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Abstract

The design and analysis of low-level computing devices directly implemented in hardware is com-
monly based on finite state machine models. In this work we review some of the assumptions
made in these designs and discuss techniques for the cases where the assumptions fail to hold. The
work concentrates on three such aspects: (i) computing under conditions where low-level timing
effects cannot be neglected, (ii) when non-binary signals play a central role, and (iii) computing
within a changing infrastructure, i.e., dynamic networks. While most of this work is devoted to
implementations in silicon, microbiological circuits are discussed in the outlook.
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Chapter 1

Introduction

A central aspect of computation is mechanically, in the sense that this process follows rules, trans-
forming binary input words into binary output words, such that input and output are related via
a predefined function. The rules of the mechanical transformation naturally depend on the target
machinery. Two abstract machineries are typically studied within this context.

(i) The Turing machine, an abstract machine, reads from and writes to an infinite, linear,
sequentially accessible tape, and is controlled by a finite state machine. The input is presented
to the machine as the tape’s initial state and the output contained on the tape when the state
machine enters a dedicated final state.

(ii) Circuits that comprise of untimed Boolean gates. The input is represented as respective
constant signals, and the output is obtained as the signal values of dedicated gate outputs. These
Boolean circuits are restricted to be purely combinational, i.e., gates are stateless, and no cycles
are allowed when connecting gates.

While a Turing machine specifies an input-output relation for a potentially infinite set of inputs,
a circuit does so only for inputs of the same length. Computation of a function on an infinitely
large set of inputs is modeled by a family of circuits; one per input length. Care has to be taken
when defining how these circuits are generated and which constraints they have to fulfill as these
decisions have effects on the resulting complexity hierarchy.

The problem of determining an output functionally related to an initially presented input,
however falls short of capturing reactive problems where inputs are presented along an execution.
The design of controllers falls into this category: it round-wise receives inputs and responds with
outputs such that the potentially infinite execution is within a predefined set of correct executions.

Machine models considered for this class of problems are typically state machines with finite or
infinite number of states. Notable special cases of finite state machines are Moore machines, where
outputs only depend on the current state, and Mealy machines, where outputs are determined by
the current state and current input. Both play a key role for physical circuit implementations
discussed in the following.

Before we start with definitions and problems, the author would like to remark that we work
with a broad definition of computation in this text. In particular, we will not distinguish between
one-shot input-output problems and providing a continuously executing service, as the line of
separation seems to be set rather for historically reasons than by other means. While one may
object that with such a definition the specificity of computer science as opposed to computer
engineering, control theory, to physics or biology disappears, the author of this text sees this as an
opportunity rather than a deficit.

1.1 Basic Notation

We write N = {0, 1, . . . }, N+ = N \ {0}, and R+
0 = {x ∈ R | x ≥ 0}. Further, for k ∈ N+,

[k] = {1, . . . , k}. For the set of Boolean values we write B = {0, 1}.
For a directed graph G = (V,E) with vertices V and edges E, we write Inv ⊆ V , with v ∈ V ,

to denote the set of in-neighbors of v in G, and Outv ⊆ V for v’s set of out-neighbors. Instead of

1



vertices, we will sometimes speak of nodes when it is more natural, e.g., when vertices correspond
to computing nodes. Likewise, we will sometimes refer to edges as links.

1.2 State Machines and Circuits

We will first make the two machine models, namely, state machines and circuits, more precise.

State machine. Consider a deterministic, finite Moore state machine, that operates in discrete
rounds. Such a machine M is defined by a tuple (I,O, S, s0, δ, o), where I is a finite input alphabet,
O a finite output alphabet, S a finite set of states, s0 ∈ S the initial state, δ : S × I → S the
transition function, and o : S → O the output function. An execution of M for a countably infinite
input trace ι ∈ Iω is the sequence (ιk, sk, ok)k≥0, where s0 is the initial state, o0 = o(s0), and for
k ≥ 1,

sk = δ(sk−1, ιk−1)

ok = o(sk) .

Execution (prefixes) of M for input traces ι ∈ I∗ of finite length k ≥ 0 are defined as the (unique)
k-prefix of an execution of M for an input trace ι′ that is obtained by extending ι arbitrarily to
an infinite input trace.

With the above definitions, the notion of round-wise computation lies at hand. Given an
execution, round k comprises of

(i) reading input ιk−1,

(ii) computing the current round’s state sk based on input ιk−1 and the previous round’s state sk−1,
and

(iii) computing the current round’s output ok based on the current state sk.

Circuit. Likewise, a combinational feed-forward circuit, in the following simply referred to as a
combinational circuit, is a directed node-labeled graph G = (V,E, g) with a finite set of nodes
V partitioned into input nodes I, output nodes O, and internal nodes L, a set of signals E, i.e.,
edges between nodes, and a gate labeling function g that assigns to each internal or output node
v, a Boolean formula with atoms in v’s incoming edges. The graph is required to be acyclic, input
nodes only have outgoing but no incoming edges, output nodes only incoming and no outgoing
edges.

Example 1. Figure 1.1 shows a circuit with input nodes I = {1, 2}, internal nodes L = {3, 4, 5},
and output nodes O = {6, 7}.

Before defining an execution of a circuit, we need to define delay models for circuit components.
We continue with some definitions towards this goal.

An event is a tuple (t, x) ∈ E = (R+
0 ∪ {−∞})×B. We call t the event’s time and x its value.

If t = −∞, the event is called an initial event. A signal is a finite or countably infinite sequence
of events, such that, there is exactly one initial event, event times are increasing, and within any
finite interval of time only finitely many events occur. Intuitively, the list of events describes the
signal’s value changes over time, with an event (t, v) denoting that the signal takes value v at
time t. The history of signal s at time t, denoted by s[→ t], is s with all events with times larger
than t removed. We denote the set of histories of signal s at time t by Hists(→ t). A signal’s
value at a time t ∈ R is the value of the latest event in s[→ t]. Note that for convenience of later
definitions we also allow a signal to change to, say 1, when it already has value 1. We will call
such an event redundant as the signal’s value stays the same upon such an event.

Let s1 to sk, with k ≥ 1, be signals. A delay function d with inputs s1 to sk is a function from

R+
0 ×

⋃
t≥0

(
k∏
i=1

Histsi [→ t]

)
→ R .

2
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Figure 1.1: Example circuit with two inputs, two outputs, and internal nodes. Internal and output
node labels are shown in gray.

Intuitively,

δ(t; s) = d(t, s1[→ t], . . . , sk[→ t]) (1.1)

is the delay at time t ≥ 0 of a channel with inputs s1 to sk. By slight abuse of notation we write
δ(t) for δ(t; s) if s is clear from the context, and extend δ to t = −∞ by setting δ(−∞; s) = 0 for
all s.

Most widely adopted are pure delay functions, where δ(t) = c is constant in t with c ∈ R+
0 .

Bounded delay functions guarantee that δ(t) ∈ [δ−, δ+] for non-negative constants δ− and δ+.
A channel with inputs s1 to sk is a tuple (d, f) where d is a delay function with inputs s1 to sk,

and f the channel’s Boolean function from Bk → B. A channel induces an output signal o that is
defined by Algorithm 1 on page 4 as follows. Given a channel with input signals s1 to sk and time
t ≥ 0, the induced output signal until time t is the output ot of Algorithm 1 with inputs s1, . . . , sk
and t. The time t in the notation ot refers to the input event time t. It does not imply stability of
the output signal until time t: in particular the induced output until time t does not necessarily
have the same events with times less than time t as the induced output until time t′ ≥ t.

We define the induced output signal o as the limit, with τ → ∞, of the common prefixes of
signals ot, where t ≥ τ . Note that a priori the existence of the limit is not guaranteed. Further, if
the limit exists, it may not be a signal, as its event times may not approach∞ while it contains an
infinite number of events, or it may contain events at finite negative times. We will, however, see
that for a large class of naturally occurring channels, the limit is a valid signal and an arbitrarily
long prefix of it can be computed efficiently.

The algorithm. Algorithm 1 carries out the following steps:

• It generates an event sequence o, by looping over all input events, in increasing order of event
times, until time t is reached. For each such input event, it adds an output event to o whose
value is determined by the Boolean function f and whose time is the time τ of the input
event plus the channel’s delay δ(τ).

• In case, o’s events are increasing in time, o will be the returned signal (except for the removal
of redundant events).

• However, event list o may contain events that are reversed in time, i.e., be of the form
o = x · (t, v) ·y · (t′, v′) ·z with t′ ≤ t, and sequences x, y, and z. Function doCancellations
removes any such violating (sub)sequences, while looping over o’s events. An example of two
events in wrong order, with the result of an event being removed is shown in Figure 1.3.

• Finally, removeRedundant removes redundant events. Note that according to our defini-
tion of a signal this is not necessary for correctness.
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Algorithm 1 Algorithm computing the induced output signal until time t ≥ 0.

Input: signals s1, . . . , sk and time t
Output: signal o

τ ← −∞ . initial event time
o←

[ ]
. initial event list

do
δ′ ← δ(τ ; s) . get delay
v ← f

(
s1(τ), . . . , sk(τ)

)
. new output value

o.append
(
(τ + δ′, v)

)
. add event

τ ← smallest time greater than τ of an event in s1, . . . , sk; +∞ if does not exist
while τ ≤ t
o←doCancellations(o) . cancel events that violate order
o←removeRedundant(o) . generate signal without redundant events

function doCancellations(s) . defined for signals s with finite number of events
Pending←

[ ]
for (τ, v) in s do

remove all events with times τ ′ ≥ τ from Pending . we say (τ, v) cancels these events
Pending.append

(
(τ, v)

)
. . add event

end for
return Pending

end function

function removeRedundant(s) . defined for signals s with finite number of events
if no events in s then

return s
end if
Pending←

[ ]
Pending.append

(
first event in s). . add event

v′ ← value of first event in s
for (τ, v) in s do

if v 6= v′ then . ensure that event is not redundant
Pending.append

(
(τ, v)

)
. . add event

v′ ← v
end if

end for
return Pending

end function
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• The final finite event list o, by construction, is a signal if the delay function guarantees that o
does not contain negative finite event times.

Cancellations. Let e be an event that causes the removal of an event e′, i.e., e comes after e′ in
the event sequence o, but e has time less or equal to the time of event e′. Such an event e′ will be
removed within doCancellations in Algorithm 1. We then say that e cancels e′.

Example 2. Figure 1.2 shows an example of a channel with inputs s1 and s2, and the induced
output signal o. The delay δ(τ, s) at time τ , is depicted, with signal histories Hists1(→ τ) and
Hists1(→ τ) shown in red.

t

s1

t

s2

t

o τ

δ(τ ; s)

Figure 1.2: Example of a channel (d, f) with input signals s1 and s2 and f ≡ And. The channel
induces the output signal o.
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δ(τ ; s)

Figure 1.3: Same channel as in Figure 1.2. Suppression of an output pulse. (left) Delay of the first
transition. (right) The first transition does not become effective at the output o since it is canceled
by the second transition which happens to be before the first one. The output thus remains at
value 0.

Example 3 (Channel with single input). Let s =
[
(−∞, 0), (1, 1), (2, 0)

]
and (f, d) be the channel

with input signal s, Boolean function f ≡ Id, and delay function d(τ ; s) = 1. The scenario is
depicted in Figure 1.4.

To determine the induced output signal o until time 2, we execute Algorithm 1 with inputs s
and t = 2.

1. Initially, τ is set to −∞ and o =
[ ]

.

2. Next, the initial event (−∞ + δ(−∞; s), f(0)) = (−∞, 0) is added to o, resulting in o =[
(−∞, 0)

]
. Time τ is updated to the next input event time 1.

3. Since the condition of the while-loop is fulfilled, δ′ is set to δ(1; s) = 1 and v to f(s(1)) = 1.

4. This results in o =
[
(−∞, 0), (2, 1)

]
and τ = 2.

5. Again the loop’s condition is fulfilled, resulting in o =
[
(−∞, 0), (2, 1), (3, 0)

]
and τ =∞.

6. Function doCancellations returns o, since there are no events violating order.
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7. Function removeRedundant returns o, since there are no redundant events.

Since, execution of the algorithm for all t ≥ 2 leads to the same output, the output signal induced
by the channel is o =

[
(−∞, 0), (2, 1), (3, 0)

]
.

t

s1

t

o
1 2

2 3

Figure 1.4: Channel from Example 3.

Example 4 (Channel with two inputs). Let s1 and s2 be signals as shown in Figure 1.5 (left) and
(right). Further, let (f, d) be a channel with input signals s1 and s2, Boolean function f ≡ Or,
and a delay function d(τ ; s).

First, consider the case shown in Figure 1.5 (left). Here a reordering of events with identical
value occurs. A reason for this, e.g., is that the presence of an active second input leads to quicker
charging of the Or gate’s output, and thus shorter rising transition times.

1. Initially the output has value 0.

2. The rising transition of s2 at time 1 results in an event (1 + δ′, 1) = (4, 1) being added to o.

3. The following rising transition of s1 at time 2 results in an event (2 + δ′, 1) = (3, 1) being
added to o.

4. Thus o = [(−∞, 0), (4, 1), (3, 1)].

5. Function doCancellations returns o = [(−∞, 0), (3, 1)], canceling the event at time 4.

6. Function removeRedundant returns o, since there are no redundant events.

Second, consider the case shown in Figure 1.5 (right) where a reordering of events with distinct
values occurs. A reason for such a scenario may be a short input glitch that is suppressed at the
output.

1. Initially the output has value 0.

2. The rising transition of s2 at time 1 results in an event (1 + δ′, 1) = (4, 1) being added to o.

3. The following rising transition of s2 at time 2 results in an event (2 + δ′, 0) = (3, 0) being
added to o.

4. Thus o = [(−∞, 0), (4, 1), (3, 0)].

5. Function doCancellations returns o = [(−∞, 0), (3, 0)], canceling the event at time 4.

6. Function removeRedundant returns o = [(−∞, 0)], removing the second redundant tran-
sition.

Delay model and execution of a circuit. Returning to circuits, we define: A delay model
for a circuit is a collection (dv)v∈V of delay functions. An execution of a circuit is a collection of
signals, one per node v ∈ V , that fulfills the following properties.

• The signals assigned to input nodes are arbitrary.

• Let u ∈ L ∪ O be an internal or output node. Further let v1, . . . , vk be the incoming edges
of u. Let d be the circuit’s delay model. Then the signal assigned to u is the output signal
induced by the channel with input signals s1 to sk assigned to v1 to vk, and delay function du.

As such, the definition is not constructive and thus does not allow to generate output signals
from input signals. We will, however, later on discuss constructive solutions for several practically
relevant delay models.
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Figure 1.5: Channel from Example 4. Two types of order violations are depicted in the two
scenarios. (left) An order violation between events with the same value; here 1. The event with
the dotted arrow is canceled. (right) An order violation between events with opposing values.
Again, the event with the dotted arrow is canceled. The second event is later removed by the
algorithm, since it is redundant.

1.3 State Machine Implementations

We next discuss a well-known and practically relevant relation between state machines and circuits:
state machines are implementable by circuits.

Implementation of synchronous Moore state machines. A register, or flip-flop, is a state-
holding circuit element with a data input D, a clock input clk, and a data output Q. We only
provide a high-level specification of a register here, as this will suffice for our purposes. Inputs and
outputs are single line, and, by slight abuse of notation, we write D for the input (port) D and its
signal in an execution; and similarly for the other ports. Given that the clock respects a certain
minimum time between transitions, and that D does not change value within the setup time before
a rising (active) clock transition at time t and the hold time after t, output Q is set to D(t) at
latest after some clock-to-Q delay δreg > 0.

Example 5. Figure 1.6 shows the behavior of a register sampling 1 and then 0.

clk

D Q

t

clk

t

D

t

Q

Figure 1.6: Signals of a register initialized to 0, first sampling 1 and then 0. Red areas indicate
setup-hold windows where D is required to be stable.

We are now in the position to combine registers and (combinational) circuits and describe
the classic, clocked Moore state machine implementation shown in Figure 1.7. Input, local, and
output registers have bit width large enough to hold values in the input alphabet I, state space S,
and output alphabet O, respectively. With each active clock transition, input and local registers
sample new values, and the (combinational) circuitry computes the next state and output. Under
practically relevant delay models, the next local state and output signals will stabilize within
bounded time, and are then (after an additional setup time) ready to be sampled again at the
arrival of the next active clock transition.

Figure 1.8 shows the phases within a clock cycle. The red, unstable phases are conservative over-
approximations of actual unstable periods, since stability depends on the combinational circuitry
and register states among others. The maximum register clock-to-Q delay δreg and the maximum
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input

output

clk

Figure 1.7: Clocked Moore state machine implementation. The dashed output register is not
considered to be part of the implementation, and represents the input register of a potentially
successor state machine or output logic.

t

clk
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1 2 3

δreg

δcir

Figure 1.8: Phases of a clock cycle. Red (X) indicates unstable signals. (1) register output stabi-
lization, (2) propagation of outputs through combinational logic to register inputs, and (3) stable
register inputs.

combinational circuit’s propagation time δcir determine the duration of these phases. The minimum
propagation time through the circuit, here for simplicity, is lower bounded by the trivial bound
0, requiring that the hold time is 0. Generally, designs require minimum propagation times of at
least the registers’ setup time.

One easily verifies that any finite Moore state machine is implementable by a circuit in Fig-
ure 1.7, with round-wise presented inputs and round-wise generated outputs. While this approach
is used extensively, it has its limitations discussed in the following section.

1.4 Abstractions Made so Far

Tempting for its simplicity, the classical synchronous state machine implementation has been widely
adopted. However, limitations become apparent in certain applications. Three major foci, based
on implicitly made assumptions, are:

Delay bounds and steady state behavior. Only maximum and minimum circuit timing has
been taken into consideration to validate clock cycle and setup/hold constraints. This allows to
consider only the steady state of the combinational circuit and ignore transients.

Precise latency of gates, however, may be essential for several reasons. (i) Working with the
steady state may be too conservative to obtain the intended performance (input-output latency
and throughput). (ii) The steady state behavior abstracts away from internal glitches1. Since
glitches contribute to the gates’ dynamic power components, their presence or absence influences
the circuit’s overall power consumption.

1A glitch is a short pulse that typically occurs as unintended transient behavior.
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For applications where this matters, a timing analysis with refined delay models beyond just the
maximum latency may become relevant. This results in potentially less conservative bounds on
clock cycle lengths and power consumption. Chapter 2 discusses this path in greater detail.

In some cases, a refined analysis and design of the above scheme is still insufficient, or prohibitively
costly, to meet the design constraints. Historically, alternatives have been studied within the
asynchronous circuit’s community with an initial emphasis on designs that operate in presence of
arbitrary delays [1, 2]. A clear, formal model for such circuits and an analysis of their expressiveness
was given by Manohar and Moses [3]. For an overview on asynchronous circuits we refer the reader
to [4, 5]. While a general discussion of such solutions would go beyond the scope of this work, we
deviate from the classical state machine implementation at several places throughout this work.

Boolean signals. So far, circuits have been defined to compute with Boolean values B = {0, 1}.
In our model, a signal value s is a non-continuous function from time t to its value s(t) ∈ B
at time t. Clearly, though, this is a convenient, but simplifying, abstraction of physical signal
values. Classically, digital gates in electronic circuits are viewed as transforming input voltages into
output voltages. In design styles like the widely-used Complementary Metal Oxide Semiconductor
(CMOS) technique, signal values are continuous functions from the time to the voltage between a
certain probing point and ground.

While, signals are meant to reside within clearly separated regions of low and high voltage, encod-
ing 0 and 1, respectively, transient phases with in-between voltages are inevitable when switching
between low and high. These, typically, short transient switches are normally neglected in an
analysis. The simplification, however, becomes problematic if switching times become a dominant
part. This may be due to (i) aggressive timing of the circuitry with only short stable phases, (ii)
faults such as charge induced by ionizing particles [6], or failing transistors or interconnect [7, 8],
and (iii) metastability2 of state-holding gates [9, 10].

While some of these effects can be covered by more advanced delay models as discussed in Chapter 2
or by non-deterministic over-approximation of switching times, we will discuss a different approach
in Chapter 3: to compute with non-binary signal values.

Stable architecture. Finally, we assumed that gates and interconnections between gates behave
according to their Boolean gate and channel specifications. This neglects changes, or deviation,
of intended component behavior and interconnect. While, arguably, from a modeling perspective
there is no difference between modeling correct or faulty behavior, solutions that have to take
into account faulty components will be different from the simple state-machine implementation in
Section 1.3. Clearly, though, problems are different, too.

Depending on the problem to solve, available components, failure models, and the behavior of the
environment, available solutions differ considerably. However, key to many solutions is redundant
execution of computations over space and/or time. One of the fundamental problems when repli-
cating components is to maintain the component states synchronized to a certain extent. Examples
of such states are component outputs, internal component states, and a common notion of time
among components.

We discuss such homogenization techniques in Chapters 4 and 5.

1.5 Algorithms as Circuits

Before discussing means of computing in absence of some of the convenient assumptions of delay
bounds and steady state behavior, Boolean signals, and stable architectures, the author of this
work would like to emphasize on a general view that is taken throughout the work.

For solutions to problems, algorithms are given in terms of circuits rather than pseudo-code. If
pseudo-code is given, it is with the intent to comprise of simple computational and communication
statements, that are amenable to implementation within circuits. Clearly though, this criterion is
informal, with success or failure becoming visible only when systems are indeed mapped to target

2Any state-holding gate with at least two stable internal states was shown to contain a third metastable internal
state in which it may reside for an unbounded time [9].
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technologies. Further, the criterion depends on the intended target technology and size of the
circuit. Taking the average of two numbers may be too expensive as a solution in small digital
circuits, but be valid for larger digital circuits, or easy to obtain by mixing two equal volumes
with a certain protein concentration, and taking the resulting protein concentration. We will thus
comment on the intended target technology when it is not clear from the context.

Algorithms and circuits are thus treated interchangeably, instead of seeing circuits as implemen-
tations of algorithms. For previous work on gate-level algorithms, we refer the reader to distributed
algorithms that have been shown to solve fault-tolerant distributed pulse generation. Consider a
distributed system of n > 1 nodes, that can communicate with each other via binary signals whose
delay is within bounds [δ−, δ+]. Each node has a dedicated output signal; its clock output. Some
of the nodes are correct, i.e., they follow the algorithm, and some are Byzantine faulty, i.e., they
produce arbitrary binary output signals and communicate arbitrary binary signals to the other
nodes. Communicated signals may be even different for different nodes in case the sending node
is faulty.

We say a distributed algorithm, i.e., a family of circuits indexed by the set of nodes, solves
fault-tolerant distributed pulse generation in presence of up to f ∈ N Byzantine nodes, if

• each correct node produces a clock signal with a cycle length, i.e., the time between two
successive active transitions, within some strictly positive bounds [T−, T+], and

• the clock skew, i.e., the maximum of the difference of time of the kth active clock transition
of two nodes, over all k ≥ 1 and all pairs of correct nodes, is within some strictly positive
bounds [σ−, σ+],

given that at most f nodes are Byzantine in an execution.
The DARTS algorithm [11, 12] is an example of an algorithm that solves the problem if f < n/3

and if certain constraints on node internal and external communication delays are fulfilled. The
FATAL algorithm [13] is another example of a fault-tolerant distributed pulse generation algorithm
targeted at simple hardware components. In addition to being fault-tolerant, it is self-stabilizing:
irrespective of the past until a time t, given that there are no more than f < n/3 Byzantine faults3

during some [t, t + T ], then the system solves fault-tolerant distributed pulse generation within
[t+ Ts, T ] with a certain probability p(Ts) that converges to 1 as Ts < T approach infinity.

A discussion on gate-level models for such algorithms is given in [14]. Distributed gate-level
algorithms in more general settings are discussed in Dolev et al. [15].

1.6 Organization of this Work

The following three chapters are devoted to computing in machine models with relaxed assump-
tions. Chapter 2 discusses work on delay models. Chapter 3 is on computing with non-binary,
but still digital, signals. Chapter 4 discusses algorithms that provide a homogeneous state despite
highly dynamic architectures. Finally, Chapter 5 provides an outlook to currently ongoing research
and future directions.

At the beginning of a chapter we provide a blue box that lists, and briefly sketches, the main
research papers this chapter is based on. Central results of a chapter are also highlighted in green.
At the end of a chapter, own work that is related to the chapter is provided in a green box.

3Definitions of correct and faulty have to be adapted to correct and faulty within a certain time interval. The
same holds for the definition of an algorithm solving fault-tolerant distributed pulse generation.
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Chapter 2

Timing

This chapter discusses results from the following research articles.

• [16] Függer, Nowak, Schmid. Unfaithful glitch propagation in existing binary circuit models.
IEEE Transactions on Computers 65.3 (2015): 964-978, and

[17] Függer, Nowak, Schmid. Unfaithful glitch propagation in existing binary circuit models.
In IEEE 19th International Symposium on Asynchronous Circuits and Systems (ASYNC),
pages 191–199, 2013.

We show deficiencies in previous, widely used delay models for digital circuits. In particular
the propagation of glitches through circuits is not captured correctly: problems solvable in
Netwonian physics are not solvable in such models and vice versa.

• [18] Függer, Najvirt, Nowak, Schmid. A Faithful Binary Circuit Model. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2019), and

[19] Függer, Najvirt, Nowak, Schmid. Towards binary circuit models that faithfully capture
physical solvability. In Design, Automation & Test in Europe (DATE), pages 1455–1460,
2015.

Based on our previous finding of problems in delay models, we propose a new class of
delay models: involution delay models. We show that variants of the short pulse filtration
problem, related to glitch propagation, are solvable in these new models if and only if they
are solvable in Newtonian physics.

• [20] Najvirt, Függer, Nowak, Schmid, Hofbauer, Schweiger. Experimental validation of a
faithful binary circuit model. Proceedings of the 25th edition on Great Lakes Symposium
on VLSI (GLSVLSI). 2015.

We challenge the involution delay model by experiments on inverter chains in an ASIC
circuit. Paremetrizations of the model are obtained by these experiments.

• [21] Függer, Maier, Najvirt, Nowak, Schmid. A faithful binary circuit model with adversarial
noise. Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2018.

The involution delay model is a deterministic delay model: a function from the history of
signals to a delay. In this work we weaken this assumption, adding bounded non-determinism
to the delay and show that the model is equivalent to the deterministic model with respect
to solvability of the short pulse filtration problem variants.

2.1 Glitch Propagation

Consider a chain of combinational gates, say buffers, and a glitch propagating through the chain.
An example scenario is depicted in Figure 2.1. Following the convention of delay models and circuit
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executions from Chapter 1, transitions that occur in reverse order (here, falling before rising in a
low signal), cancel each other and the signal value remains unchanged. In the example, the pulse
shrinks in length when propagated from a to b and cancellation occurs when propagating the pulse
from b to c.

Buf1 Buf2 Buf3

a b c

t

a

t

b

t

c

Figure 2.1: A glitch propagating through a buffer chain. The glitch shrinks in length and is
suppressed after the second buffer. Blue arrows indicate combined gate and interconnect delays.

Such behavior is typically observed if gates or interconnect form capacitors of non-negligible
capacitance that needs to be charged or discharged when the gate drives a different output value.
Charging or discharging is not only responsible for the delay until sufficient voltage is available
across the capacitor, but this delay also depends on charge already present in the capacitor.

Figure 2.2 on page 13 shows a Spice simulation of a chain of 7 buffers, g10 to g16, with an input
pulse applied at the first buffer input. The chain was synthesized for the 15 nm FinFET NanGate
open cell library [22], layed out and routed, and its parasitics extracted for simulation (all within
the Cadence suite).

While the pulse in Figure 2.2a propagates through all buffer stages, Figure 2.2b shows a pulse
that shrinks in length until it is fully canceled by the pre-last stage.

Pulses, and their propagation through a circuit will play an important role when discussing
channel models. Formally, in our binary circuit model, a pulse of length ∆ > 0 at time T is a
signal p with

p(t) =

{
1 if T ≤ t < T + ∆

0 otherwise
. (2.1)

A signal contains a pulse of length ∆ > 0 at time T if its event list contains the two consecutive
events (T, 1) and (T + ∆, 0).

2.2 Bounded Single-history Delay Models

To facilitate a comparison between delay models we follow an approach proposed in Függer et
al. [16, 17], unifying several delay models. For that purpose we define bounded single-history
channels. While “single-history” refers to the fact that its delay depends on the current and
previous transition only, the term “bounded” will be discussed in Section 2.8.1, when we introduce
unbounded single-history channels.

Definition 6 ([16]). A bounded single-history channel is a tuple (F, f, δ), where F ∈ B specifies
whether the channel is non-forgetful (F = 0) or forgetful (F = 1), f is the channel’s Boolean
function, and δ : R → R determines the channel’s delay function d as specified in the following.
The channel’s function δ must fulfill:

• δ is nondecreasing.
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(a) The pulse propagates through the buffer chain.
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(b) The pulse at the input of buffer g14 is attenuated by buffer g14 and filtered out by g15.

Figure 2.2: Two scenarios of a buffer chain with a short input pulse. The first 4 buffers, g10 to
g13, are used to shape the input signal. Input signals of the buffers g14, g15, g16 are shown in the
figure. Threshold crossings are shown as red markings. Layout and routing was done in Cadence
Encounter, Spice simulations in Cadence Spectre. VDD = 0.8 V.

• δ(∞) = limT→∞ δ(T ) is finite and positive.

The two variants of bounded single-history delay channels, non-forgetful and forgetful, differ in
whether the time of a canceled output event has an effect on the delay for the next output event
(non-forgetful) or not (forgetful). The value d(t, s[→ t]) of their delay function is given by the
following inductive definition. For n ≥ 1,

• Let τi, with i ∈ [n] and −∞ < τ1 < τ2 < · · · < τn ≤ t, be the times where f(s(·)) changes
value.

• Let ti = τi + d(τi, s[→ τi]) for i ∈ [n− 1]. Further, set t0 = −∞.

• Let Tn = τn − t′, where t′ is determined as follows:

– If the channel is non-forgetful, then t′ = tn−1.

– If the channel is forgetful, then t′ = tn′ , with n′ ≤ n− 1 maximal, given that the output
event at time tn′ was not canceled by output events at times t1, . . . , tn−1.

• Set d(t, s[→ t]) = d(τn, s[→ τn]) = δ(Tn).
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(a) Non-forgetful bounded single-history channel.
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(b) Forgetful bounded single-history channel.

Figure 2.3: Behavior of a non-forgetful and a forgetful bounded single-history channel with f ≡ id
and identical δ. The output events at times t2 and t3 are canceled. This leads to different T4 for
the two channel variants.

By slight abuse of notation we will refer to δ as the channel’s delay function.
The difference between the two bounded single-history channel types is demonstrated in Fig-

ure 2.3. Figure 2.3a shows the input and output signals of a non-forgetful channel and Figure 2.3b
of a forgetful channel in presence of the same input signal. Otherwise, both channels have identical
Boolean functions f ≡ id and delay functions δ.

The delay of a bounded single-history channel, depends only on the time since the last (non-
forgetful channel) or last non-canceled (forgetful channel) output event; thus the name single-
history. The channel is further called bounded, because of the following property:

Lemma 7. The delay of a bounded single-history channel with delay function δ, is bounded. In
particular it is within [δ(−δ(∞)), δ(∞)].

Proof. From the definition of T , it is easily verified that the parameter T for a bounded single-
history channel is always larger than −δ(∞). In fact such a T occurs as the infimum of parameter
T for the delay of the second transition in pulses of duration ε > 0, with the first transition being
delayed by δ(∞) <∞. The lemma’s statement then follows from the fact that δ is nondecreasing
on R.

Recall from Section 1.2 that the induced output signal until a time t does not necessarily exist.
In particular the list of output events generated by Algorithm 1 may not necessarily have common
prefixes for increasing times t. This may be the case if output event k ≥ 1 can cancel output event
1 ≤ ` < k for arbitrarily large k − ` ≥ 1. One can, however, show that bounded single-history
channels are well-behaved, and their induced output signal indeed exists.

Indeed, we will see in Lemma 17 on page 21 that bounded single-history channels, as their name
suggests, have bounded delays within [−δinf, δ∞]. Combining this property with the fact that for
a bounded single-history channel, an event can at most cancel the previous event, but never more,
we obtained:

Lemma 8 (Lemma 4 and 5 in [16]). Denote by Sn the output event list generated by Algorithm 1
for a prefix of the input event list of length n. Further, denote by Sn | t its restriction to events at
times at most t.

Then, for the non-forgetful and the forgetful single-history channel, for all t ≥ 0, there exists
an N ∈ N such that Sn | t is constant for all n ≥ N .
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2.3 Conventional Delay Models

Two widely adapted delay models are the pure delay model, also referred to as transport or
constant delay model, and the inertial delay model. Both are implemented in standard circuit
design frameworks. Example 9 discusses their use in the VHDL language.

Example 9. In the following a VHDL listing for a simple buffer gate with delay is given. Depending
on the buffer’s architecture, it uses a pure delay channel with parameter 5 ps (BUF transport), or
an inertial delay channel with parameters 4 ps and 5 ps (BUF inertial) or 5 ps and 5 ps (BUF after).

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

entity BUF i s
Port ( X: in s t d l o g i c ;

Y: out s t d l o g i c ) ;
end BUF;

architecture BUF transport of BUF i s
begin

Y <= transport X after 5 ps ;
end BUF transport ;

architecture B U F i n e r t i a l of BUF i s
begin

Y <= reject 4 ps iner t ia l X after 5 ps ;
end B U F i n e r t i a l ;

architecture BUF after of BUF i s
begin

Y <= X after 5 ps ;
end BUF after ;

In terms of our model, a pure delay channel is a single-history channel with delay function

δ(T ) = δ∞ , (2.2)

where δ∞ is its delay.1 The behavior of pure delay channels is identical, no matter whether they
are forgetful or non-forgetful: they simply never cancel transitions. Figure 2.4 shows two pure
delay functions with different δ∞.

T
1

δ

1

Figure 2.4: Pure delay function with parameters δ∞ = 1 (blue) and δ∞ = 1.5 (red).

The advantage of the slightly more refined inertial delay channels is not immediate for standard
synchronous designs. While correctness of classical synchronous state machine implementations
indeed only rely on minimum and maximum delay, i.e., ranges for δ∞, inertial delays play a

1We use the notation δ∞ since δ(∞) = δ∞. While this may seem heavy in notation for a constant delay channel,
we will follow this scheme also for more refined channels. We call δ∞ the long-term delay since it is the delay for a
channel that has not seen an input for increasingly long durations.
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role for power estimates and when leaving the single-clock synchronous design path. Indeed,
Unger [23] proposed a design technique for asynchronous sequential switching circuits that relies
on the availability of inertial delay channels.

Cast in our model, the delay function of an inertial delay channel is,

δ(T ) =

{
δ∞ if T ≥ T0

−T0 otherwise
. (2.3)

with parameters T0 and long-term delay δ∞. Figure 2.5 shows two delay functions for different
long-term delays δ∞. Observe, the discontinuity at T = T0 that will play a central in its analysis
later on.

T
1

δ

1

T0

Figure 2.5: Inertial delay function with parameters T0 = 1 and δ∞ = 1 (blue) and δ∞ = 1.5 (red).

Bellido-Diaz et al. [24] proposed a more refined model, the Delay Degradation Model (DDM).
The model overcomes shortcomings of the inertial delay model in that it captures gradual degrada-
tion of pulse widths by channel, rather than sudden cancellation at a certain threshold. Its delay
function is,

δ(T ) = δ∞

(
1− e−

T−T0
τ

)
. (2.4)

Figure 2.6 shows two delay functions that differ in their long-term delay δ∞. By contrast to the
inertial delay model, the delay function is continuous over R. The function was derived by analytic
arguments of charging effects and its accuracy compared against Spice simulations. Indeed DDM
achieves very good accuracy in challenging scenarios with significant degradation effects.

T
1

δ

1

Figure 2.6: Two DDM delay functions with parameters τ = 1, T0 = 1, and δ∞ = 1 (blue) and
δ∞ = 1.5 (red).
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2.4 Glitch Propagation in Models

Starting from the three models with their goals to refine on glitch propagation in circuits, the ques-
tion arises, which of these models indeed captures these phenomena. While we would intuitively
rank the three models from pure delay, followed by inertial delay, and DDM for their capability to
model real glitching behavior, a formal answer to this question has several advantages:

1. Accuracy of simulations. We clearly aim for more accurate simulation results with more
refined models. Accuracy is measured as deviation from physical measurements, or detailed
simulation models that are considered sufficiently close to real measurements. In our setting
these are typically (post-layout) Spice models with extracted parasitics.

2. Impact of correctness proofs on real circuits. A correctness proof of a circuit within a model
that deviates significantly from reality clearly does not imply correctness of the circuit in
real-world settings. While all proposed delay models clearly deviate from reality in one or
the other way, a more coarse question of whether a model deviates from reality would be
to ask if an (important) problem P is solvable in this model if and only if it is solvable in
reality. We termed such models faithful with respect to P [16].

3. Validity of circuit synthesis. The above observation also has implications on automated
circuit synthesis. By analogous arguments as for correct proofs, a circuit synthesized within
a model that is not faithful with respect to P may lead to circuits that fail in practice for
problems that are related to P .

2.5 Short Pulse Filtration in Physical Models

Before discussing adequate problems P to prove faithfulness or non-faithfulness with respect to P ,
let us specify a model that we consider to capture reality. In doing so we follow Marino’s work
on metastability [9], who defined a realistic circuit as one whose voltage signals can be described
in a time and value continuous system of differential equations with restrictions that, e.g., imply
causality.2 For a detailed description of the model we refer the reader to [9].

In our case, (normalized) voltage signals are assumed to be within [0, 1]. To map these signals
to binary values, we assume the existence of thresholds l0, l1 ∈ (0, 1) with l0 < l1 and will speak of
the signal being logical b ∈ B if the signal’s value is within Lb, where L0 = [0, l0] and L1 = [l1, 1].

It remains to chose a problem P for which to assess whether the model is faithful with respect
to P . In our case, the informal goal is to correctly model propagation of glitches, i.e., short pulses,
through circuitry. Note that this question is closely related to correctly modeling metastability —
although, the latter is not straightforward to state in a binary-valued model. We will, see, however,
that both — glitches and metastability — are indeed closely related.

Several problems lie at hand when it comes to finding typical problems where correct handling
of glitches supposedly plays a role in whether a circuit solves this problem, or not. Although care
must be taken on the precise specification of such problems, a fundamental component that would
help solving such problems, is a single input single output circuit that filters away too short pulses
at the output. In its simplest form we require that this device only works for a single positive input
pulse. We termed this problem the Short Pulse Filtration (SPF) problem [16, 17]. It remains to
specify what filtering away means in this context — too strict definitions inevitable will lead to
unsolvability in real systems. The SPF problem is specified as follows and has two variants:

Definition 10 (Unbounded SPF and bounded SPF in the physical model [16]). Consider a circuit
with a single input and a single output in the physical model. It solves unbounded Short-Pulse
Filtration (SPF) if:

(i) If the input signal is constantly logical 0, then so is the output signal.

2While one may argue that such a continuous model neglects quantum effects with discrete energy potentials,
note that these potentials are steady-state solutions. A more severe limitation, is the lack of probabilistic effects in
our model. We will discuss probabilistic, or in this case, nondeterministic, extensions in Section 2.10, however, a
relation to quantum effects is open at this point.
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Figure 2.7: Reducing a single-input bistable element stabilizing within bounded time to a bounded
SPF circuit.

(ii) There exists an input signal such that the output signal attains logical 1 at some point in
time.

(iii) There exists some fixed ε > 0 such that, if the output signal is not interpreted as logical 1 at
two points in time t and t′ with t′ − t < ε, then it is not logical 1 at any time in between t
and t′.

It solves bounded SPF if additionally:

(iv) There exists a time T > 0 such that, if the input signal switches to logical 1 by time t, then
the output signal value is either logical 0 or logical 1 at time t + T and remains logical 0
respectively logical 1 thereafter.

Conditions (i) and (ii) outrule trivial solutions to the problem that simply set their output to
constant 0 or 1. Condition (iii) prevents a solution from producing an output pulse of length less
than a predefined ε; thus the problem’s name. Condition (iv) further requires the circuit output
to stabilize within bounded time.

We will next discuss both SPF variants in Marino’s model of physical circuits.

2.5.1 Impossibility of Bounded SPF

In [16] we showed by reducing the problem of building a bistable storage element that stabilize in
bounded time to building a circuit that solves bounded SPF:

Theorem 11 ([16]). No physical circuit solves bounded SPF.

For the proof, let us define a single-input bistable element in the physical circuit model as a
circuit with a single input and a single output that fulfills properties (i) and (ii) of SPF, and
additionally:

(iii’) If the output is logical 1 at some time t, it also remains logical 1 at all times larger than t.

Analogous to the bounded SPF problem, a circuit solves the single-input bistable element stabilizing
within bounded time, if additionally (iv) of SPF holds.

Indeed, Marino’s Theorem 3 in [9] then directly implies:

Corollary 12 ([16]). In the physical circuit model, there is no single-input bistable element stabi-
lizing within bounded time.

To show Theorem 11, it remains to reduce a single-input bistable element stabilizing within
bounded time to a bounded SPF circuit. Figure 2.7 shows such a reduction by a circuit that uses a
bounded SPF circuit to build a respective single-input bistable element. Its idea is to use a storage
loop, formed by the Nor with the Inv feedback, to capture a 0-1-0 pulse, and permanently output
1. The storage loop does not fail, due to too short input pulses, because of property (iii) of the
SPF. Finally, boundedness carries over from the bounded SPF to the single-input bistable element.

2.5.2 Possibility of Unbounded SPF

For the weaker unbounded SPF problem, we showed:

Theorem 13 ([16]). There is a physical circuit that solves unbounded SPF.
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Figure 2.8: A circuit that solves unbounded SPF. The inverter driving the output is a low threshold
inverter.
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Figure 2.9: Spice simulations of a storage loop in presence of short input pulses (blue). The storage
loop gets metastable, resulting in its internal signal staying arbitrarily long near the metastability
point (bundled green), before it resolves to stable 0 or 1. Once the signal leaves the metastable
region (red area), it resolves quickly, however. Regions L0 and L1 for voltages that are interpreted
as logical 0 and logical 1 by the successive low threshold inverter are marked in the figure.

Figure 2.8 depicts the circuit that solve unbounded SPF. It comprises of a storage loop formed
by the Nor and Inv gates, and a successory low threshold Inv gate. Such an inverter has a shifted
input-output function that maps a larger (upper) voltage range of input values to logical 1 and a
smaller (lower) voltage range to logical 1.

Figure 2.9 provides an intuition why the circuit indeed solves the unbounded SPF problem: The
(blue) input signal may lead to a metastable upset of the storage loop, resulting in the (green) signal
at the low threshold inverter input. However, the low-threshold inverter interprets a sufficiently
large voltage range, including the metastable region of the storage loop, as a logical 1 and thus
maps it to 1. Metastable upsets thus lead to arbitrarily late, but not spurious, transitions at the
inverter output. One easily verifies that the circuit thus fulfills all properties required for solving
unbounded SPF.

2.6 Short Pulse Filtration in Binary-valued Models

We are ready to state unbounded SPF and the bounded SPF from Definition 10 in binary-valued
circuit models. Further, we introduce a third problem, the eventual SPF problem.

Definition 14 (Unbounded SPF, bounded SPF, and eventual SPF in binary-valued models [16]).
Consider a circuit with input i and output o in the binary-valued model. The circuit solves un-
bounded Short-Pulse Filtration (SPF) if:
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(w) For every pulse p, there exists an execution that has p as the input signal. (Well-formedness)

(i) In all executions, if the input signal is constant zero, then so is the output signal. (No
generation)

(ii) There exist a pulse p such that, in all executions with p as the input signal, the output signal
is not the constant zero signal. (Nontriviality)

(iii) There exists an ε > 0 such that, in all executions, the output signal does not contain a pulse
of length less than ε. (No short pulses)

The circuit solves bounded SPF if additionally:

(iv) There exists a K > 0 such that, in all executions with a pulse as the input signal whose last
event is at time T , the output signal does not change anymore after time T +K. (Bounded
stabilization time)

The circuit solves eventual SPF if conditions (w), (i)–(iii), and the following condition hold:

(iv’) There exists an ε > 0 and a K > 0 such that, in all executions with a pulse at time T as the
input signal, the output signal does not contain a pulse of length less than ε after time T +K.
(Eventually no short pulses)

One easily verifies that the problems are ordered as eventual SPF ≤ unbounded SPF ≤ bounded
SPF with respect to their difficulty: bounded SPF implies unbounded SPF, which itself implies
eventual SPF.

We say a circuit model is faithful with respect to glitch propagation if within the model bounded
SPF is not solvable, and bounded SPF is solvable.

2.7 Unfaithful Delay Models

While the non-faithfulness of the discontinuous inertial delay channels may not come as a surprise,
a much larger class of channels has difficulties capturing glitch propagation effects adequately:

Theorem 15 ([16]). No circuit model with bounded single-history channels is faithful with
respect to glitch propagation.

The proof is separated into three cases of bounded single-history channels, each of which is
sketched in the following sections.

2.7.1 Constant Delay Channels

Constant delay channels are widely used in circuit design. The following theorem shows that they
are not faithful, however.

Theorem 16 ([16]). No circuit solves unbounded SPF with only constant delay bounded single
history channels.

The proof is based on the observation that a circuit that comprises only of constant delays
“samples” the input signals at certain, discrete, times, only. Assume a circuit that solves SPF and
let i be its input and o its output. Then for every t ≥ 0, o(t) depends only on a finite set of input
values i(t−τ1), i(t−τ2), . . . , i(t−τk), with τ1, . . . , τk > 0. Changes of the input signal that happen
between these times thus get unnoticed by the current output value. However, at certain times t,
the set of input values grows. The proof now relies on choosing a time t where the set is guaranteed
to not grow within an environment of length ε > 0, and changing the input signal to produce an
arbitrarily short pulse at the output — making use of the previously established indistinguishably
argument for inputs.
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2.7.2 Non-Constant Forgetful Channels

For a bounded single-history delay function δ, let

δ∞ = lim
t→∞

δ(t) (2.5)

δinf = lim
t→0+

δ(−δ∞ + t) . (2.6)

The notation δinf, for infimum delay, as well as the notation of a bounded single-history channel
is due to the following result:

Lemma 17 ([16]). All events produced by a bounded single-history channel are delayed by times
within [δinf, δ∞].

For a bounded single-history channel c, that is either forgetful or non-forgetful, let

γ(c) = inf {∆ > 0 | δ − δ∞ + δ(∆− δ∞)} . (2.7)

We then showed that:

Lemma 18 ([16]). Let c be a non-forgetful or a forgetful bounded single-history channel with
initial value 0. The following statements are equivalent: (i) γ(c) > 0, (ii) c is not a constant-delay
channel, (iii) There exists an input pulse, such that the output of c is the zero signal.

One can then show for forgetful bounded single-history channels:

Lemma 19 ([16]). Let c be a non-constant-delay forgetful bounded single-history channel with
initial value 0. Let s be a signal that does not contain pulses of length greater or equal to γ(c) and
that is not eventually equal to 1. Then the output of c with input s is the zero signal.

The above lemma can finally be applied to show that the circuit shown in Figure 2.8 on page 19,
except with a standard inverter with the non-constant forgetful bounded single-history channels
instead of the low-threshold inverter, can be used to solve bounded SPF. We thus obtain:

Theorem 20 ([16]). Let c∗ be a non-constant-delay forgetful bounded single-history channel. Then
there exists a circuit solving bounded SPF whose channels are either constant-delay channels or c∗.

2.7.3 Non-Constant Non-forgetful Channels

The proof for the non-constant non-forgetful case is by dissecting into three subcases for the delay
function δ. The cases differ in how the function behaves at −δinf.

• There exists a t > −δinf such that δ(t) < δ∞. From the fact that δ(t) goes to δ∞ with t→∞,
we have that δ is non-constant within the subdomain (−δinf,∞).

• Otherwise, for all t > −δinf, it is δ(t) = δ∞. Either,

– δ is continuous at −δinf, i.e., at −δinf its left limit equals its right limit, or

– δ is non-continuous at −δinf.

For all three cases, one can construct (three different) circuits that solve SPF. The idea under-
lying all circuits is to produce pulses that flank the actual input pulse, and that are shifted by a
uniformly lower bounded ε > 0 in time by the presence of an input pulse. This shift is then trans-
formed into a steady state change via a storage loop. We refer the reader to [16] and the extended
arxiv version for a description of the circuits and their correctness proofs. We thus obtain:

Theorem 21 ([16]). Let c∗ be a non-constant-delay non-forgetful bounded single history channel
with initial value 0. Then there exists a circuit solving SPF whose channels are all either constant-
delay channels or c∗.
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2.8 A Faithful Delay Model

The following section is based on [18, 19], where we show that faithful delay models exist.
Central to the new model is a modification of bounded single-history channels from Section 2.2

to so called unbounded single-history channels. We will give a definition of these channels in
Section 2.8.1. In search for faithful subclasses of unbound single-history channels, we start with
a simple physical model of the effects responsible for pulse shortenings in Section 2.8.2 and work
our way towards delay functions from there.

2.8.1 Unbounded Single-history Channel

Definition 6 on page 12 formalized bounded single-history channels, with δ’s domain being R. Like
bounded single-history channels, unbounded single-history channels are defined via their delay
function δ (respectively two delay functions δ↓ and δ↑) and an initial value. The parameter T of
the delay function is defined analogously to the parameter T for bounded single-history channels.
We consider only non-forgetful channels, here, however.

The major difference of unbounded to bounded channels is that the delay function’s domain is
not R, but a subset. Along the work in [19], we define:

Definition 22. An unbounded single-history channel is defined analogously to a bounded single-
history channel, except that its two delay functions (up and down) are strictly increasing concave
functions of the form

δ↑ : (−δ↓∞,∞)→ (−∞, δ↑∞) and

δ↓ : (−δ↑∞,∞)→ (−∞, δ↓∞)

with finite δ↑∞ = limT→∞ δ↑(T ) and δ↓∞ = limT→∞ δ↓(T ).

2.8.2 Analog Channel Model

Consider a channel with a successive identity gate — the generalization to other Boolean gates is
straightforward by modifying the Boolean behavior. The channel itself is driven by a predecessor
gate. Assume that Vgnd = 0V and Vdd = 1V . Figure 2.10 on page 23 depicts the schematic of a
simple equivalent circuit.

The predecessor gate output is modeled as an amplifier with infinite amplification and a pre-
specified discretization voltage Vth. Its output is a single bit digital signal ui. The amplifier itself
is not part of this channel, however, and is only shown to depict the input environment. The
binary signal ui is then delayed by constant time Tp, obtaining the binary signal ud. With the
occurrence of a rising transition of ud, the following analog switching element follows its rising
switching waveform f↑ from its current (voltage) state onwards, until a falling transition occurs,
and it reacts by following the falling switching waveform f↓ from its current voltage onwards, etc.
The resulting signal is an analog signal ur. The signal is finally discretized again by an amplifier,
resulting in the channel–gate output signal uo. This signal potentially is the input of a downstream
gate, or a circuit output. Figure 2.10 (below subfigure) also shows the delays δ↑(T1) and δ↓(T2)
that result for the first and second transition of the input signal ui to the output signal uo.

In [18] we have shown how the switching waveforms can be translated into delay functions that
result in the same digital behavior. We start from the ansatz,

δ↑(T ) = −f−1
↑ (f↓(T ))

δ↓(T ) = −f−1
↓ (f↑(T )) ,

(2.8)

where f↑ is continuous and strictly increasing and f↓ is continuous and strictly decreasing.
In the above formula, e.g., at a rising transition, δ↑(T ) returns the time by which f↑ has to

be shifted so that the analog output signal ur remains continuous with respect to the output
signal caused by the previous falling transition. We further need that rising and falling switching
waveforms start at analog voltages 0 and 1 respectively, i.e.,

f↑(0) = 0 and f↓(0) = 1 .
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Figure 2.10: Physical, analog channel model based on continuous rising f↑ and falling f↓ switching
waveforms. From [18].

Further, they are required to be full-swing, i.e.,

lim
t→∞

f↑(t) = 1 and lim
t→∞

f↓(t) = 0 .

Incorporating both into our ansatz, yields a revised ansatz:

δ↑(T ) = −f−1
↑ (f↓(T + δ↓∞)) + δ↑∞

δ↓(T ) = −f−1
↓ (f↑(T + δ↑∞)) + δ↓∞ ,

(2.9)

where

δ↑∞ = lim
T→∞

δ↑(T )

δ↓∞ = lim
T→∞

δ↓(T ) .

From Figure 2.10 one readily observes for the above two quantities,

δ↑∞ = Tp + f−1
↑ (Vth) and

δ↓∞ = Tp + f−1
↓ (Vth)

First order low pass filter. As an example, consider f↑ and f↓ to result from a first-order RC
low pass filter behavior. Then,

f↓(t) = 1− f↑(t) = e−t/τ ,

where τ is the RC time constant. Using (2.9), we obtain the delay function of a so-called exp-
channel as being

δ↑(T ) = τ ln(1− e−(T+Tp−τ ln(Vth))/τ ) + Tp − τ ln(1− Vth)

δ↓(T ) = τ ln(1− e−(T+Tp−τ ln(1−Vth))/τ ) + Tp − τ ln(Vth) .
(2.10)

Figure 2.11 on page 24 shows examples for delay functions δ↑ for an exp-channel with two different
parameters.
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Figure 2.11: Two exp-channel delay functions with parameters Tp = 0.1, Vth = 0.5, and τ = 1.0
(blue) and τ = 1.5 (red). The resulting long-term delays are δ∞ = 0.1 + 1.0 ln(2) (blue) and
δ∞ = 0.1 + 1.5 ln(2) (red).

2.8.3 Involution Channels

In [18] we introduced a new channel type, the so called involution channels, that are defined as
follows:

Definition 23 ([18]). An involution channel is an unbounded single-history channel with

− δ↑
(
− δ↓(T )

)
= T and − δ↓

(
− δ↑(T )

)
= T (2.11)

for all applicable T .

The name involution channel is due the fact that, in case δ↑ = δ↓ = δ, function −δ is an
involution, i.e., is self-inverse.

All delay functions from involution channels are necessarily continuous. For simplicity, we
also assumed them to be differentiable — δ being concave thus implies that its derivative δ′ is
continuous and monotonically decreasing. While this is a restriction of the general case, the
underlying motivation was that delay functions in physical circuits will most likely be continuous
in their behavior.

In the following we will discuss our main result from [18] that render involution channels
interesting candidates for faithful delay channels:

Theorem 24 ([18]). The binary circuit model with involution channels is faithful with respect
to glitch propagation.

2.8.4 Central Properties of Involution Channels

As a first observation, note that δ↑ and δ↓ are not independent of each other. The timing behavior of
involution channels is fully determined by either one of the delay functions, as δ↑(T ) = −δ−1

↓ (−T )
(and similarly for δ↓).

Further, so called strictly causal channels will play a role to show uniqueness of executions.
As we will see from Lemma 27, strictly causal channels have a minimum positive delay which
enables constructive generation of executions; a central property for the existence of algorithms
that simulate circuits with such channels.

Definition 25 (Strict causality [18]). An involution channel is strictly causal if δ↑(0) > 0.

One observes from (2.11) and the functions being strictly increasing that a channel is strictly
causal if and only if δ↓(0) > 0,

For the special case of an exp-channel, strict causality is solely determined by Tp as follows:
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Lemma 26 ([18]). An exp-channel is strictly causal if and only if Tp > 0.

The next lemma identifies an important parameter δmin of a strictly causal involution channel —
the minimum delay of any transition that will not be canceled, as we will show in Lemma 28. By
contrast, transitions that will be canceled very well can (and in fact we show that they will) have
delays less than δmin.

Lemma 27 ([18]). A strictly causal involution channel has a unique δmin defined by

δmin = δ↑(−δmin) = δ↓(−δmin) ,

which is positive. For exp-channels, δmin = Tp. For the derivative, we have

δ′↑(−δ↓(T )) = 1/δ′↓(T ) ⇒
δ′↑(−δmin) = 1/δ′↓(−δmin) .

From this result, we finally established a central relation of δmin to the minimum channel delay
of non-canceled transitions:

Lemma 28 ([18]). Let tn and tn+1 be the times of the nth and (n + 1)th input transitions. The
following are equivalent:

1. The nth and (n+ 1)th pending output transitions cancel.

2. tn+1 ≤ tn + δn − δmin

3. δn+1 ≤ δmin

2.8.5 Possibility of Unbounded SPF

To show faithfulness of the involution channels with respect to glitch propagation, we need to show
that, within this delay model: (i) there exists a circuit that solves unbounded SPF, and (ii) that
there is no circuit that solves bounded SPF. We start by showing the former:

Theorem 29 ([18]). There is a circuit that solves unbounded SPF.

Its proof is constructive in the sense that it provides the circuit that solves unbounded SPF.
It is shown in Figure 2.12. Interestingly, the circuit is in accordance with the circuit used to show
that unbounded SPF is solvable in physical circuits.

C

i high TH o

Figure 2.12: A circuit solving unbounded SPF, consisting of an Or gate fed-back by channel C,
and an exp-channel HT implementing a high-threshold buffer. From [18].

For the proof, we proceed to show the following theorem, that characterizes the circuit’s Or
gate output behavior with respect to the input pulse. It shows that positive input pulses that
have length less than ∆0 result in output pulse trains that degrade to eventually being constant 0,
longer input pulses lead to pulse trains whose pulses grow to eventually being constant 1, and
input pulses of length exactly ∆0 result in an output that oscillates forever.

Theorem 30 ([18]). The fed-back Or gate with a strictly causal involution channel has the fol-
lowing output when the input pulse has length ∆0:

• If ∆0 > ∆̃0, then the output is eventually constant 1.
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• If ∆0 < ∆̃0, then the output is eventually constant 0.

• If ∆0 = ∆̃0, then the output after the initial pulse ∆0 is a periodic pulse train with uptime
∆̃1, period κ and duty cycle3 γ = ∆̃1/κ < 1.

Furthermore, the stabilization time in the first two cases is in the order of loga(1/|∆0 − ∆̃0|) with
a = 1 + δ′↑(0).

To show Theorem 29, it remains to show that the signal generated by the feedback-Or gate
is properly filtered by the high-threshold Inv. In particular all eventually vanishing pulse trains
must be filtered out and produce a constant 0 signal at the output. Towards this goal, we showed
that exp-channels have such filtering properties:

Lemma 31 ([18]). Let Θ > 0 and Γ ∈ [0, 1). Then, there exists an exp-channel C such that every
finite or infinite pulse train with pulse lengths (Θi)i≥0 and duty cycles (Γi)i≥0, that fulfills

• Θi ≤ Θ, for i ≥ 0, and

• Γi ≤ Γ, for i ≥ 1

is mapped to the zero signal by channel C.

Theorem 30 and Lemma 31 finally show Theorem 29.

2.8.6 Impossibility of Bounded SPF

The idea to show that no circuit solves bounded SPF has similarities to Marion’s work on meta-
stability [9], showing that no bistable circuit is metastability-free. It first defines a metric space in
which (i) circuits are shown to be continuous functions from inputs to outputs, and (ii) argues that
the problem to be solved requires a non-continuous function. While in Marino’s work this problem
is the problem of building a bistable it is solving bounded SPF in our case. Metric spaces are
fundamentally different though since our signals are binary as opposed to the continuous valued
signals in [9].

Continuity of Channels. In [18] we showed that strictly causal unbounded single-history chan-
nels are continuous within a certain metric space. Towards this goal, we define s1 ≤ s2 for two
signals s1, s2, if the relation holds point-wise. Similarly functions like |s1 − s2| that denote the
inequality signal of s1, s2, are defined point-wise.

As a first result, monotonicity of unbounded single-history channels is established via:

Lemma 32 ([18]). Let s1 and s2 be signals such that s1 ≤ s2 and let C be a channel. Then, C is
monotone in the sense that fC(s1) ≤ fC(s2).

The proof is by induction on the input transitions of s2 and uses the fact that delay functions
are non-increasing in parameter T . Monotonicity of T for two corresponding transitions in s1 and
s2 is due to the assumption that s1 ≤ s2. Care has to be taken in that s2 may contain pulses that
do not exist in s1: if so, we simply create ones (for analysis) in s1.

One may next define a measure for signals, and from this, a distance between signals:

Definition 33 ([18]). Let time T ≥ 0. For a signal s denote by µT (s) the measure of the set
{t ∈ [0, T ] | s(t) = 1}. For any two signals s1 and s2, we define their distance up to time T by
dT (s1, s2) = µT (|s1 − s2|).

Given a strictly causal unbounded single-history channel, it remains to show how the distance
between output pulses changes if input pulses are transformed. We state one of these bounds
below. For a detailed analysis we refer the reader to [18].

3The duty cycle of a periodic signal is the ratio of high-time and period. For a non-periodic pulse train, we define
the duty cycle of pulse i ≥ 1 as the ratio of the high-time of the ith cycle and its total length.
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Lemma 34 ([18]). Let T ≥ 0 be a time, s be a signal that is eventually constant 0 and, C be a
strictly causal unbounded single-history channel. Then, adding a 0-1-0 pulse of length ε1 ≥ 0 at
the last transition of s (thus extending the signal) or after it (thus resulting in a new pulse), and
calling the new signal s′, we have

µT (fC(s′)) ≤ µT (fC(s)) +
(
1 + δ′↓(−δmin)

)
ε1 .

From the above lemma, showing that small extensions have small effects on the measure of a
signal, and similar lemmas that study measure and the distance changes in presence of input signal
changes, we finally obtain:

Theorem 35 ([18]). Let C be a strictly causal unbounded single-history channel and let T ≥ 0.
Then, the mapping s 7→ fC(s) is continuous with respect to the distance dT .

Impossibility in combinational feed-forward circuits. Combinational feed-forward circuits
by definition do not contain storage loops. Any output signal of such a circuit is obtained by a finite
application of channel functions and Boolean functions to the input signals. Boolean functions are
easily seen to be continuous in the metric space with distance dT , where T ≥ 0. Theorem 35 showed,
that channel function, are, too. Since the composition of continuous functions is continuous, and
by choosing T arbitrarily large, we can show that a combinational feed-forward circuit cannot solve
bounded SPF until time T since solving this problem would require a circuit with a discontinuous
input-to-output function. It follows that:

Theorem 36 ([18]). No forward circuit solves bounded SPF.

Impossibility in general circuits. The restriction to purely combinational circuits is strong.
However, we showed that the case of general circuits can be reduced to combinational feed-forward
circuits. The principal idea is to simulate a general circuit by a combinational circuit. Central to
the simulation argument is that the existence of a combinational circuit that produces the same
output events as the original general circuit can be shown. However, the simulation relation a
priori only holds until a certain event number N ≥ 0. Making use of the strict causality, and thus
a strictly positive δmin > 0, one can relate N to a time T ≥ 0 until when the combinational circuit
simulates output signals correctly. Choosing T arbitrarily large, we finally obtained:

Theorem 37 ([18]). No circuit solves bounded SPF.

2.9 Experimental Evaluation

While faithfulness as previously discussed is a primary requirement when it comes to correctness of
circuits, it does not yet separate quantitatively good models from those that do not provide reliable
quantitative results. Clearly, though, a tradeoff between (time, space, conceptual) complexity and
accuracy has to be taken into account for any model that strives for accuracy. While detailed
Spice models are typically considered the golden standard in circuit models, they arguably are too
coarse for detailed predictions that include non-electrical properties, e.g., behavior under radiation
and mechanical stress, and too slow for larger circuit simulations and formal verification. In [20],
we studied how close involution models come to Spice models and physical implementations in
terms of predicting transition times in digital circuits. In a recent work in [25] we compared the
involution model to other delay models and Spice simulations. The simulations are made with a
toolsuite that was designed to integrate the involution model into a standard design flow.

As a test circuit for the comparison in [20] we used a custom UMC-90 ASIC [26] that comprises
an inverter line, tapped with low-intrusive high-speed on-chip analog amplifiers to observe the
signal traveling along the line. By applying fast, successive input transitions to the line’s input, we
were then able to trace potential degradation effects of the traversing pulses. Figure 2.13 shows the
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Figure 2.13: Schematics of the ASIC used for experimental setup. It comprises of an inverter chain
with analog high-speed sense amplifiers for measurements along the chain. From [20].

experimental setup. The inverters comprise of 700 nm×80 nm (WxL) pMOS and a 360 nm×80 nm
nMOS transistors with threshold voltages of 0.29 V and 0.26 V. Nominal Vdd = 1 V.

The probing amplifiers are attached to a high-speed real-time oscilloscope (50 Ω input) to log
traces for later offline analysis in custom Matlab scripts. The measured amplifier gain is 0.15,
with an overall −3 dB cutoff frequency of approximately 8.5 GHz. Their input load is equivalent
to 3 Inv. Independent power supplies and grounds for inverters and amplifiers was used to reduce
measurement noise and simplify differential voltage readout. To reduce temperature effects, the
PCB with the directly bonded die has been mounted on a Peltier-cooled copper heat sink.

Figure 2.14 shows the readout at the oscilloscope (12 GHz Tektronix TDS 6154B real-time
oscilloscope, 4-channel sampling rate of 20 GS/s). The input was generated with a 3.35 GHz
Agilent 81134A pulse/pattern generator. The figure also shows corresponding simulated traces
from Spice models that have been extracted from the synthesized design and that were calibrated
to the analogue behavior of the amplifiers. Observe that the measured and simulated results match
well. This became important for high frequency inputs near nominal voltages of Vdd = 1 V, since
the analog amplifiers were too slow to observe these undistorted by measurements. We thus had
to resort to simulations for these scenarios. In the scenario in Figure 2.14, Vdd = 0.6 V for this
reason.
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[ns]

[V
]
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Figure 2.14: Measured (solid) and simulated (dashed) waveforms at taps Q1, Q3, Q5 (bottom,
shifted by −Vdd) and Q2, Q4, Q6 (top), with VDD = 0.6 V. The lower output voltage is due to the
amplifier gain of 0.15. From [20].

By applying an input pulse with varying width, and logging the transition times, one may
extract δ(∞) and δ(T ) for varying T ∈ R. Depending on whether the pulse is positive or negative,
the falling or rising delay function can be extracted. Figure 2.15 shows the resulting delay function.
The positive arm has been measured, and the negative arm obtained by mirroring along y = −x.
Observe the smooth transition at this diagonal as predicted from the involution delay model. We
also draw a fitted DDM delay function for comparison.
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Figure 2.15: Measured δ↓ (blue) and δ↑ (red) for UMC-90 inverter chain for VDD = 0.6 V , which
support the involution hypothesis. By contrast, there is no perfect fit for the exponential DDM
delay function (dashed green). From [20].

Finally, Figure 2.16 shows a longer input trace with high-frequency pulses to ensure that charg-
ing effects play a role in the propagation delay. Observe that some of the pulses are already filtered
away at Inv4, while others are filtered at Inv6. This effect cannot be obtained with classical pure
delay models. While the solid blue lines show the traced voltage signal, blue and red arrows indi-
cate signal transitions according to the involution delay model (blue) and the DDM (red). Both
the involution delay model and DDM match the measured signal transitions with great accuracy.
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Figure 2.16: Measured waveform (solid) for the UMC-90 inverter chain, with the predictions
according to the involution model (red long up/down-arrows) and the DDM (blue short up/down
arrows). From [20].

While measurements had to be run at reduced Vdd to slow down inverter delays, we used the
measurements to also calibrate a Spice model. In the Spice simulations nominal Vdd runs could
then be generated to validate if the circuit also behaves according ot the involution delay model
at nominal operation conditions. Our delay model showed great accuracy at nominal voltage, too.

Finally, the same inverter line was synthesized in the UMC-65 nm process and Spice simulations
used to check accuracy of the involution delay model. Our delay model again showed great accuracy.
Figure 2.17 shows the inverters’ delay functions obtained for different Vdd.
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Figure 2.17: Simulated δ↓ for UMC-65 inverter chain for Vdd ∈ {0.8, 1, 1.2} V. DDM fitting for
Vdd = 1.2 V .

2.10 Noise

All delay models presented in this chapter are deterministic: given an input trace, there is a
unique output trace that is compliant with this input. While non-determinism can be obtained by
varying channel parameters from execution to execution, such models rather account for variations
in production than for dynamic noise sources like changes in voltage, temperature, wear-out, etc.
In fact we will discuss high-frequency voltage changes, so called voltage droops, in greater detail in
Chapter 3. Voltage droops result in rapid changes in gate propagation delays and — as such — are
not covered by the current model.

A first path to broaden the model to include varying delay functions, is to introduce additional
parameters. For example, a gate with delay function δ : R→ R may be generalized to a family of
delay functions (δv)v∈[0,1] with voltage v ∈ [0, 1] as an additional parameter. Care has to be taken
to ensure consistent switching between the delay functions for this approach.

Another approach is to allow a limited additive noise term, resulting in a delay function δ + η,
for η ∈ [ηmin, ηmax]. It is this path that was followed in [21]. Rather than assuming a certain
probabilistic noise model, we let the adversary arbitrarily chose η ∈ [ηmin, ηmax] for each transition.
While, we conjectured that the involution delay model does not allow for any additive noise, it
turned out that a significant amount of noise could be handled by the model without losing its
faithfulness property.

This is in particular surprising as additive noise gives the adversary not only the possibility to
shrink and increase pulse sizes, but also to cancel pulses that would otherwise not be canceled and
de-cancel pulses that would be canceled.

To show that the involution channel with noise is faithful with respect to glitch propagation,
one has to show that (i) bounded SPF cannot be solved in this model, and (ii) unbounded SPF
can be solved in the model.

Direction (i) immediately follows from the result for the involution model: Whatever circuit
we design, the adversary may choose η = 0, resulting in executions in the involution delay model.
From Theorem 37 on page 27 we, however, have that this set of executions does not fulfill the
requirements of bounded SPF.

It remains to show the more involved direction (ii). Without going into details on the proofs
we mention that the possibility result of showing that unbounded SPF is solvable within such a
channel model relies on the same circuit, shown in Figure 2.12, that also solves unbounded SPF
in the involution channel model and in the Newtonian physical model. While not mathematically
relevant, this is reassuring as it increases confidence that the possibility results do not rely on
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peculiarities of the models that could not be used to build real physical circuits.
As expected, faithfulness does not hold for arbitrary noise. For a strictly causal involution

channel, we showed in [21] that faithfulness holds if the noise interval η fulfills

ηmax + ηmin < δ↓(−ηmax)− δmin ,

where δmin is the unique value for which δ↑(δmin) = δmin = δ↓(δmin) > 0; see Lemma 27 on page 25.

Further reading. The work by Öhlinger et al. [25] discusses a tool that integrates the
involution delay model into circuits specified in VHDL, and carry out simulations within
existing, commercial digital simulation frameworks. The work by Maier et al. [27] discusses
properties of involution delay functions as emerging from transistor-level properties as opposed
to the simplified first-order RC charging considerations for exp-channels presented in this
chapter.
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Chapter 3

Non-binary Signals

This chapter discusses results from the following research articles.

• [28] Friedrichs, Függer, Lenzen. Metastability-containing circuits. IEEE Transactions on
Computers, 67(8), 2018.

Traditionally, synchronous designs lower the probability of metastable setups by waiting
long enough. Since waiting costs time, latency is traded for reliability in this case. We show
that this is not a necessity, and that rather than to wait, one can compute with metastable
values.

• [29] Függer, Kinali, Lenzen, Polzer. Metastability-aware memory-efficient time-to-digital
converter. In IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 49–56, 2017.

The work applies the principles of metastability-containing circuit design from [28] and
discusses three digital time-to-digital converters (TDCs). The designs provide means to
reuse TDCs for high-frequency measurements, are memory efficient, and are particularly
well-suited for downstream metastability-containing logic.

• [30] Tarawneh, Függer, Lenzen. Metastability tolerant computing. In IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), pages 25–32, 2017.

This work applies the principles of metastability-containing circuits to state machines. At
the example of a Network-on-Chip (NoC) router, we show that such state machines may
lead to higher performance while maintaining reliability constraints.

• [31] Függer, Kinali, Lenzen, Wiederhake. Fast all-digital clock frequency adaptation circuit
for voltage droop tolerance. In IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC), pages 68–77, 2018.

Particularly interesting for applications of metastability-containing circuits are those that
involve control with very low latencies. An example is the problem of controlling the clock
frequency of a synchronous circuit with respect to high-frequency voltage droops. We present
a design based on the techniques developed in [28] and prove it correct.

• [32] Bund, Függer, Lenzen, Medina. Synchronizer-free digital link controller. IEEE Trans-
actions on Circuits and Systems I: Regular Papers, 67(10), pages 3562–3573, 2020.

We show how a metastability-containing link controller between a sender and a receiver can
be used to tightly control receiver and sender clocks with low controller latencies.
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3.1 Metastability

The existence of an intermediate, so called metastable, state in bistable elements like latches
and flip-flops, already played a role in Chapter 2: in fact, for the circuit depicted in Figure 2.8
on page 19 that solves unbounded SPF, we explicitly used the storage loop’s behavior near the
metastable point when resolving to one of the stable states 0 or 1. Our solution, however, did
not guarantee when this will happen — and indeed, we showed that a bounded version of Short
Pulse Filtration is not solvable by any circuit. The proof is by reduction to a fundamental result
from Marino [9] on bistable storage elements: the existence of a metastable state and an input
signal that drives the storage element arbitrarily close to the metastable state, where it resides
for an unbounded amount of time before it resolves to stable 0 or 1. Externally, at the output
of the storage element, a metastable state may manifest as an intermediate voltage level between
a clear 1 and 0, a clear signal followed by a late transition when it resolves, glitches, oscillation,
etc. [33, 34]; depending on the implementation [35].

The phenomenon of metastability has a large impact on the design of circuits. Consider the
standard clocked Moore implementation in Figure 3.1.

local

input

output

clk

input
environment

output
environment

Figure 3.1: Crossing clock domains in in a Moore state machine implementation. The dashed
output register is not necessarily part of the implementation. On the left and right circuits that
are not under the control of the clock clk, e.g., either unclocked or clocked by a different clock
signal.

A realistic design will interact with an input and output environment — on its left, respectively,
right, in the figure. Environments may be untimed or clocked with a clock with unknown phase
offset. The former, e.g., either because they are implemented without a clock or since they are
simply driven by physical phenomena or circuitry that is outside of our control. Reasons for the
latter are typically either circuitry that is outside of the designer’s control such as IP blocks, or
the circuit may have been deliberately partitioned into independent clock domains for performance
reasons.

In both cases, input changes may violate setup/hold constraints of the input registers with
severe consequences:

1. If the input register becomes metastable, no upper bound on when its output stabilizes exists.

2. By consequence, a priori, there is no bound on when the combinational logic will stabilize.

3. Thus, the next clock transition may arrive when the combinational circuitry has not stabilized
yet — with the possibility for a wrong, or even inconsistent, state stored in the local registers.
In the worst case, the local registers may become metastable, leading to similar problems as
described here in downstream logic.

3.2 Coping with Metastability

Weather a design suffers from metastable upsets, and if so, with which probability, depends on
several factors. First, note that metastability, is not a stable state and the slightest distance of the
internal state to the metastable point will amplify exponentially over time until the internal state
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saturates at a stable state [36–38]. While odds to generate an input pulse that drives the bistable
element into metastability for long enough to interfere with the next clock transition may be low
for a particular circuit, several factors may very well render such upsets a real problem:

1. A large number of independent clock domains. Designs with tens and recently thousands of
clock regions on a chip with significant interfacing to the external world and among each
other face a proportionally higher upset frequency.

2. High clock frequencies. Since, a priori, an upset may occur at every clock cycle, upset
frequencies are proportional to clock frequencies.

3. Aggressive timing, i.e., small clock margins. This reduces the tolerance to even slightly longer
propagation delays through the combinational logic.

4. Low supply voltage. Trends to decrease the supply voltage to meet power constraints, lead
to increased metastability decay times [39].

Given that there provably is no mitigation technique that completely prevents bistable elements
from having upsets, techniques to diminish effects have been developed and are in place in many
designs.

3.2.1 Synchronizers

The most widely adopted mitigation technique is to use chains of flip-flops as synchronizers [36,
40, 41]. Each of the flip-flops has preferable metastability decay characteristics compared to a
standard data flip-flop [42, 43]. Other known mitigation techniques are Schmitt triggers [44]. But
also C-elements, being widely used in asynchronous designs, show synchronizing behavior [45, 46].

The principal idea of a synchronizer is simple and effective: Each synchronizer stage is clocked
by the recipient circuit’s clock and provides extra decay time for the signal before it is passed to
the recipient circuitry, aligned to its clock domain. Since signal amplification is exponential around
the metastability point of a storage loop, and given uniform input transition arrival times at input
of the first synchronizer stage, the probability of the first stage to be metastable after one clock
period decreases exponentially with the length of the clock period. Care must be taken, though,
in the analysis since the flip-flop comprises of a master and slave latch: the uniform arrival times,
e.g., only (potentially) hold for the first latch. The interested reader is referred to the work by
Jones et al. [47]. A refined analysis is particularly important when analyzing synchronizers with
multiple stages. As a rule of thumb, the probability that the last input stage becomes metastable
is exponentially small in the number of stages due to an exponential decay happening in all stages.

While synchronizers may decrease the probability of metastable upsets at the cost of additional
input latency, a deterministic guarantee of the absence of metastability is impossible.

3.2.2 Asynchronous Circuits

An orthogonal approach is to abolish clock domain crossings altogether. If the timing in the clock
domain is dictated by the arriving signal rather than the region’s clock, upsets of the circuit can
be prevented. The circuit then waits until it has received a handshake from a yet to stabilize
component, using either of:

• The fact that timing constraints are met and thus no metastable upsets can occur. This
approach is similar to designing either closed-systems where the controller signals to the ex-
ternal environment when it is ready for a new input, or requires respective timing constraints
on the environment. As such it is often not feasible.

• The fact that certain components may get metastable, but that do not produce a valid hand-
shake until metastability is resolved internally. This approach allows for deterministically
correct solutions, however, with potentially unbounded timing. A discussion of such designs
in our context is given in Section 3.3.3 — for the moment we just note that this does not
violate Marino’s impossibility result of the existence of a bounded-time, deterministic me-
tastability detector as the response may occur after an unbounded time or may even never

35



occur. Nonetheless it renders an interesting alternative to clocked designs if fast enough
decay times are guaranteed by the target technology.

In both approaches handshaking is a central concept. Typically, handshaking between com-
ponents in asynchronous circuits is used to wait for all predecessors of a component to complete,
before starting computation. Yakovlev et al. [48] introduced the concept of OR-causality as an
extension to the classical AND-causality that many asynchronous circuits rely on. With classical
AND-causality, given that its two predecessors compute a and b, the component then carries on
to compute f(a, b) for some function f . In certain scenarios, however, waiting for all predecessors
is overly conservative — for example if f(a, b) = a ∨ b and a = 1. No matter of b’s value, the
component will produce f(a, b) = 1. Thus, the circuit may start computation right after receiving
input a = 1.

OR-causality, and more generally the concept of ignoring certain inputs, has the potential to
also ignore metastable inputs, and not wait arbitrarily long for them to resolve: by this it may
tolerate unbounded delays, or even, complete absence of handshakes in data that it is no longer
waiting for. However, this is only guaranteed in certain scenarios. A similar example as above, but
with a = 0 forces the component to wait for its second input. Further, a circuit with OR-causality
does not necessarily handle metastability in a correct way. Denote a metastable bit with M. Then,
f(1, 0) = f(1, 1) = 1 holds, but f(1,M) = 1 may not necessarily hold for an implementation of
f(a, b) = a ∨ b with OR-causality.

3.2.3 Speculative Computing

Tarawneh et al. [49, 50] proposed the concept of speculative computing. Given a single-argument
function f : B→ B, with a potentially metastable input a, they compute f(0) and f(1), and only
later on, when a has stabilized, decide whether to output f(0) or f(1). This in fact allows to hide
a part of the overall synchronization delay within the computation delay, since both, computation
and synchronization, are carried out in parallel. The approach, also works for multiple arguments,
by recursively applying it to the arguments. Further, if only the first argument of a function f(a, b)
may become metastable, the scheme can be applied to the partial evaluation b 7→ f(a, b) as well.

3.3 Metastability-Containing Circuits

Both, the synchronizer and the asynchronous approach have in common that they wait before
computing. In case of the synchronizers for a fixed time T , and in asynchronous circuits until
metastability has decayed. Besides the fact that waiting in high-speed circuits defeats its primary
goal, the designer is left to make a decision between:

• Being time-safe. Timing guarantees with the downside of potentially metastable values when
using synchronizers.

• Being value-safe. Value guarantees with the possibility of unbounded or infinite delays when
using asynchronous circuits.

With metastability-containing circuits [28] we showed that this tradeoff is not obligatory, however.

3.3.1 Topological View

Marino’s proof on the impossibility of bounded-time stabilization [9] is based on the topological
statement that, given a connected input space I and a continuous function s : I → O, the output
space O is connected. Let us consider a bistable element, like a synchronizers, with an input port
and an output port.1 To apply the topological statement, the input space is defined as the set
of valid input pulses, and the output space is set to O = [0, 1], i.e., the output’s signal value
at a certain time T > 0 — the time until which we expect the output signal to be stabilized.
With standard metrics in place, the input space is connected. The metric on the output space, is
simply the Euclidean distance. The major difficulty then is to prove that the function o is indeed

1For ease of presentation the clock signal is supposed to be internal to the synchronizer.
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continuous under assumptions that capture realistic physical circuits, like causality. Given that
there exists an input pulse i0 for which s(i0) is arbitrarily close to 0 and an input pulse i1 with
s(i1) being arbitrarily close to 1, we may apply the topological argument to obtain that there exist
input pulses iM for which s(iM) is arbitrarily close to, say, 0.5. Figure 3.2 visualizes this argument.
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Figure 3.2: Topological argument on the impossibility to stabilize within bounded time T > 0.

Synchronizer followed by computation. Figure 3.3 sketches a synchronizer and the subse-
quent synchronous computation upon the synchronized data from this point of view. The input
environment applies input signals that are from a connected space. The input is then synchronized
to the new clock domain, e.g., by passing it through a 3 stage synchronizers, which lasts until some
time T > 0. In fact this synchronization process can be understood as computing the identity
function during, say, T = 3 clock cycles. While the output space is shown to be connected, with
a certain probability, the output signal will be within a disconnected subspace — corresponding to
the binary-valued representation of the input signal. Assuming that this is the case, the circuit
then computes a function f that finally yields the binary-valued output after another, e.g., 4 clock
cycles. The end-to-end latency is thus the sum of both delays; here 7 clock cycles.
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Figure 3.3: Synchronous circuit computing f : synchronize followed by compute.

Metastability-containing computation. The idea of metastability-containing computing is
to study computation in a larger, connected, space that includes metastable signals. As such
it treats metastability as a valid effect that may occur during the computation, rather than its
absence as an assumption external to the model.

While Boolean computation studies computation of functions from input values in some discrete
input space Bi, with i ∈ N+, to a discrete output space Bj , with j ∈ N+, we consider functions
from tuples on BM to tuples on BM, where BM = B ∪ {M}. Here, the third value M encodes a
metastable signal. In our work we do not make any assumption on such a signal — in particular,
a metastable signal may have an arbitrary intermediate voltage between 0 and 1, may glitch,
oscillate, etc.

From a computational point of view, a synchronizer, if restricted to values in B, computes
the identity. So why first compute the identity, before the actual computation of a function f is
started? Two properties of the identity function may be responsible for this intuitive choice:
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• It preserves precision from the input to the output, no matter if the input/output is encoded
in binary, unary, or otherwise. We will later formalize this property of a function, and call
such functions metastability-containing.

• It is easily implemented in a way that metastability at the inputs introduces only as much
metastability at the outputs as theoretically necessary for such a circuit (in presence of
standard registers). In particular, it does output a metastable bit whose corresponding input
bit was not metastable. Again, we will formalize this property later on for functions and
their circuit implementations and call such circuits metastability-containing.

The question arises, if there are other functions and circuit implementations of these functions
that have similar advantageous properties and that additionally already perform (part of) the
circuit’s intended computation. Designs that make use of these techniques will be referred to as
metastability-containing computations.

Figure 3.4 sketches the idea of metastability-containing computing from a topological perspec-
tive. The difference to the synchronizer is that function f is now computed in a metastability-
containing way. The advantage is not only that computing time is spared by removing the syn-
chronization process — see Figure 3.4 (left) — but also that the assumption of stabilization in time
is remove — see Figure 3.4 (right). The latter, however, is only applicable if the output environ-
ment allows for potentially unstable outputs. Examples where this is the case, are downstream
metastability-containing circuitry and applications with a continuous output space, e.g., shifting a
signal transition in time, controlling a frequency, voltage, etc. The latter is particularly interesting
for controller applications; see Section 3.9.
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Figure 3.4: Metastability-containing computation of f : compute during synchronization.

3.3.2 Relation to Previous Work

To the best of the author’s knowledge, the work on speculative computing [49, 50] is the most closely
related to our work: it also aims at parallelizing stabilization and computation and thus funda-
mentally differs from the synchronizer approach. The differences to our work on metastability-
containing circuits [28] are: (i) Speculative computing runs two parallel tracks — synchronization
and computation — while the idea in metastability-containing computing is to tightly interweave
both to obtain synchronization during computation. (ii) It does not aim for deterministic end-
to-end guarantees, since it uses synchronizers that may fail with a certain probability. (iii) The
designer must know in advance which bits face the risk of becoming metastable. Speculative com-
puting is then applied to these. By its recursive nature, designs with several metastable candidates
quickly become large: k potentially metastable bits result in designs that are larger than by a
factor 2k (duplication and merging). Because of the tight interweaving of computation and syn-
chronization, smaller circuits can be obtained by metastability-containing circuits if the function
allows for it. Indeed in this chapter we will encounter several problems for which small circuit
solutions exist.
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Glitches and hazards are unintended transitions; typically of an output signals. Their system-
atic study has been pioneered by Huffman [51] and Unger [52]. Different types of hazards have been
studied, ranging from static hazards where a multi-bit input x switches to y 6= x, and although
fi(x) = fi(y) for output bit i, two spurious transitions — fi(x) to ¬fi(x), and ¬fi(x) to fi(x) are
observed at the output. While glitches and hazards are spurious, but well-formed, transitions in
signals and thus differ from our metastable signals, the methods used to study metastable signals
have commonalities with those to study glitches and hazards. For example, static hazards [51] have
been addressed with covering prime implicants. In fact we will show that this technique, among
others, can also be used to design metastability-containing circuits.

While, initially, two such inputs x, y were restricted to differ only in a single bit, work by Eichel-
berger [53] extended this to multiple bits and studied dynamic hazards with spurious transitions
in switching outputs. Brzozowski and Yoeli [54] extended the simulation algorithm, Brzozowski et
al. [55] surveyed techniques using higher-valued logics — including Kleene’s 3-valued logic — and
Mendler et al. [56] studied delay requirements needed to achieve consistency with simulated results.

Besides the different assumptions on signal integrity in glitching signals and metastable signals,
key differences are:

• Timing. Circuits studied with respect to the occurrence of glitches require delay models.
Typically pure delay channels are assumed. One can thus bound the time until when outputs
are glitch-free. This is no longer true for metastable signals, since metastability may last
forever.

• Glitches. Metastability-containing circuits are not designed to be free of static, dynamic, or
any other glitches. Their outputs may thus contain glitches.

• Multi-cycle. Glitches and hazards are typically studied in combinational logic, only — and
thus for one clock cycle. Our circuits operate over multiple clock cycles. In fact we will show
that such circuits result in a strictly larger class of functions that can be implemented; see
Section 3.7.3.

• Register types. We studied different register types, that behave differently with respect to
internal metastability.

3.3.3 Computational Model

Consider a setup of a synchronous finite state machine implementation, similar to the implemen-
tation of the Moore machine in Section 1.3 and the circuit in Figure 3.1 on page 34, expect that
the input is not newly latched in every clock cycle. The circuit is shown in Figure 3.5 — note
the missing clock input at the input register. While a realistic circuit will have circuitry to load
data into the input register, for simplicity we abstract from this and assume that the register is
initialized and not written anymore during computation. We next discuss differences between the
computational model proposed in [28] and the classical Boolean circuit model.

local

input

output

clk

Figure 3.5: Clocked Moore state machine implementation with pre-initialized input registers.
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Round-wise model. We do not explicitly model continuous evolution of signals, but assume
that the clock period is chosen such that non-metastable data has stabilized at the occurrence of
the next active (rising) clock transition. Time thus progresses in discrete rounds r ∈ N+, where
round r comprises of:

1. Read phase: read all input and local registers. We will define register behavior in the fol-
lowing. The read phase models the time right after clock transition r − 1 for r > 1, and the
initial values for r = 1.

2. Evaluation phase: the read values are propagated through the combinational logic. We will
define the gates’ behavior in the following. This phase makes up the largest part of round r.

3. Write phase: the values at the output of the combinational logic finally have the possibility
to resolve: An output that is stable, i.e., in B, is not changes, and an output that is M,
is allowed to take any value in BM. The value is then the new state of the local or output
register. This phase corresponds to the arrival of the rth rising clock transition, ending
round r.

Instead of considering the detailed timed executions of such circuits, we will work with a discrete-
time abstraction. A configuration of a circuit is a tuple that contains the states of the input, local,
and output registers. An execution of a circuit is a sequence (sr)r∈N of configurations, with s0

being the initial configuration, and sr, with r ∈ N+, obtained from sr−1 by application of the read,
evaluation, and write phase. Note that a circuit has to define the initial local and output register
states. Given a circuit C, the set of output register states reachable via an execution in r ∈ N
rounds from input register states ι is denoted by Cr(ι).

A specification is a function BmM → P(BnM) that maps a vector of input values to the set of
allowed output values. We say r rounds of circuit C implement a specification s : BmM → P(BnM),
if for all inputs ι ∈ BmM, and all executions of circuit C with inputs ι, after r rounds, the vector of
circuit outputs o in this execution is in s(ι), i.e.,

∀ι ∈ BmM : Cr(ι) ⊆ s(ι) .

We say C implements s, if there exists an r ∈ N such that r rounds of C implement s. Instead of
C implementing s, we also speak of C computing s if the focus is on the functional aspect of s.

It remains to specify the behavior of circuit gates and registers.

Gates. Similar to their classical Boolean counterparts, a gate with k > 0 inputs is a function
BkM → BM. However, care has to be taken in which functions we allow in order to capture real word
circuits. For example, a gate that maps M to 1, and all other values to 0 would be a bounded-time
metastability detector; a device that does not exist.

For that purpose, we define resolutions and extensions of Boolean gates based on resolutions
as follows. Let x ∈ BkM. The set of partial resolutions of x, denoted by ResM(x), is defined as

ResM(x) =
{
y ∈ BkM | ∀i ∈ [k] : xi = yi ∨ xi = M

}
. (3.1)

The set of resolutions, denoted by Res(x), is defined as

Res(x) = ResM(x) ∩Bk . (3.2)

For a Boolean function f : Bk → B, we define its metastable extension fM : BkM → BM as

fM(x) =


0 if ∀x′ ∈ ResM(x) : f(x′) = 0

1 if ∀x′ ∈ ResM(x) : f(x′) = 1

M otherwise

. (3.3)

We only allow gates that that are metastable extensions of Boolean functions. The reason is that
standard Boolean CMOS gates like the 2 input Nand and Nor gates, if implemented correctly,
readily compute the metastable extension of their Boolean functions.
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Figure 3.6: Three register types.

Registers. We consider three register types. Figure 3.6 shows their gate symbols.

• Simple registers. These are the classical used registers without any additional assumption
on their behavior on metastable states. They simply output their internal state. We assume
that input registers never change their internal state. While this is obviously no restriction
for a stable internal state in B, we claim that it is also not a restriction for a metastable
internal state: any stabilization would actually diminish the reachable executions; and thus
this captures the worst-case.

• Masking registers. There are two types of masking registers — mask-0 and mask-1. With
b ∈ B, a mask-b register maps an internal metastable state to b at its output. By contrast
to simple registers, masking input registers may change their state during the read phase. If
they are internally metastable, they may transition to any state in BM. If they were in state
M and they transition to b, then b is their new state, and we read b at their output during
the read phase. If they were in state M and they transition to ¬b, then ¬b is their new state,
and we read M at their output during the read phase.

While simple registers are sufficiently unconstrained to arguably capture most existing reg-
ister implementations, the behavior of masking registers is non-standard. Indeed, noise-tolerant
implementations are a topic of current research. We will refer to an implementation based on
metastability filters as discussed by Kinniment [36] (Section 3.1), here. Recall the unbounded SPF
circuit from Section 2.8.5. It relied on a low-threshold inverter after a storage loop with a high
metastability point; see Figure 2.12 on page 25. We may use the same idea and let the flip-flop
output drive high- or low-threshold inverters, amplifying an internal metastable signal to 1 or 0.

Such filters are also used in asynchronous designs: for example the Blade design style [57], based
on bundled data communication between modules, makes use of metastability filtering techniques.
Aggressive timing of the request/acknowledge signals with respect to the data signals may result
in metastable Blade controller states. In this case, metastability filters are used to locally halt
computation (by delaying req/ack) until metastability is resolved. This allows for more aggressive
timing than in synchronous pipelines, where large clock margins have to account for all cases.

Another interesting recent applications is within a mutex to create a (local) pausible clock that
halts until internal metastability is resolved [58].

3.4 Metastability-Containing Multiplexers

Let us demonstrate the key questions at the example of a small, but widely-used circuit, a multi-
plexer. The choice of the multiplexer as a running example is motivated by a second advantageous
fact: it will play a central role in several metastable-containing circuits.

3.4.1 Standard Multiplexer

Definition 38 (Multiplexer). A (k-bit) multiplexer (Mux) is a circuit with 2k + 1 inputs and k
outputs, that implements fMux : BkM ×BkM ×BM → P(BkM) with

fMux(a, b, s) =


ResM(a) if s = 0

ResM(b) if s = 1

BkM if s = M

.
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When we speak of a multiplexer, we refer to the case k = 1, unless noted otherwise. Its
behavior, for binary signals is as expected: the select bit s, determines whether to output a or b.
In presence of metastable inputs a and b, it only guarantees that a solution of the output takes
on a resolution of the selected input. If the select bit is metastable, an arbitrary output may be
produced.

Example 39. For the single bit multiplexer, with k = 1, we have fMux(1,M, 0) = ResM(1) = {1},
fMux(1,M, 1) = ResM(M) = BM, and fMux(1,M,M) = BM.

Figure 3.7 shows the schematics of the combinational circuit Smux that resembles the standard
gate-level circuit implementation of a multiplexer. Indeed the circuit implements Mux in our
model, i.e., is a multiplexer. Note that technically, simple input and output registers are required
by our model. Since this is a single round computation, we omit them.

b

a

s

o

Figure 3.7: Gate-level multiplexer circuit Smux that implements Mux.

3.4.2 Stronger Guarantees

In case of Boolean input values, and if a = b, the specification of a multiplexer implies that its
output is a. Care must be taken in presence of metastable inputs. The specification of a multiplexer
Mux does not constrain the output if s = M. Indeed, the circuit Smux sets its output to M if
s = M and a = b = 1.

The question arises, if we can ask for more from a multiplexer-type circuit. Intuitively, a
multiplexer that is unsure which input to forward to the output, but whose both inputs are
identical and stable, should output the stable, identical, input value. Cast into a specification, we
require:

Definition 40 (Metastability-Containing Multiplexer. From [28]). A (k-bit) Metastability-Contain-
ing Multiplexer (Cmux) is a circuit with 2k+1 inputs and k outputs, that implements fCmux : BkM×
BkM ×BM → P(BkM) with

fCmux(a, b, s) =


ResM(a) if s = 0 ∨ a = b

ResM(b) if s = 1

BkM if s = M ∧ a 6= b

.

Indeed, metastability-containing multiplexer exists. We showed in [28] that 1 round of Cmux1,
depicted in Figure 3.8 on page 43, implements fCmux. Thus:

Lemma 41 ([28]). Circuit Cmux1 is a Cmux.

We will next discuss a two round implementation. The reader may wonder why we continue to
find a slower implementation after solving the problem in a single round. Further, the two round
implementation requires additional local registers to store the circuit’s state. Our motivation is
twofold: First, the two round solution demonstrates how masking registers can be used to solve
problems, and second the proposed technique can be generalized and can lead to potentially efficient
circuits for more complex problems.

For simplicity, we state the circuit in terms of pseudocode in Algorithm 2 — note that this can
be readily translated to a synchronous circuit. The algorithm uses the fact that out of two reads
from a masking register, only one can be metastable. For the notorious case of s = M and a = b = 1
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Figure 3.8: The metastability-containing multiplexer Cmux1.

Algorithm 2 Metastability-Containing Multiplexer.

input: a and b (simple), s (mask-1)
local: s′ (simple)
output: o (simple)
each round:

s′ ← s; o← (¬s ∧ a) ∨ (s′ ∧ b)
end

where circuit Mmux failed to implement Cmux, we obtain the following behavior: Since we are
using a mask-1 register to store s, if s = M, the two sequential reads of s will yield 1, 1 or M, 0 or
1,M. Accordingly, these are also the states of s′, s in round 2 — assuming s′ did not resolve. One
finally observes that in all these scenarios at least one And clause is stable 1, setting the output
to 1. We thus have that two rounds of the circuit corresponding to Algorithm 2 implement fCmux.
Thus:

Corollary 42 ([28]). The circuit corresponding to Algorithm 2 is a Cmux.

An optimized version of this circuit is obtained by inserting a delay between signals s and s′

instead of explicitly separating them by a clock cycle. By doing so, one obtains the circuit in
Figure 3.9. The technique of delaying outputs from masking registers rather than sampling them
in separate rounds has wider applications not detailed here.
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∆
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Figure 3.9: Metastability-containing multiplexer using a 1-masking register.

3.5 Properties of Synchronous Circuits under Metastability

We readily obtain several properties of circuits in our circuit model. The properties are not
only useful in proving results about computability later on, but also to show that the model
captures physical circuits faithfully. Like the SPF problem in Chapter 2 was used to determine the
faithfulness of delay models with respect to glitch propagation, we will discuss analogous problems
here to determine the faithfulness of our model with respect to propagation of metastability.

We start with a property of purely combinational circuits. For such circuits, stabilizing in-
puts do not introduce additional metastability at the outputs. Rather, unstable outputs remain
unstable, or they stabilize. The following lemma states this in terms of our model:

43



Lemma 43 ([28]). Let C be a purely combination circuit with m inputs and let fC : BmM → BnM
be the function that maps C’s input to its (unique, since C only comprises of gates) output with n
bits. Then for all inputs ι ∈ BmM,

ι′ ∈ ResM(ι)⇒ fC(ι′) ∈ ResM
(
fC(ι)

)
. (3.4)

The property also demonstrates that our assumption of simple registers remaining metastable
throughout an execution is indeed the worst-case. Any resolution of them cannot lead to more
metastability at the circuit outputs. The situation is different for masking registers, as we will see
later on — this is also why resolution is explicitly modeled in masking registers.

A further basic property is that output registers, written at the end of the first round, resolve
independently of each other:

Corollary 44 ([28]). For any circuit C with m input and n non-input registers,

C1 = g0 × · · · × gn−1 ,

where

gi : B
m
M → {{0}, {1},BM}

is the function that corresponds to non-input register i ∈ {0, . . . , n− 1} and maps the input to its
possible outputs.

The result implied that we can treat non-input register states independently of each other,
at least in the first round. We will later see that this generalizes to multiple rounds for simple
registers. Again masking registers make an exception — the property does not hold for rounds
larger than 1.

Based on Corollary 44, we may lift Lemma 43 from covering just the combinational logic to
full single-round computation, and obtain:

Corollary 45 ([28]). For a circuit C with m inputs, and for an input ι ∈ BmM,

ι′ ∈ ResM(ι)⇒ C1(ι′) ⊆ C1(ι) .

3.6 Faithfulness

While one may wish for circuits that reliably either detect or filter metastability within bounded
time, reductions to Marino’s work [9] prove this impossible in physical circuits. Let us state both
problems in our model.

Definition 46 (Synchronous metastability-detector and metastability-filter). A synchronous meta-
stability-detector is a circuit that implements the function f : BM → P(BM) with

f(x) =

{
{1} if x = M

{0} otherwise .
(3.5)

A synchronous metastability-filter is a circuit that implements the function f : BM → P(BM) with

f(x) =

{
{0, 1} if x = M

{x} otherwise .
(3.6)

For physical circuits the following holds, by arguments analogous to the ones given in Section 2.5
for the bounded Short Pulse Filtration problem:

Theorem 47. No physical circuit exists that is a synchronous metastability-detector or a synchro-
nous metastability-filter.

44



We thus call a circuit model faithful with respect to metastability detection and filtration if
within this model, no circuit exists that is a synchronous metastability-detector or a synchronous
metastability-filter.

In [28] we have shown that in our synchronous circuit model, for any circuit which has to output
different results for at least two different inputs there exists an input that produces metastable
outputs.

Theorem 48 ([28]). Let r ∈ N+ and C be a circuit with Cr(ι) ∩ Cr(ι′) = ∅ for some ι, ι′ ∈ BmM.
Then C has an r-round execution in which an output register becomes metastable.

The proof relies on the construction of so called pivotal sequences. These are finite sequences
of stable Boolean inputs of which the first element is ι, the last element is ι′, and two successive
elements differ in at most one input bit. Within this sequence a switch in corresponding outputs
must occur between two successive inputs differing in only a single bit. We then construct an input
from these two Boolean inputs that leads to metastability for its corresponding output.

By instantiating Theorem 48 for two functions, one readily shows that the previous two prob-
lems are not solvable in our circuit model:

Corollary 49 ([28]). There exists no circuit in the synchronous circuit model that is a synchronous
metastability-detector or a synchronous metastability-filter.

We thus finally obtain:

Theorem 50. The synchronous circuit model is faithful with respect to metastability detection
and filtration.

3.7 Computability

In [28] we showed that simple and masking registers do not only differ in the functions they com-
pute, but that there exists a non-trivial computational hierarchy in presence of masking registers.
The writeup discusses theses results in the following. We start with defining several classes of
functions related to computability within our model.

Definition 51 (Computable function classes, from [28]). We define the following classes of func-
tions, with r ∈ N+:

• FunrS is the class of functions implementable with r rounds of circuits comprising only simple
registers.

• FunrM is the class of functions implementable with r rounds of circuits that may additionally
use masking registers.

3.7.1 The Computational Hierarchy

As a first result, one readily obtains that the first classes match.

Corollary 52 ([28]). Fun1
S = Fun1

M .

Further, masking registers only play a role if used as input registers. Using them as local or
output registers does not provide different behavior. Note, however that this statement is within
our worst-case synchronous circuit model. There may very well be, and in fact is, different behavior
in a probabilistic analysis. Treatment of these effects, however, is outside the scope of this writeup.

Corollary 53 ([28]). Simple and masking registers are interchangeable when used as non-input
registers.
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Finally, we obtain the existence of a hierarchy among the classes. Adding computational rounds
never decreases the class of computable function. The proof of this result uses simulation of shorter
executions and delaying outputs. Furthermore, allowing masking registers does not decrease the
computational power. In terms of the function classes, we thus have:

Corollary 54 ([28]). For all r ∈ N+, we have

• FunrS ⊆ Funr+1
S ,

• FunrM ⊆ Funr+1
M , and

• FunrS ⊆ FunrM .

Note that the corollary leaves it open whether the complete hierarchy collapses to a single class
of computable functions. We will soon see that this is not the case.

3.7.2 Simple Registers

The technique of circuit unrolling is folklore in circuit design for circuits with binary-valued gates:
given a multi-round computation over r > 1 rounds, the combinational circuit may be unrolled
r − 1 times instead of storing intermediate results in local registers. Indeed, circuits with simple
registers can be unrolled also in presence of metastability:

Theorem 55. Given a circuit C with only simple registers such that r ∈ N+ rounds of C imple-
ment f , one can construct a circuit C ′ such that one round of C ′ implements f .

While from a computational perspective, multi-round circuits seem superfluous, they clearly
play a role when circuit size does.

Theorem 55 finally yields the collapse of the hierarchy for simple registers:

Corollary 56. For all r ∈ N+, FunrS = Fun1
S.

We may thus omit the index r in FunrS and denote the class by FunS .

Characterization. A question of practical relevance is which functions are indeed implementable
with only simple registers, i.e., a characterization of FunS . For that purpose let us define natural
functions and subfunctions:

Definition 57 (Natural functions and subfunctions, from [28]). The function f : BmM → P(BnM) is
natural if and only if it is bit-wise, closed, and specific, defined as follows:

Bit-wise. The components f1, . . . , fn of f are independent:

f(ι) = f1(ι)× · · · × fn(ι). (3.7)

Closed. Each component of f is specified as either 0, as 1, or completely unspecified:

∀ι ∈ BmM : f(ι) ∈ {{0}, {1},BM}n. (3.8)

Specific. When stabilizing a partially metastable input ι, the output of f remains at least as
restricted as with input ι:

∀ι ∈ BmM : ι′ ∈ Res(ι)⇒ f(ι′) ⊆ f(ι). (3.9)

For functions f, g : BmM → P(BnM), g is a subfunction of f , denoted by g ⊆ f , if and only if
g(ι) ⊆ f(ι) for all ι ∈ BmM.

With these definitions in place, FunS is characterized as:
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Theorem 58 ([28]). Let g : BmM → P(BnM) be a function. Then g ∈ FunS if and only if g has
a natural subfunction.

The if-direction of the theorem’s proof is constructive and uses a strategy also used in designing
hazard-free circuits for static hazards [51]: it covers prime-implicants of gi, with i ∈ [n]. The
construction, however, may result in circuits that are exponentially large in m.

Certain functions are particularly well suited as being implemented by circuits: they do not
only fall into the class FunS , but are also minimal within this class, in a sense that will be made
precise in the following. Recalling the metastable extension fM : BmM → BM of a Boolean function
f : Bm → B, we define:

Definition 59 (Metastable closure, from [28]). For a Boolean function f : Bm → Bn, we define
its metastable closure [f ]M : BmM → P(BnM) component-wise for i ∈ [n] by

[f ]M(x)i = ResM ((fi)M(x)) =


{0} if (fi)M(x) = 0

{1} if (fi)M(x) = 1

BM if (fi)M(x) = M

. (3.10)

For a function f : BmM → P(BnM), we define its metastable closure [f ]M : BmM → P(BnM) by

[f ]M(x)i =


{0} if ∀x′ ∈ ResM(x′)i = {0}
{1} if ∀x′ ∈ ResM(x′)i = {1}
BM otherwise

. (3.11)

Example 60. For the Boolean And input-output function f : B2 → B with f(a, b) = a ∧ b, the
metastable closure [f ]M is

f(a, b) =



{a ∧ b} if a 6= M ∧ b 6= M

{0} if a = M ∧ b = 0

{0} if a = 0 ∧ b = M

BM if a = M ∧ b ∈ {M, 1}
BM if a ∈ {M, 1} ∧ a = M

. (3.12)

By construction, for a function f : BmM → P(BnM), its metastable closure [f ]M is bit-wise, closed,
specific, and hence natural. The same holds true for Boolean functions f .

Corollary 61 ([28]). For all Boolean functions f : Bm → Bn, it is [f ]M ∈ FunS. Further, for all
functions f : BmM → P(BnM), it is [f ]M ∈ FunS.

Metastability-containing circuits. Corollary 61 has direct applications for implementing Bool-
ean functions by a circuit in a way that the circuit provably optimally contains metastability. While
Theorem 48 shows that non-constant functions must have inputs that lead to metastable outputs,
Corollary 61 provides the answer to how much metastability we need to accept in presence of meta-
stable inputs: For every Boolean function f : Bm → Bn, there is a circuit with only simple registers
that implements [f ]M. Theorem 58 shows that [f ]M is the minimum extension of f implementable
with simple registers: any of its proper subfunctions is not implementable. Thus, the circuit is
optimally with respect to containing metastability. Motivated by these considerations, we define:

Definition 62 (Metastability-containing circuit). We call a circuit metastability-containing if it
implements the metastable closure of a function.

Note that this is a property of a circuit. We will later also use metastability-containing as a
property of a function. Like their circuit counterparts, these functions will behave optimally with
respect to metastable inputs; more about this in Section 3.8.
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3.7.3 Masking Registers

If the computational hierarchy collapses for simple registers, does it also for masking registers?
To answer this question, let us define the n-bit metastability-containing replication problem for
n ∈ N+.

Definition 63 (Metastability-containing replication, from [28]). For n ∈ N+, we say a circuit
solves the n-bit metastability-containing replication problem if it implements fMcr,n : BM → BnM
with

fMcr,n(ι) =

{
{ιn} if ι 6= M⋃
i∈[n] ResM(0iM1n−i−1) otherwise

. (3.13)

Essentially, the problems asks a circuit to replicate a single input bit n times. Classically in
non-metastable circuits this is trivially solved by driving n outputs directly or indirectly via buffers.
The problem, however, becomes interesting and of practical relevance, as we will see, if the input
bit is metastable. While in circuits with simple registers it is easily shown that no restrictions can
be made on the states of the output registers at all, we obtained:

Lemma 64. There exists a circuit C with masking registers, such that n ∈ N+ rounds of C
implement fMcr,n, i.e., that solves the n-bit metastability-containing replication problem.

The circuit is deceptively simple: it copies the input bit, stored in a 0-masking register, to
register r in round r ∈ N+. Interestingly, this procedure cannot be unrolled — rendering circuits
with masking registers fundamentally different from classical circuits. Indeed, we have:

Lemma 65. There exists no circuit C such that ` ∈ N+ rounds of C implement fMcr,n with ` < n,
i.e., that solves the n-bit metastability-containing replication problem in ` < n rounds.

Lemmas 64 and 65 finally yield the existence of a non-trivial hierarchy:

Theorem 66 ([28]). For all r ∈ N+, we have FunrM ( Funr+1
M .

A characterization of the classes FunrM is an open problem and subject to ongoing research.

Efficient circuits. Theorem 58 on page 47 presented an exponential size construction to imple-
ment functions by metastability-containing circuits if the function is in FunS . In particular this
allows to construct circuits that implement [f ]M for a Boolean function f . In [28] we also showed
a different construction that inherently uses masking registers to achieve only a linear blowup in
gate count:

Theorem 67 ([28]). Let f : Bm → Bn be a Boolean function and G a purely combinational circuit
with input-output behavior fG(ι) = f(ι) for all ι ∈ Bm. Then there is a circuit C such that 2m+ 1
rounds of C implement [f ]M. The circuit uses

• m mask-0 input registers,

• (2m+ 1)n simple local registers, and

• n simple output registers.

The additive overhead in complexity with respect to G is O(nm logm) in gate count and O(logm)
in depth.

Figure 3.10 on page 49 sketches the circuit’s data path that is at the heart of the construction in
Theorem 67. The circuit first solves the 2m+1-bit metastability-containing replication problem —
but instead of computing the identity ι it replicates fi(ι), for each output bit i. The majority of the
replicas is then computed in each round, with the result written to output register i. Note that the
output register may be set to M in round 2m+ 1; the proof, however, shows that this is only the
case if (fM)i(ι) = BM, i.e., this output bit is unrestricted. Further, note that the majority circuit
is non-trivial since it must be metastability-containing. If it were not metastability-containing, a
single M may overwhelm a majority of binary values. Indeed, circuits that follow this scheme to
solve problems are of use as we will discuss in Section 3.9.
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Figure 3.10: Construction for efficiently implementing the metastable-closure [f ]M of a Boolean
function f presented in [28]. The depicted circuit is for two input registers and only shows the
circuitry for output register i.
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3.8 Metastability-containing Functions

Definition 62 on page 47 specified metastability-containing as a property of circuits that, in a
sense made clear in the definition, optimally contain metastability. They do not “unnecessarily”
propagate metastability to the outputs, unless not otherwise possible; at least for circuits with only
simple registers. In that sense, a circuit that is supposed to compute the projection (x, y) → x
and does so by a single buffer is metastability-containing, while another one that does so by
a combinational logic reflecting the term (y ∨ (¬y)) ∧ x is not: for x = 1 and y = M, it is
(M ∨ (¬M)) ∧ x = M.

In the following we will define metastability-containing as a property of functions on natural
numbers with a similar intention. Towards this end, we start with formalizing encodings for natural
numbers.

A code is an injective function γ : {0, . . . , n − 1} → Bk mapping an x ∈ {0, . . . , n − 1} to its
encoded representation. For y such that y = γ(x) for some x, we define the inverse γ−1(y) = x.
For a set X, we follow the convention of writing γ(X) for the set {γ(x) | x ∈ X} and γ−1(X)
for the set {x | γ(x) ∈ X}. Instead of γ(n), with n ∈ N, we also write (n)γ , i.e., the number n
encoded by code γ.

Example 68. For the k-bit thermometer code, also referred to as unary code, γ = un, with
un: {0, . . . , k} → Bk, encoded numbers are given by un(0) = 0 . . . 0, un(1) = 0 . . . 01, un(2) =
0 . . . 011, etc. Further, for k = 5, we have un−1(01111) = 4 and un−1(00101) does not exist.

Example 69. For the k-bit binary code, γ = bin, with bin : {0, . . . , 2k−1} → Bk, encoded numbers
are given by un(0) = 0 . . . 0, un(1) = 0 . . . 01, un(2) = 0 . . . 010, etc.

Example 70. For the k-bit binary reflected gray code (BRGC), γ = rg, with rg : {0, . . . , 2k−1} →
Bk with un(0) = 0 . . . 0, un(1) = 0 . . . 01, un(2) = 0 . . . 011, un(3) = 0 . . . 010, etc.

With respect to space efficiency, the unary code is exponentially less efficient than the binary
code and BRGC — the latter two codes are in fact bijections, making them optimal.

Formalizing the notion of the amount of metastability in a code word we define:

Definition 71 (Precision, from [28]). Code word x ∈ BkM has precision p with respect to the
code γ if

max
{
y − ȳ | y, ȳ ∈ γ−1(Res(x))

}
≤ p ,

i.e., if the largest possible difference between resolutions of x is bounded by p. The precision of x
with respect to code γ is undefined if some y ∈ Res(x) is no code word.

Given a code γ, the Boolean increment function fInc,γ is defined as

fInc,γ(u, (x)γ) =

{
{(x)δ} if u = 0

{(x+ 1)δ} if u = 1
. (3.14)

The increment function fInc,γ on not necessarily Boolean values is defined as [fInc,γ ]M.
We finally define:

Definition 72 (Metastability-containing function). Let γ be a code. Let fγ : Πk
i=1{(0)γ , . . . , (Di)γ} →

(N)γ be a function. We say fγ is metastability-containing in component i ∈ [k], if: For all
x1, . . . , xk ∈ Πk

j=1{0, . . . , Dj} with xi < Di, if

fγ ((x1)γ , . . . , {(xi)γ , (xi + 1)γ}, . . . (xk)γ)

has precision p, then

fγ ((x1)γ , . . . , fInc,γ(M, (xi)γ), . . . (xk)γ)

has precision p.

From considerations analogous to those in the following Example 73, we have that fInc,bin is
not metastability-containing in its first component, while fInc,un and fInc,rg are.
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Example 73. For the three increment functions fInc,bin, fInc,un, and fInc,rg, with respective code
word lengths k ∈ {4, 9, 5}, we observe:

1. fInc,bin((0)un, (7)bin) = (7)bin = 0111 and fInc,bin((1)un, (7)bin) = (8)bin = 1000.

Thus fInc,bin(M, (7)bin) = ResM(MMMM).

Since Res(MMMM) = {(0)un, . . . , (15)un} the function does not contain metastability — it
amplifies it in this case.

2. fInc,un((0)un, (7)un) = (7)un = 011111111 and fInc,un((1)un, (7)un) = (8)un = 111111111.

Thus fInc,un(M, (7)un) = ResM(M1111111).

Since Res(M1111111) = {(7)un, (8)un} the function contains metastability in this case.

3. fInc,rg((0)un, (7)rg) = (7)rg = 00100 and fInc,rg((1)un, (7)rg) = (8)rg = 01100.

Thus fInc,rg(M, (7)rg) = ResM(0M100).

Since Res(0M100) = {(7)rg, (8)rg} the function contains metastability in this case.

The example suggests that efficiency and metastability-containing are possible; in this example
with binary reflected gray codes.

3.9 Applications

Techniques from the previous sections have been applied to obtain metastability-containing solu-
tions for several realistic problems. We will discuss some of these in the following, starting with a
metastability-containing TDC proposed we proposed in [29].

3.9.1 Time to Digital Converters

A time to digital converter (TDC) is a circuit that translates time (differences) of events to digital
representations. Prominent applications are within logic analyzers, recording high-frequency digital
signals, experimental setups in high energy physics, and high precision clock synchronization. While
any stop-watch-like device with digital output is a TDC, we focus on high-precision TDCs built
in integrated circuits. Motivated by their wide applicability, such TDCs have been extensively
studied, see e.g. [59] for a recent overview.

Linear TDCs. The most widely adapted design style for high-precision TDCs is a linear design
[60–63]. Figure 3.11 depicts such a design.

Td

Start

D Q c(0)

E

D Q c(1)

E

D Q c(2)

E

D Q . . .

E

D Q c(n− 1)

E

Stop

Figure 3.11: Tapped delay-line TDC. Latches are initially enabled and output 0. The delayed
starting signal iteratively sets latches to 1 until the stopping signal disables them.

A sequence of n ∈ N+ evenly spaced delay elements, each with the same latency Td, are
arranged in a delay line. The delay line is then tapped after each delay element. A tap drives
the input of a corresponding bistable storage element, e.g., a latch. With the rising Start signal
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transition, a logical 1 propagates along the delay line. At arrival of the rising Stop transition,
all latches are disabled simultaneously, and their current state is frozen. The latch states c(0) to
c(n− 1) then form a digital, thermometer encoded, representation of the inter-arrival times of the
starting and stopping transitions: flipped-over as c(n− 1), . . . , c(0), the word 000001 represents a
short time between starting and stopping, while 011111 represents a long time.

While we assumed (almost) simultaneous disabling of the latches, variants exist where the Stop
signal is also delayed by a delay line. We denote the former as regular delay lines; the latter are
referred to as Vernier delay lines.

The achieved time resolution of linear TDCs is roughly the latency Td of a delay element, e.g.,
an inverter or a buffer. The latter is preferable to ensure identical (all rising) transitions at the
delay element inputs; with the advantage of not having to balance latency for falling and rising
transitions. Further, the latch states directly contain the thermometer encoded values without need
for further inverting. In recent designs [60, 61, 63], the achieved time resolution is in the order of
10–80 ps, depending on the used process and delay element implementation. For comparison, with
more advanced techniques like interpolation between delay elements, a bin size of 5 ps has been
demonstrated, using a 130 nm process [61].

Increasing the dynamic range. In contrast to their favorable simplicity and the achieved time
resolution, linear TDCs grow linearly in size with the dynamic range: measuring values within
{0, . . . , n − 1} · Td requires a linear TDC of length n. To keep circuit size low and to extend the
dynamic range, fine-TDC/coarse-TDC approaches have been proposed. Typically the fine-TDC is
a delay line, with a resolution in the order of Td, and the coarse-TDC is based on a binary counter
with a time resolution larger than Td. Several variants of this approach exist and similar strategies
have been invented many times independently. To the best of our knowledge, the earliest example
of the fine-TDC/coarse-TDC approach is [64].

Metastability in TDCs. As Marino’s topological argument [9] shows, any TDC necessarily
faces the problem of metastable upsets: the continuous domain of time differences is mapped to
the discrete domain of digital readouts.

For a linear TDC as in Figure 3.11, setting and disabling a latch at roughly the same time
may occur and lead to a metastable upset of this latch. More precisely: Without loss of generality,
assume that the rising transition of Start occurs at time 0. Let T > 0 be a time duration, the
TDC’s stabilization time. Then, for latch i ∈ {0, . . . , n−1} with output c(i), we define a countable
union of disjoint closed intervals from R, the critical window Wi, as follows.

Definition 74 (Critical window Wi, from [29]). Assume that the rising Stop transition occurs at
time t ∈ R. If t 6∈ Wi, then the output c(i) of latch i is stable 0 or 1 by time T . By contrast, if
t ∈ Wi, then there is no guarantee that the output c(i) of latch i is stable 0 or 1 by time T . In a
worst-case manner we thus assume that its value is metastable M.

Figure 3.12 shows the alignment of the latches’ critical windows if they are non-overlapping for
the linear TDC in Figure 3.11. Note that this can be achieved by increasing Td; clearly though
at the cost of increased time resolution. Figure 3.13 depicts a similar scenario, however with
overlapping critical windows.

t

Start

0
Td

W0 W1 W2 . . . Wn−1

Figure 3.12: Critical windows for the linear TDC in Figure 3.11 with well separated windows.

In terms of guarantees on the readout, the design in Figure 3.12 only returns outputs of the
form

c(n− 1), . . . , c(0) = 0k(0 |M | 1)1n−k−1 .
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Figure 3.13: Critical windows for the linear TDC in Figure 3.11 with overlapping critical windows.

By contrast multiple metastable bits are possible in the design in Figure 3.13. In a worst-case
model, decreasing Td below the critical window size thus results in larger resolution times.

Give a metastable readout like 00M1111, one has several options to proceed:

• Resolve metastability in the TDC before carrying on with the computation. This is achieved
by giving the TDC, and in our case, the latches, sufficiently large time to stabilize. In terms
of critical windows, this means to increase T , such that the probability of t lying within a
Wi is negligibly small. Clearly thus, this inhibits the reuse of the TDC in the meantime and
thus decreases the sampling rate of the TDC.

• Copy the output to a memory and let it resolve there. Implementations, are, e.g., with
synchronizer chains [65], or letting it stabilize in a separate memory after copying there.
Again, the technique relies on increasing the time T until usage. This technique, however,
allows for high sampling rates.

• Applying techniques from metastability-containing computation [66], and directly use the
readout within a metastability-containing circuit. This includes stabilization during com-
putation and no necessary stabilization — the latter, if the downstream circuit allows for
this. Examples for applications that do not require stabilization [66–68] will be discussed in
Section 3.9.

Simple metastability-containing TDC. Interestingly the linear TDC from Figure 3.11 can
be directly used in metastability-containing circuits. To see this, note that a readout may contain
at most a single M. Given that the values are thermometer encoded, the precision as defined in
Definition 71 on page 50 is 1, which is optimal. The resulting time resolution thus is 1 · Td.

The only drawback of this design is its large circuit size for larger dynamic ranges. Such designs
would thus require a subsequent compact encoding, like BRGC.

Most designs for larger dynamic designs are counter-based. To deal with metastability, they
protect the, typically binary, counter from metastable upsets by synchronizer chains. However, the
resulting synchronizer delays of several clock cycles pose a deadtime for the TDC during which
it cannot be used. An interesting exception for a counter-based design that follows a different
approach to protect its counter(s) was presented by Mota et al. [69]. The authors use two coarse
counters, one driven by the rising and one by the falling clock transition. The counters are aligned
so that at most one of them may become metastable for a measurement. To determine which of
them is definitely not metastable, the thermometer encoded values must be read, and thus must
be guaranteed to not be metastable.

High dynamic range metastability-containing TDCs. A standard technique to increase
the dynamic range of linear TDCs is to fold them up into a ring and attach a coarse counter at
one tap. Examples of such designs, e.g., are [70] for regular folded delay lines and [71] for Vernier
folded delay lines. Figure 3.14 on page 54 shows the design of a regular ring TDC with a generic
coarse counter at one tap. The coarse counter has an increment input inc, an (low-active) enable
input E, and a multi-bit output C. While generally binary counters with synchronizers are used,
we have proposed three alternative designs in [29] that can be used in metastability-containing
circuits. Also note that while inc may be triggered by rising, falling or both transitions in general,
we will use designs where both transitions lead to an increment.

The three designs differ only in how the counter in Figure 3.14 is implemented and on the
output encoding. We briefly sketch the designs with performance parameters time resolution and
dynamic range.
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Figure 3.14: Generic ring TDC architecture with coarse counter output C. Latches and counter
are initialized to 0. The counter increments on rising and falling transitions on inc if enabled.

1. TDC-bin. In this design, the counter comprises of two binary counters and a single bit
indicating which counter value to use. This value is guaranteed to be correct and not meta-
stable, while the other may be arbitrarily off.
This design principle has been first described in [69]. We gave a correctness proof in [29]. It
has the following properties:

+ Time resolution: Td

+ Design: Any binary counter design may be used.

− Memory: Two counter values need to be stored. If the binary counters have B bits, we
store 2B + n bits for a measurement, which is slightly suboptimal.

− Post-processing: Inefficient for currently available metastability-containing operations.

2. TDC-gray. In this design, a Gray code counter is used as a coarse counter. It has the
following properties:

+ Time resolution: Td

− Design: Requires a custom counter and tighter timing constraints.

+ Memory: Optimal encoding. If the counter has B bits, we store B + dlog ne bits for a
measurement.

+ Post-processing: suitable for several existing metastability-containing operations

3. TDC-graybit. This design again uses a Gray code counter, and an additional single bit.
The bit indicates whether an up-count should have taken place, shifting the tight timing
constraints from the counter to a single latch.

+ Time resolution: Td

+ Design: Requires a custom counter, but less tight timing constraints.

+ Memory: Only a single bit memory overhead of encoding. If the counter has B bits, we
store B + dlog ne+ 1 bits for a measurement.

− Post-processing: Inefficient for existing metastability-containing operations

Before going into greater detail for the three designs, let us state some common properties for the
ring TDC.

Similar to the linear TDC, we denote the output of latch i ∈ {0, . . . , n − 2} in Figure 3.14
with c(i). If not stated otherwise, we will use c(i) also for the value of signal c(i) at time T > 0
after the Stop signal transition. We then have:
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Lemma 75 ([29]). Assume that latches have zero switching time and thus empty critical windows.
Also assume that the coarse counter C is a single-bit, binary latch and denote its output by c(n−1).
Denote by cnt the sum of the total number of latch output transitions of all stages between the
starting and stopping signals, i.e., the total count of the TDC. Then one of the two cases applies:

• The ring oscillator made a number of full rounds and all latch outputs are of the form 0 . . . 0
or 1 . . . 1. Then,

cnt modn = 0 and

∀i, j ∈ {0, . . . , n− 1} : c(i) = c(j) .

• The ring’s state was captured in between two full rounds and the latch outputs are of the form
0 . . . 01 . . . 1 or 1 . . . 10 . . . 0. Then,

c(cnt modn) 6= c(cnt +1 modn) and

∀i ∈ {0, . . . , n− 1} \ {cnt modn} : c(i) = c(i+ 1) .

This allows one to determine cnt modn from the latch outputs c(i). A more refined analysis
with taking into account the fact that a single bit may become metastable, finally yields:

Corollary 76 ([29]). Assume that the critical windows of the latches are non-overlapping. Then,
after potential metastability resolved, cnt modn can be determined according to Lemma 75 with
precision 1.

TDC-bin. In this design the counter is implementation by two binary counters [69]. Figure 3.15
depicts the circuit.

Stop

inc

TBuf
inc

E

C0

inc
E

C1

D b

E
L

Figure 3.15: TDC-bin implementation of the coarse counter. Binary counters C0 and C1 as well as
latch L are initialized to 0. The increment inputs of C0 and C1 are driven via a buffer with delay
TBuf. Counter C0 increments on rising transitions and counter C1 on falling transitions.

Both counters and the latch are initialized to 0. Output b ∈ B of latch L serves as a select bit
for the two counters: counter Cb is used. The circuit, and the following delay constraints, then
ensure that Cb is not metastable.

In particular, we require: Denote by WC0 and WC1 the counters’ critical windows. Denote by
WL the critical window of latch L. For a window W , denote by W i, with i ∈ N+, the ith interval
of W , ordered by time, if it exists. Then we require,

W 1
L < W 1

C0
< W 2

L < W 1
C1
< W 3

L < W 2
C0
< . . . .

The resulting alignment is shown in Figure 3.16 on page 56. We achieve this alignment by the
following design choices: For simplicity assume that |WC0

| = |WC1
|. Then

• W i
L < W i

Cb
is ensured by making the delay latency TBuf sufficiently large.

• W i
Cb

< W t+1
L is ensured by choosing the ring size n large enough such that counter Cb

completes an increment before the transition traverses the ring.
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Figure 3.16: Critical windows for TDC-bin.

Given that these constraints hold, we obtain:

Lemma 77 ([29]). After possible metastability of b has been resolved, it holds that cyc = 2Cb + b.

The proof relies on observing that a stable b implies a stable Cb, and a metastable b implies
that both C0 and C1 are stable. It is then shown that all these counts are set correctly to obtain
the lemma’s statement.

Lemma 77 hints at an interesting interpretation of the counter values and b. Since Cb is a binary
counter, the binary representation of 2Cb + b is easily obtained by concatenation of Cb and b.

We finally obtain for the readout of TDC-bin:

Theorem 78 ([29]). After metastability of the latches has been resolved,

cnt = (2Cb + b)n+ x1−b ,

where x1−b is the number of latches having value 1 − b. Moreover, it is exactly the leading x1−b
latches that have value 1− b.

Memory-wise, if the binary counters have B bit, a measurement requires 2B + n bit. This is
below optimal: The maximum cnt value (2B+1 − 1)n+ (n− 1) of such a measurement would only
require B + 1 + dlog ne bit in an optimal encoding.

TDC-gray. The design TDC-gray, by contrast, uses an optimal B+dlog ne bit per measurement.
Its coarse counter is shown in Figure 3.17. At its core there is a single Gray code counter (shown in
blue in the figure), and a successive register of the counter’s bit width. While in general, the design
works with arbitrary Gray codes, we have shown that BRGC counters are particularly favorable —
we discuss this later on in the section.

When a rising transition arrives at the inc input, it is first translated into a pulse by the Xor
and the buffer. The buffer delay TBuf is chosen sufficiently large such that the rising transition
then triggers the latching of the counter output by the register. Only then, and accounting for the
register’s hold time, the counter is triggered to increment. The resulting critical windows and their
alignment are shown in Figure 3.18 on page 57. While the counter increment may take almost a
full round-trip time of the TDC cycle, the register’s critical window intervals must be roughly of
the same size as the critical window interval sizes of the latches along the ring; see Figure 3.18.

Stop

inc

Tdel

inc

E

C
TBuf

D Q

E

RC

Figure 3.17: TDC-gray design. The counter C (shown in blue) is initialized to 1. Register RC is
initialized to 0. Both are triggered by rising transitions.

While the Gray code from the coarse counter is already optimally compressed, the thermometer
encoded latch states require further compression. We proposed to compress them into a Gray code,
too.
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Figure 3.18: Critical windows for TDC-gray. Note the period during which the counter C incre-
ments (in blue) and the subsequent critical window intervals W 1

C and W 2
C of the register RC that

latches the result.

Lemma 79 ([29]). Consider an arbitrary dlog ne-bit Gray code. Suppose that we are given an
n-bit ring latch state of the form 11..1M00..0 or 11..100..0. If a possible M is resolved to either 0
or 1, the resulting string is a thermometer encoding of either r or r + 1 for some r ∈ [n]; if there
is no M, the string is a thermometer encoding of r ∈ [n+ 1]; i.e., it has precision of 1.

There is a purely combinational circuit of at most n Xor gates and depth at most dlog ne that
transforms all such inputs into the Gray code, in the sense that in case of metastability in the
input, (i) at most one output bit is metastable, and (ii) resolving it to either 0 or 1, the encoded
number becomes either r or r + 1; i.e., the circuit preserves precision of 1.

Since the circuit maps inputs with precision 1 to outputs with precision 1, we may say that
the function that it implements is metastability-containing. Note that technically, our definition
of a metastability-containing function does not apply, since input and output encoding are not
identical — however, a generalized version does.

The key observation in the proof of Lemma 79 is that a counter increment, triggered by a latch
being set to 1, can be viewed as negating a subset of the output bits (implemented by Xor gates).
Clearly, though, while in the first round 1s have to be counted, in the second round 0s have to
be counted, a priori requiring two such encoding circuits. Luckily, in the case of BRGC the same
circuit may be used. For that purpose we refer the reader to Table 3.1: in fact counting leading
1s is equivalent to counting leading 0s and negating all inputs. In BRGC it turns out that this
results in a negation of the left-most BRGC bit; see Table 3.1.

Table 3.1: Encoding the ring latch states from thermometer encoded values to BRGC encoded
values. The example shows the case for a ring of size n = 8 with n − 1 latches and the coarse
counter.

ring latch states (thermometer encoded) BRGC encoded counts
0 1 2 3 4 5 6 0 1 2 #1s #0s

0 0 0 0 0 0 0 0 0 0 0 7
1 0 0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1 1 2
1 1 1 0 0 0 0 0 1 0 3
1 1 1 1 0 0 0 1 1 0 4
1 1 1 1 1 0 0 1 1 1 5
1 1 1 1 1 1 0 1 0 1 6
1 1 1 1 1 1 1 1 0 0 7 0

0 1 1 1 1 1 1 1 0 1 1
0 0 1 1 1 1 1 1 1 1 2
0 0 0 1 1 1 1 1 1 0 3
0 0 0 0 1 1 1 0 1 0 4
0 0 0 0 0 1 1 0 1 1 5
0 0 0 0 0 0 1 0 0 1 6

The two Gray code encoded values are optimal in terms of memory efficiency and maintain
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precision of 1 in presence of metastable inputs. We thus obtain:

Corollary 80 ([29]). Using a B-bit Gray code coarse counter and the XOR-tree circuit from
Lemma 79, a measurement can be stored as a tuple of two Gray codes, using B + dlog ne bits,
without losing precision.

In fact, and again making use of the peculiarities of BRGC encoded values, we may easily
combine the two Gray code values into a single BRGC encoded values that encodes the TDC
value:

Theorem 81 ([29]). If we use a BRGC coarse counter and n is a power of 2, then just the
concatenation of (a) the output of the above Xor-tree circuit, without the need to negate any
of its output bits, and (b) the output of the BRGC counter yields a BRGC encoding of the TDC
measurement value.

Figures 3.19, 3.20, and 3.21 demonstrate Theorem 81. They show three cases for even, odd,
and metastable coarse counters. Observe that in all cases, the final BRGC encoded values correctly
encode the TDC measurement value with the same precision as the inputs (precision 1).
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Figure 3.19: Circuit encoding a TDC measurement value (n − 1 thermometer encoded ring latch
states and B bit coarse BRGC counter state) as a single BRGC encoded value without losing
precision in presence of a metastable input bit. The example shows the case n = 8 and B = 2.
The coarse counter stores 0 (even), thus 1s have to be counted in the ring. The final BRGC value
0011M correctly encodes decimal 4 or 5, depending on how M resolves.
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Figure 3.20: The coarse counter stores decimal 1 (odd), thus 0s have to be counted in the ring.
The final BRGC value 0101M correctly encodes decimal 12 or 13, depending on how M resolves.

58



ring thermometer

1
0

1
1

1
2

1
3

1
4

1
5

1
6

Xor-tree

1
0

0
1

0
2

coarse

0
0

M
1

Figure 3.21: The coarse counter is metastable. The final BRGC value 0M100 correctly encodes
decimal 7 or 8, depending on how M resolves.

TDC-graybit. The third coarse counter design is shown in Figure 3.22 and its critical windows
in Figure 3.23. The design comprises of a Gray counter C and a latch L. The purpose of the
latch is to “shrink” the critical window that the Gray counter may have. While the counter may
get metastable in one bit during a large window WC , the state of the latch with the short critical
window can be used to determine whether the counter should be even or odd — and correct the
counter after stabilization accordingly.

Stop

inc

Tdel

inc

E

C

D b

E
L

Figure 3.22: TDC-graybit design. The counter C (shown in blue) and the flip-flop L are initialized
to 0.
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0

W 1
CTdel

W 2
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Figure 3.23: Critical windows for TDC-graybit.

3.9.2 Minimum, Maximum, Median, and Sorting

TDCs are widely used modules at the interface to an outer environment. We will next discuss an
application of metastability-containing techniques related to computation.

Figure 3.24 on page 60 shows a circuit that computes the minimum of two thermometer encoded
values. The circuit is efficiently realized by bit-wise And of the inputs. An analogous circuit with
bit-wise Or computes the maximum of the two inputs.

Observer that the minimum and the maximum of thermometer encoded values, with the out-
put again being thermometer encoded, is a metastability-containing function. For example, the
minimum of an input with precision 0, say x = 0001111, and and input with precision 1, say
y = 0000M11, yields min(x, y) = 0000M11; which has precision 1. Further, the circuit in Fig-
ure 3.24 is metastability-containing as has been observed in [28].
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Figure 3.24: Computing the minimum of two thermometer encoded values x and y. The circuit is
metastability-containing: an input with precision 1 results in an output with precision 1.

With metastability-containing versions of minimum and maximum, computing the median, mid-
value, and sorting in general, are readily computed in a metastability-containing way: minimum
and maximum are combined to a 2-sort element, which is then assembled according to techniques
from sorting networks [72, 73].

The 2-sort with the minimum circuit shown in Figure 3.24 requires inputs and outputs to be
thermometer encoded. However, more efficient encodings like BRGC are preferable for larger val-
ues. Indeed, first observe that the minimum and maximum functions are metastability-containing
for values that are BRGC encoded as well: precision 1 at the inputs results in precision 1 at the
outputs. Second, Corollary 61 on page 47 shows that there also exists a metastability-containing
circuit that implements BRGC-encoded maximum and minimum. A priori, such a circuit may be
large (exponential in the input size). Efficient implementations have been shown to exist [74–76],
however.

3.9.3 Controllable Oscillator

We will next discuss a component that has been used in several of our designs that use metastability-
containing circuitry such as the link controller in [32]. In contrast to the previously discussed
components, the purpose of this component is not to compute a function, but rather to pro-
duce an oscillating signal with a controllable frequency. We will also explain what we mean with
metastability-containing in this context; although we do not formalize the term for such compo-
nents.

A controllable oscillator, in our context, is a component with a temperature encoded input i
and a single output port o that will be the oscillating output. In its simplest form, the input
is a single bit i. For simplicity, we assume this in the following, although the concept is easily
generalized to multiple bits.

For ease of analysis, we will sometimes refer to two other underlying output representations that
induce the binary output signal: c and C. We denote by C(t) ∈ N the discrete clock count/value
at Newtonian time t ∈ R; that is, the number of active transitions made by output o until time t.
Further, let c(t) ∈ R be the output’s underlying continuous (normalized) phase signal at time t.
For simplicity of analysis we assume normalization of the phase by 2π, i.e., the phase of a full clock
period is 1 and not 2π. Thus C(t) = bc(t)c. The instantaneous frequency of c is dc/dt.

Let the frequency bounds s− ≤ s+ ≤ f− ≤ f+ be from R+
0 and the latency Tosc be from R+

0 .
A controllable oscillator then fulfills:

(C1) The output signal o always has instantaneous frequencies within [s−, f+].

(C2) If i = 0 during time [t − Tosc, t] then the instantaneous output frequency of c at time t is
within the slow frequency bounds [s−, s+]. We say the oscillator is in slow mode at time t.

(C3) If i = 1 during time [t − Tosc, t] then the instantaneous output frequency of c at time t is
within the fast frequency bounds [f−, f+]. We say the oscillator is in fast mode at time t.

(C4) If i is neither constant 0 nor constant 1 during time [t− Tosc, t], we say that the oscillator is
unlocked at time t.

Note that clocks in slow mode are never faster than clocks in fast mode.
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While in absence of metastable inputs, in our case this means ruling out i = M, many designs of
controllable oscillators have been proposed, care has to be taken for designs that behave according
to the above specification in presence of metastability. Most designs, however violate (C1) in
presence of a metastable input bit. We thus call the oscillator metastability-containing if it grantees
constraint (C1).

In [32], we proposed to use starved-inverter ring oscillators that guarantee such behavior [77].
A starved inverter is an inverter whose propagation delay can be controlled by starving its power
supply. This can be done via an input bit that, if set, reduces power supply, and if not set, does
not do so or to a less extent. Aligning such inverters along a ring results in a ring oscillator
whose period is controllable via the starved inverter propagation delays. The transistor level
implementation used in [32] followed the design presented in [78], however without the full control
logic overhead typically required to drive the starved inverter cells, since our input values are
already temperature encoded and can be directly used to control the inverters. Proper decoupling
by intermediate buffers is used in order to minimize unwanted effects on the oscillator frequency
by the control logic and by the oscillator output’s downstream logic. Not all inverters in the ring
need to be starved and a single input bit can control one or several starved inverters. This is useful
to set the sensitivity of the oscillator to input changes.

Most importantly, why is this design metastability-containing? Observe that (continuous-
valued) propagation delays of the inverters are controlled via the (continuous-valued) reduced
Vdd with the oscillation frequency extremes being s− and f+. Setting the input to M will lead
to a Vdd between those for logical 0 and 1, and thus will result in an inverter propagation delay
between those for inputs 0 and 1. The resulting oscillation frequency thus remains within s− and
f+. In particular no glitches will be produced by the oscillator.

3.9.4 Byzantine Fault-tolerant Clock Synchronization

In this section, we discuss a more high-level application of metastability-containment techniques
that was presented in [28]. The problem of distributed clock synchronization is to make a distributed
system of n ∈ N+ processes, generate clock ticks simultaneously [79, 80]. Interpreting the clock
generation times on a global Newtonian timeline as local output values, the problem is closely
related to the problem of repeatedly solving approximate consensus [81].

Both problems are well studied in distributed computing [80], with variants differing in as-
sumptions on which nodes can communicate, stability of the underlying network, and process
faults.

Faults. Focusing on algorithms implemented in hardware, a first question is for a valid model of
faults in such systems.

There is a large body of literature in the circuit community on types of faults and mitiga-
tion strategies at different levels of abstractions. For an introduction with a focus on faults in
dependable systems, we refer the reader to Kopetz [82]. An overview on trends is presented by
Constantinescu [83].

Radiation induced single event upsets (SEUs), i.e., bit-flips of storage elements, have received
particular attention in circuits intended for critical missions. Radiation hardened synchronous [84]
and asynchronous [85] designs have been proposed. Radiation induced single event transients
(SETs), i.e., glitches within the combinational logic, have gained in importance though [86–88]
and may result in downstream bit-flips, delay faults, and glitches. Potential results of such faults
are inconsistent reception of signals and even metastable upsets. Simple crash models are thus not
sufficient for low-level circuits if high coverage is the goal. Byzantine faults, by contrast, capture
inconsistent message receptions. We have argued in this chapter that Byzantine faults, however,
are still not sufficient to cover metastable upsets with non-binary values.

Model. Let us consider the classical Byzantine fault-tolerant message passing model [80], here:
The communication system by which the n processes communicate is fully-connected and stable,
and up to f < n/3 nodes may fail in an arbitrary, i.e., Byzantine, way. Messages latencies between
correct nodes are within some [τ−, τ+]. Every node has access to a local (continuous) clock with
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rate [1, 1 + %], where % > 1. For simplicity we assume that all correct nodes start simultaneously
at time 0, although we note that this condition can be relaxed.

Denote by ti(k), with i ∈ [n] and k ∈ N+, the time node i makes its k-th tick. Further let Ci(t)
be the number of ticks made by node i until including time t. An algorithm solves distributed clock
synchronization, if there exist accuracy bounds α−, α+ > 0 and d > 0, as well as a skew σ > 0,
such that in all executions:

• For all correct nodes i ∈ [n], and all t′, t ∈ R+
0 with t′ > t,

Ci(t
′)− Ci(t) ∈ [(t′ − t)α− − d, (t′ − t)α+ + d] . (3.15)

• For all k ∈ N+, and all correct nodes i, j ∈ [n],

|ti(k)− tj(k)| ≤ σ . (3.16)

The Lynch-Welch distributed clock synchronization algorithm [89] was shown to solve dis-
tributed clock synchronization. Without going into details, the algorithm repeatedly lets a node
(i) make a tick and broadcast it to all other nodes, (ii) estimate its offset to the other clocks based
on the received messages and calculate a correction term from it, and (iii) adapt the time when to
produce the next tick based on the correction term. Care has to be taken in that ticks of correct
nodes are received timely such that the correction factor can be computed before the next tick has
to be made. This results in conditions on (lower and upper bounds of) message delays and the
drift %. Central to the algorithm is how the correction factor is computed from the received clock
offset estimates: the f largest and smallest values are discarded (setting estimates corresponding
to non-received values to ∞), and the mid-point of the interval I of the remaining clock offsets is
computed as

min(I) + max(I)

2
. (3.17)

Variants of this algorithm have been implemented in the Time-Triggered Protocol (TTP) [90]
and Flexray [91] for clock synchronization in fault-tolerant systems. Both are software–hardware
based implementations and achieve a skew in the order of microseconds. To obtain higher operating
frequencies and a better skew, pure low-level hardware implementations are inevitable because of
jitter. Kinali et al. [92] implemented the Lynch-Welch algorithm on a set of FPGA boards All
known implementations, however, synchronize potentially metastable inputs before computations.

Inherently, such implementations face the problem of metastable upsets: If the estimated clock
offset of node i with respect to node j is digital, there exists an offset between the two clocks that
results in a metastable offset measurement. While the above implementations [90–92] solve this
problem by making the probability of an upset arbitrarily small by synchronizing i’s signal into j’s
clock domain, a solution with synchronizers increases the control loop’s latency, i.e., the algorithm’s
synchronization period. Latency is important for high-precision synchronization, however, since
clocks drift apart with rates up to % during the controller latency. Further, despite increasing
synchronizer stages reduces failure rates — at the cost of additional latency — a non-zero probability
of failing remains. This is particularly important for the following reasons:

• Clock synchronization algorithms that strive for high precision need to operate at high syn-
chronization frequencies. Metastable upsets become (roughly) proportionally more likely
with increased frequencies.

• The Lynch-Welch algorithm requires a fully connected communication network. Metastable
upset probabilities thus scale quadratically with the number of nodes.

• The point of the clock synchronization algorithm is to produce clock transitions close in time.
Standard formulas that assume uniformly distributed data arrival times within the clock
period thus do not apply. Rather the algorithm potentially acts like circuits that deliberately
drive a circuit into metastability — see the literature on deep metastability measurements
[37, 93, 94].
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• As noted before, the standard formula for metastable upset rates assumes uniform arrival
times. This also is not a valid model for Byzantine nodes that drive input signals. The signals
may not only be deliberately aiming to produce metastable faults by controlled transitions
or high frequency oscillations, but may also be unclean signal transitions. In particular, any
intermediate voltage may be applied by the Byzantine node.

For the last two point, an upper bound on the probability of faults induced by metastable upsets
is impossible without further restrictions made on the Byzantine nodes.

In [28] we showed that metastability-containing circuits, and in particular the TDC and sorting
discussed previously, can be used to design the first distributed clock synchronization algorithm
that indeed tolerates Byzantine faults in a model that also captures metastability. The algorithm
is a metastability-tolerant implementation of the Lynch-Welch algorithm. Figure 3.25 shows its
main modules ad how they are interfaced.

TDC

clk n

clk i

BRGC

Sort

f + 1 largest

n− f largest

BRGC TEMP

BRGC TEMP

Osc clk i

Figure 3.25: Metastability-tolerant implementation of the Lynch-Welch algorithm to tolerate
Byzantine faults in a model that accounts for metastability. The circuitry for node i ∈ [n] is
shown. The time-offset of the received clock transitions is measured in a metastability-containing
TDC with BRGC encoded outputs. The values are sorted, and the f+1 and n−f largest re-encoded
to temperature code. The two values are then used to change node i’s oscillator frequency.

The phase offset is first measured by TDCs, one for each of the n−1 neighboring nodes. Offsets
are assumed to be BRGC encoded; see Section 3.9.1 for such designs. Sorting networks, respectively
parts of it, are used to select the (f + 1)-th and (n− f)-th largest offset value; see Section 3.9.2 for
solutions. The two resulting BRGC outputs are re-encoded to temperature encoded values. While
we did not provide circuits for this, the function is readily seen to be metastability-containing,
and the existence of metastability-containing versions of such circuits follows from Theorem 58
on page 47. It remains to show the existence of an oscillator whose frequency can be controlled
depending on two temperature-encoded values, that potentially contain metastability. A design
analogous to the oscillator presented in Section 3.9.3 can be used for this purpose. Note that
we do not need to calculate the mid-point in thermometer encoded values, since the controllable
oscillator does not depend on correct thermometer representations, but rather on the number of
bits set to 1. Assuming we are in the linear control region, we may thus simply concatenate min(I)
and max(I) and divide the linear slope by 2.

One observes that the proposed circuit implements the Lynch-Welch algorithm and preserves
precision from the inputs to the outputs. We thus obtain:

Theorem 82 ([28]). In the circuit model that includes metastable upsets, the circuit in Fig-
ure 3.25 solves the distributed clock synchronization problem in a fully connected network of
n > 1 nodes, in presence of up to f < n/3 Byzantine faulty nodes.

3.9.5 Link Controller

In [32] we used techniques from metastability-tolerant computing in a link controller between a
sender and a receiver with their respective clock domains. Communication across clock domains,
e.g., occurs in Globally Synchronous Locally Asynchronous (GALS) system [95, 96]. From Ma-
rino’s work [9], we know that under realistic conditions and uncorrelated clock domains, such a
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communication is inherently prone to metastable upsets. Different mitigation strategies in link
controllers have been proposed to handle this problem:

• Gating the clock [97] with signals that measure fill levels to prevent overflow and under-
run of an asynchronous FIFO with synchronous input and output. This technique requires
almost-full flags that have to be protected against metastability; making upset probabilities
sufficiently small but with a remaining non-zero probability of metastable upsets.

• Clock-pausing [98, 99], at the cost of unbounded start-up times in presence of metastability.

• Synchronizers [100–103] at the cost of increased latency and non-zero probability of meta-
stable upsets.

The design in [100] is based on a mixed-clock first-in first-out pipeline (FIFO) with flow
control logic. Synchronized full/empty and almost full/empty signals are used as handshaking
signals. Its throughput is one data item per clock cycle until the almost full signal is raised;
afterwards, the “true” full signal has to be considered, at the cost of increased latency and
lower throughput.

In [102], a locally delayed latching approach is proposed: conflicting read/write operations
are delayed by an asynchronous controller with a Mutex element. The controller’s latency
is in the order of 20 gate delays. The minimum feasible clock cycle is at least 69 gate delays.

Gradual synchronization [103] allows fine-grained interweaving of synchronization and com-
putation, also shifting conflicting ripple FIFO requests by Mutex elements at each stage.

A notable exception in how synchronizers are used is the work by Dally and Tell [101]. They
propose a design where upset probabilities can be made arbitrarily small without increasing
latency: synchronizers continually determine sender–receiver phase offsets. The offsets can
then be used to skip sender/receiver cycles when upsets could occur. A drawback is that the
frequency and phase measurement circuits require accurate phase tracking and can account
for slow phase drifts only.

• Synchronizing sender/receiver clocks, i.e., controlling their phase offset. The benefit of this
approach is that, once synchronized, communication can be done in a lightweight provably
metastability-free way. The approach from [32], presented in this section, also falls into this
class. The closest work to our approach presumably is Polzer et al. [104]. By using the
distributed DARTS clock generation mechanism [12], a buffer size of 9 and latency of 9 clock
cycles was achieved for a receiver-sender clock shift of 4 ticks at around 25 MHz in an FPGA.
While these numbers clearly can be improved in ASIC designs, DARTS inherently is slower
than our approach.

Metastability-containing controller. In [32] we presented an alternative design for a link
controller. The design is for a unidirectional link from a synchronous sender node Snd to a
synchronous receiver node Rcv. For simplicity we assume that the communication is unidirectional,
although a generalization to bidirectional communication is possible. Sender and receiver have two
distinct controllable oscillators as clock sources. The controller makes sure that both oscillators
are such that the link’s buffer never underruns, overflows, or accesses the same data item at the
same time. Figure 3.26 shows the setup. It comprises of three parts: (i) the tunable oscillators
Oscsnd and Oscrcv, (ii) the (ring) buffer Buff, and (iii) the digital link controller Ctrl.

The link operates as follows: At every active transition of the sender clock clksnd, the sender
writes data to a ring buffer of even size N ∈ 2N+. On every active transition of the receiver clock
clkrcv, the receiver reads data from the ring buffer. Buffer cells are numbered from 0 to N − 1. We
assume that the buffer is addressed by two pointers — the sender and the receiver pointer, both of
which are incremented modulo N every respective clock tick.

Controller model. Assume a sender and a receiver controllable oscillator that follows the spec-
ification given in Section 3.9.3. Call their single-bit inputs mds and mdr, respectively. We denote
their phase at time t ∈ R+

0 with cs(t) and cr(t), respectively. Additionally assume that the two
oscillators are started roughly at the same time, i.e., within some δ ≥ 0 maximum initial phase
offset:
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Figure 3.26: Link with digital link controller Ctrl, from [32]

(P1) Initially cs(0), cr(0) ∈ (−δ, 0].

Further, assume the setup shown in Figure 3.26 with N cells. We define cell access and validity
of a cell as in [32]:

(A1) The receiver’s continuous address pointer is pr(t) = cr(t).

(A2) The sender’s continuous address pointer is ps(t) = cs(t) +N/2.

(A3) The receiver’s discrete address pointer is Pr(t) = bpr(t)c mod N = Cr(t) mod N . We say
the receiver (starts to) access cell ` ∈ {0, . . . , N − 1} at time t if Pr(t) = `.

(A4) The sender’s discrete address pointer is Ps(t) = bps(t)c mod N = Cs(t) +N/2 mod N . We
say the sender (starts to) access cell ` ∈ {0, . . . , N − 1} at time t if Ps(t) = `.

(A5) To account for non-zero access of cells, we assume that an access has a duration τs for the
sender and τr for the receiver.

(A6) On initialization, cells ` ∈ {0, . . . , N/2− 1} are valid, and all other cells are invalid.

(A7) If the sender accesses an invalid cell at time t, the cell becomes valid at time t + τs until it
is invalidated by the receiver. If the reader accesses a valid cell at time t, it becomes invalid
at time t+ τr until it becomes valid by the sender.

Linked to each cell `, there is a full/empty flag F`. Its value at time t is:

(F1) 1 if cell ` is valid at time t,

(F2) 0 if cell ` is invalid at time t,

(F3) arbitrary within BM, otherwise.

The specification of the controller–oscillator interface is as follows. With Tctr > 0 being an
upper bound on the controller latency:

(L1) If the controller output sets mds to b ∈ B during [t− Tctr, t], then mds(t) = b. An analogous
statement holds for mds.

(L2) In all other cases mds and mdr are arbitrary within BM.

Problem. We are now in the position to state the problem of a correct link controller in our
sender–receiver setting.

Definition 83 (from [32]). A link is correct if the following holds for all executions:

(P1) No underrun: the receiver accesses only valid cells.

(P2) No overflow: the sender accesses only invalid cells.

Definition 84 (from [32]). Controller Ctrl is correct if it computes the signals mds and mdr out
of the inputs (F`)`∈{0,...,N−1} so that the link is correct.
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Figure 3.27: Gate-level circuit of the synchronous controller ClockedTh. The controller is for a ring
with N = 2 cells. Flip-flop ffa stores the address (modulo 2) that is sampled and ffs the sampled
full/empty flag. From [32].

Solution. Figure 3.27 depicts the controller ClockedTh, a clocked gate-level circuit that has been
proven to be a correct controller in [32].

Besides correctness, we have shown bounds on two performance measures: The link’s latency,
i.e., the time between consecutive accesses of the sender and receiver to the same cell plus the se-
tup/hold time at the receiver (as the data should be stable before it is used). The link’s throughput,
i.e., its rate of delivered packets. We obtained:

Theorem 85 (from [32]). For

∆ = d(f+ − s−)(Tosc + 1/s− + τmax) + f+ max{τs, τr}+ max{δ, f+τs/2}e and

N ≥ 2∆

the controller ClockedTh is correct and the link has latency N/s− and throughput 1/s−.

The proof is by showing that a non-implementable, ideal, continuous controller is correct and
then showing that the controller ClockedTh implements the ideal controller if parameters are chosen
properly.

The link controller with the successive oscillators bears some similarities to phase locked loop
(PLL) designs [105, 106]: its purpose is to control a frequency with respect to a phase difference.
The controller can be viewed as an all-digital phase detector. However, the biggest difference is that
our design is a distributed setup with neither the receiver nor the sender dictating the frequency
of the other.

Performance and comparison. Table 3.2 shows a comparison of our controller synthesized for
the UMC 65 nm library. We compare the link’s performance to the most closely related works,
Polzer et al. [104] and Dally and Tell [101].

Table 3.2: Performance and hardware overhead (buffer size N , gates, flip-flops, oscillator type) of
the proposed controller with a tunable 2.0 to 2.3 GHz oscillator, [101], and [104]. From [32].

ClockedTh [104] [101]

Performance
Latency [ns] 1 375 1.3

Throughput [pkt
ns ] 2 1

41
1

1.3
MTBF ∞ ∞ Finite

Overhead

N 2 9 2
# Gates 8 > 100 > 100

# flip-flops 4 > 50 > 100
Oscillator type tune distributed quartz

The controller operates within 2–2.3 GHz. VHDL and Spice simulations were in accordance
with predictions from theory, and no underrun or overflow was detected in the simulations.
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Figure 3.28 shows a subtrace of the VHDL simulations with potentially metastable signals in
red color.

d

clk_rcv

clk_snd

full[0]
full[1]

md_rcv

md_snd

195ns 196ns 197ns 198ns

Figure 3.28: Gate-level simulations for link with ClockedTh. From [32].

The VHDL code for the behavioral simulation of a ring buffer of N = 2 elements is shown
below. Observe the explicit generation of X for the full-flags whenever a cell is written and read.
The code outputs X in a worst-case manner for τ time, but can be adjusted to generate X for a
(uniformly) random time d ∈ [0, τ ] as indicated in the code.

l ibrary IEEE ;
use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . math rea l . a l l ;

entity Ring i s
port (

c l k snd : in s t d l o g i c ;
c l k r c v : in s t d l o g i c ;
f u l l : out s t d l o g i c v e c t o r (0 to 1) := ”10”
) ;

end Ring ;

architecture behv of Ring i s
shared variable snd addr : i n t e g e r := 1 ;
shared variable rcv addr : i n t e g e r := 0 ;
constant tau : time := 0.125 ns ;
constant N: i n t e g e r := 2 ;

begin

u p d a t e f u l l f l a g s : process ( c lk snd , c l k r c v )
−− v a r i a b l e s f o r uniform
variable seed1 , seed2 : p o s i t i v e ;
variable r : r e a l ;
variable d : time ;

begin
i f ( c lk snd ’ event and c l k snd = ’1 ’) then
−− w r i t e the f u l l f l a g
uniform ( seed1 , seed2 , r ) ;
d := r ∗ tau ;
f u l l ( snd addr ) <= transport ’X’ after 0 ps ,

’ 1 ’ after tau ; −− (wc) was d

−− f i n a l l y increment address p o i n t e r
snd addr := ( snd addr + 1) mod N;

end i f ;
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i f ( c l k r cv ’ event and c l k r c v = ’1 ’) then
−− w r i t e the f u l l f l a g
uniform ( seed1 , seed2 , r ) ;
d := r ∗ tau ;
f u l l ( rcv addr ) <= transport ’X’ after 0 ps ,

’ 0 ’ after tau ; −− (wc) was d

−− f i n a l l y increment address p o i n t e r
rcv addr := ( rcv addr + 1) mod N;

end i f ;
end process ;

end behv ;

3.9.6 State Machines

While the principles of metastability-containing functions and circuits can be immediately applied
to state machines, and in particular, the their state transition functions and the output functions
as is, a more in-depth treatment of state machines is appropriate. The following section is based
on [30] where we studied a subclass of state machines where metastability is restricted to a single
input bit.

We start with a definition that eases writing specifications in the ternary logic BM.

Definition 86 (from [30]). For strings x, y ∈ BnM, with n ≥ 1, let x ∗ y ∈ BnM such that

∀i : (x ∗ y)i =

{
xi if xi = yi

M otherwise
.

Then, for g : Bn → Bm, the metastable closure [g] : BnM → BmM, can be compactly written as

∀i : [g]i(x) = ∗
x′∈Res(x)

gi(x
′) .

Recall that the transition function f in a state machine depends on the current state and
the input. We refer to this input as datapath control as opposed to datapath data that does not
influence state transitions. Datapath control is assumed to be c ≥ 0 bits wide and the state to be
encode with b ≥ 1 bits. States from S = {0, . . . , |S|}, with |S| ≥ 1, are encoded via the injective
function ε : S → Bb. If clear from the context we refer both to s ∈ S and ε(s) as a state.

We may now additionally interpret a state s in BbM as superpositions of classical states, i.e., a
set of states sM that comprises of all ε−1(s′) with s′ ∈ Res(s), if it is well-defined for all such s′,
and a default value ⊥ otherwise.

An execution of a state machine is defined analogously to the round model in Section 3.3.3.
We just deviate in one aspects to adapt the model to a more refined analysis for state machines:

• Executions are allowed to non-deterministically evolve via arbitrary resolutions of the current
state. In particular, denoting by x(r) the datapath control part and by y(r) the encoded
state at round r ≥ 1, it is

y(r) ∈ [f ](y(r − 1), x(r − 1)) . (3.18)

In case y(r − 1) = ⊥, we allow arbitrary y(r) from BbM.

• Further we assume that only the initial input is potentially metastable, and that after an
a priori defined k ≥ 1 number of rounds, metastability has resolved. We thus have for
r = k + 1,

y(r) ∈ Res ([f ](y(r − 1), x(r − 1))) . (3.19)

Example 87. Assume a system with two datapath control bits req and A. Figure 3.29 on page 69
depicts an example state machine and an execution over 3 rounds. We assume that states are
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Figure 3.29: Example execution of state transitions. The current superposition state is shown in
gray. In the execution the superposition collapses at time 3 into a single state. From [30].

encoded as ε(0) = 000, ε(1) = 001, ε(2) = 011, ε(Op1) = 010, ε(3) = 101, and ε(Op2) = 100. For
the input sequence, we assume that req is of the form 0∗(M)?1ω, and A is either 0ω or 1ω. This
corresponds to a scenario where the circuit has already received the (stable) control data A, and is
waiting to receive the req to trigger the computation.

In the example, we see that the encoding is optimal for the given input traces: the set of
superpositions is minimal. Further, observe that at round 3 the state superposition has collapsed
into a single state — this may be the case either by the non-determinism of the execution, or enforced
by assuming k = 2.

By contrast assume the encoding as before, but with ε(1) = 111. One observes that at time 1,
the state machine is in the superposition state ⊥ allowing arbitrary future behavior.

The encoding in Example 87 is ad-hoc. So the question arises, whether there exist efficient (in
terms of bit-size) encoding, that have the same properties as the presented encoding — an optimal
superposition set. In [30] we show that this is the case, and present two efficient encodings for
state machines with only a single initially potentially metastable req bit that behaves like in
Example 87. The solutions are based on appending additional bits to the state encodings that
mark the path (e.g., distance as thermometer encoded bits) from the initial state for distances up
to k. The question of optimal encodings with dlog(|S|)e bits is an open problem, however.

3.9.7 A Circuit for Voltage Droop Tolerance

In [31] we applied the techniques of building metastability-containing circuits to design a new
clock frequency adaptation circuit. The purpose of this circuit is to slow down the clock frequency
driving a synchronous circuit upon detection of a voltage droop, i.e., a sudden power supply drop.
Slowing down the clock frequency is required if the synchronous circuit operates near its maximum
allowed clock frequency and small droops would already lead to violations of the setup-constraint
between the critical path and the launching and capturing clock paths.

Alternatively, the classical solution is to equip the clock cycle with large enough guardbands.
However this is costly in terms of performance: For example, Bowman et al. [107] showed that
a 12% droop in a 45 nm microprocessor required to slow down the clock frequency by 16% to
accommodate the increased critical path delay.

High-frequency voltage droops. VDD variations exists at different timescales, ranging from
slow temperature and aging effects to GHz localized noise. While slow variations can be coped
with by classical controllers, and multiple GHz noise is too localized and fast to be coped with
by current circuits, it is the MHz domain that has recently been addressed with fast frequency
adaptation circuits. Typically effects in this domain are IR drops due to parasitic resistances in
the power supply net and dI/dt induced noise due to die and package LC [108–110]. Both are
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varying in time, e.g., due to activity profiles. Measurements of such VDD variations when injecting
sudden switching activity changes showed damped oscillatory behavior [110].

Previously existing solutions. In the following we focus on synchronous and GALS solutions;
there is a large body of work on handshaked and (partially) clockless circuits, however, which,
additionally to other factors, is motivated by the above problems.

An interesting, and deceptively simple, solution is a ring oscillator whose delay lines are config-
ured to have similar voltage-delay characteristics as critical path delays in the synchronous circuitry
they clock [111]. The ring oscillator is then used as an almost instantaneously adapting frequency
adaptation module. This solution can be either used globally, or locally do generate clocks for the
synchronous islands in a GALS. Fojtik et al. [110] proposed such a solution, which additionally
uses circuitry to communicate between such islands without the need for deep synchronizers. They
propose to combine pausible clocking with ring oscillators. They also advocate the use of local
frequency adaptation over centralized, global adaptation since the latter suffers from long inser-
tion delays of the clock tree, which may be prohibitive for fast reaction to droops. Further, local
adaptation models reduce droops as they smoothen activity profiles [110].

A large body of solutions is based on a droop detector combined with a frequency adaptation
module. Solutions with frequency adaptation modules have the advantage that phase relations
between local adaptation modules typically are directly available as digital states. This may be
important for fast communication between such synchronous islands. Solutions with slow and fast
adjusting frequency adaptation based on PLLs [112] and/or selecting among clock signals after
droop detection [113] have been proposed. An example droop detector is proposed in [107]. It is
based on mixed gate-interconnect delay line monitoring. The solution in [114] uses the fact that
a droop delays not only the critical path, but also the clock launch and capture paths. They thus
concentrate on the potentially hazardous reverse effect of decreased frequency after the droop is
over, and mask the clock signal until the droop is over.

Direct implementation with phase shifts. Figure 3.30 shows the principle design of a phase
shift module (ϕ) acting as a frequency adaptation module and a droop detector. The module ϕ
receives a, typically, stable clock Clkin and produces the shifted clock signal Clkout. The phase
shift between Clkout and Clkin is incremented by a fixed amount if the enable signal is active at an
active clock edge of Clkin. The droop detector (DD) drives the enable signal, repeatedly shifting
the clock signal and thus slowing down its frequency during a droop.

Clkin

ϕ

phase shift module

DD

droop detector

VDD

ĒOĒI

Clkout

Figure 3.30: System architecture of a direct frequency adaptation module implementation: the DD
senses occurrence of a droop and signals the ϕ module when to shift the phase of the input clock.

The design suffers from potential metastable-upsets, however: the enable signal provided by
the droop detector is not aligned to the clock input signal a priori. Thus phase shifts may be
triggered exactly when an active input clock edge occurs, leading to glitches in the output clock
signal.

Synchronizing the enable signal. Figure 3.31 on page 71 shows a natural solution to this
problem: the use of synchronizers for the enable signal. Different shades of red symbolically show
the decrease of probability of a metastable enable output from right to left in the figure.

Figure 3.32 depicts the circuit’s operation as a timing diagram from the occurrence of a droop,
its synchronization in the synchronizer stages to the input clock signal, and the final application of
a phase shift at the phase shift module. Again, shades of red are used to symbolically depict the
probability of metastable output signals. The drawback of this solution is immediately visible from
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Clkin

ϕ

phase shift module FF n FF n− 1

. . .

FF 1

DD

droop detector

VDD

ĒI ĒO ĒI ĒO ĒI ĒO ĒI ĒO

Clkout

Figure 3.31: System architecture of the frequency adaptation module implementation with syn-
chronizers for the enable signal.

the timing diagram: with increasing probability of a metastability-free enable through deeper syn-
chronizer chains, the reaction time of the circuit increases. This results in missing high-frequency
droops.

t
DD

sync sync sync sync

ϕ

droop happens
enable issued

apply phase shift

Figure 3.32: Timeline form droop happening until application of the phase shift at the phase shift
module ϕ.

Metastability-containing design. In [31] we proposed and proved correct a different solution
that does not have the problem of coupling latency and lower probability of metastable upsets.
The design is shown in Figure 3.33 Again, the DD senses the occurrence of a droop and sets its
enable output to active during a droop. In fact the enable signal is split into two signals, that we
will discuss later and that can be viewed as duplicates for the moment. The enable then travels
from the right to the left through a pipeline of delay elements (DE). These apply a phase shift
between signals CI and CO by switching their internal delay from short to long. From the other
direction, left to right, the clock signal is fed into the pipeline of DEs with a respective phase shift
from τi,k to τi,k+1 applied at each DE. Each delay element also hands over the enable signal to the
left, finally arriving at ϕ. This makes sure that the phase shifts are also applied to following clock
transitions; preventing them from being too close to the initially delayed/shifted clock transition.

Clkin

τ
↑/↓
i

ϕ

phase shift module DE 1 DE 2

. . .

DE n

DD

droop detector

VDD
CO CI CO

ĒI ĒF
O ĒF

I

ĒS
O ĒS

I

τ
↑/↓
i,0

CI CO

ĒF
O ĒF

I

ĒS
O ĒS

I

τ
↑/↓
i,1

CI CO

ĒF
O ĒF

I

ĒS
O ĒS

I

τ
↑/↓
i,2

ĒF
O

ĒS
O

Clkout

τ
↑/↓
i,n

Figure 3.33: System architecture of the proposed frequency adaptation module implementation
from [31].
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Figure 3.34 shows the timeline from the occurrence of a droop to the application of a phase
shift. If the DD issues a clear active enable, the shift is immediately applied at the last delay
element. Potentially the DD may be about to change its enable output during a clock transition
happening at the last delay element DE n. In this case the enable output signal(s) of DE n
may become metastable, and a priori, this may lead to a glitch at the clock output CO. In [31]
we proposed a design based on a metastability-containing implementation of DE that effectively
computes with such signals and prevents a glitch form occurring. The latter is possible since
the output space of a phase shift is continuous. But, since we cannot prevent enable signals from
becoming metastable, we split them into two signals with (monotonicity) guarantees between them
when becoming metastable. The interested reader is referred to the article [31] for the circuitry
and its analysis.

t
DD

sync & apply sync & apply sync & apply sync & apply

ϕ

droop happens
enable issued

apply phase shift
communicate shift

communicate shift

communicate shift

communicate shift

make shift permanent

Figure 3.34: Timeline from droop happening until application of the phase shift at the phase shift
module ϕ.

Differently put, the timeline in Figure 3.34 can be interpreted as as replacing the synchronizing
element by an element that computes/acts (in this case applies a phase shift) and synchronizes at
the same time.

Besides a correctness and performance analysis, Spice simulation of this design are provided
in [31], showing that clock frequencies in the GHz domain are indeed feasible.

Further reading. Dolev et al. [13] designed and proved correct a distributed clock genera-
tion circuit that is probabilistically self-stabilizing, and tolerates less than a third of Byzantine
faulty nodes. Two key design constraints were a required low number of interconnect between
nodes, and the necessity to deal with metastable upsets. Bund et al. [115] proposed a dis-
tributed clock generation circuit that is not necessarily fully connected and that provides
gradient clock synchronization guarantees. Key design constraints were again a low number
of interconnect, small node circuitry, tighter synchronization bounds than for clock trees, and
the correct handling of metastable upsets.

72



Chapter 4

Dynamic Networks

In previous chapters we assumed that the machine’s architecture is static. While this is plausible
for standard VLSI designs in silicon, accounting for faults and inherent dynamic configurations of
components requires to consider dynamic architectures. The concrete requirements of such systems
may vary, depending on whether the machine changes behavior, e.g., due to a radiation fault or
a component moving in space. At a certain level of abstraction, however, there is no difference
between the two machine models: messages between its components are potentially dropped or
corrupted. In this chapter, we study computing in the presence of such dynamic machine models.

This chapter discusses results from the following research articles.

• [116] Charron-Bost, Függer, Nowak. Approximate consensus in highly dynamic networks:
The role of averaging algorithms. In 42nd International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 528–539, 2015.

Within dynamic networks that are described by a network model, i.e., a set of communi-
cation graphs from which the adversary may freely choose in each round, we characterized
solvability of approximate consensus and asymptotic consensus. Surprisingly, there exist
simple solutions, namely averaging algorithms, for the solvable cases.

• [117] Charron-Bost, Függer, Nowak. Fast, robust, quantizable approximate consensus. In
43rd International Colloquium on Automata, Languages, and Programming (ICALP), vol-
ume 55, pages 137:1–137:14, 2016.

We show that simple averaging algorithms do not only solve asymptotic and approximate
consensus in highly dynamic networks, but can be slightly adapted to yield fast and robust
solutions, with several potential applications.

• [118] Függer, Nowak, Winkler. On the Radius of Nonsplit Graphs and Information Dissem-
ination in Dynamic Networks. Discrete Applied Mathematics, 2020.

The dynamic radius of a sequence of communication graphs is related to the speed of
information dissemination from a single process within the network. We show that the
dynamic radius of a sequence of non-split graphs with n nodes is in O(log log n).

• [119] Függer, Nowak, Schwarz. Tight bounds for asymptotic and approximate consensus. In
ACM Symposium on Principles of Distributed Computing (PODC), pages 325–334, New
York, NY, USA, 2018. ACM.

We show that the approximate agreement algorithms from [117] are indeed optimal with
respect to time complexity in dynamic networks. Our results also imply a lower bound on
time complexity in classical static networks, answering a question by Dolev et al. [81] on
lower bounds for general approximate agreement algorithms.
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• [120] Charron-Bost, Függer, Nowak. Multidimensional asymptotic consensus in dynamic
networks. CoRR, abs/1611.02496, 2016, and

[121] Függer, Nowak. Fast multidimensional asymptotic and approximate consensus. In
32nd International Symposium on Distributed Computing (DISC), Leibniz International
Proceedings in Informatics (LIPIcs), pages 27:1–27:15, 2018.

We present new algorithms for asymptotic and approximate consensus with multidimen-
sional input values. Our analysis shows that the algorithms work in dynamic networks and
improve the time complexity from the previously fastest approximate consensus algorithm
in asynchronous message passing systems with Byzantine faults by Mendes et al. [122].

4.1 Models of Dynamic Networks

Traditionally, early work in distributed computing [80] mapped changes in a distributed machine to
nodes or links within an inherently stable fully connected network. However, any such adversarial
model can also be viewed as a model of a dynamic network for this particular setting. Drawing
the line between distributed algorithms for dynamic networks and for classical static networks thus
becomes a matter of taste. Indeed, some of the results that will be discussed in this section for
highly dynamic networks will have direct applications to static networks.

Early work that emphasized on the dynamic aspect of networks is by Santoro and Wid-
mayer [123]. They studied agreement problem variants in a network with message faults and
where processes communicate and compute in synchronous rounds. Among other results, they
show that the classical exact consensus/agreement problem is not solvable in a network of n > 1
nodes, if the adversary is allowed to remove n− 1 messages per round. In fact their impossibility
proofs only require the adversary to choose up to n − 1 omissions from a (different) sender node
at each round.

Charron-Bost and Schiper [124] introduced a unified framework for distributed algorithms that
communicate within communication-closed rounds and where messages can only be deleted. Benign
adversaries can thus be described as sets of allowed communication schedules, i.e., sequences of
communication graphs.

Afek and Gafni [125] studied round-wise operating distributed algorithms with the intention
to relate solvability of certain problems in such message passing systems to solvability in shared
memory systems. The allowed communication schedules are only restricted round-wise: the ad-
versary may schedule a communication graph if a predicate P holds on the graph. Such message
adversaries were termed oblivious in [126]. A predicate is called message adversary in this context.
Like in [123, 124], communication graphs are not necessarily bidirectional. However, unlike this
work, Afek and Gafni consider only anonymous message adversaries, i.e., if P (G) for a graph G
than P (G′) for any G′ with renamed nodes.

Raynal and Stainer [127] studied message adversaries in the context of failure-detectors, i.e.,
oracles that predict properties on communication networks.

Kuhn et al. [128] studied distributed problems, like counting nodes, and on top of this, dis-
tributed function computation, in dynamic networks. By contrast to the work covered in this
chapter, the communication graphs are bidirectional, however.

Casteigts et al. [129] systematically studied dynamic network topologies and reductions among
certain classes of such networks; formalizing the concept of time varying graphs for distributed
systems and providing (simulation) relations between classes of such networks. Like [128], graphs
are bidirectional by definition.

In the particular context of solving exact consensus in dynamic networks, Coulouma et al. [126]
characterized the oblivious massage adversaries in which exact consensus is solvable. Winkler et
al. [130] characterized so called closed1 message adversaries in which exact consensus is solvable,
and Nowak et al. [131] arbitrary message adversaries where this is the case.

A broad overview on computing in dynamic communication networks has been presented by
Kuhn and Oshman [132].

1The authors call a message adversary, i.e., a set of allowed communication schedules, closed if for each sequence
that is not in the set there exists a prefix with all extensions not being in the set.
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4.2 Network Models

We start with introducing a model along the lines of [116]. Consider the set [n] of n ∈ N+

processes/nodes all of which operate in synchronous rounds, broadcasting a message in each round
to all other processes, receiving messages from a subset of processes that have been sent in this
round, and performing a computational step. The messages that are successfully received (and
not altered) within this round can be described by a graph, with a link from process i to j, if the
message has been received, and no link, otherwise. If not stated otherwise, we assume that messages
are never altered. Further, we assume the existence of self-loops, i.e., processes always receive their
own messages. Call such a directed graph a communication graph. For a communication graph G,
we denote the incoming neighbors of a node i by Ini(G) and the outgoing neighbors by Outi(G).
Likewise, for a set S of nodes, we set InS(G) =

⋃
j∈S Inj(G); and similarly for OutS(G).

While several notions of stability in dynamic networks exist, e.g., how many edges can be
removed in a communication graph from one round to the next, a lower bound on the existence of
an edge before it may be deleted, the arguably most dynamic case is the case where the message
adversary can freely choose communication graphs from a pre-defined set. Call such a (non-empty)
set of graphs with nodes in [n] a network model. A network model thus corresponds to an oblivious
message adversary.

A communication sequence G is a countably infinite sequence of communication graphs (G(k))k≥1.
We say the communication sequence is from network model N if all of the communication se-
quence’s graphs are from N .

We are now in the position to define how a distributed system advances in the presence of
a communication sequence. Process i’s local state at the beginning round k ≥ 1 is denoted by
si(k − 1), and its state at the end of round k is si(k). Local states are from a potentially infinite
set of states. The global state, or configuration, at (the beginning of) round k is the collection of
local states at the beginning of round k, one per process.

A distributed algorithm is a state machine that acts on the global state space, with its transition
function restricted to locality constraints: it specifies (part of) the initial global state s(0) at the
beginning of round 1, as well as a transition function fi that determines for each process i, the
next state si(k) from the states sj(k − 1) of all j ∈ Ini(k) it has received in round k, i.e., for all
rounds k ∈ N+,

si(k) = fi ({sj(k − 1) | j ∈ Ini(k)}) . (4.1)

While fi depends only on the set of received states, any ordering may be encoded within the received
states, e.g., by appending process identifiers. Further, while the model assumes that processes
broadcast their complete local state in every round (potentially including process identifiers, round
number, reception history, etc.), realistic implementations may broadcast only the part of the state
that determines the algorithm’s behavior. An algorithm that does not make use of identifiers, may
simply omit broadcasting these.

Requiring that only part of the initial global state s(0) may be specified by the algorithm,
the remaining part will serve as the initially presented input — analogously to the computational
model presented in Section 3.3.3 where inputs are initially loaded into the input register and not
changed by the environment during computation.

An execution of a distributed algorithm from global initial state s(0) with communication
sequence G = G1, G2, G3, . . . is defined as the alternating sequence of global states and communi-
cation graphs

s(0), G1, s(1), G2, s(2), G3, . . .

obtained by successive application of the distributed algorithm’s transition function, given the
communication sequence G.

4.2.1 Non-split and Rooted Graphs

A communication graph is non-split if any two of its nodes have a common incoming neighbor.
Figure 4.1 (a) depicts a communication graph that is readily seen to be non-split: nodes 1 and 2
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Figure 4.1: (a) Non-split and (b) rooted communication graph with set of nodes [3]. Self-loops,
that exist at all nodes, are not shown.

have common incoming-neighbors {1, 2}, nodes 2 and 3 common incoming-neighbors {1}, and
nodes 1 and 3 common incoming-neighbors {1} by presence of the self-loop at 1. The graph in
Figure 4.1 (b) is not non-split since nodes 2 and 3 have no common incoming-neighbors. While
our treatment of non-split graphs is based on the work on approximate agreement in [116], these
graphs play an important role for several applications — for example, within the work by Charron-
Bost and Schiper [124] studying such graphs as “no split predicates” and Cao et al. [133] as
“neighbor-shared graphs”.

A communication graph is rooted if there exists a node i (a root) with a path from i to any
of the graph’s nodes. The root is not necessarily unique, and the set of roots of a communication
graph G has been referred to as the root component of G, since the subgraph that consists of
all roots is strongly connected [134]. The nodes of the root components, the roots, are denoted
by R(G). The graph in Figure 4.1 (a) is rooted with root component {1, 2}, and the graph in
Figure 4.1 (b) with root component {2}. Like non-split graphs, rooted graphs occur in diverse
applications.

4.2.2 Relations between Non-Split and Rooted Graphs

Given a non-split communication graph G, one observes by repeatedly applying the non-split
definition that G is also rooted:

Lemma 88. Every non-split graph is rooted.

While the existence of a root r is immediate, its eccentricity within G, i.e., the maximum of
the minimum path length from r to i, for all i ∈ [n], is not. The radius of a directed graph is
the minimum eccentricity over all nodes. As such, it has implications within several distributed
applications. Consider, e.g., a communication graph G that resembles a network topology of a
distributed system that operates in rounds. Then the radius is a tight lower bound on when
everyone has heard from a common process.

Example 89. The radius of the communication graph in Figures 4.1 (a) is 1 since all nodes are
reachable from node 1 over 1 edge. The graph in Figure 4.1 (b) as radius 2 with all nodes reachable
from node 2 over 2 edges.

Repeated application of the non-split definition, with incoming neighbors forming a binary tree
yield a radius in O(log n). However, in [118], we have shown that a stronger bound holds for the
radius:

Theorem 90 ([118]). The radius of a non-split communication graph with n nodes is in O(log log n).

To compare, Figure 4.1 (a) is non-split and has radius 1. Only a constant lower bound of 3 is
known from an example non-split graph, leaving a tight upper bound an open problem.

In the previous considerations, we have assumed a single, fixed communication graph G. How-
ever, with adapted definitions, the above two results also hold in presence of dynamic communi-
cation graphs.

For that purpose let the product communication graph G = G1 ◦ G2 of two communication
graphs G1 and G2 with same set of nodes [n], be the graph with set of nodes [n] and an edge
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Figure 4.2: Non-split graph from graph product. Self-loops are not shown.

from i to j in G, if there is a k ∈ [n] such that (i, k) is an edge in G1 and (k, j) is an edge in G2.
One observes, that for a communication sequence G1, G2, . . . , and a distributed algorithm that
relays messages, the processes from which a node j has indirectly received a message at the end
of round 2, are exactly those in Inj(G1 ◦ G2). The above graph product thus captures collapsing
several rounds into a single macro-round.

Following [118], the dynamic radius of a sequence of communication graphs G1, . . . , G`, . . . is
the smallest ` ≥ 1, such that G1 ◦ · · · ◦ G` contains a star graph. Again, the dynamic radius is a
tight lower bound on when everyone has heard from a common process in the first ` rounds.

One can then show that Theorem 90 also holds in presence of a dynamic network:

Theorem 91 ([118]). The dynamic radius of a sequence of non-split communication graph with n
nodes is in O(log log n).

This shows that multiplying O(log log n) non-split communication graphs with n nodes, one
obtains a graph that contains a star graph. The property is trivially fulfilled for the non-split
graph in Figure 4.1 (a), since it contains a star graph.

In fact, a similar transition from rooted to non-split by multiplying sufficiently many graphs
exists. In [116] we have shown:

Theorem 92 ([116]). The product of n−1 rooted communication graphs with n nodes is non-split.

Example 93. Let G be the rooted graph in Figure 4.1 (b) with n = 3 nodes. While G is not
non-split, Gn−1 = G2 is shown in Figure 4.2, and easily verified to be non-split.

Theorem 92 has immediate consequences on the time complexity of distributed algorithms to
reach agreement among processes; as we will discuss in Section 4.4. Together with Theorem 91,
we also obtain:

Theorem 94 ([118]). The product of O(n log log n) rooted communication graphs with n nodes
contains a star graph.

4.3 Averaging Algorithms

A distributed algorithm updates its state based on all received states. In previous work, so called
averaging algorithms have received particular attention for solving agreement related problems in
dynamic networks; see, e.g., [133, 135–138]

Following [116], we define an averaging algorithm as one with an update rule (4.1) of the form,

si(k) ∈ [0, 1]

si(k) =
∑

j∈Ini(k)

wji(k)sj(k − 1) , (4.2)

where weights wji(k) ∈ R+, and
∑
j∈Ini(k) wji(k) = 1. While the above definition restricts the

output value si of every process i to be from [0, 1], we will also speak of averaging algorithms if si is
from R, and more generally, from Rd with dimension d ≥ 1. For the moment, we assume bounded
scalar values in [0, 1], however.
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Averaging algorithms differ in how weights are locally computed from received states. Three
natural averaging algorithm classes are:

• The equal neighbor averaging algorithm for which

wji(k) =
1

| Ini(k)|
.

• The mean-value averaging algorithm with

wji(k) =
1

|{sj(k − 1) | j ∈ Ini(k)}|
.

• A fixed weight averaging algorithm for the network model N . Let di be the maximum in-
degree of node i over all graphs in N , and let d̂i ≥ di. Then,

wji(k) =

{
1
d̂i

if i 6= j

1−
∑
j∈Ini(k), j 6=i wji(k) otherwise

.

• The midpoint algorithm has wij(k) = 1
2 for j ∈ {m,M}, where m,M are such that sm(k−1)

and sM (k − 1) span the interval of the values received by process i in round k. The name
is due to the fact that a process sets its new value to the midpoint of the values it receives.
The midpoint algorithm lies at the heart of a distributed clock synchronization algorithm
proposed by Welch and Lynch [89].

• The jumping algorithm analyzed in Charron Bost et al. [117] is specified only for n = 2
processes. In case a process i receives a value, it sets its own weight to wii(k) = 1

3 and the
other process’ weight to 2

3 .

Parameters and safety of averaging algorithms. In [116], we classified averaging algorithms
with respect to two parameters that we have shown to impact time complexity in agreement
problems. Towards that goal, we introduce some definitions.

For a set A ⊆ Rd, with dimension d ≥ 1, its diameter is given by

diam(A) = sup
x,y∈A

||x− y|| . (4.3)

Note that if d = 1 and the set has finite cardinality, then diam(A) = maxA−minA.
For a process i ∈ [n] and round k ∈ N+, the set of received values is denoted by

Vi(k − 1) = {sj(k − 1) | j ∈ Ini(k)}

and its minimum and maximum value by

mi(k − 1) = minVi(k − 1)

Mi(k − 1) = maxVi(k − 1) .

The diameter of all output values in round k is denoted by

δ(k − 1) = diam ({si(k − 1) | i ∈ [n]}) .

We say an averaging algorithm has parameter α, for α > 0, in a network model N , if for all
nodes i, j ∈ [n] and rounds k ∈ N+ in all its executions in N ,

wji(k) ≥ α .

We omit the reference to the network model if the statement holds for all network models. The
condition is identical to Assumption 1 in Blondel et al. [136]. Note that an averaging algorithm
with a parameter α > 0 never drops received messages, i.e., does not set weights of received values
to 0.
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Example 95 (Parameters of some averaging algorithms). The equal neighbor averaging algorithm
is an averaging algorithm with parameter 1/n, the mean-value averaging algorithm with parameter

1/n, and the fixed weight averaging algorithm with parameter mini∈[n]{1/d̂i, 1−
∑
j∈Ini(k), j 6=i wji(k)}.

The midpoint algorithm does not have a parameter greater than 0.2

Further, an averaging algorithm is σ-safe, for σ ∈ (0, 1
2 ], in network model N , if for all nodes i ∈

[n] and rounds k ∈ N+ in all its executions in N ,

σMi(k − 1) + (1− σ)mi(k − 1) ≤ si(k) ≤ (1− σ)Mi(k − 1) + σmi(k − 1) ,

i.e., if process i’s new value lies within relative distance σ to the interval boundaries mi(k − 1)
and Mi(k − 1) of the received values. Again, we omit the reference to the network model if the
statement holds for all network models.

The following relation holds between averaging algorithms with parameter and safety.

Lemma 96 ([117]). If an averaging algorithm has parameter α > 0 in network model N , then it
is α− safe in network model N .

Proof. Consider an averaging algorithm that has parameter α > 0 in network modelN For k ∈ N+,
and with ĵ ∈ [n] being a process whose sj(k − 1) is minimal among those received by process i, it
is

si(k) =
∑

j∈Ini(k)

wji(k)sj(k − 1)

=
∑

j∈Ini(k)\{ĵ}

wji(k)sj(k − 1) + wĵimi(k − 1)

≤
∑

j∈Ini(k)\{ĵ}

wji(k)Mi(k − 1) + wĵimi(k − 1)

≤ (1− α)Mi(k − 1) + αmi(k − 1) .

The lower bound follows by analogous arguments.

Example 97 (Safety of some averaging algorithms). From Lemma 96, one immediately obtains:
The equal neighbor averaging algorithm, the mean-value averaging algorithm, and the fixed weight
averaging algorithm are α-safe, where α is their respective parameter.

Further, by definition, the midpoint algorithm is 1
2 -safe.

4.4 Consensus Problems

A typical coordination task in a distributed system is to achieve (approximate) agreement on
(part of) the processes’ states. We call these consensus problems. The precise definition of when
two processes are considered to agree on a state, among other problem parameters, as well as
the distributed computing model, lead to either solvable or unsolvable combinations — the former
with different degrees of algorithmic performance. In this chapter we will focus on the consensus
problems that we studied in [116, 117, 119, 121].

As a distributed computing model we will consider highly dynamic distributed systems specified
via network models. Further, we assume that the state space of each process i ∈ [n] is of the form

si = (xi,deci, loci) with

xi ∈ [0, 1] ,

deci ∈ {⊥} ∪ [0, 1] , and

loci ∈ L ,

where L is the potentially infinite local state space of a process. While loci serves as an internal,
algorithm specific, state, xi and deci serve as inputs and outputs to the distributed algorithm
solving a consensus problem.

2The statement holds for the algorithm as it is specified. However, one can show that the midpoint algorithm
can be rewritten into an algorithm with a positive parameter that produces the same outputs.
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• Inputs. We assume that the input is one value in [0, 1] per process, initially presented to the
corresponding process. In our model xi(0) is the input for process i ∈ [n]. Further, initially,
deci(0) = ⊥.

• Outputs. Process outputs for rounds k ∈ N+ are xi(k) and deci(k). We say process i
has (output) value, respectively, outputs xi(t) in round t. A process may also set deci(k) to
xi(k) — but only once — after which the variable deci does not change value anymore. If so,
we say process i decides value xi(k) in round k.

Recall the definition of an averaging algorithm from Section 4.3. By slight abuse of terminology,
we will call algorithms with states as defined above and that repeatedly compute weighted averages
of xi instead of si also averaging algorithms. Clearly, though an equal neighbor averaging algorithm
may vary in this context depending on whether on how it sets deci for each process i.

We are now in the position to define the different variants of consensus problems discussed in
this chapter.

4.4.1 Exact Consensus

An algorithm achieves (exact, terminating) consensus with the communication sequence G =
(G(k))k≥1 if in each execution of the algorithm from a global initial state, that represents valid
inputs to consensus problems, with communication sequence G:

• Termination. All processes eventually decide.

• Agreement. If two processes i and j decide on values vi and vj , then vi = vj .

• Validity. Any value decided by a process is among the initial values.

Further, we say an algorithm solves exact consensus in network model N if for all communica-
tion sequences with graphs in N , it achieves consensus with the communication sequence. Exact
consensus is solvable in network model N if there exists an algorithm that solves exact consensus
in N .

In distributed computing, the exact consensus problem is often simply referred to as the con-
sensus problem; see [80] for an overview. Typically, though, termination, and depending on the
fault model, also Agreement and Validity, are required to hold only for correct processes. Note that
in our setting of a dynamic network, the notion of a correct process does not exist, and we require
the properties to hold for all processes. Nonetheless, relations to solving consensus in classical fault
models are possible and are discussed later on. Finally, note that different variants of Validity exist
in classical literature [80].

4.4.2 Approximate Consensus

Achieving exact consensus is a natural subproblem when synchronizing multiple copies of databases,
or in general, in the context of applications that require replica determinism as is the case for
mission critical distributed embedded systems [82]: If the state machines at two different processes
are in different states, in general, their machines may diverge arbitrarily during the successive
rounds. By contrast, this is overly pessimistic for state spaces that contain a certain structure.
One example is the state space [0, 1] where nearby states, in terms of a metric on [0, 1], lead to
nearby future states in successive rounds. If so, it often suffices to agree on nearby states instead
of exactly the same states. In the following we consider the metric space [0, 1] with the distance
d(x, y) = |x− y|. We discuss generalizations in Section 4.4.4.

Let ε > 0. We say, an algorithm achieves ε-approximate (terminating) consensus with the
communication sequence G = (G(k))k≥1 if in each execution of the algorithm from a global initial
state, that represents valid inputs to consensus problems, with communication sequence G:

• Termination. All processes eventually decide.

• ε-Agreement. If two processes i and j decide on values vi and vj , then |vi − vj | ≤ ε.

• Validity. Any value decided by a process is within the interval of initial values.
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Solvability is defined analogously to the exact consensus problem.
Note that Termination is as in the consensus problem. Agreement has been weakened to ε-

Agreement, and Validity has been weakened accordingly to allow decisions on values initially not
taken by processes. The problem is also referred to as approximate agreement in literature [80]
and has been thoroughly studied in the context of classical fault models like the fully connected
communication architecture with up to f < n crashes. For work on approximate agreement; see,
e.g., [81, 139, 140].

4.4.3 Asymptotic Consensus

For some applications the requirement of a single decision value per process may either be un-
natural, simply not be required, or even too little for an application. For example, in controller
applications one typically requires that the controller output converges to the desired set point with
the error approaching 0 with increasing number of rounds. The same is desirable for optimization
problems: ideally we would like to have an algorithm that achieves better and better solutions
with increasing runtime.

Asymptotic consensus is a problem that captures these requirements in an application indepen-
dent way. We say an algorithm achieves asymptotic consensus with the communication sequence
G = (G(k))k≥1 if in each execution of the algorithm from a global initial state, that represents
valid inputs to consensus problems, with communication sequence G:

• Convergence. Each sequence of process outputs (xi(k))k≥1 converges.

• Agreement. If the output sequences of two processes converge, they converge to the same
limit.

• Validity. If the output sequence of a process converges, then its limit is in the interval of
initial values.

Again, solvability is defined analogously to the exact consensus problem.
Note that the above problem does not allow outputs whose distance to each other approaches 0,

but who do not converge, but, e.g., oscillate in synchrony.
Asymptotic consensus has received considerable attention from the control community where

it is often referred to as consensus. This includes work on asymptotic consensus in dynamic com-
munication architectures with respect to averaging algorithms [133, 141], in dynamic bidirectional
communication networks [135], dynamic strongly connected communication networks [136], and
work on non-averaging algorithms in static networks [142], among others. For example, Blondel
and Olshevsky [143] study sets of matrices, whose products when multiplied with the vector of
initial values, converge to a vector with common entries. These so called consensus sets of matrices
directly correspond to network models of directed graphs within which averaging algorithms are
executed (that determine the weights of the matrices). While the result can be seen as a special-
ization of the question of which network models allow to solve asymptotic consensus in case only
averaging algorithms are permitted, the result is incomparable to our results from [116] presented
within this chapter, however: all our network models are required to have self-loops, but algorithms
are not restricted to averaging algorithms.

Before proceeding to higher dimensional generalizations of the above problems and a discussions
about correctness and performance of algorithms, let us observe the behavior of two asymptotic
consensus algorithms within example network models.

Example 98. Figure 4.3 on page 82 shows example executions for two different averaging al-
gorithms: the equal neighbor algorithm and the midpoint algorithm. Both are executed within a
network model comprising three rooted communication graphs G0, G1, and G2 shown in the figure.

Observe that the midpoint algorithm seems to perform better within its execution as it converges
faster within the first shown rounds. While this may a priori be just bad chance for the equal
neighbor algorithm since we chose graphs uniformly at random for both executions, we will show
during this chapter that better performance bounds can be shown to hold for the midpoint algorithm.
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Figure 4.3: Two example executions for two algorithms executed in a system with network model
N = {G0, G1, G2} as specified in the figure. There are N = 3 nodes, with initial values 1 for
node 1 (red, left), 0 for node 2 (black, bottom), and 0.1 for node 3 (blue, right). For each node i
its state xi is depicted over 10 rounds. All graphs are rooted and have been chosen uniformly at
random from the network model along the execution.

Example 99. To address the valid criticism in Example 98 that executions may not be represen-
tative, Figure 4.4 on page 83 shows 100 example executions for the same two averaging algorithms
as in the example before. Again, communication graphs are chosen uniformly at random from the
network model at each round; however the graphs, shown in the figure, differ from Example 98 and
have been chosen to be non-split. Further, instead of showing the individual state outputs, we depict
the diameter of the set of state outputs at each round. Like in the previous example, the midpoint
algorithm seems to perform better. We will later on analyze the performance of both algorithms in
non-split network models, and see that this performance ranking coincides with provable bounds.

4.4.4 Consensus Problems in Higher Dimensions

Until now we assumed a one-dimensional metric state space on [0, 1]. Applications like gathering of
automated vehicles or drones, control of concentrations to a certain set point, etc., are multidimen-
sional in nature, however. For exact consensus, the generalization is immediate trough reductions
in both directions. In the case of asymptotic consensus, for example, for some applications it may
be sufficient to converge on each coordinate separately. However, this does not guarantee a natural
generalization of the Validity property of asymptotic consensus to stay in the convex hull of the
input values. For applications that require this property, a natural generalization of the asymptotic
consensus problem is as follows.

Following [121], we define: Let V be some vector space with an inner product 〈·, ·〉 from V 2 to
R and norm ||x|| =

√
〈x, x〉. As a typical instantiation we will often use V = Rd, for d ≥ 1, with

inner product 〈(x1, . . . , xd), (y1, . . . , yd)〉 =
∑d
i=1 xiyi.

We say, an algorithm achieves asymptotic consensus with the communication sequence G =
(G(k))k≥1 if in each execution of the algorithm from a global initial state (that represents valid
inputs to consensus problems) with communication sequence G, all of the following hold:
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Figure 4.4: Non-split network model comprising of three graphs shown at the top. The diameter of
the process output values along 10 rounds is shown for 100 executions of each algorithm. Graphs
have been chosen uniformly at random along an execution. The nodes’ initial values are 1 for
node 1, 0 for node 2, and 0.1 for node 3.

• Convergence. Each sequence of process outputs (xi(k))k≥1 converges.

• Agreement. If the output sequences of two processes converge, they converge to the same
limit.

• Validity. If the output sequence of a process converges, then its limit is in the convex hull
of initial values.

The above definition is analogous to the scalar case, except that we generalized the interval of
initial values to the convex hull of initial values in the Validity condition.

Analogously, we say, an algorithm achieves ε-approximate (terminating) consensus with the
communication sequence G = (G(k))k≥1 if in each execution of the algorithm from a global initial
state (that represents valid inputs to consensus problems) with communication sequence G, all of
the following hold:

• Termination. All processes eventually decide.

• ε-Agreement. If two processes i and j decide on values vi and vj , then ||vi − vj || ≤ ε.

• Validity. Any value decided by a process is within the convex hull of initial values.

Here, ε-Agreement has been generalized to the norm on V , and Validity to the convex hull of
initial values.

A note on a priori bounded versus unbounded domains. In the one-dimensional case, we
assumed that initial values are from a domain that is a priori bounded, in our case [0, 1]. Note that
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this is central for solving ε-approximate consensus, however, not for solving asymptotic consensus.
For the latter, all our negative and positive results also hold for values in unbounded domain R.
An analogous statement holds for the higher-dimensional case: we will thus assume initial values
to be from [0, 1]d when discussing ε-approximate consensus.

4.5 Solutions to Consensus Problems

We have already mentioned some of the related work on approximate and asymptotic consensus
when discussing dynamic networks and consensus problems. Let us briefly sketch the difficulty in
solving consensus problems at the example of two publications.

We start with network models that comprise only bidirectional, strongly connected graphs.
Kuhn et al. [128] showed the following result (rephrased in our model):

Theorem 100 (from [128]). In a network model with only (bidirectional) strongly connected com-
munication graphs, exact consensus is solvable in n− 1 rounds.

Proof idea. The algorithm solving exact consensus relays messages during n− 1 rounds. From the
fact that graphs are strongly connected, any node i that has not yet received a value from another
node j must be connected via a path from i to j. Along this path there must be two neighbors that
differ in the fact whether they have received j’s value. Consequently this node must receive j’s
value. This can happen at most n− 1 times.

This promising result is complemented with a result by Santoro and Widmayer [123] who
showed that (rephrased in our model) in a network model with graphs that are almost complete
and connected but not strongly connected (and not bidirectional), exact consensus is not solvable:

Theorem 101 (from [123]). In a network model that is the set of all communication graphs with
n ≥ 2 nodes, where at most one node has outgoing links to a subset of nodes, but all other nodes
have outgoing links to all other nodes, exact consensus is not solvable.

In particular, such a network model results from an adversary that is allowed to remove up
to n− 1 messages from a fully connected communication graph in each round [123].

Coulouma et al. [126] characterized the network models in which exact consensus is solvable;
with the above two theorems showing up as special cases.

4.5.1 Approximate Consensus

As previously discussed, for many applications exact consensus in fact is an overkill — raising
hopes for less strict conditions on the network model for solvability. Indeed, in [116] we proved
the following characterization of network models in which approximate consensus is solvable under
quite weak conditions:

Theorem 102 ([116]). Approximate consensus is solvable in network model N , if and only
if N contains only rooted communication graphs.

We sketch the proof outline that we gave in [117] in the following. For that purpose, say an
algorithm is %-contracting in network model N , if in all its executions within N , and all rounds
k ∈ N+,

δ(k) ≤ % · δ(k − 1) . (4.4)

Using the fact that non-split communication graphs have common incoming neighbors for each
pair of processes and thus non-empty intersections among the intervals of received values for these
processes, we showed that:

Theorem 103 ([117]). In a network model with only non-split communication graphs, a σ-safe
averaging algorithm is (1− σ)-contracting.
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For some of our results, a more conservative contraction bound was used. Observing that, for
0 < % ≤ 1,

% ≤ e−(1−%) ,

we have, that an algorithm that is %-contracting in a network model, also is e−(1−%)-contracting in
that network model.

By repeated application of (4.4), the following bound on the time complexity can be shown for
%-contracting averaging algorithms:

Lemma 104 ([117]). For all network models N , and all %-contracting averaging algorithms, with
0 < % < 1, the algorithm solves approximate consensus in N . It achieves ε-agreement in⌈

log1/%

(
1

ε

)⌉
≤
⌈

1

1− %
loge

(
1

ε

)⌉
rounds.

The inequality follows from the observation before. From the observations in Example 97, we
further have:

Lemma 105 ([117]). In any network model with communication graphs with n processes, the equal-
neighbor averaging algorithm and the mean-value averaging algorithm are 1

n -safe. The midpoint
algorithm is 1

2 -safe.

Putting everything together, we thus obtain:

Theorem 106 ([116]). In a non-split network model of n processes, every averaging algorithm
that is σ-safe, achieves ε-consensus in⌈

log 1
1−σ

(
1

ε

)⌉
≤
⌈

1

σ
loge

(
1

ε

)⌉
rounds. In particular:

• The equal neighbor averaging algorithm and the equal value averaging algorithm achieve
ε-consensus in

⌈
n loge

1
ε

⌉
rounds.

• The midpoint algorithm achieves ε-consensus in
⌈
log2

1
ε

⌉
rounds.

The case n = 2. There is an interesting algorithmic solution for n = 2 processes [117]: the
jumping algorithm. Consider the algorithm for process i ∈ [2] that sets:

si(k) =
1

3
si(k − 1) +

2

3
sj(k − 1) , (4.5)

where j 6= i if i receives a message not only from itself, and j = i, otherwise.

While, this algorithm only has parameter 1
3 , and is only 1

3 -safe, one can directly show that it
is 1

3 -contracting, i.e.,

δ(k) ≤ 1

3
· δ(k − 1) , (4.6)

for rounds k ∈ N+.
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Analysis of macro-rounds. While Theorem 106 is promising for non-split network models, such
network models may seem highly limited in their range of application. We will next show that this
is not the case, when collapsing rounds into larger blocks of rounds — so called, macro-rounds.

First observe, that the output sequence of an averaging algorithm is generated by successive
multiplication of the the vector of initial values with adjacency matrices of the communication
graphs, whose weights correspond to the weights assigned by the algorithm. Thus,

s(k) = W (k) · · ·W (1) · s(0) ,

where s(k) ∈ Rn×1 and W (k) ∈ Rn×n with entries wji(k) as defined in (4.2).

This representation, e.g., has been used in a different proof strategy [116] as discussed in this
chapter to establish bounds for averaging algorithms with positive parameters. Here, we stress on
another point that has been used in [117] and follow-up work to obtain effective time complexity
bounds for averaging algorithms: one may regroup the matrices into blocks of common sizes
K ∈ N+. For k mod K ≡ 0, we thus obtain

s(k) = (W (k) · · ·W (k −K + 1)) · · · (W (K) . . .W (1)) · s(0)

= W ′(k) · · ·W ′(K) · s(0) , (4.7)

with matrices W ′(`) ∈ Rn×n as the respective products of matrices.

Along this lines, following [117], we say a network model N is K-non-split, for K ∈ N+, if all
products of K communication graphs from N are non-split. By assessing that the parameters of
this hypothetical algorithm shrinks with the power K due to the matrix product, one obtains:

Theorem 107 ([116]). Let N be a K-non-split network model with n processes. Then, an averaging
algorithm with parameter % > 0 achieves ε-consensus in

K

(
1

%

)K
log2

(
1

ε

)
+K − 1

rounds.

We may now apply Theorem 92 on page 77 and obtain that if we choose blocks of length
K = n − 1 in a rooted network model with n processes, the communication graphs W ′(`) are
non-split. Accordingly:

Theorem 108 ([116]). In a rooted network model with n processes, every averaging algorithm with
parameter % > 0 achieves ε-consensus in(

1

%

)n
n log2

(
1

ε

)
+ n− 1

rounds. For the equal neighbor averaging algorithm, with % = 1
n , ε-consensus is achieved in

O(nn+1 log2
1
ε ) rounds.

Theorem 108 is restricted to averaging algorithms with a positive parameter, and thus a priori
cannot be directly applied to the midpoint algorithm that performed well in non-split network
models. This is due to the fact that the forming of blocks in (4.7) was performed at matrix-level,
resulting in lower bounds on product matrix entries. By contrast, if we multiply these blocks
including the initial vector, the fact that an algorithm is σ-safe can be applied to prove bounds
instead. Indeed one obtains an analog statement as in Theorem 107 for safety:

Theorem 109 ([117]). Let N be a K-non-split network model with n processes. Then, a σ-safe
algorithm is (1− σK)-contracting over each block of length K.

While Theorem 109 may be applied to the midpoint algorithm obtaining a better time com-
plexity bound, we may still improve the bound by considering macro-rounds without averaging.
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Amortized algorithms. Revisiting Theorem 92 on page 77 in terms of the macro-round con-
struction yields a new class of algorithms that are not averaging algorithms: Given any averaging
algorithm, let the algorithm compute the average of the received values only every K ∈ N rounds.
In all other rounds, one relays the received values to the other processes. We termed these algo-
rithms amortized versions of averaging algorithms [117].

By an analysis similar to the one in the section before, but considering only macro-rounds, one
obtains:

Theorem 110 ([117]). In a rooted network model with n processes, every amortized algorithm
that is σ-safe, with σ > 0, achieves ε-consensus in

(n− 1)

⌈
log 1

1−σ

(
1

ε

)⌉
rounds. In particular, for the amortized midpoint algorithm, with σ = 1

2 , ε-consensus is
achieved in

(n− 1) log2

(
1

ε

)
rounds.

Impossibility in non-rooted network models. To complete the proof for the characterization
in Theorem 102 on 84 one finally shows the following result by a partitioning argument:

Theorem 111 ([116]). No algorithm achieves ε-consensus in a network model that includes a
non-rooted communication graph.

4.5.2 Asymptotic Consensus

While we concentrated on approximate consensus in the previous sections, several of the results
presented there can be transfered to statements about asymptotic consensus.

First, observe that asymptotic consensus can be reduced to approximate consensus if pre-
computable, globally known bounds on the termination time are known. Our solutions fulfill
these properties, if the parameter ε and upper bounds on the process number n are globally (and
consistently) known. If so, the approximate consensus algorithm may simply be started repeatedly
and synchronously at the same round after each termination. The correctness of this approach is
seen by viewing each repetition of the approximate consensus algorithm as a macro-round3 and
analyzing contraction of the output values along these macro-rounds.

In fact, however, all presented averaging algorithms, and their amortized variants, can be
directly used to solve asymptotic consensus by removing the decision and termination rules. This
also removes the requirements of an initial common knowledge of parameters ε and n. Mind
though, that amortization may require knowledge of bounds on n if a certain performance is to be
guaranteed. We discuss this later on in more detail.

On performance measures. To quantify the speed of an asymptotic averaging algorithm,
measures for convergence rates have to replace time complexity measures, though. While the
asymptotic consensus problem itself is stated as a limit behavior without any guarantees for finite
times, practical solutions will most likely care about the speed of convergence and the guarantees
for finite times.

A natural candidate is an upper bound on the round-by-round output contraction ratio % ≤ 1,
i.e., for all executions and rounds k ∈ N+,

δ(k) ≤ % · δ(k − 1) .

3Not to confuse with the macro-rounds from the amortized algorithms.
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with δ being the diameter of the process output values in round k.4 We thus readily obtain
round-by-round contraction ratio bounds for all our averaging algorithms, and, at the level of
macro-rounds, for their amortized versions. A clear downside of this measure is the trivial bound 1
for algorithms that do not contract every round, such as the amortized algorithms at round-scale.

A natural alternative that works around this problem is the (asymptotic) output contraction
ratio defined as the supremum over all executions of

lim sup
k→∞

k
√
δ(k) . (4.8)

Algorithms with a round-by-round output contraction ratio of % will also have an output contraction
ratio of at most %. Thus, the midpoint averaging algorithm has output contraction ratio 1

2 in
network models with non-split communication graphs. Its amortized variant has output contraction

ratio n−1

√
1
2 in network models with rooted communication graphs — making a comparison possible.

However, this measure has two other problems as will be outlined in the following:

(a) A class of algorithms collapses to 0 that has different convergence behavior.

(b) It ranks algorithms superior to others that intuitively should be ranked less from an appli-
cation point of view.

To show (a), consider the following algorithm: take one of the averaging algorithms A men-
tioned before that solves asymptotic consensus, e.g., the midpoint or the equal neighbor averaging
algorithm. Assume that we restrict ourselves to inputs from {0, 1} only. Now construct an algo-

rithm B from A that uses A’s analysis to derive an upper bound δ̂A(k) on the diameter of output
values when executing algorithm A, for every round k ∈ N. This can be achieved for all averaging
algorithms presented in this chapter. Algorithm B then runs A and computes δ̂A(k) for the current
round k. Denote by si,A the output of algorithm A run by process i. Analogously, si,B denotes
the output of algorithm B run by process i. In each round k, process i sets

si,B(k)←

{
0 if si,A(k) +

[
−δ̂A(k), δ̂A(k)

]
∩ [0, 0.5] 6= ∅

1 otherwise
.

In fact this algorithm solves asymptotic consensus for binary inputs (and outputs). We will
not give a full proof here, but sketch the ideas:

• Convergence of a process’ output follows from convergence of the output of algorithm A and

the fact that the interval Ii(k) = si,A(k) +
[
−δ̂A(k), δ̂A(k)

]
converges to length 0.

• Validity follows from validity for algorithm A.

• Finally, observe that the process outputs of algorithm A coverages to the same value s∗A
because of the agreement property of algorithm A. If s∗A ≤ 0.5, every process will always
output 0 in B since their intervals necessarily contain s∗A and thus intersect with [0, 0.5]. Thus
agreement is fulfilled for B in this case. Otherwise, every process will eventually output 1,
since its interval will have non-zero distance from 0.5; again agreement for B is fulfilled in
this case. Thus agreement holds for algorithm B in all cases.

For any such algorithm B, the measure in (4.8) is 0 — irrespective of the underlying algorithmA;
showing point (a).

Shortcoming (b) is seen by comparing an algorithm B based on A to the original algorithm A:
While, B has measure 0 and A can be shown to have a positive measure, A may have significant
advantages as its value may not drastically change in late rounds. Algorithm B can be shown to
jump from 0 to 1 or vice versa arbitrarily late — otherwise, exact consensus would be achievable.

4Such ratios are sometimes called rates, including in own previous work. We will use the term ratio in this
writeup, since small ratios mean fast contraction, which is counterintuitive with the notation of a rate.
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Valency and valency contraction ratio. We thus used a measure that is an adaptation of
(4.8): the (asymptotic) valency contraction ratio defined as the supremum over all executions of

lim sup
k→∞

k
√

∆(k) , (4.9)

where ∆(k) is a measure on the reachable limits after round k that will be defined in the following.
Let A be an algorithm that solves asymptotic consensus. Recall that a global state of A is a

vector of local process states — we will refer to it as a configuration in the following using C(k)
rather than s(k) to denote the configuration at the beginning of round k. Configurations occurring in
executions with the initial configuration C(0) and a communication sequences in network model N
will be called reachable from C(0) by A in N .

Following the valency definition in Fischer et al. [144] for exact consensus algorithms, and a
generalization of it algorithms solving asymptotic consensus we introduced in [134], let the valency
of a configuration C of A in N , be the set of limits of process outputs in executions by A in N
that contain configuration C. This set is denoted by Y ∗N ,A(C).

We are now in the position to define

∆N ,A(C) = diam
(
Y ∗N ,A(C)

)
. (4.10)

For simplicity of notation, if we fix an algorithm A, a network model N , and an execution which
induces the sequence of configurations C0, C1, . . . , Ck, . . . , we simply write ∆(k) for ∆N ,A(Ck).

Intuitively, ∆N ,A(C) is a measure on how much the process output is settled in configuration C:
the larger ∆, the larger is the amount by which processes may change their outputs later on. As
such it has great practical implications. Indeed ∆ can be bounded along an execution for the
algorithms that we will present in the following. While (4.9) does not allow to bound ∆ over time,
since it is a measure on the asymptotic performance for the reasons given before, we were able to
show a shrinking factor of ∆ per fixed number of rounds for the algorithms discussed in [119].

Bounds of valency contraction ratio. As mentioned before, the averaging algorithms and
their amortized versions can be used to solve asymptotic consensus after removing the decision
and termination rules.

From Theorem 103 and the observation that the valency Y ∗N ,A(C) of a configuration C that

occurs in the kth round of an execution of an averaging algorithm is always a subset of the convex
hull of the process outputs of round k— and thus ∆(k) ≤ δ(k) — we obtain:

Theorem 112. In a non-split network model of n processes, every averaging algorithm that
is σ-safe, with σ > 0, achieves asymptotic consensus. For round k ∈ N+, it is

∆(k) ≤ δ(k) ≤ (1− σ)k · δ(0) ,

and it has a valency contraction ratio of at most

1− σ .

In particular, for the midpoint algorithm, ∆(k) ≤ 1
2k
· δ(0) and it has a valency contraction

ratio of at most 1
2 .

Likewise, in a rooted network model, an analogon to Theorem 110 on page 87 can be shown:

Theorem 113. In a rooted network model with n processes, every amortized averaging al-
gorithm that is σ-safe, with σ > 0, achieves asymptotic consensus. For round k ∈ N+, it
is

∆(k) ≤ δ(k) ≤ (1− σ)b
k

n−1c · δ(0) ,
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and it has a valency contraction ratio of at most

n−1
√

1− σ .

In particular, for the midpoint algorithm, ∆(k) ≤
(

1
2

)b k
n−1c · δ(0) and it has a valency con-

traction ratio of at most n−1

√
1
2 .

4.6 Robustness to Limitations in Implementations

The averaging algorithms and their amortized variants have been analyzed with challenging com-
munication networks in mind, but without considering limitations a practical implementation in
software or hardware would have to face. In particular such limitations are:

1. Stored and transmitted values are currently assumed to be from [0, 1]. A real-world solution
clearly has to deal with finite density of memory and thus quantized values.

2. While the fact that the exact number of processes n or an upper bond is known in advance,
this may result in overly pessimistic parametrization, e.g., for building macro-rounds, during
most of the rounds. Further, n may unpredictably change in several application.

Quantization. Addressing the first point, we studied Q-quantized versions of (amortized) aver-
aging algorithms, with Q ∈ N+ in [117]. For such an algorithm, after a macro-round, we set

si(k) = [s′i(k)]Q , (4.11)

where s′i is computed according to (4.2) and [·]Q denotes rounding up (or rounding down; but
doing this consistently) to the next multiple of 1/Q.

We showed that quantization does not greatly influence the algorithm’s time complexity in
solving ε-consensus:

Theorem 114 ([117]). In a network model with only rooted graphs, the amortized midpoint algo-
rithm achieves:

• 1/Q-consensus after

(n− 1) (dlog2 (Q− 2) + 2e) (4.12)

rounds.

• ε-consensus, with ε > 2/Q, after

(n− 1)

(⌈
log2

(
Q− 2

εQ− 2

)
+ 1

⌉)
(4.13)

rounds.

We cannot expect smaller ε than 1/Q with the property that a quantized version solves ε-
consensus. If so, the same algorithm would also solve exact consensus; a contradiction to unsolv-
ability of exact consensus in arbitrary rooted network models [123].

Underestimating the number of processes. Underestimating the process number n leads
to the loss of the guarantee that macro-rounds are non-split. However, we showed that the time
complexity gracefully degrades with how much this estimate is off:
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Theorem 115 ([117]). Given an amortized σ-safe algorithm with estimate n̂ as the number of
processes. In a system with n processes, the algorithm achieves ε-consensus in

O

(
Lσ−L log

(
1

ε

))
(4.14)

macro-rounds, where L =
⌈
n−1
n̂−1

⌉
.

A similar statement holds for a scenario where n̂ is a correct estimate of n, but rooted graphs
are only guaranteed to occur with some frequency.

4.7 Multidimensional Consensus

Several of the discussed averaging algorithms and their amortized versions directly carry over to
solve multidimensional approximate and asymptotic consensus. An example that falls into this
class is the equal neighbor algorithm. Figure 4.5 shows an example execution prefix with output
states in R3. Observe that the trace remains in the convex hull (in light red) of the three nodes’
initial values that were chosen to be the three base vectors.

G0

1

2

3

G1

1

2

3

G2

1

2

3

x

y

z

Figure 4.5: A system of N = 3 nodes with node states from dimension d = 3. The figures shows
the outputs of the three nodes during a prefix of an execution of the equal neighborhood algorithm
for T = 5 rounds. The communication graphs were chosen uniformly at random from the network
model shown at the top of the figure.

Unfortunately, the midpoint algorithm that outperforms the equal neighbor algorithm for both
problems is not even well-defined for dimensions d > 1: the notion of a minimum and a maximum
of a finite subset of Rd is not defined.
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4.7.1 Generalizing the Midpoint Algorithm

A first natural generalization of averaging algorithms, and thus also the midpoint algorithm, is to
apply the averaging rules coordinate-wise. For dimension d = 2, one can show that this is indeed a
valid approach for the midpoint algorithm. However, for dimensions d ≥ 3, the updated value may
lie outside of the convex hull of received values. The algorithm thus violates the validity condition
of approximate and asymptotic consensus.5 The following example shows a problematic scenario.

Example 116 (Midpoint algorithm applied component-wise). Consider the case of a 3-dimensional
input and output space and three nodes with initial values (1, 0, 0), (0, 1, 0), and (0, 0, 1). The plane
spanned by the three points is x + y + z = 1. The component-wise midpoint of the three points is
M = 1

2 · (1, 1, 1), which is seen not to fulfill the plane equation. See below for a visualization.

x

y

z

M

In [120] and [121] we proposed different generalizations of the midpoint algorithm:

• Centroid. A natural algorithm is to update one’s value to the centroid of the polyhedron
that is the hull of all received values.

• MidExtremes. Choose two received values a, b ∈ Rd that realize the diameter of the received
values. The new value is the midpoint on the line ab. Formally, for a node i ∈ [n] and round
k ∈ N+,

a, b← argmaxu,v∈Ini(k) ||xu(k − 1)− xv(k − 1)||

xi(k)← a+ b

2
.

• ApproachExtreme. Choose a received value a ∈ Rd that has maximum distance to one’s own
value y. The new value is the midpoint on the line ay. Formally, for a node i ∈ [n] and round
k ∈ N+,

a← argmaxu∈Ini(k) ||xu(k − 1)− xi(k − 1)||

xi(k)← a+ xi(k − 1)

2
.

While technically this is not generalizing the midpoint algorithm in the sense that it is
equivalent to it in dimension 1, it relies on a similar idea.

Terminating variants of these algorithms for approximate agreement and amortized versions for
rooted network models are defined analogously to the midpoint algorithm in dimension 1.

Figure 4.6 shows outputs during an execution prefix of the MidExtremes algorithm in the
same setting (with respect to initial values and network model) as Figure 4.5 on page 91 for the

5In fact the validity condition is a condition on the decided value or the limit and not on a single step. However,
one can show that the output values may also lie outside of the convex hull of initial values after arbitrarily many
steps and not just a single step.
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equal neighbor algorithm. At the first sight, both seem to perform similarly. We will discuss
the performance of the three proposed algorithms in the following though, showing that they have
output contraction ratios independent of the number of nodes n in non-split network models; which
is not the case for the equal neighbor algorithm.

x

y

z

Figure 4.6: A system of N = 3 nodes with node states from dimension d = 3. The figures shows
the outputs of the three nodes during a prefix of an execution of the MidExtremes algorithm for
T = 5 rounds. The communication graphs were chosen uniformly at random from the network
model shown in Figure 4.5.

Coordinate system. Before discussing contraction ratios, let us take a look at coordinate sys-
tems. When considering higher-dimensional input and output spaces, coordinate systems relative
to which the node’s values are determined, play a role.

While a designed cluster running distributed optimization and repeatedly calling an approx-
imate consensus algorithm may very well resort to an a priori determined common coordinate
system, a swarm of biological nodes may not. Likewise, moving autonomous vehicles may poten-
tially not easily agree or have access to such a common coordinate system. Rather, it may be more
practical to let each node have its own local coordinate systems within which it determines the
positions of neighboring nodes.

Another property of algorithms is if process outputs depend on the initially chosen global or
local coordinate systems. For example, outputs may change in coordinate-wise algorithms when
the coordinate system is rotated. By contrast, other algorithms may guarantee that the outcomes
are invariant under several transformations of the coordinate system like rotation and translation.

One observes that the Centroid algorithm, the MidExtremes algorithm, and the ApproachEx-
treme algorithm require only local coordinate systems and are invariant under rotation and trans-
lation.

Performance bounds. By geometric considerations of process outputs that stem from execu-
tions in non-split networks, we showed the following results.

In [120] we analyzed the performance of the Centroid algorithm in non-split network models.
The result relies on a reshaping technique of the convex hull of received process values. The
reshaped convex hull is shown to not change an a priori fixed coordinate of the Centroid.
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Theorem 117 ([120]). For a non-split network model and input values from an arbitrary
dimension d ≥ 1, the Centroid algorithm guarantees a round-by-round output convergence
ratio of

c(k) ≤ d

d+ 1

for all rounds k ≥ 1. In the particular case of d = 1, the algorithm is equivalent to the midpoint
algorithm and achieves c(k) ≤ 1/2.

By previously discussed techniques, bounds for rooted network models are also obtained for
the Centroid and the amortized Centroid algorithm, as well as for their quantized variants.

In [121] we analyzed the two other previously discussed algorithms that rely on extreme values.
For the MidExtremes algorithm in non-split networks we obtained:

Theorem 118 ([121]). For a non-split network model and input values from an arbitrary
dimension d ≥ 1, the MidExtremes algorithm guarantees a round-by-round output convergence
ratio of

c(k) ≤
√

7/8

for all rounds k ≥ 1. In the particular case of d = 1, the algorithm is equivalent to the midpoint
algorithm with c(k) ≤ 1/2.

An analogous result was obtained for the ApproachExtremes algorithm. The performance
bound we proved is slightly worse than for the MidExtremes algorithm.

Theorem 119 ([121]). For a non-split network model and input values from an arbitrary
dimension d ≥ 1, the ApproachExtremes algorithm guarantees a round-by-round output con-
vergence ratio of

c(k) ≤
√

31/32

for all rounds k ≥ 1. In the particular case of d = 1, the algorithm achieves c(k) ≤ 3/4.

There may, however, be plausible reasons to resort to the ApproachExtremes algorithm if one
has the choice in designed systems. Besides benefits in computational complexity, it may simply
be impossible or hard to estimate distances between all “visible”, i.e., received, values, while it
may be plausible to measure distances between oneself and remote nodes. This is particularly the
case if values are not transmitted but reception simply means seeing another node and estimating
its position with respect to oneself. For some naturally occurring biological systems like a flock of
birds, this algorithm may also be more plausible to be the case.

Comparison of performance. Table 4.1 on page 95 summarizes the performance of our three
algorithms [120, 121] and compares it to two previously existing algorithms for multidimensional
approximate/asymptotic consensus: the Mendes–Herlihy (MH) and the Vaidya–Garg (VG) algo-
rithms proposed in [122]. For the purpose of comparison with algorithms that do not necessarily
contract outputs every round, we resort to output contraction ratios rather than the round-by-
round output contraction ratio. However, for all except MH, the given performance measure is
also a valid bound on the round-by-round contraction. The table also includes local computational
complexity.
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MidExtremes ApproachExtreme Centroid MH VG

output contraction ratio
√

7
8

√
31
32

d
d+1

d

√
1
2

1− 1
n

local TIME O(n2d) O(nd) #P-hard O(nd) O(nd)

coordinate-free yes yes yes no yes

Table 4.1: Comparison of four algorithms for asymptotic and approximate consensus in non-split
network models. From [121].

One observes that the VG algorithm’s performance depends on the number of nodes n, while
the other algorithm’s performance does not. A dependency on the dimension d is observed for MH
and Centroid. Notably, the MidExtremes and ApproachExtreme algorithm’s performance depends
on neither.

4.7.2 Implications on Algorithms for Static Networks

The three presented algorithms are correct for non-split network models, and thus for rooted
network models, by previously discussed techniques. Faster, amortized versions for rooted network
models are obtained analogously to previously discussed algorithms. Further, the algorithms may
as well be used in classical, static systems with failures.

One such classical network is a fully connected network with asynchronous message passing
and up to f Byzantine nodes. For example, the VG and MH algorithms have been designed for
this setting [122], given that n > (d + 2)f . For d = 1 this gives the requirement of n > 3f
shown by Fischer et al. [145] to be necessary to solve approximate consensus. While Mendes et
al. [122] focused on approximate consensus, similar considerations as discussed in the following
hold for asymptotic consensus. Processes proceed in asynchronous rounds by waiting for n − f
messages from the current round before proceeding to the next round; a common technique in
designing algorithms for asynchronous systems. The idea by Mendes et al. [122] was to use a safe
area calculation in each round. They compute a subspace from received values that lies within
the convex hull of values received from correct nodes, and that is shown to pairwise intersect if
computed by correct nodes.

Plugging in our algorithms instead of the VG or MH approximate consensus algorithms, but
using the same safe area calculation, we are able to achieve ε-consensus within O

(
log ∆

ε

)
rounds,

where ∆ is the initial diameter of correct node values [121]. By contrast, the MH algorithm, e.g.,
has a worst-case round complexity of Ω

(
d log d∆

ε

)
that depends on the dimension d.

4.8 Lower Bounds on Valency Contraction Ratios and Time
Complexity

The previous sections discussed several algorithms solving asymptotic consensus and upper bounds
on their output contraction ratios within several network models. A natural question is if these
are optimal, i.e., if no algorithm can do better. This would be particularly encouraging since the
proposed algorithms are simple and do not require, or require only little, state to be stored besides
the current output value. For comparison, in general, an algorithm can be full-information, i.e.,
compute upon and broadcast all its history in each round. For example, processes may use higher
order filters that overshoot and set their outputs outside the convex hull of received values. In [119]
we addressed this question of lower bounds for general algorithms with the results summarized in
the following.

Related work. Only a small body of literature addressed lower bounds of valency/output con-
traction ratios in dynamic networks. Cao et al. [146] showed lower bounds on so called scrambling
constants of stochastic matrices which are weighted versions of the adjacency matrices of the com-
munication graphs. However, such bounds on scrambling constants do not directly imply bounds
on valency/output contraction ratios.
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By contrast, lower bounds for static classical settings have received attention in distributed
computing. For example, Dolev et al. [81] posed the question of optimal contraction ratios in
fully-connected asynchronous6 message passing systems with f Byzantine failures. Abraham et
al. [139] improved on the algorithm in terms of required resilience. Dolev et al. [81] proved a lower
bound on the round-by-round valency contraction ratio for a class of algorithms within this setting.
Fekete [140, 147] proved asymptoticly tight valency contraction ratios along execution prefixes for
both the synchronous case (including crashes and Byzantine faults) and the asynchronous case
(crashes with n > 2f).

Related is also the work on lower bounds of time complexity of approximate consensus. For
dynamic networks, Hoest and Shavit [148] proved lower bounds on the time complexity of ap-
proximate consensus algorithms in the non-uniform iterated immediate snapshot (NIIS) model; a
shared memory communication model which they introduced in this work.

4.8.1 Valency and Output Contraction Ratios

Recall that for a configuration C that appears in an execution of an algorithm solving exact,
approximate, or asymptotic consensus, we write δ(C) for diam(x), where x is the vector of process
outputs. For averaging algorithms we showed [119] that upper bounds on output contraction ratios
lead to upper bounds on valency contraction ratios.

Lemma 120. Let C be a configuration of averaging algorithm A that solves asymptotic consensus
in network model N . Then

∆N ,A(C) ≤ δ(C) .

In particular, for an averaging algorithm that guarantees contraction of output values by a factor
c < 1 every k ∈ N+ rounds, the valency contraction ratio is at most k

√
c.

4.8.2 Valency Contraction Ratios in Dynamic Networks

In [119], we established (asymptotically) tight lower bounds for several network models, showing
(asymptotic) optimality of some of the previously discussed asymptotic consensus algorithms. Key
to showing optimality is Lemma 120 that is used to transfer results about output contraction to
upper bounds on valency contraction ratios.

While all lower bounds hold for arbitrary dimensions, tightness was only shown for dimension 1.
The question about asymptotically tight valency contraction ratios for higher dimensions thus
remains an interesting open problem to date.

Two nodes. We start with the simplest of all network models in which exact consensus is not
solvable, but in which asymptotic consensus is solvable. The graphs of this rooted network model
for n = 2 nodes are shown in Figure 4.7.

H0

1 2

H1

1 2

H2

1 2

Figure 4.7: The rooted communication graphs H0, H1, and H2 for n = 2. Self-loops are shown.
From [119].

For this network model, we showed a lower bound of 1/3:

6The paper also studied synchronous systems. Since for these exact consensus is solvable if n > 3f , the valency
contraction ratio is 0. An interesting question, however, is lower bounds for round-by-round valency contraction
ratios.
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Theorem 121 ([119]). The valency contraction ratio of any asymptotic consensus algorithm
for n = 2 nodes in the network model {H1, H2, H3} is at least 1/3.

The bound is matched by the output contraction ratio of 1/3 for the jumping algorithm [117]
discussed in Section 4.5.1. Applying Lemma 120, we obtain that the valency contraction ratio is
tight.

Nodes with no incoming messages. Choose an arbitrary communication graph G with n
nodes and let the set nonlistening(G) be the set of n communication graphs obtained from G by
removing the incoming links to a node i, except its self-loop, for each node i. In each such graph,
node i does not receive messages. Figure 4.8 shows two examples for n = 3 nodes.

G = K3

1 2

3
⇒

1 2

3

1 2

3

1 2

3

G
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3

1 2

3

1 2

3

Figure 4.8: Two examples for graphs G and the corresponding set of graphs in nonlistening(G).
All shown graphs are rooted; which is not necessarily the case for all G. Self-loops are shown.

We proved the following result for network models that are supersets of nonlistening(G), for
arbitrary communication graphs G:

Theorem 122 ([119]). Let G be a communication graph with n ≥ 3 nodes The valency
contraction ratio of any asymptotic consensus algorithm in a network model that includes all
graphs from nonlistening(G) is at least 1/2.

First observe that the theorem holds for all G, including ones that are not rooted, or whose set
nonlistening(G) contains non-rooted communication graphs. While the theorem’s bound is also
true for these, the valency contraction ratio is 1 in this case, since asymptotic consensus cannot be
solved for non-rooted network models [116]; see also Theorem 102 on page 84.

Further, setting G = Kn, i.e., to the complete graph with n nodes, Theorem 122 also shows
that the network model of all non-split communication graphs has a valency contraction ratio of
at least 1/2, since this network model is a superset of nonlistening(Kn). The lower bound of 1/2
is met for this network model by the midpoint algorithm; see Theorem 112 on page 897 and the
application of Lemma 120 on page 96.

Rooted network models. Both previous lower bounds are derived by round-by-round consid-
erations on the valency. While these bounds are met by algorithms for non-split network models,
(amortized) algorithms for rooted network models provide only guaranteed contraction per n − 1
rounds. In search of matching lower bounds for such algorithms, we thus studied valency contrac-
tion along communication sequences instead of single rounds. In [119] we showed that with this
strategy one can show that the midpoint algorithm with a contraction of n−1

√
1/2 in rooted network

7Precisely, the round-by-round output contraction ratio bound is used.
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models is asymptotically optimal. In particular, we showed this bound for a network model that
comprises the following graphs Ψ1 to Ψ3: For i ∈ [3] we construct communication graph Ψi by

• nodes 4 to n forming a path with edges from j ∈ {4, . . . , n− 1} to j + 1,

• nodes [3] \ {i} having n as their in-neighbor and node 4 as their out-neighbor, and

• node i having node 4 as its out-neighbor.

The graphs for n = 6 are shown in Figure 4.9.
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Figure 4.9: Rooted communication graph Ψ1, Ψ2, and Ψ3 for n = 6. Self-loops are omitted.

We then proved that:

Theorem 123 ([119]). The contraction ratio of any asymptotic consensus algorithm in an
oblivious message adversary that includes the graphs Ψ1, Ψ2, and Ψ3 is greater or equal
to n−2

√
1/2.

Network models with α-diameter. An interesting approach of a characterization of network
models in which exact consensus is solvable was presented by Coulouma et al. [126]. At its heart
is the α-relation, defined as follows.

Definition 124 ([126]). Let N be a network model. Let G,H,K ∈ N .

GαKH :⇔ InR(K)(G) = InR(K)(H) .

Further, GαNH is the smallest relation for which

GαKH :⇐ ∃K ∈ N : InR(K)(G) = InR(K)(H) ,

and that is closed transitively.

Based on this definition, we introduced the α-diameter of a network model N in [119]:

Definition 125 ([119]). Let N be a network model. We say that N is αN -connected if it has a
single α∗N -equivalence class. Otherwise, it is αN -disconnected.

Let N be a network model that is αN -connected. The αN -diameter of N is the smallest D ≥ 1
such that for all G,H ∈ N there exist communication graphs H0, . . . ,Hq ∈ G and K1, . . . ,Kq ∈ G
with q ≤ D such that G = H0, H = Hq, and Hr−1αKrHr for all r ∈ [q].

With this definition in place, we were able to prove that even if a network model does not
fall into the classes previously discussed, its α-diameter provides a lower bound on the valency
contraction ratio:
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Theorem 126 ([119]). Let N be a network model for which exact consensus is not solv-
able. If N is αN -connected, then the valency contraction ratio of any asymptotic consensus
algorithm in N is at least 1/(D + 1) where D is the αN -diameter of N .

We discuss an application of this bound in the next section.

4.8.3 Valency Contraction Ratios in Static Networks with Failures

A classically considered static network is the fully connected network with processes communication
by asynchronous message-passing. Given that there are n ∈ N+ processes, we allow for up to
f < n/2 crashes.

A common technique to design algorithms for such systems is to construct communication-
closed rounds [80]: each process broadcasts its current round’s message that contains its current
state, and waits until it has received at least n − f messages corresponding to this round. Upon
doing so, it updates its state based on the received states and proceeds to the next round. Old
messages from previous rounds are simply dropped, making the round communication-closed.

Each such round may be viewed as a communication graph with n − f in-neighbors at each
node corresponding to a correct process. Establishing a bound on the α-diameter in such systems,
and applying Theorem 126 yields that no algorithm operating in asynchronous rounds can achieve
a valency contraction ratio less than 1

dn/fe+1 [119].

The bound asymptotically matches the valency contraction ratio established by an algorithm
by Fekete [147] for system with f < n/2 crashes. Further, the bound asymptotically matches the
valency contraction ratio for asynchronous algorithms for systems of size n > 5f with up to f
Byzantine failures by Dolev et al. [81], for which the same lower bound of 1

dn/fe+1 can be shown

to hold with the discussed technique.

4.8.4 Implications for Approximate Consensus

All presented lower bounds have been derived for asymptotic consensus. We showed in [119] that
lower bounds on the time complexity of approximate consensus algorithms can be deduced from
these bounds for the same network models. The proof relies on a reduction of asymptotic consensus
to approximate consensus.

4.9 Averaging Algorithms in Physical Systems

We finish our discussion of asymptotic consensus algorithms with an application. The simplicity
of the averaging algorithms that solve asymptotic consensus may suggest their use in sensor nodes,
mobile robots, or nodes in a cluster with potentially faulty links and online reconfiguration. The
following example shows that they may be also used to analyze existing physical systems.

Consider a certain chemical substance dispersed within an incompressible medium8 over a one-
dimensional space. Denote with c(x, t), with unit [1/m3], the concentration of the substance within
the medium at location x ∈ R and time t ∈ R+

0 . Further, J(x, t) is the flux at position x and
time t. Its unit is [1/m3 ·m/s] = [1/(m2s)]. The generator function g(x, t) describes the generation
(if positive) or consumption rate (if negative) of the substance at position x and time t. Its unit
is [(1/m3)/s] = [1/(m3s)]. We use the common notation ∇ = ∂

∂x ; in our case for dimension one.
The continuity equation relates the above quantities by

∂

∂t
c(x, t) +∇ · J(x, t) = g(x, t) . (4.15)

Now let us assume that there is an inflow of the medium at position x = 1, and an outflow at
position x = 0. The inflow, and because of incompressibility of the medium, also the outflow, is

8The concentration of the substance within the incompressible medium, i.e., the density of the substance, however,
can vary.
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assumed to have constant velocity v ≥ 0 over space. In particular, it holds that ∇v = 0. Further,
the concentration of the substance in the inflow is 0 and the substance is neither generated nor
consumed at any position x. We thus have,

g(x, t) = 0 (4.16)

J(x, t) = −D∇ · c(x, t) + v · c(x, t) , (4.17)

where D > 0, with unit [m2/s], is the diffusion coefficient, assumed to be constant over space
and time. In particular, we will use that ∇D = 0. The first term in (4.17) accounts for flux by
diffusion, the second for flux by drift, also referred to as convection. Using, ∇v = 0 and ∇D = 0,
we get

∂

∂t
c(x, t)−D∇2 · c(x, t) + v · ∇c(x, t) = g(x, t) . (4.18)

Let us next discretize (4.18) in space and time. For discretization in space, we uniformly
quantize the sample space with discretization granularity δx > 0. Setting ĉ(i, t) = c(iδx, t), for
i ∈ Z, we then use the facts that,

∇c(x, t) = lim
δx→0

1

2

(
ĉ(i+ 1, t)− ĉ(i, t)

δx
+
ĉ(i, t)− ĉ(i− 1, t)

δx

)
= lim
δx→0

1

2δx
(ĉ(i+ 1, t)− ĉ(i− 1, t)) (4.19)

∇2c(x, t) = lim
δx→0

1

δx

(
ĉ(i+ 1, t)− ĉ(i, t)

δx
− ĉ(i, t)− ĉ(i− 1, t)

δx

)
= lim
δx→0

1

(δx)2
(ĉ(i+ 1, t)− 2ĉ(i, t) + ĉ(i− 1, t)) . (4.20)

Clearly alternative discretization Ansätze could have been used. For example instead of the seem-
ingly overcomplicated (4.19), simple forward or backward Euler formulas would have also fulfilled
the required limit equations. The chosen discrete approximations have the benefit that they are
symmetric in space, which will be crucial when analyzing the system in terms of dynamic commu-
nication graphs.

Combining (4.15), (4.17), (4.19), and (4.20), we readily obtain

lim
δt→0

ĉ(i, t+ 1)− ĉ(i, t)
δt

=

lim
δx→0

1

(δx)2
(ĉ(i+ 1, t)− 2ĉ(i, t) + ĉ(i− 1, t))− lim

δx→0

v

2δx
(ĉ(i+ 1, t)− ĉ(i− 1, t)) ,

where we used forward Euler discretization in time. From this we get the discrete time and space
recurrence,

ĉ(i, t+ 1) =ĉ(i, t)

(
1− 2

δt(δx)2

)
+

ĉ(i− 1, t)

(
1

δt(δx)2
+

v

2δtδx

)
+

ĉ(i+ 1, t)

(
1

δt(δx)2
− v

2δtδx

)
.

Looking at this recurrence, we observe that:

1. The coefficients of ĉ for certain parameter ranges of δx > 0, δt > 0, and v ∈ R are within
[0, 1]. In the following we will assume that the parameters are chosen such that this is the
case. If not, one observes that they can be made to do so by decreasing δx and δt— this
corresponds to a finer discretization of the differential equation.

2. The coefficients sum up to 1.
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3. Viewing ĉ(i, ·) as the output of node i over time, the static communication graph is a line
graph with nodes being bidirectionally connected to neighboring nodes on the line.

The above recurrence can thus be viewed as all nodes i on the line graph executing an averaging
algorithm. The results previously discussed on averaging algorithms thus apply and in particular
may be used to derive time bounds on when concentrations have sufficiently well equilibrated across
the liner space.

This view even carries over to the more interesting case of dynamic networks: assume instead
of a constant v, a time dependent v(t). If so, weights within the averaging algorithm will change
over time. This may result in some coefficients becoming (almost) 0, in which case we can remove
these links from the communication network. The resulting network is not anymore bidirectional,
and in fact may change over time as v(t) changes. Similar techniques may be used in higher dimen-
sional spaces, with different and changing flows. Again previously discussed results on averaging
algorithms apply.

Further reading. In [149] we applied averaging algorithms to solve clock synchronization
in network were the nodes to be synchronized reside within a dynamic network structure.
Example of such networks are networks of sensor nodes in harsh environments, vehicles, or
drones.
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Chapter 5

Outlook

This chapter discusses results from the following research articles.

• [150] Matthias Függer, Manish Kushwaha, Thomas Nowak. Digital circuit design for biolog-
ical and silicon computers. In Vijai Singh, editor, Advances in Synthetic Biology. Springer,
Heidelberg, March 2020.

The work compares digital circuits in computers made from silicon and those in synthetic
biology aimed for implementation within microbiological entities like bacteria.

• [151] Da-Jung Cho, Matthias Függer, Corbin Hopper, Manish Kushwaha, Thomas Nowak,
Quentin Soubeyran. Distributed computation with continual population growth. In Hagit
Attiya, editor, 34th International Symposium on Distributed Computing (DISC), volume
179 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1-7:17, Dagstuhl,
Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Within a chemical reaction network (CRN) inspired by a growing population of two types
of bacteria we analyze a simple protocol that we show to solve majority consensus with high
probability if the initial gap between the number of the bacteria that make up the majority
and the other bacteria is large enough. We also show that this happens in constant expected
time and how this protocol can be used to implement Boolean gates.

5.1 Circuits in Microbiological Entities

So far, when we were discussing circuits, we made the silent assumption that they are intended
for implementation in silicon; typically within the CMOS (Complementary Metal Oxide Semi-
conductor) process, which is the dominating design process for digital circuits at date. However,
circuits are not restricted to gates in silicon. The by far larger body of existing circuits is dis-
covered within viruses, cells, and among cells. These circuits sense environmental states, adapt
internal states accordingly, and trigger externally observable actions. In the past two decades,
additionally to naturally evolved circuits, engineered/synthetic circuits have been designed and
implemented [152]. While the focus in engineered circuits is on digital circuits with Boolean gates,
naturally evolved circuits are typically mixed-signal: signal levels are controlled with feedback loops
and adapt their set points over time to sense over large input ranges [153]. The interested reader
is referred to [153, 154] for an overview on such microbiological circuits. Teo et al. [155] discuss
natural and synthetic circuits from an analog circuit perspective. An introduction to synthetic
circuits is given in [156, 157].

In [150] we discussed commonalities and differences of such circuits and circuits in silicon. We
summarize some of these in the following.
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5.1.1 Digital circuits

Like our initial assumption of silicon as the target material, we also focused on digital circuits in
this writeup, motivated by their great success in numerous applications.

The concept of a digital circuit as opposed to an analog circuit allows the designer to implement
noise-tolerant input-output behavior with manageable complexity for the design. Thereby tolerance
to noise is achieved by partitioning the value domain into a clear logical 0, a clear logical 1, and an
intermediate domain. For the computation the exact analog input and output values do not play a
role. As long as they are (and with noise added, stay) within the respective 0 and 1 domains, the
outputs also stay in their respective 0 and 1 domains. A priori, the circuit may behave arbitrarily,
if this assumption is violated, e.g., with the inputs being in the intermediate domain. However,
typically, further assumptions on the gate’s behavior are made, e.g., that a single (fast enough)
transition at the inputs of a certain gate produces a single transition at the output. In Chapter 3
we discussed circuit behavior under even weaker assumptions by considering operation in case of
metastable, i.e., arbitrary and unstable, analog values.

To guarantee that noisy inputs which stay in their logical domains lead to outputs that stay in
their logical domain, amplification (away from the intermediate domain) and saturation (to ensure
tightly bounded logical domains) are used; see Figure 5.1.

x [VDD]

y [VDD]

logical 0

logical 1

logical 0 logical 1

Figure 5.1: Amplification and saturation in digital gates. Here an identity gate is shown with
input x and output y. The green input range that is significantly larger than the logical 0 domain
is compressed into the logical 0 domain at the output.

Tightly bounded domains via saturation also ensure (i) fast transitions of outputs upon input
changes and (ii) simple composition of gates with matching domains.

5.1.2 Specifying Circuits

Widely used hardware description languages are Verilog and VHDL. While similar to software-
targeted high-level languages in several aspects, main differences to software-targeted languages
are (i) a high degree of inherent parallelism: in hardware each gate operates in parallel to each
other gate, and (ii) dedicated means to specify structural composition of modules. We will briefly
describe a third language, Communicating hardware processes (CHP) [158] that we believe to be
of particular interest within synthetic biology.

Synthetic biology has not yet decided on a common specification languages. While subsets of
Verilog have been used [152], designs are typically specified in SBML and stochastic semantics and
ODE semantics of these are used for simulations. At the heart of both semantics are chemical
reaction networks (CRNs) that we will discuss in this chapter later on.

Communicating hardware processes. The language of communicating sequential processes
(CSP) by Hoare [159] greatly shaped the landscape of parallel process semantics until today.
Martin [158] adapted this software-centered undertaking to circuits in hardware. In [150] we
discussed a simplified/restricted class of CHP as a language to specify circuits in silicon. However,
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we will see that this language is also well suited to describe synthetic biological circuits at a higher
level of abstraction than CRNs, while still remaining close to CRNs.

Following [158] and the presentation in [150], a (simplified) CHP circuit is a term among:

• A variable assignment. Let x be a variable from some alphabet and b be a Boolean expression
on 0, 1, and variable names. A variable assignment is of the form

x := b

• A guard. Let b be a Boolean expression. A guard is of the form

[ b ]

• A sequential composition of two terms. Let a and b be two terms. A sequential composition
of these is of the form

a ; b

• A parallel composition of two terms. Let a and b be two terms. A parallel composition of
these is of the form

a | | b

• A repeat execution of a term a that is of the form

∗ [ [ a ] ]

Further, a circuit comprises of an initial Boolean assignment of all used variables.
An execution of a circuit is a timed sequence of variable assignments, similarly to the circuit

execution from Chapter 1, where:

• A variable assignment leads to the specified assignment (after some time).

• A guard leads to this term waiting until the guard becomes true.

• Sequential and parallel composition are sequential and aprallel execution of the respective
terms.

• A repeat execution is the repeated execution of this term.

Similarly as discussed in Chapter 2, the timing of such executions is specified via delay models.
While Martin considered asynchronous executions for CHP in [158], more constrained delay models
may be used instead.

Example 127 (Simple circuit in CHP). Let C be the circuit with variables A, B, and C, all
initially set to 0, and the CHP term

∗ [ [ [A=0 and B=0] ; (A:=1 | | C:=1) ] ]

Depending on the delay model, this circuit may have an unbounded number of executions, or a
single (deterministic) execution. The circuit waits until A = B = 0, which is initially the case and
then sets A and C to 1. It then repeats to execute the term, forever waiting on the guard, since
A = 1.

Production rules are CHP terms of the form

∗ [ [ [ b ] ; A:=v ] ]

with b being a Boolean expression and v ∈ B. They are abbreviated as b→ A ↑ in case v = 1 and
b→ A ↓ in case v = 0. Production rules are of interest as they can be easily mapped to gates and
wires (given that they follow certain restrictions). For example the production rules A∧B → C ↓
and ¬(A ∧B)→ C ↑ make up a Nand-gate.

Martin [1, 2] studied the automated translation of CHP circuits into ones that only comprise
of production rules, and that behave equivalently.
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Chemical reaction networks. A chemical reaction network describes the evolution of species
counts over time. Updates to species counts follow (probabilistic) rules specified via reactions with
reactants on one side and products on the other side. Each reaction further has a kinetics assigned
to it that determines the rate of the reaction. Typically the mass action kinetics is used, where
the rate is fully determined by a rate constant.

While CRNs have received some attention in the context of distributed computing, see, e.g.
[160, 161], the more restricted population protocols [162, 163] have received more attention in
distributed computing. Examples of problems studied are function computation [162] and (self-
stabilizing) leader election [164, 165] among others. Population protocols restrict reactions to
have exactly two reactants and two products and assume a fairness condition on events motivated
by a stochastic interpretation rather than rates. Several variants of population protocols have
been proposed [163]; some models allowing for infinitely large species sets (where agents have non-
constant state). An interesting variant that partially reintroduces timing into population protocols
is by Beauquier et al. [166].

Following a standard stochastic formalization based on the collisions between species [167] that
we also used in [151], CRNs are defined by:

• A set S of species as well as an initial count I : S → N for each species.

• A set of reactions upon the species. Thereby a reaction is triple (r,p, α) where r,p ∈ S → N

and the reaction’s rate constant α ∈ R+
0 . A reactant is a species with non-zero count in

r, a product a species with non-zero count in p. For ease of notation, one writes r
α

p instead of (r,p, α). Typically only non-zero entries of r and p are written as weighted
sums.

Executions are sequences of configurations that are obtained by successively applying applicable
reactions to the initial configuration given by the initial count I:

• A configuration of a CRN is an element of S → N. As a unit we will use counts within
a fixed volume v > 0. The fixed volume has unit [l], and the counts are unitless numbers.
Equivalently, species counts will sometimes be given in terms of mol (within the fixed volume).
For a species S, we use S = S(S) to denote this count, and [S]1 as its molar concentration
in [mol/l] = [M ].

• A reaction r
α

p is applicable to configuration c if r(S) ≤ c(S) for all S ∈ S.

• The propensity of reaction r
α

p in configuration c is equal to

α
∏
S∈S

(
c(S)

r(S)

)
, (5.1)

where
(
c(S)
r(S)

)
is the binomial coefficient of c(S) and r(S). In particular, the binomial coefficient

is 1 if r(S) = 0, and 0 if r(S) > c(S).

Following the above specification, the unit [α] depends on the number of reactants. For
reactions with a single reactant, it is [mol−1s−1] for S in mol and [s−1] for unitless S, result-
ing in the propensity having unit [s−1]. For reactions with two reactants, it is [mol−2s−1]
respectively [s−1], again resulting in unit [s−1] for propensity.

This deviates from notations for ODE semantics where the additive contribution to the rate
of change d[P ]/dt2 by a reaction r

α′
p for product P is given as

α′p(P )
∏
S∈S

c(S)r(S) (5.2)

instead of (5.1). An analogous additive negative contribution holds if P appears as a reactant
in a reaction. Since (5.2) describes the change of [P ] over time, the unit of the term is
[M/s]. In this case, for reactions with a single reactant, [α′] = [s−1] and for two reactants,
[α′] = [s−1M−1]. We make use of the stochastic semantics of rates in the following.

1Not to be confused with the units of S.
2Analogous considerations hold for dP/dt.
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• Applying reaction r
α

p to configuration c, results in configuration c′ = c− r + p.

• The stochastic kinetics of a CRN is a continuous-time Markov chain whose states are the
configurations, see, e.g., [168]. For any two states x and y, let the transition rate Q(x, y) be
the sum of propensities of reactions in configuration x that result in configuration y if being
applied to x.

Thus, in the stochastic model, species counts within an a priori fixed volume change over time,
with the time until a reaction takes place being an exponential random variable with rate equal to
the reaction’s propensity [167]. The following states propensities for some example reactions and
configurations:

Example 128 (CRN). Consider the reaction A+B
α

A and configuration c with c(A) = 10
and c(B) = 5. The propensity of this reaction in configuration c is α · c(A) · c(B). The reaction’s
application results in the configuration with c(A) = 10 and c(B) = 4.

The propensity of A
γ
∅ is γ · c(A). The reaction’s application results in the configuration

with c(A) = 9 and c(B) = 5.

The propensity of 2A
δ ∅ is δ · 1

2 · c(A) · (c(A) − 1). The reaction’s application results in
the configuration with c(A) = 8 and c(B) = 5.

Commonalities between CHP and CRN specifications. The production rule A → B ↑
with some delay function and the reaction A

α
A + B clearly bear some similarities: both

trigger a rising voltage of A or increase the species count of A in presence of B. In CMOS,
production rules occur in pairs with complementary guards, however, and biological applications
of CRNs require conservation of mass which is violated by the above reaction. We will detail on
this in the next section.

5.1.3 Implementing Circuits: Decoupling and Driving

A key benefit of circuits implemented in silicon, and in particular in CMOS, is decoupling between
gates. Ideally, a gate’s output behavior does not change its input voltage, i.e., the output behavior
of the gate that drives one of its inputs. High-impedance decoupling with field-effect transistors
(FETs) is central to achieve this goal. The charge used to load the gate’s output capacitance is
not taken from the input charge, but from an ideally undepletable power source connected to the
gate’s VDD input.

A second key benefit in CMOS that does not necessarily hold for other processes (e.g., NMOS)
is the fact that rising and falling output transitions are actively driven with low resistance and not
just pulled up/down by a passive resistor.

While also applicable to synthetic biological circuits, many circuits do not ensure both proper-
ties. In [150] we discussed circuits in CMOS and biology with respect to decoupling and how they
drive outputs. The discussion is summarized in the following.

CMOS gate. Given two production rules with negated Boolean guards, one setting an output
to 0 and the other to 1, one can readily implement these rules within a combinational CMOS gate.
For a gate with the rules

Pup → Z ↑
Pdown → Z ↓

one first ensures that Pup comprises only of AND/OR combinations of negated variables, and
Pdown of AND/OR combinations of positive variables. If not, inputs are negated, or duplicated
and negated, accordingly. A valid example is Pup = ¬A ∧ ¬B and Pdown = A ∨ B, corresponding
to a Nor-gate.

Each rule is then implemented by its own transistor stack: the Pup by the p-stack of p-type
FET transistors, and the Pdown by the n-stack of n-type FET transistors. Purpose of the respective
stacks is to connect the output to VDD or ground when the respective guard becomes true, and
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ground (= logical 0)

VDD (= logical 1)

A Z

load
(e.g., upstream gate)

p-stack

n-stack

production rules:

¬A→ Z ↑
A→ Z ↓

Figure 5.2: CMOS implementation of an Inv-gate (left) driving its output, e.g., a gate (right).
The output load is represented by a capacitive load. For the inverter with input A and output Z,
Pup = ¬A and Pdown = A. The p-stack (above, in green) is the above p-type FET transistor and
connects VDD to Z if A = 0. The n-stack (below, in magenta) is the bottom n-type FET transistor
and connects ground to Z if A = 1. From [150].

charging/discharging the output capacitance via the connected stack, while the other stack is
disconnected. Figure 5.2 shows this schematic for a CMOS Inv-gate.

Figure 5.3 shows the inverter in operation for A = 0 and A = 1.

VDD

A Z

¬A→ Z ↑

VDD

A Z

A→ Z ↓

Figure 5.3: CMOS implementation of an Inv-gate in operation. Both Boolean input cases along
with charging and discharging paths are shown. From [150].

Coming back to the two properties of decoupling and driving, one observes from Figure 5.3:

Driving outputs. The CMOS Inv implementation actively drives 0 via the connected n-stack
and 1 via the connected p-stack, depending on whether the gate’s input is 1 or 0. No high-
resistance pull-networks are used to drive either value.

Decoupling inputs and outputs. When driving, the Inv-gate uses charge from the power source
via its VDD port, rather than using charge from input A. Similarly, the output is discharged
to ground. Both thus do not change the input’s value.

Microbiological gates. Synthetic gates in living organisms have been built making use of
many different pathways within a cell like a bacterial host [157]. Examples range from tran-
scriptional control via transcription factors [152], CRISPRi (such as CRISPR-dCas9) [169–171] to
recombinase/flippase-based approaches [172].
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We will focus on enzymatic-type reactions that are at the basis of several evolved and synthetic
circuits. Thereby a substrate species S is modified to obtain a product species P via an enzyme
E. Letting S be the input and P the output, and using the notation from CMOS gates of A = S
and Z = P , the reaction is of the form

A+ E 
 AE → E +O .

Thus there is no decoupling happening, with the input being directly used to produce the output.
Decoupling is obtained, however, if E = A plays the role of the input and S is the abundant

charge available via VDD, in which case the gate becomes

S +A
 AS → A+O .

To be precise, and much like gate current in CMOS, the reaction may bind a considerable amount
of input A while producing O. Decoupling is maximal if a small such amount already leads to a
large production of O; ensured via the reactions’ rates.

A related decoupling, combining the above reactions, is by letting AE be the active enzyme
that uses a substrate to produce O from S. In this case,

A+ E 
 AE → AE +O

S

The input/output behavior of the last two reactions can be described by the single production
rule A → Z ↑ in case A = 1. by contrast, if A = 0, the output Z is not actively driven to 0,
but decays; much like in a pull-down network. We may thus write Z → Z ↓, since this process is
ongoing even if A = 1. The semantics of such a production rule — in particular since two conflicting
rules may be active at the same time — may be defined via CRNs.

For a discussion of more involved microbiological gates and their corresponding production
rules, the reader is referred to [150].

5.2 Distributed Microbiological Circuits

Circuits that are distributed in space, e.g., by circuit components partitioned among communi-
cating host cells, have recently gained in interest [173]. A main motivation for distribution is the
large metabolic load of even small circuits of a few gates. Other motivations are solving problems
that are inherently distributed in nature and robustness to failures in a single cell.

In the following we will summarize our work on distributed computation of growing microbio-
logical entities [151], as it is the case for bacteria.

5.2.1 Circuits in Growing Populations as Chemical Reaction Networks

In [151] we defined (distributed) protocols of birth systems as a model for circuits executed by
growing populations of microbiological entities like bacteria.

Definition 129 ([151]). A protocol for a birth system with input species I and output species O
is a CRN with the following properties:

• Sets I, called the protocol’s inputs, and O, the protocol’s outputs, are not necessarily disjoint
finite sets.

• The CRN’s set of species S comprises the species in I ∪O and a finite disjoint set of internal
species L.

• For each internal or output species, the protocol defines the initial species counts.

• The protocol specifies a finite set of reactions R on the species in S.

• For each species X ∈ S, there is a duplication reaction of the form X
γ

2X . All dupli-
cation reactions have the same reaction rate constant γ > 0.
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The probabilistic execution space of a protocol for a birth death system is then defined by the
protocol and initial species counts for its inputs. It is the execution space of the corresponding
CRN with respective initial counts.

5.2.2 Growing Populations Solving Majority Consensus

Consensus-type problems as discussed in Chapter 4 also play a role within distributed circuits.
However, a variant of consensus with a stronger validity condition is relevant in these systems.
In [151] we identified majority consensus as a key building block to tolerate noise in distributed
circuits: microbiological agents may deviate from the correct outcome of a computation, but the
majority consensus building block will make sure that the correct ones will finally determine the
outcome of the computation; much like the amplification of analog values to clear logical values in
CMOS circuits. Formally, we defined:

Definition 130 (A-B protocol, from [151]). The A-B protocol is a protocol for a birth system
with input species A and B. Given a rate constant δ > 0, its reactions are:

A
γ

2A B
γ

2B A+B
δ ∅

The protocol thus has an annihilation rule between A and B as the single rule besides the
required birth rules. We then defined consensus and majority consensus by:

Definition 131 (Consensus and majority consensus, from [151]). Consensus is reached if at least
one of A or B becomes extinct. Majority consensus is reached if:

1. In case initially A(0) 6= B(0), consensus is reached and the species that was initially in
majority is not extinct.

2. In case initially A(0) = B(0), one species is extinct and the other is not.

Our main result on majority consensus in [151] is stated in the following. Its proof is based on
discrete and continuous time couplings to random walks.

Theorem 132 ([151]). Given,

• an initial population n = A(0) +B(0), and

• an initial gap ∆ = |A(0)−B(0)|,

the A-B protocol reaches consensus in expected time O(1) and in time O(log n) with high probability.
It reaches majority consensus with probability

1− e−Ω(∆2/n) .

From this one obtains:

Corollary 133 ([151]). Given,

• an initial population n = A(0) +B(0), and

• an initial gap ∆ = |A(0)−B(0)| ∈ Ω
(√
n log n

)
,

the A-B protocol reaches consensus in expected time O(1) and in time O(log n) with high
probability. It reaches majority consensus with high probability.
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5.2.3 Distributed Gates

Along the idea to use the majority consensus as an amplifier for noisy/unclean signals, leading
to their regeneration, we defined dual-rail signals and gates with dual-rail inputs and outputs in
[151] as follows. Dual-rail encoded signals are used in clockless circuits to allow the receiver to
distinguish old from new data [5, 174].

A signal is defined as in Section 1.2 as a potentially infinite sequence of events. However,
taking into account non-binary/intermediate values that play an important role in microbiological
circuits, we allow events values to be from {0, 1,M}, where M denotes the unstable/metastable
value.

A port is from a finite alphabet Σ = {X,Y, . . . }. Each port X is assigned a signal x; and we
use x(t) for the value of x at time t. For each signal X, there are two species X0 and X1, making
up the two rails of the dual-rail signal; e.g., high numbers of X0 and low numbers of X1 at time
t encode x(t) = 0; and vice versa for x(t) = 1. We use x(t) = M for the case where neither is the
case. Formally:

Definition 134 (Dual-rail encoding, from [151]). Let X0, X1 be species of a dual-rail encoding of
signal X. Let X(t) = X0(t) + X1(t). For n,∆ ∈ N, we say signal X is initially (n,∆)-correct
with value x ∈ {0, 1} if

X(0) ≥ n and

X¬x(0) ≤ n−∆

2
.

The initial gap of signal X is Xx(0)−X¬x(0).

One observes that the initial gap of an initially (n,∆)-correct signal is bounded by

Xx(0)−X¬x(0) = Xx(0) +X¬x(0)− 2X¬x(0) ≥ ∆ .

Equipped with this encoding of signals, we defined a protocol for a birth system that computes
a Boolean function; in this case of a Nand gate. Other Boolean functions are computable along
the same lines.

Definition 135 (Nand gate implementation, from [151]). The implementation of a Nand gate
with input signals A,B and output signal Y is as a protocol for a birth system with

1. input species I = {A0, A1, B0, B1},

2. output species O = {Y 0, Y 1} with initial counts 0, and

3. no internal species.

For all a, b ∈ {0, 1} and y = ¬(a ∧ b), the protocol contains a reaction

Aa + Bb
α

Aa + Bb + Y y ,

where α > 0 is the gate’s reaction rate constant. Additionally, all species have duplication reactions
with a reaction rate constant γ > 0.

Based on a reduction to Yule processes, we proved our main result on the gate’s behavior which
is as follows:

Theorem 136 ([151]). Given, the Nand gate protocol with dual-rail encoded input signals A
and B and output signal Y , such that:

• The input signals are initially (n,∆)-correct with respective values a, b ∈ {0, 1}, where

n ∈ N+ and

∆ ≥ 0.62 ·max {A(0), B(0)} .

Then, with high probability, there exists a time t = O(1) such that
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• Y (t) = n, and

• Y y(t)− Y ¬y(t) = Ω(n), where y = ¬(a ∧ b).

The gate thus provides a linear gap at its output by producing sufficiently separated dual-rail
output species in a sufficient number, given that the dual-rail input species are sufficiently noise-
free. Combining the gate with the A-B protocol as an amplification stage, thus allows one to
compute Boolean functions and afterwards regenerate the Boolean signal; ready to be fed into the
next upstream gate.

5.3 Concluding Remarks

Low-level implementations with design entries at the hardware/circuit-level often rely on state-
machine-based approaches. Assumptions made during the design and analysis stages greatly ease
this process. However, in several cases simplifying assumptions have to be dropped. Examples
are (i) pronounced analog/timed behavior of switching signals, the related problem of non-binary
signals, respectively, metastable upsets, and (iii) faulty or mobile components that led to distributed
circuits with unstable communication between components. This work discussed approaches and
solutions to these cases.

In this last chapter a quick overview on our recent work was presented: the study and design
of synthetic biological distributed circuits. At the time of writing, Manish Kushwaha (INRAE),
Thomas Nowak (LRI), and myself have formed a group and are working on further pushing this
direction. We belief that a combined, interdisciplinary approach in the domains of circuit design,
distributed computing, and synthetic biology has great potential to contribute to the road that
recent work in the domain of synthetic biology has shown with numerous applications in drug
production and intelligent drugs. Based on our previous work and recent unpublished work, we
are working on communicating bacterial consortia to design robust distributed circuits. Besides
many implementation and circuit design questions that have to be solved along this road, immediate
questions from the theory of distributed computing are (i) improved majority consensus algorithms
and/or an improved analysis with resource limitations, and (ii) stability of co-cultures that run
different circuit parts. The author believes that advancing on some of the techniques presented in
this work will be fruitful in solving these questions.
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[21] Matthias Függer, Jürgen Maier, Robert Najvirt, Thomas Nowak, and Ulrich Schmid. A
faithful binary circuit model with adversarial noise. In Design, Automation & Test in Europe
(DATE), pages 1327–1332. IEEE, 2018. doi: 10.23919/DATE.2018.8342219. URL https:
//ieeexplore.ieee.org/abstract/document/8342219/.

[22] Mayler Martins, Jody Maick Matos, Renato Ribas, André Reis, Guilherme Schlinker, Lucio
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[116] Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Approximate consensus in
highly dynamic networks: The role of averaging algorithms. In 42nd International Colloquium
on Automata, Languages, and Programming (ICALP), pages 528–539, 2015. doi: 10.1007/
978-3-662-47666-6 42. URL https://link.springer.com/chapter/10.1007/978-3-662-47666-6
42.
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Titre : Le calcul à la frontière des abstractions : la puissance des circuits temporisés, non binaires, distribués 

Mots clés : modèles de calcul, circuits, calcul distribué, timing, métastabilité, robustesse 

Résumé : La conception et l'analyse des dispositifs 

informatiques directement mis en œuvre dans le 

matériel sont généralement basées sur les automates 

finis. Dans ce travail, nous passons en revue certaines 

des hypothèses faites dans ces conceptions et 

discutons des techniques pour les cas où les 

hypothèses ne sont pas valables.  

Ce travail se concentre sur trois aspects : (i) le calcul 

dans des conditions où les effets temporels ne 

peuvent être négligés, (ii) lorsque les signaux non 

binaires jouent un rôle central, et (iii) le calcul dans 

une infrastructure changeante, i.e., les réseaux 

dynamiques. Bien que la majeure partie de ce travail 

soit consacrée aux implémentations en silicium, les 

circuits microbiologiques sont abordés dans les 

perspectives. 

 
 

 

Title : Computing at the border of abstractions: the power of timed, non-binary, distributed circuits 

Keywords : models of computation, circuits, distributed computing, timing, metastability, robustness 

Abstract : The design and analysis of low-level 

computing devices directly implemented in hardware 

is commonly based on finite state machine models. 

In this work we review some of the assumptions 

made in these designs and discuss techniques for the 

cases where the assumptions fail to hold. 

 

The work concentrates on three such aspects: (i) 

computing under conditions where low-level 

timing effects cannot be neglected, (ii) when non-

binary signals play a central role, and (iii) 

computing within a changing infrastructure, i.e., 

dynamic networks. 

While most of this work is devoted to 

implementations in silicon, microbiological circuits 

are discussed in the outlook. 
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