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CHAPTER 1

INTRODUCTION

1.1 Introduction

Les fluctuations périodiques de I’environnement associées aux saisons affectent le développe-
ment et la dynamique des populations de nombreux organismes vivants. La transmission des
maladies infectieuses est elle aussi soumise aux effets de la saisonnalité [Alt+06; GF06]. Pour
mieux appréhender ces effets il est nécessaire de s’appuyer sur des modeles mathématiques. Le
lien entre épidémiologie des maladies infectieuses et mathématiques est tres ancien. Par exem-
ple, c’est en 1760 que le mathématicien Daniel Bernoulli a utilisé un modele pour démontrer
I’intérét de la "variolisation" pour augmenter I’espérance de vie en protégeant contre les ravages
de la variole [Ber82; Ber60]. Mais c’est apres 1’essor de "la théorie des germes" développée par
Pasteur au XIXeme siecle que la formalisation mathématique de 1’épidémiologe a pu prendre de
I’ampleur. En effet, avec la théorie des germes, 1’étiologie des maladies infectieuses est reliée a
des agents microbiens invisibles a I’oeil nu mais qui peuvent se transmettre d’un hote a un autre.
Pour comprendre les épidémies il devient donc indispensable de comprendre la dynamique de

ces microbes.

C’est a la fin du XIXeme siecle que le médecin britannique Ronald Ross démontre que la
malaria est transmise par des moustiques. Ce méme Ross développera les premiers modeles
mathématiques permettant de décrire cette transmission vectorielle. Il utilisera ces modeles
pour démontrer qu’il existe un seuil de densité de la population de vecteur en dessous duquel
le parasite ne peut plus persister dans la population [Cox10].. Ce type de résultats a permis
d’imaginer rapidement des méthodes de controle basées sur la lutte anti-vectorielle. Les appli-
cations pratiques de ces travaux ont contribué¢ au développement de 1’épidémiologie mathéma-
tique. On peut citer en particulier les travaux fondateurs de Kermack et McKendrick (1927)
et le développement des modeles compartimentaux qui permettent de résumer simplement les

grandes étapes du cycle de vie d’une infection.
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Introduction

Au cours des années 1950-1960, des modeles deterministes des maladies infectieuses ont été
développés, comme le modele SIR (susceptible-contaminé-récupére). Ensuite, vers 1970-1980,
des modeles aléatoires de propagation de la maladie sont introduits permettant 1’incorporation
du caractere aléatoire et de la variabilité dans la transmission de la maladie. Dans les années
1980, les modeles mathématiques ont commencé a prendre en compte la dynamique évolutive
des pathogenes. En effet, les microbes ont un temps de génération court, de grandes tailles de
population et des taux de mutation €levés. Ils ont donc un potentiel évolutif important leur per-
mettant de contourner I’immunité de leur hote et les médicaments comme les antibiotiques. 11
existe plusieurs ouvrages de référence qui font le point sur le développement de 1’épidémiologie
mathématique (Anderson & May 1991, Heesterbeek, Diekmann & Britton , Nowak & May
2000) [AAM92; Hee+15; HR95a; HR95b; DHB13; DHOO].

Au cours des quatre dernieres décennies, I’impact des maladies infectieuses sur la société
s’est accru. Parallelement, de nombreux outils nouveaux sont appliqués dans la recherche
épidémiologique. Spécifiquement, les années 1990-2000 ont vu I’émergence de modeles infor-
matiques et de simulations, fournissant de nouveaux outils pour €tudier la propagation des mal-
adies dans des populations complexes. En complément, a partir des années 2000, I’intégration
de données provenant de diverses sources, telles que les dossiers de santé électroniques, les mé-
dias sociaux et les appareils portables, a permis de valider et d’améliorer les modéles épidémi-
ologiques. Ces modeles ont été utilis€s pour éclairer la prise de décision en matiere de santé
publique et pour guider les réponses aux €pidémies : citons I’épidémie de SRAS de 2003, la
pandémie de HIN1 de 2009 et la pandémie de COVID-19 en cours.

Cette these se place dans la continuité de ces travaux et se concentre sur les effets de la
saisonnalité. Nous distinguerons trois types d’effets de la saisonnalité. Premierement, nous
étudierons comment la saisonnalité affecte la persistence des maladies vectorielles. Nous anal-
yserons ici des modeles déterministes qui nous permettront d’identifier les conditions favor-
ables a la circulation d’un pathogene. Deuxiemement, nous étudierons les conséquences de la
stochasticit¢ démographique sur les risques d’émergence d’une maladie infectieuse. En par-
ticulier nous quantifierons les risques d’émergence en fonction des variations temporelles de
la transmission au fil des saisons. Enfin, dans une troisieme partie nous étudierons les con-
séquences évolutives de la saisonnalité sur les stratégies de dormance des pathogenes. Nous
utiliserons ici des modeles de dynamique adaptative pour analyser 1’évolution de la dormance

des maladies a transmission vectorielle.
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1.2 Influence de la saisonnalité sur la persistence des mal-

adies a transmission vectorielle

La capacité d’un pathogene a se développer dans une population est souvent mesurée par le
nombre de reproduction R, : dans un modele déterministe, le pathogene produit une épidémie
si et seulement si Ry > 1. On peut calculer R, dans le cadre d’un environnement fluctuant,
disons périodique, pour des modeles simples (voir e.g. [BG06]). Malheureusement, c’est plus
compliqué pour les modeles a transmission vectorielle. On a montré ([Bac0O7]) qu'une fluctua-
tion périodique de la densité des vecteurs peut diminuer R, alors ((WZ08]) qu’une fluctuation
périodique des taux de transmission peut augmenter R.

Il existe deux autres indicateurs de la capacité de croissance d’une population : A = p(¢p4(T"))
le rayon spectral de la matrice de monodromie, et I’indicateur P de [HR95a; HR95b]. Les signes
de Ry—1, A\—1 et P—1 sont les mémes. Nous avons établi, pour des perturbations périodiques
d’ordre € des coefficients du modele, a 1’aide de la théorie des perturbations des opérateurs

linéaires (voir [Kat66]) 1’existence de développements de Taylor:

A= )\0 + E)\l + 62)\2 + O(EQ) s
P=Py+eP,+ P+ o(e?).

L’étude de la nullité et du signe de \; et \; permet de retrouver les résultats de [Bac07; WZ08]
et de les généraliser. L’utilisateur de I’indicateur P permet de développer une intuition plus
biologique des signes des F;, et donc de I'influence de 1’environnement sur le taux de crois-
sance du pathogene, en identifiant les décalages entre les fluctuations de I’environnement et les

fluctuations des populations de vecteurs et des hotes infectés.

1.3 Risque d’émergence dans un modele stochastique logis-

tique

Nous étudions plus en profondeur les interactions entre stochasticité et saisonnalité. Nous
choisissons d’étudier le modele logistique stochastique en environnement périodique. C’est
une chaine de Markov X ®*7) inhomogene a valeurs dans {0, ..., K} avec K la capacité de
charge, la taille maximale de la population. Le taux de mort est une constante u et le taux

de naissance est 3(%)(1 — ) pour une population de taille x, avec T > 0 la période, ( une
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fonction borélienne positive 1-périodique.

Le but de notre étude est de bien comprendre le comportement du processus stochastique
XUT)  Cela permettra de développer une intuition biologique, appuyée par des heuristiques
probabilistes et des simulations, pour traiter le probleme de la détermination du timing optimal
d’une intervention visant a minimiser le risque d’émergence dans un environnement périodique.

Le nombre de reproduction est donné par Ry = % avec (B) = [y B(u)du la moyenne
du taux de transmission. L’approximation déterministe de la dynamique de 1’épidémie est la

solution de ’EDO
dx

- =B (;)x(l—x) - p,
dont le comportement est bien connu : si /7y < 11l y a convergence rapide vers 0, alors que si
Ry > 1, il existe un attracteur périodique non trivial.

Pour le processus stochastique, on sait que si [7y < 1 alors, comme dans le cas déterministe,
il y a extinction rapide et on suppose donc désormais que Ry > 1. Les effets de la stochasticité
sur la dynamique épidémiologique sont multiples.

Quand la période des fluctuations est petite (i.e., 77 — 0) on note qu'un phénomene de
moyennisation se produit: la stochasticité ne disparait pas, mais on peut remplacer le pro-
cessus X ST) par le processus X %) obtenu en remplacant le taux de transmission 3(¢/T)
par la moyenne (). On peut alors utiliser les résultats classiques sur I’évaluation du temps
d’extinction ([AD98; KL89]) et la quasi stationnarité ([DS67]).

Quand la période des fluctuations est importante il n’est plus possible de moyenner le taux
de transmission. Il faut alors distinguer plusieurs phases dans 1’épidémie avant d’arriver a une
émergence.

Premierement, il existe une probabilité de take off, c’est a dire la probabilité que la popu-
lation atteigne une taille macroscopique (de I'ordre de K'). Cette probabilité est la méme que
pour le processus de branchement associé, et dépend de I’instant d’introduction du pathogene.

Deuxiemement, rappelons que comme la population est finie, il y a presque slirement extinc-
tion. On désire alors comprendre quand ce temps d’extinction 7 est petit ou grand. On suppose
pour cela qu’il existe au moins une période défavorable pour le pathogene pendant laquelle on
a B(t) < p (un “hiver” si I’on veut se référer a la saisonnalité¢). On montre alors 1’existence
d’une capacité critique K¢ telle que si K < K¢ I’extinction est rapide et si K > K¢ le temps
d’extinction est tres grand et la dynamique du systeme stochastique tend vers un équilibre quasi
stationnaire périodique.

Par ailleurs, lorsque la capacité K — +o0, alors le processus est bien approché par le pro-

cessus de naissance et de mort en environnement périodique, précédemment étudié par [CG20].
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Nous utilisons notre compréhension des effets de la saisonnalité sur la dynamique épidémi-
ologique pour étudier la facon optimale d’intervenir dans le but de limiter le risque d’émergence.
Nous considérons un scénario avec taux de transmission en créneau 3(t) = ¢ 1(o<i<1—), avec
Ba < p. Lintervention consiste a remplacer Sg par o < (¢ sur une période de temps (sur
laquelle la capacité de reproduction du pathogene est diminuée). On montre, en construisant
des heuristiques qui sont validées par des simulations numériques, que la période optimale
d’intervention se situe juste avant I’hiver du pathogene. La comparaison avec les résultats pour
les processus de naissance et de mort montre 1’importance de 1’existence de la densité dépen-

dance (ici liée a la présence d’une capacité K') sur les décisions concernant I’intervention.

1.4 Evolution de la dormance

Le phénomene de dormance consiste, pour un organisme vivant, a faire face a une péri-
ode défavorable de son environnement en modifiant ses caractéristiques physiologiques. Pen-
dant cette période 1’organisme peut "décider" de limiter son développement, ses activités de
recherche de nourriture et/ou de reproduction, et les reprendre pendant une période favorable.
Ce phénomene de dormance est observé chez de nombreuses plantes (dormance des graines ou
de I’appareil végétatif) pendant I’hiver ou lors de période de sécheresse. Mais ce phénomene
existe également chez certains animaux (e.g., hibernation de certains mammifaires, diapause
de nombreux insectes). Le phénomene de dormance est également assez répandu parmi les
microbes. Certains virus de I’Herpes peuvent se maintenir a 1’état dormant et se réactiver bien
des années apres la premiere infection. Certaines bactéries sont capables de former des spores
qui peuvent résister a la dessication ou aux traitements antibiotiques. Enfin, certaines especes
de malaria comme le Plasmodium vivax mais aussi de nombreux Plasmodium aviaires peuvent
¢galement se maintenir a 1’état dormant dans leur hote. Le parasite peut méme disparaitre de la
circulation sanguine pendant plusieurs années avant de se réactiver. Dans quelles conditions ces
stratégies de dormance évoluent et quelles sont les composants de 1’environnement qui signa-
lent aux parasites qu’il est temps de rentrer en dormance ou, au contraire, de reprendre un cycle
de vie actif?

Nous tenterons de répondre a ces questions en reprenant 1’analyse d’un modele de maladie
a transmission vectorielle. Dans le scénario considéré, la saisonnalité affecte la densité de la
population de vecteurs. Le pathogene peut infecter son hote vertébré sous deux formes : (i) une
forme active dans laquelle I’hote peut infecter des vecteurs (si un vecteur pique un hote infecté)

ou guérir, (ii) une forme passive (ou dormante) dans laquelle le parasite ne peut se transmettre
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au vecteur mais 1’hote ne peut pas guérir. Les mécanismes permettant de faire passer un parasite
de I’état actif a I’état passif peuvent étre indépendants de I’environnement. Dans ce cas, les taux
de transition entre ces deux états sont constants et on parle alors de traits constitutifs. Mais ils
peuvent également étre variables et dépendre de certaines variables environnementales. On
parle alors de traits plastiques. Par exemple, certains Plasmodium aviaire ont la capacité de
réagir a la présence de piqures de moustiques [Cor+14]. Nous avons donc modifié un peu le
modele analysé dans le premier chapitre de cette these pour étudier 1’évolution de la dormance
et de la réactivation.
Tout d’abord, nous avons rajouté un compartiment "dormant" dans le cycle de vie de I’infection.

La transition vers ce stade est controlée par le taux de dormance d. Le retour vers le statut "ac-
tif" de I'infection est contrdlée par le taux de réactivation 7. Une analyse de [’invasion d’un
mutant dans une population résidente stabilisée est effectuée a I’aide du gradient de sélection
en environnement périodique, outil mathématique développé par [LG22]. Sous I’hypothese que
I’invasion entraine la fixation, une étude €volutive permet alors de déterminer les parametres
optimaux vers lesquels les mutations vont faire évoluer le pathogene : taux de dormance et réac-
tivation, périodes de dormance et de réactivation. Les implications biologiques des différentes

stratégies d’adaptation sont discutées et €tay€es par des simulations numériques.

1.5 Quelques Perspectives

Cette these montre les conséquences que peuvent avoir les fluctuations périodiques de
I’environnement sur la dynamique des maladies infectieuses. Nous illustrons ces conséquences
dans le cadre d’un pathogene a transmission vectorielle car les fluctuations saisonnieres de la
température et de I’humidité se traduisent par des fluctuations saisonnieres de la population de
vecteurs, et du nombre de piqlires journalieres.

Chaque chapitre aborde un aspect différent de la saisonnalité. Le premier chapitre analyse la
persistence d’un pathogene et montre comment la saisonnalité peut augmenter ou, au contraire,
diminuer la persistence du pathogene. Ce premier chapitre est basé sur I’analyse d’un modele
déterministe. Nous mettons en €vidence les effets contrastés de la saisonnalité dans 1’abondance
et/ou dans le taux de piqlire du vecteur sur la persistence du pathogene. Cependant, seuls la
densité vectorielle et le taux de piqure sont analysé€s. Il est naturel de prévoir dans le futur
d’étudier I'influence de la saisonnalité a travers les variations conjointes de tout un ensemble
de parametres associés a d’autres étapes du cycle de vie: le taux de transmission de la maladie

de I’hote vertébré au vecteur, le taux de mortalité du vecteur, le taux de guérison de 1’infection
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dans I’hote vertébré mais aussi les stratégies de dormance et de réactivation (chapitre 3).

Dans le deuxieme chapitre nous étudions les effets de la saisonnalité sur les risques d’émergence.
Le modele stochastique utilisé repose sur un scénario épidémiologique assez simple, le modele
logistique. Nous montrons ici comment le choix de la période de contrdle de 1’épidémie, péri-
ode pendant laquelle une politique sanitaire diminue le potentiel de transmission du pathogene,
influence le risque d’émergence de 1I’épidémie. Nous aimerions généraliser ces résultats a
des modeles avec transmission vectorielle et explorer plus avant le lien avec les modeles de
branchement (en particulier le phénomene winter is coming se produit-il toujours ?). Il serait
¢galement intéressant d’essayer de faire le lien avec le chapitre sur la dormance en autorisant
d’autres stratégies d’exploitation de I’hote vertébré. Est-ce que les prédictions sur les risques
d’émergence sont affectés par la présence de dormance?

Le troisieme chapitre utilise un troisieme formalisme, la dynamique adaptative, pour étudier
I’évolution de la dormance et de la réactivation. Dans un environnement constant, si g est le
taux de mort de 1’héte, si d, r (resp. d,,, ) sont les taux de dormance et de réactivation du

résident (resp. du mutant), le mutant envahit le résident si et seulement si

d dam
> .
r4+pg ™A+ g

Nous aimerions mieux comprendre 1’effet des fluctuations périodiques sur 1’évolution de la
dormance constitutive (il est un peu surprenant que plus de fluctuations favorise moins de dor-
mance dans le modele actuel). 11 serait également intéressant de s’inspirer du chapitre 1 pour
modéliser la dynamique de population de vecteurs avec un modele de croissance logistique. Ce
modele démographique serait plus réaliste et pourrait peut-étre permettre de faire des prédic-
tions testables sur I’évolution de la plasticité. Sur la plasticité il serait intéressant de considérer
que cette capacité a changer de phénotype est coliteuse. Dans ce cas, il serait intéressant de
déterminer les environnements dans lesquels on peut s’attendre a trouver cette plasticité.
D’une maniere générale il serait intéressant d’essayer de faire se rejoindre ces différents
chapitres en mélangeant épidémiologie, stochasticité et évolution dans des environnements fluc-
tuants. Par exemple, I’étude de I’effet d’une fluctuation environnementale stochastique sur
I’évolution de la dormance serait particuliecrement intéressante d’un point de vue biologique.
Cette question a déja été abordée dans le contexte de 1’évolution de la dormance des graines

chez les plantes mais pas dans un contexte épidémiologique.
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CHAPTER 2

SEASONALITY AND THE PERSISTENCE
OF VECTOR-BORNE PATHOGENS

Many vector-borne diseases are affected by the seasonality of the environment. Yet, season-
ality can act on distinct steps of the life-cycle of the pathogen and it is often difficult to predict
the influence of the periodic fluctuations of the environment on the persistence of vector-borne
pathogens. Here we analyze a general vector-borne disease model and we account for periodic
fluctuations of different components of the pathogen’s life-cycle. We develop a perturbation
analysis framework to obtain useful approximations to evaluate the overall consequences of
seasonality on the persistence of pathogens. This analysis reveals when seasonality is expected
to increase or to decrease pathogen persistence. We show that seasonality in vector density or
in the biting rate of the vector can have opposite effects on persistence and we provide a useful
biological explanation for this result based on the covariance between key compartments of the
epidemiological model. This framework could be readily extended to explore the influence of

seasonality on other components of the life cycle of vector-borne pathogens.

2.1 Introduction

The ability of a pathogen to spread in a fully susceptible host population is governed by its
basic reproduction ratio 17y which measures the number of secondary cases produced by a typi-
cal infected case. The pathogen will spread and induce an epidemic if and only if Ry > 1 (and it
will rapidly go extinct if Ry < 1). Hence the basic reproduction ratio provides a way to evaluate
the epidemic potential of different pathogens and constitutes a key epidemiological quantity to
control infectious diseases. The basic reproduction ratio of the simplest epidemiological model
with a single compartment of infected hosts takes a very simple and intuitive form: Ry = 3/~
(i.e., the transmission rate (3 times the duration of infection 1/). The next generation matrix (a
per-generation way to compute population dynamics) can be used to compute 17, when multi-

ple compartments (e.g., different infectious stages, different hosts) are required to describe the

19



Partie , Chapter 2 — Seasonality and the persistence of vector-borne pathogens

life cycle of the pathogen in a constant environment where transitions rates are fixed [DHR10].
Indeed, in a constant environment, a per-generation way of measuring population growth is ap-

propriate because the timing of the new infection does not matter.

But things become more complicated in fluctuating environments where the timing of new
infections matters. For instance, many studies have shown that periodically changing environ-
ments may affect the Ry [HR95a; HR95b; Bac07; WZ08]. The analysis of these models is more
challenging and does not always yield consistent results regarding the qualitative effects of sea-
sonality on RRy. For instance, periodic fluctuations in the density of mosquito vectors can reduce
Ry [Bac07] while a fluctuation in the transmission rate yields higher R, in another vector-borne
model [WZ08]. Why do these different models yield opposite conclusions? Can we build up an
intuitive and biological understanding of the behavior of these complex time-varying models?
We try to answer these questions in the following with the analysis of simple periodic mod-
els of vector-borne pathogens. We derive different threshold quantities for the persistence of
the pathogen that allows us to discuss the combined effects of periodic fluctuations of various

components of the pathogen’s life cycle.

2.2 The model

Let us consider the spread of a vector-borne pathogen which requires an explicit description
of the dynamics of the infection among human hosts and mosquito vectors. We use a classical
model of vector-borne transmission [AAM92] that tracks the densities of four types of hosts
(uninfected and infected humans, uninfected and infected vectors) which yields the following
system of ordinary differential equations (the parameters of the model are described in Table
2.1):

dSH IVSH
" aBvu Nu HHPH,

dIH IVSH

TH - I
" afyu N, (pr + v )lu,

dR

S =yl — R, @1
t

ds

dl

diz:/ = aBpvIgSy — pviv.
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2.2. The model

For the sake of simplicity, we assume that the total density of the human population Sy +
Iy + Ry = Ny remains constant which implies that 0 = uy (Sy + Iy + Ry).

In a constant environment, we assume that the parameters that govern the life cycle of the
vector do not vary with time and if the fecundity of the vector compensates exactly its mortality
(i.e., py = uy) the total density of the vector population Sy + Iy, = Ny is also constant. In
this scenario, the basic reproduction ratio is readily derived from the linearisation of the above
system at the disease free equilibrium (Iyy = Iy = Ry = 0, Sy = Ny, Sy = Ny ) which yields

([HR95a)):
aBvu aBav Ny
Uy g+ YH '

Ry = (2.2)

In other words, the R, can be interpreted as the expected number of human hosts infected
by an infected vector during its lifetime (the first ratio in (2.2)) times the expected number of

vectors infected by an infected host throughout the duration of its infection (the second ratio in

(2.2)).

In a fluctuating environment, several parameters of the pathogen may vary with time [Mor+13;
Tes+18] and these variations are likely to affect [?5. Several previous studies have developed
ways to compute Ry in periodic environments [HR95a; HR95b; Bac07; WZ08]. Seasonality
is usually modelled through the use the T-periodic function f(¢) = cos(27t/T) which may af-
fect different biological processes and thus different parameters in the dynamical system (2.1).
Bacaer analyzed a model of malaria transmission when the density of the mosquito population
fluctuates periodically with Ny (t) = Ny (1+€f(t)) [BacO7]. This analysis combines a Fourier
decomposition of Ny (¢) with a perturbation analysis for small € to compute an approximation
of Ry as a function of €. This approach yields a particularly useful approximation for the effect

of seasonality:

N
Ro — aBvu afuyv Ny (1 _ 2 Q) + o(€?), (2.3)
Hv  HH T+ VH

where () = l <%)z(#H+7H)W . This expression shows that, since () > 0, the periodic
2 14+(5=) (wv+uu+ym)?

fluctuations of the densities of mosquitoes tend to decrease R and thus to limit the persistence

of malaria. Yet, it is difficult to understand why this is the case.

An alternative approach to handle the analysis of the periodic system is to use Floquet theory
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which is based on the analysis of the linearization of (2.1) which yields:

dX
- =AMX®),  with X(1) = (I (1), Iy(t)" (2.4)
and A : R — My, a continuous matrix valued 7" periodic function and A = p(®4 (7)) the

spectral radius of the monodromy matrix of system (2.4), that is

d;l{)tA =A(t)Pa(t) with DA (0) = 1. (2.5)

In other words, A is the asymptotic growth rate of the epidemic in the initial phase of the
epidemic and if A > 1 the pathogen density grows exponentially and X*(t) = (I3(t), I;:(t)) " is
the (unique up to a constant) positive vector solution of (2.4) such that A~*X*(¢) has period 7.
It is obtained by letting X*(0) be the positive eigenvector associated to the monodromy matrix
and its spectral radius: @4 (7)X*(0) = AX™(0). The vector A"*X* may be thought as the stable
composition of the pathogen population in the periodic environment, for the linearized model
(2.5).

Crucially, as pointed out by Heesterbeek and Roberts [HR95a; HR95b], this formalism
yields another interesting quantity which is akin to the original definition of Ry as it provides

the expected number of secondary cases :

_ Jo i (s)a(s)Bva ds Jy Ty (s)a(s)Brv Ny (s) ds.

P T v T 1+
pv Jo Iy (s)ds (hm +vu) Jo 15 (s)ds

(2.6)

As in (2.2) the first ratio of (2.6) refers to the expected number of human hosts infected by an
infected vector during its lifetime, while the second ratio of (2.6) refers to the expected number
of vectors infected by an infected human throughout the duration of its infection. The integral
over one period of the fluctuation accounts for the fluctuations of the different parameters of the
pathogen’s life-cycle. This quantity can also be expressed in terms of the covariances between

different key epidemiological variables:

- BBy {(a)*(Ny) Cov (a, Ny) Cov (I}, a) Cov (I}, aNy)
T G+ mww>>@+ T} a) )O* ummM»>'

Py

(2.7)
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2.3. Results

1 1
Where (f) = = o' f(s)ds, and Cov(f.g) = = (I f(s)g(s)ds — Iy f(s)ds [ g(s)ds) . As
expected, in the absence of temporal fluctuations all the covariances vanish and F is equal to
Ry given in (2.2). We will see in the following that this expression of P can be particularly

useful to understand the effects of seasonality.

Thanks to the works of Heesterbeek and Roberts [HR95a; HR95b] (see also [WZ08]) we
thus have three threshold parameters Ry, A and P that can be used to determine the ability of the
pathogen to invade the population. Indeed, even if these three quantities are not equivalent, they
are all equal when the pathogen reaches the threshold value Ry = 1. Since the signs of Ry — 1,
A — 1 and P — 1 are the same we can analyze the effect of seasonality on the persistence of the
pathogen population using these three quantities around Ry = A = P = 1. Note, however, that
the effect of seasonality we discuss in this limit remains qualitatively robust for other values of
Ry.

In the following, we study the effect of seasonality on the stability of the disease-free equi-
librium through the effect of ¢ which captures the magnitude of the influence of seasonality
of distinct parameters of the model. We use a perturbation analysis of A for small values of €
at A = 1. First, we contrast the effect of seasonality on various quantities that affect the vec-
tor population and the transmission of the disease. We show that the effect of seasonality on
A depends on which trait is affected by the fluctuations of the environment. Second, we use
the quantity P to provide a biological interpretation of these effects of seasonality in terms of

covariance between different dynamical variables.

2.3 Results

Seasonality is known to affect various components of the life-cycle of vector-borne pathogens
[Mor+13]. In the following, we assume that seasonal variations may act directly on the density
of the vector population and/or on the biting rate of mosquitoes. More specifically we use the
following T-periodic functions with f(t) = cos(2nt/T):

Ny(t) = Ny (0)(1+eCrf(t), a(t)=ao(l+eCrf(t)), (2.8)

where C; > 0 and C;; > 0 control the magnitude of the effect of seasonality on Ny (¢) and

a(t), respectively. This model allows to account for the effects of seasonality on multiple traits
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of the pathogen. In the following, we contrast two extreme scenarios: (i) model / when C; = 1
and C;; = 0 and (ii) model /1 when C; = 0 and C;; = 1.

We derive an approximation for A for small values of e (see Supplementary Information
section (2.6)):

A= X + €A + Xy + o(e?), (2.9)

with \g = 1 because we focus on the persistence of the pathogen population and where \; and

Mg refer to the first and second-order effects of seasonality with:

(e + vE) v

M=<f>T(Cr+2C ,
' d (Cr I[)7H+NH+NV

(2.10)

_ (te +ve)pwTr

, @.11)
2(ve + poa + pv)

with

T*((Cr + Cr)pv — Cri(pn +vu))(Cr + Cr) (e + vu) — Crrpv)

=CiCrr —
" = 472+ T?(yg + pg + pyv)?

2.3.1 First order effect

Seasonality has a first-order effect on the stability of the disease-free equilibrium as soon as
< f ># 0. For instance, consider a simple square function where f(¢) = 1fort € [0, (1-W)T]
and f(t) = —1fort € [(1-W)T,T] (with0 < W < 1) as illustrated in Figure 2.1. The param-
eter W governs the duration of the “winter". Higher values of W yield longer winter seasons
where the total density of vectors is reduced (model /) or when the biting rate of the vector is
reduced (model /7). Figure 2.1 shows that longer winters (i.e., W > 0.5) yield < f >< 0
and, in this case, more seasonality (i.e., higher values of €) reduces pathogen persistence in both
models [ and 7. In contrast, shorter winters (i.e., W < 0.5) yield < f >> 0 and, in this case,
more seasonality increases pathogen persistence in both models / and /7. Note that the slope
of A at ¢ = 0 is Ay, which is twice larger for model /7 than for model I, in agreement with

equation (2.10).

However, this first-order effect of seasonality vanishes when < f >= 0. In particular,
< f >= 0 for the classical scenarios we considered where f(t) = cos(27t/T). In this case, we

thus need to examine the second-order effect of seasonality in (2.11).
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2.3. Results

2.3.2 Second order effect

Next, we analyze the second-order effect of seasonality on A and, in contrast with the previ-
ous section, we show that seasonality has different qualitative effects on A in models I and I/
(Figure (2.2), (2.3)).

Fluctuations in vector density

In model I we have C'; = 1 and C}; = 0 and equation (2.9) reduces to

A=1-—

2 (r + v T ( T*(pw + o)y ) +o(e?) < 1. (2.12)

2(py + p +ym) \ 472+ T (g + pv +vm)’

We thus recover the effect of seasonality discussed by Bacaer [Bac07] where fluctuations
of vector densities reduce the persistence of the pathogen. However, we can use the threshold
quantity P to gain some insight in the understanding of the qualitative effect of the fluctuations
of vector densities. In particular, we can use (2.6) to show that the stability of the disease-
free equilibrium is governed by the covariance between [;; and Ny. In the Supplementary
Information section (2.6) we derive an approximation of this covariance which shows that this
covariance is always negative, which implies that P < 1 and thus that A < 1 (2.13):

Iy, N 77
poqy SUinNv) st + ) v o) <1 (2.13)

(i) (Ny) 2 (472 + T2 (py + purr + v01)°)

Since the effect of seasonality is governed by the sign of the covariance between I}; and
Ny it is important to understand why this covariance is negative. We expect this covariance
to be negative whenever the lag between the fluctuations of Ny and the fluctuations of [, are
larger than 7'/4 (the covariance is nil when the lag is exactly equal to 7'/4 which corresponds
to a phase lag of 7/2). Fluctuations in Ny first drive fluctuation in [y, with a lag approximately
equal to 7'/4 (Figure (2.4)). Second, these fluctuations in the density of infected vectors drive
the fluctuations in the dynamics in /. This two-step process yields a lag > T'/4 between Ny,

and [;, which results in a negative covariance between [; and Ny (see Figure (2.4)).

At this stage, it is tempting to conclude that any fluctuation in the total density of the
vector population always results in the same qualitative effect. But, as we will see in the
following, some fluctuation in vector density may have the opposite effect on pathogen per-

sistence. Note that the fluctuations of Ny (¢) assumed in model I (see equation (2.8)) re-
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sults from specific assumptions regarding the per-capita growth rate of the vector population:
pv(t) = py + e%% In the following, we study another model (model /") where
we use a different periodic function to model the fluctuation of the per-capita growth rate of
the vector population py () = py (1 + ecos(2nt/T')) as in [Lor+96; HR95b]. This yields the

following vector dynamics (see Figure 2.5 and Supplementary Information section 2.6.4):

C3 (¢
Ny (t) = Ny(0)exp (eCp f(t)) = Ny (0)(1 + eCp f(t) + eQJ;() + o(€?)). (2.14)
Again the examination of P helps us understand what is going on. The average value of
Ny is affected by seasonality and fluctuations increase the mean density of vectors which feed
back on transmission. Indeed, unlike model I where < Ny >= Ny/(0), in model I’ < Ny >=

Ny (0)(1 + €2C% /4). This yields the following expression for P:

2072 *
P: <1+6 CI’) <1+COV(IH7NV)>

4 {I5)(Nv)

1

=143 ( - T(Q“H *m) fy ) +o(e?) > 1, (2.15)
4 2+ 55 (uv + pm +ym)?

which also yields:
T (1
A=1+ 620?/ (:U’H +7H) I2a% ( . T(2,LLH +’VH) 4% ) +0(€2) > 1. (216)
(v +pr +ym) \4 24 5 (py + pu + vu)?

Interestingly the covariance between the fluctuations of the density of infected hosts and the
density of the vector population in (2.15) remains negative (as in model /, see Figure (2.7)).
Yet, the effect of seasonality on the average density of the vector population is positive and
overwhelms its effect on the covariance. This explains why seasonality has a positive effect on

pathogen persistence in model I’ (Figure 2.2).

Fluctuations in biting rates

In model 77 we have C; = 0 and C;; = 1 and equation (2.9) reduces to

A=1+¢

T ( T2 —uy)?
2(pm +vm + pv) \ A7+ T?(ug + yapv)

In other words, seasonality is increasing disease persistence in this model (Figure 2.2).
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2.4. Discussion

Again, we can use equation (2.6) for P to get a better understanding of this result. Since sea-
sonality affects only the biting rate a the density of the vector population /Vy is constant and we

get

Cov(l{,a) Cov(lf,a
(Ii:){a) (L) {a)

) +o(e?) =1+¢ (277;) (v — pyv)” + o(e?) > 1

(2.19)

=1+

To understand the sign of P — 1 we need to understand the sign of the covariances that appear
in (2.19). Crucially, we obtained approximations for these covariances in the Supplementary
Information section (2.6), and we show that the sign of Cov (I3, a) is the sign of (g +vm) — pv
and is the opposite sign of Cov(/};,a). Indeed, the duration of infection in the host, 1/(uy +
~vu ), and in the vector, 1/, govern the speed at which the dynamics of the infections reacts to
a fluctuation of the biting rate. A shorter duration of infection in one host relative to the other
leads to a positive covariance with the biting rate as well as a larger amplitude of fluctuations
because the epidemic spreads faster with shorter generation time (see Figure 2.6). Interestingly,
the sum of these two covariances is always positive, unless the duration of infection in both hosts
is equal (i.e., uy + vy = pyv). Figure 2.6 illustrates the influence of the relative duration of

infection in the two hosts on the sign of the covariances and on the amplitude of the oscillations.

2.4 Discussion

Periodic fluctuations of the environment due to seasonality can affect dramatically the dy-
namics of infectious diseases [Alt+06; Marl8]. In vector-borne diseases, understanding the
overall influence of seasonality is difficult because fluctuations in temperature alter multiple
life-history traits of the vector and the pathogen [Mor+19; Mor+13; SWT17; Tes+18; Mor+17].
Hence multiple steps of the life-cycle of the pathogen may be affected simultaneously by sea-
sonality. Previous theoretical analysis of the influence of seasonality focused mainly on the
influence of fluctuations in vector density [Hee+15; Lor+96; BacO7] and showed how these
fluctuations could either increase or decrease the persistence of vector-borne pathogens. Fluc-
tuations in transmission rates have also been shown to affect the persistence of vector-borne
pathogens [WZ08]. Yet, we currently lack a good understanding of the influence of season-

ality when the periodic fluctuations of the environment can affect multiple components of the
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pathogen life-cycle. Here we expand earlier studies of the effect of seasonality to provide a
deeper understanding of the influence of periodic fluctuations of the environment on the basic
reproduction ratio (and thus on the persistence) of vector-borne pathogens. Pathogen persis-
tence varies with the speed, the amplitude and the shape of the fluctuations as well as on the

specific life-history traits modified by seasonality.

The speed and the amplitude of seasonal fluctuations. Our analysis shows that lower
speed of fluctuations (i.e., higher 7") and higher amplitudes (i.e., higher €) always magnify the
effects of seasonality. Indeed, faster fluctuations (e.g., daily) or fluctuations with small ampli-

tudes tend to average out and they tend to have a negligible effect on epidemiological dynamics.

The shape of seasonal fluctuations. If the periodic functions f(¢) used to model the effect
of seasonality are such that < f >## 0 we expect a first order effect of seasonality. This effect
simply results from the effect of seasonality on transmission opportunities. For instance, if the
influence of seasonality is only to increase the duration of a winter season in which the density
of vectors is very low, seasonality will always result in lower disease persistence because it will
decrease the average density of vectors. We illustrated this scenario in Figure 2.1. In contrast,
if we use periodic functions where < f >= 0 this first-order effect of seasonality vanishes.
Yet, seasonality can still have a second-order effect on pathogen persistence. This second-order
effect can be qualitatively different from the first-order effect (compare Figures 2.1 and 2.2).
It is interesting to note that this second-order effect can also be affected by the shape of the
fluctuations. This is illustrated by the difference between model I and model I’ (see Figures
2.2). Both models assume that seasonality affects the fluctuation of vector density but the shape
of the fluctuation varies between the two models (2.5) and affects qualitatively the influence of

seasonality on pathogen persistence.

The life-history traits altered by seasonal fluctuations. As pointed out before, the influ-
ence of seasonality varies with the life-history traits affected by seasonality [HR95a; HR95b;
Bac07; WZ08]. In the present paper, we focused on the influence of seasonality on two quan-
tities: the vector density (model /) and the biting rate of the vector (model /7). In the first
order, fluctuations in both quantities had similar effects on pathogen persistence because both
quantities are linked to pathogen transmission. Yet, it is interesting to note that fluctuations in
the biting rate where twice more impactful. This factor 2 stems from the fact that biting rates

act at two different stages of the pathogen life-cycle, while vector density acts only once. This
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is clear from the expression of R, in equation (2.2) where a appears twice and /Ny, only once.

At the second order, the influence of seasonality varies between models [ and /7 and when
seasonality acts on both the biting rate and the vector density, the overall influence of seasonality
depends on the magnitude of the influence of seasonality on these two traits (i.e., the parameters
C7 and C}; in equation (2.11)). A better understanding of these effects can be obtained from
the examination of P and the covariance between different dynamical variables of the system.
In a fluctuating environment, several dynamical variables change through time and the phase
shift between these quantities determines if the average transmission is increased or decreased
by seasonality. Indeed, if X and Y refer to dynamical quantities involved in transmission, the
average transmission will given by < XY >=< X >< Y > + Cov(X,Y) and hence by
the covariance between these quantities. The analysis of models / and /[ illustrates how one
can gain an intuitive understanding of the effect of seasonality via the examination of these co-
variance terms. Our examination of the covariance is akin to the interpretation of the effect of
seasonality mediated by the relative timing between the peaks in prevalence in the vector and in
the host populations [Hee+15; Lor+96].

To conclude, we present a general theoretical framework that allows us to extend previous
analyses of the influence of seasonal fluctuations of the environment on the R, of vector-borne
pathogens. Our analysis highlights the complexity of the influence of seasonality and the neces-
sity to take into account the details of the biology of the pathogen and the vector to understand
the effect of seasonality because very similar models can yield qualitatively different conclu-
sions on the influence of seasonality. We hope the present theoretical framework will be used
to explore the influence of seasonality in a broader range of epidemiological scenarios tailored
to the biology of different infectious diseases. This will help improve the accuracy of risk maps
aiming to identify geographic regions that are most likely to be subject to the emergence or the
re-emergence of some pathogens [Kra+16; Jon+08; Kit00]. In addition, our analysis could also

help identify more effective time-varying control measures against pathogens [GF06; CG20].
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2.5 Tables and Figures

Table 2.1 — Parameters and variables of the models
Symbol Description

Parameters

a biting rate of vectors

Bvu rate of transmission from an infected vector to a susceptible host
Buy rate of transmission from an infected host to a susceptible vector
pv growth rate of the vector

5% death rate of the vector

157 death rate of the host

Yu recovery rate of the infected host

Variables

0 the periodic influx of susceptible hosts

Su density of susceptible hosts

Iy density of infected hosts

Ry density of recovered hosts

Ny density of the total host population: Ny = Ry + Iy + Sy

Sy density of susceptible vectors

Iy density of infected vectors

Ny total vector population density: Ny = Sy + Iy

2.6 Supplementary information

2.6.1 The vector-borne disease model

We consider the following dynamical system

aSu

=0~ abun e S,

ddlf — aﬁVHI}/ViH — (pa +vu)Iu,

dde — T — s R, (2.20)
ddi‘/ = py Ny — aBuvInSy — uy Sy,

dd]z:/ =afpvIigSy — pvly.
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2.6. Supplementary information

A B
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Figure 2.1 — The first order effect of seasonality drives the stability of the disease-free
equilibrium when < f > 0. In (A) We assume = = 0.4 and thus f(t) = Lo<|¢/7|<0.41) —
1(0-4TS |t/T|<T)- In (B) we assume x = 0.6 and thus f(t) = 1(0S|_t/TJ <0.6T) — 1(0.6T§ [t/T|<T)- In
(C) and (D) we plot the effect of seasonality (i.e., €) on A\, for the two scenarios (A) and (B). In
model I, C; = 1,C;; = 0sothat Ny = 1+ ef(t), a(t) = 1. Inmodel I1, C; = 0,Cy; = 1,
so that Ny (t) = 1,a(t) = 1+ ef(t). Parameters values: T' = 5, gy = 1,0vny = 2, uy =
0.5, uy = 1,vg = 1.5.
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Figure 2.2 — The second order effect of seasonality on )\, for three different models. The
blue, cyan and red curves represent the value of log \. in models 7, I" and /1, respectively. The
solid line indicates the exact numerical result while the dashed lines indicate the second order
approximation given in equations (2.12), (2.17) and (2.16). In models [ and I': C; = 1,C}; =
0. In model /I: C; = 0,C;; = 1. Parameter values: T = 5, f(t) = cos (2nt/T), ug =

0.5, py = 1,yg = 1.5, By = 1, By = 2.
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T=100
0.10 0.10
0.08 0.08
0.06 0.06
@) S
0.04 0.04
0.02 0.02
0.00 0.00
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
G o]

Figure 2.3 — Joint effects of C'; and C;; on )\, in equation (2.11). We plot the second order
effect of seasonality on A where f(t) = cos (27t/T"). We use red shading when A\, > 0, and
blue shading when A\ < 0. On the left panel, we use 7" = 1 and the difference in A\, between
each isocline is 0.025, and on the right panel we use 7" = 100 and the difference in A\, between
each isocline is 4. Parameter values: py = 0.05, uy = 1,75 = 5.

For the sake of simplicity we assume that the total density of the human population Sy + I +
Ry = Ny remains constant which implies that 0 = puy (Sy + Iy + Ry).

2.6.2 The constant case

In a constant environment, we assume that the parameters that govern the life cycle of the
vector do not vary with time and if the fecundity of the vector compensates exactly its mortality
(i.e., py = uy) the total density of the vector population Sy + Iy, = Ny is also constant. In
this scenario, the basic reproduction ratio is readily derived from the linearisation of the above
system at the disease free equilibrium (Iyy = Iy = Ry = 0,5y = Ng, Sy = Ny) which yields
(see [DHR10] ):

% —AX(t), withX(t) = (Ig(t), Iy (t)", (2.21)
with
A= (7] advn (2.22)
afuvNv — —pv

To determine the ability of the pathogen to invade the population. We use one of the three
thresholds P, A and R, was introduced by [HR95b; HR95a] and [WZ08].
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Cov(l;,Ny) <0
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Figure 2.4 — Understanding the covariance between Ny and /;; in model /. In (A), we plot
the density of the vector population Ny (full black line), the density of infected vectors Iy

(dashed gray line with scale I& = 1 + 100 (?‘;—S) — 1)), the density of infected hosts Iy (full
gray line with scale 7§ = 1 + 3500 (z’—g — 1). Note that the densities [y, and [7; are rescaled

using I and I§ to better visualize the lag with the fluctuations of Ny. The density of the
infected vector population I, follows the fluctuations of /Ny with a lag approximately equal to
T/4. The density of infected hosts [7; is driven by the fluctuations of infected vectors which
yields a larger lag behind the fluctuations of Ny (this lag is close to 7'/2). In (B) we present
the dynamics of Ny and [}; for the same par?ffheter values to show how a lag > T'/4 results
in a negative Cov (Ny, I};). The sign of Cov (I}, Ny) is given by the slope of the regression
line (full black line). Parameter values: ay = Ny (0) = gy = 1,1 = Byy,e = 0.5, = 1,
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< N{,") >
< NV/) > = N\/(O)

0 T/4 T/2 T 2T
Time

Figure 2.5 — Fluctuations of the density of vectors in models / and /’. In model / (blue
curve) we assume Ny (t) = 1 + ef(t). In model I’ (cyan curve) we assume Ny () = e/,
The dashed lines indicate the average value of the density of the vector population and we see
that this average value is higher in model I’. This effect on the average density of vectors drives
the first-order effect of seasonality in model I” we illustrate in Figure (2.2). Parameter values:
e=0.5and T = 10, f(t) = cos(2nt/T).
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A *
My > Uy + VH Cov(a,l;) <0
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R
E=] .
2 1.05 1 = U 0.00290
b 4 . J 0.00285
& 1.00 74 Cov(a, ) <0
(V]
©
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Time a(t)

Figure 2.6 — Understanding the covariance between a, I, and /7, in model //. We plot
the joint dynamics of the biting rate (solid black line), the density of infected vectors (dashed

gray line with I¢ = 1 + 100 (I&Et; = 1)) and the density of infected hosts (full gray line with

Iﬁ = 1+ 650 (I&I—:)) — 1)) in different scenarios. In (A) we assume vy = 0.01 and thus
py > g + vg. In this case the lag between the fluctuation of a(t) and Iy (¢)* is lower than
T'/4 which leads to Cov(a, I};) > 0 as indicated on the phase diagram on the right panel. In
contrast, the lag between the fluctuation of a(t) and I(¢)* is higher than 7'/4 which leads to
Cov(a, i) < 0. As in Figure (2.2) the sign of the covariance is given by the slope of the
regression line indicated on the phase plane with a black line. In (B) we assume vy = 0.49
and thus py = py + vg. In this case the lag between the fluctuation of a(¢) and both Iy (¢)*
and Iy (t)* is equal to 7'/4 which implies that Cov(a, ;) = Cov(a, I};) = 0. In case (C) we
assume vy = 1.25 which implies that py < 4gr + yg. Compare with (A) and note how the
modification of a single parameter affects the sign of both Cov(a, I};) and Cov(a, [};). Other
parameter values: € = 0.5,a9 = Ny(0) = gy = By = 1, py = 0.5, ug = 0.01, T = 1.
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We rewrite the constant matrix A = F — V such that F and V satisfies the Next Generation
Theorem [DHR10] and yields

F 0 afvu V_ pa+vu 0 .
aBuyNy 0 0 Ly

Therefore
0 aBvu
-1 _ Hv
Fv aBrv Ny 0 ’
U + Y
and N
Ry=p (FV_l) _ aBvr aBrv Ny (2.23)

pv o e+ vE

2.6.3 The periodic case

We assume that the vector population and the biting rate oscillate using the following peri-

odic functions

Ny (t) = Ny (0)(1+€Cr f(1)), (2.24)
a(t) ao(l + € C[]f(t)), (225)

where f(t) is a periodic function with period 7" and e measures the amplitude of the effects of

seasonal fluctuations. Taylor expansion of the transition matrix A (¢) for small € yields:

A(t) =Ag +ef(H)AL + Ef(t)*Ay + o(€?), (2.26)

with o(e?) uniform in time and

Ay — —(pg +vu) aoBva ’ 2.27)
aoBuav Ny (0)  —py
A, = 0 aoBvuaCrr 7 (2.28)
aoBuv Ny (0)(Cr + Cry) 0
0 0
A, = . (2.29)
aoBuv Ny (0)CiCrr 0

37



Partie , Chapter 2 — Seasonality and the persistence of vector-borne pathogens

We let L = ® 4 (T) be the monodromy matrix associated with A (¢). We first observe that thanks
to Duhamel’s formula (see subsection 2.6.5) for perturbation of linear operators, we have the

Taylor expansion

L = Lo + €L; + €Ly + o(€?), (2.30)
where
LO = €TAO
T
L, = / eT=910 f(5)A %40 ds
0

T T S
Ly = / e(T_S)AOf(s)2A265A° ds + / e(T_S)AOf(s)Al / e(S_T)AOf(T)AleTAO dr e*40 ds .
Jo 0 0

Since A is cooperative (with non negative off-diagonal entries) and irreducible, the matrix
L has positive entries, and by Perron Frobenius theorem, the spectral radius \g = p(Lg) is an
isolated eigenvalue with positive left and right eigenvectors vg, uy. Therefore, see e.g. [Kat66]
or [Klol7], for small e there exists positive left and right eigenvectors of L. with eigenvalue
A = p(L) : we have

Lu=)u, vL=)v, vu=1=(1,1)"u, (2.31)

and we have Taylor expansions for A, u, v and therefore for P:

u=up+eu; + euy + o(e?), (2.32)
A= Ao+ €A + Xy + o(€?), (2.33)
P =Py+eP, + Py 4 o(e?). (2.34)

Assumption Without loss in generality, and to simplify statements, we shall assume that
Ry = Py = )\g = 1. Indeed the transformation A, — A, + I translates to \g — A\ge"”.

First order results

We shall assume that (f) = [ f(s)ds # 0.
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Proposition 1. The first order approximations of A and P are given by:

_ pv (o + vm)
P=1+¢(f)T(Cr+2Cr) + ole). (2.36)

Proof. Identifying the coefficient of € in Lu = Au yields:

Llllo + L0u1 = )\1110 + )\Oul . (237)

Multiplying on the left by v,, we get since voLy = A\gvg and vouy = 1,
T
A = voLiug = / voe =140 £()A, e0ug ds (2.38)
0

Since AgLy = Age’0 = 7404, = Lgu, and Ruy is the eigenspace of L, with eigenvalue uy,
we infer that uy is an eigenvector of A, and since e74°uy, = \guy = uy we get that Aguy = 0.

Similarly voAy = 0 and thus e*4°u, = u, and voe*° = v,. Eventually, we get

pv (pm + i)
Wy + U+ YH

A1 = T{f)vod1ug = T(C; + 2Cy;) (2.39)

We have used explicit formulas for uy and vo. Let « = aofyy and v = aofByyv Ny (0) =

v (wE+vH) _Then

1 a+ g+ YH
U= ——/a, g +'7H)T7 Vo =
o+ pg + e apn +vm + pv)

()t (2.40)

To obtain the first order expansion of P, we recall P formula (see (2.7)): since for ¢ = 0,

we have Py = Ry = 1, we have

P P0<a><an><1 N Cov(a,NV)> (1 N Cov(a,f;)> (1 Cov(aNy, I%)

ag Ny (0) (a){Ny) (a)(I7) (AN Y (1) ) . (241

Recall that we have
X*(t) = @ (t)u = eouy + o(1) = uy + o(1). (2.42)

Therefore, since I}, = el X* is the second coordinate of X*, and the covariance with a constant
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is 0,

Cov(a, I;) = Cov(ag(1 + Crref(s)), e2 X*(s)) = agCrre Cov(f(s), eaug) + o(€) = ofe) .

(2.43)
Similarly Cov(aNy, I3;) = o(¢) and Cov(a, Ny/) = C;Crre? Var(f) = o(e€). Hence
(a)(alNv)
P= CL%T + o(€)
=1+ eCrrf(s)) ((L+eCrf(s)+ o(e) (14 eCrrf(s))) + o(e)
=1 + E(C[ + 20[[) + 0(6) .
]

Second order results
Expansion for A

2
Proposition 2. With w = ug + vu + pv, f(t) = cos(2nt/T) and ¢ = 1 + w? (l) we have

2

the second order Taylor expansion
A=1+eN + o(?), (2.44)
where

)\2 = V()LQMO + (1 — €_Tw)_1 VO(L1)2MO

_ (A )T <CICH _ T*(Cr+ Crpy = Cra(pn + yu))(Cr + Crr)(pa +v) — Crpy)

2(vu + pu + pv) A2+ T2(yg + pm + pov)?

Proof. Without loss in generality we can assume vy = 0 and then replace in the final formulas

pp by pg + vi- Since Ay = const. T(f) = 0, we obtain from (2.37)
Liug = (I —e™)uy. (2.45)

Observe that the spectrum of Ag is 0(Ag) = {0, —w} where w = —trace(A() Let 7(z) =

x — (x,vp) Uy be the projection on VOl of the decomposition R? = vé @ Ruy. Since voLjuy =
A1 = 0 we have

w = (1— ™) g, Lu,, (2.46)

40
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where Gy = vt = Ker(Ag + wl), u; € Gy. Since if voz = 0 then Agx = —wzx we obtain
w = (1-c ") L, (2.47)
Identifying the coefficients of €? in L, = )\ u, one gets
Louy + Liu; + Louy = Aguy + Aouy.
Multiplying on the left by v(, we get, since \g = 1,A; = 0, voug = 1, voLg = vy,

—1
A = voLowg + (1= ¢7™) " vg (L) w. (2.48)

From lemma (6)

(1- ) (L) = LN, —w) (Asd; — A140) Aﬁl“o

2me

Combing with the result of lemma (7) hence,
~1
A2 = voLoug + (1 —e™") " v (Ly) wg

1 T\>T T T AjAu
=—= ( ) — + —N(T,—w) voAl—Aluo — 5 N(T, —w)vediAq oA 1ty
2/ 2 27w 21 w?

T A 1 —e Tw
+ v [T+ =2 ) Agug — ————5VoAodaug.
2 w 2¢ w?

? T Ag
= —— (ﬂ_) VoAlA()Alllo + EVO (I + )Agllo

By the definition of Ay, A; and A,, one gets

T /T\?> T Ao
A2 5 ( ) VoA 1ApA1up + Vo (I + >A2ll0
c \2m 2
T /T\? T CpC
= o <27r> % (((Cr+Crr) pr — v Crr) ((Cr + Crr) pv — paCrr)) + 5%/“{/“/
T CrC 1 /T\?
= MZ]MH ( I; L_ % <27r> (Cr+Crr) pr — v Crr) (Cr+ Crp) pov — MHCH)>

]

Expansion for P:
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2
N
Let us remember that we assume that Ry = @By 1By Ny (0) = 1. Therefore, since
pv (e + Yr)
(a) = ag, (Nv) = Nv(0) we get
p_ (1 N Cov (a,Nv)> <1 N Cov(]&,a)) (1 N Cov (I}},aNV)> (2.49)
(a)(Nv) (I3 ){a) (Iig){aNy) )~ '

For f(t) = cos(2nt/T) we have (f?) = 1/2. Therefore, the first factor of (2.49) is

Cov (a, Ny)

2
@y (Ny) Cov(l +eCrrf, 1+ €Crf) = €2CICII<f2> = %C’ICH, (2.50)

The second factor is computed with the help of formula (2.61) of Lemma 3 below:

Cov(Iy,a)  Cov(ly, 1+ eCyrf)

2.51
T3} (a) 1) 20
Cr [ T\?
= —6227101 (271') v <_CH,UV — C[,uV + C]]/LH) + 0(6). (2.52)
Similarly, for the third factor, we get
COV ([}_}, an) _ COV([;}, (1 + 60[]f)<1 + EC[f)) (2 53)
(i) (aNv) (L) {(1+ €Crrf)(1 + €Crf)) '
_ (L, ) (I, )
— 6((01 + OII) <II*{>(1 + %620101[) + ECICII <[[*{>(1 4 ;€2CICII)>
(2.54)

€

2T N? 1
= —(C[ + CH)?C <27T) ,LLH(—C’[],LLH + C],uv + O[[[LV) + 56201011 + 0(62) .
(2.55)

T 2
Combining all these yields, since c = 1 4 w? (2) ,
T

CuCr 1
2 2c

P=1+¢ [ (T> ((Cr+ Cr) pv = Cripr) ((Cr + Crp) iy — Crrpy) | + 0(€7) |

2m
(2.56)
We derive equation ((2.13)) by letting C';; = 0 and C7 = 1 (and py is replaced by pg + vg).
Similarly, we derive equation ((2.15)) by letting C; = 0 and C;; = 1.

42



2.6. Supplementary information

Lemma 3. We have,

aw:uvhé;1+ﬁmh%+o@. (2.57)
(X*f) = —6210 (;)2A0A1u0 +o(e) . (2.58)
(X" f*) = ;uo +o(e) . (2.59)
Therefore,
<<]];I;;> = —i (;)2NH(_CH,UH + Crpy + Cripy) + ofe) - (2.60)
<<I]?;> = —6210 (;)2 v (=Crippv — Crpy + Crrpi) + o(e) - (2.61)

Proof. We first give an expansion of X*(¢) itself in terms of powers of e.
X*(t) = ®a(t)u,
t t s
= [ert + 6/ elt=5104, f(s5)e*0ds + €2 (/ elt=9404, £(s) / e, f (1) e™odrds
0 0 0

t
+/ e(t8>AoA2f2(S)eSA°d8> + O(e)| x (uo + euy + €uy + 0(63))
0

t t
= Mty 4 ¢ </ e(t_s)AOAlf(s)esAodsuo + 6A°tu1) + € (eAOtug + / e(t_S)AOAlf(s)GSAOdsul
0 0

t s t
+/ ell=9104, £(5) / 5o £ () e drdsug + / e(t_S)AOAQfQ(s)GSAOdsu()) + o(e).
0 0 0

Computation of (X", f)

f}@y@ﬁ
— /OT f(t)ertugdt + € (/OT f(t) /Ot elt=540 £ (5) Aye*Aouydsdt + /OT f(t)eAOtuldt> + o(e) .

The first term is easily computed

T T
/f@wwm:/f@mﬁ:ﬂﬁ%:g
0 0
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The first term of the ¢ factor is:
T t
/ f(t)/ =90 £ (5) A e*A0ugdsdt
0 0
T —w(t—s) g
- / / (s (1 + 20 e”) Augdsdt
w
S / / Jew=9) 45 gy AT
w

_ ! (wT (T) e _w)> Aoy

c 2 2T 27 w

The second term of the ¢ factor is:

T
/ f(t)erotuydt
0
r Ay e A T A
- / £(1) (I + 20 0) i AoA1uo
0 w w 2mc w
- o 2
= N(T, w) 27rcw2A0A1u0
T
N(T, —w) AoA U since A5 = —wA,.
2mcw

Hence, the ¢ factor is

1 (wT /T T AjAu <T)2 3N(T,—w)  wl?\ A1A,
— == — N(T, - -
c ( 2 <27T> + o ( w)) w + 2 4ec + 4d7e w
T /T\?
- 2c (2 ) AoA1to,

from which we deduce (2.58).

Computation of (X*)

T T Tt T
/ X*(t)dt = / etotugdt + ¢ (/ / elt=510A | f(s)e A ouydsdt + / eAOtuldt> + o(e) .
0 0 o Jo 0

From expression (2.97), the first term is

T T
/ eAOtuodt = / llgdt = Tll()
0 0
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From expression (2.97) we get:

T N(T, — T
A ertuldt — (1 o e—Tw)—IM </0 e15140140 dt)Aluo

w
N(T, —
_ (1 efTw)—l ( ) w) (6TAD _ I)Aluo
AoAu
= N(T, —w)=""=

Eventually,

T t
/ / €(t78)A0A1f(S)€SAOdetuO
T A A 1 T\? T2 A A
(1 + “) A, (1 + 0) u — - (—2w (2) N(T, —w) + 2) (I + 0) A, 200
C w

o s T w
. N(T U))AUA (I+140> u, + N(T, —w)A0A1A0u0

w w2

Combining the preceding we get (2.57).

Computation of (X* f2) Since e/4ou, = uy, we get

T T 27t 2 T
/0 FA)X*(t)dt = /0 sin (;f) ertagdt 4 o(e) = ZUo + o(e) . (2.62)

)
"

er = (1,0),es = (0, 1) are the coordinate vectors, then [}, =
el X*. Therefore, (I f) = eI (X*f) and thanks to the matrix computations

Computation of

apg (—Crpg + Crivy + Crrpiy)

eTAjAuy =
e -t g (2.63)
T ~ papy (=Crpy — Cruy + Crrpp)
€2AOA]_u0 = )
a+ g

we get

Igfy Jy f( Jet X" (t)dt
Iy [TeIX*(t)dt

1 T2 AO A1u0
e ApAiug + 0(€)> TeTug (1 6%6{ <[ + w) Teg o(e)

1 T /T\>
= T (—6 (271’) 6?AOA1U0+0(6)>
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o + o(€)

B 1 —eT’ ( T )2 apg (—Crpg + Crivy + Crrpy)

_T & 2c \27 a+ g

a+ fig

1 /T\?
= —6% (277) v (=Cripr + Crpy + Crrpy) + o(e€) (2.64)

Similarly,

(I ) Jy f)eda(t)dt
Iy JTela(t)dt

T (TN 1 T? Ap\ Aqug
= (—e—(—]) elA 1—e—el [1+=2 0]
( ‘9 (27?) K 0A1u0+0(6)> Telug ( “on 2 ( * w ) Telugy +0(e)

1 —T T \?
- Telug < 2¢ (27T> engAlu()) +ol)

_ 1 —€T ( TN? pviw (=Crrpy — Cruy + Crriiyr)
- HH 2 \21 +o(e)
T c s o+ Ly
a+ iy
1 /T\?
= —62*0 <27r> v (—=Cripy — Crpy + Crrpig) + o(e). (2.65)

2.6.4 An alternative model for the fluctuation of vector density: Model I’

In model I we assume that Ny (t) = Ny (0)e““r /). This results from an alternative model
of vector reproduction used in [HR95a; HR95b]. We assume that the per capita growth rate

varies around its mean following
pv(t) = py(1 — exsin(2nt/T)) . (2.66)

Then the total vector population /Vy satisfies the ODE

dN;
dtV = (pv — wv)Nv, (2.67)
and is therefore given by
T
Ny (t) = Ny (0) exp(emQ— cos(2nt/T)), (2.68)
T
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that is we take C'} = k5. This yields

Ay = : ) 4= VN e
aoBuv Ny (0)Cp 0 aoBav Ny (0)3CF 0

There is no fluctuation in the biting rate so (a) = ag. On the other hand we have (Ny) =
Ny (0)(1+ 62% + 0(€?)). The expression of P is thus:

(M) Cov (a, Ny) Cov (I}, a) Cov (I3, aNy)
~ v 0+ o) 0 ) (0 e ) e
= (1+ 62041’ + o(e?)) (1 + W) (2.71)

We observe that the second order term, in €2, of Ny (t) may only give a term in € in the
covariance. In a nutshell, we can keep the same expansion as in the preceding section, the one

given by Lemma 3, replacing C'» by C; and C; by 0. Therefore:

P14+ o) (1- Cf/ez(wauH +o(e)). 2.72)
4 2c \ 27

This leads easily to the expression (2.15) (if we substitute at the end gy + vy to ). The fact
that P. > 1 comes from the following sequence of inequalities

e2C? [ 1 (2)2#111#\/
P:1+T/ 5— s T\2 +O(62>
2
L+ (pm + pv) (g)
2
202, (1 1 () (ua +pv)?
21+€ 1 -4 (2) — + o(€?)
L+ (pm + pv)? (g)
2
202, (=) (pm + pv)?
>14 S () ( +o(e?) > 1.

8 14 (i + )2 (%)2

To compute the influence on A of the model I’, we only need to modify the Taylor expan-
sion(2.26) of A(t) : we still have no first-order term A\ = 1 + €2),, and we just plug in the new

expressions of A; and A, into the formula

T /T \2 T A
Ao = —— (> VoA 1ApA Uy + =V [ 1+ =2 | Asuy,
2¢ \ 27 2 w
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to obtain formula ((2.16)).

2.6.5 Auxiliary results
Bounding the flow of an ODE

First, we show that control on the coefficients of an ODE gives control on the flow of the
ODE.

Lemma 4. Let A : [0,a] — Mxq be a continuous matrix function, and ® a(t) be its funda-

mental matrix

A A (1)
dt

—A(t)BA(t), Ba(0)=1,. (2.73)

Then,
200 < e tsup 1AL ). @)

Proof. Letx € R%. Then x(t) = ®4 (t)z(t) is the solution of

d
d—f =AM z(t), 2(0)=z. (2.75)
Hence, .
o(t) = 7 + / A(s)z(s) ds, (2.76)
0
and taking norms yield
t t
@) < ] +/0 [A(s) | (s)l[ ds < |[]] +Sg§|!A(S)||/O ()] ds - 2.77)
We conclude by Gronwall’s Lemma. [

Duhamel’s formula and Taylor expansions

Let us denote by @, the fundamental matrix of the differential flow generated by the con-

tinuous matrix function ¢ — A(¢). It is the solution of the differential equation

dif* _ A1) (2.78)

with initial condition @4 (0) = I (the identity matrix).
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If B(t) is another continuous matrix function, then we have
Ba.n(t) = Ba(l) (I + [ "B a(s) " B(s) <I>A+B(s)ds> (2.79)
Let us see how it allows to determine Taylor’s expansion. Let us start from
A(t)=A¢+ef(t)Ar + o(e) (2.80)
with o(¢) uniform in time. Then since ®4,(t) = e'A°, by Duhamel’s formula
Bp () = iAo (1 + [ " A (e f(5)Ay + ofc)) Ba(s) ds) (2.81)

Since, by Lemma 4, sup,.1 || ®a(s)|| < C' < 400, we have
t
Py (l) = o 4 e etho / e A0 f(5)AL B A(5)ds + o(e) (2.82)
0

This implies that ® 5 (t) = €A + o(1) which we reinject in the integral term of (2.82) to get

t
P p(t) = o 4 e etho / e f(s) Ay e ds + o(e) (2.83)
0

Similarly, we obtain the Taylor expansion (2.30).

Some results of integral calculations.

T>2_0+3

T 2
Recall that ¢ := 1 + w? () Letd :=1+w (
21 47 4

Lemma 5. Let N(t,x) = [i f(s)e®*ds, where x is a real number. Then, for T,w > 0,

T (w T
NI w) = W <0, NI ~w)= _f’wa(TQT;);) = —N(T,w)e T > 0.
(2.84)
Proof.
= YeFids
= n(2ns/T)e*ds
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= —2]7; /t e*dcos(2ms/T)
= _277; ((e cos(2nt/T+) — 1) — k/ot e cos(27rs/T+)ds>

_ _;(ekt cos(2mt/T) — 1) + k (27;)2 /t e*dsin(2rs/T)

0

= I (M cos(@mt/T) — 1) + & (T)2 o sinmt/T) — (1L Ntk
2w 2w 2 ’
Therefore,

— L (M cos(2nt/T) — 1) + k (L) (M sin(2nt/T))

Nt k) = T+ 2Ly

(2.85)

Let us list now some computations that can be established in the same way.

PR
ws g — A7 _°
/0 f(2s)e"ds = 7 = 2C,N(T,w),
T —ws c
/0 f(2s)e™%ds = Q—C/N(T, —w).

By using integration by parts, one also gets

\ S

t Lektsin (2mth/T) + k
N3 (h,t, k) :/ cos(h2ms/T)e"ds = 2= ( /1) (
0

) (e’” cos (2wht/T) — 1) |

1 \?
2wh

mw

—~ =

1+k

We also list some results in the calculation of the integral.

/OT sin (27t /T) /Ot sin (27s/T) /Os sin (277 /T) drdsdt = 0

T t s T 2 N T — T2
/0 e "sin (27Tt/T)/O sin (27s/T) e“’s/o sin (277 /T) drdsdt = (27T> (3 (40’0, w) + Zﬂc>

/OTf(t> /Otf(s) /0 Fr)e =) drdsdt = — (4T>2 <3N2(1,/T, —w) wT2>

c \4m c p
[ e [ 166) [ ryernds —o
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/Ot f(s) Os f(r)e “Tdrds = 21\7(7}:10) <T)2

cc 47

T t s
/ f(t)e_wt/ f(s)ews/ f(r)e *Tdrdsdt (2.86)
0 0 0
1 /TN [—-8(5c—38) T
=—|— —— = N(T, — 4wT— (1 —wT 2.
2<47r) ( g V(T —w) 4wl (1 e >> (287)
T T N(T
/ f(t / Fs)e / F(r)drdsdt = ( > T 5N(T, ~w) (2.88)
0 6c'c
r _ , T\?>5N(T, —w)
/0 e~ sin (2t /T) / sin (27s/T) /O sin (277 /T) drdsdt = (2W> S (2.89)
t T No(2,w,t
/ sin(27s/T)e" / sin(2r7/T)drds = — () No@wt) No(1,w,t) (2.90)
0 0 2m 2
t s
/ sin (27s/T) / sin (2707 /T) e~*"drds 2.91)
0 0
1(/T\° t T w T\ T . t
= ((47) (cos (4m7:) 1) + 5,8 W”)) 50 (a2) (0= gy (7))
(2.92)
T s T?
in 2w — = — 2.
/0 /Osm WTdet o (2.93)
Tt s 1 T\? 1?2
/0 /0 sin 27TT6 dsdt = - (—210 <27r) N(T, —w) + 27r> (2.94)
T N(T. —
/ / sin2m e~ =) dsdt — NT, —w) (2.95)
T w
N(T,
/ —ut / sin2n ~dsdt = ( —) (2.96)
Computation of L, and L,
Since A has two different eigenvalues, 0 and —w = tr(A,) we have the formula
1
et =T — - (e =1)A0  (s€R). (2.97)
Lemma 6. We have N AA
L, = N(T, —w)( OAl; 1Ao) (2.98)
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Since Aguy = 0 this yields

A
Loag — N(T, —uw) 204140, (2.99)
w
And thus, A
uy = (1—e ) 'Ly = (1 — e T)'N(T, —w) oduto (2.100)
w
Proof.
L = / e(1=5140 [ ()4, 40 ds 2.101)
0
t A A A A
= [ f(s) ((1 + °> - eW<t8>°> Ay ((I + 0) e“’“’) ds  (2.102)
0 w w w w
t A A A A
= [ f(s) KI + °> A, <I+ °> esem =04, (1 + 0) (2.103)
0 w w
Ao\ A ApA A
- <I+ 0>A10 1oy 0] ds (2.104)
w
T A A Ao\ A
=L, :/ f(s)[ evseT OA1 <[+ 0) —e” <1+ 0>A10] ds (2.105)
0 w w
Ag) A A A
L, = —N(T,—w) (1 + )Al" — N(T,w)e *T=24, (I + “)
w w w
ApA; —AA
= N(T, —w)( A1 = Aido) (2.106)
w
O
Lemma 7. We have
3T A T A 1 —eTw
Lou, = T N(T, —w) oAy =)Ao+ = [+ =) Aoup — %AOAZL‘O
8mc w 2 w 2cw
3T Ag, A 1 T\*T T A A
o N(T. w)EOAIJAluO - <w <2W> 5+ 5 N(T. w)> (1 + °> AlEOAluO.
Proof. We have Ly := L) + L3, with
T s
L= [ T M)A, [ e p(r)a e drds (2.107)
0 0
T
L2 = / eT=5)40 £( ) A0 ds. (2.108)
0
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One has

t S
/ e(t_S)AOf(s)Al / e(S_T)AOf(T)AleTAO drds
0 0

[ ((120) e, [ (120 (1)
_ewreusoy, <I+A°> —evT <[+A >A1A+ s OAQAO] drds
w w w
= [ 16) [ ryaras <I+A )Al <I+A )Al (uj‘j)
[ o (1 1)
_/ /s / f(r)e N drds (I+AO>A1AOA1 <I+AO>
w
+/ f(s)/ f(T)ewTdesewti?A @Al (I [200>
—/ / Ye~ drds <I+A >A1 <I+O> at
w w
+/ f(s) /8 f(T)e_w(T_S)dese_“’ti}()Al (I + i?) AlAO
+/ e [ p(rydrds <I+A0>A1A(’Aﬁ:;

A
—/ f /f deS@iwt OAlfoAlAg

As a result, we can compute L, and use equalities (2.86)-(2.92):

[ o (1) et a, g [(r+42) y (142)

A A Ay , A AoAsA
—eTem 04, <I+ 0) - <I+ 0>A10 e—usAods O] dr
w

w w?

s —wT
:—/OTf(S)ewS/O f(T)desel;%Al< AO>A1 <I+AO>
— /T f(s) /s f(r)e = drds (I + AO) AlﬂAl (I + f:;)

Ay A A
—l—/ / Ye"drdse” T OAl—OAl ([ 0)
w
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- /OT £(s) /0 F(r)e""drds (1 v “2;) A, (1 v ‘1?) Al“:lf
+ /OT f(s) /Os f(T)e’w(T’S)dese’“’T@Al (I + 12?) Allzj)

1 T\>T T A A A
- - w(> + N, —w) | [T+ 2) A 224, (1+22
c 2 2 2 w W w

3T Ay A A
N(T, —w)=24,~°A, <I + °>
w w w

w
T s A Ay A
+/ f(s)e’ws/ f(r)drds <I+O>A10A1 °
0 0 w w w
T A A A
_ 3 N(T, —w) oA <I+ °>A1 <I+0>
8mc w w w

8
3T A A A
+ 2 N(T, —w) <I + °> A (I + 0) A, 20
8rc w w w
1 T\*T T A A A
+ - (—w () ~ 4 N(T,w) ) e =224, [1+22) 4,22
c 27 2 2 w w w
3T A Ay A
+ 2 N(T, —w) <I + 0) A, 204,20
8mc w w w
Therefore
3T A A 3T A A
Liug = —— N(T, —w) oA (14 A0) grug+ ZN(T, —w)=2A, —2Au,
8rc w w 8mc w w
1 T\>T T Ay Ay
- - — | =+ —N(T, - I+ —]A;—Aug.
c<w<27r> 2+27r (T, w>><+w> Y 1o
and

T
L2u, :/ elT=9)04, f2(s)e* 0 dsu,
0

1 /T A A 4
= —/ [+ 20 o Twesw?0 (1 — cos 7rs> dsAsug
2 Jo w w T
1 A 1 — e Tw
= (1+2%) - 22 Ayl A
2 w ¢ w?
T A 1 —e Tw
=— 1|17 + =0 AQUO — ,7A0A2l10.
2 w 2¢ w?
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Densities

0 T/4 T/2 T 2T
Time

Cov(l;,Ny) <0

0.07435 A

0.07430 A

*\I 007425 7

0.07420 A

0.07415 A

Figure 2.7 — Understanding the covariance between Ny and /; in model /'. The same

information as in figure (2.6) with the infected vector I§ = 1 + 150 (<—()) — ) and infected

host Ig = 1+ 6000 (]H(t>) ) Parameters values: ag = Ny (0) = gy = 1,1 = Byg, e =






CHAPTER 3

TIMING INFECTIOUS DISEASE CONTROL
TO MINIMIZE THE RISK OF PATHOGEN
EMERGENCE

The seasonality of the environment can have a dramatic impact on the ability of a pathogen
to emerge and to induce a major epidemic. In finite host populations, we identify a critical
population size of the host population below which the probability of pathogen emergence is
very small. This critical population size is very sensitive to the period and to the amplitude of
the fluctuations of the environment. These results have practical implications for the design of
more effective control strategies aiming to limit the risk of pathogen emergence. In particular,
we show that the deployment of pathogen control at the end of a favorable period for pathogen

transmission often yields a lower probability of pathogen emergence.

3.1 Introduction

The ability of a pathogen to spread in a fully susceptible population is governed by its re-
production number Ry [AM79; AMS86]. In a simple logistic model with direct pathogen trans-
mission R, measures the number of secondary cases produced by an infected case and takes
the simple form Ry = 3/p where 3 is the transmission rate and i the duration of the infection.
When R < 1, a pathogen rapidly goes to extinction after its introduction in the host population.
When R > 1, in the deterministic approximation (i.e., when the host population is assumed to
be infinitely large) the pathogen will spread and will ultimately reach an endemic equilibrium,

with a positive density of infected and susceptible hosts.

In a finite host population, however, the pathogen is doomed to go extinct after some time.
Yet, the distribution of the time to go extinct after pathogen introduction is often bimodal: ex-

tinction may either take place very fast or much longer after the introduction of the pathogen
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[WHISS; Bai64]. To account for this bimodality it is useful to define the probability p..; = 1/Rq
that the pathogen population goes extinct very fast. In contrast, with probability p. = 1 — peys,
the pathogen takes off and results in a major epidemic. After this emergence, the density of
infected hosts is expected to fluctuate stochastically around an endemic equilibrium [DHB13;
AJ12; ADI13] and the extinction time of such pathogen populations may be very long, even

when the size of the population is modest.

Periodic fluctuations of the environment can have dramatic effects on the epidemiological
dynamics of infectious diseases [BacO7; Hee+15; Mor+13; KCG22]. Yet, in a simple epi-
demiological scenario with direct transmission and a single host type, the basic reproduction
number is simply Ry = %, a ratio of the average value of [ and p over one period of the
fluctuation. Second, seasonality can also affect the probability of emergence. As pointed out
by Carmona & Gandon [CG20] the timing of the introduction relative to the fluctuations of the
environment has a massive impact on the probability to take off p. (o). In particular, this prob-
ability of emergence is reduced just before the "bad" transmission season from the perspective
of the pathogen. Under the assumption that the introduction time of the pathogen is uniformly
distributed throughout the year it is possible to compute < p. > the average probability of
emergence. Carmona & Gandon [CG20] studied the influence of periodic fluctuations of the
environment on < p. > in an infinite host population size and showed that < p. > may be

minimized for some periodic functions.

In the following, we extend this analysis to analyze the dynamics of pathogen epidemics
in finite host populations. First, we identify a threshold host population size below which the
risk of pathogen emergence < p. > becomes vanishingly small. Second, we explore alternative
control strategies that modify pathogen transmission and we identify the best time to implement

a control to limit the risk of pathogen emergence.

3.2 The model

We denote by K the capacity, i.e. the maximal host population, and X ) (¢) the number of
infected host at time ¢, so that the number of susceptible hosts is S (t) = K — X (t). The
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stochastic dynamics is described by the transitions :

X (K) ()
X — X5 11 with rate BHXIO ) (1 - ik (3.1)
XU o xE) _ 1 with rate pX B (1) (3.2)

Note that the pathogen transmission rate is density dependent because the availability of
susceptible hosts drops when the epidemic spreads in the host population. Besides, we assume
that 5(t) is a T-periodic, piecewise continuous function, modeling the seasonality of the envi-

ronment. In contrast, we assume that the death rate is constant and equal to p > 0.

The deterministic approximation says that for large values of K, starting the epidemic with

1)

a proportion z of infected hosts, the stochastic process X 7 1s well approximated on finite

time intervals by the solution of the logistic ODE

dx(t)
dt

= B()z(t)(1 — z(t) — pa(t),  z(0) = zo. (3.3)

Observe that in case (3) > u, all trajectories are attracted to the unique periodic solution of
the ODE (3.3) given by :

1 t

x(t) = ,  with gpt:/ﬂs—uds.
( ) e—o(t) (fot B(s)eﬂo(s)ds + ﬁf{ﬁ(s)eﬂs)ds) ( ) 0 ( ( ) )

(3.4)

However, observe that since X (%) is a Markov process on the finite state space {0, ..., K}

with 0 as the only absorbing state and all the other states communicating, we know that almost

surely it is absorbed at 0, that is extinction is almost sure.

3.3 Results

3.3.1 The constant case

The stochastic dynamics of the pathogen depend on the value of its reproduction number
Ry = % Let TéK) be the time to extinction of the pathogen population after introducing some

infected hosts in the host population:
7" =inf {t > 0: X () =0}. (3.5)
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If Ry < 1 then 7™

rameter i — 3 (see section (3.7.1) ). Consequently, whatever the value of the carrying capacity

is stochastically dominated by an exponential random variable of pa-

K, the expected time to extinction is at most equal to ;1.
If Ry > 1, then we consider the take off probability : the probability that for large capacity
K, the pathogen reaches a fixed proportion xy /K, with 0 < xy < 1. From section (3.7.2) of

Supplementary Information we get

P(3t>0, X)) > a0k | X0 =1)>1- —F (3.6)
and

~ (K) (K)(()) — [ad

limsupP (3t > 0, X" (t) > 20K | XM(0) =1) <1-%. (3.7)

K—+oc0 5
Hence we infer that

P (X5 takes off ) =1 — 2 . (3.8)
( Jo1-t

If we work conditionally on the take off, and thanks to the Markov property, this means that
we assume that w — 9 € (0,1). [AD98] proved that the mean extinction time of this

process is exponential in the capacity K:

(K) 27’(’ R(] KV . o i
E |7 }N,/K(RO_W@ "o with Vo =InRo—1+ 5 >0. (3.9)

We obtain the same asymptotic when starting with a single pathogen. Indeed, upper and

lower bound obtained in formulas (2.5-2.8) of [KL89] combine to give the approximation

! 2—”(6”'0 +0(1)), (3.10)

B[ | X000 =1] = -5\ &

with O(1) bounded. In particular, the speed of the convergence to the quasi-stationary distribu-
tion (QSD) has to be faster than of the speed of extinction (see (3.7.3)). According to [CCM16],
for all K > 1 with

oq(K)-l—Z—l—O(ll(). (3.11)

The process goes to extinction with probability close to 1 — a4 (K') and with probability close to

a1 (K) the process obeys the QSD v on an interval exponentially large in K. More precisely,
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1
see Remark 3.6, 3.8 of [CCM16] if K log’ K < t < WeVOK then

drv (P (X{ € (), aa (K" + (1= aa(K)) b)) < 1, (3.12)

where dry (i, v) is the total variation distance between two probability measures p and v which

is given by:

drv (p,v) = S [u(A) — v(A)]

Furthermore, we shall assume that we can prove as in Theorem 3.7 [CCM16] that the QSD

VX is close to a Gaussian distribution G* centered at KZ.,,with T,, = 1 — g, Jo > 0,
GK ~ N | Kivg, —— | and
VK
o)
K K\ __
dry (G*, ) = = (3.13)

In the general case, by a coupling argument that the probability of surviving the first period

is increasing in K, if tp < 1 — v + . It follows from Theorem 3.3 [CCM19] there

0g
, T (8~ n)
exits C, Cy, C3,Cy, C5 > 0 and for all t > 0

drv (Py (XE €.),ar (KX + (1 - ay(K)) by) < Crem R0t ™8 | cremiiaie | (3.14)

3.3.2 The periodic case

Given a 1-periodic locally bounded function /3 we consider X !7) a stochastic logistic pro-
cess with carrying capacity K and T-periodic birth rate t — (3(¢/T). We shall observe a very

different behavior for small and large periods.

The reproduction number can be computed from the branching process approximation [CG20;
Bac07; Hee+15]:

(8) : 17 L
Ro="".  with <5>:T/0 5(5/T)ds:/0 B(u) du. (3.15)

If Ry < 1, then 7"’ is stochastically dominated by the absorption time 7o(Z(7:*)) of a linear
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birth death process with birth rate ¢ — ((¢/7) and death rate x, which has a finite expectation
that depends on 7' but not on K (see section (3.7.1)).

If Ry > 1 the behavior depends strongly on the length of period 7" as we shall see in the next

sections.

3.3.3 Short period approximations

We establish in section (3.7.4) a homogenization result. The whole process (X 7 (¢), ¢ >
0) converges in distribution to the process (X%)(¢),t > 0), a stochastic logistic process with
carrying capacity K, death rate p and constant birth rate (). Observe that this convergence
in distribution holds on the whole time interval [0, +o0o|, that is for the whole duration of the
epidemic, and whatever the initial number of infections (in particular it implies the convergence
in distribution of the extinction times). In contrast, the deterministic approximation only holds
on finite time intervals, and for a large initial population. In other words, the whole behavior of
X (KT) i well approximated by the whole behavior of X ) (see Figure 3.1) which is described
at the end of section (3.3.1)

3.3.4 Long period approximations

We are unable to handle the general situation and shall restrict ourselves to the following

step transmission functions

t— Bt/T) =By Loct<iy) (t €[0,T7), (3.16)

with v € (0,1) and 5, > p. Hence the time interval (0, (1 — v)7") is “Good” for the pathogen
(e.g. summer season) and the time interval ((1 — )7, 7T) is “Bad” for the pathogen (e.g. a

winter season).

The take off probability

In contrast to the constant coefficients case, this stochastic process depends strongly on the

introduction time of the pathogen.

Let us first look at the deterministic approximation (3.3). The unique solution with z:(¢,T") =
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XK, T(t)

XX(t)

Figure 3.1 — Periodic quasi stationary distribution and Homogenization.. The gray lines
represent the trajectories of the stochastic process %X (K1) (¢)(top panel) and % (bottom
panel- the process with birth rate 3y (1 — ) 7). The blue curve represents the average of 30
simulated trajectories and the red curve represents the trajectories of the process that result
in extinction. The time interval is 40 periods. Parameters: There is 1 infected individual
introduced for all processes, carrying capacity K = 100, period 7' = 0.2. step birth rate
B(t/T) = Bo Lo<t/T<i—) o = 4.0, v = 0.308onstant death rate ;1 = 1. In the top panel, the
simulation with g varies with time. The bottom panel is the full stochastic with the average (.

In both figures, there are 5 trajectories that vanished.
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X, 1.e. the proportion x( of pathogen introduced at time ¢,7’, satisfies (see lemma (17).)

1 1

— Boe? P ds —
2(1=7)T) e ’

Zo 0 Leq

(3.17)

_ o~ T(Bo—u)(1~7) <€¢(t°T) ot GWT) ,

o1 e(I=NTBo—Tu _ 1
“ Bo e(=NT(Bo—n) — 1"

With this explicit formula, we can define a critical time ¢, such that |z, — z((1 —v)T)| < € iff
to < t. for K large (see (3.80) ) with

1 Bo + eTnT 1
— eT(1=7)(Bo—H) —_1
te=1—~+-—log | Dot <02 : (3.18)
T(Bo = 1) Q&—Jhﬂ%ff>

Therefore, see Figure 3.2, if 0 < ¢y < t. the pathogen introduced at time ?(,7" has at time
(1 — )T a density close to its equilibrium density. On the other hand, if ¢ > ¢, the pathogen
has not enough time to grow and the density at time (1 — )7 is intermediary (it can be quite

small).

Let us now consider the stochastic process and the following heuristic. X 7)(t) is well
approximated for small times by a linear birth death process with birth rate 3, and death rate
i, so with probability /5, it will go extinct and with probability 1 — £ it will grow like

Bo
log K

t — elPo=mt  Therefore it shall need a time of order 5o p O reach a density of order the

capacity K. Therefore, if ¢y € (t,1 — ~) where
log K
=1y = (3.19)
T(Bo — )

the pathogen introduced at time ¢,7" has not enough time to reach its endemic equilibrium before
the bad season. In contrast, if ¢, < tX then the pathogen shall with probability 1 — é‘—o reach at
time (1 — )7 its quasi stationary distribution with is concentrated on the value Kx.,. The take
off probability is the probability of reaching a population of order K before the bad season: for
large enough K,

i o<ty <tf.
P (take off | X (toT) = 1) ~ o (3.20)
0 if tg > tX.
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Figure 3.2 — Reaching the equilibrium density depends on the starting time : We start three
different trajectories: t. is the critical time for which the trajectory has just enough time to be

close to the equilibrium value before the bad season. Parameters values: 5(t) = (o Lo<t/r<1-+),
Bo=1,pu=1y=0.3,T = 20,e = 0.005,x9 = 0.01, t. = 0.4362.

65



Partie , Chapter 3 — Timing infectious disease control to minimize the risk of pathogen emergence

Mean extinction time and critical capacity

According to the description of the end of section (3.3.1), conditionally on take off, the
C'log K

pathogen introduced at time ¢y7', with {) < 1 — v — T(ﬁog)’ with C' a constant, yields a
0— M

population of size X 51)((1 — 4)T) ~ Kz.,. Observe that on the time interval ((1 — )7, T)
the process X $7) is a death process with death rate j, hence an individual survives this time
interval with probability e~7"*T. Consequently, the probability of surviving the first period,

conditionally on take off is:

Pper = P (XUI(T) > 0| XFD (15T = 1, take off) (3.21)
~ P (XEID(T) > 0] XED((1 = )T) = Kxgy) (3.22)
=E[1— (1 — )X 0] (3.23)
~1— (1 — e W)Kaeea (3.24)

Following [CG20] we can define a critical capacity, for large periods, as

el

Ke = (3.25)

Teqg
If K < K¢ then py., ~ 0 and thus, even if there is a take off, with a high probability, that

the pathogen will not survive the first period.

If K > K¢ then conditionally on take off, thanks to the Markov property, the number of
periods that the pathogen survives is a geometric random variable of parameter 1 — p,., and

therefore .

— Pper

E [7"") | take off| ~ T ~T(1— e W)~ Keea (3.26)

The mean extinction time is thus exponential in the carrying capacity.

Large time behavior

We establish in section (3.7.3) the existence of a quasi periodic stationary distribution.
Therefore, when there is a take off, we have for large ¢, but not too large (because the pathogen
population is doomed to go extinct in a finite host population), a good approximation in the
distribution of w by a%)(t) a periodic distribution on {1, ..., K} (see Figure 3.3).
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----- Deterministic dynamics
—— Periodic attractor
—— Stochastic process

0.5 A

0.4 -

0.3 A
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Time

Figure 3.3 — The periodic attractor in deterministic and stochastic model. In solid black line,
the periodic attractor x*(¢), in dashed black line the deterministic dynamics x(¢) and in solid
blue line the stochastic process X T)(¢) /K. The winter season is shaded in gray. Parameter
values : = 1,7 = 0.3,8 = 2,T = 20, 8(t) = BoLo<|t/7]<1-)» X T (0) = 10 (to avoid
early extinction), o = 1/K, K = 10%, T = 20.

3.4 The optimal timing of disease control strategies

In the following section, we are going to explore the effectiveness of different control strate-
gies. We assume, as in the above sections that the transmission rate of the pathogen is alternating
between two values. In the “Good” season the birth rate is S > p. In the “Bad” season, the
birth rate is S < p. To control the epidemic we can deploy control strategies to decrease the
transmission during the Good season. In other words, control reduces [ from S to B¢ < Bg.
If the intensity of control is small (weak control) we have S > u, but if the intensity of control
is large (strong control) we have - < u. If we cannot apply the control throughout the Good

season, should we apply the control just before or just after the Bad season?

To answer this question we will compare two strategies: GCB, where control is used just
before the Bad season, and CGB where control is used just after the Bad season. In the following

the duration of the Good, Controlled and Bad periods are respectively ng1', moT" and 751" with
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ma + o + mp = 1 and the transition rate in the Bad period of both strategies is g = 0:

BG 0§t/T<7TG BC 0§t/T<7TC
ﬁGCB(t) = BC Ta < t/T <TG+ 7o BCGB(t) = ﬁG o < f}/T < Tg + Tc
0 7T(;—|—7T0§t/T<1 0 7T(;—|—7T0§t/T<1

(3.27)
The best strategy is the less risky one, where the risk is defined as the probability that a

pathogen is introduced randomly in the first period [0, 7] manages to survive the first period :

r= ; /0 ' pi(to) dtg = /0 5y (toT )ty , with py (toT) = P (XUSI(T) > 0| XED(tT) = 1).
(3.28)

For small periods, the strategies are equivalent, since the process is well approximated by a
stochastic logistic process with constant rates. Yet, when the period is large it is unclear which

strategy should be used to reduce the risk.

3.4.1 Heuristics for large periods

We shall denote by winter the time interval where 5(¢) < p : when the control is weak, i.e.
Be > p the winter is the Bad time interval; when the control is strong, the winter is the union
of the controlled time interval and of the bad time interval.

As for the simple step transmission function (see Figure 3.3), there is a time interval just
before winter where the pathogen has not enough time to reach a size of order K. Fortunately,
since the growth rate is either exponential at the beginning, the length of this time interval is of

In(K)

order m and we shall neglect its impact in the computation of the risk.

The heuristic we develop is suited for intermediate values of K with respect to 7'.

When the pathogen is introduced just before the Bad period, that is 5(to7") > p but if ¢y is
the start of the next unfavorable region, the expected size attained at ¢y, which is of the order
e(Bto)=m)(tw—to) j5 not of the order of the magnitude of the capacity, we shall say that we have
no approximation for the probability of surviving the first period. Fortunately, this region is of

size , in both GCB and CGB cases, so we can ignore its contribution to the risk (for

og
T (8- p)
large 7).
Eventually, when ¢(7" is in a favorable region, where (3 is constant, and it has time to expand,
then with probability 1 — 1/ 3(t) it will reach a size of order the capacity K. It is easy to prove

by a coupling argument that the probability of surviving the first period is increasing in K. The
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heuristic we develop is suitable for intermediate values of K : we shall assume that log ' = a7
with a € R%. According to the description of the behaviour in the constant case, we shall
assume that the population just before winter will get close to the quasi stationary distribution,
which is itself close to N = ez, = € (1 — 1/S(to)). Then, the probability of surviving
the first period will be the probability that N independent individuals survive the unfavorable
region. We know that the difference between the risks will be very small.

First case : weak control : 5o > u. Let pg be the probability that a pathogen introduced
at the beginning of the Bad period survives this bad period. We have pg = ¢ #I™5, Since the
number of pathogens we can expect to have at the beginning of the bad period, that is the end of
the controlled region, when there is a take off, is Ngcp ~ €7 (1 — 1u/c) Therefore, for large

periods 7" we make the approximation for the GCB

roes = (n6(1 = 1/ Ba) + me(1 = u/fe)) (1 = (1= pp)ee#) = Coo (1 — (1 — 7Ty nlie))

~ Cac (1 — e‘<€“T(1—u/Bc)—6”"BT>> , (3.29)
where the first factor is

1 [T(rg+mc)
Coc = 7 / P (take off | X (to) = 1)dt,
0

1 Tra 1 T(rg+mc)
— / P (take off | X (to) = 1)dto + — P (take off | X (to) = 1)dt;
T 0 T Tra
1 [Trc 1 [T(rg+mc)
- f/ P (take off | X (to) = 1)dto + — P (take off | X (t) = 1)dto =: Coq
T Jo T Jrre

and the second factor is the probability that /V individuals alive at the beginning of the winter

period will survive this winter period.

Similarly, we make the approximation, for the CGB case: with the same constant Coc =
Cog since Bo > p,

rean = Cog(1 — (1 — pp)Neor) ~ CCG(l - (1= G_WB“T)eaT(l_“/BG))

~ Cre (1 B e(eaT(lu/meMBT)) , (3.30)

Therefore, since S < [, we have for the approximations rcgp > TG, that is the strategy
GCB is better than the strategy CGB. This is confirmed by the simulations, see Figure 3.4.
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Figure 3.4 — Weak Control: The risk as a function of the capacity K of the environment
The strategy GCB is better. For each capacity K, we introduced a single infected host randomly
in [0, 7] and we computed the risk as the mean number of times the pathogen survives the first
period from 1000 replicate simulations. The solid curves indicate the numerical results and the
dotted curves indicate the heuristic approximations (3.29),(3.30). The values GCB = 0.495
and CGB = 0.395 on the right vertical line indicate the branching process approximation
values given by formula (3.39): the risk is much lower because it is computed for the branching
process, which is stochastically larger, and it is computed over a very long time, not just one

period. Kcgp = “iW_B“LT ~ 60, Kgop = iﬂ_BlT ~ 73. Parameters : S = 5, B¢ = 2, p = 0.5,
TC

T =20, 10 = 70 = 0.3, 7 = 0.4,

Second case : strong control: S~ < p.

There the unfavorable region, where 3(t) < u, has two parts: the Controlled region and the
Bad region. We assume that when introduced in the Good region, the pathogen has time to reach
an equilibrium density that is close to N = e*’(1 — u/B¢). When the pathogen is introduced
at time ¢, with ¢, in an unfavorable region, that is when ((t) < p, with a probability close to
1, it will go extinct before the first period. As in the first case, the autumn region has a length

bounded by a.

The probability that a pathogen at the beginning of the winter region escapes this winter
region, and thus survives one period, depending on the structure of the winter region : pop for

Controlled then Bad, or pp¢ for Bad then Controlled. Therefore our approximation is now, with
N =T (1 - /fe),

racs ~ ma(l — 1/Ba)(1— (1= pes)Y), (3.31)
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rcagp = 7Tg(1 — ,u/ﬁg) (1 — (1 —pgc)N>. (332)

Therefore, we only need to compare pecop and poap. To this end, we shall assume that there is
no density dependence on this time interval :

Let us recall the probability of survival at time t for a birth-death process with birth rate
A(s) and death rate yu(s) is given by

-1

P(X(t) > 0|X(0) = 1) = (1 + /Otﬂ(s)e—w@ ds) (3.33)
with p(t) = [{(A\(s) — pu(s)) ds. Hence,
pep = 1/(1 + Tukcp), poes = 1/(1+ Tukpe), (3.34)

with

1 — e~ Tmc(Bo—n) eTurs _ 1

Krm = 4 e Trobe—mZ = 7 (3.35)
“ T(Be — ) Tp
eTums 1 S - e~ Tmc(Bo—np)
Kpo = ———— + e 1B . (3.36)
7 T T(Bc — )

We have for ™R = 0, KRcB = RKBC and

aKJBC — 6T,LL7I'B (1 + H (1 _ e—TWC(ﬁO—#))> > &'{ﬁ — e—T(ﬁC—u)chTﬂﬂ'B . (337)
(97'(3 BC — K 87TB

Therefore, kpc > Ko, "o < Tepe and GCB is better than CGB (see Figure 3.5).
From the two preceding cases, we always get that the risk with GCB strategy yields lower than
CGB strategy. Put simply, we should assume control of preventive measures right before winter

arrives.

3.4.2 Comparison with the branching process (no density dependence)

It is interesting to compare the recommendation we make regarding the timing of the control
to the results obtained by [CG20] with a branching process approximation (section (3.7.7) for
detailed computations). The branching process approximation provides an accurate evaluation
of the risk of pathogen emergence when there is no density dependence. Hence, this compari-

son allows us to study the effect of density dependence on the influence of the timing of control.
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Figure 3.5 — Strong control: The risk as a function of the capacity K of the environment
The strategy GCB is better. For each capacity K, we introduced a single infected host randomly
in [0, 7] and we computed the risk as the mean number of times the pathogen survives the first
period from 1000 replicate simulations. The right-hand side indicates the risk by using the
branching process approximation. GCB = CGB = 0.212, Kcgp = Kgep = eiBiT ~ 60.

1
TG

Its values are less than heuristic results p; (toT) = P (X (ETNT) > 0| XED(t,T) = 1) >

P (Vt > toT, XED(t) > 0 | XED (¢,T) = 1). Parameters : B¢ = 4, B¢ = 0.2, u = 0.5,
T =20,rg =nc = 0.3, 7g = 0.4.

In the absence of density dependence, the risk of pathogen emergence is well approximated
by (see equation 2.6 [CG20] )

3 1T p ! @
= lim — 11— -1 )1 Vdm/ 1—-H )1 A\t (3.38
fi=lm o | ( Bt /T)) (t/T¢WIC) ; ( @(t)) (t¢WIC;) (3.38)

where WICz = {to S [0, 1), 51@0) < W or ds > to, ()01(8) < QOl(to)} and (pz(t) = fg 51(8)—
p(s)ds with i € D := {GCB,CGB}. If nothing further is mentioned about the subindex, we

will implicitly understand that we are considering both strategies.

Under the assumption that 35 > B¢ > u, then the computation detailed in the Supplemen-
tary Information of [CG20], for all cases yields that

TaoB < TcaB (3.39)
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Therefore, as in the density dependent case, it is better to act just before the winter (Figure 3.4).

Next, under the assumption that 3z > p > [¢. Then, again from the Supplementary
Information of [CG20] we get that

Focn = Foan = 2022l _ $oonll) (3.40)
Ba Ba

Therefore in this case, the strategies are equivalent for the branching process approximation,
whereas we see that the strategy GCB, acting before the winter, is better for the density depen-

dent stochastic logistic process (Figure 3.5).

3.5 Discussion

Seasonal fluctuations of the environment can affect pathogen dynamics [Alt+06; GFO06].
However the implications of these fluctuations for the risk of pathogen emergence are often dif-
ficult to analyze. We have previously explored the influence of seasonality in a scenario where
the host population size was assumed to be very large [CG20]. The assumption of a large host
population implies that the transmission rate is not limited by the availability of susceptible
hosts and we can use a birth-death branching model to study the influence of seasonality. We
showed that the risk of emergence depends a lot on the time of the introduction of the pathogen

during the year.

Here we study the more realistic scenario where the host population is finite. After pathogen
emergence, the pathogen population can not grow without bound but settles around an endemic
equilibrium. When the period of the fluctuations is small the effect of seasonality can be cap-
tured by simply taking the average transmission and death rates. When the period of the fluctu-
ation is large relative to the lifespan of an infection, it is important to distinguish different steps

in pathogen emergence.

We show that the risk of pathogen emergence depends both on the time of introduction
(which drives the “take off” probability) as well as the pathogen density before the winter when
transmission is limited. Indeed, the larger the pathogen population size before the winter, the
higher the risk of emergence. This effect yields a critical host population size below which the

pathogen is unlikely to survive the winter period.
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In the second step of the analysis of this model, we study the influence of a control strat-
egy that aims at reducing the pathogen transmission rate. We explore when it is best to limit
pathogen transmission to limit the risk of emergence: just before the winter season, or just after?
Interestingly, we derive different heuristic results that indicate that it is better to act just before
the winter. The magnitude of this effect depends on the intensity of the control that is applied
but the qualitative effect holds.

This result has practical implications for pathogen and pest control. Indeed, under a limited
amount of resources, it is always better to act at the end of a favorable transmission season.
Different effects combine to maximize the risk of pathogen extinction. For instance, if we want
to limit the emergence of malaria it is best to apply vector control just before the summer (or
the dry) season when the density of vectors is expected to be lower. In contrast, for viruses of
the winter viruses that tend to spread with colder temperatures a control strategy that acts at the
end of the winter is likely to be more effective in reducing the risk of emergence. of course,
these recommendations should not be relevant for highly transmitted diseases where emergence
is almost certain. However our results could be particularly relevant to limit the re-emergence

of seasonal diseases with lower Ry.

3.6 Tables and Figures

Table 3.1 — Parameters and variables of the models
Symbol Description

Parameters

6] rate of transmission from an infected host to a susceptible
host

1 death rate of the host

K carrying capacity

T period of the seasonal fluctuations

Ta, 7o, ™  durations of Good, Controlled and Bad periods, mg+mc+
TR = 1

Variables

X K1) stochastic density of infected hosts (carrying capacity K
and period 7).

TéK) extinction time

K¢ critical capacity
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3.7 Supplementary Information

3.7.1 A bound on the mean extinction time

By comparing the birth and death rates, we can construct a coupling, that is on the same
space the process X 7) and a linear birth death process Z* 7 with birth rate ¢t — 3(¢/T) and

death rate p, such that
vi, XED@®<ztT(t) as. (3.41)

Hence the mean time to extinction of X %) is bounded by the mean time to extinction of Z+7,

which does not depends on K :

"]

IN

L

I
\\\ m

}

P " > 1) di

P(Z+T > 0) dt
—1
— —pr(s)
- <1—|—u/oe ¢ ds) dt |
with ,
pr(t) = [ (B(s/T) = w)ds = T(t/T) (342
which has asymptotic
lim Sor(t) = ~or(T) = ith (3) = [ B(u)d 3.43
dim Ser(t) = Zer(T) = () —p, with (8) = [ Blwydu. (343
(+.7)

Therefore, when Ry < 1, that is (5) < p, the expectation of 7, is finite. Moreover, in the

constant case, we have

00 t -1 oo 1
E[«"] <e[#Y] = /O <1+u /0 e~ (B3 ds) dt < /0 em WPl gt = a—g G

We have used in the last equation the inequality, satisfied for x > 1 and a > 0:

1

1
Traa -1~ <= max(l 1/a).
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In the general periodic case, we can combine this inequality with Lemma 11 to obtain an upper

bound. Indeed, we obtain that

super(t) — ((8) — )t < OT  with C = 2sup |5(s) — pl

s<1

Hence,

-1

00 t
e[ < [ (1+,ueCT | e ds) dt
< max (1, T (1 — <B>>> /Ooe(<6>—u)t dt

i 0

(- 2)

3.7.2 Take off probability in the constant case

This 1s a classical result for the constant case, see e.g. [BD95]. We first look at the coupling
(3.41) in the constant case: Z* is a linear birth and death process with birth rate 5 and death

rate u such that a.s.
vt >0, XUO(t) < ZH(1). (3.45)

For 2 € (0, 1) we have
P(3t>0,X5(t) > mK) <P (3t >0,27(t) > 2oK) (3.46)
Therefore, since either Z*(t) = 0 for t > ty or limy_, 1, Z(t) = 400, we have

limsupP (3t > 0, X5 (t) > 29K ) <P ( lim Z*(t) = —|—oo> —1- g’ (3.47)

K—+4oc0 t—+oo

Given zy € (0, 1), we can enhance the coupling by constructing another linear birth death

process Z~ with birth rate 3(1 — x() and death rate  :

Z-(t) < XB(t) ift < S(w) (3.48)

with
S(w) =inf {t > 0: XU(t) > mo K }. (3.49)

Therefore, since either Z~(t) = 0 for t > to or lim;_, ;. Z~ (t) = +00, we have
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P(3t>0,X9(t) > 20K) > P (3t > 0,2 (t) > moK) (3.50)
> P(tggqooz—(t) _+oo) _1—5(1"_%). (3.51)

3.7.3 Quasi stationary distribution in the constant case

Since the Markov chain X ) has a finite state space and is irreducible before being absorbed
at 0, [DS65; DS67] established the existence of a quasi stationary distribution , a probability «
on{1,..., K}, which is a Yaglom limit : for every starting point z = 1,..., K,

Jim P, (XSt € A7 >t) = a(A). (3.52)
Moreover, there exists another probability 7 on {1, ..., K}, and a number § > 0, such that for

any x,y € {1,..., K}:

lim e %P, (X(K) (t) = y) = Ty,

t—4o00

. —ot (K) _
tlhmooe P, (7’0 > t) =m,.

3.7.4 Homogenization for small periods

We prove that when the period 7' is small, one can replace the periodic stochastic logis-
tic process by a stochastic logistic process whose constant coefficients are the average of the
preceding.

More precisely, given two locally bounded positive measurable functions (3, ;x and a posi-
tive integer K, the stochastic logistic process with birth rate 3, death rate n and capacity K,
is the inhomogeneous pure jump Markov process (X (¢),¢ > 0), in fact an inhomogeneous

continuous-time Markov chain, with values in {0, ..., K} and generator

L) = Bt (1= ) (o + 1) = f@) e (Fe = 1) = f@) (@ =01, K.)
(3.53)
We say that X isa SLP (3, i, K).
Given a 1-periodic positive measurable locally bounded function /3, a constant 1 > 0, a
positive integer K and a period T' > 0, we consider X /) a stochastic logistic process with

birth rate t — (3(t/T'), constant death rate . and capacity K. The average process X (%) is
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a SLP((8), u, K) where (8) = [y B(s)ds = % [ B(u/T)du is the average birth rate. We

assume that the two processes start from the same integer z.

Theorem 8. When T — 0, the process X 5T) converges in distribution to the process X %),

for Skorokhod topology on the space D([0, 00|) of cadlag processes defined on |0, /.

Corollary 9. When T — 0 the extinction time of the process X *T) converges to the extinction

(8)

time of the process X5, In consequence, when Ry = > 1, this time is exponential in the

carrying capacity K.

Proof. Since the Markov chain X 5¢7) (resp. X (%)) has 0 for absorbing state, and {1,..., K}
is an open communicating class, we have, if TéK’T) = inf {t >0: XED () = O} and 79 =
inf{t >0:X(t) = 0}, we have as T — 0,

p (TO(KT) - t) _p (X(K’T)(t) N 0) . p ()‘((K)(t) > 0) —p (ng) > t). (3.54)
L]

Remark 10. Therefore if the period T is small enough, and Ry = (B)/u > 1, the time to
absorption of X5T) is very long, we still have a periodic Yaglom limit, but the process X 1)
is close to X ), hence the periodic Yaglom limit is close to a fixed distribution, the Yaglom limit
of X, a distribution concentrated around the value K (1 — 11/{j3)) (the equilibrium value of
the deterministic approximation of X™)). In Figure 3.6 we see that for a small period T = 0.2
and capacity K = 50, the deterministic process is indistinguishable from the periodic attractor
after 20 periods. We observe that after this warming up of 20 periods, the stochastic processes
XE) and X 5T fluctuate around this periodic solution. We do have observed simulations with
no take off, for XT) or X¥), this happens with the probability 1/ B(0), but given the take off,

the time of extinction is so large that we do not observe it.

Proof of Theorem 8. Usually, this kind of result is proved by establishing the convergence of
generators, and applying a generalization of Trotter-Kato’s theorem (see e.g. [Kur69]). Unfor-
tunately, we do not have pointwise convergence of the function 5(¢/T") to the constant function
(B) : only a Cesaro limit exists, thanks to periodicity.

Therefore, we are going to use a very general theorem dealing with convergence of semi
martingales, [JSO3, Theorem 2.21, page 80], which states that it is enough to prove the conver-
gence of the triplet of characteristics.
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Figure 3.6 — Periodic quasistationary Yaglom distribution for small periods. In blue the de-
terministic approximation z(t), in orange the periodic attractor z*(¢) (they are indistinguishable
after twenty periods). In green the stochastic logistic process %X (KT)(t). Parameters: capacity
K = 50, period T' = 0.2 step birth rate 5(t/7") = 5o 1(o<t/r<1—~), Bo = 2.0, v = 0.3, constant
death rate = 1.
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In order to simplify the notation, I will omit K with the implication that K is fixed. Here the
jumps are bounded, and the characteristic triple of X(*) (resp. X) is (0,0, ™)) (resp. (0,0, ¥)).

There only remains to verify the assumption: for every bounded nonnegative measurable func-

tion g, (g * ut(T) — g * Dt) (X)) converges in probability to 0 when 7" — 0.

In fact since #(7) is the compensator of the jumps of X 7). we have

gv®(t,2) = [ 156/ T)a(1 = oK) gl + 1) = g(a)) + palgla — 1) - gla))] ds

gt ) = [ 1) = o/K) gl + 1) - glw)) + el — 1) = g(a))] ds.

Consequently, applying Lemma 12 to the step function s — X7 (s)(1—X ) (s)/K)(g(X ™) (s)+
1) = g(XT(s))), we get

gV (XD) — g x (XD
= \/Ot(ﬂ(s/T) — (BNXD(s)(1 = XD (5)/K)(g(XT(s) + 1) — g(XT(s))) ds

< AT|Bll o x 2K]|g]l -

Hence, this random variable converges almost surely to 0 as 7" — 0.

Integration tools

We think these results are well known. Since we have been unable to find references, we

state them along with their proofs.

Lemma 11. Let f be a measurable locally bounded 1-periodic function, and {f) = [} f(s)ds
be its average. Then, for any T > 0,

Cy(T) := sup

t>0

[ #srmyas | <2 359

Proof. Withn = |t|, since f is of period 1:

F [ rsyas=1(ntn+ [ rs)as). (3:56)
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o+ =

1 n
Consequently, since ‘; — 1‘ <

[ fsrmyds —vip)| =1

~+

~

S

[ 6yds =] <15 = 1]+ 10 < 20l 3.5

And thus,

t/T "
) ﬂww—ﬁMSﬂwm. (3.58)
0

]

Lemma 12. Let f be a measurable locally bounded 1-periodic function, and {f) = [ f(s)ds

be its average. Then, for any T > 0, for any continuous or step function g defined on [0, ],

t t
[ 5/ )9 ds = () [ gls) ds| < 4TI f)suplg(s)l. (3.59)
Proof. Assume first that g is a step function
g(S) = Z (6773 1(ti§8<ti+1) . (360)

Let F'(t) = [{ f(s/T)ds and G(t) = F(t) — t(f). Then, thanks to Lemma 11

n

i=1

f(s/T)g(s) ds — () [ g(s)ds
| I

< sup | ;|2 sup |G(s)|(the sum has only one non zero term)
i<n s>0

< sup lg(s)] x 2% 2[| fll T

If g is a continuous function, for any € > 0, there exists a step function g. such that

sup,<; [9(s) — ge(s)| < e [

3.7.5 Proof of the periodic Yaglom limit for the stochastic periodic logistic
process
We give a direct proof since the continuous Markov chain has a finite state space. A simu-
lation is given in Figure 3.7.

We consider a continuous time inhomogeneous Markov chain (Z;,¢ > 0) with values in

E =1{0,...,N}, and 0 as unique absorbing point. Let L; be the time dependent infinitesimal
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—== Deterministic dynamics
—— Periodic attractor
—— Stochastic process

0.5

0.4

0.3

0.2

0.1

0.0

Figure 3.7 — Periodic quasistationnary Yaglom distribution for large periods. In dashed
gray the deterministic approximation z(t), in solid black the periodic attractor z*(¢) (they are
indistinguishable after one period). In blue the stochastic logistic process - L XD (), Param—
eters : capacity K = 4000, period 7' = 20 step birth rate 5(¢/T) = Sy 1(0<t JT<1—)> Bo =
~v = 0.3, constant death rate ;. = 1.
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generator and let (7 ;)o<s<: be the family of Markovian transition operators
Toif(x) =E[f(Z) | Zs=2]  (z€E). (3.61)

The first hitting time of 0 is
To=inf{t>0: 2, =0} (3.62)

and (P;;,0 < s < t) is the family of sub markovian kernels associated to the process killed

when it reaches 0:

Pouf(2) =E[f(Z) Lgemy | Ze = 2] =E[f(Z)Lizp0) | Ze=2] (€ E*={1,...,N}).
(3.63)
We assume the process to be strongly irreducible, a notion we explain below : there exists
a kernel A(x,y) such that for any ¢ > 0,z,y: Qi(x,y) = Ll (x) > Az, y), A = Ap- is
irreducible and the exists o # 0 such that A(z(,0) > 0.
We assume furthermore that the jump rates appearing in L, are 1-periodic, and write L;, =
Ly.

Proposition 13. Under the preceding assumptions, there exists a probability o on E*, a real

number 0 > 0 and a positive vector (m(x) > 0,x € E*) such that for any function f:

lim " E, | F(Zn1s) Lz, 00| = " a(Pof)m(x) . (3.64)

n—-4o0o

Hence, we have the Yaglom limit

. . Q(Po,tf)
RLHJ{IOO Eo [f(Znst) | Znie # 0] = m . (3.65)

Proof. The first step is to show that the matrix P = F; is irreducible. Let x # y.

Indeed, since E* is finite and A* irreducible, there exists an integer m > 1 such that
Va,y € E*,A™(x,y) > 0. Consequently, there exists a path xqg = x,21,...,x, = y such
that A(x;,z;41) > 0for1 <i<m—1.

Let ¢;(x) be the total jump intensity at x at time ¢. Then, if 71, ..., 7, are the jump times,

Ps,t(l',y) > P(Z(Tl) :331‘,1 Sigm:Tm§t<7—m+l ‘ Zs:x(])

—5; e
— / H (& Z+lqsz( Z)Qsi (x“ xl_l,_l) 1(50:5<51<~--<5m<t<5m+1) H dSZd[Em_H > O .
0<i<m
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Hence for any s < t the matrix P, has positive coefficients and therefore is primitive.

The second step is to apply Perron Frobenius theorem to the matrix P. Since A(xg,0) > 0,
we can show as in the preceding step that 7y 1(x,0) > 0 for any € E*. Hence the spectral
radius of P is p = e < 1 with § > 0. There exist a positive vector 7 >> 0 and a positive
(line) vector « >> O such that 1 = Y, a; = 1 (« is a probability on £*) such that

aP =pa, Pr=pn lim p7"P"=A. (3.66)

n——+oo
with A = ma the projection matrix A; ; = ;.

The last step makes use of the periodicity of the coefficients. Since L;.; = L; we have
Psi1 441 = P,y and thus Py, = P" o I ,. Hence,

lim 69”P07n+tf(a:) = a(Posf)m(x). (3.67)

n—-+0o00

Applying this relation to f = 1, we obtain

lim Py, 1(x) = lim e"P,(Ty > n+1t) = a(Py,1)7(x). (3.68)

n—-+o0o n—+0o

The Yaglom limit is obtained by taking the ratio of the two preceeding limits since

PO,n+tf<x)

E.[f(Znit) | Znse 0] = Poncel(0) (3.69)
O
3.7.6 The deterministic model
Lemma 14. Consider the following ODE:
de(t)
I(to) =Xo .

with 3(t), u(t) are positive functions for all t > to. Then equation (4.61) has an unique solution:

e®(t)

- Cyo + Jo B(s)e?®)ds’

x(t) (3.71)
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where

eﬂo(to)

z(to)

olt) = [ (Bs) — () ds,  Cy= S = [ Bls)eras.

Proof. Since the first equation of (4.61)

T _ B (1 - 2(0)) ~ ult)a(t)
df;f) = (B(t) — pt)) a(t) — BE)2*(t)
= S0+ (506) = ) () = 5(0) where y(t) = o
_ (e (1 (575(8) —uls))ds)) B(t) exp (/tt (B(s) — M(S))) ds.

We integrate both sides over [t¢, t] yields

o(t) =exp (= [ (8(s) — u(s)) ds) (wt0) + [ Bts)exp [ (3(a) = uw)) du))

= xz(t) = L
exp(— (p(t) — ¢(t0))) (y(to) + Ji, B(s) exp ((5) — (ko))
e? )
- e#(to) . o)
(i) + [, B(s)e s
e?(®)

B Ci, + J3 B(s)e?®)ds’

Lemma 15. The solution of ODE (4.61) with periodic coefficients having a period of T such
1 1
that T JE Br(s)ds =: (Br) > (ur) = T [ ur(s)ds converges to the periodic attactor :

eSDT (t)

JEBr(s)err®)ds + m i Br(s)err@)ds

(1) (372)
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Proof. Assume that S7(t) and pr(t) are T'— periodic functions, we have

0= [0 [ (3(5) -n(3)se=75(5)

Therefore 5(t) := pr(tT), u(t) := pr(tT) are periodic functions with period 1 and p(t) =
”T(tT) . We have

P(t +nT) = gqém”T ) = ur(s))ds + [ (Brls) — pr(s)) ds

@wwMﬂ:w@+;AQM@ﬂmww

& pr(t+nT) = or(t) + npr(T).

We also have

1 or(t) eer(toT) toT or(s) g t or(s) g v 0
= p _ S S t
z(t) — ( x(toT) /0 fris)e i / Pris)e 8) ~

1

()

= = G_SOT (Ct T +/ 6’[ CSOT S)dS) Vt>0

1 — (t+nT t+nT (5)
n
1 (k+1)T nT+t
& ——— = rlmmer [ O / er(s) g er(s)
x(t +nT) ¢ toT T kz:% o Br(s)e s+ - Br(s)e s
1 n—1 .1 "
& = e (Ot T+, / Br(s)efrOther(T) g +/ /BT(S)BSDT(S)‘FMOT(T)dS)
x(t +nT) o =

1 1 — e mer(T
_ et ne(T) pr(s or(s
& o) =e (CtOTe + @) 1 / Br(s)e?T)ds +/ Br(s)e s>

Therefore,

690'1" (t)

z(t+nT) = —
CtOT.g*mPT(T) + 135T(;T(T) f() 6T< )€¢T(5)ds + f(f 6T<3)€¢T(3)d3

. (373)

Assume that o7 (T') > 0, the solution of ODE (4.61) with coefficients periodic with period T
converges to the following periodic attractor is given by (3.72). [
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Remark 16. z*(t) is given by (3.72) is also the solution of ODE (4.61) with initial value

“(0) = err@™—1 L o(1-NTBo~Tp _ 1
x fo 6T( )e‘pT(S d o /80 6(1 T(ﬁo 'u) _ 1

Lemma 17. In particular case with fr(t) = Bolo<it/ry<i—y pr(s) = pusuch that (1 — )3y >
. Let x(t) be the solution of equation (4.61) with periodic coefficients and x*(t) is its periodic
attractor, we can control the distance between the solution and its periodic attractor through

the following expression

Bo e 1
1 + 1—v Iz
Tog— 2 (1=T) <eetyg< (1—7)+ log | Pt Rl ) (3.74)
T(Bo = 1) (3 — ) (weg — )

Proof. We have

Teg := sup z*(t) = 2" ((1 —)7T) (3.75)
te[0,7)
er(=D)=pr(T) (gorT) _ 1)
= . (3.76)
Jo Br(s)errds
= e"'2*(0), (3.77)
and
N c(1=NT(Bo—p)
z((1—=9T) = — )
Cior + fo(l T Br(s)err®)ds
We have
T
pr(T) = [ (Br(s) = pr)ds = By (=N T = Tu=T(G(1 =)= p).  (T8)
Furthermore,
T (1-)T
/ 5T(S)e<pT(S)dS _ / K Boe?T I ds = A (e(l—v)T(ﬁo—u) _ 1) ‘ (3.79)
0 0 Bo — p

1 1 1 T
— — — o—pr(t) L or(s)
ZL‘(t) x*(t) =e T (CtoT cor(D) — /0 BT<S)€ T d8> '
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Therefore

1 1

- — o~ T(Bo—m)(
(1 =T) e

1
Cior — 7/ Br(s)e?T S)ds>

eSOT )—]_

T
_ T (B (1) <GtOT _ e ) .

Hence

e T
%yﬂuu—vﬂvzuwal—wTw”WWWPﬂ(aﬂ— )

1— B
) e(1=1)T(Bo—p) e~ T(Bo—p)(1—7) (CtOT -
CtoT + fol V)T Br(s)esrds

T
LeqCror — €M

" Cur + 8 Br(s)err@lds”

That implies

Ty — 7 (1= )T) < ¢
ZeqCror — et

= = < €
Ct0T+f T Br ( )e%"T(s)ds

ﬁxeqctoT — CtOT€ < T + 6066_0u (6(1—7)T(ﬂo—u) . 1)

gt 4 B (=70 — 1)

ot (Bo—n) <1 _ Po ) 4 Fo < Bo—p
Zo 60 - BO — U Teqg — €
e T | ﬂe(l—v)T(ﬁo—u) _ xeqi
@etOT(ﬁofﬂ) <1 _ /BO ) < BO — M /60 — M
Zo BO 2 Leg — €

T(1=7)(Bo—w)
ﬂe(l—v)T(Bo—u) 4ot — 1) _° e
Bo — T(1—y)(Bo—1) — 1
@etoT(ﬁo—M) < 0 €

(3 — a) (@ =9

<:>tOT(60 — lu) < log <B€606(1_'Y)T(/BO_M) + (e’yuT - 1)

0 — [ eT(1=7)(Bo—p) — 1

—log<1— & )—log(xeq—E)

eT(1=7)(Bo—p) )
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6o T 1
Bo — W + eT(1=7)(Bo—p) — 1

(B Y

ro  Po—p

|

< (1 ) T E) g ( 0~/ ( ’Y>(BO D) 1 )
0 ’y —|— — 10 6 ' e 1
( ) ( o o 7&)”) (x6q )

eT((1=)Bo—p) _ 1

T (Bo—1) — 1

So with ., = e (1 _ 5;;70)

eBo eYhT _1
1 —n T amaa s
Teg—2((1=7)T) <esty<(1—7)+ T )1Og (50 PR X (= () 1) . (3.80)

(Bo = (ﬁ - Boﬁgu) (Teq =€)
O
_ _ I
Remark 18. Ifv = 0,2,y =1 — —,
Bo
1 €T
Teg— (1 —7)T) <esty <1+ log( ) (3.81)
e (T R Co T Ty

3.7.7 Optimal disease control strategies for the branching process approx-

imation

First of all, recall that 5(¢) is the transition rate with two strategies is given by expression
(3.27) and the death rate is fixed with value ;.. We shall compute the asymptotic risk given by
expression (3.38) We have

vacp(l) =76 (B — 1) + 7c (Be — 1) — p(1 — 76 — mc) = poap(l) = ¢(1) for short

First case, weak control : S5 > o > L.

Setting ¢; = 7; (8; — p) for j € {G, C, B}. There are 4 situations that probably happen,
Caselcg > (1) > co

There exits ¢ € [mg,1) such that ¢§(6c — 1) = waep (t5) = ¢(1). The integrated rate
©i(t),Vi € D is given in Figure 3.8 A.

[ 1 (1)
Foon = /0 (1 _ 5@@)) Ligwicoosdt = 5 (3.82)
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Similarly, there exits t; € [, 1) such that o(1) = poap(ty) = me(Be—p)+(t;—7c)(Ba— ),

Feap = /Ot{ (1 — 5ccl;(t)> Ligwiceepdt = (1 — p/Bo)me + (1 — p/Ba)(t] — me) (3.83)

_ L ro(Bo — (L — Ly @)
= ggr) +molfe—w(g- =57 > 5=

Case 2: c¢ + cc > (1) > max(cg, cc)

(3.84)

There exits ¢ € [rg, 7¢ + m¢) such that mg (Be — p) + (t§ — 7¢) (B — 1) = paces (t5) =

(1).
Furthermore, there exists ¢ € [r¢, mg+7¢) and (1) = veap(ty) = e (Be — )+t — 7¢) (Ba — 1) -
The integrated rate ¢(t) is given in Figure 3.8 B. We obtain,

_ o, B N . NG
reos = /o (1 5@03(75)) Lgwicoes = <1 5(}) me (% — ) (1 50) - G5

= ‘pﬁ(i) +76 (B — 1) (;G - 510> (3.86)
S L N M . M
rcgB = /0 (1 6CGB(t)> 1t¢WICCGBd <1 ﬁc> TC —|— (tl ) <1 5@) (387)
(1)

:5G+7Tc(5c—/ﬁ)<ﬁlc—510> rGCB+(;C ;G)u—m—wo)u (3.58)

Case 3: cc > ¢(1) > ¢ We obtain 7¢ (B — p) + (th — 7¢) (Be — 1) = vaen () = ¢(1) =
peas(t]) =t (Bc — ).
The integrated rate ¢(t) is given in Figure 3.8C. We obtain,

N L G . 3
Foon = /0 (1 5GCB(t)>1t¢WICGCBd <1 5@) e+ (t — )(1 ﬁc>' (3.89)

_e(1) B (1 B 1)
Be 76 (be = 1) Ba  Be (3:90)
A L R (1
Foop = /0 (1 o (t)> Lgwiceandt =t (1 Bo) 3.91)
P (3.92)
Be

Case 4: HliIl(CG,Cc) > gD(l) > (0 We obtain tS (BG — ,u) = YgCcB (tS) = (,0(1) = QOCGB(tT) =
t1 (Be — ).
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Figure 3.8 — Risk for branching process with weak control: GCB vs CGB. The integrated
rate is drawn in black for strategy GCB and in blue for strategy CGB. The grey areas indicate
the WIC for strategy GCB. The blue areas indicate the WIC for strategy CGB.

The integrated rate ¢(t) is given in Figure 3.8D. We obtain,

t*
TG’CB — / ( ) 1t¢WICGCBdt = té (1 —
BGCB (t)

t*
~ 1 H *
TcGB = /0 (1 - BCGB(t)> Ligwicoepdt = 11 (1 -

Hence in all cases, GC B has a lower risk than CGB.

p\ _ed)
5G> - Ba (0.5)
p\  e(1)
50) = 50 > TaeB (3.94)

Second case, strong control : 5o > 1 > [¢. In this case, we see in Figure 3.9 that

rqecB = ToGB = /0

 fe
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Birth rate and intergrated growth rate
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Figure 3.9 — Risk for branching process with strong control: GCB vs CGB.
The integrated rate is drawn in black for strategy GCB and in blue for strategy CGB = GBC.
The grey areas indicate the WIC for strategy GCB.
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3.7.8 The generalized stochastic logistic process : A stochastic epidemic

model with a non constant total population

The discrete numbers of Susceptible and Infected are denoted by S and (™. The suscep-
tible hosts immigrate at rate An where n is system size that indicates the order of magnitude of
the total population (the scaling parameter).

The process X ™ = (S™ () is a continuous Markov chain on N? with rates given by

(s,i) = (s+ 1,7) rate An recruitment of a susceptible

(s,i) — (s — 1,4) rate us death of a susceptible

(s,7) = (s,i — 1) rate pi death of an infected

(s,i) = (s—1,i+ 1) rate B o infection of a susceptible
n

The total population N (t) = S™(t) 4 I (¢) is not constant anymore but is a continuous

time Markov chain on N with rates

z — z + 1 rate A\n

z — z— lrate uz.

Therefore N™(t) converge in distribution to P(An/u) a Poisson distribution with mean n’ =
nA/p. Indeed, without loss in generality, we assume that n = 1(fixed), An = A, the total
population N () = S (¢) + I (t) has generator

LYg(k) = A (g(k +1) — g(k)) + pk (g(k — 1) — g(k))
It g(k) =k, LNg(k) = X\ — pg(k). Soif f(z) = g(s +1i) = s +14, z = (s,i) then
LY f(z) = X = uf(z)

Since (N () (t))t>0 is a continuous time Markov chain on N, irreducible and it has a unique

invariant probability I1 (HQN = 0) with () is a infinitesimal matrix, which is reversible:

II(z)L(x,x+1) =I(z+1)L(x+1,2)
& M)A =z + p(x+1)
I =5 ()

93
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This means that IT = P (A\/u) . So 3y > 0,Vax € R%. IC(x) > 0 such that :

sup || P (N®() € A) =TI (A) [|< C(x)e ",

The first intuition is that this process /™ behaves as the stochastic logistic process X (n’)

that is as if the total population is constant and equal to n’.

It is easy to apply Kurtz’s theorem again and see that the deterministic approximation, the
limit of X (™ /n, is the solution of

ds ST
PR (390
dl ST

and therefore the total population is N = S + [ solution of

dN
— = \—uN. 3.98
7 4 (3.98)

Therefore, even when ((t) is T-periodic, the total population converges exponentially fast to n’

lim N(t)=n'=n)\pu. (3.99)

t——+o0

We are going to show that when Ry = % > 1, then the deterministic process (S(¢), (1))
has a periodic attractor (S*(t), I*(¢)) which is the only periodic solution of (3.96). We can even
show the existence of a Yaglom limit, a periodic quasi stationary distribution, for the process

X®)(t) /n see Figure 3.7.

Furthermore, we obtain, for the step function 3(t/7T") = By 1(o<¢/7<1-~) by using the same

heuristics as in the section (3.7.6) , the same critical size n. given by

eTiT eTiT

Mg Ap

ngo =

Proof of the periodic Yaglom limit

We shall make an heavy use of [CV23].
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The constant coefficients case

The generalized SI process X (™ his a continuous time Markov chain with values in N? and

generator given by

L(n)f<x> = )‘n(f(s + 17i) - f(s,z)) + :UJS<f(8 - 17i) - f(s,z)) (3.100)
Fpi(f(si = 1) = fo,0)) + A (s = it 1) = fs.0). G.10D

To apply the general results of [CV23], we consider the process X that is X absorbed in
the set {(s,0) : s € N}. We let L be its generator and (P;);>( is semigroup. Its state space
is EU {0} with E = {(s,7) : s € N,i # 0}. In order to apply Theorem 5.1 of [CV23], we

consider a specific point z° = (1,1) € E and set
No = inf {/\ >0 liminf Py (X, = 2") > o} | (3.102)
t——+o00
We have, for a function f(z) = ¢(|x|) with |z| = s + 1,

Lf(x) < dn(o(|z] +1) = o(|z])) + plzl(o(z] = 1) = o(z])) - (3.103)

z

Let z = |x| to simplify notations. Then, for ¢(z) = €7,
Lf(z) < fx)(An(e — 1) = pz(l — e ) < =M f(2) + C Lizeny) (3.104)

with Dy = {z : |x| < My} and \; = uMy(1 — e~ 1) — An(e — 1). We see that by taking M,
large enough, we can ensure \; > \g. We can even ensure that \; > sup,.p q(z,0) = d, and
therefore obtain, following Remark 11, section 5 of [CV23], that there exists € (0,1) and a
quasi stationary probability measure v such that for f(z) = e*! [ f(z)dv(z) < +oc : for every

probability measure p

IPu(X, €. |t <79) — gy < Calu(f). (3.105)

The periodic case

We consider the same model. Instead of a constant transmission rate (3, we consider a 7'-
periodic transmission rate 3(¢). We cannot apply as easily the results of [CV23] since now the

process X (™ is an inhomogeneous Markov process. However, since the time inhomogeneity

95



Partie , Chapter 3 — Timing infectious disease control to minimize the risk of pathogen emergence

happens only in the transmission rate (3, we still have for a function f(x) = ¢(|z|) with |z| =
s+,
Lif(x) < AK(o(|z] + 1) = o(l)) + plzl(o(|z] = 1) — o(l)) - (3.106)

We need to look closely at the proof of Theorem 5.1 of [CV23]. We see that the first
step is to check Assumption (F).The strong Markov property ensures (F0), the irreducibility
ensures (F'3) and (F'1) if we take L = D, finite, and (F'2) is derived from the Foster-Lyapunov
inequality (3.106). We can then obtain that Assumption (E) is satisfied by the sub-Markovian
semigroup (P,,)n>0 of (X, > 0). The proof is exactly the same as the proof of Theorem
3.5 in section 11.5. Since (X,7,t > 0) is a temporally homogeneous Markov process we can
conclude on the existence of constants C' > 0, « € (0, 1), and of a Quasi Stationary Distribution

v such that for every probability measure (i,
IP.(Xpr €. | nT < 79) — ||y < Ca™ pu(f). (3.107)

It should be clear that to deal with the process (X +,,¢ > 0) with ¢, > 0 an arbitrary time,
we only need to consider the shifted function 5(t + (), and all the proofs above can be adapted
so that for every probability measure x s.t. u(f) < +oo, that we have the existence of constants
C(to) > 0, a(tg) € (0,1), and of a probability measure v, s.t.

IP(Xorito € - | nT < 7o) — vy ||y < Clto)ax(to)™ u(f) - (3.108)

Consequently, we have proved the existence of a periodic Yaglom Limit.
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CHAPTER 4

EVOLUTION OF PATHOGEN DORMANCY IN
FLUCTUATING ENVIRONMENTS

Dormancy is a strategy that evolved in many different species to cope with the variability
of the environment. Here we explore the evolution of dormancy in a vector-borne pathogen in
response to periodic fluctuations of the abundance of vectors due to seasonality. We consider
different scenarios where the investment into dormancy is constrained to be constant or is al-
lowed to vary plastically with some component of the environment. We show that a constant
investment in dormancy is generally not adaptive. Yet, plastic dormancy strategies can readily
evolve in a seasonal environment. We study how the pathogen can use different cues to identify
the best time the switch its investment into dormancy. This model may help understand the
diversity of life-history strategies of a broad range of vector-borne pathogens and in particular
malaria parasites.

Many parasites can produce dormant stages that can reactivate a long time after the infection
of the host. For instance, some malaria parasites like Plasmodium vivax can induce relapse many
months after the clearance of first infection. Did dormancy evolve in vector-borne pathogens
to cope with the fluctuations of the environment? Here we show how seasonality can drive
periodic fluctuations of the abundance of vectors and select for dormancy. In particular, we
show that plastic investment in dormancy is particularly adaptive to track the fluctuations of

vector densities.

4.1 Introduction

Many different species produce offspring that stop their development and stay in a dormant
stage, sometimes for a very long time [EDOS5]. This ability to produce dormant stages is thought
to be an adaptation to the temporal variability of the environment [KBH02; SD73]. For instance,
many microbes have the ability to delay growth to cope with periods where growth conditions

become unfavorable [Bal+04; Bue+12]. Here we want to examine the evolution of dormancy in
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a vector-borne pathogen under the influence of seasonal variations of the abundance of vectors.
We consider a scenario where the pathogen can decide between two host-exploitation strategies.
First, the pathogen can replicate actively in the host in the hope to be picked up by a vector and
transmitted to a new host. Second, the pathogen can lay dormant in the host tissue and avoid the
risk of being targeted by the host immune system but give up the possibility to infect a new host.
For instance, this decision has to be made by Plasmodium vivax which is a species of human
malaria that can replicate asexually in the bloodstream of an infected host or lay dormant as a
hypnozoite in the leaver. Hypnozoites can remain dormant for several months before relapsing.
It is interesting to note that different isolates of P. vivax relapse at different rates which suggests
the possibility there is a heritable variation on this trait. Besides, some malaria species (e.g. P.
falciparum) have lost the ability to produce hypnozoites which may also suggest that dormancy
may not always be adaptive. Finally, we also want to note that some malaria parasites have
the ability to adopt plastic strategies in response to a change of the environment. For instance,
mosquito bites can trigger a higher investment into pathogen transmission in the avian malaria
parasite P. relictum [Cor+14]. Is it possible to select for plastic dormancy strategies in vector-

borne pathogens?

To answer this question we extend a general vector-borne pathogen model subject to periodic
fluctuations of the abundance of vectors [KCG22] to account for the possibility of entering a
dormant stage in the life-cycle of the infection. First, we study the epidemiological dynamics
of this model and study the influence of dormancy and seasonality on pathogen persistence.
Second, we derive a general selection gradient on the rate of dormancy and on the reactivation
rate. Third, we use this selection gradient can be used to study the evolution of dormancy in
a constant or in a temporally variable environment. We contrast different scenarios where (i)
dormancy and reactivation are fixed traits or (ii) the investment in dormancy and reactivation is

conditional on different environmental cues.

4.2 The model

We consider the epidemiological of a population with susceptible, infectious and recovered
hosts Sy, I'y, Ry, and susceptible and infected vectors Sy, Iy, as in [KCG22]. We also add an
additional compartment Dy which refers to host infected with a dormant stage of the pathogen.
In this stage, the parasite cannot transmit to the vector but it is invisible from the immune system

of the host and consequently, the infection cannot be cleared in this stage. The epidemiological
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dynamics of the system is driven by the following set of ordinary differential equations:

: S
Sy =6— BVIVN—H — S (4.1)
H
: S
Iy = BVIVN—H — (v + pu +d) Iy + 71Dy 4.2)
H
Dy =dly — (r+ puy) Dy (4.3)
- Ny (t)
Sy =py(t)|1-— N Ny — By (Ig + aDy) Sy — py Sy 4.5)
jv = B (Ig + aDy) Sy — pvly. (4.6)

The parameter # describes the influx of new host and this flux is assumed to compensate
exactly the mortality so that 6 = uy Ny where Ny = Iy + Sy + Dy + Ry. As a result, the
host population is a constant. Without loss of generality, from now on, we will always implicitly
understand Ny = 1. Other parameters of the model are described in table (4.1). In particular,
the parameter o measures the ability of dormant infections to transmit the pathogen. If @ = 0,
the compartment Dy is not infectious and the pathogen has to reactivate and go back to the
compartment [ to transmit to new hosts. In contrast, when o = 1, the compartment Dy is as

infectious as the compartment [/ .

We assume that the dynamics of the density Ny = Sy + [ of the vector population is
driven by the balance between the fluctuations of py () and the constant per-capita death rate

w1y which yields:

Ny = py(t) <1 T ) Ny — py Ny (t). 4.7)

4.3 Results

4.3.1 Effect of dormancy, relapse and seasonality on pathogen persistence

In the event of the absence of seasonal patterns, the total vector population size /Ny attains
K(py — e . . . .
M. Consequently, within this stable environment, the basic reproductive ratio can

%
be derived either through the next-generation technique or by means of a perturbation analysis

approach (see (4.6)), though an explicit formulation for R, is unavailable. To address this

99



Partie , Chapter 4 — Evolution of pathogen dormancy in fluctuating environments

limitation, we introduce a novel parameter.

r rd 1 By Bu Ny 4 dafy By Ny
(r+pm) (Y +pr+d)  py (Y +pa+d) py (v pa A d) (04 )

RO_

We show in section (4.6.1) that
— Ry > lifand only if Ry > 1
— Ry < lifandonlyif R) < 1

Next, we assume that seasonality acts on the per-capita growth rate of the vector and is driven

by the following step function:

t
_ p ifOS{T}<1—U

0 otherwise

pv(t) (4.8)

where {z} = x — | z] is the fractional (decimal) part of z, 0 < {x} < 1. The periodic attractor
of Nv(t) (see proposition (19) ) is :

N Ker®
Ny(t) =
Jo pv(s)e?@ds + —ar—= [ pv(s)e?ds

where ©(t) = [i(pv(s) — pu(s))ds. We extend the perturbation analysis used by [KCG22] to
derive an approximation for A with A = p(®, (7)) the spectral radius of the monodromy matrix

of system (4.42).
dd,

dt

The asymptotic growth rate of the epidemic in the initial phase of the epidemic for small

= A(t)®a(t) with ®,(0) =1 (4.9)

values of o
)\:)\0+U)\1+0<0') (410)

In the constant case (without seasonality ¢ = 0), we assume that A\ = 1 and \; refer to the

first-order effects of seasonality on pathogen persistence. The perturbation analysis yields:

K ad
T BBy — <1 + )
p r+ i

d (r + aﬁﬂwiz> BvBuK (p— pv) (1 + . j‘iH>
_|_

A= — <0 @11

1+

(r+ pg)’ P
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In other words, our model shows that an increase of ¢ leads to a reduction in the duration
of the vector population’s growth rate. As a result, a negative effect on pathogen persistence
(Figure (4.1)) because the average number of vectors is decreasing (see proposition (22)). It’s
important to note that the intensity of seasonality, denoted as p, remains constant and the length
of the seasonality period is controlled by the parameter 1 — o.

The effectof con A

0.00 ~ —— Numerical result
Theoretical approximation
—0.05 A
< —0.10 A
(@)
o
—0.15 A
—0.20 A
0.00 0.02 0.04 0.06 0.08 0.10
o

Figure 4.1 — The effect of seasonality on \. An increase of ¢ leads to a negative effect on
pathogen persistence. Parameters: 7' = 3,a = 1,0 = 05,8y = 1,8y = 1,7 = 0.5, uy =

1,MH:31(J1_7—3>,d:1,r:1.

4.3.2 The selection gradient

In the following text, we apply the method utilized by [LG22] to derive the selection coeffi-
cient associated with a mutant in a periodically fluctuating environment under the assumption
that selection is weak. This selection coefficient can be applied to determine the fate of the
mutant (invasion or extinction) and thus to identify evolutionary stable strategies. We assume
the mutant phenotype z,, (dormant intensity, reactivation intensity, timing to relapse,...) to be

close to the resident phenotype z,, (i.€ 2, = 2z, + € with € small).
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To follow the dynamics of the mutant we track the dynamics of the vector X, (t) = (I, Dy, It T,
with:

dX
" =A,X,, 4.12
o 4.12)
with
— (7 + dm + pinr) Tim By S
Am = dm - (Tm + /LH) 0
BuSv aBySy —Hv

The coefficient a;;, of matrix A,, are the transition rates from an infection in state & to a new
infection in state j. Sy and Sy are the host and vector population at the periodic attractor state.
Note that we dropped the dependence to time to simplify the notation. However, these transition
rates are allowed to vary with time because of fluctuations of host densities but also because

allocation to dormancy and reactivation may fluctuate over time.

Fluctuating environment involves variations in the quantity and quality within different
classes. Class frequencies and reproductive values are the means through which these vari-
ations are manifested, and they hold a crucial significance within the realm of evolutionary
theory The coefficient of selection on the mutant at time ¢ is determined by the instantaneous
selection gradient (see [LG22]):

s =Y 20, @13
Jk m

Zm=Zw
where f;, is the frequency of the infections in state £ and v, is the individual reproductive value
of infections in state j, where j, k € {Iy, Dy, Iy }.

It follows the dynamic

(4.14)

and
— =A f—r,f 4.15)

where f = (fr,,, fo,. 1),V = (1, 0Dy, 01,) , Tw = Y 3o; ¥ f; is the per-capital growth
rate of the monomorphic resident population. Note that these quantities have been normalized

so that >° fr. = 1 and }; f;v; = 1. The  notation indicates that reproductive values and class
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frequencies are calculated when the system sits in its periodic attractor.

The selection gradient on dormancy and reactivation can thus be obtained from averaging

the selection coefficient over one period of the fluctuation of the resident attractor which yields:

== (o 0) (1) ~ 00, () 9| @.16)
v = {Foul0) (01, (0) = 00, 1)) @.17)

. 1 e .
where we use the notation (g) = T fOT g(s)ds to indicate the average over one period of the
fluctuation. In order to compute the above selection coefficients we need to compute the class

frequencies and the reproductive values of the different infection states.

Class frequencies:

The dynamics of class frequencies is given by:

dffcfift(t) =— (v + pg +d) fr,,(t) + 7 fp,, (t) + BvSufr, (t) — ruwfr, ()
dedfz(t) =dfr,, (t) — (r + puu) fp, (t) — rwfp, (t) (4.18)
dfz/t(t) :BHgvffH (t) + aﬁﬂgvaH(t) — v fr, (t) = T fr, (1)

Where r,, = 3, alf (t) f¥(¢) is the per-capital growth rate of resident population. When
d
the system sits at its periodic attractor (r,,) = 0 and <dt (In f,)> = 0 so if we divide both side

by f; and average over one period we can show that

fIH (t) > T+ pH

= . (4.19)
<f Dy (1) d
Reproductive values:
The dynamics of reproductive values are given by:

P _ (4 g d 5 4.20
—g = tdtpm) v () = dvp, (t) = BrSvr, +ruvr, (1) (4.20)

dvp,, (t N
lz;( ) = —rvg, (t) + (r + pw) vp, (t) — aBu Sy (t)vr, (t) + rwvp, (t) 4.21)
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dU]V (t)
dt

= — By Sy, (t) + pvor, + revr, (4.22)

4.3.3 Evolution without seasonality

Let us first focus on the scenario where the environment does not fluctuate with time. In
other words, we assume there is no seasonality and ¢ = 0. In this case we can use (4.16) and
(4.17) with the trait z = d and z = r to show that:

Sy = —ST{CI—H. (4.23)
Iy
Moreover, there exists a critical value
O - (4.24)
M+

which plays a significant role in dictating the evolutionary path. When a > «, Sy > 0 > S,
pathogen evolves in a way that increases the dormancy or decreases the reactivation rate. On
the contrary, when o < a, the pathogen moves towards decreasing the reactivation rate or
increasing dormancy with S; < 0 < S, (see section (4.6.3)).

If = 0, we can use (4.19) to show that a mutant with a strategy d,,, and r,,, will invade a

resident with strategy d,, and r,, if and only if

Tm + 1234 > Ty + HH
dm dy

(4.25)

This means that if dormancy and reactivation evolve independently, dormancy evolves towards
minimal values, while reactivation evolves towards maximal values. In the general case, the

mutant will invade if and only if ( see section (4.6.4))

(r + pw) (O + por) +dpm (o + ) (Y + pa) + gt

4.26
7/’—'—I’LH—FOZCZ - rm+ﬂH+amdm ( )

4.3.4 Evolution with seasonality: no plasticity

First, we are going to analyze a case where dormancy and reactivation rates are constant.
To be more specific, our objective is to understand how seasonality impacts the existence of
a critical value under the condition of constant dormant and reactivation rates: unfortunately,

we have no analytical formula. However, we have successfully obtained its existence through
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numerical methods and observed that it coincides with the critical value «, of the constant
case. When a > «, the selection gradient with respect to the dormancy rate is denoted as
Sq = <— f]H (01, — @DH)> and is found to be positive. In other words, on this interval of «,
dormancy is always selected regardless of the alpha intensity value. Conversely, when o < a,

the selection gradient .S; can take positive and negative values (see figure (4.2)).

50

B
o
1

Sd<0

w
o
1

N
o
1

Evolutionary stable dormancy d

=
o
1

Sd>

e R

1
|
0 0.02 0.04 0.06 0.08 ac 0.1

Figure 4.2 — Evolutionary stable dormancy strategy in a periodic environment. In the
case take account for the seasonality (o > 0), the blue curve indicates the evolutionary stable
dormancy. The blue area shows the positive selection gradient with respect to dormant intensity.
Parameters: T'=6,0 =0.4,p=50,0y =vyg = 1,85 =3, uy =4, ug =0.1,r = 4.

4.3.5 Evolution with seasonality: with plasticity

In the following, we use the selection gradient on dormancy and reactivation to study the
evolution of plastic investment in these two traits. Specifically, we explore scenarios where
the investment in dormancy and reactivation fluctuate with time-varying quantities. First, we
examine a situation where the strategy varies with time ¢. Through numerical analysis, with
a > «a., pathogens switch into dormant duration at the favorable period. Second, we investigate
a situation where the strategy varies with the density of vectors Ny (t). Pathogens proactively

switch to dormant duration before the occurrence of the unfavorable period remaining dormant
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until the next favorable season comes. As a result, the length of dormant duration exceeds the

duration of the unfavorable period.

Plasticity with time

We assume (i) that the pathogen invests into dormancy at rate dy during the time interval

[td td] (outside this interval we assume d = 0), (ii) that the pathogen invests into reactivation at

57 7e

rate o during the time interval [¢7, 7] (outside this interval we assume r = 0). In other words,

we assume d(t) = dol[td 1) (t) and r(t) = ro1lyr ). In the following we are going to look for

the evolutionary stable values of t¢, ¢, ¢ ¢".

s)7er”sr e

Selection for plastic dormancy:

We have
OA,,  OA,, dd(t) 00
= Bl = 1 t 427
ady ~ 0d od 100 [ L (®) (4.27)
0 00
o) ) .
and ol —dyd,4(dt) indeed since, d (t) = dOl[tg+e,tg)(t) = d(t) — dOl[tg,thre) (t) and

de(t) = dOl[thngg) (t) =d(t) + dOl[tg,tg+e) (t) hence

odt) .. d.(t)—d(t 4

at(d) - <)e() = =Lt 110, (1) = —dodig(dt) (4.28)
od(t) .. d(t)—dit) . d
at(d) = lim ()E() =lim 170, (1) = doda (dF). (4.29)

The selection gradient on ¢4 is
1T . . 2 Cdo g gy s A\ £ (4d
Stg_f 0 _dO <_UIH+UDH)fIH(t)5t§ (dt>dt_?(UIH(ts>_UDH(ts)) f]H<tS>‘ (4.30)
The selection gradient on ¢¢ is
S = 2 [ do (mor, + 0p,) Fr (06 () dt = =20 (0, (1) — bp, (D) fr, (7). (431
=1 ) o (=0ry +0py) [, () (dt) db = =75 (01, (tc) — Opy (L)) fru(te)- (431)

Selection for plastic reactivation:
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As in the previous section, we have

OA,,  O0A, Or(t)
ore  Or Org

—1 O 1[t§,t£)(t) (432)

Slmllarly agt('r‘t) = —7’0(5152 (dt), agt('r‘t) = 7’05152 (dt)

The selection on ¢/, is

1 T

Stg = _f 0 To (@IH - ’l/)DH) fDH (t)(st'; (dt) dt = _% (ﬁIH (tg) - ’l/)DH (t;)) fDH (tZ) (4.33)

The selection on ¢, is
LT ~ PN n o /o r ~ r\\ £ r
8152 = f /0 To (UIH - UDH) fDH <t>6t2 (dt) dt = ? (UIH (te> — UDy (te)) fDH (te)' (4.34)

Let us assume that there is an ESS with respect to ¢4, ¢" and t”. Then, from the relation
of expressions (4.30) (4.31) , (4.33) and (4.34) S;4 = Sy = Spr = Sz = 0. Since a < a. there
are only two timings ¢ in a period such that 9, (t) = 9p,, (t) we find that! t¢ = ¢ t¢ = .
Hence we can write d(t) = dolyaa(t),7(t) = 7014 ,44)(t). When the pathogens encounter an
unfavorable environment, they will switch into a dormant state until the next favorable period

where they will relapse (see Figure (4.3)).

Plasticity with vector density

Understanding the relationship between the timing of dormancy and the state of relapse
has provided us with valuable insights into the physiological mechanism of the population. In
the following, we will assume the transition point of the species will depend on the size of
the population, which means there will be a threshold Ny,. When Nv(t) > Ny, we reactivate
the dormant hosts at rate 7o. When Nv(t) < Ny, we put host in a dormant state at rate dy.
Given Ny, € (NV(O), NV(O)e"“T> from the argument in the preceding section, we assume that
d(t) = dodya ey and r(t) = rolya_7,0), we have two values (1 — o) T < ¢ < T < t? <tI+T
such that Ny (t7) = Ny (t¢) = Ni. Therefore t¢ = t, € [0,(1 — 0)T) where t, is given
in proposition (20). We shall compute the selection gradient on the period [tg - T, tg} with

1. Here we use the notation m = n with the implication that there exists k € Z , such that m =n + kT,
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z = Ny,
0A 8A (9A od OA Or
Since d(t) = dol[td§t<td) and 7 (t) = ro1y4_7<;ia We have
od otd otd
3, (1) = —do = ()0 (dt) + do— > (t)dra (dlt), (4.36)
9] otd ot?
a—Z(t) = o5 (D)5(dt) = 1055 (1)54s7(dD). 4.37)

d
s

t N
We compute —= (¢) from the equation Ny (t?) = Ny that we differentiate
z

_ONy g Ot

and since N, (£) — (pv(t) <1 B ;é”) - uv) Ky (#), we get

ot? 1 1 ot? 1 1
70 P N SEL Y SN S i . (438)
CER D ) R A E () Bl Y (R B

Putting everything together gives the gradient

() = (=iny + 00) (5201 = 57017

X X 5 otd otd
= (=t + 00 ( (o Ot + a5 >atg<dt>)

A d d
iy (m ‘?fz( £)6,4(dt) at o ))
d d

( )5td (dt) + f[Hdo 9% e

d

= (=01, + 0py) ( (fIHdo + fDHTO) o (t)dpa(dt) + fDHTO?; ()0ra— (dt)> -

0z

Therefore

8 = (=01 (#) + 00y (¢)) (Fr (tD)do + Fiyy (¢)70) (4.39)

pv Ny
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(8 ) (o E0) (v

In the particular case, if (t) is fixed, then the expression (4.39) reduces

~ N A 1 1 A R . d
o ((_U“’ (15)+ 000(tD) a6 0+ gy (0 + 800 (00) T <tz>) &
(4.40)

The relation between t¢ and ¢ be shown preceding, and the numerical optimization pro-
cedure (see figure (4.3)). Pathogens enter a state of dormancy in response to an unfavorable
period, guided by cues from the density of the number vector. Consequently, this dormancy
period occurs later in winter and extends until the beginning of summer. It differs from the
selective direction of time, where pathogens always proactively switch whenever they detect

unfavorable cues.

Plasticity with infectivity of the dormant infections

From equation (4.13) we have the selection gradient on infectivity of the dormant infectious

given by
So = BuVi, fou Sy > 0 (4.41)

Hosts with higher « have higher fitness. When a = 1 the compartment Dy is considered as
compartment /. Combined with the two preceding sections, with o = 1, the selection on time
Sy < 0,54 > 0, an decrease t? or an increase t¢ get higher fitness. In other words, pathogens

prefer dormancy the whole period.

4.4 Discussion

We have extended a classical model of vector-borne transmission to account for the ability
of some pathogens to enter a dormant state. This dormant state protects the pathogen during the
bad season because the host immune system cannot clear the infection. However dormancy is

very costly in this model because it prevents pathogen transmission from the Dy hosts.
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Our analysis first shows that seasonality has a positive effect on pathogen persistence in
this model. This effect is due to the influence of seasonality on the average density of vectors.
Note, however, that we know from [KCG22] that this effect of seasonality is very sensitive to

the assumptions regarding the influence of seasonality on different components of the life-cycle.

However the main objective of the present study was to explore the evolution of the pathogen
investment in dormancy and reactivation. We found that when dormancy and reactivation are
assumed to be constant in time, selection tends to favor lower values of dormancy and higher
values of reactivation. Yet, if we allow dormancy to vary with time or with other time vary-
ing quantities (e.g. the density of vectors) plastic strategies of dormancy and reactivation can
evolve. This plastic investment allows the pathogen to track the fluctuations of the densities of
vectors and invest more into transmission (lower dormancy and more reactivation) when many

vectors are around.

It would be interesting to analyze modified versions of the life-cycle. First, it would be inter-
esting to study the robustness of our results when we vary the growth function of the vector. In
the current model, the vector density grows exponentially during the “good” period and it drops
exponentially during the “bad” period for the vector. In natural conditions, the density of the
vector population may follow a more logistic growth curve where the density stabilizes around
some carrying capacity during the “good” period and drops rapidly to zero in the “bad” season.

Would these square-wave dynamics alter the outcome of the evolution of dormancy?

We would also like to analyze a slightly more complex version of the model where invest-
ment in dormancy could be costly but would not lead the host to be unable to transmit the
pathogen. In this case, the hosts of type Dy would still be able to transmit to the vector. The
benefit of dormancy would come from the fact that if immunity clears infection from these Dy
hosts they would enter a compartment R, where the parasite could eventually reactivate and
enter again the infectious class Dy. We expect that this model would induce a lower cost in

dormancy and could lead to fixed investment in dormancy in seasonal environments.
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4.5 Tables and Figures

Table 4.1 — Parameters and variables of the models

Symbol Description

Parameters

d rate of dormancy

r rate of reactivation

By rate of transmission from an infected vector to a susceptible host
Bu rate of transmission from an infected host to a susceptible vector
pv growth rate of the vector

Ly death rate of the vector

LH death rate of the host

v recovery rate of the infected host

T period of the seasonal fluctuations

o intensity of the seasonal fluctuations

€ phenotypic effect of the mutation (assumed to be small)

td starting time of dormant period

td ending time of dormant period

td starting time of reactivation

td ending time of reactivation

« infectivity of the dormant infections

Variables

0 influx of susceptible hosts

Sh density of susceptible hosts

Iy density of infected hosts

Dy density of dormant hosts

Ry density of recovered hosts

Ny total host population density: Ny = Sy + Iy + Dy + Ry
Sy density of susceptible vectors

Iy density of infected vectors

Ny total vector population density: Ny = Sy + Iy,
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4.6 Supplementary information

In the following, we will complete the unproven results from the main text. Specifically, in
Section (4.6.1), we will calculate an alternative quantitative value for the reproductive values R,
and integrate it with the next-generation theorem. Section (4.6.2) uses a perturbation analysis
approach in order to find the threshold where the pathogen develops in case the environment is
not fluctuating. Section (4.6.3) finds the threshold of infectivity of the dormant infections in
without seasonality case. Section (4.6.4) gives a condition mutant will invade the population.
Section (4.6.5) solved some problems related to the logistic equation and section (4.6.6) study

model under the influence of seasonality which was used in section (4.3.1)

4.6.1 The reproductive value

The next generation approach

We can compute the reproductive value R, by linearising the system at the disease free equi-
librium (DFE) ]V = IH = DH = RH = 0, NV = Sv, NH = SH with X(t) = (IH, DH, Iv)T

satisfies the system.

aX(t) _
= AX(1), 4.42)
where
- (’Y + d + ,MH) T 6\/
A= d —(r+pa) 0 . (4.43)
BuNv afu Ny —Hv

By the representation A as A = F — V with

0 r Bv (v + pu +d) 0 0
F=| 4 0 0|, V= 0 (r+pm) O |,
BuNyv  afuNy 0 0 0 v

which satisfy the next-generation theorem [HCDO09] then the basic reproductive value 7y is

given by
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0 B
T+ gy
Ro=p(FV™') where FV™" = T 0 (4.44)
’ Y+ UH +d ’ '
u Ny afyNv 0
L v+ pg+d v+ pg |

We have

det (FV™" — 1)
_ 3 r ( ; d >+ﬁv <( dafBy Ny i tBu Ny )

Crtum \ Ytpa+d) v

pv \(y+pg +d) (r+pu) v+ pg+d
P [ dr By BNy ] daBy B Ny
(r+pm)(y+pu+d)  py(y+pe+d)]  py (v +pe+d) (04 )

(4.45)

Look at the equation

det (FV—1 _ u) —0
3 [ dr By BuNy ] dafyvBuaNy
o 1t +
(r+um)(y+ug+d)  pwy+pa+d)]  py(y+pg+d) (r+ pm)

=0.

Apply Vieta’s theorem to the cubic equation (4.45), which has three distinct solutions 4, ¢,
and 3 that satisfy:

1+t +t3=0

rd Bv Ba Ny
tity 4 t1tg + 1oty = — +
T ((T+MH)(’7+/~LH+CZ) Mv(7+,uH+d)>
B dafy By Ny
titots =

pv (v + g +d) (r+ pm)

It is easy to show that there are two negative solutions and one positive solution ¢; < ty <

dr BvBuNy 1 dafy BNy
0 < t3. Weset f(t :—t?’—l-t[ + '
3 f(@) (r+pm) (Y +pg+d) " py (Y+Hpg+d)| py (y+ p+d) (r+ )

Since f(0) > 0, hence
— If f(1) > O thents > 1.
— If f(1) < Othents < 1.
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B)a= 0

do 1 —

0
0.50

T
u o

0.25 1

N

0.00 1
—0.25 1

Vector density

~0.50 1

T T T
o = N w

—0.75*‘.

D) a= 0.07
do 1y —

0
0.50

T
U o

0.251!

N

0.00 1

—0.25 1

Vector density

—-0.50 |

-0.751; ‘\

T T T
o = N W

0.251
0.00 H

~0.25 Y4

Vi, — Vb,
|
o
N
w

-0.50 |

-0.75{i -0.75{}

o [ N w B wu (o))
o [l N w H (] [e)]
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o
—
N
—
O ===
—
N
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Figure 4.3 — Plasticity . For o = 0, figure A, t? = 0.51648T,t? = 1.027367. figure B, t? =
0.60445T, Ny (t%) = Ny (t%) = 4.83143. For a = 0.07, figure C, t? = 0.0.40414157T,t¢ =
1.03048T, figure D, t¢ = 0.602997T, Ny (1) = Ny (t%) = 4.9858 and o = 1, there is no
td 4 € [0,T) such that Sa = Sy = 0. More precisely, we always have S, < 0 and 54 > 0.
Pathogens prefer decreasing ¢ and increasing t? in other words, pathogens prefer dormancy.
The gray areas indicate unfavorable reason [(1 — )T + kT, T + kT'), the orange areas depict
dormant period. It lays on time interval [tf + kT, t? + kT'). The red line indicates V;,, — Vp,,
and the blue curve indicates vector population oscillates around its equilibrium value. Common
parameter values: ' = 5,0 = 04,0y = 1,0y = 3,a = 0.2,7 = 1,dy = 5,70 = 4,p =

50, v =5, i = 0.1, 7(t) = rolyaaimy(t) - 114
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In the general case, we can not compute directly the reproductive value R, , but we can

d
compare p (FV‘I) with 1 by comparing the value of f(1) = —1 + T ) +

(r+pg)(y+ py+d
Bv Bu Ny i dafy By Ny
py (Y+pm+d) opy (v pe+d) (r+ )

with 0.

4.6.2 Perturbation analysis approach

In the constant case, without seasonality, matrix A become A, with the implication o = 0.

The characteristic equation det |Ay — tI| = 0 is given by

— (v +t) (v +d+pr +t) (r+pr+1) +dr (py +t) + By (adBa Ny + BuNv (r + pm +t)) = 0.
(4.46)

We have

— (v + ) (v +d+ pu +1) (r+ pa +t) + dr (py + 1) + By (adBuNy + BuNy (r + pu + 1))
=~ (uy + ) [+t (y+d+ pu + 7+ pw) + (v + d+ pa) (0 + pa) — dr]
+ By BuNy (da+ 1+ g + 1)
=—t3 —12Cy — tCy + Cy,

with
Co=v+d+pg+7r+pg+ py 4.47)
Cr=(y+d+upm)(r+pa)+py (y+d+pg+7+pa) —dr— BvBuaNy (4.43)
Co=—pv (r+ pm) (v +d+ pg) + rduy + BvBuNy (r + pg + do) . (4.49)

Without loss of generality by change the matrix Ay by Ay — s(Ag)I 2, we assume that s(Ag) =

0. It is equivalent ¢ = 0 is one solution of the characteristic equation. So, we get

—uy (r+ py) (v +d + pg) + rdpy + By Ba Ny (r + pg + do) = 0. (4.50)

We divide both sides with py (r + pg) (v + d + py) and yields

BvBuNy (r+ pm + da) rd
pv (v +d+pg) (r+p) (v d4pw) (7 i)

=1 (4.51)

2. s(A) = max {R(z) : z € Set of eigenvalues of matrix A}
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In order to show that 0 is the spectral abscissa of matrix A,. It is sufficient to establish that
0 is the highest real part among all the eigenvalues of A. It is equivalent to showing that the

following equation has two solutions with a negative real part.
t2 4+ Cot + C, = 0. (4.52)
Indeed, C; > 0 and

Cy=(y+d+pg) (r+pm) +pv (v +d+ pg +7r+ pg) — dr — BvBaNy
v (v +d+pm) (P + pe) — rdpy

= (v d+pn) (r+pm) +py (V+d+pg 7+ pg) —dr

r+ pyg + da
+d+ + —rd
2(v+d+uH)(r+uH)+uv(v+d+uH+r+uH)—dr_“v(v MTHj—(; pr) — rdpy
H
d
:(’Y+d+,LLH+LLv)(T+MH)—dT+ il > 0.
T+ pH

The last inequality from the sum of the two first terms is positive and the last term is positive.
Therefore, all other solutions of (4.46) with real part negative. In other words, 0 is the spectral
abscissa of matrix A. In the constant case, A\g = p (eTA‘J) = 1 if and only if the condition (4.51)

holds and it is also the condition we find with the next-generation approach (formula (4.44).

4.6.3 Evolution without seasonality

In this case we consider o = 0, therefore, at DFE we have:

per (Ig + Ry + D) — By Iy Sy = 0,
BvlySy — (v + pu +d) Iy +rDy =0,
dlg — (r+ pg) Dy =0,

Yy — pg Ry = 0.

Hence,
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Therefore,

025\/]\/5’[{— (’7+MH+d)IH+TDH
dr

T4 H

dr
:BV[VSH—<”Y+MH+CZ+ )IH
T4 H

= BvlvSy — (v + pu +d) Iy + Iy

d
<:>5V[VSH:<’Y+MH+CZ+ L )IH
T+ pH

Furthermore, since

Sy = py(t) (1 - N‘}/((t)

Iv = By (Iy + aDy) Sy — py1y.

> Ny (t) — By (Ig + aDy) Sy — py Sy,

Therefore

Ny = plt) (1 - N‘;ﬁ”) Not) — v N

my

(4.53)

(4.54)

(4.55)

(4.56)

In the constant case, when o = 0 one gets Ny = K (1 — p> ;and Sy (Ig + aDy) Sy —

pyly =0

& pyvly = By Iy +aDy) Sy

d
— By <1 N ) ISy
T+
From (4.54) and (4.57) yields,
d
R 6 6 HH + Y + al
S8, VPH _ T+ U '
ad
122% 1 +
T+ g

(4.57)

Since voA = 0 with vj > 0.7 We get 0 = (voA), = 0 = By Suvo(1) — uyve(3) = 0

3ox= (21, ,2y) > 0:2; >0Vi € [1,n]
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= V0<3) =
We have

M7 and (voA), = 0 hence rvo(1) — (r + i) vo(2) + By Sy vo(3) = 0.
.

rvo(l) — (r + pg) vo(2) + aﬁHSVVO(?)) =0
& BvSuvo(l)

& rvo(l) — (r+ pw) vo(2) + afBuSy =0
5 BvSu ~
A r+afudSy e vo(l) = (r+pm)vo(2)
d
p oy
& T+ o od BH A vo(1) = (r + pa) vo(2).
1+
T+ pH

Ifd(t)=d,r(t)=r,S;=—S S ) it Sy = fr,, (bg, — 01,,).

TfDH(t)
Sqg >0
& vo(2) >wvo(1)
d
MH+7+T_/j_H
S r+o KH >r 4 ug
ad
1+
T+ MH
< alpgty+ > pg | 1+
T+ pH T+ pH

4.6.4 Evolutionary invasion analysis

To study whether the mutant invades and could become an epidemic, we use adaptive system

methodology . If the mutant invades the population, we have a dynamic system

IH:ﬁVIVSH_(7+MH+d)[H+TDH
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Ry =~ (Ig + Iff) — pu Ry

Sv = pv(t) <1 - N‘l/((t)

Iy = By (Iy + aDy) Sy — pv Iy

I = Byl Sy — (v + pg + d) If + ™D
D= d™I% — (1, + pg) D

I = Bu (Iif + ™ D) Sy — pv I

) Ny — By (IH + [ZL +aDy + OémD?}) Sy — uy Sy (4.58)

NB: NV:[\/—{—S\/—FI{}L

To study the stability of the mutant system, we compute the Jacobian matrix at the DFE

_(7+dm+,uH) T'm BV
BuSy B Sy %

Applying the result of the previous section (4.6.1), the mutant invades if and only if

dm T'm ﬁVﬁHSV (Tm + HH + amdm) >1
Y+ pim A+ oy o+ (7+ug+dm)(7"m+uf1)duv - ;
- BvBuSy ( HH ) >+ g+ HH
(Tm +MH) 192% T'm +,uH
o vBuSy > (T + pm) (v + pm) + dmpim
Hv - T'm + HH + amdm
- (r+ pr) (v + pm) + dpp S (Tm 4 por) (v + pem) + difir
r+ g + ad - Tm + g+ mdpy,
(4.59)

Hence, the mutant invades if and only

(r 4 pm) (v + pg) + dpy S (P + pm) (v + pomr) + dipir

4.60
T+MH+Oéd o rm—i_/LH—i_Oémdm ( )
4.6.5 The deterministic model
Proposition 19. We consider the following ODE:
dx(t) x(t)
=pv()z@®) (1= =2 ) = py (Dt
= ortneo (1- 50 ) - wlosto o

l’(toT) =X .

119



Partie , Chapter 4 — Evolution of pathogen dormancy in fluctuating environments

Where py (t), wy (t) are positive function for all t > toT. There is a unique periodic attractor is
given by:
e?(®)

fg ﬂ\ggs) e?(8)ds + esﬂ(%)_l OT p‘;§8) egp(s)ds.

2 (t) = (4.62)

where p(t) = [5 pv(s) — v (s)ds.
Proof. Since the first equation of (4.61)

CAGRp <1 - xg)) — (B (t)
> B0 ) = ) o) - 2t

de(t)  (ov() — () pult) .

2(t)dt z(t) =~ e #0

= W0 4 (o (1) — i ) (1) = 52 where y(1) =

d (y(t)exp (fr (pv(s) — v () ds))  py(t)
dt K

=

exp ([ (ovs) = ) ) ds

Integrating both sides over the interval [tT, t| results in:

o) =exp (~ |1 (ovls) ~ mvi(s)) ) (y(tm [ e ([ (i) — () du))

1
= o(t) = O]
exp(— (p(t) — ¢(taT))) (y(toT) + fi 0 25 exp ((s) — p(teT)))
e?(®)
- e@(toT) ¢
(s) s
) o B
e?(®)
 Chr + JE 228 ev(9)ds
where
t e¥(toT) toT py(s)
t) = — d Cp=—-— _/ ?(s) g,
o) = [ ov(s) —mv() s, Cur = L= [ e ds
IftyT < (1—7)T, C = eloTlo=rv) (1 - P )—i— P . Assume that py (t) =
ro T(p—wv)) T(p—pv)
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pv(t) and py (t) = py (t) are T' - periodic functions, we have

0= [ -mtons= [ (3 (5) - (5)) -1 ()

Therefore 31 (t) = py (tT), pa1(t) = py (tT) and p4(t) = @ are periodic functions with
period 1. Without say anything, we keep in mind 51(t) = py (t), p1(s) = pv(s), p1(t) = (t)
are 1— periodic function. We have

w@-%nfv=:§:y4w+” (pv(s) — i (s)) s + [ (puls) = () ds

k=0 KT

et +nT) = +Z//w v (5)) ds

S p(t+nT) = @(t) +np(T).

We also have

(toT) toT t ( )
_ el () / Pv(s) oo / Pv(8) vogs) e s o
¢ (x(tOT) o K "N TK "

I ) <C N / ! PV(S)eso@)dS) VS0
o K -7

x(t)
@(toT) 1
where with C = & tOT pv(s)e?®ds = eloTlP=rv) ( __r ) + P
() ro p—mv)  p—py
1 t4+nT
= = ¢ P C+/ PvIS) ot g VO<t<T
x(t +nT) K
1 (k+1)T p nT+t py(s)
L —np(T) / v( o#(5) g / VAS) o) g
<:>:1c(zf—i-nT) <C+Z o nT K © "
1 —p(t)- pv(s) tpv(s)
b ) —ne(T) / w(s)+he(T) g / p(s)+ne(T) g
<:>x(t—|—nT) e <C+Z e s—i—o 7 e s
e (T
oL e (e o / PVLS) o) gg 4+ / Crv(s) g, )
z(t +nT) o K
Therefore,
»(t)
z(t+nT) = € (4.63)

Ce—ne(T) + 1;(}7;51(? o v (s) oo(s) ds + Jo £at 2vs) oo(s) g’
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where

- 1 p p
C = toT(p=nv) ( — > + .
v Klp—w)) Klp—pv)

Assume that p(7") > 0, the solution of ODE (4.61) converges to the following periodic

attractor:

e?(®)

f(f ﬂVéS) e?(s)ds + eSD(Tl)i1 OT ﬂvéé‘) () ds

2 (t) = (4.64)

]

Proposition 20. Let t, € [(1 — o)T, T), with Ny is given by (4.62), there existty € [0, (1 — o)T)
satisfies Ny (t1) = Ny (to) and

1
P — Hv

to = (T(l—a)p—tluv+log (1—Dp_’“‘v> (4.65)

p
~log (1 _pPT IV L o)ty eT(la)(pm))
p

with

T
D= /O v (5)e#@ds, (4.66)

Proof. Since Ny (t) is a periodic function on [0, T') therefore, with given t; € [T(1 — ), T)
there exists ¢, € [0, (1 — 0)T") such that Ny (t1) = Ny (t,). We have

etolp—pv) T (1=0)p—tipy

etolp—nv) — 1 + pl—Hv eT(l=0)(p=pv) — 1 + pl—Hv

P p
o elolp—iy) (eT(lo)(Puv) _ TU=a)p—tipy _ {4 D/)—W) _ (T=0)p—tipy (_1 . DP-Mv) ’
P p
therefore
1 _
ty = (T(l—a)p—tluv+log (Dp v —1)
p—pv p

—log ( PZHV 4 (TU=0)ony) _ 6T(1—0)p—t1uv>>
p

122



4.6. Supplementary information

4.6.6 The periodic case

In this section, we assume that the dormancy and recovery rate are fixed meanwhile the
growth rate of the vector fluctuates seasonally. We can assume that in one period the growth

rate has the following step form:

t
p 1f0 < {} <l—-o
pv(t) = T (4.67)
0 otherwise

4.6.7 Influence of seasonality on the growth rate \

We linearise the system (4.42) near the disease free equilibrium (Sy = 1, Sy = Ny, Dy =
Ry =1y =1, =0).

dX
%(t) =A(H)X (4.68)
where,
—(v+d+pn) r By
A(t) = d —(r+ pm) 0 (4.69)

B Ny () aBuNy(t) —py

Since py (t) is a periodic function with period 7', and o measures the duration of the effects of
seasonality. Let L = ®4(7") be the monodromy matrix associated to matrix A (¢) and A = p(L)
the spectral radius of its monodromy matrix.

The Taylor expansion of the transition matrix A (t) for small o give
A(t)=Ap+ Ao+ 0(0), (4.70)

with o(o) uniform in time.
Assumption: By the transformation Ay — Ag + &I translate \y to A\g — A\gexp (k7).

Without loss in generality and to simplify statements, we assume that Ry = Ay = 1.
Proposition 21. For A = p (P4 (T)) the spectral radius of the monodromy matrix we have
A=1+0X +o0(0) 4.71)

with A1 < 0 therefore the decrease in the favorable time period leads to a decrease in the growth

rate of the population.
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Proof. 1f 0 < t < (1 — 0)T we can rewrite Ny (t) as the form:

. Ker®)
Nv<t) - . K
s)e?®)ds + —
Jo PV( ) NV(O)
. Ker®)
= Ny (0)—

Ny (0) fy pv(s)er®ds + K
B Ketlo—nv) _ Nv(o)ﬁ (et(pfw) _ 1) - K
= Ny(0) [ 1+ - 5

Ny (0) (etto—m) — 1)+ K

P — Hv
. (K — Ny £ ) (et(pfuv) — 1)

P—HV
Ny (0) (etl=mv) — 1) + K

P — v
‘We have

R (0 K (e“’(T) — 1)
VO = @
K (eT((l—G)p—uv) _ 1)

P (=)o) — 1)

p—pv

K(p— uy) - eT((l—U);—uv) — T(1=0)(p—pv)
p eT(1=o)(p—pv) — 1

T(1—o)(p— —oT,
K(p— ) (1+€( )(p “V)(e uv_1>)

P T=0)(p—mv) — 1

B K(p _ /’LV) O—TIuVeT(p_P‘V)

Furthermore,

K p—pv _ Jo pv(s)e?Dds p — py
Ny (0) »p er —1 p
el (p=pv)(1=0) _q

eT(p(l—o)—pv) — 1
eT(p(l_U)_ﬂV)eaTﬂV _ 1
eT(p(l=o)—pv) — 1
eT(p(l=0)=pv)goTuy _ goTpv 4 goThy _ 1

eT(p(1—0) ) — |
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eoThv — 1
eT(p(l=0)—pv) — 1
oT py et P=mv)
eT(p—nv) — 1

— GO'TMV +

=1+ + O(o) when o ~ 0.

The preceding argument yields, for ¢t € [0, (1 — o)T)

) X K — NVL etlo—nv) _q
Ny(t) = Ny (0) | 1+ A( piuv> ( )
Ry (0) - (etr) — 1) 4 K
P — Hv
K tlp—pv) _
_ AV<O) 1+ <NV(O)/JILV 1) (6 1)
- tp—pv) #
e L+ NV(O)P—,LV
T(p—pv)
‘ﬂ;('uve;pw (et(P—Mv) — 1)
= Ny(o) |14 = 2 +0(0)
oTuye (p—nv)
etlo—pv) 4 272 -
eT(p—pv) — 1
. UT,uveT(”_“V) etlo—pv) _ 1
B NV(O) <1 * eTlp—nv) — 1 etlp=nv) * O(U)

K(p — MV) <1 B O-T/J/VGT PMV)) (1 O'TMVQT(pqu) et(pfﬂV) — 1

) eTlp—pv) — 1 eTlo—pv) — 1 etlo—nv)

(

)
_ K(p—pv) 1_ oTpy e’ P=mv)
o p eT(P—MV) —1

) +0(0)

et(puv)> + O(J).

If (1 —0)T <t <T we have,

N Ker®
NV(t) = ; K
Jo pv(8)e?®ds + —
’ Ny (0)
Ker®
K (e?™) — 1) LK
Ny (0) Vi (0)
. e#(®) . B
= My (0) g7 = N (0)e=0

125



Partie , Chapter 4 — Evolution of pathogen dormancy in fluctuating environments

Since
1 -1
B . ro{E}<i—o—e T To<{ L }<i0
10§{%}<1—0 =1+ Ull_{% c +O(0)
1 —O0—¢€ L —0
—1—olim — Skl + O(o)
e—0 €
t
1o ({§)) oo
We have

K(p — pv) oTpye™ M)
A ::l pal Ul = w ALY | EVET P W

L[ K= () oTpyel TV (1]
P eT(P*MV) —1

_ K(p—mv) ll _ UTuveT(p_“V)e—T(p—uv){ r}

%})1 1(1_J)§{%}<1 + O(0o)

T

0 eT(p—pv) — 1
oT py el P=mv) pyT(1-4 L oTpyePm) ~T(p—pv){ %
+<G_emwm—1€ D) s e T ) tnctiya) 00

K(p— pv) (1 _oTpye )

) (1= ) (7)) (1) 00

K(p—pv) oTpye ™) e vTo t
Sl U = e ~1)osis ({7})) +0@

T

T(p—

_ Ko=) (| oTme™™) rpin (31 4 0(o)
P eTlp—pv) — 1 )

When o is closed to 0, we can rewrite A () as the following form A (t) = Ao—i-Ale_T{%}("_“V)a—i-
O(o) where

- ('}/ + d + ,UH) T ﬂv
Ay = d —(r+ pim) 0 1, (4.72)
K(p— K(p—
gl =) o Blo—m)
p p
and
K(p J— MV) eT(pf/J'V) 0 0 0
A1 = _T,UVBH P eT(p—,uv) 1 0 0 0 (473)
1 o O
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Since matrix Ay is cooperative and irreducible, there exists vg, u, are the positive left(right)
eigenvector associated to matrix A, correspond eigenvalue 0. We use the Duhamel’s formula

with L = Ly + eL; + o(¢) where

Ly = 740 (4.74)

9

T
L, :/ voeT =980 A | esBoy e —sP—1v) gg. (4.75)
0

Let ug = (ao, a,az), vo = (bo, b1,b2), since Aguy = 0 = voA, implies the following

relationship:
d
a; = ao,
L= i 0
BuK ( )(1+ d
— ala
HA\p — Uy "+ g 0
A9 — .
PRy
Explanation
K (p—
BHM (ao + a1a) — pyay =0
K(p-— d
< By (= ) 1+ CI)ao—Mvaz =0
p T+ pH
d
BuK (p— pv) (1 + oz) ao
T+ g
= a9 — )
PV
and
b, = L vy, (4.76)
T+ phH
_ bv
by = —Dy. 4.77)
v
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We have %
T’bo—(r‘i‘,uH)bl‘FCYﬁHMbg =0

K(P—Mv>ﬁlb0 -0
i P Hv
r+ By (P—/Lv)ﬁl

b, = P ,qu
1 . 0

= Tbg—(r—i‘,uH)bl—i‘OéﬂH

4

Furthermore, with (vg, ug) = 1 we have

P Wy
(r + pun)’ I

2
Zaibi =1= aobg

=0

(1 N d (7" + afyKlecu) va) N BvBuK (p— pv) (1 + rfjH)) 1

1

d (7’ + aﬁHiK (pp— fy) 5;) BvBuK (p— pv) (1 T —fc/lm)
_I_

This implies agby =

1+
(r+ ppg)? P,

Assume that v and u are the left and right eigenvectors associated to matrix L. The Taylor

expansion give
u=1uy+uo+o(o) (4.78)
V=Vy+Vvio+o(o) (4.79)
therefore, by using the Taylor expansion again for L yields
Liug + Lou; = Aug + Auy. (4.80)

Multiply both sides on the left by v, combined with voLy = vq, voug = 1.

T
)\1 = V0L1u0 = / Voe(T_S)AOAlesAOlloe_s(p_“V)dS
0

T
= / VoA uge *PTHV) g
0

1 — e Tlp=nv)
= V0A1u0 ¢
pP— v
(p — MV) eT(pf,u'V) 1 — eiT(pfﬂ\/)

eT(P—HV) — ]_b2 (CLO - OZCL1> p — Wy

K
= —TpyfBu
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T+
K ad
TBuBy— (1 + )
_ P "+ pH
o K (o — ) Bv oad \
d (T +af > By BuK (p — pv) <1 + )
Hy T+ pH

1+ ; + ;

(r+ pm) PI
]

Proposition 22. The mean of the vector population is given by:

R B - B aTu_l
<Nv>—1<K(pM)(1—a)T—KOTM+K(p -1 )), @381)
T p p p -1 Iz

with 1, = eT((=0)P=1) and 1, = eT0=9)P=1) gnd it decreases with increasing seasonality.

Proof. If 0 < {%} < 1— o, we have

(K - NV(O)p> (etlom —1)

p— 1
S p
Ny (0) (etl=m) — 1)+ K
p—

_ N P etlo—m) _
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[ KA(p— 14)
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Ny (t) = Ny (0) |1+




Partie , Chapter 4 — Evolution of pathogen dormancy in fluctuating environments

We have
/(I—J)T dt
0 etlp—1) 1 M _
Ny (0)p
1 (1=0)T detp—1) _
p— i Jo etlo=n) (etlp=1) + k) (0)p
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= L In m2 (k5 + 1).
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Therefore
(1=o)T . K _ ~ N K _ ) T
[ Nulds = Elo=m) _ o)1 - Ro0) (1 _ (0 ) ( (v u)) oTp
° ’ Kip=m) \ B0y ) wo=1)
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P p
On the other hand, if 1 — o < {;} <1, Nv(t) _ ]\AfV(O)e(T*WV,
T N . T
/ NV(S)dS = NV(O)/ e(Tft)lufdt
(A-o)T (1-0)T
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- u
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p T—1 %

Summing up the expressions from (4.82) and (4.83) gives:

R B - . UT,LL_l
<Nv>:1<K<PN)(1_U)T_KUT“+K(p pn-1(e )) (4.84)
p P p o Te—1 p

1 (K(p—p) KoTp
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Tou 1—1

First of all, we will compute the derivative for each term.

OA, K(p—p)

do 0
We have
Tn—1 0Ty 2 — el — 7y
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2
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2
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Hence

O K(p—pn—1
do Tpu 1 —1

(e”T“ - 1) <K. (4.86)

From (4.84) , (4.85) and (4.86) yields (NNy) is a decreasing function with respect to o.
O
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analyzes the persistence of a pathogen and
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crease the persistence of the pathogen. This
first chapter is based on the analysis of a de-
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with vector transmission. We show here how
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