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ABSTRACT

Rigidity theory is the branch of mathematics that studies the embeddings (or equivalently
realizations) of graphs in an euclidean space or a manifold. If the number of realizations
satisfying edge length constraints is finite up to rigid motions, then the embedding is called
rigid, otherwise it is called flexible. These embeddings can be related to the real solutions
of certain algebraic systems and their complex solutions extend the notion of rigidity to C<.

One of the major open problems in rigidity theory is to find tight upper bounds on the
numbers of rigid graph realizations in an embedding space for a given number of vertices.
Given a minimally rigid graph G(V, E), the upper bound of embeddings in R? used to be
O (2%IV1), while for the cases of d = 2 and d = 3 it has been proved that there are graphs
with 2 (2.3003/"1) and € (2.5198/V1) realizations respectively. In this thesis, we display
methods that reduce the gap between the existing upper bounds and asymptotic lower
bounds on the maximal number of realizations on euclidean spaces or spheres.

We propose two methods to compute a bound on the number of realizations using the
multihomogeneous Bézout (m-Bézout) bound of well-constrained algebraic systems. The
first one relates the m-Bézout bound with the number of certain oudegree-constrained
graph orientations, while the second uses matrix permanent formulation. Then, we ex-
amine the exactness of these bounds on the number of complex embeddings. First with
computations indicating that the m-Bézout bounds are tight for certain classes of graphs.
Consequently, we exploit Bernstein’s second theorem on the exactness of mixed volume,
and relate it to the m-Bézout bound by analyzing the associated Newton Polytopes.

Using these two methods, we improve the upper bounds on the number of graph embed-
dings. Afirstimprovement is achieved for realizations of graphs in d > 5 and planar graphs
in C3 applying existing bounds on permanents and orientations of planar graphs. Then
we introduce an elimination technique on a graphical construction that further decreases
these bounds in all dimensions. This approach gives O (3.7764/"') and O (6.8399'"1) as
bounds for d = 2 and d = 3 respectively, which is the first improvement on the asymptotic
upper bound for these cases.

Finally, we try to find edge lengths that can maximize the number of real embeddings
in the plane, space and on the sphere for certain graphs. In order to achieve that, we
use methods that sample efficiently a vast space of parameters. Our results provide a full
classification according to their maximal number of real embeddings of all 7-vertex graphs
in R? and R?, while for the previously untreated case of S? we give a full characterization
for all 6-vertex graphs. We also establish new asymptotic lower bounds on the maximal
number of realizations (or simply lower bounds) proving that in R?, S? and R? there exist
graphs with 2 (2.3780"1), © (2.5198/V1) and © (2.6553/V!) embeddings respectively.

SUBJECT AREA: Graph Rigidity



KEYWORDS: Minimally rigid graph, Multihomogeneous Bézout Bound, Distance Geom-
etry, Asymptotic Bound, Mixed Volume



NEPIAHWH

H Ocwpia Akaumriwv Fpapwyv (©.A..) cival 0 KAGOOG TwWV POBNUATIKWY TTOU HEAETA
TIG euPUBioEIS YPAPWYV (1] DIOUOPPWOEIG) OE Evav EUKAEIDIO XWPO 1 pia TTOAAATTAOTNTA.
E@ooov 0 apiBuog Twv eupubiccwv wg TTPOG TIG EUKAEIBIEG KIVIOEIG €ival TTETTEPACHUEVOG
yla dedopéva BApn TwWV OGKWWY TOUu ypd@ou, TTOU AVTIOTOIXOUV O€ OTTOOTACEIG, TOTE
0 YPA@pog ovopaleTal AKAPTITOS, AANIWG OvOouAZeTal EUKAUTITOG. O UTTOAOYIONOG TOu
apIBuou autoU JTTOPEI va Yivel ouvdEovVTaG TIG QTTOOTACEIG WETALU KOPUQPWV TTOU
Bpiokovtal o€ pia akup pe aAyeBpikd cuotAuata. Q¢ €k TOUTOU O APIBPOG Twv
TTPAYHATIKWYV PICWV QUTWVY TWV CUCTNPATWY AVTIOTOIXEI OTOV ApPIOPO TwV dIGUOPPWOEWV.
O1 uiyadikég pifec auTwy TWV CUCTNUATWY ETTEKTEIVOUV TNV £VVOIa TWV AKAPTITWY YPAPWYV
OTOUG HIYadIKOUG EUKAEIDIOUG XWPOUG Kal TIG AVTIOTOIXEG TTOANATTAGTNTEG.

‘Eva a11é T Bacikd epwThpata otnv ©.A.T. gival n avalAtnon avw ¢payudTwy oTov apiBuo
TwV guPUBicEwY yia Evav O0OPEVO apIBUO KOPUPWYV TTOU VA UTTOPOUV VA TTPAYHATWOOoUV.
To HEXPI TWPA YVWOTO AV GPAYHA YIa KABE eUKAEIDIO XWpo dIdoTaong d yia €vav AKAPTITO
ypago G(V, E) Atav g 16gng Tou O (241V1), evid To péyioTo Twv epBubioewv Tou £xouv
BpeBei yia cuykekpIyéEvous ypdgoug eival Tng Ta¢ng Tou € (2.3003"") oTO ETTiTTEdO KAl
Q (2.5198/V1) oTov xwpo. Ze auth TNV dIATPIBR, AvVATITUCTOVTAlI PEBODOI TTOU HEIWVOUV
TO KEVO QUTO PETALU TWV AVW GPAYUATWY KAl TV (UTTOAOYIOUEVWV) KATW PPAYUATWY TOU
peyioTou apiBuou Twyv eupubiocwy.

MNa autdv Tov OKOTTO, TTPOTEIVOUUE OUO HEBODOUG YIa TOV UTTOAOYICHO TOU TTOAU-OHOYEVOUG
epayuatog Bézout (M.P. Bézout) TeTpdywvwyv OAYEBPIKWVY OCUCTNPATWY.  APXIKA,
ouvOEouuE TO PPAyUa auTtd HYE TOV APIBPO DIOPOPETIKWY TTPOCAVATOAICHEVWY YPAPWYV
TTOU UTTOPEI va TTPOKUWEl YE BACN TTEPIOPICHOUG OTO PaBUd eEEPXOUEVWV OKNWY KABE
KOPUPNG €VOG aPXIKA PN TTpocavatoAiopévou ypdgou. EITTAéov, XpnOIUOTTIOIOUUE TNV
permanent TIVAKWYV TTOU OXETICOVTAl JE TO AAYERPIKO OUCTNUA. ZTNV CUVEXEIQ UEAETANE
TNV aKpiBela autol Tou @PAYUATOG O0€ OXEon ME Tov aplOud euBubiccwv o€ PIyadikoug
Xwpoug. Bpiokoupe 0TI 0 UTTOAOYIOUOG TOU OPIOU YIA HIa TTAEIAdA YPAPWY UTTODEIKVUEI
OTl yIa OUYKEKPIUEVEG KAAOEIC auTd pTTopEl va eival akpiBEG. AUTO Uag TTAPAKIVED va
xpnolpgotroiooupe 10 OeUTEPO Bewpnua Tou Bernstein, 1TTou agopd Tnv akpipeia Twv
MEIKTWYV OYKWV, Kal va avaAUOOUUE TIG OUVONKES TwV TTOAUTOTTWY Tou Newton o1 OTToiEg
KaB1oTOUV TO PPpAyua OGS aKpPIREG.

To eTdpevo Bripa eival n BeATIWON TWV ACUPTITWTIKWY Avw @payudtwy. E@apudlovtag
AUECO UTTAPYXOVTA @PAYMATA TWV permanent Kal TwV TIPOCAVATOAICPWY ETTITTEOWV
ypaenudtwy, BPIiOKOUPE pIa TTPWTN PEATIWON O€ CUYKEKPIUEVES KATNYOPIEC AKAUTITWY
ypdowyv, dnAadrn autwv tou guPubilovtal o peyaAeg diaoTdoelg (d > 5), KaBWGS Kal
eMTTEdWYV ypd@wyv TTou guPuBifovTal otov Xwpo. ‘ETTeima, avamtuooouue pia pébodo
TTOU oUVOEEl Ta Avw PPAYUATA OTOUG TTPOCAVATONICHOUG TwV YPAPWYV HE pia dladikaaia
oTadIOKAG aTTAAOIPAG KOPUPWYV. AUTH n HEBODOG MPEIWVEI Ta AVw PPAYUATa O OAEG
TIG KATNYOPIES TWV YPAPWYV TTou £EeTAlOUNE, OTTACOVTAG YIa TTPWTN GOPA Ta TETPIPMEVA



QpAaydaTa yia TIG EUPUBIoEIC OTO TTITTEDO KAI TO XWPO, ATTOOEIKVEIOVTAG OTI €ival TNG TAENS
Tou O (3.7764!V1) kan O (6.8399V1) avrioToixa.

To TeAeuTaio TTPOBANPA TTOU YOG ATTACXOAEI €ival N EUPECT KATW QPAYUATWY TOU PEYIOTOU
apPIBUOU TWV EUPUBICEWY CUYKEKPIMEVWY YPAQWYV. AUTO ETTITUYXAVETAI PE TNV avaliTnon
TWV ATTOOTACEWYV TTOU TAUTI(OUV TWV APIBUS TWV TTPAYUATIKWY AUCEWV TwV AAYERPIKWY
OUCTNPATWY PE AUTO TwV PIYadIKWwy. Ta attoTeAEoUATA Pag TAagIVOUOUV TTANPWS WG TTPOG
TOV UEYIOTO OPIBPO DIaUOPPWOEWV OAOUG TOUG AKAUTITOUG YPAPOUG PE 7 KOPUPEG TTOU
eMPBUBiICovTal OTO €TTITTEDO KAl TOV XWPO, KABWG Kal TOUG YPAPOUG PE 6 KOPUPEG TTOU
guBuBiovTal aTnv o@aipa S2. EMTAéoV BEATILWVOUV T UTTAPXOVTA KATW QPAYUATA TOU
HéyioTou apiBuoU diapopewotwy ot €2 (2.37801"1) oo emriedo, 2 (2.5198/1) otV o@aipa
5% kai 2 (2.6553!V1) oTov xwpo.

OEMATIKH NMEPIOXH: Ocwpia Akautrtwyv Mpdewv

AEZEIZ KAEIAIA: EAaxioTikwg Akauttog 'pdgog, lNoAu-opoyevég Gpdyua Bézout,
ewpeTpia Atrootdoewv, AcupTrTwTIKG Oplo, Meiktdg Oykog



2YNONTIKH NMNAPOYZIAZH THZ AIAAKTOPIKHZ AIATPIBHZ

H Ocwpia Akaurrrwy Mpdapwv (O.A.T.- Rigidity theory) atroteAei €vav 101aiTepa evepyod
KAGOO Twv pabnuatikwy. MMapdAo 1Tou ol atmapx€G TnG evroTridovral ota TéEAn Tou 190u
aiwva [53], uttdpxel Eva augavopevo evolagEPoV Ta TEAeUTaia Xpodvia TTou woeital atrod TIg
EQPAPUOYEG TNG OTNV POMTIOTIKNA [47], TNV popiakr] BioAoyia [32, 11, 50], Tnv TEXVOAOyia Tou
GPS [73] ka1 TNV apXITeKTOVIKN [2, 29]. EKTOC aT110 TIG eapuoyEG auTeG BERaian O.ALT. €xel
EPEUVNTIKO eVOIOQPEPOV WG AVECAPTNTO PABNUATIKO QVTIKEIMEVO TTOU AAANAETTIOPA PE TV
Bewpia ypaenudtwy, TNV UTTOAOYIOTIKA AAYERPQ KAl TNV UTTOAOYIOTIKA YEWUETPIA, OTTWG
AAAWOTE KAl PJE TO OUYYEVIKO TTEDIO TNG [EWUETPIAG ATTOOTACEWV.

H O.A.l. aoxoAsital ue TIG guPUBioeEIC ypA@wy Ot €UKAEIDIOUG XWpPoug 1 o€ AAAEG
TOANQTTAGTNTEG. 2TV TTapouca OlaTpIfA KaTatmavouaoTe WE TIG €uPuBiceis atTAwy
KOl N KaTeuBuvouevwy ypdgwy ot eukAgidioug xwpougs (RY) 4 ogaipeg didataong d
(S9). Zinv ocuvéxela Ba TTOPABETOUNE KATIOIEG BACIKEG EVVOIEC Kal OpICHOUS TNG O.A.T.
XPNOIUOTIOIWVTAG TOUG EUKAEIDEIOUG XWPOUG, TTOU I0XUOUV avAAoya Kal YIa TIG d-OIA0TATEG
opaipeg. H euPubion evog ammAou pn kareuBuvopevou ypagou G = (V) E) og €vav
gUKAeidelo xwpo RY gival pia ateikovion V- — R mou opilel pia diaudpewon (con-
formation) Tou ypagou. KdaBe diapdpewan p = {p1,p2, p3, ..., pjv|} ETAYEI Eva GUVOAO
QTTOOTACEWV PETASU TWV KOPUPWYV TTOU ATTOTEAOUV AKPA OKMWV A = {\,, | (u,v) € E}
VIO Ay = ||pu — pol|, OTTOU N oUVaPTNON ||-|| uTTOSNAWVEI TNV OUVABN EUKAEIBIO aTTOOTAOT,
Kal Ba TIG ovouddouue ammooTdoeis akuwy. AUTEG ol aTTooTdoelg kaBopilouv Ta BAapn Twv
OKMWV YIa TNV OUYKEKPIYEVN €UPUBIoN. E@ooov o apiBuog dAwv Twv dIANOPPWOEWV
TTOU IKAVOTTOIOUV TIG ETTAYOUEVEG ATTOOTACEIG AKPWYV Eival TTETTEPACUEVOG WG TTPOG TIG
EukAcideies KiviioeI§ (UETATOTTIOEIG KAl TTEPIOTPOPEG), TOTE O YPAPOG AEYETAI AKAUTTTOC, EVW)
O€ QVTIBETN TTEPITITWON OVOUALZETAI EUKAUTTTOC.

O1 ouvTetaypéveg Twv euPubicewv evdg ypdeou pe OeOOPEVEG ATTOOTACEIC OKWWV
A UTTOPOUV Vva UTTOAOYIOTOUV WG TTPAYUATIKEG AUCEIS OAYERPIKWY €EI0CWOEWY TTOU
MOVTEAOTTOIOUV AUTEG TIG ATTOOTACEIG

d

Ay = > (i — m0)” (1)

=1

OTToU N METORANTA z,,; UTTOONAWVEI TNV (-00TN OUVTETAYUEVN TNG KOPUYPNG u. QG €K
TOUTOU, N £VVOIX TWV AKAPTITWY YPAPWYV ETTEKTEIVETAI OTO PIYADIKO ETTITTEDO UE TIG IYADIKEG
PICEC AUTWYV TWV CUCTNUATWY. ZNPEIWVOUUE OTI €SO0V Pia TTOAAATTASGTNTA KaBopileTal
atré aAyeBpPIKEG ECIOWOEIG, OTIWE OTNV TIEPITITWON TNG S?, yia va Bpouue TIG euPUBIoEIg
XPNOIUOTIOIOUUE TIG AVTIOTOIXEG £CI0WOEIC TTOU pag divel n vopua, aAAd kai TIG EEI0WOEIG
TToU KaBopidouv TNV TTOAAATTAGTNTA.

2TNV TTEPITITWON TWV AKAUTITWY YPAPWY, HIa TpoTToTroinuévn pop®n TnG Egicwong 1
OTTWG oTa [28, 64] kAvel QIKT TNV Xpron epyaAciwv ammd Tnv Bewpia ammaroipns. H



TPOTTOTTOINCN AUTF CUVIOTATAI OTAV EI0QYWYI KAIVOUPIWY PETARANTWV

d

Su= Y Th, ()

kKar n avtikatdotacr Toug otnv E&iowon 1. Ovopaloupe 1OV OUVOUACHO TNG
TpotrotroiNpévng Egicwong 1 kai TG E&icwong 2 yia OAEG TIGC KOPUPES KAl AKUESG TOU
YPAQYouU opaipikéS €lowoelS (sphere equations).

H ouykekpipgévn alyeBpik povreAotroinon dgv ival n povadikr) TTou e@apuoleTal oTa
TAaiola Tng ©.A.l., KaBwg ouxvd xpnolyotroloUuue Toug Trivakeg Cayley-Menger atré
TNV MNewpeTpia AtrooTtdoewyv [12]. O pndeviIoPOS KAl TO TTPOCNKO TWV UTTO-0PI{OUC WV
OUYKEKPIMEVOU PeyEBoUG evog TTivaka Cayley-Menger ekppadel Tnv €PUBICINOTNTA HIOG
OUAOYAG ammooTdoewy o€ €vav eUKAEidEIo Xwpo. E@OoovV KATTOIEG ATTOOTACEIS gival
YVWOTEG KAl AANEG ek@padovTal PE PETABANTEG, dnUIoUpPyoUVTal APIVIKEG TTOAATTAGTNTEG
TToU TTpoépxovTal aTTrd auTEG TIG PNOEVIKEG OpPifoUCES Kal Ol PICEG TOUG EKPPACOUV
TIG DIOQPOPETIKEG DIAUOPPUWOEIS TwV YPAPWY. EKTOG TNG aPIVIKAG TTOAAATTASTNTAG, N
empBeRaiwon TG UTTAPENG TTPAYHATIKWY dIGUOPPWOEWV KE auThv TNV NEB0dO xpeldleTal
KAl TNV IKAVOTTOINON YEWMETPIKWY AVICWOEWYV TTOU TTPOKUTITOUV ATTO TOUG idIOUG TTIVOKEG.

‘Exel atrodeixBei 011 0 dIaXWPIOCHOS METALU EUKANTITWY KAl AKAPTITWY YPAQWY £XEI OXEON
ME TNV oUVOUOOTIKI OOMN VOGS YpA@ou yia oXedOV OAeg TIG epPuBioelg [36]. Toug ypdgoug
TTOU €ival AKAPTTTOI yia KABe TETOIa SIauOPPWON OTOV AVTIOTOIXO XWPO TOUG OVOPAJOUUE
YEVIKG dkautrTous ypdeoug (generically rigid graphs). Mia €181k KAGon yeVIKA AKAUTITWV
ypapwv gival 6001 TTalouV va gival AKAUTITOI EQOCOV a@aipeBei pia OTTOI0OATTOTE AKUA.
AuTtoi ovopadovTal EAaxIoTIKWS Yevika akaurrrol ypagol (E.A.T.- generically minimally rigid
graphs) kail €ival autoi TTou aTmracyoAouv Tnv TTapouca diatpIfr). ZNPEIWVOUUE OTI Ol
E.A.Il. oTo emimredo €ival yvwoToi wg ypdeor Laman (Laman graphs), evw Toug E.A.T.
oToV XWwpo Toug ovoudloupe ypapouc Geiringer (Geiringer graphs), evapuovi{OueVol JUE
Toug auyypaeic Tou [35]. Emiong o1 E.A.T. ypdgol ot évav gukAgideio xwpo R? eival
E.A.[. ka1 oTnv d-didaTtarn o@aipa S¢ [70] (auTth n 1B16TNTa dev ICKUEI YEVIKA Yia OAEG TIG
TTOAAATTAOTNTEG DdidoTaoNG d).

‘Eva Baoikd Bswpnua otnv ©.A.T. gival n ouverkn Tou Maxwell, cUp@Wva Pe TV OTToI AV
évag ypagog G = (V, E) eival E.A.T. oTov R¢ 10T€ 0 GUVOAIKOG OPIBPOG TWV TTAEUPWV TOU
eival [E| = d - |[V| — (“}"), evid yia kaBe utroypago G’ = (V', E') C G 1ox0el n aviootnta
|E'| <d-|V'|— (d;fl). H ouykekpigévn ouvlnkn givail Kal ETTOPKNAG YIO TOV XOPAKTNPIOKO TWV
ypaewv Laman [48, 57], kati TTou dev ouuBaivel o€ HEYAAUTEPES DIOOTATEIS YIA TIG OTTOIEG
éxouv BpeBei ouykekpipyéva avtimapadeiyuara. H ouvBrkn tou Maxwell ek@pdadel Toug
OUVOAIKOUG BaBuoug eAeuBepiag TOU CUOTANOTOG TTOU TTPETTEI VO KOPEOTOUV ATTO TIG AKUEG
WaoTe 0 YPAog va sival Gkautrtog: atov RY kaBe kopu@n éxel d Baduoug eAeuBepiag (Gpa
OUVOAIKA pia S1apoppwon | V| Kopupwy éxel d-|V | BaBuoug eAeuBepiag), aTTd Toug OTToioug
aQAIPOUNE TOUG BaBPoUG eAeuBepiag Twv EUKAEIDEIWV KIVAOEWV (d yIa TIG UETATOTTIOEIG KAl
(g) yIa TIG TTEPIOTPOYPEG). ANYEBPIKA N ouvBrkn Tou Maxwell uttodnAwvel 611 TO avTioTOIXO
oUOoTNPa €§I0WOEWV gival TETPAYWVO, EVW Kavéva uttoouoTnua Ogv gival acupBifacTo.
Apa 10 aAyeBpIkd oUCTNUA GTOUG PIYadIKoUG £xel TTAvTa Tov id10 aplBud AUoEwy yia KGOe



YEVIKN €AoYy Tou A [63]. Mpo@avws o apiBudg Twv uIyadikKwy dIaUOPPWOEWV gival Eva
avw @ePAyua yia Tov PEYIOTO apIBPO TwV TTPAYHUATIKWY JIANOPPWOEWYV vog ypdgou, o
OTT0I0G £EAPTATAI ATTO TNV ETTIAOYI CUYKEKPIPNEVWY ATTOOTACEWY AKHUWV.

‘Eva amd 1ta Baoikd epwtruata otnv O.A.lL eivar n elpeon TTPAYUATWOIHWY AVW
@pPayudTwy aTov apIBuo Twv eupubiccwy Twv E.A.T. e dedopévo apiBud kopuwyv. MExpl
TWPA TA YVWOTA Avw @pdyuaTa dev BEATIWVAY ACUUTITWTIKA TO O (2“”‘"), TO OTTOIO UTTOPEI
KQVEIG va TO UTTOAOYIOEI uE QUEDT EQapuoyr Tou Bewpripatog Tou Bézout otnv E¢iowon 1.
MapoAo TTou €xouv yivel TTPOOTTABEIEG va XPNOIUOTTOINBOUV TTEPICOOTEPO TTOAUTTAOKA
EPYaAcia yia va BEATILOOOUV AUTO TO TETPIYPEVO OPIO (OTTWGS ToV BABUO TwV aAYEBPIKWV
OUOTNUATWY XPNnOoIPoTroIwvTag MewpeTpia AmmooTtdoewyv [13] ) €@apuolovTag 1o Avw
QPAYUA TWV PEIKTWV OyKwV [64]). ATé Tnv AAAN TTAEUpd, Ta avTioToixa KATw @pdayuaTta
OTOV HEYIOTO OPIOPO TwV OIOUOPPWOEWV Eival apKETA PIKPOTEPA. ‘Exel uttoAoyioTei
6T utdpxouv ypdgor pe 2 (2.3003V1) diauoppwoeig otov R* [24] kai 2 (2.5198V1)
dlapopewaelg oTov R? [25, 28], evwy 0TOUG HIYadIKoUG XWPOUGS £Xouv Bpebei ypdgol ye
Q(2.50791) aTov C? [16, 35], Q (2.5698V1) otV ogaipa S? [31] kai Q2 (3.0683V1) aTov C?
[35]. Znuelvoupe OTI EKTOC aTTO TNV EUPEDN YEVIKWVY QPAYHATWY, £X0UV XPNOIUOTToINOEi
UTTAPXOVTA PPAYUOTA OTIG MIYADIKEG AUCEIC AAYEBPIKWY CUCTNUATWY YIA TIG TTEPITITWOEIG
OUYKEKPIMEVWY Ypd@wy Laman kai Geiringer. Autd xpnoigotroinénkav yia va dweei évag
OTOXOG YIa TNV EUPECH ATTOOTACEWYV TTOU UEYIOTOTTOIOUV TOV APIBUO TwV ePPUBIcEWY OTOUG
TTPAYUATIKOUG [28].

H BaoikA emdiwgn Tng TTapoucag B€ong ival va PeIwOEei To KevO PETAEU TwV Avw Kal TwvV
KATW QPayudaTwy, XPnNoILOTTOIWVTAG EpyaAgia atrd TRV aAyERPIKN YEWMETPIQ, TNV Bewpia
YPAPWV Kal avaTrTuooovTag Toug KatdAAnAoug aAyopiBuoug. H ouveio@opd TnG dIaTpIRAG
a@opd TOUG TOUEIG TTOU TTAPOUCIAZOVTAI OTIG TTAPAKATW TTapaypd@ous. Ta TTopiocuata Kal
ol uEBodol £xouv dnuooIeudei o€ €MOTNUOVIKA TTEPIOdIKG [4, 5] A €xOouv eyKpIBei TTPOG
onuoaicuon [7].

Epeuvoupe katd mooov 10 TToAu-opoyeveéG @pdyua Bézout (M.P. Bézout- multihomoge-
neous Bézout bound) ptTopei va avTikataoTAoEl TO PAYUA TWV PEIKTWY OYKWV WG £va
ATTOTEAEOPATIKO AVW QPAYUA TWV PICWV YIA TIG OQAIPIKEG £EI0WOEIG. [EVIKA, 10XUEI N
TTAPAKATW avioOTNTA

# TTpayuaTiKWV AUoEwv < # piyadikwv AUoewv < PEIKTOG Oykog < IM.P. Bézout < Bézout

600V apopd Tov apiBud Twv AUCEWV VOGS AAYERPIKOU CUCTANATOG KAl T AVTIOTOIXA Avw
@payuata [63], hE TNV TTOAUTTAOKOTNTA UTTOAOYICHOU TWV TTAPATTAVW VA €XEI AVTIOTPOPN
@opa. O1wg Adn avapépdnke yia Ta avw epdayuata, 1o pdyua Bézout (Ttou utroloyieTal
ME évav atmAd TToAAaTTAaCIOouO) gival EAAXIOTA QVTITTPOOWTTEUTIKO. ATTO TNV GAANn O
MEIKTOG OyKoG TTou AapBdvel uttoywiv TNV Ooul Twv £EI0WOEWYV PECW TWV TTOAUTOTTWV
Tou Newton éxel JeyYAAO UTTOAOYIOTIKO KOOTOG (AETTTOPEPEIEG YIA TOV UTTOAOYIOUO TWV
epayudtwy Bpiokovtal oto Mapdptnua A- Appendix A).

MNa autév Tov oKoTTd TTapPouCIAdoupe 2 uEBOBOUG TTou €@apuolovTal OTAV TTEPITITWON
Twv E.A.T. yia Tov uttoAoyiopo Tou IM.®. Bézout 1o otroio etriong AapBaver utrowiv Tnv
Ooun TwvV €CI0WOEWV, aAAG PE PIKPOTEPN AETTTOUEPEIO OE OXEON ME TOV WEIKTO Oyko. H
TPWTN PEBOBOG gival cuvduaoTIKr Kal BacifeTal oTnv cuoxéTion Tou MN.d. Bézout pe Tov



ApIOUO TwV BIAPOPETIKWY TTPOCAVATOAICHWY TOU apXIKOU YyPAd@ou, e BAon TTEPIOPIOUOUG
oTov BaBuo Twv egepxdPevWY akpwy. ETTITTAéov, €xoupe avatrTugel Evav avadpouiko
aAyOpIBO yIa TOV UTTOAOYIOUS AWV TwV TTIBAVWY TTPOCAVATONICUWY KAl TOV UAOTTOINCOUE
o€ YAMwood Python. H deUTepn PéB0SOG CUOXETICEI Evav TETPAYWVO TTIVOKA PE TO AAYEBPIKO
ouoTnua pe péyeBOg ~ | E|, Tou ottoiou n permanent divel To €MOUPNTO Gvw @PAya.

Mapoucialoupe TNV OUYKPION METOLU Twv 2 HEBOdWV WG TTPOG TOV OTTAITOUUEVO
UTTOAOYIOTIKO XPOVO O€ pia TTAEIAdA TTEPITTTWOEWY. [1a Tov uttohoyiopd TnG permanent
XPNOIYOTIOIOUUE TIG AVTIOTOIXEG UAOTTOINOEIG TNG maple KAl TNG Python. H uAotroinon Tou
avadPOMIKOU aAyopiBuou gival onuavTikéd TTIo ypriyopn, YEYovog TToU HTAV aVAUEVOUEVO,
KaBwg o aAyopiBuog Tou Ryser TTou BewpeiTal o 0 aTToTEAEOUATIKOGS YIA TOV UTTOAOYICHO
NG permanent evog TeTpdywvou Trivaka peyéBoug |E| éxel moAutthokotnTa |E|? - 217, evid
oMol o1 mBavoi TTpocavatoMouoi evog ypdgpou givar To TToAU 2171,

Ta TreIpapaTIK@  pag dedopéva  deiXVouv OTI OTNV  CUVTPITITIKI  TTAEIOVOTNTA  TWV
TIEPITITWOEWY YPAPwV Laman kai o€ 0Aeg Twv ypdewv Geiringer pe [V| < 11 0 peikTédg
Oykog kai 1o M1.®. Bézout Twv o@aipikwy e§lowoewv TauTifovTal. EITTAéov, 6Aol o1 ypdgol
Geiringer pe |V| < 10 mou egivai eTTitredol ypa@oBewpnTika éxouv ico MM.®. Bézout kai
apIOuO piyadikwy diapop@woewy. lNa Toug TTiTTedOUS YypA®ous Laman auTh n 106TNTA
OTTAVIA I0XUEI OTIG EVOIOPEPOUTEG TTEPITITWOEIG TWV EUPRUBICEWY OTO ETTITTEDO, AANG 10X UEI
yla TI¢ eyBubioeig Toug oTnv o@aipa S2. Kai oTig 2 TTpoavapepBeioeg kKAAoeig 1o M.O.
Bézout yia Toug un etmitredoug ypd@oug cival auotnpd avw epdyua.

Ta TTapatrdvw atroTeAEoPATA AEITOUPYOUV WG KivNTPO YIa TRV HEAETN TWV OUVONKWY TTOU
ocixvouv ot 10 IM.P. Bézout civar akpifég. TMNa autdv Tov OKOTTO £QAPPOJOUNE TO 20
Bewpnua Tou Bernstein, Tou agopd TNV akpifeia Tou PeIKTOU Oykou [9]. MNpoocapudlouue
Ta TTOAUTOTTO TOU Newton oTnv TTEPITITWON TWV AAYERPIKWY CUCTANATWY TTOU £XOUV TTANPN
TTOAU-opoyevh dour. ZuvettakOAouBa, avaTITUCOOoUUE Pia HEBO0DO Kal Evav aAyopIBuo TTou
TNIOTOTTOIEI TA KPITHPIA TTOU BETEI TO Bewpnua Tou Bernstein dievepywvTag TTOAU AiyOTEPOUG
eAEyYXOUG aTTO 6OOUG TTPORAETTOVTAI.

O1 péBodol utrodoyiopou Tou IN.P. Bézout xpnoiyotrololvtal yia TNV €§aywyn YEVIKWY
Aavw ePayNATwyY oTa TTAdiola TNG TTapoucag d1atpIBns. ApxIka e@apudlouue TO @PAyUa
Brégman-Minc yia Ti¢ permanent TTivakwy, BEATILOVOVTAG VIO TTPWTN QOPA TO ACUUTITWTIKA
epayuata E.A.I. og didotaon d > 5 o€ oxéon UE To TETPIYMEVO Bézout ppdyua. EmiTAéoy,
ATTOOEIKVUOUE OTI N AUECN XPriON ¢PAYHATWY YIA TOV TTPOCAVATOAIOHUO ETTITTEOWY YPAPWYV
[30] peIwvel TO QOUPTITWTIKO Avw pdayua yia Toug eTTitredoug Geiringer ypagoug.

TNV OUVEXEID, TTaPOUCIAloupe Hia PEBODO TTou @PAcoel e avadpopikd TPOTTO TOUG
TTPOCAVATOAIOHOUG €vOG ypd@ou.  AuTA n HEBODOG apopd YPAPIKEG OTIC OTTOIES
MEAETAOQUE TTPOOAVOTOMIOPOUG pE OTABEPS QPIOPO EI0EPXOPEVWV KWWYV YIa KABE
Kopupn. Acixvouue 0TI 0 apiBudg auTWY TWV TTPOCAVATOANIOUWY TAUTICETAI PE AUTOUG
TTOU XPNOIUOTIOIOUUE YIa TOV UTTOAoyIouO Tou .. Bézout Twv o@AIpIKWV £E1I0WOEWV
Kal EQAPUOOUPE HIa TEXVIK ATTAAOIPNG TTou 0dnyeEi 0€ £va Avw @PAyua yia auToug.
To avw @pdyua otov apiBud Twv TTPOCAVATOAMIOUWY divel BEATIWPEVA Avw @pAyuaTa
yla OAeg TIG dlOOTACEIG O OXéon Kal he 10 Bézout gppdyua, aAAG kal pe To Brégman-
Minc. Zuykekpipéva, yia TIG TTI0 eVOIOPEPOUOEG KAAOEIG YPpApwV, atrodeifape 6T ol Laman



ypagol éxouv 1o oAU O (3.7764!V1) Siapopeuwoseig, evi ol Geiringer ypd®ol £X0uv To TTOAU
O (6.8399") dlapopewoelg, evid Ta TTpoUTIdpXoVTa pdaypaTa ATav TNG Tagng Tou O (4!)
kai O (8V) avrioToixa.

2€ OXéon ME Ta KATW OpIa OTOV MEYIOTO apIBUS TTPAYMATIKWY OIAUOPPUICEWY,
QOXOAOUPOOTE ME TIG TTEPITITWOEIS TwV ePPuUBicEwy oTo E€TiTTEdO, TO XWPO KAl TNV
o@aipa. lNa va 10 TTETUXOUNE auTd e@apudloupe PeBOdOUG avalnTnong Twv KAaTGAANAwV
QATTOOTACEWV TTAEUPAG TTOU PEYIOTOTTOIOUV QUTOV TOoV apIBud. e KABE ypd®o 0 OTOXOG
ATavV 0 APIBUAGG TWV HIYABIKWY BIaUOPPUWOEWY, KaBwg eIKAeTal OTI yia TNV TTAEIOVOTNTA
Twv E.A.l. oupTTiTITEl HE TOV APIBUO TTPAYHATIKWY OIAUOPPWOEWY (AAAG OXI yIa OAeG
[41]). Ta autdv Tov AdYyo XPNOIPOTIOIOUPE TOOO TIG £EI0WOEIS O@AiIpag, 600 Kal TIG
€€IOWOEIG KA TIG AVIOWOEIG TToU divouv ol opifouceg Twv TTivakwy Cayley-Menger atré Tnv
YEWUETpia atrooTdocwyv. E@apuoloupe KAaooikéG peBOGdoUG avalnTnong TTAPAUETPWY
yla TNV augnon TwvV TTPAYUATIKWY pILwV eVOS aAyeBpIKoU oUOTAPATOS (avaliTnon Kovtd
o€ TTAPAUETPOUG TTOU ATTEIPICOUV TOV APIBUO TwV AUCEWY, OTOXAOTIKEG MEBODOI, HEBODOG
KUAIVOPIKAG aAyeBpikAg avaAuong- CAD). ETiTTAéov XpNnOoIUOTTOIOUNE TOV OAYOPIOUOo Tou
J.Legersky (evég atmd Toug ouyypa@eic Tou [4] TOU OTToiou ATTOTEAECUATA TTAPOUCIAOVTAI
oTnV TTapouca dIaTpPIRr) TTou augavel Tov apiBud Twv dIaPoPPWOEwWY aTov R? Baciouévog
oTnV HEB0DBO TWV KAUTTUAWVY oUvOeonS (coupler curves) TTou €ixe cavayxpnolJoTroindei otnv
©.Al.[13].

Q¢ ek TOUTOU, TTAPOUCIAlOUNE YIa TTAPN KaTnyoplotroinon Twv E.A.T. w¢ TTpog Tov P€yIoTo
ap1Buo dlaPoPPWOEWY KABE ypd@ou pe |V | < 7 oTIG TIEPITTTWOEIG Twv R? kal R?, evw oTnv
TIEPITITWON TNG O0QAipaAg AUTH N KaTnyoploTroinan agopd Toug ypdeoug pe |V| < 6. Ze
OAEG TIC KOTNYOPIEG PPIOKOUNE KATW OpIa KAl YIa ETTIAEYPEVOUG PEYOAUTEPOUG YPAPOUG.
2NMEIWVOUNE OTI TTPONYOUNEVWG BEV €iXav UTTAPEEI JEAETEC TTOU VA QVTIMETWTTICOUV TO
OUYKEKPIMEVO EPWTNHA YIO TNV TTEPITITWON TNG OPAiPAG.

EmimmAéov, BIAAEYOVTOG OCUYKEKPINEVOUS YPAPOUG PE BAon Tov apIBUO TwV PIYOdIKWV
OIAPOPPWOEWYV, KATAPEPVOUUE VA QUENOOUNE TA ACUUTITWTIKG KATW OpIa o€ KABE pia atrd
TIG €CETACOPEVEG TTEPITITWOEIG. ZUYKEKPIYEVA, OTNV TTEPITITWON TOU ETTITTEOOU BEIXVOUE OTI
uTtapxouV ypdgor e ©(2.3780V1) Siapopewoeig aTo emitedo, 2(2.5198/V1) Siapopeuwioeig
otnv ogaipa kai 2(2.65531V1) Siapopewosig aTov Xwpo.

H d1apBpwan Tng diaTtpIBAg gival n ENG:

KegpdaAaio 1- Eicaywyn (Introduction). Opilovral Baoikég apxég Tng ©.A.lL ETTiong,
TEPIYPAPOVTAI TA €peuvnTIKA BEuarta TTou atracyoAouv Tnv dlaTpIBr, KABw¢ Kai
TIPOUTTAPXOUCEG TTPOCEYYIOEIS O€ AUTA.

KegpdAaio 2- Baoikég évvoieg (Preliminaries). [Nivetal Trepiypa@r epyaAgiwy Kai Evvoiwv
TTou Ba xpnoipotroinBouv oTa eTopeva Ke@dalaia. ZUyKeEKPIPEVA, APXIKA TTEPIYPAPETAI
n MéBodog Henneberg, TTou xpnolyoTrolgital yia Tnv kataokeunp E.A.IL ZTnv ouvéxela,
TTapoucidalovtal duo péBodol aAyeBPIKAG HOVTEAOTTOINONG YIA TIG EPPBUBICEIS TV YPAPWYV,
Ol OQAIPIKEG EEICWOEIG Kal O 0pifouoeg Twv TTIvakwyv Cayley-Menger.

KegpdAaio 3- To MN.A.®. Bézout yia Toug E.A.T. (On the multihomogeneous Bézout
bound of the embedding number). [Mapoucidlovral o1 YyEBodol yia TOV UTTOAOYIOHO



Tou M.A.®. Bézout Twv OQAIPIKWY £EICWOEWY, KABWG Kal GTOIXEIQ TTOU OUYKPIVOUV TOV
UTTOAOYIOTIKO XPOVO TTOU ATTAITEITAI VIO QUTEG TIG MEBODOUG 0€ OXEéon ME TO OpIO TOV
UTTOAOYIONO TOU MEIKTOU OYKOU Kal TOU akpIBoug apiOuou Twv SIaUOpPWOEWY. TNV
ouvéXela, eEeTadovTal TTEIPAUATIKG OeOONEVA WG TTPOG TNV OKpPIBEIa TOU @PAYUATOS KAl
TTapPOoUCIAZeTal Jia HEBOBOG TTOU EAEYXEI TNV aKpieia Baaiopévn 0To 20 Bewpnua Tou Bern-
stein. To TTepIEXOPEVO AUTOU TOU KEPAAQioU atroTeAEi HEPOG Tou [5].

KegpdaAaio 4- Avw @pdayuata yia Tov apiBué twv diapoppwoeswv Twv E.A.T. (Up-
per bounds on the embedding number of minimally rigid graphs). Autoé T10
KEQAAQIO XwpileTal o€ dUO PEPN. ZTO TTPWTO, TTAPOUCIAOVTAl EQAPUOYEG UTTAPXOVTWYV
avw @PayudTwy oTig uEBGdoUC TTou TTaPOUCIACTNKAY OTO TTponyouuevo Ke@dAaio Kai
atroteAoUV PEPOG Tou [5]. ZT0 BeUTEPO, AVATITUOCOUE Mia Kalvoupla péBodo TTou ppdoaocel
TOV apIBUO TwV TTIBAVWY TTPOCAVATONCHWY EVOS YPAPOU Kal TEAIKA 0dnyei o€ BeEATIWUEVA
avw @payaTa yia OAeg TIG dlaoTAoEIS ePUBIoNG. H péBodog auTr Kal Ta atroTEAEOUATA
NG €XOUV €yKpPIBEi TTPOG dnuoaicuon [7].

KegpdAaio 5- O péyiorog apiBudg eppBubiccwv ypdewyv oT1o £TTiTredo, TOV XWPO Kal
TNV o@aipa (On the maximal number of real embeddings in R? , R3 and 5?). Z& auTo
TO KEQAAQIO TTapouaidlovTal Ta aTToTEAETUATA Kal ol héBodol TTou odAynoav aTnv auénon
TWV KATW QPAYUATWY YIa TOV PEYIOTO aplBuo eupubiccwy. Ta atroteAéopatd autou Tou
Kepahaiou wg Tpog Tov R3 £xouv dnuoaicudei oTa TTPaKTIKA Tou International Symposium
on Symbolic and Algebraic Computation 2018 (ISSAC’18) [3]. H emékTaon auTtwyv TwWv
QATTOTEAECPATWY HE TA AVTIOTOIXA OTO ETTITTEDO KAI TNV 0QAipA ATTOTEAOUV QVTIKEIUEVO TOU
[4].

KegpdaAaio 6- Zuptrepdopara Kal avoixtd epwrthpara (Conclusion and open ques-
tions). 210 TEAeuTaio KEPAAAIO avaAuovTal Ta PACIKA CUPTTEPACHATA TNG TTAPOUCAG
d1aTpIBrG, KABWG Kal T €PEUVNTIKA EPWTAMATA TTOU TTPOKUTITOV KAl WTTOPOUV va
OlgpeuvnBoUV 0TO PEAAOV.
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Bounds on the maximal number of graph embeddings.

1. INTRODUCTION

Rigidity theory is a mathematical area that lies in the intersection of graph theory, compu-
tational algebra and computational geometry. Although the foundations of rigidity theory
can be traced in 19th century, there is nowadays a refreshment of scientific research on
this subject motivated by applications in mollecular biology [11, 32, 50] , sensor network
localization [73], robotics [47, 69, 72] and architecture [2, 29]. Besides these applications,
there is active interest in rigidity theory as an independent mathematical subject. One of
the major open problems in rigidity theory is to determine tight bounds on the maximal
number of embeddings of rigid graphs in an euclidean space or a manifold up to a given
number of vertices. In this thesis, we present methods that improve both the asymptotic
upper bounds and the asymptotic lower bounds on this maximal number.

Rigidity theory examines the properties of graphs that may have rigid embeddings in a
given space. In this thesis, we are interested in embeddings of simple undirected graphs
in the euclidean space R¢, or the d-dimensional sphere S°. If the vertices or the edges of
a graph G are not specified, then we denote by V' (G) the first and E(G) the latter. Let us
present some basic definitions of rigidity theory in this context using the usual euclidean
norm. Analogous definitions can be applied for embeddings in other spaces or using other
norms [17, 56, 70]. Let G = (V, E) be a simple undirected graph (denoted also as G(V, F)
or simply G in the rest of the manuscript) and p = {p1, ps, . .. pjv|} € R*!VI be an embedding
of G in RY, i.e. a map from the set of vertices V to R?. The pair of a simple undirected
graph G and an embedding p is also known as bar framework (or simply framework)
and is usually denoted with G(p). Every such framework induces a set of edge lengths
A={\, | (u,v) € E} such that A\, , = ||p, — p»||, Where |-|| denotes the usual euclidean
norm.

This induced set of edge lengths can be used to define whether a framework is rigid or not.
A framework G(p) is called rigid if there is only a finite number of embeddings (the term
realizations is used equivalently in this context) for graph G that satisfy the edge length
constraints imposed by A up to rigid motions (rotations and translations)'. Otherwise,
if the number of realizations is infinite up to rigid motions, then G(p) is called flexible.
Equivalently, rigid frameworks do not admit continuous deformation preserving the edge
lengths, while flexible frameworks can be continuously deformed (see Figure 1.1).

The embeddings of a graph G(V, E) for a given set of edge lengths A can be specified
as the real solutions of algebraic equations that capture the edge length constraints. The
simplest algebraic formulation is to consider the set of squared distance equations

d
My=> (Tui—w0)’, Y(uv)€EE (1.1)

i=1
where z,, ; represents the i—th coordinate of vertex u.

The complex solutions of these systems naturally extend the notion of graph embedding in

'Let us remark that each different realization defines a separate framework.

31 E. Bartzos



Bounds on the maximal number of graph embeddings.

YRt

(a1)

) (b2)

(b1

Figure 1.1: An example of a flexible an a rigid graph embedding. The four-bar linkage
(a1, a2, a3) is a flexible framework on the plane: pinning down the two bottom vertices to
factor out trivial motions (for more details see Section 2.2.1) and moving the up right vertex
in the direction of the flex results to a continuous deformation of the framework deformed
satisfying the same edge lengths. Throughout the deformation from the left framework
(ay) to the right one (a3) there is an infinity of realizations up to rigid motions. On the other
hand, if an edge is added, then there are only two realizations up to rigid motions and
reflections (b, and by) and there is no way to continuously deform this framework.

complex spaces, thus the possible configurations of |V | points in C? that satisfy the system
of Equations 1.1 are called complex embeddings. Notice that in the case of complex
embeddings the system of Equations 1.1 is not relevant with the usual complex norm.
Clearly, a graph embedding is either rigid in both R? and C¢, or flexible for both cases. We
remark that whenever we refer to complex embeddings in the case of the d—dimensional
sphere S¢, it is the set of the complex solutions of squared distance equations combined
with
d+1

d oali=1, VueV (1.2)
=1

and the embedding space shall be denoted S¢.

In fact, rigidity in R¢ (or S9) is also a generic property of the underlying graph without
taking into account the specific embedding [1, 36]. In other words a graph is generically
rigid if it is rigid for an open dense subset of embeddings p € R*VI. An important class
of generically rigid graphs are the generically minimally rigid graphs. A graph G(V, E)
is generically minimally rigid iff G is generically rigid while G — ¢ is flexible, for every
e € E. We remark that the classes of generically rigid graphs and generically minimally
rigid coincide in R? and S¢ [70]. Additionally, a graph that is generically rigid (or generically
minimally rigid) in a real space holds this property for the corresponding complex space.

A milestone theorem in rigidity theory relates a simple edge count with a necessary con-
dition for minimal rigidity.
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Theorem 1 (Maxwell [53]) A simple undirected graph G(V, E) is minimally rigid in R? if
|E| = d-|V| - (“}") and the inequality |E'| < d - |V'| — (*}") holds for every subgraph
G = (V' E)CG.

Maxwell’s condition corresponds intuitively to the number of vertex coordinates reduced
by the number of degrees of freedom (dof) of rigid motions (d for the translations and (£)
for the rotations).

Maxwell’s condition is also sufficient in the plane, as proved by G.Laman in the 70s [48],
giving a full characterization for minimally rigid graphs in R2. These graphs are well-known
as Laman graphs in the bibliography, while Maxwell’s condition is called Laman’s condi-
tion. What was recently found is that this result was originally discovered (but then forgot-
ten) by H. Pollaczek-Geiringer [57, 58]. Following [35], minimally rigid graphs in R will be
called Geiringer graphs in this thesis, to honour her legacy.

Unlike Laman graphs, there is no full combinatorial characterization of Geiringer graphs
and this maybe constitutes the main open problem in rigidity theory. In fact, Maxwell’s
count fails as a sufficient condition in this case and higher dimensions (see Figure 1.2 for
the famous double banana counter-example). The only subclass of Geiringer graphs that
is fully characterized are the planar Geiringer graphs (Gauchy’s theorem on strictly convex
simplicial polyhedra [71]).

Figure 1.2: The double-banana graph is composed by two identical rigid components
(blue and green) that are glued to two common vertices. Although this structure satisfies
Maxwell’s condition in R3, it is not rigid: its two rigid components revolve in the space
around the implied dashed axis that passes through the common vertices.

Although minimally rigid graphs constitute the main focus of this thesis, we are also con-
cerned with another important class of rigid graphs. A globally rigid embedding is an
embedding that can have a unique realization up to isometries for the same edge lengths.
Global rigidity can also be a generic property [42] and there is a combinatorial characteri-
zation for globally rigid graphs in R? [18], but not in higher dimensions. In any dimension,
it is possible to check if a generic framework is globally rigid using the rank of stress ma-
trices of rigidity matroids [34]. It is obvious that if a graph G(V, E) is generically globally
rigid, then every graph that has the same vertex set and a superset of its edges is also
globally rigid.
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From an algebraic point of view, Maxwell's condition states that minimally rigid graphs can
be related with square algebraic systems, such that no subsystem is over-constrained. In
the case of the system of Equations 1.1, this can be achieved by fixing as many coordi-
nates as the dof of rigid motions for the embedding space. The methods and the results
of this thesis rely on the algebraic modelling of the minimally rigid graph embeddings with
well-constrained systems of equations. The main focus is the number of embeddings of
specific graphs up to rigid motions, which will be called simply embedding number, and
the bounds on this number for graphs with a given number of vertices.

Given a minimally rigid graph G(V, E) in R? and a set of edge lengths A, r4(G,\) de-
notes the embedding number in R? for this specific edge labelling, while r4(G) denotes
the maximal finite number of its embeddings for any generic A € R'f‘. In the case of C¢,
the embedding number is the same for every generic choice of X [41, 63] and will be de-
noted ¢,(G). It is obvious that ¢,(G) serves as an upper bound for r,4(G). Although these
numbers coincide in many cases (see for example [13, 24, 28)), it has been proven that
there are examples of a Laman graph such that ¢;(G) > r4(G) [41] . We will also denote
with r4(|V]) and ¢;(]V]) the maximal embedding number over all minimally rigid graphs
in R4 with || vertices in the real and complex case respectively. Finally, for the spheri-
cal embedding number we will use the notation rg.(G, X), 75¢(G), csa(G), rga(|V]), csa(|V])
analogously with the euclidean case.

The main problem treated in the present thesis is to reduce the gap between upper and
lower bounds of the embedding number. In the following paragraphs, we will describe the
existing work on the field, our contribution and the organization of the text.

Related work A direct application of Bézout’s bound in the system of squared distance
equations 1.1 results to O(2%!Vl) as an asymptotic upper bound for ¢,(|V|) (and conse-
quently for r,(|V])), taking into account Maxwell’s condition for the cardinality of the system
of equations. This bound will be called Bézout bound in the rest of this text.

In an effort to improve the asymptotic upper bound for Laman embeddings, mixed volume
techniques have been applied [64]. The system of equations used in that case is a mod-
ified version of Equations 1, which is suitable for sparse elimination 2. This approach did
not manage to improve the (trivial) Bézout bound in the general case.

Another algebraic formulation that computes the embedding number relies on distance ge-
ometry, since the determinantal varieties of Cayley-Menger matrices can be used to spec-
ify graph embeddings. Applying a theorem on the degree of determinantal varieties[38],
the authors in [13] delivered what used to be the best known upper bound on ¢, (|V]):

V|—-d—-2 |V|_1+j
e\ —d—1—;
0

2- 1 27 +1
' ( j )

J:
2We also use this formulation and we call these systems sphere equations - see Section 2.2

(1.3)
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which also does not improve asymptotically upon the trivial bound.

Besides asymptotic upper bounds, the mixed volume bound has been used for specific
graphs, in order to give an estimate for the embedding number [28]. Although this is the
tightest upper bound [63] in general, if the comparison ignores the precise variety where
roots lie, its computation is #P-hard (by reduction from the permanent).

Remark that there exist also real algebraic bounds [10, 45] that are sharper than mixed
volume and other complex bounds for polynomials which possess suitable structure. In the
case of the embedding number, these are by far higher than the (more general) complex
bounds.

The computation of exact numbers for ¢;(G) is more demanding than mixed volume com-
putation. In the case of Laman graphs there exist combinatorial algorithms that count the
embedding number in both C* and Sz [16, 31], but it is almost infeasible to compute ¢,;(G)
for graphs with more than 18 vertices in a desktop computer. Computations for Geiringer
embeddings have been even more difficult, since no combinatorial algorithms exist in this
case. Grdbner base solvers have been used for these computations [35], but they may
require more than 3 days for a single 11-vertex graph.

Finding the maximal number of real embeddings requires repetitive equation solving in
an effort to approach the complex embedding number c,;(G) with r4(G). This problem
demands efficient sampling of the edge length constraints that are considered as param-
eters of the algebraic system. In rigidity theory, this sampling has been achieved using
coupler curves [13] and stochastic methods [24], establishing tight bounds for r,(6) and
ro(7) respectively. Let us note that the question of searching for parameters that maximize
the real solutions of a given algebraic system is a well-known problem in real algebraic
geometry. One of the most famous cases is the gradient descent method that was used
to maximize the number of real Stewart-Gough Platform configurations [22].

Let us now compare the trivial asymptotic upper bound with the existing lower bounds.
Asymptotic lower bounds on graph embeddings can be established by gluing frameworks
in order to construct arbitrary big rigid graphs [13, 35]. In the bibliography lower bounds
have been computed for the cases of Laman and Geiringer graphs. In the case of complex
spaces it has been proven that there exist Laman graphs with (2.5079/V1) and ©(3.0683/"1)
embeddings in C? and C? respectively [35], while in the case of spherical embeddings in S2
[31], while for Geiringer we have that cs:(|V]) € ©(2.5698V1). As for real lower bound, the
existing bound on the plane and the space have been ©(2.3003V1) [24] and ©(2.5198V)
[25, 28] respectively. A summary of these cases, comparing the existing asymptotic lower
and upper, is given in Table 1.1.

Contribution As presented above the gap between the asymptotic upper bounds and
the lower bounds is enormous. In the present thesis we develop methods to compute
efficient graph-specific upper bounds on the embedding number and we subsequently
reduce the asymptotic upper bound. We also present sampling procedures that increase
the lower bounds on the real embedding number.
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Table 1.1: Power basis of the existing asymptotic upper and lower bounds for minimally
rigid graphs in all embedding spaces treated.

embedding R? C? S R? C3
space

lower bound | 2.3003 2.5079 2.5698 2.5198 3.0683
upper bound 4 4 4 8 8

Initially, we propose two methods that compute the multihomogeneous Bézout (m-Bézout)
bound of algebraic systems modeling graph embeddings. These methods apply in both
euclidean and spherical cases. The first one relates this bound with the number of
outdegree-constrained graph orientation, based on a standard partition of variables. In
this context, we also present a recursive combinatorial algorithm that computes these ori-
entations. The second one uses the well-known connection between the computation of
matrix permanents and m-Bézout bounds. For that reason, we demonstrate the construc-
tion of the (0, 1)-matrix that captures the algebraic formulation we use. Then we compare
computation runtimes between these two methods and also other algorithms that compute
mixed volumes or the exact number of roots for the same algebraic systems.

Regarding the exactness of the bound, we present experimental results that compare m-
Bézout with mixed volume bounds and the actual number of complex embeddings of all
Laman and Geiringer graphs with |V| < 9 vertices, and some selected Laman graphs
up to |V| = 18 and Geiringer graphs up to |V| = 12. These results show that the m-
Bézout is exact for the large majority of spherical embeddings in the case of planar Laman
graphs, while it is exact for all planar Geiringer graphs. Motivated by this observation,
we adjust Bernstein’s discriminant conditions on the exactness of mixed volume to the
case of m-Bézout bounds using Newton Polytopes whose mixed volume equals to the m-
Bézout. This method shows that an exponential number of conditions is always verified
for the specific algebraic systems reducing the number of computations required. Despite
this reduction, this number remains exponential, but based on experimental results we
conjecture that it can be eventually linear.

In the sequel we make a first attempt to reduce the asymptotic upper bound using existing
bounds on the methods described above. Direct application of the best upper bound for
orientations [30] improve the asymptotic upper bound for the subclass of planar Geiringer
graphs, while using the Brégman-Minc bound on the permanents of (0, 1)-matrices [14, 54]
we were able to decrease the asymptotic upper bound for all minimally rigid graphs in
dimensions d > 5.

In order to achieve better bounds, we develop a method bounding recursively the out-
degree - constrained orientations of a minimally rigid graph which is related with the m-
Bézout bound [7]. For this reason, we introduce a graphical structure, pseudographs, and
we relate the orientations of minimally rigid graphs with pseudographs. Finally, we prove
that the bound of the recursive method on the orientations of pseudographs improves the
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bound on the embedding number. More precisely, in the case of Laman graphs the new
bound is in the order of O(3.7764/V1), while in the case of Geiringer graphs itis O(6.8399/"1).

Finally, we also manage to improve lower bounds on the maximal real embedding number
in the case of R%, R? and S? [4]. Our goal is to find the set of edge lengths X for a graph
G, such that the number of real embeddings for this specific set r,(G, A) would match the
number of complex embeddings ¢;(G), thus maximizing r4(G). Using sphere equations
and the Cayley-Menger embeddability conditions, we applied some standard methods that
sample parameters in order to increase real solutions of algebraic and semi-algebraic sys-
tems (sampling close to non-generic parameters, stochastic methods, cylindrical algebraic
decomposition- CAD). Besides these methods, a new algorithm by J.Legersky (co-author
of [4]) inspired by coupler curves was used to increase the maximal number of embeddings
in the spatial case.

These methods lead to a full characterization of all minimally rigid graphs with |V| < 7
up to r4(G) in the cases of R? and R3, while in the case of S? this characterization is
achieved for |V| < 6. We also find maximal embedding numbers for selected bigger
graphs, leading to new asymptotic lower bounds. More precisely, we prove that there are
graphs with (2.3780V1) embeddings in the case of R?, (2.5198/V) embeddings in S? and
Q(2.6553IV1) in R3.

Organization The rest of the thesis is organized as follows. In Chapter 2 we give some
preliminaries on the construction of minimally rigid graphs and the algebraic modelling
that specifies the embeddings for a given set of edge lengths. More precisely, Henneberg
steps are described in Section 2.1. These are used to construct all minimally rigid graphs
in a given embedding space. Afterwards, in 2.2 we introduce two algebraic formulations
used to count the embedding number. The first one is variation of the squared distance
equations between adjacent vertices, that we call sphere equations. The latter uses semi-
algebraic sets derived from Cayley-Menger determinants.

In Chapter 3, we study the m-Bézout bound of sphere equations. In Section 3.1 we present
two methods for its computation and subsequently we compare the runtimes of these
methods with existing computational ones that compute mixed volumes and the embed-
ding number. In Section 3.2 we study the exactness of this bound. First we present
experimental results indicating that the bound is tight for certain classes of minimally rigid
graphs. Then we develop a method that checks whether the m-Bézout bound is exact,
using Bernstein’s second theorem on the exactness of mixed volume. The results of this
Chapter are part of the joint work with |.Z. Emiris and J. Schicho and have been published
in [5].

In Chapter 4, we present certain approaches that improve existing upper bounds, using
the methods presented in the previous chapter. In Section 4.1, we apply existing bounds
in our methods that directly improve the asymptotic upper bounds for certain classes of
graphs. These results are also part of [5]. In Section 4.2, we develop a new method that
bounds degree-constrained orientations leading to new upper bounds for minimally rigid
graphs in any embedding space in R¢ or S¢. This project is a joint work with |.Z. Emiris
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and R. Vidunas and its results have been accepted for publication [7].

In Chapter 5, we present the methods that led to new lower bounds on the maximal em-
bedding number in R?2, R?* and S¢. These methods rely on efficient sampling of the pa-
rameter space that maximized the number of real solutions for the embedding number.
This Chapter is part of the joint work with 1.Z. Emiris, J.Legersky and E.Tsigaridis. A part
of this chapter dealing with the spatial embeddings was published in the proceedings of
ISSAC 2018 [3], while the totality of the results presented here constitute the subject of a
journal publication [4]. The algorithms for the coupler curve visualization and sampling in
the spatial case were created by J.Legersky. The results for the graphs with the maximal
embedding number in R? were also contributed independently by the same author.

Finally in Chapter 6, we give an overview of the results of the present thesis and open
qguestions motivated by them.
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2. PRELIMINARIES

In this chapter we present some basic concepts about the construction of rigid graphs and
the algebraic formulation used to compute the embedding number.

2.1 Henneberg construction

In general, Maxwell’s condition (Theorem 1) is not suitable to find the set (or a superset) of
all minimally rigid graphs with a given number of vertices. On the other hand, a sequence
of moves known as Henneberg steps can construct such sets of minimally rigid graphs in
R? starting from the complete graph on d vertices K, [66] *.

H1 H2 H1 H2 H3x H3v
+ 4 4 4 4 Y ¢
2-degree edge split 3-degree edge split X-replacement double
vertex addition in 2d vertex addition in 3d V-replacement

Figure 2.1: Henneberg steps for Laman and Geiringer graphs.

The first two moves are known as Henneberg 1 (H1) move or 0-extension and Henneberg
2 (H2) move or 1-extension or edge split. These operations add one vertex as follows
(we consider a construction regarding rigidity in dimension d, see Figure 2.1 for d = 2 and
d = 3):

* in an H1 move, the vertex added is connected with d existing vertices.

* in an H2 move, an edge is deleted in the existing graph and the added vertex is
connected with the vertices of the deleted edge and d — 1 more existing vertices
(thus the total degree of the added vertex is d + 1).

In all dimensions H1 and H2 steps preserve rigidity and minimal rigidity: if G* is constructed
by applying an H1 or an H2 move to a (minimally) rigid graph G, then G* is also (minimally)
rigid. Similarly, if G is generically flexible, then an H1 or H2 move also preserves this
property.

In the case of d = 2 all minimally rigid graphs can be obtained by H1 and H2 operations,
giving one more method to characterize Laman graphs. On the other hand, these two

'Recall from Chapter 1 that minimally rigid graphs in R? have the same property in C%, 59, 5¢.
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Table 2.1: Numbers of Laman and Geiringer graphs up to the last Henneberg move and
graph planarity.

Laman graphs

n 34|56 |7 8 9 10 11
H1 planar 1)1 (3]11]62]|491 5,041 | 60,040 | 791,195
H1non-planar || - | - | - | - | 4 | 8 | 1,917 | 46,903 | 1,201,401
H2 planar -l -1-111]3] 18 122 1,037 9, 884
H2non-planar || - | - |- | 1 | 1 | 14 142 2,152 36,793
Geiringer graphs
n 415|6|7 8 9 10 11
H1 planar 17111 4 12 45 221 1,215
H1 non-planar || - | - | 2| 16 | 299 | 9,718 | 527,250 | 41,907, 790
H2 planar -l-11]1 2 5 12 34
H2 non-planar || - | - | - | 5 | 61 | 1,719 | 85,401 | 6,267,144

moves are not sufficient to construct all minimally rigid graphs in d > 3, so extended
Henneberg steps are required. These give a superset of minimally rigid graphs.

For Geiringer graphs, there is an additional step in which 2 edges are deleted and the
new vertex is connected with the the vertices of the deleted edge and 1 more existing
vertex. This is known as Henneberg 3 (H3) step (See Figure 2.1 for the 2 versions of this
move in the space, i.e. H3x and H3v steps). Let us comment that the Geiringer graphs
whose construction requires an H3 move in the last step have minimal degree 5 and no
such graph exist for any graph with n < 11 vertices. It is conjectured that H1, H2 and H3
completely characterize rigid graphs in R? [61, 66]. However, it has been proven that H3
move does not always preserve rigidity in dimension 4 [51].

We used Henneberg steps to construct sets of Laman and Geiringer graphs up to isomor-
phism (see Table 2.1), using canonical labeling as in [16, 35]. Since Henneberg moves
add a vertex with a fixed degree, we can separate the sets of graphs with the same num-
ber of vertices up to their minimal degree. So if a graph in dimension 2 has minimal degree
2, then it can be constructed with an H1 move in the last step. If the minimal degree is
3 it certainly requires an H2 move in the last step of the Henneberg sequence. This di-
vision is useful because the H1 move trivially doubles the number of embeddings, since
the new vertex lies in the intersection of d different (d — 1)-spheres. This means that we
can deduce the embedding number of a graph G in R? with a d-valent vertex v, if we
know the embedding number of the graph G — {v}, without computing the number of solu-
tions of an algebraic system. On the other hand, computations have shown that the effect
of other Henneberg steps on the embedding number varies significantly depending on a
graph [35]. Thus, we will call minimally rigid graphs with a d-valent vertex frivial, while if
the degree of the vertices is always bigger or equal than d + 1, the graph shall be called
non-trivial.

E. Bartzos 40



Bounds on the maximal number of graph embeddings.

2.2 Algebraic Formulation

We introduce the algebraic formulations that serve to compute the embedding number
and bounds on it. Initially, we present an algebraic formulation that is based on a variant
of the squared distance equations 1.1. This formulation has been used several times in
the context of studies on rigid graphs that exploit sparse elimination techniques [28, 64].
Subsequently, we present the Cayley-Menger embeddability conditions that are related
with the vanishing or the sign of certain determinants of a distance matrix.

2.21 Sphere equations

The basis of the first formulation are the squared distance equations. In order to compute
the embedding number using such system we need to remove rigid motions by fixing

dgl) coordinates yielding a 0—dimensional system. In the case of dimension 2, we may
fix both coordinates of one vertex and one coordinate of a second vertex. If these vertices
are adjacent to one edge, then the length constraint imposes only one solution for the
remaining coordinate of the second vertex up to rotations. In general, if the graph contains
a complete subgraph with d vertices vy, v, . ..v4, then we can choose the coordinates of
this K, graph in a way that they satisfy the edge lengths of this subgraph. These shall
be the fixed vertices, while K, will be also called fixed. The number of (real) solutions of
the system with the fixed vertices will give the (real) embedding number of the graph for a
specific edge labelling. So, in the case of Laman graphs, we need to fix an edge, while in
3 dimensions a triangle should be fixed. Note that for the first set of graphs there is always
a K, (edge). As for the 3-dimensional case, Geiringer graphs with no triangles (kK3) are
very rare (the first one is the 10-vertex complete bipartite graph K 4) 2.

We will transform the squared distance equations to fit some requirements of sparse elim-
ination, using an algebraic system with two sets of equations. First we define the set of
magnitude equations that introduce new variables representing the distance of each ver-
tex from the origin. Substituting the new variables to the squared distance equations, we
get the edge equations, which represent the edge length constraints between the adjacent
vertices of an edge. The algebraic system derived from the combination of these two sets
shall be called sphere equations.

Definition 1 Let G(V, E) be a simple undirected graph. We denote by A = {\,, | (u,v) €
E‘} the set of the (given) edge lengths and by X,, = {zy,1,%y2,...2.q} the variables as-
signed to the coordinates of each vertex. The following system of equations gives the
embeddings of G:

| Xl = 54, Vue VA\V(K,),
Sut 5y — 2(X,, X)) = A2 Y (u,v) € E\E(Ky),

u,)?

(2.1)

2The technical details of the sphere equations in the absence of K; will be discussed in Appendix B. For
simplicity, in the rest of this manuscript we assume the existence of a K, unless stated otherwise.
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where (X, X,,) is the Euclidean inner product. We will denote the set of variables )?u =
XuU{su} in the euclidean case using s, as the (d + 1)-th variable x, q4.1. If a vertex is
fixed, its variables are substituted with constant values. This formulation can be obviously
used in the case of embeddings on the unit d-dimensional sphere S¢ using | X,| = d + 1
coordinates and setting s, = 1.

This algebraic system has m = d-|V|—d? edge equations and |V | - d magnitude equations
if there is at least one subgraph K, of G. Notice that the edges of the fixed K, serve to
specify the fixed vertices and are not included in this set of equations, so m < |E|. We will
denote the set of the complex solutions for this algebraic system S(G, X, K4(p)) c C*IV
for a given embedding p of a complete graph K, satisfying the edge length constraints and
the set of real solutions Sg(G, A, K4(p)) = S(G, X, K4(p)) NR*V| for the same embedding
of K. Clearly ¢;(G) = |S(G, A, K4(p))| for any generic set of lenghts A, while r,(G,A) =
|Sr(G, A, K4(p))|. Notice that both ¢;(G) and r,4(G, \) are independent of the choice for a
fixed K,.

2.2.2 Cayley-Menger determinants

A Cayley-Menger (CM) matrix is a matrix of squared distances between n points in an
Euclidean space extended by a row and column of ones:

0 1 1 - 1

L0 A,y - A%,
cM=|1 2, o - ... |,

LM, A, -~ 0

where ), ; is the distance between point  and ;.

One of the main theorems in distance geometry gives the following embeddability condi-
tions for a CM matrix [12]:

Theorem 2 The squared distances of a CM matrix can be embedded in R? iff

* rank(CM) = d + 2

* (=1)*det(CM’) > 0, for every submatrix CM' with size k + 1 < d + 2 that includes
the extending row/column.

In the case of graph embeddings, we can use a matrix with known entries and variables:
each known entry corresponds to a squared edge length, while the variables correspond
to lengths between non-edges. This results to a system of determinantal equations and
inequalities. Any solution of the semi-algebraic system is an embedding of the graph in
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R? up to isometries, indicating that each one of these solutions correspond to 2 solutions
in the case of sphere equations since reflections are factored out in this formulation.

Considering only the solutions of the determinantal variety, we get the complex embed-
dings of the graph. The set of inequalities is related with certain geometrical constraints
on the edge lengths, such as positivity and triangular inequalities in dimension 2. In di-
mension 3, tetrangular inequalities (which are a generalization of triangular inequalities on
the area of the triangles of a tetrahedron) should be also satisfied, while in bigger dimen-
sions there are additional constraints (in this thesis only dimensions 2 and 3 are taken into
consideration with this algebraic formulation) [20].

The systems of equations of determinantal varieties are over-constrained. For exam-
ple, there are 35 equations in 10 variables for 7-vertex Laman graphs, while for 7-vertex
Geiringer graphs, there are 21 equations in 6 variables. Despite this fact, it is possible to
find 0-dimensional square subsystems of these systems of equations [24, 28].

Notice that the zero set of the whole determinantal variety corresponds to the missing
edge lengths of the complete graph. This means that the solutions of the subsystem
are restricted to a subset of the missing edge lengths. If the graph extended by the edges
corresponding to the variables of the subsystem is globally rigid, then the subsystem gives
an upper bound on the number of embeddings of the whole graph [40], since globally rigid
graphs have unique realizations (see Chapter 1).

In the cases treated in Chapter 5, square subsystems can be easily detected, if no re-
striction is imposed on the number of variables. Unfortunately, these subsystems are not
always 0-dimensional and cannot serve to find the embedding number of a graph or a use-
ful upper bound. Nevertheless, our experimental results lead to the conclusion that there
can be subsystems derived from a graph G(V, F) with |V'| — (d+1) equations satisfying the
0-dimensionality condition. For the most important cases, we show that for dimensions
2 and 3 there is always an extension of a minimally rigid graph with |V| — (d + 1) edges
resulting to a globally rigid graph.

Lemma 1 For every minimally rigid graph G(V, E) in dimensions d = 2 and d = 3, there
is at least one extended graph J = G U {ej,eq,..,ec}, Withé = |V| — (d+ 1) ande; ¢ E,
which is globally rigid in R

Proof: The only 4-vertex minimally rigid graph in dimension 2 (respectively 5-vertex in
dimension 3) is obtained by applying an H1 step to the triangle (resp. tetrahedron in di-
mension 3). If we extend this graph with the only non-existing edge, we obtain a complete
graph, so the lemma holds. Let the lemma hold for every graph that has less or equal ver-
tices with Gy,| = (V. E). H2 steps are known to preserve global rigidity in any dimension
[18]. So we need to prove the induction for H1 steps in both dimensions and H3 steps in
dimension 3.

Let a Laman graph Gy |4, be constructed by an H1 move applied to G|y with V| ver-
tices, whose extended globally rigid graph is .Jj;,. Without loss of generality, this move
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% V2
U1 U1 U3
Vv|+1 Vv |+1
U U
R? R3

Figure 2.2: Jy|, is constructed by an H1 step applied to Jy| (blue edges), extended with
the edge (u,vyv+1). This is equivalent with applying an H2 step and adding the deleted
edge (u, vy |41)-

connects a new vertex vy, with vertices vy, v,. Let u be a neighbour of v, in Gy
such that v, # u. The edge (u,v;) exists also in Gy and Jyy. If we set J,,, =
(S U{(v1, o), (v2, vpvi), (u, o) ) — {(vi, w) }, then JJy  is globally rigid, because
it is constructed from Jjy/| by an H2 step. Hence, Jjv |11 = J|y,,, U{(u,v1)} is also globally
rigid, proving the statement in the case of H1 steps in dimension 2. The same result holds
in arbitrary dimension (see Figure 2.2 for d = 3).

Both H3x and H3v steps consist of an H2 step followed by a second edge deletion in the
existing graph and a new connection with vy, (see Figure 2.1). So, if we apply an H3
move in Jy and subsequently add the second deleted edge, then Jjy-|, is globally rigid.
O

Even though, there are always globally rigid extentions with |V| — (d + 1) supplementary
edges, it is not always possible to find a CM subvariety corresponding to them. Such
subvarieties can be detected for all Laman and Geiringer graphs with |V | < 7 vertices, but
there exist bigger graphs for which this property does not hold.

Us U3

Vg Uy

Figure 2.3: The embeddings of the Laman graph Lisy- (grey edges) can be represented
by submatrices of C'My,,,,, that involve only variables corresponding to the 4 red dashed
edges. The extended graph is globally rigid. This construction can be used to find also
the spherical embeddings.

We now give some representative examples of optimal CM subsystems in the cases of
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Laman and Geiringer that are used to find lower bounds in Chapter 5. For instance, Ligy»
is a 7-vertex Laman graph (see Figure 2.3), which has cy(Lsspa) = 72(Lasr2) = 48 and
cs2(Lyspo) = rs2(Lasma) = 64 (See Section 5.2). There are 11 subsystems of this CM
variety in 4 variables, which all have exactly the same number of solutions. In the following
CM matrix, we present one of these choices involving the variables x1, x5, x5 and 7.

0 1 1 1 1 1 1 1

1 A20 Aié,m Agzl )\%jm A;I;z A?; e A?;,m

1 1/);,1}2 \2 va,vg )\2 3 )\12;2,1)5 I4 7:5

CML48H2 = 1 )\~2/1 1:);,113 )\2 U67U4 V3,05 Tg )\27
V1,V4 3 V3,04 s Tg e

1 ;2172 )\%g,vs )\ZMS T 2() )\35’”6 1
1 )\vl’vfi L4 L6 Tg /\1)5,1)6 0 )\v6,v7

1 )\12;1 U7 Ty XT7 /\12)4 . T10 )\'UG vy 0

In order to compute 75 ( Lssy2), the positive real solutions of the determinantal variety should
also satisfy the triangular inequalities.

The same extended graph is used to compute the spherical embeddings of L,sz.. An
additional constraint is needed in that case, which represents the distance from the origin,
as a new column and row with ones. The determinantal subsystem is derived from the
rank condition of 3-dimensional embeddings. Elementary matrix operations can lead to a
formulation that considers the cosines of the angles between two points as matrix entries,
denoted as 7, ., -

0 1 1 1 1 1 1 1 1

1 0 )\12)171}2 T )\12}1 U4 i) >\12117’U6 )\12)171}7 1
LA, 0 X, a3 A, 14 r5 1
Loy AL, 0 X M. T rr 1
CMS2(L48H2) = 1 )\31,'04 3 /\12)371)4 0 Ty L9 /\12)47”07 1
1 i) /\12)27,05 /\12)371}5 s 0 )\12}571)6 T10 1

1 )\317% Ty T6 Tg )\25’% 0 Avgor 1

1 )\12)171)7 Ty T )\12)471)7 10 )\”Uﬁﬂ)? 0 1

1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 2

1 0 nvl,vg U1 771}1 U4 Y2 771)1,1)6 7]1)1,07 1

1 771)1 U2 O T}”Uz U3 Y3 771)2 U5 Yq Ys 1

1 Y1 771}2 U3 0 77’113 U4 771)3 U5 Ys Yr 1

~ L Noyws Y3 Musa 0 Ys Yo Mugwr 1
1 Y2 771)2,115 771)3,1)5 Ys 0 771}5,1)6 Y10 1

1 77'01 U6 Yyq Ye Y9 771)5 U6 0 7]116 R4 1

1 Moy vr Ys Y Ny o7 Y10 Nve,v7 0 1

—2 1 1 1 1 1 1 1 0

The semi-algebraic conditions of the latter formulation, requires that any solution of the
determinantal subsystem lies in the interval [—1, 1] and that the triangular inequalities on
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the sphere are satisfied. The second is equivalent to the positivity of 21, .7, v, ;0 —
Moo, — Mos,on — oy 0 1 fOr 3 point of vertex embeddings v;, v;, vy, on the sphere, where 7, ,,
is the cosine of the angle between points 7 and j and can be obtained as the determinant
of a 5x5 submatrix containing both columns and rows with ones.

Our example in the 3-dimensional case is the graph G, (see Figure 2.4). This graph
has the maximal number of embeddings among all 7-vertex Geiringer graphs (c3(Gys) =
r3(Gas) = 48 - see Section 5.2). There are 5 different square systems in 3 variables that
completely define the embeddings. We can choose one of them involving only x4, x5, z3:

0 1 1 1 1 1 1 1
T A I D R - ¢
CMG43 = 1 )\517”3 1;2,71}3 )\2 v6,1)4 )\2 ! xs )\22)37’”7
V1,04 L2 U3,v4 V4,V5 6 V4,07
1 )\2171)5 ;L’g Ty )\12)471}5 20 )\12)571)6 )\2571)7
1 )\vl,vg )\vg,vg Iy Tg >\U5,’U6 0 )\v67v7
L x )\12)271)7 )\1213,1)7 )\12)4,1)7 )‘35,1)7 )\367'05 0

The set of real embeddings in that case is given by the solutions of the subsystem that
satisfy positivity, triangular and tetrangular inequalities.

Extending this graph with the edge (v;,v7) suffices for global rigidity. This edge corre-
sponds to the variable x; and it is possible to get a single equation by applying resultants
in the 3x3 system of determinantal equations (see Figure 2.4).

Figure 2.4: The graph G (grey edges). There are submatrices of C'M,, that involve
only variables corresponding to the 3 red dashed edges of the left graph. The graph G
extended by the edge v,v; (that corresponds to the variable x) is globally rigid.

Since a single edge is needed to find the whole embedding, we can use only the
inequalities involving only this variable (5 triangular and 5 tetrangular inequalities instead
of 35 that involve all variables).
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3. ON THE MULTIHOMOGENEOUS BEZOUT BOUND OF THE
EMBEDDING NUMBER

In this chapter we are concerned with the m-Bézout bound of the sphere equations (see
Definition 1). In Section 3.1 we propose two methods for computing the m-Bézout bound.
The first one is a combinatorial method relating outdegree constrained graph orientations
with this bound. The latter uses a standard formulation via matrix permanents. We also
compare the runtimes of these methods with the runtimes of algorithms that compute
mixed volumes and the embedding number.

In Section 3.2, we examine the exactness of m-Bézout bounds. Initially, we present exper-
imental results that compare these bounds with embedding numbers and mixed volumes.
Then, we present a general method to decide if the m-Bézout bound of a minimally rigid
graph is tight or not without directly computing the embeddings.

All the results of this chapter have been published in [5].

3.1 Computing m-Bézout bounds

In this section, we concentrate on the m-Bézout bound of the sphere equations of a graph
G(V, E) up to a fixed complete subgraph K. Let us remind that K; may not be a subgraph
of a minimally rigid graph for d > 3. We will give details on the computation of the bound
in the absence of K, in Appendix B. For the rest of this chapter, unless further specified,
K4 will denote a given complete subgraph and not all possible choices.

In order to compute the m-Beézout bound we will choose a natural partition such that each
subset of variables X, contains these ones which correspond to the coordinates and the
magnitude of a single vertex u. We will separate the magnitude equations from the edge
equations, since the first ones there is only one set of variables with degree 2, while in
every edge equation the degree of the u-th set of variables is always 1, resulting to the
following expansion:

[[2-v. JI iy =2V I]v. [] (vatvo)

ueV’ (u,v)EE’ ueV’ (u,v)EE!

where V' = V\ V(K,), E' = E\ E(K,) and Y, are symbolic parameters representing X,.
We remark that if v € V(K,) and (u,v) € E’, then Y, = 0, since vertex v is fixed and no
variables are assigned for it.

This means that we only need to find the coefficient of the monomial H Y% in the poly-

ueV’
nomial of the product (see Theorem 15 in Appendix A for details on the m-Bézout):
[T vu+v) (3.1)
(u,v)EE’
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Let us denote this coefficient by B(G, K,), which is related only to the combinatorial struc-
ture of edge equations. The m-Bézout bound for the number of embeddings of a graph in
C? up to a fixed K, is mBe(G, K4) = 2VI=1. B(G, K,). Notice that this bound is the same
for spherical embeddings in S¢.

We remark that although ¢,(G) is invariant under different choices of fixed K,, the m-
Bézout bound of a graph G may vary up to this choice. Thus, one needs to compute
m-Bézout bounds up to all fixed complete subgraphs in order to find the minimal one. The
same observation holds for the BKK bound of sphere equations.

We will use graph orientations and matrix permanents to compute the bound based on
the expansion of Equation 3.1. Let us mention that matrix permanents have been already
used to bound the number of Eulerian orientations (which are graph orientations with equal
indegree and outdegree for every vertex) in [60], but to the best of our knowledge there
are no published results on the connection between matrix permanents and outdegree
constrained graph orientations in the general case.

3.1.1 A combinatorial algorithm to compute m-Bézout bounds

This subsection focuses on a method relating m-Bézout bounds for minimally rigid graphs
with graph orientations. Our method is inspired by two different approaches that charac-
terize Laman graphs. First, Recski’s theorem states that if a graph is Laman then any
multigraph obtained by doubling an edge should be the union of two spanning trees [61].
Additionally, pebble games give a relation between the existence of an orientation and
the number of constraints in a graph and its subgraphs [49]. The following theorem gives
a combinatorial method to compute the m-Bézout bound, proving that mBe(G, K;) is ex-
actly the number of certain outdegree-constrained orientations. These orientations shall
be called valid orientations.

In the following theorem E’ is the same as in Equation 3.1.

Theorem 3 Let G(V, E) be a minimally rigid graph in C? that contains at least one com-
plete subgraph with d vertices. Let {v,,...v,} be the vertex set of such subgraph which
is the fixed K,. By removing the edges of K, from G, graph G' = (V, E') is defined. Then
B(G, K,) defined above is the number of outdegree-constrained orientations denote the
of G’, such that

* the outdegree of v, ...,v,is 0.

* the outdegree of every vertex in V\{vy,...,vs} is d.

Proof: By expanding the product [] (Y,+Y,), the monomial H Y.? can be obtained
(u,v)€EE’ ueVv’

when each Y, from a given edge contributes exactly d times in that product. This means

that every time we shall choose one of the two sets of variables that correspond to the
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adjacent vertices of the edge represented in the parenthesis. This choice yields an orien-
tation in the directed graph and vice versa. Thus, the number of different orientations in all
edges gives us how many times this monomial will appear in the expansion, completing
the proof. O

Algorithm 1: Count graph orientations

Function(orient)

Input: |V| (# of vertices), E (graph edges without E(K)),

outdeg (desired outdegree list. If vertex u € V(K ) then outdeg[u] = 0, otherwise outdeg[u] = d).
Output: # of outdegree-constrained orientations

deg = vertex degrees of graph G(V, E)

/* Ending condition for the recursion x/
if |E| = 0 then
| return (1)
/* No valid orientations in this case */

5 if Ju, outdeg [u] > deg [u] or outdeg [u] < 0 then

10
1"
12
13
14

15
16
17
18
19
20
21

22
23
24
25
26
27
28
29

| return (0)

/* Examine the conditions yielding unique orientations x/
for u < |V|do
if outdeg[u] =0 // uw admits only new indirerected edge orientations
then

for all edges (u,v) € E do
outdeg[v] = outdeg[v] — 1
E'=E\{(u,v)}
newdeg =vertex degree of graph G'(V, E’)
return (orient(|V|, Enew, outdeg, newdeg))

else if outdeg[u] = deg|u] // u admits only new outdirerected edge orientations
then
for all edges (u,v) € E do
outdeg [u] = outdeg [u] — 1
E'=E\{(u,v)}
newdeg =vertex degrees of graph G'(V, E’)
return (orient(|V|, E’, outdeg, newdeg))
/* No more unique orientations exists: set both orientations for 1st edge x/
(u,0) = E1]

outdegl [u] = outdeg [u] — 1

outdeg?2 [v] = outdeg [v] — 1

B=E\{(u,0)}

newdeg =vertex degree of graph G'(V, E’)
orient1=orient(|V|, E’, outdegl, newdeg)
orient2=orient(|V|, E’, outdeg2, newdeg)
return (orient1+orient2)

This theorem gives another way to prove that an H1 move doubles the m-Bézout bound
of minimally rigid graphs. Hence, minimally rigid graphs constructed only by H1 moves
have at most 2/VI-¢ embeddings (actually this bound is tight, see Section 2.1).
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Corollary 1 An H1 move always doubles the m-Bézout bound up to the same fixed K.
Moreover, if a graph can be constructed only with H1 moves, then the m-Bézout bound
for this graph is exactly 2/V1=¢,

Proof: Let B(G, K,;) be the number of outdegree-constrained orientations for a graph
G(V, E) up to a given K,. This means that the m-Bézout bound is

mBe(G, Ky) = 2VI=4. B(G, K,).

Now, let G* be a graph obtained by an H1-move on the graph GG. Since H1 adds a degree-d
vertex to GG, this means that there is only one way to reach outdegree d for the new vertex
of G*. So the outdegree-constrained orientations of G* up to the same K, are exactly
B(G, K,;) and

mBe(G*, Ky) =2V~ B(G, K;) = 2 - mBe(G, Ky).

The second statement of this corollary can be proven using the previous equality: starting
from K, only one orientation satisfies the requirements of Theorem 3 for each H1 move.
So, the m-Bézout bound of a minimally graph constructed only by H1 moves is 2/VI=¢. O

S
7

Y
Y

Figure 3.1: The orientations of graphs Lss and G 5. Notice that there is only one way to
direct the red edges up to the choice of K, (dashed blue).

Let us demonstrate our method examining one Laman and one Geiringer graph.

Example 1 Here are two examples of this counting method in the case of L graph in di-
mension 2 and G g in dimension 3, which are both 7-vertex graphs (see Figure 3.1). Graph
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Lsg has 56 complex embeddings in the plane and 64 embeddings on the sphere, while G
has 48 embeddings in C? (these numbers coincide also with the maximum number of real
embeddings, see [35, 31] and Section 5.2 ). The mixed volumes of the algebraic systems
are 64 and 48 respectively.

The dashed lines indicate the fixed edges of K,;. The edge direction for any edge that
includes a fixed vertex is always oriented outwards the non-fixed vertex. This yields a
unique orientation up to the fixed K , which is coloured in red for both graphs. The rest
of the graph admits B(Lss, K2) = 2 orientations for Lsg, while the number of different
orientations for G s is B(Gs, K3) = 3. So the m-Bézout bound is 2772 - 2 = 64 for Lss and
27-3.3 =48 for G48.

We have implemented a software tool in Python to count the number of orientations for an
arbitrary graph given the desired outdegrees. The basic part of this code (see Algorithm 1)
is to decide recursively which choices of direction are allowed in every step and is available
in zenodo [6].

3.1.2 Computing m-Bézout bounds using the permanent

The permanent of an m x m matrix A = (a, ;) is defined as follows:

m

per(A) = Y [ aiww). (3.2)

c€Sy, i=1
where S,, denotes the group of all permutations of m integers.

One of the most efficient ways to compute the permanent is by using Ryser’s formula [67]:

per(A) = > (="M > ay (3.3)

MC{1,2,...m} i=1 jeM

There is a very relevant relation between per(A) and the m-Bézout bound, see [26]:

Theorem 4 Given a system of algebraic equations and a partition of the variables in k

subsets, as in Theorem 15, we define the square matrix A with m = > m; rows, where
j=1

each set of variables corresponds to a block of m; rows. Let a; ; be the degree of the i-th

equation in the j-th set of variables. The columns of A correspond to the equations, where

the subvector of the i-th column associated to the j-th set of variables has m; entries, all

equal to a; ;. Then, the m-Bézout bound of the given system is equal to
1

my!mso!---my,!

- per(A). (3.4)

We will refer to A matrix as the m-Bézout matrix of a polynomial system. This implies
that in the case of minimally rigid graphs, we obtain a square m-Bézout matrix A with
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columns associated to the equations of non-fixed edges, and |V'| —d blocks of d rows each,
corresponding to the non-fixed vertices. An entry a, ; is one if the vertex corresponding
to 7 is adjacent to the edge corresponding to the equation indexing j, otherwise it is zero.
This is an instance of a (0, 1)-permanent. Therefore Theorem 4 gives the coefficient

B(G, K,) = (%) e per(A),

in bounding the system’s roots, since all m; = d, while n = |V| — d.

Including the effect of magnitude equations the corollary below follows.

Corollary 2 The m-Bézout bound of the sphere equations for an |V |-vertex rigid graph in
d dimensions up to a given K, is exactly

V|—d
mBe(G, Ky) — (%) - per(A), (3.5)

assuming that matrix A is the m-Bézout matrix up to K, defined as above.

The permanent formulation for the computation of the m-Bézout bound gives us another
way to prove Corollary 1.

Corollary 3 Let G be a minimally rigid graph in C¢ and Ag be its (m x m) m-Bézout
matrix up to a fixed K,. Then, for every graph G* obtained by an H1 operation on G, the
permanent of its m-Bézout matrix Aq- up to the same K, is per(Ag~) = d! - per(Ag).

Proof: Without loss of generality, we consider that the last d rows of matrix As- represent
the new vertex, while the last d columns of this matrix represent the edges adjacent to this
vertex, since matrix permanent is invariant under row or column permutations. The rest
of the matrix is the same as A¢. This yields the following structure:

Ag A
Agr = ( 0o 1 )
where 0 is a (d x m) zero submatrix, 1 is a (d x d) submatrix with ones and A’ the (m x d)
submatrix of the new edge columns without the new rows. It is clear from the definition of
the permanent (See Equation 3.2), that column permutations that do not include a zero
entry are counted as 1 in this sum, while if they include a zero entry the product is zero.
The only column permutations that do not include a zero entry for the d last rows are those

that are related to the d last edges, so there are d! nonzero column permutations for this
block of rows.

This means that the permutations for the other m rows exclude the last three columns, so
they are exactly per(A) permutations in this case. Thus, per(Ag+) = d! - per(Ag). O
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|V|+1-d
Since mBe(G*, K,) = (—) - per(Ag+), it follows that

as in Corollary 1.

Let us give an example of this counting method for a minimally rigid graph.

Example 2 We use the L35 graph to provide an example for this formulation (see Fig-
ure 3.2- other examples can be found in [6]). L3 is the 8-vertex Laman graph with the
maximal embedding number c,(G) = 136 among all Laman graphs with the same number
of vertices [16]. On S?, it has 192 complex embeddings, which is also maximum (but not

d!

mBe(G*, K;) = 2-mBe(G, Ky),

unique), since there is another graph sharing the same cgs:(G).

The m-Bézout matrix Ay, for this graph for the fixed edge (v, v9) is the following:

(vi,v4) (vi,vs)  (v2,v3)  (vo,v5)  (v2,v7)  (vs,v4) (v3,v5) (va,v6) (va,vs)  (vs,v6)  (ve,v7)  (v7,08)
T3 0 0 1 0 0 1 1 0 0 0 0 0
Y3 0 0 1 0 0 1 1 0 0 0 0 0
T4 1 0 0 0 0 1 0 1 1 0 0 0
Y4 1 0 0 0 0 1 0 1 1 0 0 0
Ts 0 0 0 1 0 0 1 0 0 1 0 0
Ys 0 0 0 1 0 0 1 0 0 1 0 0
Te 0 0 0 0 0 0 0 1 0 1 1 0
Y6 0 0 0 0 0 0 0 1 0 1 1 0
T 0 0 0 0 1 0 0 0 0 0 1 1
Y7 0 0 0 0 1 0 0 0 0 0 1 1
s 0 1 0 0 0 0 0 0 1 0 0 1
ys 0 1 0 0 0 0 0 0 1 0 0 1

and its permanent is per(Ay,,,) = 192, which gives the m-Bézout bound since d = 2.

Figure 3.2: The L35 graph. The dashed edge is the fixed one.

'@
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3.1.3 Runtimes

The computation of the m-Bézout bounds using our combinatorial algorithm up to a fixed
K4 is much faster than the computation of mixed volume and complex embeddings. In
order to compute the mixed volume we used phcpy in SageMath [68] and we computed
complex solutions of the sphere equations using phcpy and and MonodromySolver [23]. Let
us notice that, MonodromySolver seems to be faster than mixed volume software we used
in the case of Geiringer graphs. We also compared our runtimes with the combinatorial
algorithm that counts the exact number of complex embeddings in C? [16].

We will try to give some indicative cases for which we compared the runtimes. For exam-
ple, computing the mixed volume of the spherical embeddings up to one fixed edge for
the maximal 12-vertex Laman graph for a given fixed K, takes around 390ms, while our
algorithm for the m-Bézout bound required 13ms. If we wanted to compute mixed volumes
up to all fixed K, we needed 8.6s, while the m-Bézout computation took 270ms. The run-
time for the combinatorial algorithm that computes the number of complex embeddings is
6.363s for the same graph.

For larger graphs i.e. 18-vertex graphs, the combinatorial algorithm may take ~ 17h to
compute the number of complex embeddings in C2. We tested a 18-vertex graph that did
not require more than 0.12s to compute one m-Bézout bound and 4s to compute m-Bézout
bounds up to all choices of fixed edges.

In dimension 3 our model was the icosahedron graph, which has 12 vertices. The com-
putation of the mixed volume took more than 6 days in this case, while our algorithm
needed 60ms to give exactly the same result (54,272). MonodromySolver could track all
54,272 solutions in ~ 1.3 hour, while Grébner basis computations failed multiple times to
terminate.

Computing the permanent required more time compared to our algorithm. For the
icosahedron the fastest computation could be done using Maple’s implementation in
LinearAlgebra package. It took ~ 0.96s to compute the permanent up to a given fixed
triangle with this one. On the other hand the implementations in Python and Sage took
much more time for the same graph (~ 8m and ~ 10m respectively).

This seems reasonable since if the total number of edge equations is m, then the combi-
natorial algorithm has to check at most 2™ cases, while according to [26] the complexity
to compute the permanent using Ryser’s formula is in the order of m? - 2™.

3.2 On the exactness of m-Bézout bounds

In this section we present experimental results and a general method that study the ex-
actness of the m-Bézout bound. Our computations use already published results on the
embedding number [35] in order to compare the m-Bézout bound with it. We also use
computations from [4] (we remind that Chapter 5 is dedicated to the results of this publica-
tion) on the mixed volumes of sphere equations systems. All the other computations are
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Table 3.1: Runtimes of different algorithms on graphs with maximal c,(G) up to |V| = 11
and up to |V| = 10 for Laman and Geiringer graphs, respectively. We compute c;(G)
by [16] and c3(G) by phepy [8] (fails to find all solutions for |V| > 11). Also runtimes for
computing c3(G), c3(G) by MonodromySolver. We compute mixed volume (MV) by phcpy,
m-Bézout (mBe) by Maple’s permanent and our Python code [6]. Computation of the m-

Bézout and MV is up to a fixed K, (edges or triangles).

Laman graphs

V| || combin.| Monodromy | phcpy Maple’'s| mBe

c2(G) | Solver MV perm. | Python
6 | 0.0096s | 0.2334s | 0.0024s | 0.0003s | 0.0009s
7 |/ 0.0153s | 0.566s 0.006s | 0.00045s | 0.0012s
8 | 0.0276s | 1.373s | 0.0122s | 0.00065 | 0.002s
9 0.066s 4934s | 0.0217s | 0.0018s | 0.0032s
10 || 0.176s 12.78s 0.043s | 0.0053s | 0.0045s
11 || 0.558s | 46.523s 0.17s 0.0077s | 0.0074s
12 6.36s 2m47s 0.39s 0.049s 0.013s
18 || 17h 5m - 1h 34m 24s 0.115s

Geiringer graphs

V| phcpy | Monodromy phcpy Maple’s| mBe

solver | Solver MV perm. Python
6 || 0.652s 0.141s | 0.00945s | 0.0002s | 0.0097s
7 3.01s 0.584s 0.041s 0.001s | 0.00165s
8 20.1s 2.297s 0.425s | 0.0025s | 0.00266s
9 || 2m 33s 14.97s 3.42s 0.0075s | 0.006s
10 || 16m 1s 1m23s 1m 12s 0.08s 0.0105s
11 || 2h14m | 9m22s 27m31s 0.49s 0.024s
12 - 1h22m > 6 days | 0.96s 0.06s
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part of this project (m-Bézout, spherical embeddings and some cases of graphs for which
there was no information on their embedding number). These results show that there are
some classes that the m-Bézout is a tight bound.

We also develop a method based on Bernstein’s second theorem on the exactness of
the mixed volume bound [9]. Our main goal is to reduce the number of checks on the
Minkowski sum of Newton Polytopes that are required by this theorem. We consider that
this method may be a first step to establish the existence of classes of graphs with tight
m-Bézout bounds.

3.2.1 Experimental results

We compared m-Bézout bounds with the number of embeddings and mixed volumes using
existing results [35, 28] for the embeddings in C? and C3. We also computed the complex
solutions of the equations that count embeddings on S? for all Laman graphs up to 8
vertices and a selection of graphs with up to 12 vertices that have a large number of
embeddings. We remind that in general the m-Bézout bound is not unique up to all choices
of a fixed K. It is natural to consider the minimal m-Bézout bound as the optimal upper
bound of the embeddings for a given graph. Let us notice that we checked if the m-Bézout
is minimized when the fixed K, has a maximal sum of vertex degrees or when the vertex
with the maximum degree belongs to the fixed K,. There are counter-examples for both
of these hypotheses.

Mixed volume and m-Bézout bound. In all cases we checked in C? and S?, the m-
Bézout bound up to a fixed K is exactly the same as the mixed volume up to the same
fixed vertices. There are some cases in C? for which the m-Bézout bound is bigger than
the mixed volume for certain choices of K5;. We shall notice that these cases do not
correspond to the minimal m-Bézout bound for the given graph (thus the minimum m-
Bézout and the minimum mixed volume are the same for these graphs).

Spatial embeddings and the m-Bézout bound. There are many Geiringer graphs for
which the bound of the sphere equations is larger than the actual number of complex
embeddings. Nevertheless, we observed that for all planar graphs (in the graph-theoretical
sense) up to |V'| = 11 the number of complex embeddings is exactly the same as the mixed
volume bound and therefore the m-Bézout bound, while in the non-planar case the bounds
are generally not tight. What is also interesting is that the m-Bézout bound is invariant for
all choices of fixed triangles for all planar Geiringer graphs.

Embeddings of Laman graphs and the m-Bézout bound. For Laman graphs, the m-
Bézout bound diverges from the number of actual embeddings in C?> more than in the case
of Geiringer graphs. That happens both for planar and non-planar graphs. On the other
hand the number of spherical embeddings of planar Laman graphs coincides with the
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Table 3.2: Mixed volumes, complex embedding numbers, and m-Bézout bounds for em-
beddings of Laman graphs in C? and S*. These graphs have the maximal number of
embeddings in C?. The 12-vertex maximal Laman graph is the first non-planar in this
category.

1536 | 880 1536 | 1536 1536
4096 | 2288 || 4096 | 4096 4096
15630 | 6180 || 15630 | 8704 15630

| n || MVy; | e2(G) || MVg: | cs2(G) | mBézout |
6 32 24 32 32 32
7 64 56 64 64 64
8 192 136 192 192 192
9 512 344 512 512 512
10
11
12

minimum m-Bézout bound for a vast majority of cases (all planar graphs up to 6 vertices,
64/65 7-vertex planar graphs and 496/509 8-vertex planar graphs). Notice that the m-
Bézout bounds for different choices of the fixed edge are, in general, different for planar
Laman graphs.

3.2.2 Using Bernstein’s second theorem

Our computations indicate that the m-Bézout bound is tight for almost all planar Laman
graphs in S? and all planar Geiringer graphs. Therefore, we apply Bernstein’s second the-
orem to establish a method that determines whether this bound is exact (see Appendix A
for details on the BKK bound and Bernstein’s second theorem- Theorems 16 and 17 re-
spectively). We believe that a generalization of this method may show whether the exper-
imental results provably hold for certain classes of graphs. In this subsection for reasons
of simplicity, in all examples we will use the variables z;, y;, s; and z;, ;, z; for C? and S? re-
spectively (instead of the notation z; 1, - - - x; 4, s; presented in Definition 1). Also m denotes
the total number of variables.

The first step in this Section is to use Newton polytopes whose mixed volume equals to the
m-Bézout bound (see for example [63]) since they are simpler than the Newton polytopes
of the sphere equations.

Definition 2 We set e; = (0,0,... ,...,0) and let T} be the simplex defined as

" ith position
the convex hull of the set
{0, €4.(u—1)+1, €d-(u—1)42; - - - » €d-(u—1)+d} >
where 0 = (0,0, ...,0) is the origin. Let )?u be the u-th set of variables under a partition of

all variables, with set cardinality d,, = |)A(/u|. ThenT} is the simplex that corresponds to the
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variables of this set. The m-Bézout Polytope of a polynomial, with respect to a partition of
the variables, is the Minkowski sum of the T for all u, such that each simplex is scaled

by the degree of the polynomial in X,.

For a multihomogeneous system, simplices 7 belong to complementary subspaces.
Then, each m-Bézout Polytope is the Newton polytope of the respective equation. For
general systems, our procedure amounts to finding the smallest polytopes that contain
the system’s Newton polytopes and can be written as Minkowski sum of simplices lying in
the complementary subspaces specified by the variable partition.

In the case of rigid graphs in C¢, every set of variables has d + 1 elements. Thus, the m-
Bézout Polytope of the magnitude equations for a vertex v is 2 - T}, ,, while the m-Bézout
Polytope of the equation for edge (u,v) is T)},, + T, ,. This implies that the Minkowski sum
of the m-Bézout Polytopes for the sphere equations of a minimally rigid graph G(V, E) is
exactly

Po= Y _(deg(u) +2) - T4,

ueV’
where deg(u) is the degree of vertex u in the graph and V' the set of non-fixed vertices.

In general, it is hard to compute the Minkowski sum of polytopes in high dimension. But
in the case of the m-Bézout Polytopes the following theorem describes the facet normals
of Pa.

Theorem 5 Let G(V, E) be a minimally rigid graph in C¢ and P; be the Minkowski sum
defined above. The set of the inner normal vectors of the facets of P are exactly

« all unit vectors e;, and

* the |V'| — d vectors of the form

+
Z €)1y = (0,0,...,—1,—1,...,—1,...,0),

where there are d + 1 nonzero entries corresponding to the variables that belong to
the u-th variable set.

Proof: Since each T}, belongs to a complementary subspace, P can be seen as the
product of polytopes [] (deg(u) +2) - Ayi1, Where Ay, is the unit (d + 1)-simplex !. The

ueV’
. . d+1
inner normal vectors of the facets of A, in R*! are the unit vectors e; and § = > —€;
j=1

'The idea of using the product of polytopes is derived by a proof for the mixed volumes corresponding
to the weighted m-Bézout bound in [55]
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in R4+, The theorem follows since the normal fan of a product of polytopes is the direct
product of the normal fans of each polytope [74]. O

This theorem yields a method to find the H-representation of P, in other words the poly-
tope is described as the intersection of linear halfspaces and the respective equations are
given by the theorem. In all cases where MV = mBe, the polytopes P, can be used
instead of the Newton Polytopes of the equations.

The verification of Bernstein’s second theorem requires a certificate for the existence of
roots of face systems (see Definition 10) for every face of Ps, where faces range from
vertices of dimension 0 to facets of codimension 1. We propose a method that confirms
or rejects Bernstein’s condition checking a much smaller number of systems based on the
form of facet normals. For this, we shall distinguish three cases below.

The normal of a lower dimensional face can be expressed as the vector sum of facet
normals, whose cardinality actually equals the face codimension. This means that we
need to verify normals distinguished in the following three cases:

1. vector sums of one or more “coordinate” normals e;’s,
2. vector sums of one or more “non-coordinate” normals 48,,’s,

3. “mixed” vector sums containing both €;’s and gu’s.

Notice that since there are (d +2) - (|V| — d) different normals, in order to check all result-
ing face systems, 2(4+2)-(IVI=4) computations are required. We now examine each of these
three cases separately, in order to exclude a very significant fraction of these computa-
tions.

First case (coordinate normals). Let F' = (f;):<;<,» be the system of the sphere equa-
tions, let the initial forms be f¢ for some normal e, and let /¢ be the resulting face system.
We will deal with the coordinate normals case starting with an example.

Example 3 We present the equations of face system F®' in C2. Normal e, corresponds to
variable x1. This means that the inner products with the exponent vectors of the monomials
in the magnitude equation f, = 12 + 2 — s, are 2,0,0. Thus, f&' = y? — s,, excluding the
monomial x3. In the case of the edge equation fu 5 = s1+ so — 2(x122 + Y1) + Ao,
for a generic edge length \ 2, the inner products are 0,0,1,0,0. [t follows that f&m =

S1+ 89 — 2y1y2 + /\32. If the degree of x1 in an equation f; is zero, then ffl = f;, since the
inner product of all the exponent vectors with e; is zero.

This example shows that since all ; monomials are removed, F°! is an over-constrained
system that has the same number of equations as F', but a smaller number of variables.

The same holds obviously for every %, while for € = S &; (where I is an index set)
i€l

59 E. Bartzos



Bounds on the maximal number of graph embeddings.

the initial forms in £ are obtained after removing all monomials that include one or more
of the variables corresponding to the e;’s of the sum. In other words, the initial forms in
system F° can be obtained by evaluating to zero all the variables indexed by the set I.

Lemma 2 Let € be a sum of e; normals as described above. Now, F does not verify
Bernstein’s condition in the coordinate normals case (and has an inexact BKK bound)
due to system F'*® having a toric root 1/, only if F has a root r with zero coordinate for at
least one of the variables in I, such that the projection of r to the coordinates j ¢ I equals

r'.

We can now exclude the case of sums of coordinate normals from our examination, since
it shall not generically occur, because the next lemma shows that » has no zero coordinate.

Lemma 3 The set of solutions of the sphere equations for a rigid graph generically lies in
((C*)d-n_

Proof: We indicate by S(G, A, K4(p)) the set of complex embeddings for a rigid graph
G up to an edge labeling A and the embedding of d fixed vertices p = (p1, p2, ... pa)-
This set of embeddings is finite by definition. If there is a zero coordinate in the solution
set, there exists a vector o/ € C¢, such that no zero coordinates belong to the zero set
S* (G, A\, Kq(p+p')),where p+p' = (p1+p,p2+p,...pa+ p'). Since we want to verify
Bernstein’s condition for a generic number of complex embeddings of G, we can always
use the second set of embeddings. O

This lemma excludes a total of 2(¢+1)-(VI-4) cases when verifying Bernstein’s second the-
orem for a given algebraic system.

Second case (non-coordinate normals). In the second case, the inner product of ex-
ponent vectors with §,, is minimized for all variables X, with maximum degree. Let us give
again an example to explain this statement.

Example 4 It is an example in C? for face system F%. The inner products for the magni-
tude equation f, = x3+y; — s, and the edge equation f( o) = s1+s2—2- (T122+1192) + A7 5,
A2 being a generic edge length, are —2,—2,—1 and —1,0,—1,—1,0 respectively. So,

=2t +yf and [, = 51— 2 (x172 + y1y2). If the degree of a polynomial f; in the set

of variables X, is zero, then f = f,.

The number of equations of F%: equals the number of variables. Following Bernstein’s
proof on the discriminant conditions, we introduce a new system by applying a suitable
variable transformation from the initial variable vector x to a new variable vector t with
same indexing. This transformation uses an m x m full rank matrix B such that every
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monomial x* is mapped to t?~ (see [9, 19] for more details). Furthermore, | det B| = 1 so
that the transformation preserves the mixed volume of F' [19].

In our case, we construct matrix B with the following properties:

B- 35 = €(d+1)-(u—1)+1;
B €ty u-1yrj = €arnw-1+j Vi €{2,...,d+1},
det(B) = =l.

The intuition behind these choices is given in Lemma 4 and its proof. This yields the
following map from variables x to new variables t:

tu 2 tu d+1
Tyl = t_a Lu,2 — e u 7 . (36)

) )
u,1 tu,l tu,l

We will refer to the set of z,, ;s as the s-variables of F, since the image of their exponent
vectors is the set of gu’s, while the exponent vectors for tAhe other variables remain same.
This transformation maps system F'(x) to a new system F'(t) of Laurent polynomials in the
new variables. In the case of C?, the sphere equations are mapped as follows:

~ 1ty tus : :
fu= 5+ 5= — —, (magnitude equations)
tu,l tu,l tu,l

~ [ ty 1 tuaty )
Foumy = 22 422 2. 4+ w202 ) 4 A2 (edge equations) .
7 tu,l tv,l tu,ltv,l tu,ltv,l ’

The degree a(f, t,.1) of a polynomial fwith respect to the variable ¢, ; will be either zero

or negative. Let us now multiply every polynomial in ﬁ(t) with each one of the monomials

t;‘f(f’t“’l). These monomials are defined as the least common multiple of the denominators

in the Laurent polynomials f yielding the following system ﬁ(t):

fu =1+ ti,Q —tyatus, (Magnitude equations)

f(u,v) = tv,ltu,?) + tu,ltv,B -2 (1 + tu72tv,2) + )\i,v : tu,ltv,l- (edge equationS)

This transformation yields the necessary conditions to verify if the face systems of the
non-coordinate normals have solutions in (C*)™. We will refer to t,;’s as the set of 4-
variables of F'(t), while the rest should be the e-variables. Note that the transformation

gives a well-constrained system, while zero evaluations of the s-variables shall result to
an over-constrained system, that should have no solutions if the bound is exact.

Lemma 4 There exists a sum & of different Su normals, such that face system I has a
solution in (C*)™ if the algebraic system F(t), which is defined above, has a zero solution
for t, , for one or more vertices wu.
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Proof: Matrix B is constructed to change the variables =, ; to variables ¢, ;, for vertices
u. From the definitions of F'(t) and F( ), it follows that given a monomial t® in a polynomial
f of ﬁ(t), the inner product (3, B - 6T> is not minimized among other monomials in f if
and only if the degree of ¢, ; in the respective monomial of the transformed polynomial f

is positive. Thus, the existence of toric solutions for the face system o is equivalent to
existence of toric solutions for the zero evaluation F'(t,¢,; = 0).

So, if ﬁ( «1 = 0) has a solution in C™ such that F(t =ty1=-=t,1=0)hasa
solution in (C*)™, then F3«+6:1+-+3u has a solution in (C ™. O

The computational gain in this case is that, without the lemma, one would have checked
every different combination of the §,’s, namely a total of 2/VI=? checks. Now, it suffices to
check only one zero evaluation for each of them, hence only |V | — d checks.

Third case (mixed normals). The third case, that includes the sums of vectors 5, and &;
can be also treated with the transformation F'(t) introduced above. Since the minimization
of the inner product is invariant for d of the d + 1 variables per vertex, the non-existence of
zero solutions in F'(t) implies that no F* has solutions in (C*)™ for all vectors w that are
sums of vectors 3 with those vectors e; for which the equality B - €/ = €; holds. In order
to proceed we need the following lemma. This shows that using d of the d + 1 e;’s of a
vertex suffices to verify if a face system of a mixed normal has solutions in C™.

Lemma 5 Let us define a sum of normals

—du = A(d+1).(u_1)+j c Rd+1.

®

Fgr every w € R™, such that w is a sum of —5u and other normals outside the set
{6u, €d1)-(u-1)415 - - - » €(d+1)-(u—1)+a+1} (hence in a subspace complementary to that of
—4,,), the face system F cannot have a solution in (C*)™

Note that _Su is the sum of d 4+ 1 normals in complementary subspaces.

Proof: We will treat the case of dimension d = 2 for simplicity of notation; the proof
generalizes to arbitrary d. Without loss of generality, we consider u = 1. Then w €
R3 x R™~3 with w = (— 51,0 ) and v € R™~3, The inner products of — &, with the exponent
vectors of the magnitude equation in R? for the first coordinate are 2,2, 1, so f;%' = —s. ltis
obvious that no w which is a sum of —&, and normals not belonging to the set {51, €, €y, 63}
defines a face system with no solutions in (C*)™. Similarly, the inner products of — &, with
the exponent vectors of the magnitude equation f; = 22 + vy + 22 — 1 on S? are 2,2, 2,0,

yielding fl‘g1 = —1 which has no solutions in C™. O
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Lemma S reveals that in order to verify the conditions of Bernstein’s theorem, we can use
the transformations F'(t) for all choices of d variables from every set X, since there is no
need to check the cases that include the sum of all e; normals of a single vertex. This
result, combined with Lemmas 3 & 4 leads to the following corollary.

Corollary 4 There is a vector w € R™ such that the face system of the sphere equations
F has a toric root if and only if there is a choice of §-variables such that the transformed
algebraic system F'(t) has a zero solution in C™ for at least one d-variable.

Since the first d coordinate variables z, ; are symmetric (while s, variables are not), we
can exploit these symmetries excluding some choices. So, without loss of generality, we
may keep x;, as a d-variable from variable set X, and check all possible choices for
S-variables from all other variable sets X,, such that # 1 and u is not among the fixed
vertices.

Summary of three cases. In general, if one selects to take into consideration all pos-
sible sums of facet normals, then 2(¢+2)-(IVI-4) cases should be checked. We have shown
that the category of face systems defined by a sum of coordinate normals cannot have toric
solutions, discarding 2(¢*1-(IVI=9) cases. In the two other cases, the investigation of toric
solutions can be combined using the F(t) transformation. If a face system has toric solu-
tions, then in the non-coordinate normals case some S-variables may have zero solutions,
while in the mixed normals case both §-variables and e-variables may have zero solutions.
A naive approach to verify these two cases would result to 2(¢*+1-(IVI=d).(2(VI=d) _1) checks,
but using Corollary 4 one needs to verify the zero evaluations of s-variables for all choices
of d-variables. The latter, can be further reduced from d!VI=¢ to d!VI=4-1, due to the fact
that the coordinate variables are symmetric. Summarizing, when checking Bernstein’s
condition, for any of the d/V1=4~! choices of §-variable transformation that construct F(t),
it suffices that |V'| — d zero evaluations should be applied for each of the 5-variables.

Theorem 6 Bernstein’s condition can be verified in the case of the sphere equations after
checking a total of at most (|V| — d) - dV1=?~! face systems.

This discussion yields an effective algorithmic procedure (see Algorithm 2) to verify
whether the m-Bézout bound is exact. Function ConstructDeltaPoly takes as input the
system of the sphere equations F' and a list of s-variables to construct the polynomials
ﬁ(t). The central role is played by function IsmBezoutOfGraphExact, which verifies if the
polynomials F have zero solutions for the §-variables.

Let us present two examples, further treated in the code found in [6].

Example 5 The first (and the simplest non-trivial) example we have treated is an applica-
tion of our method to the equations that give the embeddings of Desargues graph (double
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Algorithm 2: m-Bézout exactness for minimally rigid graphs

Function (ConstructDeltaPoly)

Input: F (sphere equations), V'’ (non-fixed vertices), L (variable indices mapped to S-variables from
each partition set)

Output: F R
/* Transformation to F(t) */
changevars = ( U {zur — tuLl(u)}) U U {Tus— tut':‘(lu)}
ueV’ ' ueV’ ’

R le{1, - ,d+1}\{L(u)}
F(t) = F(changevars)
A =)
for f € F(t) do

/* off,ty () = (non-positive) degree of f in variable t, 1(y) */

F= T0 ty50tere) f
N ueVL "
F(t) = F(O)U{/}

return (F(t))

Function (IsmBezoutOfGraphExact)

Input: F' (sphere equations), V' (non-fixed vertices), Conjecture (If True, only one choice of F, else all
choices of F)
Output: True (m-Bézout= ¢,;(G)) or False (m-Bézout> ¢;(G))

/* Verification of Bernstein's condition x/
if Conjecture=True then
/* Transformation to F(t) */
L=11,1,...,1] // L length = number of ueV’
F=ConstructDeltaPoly(F,V’,L)
/* Check for zero solutions of d-variables (main computation) x/
foru e V' do
/* Check if zero evaluation has solutions using ideal of transformed face
system */

if F(t, {tu,1, = 0}) has a solution then
| return (False)
Ise if Conjecture=False then
for all choices of 1 out of d variables in every )?u, u#1do
L=11,(,uecV\{1})] // always same choice for X,
F=ConstructDeltaPoly(F,V’,L)
/* Check for zero solutions of d-variables (main computation) . x/
foru eV’ do
L if F(t, {t,,, = 0}) has a solution then
| return (False)

(]

return (True)
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prism) in C? and S? (see Figure 3.3). The embedding number for this graph in R? is 24 [13]
and on S? itis 32 (see Chapter 5). They both coincide with the generic number of complex
solutions of the associated algebraic system. The m-Bézout bound for these systems is
32, hence it is inexact in the C? case. This shall be explained by the fact that the sphere
equations in C? have face systems of non-coordinate normals with toric roots.

1@ 6

3 5
Figure 3.3: Desargues graph (double prism).

The system of the sphere equations (with vertices 1 and 2 fixed) is a 12 x 12 well-
constrained system, but we can easily eliminate the linear equations obtaining an 8 by 8
well-constrained system. Subsequently, we can also fix vertex 3 up to reflection about the
edge (1, 2), obtaining finally a system of 6 polynomials in the variables { x4, y4, x5, ys, Ts, Y } -

If we apply the transformation of variables mentioned above, we can construct a system
of polynomials in variables {t,,t42,t51,ts 2,1 te, L, te 2} such that evaluating t41,t51 Of tg,
to zero corresponds to the face systems of 64, 55 or 56 respectively. This is one possible
choice of -variables to construct I (t). Solving these 3 different systems for every 5, with
Grébner basis in Maple we find the existence of solutions in C2, indicating that the number
of complex solutions is strictly smaller than the m-Bézout bound.

In order to get nonzero solutions in C?, we need to evaluate to zero all t4,,t5 1, ts 1 variables,
implying that the normal direction for which Bernstein’s second theorem shows mixed vol-
ume to be inexact is (—1,—1,—1,—1,—1,—1). This is a normal of a 3-dimensional face,
where the face dimension is obtained as 6-3. The normal equals the sum of 3 facet nor-
mals.

In the spherical case, no solutions exist, not only for the first choice of F(t), but also for
all the other possible ones (see Algorithm 2), suggesting that the bound is tight, so the
number of spherical embeddings is 32 and equals the m-Bézout bound.

Example 6 The Jackson-Owen graph has the form of a cube with an additional edge
adjacent to two antisymmetric vertices (see Figure 3.4). This graph is the smallest known
case that has fewer real than complex embeddings, in R? and C? respectively [41]. The
m-Bézout bound up to the fixed edge shown in the figure is 192, while the number of
embeddings in C? is 90. This shall be explained by a face system of mixed normals that
has toric roots.

The system of the sphere equations is 18 x 18, reduced to 13 x 13 after linear elimination.
The set of variables is {3, ys, 24, Y4, T5, Y5, T6, Yo, L7, Y7, T8, Ys, S8}
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Figure 3.4: The Jackson-Owen graph

We apply the transformation of variables, resulting to a new system of polynomials in vari-
ables {t3717 t3’2, t471, t472, t5’1, t5727 t671, t672, t7717 t7’2, t&l, tgyg, t&g}. As in the case of Desargues’
graph, the evaluation of t31,ts1,151,%61,t7,1,ts1 t0 zero corresponds to the face systems

of 33, 347 35, 36, 37, 38 respectively.

We found a solution following zero evaluation of all s-variables of I (t) andts 5. The normal
direction is (—1,-1,—1,-1,—-1,-1,—-1,—1,-1,—1,—1,—1,0) € R'®. This is an example
for the mixed normals case, the normal being a sum of one e; and all 6 §,,’s.

Another way to apply our method is the computation of a suitable resultant matrix for
a given over-constrained system, which follows from evaluating some variable to zero.
It is obvious that if the system has any solutions, the rank of the resultant matrix with
sufficiently generic entries is strictly smaller than its size, otherwise it has full rank,
assuming we have a determinantal resultant matrix. We have used multires module
for Maple [15] to examine the existence of solutions, repeating the previous results.
However, these tools seem to be slower than other techniques which directly compute
the embedding number.

In all our experimental computations, the existence of zero solutions of only one choice of
F(t) (and not all d'VI=4-1) suffices to verify Bernstein’s conditions. Therefore, we state the
following conjecture:

Conjecture 1 The conditions of Bernstein’s second theorem for the system of the sphere
equations F are satisfied if and only if the system F(t) has solutions for every zero eval-
uation of the §-variables.

If Conjecture 1 holds, then one only needs to check |1/|—d face systems that correspond to

the zero evaluations of F'(t) for each one of the 8-variables, instead of the (|V|—d)-d!V1-4-
face systems indicated in Theorem 6. Algorithm 2 includes the option to consider the
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Conjecture 1 to be either True or False. The first option takes into consideration only
one choice of §-variables, while in the second one all different choices of §-variables are
checked, as in Theorem 6.
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4. UPPER BOUNDS ON THE EMBEDDING NUMBER OF MINIMALLY
RIGID GRAPHS

In this Chapter we present methods that improve the upper bound of the embedding num-
ber for minimally rigid graphs. Unless specified alternatively, we consider the case of
minimally rigid graphs in C¢ that have at least one complete subgraph K, for the com-
putation of the bounds. The asymptotic order of these bounds applies in the absence of
such subgraph as well.

In Section 4.1 we use existing bounds that improve the upper bounds for d > 5 and planar
Geiringer graphs. Subsequently, in Section 4.2 we develop a method that bounds the
number of outdegree constrained orientations and leads to better bounds in all dimen-
sions. We summarize the asymptotic upper bounds of this Chapter in Table 4.1, juxtapos-
ing the classic Bézout bound to the results of our methods.

The results of Section 4.1 have been published in [5], while the results of Section 4.2 have
been accepted for publication [7].

Table 4.1: Power basis of asymptotic upper bounds for minimally rigid graphs in C?: the
first line contains the bounds derived in Section 4.1 applying Bregman-Minc bound (B-M),
while the second those presented in Section 4.2 (pseu.), and Béz. corresponds to the
trivial Bézout bound.

d 2 3 4 5 6 7 8 9

B-M | 48990 8.9442 16.733 31.749 60.795 117.17 226.89 441
pseu. | 3.7764 6.8399 12.686 23.899 45.533 87.469 168.90 327.45
Bez. |4 8 16 32 64 128 256 512

4.1 Application of existing bounds on permanents and orientations

In this Section we make use of both methods presented in Chapter 3 for the m-Bézout
computation. Applying directly bounds on (0, 1)—matrix permanents (the Brégman-Minc
bound) and planar graph orientations, we improve upon the Bézout bound of the embed-
ding number for certain classes of minimally rigid graphs.

First, we make use of the following proposition on the asymptotic bounds for the orienta-
tions of planar graphs in order to improve the asymptotic upper bound of planar Geiringer
graphs, which are the only fully characterized class of minimally rigid graphs in 3d space,
and hence of special interest.
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Proposition 1 (Felsner and Zickfeld [30]) The number of outdegree constrained orien-
tations of a planar graph is bounded from above by

olVI— H <2deg(u)+1 . (Oiiige(g“(%)) (4.1)

uel

where T is an independent set of the graph, deg(u) and outdeg(u) are respectively the
degree and the outdegree of a vertex u. Furthermore, in the case of outdeg(u) = 3 this
bound asymptoticaly behaves as 3.5565!V1.

Given the relation between m-Bézout bounds and graph orientations (see Theorem 3),
this proposition leads to the following improvement upon the asymptotic upper bound for
the number of embeddings of the subclass of planar Geiringer graphs.

Theorem 7 Planar Geiringer graphs have at most O (7.1131'V1) embeddings.

Notice that planar Geiringer graphs are edge graphs of simplicial polyhedra [33], so there
are always triangle subgraphs for them.

We also employ the permanent to obtain asymptotic improvement upon Bézout’s asymp-
totic bound for d > 5 by using the following bound.

Proposition 2 (Brégman [14], Minc [54]) For a (0, 1)-permanent A of dimension m, it
holds:

per(4) < [T ()" “2)

J=1
where v; is the sum of the entries in the j-th column (or the j-th row).

This leads to the following result.
Theorem 8 For d > 5 the Bézout bound is strictly larger than the m-Bézout bound given

by Equation (3.5) for any fixed K.

Given a fixed dimension d, the asymptotic upper bound derived from the Brégman-Minc

inequality is
Vi
(2d)!
o((-2m)")

Proof: In this proof Bey(|V|) and mBey(|V]) denote the Bézout and the maximal m-
Bézout bound of minimally rigid graphs in C? with |V| vertices respectively. Since the
number of edge equations for minimally rigid graphs with V| vertices is |V| - d — d?, the
Bézout bound is

Bey(|V]) = 2VId=¢,
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The sum of columns for the permanent that computes the m-Bézout bound is v; = d for
the edges that include one fixed vertex and one non-fixed vertex and v; = 2d for these that
include two non-fixed vertices. We denote these sets of edges £ and E,, ;. respectively.
Applying the Bréegman-Minc bound and Equation (3.5) we get

Vi—d Er. By, |V]—d
mbBealV1) < (%) 'H(d!)”d [T @t < (2-—”;!@!) . (43)

Combining these bounds we get a sufficient condition for Be,(|V|) > mBe4(|V]):

V|~d
2 2d)!
olVld=d® (2- (d| ) ) & 2272 (d1)? > (2d)!

Robbins’ bound on Stirling’s approximation [59] yields the following:

V2o - dB2 L emd el <l < o T2 e B

1
where R, = — and R_ . We now derive the following inequalities:

12d T 12d+1
92d—2 d)? > 9242 9. 2+l ,—2d  2R_
S /2 - Q20H1/2 | g2d+1/2 | —2d Ry /2 < 24!

that lead to a sufficient condition for Be,(|V'|) > mBe,(|V]) to hold:

4
\/a > T . €R+/2—2R_7 (4_4)

™

which is true for every integer d > 5.

Additionally, inequality (4.3) leads directly to the asymptotic bound

\4
mB€d<V)€O(<2- (d%d)!> ) (4.5)

for any given d. O

Obviously the asymptotic bound works also in the absence of K, since in the worst case
there will be d — 2 additional non fixed edges, so the exponent in Inequality 4.3 would be
|V | — 2 and the asymptotic order would be the same (See Appendix B).

4.2 A new method to reduce the upper bounds of the embedding number

In this section we develop a method to improve the upper bound on the embedding num-
ber of minimally rigid graphs. We introduce a graph structure that inherits some of the
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properties of minimally rigid graphs, which we call pseudographs. Then, we apply an iter-
ative method that eliminates a vertex or a path in each step, while maintaining some basic
properties of the pseudograph. This is used initially to bound the number of orientations
for connected pseudographs with fixed outdegree equal to 2, since these orientations are
related with the m-Bézout bound of sphere equations for Laman graphs improving the ex-
isting upper bounds. In the sequel, we generalize this method for minimally rigid graphs
in bigger dimensions. Finally, we derive general asymptotic formulas for our method.

4.2.1 Pseudographs and orientations with fixed outdegree 2.

We define the following graphical structure generalizing that of a graph.

Definition 3 A pseudograph £L(V, E, H) is a collection, where V is a set of vertices, E is
a set of edges called normal edges, each incident to two vertices in E, and H is a set
of edges called hanging edges, each with a single endpoint in U and directed out of the
vertex'. Moreover, the graph G(V, E) is called normal subgraph. If the normal subgraph
is connected, then L is a connected pseudograph.

Let the total degree p of a vertex v denote the total number of (normal and hanging) edges
incident to v. Let h denote the hanging degree of v, which is the number of hanging edges
incident to v, while the number of normal edges incident to v is its normal degree and
equals p — h. The extended degree of v is the pair (p, h).

Figure 4.1: A pseudograph with 6 vertices. The extended degrees are the following:
(3,1) for vertices 1,2, 4,5, (3,0) for vertex 6, and (4, 1) for vertex 3.

We shall consider orientations of a pseudograph £ defined by specifying a direction on
every normal edge, while by definition hanging edges are directed out of their unique
vertex. Pseudograph orientations refer to the orientations of pseudographs. We count
pseudograph orientations with fixed outdegree 2 for all vertices: we call these orientations
valid. Clearly, if a vertex has a hanging edge, one more edge should be directed out of it,
while if it has hanging degree 2, all its normal edges should be in-directed. A pseudograph

"Hanging edges are reminiscent of "directed loops” in hypergraphs [65]; "half-edges” also have a single
endpoint.
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containing a vertex with extended degree (p, h), such that p < 2 or o > 2, has no valid
orientations.

We now prove the following necessary condition for the existence of a valid orientation of
a pseudograph (which resembles Maxwell’s count).

Proposition 3 Let L(V, E, H) be a pseudograph with a valid orientation. Then |H|+ |E| =
2|V|.

Proof: |H|+ |E|is the sum of outdegrees over all edges; 2|V | equals the sum of outde-
grees over vertices. O

4.2.2 Iterative elimination

Now we present the basic graphical operations used to reduce the size of a connected
pseudograph. We specify an iterative elimination process comprised of a sequence of
steps, with the requirement that the pseudograph stays connected. We shall distinguish
two types of steps, depending on the extended degree of the vertex, or of the vertex path to
be eliminated. The process terminates when the current pseudograph’s normal subgraph
is a tree; see details in Proposition 6.

°p
) -
Yo y <
A 7
Ky
(a) (b)

Figure 4.2: Elimination of a vertex with extended degree (a) (3,0), encountered in vertex
elimination, or (b) (3,1), encountered in path elimination. In (a) there are 3 choices for
eliminating edges, resulting in 3 different pseudographs; in (b) there are 2 choices.

Let us detail the two types of elimination steps.

The first type eliminates a single vertex v with extended degree other than (3,1). Let
L(U, F,H) be a pseudograph: We choose to eliminate two edges incident to v (Fig-
ure 4.2a), thus maintaining the total edge count of Proposition 3. If v is incident to h < 2
hanging edges, these must be eliminated. Since the outdegree of v equals 2 in a valid
orientation of £, there are 2 — h < 2 normal edges incident to v that get eliminated. All
edges that are not eliminated become hanging in the new pseudograph, and correspond
to edges directed towards v for a valid orientation of the initial pseudograph.
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>

P e -

Figure 4.3: Two choices after eliminating a (3, 1)-path of length ¢ = 3 respecting the edge
count; ¢ — 1 hanging edges get eliminated.

The second type eliminates a path of ¢ > 2 consecutive vertices, all of extended degree
(3,1) (Figure 4.3); we avoid single (3,1) vertex elimination because that would yield a
looser bound. Edges are eliminated similarly as before, namely we eliminate the ¢ hang-
ing edges (one per vertex) and another ¢ normal edges incident to path vertices, thus
eliminating 2¢ edges. After eliminating the path, there are two choices for the normal edge
that remains; in either case, it becomes hanging (Figure 4.2).

Now, we introduce two parameters for controlling the elimination process, namely the cost
and the hanging edge equilibrium.

In every elimination step, there are several ways to choose the edges that remain in the
new pseudograph. The number of choices corresponds to different pseudographs with
valid orientations; their number is defined to be the cost of the step.

Remark 1 The product of the costs of all steps in the elimination process bounds the
number of valid orientations of the initial pseudograph. In other words, the cost expresses
the quotient of the valid orientations of the original graph over the maximum number of
valid orientations of the resulting graphs.

In the proposition that follows, we show that, for vertex elimination, the cost is determined
by the extended degree of the eliminated vertex, while for path elimination, the cost always
equals 2.

Another important quantity in the elimination is the hanging edge equilibrium, defined as
the difference between hanging edges in the resulting pseudograph and the original one.

Proposition 4 Letv be a vertex with extended degree (p, h), then the cost and the hanging
edge equilibrium of the elimination step are given by

—h
<§—h>’ and p—h—2

respectively. In the case of path elimination, for a path of length ¢, the cost is 2 and the
hanging edge equilibrium is 1 — /.
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Proof: Recall that at vertex elimination, two edges are eliminated and, when there are
hanging edges, these are eliminated first. So 2 — h edges are left to be eliminated among
the p — h normal edges of the vertex, which yields the cost of this step. Since 2 — h edges
were eliminated, the number of the new hanging edges is p — h — (2 — h), while the initial
number of hanging edges was h. Their difference yields p — h — 2.

Let us view path elimination as a sequence of vertex eliminations. Then, eliminating the
first vertex has cost 2. Each following vertex now has degree (2,1) or (3,2), hence its
elimination cost is 1. Therefore the overall cost is 2 because it equals the product of all
costs. As for the hanging edge equilibrium, the path contains ¢ hanging edges and, after
the elimination step, one remains. O

If the iterative process continued up to the exhaustion of vertices and, moreover, all cases
were as in Figure 4.2(a), there would be O(3V!) orientations which, by Theorem 3, yields
a bound of O(6!"!) on Laman embeddings. However, our process is defined to terminate
earlier; see Proposition 6.

4.2.3 Bounding the number of valid orientations

In this subsection, by applying the process described above, we bound the number of valid
orientations of connected pseudographs. In the sequel, n denotes the number of vertices
of a connected pseudograph and k the total number of its hanging edges.

We first prove that there is always an elimination process that keeps the pseudograph
connected. For this, we recall the definition of a block-cut tree [37, Chapter 4]. Recall that
a cut-vertex is such that its removal increases the number of connected components in
the graph and a biconnected component is a maximal subgraph with no cut vertices 2.

Definition 4 (Harary [37]) Let G(V, E) be any graph. Let also bc(G) be the graph such
that:

» This graph has a vertex for each biconnected component, and for each cut-vertex
of G.

» There is an edge in bc(G) for each pair of a biconnected component in G and a
cut-vertex that belongs to that block.

If G is connected, then be(G) is a tree and is called block-cut tree of G.

Following Definitions 3 and 4, block-cut trees can be used in the case of normal subgraph
G(V, E) of a connected pseudograph £(V, E, H) (Figure 4.4).

We can now prove the following statement, which allows us to use the bound in Expres-
sion (4.7).

2|n [37, Ch. 3] these subgraphs are called blocks; "biconnected component” is used equivalently, e.g.
[43, Ch. 8].
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L(V,E, H) be(G)

Figure 4.4: A pseudograph L(V,E, H) and the block-cut tree of its normal subgraph
G(V, E).

Proposition 5 Given a connected pseudograph L(V, E, H), there is always an elimination
process where, in each step, we either eliminate a vertex with extended degree other than
(3,1), or we eliminate a (3, 1)-path with length at least 2, so that the resulting pseudograph
remains connected.

Proof: |If there is a non-cut vertex with degree other than (3, 1), then it can be eliminated
and the proposition holds.

We now show that, if all vertices in £ with degree other than (3, 1) are cut-vertices, then
there are at least two adjacent (3, 1)-vertices that can be eliminated keeping the pseudo-
graph connected (an example is shown in Figure 4.4). Since L is connected, its normal
subgraph G is connected as well, and there exist non-cut vertices in G; their extended
degree must equal (3, 1).

From the definition of block-cut trees, the leaves of bc(G) represent biconnected compo-
nentsin G. Inthese components, all vertices but one are non-cut vertices, and their normal
degree is 2, since their extended degree is (3, 1). If such biconnected component had only
one non-cut vertex, then this vertex would have normal degree 1. This means that there
are at least two such vertices in a biconnected component of £ and, since their normal de-
gree equals 2, there exists a path containing ¢ > 2 such vertices, denoted (vy, ..., v,). This
path can be eliminated and the resulting pseudograph remains connected; more precisely,
we may eliminate successively each v;, thus making vertex v, ,; have normal degree 1.

This completes the proof. O

Concerning the termination condition of our process, we establish the following for a con-
nected pseudograph whose normal subgraph is a tree.

Proposition 6 Let L(V, E, H) be a connected pseudograph such that G(V, E) is a tree.
Then

1. The number of valid orientations for L is either 1 or 0;

2. If £ has a valid orientation, then k = n + 1;
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wheren = |V| and k = |H|.

Proof: Since G(V, E) is a tree, we can always eliminate a vertex of normal degree 1 from
our pseudograph. This means that p — A = 1, so using the formulas of Proposition 4 it
is obvious that, if there is a valid orientation, then this is unique. If it does have a valid
orientation, then from the total edge count in Proposition 3, we deduce |E| + k = 2 - n.
Since G is a tree, we substitute |E| = n — 1 in this formula, concluding the proof. O

Let P(n, k) denote the maximal number of valid orientations for all connected pseudo-
graphs with n vertices and k£ hanging edges. Let us recall the Brégman-Minc bound and
the connection between permanents, constrained orientations, and the bound of Laman
graphs as discussed in Chapter 3 and in [5], where it was established that:

P(n, k) < (2D)F/2 (4)Er=R/4 . (2)7" ~ 2.4495™ - 0.6389". (4.6)
We therefore seek upper bound estimates of the form
P(n,k) < (e (4.7)

forreal (,e >0and k,n > 1.

Proposition 6 implies P(n,n + 1) = 1 for every n > 1; this is the base case in Theorem 9.
Proposition 5 precludes that multiple connected components be formed, thus leading to
the theorem’s inductive proof. Additionally, Propositions 3 and 6 establish that £ < n + 1
for any connected pseudograph with at least one valid orientation. Indeed, & > n + 1
implies the normal subgraph has < n — 1 edges so cannot be connected.

We modify the form of the bound in Inequality (4.7) to P(n, k) < (" e*~1, with (,e > 1. The
modification is justified in the proof below.

Theorem 9 The number of valid orientations for a connected pseudograph is bounded
above by
P(n7 k) < Cn : 5k717

where ( = 24'/% and ¢ = 1871/5,

Proof: \We prove the statement by induction on n, k. The statement is true for the base
cases n = 1, k = 2, which a pseudograph consisting of exactly one (2, 2) vertex, and also
for trees with £ = n + 1, since P(n,n + 1) = 1 (Proposition 6), because (¢ > 1. In these
cases the pseudograph has 1 or 0 orientations, representing a termination condition. If
the exponent of « were k, the statement would fail for small trees.

From Propositions 3 and 6, if a connected pseudograph has k£ > n hanging edges, either
it is a tree, or it has no valid orientations. So we assume pseudograph £, with n > 1
vertices, has k£ < n hanging edges. Suppose it has a vertex v of extended degree (p, h),
such that:
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1. (p,h) # (3,1), and

2. elimination of v and its incident edges keeps the pseudograph connected.

Since the number of valid orientations of £ is bounded by the cost of the elimination pro-
cess (Remark 1) and the hanging edge equilibrium is p — h — 2, the number of valid orien-
tations after eliminating this vertex is bounded by

p—nh
Pn-1 —h—2).
(b2))P=tbp-n-2

By the induction assumption, this is bounded by C(p, k) ("c*~!, where

oty = (2= 1o,

We now prove that C'(p,h) < 1,forp > 2> h > 0, and (p, h) # (3,1). Direct substitution
gives

p—h e _ 1/5
C’(p, h) = (2—h> (2h p—1 g2h 2p+3) / .

Note that:

¢ C(2,0) = 2475 < 1, C(3,0) = (9/16)'/° < 1, C(4,0) = 1, and the C(p,0) forp > 4
are decreasing with p as follows:

Cp+1,0) (
C(p,0)

L) e<l1, forp>4. (4.8)
p—1

« C(2,1) = (3/4)'° < 1,0(4,1) = (9/16)'/°> < 1, and the C(p, 1) for p > 4 are decreas-
ing with p as follows:

Clp+1,1)
Co1) (1

L) e<l1, forp>4. (4.9)
p—1

« C(3,2) = (3/4)/° < 1, and the C(p, 2) for p > 3 are strictly decreasing with p, as the
binomial factor equals the constant 1.

C'(2,2) is immaterial since (2,2) is a base case corresponding to a pseudograph with a
single vertex and £ > n.

An induction step is proven under the assumptions (i)—(ii). Incidentally, C'(3,1) =
(4/3)Y°> > 1, which is why we avoid eliminating this type of vertices in a vertex elimination
step.

If assumptions (i)—(ii) fail, we can eliminate a path of (3, 1)-vertices keeping the pseudo-
graph connected by Proposition 5.
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Let ¢/ > 2 denote the number of vertices in the eliminated path. Then, the number of
orientations of £ is bounded by

20P(n—k—(+1),

which, by induction, is bounded by

3 (£—2)/5
2Cnf€€kf€ — (Z) Cngkfl S Cngkfl'

The bound is proven. O

4.2.4 A new upper bound on the embedding humber of Laman graphs

This subsection combines the above discussion so as to establish a new upper bound on
the number of embeddings for Laman graphs.

Let G(V, E) be a Laman graph and a fixed edge e = (vy,v5) € E. Letalso L. (V',E', H)
be a collection such that V' = V\{vy,u}, E' = {e’ € E :vy,v, ¢ €'} and H is the set of all
edges incident to one fixed vertex and one non fixed-vertex. Then L . is a pseudograph
that may contain one or multiple connected components; in Figure 4.5, this construction
leads to a pseudograph with two connected components. Remark that the number of
vertices n of L . is related to the number of vertices of G by n = |V| — 2.

>~ - <>

Figure 4.5: After removing a fixed edge (vertical dashed blue) from a Laman graph, one
gets a pseudograph with 2 connected components.

A different choice of a fixed edge may result in different pseudographs, for a given Laman
graph, while different Laman graphs may result in the same pseudograph, see Figure 4.6.
This happens because any pseudograph representation lacks the information on connec-
tions with specific vertices of the fixed edge.

From the construction of L . it follows that, when it is connected, its number of valid
orientations equals that of its constrained orientations defined in Theorem 3. This bound
is always positive, since it corresponds to well-constrained algebraic systems. If L. . has
p > 1 connected components £,,..., L,, then the total number of valid orientations of
L . equals the product of valid orientations per connected component £,. This leads to
the following corollary, which distinguishes components with one vertex in order to exploit
Maxwell’s count.

Corollary 5 Let G(V,E) be a Laman graph and L. constructed as described above.
Let 1/ be the number of connected components of L . with more than one vertex, and
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(@) (b)

Figure 4.6: (a) Two Laman graphs, Desargues’ and K s, both resulting in the same
pseudograph for some fixed edge. (b) Choosing a different fixed edge for Desargues’
graph results in a different pseudograph.

n the number of its vertices. Then, the number of constrained orientations, defined in
Theorem 3, is bounded above by

oqn/5 . 18~ (K =1)/5

9

where k' is the total number of hanging edges in the components of L . with more than
one vertex.

Proof: Recall that n = |V| — 2. Let ny,ny...n, and ki, k; ...k, be respectively the
numbers of vertices and of hanging edges per connected component with strictly more

@ w
than one vertex. The bound follows from Theorem 9, since n > > n;and &' = > k;. O
=1 =1

Lemma 6 Let G(V, E) be a Laman graph, and L., k' and 1/ as above. Then k' > 3./.

Proof: Let L,(V;, E;, H;) be a connected component of L. with k; hanging edges. The
normal subgraph G;(V;, E;) is a subgraph of a Laman graph. If |V;| > 2, by Maxwell’s count
we have |E;| <2 |V;| — 3 therefore k; > 3. O

Now we are ready to prove the new upper bound for Laman graphs.

Theorem 10 Let G(V, E) be a Laman graph. Then the number of its embeddings in C?
(and S?) is bounded from above by
18727 (4 (3/4)Y°)

V-2

O (3.7764") .

Proof: Applying £’ > 3,/ from Lemma 6 in Corollary 5, the number of valid orientations
is bounded by 24™/5 . 182/5 for n > 2, since either the number of connected components
with more than one orientation is 1/ > 1, or there is a single valid orientation. By doubling
this bound and applying Theorem 3, the upper bound follows. For n = 1, Lemma 6 does
not apply; there is trivially one orientation and the bound is 2. O
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4.2.5 Geiringer graphs and higher dimensions

This subsection extends the method of the previous section to orientations of connected
pseudographs with fixed outdegree d > 3, and subsequently establishes new upper
bounds on the embedding number of minimally rigid graphs in C? (and S9), for d > 3.

Let P,(n, k) denote the maximal number of orientations with fixed outdegree d for con-
nected pseudographs with n vertices and k hanging edges. As before, we seek bounds
of the form

Pd(n, ]C) S C:ll . 55_1

for each d. For a fixed outdegree d > 3, the elimination steps consist of:

+ Eliminating single vertices of extended degree (p,h), with p > d > h > 0, and
—h
(p,h) # (d+1,d — 1); then the number of valid orientations is bounded by <Z B h) :
Pin—1,k+p—h—d).

« Eliminating paths of length ¢ > 2 with (d+ 1, d — 1)-vertices; then the number of valid
orientations is bounded by 2 - Py(n — (. k — (d — 1){ + 1).

If we replace (3, 1)-paths in Proposition 5 by (d + 1,d — 1)-paths, we have an analogous
result, since (d + 1,d — 1)-vertices have normal degree 2. This implies that there is al-
ways an elimination process preserving connectivity. Moreover, the necessary count in
Proposition 3 is generalized to |E| + |H| = d- |V| for every pseudograph L(V, E, H) with at
least one orientation with fixed outdegree d; such orientations extend the notion of validity
beyond d = 2.

An immediate consequence is that, if a connected pseudograph has a tree as normal
subgraph and also has an orientation with fixed outdegree d, then it holds that (¢ —1)-n =
k — 1 which is our base case, generalizing Proposition 6.

Figure 4.7: Elimination of a (4,2)-path (with length ¢ = 2) in the case of orientations with
fixed outdegree 3. This elimination is analogous to that in Figure 4.3.

In the following theorem we establish an upper bound on P;. If d = 2, then (;,¢, are
evaluated as in Theorem 9. Here, elimination of single vertices of extended degree (d, d)
and (d + 1,d — 1) are excluded from our analysis. The first case because it is one of the
base cases, as a pseudograph with exactly one vertex, and the latter because only path
elimination with length ¢ > 2 is considered for these vertices.
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Theorem 11 The maximal number of orientations with fixed outdegree d for a connected
pseudograph is bounded from above by

Pd(n, k‘) S Cg . 85_1

for the following choices of (; and ¢,:

2d—3 €% —3
_ p—d (P p
Ca= max <2 <d> ) : (4.10)

ey = (2 (Z)_2> -3 (4.11)

for the value of p that maximizes (.

and

Proof: The single vertex elimination step and the path elimination step result in the fol-
lowing inequalities:

_ p—nh
Caebthr > (d_ h) (4.12)
forall (p,h) € {(d+1,d—1),(d,d)} withp > d > h, and
(el =2 (4.13)

for all ¢ > 2. In the second case the equalities are achieved with (; = 2971, ¢, = 1/2 for all
(. The same ({4, cq)-point gives equality in (4.12) for (p,d) € {(d,d — 1),(d + 1,d)}.

By taking the logarithm, (4.12) and (4.13) become linear in the (In(,, Ine,)-plane. The
corresponding lines have negative slope and contain point ((d — 1)In2,—1In2); the one
defined by (4.13) for ¢ = 2 is closest to the vertical. So the corresponding inequalities are
dominated for ¢; < 247! by (4.13) with ¢ = 2.

Our key observation is that (4.12) for a relevant pair (p, h) is satisfied if:

1. The same inequality is satisfied for the shifted p — p+ 1, h — h — 1, giving

d+h—p—2 - p—h+2
Cacq —(d—h+2 '

2. Inequality (4.13) is satisfied for ¢ = 2.

This implies that it is enough to consider (4.12) with h = 0. Considering (ii) with / = 2 and
a particular case of (4.12) with h = 0, the two inequalities can be raised to non-negative
powers and combined so as to eliminate ¢,4, with the conclusion that

<2p—3 > op—d p 23
d = d .
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A permissible equality is achieved together with Equality (4.11). The maximization in
Equality (4.10) through p > d follows.

It remains to prove the key observation. Inequalities (i)—(ii) can be raised to positive powers
and combined, with the conclusion that

dth—p -, p—h+2 2p—2ht1 22p_§h .
Gaa "2 (d —h+1 o

Positivity fails for (p, h) € {(d,d), (d,d—1),(d+1,d)}, but these cases are covered already.
Comparison with Inequality (4.12) shows that we need U(p — h,d — h) < 1, where

U, ) = 411 (@4 (<X(;i/}|——1i_)(1>)<(_¢|j;l))2x_3-

The inequality has to be shown for integer x > ¢ > 0 such that (y,v) ¢
{(2,1),(0,0), (1,0), (1, 1)}, which correspond respectively to vertices (d+1,d—1), (d, d), (d+
1,d), (d,d —1). For fixed ¢, the maximum is achieved at x = 2¢, since U(x, v) increases.
This follows from

Ux+L9y) _ (¢ +1)? (1_ 1 )(1_ X —2¢+1 )2X
U(x, ) X—v+1Dx—v+2) (x +2)? (Xx+3)x—v+1)) ~

This ratio is < 1 for y > 2¢, and (by calculus on the product of the first and middle terms)
itis > 1 for y < 2.

For this pair of values, we have

U2, 1) = 2f[1 (1 - ﬁ)

Evidently, the y-maximum U (21, ¢) is a decreasing function of 1), and U (4, 2) = 3?/25000 <
1. For ¢ < 2, we observe that U(y,1) < U(3,1) = 37/4000 < 1 and U(x,0) < U(1,0) =
3/4 < 1fory > 2. O

We now describe a construction similar to Section 4.2.4, connecting Theorem 3 to the
orientations of pseudographs with fixed outdegree d and n > 1. Let G(V, E') be a minimally
rigid graph in C? and let K, be one of its subgraphs. Removing K, as in the case of d = 2,
we have a pseudograph, denoted L¢ «,(V', E', H).

Applying Maxwell’s condition to the edge count for the normal subgraphs of the pseu-
dographs, we obtain k; > (d‘gl) for every connected component of L x, with at least d
vertices.

If n, < d— 1 we examine 2 different cases: (a) n; = 1 or 2 implying that the connected
component has trivially one orientation, since the normal subgraph is either a single vertex,
or a tree with 2 vertices. The number of hanging edges is k; = 2d — 1, in order to respect
the total edge count. (b) n; = 3, which implies d > 4, then there should be < 3 normal
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edges and > d — 2 hanging edges, so k; > 3d — 3. By induction, for the i-th vertex, at least
i — 1 hanging edges shall be added.

Hence, if L k, has 1’ connected components with more than 2 vertices and a total of £’
hanging edges, then k' > 3d — 3 for d > 3.

An immediate consequence is the following theorem that generalizes Theorem 10 by ap-
plying Theorem 3.

Theorem 12 Let G(V, E) be a minimally rigid graph in C? (and S?) that contains a K.
Then the number of its embeddings is bounded from above by 372 . (2. ¢,)IVI=4 = O((2 -
¢!V, In the case of Geiringer graphs that contain a triangle this is

V-3

(2-10%) " (8- (5/8)"/?) 0 (6.8399"1) .

The asymptotic bound works also for minimally rigid graphs in C? that do not contain a
K,. In that case, we may remove a maximal clique with &’ > 2 vertices in order to obtain
a pseudograph. Then, the exponent of (, will never exceed |V | — 2 (see Appendix B for
details).

To demonstrate the improvement achieved by our this new bound on the embedding num-
ber of rigid graphs, namely O ((2@)""), we refer the reader to Table 4.1 which compares
the values of 2(, to the power basis of Bézout bound and the bound derived in Section 4.1.
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5. ON THE MAXIMAL NUMBER OF REAL EMBEDDINGS IN R? , R?
AND 52

In this chapter we deal with the problem of finding edge length parameters that maximize
the real embeddings of Laman and Geiringer graphs. We use both algebraic formulations
presented in Section 2.2 and we use the complex embedding number as an upper bound.

In Section 5.1 we present the sampling methods we use in order to increase the number of
real embeddings. Besides standard sampling methods, an algorithm inspired by coupler
curves has been developed by J.Legersky in order to search efficiently huge parametric
spaces combining local and global sampling in the case of Geiringer graphs.

The main results of our methods are presented in Section 5.2. These include a full char-
acterization of graphs with a small number of vertices up to their real embedding number.
More precisely we give the maximal numbers of real embeddings of all 6-vertex and 7-
vertex Laman graphs in S? and R? respectively, as well as the maximal numbers of real
embeddings of all 7-vertex Geiringer graphs. We also specify parameters for selected
bigger graphs. These computations improve the existing lower bound on the maximal
number of real embeddings from 2.3003!"! to 2.3811VI for d = 2 and from 2.51984/V! to
2.63901V! for d = 3, while they establish 2.51984/V! as a lower bound for the number of
embeddings in S2.

The part of this Chapter related to Geiringer graphs appear in the conference proceedings
of ISSAC’18 [3]. The totality of the results have been published in [4].

5.1 Increasing the number of real embeddings

Our main goal throughout our experiments was to find the parameters that can maximize
the number of real embeddings of minimally rigid graphs. One open problem in rigidity
theory is whether the maximal number of real embeddings of a given graph can be the
same as the number of complex embeddings. Although there exists an 8-vertex Laman
graph for which it has been proven that 7,(G) < ¢2(G) [41], in most cases we consider the
number of complex embeddings as the upper bound we try to reach (see also Chapter 1).
In our research, we concentrate on the cases of graphs with the biggest number of com-
plex embeddings, among all other minimally rigid graphs with the same number of vertices.

Additionally to some standard sampling methods, we develop a new method that can in-
crease efficiently the number of real embeddings for certain Geiringer graphs. Our method
is inspired by coupler curves approach and uses Gy (the 7-vertex Geiringer graph with
the maximal number of embeddings) as a model. Taking advantage of our implementation
based on this technique, we increase lower bounds on r3(G) for many graphs and estab-
lish new asymptotic lower bounds on the maximal number of embeddings of Geiringer
graphs.
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5.1.1 Standard sampling methods

Finding initial configurations We applied different heuristics to find initial configura-
tions for our parameter sampling. First of all, we tried to compute the number of real
embeddings of totally random configurations. This resulted in finding maximal numbers of
real embeddings for graphs with c,(G) = 2IVI=4. For example, it took less than 20 minutes
to detect parameters that attain the maximum for all 8-vertex non-trivial ' Geiringer graphs

We also used almost degenerate locus as starting points. In order to increase r,(G) of
Laman graphs with maximal numbers of complex embeddings w.rt. a given number
of vertices, we chose lengths very close to the unit length. Similarly, in the case of
Geiringer graphs, we perturbed degenerate conformations. For example, in order to
find an initial point for G4s, we separated the edges into three sets with edge lengths
being the same in each of them: the ring edges of the 5-cycle, the top edges that
connect v; with the ring and the bottom edges that connect v; with the ring (see Fig-
ure 5.1). We subsequently found edge lengths that maximized the intervals imposed by
triangular and tetrangular inequalities up to scaling and we perturbed the resulting lengths.

Finally, we also used as starting points conformations of smaller graphs with maximal
numbers of embeddings. For instance, gluing v; and vg in G4 results in G45. Perturbing
a set of edge lengths A of G5 such that 73(G4s, A) = 48, we could get a starting point for
the sampling of G4 that would result in a big number of real embeddings.

Figure 5.1: Coinciding vertices v; and vg of G1g results in Gys.

Stochastic methods We have used stochastic methods for different graphs in order to
increase the number of embeddings. Our method uses a variant of the tools suggested in
[24]. We penalize the loss of real roots and the increase of the imaginary part of complex
solutions to decide if the resulted labeling constitutes a new starting point. This method
could increase the number of embeddings, but rarely attained the maximum.

'In the sense that their minimal vertex degree is > 3, thus no H1 move is used in the final step of their
construction and their embedding number cannot trivially deduced from a smaller graph. See Section 2.1
for details.
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Parametric searching with CAD method The methods described in the previous para-
graph are local methods. In order to search globally one parameter, we used Maple’s
subpackage RootFinding [Parametric] in Maple18. This package is an implementation of
Cylindrical Algebraic Decomposition principles for semi-algebraic sets. The input consists
of the equations and the inequalities of the system and the list of variables separating
them from parameters. The output is a cell decomposition of the space of parameters
according to the number of solutions of the semi-algebraic conditions.

In our problem, we were able to take advantage of this implementation using Cayley-
Menger determinants of 7-vertex graphs and searching for only one parameter (See Sec-
tion 2.2.2). Sphere equations failed to give any result, while computational constraints did
not let us search two or more parameters simultaneously.

This sampling was also used to increase the number of spherical and planar embeddings
of Laman graphs with 7 vertices and the number of real embeddings of G4. In some
situations it was even possible to attend the maximal number of embeddings for a given
graph.

5.1.2 Coupler curve

The previous methods fail to attain tight bounds for Geiringer graphs with maximal
number of embeddings efficiently. For example, using CAD, we could find 28 real
embeddings for G4, but it seems impossible to increase this number by local searching
in all parameters or global sampling only one of them. Thus, we developed a new method
that samples only subset of edge lengths in every iteration. This procedure is motivated
by visualization of coupler curves.

Let G(V, E) be a minimally rigid graph with a triangle and an edge (u,v’). If G' =
(V,E\ (u,u)) is obtained from G by removing the edge (u,«’), then the set of embed-
dings satisfying the constraints given by generic edge lengths and fixing the triangle is
1-dimensional. The projection of this curve to the coordinates of the vertex «' is a so
called coupler curve. The authors in [13] used this idea for proving that the Desargues (3-
prism) graph has 24 real embeddings in R%2. Namely, they found edge lengths such there
are 24 intersections of the coupler curve with a circle representing the removed edge. This
approach can be clearly extended into R?* — the number of embeddings of G is the same
as the number of intersection of the coupler curve of ' with the sphere centered at u with
aradius A, ... Now, we define specifically a coupler curve in R®.

Definition 5 Let G’ be a graph with edge lengths A = (\.)ccg,, With a triangle subgraph
K3 with vertex-set {vy, vy, v3} and a specific embedding K3(p) satisfying edge length con-
Straints. If the set Sgx(G’, A\, K3(p)) is one dimensional and v’ € V., then the set

Cor={(Tw,yuw, zw): (Tv, Yo, 20))veve. € Sr(G', X, K3(p))}

is called a coupler curve of v’ w.r.t. the fixed triangle K;(p).
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Assuming that a coupler curve is fixed, i.e., we have fixed lengths \ of the graph G’, we
can change the edge length A, ., so that the number of intersections of the coupler curve
C.w x with the sphere with the center at v and radius A, ./, namely, the number of real
embeddings of G, is maximal.

The following lemma shows that we can change three more edge lengths within one pa-
rameter family without changing the coupler curve. This one parameter family corresponds
to shifting the center of the sphere along a line.

Lemma 7 Let G(V, E) be a minimally rigid graph and u,v,w, q,u" be vertices of G such
that (¢,v), (v,w) € E and the neighbours of u in G are v,w,q and u’. Let G’ be the graph
given by (V. E") = (V,E \ {(u,u')}) with generic edge lengths A = (\.)ccr. Let Cy x be
the coupler curve of v’ w.r.t. the fixed triangle with vertices {v,u,w} and an embedding
Puuw- Let z, be the altitude of q in the fixed triangle with lengths given by X. Then the
set {y,: ((Tv, Yo', 200))wrevr € Sr(G', A, puuw)} has only one element y,,. If the parametric
edge lengths X (t) are given by

Npwo() = (@, v — 1, 0)[[, N, (1) = 1[(0, 4, — £, 2],
)\iw(t) =t, and \,(t) = A\, forall e € Eg/ \ {(u,v), (u,w), (u,q)},

then the coupler curve C, x ) of u' w.r.t. the fixed triangle is the same for all t € R,
namely, it is C,; x. Moreover, if (u',w) € E, then C,, » is a spherical curve.

Proof: All coupler curves in the proof are w.r.t. the triangle defined above. Fig-
ure 5.2 illustrates the statement. Since G is minimally rigid, the set Sg(G’, A, pyy.w) iS
1-dimensional. The coupler curve C, » of ¢ is a circle whose axis of symmetry is the y-axis.
Hence, the set {y,: ((zv, Y, 2v))wev: € Sr(G', X, puuw)} has indeed only one element.
The parametrized edge lengths X\'(t) are such that the position of v and w is the same for
all t. Moreover, the coupler curve C, ;) of ¢ is independent of t. Hence, the coupler curve
Cw (1) I8 independent of ¢, because the only vertices adjacent to v in G’ are ¢,v and w.
Thus, the positions of the other vertices are not affected by the position of w. O

Therefore, for every subgraph of G induced by vertices u, v, w, ¢, v’ such that deg(u) = 4
and (q,v), (v,w), (u,v), (u,w), (u, q), (u,u') € E, we have a 2-parametric family of lengths
A(t,t') such that the coupler curve C, x4 W.I.t. the fixed triangle vuw is independent of ¢
and t'. Recall that the parameter ¢’ represents the length of (u, '), which corresponds to
the radius of the sphere, and the parameter ¢ determines the lengths of (u, v), (u, w) and
(u,p). Now, we aim to find ¢’ and ¢ such that r3(G, A(t, ")) is maximized.

Let us clarify that whereas [13] were also changing the coupler curve, our approach is
different in the sense that the coupler curve is preserved within one step of our method,
while only the position and radius of the sphere corresponding to the removed edge are
changed in order to have as many intersections as possible. In the next step, we pick a
different edge to be removed.
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Figure 5.2: Since the lengths of \,, and )\, ., are changed accordingly to the length of
(u,v) (blued dashed edges), the coupler curves C, x ) and C, x) are independent of t.
The red dashed edge (u,v’) is removed from G.

In order to illustrate the method, let A be edge lengths of G4 given by

A1,2 = 1.99993774567597 , Ag,7 = 10.5360917228793 , A2,3 = 0.99961432208948 ,
A1,3 = 1.99476987780024 , A3z = 10.5363171636461 , Az.4 = 1.00368644488060 ,
A1,4 = 2.00343646098439 , A4,7 = 10.5357233031495 , As5 = 1.00153014850485,
A1,5 = 2.00289249524296 , As,7 = 10.5362736599978 , As,6 = 0.99572361653574 ,
A1,6 = 2.00013424746814 , Xe,7 = 10.5364788463527 , A2.6 = 1.00198771097407 .

Using Matplotlib by [39], our program [8] can plot the coupler curve of the vertex
ve of the graph Gus\(v2,v6) W.r.t. the fixed triangle v;vsv3, see Figure 5.3 for the out-
put. There are 28 embeddings for A. Following Lemma 7 for the subgraph given by
(u,v,w,q,u") = (ve,v3,v1,v7,v6), ON€ can find a position and radius of the sphere corre-
sponding to the removed edge (v, vs) such that there are 32 intersections. Such edge
lengths are obtained by taking A\; o> = 4.0534, Aoz = 11.1069, Ay = 3.8545, Ag 3 = 4.0519.

Instead of finding suitable parameters for the position and radius of the sphere by looking at
visualizations, we implemented a sampling procedure that tries to maximize the number
of intersections [8]. The inputs of the function sampleToGetMoreEmbd are starting edge
lengths A and vertices u, v, w, ¢, u’ satisfying the assumptions of Lemma 7, including the
extra requirement that («/, w) is an edge. In order to count the real embedding number,
we use the homotopy continuation package phcpy [68] for solving the algebraic systems.

5.2 Classification and Lower Bounds

A first upper bound on the number of embeddings is the mixed volume of systems of
sphere and Cayley-Menger varieties. This bound is crucial for homotopy continuation
system solving, as mentioned before. Let us remark that, in the case of sphere equations
the mixed volume is also equal to the m-Bézout bound almost always (see Section 3.2.1).
On the other hand, in the case of Cayley-Menger varieties these two bounds do not
always coincide. The second natural bound of graph realizations is the number of
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Figure 5.3: The coupler curve C,, » of G5 with the edge v,vs removed. The 28 red points
are intersections of C,, » with the sphere centered at v, with the edge lengths X, whereas
the 32 green ones are for the adjusted edge lengths (illustrated by blue dashed lines).

complex embeddings. The numbers of complex embeddings for all Laman graphs up to
12 vertices are known from [16], while the numbers of complex embeddings of Geiringer
graphs up to 10 vertices were computed by [35]. We computed the complex solutions
of spherical embeddings of Laman graphs up to 8 vertices. For the last part, we were
motivated by a remark of Josef Schicho, who had observed that the numbers of planar
and spherical solutions differ for the Desargues graph.

In order to find parameters that can maximize the number of real embeddings, we applied
the methods described in Section 5.1. Polynomial system solving during sampling was
accomplished mainly via phcpy. We consider an embedding being real if the absolute
value of the imaginary part of every coordinate is less than 107!°. The final results were
verified using Maple’s RootFinding [Isolate]. Our results ameliorate significantly what was
known about the bounds of real embeddings.

5.2.1 Embeddings of Laman Graphs on the plane

The numbers of realizations of all 6-vertex Laman graphs are known [13]. There are four
non-trivial Laman graphs (requiring an H2 move in the last step of their construction- see
Section 2.1) and the upper bound of real embeddings was computed in [24] for the graph
with the maximal number of complex embeddings. Using stochastic and parametric
methods, we were also able to maximize the number of embeddings for the other three
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7-vertex graph with not trivial number of embeddings, completing a full classification for
all 7-vertex Laman graphs according to their number of real embeddings [8].

L136

L344 L880

Figure 5.4: Laman graphs with maximal numbers of complex embeddings with 8 < |V | <
10. We have found tight bounds for |V| = 8 and |V | = 9.

For bigger graphs, we focused on the graphs with the maximal number of complex em-
beddings, see Figure 5.4. The following table summarizes the bound on r,(G) as well as
c2(G) and the mixed volume for the two different algebraic systems. Notice that it shows
that there exist edge lengths such that all embeddings of the 8-vertex graph L35 and of
the 9-vertex graph L3y, are real.

\4 8 9 10

L136 L344 L880
Mixed Volume of sphere eq. | 192 512 1536
Mixed Volume of distance eq. | 136 344 880
e (G) 136 344 880
ro(G) > 136 344 860*

Now, we provide edge lengths giving the numbers of real embeddings in the table.

L3 :
A2,3 = 1.000174985 ,
As5 = 1.000049999 ,
Ae,7 = 1.000244970 ,

L3y4q:
A3 = 1.00058,
Ago = 1.00042,
As.s = 1.00003,
Lgso :
Ao, = 1.000763,
s = 1.00075 ,

As.s = 10002946,
X0 = 1.0005141

A1,2 = 1.000109994 ,
A2,7 = 1.000379928 ,
As,7 = 1.000144989 ,
A6,8 = 1.000289958 ,

A14 = 1.00100,
Aa.5 = 1.00075,
A7 = 1.00096,
X6,z = 1.00086,

A1 = 1.0002169,
Aoz = 1.0000575,
Aig = 1.0008574,
As.10 = 1.0006778,
Xo.10 = 1.0003913.

91

A4 = 1.000334944 ,
As.6 = 1.000459894 ,
As.7 = 1.000389924 ,

A = 100046,
Aog = 1.00084,
Aso = 1.00015,
X6.s = 1.00008,

A1, = 1.0001366 ,
A2,10 = 1.0006078 ,
A1,9 = 1.000536,
Xe,7 = 1.0004699,

A1,8 = 1.000119993 ,
A3,8 = 1.000099995 ,
As,8 = 1.000354937,

Ao = 1.00057,
A3z = 1.00073,
As.7 = 1.00083,
As.o = 1.00039

A1.10 = 1.0004509
A3 = 1.0001763,
As.7 = 1.000491
Xe.s = 10002724,
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5.2.1.1 Spherical embeddings of Laman graphs

Maximal numbers of embeddings in S? have been not studied so far. We attempted to
find edge lengths such that the number of realizations was the same as the number of
complex solutions for graphs that do not have a trivial number of embeddings. We shall
observe again that the ¢;(G) varies for certain graphs from cg:(G).

We have found parameters such that all the embeddings are real for all non-trivial graphs
with 6 and the 7-vertex graphs with the maximal number of complex embeddings(they can
be found in [8]). The Desargues graph has the maximal number of embeddings among
6-vertex graphs, namely, it can have 32 realizations (instead of 24 on the plane). In the
7-vertex case, there are two non-trivial graphs with 64 realizations (instead of 48 and 56
respectively on the plane),see Figure 5.5. Let us indicate that 64 realizations can be also
achieved by the 3 graphs constructed by applying an H1 move on L., since H1 doubles
the number of embeddings. Observe that this contrasts the situation of the complex em-
beddings in the plane, since it is known that for |V| < 12 there is always a unique Laman
graph with the maximal number of complex embeddings on the plane among all Laman
graphs with the same number of vertices [16]. We have also found edge lengths that max-
imize the spherical embeddings of L35 (see Figure 5.4). It has 192 real spherical embed-
dings. We remark that there is again another 8-vertex graph with 192 complex spherical
embeddings, but we have found edge lengths with only 136 real spherical embeddings.

L24(D€5@7"9U63 ) Lagwo Lsg Lugta Lagrp Lagric

Figure 5.5: Laman graphs with maximal numbers of spherical embeddings with
6 vertices (L.s- Desargues graph with 32 spherical embeddings) and 7 vertices
(Ligt1a, Lagrie, Lasmie, Lagz @nd Lsg- graphs with 64 spherical embeddings).

This table gives upper bound and the number of real spherical embeddings for all graphs
with 6 < |V| < 8 that have the maximal number of embeddings.
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|V 6 7 7 7 7 7 8
L24 L48H2 L56 L48H1a L48H1b L48H1c L136
Mixed Volume of sphereeq. | 32 64 64 64 64 64 192
Mixed Volume of distance eq. | 32 64 64 64 64 64 192
cs2(G) 32 64 64 64 64 64 192
rez(Q) 32 64 64 64 64 64 192

We present a list of lengths (using euclidean metric) that give maximal number of realiza-
tions for the non-trivial cases:

L24 : )\1,2 = 1.43, /\174 = 139, >\1,6 = 1.055,
Ao = 1.45, Aos = 1.193, X34 = 1.388, X35 = 1.64,
Mg = 1.691, Xs.6 = 1.386,
Lygp2: A1,2 = 1.526433752, A1,3 = 1.250599856 , A1, = 1.519868415,
Ao 5 = 1.772004515, Ag,6 = 1.371860051 , A2,7 = 1.019803903, A3q = 1475127113
A3z = 1.363084737, A6 = 1.314534138, As,6 = 1.754992877 , Xe,7 = 1.054514106 ,
Lse : A12 = 1921665944 , A3 =13, A5 = 1.337908816 ,
A2,5 = 1.058300524 , A2,6 = 1.306139349 , A2,7 = 1.468332387, Aza =12,
A3,z = 0.6693280212, A4,5 = 1.370401401, A6 = 1.630337388, Ae,7 = 1.994993734 .
Lq36: A12 = 1.69431375697417, A5 = 1.53147820126884, X5 = 1.40741112578064,

Ag,3 = 1.46514833488809, Ao 5 = 1.43532284310132, Ao 7 = 1.3673675423030, X34 = 1.35543641920214,
Az,6 = 1.49080389256053, A4 = 1.36622835551227, A4 = 1.52724607627725, X¢7 = 1.23765605522418 .
X6, = 0.871783052046995, A7z = 1.76892528306539 .

5.2.2 Geiringer graphs

The method we introduced in Section 5.1.2 played a crucial role in increasing the number
of embeddings of Geiringer graphs. We used our method for the only non-trivial graph
with 6 vertices — the cyclohexane Gi4. It was known that r3(G1¢) = 16, a result that can
be verified by our method within a few tries with random starting lengths.

The case of |V| = 7 was the first open one. There are twenty trivial 7-vertex Geiringer
graphs and six non-trivial ones. We computed the mixed volumes and the number of
complex embeddings for each one of them. Then, using our code we were able to find
edge lengths that give a full classification of all 7-vertex Geiringer graphs according to
r3(G) [8].

We want to remark again at this point that G,s was the model for our coupler curve method.
Using our implementation, we were able to find lengths that maximize the number of em-
beddings only after a few iterations. The structure of this graph fits perfectly to our method,
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Gas G160

Figure 5.6: The 7-vertex and 8-vertex graphs with the maximal number of embeddings
(Gs and Gigp).

since there are 20 subgraphs of G5 given by vertices (u, v, w, ¢, v') satisfying the assump-
tion in Lemma 7. Using tree search approach, we obtained edge lengths A such that
T3(G48, )\) = 4R:

A1 = 1.9999, A6 = 2.0001, Ais = 7.0744, Agr = 11.8471,
Ars = 1.9342, Aog = 1.0020, As.g = 4.4449, As.7 = 11.2396,
A4 = 5.7963, A3 = 0.5500, dy.7 = 10.5361, Xe.7 = 10.5365.
A5 = 4.4024, As.4 = 5.4247, A3z = 10.5245,

They can be found from the starting edge lengths given in Sec. 5.1.2 with 28 real em-
beddings in only 3 iterations, using the subgraphs (vs, vg, v1, v7,v4), (v4, v3, V1, v7,v5) @nd
<U37 U2, U1, Uy, 1)4)-

We repeated the same procedure for |V'| = 8. In that case we can use the H1 doubling
property for 311 graphs, while there are 63 graphs with a non-trivial number of embeddings.
We computed complex bounds for all non-trivial graphs [8]. We subsequently found edge
lengths that increase the number of real embeddings of G149, which is the graph with the
maximal number of complex embeddings c;(G160) = 160. We were able to find parame-
ters X\ such that r3(G1g0, A) = 132.

The following lengths give 132 real embeddings for G1¢:

Ao = 1.999, Ao = 1.426, A3 = 10.447, As.s = 4.279,
A3 = 1.568, Ao = 0.879, Ais = T7.278, Ao.s = 0.398,
Ap4 = 6.611, Aoz = 10.536, Mg =11.993, Arg = 10.474.
A5 = 4.402, Aog = 0.847,, As = 4.321,

A = 1.994, X34 = 6.494, A5z = 11.239,

One may find a full list of Geiringer graphs with 7 and 8 vertices in [8].

5.2.3 Lower bounds

The maximal numbers of real embeddings that we found can serve to build an infinite
class of bigger graphs. These frameworks can give us lower bounds on the maximum
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Table 5.1: Power basis of asymptotic lower bounds for minimally rigid graphs in all em-
bedding spaces treated. The first line contains the existing lower bounds, while the second
one the lower bounds presented here (there were previously no lower bounds for the real
spherical case).

embedding R? S? R3
space

previous 2.3003 - 2.5198
new 2.3780 2.5198 2.6553

number of embeddings. To compute the lower bound, we will use the following theorem
that combines caterpillar, fan and generalized fan constructions [35]:

Theorem 13 Let G = (Vi, E) be a generically rigid graph, with a generically rigid sub-
graph G' = (Vor, Eo/). We construct a rigid graph using [ copies of G, where all the copies
have the subgraph G’ in common. The new graph is rigid, has |V | = |V/| +1(|Va| — |V |)
vertices, and the number of its real embeddings is at least

V-1V, /\J

&)\ | i
QIVI=Verl) mod (Vel=VarD . (Y - (Td( ) |
Td(G/)

Remind that for a triangle 7" we have that 7, (T") = rs2(T) = 2, while r3(7") = 1. For Laman
graphs, the best asymptotic bound is derived from Lgsg:

Corollary 6 The maximum number of real embeddings on the plane among Laman
graphs with n vertices is bounded from below by

o(IVI=3) mod 7 o 430l(VI-3)/7]
The bound asymptotically behaves as 2.3780/V1.

The previous lower bound in that case was 2.3003V! by [24].

In the case of spherical embeddings, we may use Ly:

Corollary 7 The lower bound for the maximum number of spherical embeddings among
Laman graphs with |V| vertices is

9IVI-3) mod 7 o 16l(VI-3)/3]
This bound asymptotically behaves as 2.5198!V1.

We remark that Lysy1, and Lygys, Which have the 4-vertex Laman graph as a subgraph,
can give the same asymptotic lower bound. The other 7-vertex graphs with r¢:(L) = 64
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can give only 2.3784!V! as a lower bound, while the asymptotic bound from 8-vertex graph
with 192 embeddings is 2.4914!V1.

Finally, using the fact that r3(G169) > 132, we obtain the following resuilt:

Corollary 8 The maximum number of real embeddings of Geiringer graphs with |V | ver-

tices can be bigger than
9(IVI=3) mod 5 1 391(1VI-3)/5]

indicating that r3(|V|) € ©(2.6553V1).

The previous lower bound for Geiringer graphs was 2.51984!V1 [25, 28]. Using the graph
Gs yields r5(]V]) € Q(2.6321V1). Notice that we use a subgraph with one embedding and
not with two, as we did in the cases of Laman graphs. This happens because there is no
tetrahedron as a subgraph of the 8-vertex graphs that could give a better lower bound.

In Table 5.1, we compare the existing asymptotic lower bounds on the maximal real em-
bedding number, with the improvements presented in this chapter.

E. Bartzos 96



Bounds on the maximal number of graph embeddings.

6. CONCLUSION AND OPEN QUESTIONS

In this thesis we have developed various methods concerning bounds on the embedding
number of minimially rigid graphs. We presented new methods to compute efficiently the
m-Bézout bound of the complex embedings of minimally rigid graphs using graph orien-
tations and matrix permanents. These bounds are graph-specific. We also compared
our experimental results with existing ones indicating that some classes of graphs have
tight m-Bézout bounds. Motivated by these results, we applied Bernstein’s second theo-
rem in the case of the m-Bézout bound for rigid graphs. Our findings in this topic can be
generalized for every class of polynomial systems that have no zero solutions.

In order to improve general upper bounds on the embedding number, initially we exploited
existing bounds on planar graph orientations and matrix permanents. This led to improve-
ments on the asymptotic upper bounds of the embeddings for planar graphs in dimension
3 and for all graphs for d > 5. Then, we introduced a method that bounds the number
of outdegree constrained eliminations that are related to the m-Bézout bound, as stated
above. This method resulted in a new bound for the embeddings of all minimally rigid
graphs with a given number of vertices, which was generalized as the first non-trivial up-
per bound in the cases of Laman and Geiringer graphs. It also improved bounds in all
dimensions bigger than 3, including our own results.

Finally, we have developed and used efficient methods to maximize the number of real
embeddings of rigid graphs in the case of planar, spherical and spatial embeddings. In this
context a new technique inspired by coupler curves was introduced for Geiringer graphs.
These methods led to a classification of certain Laman and Geiringer graphs up to their real
embedding number and to an improvement of the asymptotic lower bounds on the maximal
number of embeddings. These increased lower bounds combined with the ameliorated
upper bounds found in this thesis, reduce the existing gap between them.

Several open questions rise from our results. First of all, the gap between upper and
lower bounds remain (even in the case of lower bounds on the maximal complex embed-
ding number which is easier to compute and was not treated in this thesis). In this context,
it would be useful to investigate how sharp our upper bound is on the number of pseudo-
graph orientations and, subsequently, on the maximal complex embedding number. Both
of these may require large computational resources.

Besides that, finding the minimal m-Bézout bound requires the computation of bounds up
to all possible choices for a fixed K,;. Thus, it would be convenient to find a method to
select the K, that attains the minimum without computing its bound. Another issue is that
the elimination process may result to a more efficient algorithm for the computation of the
outdegree-constrained orientations. The worst case scenario of our recursive algorithm is
~ 2121 while the bound on orientations is in the order of ~ ¢! (see Equation 4.10), which
is much smaller.

Regarding the exactness of the m-Bézout bound and the application of Bernstein’s sec-
ond theorem, the first priority would be a possible proof (or refutation) of Conjecture 1.
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This may help to investigate a possible relation between planarity and tight upper bounds,
especially in the case of Geiringer graphs. Another issue is to optimize this method using
the appropriate tools. A first idea is to construct resultant matrices that exploit the multi-
homogeneous structure (see for example [27, 21]). The rank of the matrix could indicate
which zero evaluations have solutions for our systems.

In the case of maximal real embeddings, the next step would be to ameliorate the maximal
real bounds in all cases. One of the issues is the time needed to solve the systems of
equations for bigger graphs, which is multiplied by the fact that more sampling iterations
are necessary. For instance, our result for the 8-vertex Geiringer graph is the best one
obtained from running the coupler curve method for several weeks, with various starting
points. In the case of Laman graphs, we faced the problem that homotopy solvers like
phcpy are not always able to track all solutions when ¢,(G) is very big (> 1000 solutions
for minimally rigid graphs).
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APPENDIX A. ALGEBRAIC BOUNDS.

In this Appendix we present the main algebraic bounds used in this thesis. These bounds
are established for projective spaces, but can be also applied for affine polynomials. These
are the Bézout bound, the m-Bézout bound and the mixed volume bound (also known
as BKK bound). We also give Bernstein’s second theorem on the exactness of mixed
volumes.

For the rest of this Appendix we will consider square polynomial systems f(x) =
(fi(x),..., fm(x)), where = (xq,x9,...,x,,) is a vector of m variables f(x) € Clx].

The first (and simplest) bound is the well known Bézout bound. Here we give a version
for O-dimensional varieties in C™.

Theorem 14 (Bézout bound) Let o; be the total degree of a polynomial f; € f. Then if

the number of complex roots of f is finite, then it is bounded from above by [] «;.
=1

This bound is a generalization of the fundamental theorem of algebra. Nevertheless, in
many cases this bound is rather loose. We can have tighter bounds taking advantage of
the particular structure of a polynomial system.

First let us define multihomogeneous polynomial systems that are the basis for the com-
putation of the m-Bézout bound.

Definition 6 (Multihomogeneous polynomial) Let X, = (2z11,...,214,), X2 =
(To1s s Tody)s -ovoy Xn = (Tna,--.,Tna,) be a partition of the affine variables x, with
| X;| = m;, and my + -+ - +m,, = m.

Consider that every f; is homogeneous in each variable set X ;, with homogenizing variable
z; o and multidegree specified by vector o; = (o 1,2, ...,®,), where «; ; denotes the
degree of f; in X;. Then f is multihomogeneous of type

(M, My 0, Q).

Given this definition, the classic theorem from algebraic geometry [62] can be used for the
computation of the m-Bézout bound.

Theorem 15 Consider the multihomogeneous system f(x) defined above. The coeffi-
cient of the monomial Y{™* - -- Y™ in the polynomial defined by the product

m

[T(in Y+ +ai, - Vo). (A1)

=1

bounds the number of roots of f(x) in P™ x --- x P™, where Y; are new symbolic pa-
rameters, and P™: js the m;-dimensional projective space over C. The bound is tight for
generic coefficients of f(x).
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A more delicate approach uses geometrical tools to establish upper bounds (see details
in [19]).

Definition 7 (Newton Polytope) Let a polynomial

f(x) = Z Co - X* € Clz]

acZ™

m
where ¢, € C* are the non-zero coefficients and x> = [[ z;" fora vector o = (ay, . .., o).

=1
Then the Newton Polytope of f is the convex hull of the exponent vectors o and will be
denoted with NP(f).

A basic operation that forms a new polytope from two or more old ones is the Minkowski
sum.

Definition 8 Let (), and (), be two polytopes in R™. Then the minkowski sum Q1 + )5 is
a new polytope such that

N+Qr={n+q¢:q €@ andqg e Qs}

Notice that the Minkowski Sum of polytopes lying in complementary subspaces is the
same as the cartesian product of these polytopes.

Minkowski sum is used to define the mixed volume for a collection of polytopes.

Definition 9 The mixed volume of a collection of polytopes 1, Q)s, . . ., Q,, € R™ is defined
by the coefficient of the monomial ji, - s - - - ., in the polynomial Vol,,, (11 Q1+« - + pm@Qm),
where Vol,, is the m-dimensional volume and will be denoted by MV,,,(Q1, ..., Q).

An equivalent method to compute the mixed volume is the following formula:

MVo(Q1,. Q) =Y (=)™ > Vo, (Z QZ-) (A.2)

j=1 1c{1,2,....m} el

1=J

There is a connection between the mixed volume of Newton Polytopes and the number
of roots for a polynomial in the corresponding toric variety. The toric variety is a projective
variety defined essentially by the Newton Polytopes of the given system and contains the
topological torus (C*)™ as a dense subset. The set-theoretic difference of a toric variety
and (C*)™ is toric infinity in correspondence with projective infinity.

Theorem 16 (BKK theorem [9, 44, 46]) Let f(x) as defined above, and let
(NP(f:))1<i<m be the collection of Newton Polytopes for this polynomial system.
Then, if the number of system’s solutions in (C*)™ is finite, it is bounded above by the
mixed volume of these Newton Polytopes.
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Y
B
Y Yy 3 -
1- 1- 1-
0 - : : — T 0 - — X 0 - : : : — T
1 2 3 1 2 1 2 3 4
NP(f1) NP(f2) NP(f1) + NP(f2)

Figure A.1: The Newton Polytopes of the polynomials in Example 7

This relation was established by D.Bernshtein, A.Khovanskii and A.Kouchnirenko. There-
fore this bound is known as BKK bound by their initials or simply mixed volume bound.

In general and without paying much attention to the underlying variety, we have the fol-
lowing relations as in [63]:

#real solutions < #complex solutions < mixed volume < m-Bézout < Bézout.

On the other hand, the complexity of computing bounds goes in the opposite direction.
More precisely, the computation of the m-Bézout bound is #P-hard by reduction to the
permanent. The same hardness result holds for mixed volume, although for most polyno-
mial systems the runtime in practice is much bigger than the m-Bézout computation. An
additional problem in the case of the m-Bézout is to discover the optimal variable partition
minimizing this bound for a given polynomial. This problem is not in APX, unless P=NP
[52].

The Newton Polytopes capture the sparseness of the polynomials. In fact the Bézout and
the m-Bézout bound can be also related with polytopes whose mixed volume gives these
bounds. More precisely, the polytopes related to the Bézout bound are simplices, while
the polytopes related to the m-Bézout bound are simplices or products of simplices (see
[55] for details).

Let us give an example of the bounds and their polytopes.

Example 7 We will consider the following polynomial system in two variables.
fl(ili'l,l'g) = .Z'i’ + ZL’% -3
folwy,m9) = 21 + 250 + 25+ 5

The Bézout bound of this system of equations is 3 - 3 = 9.

Let us compute the m-Bézout bound for the trivial partition X, = {z1}, Xo = {z2}. Obvi-
ously | X;| = | Xs| = 1, so we need to find the coefficient of Y, - Y, in the polynomial

(3Y) + 2Y2) - (Y] + 2Y3) = 3Y{* + 8Y Y + 4Y7,
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Figure A.2: The Newton Polytope of a dense polynomial with total degree 3.

indicating that the m-Bézout bound is 8.

Now, we will compute the mixed volume. We have
NP(f1) = Conv({(3,0),(0,2),(0,0)}), NP(f2) = Conuv({(1,0), (1,2),(2,0), (0,0)}),
while their Minkowski sum is
NP(f1) + NP(f2) = Conv({(0,0),(4,0),(2,2),(1,4),(0,4)})
(see Figure A.1).
Using Equation A.2 we get that the BKK bound is

Vola(NP(f1) + NP(f2)) — Vola(NP(f1)) = Volo(NP(f3)) = 8.

It is not a surprise that the BKK bound and the m-Bézout bound coincide. If we study the
structure of the polytope NP( f,) we may see that it is a simplex, so it is related with dense
polynomials and correspond also to both the Bézout and the m-Bézout bound. In the case
of NP( f,) we have the cartesian product of two 1-simplices {(0,0), (1,0)} x {(0,0), (0,2)},
showing that the multidegree vector (1,2) of this polynomial is equivalent with the Newton
Polytope. On the other hand a dense polynomial with degree 3 would have as Newton
Polytope the convex hull of a simplex, such that one of the coordinate for at least one vertex
shall be 3, e.g. {(0,0),(1,0), (0, 3)}, indicating that the Bézout bound shall be higher (See
Figure A.2).

It is obvious that if the polytopes associated with the Bézout or the m-Bézout bound co-
incide with the Newton Polytopes, then the bounds also coincide. On the other hand this
is not a necessary condition for equal bounds, as in the case of sphere equations (see
Section 3.2).

The exactness of the BKK bound can be verified by Bernstein’s discriminant conditions.
In order to state these conditions we first need the following definition.

Definition 10 (Initial form and face system) Letw be a vectorinR™ and f(x) = > cq-
acA
x> be a polynomial in C[x], where A consists of the exponent vectors of monomials with

non-zero coefficients.

E. Bartzos 104



Bounds on the maximal number of graph embeddings.

Let A’ be the subset of vectors in A, such that o € A’ <—= (a/,w) = még((a, w)).

Then the initial form f* is a polynomial consisting of all the monomials whose exponent
vectors belong in A':
fx) = Z OVED o

a’e A
Since the initial form f*“ contains precisely the monomials whose exponent vector min-
imizes the inner product with w and excluding the others, we can relate w to an inner
vector of a face of NP(f). Hence, the algebraic system comprised of initial forms for a
face normal w shall be called face system.

The necessary and sufficient condition of BKK exactness is stated below.

Theorem 17 (Bernstein’s second theorem [9]) Let f be a system of polynomials as de-
fined above

Q=> NP(f) (A.3)

=1

be the Minkowski sum of their Newton Polytopes. The number of solutions of f in (C*)™
equals exactly its mixed volume (counted with multiplicities) if and only if, for all w € R™,
such that w is a face normal of (), the system of equations ( f!")1<.<m has no solutions in
(€)™

Let us note that although there is an infinite number of vectors that may appear as inner
normals, Bernstein’s condition can be verified choosing only one inner normal vector for
every different face of ). This theorem can also verify the exactness of the Bézout or the
m-Bézout bound, if the Minkowski sum of polytopes related to these bounds is taken into
account instead of the Minkowski sum of Newton polytopes (see Equation A.3).
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APPENDIX B. THE COMPUTATION OF THE EMBEDDING NUMBER
USING SPHERE EQUATIONS IN THE ABSENCE OF K.

In Section 2.2 we introduce sphere equations and explain that the embedding number is
the number of solutions derived from this system if all the coordinates of a complete graph
in d vertices are fixed, following [28, 35]. Although in dimension 2 there can always be a
fixed edge (or K3), in bigger dimensions this condition is not guaranteed. For example, in
most known cases of Geiringer graphs, there is a fixed triangle, but there exist minimally
rigid graphs with no triangles: K, is the only instance with up to 10 vertices. We have not
constructed as many graphs in bigger dimensions using Henneberg steps, as in dimen-
sions 2 and 3 (see Table 2.1), but we can verify that the graphs with no complete subgraph
K, are more for d > 4. In this Appendix we will analyze how to compute the embedding
number using sphere equations in the absence of a clique. Note that this case does not
affect the asymptotic bounds presented in Chapter 4 and that all Geiringer graphs treated
in Chapter 5 posses at least one triangle. We also remark that no such clarification is
needed for the Cayley-Menger semialgebraic systems, since in that case the solutions of
the system correspond to distance coordinates and not to usual euclidean ones.

Maxwell’s condition subtracts the dof of trivial motions (rotations and translations) from
the total number of coordinates for an embedding of a graph G(V, E) in R?, as explained
in Chapter 1. Fixing the number of coordinates corresponding to the dof yields already
a 0—dimensional algebraic system using Edge Equations 1.1, or the sphere equations.
On the other hand, the solutions of such system correspond to multiple embeddings up to
trivial motions. Before explaining that statement we need the following proposition.

Proposition 7 The embedding number of a complete graph in d vertices up to rigid mo-
tions in R¢ (or C* and S?) is 1.

This proposition is trivial, since a graph K, can be embedded as a (d — 1)—dimensional
simplex.

Let us now demonstrate how we treat the algebraic system in the case of Laman graphs,
before generalizing this process to higher dimensions. Let K, be a complete graph with
vertices {u, v}, or simply an edge, and \,, be an edge labeling. Maxwell’s condition in
dimension 2 indicates that we shall subtract 3 coordinates, so we can set «(0,0) and v(0, y).
Now it is clear that the y-coordinate of v can have two solutions, that are y = £\, , (See
Figure B.1). These solutions evidently correspond to the same embedding, if we factor
out rigid motions. Thus, if we also fix the second coordinate of v, then there is only one
possible embedding for K, and by fixing the coordinates of that edge in a bigger Laman
graph, the number of solutions of sphere equations is the same as the embedding number.
Notice that the existence of the edge allows us to fix the additional coordinate.

For d = 3, Maxwell's condition removes 6 dof and the presence of a triangle removes 3
additional degrees of freedom, thus fixing the 9 coordinates of the triangle. If no triangle
exists, 3 vertices, u,v,w , are selected such that 2 of them are the endpoints of an edge
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yé (0, Ady)

U(Ov _Au,v) T

Figure B.1: Fixing 2 coordinates for vertex u and 1 coordinate for vertex v, there are two
possible embeddings for the latter. Both embeddings are equivalent up to trivial motions
in R2.

(u,v). Then, we use Maxwell’s condition to remove 6 degrees of freedom as follows: first
we define a plane on which all three vertices lie by fixing one of their coordinates e.g.
x = 0 for all three, removing 3 dof, and then we fix the other 2 coordinates of « and 1
more coordinate of v removing the 3 remaining dof. An additional dof is removed using
the edge, fixing the third coordinate of v. Now the first vertices u and v are fixed, while w
is partially fixed. The corresponding algebraic system counts every embedding twice (by
reflection on the plane defined above). Notice that if we had not fixed the third coordinate
of v, then there would be two solutions of the algebraic system for the embedding of the
edge (u,v), as in the 2—dimensional case, so in total this algebraic system would count
every embedding four times.

Generally, if for a minimally rigid graph G(V, E) in d > 3 no K, exists, a maximal clique
may be fixed with d’ < d vertices and for the rest d — d’ vertices one may fix an appropriate
number of coordinates, thus factoring out rotations and translations according to Maxwell’s
condition. More precisely we can have the following cases:

* d fixed vertices vy, ..., vy with no dof.
* d — d' partially fixed vertices v}, v5, ..., v, , withd',d' +1,--- ,d— 1 dof respectively.

* |V] — d non-fixed vertices . .., ujy|—q With d dof.

Clearly, ' > 2 since an edge always exists. Let now S(G, \, K4 (p)) denote the solutions
of sphere equations for the embedding of a graph in C¢ and Sk(G, A\, Ku(p)) the real
solutions in R¢, up to a fixed embedding K, (p) for a generic choice of edge lengths .
Then we have the following relations between the number of solutions and the embedding
number:

IS(G, N, Ka(p))] =297 c4(G) and  |Sg(G,\ Kyg(p))| =27 - ry(G,A)  (B.1)
These relations can apply to the computation of a bound on the embeddings using the

methods from Chapter 3 on a system of sphere equations as described above. More
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precisely, let us denote with B(G, K4) the orientations of a graph G\ E(K ) such that the
outdegree of each vertex equals its dof, then the embedding number is bounded by

VI~ . B(G, Ky).

Notice that the number of vertices for the corresponding pseudograph are bounded by the
inequality |[V| —d <n < |V|—2,sincen=|V|—-d+d.

Similarly, we can construct the m-Bézout matrix A by adding blocks of rows associated
to the partially fixed vertices. The number of each block equals to the dof of each one of
these and the bound is computed by the following relation:

(dﬁ ﬁ) 16 et

In that case, the size of square matrix the A is d-n x d - n, where n is the same as above.
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