all times t. Based on the previous Theorem 4.2, we can even formulate a stronger statement
for minimum and maximum of system (4.5). We therefore define for every t

ωmin(t) := min
i

´

ωi+ 1
2
(t)

¯

, ωmax(t) := max
i

´

ωi+ 1
2
(t)

¯

,

and then conclude with the following lemma.

Lemma 4.3 (A stronger Min-Max-principle). The graph ωmin(t) is monotone increasing in t, similarly
ωmax(t) is monotone decreasing.

Proof. Clearly we have ωmin(t) ≥ ωmin, ωmax(t) ≤ ωmax through Theorem 4.2. Let i be the index of
omegamin at time t. The proof then follows from

9ωi+ 1
2

= 1
∆s2

„

2 p1− ωmin(t)q+ −
´

1− ωi− 1
2

¯

+
−
´

1− ωi+ 3
2

¯

+



≥ 1
∆s2

“

2 p1− ωmin(t)q+ − p1− ωminq+ − p1− ωminq+
‰

≥ 0.

The statement for the maximum is shown analogously.

Characteristic moments of the model

We continue with bounds of the microscopic model and therefore look at a ’discrete weak formulation’
in x of problem (4.2). For a test-function ϕ with notation ϕi := ϕ(si) the weak formulation of the
dynamics is given by

N∑
i=0

9xiϕi = 1
∆s

N−1∑
i=1

„ˆ

1− xi − xi−1
∆s

˙

+
−
ˆ

1− xi+1 − xi
∆s

˙

+



ϕi

− 1
∆s

ˆ

1− x1 − x0
∆s

˙

+
ϕ0 + 1

∆s

ˆ

1− xN − xN−1
∆s

˙

+
ϕN

=
N−1∑
i=0

ˆ

1− xi+1 − xi
∆s

˙

+

pϕi+1 − ϕiq
∆s .

(4.7)
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Similar we derive a ’weak formulation’ in ω
N−1∑
i=0

9ωi+ 1
2
ϕi = 1

∆s2

„N−2∑
i=1

´

1− ωi+ 1
2

¯

+
(2ϕi − ϕi−1 − ϕi+1)

+
´

1− ω 1
2

¯

+
(2ϕ0 − ϕ1) +

´

1− ωN− 1
2

¯

+
(2ϕN−1 − ϕN−2)



.

(4.8)

Using the weak formulations one can show characteristic properties for our systems in ω and x.

Theorem 4.4 (Characteristic moments). For (4.2) and (4.5) we have the following properties

1. The total momentum
∑N
i=0 9xi is equal to 0, hence the center of mass, is conserved, i.e.

x̄ := 1
N + 1

N∑
i=0

xi = const.

2. The variance in x

Vx(t) := 1
N

N∑
i=0

pxi − x̄q
2

increases with respect to time.

Proof. For the first part, just set ϕi ≡ 1 in (4.7) for all i. For the second part, we set ϕi ≡
`

xi − x̄
N

˘

in (4.7) and one obtains

9Vx(t) = 1
∆s

N−1∑
i=0

ˆ

1− xi+1 − xi
∆s

˙

+
(xi+1 − xi) ≥ 0,

where the last inequality is trivial.

4.2.3 Numerical simulations
In the following we underline the previous statements with numerical experiments in x and ω. The
systems (4.2) and (4.5) have been solved with an implicit Euler algorithm to conserve the characteristic
properties. We discretized as follows,

xn+1
i = xni + ∆t

∆s

«

−

˜

1−
xn+1
i+1 − x

n+1
i

∆s

¸

+

+
˜

1−
xn+1
i − xn+1

i−1
∆s

¸

+

ff

, i ∈ {1, . . . , N − 1},

based on classical ideas as in e.g. [44]. We have discretized the boundary values x0, xN analogously
and did similar for (4.5).
We simulate N = 20 agents and chose a time-stepping of ∆t = 0.1∆s2 with ∆s = 0.1 using a typical

parabolic CFL-conditions. We solved the non-linearity in (.)+ with a fixed-point approach over n = 40
iterations as proposed in [133]. The results can be found in Figure 4.3.
The Min-Max-principle of Theorem 4.2 shows the relation with an elliptic system which has in

general a smoothening effect. We see that in Figure 4.3b. However, this effect does not occur if the
points xi are too far apart. We have visualized this in Figure 4.3c, groups remain that do not interact
with each other. This fact will later motivate us to consider subproblems individually. Figure 4.3d
visualizes the Min-Max-principle of Theorem 4.2.1 whereas also the time-dependent version stated
Lemma 4.3 can be seen.
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(a) The trajectories xi over time, we see the agents
moving away from each other. The initial val-
ues are chosen so that xi − xi+1 < ∆s for all
i, so all agents are in interaction.
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Figure 4.3: The evolution of the systems in ω and x for different initial values.

4.3 The macroscopic level

We start our investigation at the macroscopic level by formally deriving the partial differential equa-
tions and their boundary conditions in the upcoming Subsection 4.3.1. Subsequently we derive jump-
conditions comparable to those in classical works, see [77], from the fact that the resulting equations
for ω in s as well as ρ in x are conservation laws. This can be seen as Rankine Hugenoit jump con-
ditions and are also called the Stefan condition in the related Stefan problem [46]. Starting from the
established theory of jump conditions, we formally consider the case of colliding jumps. From this, we
see that our problem can always be reduced to several single minimal, so called one-sided problems,
see Figure 4.4b. For this minimal problem, we perform the analysis in Subsection 4.3.2 applying the
theory from [11,46] to show existence and uniqueness, but only for regularized initial conditions. It is
based on the established theory of Stefan-problems with Dirichlet boundary conditions, see [131]. The
rigorous limit from our microscopic ODE-system to a macroscopic PDE can be found in Subsection
4.3.3. Via this limit we obtain existence of a weak solution in the general case, but lose uniqueness.
We present in Subsection 4.3.4 numerical simulations which underline the expected behaviour.

4.3.1 Preliminary considerations

In the following, we derive the macroscopic PDEs corresponding to (4.2) and (4.5). We consider a
simple case to get an understanding of the general problem. We derive the coordinate transformation
from s to x. From this, we also study the jump conditions of the problem at the non-differentiable
position x? (and s?) in (.)+, whose velocity we also formally study. Subsequently, we motivate a
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4.3 The macroscopic level

global theory which is due to the minimal problem introduced earlier, which we analyze rigorously in
Subsection 4.3.2.

Formally derived PDE in s

We now derive formally the corresponding PDEs in x and ω in Lagrangian coordinates. Important
for the calculations is the fact that (a+O(∆s))+ = (a)+ +O(∆s). Seeing xi−xi−1

∆s in (4.2) as a central
difference and replace it via ∂sxi+ 1

2
+ O(∆s) (same in i − 1

2) we derive formally the following PDEs
in s ∈ [0, 1],

∂tx(s, t) = −∂s p1− ∂sx(s, t)q+ ,

p1− ∂sx(0, t)q+ = p1− ∂sx(1, t)q+ = 0,
x(s, 0) = x0(t).

(4.9)

For the boundary points we simply multiply the equations for x0 and xN with ∆s before passing to
the limit.
By definition (4.3) we have ∂sx = ω for ∆s→ 0. Analogously to x we now derive for ω

∂tω(s, t) = −∂2
s p1− ω(s, t)q+ ,

p1− ω(0, t)q+ = p1− ω(1, t)q+ = 0,
ω(s, 0) = ω0(s).

(4.10)

The PDE itself was already the discretization of the Laplace-operator for (1− .)+. For the boundary
points we make the assumption ωi− 1

2
, ωN+ 1

2
≥ 1, introducing artificial points x−1, xN+1. This allows

us to also pass to the limit in the second and third equation of (4.2).
In the following we consider system (4.10) for the special case of initial data less than 1.

The trivial case in ω and s

Assuming 0 ≤ ω0 ≤ 1 we can simplify (4.10) to the following PDE,

∂tω(s, t) = −∂2
s p1− ω(s, t)q = ∂2

sω(s, t),
ω(0, t) = ω(1, t) = 1
ω(s, 0) = ω0(s), with 0 ≤ ω0(s) ≤ 1.

(4.11)

It is a classic result, see [77], that the solution of the heat-equation with non-homogenous Dirichlet-
boundary conditions can be traced back to the heat-equation with homogenous Dirichlet-boundary
conditions when substituting ω = u+ 1. Thus the solution to (4.11) is unique. It follows directly, that
with 0 < ω0(s) < 1 for s ∈ (0, 1) we have 0 < ω(s, t) < 1 in (0, 1)× (0, T ] due to the strong maximum
principle. The solution to (4.11) is C∞ p[0, 1]× (0, T ]q regardless of the regularity of ω0(s) and can
be, depending on the latter, given explicitly. This allows us to see the strong agreement between
microscopic and macroscopic level, see Figure 4.4a, with ω0(s) = 1− sin(πs) and N = 30 agents. The
well-known long-time behaviour ω → 1 of (4.11) is clearly visible.

Euler and Lagrangian coordinates, from s to x

We obtain the transformation from Lagrangian coordinates (s, t) to Eulerian coordinates (x, τ) by
integrating ∂sx = ω where we denote x(0, t) := x0(t) and x1(t) := x(1, t). The latter actually
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(a) Alignment of the microscopic and macro level,
N = 30, N∆s = 2, ∆t = 10−3∆s.
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(b) The so-called one-sided problem. The velocity
of s? is given by (4.15).

Figure 4.4: On the left we see alignment between the two scales for equation (4.11) in Lagrange-
coordinates. On the right we see initial datum for the one-sided problem which will be the
focus of our main investigation in Subsection 4.3.2.

corresponds to xN (t) in the microscopic model (4.1). We then have

x = x0(t) +
∫ s

0
ω(σ, t)dσ, τ = t. (4.12)

This implies

∂s = ω∂x, ∂τ = ∂t =
ˆ

9x0 +
∫ s

0
∂tω(σ, t)dσ

˙

∂x.

For the expression in the parentheses we get, while using (4.9) and then (4.10),

9x0 +
∫ s

0
∂tω(σ, t)dσ = 9x0 − ∂s(1− ω)+|sσ=0= −∂s(1− ω)+.

Therefore, in terms of Eulerian variables, (4.10) becomes

∂τω − ω∂x(1− ω)+∂xω = −ω∂x(ω∂x(1− ω)+),

this is equivalent to

∂τω = −ω2∂2
x(1− ω)+.

Using ρ = 1
ω we obtain for the macroscopic density,

∂τρ = ∂2
x

ˆ

1− 1
ρ

˙

+
,

where we replace in the following τ via t. To be more precise, this can be seen as an equation on a
moving domain, x0(t) < x < x1(t) with Dirichlet boundary conditions:

∂tρ(x, t) = ∂2
x

ˆ

1− 1
ρ(x, t)

˙

+
, x ∈ Ω(t) = [x0(t), x1(t)],

ρ(x0(t), t) = ρ(x1(t), t) = 1,
ρ(x, 0) = ρ0(x),

(4.13)

The dynamics of x0 and x1 are then special cases of the shock speed formulas of the following subsec-
tion.
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4.3 The macroscopic level

Jump-conditions in s and x

In the following we use the fact that (4.10) is a local conservation law and therefore for any interval
[a, b] ⊆ [0, 1] we have

d

dt

∫ b

a
ω(s, t)ds = J|a − J|b

with the flux being defined as

J := ∂s p1− ω(s, t)q+ . (4.14)

For the derivation of our jump condition we reduce ourself in the following to a simple problem with
a non-differentiability in (.)+. We call this a one-sided problem and visualized ω0 in Figure 4.4b. This
means we start with initial data ω0(s) of the form 0 < ω0(s) < 1 for s ∈ [0, s?(0)), ω0(s) > 1 for
s ∈ [s?(0), 1] where s?(t) denotes the position of non-differentiability in (.)+ depending on t. Denoting
by s?−, s?+ the left- and right-handed limit this results with a < s?(t) < b in

9s?(t) p1− ω(s?+, t)q +
∫ s?−

a
∂tω(s, t)ds = J |a

where we used ω(s?−, t) = 1 and ω(s?+, t) > 1. Therefore ∂s p1− ω(s?+, t)q+ = 0. We can deduce

9s?(t) p1− ω(s?+, t)q−
∫ s?−

a
∂2
s (1− ω(s, t))ds = J |a,

9s?(t) p1− ω(s?+, t)q− ∂s(1− ω(s, t))|s?−a = J |a.

Therefore the jump-condition in s is given via

9s?(t) = ∂s pω(s?(t)−, t)q

ω(s?(t)+, t)− 1 . (4.15)

Analogous considerations can be made for Euclidean coordinates. For the jump x? in x we use
(4.13) with the flux J = −∂x

´

1− 1
ρ(x,t)

¯

+
. Using ∂s = ω∂x and ω = 1

ρ the following condition for the
jump in x

9x?(t) =
∂x( 1

ρ(x?(t)−,t))
1− ρ(x? + (t), t) (4.16)

can be derived.

A first investigation of the shock-speed

We start with initial data ρ0 = 1 + cx, c > 0, and investigate the development of x?(0) = 1 for a small
period of time t. The jump-condition (4.16) gives us for small t

9x?(t) ≈
1

2x?(t)
,

therefore we have x? ≈
?
t. This infinite velocity for t = 0 also occurs in the Stefan-problem, see e.g.

example 1 in [11], Chapter 1. It can also be seen on a microscopic level in Figure 4.3a for x0 and xN .
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4 Repulsive Particles, a new diffusive term

Colliding jumps and dissecting a problem

Having derived our jump condition, we now analyse the case of colliding jumps, as in [77], Chapter
3.4.

In Figure 4.5b we see two colliding jumps s∗,1, s∗,2 at time t?, resulting from initial datum as seen in
Figure 4.5a. Since ω(s?,1−, t) = ω(s?,2+, t) = 1, continuity of ω on [0, 1] at t? is trivial. We then can
reformulate our problem to problem (4.11) starting at t? with continuous initial data ω(s, t?). Similar
results can be formulated for (4.16).
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(a) Initial datum which leads to two colliding
jumps s∗,1, s∗,2.
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∂tω= 0
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(b) Two colliding jumps and the resulting solution.

Figure 4.5: Initial-data satisfying the Dirichlet-boundary conditions and leading to colliding jumps.
At t? we can reformulate the problem with continuous initial data ωt?(s).

After presenting a solution of the colliding jumps, we can split initial datum as in Figure 4.6 into
several problems for ω in Lagrangian coordinates similar to Figure 4.4b. If these problems intersect
at time t?, we reformulate the problem with a continuous initial datum ωt? . We answer the existence
and uniqueness of those equivalent single problems in the following Subsection 4.3.2 for a regularized
version.
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(a) Initial datum ρ0 and corresponding ω0 in Euler coor-
dinates. We intersect the problem into two one-sided
problems in Lagrangian coordinates. The problems
will collide at a later time-point t?.
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(b) Regularised initial datum ω0 based on Figure
4.4b, as described in (4.21).

Figure 4.6: Initial-data in Euler-coordinates for ρ0 and ω0.

4.3.2 Uniqueness of the solution for regularised initial datum ω0

The previous comments leads us to the conclusion that to solve our setting analytically we can reduce
ourself to the previously mentioned one-sided problem in s for ω. This is strongly related to the already
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4.3 The macroscopic level

mentioned Stefan-problem, see [46]. While the Stefan-problem is mostly solved with Neumann- or
Robin-Boundary conditions, see [209, 210], the problem with Dirichlet-BCs is also a classic result,
see [131].
We look at equation (4.10) with initial data as can be seen in Figure 4.4b, where the jump-condition

is given via (4.15). However for mentioned initial datum ω0(s) there are no dynamics occurring for
s > s?, therefore the jump-condition changes to

9s?(t) = ∂sω(s?(t)−, t)
ω0(s?(t)+)− 1 . (4.17)

Unlike in the classical Stefan-problem, the difficulty here lies in the singularity of (4.17) at time
t = 0, where the denominator will vanish. The regularity of s? therefore strongly depends on the
initial data ω0(s), which we will precise later. In general we cannot expect s? being Lipschitz for t = 0
due to the just mentioned singularity, but we expect 9s? to be locally bounded for all times t > 0, if
initial data are as in (4.19). Due to this difficulty in the jump-condition (4.17) necessary properties
and methods for existence and uniqueness exceed the ones from already existing literature, as [11,46].
We analyse the problem on the domain (s, t) ∈ Ω = [0, 1] × [0, T ). We assume s? ∈ [0, 1] for all

t < T . For s > s? we have ∂tω = 0. Therefore we want to mention that the problem becomes a trivial
reformulation when s? = 1 for t < T and thus investigate only the case s?(t) < 1 for t ∈ [0, T ). For
abbreviation-reasons we introduce

Ω1,T = {(s, t)|0 < s < s?, 0 < t < T}, Ω2,T = {(s, t)|s? < s < 1, 0 < t < T}

and similar define Ω1,Ω2 in s for t = 0. Altogether we investigate the following problem

∂tω(s, t) = ∂2
sω(s, t) in Ω1,T

∂tω(s, t) = 0 in Ω2,T

ω(0, t) = ω(s?, t) = 1,

9s?(t) = p∂sω(s?(t)−, t)q

ω0(s?(t)+)− 1 (4.18a)

s?(0) = s0
? ∈ (0, 1)

ω(s, 0) = ω0(s).

We already see in (4.18a) that s? will not be differentiable for t = 0 and will explore in the following
how the regularity of ω0 influences the regularity of the solution to problem (4.18). We hereby already
summarize the necessary properties we have to assume of the initial condition ω0:

ω0 ∈ C([0, 1]),
ω0(0) = ω(s0

?) = 1,
0 < ω0(s) < 1 for s ∈ (0, s0

?), ω0(s) > 1 for s ∈ (s0
?, 1], (4.19a)

ω0(s) ≥ 1−H(s0
? − s), for s ∈ [0, s0

?) (4.19b)

where in (4.19b) we assume existence of a constant H > 0 acting as an lower bound on the first
derivative of ω0 at the singular point s0

?.
We now can start with defining a strong solution to problem (4.18). We call a pair (ω, s?) a strong

solution to problem (4.18), if

s? ∈ C1 p[0, T ]q , s0
? ∈ (0, 1), s?(t) > 0, 0 ≤ t ≤ T

ω(s, t) ∈ C(Ω1,T ) ∩ C2,1(Ω1,T )
(4.20)
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4 Repulsive Particles, a new diffusive term

We will assume to start with discontinuous initial data ω0, which are jumping at s0
?. Namely, we

replace ω0 by ω0 + ε for s > s0
?, as can be seen in Figure 4.6b. This regularises the jump-condition

(4.18a) and leads to the following adaptation of the assumption on the initial data,

ω0 ∈ C([0, s0
?]) ∩ C((s0

?, 1]),
ω0(0) = ω(s0

?) = 1, (4.21a)
0 < ω0(s) < 1 for s ∈ (0, s0

?), ω0(s) > 1 + ε for s ∈ (s0
?, 1], (4.21b)

ω0(s) ≥ 1−H(s0
? − s), for s ∈ [0, s0

?).

In the following we start with existence and uniqueness of problem (4.18)&(4.21). In multiple steps
of our calculation it can be seen clearly that the limit ε→ 0, therefore replacing (4.21) with (4.19), is
nontrivial. Literature on the Stefan problem changes here into a weak formulation of problem (4.18),
see [11]. We start with showing properties of our solution following the theory of strong solutions in
just mentioned [11]:

Lemma 4.5. A solution (ω, s?) as in (4.20) of (4.18) fulfils

0 < ω(s, t) < 1 in Ω1,T ,

9s? > 0 for t > 0.

Proof. We have 0 < ω0(s) < 1 in Ω1,T and ω0(0) = ω0(s?) = 1 because of (4.21a), (4.21b). The
weak maximum principle, see [77], Theorem 9, Chapter 7.1.4, states that ω is attaining its maximum
(and minimum) on the parabolic boundary of Ω1,T . We than can deduce 0 < ω(s, t) ≤ 1. Assuming
now ω(s̄, t̄) = 1 for some (s̄, t̄) in the interior of Ω1,T , then the strong Maximum principle, see [77],
Theorem 11, Chapter 7.1.4, leads to ω(s, t) = 1 for (0, s?)× (0, t̄), a contradiction.
Hopf’s Lemma for parabolic equations, see [84,223], gives us ∂sω > 0 on the parabolic boundary of

Ω1,T . Since we also have ω0(s?(t)+)− 1 > 0 it follows

9s?(t) = p∂sω(s, t)q |s?−
ω0(s?(t)+)− 1 > 0. (4.22)

We continue with properties of a solution (4.20) in theorem 4.6 which results in a bootstrapping-
argument for existence of our solution in theorem 4.7 following the structure of [11].

Theorem 4.6. Let ω be a solution as in (4.20) and s? ∈ Lip p[0, T ]q be non decreasing. Then we have
the following properties for (ω, s?),

(a) 1−H ps?(t)− sq < ω(s, t) ≤ 1, in Ω1,T ,

(b) 0 < ∂sω(s?(t), t) ≤ H, for 0 < t < T ,

(c) ∂sω is continuous,

(d) s? ∈ C1(0, T ),

here H is the Lipschitz-constant in (4.19b).
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Proof. For property (a) let us define v(s, t) = 1−H ps?(t)− sq. It follows trivially for v

∂tv − ∂2
sv = −H 9s?(t) ≤ 0 in Ω1,T

v(s?(t), t) = ω(s?(t), t) = 1, 0 ≤ t ≤ T
v(s, 0) = 1−H(s0

? − s) ≤ ω0(s), 0 ≤ s ≤ s0
?.

We therefore can deduce v(s, t) ≤ ω(s, t) in Ω1,T . Property (b) then follows trivially.
The regularity of ωs in the interior of Ω1,T stated in (c) is trivial and follows from classical regularity

results for elliptic PDEs. For the regularity at (s?, t) we now proceed as follows. We perform a
transformation of coordinates via

s = y

s?(t)
, v(y, t) = ω(ys?(t), t),

which leads to

∂2
sω(s, t) = 1

s2
?(t)

∂2
yv(y, t) and ∂tω(s, t) = ∂tv(y, t) + y 9s?(t)

s?(t)
∂yv(y, t).

This changes our problem moving boundary problem (4.20) into the following on [0, 1],

∂tv(y, t) = 1
s2
?(t)

∂2
yv(y, t)− y 9s?(t)

s?(t)
∂yv(y, t) in (0, 1)× (0, T )

v(0, t) = v(1, t) = 1.

For s? being Lipschitz. We now can use standard local regularity estimates for the solution of our
parabolic equation, we sketch in Appendix 4.5.1 an adaption of Theorem 5 in [77], Chapter 7. Therefore
we define 1

s2
?(t) =: a(t), −y 9s?(t)

s?(t) =: b(t, y) in (4.23) time-dependent but bounded w.r.t. time due to the
regularisation (4.21). This adaption gives us v ∈ L2 `0, T ;H2([0, 1])

˘

∩L∞
`

0, T ;H1
0 ([0, 1])

˘

. It follows
that ∂sv ∈ H1([0, 1]) for every t and thus it is continuous due Sobolev embedding [77]. Since we have

∂sω(s, t) = 1
s?(t)

∂yv(y, t)

our results follows.
We can continue with property (d). Remember ω0(s) > 1 for s > s0

?. Additionally we required
ω0 ∈ C(s?, 1]. Therefore the jump-condition (4.22) gives us, using (c) and s? being non-decreasing,
s? ∈ C1(0, T ], since the right-hand side of (4.22) is continuous.

We can deduce for our problem the following existence- and uniqueness-result where we only sketch
the proof of uniqueness following [46]. Existence of a solution to (4.18) uses a fixed point argument
on a suiting convex and compact subset of a Banach space where again the regularization in (4.21)
cannot be omitted.

Theorem 4.7 (Existence and Uniqueness). Assume (4.21), then there exists a unique solution to
(4.18) satisfying (4.20).

Proof. Using the properties of Theorem 4.6 together with the regularization of our initial datum we
can use a similar bootstrapping-argument as in [11] to get existence of a solution. Let (ω, s?) be as in
Theorem 4.6 and let us assume

s ∈ Σ :=
{
σ ∈ Lip((0, T ])| 0 ≤ 9σ ≤ H

ε
, σ(0) = s0

?

}
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where H is the constant in (4.21). This is a convex and compact subset of the Banach space C([0, T ])
in the max-norm. We now define analogue to [11] a transform T [σ] via

T [σ](t) := s0
? +

∫ t

0

p∂sω(s, τ)q |σ
ω0(σ(τ))− 1dτ.

Please note, that a fixed point of T is a solution of the PDE. It is easy to see we have
H

ε
≥ d

dt
T [σ](t) = p∂sω(s, t)q |σ

ω0(σ)− 1 ≥ 0.

Additionally our previous Theorem 4.6 gives us T [σ] ∈ C1((0, T ])∩Lip([0, T ]), thus T : Σ→ Σ follows.
It is not hard to also show T being continuous in the max-norm, thus Schauder’s fixed-point theorem

gives us the existence of a solution. In more detail, in the following we have

T [σ1](t)− T [σ2](t) ≤ 1
ε

∫ t

0
p∂sω(s, t)q |σ1−− p∂sω(s, t)q |σ2−dt

≤ tC̃H‖σ1 − σ2‖∞,t

since ∂sω is continuous.
We showed in Theorem 4.6 the necessary properties of our system needed for the existence of

a solution following [11] where e.g. [46] shows a different proof based on similar properties. We
now sketch the monotone dependence on the initial data, following the latter, which results in an
Uniqueness-argument. Let (ω1, s?,1) and (ω2, s?,2) be solutions of system (4.18) with s0

?,1 ≤ s0
?,1 and

ω0,1 ≤ ω0,2, then s?,1 ≤ s?,2 follows, see [46] Theorem 17.2.1. We then can deduce that there is a
unique solution. The proof is based on the application of the Maximum Principle together with the
Uniqueness Theorem for parabolic equations, see [46], Theorem 1.6.4. We refer the reader for more
details of the complete proof to [46], Chapter 17. An alternative proof can be found in [11], Chapter
1.5.

We now transfer our results to the problem in ρ and x. Initial datum as in (4.19) leads to ω > 0.
Therefore corresponding ρ0 implies ρ > 0 holds for all time t. Positivity of ω results in (4.12) being
monotone, regularity-results guarantee continuity. Same results can be transferred since we have

∂s = ω∂x = 1
ρ
∂x

we can trace back (4.24) to our one-sided problem (4.18) and apply Theorem 4.7. We hereby sketched
the proof of the following Lemma for the one-sided problem in ρ and x.

Corollary 4.8. The system

∂tρ(x, t) = ∂2
x

ˆ

1− 1
ρ(x, t)

˙

+
, (4.24a)

ρ(0, t) = ρ(x?(t), t) = 1,

0 < ρ0(x) < 1
1 + ε

, for x < x?,

ρ0(x) > 1, for x > x?,

9x?(t) =

´

∂x
1

ρ(x?(t)−,t)

¯

1− ρ0(x?+) . (4.24b)

has a unique solution for ρ0 corresponding to (4.21). The solution has the same regularity corresponding
to (4.20).
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4.3.3 Existence of a solution in the general case via a rigorous limit
The formal macroscopic limit taken in Section 4.3.1 will be made rigorous in this section. We will
proceed in multiple steps for convenience of the reader. We introduce first the discrete weak formu-
lation of problem (4.5). In the next step, we perform the limit on the left-hand side of our model, in
the time derivative. In the third step, we perform the limit on the right-hand side. Control over the
TV (TV ) of the discrete solutions will be sufficient to be able to pass to the limit on the nonlinear
right-hand side. A brief overview about the TV can be found in Appendix 4.5.2. In step 4, we will see
that for monotone initial data we obtain boundedness of the TV of the limiting sequence, allowing us
to pass to the limit. We then extend this idea to the general case in step 5 to show existence in the
main result Theorem 4.11.

1. Weak formulation

The weak formulation of the macroscopic model (4.10) up to time T > 0 is given by∫ 1

0

∫ T

0
ω(s, t) 9ϕ(s, t) dt ds−

∫ 1

0
ω(s, 0)ϕ(s, 0) ds+

∫ T

0

∫ 1

0
∂2
sϕ(s, t) p1− ω(s, t)q+ ds dt = 0

for a suiting test-function ϕ. Now remember N = C/∆s and let us define the sequence {ωN (s, t)}N ,
s ∈ [0, 1], t ∈ R+ as

ωN (s, t) :=
N−1∑
i=0

xi+1(t)− xi(t)
∆s 1[si,si+1)(s) =

N−1∑
i=0

ωi+ 1
2
(t)1[si,si+1)(s), (4.25)

which can be seen as a discretization of ω. In order to show that the limit function ω also fulfils the
macroscopic differential equation (4.10) we will use the discrete weak formulation of the interaction
operator for the density. Let therefore ϕ : [0, 1] × [0, T ] → R be a suitable test-function.We denote
ϕi(t) := ϕ(si, t), for t ∈ [0, T ]. In more detail, analogous to (4.25), we also introduce

ϕN (s, t) :=
N−1∑
i=0

ϕi(t)1[si,si+1)(s). (4.26)

The discrete weak formulation in s-direction is therefore of the form

∆s
N−1∑
i=0

9ωi+ 1
2
ϕi =∆s

N−2∑
i=1

2
´

1− ωi+ 1
2

¯

+
−
´

1− ωi− 1
2

¯

+
−
´

1− ωi+ 3
2

¯

+
∆s2 ϕi

+
2
´

1− ω 1
2

¯

+
−
´

1− ω 3
2

¯

+
∆s ϕ0 +

2
´

1− ωN− 1
2

¯

+
−
´

1− ωN− 3
2

¯

+
∆s ϕN−1

=−∆s
N−2∑
i=1

ϕi−1 − 2ϕi + ϕi+1
∆s2

´

1− ωi+ 1
2

¯

+

+ 2ϕ0 − ϕ1
∆s

´

1− ω 1
2

¯

+
+ 2ϕN−1 − ϕN−2

∆s

´

1− ωN− 1
2

¯

+
.

(4.27)

as already introduced in the context of (4.8). Using (4.27), we obtain that for a test-function ϕ = ϕ(s, t)
the weak formulation of the dynamics of ωN in s and t is of the form

∆s
N−1∑
i=0

∫ T

0
9ωi+ 1

2
ϕidt =−

∫ T

0

«

∆s
N−2∑
i=1

ϕi−1 − 2ϕi + ϕi+1
∆s2

´

1− ωi+ 1
2

¯

+

+2ϕ0 − ϕ1
∆s

´

1− ω 1
2

¯

+
+ 2ϕN−1 − ϕN−2

∆s

´

1− ωN− 1
2

¯

+



dt.
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4 Repulsive Particles, a new diffusive term

2. Left-hand side limit

In order to perform the limit on the left hand side we note that from Theorem 4.2.1 we obtain
boundedness of ωN for bounded initial data. Therefore ωmin ≤ ωN (s, 0) ≤ ωmax implies

ωmin ≤ ωN (s, t) ≤ ωmax, ∀t > 0, ∀s ∈ [0, 1]. (4.28)

The bounds (4.28) of ωN let us conclude that for all T > 0 there exists a subsequence, again denoted
by {ωN}N , and ω ∈ L1([0, 1]× [0, T ]) such that

ωN ⇀ ω, as N →∞ in L1([0, 1]× [0, T ]), for all T > 0.

Now we integrate by parts with respect to time,

∆s
N−1∑
i=0

∫ T

0
9ωi+ 1

2
ϕi dt = ∆s

N−1∑
i=0

„

−
∫ T

0
ωi+ 1

2
9ϕi dt+ ωi+ 1

2
(T )ϕ(s, T )− ωi+ 1

2
(0)ϕ(s, 0)



=
∫ 1

0

„

−
∫ T

0
ωN (s, t) 9ϕN (s, t) dt+ ωN (s, T )ϕN (s, T )− ωN (s, 0)ϕN (s, 0)



ds.

Passing to the limit N →∞, we obtain

−
∫ 1

0

∫ T

0
ω(s, t) 9ϕ(s, t) dt ds−

∫ 1

0
ω(s, 0)ϕ(s, 0) ds

for the left-hand side and a test-function ϕ being C1
0 in time t.

3. Right-hand side limit

We first note
ϕi−1 − 2ϕi + ϕi+1

∆s2 = ∂2
sϕ(si, t) +O(∆s2),

which together with notation (4.25) allows us to write the right-hand side as follows

−
∫ T

0

∫ 1

0
∂2
sϕ

N (s, t)
`

1− ωN (s, t)
˘

+ dsdt+O(∆s). (4.29)

Non-linear functions and weak convergence do not commute due to e.g. possible high oscillatory
behaviour of the ωN as N → ∞ in (4.29). Therefore we need to ensure enough control of the
oscillation and we do this via the Total-Variation (TV ). See Appendix 4.5.2 for definitions and
tools. In the following step we show regularity for our problem in the monotone case.

4. The limit in the monotone case

We now want to use the fact that the TV is easily calculable for monotone functions as in (4.37).
However, it is not enough that we use monotone initial data in our model since monotonicity will be
violated for e.g. ω 1

2
converging to 1. We therefore modify our model (4.5) in the following and show

the rigorous limit for it:

I.1) Let ω0 ∈ BV ([0, 1]) and 0 ≤ ω0. We denote by ωN0 its discretisation. Moreover, let ωN
i+ 1

2
(0) be

a monotone increasing sequence in i for all N and we fix ωN1
2
in time, i.e. 9ω 1

2
= 0.
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4.3 The macroscopic level

For initial data satisfying I.1) together with the additional changes for the left boundary point ωi+ 1
2

being constant in time, we have the following Lemma visualized in Figure 4.7a.

Lemma 4.9 (Preservation of monotonicity). Let ωi+ 1
2
(0) be as in I.1). Then the sequence ωi+ 1

2
(t) is

is monotone in i for all t > 0.

Proof. Assume we have initially strictly ordered sequence

ω 1
2
(0) < · · · < ωi+ 1

2
(0) < · · · < ωN− 1

2
(0)

and let t̃ > 0 be the smallest time such that there exists an i ∈ {0, . . . , N − 1} with

ωi− 1
2
(t̃) = ωi+ 1

2
(t̃).

At that time t̃ the dynamics of ωi− 1
2
and ωi+ 1

2
are given by

9ωi+ 1
2
(t̃) = 1

∆s2

„

´

1− ωi+ 1
2
(t̃)

¯

+
−
´

1− ωi+ 3
2
(t̃)

¯

+



≥ 0,

since ωi+ 3
2
(t̃) ≥ ωi+ 1

2
(t̃). And

9ωi− 1
2
(t̃) = 1

∆s2

„

´

1− ωi− 1
2
(t̃)

¯

+
−
´

1− ωi− 3
2
(t̃)

¯

+



≤ 0,

since ωi− 3
2
(t̃) ≤ ωi− 1

2
(t̃).
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(a) The statement of Lemma 4.9 visualized, the trajec-
tories do not intersect for monotone initial data as
in I.1).

case 1

case 2

i-1 i i+1 i+2
s

ω

(b) The two cases (dashed and dotted) how new
minima and maxima can occur, both lead to a
contradiction.

Figure 4.7: Ideas for uniform bounds on the TV visualized.

This monotonicity property from Lemma 4.9 is crucial to find uniform bounds on the TV in space,
which in the following will allow us to pass to the limit on the right-hand side. Indeed, we can prove
the following Lemma:

Lemma 4.10. Let the initial data fulfil the same assumptions as in Lemma 4.9, then there exists a
sequence

{
ωN
}
N

of solutions to the microscopic model (4.5), which converges to a weak solution of

∂tω(s, t) = −∂2
s p1− ω(s, t)q+ ,

ω(0, t) = ω 1
2
(0)

p1− ω(1, t)q+ = 0,
ω(s, 0) = ω0(s).

(4.30)
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4 Repulsive Particles, a new diffusive term

in L1([0, T ); L1([0, 1])), for every fixed but arbitrary time T > 0. In other words, System (4.30) with
monotone initial datum ω0 ∈ BV ([0, 1]) has a weak solution in L1([0, T ); L1([0, 1])).

Proof. In order to be able to pass to the limit on the right-hand side in (4.29), we aim to show
compactness of the limiting sequence {ωN}N in L1 `[0, T ); L1[0, 1]

˘

. For this, we shall apply a classical
result from [205] regarding characterisation of compactness in spaces of the form Lp p[0, T ); Bq via
interpolation, with B being a Banach space, in our case B = L1([0, 1]).
We start by first observing that due to the maximum-principle (4.28), ωN has a bound, uniform in

N , in the space L∞([0, T ); L1[0, 1]) given by

‖ωN‖L∞([0,T );L1(0,1))≤ Tωmax.

Next we see that due to the monotonicity assumption I.1) we have uniform control over the TV in
s-direction. Indeed, for every t ∈ [0, T ) we calculate

TV (ωN (·, t)) :=
N−2∑
i=0

ˇ

ˇ

ˇ
ωi+ 3

2
(t)− ωi+ 1

2
(t)

ˇ

ˇ

ˇ
= ωN− 1

2
(t)− ω 1

2
(t) ≤ ωmax − ωmin,

where we again used (4.28). This crucial observation gives us an N -independent bound of {ωN} in
L1
loc p[0, T );BV ([0, 1])q.
Moreover, the above bound on the TV also ensures an uniform bound on the set of time derivatives

of the sequence { 9ωN}N in L1
loc

`

[0, T );W−1,∞([0, 1])
˘

. Indeed, for every ϕ ∈ W 1,∞([0, 1]) we can
estimate

ˇ

ˇ

ˇ

ˇ

∫ 1

0
9ωN (s, t)ϕN (s)ds

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

N−2∑
i=1

Ji+1(t)− Ji(t)
∆s ϕN (s)∆s

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

∆s
N−2∑
i=1

Ji(t)
ϕi+1 − ϕi

∆s

ˇ

ˇ

ˇ

ˇ

ˇ

≤ ‖∂sϕN‖L∞([0,1])∆s
N−2∑
i=1

|Ji(t)| ≤ TV (ωN (·, t)) ≤ ωmax − ωmin,

where ϕN is defined as in (4.26). We used the abbreviation

Ji(t) :=

´

1− ωi+ 1
2
(t)

¯

+
−
´

1− ωi− 1
2
(t)

¯

+
∆s , i ∈ {1, . . . , N − 1},

analogous to (4.14) for the flux governing the dynamics, i.e.

9ωN
i+ 1

2
(t) = Ji+1(t)− Ji(t)

∆s .

The resulting fact that { 9ωN} is uniformly bounded in the space L1
loc

`

[0, T );W−1,∞([0, 1])
˘

together
with the observation that BV ([0, 1]) ⊂ Lq(0, 1) ⊂ W−1,1(0, 1), while noting that the first inclusion
is compact [ [153], Corollary 3.49]. This allows us to conclude that the sequence {ωN}N is rela-
tively compact in Lp p[0, T ); [0, 1]q for every p < ∞. Especially, we obtain relative compactness in
L1 `[0, T );L1[0, 1]

˘

, which concludes the proof since it allows us to pass to the limit in (4.29).

5. The limit in the general case.

One can extend the above result shown for the problem with monotone initial data to the general
case by dividing the limiting sequence into its monotone parts where the above arguments concerning
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4.3 The macroscopic level

the TV can be applied. This, of course, is only possible provided one has a bound uniform in N and
in time on the number of parts, where ωN is monotone. While it is clear from the construction of
ωN that the index N does not have influence on the number of extrema, a little more arguments are
needed in order to show that the number of minima and maxima cannot increase with respect to time.

Therefore, let us assume that at time s ≥ 0 we have three points in monotone order, without loss
of generality we consider them to be monotonically increasing, i.e. ωi− 1

2
(s) < ωi+ 1

2
(s) < ωi+ 3

2
(s).

Should a new extremum occur, there has to be a time t̃ > s such that, again without loss of generality,
ωi+ 1

2
(t̃) = ωi+ 3

2
(t̃) and ωi+ 1

2
(t) > ωi+ 3

2
(t) for t > t̃ have to hold. To create such a situation, the

velocity of the i+ 1
2 -th particle has to be bigger than the one of the i+ 3

2 -th particle, which leads to
the condition

ωi+ 5
2
(t̃) < ωi− 1

2
(t̃).

Due to continuity, also ωi+ 5
2
(t) < ωi− 1

2
(t) had to hold for t ∈ [t, t̃] for some t < t̃. Hence,

ωi+ 5
2
(t) < ωi− 1

2
(t) < ωi+ 1

2
(t) < ωi+ 3

2
(t), t ∈ [t, t̃],

and

ωi+ 1
2
(t) < ωi+ 3

2
(t) < ωi− 5

2
(t), ωi− 1

2
(t) < ωi+ 1

2
(t), t > t̃,

which means that a previously existing maximum at ωi+ 3
2
changed position to ωi+ 1

2
, but no new

extremum occurred. Similar arguments for the case of three monotonically decreasing points leads to
the conclusion that extrema can only change position, but no new can occur while time evolves.
That is enough to show the following Theorem of existence.

Theorem 4.11 (Existence of a solution). Let ω0 ∈ BV ([0, 1]) hold, then there exists a sequence{
ωN
}
N

of solutions to the microscopic model (4.5), which converges to a weak solution of

∂tω(s, t) = −∂2
s p1− ω(s, t)q+ ,

p1− ω(0, t)q+ = p1− ω(1, t)q+ = 0,
ω(s, 0) = ω0(s).

(4.31)

in L1([0, T );L1([0, 1])), for every fixed but arbitrary time T > 0. In other words, System (4.31) with
monotone initial datum ω0 ∈ BV ([0, 1]) has a weak solution in L1([0, T );L1([0, 1])).

We see that in this case the existence of the solution is also independent of the jump condition
(4.22). We also formulate our result in ρ before concluding with numerical experiments.

Proof. Let M be the number of extrema of ωN0 . The argument above as well as (4.28) let us conclude
that M is an upper bound on the number of extrema of ωN (t), for all t > 0, which allows us to
estimate

TV (ωN (·, t)) ≤M pωmax − ωminq ,

again independent of N . The remainder of the proof can be done as in the proof of Lemma 4.10.

Corollary 4.12. Let ρ0 ∈ BV ([a, b]), where [a, b] ⊂ R is a closed interval. Then system

∂tρ(s, t) = ∂2
x

ˆ

1− 1
ρ(x, t)

˙

+
,

ρ(x, 0) = ρ0(x).

has a weak solution in L1([0, T );L1([0, 1])).
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4 Repulsive Particles, a new diffusive term

4.3.4 Numerical simulations on a macroscopic level

We investigate problem (4.24) on an open domain R with ρ0 > 0. Therefore we discretize equation
(4.24a) as ρ(i∆x, j∆t) = ρji explicit in time via

ρj+1
i = ρji + ∆t

∆x3

”

(1− 1/ρji+1)+ − 2(1− 1/ρji )+ + (1− 1/ρji−1)+

ı

. (4.32)

Here we discretized the Laplacian as usual.
We choose ∆x = 0.001 for a sharp visualisation of the shock and ∆t = 0.1∆x2 in compliance

with typical CFL-conditions, following classical literature, see [150]. In Figure (4.8a) we see the
smoothening-effect for non-continuous initial data of system (4.24) for ρ0 > 1.

t=0

t=0.001

t=0.05

t=0.1

-0.4 -0.2 0.2 0.4
x

0.5

1.0

1.5

ρ

(a) Non-continuous initial data, we see the
smoothening effect of (4.24).

x*(0)

x*(0.015)

t=0

t=0.015

-0.4 -0.2 0.2 0.4
x

0.5

1.0

1.5

ρ

(b) Smooth initial-data and the position of the
shock x? calculated from (4.24b).

Figure 4.8: Macroscopic simulations for a two-sided problem.

In Figure (4.8b) we also plot the position of the jump x? calculated via (4.24b). We used for the
discretization of (4.24b) an explicit Euler algorithm for solving the ODE. Knowing x? is monotone
increasing and considering the left- and right-handed limits, we used in the numerator a Downwind-
and for the Denominator an Upwind-approach. We see that the discretisation (4.32) creates the
correct shock-speed. Additionally continuous initial data as in (4.19) leads to satisfying results since
as mentioned, the discontinuity only occurs for t = 0 and (4.17) is Lipschitz for t > 0.

4.4 Conclusion and Outlook

4.4.1 Applications and open questions

In the following, we mention two possible combinations for the new diffusion term ∂2
x

´

1− 1
ρ(x,t)

¯

+
.

The authors assume that both suggested models can presumably be derived microscopically.

Bacterial Growth

A classical growth term is exponential growth, which is well known to describe bacteria, see [166],

∂tρ(x, t) = ρ(x, t).

This new diffusive effect needs to be investigated in the context of cell-exclusion, occurring in bacterial
growth. This was done on a microscopic level by e.g. [66]. In a well known biological experiment,
see [225], quite natural a version of a one-sided problem is investigated. Bacteria divide, and can leave
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4.4 Conclusion and Outlook

a one-dimensional channel only on one side. The other has mathematically seen No-Flux boundary
conditions. The experiment was done to investigate a growth-rate α > 0. In our case, this corresponds
to a one-sided problem with a source-term, e.g. in

∂tρ(x, t) = ∂2
x

ˆ

1− 1
ρ(x, t)

˙

+
+ αρ(x, t).

From a mathematical perspective, questions regarding the existence of solutions and blow-ups are
natural. The biological problem was investigated already with different technics, see [191], and this
new diffusive term can broaden the perspective.

Alignments within a drift

We have shown how our diffusive term results in a desired density at the microscopic and macroscopic
levels. In addition, this term can be studied in systems with drift, for example, due to an external
potential ϕ. If we motivate the drift term similar to a linear Fokker-Planck equation, it leads us to
the following equation

∂tρ(x, t) = ∂x

ˆ

∂x

ˆ

1− 1
ρ(x, t)

˙

+
+ ρ(x, t)∂xϕ(x)

˙

with ϕ being a suitable potential depending on x. This model has applications in 1D and 2D, see e.g.
the self-organising system of birds during their travels, visualized in Figure 4.9.
The diffusion term D leads to a desired density ρ of 1, scaled here, but unlike macroscopic models

based on cellular automata with cell exclusion, this can be exceeded and solve problems in modelling
and calibration in the context of pedestrian dynamics, see [80, 94]. This new diffusion allows to
introduce a parameter for the desired density ρd quite simply via

∂2
x

ˆ

1− ρd
ρ(x, t)

˙

+
.

Figure 4.9: Birds showing a local diffusive effect, aligning in similar distance to each other on their
travel. Image thankfully provided by the photographer, see [3].

2D-setting

In the case of 2D even the formal derivation of the macroscopic model is an open question. The
alignment in 1D arising from Lagrangian coordinates s was a key component to introduce the discrete
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4 Repulsive Particles, a new diffusive term

(a) Voronoi-diagram of random initial data
in 2D.

(b) Corresponding Delaunay-diagram, it is
the dual graph.

Figure 4.10: The Voronoi-diagramms partitions the plane into sets si where xi is the closest, while the
Delaunay-diagram connects interacting particles based on the first.

density ρ. Nearby ideas of the authors is investigating the problem in 2D using e.g. Delaunay- and or
Voroi-diagramms in combination with Lagrange-coordinates as in Figure 4.10. The latter are typical
in measuring density in pedestrian dynamics, see [6], while the dual graph, the Delaunay-triangulation,
see [171], can be used to define the interacting particles.

4.4.2 Summary and Conclusion

In this work we modelled particles interacting in a certain radius. We introduce the scaled distance
ω, which can also be seen as a derivative in Lagrangian coordinates s. From this, we it was possible
to define a microscopic density ρ.

For the microscopic systems (4.2) and (4.5) we could proof strong statements and underline them
with simulations. Properties of (4.5) can be transferred to the density.

On a macroscopic level our main focus was on (4.10) and (4.13), conservation laws for which we
can derive jump conditions of the non-differentiability in (1 − .)+. We outline how a global theory
of existence for system (4.13) can be constructed, based on the decomposition of the problem to
minimal one-sided versions in Lagrangian coordinates. Mentioned jump condition corresponds to the
moving boundary of a Stefan problem, whose theory we used to show the existence and uniqueness of
a solution in the regularized case of the one-sided problem. An alternative to this is a rigorous limit
to transfer the existence of a solution of the ODE system to the PDE. Due to non-differentiability
in the systems, this approach is non-trivial. To find a weakly convergent sequence for system (4.5),
we choose the technique of total variation TV . This seems to be a suitable tool to show the limit
even in more general cases but is beyond the scope of this paper. As outlined, this new diffusion term
itself requires more intensive investigation. To emphasize this, we have presented in this Section 4.4
possible applications and possible combinations with already known terms from modelling.
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4.5 Appendix

4.5 Appendix

4.5.1 An improved regularity result for parabolic equations

The following is an adaption of Theorem 5 in [77], Chapter 7 for time-dependent coefficients. The
parabolic problem

∂tv(y, t) = a(t)∂2
yv(y, t) + b(y, t)∂yv(y, t) in (0, 1)× (0, T ) (4.33a)

v(0, t) = v(1, t) = 1
v(y, 0) = v0(y)

has a unique weak solution for a ∈ L∞ p[0, T ]q, b ∈ L∞ p[0, 1]× [0, T ]q following Theorem 3 and 4
in [77], Chapter 7. Theorem 5 then shows stronger regularity-results with a, b time-independent.
Let in the following a, b be time-dependent, whereas the following regularity-result is an adaption of

Theorem 5 to show improved regularity of (4.23). In our model we have a(t) = 1
s2
?(t) and b(y, t) = y 9s?(t)

s?(t)
which are bounded due our regularisation via (4.21) for 9s? defined in (4.15). We will sketch that a
solution v of (4.33) fulfils

v ∈ L2 `0, T ;H2([0, 1])
˘

∩ L∞
`

0, T ;H1
0 ([0, 1])

˘

. (4.34)

The author in [77] uses a discrete Galerkin approximation vm. We will derive the needed bounds for
passing to the limit m → ∞ using the notation introduced in [77], Chapter 6 and 7. To abbreviate,
the following calculations are done for homogeneous Dirichlet boundary conditions. It is well known,
we refer to mentioned book Chaper 3, and discussed it ourself shortly in Subsection 4.3.1, this does
not present a problem.
Equation (4.33a) in weak formulation has the following form

(∂tvm, ∂tvm) + L[vm, ∂tvm] = 0

for almost everywhere 0 ≤ t ≤ T and L being our differential operator. We now investigate bounds
for L to pass to the limit. We have

L[vm, ∂tvm] =
∫ 1

0
a(t)(∂yvm)(∂t∂yvm)dy +

∫ 1

0
b(y, t)(∂yvm)(∂tvm)dy =: A+ B.

We find estimates using Cauchy-Schwartz

|B|=
∫ 1

0
b(y, t)(1

δ
∂yvm)(δ∂tvm)dy ≤ c2

´c1
δ
‖vm‖H1

0 ([0,1]) + δ‖∂tvm‖L2([0,1])

¯

(4.35)

for every δ > 0. The constant c2 depends on sup[0,1](b), in model (4.23) we have |b(y, t)|≤ H/ε
s?(0) due

our regularisation. We rewrite A as

A =
∫ 1

0
a(t)(∂yvm)(∂t∂yvm)dy = a(t)

∫ 1

0
(∂yvm)(∂t∂yvm)dy = a(t)∂t

ˆ

1
2A[vm, vm]

˙

(4.36)

with A being a symmetric bilinear form

A[vm, um] =
∫ 1

0
(∂yvm)(∂yum)dy, vm, um ∈ H1

0 ([0, 1]).
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Combining (4.35), (4.36), choosing δ = 1
2 and integrating over t as in [77] we get∫ T

0
‖∂tvm‖2L2([0,1]) + sup

0≤t≤T
|a(t)| sup

0≤t≤T
A[vm(t), vm(t)]

≤ c3

ˆ

A[vm(0), vm(0)] +
∫ T

0
‖vm‖2H1

0 ([0,1])dt

˙

≤ c‖v0‖2H1
0 ([0,1])

where c3 now also depends on sup|a(t)|. We want to note briefly that no regularization was needed
for the bounds on a in our example, because s? is monotonically increasing. For the second inequality
we used the energy estimates in Theorem 2 Chapter 7 in mentioned [77], in more detail we have for
our approximations vm the following estimate

‖vm(0)‖H1
0 ([0,1]) ≤ ‖v0‖H1

0 ([0,1]).

Additionally we use A[v, v] ≥
∫ 1

0 |∂yv|2dy for every v ∈ H1
0 ([0, 1]). Combining everything we have

sup
0≤t≤T

‖vm(t)‖2H1
0 ([0,1]) ≤ c‖v0‖2H1

0 ([0,1]).

We then can pass to limits m → ∞ and deduce v ∈ L∞(0, T ;H1
0 ([0, 1]) and ∂tv ∈ L2(0, T ;L2([0, 1]).

We than can follow step 3 of the mentioned proof to receive the higher regularity (4.34).

4.5.2 Lemmas and Definitions in the context of TV and BV

We repeat in the following definitions and Lemmas needed throughout the calculations and estimates
in Section 4.3.3. We start with a short introduction of the Total Variation (TV ) for piecewise-
functions. Let ωN (s) =

∑N−1
i=0 ωi+ 1

2
1[si,si+1)(s) be a piece-wise function in s with respect to the grid

{s0, . . . , sN}, then its TV is given, following e.g. [206], via

TV
`

ωN (s)
˘

:=
N−1∑
i=1

ˇ

ˇ

ˇ
ωi+ 1

2
− ωi− 1

2

ˇ

ˇ

ˇ
.

For (in space s) monotone increasing ωN the previous definition results in

TV (ωN (s)) =
ˇ

ˇ

ˇ
ωN− 1

2
− ω 1

2

ˇ

ˇ

ˇ
. (4.37)

The set of all functions with bounded variationis denoted by BV ([0, 1]).
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