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Titre : Contrôle robuste de systèmes linéaires d’équations aux dérivées partielles hyperboliques
interconnectés en réseaux de chaine.
Mots clés : EDPs hyperboliques, systèmes à retard de type neutre, contrôle par backstepping,
systèmes interconnectés, robustesse.
Résumé : Cette thèse porte sur la synthèse de
contrôleurs robustes par retour de sortie pour
des systèmes d’équations aux dérivées par-
tielles (EDP) hyperboliques interconnectés en
une structure de chaine. Nous proposons des
solutions innovantes basées sur la méthode
de backstepping et exploitant les liens entre
systèmes d’EDP hyperboliques et systèmes à
retard de type neutre présentés en Partie I.
Nous étudions ici deux configurations d’action-
nement de structures en chaîne. Tout d’abord,
nous examinons le cas où l’actionnement est
disponible à une extrémité (Partie II) pour deux

différents réseaux (ODE-EDP-ODE et N EDPs-
ODE). Ces structures peuvent modéliser des
systèmes de forage. Ensuite, nous considérons
une chaîne simple où l’actionnement est dis-
ponible au niveau de la jonction (Partie III). Sa
stabilisation nécessite une transformation inté-
grale plus générale. Enfin, nous explorons les
aspects négligés des contrôleurs basés sur la
méthode de backstepping (Partie IV), tels que
le choix d’un système cible atteignable avec des
propriétés de stabilité spécifiques, ou la réduc-
tion du temps de calcul par des techniques
d’apprentissage automatique.

Title : Robust control of linear hyperbolic partial differential equations systems interconnected
in a chain network.
Keywords : hyperbolic PDEs, neutral time-delay systems, backstepping-based control, intercon-
nected systems, robustness.
Abstract : This thesis focuses on designing
robust output-feedback backstepping-based
controllers for hyperbolic partial differential
equation (PDE) systems interconnected in a
chain structure. We take advantage of connec-
tions between the class of hyperbolic PDE sys-
tems under consideration and time-delay sys-
tems of the neutral type presented in Part I.
Then, we focus on two classes of chain struc-
tures. First, we consider the case where the ac-
tuation is available at one end (Part II) for two
different networks (ODE-PDE-ODE and arbitra-
rily many N PDEs-ODE). Such chain structures

can be found in drilling applications. Next, we
consider a simple chain of two hyperbolic PDE
subsystems where the actuation is available at
the junction (Part III). A more general integral
transform is necessary for its stabilization. Fi-
nally, we explore controller design tuning and
implementation limitations of backstepping-
based controllers (Part IV). We question the
choice of a reachable target system with spe-
cific stability properties. Additionally, we exa-
mine the potential of machine learning tech-
niques to improve computation time in distri-
buted state and parameter estimation.
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Notations

For any n,m, p ∈ N strictly positive integers, and for any compact set K, we use the following
notations throughout the thesis.

General notations

1. For any multivariate function, we denote ∂
∂xf the derivative of a function f with respect to

variable x. For any differentiable function f defined on I ⊂ R, we denote f ′(x) = df(x)
dx its

derivative.
2. For all a, b, ν ∈ R, a < b, define the characteristic function 1[a,b](ν), as the function equal to 1 if
ν ∈ [a, b], and equal to 0 elsewhere.

3. We denote δmn the Kronecker symbol (δmn = 1 iif n = m, 0 else). We extend this definition with
δn≍m

.
= 1 iif n ≍ m, 0, where ≍ denote any order relation (Chapter 10).

4. For any matrix A ∈ Rn×p, we denote A⊤ ∈ Rp×n its transpose and σ(A) ⊂ R its spectrum i.e.
the set of its eigenvalues.

5. We denote D+
n , the set of diagonal matrices in Rn×n with positive coefficients, extended to

D+
n (I) for matrix-valued functions defined on interval I .

6. We denote In the n× n identity matrix, 0n = 0Rn×n . The index may be omitted.

Compact sets

1. Denote S ∈ [0, 1]2 the unit square, T − = {(x, y) ∈ [0, 1]2, x ≥ y} its lower triangular part and
T + = {(x, y) ∈ [0, 1]2, x ≤ y} its upper triangular part.

2. For any λ, µ > 0, we define the two triangular spaces
• T +

λ = {(x, y) ∈ [0, 1]× [0, 1λ ] | 0 ≤ y ≤
x
λ} ⊂ R2,

• T −
µ = {(x, y) ∈ [0, 1]× [0, 1µ ] | 0 ≤ y ≤

1
µ(1− x)} ⊂ R2,

and for a > 0, the two parallelogram domains,
• P+

a,λ = {(x, y) ∈ [0, 1]× [0, a+ 1
λ ] |

x
λ ≤ y ≤ a+

x
λ)} ⊂ R2,

• P−
a,µ = {(x, y) ∈ [0, 1]× [0, a+ 1

µ ] |
1−x
µ ≤ y ≤ a+

1−x
µ )} ⊂ R2 (Chapter 10).

Functional spaces

1. We denote C0(K,Rn) the space of continuous functions defined on K with values in Rn, and
C1(K,Rn) the space of differentiable functions with a continuous derivative. We also denote
C1(K,Rn)+ its subset of strictly positive functions (Chapter 10).
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2. We denote L2([0, 1],Rn) the Hilbert space of square integrable functions with values in Rn, and
H1([0, 1],Rn) the Sobolev space of L2−functions whose derivative is in L2.

3. For any compact sets K1,K2, the space of piecewise continuous functions defined on K1 withvalues in K2 is denoted C0
pw(K1,K2). Similarly, we denote Cnpw(K1,K2) the space of differen-tiable functions with piecewise continuous nth derivative.

4. For any fixed time-delay τ > 0, n ∈ N, we denote Dτ = H1([0, τ ],Rn) the Sobolov space of H1

functionsmapping the interval [0, τ ] intoRn. For a function ϕ : [0,∞) 7→ Rn, its partial trajectory
ϕ[t] ∈ Dτ is defined by ϕ[t](θ) = ϕ(t− θ), 0 ≤ θ ≤ τ .

5. We denote Ξ = L2([0, 1],Rn)× Rp (Chapters 3, 5).
6. We denote X = Rn ×H1([0, 1],R2)× Rm+p (Chapter 4).
7. For any Banach spaceB1, B2, we denoteL(B1, B2) the set of all bounded linear operatorsmap-

ping B1 to B2.

Norms

1. For anyX ∈ Rn, we denote |X| .= √X⊤X the classical Euclidian norm.
2. For any u ∈ C0([0, T ];L2([0, 1]Rn)), the L2−norm is defined by

∥u(t, ·)∥L2
.
=

√∫ 1

0
u(t, ν)⊤u(t, ν)dν.

3. For any τ > 0, z ∈ Dτ , for any t > 0, theDτ−norm is defined by

∥z[t]∥Dτ

.
=

√(∫ τ

0
z(t− θ)⊤z(t− θ)dθ

)
=

√(∫ 0

−τ
z(t+ θ)⊤z(t+ θ)dθ

)
.

4. For any (u,X) ∈ Ξ, the Ξ−norm is defined by ∥(u,X)∥Ξ
.
=
(
∥u∥2L2 + |X|2

) 1
2 .

5. For any (X,u, Y ) ∈ X , the X−norm is defined by ∥(X,u, Y )∥X
.
= (∥X∥2 + ∥Y ∥2 + ∥u∥2L2)

1
2 .

6. For any bounded matrix-valued function F defined on K, we define ∥F∥∞ = max
i

max
j
∥Fij∥∞

the highest value of its components, where ∥Fij∥∞ = max
x∈K

(|Fij(x)|).

Frequency-domain analysis

1. We denote C+ = {s ∈ C | ℜ(s) ≥ 0} the closed right-half complex plane (RHP).
2. The letter s denotes the Laplace variable. For any complex s ∈ C, ℜ(s) corresponds to the real

part, and ℑ(s) the imaginary part.
3. For any proper and stable transfer matrix G(s), σ̄(G(jω)) stands for the largest singular value

of G(jω) at frequency ω, and theH∞-norm of G is ∥G∥∞ = ess supω∈Rσ̄(G(jω)) (Chapter 4).
x



Préambule

Nous présentons en préambule le contexte de la thèse et les problématiques traitées.
Afin de toucher une plus large communauté scientifique, cette thèse a été rédigée inté-
gralement en anglais. Toutefois, des résumés introductifs sont disponibles en français en
début de chaque chapitre, afin de pouvoir cibler facilement les problèmes considérés et
les outils développés. Une liste des contributions publiées ou soumises au cours de cette
thèse est également disponible à la fin du chapitre d’introduction (Chapitre 1).

Contexte

Cette thèse porte sur le contrôle de systèmes d’équations aux dérivées partielles (EDP)
hyperboliques linéaires du premier ordre, interconnectés entre eux et/ou avec des équa-
tions différentielles ordinaires (EDO) selon une structure de chaîne. Ces systèmes se
rencontrent naturellement lors de la modélisation de phénomènes physiques dont la
dynamique dominante dépend du temps, mais également de l’espace (lois de conser-
vation, flux, équations de transport, équations d’ondes...). Il peut être intuitif de consid-
érer l’interconnexion de telles dynamiques distribuées avec des systèmes dont l’évolution
dépend du temps uniquement. De telles structures apparaissent dans divers domaines
de l’ingénierie: des réseaux électriques contenant des lignes de transmission [SWGR14,
SWGR11], des réseaux routiers avec des modèles macroscopiques de trafic (modèle ARZ)
[BYK19, YAK20], des écoulements non stationnaires dans des canaux [GL13, Hay19], des
oscillations thermo-acoustiques (tube de Rijke) [dAVP18], le transport de charges à l’aide
de câbles [WK20,WK21], ou des vibrationsmécaniques dans des systèmes de forage [AS18,
SMN+16]. La partie EDO peut modéliser efficacement les courants dans les inductances
ou capacités, ou la dynamiqued’une charge (modélisée commeunemasse), ou de l’action-
neur (dans un modèle classique de moteur électrique). Dans l’exemple du forage, le sys-
tème d’EDP hyperboliques modélise la propagation de vibrations axiales et/ou torsion-
nelles, tandis que les EDO représentent la dynamique du moteur électrique en surface,
de la tête de forage (BHA), ou son interaction avec la roche [AKIS20].

La stabilisation et le contrôle de telles interconnexions entre EDP hyperboliques
et EDO sont donc des sujets de recherche avec un intérêt pratique, mais également
théorique. En effet, stabiliser des systèmes en réseau tout en garantissant des perfor-
mances satisfaisantes n’est pas facile, surtout lorsque l’actionneur n’est disponible qu’à
des emplacements ponctuels, généralement à une extrémité du système. Dans la littéra-
ture, différentes approches ont été développées pour aborder de tels problèmes. Par
exemple, le contrôleur Proportionnel intégral (PI) a été étendu à une chaîne de systèmes
hyperboliques linéaires [BCT15]. Des méthodes basées sur la platitude [WRK09, MZ04]
ou les dynamiques des lignes caractéristiques [SA17] ont été développées pour concevoir
une loi de commande à rétroaction de sortie pour des systèmes hyperboliques intercon-
nectés en série. En raison des retards inhérents à de telles structures en réseau, il est
souvent nécessaire de concevoir des prédicteurs pour anticiper les valeurs futures de
l’état [BL14].

La méthode du backstepping s’est révélée être prometteuse pour stabiliser les sys-
1



tèmes d’EDP hyperboliques. Son idée générale consiste à simplifier la structure du sys-
tème considéré en déplaçant les termes de couplage (potentiellement déstabilisants) à la
frontière actionnée. Pour ce faire, on utilise des transformations intégrales inversibles,
en général de type Volterra. Cette méthode a été appliquée à des systèmes d’EDP hyper-
boliques du premier ordre dans [KS08, VKC11, CVKB13], puis à des systèmes couplés en-
tièrement actionnés [DMVK13]. Pour des systèmes d’EDP interconnectés, les premiers ré-
sultats ont été obtenus pour la stabilisation de réseaux composés de deux sous-systèmes
[ABABS+18, ADMBA19]. Ils ont été étendus à un réseau en cascade avec un nombre ar-
bitraire de sous-systèmes dans [Aur20], en introduisant une transformation complexe.
Parallèlement, des contrôleurs basés sur le backstepping ont été développés pour des
structures en chaîne contenant des systèmes d’EDO, type EDO-EDP-EDO [WKP18, DGK18,
Geh21] ou EDP-EDO-EDP [AVDMK19, KK20]. Dans la plupart des cas, le design construc-
tif est basé sur plusieurs transformations, utilisées pour annuler le terme de réflexion
à la frontière actionnée de manière à ce que l’EDP n’ait plus d’impact sur l’état de l’EDO
contrôlée [DGK18]. Cependant, supprimer le terme de réflexion peut entraîner des lois
de commande non strictement propres. De même, il est nécessaire d’inverser la dy-
namique lorsque seul le système d’EDO est actionné, ce qui entraîne des problèmes de
robustesse. En particulier, un retard arbitrairement petit dans la boucle peut provoquer
l’instabilité du système en boucle fermée [DLP86]. Proposer des contrôleurs robustes aux
retards (mais aussi aux incertitudes sur des paramètres ou des dynamiques négligées) est
donc d’une préoccupation majeure pour une application ultérieure à des systèmes réels.

De manière intéressante, des notions de robustesse ont été développées dans le do-
maine des systèmes à retard [HVL13], qui sont étroitement liés aux systèmes d’EDP hy-
perboliques [KK14, ADM19]. Les propriétés de stabilité des systèmes d’EDP hyperboliques
peuvent alors être analysées en utilisant la représentation équivalente sous forme de
système à retard [Rus78a, Pee21].

Objectif général

Cette thèse vise à stabiliser des réseaux de systèmes d’EDP hyperboliques
linéaires interconnectés avec des EDO selon une structure en chaîne. Nous
présentons des méthodes constructives pour la conception de contrôleurs et
d’observateurs.
Les approches proposées sont basées sur la méthode de backstepping et tirent
parti des résultats d’analyse de stabilité développés pour les systèmes à retard.

Organisation de la thèse

Cette thèse introduit dans la Partie I deux classes de systèmes de dimension infinie:
les systèmes d’EDP hyperboliques linéaires et les systèmes à retard (TDS) de type neutre.
Dans le cas simple d’un système d’EDP hyperbolique linéaire scalaire, nous introduisons
au Chapitre 2 la relation entre ces deux classes et la méthode de backstepping. Elle in-
duit des propriétés de stabilité asymptotique similaires. Ensuite, nous considérons au
Chapitre 3 une première interconnexion entre des équations de transport pures et une

2



EDO linéaire. Nous présentons les limites des approches de contrôle classiques Propor-
tionnel et Proportionnel Intégral (PI), sur cette structure de chaîne simple. Cela souligne
l’intérêt des contrôleurs basés sur le backstepping, qui prennent en compte la nature dis-
tribuée de la dynamique.

Après cette partie introductive, nous abordons différents problèmes de contrôle sur
les structures en chaîne. Dans la Partie II, nous étudions le cas où l’actionnement dispo-
nible est situé à une extrémité du réseau. Nous considérons d’abord au Chapitre 4 le
cas d’une interconnexion EDO-EDP-EDO. La conception du contrôleur permettant le suivi
de trajectoire et le rejet des perturbations s’appuie sur la méthode de backstepping et
une analyse dans le domaine fréquentiel. Il est présenté dans [W1, B1, J2]. Ensuite, nous
considérons dans le Chapitre 5 le cas d’une chaîne composée d’un nombre arbitraire
de systèmes d’EDP hyperboliques, interconnectés à l’extrémité non actionnée avec une
EDO. Pour obtenir un contrôleur par rétroaction de sortie stabilisant, nous utilisons une
approche récursive. Elle est présentée en [C8, J4] et appliquée aux systèmes de forage en
[C5]. En effet, les systèmes de forage peuvent être modélisés par de tels réseaux, comme
illustré au Chapitre 6.

Cependant, si dans certaines applications, comme le forage, l’actionneur est situé à
une extrémité du réseau, ce n’est pas toujours le cas. Quelques exemples peuvent être
trouvés dans le contrôle du trafic routier ou les dispositifs biomédicaux. Nous étudions
donc dans laPartie III le cas où l’actionnement est disponibleàune jonctiondudomaine.
Dans le Chapitre 7, nous considérons le cas de deux systèmes d’EDP hyperboliques in-
terconnectés avec actionneur à la frontière intermédiaire. En raison de nouveaux cou-
plages, nous utilisons une transformation intégrale de Fredholm. Cela est présenté dans
[C6, C7, J3]. Cette méthodologie est appliquée au Chapitre 8 à la stabilisation de cordes
[C1]. Ces deux parties se terminent par des perspectives et des extensions des approches
proposées dans des cas de plus grande dimension ou des réseaux plus complexes.

Enfin, la Partie IV est dédiée aux aspects négligés des contrôleurs par backstepping.
Tout d’abord, nous nous interrogeons dans le Chapitre 9 sur le choix des systèmes cibles
atteignables par des transformations inversibles. En utilisant une transformation affine
en temps, nous montrons qu’une classe générale de systèmes d’EDP hyperboliques non
scalaires peut être envoyée sur n’importe quel système arbitraire de la même classe. Un
système cible adéquat doit être sélectionné parmi cette classe pour améliorer les perfor-
mances en boucle fermée, par exemple obtenir une convergence plus rapide vers l’état
d’équilibre. Nous montrons au Chapitre 10 que des propriétés en boucle fermée ayant
une signification physique peuvent être obtenues en utilisant le formalisme Port Hamil-
tonien. Cette stratégie a été présentée en [C4, C2]. Un design d’observateur pour le cas
d’étude d’une poutre de Timoshenko considéré est proposé en annexe C. Enfin, nous in-
troduisons au Chapitre 11 l’utilisation de l’apprentissage automatique pour obtenir des
estimations en temps réel de l’état distribué et des paramètres pour le cas d’étude du for-
age et de la poutre. Cette piste permettrait d’utiliser les contrôleurs distribués obtenus
par backstepping pour des applications réelles.
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1 - Introduction

Context

This thesis deals with the control of linear first-order hyperbolic Partial Differential
Equations (PDE) systems interconnected with Ordinary Differential Equations (ODE) in a
chain structure. Each elementary system consists in two scalar countervecting transport
equations with in-domain couplings (balance laws). Networks of such interconnected el-
ementary PDE systems naturally arise when modeling industrial processes for which the
dominant dynamics involve a transport phenomenon or a delay. In a chain structure, they
can be connected between themselves or with an ODE. We can cite as examples electri-
cal networks containing transmission lines [Bra68, SWGR14, SWGR11], pneumatic systems
[KGDM18], traffic flows [BYK19, YAK20, YAK20], density-flow systems [BCT15, BC16, HS21],
unsteady flows on open canals [GL13, Hay19], thermo-acoustic oscillations in combustion
dynamics such as Rijke tubes [dAVP18], transportation of loads using cables [WK20, WK21],
or mechanical vibrations in drilling systems [AS18, SMAV16].

The PDE part can model the lossless transmission lines in electrical networks or any
propagation phenomena such as vibrations or flow density. The ODE part can efficiently
represent the dynamics of currents in inductors or voltages across capacitors, loads, actu-
ators, or any lumpedelement connected to the distributed system. In the drilling example,
the hyperbolic PDE system models axial and torsional stress propagation, with potential
discontinuities due to the junctions between different types of pipes. At the same time,
the ODE represents the Bottom hole Assembly (BHA) dynamics or the bit-rock interaction
[AKIS20]. In the Rijke tube application, the PDEs correspond to the compressible gas dy-
namics, while the ODE represents the linearized heat power release [dAVP18]. Though
the dynamics are primarily three-dimensional, we can usually only consider a dominant
one along a specific dimension and approximate them as balance laws along a bounded
one-dimensional spatial domain.

In this context, interconnected ODEs and PDEs are an intuitive structure that con-
serves the specific pointwise and distributed nature of the underlying dynamics. This
explains why the stabilization and control of such systems is an active research topic.
From an engineering point of view, interconnections between systems can be the source
of multiple problems. They can create instabilities or vibrations nodes that are preferable
to avoid since they destabilize thewhole system [BPK14, ABP22]. Moreover, stabilizing net-
worked systems while guaranteeing satisfying performance is not easy, especially when
actuation is only available in discrete locations, usually at one end of the system. In the lit-
erature, various approaches have been developed to tackle such issues. For instance, the
well-known PI controller was extended in [BCT15] to a chain of linear hyperbolic systems.
A state-feedback controller for hyperbolic PDE networks was designed using a flatness-
based analysis in [WRK09, MZ04]. The dynamics of characteristic lines were studied in
[SA17] to design an output feedback control law for semi-linear hyperbolic systems inter-
connected in series. Due to the delays inherent to such networked structures, it is often
necessary to design predictors to anticipate future values of the state [BL14].

Among these approaches, the backstepping proved to be a promising constructive
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method to deal with hyperbolic PDEs. This framework consists in operating invertible co-
ordinates changes to map the initial system to a target systemwith specific stability prop-
erties. Its general idea is simplifying the coupling structure by moving the destabilizing
coupling terms at the actuated boundary, using successive integral invertible transfor-
mations. It was first proposed for the stabilization of various systems governed by PDEs
such as chemical reactions [BK02b], Burgers’ equationwith actuator dynamics [LK00], heat
equations [BK02a] or parabolic partial integro-differential equations [SK04]. This method
takes advantage of the system’s structure and allows the finding of adequate Lyapunov
functions to assess the stability of the closed-loop system. It was then extended to flexible
beams andwave equations [KSBG07, KSS06, KGBS08, SGWK17]. Finally, it was extended to
first-order hyperbolic PDEs in [KS08, VKC11, CVKB13]. The backstepping methodology can
also be applied to fully actuated coupled nonscalar systems [DMVK13, ADM16, CHO17].

This thesis deals with interconnections of such linear scalar first-order hyperbolic PDE
systems. When only PDE systems are interconnected, the first results were obtained for
stabilizing networks composed of two subsystems [ABABS+18, ADMBA19]. They were ex-
tended to a cascaded network with an arbitrary number of interconnected scalar PDEs
in [Aur20], introducing a complex backstepping transformation. At the same time, back-
stepping-based controllers have been developed for chain structures containing ODE sys-
tems. First, onlyODE-PDE interconnectionswere stabilized [DGK19, DMBAHK18]. Similarly,
PDE-ODE-PDE interconnections [AVDMK19, KK20] were also considered. When the PDE
system is fully actuated at one boundary, the strategy resumes as mapping the initial in-
terconnected system to an exponentially stable cascaded system. Full-state feedback con-
trollers were also designed to stabilize various ODE-PDE-ODE interconnections [WKP18,
DGK18, Geh21]. In most cases, the constructive design is based on several invertible back-
stepping transforms, used to cancel the reflection term on the actuated boundary such
that the PDE has no longer an impact on the state of the controlled ODE [BSBADLE17,
DGK18]. However, they require restrictive structural assumptions.

A major concern for further application lies in the implementability of the proposed
methods. Backstepping-based controllers require the knowledge of the distributed state
to be computed. Usually, observers can be designed following a dual approach. Since
they require know-how and a significant computational effort, their use must be justified
by better closed-loop performances compared to classic boundary controllers (such as
PI). Then, the robustness of the proposed solution, with regard to delays in the actuation
or measurement, parameter uncertainties, or neglected dynamics or disturbances, must
be considered. Indeed, the elementary linear interconnected systems under considera-
tion do not encompass the complexity of real systems dynamics. More specifically, it has
been long known that an arbitrarily small delay in the loop may cause the instability of
the closed-loop system [DLP86]. When the ODE system is actuated, we might need to
invert its dynamics, leading to non-strictly proper control inputs. Similarly, suppressing
the reflection term using the backstepping-based controller may also lead to robustness
issues. It was further shown in [AAMDM18] that hyperbolic PDE systems cannot always be
exponentially stabilized or finite-time stabilized robustly to delays. Consequently, a focus
has been made on robustly stabilizing such networks [BSBADLE19, AADMS21, ABADM23].

Interestingly, robustness analysis sometimes use a time-delay systems representa-
tion [HVL13]. Indeed, simplifying the coupling terms in the equivalent hyperbolic target
system, it becomes possible to rewrite it as a time-delay system, generally of neutral type.
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Using themethod of characteristics, a linear first-order uncoupled hyperbolic PDE system
can be rewritten as a difference equation. First mappings were proposed in [KK14] and
extended to a general class of systems in [ADM19]. The stability properties of hyperbolic
systems can then be analyzed using the equivalent Difference-Delay system represen-
tation [Rus78a]. It further led to the parametrization of the control input by a flat out-
put [Woi13]. The advantages of considering different representations of the same system
were recently emphasized in [Pee21]. We can therefore use specific tools developed for
such delay-differential equations, for instance, take advantage of stability analysis results
obtained in this formalism [HVL13, Nic01]. It can be combined with classic control design
techniques (spectral analysis, pole placement, design of predictors) to stabilize intercon-
nected networks.

Problems under consideration

Thesis Objective

This thesis aims to stabilize networks of linear scalar hyperbolic PDE systems in-
terconnected with ODEs in a chain structure. We present constructive methods
for the design of controllers and observers.
The proposed approaches are based on the backsteppingmethodology, and take
advantage of stability analysis results for time-delay systems.
This thesis considers underactuated networks of hyperbolic PDE systems intercon-

nected with linear ODE systems in a chain structure. As presented earlier, such networks
have an interest inmany practical applications. This thesis introduces in Part I existing re-
sults for two classes of infinite dimensional systems: linear hyperbolic Partial Differential
Equations (PDE) systems and Time-Delay Systems (TDS) of the neutral type. In the simple
case of a linear scalar hyperbolic PDE system, we introduce the strong relationship be-
tween these two classes, using an explicit mapping derived from the backsteppingmethod-
ology. It induces similar asymptotic stability properties. Then we consider a first intercon-
nection between pure transport equations and a linear ODE. Finite-dimensional systems
may here correspond to the actuator or load dynamics. We present the limitations of
classic control approaches, such as Proportional or Proportional Integral boundary feed-
backs, on this simple chain structure. This emphasizes the interest in backstepping-based
controllers, which consider the distributed nature of the dynamics.

After this introductory part, we address different stabilizationproblemson chain struc-
tures. In Part II, we study the case where the available actuation is located at one end of
the network. We first consider in Chapter 4 the case of anODE-PDE-ODE interconnection.
The output feedback design allowing output tracking and disturbance rejection combines
backstepping and frequency analysis. It is presented in [W1, B1, J2]. Next, we consider
in Chapter 5 the case of a chain of arbitrary many scalar hyperbolic PDE systems inter-
connected at the unactuated end with an ODE. To obtain a stabilizing output-feedback
controller, we propose an innovative recursive dynamics interconnection framework. It is
presented in [C8, J4] and applied to drilling systems in [C5]. Indeed, drilling systems can
be modeled by such chain structures. It is illustrated in Chapter 6, where we apply the
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proposed methodology to the state estimation and trajectory tracking issues for two dif-
ferent well architectures.

However, though in some applications, such as drilling, the control input is available at
one end of the network, it is not always the case. Some examples where the actuation is
available at a junction of the domain can be found in traffic control or biomedical devices.
We, therefore, study in Part III this situation. In Chapter 7, we consider the case of two in-
terconnected hyperbolic PDE systems with actuation at the in-between boundary. Due to
new couplings, we use an adequate Fredholm integral transform, whose well-posedness
and invertibility are proved using an operator framework. It is presented in [C6, C7, J3].
This methodology is applied in Chapter 8 to stabilize clamped-string dynamics with an
actuation at the middle of the system [C1]. We end both parts by presenting perspec-
tives and extensions of the proposed approaches to higher-dimensional cases and more
complex networks.

Finally, Part IV is dedicated to under-considered aspects of backstepping-based con-
trollers, such as controller tuning and implementation issues. First, we question in Chap-
ter 9 the choice of reachable target systems using the backstepping methodology. Using
a creative time-affine transform, we show that a general class of nonscalar hyperbolic PDE
systems can be mapped to any arbitrary system of the same class. An adequate target
system should be selected among this class to improve the performances of actual de-
signs based on the backstepping methodology regarding closed-loop properties, such as
faster convergence. We show in Chapter 10 that specified closed-loop properties can be
obtained using the Port-Hamiltonian framework. This strategy was presented in [C4, C2].
An observer design for the considered test case is proposed in Appendix C. Finally, we
introduce in Chapter 11 the use of machine learning to obtain real-time estimations of
the distributed state and parameters for some hyperbolic PDE systems. This could enable
distributed backstepping-based controllers to be used for real applications.
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Part I

Modelisation and preliminary
results

Modélisation et résultats préliminaires
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Introduction

As presented in the introduction, hyperbolic PDE systems (balance laws) intercon-
nected with ODE systems allow for a comprehensive and accurate representation of a
large class of systems involving spatial and temporal dynamics. This modeling facilitates
system-level analysis, control design and provides valuable insights into the behavior and
performance of interconnected systems. Considering the distributed dynamics in the de-
sign results in more complex infinite-dimensional controllers, compared to classic Pro-
portional Integral Derivative (PID) boundary feedback laws, but can lead to better perfor-
mance, such as fastest stabilization. In this introductory part, we give some insights into
the systems under consideration, the methodology we use, and the stakes of this thesis.

First, Chapter 2 introduces fundamental notions such as well-posedness and expo-
nential stability for a scalar linear hyperbolic PDE system, actuated at one boundary. This
simple hyperbolic PDE system corresponds to an elementary subsystem in the chain
structures we consider throughout this thesis. We present some stability criteria from
the literature for the case of conservation laws and constant anti-diagonal in-domain
couplings. To deal with space-varying in-domain couplings, we present the backstepping
methodology [Krs08]. It allows us to map the elementary subsystem to a target system
where these couplings have been moved to the actuated boundary. Using the method
of characteristics, we then present the close relation between hyperbolic PDE systems
and neutral time-delay systems. As highlighted in [ADM19], this formulation can charac-
terize the stability properties of hyperbolic systems in amore general setting. We end this
chapter with perspectives on chain structures and briefly present the organization of the
thesis.

Next, in Chapter 3, we focus on the simplest chain structure: hyperbolic PDE subsys-
tem with no in-domain couplings (conservation laws) coupled at one end with an ODE
system. As known, characterizing the stability of linear neutral time delay systems is
a complex issue. Indeed, the characteristic equation associated with a delay system is
transcendental and has infinitely many roots in the complex plane. Apart from the back-
steppingmethodology [DGK18], several approaches have recently been developed for the
control of coupled PDE-ODE systems, such as predictor-type feedback [Krs08], or flatness
strategies [MK09]. Due to the complexity of their architecture, such controllers require
know-how and computing power to be implemented on real systems. Therefore, their
use must be justified by a failure of traditional controllers, such as Proportional (P) or
Proportional Integral (PI) boundary output feedbacks [SDB05]. Using a frequency domain
approach, we first characterize the open-loop and closed-loop stability of this simple chain
structure using such simple feedback controllers. Their limitation emphasizes the inter-
est in using more complex strategies, such as the backstepping methodology, to stabilize
interconnected systems.
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2 - Preliminary results on scalar linearhyperbolic PDE
systems. Backstepping methodology.

This introductory chapter recalls general results on linear scalar hyperbolic Partial Dif-
ferential Equations (PDE) systems [CVKB13, HVDMK15, BC16, Aur18]. We first present a
class of balance laws using the classic PDE formalism. Such system will serve as an ele-
mentary component in chain structures further considered in this thesis. We also present
the abstract operator framework that allows for stating their well-posedness. Then, we
present general stability results for linear conservation laws and coupled hyperbolic PDE
systems. Using the backstepping methodology, we can link this class of systems to neu-
tral delay equations. It allows us to use some stability results obtained from frequency
analysis and to derive a distributed controller stabilizing the system in finite time. Finally,
we introduce the interconnections in a chain structure considered throughout this thesis
and we present the organization of the manuscript.

Chapitre 2: Résultats préliminaires sur des systèmes scalaires linéaires
d’EDP hyperboliques. Introduction à laméthode de backstepping. Ce chapitre
introductif présente le cadre mathématique général des systèmes de dimension infinie
que sont les systèmes d’équations aux dérivées partielles (EDP) de type hyperbolique.
Nous présentons le formalisme classique considéré dans cette thèse, ainsi que le for-
malisme opérateur, utilisé pour montrer le caractère bien posé de ces systèmes. Nous
présentons des résultats existants sur la stabilité de lois de conservations et de systèmes
d’EDP hyperboliques couplées. Par la méthode de backstepping, nous pouvons réécrire
un système d’EDP hyperbolique couplé sous la forme d’une équation à retard distribué de
type neutre. Cela nous permet d’utiliser des résultats d’analyse fréquentielle pour établir
leur stabilité. Nous introduisons finalement les systèmes interconnectés qui seront con-
sidérés au cours de cette thèse et présentons son organisation globale.
Contents

2.1 Well-posedness of the systems under consideration . . . . . 16

2.1.1 Hyperbolic PDE formulation . . . . . . . . . . . . . . . . . 16
2.1.2 Abstract operator framework formulation andwell-posedness 17

2.2 Stability of linear hyperbolic systems . . . . . . . . . . . . . . 19

2.2.1 Scalar conservation laws . . . . . . . . . . . . . . . . . . . 19
2.2.2 Coupled hyperbolic PDE systems . . . . . . . . . . . . . . 20

2.3 Stabilization of linear hyperbolic PDE system . . . . . . . . . 27

2.3.1 Control input for finite-time stabilization . . . . . . . . . . 27
2.3.2 Delay-robust stabilizing controllers . . . . . . . . . . . . . 29

2.4 Perspectives on more complex networks . . . . . . . . . . . . 30

2.4.1 Extension to chain structures . . . . . . . . . . . . . . . . . 30
2.4.2 Thesis organization . . . . . . . . . . . . . . . . . . . . . . 31
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2.1 . Well-posedness of the systems under consideration

This thesis will mostly consider scalar linear first-order hyperbolic PDE systems with
constant transport speeds (except in Part IV). Before considering their interconnection
in a chain structure, we present results for this class of systems using the classic PDE
formulation. We also introduce the abstract operator formulation, which is used to assess
the well-posedness of the hyperbolic PDE system and will further prove its interest in
Chapter 7. Existing equivalent results for (n+m)×(n+m)hyperbolic systems are gathered
in [Aur18], to which we refer any interested reader.

2.1.1 . Hyperbolic PDE formulation

General framework
For all t ≥ 0, we consider a scalar hyperbolic PDE system of states (u(t, .), v(t, .)) ∈

H1([0, 1],R2), satisfying the following equations
∂

∂t
u(t, x) + λ

∂

∂x
u(t, x) = σ++(x)u(t, x) + σ+−(x)v(t, x), (2.1)

∂

∂t
v(t, x)− µ ∂

∂x
v(t, x) = σ−+(x)u(t, x) + σ−−(x)v(t, x), (2.2)

with the linear boundary conditions
u(t, 0) = qv(t, 0), v(t, 1) = ρu(t, 1) + V (t). (2.3)

We assume that the right boundary is actuated by a control input V (t), as schematically
pictured in Figure 2.1. For the sake of simplicity, we assume we have constant transport
speeds λ, µ > 0 and constant boundary couplings q, ρ. The following results could be
extended to space-dependent velocities [VKC11, HVDMK15, SA17]. We assume we have
continuous in-domain couplings σ±∓ ∈ C0([0, 1],R). We denote (u0, v0) ∈ H1([0, 1],R2)

the corresponding initial conditions, which satisfy the following
Condition 2.1.1 Compatibility conditions u0(0) = qv0(0), v0(1) = ρu0(1) + V (0).
As mentioned later in Remark 2.1.1 [HVDMK15], this condition is not restrictive for the
choice of control input.

Figure 2.1 – Schematic representation of system (2.1)-(2.3) (left) and (2.4)-(2.5) (right).
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First simplification
Note that the equations (2.1)-(2.2) can be first simplified using an exponential change

of variables. Indeed, to apply the backstepping methodology introduced in Section 2.2.2,
we need to suppress the coupling terms σ±± (similarly towhatwas done in the quasilinear
or nonlinear case in [CVKB13, HVDMK15], or in [BC16, Section 5.3]). More precisely, since
the functions σ−−(·), σ++(·) are integrable, the following invertible exponential transfor-
mation is well defined for all t > 0 and all x ∈ [0, 1]:

ū(t, x) = u(t, x)e−
∫ x
0

σ++(ν)
λ

dν , v̄(t, x) = v(t, x)e
+
∫ x
0

σ−−(ν)
µ

dν
.

The new states satisfy
∂

∂t
ū(t, x) + λ

∂

∂x
ū(t, x) =

(
∂

∂t
u(t, x) + λ

∂

∂x
u(t, x)− σ++(x)u(t, x)

)
e−
∫ x
0

σ++(ν)
λ

dν

= σ+−(x)e−
∫ x
0

σ++(ν)
λ

dνv(t, x) = σ̄+(x)v̄(t, x), (2.4)
∂

∂t
v̄(t, x)− µ ∂

∂x
v̄(t, x) = σ̄−(x)ū(t, x),

with σ̄+(x) = e
−
∫ x
0 (

σ++(ν)
λ

+
σ−−(ν)

µ
)dν
σ+−(x) and σ̄−(x) = e

∫ x
0 (

σ++(ν)
λ

+
σ−−(ν)

µ
)dν
σ−+(x).

The boundary conditions (2.3) rewrites
ū(t, 0) = qv̄(t, 0), v̄(t, 1) = ρ̄u(t, 1) + V̄ (t), (2.5)

with ρ̄ = ρe
∫ 1
0 (

σ++(ν)
λ

+
σ−−(ν)

µ
)dν and V̄ (t) = e

∫ 1
0

σ−−(ν)
µ

dν
V (t). Adjusting the corresponding

initial conditions, system (2.1)-(2.3) and (2.4)-(2.5) are therefore equivalent. For this rea-
son, we do not consider in this thesis the presence of diagonal coupling terms σ±± (i.e
σ++, σ−−) in (2.1)-(2.3).

2.1.2 . Abstract operator framework formulation and well-posedness

The hyperbolic systems of form (2.1)-(2.3) belong to the general class of boundary con-
trol systems [Sal87]. They can be rewritten using the following abstract formulation

d

dt

(
u

v

)
= A

(
u

v

)
+BV, (2.6)

where the operator A is defined by
A :D(A) ⊂ H1([0, 1],R2)→ H1([0, 1],R2)(

u

v

)
7−→

(
−λ ∂

∂xu+ σ+−(·)v
µ ∂
∂xv + σ−+(·)u

)
,

on the domain D(A) = {(u, v) ∈ H1([0, 1],R2)| u(0) = qv(0), v(1) = ρu(1)}. The op-
erator A is densely defined. The operators A and B can be identified through their ad-
joints. First, multiplying formally (2.1)-(2.2) by smooth test functions (ϕ, ψ) and integrating
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by parts, we obtain
0 = −

∫ T

0

∫ 1

0

(
∂

∂t
ϕ(t, x) + λ

∂

∂x
ϕ(t, x) + ψ(t, x)σ−+(x)

)
u(t, x)

+

(
∂

∂t
ψ(t, x)− µ ∂

∂x
ψ(t, x) + ϕ(t, x)σ+−(x)

)
v(t, x)dxdt

+

∫ 1

0
ϕT (T, x)u(T, x) + ψ(T, x)v(T, x)− (ϕ(0, x)u0(x) + ψ(0, x)v0(x))dx

+

∫ T

0
(λϕ(t, 1)− µρψ(t, 1))u(t, 1)− (λqϕ(t, 0)− µψ(t, 0))v(t, 0)dt−

∫ T

0
µψ(t, 1)V (t)dt.

Taking formally the canonical scalar product of (2.6) with the smooth test functions (ϕ, ψ)
and comparing with the above equation, we define its adjoint A∗ by

A∗ :D(A∗) ⊂ H1([0, 1],R2)→ H1([0, 1],R2)(
u

v

)
7−→

(
λ ∂
∂xu+ σ−+(·)v

−µ ∂
∂xv + σ+−(·)u

)
,

with D(A∗) = {(u, v) ∈ H1([0, 1],R2)| u(1) = µρ
λ v(1), v(0) = λq

µ u(0)}. It has been
proved in [Rus78b, Theorem 3.1] that A generates a C0-semigroup of bounded opera-
tors on L2([0, 1],R2). Since operator B ∈ L(R, D(A∗)′) satisfies < BV,

(
u

v

)
>= µv(1)V ,

its adjoint B∗ ∈ L(D(A∗),R) is defined by

B∗

(
u

v

)
= µv(1).

The operator B is well-defined since BV is continuous on H1([0, 1],R2) by the trace the-
orem. It satisfies
Condition 2.1.2 Admissibility condition [LT83, LT91, Wei89]

∃M > 0,

∫ T

0
|B∗S(T − t)∗z|2dt ≤M∥z∥2L2 , ∀z ∈ D(A∗),

with S the semigroup generated by the operator A. We have
Lemma 2.1.1: Well-posedness [Rus78b, Theorem 3.1]

For every initial condition (u0, v0) ∈ H1([0, 1],R2) satisfying condition 2.1.1, and every
control laws V ∈ L2([0, t],R), the system (2.1)-(2.3) admits a unique solution (u, v) ∈
C0([0,+∞), H1([0, 1],R2)).
Moreover, there exists constantM, γ and ρt such that

∥(u, v)∥L2 ≤Me−γt
(
∥(u0, v0)∥L2 + ρt∥V[t]∥Dt

)
.
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More generally, for initial conditions (u0, v0) ∈ L2([0, 1],R2), a general solution in
C([0,+∞), L2([0, 1],R2)) [Rus78b] is of form(

u(t, ·)
v(t, ·)

)
= S(t)

(
u0

v0

)
+ C(t)V[t],

where V[t] is the restriction of V to [0, t], and C(t) : L2([0, t],R) → L2([0, 1],R2) is a
bounded linear operator for each t. Then, ρt = ∥C(t)∥, ∀ t ≥ 0.

Remark 2.1.1 In this thesis, we mostly consider the existence of H1 solutions with H1 ini-
tial conditions. However, we consider the exponential stability in the sense of the L2−norm
given in Definition 2.2.1, which is less restrictive than theH1−norm. UsingH1 solutions allows
considering pointwise values in Chapter 7. Considering L2−initial conditions would lead us to
look for solutions in a weak formulation given in Section 2.1.2. Higher regularity of the solution
would require additional compatibility conditions to condition 2.1.1, particularly on the time
derivatives of (u0, v0). As presented in [HVDMK15], it would only have a limited impact on theinitial value of the control input, since a dynamical extension could be added.

2.2 . Stability of linear hyperbolic systems

Next, we focus on the stability properties of scalar linear hyperbolic PDE systems.
Since the approaches we present in this thesis mainly rely on the backstepping method-
ology, it is interesting to question first the stability properties of some hyperbolic systems
in open-loop, that could be potential target systems. We give the following definition

Definition 2.2.1: Exponential stability [BC16]

The hyperbolic system (2.1)-(2.3) is exponentially stable, if there exist ν, C > 0 such that,
for every compatible initial condition (u0, v0) ∈ H1([0, 1],R2), the solution of (2.1)-(2.3)
satisfies

∥(u, v)∥L2 ≤ Ce−νt∥(u0, v0)∥L2 .

2.2.1 . Scalar conservation laws
First, consider the simple case where σ±± ≡ 0↔ σ++ = σ−− = 0. As seen in Section

2.2.2, the backstepping methodology corresponds to a mapping of system (2.1)-(2.3) to a
target system where the in-domain couplings are usually moved to the actuated bound-
ary. In the absence of in-domain coupling terms, system (2.1)-(2.3) reduces to a system of
two conservation laws. Using the method of characteristics, we immediately have that,

for all t > δ
.
=

1

λ
+

1

µ
, v(t, 0) = ρqv(t− δ, 0). (2.7)

Therefore, the boundary-coupled transport equations can be rewritten as a neutral sys-
tem, and, more precisely, a difference equation. The stability properties of such a system
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depend on the location of the roots of the corresponding complex characteristic equa-
tion [HVL13, Nic01], as seen in Chapter 3. It is given by

(1− ρqe−δs)v(s, 0) = 0.

From [HL02, Theorem 2.2], the difference equation (2.7) is exponentially stable iif
Condition 2.2.1 The coefficients ρ, q satisfy |ρq| < 1.
Note that this condition is independent of delay δ. It prevents having infinitely many
poles on the Right-Half Plane (RHP), which would hinder robust stabilization of the system
[LRW96, HVL13, ABABS+18]. Similar conditions exist in a more general setting, as seen in
the next chapters. In particular, the general case of neutral equations with multiple non-
commensurate delays is given in [HL02, HVL13]. A Lyapunov approach led to an explicit
sufficient condition in [CBdN08]. More recently, necessary and sufficient conditions were
derived for nonscalar difference equations in [ABP23], based on a Lyapunov functional
constructed in [RCMDL18].

2.2.2 . Coupled hyperbolic PDE systems
Next, we take into account constant coupling terms σ+−, σ−+ in (2.1)-(2.3). Using a

Lyapunov approach, [BC16] derived sufficient conditions for the exponential stability of
the open loop system. This could help to determine exponentially stable target systems
(see Chapter 10 for further considerations) in the backsteppingmethodology. From [BC16,
Corollary 5.5], [Aur18] derived the following

Lemma 2.2.1: Sufficient stability conditions [Aur18, Lemma 2.2.2]

If q ̸= 0, system (2.1)-(2.3) is exponentially stable in open-loop if one condition is satisfied
1. σ+− = σ−+ = 0,
2. σ+−σ−+ < 0, and ρ2 < −λσ−+

µσ+− < 1
q2
.

In the nonscalar case, the above conditions rewrite as Linear Matrices Inequalities
(LMIs). This sufficient conditionwas extended in [BSBAA+19], rewriting system (2.1)-(2.3) as
a neutral systemwith distributed delays. This is done using the backstepping methodology.

Introduction to the backstepping methodology
To avoid further case distinctions, assume q ̸= 0 (this approach could be adapted

to this situation [HVDMK15, Section 3.5]). We apply here the backstepping methodology
[Krs08] for the coupled scalar linear hyperbolic PDE system (2.1)-(2.3). This methodology
relies on an invertible change of variables, usually a Volterra integral transform.

Volterra integral transform We consider the following Volterra integral transform
K : H1([0, 1],R2) −→ H1([0, 1],R2)(

u(t, ·)
v(t, ·)

)
7→

(
u(t, ·)
v(t, ·)

)
−
∫ ·

0

(
K++ K+−

K−+ K−−

)
(·, y)

(
u(t, y)

v(t, y)

)
dy (2.8)

The functionsK±±, K±∓ are referred to as the kernels of the transformation and are all
defined on the triangular domain T − = {(x, y) ∈ S, y ≤ x}.
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Theorem 2.2.1: Invertibility of Volterra integral transforms [Yos60]

Define a Volterra integral operator K of form (2.8), with kernels K ∈ C0
pw(T −,R2×2).

For any function f ∈ H1([0, 1],R2), the equation
f(·) = K(φ)

of unknown φ ∈ H1([0, 1],R2) admits a unique solution. The inverse transformation
K−1 is also a Volterra integral transform of form (2.8).
This boundedly invertible transform will map the initial system to a so-called target

system with equivalent stability properties. Indeed, we have the following
Lemma 2.2.2: Equivalent stability properties

For any (u, v) ∈ H1([0, 1],R2) exponentially stable in the sense of Definition 2.2.1, the
target system (α, β) = K(u, v) ∈ H1([0, 1],R2), with K a Volterra integral transform
defined by (2.8) is also exponentially stable in this sense. The converse holds.

Proof : The proof relies on the invertibility and boundedness of transform (2.8). Assume there exists ν, C >

0 such that for all t > 0, ∥u(t, ·), v(t, ·)∥2
L2 ≤ Ce−νt∥u0, v0∥2L2 . Let us show that (α, β) = K(u, v) is expo-

nentially stable.
For all t > 0, we have

∥α(t, ·), β(t, ·)∥2
L2 =

∫ 1

0
α(t, ν)2 + β(t, ν)2dν

=

∫ 1

0
(u(t, ν)−

∫ ν

0
K++(ν, y)u(t, y) +K+−(ν, y)v(t, y)dy)2

+ (v(t, ν)−
∫ ν

0
K−+(ν, y)u(t, y) +K−−(ν, y)v(t, y)dy)2dν

≤ 2

∫ 1

0
A+(ν)u2(t, ν) +A−(ν)v2(t, ν)dν

≤ max( max
ν∈[0,1]

(A+(ν)), max
ν∈[0,1]

(A−(ν)))︸ ︷︷ ︸
AM

∥u(t, ·), v(t, ·)∥2
L2 ≤ Ke−νt∥u0, v0∥2L2 ,

with A±(ν) = 1 +
∫ 1
ν K

+±(y, ν)2 + K−±(y, ν)2dy and K = CAM . Using the boundedness of the in-
verse transform, such that (u0, v0) = K−1(α0, β0), we show the existence of Ā0 such that ∥u0, v0∥2L2 ≤
Ā0∥α0, β0∥2L2 , which concludes the proof. We can prove similarly the other implication. ■

The chosen target system must be simple enough to assess interesting stability prop-
erties easily and reachable by a boundedly invertible transform to share the same sta-
bility properties. In our simple case, the most natural choice of a target system would be
to suppress the in-domain couplings.

Target system In the case of system (2.1)-(2.3), the potentially destabilizing terms are
the in-domain couplings σ−+, σ+− [BC11, BC16]. Define a target system as two conserva-
tion laws

∂

∂t
α(t, x) + λ

∂

∂x
α(t, x) = 0,

∂

∂t
β(t, x)− µ ∂

∂x
β(t, x) = 0, (2.9)
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with boundary conditions
α(t, 0) = qβ(t, 0), β(t, 1) = ρα(t, 1)−

∫ 1

0
Nα(y)α(t, y) +Nβ(y)β(t, y)dy + V (t), (2.10)

with Nα, Nβ continuous functions defined on [0, 1], whom explicit expression is given
later. It is represented in Figure 2.2 (left).

Figure 2.2 – Schematic representation of the target system (2.9)-(2.10)(left) and with control input (2.24) (right)

Well-posedness of an adequate transformation The first objective consists in proving
the existence of a transformation of form (2.8), mapping the initial system (2.1)-(2.3) to the
target system (2.9)-(2.10). By Lemma 2.2.2, the invertibility of transform (2.8) guarantees
that both systems share equivalent stability properties. We want to obtain the equations
satisfied by the kernels of the transform K such that(

α(t, x)

β(t, x)

)
=

(
u(t, x)

v(t, x)

)
−
∫ x

0

(
K++(x, y) K+−(x, y)

K−+(x, y) K−−(x, y)

)(
u(t, y)

v(t, y)

)
dy. (2.11)

Introduce the following kernel equations
λ
∂

∂x
K++(x, y) + λ

∂

∂y
K++(x, y) = −σ−+(y)K+−(x, y), (2.12)

λ
∂

∂x
K+−(x, y)− µ ∂

∂y
K+−(x, y) = −σ+−(y)K++(x, y),

µ
∂

∂x
K−+(x, y)− λ ∂

∂y
K−+(x, y) = σ−+(y)K−−(x, y),

µ
∂

∂x
K−−(x, y) + µ

∂

∂y
K−−(x, y) = σ+−(y)K−+(x, y),

with the boundary conditions
K+−(x, x) =

σ+−(x)

λ+ µ
, K++(x, 0) =

µ

qλ
K+−(x, 0), (2.13)

K−+(x, x) = −σ
−+(x)

λ+ µ
, K−−(x, 0) =

qλ

µ
K−+(x, 0). (2.14)
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We have the following lemma
Lemma 2.2.3: Well-posedness of kernel equations [CVKB13, A.1]

The system (2.12)-(2.14) admits a unique solutionK ∈ C0(T −,R2×2).

Proof : The proof is quite usual [Krs08, HDMVK16] and [Aur18, Section 3.2.1]. Using the method of charac-
teristics, we can write the integral equations associated with equations (2.12)-(2.14). They are then solved using
the method of successive approximations (see Appendix A for more details on the numerical method). ■

Note that the regularity of the solution depends on one of the coupling terms σ±∓.
For constant coefficients, an explicit solution to the kernel equations can be derived using
Bessel and Marcum Q-functions [VK14]. Next, we have the following theorem

Theorem 2.2.2: Mapping of an adequate system

The transform (2.11)with kernels defined by (2.12)-(2.14)maps the initial system (2.1)-(2.3)
to the target system (2.9)-(2.10).
Proof : Differentiating (2.11) with respect to time and integrating by parts, we obtain

∂

∂t
α(t, x) =

∂

∂t
u(t, x)−

∫ x

0
K++(x, y)

∂

∂t
u(t, y) +K+−(x, y)

∂

∂t
v(t, y)dy

=− λ
∂

∂x
u(t, x) + σ+−(x)v(t, x)−

∫ x

0
K++(x, y)

(
σ+−(y)v(t, x)− λ

∂

∂y
u(t, y)

)
+K+−(x, y)

(
µ
∂

∂y
v(t, y) + σ−+(y)u(t, y)

)
dy

=− λ
∂

∂x
u(t, x) + σ+−(x)v(t, x) + λK++(x, x)u(t, x)− λK++(x, 0)u(t, 0)

− µK+−(x, x)v(t, x) + µK+−(x, 0)v(t, 0)−
∫ x

0

(
K++(x, y)σ+−(y)

−µ
∂

∂y
K+−(x, y)

)
v(t, y) +

(
λ
∂

∂y
K++(x, y) +K+−(x, y)σ−+(y)

)
u(t, y)dy.

Similarly, differentiating (2.11) with respect to space, we obtain
∂

∂x
α(t, x) =

∂

∂x
u(t, x)−K++(x, x)u(t, x)−K+−(x, x)v(t, x)

−
∫ x

0

∂

∂x
K++(x, y)u(t, y) +

∂

∂x
K+−(x, y)v(t, y)dy.

This yields
∂

∂t
α(t, x) + λ

∂

∂x
α(t, x) =

(
σ+−(x)− λK+−(x, x)− µK+−(x, x)

)
v(t, x)

+
(
µK+−(x, 0)− qλK++(x, 0)

)
v(t, 0)

−
∫ 1

0

(
λ
∂

∂x
K++(x, y) + λ

∂

∂y
K+−(x, y) + σ−+(y)K+−(x, y)

)
u(t, y)dy

−
∫ 1

0

(
λ
∂

∂x
K+−(x, y)− µ

∂

∂y
K+−(x, y) + σ+−(y)K++(x, y)

)
v(t, y)dy

= 0 by (2.12)− (2.13).
Similarly, we apply the same operations on the second component of (2.11), and conclude by Lemma 2.2.3. ■

Thus, the existence of a unique solution to system (2.12)-(2.14) consequently, implies
the existence of the transformation (2.11).

23



Explicit expression of the inverse transform In the following, we derive an explicit ex-
pression of the inverse transform L .

= K−1 such that

∀ t > 0, x ∈ [0, 1],

(
u(t, x)

v(t, x)

)
= L(

(
α(t, x)

β(t, x)

)
).

As mentioned, it is also a Volterra integral transform [Krs08]. Following the same ap-
proach as in the previous section, we show that the kernels L±±, L∓± of the inverse
transform are defined by the set of PDEs

λ
∂

∂x
L++(x, y) + λ

∂

∂y
L++(x, y) = σ+−(x)L−+(x, y), (2.15)

λ
∂

∂x
L+−(x, y)− µ ∂

∂y
L+−(x, y) = σ+−(x)L−−(x, y), (2.16)

µ
∂

∂x
L−+(x, y)− λ ∂

∂y
L−+(x, y) = −σ−+(x)L++(x, y), (2.17)

µ
∂

∂x
L−−(x, y) + µ

∂

∂y
L−−(x, y) = −σ−+(x)L+−(x, y), (2.18)

with the boundary conditions
L++(x, 0) =

µ

qλ
L+−(x, 0), L−−(x, 0) =

qλ

µ
L−+(x, 0),

L+−(x, x) =
σ+−(x)

λ+ µ
, L−+(x, x) = −σ

−+(x)

λ+ µ
. (2.19)

Similarly, fromTheorem2.2.3, there exists a unique solution to (2.15)-(2.19) inC0(T −,R2×2).
A tutorial for the numerical resolution of (2.15)-(2.18) can be found in Appendix A. Using
this inverse transformation, we can rewrite the boundary condition in x = 1 for the target
system
β(t, 1) =V (t) + ρα(t, 1)

+

∫ 1

0

(
ρL++(1, y)− L−+(1, y)

)
α(t, y) +

(
ρL+−(1, y)− L−−(1, y)

)
β(t, y)dy.

DefiningNα(y) = L−+(1, y)−ρL++(1, y), Nβ(y) = L−−(1, y)−ρL+−(1, y), we obtain the
expression (2.10).

Stability properties of the open-loop system
Distributed delay form Since the initial and target systems share the same stability

properties, we can now study the stability properties of the target system (2.9)-(2.10). Note
that for any initial conditions (α0, β0) = K(u0, v0) ∈ H1([0, 1],R2) satisfying a compatibility
condition (2.1.1), it admits a unique solution (α(t, ·), β(t, ·)) ∈ H1([0, 1],R2), for all t ≥ 0.
We now use the method of characteristics to determine the delay equation satisfied by
β(t, 1), when t > δ. First, the transport equations (2.9) yields
β(t, x) = β(t− 1− x

µ
, 1), α(t, x) = α(t− x

λ
, 0) = qβ(t− x

λ
, 0) = qβ(t− x

λ
− 1

µ
, 1). (2.20)

24



Consequently, replacing α, β by their delayed formulation (2.20) in the boundary condi-
tion (2.10), and performing two changes of variables in the integral terms, we obtain
β(t, 1) = ρqβ(t− δ, 1)−

∫ 1

0
qNα(y)β(t− y

λ
− 1

µ
, 1) +Nβ(y)β(t− 1− y

µ
, 1)dy

= ρqβ(t− δ, 1)−
∫ 1

µ

0
µNβ(1− µs)β(t− s, 1)ds−

∫ δ

1
µ

qλNα(λ(s− 1

µ
))β(t− s, 1)ds.

Introducing N(s) = 1[0, 1
µ
](s)µN

β(1 − µs) + 1[ 1
µ
,δ](s)qλN

α(λ(s − 1
µ)), we finally get for

all t ≥ δ,
β(t, 1) = ρqβ(t− δ, 1)−

∫ δ

0
N(s)β(t− s, 1)ds. (2.21)

Moreover, we can express β(t, 1) as a function of the initial conditions for t < δ.
Lemma 2.2.4: Expression for t < δ [Aur18, Lemma 5.1.1]

For t < δ, the function β(t, 1) can be expressed as a function of (α0, β0) ∈ H1([0, 1],R2),
the initial conditions of (2.9)-(2.10). Thus, β[t](·, 1) ∈ H1((−δ, 0],R), ∀t ≥ δ.

Proof : The complete proof for λ ≥ µ is given in [Aur18, Lemma 5.1.1]. It consists of several steps. We
solveα(t, x) andβ(t, x) for t ∈ [0, δ] through themethodof characteristics as a function of the initial conditions
and β(·, 1). We then solve β(t, 1) using the solution of α(t, x) and β(t, x) and the boundary condition (2.10).
We show that it verifies a Volterra integral equation of the second kind, which admits a unique solution. ■

Since (α0, β0) = K(u0, v0), there exists a function ϕu0,v0(·) ∈ H1((−δ, 0],R) that de-
pends on the initial condition (u0, v0) such that β(·, 1) is the solution of the initial value
problem (2.21) with the initial data β(·, 1)0 = ϕu0,v0 .

From [ADM19, Aur18], we also have
Theorem 2.2.3: Comparable representations [Aur18, Theorem 5.1.1]

Consider the operator L0 defined by
L0 :H1([−δ, 0],R)→ R

ϕ[t] 7→ ρqϕ[t](δ)−
∫ δ

0
N(ν)ϕ[t](ν)dν.

The space generated by the solutions of
ϕ[t] = L0ϕ[t]. (2.22)

with the initial condition ϕ0 = ϕu0,v0 ∈ H1([−δ, 0],R) is isomorphic to the space gen-
erated by the solutions of (2.9)-(2.10).
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Theorem 2.2.4: Comparable stability properties [Aur18, Theorem 5.1.2]

Consider (u, v) the solution of (2.9)-(2.10) along with the initial condition (u0, v0) and
ϕ[t] the solution of (2.22) along with the initial condition ϕu0,v0 . There exist r > 0 and
two constants C1, C2 > 0 such that for all t > max(δ, r), the following inequality holds

C1∥ϕ[t]∥Dr ≤ ∥(u, v)∥L2 ≤ C2∥ϕ[t]∥Dδ
.

Proof : The proof is given in the more general non-scalar case in [Aur18, Theorem 5.2.4] and in [ADM19]. ■
It proves that the stability of β(t, 1) implies the stability of the states (u, v). There-

fore, we can establish sufficient stability criterion for the open-loop system (2.9)-(2.10) (or
equivalently (2.1)-(2.3)) based on the stability analysis of delay equation (2.21).

Importance of the boundary couplings Consider the open-loop system (2.9)-(2.10). Rewrit-
ing (2.21) in the frequency domain, we obtain the associated characteristic equation

1− ρqe−δs +
∫ δ

0
N(ν)e−νsdν = 0. (2.23)

For all σ > 0, denote Pσ = {s ∈ C | ℜ(s) > σ}. First, let us state
Lemma 2.2.5: Extension of Rouché’s Theorem [Aur18, Section 6.1]

For all σ > 0, and two holomorphic functions F, H such that |H(s)| −→
|s|→+∞

0.

If the function det(F ) has an infinite number of zeros on Pσ , then the function det(F +

H) has an infinite number of zeros whose real parts are strictly positive.
As a direct consequence, we have the following
Theorem 2.2.5: Instability of the open-loop system

If |ρq| > 1, the characteristic equation (2.23) has an infinite number of roots with a
positive real part. Consequently, system (2.1)-(2.3) cannot be delay-robustly stabilized.
Proof : DenoteF (s) = 1−ρqe−sδ andH(s) =

∫ δ
0 N(ν)e−νsdν. Using the Riemann-Lebesgue theorem, we

have |H(s)| −→
|s|→∞
ℜ(s)≥0

0. The functionF has an infinite number of zeros whose real parts are equal to ln(|ρq|)
2δ

. By
Lemma 2.2.5, the holomorphic function F +H has infinitely many roots in the complex Right Half Plane (RHP).
It has been shown in [LRW96] that having an open-loop transfer function with infinitely many poles on the
closed right half-plane implies no (delay-)robustness margins in closed-loop, that is introducing any arbitrarily
small delay in the actuation destabilizes the closed-loop system. Thus, by [LRW96, Theorem 1.2], this neutral
system cannot be delay-robustly stabilized. Consequently, system (2.1)-(2.3) cannot be delay-robustly stabilized
by Theorem 2.2.4. ■

This emphasizes the further requirement that condition 2.2.1 is satisfied for the sys-
tems we consider in this thesis. We will refer to it as a delay-robustness condition.

Stability criteria for constant in-domain couplings Finally, in the case where the in-
domain couplings are space-independent, explicit criteria for the stability of the system
(2.1)-(2.3) in open-loop can be derived. To simplify the notations, we define the following
parameters a .

= q 1
µσ

−+ + ρ 1
λσ

+−, R
.
= 1

λµσ
+−σ−+, and denote In, n ∈ Z the modified

Bessel functions of the first kind. We have the following
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Theorem 2.2.6: [BSBAA+19, Proposition 3]

Consider system (2.1)-(2.3) in open-loop, with q ̸= 0. If Condition 2. from Lemma 2.2.1 or
one of the conditions below is satisfied

1. σ+−σ−+ ≥ 0, ρq ≥ 0, and |a|+ |R|( 1
1+|ρq| −

1−|ρq|
2

)
< 1− |ρq|

2. σ+−σ−+ ≥ 0, ρq < 0 and |a|+ |R|1+|ρq|
2 < 1− |ρq|,

3. σ+−σ−+ < 0, ρq ≥ 0 and
|a|I0

(√
|R|
)
+ |R|

(
1

1+|ρq| −
1−|ρq|

2

)
×
[
I0

(√
|R|
)
− I2

(√
|R|
)]

< 1− |ρq|,
4. σ+−σ−+ < 0, ρq < 0 and
|a|I0

(√
|R|
)
+ |R|1+|ρq|

2 ×
[
I0

(√
|R|
)
− I2

(√
|R|
)]

< 1− |ρq|.
then, system (2.1)-(2.3) is exponentially stable in the sense of the L2-norm.
This theorem can help to determine adequate open-loop unstable systems in simula-

tions for an illustrative purpose, but also exponentially stable target systems.

2.3 . Stabilization of linear hyperbolic PDE system

2.3.1 . Control input for finite-time stabilization
Once we defined the backstepping transform (2.11) and the target system (2.9)-(2.10), a

natural choice of control input is to cancel all the terms at the actuated boundary x = 1.
To guarantee the finite-time convergence of the target system (2.9)-(2.10), we define

V (t) = −ρu(t, 1) +
∫ 1

0
K−+(1, y)u(t, y) +K−−(1, y)v(t, y)dy. (2.24)

As represented in Figure 2.2 (right), it becomes a cascade of two transport equationswith a
zero-boundary condition. It converges, for any initial condition, to its equilibrium in finite
time δ [VKC11, Theorem 1] as does the original system (2.1)-(2.3).

Implementability and observer design
Note that implementing the control law (2.24) requires knowledge of the distributed

state. It is then necessary to design an observer to obtain a state estimation. This can be
done following a dual approach, as presented in [VKC11, Section 4]. Backstepping-based
controllers require higher computational effort than classic Proportional or Proportional
Integral boundary feedbacks, which can be easily computed in real-time. Indeed, obtain-
ing the distributed estimation is usually done by solving a finite element scheme. A trade-
off must be found between a high mesh resolution (which lowers the implementation
error) and an acceptable computation time (reducing the space mesh implies reducing
the time mesh). This leads us to a first requirement

Requirement 2.3.1: Design of output-feedback controllers

Design an implementable controller V (t) using a boundary measurement y(t) to expo-
nentially stabilize the system under consideration.
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Robustness issues
Next, the control input (2.24) cancels all the reflection terms. It allows to map the ini-

tial system to the simplest target system and guarantees the best performance (lowest
stabilization time). However, as themodel given by equations (2.1)-(2.3) can result from an
approximation of a more complex physical system, the robustness of the control input
must be taken into account. Discrepancies with the real system can come from uncertain-
ties in the physical parameters, neglected dynamics, disturbances acting on the system,
and delays acting on the actuator or sensors. For instance, the disturbance rejection for
this system class was considered in [Aam13]. This problem is also considered for a more
complex chain structure in Chapter 4. Adaptive observers can be designed to estimate the
system parameters jointly with the distributed state [ADAK16b]. Following [Aur18, Chapter
6], we study the impact of a small delay ηϵ > 0 on the stability of the closed-loop system,
based on the stability results from Section 2.2. In the target system, the boundary condi-
tion (2.10) rewrites

β(t, 1) = ρα(t, 1)−
∫ 1

0
Nα(y)α(t, y) +Nβ(y)β(t, y)dy + V (t− ηϵ).

For all t ≥ δ, using (2.21) in closed-loop with delayed control input (2.24), we obtain the
delay differential equation satisfied by the boundary state β(·, 1)
β(t, 1) = ρqβ(t− δ, 1)− ρqβ(t− (δ + ηϵ), 1)−

∫ δ

0
N(s)(β(t− s, 1)− β(t− (s+ ηϵ), 1))ds.

The characteristic equation associated to the above neutral DDE is
1− ρqe−δs + ρqe−(δ+ηϵ)s + (1− e−ηϵs)

∫ δ

0
N(ν)e−νsdν = 0. (2.25)

Based on Lemma 2.2.5, [Aur18] showed the following
Theorem 2.3.1: Robust stabilization [Aur18, Theorem 6.2.3]

If |ρq| > 1
2 , then for any ηϵ > 0, the system (2.1)-(2.3) along with the delayed backstep-

ping control law V (t − ηϵ) is unstable. It cannot be finite-time stabilized robustly to
delays.
Therefore, in some cases, it appears necessary to avoid the total cancellation of the

proximal reflection, and thereby to give up finite-time convergence. It leads us to a second
requirement

Requirement 2.3.2: Design robust controllers

Design a stabilizing output-feedback controller V (t) that is robust to small delays.
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2.3.2 . Delay-robust stabilizing controllers
First, recall the following definition
Definition 2.3.1: Delay-robust stabilization [LRW96]

The controller V (t) = V(u, v) with V linear operator, delay-robustly stabilizes the sys-
tem (2.1)-(2.3) in the sense of [LRW96] if the closed-loop system is exponentially sta-
ble in the sense of Definition 2.2.1 and if there exists a delay η∗ > 0 such that for
any 0 ≤ ηϵ ≤ η∗, the system (2.1)-(2.3) with the delayed control law V (t − ηϵ) remains
exponentially stable.
In [AAMDM18], the authors proposed two solutions to guarantee the delay-robustness

of the controller. First, to preserve some reflection terms at the actuated boundary, then
to filter the control input.

Partial cancellation of the reflection term
To overcome the stability limitation given by Theorem 2.3.1, while maintaining the dis-

tributed nature of the controller (2.24), a first solution is to slightly modify the control law
as follows

V2(t) = V (t) + (ρ− ρ̃)(u(t, 1)−
∫ 1

0
K++(x, y)u(t, y) +K+−(x, y)v(t, y)dy, (2.26)

= −ρ̃α(t, 1) +
∫ 1

0
Nα(1, ν)α(t, ν) +Nβ(1, ν)β(t, ν)dν,

with |ρ̃| < 1− |ρq|
|q|

, (2.27)
which is well-defined under condition 2.2.1. With this new control input, the boundary
condition in x = 1 (2.10) rewrites β(t, 1) = (ρ− ρ̃)α(t, 1), with |ρ− ρ̃| < 1 by (2.27). We have
the following

Theorem 2.3.2: Robust stabilization [AAMDM18, Theorem 4]

The control law defined by (2.26) with ρ̃ satisfying (2.27) delay-robustly stabilizes the
system (2.1)-(2.3) in the sense of Definition 2.3.1.
This first solution has the disadvantage of adding complexity to the control design by

introducing new parameters. This is all the more true for cascaded systems or nonscalar
hyperbolic systems, where the boundary couplings are matrices and not scalar terms.

Filtering of the backstepping-based controller
In [AAMDM18], the authors proposed a filteredboundary feedback, given in the Laplace

domain by
U3(s) = −

1 + as

1 + bs
ρu(s, 1), (2.28)

29



with a, b > 0 tuning coefficients. To keep the distributed structure of the controller, an
alternative could be to filter the control input (2.24). Define a control V3(t) by its Laplacetransform as

V3(s) =
1 + as

1 + bs
V (s), (2.29)

with a, b > 0. For any delay ηϵ > 0, the neutral characteristic equation associated with
β(t, 1) = ρα(t, 1)−

∫ 1
0 N

α(y)α(t, y) +Nβ(y)β(t, y)dy + V3(t− ηϵ) is given by
0 = s

(
1− a

b
e−ηϵs − ρqe−δs + ρq

a

b
e−s(δ+ηϵ) + (1− a

b
e−ηϵs)H(s)

)
+

1

b
(1− ρqe−δs)(1− e−ηϵs) + 1

b
(1− e−ηϵs)H(s),

withH(s) =
∫ δ
0 N(ν)e−νsdν. By Riemann-Lebesgue lemma, |H(s)| −→

|s|→∞
ℜ(s)≥0

0.

Considering the neutral delay-differential equation with multiple delays of form sF1(s) +

F2(s) = 0, a sharp sufficient condition for exponential stability is given by [HVL13, Fab13]
|a
b
|+ |ρq|+ |a

b
ρq| < 1, and 1

b
> (1 + 2|ρq|)

=⇒ a

b
<

1− |ρq|
1 + |ρq|

, and b < 1

1 + 2|ρq|
.

With more insights on the stability of neutral delay-differential equation with integral
terms and multiple pointwise delays, we could determine necessary and sufficient con-
ditions for (2.29) to robustly stabilize the plant (2.1)-(2.3). This is out of the scope of this
thesis. As seen in Chapter 4, filtering techniques can be used to robustify the controller
designed for more complex interconnected chain structures.

2.4 . Perspectives on more complex networks

So far, we have only introduced stability and well-posedness results for the test case
of a single linear scalar hyperbolic PDE system. As seen in the previous sections, many
results exist to assess the stability or stabilize these elementary systems. Note also that
most results presented in this introductory chapter are extended to nonscalar hyperbolic
PDE systems in [Aur18].

2.4.1 . Extension to chain structures
Next, wewill mainly focus on chain structures composed of the elementary hyperbolic

PDE systems of the form (2.1)-(2.3), interconnected together through their boundaries or
with ODE systems (except in Part IV where we consider nonscalar PDE systems). Such
interconnected networks belong to the class of under-actuated systems. Though one sub-
system might be fully actuated at this boundary, others are not. The dynamics of the
actuated subsystem must be considered to stabilize the other subsystems and, conse-
quently, the chain structure. These networks are also related to integral delay equations
of the neutral type with several pointwise and distributed delays.
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As mentioned in the introduction, some results already existed on the stabilization of
chain structures, for instance, hyperbolic PDE-ODE interconnections [DMBAHK18, DGK19,
ABABS+18, IGR21], or multiple PDE subsystems [SA17, Aur20]. However, in most, if not all,
existing results, the control input is located at one end of the chain structure.

Thesis Objectives

This thesis aims at
• pursuing existing works on control of hyperbolic PDE systems intercon-
nected with ODEs in a chain structure, satisfying Requirements 2.3.1-2.3.2,

• overcoming the limitation of actuation at the end of the chain structure by
considering actuation at a junction,

• presenting some perspectives on under-considered implementation-related
aspects of the backstepping methodology (reduction of the computation
time, choice of a meaningful target system).

2.4.2 . Thesis organization
This thesis is organized as follows:
Chapter 3: Characterization of P/PI controllers for a simple chain structure. This

chapter considers conservation laws interconnected at one end with a nonscalar ODE.
It questions the effectiveness of the widely used Proportional and Proportional-Integral
boundary feedback in this simple chain configuration. It introduces the frequency domain
considerations proposed in the rest of the thesis and justifies the use of the backstepping
methodology and the development of new tools to stabilize more complex chain struc-
tures.

Next, we focus in Part II on chain structures where the actuation is located at one end.
Chapter 4: Output regulation and tracking for linear ODE-hyperbolic PDE-ODE

systems. This chapter considers an ODE-hyperbolic PDE-ODE interconnection (Figure
2.3). We propose an output-feedback controller to solve output regulation and distur-
bance rejection under some natural but restrictive structural assumptions. We use sta-
bility analysis in the frequency domain and the backstepping methodology. Robustness
is guaranteed using filtering techniques.

Figure 2.3 – System under consideration in Chapter 4.
Output regulation and disturbance rejection. Focus on Requirements 2.3.1-2.3.2.
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Chapter 5: Stabilizing a chain of N hyperbolic PDE systems interconnected with
an ODE. In this chapter, we consider a chain of arbitrarily many hyperbolic PDE systems,
actuated at one end and interconnected at the other end with an ODE system (Figure
2.4). We propose an output-feedback controller to stabilize the network using a recur-
sive dynamics interconnection framework. We use the backstepping methodology and the
method of characteristics to derive the delay equations satisfied by the boundary states.
We use predictors to obtain real-time and future values of the distributed state.

Figure 2.4 – System under consideration in Chapter 5.
Exponential stabilization. Focus on Requirement 2.3.1.

Chapter 6: Application to drilling systems for state estimation and trajectory
tracking. In this chapter, we illustrate the observer and controller designs proposed in
the previous chapters in the context of drilling systems. We propose a state estimation
of the axial motion for a vertical drilling system and a controller for trajectory tracking for
the angular velocity in the case of a deviated well path.
At the end of this part, we present some natural extensions and the challenges that re-
main to be solved.

In Part III, we consider a chain structure where the actuation is not located at one end
but at one in-between boundary.

Chapter 7: Stabilizing two hyperbolic PDE systems with in-between boundary
actuation. This chapter considers a chain of two interconnected hyperbolic PDE sys-
tems, where the actuation is located at the in-between boundary (Figure 2.5). We pro-
pose an output feedback controller guaranteeing exponential stabilization of the system.
We use the backstepping methodology with a Fredholm Integral transform that is proved
to be invertible under a specific controllability assumption. Once again, our proposed
methodology can also stabilize the solution of some integral delay equations.

Figure 2.5 – System under consideration in Chapter 7.
Exponential stabilization. Focus on Requirement 2.3.1.

Chapter 8: Application to the stabilization of a clamped string. In this chapter, we
consider stabilizing a clamped string using a strain actuation at the middle of the string.
This problem can be related to stabilizing an integral delay equation of the form consid-
ered in the previous chapter. We therefore adapt the methodology presented herein.
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We end both Parts II and III by presenting some natural extensions to the systems
considered (nonscalar case, more complex networks...)

Finally, in Part IV, we ponder on some current implementation-related limitations of
the backstepping approach.

Chapter 9: Arbitrary target system for a general class of nonscalar hyperbolic
PDE systems. In this chapter, we show that using a specific time-affine transform, we
can map a general nonscalar linear hyperbolic PDE system to any target system of the
same class. This offers a generalization of the backstepping methodology but questions
the choice of an adequate target system.

Chapter 10: On the use of the Port-Hamiltonian framework to determine ad-
equate target systems. In this chapter, we present the use of the Port-Hamiltonian
framework to select an adequate target system in the class presented in the previous
chapter. This guarantees specific closed-loop properties with a physical meaning (sta-
bility, energy decay rate). We illustrate this approach for the damping assignment of a
clamped string and a Timoshenko beam. We present in Appendix C two observer designs
for this latter system.

Chapter 11: Machine Learning techniques for distributed state and parameter
estimation. In this chapter, we introduce some neural network-based architecture as a
surrogate to classic backstepping-based observers in the same test case of a Timoshenko
beam. We also present the potential of deep-learning-based solutions for parameter es-
timation in the case of drilling systems.

We gather in the Appendices some supplementary material that aims to understand
this thesis better. First, in Appendix A, we present some numerical methods we used for
kernel resolution. It could be read after Chapter 2 and the introduction of the backstep-
ping methodology. Next, we give in Appendix B the proof of Theorem 7.2.2. Before read-
ing this proof, we advise any reader first to understand Chapter 7. It is pretty technical
and requires some linear algebra and operator framework knowledge. Finally, we present
in Appendix C some complementary results in the line of Chapter 10. We advise you to
read this chapter first to understand this test case better. Here, we question the impact
of the target system and the remaining degrees of freedom in the kernel equations for a
backstepping-based observer design. This chapter gathers some numerical observations
that might be obvious to researchers familiar with the backstepping methodology.
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3 - Characterizationof P/PI controllers for simple trans-
port equations with load or actuator dynamics

This chapter aims to study the potential ofwidely used Proportional (P) or Proportional
Integral (PI) boundary output feedback controllers to stabilize a simple class of intercon-
nected systems. We consider first-order scalar hyperbolic PDE systemswith no in-domain
couplings (conservation laws) coupled at one end with an ODE system that can represent
the finite-dimensional dynamics of an actuator or a load. This methodological chapter
presents how frequency-domain approaches developed for delay-differential equations
(DDEs) can be relevant for analyzing coupled hyperbolic PDE-ODE systems. Using a D-
decomposition method [Nei49] developed for time-delay systems (TDS), we character-
ize the closed-loop stability intervals in the parameter space of the P/PI controller gains
for two test cases. Using a frequency-domain representation, we study the location of
the characteristic roots of the closed-loop systems. We can therefore define explicit cri-
teria for the proportional and integral gains to ensure that all the poles have negative
real parts [GKC03]. These simple controllers can robustly stabilize the elementary chain
structure if such criteria are met. However, they cannot always be satisfied. This empha-
sizes the limitations of low computational complexity controllers and justifies the inter-
est in other methods, such as the backstepping methodology, to stabilize interconnected
infinite-dimensional systems.

Chapitre 3: Charactérisation des contrôleurs P/PI pour une structure de
chaîne simple lois de conservation-EDO. Ce chapitre a pour objectif d’étudier le po-
tentiel des contrôleurs Proportionnel / Proportionnel-Intégral pour la stabilisation d’une
classe simple de systèmes interconnectés. Nous considérons des systèmes d’EDP hyper-
boliques scalaires sans couplages dans le domaine (lois de conservation), couplés à une
extrémité avec un système d’EDO, qui peut représenter la dynamique de dimension finie
d’un actionneur ou d’une charge. Ce chapitre est d’abord méthodologique. Il présente
comment les approches dudomaine fréquentiel développées pour les équations différen-
tielles à retard peuvent être pertinentes pour l’analyse des systèmes couplés EDP hyper-
boliques - EDO. En suivant la méthode de D-décomposition [Nei49] développée pour les
systèmes à retard, nous caractérisons les intervalles de stabilité en boucle fermée en don-
nant des critères explicites sur les gains des contrôleurs. Nous étudions le placement des
racines de l’équation caractéristique qualifiant la stabilité des systèmes en boucle fermée.
Les gains doivent garantir qu’ils sont tous à partie réelle strictement négative [GKC03]. Si
cela n’est pas possible, de simples contrôleurs P/PI ne pourront pas stabiliser la chaîne de
manière robuste. Cela met en lumière les limites de ces contrôleurs de faible complexité,
et justifie l’intérêt de développer de nouvelles méthodes (telles que le backstepping) pour
stabiliser des systèmes de dimension infinie interconnectés.
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3.1 . First elementary chain structure: ODE system coupled with pure
transport equations

3.1.1 . Systems under consideration
This section considers a scalar linear hetero-directional hyperbolic systemcorrespond-

ing to two transport equations coupled at one end with a scalar ODE. More precisely, we
consider systems of state (u, v,X) ∈ Ξ with the following structure

∂

∂t
u(t, x) + λ

∂

∂x
u(t, x) = 0,

∂

∂t
v(t, x)− µ ∂

∂x
v(t, x) = 0, (3.1)

Ẋ(t) = aX(t) + bv(t, 0) + dV (t), (3.2)
with the boundary conditions

u(t, 0) = qv(t, 0) + cX(t), v(t, 1) = ρu(t, 1) + (1− d)V (t), (3.3)
with (t, x) ∈ [0,+∞)× [0, 1], V (t) the control input, transport velocities λ, µ > 0, and the
coupling terms a, b, c, q, ρ ∈ R. As in the previous chapter, we denote δ .

= 1
λ + 1

µ and
define r .

= ρq. The initial conditions (u(x, 0), v(x, 0), X(0)) = (u0(x), v0(x), X0) ∈ Ξ, sat-
isfy compatibility conditions 2.1.1 (with additional term X0). The output of the system is
defined by y(t) = dX(t) + (1 − d)v(t, 1). We use the boolean parameter d ∈ {0, 1} to
avoid unnecessary case distinctions. Consequently, in the first case d = 1, which charac-
terizes actuator dynamics acting on a wave-like propagation system, the ODE system is
actuated (Figure 3.1, left), while in the second case d = 0 (Figure 3.1, right) the PDE system
is actuated. It is motivated by several industrial applications [PR01, WK20, GDD09].

Figure 3.1 – Schematic representation of system (3.1)-(3.3)

Weassume that the systemsatisfies thedelay-robustness Condition 2.2.1, that rewrites
here |r| < 1. The open-loop system is well-posed [BC16, Theoream A.6]. Note that even
if the PDE and ODE systems are separately stable, their coupling can be the source of
instabilities.

3.1.2 . Overall strategy

Comments on Proportional and PI feedback controllers
Asmentioned in Chapter 2, backstepping-based controllers require know-how and an

important computational effort to be implemented. The backstepping methodology can
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be adapted to stabilizing ODE with input delay [Krs08, Chapter 9], a situation correspond-
ing to case 2 if ρ = 0. However, their complexity limits their practical implementations. As
a first step, it might be valuable to consider Proportional (P) or Proportional Integral (PI)
controllers with low computational effort. More precisely, the control input is of form

V (t) = Kpy(t) +Ki

∫ t

0
y(ν)dν, (3.4)

the coefficient Ki being equal to zero for the proportional case. Indeed, in some cases,
classic proportional controllers allow convergence to the desired setpoint. However, the
integral term can suppress an eventual residual steady-state error and accelerate the
convergence to the setpoint, with a risk of overshooting. Another problem, integrator
windup, may occur when the actuator saturates, leading to very long transients. This can
be seen in drilling applications, where mechanical constraints limit the input torque.
Tuning the best parameters results from a compromise between transient time and high
stability. Since PI controllers are broadly applicable, many experimental methods exist to
tune their parameters. To cite only a few: Ziegler-Nichols Step Response Method (open-
loop tuningmethod applicable to open-loop stable plants only), Internal Model Controller
Design Technique (uses an explicit model of the plant), Cohen-Coon Method (dominant
Pole design). Some are detailed in [SDB05, Section 10]. However, such methods can be
time-consuming. There are no explicit conditions guaranteeing appropriate gain values
stabilizing ODE-PDE interconnected systems.

Control objective
The next section aims to derive general conditions on the controller gains (Kp,Ki)under which it is possible to stabilize the plant (3.1)-(3.3). The objective reads as follows
Objective 3.1.1: Exponential stabilization using P or PI feedback

For d ∈ {0, 1}, determine admissible bounds on (Kp,Ki) so that (3.1)-(3.3) is expo-
nentially stabilized in the sense of the Ξ−norm. There exist ν > 0, C0 ≥ 1, for all
(u0, v0, X0) ∈ Ξ, such that

∥(X,u, v)∥Ξ ≤ C0e
−νt∥(X0, u0, v0)∥Ξ.

First, we recall some general results regarding the stability of time-delay systems of
neutral type with simple pointwise delay terms. In particular, we present the D-decompo-
sition method and apply it to first-order neutral equations. As seen in Chapter 2, such
equations can characterize the stability of hyperbolic PDE systems in the absence of in-
domain couplings.

3.1.3 . Stability results for time-delay systems

Characteristic equation
In what follows, we consider a neutral delay-differential equation of the form

d

dt
z(t) + αz(t) + γ

d

dt
z(t− δ) + βz(t− δ) = 0, (3.5)
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where α, β, γ real coefficients and γ ̸= 0. They will be related to the physical coefficients
of system (3.1)-(3.3) in Section 3.2. The state z is defined on [−δ, 0] by an appropriate initial
condition z0 ∈ L2([−δ, 0],R). The quasipolynomial characteristic equation associatedwith
(3.5) is given in the Laplace domain by

∆(s, δ) = d(s) + n(s)e−δs = 0, (3.6)
with d(s) = s + α and n(s) = γs + β, two first-order quasi-polynomial, such that ∆(s, δ)

in (3.6) rewrites as:
∆(s, δ) = s+ α+ (γs+ β)e−δs = s(1 + γe−δs) + α+ βe−δs. (3.7)

Having deg(d) = deg(n) is a major difference with retarded systems, for which deg(d) >
deg(n). In neutral delay systems, the delays affect both the state variables and their
derivatives, whereas in retarded delay systems, the delays affect only the state variables.
It makes the study of the stability properties of such systems much more complicated.
As discussed in [MN14], in the neutral case, there is an essential spectrum 1, such that the
spectral abscissa function may exhibit discontinuities. This means that small changes in
the system parameters can lead to sudden jumps or changes in the rightmost root of
the spectrum. A delay in retarded systems can attenuate certain types of oscillations or
disturbances in the system dynamics, leading to enhanced stability and robustness to
parameter variations. In the neutral case, this smoothing effect disappears. The system
may be unstable even if all the characteristic roots lie in the open left half complex plane
(LHP), due to the presence of asymptotic chains of roots near the imaginary axis. The
exponential stability of solutions then requires a stronger condition than having charac-
teristic roots with strictly negative real parts.

Definition 3.1.1: Stability of a neutral type quasipolynomial [SDB05, GKC03]

A quasi-polynomial ∆(s, δ) is said to be stable if there exists σ > 0 such that the real
parts of all its roots are less than −σ.
We show in the following that for the simpleODE-hyperbolic PDE interconnection (3.1)-

(3.3) in open loop or subject to a proportional feedback controller, we obtain a first-order
neutral equation yielding a characteristic quasi-polynomial of degree 3 of the form (3.7).
We, therefore, present some general stability results for this class of characteristic equa-
tions.

Necessary condition
As discussed in [HVL13, Ste89], and presented in Chapter 2 as the delay-robustness

Condition 2.2.1, the exponential stability of the trivial solution of the difference equation
z(t)+γz(t−δ) = 0 is a necessary condition for the exponential stability of the scalar neutral
equation (3.5). In our case, this condition rewrites as
Assumption 3.1.1 The absolute value of coefficient γ is strictly less than 1, that is |γ| < 1.

1. The essential spectrum corresponds to a part of the spectrum of an operator that cannot beassigned to any isolated eigenvalues
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If this assumption is not satisfied, the equation ∆(s, δ) = 0 admits an infinite number
of roots with positive real parts, corresponding to delay-independent instability. As dis-
cussed in [MN14], increasing the delay in the closed-loop system induces instability.

D-decomposition method
In the study of hyperbolic PDE systems with no in-domain couplings, the delay term

δ > 0 in (3.5) results from the intrinsic transport time and depends on the transport speed
and length of the space domain: it is determined by the physical properties of the system.
Different criteria can be found to establish the stability of time-delay systems, such as Pon-
tryagin criterion, Chebotarev criteria, Yesupovisch-Svirskii criterion, or Michailov criterion
[SDB05]. To analyze the stability of linear time-delay systems in the parameter space with
constant delay δ, we follow the D-decomposition approach proposed in [Nei49]. The
methodology can be resumed as follows [Nic01, Section 3.4.2]:

1. First, we consider the delay-free case δ = 0 to determine a first stability condition
for the system without delay. It would correspond to the ideal case of an infinitely
high transport speed in the hyperbolic system.

2. By a continuity argument, the systemwill be stable for a time interval δ ∈ [0, τc), de-pending on the existence of roots of (3.6) on the imaginary axis. We then determine
the frequency of characteristic roots crossing the imaginary axis, corresponding to
a switch in stability. If they exist, we define a stability interval [0, τc) on which the
system is stable. The following shows that the critical delay τc in closed-loop de-
pends on the controller gains. The PI feedback can therefore be used to guarantee
stability properties.

3. Since the stability change can only occur through the imaginary axis if there are no
crossing roots, we derive conditions for stability of the closed-loop system indepen-
dently of the intrinsic delay δ.
Application to (3.7)

Under the first necessary Assumption 3.1.1, we apply the above methodology. In the
delay-free case, the characteristic equation (3.7) rewrites as a first-order polynomial

∆(s, 0) = s(1 + γ) + α+ β. (3.8)
The only root of (3.8) is given by s∗ = −α+β

1+γ . It belongs to the left half complex plane (LHP)
under the following condition
Condition 3.1.1 The coefficients satisfy

α+ β > 0. (3.9)
If this condition is not satisfied, the controller cannot even stabilize the closed-loop system
in the ideal delay-free case. Next, consider the real delayed equation. Under Condition
3.1.1, by a continuity argument, the system is stable for δ ∈ [0, τc), where τc correspondsto the frequency of the first imaginary axis crossing s = jω, with{

α+ β cos(δω) + ωγ sin(δω) = 0

ω + ωγ cos(δω)− β sin(δω) = 0
.
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Using the fact that |e−jδω| = | − α+jω
β+jγω | = 1, we also obtain that the pulsation at the

imaginary axis crossing satisfies
(α2 + ω2)− (γ2ω2 + β2) = 0 =⇒ (1− γ2)ω2 = β2 − α2. (3.10)

If α2 > β2, or equivalently α > |β| using Condition 3.1.1, under Assumption 3.1.1, equation
(3.10) has no solution ω ∈ R. Since zero is not a solution of∆(s, δ) = 0, the system is then
stable with an infinite delay margin under the following condition
Condition 3.1.2 The coefficients satisfy α ≥ |β|.

Else, (3.10) admits a unique solution ωc > 0 corresponding to the frequency of the first
crossing point on the imaginary axis. It is given by

ωc =

√
β2 − α2

1− γ2
. (3.11)

The corresponding critical delay is then defined as
Definition 3.1.2: critical delay

The critical delay is defined by τc = min{ δωc
| s+ α+ (γs+ β)z = 0, z = e−δs}.

Solving the equation zc = e−jωcτc = − α+jωc

β+jωcγ
, we obtain

τc =
1

ωc
arctan(

ωc(αγ − β)
αβ + γω2

c

) =

√
1− γ2
β2 − α2

arctan(−
√
(β2 − α2)(1− γ2)

α+ βγ
). (3.12)

Under Assumption 3.1.1 and Condition 3.1.1, the system is stable for δ ∈ [0, τc). Else, thesystem is unstable. As seen next, the P/PI controller gains modify the coefficients of the
characteristic equation of the closed-loop system. In some cases, they can ensure that
the above conditions are satisfied.

3.2 . Application to two test cases

We now apply the methodology presented in Section 3.1.3 to derive conditions under
which the system (3.1)-(3.3) can be stabilized by proportional feedback controllers. A sim-
ilar analysis could be done to deal with the PI, and is only briefly presented for the two
considered cases.

3.2.1 . Stabilization of transport equations with actuation dynamics

Neutral formulation and open-loop analysis
Consider system (3.1)-(3.3) with d = 1, satisfying Condition 2.2.1. Let us denote z(t) =

v(t, 0). Using the method of characteristics, we immediately obtain
z(t) = ρqz(t− δ) + cρX(t− δ).
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Wenow take the Laplace transform of (3.2) and the above equation, neglecting their initial
conditions. Indeed, they only impact the transient behavior anddonotmodify the stability
analysis [HVL13]. We get

(s− a)X(s) = bz(s) + V (s), (3.13)
z(s)(1− ρqe−δs) = cρe−δsX(s). (3.14)

This yieldsX(s) = HXV (s)V (s), where the transfer function is given by
HXV (s) =

1− ρqe−δs

(s− a)− ρ(qs+ bc− qa)e−δs
.

Open-loop stability The poles of the open-loop system are the solutions of the char-
acteristic equation

∆OL(s) = (s− a)− ρ(qs+ bc− qa)e−δs = 0. (3.15)
It is a particular case of equation (3.7) with α = −a, β = ρ(qa − bc), γ = −ρq. Following
the methodology given in Section 3.1.3, the first necessary stability condition (3.9) is given
by a(1− ρq)+ bcρ < 0. Then, applying condition 3.1.2, the system is open-loop stable with
infinite delay margin iif −a ≥ |ρ(qa − bc)|. Else, we must consider the crossing points of
the imaginary axis to obtain a finite-delay margin. From (3.11)-(3.12) we get ωc = |a|+

√
(ρbc)2−2abcr

1−r2

τc =
√

1−r2
(ra−bcρ)2−a2 arctan(

−bcρ
√

(1−r2)[(ra−bcρ)2−a2]
abcρ−r(ra−bcρ)2 )

.

If the necessary stability condition is verified, and if the second stability condition is sat-
isfied or if δ < τc, the system is already open-loop stable, so the boundary feedback
controller can be used to fasten convergence rate.

Boundary feedback stabilization with a proportional feedback controller
We first aim to stabilize system (3.1)-(3.3) using a proportional feedback controller

V (t) = Kpy(t). The characteristic equation of the closed-loop system is now given by
∆CL(s) = s− (a+Kp) + (−ρqs+ ρ(q(a+Kp)− bc))e−δs = 0.

It corresponds to equation (3.7) with α = −(a+Kp), β = ρ[q(a+Kp)−bc], γ = −ρq.Note
that |γ| = |r| < 1 under Condition 2.2.1. Following the methodology given in Section 3.1.3,
we obtain the first necessary stability condition

−(a+Kp) + ρ[q(a+Kp)− bc] > 0 =⇒ Kp < −a−
bcρ

1− ρq
. (3.16)

Next, we must determine the Kp-domain when the closed-loop system is stable with in-
finite delay margin, i.e. when (a + Kp)

2 − ρ2(q(a + Kp) − bc)2 ≥ 0. This polynomial of
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discriminant (2ρbc)2 ≥ 0 admits one or two real solutions
K± = −a− bcρ(ρq ± 1)

1− (ρq)2
,

such that condition 3.1.2 is satisfied on (−∞,K−)∪ (K+,+∞). If this condition is not ver-
ified, the system can still be stabilized for someKp, if the system delay δ is small enough.
Finally, taking into account (3.16), we have the following theorem

Theorem 3.2.1: Stability regions for Proportional gain

Consider system (3.1)-(3.3) with the proportional feedback control law (3.4) (Ki = 0)
under Condition 2.2.1. If the constant parameters of the system and the gainKp satisfy
either of the following set of inequalities

1. bcρ ≥ 0, andKp < −a− bcρ
1−ρq ;

2. bcρ < 0, andKp < −a+ bcρ
1+ρq ;

3. bcρ < 0, −a+ bcρ
1+ρq ≤ Kp < −a− bcρ

1−ρq and δ < τc, where τc =
1
ωc

arctan(− ωcbcρ
(a+Kp)(bcρ−r(a+Kp))−rωc

),

ωc =
√

(r(a+Kp)−bcρ)2−(a+Kp)2

1−r2 .

then, the closed-loop system (3.1)-(3.3) is exponentially stable in the Ξ-norm.
Proof : Using the analysis presented above, the state X is exponentially stable. Then, since |ρq| < 1, we
obtain the exponential stability of the state z(t), which in turn implies the exponential stability of the system
(3.1)-(3.3). ■

For these values of Kp, the boundary feedback controller stabilizes the closed-loopsystem. One can notice that it is always possible to chooseKp negative enough to satisfyone of the two first conditions. However, the third condition allows choosing smaller ab-
solute values ofKp, thus improving the robustness properties of the closed-loop system
[Nic01].

Boundary feedback stabilization with a PI feedback controller
We now consider the interest of adding an integral term in the feedback controller

Ki ̸= 0. In the Laplace domain, using V (s) = (Kp +
Ki
s )X(s), (3.13) rewrites

(s− a−Kp −
Ki

s
)X(s) = bz(s).

Combining this equation with (3.14), we obtain∆CL(s) = Q(s, δ) + P (s, δ)(Kp +
Ki
s ) = 0,

with
{
Q(s, δ) = (s− a)− ρ[q(s− a) + bc]e−δs,

P (s, δ) = −1 + ρqe−δs.
(3.17)

Under Condition 2.2.1, P has no roots on the imaginary axis. Looking for solutions of
the characteristic equation corresponding to imaginary axis crossings, we consider s =
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jω ∈ jR and identifyKp (resp. Ki) with the real part (resp. imaginary part) of the second
member. Indeed, we have

Kp = ℜ(−
Q(jω)

P (jω)
), Ki = ωℑ(Q(jω)

P (jω)
).

In particular, in the considered case, we obtain:{
Kp = −a+ρ(2aq−bc) cos(δω)+ρ2q(aq−bc)

1+(ρq)2−2ρq cos(δω)
,

Ki = −ω ω(1+ρ
2q2)−2ρqω cos(δω)+ρbc sin(δω)
1+(ρq)2−2ρq cos(δω)

.
(3.18)

By continuity, the instability degree, i.e. the number of poles in the RHP, changes when a
new pole crosses the imaginary axis.

Numerical simulations
We now illustrate our results with simulations. In what follows, the space domain

[0, 1] is discretized with a mesh of 100 points. We simulate the PDE system (3.1)-(3.3) using
a Godunov Scheme [LeV02] (CFL = 1) on the time interval [0, 50]s. We solve the ODE
using the Matlab method ode45. The parameters are given in Table 3.1, and are chosen
such that the open-loop system is unstable. The Ξ−norm of the open-loop system is
represented in Figure 3.5 (prune curve).

Param. Value Param. Value Param. Value
a -0.1 b 0.7 c -0.7q 0.5 ρ 0.8 δ 4

Table 3.1 – System parameters (Case 1)

We can select Kp so that the conditions of Prop. 3.2.1 are satisfied. Since bcρ < 0,
the closed-loop system is exponentially stable if Kp < −0.18 by condition (2). However,
choosing Kp ∈ [−0.18,−0.04], condition (3) can also be satisfied, as illustrated in Figure
3.2, which represents the admissible values for Kp under condition (3) of Theorem 3.2.1.
The evolution of the Ξ−norm of the system is represented in Figure 3.5 forKp = −0.1.

Figure 3.2 – Admissible values forKp
Figure 3.3 – Stability regions (Kp(ω),Ki(ω))
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Wenowconsider introducing an integral gain to improve the closed-loopperformance.
Plotting (3.18) as a function of the frequency, we obtain Figure 3.3. We can define sta-
ble regions delimited by the red curve (Kp(ω),Ki(ω)) for which the instability degree is
constant and then select the controller gains on compact intervals inside the domains
corresponding to stability regions.

Writing the characteristic equation of the closed-loop system in form (3.6), the neces-
sary conditions for d(s,Kp,Ki) + n(s,Kp,Ki) to be Hurwitz is Kp < −a − bcρ

1−r , Ki < 0

(region delimited by green lines). The dotted lines correspond to the first stability con-
dition (3.9). In our case, bcρ < 0, the light green zone corresponds to a stability region,
independently from the value ofKi. Finally, the light yellow regions correspond to stabil-
ity regions with a finite delay margin. The critical delay must be computed beforehand for
each (Kp,Ki) to ensure δ < τc. Using a gradient sampling algorithm [BLO05] accelerated
by the Broyden–Fletcher Goldfarb–Shanno (BFGS) method, we can find values of Kp,Kiminimizing the spectral abscissa of the corresponding time-delay system 2. As illustrated
in Figure 3.4, no roots lie in the right half complex plane in closed-loop. The distance
with the axis x = 0 somehow corresponds to a robustness margin: the algorithm [AM23]
maximizes the distance between the rightest root and the imaginary axis.

Figure 3.4 – Location of the roots of∆OL (left) and∆CL (right)

In this case, we obtain Ki ≈ −0.89,Kp ≈ −1.89, which belongs to the stability regionas expected. As illustrated in Figure 3.5 (black curve), the stabilization is faster when we
add an integral term in the controller. Finally, for comparison purposes, we also plotted in
Figure 3.5 the closed-loop behavior using the controller developed in [BSBADLE19] (green
dotted line). It has comparable performance to the well-tuned PI controller at the cost of
higher complexity.

3.2.2 . Stabilization of transport equations with load dynamics

Neutral formulation and open-loop analysis
Consider now system (3.1)-(3.3) with d = 0, satisfying Condition 2.2.1. Let us denote

z(t) = v(t, 1). Using the method of characteristics, we obtain
z(t) = ρqz(t− δ) + ρcX

(
t− 1

λ

)
+ V (t), (3.19)

2. The TDS-control Matlab package we used can be found inhttps://twr.cs.kuleuven.be/research/software/delay-control/ [AM23].
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Figure 3.5 – Evolution of ∥(X,u, v)∥Ξ (d = 1) for different control strategies

Ẋ(t) = aX(t) + bz(t− 1

µ
). (3.20)

In the Laplace domain (neglecting, as before, the initial conditions), it gives
z(s) =

s− a
(s− a)− ρ(qs+ bc− qa)e−δs

V (s)
.
= HvV (s)V (s).

Open-loop stability As expected, in an open loop, the poles of the transfer function
are solutions of (3.15). Thus, the analysis follows the one presented in Section 3.2.1. We
restrict the following study to b ̸= 0, as acting on the ODE through the PDE is otherwise
impossible.

Boundary feedback stabilization with a proportional feedback controller
We now aim to stabilize system (3.1)-(3.3) using a proportional feedback controller

V (t) = Kpy(t). From equations (3.19)-(3.20), we obtain
(s− a)X(s) =

bcρe−δs

1−Kp − re−δs
.

The characteristic equation associated with the closed-loop system is then given by
∆CL(s) = (1−Kp)s− a(1−Kp) + (−rs+ ρ(qa− bc))e−δs = 0.

Assuming Kp ̸= 1, we rewrite the above equation in the form (3.7) with α = −a, β =
ρ(aq−bc)
1−Kp

, and γ = − r
1−Kp

. As explained in Section 3.1.3, it is necessary to have |γ| < 1,
which implies |1−Kp| > |r|. Following the proposedmethodology, the closed-loop system
is stable in the delay-free case under the condition

a(1−Kp − r) + bcρ

1−Kp − r
< 0⇐⇒

{
Kp < 1− r and aKp > a(1− r) + bcρ,

or Kp > 1− r and aKp < a(1− r) + bcρ.
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Define
 θc =

√
(ρ2(aq − bc)2 − a2(1−Kp)2)((1−Kp)2 − (r)2)

ωc =
√

ρ2(aq−bc)2−a2(1−Kp)2

(1−Kp)2−r2
. We have

Theorem 3.2.2: Stability regions for Proportional controller

Consider system (3.1)-(3.3) with the control law (3.4) (Ki = 0) under Condition 2.2.1.
Assume a > 0. If the constant parameters of the system and the gain Kp (̸= 1) satisfy
either of the following set of inequalities

1. bcρ ≥ 0, r ≥ 0 and 1 + r < Kp < 1− r + bcρ
a ,

2. bcρ ≤ 0, r ≥ 0 and 1− r + bcρ
a < Kp < 1− r,

3. bcρ ≥ 0, r ≤ 0 and 1− r < Kp < 1− r + bcρ
a ,

4. bcρ ≤ 0, r ≤ 0 and 1− r + bcρ
a < Kp < 1 + r,

and if δ < τc, where τc = 1
ωc

arctan( θc
a(1−Kp)2+ρ2q(aq−bc)). Then, the closed-loop system(3.1)-(3.3) is exponentially stable in the Ξ-norm.

Proof : The proof is identical to Theorem 3.2.1. The conditions rely on the following analysis. In this theorem,
we consider the unstable case a > 0. Similar stability conditions could be obtained for a = 0 and a < 0 (even
if, for this case, condition 3.1.2 needs to be verified). Here, we obtain 1 − r + bcρ

a
< Kp < 1 − r if bcρ < 0

and 1− r < Kp < 1− r+ bcρ
a
, otherwise. We need to check condition 3.1.2 and the delay-dependent stability

condition (finite delay margin) to obtain the stability domains. However, it is straightforward to show that
condition 3.1.2 can never be verified if a ≤ 0. The exponential stability ofX is shown using the computations
given above. It implies the one of v(t, 1) and consequently of the whole PDE using the transport structure of
the system. ■

Note that the two inequalities given in the proof can never be verified if b = 0, which
is consistent with the fact that the ODE system cannot be stabilized. More interestingly,
they cannot be verified if c = 0, which is a limitation of this control strategy compared to
other approaches [ABABS+18].

Boundary feedback stabilization with a PI feedback controller
We now consider the interest of a PI controller. In the Laplace domain, the control

feedback is given by V (s) = (Kp +
Ki
s )z(s). Equations (3.19)-(3.20) become

− ρce−δsX(s) + z(s)(1− re−δs −Kp −
Ki

s
) = 0, (s− a)X(s)− be−

1
µ
s
z(s) = 0.

As before, we rewrite the characteristic equation of the closed-loop system in the form

Q(s, δ) + P (s, δ)(Kp +
Ki

s
) = 0, with

{
Q(s, δ) = (s− a) + ρ(q(a− s)− bc)e−δs,
P (s, δ) = −s+ a.

Under the same assumptions as in Section 3.2.1, we obtain the expression of (Kp,Ki)delimiting the stability regions.{
Kp = 1 + ρ(q(ω2+a2)+abc))

a2+ω2 cos(δω) + ωρ (−aq+bc+r)
a2+ω2 sin(δω),

Ki = ωρ q(a
2+ω2)+abc) sin(δω)−ωbc cos(δω)

a2+ω2 .
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Numerical simulations
To illustrate the specific case of an unstable ODE system, we give some simulation

results for system (3.1)-(3.3) with parameters given in Table 3.2.
The open-loop system is unstable, as seen in Figure 3.8 (prune curve).

Param. Value Param. Value Param. Value
a 0.4 b -0.5 c 1q 0.5 ρ 0.5 δ 0.9

Table 3.2 – System parameters (Case 2)

Figure 3.6 – Admissible values forKp Figure 3.7 – Stability regions (Kp(ω),Ki(ω))

With a > 0, the system can only be stabilized by a proportional feedback controller
if δ ≤ τ∗c = bc

−a(aq−bc) (the maximum value of critical delay is independent of Kp). As
represented in Figure 3.6), the system can only be stabilized by Proportional feedback
only forKp ∈ (0.125, 0.5) ⊂ (1− |ρ(q − bc

a )|, 1− |r|) with the chosen set of parameters.
Figure 3.8 shows that the system is stabilized for a gain Kp = 0.4 (blue curve). Next,

to determine adequate integral gains for the controller, we first determine the necessary
conditions for the characteristic polynomial d(s,Kp,Ki) + n(s,Kp,Ki) of the closed-loopsystem (δ = 0) to be Hurwitz. With the parameters given in Table 3.2, we obtain

0 < Ki < −a(1−Kp − r)− bcρ, 1− r > Kp > 1− r + bcρ

a
.

The conditions are satisfied on the green light region in Figure 3.7. The only stability region
(light yellow) corresponds to a stability region with a finite-delay margin. When Ki aug-ments, the critical delay reduces, so the stability performances are worsened by adding
Ki ̸= 0, as illustrated in Figure 3.8 (black curve). Finally, the closed-loop performances are
compared with a Predictor-based feedback controller [ABABS+18]. As seen in Figure 3.8
(green dotted curve), this controller induces oscillations and a high overrun of the initial
values, which might be undesirable. However, it converges faster.
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Figure 3.8 – Evolution of ∥(X,u, v)∥Ξ (d = 0) for different control strategies.

Conclusion

This chapter shows that usual Proportional or PI boundary feedback controllers can
be a satisfactory and easily implemented solution to stabilize hyperbolic PDE systems
with no in-domain couplings interconnected with an ODE at one end. However, we also
illustrate the limitations of this simple control design. Using a Proportional or PI con-
troller only offers limited degrees of freedom. One must be aware that the plant (3.1)-
(3.3) may not always be stabilizable by P or PI controllers. Simulations show that the re-
sulting output-feedback laws may induce lower convergence speed than more complex
controllers. Also, if the controller gains cannot be selected in the stability regions due to
physical constraints, they might not be an appropriate solution.
Finally, we only considered here a system of two scalar hetero-directional transport equa-
tions. Deriving explicit criteria for the PI controller gains for interconnected systems of
conservation laws becomes trickier [BCT15]. As shown in Chapter 2, adding in-domain
couplings leads to Integral Delay Equations (IDE) with distributed delays. The methodol-
ogy presented in this chapter cannot be straightforwardly applied. All these limitations
justify the interest in the backstepping methodology further considered in this thesis.
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Part II

Chain structure with actuation at
one end

Structure de chaîne avec contrôle à une extrémité
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Introduction

In Part I, we first presented simple systems of balance laws. In the presence of poten-
tially destabilizing in-domain couplings, the backstepping methodology proved its interest
since it allowed designing a stabilizing controller via the mapping to a simpler target sys-
tem. Next, when the elementary hyperbolic PDE system is interconnected with an ODE,
we showed that PI controllers do not always suffice to stabilize the structure.

As mentioned, hyperbolic PDE-ODE interconnections accurately represent transport
phenomena and delays, that are common in industrial applications. Consequently, back-
stepping-based approaches have been used to control PDE-ODE interconnections [ABA19,
IGR21] or ODE-PDE-ODE structures [WKP18, DGK18, Geh21]. We first focus on such hyper-
bolic PDE-ODE interconnections when the actuation is available at one end of the chain
structure. In most cases, one can only measure a boundary value of the distributed state
of the interconnected system. Usually, it corresponds to the actuated end. For control
strategies to be applied to real systems, we also need to estimate the state, even in the
presence of a disturbance. Stabilizing the system is also not always enough; output reg-
ulation to a reference trajectory is of higher interest in some contexts. Using the differ-
ent equivalent representations (hyperbolic PDE systems and time-delay systems of the
neutral type), we develop in this part control strategies for two kinds of interconnected
systems.

Following [DMLA20, BSBADLE19], we propose in Chapter 4 a constructive approach
to design a robust, dynamic output-feedback controller solving disturbance rejection and
output tracking for a broad class of interconnected ODE-hyperbolic PDE-ODE system.
Solving this control objective is necessary for applications such as drilling since the ob-
jective is here to impose a specific trajectory to the unactuated bit at the end of the
chain. Next, we consider a chain with arbitrarily many hyperbolic PDE subsystems. Such
a system has been stabilized in [Aur20] using a complex backstepping transform or in
[SA17] using the method of characteristics. In Chapter 5, the chain is interconnected
at the unactuated end with an ODE system. So far, one major limitation of the back-
stepping approach for stabilizing general networks of interconnected ODE-PDE systems
was its lack of genericity: adding a new subsystem into the network implies designing
a completely new backstepping transform to encompass this new subsystem. Inspired
bymodular approaches from other research fields, such as electronics [ACMdC98] or bio-
engineering [SKZ+92, SMHF00], wedesign anoutput feedback control lawusing a recursive
dynamics interconnected framework. It allows for a "plug-and-play"-like approach to con-
trol design since additional subsystems satisfying simple conditions can be added easily to
the network. These two interconnected structures can be found in multiple applications:
UAV-cable-payload structures [WK20], mining cables elevators [WK21], or drilling devices.
Indeed, for this last example, the hyperbolic PDE subsystems represent axial or torsional
vibrations along drill string sections. At the same time, the ODE systems model the non-
negligible dynamics of the actuator, the bit-rock interaction, or the lumped dynamics of
the BottomHole Assembly [AvdW19]. For such a system, measurement and actuation are
usually only available at the surface (x = 0). This situation is illustrated in Chapter 6. Part
II ends with some perspectives on the proposed approaches to more intricate networks.
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4 - Output regulation for linear ODE - hyperbolic PDE
- ODE systems

This chapter considers a generic class of interconnectedODE-hyperbolic PDE-ODE sys-
tems, presented in Section 4.1. This interconnected chain structure can be found in mul-
tiple applications: unmanned aerial vehicle (UAV)-cable-payload system [WK20], mining
cable elevators [WK21] or drilling devices [RAN22a]. We propose a constructive approach
to designing a robust, dynamic output-feedback controller that solves output regulation
and tracking. The initial system is dynamically augmented with finite-dimensional exo-
systems representing the reference trajectory and/or disturbance dynamics. Equivalently,
the objective is to stabilize a virtual output depending on the states of the ODE opposite
to the actuation. Based on some structural assumptions inspired by [BSBADLE19], we
first design a full-state feedback controller stabilizing the virtual output in Section 4.2. We
follow the backstepping methodology with a single general invertible integral transform
to facilitate the implementation. The stability of the target system is analyzed in the fre-
quency domain. We use filtering techniques [ABADM23] to guarantee the robustness of
the proposed control law. Following a similar approach, we design a state observer for the
augmented system in Section 4.3, reconstructing the system states and the disturbance.
Finally, the full-state feedback controller and the observer are coupled to obtain the dy-
namic output-feedback controller in Section 4.4. Numerical limitations of the approach
are illustrated in simulations in Section 4.5.

Chapitre 4: Regulationde sortie pourune chaine EDO-EDP-EDO. Ce chapitre
considère une large classe de systèmes interconnectés EDO - EDP hyperbolique - EDO
(Section 4.1). La structure de chaine est actionnée à une extrémité, où une mesure est
également disponible. Nous proposons une approche constructive pour concevoir un
contrôleur robuste utilisant la mesure disponible et permettant la régulation et le suivi
de sortie. L’extrémité opposée est augmentée dynamiquement par un exo-système de
dimension finie représentant la trajectoire de référence et/ou la dynamique des pertur-
bations. Demanière équivalente, l’objectif est de stabiliser une sortie virtuelle dépendant
des états du système augmenté. Sous des hypothèses structurelles facilement vérifiables,
nous déterminons dans un premier temps une loi de commande satisfaisant l’objectif,
suivant [BSBADLE19] (Section 4.2). La stratégie est basée sur la méthode de backstepping,
avec une unique transformation intégrale inversible afin de faciliter la mise en pratique
de l’approche proposée. Puisque la loi de commande ainsi obtenue nécessite de con-
naitre l’état du système, nous concevons ensuite un observateur d’état reconstruisant
l’état du système et la perturbation (Section 4.3). Nous utilisons des techniques de fil-
trage [ABADM23] pour garantir la robustesse de la loi de commande proposée. Enfin,
le contrôleur par retour d’état et l’observateur sont couplés pour obtenir le contrôleur
par retour de sortie dynamique (Section 4.4). Des limites numériques sont illustrées en
simulations (Section 4.5).
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4.1 . Problem description

4.1.1 . System under consideration
For all t > 0, we consider a system composed of a scalar hyperbolic PDE subsystem

(states (u(t, .), v(t, .)) ∈ H1([0, 1],R2) coupled at both ends with ODEs, as illustrated in
Figure 4.1. The first ODE system (state X(t) ∈ Rn×1) represents the actuator dynamics. It
is actuatedby a control inputV (t) ∈ Rc×1wewant to determine andmeasuredwith y(t) =
CmesX(t) ∈ Rn′×1. To encompass a disturbance and/or a reference trajectory, the state
Y (t) of the unactuated opposite ODE system is decomposed into two components. The
state Y1(t) ∈ Rm×1 represents the dynamics of the load in the absence of perturbation.
It is dynamically augmented by an exo-system of state Y2(t) ∈ Rp×1, such that Y (t) =(
Y1(t)

⊤ Y2(t)
⊤
)⊤
∈ R(m+p)×1. The space-dependent states satisfy (2.1)-(2.2). It gives

here
Ẋ(t) = A0X(t) + E0v(t, 0) +B0V (t), Ẏ (t) = A1Y (t) +

(
E⊤

1 01×p

)⊤
u(t, 1), (4.1)

∂

∂t
u(t, x) + λ

∂

∂x
u(t, x) = σ+(x)v(t, x),

∂

∂t
v(t, x)− µ ∂

∂x
v(t, x) = σ−(x)u(t, x), (4.2)

with A1 =

(
A11 A12

0p×m A22

)
and the boundary conditions

v(t, 1) = ρu(t, 1) + C1Y (t), u(t, 0) = qv(t, 0) + C0X(t), (4.3)
where A0 ∈ Rn×n, E0 ∈ Rn×1, B0 ∈ Rn×c, A11 ∈ Rm×m, A12 ∈ Rm×p, A22 ∈ Rp×p,
E1 ∈ Rm×1, C0 ∈ R1×n, C1 = [C11 C12], with C11 ∈ R1×m and C12 ∈ R1×p.

Figure 4.1 – Schematic presentation of the system

We consider constant transport velocities λ, µ > 0, but the following results could be ex-
tended to space-dependent functions [VCKB11]. The in-domain couplingsσ± ∈ C0([0, 1],R)
are space-dependent functions. The initial condition (X0, (u0, v0), Y0) associated to sys-
tem (4.1)-(4.3) belongs to X and satisfy compatibility equations (2.1.1). The open-loop sys-
tem (4.1)-(4.3) is well-posed [BC16, Appendix A].
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4.1.2 . Structural assumptions
The methodology presented in this chapter requires several sufficient yet non-very

restrictive assumptions. They are all gathered in this subsection.
Assumption 4.1.1 The pairs (A0, B0) and (A11, E1) are stabilizable, or equivalently, thereexist F0 ∈ Rp×n F1 ∈ R1×m such that Ā0

.
= A0 +B0F0 and Ā11

.
= A11 + E1F1 are Hurwitz.

These two conditions are natural and can be easily numerically tested before implement-
ing the overall strategy. The stabilizability of (A0, B0) allows for a simpler design of the
control law (Section 4.2.1). However, the second condition on (A11, E1) is necessary. Ifunsatisfied, the distal ODE system cannot be stabilized, even without disturbance and
independently of the interconnection structure.
Assumption 4.1.2 The matrices (A0, B0, C0) satisfy

rank(
(
sI −A0 B0

C0 01×c

)
) = n+ 1, ∀s ∈ C, ℜ(s) ≥ 0.

Again, this assumption simplifies the control design and serves several purposes. First,
it implies that C0 is not identically zero (which would obstruct the stabilization network).Then, under Assumption 4.1.1, the function P0(s)

.
= C0(sI − Ā0)

−1B0 is stable and does
not have any zeros in the right-half complex plane common to all its components. Conse-
quently, P0(s) admits a stable right-inverse [Moy77], denoted P+

0 (s), which is not neces-
sarily proper. If the Moore-Penrose right inverse P⊤

0 (s)(P0(s)P
⊤
0 (s))−1 is stable, it could

be used. Else, a more involved stable inversion procedure is needed [ABA23].
Due to the duality between observation and stabilization, we need analogous assump-

tions to design the proposed state observer.
Assumption 4.1.3 The pairs (A0, Cmes) and (A1, C1) are detectable, or equivalently, there
exist LX ∈ Rp×n′ , (L⊤

1 L⊤
2

)⊤
∈ R1×(p+m) such that

Aobs
0

.
= A0 + LXCmes, and Aobs

1
.
= A1 +

(
L1

L2

)
C1 are Hurwitz.

As before, only the detectability of (A0, Cmes) is necessary, but the one of (A1, C1) allowsfor a simpler observer design.
Assumption 4.1.4 The matrices (A0, E0, Cmes) satisfy

rank(
(
sI −A0 E0

Cmes 0n′×1

)
) = n+ 1, ∀s ∈ C, ℜ(s) ≥ 0.

Symmetrically, the column vector E0 is therefore not identically zero and admits a left
inverse. The transfer matrix Pmes(s) .

= Cmes(sI −Aobs
0 )−1E0 is stable and has no zeros inthe right-half complex plane and admits a stable left-inverse, not necessarily proper.

Both assumptions can be easily checked before implementation, simplifying this method-
ology for field engineers. Finally, we have two easily tested assumptions on the boundary
coupling coefficients:
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Assumption 4.1.5 The boundary coupling coefficients ρ and q do not equal 0.
This assumption is only sufficient. It is not restrictive from an application perspective
since the opposite corresponds to a perfect impedance matching between the PDE and
the load or actuator. If not verified, the proposed strategy is not directly applicable but
could be easily adapted by slightly modifying the target system, following similar ideas
as the ones given in [VKC11]. As presented in Chapter 2, the (delay-) robustness condition
(2.2.1) must be satisfied. it reads here as the following assumption:
Assumption 4.1.6 The coupling coefficients product |ρq| is strictly less than 1.

4.1.3 . Overall strategy
Define the virtual output by ϵ(t) .

= CeY (t), with Ce = [Ce1 Ce2]. The control objectivereads as follows
Objective: Trajectory tracking - disturbance rejection

Design an output-feedback control law V (t) such that, for all (X0, (u0, v0), Y0) ∈ X , the
virtual output ϵ(t) of the closed-loop system (4.1)-(4.3) converges exponentially to zero.
There exists C, ν > 0 such that

∀ t > 0, |ϵ(t)| < Ce−νt|ϵ(0)|.

Note that the virtual output is not necessarily scalar. This control objective encom-
passes different cases, as illustrated in Section 4.5. Indeed, the state Y2(t) represents thedynamics of the known trajectory, and/or the supposedly known disturbance model. For
instance, takingCe1 ̸= 0Rm ,Ce2 = 0Rp , we regulate to zero a linear combination of compo-
nents of Y1(t) in the presence of a disturbance and solve an output regulation problem.
Taking Ce1,i − Ce2,j = 0, (i, j) ∈ J1,mK × J1, pK (and the other components of the ex-
tended state equal to zero), we make the ith component of the output Y1 converge to the
jth component of a known trajectory of state Y2 and solve an output tracking problem.

The proposed control strategy is the following. We use the backsteppingmethodology
tomap the original augmented system to a simpler target system. Then, we use frequency
analysis techniques (under the Assumptions given above) to show that this constructive
approach leads to a control law solving the output regulation-output tracking problem.
Inspired by [BSBADLE19, ABADM23], we apply filtering techniques to guarantee the delay-
robustness of the proposed controller.
Next, we solve the problem of state estimation and disturbance reconstruction following
a dual approach. As in [ABA23], we first simplify the structure of the system using another
backstepping transformation. We then design a Luenberger-like observer for the system,
using the available colocated measurement y(t). The convergence of the observer state
towards the initial state is proved by an analysis of the error system in the frequency
domain. Finally, we show that the observer can be combined with the control law to
design a stabilizing output dynamic feedback control law. This strategy is schematically
represented in Figure 4.2.

To solve the proposed control objective, we add one more assumption that gives a
sufficient structural condition for the existence of a solution for the output regulation
problem [FW75].
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Figure 4.2 – Schematic presentation of output-feedback control design

Assumption 4.1.7 The matrix A22 is marginally stable, i.e., all its eigenvalues have zero realparts. For all initial conditions, the zero-input trajectories remain uniformly bounded. Also,
there exist matrices Ta ∈ Rm×p, Fa ∈ R1×p solutions to the regulator equations:{

−A11Ta + TaA22 +A12 = −E1Fa,

−Ce1Ta + Ce2 = 0.
(4.4)

4.2 . Full-state feedback control law design

Inspiredby [BSBADLE19], we first design a state-feedback controller following the back-
stepping methodology and using frequency analysis and filtering techniques [ABADM23].

4.2.1 . Invertible transform and target system

Backstepping transform
Let us map the original system (4.1)-(4.3) to a target systemwith a simplified structure,

using the integral transformationM : X → X defined by
X(t) = ξ(t) +

∫ 1

0
M12(y)α(t, y) +M13(y)β(t, y)dy +

(
M14 M15

)
η(t), (4.5)

Y (t) = η(t),

u(t, x) = α(t, x) +
∫ 1
x M

22(x, y)α(y) +M23(x, y)β(y)dy +
(
M24(x) M25(x)

)
η(t),

v(t, x) = β(t, x) +
∫ 1
x M

32(x, y)α(y) +M33(x, y)β(y)dy +
(
M34(x) M35(x)

)
η(t).

(4.6)
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To highlight the structure of the transform, we use subindices for the different kernels.
The kernelsM22,M23,M32,M33 ∈ C0(T +,R) are continuous functions. They satisfy

λ ∂
∂xM

22(x, y) + λ ∂
∂yM

22(x, y) = σ+(x)M32(x, y),

λ ∂
∂xM

23(x, y)− µ ∂
∂yM

23(x, y) = σ+(x)M33(x, y),

µ ∂
∂xM

32(x, y)− λ ∂
∂yM

32(x, y) = −σ−(x)M22(x, y),

µ ∂
∂xM

33(x, y) + µ ∂
∂yM

33(x, y) = −σ−(x)M23(x, y),

(4.7)

with the boundary conditions
M23(x, x) = −σ

+(x)

λ+ µ
, M22(x, 1) =

1

λ

(
M24(x)E1 + ρµM23(x, 1)

)
,

M32(x, x) =
σ−(x)

λ+ µ
, M33(x, 1) =

1

µρ

(
λM32(x, 1)−M34(x)E1

)
. (4.8)

The kernelsM24,M34 ∈ C0([0, 1],R1×m) andM25,M35 ∈ C0([0, 1],R1×p), are defined on
[0, 1] by the set of ODEs

λ
d

dx
M24(x) +M24(x)Ā11 = σ+(x)M34(x),

λ
d

dx
M25(x) +M25(x)A22 = σ+(x)M35(x)−M24(x)Ā12,

µ
d

dx
M34(x)−M34(x)Ā11 = −σ−(x)M24(x),

µ
d

dx
M35(x)−M35(x)A22 = −σ−(x)M25(x) +M34(x)Ā12,

with the boundary conditions
M24(1) = F1, M

25(1) = Fa + F1Ta, M
34(1) = C11 + ρF1, M

35(1) = C12 + ρM25(1),

where F1 is defined by Assumption 4.1.1 and (Fa, Ta) by Assumption 4.1.7. Finally, kernels
M12,M13 ∈ C0([0, 1],Rn×1),M14 ∈ Rn×m, andM15 ∈ Rn×p are defined by the following
set of algebraic relations

C0M
12(y) =M22(0, y)− qM32(0, y), C0M

13(y) =M23(0, y)− qM33(0, y),

C0M
14 =M24(0)− qM34(0), C0M

15 =M25(0)− qM35(0). (4.9)
Lemma 4.2.1: Well-posedness of the kernel equations

The set of equations (4.7)-(4.9) is well-posed. The kernels of transform (4.5)-(4.6) are
continuously defined on their respective definition domain.
Proof : First kernelsM24,M34 ∈ C0([0, 1],R1×m) andM25,M35 ∈ C0([0, 1],R1×p), satisfy a well-posed
set of coupled ODEs with boundary conditions in x = 1. The set of PDEs (4.7) with boundary conditions
(4.8) in y = x and y = 1 is well-posed, and (M22,M23,M32,M33) are continuously defined on T + due
to the regularity of the coupling terms [DMBAHK18, HVDMK15]. The right-invertibility of C0 is guaranteed by
Assumption 4.1.2. Though it seems counterintuitive at first glance, it allows us to find a solution for the algebraic
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equation (4.9). Indeed, definingM1i(y) = C+
0 (M2i(0, y) − qM3i(0, y), for i ∈ {2, 3, 4, 5}, with C0C

+
0 = I ,

guarantees that equations (4.9) are satisfied. ■

Note that the transform (4.5)-(4.6) is given in an inverse formulation because its ker-
nels satisfy a simpler set of equations than the ones of the transform in a direct formula-
tion. We have the following theorem

Theorem 4.2.1: Invertibility of the backstepping transform

The transform defined from X → X by (4.5)-(4.6) with kernels satisfying (4.7)-(4.9) is
boundedly invertible. Its inverse transform has the same structure.

Proof : Since the transform comprises identity operators, integral operators with regular kernels, and prod-
ucts with bounded matrices, it is bounded. This change of variables is therefore well-defined and invertible
due to its block triangular structure. The blocks on the diagonal, identity or Volterra integral operator, are all
invertible [VKC11, Yos60]. The inverse transform K : X → X , has the same structure

ξ(t) = X(t)−
∫ 1
0 K

12(y)u(t, y) +K13(y)v(t, y)dy −
(
K14 K15

)
Y (t), η(t) = Y (t),

α(t, x) = u(t, x)−
∫ 1
x K

22(x, y)u(y) +K23(x, y)v(y)dy −
(
K24 K25

)
(x)Y (t),

β(t, x) = v(t, x)−
∫ 1
x K

32(x, y)u(y) +K33(x, y)v(y)dy −
(
K34 K35

)
(x)Y (t),

(4.10)

where the coefficientsKij can be expressed in terms ofM ij (and reciprocally) [Krs08] by

i, k ∈ {2, 3}, j ∈ {4, 5},

K1i(x) =M1i(x)−
∫ x
0 M12(y)K2i(y, x) +M13(y)K3i(y, x)dy,

K1j =M1j −
∫ 1
0 M

12(y)K2j(y) +M13(y)K3j(y)dy,

Kki(x, y) =Mki(x, y)−
∫ y
x M

k2(x, ν)K2i(ν, y) +Mk3(x, ν)K3i(ν, y)dν,

Kij(x) =M ij(x)−
∫ 1
x M

i2(x, y)K2j(y) +M i3(x, y)K3j(y)dy.

■

Target system
Differentiating the states defined by (4.5)-(4.6) with respect to time and space, and

integrating by parts, we can show that the original system (4.1)-(4.3) is mapped to
ξ̇(t) = Ā0ξ(t)− λM12(0)C0ξ(t) + Ē1α(t, 1) + Ē0β(t, 0)

(
M1 Mp

)
η(t) +B0Ṽ (t) (4.11)

+

∫ 1

0
Mα(y)α(t, y) +Mβ(y)β(t, y)dy,

∂

∂t
α(t, x) + λ

∂

∂x
α(t, x) = 0,

∂

∂t
β(t, x)− µ ∂

∂x
β(t, x) = 0, (4.12)

η̇(t) =

(
Ā11 Ā12

0 A22

)
η(t) +

(
E1

0p×1

)
α(t, 1), (4.13)

with the boundary conditions
α(t, 0) = qβ(t, 0) + C0ξ(t), β(t, 1) = ρα(t, 1), (4.14)
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where Ā0, Ā11 are defined in Assumption 4.1.1. The distal ODE-state is decomposed into
two parts η(t) = (η1(t)⊤ η2(t)

⊤
)⊤. The different coefficients are defined by

Ā12 = A12 + E1(Fa + F1Ta), M
α(y) = −λ d

dy
M12(y) +A0M

12(y) + E0M
32(0, y),

Ē0 = E0 − qλM12(0) + µM13(0), Mβ(y) = µ
d

dy
M13(y) +A0M

13(y) + E0M
33(0, y),

Ē1 = λM12(1)−M14E1 − ρµM13(1), M1 = −M14Ā11 +A0M
14 + E0M

34(0),

Mp = −M15A22 −M14Ā12 +A0M
15 + E0M

35(0).

The initial condition is given by (ξ0, α0, β0, η0) =M(X0, u0, v0, Y0) ∈ X . Finally, we defined
Ṽ (t)

.
= V (t) − F0ξ(t) in (4.11), with F0 given in Assumption 4.1.1. Without disturbance

(η2 ≡ 0), this target system was stabilized in [BSBADLE19] using a dynamical controller.

4.2.2 . Frequency analysis of the target system

Let us denote τ = 1
µ +

1
λ , the total transport time induced by the transport equations.

We now use the method of characteristics to rewrite the target system as a time-delay
system. More precisely, the solutions of (4.12) satisfy, for t > τ , x ∈ [0, 1],

α(t, x) = α
(
t− x

λ
, 0
)
, β(t, x) = β

(
t− 1− x

µ
, 1

)
. (4.15)

Substituting these expressions in (4.14), we obtain
α(t, 0) = ρqα (t− τ, 0) + C0ξ(t), β(t, 1) = ρqβ (t− τ, 1) + ρC0ξ

(
t− 1

λ

)
.

In the target system, the transport equations are equivalent to two continuous-time dif-
ference equations acting on the boundaries and coupled to the ODE-state ξ(t). In what
follows, we analyze the properties of such a system in the frequency domain using the
Laplace transform. Since we focus on asymptotic properties, we assume all initial condi-
tions equal zero to avoid complicating the expressions. We obtain

(1− ρqe−τs)α(s, 0) = C0ξ(s), (1− ρqe−τs)β(s, 1) = ρC0e
− s

λ ξ(s). (4.16)
The Laplace transform of (4.13) yields

(sI − Ā11)η1(s) = Ā12η2(s) + E1e
− s

λα(s, 0), (sI −A22)η2(s) = 0. (4.17)
Multiplying equation (4.17) by (1− ρqe−τs), which has no zeros on the right-half plane by
Assumption 4.1.6, and using (4.16), we obtain

(1− ρqe−τs)(sI − Ā11)η1(s) = E1e
− s

λC0ξ(s) + (1− ρqe−τs)Ā12η2(s).

Moreover, the matrix polynomial (sI − Ā11) is non-singular on the right-half plane from
Assumption 4.1.1. Using the delay equation (4.15), and a change of variables in the integral
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terms in (4.11), we obtain∫ 1

0
Mα(y)α(t, y)dy =

∫ 1
λ

0
λMα(λθ)α(t− θ, 0)dθ,∫ 1

0
Mβ(y)β(t, y)dy =

∫ 1
µ

0
µMβ(1− µθ)β(t− θ, 1)dθ.

Consequently, the Laplace transform of (4.11) becomes

(sI − Ā0)ξ(s) = −λM12(0)C0ξ(s) +B0Ṽ (s) +

(
Ē1e

− s
λ +

∫ 1
λ

0
λMα(λθ)e−sθdθ

)
α(s, 0)

+

(
Ē0e

− s
µ +

∫ 1
µ

0
µMβ(1− µθ)e−sθdθ

)
β(s, 1) +M1η1(s) +Mpη2(s). (4.18)

Once again, multiplying by the quasipolynomial (1 − ρqe−τs) on both sides of (4.18), and
using (4.16), we have
(1− ρqe−τs)(sI − Ā0)ξ(s) = (1− ρqe−τs)B0Ṽ (s)− (1− ρqe−τs)λM12(0)C0ξ(s)

+ [Ē1e
− s

λ +

∫ 1
λ

0
λMα(λθ)e−sθdθ]C0ξ(s) + [Ē0e

− s
µ +

∫ 1
µ

0
µMβ(1− µθ)e−sθdθ]ρC0e

− s
λ ξ(s)

+M1(sI − Ā11)
−1E1e

− s
λC0ξ(s) + (1− ρqe−τs)

[
M1(sI − Ā11)

−1Ā12 +Mp

]
η2(s).

Multiplying both sides by (1− ρqe−τs)−1, we finally obtain for any s ∈ C with ℜ(s) ≥ 0

(sI − Ā0)ξ(s) = G(s)C0ξ(s) +H(s)η2(s) +B0Ṽ (s), (4.19)
with G(s) = −λM12(0) + (1− ρqe−τs)−1

[
e−

s
λ
(
Ē1 +M1(sI − Ā11)

−1E1

) (4.20)
+ρe−τsĒ0 +

∫ τ

0
M ξ(θ)e−sθdθ

]
,

M ξ(θ) = λ1[0, 1
λ
](θ)M

α(λθ) + ρµ1( 1
λ
,τ ](θ)M

β(1− µθ + µ

λ
),

H(s) =M1(sI − Ā11)
−1Ā12 +Mp. (4.21)

We now design a function Ṽ (s) ensuring that C0ξ(s) in (4.19) exponentially converges tozero. We will show next that it ensures the virtual output ϵ convergence to zero.

4.2.3 . Full-state feedback controller design

Using the superposition principle, the control law is decomposed into twoparts: Ṽ (s) =

Uξ(s) + Uη(s). Using Assumption (4.1.1), equation (4.19) rewrites for any s ∈ C+

C0ξ(s) = C0(sI − Ā0)
−1G(s)C0ξ(s) + P0(s)Uξ(s)

+ C0(sI − Ā0)
−1H(s)η2(s) + P0(s)Uη(s). (4.22)
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We can use each controller part to compensate for the inner dynamics. First, define the
transfer function

Fη(s)
.
= −P+

0 (s)C0(sI − Ā0)
−1H(s),

such that, knowing the values of η2, the control law Uη(s) = Fη(s)η2(s) cancels the effectof the disturbance on the output of the target system. As mentioned above, the obtained
transfer function is not proper in general. However, we can use our prior knowledge of
the disturbance or trajectory dynamics to regularize it and design a strictly proper transfer
function F̃η(s), following the procedure presented in [ABA23] for instance. We then define

Ũη(s) = F̃η(s)η2(s). (4.23)
Once we have canceled the effects of the disturbance on the dynamics or taken into ac-
count the given trajectory, equation (4.22) rewrites

C0ξ(s) = C0(sI − Ā0)
−1G(s)C0ξ(s) + P0(s)Uξ(s).

Next, we define the transfer function Fξ(s) = −P+
0 C0(sI−Ā0)

−1G(s), and defineUξ(s) =
Fξ(s)C0ξ(s). We would obtain C0ξ(s) = 0 with this control law. However, the transfer
function Fξ(s)may not be strictly proper. Thus, to make it strictly proper and guarantee
the existence of robustness margins, we may use filtering techniques as in [BSBADLE19,
ABADM23]. The resulting controller will be robust to small delays in the input and pa-
rameter uncertainties, which is not the case in some designs including derivative terms
[WK20].
Let us decomposeG(s) in (4.20) intoG(s) = w(s)G(s)+ (1−w(s))G(s), with w(s) a (SISO)
stable low-pass filter of sufficient order, and define the proper transfer function F̃ξ(s) by

F̃ξ(s) = −P+
0 (s)C0(sI − Ā0)

−1w(s)G(s) = w(s)Fξ(s). (4.24)
We have the following lemma:

Lemma 4.2.2: Existence of a low-pass filter [BSBADLE19]

Let w(s) be any low-pass filter, with a sufficiently high relative degree, and 0 < δ < 1

sufficiently small, such that
∀x ∈ R, |1− w(jx)| ≤ 1− δ

∥G∥∞σ̄(C0(jxI − Ā0)−1)
. (4.25)

Then the dynamic output feedback Ũξ(s)+Ũη(s)with Ũξ(s) = F̃ξ(s)C0ξ(s)where F̃ξ(s)
is given in (4.24), and Ũη(s) in (4.23) exponentially stabilizes C0ξ(.).
Proof : First, remark that the relative degree ofw(s) can always be chosen such that Fξ(s) becomes strictly
proper in (4.24). Once the effects of the trajectory/disturbance have been canceled by Ũη(s), we can plug (4.24)
into the simplified expression of (4.22). The closed-loop dynamics of C0ξ(.) is then governed by

(1− Φ(s))C0ξ(s) = 0, (4.26)
where Φ(s)

.
= (1 − w(s))C0(sI − Ā0)−1G(s). Since G(s) given in (4.20) is uniformly bounded in the right-
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half complex plane, we have σ̄(G(jx)) ≤ ∥G∥∞ for all x. Noting that Φ(s) is stable and strictly proper (Ā0 is
Hurwitz by Assumption 4.1.1), we have by (4.25) that

σ̄(Φ(jx)) ≤ |1− w(jx)|∥G∥∞σ̄(C0(jxI − Ā0)
−1) ≤ 1− δ, for all x ∈ R.

This implies that ∥Φ∥∞ < 1, which is a sufficient condition for exponential stability of C0ξ(.) in (4.26). Indeed,
it implies that 1− Φ(s) = 0 has no roots in the right-half complex plane. ■

We can then define the control input for the original system (4.1)-(4.3) as V (t) = Ṽ (t)+

F0ξ(t). We now show that the output tracking-output regulation problems are solved.
Theorem 4.2.2: Stabilizing controller

Consider the extended control law V (s) = (F̃ξ(s)C0 + F0)ξ(s) + F̃η(s)η2(s), where
F̃ξ(s), F̃η(s) are two stable strictly proper transfermatrices respectively defined in equa-
tions (4.23)-(4.24). Then, under Assumptions 4.1.6, 4.1.1, 4.1.2, 4.1.7, the virtual output ϵ(t)
exponentially converges to zero. The control action V (t) and the trajectories ofX , u, v,
and Y remain bounded.

Proof : Wehave already proved in Lemma 4.2.2 thatC0ξ(·) is exponentially stabilized by the dynamic output
feedback Ũξ(s) + Ũη(s) = F̃ξ(s)C0ξ(s) + F̃η(s)η2(s). Due to Assumption 4.1.6, (1 − ρqe−τs) has a stable
inverse. Thus, the stability of α(·, 0), β(·, 1) is deduced from (4.16), which implies the exponential convergence
to zero of α and β in the L2-norm. Let us now show that Ce1η1 + Ce2η2 −→ 0. The dynamics of η1 rewrites

η̇1(t) = (A11 + E1F1)η1(t) +A12η2(t) + E1(Fa + F1Ta)η2(t) + E1α(t, 1),

= (A11 + E1F1)η1(t) + (−E1Fa +A11Ta − TaA22)η2(t)

+ E1(Fa + F1Ta)η2(t) + E1α(t, 1) by Assumption 4.1.7
=⇒

˙︷ ︸︸ ︷
(η1 + Taη2)(t) = Ā11(η1 + Taη2) + E1α(t, 1)︸ ︷︷ ︸

−→0

.

Therefore, the dynamics of η1 + Taη2 are exponentially stable. It implies that Ce1(η1 + Taη2)(t) = Ce1(Y1 +

TaY2)(t) = Ce1Y1(t) + Ce2Y2(t) = ϵ(t) converges to zero. The boundedness of the control input is guaran-
teed by the fact that functions F̃ξ, F̃η are strictly proper (as C0ξ(s) exponentially converges to zero and η2(s)
is bounded). The boundedness of the state η follows from equation (4.17). Finally, sinceG(s) defined by (4.20)
is a stable, proper transfer matrix and since Ā0 is Hurwitz (Assumption 4.1.1), we obtain from equation (4.19)
that the state ξ remains bounded. This implies the boundedness of the original state using the invertibility and
the boundedness of the backstepping transformation. ■

The control lawV (s)defined in Theorem4.2.2 canbe expressed in termsof the original
coordinates as
V (s) = (F̃ξ(s)C0 + F0)

(
X(s)−

∫ 1

0
K12(y)u(s, y) +K13(y)v(s, y)dy −

(
K14 K15

)
Y (s)

)
+ F̃η(s)Y2(s).

Thus, its numerical implementation requires a temporal realization of F̃ξ(s) in (4.24) and
F̃η(s) in (4.23), as well as a numerical approximation of the kernels of transform (4.10). It
also requires the knowledge of all the states (X,u, v, Y ) at any time. It is then necessary
to estimate the state (X,u, v, Y1) and reconstruct the disturbance Y2 using the availablemeasurement y(t).
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4.3 . Observer design

Following a dual approach, we now design a state observer for system (4.1)-(4.3). We
first use an invertible backstepping transform to map the original system to a target sys-
tem, in which the in-domain couplings are now local terms depending on the measure
ODE state and the boundary term v(t, 0) [ABA23]. It allows for a simpler observer design,
using a copy of the target system dynamics with dynamical output injection gains. Using
frequency analysis, their tuning guarantees the exponential convergence of the estimated
state towards the real one. It is then possible to reconstruct the original state, including
the disturbance term. The observer design strategy is summarized in Figure 4.3.

Figure 4.3 – Observer design strategy for system (4.1)-(4.3)

4.3.1 . Invertible transform and target system

Backstepping transform
Define the state (χ,w, υ,Ω) ∈ X , using the following transform Lobs

X(t) = χ(t), Y (t) = Ω(t) +

∫ 1

0

(
L42

L52

)
(y)w(y) +

(
L43

L53

)
(y)υ(y)dy, (4.27)

u(t, x) = w(t, x) +
∫ x
0 L

22(x, y)w(y) + L23(x, y)υ(y)dy,

v(t, x) = υ(t, x) +
∫ x
0 L

32(x, y)w(y) + L33(x, y)υ(y)dy,
(4.28)

where Ω(t) =
(
Ω1(t)

⊤ Ω2(t)
⊤
)⊤ is decomposed into two parts, and (X,u, v, Y ) ∈ X is

the solution of system (4.1)-(4.3). Similarly to Theorem 4.2.1, this transform is invertible,
with inverse transform of the same form denoted Nobs. The kernel functions Li2, Li3 ∈
C0([0, 1],R∗×1) (∗ = m if i = 4, ∗ = p if i = 5) and L22, L23, L32, L33 ∈ C(T −,R). They
satisfy the following set of PDEs

λ
∂

∂x
L22(x, y) + λ

∂

∂y
L22(x, y) = σ+(x)L32(x, y), (4.29)

λ
∂

∂x
L23(x, y)− µ ∂

∂y
L23(x, y) = σ+(x)L33(x, y),

µ
∂

∂x
L32(x, y)− λ ∂

∂y
L32(x, y) = −σ−(x)L22(x, y),

µ
∂

∂x
L33(x, y) + µ

∂

∂y
L33(x, y) = −σ−(x)L23(x, y),
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with the boundary conditions
L22(1, y) =

1

ρ

(
L32(1, y)− C1

(
L42(y)⊤ L52(y)⊤

)⊤)
, L23(x, x) =

σ+(x)

λ+ µ
,

L32(x, x) = −σ
−(x)

λ+ µ
, L33(1, y) = ρL23(1, y) + C1

(
L43(y)⊤ L53(y)⊤

)⊤
,

and the following set of ODEs

λ
d

dy

(
L42

L52

)
(y) =

(
A11 A12

0p×m A22

)(
L42

L52

)
(y) +

(
E1

0p×1

)
L22(1, y),

− µ d

dy

(
L43

L53

)
(y) =

(
A11 A12

0p×m A22

)(
L43

L53

)
(y) +

(
E1

0p×1

)
L23(1, y),

with the boundary conditions(
L42(1)

L52(1)

)
= − 1

λ
(ρ

(
L1

L2

)
+

(
E1

0p×1

)
),

(
L43(1)

L53(1)

)
= − 1

µ

(
L1

L2

)
, (4.30)

where the matrices L1 and L2 are defined in Assumption 4.1.3. Adjusting the proof from
[DMBAHK18], which states the existence of a solution for a general class of kernel equa-
tions, this system admits a unique bounded solution.

Target system
Following the backstepping methodology, we derive equations (4.27)-(4.28) with re-

spect to space and time and integrate by parts. We map the original system to this new
target system

χ̇(t) = A0χ(t) + E0υ(t, 0) +B0V (t), Ω̇(t) = Aobs
1 Ω(t) +Kυ,0

Ω υ(t, 0) +Kχ
Ωχ(t), (4.31)

∂w

∂t
(t, x) + λ

∂w

∂x
(t, x) = gw(x)υ(t, 0) + hw(x)χ(t),

∂υ

∂t
(t, x)− µ∂υ

∂x
(t, x) = gυ(x)υ(t, 0) + hυ(x)χ(t),

with Aobs
1 defined by Assumption 4.1.3 and the boundary conditions

w(t, 0) = qυ(t, 0) + C0χ(t), υ(t, 1) = ρw(t, 1) + C1Ω(t). (4.32)
The functions gw, gυ and hw, hυ are uniquely defined [Yos60] by

gw(x) +
∫ x
0 L

22(x, y)gw(y) + L23(x, y)gυ(y)dy = µL23(x, 0)− λqL22(x, 0),

gυ(x) +
∫ x
0 L

32(x, y)gw(y) + L33(x, y)gυ(y)dy = µL33(x, 0)− λqL32(x, 0),

hw(x) +
∫ x
0 L

22(x, y)hw(y) + L23(x, y)hυ(y)dy = −λL22(x, 0)C0,

hυ(x) +
∫ x
0 L

32(x, y)hw(y) + L33(x, y)hυ(y)dy = −λL32(x, 0)C0.

(4.33)
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The termsKυ,0
Ω ,Kχ

Ω are then given by

Kυ,0
Ω = µ

(
L43(0)

L53(0)

)
− λq

(
L42(0)

L52(0)

)
−
∫ 1

0

(
L42(y) L43(y)

L52(y) L53(y)

)(
gw(y)

gυ(y)

)
dy,

Kχ
Ω = −λ

(
L42(0)C0

L52(0)C0

)
−
∫ 1

0

(
L42(y) L43(y)

L52(y) L53(y)

)(
hw(y)

hυ(y)

)
dy.

4.3.2 . Observer and error state

Using the measurement y(t) = CmesX(t) = Cmesχ(t) ∈ Rn′ , we now design an ob-
server for the target system. The observer state (χ̂, ŵ, υ̂, Ω̂) is the solution of a set of
equations that is a copy of the original dynamics, to which we add dynamical output in-
jection gains P . They do not exactly correspond to static gains as in the usual Luenberger
observer formulation. We use frequency analysis to determine their expression in the
Laplace domain in the next section. The observer equations are

˙̂χ(t) = A0χ̂(t) + E0υ̂(t, 0) +B0V (t)− Pχ (y(t)− Cmesχ̂(t)) , (4.34)
∂ŵ
∂t + λ∂ŵ∂x = gw(x)υ̂(t, 0) + hw(x)χ̂(t)− Pw(t, x),
∂υ̂
∂t − µ

∂υ̂
∂x = gυ(x)υ̂(t, 0) + hυ(x)χ̂(t)− Pυ(t, x),

˙̂
Ω(t) = Aobs

1 Ω̂(t) +Kυ,0
Ω υ̂(t, 0) +Kχ

Ωχ̂(t)− PΩ(t),

with boundary conditions
ŵ(t, 0) = qυ̂(t, 0) + C0χ̂(t)− P0

w(t), υ̂(t, 1) = ρŵ(t, 1) + C1Ω̂(t). (4.35)
Initial conditions are arbitrarily chosen in X . The corresponding error state is defined by
(χ̃, w̃, υ̃, Ω̃)

.
= (χ,w, υ,Ω)− (χ̂, ŵ, υ̂, Ω̂). It satisfies

˙̃χ(t) = A0χ̃(t) + E0υ̃(t, 0) + PχCmesχ̃(t), (4.36)
∂w̃
∂t (t, x) + λ∂w̃∂x (t, x) = gw(x)υ̃(t, 0) + hw(x)χ̃(t) + Pw(t, x),
∂υ̃
∂t (t, x)− µ

∂υ̃
∂x(t, x) = gυ(x)υ̃(t, 0) + hυ(x)χ̃(t) + Pυ(t, x),

(4.37)
˙̃Ω(t) = Aobs

1 Ω̃(t) +Kυ,0
Ω υ̃(t, 0) +Kχ

Ωχ̃(t) + PΩ(t), (4.38)
with the boundary conditions

w̃(t, 0) = qυ̃(t, 0) + C0χ̃(t) + P0
w(t), υ̃(t, 1) = ρw̃(t, 1) + C1Ω̃(t). (4.39)

First, we can choose Pχ = LX , withLX given in Assumption 4.1.3, such that (4.36) rewrites
˙̃χ(t) = Aobs

0 χ̃(t) + E0υ̃(t, 0).
4.3.3 . Frequency analysis of the error system

Our objective is now to design the injected signals Pw,Pυ,PΩ,P0
w guaranteeing that

the error system (4.36)-(4.39) is exponentially stable in the sense of the X−norm. We
follow an approach similar to the one given in Section 4.2.2.
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With the chosen Pχ and since (sI −Aobs
0 ) is non-singular on the complex right-half plane

(Assumption 4.1.3), the Laplace transform of (4.36) gives
(sI −Aobs

0 )χ̃(s) = E0υ̃(s, 0) =⇒ χ̃(s) = (sI −Aobs
0 )−1E0υ̃(s, 0) ∀s ∈ C+. (4.40)

Consider the function Pmes(s) defined after Assumption 4.1.4, and denote P−mes(s) anystable left-inverse. Equation (4.40) implies that P−mesCmesχ̃(s) = ṽ(s, 0). Let us now fo-
cus on equations (4.37). We want to choose signals Pw,Pυ to suppress the in-domain
couplings, such that the two PDEs rewrite as pure transport equations. It implies that
w̃(t, x) ≡ w̃(t − x

λ , 0), υ̃(t, x) ≡ υ̃(t − 1−x
µ , 1) or, in the frequency domain, w̃(s, 1) ≡

e−
s
λ w̃(s, 0), υ̃(s, 0) ≡ e

− s
µ υ̃(s, 1). Applying the method of characteristics to (4.37), we

have
w̃(t, 1) = w̃(t− 1

λ , 1) +
∫ 1

λ
0 gw(1− λθ)υ̃(t− θ, 0) + hw(1− λθ)χ̃(t− θ)

+Pw(t− θ, 1− λθ)dθ,

υ̃(t, 0) = υ̃(t− 1
µ , 0) +

∫ 1
µ

0 gυ(µθ)υ̃(t− θ, 0) + hυ(µθ)χ̃(t− θ) + Pυ(t− θ, µθ)dθ.

(4.41)

Taking the Laplace transform of (4.41), and incorporating (4.40), we have

w̃(s, 1) = e−
s
λ w̃(s, 0) +

∫ 1
λ

0
(gw(1− λθ) + hw(1− λθ)(sI −Aobs

0 )−1E0)υ̃(s, 0)(s)

+ Pw(s, 1− λθ))e−sθdθ,

υ̃(s, 0) = e
− s

µ υ̃(s, 1) +

∫ 1
µ

0
(gυ(µθ) + hυ(µθ)(sI −Aobs

0 )−1E0)υ̃(s, 0) + Pυ(s, µθ))e−sθdθ.

We now consider that we have gains of the form Pw(s, x) = Pw(s, x)Cmesχ̃(s), Pυ(s, x) =
Pυ(s, x)Cmesχ̃(s), which only depend on the available measurement and the observer
state. To cancel the terms in the integral, we thus define the transfer functions

Pw(s, x)
.
= −(gw(x) + hw(x)(sI −Aobs

0 )−1E0)P
−mes(s), (4.42)

Pυ(s, x)
.
= −(gυ(x) + hυ(x)(sI −Aobs

0 )−1E0)P
−mes(s).

Let us now consider the boundary condition (4.39). Taking its Laplace transform and in-
corporating therein (4.40), we have w̃(s, 0) = (q + C0(sI − Aobs

0 )−1E0)υ̃(s, 0) + P0
w(s).Choosing P0

w(s)
.
= P 0

w(s)Cmesχ̃(s), we define P 0
w(s)

.
= −(q + C0(sI − Aobs

0 )−1E0)P
−mes(s),such that the reflection terms at the boundary are cancelled. Finally, taking the Laplace

transform of (4.38) and incorporating therein (4.40), we have
(sI −Aobs

1 )Ω(s) = (Kυ,0
Ω +Kχ

Ω(sI −A
obs
0 )−1E0)υ̃(s, 0) + PΩ(s),

with sI − Aobs
1 non-singular on C+ by Assumption 4.1.3. With an input signal of form

PΩ(s) = PΩ(s)Cmesχ̃(s), the transfer function
PΩ(s) = −(Kυ,0

Ω +Kχ
Ω(sI −A

obs
0 )−1E0)P

−mes(s), (4.43)
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guarantees the convergence of Ω̃ to zero. Finally, we can use a low-pass filter ω(s) to
ensure all the transfer functions defining the observer gains are strictly proper

Pw(s, x) = ω(s)Pw(s, x)Cmesχ̃(s), Pυ(s, x) = ω(s)Pυ(s, x)Cmesχ̃(s), (4.44)
PΩ(s) = ω(s)PΩ(s)Cmesχ̃(s), P0

w(s) = ω(s)P 0
w(s)Cmesχ̃(s). (4.45)

The exponential stability of the error system is stated in the following theorem
Theorem 4.3.1: Exponential stability of the error system

Let ω(s) be any low pass filter with a sufficiently high relative degree, and 0 < δ̃ < 1

sufficiently small, such that
∀x ∈ R, |1− ω(jx)| < 1− δ̃

|ρq|+ σ̄(Gobs(jx)) , (4.46)
with Gobs(s) .= C1(sI −Aobs

1 )−1
(
Kν,0

Ω +Kχ
Ω(sI −A

obs
0 )−1E0

)
+ ρ

[
e−τsC0(sI −Aobs

0 )−1 + e
− s

µ

∫ 1
λ

0
(gw(1− λθ) + hw(1− λθ)(sI −Aobs

0 )−1E0) e
−sθdθ

]

+

∫ 1
µ

0
(gυ(µθ) + hυ(µθ)(sI −Aobs

0 )−1E0) e
−sθdθ;

Consider the dynamic output feedback gains (4.44)-(4.45)withPw(s, x),Pυ(s, x),PΩ(s),
P 0
w(s) defined by (4.42)-(4.43). Then, under Assumptions 4.1.3 and 4.1.4, the error sys-

tem (4.36)-(4.39), with any initial conditions in X , is exponentially stable in the sense of
the X−norm.

Proof : First, we emphasize that we can always find a low pass filter ω and a coefficient δ̃ such that condi-
tion (4.46) is satisfied. Indeed, the transfer function Gobs(s) is strictly proper and uniformly bounded in the
right-half complex plane as a sum of strictly proper transfer functions. The integral term goes to zero at high
frequencies by the Riemann-Lebesgue lemma. Thus, at high frequency, |Gobs(jx)| −→ 0 and the gain of the
low-pass filter goes to zero |ω(jx)| −→ 0. Since |ρq| < 1 by Assumption 4.1.6, we can choose 0 < δ̃ < 1−|ρq|.
An example of an adequate filter design is proposed in [ABADM23].
Plugging (4.44)-(4.45) into the Laplace transform of (4.36)-(4.39), we obtain

χ̃(s) = (sI −Aobs
0 )−1E0υ̃(s, 0), (sI −Aobs

1 )Ω(s) = (1− ω(s))[(Kν,0
Ω υ̃(s, 0) +Kχ

Ωχ̃(s)],

w̃(s, 1) = e−
s
λ w̃(s, 0)− (1− ω(s))

∫ 1
λ

0
[gw(1− λθ) + hw(1− λθ)(sI −Aobs

0 )−1E0]e
−sθdθυ̃(s, 0),

υ̃(s, 0) = e
− s

µ υ̃(s, 1)− (1− ω(s))

∫ 1
µ

0
[gυ(µθ) + hυ(µθ)(sI −Aobs

0 )−1E0]e
−sθdθυ̃(s, 0),

w̃(s, 0) = (1− ω(s))[qυ̃(s, 0) + C0χ̃(s)], υ(s, 1) = ρw̃(s, 1) + C1Ω(s).

Combining the above equations, the closed-loop dynamics of υ̃(., 0) rewrite
υ̃(s, 0) = (1− ω(s))[ρqe−sτ +Gobs(s)]υ̃(s, 0) = Φobs(s)υ̃(s, 0), (4.47)

withGobs(s) defined in Theorem 4.3.1. Thus, Φobs(s) is stable and strictly proper. We have
σ̄(Φobs(jx)) ≤ |1− ω(jx)| σ̄(ρqe−jτx +Gobs(jx))
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≤ |1− ω(jx)|(|ρq|+ σ̄(Gobs(jx)) < 1− δ̃, ∀x ∈ R, by (4.46).
This implies that ∥Φobs∥∞ < 1, which is a sufficient condition for exponential stability of υ̃(., 0) in (4.47).
If υ̃(s, 0) is exponentially stabilized, the error system becomes exponentially stable. Since Aobs

0 is Hurwitz by
Assumption 4.1.3, the dynamics in χ̃ are stable and χ̃ converges towards zero. Consequently, the boundary
error state w̃(., 0) converges to zero. It implies that the dynamics of w̃ are stabilized.
Next, by Assumption 4.1.3, Ω̃ is exponentially stabilized. ■

Note that due to the structure of the dynamic output feedback gains given in (4.44)-
(4.45), and the properties of the filtered proper and stable transfer function ω(s)P·(s, x),the convergence of the input χ̃ to zero implies the one of the injection terms. Under
Assumption 4.1.4, we thus designed dynamical observer gains stabilizing the target error
system. Let us now define the original observer state

(X̂, û, v̂, Ŷ ) = Lobs(χ̂, ŵ, υ̂, Ω̂). (4.48)
Corollary 4.3.1: Observer design

Let ω(s) be any low pass filter with a sufficiently high relative degree, satisfying (4.46)
and the dynamic output feedback of form (4.44)-(4.45) with Pw(s, x), Pυ(s, x), PΩ(s)

and P 0
w(s) defined by (4.42)-(4.43). Then, under Assumptions 4.1.3, and 4.1.4, the ob-

server state (4.48) exponentially converges to the original state (X,u, v, Y ).

Proof : Under the corollary assumptions, the target error state converges to zero at an exponential rate
by Theorem 4.4.1. Consequently, the target observer state converges towards the target state. We, therefore,
have access to an estimation of the state (χ,w, υ,Ω)with the observer state. Using the invertible backstepping
transform Lobs defined by (4.27), we can reconstruct the original state (X,u, v, Y ). Indeed, we can define
the original error state as (X̃, ũ, ṽ, Ỹ ) = (X,u, v, Y ) − (X̂, û, v̂, Ŷ ). Since the backstepping transform is
invertible, the original error system shares the same stability properties with the target error system and is
thus exponentially stable. Since the original error state converges to zero, the original observer is a correct
estimation of the original state. ■

4.4 . Dynamic output-feedback control law

We can now fulfill the control objective
Theorem 4.4.1: Stabilization of the virtual output

Consider system (4.1)-(4.3) with the observer (4.34)-(4.35), (4.48) and the control law
V̂ (s) =(F̃ξ(s)C0 + F0)

[
X̂(s)−K14Ŷ1(s)−

∫ 1

0
K12(y)û(s, y) +K13(y)v̂(s, y)dy

]
+
[
F̃η(s)− (F̃ξ(s)C0 + F0)K

15
]
Ŷ2(s), (4.49)

with F̃ξ(t) defined by (4.24) and F̃η(s) defined in (4.23). Then, for all initial conditions
(X0, u0, v0, Y0) ∈ X , the virtual output ϵ(t) exponentially converges to zero, and the
state of the system remains bounded in the X−norm.
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Proof : Using the previous results, we need to show that the dynamics of C0ξ are stabilized by the output
feedback law (4.49). By Corollary 4.3.1, the error state (X̃, ũ, ṽ, Ỹ ) exponentially converges to zero. Due to the
invertibility of the backstepping transformK defined in (4.10), the target error state (ξ̃, α̃, β̃, η̃) = K(X̃, ũ, ṽ, Ỹ )

is exponentially stable.
Denote E the well-defined linear operator such that Û = E(ξ̂, α̂, β̂, η̂) = E(ξ, α, β, η) − E(ξ̃, α̃, β̃, η̃). The dy-
namics of ξ and the error state have a cascaded structure (in other words, system (ξ, ξ̃, α̃, β̃, η̃) has a triangular
by blocks structure). Indeed, from (4.19), we have

(sI − Ā0)ξ(s) = G(s)C0ξ(s) +H(s)η2(s) +B0(V̂ (s)− F0ξ(s)),

and then by linearity
(sI − Ā0)ξ(s) = G(s)C0ξ(s) +H(s)η2(s) +B0V̄ (s) : exponentially stable dynamics

−B0E(ξ̃, α̃, β̃, η̃) : autonomous exponentially stable system
The dynamics of (α, β, η) are not modified, and C0ξ converges to zero. We can apply the results from Section
4.2.3 to conclude. ■

4.5 . Simulation results

We conclude this chapter with some simulations illustrating the performance of the
proposed output feedback controller in two test cases: the rejection of an exogenous
sinusoidal disturbance and the tracking of a sinusoidal trajectory. For brevity, we consider
the same plant in both cases. Only matrixCe and the exogenous system pulsation ωY are
changed. More test cases can be found in [J3].

The system, the observer, and the controller were implemented using Matlab and
Simulink. The evolution of the PDE systems was simulated using an explicit in-time, first-
order, upwind finite difference method. The ODE states were simulated using a variable
step modified Rosenbrock solver ode23s. The evolution of the systems was computed on
a 100s time scale, with a CFL number equal to 0.9. The space domain [0, 1] is discretized
with a mesh of nx= 101 points.

We use the following parameters λ = 1.8, µ = 2.1, ρ = 0.5, q = 0.8. For the sake of
simplicity, we consider that there are no in-domain couplings. This allows computing the
kernels of the Volterra integral transform using their explicit expression beforehand. The
ODE dynamics are in dimension n = 4,m = 3, c = 2, and defined by the matrices

A0 =
1

10


0 0.14 0 0.1

0 0 0.14 0

0.3 −0.4 0.2 0.2

0 0 0 −1.1

 , B0 =


0 0

0 −0.1
0.1 −0.1
0 0

 , A11 =

 0.1 0 0

0.05 −0.1 −0.02
0 0 −0.2

 ,

C0 =
(
0.1 0 0 −0.05

)
, C11 =

(
1 0 −0.2

)
, C12 =

(
0 0

)
,

A12 =

 0 0.1

0.2 0

0.01 0

 , A22 =

(
0 1

−ω2
Y 0

)
, E0 =


0.2

0.1

0

0

 , E1 =

 0.1

0.01

0

 .
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With these parameters, the open-loop system is unstable. Matrix A22 associated to the
dynamics of state Y2 = (y2 ẏ2

)⊤
∈ R2 corresponds to a sinusoidal signal of form y2(t) =

Amp sin(ωyt). The matrices F0, F1, LX , L1, L2 satisfying Assumptions 4.1.1 and 4.1.3 are
obtained using the pole placement method place. The matrices Ta, Fa are computed
using a Schur triangulation. Here, we have

Ta =

 −1 0

−0.0924 0.0234

−0.0002 0.001

 , Fa =
(
−1 9

)
.

The initial conditions are given byX0 =
(
0.1 0.1 0 0

)⊤, Y0 = (1 0 0.1 0.1 0.1
)⊤,

v0(x) = 0.1 sin(π2x) and u0 an affine function satisfying (4.3)
First test case: disturbance rejection

First, we consider the case where the distal system is subject to an exogenous sinu-
soidal disturbance of pulsation ωY = 0.1π.

Objective 4.5.1: Disturbance rejection

With Ce = (1 0 0 0 0
), the virtual output is defined by ϵ(t) = Y1,1(t).

The proposed output-feedback control law stabilizes the first component ofY1(t) in pres-
ence of an exogenous sinusoidal disturbance.
As illustrated in Figure 4.4, the norm of the unstable open-loop system explodes. It

remains bounded in closed-loop, as shown in Figure 4.5. In a closed loop, the virtual out-
put ϵ(t), represented in Figure 4.8, converges to zero with the full state-feedback control
law, even in the presence of the disturbance signal (dotted line).

Figure 4.4 – Evolution of the X -norm inopen-loop Figure 4.5 – Evolution of the X -norm inclosed-loop (test case 1)
The control inputs are pictured in Figure 4.6. They remain continuous but present high

value at the beginning of the operation. The evolution of the PDE state v(t, x) is pictured
in Figure 4.7. It remains bounded as expected, but keeps oscillating to compensate the
sinusoidal disturbance.
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Figure 4.6 – Evolution of the control in-puts (test case 1) Figure 4.7 – Evolution of the PDE state
v(t, x) (test case 1)

Figure 4.8 – Evolution of ϵ(t)

Second test case: trajectory tracking
First, we consider the case of an exogenous sinusoidal trajectory of pulsation ωY = π.
Objective 4.5.2: Reference trajectory tracking

With Ce = (1 0 0 −1 0
), the virtual output is defined by ϵ(t) = Y1,1(t)− Yref(t).The proposed output-feedback control law makes the first component of Y1(t) follow

the sinusoidal trajectory.

The open-loop system is still unstable. The norm of the state in a closed-loop is pic-
tured in Figure 4.9. Although it does not converge to zero, it remains bounded while the
system is excited to track the desired output.
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Figure 4.9 – Evolution of the X−norm ofthe system (test case 2) Figure 4.10 – Evolution of Y1(t) and ref-erence trajectory (test case 2)
The evolution of the state Y1 is pictured in Figure 4.10. As expected, the first compo-

nent converges towards the sinusoidal trajectory (dotted red line).

Conclusion

In this chapter, we designed a strictly proper dynamic output-feedback controller al-
lowing output regulation and output tracking for a class of interconnected ODE-PDE-ODE
systems. The load dynamics at the unactuated end of the interconnection were dynam-
ically augmented with a finite-dimensional exosystem modeling possible trajectory and
disturbance inputs, as illustrated in two test cases in the simulation. The control and ob-
server designs were based on the backstepping methodology, with a stability analysis in
the frequency domain.

Though not given here, the simulation results from [RBAA23] raised some potential
numerical limitations. In particular, the computation time to solve the observer system
is essential since it requires refining the mesh grid. As mentioned in the perspectives
closing Part II, model reduction techniques could be consequently investigated to ease
the implementation of the proposed control strategies. Future contributions could also
focus on leveraging the proposed assumptions. As mentioned in the introduction, an
application of such ODE-PDE-ODE interconnection can be found in drilling systems. It
is illustrated in Chapter 6. Natural extensions of the system considered herein include
non-scalar PDE and are also presented at the end of Part II.
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5 - Stabilizing a chain of N hyperbolic PDE systems in-
terconnected with an ODE

This chapter considers a chain of linear scalar hyperbolic PDE subsystems intercon-
nected at one end with an ODE. The opposite end is fully actuated. This network with
arbitrarily manyN subsystems is presented in Section 5.1. It can be used to model traffic
flow dynamics on road sections with different configurations [YAK20] or drill strings with
varying inclination or physical properties [AKIS20]. Wepropose amodular approach called
recursive dynamics interconnection framework to design an output feedback stabi-
lizing the chain. This new framework allows for a "plug-and-play"-like approach to con-
trol design since additional subsystems satisfying similar conditions can be added to the
chain using the same procedure. It takes advantage of the interconnection between two
consecutive subsystems. More precisely, for each subsystem considered independently,
we determine a virtual input ensuring that its output tracks the virtual input stabilizing
the downstream subsystem. Starting from the last subsystem, we recursively determine
the control input stabilizing the whole chain (Section 5.5). However, due to the inherent
transport time in each subsystem, each virtual input depends on the present and future
values of the downstream states. To obtain an output feedback control law, we propose
a similar approach to estimate the boundary states from the measurement available at
the actuated end (Section 5.3). We then design a predictor ensuring that we have access
to future values of the states. To ensure the applicability of the approach, the predicted
values are computed using the boundary state estimations (Section 5.4).

Chapitre 5: Stabilisation d’un chaine de N systèmes d’EDP hyperboliques
interconnectée à une EDO. Ce chapitre traite de la stabilisation d’une chaine consi-
tuée de N sous-systèmes d’EDP hyperboliques. Ce système, introduit en Section 5.1, est
pleinement actionné à une extrémité, et connecté à l’autre extrémité à une EDO. Afin
de généraliser l’approche par backstepping, nous proposons ici une approche récursive
prenant en compte les interconnections entre les différents sous-systèmes du réseau.
Cette stratégie modulaire permet d’adapter simplement la loi de commande lorsqu’on
ajoute au réseau un nouveau sous-système, sous réserve qu’il satisfasse certaines hy-
pothèses. Plus précisément, pour chaque sous-système, nous cherchons à résoudre un
problème de tracking, i.e de trouver une loi de commande virtuelle assurant que sa sortie
(qui "actionne" le sous-système suivant) converge vers la commande virtuelle stabilisant
le sous-système suivant. La loi de commande à l’entrée de la chaine est obtenue récursive-
ment (Section 5.5). A cause de l’inertie de chaque sous-système, son expression néces-
site la connaissance des valeurs futures de l’état distribué de chaque sous-système. Pour
pallier à cet inconvénient, nous utilisons une stratégie semblable pour obtenir une esti-
mation retardée des états aux frontières de chaque sous-système, à partir de la mesure
disponible à l’extrémité actionnée (Section 5.3). En utilisant des prédicteurs adéquats,
nous pouvons finalement obtenir des valeurs présentes et futures de l’état distribué (Sec-
tion 5.4). Cela permet d’implémenter la loi de commande et de stabiliser la chaîne.
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5.1 . Problem description

5.1.1 . System under consideration
This chapter considers a system composed of N > 0 interconnected hyperbolic PDE

systems in a chain structure. It is actuated at the first end and coupled with an ODE at
the other. The last unactuated ODE system can represent the dynamics of a load [WK20,
WK21]. More specifically, in the context of drilling given in Chapter 6, it corresponds to the
lumped collars and bit (BHA) at the end of the pipe or the interaction between the bit and
the rock [AvdW19]. This system is schematically represented in Figure 5.1. Each hyperbolic
PDE subsystem i, (i ∈ J1, NK) is modeled by (2.1)-(2.2):

∂

∂t
ui(t, x) + λi

∂

∂x
ui(t, x) = σ+i (x)vi(t, x), (5.1)

∂

∂t
vi(t, x)− µi

∂

∂x
vi(t, x) = σ−i (x)ui(t, x), (5.2)

with in-domain coupling terms σ±i (x) continuous functions, and (t, x) ∈ [0,+∞) × [0, 1].
As in Chapter 4, we assume constant transport speeds λi > 0, µi > 0 for sake of simplicity.
In this chain structure, each subsystem i is interconnected with its upstream subsystem
i− 1 and downstream subsystem i+ 1 following:

ui(t, 0) = qiivi(t, 0) + qi,i−1ui−1(t, 1) + δi1V (t),

vi(t, 1) = ρiiui(t, 1) + ρi,i+1vi+1(t, 0) + δiNCX(t), (5.3)
with constant couplings qij , ρij . The last subsystem N is coupled with an ODE of dimen-
sion p ∈ N such that:

Ẋ(t) = AX(t) +BuN (t, 1), (5.4)
with A ∈ Rp×p, B ∈ Rp×1, C ∈ R1×p constant matrices. We denote X0 = X(0) ∈ Rp, and
u0i (·) = ui(0, ·), v0i (·) = vi(0, ·) ∈ H1([0, 1],R) the corresponding initial conditions. Simi-
larly to condition (2.1.1), they satisfy adequate compatibility equations. To avoid any use-
less case distinction, we also denote q1,0 = 1, u0(t, 1) = V (t), ρN,N+1 = C and vN+1(t, 0) =

X(t). We assume we can access a collocated measurement y(t) = v1(t, 0).

Figure 5.1 – Schematic representation of system (5.1)-(5.4)
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The well-posedness of the system (5.1)-(5.4) in the sense of the L2-norm is guaranteed
by [BC16, Appendix A], for any admissible control operator. Only the first subsystem is
actuated through its boundaryx = 0by a real-valued control inputV (t)wewant to design.
Therefore, system (5.1)-(5.4) is said to be under-actuated. Contrary to [ABABS+18], where
all the equations propagating in one direction are actuated, only one of the N rightward
convecting equations is actuated. We then need to use the interconnections through the
different subsystems’ boundaries to act from one system to the downstream one.

5.1.2 . Structural assumptions
The design of a stabilizing full-state feedback law and a state observer requires several

necessary and non-restrictive assumptions.
To guarantee that the whole system is stabilizable, we have

Assumption 5.1.1 The ODE-state X is stabilizable, or equivalently, there exists K ∈ R1×p,
such that A+BK is Hurwitz.
To stabilize the states of the downstream subsystems using actuation from the upstream
subsystem, we need
Assumption 5.1.2 For all i ∈ J2, NK, qi,i−1 ̸= 0.
It has been shown in [LRW96] that the open-loop transfer function must have a finite
number of poles on the closed right half-plane to guarantee the existence of robustness
margins for an arbitrary closed-loop system. For the system (5.1)-(5.4), [ABA19, ADM19]
proved that this implies
Assumption 5.1.3 The open loop system (5.1)-(5.4) in the absence of in-domain coupling
terms (σ·i ≡ 0) and of the ODE (X ≡ 0) is exponentially stable in the sense of the L2 norm.
Some explicit conditions to verify such an assumption can be found in [HVL13, ADM19,
Aur20]. This assumption is not restrictive as it is necessary for the existence of robustness
margins for the closed-loop system. It is related to the robustness condition (2.2.1) given
in Chapter I.
Next, to guarantee the observability of the whole system, we need that
Assumption 5.1.4 The ODE-stateX is detectable, or equivalently, there exists L ∈ Rp×1 such
that A+ LC is Hurwitz.
To estimate the states of the downstream subsystems using the measurement from the
upstream subsystem, we need the following
Assumption 5.1.5 For all i ∈ J2, NK, ρi−1,i ̸= 0.

Under these structural assumptions, we propose the recursive dynamics interconnec-
tion framework described in the next sections.
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5.1.3 . Overall strategy
Denote u (resp. v) the concatenation of the states ui (resp. vi). The control objectivereads as follows:
Objective: Exponential stabilization in the Ξ−norm

Design an output-feedback control law V (t) such that there exist ν > 0, C0 > 0, for all
(u0, v0) ∈ H1([0, 1],R2n), X0 ∈ Rp verifying the compatibility conditions, all solutions
of the closed-loop (5.1)-(5.4) satisfy

∥(u(t, ·), v(t, ·), X(t))∥Ξ ≤ C0e
−νt∥(u0, v0, X0)∥Ξ.

Figure 5.2 – Schematic representation of the proposed method

The proposed strategy is based on a recursive interconnected dynamics framework.
Under Assumptions 5.1.2 and 5.1.5, it can be
seen that a system i acts on the downstream
subsystem i + 1 through ui(t, 1), and on the
upstream subsystem i − 1 through vi(t, 0).
Let us define V̂i(t) = qi,i−1ui−1(t, 1) as the
virtual input acting on subsystem i ∈ J1, NK,
and Φi(t) an arbitrary virtual output of sub-
system i. Similarly, we call virtual disturbance
the action of subsystem i + 1 on subsystem
i, denoted di(t) = ρi,i+1vi+1(t, 0).

Figure 5.3 – Interactions of subsystem(5.1)-(5.2).
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This control design takes advantage of the interactions between consecutive subsys-
tems schematically illustrated in Figure 5.3.

The first step of our approach is designing a full-state feedback for output tracking
in the presence of a supposedly known disturbance. For each subsystem, the resulting
control input is the sum of two terms: a first backstepping-based control input for stabiliz-
ing each subsystem in the absence of perturbation, and a second recursively built control
input for trajectory tracking of the virtual input for the downstream subsystem, with a
supposedly known disturbance. Finally, the control input stabilizing the chain is obtained
recursively, starting from the ODE at the end of the chain. To be computed, the resulting
control law requires present and future values of the distributed states. One of the main
advantages of this approach is that provided we can solve the tracking problem and cor-
rectly predict the distributed state for each subsystem, it becomes straightforward to add
new subsystems. This results in a simpler and more generic control design procedure
than the one developed in [Aur20].

The second step of our approach is estimating the boundary states using the avail-
able measurement y(t). Starting from the first subsystem, we recursively estimate the
states at each subsystem’s boundaries. However, due to the natural inertia induced by
the transport phenomenon, some delays appear, such that we can only obtain a delayed
estimation of the states (ūi, v̄i). We use a first invertible backstepping transform (between
0 and x), to map each initial PDE subsystem to a target subsystem (w̄i, z̄i). We rewrite it
as a time-delay system and then estimate delayed values of the boundary PDE states and
the ODE state using a classic Luenberger observer.

To obtain real-time estimations, we then design state predictors. Combining delayed
estimations and state predictions, such an approach is similar to [KK17] (for finite dimen-
sional systems). We use a second invertible backstepping transform (between x and 1),
to map each initial PDE subsystem to a target subsystem (ᾱi, β̄i). We rewrite the bound-
ary states as a time-delay system and use this formulation to design the boundary states’
predictor. Finally, combining the full-state feedback and the estimation-based predictors,
we design a causal output feedback control law V (t) exponentially stabilizing the entire
chain. This strategy is schematically represented in Figure 5.2.

5.2 . Full-state backstepping-based output-tracking feedback

5.2.1 . Stabilizing state-feedback controller

Let us first consider subsystem (5.1)-(5.3) in absence of perturbation, di(t) ≡ 0, and
subject to a virtual actuation V̂i(t). The boundary conditions (5.3) rewriteui(t, 0) = qiivi(t, 0)+

V̂i(t) and vi(t, 1) = ρiiui(t, 1). We have the following property:

Property 5.2.1 Stabilizability :
For all i ∈ J1, NK, in the absence of the virtual disturbance di (i.e. di(t) ≡ 0), subsystem i

subject to the virtual actuation V̂i must be stabilizable by a state-feedback law, i.e there existsan operator K i, such that
V̂i(t) = K i(ui(t, ·), vi(t, ·)) =⇒ ∥ui(t), vi(t)∥L2 −→

t→+∞
0.
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Moreover, there exists an operator KN+1, such that :
V̂N+1(t) = KN+1(X(t)) =⇒ |X| −→

t→+∞
0.

Following the backsteppingmethodology, we prove that the systems under consideration
satisfy this property.

Lemma 5.2.1: Stabilizability of each subsystem in absence of perturbation

For all i ∈ J1, NK, in the absence of the virtual disturbance di (i.e. di(t) ≡ 0), there exists
two continuous functionsKu

i , K
v
i defined on [0, 1], such that the full-state feedback

V̂i(t) = −qiivi(t, 0) +
∫ 1

0
Ku
i (y)ui(t, y) +Kv

i (y)vi(t, y)dy,

exponentially stabilizes subsystem (5.1)-(5.3) in the sense of the L2−norm.
Proof : The proof is based on the backsteppingmethodology. Consider the following Volterra integral trans-
form Ki : H

1([0, 1],R2) −→ H1([0, 1],R2), and introduce the target state
(
αi(t, ·)
βi(t, ·)

)
= Ki(

(
ui(t, ·)
vi(t, ·)

)
) by

{
αi(t, x) = ui(t, x)−

∫ 1
x K

++
i (x, ν)ui(t, ν) +K+−

i (x, ν)vi(t, ν)dν,

βi(t, x) = vi(t, x)−
∫ 1
x K

−+
i (x, ν)ui(t, ν) +K−−

i (x, ν)vi(t, ν)dν,
(5.5)

where the kernelsK··
i are continuous functions defined on T + as the unique solution [CVKB13, VCKB11] of

λi
∂

∂x
K++

i (x, ν) + λi
∂

∂ν
K++

i (x, ν) = −σ−
i (y)K+−

i (x, ν), (5.6)
λi

∂

∂x
K+−

i (x, ν)− µi
∂

∂ν
K+−

i (x, ν) = −σ+
i (y)K++

i (x, ν),

µi
∂

∂x
K−+

i (x, ν)− λi
∂

∂ν
K−+

i (x, ν) = σ−
i (y)K−−

i (x, ν),

µi
∂

∂x
K−−

i (x, ν) + µi
∂

∂ν
K−−

i (x, ν) = σ+
i (y)K−+

i (x, ν),

K+−
i (x, x) = −

σ+
i (x)

λi + µi
, K−+

i (x, x) =
σ−
i (x)

λi + µi
, K++

i (x, 1) = ρii
µi

λi
K+−

i (x, 1), K−−
i (x, 1) = 0. (5.7)

Following the backstepping methodology, we can define

V̂ BS
i (t) = −qiivi(t, 0) +

∫ 1

0
K++

i (0, y)ui(t, y) +K+−
i (0, y)vi(t, y)dy, (5.8)

such that the target states satisfy the following
∂

∂t
αi(t, x) + λi

∂

∂x
αi(t, x) = 0,

∂

∂t
βi(t, x)− µi

∂

∂x
βi(t, x) = λiK

−+
i (x, 1)αi(t, 1),

with the boundary conditionsβi(t, 1) = ρiiαi(t, 1), andαi(t, 0) = 0. This target system is exponentially stable.
This implies the exponential stability of the original system due to the invertibility of the transformation (5.5).
Defining V̂i(t) = V̂ BS

i (t) in (5.8) concludes the proof. ■

Finally, the operator KN+1(X) is simply defined by KN+1(X) = KX , with matrix K
defined in Assumption 5.1.1.
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5.2.2 . State-feedback controller for output-tracking of a known function
Next, we consider a subsystem i subject to a supposedly known perturbation di(t) ̸=

0. Our next objective is to make the qi+1,iui(t, 1) converge towards the virtual input of thedownstream subsystem V̂i+1(t). We have the following property:
Property 5.2.2 Trackability :
For all i ∈ J1, NK, define Φi ∈ L2(R+,R) an arbitrary known function and assume that the
virtual disturbance di acting on subsystem i is known. Then, there exists a control law V̂i thatexponentially tracks the function V̂i+1 to the desired function Φi.Moreover, if di(t) ≡ Φi(t) ≡ 0, then, such a control law stabilizes subsystem i.

Lemma 5.2.2: Trajectory tracking [HDMVK16]

For T > 0 and all i ∈ J1, NK, assume that Φi(t) and di[t+ 1
λi

] are known for all t > T ,
and define the linear operator L i : R×D 1

λi

−→ R by

L i(Φi(t+
1

λi
), di[t+ 1

λi
]) =

1

qi,i+1
Φi(t+

1

λi
) + µi

∫ 1
λi

0
K+−
i (x− λis, 1)di(t+

1

λi
− s)ds,

(5.9)
with K+−

i unique solution of (5.6)-(5.7). Then, for all t > T , the control law defined by

V̂i(t) = K i(

(
ui(t, ·)
vi(t, ·)

)
) + L i(Φi(t+

1

λi
), di[t+ 1

λi
]),

where K i is the operator defined by Property 5.2.1, satisfies Property 5.2.2.
Proof : Under Assumption 5.1.1 and Assumption 5.1.2, let us prove that the operator defined in (5.9) satisfies
Property 5.2.2. The strategy is once again based on the backstepping methodology. For i ∈ J1, NK, using the
Volterra integral transform (5.5), we can map subsystem (5.1)-(5.3) to the target system

∂

∂t
αi + λi

∂

∂x
αi = −µiK+−

i (x, 1)di(t),
∂

∂t
βi − µi

∂

∂x
βi = λiK

−+
i (x, 1)αi(t, 1),

with the boundary conditions αi(t, 0) = V̂i(t)− V̂ BS
i (t), βi(t, 1) = ρiiαi(t, 1)+di(t), where V̂ BS

i (t) is given
in (5.8). Define, V tr

i (t) = V̂i(t) − V̂ BS
i (t). Applying the method of characteristics on the above transport

equation, we have

u(t, 1) = αi(t, 1) = αi(t−
1

λi
, 0)−

∫ 1
λi

0
µiK

+−
i (1− λis, 1)di(t− s)ds.

To guarantee that u(t, 1) = Φi(t), we therefore define V tr
i (t) = L i(Φi(t+

1
λ1

), di[t+ 1
λi

]) in (5.9). Note that
the control input V̂i(t) requires future values of the trajectory and disturbance to be computed.
Next, assume thatΦi and di converge to zero, such thatΦi(t) = di(t) ≡ 0 for some t > t∗. Then, V tr

i ≡ 0 for
t > t∗, and soαi(t, 0) ≡ 0. The target systemhas a cascade structure fromαi into βi, whereαi satisfies a pure
transport equation. It converges to zero in finite time. Therefore, state βi also converges to zero. Applying the
inverse backstepping transform, the initial states (ui, vi) converge to zero. ■

Notice that the operatorL i requires future values of the reference trajectory and the
partial trajectory associated with the virtual disturbance di(s), ∀s ∈ [t, t+ 1

λi
]. This justifies

the predictor design presented in Section 5.4.
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5.2.3 . Predictor-based full-state feedback

Finally, assuming we have access to the future values of the states, we can apply our
recursive dynamics interconnection framework and prove the following

Theorem 5.2.1: Existence of a predictor-based stabilizing controller

For i ∈ J1, NK, for all x ∈ [0, 1], assume that we have access to a∑i−1
j=1

1
λj

+ x
λi

units of
time ahead prediction of the PDE states ui(t, x) and vi(t, x), and a∑n

j=1
1
λj
units of time

ahead prediction of the ODE X . Then, there exists a state feedback control law V s
Ξ(t)that exponentially stabilizes the system (5.1)-(5.4) in the sense of the Ξ-norm.

Proof : Let us apply our recursive dynamics interconnection framework. By assumption, we can access the
values of X(t). To stabilize the ODE, we want to make uN (t, 1) converge to ΦN (t) = KX(t) whereK is de-
fined in Assumption 5.1.1. Under trackability of subsystemN (Property 5.2.2), in the presence of a perturbation
converging to 0, we can then compute the virtual command V̂N (t), towards which uN−1(t, 1)must converge.
We then go up the whole chain until the first subsystem to recursively design the control law.
Starting from the last subsystem, define V̂N+1(t) = KX(t), stabilizing the ODE system at the end of the chain.
We have dN (t) = CX(t).
From then, we recursively define

V̂i(t) = K i(

(
ui(t, ·)
vi(t, ·)

)
) + L i(V̂i+1(t+

1

λi
), di[t+ 1

λi
]),

and di(t) = ρi,i+1vi+1(t, 0). To simplify the notation, we do not introduce specific notations for the predicted
values of state (ui, vi, X). More details are given in Section 5.5. Going back and forth along the chain, we
finally have V (t) = V̂1(t). The control law V (t) is well-defined and causal due to the existence of the different
predictors. Then, applying Lemma 5.2.1 on each subsystem, we obtain that uN (t, 1) exponentially converges to
Kn(X(t)). Consequently,X(t) exponentially converges to zero. Using Lemma 5.2.2, we can recursively show
that each subsystem exponentially converges to zero starting from i = N . This concludes the proof. ■

To apply this recursive dynamics interconnection framework, we must design ade-
quate predictors for future values of the distributed states based on the available mea-
surement. This is done in the following sections.

5.3 . Boundary state estimation

In this section, we estimate the values of the boundary PDE states using the available
measurement y(t). Due to the transport delay involved by each PDE subsystem, we can
only estimate past values of the boundary states. The time ahead which an estimation
of a boundary state is available depends on the transport velocities λi, µi.

5.3.1 . Generalization to a chain structure

Let us consider τ > 0 a fixed, known delay, whose value will be given later. Define the
τ -delay operator .̄ , by

∀γ ∈ C1([0,+∞),R), ∀ t > τ, γ̄(t) = γ(t− τ).
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Using this operator, we can rewrite the system (5.1)-(5.4) in its delayed version introducing
the delayed states (ui, vi), satisfying for all t ≥ τ , the coupled equations (2.1)-(2.2)

∂
∂tui(t, x) + λi

∂
∂xui(t, x) = σ+i (x)vi(t, x),

∂
∂tvi(t, x)− µi

∂
∂xvi(t, x) = σ−i (x)ui(t, x),

(5.10)

along with the boundary conditions
ui(t, 0) = qiivi(t, 0) + qi,i−1ui−1(t, 1), vi(t, 1) = ρiiui(t, 1) + ρi,i+1vi+1(t, 0). (5.11)

The delayed ODE state satisfies Ẋ(t) = AX(t) + BuN (t, 1). The available delayed mea-
surement rewrites ȳ(t) = y(t − τ) ⇐⇒ y(t) = ȳ(t + τ). Thus, it means that we know τ -
ahead future values of ȳ. Consider now an isolated subsystem i as illustrated in Figure 5.4.

Figure 5.4 – Schematic representation of one subsystem i.

Define the delay τi inherent to the upstream dynamics as τi =∑i−1
j=1

1
µj
, and the intrinsic

delay δi = 1
λi

+ 1
µi
.

For any subsystem i, we assume we have access to a virtual measurement yi defined as
ȳi(t) = vi(t−τi, 0) = v̄i(t+τ−τi, 0). This definition is causal as it only requires past valuesof v̄i(·, 0). Note that ȳ1 = ȳ, which is known on the time interval [t, t + τ ]. Our isolated
subsystem i is also subject to a virtual disturbance di(t), defined as di(t) = ρi,i+1vi+1(t, 0).For any function γ, we denote γ̂ the corresponding observer state (or estimated state).
In this section, we show that we can design an observer ûi(t, 1), v̂i(t, 0) for the delayedboundary states of each subsystem. More precisely, we prove the following
Property 5.3.1 Observability of the boundary states:
For all i ∈ J1, NK, there exists two functions ûi(·, 1), v̂i(·, 0), that causally depend on the
measurement y(t) and on the control law V (t) such that: ∥ui(t, 1) − ûi(t, 1)∥L2 −→

t→+∞
0

and ∥vi(t, 0) − v̂i(t, 0)∥L2 −→
t→+∞

0. Moreover, there exists X̂ that causally depends on the
measurement y(t) and on the control law V (t) such that: ∥X(t)− X̂(t)∥ −→

t→+∞
0.

Weobtain amore substantial result since the proposed estimationprovides exact (delayed)-
values of the PDE boundary states. We have
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Lemma 5.3.1: Expressions of ui(·, 1), di

Consider a subsystem i ∈ J1, NK , and assume that we have access to yi and ui−1(·, 1)
on a time interval [t, t+ τ − τi].
Then, there exist two linear operators Lui and Ldi , such that for t > τ + 1

λi
,

ui(ν, 1) = Lui(yi(·), ui−1(·, 1)), di(ν) = Ldi(yi(·), ui−1(·, 1)),

for all ν ∈ [t, t+ τ − τi+1].
Note that the conditions of Lemma 5.3.1 are obviously satisfied for i = 1 since τ1 = 0.

Proof : The proof is based on the backstepping methodology inspired by [ABABS+18, CVKB13, VCKB11] cou-
pled with a neutral-type time-delay formulation.

Backstepping transform
Consider subsystem i ∈ J1, NK, as represented in Figure 5.4. We first apply the invertible Volterra transform
Li defined by

{
ui(t, x) = wi(t, x)−

∫ x
0 L++

i (x, ν)wi(t, ν) + L+−
i (x, ν)zi(t, ν)dν,

vi(t, x) = zi(t, x)−
∫ x
0 L−+

i (x, ν)wi(t, ν) + L−−
i (x, ν)zi(t, ν)dν,

(5.12)

where the kernels L··
i are continuous functions defined on T −. They satisfy the following set of equations

λi
∂

∂x
L++
i (x, ν) + λi

∂

∂ν
L++
i (x, ν) = σ+

i (x)L−+
i (x, ν), (5.13)

λi
∂

∂x
L+−
i (x, ν)− µi

∂

∂ν
L+−
i (x, ν) = σ+

i (x)L−−
i (x, ν),

µi
∂

∂x
L−+
i (x, ν)− λi

∂

∂ν
L−+
i (x, ν) = −σ−

i (x)L++
i (x, ν),

µi
∂

∂x
L−−
i (x, ν) + µi

∂

∂ν
L−−
i (x, ν) = −σ−

i (x)L+−
i (x, ν),

with the boundary conditions for all x ∈ [0, 1], L−+
i (x, x) =

σ−
i (x)

λi+µi
, L+−

i (x, x) = − σ+
i (x)

λi+µi
and for all ν ∈

[0, 1], L−−
i (1, ν) = ρiiL

+−
i (1, ν), L++

i (1, ν) = 0. This system admits a unique solution [CVKB13, VCKB11].
With this transformation, we can map the original system (5.10)-(5.11) to the target system :

∂
∂t
wi(t, x) + λi

∂
∂x
wi(t, x) = fi(x)vi(t, 0) + hi(x)ui−1(t, 1),

∂
∂t
zi(t, x)− µi

∂
∂x
zi(t, x) = gi(x)vi(t, 0) + ki(x)ui−1(t, 1),

(5.14)

with the following boundary conditions
wi(t, 0) = qi,i−1ui−1(t, 1) + qiivi(t, 0),

zi(t, 1) = ρiiui(t, 1) + di(t) +

∫ 1

0
(L−+

i (1, ν)wi(t, ν) + L−−
i (1, ν)zi(t, ν))dν. (5.15)

Note that in-domain couplings have been moved to the right boundary x = 1 of subsystem i. The func-
tions fi, gi, hi, ki are real-valued functions defined on [0, 1]. They are defined as the unique solution [Yos60]
of the following Volterra integral equations of the second kind. For all x ∈ [0, 1],
(
fi(x)

gi(x)

)
= L−1

i (

(
λiqiiL

++
i (x, 0)− µiL

+−
i (x, 0)

λiqiiL
−+
i (x, 0)− µiL

−−
i (x, 0)

)
),

(
hi(x)

ki(x)

)
= L−1

i (

(
λiqi,i−1L

++
i (x, 0)

λiqi,i−1L
−+
i (x, 0)

)
). (5.16)

Note that we have chosen to preserve the terms ūi(t, 1) and v̄i(t, 0) in the target system (5.14) (instead of
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replacing them by z̄i and w̄i) to simplify the estimation procedure.

Neutral-type formulation of the boundary states
In order to find the linear operators Lui ,Ldi , we now rewrite the new system (5.14)-(5.15) as a functional
differential equation of neutral type. Using the method of characteristics, we have, ∀x ∈ [0, 1], ∀t > δi:

wi(t, x) = wi(t− x
λi
, 0) +

∫ x
λi
0 fi(x− λis)vi(t− s, 0) + hi(x− λis)ui−1(t− s, 1)ds,

zi(t, x) = zi(t− 1−x
µi

, 1) +
∫ 1−x

µi
0 gi(x+ µis)vi(t− s, 0) + ki(x+ µis)ui−1(t− s, 1)ds.

(5.17)

Consequently, we obtain, applying several changes of variable in the integral terms and from (5.17)

ui(t, 1) = wi(t, 1)−
∫ 1

0
L+−
i (1, ν)zi(t, ν)dν from (5.12) and since L++

i (1, ν) = 0, ∀ ν ∈ [0, 1] (5.18)
= qi,i−1ui−1(t−

1

λi
, 1) + qiivi(t−

1

λi
, 0) +

∫ 1
λi

0
ui−1(t− s, 1)U−

i (s) + vi(t− s, 0)V−
i (s)ds

+

∫ 1
µi

0
ui−1(t+ s, 1)U+

i (s) + vi(t+ s, 0)V+
i (s)ds

where (5.19)
∀s ∈ [0, 1

λi
] ∀s ∈ [0, 1

µi
]{

U−
i (s) = hi(1− λis),

V−
i (s) = fi(1− λis),


U+
i (s) = µi

∫ 1
µi
s L+−

i (1, µiν)ki(µi(ν − s))dν,

V+
i (s) = µi

(
−L+−

i (1, µis) +
∫ 1

µi
s L+−

i (1, µiν)gi(µi(ν − s))dν

)
.

Using the definition of the virtual measurement, we finally obtain

ui(t, 1) = qi,i−1ui−1(t−
1

λi
, 1) +

∫ 1
λi

0
U−
i (s)ui−1(t− s, 1) + V−

i (s)yi(t− s− τ + τi)ds

+ qiiyi(t−
1

λi
− τ + τi) +

∫ 1
µi

0
U+
i (s)ui−1(t+ s, 1) + V+

i (s)yi(t+ s− τ + τi)ds.

Similarly, we obtain
di(t) = vi(t, 1)− ρiiui(t, 1) by definition

= vi(t+
1

µi
, 0)−

∫ 1
µi

0
gi(µis)vi(t+

1

µi
− s, 0) + ki(µis)ui−1(t+

1

µi
− s, 1)ds from (5.17)

− ρiiqi,i−1ui−1(t−
1

λi
, 1)− ρiiqiivi(t−

1

λi
, 0)−

∫ 1
λi

0
vi(t− s, 0)Ivi (s) + ui−1(t− s, 1)Iui (s)ds,

= yi(t− τ + τi +
1

µi
)− ρiiqi,i−1ui−1(t−

1

λi
, 1)− ρiiqiiyi(t− τ + τi −

1

λi
)

−
∫ 1

µi

0
gi(µis)yi(t− τ + τi +

1

µi
− s) + ki(µis)ui−1(t+

1

µi
− s, 1)ds

−
∫ 1

λi

0
Ivi (s)yi(t− τ + τi − s) + Iui (s)ui−1(t− s, 1)ds, (5.20)

where ∀s ∈ [0,
1

λi
] :

{
Ivi (s) = ρiifi(1− λis) + qiiλiL

−+
i (1, λis) +

∫ 1
λis

L−+
i (1, ν)fi(ν − λis)dν,

Iui (s) = ρiihi(1− λis) + qi,i−1λiL
−+
i (1, λis) +

∫ 1
λis

L−+
i (1, ν)hi(ν − λis)dν.

Assuming that ūi−1(·, 1) is known on a time interval [t, t+ τ − τi], it becomes possible to compute di on the
time interval [t, t+ τ − τi+1] and ūi(·, 1) on [t, t+ τ − τi+1].
More precisely, for τ > τi+

1
µi

= τi+1, the expressions (5.18)-(5.20) define the linear operatorsLui ,LdisatisfyingLemma 5.3.1. Moreover, with Assumption 5.1.5, we can now estimate v̄i+1(·, 0) on the time interval [t, t+ τ −
τi+1], which gives us an estimation of ȳi+1. This concludes the proof. ■
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5.3.2 . Estimation of the ODE state
We now consider the ODE system interconnected at the end of the chain with subsys-

tem N . The corresponding delayed state satisfies the following:
Ẋ(t) = AX(t) +BuN (t, 1), with dN (t) = CX(t). (5.21)

Assume that the functions d̄N and ūN (·, 1) are known. Under Assumption 5.1.4, we design
a Luenberger-type observer X̂ for the time-shifted ODE (5.21). It is defined by

˙̂
X(t) = AX̂(t) +BuN (t, 1)− L

(
dN (t)− CX̂(t)

)
.

Using the matrix L ∈ Rp×1 guaranteeing that A + LC is Hurwitz, the error state defined
as X̃ = X − X̂ verifies the exponentially stable system

˙̃
X(t) = (A+ LC)X̃(t).

Since the error state converges to zero, the designed observer X̂ converges to the real
delayed state X(t). Thus, after a specific convergence delay, we can accurately estimate
delayed values of the stateX(t).
Remark 5.3.1 Note that ifC is right invertible,C⊤C invertible andX(t) = (C⊤C)−1C⊤dN (t).Knowing the virtual disturbance dN on a time interval, we can directly reconstruct the delayed
stateX(t) on this time interval.

5.3.3 . Recursive estimation of boundary states
Consider now thewhole delayed system (5.10)-(5.11). We recursively apply Lemma 5.3.1

to obtain the following:
Theorem 5.3.1: Estimation of the delayed boundary states

Denote τi =
∑i−1

j=1
1
µj
, for i ∈ J1, NK. If τ ≥ τN+1, there exist causal linear opera-

tors L i
u,Li+1

v such that, for all t > τ +
∑i

j=1
1
λj

, for all ν ∈ [t, t+ τ − τi+1],
∀i ∈ J1, NK, ui(ν, 1) = L i

u(y(·), V (·)), ∀i ∈ J0, N − 1K, vi+1(ν, 0) = Li+1
v (y(·), V (·)).

Moreover, there exists a causal linear operator LX such that for all t > τ +
∑N

j=1
1
λj
,

for all ν ∈ [t, t+ τ − τN ]

X(ν) = LX(y(·), V (·)).

Proof : The proof is based on an induction argument. Note that we choose t large enough to properly
obtain equations (5.18) and (5.20). We first consider i = 1. By definition, v1(t, 0) = y(t), so L 1

v is the identity
operator. Equations (5.18) and (5.20) give us the two linear operators L 1

u , and L 2
v (since ȳ and V̄ are both

known on the time interval [t, t + τ ]). Using the fact that v̄2(t, 0) and ū1(t, 1) can be estimated on the time
horizon [t, t + τ − τ2], we can apply Lemma 5.3.1. It then becomes possible to recursively define the linear
operators L i

u,L
i
v . ■
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This theorem shows that Property 5.3.1 is satisfied for the interconnected chain un-
der consideration. We can then define the observer states as ûi(t, 1) = L i

u(y(·), V (·)),
v̂i(t, 0) = Liv(y(·), V (·)), and X̂(t) = LX(y(·), V (·)). The proposed procedure gives exact,
and not asymptotic delayed-values of the boundary states ui(t, 1) and vi(t, 0). However,the terminology estimation emphasizes that these values are not directly available but
computed using the proposed recursive estimation procedure. If themeasurement is cor-
rupted by noise, these estimations will no longer be exact. Moreover, other approaches
could be used to fulfill Property 5.3.1.

5.4 . Design of states predictors

Weused the recursive dynamics interconnection framework in the previous section to
estimate the delayed values of the boundary PDE and ODE states. However, to apply the
methodology developed in Section 5.2 and design an output feedback control law satisfy-
ing the control objective, we need to estimate the non-delayed values of these boundary
states and even predict future values. In this section, we design a predictor to obtain a
τ +

∑i−1
j=1

1
λj

ahead of time values of the delayed boundary states ui(·, 1) and vi(·, 0). We
have the following property.
Property 5.4.1 Predictability
For all x ∈ [0, 1], it is possible to obtain a τ +∑i−1

j=1
1
λj

+ x
λi

units of time ahead estimation of
the PDE states ui(t, x) and vi(t, x), and a τ +

∑N
j=1

1
λj

units of time ahead estimation of the
ODEX , using solely the measure y(t) and the control law V (t).
Using the boundary measurement, we can predict future values of the distributed PDE
states on a time interval corresponding to the propagation time of the information from
the boundary x = 0 of the first subsystem (where the measurement is available) to the
desired point.

5.4.1 . Predictor design for the boundary states

Denote the total transport delay δtot=̇∑N
i=1 δi. First, we have

Lemma 5.4.1: Existence of boundary states predictions

Consider a subsystem i ∈ J1, NK, and assume we have access to all values of y(·), V (·)
on a time interval [0, t].
Then, there exist causal boundary state predictors such that

for all s ∈ [t− τ − δtot −
∑i−1

j=1
1
λj
, t], Pvi(t, s) = v̂i(s+ τ +

∑i−1
j=1

1
λj
, 0),

for all s ∈ [t− τ − δtot −
∑i

j=1
1
λj
, t], Pui(t, s) = ûi(s+ τ +

∑i
j=1

1
λj
, 1),

for all s ∈ [t− τ − δtot −
∑N

j=1
1
λj
, t], PX(t, s) = X̂(s+ τ +

∑N
j=1

1
λj
).

(5.22)

Proof : The proof follows four main steps. For each subsystem i ∈ J1, NK, we first use the backstepping
transform Ki defined in (5.5). Unlike transform (5.12), this transform preserve the terms ui(t, 1) and vi(t, 0)
inside the target system. Most in-domain couplings are moved to the left boundary of each PDE subsystem.
We then use the method of characteristics to obtain the neutral delay-equations satisfied by each boundary
state. Inspired by, [BPDM16, KK17], we design a predictor and show that it matches the boundary states values.
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Backstepping transform
Consider the following Volterra integral transformsKi (5.5) with kernels satisfying (5.6)-(5.7). The target states(
αi(t, ·)
βi(t, ·)

)
= Ki(

(
ui(t, ·)
vi(t, ·)

)
) satisfy

∂

∂t
αi(t, x) + λi

∂

∂x
αi(t, x) =f

+
i (x)vi+1(t, 0),

∂

∂t
βi(t, x)− µi

∂

∂x
βi(t, x) = f−i (x)αi(t, 1),

with the boundary conditions βi(t, 1) = ρiiαi(t, 1) + ρi,i+1vi+1(t, 0), and

αi(t, 0) = qiivi(t, 0) + qi,i−1ui−1(t, 1) +

∫ 1

0
M++

i (0, ν)αi(t, ν) +M+−
i (0, ν)βi(t, ν), (5.23)

whereM ··
i are the kernels of the inverse transform Mi = K−1

i . The two gain functions f−i , f+i are defined
on [0, 1] by f−i (x) = λiK

−+
i (x, 1), f+i (x) = −µiρi,i+1K

+−
i (x, 1).

Neutral-type formulation of the boundary states
We apply the method of characteristics on the target system to rewrite the boundary terms ui(t, 1), vi(t, 0) as
solutions of difference equations.
We have for i ∈ J1, NK, ui(t, 1) = αi(t− 1

λi
, 0) +

∫ 1
λi
0 f+i (1− νλi)vi+1(t− ν, 0)dν. Following the approach

given in [ADM19], we obtain

vi(t, 0) =ρiiui(t−
1

µi
, 1) + ρi,i+1vi+1(t−

1

µi
, 0)

+

∫ δi

0
g1i (ν)αi(t− ν, 0) + g2i (ν)ui(t− ν, 1) + g3i (ν)vi+1(t− ν, 0)dν,

where the functions g1i , g2i and g3i are defined by
g1i (ν) = −1[0, 1

λi
](ν)λiM

−+
i (0, λiν),

g2i (ν) = 1[0, 1
µi

](ν)(f
−
i (µiν)− µiρiiM

−−
i (0, 1− µiν)−

∫ 1−µiν

0
M−−

i (0, ν)f−i (ν + µiν)dν),

g3i (ν) = −1[0, 1
µi

](ν)(µiρi,i+1M
−−
i (0, 1− µiν))− 1[0, 1

λi
](ν)(

∫ 1

λiν
M−+

i (0, ν)f+i (ν − λiν)dν).

Similarly, we obtain
αi(t, 0) =qiivi(t, 0) + qi,i−1ui−1(t, 1)

+

∫ δi

0
k1i (ν)αi(t− ν, 0) + k2i (ν)ui(t− ν, 1) + k3i (ν)vi+1(t− ν, 0)dν,

where the functions k1i , k2i and k3i are defined by
k1i (ν) = 1[0, 1

λi
](ν)λiM

++
i (0, λiν),

k2i (ν) = 1[0, 1
µi

](ν)(µiρiiM
+−
i (0, 1− µiν) +

∫ 1−µiν

0
M+−

i (0, ν)f−i (ν + µiν)dν),

k3i (ν) = 1[0, 1
µi

](ν)(µiρi,i+1M
+−
i (0, 1− µiν)) + 1[0, 1

λi
](ν)(

∫ 1

λiν
M++

i (0, ν)f+i (ν − λiν)dν).

Note that the given expressions are still valid for i = 0, using q1,0u0(t, 1) = V (t − τ) and for i = N us-
ing vN+1(t, 0) = X(t).

Estimation of the state αi(t, 0)

To initialize the predictor for the boundary termsui(·, 1), vi(·, 0), andX(·), we canuse the estimates ûi(·, 1), v̂i(·, 0),
and X̂(·)) obtained in Section 5.3. For state αi(·, 0), using equation (5.23) and integrating the states (αi, βi)
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along the characteristic lines, we immediately obtain
αi(t, 0) = qiivi(t, 0) + qi,i−1ui−1(t, 1)

+

∫ 1
µ i

0
k2i (ν)ūi(t− ν, 1) + µiM

+−
i (0, 1− µiν)ρi,i+1v̄i+1(t− ν, 0)dν

+

∫ 1
λ i

0
λiM

++
i (0, 1− λiν)ūi(t+ ν, 1)− (

∫ 1−λiν

0
f+i (ν + λiν)M

++
i (0, ν)dν)v̄i+1(t+ ν, 0)dν.

From Property 5.3.1, we have an estimation of ui(·, 1) and vi(·, 0) on [t, t+τ−τN ]. We can use these estimates
in the above expression to obtain α̂i(·, 0) an estimation of αi(·, 0), under the condition τ > τN + supi{ 1

λi
}.

Expression of the boundary-states predictors[ABP22]
We now design the predictors Pvi

(t, s), Pui
(t, s) and Pαi

(t, s) for the PDE boundary states ui(t, 1), vi(t, 0),
αi(t, 0) and ODE stateX(t).
For t ≥ 0 and s ∈ [t − τ − δtot −

∑i−1
j=1

1
λj
, t], we denote Pvi

(t, s) (resp. Pαi
(t, s)) the state prediction of

future values of vi(t, 0) (resp. αi(t, 0)) ahead a time τ +
∑i−1

j=1
1
λj

. They are defined by

Pαi
(t, s) =



α̂i(s+ τ +

i−1∑
j=1

1

λj
, 0) if s ∈ [t− δtot − τ −

i−1∑
j=1

1

λj
, t− τ −

i−1∑
j=1

1

λj
]

qiiPvi
(t, s) + qi,i−1Pui−1

(t, s) otherwise,
+

∫ δi

0
k1i (ν)Pαi

(t, s− ν) + k2i (ν)Pui
(t, s− ν − 1

λi
) + k3i (ν)Pvi+1

(t, s− ν − 1
λi

)dν

(5.24)

Pvi
(t, s) =



v̂i(s+ τ +

i−1∑
j=1

1

λj
, 0) if s ∈ [t− δtot − τ −

i−1∑
j=1

1

λj
, t− τ −

i−1∑
j=1

1

λj
]

ρi,i+1Pvi+1
(t, s−

1

λi
−

1

µi
) + ρiiPui

(t, s−
1

λi
−

1

µi
) otherwise.

+

∫ δi

0
g1i (ν)Pαi

(t, s− ν) + g2i (ν)Pui
(t, s− ν − 1

λi
) + g3i (ν)Pvi+1

(t, s− ν − 1
λi

)dν

(5.25)

Note that Pα1 (t, s) is well-defined and causal, using the convention q1,0Pu0 (t, s) = V (s), s ∈ [t− τ − δtot, t].
For t ≥ 0 and for s ∈ [t − τ − δtot −

∑i
j=1

1
λj
, t], Pui

(t, s) the state prediction of future values of ui(t, 1)
ahead a time τ +

∑i
j=1

1
λj

is defined by

Pui
(t, s) =


ûi(s+ τ +

i∑
j=1

1

λj
, 0) if s ∈ [t− δtot − τ −

i∑
j=1

1

λj
, t− τ −

i∑
j=1

1

λj
]

Pαi
(t, s) +

∫ 1
λi

0
f+i (1− νλi)Pvi+1

(t, s− ν)dν otherwise.
(5.26)

Following [BL14, BPDM16], we can also define PX(t, s) as the classic state prediction of future values of X(t)

ahead a time∑N
j=1

1
λj

, for s ∈ [t− δtot −
∑N

j=1
1
λj
, t], by

PX(t, s) =


X̂(s+ τ +

N∑
j=1

1

λj
) if s ∈ [t− δtot − τ −

N∑
j=1

1

λj
, t− τ −

N∑
j=1

1

λj
]

e
A

∑N
j=1

1
λj

X̂(s) +

∫ s+
∑N

j=1
1
λj

s
eA(s−ν)BPuN

(t, ν −
N∑

j=1

1

λj
)dν

 otherwise.
(5.27)

The convergence of the predictor PX(t, s) is guaranteed by [KK17, Part 1, Chapter 3].
From these definitions, we have, for all s ∈ [t− τ − δtot −

∑i−1
j=1

1
λj
, t], Pαi

(t, s) = α̂i(s+ τ +
∑i−1

j=1
1
λj
, 0)

and the expressions (5.22). This concludes the proof. ■
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5.4.2 . Predictor design for the distributed states
We can now use the predictions of the PDE boundary states and the ODE to design a

state observer for the whole system. We have the following
Theorem 5.4.1: Existence of states predictions

Consider the interconnected system (5.1)-(5.4) and assume that themeasurement y(·) =
v1(·, 0) and the control law V (·) are known on a time interval [0, t], t > 0. Then, for all
i ∈ J1, NK, there exist predictor functions Pvi , Pui such that for all x ∈ [0, 1],
Pvi(t, x) = vi(t+ τ +

∑i−1
j=1

1
λj

+ x
λi
, x), and Pui(t, x) = ui(t+ τ +

∑i−1
j=1

1
λj

+ x
λi
, x).

Proof : With the predictors designed in 5.4, we have access to the values of the real boundary terms ui(·, 1)
on the time interval [t, t+∑i

j=1
1
λj

], and vi(·, 0) on the time interval [t, t+∑i−1
j=1

1
λj

].
We then use the predictors Pui

(t, s), Pvi
(t, s) in the delayed equations

αi(t, x) = αi(t−
x

λi
, 0) +

∫ x
λi

0
f+i (x− λiν)vi+1(t− ν, 0)dν,

βi(t, x) = ρiiui(t−
1− x

µi
, 1) + ρi,i+1vi+1(t−

1− x

µi
, 0) +

∫ 1−x
µi

0
f−i (x+ µiν)ui(t− ν, 1)dν,

to predict future values of the states αi(t, x) and βi(t, x). Finally, using the invertibility of transforms (5.5), we
can compute future values of the states ui(t, x), vi(t, x), for all x ∈ [0, 1], and thus finally have access to the
whole states (ui, vi). ■

Such predictors satisfy Property 5.4.1. We can now use the estimations of real-time
and future values of the distributed states to derive an output-feedback control law.

5.5 . Output-feedback control law design

To obtain the control law V (t) satisfying the control objective, we follow the recursive
dynamics interconnection framework proposed in Section 5.2.

5.5.1 . Output-feedback control law
Here, we define an output-feedback control law following the same recursive design,

but using the proposed predictor-observers designed in the previous section. More pre-
cisely, let us recursively define the sequence V̂i by

V̂N+1(t) = KPX(t+ τ −
N∑
j=1

1

λj
),

and for i ∈ J1, NK

V̂i(t) = K i

Pui(t+ τ −
i−1∑
j=1

1

λj
− x

λi
, x), Pvi(t+ τ −

i−1∑
j=1

1

λj
− x

λi
, x)


+ L i

V̂i+1(t+
1

λi
), Pvi+1(t+ τ −

i−1∑
j=1

1

λj
, 0)

 ,
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where the operators K i and L i are defined in (5.8) and by equation (5.9) and the pre-
dictors Pui , Pvi and PX are defined in Theorem 5.4.1 and Lemma 5.4.1. We finally define
the control law VΞ(t) as

VΞ(t) = V̂1(t). (5.28)
First, we have the
Lemma 5.5.1: Convergence

If the control input VΞ(t) asymptotically converges to V s
Ξ(t) defined in Theorem 5.2.1,

then it stabilizes the system (5.1)-(5.4) in the sense of the Ξ-norm.

Proof : This can be seen by expressing the whole system in its neutral form [ADM19] and defining the differ-
ence between VΞ(t) and V s

Ξ (t) as a disturbance. Then, using the variation-of-constants formula for a neutral
differential equation (see [HVL13] page 31), we can guarantee the stabilization of the system (5.1)-(5.4). More
details for complete proof can be found in [LADMA18]. ■

We are now able to prove that the output-feedback control law VΞ(t) stabilizes thesystem (5.1)-(5.4). We have the following
Theorem 5.5.1: Existence of a stabilizing output-feedback controller

Consider the system (5.1)-(5.4). If Properties 5.2.1, 5.2.2,5.3.1, 5.4.1 are verified, then the
output-feedback control law VΞ(t) = V̂1(t) defined by (5.28) exponentially stabilizes the
system (5.1)-(5.4) in the sense of the Ξ-norm.

Proof : The control law VΞ(t) is well-defined and causal due to the definition of the different predictors
(Property 5.4.1). Let us consider that the predictors provide exact future values of the PDEs and ODE states.
The corresponding control law is V s

Ξ (t). Then, applying Property 5.2.2 on each subsystem, we obtain that
uN (·, 1) exponentially converges to KN+1(X(·)). Consequently, X(t) exponentially converges to zero. Us-
ing Property 5.2.2, starting from the last subsystem i = N , each PDE subsystem exponentially converges to
zero. Thus, the control law VΞ(t) designed with exact predictions stabilizes the system (5.1)-(5.4). We now
need to show that such a result still holds when using output measurements to define the predictors. Using
Property 5.4.1, the designed predictors asymptotically converge to the real future values of the states (ui, vi).
Lemma 5.5.1 concludes the proof. ■

Note that Properties 5.3.1 and 5.2.1 are not directly used in the proof since they are
usually required to show Properties 5.4.1 and 5.2.2.

5.6 . Simulation results

In this section, we illustrate the efficiency of the proposed recursive dynamics inter-
connection framework on a network ofN = 2 hyperbolic PDE subsystems interconnected
at one end with a scalar ODE. The numerical values of the parameters are given in Table
5.1, and chosen such that the open-loop system is slightly unstable. Note that Assump-
tions (5.1.1)-(5.1.5) are satisfied.

The simulations are run on Matlab on a time interval [0, 30]s. The space domain [0, 1]

is discretized on a mesh with nx = 51 points.
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Param. Value Param. Value Param. Value Param. Value
λ1 1 λ2 2 q11 0.5 ρ11 0.3
µ1 1.3 µ2 1.8 q21 0.3 ρ12 0.4
σ+
1 1 σ+

2 -0.3 q22 0.7 ρ22 0.4
σ−
1 0.4 σ−

2 0.7 K -3 L -5
A 0.1 B 0.1 C 0.1

Table 5.1 – Parameters used for simulation

Figure 5.5 – Initial conditions
(ui(0, x), vi(0, x))

Figure 5.6 – Evolution of X(t) and ob-server X̂(t)

Beforehand, the kernel gains L··
i , K

··
i corresponding to the invertible Volterra trans-

forms (5.12) and (5.5) are computed using the successive approximation technique, with
a precision ϵ = 10−8, and their values are stored in matrices of dimension nx × nx (see
Appendix A). From them, using the same iterative method, in-domain coupling functions
fi, gi, hi, ki defined in (5.16) are computed offline. All integral terms are computed using
the trapezoidal approximation (trapz). Similar techniques are used to obtain the coupling
terms gji , kji , f+i , f−i , j ∈ {1, 2, 3}. Their values are stored in vectors.

Next, we can simulate the evolution of the system using the classic finite volume
method based on a Godunov scheme [LeV02], and the Matlab medium order method
ode45. The initial conditions of the states are affine functions represented in Figure 5.5.
They satisfy the compatibility conditions. We chose X0 = 1. The boundary observer val-
ues for the PDE states are initialized to 0.2, and X̂0 = 0.8.

To numerically compute the predictions, we first initialize the predictors using the es-
timations obtained in Section 5.3. These values are stored in a buffer. Then, it becomes
possible to directly use equations (5.25)-(5.27) to compute the prediction at the next time
step. After a delay τ > τN + supi{ 1

λi
}, at each iteration, a buffer containing the values of

the predictor is updated with the boundary state estimations at each iteration, and new
values of the predictor are computed. The value of the control law is computed accord-
ingly. A saturation has been added to avoid unrealistic high values.
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Figure 5.7 – Evolution of the Ξ-norm ofsystem (5.1)-(5.4) Figure 5.8 – Evolution of the control lawdefined in Theorem 5.5.1
In Figure 5.7 the evolution of the Ξ-norm defined in Section 5.1 is represented. As

expected, the Ξ−norm of the open-loop system diverges, while it exponentially goes to 0

in closed-loopwith the proposed controller. The control effort is represented in Figure 5.8.
Since the actuation is only fully defined when we can compute the predicted values of the
different states, the control input applied for t < τ = 2.3s is not reliable. The effect of
saturation is also visible.

The evolution of the states (ui(t, x), vi(, x)) in closed-loop is given in Figure 5.9.

Figure 5.9 – Evolution of the states (ui(t, x), vi(t, x)) in closed-loop

Conclusion

In this chapter, we designed anoutput feedback control law stabilizing a chain of scalar
linear hyperbolic systems coupled with an ODE at one end. We used backstepping trans-
forms and a recursive dynamics interconnection framework to estimate the boundary states
of each subsystem. We used these estimations to build predictors that allowed the recur-
sive design of an output feedback control law.

We believe that the proposed approach could be easily adapted to different types of
interconnected systems (including different subsystems or different types of chains) as
long as some fundamental properties (trackability, predictability) are still verified. Per-
spectives are given at the end of Part II. Some numerical limitations arise from the use
of predictors. Indeed, it is computationally expensive and difficult to implement for large
values of N . Model-based predictions could be fastly obtained using machine learning
techniques, in the line of the work presented in Chapter 11.
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6 - Application to drilling systems for state estima-
tion and trajectory tracking

In this chapter, we illustrate the practical interest of the interconnected systems con-
sidered in Part II. They can be used to represent the dynamics of drilling systems. More
precisely, we aim at applying the recursive dynamics interconnection framework proposed
in Chapter 5 to the control and state estimation of angular or torsional motion of the drill-
string in two different contexts. Due to geopolitical instability and the inherent risk of an
energy shortage, energy production stayed at high stake. At the same time, the depletion
of raw materials made extracting and drilling oil or gas more and more difficult. It forces
petroleum companies to reach very deep hydrocarbon reservoirs in areas with limited
access and often in varying geological environments. From a more optimistic perspec-
tive, geothermal energy is also gaining attention as a renewable electricity resource with
great potential. New closed-loop geothermal power plants (CGS) have emerged to over-
come the drawbacks of conventional open-loop geothermal systems. To optimize their
efficiency, they can require a deviated well path with a long horizontal section at a depth
exceeding 2.5km [WMYY22]. In both situations, the main aspect that makes the control
of the drilling system dynamics challenging is the extreme aspect ratio of the drill string.
Indeed, the boreholes are usually very narrow, with a diameter of up to 50cm, and extend
over several kilometers. Even though each drill pipe section ismade of steel and thus rigid,
the system behaves like a flexible structure and faces unwanted axial, torsional, and lat-
eral vibrations [Jan93]. These vibrations have many negative impacts: they cause drill bit
wear, premature motor failure, which imparts torque at the surface level, and damage
to the borehole. In the worst case, it can lead to the rupture of the drill string, wasting
costly drilling time. It also decreases the Rate Of Penetration (ROP) and thus reduces the
process performance. Since they are an important source of economic loss, much effort
has been made to allow control laws to avoid these unwanted oscillations.

The first simple models for the drilling systems were mass-spring models [Jan93]. The
next step towards more precise modeling is to consider the drill string’s distributed dy-
namics [SMAV16], using an Euler-Bernoulli beam model, for instance [GDD09]. However,
to make the model more accurate, the effects of the stiffer drill collars and the bit on the
overall dynamics can be considered. The Bottom Hole Assembly (BHA) can then be repre-
sented as a lumped element coupled at the end of the drill string. In the model proposed
in [AvdW19], the axial and torsional motions of the drill string are modeled by two un-
coupled sets of hyperbolic Partial Differential Equations (PDE). The bit-rock interaction or
the dynamics of the BHA can be represented by an ordinary differential equation (ODE).
The field-validated model [AS18] also separates the dynamics of the pipe and the collar. It
was shown to be of high interest to consider the underlying distributed dynamics in the
design of a stabilizing controller [ABS+22].

First, we consider in Section 6.1 the estimation of axial motion of the drill string in
the situation of a vertical well-path without friction but bit-rock interaction. Then, in Sec-
tion6.2, we consider the control of the angular velocity of the drill bit, in themore complex
case of a deviated well-path, for transient phases with the bit off-bottom.
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Chapitre 6: Application de l’approche aux systèmes de forage. Estimation
d’état et suivi de trajectoire. Dans ce chapitre, nous appliquons l’approche récursive
développée au Chapitre 5 au contexte du forage. En effet, la dynamique des systèmes
utilisés peut être modélisée par des équations d’onde ou sous forme de systèmes d’EDP
hyperboliques. Le train de tiges est constitué de nombreux tubes (pipes) aux paramètres
physiques (densité, diamètre, inclinaison) variables. Au bout de ce long système sont
fixés des colliers (collars), plus courts et une tête de forage (drill bit). La dynamique de ces
éléments massifs, celle du moteur en surface, mais également l’interaction de la roche
avec la tête de forage, peuvent êtremodélisées par des équations aux dérivées ordinaires.
On retrouve donc une structure de chaine semblable à celle étudiée dans cette partie.

Plusieurs problématiques apparaissent lors du forage. L’extrême rapport d’aspect du
train de tiges (10−4) peut entrainer l’apparition d’oscillations (axiales et torsionnelles). En
particulier, des vibrations du couple en torsion (phénomène de stick-slip) doivent être
évitées car cela conduit à des détériorations des équipements et de la paroi du puits.
Afin de prendre en compte l’apparition de ce phénomène, des modèles distribués ont été
dévelopés et validés expérimentalement [AS18, AvdW19]. Leur utilisation dans le design
de la loi de commande a un intérêt dans lamitigation de vibrations indésirables [ABS+22],
mais nécessite une estimation de l’état, à partir desmesures disponibles en surface. Dans
un premier temps, nous illustrons l’utilisation de l’estimation d’état récursive du mouve-
ment latéral d’un système de forage composé de deux sous-systèmes pour un puits ver-
tical (Section 6.1). Dans un second temps, nous illustrons la loi de commande récursive
afin de permettre le suivi d’une trajectoire de référence, dans le contexte de forage d’un
puits avec une section horizontale (Section 6.2).
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6.1 . Axial motion of an offshore drilling system

Introduction

Context
As mentioned in the introduction, now that the most easily accessible oil resources

have beendepleted, petroleumcompaniesmust reach areaswith limited access and great
depths to find new reservoirs. An example can be found in offshore drilling with the giant
Johan Sverdrup field, located 150 kilometers off the Norwegian coast. In this case, the
water depth exceeds 110 meters, and the reservoir is at a depth of 1,900meters. Figure 6.2
gives a picture of the Gudrun platform. In this situation, the platform can be built above
the area of interest.
A drill string is used to create the borehole and access the reservoir. It is usually made of
several long flexible pipes, connected at one endwith heavier and shorter sections named
collars. The collars are connected with a Bottom Hole Assembly (BHA), which ends with
the drill bit chattering the rock. At the surface level, a rotary table with an electrical motor
imparts a rotary and vertical motion of the drill string. Usually, the control input is the
weight on the drill string and the torque at the end opposite to the bit. The objective
is to improve the performance of the drilling operation, which is measured by the ROP,
corresponding somehow to the drilling speed.

Figure 6.1 – Schematic drilling system Figure 6.2 – Petter Andre Bøe©Equinor

Objective: distributed state estimation
It was shown in [ABS+22] to be of high interest to consider the distributed dynamics in

the design of a control input for output tracking. Moreover, the transition between pipe
sections with different mechanical properties, particularly the transitions from the pipes
to collars, cause reflections in the traveling waves due to the change in characteristic line
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impedance [AA16]. For better accuracy, we can then distinguish the dynamics of the drill
pipes and the drill collars [AS18].

However, controllers derived from the backstepping methodology usually require the
knowledge of the state on its definition domain. We can therefore adapt the estimation
strategy proposed in the previous chapter to obtain an accurate state estimation.

Objective 6.1.1: Distributed state estimation

Denote c(t, x) the axial velocity along the drill string, and w(t, x) the axial force
(weight). Using surface measurement (w(t, 0), c(t, 0)), determine (ĉ(t, x), ŵ(t, x)) two
distributed state estimations which exponentially converge to (c(t, x), w(t, x)).

6.1.1 . Axial vibrations model

We consider a vertical well with a drill string of length L, as illustrated in Figure 6.1.
The depth is denoted x ∈ [0, L], extending between the top drive at the surface level and
the location of the drill bit.

Bi-sectional drill string model
The lower part of the drill string is usuallymade up of heavier drill collarswith a shorter

length and higher density, inertia, or Young’smodulus than the pipe sections. This change
of the characteristic line impedancemay cause reflections in the traveling waves that may
greatly impact the global dynamics [AA16, AdMS18a]. Let us assume we have 2 different
sections and denote x1 the spatial coordinate of the junction point between the pipe andthe collar. We neglect the dynamics of the short portion of the drill string in the water.
By convention, we have x0 = 0, x1 = Lp and x2 = L = Lc + Lp. For any variable or
parameter, we denote ·p its value along the drill pipes, and ·c its value along the collars.
We use ·⋆, with ⋆ = {c, p}, or no subindex, to denote either variable.

Axial motion
Following the decoupled model given in [AvdW19], we only consider the axial motion

of the drill string. Denote ξ(t, x) the axial displacement depending on time and space in
[0, T ]× [0, L] with T > 0, and c(t, x) = ∂ξ(t,x)

∂t the axial velocity. For any infinitesimal axial
position increment dx→ 0, the axial force associatedwith this displacement can be found
from the strain, given as the local relative compression:

w⋆(t, x) = A⋆E⋆
ξ⋆(t, x)− ξ⋆(t, x+ dx)

dx
, with

{
A⋆ : cross-sectional area of section ⋆,
E⋆ : Young’s modulus of section ⋆ .

The axial motion is governed by the following
∂w⋆(t, x)

∂t
+A⋆E⋆

∂c⋆(t, x)

∂x
= 0, (6.1)

A⋆ρ⋆
∂c⋆(t, x)

∂t
+
∂w⋆(t, x)

∂x
= −k⋆a(x)ρ⋆A⋆c⋆(t, x), (6.2)
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where ka corresponds to viscous dissipation, varying with the environment of the drill
string. The continuity of strain and axial velocity in x = x1 implies

wp(t, x1) = wc(t, x1), c
p(t, x1) = cc(t, x1). (6.3)

Coupling with the BHA
Neglecting the dynamics of the electrical motor

imparting torque at the surface level, we assume that
the operator controls the weight on the drill string,
such that V (t) = wp(t, 0). The BHA can be lumped
into an ODE coupled with the drill string [DMA15]. It is
justified since it is much shorter than the drill string.
Thus, the downhole boundary condition at x = L

can be obtained from a force balance on the lumped
BHA. DenoteX(t) = ∂

∂tξ(t, L) = c(t, L). Following the
models presented in [GDD09, AvdW19, AKIS20], under
some simplifying assumptions, the interaction of the
bit with the rock can lead to the following downhole
boundary condition

MbẊ(t) =− aζϵ

ωbitX(t)− wf − wc(t, L), (6.4) Figure 6.3 – System (6.6)-(6.8)
whereMb is the mass of the lumped BHA, ωbit is the angular velocity of the bit (assumed
constant), wf is the friction weight (independent of the bit velocity), a is the bit radius, ζ isa characterization of the cutting angle and ϵ is the intrinsic specific energy of the rock.

6.1.2 . Application of the recursive framework

Riemann invariants
To rewrite system (6.1)-(6.2) in the form of a chain of hyperbolic PDE subsystems (5.1)-

(5.4), we use the Riemann invariants and apply an exponential change of variable. Let us
define λ⋆ =√E⋆

ρ⋆ and the new state variables


u⋆(t, x) = e

∫ x
xi−1

k⋆a(s)
2λ⋆

ds

√
2

(w⋆(t, x) +A⋆
√
E⋆ρ⋆ c⋆(t, x)),

v⋆(t, x) = e
−

∫ x
xi−1

k⋆a(s)
2λ⋆

ds

√
2

(− 1
A⋆

√
E⋆ρ⋆

w⋆(t, x) + c⋆(t, x)).

(6.5)

They satisfy equations of form (2.1)-(2.2)
∂

∂t
u⋆(t, x) + λ⋆

∂

∂x
u⋆(t, x) = σ

⋆+(x)v⋆(t, x) (6.6)
∂

∂t
v⋆(t, x)− λ⋆ ∂

∂x
v⋆(t, x) = σ

⋆−(x)u⋆(t, x), (6.7)
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with the continuous in-domain coupling functions
σ⋆+(x) = −k

⋆
a(x)

2
A⋆
√
E⋆ρ⋆e

∫ x
xi−1

k⋆a(s)

λ⋆
ds
, σ⋆−(x) = − k⋆a(x)

2A⋆
√
E⋆ρ⋆

e
−
∫ x
xi−1

k⋆a(s)

λ⋆
ds
,

and boundary conditions
up(t, 0) = Ap

√
Epρpvp(t, 0) +

√
2V (t),

vc(t, L) =
1

1− 1
2e

−
∫ L
Lp

kca(s)
2λc

ds

e
−
∫ L
Lp

kca(s)

2λc
ds

√
2

(
− 1

Ac
√
2Ecρc

uc(t, L) +X(t)

)
.

Injecting the above equation, (6.4) rewrites

Ẋ(t) = − aζϵ

ωbitMb

X(t)−
wf
Mb
− e

∫ L
Lp

kca(s)

2λc
ds

√
2

(
−Ac

√
Ecρcvc(t, L) + uc(t, L)

) (6.8)

= −

 aζϵ

ωbitMb

+
Ac
√
Ecρc

2(1− 1
2e

−
∫ L
Lp

kca(s)
2λc

ds
)

X(t)−
wf
Mb
− e

−
∫ L
Lp

kca(s)

2λc
ds

√
2(1− 1

2e
−
∫ L
Lp

kca(s)
2λc

ds
)

uc(t, L).

Define the relative magnitude of the impedance Z = Ap
√
Epρp

Ac
√
Ecρc

and α =
∫ Lp

0
kpa(s)
2λp ds. In the

Riemann coordinates, the continuity condition (6.3) gives the following boundary condi-
tions at the junction x = Lp

vp(t, Lp) =
1

Ap
√
Epρp

Ze−α − eα

Ze−α + eα
up(t, Lp) +

2

eα + Ze−α
vc(t, Lp),

uc(t, Lp) =
2

Ze−α + eα
up(t, Lp) +Ac

√
Ecρc

eα − Ze−α

Ze−α + eα
vc(t, Lp). (6.9)

State estimation
Following the recursive dynamics interconnection framework proposed in Section 5.3,

we can derive a predictor-based real-time estimation of the distributed state. Assuming
that the friction weight is known, we design a Luenberger-type observer for the delayed
ODE state. We can identify A and C quantifying the effect ofX(t) over vc(t, L), using the
previous equations

A = −

 aζϵ

ωbitMb

+
Ac
√
Ecρc

2(1− 1
2e

−
∫ L
Lp

kca(s)
2λc

ds
)

 , C =
e
−
∫ L
Lp

kca(s)

2λc
ds

√
2(1− 1

2e
−
∫ L
Lp

kca(s)
2λc

ds
)

.

Any negative real is an admissible value for L to make the dynamics of X̃ exponentially
stable. Using Theorem 5.3.1, we can determine an estimation of the delayed boundary
states using the surface measurement

vp(t, 0) =
1√
2

(
cp(t, 0)− 1

Ap
√
Epρp

wp(t, 0)

)
.
= y(t).
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From the predictor design in Section 5.4, and Theorem 5.4.1, we have access to real-time
values of (u⋆(t, x), v⋆(t, x)) using estimation-based predictors denotedPū⋆(t, x), Pv̄⋆(t, x).Using the inverse change of variables, we have

w⋆(t, x) = 1√
2

(
e
−
∫ x
xi−1

k⋆a(s)

2λ⋆
ds
Pū⋆(t, x)−A⋆

√
E⋆ρ⋆e

∫ x
xi−1

k⋆a(s)

2λ⋆
ds
Pv̄⋆(t, x)

)
,

c⋆(t, x) = 1√
2

(
e
−

∫ x
xi−1

k⋆a(s)
2λ⋆

ds

A⋆
√
E⋆ρ⋆

Pū⋆(t, x) + e
∫ x
xi−1

k⋆a(s)

2λ⋆
ds
Pv̄⋆(t, x)

)
.

(6.10)

We, therefore, have access to the real-time estimation of the distributed states along the
drill string, satisfying Objective 6.1.1. This is illustrated next in numerical simulation on
Matlab.

6.1.3 . Simulation results
As considered in this first example, and schematically illustrated in Figure 6.3, we have

a vertical drill string divided into two subsystems: the drill pipe of length Lp and the col-lars of length Lc = 230m. The total length is L = 2, 000m. The physical parameters taken
from [AKIS20] are given in Table 6.1.

Param. Value Param. Value Param. Value
Ap 3.5× 10−3 m2 Ac 5× 10−3 m2 Mb 3.6× 104 kg
kpa 0.23 s−1 kca 0.3 s−1 a 0.108m
Ep 2× 1011Pa Ec 2.5× 1011Pa ϵ 5.7× 106 J
ρp 8000 kg/m3 ρc 8500 kg/m3 ωbit 31.5m.s−1

Table 6.1 – Parameters used for simulation

The simulation procedure is similar to the one de-
scribed in Section 5.6. All kernel values are com-
puted beforehand. The interconnected system is
simulated on a timescale of 10s, using a Godunov
schema and ode45. We use affine functions sat-
isfying (6.9) for the initial conditions (Figure 6.4).
Boundary observer values for the PDE states are
initialized to 0.1. The drill string is decomposed
on a mesh of nx = 500 points. The open-loop
system is here naturally stable. Figure 6.4 – Initial conditions

One can verify that Assumptions 5.1.1-5.1.5 are satisfied for this system. In particular,
the scalar ODE state is controllable and observable, and the coupling coefficients in (6.9),
(6.8) are non-zero. For the ODE-state observer, the gain Lobs = −5 is chosen. Figure 6.6gives the evolution of the estimated and real down-hole axial velocity X̂(t) and X(t) for
the open-loop system. Note that the estimation is only available after δ = Lp

λp + Lc
λp whichis approximately equal to 0.4s here. As expected, once we can correctly estimate the

different PDE states using our recursive dynamics framework, we can obtain a reliable
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estimation of the ODE state. The X−norm of the error state converges quickly to zero, as
represented in Figure 6.5.

Figure 6.5 – Evolution of ∥(ũ, ṽ, X̃)∥X Figure 6.6 – Evolution ofX(t) and X̂(t)

We represented in Figure 6.7 the evolution of the convergence time for several ob-
server gains. As expected, the higher the value of |Lobs|, the faster the convergence. Inpractice, the value may be bounded by physical constraints.

Figure 6.7 – Convergence of X̂(t) for several observer gains
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6.2 . Torsional motion of a drill string in a deviated borehole

Next, we consider the torsional motion of a drill string in the case of a deviated well
paths.

Introduction

Context
As for extracting fossil fuels, drilling for geothermal heat can lead to significant eco-

nomic value and offers a promising alternative as a renewable energy resource. Similar
engineering skills are needed. A new solution has been brought to reach the adequate
depth and rock layers: drilling directional wells. Using complex deviated well paths is
a potential landmark move to reach new energy sources. Usually deviated from a 60◦

to 75◦ angle, the first truly horizontal path was inaugurated in 2020 in Canada. The well
was drilled to a depth of 3450m before turning at a 90◦ angle and drilling through sedi-
mentary rock along a 2000m lateral route. This allows developing enhanced geothermal
power systems with a U shape. Drilling horizontal is a feat of engineering: when devi-
ation augments, so do friction along the borehole, especially in the top part of the drill
string [Jan93]. A picture of the Precision Drilling Training Rig in Nisku, Alberta is given in
Figure 6.8.

Figure 6.8 – ©Calgary University Figure 6.9 – Schematic representation
A second step towards bettermodeling the drill string dynamics is considering the varying
environment, such as each section orientation. In particular, it has been pointed out that
some unwanted oscillations were caused by the friction between the rotating drill string
and the borehole wall [Jan93]. Among them, the most prevalent and destructive are tor-
sional or rotational vibrations, known as stick slip. These oscillations are characterized
by a sequence of stick, when the bit stops rotating while the top is still rotating, making
the torque augment until the bit suddenly comes loose again or slip, with a sudden re-
lease of energy. Stick-slip oscillations may be caused by the speed-dependent nature of
the contact forces (cutting and friction) or the coupling between the axial and torsional
motions at the bit–rock interface [NW13]. Indeed, regardless of their complexity, most
models consider that stick-slip is introduced as a discontinuous frictional force at the bit,
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having a velocity-weakening effect [AA16]. However, since this phenomenon also appears
when there is no such bit-rock interaction, it is assumed that it may also be caused by
along-string Coulomb-type frictions [ZHS16]. Former models do not consider this phe-
nomenon and fail to explain off-bottom stick-slip oscillations. Therefore, the Coulomb
friction, which can be seen as a disturbance acting on each section, must be considered.
Due to the high complexity and nonlinearity induced by the interaction between the drill
bit and the rocks, we consider the bit off-bottom. This corresponds to transient phases re-
quired for drill pipe connections and the replacement of downhole tools. In this context,
the torsional model presented below has been validated against field data [AS18].

Objective: reference trajectory tracking
For an industrial application, the objective is to control the downhole velocity or orien-

tation of the drill string to optimize the ROP while avoiding undesired oscillations. Many
stick-slip mitigation controllers have been developed through the last decades using the
former understanding of this phenomenon. Most of those used in the field correspond to
high gains PI control laws and follow the SoftSpeed and SoftTorque approaches [ASADM20].
Even though they are easy to analyze and implement and have a low computational ef-
fort, they do not help compensate the effects of Coulomb friction, as illustrated in Section
6.2.3. Some approaches are proposed to add new compensating terms to the existing PI
controllers [ADMS18b], but are more adapted to uni-sectional drilling pipes.

Considering different pipe sections interconnected at the end with the ODE dynamics
of the BHA, we can follow a recursive dynamics interconnection framework similar to the
one proposed in the previous chapter to design a control law regulating the downhole
angular velocity.

Objective 6.2.1: Reference trajectory tracking

Denote ωDH(t) the downhole angular velocity. We aim at designing a torque control in-
put that regulates the downhole angular velocity at the beginning of a drilling operation
while avoiding entering a stick-slip limit cycle.
Our objective is to design a surface control law V (t) such that |ωDH(t)−ωref(t)| −→ 0.
It is somehow related to the disturbance rejection and tracking problem consid-

ered in Chapter 4. To construct transition trajectories, [ADMS18b] uses semi-analytical
functions (mollifier) for the downhole velocity ωDH that are smooth and have vanishing
derivatives in {0, L}. Their primary purpose is to avoid brutal changes in the reference
signal. Let us introduce the bump function ϕ, defined by

ϕ(t) =


exp (− 1

1−t2 )∫ 1
−1 exp (−

1
1−ξ2 )dξ

for t ∈ (−1, 1),
0 otherwise.

(6.11)

An appropriatemollifier ism(t) =
∫ t
0 ϕ(s−1)ds. We define a reference trajectory using the

mollifier with three degrees of freedom (amplitude Am, switching time tsr, and switchingduration tsd).As will be seen later, when the drilling device is in a slipping mode, i.e when the angular
velocity is higher than a critical value ωc, the estimation and rejection of the disturbance
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terms are facilitated. It motivates a switching mode control law, in which we first increase
the torque to break the static friction, and then apply the recursive control procedure
presented in Section 6.2.2. With the reference trajectory ωref (t) = ωc + Amm( t−tsdtsr

), we
must ensure that the angular velocity stays in the controllable zone |ω(t) > ωc|. After therelease of the BHA from the stick phase, the control objective 6.2.1 must be satisfied.

6.2.1 . Torsional vibrations model

First, we present the distributed model for the torsional motion of the drill string ad-
justed from [AS18]. It accurately describes the torsional movement of a multi-sectional
drilling system in absence of bit-rock interaction. It comprises interconnected hyperbolic
PDEs, coupled at both ends with an ODE, and includes distributed friction terms. Consid-
ering that we are at the beginning of the operation, we neglect the axial motion of the drill
string. Moreover, we neglect the effects of pressure differential along the drill string and
the Stribeck curve, such that the transition from static to dynamic Coulomb friction is not
continuous.

Multi-section drill string model
We consider a deviating drilling device as illustrated in Figure 6.9 with curvilinear ab-

scissa denoted x ∈ [0, L], extending between the top-drive and the drill bit locations. The
discontinuities between different sections of the drilling device are represented by a dis-
continuity in impedance. In the general framework presented in Chapter 5, we distinguish
N sections. Apart from having different material properties (lengths, density, inertia or
Young’smodulus), the change in orientation induces different friction coefficients for each
section. For any i ∈ J0, N − 1K, the spatial coordinate xi corresponds to the junction be-tween section i and section i + 1. By convention, we have x0 = 0, xN = L. We use the
subscript ·i to denote a variable or physical parameter related to sectioni. When referring
to general variables, it may be omitted. We use the subscript ·TD to denote variables at
the top of the drill string in x = 0, and ·DH to denote variables at the downhole in x = L.

Torsional motion
The torsional dynamics are represented using thewidely used distributedwavemodel

[AS18, GDD09]. Denote Φ(t, x) the angular displacement depending on time and space
in [0, T ] × [0, L], and ω(t, x) = ∂Φ(t,x)

∂t the angular velocity. Considering an infinitesimal
element of the drill string of length dx→ 0, we derive the angular torque τ(t, x) associated
to Φ from the strain, given as the local relative compression:

τ(t, x) = JG
(Φ(t, x)− Φ(t, x+ dx))

dx
, with

{
J : polar moment of inertia,
G : shear modulus.

Under the assumption of elastic deformations and using equations of continuity and
state, we can derive the torsional dynamics. The state (ωi, τi) on each section satisfies

∂τi(t, x)

∂t
+ JiGi

∂ωi(t, x)

∂x
= 0, Jiρi

∂ωi(t, x)

∂t
+
∂τi(t, x)

∂x
= Si(t, x). (6.12)
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The source term Si(t, x)models the frictional contact with the borehole. Continuity of the
angular velocity and torque is imposed at each boundary, such that

τi(t, xi) = τi+1(t, xi), ωi(t, xi) = ωi+1(t, xi). (6.13)

Coulomb friction model
Following [AS18], the interaction with the borehole along section i is modeled by

Si(t, x)
.
= −Fi(t, x)− ktρiJiωi(t, x),

where kt is the viscous shear stress, and Fi(t, x) the alongside Coulomb friction between
the drill string and the borehole. In practice, we can consider that the viscous shear
stresses are negligible, such that for all sections kt ≈ 0.
The function F is modeled by using the inclusion rep-
resented on the rightF(t, x) = sign(ω(t, x))Fd(x), |ω(t, x)| > ωc,

F(t, x) ∈ [−Fs(x), Fs(x)], |ω(t, x)| < ωc,

where Fd(x) .
= ro(x)µkFN (x), Fs(x) .

= ro(x)µsFN (x)

correspond to the dynamic and static Coulomb
torques. They depend on the outer drill string radius
ro(x), the static (kinetic) friction coefficient µs (µk) and
the normal force acting between the borehole wall
and the drill string FN (x).

The angular velocity threshold ωc corresponds to the transition from dynamic to static
Coulomb friction. The function F(t, x) ∈ [−Fs(x), Fs(x)] denotes the inclusion where

F(t, x) = −∂τ(t, x)
∂x

− ktρJω(t, x) ∈ [−Fs(x), Fs(x)].

The expression of FN (x) can be deduced from the torque model presented in [SWB87],
and, in our case study, is supposed to be known. Note that when |ω(t, x)| > ωc, thealongside friction termF only depends on the space. It is therefore easier to estimate and
reject the disturbance caused by the side forces in this case. As previously mentioned, it
motivates a switching mode control law, in which we first impose an important actuation
guaranteeing the release of the BHA from the stick phase.

Coupling with the top-drive
As explained in Section 6.1, the top-drive of inertia ITD is suspended from a traveling

block. It is actuated by an electrical motor and travels vertically up and down to impart
torque to the drill string. The motor torque is the control input V (t) = τm(t). Unlike in
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the previous section, we do not neglect its dynamics, which are modeled by
d

dt
ωTD(t) =

1

ITD
(τm(t)− τTD(t)). (6.14)

Coupling with the BHA
At the beginning of the operation, the bit is off-bottom such that there is no bit-rock

interaction. As before, the dynamics of the lower part of the drill string are approximated
as a single lumped element. The inertia of this set is given by IDH = ρDHLDHJDH , with
ρDH the average density, JDH the polar moment of inertia, and LDH the length of the
downhole assembly. Their inertia explains why the collars and the bit still have a major
impact on the drill string dynamics. Here, we consider such a lumped approximation
for the lowest part of the drilling device. Assume that the downhole assembly is subject
to the now lumped effect of the distributed source terms acting on the collars D(t) =∫
collar S(t, x)dx. The downhole boundary condition at x = L can then be obtained from a
force balance on the lumped BHA

d

dt
ωDH(t) =

1

IDH
(τDH(t)−D(t)). (6.15)

6.2.2 . Application of the recursive framework

Riemann invariants
We now rewrite the dynamics of the drill pipes sections (6.12) in the form of a chain of

hyperbolic PDE systems of transport equations only coupled through the source terms.
Define the standard Riemann invariants by

ui(t, x) = ωi(t, x) +
λi
JiGi

τi(t, x), vi(t, x) = ωi(t, x)−
λi
JiGi

τi(t, x), (6.16)

with λi =√ ρi
Ji
the velocity of the torsional wave along section i. They satisfy

∂ui
∂t

(t, x) + λi
∂ui
∂x

(t, x) =
Si(t, x)

Jiρi
,

∂vi
∂t

(t, x)− λi
∂vi
∂x

(t, x) =
Si(t, x)

Jiρi
. (6.17)

The continuity conditions (6.13) now read as
ui+1(t, xi) = ai1ui(t, xi) + ai2vi+1(t, xi), (6.18)
vi(t, xi) = ai3ui(t, xi) + ai4vi+1(t, xi), (6.19)

where ai1 =
2

1 + Zi
, ai2 =

Zi − 1

1 + Zi
, ai3 =

1− Zi

1 + Zi
, ai4 =

2Zi

1 + Zi
, and Zi = λi

JiGi
/

λi+1

Ji+1Gi+1
.

It corresponds to reflections of incoming waves from both sides. At the two ends, we have
u1(t, 0) = −v1(t, 0) + 2ωTD(t), vN (t, L) = 2ωDH(t)− uN (t, L). (6.20)
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The boundary conditions (6.14)-(6.15) read
ω̇TD(t) =

1

ITD
V (t)− J1G1

λ1ITD
(ωTD(t)− v1(t, 0)), (6.21)

ω̇DH(t) =
JNGN
λNIDH

(uN (t, L)− ωDH(t))−
D

IDH
. (6.22)

To avoid useless case distinctions, we use the following convention:
u0(t, 0) = ωTD(t), a

0
1 = 2, a02 = −1, a03 = 0, a04 =

J1G1

λ1ITD
,

vN+1(t, L) = ωDH(t), a
N
1 =

JNGN
λNIDH

, aN2 = 0, aN3 = −1, aN4 = 2. (6.23)
Note that we do not directly obtain subsystems of the form (5.1)-(5.4) in this case, since in-
domain couplings do not linearly depend on (ui(t, x), vi(t, x)). However, we use a similar
recursive framework. In this approach, we consider each drill pipe section as an indepen-
dent subsystem, for which we solve a stabilization and output tracking problem.
Using the method of characteristics in each section, we obtain
ui(t, xi) = ui(t−

(xi − xi−1)

λi
, xi−1) + di(t), vi(t, xi−1) = vi(t−

(xi − xi−1)

λi
, xi) + di(t),

where di(t) =
∫ xi

xi−1

1

Jiρiλi
Si(t−

s− xi−1

λi
, s+ xi − xi−1)dx. (6.24)

Thus, the effect of the Coulomb friction terms can be seen as disturbances acting at the
different junctions. Note that if |ω| < ωc all over the drilling device, the terms di areconstant. These notations are summarized in Figure 6.10.

Figure 6.10 – Schematic representation of system (6.17)-(6.22)

Recursive definition of the control input
First, let us determine the virtual input V̂N+1 ≡ uN (t, L) guaranteeing the convergenceof ωDH(t) to the reference trajectory ωref (t). With (6.23), (6.22) rewrites

ω̇DH(t) = aN1 (V̂N+1(t)− ωDH(t))−
D(t)

IDH
.
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Then, defining V̂N+1(t) as a sum of two terms
V̂N+1(t)

.
=

1

aN1

(
ω̇ref (t) + aN1 ωref (t)−KD(ωDH(t)− ωref (t))

)
: stabilization (6.25)

+
1

aN1 IDH
D(t), : disturbance cancellation

with D(t) supposedly known. For KD > 0, we therefore ensure that (ωDH(t) − ωref (t))exponentially converges to zero. Next, we iterate the output tracking in the different sec-
tions. Denote ti = xi−xi−1

λi
the transport time along section i. Using the boundary condi-

tions (6.18) in (6.24), and applying the method of characteristics to (6.17), we obtain
ui(t, xi) = ai−1

1 ui−1(t− ti, xi−1) + di(t) + ai−1
2 vi(t− ti, xi−1).

To ensure that ui(t, xi) tracks V̂i+1(t), we define
V̂i(t)

.
=

1

ai−1
1

(V̂i+1(t+ ti)− di(t+ ti))−
ai−1
2

ai−1
1

vi(t, xi).

This paves the way for a recursive definition of the virtual inputs. Note that each V̂i re-quires future values of V̂i+1, and consequently, future values of the downstream sec-
tion states. The causality of the control law will be guaranteed using state-predictors,
described in Section 6.2.2. Iterating the procedure on the N sections, we return to the
first section, whose state is interconnected with the top-drive ODE (6.21). To get ωTD(t)converge to V̂1(t), we define the control input V (t) as

V (t) = ITD(
˙̂
V1(t) + a04(ωTD(t)− v1(t, 0))−K0(ωTD − V̂1(t)). (6.26)

For any K0 > 0, the output (ωTD(t) − V̂1(t)) exponentially converges to zero. Therefore,using the recursive definition of the virtual inputs V̂i(t), starting from the downhole, and
going up to V̂1(t), we obtain a control input V (t) satisfying the control objective.

Unlike simple control algorithms (such as PID controllers), the recursively designed
control input requires the knowledge of future values of the PDE states and at the end
of the downhole ODE state. For the sake of simplicity, we assumed here that the distur-
bance terms di are known and constant, considering the aforementioned switching-mode
strategy. If not, we would need to estimate them and predict future values.

In the next section, we propose a state observer based on the recursive dynamics
interconnection framework presented in the previous chapter, combined with a state-
predictor.

Boundary state estimation
Consider the PDE system (6.17). We assume that the friction coefficients µk, µs areknown. They could be estimated using one of the methods proposed in [ASNK22a]. If the

disturbance terms are constant, then it is sufficient to know the boundary states ui(t, xi)and vi(t, xi−1) to estimate the whole distributed states (ui, vi). We then design a state
observer for these boundary states. We have access to the measurement of the angular
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velocity at the top drive ωTD(t). We obtain v1(t, 0) from (6.21)
v̂1(t, 0) =

λ1ITD
J1G1

(ω̇TD(t)−
1

ITD
V (t)) + ωTD(t).

Then, we can compute an estimation of u1(t, 0) using the boundary condition (6.20)
û1(t, 0) = −v̂1(t, 0) + 2ωTD(t).

Injecting the boundary conditions (6.18)-(6.19) into (6.24), we obtain
ui(t, xi) = ai−1

1 ui−1(t− ti, xi−1) + ai−1
2 vi(t− ti, xi−1) + di(t− ti),

vi+1(t, xi) =
1
ai4
vi(t+

xi−xi−1

λi
, xi−1)−

ai3
ai4
ui(t, xi)− di(t− xi−xi−1

λi
).

Consequently, it is possible to get an estimation of delayed values of the bound-
ary states ui(t, xi), vi+1(t, xi), knowing ui−1(t, xi−1), vi(t, xi−1). The corresponding de-
lay∑i

j=1 tj depends on the section we consider. Let us denote δtot as the largest delay
(δtot =

∑N
j=1 tj ). Define the δtot-delay operator ·̄ such that for any function γ, we have

γ̄(t) = γ(t− δtot). Using the above expression, we can then define ˆ̄ui(t, xi), ˆ̄vi+1(t, xi) theestimations of the δtot-delayed states (ūi(t, xi), v̄i+1(t, xi). These estimations are avail-
able on a time horizon [t, t + δtot −

∑i
j=1 tj ]. We can finally estimate δtot-delayed values

of the downhole ODE using these estimations. Indeed, assuming that we have estimates
ˆ̄uN (t, L), ˆ̄vN (t, L), we can define an estimation of the downhole angular velocity as

ˆ̄ωTD =
ˆ̄uN (t, L) + ˆ̄vN (t, L)

2
.

State-prediction
So far, we designed a state observer that provides a real-time estimation of the de-

layedODE states and of the delayed boundary states. We now combine these estimations
with state predictors to obtain a real-time estimation of the undelayed states. Moreover,
as the virtual control inputs V̂i require the knowledge of future values of the states, thepredictors of the boundary states ūi(t, xi), v̄i(t, xi), will give δtot +∑i

j=1 tj ahead of time
values of these delayed boundary states.

Pūi(t, s) =


ˆ̄ui(s+ δtot +

i∑
j=1

tj , xi) if s ∈ [t− 3δtot −
i∑

j=1

tj , t− δtot −
i∑

j=1

tj ]

ai−1
1 Pūi−1(t, s) + ai−1

2 Pv̄i(t, s) + di otherwise,
Pv̄i(t, s) =

ˆ̄vi(s+ δtot + δi−1, xi−1) if s ∈ [t− 3δtot − δi−1, t− δtot − δi−1]

ai4Pv̄i+1(t, s− 2ti) + ai3Pūi(t, s− 2ti) + di otherwise.
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Finally, the state-prediction Pω̄DH (t, s) of the downhole ODE ω̄DH ahead a time δN is de-
fined for s ∈ [t− 2δtot, t] by

Pω̄DH (t, s) =


ˆ̄ωDH(s+ 2δtot) if s ∈ [t− 3δtot, t− 2δtot]

e
− JNGN

λNIDH
δtot(ˆ̄ωDH(s) otherwise.

+
∫ s+δtot
s e

− JNGN
λNIDH

(s−ν)
(
JNGN
λN IDH

PūN (t, ν − 2δtot)− D
IDH

)
dν)

.

These predictors are well-defined and causal. From these definitions, we have
Pūi(t, s) = ˆ̄ui(s+ δtot + δi, xi), s ∈ [t− 2δtot − δi, t],

Pv̄i(t, s) = ˆ̄vi(s+ δtot + δi−1, xi−1), s ∈ [t− 2δtot − δi−1, t],

Pω̄DH (t, s) = ˆ̄ωDH(s+ 2δtot), s ∈ [t− 3δtot, t].

The numerical values of the predictors are updated at each time step, using past values
stored in a buffer. They are initialized with the estimations.

6.2.3 . Simulation results

Test case
In this section, we illustrate the performances of our approach using simulated data

representing a field scenario. We consider a L = 3, 000m long drilling device. It is com-
posed of two sections [0, L1] and [L1, L1 + L2]. The second section has a 60◦ deviation.
The well is schematically represented in Figure 6.9 and corresponds to scenario Well A in
[AS18].
It illustrates the case N = 2. In this situation, the
side forces cannot be neglected. For sake of simplic-
ity, we assume they are constant along the drill string
with (µs, µk) = (0.45, 0.28). The other parameters are
given in Table 6.2. We use a spatial grid of nx = 500

cells to discretize the drill string (CFL=0.99). To con-
sider on-site physical constraints, the torque input is
limited to 30 kNm. The transport equations are solved
with Matlab using a first-order upwind scheme de-
scribed in [AS18] to ensure numerical robustness and
avoid spurious oscillations.

Trajectory tracking and control strategies
Initially, the drill string is at rest. The system is operated for 100s. After 20s, the velocity

setpoint is changed to 120 RPM with a transition time of 10s. After 60s, it changes back to
60 RPM with the same transition time. The reference trajectory is represented in Figure
6.11 (dotted red line).

We apply the switching-mode controller to increase the torque to break the static fric-
tion before starting the recursive control procedure. The control input is computed using
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Param. Value Param. Value Param. Value
A1 0.005m2 A2 0.01m2 ITD 2900 kg.m2

J1 2.28× 10−5 m4 J2 1.49× 10−4 m4 IDH 152.9 kg.m2

G1 6.1× 1010 m G2 6.7× 1010 m ρ1 = ρ2 7850kg/m3

L1 1700m L2 1300m gainK0 10 (6.26)
Table 6.2 – Numerical parameters for simulation

Figure 6.11 – Evolution of the downhole angular velocity ωDH(t)

the predictors based on boundary state estimations. As illustrated in Figure 6.12, the es-
timation error is relatively important during the transient time but quickly goes to zero
when a setpoint is reached.

Figure 6.12 – Evolution of estimation error for boundary states
We compare the performance of the proposed controller with state-of-the-art PI con-

trollers (soft-torque, Z-torque) classically used on the field. They correspond to PI con-
trollers improved with fine-tuning of the gains, impedance matching, and filtering tech-
niques. They were developed to mitigate stick-slip during drilling operation [ASADM20].

The time evolution of the downhole angular velocity for the three different control
strategies is pictured in Figure 6.11. With the SoftTorque and Z-torque control law, the an-
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gular velocity of the drill bit exceeds the reference values during the transient and keeps
oscillating. However, one can quickly notice that the wide-band impedance (Z) match-
ing used in this latter approach allow to reduce the oscillations induced by the Coulomb
friction terms. With the new proposed controller, ωDH(t) quickly converges to the refer-ence trajectory as expected and has a smoother behavior. The apparition of stick-slip is
therefore prevented 1.

Performance criteria
It is highly interesting to define several relevant specifications to compare the perfor-

mances of the different controllers more precisely. We present some criteria in Table 6.3.
First, the computation time (CT) is much higher for the proposed recursive strategy by
comparison with state-of-the-art controllers. It is explained by the computational effort
required to compute and update the predictors at each time step. However, it results in
better performance in trajectory tracking. The average trajectory error (ATE) for the entire
sequence and the last 25s is much lower with the proposed controller.

Control strategy CT ATE (total) ATE (last 25s) ACE
SoftTorque 1.8s 31RPM 46RPM 6.7kNmZ-Torque 2.0s 15RPM 7.2RPM 12kNmRecursive approach 19s 1.2RPM 0.02RPM 7.1kNm

Table 6.3 – Comparison of performance with state-of-the-art controllers

Finally, one can see that the average control effort (ACE) of the proposed approach is
comparable with a SoftTorque. However, as represented in Figure 6.13, the control input
reaches the thresholds ±τmax at the beginning of the operation.

Figure 6.13 – Control effort for different strategies

1. The open-source code for torsional wave simulation can be found onhttps://github.com/Open-Source-Drilling-Community/Aarsnes-and-Shor-Torsional-Model.git.
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Conclusion

In this chapter, we used a recursive dynamics interconnection framework for state esti-
mation and controller design in the context of drilling. In the first example, this approach
allowed us to estimate accurately the distributed axial motion of a drilling device in a
vertical borehole. In the second example, it allowed us to ensure the downhole angu-
lar velocity to follow a specific trajectory, in a deviated path. Here, the torsional motion
of the drill string was assumed to be the dominating dynamic behavior. The controller
shown in simulations on a test case scenario to help avoiding torsional stick-slip vibra-
tions at the beginning of drilling operations. Undeniably, the quality of the models can be
improved by taking into account the couplings between torsional, longitudinal, and axial
oscillations. One must not forget that this approach required known values of the differ-
ent parameters, including the friction terms. Some of them may be difficult to evaluate,
particularly the parameters that depend on the nature of the drilled rock as ϵ. Thus, the
proposed approach could be combined with alternative techniques to estimate them as
in [AKIS20]. Machine learning-based solutions for estimating the physical parameters are
also proposed in Chapter 11.
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Perspectives

In Part II, we focused on chain structures in which the control input andmeasurement
were available at one end. First, we considered in Chapter 4 an ODE-linear scalar hy-
perbolic PDE-ODE interconnection. We presented a backstepping based output-feedback
control design for output regulation and disturbance rejection. The robustness of the pro-
posed approach was guaranteed using filtering techniques based on stability analysis in
the frequency domain. Next, we considered in Chapter 5 a chain of arbitrary many linear
scalar hyperbolic PDE systems, coupled at the unactuated end with an ODE. This network
was exponentially stabilized using a predictor-based output feedback controller designed
in a recursive dynamics interconnection framework. We finally illustrated in Chapter 6 the
interest of such control strategies on two test cases inspired by drilling systems.

In this conclusion, we present some natural extensions of the chain structures we
considered, such as non-scalar PDE systems (so-called (n+m)×(n+m) linear hyperbolic
PDE systems), and chain structures with ODEs at both ends.

Chain of N nonscalar hyperbolic PDE subsystems coupled with an ODE at
one end

A first natural extension of the work presented in Chapter 5 is to consider that each
PDE subsystem i is not composed of two scalar hetero-directional transport equations
but of the general form of (ni + mi) × (ni + mi) linear hyperbolic PDE systems. Such
a model could represent coupled axial-torsional dynamics of a drill string with multiple
sections, for instance. The last ODE subsystem could encompass the bit-rock interaction
or the lumped effect of the BHA, as presented in Chapter 6. It is actuated at the first
end by a control input V (t) = B0u

1(t, 0), with B0 ∈ Rnc×n1 , where nc is the number
of available actuators. We assume we have access to a measurement at the actuated
boundary y(t) = Cmesv

1(t, 0), with Cmes ∈ Rnm×m1 , where nm is the number of available
measurements.

This system is schematically represented in Figure 6.14. Each hyperbolic PDE subsys-
tem i, (i ∈ J1, NK) is modeled by (n+m) coupled scalar equations:

∂

∂t
ui(t, x) + Λ+

i

∂

∂x
ui(t, x) = Σ++

i (x)ui(t, x) + Σ+−
i (x)vi(t, x), (6.27)

∂

∂t
vi(t, x)− Λ−

i

∂

∂x
vi(t, x) = Σ−+

i (x)ui(t, x) + Σ−−
i (x)vi(t, x), (6.28)

with in-domain coupling terms Σ−+
i ∈ C([0, 1],Rmi×ni), Σ+−

i ∈ C([0, 1],Rni×mi). The
coupling terms Σ++

i ∈ C([0, 1],Rni×ni), Σ−−
i ∈ C([0, 1],Rmi×mi) satisfy (Σ++

i )jj = 0, j ∈
J1, niK and (Σ−−

i )jj = 0, j ∈ J1,miK. Each subsystem i is interconnectedwith its upstream
subsystem i− 1 and downstream subsystem i+ 1 following:

ui(t, 0) = Qiivi(t, 0) +Qi,i−1ui−1(t, 1) + δi1B0V (t),

vi(t, 1) = Riiui(t, 1) +Ri,i+1vi+1(t, 0) + δiNCX(t), (6.29)
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with constant couplingsQij , Rij . The last subsystemN is coupled with an ODE of dimen-
sion p ∈ N such that:

Ẋ(t) = AX(t) +BuN (t, 1), (6.30)
with A ∈ Rp×p, B ∈ Rp×nN , C ∈ RmN×p constant matrices.

Figure 6.14 – Schematic representation of the system (6.27)-(6.30)

We believe the recursive dynamics interconnection framework proposed in Chapter 5
could be adapted to this more general case to the price of technical computations and
structural assumptions on the different coupling matrices. For instance, matrices Ri−1,i

should be full-row rank (rank(Ri−1,i) = mi−1) for the design of successive virtual controlinputs. This condition implies that mi−1 ≤ mi, for all i ∈ J2, NK. The ODE system must
also be stabilizable. Similar conditions would hold for the estimation design.

The case of a chain of two PDE subsystems of the form (6.27)-(6.29) was considered in
[ABP22]. In the non-scalar case, the results from [Aur20, RAN21a] cannot be directly ap-
plied due to the remaining couplings in the target system obtained after the first Volterra
integral transformation. With general coupling matrices ([ABP22] only considered diago-
nal couplingmatrices) tracking and predictor design is evenmore difficult. Due to themul-
tiple transport delays in each subsystem, the predictors designed in the previous chapters
could be non-causal. We should therefore use another transform, that might lead to even
more intricate computations.

Finally, as mentioned in Chapter 5, computing predictions at each time step in imple-
menting a control input is computationally expensive. It prevents the use of such control
laws for real-time application, highlighting the importance of the robustness of the pro-
posed control design. Taking advantage of model reduction techniques [BSM22] to accel-
erate the computations could be highly interesting. Neural operators [LKA+21] have also
proved to be a promising way to fasten the resolution of PDE systems [BSM22, SLY+22].
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Chain ofN scalar hyperbolic PDE subsystems coupledwith anODEat both
ends

Next, a natural extension of systems studied in Chapters 4 and 5 are chains of N > 0

interconnected scalar hyperbolic PDE systems, coupled at both ends with an ODE. It is
schematically illustrated in Figure 6.15.

Figure 6.15 – Schematic representation of a chain with ODE at both ends

Applying results from Chapter 5, we can design a virtual control input V̂1(t) to stabilizethe PDE chain structure interconnected with the distal ODE system. Then, considering the
actuated ODE system, it remains to solve an output-tracking/disturbance rejection prob-
lem. By designing a control input V (t) such that C0X(t) converges to V̂1(t) in presence ofa disturbance E0v

1(t, 0).
Another difficulty arises in designing an output-feedback controller. Indeed, to de-

velop the state estimation proposed in Section 5.3, weneed ameasurement of v1(., 0)on a
certain timehorizon. If we only access a partialmeasure of theODE state y(t) = CmesX(t),
we need to invert the proximal ODE dynamics. A frequency approach as the one proposed
in Chapter 4might be used to reconstruct the boundary statemeasurement. On the other
hand, if a measurement of the first PDE state was available, results from [DGK18] could
be considered.

Chain of N scalar hyperbolic PDE subsystems with ODE interconnections

Finally, one last example of a network to be considered would be the case where one
or several ODE systems are interconnected inside the PDE chain structure. For instance,
considering the system schematically illustrated in Figure 6.16, we would have the general
form of equations (E1

0 = 0, E0
1 = 0){

∂
∂tu

i(t, x) + λi
∂
∂xu

i(t, x) = σ+i (x)vi(t, x),
∂
∂tv

i(t, x)− µi ∂∂xv
i(t, x) = σ−i (x)ui(t, x),

if subsystem i is a PDE, (6.31)
Ẋi(t) = AiXi(t) + Ei−1

1 ui−1(t, 1) + Ei0v
i(t, 0) + δi1B0V (t), else, (6.32)
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with boundary conditions

ui(t, 0) = qiiv
i(t, 0) +

{
qi−1,iu

i−1(t, 1) if the upstream subsystem is a PDE,
Ci−1
0 Xi−1(t) if the upstream subsystem is an ODE,

vi(t, 1) = ρiiu
i(t, 1) +

{
ρi,i+1vi+1(t, 0) if the downstream subsystem is a PDE,
Ci+1
1 Xi+1(t) if the downstream subsystem is an ODE.

Here we considered that the first and last subsystems are an ODE system.

Figure 6.16 – Schematic representation of the system (6.31)-(6.32)

Adopting a ’plug and play’ like approach as in Chapter 5makes sense, but the presence
of an ODE system inside the chain structure makes the tracking issue very delicate since
the ODE dynamics need to be taken into account. A hypothesis of dynamics inversion for
eachODE inside the chain structure could be added to the structural properties (trackabil-
ity, predictability) already assumed in the recursive dynamics interconnection framework.
Results from [AVDMK19, AADMS21], which focus on robust stabilization of PDE-ODE-PDE
structures, should first be extended to output regulation.
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Part III

Chain structure with actuation at
the in-between boundary

Structure de chaîne avec contrôle à une jonction
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Introduction

In Part II, we first considered networks of hyperbolic PDE systems interconnected with
anODE system at one (Chapter 5) or both (Chapter 4) ends. In all cases considered before,
and inmost networked systems found in the literature, the actuation was available at one
end of the chain structure. Although such a configuration covers a wide range of appli-
cations, as for the UAV-cable-payload structure [WK20], mining cable elevators [WK21] or
drilling pipes (Chapter 6), there are several situations for which the actuator is located at
an arbitrary node of the network. In this part, we focus on the case where actuation is
available at a junction between two subsystems in a chain structure. A first example can
be found in traffic congestion control on vast road networks. Depending on the control
strategy, the traffic model, or the road structure, the control input can either appear as
an in-domain term [BLD21, YK21] or at a crossroad. For instance, this latter situation has
been considered in [YAK22] in a simple configuration where several coupling terms are
equal to zero. Another example of actuation at a junction between different subsystems
can be found in biomedical devices, such as micro-endoscopes. Among other actuators,
Electro-Active Polymer electrodes have proven to control their motion effectively [CRA14].
In [WLG18], micro endoscopes were modeled by a Timoshenko beam with distributed ac-
tuation inside the domain.

In Chapter 7, we first address the problem of output feedback stabilization of a chain
of two linear hyperbolic PDE subsystemswhenactuation is located at the in-between bound-
ary. It represents a significant difference from existing results. Here, we emphasize the
difficulties arising when the actuator is not located at one end of the chain. The classic
methods, such as [ADMBA19] or the recursivemethodology presented in Part II cannot be
applied. When applying the Volterra integral transforms classically used, integral terms
appear at the unactuated boundary of the target system. Unlike in [SCWK20], the re-
circulation induced by the in-domain couplings depends on the control input; therefore,
obtaining a stabilizing control law is not straightforward. It can be related to stabilizing a
time delay system with pointwise and distributed actuation. Consequently, this configu-
ration requires the development of a new control strategy, based on a Fredholm integral
transform.

Next, we illustrate this approach in an example in Chapter 8, inspired by the afore-
mentioned biomedical application. Here, we consider the case of a clamped string with
in-domain damping and a discrete torque action inside the domain. Asmentioned before,
when the control input is located at one end of the system, several boundary feedback
controllers already exist in the literature to stabilize the resulting wave equation [JG22,
KGBS08]. Some controllability results exist for actuation at a junction between different
strings when opposite ends are free [AT01, LZ00]. The control strategy we propose is
slightly different from the one presented in Chapter 7, since the control input appears
twice at the junction x0 ∈ (0, 1), but the concepts behind are the same.

This is an excellent test case before generalizing results to more intricate networks.
Part III ends with perspectives offered by the approaches developed herein.
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7 - Stabilizing two hyperbolic PDE systems with in-
between boundary actuation

This chapter considers an interconnection of two scalar hyperbolic systems with a
boundary control input. As the introduction mentions, the actuation is not located at
one end but at the in-between boundary. Our proposed control strategy is based on
the backstepping methodology but introduces an original transform. First, we apply an
invertible Volterra transform on each subsystem to map them on simpler intermediate
subsystems without in-domain couplings. At the in-between boundary of the target sys-
tem appear integral coupling terms. A change of variables allows rewriting the system
as two hetero-directional hyperbolic PDEs. However, integral coupling terms that contain
delayed actuation values remain at the unactuated boundary, when we reformulate it as
a time delay system. To map the resulting system to an exponentially stable system with-
out integral couplings, we use an appropriate Fredholm integral transform.
Unlike traditionally used Volterra integral transforms [HDMVK16], the existence and in-
vertibility of such transforms are not guaranteed [Yos60]. Several results in the literature
deal with the invertibility of Fredholm transforms when kernels satisfy specific boundary
conditions [BAK15]. When their kernels are lower diagonal matrices [CHO17], invertibility
also directly follows from the cascaded structure of the transform. As none of these con-
ditions is fulfilled here, we use an operator framework, as suggested by [CHO16]. More
precisely, we show in Section 7.2 that thewell-posedness and invertibility of our transform
can be related to a spectral controllability condition. The observer design follows a similar
strategy and is presented in Section 7.3. The estimations are used in Section 7.4 to provide
an output-feedback controller, stabilizing the interconnected system exponentially.

Chapitre 7: Contrôle à la jonction d’une chaine de deux systèmes d’EDP
hyperboliques par retour de sortie. Dans ce chapitre, nous considérons le cas d’une
chaine de deux sous-systèmes hyperboliques (Section 7.1). La commande est située à la
jonction des deux sous-systèmes. La stratégie de controle s’inspire de la méthodologie
de backstepping. Nous utilisons une transformation intégrale de type Volterra sur chaque
sous-système, puis un changement de variables simple, afin de réécrire le système sous
forme de deux équations de transport couplées hétérodirectionnelles. Cependant, cela
induit des termes de couplage intégraux à la frontière non actionnée.
Pour supprimer ces couplages dans le domaine et envoyer le système résultant sur un
système exponentiellement stable, nous utilisons une transformation intégrale de type
Fredholm. Contrairement aux transformations de Volterra couramment employées et
toujours inversibles, nous devons ici garantir l’existence et l’inversibilité de la transfor-
mation. Nous utilisons pour cela un formalisme opérateur [CHO16] (Section 7.2). Nous
suivons une approache similaire pour obtenir une estimation d’état (Section 7.3). Cela
nous permet finalement de proposer une loi de commande par retour de sortie (Section
7.4). Sa performance est illustrée par des simulations (Section 7.5).
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7.1 . Problem description

7.1.1 . System under consideration
We consider a system composed of two scalar hyperbolic PDE subsystems intercon-

nected through their boundaries. However, contrary to previous results on chain struc-
tures with arbitrarily many hyperbolic PDE subsystems [SA17, AA17, Aur20], the actuation
is here at the junction between two subsystems. Each subsystem i ∈ {1, 2} is modeled
by (5.1)-(5.2), where σ+i , σ−i are two continuous functions, which may be sources of in-
stabilities. As previously, we assume we have normalized state variables such that t >
0, x ∈ [0, 1] and constant transport velocities λi > 0, µi > 0. The two subsystems are
interconnected through their boundaries

u1(t, 0) = q11v1(t, 0), v2(t, 1) = ρ22u2(t, 1), (7.1)
v1(t, 1) = V (t) + ρ11u1(t, 1) + ρ12v2(t, 0), u2(t, 0) = q22v2(t, 0) + q21u1(t, 1). (7.2)

The different couplings terms qij and ρij are assumed to be constant. As illustrated in Fig-
ure 7.1, the real-valued actuation V (t) is located at the right boundary of the first subsys-
tem. We assume that we measure the opposite boundary of the unactuated subsystem
y(t) = v2(t, 0). We denote u0i (·) = ui(0, ·), v0i (·) = vi(0, ·) ∈ H1([0, 1],R) the initial condi-
tions satisfying compatibility equations similar to (2.1.1) ((7.1)-(7.2) for t = 0). The existence
of solutions in L2 for the open-loop system is guaranteed by [BC16, Appendix A].

Figure 7.1 – Schematic representation of the system (5.1)-(7.2)

7.1.2 . Structural assumptions
As mentioned in the introduction, stabilizing the chain when the actuation is available

at the in-between boundary is not as easy as when it is available at one end. Indeed,
the different in-domain and boundary couplings somehow result in a re-circulation of
past values of the control input, which must be considered in the design. We first make
some structural assumptions on the boundary couplings to ensure the stabilizability of
the interconnected system. The conditions that follow can be directly verified.
Assumption 7.1.1 The boundary coupling coefficient q21 does not equal 0.
This first assumption is crucial for stabilizing the whole system. In the case where q21 = 0,
subsystem 2 evolves independently of subsystem 1. If not already stable in an open loop,
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it cannot be stabilized by its interconnection with subsystem 1. Thus, this assumption is
necessary if subsystem 2 is not stable. Also, in this case, subsystem 1 is undetectable if
only the available measurement v2(t, 0) is used.
Assumption 7.1.2 The boundary coupling coefficients q11 and ρ22 do not equal 0.
If q11 = 0, the control input only acts on subsystem 2 through distributed terms resulting
from in-domain couplings in (5.1). The backstepping methodology proposed here cannot
be directly adjusted for this case. When solving the kernel equations, the resulting Fred-
holm equations become degenerate, and the proposed techniques do not apply. Similar
considerations arise in the observer design when ρ22 = 0. It is so far a limitation of this
approach. Finally, the (delay-) robustness condition (2.2.1) rewrites for the interconnected
system as
Assumption 7.1.3 The coupling coefficients |ρ11q11| and |ρ22q22| are strictly less than 1.

In addition to these three general assumptions, some specific spectral controllability
and spectral observability assumptions are added in Sections 7.2.2 and 7.3.2 respectively.

7.1.3 . Structure simplification
Under Assumption 7.1.2, we first define new variables to simplify the design of a sta-

bilizing control law. We consider the bijective transformation
u′1(t, x) = u1(t, x), v

′
1(t, x) = q11v1(t, x), u

′
2(t, x) = ρ22u2(t, x), v

′
2(t, x) = v2(t, x),

such that (5.1)-(5.2) hold for the new state (u′i, v
′
i)i∈{1,2} with the new coupling terms σ′±idefined by

σ′+1 (x)
.
=

1

q11
σ+1 (x), σ

′−
1 (x)

.
= q11σ

−
1 (x), σ

′+
2 (x)

.
= ρ22σ

+
2 (x), σ

′−
2 (x)

.
=

1

ρ22
σ−2 (x).

The boundary conditions are now written as follows:
u′1(t, 0) = v′1(t, 0), v′1(t, 1) = q11(V (t) + ρ11u

′
1(t, 1) + ρ12v

′
2(t, 0)), (7.3)

u′2(t, 0) = q′22v
′
2(t, 0) + q′21u

′
1(t, 1), v′2(t, 1) = u′2(t, 1), (7.4)

with q′22 .
= ρ22q22 and q′21 .

= ρ22q21. We define the intermediate control input VS(t) by
VS(t) = q11(V (t) + ρ11u

′
1(t, 1) + ρ12v

′
2(t, 0)), (7.5)

such that (7.3) rewrites as v′1(t, 1) = VS(t). This new system is shown in Figure 7.2. With
the changes above, we have two unitary boundary couplings and have included some
boundary couplings in the control input. Although there is now a cascade structure from
the first subsystem to the second one, the stabilization problem fundamentally differs
from the one studied in Chapter 5. This system is well-posed for any continuous con-
trol input VS and for any initial states (u′i,0, v′i,0)i∈{1,2} = (u′i(0, .), v

′
i(0, .)) ∈ H1([0, 1],R2)

satisfying initial compatibility conditions.
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Figure 7.2 – Schematic representation of simplified system (5.1)-(7.4)

7.2 . Full-state feedback control law design

This section proposes a full-state feedback control law that exponentially stabilizes
the system (5.1)-(7.2) 1. The control objective reads as follows:

Objective 7.2.1: Exponential stabilization in the L2−norm

Design an output-feedback control law V (t) such that there exist ν > 0, C0 ≥ 1, for all
(u0i , v

0
i ) ∈ H1([0, 1],R2) verifying the compatibility conditions, we have

∥(u(t, ·), v(t, ·))∥L2 ≤ C0e
−νt∥(u0, v0)∥L2 .

Figure 7.3 – Schematic representation of the control strategy

We follow the strategy schematically illustrated in Figure 7.3. Applying the classic back-
stepping methodology with Volterra transforms on each subsystem leads to a reformu-

1. This referencewill denote the system (5.1)-(5.2) presented in Chapter 5, alongwith the bound-ary conditions (7.1)-(7.2)
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lation of the chain as two coupled transport equations with integral couplings at the un-
actuated boundary. We then seek to map this new system to an exponentially stable
target system, that is to say, to remove the potentially destabilizing re-circulation of the
state feedback. We propose to use a Fredholm integral transform instead. To prove the
existence and invertibility of such a transform, we follow the operator-framework-based
approach given in [CHO16].

7.2.1 . First target system without in-domain couplings

Volterra transform
As mentioned in the introduction, the first step is to move the in-domain coupling

terms to the in-between boundary using two different invertible Volterra backstepping
transforms Li, i ∈ {1, 2} acting onH1([0, 1],R2). More precisely, we have{

u′1(t, x) = α1(t, x)−
∫ x
0 L

++
1 (x, y)α1(t, y) + L+−

1 (x, y)β1(t, y)dy,

v′1(t, x) = β1(t, x)−
∫ x
0 L

−+
1 (x, y)α1(t, y) + L−−

1 (x, y)β1(t, y)dy,
(7.6){

u′2(t, x) = α2(t, x)−
∫ 1
x L

++
2 (x, y)α2(t, y) + L+−

2 (x, y)β2(t, y)dy,

v′2(t, x) = β2(t, x)−
∫ 1
x L

−+
2 (x, y)α2(t, y) + L−−

2 (x, y)β2(t, y)dy,
(7.7)

where L··
1 (resp. L··

2 ) are bounded piecewise continuous functions defined on the lower
part of the unit square T − (resp. on its upper part T +). The kernels satisfy the following
set of equations on their respective definition domain

λi
∂

∂x
L++
i (x, y) + λi

∂

∂y
L++
i (x, y) = σ′+i (x)L−+

i (x, y), (7.8)
λi
∂

∂x
L+−
i (x, y)− µi

∂

∂y
L+−
i (x, y) = σ′+i (x)L−−

i (x, y),

µi
∂

∂x
L−+
i (x, y)− λi

∂

∂y
L−+
i (x, y) = −σ′−i (x)L++

i (x, y),

µi
∂

∂x
L−−
i (x, y) + µi

∂

∂y
L−−
i (x, y) = −σ′−i (x)L+−

i (x, y), (7.9)
with boundary conditions

L+−
1 (x, x) = − σ′+1 (x)

λ1 + µ1
, L−+

1 (x, x) =
σ′−1 (x)

λ1 + µ1
, L++

1 (x, 0) =
µ1
λ1
L+−
1 (x, 0), (7.10)

L−−
1 (x, 0) =

λ1
µ1
L−+
1 (x, 0), L+−

2 (x, x) =
σ′+2 (x)

λ2 + µ2
, L−+

2 (x, x) = − σ′−2 (x)

µ2 + λ2
,

L++
2 (x, 1) =

µ2
λ2
L+−
2 (x, 1), L−−

2 (x, 1) =
λ2
µ2
L−+
2 (x, 1). (7.11)

These two sets of equations admit a unique continuous solution [CVKB13]. The inte-
gral transform Li, i ∈ {1, 2} is a bounded (and therefore continuous) operator from
H1([0, 1],R2) to H1([0, 1],R2). The transformation is invertible as it is a Volterra trans-
form [Yos60]. The inverse transforms L−1

i have the same structure.
Differentiating with respect to time and space (7.6)-(7.7), and integrating by part, we show
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that the two Volterra transforms map the original system to
∂

∂t
αi(t, x) + λi

∂

∂x
αi(t, x) = 0,

∂

∂t
βi(t, x)− µi

∂

∂x
βi(t, x) = 0, (7.12)

with the boundary conditions
α1(t, 0) = β1(t, 0), α2(t, 0) = q′22β2(t, 0) + q′21α1(t, 1) + I(αi, βi), (7.13)
β1(t, 1) = V1(t), β2(t, 1) = α2(t, 1). (7.14)

The resulting integral boundary couplings I and control law V1 are defined by
I(αi, βi) = −q′21

∫ 1

0
L++
1 (1, y)α1(y) + L+−

1 (1, y)β1(y)dy (7.15)
+

∫ 1

0
(L++

2 (0, y)− q′22L−+
2 (0, y))α2(y) + (L+−

2 (0, y)− q′22L−−
2 (0, y))β2(y)dy,

V1(t) = VS(t) +

∫ 1

0
L−+
1 (1, y)α1(y) + L−−

1 (1, y)β1(y)dy.

Denote by (α0
i (·), β0i (·))⊤ = L−1

i ((u′i(0, ·), v′i(0, ·))⊤) ∈ H1([0, 1],R2) the initial conditions
associated to (7.12). This first target system (7.12)-(7.14) is therefore composed of two
transport equations but presents integral terms (7.15) at the boundary x = 0, which may
be sources of instabilities.

Change of variables
To simplify the problem, (7.12)-(7.14) can be reformulated as a single 2× 2 hyperbolic

PDE system whose state is denoted (z(t, x), w(t, x)). Indeed, each subsystem can be in-
dependently considered as a transport equation with a propagation time δi = 1

λi
+ 1

µi
,

and a velocity Λi = µiλi
λi+µi

= 1
δi
. Define the new set of coordinates (w(t, x), z(t, x)) by w(t, x) = 1[0,x2)(x)α2(t,

x
x2
) + 1[x2,1](x)β2(t,

x−1
x2−1),

z(t, x) = q′21

(
1[0,x1)(x)α1(t, 1− x

x1
) + 1[x1,1](x)β1(t,

x−x1
1−x1 )

)
,

(7.16)

with xi = µi
λi+µi

. For any t > 0, for any (αi(t, .), βi(t, .))i∈{1,2} ∈ H1([0, 1],R2), then
(w(t, .), z(t, .)) defined by (7.16) is inH1([0, 1],R2). The new states (w(t, x), z(t, x)) satisfy

∂

∂t
w(t, x) + Λ2

∂

∂x
w(t, x) = 0,

∂

∂t
z(t, x)− Λ1

∂

∂x
z(t, x) = 0, (7.17)

w(t, 0) = z(t, 0) + q′22w(t, 1) +

∫ 1

0
Nw(y)w(t, y) +Nz(y)z(t, y)dy, (7.18)

z(t, 1) = q′21V1(t) = V ′
1(t), (7.19)

where the integral coupling terms are defined by
Nw(x) =1[0,x2)(x)

1

x2

(
L++
2 (0,

x

x2
)− q′22L−+

2 (0,
x

x2
)

)
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+ 1[x2,1](x)
1

1− x2

(
L+−
2 (0,

1− x
1− x2

)− q′22L−−
2 (0,

1− x
1− x2

)

)
,

Nz(x) =− 1[0,x1)(x)
1

x1
L++
1 (1, 1− x

x1
)− 1[x1,1](x)

1

1− x1
L+−
1 (1,

x− x1
1− x1

).

Note that Nw (resp. Nz) is continuous by definition of xi and due to the boundary con-
ditions (7.10) and (7.11). In the following, we use system (7.17)-(7.19) to design the control
law inspired by the backstepping methodology. A system of form (7.17)-(7.19) is used as a
comparison system in Chapter 8.

Naive approach: Volterra integral transform
Using a Volterra integral transform (2.8), we try to map system (7.17)-(7.19) to a tar-

get system with no integral couplings at the unactuated boundary x = 0. Following the
backsteppingmethodology, we notice that it imposes the boundary condition in x = 1 for
somekernels. Then, no condition canbe imposed along their boundaryx = y. The kernels
must satisfy coupled nonlinear PDEs, and some in-domain couplings appear in the target
system. The integral coupling terms in (7.18) prevent a Volterra transform from mapping
the system to an easily proven exponentially stable target system (a simple cascade struc-
ture for instance). Therefore, we propose to use a Fredholm integral transform, whose
kernels are defined on the unit square S. It offers more degrees of freedom, but is not
always invertible [Yos60]. We then show that the invertibility of the transform is related
to a controllability assumption for our system. The proof follows the approach proposed
by [BC16] and relies on the operator framework introduced in Section 2.1.2.

7.2.2 . Operator formulation

Reformulation of system (7.17)-(7.19)
First, the system (7.17)-(7.19) is rewritten in the abstract form

d

dt

(
w

z

)
= A

(
w

z

)
+BV ′

1 , (7.20)

where we can identify the operators A and B through their adjoints by taking the canon-
ical scalar product of (7.20) formally with smooth test functions and comparing with the
weak formulation [RAN21b]. The operator A is thus defined by

A :

D(A) ⊂ H1([0, 1],R2)→ H1([0, 1],R2)(
w

z

)
7−→

(
−Λ2

∂w
∂x

Λ1
∂z
∂x

)
, (7.21)

with D(A) = {(w, z) ∈ H1([0, 1],R2)| z(1) = 0,

w(0) = z(0) + q′22w(1) +

∫ 1

0
Nw(y)w(y) +Nz(y)z(y)dy}.
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Its adjoint A∗ is defined by

A∗ :

D(A∗) ⊂ H1([0, 1],R2)→ H1([0, 1],R2)(
w

z

)
7−→

(
Λ2

∂w
∂x + Λ2Nw(.)w(0)

−Λ1
∂z
∂x + Λ2Nz(.)w(0)

)
, (7.22)

withD(A∗) = {(w, z) ∈ H1([0, 1],R2)| w(1) = q′22w(0), z(0) =
Λ2
Λ1
w(0)}.

The operator B ∈ L(R, D(A∗)) and its adjoint B∗ ∈ L(D(A∗),R) are defined by

< BV ′
1 ,

(
w

z

)
>= Λ1z(1)V

′
1 , B∗

(
w

z

)
= Λ1z(1). (7.23)

Generalities on Fredholm integral operators
The stabilization of the PDE system (7.17)-(7.19) is done using an integral transform of

the Fredholm type. Define the following operator T by

T :

H1([0, 1],R2) −→ H1([0, 1],R2)(
u

v

)
7→

(
u

v

)
−
∫ 1
0 K(., y)

(
u(y)

v(y)

)
dy

, (7.24)

with K ∈ C0
pw(S,R2×2). The following lemma, adjusted from [CHO16, Proposition 2.6],

guarantees the invertibility of Fredholm integral transforms under several conditions.
Lemma 7.2.1: Invertibility of Fredholm integral operators [CHO16]

Consider two operatorsA,B, such thatD(A) ⊂ H1([0, 1],R2) and a Fredholm integral
operator T : H1([0, 1],R2)→ H1([0, 1],R2) as defined by (7.24). Assume
(a) ker(T ) ⊂ D(A),
(b) ker(T ) ⊂ ker(B),

(c) ∀z ∈ ker(T ), T Az = 0,
(d) ∀s ∈ C, ker(s−A) ∩ ker(B) = {0}.

Then, the operator T is invertible. Moreover, its inverse is a Fredholm integral operator
whose kernels inherit the same regularity properties.
Proof : The proof follows the steps of [CHO16, Lemma 2.2, Proposition 2.6]. Since the integral part of T is a
compact operator, the Fredholmalternative [Bre10] implies thatdimker(T ) <∞. Suppose that ker(T ) ̸= {0}.
Due to condition (a), for all z ∈ ker(T ) Az is well-defined, and condition (c) implies that ker(T ) is stable by
A, that is to say, for all z ∈ ker(T ), Az ∈ ker(T ). Since ker(T ) is finite-dimensional and not reduced to
{0}, the restriction A| ker(T ) of A to ker(T ) has at least one eigenvalue ν ∈ C. Let ζ be the corresponding
eigenfunction. Thus, ζ ∈ ker(ν−A) and ζ ∈ ker(B) by condition (b). This is in contradiction with condition (d).
Thus, ker(T ) = {0} and T is injective. Using the Fredholm alternative [Bre10], we obtain that T is invertible.
The fact that the inverse operator is a Fredholm integral operator whose kernels inherit the same regularity
properties comes from [CHO16, Section 2.4]. ■
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Remark 7.2.1 Note that the operator T is invertible if and only if its adjoint operator T ∗ is
invertible. It is given by

T ∗ :

H1([0, 1],R2)→ H1([0, 1],R2)(
u

v

)
7→

(
u

v

)
−
∫ 1
0 K̄

⊤(y, .)

(
u(y)

v(y)

)
dy

,

In some cases, the invertibility of the adjoint operator is easier to prove.
Spectral controllability assumption

Considering the four assumptions of Lemma 7.2.1, we note that the conditions (a)−(c)
only depend on the choice of the integral operator T . However, condition (d) corresponds
to a fundamental property of the system that does not depend on the operator. There-
fore, we make the following assumption:
Assumption 7.2.1 The operators A∗ defined in (7.22) and B∗ defined in (7.23) satisfy

∀s ∈ C, ker(s−A∗) ∩ ker(B∗) = {0}.

This assumption is a controllability condition that is similar to the one given in [CHO16].
Interestingly, it can be reformulated using a time-delay systems formalism. Denote ϕ(t) =
w(t, 0). Applying themethod of characteristics to the transport equations (7.17), we obtain
the integral delay equation

ϕ(t) = q′22ϕ(t− δ2) +
∫ δ2

0
Λ2Nw(Λ2ν)ϕ(t− ν)dν (7.25)

+ V ′
1(t− δ1) +

∫ δ1

0
Λ1Nz(1− Λ1ν)V

′
1(t− ν)dν.

Let us formally take the Laplace transform of (7.25), with zero initial condition. We have
F2(s)ϕ(s) = F1(s)V1(s), where the holomorphic function F2 and F1 are defined by

F2(s) = 1− q′22e−δ2s −
∫ δ2

0
Λ2Nw(Λ2ν)e

−νsdν,

F1(s) = e−δ1s +

∫ δ1

0
Λ1Nz(1− Λ1ν)e

−νsdν.

To ensure that F2(s), F1(s) cannot simultaneously be equal to zero, we are led to the
following spectral-like controllability assumption [Mou98, Pan76]:
Assumption 7.2.2 For all s ∈ C, rank[F2(s), F1(s)] = 1.
We can show the following

Lemma 7.2.2: Spectral Controllability

Under Assumption 7.2.2, Assumption 7.2.1 is satisfied.
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Proof : Consider s ∈ C and (w, z) ∈ ker(s − A∗) ∩ ker(B∗). Since (w, z) ∈ ker(B∗), we have z(1) = 0.
Since (w, z) ∈ ker(s−A∗), we have

sw(x) = Λ2w
′(x) + Λ2Nw(x)w(0), sz(x) = −Λ1z

′(x) + Λ2Nz(x)w(0),

with the boundary conditions w(1) = q′22w(0),Λ1z(0) = Λ2w(0). Solving these two equations, we obtain

w(x) = e
s

Λ2
x
w(0)− w(0)

∫ x

0
Nw(ν)e

s
Λ2

(x−ν)
dν,

z(x) = e
− s

Λ1
x
z(0) + z(0)

∫ x

0
Nz(ν)e

− s
Λ1

(x−ν)
dν.

Using z(1) = 0, w(1) = q′22w(0), and evaluating the above equations in x = 1, one gets
w(0)F2(s) = 0, z(0)F1(s) = 0.

Using Assumption 7.2.2, we cannot simultaneously have F2(s) = 0 and F1(s) = 0. It prevents pole-zero
cancellation from V1 to ϕ. Thus, we either havew(0) = 0 or z(0) = 0. Since (w, z) ∈ D(A∗), w(0) = z(0) = 0

and (w, z) = (0, 0). ■

This assumption can be verified using numerical methods for locating the zeros of
analytical functions [DL67], for instance, the software package ZEAL [KVBR+00]. More
insights are given in [RAN22b].

7.2.3 . Constructive design of a stabilizing control law

In this section, we design a full-state feedback controller for system (7.17)-(7.19) using
the aforementioned strategy.

Presentation of the target system
Following the backstepping method, we want to map the PDE system (7.17)-(7.19) to a

stable target system. Denote the target state as (υ, ψ), and define the integral operator
N of the form (7.24) with kernels N ·· ∈ C0

pw(S), such that

w(x) = υ(x)−
∫ 1

0
N++(x, y)υ(y) +N+−(x, y)ψ(y)dy, (7.26)

z(x) = ψ(x)−
∫ 1

0
N−+(x, y)υ(y) +N−−(x, y)ψ(y)dy.

The target state satisfies the following set of equations
∂

∂t
υ(t, x) + Λ2

∂

∂x
υ(t, x) = 0,

∂

∂t
ψ(t, x)− Λ1

∂

∂x
ψ(t, x) = 0, (7.27)

with the boundary conditions
υ(t, 0) = ψ(t, 0) + q′22υ(t, 1), ψ(t, 1) = 0. (7.28)

Denote now (υ0(·), ψ0(·))⊤ = N−1((w0(·), z0(·))⊤) ∈ H1([0, 1],R2) the initial conditions
associated to (7.27). They satisfy the compatibility equations (7.28).
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Theorem 7.2.1

For any initial conditions (υ0(·), ψ0(·)) ∈ H1([0, 1],R2), system (7.27)-(7.28) is well-
posed and exponentially converges to zero in the sense of the L2−norm.
Proof : The well-posedness of the target system (7.27)-(7.28) results from [BC16, Appendix A]. Due to the
propagation of the boundary condition,ψ converges to 0 in finite time. For t > 1

Λ1
, the first boundary condition

becomes υ(t, 0) = q′22υ(t, 1) = q′22υ(t−
1
Λ2
, 0). According to [BC16, HVL13], the system converges to 0 and is

exponentially stable since |q′22| < 1 by Assumption 7.1.1. ■

We now need to show that it is possible to map the system (7.17)-(7.19) to this target
systemusing a bounded invertible transform. Indeed, this would guarantee that both sys-
tems share the same asymptotic stability properties. Once again, the proof of invertibility
and existence of such transform will rely on an operator framework. Therefore, we first
reformulate the target system using an abstract formulation

d

dt

(
υ

ψ

)
= A0

(
υ

ψ

)
,

whereA0 satisfies (7.21), and is defined onD(A0) = {(υ, ψ) ∈ H1([0, 1],R2)| υ(0) = ψ(0)+

q′22υ(1), ψ(1) = 0}. Its adjoint A∗
0 is defined onD(A∗) ⊂ H1([0, 1],R2) by

A∗
0 :

D(A∗)→ H1([0, 1],R2)(
u

v

)
7−→

(
Λ2

∂u
∂x(.)

−Λ1
∂v
∂x(.)

)
.

Kernel equations
Following the backstepping methodology, we differentiate the expressions of (υ, ψ)

with respect to x and t and integrate them by parts. Plugging the resulting expressions
into the target system, we obtain the equations satisfied by the kernels of the Fredholm
integral transform N , for all (x, y) ∈ S ,

∂

∂x
N++(x, y) +

∂

∂y
N++(x, y) = 0, Λ2

∂

∂x
N+−(x, y)− Λ1

∂

∂y
N+−(x, y) = 0, (7.29)

Λ1
∂

∂x
N−+(x, y)− Λ2

∂

∂y
N−+(x, y) = 0,

∂

∂x
N−−(x, y) +

∂

∂y
N−−(x, y) = 0, (7.30)

with the boundary conditions
N++(x, 0) =

Λ1

Λ2
N+−(x, 0), N−−(x, 0) =

Λ2

Λ1
N−+(x, 0), (7.31)

N++(x, 1) = q′22N
++(x, 0), N−+(x, 1) = q′22N

−+(x, 0). (7.32)
Evaluating (7.26) in x = 0, one gets

Nw(y)−
∫ 1

0
Nw(ν)N

++(ν, y) +Nz(ν)N
−+(ν, y)dν (7.33)

= −N++(0, y) +N−+(0, y) + q′22N
++(1, y),
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Nz(y)−
∫ 1

0
Nw(ν)N

+−(ν, y) +Nz(ν)N
−−(ν, y)dν

= −N+−(0, y) +N−−(0, y) + q′22N
+−(1, y).

To ensure the well-posedness of the problem, we add the two following conditions
N+−(x, 1) = 0, N−−(x, 1) = 0. (7.34)

Unlike in other cases (see Appendix C), these boundary conditions do not correspond to
a degree of freedom. Setting them to zero is necessary to satisfy condition (b) of Lemma
7.2.1, and further guarantee the invertibility of N and its boundedness, as it appears in
Appendix B. We have the following theorem

Theorem 7.2.2: Well-posedness of the kernel equations

The set of equations (7.29)-(7.34) admits a unique solution in C0
pw(S,R2×2).

Proof : To avoid splitting this section, the extended proof is given in Appendix B.
■

7.2.4 . Invertibility of the Fredholm transform
We now show that the Fredholm integral transform N is boundedly invertible.
Theorem 7.2.3: Invertibility of the Fredholm operator N

Consider the Fredholm integral operatorN of the form (7.24) defined onH1([0, 1],R2),
with kernels defined on C0

pw(S) as the unique solution of (7.29)-(7.34). Then the opera-
tor N is boundedly invertible.

Proof : The adjoint operatorN ∗ associated toN , is also of the form (7.24). We have

N ∗(

(
υ(x)

ψ(x)

)
) =

(
υ(x)

ψ(x)

)
−
∫ 1

0
N̄(y, x)⊤

(
υ(y)

ψ(y)

)
dy.

Due to the regularity of the integral and of the kernels N ··, we have ker(N ∗) ⊂ H1([0, 1],R2). Taking any
z ∈ ker(N ∗), and evaluating it in x = 0, x = 1, we directly obtain conditions (a), (b) of Lemma 7.2.1. SinceN
maps the original system (7.17)-(7.19) to the target system (7.27)-(7.28), we have for all z ∈ ker(B∗), N ∗A∗z =

A∗
0N ∗z (see [CHO16] for instance). From (b), we therefore obtain condition (c). Condition (d) does not depend

on the operatorN . We can then conclude thatN ∗ is invertible. Following Remark 7.2.1, so isN .
The inverse operatorN−1 associated toN is of form (7.24), with kernels Ň defined on C0

pw(S,R2×2) as the
unique solution of Ň(x, y) = −N(x, y) +

∫ 1
0 N(x, ν)Ň(ν, y)dν. ■

7.2.5 . Stabilizing control law
Using the inverse transform, we define the full-state feedback controller V ′

1(t) by
V ′
1(t) = −

∫ 1

0
Ň−+(1, ν)w(ν, t) + Ň−−(1, ν)z(ν, t)dν.
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We can then compute the control law V (t) stabilizing the initial system
V (t) =

1

q11
VS(t)− ρ12v2(t, 0)− ρ11u1(t, 1), (7.35)

with the intermediate control input VS(t) introduced in (7.5) defined by
VS(t) =−

1

q′21

(∫ 1

0
x2Ň

−+(1, x2ν)α2(t, ν) + (1− x2)Ň−+(1, 1− (1− x2)ν)β2(t, ν)dν
)

−
∫ 1

0

(
L−+
1 (1, ν) + x1Ň

−−(1, x1(1− ν))
)
α1(t, ν)

+
(
L−−
1 (1, ν) + (1− x1)Ň−−(1, x1 + (1− x1)ν)

)
β1(t, ν)dν.

Since the two Volterra backstepping transforms L1,L2 are invertible, we can express thecontrol law defined above as a function of the original states (ui, vi). We can conclude
this section with the following theorem

Theorem 7.2.4: Exponential stability of the closed-loop system

The state-feedback control law V (t) defined by (7.35) exponentially stabilizes the hyper-
bolic system (5.1)-(7.2) in the sense of the L2−norm.
Proof : First, let us show that state-feedback control law V ′

1(t) defined above exponentially stabilizes the hy-perbolic system (7.17)-(7.19) in the sense of theL2−norm. Any initial condition of (7.17)-(7.19) inH1([0, 1],R2) is
mapped to an initial condition for (7.27)-(7.28) inH1([0, 1],R2). The target system (7.27)-(7.28) admits a unique
solution with adequate regularity. As justified earlier, it is exponentially stable in the sense of the L2−norm.
Due to the bounded invertibility of the Fredholm integral transform N (Theorem 7.2.3) in H1([0, 1],R2), the
intermediate system (7.17)-(7.19) admits a unique solution with desired regularity. With the control law V ′

1(t),the hyperbolic system (7.17)-(7.19) and the target system (7.27)-(7.28) share the same stability properties. Then,
let us show that it implies the exponential stability of (7.12)-(7.14). For all x ∈ [0, 1], the initial target states
rewrite α1(t, x) =

1
q′21

z(t, x1(1− x)), β1(t, x) = 1
q′21

z(t, x1 + (1− x1)x), and β2(t, x) = w(t, 1− (1− x2)x),
α2(t, x) = w(t, x2x).
Therefore, the convergence of (w, z) to zero at an exponential rate immediately implies the exponential sta-
bility of (αi, βi). Then, with the continuous control law VS(t) defined above, the hyperbolic system (5.1)-(7.2)
is equivalent to the target systems (7.12)-(7.14). Due to the bounded invertibility of the Volterra integral trans-
forms Li, the original states (ui, vi) share the same stability properties. ■

This proof can be easily adjusted to show that the well-posedness of the target system
(7.27)-(7.28) implies the well-posedness of the closed-loop system (5.1)-(7.2).

7.3 . Observer design

In this section, we design a state observer for the system (5.1)-(7.2), using themeasure-
ment y(t) = v2(0, t). First, we use two invertible Volterra integral transformsMi and a
change of variable to map the interconnected system (5.1)-(7.2) to a simpler target system
(ω, γ). We define an observer state (ω̂, γ̂) as a copy of the dynamics of this target sys-
tem plus output injection terms to be designed. The strategy we follow is similar to the
one presented in Section 7.2. It relies on the backsteppingmethodology, with a Fredholm-
type integral transformK, whose existence and invertibility are shown following the same
operator formalism.
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7.3.1 . Target system

Volterra transform and kernel equations
As before, we first use classic Volterra integral transforms to modify the in-domain

couplings. Define two integral transformsMi, i ∈ {1, 2} onH1([0, 1],R2) by{
u1(t, x) = a1(t, x) +

∫ 1
x M

++
1 (x, y)a1(t, y) +M+−

1 (x, y)b1(t, y)dy,

v1(t, x) = b1(t, x) +
∫ 1
x M

−+
1 (x, y)a1(t, y) +M−−

1 (x, y)b1(t, y)dy,{
u2(t, x) = a2(t, x) +

∫ x
0 M

++
2 (x, y)a2(t, y) +M+−

2 (x, y)b2(t, y)dy,

v2(t, x) = b2(t, x) +
∫ x
0 M

−+
2 (x, y)a2(t, y) +M−−

2 (x, y)b2(t, y)dy,

where the kernels M ··
1 (resp. M ··

2 ) are piecewise continuous bounded functions defined
on T + (resp. T −). They satisfy the same set of equations (7.8)-(7.9) as kernels Li (exceptthat the coupling terms are now σ±i ), with the boundary conditions

M+−
1 (x, x) = − σ+1 (x)

λ1 + µ1
,M−+

1 (x, x) =
σ−1 (x)

λ1 + µ1
,M+−

2 (x, x) =
σ+2 (x)

λ2 + µ2
,

M−+
2 (x, x) = − σ−2 (x)

µ2 + λ2
, M++

1 (0, y) = q11M
−+
1 (0, y), M−−

1 (0, y) =
1

q11
M+−

1 (0, y),

M++
2 (1, y) =

1

ρ22
M−+

2 (1, y), M−−
2 (1, y) = ρ22M

+−
2 (1, y).

These two sets of equations admit a unique piecewise continuous solution [VKC11]. Ap-
plying the above transforms to both subsystems, we obtain the target system

∂

∂t
ai(t, x) + λi

∂

∂x
ai(t, x) = Ha

i (x)a1(t, 1) + F ai (x)b2(t, 0) +Ka
i (x)V (t), (7.36)

∂

∂t
bi(t, x)− µi

∂

∂x
bi(t, x) = Hb

i (x)a1(t, 1) + F bi (x)b2(t, 0) +Kb
i (x)V (t),

with the boundary conditions
a1(t, 0) = q11b1(t, 0), a2(t, 0) = q22b2(t, 0) + q21a1(t, 1),

b1(t, 1) = ρ11a1(t, 1) + ρ12b2(t, 0) + V (t), b2(t, 1) = ρ22a2(t, 1). (7.37)
Denote (a0i (·), b0i (·))⊤ =M−1

i ((u0i (·), v0i (·))⊤) ∈ H1([0, 1],R2) the initial conditions associ-
ated to (7.36)-(7.37), satisfying the adequate compatibility equations (2.1.1). The in-domain
coupling terms F ai , F bi , Ha

i , H
b
i are defined by the set of equations

F ∗
1 (x) +

∫ 1

x
M ·+

1 (x, ν)F a1 (ν) +M ·−
1 (x, ν)F b1 (ν)dν = −µ1ρ12M ·−

1 (x, 1), (7.38)
F ∗
2 (x) +

∫ x

0
M ·+

2 (x, ν)F a2 (ν) +M ·−
2 (x, ν)F b2 (ν)dν = µ2M

·−
2 (x, 0)− λ2q22M ·+

2 (x, 0)

H∗
1 (x) +

∫ 1

x
M ·+

1 (x, ν)Ha
1 (ν) +M ·−

1 (x, ν)Hb
1(ν)dν = λ1M

·+
1 (x, 1)− µ1ρ11M ·−

1 (x, 1),

H∗
2 (x) +

∫ x

0
M ·+

2 (x, ν)Ha
2 (ν) +M ·−

2 (x, ν)Hb
2(ν)dν = −λ2q21M ·+

2 (x, 0),
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with · = + if ∗ = a, and · = − if ∗ = b. The coupling termsK are defined by(
Ka

1 (x)

Kb
1(x)

)
=M−1

1 (

(
−µ1M+−

1 (x, 1)

−µ1M−−
1 (x, 1)

)
),

(
Ka

2 (x)

Kb
2(x)

)
= 0. (7.39)

The Volterra integral equations (7.38)-(7.39) admit a unique solution in L2([0, 1],R4). Due
to the piecewise continuity of the kernelsM ·· and the regularizing property of the integral
operator,H∗

i , F
∗
i ,K

∗
1 are piecewise continuous functions.

Change of variables
Consider a new set of coordinates (ω(t, x), γ(t, x)) given by ω(t, x) = q21

(
q111[0,ξ1)(x)b1(t, 1−

x
ξ1
) + 1[ξ1,1](x)a1(t,

x−ξ1
1−ξ1 )

)
,

γ(t, x) = 1[0,ξ2)(x)b2(t,
x
ξ2
) + 1[ξ2,1](x)ρ22a2(t,

x−1
ξ2−1),

with ξi = λi
λi+µi

= 1 − xi. Note that the boundary value in γ(0, t) corresponds to y(t).
These new variables satisfy the following set of equations

∂
∂tω(t, x) + Λ1

∂
∂xω(t, x) = H1(x)ω(t, 1) + F1(x)γ(t, 0) +K1(x)V (t),

∂
∂tγ(t, x)− Λ2

∂
∂xγ(t, x) = H2(x)ω(t, 1) + F2(x)γ(t, 0),

(7.40)

where Λi =
µiλi
µi+λi

is defined in Section 7.2.1, and where the functions verify
H1(x) = q111[0,ξ1)(x)H

b
1(1−

x

ξ1
) + 1[ξ1,1](x)H

a
1 (
x− ξ1
1− ξ1

),

F1(x) = q21(q111[0,ξ1)(x)F
b
1 (1−

x

ξ1
) + 1[ξ1,1](x)F

a
1 (
x− ξ1
1− ξ1

)),

H2(x) =
1

q21
(1[0,ξ2)(x)H

b
2(
x

ξ2
) + 1[ξ2,1](x)ρ22H

a
2 (
x− 1

ξ2 − 1
)),

F2(x) = 1[0,ξ2)(x)F
b
2 (
x

ξ2
) + 1[ξ2,1](x)ρ22F

a
2 (
x− 1

ξ2 − 1
),

K1(x) = q21(1[0,ξ1)(x)q11K
b
1(1−

x

ξ1
) + 1[ξ1,1](x)K

a
1 (
x− ξ1
1− ξ1

)).

They satisfy the boundary conditions
ω(t, 0) = ρ11q11ω(t, 1) + q21ρ12q11γ(t, 0) + q21q11V (t),

γ(t, 1) = q22ρ22γ(t, 0) + ω(t, 1). (7.41)
7.3.2 . Observer and error state

Definition
In this subsection, we define an observer for the system (7.40)-(7.41), as a copy of

the original system with output injection terms (Luenberger-type observer). Note that
the measurement y(t) corresponds to γ(t, 0) = b2(t, 0) = v2(t, 0). The different variablechanges turned the measurement at the in-between boundary into a classic measure-
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ment at one end of the resulting system. The observer state (ω̂, γ̂) satisfies the following
set of equations
∂
∂t ω̂(t, x) + Λ1

∂
∂x ω̂(t, x) = H1(x)ω̂(t, 1) + F1(x)γ̂(t, 0) +G1(x)(γ̂(t, 0)− y(t)) +K1(x)V (t),

∂
∂t γ̂(t, x)− Λ2

∂
∂x γ̂(t, x) = H2(x)ω̂(t, 1) + F2(x)γ̂(t, 0) +G2(γ̂(t, 0)− y(t)),

(7.42)
with the boundary conditions

ω̂(t, 0) = ρ11q11ω̂(t, 1) + q21ρ12q11γ(t, 0) + q21q11V (t),

γ̂(t, 1) = q22ρ22γ(t, 0) + ω̂(t, 1). (7.43)
Define the error state (ω̃, γ̃) = (ω, γ)− (ω̂, γ̂) satisfying

∂
∂t ω̃(t, x) + Λ1

∂
∂x ω̃(t, x) = H1(x)ω̃(t, 1) + G̃1(x)γ̃(t, 0),

∂
∂t γ̃(t, x)− Λ2

∂
∂x γ̃(t, x) = H2(x)ω̃(t, 1) + G̃2(x)γ̃(t, 0),

(7.44)

where G̃i .
= Fi + Gi are two bounded piecewise continuous functions defined on [0, 1],

and the boundary conditions
ω̃(t, 0) = ρ11q11ω̃(t, 1), γ̃(t, 1) = ω̃(t, 1). (7.45)

We aim to determine the gains G̃i such that (7.44)-(7.45) is exponentially stable.
Operator framework

We rewrite system (7.44)-(7.45) in the abstract form
d

dt

(
ω̃

γ̃

)
= Ã

(
ω̃

γ̃

)
+ GC̃

(
ω̃

γ̃

)
,

where the operator Ã is defined by

Ã :

D(Ã) ⊂ H1([0, 1],R2)→ H1([0, 1],R2)(
ω̃

γ̃

)
7−→

(
−Λ1

∂ω̃
∂x +H1(.)ω̃(1)

Λ2
∂γ̃
∂x +H2(.)ω̃(1)

)
, (7.46)

with D(Ã) = {(ω̃, γ̃) ∈ H1([0, 1],R2)| ω̃(0) = ρ11q11ω̃(1), γ̃(1) = ω̃(1)}. The operator Ã is
well-posed and densely defined [BC16]. We can already draw a parallel with the definition
of the operator Ã in (7.46) and the adjoint operator A∗ defined in Section 7.2 by (7.22).
The trace operator C̃ and operator G are defined by

C̃ :

D(Ã) ⊂ H1([0, 1],R2)→ R(
ω̃

γ̃

)
7−→ γ̃(0)

, G :

R→ C0
pw([0, 1],R2)

x 7→

(
G̃1(.)× x
G̃2(.)× x

)
. (7.47)

141



Spectral observability condition
Similarly to what has been done in Section 7.2.2, we need to formulate an observability

assumption to guarantee the possibility of estimating the PDE states.
Assumption 7.3.1 The operators Ã and C̃ respectively defined in (7.46) and (7.47) satisfy for
any s ∈ C, ker(s− Ã) ∩ ker(C̃) = {0}.
This is analogous to the controllability Assumption 7.2.1. Rewriting equations (7.40) in the
time-delay framework, it can be similarly reformulated using the holomorphic functions

F̃1(s) = 1− ρ11q11e−δ1s −
∫ δ1

0
H1(Λ1ν)e

(ν−δ1)sdν,

F̃2(s) = e−δ2s + eδ2s
∫ δ2

0
H2(Λ2ν)e

−νsdν.

Using the variation of constant formula, and taking the Laplace transform in (7.46), we
obtain ω̃(1)F̃1(s) = ω̃(1)F̃2(s) = 0. We have
Assumption 7.3.2 spectral observability For all s ∈ C, rank[F̃1(s), F̃2(s)] = 1.
Similarly to what has been done before, Assumption 7.3.2 implies 7.3.1.

7.3.3 . Constructive design of the observer gains

In this section, we design the observer gains G̃1, G̃2 to stabilize the error system (7.44)-
(7.45). First, we use a Fredholm integral transform to map it to an exponentially stable
target system. We give the equations satisfied by the kernels of this transformation. As-
suming the transformation is well-defined, we prove its invertibility using the operator
framework. Finally, we show that the existence of solutions for some integral equations
implies the existence of the kernels defining the Fredholm integral transform.

Presentation of the target system
Consider the target system

∂

∂t
ζ̃(t, x) + Λ1

∂

∂x
ζ̃(t, x) = 0,

∂

∂t
η̃(t, x)− Λ2

∂

∂x
η̃(t, x) = 0, (7.48)

with the boundary conditions
ζ̃(t, 0) = ρ11q11ζ̃(t, 1), η̃(t, 1) = ζ̃(t, 1). (7.49)

Denote (ζ̃0, η̃0) ∈ H1([0, 1],R2) the initial conditions associated to (7.48) satisfying the
compatibility conditions (2.1.1) ((7.49) for t = 0). The well-posedness of the error system
(7.48)-(7.49) implies the one of the error system (7.42)-(7.43) and consequently of the ob-
server system (7.44)-(7.45). This target system (7.48)-(7.49) is exponentially stable in the
sense of theL2−norm, since |ρ11q11| < 1 by Assumption 7.1.3 [BC16]. Define now the Fred-
holm integral transform K of the form (7.24), such that

(
ζ̃

η̃

)
= K

(
ω̃

γ̃

)
. More precisely,
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we have {
ζ̃(t, x) = ω̃(t, x)−

∫ 1
0 K

++(x, ν)ω̃(t, ν) +K+−(x, ν)γ̃(t, ν)dν,

η̃(t, x) = γ̃(t, x)−
∫ 1
0 K

−+(x, ν)ω̃(t, ν) +K−−(x, ν)γ̃(t, ν)dν,
(7.50)

whereK ·· are four bounded piecewise continuous functions defined on S.
Kernel equations

Following the backstepping methodology, we show that the kernelsK ·· must satisfy
∂

∂x
K++(x, y) +

∂

∂y
K++(x, y) = 0,

∂

∂x
K+−(x, y)− Λ2

Λ1

∂

∂y
K+−(x, y) = 0, (7.51)

∂

∂x
K−+(x, y)− Λ1

Λ2

∂

∂y
K−+(x, y) = 0,

∂

∂x
K−−(x, y) +

∂

∂y
K−−(x, y) = 0,

where we have
H1(x) + Λ1(K

++(x, 1)− ρ11q11K++(x, 0))− Λ2K
+−(x, 1)

=

∫ 1

0
K++(x, ν)H1(ν) +K+−(x, ν)H2(ν)dν,

H2(x) + Λ1(K
−+(x, 1)− ρ11q11K−+(x, 0))− Λ2K

−−(x, 1)

=

∫ 1

0
K−+(x, ν)H1(ν) +K−−(x, ν)H2(ν)dν, (7.52)

and the boundary conditions
K++(0, y) = ρ11q11K

++(1, y), K+−(0, y) = ρ11q11K
+−(1, y),

K++(1, y) = K−+(1, y), K−−(1, y) = K+−(1, y). (7.53)
To these conditions, we add the two following boundary conditions,

K−+(0, y) = 0, K−−(0, y) = 0. (7.54)
The boundary conditions (7.54) are necessary to ensure that condition (b) of Lemma 7.2.1
is satisfied for the operator K. If we manage to show that (7.51)-(7.54) admit a solution,
we will be able to prove that (7.44)-(7.45) can bemapped to (7.48)-(7.49). Indeed, differen-
tiating (7.50) with respect to time and space, integrating by parts, and using the fact that
the state (ω̃, γ̃) verifies (7.44)-(7.45), we directly obtain the target system (7.48)-(7.49).

Well-posedness of kernel equations
Theorem 7.3.1: Well-posedness of the kernel equations

The set of equations (7.51)-(7.54) admits a unique solution in C0
pw(S,R2×2).

Proof : The proof is similar to the one of Theorem 7.2.3 given in Appendix B. Indeed, let us define the kernels
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Ñ ·· on S by
Ñ++(x, y) = K++(1− y, 1− x), Ñ+−(x, y) = Λ1

Λ2
K−+(1− y, 1− x),

Ñ−+(x, y) = Λ2
Λ1
K+−(1− y, 1− x), Ñ−−(x, y) = K−−(1− y, 1− x).

(7.55)

The kernels Ñ ·· satisfy the same set of PDEs (7.29)-(7.30) than kernelsN ·· (that define the invertible Fredholm
integral transformN (7.26)). Moreover, they satisfy the same boundary conditions (7.31), (7.32) and (7.34), the
only difference being the name of the coupling coefficient (q′22 or ρ11q11), that are both strictly less than 1 byAssumption 7.1.3. Finally, the kernels Ñ ·· satisfy similar integral equations

Ñw(y)−
∫ 1

0
Ñw(ν)Ñ++(ν, y) + Ñz(ν)Ñ

−+(ν, y)dν

= −Ñ++(0, y) + Ñ−+(0, y) + ρ11q11Ñ
++(1, y),

Ñz(y)−
∫ 1

0
Ñw(ν)Ñ+−(ν, y) + Ñz(ν)Ñ

−−(ν, y)dν

= −Ñ+−(0, y) + Ñ−−(0, y) + ρ11q11Ñ
+−(1, y),

with Ñw(y)
.
= 1

Λ1
H1(1−y) and Ñz(y)

.
= 1

Λ2
H2(1−y). Under the spectral observability Assumption 7.3.1, we

prove the well-posedness and the existence of kernels Ñ ·· on S , following the approach presented in Section
7.2.3. Since the change of variables (7.55) is invertible, we immediately state the well-posedness of (7.51)-(7.54).
Since we have (H1, H2) ∈ C0

pw([0, 1],R2), and due to the regularizing properties of the integral operator, the
kernel equations (7.51)-(7.54) admit a unique piecewise continuous solution on S. ■

Invertibility of the Fredholm transform
Similarly to what was done in Section 7.2.4, we have the following:
Theorem 7.3.2: Invertibility of integral operator K

The Fredholm integral transform K with kernels defined by (7.51)-(7.54) is invertible.
Proof : We show that this operator satisfies the conditions of Lemma 7.2.1. Since operatorK is of form (7.24)
with

K(x, y) =

(
K++(x, y) K+−(x, y)

K−+(x, y) K−−(x, y)

)
,

we can use Lemma 7.2.1 to show its invertibility. Condition (d) is given by Assumption 7.3.2. The boundary
conditions (7.53)-(7.54) imply that conditions (a) − (b) hold. Condition (c) is a direct consequence of (7.51)-
(7.52) and assumptions (a)− (b). ■

Definition of the observer gains
Following the backstepping procedure, we obtain the expressions of the observer

gains G̃i. Indeed, in order to map the original system (7.44)-(7.45) to the target sys-
tem (7.48)-(7.49), the observer gains must satisfy the integral equations

G̃1(x)−
∫ 1

0
K++(x, ν)G̃1(ν) +K+−(x, ν)G̃2(ν)dν = −Λ2K

+−(x, 0),

G̃2(x)−
∫ 1

0
K−+(x, ν)G̃1(ν) +K−−(x, ν)G̃2(ν)dν − Λ2K

−−(x, 0),

⇐⇒ K(

(
G̃1(x)

G̃2(x)

)
) =

(
−Λ2K

+−(x, 0)

−Λ2K
−−(x, 0)

)
. (7.56)
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SinceK is invertible, the observer gains G̃1 and G̃2 defined by (7.56) exist and are uniquelydefined as piecewise continuous functions on [0, 1]. They satisfy(
G̃1(x)

G̃2(x)

)
= K−1

(
−Λ2K

+−(x, 0)

−Λ2K
−−(x, 0)

)
, ∀ x ∈ [0, 1].

7.3.4 . Convergence of the observer state

We can now show the convergence of the observer state (ω̂, γ̂) to the real state (ω, γ).
First, we have the following:

Lemma 7.3.1: Exponential stability of the error system

Any solution (ω̃, γ̃) of (7.44)-(7.45) converges to zero in the sense of the L2-norm.

Proof : System (7.48)-(7.49) is exponentially stable in the sense of the L2−norm. Since the backstepping
transformK is bounded and invertible by Theorem 7.3.2, system (7.44)-(7.45) shares equivalent stability prop-
erties. ■

Thus, the error system (7.44)-(7.45) is exponentially stable. The observer state (7.42)-
(7.43) defined with gains Gi = G̃i − Fi converges towards the initial state (ω, γ). We then
define observer states for (ai, bi) by

â1(t, x) =
1

q21
ω̂(t, ξ1 + (1− ξ1)x), â2(t, x) =

1

ρ22
γ̂(t, 1− (1− ξ2)x),

b̂1(t, x) =
1

q21q11
ω̂(t, ξ1(1− x)), b̂2(t, x) = γ̂(t, ξ2x).

We have the following theorem:
Theorem 7.3.3: Convergence of the estimates

The state estimates defined by
(
ûi

v̂i

)
=Mi

(
âi

b̂i

)
converge exponentially towards the

original states (ui, vi) in the sense of the L2−norm.

Proof : It is a direct consequence of the properties of the Volterra integral transformsMi. ■

7.4 . Output-Feedback control law

We can now combine the state observer designed in Section 7.3 with the full state
feedback control law V (t) designed in Section 7.2.5, to obtain an output feedback con-
troller. We can state the main theorem of this chapter
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Theorem 7.4.1: Stabilizing output-feedback controller

The output-feedback control law V̂ (û1(.), û2(.), v̂1(.), v̂2(.)) defined by
V̂ (t) =

1

q11
V̂S(t)− ρ12y(t)− ρ11û1(t, 1), (7.57)

with V̂S(t) = − 1

q12

∫ 1

0

(
x2Ň

−+(1, x2ν)

(1− x2)Ň−−(1, 1− (1− x2)ν)

)⊤

L−1
2

(
û2(t, ν)

v̂2(t, ν)

)
dν

+

∫ 1

0

(
L−+
1 (1, ν)− x1Ň−+(1, x1(1− ν))

L−−
1 (1, ν)− (1− x1)Ň−+(1, x1 + (1− x1)ν)

)⊤

L−1
1

(
û1(t, ν)

v̂1(t, ν)

)
dν

exponentially stabilizes system (5.1)-(7.2) in the sense of the L2−norm.

Proof : Similarly to what has been done in [LADMA18], we define (ûi, v̂i) = (ûi − ui + ui, v̂i − vi + vi) =

(−ũi + ui,−ṽi + vi). By linearity of the integral operators, we obtain
V̂ (t) = V (t) + Ṽ (t), (7.58)

where Ṽ (t) = − 1
q11

ṼS(t)+ρ11ũ1(t, 1), is the difference between the output feedback law and the previously
designed state feedback law. By Lemma 7.3.1, and since the integral control operator is bounded, we have
|ṼS(t)| −→

t→∞
0 and ∥ũ1(t)∥L2 −→

t→∞
0 as the error states converge to zero. Thus, the term Ṽ (t) can be seen

as a disturbance that converges to zero. Using Theorem 7.2.4, and the input-to-state stability of the system (as
it is done in [ADM20, LADMA18] for two equations), we can conclude to the exponential stability of the system.
Indeed, the closed-loop system would rewrite as a neutral system subject to a disturbance that goes to zero
[ADM19]. Applying the variations of constants formula yields the expected result. ■

7.5 . Simulation results

We conclude this chapter with some simulation results to illustrate the relevance of
the proposed output-feedback controller. First, the parameters are chosen such that the
interconnected systems are highly unstable in open-loop, and Assumptions 7.1.1-7.1.3 are
satisfied. Their numerical values are given in Table 7.1.

Param. Value Param. Value Param. Value Param. Value
λ1 1.5 λ2 1.2 q11 1 ρ11 0.3
µ1 1.3 µ2 1.8 q21 0.6 ρ12 0.8
σ+
1 -0.2 σ+

2 -0.3 q22 0.9 ρ22 0.9
σ−
1 0.4 σ−

2 0.7
Table 7.1 – Parameters used for simulation

The initial conditions of the states are affine functions satisfying the compatibility condi-
tions. The observer values are initialized to 0. As illustrated in Figure 7.6, the L2−norm of
the open-loop system diverges.
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Figure 7.4 – Evolution of control effort V(t) Figure 7.5 – Evolution of u1(t, x)

Figure 7.6 – Evolution of the L2−norm of state and error

Beforehand, the kernel of the invertible Volterra transforms Li,Mi and Fredholm
transforms N ,K (and their inverse) are computed using the successive approximation
technique [ADM16], with a precision ϵ = 10−10, on a space mesh with nx = 101 points. It
takes about 450s to converge, which could not be achieved if Assumption 7.2.2 was unsat-
isfied. As represented in Figure 7.7, they show discontinuities along some specific char-
acteristic lines given in the proof of Theorem 7.2.3. Then, the functionsH∗

i , F
∗
i ,K

∗
i , Gi arecomputed using the same method. The integral terms are approximated using a trape-

zoidal method. As illustrated in Figure 7.7b, they are continuous on [0, 1].
Next, we can simulate the evolution of the system (ui, vi)i∈{1,2} on Matlab using the

classic finite volumemethod based on a Godunov scheme [LeV02], on a 30s timescale. As
illustrated in Figure 7.6, the parameters are chosen such that the whole interconnected
system remains unstable in open-loop.
In the presence of the control law (7.57) represented in Figure 7.4, the system (u, v) be-
comes exponentially stable. The evolution of component u1(t, x) is given in Figure 7.5. Asillustrated in Figure 7.6, its L2−norm converges to zero as expected. The control input
represented on the right converges to zero. In figure 7.6 (dotted line), we also represent
the performance of our observer design: the L2−norm of the error state (ũ, ṽ) converges
to zero, such that the estimation converges towards the actual value as expected.
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(a) Kernels N ·· on S (b) Functions F,H
Figure 7.7 – Illustration of kernel computations

Conclusion

This chapter presented a novel methodology for stabilizing a chain of two intercon-
nected hyperbolic PDE subsystems. The actuator and measurement are located at the
in-between boundary. The proposed approach involved designing a full-state feedback
controller using classic Volterra transforms and a change of variables to rewrite the chain
as a scalar hyperbolic system. We then followed the backstepping approach to map this
PDE system to a simple (exponentially stable) target system. However, we encountered
a challenge in the configuration considered herein as it required a Fredholm transform,
which is not always invertible, unlike the commonly used Volterra transforms. To address
this challenge, we demonstrated the invertibility of the Fredholm transform using an op-
erator framework inspired by the work of [CHO16]. We also proved the well-posedness of
the kernels defining the Fredholm transform using similar ideas. Finally, we applied a sim-
ilar approach to design a state observer, which resulted in an output-feedback controller
that was tested using numerical simulations.

Next, in Chapter 8, we show how this strategy can be adapted for the in-domain sta-
bilization of a clamped string. Finally, as presented in the perspectives ending Part III, the
proposed approach paves the way for future contributions to networks with actuation
inside the graph structure. We believe it could be combined with results from Part II to
tackle a wider diversity of physical systems with an arbitrary number of PDEs or ODEs. It
is also a milestone toward the stabilization of under-actuated systems.
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8 - Application to the stabilizationof a clamped string

In this chapter, we apply the control strategy presented in Chapter 7 to the case of
a clamped string with actuation inside the domain. Using the Riemann invariants of the
energy states, we reformulate it as a chain of two coupled hyperbolic subsystems with
actuation at the in-between boundary. The resulting system differs from (5.1)-(7.2) since
the control input appears at the in-betweenboundary of both subsystems. However, after
applying successive transforms, it is shown to be equivalent to stabilizing a neutral-type
delay-differential equation. We can therefore use (7.17)-(7.19) as a comparison system and
derive a suitable controller from the methodology presented in Chapter 7.

Chapitre 8: Application au contrôle au milieu d’une corde fixée en une
extrémité. Dans ce chapitre, nous adaptons la stratégie de commande présentée au
chapitre 7 au cas d’une corde fixée en un point avec actionnement à l’intérieur du do-
maine. Ce problème peut être reformulé comme la stabilisation d’une chaîne de deux
sous-systèmes hyperboliques couplés avec actionnement à la frontière au milieu. Le sys-
tème résultant diffère de (5.1)-(7.2) en ce que la loi de commande apparaît à la frontière in-
termédiaire entre les deux sous-systèmes. Cependant, après application de transforma-
tions successives, onmontre que la stabilisation de ce système revient à celle d’une équa-
tion différentielle à retard de type neutre. Nous pouvons donc utiliser (7.17)-(7.19) comme
système de comparaison et déduire un contrôleur approprié à partir de la méthodologie
présentée au chapitre précédent.
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with actuation inside the domain” (2023). 22nd IFAC World Congress.

149



8.1 . System under consideration

8.1.1 . Vibrating string model
Consider a vibrating string of length ℓ = 1, clamped at one end (x = 0) and free at the

other (x = 1). We assume that the actuator imparts a compressive stress in a pointwise
location inside the domain x0 ∈ (0, 1). It is shown schematically in Figure 8.1.
Denote w(t, x) the lateral displacement of the string from a steady-state reference posi-
tion. The space and time variables are evolving in [0,+∞)×[0, 1]. Its dynamics are derived
from Hooke’s law.

Figure 8.1 – Schematic representation of system (8.1)-(8.3)

The string parameters are ρ themass density, c characterizing some in-domain damp-
ing, and E the Young’s modulus. We only consider the case where the transport delays
on both sides of the actuator are equal, corresponding to actuation in the middle of the
beam x0 = 1

2 , but still, present the more general equations. The displacement w(t, x)
satisfies the following PDE

∂2

∂t2
w(t, x) =

E

ρ

∂2

∂x2
(w(t, x))− c ∂

∂t
w(t, x). (8.1)

The first end of the string is clamped, while the opposite end is free. The boundary con-
ditions therefore read

∂w

∂t
|x=0(t) = 0, E

∂w

∂x
|x=1(t) = 0. (8.2)

Two additional constraints are derived from the continuity of speed x = x0, and a discon-tinuity in force due to the presence of the control input
∂w

∂t
|x=x−0 (t) =

∂w

∂t
|x=x+0 (t),

∂w

∂x
|x−0 (t) =

V (t)

E
+
∂w

∂x
|x+0 (t). (8.3)

The initial position and velocity of the string are given by (w(x, 0) = w0(x), wt(x, 0) =

w1(x)) ∈ H1([0, 1],R) ×H1([0, 1],R) and satisfy adequate compatibility conditions (2.1.1)
((8.2)-(8.3) for t = 0).
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8.1.2 . Control objective

Define the strain X1(t, x) = ∂w
∂x (t, x) and momentum X2(t, x) = ρ(x)∂w∂t (t, x) of thestring. The control objective reads as follows:

Objective 8.1.1: Exponential stabilization of the energy

Design an output-feedback control law V (t) such that there exist C, ν > 0, ∀t > 0, for
all initial conditions (X1)0(x) = w′

0(x) and (X2)0(x) = ρ(x)w1(x), we have
∥(X1(t), X2(t))∥L2 ≤ Ce−νt∥((X1)0, (X2)0)∥L2 . (8.4)

In the case c ≥ 0 under consideration, the open-loop system is naturally exponentially
stable. However, we can use the control input V (t) to fasten the convergence of the string
to its reference position. In a general wave equation stemming from the linearization of
an unstable system (c < 0), the control input can be used for stabilization purposes.

The strategy reads as follows
1. We use a first change of variables to rewrite the energy states (X1, X2) in Riemanncoordinates. The new states (ξ+, ξ−) satisfy transport equations with in-domain
couplings. The ones on the diagonal are removed using an exponential change of
variables. The new states are denoted (ξ̄+, ξ̄−) (Section 8.1.3).

2. We use two classic Volterra integral transforms to map (ξ̄+, ξ̄−) to a simpler tar-
get system (γ+, γ−). The in-domain couplings have been moved to the actuated
boundary x = x0 (Section 8.2.1). The interconnected system differs from (5.1)-(7.2)
since the control input appears at the in-between boundary of both subsystems.

3. Using themethod of characteristics, we derive the integral delay equations satisfied
by the boundary states (Section 8.2.2). We show their stabilization is closely related
to the one of a comparison system of the form (7.17)-(7.19). We can apply the stability
results from Chapter 7 under a specific controllability condition. We determine the
stabilizing feedback law (Section 8.2.3).
8.1.3 . Reformulation as interconnected hyperbolic systems

From now on, we decompose the space domain into two intervals I1 .
= [0, x0) and

I2
.
= [x0, 1]. The restriction of the displacement w on I1 (resp. I2) is denoted with

subscript ·1 (resp. ·2). We first rewrite system (8.1) in Riemann coordinates. Denote
λ =

√
E
ρ , η =

√
Eρ, and the invertible matrix Q1 = 1√

2
(

(
1 1

η

−η 1

)
). The Riemann vari-

ables are defined by

∀(t, x) ∈ [0,+∞)× [0, 1],

(
ξ+(t, x)

ξ−(t, x)

)
= Q−1

1

(
X1(t, x)

X2(t, x)

)
.

The exponential stability of the state (X1, X2) is equivalent to the one of (ξ+, ξ−). Each
subsystem i ∈ {1, 2} satisfies

∂

∂t
ξ+i (t, x) + λ

∂

∂x
ξ+i (t, x) = σ++ξ+i (t, x) + σ+−ξ−i (t, x), (8.5)
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∂

∂t
ξ−i (t, x)− λ

∂

∂x
ξ−i (t, x) = σ−+ξ+i (t, x) + σ−−ξ−i (t, x), (8.6)

with boundary conditions
ξ+1 (t, 0) = η−1ξ−1 (t, 0), ξ−2 (t, 1) = −ηξ

+
2 (t, 1),

ξ−1 (t, x0) =
1√
2λ
V (t) + ξ−2 (t, x0), ξ

+
2 (t, x0) = ξ+1 (t, x0)−

1√
2E

V (t). (8.7)
The in-domain couplings σ·· are identical for both subsystems, and given by

σ++ = − c
2
, σ+− =

c

2η
, σ−+ =

ηc

2
, σ−− = − c

2
.

The interconnected system is schematically represented in Figure 8.2.

Figure 8.2 – Schematic representation of system (8.5)-(8.7)

The initial conditions associated to the interconnected system (8.5)-(8.7) are H1 func-
tions. With the appropriate compatibility conditions (2.1.1), the open-loop system is well-
posed [BC16].

To rewrite the system as a time-delay system, we first use an exponential change of
variables [HVDMK15] to remove the in-domain couplings σ±±, as explained in Section 2.1.1.
Define I0(x) = cx

2λ , I1(x) =
1−x
2

c
λ , and the new sets of variables ξ̄1(t, x) and ξ̄2(t, x) as(

ξ̄+1

ξ̄−1

)
=

(
eI0(x) 0

0 e−I0(x)

)(
ξ+1

ξ−1

)
,

(
ξ̄+2

ξ̄−2

)
=

(
e−I1(x) 0

0 eI1(x)

)(
ξ+2

ξ−2

)
. (8.8)

By applying this change of variables to system (8.5)-(8.7), the new states satisfy
∂
∂t ξ̄

+
i (t, x) + λ ∂

∂x ξ̄
+
i (t, x) = σ̄+i (x)ξ̄

−
i (t, x),

∂
∂t ξ̄

−
i (t, x)− λ

∂
∂x ξ̄

−
i (t, x) = σ̄−i (x)ξ̄

−
i (t, x),

(8.9)

and boundary conditions
ξ̄+1 (t, 0) = η−1ξ̄−1 (t, 0), ξ̄

−
2 (t, 1) = −ηξ̄

+
2 (t, 1),

ξ̄−1 (t, x0) = −αU
+(t) + q−ξ̄−2 (t, x0), ξ̄

+
2 (t, x0) = q+ξ̄+1 (t, x0) + U+(t), (8.10)
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with U+(t) = −1/(
√
2E)e−I1(x0)V (t), q+ = e−I0(1) = q− and α =

√
Eρ = η. The coupling

terms are now space-dependent and rewrite
∀x ∈ I1, σ̄+1 (x) = e2I0(x)σ+−, σ̄−1 (x) = e−2I0(x)σ−+,

∀x ∈ I2, σ̄+2 (x) = e−2I1(x)σ+−, σ̄−2 (x) = e2I1(x)σ−+.

This system is schematically illustrated in Figure 8.3. Note that, contrary to (5.1)-(7.2), the
control input simultaneously appears in two boundary conditions.

Figure 8.3 – Schematic representation of system (8.9)-(8.10)

8.2 . Controller design

To design the control input, we aim to rewrite the interconnected system as a time-
delay system, whose stability is equivalent to the one of a comparison system of form (7.17)-
(7.19). We can then apply the strategy presented in Chapter 7. To do so, we first use an
invertible integral transform on each subsystem to move the in-domain couplings at the
actuated boundary, and use the method of characteristics.

8.2.1 . Application of the backstepping methodology

First Volterra integral transforms
Inspired by the backstepping approach [VKC11], we define the two following Volterra

integral operators Ki : H1(Ii,R2) −→ H1(Ii,R2), i ∈ {1, 2}, such that for all t > 0,

∀x ∈ I1,

(
ξ̄+1 (t, x)

ξ̄−1 (t, x)

)
=

(
ξ̄+1 (t, x)

ξ̄−1 (t, x)

)
−
∫ x

0

(
K++

1 K+−
1

K−+
1 K−−

1

)
(x, y)

(
ξ̄+1 (t, x)

ξ̄−1 (t, x)

)
(y)dy, (8.11)

∀x ∈ I1,

(
ξ̄+2 (t, x)

ξ̄−2 (t, x)

)
=

(
ξ̄+2 (t, x)

ξ̄−2 (t, x)

)
−
∫ 1

x

(
K++

2 K+−
2

K−+
2 K−−

2

)
(x, y)

(
ξ̄+2 (t, x)

ξ̄−2 (t, x)

)
(y)dy, (8.12)

where K ·
1 (resp. K ·

2) are bounded piecewise continuous functions defined on the lower
part of the unit square T − (resp. on the upper part T +). We then introduce the target
states

(
γ+i
γ−i

)
= Ki(

(
ξ̄+i
ξ̄−i

)
), i ∈ {1, 2}.
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Kernels equations
The kernels satisfy the following set of equations
λ
∂

∂x
K++
i + λ

∂

∂y
K++
i = −σ̄−i (y)K

+−
i , λ

∂

∂x
K+−
i − λ ∂

∂y
K+−
i = −σ̄+i (y)K

++
i ,

λ
∂

∂x
K−+
i − λ ∂

∂y
K−+
i = σ̄−i (y)K

−−
i , λ

∂

∂x
K−−
i + λ

∂

∂y
K−−
i = σ̄+i (y)K

−+
i ,

with boundary conditions
K+−

1 (x, x) =
σ̄+1 (x)

2λ
, K−+

1 (x, x) = − σ̄
−
1 (x)

2λ
, (8.13)

K++
1 (x, 0) = ηK+−

1 (x, 0), K−−
1 (x, 0) = η−1K−+

1 (x, 0), (8.14)
K+−

2 (x, x) = − σ̄
+
2 (x)

2λ
, K−+

2 (x, x) =
σ̄−2 (x)

2λ
, (8.15)

K++
2 (x, 1) = −ηK+−

2 (x, 1), K−−
2 (x, 1) = −η−1K−+

2 (x, 1). (8.16)
The two sets of equations admit a unique continuous solution on their definition domain
[CVKB13, DMBAHK18]. TransformsKi, for i ∈ {1, 2}, are Volterra integral transforms. They
are invertible [Yos60], and the inverse operators Li .= K−1

i have the same form.
Equivalent target systems

The two Volterra transforms (8.11)-(8.12) map system (8.9)-(8.10) to
∂

∂t
γ+i (t, x) + λ

∂

∂x
γ+i (t, x) = 0,

∂

∂t
γ−i (t, x)− λ

∂

∂x
γ−i (t, x) = 0, (8.17)

with the boundary conditions
γ+1 (t, 0) = η−1γ−1 (t, 0), γ

−
1 (t, x0) = q−γ−2 (t, x0)− αU

+(t) + I−(t), (8.18)
γ−2 (t, 1) = −ηγ

+
2 (t, 1), γ

+
2 (t, x0) = q+γ+1 (t, x0) + U+(t) + I+(t), (8.19)

where I+(t), I−(t) are defined on [0,+∞) using the inverse kernels:(
I+(t)

I−(t)

)
=

∫ x0

0

(
−q+L++

1 −q+L+−
1

L−+
1 L−−

1

)
(x0, y)

(
γ+1 (y)

γ−1 (y)

)
dy

+

∫ 1

x0

(
L++
2 L+−

2

−q−L−+
2 −q−L−−

2

)
(x0, y)

(
γ+2 (y)

γ−2 (y)

)
dy.

The initial conditions (γ+i,0, γ
−
i,0) ∈ H1(Ii,R2) are obtained from the Volterra trans-

forms of the initial conditions (ξ̄+i,0, ξ̄−i,0). As illustrated in Figure 8.4, the in-domain coupling
terms have been replaced by integral terms at the actuated boundary x = x0.
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Figure 8.4 – Schematic representation of system (8.17)-(8.19)

8.2.2 . Reformulation as a time delay system

We now reformulate the hyperbolic system as a time-delay system. Introduce{
y(t) = γ+2 (t, x0),

z(t) = γ−1 (t, x0) + αγ+2 (t, x0).
(8.20)

The function z has been defined to verify a time-delay equation that does not directly
depend on the control input u+. Define ϕ(x) = x

λ on I1 and ψ(x) = x−x0
λ on I2, and

tF = 2x0λ = 1
λ and τ = x0

λ = tF
2 . Using the method of characteristics, the solution of (8.17)

is given by

γ+1 (t, x) =

{
γ+1,0(x− λt), if t ≤ x

λ ,

γ+1 (t− x
λ , 0), else, , γ+2 (t, x) =

{
γ+2,0(x− λt), if t ≤ x−x0

λ ,

γ+2 (t−
x−x0
λ , x0), else,

γ−1 (t, x) =

{
γ−1,0(x+ λt), if t ≤ x0−x

λ ,

γ−1 (t− (x0λ −
x
λ), x0), else, , γ−2 (t, x) =

{
γ−2,0(x+ λt), if t ≤ 1−x

λ ,

γ−2 (t− (1−xλ ), 1), else.
From there, using the boundary conditions (8.18)-(8.19), we have for t > tF ,

γ+1 (t, x) = η−1(z − αy)(t− x

λ
− x0

λ
), γ−2 (t, x) = −ηy(t+

x

λ
− 3x0

2λ
).

We can also rewrite the integral terms appearing in (8.18)-(8.19) in terms of delayed values
of (y, z), to finally derive the equations satisfied by functions y, z. For all t > tF , using theboundary condition (8.19), we have
y(t) = U+(t) + q+η−1(z − αy)(t− 1

λ
) (8.21)

− q+
∫ x0

0
η−1L++

1 (x0, ν)(z − αy)(t−
ν

λ
− x0

λ
) + L+−

1 (x0, ν)(z − αy)(t+
ν

λ
− x0

λ
)dν

+

∫ 1

x0

L++
2 (x0, ν)y(t−

ν − x0
λ

)− ηL+−
2 (x0, ν)y(t+

ν − x0
λ

− 1

λ
)dν,

.
= U+(t) + F(y, z)(t). (8.22)
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Similarly, from (8.18), we obtain
z(t) =

αq+

η
(z − αy)(t− 1

λ
)− ηq−y(t− 1

λ
)

+

∫ x0

0
η−1[L−+

1 (x0, ν)− αq+L++
1 (x0, ν)](z − αy)(t−

ν

λ
− x0

λ
)

+ [L−−
1 (x0, ν)− αq+L+−

1 (x0, ν)](z − αy)(t+
ν

λ
− x0

λ
)dν

+

∫ 1

x0

[αL++
2 (x0, ν)− q−L−+

2 (x0, ν)]y(t−
ν − x0
λ

)

− η[αL+−
2 (x0, ν)− q−L−−

2 (x0, ν)]y(t+
ν − x0
λ

− 1

λ
)dν. (8.23)

Though these expressions are defined for t > tF for sake of simplicity, we have the fol-
lowing

Lemma 8.2.1: Well-posedness of (y,z)

Consider that system (8.17)-(8.19) is in open loop for t ≤ tF . For t ≤ tF , the terms
(y(t), z(t)) defined by (8.20) can be expressed as a function of (γ+i,0, γ−i,0)i∈{1,2}, the ini-tial conditions of (8.17)-(8.19). Thus, (y[t](.), z[t](.)) ∈ DtF , ∀t ≥ 0.

Proof : For any admissible control input U+(t), system (8.17)-(8.19) is well-posed and admits a unique solu-
tion inC([0,+∞), H1([0, 1],R)2). Due to definition (8.20), for any t ≥ tF , (y, z) can be expressed as boundary
states and the partial trajectories belong toDtF .Using technical computations, we can express (y, z)on [0, τ ] as combinations of the initial values (γ+i,0, γ−i,0)i∈{1,2}.To give more insights, let us define y(t), t ∈ [0, tF ]:

y(t) =γ+2 (t, x0), by defnition,
= q+γ+1 (t, x0)− q+

∫ x0

0
L++
1 (x0, y)γ

+
1 (y) + L+−

1 (x0, y)γ
−
1 (y)dy

+

∫ ℓ

x0

L++
2 (x0, y)γ

+
2 (y) + L+−

2 (x0, y)γ
−
2 (y)dy, using (8.18),

= q+
[
1[0,τ ](t)γ

+
1,0(x0 − λt) +

1

η
1[τ,tF ](t)γ

−
1,0(λ(t− τ))

]
+ I+(t).

We then decompose similarly the different terms in I+(t), using the method of characteristics on small time
intervals until reaching the initial conditions. Since we can go back in time from τ each time, we can mechani-
cally express all the terms, despite the apparition of intricated integral terms.
For instance, the first term in I+(t) rewrites, ∀y ∈ [0, x0], ∀t ∈ [0, tF ],

γ+1 (t, y) = 1[0, y
λ
](t)γ

+
1,0(y − λt) + 1[ y

λ
, y
λ
+τ ](t)

1

η
γ−1,0(λt) + 1[ y

λ
+τ,tF ](t)

1

η

(
q−γ−2,0(1 + y − λt)

+

∫ x0

0
L−−
1 (x0, ν)γ

−
1,0(ν − y − x0 + λt)dν − q−

∫ 1

x0

L−+
2 (x0, ν)γ

+
2,0(ν + y + x0 − λt)dν

)
+

1

η

∫ x0

0
L−+
1 (x0, ν)

(
(1

[ y
λ
+τ, y+ν

λ
+τ ]

(t)γ+1,0(ν − λt+ y + x0) + 1
[ y+ν

λ
+τ,tF ]

(t)
1

η
γ−1,0(λt− y − x0 − ν)

)
dν

−
q−

η

∫ 1

x0

L−−
2 (x0, ν)

(
1
[ y
λ
+τ, y−ν

λ
+3τ ]

(t)γ−2,0(ν + λt+ y + x0)− η1
[ y−ν

λ
+3τ,tF ]

(t)γ+2,0(2− λt+ y + x0 − ν)

)
dν.

Alternatively, we could prove following [Aur18, Lemma 5.1.1] that (γ+2 (., x0), γ
−
1 (., x0)) is the solution of a

Volterra integral equation of the second kind, which admits a unique solution inH1. ■
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By assuming we have access to past values of the functions (y, z), we can define for all
t > tF the following new control input V (t) = U+(t) + F(z, y)(t). From now on, if t ≤ tF ,we choose U+(t) = 0. After several changes of variables in the integral terms, the above
expression (8.23) rewrites

z(t) =a0z(t− tF ) + a1V (t− tF ) +
∫ tF

0
Nz(s)z(t− s) +NV (s)V (t− s)ds, (8.24)

with a0 = αq+

η = q+, a1 = −(α2q+

η + ηq−) = −2ηq+ and
Nz(s) =1[0,τ ](s)λ

(
L−−
1 (x0, λ(τ − s))− αq+L+−

1 (x0, λ(τ − s))
)

+ 1[τ,tF ](s)
λ

η

(
L−+
1 (x0, λ(s− τ))− αq+L++

1 (x0, λ(s− τ))
)
, (8.25)

NV (s) =− αNz(s) + 1[0,τ ](s)λ
(
αL++

2 (x0, λs+ x0)− q−L−+
2 (x0, λs+ x0)

)
− 1[τ,tF ](s)ηλ

(
q−L−−

2 (x0, 1− λs+ x0)− αL+−
2 (x0, 1− λs+ x0)

)
. (8.26)

Equation (8.24) corresponds to an integral delay equation with pointwise and distributed
actuation. To fasten the stabilization and avoid robustness issues, we want to cancel a
part of the reflection term a0z(t− tF ) that appears in equation (8.24). More precisely, for
ā0 ∈ (0, a0), define V̄ (t) = V (t) + ā0

a1
z(t). It rewrites

z(t) =(a0 − ā0)z(t− tF ) + a1V̄ (t− tF ) +
∫ tF

0
N̄z(s)z(t− s) +NV (s)V̄ (t− s)ds, (8.27)

with N̄z(s) = Nz(s) − ā0
a1
NV (s). In what follows, we denote ã0 = a0 − ā0. We have the

following result
Lemma 8.2.2: Relation between two norms

Consider that there exists a control input U+(t), such that (y, z) exponentially converge
to zero in the sense of theDtF -norm. Then the states (γ+i , γ−i )i∈{1,2} exponentially con-verge to zero in the sense of the spatial L2−norm.

Proof : Assume that the functions (y, z) exponentially converge to zero in the sense of theDtF -norm. Then
there exists C1, ν1 > 0, for all t > tF ,

∥(y[t], z[t])∥2DtF
=

∫ tF

0
y(t− θ)2 + z(t− θ)2dθ ≤ C1e

−ν1t∥(y[tF ], z[tF ])∥2DtF
.

Let us show that (γ+, γ−) exponentially converges to zero in the sense of the spatial L2-norm. By definition,
we have ∥(γ+(t, .), γ−(t, .))∥2

L2 =
∫ x0
0 γ+1 (t, y)2 + γ−1 (t, y)2dy +

∫ 1
x0
γ+2 (t, y)2 + γ−2 (t, y)2dy.

For sake of brevity, we consider the first term only, similar relations can be obtained for the other state com-
ponents γ+2 , γ−2 and γ−1 For all t > tF , we have
∫ x0

0
(γ+1 (t, ν)2)dν =

1

η2

∫ x0

0
(z − αy)2(t−

ν

λ
− τ)dν, using the characteristics line, and (8.20)

=

∫ tF

τ

λ

η2
(z − αy)2(t− s)ds using a change of variables in the integral

≤
2λ

η2

∫ tF

0
z2(t− s) + α2y2(t− s)ds since τ > 0,
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≤ 2λmax(1, η2)∥(z[t], y[t])∥2DtF
≤ 2λmax(1, η2)C2

1e
−ν1t∥(y[tF ], z[tF ])∥2DtF

.

Due to Lemma 8.2.1, there exists a bounded operator O such that, for all 0 ≤ s ≤ tF , (z, y) = O(γ+i,0, γ
−
i,0).Therefore, there exists C0 > 0 such that

∫ tF

0
z2(s) + y2(s)ds ≤ C0∥(γ+0 , γ

−
0 )∥2

L2 .

Consequently, there exists C+
1 > 0 such that for all t ≥ tF , ∫ x0

0 (γ+1 (t, ν)2)dν ≤ C+
1 e

−ν1t∥(γ+0 , γ
−
0 )∥2

L2 .We obtain similar inequalities for the other terms of ∥(γ+(t, ·), γ−(t, ·))∥2
L2 , with same exponential rate and

constants denoted C±
i by analogy. Adding the four resulting inequalities, we obtain the exponential conver-

gence of state (γ+, γ−) to zero in the sense of the spatial L2-norm, with a decay rate ν1
2
and an admissible

constant given by√C+
1 + C−

1 + C+
2 + C−

2 . ■

We finally have the following theorem
Theorem 8.2.1: Exponential stabilization of the initial energy states

Consider that there exists a control input U+(t), such that (y, z) exponentially converge
to zero in the sense of theDtF -norm. Then the original energy states (X1, X2) exponen-
tially converge to zero in the sense of the spatial L2−norm (8.4). Therefore, the control
objective 8.1.1 is fulfilled.

Proof : Assume that the functions (y, z) exponentially converge to zero in the sense of theDtF -norm. From
Lemma 8.2.2 stated above, it implies the convergence of states (γ+, γ−) in the sense of the L2−norm. The
invertibility and boundedness of the Volterra integral transforms Ki directly imply the exponential stability of
the hyperbolic system (8.9)-(8.10), and consequently the one of the initial states (ξ+, ξ−) defined in (8.8). The
exponential stabilization of energy states (X1, X2) directly follows, using the definition of the Riemann coor-
dinates. From U+(t), we can then directly derive an adequate control input satisfying control objective8.1.1.
■

To solve our initial problem, we therefore need to determine an adequate state-feedback
controller that exponentially stabilizes the integral delay system (8.21)-(8.24).

8.2.3 . Application of the control strategy
The control strategy developed in Chapter 7 can be applied to the stabilization of the

clamped string under several conditions listed in
Assumption 8.2.1 The system parameters must satisfy

• |ã0| < 1 and a1 ̸= 0,
• For all s ∈ C, rank[1− ã0e−tF s − ∫ tF0 N̄z(ν)e

−νsdν, a1e
−tF s +

∫ tF
0 NV (ν)e

−νsdν] = 1.
Comparison system

Let us denoteλF = 1
tF
anddefine theL∞([0, 1])-functionsNu, Nv byNu(x) = tF N̄z(tFx)

and Nv(x) = tF
a1
NV (tF (1 − x)). We introduce the hyperbolic system of form (7.17)-(7.19)

as a comparison system
∂
∂tu(t, x) + λF

∂
∂xu(t, x) = 0,

∂
∂tv(t, x)− λF

∂
∂xv(t, x) = 0,

(8.28)
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with the boundary conditions
u(t, 0) = v(t, 0) + ã0u(t, 1) +

∫ 1

0
Nu(ν)u(ν) +Nv(ν)v(ν)dν, (8.29)

v(t, 1) = a1V̄ (t)
.
= V1(t). (8.30)

This comparison system is illustrated in Figure 8.5. System (8.28)-(8.30) corresponds to a
balance law system [BC16] actuated through one boundary.

Figure 8.5 – Schematic representation of IDE (8.27) and comparison system (8.28)-(8.30).

Applying the method of characteristics, one can verify that u(t, 0) verifies equation (8.27)
and corresponds to z for adequate initial conditions inDtF . We have the following

Lemma 8.2.3: Use of a comparison system

For any admissible feedback law V1(t), for any initial conditions (u0, v0) ∈ H1([0, 1],R2)

satisfying the compatibility conditions, system (8.28)-(8.29) admits a unique solution in
C0([0,+∞);H1([0, 1],R2)).
If the solution of (8.28)-(8.30), such that u[tF ](., 0) = z[tF ](.), exponentially converges to
zero in the sense of the L2-norm, then the solution of (8.27) exponentially converges to
zero in the sense of theDtF -norm.

Proof : From Chapter 7, it was shown that system (8.28)-(8.30) can be obtained from a well-posed system
using boundedly invertible transforms. Therefore, it admits a unique solution inH1([0, 1],R2), for all t ≥ 0.
First, let us show thatu(., 0) satisfies (8.27) for t ≥ tF . Applying themethod of characteristics on (8.28), we have
for t > tF , u(t, x) = u(t− x

λF
, 0) and v(t, x) = a1V̄ (t− 1−x

λF
). Injecting these in (8.29), and using the definition

ofNu, Nv implies, for all t > tF ,u(t, 0) = a1V̄ (t−tF )+ã0u(t−tF , 0)+
∫ tF
0 N̄z(ν)u(t−ν, 0)NV (ν)V̄ (t−ν)dν.

Therefore, u(., 0) is solution of (8.27) for t ≥ tF .
Moreover, u(., 0) is uniquely defined on [0, tF ] by the initial conditions (u0, v0) ∈ H1([0, 1],R2). Indeed, we
have, for all t ≤ tF ,

u(t, 0) = v0(λF t) + ã0u0(1− λF t) +

∫ 1

0
Nu(ν)

[
1[0, ν

λF
](t)u0(ν − λF t) + 1[ ν

λF
,tF ](t)u(t−

ν

λF
, 0)

]
+Nv(ν)1[0, 1−ν

λF
]
(t)v0(ν + λF t)dν,

since the system is in open-loop for t ≤ tF . It implies that u(., 0) is defined on [0, tF ] as the unique solution
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of the Volterra integral equation of the second kind

u(t, 0)−
∫ t

0
Nu(λF (t− s))u(s, 0)ds

.
= L(u(., 0))(t) = f(u0, v0)(λF t),

withL an invertible transform fromDtF toDtF and with f(u0, v0)(x) = v0(x)+ ã0u0(1−x)+
∫ 1−x
0 Nu(s+

x)u0(s)ds +
∫ 1
x Nv(s − x)v0(s)ds, an operator from H1([0, 1],R2) −→ DtF . Indeed, since transform f is a

composition of continuous functions (and the regularizing properties of the integral, with piecewise continuous
kernel functions) its image belongs toDtF . Denote, u(., 0) = L(f(u0, v0)) ∈ DtF . We can define on [0, 1] an
adequate initial conditions satisfying the compatibility equations in the pre-image of L−1(z[tF ]).Then, let us prove that the exponential convergence of the unique solution of (8.28)-(8.30) defined with the
above initial condition in the sense of theL2−norm implies the convergence of u(., 0) (and consequently, z) in
the sense of theDtF −norm. Consider t > tF big enough. Assuming the exponential stability of (u, v) in the
sense of the L2−norm, there exist C, ν > 0, such that ∥(u, v)∥2

L2 ≤ Ce−νt∥(u0, v0)∥2L2 . Since (8.28)-(8.30) iswell-posed on [0, tF ], there also exists CF such that ∥(u, v)∥2
L2 ≤ CF e

−νt∥(u(tF , .), v(tF , .))∥2L2 . We have

∥z[t]∥2DtF
=

∫ tF

0
z2(t− s)ds =

∫ tF

0
u(t− s, 0)2ds

= tF

∫ 1

0
u(t−

x

λF
, 0)2dx = tF

∫ 1

0
u(t, x)2dx using the characteristic equation in (8.28)

≤ tFCF e
−νt∥(u(tF , .), v(tF , .))∥2L2 = tFCF e

−νt

∫ 1

0
u(tF , x)

2 + v(tF , x)
2dx

= tFCF e
−νt

∫ 1

0
u(tF −

x

λF
, 0)2 + v(

x

λF
, 1)2dx

= tFCF e
−νt

∫ tF

0
λFu

2(t− s, 0)ds using a change of variable and V̄ (t) ≡ 0, t ≤ tF

= CF e
−νt∥z[tF ]∥2DtF

.

Consequently, the L2-exponential stability of (u, v) implies theDtF -exponential stability of z. ■

Expression of the control input
Under Assumption 8.2.1, we can now apply the results from Chapter 7.
Theorem 8.2.2: Exponential stabilization

There exist two piecewise continuous functionsM1,M2 defined on [0, 1], such that the
state-feedback controller V̄ (t) defined for all t > tF by

V̄ (t) = − 1

a1

∫ 1

0
M1(ν)z(t− ν

λ
) +M2(ν)y(t− 1− ν

λ
)dν. (8.31)

exponentially stabilizes the integral delay dynamics (8.27) in the sense of theDtF -norm.Consequently, it exponentially stabilizes the original (X1, X2) in the spatial L2−norm.
Proof : Following the approach given in Chapter 7, we use a Fredholm integral transform to map the com-
parison system (8.28)-(8.29) to an exponentially stable system. We obtain a control input which rewrites in our
case (8.31), using the functions (y, z). The expressions of functionsM1,M2, correspond to boundary values
of the kernels of the transform. From Lemma 8.2.3, we therefore obtain a control input (8.31) exponentially
stabilizing z in the sense of theDtF -norm. Moreover, the control input exponentially converges to zero. Con-
sequently, V (t) = V̄ (t)− ā0

a1
z(t) exponentially converges to zero. The function y(t), defined by equation (8.21)

and that corresponds to V (t), then exponentially converges to zero in the sense of the DtF -norm. Applying
Theorem 8.2.1 completes the proof. ■

From the control input V̄ (t), it is possible to obtain the adequate control input V (t)

stabilizing the initial system. It can be expressed with the energy states using the different
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transforms. Indeed, by definition V (t) = −
√
2EeI1U+(t) and U+(t) = V̄ (t) − ā0

a1
z(t) −

F(y, z), where F is a pointwise and distributed delay operator defined in (8.21), using
past values of (y, z) over a time [0, tF ]. Using definition (8.20), it rewrites with past valuesof (γ−1 (., x0), γ+2 (., x0)). Therefore, the initial control input V (t) can be computed using
the history of the boundary outputs (γ−1 (., x0), γ+2 (., x0)).

8.3 . Simulation results

In order to illustrate the proposed control strategy, we present some simulations im-
plemented using Matlab. The coefficients of the wave equation (8.1) are given by ρ =

0.9, E = 2.2, and c = 0.1. It models a slightly damped clamped string of length ℓ = 2.
This initial system is then naturally stable due to the presence of dissipative terms. How-
ever, our approach could also work in the case of unstable systemswith antidamping (e.g.
systems resulting from linearization of Saint-Venant equation [BC16]).

The initial string position is w0(x) = 2
π cos(

π
2 (1 − x)). Each space domain Ii is dis-cretized with a mesh of nx = 100 points. We first compute offline the values of the differ-

ent coupling terms and solve the kernel equations for the two Volterra integral transforms
and the Fredholm integral transform. The unique solution of the kernel for direct and in-
verse transforms is obtained using the successive approximation technique with an error
threshold ϵ = 10−8. The computations converge after 17 steps. The values are stored
in matrices of size nx × nx. All integral terms are approximated using the trapezoidal
method. We also compute and store the couplings NV , Nz and Nu, Nv. First, we simu-
lated system (8.9)-(8.10) in open-loop on a time horizon of 10s using a Godunov Scheme
[LeV02] (CFL = 1). It allows to obtain partial trajectories (y[tF ], z[tF ]). Next, we solve (8.27),with the control input (8.31) computed at each time step. We can illustrate the evolution
of the virtual output z(t) defined on [0, 10]s. The control input is then applied for t ≥ tF .Figure 8.6 shows that the more we cancel the reflection term, the faster the amplitude of
the oscillations decreases to the price of higher numerical instabilities (as illustrated by
the green dotted line).

Figure 8.6 – Evolution of the output z(t) for different ā0
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We can also compute the evolution of the energy of the system E(t) in closed-loop
and open-loop. It is equivalent to the L2-norm of the energy states (see Chapter 10). The
control input cancels a part of the reflection with ā0 = 0.2a0. As illustrated in Figures
8.7 and 8.8 (dotted line), it converges to zero. From z(t) in open-loop and closed-loop,
we can reconstruct the evolution of the whole state (γ+, γ−) and, from there, apply the
successive transform to obtain the initial energy states (X). The evolution of X2(t, x) inopen-loop and closed-loop (after tF ) for ā0 = 0.1a0 is represented in Figure 8.9.

Figure 8.7 – Stable case Figure 8.8 – Unstable case

Figure 8.9 – Evolution of state componentX2 in open-loop (top) and closed-loop (bottom)

Finally, we consider the case of a naturally slightly unstable system with antidamping,
e.g. systems resulting from the linearization of Saint-Venant equation [BC16]. Here, the
physical parameters are ρ = 0.9, E = 4, and c = −0.1. We cancel 10% of the reflection
term to guarantee that ã0 < 1. As illustrated in Figure 8.8, the open-loop energy of the
system diverges, while the one in closed-loop goes to 0.
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Conclusion

In this chapter, we applied themethodology proposed in Chapter 7 to a clamped string
with actuation located inside the domain. We used Riemann invariants to rewrite the ini-
tial wave equation as an interconnection of two systems of first-order hyperbolic PDE sys-
tems. We then combined the backstepping approach with the method of characteristics
to rewrite the hyperbolic system as an integral delay equation with distributed actuation.
We were finally able to adjust the results from the previous chapter to derive a stabilizing
control law under a controllability condition. An estimation of the whole state is neces-
sary to be implemented on real systems. As shown in Section 7.3, a state observer could
be designed using a similar approach. In order to get a more complete work, we need to
design an observer. By defining an adequate output, an approach similar to Section 7.3
could be applied.

In future work, we wish to extend this approach to more complex beammodels such
as Euler-Bernoulli or Timoshenko beams. The performance of the full-state feedback
could then be compared with boundary feedbacks obtained from frequency domain ap-
proaches for beams coupled by dissipative joints [CDKP87, Reb95] or energy based con-
trollers [AT00, AT01].
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Perspectives

In Part III, we considered a chain structure of two scalar hyperbolic systems where the
control input is located at the in-between boundary. As seen in Chapter 7, the stabiliza-
tion of this simple network was a challenging issue. In this situation, we could not rely
on the classic invertible transforms used in the backstepping methodology. An operator
framework was introduced to guarantee the existence and invertibility of the Fredholm
transform proposed instead. Interestingly, this stabilization problem is highly related to
the stabilization of Integral Delay Equations (IDE)with pointwise anddistributed actuation.
This work then also offers an alternative approach for the stabilization of under-actuated
systems, such as 1 + 2 hyperbolic systems.

This approach paves the way for future network contributions with actuation inside
the graph structure. A natural extension is to consider the case of two non-scalar PDE
systems with actuation at some in-between boundaries. Another natural extension is
to consider a chain of N > 2 subsystems with actuation at one or several in-between
boundaries. We believe this approach could be combined with approaches seen in Part II
to tackle a wider diversity of physical systems with an arbitrary number of PDEs or ODEs.
For instance to consider the actuator dynamics at the junction of a chain of several hy-
perbolic PDE systems or additional loads at the end of a chain structure.

Underactuated 1 + 2 linear hyperbolic system

A class of systems that can be stabilized with the approach presented in Chapter 7 are
underactuated 1 + 2 hyperbolic systems, where only one of the two leftward-convecting
equations is actuated. In [ADMEA14], this system models the flow of liquid and gas along
a drillstring in a Drif-Flux Model (DFM). It could also model an underactuated network of
open channels [dHPC+03].

Such a system was considered in [CVK17], in the simpler case of a wave equation cou-
pled to a transport equation, and in [ABABP20]. In the latter, the underactuated system
was stabilized under the more restrictive assumption of exponentially stable actuation
dynamics, using successive state transformations. It is illustrated in Figure 8.10.

Figure 8.10 – Schematic representation of the system (8.32)-(8.33)
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It corresponds to a state w(t, x) = (u(t, x), v1(t, x), v2(t, x))
T satisfying

∂

∂t
w(t, x) + Λ

∂

∂x
w(t, x) = Σ(x)w(t, x), (8.32)

where the different arguments evolve in (0,+∞)× [0, 1], and with the following boundary
conditions

u(t, 0) = q1v1(t, 0) + q2v2(t, 0), v1(t, 1) = ρ1u(t, 1) + V (t), v2(t, 1) = ρ2u(t, 1). (8.33)
The diagonal matrix Λ is given by Λ = diag(λ,−µ1,−µ2), where the different positive ve-locities λ, µ1, µ2 are assumed to be constant, as the boundary couplings q1, q2, ρ1 and ρ2.The components of thematrixΣ are continuous functions. Following the backstepping ap-
proach in [ADM19], the stabilization of this underactuated system is shown in [ABABP20]
equivalent to the one of an integral delay equation of the form
z(t) = ρ2q1V̄ (t− τ1) + ρ2q2z(t− τ2) +

∫ max(τ1,τ2)

0
Nz(ν)z(t− ν) +NV (ν)V̄ (t− ν)dν,

with V̄ (t) a full-state feedback depending on the distributed states. It is closely related to
the IDE given in (7.25), and considered in [RAN21b]. Thus the proposed methodology is of
high interest for stabilizing underactuated hyperbolic systems.

Chain of two multidimensional hyperbolic subsystems with actuation at
the in-between boundary

Next, a natural extension of the interconnection of two scalar hyperbolic PDE subsys-
tems with actuation at the in-between boundary is to consider non-scalar PDE systems.
This situation appears when using a Timoshenko beam model with in-domain actuation
instead of a stringmodel for the clamped system studied in Chapter 8. Writing the energy
states in the Riemann coordinates and assuming we have a torque and bending control
input in the middle of the beam, we can reformulate the system as

∂
∂tξ

+
i (t, x) + Λ ∂

∂xξ
+
i (t, x) = Σ++(x)ξ+i (t, x) + Σ+−(x)ξ−i (t, x),

∂
∂tξ

−
i (t, x)− Λ ∂

∂xξ
−
i (t, x) = Σ−+(x)ξ+i (t, x) + Σ−−(x)ξ−i (t, x),

(8.34)

with boundary conditions
ξ+1 (t, 0) = −R

−1ξ−1 (t, 0), ξ
−
1 (t, 1) = V (t) + ξ−2 (t, 0),

ξ−2 (t, 1) = Rξ+2 (t, 1), ξ
+
2 (t, 0) = R−1V (t) + ξ+1 (t, 1). (8.35)

It is schematically represented in Figure 8.11. Following a backstepping methodology sim-
ilar to the one in Chapter 8, we can move the in-domain couplings to the in-between
boundary. Next, using the method of characteristics, we can rewrite the equations satis-
fied by the boundary functions z+2 (t, 0), z−1 (t, 1). Defining z(t) = z−1 (t, 1)−Rz

+
2 (t, 0) and anew control input such that z−1 (t, 1) = V̄ (t) (which cancels the reflection terms), we show
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Figure 8.11 – Schematic representation of the system (8.34)-(8.35)

that it is the solution of an IDE of form(
z1(t)

z2(t)

)
= 2

(
V̄1(t− τλ)
V̄2(t− τµ)

)
−

(
z1(t− τλ)
z2(t− τµ)

)
+

∫ max(τλ,τµ)

0
H(s)V̄ (t− s) +G(s)z(t− s)ds

with G,H ∈ C0
pw([0,max(τλ, τµ)],R2×2). If τµ ̸= τλ, we cannot straightforwardly use a

simple hyperbolic PDE system as a comparison system and apply results from Chapter 7.
A third rightward or leftward convecting transport equation could be used in the compar-
ison system to compensate for the remaining delayed terms. This would lead to more
intricate computations.

In a more general setting of two (n+m) linear hyperbolic subsystems with control at
the in-between boundary, we would have to deal with manymore delays, non necessarily
commensurate. If all leftward or rightward convecting transport equations are actuated,
the stabilization of the two interconnected subsystems may result in stabilizing an IDE of
the form

z(t) = Q


z1(t− τ1)
zi(t− τi)

...

zn(t− τn)

+R


V1(t− τ1)
Vi(t− τi)

...

Vn(t− τn)

+

∫ max(τi)

0
NV V (t− s) +Nz(s)z(t− s)ds,

withQ,R not necessarily diagonal invertible matrices. When not all rightward or leftward
equations are actuated, or for mixed actuation, the stabilization would require additional
technical developments.

Chainof two scalar hyperbolic subsystemswithactuationat the in-between
boundary and actuator dynamics

For application purposes, another extension of the works developed in Chapters 7
and 4 is to consider the actuator dynamics. It would correspond to a chain of an actu-
ated ODE sandwiched between two scalar hyperbolic PDE subsystems, as illustrated in
Figure 8.12. An example of such interconnection can be found in [ZLW+22], which con-

167



siders the control of a flexible beam using Ionic polymer–metal composites (IPMC) actu-
ators. A simplified lumped RLC control-oriented mode models their electric dynamics.
The voltage input results in torque applied to the beam. Both systems are coupled using
power-preserving interconnection. The new interconnections and the actuator dynam-

Figure 8.12 – Schematic representation of ODE actuator dynamics

ics make the approach proposed in Part III not directly applicable. The Fredholm integral
transform would move the integral coupling terms in the ODE. Note that the stabilization
of an ODE-PDE-ODE chain structure with actuation of the PDE boundary was considered
in [ABADM23].

Chain of scalar hyperbolic subsystems with actuation at an in-between
boundary

Another natural extension is an underactuated chain of N > 2 scalar hyperbolic PDE
subsystemswith boundary actuation at one in-between boundary. This finds applications
in open channels or electrical networks.

Figure 8.13 – Schematic representation of the system (5.1),(8.37)

We illustrate this situation withN = 3 hyperbolic PDE subsystems, schematically rep-
resented in Figure 8.13. Following the approach from Chapter 7, we could use different
integral transforms tomove the in-domain couplings at each boundary. Using themethod
of characteristics in the target systems and under some assumptions, the stabilization of
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the chain could be related to the one of the following integral delay equation
α(t)− q2α(t− τ2)− q3α(t− τ3)− q23α(t− (τ2 + τ3))−

∫ τ2+τ3

0
Nα(s)α(t− s)ds

= q1V̄ (t− (τ1 +
1

λ2
)) +

∫ τ1+
1
λ2

1
λ2

NV (s)V̄ (t− s)ds. (8.36)

Due to multiple, not necessarily commensurate delays, this IDE cannot be straightfor-
wardly stabilized [DDLM15]. In the general case of N subsystems, each state i satisfies
(5.1) with boundary conditions

ui(t, 0) = qiivi(t, 0) + qi,i−1ui−1(t, 1),

vi(t, 1) = ρiiui(t, 1) + ρi,i+1vi+1(t, 0) + δicV (t), (8.37)
such that subsystem c ∈ J1, N−1K is actuated. Following the system studied in Section 7.1,
we assume we have a boundary measurement y(t) = vc+1(t, 0).In the case of a cascaded network, [Aur20] proposed a general invertible transform on
each PDE subsystem to move all in-domain couplings to the actuated boundary x = 1 of
subsystem c. In themore general case, we could apply a transform composedof a Volterra
plus an affine term for each downstream subsystem to move all in-domain couplings to
one boundary. Due to the inherent transport delay in each subsystem, a reformulation as
a time delay system would result in a general integral delay equation of form (8.36) with
multiple pointwise delayed terms.

We could also combine this approach with [RAN21a] to tackle a wider diversity of phys-
ical systems with an arbitrary number of PDEs or ODEs. For applications such asmicroen-
doscopes, the localization and the number of control inputs available is of high interest
[WLG18]. We could also ponder more general controllability properties and the optimal
location of several actuators along the network. Note that the control of a string with in-
domain actuation considered in Chapter 8, in the general case where the actuator is not
located in the middle of the string, resulting in the control of an integral delay equation
of form (8.36), with 2 pointwise delay terms corresponding to the transport time on each
side of the actuator.

Chains of scalar hyperbolic subsystems containing loops

Finally, a last extension of the proposed approach could be considering chain net-
works containing loops (cycles). It corresponds to the chain of N hyperbolic scalar PDE
subsystems introduced in the previous section, where the first and last PDE subsystems
are also interconnected. Such systems can represent networks of pipes transporting flu-
ids [WA22].
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Part IV

Exploring under-considered aspects
of backstepping-based controllers

Different case studies

Exploration d’aspects négligés dans la conception

de contrôleurs par backstepping

Divers cas d’études
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Introduction

In parts II and III, we presented backstepping-based controller designs for different
classes of interconnected hyperbolic PDE systems. We raised some difficulties regarding
numerical implementation (such as computation time). In Part IV, we aim to focus on
these under-considered aspects of the backstepping-based controllers.

The backstepping methodology proved its efficiency as a constructive method, and
in some cases may offer better closed-loop performances than classic finite dimension
controllers [ABS+22]. So far, emphasis was placed on stabilizing systems, and not on con-
troller tuning. As already mentioned, finding an adequate target system requires some
expertise. Indeed, it must be simple enough to grant stability properties easily. First,
all the in-domain couplings were suppressed in the target system. Though it allowed
for finite-time stabilization, it was shown to have a negative impact on the robustness
with regard to small delays. It might then be necessary to keep some in-domain coupling
terms, or not to completely cancel the reflection term. However, the target system must
be reachable by an invertible tranform. As seen in Part III, the classic Volterra integral
transforms cannot handle some integral couplings, preventing a mapping to the easily-
assessable exponentially target system. We give clues and new frameworks to answer
the following questions:

1. What is the class of reachable target systems?
2. How to define a target system with specific stability properties?
3. How to ease the numerical implementation of backstepping-based controllers to

obtain real-time implementable control laws?
To broaden the use of backstepping-based controllers, a concern may be the choice of
a reachable class of target systems that can be mapped from an initial plant. Since the
closed-loop performance depends on the choice of a target system, it is a crucial step
in the controller design. In Chapter 9, we introduce an innovative time-affine transform
that maps a linear first-order hyperbolic PDE system to an arbitrary target system of the
same class. This considerably simplifies concerns about the choice of a target system and
eases the design procedure. Indeed, it allowsmapping any target systemwithin a specific
class. Among this class of reachable target systems, we must then determine the ones
presenting adequate closed-loop properties. To do so, we can use sufficient criteria as
given in Chapter 2 in the scalar case or more broadly gathered in [Aur18]. In Chapter 10,
we show how the Port Hamiltonian framework [JZ12] can help design target systems with
specified asymptotic properties by adding tuning parameters with a physical meaning.
We illustrate the methodology proposed in Chapter 9 on two simple test cases. Since
the backstepping-based controllers require the knowledge of all distributed states, an
observer state must also be designed, usually following a dual approach.

Finally, one major drawback of the backstepping-based controllers remains their nu-
merical limitations. If real-time control (or online control for adaptive controllers) is de-
sired, the computation time becomes crucial. Output-feedback controllers often involve
solving the observer PDE system at each time step, which can be computationally de-
manding [ADAK16a, ADAK16b, SA17]. It usually requires numerical discretization schemes
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such as finite difference, finite element, or spectral methods [LeV02]. As emphasized in
Chapter 4, a trade-off must be found to ensure the stability of the numerical scheme
while limiting the size of the mesh. It is even more accurate when the control design re-
quires using predictors as in Chapter 5. Recently, advances in machine learning allowed
mapping parameters to infinite dimensional operators [LJK21, LKA+21].To downplay the
necessary computation time required to implement backstepping-based controllers, it
might be of high interest [BSK23, SLY+22]. Following this trend, we ponder in Chapter 11
on using Machine Learning-based solutions to fasten a PDE model resolution drastically.
First, in the wake of [SLY+22], we consider using neural networks as a surrogate for clas-
sical backstepping-based observers. Next, inspired by [AKN21], we consider their interest
in estimating unknown physical parameters for one drilling example given in Chapter 6.
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9 - Arbitrary target system for a general class of non-
scalar hyperbolic PDE systems

In this chapter, we propose a methodology to map a general class of nonscalar hy-
perbolic PDE systems to any target system of the same class with different in-domain
couplings. We consider linear hyperbolic PDE systems from Chapter 2, extended in the
general nonscalar framework. This general class of (n+m)×(n+m) linear hyperbolic PDE
systems is fully actuated at one end. It contains potentially destabilizing in-domain and
boundary couplings and is presented in Section 9.1. They canmodel the coupled torsional
and axial dynamics of a drillstring [AvdW18] or themotion of a Timoshenko beam [Tim74],
as illustrated in Chapter 10. Using a full-state feedback control law, we want to map a sys-
tem in this class to an arbitrary target system with a similar structure. More precisely, we
modify the in-domain couplings, while the transport speeds and unactuated boundary
couplings remain unchanged. The backstepping methodology inspires the approach pro-
posed in Section 9.2. We apply a classic Volterra integral transform from the initial and
target systems to replace the distributed in-domain couplings with local terms. We intro-
duce an innovative time-affine transform to map the two simplified equivalent systems.
This transform requires past values of one boundary state. Composing all these bound-
edly invertible transforms, we can derive in Section 9.3 a distributed controller. It allows
the initial system in closed loop to share asymptotic stability properties with a specified
target system.

Chapitre 9: Systèmecible arbitraire pourune classe générale de systèmes
d’EDP hyperboliques non scalaires.

Ce chapitre porte sur les systèmes d’EDP hyperboliques linéaires considérés dans le
Chapitre 2, étendus dans le cadre général non scalaire. Cette classe générale de sys-
tèmes hyperboliques, avec des couplages potentiellement déstabilisants à l’intérieur du
domaine et aux frontières, est actionnée à une extrémité (Section9.1). Ils peuvent mod-
éliser la dynamique torsionnelle et axiale couplée d’un système de forage [AvdW18] ou le
mouvement d’une poutre de Timoshenko [Tim74], comme illustré dans le Chapitre 10. En
utilisant une loi de commande de rétroaction d’état complet, nous souhaitons envoyer un
système de cette classe sur un système cible arbitraire. L’approche proposée est inspirée
de la méthodologie de backstepping (Section 9.2). À partir du système initial et du sys-
tème cible, une transformation intégrale de Volterra classique est d’abord utilisée pour
remplacer les couplages répartis dans le domaine par des termes locaux. Pour mapper
les deux systèmes équivalents simplifiés, nous introduisons ensuite une nouvelle trans-
formation affine en temps. Elle nécessite les valeurs passées d’un état à la frontière. En
composant toutes ces transformations inversibles et bornées, une loi de commande dis-
tribuée est obtenue (Section 9.3). Elle garantit que le système initial en boucle fermée
partage lesmêmes propriétés asymptotique qu’un autre système cible de lamême classe
avec des termes de couplage à l’intérieur du domaine choisis arbitrairement.
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9.1 . Problem description

In this section, we first present the class of hyperbolic systems under consideration.
Then, we present the control objective and the overall control design strategy.

9.1.1 . System under consideration
Consider a linear (n+m)× (n+m) hyperbolic PDE system defined by

∂
∂tξ

+(t, x) + Λ+ ∂
∂xξ

+(t, x) = Σ++(x)ξ+(t, x) + Σ+−(x)ξ−(t, x),
∂
∂tξ

−(t, x)− Λ− ∂
∂xξ

−(t, x) = Σ−+(x)ξ+(t, x) + Σ−−(x)ξ−(t, x),
(9.1)

and the boundary conditions
ξ+(t, 0) = Q0ξ

−(t, 0), ξ−(t, 1) = R1ξ
+(t, 1) + V (t), (9.2)

with coupling matrices Q0 ∈ Rm×n, R1 ∈ Rn×m. It corresponds to a generalization in
the nonscalar case of system (2.1)-(2.3). The positive constant transport velocity matri-
ces, denoted Λ+ = diag(λi) ∈ D+

n , Λ− = diag(µi) ∈ D+
m, are sorted by decreasing

order, i.e. λ1 > λ2 > ... > λn and µ1 > µ2 > ... > µm. As mentioned in previ-
ous chapters, the following approach can be adapted to the space-dependent case to
the price of more technical computations. We have in-domain coupling matrix-valued
functions Σ+− ∈ C1([0, 1],Rn×m), Σ−+ ∈ C1([0, 1],Rm×n), Σ++ ∈ C1([0, 1],Rn×n), and
Σ−− ∈ C1([0, 1],Rm×m). As classically considered, [VKC11, HVDMK15, Aur18], we have, for
all x ∈ [0, 1], ∀ 1 ≤ i ≤ n,Σ++

ii (x) = 0 and ∀ 1 ≤ i ≤ m,Σ−−
ii (x) = 0. We have the following

Lemma 9.1.1: well-posedness of the system [Rus78b, Cor09]

For any initial conditions (ξ+0 , ξ
−
0 ) ∈ H1([0, 1],Rn+m), every control input V (t) ∈

Rm regular enough, satisfying appropriate compatibility conditions (2.1.1), system (9.1)
along with boundary condition (9.2) admits a unique solution ξ = [ξ+⊤, ξ−⊤]⊤ ∈
C0([0,+∞);H1([0, 1],Rn+m)).

Figure 9.1 – Schematic representation of (9.1)-(9.2)
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9.1.2 . Control objective

Class of reachable target system
In this chapter, we aim atmapping the system (9.1)-(9.2) to a target system of the same

class with specific asymptotic stability properties. The general class of target systems is
defined by the following set of PDEs

∂
∂t ξ̄

+(t, x) + Λ+ ∂
∂x ξ̄

+(t, x) = Σ̄++(x)ξ̄+(t, x) + Σ̄+−(x)ξ̄−(t, x),
∂
∂t ξ̄

−(t, x)− Λ− ∂
∂x ξ̄

−(t, x) = Σ̄−+(x)ξ̄+(t, x) + Σ̄−−(x)ξ̄−(t, x),
(9.3)

with boundary conditions
ξ̄+(t, 0) = Q0ξ̄

−(t, 0), ξ̄−(t, 1) = V̄ (t), (9.4)
with V̄ (t) a regular enough arbitrary function that can depend on the boundary or dis-
tributed state. As shown in Chapter 2, if we find boundedly invertible transformsmapping
the closed-loop system (9.1)-(9.2) to (9.3)-(9.4), theywill share the same stability properties.

The control objective reads as follows

Objective 9.1.1: Target closed-loop behaviour

Design a full-state feedback control law V (t) ∈ L2([0,+∞),Rm) such that the closed-
loop system (9.1)-(9.2) has the same asymptotic stability properties that the target system
defined by (9.3)-(9.4).

First considerations
In this target system, the boundary couplings at the unactuated boundary x = 0 re-

main the same, since they cannot be modified by Volterra integral transforms. Here, we
introduce new in-domain coupling terms Σ̄, which are also assumed to be continuous and
differentiable matrix-valued functions. As before, Σ̄++, Σ̄−− must have no term on their
diagonal. This defines a class of reachable target systems, with in-domain couplings
and couplings at the actuated boundary considered as degrees of freedom.

We are interested in specifying these degrees of freedom to ensure that the target sys-
tem has specified asymptotic properties. Themain criterion remains exponential stability
of the closed-loop system. For instance, one can choose

V̄ (t) = R̄1ξ̄
+(t, 1), (9.5)

with R̄1 ensuring asymptotic stability of the system (9.3)-(9.5) in the sense of theL2−norm.
Thanks to a Lyapunov approach, we can derive sufficient conditions from Linear Matrices
Inequalities (LMIs) to do so. We have the following
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Theorem 9.1.1: Linear Matrices Inequalities [BC16, Proposition 5.2]

The solution of (9.3)-(9.5) with initial condition (ξ̄+0 , ξ̄
−
0 ) is exponentially stable (for

the L2-norm) if there exist some reals µ ̸= 0, pi > 0, i = 1, · · · , n and qj > 0, j =

1, · · · ,m such that(
P+Λ+e−µ 0

0 P−Λ−

)
−

(
0 Q0

R1 0

)⊤(
P+Λ+ 0

0 P−Λ−eµ

)(
0 Q0

R1 0

)
≥ 0,

and for all x ∈ [0, 1], µP (µx)
(
Λ+ 0

0 Λ−

)
− Σ̄(x)⊤P (µx)− P (µx)Σ̄(x) > 0 , with

P+ = diag{p1, ..., pn}, P− = diag{q1, ..., qm} and P (µx) = diag{P+e−µx, P−eµx}.
More explicit conditions can be derived when the in-domain couplings have a spe-

cific structure, e.g, constant. To solve LMIs numerically, a feasibility solver such as feasp
[GN97] is required. Its complexity depends quadratically on the problem size. Note that
LMI can be used to derive sufficient stability conditions for neutral time-delay systems too
[KMC05]. We can also impose a specific closed-loop behavior using the Port-Hamiltonian
framework, as presented in Chapter 10.

9.1.3 . Overall strategy

Overall transform
Using a classic Volterra integral transform, it is not possible to map directly (9.1)-(9.2)

to (9.3)-(9.4), in the nonscalar case. We have the following
Proposition 9.1.1 For all t > 0, for any initial conditions, for any V (t), V̄ (t), let us denote
[ξ̄+(t, ·)⊤ ξ̄−(t, ·)⊤]⊤ ∈ H1([0, 1],Rn+m) the solution of (9.3)-(9.4) and [ξ+(t, ·)⊤ ξ−(t, ·)⊤]⊤ ∈
H1([0, 1],Rn+m) the solution of (9.1)-(9.2). If n > 1,m > 1, it is not always possible to find a
transform K of form (2.8) such that

∀ t > 0,

(
ξ̄+(t, ·)
ξ̄−(t, ·)

)
= K(

(
ξ+(t, ·)
ξ−(t, ·)

)
).

Proof : For all x ∈ [0, 1], define the Volterra integral transform K : H1([0, 1],Rn+m) → H1([0, 1],Rn+m)

K(ξ)(x) = ξ(x)−
∫ x

0
K(x, y)ξ(y)dy, (9.6)

with kernelsK =
(

K++ K+−

K−+ K−−

)
∈ C1

pw(T −,R(n+m)×(n+m)).
Following the backstepping methodology, we show that kernelsK++, K+− must satisfy

Λ+ ∂

∂x
K++ +

∂

∂y
K++Λ+ = Σ̄++(x)K++ + Σ̄+−(x)K−+ −K++Σ++(y)−K+−Σ−+(y),

Λ+ ∂

∂x
K+− −

∂

∂y
K+−Λ− = Σ̄++(x)K+− + Σ̄+−(x)K−− −K++Σ+−(y)−K+−Σ−−(y),

with boundary conditions
K++(x, x)Λ+ − Λ+K++(x, x) = Σ̄++(x)− Σ++(x), (9.7)
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Λ+K+−(x, x) +K+−(x, x)Λ− = Σ+−(x)− Σ̄+−(x), (9.8)
K+−(x, 0)Λ− −K++(x, 0)Λ+Q0 = 0. (9.9)

We can easily show that kernelsK−+, K−− satisfy a similar set of equations. With no further conditions on
the couplings, this system is ill-posed. Indeed, the boundary condition (9.8) in x = y entirely defines K+−

onT −. Then, boundary conditions (9.7),(9.9) do not suffice to entirely defineK++ onT −. IfQ0 admits a left in-
vertQ−1

0,l , that is if its lines are spanning vectors forRn, (9.9) rewritesK++(x, 0) = K+−(x, 0)Λ−Q−1
0,l (Λ

+)−1.
ComponentsK++

ij , for j ≥ i are thenwell-defined. However, along the segment {y = 0, 0 ≤ x ≤ 1− λj

λi
}, the

component must satisfy (9.9) but is also defined by (9.7) using the method of characteristics. Complex com-
patibility conditions should be satisfied to ensure the well-posedness. Similarly, with no assumption on Q0,
some components ofK++ might not be entirely defined on T −. The well-posedness of this set of equations
is therefore not guaranteed in the general case. ■

Consequently, in the general case, we cannot directly use the backstepping methodology
with a classic Volterra integral transform to fulfill objective 9.1.1. However, it is possible
for n = m = 1, as illustrated in Chapter 10.

Step by step approach
To simplify the analysis, we propose to apply a step-by-step approach with different

successive transforms:
1. In section 9.2.1, we use two classic backstepping Volterra transforms of form (9.6)

• K to map the system ξ to a simpler target system γ for which most of the
in-domain coupling terms have been moved at the actuated boundary;

• K̄ to map the target system ξ̄ to a system γ̄, for which most of the in-domain
coupling terms have been moved at the boundary x = 1.

It simplifies the structure.
2. Next, in Section 9.2.2, we use a specific invertible time-affine transform F to map

the system γ to the system γ̄ of the same form.
Composing thedifferent transforms, it becomes straightforward to design the correspond-
ing feedback law in Section 9.3.

9.2 . Full-state feedback control law design

9.2.1 . classic backstepping transforms

Inspired by [HVDMK15, CHO17], we use a classic Volterra transform on system (9.1)-
(9.2) to map it to a simpler system, where most of the in-domain coupling terms have
been moved to the actuated boundary.

First Volterra integral transform
Define Γ+ ∈ C0

pw([0, 1],Rn×m), Γ− ∈ C0
pw([0, 1],Rm×m) two piecewise continuous

matrix-valued functions. For all x ∈ [0, 1], define the Volterra integral transformK of form
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(9.6), with kernelsK =
(
K++ K+−

K−+ K−−

) satisfying the following partial differential equations
Λ+ ∂

∂xK
++(x, y) + ∂

∂yK
++(x, y)Λ+ = −K++(x, y)Σ++(y)−K+−(x, y)Σ−+(y),

Λ+ ∂
∂xK

+−(x, y)− ∂
∂yK

+−(x, y)Λ− = −K++(x, y)Σ+−(y)−K+−(x, y)Σ−−(y),

Λ− ∂
∂xK

−+(x, y)− ∂
∂yK

−+(x, y)Λ+ = K−+(x, y)Σ++(y) +K−−(x, y)Σ−+(y),

Λ− ∂
∂xK

−−(x, y) + ∂
∂yK

−−(x, y)Λ− = K−+(x, y)Σ+−(y) +K−−(x, y)Σ−−(y).

(9.10)
They satisfy the boundary conditions for all x ∈ [0, 1],
Λ+K++(x, x)−K++(x, x)Λ+ = Σ++(x), Λ+K+−(x, x) +K+−(x, x)Λ− = Σ+−(x),

Λ−K−+(x, x) +K−+(x, x)Λ+ = −Σ−+(x), Λ−K−−(x, x)−K−−(x, x)Λ− = −Σ−−(x).

(9.11)
The two following equations must also be satisfied in y = 0, for all x ∈ [0, 1],

−K++(x, 0)Λ+Q0 +K+−(x, 0)Λ− = Γ+(x),

−K−+(x, 0)Λ+Q0 +K−−(x, 0)Λ− = Γ−(x). (9.12)
As mentioned earlier, some components of Γ± are degrees of freedom, while others are
imposed by the boundary conditions (9.11). To guarantee the well-posedness of the kernel
equations, we must impose arbitrary conditions in x = 1 for K±±

ij , i > j. To guarantee
the continuity of the kernels along the boundary y = z, we can impose

K++
ij (1, y) =

Σ++
ij (1)

λi − λj
, K−−

ij (1, y) =
Σ−−
ij (1)

µj − µi
, i > j. (9.13)

Following the considerations presented in Appendix C, we could rather impose
K++
ij (1, y) = 0, K−−

ij (1, y) = 0.

Some components of the coupling matrix Γ− can also be simplified using the remaining
degrees of freedom in y = 0 forK±±

ij , i ≤ j. Imposing for i ≤ j,
Γ−
ij(x) = 0⇔ K−−

ij (x, 0) = (K−+(x, 0)Λ+Q0(Λ
−)−1)ij , (9.14)

simplifies the structure of the target system. It guarantees that the in-domain coupling
matrices in the target system for the leftward convecting equation are strictly triangular
[HVDMK15]. Similarly, if the boundary coupling matrixQ0 is invertible, we can simplify the
couplings in the target system by imposing

Γ+
ij(x) = 0⇔ K++

ij (x, 0) = (K+−(x, 0)Λ−(Λ+Q0)
−1)ij , i ≤ j. (9.15)

We have the following lemma
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Lemma 9.2.1: Well-posedness of the kernel equations [HVDMK15]

The system defined by (9.10)-(9.13) with n(n+1)
2 (resp. m(m+1)

2 ) continuous boundary
conditions defining K++

ij (·, 0) (resp. K−−
ij (·, 0)), for i ≤ j admits a unique solution in

C1
pw(T −,R(n+m)×(n+m)). The Volterra integral transform K defined by (9.6) is bound-

edly invertible. Its inverse transform L = K−1 is also a Volterra integral transform.
Proof : The proof can be adjusted from [HVDMK15, Theorem A.1]. The kernels’ regularity derives from the
one of the coupling terms. The kernel L ∈ C1

pw(T −,R(n+m)×(n+m)) of the inverse transform are related to
the ones of the direct transform by L(x, y) = −K(x, y) +

∫ x
y K(x, s)L(s, y)ds. ■

Mapped target system
We next define a new state γ = [γ+⊤, γ−⊤]⊤ = K(ξ) obtained using the invertible

transform (9.6). It satisfies
∂
∂tγ

+(t, x) + Λ+ ∂
∂xγ

+(t, x) = Γ+(x)γ−(t, 0),
∂
∂tγ

−(t, x)− Λ− ∂
∂xγ

−(t, x) = Γ−(x)γ−(t, 0),
(9.16)

with the boundary conditions
γ+(t, 0) = Q0γ

−(t, 0), γ−(t, 1) = R1γ
+(t, 1) + V (t) + I1(t). (9.17)

The integral term I1(t) is given by
I1(t) =

∫ 1

0

(
L−+(1, y)−R1L

++(1, y)
)
γ+(t, y) +

(
L−−(1, y)−R1L

+−(1, y)
)
γ−(t, y)dy,

(9.18)
while the coupling matrix-valued functions are defined by

Γ+
ij(x) =

{
0, for j ≤ i if Q0 invertible
(K+−(x, 0)Λ− −K++(x, 0)Λ+Q0)ij , else,

Γ−
ij(x) =

{
0, if j ≤ i,
(K−−(x, 0)Λ− −K−+(x, 0)Λ+Q0)ij , else.

Second Volterra Integral transform
As in the previous section, we use another Volterra integral transform to map the

target system (9.3)-(9.4) to a simpler system (9.21)-(9.22). Define the integral operator K̄ :

H1([0, 1],Rn+m)→ H1([0, 1],Rn+m) by, for all x ∈ [0, 1],
γ̄(x) = K̄(ξ̄(x)) = ξ̄(x)−

∫ x

0
K̄(x, y)ξ̄(y)dy. (9.19)

For any kernels K̄ ∈ C1
pw(T −,R(n+m)×(n+m)), this transform is boundedly invertible, and

its inverse transform, denoted L̄ is also a Volterra integral transform of the form (9.6). The
kernels K̄ =

(
K̄++ K̄+−

K̄−+ K̄−−

) satisfy analogous equations to the ones given by (9.10)-(9.14)
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(except that terms Σ·· are replaced by functions Σ̄·· in equations (9.10)-(9.11),(9.13)). Now,
define the matrix-valued functions Γ̄+ ∈ C0

pw([0, 1],Rn×m) and Γ̄− ∈ C0
pw([0, 1],Rm×m) by

Γ̄+
ij(x) =

{
0, for j ≤ i, if Q0 invertible
(K̄+−(x, 0)Λ− − K̄++(x, 0)Λ+Q0)ij , else, (9.20)

Γ̄−
ij(x) =

{
0, if j ≤ i,
(K̄−−(x, 0)Λ− − K̄−+(x, 0)Λ+Q0)ij , else.

Note that Γ̄− (as Γ−) is strictly lower triangular. Differentiating with respect to time and
space (9.19), and since ξ̄ = [ξ̄+⊤, ξ̄−⊤]⊤ is the unique solution of (9.3)-(9.4), we show, that
γ̄ = [γ̄+⊤, γ̄−⊤]⊤ satisfies

∂
∂t γ̄

+(t, x) + Λ+ ∂
∂x γ̄

+(t, x) = Γ̄+(x)γ̄−(t, 0),
∂
∂t γ̄

−(t, x)− Λ− ∂
∂x γ̄

−(t, x) = Γ̄−(x)γ̄−(t, 0),
(9.21)

with boundary conditions
γ̄+(t, 0) = Q0γ̄

−(t, 0), γ̄−(t, 1) = V̄γ(t), (9.22)
with V̄γ(t) = V̄ (t)−

∫ 1
0 K̄

−+(1, y)ξ̄+(t, y) + K̄−−(1, y)ξ̄−(t, y)dy. For any initial conditions
γ̄0 = K̄(ξ̄0) ∈ H1([0, 1],Rn+m) satisfying the compatibility conditions, this system admits
a unique solution in C0([0,+∞);H1([0, 1],Rn×m)).

9.2.2 . Time-space affine change of variable
In the following, we denote τ̄ = max{ 1

µm
, 1
λn
}. Define χ .

= H1([0, 1],Rn+m) × Dτ ,with Dτ .
= Dτ1 × Dτ2 × ... × Dτm , and τi = (m − i + 1)τ̄ . We now map the solution of

(9.16)-(9.17) to the solution of (9.21)-(9.22), for any initial condition. Define for all x ∈ [0, 1],
t ≥ t⋆ .

= mτ̄ > 0, a time-affine change of variables by
for 1 ≤ i ≤ m, (9.23)
γ̄−i (t, x) = γ−i (t, x) +

∫ 1−x
µi

0

i−1∑
j=1

F−
ij (x, y)γ

−
j (t− y, 0) +

i−1∑
j=2

H−
ij (x, y)γ̄

−
j (t− y, 0)dy,

for 1 ≤ i ≤ n, (9.24)
γ̄+i (t, x) = γ+i (t, x) +

∫ x
λi

0

m∑
j=1

F+
ij (x, y)γ

−
j (t− y, 0) +

m∑
j=2

H+
ij (x, y)γ̄

−
j (t− y, 0)dy

+

∫ 1
µm

+ x
λi

x
λi

m−1∑
j=1

M+
ij (x, y)γ

−
j (t− y, 0) +

m−1∑
j=2

N+
ij (x, y)γ̄

−
j (t− y, 0)dy.

Notice that this transform requires the past values of the boundary state γ̄(·, 0). As ex-
plained later, this transform is only defined for t > mτ̄ due to its recursive form. Also,
note that the first component of the leftward convecting state γ−1 (t, x) is not modified
here.

For all 1 ≤ i ≤ n, 1 ≤ j ≤ m (resp. 2 ≤ j ≤ m), F+
ij , (resp. H+

ij ) is a real-valued function
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in C1
pw(T +

λi
,R), and for all 1 ≤ i ≤ n, 1 ≤ j ≤ m − 1 (resp. 2 ≤ j ≤ m − 1), M+

ij (resp.
N+
ij ) is a real-valued function in C1

pw(P+
1

µm
,λi
,R). For all 1 ≤ i ≤ m, 1 ≤ j ≤ i − 1 (resp.

2 ≤ j ≤ i − 1), function F−
ij (resp. H−

ij ) is defined in C1
pw(T −

µi ,R). Transform (9.23)-(9.24)
can be rewritten in a more condensed form

γ̄−(x) = γ−(x) +

∫ 1−x
µm

0
F−(x, y)γ−(t− y, 0) +H−(y)γ̄−(t− y, 0)dy, (9.25)

γ̄+(x) = γ+(x) +

∫ 1
µm

+ x
λn

x
λn

M+(x, y)γ−(t− y, 0) +N+(x, y)γ̄(t− y, 0)dy

+

∫ x
λn

0
F+(x, y)γ−(t− y, 0) +H+(x, y)γ̄−(t− y, 0)dy. (9.26)

Matrices F−, H− have a strictly lower triangular form and are defined for all x ∈ [0, 1], for
all y ∈ [0, 1−xµm

] by
(F−(x, y))ij = 1[0, 1−x

µi
](y)F

−
ij (x, y), ∀ 2 ≤ i ≤ m, 1 ≤ j ≤ i− 1,

(H−(x, y))ij = 1[0, 1−x
µi

](y)H
−
ij (x, y), ∀ 2 ≤ i ≤ m, 2 ≤ j ≤ i− 1.

Similarly, matrices F+, H+ are defined component-wise for all x ∈ [0, 1] by:

∀ y ∈ [0,
x

λn
], ∀ 1 ≤ i ≤ n,

(F+(x, y))ij = 1[0, x
λi

](y)F
+
ij (x, y), 1 ≤ j ≤ m,

(M+(x, y))ij = 1[ x
λi
, 1
µm

+ x
λi

](y)M
+
ij (x, y), 1 ≤ j ≤ m− 1,

∀ y ∈ [
x

λ1
,
1

µm
+

x

λn
], ∀ 1 ≤ i ≤ n,

(H+(x, y))ij = 1[0, x
λi

](y)H
+
ij (x, y), 2 ≤ j ≤ m,

(N+(x, y))ij = 1[ x
λi
, 1
µm

+ x
λi

](y)N
+
ij (x, y), 2 ≤ j ≤ m− 1.

The different kernels satisfy the following pure transport equations
for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ j ≤ m− 1,

∂F+
ij

∂x + 1
λi

∂F+
ij

∂y = 0,
∂M+

ij

∂x + 1
λi

∂M+
ij

∂y = 0,

2 ≤ j ≤ m, 2 ≤ j ≤ m− 1,
∂H+

ij

∂x + 1
λi

∂H+
ij

∂y = 0,
∂N+

ij

∂x + 1
λi

∂N+
ij

∂y = 0,

(9.27)

for 2 ≤ i ≤ m, 1 ≤ j ≤ i− 1, 2 ≤ j ≤ i− 1,
∂F−

ij

∂x −
1
µi

∂F−
ij

∂y = 0,
∂H−

ij

∂x −
1
µi

∂H−
ij

∂y = 0,

with boundary conditions defined for all x ∈ [0, 1],

if 1 ≤ i ≤ n, F+
ij (x, 0) =

{
Γ̄+
i1(x)− Γ+

i1(x), if j = 1,

−Γ+
ij(x), if 2 ≤ j ≤ m, (9.28)

H+
ij (x, 0) = Γ̄+

ij(x), 2 ≤ j ≤ m,
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if 2 ≤ i ≤ m, F−
ij (x, 0) =

{
Γ̄−
i1(x)− Γ−

i1(x), if j = 1,

−Γ−
ij(x), if 1 < j ≤ i− 1,

3 ≤ i ≤ m, H−
ij (x, 0) = Γ̄−

ij(x), 1 ≤ j ≤ i− 1,

and for all y ∈ [0, 1
µm

], for 1 ≤ i ≤ n,

M+
ij (0, y) =

m∑
k=j+1

1[0, 1
µk

](y)(Q0)ikF
−
kj(0, y), 1 ≤ j ≤ m− 1,

N+
ij (0, y) =

m∑
k=j+1

1[0, 1
µk

](y)(Q0)ikH
−
kj(0, y), 2 ≤ j ≤ m− 1. (9.29)

Figure 9.2 – Schematic representa-tion of kernels F+
1j , F+

2j , F
+
nj on theirdefinition domain

Figure 9.3 – Schematic representation of ker-nels M+
1j , M+

2j ,M
+
nj on their definition do-main

We have the following Lemma
Lemma 9.2.2: Well-posedness of the kernels equations

The system of 4nm + (m − 1)2 transport equations (9.27) with boundary conditions
(9.28)-(9.29) admits a unique piecewise continuous solution on its definition domain.

Proof : First, there are 4× nm kernels defined in (9.26) and m(m−1)
2

+
(m−1)(m−2)

2
= (m− 1)2 in (9.25),

which all satisfy pure transport equations on their definition domain. Using the method of characteristics in
the transport equations (9.27), we prove that each kernel is entirely defined by the corresponding boundary
condition (9.28)-(9.29). This is schematically illustrated in Figures 9.2-9.3. We first define kernelsF±

ij , H
±
ij usingtheir boundary value inx ∈ [0, 1], y = 0. Their regularity depends on the couplingmatrices Γ̄,Γ on [0, 1]. Then,

we define kernelsM+
ij , N

+
ij using their value in y ∈ [0, 1

µm
]. We finally obtain

for 1 ≤ i ≤ n, ∀(x, y) ∈ T +
λi
,

F+
ij (x, y) = δj1Γ̄

+
i1(x− λiy)− Γ+

ij(x− λiy), 1 ≤ j ≤ m,

H+
ij(x, y) = Γ̄+

ij(x− λiy), 2 ≤ j ≤ m,
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∀(x, y) ∈ P+
1

µm
,λi
,

M+
ij (x, y) =

∑m
k=j+1 1[ x

λi
, 1
µk

+ x
λi

](y)(Q0)ikF
−(0, y − x

λi
), (1 ≤ j ≤ m− 1),

N+
ij (x, y) =

∑m
k=j+1 1[ x

λi
, 1
µk

+ x
λi

](y)(Q0)ikH
−(0, y − x

λi
), (1 ≤ j ≤ m− 1).

for 2 ≤ i ≤ m, ∀(x, y) ∈ T −
µi
,

F−
ij (x, y) = δj1Γ̄

−
i1(x+ µiy)− Γ−

ij(x+ µiy), 1 ≤ j ≤ i− 1,

H−
ij (x, y) = Γ̄−

ij(x+ µiy), 2 ≤ j ≤ i− 1.

All kernels are bounded by boundedness of functions Γ±, Γ̄± on [0, 1]. ■

Note that, due to the strict triangular structure of the kernels in (9.23), we can get rid
of the dependence in γ̄(·, 0) in (9.23)-(9.24). More precisely, we have the following lemma

Lemma 9.2.3: Expression of an equivalent transform

There exist piecewise continuous functions F−
ij (1 ≤ j < i), M−

ij (1 ≤ j ≤ i − 2), for
i ≤ m, defined on T −

µi , P−
bij ,µi

respectively, with bij =∑i−1
k=j+1

1
µk
; andF+

ij (1 ≤ j ≤ m),
M+

ij , (1 ≤ j ≤ m − 1), for i ≤ n, defined on T +
λi
, P+

τ̄ ,λi
, respectively, such that the

transform defined in (9.23)-(9.24) can be rewritten equivalently as

γ̄−i (t, x) =γ
−
i (t, x) +

∫ 1−x
µi

0

i−1∑
j=1

F−
ij (x, y)γ

−
j (t− y, 0)dy (9.30)

+
i−2∑
j=1

∫ bij+
1−x
µi

1−x
µi

M−
ij (x, y)γ

−
j (t− y, 0)dy,

γ̄+i (t, x) =γ
+
i (t, x) +

∫ x
λi

0

m∑
j=1

F+
ij (x, y)γ

−
j (t− y, 0)dy (9.31)

+
m−1∑
j=1

∫ Aj+
x
λi

x
λi

M+
ij (x, y)γ

−
j (t− y, 0)dy, with Aj = 1

µm
+

m∑
k=j+1

1

µk
.

Proof : The expression of the kernels defined in Lemma 9.2.3 are obtained recursively. For any integer
i ≤ m, consider the recursive propositionP−

i : “there exist piecewise continuous functionsF−
ij (1 ≤ j ≤ i−1),

M−
ij (1 ≤ j ≤ i − 2) defined on T −

µi
, P−

bij ,µi
respectively, such that, for all γ− ∈ χl, functions γ̄i defined in

(9.23) and (9.30) are equal".
Initialisation: First, P−

1 is satisfied. Indeed, we have, for all (t, x) ∈ [0,+∞)× [0, 1],
γ̄−1 (t, x) = γ−1 (t, x) from (9.23)

= γ̄−1 (t, x) from (9.30),
so the two transforms define the same function.
Heredity: Now assume thatP−

k is satisfied for k < i, and let us show thatP−
i is satisfied. Starting from (9.23),

we have

γ̄−i (t, x) = γ−i (t, x) +

∫ 1−x
µi

0

i−1∑
j=1

F−
ij (x, y)γ

−
j (t− y, 0) +

i−1∑
j=2

H−
ij (x, y)γ̄

−
j (t− y, 0)dy,

= γ−i (t, x) +

∫ 1−x
µi

0

i−1∑
j=1

F−
ij (x, y)γ

−
j (t− y, 0)dy

+

∫ 1−x
µi

0

i−1∑
j=2

H−
ij (x, y)

γ−j (t− y, 0) +

∫ 1
µj

0

j−1∑
k=1

F−
jk(0, s)γ

−
k (t− y − s, 0)ds

+

j−2∑
k=1

∫ bjk+
1
µj

1
µj

M−
jk(0, s)γ

−
k (t− y − s, 0)ds

 dy by induction hypothesis.
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We then use (a) a change of variables in the two double integral terms, then (b) we invert the two integrals,
taking care of several case disjunctions on the domain, (c) we invert the terms of the sum, and finally (d) we
decompose the integral term to obtain

γ̄−i (t, x) = γ−i (t, x) +

∫ 1−x
µi

0

i−1∑
j=1

F−
ij (x, y) + δj≥2H

−
ij (x, y)

+

i−1∑
k=j+1

δj≤i−2I
F
ijk(x, y) + δj≤i−3I

M
ijk(x, y)

 γ−j (t− y, 0)dy

+

i−2∑
j=1

∫ bij+
1−x
µi

1−x
µi

[

i−1∑
k=j+1

JF
ijk(x, y) + δj≤i−3J

M
ijk(x, y)]γ

−
j (t− y, 0)dy,

with for all z ∈ [0, 1], y ∈ [0, bij + 1−x
µi

] and j ≤ i − 2, j + 1 ≤ k ≤ i − 1, denote Hf
ijk(x, y, s) =

H−
ik(x, s)F

−
jk(0, y − s),

IF
ijk(x, y) = 1[1− µi

µk
,1](x)

∫ y

0
Hf

ijk(x, y, s)ds

+ 1[0,1− µi
µk

](x)

1[0, 1
µk

](y)

∫ y

0
Hf

ijk(x, y, s)ds+ 1
[ 1
µk

, 1−x
µi

]
(y)

∫ y

y− 1
µk

Hf
ijk(x, y, s)ds

 ,
JF
ijk(x, y) = 1[0,1− µi

µk
](x)

1
[ 1−x

µi
, 1−x

µi
+ 1

µk
]
(y)

∫ 1−x
µi

y− 1
µk

Hf
ijk(x, y, s)ds


+ 1[1− µi

µk
,1](x)

1
[ 1−x

µi
, 1
µk

]
(y)

∫ 1−x
µi

0
Hf

ijk(x, y, s)ds+ 1
[ 1
µk

, 1
µk

+ 1−x
µi

]
(y)

∫ 1−x
µi

y− 1
µk

Hf
ijk(x, y, s)dsds

 ,
and for all z ∈ [0, 1], y ∈ [0, bij + 1−x

µi
] and j ≤ i − 3, j + 1 ≤ k ≤ i − 1, denote Hm

ijk(x, y, s) =

H−
ik(x, s)M

−
jk(0, y − s),

IM
ijk(x, y) = 1[1−µibkj ,1]

(x)

[
1
[ 1
µk

, 1−x
µi

]
(y)

∫ y− 1
µk

0
Hm

ijk(x, y, s)ds

]

+ 1[0,1−µibkj ]
(x)

[
1[ 1

µk
,bk+1,j ]

(y)

∫ y− 1
µk

0
Hm

ijk(x, y, s)ds+ 1
[bk+1,j ,

1−x
µi

]
(y)

∫ y− 1
µk

y−bk+1,j

Hm
ijk(x, y, s)ds

]
,

JM
ijk(x, y) = 1[0,1−µibkj ]

(x)

[
1
[ 1−x

µi
, 1−x

µi
+bk+1,j ]

(y)

∫ 1−x
µi

y−bk+1,j

Hm
ijk(x, y, s)ds

]

+ 1[1−µibkj ,1]
(x)

[
1
[ 1−x

µi
, 1
µk

+ 1−x
µi

]
(y)

∫ y− 1
µk

0
Hm

ijk(x, y, s)ds

+1
[ 1
µk

+ 1−x
µi

,bk+1,j ]
(y)

∫ 1−x
µi

0
Hm

ijk(x, y, s)ds+ 1
[bk+1,j ,bk+1,j+

1−x
µi

]
(y)

∫ 1−x
µi

y−bk+1,j

Hm
ijk(x, y, s)ds

]
.

From there, we can derive the expression

F−
ij (x, y) = F−

ij (x, y) + δj≥2H
−
ij (x, y) +

i−1∑
k=j+1

δj≤i−2I
F
ijk(x, y) + δj≤i−3I

M
ijk(x, y),

M−
ij (x, y) =

i−1∑
k=j+1

JF
ijk(x, y) + δj≤i−3J

M
ijk(x, y),

to match definition (9.30).
By induction, the proposition P−

k is true for all 1 ≤ k ≤ m. From then, we can obtain the expressions of
F+

ij ,M
+
ij in (9.31). Starting from (9.24), we replace γ̄j(t − y, 0) in the affine terms by the expression (9.30).
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As before, to rewrite the corresponding expression in the form (9.31), we do (a) a change of variables in the
two double integral terms, then (b) we invert the two integrals, taking care of several case disjunctions on the
domain, that results in the use of indicator function, (c) we invert the termsof the sumandexchange the indices,
and finally (d) we decompose the integral termon [0, x

λi
] and [ x

λi
, Aj+

x
λi

]. After these technical computations,
we obtain the expressions ofF+

ij ,M
+
ij as functions of F+

ij , H
+
ij ,F

−
jk,M

−
jk andH+

ij ,M
+
ij , N

+
ij ,F

−
jk,M

−
jk , k ≤

j − 1 respectively. ■

Note that the proposed affine transformation is defined and invertible for t > t⋆ =

mτ̄ . Therefore, the stability properties of the closed-loop system are equivalent to the one
of the target system only after a transient time. Finally, we have the following theorem

Theorem 9.2.1: Invertibility of the time-affine transform

The transform defined component-wise by (9.23)-(9.24) is boundedly invertible on χ, for
all t > mτ̄ .
Proof : We prove the invertibility of the transform defined by (9.23)-(9.24) by induction component-wise.
Consider the following proposition, for 1 ≤ i ≤ m, Pi: "For all t ∈ [mτ̄,+∞), γ̄−i (t, ·) can be expressed in
function of γ−j (t, ·) ∈ H1([0, 1],Rn+m), γ−i (·, 0) ∈ Dτj , for 1 ≤ j ≤ i and γ̄−

j′ (·, 0) ∈ Dτj′ , for 1 ≤ j′ < i."
First, since γ−1 (t, x) = γ̄−1 (t, x), propositionP1 is true. Next, assumePj is satisfied for j < i, and let us prove
that Pi is true. By induction, the terms in (9.23) are well defined. In particular, we have

γ̄−i (t, 0) = γ−i (t, 0)︸ ︷︷ ︸
known on [t− τi, t]

+

∫ 1
µi

0

i−1∑
j=1

F−
ij (0, y)γ

−
j (t− y, 0) +

i−1∑
j=2

H−
ij (0, y)γ̄

−
j (t− y, 0)

︸ ︷︷ ︸
known on [t− τj + 1

µi
, t] ⊂ [t− τi, t]

dy,

such that Pi is satisfied. The inverse transform is immediately given by

γ−i (t, x) = γ̄−i (t, x) +

∫ 1−x
µi

0

i−1∑
j=1

F̄−
ij (x, y)γ̄

−
j (t− y, 0) +

i−1∑
j=2

H̄−
ij (x, y)γ

−
j (t− y, 0)dy,

with H̄−
ij (x, y) = −F−

ij (x, y) and F̄−
ij (x, y) = −δj1F−

i1 (x, y)− δj>1H
−
ij (x, y).Next, the transform (9.24) is a well-defined affine transform. For all 1 ≤ i ≤ n, we have

γ̄+i (t, x) = γ+i (t, x) +

∫ x
λi

0

m∑
j=1

F+
ij (x, y)γ

−
j (t− y, 0) +

m∑
j=2

H+
ij(x, y)γ̄

−
j (t− y, 0)

︸ ︷︷ ︸known on [t−τj+
1
λi

,t]

dy

+

∫ 1
µm

+ x
λi

x
λi

m−1∑
j=1

M+
ij (x, y)γ

−
j (t− y, 0) +

m−1∑
j=2

N+
ij (x, y)γ̄

−
j (t− y, 0)

︸ ︷︷ ︸known on [t−τj+
1

µm
+ 1

λi
,t]

dy,

which is well defined since, ∀ 1 ≤ j ≤ m, τj > τm ≤ 1
λi

and ∀ 1 ≤ j ≤ m− 1, τj > τm−1 ≤ 1
µm

+ 1
λi
. The

expression of the inverse transform is straightforward. The boundedness of the transform is derived from the
boundedness of the kernels and integral operators. ■

Note that though the general operator derived from transform (9.23)-(9.24) is de-
fined on χ, we only here consider the particular case where for t ≥ t⋆, the function in
Dτ [t] corresponds to the past values of a subpart of the boundary state at time t de-
fined in H1([0, 1],Rn+m) (more precisely, the subpart solution of the leftward convecting
equations defined in H1([0, 1],Rm)). We restrict the use of this transform on the space
χ∗ = H1([0, 1],Rn+m) × D∗

τ , with D∗
τ = H1([t⋆ − τ1, t⋆],R) × H1([t⋆ − τ2, t⋆],R) × ... ×
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H1([t⋆ − τm, t⋆],R). This will imply specific asymptotic stability properties in the different
norms.

Alternative formulation
An alternative definition to the affine transform can be found, which does not neces-

sitate a recursive definition of the state, to the price of more intricated kernel equations.
Define the quadrilateral domains Q−

bij ,µi
= T −

µi ∪ P
−
bij ,µi

and Q+
Aj ,λi

= T +
λi
∪ P+

Aj ,λi
.

Lemma 9.2.4: Alternative expression of the time-affine transform

There exist piecewise continuous functions N −
ij , for 2 ≤ i ≤ m, and 1 ≤ j < i, defined

onQ−
bij ,µi

with bij =∑i−1
k=j+1

1
µk
, andN +

ij for 1 ≤ i ≤ n, 1 ≤ j ≤ m, defined onQ+
Aj ,λi

,
such that the transform defined in (9.23)-(9.24) can be rewritten equivalently as

γ̄−i (x) = γ−i (x) +

∫ bij+
1−x
µi

0

i−1∑
j=1

N −
ij (x, y)γ

−
j (t− y, 0)dy, (9.32)

γ̄+i (x) = γ+i (x) +
m∑
j=1

∫ Aj+
x
λi

0
N +
ij (x, y)γ

−
j (t− y, 0)dy. (9.33)

Proof : Using Lemma 9.2.3, it is equivalent to show that transforms (9.30)-(9.31) and (9.32)-(9.33) are equiv-
alent. Introduce D−

µi
= {(x, y) ∈ T −

µi
| y = 1−x

µi
} and D+

λi
= {(x, y) ∈ T +

λi
| y = x

λi
} two one-dimensional

spaces. This can be seen directly by defining

for all 2 ≤ i ≤ m, 1 ≤ j ≤ i− 1, N −
ij (x, y) =

{
F−

ij (x, y), ∀(x, y) ∈ T −
µi

M−
ij (x, y), ∀(x, y) ∈ P−

bij ,µi
\D−

µi

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, N +
ij (x, y) =

{
F+

ij (x, y), ∀(x, y) ∈ T +
λi

M+
ij (x, y), ∀(x, y) ∈ P+

Aj ,λi
\D+

λi

.

■

Equivalently, using the backstepping methodology, the kernels are defined as the
unique solution of the following set of equations

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, ∀ (x, y) ∈ Q+
Aj ,λi

,

∂N +
ij

∂y
+ λi

∂N +
ij

∂x
=

m∑
k=j+1

1[0, 1
µk

](y)Γ̄
+
ik(x)N

−
kj (0, y), (9.34)

for 2 ≤ i ≤ m, 1 ≤ j ≤ i− 1, ∀ (x, y) ∈ Q−
bij ,µi

,

∂N −
ij

∂y
− µi

∂N −
ij

∂x
=

i−1∑
k=j+1

1[0, 1
µk

](y)Γ̄
−
ik(x)N

−
kj (0, y), (9.35)

with boundary conditions

for 1 ≤ i ≤ n, 1 ≤ j ≤ m,
∀z ∈ [0, 1], N +

ij (x, 0) = Γ̄+
ij(x)− Γ+

ij(x),

∀y ∈ (0, Aj ], N +
ij (0, y) =

∑m
k=j+1 1[0, 1

µk
](y)(Q0)ikN

−
kj (0, y),

(9.36)
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for 2 ≤ i ≤ m, 1 ≤ j ≤ i− 1,
∀z ∈ [0, 1], N −

ij (x, 0) = Γ̄−
ij(x)− Γ−

ij(x),

∀y ∈ ( 1
µi
, bij +

1
µi
], N −

ij (0, y) = 0.
(9.37)

Lemma 9.2.5: Well-posedness of the kernel equations

The system of nm+ m(m+1)
2 transport equations (9.34)-(9.35) with boundary conditions

(9.36)-(9.37) admits a unique bounded C1pw solution on its definition domain.
Proof : We recursively prove the well-posedness of the kernel equations (9.34)-(9.35). Let us first prove the
existence of a unique solution for the m(m+1)

2
partial differential equations (9.35), withm(m + 1) boundary

conditions (9.37). Their quadrilateral domain is illustrated on Figure 9.4 (left), in the case bij ≤ 1
µi
. For any

integer i ≤ m, consider the recursive proposition P−
i : “For all 1 ≤ j ≤ i − 1, equation (9.35)ij with boundary

condition (9.37)ij admits a unique solution N −
ij ∈ C1

pw(Q−
bij ,µi

)".
Initialisation: For i = 2, N21 satisfies a pure transport equation. By the method of characteristics, we can
express its values on its definition domain T −

µ1 using the boundary value in y = 0: ∀(x, y) ∈ T −
µ1 , N21 =

Γ̄−
21(z + µ1y)− Γ−

21(z + µ1y). Its regularity depends on the one of Γ21, Γ̄21.
Heredity: We nowassume that propositionP−

i−1 is satisfied, and show thatP−
i is true. Starting from j = i−1,

N −
i,i−1 is entirely defined on T −

µi
by N −

i,i−1 = Γ̄−
i,i−1(z + µiy) − Γ−

i,i−1(z + µiy). Next, for any j ≤ i − 2,
using the method of characteristics in (9.35), we have

∀(x, y) ∈ T −
µi
, N −

ij (x, y) = (Γ̄−
ij − Γ−

ij)(z + µiy) +

∫ y

0

i−1∑
k=j+1

1[0, 1
µk

](y − s)Γ̄−
ik(z + µis)N

−
kj (0, y − s)ds,

∀(x, y) ∈ P−
bij ,µi

\D−
µi
, N −

ij (x, y) =

∫ x
µi

0

i−1∑
k=j+1

1[0, 1
µk

](y + s)Γ̄−
ik(z − µis)N

−
kj (0, y + s)ds.

By induction, the kernelN −
ij is then uniquely defined on its definition domain. It is piecewise continuous since

a discontinuity can, for instance, occur along D−
µi

= T −
µi

∩ P−
bij ,µi

.
We proceed similarly to prove the well-posedness of the n×m kernel equations (9.34), (9.36). ■

Figure 9.4 – Schematic representation of kernels N +
ij , N −

ij on their definition domain
Remark 9.2.1 Similarly to what was done in (9.25)-(9.26), the transform (9.32)-(9.33) or equiv-
alently (9.30)-(9.31) can be rewritten in a condensed matrix form

γ̄−(t, x) = γ−(t, x) +
∫ bm1+

1−x
µm

0 N −(x, y)γ−(t− y, 0)dy,

γ̄+(t, x) = γ+(t, x) +
∫ A1+

x
λm

0 N +(x, y)γ−(t− y, 0)dy.
(9.38)

defining adequate matrix kernels N −, N + using indicator functions.
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9.3 . Control law

We can finally determine the adequate control input V (t) to ensure that transform
(9.19) with the kernels defined above map system (9.21)-(9.22) with in-domain coupling
terms given by (9.20) to the initial target system (9.3)-(9.4). We could recursively define
each control law component using (9.23). For the sake of simplicity, we use expression
(9.38). We can then define the control input as

V (t) = V̄γ(t)−R1γ
+(t, 1)− I1(t)−

∫ bm1

0
N −(x, y)γ−(t− y, 0)dy. (9.39)

Using the different transforms and the definition of V̄γ(t), the control law (9.39), defined
for t > mτ̄ , could be rewritten with distributed values of the original and target states.
V (t) = V̄ (t)−R1ξ

+(t, 1)−
∫ 1

0
K̄−+(1, y)ξ̄+(t, y) + K̄−−(1, y)ξ̄−(t, y)dy (9.40)

+

∫ 1

0
K−+(1, y)ξ+(t, y) +K−−(1, y)ξ−(t, y)dy −

∫ bm1

0
N −(1, y)ξ−(t− y, 0)dy.

To implement the control law, we need access to the distributed values of the states
ξ(t, x) and ξ̄(t, x) and the history of ξ−(·, 0) over an interval [0, bm1] ⊂ [0,mτ ]. An ob-
server design could be proposed using boundary measurements to solve this drawback
[HDMVK16, AA19]. An output-feedback control law can then be obtained. Using the su-
perposition principle, we can show that if the error converges exponentially to zero, then
the closed-loop system (9.1)-(9.2) with control input (9.39) is still exponentially stable.

Let us prove that the initial and target systems have equivalent asymptotic stability
properties. First, we have the following lemma

Lemma 9.3.1: Equivalent asymptotic norm properties

There exists two constants κ0 and κ1, such that for any t > t∗, and 0 < r <

min( 1
µ1
, 1
2m∥Γ−∥2∞

),
κ0∥γ−[t+r](·, 0)∥r ≤ ∥γ

−(t, .)∥L2 ≤ κ1∥γ−[t+ 1
µm

]
(·, 0)∥ 1

µm

. (9.41)
The exponential stability of γ−(t, ·) in the sense of the L2− norm is equivalent to the
exponential stability of γ−[t](., 0) in the sense of the D 1

µm

−norm.

Proof : This lemma is inspired from [ADM19]. The right member of inequality (9.41) derives from rewriting
of γ−(t, x) as future values of γ−(·, 0). In what follows, C will be an overloaded constant. Using the methods
of characteristics, we have, for t > t∗,

∥γ−(t, .)∥2
L2 =

∫ 1

0

m∑
i=1

γ−i (t, ν)2dν by definition

=

m∑
i=1

∫ 1

0
(γ−i (t+

ν

µi
, 0) +

∫ ν
µi

0

i−1∑
k=1

Γ−
ik(ν − µis)γ

−
k (t+ s, 0)ds)2dν

≤ 2

(
m∑
i=1

∫ 1

0
γ−2
i (t+

ν

µi
, 0)dν +

m∑
i=1

∫ 1

0

∫ ν
µi

0

i−1∑
k=1

Γ−2
ik (ν − µis)γ

−2
k (t+ s, 0)dsdν

)
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≤ 2

(
µ1

∫ 1
µm

0

m∑
i=1

γ−2
i (t+ s, 0)ds+m

∫ 1
µi

0

m∑
k=1

∥Γ−∥2∞γ−2
k (t+ s, 0)ds

)
≤ C∥γ−

[t+ 1
µm

]
(., 0)∥2 1

µm

using a time translation.

Similarly, we can obtain the left-hand side of inequality (9.41)
∫ r

0

m∑
i=1

γ−i (t+ s, 0)2ds =

∫ r

0

m∑
i=1

(γ−i (t, µis)−
∫ s

0

i−1∑
k=1

Γ−
ik(µi(s− ν))γ−k (t+ ν, 0)dν)2ds

≤ 2
m∑
i=1

∫ µir

0

1

µi
γ−2
i (t, s)ds+

m∑
i=1

∫ r

0

∫ s

0
∥Γ−∥2∞

i−1<m∑
k=1

γ−2
k (t+ ν, 0)dνds

≤ 2

m∑
i=1

∫ 1

0

1

µi
γ−2
i (t, s)ds+

m∑
i=1

∫ r

0

∫ r

0
∥Γ−∥2∞

i−1<m∑
k=1

γ−2
k (t+ ν, 0)dνds

≤
2

µm
∥γ−(t, .)∥2

L2 + 2mr∥Γ−∥2∞∥γ−
[t+r]

(., 0)∥2r

=⇒ 0 <
µm

2
(1− 2mr∥Γ−∥2∞)∥γ−

[t+r]
(., 0)∥2r ≤ ∥γ−(t, .)∥2

L2 since r < 1

2m∥Γ−∥2∞
.

Let us now show that the exponential stability of ∥γ−(t, ·)∥ in the sense of the L2−norm is equivalent to
the exponential stability of ∥γ−

[t]
(., 0)∥ in the sense of the D 1

µm

−norm. Let us consider first that γ−(., 0) is
exponentially stable in the sense of the D 1

µm

−norm. By definition, for any η > 0, there exists C0 > 0, ν > 0

such that for all t > max{t∗, η},
∥γ−

[t]
(., 0)∥ 1

µm

≤ C0e
−νt∥γ−

[η]
(., 0)∥ 1

µm

.

Then, for all t > t∗,
∥γ−(t, .)∥L2 ≤ κ1∥γ−

[t+ 1
µm

]
(·, 0)∥ 1

µm

by (9.41)
≤ C0e

− ν
µm κ1e

−νt∥γ−
[η]

(., 0)∥ 1
µm

.

We can decompose the term ∥γ−
[η]

(., 0)∥− 1
µm

using a finite number of terms defined on intervals of length r,
with r defined in Lemma 9.3.1. Define nr = max

k∈N
(kr ≤ 1

µm
). We have

∥γ−
[η]

(., 0)∥2 1
µm

=
m∑
i=1

∫ 0

− 1
µm

γ−2
i (η + s, 0)ds

≤
m∑
i=1

nr∑
k=0

∫ −kr

−(k+1)r
γ−2
i (η + s, 0)ds =

m∑
i=1

nr∑
k=0

∫ 0

−r
γ−2
i (η + s− kr, 0)ds

=

nr∑
k=0

∥γ−
[η−kr]

(., 0)∥2r ≤
nr∑
k=0

1

κ20
∥γ−(η − (k + 1)r, .)∥2

L2 . (9.42)

Choosing η such that nr + 1 ≤ η < 2t⋆ and since system (9.16)-(9.17) is well-posed, there exists κ > 0, such
that ∥γ−(η − (k + 1)r, .)∥L2 ≤ κ∥γ−0 ∥L2 . We finally obtain

∥γ−(t, .)∥L2 ≤ C0
κ1

κ0
κ(nr + 1)e

− ν
µm e−νt∥γ−0 ∥2

L2 .

This implies the exponential stability of γ− in the sense of the L2−norm. We can use the same arguments
to prove that the exponential stability of γ− in the sense of the L2−norm implies the exponential stability of
γ−(., 0) in the sense of the D 1

µm

−norm. ■

We finally have the theorem
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Theorem 9.3.1: Asymptotic stability properties of the solutions

Let us choose Σ̄±±, Σ̄∓± and V̄ (t) such that, for all initial conditions (ξ̄+0 (x), ξ̄−0 (x)) ∈
H1([0, 1],R(n+m)) satisfying the appropriate compatibility conditions, the solution of
(9.3)-(9.4) is exponentially stable in the sense of the L2−norm. Then, for any initial
conditions (ξ+0 (x), ξ−0 (x)) ∈ H1([0, 1],R(n+m)) satisfying the appropriate compatibility
conditions, the solution of (9.1)-(9.2)with control input defined by (9.39) is exponentially
stable in the sense of the L2−norm.

Proof : First, we can straightforwardly extend the definitions of transforms K, K̄ on χ∗. Indeed, these
Volterra integral transforms do not affect the boundary value in x = 0, and remain, therefore boundedly
invertible on χ∗. From [CVKB13], the exponential stability of state (γ+, γ−) satisfying closed-loop target sys-
tem (9.16)-(9.17), in the sense of the L2−norm, is equivalent to the one of the initial state (ξ+, ξ−) satisfying
the closed loop initial system (9.1)-(9.2). Similarly, the exponential stability of state (ξ̄+, ξ̄−) satisfying target
system (9.3)-(9.4), in the sense of the L2−norm, is equivalent to the one of the initial state (γ̄+, γ̄−) satisfy-
ing system (9.21)-(9.22). Let us now prove that the exponential stability of state (γ̄+, γ̄−) in the sense of the
L2−norm implies the one of state (γ+, γ−) using Lemma 9.3.1. First, let us extend definition (9.23)-(9.24) for
t ∈ [0, t⋆] by the identity function. We prove the exponential stability of γ−. The exponential stability of γ+
and consequently the one of the state (γ−, γ+) is proven similarly.
For η > t⋆ sufficiently big, there exists Cη , ν > 0, such that ∥γ−(t, ·)∥L2 ≤ Cηe−νt∥γ−(η, ·)∥L2 . Next, using
the inverse transform of (9.30), we have
∫ 1

0

m∑
i=1

γ−2
i (t, s)ds =

∫ 1

0

m∑
i=1

γ̄−i (t, s) +

∫ 1−s
µi

0

i−1∑
j=1

F̄−
ij (s, y)γ̄

−
j (t− y, 0)dy

+

i−2∑
j=1

∫ bij+
1−s
µi

1−s
µi

M̄−
ij (s, y)γ̄

−
j (t− y, 0)dy

2

ds,

≤ 2

(∫ 1

0

m∑
i=1

γ̄−2
i (t, s)ds+m∥F̄−∥2∞∥γ̄−

[t]
(·, 0)∥2 1

µm

+m∥M̄−∥2∞∥γ̄−
[t]
(·, 0)∥2m

µm

)
.

(9.43)
Using inequality (9.42), there exists k1 > 0 such that ∥γ−

[t]
(., 0)∥2 1

µm

≤ k1e−νt∥(γ+0 , γ
−
0 )∥2

L2 .
Similarly, we can show that there exists k2 > 0 such that ∥γ−

[t]
(., 0)∥2m

µm

≤ k1e−νt∥(γ+0 , γ
−
0 )∥2

L2 .
Injecting this in the above equation implies that

∥γ−(t, ·)∥2
L2 ≤ ∥γ̄−(t, ·)∥2

L2 +m(k1∥F̄−∥2∞ + k2∥M̄−∥2∞∥)∥γ̄−
[t]
(·, 0)∥2− 1

µm

≤ C̄ηe
−νt∥γ̄−(η, ·)∥2

L2 .

Injecting in equation (9.43), there exists a constant C1 > 0 such that for all t > 2t⋆, we have
∥γ̄−(t, .)∥2

L2 ≤ e−νt∥(γ+0 , γ
−
0 )∥2

L2 .

This last inequality still holds when t ≤ 2t⋆ due to the well-posedness of the open-loop system. Similarly, using
transformation (9.24), we can show the existence of a constant C2 such that for all t > 0

∥γ̄+(t, .)∥2
L2 ≤ e−νt∥(γ+0 , γ

−
0 )∥2

L2 .

Consequently, the system (9.21)-(9.22) is exponentially stable. The converse can be proved using the inverse
transformation defined in the proof of Theorem 9.2.1. ■
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Conclusion

This chapter presented a full-state feedback boundary controller design inspired by
the backstepping methodology. The methodology is based on successive classic Volterra
integral transforms and an innovative time-affine transform. As a result, implementing
the control input requires the knowledge of past values of some boundary terms. It allows
mapping a general linear hyperbolic PDE system actuated at one boundary to another
target system of the same structure with arbitrarily chosen in-domain coupling terms. In
particular, we could remove all in-domain couplings by imposing Σ̄ = 0. Choosing such
simple target systems allows for a simpler analysis of closed-loop properties. In partic-
ular, the design of Lyapunov functionals is simplified for conservation laws. It could be
highly interesting for event triggered control [WK21]. However, for robustness concerns or
reduction of the control effort, keeping the in-domain couplings that tend to stabilize the
initial system could be more relevant. In Chapter 10, we study how the Port Hamiltonian
Framework can greatly help design target systems with a physical meaning. The asymp-
totic stability properties of the closed-loop system follow the ones of the target system.
As already mentioned, the proposed controller should be coupled with an observer, such
as the one proposed in [HDMVK16, WAA21].
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10 - On the use of the Port-Hamiltonian framework
to determine adequate target systems

In Chapter 9, we introduced an innovative time-affine transform to design a full-state
feedback boundary controller. It allowed to map a general class of hyperbolic PDE sys-
tems to an arbitrary target system with the same structure, and ensured that both sys-
tems share the same asymptotic stability properties. We briefly discussed adequate choi-
ces of target systems, such as exponentially stable target systems derived from LMIs. This
chapter presents how thePortHamiltonian framework can be used to derive target sys-
tems with a physical meaning, allowing trade-offs between different performance speci-
fications. Port-Hamiltonian systems (PHS) [MvdS93] were first introduced to represent
non-resistive physical systems in interaction with their environment. This framework was
extended to infinite dimensional systems as distributed PHS [vdSM02], and has since been
widely used to model and control systems described by PDEs [Vil07, JZ12]. Indeed, this
approach has proven very efficient in establishing the well-posedness and stability prop-
erties of infinite dimensional systems controlled at one boundary [VZLGM09]. As shown
in Section 10.1, it offers a physical framework that could match the class of hyperbolic
target systems (9.3)-(9.4) considered in Chapter 9. Under some structural assumptions,
choosing a target systemwith interesting stability properties is possible. We state general
results on boundary-controlled systems following the formalism used in [Vil07, LGZM05].
We then present the steps necessary to match the general class of target systems. Intro-
ducing natural tuning parameters and adding degrees of freedom (e.g., the dissipation
rate) with a clear energy interpretation is essential for the practical implementation of
backstepping controllers. This strategy can be applied to add in-domain damping to vi-
brating strings or flexible beams. It is illustrated in Section 10.2 on the low-dimensional
case of a clamped string with space-varying coefficients and then in Section 10.3 in the
more complex case of a clamped Timoshenko beam. In both cases, the open-loop sys-
tems are already stable. Here, we apply the strategy from Chapter 9 to assign them a
specified closed-loop behavior. More precisely, we ensure the exponential stability of
the closed-loop systems by imposing a specific decay rate on their energy. The target sys-
tems, defined in the Port-Hamiltonian framework, correspond to a copy of the original
one with additional in-domain damping terms with a clear energy interpretation. Both
examples are illustrated with numerical simulations.

Chapitre 10: Utilisation du formalisme Port-Hamiltonien pour le choix
d’un système cible adéquat. Au chapitre 9, une transformation temporelle affine
innovante a été introduite. Elle permet d’envoyer une classe générale de systèmes d’EDP
hyperboliques en boucle fermée sur un système cible arbitraire demême structure. Nous
avons brièvement discuté des choix adéquats de systèmes cibles exponentiellement sta-
bles dérivés d’Inégalités Matricielles Linéaires (LMI). Dans ce chapitre, nous montrons
comment le formalisme Port Hamiltonien permet de déterminer des systèmes cibles
ayant une signification physique. Sous certaines hypothèses, il permet d’obtenir un sys-
tème cible de la classe considérée au chapitre précédent, avec des propriétés de stabil-
ité intéressantes (comme la passivité). Le cadre des systèmes Port-Hamiltoniens (PHS)

195



a été étendu aux systèmes de dimension infinie en tant que PHS distribués [vdSM02].
Il est depuis largement utilisé pour modéliser et contrôler des systèmes d’EDP [Vil07,
JZ12]. En suivant le formalisme utilisé dans [Vil07, LGZM05], nous présentons des ré-
sultats généraux sur les PHS contrôlés à la frontière. Nous présentons les différentes
transformations leur permettant de correspondre à la classe générale de systèmes cibles
(9.3)-(9.4) (Section 10.1). Cela permet d’utiliser la méthode du chapitre 10 en introduisant
des paramètres d’ajustement naturels et en ajoutant des degrés de liberté (par exemple,
le taux de dissipation) avec une interprétation énergétique claire. Le système cible peut
être choisi en utilisant les résultats du formalisme Port-Hamiltonien pour garantir sa sta-
bilité exponentielle en imposant un taux de décroissance spécifique sur l’énergie. Cela
est illustré par deux cas d’études appuyés de simulations numériques. Nous présentons
d’abord une corde avec paramètres physiques variables (Section 10.2), puis une poutre
de Timoshenko encastrée (Section 10.3). Dans les deux cas, le système cible est défini
comme le système initial dans le formalisme port-hamiltonien, mais contient des termes
d’amortissement supplémentaires dans le domaine.
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10.1 . Problem description

This section presents a first-order distributed parameter Port-Hamiltonian system on
a one-dimensional space domain and some of its properties. Under some structural as-
sumptions, we show that they correspond to the general class of hyperbolic PDE systems
(9.1)-(9.2) and (9.3)-(9.4) considered in Chapter 9. Using several invertible transforms, we
establish the relationship between the PHS framework and the Riemann framework con-
sidered in the previous chapter.

10.1.1 . General framework

Following the general formalismgiven in [VZLGM09, JZ12], denoteX(t, x) = [X⊤
1 , X

⊤
2 ]⊤ ∈

H1([0, 1],R2n) the energy state defined on [0,+∞)× [0, 1]. It satisfies
∂X

∂t
= P1

∂

∂x
(H(x)X(t, x)) + (P0 −Π0)H(x)X(t, x), (10.1)

with P1 ∈ R2n×2n a non singular symmetric matrix, and P0 ∈ R2n×2n a skew adjoint ma-
trix. The Hamiltonian H = diag(H1,H2) is a bounded, symmetric and Lipschitz contin-
uous strictly positive matrix-valued function defined on [0, 1], such that for all x ∈ [0, 1],
H(x) ≥ mI with constant m > 0. Matrix Π0 ∈ R2n×2n is a positive semidefinite matrix,
corresponding to in-domain dissipation. The case Π0 = 0 corresponds to lossless hy-
perbolic systems [LGZM05]. The boundary port variables associated to (10.1), known as
boundary effort e∂ and boundary flow f∂ are defined by[

f∂(t)

e∂(t)

]
=

1√
2

[
P1 −P1

I2n I2n

][
H(1)X(t, 1)

H(0)X(t, 0)

]
.
= P

[
H(1)X(t, 1)

H(0)X(t, 0)

]
. (10.2)

Define Ξ =

(
02n I2n

I2n 02n

)
∈ R4n×4n, and W ∈ R2n×4n a full-row rank matrix satisfying

WΞW⊤ ≥ 0. From [VZLGM09, Theorem II.3], system (10.1) with boundary conditions

u∂(t) =W

[
f∂(t)

e∂(t)

]
, (10.3)

is a boundary control system [CZ12]. Next, define W̃ ∈ R2n×4n full rank matrix with
(
W

W̃

)
invertible, and introduce the output of the system as

y(t) = W̃

[
f∂(t)

e∂(t)

]
. (10.4)

For any energy state X ∈ H1([0, 1],R2n), HX denotes the co-energy variable associated
withX , and ∥X∥2H corresponds to its Hamiltonian. This norm is equivalent to the standard
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L2−norm, and corresponds to the total energy of the system E(t). It is defined by
E(t) = 1

2

∫ 1

0

(
X⊤(t, x)H(x)X(t, x)

)
dx = ∥X∥2H.

10.1.2 . Stability considerations
To define a class of adequate exponentially stable target systems for (10.1)-(10.3), con-

sider that u∂(t) = 0, for all t ≥ 0. It was shown in [VZLGM09] that the exponential stability
of (10.1) with (10.3)-(10.4), which is related to the supply rate of energy, is determined by the
input andoutput couplingmatricesW, W̃ . Indeed, in the Port-Hamiltonian framework, the
interaction between different systems can be interpreted as an energy exchange through
a set of well-defined power ports [MLGRZ17]. We have the following

Theorem 10.1.1: Exponential stability of BCS [VZLGM09, Theorem III.2]

Consider a boundary control system defined by (10.1) with (10.3)-(10.4), and u(t) = 0 for
t ≥ 0. If the (2, 2)−block of the matrix

PW,W̃ =

[
WΞW⊤ WΞW̃⊤

W̃ΞW⊤ W̃ΞW̃⊤

]−1

is negative definite, then the system is exponentially stable.
From Theorem [JZ12, Lemma 9.1.4], a natural class of exponentially stable target sys-

tems is defined by
∂

∂t
X̄ = P1

∂

∂x

(
H(x)X̄

)
+ P̄0

(
H(x)X̄

)
, withW

[
f̄∂

ē∂

]
= 02n, (10.5)

with P̄0 ∈ R2n×2n a skew-adjoint matrix, and W satisfying WΞW⊤ > 0. Alternatively, if
P̄0 is not skew-adjoint, as in the case considered in Section 10.3, it suffices to ensure that
there exists k1 > 0, such that the energy decays as

dE
dt
≤ −k1∥(H(1)X̄(t, 1)∥2 or dE

dt
≤ −k1∥(H(0)X̄(t, 0)∥2, (10.6)

to prove the exponential stability of (10.5) by [VZLGM09, Theorem III.2]. Selecting Port-
Hamiltonian systems with a strictly decaying energy as a target system (9.3)-(9.4) offers
an interesting perspective. Instead of suppressing most in-domain couplings, we could
modify them to guarantee a faster exponential decay rate. This change of paradigm is
illustrated in two test cases in Sections 10.2-10.3.

10.1.3 . Structural assumptions
To apply the strategy presented in Chapter 9, we need the considered PHS (10.1)-(10.3)

(or (10.1)-(10.5)) with interesting stability properties to match the class of reachable target
systems (9.3)-(9.4). To do so, we express their Riemann coordinates and suppress some of
the in-domain couplings. First, for constant Hamiltonian, we have the following conjecture
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Conjecture 10.1.1 For all λ ∈ σ(P1H), then −λ ∈ σ(P1H).
If zero is not one of its eigenvalues, matrix P1H is invertible since it has 2 × n opposite
(distinct) eigenvalues. Consequently, P1H is diagonalizable if 0 ̸∈ sp(P1H(x)) and if all
eigenvalues are of multiplicity one. More generally, the PHS must satisfy the following
assumption:
Assumption 10.1.1 For all x ∈ [0, 1], the matrix-valued function P1H(x) is diagonalizable,and 0 is not one of its eigenvalues.
Note that Assumption 10.1.1 is implied by P1 being full-row rank. If 0 ∈ σ(P1H(x)), system(10.1) cannot be rewritten in the general form (9.1), since the dynamics of the correspond-
ing components of state X(t, x) would be described by an ODE. The proposed approach
should be adapted to ODE-hyperbolic PDE interconnections, such as systems considered
in Chapter 4. A second assumption concerns the form of the boundary matrix W . To
rewrite the target system in the hyperbolic PDE formalismwith boundary conditions (9.4),
we need the boundary conditions at both ends of the spatial domain to be decoupled. A
sufficient condition is given by
Assumption 10.1.2 Define W =

[
Ξ1 Ξ2

] a full row rank matrix with WΞW⊤ ≥ 0. Then,
there exists R1 ∈ Rn×n, Q0 ∈ Rn×n such thatWP

.
= WP is diagonal by block, that is, there

existR = [−R1 In] ∈ Rn×2n, Q = [In −Q0] ∈ Rn×2n such that

WP =
[
Ξ2 + Ξ1P1 Ξ2 − Ξ1P1

]
=

[
R 0Rn×2n

0Rn×2n Q

]
.

Moreover, the control input is of form u∂(t) =

[
V (t)

0

]
.

This implies that
[
V (t)

0

]
=

[
RH(1)X̄(t, 1)

QH(0)X̄(t, 0)

]
. Indeed, to apply the approach proposed in

Chapter 9, we need one boundary to be fully-actuated.
10.1.4 . Reformulation as a system of balance laws

Under the assumptions given in the previous section, we can define an exponentially
stable system in the Port Hamiltonian framework (for instance, of the form (10.5)) and
reformulate it as a hyperbolic PDE system of the form (9.3)-(9.4). We first define the Rie-
mann coordinates associatedwith states X̄(t, x) and then performan exponential change
of variables to suppress some coupling terms.

Riemann Coordinates
By Assumption 10.1.1, there exist an invertible matrix-valued function Q(x) ∈ R2n×2n,

and a diagonal matrix valued function Λ(x) defined on [0, 1], such that for all x ∈ [0, 1],
P1H(x) = Q(x)Λ(x)Q−1(x). From conjecture 10.1.1, in the case of constant Hamiltonian,
we would have Λ = diag(λ1, ..., λn,−λ1, ... − λn) with λ1 > λ2 > ... > λn. To rewrite
the target systemwith adequate asymptotic stability properties of the form (10.5), we first
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define a new set of variables ζ̄(t, x) = Q−1(x)X̄(t, x) ∈ H1([0, 1],R2n). It satisfies a similar
set of PDEs with in-domain space-dependent couplings terms

∂ζ̄

∂t
(t, x) + Λ(x)

∂ζ̄

∂x
(t, x) = Σ̄(x)ζ̄(t, x), withWP

[
H(1)Q(1)ζ̄(t, 1)

H(0)Q(0)ζ̄(t, 0)

]
= 0, (10.7)

where Σ̄(x) = [Q−1(x)(P1
∂H
∂x + P̄0H(x))− ∂Q−1(x)

∂x ]Q(x).
Exponential change of variables

To apply the strategy presented in Chapter 9, we first need to suppress the diagonal
coupling terms of Σ̄(x). To do so, we apply an exponential change of variables [CVKB13].
For all x ∈ [0, 1] , we define the invertible matrix-valued function Ā(x) ∈ D+

2n([0, 1]) withdiagonal functions defined for all i ∈ J1, 2nK by
Āii(x) = eĪi(x), with Īi(x) = −

∫ x

0

Σ̄ii(s)

Λii(s)
ds.

We then define the new state variable by ξ̄(t, x) = Ā(x)ζ̄(t, x). It satisfies
∂ξ̄

∂t
(t, x) + Λ(x)

∂ξ̄

∂x
(t, x) = Σ̄(x)ξ̄(t, x), withWP

[
H(1)Q(1)Ā(1)−1ξ̄(t, 1)

H(0)Q(0)ξ̄(t, 0)

]
= 0, (10.8)

where Σ̄ij(x) = [Ā(x)Σ̄(x)Ā−1(x)]ij for i ̸= j, and 0 else. Under Assumption 10.1.2, the
boundary condition rewrites{

H2(1)X̄2(t, 1) = R1H1(1)X̄1(t, 1),

H1(0)X̄1(t, 0) = Q0H2(0)X̄2(t, 0),
=⇒

{
X̄2(t, 1) = H2(1)

−1R1H1(1)X̄1(t, 1),

X̄1(t, 0) = H1(0)
−1Q0H2(0)X̄2(t, 0),

which is of form 9.4. We can now proceed further in the control design.
Using this approach, we were then able to match the class of systems considered in

the previous chapter. Using the Port Hamiltonian framework allows to select target sys-
tems with a physical meaning. Instead of suppressing all the in-domain couplings (which
can be source of instability), we can keep some of them. It can reduce the control effort
by avoiding to cancel terms that naturally tend to stabilize the system. We apply the pro-
posedmethodology on two low dimensional boundary controlled distributed Port Hamil-
tonian systems.

10.2 . Application to a clamped string with space-varying coefficients

A first application to the proposed strategy can be found in damping assignment for
a clamped string. This section gathers results presented in [RALG22a].
Consider a vibrating string clamped at the first end x = 0 and actuated at the other in
x = 1. We denote w(t, x) the vertical position of the string at point x and time t > 0. It
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satisfies
ρ(x)

∂2w

∂t2
(t, x) =

∂

∂x

(
E(x)

∂w

∂x
(t, x)

)
− κ(x)∂w

∂t
(t, x),

with ρ(x), E(x) ∈ C1([0, 1],R)+ being the mass density and Young’s modulus, which are
here space-dependent. The sign of term κ(x) ∈ C0([0, 1],R) characterizes the damping
properties of the system. Note that we do not assume its positiveness. If the above string
equation derives from the linearization of an unstable system, it could be negative (anti-
damping). Initially, the position of the string is given by w(·, 0) = w0 ∈ H1([0, 1],R), and
its speed by ∂w

∂t |t=0 = w1 ∈ H1([0, 1],R), with w0(0) = 0 = w1(0).
10.2.1 . Reformulation in the Port-Hamiltonian framework

We first rewrite the model as a Port-Hamiltonian system in the general framework
given in Section 10.1, with n = 1. The energy state variablesX = [X1, X2]

⊤ ∈ H1([0, 1],R2)

are defined by
X1(t, x) =

∂w

∂x
(t, x), X2(t, x) = ρ(x)

∂w

∂t
(t, x), (10.9)

where X1(t, x) (resp. X2(t, x)) corresponds to the strain (resp. to the momentum). They
satisfy

∂

∂t

(
X1

X2

)
=

 0 ∂
∂x

(
1

ρ(x) ·
)

∂
∂x (E(x)·) −c(x)

(X1

X2

)
, (10.10)

with c(x) = κ(x)
ρ(x) . The first end of the string is clamped, while the other is actuated. It gives

the following boundary conditions
X2(0, t) = 0, E(1)X1(1, t) = u∂(t). (10.11)

Following [JZ12], the equation satisfied by the states is given by (10.1) with n = 1, P0 =

0R2×2 , P1 =

(
0 1

1 0

)
and Π0 =

(
0 0

0 κ(x)

)
.

The Hamiltonian density is given by H(x) = diag(E(x), 1
ρ(x)) ∈ D

+
2 ([0, 1]). The boundaryeffort e∂ and boundary flow f∂ are given by{

e∂ = 1√
2
((HX)(1) + (HX)(0)),

f∂ = 1√
2
(P1(HX)(1)− P1(HX)(0)).

The boundary conditions rewrite, for all t ≥ 0,

W

(
fδ(t)

eδ(t)

)
=

(
V (t)

0

)
, withW =

1√
2

(
0 1 1 0

1 0 0 −1

)
. (10.12)

Using the proposed strategy, we want to impose a specific decay rate to the energy
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of the system E , using a distributed damping assignment. More precisely, we want to make
the dynamics ofX equivalent to the dynamics of X̄ = [X̄1, X̄2]

⊤ satisfying (10.5) with

P̄0(x) =

(
0 0

0 −K(x)

)
.

The closed-loop system will, therefore, asymptotically behave as a damped string with
strictly positive space-varying damping term K(x) > 0. The energy of the closed-loop
system decreases proportionally to this term

dĒ
dt

= −
∫ 1

0
K(y)

(
X̄2(t, y)

ρ(y)

)2

dy. (10.13)
Therefore, we guarantee that the target system has a strictly decreasing energy, with de-
cay rate related to the damping variableK introduced.

10.2.2 . Matching a system of balance laws

By analogy with results from Chapter 9, we define
Λ+(x) = Λ−(x)

.
= λ(x) =

√
E(x)/ρ(x) ∈ R+.

To simplify the notations, we introduce the following functions r(x) =
√
E(x)ρ(x) and

δ(x) =
(
ρ′

ρ + E′

E

)
(x), δ31(x) =

(
3ρ

′

ρ −
E′

E

)
(x), δ13(x) =

(
ρ′

ρ − 3E
′

E

)
(x).

Assumptions 10.1.1-10.1.2 are satisfied. Indeed, since thematrix P1H(x) admits two op-
posite eigenvalues±λ(x), there existsQ ∈ C1([0, 1],R2×2) invertible, such that P1H(x) =
Q(x)diag(λ(x),−λ(x))Q(x)−1. Next, the boundary x = 1 is fully actuated, and the cou-
plings at the boundary are non-zero scalars, so all hypotheses are satisfied for this low
dimensional case.

Original system
First, we rewrite system (10.10)-(10.11) in the Riemann coordinates. The new state vari-

ables [ζ+(t, x), ζ−(t, x)]⊤ = Q−1(x)[X1(t, x), X2(t, x)]
⊤ satisfy two hetero-directional hy-

perbolic PDEs of form (9.1)-(9.2) with in-domain spatially varying continuous coupling terms
Σ++(x) = 1

2

(
−c(x) + λ

2 δ
1
3(x)

)
,

Σ+−(x) = 1
2ρ(x)

(
c(x)
λ(x) −

1
2δ(x)

)
,

Σ−+(x) = E(x)
2

(
c(x)
λ(x) +

1
2δ(x)

)
,

Σ−−(x) = 1
2

(
−c(x)− λ

2 δ
3
1(x)

)
,

and boundary couplings by Q0 ≡ q0 = 1
r(0) and R1 ≡ r1 = −r(1). The control input is

defined by V (t) =
√
2

λ(1)u∂(t). The exponential change of variables [ξ+(t, x), ξ−(t, x)]⊤ =

A(x)[ζ+(t, x), ζ−(t, x)]⊤ fromSection 10.1.4 is givenbyA(x) = diag(f(x)eIc(x), g(x)e−Ic(x)),
with ∀ x ∈ [0, 1], Ic(x) = ∫ x0 c(s)

2λ(s)ds and f(x) =
√

E(x)λ(x)
E(0)λ(0) , g(x) =

√
λ(x)ρ(0)
ρ(x)λ(0) .The new variables satisfy the hyperbolic PDEs of form (9.1)-(9.2), with new in-domain cou-
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pling terms defined by 
Σ++(x) = Σ−−(x) = 0,

Σ+−(x) = 1
2r(0)e

2Ic(x)(c(x)− λ
2 δ(x)),

Σ−+(x) = r(0)
2 e−2Ic(x)(c(x) + λ

2 δ(x)),

and a new coupling term r1 = −r(0)e−2Ic(1) at the boundary x = 1. The control input is
given by

V (t) = g(1)e−Ic(1)
√
2

λ(1)
u∂(t).

Target system
Similarly, we apply the same change of variables on the target system to rewrite it in

Riemann coordinates. We define [ζ̄+(t, x), ζ̄−(t, x)]⊤ = Q−1(x)[X̄1(t, x), X̄2(t, x)]
⊤.

Next, we use an exponential change of variable to suppress the antidiagonal in-domain
couplings. Define ∀x ∈ [0, 1], Ā(x) = diag(f(x)eIK(x), g(x)e−IK(x)), IK(x) =

∫ x
0

K(s)
2λ(s)ds.The new state [ξ̄+(t, x), ξ̄−(t, x)]⊤ = Ā(x)[ζ̄+(t, x), ζ̄−(t, x)]⊤ satisfies hetero-directional

hyperbolic PDEs of form (9.3)-(9.4) with in-domain couplings defined by
Σ̄++(x) = Σ̄−−(x) = 0,

Σ̄+−(x) = 1
2r(0)e

2IK(x)(K(x)− λ(x)
2 δ(x)),

Σ̄−+(x) = r(0)
2 e−2IK(x)(K(x) + λ(x)

2 δ(x)),

and boundary coupling term R̄1
.
= a1 = −r(0)e−2IK(1).

10.2.3 . Control design
Following Chapter 9, we use a classic invertible Volterra integral transform (9.6) to

replace the in-domain coupling terms. In this low-dimensional case, there is no need for
an affine transform. Indeed, since the coupling term q0 is invertible, we could map both
systems to targets with no in-domain couplings and use the control input to compensate
for the resulting integral terms at the actuated boundary. More precisely, we have

Theorem 10.2.1: Existence of a mapping

For all t > 0, for any initial conditions satisfying appropriate compatibility conditions,
for any V (t), let us denote [ξ̄+(t, ·) ξ̄−(t, ·)]⊤ ∈ H1([0, 1],R2) the solution of (9.3)-(9.4)
and [ξ+(t, ·) ξ−(t, ·)]⊤ ∈ H1([0, 1],R2) the solution of (9.1)-(9.2), with the couplings
defined above. Then there exists a Volterra integral transform K such that(

ξ̄+

ξ̄−

)
=

(
ξ+

ξ−

)
−
∫ x

0

(
K++ K+−

K−+ K−−

)
(x, y)

(
ξ+

ξ−

)
(y)dy.

Proof : We can show, following the backstepping methodology, that the kernelsK±∓ must satisfy on T −

the following set of equations

λ(x)
∂

∂x
K++(x, y) +

∂

∂y
λ(y)K++(x, y) = Σ̄+−(x)K−+(x, y)− Σ−+(y)K+−(x, y),
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λ(x)
∂

∂x
∂K+−(x, y)−

∂

∂y
λ(y)K+−(x, y) = Σ̄+−(x)K−−(x, y)− Σ+−(y)K++(x, y),

λ(x)
∂

∂x
K−+(x, y)−

∂

∂y
λ(y)K−+(x, y) = Σ−+(y)K−−(x, y)− Σ̄−+(x)K++(x, y),

λ(x)
∂

∂x
K−−(x, y) +

∂

∂y
λ(y)K−−(x, y) = Σ+−(y)K−+(x, y)− Σ̄−+(x)K+−(x, y),

with boundary conditions

K+−(x, x) =
Σ+−(x)− Σ̄+−(x)

2λ(x)
, K++(x, 0) = q−1

0 K+−(x, 0),

K−+(x, x) =
Σ̄−+(x)− Σ−+(x)

2λ(x)
, K−−(x, 0) = q0K

−+(x, 0).

The well-posedness of the kernel equations is proved in [DMBAHK18]. The set of above equations admits a
unique piecewise continuous solution on T −. We, therefore, guarantee the existence of an adequate trans-
formation. ■

Note that the transform defined above corresponds to the composition of K defined
in (9.6) and L̄ defined under (9.19). Consequently, the equations satisfied by the kernels
slightly differ from (9.10)-(9.15) given in Chapter 9.
Remark 10.2.1 In this low dimensional case, by composition of the above-mentioned trans-
forms, we were able to derive directly an overall boundedly invertible transform, given by(

X̄1(t, x)

X̄2(t, x)

)
= C(x)

(
X1(t, x)

X2(t, x)

)
−
∫ x

0

(
N++ N+−

N−+ N−−

)
(x, y)

(
X1(t, y)

X2(t, y)

)
dy.

with, for all x ∈ [0, 1], I(x) = Ic(x)− IK(x) and

C(x) =

(
cosh (I(x)) − 1

γ(x) sinh (I(x))

−γ(x) sinh (I(x)) cosh (I(x))

)
.

The control input is directly obtained from the backstepping methodology. It is given
by
u∂(t) =

λ(1)√
2g(1)e−Ic(1)

[
(a1 − r1)ξ+(1, t) (10.14)

+

∫ 1

0

(
K−+(1, y)− a1K++(1, y)

)
ξ+(y) +

(
K−−(1, y)− a1K+−(1, y)

)
ξ−(y)dy

]
.

10.2.4 . Simulation results
We illustrate the performances of the proposed control approach on simulation using

Matlab. We consider a soft PVC string of length 1m, with constant physical parameters
ρ = 1.35 × 103kg.m−3, E = 0.9GPa. Its initial position is w0(x) = 0.1 sin(2xπ ), and no
initial speed. We simulated system (9.1)-(9.2) on a time horizon of 20s using a Godunov
Scheme [LeV02] (CFL = 0.99). The space domain [0, 1] is discretized with a mesh of 200
points. Beforehand, the kernelsK±∓ are computed offline using a fixed-point algorithm
(see Appendix A). The control input is computed at each time step using (10.14).

We consider a case where the string is naturally slightly damped (c = 0.1). Using
the proposed control input, we want to artificially assign a higher damping coefficient
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Figure 10.1 – 3D-displacement w(t, x) in open-loop (left), and closed-loop (right) (10.14)

K = 5c > 0 to the closed-loop system. We compare the performance of the proposed
control law with a simple boundary feedback X1(t, 1) = −0.1X2(t, 1). From the values
of (ξ̄+, ξ̄−), we can numerically compute the evolution of the displacement w(t, x) along
the string. As illustrated in Figure 10.1, the oscillations naturally present in open-loop (top)
are substantially damped in closed-loop (bottom). The string is stabilized around a stable
position.

We represent the energy evolution for both the open-loop and closed-loop systems
with the two controllers in Figure 10.2. The black vertical line gives the value τ = 2λ = 2.45.
With the control input we propose (blue), the energy of the closed-loop system decays
faster than with arbitrary proportional feedback (black) or naturally in open-loop (prune).
It follows the reference energy decay of an open-loop system with in-domain dampingK
(dotted red). We represented in Figure 10.3 the evolution of the proportional boundary
feedback (green) and full-state feedback (10.14) (blue). As expected, both control efforts
go to zero.

Figure 10.2 – Evolution of the energy E(t) Figure 10.3 – Evolution of the control effort

10.3 . Application to a clamped Timoshenko beam

Next, we apply the methodology proposed in Chapter 9 for in-domain damping as-
signment of a clamped Timoshenko beam. An extended version of the work presented
herein can be found in [RALG22b]. It emphasizes on a second low-dimensional test case
the great potential of the Port-Hamiltonian framework in selecting target systems with
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specific stability properties.
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10.3.1 . Reformulation in the Port-Hamiltonian framework

We consider the clamped actuated Timoshenko beam model proposed in [Tim74].
Thismodel usually represents compliantmechanical structures such as cantilevers or flex-
ible endoscopes [WLG18]. It takes into account shear deformation and rotational inertia
of the structure. We denote w(t, x) (resp. ϕ(t, x)) the transverse normalized displace-
ment (resp. rotation angle) defined on [0,∞)× [0, 1]. From the balance equations on the
momenta, they satisfy

ρ
∂2w

∂t2
(t, x) =

∂

∂x

(
Ks

(
∂w

∂x
(t, x)− ϕ(t, x)

))
, (10.15)

Iρ
∂2ϕ

∂t2
(t, x) =

∂

∂x

(
EI

∂ϕ

∂x
(t, x)

)
+Ks

(
∂w

∂x
(t, x)− ϕ(t, x)

)
. (10.16)

For the sake of simplicity, we assume that all physical parameters (mass per length unit ρ,
rotary moment of inertia of a cross-section Iρ, Young’s modulus of elasticity E, moment
of inertia I and shear modulus Ks) are constant. The first end of the beam (x = 0) is
clamped, such that no movement is allowed and ∂w

∂t |x=0 = 0, ∂ϕ
∂t |x=0 = 0. The opposite

end (x = 1) is fully actuated, such thatKs(
∂w
∂x |x=1 − ϕ(t, 1)) = V∂1(t), EI

∂ϕ
∂x |x=1 = V∂2(t).The initial positions of the beam is given by w(x, 0) = w0(x) ∈ H1([0, 1],R), ϕ(x, 0) =

ϕ0(x) ∈ H1([0, 1],R) and initial speeds in the same space. We define the energy state
variablesX = [X⊤

1 , X
⊤
2 ]⊤ ∈ H1([0, 1],R4) by

X1(t, x) =

(
∂w
∂x (t, x)− ϕ(t, x)

∂ϕ
∂x (t, x)

)
, X2(t, x) =

(
ρ∂w∂t (t, x)

Iρ
∂ϕ
∂t (t, x)

)
, (10.17)

where X1(t, x) represents shear and angular displacements, while X2(t, x) representsmomentum and angular momentum. Here, the original system (10.15)-(10.16) rewrites in
the form (10.1), with n = 2 and

Pi =

[
0 Gi

(−1)i+1G⊤
i 0

]
, with G0 =

[
0 −1
0 0

]
, G1 =

[
1 0

0 1

]
, (10.18)

and Π0 = 0R2×2 . The boundary matrix is given by W =

[
02 I2 I2 02

−I2 02 02 I2

]
, and the

Hamiltonian density
H = diag

(
Ks, EI,

1

ρ
,
1

Iρ

)
∈ D+

4 .

In the Port Hamiltonian framework, the boundary conditions rewrite

X2(t, 0) = 0R2 , X1(t, 1) = V∂(t) ∈ R2, with V∂(t) =
(
V∂1(t)
Ks

V∂2(t)
EI

)
. (10.19)

For any control input V∂ ∈ C2([0, T ],R2), for any initial conditions satisfying the compati-
bility conditions, [JZ12, Lemma 13.2.1] guarantees the existence of a unique classic solution
of (10.1)-(10.19). As mentioned in introduction, the Port-Hamiltonian framework offers an
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easily interpretable physical framework to define a target system with dissipative terms.
The control objective reads as follows

Objective: Specific energy decay rate in closed-loop

Design a full-state boundary feedback V∂(t) such that E(t), the energy of the closed-loop
system decays following

dE
dt

= −
∫ 1

0

(
[
c3
ρ
,
c4
Iρ
]X⊤

2 X2(t, x)

)
dx, (10.20)

with c3, c4 > 0 two arbitrary in-domain damping coefficients.
In other words, we want the closed-loop system to behave as the exponentially stable

target system (10.5) with P̄0 = P0 − diag(0, 0, c3ρ, c4Iρ) and boundary condition
X̄2(t, 0) = 0R2 , X̄1(t, 1) = 0R2 . (10.21)

In the target system (10.1)-(10.3), we decided to add dissipative terms by choosing Π0 > 0,
such that the closed-loop system behaves as a Timoshenko beam with in-domain damp-
ing. Using Theorem 10.1.1, we could have alternatively stabilized the beam by applying a
velocity feedback of form X̄1(t, 1) = diag(−c1,−c2)X̄2(t, 1), with c1, c2 > 0.

To fulfill our control objective, we first reformulate the initial and target systems in
the hyperbolic PDE formalism following Section 10.1.4, and then apply the control design
strategy proposed in Chapter 9. It is illustrated in Figure 10.4.

Figure 10.4 – Overall strategy
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10.3.2 . Matching a system of balance laws

In what follows, we define the transport velocities λ =
√

Ks
ρ > 0, µ =

√
EI
Iρ

> 0 and
the matrix Λ = Λ+ = Λ− = diag(λ, µ), with λ > µ and R = diag( λ

Ks
, 1
µIρ

) ∈ D+
2 . Assump-

tions 10.1.1-10.1.2 are satisfied, and P1H = Qdiag(−Λ,Λ)Q−1 with Q = 1√
2

(
−R I2

I2 R−1

)
.

The boundary x = 1 is fully actuated.
Original system

The state ξ(t, x) = [ξ+⊤(t, x), ξ−⊤(t, x)]⊤ = Q−1X(t, x) ∈ H1([0, 1],R4) verifies sys-
tem (9.1)-(9.2), with Q0 = −R−1, R1 = R, V (t) =

√
2V∂(t), and the following in-domain

coupling terms

Σ++ =
1

2

(
0 Ks

λIρ

−λ 0

)
, Σ+− =

1

2

(
0 µKs

λ

Ks 0

)
,

Σ−+ =
1

2

(
0 − 1

Iρ

− λ
µIρ

0

)
, Σ−− =

1

2

(
0 −µ
Ks
µIρ

0

)
.

Target system
Similarly, we define ξ(t, x) = Q−1X̄(t, x), where ξ = [ξ+⊤, ξ−⊤]⊤ ∈ H1([0, 1],R4). It

satisfies (9.1) where the coupling terms are defined by

Σ++ =
1

2

(
−c3 Ks

λIρ

−λ −c4

)
, Σ+− =

1

2

(
−Ks

λ c3
Kµ
λ

Ks −µIρc4

)
,

Σ−+ =
1

2

(
− λ
Ks
c3 − 1

Iρ

− λ
µIρ

− c4
µIρ

)
, Σ−− =

1

2

(
−c3 −µ
Ks
µIρ

−c4

)
,

with boundary conditions ξ+(t, 0) = −R−1ξ−(t, 0), ξ−(t, 1) = Rξ+(t, 1). We then per-
form the exponential change of coordinates, ξ̄ =

[
ξ̄+⊤, ξ̄−⊤

]⊤
= Ā(x)ξ, with ∀ x ∈

[0, 1], Ā(x) = diag(eαx, eβx, e−αx, e−βx) and α .
= c3

2λ , β
.
= c4

2µ . The new state satisfies
(9.1) where the now space-dependent in-domain coupling terms are

Σ̄++(x) = 1
2

(
0 Ks

λIρ
e(α−β)x

−λe−(α−β)x 0

)
, Σ̄+−(x) = 1

2

(
−Ks

λ c3e
2αx Ksµ

λ e(α+β)x

Kse
(α+β)x −µIρc4e2βx

)
,

Σ̄−+(x) = 1
2

(
− λ
Ks
c3e

−2αx − 1
Iρ
e−(α+β)x

− λ
µIρ

e−(α+β)x − c4
µIρ

e−2βx

)
, Σ̄−−(x) = 1

2

(
0 −µe−(α−β)x

Ks
µIρ

e(α−β)x 0

)
.

The boundary conditions are now given by ξ̄+(t, 0) = −R−1ξ̄−(t, 0), ξ̄−(t, 1) = R̄ξ̄+(t, 1),
with R̄ = diag(e−2α, e−2β)R. Applying the strategy proposed in the previous chapter, we
want to determine the control input V (t) so that the closed-loop system behaves asymp-
totically as the Timoshenko beam with in-domain damping.
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10.3.3 . Control design

classic backstepping transformations
We now map the initial and target systems to simpler systems, where most coupling

terms have been moved to the boundary. We do not give here the explicit expression of
the kernel equations for brevity, which can be found in Section 9.2.1. Starting from the
initial states ξ, define γ = K(ξ) = [γ+⊤, γ−⊤]⊤, with K a first Volterra integral transform.
Following the backsteppingmethodology, we show in [RALG22b] that for kernels satisfying
a set of well-posed equations, the initial system (9.1)-(9.2) with couplings defined above,
can be mapped to (9.16)-(9.17), with Γ+,Γ− strictly lower triangular matrices, since R is
invertible. We define similarly a transform K̄ of form (9.6) to map the target system to
a simpler system. The state γ̄ = K̄(ξ̄) verifies (9.21)-(9.22), with strictly lower triangular
in-domain coupling matrices Γ̄+, Γ̄−.

Affine transformation
Next, we define component-wise a time-affine transform F such that γ̄ = F(γ) by
γ̄+1 (t, x) = γ+1 (t, x), γ̄−1 (t, x) = γ−1 (t, x), (10.22)
γ̄+2 (t, x) = γ+2 (t, x) +

∫ x
µ

0
F+
21(x, y)γ

−
1 (t− y, 0)dy +

∫ 1
µ
(1+x)

x
µ

M+
21(x, y)γ

−
1 (t− y, 0)dy,

γ̄−2 (t, x) = γ−2 (t, x) +

∫ 1
µ
(1−x)

0
F−
21(x, y)γ

−
1 (t− y, 0)dy. (10.23)

Note that this transform requires the knowledge of past values of the boundary state
γ−1 (t, 0) and is only defined for t ≥ t⋆ = 2

µ . By Theorem 9.2.1, it is invertible on a specific
domain. The kernels F±

21 ∈ C1
pw(T ±

µ ,R2×2) and M+
21 ∈ C1

pw(P+
1
µ
,µ
,R2×2) satisfy a well-

posed set of equations by Lemma 9.2.2. Using the method of characteristics, they can be
expressed using the non-zero components of the in-domain couplings

F+
21(x, y) = Γ̄+

21(x− µy)− Γ+
21(x− µy), ∀(x, y) ∈ T +

µ ,

F−
21(x, y) = Γ̄−

21(x+ µy)− Γ−
21(x+ µy), ∀(x, y) ∈ T −

µ ,

M+
21(x, y) = −µIρ

(
Γ̄−
21(µy − z)− Γ−

21(µy − z)
)
, ∀(x, y) ∈ P 1

µ
,µ.

(10.24)

Full-state feedback control law
The control input directly derives from the different transforms and (9.39)

∀ t > t⋆, V (t) = (R̄−R)γ+(t, 1)− I1(t) + I2(t) + R̄

 0∫ 2
µ

0 I(y)dy

 , (10.25)

where the integral term I is defined on [0, 2µ ] by
I(y) =

(
1[0, 1

µ
](y)F

+
21(1, y) + 1[ 1

µ
, 2
µ
](y)M

+
21(1, y)

)
γ−1 (t− y, 0),
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and the integral terms I1, I2 depend on the kernels of the two Volterra transforms and
the distributed states γ, γ̄. It could be rewritten with distributed values of the original
statesX(t, x) using the different transforms.

10.3.4 . Simulation results
Wefinally illustrate the performance of our control strategy for the test case presented

in Section 10.3. We consider a Timoshenko beam of length ℓ = 1m, with physical param-
eters given in Table 10.1. It is initially at rest at a position w0(x) = 0.1 sin(π2 z), ϕ0(x) = 0.
Using the above control strategy, we want the closed-loop beam to behave as (10.5)-(10.21)
with c3 = 0.5 USI, c4 = 0.8 USI.

Param. Value Param. Value
EI 0.5 kg m3s−2 Iρ 0.9 kg m
Ks 1.2 kg m s−2 ρ 0.9 kg m−1

Table 10.1 – Numerical values for simulation

As illustrated in Figure 10.5, the position of the open-loop system oscillates around an
equilibrium. Its energy is approximately constant due to the absence of dissipative terms.
It is represented in Figure 10.7 (red).

Figure 10.5 – 3D-displacement w(t, x) in open-loop (left) and closed-loop (right)

Unlike in [RALG22b], where the control input is computed for all time steps using a
buffer, we here only apply the control input (10.25) for t ≥ t⋆, with t⋆ = 2

µ . The evolutionof its first component (blue) and second (red) is represented in Figure 10.6, as well as its
norm (black). Since it requires the computation of state γ, γ̄ at each time step, it is more
computationally expensive than traditional PI controllers.

The system is in open loop on [0, t⋆]. After the control input is applied, the position of
the closed-loop system converges quickly to an equilibrium. As illustrated in Figure 10.7
(blue), its energy decreases at the same rate as the target system (dotted red).

Conclusion

This chapter illustrates how the Port-Hamiltonian formalism can be used to deter-
mine a target system with interesting stability properties. It offered a physical framework
that could match a class of hyperbolic PDE systems under some assumptions. We were
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Figure 10.6 – Evolution of the control effort Figure 10.7 – Evolution of the energy E(t)

then able to apply the methodology proposed in Chapter 9 while introducing natural tun-
ing parameters and adding degrees of freedom (e.g., the dissipation rate) with a clear
energy interpretation. This is an essential step for the practical implementation of back-
stepping controllers. Using the Port-Hamiltonian framework allowed the design of easily
parametrizable (and attainable) target systems for which the closed-loop behaviors are
perfectly known andmatch performance specifications. In particular, we imposed the en-
ergy decay rate using an in-damping assignment for two test cases: a clamped string with
space-varying coefficients and a clamped Timoshenko beam.

So far the results presented in this chapter are only preliminary results. They should
be followed by a quantitative analysis of the target system properties. This could be done
by defining specific performance criteria, similar to what is proposed in Appendix C. As
already mentioned, implementing the full-state feedback controller (10.25) requires the
knowledge of all the states. We should then design a state observer [HDMVK16, AA19]. An
example of such an observer is studied in Appendix C for the study case of a Timoshenko
beam with space-varying coefficients. More generally, observers have been proposed in
the port-Hamiltonian framework in [TRWLG20]. Moreover, we could take advantage of the
intrinsic modularity of the Port-Hamiltonian framework to adapt this approach to more
extensive networks of interconnected systems. We could also combine this approachwith
the one presented in Part III to consider the case when one boundary is not fully actuated.
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11 - Machine learning techniques for distributed state
and parameter estimation

This chapter aims to take advantage of recent advances in machine-learning tech-
niques to solve drawbacks inherent to backstepping-based controllers. The resolution of
a PDE observer system at each time-step, necessary to implement an output-feedback
controller, is time consuming. Our first objective is to propose a surrogate to gener-
ate an estimation of the distributed state in real-time using the available measurements.
Deep learning-based techniques to solve PDE systems [BHKS20, NS21, LJK21] have recently
gained attention. They offer a faster solution than classic numerical schemes, such as
the Godunov scheme [LeV02] used in simulations. Following [SLY+22], we focus on the
use of Fourier Neural Operators [LKA+21] to obtain a fast estimation of the Timoshenko
beam energy states considered in Chapter 10. Following the promising results of physics-
informedneural networks [RPK19, LZK+23], we propose to extend this approach by adding
physical loss terms in the training process.

In some situations, a direct measurement of physical parameters that appear in the
dynamical model is not possible or uneasy. In an evolving environment, they might also
vary with time. This is the case for drilling, where the friction coefficients depend on the
nature of the rocks being drilled. Different numerical methods can be proposed, but us-
ing neural networks seemed promising [ASNK22a]. Our second objective is to estimate
unknown physical parameters from the available measurement. As a test case, we aim
to estimate static and kinetic Coulomb friction terms for drilling systems considered in
Chapter 6. Using Transformers [VSP+17], the state-of-the-art architecture for processing
temporal series, we propose an innovativemethod to estimate them at the beginning of a
drilling operation. As a perspective, we combine both architectures to provide a combined
parameter anddistributed state estimation in a two-branches network [LJK21, BSK23]. This
offers a first step toward using such estimations in a closed-loopwith a full-state feedback
controller.

Chapitre 11: Apprentissage automatique pour l’estimation d’un état dis-
tribué et des paramètres du système. Dans ce chapitre, nous visons à tirer parti
des avancées récentes en apprentissage automatique pour résoudre différents prob-
lèmes inhérents à l’utilisation des contrôleurs proposés, basés sur le backstepping. Notre
premier objectif est d’envisager un substitut aux systèmes d’observateurs classiques, qui
pourrait générer une estimation en temps réel de l’état distribué, en utilisant les mesures
disponibles. Les techniques d’apprentissage profond pour résoudre les systèmes d’EDP
[BHKS20, NS21, LJK21] ont récemment suscité l’attention. Elles offrent une solution plus
rapide que les schémas numériques classiques, tels que le schéma de Godunov [LeV02]
utilisé dans nos simulations. Inspirés par [SLY+22], nous nous concentrons sur l’utilisation
d’opérateurs neuronaux de Fourier [LKA+21] pour obtenir une estimation rapide de l’état
distribué de la poutre de Timoshenko considérée au chapitre 10.
Suite aux résultats prometteurs des réseaux neuronaux intégrant des connaissances phy-
siques [RPK19, LZK+23], nous proposons d’étendre cette approche en ajoutant des termes
de perte physique dans le processus d’entraînement.
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Dans cette thèse, nous avons jusqu’à présent négligé la question de la robustesse par
rapport aux incertitudes des paramètres. Cependant, il s’agit d’une préoccupation cru-
ciale pour une application pratique. Notre deuxième objectif est d’estimer les paramètres
physiques inconnus à partir des mesures disponibles. Cette question a été soulevée par
[ASNK22a], dans le contexte des systèmes de forage considérés au chapitre 6. En util-
isant les Transformers [VSP+17], l’architecture de pointe pour le traitement des séries
temporelles, nous proposons une méthode innovante pour estimer les coefficients de
frottement au début d’une opération de forage.

En perspective, nous combinons les deux architectures pour fournir une estimation
simultanée des paramètres et de l’état distribué dans un réseau à deux branches [LJK21,
BSK23]. Cela constitue unepremière étape vers l’utilisation de telles estimations enboucle
fermée avec un contrôleur à rétroaction d’état complet.
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11.1 . Distributed state estimation using a neural network

In this section, we present a neural network-based strategy to surrogate the resolution
of the observer system at each time step. It aims to replace the resolution of a finite
element scheme. This allows to fasten the computation time drastically and could ease
the use of output-feedback backstepping-based controllers for real systems.

11.1.1 . Review on recent advances

Approximating operators between infinite dimensional spaces
In recent years, there has been a growing interest in neural-network-based approaches

to solve PDEs. Historically, neural networks have first focused on learning mappings be-
tween finite-dimensional spaces, solving, therefore, simple tasks such as regression. The
objective is to use the network as a universal approximator to determine correlations
between input-output pairs. If correctly trained, it can map new inputs to a suitable out-
put. Recently, this approach has been generalized to learn mappings between infinite-
dimensional function spaces, using the random feature model [NS21] or model reduction
techniques such as principal component analysis [BHKS20]. Such neural networks (NN),
called neural operators [LKA+20], are therefore able to learn the abstract representa-
tion of the PDE model to obtain the solution and are usually mesh-independent. Based
on the universal theorem of operators [CC95], another architecture called DeepONeet was
also proposed in [LJK21] to learn operators from a small dataset. Such neural networks
could solve PDE systemsmuch faster than traditional solvers (Godunov scheme, finite el-
ement methods. . . ) [SLY+22]. These solvers are usually mesh-dependent, so obtaining an
accurate solution is often time-consuming. A first strategy has been to use Fourier Neural
Operators introduced in [LKA+21]. Indeed, spectral methods [CHQZ88] have appeared to
be a promising solution to enforce linear spatial PDEs into convolutional neural networks
[JKBM20]. Their architecturewill be described inmore detail later on. It was shown to have
very good approximation results on several PDE systems (Burgers’ Equation, Darcy Flow),
with a consistent error rate (independent of the resolution). This formulation has been re-
cently applied in a feedforward and a recurrent architecture to replace traditional solvers
in obtaining a state estimation from backstepping-based observer systems. In [SLY+22],
the authors proved that recurrent or feed-forward neural networks could greatly accel-
erate the estimation time while keeping high accuracy. In particular, the recurrent archi-
tecture seems intuitively more adequate since it only requires the state estimation and
measurement on the previous timestep.

Adding a priori knowledge of the underlying physics
All these approaches were first only data-driven, and did not use the underlying dy-

namics. The question of how to best enforce physical constraints in the solution recently
raised a high interest. It could ensure the trustworthiness of themodel output by guaran-
teeing physical consistency. It would then make such networks useable to obtain estima-
tions of PDE systems, for real-time implementation of backstepping-based controllers for
instance. In the wake of Physics-informed neural networks (PINNs) [RPK19], the next step
was to add a priori knowledge of the underlying dynamics. Taking advantage of automatic
differentiation [BPRS15], the training procedure of a DeepONet was modified in [WWP21]
to add loss terms representing the discrepancy of the output with the physical model.
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Similarly, Physics-Informed Neural Operators (PINO) [LZK+23] have proved promising re-
sults in several applications, such as solving Burger equations or modeling flows in het-
erogenous environments [RAMH22]. A general overview of existing techniques is given in
[GBYK22]. It paves the way toward physically consistent predictions with higher accuracy,
generalization performance, and data efficiency.

11.1.2 . Test case: estimation of the distributed state of a Timoshenko beam

Overall objective
To avoid using computationally expensive classic numerical solvers, an alternative

could be to model the initial PDE system or the observer PDE system by a neural net-
work. At first glance, one might naively question the interest in using observers like the
ones designed in Appendix C, if the PDE system modeling the state behavior is already
known. The main interest lies in the independence of the initial condition in the observer
system. It allows it to converge to the real state regardless of the initial condition using
available measurements Y (t) solely. It is a crucial property since the distributed initial
condition is usually unknown. In [SLY+22], the authors also argue that combining the
backstepping approach with ML-based resolution guarantees the convergence of the NN
output to the real state.

Our objective reads as follows
Objective 11.1.1

For T > 0, approximate the function X ∈ C1((0, T ] × H1([0, 1],R4)), defined as a
solution of (10.1)-(10.19) with given initial conditionsX0 satisfying the compatibility con-
ditions, by a neural network of parameters θ, defined by fθ : (YT , X0) 7→ X̂θ,T . More
precisely, we want

∥∥X(·, ·)− X̂θ,T (·, ·)∥2L2∥2Dτ
−→ 0

for some 0 < τ < T .
In other words, we need to find the parameters θ (also known as weights), such that

the output of the NN is a good estimation of the distributed state. The choice of the norm
to consider is somehow arbitrary. Here, we consider that theDτ -norm of theL2−norm of
the discrepancy between the real state and the output from the NN goes to zero. Taking
an average on time is justified by the use of time sequences.

The neural network takes as inputs sequences of measurements YT (depending on a
recurrent or convolutional architecture as explained later) and the initial state (or state
predicted at the previous time step). It could also take as inputs known physical param-
eters. First, we generate a dataset, containing inputs and reference outputs. The NN is
trained on a part of this dataset. The weights θ are modified to minimize a specific loss
as described later. Following [SLY+22], we use different NN architectures. Once they are
trained, they can serve as a surrogate to obtain a fast estimation of the state.

Generating a first dataset
The first consideration is to generate an adequate dataset for training and testing the

neural networks. This can be done offline using classic numerical schemes. We assume
that physical parameters are known and constant, with values given in Table 11.1.
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Parameter Value Parameter Value
2nd moment of area I 0.5 Length ℓ 1Young’s modulus E 1 shear modulusKs 1.2rotary moment of inertia Iρ 0.9 linear density ρ 0.9

Table 11.1 – Numerical values for simulation

We neglect the damping terms such that η1 = η2 = 0. To generate a dataset with
different state evolutions, it remains to choose the initial conditions. The random re-
alizations of the initial conditions are generated by sampling a Gaussian random field
[RW06]. They are distributed as a Gaussian Process with mean functionm and covariance
function k, and denoted (ξ+0 (x), ξ

−
0 (x)) ∼ GP(m, k). The covariance function is defined

by k(x1, x2) = exp(− 1
2l (x1 − x2)

2), with length scale parameter l > 0 chosen to control
the complexity of the sampled input functions (here kept equal to one). The mean func-
tion is defined by m : [0, ℓ] −→ R4, with m1(x) = A√

2
π
2ℓ sin(

π
2ℓ(ℓ − x)), m3 = Ks

λ m1(x)

and m2(x) = m4(x) = 0, with amplitude Aπ
2ℓ = 0.1. It corresponds to an initial position

w(x) = A cos( π2ℓ(ℓ − x)) and a constant reference angular position and no velocity. The
resulting function is then projected to a specific null space so that the initial conditions
satisfy the compatibility conditions (2.1.1).

A set of N = 1200 samples is generated. It is split into a set of Ntrain = 1000 training
samples andNtest = 200 testing samples. From the random initial condition, the evolution
of the four states (ξ+(t, x), ξ−(t, x)) is computed on a time scale [0, T ], with T = 10s. The
space discretization is dx = 0.01, so the space mesh Dx contains Nx = 101 points. We
chose a CFL number equal to 1. As in previous simulations, we use a Godunov scheme
[LeV02] to solve the coupled hyperbolic PDE system on Matlab. As a reminder, they are
given by (9.1)-(9.2)

∂
∂tξ

+(t, x) + Λ ∂
∂xξ

+(t, x) = Σ++(x)ξ+(t, x) + Σ+−(x)ξ−(t, x),
∂
∂tξ

−(t, x)− Λ ∂
∂xξ

−(t, x) = Σ−+(x)ξ+(t, x) + Σ−−(x)ξ−(t, x),

with boundary conditions
ξ+(t, 0) = −R−1ξ−(t, 0), ξ−(t, 1) = Rξ+(t, 1),

with in-domain and boundary couplings given in Section 10.3, and boundary measure-
ment Y (t) =

√
2Dξ+(1) defined in Appendix C. With the parameters in Table 11.1, we

obtain a time discretizationDt withNt = 1167 points. We then compute the values of the
energy states (X(t, x)) using the adequate changes of variables. A 3D representation for
one example is given in Figure 11.1. With a processor 2,3 GHz Intel Core i5, generating and
storing the dataset takes approximately 10min.

The resulting tensor is, therefore, of dimension N × Nt × Nx × 4. We also define a
measurement tensor of dimension N ×Nt × 2 corresponding toX+(t, ℓ). To reduce the
size of the state tensor (4.3Go), we first operate a subsampling in time to obtain data at
approximately 25Hz, and a new time discretization Dtt with Ntt points. One limitation of
these data-based approaches lies in their need for storage and computation capacities.
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Figure 11.1 – One example of state evolution
Parameter Interpretation

N (resp. Ntrain/test) number of samples (in train/test sets)
Nt (resp. Ntt) number of points in time discretization Dt (resp. Dtt)

Nx number of points in space discretization Dx

Nb batch size
Np number of parameters (4)

Table 11.2 – Parameter interpretation

The interpretation of different parameters introduced are gathered in Table 11.2.
Limitation of the classic recurrent architectures

In a naive approach, we first use classic recurrent architectures developed to learn
time sequences. For instance, Long-Short-Term-Memory (LSTM) [HS97] is a recurrent
neural network capable of learning order dependence in sequence prediction problems.
It wasmodified in [CvMG+14] to create simpler and less computationally expensive Gated
Recurrent Units (GRU). As seen in [SLY+22], the neural network cannot adequately esti-
mate the distributed PDE state. In particular, it fails to match the oscillation amplitude.
This results in an oscillatory density error function. In Figure 11.2, we first represent the 3-
D evolution of the first component of stateX1(t, x) (shear displacement), computed using
the Godunov scheme (reference) and by an LSTM neural network.

For better visualization, we represented the error between the reference and pre-
dicted values for 9 random samples, projected onDx ×Dtt in Figure 11.3.We also represent the evolution of the estimation error averaged on the test samples
for each state component. As seen in Figure 11.4, the mean L2− norm oscillates around a
relatively high value (between 2 and 3). Therefore, we could expect that such estimations
might not be used to generate output-state feedback controllers.

Fourier Neural Operators
Following what was done in [SLY+22], we then focused on a new type of neural net-

work known as Fourier Neural Operators [LKA+21]. As mentioned in the previous section,
it follows the recent trend of using NN to learn mesh-independent infinite-dimensional
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Figure 11.2 – Evolution of state componentX1,1(t, x) for one test sample

Figure 11.3 – Projected prediction error

Figure 11.4 – Averaged prediction error

operators, not just a discretized solution [BHKS20, NS21, LJK21]. This structure relies on
the neural operator proposed in [LKA+20], where the integral kernel operator is replaced
by a convolution operator defined in Fourier space. More precisely, the neural operator
is formulated as an iterative architecture. First, the input is lifted to a higher dimensional
hidden representation using a linear transform (grey rectangle). Several iterations of an
FNO unit (such as schematically illustrated in Figure 11.5) are then operated. Each update
corresponds to an integral convolution operator (upper branch of Figure 11.5 summed up
with a convolutionW (orange box), composed with a nonlinear activation function (green
circle). The convolution operator is defined in Fourier space. Finally, the last update is
projected back to the output space using a linear transform. More details will be given for
each specific architecture in the following sections. The structure presented in [LKA+21]
cannot be directly applied to our problem since the available functions are not distributed
over the spatial domain: the measurement is only available at one boundary. We next
present the two first solutions we implemented, inspired by the approach proposed in
[SLY+22].

Convolutional FNO
We first propose a convolutional FNO-based neural network (convFNO). It relies on

the strong assumptions that the initial conditions of all statesX0(x) are known on a given
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Figure 11.5 – Structure of a FNO-unit (Fourier Layer) [LKA+21]

meshDx, and that we have access to all boundary measurements overDt.Figure 11.6 illustrates the different components of the convolutional FNO.

Figure 11.6 – Architecture of the convolutional FNO
The N samples of discretized inputs X0 ∈ RNx×4 and Y (t) ∈ RNtt×2 are first re-

shaped into a tensor (a), whose values are normalized using unit gaussian normalization
(b). The tensor is then stacked with the discretized definition domain Dx × Dtt and fed
to a first linear operator of width w. The resulting tensor is obtained by the transform
v0(t, x) = a(t, x)AT0 + b0 with values of tensor A0 ∈ Rw×8 and bias b0 initialized from
U(−

√
1
8 ,
√

1
8) (c). The values (weights) of (A0, b0) are learned during training. We then

perform NL = 4 iterations of 2D FNO-units, considering a time × space definition do-
main (d). As recommended in [LKA+21], since the discretization is uniform, we keep the
kmax = 12 Fourier modes in the Fast Fourier Transform of v0(t, x). The initial weights
of R the tensor of dimension Ntt × Nx × w × w are randomly initialized. The operator
W is a 2D convolution operator. The nonlinear activation function is a Gaussian Error
Linear Unit (GELU) [HG16]. Finally, the last output vNL(t, x) is projected to a higher dimen-
sional space Rfc1 , applied another GELU, and projected back to the output space, such
thatX(t, x) = (GELU(v4(t, x)AT1 + b1))A

T
2 + b2 (e). The hyperparameters are summarized

in Table 11.3.
Step Param. Value Step Param. Value

c) Projection width w 32 d) # FNO-units NL 4d) # modes in FFT kmax 12 d) Activation func. GELUe) Projection width fc1 128 e) Activation func. GELU
Table 11.3 – Hyperparameters used for simulation
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The common loss term corresponds to themean-squared error over a batch of Nbdata during training. Knowing the expected state values, we can compute

LMSE =
1

NbNxNt

Nb∑
k=1

Nt∑
i=1

Nx∑
j=1

∥X(ti, xj)− fθ(Y[−T+ti−dt,ti−dt],X̂[−T+ti−dt]
)(ti, xj)∥2.

Following [SLY+22], we define the relative norm of the approximation error εL2 by

εL2 =
1

Nb

Nb∑
k=1

Nx∑
i=1

Ntt∑
j=1

∥X̂(j, i)−X(i, j)∥2
∥X(i, j)∥2

.

This network is trained on Ntrain = 1000 samples to minimize εL2 . We use Adam opti-
mizer to train for 500 epochs with an initial learning rate of 0.001 halved every 100 epochs.
The training time is 65 min (approx.
8sec/epochs). In Figure 11.7, we rep-
resent the evolution of the MSE (red)
and relative normerror εL2 (blue) during
training. We then test the trained neu-
ral network onNtest = 200 samples. The
computation time was 0.09s.
We obtain a good approximation, with
MSE = 0.026 and εL2 = 6.7× 10−3. Figure 11.7 – Loss evolution during training

We represent in Figure 11.8 the reference 3D evolution ofX1(t, x) computed using the
Godunov scheme (left) and the evolution predicted by the convFNO network (right) from
initial conditions and boundary measurements, for one random sample set.

Figure 11.8 – Comparison of 3D evolution for PDE state and convolutional FNO prediction
As for the LSTM, we represented the projection of the error. The dark blue regions cor-

respond to an error inferior to 2× 10−3, which is promisingly low. The highest prediction
errors correspond to smoothing the dynamics in the high amplitude oscillations.

221



Figure 11.9 – Projected prediction error

Figure 11.10 – Averaged prediction error

In Figure 11.10, we represented the evolution of the L2−norm of the prediction error
for each state component, averaged over the test set. As expected, it does not evolve
significantly in time but is higher than using classic backstepping-based observers.

Recurrent FNO
However, though the convolutional architecture showed a small estimation error, it is

not entirely satisfactory for application purposes. In real situations, we only have access
to boundarymeasurements. The neural network should therefore be able to estimate the
whole state given the new measure, using the past information (past measures or past
state estimations) eventually. Following [SLY+22], we compare the previous predictions
with the ones obtained using a recurrently implemented FNO unit. Unlike the convolu-
tional architecture Figure 11.6, the recurrent FNO (recFNO) represented in Figure 11.11 is
trained to learn the state evolution at the next time step, using the state values and the
boundary measurement at the previous time step as inputs. We use the Adam optimizer
to train the recFNO on the training set for 82 epochs with an initial learning rate of 0.001
that is halved every 20 epochs (it was reduced after consideration of the evolution of the
norm).

Figure 11.11 – Architecture of the recurrent FNO implementation
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The training time is 138min (approx.
98sec/epochs). Using state values as in-
puts, we obtain very accurate state esti-
mation at the next step. In Figure 11.7,
we represent the evolution of the MSE
(red) and relative norm error εL2 (blue)
during training. We obtain a good ap-
proximation, with MSE = 1.5 × 10−6

and εL2 = 4.8× 10−3. Figure 11.12 – Loss evolution during training
The hyperparameters are summarized in Table 11.4.

Step Param. Value Step Param. Value
c) Projection width w 64 d) # FNO-units NL 1d) # modes in FFT kmax 16 d) Activation func. GELUe) Projection width fc1 128 e) Activation func. GELU

Table 11.4 – Hyperparameters used for simulation

The training performances are gathered at Table 11.5.
Criteria unit convFNO recFNO

Training time s/epoch 8 98MSE 0.026 1.5×10−6

εL2 6.7×10−3 4.8×10−3

Table 11.5 – Summary of training performances

We then test the trained neural network on Ntest = 200 samples. In testing, recFNO
is evaluated using the previous state estimation and the newmeasurement value at each
time step. It is illustrated in Figure 11.13.

Figure 11.13 – Testing procedure for recFNO
We represent in Figure 11.8 the reference 3D evolution of X1(t, x) computed using

the Godunov scheme (left) and the evolution predicted by the recFNO network (right)
recursively, for one random sample set. As for convFNO, we represent the projection of
the error between the reference and predicted values for 9 random samples (Figure 11.15)
and the prediction error, averaged on 50 test samples (Figure 11.16).
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Figure 11.14 – Comparison of 3D evolution for PDE state and recurrent FNO prediction

Figure 11.15 – Projected prediction error

Figure 11.16 – Averaged prediction error

We see that the error seems to explode. To illustrate discrepancies among the test
samples, we also plot theMSE error for 10 different samples in Figure 11.17. As represented
on the right side of the graph, the error is below 10−5 (≤ 0.1%) for 80% of the samples over
the first 2sec. Depending on the sample, the error explodes after a critical time ranging
from3 to 8sec. This emphasizes the need to develop a robust state prediction and amixed
convolutional-recurrent framework.

Figure 11.17 – Evolution of MSE for 10 test samples
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11.1.3 . Perspectives

FNO-inspired architectures
First, the results presented in Section 11.1.2 emphasized the interest and limitations

of pure convolutional and recurrent architectures. It emphasizes the need to develop a
mixed convolutional-recurrent framework. Instead of using solely one newmeasurement
and the state prediction at the last time step (as represented in Figure 11.13), the architec-
ture we propose in Figure 11.18 takes as input a sequence of measurement YT ∈ RNt×2,
as well as the physical parameters P ∈ RNp . Here, Np = 4 since the Timoshenko beam is
characterized by four physical parameters ρ,Ks, EI, Iρ.Using a recurrent neural network, we obtain a summary of the time sequence of di-
mension Rh0 . This input is concatenated with physical parameters. We project this input
on three different branches (denseNet) to obtain the amplitude A, the frequency f , and
the phase ϕ of the continuous Fourier Decomposition. We then learn the spectral decom-
position of the output. We finally project to the space of adequate dimension. We can,
therefore, compute the value of the state for any x ∈ [0, 1].

Figure 11.18 – Schematic representation of an alternative architecture
It is still subject to investigation.

Integration of soft physical constraints
Inspired by model-driven physics-informed neural networks [RPK19], we ponder on

the efficiency of adding soft constraints (additional loss terms) to improve the physical
consistency of the given output. To obtain the estimated state in real-time, which is a nec-
essary step towards using backstepping-based controllers on real systems, amodel-aware
NN could bemore performant [LZK+23]. Denote X̂+

θ,T = f+θ (Y,X0) and X̂−
θ,T = f−θ (Y,X0)

225



the state estimations obtained as outputs of one of the proposed neural network. We de-
fine different loss terms

• Consistency with measurement: the output must correspond to the measurements
on the boundary. We select NY random subpoints ti ∈ [0, T ] from the measure-
ments and compute an average error

Lmeas(θ) =
1

NY

NY∑
i=1

∥Y (ti)−Df−θ (Y,X0)(ti, 1)∥2.

• Consistency with boundary conditions: the output must satisfy the boundary condi-
tions. We select NBC random points ti ∈ [0, T ] and compute an average error

LBC(θ) =
1

NBC

NBC∑
i=1

∥f−θ (Y,X0)(ti, 0)∥2 + ∥f+θ (Y,X0)(ti, 1)∥2.

• Consistency with the dynamics: the outputmust satisfy (10.1). We selectNt time points
ti ∈ [0, T ] and Nx mesh points xj ∈ [0, 1] and evaluate the term

LPDE(θ) =
1

NtNx

Nt∑
i=1

Nx∑
j=1

∥ ∂
∂t
fθ(Y,X0)|(ti,xj) − P1H

∂

∂x
fθ(Y,X0)|(ti,xj)

− P0Hfθ(Y,X0)(ti, xj)∥2.

Using spectral methods simplifies the computation of the derivatives. Indeed, when the
original state (at fixed time) is decomposed into a linear combination of trigonometric
basis functions of varying frequencies, the spatial derivative is directly obtained by multi-
plying the coefficients by a complex number [JKBM20, CHQZ88]. However, this should be
done inside the FNOunit. An alternative is to take advantage of the powerful automatic dif-
ferentiation techniques [BPRS15], that enable us to obtain the gradients of the output with
respect to the different variables. However, since the values of the gradients are used in
the loss expression, the values must be differentiated again when using a gradient-based
method for minimizing the loss with respect to the NN parameters.

Adopting new loss terms could slow down the training process, but at the same time
reduce the number of necessary training samples for better generalizability. The choice of
a trade-off between the different loss termsmust also be subject to investigation [WWP21,
SIH21].

11.2 . Parameter estimation using a neural network

As shown in the previous section, machine-learning-based solutions can be of high
interest to palliate the slow resolution time of PDE systems using finite elements or fi-
nite volume methods [LeV02]. Another problem such data-driven methods can handle is
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parameter estimation from available measurements, also known as the inverse problem.
11.2.1 . Review on recent advances

Parameter estimationusingmachine learning has raisedmuch interest in recent years.
It is challenging to reconstruct accurate estimates of the PDE parameters from available
measurements to produce consistent dynamics [Kut23]. Different solutions have been
explored. classic architectures such as convolutional neural networks (CNN) [SMN+23,
ASNK22b] or recurrent neural networks (RNN) [SIH21] have proved their interest. To en-
sure that physical constraints of the models were satisfied, new architectures were pro-
posed, such as PINNs [RPK19, TMP+20], enhanced with deep spectral feature aggregation
[WWLL22] and other variants as PGNN [KWRK21] or PhyCNN [ZLS20].

Recently, transformers [VSP+17] have gained significant attention and have become a
cornerstone in handling temporal series. Their attention-based architecture allows them
to capture complex patterns and dependencies. They offer several advantages. First, re-
current networks, such as LSTMpresented in Section 11.1.2, are to be run sequentially. This
is not the case for transformer architectures, which enable better parallelizationwhile out-
performing recurrent networks in all domains. In addition, standard automatic differen-
tiation libraries such as Pytorch do not support higher order differentiation (computation
of Jacobian) required to compute PDE-based losses for recurrent networks. This eases
the implementation of physical loss terms.

11.2.2 . Test case: estimation of friction parameters while drilling
In this section, we adapt the ideas mentioned above to the context of drilling. As seen

in Chapter 6, the torsional motion of a drill bit is subject to undesired oscillations due
to the presence of nonlinear friction terms, characterized by a couple (µk, µs), that cor-respond to kinetic and static friction coefficients respectively. Control strategies based
on more accurate distributed dynamics of the drillstring have proven more efficient than
classic approaches to prevent stick-slip apparition during operation [ASADM20]. However,
implementing such strategies requires knowledge of physical parameters, state estima-
tions, and predictions.

Data-drivenmethods have been proposed to estimate these parameters while drilling
[ASNK22b]. Though they have shown to be a promissive alternative to former model-
basedmethods, they still lack generalizability. We propose a dual architecture of transfor-
mer-based neural networks to overcome this limitation. We could obtain physics-guided
estimations of the angular velocity and torque by adding physical constraints during the
training phase.

Overall objective
In this second test case, we consider the off-bottom torsional motion of a drilling

device of length L. As explained in Chapter 6, this corresponds to transient phases when
the bit is not in contact with the rock, for instance, when a new pipe section is added to
the drilling system or when the drill string is removed from the borehole to fix a failure.
We use the distributed model from [AS18] and given in Section 6.2. As a reminder, the
torsional dynamics of torque and angular velocity were given by

∂τ(t, x)

∂t
+ JG

∂ω(t, x)

∂x
= 0, Jρ

∂ω(t, x)

∂t
+
∂τ(t, x)

∂x
= S(t, x),
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with source term S(t, x) a nonlinear term depending on the angular velocity and friction
coefficients.

On the field, the available measurements mainly consist of surface data, for instance,
surface rotation per minute (RPM) or motor torque. As seen in Section 6.2.3, estimation
strategies using predictors based on the aforementioned distributedmodel require a high
computational effort, such that the estimated state cannot be obtained in real time. Thus,
it prevents this approach from being used on the field. Moreover, they require all param-
eters of the system (and, in particular, subsurface physical properties) to be known, which
is not the case in practice. Our objective reads as follows

Objective 11.2.1: Parameter estimation

From sequences Yt of surface measurements, estimate the physical parameters (µs, µk)
of the model using a neural network of parameters θ, defined by gθ : Yt 7→ M̂θ ∈ Rp.
More precisely, we want

|M − M̂θ| −→ 0.

Transformer-based architecture
The first neural network aims at estimating the physical parametersM = (µk, µs) ∈

R2. It is a Transformer [VSP+17] characterized by parameters θ, and denoted Tθ(.). Itaggregates the sequence of inputs Yi ∈ RNp+2Nt , and outputs an estimation M̂ ∈ R2

of the physical parameters. We obtain the adequate parameters θ by minimizing the
following L2−loss function LL2(θ)

LL2(θ) =
1

Nb

Nb∑
i=1

∥Mi − Tθ(Yi)∥22.

The chosen architecture is schematically represented in Figure 11.19.

Figure 11.19 – Schematic representation of transformer-based parameter estimation

Generation of a dataset
To train and validate our estimation algorithm, we generated a wide dataset following

the numerical scheme 1 presented in [AS18]. To obtain representative data, we use a real
well geometry J1. It is illustrated in Figure 11.20. The red and blue dots correspond to
depths where we can access real data. We also represent the friction parameters profile.
We generate 1000 sequences of 100s of 20Hz surface measurements (motor torque and
surface angular velocity), for L ∈ [2500, 4000]m, µs ∈ [0.2, 0.8], µk ∈ [0.06, 0.72].

1. The Matlab implementation can be found on https://github.com/Open-Source-Drilling-Community/Aarsnes-and-Shor-Torsional-Model.
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Figure 11.20 – Well J1 schematic profile

We point out that this dataset contains only samples for a single value of angular
velocity threshold ωc = 1.5rad.s−1 and null initial conditions. In a further approach, this
parameter should also be estimated by the NN, and initial conditions should vary. The
approach proposed in Section 11.1.2 could be used. As mentioned, generating exhaustive
datasets requires an important computation time and storage capacity. This is, so far, a
limitation of the approach. The reference trajectory is constant (60RPM with slope). The
implemented control input is a PI control with fixed gains.

Network design and Training process
Training process. The dataset is split 80% − 20% to separate training and validation
datasets. To obtain the parameters (θ,Θ) minimizing the losses LL2(θ),L(Θ), we use
AdamW [LH17] with an initial learning rate of 10−3. The training is done on 100 epochs,
with a batch size Nb = 16.
Hyperparameters tuning. We designed several models using a broad range of hyperpa-
rameters. We trained eachmodel and observed the evolution of the average error on the
same validation dataset. We selected the best configuration among the 48 configurations
tested in Table 11.21.

Hyperparameters Values
hidden dimension 32, 64, 256, 1024

train-validation ratio 0.2, 0.4, 0.6, 0.8

learning rate 10−3

L2 regularization 10−1, 10−2, 10−3

Figure 11.21 – Range of hyperparameters
Figure 11.22 – Loss evolution (µs)

The performance of the trained neural networks is evaluated on simulated and field
data. The friction coefficients were estimated on the validation dataset (Ntest = 200) with
an average relative error of δ(µk) = 2.3% (resp.δ(µs) = 3.3%) and a standard deviation of
5.2e−3(resp. 1.8e−2) after 2500 steps. Our proposed method outperformed the existing
estimation methods based on convolutional neural networks [ASNK22a]. As illustrated in
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Figure 11.23, the standard deviation is reduced and the average estimated value is closer
to the real one for both µk (red) and µs (blue).

Figure 11.23 – Regression performance: CvNN [ASNK22a] (left), Transformer (right)

11.2.3 . Perspectives: combined approach
Once the parameter estimation has been obtained, it can be used as the input of the

network proposed in Section 11.1.3. We obtain the two-branches architecture schemati-
cally represented in Figure 11.24.

Figure 11.24 – schematic representation of the two branches architecture

Estimation of the distributed state
Inspired by [LJK21], we propose to estimate the distributed state (ω(t, x), τ(t, x)) at

time t using sequences of past measurements, using a two branches architecture. Our
goal is to select the most appropriate state representation under physical constraints us-
ing sets of discrete inputs Yi. The first branch relies on a transformer encoder to aggre-
gate the input sequences Yi augmented with M̂ . It produces an abstract representation
of the system, which is combined with an abstract representation of the requested coor-
dinates. Inspired by FNO [LKA+21], the obtained summary is used to output the intensity,
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frequency, and phase of the Fourier decomposition representing the distributed state
X(t, x)

.
= (ω(t, x), τ(t, x)) along the drillstring. The second branch builds the spatiotem-

poral grid mesh (t, x) ∈ [0, T ]× [0, L], where the estimation is evaluated.
One example of distributed state estimation using the proposed strategy is given in

Figure 11.25. On the right map, showing the error between expected and predicted value,
we note that the discontinuity between the pipe and the collar dynamics is not well con-
sidered. One proposition to palliate this difficulty could be to add physical loss terms.

Figure 11.25 – Preliminary results

Physic-informed neural networks
Following [RPK19, SIH21, WWP21], we define a composite loss that takes into account

experimental data (LO) as well as a physical error. While the former is the usual error
term when training a neural network on a dataset, the latter ensures that the solution
verifies theoretical PDEs (LPDE) and boundary conditions (LBC):

L(Θ) = LO(Θ) + LPDE(Θ) + LBC(Θ). (11.1)
It should be seen as data andphysics-driven losses. This adds a priori knowledge of the un-
derlying dynamics (6.12)-(6.14) during training. As before, the first loss term corresponds
to the state estimation residual in the squared L2−norm

LO(Θ) =
1

Nx

1

Nt

1

Nb

Nb∑
i=1

Nx∑
j=1

Nt∑
k=1

∥Xi(tk, xj)− SYi,Θ(tk, xj)∥22.

The squaredL2−norm tends to efficiently penalize bigger discrepancies between the out-
put and real value. Other loss terms (regularization) can be added.
The following term ensures that (6.12) are satisfied

LPDE(Θ) =
1

Nx

1

Nt

1

Nb

Nb∑
i=1

Nx∑
j=1

Nt∑
k=1

∥O(fYi,Θ(tk, xj))∥22.
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with O(SYi,Θ(t, x)) =
(

∂τ̂ i

∂t (t, x)) + JG∂ω̂i

∂x (t, x))
∂τ̂ i

∂x (t, x)) + Jρ∂ω̂
i

∂t (t, x)) + F(ω̂
i, x)

)
.

We want the solution to meet the boundary condition (6.14)

LBC(Θ) =
1

Nt

1

Nb

Nb∑
i=1

Nt∑
k=1

∥B(SYi,Θ(tk))∥22 + |τ̂ i(tk, L)|2,

with B(SYi,Θ(t)) = ∂τ̂ i

∂t (t, 0) −
1

ITD
(τ im(t) − τ̂ i(t, 0)). We believe that integrating physical

loss terms into the training process will improve the overall estimation. This is still subject
to investigation.

Conclusion

This chapter presented several interests in machine-learning-based techniques for
distributed state and parameter estimation. We obtained promising results for estimat-
ing unknown physical parameters and distributed states based on the available measure-
ments. We illustrated the proposed solutions for two test cases studied in this thesis: a
clamped Timoshenko beam and a bi-sectional drilling system. All architectures can be
easily adapted to other PDE systems by redefining the training set and input dimensions.
In both cases, we proposed to add physical loss terms to generate a physic-informed neu-
ral estimator. This raised new computational difficulties.

Many questions remain open. First, we only used simulated datasets so far. This
naturally leads to a bias in the learning process since the training data are generated
using the physical model. If real data were available, it would be possible to construct
a hybrid physics-data model. For instance, using the experimental setup presented in
[WLG18], or field data from drilling companies or online resources 2.

This would allow us to confront the obtained physical parameters or predicted bound-
ary values tomeasurements. This perspective is schematically represented in Figure 11.26.
Moreover, the current architectures contain many hyper-parameters that can be opti-
mized to enhance the performance of the estimations. In particular, the trade-off be-
tween the empirical loss of model predictions, the complexity of themodel, and the phys-
ical loss are of high interest [SIH21]. This could help improve generalization performance
since the real training data are small and not fully representative.

In future work, the state estimations might be used to compute backstepping-based
control laws. So far, the neural networks have only been used to learn dynamics from
open-loop systems or given inputs. To efficiently mitigate undesired stick-slip oscillations
or more generally, stabilize the system, the impact of a control law must be considered.
The robustness of the control law with regard to state estimation error is also of primary
interest. The transformer-based architecture proposed in Section 11.2 could also be com-
bined with Fourier neural operators [LKA+21] presented in Section 11.1 to approximate the
model and predict future values of the distributed state.

2. Some drilling data are made available freely. See https://www.equinor.com/energy/volve-data-sharing or https://data.world/us-doe-gov/. In this work, I worked on real data from ©Eavor,in partnership with the University of Calgary. For confidentiality reasons, the outcomes of thisresearch are not presented herein.
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Figure 11.26 – Perspectives
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Conclusions

This thesis focused on controlling underactuated networks of hyperbolic partial differ-
ential equations (PDE) systems interconnected with linear ordinary differential equations
(ODE) systems in a chain structure. Such networks have practical applications in various
fields, making their study essential and relevant.

In Part I, we introduced two classes of infinite-dimensional systems: linear scalar hy-
perbolic PDE systems and time-delay systems (TDS) of the neutral type. Since they are
closely related, this thesis aims at taking advantage of control approaches developed for
both. We presented in Chapter 2 how the backstepping methodology can be used to es-
tablish a mapping between them. In Chapter 3, we then discussed the limitations of the
classic Proportional or PI boundary feedback in the context of a simple chain structure
made of conservation laws coupled with actuator or load ODE dynamics. It legitimated
the interest in infinite-dimensional controllers.

In Part II, we investigated the case where the available actuation is located at one net-
work end. In Chapter 4, we examined anODE-PDE-ODE interconnection and presented an
output feedback design based on backstepping and frequency analysis to achieve trajec-
tory tracking and disturbance rejection. In Chapter 5, we considered a chain of arbitrarily
many hyperbolic PDE systems interconnected at the unactuated end with an ODE. To sta-
bilize this structure, we proposed a recursive dynamics interconnection framework. We
also discussed in Chapter 6 the application of these control strategies to drilling systems.

In Part III, the focus shifted to controlling hyperbolic PDE systems with actuation at a
junction in a chain structure. The difficulties in controlling systems with actuation at the
in-between boundary were emphasized in Chapter 7 on the case of two interconnected
hyperbolic PDE systems. A new control approach was proposed, based on a Fredholm
integral transform, whose invertibility is guaranteed using an operator framework. This
approach was applied in Chapter 8 to the in-domain control of a clamped string. Both
parts II and III ended with perspectives on more complex chain structures. This thesis
paves the way to more general considerations of networks of hyperbolic PDE systems.

Finally, Part IV addressed some under-considered aspects of backstepping-based con-
trollers. It discussed the complexity of implementing infinite-dimensional controllers on
real systems. First, the question of a reachable target system for a general class of non-
scalar hyperbolic PDE systemswas raised in Chapter 9. By introducing an innovative time-
affine transform, choosing reachable target systems was simplified, enabling the easier
implementation of backstepping-based controllers. The Port Hamiltonian framework also
proved its interest in Chapter 10 to design target systems with specified stability prop-
erties. Furthermore, the numerical limitations associated with backstepping-based con-
trollers for real-time control were challenged in Chapter 11. To address this challenge, the
potential of machine learning-based solutions was explored. We proposed different ar-
chitectures for fast and adaptive state estimation for the drilling systems and Timoshenko
beams already presented in this thesis. This opened up exciting possibilities for signifi-
cantly reducing computation time and enhancing the efficiency of the backstepping-based
controllers.

Overall, this thesis provided a comprehensive analysis of backstepping-based con-
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trollers for interconnected hyperbolic PDE systems, shedding light on their benefits and
limitations. Different strategies were proposed, combining frequency analysis developed
for time-delay systems and backstepping design. Several chain structures combining lin-
ear ODEs and hyperbolic PDE systems were considered. The innovative approaches pre-
sented in this work offer valuable insights into stability analysis, observer and target sys-
tem designs, and the integration of machine learning techniques. Our results pave the
way for further advancements and applications of backstepping-based control strategies
in various fields, including the drilling industry.

Conclusions
Cette thèse s’est concentrée sur le contrôle de réseaux sous-actionnés composés de

systèmes d’équations aux dérivées partielles (EDP) hyperboliques interconnectés avec
des systèmes d’équations différentielles ordinaires (EDO) linéaires dans une structure en
chaîne. De tels réseaux trouvent des applications pratiques dans divers domaines: leur
étude est ainsi pertinente.

Dans la Partie I, nous avons introduit deux classes de systèmes de dimension infinie :
les systèmes d’EDP hyperboliques linéaires scalaires et les systèmes à retard (TDS) de
type neutre. Cette thèse vise à tirer parti des approches de contrôle développées pour ces
deux classes de systèmes étroitement liées. Nous avons présenté dans le Chapitre 2 com-
ment laméthodologie de backstepping peut être utilisée pour établir une telle correspon-
dance. Dans le Chapitre 3, nous avons ensuite discuté des limitations des contrôleurs de
type Proportionnel ou Proportionnel-Intégral dans le contexte d’une structure en chaîne
simple constituée de lois de conservation couplées à des dynamiques d’actionneurs ou
de charges.

Dans la Partie II, nous avons étudié le cas où l’actionnement disponible se trouve à une
extrémité du réseau. Dans le Chapitre 4, nous avons examiné une interconnexion ODE-
PDE-ODE et présenté une conception de rétroaction de sortie basée sur le backstepping
et l’analyse fréquentielle pour atteindre le suivi de trajectoire et le rejet des perturbations.
Dans le Chapitre 5, nous avons considéré une chaîne constituée d’un nombre arbitraire
de systèmes d’EDP hyperboliques interconnectés à l’extrémité non actionnée avec une
EDO. Pour stabiliser cette structure, nous avons proposé une approche récursive basée
sur les dynamiques d’interconnexion. Nous avons également discuté dans le Chapitre 6
l’application de ces stratégies de contrôle et d’estimation aux systèmes de forage.

Dans la Partie III, l’accent a été mis sur le contrôle de systèmes d’EDP hyperboliques
avec actionnement au niveau d’une jonction entre deux sous-systèmes. Les difficultés de
contrôle des systèmes avec actionnement à la frontière intermédiaire ont été soulignées
dans le Chapitre 7 sur le cas de deux systèmes d’EDP hyperboliques interconnectés. Une
nouvelle approche de contrôle a été proposée, basée sur une transformation intégrale
de type Fredholm, dont l’inversibilité est garantie en utilisant un formalisme opérateur.
Cette approche a été appliquée dans le Chapitre 8 au contrôle dans le domaine d’une
corde fixée à une extrémité. Les parties II et III se sont terminées par des perspectives sur
des structures en chaîne plus complexes. Cette thèse ouvre la voie à des considérations
plus générales sur les réseaux de systèmes d’EDP hyperboliques.
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Enfin, la Partie IV aborde certains aspects négligés des contrôleurs basés sur le back-
stepping. Elle aborde la complexité de la mise en œuvre de contrôleurs de dimension
infinie sur des systèmes réels. Tout d’abord, la question d’un système cible atteignable
pour une classe générale de systèmes d’EDP hyperboliques non scalaires a été soulevée
dans le Chapitre 9. En introduisant une transformation affine temporelle novatrice, le pro-
cessus de sélection des systèmes cibles atteignables a été simplifié, permettant une mise
en œuvre plus simple des contrôleurs par backstepping. Le cadre des systèmes Hamil-
toniens à Port a également démontré son intérêt dans le Chapitre 10 pour concevoir des
systèmes cibles avec des propriétés de stabilité spécifiées. Il a été utilisé pour améliorer
advantage les performances des contrôleurs dans deux cas d’étude. De plus, les limita-
tions numériques des contrôleurs par backstepping pour du contrôle en temps réel ont
été soulevées dans le Chapitre 11. Pour relever ce défi, le potentiel des solutions basées
sur l’apprentissage automatique a été exploré. Nous avons proposé différentes archi-
tectures pour l’estimation rapide et adaptative de l’état des systèmes de forage et des
poutres de Timoshenko déjà présentés dans cette thèse. Cela ouvre des possibilités pas-
sionnantes pour réduire considérablement le temps de calcul et améliorer l’efficacité des
contrôleurs par backstepping.

Dans l’ensemble, cette thèse a fourni une analyse de contrôleurs par backstepping
pour des systèmes d’EDP hyperboliques interconnectés, en mettant en évidence leurs
avantages et leurs limites. Différentes stratégies ont été proposées, combinant l’analyse
fréquentielle développée pour les systèmes à retard et la méthode de backstepping. Plu-
sieurs structures en chaîne combinant des EDO linéaires et des systèmes d’EDP hyper-
boliques ont été envisagées. Les approches novatrices présentées dans ce travail offrent
des perspectives précieuses sur l’analyse de stabilité, la conception d’observateurs et de
systèmes cibles, ainsi que l’intégration des techniques d’apprentissage automatique. Nos
résultats ouvrent la voie à de nouvelles avancées et applications des stratégies de contrôle
par backstepping dans différents domaines, notamment l’industrie du forage.
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.

Appendices

We gather in this part some supplementary material. It aims for a better understand-
ing of this thesis.

First, in Appendix A, we present some of the numerical methods we used. It aims
to give a general overview of numerical methods we used for any reader unfamiliar with
hyperbolic PDE systems and the numerical resolution of coupled equations. It helps to
understand the notions of well-posedness for the kernel equations and subtleties not
mentioned when presenting the simulations. It also explains the computational method-
ology I used during my thesis, which is necessary for the reproducibility of the simulation
results. It could be read after Chapter 2 and the introduction of the backstepping method-
ology.

Next, we give in Appendix B the proof of Theorem 7.2.2. We advise any reader first
to understand Chapter 7 before reading this proof. We decided to present the complete
proof in Appendix, to avoid splitting the overall reading of this chapter. It is quite technical
and requires some linear algebra and operator framework knowledge.

Finally, we present in Appendix C some complementary results in the line of Chap-
ter 10. We advise the reader to read it before to understand this test case better. Here,
we question the choice of the target system for a backstepping-based observer design.
We also comment on the impact of arbitrarily fixing the boundary conditions that remain
degrees of freedom for the kernel definition. This chapter gathers some numerical obser-
vations thatmight be obvious to researchers familiar with the backsteppingmethodology.
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A - A tutorial on numerical methods for solving ker-
nel equations

Throughout this thesis, we illustrated the proposed backstepping-based controllers
on simulations using©Matlab. In this appendix, we present the computationmethods we
used to solve the kernel equations, necessary to compute the control law. This appendix is
intended for a public not familiar with numerical methods and hyperbolic PDE resolution.

Kernels are usually defined on a 2−D grid representing the definition domain, which is
the unit square S for kernels of Fredholm integral transforms (in Chapter 7) or triangular
subparts T ± for kernels of Volterra integral transforms. We divide the segment [0, 1] into
p intervals to create the space mesh. The values of the kernels on S are then stored on a
(p+1)× (p+1) = n_x× n_xmatrix.

A.1 . Method of characteristics

Let us first consider a simplified case in the form of a general first-order hyperbolic
equation

∂

∂x
K(x, y) + a

∂

∂y
K(x, y) = H(x, y). (A.1)

In the case of kernel equations derived from scalar hyperbolic PDE systems, the param-
eter a is usually equal to 1, or strictly negative. Functions H,K are regular (usually con-
tinuous) and defined on a part of the unit square S. To solve (A.1), we use the method of
characteristics.
It consists in using a specific parametrization (X(s), Y (s)), for which the PDE rewrites as
an ODE, i.e (A.1) rewrites

d

ds
K(X(s), Y (s)) = H(X(s), Y (s)).

The solution propagates through the characteristic lines in first-order hyperbolic PDEs.
The choice of the characteristic line we follow to obtain the value ofK(x, y) inside its def-
inition domain depends on the boundary conditions available, as illustrated in Figure A.3.
We can then integrate along the characteristic line between a value s = 0, for which we
obtain the value in (x, y), and a value sf that depends on the boundary condition.Here, we only present two cases that appear frequently when solving kernel equations
for scalar hyperbolic systems.

Case a = 1 In this case, the characteristic lines are parallel to the first diagonal of S.
On T + (resp. T −), one boundary condition is enough in y = 1 or x = 0 (resp. x = 1 or
y = 0) to define the value ofK on the definition domain, assuming thatH is known.
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Cl. Dom T + T −

K(x, y) = K(x+ 1− y, 1)

−
∫ 1−y
0

H(x+ s, y + s)ds

K(x, y) = K(1, y + 1− x)

−
∫ 1−x
0

H(x+ s, y + s)ds

X(s) = x+ s
Y (s) = y + s Boundary condition in y = 1 Boundary condition in x = 1

K(x, y) = K(0, y − x)
+
∫ x
0
H(x− s, y − s)ds

K(x, y) = K(x− y, 0)
+
∫ y
0
H(x− s, y − s)ds

X(s) = x− s
Y (s) = y − s Boundary condition in x = 0 Boundary condition in y = 0

Figure A.3 – Different situations in the case a = 1

Case a < 0 In this case, the slope of the characteristic lines depends on the value of |a|
(relative to 1). A boundary condition in y = x is required, or two boundary conditions on
the side of the square.

Figure A.1 – Characteristic (x+s, y−|a|s)on T +
Figure A.2 – Characteristic (x−s, y+|a|s)on T −
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A.1.1 . Computation of the characteristics
To compute the integral termalong the characteristics, we canuse a function solve_charac

that stores in a (p + 1) × (p + 1) cell. We start from a point of the domain and compute
the characteristic line that starts at the point and stops at the boundary of the domain.
Algorithm: Kernels defined on S+

Variables: k corresponds to x, l corresponds to y
Inputs: number of points on the characteristic Sk

1 For 1 ≤ k ≤ p+ 1 do
2 For k ≤ l ≤ p+ 1 do
3 starting point: X0=[(k-1)/p;(l-1)/p] (s0 = 0)

• Boundary condition in y = 1 :
s_F = (1-X0(2))/abs(a), Update the values of S with
X(s) = x+ |a|s, Y (s) = y + |a|s.

• Boundary condition in x = 0 :
s_F = X0(1)/abs(a), Update the values of S with
X(s) = x− |a|s, Y (s) = y − |a|s.

Outputs: SK{i, j} = S, S[:,1] contains N points corresponding to s,
S[:,2] corresponds to X(s), S[:,3] to Y(s)

Algorithm: Kernels defined on S−

Variables: k corresponds to x, l corresponds to y
Inputs: number of points on the characteristic Sk

1 For k ≤ p+ 1 do
2 For 1 ≤ l ≤ k do
3 starting point: X0=[(k-1)/p;(l-1)/p] (s0 = 0)

• Boundary condition in x = 1 :
s_F = (1-X0(1))/abs(a), Update the values of S with
X(s) = x+ |a|s, Y (s) = y + |a|s.

• Boundary condition in y = 0 :
s_F = X0(2)/abs(a), Update the values of S with
X(s) = x− |a|s, Y (s) = y − |a|s.

Outputs: SK{i, j} = S, S[:,1] contains N points corresponding to s,
S[:,2] corresponds to X(s), S[:,3] to Y(s)

A.1.2 . Approximating the integral term
We project the value of H on a one-dimensional integration domain S. The integral

term may be approximated as the limit of a Riemann’s sum
∫ sF

0
H(X(s), Y (s)) ds = lim

N→∞

length(S)
N

N−1∑
k=0

H (X(sk), Y (sk)) , (A.2)
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with (sk)k∈J0,N−1K a partition of the characteristic line S , such thatH(X(sN−1), Y (sN−1) =

H(X(sF ), Y (sF )) and s0 = 0 such thatH(X(s0), Y (s0)) = H(x, y). In implementation, we
can then approximate the value ofH along the characteristic line S by
∫
S
H(X(s), Y (s)) ds ≃ ∥(X(sk), Y (sk))− (X(sk+1), Y (sk+1))∥

n−2∑
k=0

H (X(sk), Y (sk)) ,

≃ ∥(X(sk), Y (sk))− (X(sk+1), Y (sk+1))∥
n−2∑
k=0

H (X(sk+1), Y (sk+1)) .

However, the quality of the approximation highly depends on the number of points N
discretizingS. A better way to compute the integral term is to use a second-ordermethod,
for instance, the trapezoidal method (trapz in Matlab 1). It approximates the integral term
by a pointwise linear function

∫
S
H(X(s), Y (s)) ds ≃

n−2∑
k=0

d(Sk+1,Sk)
H(Sk) +H(Sk+1)

2
. (A.3)

We represent below three ways of approximating the integral term along S:

Left rectangles Right rectangles Trapezoidal method

A.1.3 . Approximating the function along the characteristic line

Since values of the functionH are only available on a predefined grid n_x×n_x values,
there is no value stored for all points Sk of the characteristic line. On Figures A.4-A.5, weschematically represented a characteristic line S in T +, starting from the point (0.2, 0.4)
with a mesh of 0.02 (p = 50). We see that the function H is only defined in three points
along the characteristic (black dots). To compute an approximation of the integral term∫ sF
0 H(X(s), Y (s))ds, we, therefore, need to find good approximations ofH(sk).

1. More details can be found here https://fr.mathworks.com/help/matlab/numerical-integration-and-differentiation.html
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Figure A.4 – Discretization of the defini-tion domain
Figure A.5 – Evaluation of
H(X(sk), Y (sk))

Differentmethods are already implemented on©Matlab for interpolation of functions
on 2-D grids (griddata, gridfit, interp2). To avoid errors on the boundaries of the do-
main, we defined two different functions on T + and T − that linearly approximate the
value of H(x, y) by ponderating the values of the two to four nearest grid points. Two
functions (InterpolateLow (resp. InterpolateHigh) for functions defined on S− (resp.
S+) are defined using the bivariate interpolation method given in [AS65, Chapter 25]. Dif-
ferent situations are possible, depending on the number of points available, two points if
b1 or a2 is outside of the triangular domain, or three points i = j near the first diagonal.

Algorithm: InterpolateLow, on S−

Inputs: Z: a (p+ 1)× (p+ 1) lower triangular matrix,
x,y: coordinates where we want an approximation,
p: 1/p is the step of the regular mesh on [0, 1]2

1 Initialisation: compute the four points on the grid around (x,y) the pointsof coordinates ip, (i+ 1)p around x, indices a1, a2, and jp, (j + 1)p around
y, indices b1, b2

2 If a2, b2 are outside the grid then
3 (x,y)=(1,1),return Z(p,p)
4 Else
5 (x,y) inside the domain then According to the number of pointsavailable, compute a pondered mean res
6 return res

A.1.4 . Application to kernel equations

Let us consider the general kernel equations given in (2.15)-(2.18). First, assume ker-
nels L·· are defined on T +. The integration domain of the integral part of the Volterra
transform is between y ∈ [x, 1]. Consider (2.15), and assume we have a boundary condi-
tion defined for x = 0. We define the characteristic lines parameterized by s, as X(s) =
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x− λs, Y (s) = y − λs. We have
d

ds
L++(X(s), Y (s)) =

∂L++

∂X

∂X

∂s
+
∂L++

∂Y

∂Y

∂s
(A.4)

= −λ ∂

∂x
L++(X,Y )− λ ∂

∂y
L++(X,Y ) (A.5)

= −σ+−(x)L−+(X,Y ). (A.6)
Integrating along the characteristics line, between a value sF = x

λ for which we have theboundary condition, and the initial value s = 0 (for which we obtain the value L++(x, y)),
we therefore have

L++(x, y) = L++(0, y − x) +
∫ x

λ

0
σ+−(x− λs)L−+(x− λs, y − λs)ds (A.7)

Assume that we now have a boundary condition in y = 1. We define the characteristic
linesX(s) = x+ λs, Y (s) = y + λs. We have

d

ds
L++(X(s), Y (s) = σ+−(x)L−+(X,Y ). (A.8)

Integrating along the characteristics line, between a value sF = 1−y
λ and s = 0 we have

L++(x, y) = L++(x+ 1− y, 1)−
∫ 1−y

λ

0
σ+−(x+ λs)L−+(x+ λs, y + λs)ds (A.9)

We obtain a similar expression for (2.18). However, for (2.16)-(2.17), the slope of the char-
acteristic lines depends of the ratio λ

µ . Usually, the boundary condition is taken in x = y,
to guarantee the boundary condition is available for any (x, y) ∈ T +. For (2.16), we have
the characteristicX(s) = x+ λs, Y (s) = y − µs, and

L+−(x, y) = L+−(x, x)−
∫ y−x

λ+µ

0
σ+−(x+ λs)L−−(x+ λs, y − µs)ds. (A.10)

For (2.17), we have the characteristicX(s) = x+ µs, Y (s) = y − λs, and

L−+(x, y) = L−+(x, x) +

∫ y−x
λ+µ

0
σ−+(x+ µs)L++(x+ µs, y − λs)ds. (A.11)

Similarly, when the kernels are computed on T −, the lower part of the unit square S , i.e
when the integration domain is between y = 0 and y = x, the boundary condition is given
in y = 0 (or x = 1) for (2.15)-(2.18) and in x = y for (2.16)-(2.17).
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To keep in mind

In this thesis, we will regularly compute kernels with different boundary condi-
tions, defined on different domains. A first consideration on their well-posedness
consists in analyzing the available boundary conditions (imposedby thebackstep-
ping methodology), to determine the remaining degrees of freedom (to be given
an arbitrary value, as presented in Appendix C). All in all, the boundary conditions
must allow to define the kernels on their entire definition domain.

A.2 . Successive approximations

There are many ways of computing functions satisfying integral equations. The proof
of the existence of such functions relies on the fixed point method or successive approxi-
mation method (see [Yos60, Chapter 1], [Krs08, Section 4.4]). The existence of a solution to
the kernel equations in the backstepping methodology has been widely studied. Proofs
can be found in the literature, for different regularity, and with space-varying velocities
(see [CVKB13, Appendix A] or the general setup proposed in [DMBAHK18, Section 3]).

A.2.1 . Volterra integral equations of the second kind
Let K(s, t) be a real-valued continuous (or piecewise continuous) function defined

on S = [0, 1]2; and f(s) be a real-valued continuous (or piecewise continuous) function
defined on the interval [0, 1], λ ∈ R. A Volterra integral equation of the second kind with
unknown φ is defined by

f(s) = φ(s)− λ
∫ s

a
K(s, t)φ(t)dt

Such an equation admits a unique solution that can be expressed in two ways:
• as a power series in λ : φ(s) =∑∞

n=0 λ
nφn(s)with φn defined by φ0(s) = f(s), φn(s) =
∫ s
a K(s, t)φn−1(t)dt;

• using the resolvent kernel Γ: φ(s) = f(s) + λ
∫ s
a Γ(s, t;λ)f(t)dt

with Γ(s, t;λ) =
∑∞

n=1 λ
n−1K(n)(s, t) defined using the iterated kernels recur-

sively defined byK(1)(s, t) = K(s, t), · · ·K(n)(s, t) =
∫ s
t K(s, r)K(n−1)(r, t)dt.

The existence (convergence of the series) and uniqueness are proven using iterated in-
crease.

Application to kernel equations
Using themethod of characteristics, we showed in Section A.1.4 that the kernels satisfy

coupled Volterra integral equations of the second kind. Interestingly, we also have to
solve similar equations when defining observers of the Luenberger type (in (4.33), (7.38)
for instance). An example is

f(x)−
∫ x

0
L(x, ξ)f(ξ)dξ = λqL(x, 0)
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with unknown f (can be multidimensional) and kernel L previously computed.
A.2.2 . Numerical implementation

There are two main ways of computing solutions of such equations by the method of
successive approximations. First, let us consider the case of 1-D functions (f, g) defined
on [0, 1]. The space domain is discretized with space step p on nx = 1/(p+1) discrete
values. To solve the kernel equations, we use the following algorithm:
Algorithm:Method of successive approximation
Inputs: number of space values nx, kernels L, parameters λ, µ, q...

1 Initialisation: build f,f_bis,f_ter = zeros(nx,1)
2 While eps ≤ thres & n_iter ≤ max_iter do
3 For x from 0 to 1 (with step p) do• compute an approximation of the integral term∫ x

0
L(x, ξ)f(ξ) +K(x, ξ)g(ξ)dξ

• compute f_bis using f(x) ← ∫ x
0
L(x, ξ)f(ξ)dξ + λqL(x, 0)

4 Update the values : f_ter = f, f = f_bis
5 Update the number of iterations n_iter += 1, update eps
While the error eps is inferior to a certain threshold (typically ϵ = 10−5) and the num-

ber of iterations is inferior to amaximum (typically 20), the algorithm iterates the recursive
construction. The error is computed as the maximum value of the difference between
f_ter and f_bis over the discretized definition domain. As presented in Section A.1.2, we
can use different methods to compute the integral terms:

• sum the values and multiply by dx, without changing the space step;
• discretize [0, x]with a thinner step, and use 1-D or 2-D approximations of the kernels
to obtain the integral as a sum;

• compute the function L(x, ξ)f(ξ) on space_mesh(1:i) and use a trapzmethod for
instance.

It could be interesting to compare the resulting functions and the values of the integral
terms at each step using different methods. Machine-larning based methods have also
been investigated [BSK23]. Eachmethod has its advantages and inconveniences, in terms
of computation time and implementation complexity. We noticed that some points (ma-
trices products, bounds on the interval, or sums...) are sources of recurrent errors.

Quality of the computation
To keep in mind

Usually, the kernels are used in the main simulation to compute the full-state
boundary feedback controller (see (2.24), (5.8) or (7.57)). A bad approximation of
the kernels could lead to a bad expression of the stabilizing control input, which
could impact the performance of the closed-loop system.
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The impact of ϵ (eps) and nx (n_x) on the quality of the kernels can be subject to
investigation. They have a high impact on the offline computation time and for nx on the
simulation time afterward. Especially for adaptive control, the kernel equations must be
solved online to consider the varying physical parameters. Innovative resolutionmethods
must be sought, such as using neural networks as a surrogate [BSK23]. This alignswith the
work presented in Chapter 11. However, it is not yet clear if taking more time to compute
kernels greatly impacts the simulation itself.

eps # iter. p 20 50 100
10−5 11 2.01 27.9 247
10−8 17 3.39 44.1 362
10−10 21 3.91 61.9 462

Table A.1 – Evolution of the computation time (s) for some kernels equations
Another difficulty is that in the general case (non-constant/non-zero in-domain cou-

plings), we do not have a "theoretical value" that could serve as a reference. Evaluating the
"quality" of the kernels obtained using the method of successive approximations given in
the above algorithm is therefore not straightforward. To check if the computed kernels
correspond to their theoretical values and usually detect mistakes in the algorithms, we
can numerically verify:

1. if they satisfy the PDEs,
2. if they satisfy the boundary conditions.

We can first search on a 2D grid if the PDEs are satisfied, using the differentiation tool diff.
Except along the discontinuity lines, the error should remain under 10−2. It is illustrated
in Figure A.6 for two kernels (transform (C.8)).

Figure A.6 – 2D error map for component (12) of two kernels
Similarly, when computing the inverse kernels (kernels of the inverse transform), we

usually compose both transforms and check if the results give the identity by computing
the L2−norm of the difference between the initial state and the state obtained after the
two transforms. The error should be of order 10−4 maximum.

Moreover, in some cases, we have some degrees of freedom on the boundary condi-
tions we chose for the kernels. We could also ponder on the impact of these boundary
conditions on the quality of the resulting controller. Preliminary work in this direction for
the observer design is presented in Appendix C.

263



A.2.3 . Perspectives
A very interesting toolbox has been developed by Jakob Gabriel from Ulm University,

to automatize the computation of backstepping-based controllers 2. This library is a col-
lection of Matlab scripts, functions, and classes to simplify the implementation of control
laws for infinite dimensional systems. The authors provide an object-oriented framework
to use time and space-dependent functions andoperators. This significantly simplifies cal-
culations with matrix-valued functions, since there is no need here to re-write "by hand"
resolution algorithms. Though it offers fewer degrees of freedom in the implementation,
it highly helps in most cases. In particular, when considering space-varying velocities,
it gives an intuitive representation of the kernel resolution along the characteristic lines
(Figure A.7).

Figure A.7 – Example of 2D projection of space varying kernels using Coni

2. The Matlab code can be found on https://zenodo.org/record/6420876 orhttps://gitlab.com/control-system-tools/coni. Similarly, efficient algorithms for solving kernels ofparabolic PDEs are available at https://doi.org/10.5281/zenodo.4274739 [Ker21]
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B - Proof of Theorem 7.2.2

In this Appendix, we give the complete proof of Theorem 7.2.2. As a reminder, it reads
as follows

Theorem: Well-posedness of the kernel equations 7.2.2

The set of equations (7.29)-(7.34) admits a unique solution in C0
pw(S,R2×2).

Due to the integral terms in the boundary conditions (7.33), we cannot apply classical
methods [DMBAHK18] to prove the existence of a unique solution to (7.29)-(7.34). The
proof is decomposed into several steps:

• First, we express all the kernels as functions of the boundary terms N+−(0, y) and
N−+(0, y). We show that the existence ofN+−(0, ·), N−+(0, ·) implies the existence
of all kernels on S. Moreover, they share the same regularity properties.

• Then, we show that N+−(0, ·), N−+(0, ·) are defined by an integral equation of the
form (7.24).

• We show that the conditions of Lemma 7.2.1 are satisfied for this operator. It con-
cludes the proof.

B.1 . Expression of the kernels as functions of the boundary terms

First, we prove the following
Lemma B.1.1: Kernels reduction

For all (x, y) ∈ S , N ··(x, y) can be expressed as functions of N+−(0, ·) and N−+(0, ·).

Proof : Applying the method of characteristics on the transport equations (7.29)-(7.30), we can expressN ··

on S as functions of their boundary values.
First, for kernels N++, N−− represented on Figure B.1, the slope of the characteristic lines does not depend
on Λi. The kernels are defined by their boundary values in y = 1 and y = 0. Using the boundary conditions

Figure B.1 – Representation of the kernelsN++, N−−
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(7.31)-(7.34), direct computations give

N++(x, y) =
Λ1

Λ2
(1[0,y](x)q

′
22N

+−(x− y + 1, 0) + 1[y,1](x)N
+−(x− y, 0)),

N−−(x, y) =
Λ2

Λ1
1[y,1](x)N

−+(x− y, 0).

To express the two other kernels as functions of their boundary terms, we need to look closely at their charac-
teristics, whose slope depends on the ratio Λ1

Λ2
. The case Λ2 = Λ1 is the easiest to handle since the character-

istic lines parallel the antidiagonal of S. In the other cases, the characteristic lines for kernels N−+, N+−

do not divide S into two equal triangular domains, as illustrated in Figure B.2. In particular, in the case

(a) Λ2 < Λ1 (b) Λ2 > Λ1

Figure B.2 – Representation of kernelsN−+, N+−

Λ2 > Λ1 the boundary condition N+−(x, 1) = 0 defines the values of N+−(1, y) for the triangular do-
main x ∈ [0, 1], y ∈ [1 − Λ2

Λ1
x, 1] only, and the boundary condition N−+(0, y) directly defines the kernels’

values for the triangular domain x ∈ [0, Λ1
Λ2

], y ∈ [0, 1− Λ2
Λ1
x] only. One can note that the boundary condition

N+−(x, 1) = 0, ∀x ∈ [0, 1] propagates along the characteristic lines, such thatN+− is equal to 0 on the right
upper part of S , as illustrated by the red domains on Figure B.2.
To determine the values on S in that case, we use an iterative procedure. Let us define p as the unique integer
verifying pΛ1

Λ2
≤ 1 < (p+ 1)Λ1

Λ2
. We can divide the square S into different sub-domainsDk, k ∈ J0, p+ 1K, as

illustrated below.

More precisely, we have:
•D0 = {0 ≤ y ≤ 1, 0 ≤ x ≤ Λ1

Λ2
(1− y)},

•∀k ∈ J1, p− 1K,
Dk = {0 ≤ y ≤ 1, Λ1

Λ2
(k − y) ≤ x < Λ1

Λ2
(k + 1− y)},

•Dp = {0 ≤ y ≤ 1, Λ1
Λ2

(p− y) ≤ x < min(1, 1− Λ1
Λ2
y)},

•Dp+1 = {p+ 1− Λ2
Λ1
x ≤ y ≤ 1, pΛ1

Λ2
≤ x ≤ 1}.

Note that when Λ2 < Λ1 we have p = 0. Integrating along the characteristic lines, and using (7.32), we obtain
by iteration ∀k ∈ J0, p+ 1K, ∀(x, y) ∈ Dk,k≤p+1, N

−+(x, y) = q′k22N
−+(0, y − k + Λ2

Λ1
x). In the same way,

we can express kernelN+− as a function ofN+−(0, y). We have, for all (x, y) ∈ S ,

N+−(x, y) = 1
[0,

Λ2
Λ1

(1−y)]
(x)N+−(0, y +

Λ1

Λ2
x).

This concludes the proof of LemmaB.1.1. ■
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B.2 . Definition of the boundary terms as a solution of an integral equa-
tion (7.24)

Next, we rewrite N−+(0, y) and N+−(0, y) as the solutions of two integral equations.
More precisely, we show that they satisfy(

Nw(y)

Nz(y)

)
=

(
N̄−+(0, y)

−N+−(0, y)

)
−
∫ 1

0

(
−I12(ν, y) I11(ν, y)
−I22(ν, y) I21(ν, y)

)(
N̄−+(0, ν)

−N+−(0, ν)

)
dν, (B.1)

with Iij four bounded piecewise continuous coupling terms depending on Nw, Nz , de-fined by (B.4)-(B.6) and (B.9). Notice first that using the transport equation (7.29) in (7.31),
weobtainN++(0, y)−q′22N++(1, y) = 0which simplifies (7.33). Then, wehaveN−−(0, y) =

0, ∀y ∈ [0, 1] and N+−(1, y) = 0, ∀y ∈ [max(0, 1− Λ1
Λ2

), 1]. We therefore have

Nz(y)−
∫ 1

0
Nw(ν)N

+−(ν, y) +Nz(ν)N
−−(ν, y)dν = −N+−(0, y)

+ 1
[0,1−Λ1

Λ2
]
(y)q′22N

+−(0, y +
Λ1

Λ2
),

Nw(y)−
∫ 1

0
Nw(ν)N

++(ν, y) +Nz(ν)N
−+(ν, y)dν = N−+(0, y).

We decompose the integral terms into subdomains (depending on p) to express the ker-
nels N ·· as functions of the boundary values N+−(0, ·) and N−+(0, ·). We obtain

Nw(y) = N−+(0, y)−
∫ 1

0
I11(ν, y)(−N+−(0, ν))− I12(ν, y)N−+(0, ν)dν, (B.2)

Nz(y) = −
(
N+−(0, y)− 1

[0,1−Λ1
Λ2

]
(y)q′22N

+−(0, y +
Λ1

Λ2
)

)
−
∫ 1

0
I21(ν, y)(−N+−(0, ν))− I22(ν, y)N−+(0, ν)dν, (B.3)

where
I11(ν, y) = 1[0,1](ν)(1[0,

Λ1
Λ2

(1−y)](ν)Nw(y +
Λ2

Λ1
ν) + 1

[
Λ1
Λ2

(1−y),Λ1
Λ2

]
(ν)q′22Nw(y − 1 +

Λ2

Λ1
ν))

(B.4)
I12(ν, y) =

Λ1

Λ2

[
1[y,1](ν)Nz(

Λ1

Λ2
(ν − y)) +

p∑
k=1

1
[0,

Λ2
Λ1

−k+y](ν)q
′k
22Nz(

Λ1

Λ2
(ν − y + k)) (B.5)

+1
[p+1+

Λ1
Λ2
,1]
(y)1

[0,
Λ2
Λ1

−(p+1)+y]
(ν)q′p+1

22 Nz(
Λ1

Λ2
(ν − y + p+ 1))

]
,

I21(ν, y) = 1
[y,y+

Λ1
Λ2

]
(ν)1[0,1](ν)

Λ2

Λ1
Nw(

Λ2

Λ1
(ν − y)),

I22(ν, y) =

p∑
k=0

1
[0,

Λ2
Λ1

(1−y)−k](ν)q
′k
22Nz(y +

Λ1

Λ2
(ν + k)). (B.6)
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The above computations the terms Iij rely on Fubini’s theorem. To rewrite the integral
equations (B.2)-(B.3) using an integral operator of the form (7.24), we need to get rid of
the term 1

[0,1−Λ1
Λ2

]
(y)q′22N

+−(0, y + Λ1
Λ2

) in (B.2). Let f be a bounded function, and define
the function f̄ , such that for all y ∈ [0, 1] we have

f̄(y) = f(y)− 1
[0,1−Λ1

Λ2
]
(y)q′22f(y +

Λ1

Λ2
). (B.7)

This yields the following lemma:
Lemma B.2.1: Change of variable

The operator .̄ defined by (B.7) is invertible. More precisely, the inverse change of vari-
ables is defined by

f(y) =

p∑
k=0

q′k221[0,1−kΛ1
Λ2

]
(y)f̄(y + k

Λ1

Λ2
). (B.8)

Proof : Formula (B.8) is obtained by an iterative approach. Let us take y ∈ [0, 1], and assume that Λ2 > Λ1

(else, the change of variables is equal to the identity and the proof is straightforward). We have


f̄(y) = f(y), if 1− Λ1
Λ2

< y ≤ 1,

f̄(y) = f(y)− q′22f(y +
Λ1

Λ2︸ ︷︷ ︸
≥Λ1

Λ2

), if 0 ≤ y ≤ 1− Λ1
Λ2
.

Then, if 1− Λ1
Λ2

≤ Λ1
Λ2

⇐⇒ Λ2
Λ1

< 2 ⇐⇒ p = 1, we directly have f(y) = f̄(y) + q′22f̄(y + Λ1
Λ2

). Else, we need
to iterate p−1more times the operation, which successively add the terms q′k221[0,1−k

Λ1
Λ2

]
(y)f̄(y+kΛ1

Λ2
). We

finally obtain (B.8). ■

Defining, N̄+−(y) = N+−(0, y) − 1
[0,1−Λ1

Λ2
]
(y)q′22N

+−(0, y + Λ1
Λ2

), we can rewrite (B.2)-
(B.3) as

Nw(y) = N−+(0, y)−
∫ 1

0
Ī11(ν, y)(−N̄+−(ν))− I12(ν, y)N−+(0, ν)dν,

Nz(y) = −N̄+−(y)−
∫ 1

0
Ī21(ν, y)(−N̄+−(ν))− I22(ν, y)N−+(0, ν)dν).

Using the expression (B.8) in the integral terms, we can define the new coupling terms
Īj1, j ∈ {1, 2} by

Īj1(ν, y) =

p∑
k=0

q′k221[
Λ1
Λ2
k,1]

(ν)Ij1(ν −
Λ1

Λ2
k, y). (B.9)

Note that in the case Λ2 ≤ Λ1, the change of variables (B.8) is the identity. We can finally
define on S four bounded functions I11, I21, I12, I22 introduced in (B.10) by Ij2 = Ij2 and
Ij1 = Īj1 j ∈ {1, 2} (B.5)-(B.6),(B.9).
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B.3 . Invertibility of the integral operator

The last step of the proof consists in proving the invertibility of the above integral
operator. From equation (B.1), we state

Theorem B.3.1: Invertibility of a Fredholm integral operator

The Fredholm integral operator Q of form (7.24) defined by

Q :

H1([0, 1],R2)→ H1([0, 1],R2)(
u

v

)
7→

(
u

v

)
−
∫ 1
0

(
−I12(ν, .) I11(ν, .)
−I22(ν, .) I21(ν, .)

)(
u(ν)

v(ν)

)
dν

, (B.10)

is boundedly invertible.
Proof : We prove that conditions of Lemma 7.2.1 are satisfied. Indeed, the four functions Iij are bounded,
such that the integral part ofQ is a compact operator. By [Bre10, Theorem 6.6] (Fredholm alternative), we have
dimker(Q) <∞. Let us show that conditions (a)− (d) are verified.
First, conditions (a), (b) are proved by evaluating the components of the kernel R(x, y) in y = 0 and y = 1.
We obtain

I11(0, ν) =
p∑

k=0

q′k221[k
Λ1
Λ2

,1]
(ν)Nw(

Λ2

Λ1
ν − k), I12(0, ν) =

Λ1

Λ2

p∑
k=0

q′k221[0,
Λ2
Λ1

−k]
(ν)Nz(

Λ1

Λ2
(ν + k)),

I11(1, ν) = q′22I11(0, ν), I12(1, ν) = q′22I12(0, ν), I21(0, ν) =
Λ2

Λ1
I11(0, ν), I22(0, ν) =

Λ2

Λ1
I12(0, ν).

(B.11)

Let us take z =

(
f

g

)
∈ ker(Q), such that, for all x ∈ [0, 1], we have

(
f(x)

g(x)

)
=

(∫ 1
0 −I12(ν, x)f(ν) + I11(ν, x)g(ν)dν∫ 1
0 −I22(ν, x)f(ν) + I21(ν, x)g(ν)dν

)
.

Due to the regularizing property of the integral, we have ker(Q) ⊂ H1([0, 1],R2). The boundary conditions
(B.11) give f(1) = q′22f(0), and f(0) = Λ1

Λ2
g(0), such that z ∈ D(A∗). Next, we evaluate the coupling terms

I21, I22 in y = 1. We obtain I21(1, ν) = I22(1, ν) = 0. We then have Λ1g(1) = 0, such that z ∈ ker(B∗).
We now need to prove that ker(Q) is stable by A∗ (condition (c)), i.e ∀z ∈ ker(Q),QA∗z =

(
0

0

)
. We have

A∗z =

(
Λ2f ′(y) + Λ2f(0)Nw(y)

−Λ1g′(y) + Λ2f(0)Nz(y)

)
.

We compute the derivative of functions (f, g) ∈ ker(Q) on one side, and we integrate by parts in the integral
terms on the other side. Some computations are given below. On the first component of QA∗z, we need to
show that

Λ2f
′(y) + Λ2f(0)Nw(y) +

∫ 1

0
I12(ν, y)(Λ2f

′(ν) + Λ2f(0)Nw(ν))dν

−
∫ 1

0
I11(ν, y)(−Λ1g

′(ν) + Λ2f(0)Nz(ν))dν = 0. (B.12)

Let us check that the terms in f(0) are compensated, that is to say,

f(0)

∫ 1

0
I12(y, ν)Λ2Nu(ν)− I11(y, ν)Λ2Nv(ν))dν = 0.
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Due to the presence of characteristic functions, we obtain two sums of integral terms in Nw(·) ×Nz(·). By a
change of variables in the second term, we get the equality.
Next, we compute separatelyΛ1

∫ 1
0 I11(y, ν)g′(ν)dν andΛ2

∫ 1
0 I12(y, ν)f ′(ν)dν. Once again, we decompose

the integral on different subdomains to eliminate the characteristic function. We integrate by parts and use
the fact that f(1) = q′22f(0), g(1) = 0, f(0) = Λ2

Λ1
g(0) to simplify some terms. Finally, we compute the

derivative of f . We have f(y) =
∫ 1
0 I11(y, ν)g(ν) − I12(y, ν)g(ν)dν, by definition of z ∈ ker(Q). We then

verify that all the terms are compensated using several changes of variables in the integral terms and Fubini’s
theorem.
In a second time, we follow the same steps to show that the second component ofQA∗z vanishes, that is

− Λ1g
′(y) + Λ2f(0)Nz(y) +

∫ 1

0
I22(ν, y)(Λ2f

′(ν) + Λ2f(0)Nw(ν))dν∫ 1

0
I21(ν, y)(−Λ1g

′(ν) + Λ2f(0)Nz(ν))dν = 0.

Once again, we show that f(0) ∫ 1
0 I22(y, ν)Λ2Nu(ν)−I21(y, ν)Λ2Nv(ν))dν = 0 using a change of variables

(η = Λ2
Λ1

(ν − y)− k). Next, we compute separately the other integral terms and use integration by parts. The
integral term ∫ 1

0 I22(y, ν)Λ2f ′(ν)dν rewrites
p∑

k=0

∫ Λ2
Λ1

(1−y)−k

0
1[0,1](ν)q

′k
22Nz(

Λ1

Λ2
(ν + k) + y)Λ2f

′(ν)dν.

We get rid of the characteristic function by decomposing it into different integration domains, as illustrated

Figure B.3 – Representation of the integration domain for 2 < Λ2
Λ1

< 3, p = 2

in Figure B.3 a). Let us define the decreasing sequence yk = 1 − Λ1
Λ2

(k + 1), k ∈ J0, p + 1K. We decompose
the integral term according to the value of y relative to yk . We factorize all terms in f(0) resulting from the
integration by parts to obtain−Λ2f(0)Nz(y). Integral term ∫ 1

0 I21(y, ν)Λ1g′(ν)dν rewrites

−Λ2

p∑
k=0

qk22

∫ y+(k+1)
Λ1
Λ2

y+k
Λ1
Λ2

1[0,1](ν)Nw(
Λ2

Λ1
(ν − y)− k)g′(ν)dν.

Following the same procedure, we decompose the integration domain as illustrated in Figure B.3 b). Finally, we
compute thederivative of g using condition (b) and the expression ofker(Q). It proves that∀z ∈ ker(Q), QA∗z =

0. The condition (d) is given by Lemma 7.2.2 and derives from the spectral controllability of the system (As-
sumption 7.2.2). Using the arguments given in the proof of Lemma 7.2.1, we obtain thatQ is invertible. ■

By (B.1), we haveQ
(
N−+(0, ·)
− ¯N+−(·)

)
=

(
Nw

Nz

)
. The invertibility of the operatorQ given by
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Theorem B.3.1 implies the existence and uniqueness ofN+−(0, y), N̄−+(y) inL2([0, 1],R),
and therefore the existence of N+−(0, y), N−+(0, y). Since the kernels Iij are piecewisecontinuous, the integral operator Q−1 has a regularizing effect. Since Nw and Nz are
piecewise continuous,

(
N−+(0, y)

−N̄+−(y)

)
= Q−1

(
Nw(y)

Nz(y)

)
are in fact defined inC0

pw([0, 1],R2).
According to Lemma B.1.1, the four kernels N ·· are then uniquely defined in C0

pw(S). Thisconcludes the proof of 7.2.3.
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C - Comments on target systems and kernels dof for
a Timoshenko beam observer design

In the last section of Chapter 10, we designed a full-state feedback for a clamped Tim-
oshenko beam. The Port-Hamiltonian framework showed its interest in selecting target
systems with specific asymptotic properties. As for all backstepping-based controllers,
boundary control input (10.25) required the knowledge of distributed values of the state.
However, measurements are usually available in pointwise locations only for practical
applications that can be modeled by such beams, such as fixed-wing aircraft or flexible
endoscopes [WLG18]. Designing an adequate observer for the system from the available
measurements is a crucial step to obtaining effective controllers. So far, the choice of the
adequate target system for designing the observer gains has not been investigated. Simi-
larly, fixing the boundary conditions of the kernels that can remain as degrees of freedom
(dof) has not been investigated either. In this appendix, we present two backstepping-
based observer designs for a clamped Timoshenko beam with in-domain damping and
space-varying parameters that can be reformulated as a nonscalar hyperbolic PDE sys-
tem (Chapter 10). We question their advantages and inconveniences and present some
criteria for further quantitative analysis.

C.1 . System under consideration

C.1.1 . Damped Timoshenko beam

The damped Timoshenko beam model [Tim74] we consider in this test case corre-
sponds to (10.15)-(10.16), in which, in addition to the axial forces, we take into account
damping forces proportional to the velocity. From the balance equations on the mo-
menta, we obtain the coupled governing equations
ρ(x)

∂2w

∂t2
(t, x) + η1(x)

∂w

∂t
(t, x) =

∂

∂x

(
Ks(x)(

∂w

∂x
(t, x)− ϕ(t, x))

)
, (C.1)

Iρ(x)
∂2ϕ

∂t2
(t, x) + η2(x)

∂ϕ

∂t
(t, x) =

∂

∂x

(
E(x)I(x)

∂ϕ

∂x
(t, x)

)
+Ks(x)(

∂w

∂x
(t, x)− ϕ(t, x)).

Here, we assume that all physical parameters (ρ, Iρ, E, I ,Ks and the additional damping
coefficients η1, η2) are strictly positive functions inC1([0, 1],R+). Nomovement is allowed
at the clamped endx = 0, while the opposite end is free (unlike in Section 10.3, inwhich the
opposite end was fully actuated). We haveKs(1)(

∂w
∂x |x=1 − ϕ(t, 1)) = 0, EI(1)∂ϕ∂x |x=1 = 0.

Wemeasure themomentumandangularmomentumat this boundary y1(t) = ρ(1)∂w∂t |x=1and y2(t) = Iρ(1)
∂ϕ
∂t |x=1. For practical application, we consider that the sensor size is suf-ficiently small compared to the length of the beam, such as we have access to a pointwise

measurement. It is schematically illustrated in Figure C.1.
In the Port Hamiltonian framework, considering the energy states (10.17), the original
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Figure C.1 – Schematic representation of the system

system (C.1) rewrites in the form (10.1), with

P0(x) =


0 0 0 −1
0 0 0 0

0 0 −η1ρ(x) 0

1 0 0 −η2Iρ(x)

 ∈ R4×4

anda space-varyingHamiltoniandensityH(x). Theboundary conditions rewriteX2(t, 0) =

0R2 , X1(t, 1) = 0R2 , and themeasurement Y (t) = DX2(t, 1), withD = diag(ρ(1), Iρ(1))−1.
The initial conditions are set toX(0, ·) = X0 ∈ H1([0, 1],R4), ∂X∂t |t=0 = Xp ∈ H1([0, 1],R4).

C.1.2 . Overall strategy

We aim to compare different observer designs from boundary measurement for the
clamped Timoshenko beam model presented in the previous section. First, we apply the
strategy presented in Section 10.1. We rewrite the energy states in Riemann coordinates
using a first change of variables and apply a second exponential change of variables to
suppress the diagonal coupling terms. Second, we propose two observer designs based
on the backstepping methodology with different target systems. We show the conver-
gence of the estimations to the real values in finite time. Finally, we compare the per-
formances of the different designs in simulation and question their use in closed-loop
feedback.

C.1.3 . Reformulation as an hyperbolic PDE system

Riemann coordinates
We first rewrite (10.1) in Riemann coordinates. For all x ∈ [0, 1], the matrix P1H(x) ∈

R4×4 satisfies Assumption 10.9. Here, λ, µ,Λ and R, Q introduced in Section 10.3.2 are
strictly positive space-dependent functions (of class C1). For sake of simplicity, assume
that for all x ∈ [0, 1], µ(x) > λ(x). The state ξ(t, x) = Q−1(x)X(t, x) verifies the PDE
system (9.1) with the boundary conditions

ξ+(t, 0) = −R−1(0)ξ−(t, 0), ξ−(t, 1) = R(1)ξ+(t, 1). (C.2)
Due to damping terms and the space dependence of the coefficients, the in-domain cou-
pling matrix-valued functions differ. Their expression is given by (the space-dependence
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of the physical parameters is omitted)

Σ++(x) =
1

2

(
λ
2 (3

ρ′

ρ −
K′

s
Ks

)− η1 Ks
λIρ

−λ −µ
2 (

EI′

EI +
I′ρ
Iρ
)− η2

)
,

Σ+−(x) =
1

2

(
Ks
λ (λ2 (

ρ′

ρ + K′
s

Ks
)− η1) µKs

λ

Ks µIρ(
µ
2 (

EI′

EI +
I′ρ
Iρ
)− η2)

)
,

Σ−+(x) =
1

2

(
− λ
Ks

(λ2 (
ρ′

ρ + K′
s

Ks
) + η1) − 1

Iρ

− λ
µIρ

− 1
µIρ

(µ2 (
EI′

EI +
I′ρ
Iρ
) + η2)

)
,

Σ−−(x) =
1

2

(
λ
2 (3

K′
s

Ks
− ρ′

ρ )− η1 −µ
Ks
µIρ

µ
2 (3

EI′

EI −
I′ρ
Iρ
)− η2

)
.

The boundary measurement rewrites Y (t) =
√
2Dξ+(1).

Exponential change of variables
We then apply a second exponential change of variables to eliminate the diagonal

coefficients of Σ++,Σ−−. We define the following functions in C1([0, 1],R):
α(x) =

1

2
(ln

ρ(0)λ(x)

ρ(x)λ(0)
+

∫ x

0

η1(ν)

λ(ν)
dν), β(x) =

1

2
(ln

µ(x)Iρ(x)

µ(0)Iρ(0)
+

∫ x

0

η2(ν)

µ(ν)
dν),

γ(x) = −1

2
(ln

Ks(x)λ(x)

Ks(0)λ(0)
−
∫ x

0

η1(ν)

λ(ν)
dν), δ(x) = −1

2
(ln

µ(x)EI(x)

µ(0)EI(0)
−
∫ x

0

η2(ν)

µ(ν)
dν).

and define the invertible matrices inD+
2 ([0, 1]):

A(x)
.
= diag(eα(x), eβ(x)), B(x)

.
= diag(e−γ(x), e−δ(x)).

From then, consider the state z =
[
z+⊤, z−⊤

]⊤
∈ H1([0, 1],R4), defined by ∀t > 0,

x ∈ [0, 1],
z+(t, x) = A(x)ξ+(t, x), z−(t, x) = B(x)ξ−(t, x).

It verifies the PDE system (9.1) with the boundary conditions
z+(t, 0) = −R−1(0)z−(t, 0), z−(t, 1) = R̄z+(t, 1), with R̄

.
= B(1)R(1)A−1(1), (C.3)

where the in-domain coupling terms are defined by

Σ++
z (x) = 1

2

(
0 Ks

λIρ
eα(x)−β(x)

−λeβ(x)−α(x) 0

)
, Σ+−

z (x) = A(x)Σ+−(x)B−1(x),

Σ−+
z (x) = B(x)Σ−+(x)A−1(x), Σ−−

z (x) = 1
2

(
0 −µe−γ(x)+δ(x)

Ks
µIρ

e−δ(x)+γ(x) 0

)
.

The available measurement rewrites Y (t) =
√
2DA−1(1)z+(t, 1)

.
= D̂z+(t, 1).
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C.2 . Observer design

C.2.1 . Observer and error system

In this section, wedesign a Luenberger-type observer for state z [Krs08, AA19, HVDMK15].
Its state denoted ẑ satisfies a copy of the dynamics (9.1) with additional output injection
gains

∂
∂t ẑ

+ + Λ(x) ∂∂x ẑ
+ = Σ++

z (x)ẑ+(t, x) + Σ+−
z (x)ẑ−(t, x) + P+(x)(D̂−1Y (t)− ẑ+(t, 1)),

∂
∂t ẑ

− − Λ(x) ∂∂x ẑ
− = Σ−+

z (x)ẑ+(t, x) + Σ−−
z (x)ẑ−(t, x) + P−(x)(D̂−1Y (t)− ẑ+(t, 1)),(C.4)

with boundary conditions
ẑ+(t, 0) = −R−1(0)ẑ−(t, 0), ẑ−(t, 1) = R̄D̂−1Y (t). (C.5)

Define the error state z̃(t, x) .
= z(t, x) − ẑ(t, x). Subtracting (C.4) from (9.1), we directly

obtain the error system
∂
∂t z̃

+(t, x) + Λ(x) ∂∂x z̃
+(t, x) = Σ++

z (x)z̃+(t, x) + Σ+−
z (x)z̃−(t, x)− P+(x)z̃+(t, 1),

∂
∂t z̃

−(t, x)− Λ(x) ∂∂x z̃
−(t, x) = Σ−+

z (x)z̃+(t, x) + Σ−−
z (x)z̃−(t, x)− P−(x)z̃+(t, 1),(C.6)

with boundary conditions
z̃+(t, 0) = −R−1(0)z̃−(t, 0), z̃−(t, 1) = 0. (C.7)

The objective reads as follows
Objective C.2.1: Observer design

Design adequate gain functions P+, P− such that the error system (C.6)-(C.7) is expo-
nentially stable. In other words, there exists C, ν > 0, such that

∥z(t)− ẑ(t)∥L2 ≤ Ce−νt∥z(0)− ẑ(0)∥L2 .

To do so, we follow the backstepping methodology. Using an invertible transform, we
map (C.6)-(C.7) to an exponentially stable system. Due to the invertibility of the transform,
the two systems share equivalent stability properties. The values of the gains naturally
derive from the methodology.

C.2.2 . First backstepping design

In the first naive design, we use a classical Volterra integral transform to move the
destabilizing in-domain coupling terms in the error system (C.6)-(C.7) to the boundary
x = 0. More precisely, we define the transform L1 : H1([0, 1],R4) → H1([0, 1],R4), using
its inverse formulation, by

z̃(x) = L1(γ)(x)
.
= γ(x)−

∫ 1

x
L1(x, y)γ(y)dy. (C.8)
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with kernels L1(x, y) =

(
L++
1 L+−

1

L−+
1 L−−

1

)
∈ C0

pw(T +,R4×4). With this invertible transform,
we want the target PDE system satisfied by γ = L−1

1 (z̃) to be given by
∂
∂tγ

+(t, x) + Λ(x) ∂∂xγ
+(t, x) = 0, ∂

∂tγ
−(t, x)− Λ(x) ∂∂xγ

−(t, x) = 0, (C.9)
with boundary conditions
γ+(t, 0) = −R−1(0)γ−(t, 0) +

∫ 1

0
G+(y)γ+(t, y) +G−(y)γ−(t, y)dy, γ−(t, 1) = 0, (C.10)

with G+ =

(
0 0

g+(x) 0

)
a strictly lower triangular matrix. Define τλ =

∫ 1
0

dν
λ(ν) , τµ =∫ 1

0
dν
µ(ν) . We have the following theorem:
Theorem C.2.1: Exponential stability of the target system

For any compatible initial conditions (γ+0 , γ−0 ) ∈ H1([0, 1],R4), the solution of system
(C.9)-(C.10) is exponentially stable. More precisely, it converges to zero in finite-time
t∗

.
= τλ + τµ +max(τλ, τµ).

Proof : We have a cascade structure from γ− into γ+. First, for t > max(τλ, τµ), the null-boundary con-
dition in (C.10) has propagated in the entire domain such that the state γ−(t, x) = 0, ∀ x ∈ [0, 1]. Next, the
boundary conditions for t > max(τλ, τµ) rewrite γ+1 (t, 0) = 0, γ+2 (t, 0) =

∫ 1
0 g

+(y)γ+1 (t, y)dy. Then, for
t > max(τλ, τµ)+ τλ, state component γ+1 (t, x) ≡ 0, and then similarly after τµ more time, state component
γ+2 (t, x) = 0. Similarly, the proof is given in [HDMVK16] for constant transport speeds. ■

Following the backstepping methodology, that is to say injecting (C.8) in (C.6), and
integrating by parts, we show that kernels must satisfy the set of equations

Λ(x) ∂∂xL
++
1 + ∂

∂y (L
++
1 Λ(y)) = Σ++

z (x)L++
1 +Σ+−

z (x)L−+
1 ,

Λ(x) ∂∂xL
+−
1 − ∂

∂y (L
+−
1 Λ(y)) = Σ++

z (x)L+−
1 +Σ+−

z (x)L−−
1 ,

Λ(x) ∂∂xL
−+
1 − ∂

∂y (L
−+
1 Λ(y)) = −Σ−+

z (x)L++
1 − Σ−−

z (x)L−+
1 ,

Λ(x) ∂∂xL
−−
1 + ∂

∂y (L
−−
1 Λ(y)) = −Σ−+

z (x)L+−
1 − Σ−−

z (x)L−−
1 .

(C.11)

as well as a set of boundary conditions in x = y

Λ(x)L++
1 (x, x)− L++

1 (x, x)Λ(x) = Σ++
z (x), Λ(x)L−+

1 (x, x) + L−+
1 (x, x)Λ(x) = −Σ−+

z (x),

Λ(x)L+−
1 (x, x) + L+−

1 (x, x)Λ(x) = Σ+−
z (x), Λ(x)L−−

1 (x, x)− L−−
1 (x, x)Λ(x) = −Σ−−

z (x),

(C.12)
and the boundary conditions in x = 0,

(L++
1 )ij(0, y) = −

(
R−1(0)L−+(0, y)

)
ij
, i ≤ j. (C.13)

This system is under-determined: we have 5 remaining degrees of freedom for the kernel
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equations. In the considered case, they are given by
(L−−

1 )ij(0, y) = lij1 (y), i ≤ j, (L++
1 )21(x, 1) = l+1 (x), (L

−−
1 )21(x, 1) = l−1 (x), (C.14)

with lij1 , i ≤ j, l± piecewise continuous functions defined on [0, 1].
Once there are arbitrarily fixed, we have the following
Theorem C.2.2: Well-posedness of the kernel equations

The set of equations (C.11) with boundary conditions (C.12)-(C.14) admits a unique piece-
wise continuous solution on T +.

Proof : This derives from [HDMVK16, HVDMK15]. ■

The observer gains are defined by
P+(x) = −L++

1 (x, 1)Λ(1), P−(x) = −L−+
1 (x, 1)Λ(1). (C.15)

Consequently, thoughwe have introduced 5 degrees of freedom in the choice of the error
target system and Volterra integral transform (C.8), only one of them (l+1 ) will have an
impact on the convergence of the observer system. This questions their usefulness in the
backstepping methodology. This aligns with the concerns presented in Chapter 10 in the
context of control design. Though this inadequate choice does not directly impact the
computation of the state estimation, implementing a resolution algorithm for the kernel
equations (that are computed beforehand), will be more time-consuming, as shown in
Section C.3.2.

To keep in mind

In the backstepping methodology, different target systems can be reached using
an invertible transform. The simplest one is not always the most relevant choice
for observer/controller design.

C.2.3 . Second backstepping design

We now compare this observer design with another obtained using a simpler Volterra
integral transform [AA19, 19.3.2 P.362]. Here, we use the same form of Volterra integral
transform

z̃(x) = L2(γ)
.
= γ(x)−

∫ 1

x
L2(x, y)γ(y)dy. (C.16)

with a specific kernel of the form L2(x, y) =

(
L+
2 0

L−
2 0

)
∈ C0

pw(T +,R4×4). Indeed, we
certified in the previous section that the two other kernel components have no impact
on the observer system. With (C.16), we map the error system (C.6)-(C.7) to the following
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exponentially stable system
∂
∂tγ

+(t, x) + Λ(x) ∂∂xγ
+(t, x) = Σ+−

z (x)γ−(t, x) +
∫ 1
x H

+(x, y)γ−(t, y)dy,
∂
∂tγ

−(t, x)− Λ(x) ∂∂xγ
−(t, x) = Σ−−

z (x)γ−(t, x) +
∫ 1
x H

−(x, y)γ−(t, y)dy,
(C.17)

with boundary conditions
γ+(0) = −R−1(0)γ−(0) +

∫ 1

0
H0(y)γ

+(y)dy, γ−(1) = 0. (C.18)
Note that this target system has a more complex structure than the one in Section C.2.2.
Consequently, the design presented in Section C.2.2 is usually chosen by default (for in-
stance, in the Coni toolbox presented in Section A.2.3). Since we simplified the Volterra
integral transform, we suppressed some degrees of freedom such that some terms can-
not be removed from the target system. Let us now consider the structure of matrices
H+, H−, H0. To ensure a cascaded structure, we needH0 to be a strict triangular matrix.
This imposes three boundary conditions (L+

2 )ij , i ≤ j (for µ > λ) given in (C.21).
The functions are defined as the solution of

H+(x, y)−
∫ y

x
L+
2 (x, ν)H

+(x, ν)dν = L+
2 (x, y)Σ

+−
z (y), (C.19)

H−(x, y) = L−
2 (x, y)Σ

+−
z (y) +

∫ y

x
L−
2 (x, ν)H

+(x, ν)dν,

H0(y) = L+
2 (0, y) +R−1(0)L−

2 (0, y).

Equation (C.19) corresponds to a Volterra transform. More precisely, consider a fixed x ∈
[0, 1], and function h+ : y 7→ H+(x, y) defined on [x, 1]. This function satisfies a Volterra
integral equation of the second kind and is uniquely defined by [Yos60]. Then, the kernel
H+(x, y) is uniquely defined on T +. Consequently, the kernelH− is uniquely defined on
T +. The matrices do not need to be strictly triangular to ensure the following

Theorem C.2.3: Exponential stability of the target system

For any compatible initial conditions (γ+0 , γ−0 ) ∈ H1([0, 1],R4), the solution of system
(C.17)-(C.18), forH0 any strictly triangularmatrix, is exponentially stable. More precisely,
it converges to zero in finite-time t∗.
Proof : Similarly to [HDMVK16] (in case of control design with constant transport speeds), or [AA19, Theorem
19.4], we can prove that system (C.6)-(C.7) converges to zero in finite time. First, it has a cascaded structure
from z−, which has zero input at the right boundary, into z+. Using the method of characteristics, we can
prove that γ−(x, t) ≡ 0, for t ≥ τλ+ τµ. Due to the strictly lower triangular structure ofH0, the state γ+(x, t)

goes to zero. ■

Following the backstepping methodology, the kernels satisfy the set of equations
∂
∂x(Λ(x)L

+
2 (x, y)) +

∂
∂y (L

+
2 (x, y)Λ(y)) = Σ++

z (x)L+
2 (x, y) + Σ+−

z (x)L−
2 (x, y),

∂
∂x(Λ(x)L

−
2 (x, y))− ∂

∂y (L
−
2 (x, y)Λ(y)) = −Σ−+

z (x)L+
2 (x, y)− Σ−−

z (x)L−
2 (x, y),

(C.20)
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with boundary conditions
Λ(x)L+

2 (x, x)− L
+
2 (x, x)Λ(x) = Σ++

z (x), Λ(x)L−
2 (x, x) + L−

2 (x, x)Λ(x) = −Σ
−+
z (x),

(L+
2 )ij(0, y) =

(
−R−1(0)L−

2 (0, y)
)
ij
, i ≤ j. (C.21)

Once again, as stated in [AA19], this system is under-determined. To ensure that this
system is well-posed and guarantee the uniqueness of a piecewise continuous solution
[HVDMK15], we impose the boundary condition

(L+
2 (x, 1))21 = l2(x), (C.22)

with l2 ∈ C1
pw([0, 1],R). Note that the above equations define the samekernels asL++

1 , L−+
1in (C.11)-(C.14) under the condition l2(x) = l+1 (x), ∀ x ∈ [0, 1].

Theorem C.2.4: Well-posedness of the kernel equations

The set of equations (C.20)with boundary conditions (C.21)-(C.22) admits a unique piece-
wise continuous solution on T +.

Proof : The proof is given in [HVDMK15, Theorem A.1]. ■

We now question the interest of defining l2 in (C.22). In the case of constant coeffi-
cients, explicit expressions of the solution of (C.20)-(C.22) can be obtained using Bessel
functions [VK14]. As in Section C.2.2, fixing l2 has an impact on the gains defined by

P+(x) = −L+
2 (x, 1)Λ(1), P

−(x) = −L−
2 (x, 1)Λ(1). (C.23)

Continuous kernels
A first natural choice could be to select l2 to ensure the continuity of the kernels alongthe characteristic discontinuity line on T + starting from (1, 1). To do so, we impose

l2(1) =
Σ++
z (1)

µ(1)− λ(1)
. (C.24)

Arbitrary boundary conditions
In the case where we impose any other arbitrary (such as zero) boundary condition

l2(x), not satisfying (C.24), the kernel is not continuous on its definition domain, as il-
lustrated in Figure C.2. It could be interesting to quantify its impact on the numerical
resolution of the coupled kernel equations.

In the case where we impose a zero boundary condition (l2(x) = 0, ∀ x ∈ [0, 1]), one of
the components of P+ equals zero. Considering only the observer system, we could not
directly conclude its impact on the convergence time to the real state values. However,
considering the equivalent error target systems (in both backstepping designs), it appears
that it suppresses some re-circulation terms at the boundary x = 0. Therefore, we ought
to obtain a faster convergence of the error system in this case. This is next illustrated in
the simulation.
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Figure C.2 – Representation of (L+
2 )12 on its definition domain

To keep in mind

In the backstepping methodology, some degrees of freedommight remain in the
kernels defined for the observer or controller design. They are usually arbitrarily
set to zero. However, they might have an impact on some performance charac-
teristics.

C.3 . Further analysis of the observer design

In this section, we illustrate the impact of boundary conditions for the secondobserver
design with simulations. We propose some quantitative criteria to define the quality of
the observer design.

C.3.1 . Simulation test case and first remarks
We use the physical parameters given in 10.1, and in-domain damping terms c3 =

0.5, c4 = 0.8. We follow the simulation procedure described in Sections 10.2.4 and 10.3.4.
We represent the evolution of the L2−norm of the error energy states ∥X̃(t, ·)∥L2 , for the
same constant observer initial states. We observe that the decay rate is higher when the
structure of the error system is simplified at most.

When comparing the 2D projection of the error profile |X(x, t)− X̂(x, t)| for the four
states, we observe that the amplitude of oscillation of the error state is higher when the
continuous boundary condition is chosen (Figure C.5). This could be explained by higher
values of the kernels, which amplify numerical discrepancies.

C.3.2 . Computation time
As mentioned in Chapter 11, one limitation of backstepping-based controllers pro-

posed throughout this thesis is their numerical complexity. Indeed, they must be com-
bined with an observer PDE system, solved at each time step using the availablemeasure-
ment. This currently limits their use on real systems with fast dynamics.

Kernel resolution is also time-consuming. For the same observer system, the two de-
signs proposed in Section C.2 do not require the same computation time. For the first
observer proposed in Section C.2.2, it takes 422s and 13 iterations to converge to the ker-
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Figure C.3 – Evolution of the L2−norm of the error

Figure C.4 – Case l2 = 0) Figure C.5 – Case continuous kernel

nel values with an error eps = 10−5, while for the observer proposed in Section C.2.3,
computing the kernels only takes 146s. Though this operation can be done offline for
constant physical parameters, this computation timemust be considered for adaptive ob-
servers, since the kernel equations must then be solved at each time step.

C.3.3 . Quantitative criteria for dof selection
Finally, we propose some quantitative criteria, that could be used for selecting the

remaining degrees of freedom (dof). As seen above, imposing values on the remaining
boundary conditions seems to impact the convergence time of the implemented observer
in this test case.

Convergence time with different l2
A first evaluation criterion for an observer would be the time after which the given

estimation is close to the real value (to a certain distance ϵ, that corresponds to d% of the
real value). The L2−norm is generally considered to represent the distributed state.
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Definition C.3.1: Convergence time

Define td% the d%-convergence time as
td%(ẑ)

.
= min

t>τ

{∥ẑ(t, ·)− z(t, ·)∥2L2

∥z(t, ·)∥2
L2

}
≤ d.

However, this time should be evaluated over a certain interval. As illustrated in Fig-
ure C.5, we could expect some oscillations of the norm of the error state, such that the
threshold of a d% relative error could be reached for some t0, but not for some t > t0. Toquantify the quality of an observer, we propose the following definition

Definition C.3.2: Convergence time

Define tτ,d% the τ − d%-convergence time as

tτ,d%(ẑ)
.
= min

t>τ

{∥∥ẑ(t, ·)− z(t, ·)∥2L2∥Dτ

∥∥z(t, ·)∥2
L2∥Dτ

}
≤ d.

It corresponds to the time when the Dτ−norm of the L2−norm of the error state is
inferior to d% of theDτ−norm of the L2−norm of the state to estimate.

Robustness to small delays
Next, another evaluation criterion could be the robustness of the estimation to small

delays in the measurement. Indeed, we can expect that the measurement will be pro-
cessed and available with somemechanical or numerical delays for real applications. This
was illustrated in [KS08] for scalar hyperbolic PDE system with sensor delay. The robust-
ness could be quantified as the highest value of delay δ, such that the observer system

∂
∂t ẑ

+
δ + Λ(x) ∂∂x ẑ

+
δ = Σ++

z (x)ẑ+δ (t, x) + Σ+−
z (x)ẑ−δ (t, x) + P+(x)(D̂−1Y (t− δ)− ẑ+δ (t, 1)),

∂
∂t ẑ

−
δ − Λ(x) ∂∂x ẑ

−
δ = Σ−+

z (x)ẑ+δ (t, x) + Σ−−
z (x)ẑ−δ (t, x) + P−(x)(D̂−1Y (t− δ)− ẑ+δ (t, 1)),

ẑ+δ (t, 0) = −R
−1(0)ẑ−δ (t, 0), ẑ

−
δ (t, 1) = R̄D̂−1Y (t− δ).

still converges to the real state.
Definition C.3.3: Delay-robustness margin

Define δr the measurement delay robustness margin of the observer by
δr = max

{
δ > 0 | ∀η > 0, ∃ T > 0, ∀ t > T, ∥ẑδ(t, ·)− z(t, ·)∥2L2 ≤ η

}
.

Robustness to parameter uncertainties
Finally, a last criterion could be the robustness of the estimationwith regard to param-

eter uncertainties. Such uncertainties naturally arise when modeling physical systems.
Some physical parameters (weight, length...) can be directly measured with a certain er-
ror inherent to the quality of the equipment. Other parameters (Young’s modulus, shear
modulus) are usually evaluated to minimize a discrepancy with an empirical model. In
some cases, as in the drilling example of Chapter 11, some parameters are unknown. For
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a system with n physical parameters of real value pi, and known value p̂i,
Definition C.3.4: Average relative model error

Define ϵ the average relative model error as

ϵ
.
=

1

n

(
n∑
i=1

| p̂i − pi
pi
|

)

The robustness could be quantified as the highest value of error ϵ, such that the ob-
server system

∂
∂t ẑ

+
ϵ + Λ̂(x) ∂∂x ẑ

+
ϵ = Σ̂++

z (x)ẑ+ϵ (t, x) + Σ̂+−
z (x)ẑ−ϵ (t, x) + P+(x)(D̂−1Y (t)− ẑ+ϵ (t, 1)),

∂
∂t ẑ

−
ϵ − Λ̂(x) ∂∂x ẑ

−
ϵ = Σ̂−+

z (x)ẑ+ϵ (t, x) + Σ̂−−
z (x)ẑ−ϵ (t, x) + P−(x)(D̂−1Y (t)− ẑ+ϵ (t, 1)),

ẑ+ϵ (t, 0) = −R̂−1(0)ẑ−ϵ (t, 0), ẑ
−
ϵ (t, 1) =

ˆ̄RD̂−1Y (t).

still converges to the real state. Note that in the case of a Timoshenko beam, we have
n = 5 physical parameters, which have different impacts on the transport speeds, in-
domain, and boundary coupling terms.

Definition C.3.5: Parameter-robustness margin

Define ϵr the robustness margin of the observer with respect to parameters by
ϵr = max

{
ϵ > 0 | ∀η > 0, ∃ T > 0, ∀ t > T, ∥ẑϵ(t, ·)− z(t, ·)∥2L2 ≤ η

}
.

Perspectives

In this Appendix, we aimed to raise concerns about one neglected aspect of the back-
stepping methodology so far: the choice of remaining degrees of freedom in the kernel
equations. In a simple test case, we also showed that choosing the simplest target system
is not always relevant in the observer design. A parallel can be drawn with the robustness
concerns presented in Chapter 2 for controller design. Some criteria were proposed to
represent different aspects to consider (robustness, convergence time...). They could be
used to optimize the choice of degrees of freedom, in the eventuality where a 0-boundary
condition would not be optimal.
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Résumé: Cette thèse porte sur la synthèse
de contrôleurs robustes par retour de sortie
pour des systèmes d’équations aux dérivées
partielles (EDP) hyperboliques interconnectés
en une structure de chaine. Nous pro-
posons des solutions innovantes basées sur
la méthode de backstepping et exploitant les
liens entre systèmes d’EDP hyperboliques et
systèmes à retard de type neutre présen-
tés en Partie I. Nous étudions ici deux con-
figurations d’actionnement de structures en
chaîne. Tout d’abord, nous examinons le cas où
l’actionnement est disponible à une extrémité
(Partie II) pour deux différents réseaux (ODE-

EDP-ODE et n EDPs-ODE). Ces structures peu-
vent modéliser des systèmes de forage. En-
suite, nous considérons une chaîne simple où
l’actionnement est disponible au niveau de la
jonction (Partie III). Sa stabilisation nécessite
une transformation intégrale plus générale. En-
fin, nous explorons les aspects négligés des
contrôleurs basés sur la méthode de backstep-
ping (Partie IV), tels que le choix d’un système
cible atteignable avec des propriétés de stabil-
ité spécifiques, ou la réduction du temps de
calcul par des techniques d’apprentissage au-
tomatique.

Title: Robust control of linear hyperbolic partial differential equations systems interconnected
in a chain network.
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nected systems, robustness.
Abstract: This thesis focuses on designing ro-
bust output-feedback backstepping-based con-
trollers for hyperbolic partial differential equa-
tion (PDE) systems interconnected in a chain
structure. We take advantage of connections
between the class of hyperbolic PDE systems
under consideration and time-delay systems
of the neutral type presented in Part I. Then,
we focus on two classes of chain structures.
First, we consider the case where the actua-
tion is available at one end (Part II) for two dif-
ferent networks (ODE-PDE-ODE and arbitrarily
many n PDEs-ODE). Such chain structures can

be found in drilling applications. Next, we con-
sider a simple chain of two hyperbolic PDE sub-
systems where the actuation is available at the
junction (Part III). Amore general integral trans-
form is necessary for its stabilization. Finally,
we explore controller design tuning and imple-
mentation limitations of backstepping-based
controllers (Part IV). We question the choice of
a reachable target system with specific stabil-
ity properties. Additionally, we examine the po-
tential of machine learning techniques to im-
prove computation time in distributed state
and parameter estimation.
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