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ABSTRACT

Rigidity theory is the branch of mathematics that studies the embeddings (or equivalently
realizations) of graphs in an euclidean space or a manifold. If the number of realizations
satisfying edge length constraints is finite up to rigid motions, then the embedding is called
rigid, otherwise it is called flexible. These embeddings can be related to the real solutions
of certain algebraic systems and their complex solutions extend the notion of rigidity to Cd.

One of the major open problems in rigidity theory is to find tight upper bounds on the
numbers of rigid graph realizations in an embedding space for a given number of vertices.
Given a minimally rigid graph G(V,E), the upper bound of embeddings in Rd used to be
O
(
2d·|V |), while for the cases of d = 2 and d = 3 it has been proved that there are graphs

with Ω
(
2.3003|V |) and Ω

(
2.5198|V |) realizations respectively. In this thesis, we display

methods that reduce the gap between the existing upper bounds and asymptotic lower
bounds on the maximal number of realizations on euclidean spaces or spheres.

We propose two methods to compute a bound on the number of realizations using the
multihomogeneous Bézout (m­Bézout) bound of well­constrained algebraic systems. The
first one relates the m­Bézout bound with the number of certain oudegree­constrained
graph orientations, while the second uses matrix permanent formulation. Then, we ex­
amine the exactness of these bounds on the number of complex embeddings. First with
computations indicating that the m­Bézout bounds are tight for certain classes of graphs.
Consequently, we exploit Bernstein’s second theorem on the exactness of mixed volume,
and relate it to the m­Bézout bound by analyzing the associated Newton Polytopes.

Using these two methods, we improve the upper bounds on the number of graph embed­
dings. A first improvement is achieved for realizations of graphs in d ≥ 5 and planar graphs
in C3 applying existing bounds on permanents and orientations of planar graphs. Then
we introduce an elimination technique on a graphical construction that further decreases
these bounds in all dimensions. This approach gives O

(
3.7764|V |) and O (6.8399|V |) as

bounds for d = 2 and d = 3 respectively, which is the first improvement on the asymptotic
upper bound for these cases.

Finally, we try to find edge lengths that can maximize the number of real embeddings
in the plane, space and on the sphere for certain graphs. In order to achieve that, we
use methods that sample efficiently a vast space of parameters. Our results provide a full
classification according to their maximal number of real embeddings of all 7­vertex graphs
in R2 and R3, while for the previously untreated case of S2 we give a full characterization
for all 6­vertex graphs. We also establish new asymptotic lower bounds on the maximal
number of realizations (or simply lower bounds) proving that in R2, S2 and R3 there exist
graphs with Ω

(
2.3780|V |), Ω (2.5198|V |) and Ω

(
2.6553|V |) embeddings respectively.

SUBJECT AREA: Graph Rigidity



KEYWORDS: Minimally rigid graph, Multihomogeneous Bézout Bound, Distance Geom­
etry, Asymptotic Bound, Mixed Volume



ΠΕΡΙΛΗΨΗ

Η Θεωρία Άκαμπτων Γράφων (Θ.Α.Γ.) είναι ο κλάδος των μαθηματικών που μελετά
τις εμβυθίσεις γράφων (ή διαμορφώσεις) σε έναν ευκλείδιο χώρο ή μια πολλαπλότητα.
Εφόσον ο αριθμός των εμβυθίσεων ως προς τις ευκλείδιες κινήσεις είναι πεπερασμένος
για δεδομένα βάρη των ακμών του γράφου, που αντιστοιχούν σε αποστάσεις, τότε
ο γράφος ονομάζεται άκαμπτος, αλλιώς ονομάζεται έυκαμπτος. Ο υπολογισμός του
αριθμού αυτού μπορεί να γίνει συνδέοντας τις αποστάσεις μεταξύ κορυφών που
βρίσκονται σε μία ακμή με αλγεβρικά συστήματα. Ως εκ τούτου ο αριθμός των
πραγματικών ριζών αυτών των συστημάτων αντιστοιχεί στον αριθμό των διαμορφώσεων.
Οι μιγαδικές ρίζες αυτών των συστημάτων επεκτείνουν την έννοια των άκαμπτων γράφων
στους μιγαδικούς ευκλείδιους χώρους και τις αντίστοιχες πολλαπλότητες.

Ένα από τα βασικά ερωτήματα στηνΘ.Α.Γ. είναι η αναζήτηση άνωφραγμάτων στον αριθμό
των εμβυθίσεων για έναν δοσμένο αριθμό κορυφών που να μπορούν να πραγματωθούν.
Το μέχρι τώρα γνωστό άνωφράγμα για κάθε ευκλείδιο χώρο διάστασης d για έναν άκαμπτο
γράφο G(V,E) ήταν της τάξης του O

(
2d·|V |), ενώ το μέγιστο των εμβυθίσεων που έχουν

βρεθεί για συγκεκριμένους γράφους είναι της τάξης του Ω
(
2.3003|V |) στο επίπεδο και

Ω
(
2.5198|V |) στον χώρο. Σε αυτή την διατριβή, αναπτύσσονται μέθοδοι που μειώνουν

το κενό αυτό μεταξύ των άνω φραγμάτων και των (υπολογισμένων) κάτω φραγμάτων του
μεγίστου αριθμού των εμβυθίσεων.

Για αυτόν τον σκοπό, προτείνουμε δύο μεθόδους για τον υπολογισμό του πολυ­ομογενούς
φράγματος Bézout (Π.Φ. Bézout) τετράγωνων αλγεβρικών συστημάτων. Αρχικά,
συνδέουμε το φράγμα αυτό με τον αριθμό διαφορετικών προσανατολισμένων γράφων
που μπορεί να προκύψει με βάση περιορισμούς στο βαθμό εξερχόμενων ακμών κάθε
κορυφής ενός αρχικά μη προσανατολισμένου γράφου. Επιπλέον, χρησιμοποιούμε την
permanent πινάκων που σχετίζονται με το αλγεβρικό σύστημα. Στην συνέχεια μελετάμε
την ακρίβεια αυτού του φράγματος σε σχέση με τον αριθμό εμβυθίσεων σε μιγαδικούς
χώρους. Βρίσκουμε ότι ο υπολογισμός του όριου για μια πλειάδα γράφων υποδεικνύει
ότι για συγκεκριμένες κλάσεις αυτό μπορεί να είναι ακριβές. Αυτό μας παρακινεί να
χρησιμοποιήσουμε το δεύτερο θεώρημα του Bernstein, που αφορά την ακρίβεια των
μεικτών όγκων, και να αναλύσουμε τις συνθήκες των πολυτόπων του Newton οι οποίες
καθιστούν το φράγμα μας ακριβές.

Το επόμενο βήμα είναι η βελτίωση των ασυμπτωτικών άνω φραγμάτων. Εφαρμόζοντας
άμεσα υπάρχοντα φράγματα των permanent και των προσανατολισμών επίπεδων
γραφημάτων, βρίσκουμε μια πρώτη βελτίωση σε συγκεκριμένες κατηγορίες άκαμπτων
γράφων, δηλαδή αυτών που εμβυθίζονται σε μεγάλες διαστάσεις (d ≥ 5), καθώς και
επίπεδων γράφων που εμβυθίζονται στον χώρο. Έπειτα, αναπτύσσουμε μια μέθοδο
που συνδέει τα άνω φράγματα στους προσανατολισμούς των γράφων με μια διαδικασία
σταδιακής απαλοιφής κορυφών. Αυτή η μέθοδος μειώνει τα άνω φράγματα σε όλες
τις κατηγορίες των γράφων που εξετάζουμε, σπάζοντας για πρώτη φορά τα τετριμμένα



φράγματα για τις εμβυθίσεις στο επίπεδο και το χώρο, αποδεικνείοντας ότι είναι της τάξης
του O

(
3.7764|V |) και O (6.8399|V |) αντίστοιχα.

Το τελευταίο πρόβλημα που μας απασχολεί είναι η εύρεση κάτω φραγμάτων του μεγίστου
αριθμού των εμβυθίσεων συγκεκριμένων γράφων. Αυτό επιτυγχάνεται με την αναζήτηση
των αποστάσεων που ταυτίζουν των αριθμό των πραγματικών λύσεων των αλγεβρικών
συστημάτων με αυτό των μιγαδικών. Τα αποτελέσματά μας ταξινομούν πλήρως ως προς
τον μέγιστο αριθμό διαμορφώσεων όλους τους άκαμπτους γράφους με 7 κορυφές που
εμβυθίζονται στο επίπεδο και τον χώρο, καθώς και τους γράφους με 6 κορυφές που
εμβυθίζονται στην σφαίρα S2. Επιπλέον βελτιώνουν τα υπάρχοντά κάτω φράγματα του
μέγιστου αριθμού διαμορφώσεων σε Ω

(
2.3780|V |) στο επίπεδο, Ω (2.5198|V |) στην σφαίρα

S2 και Ω
(
2.6553|V |) στον χώρο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Θεωρία Άκαμπτων Γράφων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ελαχιστικώς Άκαμπτος Γράφος, Πολυ­ομογενές Φράγμα Bézout,
Γεωμετρία Αποστάσεων, Ασυμπτωτικό Όριο, Μεικτός Όγκος



ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Η Θεωρία Άκαμπτων Γράφων (Θ.Α.Γ.­ Rigidity theory) αποτελεί έναν ιδιαίτερα ενεργό
κλάδο των μαθηματικών. Παρόλο που οι απαρχές της εντοπίζονται στα τέλη του 19ου
αιώνα [53], υπάρχει ένα αυξανόμενο ενδιαφέρον τα τελευταία χρόνια που ωθείται από τις
εφαρμογές της στην ρομποτική [47], την μοριακή βιολογία [32, 11, 50], την τεχνολογία του
GPS [73] και την αρχιτεκτονική [2, 29]. Εκτός από τις εφαρμογές αυτές βέβαια η Θ.Α.Γ. έχει
ερευνητικό ενδιαφέρον ως ανεξάρτητο μαθηματικό αντικείμενο που αλληλεπιδρά με την
θεωρία γραφημάτων, την υπολογιστική άλγεβρα και την υπολογιστική γεωμετρία, όπως
άλλωστε και με το συγγενικό πεδίο της Γεωμετρίας Αποστάσεων.

Η Θ.Α.Γ. ασχολείται με τις εμβυθίσεις γράφων σε ευκλείδιους χώρους ή σε άλλες
πολλαπλότητες. Στην παρούσα διατριβή καταπιανόμαστε με τις εμβυθίσεις απλών
και μη κατευθυνόμενων γράφων σε ευκλείδιους χώρους (Rd) ή σφαίρες διάστασης d
(Sd). Στην συνέχεια θα παραθέσουμε κάποιες βασικές έννοιες και ορισμούς της Θ.Α.Γ.
χρησιμοποιώντας τους ευκλείδειους χώρους, που ισχύουν ανάλογα και για τις d­διάστατες
σφαίρες. Η εμβύθιση ενός απλού μη κατευθυνόμενου γράφου G = (V,E) σε έναν
ευκλείδειο χώρο Rd είναι μια απεικόνιση V → Rd που ορίζει μια διαμόρφωση (con­
formation) του γράφου. Κάθε διαμόρφωση ρ = {ρ1, ρ2, ρ3, ..., ρ|V |} επάγει ένα σύνολο
αποστάσεων μεταξύ των κορυφών που αποτελούν άκρα ακμών λ = {λu,v | (u, v) ∈ E}
για λu,v = ‖ρu− ρv‖, όπου η συνάρτηση ‖·‖ υποδηλώνει την συνήθη ευκλείδια απόσταση,
και θα τις ονομάζουμε αποστάσεις ακμών. Αυτές οι αποστάσεις καθορίζουν τα βάρη των
ακμών για την συγκεκριμένη εμβύθιση. Εφόσον ο αριθμός όλων των διαμορφώσεων
που ικανοποιούν τις επαγόμενες αποστάσεις ακμών είναι πεπερασμένος ως προς τις
Ευκλείδειες κινήσεις (μετατοπίσεις και περιστροφές), τότε ο γράφος λέγεται άκαμπτος, ενώ
σε αντίθετη περίπτωση ονομάζεται εύκαμπτος.

Οι συντεταγμένες των εμβυθίσεων ενός γράφου με δεδομένες αποστάσεις ακμών
λ μπορούν να υπολογιστούν ως πραγματικές λύσεις αλγεβρικών εξισώσεων που
μοντελοποιούν αυτές τις αποστάσεις

λ2u,v =
d∑
i=1

(xu,i − xv,i)
2 (1)

όπου η μεταβλητή xu,i υποδηλώνει την i­οστη συντεταγμένη της κορυφής u. Ως εκ
τούτου, η έννοια των άκαμπτων γράφων επεκτείνεται στο μιγαδικό επίπεδο με τις μιγαδικές
ρίζες αυτών των συστημάτων. Σημειώνουμε ότι εφόσον μια πολλαπλότητα καθορίζεται
από αλγεβρικές εξισώσεις, όπως στην περίπτωση της Sd, για να βρούμε τις εμβυθίσεις
χρησιμοποιούμε τις αντίστοιχες εξισώσεις που μας δίνει η νόρμα, αλλά και τις εξισώσεις
που καθορίζουν την πολλαπλότητα.

Στην περίπτωση των άκαμπτων γράφων, μια τροποποιημένη μορφή της Εξίσωσης 1
όπως στα [28, 64] κάνει εφικτή την χρήση εργαλείων από την θεωρία απαλοιφής. Η



τροποποίηση αυτή συνίσταται στην εισαγωγή καινούριων μεταβλητών

su =
d∑
i=1

x2u,i (2)

και η αντικατάστασή τους στην Εξίσωση 1. Ονομάζουμε τον συνδυασμό της
τροποποιημένης Εξίσωσης 1 και της Εξίσωσης 2 για όλες τις κορυφές και ακμές του
γράφου σφαιρικές εξισώσεις (sphere equations).

Η συγκεκριμένη αλγεβρική μοντελοποίηση δεν είναι η μοναδική που εφαρμόζεται στα
πλαίσια της Θ.Α.Γ., καθώς συχνά χρησιμοποιούμε τους πίνακες Cayley­Menger από
την Γεωμετρία Αποστάσεων [12]. Ο μηδενισμός και το πρόσημο των υπο­οριζουσών
συγκεκριμένου μεγέθους ενός πίνακα Cayley­Menger εκφράζει την εμβυθισιμότητα μιας
συλλογής αποστάσεων σε έναν ευκλείδειο χώρο. Εφόσον κάποιες αποστάσεις είναι
γνωστές και άλλες εκφράζονται με μεταβλητές, δημιουργούνται αφινικές πολλαπλότητες
που προέρχονται από αυτές τις μηδενικές ορίζουσες και οι ρίζες τους εκφράζουν
τις διαφορετικές διαμορφώσεις των γράφων. Εκτός της αφινικής πολλαπλότητας, η
επιβεβαίωση της ύπαρξης πραγματικών διαμορφώσεων με αυτήν την μέθοδο χρειάζεται
και την ικανοποίηση γεωμετρικών ανισώσεων που προκύπτουν από τους ίδιους πίνακες.

Έχει αποδειχθεί ότι ο διαχωρισμός μεταξύ εύκαμπτων και άκαμπτων γράφων έχει σχέση
με την συνδυαστική δομή ενός γράφου για σχεδόν όλες τις εμβυθίσεις [36]. Τους γράφους
που είναι άκαμπτοι για κάθε τέτοια διαμόρφωση στον αντίστοιχο χώρο τους ονομάζουμε
γενικά άκαμπτους γράφους (generically rigid graphs). Μια ειδική κλάση γενικά άκαμπτων
γράφων είναι όσοι παύουν να είναι άκαμπτοι εφόσον αφαιρεθεί μία οποιαδήποτε ακμή.
Αυτοί ονομάζονται ελαχιστικώς γενικά άκαμπτοι γράφοι (Ε.Α.Γ.­ generically minimally rigid
graphs) και είναι αυτοί που απασχολούν την παρούσα διατριβή. Σημειώνουμε ότι οι
Ε.Α.Γ. στο επίπεδο είναι γνωστοί ως γράφοι Laman (Laman graphs), ενώ τους Ε.Α.Γ.
στον χώρο τους ονομάζουμε γράφους Geiringer (Geiringer graphs), εναρμονιζόμενοι με
τους συγγραφείς του [35]. Επίσης οι Ε.Α.Γ. γράφοι σε έναν ευκλείδειο χώρο Rd είναι
Ε.Α.Γ. και στην d­διάστατη σφαίρα Sd [70] (αυτή η ιδιότητα δεν ισχύει γενικά για όλες τις
πολλαπλότητες διάστασης d).

Ένα βασικό θεώρημα στην Θ.Α.Γ. είναι η συνθήκη του Maxwell, σύμφωνα με την οποία αν
ένας γράφος G = (V,E) είναι Ε.Α.Γ. στον Rd τότε ο συνολικός αριθμός των πλευρών του
είναι |E| = d · |V | −

(
d+1
2

)
, ενώ για κάθε υπογράφο G′ = (V ′, E ′) ⊂ G ισχύει η ανισότητα

|E ′| ≤ d·|V ′|−
(
d+1
2

)
. Η συγκεκριμένη συνθήκη είναι και επαρκής για τον χαρακτηρισμό των

γράφων Laman [48, 57], κάτι που δεν συμβαίνει σε μεγαλύτερες διαστάσεις για τις οποίες
έχουν βρεθεί συγκεκριμένα αντιπαραδείγματα. Η συνθήκη του Maxwell εκφράζει τους
συνολικούς βαθμούς ελευθερίας του συστήματος που πρέπει να κορεστούν από τις ακμές
ώστε ο γράφος να είναι άκαμπτος: στoν Rd κάθε κορυφή έχει d βαθμούς ελευθερίας (άρα
συνολικά μια διαμόρφωση |V | κορυφών έχει d·|V | βαθμούς ελευθερίας), από τους οποίους
αφαιρούμε τους βαθμούς ελευθερίας των ευκλείδειων κινήσεων (d για τις μετατοπίσεις και(
d
2

)
για τις περιστροφές). Αλγεβρικά η συνθήκη του Maxwell υποδηλώνει ότι το αντίστοιχο

σύστημα εξισώσεων είναι τετράγωνο, ενώ κανένα υποσύστημα δεν είναι ασυμβίβαστο.
Άρα το αλγεβρικό σύστημα στους μιγαδικούς έχει πάντα τον ίδιο αριθμό λύσεων για κάθε



γενική επιλογή του λ [63]. Προφανώς ο αριθμός των μιγαδικών διαμορφώσεων είναι ένα
άνω φράγμα για τον μέγιστο αριθμό των πραγματικών διαμορφώσεων ενός γράφου, ο
οποίος εξαρτάται από την επιλογή συγκεκριμένων αποστάσεων ακμών.

Ένα από τα βασικά ερωτήματα στην Θ.Α.Γ. είναι η εύρεση πραγματώσιμων άνω
φραγμάτων στον αριθμό των εμβυθίσεων των Ε.Α.Γ. με δεδομένο αριθμό κορυφών. Μέχρι
τώρα τα γνωστά άνω φράγματα δεν βελτίωναν ασυμπτωτικά το O

(
2d·|V |), το οποίο μπορεί

κανείς να το υπολογίσει με άμεση εφαρμογή του θεωρήματος του Bézout στην Εξίσωση 1.
Παρόλο που έχουν γίνει προσπάθειες να χρησιμοποιηθούν περισσότερο πολύπλοκα
εργαλεία για να βελτιώσουν αυτό το τετριμμένο όριο (όπως τον βαθμό των αλγεβρικών
συστημάτων χρησιμοποιώντας Γεωμετρία Αποστάσεων [13] ή εφαρμόζοντας το άνω
φράγμα των μεικτών όγκων [64]). Από την άλλη πλευρά, τα αντίστοιχα κάτω φράγματα
στον μέγιστο αριθμό των διαμορφώσεων είναι αρκετά μικρότερα. Έχει υπολογιστεί
ότι υπάρχουν γράφοι με Ω

(
2.3003|V |) διαμορφώσεις στον R2 [24] και Ω

(
2.5198|V |)

διαμορφώσεις στον R3 [25, 28], ενώ στους μιγαδικούς χώρους έχουν βρεθεί γράφοι με
Ω(2.5079|V |) στον C2 [16, 35], Ω

(
2.5698|V |) στην σφαίρα S2 [31] και Ω

(
3.0683|V |) στον C3

[35]. Σημειώνουμε ότι εκτός από την εύρεση γενικών φραγμάτων, έχουν χρησιμοποιηθεί
υπάρχοντα φράγματα στις μιγαδικές λύσεις αλγεβρικών συστημάτων για τις περιπτώσεις
συγκεκριμένων γράφων Laman και Geiringer. Αυτά χρησιμοποιήθηκαν για να δωθεί ένας
στόχος για την εύρεση αποστάσεων που μεγιστοποιούν τον αριθμό των εμβυθίσεων στους
πραγματικούς [28].

Η βασική επιδίωξη της παρούσας θέσης είναι να μειωθεί το κενό μεταξύ των άνω και των
κάτω φραγμάτων, χρησιμοποιώντας εργαλεία από την αλγεβρική γεωμετρία, την θεωρία
γράφων και αναπτύσσοντας τους κατάλληλους αλγορίθμους. Η συνεισφορά της διατριβής
αφορά τους τομείς που παρουσιάζονται στις παρακάτω παραγράφους. Τα πορίσματα και
οι μέθοδοι έχουν δημοσιευθεί σε επιστημονικά περιοδικά [4, 5] ή έχουν εγκριθεί προς
δημοσίευση [7].

Ερευνούμε κατά πόσον το πολυ­ομογενές φράγμα Bézout (Π.Φ. Bézout­ multihomoge­
neous Bézout bound) μπορεί να αντικαταστήσει το φράγμα των μεικτών όγκων ως ένα
αποτελεσματικό άνω φράγμα των ριζών για τις σφαιρικές εξισώσεις. Γενικά, ισχύει η
παρακάτω ανισότητα

# πραγματικών λύσεων ≤ # μιγαδικών λύσεων ≤ μεικτός όγκος ≤ Π.Φ. Bézout ≤ Bézout

όσον αφορά τον αριθμό των λύσεων ενός αλγεβρικού συστήματος και τα αντίστοιχα άνω
φράγματα [63], με την πολυπλοκότητα υπολογισμού των παραπάνω να έχει αντίστροφη
φορα. Όπως ήδη αναφέρθηκε για τα άνω φράγματα, το φράγμα Bézout (που υπολογίζεται
με έναν απλό πολλαπλασιασμό) είναι ελάχιστα αντιπροσωπευτικό. Από την άλλη ο
μεικτός όγκος που λαμβάνει υπόψιν την δομή των εξισώσεων μέσω των πολυτόπων
του Newton έχει μεγάλο υπολογιστικό κόστος (λεπτομέρειες για τον υπολογισμό των
φραγμάτων βρίσκονται στο Παράρτημα A­ Appendix A).

Για αυτόν τον σκοπό παρουσιάζουμε 2 μεθόδους που εφαρμόζονται στην περίπτωση
των Ε.Α.Γ. για τον υπολογισμό του Π.Φ. Bézout το οποίο επίσης λαμβάνει υπόψιν την
δομή των εξισώσεων, αλλά με μικρότερη λεπτομέρεια σε σχέση με τον μεικτό όγκο. Η
πρώτη μέθοδος είναι συνδυαστική και βασίζεται στην συσχέτιση του Π.Φ. Bézout με τον



αριθμό των διαφορετικών προσανατολισμών του αρχικού γράφου, με βάση περιορισμούς
στον βαθμό των εξερχόμενων ακμών. Επιπλέον, έχουμε αναπτύξει έναν αναδρομικό
αλγόριθμο για τον υπολογισμό όλων των πιθανών προσανατολισμών και τον υλοποιήσαμε
σε γλώσσα Python. Η δεύτερη μέθοδος συσχετίζει έναν τετράγωνο πίνακα με το αλγεβρικό
σύστημα με μέγεθός ∼ |E|, του οποίου η permanent δίνει το επιθυμητό άνω φράγμα.

Παρουσιάζουμε την σύγκριση μεταξύ των 2 μεθόδων ως προς τον απαιτούμενο
υπολογιστικό χρόνο σε μια πλειάδα περιπτώσεων. Για τον υπολογισμό της permanent
χρησιμοποιούμε τις αντίστοιχες υλοποιήσεις της maple και της Python. Η υλοποίηση του
αναδρομικού αλγορίθμου είναι σημαντικά πιο γρήγορη, γεγονός που ήταν αναμενόμενο,
καθώς ο αλγόριθμος του Ryser που θεωρείται ο πιο αποτελεσματικός για τον υπολογισμό
της permanent ενός τετράγωνου πίνακα μεγέθους |E| έχει πολυπλοκότητα |E|2 · 2|E|, ενώ
όλοι οι πιθανοί προσανατολισμοί ενός γράφου είναι το πολύ 2|E|.

Τα πειραματικά μας δεδομένα δείχνουν ότι στην συντριπτική πλειονότητα των
περιπτώσεων γράφων Laman και σε όλες των γράφων Geiringer με |V | ≤ 11 ο μεικτός
όγκος και το Π.Φ. Bézout των σφαιρικών εξισώσεων ταυτίζονται. Επιπλέον, όλοι οι γράφοι
Geiringer με |V | ≤ 10 που είναι επίπεδοι γραφοθεωρητικά έχουν ίσο Π.Φ. Bézout και
αριθμό μιγαδικών διαμορφώσεων. Για τους επίπεδους γράφους Laman αυτή η ισότητα
σπάνια ισχύει στις ενδιαφέρουσες περιπτώσεις των εμβυθίσεων στο επίπεδο, αλλά ισχύει
για τις εμβυθίσεις τους στην σφαίρα S2. Και στις 2 προαναφερθείσες κλάσεις το Π.Φ.
Bézout για τους μη επίπεδους γράφους είναι αυστηρό άνω φράγμα.

Τα παραπάνω αποτελέσματα λειτουργούν ως κίνητρο για την μελέτη των συνθηκών που
δείχνουν ότι το Π.Φ. Bézout είναι ακριβές. Για αυτόν τον σκοπό εφαρμόζουμε το 2ο
θεώρημα του Bernstein, που αφορά την ακρίβεια του μεικτού όγκου [9]. Προσαρμόζουμε
τα πολύτοπα του Newton στην περίπτωση των αλγεβρικών συστημάτων που έχουν πλήρη
πολυ­ομογενή δομή. Συνεπακόλουθα, αναπτύσσουμε μια μέθοδο και έναν αλγόριθμο που
πιστοποιεί τα κριτήρια που θέτει το θεώρημα του Bernstein διενεργώντας πολύ λιγότερους
ελέγχους από όσους προβλέπονται.

Οι μέθοδοι υπολογισμού του Π.Φ. Bézout χρησιμοποιούνται για την εξαγωγή γενικών
άνω φραγμάτων στα πλαίσια της παρούσας διατριβής. Αρχικά εφαρμόζουμε το φράγμα
Brègman­Minc για τις permanent πινάκων, βελτιώνοντας για πρώτη φορά τα ασυμπτωτικά
φράγματα Ε.Α.Γ. σε διάσταση d ≥ 5 σε σχέση με το τετριμμένο Bézout φράγμα. Επιπλέον,
αποδεικνύουμε ότι η άμεση χρήση φραγμάτων για τον προσανατολισμό επίπεδων γράφων
[30] μειώνει το ασυμπτωτικό άνω φράγμα για τους επίπεδους Geiringer γράφους.

Στην συνέχεια, παρουσιάζουμε μια μέθοδο που φράσσει με αναδρομικό τρόπο τους
προσανατολισμούς ενός γράφου. Αυτή η μέθοδος αφορά γραφικές στις οποίες
μελετήσαμε προσανατολισμούς με σταθερό αριθμό εισερχόμενων ακμών για κάθε
κορυφή. Δείχνουμε ότι ο αριθμός αυτών των προσανατολισμών ταυτίζεται με αυτούς
που χρησιμοποιούμε για τον υπολογισμό του Π.Φ. Bézout των σφαιρικών εξισώσεων
και εφαρμόζουμε μια τεχνική απαλοιφής που οδηγεί σε ένα άνω φράγμα για αυτούς.
Το άνω φράγμα στον αριθμό των προσανατολισμών δίνει βελτιωμένα άνω φράγματα
για όλες τις διαστάσεις σε σχέση και με το Bézout φράγμα, αλλά και με το Brègman­
Minc. Συγκεκριμένα, για τις πιο ενδιαφέρουσες κλάσεις γράφων, αποδείξαμε ότι οι Laman



γράφοι έχουν το πολύ O
(
3.7764|V |) διαμορφώσεις, ενώ οι Geiringer γράφοι έχουν το πολύ

O
(
6.8399|V |) διαμορφώσεις, ενώ τα προϋπάρχοντα φράγματα ήταν της τάξης του O

(
4|V |)

και O
(
8|V |) αντίστοιχα.

Σε σχέση με τα κάτω όρια στον μέγιστο αριθμό πραγματικών διαμορφώσεων,
ασχολούμαστε με τις περιπτώσεις των εμβυθίσεων στο επίπεδο, το χώρο και την
σφαίρα. Για να το πετύχουμε αυτό εφαρμόζουμε μεθόδους αναζήτησης των κατάλληλων
αποστάσεων πλευράς που μεγιστοποιούν αυτόν τον αριθμό. Σε κάθε γράφο ο στόχος
ήταν ο αριθμός των μιγαδικών διαμορφώσεων, καθώς εικάζεται ότι για την πλειονότητα
των Ε.Α.Γ. συμπίπτει με τον αριθμό πραγματικών διαμορφώσεων (αλλά όχι για όλες
[41]). Για αυτόν τον λόγο χρησιμοποιούμε τόσο τις εξισώσεις σφαίρας, όσο και τις
εξισώσεις κα τις ανισώσεις που δίνουν οι ορίζουσες των πίνακων Cayley­Menger από την
γεωμετρία αποστάσεων. Εφαρμόζουμε κλασσικές μεθόδους αναζήτησης παραμέτρων
για την αύξηση των πραγματικών ριζών ενός αλγεβρικού συστήματος (αναζήτηση κοντά
σε παραμέτρους που απειρίζουν τον αριθμό των λύσεων, στοχαστικές μέθοδοι, μέθοδος
κυλινδρικής αλγεβρικής ανάλυσης­ CAD). Επιπλέον χρησιμοποιούμε τον αλγόριθμο του
J.Legerský (ενός από τους συγγραφείς του [4] του οποίου αποτελέσματα παρουσιάζονται
στην παρούσα διατριβή) που αυξάνει τον αριθμό των διαμορφώσεων στον R3 βασισμένος
στην μέθοδο των καμπυλών σύνδεσης (coupler curves) που είχε ξαναχρησιμοποιηθεί στην
Θ.Α.Γ. [13].

Ως εκ τούτου, παρουσιάζουμε μια πλήρη κατηγοριοποίηση των Ε.Α.Γ. ως προς τον μέγιστο
αριθμό διαμορφώσεων κάθε γράφου με |V | ≤ 7 στις περιπτώσεις των R2 και R3, ενώ στην
περίπτωση της σφαίρας αυτή η κατηγοριοποίηση αφορά τους γράφους με |V | ≤ 6. Σε
όλες τις κατηγορίες βρίσκουμε κάτω όρια και για επιλεγμένους μεγαλύτερους γράφους.
Σημειώνουμε ότι προηγουμένως δεν είχαν υπάρξει μελέτες που να αντιμετωπίζουν το
συγκεκριμένο ερώτημα για την περίπτωση της σφαίρας.

Επιπλέον, διαλέγοντας συγκεκριμένους γράφους με βάση τον αριθμό των μιγαδικών
διαμορφώσεων, καταφέρνουμε να αυξήσουμε τα ασυμπτωτικά κάτω όρια σε κάθε μία από
τις εξεταζόμενες περιπτώσεις. Συγκεκριμένα, στην περίπτωση του επιπέδου δείχνουμε ότι
υπάρχουν γράφοι με Ω(2.3780|V |) διαμορφώσεις στο επίπεδο, Ω(2.5198|V |) διαμορφώσεις
στην σφαίρα και Ω(2.6553|V |) διαμορφώσεις στον χώρο.

Η διάρθρωση της διατριβής είναι η εξής:

Κεφάλαιο 1­ Εισαγωγή (Introduction). Ορίζονται βασικές αρχές της Θ.Α.Γ. Επίσης,
περιγράφονται τα ερευνητικά θέματα που απασχολούν την διατριβή, καθώς και
προϋπάρχουσες προσεγγίσεις σε αυτά.

Κεφάλαιο 2­ Βασικές έννοιες (Preliminaries). Γίνεται περιγραφή εργαλείων και εννοιών
που θα χρησιμοποιηθούν στα επόμενα Κεφάλαια. Συγκεκριμένα, αρχικά περιγράφεται
η μέθοδος Henneberg, που χρησιμοποιείται για την κατασκευή Ε.Α.Γ. Στην συνέχεια,
παρουσιάζονται δύο μέθοδοι αλγεβρικής μοντελοποίησης για τις εμβυθίσεις των γράφων,
οι σφαιρικές εξισώσεις και οι ορίζουσες των πινάκων Cayley­Menger.

Κεφάλαιο 3­ Το Π.Α.Φ. Bézout για τους Ε.Α.Γ. (On the multihomogeneous Bézout
bound of the embedding number). Παρουσιάζονται οι μέθοδοι για τον υπολογισμό



του Π.Α.Φ. Bézout των σφαιρικών εξισώσεων, καθώς και στοιχεία που συγκρίνουν τον
υπολογιστικό χρόνο που απαιτείται για αυτές τις μεθόδους σε σχέση με το όριο τον
υπολογισμό του μεικτού όγκου και του ακριβούς αριθμού των διαμορφώσεων. Στην
συνέχεια, εξετάζονται πειραματικά δεδομένα ως προς την ακρίβεια του φράγματος και
παρουσιάζεται μια μέθοδος που ελέγχει την ακρίβεια βασισμένη στο 2ο θεώρημα του Bern­
stein. Το περιεχόμενο αυτού του κεφαλαίου αποτελεί μέρος του [5].

Κεφάλαιο 4­ Άνω φράγματα για τον αριθμό των διαμορφώσεων των Ε.Α.Γ. (Up­
per bounds on the embedding number of minimally rigid graphs). Αυτό το
κεφάλαιο χωρίζεται σε δυο μέρη. Στο πρώτο, παρουσιάζονται εφαρμογές υπαρχόντων
άνω φραγμάτων στις μεθόδους που παρουσιάστηκαν στο προηγούμενο Κεφάλαιο και
αποτελούν μέρος του [5]. Στο δεύτερο, αναπτύσσουμε μια καινούρια μέθοδο που φράσσει
τον αριθμό των πιθανών προσανατολισμών ενός γράφου και τελικά οδηγεί σε βελτιωμένα
άνω φράγματα για όλες τις διαστάσεις εμβύθισης. Η μέθοδος αυτή και τα αποτελέσματά
της έχουν εγκριθεί προς δημοσίευση [7].

Κεφάλαιο 5­ Ο μέγιστος αριθμός εμβυθίσεων γράφων στο επίπεδο, τον χώρο και
την σφαίρα (On the maximal number of real embeddings in R2 , R3 and S2). Σε αυτό
το κεφάλαιο παρουσιάζονται τα αποτελέσματα και οι μέθοδοι που οδήγησαν στην αύξηση
των κάτω φραγμάτων για τον μέγιστο αριθμό εμβυθίσεων. Τα αποτελέσματά αυτού του
Κεφαλαίου ως προς τον R3 έχουν δημοσιευθεί στα πρακτικά του International Symposium
on Symbolic and Algebraic Computation 2018 (ISSAC’18) [3]. Η επέκταση αυτών των
αποτελεσμάτων με τα αντίστοιχα στο επίπεδο και την σφαίρα αποτελούν αντικείμενο του
[4].

Κεφάλαιο 6­ Συμπεράσματα και ανοιχτά ερωτήματα (Conclusion and open ques­
tions). Στο τελευταίο κεφάλαιο αναλύονται τα βασικά συμπεράσματα της παρούσας
διατριβής, καθώς και τα ερευνητικά ερωτήματα που προκύπτον και μπορούν να
διερευνηθούν στο μέλλον.
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Bounds on the maximal number of graph embeddings.

1. INTRODUCTION

Rigidity theory is a mathematical area that lies in the intersection of graph theory, compu­
tational algebra and computational geometry. Although the foundations of rigidity theory
can be traced in 19th century, there is nowadays a refreshment of scientific research on
this subject motivated by applications in mollecular biology [11, 32, 50] , sensor network
localization [73], robotics [47, 69, 72] and architecture [2, 29]. Besides these applications,
there is active interest in rigidity theory as an independent mathematical subject. One of
the major open problems in rigidity theory is to determine tight bounds on the maximal
number of embeddings of rigid graphs in an euclidean space or a manifold up to a given
number of vertices. In this thesis, we present methods that improve both the asymptotic
upper bounds and the asymptotic lower bounds on this maximal number.

Rigidity theory examines the properties of graphs that may have rigid embeddings in a
given space. In this thesis, we are interested in embeddings of simple undirected graphs
in the euclidean space Rd, or the d­dimensional sphere Sd. If the vertices or the edges of
a graph G are not specified, then we denote by V (G) the first and E(G) the latter. Let us
present some basic definitions of rigidity theory in this context using the usual euclidean
norm. Analogous definitions can be applied for embeddings in other spaces or using other
norms [17, 56, 70]. Let G = (V,E) be a simple undirected graph (denoted also as G(V,E)
or simplyG in the rest of themanuscript) and ρ = {ρ1, ρ2, . . . ρ|V |} ∈ Rd·|V | be an embedding
of G in Rd, i.e. a map from the set of vertices V to Rd. The pair of a simple undirected
graph G and an embedding ρ is also known as bar framework (or simply framework)
and is usually denoted with G(ρ). Every such framework induces a set of edge lengths
λ = {λu,v | (u, v) ∈ E} such that λu,v = ‖ρu − ρv‖, where ‖·‖ denotes the usual euclidean
norm.

This induced set of edge lengths can be used to define whether a framework is rigid or not.
A framework G(ρ) is called rigid if there is only a finite number of embeddings (the term
realizations is used equivalently in this context) for graph G that satisfy the edge length
constraints imposed by λ up to rigid motions (rotations and translations)1. Otherwise,
if the number of realizations is infinite up to rigid motions, then G(ρ) is called flexible.
Equivalently, rigid frameworks do not admit continuous deformation preserving the edge
lengths, while flexible frameworks can be continuously deformed (see Figure 1.1).

The embeddings of a graph G(V,E) for a given set of edge lengths λ can be specified
as the real solutions of algebraic equations that capture the edge length constraints. The
simplest algebraic formulation is to consider the set of squared distance equations

λ2u,v =
d∑
i=1

(xu,i − xv,i)
2 , ∀(u, v) ∈ E (1.1)

where xu,i represents the i−th coordinate of vertex u.

The complex solutions of these systems naturally extend the notion of graph embedding in
1Let us remark that each different realization defines a separate framework.
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(a1) (a2) (a3)

(b1) (b2)

Figure 1.1: An example of a flexible an a rigid graph embedding. The four­bar linkage
(a1, a2, a3) is a flexible framework on the plane: pinning down the two bottom vertices to
factor out trivial motions (for more details see Section 2.2.1) and moving the up right vertex
in the direction of the flex results to a continuous deformation of the framework deformed
satisfying the same edge lengths. Throughout the deformation from the left framework
(a1) to the right one (a3) there is an infinity of realizations up to rigid motions. On the other
hand, if an edge is added, then there are only two realizations up to rigid motions and
reflections (b1 and b2) and there is no way to continuously deform this framework.

complex spaces, thus the possible configurations of |V | points inCd that satisfy the system
of Equations 1.1 are called complex embeddings. Notice that in the case of complex
embeddings the system of Equations 1.1 is not relevant with the usual complex norm.
Clearly, a graph embedding is either rigid in both Rd and Cd, or flexible for both cases. We
remark that whenever we refer to complex embeddings in the case of the d−dimensional
sphere Sd, it is the set of the complex solutions of squared distance equations combined
with

d+1∑
i=1

x2u,i = 1, ∀u ∈ V (1.2)

and the embedding space shall be denoted SdC.

In fact, rigidity in Rd (or Sd) is also a generic property of the underlying graph without
taking into account the specific embedding [1, 36]. In other words a graph is generically
rigid if it is rigid for an open dense subset of embeddings ρ ∈ Rd·|V |. An important class
of generically rigid graphs are the generically minimally rigid graphs. A graph G(V,E)
is generically minimally rigid iff G is generically rigid while G − e is flexible, for every
e ∈ E. We remark that the classes of generically rigid graphs and generically minimally
rigid coincide in Rd and Sd [70]. Additionally, a graph that is generically rigid (or generically
minimally rigid) in a real space holds this property for the corresponding complex space.

A milestone theorem in rigidity theory relates a simple edge count with a necessary con­
dition for minimal rigidity.
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Theorem 1 (Maxwell [53]) A simple undirected graph G(V,E) is minimally rigid in Rd if
|E| = d · |V | −

(
d+1
2

)
and the inequality |E ′| ≤ d · |V ′| −

(
d+1
2

)
holds for every subgraph

G′ = (V ′, E ′) ⊂ G.

Maxwell’s condition corresponds intuitively to the number of vertex coordinates reduced
by the number of degrees of freedom (dof) of rigid motions (d for the translations and

(
d
2

)
for the rotations).

Maxwell’s condition is also sufficient in the plane, as proved by G.Laman in the 70s [48],
giving a full characterization for minimally rigid graphs in R2. These graphs are well­known
as Laman graphs in the bibliography, while Maxwell’s condition is called Laman’s condi­
tion. What was recently found is that this result was originally discovered (but then forgot­
ten) by H. Pollaczek­Geiringer [57, 58]. Following [35], minimally rigid graphs in R3 will be
called Geiringer graphs in this thesis, to honour her legacy.

Unlike Laman graphs, there is no full combinatorial characterization of Geiringer graphs
and this maybe constitutes the main open problem in rigidity theory. In fact, Maxwell’s
count fails as a sufficient condition in this case and higher dimensions (see Figure 1.2 for
the famous double banana counter­example). The only subclass of Geiringer graphs that
is fully characterized are the planar Geiringer graphs (Gauchy’s theorem on strictly convex
simplicial polyhedra [71]).

Figure 1.2: The double­banana graph is composed by two identical rigid components
(blue and green) that are glued to two common vertices. Although this structure satisfies
Maxwell’s condition in R3, it is not rigid: its two rigid components revolve in the space
around the implied dashed axis that passes through the common vertices.

Although minimally rigid graphs constitute the main focus of this thesis, we are also con­
cerned with another important class of rigid graphs. A globally rigid embedding is an
embedding that can have a unique realization up to isometries for the same edge lengths.
Global rigidity can also be a generic property [42] and there is a combinatorial characteri­
zation for globally rigid graphs in R2 [18], but not in higher dimensions. In any dimension,
it is possible to check if a generic framework is globally rigid using the rank of stress ma­
trices of rigidity matroids [34]. It is obvious that if a graph G(V,E) is generically globally
rigid, then every graph that has the same vertex set and a superset of its edges is also
globally rigid.
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From an algebraic point of view, Maxwell’s condition states that minimally rigid graphs can
be related with square algebraic systems, such that no subsystem is over­constrained. In
the case of the system of Equations 1.1, this can be achieved by fixing as many coordi­
nates as the dof of rigid motions for the embedding space. The methods and the results
of this thesis rely on the algebraic modelling of the minimally rigid graph embeddings with
well­constrained systems of equations. The main focus is the number of embeddings of
specific graphs up to rigid motions, which will be called simply embedding number, and
the bounds on this number for graphs with a given number of vertices.

Given a minimally rigid graph G(V,E) in Rd and a set of edge lengths λ, rd(G,λ) de­
notes the embedding number in Rd for this specific edge labelling, while rd(G) denotes
the maximal finite number of its embeddings for any generic λ ∈ R|E|

+ . In the case of Cd,
the embedding number is the same for every generic choice of λ [41, 63] and will be de­
noted cd(G). It is obvious that cd(G) serves as an upper bound for rd(G). Although these
numbers coincide in many cases (see for example [13, 24, 28]), it has been proven that
there are examples of a Laman graph such that cd(G) > rd(G) [41] . We will also denote
with rd(|V |) and cd(|V |) the maximal embedding number over all minimally rigid graphs
in Rd with |V | vertices in the real and complex case respectively. Finally, for the spheri­
cal embedding number we will use the notation rSd(G,λ), rSd(G), cSd(G), rSd(|V |), cSd(|V |)
analogously with the euclidean case.

The main problem treated in the present thesis is to reduce the gap between upper and
lower bounds of the embedding number. In the following paragraphs, we will describe the
existing work on the field, our contribution and the organization of the text.

Related work A direct application of Bézout’s bound in the system of squared distance
equations 1.1 results to O(2d·|V |) as an asymptotic upper bound for cd(|V |) (and conse­
quently for rd(|V |)), taking into account Maxwell’s condition for the cardinality of the system
of equations. This bound will be called Bézout bound in the rest of this text.

In an effort to improve the asymptotic upper bound for Laman embeddings, mixed volume
techniques have been applied [64]. The system of equations used in that case is a mod­
ified version of Equations 1, which is suitable for sparse elimination 2. This approach did
not manage to improve the (trivial) Bézout bound in the general case.

Another algebraic formulation that computes the embedding number relies on distance ge­
ometry, since the determinantal varieties of Cayley­Menger matrices can be used to spec­
ify graph embeddings. Applying a theorem on the degree of determinantal varieties[38],
the authors in [13] delivered what used to be the best known upper bound on cd(|V |):

2 ·
|V |−d−2∏
j=0

(
|V | − 1 + j

|V | − d− 1− j

)
(
2j + 1

j

) . (1.3)

2We also use this formulation and we call these systems sphere equations ­ see Section 2.2
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which also does not improve asymptotically upon the trivial bound.

Besides asymptotic upper bounds, the mixed volume bound has been used for specific
graphs, in order to give an estimate for the embedding number [28]. Although this is the
tightest upper bound [63] in general, if the comparison ignores the precise variety where
roots lie, its computation is #P­hard (by reduction from the permanent).

Remark that there exist also real algebraic bounds [10, 45] that are sharper than mixed
volume and other complex bounds for polynomials which possess suitable structure. In the
case of the embedding number, these are by far higher than the (more general) complex
bounds.

The computation of exact numbers for cd(G) is more demanding than mixed volume com­
putation. In the case of Laman graphs there exist combinatorial algorithms that count the
embedding number in both C2 and S2

C [16, 31], but it is almost infeasible to compute cd(G)
for graphs with more than 18 vertices in a desktop computer. Computations for Geiringer
embeddings have been even more difficult, since no combinatorial algorithms exist in this
case. Gröbner base solvers have been used for these computations [35], but they may
require more than 3 days for a single 11­vertex graph.

Finding the maximal number of real embeddings requires repetitive equation solving in
an effort to approach the complex embedding number cd(G) with rd(G). This problem
demands efficient sampling of the edge length constraints that are considered as param­
eters of the algebraic system. In rigidity theory, this sampling has been achieved using
coupler curves [13] and stochastic methods [24], establishing tight bounds for r2(6) and
r2(7) respectively. Let us note that the question of searching for parameters that maximize
the real solutions of a given algebraic system is a well­known problem in real algebraic
geometry. One of the most famous cases is the gradient descent method that was used
to maximize the number of real Stewart­Gough Platform configurations [22].

Let us now compare the trivial asymptotic upper bound with the existing lower bounds.
Asymptotic lower bounds on graph embeddings can be established by gluing frameworks
in order to construct arbitrary big rigid graphs [13, 35]. In the bibliography lower bounds
have been computed for the cases of Laman and Geiringer graphs. In the case of complex
spaces it has been proven that there exist Laman graphs withΩ(2.5079|V |) andΩ(3.0683|V |)
embeddings inC2 andC3 respectively [35], while in the case of spherical embeddings in S2

C
[31], while for Geiringer we have that cS2(|V |) ∈ Ω(2.5698|V |). As for real lower bound, the
existing bound on the plane and the space have been Ω(2.3003|V |) [24] and Ω(2.5198|V |)
[25, 28] respectively. A summary of these cases, comparing the existing asymptotic lower
and upper, is given in Table 1.1.

Contribution As presented above the gap between the asymptotic upper bounds and
the lower bounds is enormous. In the present thesis we develop methods to compute
efficient graph­specific upper bounds on the embedding number and we subsequently
reduce the asymptotic upper bound. We also present sampling procedures that increase
the lower bounds on the real embedding number.
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Table 1.1: Power basis of the existing asymptotic upper and lower bounds for minimally
rigid graphs in all embedding spaces treated.

embedding
space

R2 C2 S2
C R3 C3

lower bound 2.3003 2.5079 2.5698 2.5198 3.0683
upper bound 4 4 4 8 8

Initially, we propose two methods that compute the multihomogeneous Bézout (m­Bézout)
bound of algebraic systems modeling graph embeddings. These methods apply in both
euclidean and spherical cases. The first one relates this bound with the number of
outdegree­constrained graph orientation, based on a standard partition of variables. In
this context, we also present a recursive combinatorial algorithm that computes these ori­
entations. The second one uses the well­known connection between the computation of
matrix permanents and m­Bézout bounds. For that reason, we demonstrate the construc­
tion of the (0, 1)­matrix that captures the algebraic formulation we use. Then we compare
computation runtimes between these two methods and also other algorithms that compute
mixed volumes or the exact number of roots for the same algebraic systems.

Regarding the exactness of the bound, we present experimental results that compare m­
Bézout with mixed volume bounds and the actual number of complex embeddings of all
Laman and Geiringer graphs with |V | ≤ 9 vertices, and some selected Laman graphs
up to |V | = 18 and Geiringer graphs up to |V | = 12. These results show that the m­
Bézout is exact for the large majority of spherical embeddings in the case of planar Laman
graphs, while it is exact for all planar Geiringer graphs. Motivated by this observation,
we adjust Bernstein’s discriminant conditions on the exactness of mixed volume to the
case of m­Bézout bounds using Newton Polytopes whose mixed volume equals to the m­
Bézout. This method shows that an exponential number of conditions is always verified
for the specific algebraic systems reducing the number of computations required. Despite
this reduction, this number remains exponential, but based on experimental results we
conjecture that it can be eventually linear.

In the sequel we make a first attempt to reduce the asymptotic upper bound using existing
bounds on the methods described above. Direct application of the best upper bound for
orientations [30] improve the asymptotic upper bound for the subclass of planar Geiringer
graphs, while using the Brègman­Minc bound on the permanents of (0, 1)­matrices [14, 54]
we were able to decrease the asymptotic upper bound for all minimally rigid graphs in
dimensions d ≥ 5.

In order to achieve better bounds, we develop a method bounding recursively the out­
degree ­ constrained orientations of a minimally rigid graph which is related with the m­
Bézout bound [7]. For this reason, we introduce a graphical structure, pseudographs, and
we relate the orientations of minimally rigid graphs with pseudographs. Finally, we prove
that the bound of the recursive method on the orientations of pseudographs improves the
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bound on the embedding number. More precisely, in the case of Laman graphs the new
bound is in the order ofO(3.7764|V |), while in the case of Geiringer graphs it isO(6.8399|V |).

Finally, we also manage to improve lower bounds on the maximal real embedding number
in the case of R2,R3 and S2 [4]. Our goal is to find the set of edge lengths λ for a graph
G, such that the number of real embeddings for this specific set rd(G, λ) would match the
number of complex embeddings cd(G), thus maximizing rd(G). Using sphere equations
and the Cayley­Menger embeddability conditions, we applied some standardmethods that
sample parameters in order to increase real solutions of algebraic and semi­algebraic sys­
tems (sampling close to non­generic parameters, stochastic methods, cylindrical algebraic
decomposition­ CAD). Besides these methods, a new algorithm by J.Legerský (co­author
of [4]) inspired by coupler curves was used to increase themaximal number of embeddings
in the spatial case.

These methods lead to a full characterization of all minimally rigid graphs with |V | ≤ 7
up to rd(G) in the cases of R2 and R3, while in the case of S2 this characterization is
achieved for |V | ≤ 6. We also find maximal embedding numbers for selected bigger
graphs, leading to new asymptotic lower bounds. More precisely, we prove that there are
graphs with Ω(2.3780|V |) embeddings in the case of R2, Ω(2.5198|V |) embeddings in S2 and
Ω(2.6553|V |) in R3.

Organization The rest of the thesis is organized as follows. In Chapter 2 we give some
preliminaries on the construction of minimally rigid graphs and the algebraic modelling
that specifies the embeddings for a given set of edge lengths. More precisely, Henneberg
steps are described in Section 2.1. These are used to construct all minimally rigid graphs
in a given embedding space. Afterwards, in 2.2 we introduce two algebraic formulations
used to count the embedding number. The first one is variation of the squared distance
equations between adjacent vertices, that we call sphere equations. The latter uses semi­
algebraic sets derived from Cayley­Menger determinants.

In Chapter 3, we study them­Bézout bound of sphere equations. In Section 3.1 we present
two methods for its computation and subsequently we compare the runtimes of these
methods with existing computational ones that compute mixed volumes and the embed­
ding number. In Section 3.2 we study the exactness of this bound. First we present
experimental results indicating that the bound is tight for certain classes of minimally rigid
graphs. Then we develop a method that checks whether the m­Bézout bound is exact,
using Bernstein’s second theorem on the exactness of mixed volume. The results of this
Chapter are part of the joint work with I.Z. Emiris and J. Schicho and have been published
in [5].

In Chapter 4, we present certain approaches that improve existing upper bounds, using
the methods presented in the previous chapter. In Section 4.1, we apply existing bounds
in our methods that directly improve the asymptotic upper bounds for certain classes of
graphs. These results are also part of [5]. In Section 4.2, we develop a new method that
bounds degree­constrained orientations leading to new upper bounds for minimally rigid
graphs in any embedding space in Rd or Sd. This project is a joint work with I.Z. Emiris
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and R. Vidunas and its results have been accepted for publication [7].

In Chapter 5, we present the methods that led to new lower bounds on the maximal em­
bedding number in R2,R3 and Sd. These methods rely on efficient sampling of the pa­
rameter space that maximized the number of real solutions for the embedding number.
This Chapter is part of the joint work with I.Z. Emiris, J.Legerský and E.Tsigaridis. A part
of this chapter dealing with the spatial embeddings was published in the proceedings of
ISSAC 2018 [3], while the totality of the results presented here constitute the subject of a
journal publication [4]. The algorithms for the coupler curve visualization and sampling in
the spatial case were created by J.Legerský. The results for the graphs with the maximal
embedding number in R2 were also contributed independently by the same author.

Finally in Chapter 6, we give an overview of the results of the present thesis and open
questions motivated by them.
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2. PRELIMINARIES

In this chapter we present some basic concepts about the construction of rigid graphs and
the algebraic formulation used to compute the embedding number.

2.1 Henneberg construction

In general, Maxwell’s condition (Theorem 1) is not suitable to find the set (or a superset) of
all minimally rigid graphs with a given number of vertices. On the other hand, a sequence
of moves known as Henneberg steps can construct such sets of minimally rigid graphs in
Rd starting from the complete graph on d vertices Kd [66] 1.

H1 H2 H1 H2 H3x H3v

2­degree edge split 3­degree edge split X­replacement double
vertex addition in 2d vertex addition in 3d V­replacement

Figure 2.1: Henneberg steps for Laman and Geiringer graphs.

The first two moves are known as Henneberg 1 (H1) move or 0­extension and Henneberg
2 (H2) move or 1­extension or edge split. These operations add one vertex as follows
(we consider a construction regarding rigidity in dimension d, see Figure 2.1 for d = 2 and
d = 3):

• in an H1 move, the vertex added is connected with d existing vertices.

• in an H2 move, an edge is deleted in the existing graph and the added vertex is
connected with the vertices of the deleted edge and d − 1 more existing vertices
(thus the total degree of the added vertex is d+ 1).

In all dimensions H1 andH2 steps preserve rigidity andminimal rigidity: ifG∗ is constructed
by applying an H1 or an H2 move to a (minimally) rigid graphG, thenG∗ is also (minimally)
rigid. Similarly, if G is generically flexible, then an H1 or H2 move also preserves this
property.

In the case of d = 2 all minimally rigid graphs can be obtained by H1 and H2 operations,
giving one more method to characterize Laman graphs. On the other hand, these two

1Recall from Chapter 1 that minimally rigid graphs in Rd have the same property in Cd, Sd, Sd
C.
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Table 2.1: Numbers of Laman and Geiringer graphs up to the last Henneberg move and
graph planarity.

Laman graphs
n 3 4 5 6 7 8 9 10 11

H1 planar 1 1 3 11 62 491 5, 041 60, 040 791, 195
H1 non­planar ­ ­ ­ ­ 4 85 1, 917 46, 903 1, 201, 401
H2 planar ­ ­ ­ 1 3 18 122 1, 037 9, 884

H2 non­planar ­ ­ ­ 1 1 14 142 2, 152 36, 793

Geiringer graphs
n 4 5 6 7 8 9 10 11

H1 planar 1 1 1 4 12 45 221 1, 215
H1 non­planar ­ ­ 2 16 299 9, 718 527, 250 41, 907, 790
H2 planar ­ ­ 1 1 2 5 12 34

H2 non­planar ­ ­ ­ 5 61 1, 719 85, 401 6, 267, 144

moves are not sufficient to construct all minimally rigid graphs in d ≥ 3, so extended
Henneberg steps are required. These give a superset of minimally rigid graphs.

For Geiringer graphs, there is an additional step in which 2 edges are deleted and the
new vertex is connected with the the vertices of the deleted edge and 1 more existing
vertex. This is known as Henneberg 3 (H3) step (See Figure 2.1 for the 2 versions of this
move in the space, i.e. H3x and H3v steps). Let us comment that the Geiringer graphs
whose construction requires an H3 move in the last step have minimal degree 5 and no
such graph exist for any graph with n ≤ 11 vertices. It is conjectured that H1, H2 and H3
completely characterize rigid graphs in R3 [61, 66]. However, it has been proven that H3
move does not always preserve rigidity in dimension 4 [51].

We used Henneberg steps to construct sets of Laman and Geiringer graphs up to isomor­
phism (see Table 2.1), using canonical labeling as in [16, 35]. Since Henneberg moves
add a vertex with a fixed degree, we can separate the sets of graphs with the same num­
ber of vertices up to their minimal degree. So if a graph in dimension 2 has minimal degree
2, then it can be constructed with an H1 move in the last step. If the minimal degree is
3 it certainly requires an H2 move in the last step of the Henneberg sequence. This di­
vision is useful because the H1 move trivially doubles the number of embeddings, since
the new vertex lies in the intersection of d different (d − 1)­spheres. This means that we
can deduce the embedding number of a graph G in Rd with a d­valent vertex v, if we
know the embedding number of the graph G−{v}, without computing the number of solu­
tions of an algebraic system. On the other hand, computations have shown that the effect
of other Henneberg steps on the embedding number varies significantly depending on a
graph [35]. Thus, we will call minimally rigid graphs with a d­valent vertex trivial, while if
the degree of the vertices is always bigger or equal than d + 1, the graph shall be called
non­trivial.
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2.2 Algebraic Formulation

We introduce the algebraic formulations that serve to compute the embedding number
and bounds on it. Initially, we present an algebraic formulation that is based on a variant
of the squared distance equations 1.1. This formulation has been used several times in
the context of studies on rigid graphs that exploit sparse elimination techniques [28, 64].
Subsequently, we present the Cayley­Menger embeddability conditions that are related
with the vanishing or the sign of certain determinants of a distance matrix.

2.2.1 Sphere equations

The basis of the first formulation are the squared distance equations. In order to compute
the embedding number using such system we need to remove rigid motions by fixing(
d+1
2

)
coordinates yielding a 0−dimensional system. In the case of dimension 2, we may

fix both coordinates of one vertex and one coordinate of a second vertex. If these vertices
are adjacent to one edge, then the length constraint imposes only one solution for the
remaining coordinate of the second vertex up to rotations. In general, if the graph contains
a complete subgraph with d vertices v1, v2, . . . vd, then we can choose the coordinates of
this Kd graph in a way that they satisfy the edge lengths of this subgraph. These shall
be the fixed vertices, while Kd will be also called fixed. The number of (real) solutions of
the system with the fixed vertices will give the (real) embedding number of the graph for a
specific edge labelling. So, in the case of Laman graphs, we need to fix an edge, while in
3 dimensions a triangle should be fixed. Note that for the first set of graphs there is always
a K2 (edge). As for the 3­dimensional case, Geiringer graphs with no triangles (K3) are
very rare (the first one is the 10­vertex complete bipartite graph K6,4) 2.

We will transform the squared distance equations to fit some requirements of sparse elim­
ination, using an algebraic system with two sets of equations. First we define the set of
magnitude equations that introduce new variables representing the distance of each ver­
tex from the origin. Substituting the new variables to the squared distance equations, we
get the edge equations, which represent the edge length constraints between the adjacent
vertices of an edge. The algebraic system derived from the combination of these two sets
shall be called sphere equations.

Definition 1 Let G(V,E) be a simple undirected graph. We denote by λ = {λu,v | (u, v) ∈
E} the set of the (given) edge lengths and by Xu = {xu,1, xu,2, . . . xu,d} the variables as­
signed to the coordinates of each vertex. The following system of equations gives the
embeddings of G:

‖Xu‖2 = su, ∀u ∈ V \V (Kd) ,

su + sv − 2〈Xu, Xv〉 = λ2u,v, ∀ (u, v) ∈ E\E(Kd) ,
(2.1)

2The technical details of the sphere equations in the absence of Kd will be discussed in Appendix B. For
simplicity, in the rest of this manuscript we assume the existence of a Kd, unless stated otherwise.

41 E. Bartzos



Bounds on the maximal number of graph embeddings.

where 〈Xu, Xv〉 is the Euclidean inner product. We will denote the set of variables X̃u =
Xu

⋃
{su} in the euclidean case using su as the (d + 1)­th variable xu,d+1. If a vertex is

fixed, its variables are substituted with constant values. This formulation can be obviously
used in the case of embeddings on the unit d­dimensional sphere Sd using |Xu| = d + 1
coordinates and setting su = 1.

This algebraic system hasm = d·|V |−d2 edge equations and |V |−dmagnitude equations
if there is at least one subgraph Kd of G. Notice that the edges of the fixed Kd serve to
specify the fixed vertices and are not included in this set of equations, som < |E|. We will
denote the set of the complex solutions for this algebraic system S(G,λ, Kd(ρ)) ⊂ Cd·|V |

for a given embedding ρ of a complete graphKd satisfying the edge length constraints and
the set of real solutions SR(G,λ, Kd(ρ)) = S(G,λ, Kd(ρ))∩Rd·|V | for the same embedding
of Kd. Clearly cd(G) = |S(G,λ, Kd(ρ))| for any generic set of lenghts λ, while rd(G,λ) =
|SR(G,λ, Kd(ρ))|. Notice that both cd(G) and rd(G, λ) are independent of the choice for a
fixed Kd.

2.2.2 Cayley­Menger determinants

A Cayley­Menger (CM) matrix is a matrix of squared distances between n points in an
Euclidean space extended by a row and column of ones:

CM =


0 1 1 · · · 1
1 0 λ21,2 · · · λ21,n
1 λ21,2 0

. . . . . .

· · · · · · . . . . . . . . .
1 λ21,n λ22,n · · · 0

 ,

where λi,j is the distance between point i and j.

One of the main theorems in distance geometry gives the following embeddability condi­
tions for a CM matrix [12]:

Theorem 2 The squared distances of a CM matrix can be embedded in Rd iff

• rank(CM) = d+ 2

• (−1)κ det(CM ′) ≥ 0, for every submatrix CM ′ with size κ + 1 ≤ d + 2 that includes
the extending row/column.

In the case of graph embeddings, we can use a matrix with known entries and variables:
each known entry corresponds to a squared edge length, while the variables correspond
to lengths between non­edges. This results to a system of determinantal equations and
inequalities. Any solution of the semi­algebraic system is an embedding of the graph in
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Rd up to isometries, indicating that each one of these solutions correspond to 2 solutions
in the case of sphere equations since reflections are factored out in this formulation.

Considering only the solutions of the determinantal variety, we get the complex embed­
dings of the graph. The set of inequalities is related with certain geometrical constraints
on the edge lengths, such as positivity and triangular inequalities in dimension 2. In di­
mension 3, tetrangular inequalities (which are a generalization of triangular inequalities on
the area of the triangles of a tetrahedron) should be also satisfied, while in bigger dimen­
sions there are additional constraints (in this thesis only dimensions 2 and 3 are taken into
consideration with this algebraic formulation) [20].

The systems of equations of determinantal varieties are over­constrained. For exam­
ple, there are 35 equations in 10 variables for 7­vertex Laman graphs, while for 7­vertex
Geiringer graphs, there are 21 equations in 6 variables. Despite this fact, it is possible to
find 0­dimensional square subsystems of these systems of equations [24, 28].

Notice that the zero set of the whole determinantal variety corresponds to the missing
edge lengths of the complete graph. This means that the solutions of the subsystem
are restricted to a subset of the missing edge lengths. If the graph extended by the edges
corresponding to the variables of the subsystem is globally rigid, then the subsystem gives
an upper bound on the number of embeddings of the whole graph [40], since globally rigid
graphs have unique realizations (see Chapter 1).

In the cases treated in Chapter 5, square subsystems can be easily detected, if no re­
striction is imposed on the number of variables. Unfortunately, these subsystems are not
always 0­dimensional and cannot serve to find the embedding number of a graph or a use­
ful upper bound. Nevertheless, our experimental results lead to the conclusion that there
can be subsystems derived from a graphG(V,E) with |V |−(d+1) equations satisfying the
0­dimensionality condition. For the most important cases, we show that for dimensions
2 and 3 there is always an extension of a minimally rigid graph with |V | − (d + 1) edges
resulting to a globally rigid graph.

Lemma 1 For every minimally rigid graph G(V,E) in dimensions d = 2 and d = 3, there
is at least one extended graph J = G ∪ {e1, e2, .., eξ}, with ξ = |V | − (d + 1) and ei /∈ E,
which is globally rigid in Rd.

Proof: The only 4­vertex minimally rigid graph in dimension 2 (respectively 5­vertex in
dimension 3) is obtained by applying an H1 step to the triangle (resp. tetrahedron in di­
mension 3). If we extend this graph with the only non­existing edge, we obtain a complete
graph, so the lemma holds. Let the lemma hold for every graph that has less or equal ver­
tices with G|V | = (V,E). H2 steps are known to preserve global rigidity in any dimension
[18]. So we need to prove the induction for H1 steps in both dimensions and H3 steps in
dimension 3.

Let a Laman graph G|V |+1 be constructed by an H1 move applied to G|V | with |V | ver­
tices, whose extended globally rigid graph is J|V |. Without loss of generality, this move
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v1
v2

u

v|V |+1

v1
v2

v3

u

v|V |+1

R2 R3

Figure 2.2: J|V |+1 is constructed by an H1 step applied to J|V | (blue edges), extended with
the edge (u, v|V |+1). This is equivalent with applying an H2 step and adding the deleted
edge (u, v|V |+1).

connects a new vertex v|V |+1 with vertices v1, v2. Let u be a neighbour of v1 in G|V |+1

such that v2 6= u. The edge (u, v1) exists also in G|V | and J|V |. If we set J ′
|V |+1 =

(J|V |∪{(v1, v|V |+1), (v2, v|V |+1), (u, v|V |+1)})−{(v1, u)}, then J ′
|V |+1 is globally rigid, because

it is constructed from J|V | by an H2 step. Hence, J|V |+1 = J ′
|V |+1 ∪ {(u, v1)} is also globally

rigid, proving the statement in the case of H1 steps in dimension 2. The same result holds
in arbitrary dimension (see Figure 2.2 for d = 3).

Both H3x and H3v steps consist of an H2 step followed by a second edge deletion in the
existing graph and a new connection with v|V |+1 (see Figure 2.1). So, if we apply an H3
move in J|V | and subsequently add the second deleted edge, then J|V |+1 is globally rigid.
□
Even though, there are always globally rigid extentions with |V | − (d + 1) supplementary
edges, it is not always possible to find a CM subvariety corresponding to them. Such
subvarieties can be detected for all Laman and Geiringer graphs with |V | ≤ 7 vertices, but
there exist bigger graphs for which this property does not hold.

v1

v2

v3

v4

v5

v6

v7

Figure 2.3: The embeddings of the Laman graph L48H2 (grey edges) can be represented
by submatrices of CML48H2

that involve only variables corresponding to the 4 red dashed
edges. The extended graph is globally rigid. This construction can be used to find also
the spherical embeddings.

We now give some representative examples of optimal CM subsystems in the cases of
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Laman and Geiringer that are used to find lower bounds in Chapter 5. For instance, L48H2

is a 7­vertex Laman graph (see Figure 2.3), which has c2(L48H2) = r2(L48H2) = 48 and
cS2(L48H2) = rS2(L48H2) = 64 (See Section 5.2). There are 11 subsystems of this CM
variety in 4 variables, which all have exactly the same number of solutions. In the following
CM matrix, we present one of these choices involving the variables x1, x2, x6 and x7.

CML48H2
=



0 1 1 1 1 1 1 1
1 0 λ2v1,v2 x1 λ2v1,v4 x2 λ2v1,v6 λ2v1,v7
1 λ2v1,v2 0 λ2v2,v3 x3 λ2v2,v5 x4 x5
1 x1 λ2v2,v3 0 λ2v3,v4 λ2v3,v5 x6 x7
1 λ2v1,v4 x3 λ2v3,v4 0 x8 x9 λ2v4,v7
1 x2 λ2v2,v5 λ2v3,v5 x8 0 λ2v5,v6 x10
1 λ2v1,v6 x4 x6 x9 λ2v5,v6 0 λv6,v7
1 λ2v1,v7 x5 x7 λ2v4,v7 x10 λv6,v7 0


In order to compute r2(L48H2), the positive real solutions of the determinantal variety should
also satisfy the triangular inequalities.

The same extended graph is used to compute the spherical embeddings of L48H2. An
additional constraint is needed in that case, which represents the distance from the origin,
as a new column and row with ones. The determinantal subsystem is derived from the
rank condition of 3­dimensional embeddings. Elementary matrix operations can lead to a
formulation that considers the cosines of the angles between two points as matrix entries,
denoted as ηvi,vj .

CMS2(L48H2) =



0 1 1 1 1 1 1 1 1
1 0 λ2v1,v2 x1 λ2v1,v4 x2 λ2v1,v6 λ2v1,v7 1
1 λ2v1,v2 0 λ2v2,v3 x3 λ2v2,v5 x4 x5 1
1 x1 λ2v2,v3 0 λ2v3,v4 λ2v3,v5 x6 x7 1
1 λ2v1,v4 x3 λ2v3,v4 0 x8 x9 λ2v4,v7 1
1 x2 λ2v2,v5 λ2v3,v5 x8 0 λ2v5,v6 x10 1
1 λ2v1,v6 x4 x6 x9 λ2v5,v6 0 λv6,v7 1
1 λ2v1,v7 x5 x7 λ2v4,v7 x10 λv6,v7 0 1
1 1 1 1 1 1 1 1 0



∼



0 1 1 1 1 1 1 1 2
1 0 ηv1,v2 y1 ηv1,v4 y2 ηv1,v6 ηv1,v7 1
1 ηv1,v2 0 ηv2,v3 y3 ηv2,v5 y4 y5 1
1 y1 ηv2,v3 0 ηv3,v4 ηv3,v5 y6 y7 1
1 ηv1,v4 y3 ηv3,v4 0 y8 y9 ηv4,v7 1
1 y2 ηv2,v5 ηv3,v5 y8 0 ηv5,v6 y10 1
1 ηv1,v6 y4 y6 y9 ηv5,v6 0 ηv6,v7 1
1 ηv1,v7 y5 y7 ηv4,v7 y10 ηv6,v7 0 1
−2 1 1 1 1 1 1 1 0


The semi­algebraic conditions of the latter formulation, requires that any solution of the
determinantal subsystem lies in the interval [−1, 1] and that the triangular inequalities on
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the sphere are satisfied. The second is equivalent to the positivity of 2ηvi,vjηvi,vkηvj ,vk −
η2vi,vj −η

2
vi,vk

−η2vj ,vk +1 for 3 point of vertex embeddings vi, vj, vk on the sphere, where ηvi,vj
is the cosine of the angle between points i and j and can be obtained as the determinant
of a 5x5 submatrix containing both columns and rows with ones.

Our example in the 3­dimensional case is the graph G48 (see Figure 2.4). This graph
has the maximal number of embeddings among all 7­vertex Geiringer graphs (c3(G48) =
r3(G48) = 48 ­ see Section 5.2). There are 5 different square systems in 3 variables that
completely define the embeddings. We can choose one of them involving only x1, x2, x3:

CMG48 =



0 1 1 1 1 1 1 1
1 0 λ2v1,v2 λ2v1,v3 λ2v1,v4 λ2v1,v5 λ2v1,v6 x1
1 λ2v1,v2 0 λ2v2,v3 x2 x3 λ2v2,v6 λ2v2,v7
1 λ2v1,v3 λ2v2,v3 0 λ2v3,v4 x4 x5 λ2v3,v7
1 λ2v1,v4 x2 λ2v3,v4 0 λ2v4,v5 x6 λ2v4,v7
1 λ2v1,v5 x3 x4 λ2v4,v5 0 λ2v5,v6 λ2v5,v7
1 λ2v1,v6 λ2v2,v6 x5 x6 λ2v5,v6 0 λ2v6,v7
1 x1 λ2v2,v7 λ2v3,v7 λ2v4,v7 λ2v5,v7 λ2v6,v5 0


The set of real embeddings in that case is given by the solutions of the subsystem that
satisfy positivity, triangular and tetrangular inequalities.

Extending this graph with the edge (v1, v7) suffices for global rigidity. This edge corre­
sponds to the variable x1 and it is possible to get a single equation by applying resultants
in the 3x3 system of determinantal equations (see Figure 2.4).

v1

v2

v3 v4

v5v6

v7

v1

v2

v3 v4

v5v6

v7

x1

Figure 2.4: The graph G48 (grey edges). There are submatrices of CMG48 that involve
only variables corresponding to the 3 red dashed edges of the left graph. The graph G48

extended by the edge v1v7 (that corresponds to the variable x1) is globally rigid.

Since a single edge is needed to find the whole embedding, we can use only the
inequalities involving only this variable (5 triangular and 5 tetrangular inequalities instead
of 35 that involve all variables).
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3. ON THE MULTIHOMOGENEOUS BÉZOUT BOUND OF THE
EMBEDDING NUMBER

In this chapter we are concerned with the m­Bézout bound of the sphere equations (see
Definition 1). In Section 3.1 we propose two methods for computing the m­Bézout bound.
The first one is a combinatorial method relating outdegree constrained graph orientations
with this bound. The latter uses a standard formulation via matrix permanents. We also
compare the runtimes of these methods with the runtimes of algorithms that compute
mixed volumes and the embedding number.

In Section 3.2, we examine the exactness of m­Bézout bounds. Initially, we present exper­
imental results that compare these bounds with embedding numbers and mixed volumes.
Then, we present a general method to decide if the m­Bézout bound of a minimally rigid
graph is tight or not without directly computing the embeddings.

All the results of this chapter have been published in [5].

3.1 Computing m­Bézout bounds

In this section, we concentrate on the m­Bézout bound of the sphere equations of a graph
G(V,E) up to a fixed complete subgraphKd. Let us remind thatKd may not be a subgraph
of a minimally rigid graph for d ≥ 3. We will give details on the computation of the bound
in the absence of Kd in Appendix B. For the rest of this chapter, unless further specified,
Kd will denote a given complete subgraph and not all possible choices.

In order to compute the m­Bézout bound we will choose a natural partition such that each
subset of variables X̃u contains these ones which correspond to the coordinates and the
magnitude of a single vertex u. We will separate the magnitude equations from the edge
equations, since the first ones there is only one set of variables with degree 2, while in
every edge equation the degree of the u­th set of variables is always 1, resulting to the
following expansion:

∏
u∈V ′

2 · Yu
∏

(u,v)∈E′

(Yu + Yv) = 2|V |−d ·
∏
u∈V ′

Yu
∏

(u,v)∈E′

(Yu + Yv),

where V ′ = V \ V (Kd), E
′ = E \E(Kd) and Yu are symbolic parameters representing X̃u.

We remark that if v ∈ V (Kd) and (u, v) ∈ E ′, then Yv = 0, since vertex u is fixed and no
variables are assigned for it.

This means that we only need to find the coefficient of the monomial
∏
u∈V ′

Y d
u in the poly­

nomial of the product (see Theorem 15 in Appendix A for details on the m­Bézout):∏
(u,v)∈E′

(Yu + Yv) (3.1)
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Let us denote this coefficient by B(G,Kd), which is related only to the combinatorial struc­
ture of edge equations. The m­Bézout bound for the number of embeddings of a graph in
Cd up to a fixed Kd is mBe(G,Kd) = 2|V |−d · B(G,Kd). Notice that this bound is the same
for spherical embeddings in SdC.

We remark that although cd(G) is invariant under different choices of fixed Kd, the m­
Bézout bound of a graph G may vary up to this choice. Thus, one needs to compute
m­Bézout bounds up to all fixed complete subgraphs in order to find the minimal one. The
same observation holds for the BKK bound of sphere equations.

We will use graph orientations and matrix permanents to compute the bound based on
the expansion of Equation 3.1. Let us mention that matrix permanents have been already
used to bound the number of Eulerian orientations (which are graph orientations with equal
indegree and outdegree for every vertex) in [60], but to the best of our knowledge there
are no published results on the connection between matrix permanents and outdegree
constrained graph orientations in the general case.

3.1.1 A combinatorial algorithm to compute m­Bézout bounds

This subsection focuses on a method relating m­Bézout bounds for minimally rigid graphs
with graph orientations. Our method is inspired by two different approaches that charac­
terize Laman graphs. First, Recski’s theorem states that if a graph is Laman then any
multigraph obtained by doubling an edge should be the union of two spanning trees [61].
Additionally, pebble games give a relation between the existence of an orientation and
the number of constraints in a graph and its subgraphs [49]. The following theorem gives
a combinatorial method to compute the m­Bézout bound, proving that mBe(G,Kd) is ex­
actly the number of certain outdegree­constrained orientations. These orientations shall
be called valid orientations.

In the following theorem E ′ is the same as in Equation 3.1.

Theorem 3 Let G(V,E) be a minimally rigid graph in Cd that contains at least one com­
plete subgraph with d vertices. Let {v1, . . . vd} be the vertex set of such subgraph which
is the fixed Kd. By removing the edges of Kd from G, graph G′ = (V,E ′) is defined. Then
B(G,Kd) defined above is the number of outdegree­constrained orientations denote the
of G′, such that

• the outdegree of v1, . . . , vd is 0.

• the outdegree of every vertex in V \{v1, . . . , vd} is d.

Proof: By expanding the product
∏

(u,v)∈E′
(Yu+Yv), the monomial

∏
u∈V ′

Y d
u can be obtained

when each Yu from a given edge contributes exactly d times in that product. This means
that every time we shall choose one of the two sets of variables that correspond to the
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adjacent vertices of the edge represented in the parenthesis. This choice yields an orien­
tation in the directed graph and vice versa. Thus, the number of different orientations in all
edges gives us how many times this monomial will appear in the expansion, completing
the proof. □

Algorithm 1: Count graph orientations
1 Function(orient)
Input: |V | (# of vertices), E (graph edges without E(Kd)),
outdeg (desired outdegree list. If vertex u ∈ V (Kd) then outdeg[u] = 0, otherwise outdeg[u] = d).
Output: # of outdegree­constrained orientations

2 deg = vertex degrees of graph G(V,E)
/* Ending condition for the recursion */

3 if |E| = 0 then
4 return (1)

/* No valid orientations in this case */
5 if ∃u, outdeg [u] > deg [u] or outdeg [u] < 0 then
6 return (0)

/* Examine the conditions yielding unique orientations */
7 for u ≤ |V | do
8 if outdeg[u] = 0 // u admits only new indirerected edge orientations
9 then
10 for all edges (u, v) ∈ E do
11 outdeg[v] = outdeg[v]− 1
12 E′=E\{(u, v)}
13 newdeg =vertex degree of graph G′(V,E′)
14 return (orient(|V |, Enew, outdeg, newdeg))

15 else if outdeg[u] = deg[u] // u admits only new outdirerected edge orientations
16 then
17 for all edges (u, v) ∈ E do
18 outdeg [u] = outdeg [u]− 1
19 E′=E\{(u, v)}
20 newdeg =vertex degrees of graph G′(V,E′)
21 return (orient(|V |, E′, outdeg, newdeg))

/* No more unique orientations exists: set both orientations for 1st edge */
22 (u, v) = E [1]
23 outdeg1 [u] = outdeg [u]− 1
24 outdeg2 [v] = outdeg [v]− 1
25 E′=E\{(u, v)}
26 newdeg =vertex degree of graph G′(V,E′)
27 orient1=orient(|V |, E′, outdeg1, newdeg)
28 orient2=orient(|V |, E′, outdeg2, newdeg)
29 return (orient1+orient2)

This theorem gives another way to prove that an H1 move doubles the m­Bézout bound
of minimally rigid graphs. Hence, minimally rigid graphs constructed only by H1 moves
have at most 2|V |−d embeddings (actually this bound is tight, see Section 2.1).
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Corollary 1 An H1 move always doubles the m­Bézout bound up to the same fixed Kd.
Moreover, if a graph can be constructed only with H1 moves, then the m­Bézout bound
for this graph is exactly 2|V |−d.

Proof: Let B(G,Kd) be the number of outdegree­constrained orientations for a graph
G(V,E) up to a given Kd. This means that the m­Bézout bound is

mBe(G,Kd) = 2|V |−d · B(G,Kd).

Now, letG∗ be a graph obtained by an H1­move on the graphG. Since H1 adds a degree­d
vertex to G, this means that there is only one way to reach outdegree d for the new vertex
of G∗. So the outdegree­constrained orientations of G∗ up to the same Kd are exactly
B(G,Kd) and

mBe(G∗, Kd) = 2|V |+1−d · B(G,Kd) = 2 ·mBe(G,Kd).

The second statement of this corollary can be proven using the previous equality: starting
from Kd, only one orientation satisfies the requirements of Theorem 3 for each H1 move.
So, the m­Bézout bound of a minimally graph constructed only by H1 moves is 2|V |−d. □

Figure 3.1: The orientations of graphs L56 and G48. Notice that there is only one way to
direct the red edges up to the choice of Kd (dashed blue).

Let us demonstrate our method examining one Laman and one Geiringer graph.

Example 1 Here are two examples of this counting method in the case of L56 graph in di­
mension 2 andG48 in dimension 3, which are both 7­vertex graphs (see Figure 3.1). Graph
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L56 has 56 complex embeddings in the plane and 64 embeddings on the sphere, while G48

has 48 embeddings in C3 (these numbers coincide also with the maximum number of real
embeddings, see [35, 31] and Section 5.2 ). The mixed volumes of the algebraic systems
are 64 and 48 respectively.

The dashed lines indicate the fixed edges of Kd. The edge direction for any edge that
includes a fixed vertex is always oriented outwards the non­fixed vertex. This yields a
unique orientation up to the fixed Kd, which is coloured in red for both graphs. The rest
of the graph admits B(L56, K2) = 2 orientations for L56, while the number of different
orientations for G48 is B(G48, K3) = 3. So the m­Bézout bound is 27−2 · 2 = 64 for L56 and
27−3 · 3 = 48 for G48.

We have implemented a software tool in Python to count the number of orientations for an
arbitrary graph given the desired outdegrees. The basic part of this code (see Algorithm 1)
is to decide recursively which choices of direction are allowed in every step and is available
in zenodo [6].

3.1.2 Computing m­Bézout bounds using the permanent

The permanent of an m×m matrix A = (ai,j) is defined as follows:

per(A) =
∑
σ∈Sm

m∏
i=1

ai,σ(i), (3.2)

where Sm denotes the group of all permutations of m integers.

One of the most efficient ways to compute the permanent is by using Ryser’s formula [67]:

per(A) =
∑

M⊆{1,2,...,m}

(−1)m−|M |
m∏
i=1

∑
j∈M

ai,j. (3.3)

There is a very relevant relation between per(A) and the m­Bézout bound, see [26]:

Theorem 4 Given a system of algebraic equations and a partition of the variables in k
subsets, as in Theorem 15, we define the square matrix A with m =

n∑
j=1

mj rows, where

each set of variables corresponds to a block of mj rows. Let ai,j be the degree of the i­th
equation in the j­th set of variables. The columns of A correspond to the equations, where
the subvector of the i­th column associated to the j­th set of variables has mj entries, all
equal to ai,j. Then, the m­Bézout bound of the given system is equal to

1

m1!m2! · · ·mn!
· per(A). (3.4)

We will refer to A matrix as the m­Bézout matrix of a polynomial system. This implies
that in the case of minimally rigid graphs, we obtain a square m­Bézout matrix A with
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columns associated to the equations of non­fixed edges, and |V |−d blocks of d rows each,
corresponding to the non­fixed vertices. An entry ai,j is one if the vertex corresponding
to i is adjacent to the edge corresponding to the equation indexing j, otherwise it is zero.
This is an instance of a (0, 1)­permanent. Therefore Theorem 4 gives the coefficient

B(G,Kd) =

(
1

d!

)|V |−d

· per(A),

in bounding the system’s roots, since all mi = d, while n = |V | − d.

Including the effect of magnitude equations the corollary below follows.

Corollary 2 The m­Bézout bound of the sphere equations for an |V |­vertex rigid graph in
d dimensions up to a given Kd is exactly

mBe(G,Kd) =

(
2

d!

)|V |−d

· per(A), (3.5)

assuming that matrix A is the m­Bézout matrix up to Kd defined as above.

The permanent formulation for the computation of the m­Bézout bound gives us another
way to prove Corollary 1.

Corollary 3 Let G be a minimally rigid graph in Cd and AG be its (m × m) m­Bézout
matrix up to a fixed Kd. Then, for every graph G∗ obtained by an H1 operation on G, the
permanent of its m­Bézout matrix AG∗ up to the same Kd is per(AG∗) = d! · per(AG).

Proof: Without loss of generality, we consider that the last d rows of matrixAG∗ represent
the new vertex, while the last d columns of this matrix represent the edges adjacent to this
vertex, since matrix permanent is invariant under row or column permutations. The rest
of the matrix is the same as AG. This yields the following structure:

AG∗ =

(
AG A′

0 1

)
where 0 is a (d×m) zero submatrix, 1 is a (d× d) submatrix with ones and A′ the (m× d)
submatrix of the new edge columns without the new rows. It is clear from the definition of
the permanent (See Equation 3.2), that column permutations that do not include a zero
entry are counted as 1 in this sum, while if they include a zero entry the product is zero.
The only column permutations that do not include a zero entry for the d last rows are those
that are related to the d last edges, so there are d! nonzero column permutations for this
block of rows.

This means that the permutations for the other m rows exclude the last three columns, so
they are exactly per(AG) permutations in this case. Thus, per(AG∗) = d! · per(AG). □
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Since mBe(G∗, Kd) =

(
2

d!

)|V |+1−d

· per(AG∗), it follows that

mBe(G∗, Kd) = 2 ·mBe(G,Kd),

as in Corollary 1.

Let us give an example of this counting method for a minimally rigid graph.

Example 2 We use the L136 graph to provide an example for this formulation (see Fig­
ure 3.2­ other examples can be found in [6]). L136 is the 8­vertex Laman graph with the
maximal embedding number c2(G) = 136 among all Laman graphs with the same number
of vertices [16]. On S2, it has 192 complex embeddings, which is also maximum (but not
unique), since there is another graph sharing the same cS2(G).

The m­Bézout matrix AL136 for this graph for the fixed edge (v1, v2) is the following:

(v1, v4) (v1, v8) (v2, v3) (v2, v5) (v2, v7) (v3, v4) (v3, v5) (v4, v6) (v4, v8) (v5, v6) (v6, v7) (v7, v8)
x3 0 0 1 0 0 1 1 0 0 0 0 0
y3 0 0 1 0 0 1 1 0 0 0 0 0
x4 1 0 0 0 0 1 0 1 1 0 0 0
y4 1 0 0 0 0 1 0 1 1 0 0 0
x5 0 0 0 1 0 0 1 0 0 1 0 0
y5 0 0 0 1 0 0 1 0 0 1 0 0
x6 0 0 0 0 0 0 0 1 0 1 1 0
y6 0 0 0 0 0 0 0 1 0 1 1 0
x7 0 0 0 0 1 0 0 0 0 0 1 1
y7 0 0 0 0 1 0 0 0 0 0 1 1
x8 0 1 0 0 0 0 0 0 1 0 0 1
y8 0 1 0 0 0 0 0 0 1 0 0 1

and its permanent is per(AL136) = 192, which gives the m­Bézout bound since d = 2.

1v1

2v2 3 v3

4 v4

5
v56

v6

7v7

8
v8

Figure 3.2: The L136 graph. The dashed edge is the fixed one.
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3.1.3 Runtimes

The computation of the m­Bézout bounds using our combinatorial algorithm up to a fixed
Kd is much faster than the computation of mixed volume and complex embeddings. In
order to compute the mixed volume we used phcpy in SageMath [68] and we computed
complex solutions of the sphere equations using phcpy and and MonodromySolver [23]. Let
us notice that, MonodromySolver seems to be faster than mixed volume software we used
in the case of Geiringer graphs. We also compared our runtimes with the combinatorial
algorithm that counts the exact number of complex embeddings in C2 [16].

We will try to give some indicative cases for which we compared the runtimes. For exam­
ple, computing the mixed volume of the spherical embeddings up to one fixed edge for
the maximal 12­vertex Laman graph for a given fixed K2 takes around 390ms, while our
algorithm for the m­Bézout bound required 13ms. If we wanted to compute mixed volumes
up to all fixed K2 we needed 8.6s, while the m­Bézout computation took 270ms. The run­
time for the combinatorial algorithm that computes the number of complex embeddings is
6.363s for the same graph.

For larger graphs i.e. 18­vertex graphs, the combinatorial algorithm may take ∼ 17h to
compute the number of complex embeddings in C2. We tested a 18­vertex graph that did
not require more than 0.12s to compute onem­Bézout bound and 4s to compute m­Bézout
bounds up to all choices of fixed edges.

In dimension 3 our model was the icosahedron graph, which has 12 vertices. The com­
putation of the mixed volume took more than 6 days in this case, while our algorithm
needed 60ms to give exactly the same result (54,272). MonodromySolver could track all
54, 272 solutions in ∼ 1.3 hour, while Gröbner basis computations failed multiple times to
terminate.

Computing the permanent required more time compared to our algorithm. For the
icosahedron the fastest computation could be done using Maple’s implementation in
LinearAlgebra package. It took ∼ 0.96s to compute the permanent up to a given fixed
triangle with this one. On the other hand the implementations in Python and Sage took
much more time for the same graph (∼ 8m and ∼ 10m respectively).

This seems reasonable since if the total number of edge equations is m, then the combi­
natorial algorithm has to check at most 2m cases, while according to [26] the complexity
to compute the permanent using Ryser’s formula is in the order of m2 · 2m.

3.2 On the exactness of m­Bézout bounds

In this section we present experimental results and a general method that study the ex­
actness of the m­Bézout bound. Our computations use already published results on the
embedding number [35] in order to compare the m­Bézout bound with it. We also use
computations from [4] (we remind that Chapter 5 is dedicated to the results of this publica­
tion) on the mixed volumes of sphere equations systems. All the other computations are
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Table 3.1: Runtimes of different algorithms on graphs with maximal cd(G) up to |V | = 11
and up to |V | = 10 for Laman and Geiringer graphs, respectively. We compute c2(G)
by [16] and c3(G) by phcpy [8] (fails to find all solutions for |V | > 11). Also runtimes for
computing c2(G), c3(G) by MonodromySolver. We compute mixed volume (MV) by phcpy,
m­Bézout (mBe) by Maple’s permanent and our Python code [6]. Computation of the m­
Bézout and MV is up to a fixed Kd (edges or triangles).

Laman graphs
|V | combin.

c2(G)
Monodromy
Solver

phcpy
MV

Maple’s
perm.

mBe
Python

6 0.0096s 0.2334s 0.0024s 0.0003s 0.0009s
7 0.0153s 0.566s 0.006s 0.00045s 0.0012s
8 0.0276s 1.373s 0.0122s 0.00065 0.002s
9 0.066s 4.934s 0.0217s 0.0018s 0.0032s
10 0.176s 12.78s 0.043s 0.0053s 0.0045s
11 0.558s 46.523s 0.17s 0.0077s 0.0074s
12 6.36s 2m47s 0.39s 0.049s 0.013s
18 17h 5m ­ 1h 34m 24s 0.115s

Geiringer graphs
|V | phcpy

solver
Monodromy
Solver

phcpy
MV

Maple’s
perm.

mBe
Python

6 0.652s 0.141s 0.00945s 0.0002s 0.0097s
7 3.01s 0.584s 0.041s 0.001s 0.00165s
8 20.1s 2.297s 0.425s 0.0025s 0.00266s
9 2m 33s 14.97s 3.42s 0.0075s 0.006s
10 16m 1s 1m23s 1m 12s 0.08s 0.0105s
11 2h 14m 9m22s 27m31s 0.49s 0.024s
12 ­ 1h22m > 6 days 0.96s 0.06s
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part of this project (m­Bézout, spherical embeddings and some cases of graphs for which
there was no information on their embedding number). These results show that there are
some classes that the m­Bézout is a tight bound.

We also develop a method based on Bernstein’s second theorem on the exactness of
the mixed volume bound [9]. Our main goal is to reduce the number of checks on the
Minkowski sum of Newton Polytopes that are required by this theorem. We consider that
this method may be a first step to establish the existence of classes of graphs with tight
m­Bézout bounds.

3.2.1 Experimental results

We comparedm­Bézout bounds with the number of embeddings andmixed volumes using
existing results [35, 28] for the embeddings in C2 and C3. We also computed the complex
solutions of the equations that count embeddings on S2 for all Laman graphs up to 8
vertices and a selection of graphs with up to 12 vertices that have a large number of
embeddings. We remind that in general the m­Bézout bound is not unique up to all choices
of a fixed Kd. It is natural to consider the minimal m­Bézout bound as the optimal upper
bound of the embeddings for a given graph. Let us notice that we checked if the m­Bézout
is minimized when the fixed Kd has a maximal sum of vertex degrees or when the vertex
with the maximum degree belongs to the fixed Kd. There are counter­examples for both
of these hypotheses.

Mixed volume and m­Bézout bound. In all cases we checked in C3 and S2, the m­
Bézout bound up to a fixed Kd is exactly the same as the mixed volume up to the same
fixed vertices. There are some cases in C2 for which the m­Bézout bound is bigger than
the mixed volume for certain choices of K2. We shall notice that these cases do not
correspond to the minimal m­Bézout bound for the given graph (thus the minimum m­
Bézout and the minimum mixed volume are the same for these graphs).

Spatial embeddings and the m­Bézout bound. There are many Geiringer graphs for
which the bound of the sphere equations is larger than the actual number of complex
embeddings. Nevertheless, we observed that for all planar graphs (in the graph­theoretical
sense) up to |V | = 11 the number of complex embeddings is exactly the same as themixed
volume bound and therefore the m­Bézout bound, while in the non­planar case the bounds
are generally not tight. What is also interesting is that the m­Bézout bound is invariant for
all choices of fixed triangles for all planar Geiringer graphs.

Embeddings of Laman graphs and the m­Bézout bound. For Laman graphs, the m­
Bézout bound diverges from the number of actual embeddings in C2 more than in the case
of Geiringer graphs. That happens both for planar and non­planar graphs. On the other
hand the number of spherical embeddings of planar Laman graphs coincides with the
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Table 3.2: Mixed volumes, complex embedding numbers, and m­Bézout bounds for em­
beddings of Laman graphs in C2 and S2. These graphs have the maximal number of
embeddings in C2. The 12­vertex maximal Laman graph is the first non­planar in this
category.

n MV2d c2(G) MVS2 cS2(G) mBézout
6 32 24 32 32 32
7 64 56 64 64 64
8 192 136 192 192 192
9 512 344 512 512 512
10 1536 880 1536 1536 1536
11 4096 2288 4096 4096 4096
12 15630 6180 15630 8704 15630

minimum m­Bézout bound for a vast majority of cases (all planar graphs up to 6 vertices,
64/65 7­vertex planar graphs and 496/509 8­vertex planar graphs). Notice that the m­
Bézout bounds for different choices of the fixed edge are, in general, different for planar
Laman graphs.

3.2.2 Using Bernstein’s second theorem

Our computations indicate that the m­Bézout bound is tight for almost all planar Laman
graphs in S2 and all planar Geiringer graphs. Therefore, we apply Bernstein’s second the­
orem to establish a method that determines whether this bound is exact (see Appendix A
for details on the BKK bound and Bernstein’s second theorem­ Theorems 16 and 17 re­
spectively). We believe that a generalization of this method may show whether the exper­
imental results provably hold for certain classes of graphs. In this subsection for reasons
of simplicity, in all examples we will use the variables xi, yi, si and xi, yi, zi for C2 and S2 re­
spectively (instead of the notation xi,1, · · ·xi,d, si presented in Definition 1). Alsom denotes
the total number of variables.

The first step in this Section is to use Newton polytopes whose mixed volume equals to the
m­Bézout bound (see for example [63]) since they are simpler than the Newton polytopes
of the sphere equations.

Definition 2 We set êi = (0, 0, . . . , 1
i­th position

, . . . , 0) and let T ud be the simplex defined as

the convex hull of the set

{0, êd·(u−1)+1, êd·(u−1)+2, . . . , êd·(u−1)+d},

where 0 = (0, 0, . . . , 0) is the origin. Let X̃u be the u­th set of variables under a partition of
all variables, with set cardinality du = |X̃u|. Then T udu is the simplex that corresponds to the
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variables of this set. The m­Bézout Polytope of a polynomial, with respect to a partition of
the variables, is the Minkowski sum of the T udu for all u, such that each simplex is scaled
by the degree of the polynomial in X̃u.

For a multihomogeneous system, simplices T udu belong to complementary subspaces.
Then, each m­Bézout Polytope is the Newton polytope of the respective equation. For
general systems, our procedure amounts to finding the smallest polytopes that contain
the system’s Newton polytopes and can be written as Minkowski sum of simplices lying in
the complementary subspaces specified by the variable partition.

In the case of rigid graphs in Cd, every set of variables has d + 1 elements. Thus, the m­
Bézout Polytope of the magnitude equations for a vertex u is 2 · T ud+1, while the m­Bézout
Polytope of the equation for edge (u, v) is T ud+1+T

v
d+1. This implies that the Minkowski sum

of the m­Bézout Polytopes for the sphere equations of a minimally rigid graph G(V,E) is
exactly

PG =
∑
u∈V ′

(deg(u) + 2) · T ud+1,

where deg(u) is the degree of vertex u in the graph and V ′ the set of non­fixed vertices.

In general, it is hard to compute the Minkowski sum of polytopes in high dimension. But
in the case of the m­Bézout Polytopes the following theorem describes the facet normals
of PG.

Theorem 5 Let G(V,E) be a minimally rigid graph in Cd and PG be the Minkowski sum
defined above. The set of the inner normal vectors of the facets of PG are exactly

• all unit vectors êi, and

• the |V | − d vectors of the form

δ̂u =
d+1∑
j=1

−ê(d+1)·(u−1)+j = (0, 0, . . . ,−1,−1, . . . ,−1, . . . , 0),

where there are d+ 1 nonzero entries corresponding to the variables that belong to
the u­th variable set.

Proof: Since each T ud+1 belongs to a complementary subspace, PG can be seen as the
product of polytopes

∏
u∈V ′

(deg(u) + 2) ·∆d+1, where ∆d+1 is the unit (d+1)­simplex 1. The

inner normal vectors of the facets of ∆d+1 in Rd+1 are the unit vectors êi and δ̂ =
d+1∑
j=1

−êj

1The idea of using the product of polytopes is derived by a proof for the mixed volumes corresponding
to the weighted m­Bézout bound in [55]
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in Rd+1. The theorem follows since the normal fan of a product of polytopes is the direct
product of the normal fans of each polytope [74]. □
This theorem yields a method to find the H­representation of PG, in other words the poly­
tope is described as the intersection of linear halfspaces and the respective equations are
given by the theorem. In all cases where MV = mBe, the polytopes PG can be used
instead of the Newton Polytopes of the equations.

The verification of Bernstein’s second theorem requires a certificate for the existence of
roots of face systems (see Definition 10) for every face of PG, where faces range from
vertices of dimension 0 to facets of codimension 1. We propose a method that confirms
or rejects Bernstein’s condition checking a much smaller number of systems based on the
form of facet normals. For this, we shall distinguish three cases below.

The normal of a lower dimensional face can be expressed as the vector sum of facet
normals, whose cardinality actually equals the face codimension. This means that we
need to verify normals distinguished in the following three cases:

1. vector sums of one or more “coordinate” normals êi’s,

2. vector sums of one or more “non­coordinate” normals δ̂u’s,

3. “mixed” vector sums containing both êi’s and δ̂u’s.

Notice that since there are (d+ 2) · (|V | − d) different normals, in order to check all result­
ing face systems, 2(d+2)·(|V |−d) computations are required. We now examine each of these
three cases separately, in order to exclude a very significant fraction of these computa­
tions.

First case (coordinate normals). Let F = (fi)1≤i≤m be the system of the sphere equa­
tions, let the initial forms be f ê

i for some normal ê, and let F ê be the resulting face system.
We will deal with the coordinate normals case starting with an example.

Example 3 We present the equations of face system F ê1 in C2. Normal e1 corresponds to
variable x1. This means that the inner products with the exponent vectors of themonomials
in the magnitude equation f1 = x21 + y21 − s1 are 2, 0, 0. Thus, f ê1

1 = y21 − s1, excluding the
monomial x21. In the case of the edge equation f(1,2) = s1 + s2 − 2(x1x2 + y1y2) + λ21,2,
for a generic edge length λ1,2, the inner products are 0, 0, 1, 0, 0. It follows that f ê1

(1,2) =

s1 + s2 − 2y1y2 + λ21,2. If the degree of x1 in an equation fi is zero, then f
ê1
i = fi, since the

inner product of all the exponent vectors with ei is zero.

This example shows that since all x1 monomials are removed, F ê1 is an over­constrained
system that has the same number of equations as F , but a smaller number of variables.
The same holds obviously for every F êi, while for ê =

∑
i∈I

êi (where I is an index set)
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the initial forms in F ê are obtained after removing all monomials that include one or more
of the variables corresponding to the êi’s of the sum. In other words, the initial forms in
system F ê can be obtained by evaluating to zero all the variables indexed by the set I.

Lemma 2 Let ê be a sum of êi normals as described above. Now, F does not verify
Bernstein’s condition in the coordinate normals case (and has an inexact BKK bound)
due to system F ê having a toric root r′, only if F has a root r with zero coordinate for at
least one of the variables in I, such that the projection of r to the coordinates j 6∈ I equals
r′.

We can now exclude the case of sums of coordinate normals from our examination, since
it shall not generically occur, because the next lemma shows that r has no zero coordinate.

Lemma 3 The set of solutions of the sphere equations for a rigid graph generically lies in
(C∗)d·n.

Proof: We indicate by S(G,λ, Kd(ρ)) the set of complex embeddings for a rigid graph
G up to an edge labeling λ and the embedding of d fixed vertices ρ = (ρ1, ρ2, . . . ρd).
This set of embeddings is finite by definition. If there is a zero coordinate in the solution
set, there exists a vector ρ′ ∈ Cd, such that no zero coordinates belong to the zero set
S∗(G,λ, Kd(ρ + ρ′)), where ρ + ρ′ = (ρ1 + ρ′, ρ2 + ρ′, . . . ρd + ρ′). Since we want to verify
Bernstein’s condition for a generic number of complex embeddings of G, we can always
use the second set of embeddings. □
This lemma excludes a total of 2(d+1)·(|V |−d) cases when verifying Bernstein’s second the­
orem for a given algebraic system.

Second case (non­coordinate normals). In the second case, the inner product of ex­
ponent vectors with δ̂u is minimized for all variables X̃u with maximum degree. Let us give
again an example to explain this statement.

Example 4 It is an example in C2 for face system F δ̂1. The inner products for the magni­
tude equation f1 = x21+y

2
1−s1 and the edge equation f(1,2) = s1+s2−2 ·(x1x2+y1y2)+λ21,2,

λ1,2 being a generic edge length, are −2,−2,−1 and −1, 0,−1,−1, 0 respectively. So,
f δ̂1
1 = x21 + y21 and f

δ̂1
(1,2) = s1 − 2 · (x1x2 + y1y2). If the degree of a polynomial fi in the set

of variables X̃u is zero, then f δ̂u
i = fi.

The number of equations of F δ̂u equals the number of variables. Following Bernstein’s
proof on the discriminant conditions, we introduce a new system by applying a suitable
variable transformation from the initial variable vector x to a new variable vector t with
same indexing. This transformation uses an m × m full rank matrix B such that every
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monomial xα is mapped to tB·α (see [9, 19] for more details). Furthermore, |detB| = 1 so
that the transformation preserves the mixed volume of F [19].

In our case, we construct matrix B with the following properties:

B · δ̂Tu = e(d+1)·(u−1)+1,

B · êT(d+1)·(u−1)+j = ê(d+1)·(u−1)+j, ∀j ∈ {2, . . . , d+ 1},
det(B) = ±1.

The intuition behind these choices is given in Lemma 4 and its proof. This yields the
following map from variables x to new variables t:

xu,1 7→
1

tu,1
, xu,2 7→

tu,2
tu,1

, · · · , su 7→
tu,d+1

tu,1
. (3.6)

We will refer to the set of xu,1’s as the δ̂­variables of F , since the image of their exponent
vectors is the set of δ̂u’s, while the exponent vectors for the other variables remain same.
This transformation maps system F (x) to a new system F̂ (t) of Laurent polynomials in the
new variables. In the case of C2, the sphere equations are mapped as follows:

f̂u =
1

t2u,1
+
t2u,2
t2u,1

− tu,3
tu,1

, (magnitude equations)

f̂(u,v) =
tu,3
tu,1

+
tv,3
tv,1

− 2 ·
(

1

tu,1tv,1
+
tu,2tv,2
tu,1tv,1

)
+ λ2u,v (edge equations) .

The degree α(f̂ , tu,1) of a polynomial f̂ with respect to the variable tu,1 will be either zero
or negative. Let us now multiply every polynomial in F̂ (t) with each one of the monomials
t
−α(f̂ ,tu,1)
u,1 . These monomials are defined as the least commonmultiple of the denominators
in the Laurent polynomials f̂ , yielding the following system F̃ (t):

f̃u = 1 + t2u,2 − tu,1tu,3, (magnitude equations)
f̃(u,v) = tv,1tu,3 + tu,1tv,3 − 2 · (1 + tu,2tv,2) + λ2u,v · tu,1tv,1. (edge equations)

This transformation yields the necessary conditions to verify if the face systems of the
non­coordinate normals have solutions in (C∗)m. We will refer to tu,1’s as the set of δ̂­
variables of F̃ (t), while the rest should be the e­variables. Note that the transformation
gives a well­constrained system, while zero evaluations of the δ̂­variables shall result to
an over­constrained system, that should have no solutions if the bound is exact.

Lemma 4 There exists a sum δ̂ of different δ̂u normals, such that face system F δ̂ has a
solution in (C∗)m if the algebraic system F̃ (t), which is defined above, has a zero solution
for tu,1 for one or more vertices u.
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Proof: Matrix B is constructed to change the variables xu,1 to variables tu,1, for vertices
u. From the definitions of F̂ (t) and F̃ (t), it follows that given a monomial tβ in a polynomial
f̂ of F̂ (t), the inner product 〈β, B · δ̂Tu 〉 is not minimized among other monomials in f̂ if
and only if the degree of tu,1 in the respective monomial of the transformed polynomial f̃
is positive. Thus, the existence of toric solutions for the face system F δ̂u is equivalent to
existence of toric solutions for the zero evaluation F̃ (t, tu,1 = 0).

So, if F̃ (t, tu,1 = 0) has a solution in Cm such that F̃ (t, tu,1 = tv1,1 = · · · = tvk,1 = 0) has a
solution in (C∗)m, then F δ̂u+δ̂v1+···+δ̂vk has a solution in (C∗)m. □
The computational gain in this case is that, without the lemma, one would have checked
every different combination of the δ̂u’s, namely a total of 2|V |−d checks. Now, it suffices to
check only one zero evaluation for each of them, hence only |V | − d checks.

Third case (mixed normals). The third case, that includes the sums of vectors δ̂u and êi
can be also treated with the transformation F̃ (t) introduced above. Since the minimization
of the inner product is invariant for d of the d+1 variables per vertex, the non­existence of
zero solutions in F̃ (t) implies that no Fw has solutions in (C∗)m for all vectors w that are
sums of vectors δ̂u with those vectors êi for which the equality B · êTi = êi holds. In order
to proceed we need the following lemma. This shows that using d of the d + 1 êi’s of a
vertex suffices to verify if a face system of a mixed normal has solutions in Cm.

Lemma 5 Let us define a sum of normals

−δ̂u =
d+1∑
j=1

ê(d+1)·(u−1)+j ∈ Rd+1.

For every w ∈ Rm, such that w is a sum of −δ̂u and other normals outside the set
{δ̂u, ê(d+1)·(u−1)+1, . . . , ê(d+1)·(u−1)+d+1} (hence in a subspace complementary to that of
−δ̂u), the face system Fw cannot have a solution in (C∗)m.

Note that −δ̂u is the sum of d+ 1 normals in complementary subspaces.

Proof: We will treat the case of dimension d = 2 for simplicity of notation; the proof
generalizes to arbitrary d. Without loss of generality, we consider u = 1. Then w ∈
R3 × Rm−3 with w = (−δ̂1, v) and v ∈ Rm−3. The inner products of −δ̂1 with the exponent
vectors of themagnitude equation inR2 for the first coordinate are 2, 2, 1, so f−δ̂1

1 = −s. It is
obvious that now which is a sum of−δ̂1 and normals not belonging to the set {δ̂1, ê1, ê2, ê3}
defines a face system with no solutions in (C∗)m. Similarly, the inner products of −δ̂1 with
the exponent vectors of the magnitude equation f1 = x21 + y21 + z21 − 1 on S2 are 2, 2, 2, 0,
yielding f−δ̂1

1 = −1 which has no solutions in Cm. □
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Lemma 5 reveals that in order to verify the conditions of Bernstein’s theorem, we can use
the transformations F̃ (t) for all choices of d variables from every set X̃u, since there is no
need to check the cases that include the sum of all êi normals of a single vertex. This
result, combined with Lemmas 3 & 4 leads to the following corollary.

Corollary 4 There is a vector w ∈ Rm such that the face system of the sphere equations
Fw has a toric root if and only if there is a choice of δ̂­variables such that the transformed
algebraic system F̃ (t) has a zero solution in Cm for at least one δ̂­variable.

Since the first d coordinate variables xu,j are symmetric (while su variables are not), we
can exploit these symmetries excluding some choices. So, without loss of generality, we
may keep x1,1 as a δ̂­variable from variable set X1, and check all possible choices for
δ̂­variables from all other variable sets X̃u, such that u 6= 1 and u is not among the fixed
vertices.

Summary of three cases. In general, if one selects to take into consideration all pos­
sible sums of facet normals, then 2(d+2)·(|V |−d) cases should be checked. We have shown
that the category of face systems defined by a sum of coordinate normals cannot have toric
solutions, discarding 2(d+1)·(|V |−d) cases. In the two other cases, the investigation of toric
solutions can be combined using the F̃ (t) transformation. If a face system has toric solu­
tions, then in the non­coordinate normals case some δ̂­variables may have zero solutions,
while in the mixed normals case both δ̂­variables and ê­variables may have zero solutions.
A naive approach to verify these two cases would result to 2(d+1)·(|V |−d)·(2(|V |−d)−1) checks,
but using Corollary 4 one needs to verify the zero evaluations of δ̂­variables for all choices
of δ̂­variables. The latter, can be further reduced from d|V |−d to d|V |−d−1, due to the fact
that the coordinate variables are symmetric. Summarizing, when checking Bernstein’s
condition, for any of the d|V |−d−1 choices of δ̂­variable transformation that construct F̃ (t),
it suffices that |V | − d zero evaluations should be applied for each of the δ̂­variables.

Theorem 6 Bernstein’s condition can be verified in the case of the sphere equations after
checking a total of at most (|V | − d) · d|V |−d−1 face systems.

This discussion yields an effective algorithmic procedure (see Algorithm 2) to verify
whether the m­Bézout bound is exact. Function ConstructDeltaPoly takes as input the
system of the sphere equations F and a list of δ̂­variables to construct the polynomials
F̃ (t). The central role is played by function IsmBezoutOfGraphExact, which verifies if the
polynomials F̃ have zero solutions for the δ̂­variables.

Let us present two examples, further treated in the code found in [6].

Example 5 The first (and the simplest non­trivial) example we have treated is an applica­
tion of our method to the equations that give the embeddings of Desargues graph (double
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Algorithm 2: m­Bézout exactness for minimally rigid graphs
1 Function(ConstructDeltaPoly)
Input: F (sphere equations), V ′ (non­fixed vertices), L (variable indices mapped to δ̂­variables from

each partition set)
Output: F̃
/* Transformation to F̂ (t) */

2 changevars =

( ⋃
u∈V ′

{xu,L(u) 7→ 1
tu,L(u)

}
)⋃ ⋃

u∈V ′

l∈{1,··· ,d+1}\{L(u)}

{xu,l 7→ tu,l

tu,L(u)
}


3 F̂ (t) = F (changevars)

4 F̃ (t) = {}
5 for f̂ ∈ F̂ (t) do

/* α(f̂ , tu,L(u)) = (non-positive) degree of f̂ in variable tu,L(u) */

6 f̃ =
∏

u∈V ′
t
−α(f̂ ,tu,L(u))

u,L(u) · f̂

7 F̃ (t) = F̃ (t)
⋃
{f̃}

8 return (F̃ (t))

9 Function(IsmBezoutOfGraphExact)
Input: F (sphere equations), V ′ (non­fixed vertices), Conjecture (If True, only one choice of F̃ , else all

choices of F̃ )
Output: True (m­Bézout= cd(G)) or False (m­Bézout> cd(G))
/* Verification of Bernstein's condition */

10 if Conjecture=True then
/* Transformation to F̃ (t) */

11 L = [1, 1, . . . , 1] // L length = number of u ∈ V ′

12 F̃=ConstructDeltaPoly(F,V’,L)
/* Check for zero solutions of δ̂-variables (main computation) */

13 for u ∈ V ′ do
/* Check if zero evaluation has solutions using ideal of transformed face

system */
14 if F̃ (t, {tu,lu = 0}) has a solution then
15 return (False)

16 else if Conjecture=False then
17 for all choices of 1 out of d variables in every X̃u, u 6= 1 do
18 L = [1, (lu, u ∈ V ′\{1})] // always same choice for X1

19 F̃=ConstructDeltaPoly(F,V’,L)
/* Check for zero solutions of δ̂-variables (main computation). */

20 for u ∈ V ′ do
21 if F̃ (t, {tu,lu = 0}) has a solution then
22 return (False)

23 return (True)
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prism) in C2 and S2 (see Figure 3.3). The embedding number for this graph in R2 is 24 [13]
and on S2 it is 32 (see Chapter 5). They both coincide with the generic number of complex
solutions of the associated algebraic system. The m­Bézout bound for these systems is
32, hence it is inexact in the C2 case. This shall be explained by the fact that the sphere
equations in C2 have face systems of non­coordinate normals with toric roots.

1 6

23

3
2

4
4

5 5

61

Figure 3.3: Desargues graph (double prism).

The system of the sphere equations (with vertices 1 and 2 fixed) is a 12 × 12 well­
constrained system, but we can easily eliminate the linear equations obtaining an 8 by 8
well­constrained system. Subsequently, we can also fix vertex 3 up to reflection about the
edge (1, 2), obtaining finally a system of 6 polynomials in the variables {x4, y4, x5, y5, x6, y6}.

If we apply the transformation of variables mentioned above, we can construct a system
of polynomials in variables {t4,1, t4,2, t5,1, t5,2, t6,1, t6,2}, such that evaluating t4,1, t5,1 or t6,1
to zero corresponds to the face systems of δ̂4, δ̂5 or δ̂6 respectively. This is one possible
choice of δ̂­variables to construct F̃ (t). Solving these 3 different systems for every δ̂u with
Gröbner basis in Maple we find the existence of solutions in C2, indicating that the number
of complex solutions is strictly smaller than the m­Bézout bound.

In order to get nonzero solutions inC2, we need to evaluate to zero all t4,1, t5,1, t6,1 variables,
implying that the normal direction for which Bernstein’s second theorem shows mixed vol­
ume to be inexact is (−1,−1,−1,−1,−1,−1). This is a normal of a 3­dimensional face,
where the face dimension is obtained as 6­3. The normal equals the sum of 3 facet nor­
mals.

In the spherical case, no solutions exist, not only for the first choice of F̃ (t), but also for
all the other possible ones (see Algorithm 2), suggesting that the bound is tight, so the
number of spherical embeddings is 32 and equals the m­Bézout bound.

Example 6 The Jackson­Owen graph has the form of a cube with an additional edge
adjacent to two antisymmetric vertices (see Figure 3.4). This graph is the smallest known
case that has fewer real than complex embeddings, in R2 and C2 respectively [41]. The
m­Bézout bound up to the fixed edge shown in the figure is 192, while the number of
embeddings in C2 is 90. This shall be explained by a face system of mixed normals that
has toric roots.

The system of the sphere equations is 18× 18, reduced to 13× 13 after linear elimination.
The set of variables is {x3, y3, x4, y4, x5, y5, x6, y6, x7, y7, x8, y8, s8}.
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Figure 3.4: The Jackson­Owen graph

We apply the transformation of variables, resulting to a new system of polynomials in vari­
ables {t3,1, t3,2, t4,1, t4,2, t5,1, t5,2, t6,1, t6,2, t7,1, t7,2, t8,1, t8,2, t8,3}. As in the case of Desargues’
graph, the evaluation of t3,1, t4,1, t5,1, t6,1, t7,1, t8,1 to zero corresponds to the face systems
of δ̂3, δ̂4, δ̂5, δ̂6, δ̂7, δ̂8 respectively.

We found a solution following zero evaluation of all δ̂­variables of F̃ (t) and t8,3. The normal
direction is (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1, 0) ∈ R13. This is an example
for the mixed normals case, the normal being a sum of one êi and all 6 δ̂u’s.

Another way to apply our method is the computation of a suitable resultant matrix for
a given over­constrained system, which follows from evaluating some variable to zero.
It is obvious that if the system has any solutions, the rank of the resultant matrix with
sufficiently generic entries is strictly smaller than its size, otherwise it has full rank,
assuming we have a determinantal resultant matrix. We have used multires module
for Maple [15] to examine the existence of solutions, repeating the previous results.
However, these tools seem to be slower than other techniques which directly compute
the embedding number.

In all our experimental computations, the existence of zero solutions of only one choice of
F̃ (t) (and not all d|V |−d−1) suffices to verify Bernstein’s conditions. Therefore, we state the
following conjecture:

Conjecture 1 The conditions of Bernstein’s second theorem for the system of the sphere
equations F are satisfied if and only if the system F̃ (t) has solutions for every zero eval­
uation of the δ̂­variables.

If Conjecture 1 holds, then one only needs to check |V |−d face systems that correspond to
the zero evaluations of F̃ (t) for each one of the δ̂­variables, instead of the (|V |−d)·d|V |−d−1

face systems indicated in Theorem 6. Algorithm 2 includes the option to consider the
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Conjecture 1 to be either True or False. The first option takes into consideration only
one choice of δ̂­variables, while in the second one all different choices of δ̂­variables are
checked, as in Theorem 6.
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4. UPPER BOUNDS ON THE EMBEDDING NUMBER OF MINIMALLY
RIGID GRAPHS

In this Chapter we present methods that improve the upper bound of the embedding num­
ber for minimally rigid graphs. Unless specified alternatively, we consider the case of
minimally rigid graphs in Cd that have at least one complete subgraph Kd for the com­
putation of the bounds. The asymptotic order of these bounds applies in the absence of
such subgraph as well.

In Section 4.1 we use existing bounds that improve the upper bounds for d ≥ 5 and planar
Geiringer graphs. Subsequently, in Section 4.2 we develop a method that bounds the
number of outdegree constrained orientations and leads to better bounds in all dimen­
sions. We summarize the asymptotic upper bounds of this Chapter in Table 4.1, juxtapos­
ing the classic Bézout bound to the results of our methods.

The results of Section 4.1 have been published in [5], while the results of Section 4.2 have
been accepted for publication [7].

Table 4.1: Power basis of asymptotic upper bounds for minimally rigid graphs in Cd: the
first line contains the bounds derived in Section 4.1 applying Brègman­Minc bound (B­M),
while the second those presented in Section 4.2 (pseu.), and Béz. corresponds to the
trivial Bézout bound.

d 2 3 4 5 6 7 8 9

B­M 4.8990 8.9442 16.733 31.749 60.795 117.17 226.89 441
pseu. 3.7764 6.8399 12.686 23.899 45.533 87.469 168.90 327.45
Béz. 4 8 16 32 64 128 256 512

4.1 Application of existing bounds on permanents and orientations

In this Section we make use of both methods presented in Chapter 3 for the m­Bézout
computation. Applying directly bounds on (0, 1)−matrix permanents (the Brègman­Minc
bound) and planar graph orientations, we improve upon the Bézout bound of the embed­
ding number for certain classes of minimally rigid graphs.

First, we make use of the following proposition on the asymptotic bounds for the orienta­
tions of planar graphs in order to improve the asymptotic upper bound of planar Geiringer
graphs, which are the only fully characterized class of minimally rigid graphs in 3d space,
and hence of special interest.
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Proposition 1 (Felsner and Zickfeld [30]) The number of outdegree constrained orien­
tations of a planar graph is bounded from above by

2|V |−4 ·
∏
u∈I

(
2−deg(u)+1 ·

(
deg(u)

outdeg(u)

))
(4.1)

where I is an independent set of the graph, deg(u) and outdeg(u) are respectively the
degree and the outdegree of a vertex u. Furthermore, in the case of outdeg(u) = 3 this
bound asymptoticaly behaves as 3.5565|V |.

Given the relation between m­Bézout bounds and graph orientations (see Theorem 3),
this proposition leads to the following improvement upon the asymptotic upper bound for
the number of embeddings of the subclass of planar Geiringer graphs.

Theorem 7 Planar Geiringer graphs have at most O
(
7.1131|V |) embeddings.

Notice that planar Geiringer graphs are edge graphs of simplicial polyhedra [33], so there
are always triangle subgraphs for them.

We also employ the permanent to obtain asymptotic improvement upon Bézout’s asymp­
totic bound for d ≥ 5 by using the following bound.

Proposition 2 (Brègman [14], Minc [54]) For a (0, 1)­permanent A of dimension m, it
holds:

per(A) ≤
m∏
j=1

(νj!)
1/νj , (4.2)

where νj is the sum of the entries in the j­th column (or the j­th row).

This leads to the following result.

Theorem 8 For d ≥ 5 the Bézout bound is strictly larger than the m­Bézout bound given
by Equation (3.5) for any fixed Kd.

Given a fixed dimension d, the asymptotic upper bound derived from the Brègman­Minc
inequality is

O

(2 · √(2d)!

d!

)|V |
 .

Proof: In this proof Bed(|V |) and mBed(|V |) denote the Bézout and the maximal m­
Bézout bound of minimally rigid graphs in Cd with |V | vertices respectively. Since the
number of edge equations for minimally rigid graphs with |V | vertices is |V | · d − d2, the
Bézout bound is

Bed(|V |) = 2|V |·d−d2 .
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The sum of columns for the permanent that computes the m­Bézout bound is νj = d for
the edges that include one fixed vertex and one non­fixed vertex and νj = 2d for these that
include two non­fixed vertices. We denote these sets of edges Ef. and En.f. respectively.
Applying the Brègman­Minc bound and Equation (3.5) we get

mBed(|V |) ≤
(
2

d!

)|V |−d

·
Ef.∏
i=1

(d!)1/d
En.f.∏

(2d!)1/2d ≤

(
2 ·
√

(2d)!

d!

)|V |−d

. (4.3)

Combining these bounds we get a sufficient condition for Bed(|V |) > mBed(|V |):

2|V |·d−d2 >

(
2 ·
√
(2d)!

d!

)|V |−d

⇔ 22d−2 · (d!)2 > (2d)!

Robbins’ bound on Stirling’s approximation [59] yields the following:
√
2π · dd+1/2 · e−d · eR− < d! <

√
2π · dd+1/2 · e−d · eR+ ,

where R+ =
1

12d
and R− =

1

12d+ 1
. We now derive the following inequalities:

22d−2 · (d!)2 > 22d−2 · 2π · d2d+1 · e−2d · e2R−

>
√
2π · 22d+1/2 · d2d+1/2 · e−2d · eR+/2 > 2d!

that lead to a sufficient condition for Bed(|V |) > mBed(|V |) to hold:
√
d >

4√
π
· eR+/2−2R− , (4.4)

which is true for every integer d ≥ 5.

Additionally, inequality (4.3) leads directly to the asymptotic bound

mBed(|V |) ∈ O

(2 · √(2d)!

d!

)|V |
 (4.5)

for any given d. □
Obviously the asymptotic bound works also in the absence of Kd, since in the worst case
there will be d− 2 additional non fixed edges, so the exponent in Inequality 4.3 would be
|V | − 2 and the asymptotic order would be the same (See Appendix B).

4.2 A new method to reduce the upper bounds of the embedding number

In this section we develop a method to improve the upper bound on the embedding num­
ber of minimally rigid graphs. We introduce a graph structure that inherits some of the
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properties of minimally rigid graphs, which we call pseudographs. Then, we apply an iter­
ative method that eliminates a vertex or a path in each step, while maintaining some basic
properties of the pseudograph. This is used initially to bound the number of orientations
for connected pseudographs with fixed outdegree equal to 2, since these orientations are
related with the m­Bézout bound of sphere equations for Laman graphs improving the ex­
isting upper bounds. In the sequel, we generalize this method for minimally rigid graphs
in bigger dimensions. Finally, we derive general asymptotic formulas for our method.

4.2.1 Pseudographs and orientations with fixed outdegree 2.

We define the following graphical structure generalizing that of a graph.

Definition 3 A pseudograph L(V,E,H) is a collection, where V is a set of vertices, E is
a set of edges called normal edges, each incident to two vertices in E, and H is a set
of edges called hanging edges, each with a single endpoint in U and directed out of the
vertex1. Moreover, the graph G(V,E) is called normal subgraph. If the normal subgraph
is connected, then L is a connected pseudograph.

Let the total degree p of a vertex v denote the total number of (normal and hanging) edges
incident to v. Let h denote the hanging degree of v, which is the number of hanging edges
incident to v, while the number of normal edges incident to v is its normal degree and
equals p− h. The extended degree of v is the pair (p, h).

4 4

3 3

5
5

6
6

11
22

Figure 4.1: A pseudograph with 6 vertices. The extended degrees are the following:
(3, 1) for vertices 1, 2, 4, 5, (3, 0) for vertex 6, and (4, 1) for vertex 3.

We shall consider orientations of a pseudograph L defined by specifying a direction on
every normal edge, while by definition hanging edges are directed out of their unique
vertex. Pseudograph orientations refer to the orientations of pseudographs. We count
pseudograph orientations with fixed outdegree 2 for all vertices: we call these orientations
valid. Clearly, if a vertex has a hanging edge, one more edge should be directed out of it,
while if it has hanging degree 2, all its normal edges should be in­directed. A pseudograph

1Hanging edges are reminiscent of ”directed loops” in hypergraphs [65]; ”half­edges” also have a single
endpoint.
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containing a vertex with extended degree (p, h), such that p < 2 or h > 2, has no valid
orientations.

We now prove the following necessary condition for the existence of a valid orientation of
a pseudograph (which resembles Maxwell’s count).

Proposition 3 Let L(V,E,H) be a pseudograph with a valid orientation. Then |H|+ |E| =
2|V |.

Proof: |H|+ |E| is the sum of outdegrees over all edges; 2|V | equals the sum of outde­
grees over vertices. □

4.2.2 Iterative elimination

Now we present the basic graphical operations used to reduce the size of a connected
pseudograph. We specify an iterative elimination process comprised of a sequence of
steps, with the requirement that the pseudograph stays connected. We shall distinguish
two types of steps, depending on the extended degree of the vertex, or of the vertex path to
be eliminated. The process terminates when the current pseudograph’s normal subgraph
is a tree; see details in Proposition 6.

(a) (b)

Figure 4.2: Elimination of a vertex with extended degree (a) (3, 0), encountered in vertex
elimination, or (b) (3, 1), encountered in path elimination. In (a) there are 3 choices for
eliminating edges, resulting in 3 different pseudographs; in (b) there are 2 choices.

Let us detail the two types of elimination steps.

The first type eliminates a single vertex v with extended degree other than (3, 1). Let
L(U, F,H) be a pseudograph: We choose to eliminate two edges incident to v (Fig­
ure 4.2a), thus maintaining the total edge count of Proposition 3. If v is incident to h ≤ 2
hanging edges, these must be eliminated. Since the outdegree of v equals 2 in a valid
orientation of L, there are 2 − h ≤ 2 normal edges incident to v that get eliminated. All
edges that are not eliminated become hanging in the new pseudograph, and correspond
to edges directed towards v for a valid orientation of the initial pseudograph.
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Figure 4.3: Two choices after eliminating a (3, 1)­path of length ℓ = 3 respecting the edge
count; ℓ− 1 hanging edges get eliminated.

The second type eliminates a path of ℓ ≥ 2 consecutive vertices, all of extended degree
(3, 1) (Figure 4.3); we avoid single (3, 1) vertex elimination because that would yield a
looser bound. Edges are eliminated similarly as before, namely we eliminate the ℓ hang­
ing edges (one per vertex) and another ℓ normal edges incident to path vertices, thus
eliminating 2ℓ edges. After eliminating the path, there are two choices for the normal edge
that remains; in either case, it becomes hanging (Figure 4.2).

Now, we introduce two parameters for controlling the elimination process, namely the cost
and the hanging edge equilibrium.

In every elimination step, there are several ways to choose the edges that remain in the
new pseudograph. The number of choices corresponds to different pseudographs with
valid orientations; their number is defined to be the cost of the step.

Remark 1 The product of the costs of all steps in the elimination process bounds the
number of valid orientations of the initial pseudograph. In other words, the cost expresses
the quotient of the valid orientations of the original graph over the maximum number of
valid orientations of the resulting graphs.

In the proposition that follows, we show that, for vertex elimination, the cost is determined
by the extended degree of the eliminated vertex, while for path elimination, the cost always
equals 2.

Another important quantity in the elimination is the hanging edge equilibrium, defined as
the difference between hanging edges in the resulting pseudograph and the original one.

Proposition 4 Let v be a vertex with extended degree (p, h), then the cost and the hanging
edge equilibrium of the elimination step are given by(

p− h

2− h

)
, and p− h− 2

respectively. In the case of path elimination, for a path of length ℓ, the cost is 2 and the
hanging edge equilibrium is 1− ℓ.
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Proof: Recall that at vertex elimination, two edges are eliminated and, when there are
hanging edges, these are eliminated first. So 2− h edges are left to be eliminated among
the p− h normal edges of the vertex, which yields the cost of this step. Since 2− h edges
were eliminated, the number of the new hanging edges is p− h− (2− h), while the initial
number of hanging edges was h. Their difference yields p− h− 2.

Let us view path elimination as a sequence of vertex eliminations. Then, eliminating the
first vertex has cost 2. Each following vertex now has degree (2, 1) or (3, 2), hence its
elimination cost is 1. Therefore the overall cost is 2 because it equals the product of all
costs. As for the hanging edge equilibrium, the path contains ℓ hanging edges and, after
the elimination step, one remains. □
If the iterative process continued up to the exhaustion of vertices and, moreover, all cases
were as in Figure 4.2(a), there would be O(3|V |) orientations which, by Theorem 3, yields
a bound of O(6|V |) on Laman embeddings. However, our process is defined to terminate
earlier; see Proposition 6.

4.2.3 Bounding the number of valid orientations

In this subsection, by applying the process described above, we bound the number of valid
orientations of connected pseudographs. In the sequel, n denotes the number of vertices
of a connected pseudograph and k the total number of its hanging edges.

We first prove that there is always an elimination process that keeps the pseudograph
connected. For this, we recall the definition of a block­cut tree [37, Chapter 4]. Recall that
a cut­vertex is such that its removal increases the number of connected components in
the graph and a biconnected component is a maximal subgraph with no cut vertices 2.

Definition 4 (Harary [37]) Let G(V,E) be any graph. Let also bc(G) be the graph such
that:

• This graph has a vertex for each biconnected component, and for each cut­vertex
of G.

• There is an edge in bc(G) for each pair of a biconnected component in G and a
cut­vertex that belongs to that block.

If G is connected, then bc(G) is a tree and is called block­cut tree of G.

Following Definitions 3 and 4, block­cut trees can be used in the case of normal subgraph
G(V,E) of a connected pseudograph L(V,E,H) (Figure 4.4).

We can now prove the following statement, which allows us to use the bound in Expres­
sion (4.7).

2In [37, Ch. 3] these subgraphs are called blocks; ”biconnected component” is used equivalently, e.g.
[43, Ch. 8].
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B1

vc

lu,c
uc

B2

B3

B1

vc

lu,c

uc

B2B3

L(V,E,H) bc(G)

Figure 4.4: A pseudograph L(V,E,H) and the block­cut tree of its normal subgraph
G(V,E).

Proposition 5 Given a connected pseudographL(V,E,H), there is always an elimination
process where, in each step, we either eliminate a vertex with extended degree other than
(3, 1), or we eliminate a (3, 1)­path with length at least 2, so that the resulting pseudograph
remains connected.

Proof: If there is a non­cut vertex with degree other than (3, 1), then it can be eliminated
and the proposition holds.

We now show that, if all vertices in L with degree other than (3, 1) are cut­vertices, then
there are at least two adjacent (3, 1)­vertices that can be eliminated keeping the pseudo­
graph connected (an example is shown in Figure 4.4). Since L is connected, its normal
subgraph G is connected as well, and there exist non­cut vertices in G; their extended
degree must equal (3, 1).

From the definition of block­cut trees, the leaves of bc(G) represent biconnected compo­
nents inG. In these components, all vertices but one are non­cut vertices, and their normal
degree is 2, since their extended degree is (3, 1). If such biconnected component had only
one non­cut vertex, then this vertex would have normal degree 1. This means that there
are at least two such vertices in a biconnected component of L and, since their normal de­
gree equals 2, there exists a path containing ℓ ≥ 2 such vertices, denoted (v1, . . . , vℓ). This
path can be eliminated and the resulting pseudograph remains connected; more precisely,
we may eliminate successively each vi, thus making vertex vi+1 have normal degree 1.

This completes the proof. □
Concerning the termination condition of our process, we establish the following for a con­
nected pseudograph whose normal subgraph is a tree.

Proposition 6 Let L(V,E,H) be a connected pseudograph such that G(V,E) is a tree.
Then

1. The number of valid orientations for L is either 1 or 0;

2. If L has a valid orientation, then k = n+ 1;
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where n = |V | and k = |H|.

Proof: SinceG(V,E) is a tree, we can always eliminate a vertex of normal degree 1 from
our pseudograph. This means that p − h = 1, so using the formulas of Proposition 4 it
is obvious that, if there is a valid orientation, then this is unique. If it does have a valid
orientation, then from the total edge count in Proposition 3, we deduce |E| + k = 2 · n.
Since G is a tree, we substitute |E| = n− 1 in this formula, concluding the proof. □
Let P (n, k) denote the maximal number of valid orientations for all connected pseudo­
graphs with n vertices and k hanging edges. Let us recall the Brègman­Minc bound and
the connection between permanents, constrained orientations, and the bound of Laman
graphs as discussed in Chapter 3 and in [5], where it was established that:

P (n, k) ≤ (2!)k/2 (4!)(2n−k)/4 · (2)−n ≈ 2.4495n · 0.6389k. (4.6)

We therefore seek upper bound estimates of the form

P (n, k) ≤ ζn εk (4.7)

for real ζ, ε > 0 and k, n ≥ 1.

Proposition 6 implies P (n, n+ 1) = 1 for every n ≥ 1; this is the base case in Theorem 9.
Proposition 5 precludes that multiple connected components be formed, thus leading to
the theorem’s inductive proof. Additionally, Propositions 3 and 6 establish that k ≤ n + 1
for any connected pseudograph with at least one valid orientation. Indeed, k > n + 1
implies the normal subgraph has < n− 1 edges so cannot be connected.

We modify the form of the bound in Inequality (4.7) to P (n, k) ≤ ζn εk−1, with ζ, ε > 1. The
modification is justified in the proof below.

Theorem 9 The number of valid orientations for a connected pseudograph is bounded
above by

P (n, k) ≤ ζn · εk−1,

where ζ = 241/5 and ε = 18−1/5.

Proof: We prove the statement by induction on n, k. The statement is true for the base
cases n = 1, k = 2, which a pseudograph consisting of exactly one (2, 2) vertex, and also
for trees with k = n + 1, since P (n, n + 1) = 1 (Proposition 6), because ζε > 1. In these
cases the pseudograph has 1 or 0 orientations, representing a termination condition. If
the exponent of ε were k, the statement would fail for small trees.

From Propositions 3 and 6, if a connected pseudograph has k > n hanging edges, either
it is a tree, or it has no valid orientations. So we assume pseudograph L, with n > 1
vertices, has k ≤ n hanging edges. Suppose it has a vertex v of extended degree (p, h),
such that:

77 E. Bartzos



Bounds on the maximal number of graph embeddings.

1. (p, h) 6= (3, 1), and

2. elimination of v and its incident edges keeps the pseudograph connected.

Since the number of valid orientations of L is bounded by the cost of the elimination pro­
cess (Remark 1) and the hanging edge equilibrium is p− h− 2, the number of valid orien­
tations after eliminating this vertex is bounded by(

p− h

2− h

)
P (n− 1, k + p− h− 2).

By the induction assumption, this is bounded by C(p, h) ζnεk−1, where

C(p, h) =

(
p− h

2− h

)
ζ−1ε p−h−2.

We now prove that C(p, h) ≤ 1, for p ≥ 2 ≥ h ≥ 0, and (p, h) 6= (3, 1). Direct substitution
gives

C(p, h) =

(
p− h

2− h

) (
2h−p−1 32h−2p+3

)1/5
.

Note that:

• C(2, 0) = 24−1/5 < 1, C(3, 0) = (9/16)1/5 < 1, C(4, 0) = 1, and the C(p, 0) for p > 4
are decreasing with p as follows:

C(p+ 1, 0)

C(p, 0)
=

(
1 +

2

p− 1

)
ε < 1, for p ≥ 4. (4.8)

• C(2, 1) = (3/4)1/5 < 1, C(4, 1) = (9/16)1/5 < 1, and the C(p, 1) for p > 4 are decreas­
ing with p as follows:

C(p+ 1, 1)

C(p, 1)
=

(
1 +

1

p− 1

)
ε < 1, for p ≥ 4. (4.9)

• C(3, 2) = (3/4)1/5 < 1, and the C(p, 2) for p > 3 are strictly decreasing with p, as the
binomial factor equals the constant 1.

C(2, 2) is immaterial since (2, 2) is a base case corresponding to a pseudograph with a
single vertex and k > n.

An induction step is proven under the assumptions (i)–(ii). Incidentally, C(3, 1) =
(4/3)1/5 > 1, which is why we avoid eliminating this type of vertices in a vertex elimination
step.

If assumptions (i)–(ii) fail, we can eliminate a path of (3, 1)­vertices keeping the pseudo­
graph connected by Proposition 5.
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Let ℓ ≥ 2 denote the number of vertices in the eliminated path. Then, the number of
orientations of L is bounded by

2P (n− ℓ, k − ℓ+ 1),

which, by induction, is bounded by

2 ζn−ℓεk−ℓ =

(
3

4

)(ℓ−2)/5

ζnεk−1 ≤ ζnεk−1.

The bound is proven. □

4.2.4 A new upper bound on the embedding number of Laman graphs

This subsection combines the above discussion so as to establish a new upper bound on
the number of embeddings for Laman graphs.

Let G(V,E) be a Laman graph and a fixed edge e = (v1, v2) ∈ E. Let also LG,e(V ′, E ′, H)
be a collection such that V ′ = V \{v1, v2}, E ′ = {e′ ∈ E : v1, v2 /∈ e′} and H is the set of all
edges incident to one fixed vertex and one non fixed­vertex. Then LG,e is a pseudograph
that may contain one or multiple connected components; in Figure 4.5, this construction
leads to a pseudograph with two connected components. Remark that the number of
vertices n of LG,e is related to the number of vertices of G by n = |V | − 2.

Figure 4.5: After removing a fixed edge (vertical dashed blue) from a Laman graph, one
gets a pseudograph with 2 connected components.

A different choice of a fixed edge may result in different pseudographs, for a given Laman
graph, while different Laman graphs may result in the same pseudograph, see Figure 4.6.
This happens because any pseudograph representation lacks the information on connec­
tions with specific vertices of the fixed edge.

From the construction of LG,e it follows that, when it is connected, its number of valid
orientations equals that of its constrained orientations defined in Theorem 3. This bound
is always positive, since it corresponds to well­constrained algebraic systems. If LG,e has
µ > 1 connected components L1, . . . ,Lµ, then the total number of valid orientations of
LG,e equals the product of valid orientations per connected component Li. This leads to
the following corollary, which distinguishes components with one vertex in order to exploit
Maxwell’s count.

Corollary 5 Let G(V,E) be a Laman graph and LG,e constructed as described above.
Let µ′ be the number of connected components of LG,e with more than one vertex, and
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(a) (b)

Figure 4.6: (a) Two Laman graphs, Desargues’ and K3,3, both resulting in the same
pseudograph for some fixed edge. (b) Choosing a different fixed edge for Desargues’
graph results in a different pseudograph.

n the number of its vertices. Then, the number of constrained orientations, defined in
Theorem 3, is bounded above by

24n/5 · 18−(k′−µ′)/5,

where k′ is the total number of hanging edges in the components of LG,e with more than
one vertex.

Proof: Recall that n = |V | − 2. Let n1, n2 . . . nµ′ and k1, k2 . . . kµ′ be respectively the
numbers of vertices and of hanging edges per connected component with strictly more

than one vertex. The bound follows from Theorem 9, since n ≥
µ′∑
i=1

ni and k′ =
µ′∑
i=1

ki. □

Lemma 6 Let G(V,E) be a Laman graph, and LG,e, k′ and µ′ as above. Then k′ ≥ 3µ′.

Proof: Let Li(Vi, Ei, Hi) be a connected component of LG,e with ki hanging edges. The
normal subgraphGi(Vi, Ei) is a subgraph of a Laman graph. If |Vi| ≥ 2, by Maxwell’s count
we have |Ei| ≤ 2 · |Vi| − 3 therefore ki ≥ 3. □
Now we are ready to prove the new upper bound for Laman graphs.

Theorem 10 Let G(V,E) be a Laman graph. Then the number of its embeddings in C2

(and S2) is bounded from above by

18−2/5 ·
(
4 · (3/4)1/5

)|V |−2
= O

(
3.7764|V |) .

Proof: Applying k′ ≥ 3µ′ from Lemma 6 in Corollary 5, the number of valid orientations
is bounded by 24n/5 · 18−2/5, for n ≥ 2, since either the number of connected components
with more than one orientation is µ′ ≥ 1, or there is a single valid orientation. By doubling
this bound and applying Theorem 3, the upper bound follows. For n = 1, Lemma 6 does
not apply; there is trivially one orientation and the bound is 2. □
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4.2.5 Geiringer graphs and higher dimensions

This subsection extends the method of the previous section to orientations of connected
pseudographs with fixed outdegree d ≥ 3, and subsequently establishes new upper
bounds on the embedding number of minimally rigid graphs in Cd (and Sd), for d ≥ 3.

Let Pd(n, k) denote the maximal number of orientations with fixed outdegree d for con­
nected pseudographs with n vertices and k hanging edges. As before, we seek bounds
of the form

Pd(n, k) ≤ ζnd · εk−1
d

for each d. For a fixed outdegree d ≥ 3, the elimination steps consist of:

• Eliminating single vertices of extended degree (p, h), with p ≥ d ≥ h ≥ 0, and

(p, h) 6= (d+1, d− 1); then the number of valid orientations is bounded by
(
p− h

d− h

)
·

Pd(n− 1, k + p− h− d).

• Eliminating paths of length ℓ ≥ 2 with (d+1, d−1)­vertices; then the number of valid
orientations is bounded by 2 · Pd(n− ℓ, k − (d− 1)ℓ+ 1).

If we replace (3, 1)­paths in Proposition 5 by (d + 1, d − 1)­paths, we have an analogous
result, since (d + 1, d − 1)­vertices have normal degree 2. This implies that there is al­
ways an elimination process preserving connectivity. Moreover, the necessary count in
Proposition 3 is generalized to |E|+ |H| = d · |V | for every pseudograph L(V,E,H) with at
least one orientation with fixed outdegree d; such orientations extend the notion of validity
beyond d = 2.

An immediate consequence is that, if a connected pseudograph has a tree as normal
subgraph and also has an orientation with fixed outdegree d, then it holds that (d−1) ·n =
k − 1 which is our base case, generalizing Proposition 6.

Figure 4.7: Elimination of a (4, 2)­path (with length ℓ = 2) in the case of orientations with
fixed outdegree 3. This elimination is analogous to that in Figure 4.3.

In the following theorem we establish an upper bound on Pd. If d = 2, then ζ2, ε2 are
evaluated as in Theorem 9. Here, elimination of single vertices of extended degree (d, d)
and (d + 1, d − 1) are excluded from our analysis. The first case because it is one of the
base cases, as a pseudograph with exactly one vertex, and the latter because only path
elimination with length ℓ ≥ 2 is considered for these vertices.
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Theorem 11 The maximal number of orientations with fixed outdegree d for a connected
pseudograph is bounded from above by

Pd(n, k) ≤ ζnd · εk−1
d

for the following choices of ζd and εd:

ζd = max
p≥d

(
2p−d

(
p

d

)2d−3
) 1

2p− 3
, (4.10)

and

εd =

(
2

(
p

d

)−2
) 1

2p− 3
(4.11)

for the value of p that maximizes ζd.

Proof: The single vertex elimination step and the path elimination step result in the fol­
lowing inequalities:

ζd ε
d+h−p
d ≥

(
p− h

d− h

)
(4.12)

for all (p, h) 6∈ {(d+ 1, d− 1), (d, d)} with p ≥ d ≥ h, and

ζℓd ε
dℓ−ℓ−1
d ≥ 2 (4.13)

for all ℓ ≥ 2. In the second case the equalities are achieved with ζd = 2d−1, εd = 1/2 for all
ℓ. The same (ζd, εd)­point gives equality in (4.12) for (p, d) ∈ {(d, d− 1), (d+ 1, d)}.

By taking the logarithm, (4.12) and (4.13) become linear in the (ln ζd, ln εd)­plane. The
corresponding lines have negative slope and contain point ((d − 1) ln 2,− ln 2); the one
defined by (4.13) for ℓ = 2 is closest to the vertical. So the corresponding inequalities are
dominated for ζd ≤ 2d−1 by (4.13) with ℓ = 2.

Our key observation is that (4.12) for a relevant pair (p, h) is satisfied if:

1. The same inequality is satisfied for the shifted p→ p+ 1, h→ h− 1, giving

ζd ε
d+h−p−2
d ≥

(
p− h+ 2

d− h+ 2

)
.

2. Inequality (4.13) is satisfied for ℓ = 2.

This implies that it is enough to consider (4.12) with h = 0. Considering (ii) with ℓ = 2 and
a particular case of (4.12) with h = 0, the two inequalities can be raised to non­negative
powers and combined so as to eliminate εd, with the conclusion that

ζ2p−3
d ≥ 2p−d

(
p

d

)2d−3

.
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A permissible equality is achieved together with Equality (4.11). The maximization in
Equality (4.10) through p ≥ d follows.

It remains to prove the key observation. Inequalities (i)–(ii) can be raised to positive powers
and combined, with the conclusion that

ζd ε
d+h−p
d ≥

(
p− h+ 2

d− h+ 1

) 2p−2h−3
2p−2h+1

2
2

2p−2h+1 .

Positivity fails for (p, h) ∈ {(d, d), (d, d−1), (d+1, d)}, but these cases are covered already.

Comparison with Inequality (4.12) shows that we need U(p− h, d− h) ≤ 1, where

U(χ, ψ) =
1

4

(
χ

ψ

)4 (
(χ− ψ + 1)(ψ + 1)

(χ+ 1)(χ+ 2)

)2χ−3

.

The inequality has to be shown for integer χ ≥ ψ ≥ 0 such that (χ, ψ) /∈
{(2, 1), (0, 0), (1, 0), (1, 1)}, which correspond respectively to vertices (d+1, d−1), (d, d), (d+
1, d), (d, d− 1). For fixed ψ, the maximum is achieved at χ = 2ψ, since U(χ, ψ) increases.
This follows from

U(χ+ 1, ψ)

U(χ, ψ)
=

(ψ + 1)2

(χ− ψ + 1)(χ− ψ + 2)

(
1− 1

(χ+ 2)2

)(
1− χ− 2ψ + 1

(χ+ 3)(χ− ψ + 1)

)2χ

.

This ratio is < 1 for χ ≥ 2ψ, and (by calculus on the product of the first and middle terms)
it is > 1 for χ < 2ψ.

For this pair of values, we have

U(2ψ, ψ) = 2

ψ∏
κ=1

(
1− 1

κ (2κ+ 1)

)4κ−3

.

Evidently, the χ­maximumU(2ψ, ψ) is a decreasing function of ψ, andU(4, 2) = 39/25000 <
1. For ψ < 2, we observe that U(χ, 1) ≤ U(3, 1) = 37/4000 < 1 and U(χ, 0) < U(1, 0) =
3/4 < 1 for χ > 2. □
We now describe a construction similar to Section 4.2.4, connecting Theorem 3 to the
orientations of pseudographs with fixed outdegree d and n > 1. LetG(V,E) be a minimally
rigid graph in Cd and letKd be one of its subgraphs. RemovingKd, as in the case of d = 2,
we have a pseudograph, denoted LG,Kd

(V ′, E ′, H).

Applying Maxwell’s condition to the edge count for the normal subgraphs of the pseu­
dographs, we obtain ki ≥

(
d+1
2

)
for every connected component of LG,Kd

with at least d
vertices.

If ni ≤ d − 1 we examine 2 different cases: (a) ni = 1 or 2 implying that the connected
component has trivially one orientation, since the normal subgraph is either a single vertex,
or a tree with 2 vertices. The number of hanging edges is ki = 2d− 1, in order to respect
the total edge count. (b) ni = 3, which implies d ≥ 4, then there should be ≤ 3 normal
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edges and ≥ d−2 hanging edges, so ki ≥ 3d−3. By induction, for the i­th vertex, at least
i− 1 hanging edges shall be added.

Hence, if LG,Kd
has µ′ connected components with more than 2 vertices and a total of k′

hanging edges, then k′ ≥ 3d− 3 for d ≥ 3.

An immediate consequence is the following theorem that generalizes Theorem 10 by ap­
plying Theorem 3.

Theorem 12 Let G(V,E) be a minimally rigid graph in Cd (and Sd) that contains a Kd.
Then the number of its embeddings is bounded from above by ε3d−2

d · (2 · ζd)|V |−d = O((2 ·
ζd)

|V |). In the case of Geiringer graphs that contain a triangle this is(
2 · 102

)−5/9 (
8 · (5/8)1/3

)|V |−3
= O

(
6.8399|V |) .

The asymptotic bound works also for minimally rigid graphs in Cd that do not contain a
Kd. In that case, we may remove a maximal clique with d′ ≥ 2 vertices in order to obtain
a pseudograph. Then, the exponent of ζd will never exceed |V | − 2 (see Appendix B for
details).

To demonstrate the improvement achieved by our this new bound on the embedding num­
ber of rigid graphs, namely O

(
(2ζd)

|V |), we refer the reader to Table 4.1 which compares
the values of 2ζd to the power basis of Bézout bound and the bound derived in Section 4.1.
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5. ON THE MAXIMAL NUMBER OF REAL EMBEDDINGS IN R2 , R3

AND S2

In this chapter we deal with the problem of finding edge length parameters that maximize
the real embeddings of Laman and Geiringer graphs. We use both algebraic formulations
presented in Section 2.2 and we use the complex embedding number as an upper bound.

In Section 5.1 we present the sampling methods we use in order to increase the number of
real embeddings. Besides standard sampling methods, an algorithm inspired by coupler
curves has been developed by J.Legerský in order to search efficiently huge parametric
spaces combining local and global sampling in the case of Geiringer graphs.

The main results of our methods are presented in Section 5.2. These include a full char­
acterization of graphs with a small number of vertices up to their real embedding number.
More precisely we give the maximal numbers of real embeddings of all 6­vertex and 7­
vertex Laman graphs in S2 and R2 respectively, as well as the maximal numbers of real
embeddings of all 7­vertex Geiringer graphs. We also specify parameters for selected
bigger graphs. These computations improve the existing lower bound on the maximal
number of real embeddings from 2.3003|V | to 2.3811|V | for d = 2 and from 2.51984|V | to
2.6390|V | for d = 3, while they establish 2.51984|V | as a lower bound for the number of
embeddings in S2.

The part of this Chapter related to Geiringer graphs appear in the conference proceedings
of ISSAC’18 [3]. The totality of the results have been published in [4].

5.1 Increasing the number of real embeddings

Our main goal throughout our experiments was to find the parameters that can maximize
the number of real embeddings of minimally rigid graphs. One open problem in rigidity
theory is whether the maximal number of real embeddings of a given graph can be the
same as the number of complex embeddings. Although there exists an 8­vertex Laman
graph for which it has been proven that r2(G) < c2(G) [41], in most cases we consider the
number of complex embeddings as the upper bound we try to reach (see also Chapter 1).
In our research, we concentrate on the cases of graphs with the biggest number of com­
plex embeddings, among all other minimally rigid graphs with the same number of vertices.

Additionally to some standard sampling methods, we develop a new method that can in­
crease efficiently the number of real embeddings for certain Geiringer graphs. Our method
is inspired by coupler curves approach and uses G48 (the 7­vertex Geiringer graph with
the maximal number of embeddings) as a model. Taking advantage of our implementation
based on this technique, we increase lower bounds on r3(G) for many graphs and estab­
lish new asymptotic lower bounds on the maximal number of embeddings of Geiringer
graphs.
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5.1.1 Standard sampling methods

Finding initial configurations We applied different heuristics to find initial configura­
tions for our parameter sampling. First of all, we tried to compute the number of real
embeddings of totally random configurations. This resulted in finding maximal numbers of
real embeddings for graphs with cd(G) = 2|V |−d. For example, it took less than 20 minutes
to detect parameters that attain the maximum for all 8­vertex non­trivial 1 Geiringer graphs
with r3(G) = 32.

We also used almost degenerate locus as starting points. In order to increase r2(G) of
Laman graphs with maximal numbers of complex embeddings w.r.t. a given number
of vertices, we chose lengths very close to the unit length. Similarly, in the case of
Geiringer graphs, we perturbed degenerate conformations. For example, in order to
find an initial point for G48, we separated the edges into three sets with edge lengths
being the same in each of them: the ring edges of the 5­cycle, the top edges that
connect v7 with the ring and the bottom edges that connect v1 with the ring (see Fig­
ure 5.1). We subsequently found edge lengths that maximized the intervals imposed by
triangular and tetrangular inequalities up to scaling and we perturbed the resulting lengths.

Finally, we also used as starting points conformations of smaller graphs with maximal
numbers of embeddings. For instance, gluing v7 and v8 in G160 results in G48. Perturbing
a set of edge lengths λ of G48 such that r3(G48,λ) = 48, we could get a starting point for
the sampling of G160 that would result in a big number of real embeddings.

v1

v2

v3 v4

v5v6

v7

v1

v2

v3 v4

v5v6

v7 v8

Figure 5.1: Coinciding vertices v7 and v8 of G160 results in G48.

Stochastic methods We have used stochastic methods for different graphs in order to
increase the number of embeddings. Our method uses a variant of the tools suggested in
[24]. We penalize the loss of real roots and the increase of the imaginary part of complex
solutions to decide if the resulted labeling constitutes a new starting point. This method
could increase the number of embeddings, but rarely attained the maximum.

1In the sense that their minimal vertex degree is > 3, thus no H1 move is used in the final step of their
construction and their embedding number cannot trivially deduced from a smaller graph. See Section 2.1
for details.
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Parametric searching with CADmethod The methods described in the previous para­
graph are local methods. In order to search globally one parameter, we used Maple’s
subpackage RootFinding [Parametric] in Maple18. This package is an implementation of
Cylindrical Algebraic Decomposition principles for semi­algebraic sets. The input consists
of the equations and the inequalities of the system and the list of variables separating
them from parameters. The output is a cell decomposition of the space of parameters
according to the number of solutions of the semi­algebraic conditions.

In our problem, we were able to take advantage of this implementation using Cayley­
Menger determinants of 7­vertex graphs and searching for only one parameter (See Sec­
tion 2.2.2). Sphere equations failed to give any result, while computational constraints did
not let us search two or more parameters simultaneously.

This sampling was also used to increase the number of spherical and planar embeddings
of Laman graphs with 7 vertices and the number of real embeddings of G48. In some
situations it was even possible to attend the maximal number of embeddings for a given
graph.

5.1.2 Coupler curve

The previous methods fail to attain tight bounds for Geiringer graphs with maximal
number of embeddings efficiently. For example, using CAD, we could find 28 real
embeddings for G48, but it seems impossible to increase this number by local searching
in all parameters or global sampling only one of them. Thus, we developed a new method
that samples only subset of edge lengths in every iteration. This procedure is motivated
by visualization of coupler curves.

Let G(V,E) be a minimally rigid graph with a triangle and an edge (u, u′). If G′ =
(V,E \ (u, u′)) is obtained from G by removing the edge (u, u′), then the set of embed­
dings satisfying the constraints given by generic edge lengths and fixing the triangle is
1­dimensional. The projection of this curve to the coordinates of the vertex u′ is a so
called coupler curve. The authors in [13] used this idea for proving that the Desargues (3­
prism) graph has 24 real embeddings in R2. Namely, they found edge lengths such there
are 24 intersections of the coupler curve with a circle representing the removed edge. This
approach can be clearly extended into R3 — the number of embeddings of G is the same
as the number of intersection of the coupler curve of u′ with the sphere centered at u with
a radius λu,u′. Now, we define specifically a coupler curve in R3.

Definition 5 Let G′ be a graph with edge lengths λ = (λe)e∈EG′ with a triangle subgraph
K3 with vertex­set {v1, v2, v3} and a specific embedding K3(ρ) satisfying edge length con­
straints. If the set SR(G

′,λ, K3(ρ)) is one dimensional and u′ ∈ VG′, then the set

Cu′,λ = {(xu′ , yu′ , zu′) : ((xv, yv, zv))v∈VG∗ ∈ SR(G
′,λ, K3(ρ))}

is called a coupler curve of u′ w.r.t. the fixed triangle K3(ρ).
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Assuming that a coupler curve is fixed, i.e., we have fixed lengths λ of the graph G′, we
can change the edge length λu,u′ so that the number of intersections of the coupler curve
Cu′,λ with the sphere with the center at u and radius λu,u′, namely, the number of real
embeddings of G, is maximal.

The following lemma shows that we can change three more edge lengths within one pa­
rameter family without changing the coupler curve. This one parameter family corresponds
to shifting the center of the sphere along a line.

Lemma 7 Let G(V,E) be a minimally rigid graph and u, v, w, q, u′ be vertices of G such
that (q, v), (v, w) ∈ E and the neighbours of u in G are v, w, q and u′. Let G′ be the graph
given by (V ′, E ′) = (V,E \ {(u, u′)}) with generic edge lengths λ = (λe)e∈E′. Let Cu′,λ be
the coupler curve of u′ w.r.t. the fixed triangle with vertices {v, u, w} and an embedding
ρv,u,w. Let zq be the altitude of q in the fixed triangle with lengths given by λ. Then the
set {yq : ((xv′ , yv′ , zv′))v′∈V ′ ∈ SR(G

′,λ,ρv,u,w)} has only one element y′p. If the parametric
edge lengths λ′(t) are given by

λ′u,w(t) = ||(xw, yw − t, 0)|| , λ′u,q(t) = ||(0, y′q − t, zq)|| ,
λ′u,v(t) = t , and λ′e(t) = λe for all e ∈ EG′ \ {(u, v), (u,w), (u, q)} ,

then the coupler curve Cu′,λ′(t) of u′ w.r.t. the fixed triangle is the same for all t ∈ R+,
namely, it is Cu′,λ. Moreover, if (u′, w) ∈ E, then Cu′,λ is a spherical curve.

Proof: All coupler curves in the proof are w.r.t. the triangle defined above. Fig­
ure 5.2 illustrates the statement. Since G is minimally rigid, the set SR(G

′,λ,ρv,u,w) is
1­dimensional. The coupler curve Cq,λ of q is a circle whose axis of symmetry is the y­axis.
Hence, the set {yp : ((xv′ , yv′ , zv′))v′∈V ′ ∈ SR(G

′,λ,ρv,u,w)} has indeed only one element.
The parametrized edge lengths λ′(t) are such that the position of v and w is the same for
all t. Moreover, the coupler curve Cq,λ′(t) of q is independent of t. Hence, the coupler curve
Cu′,λ′(t) is independent of t, because the only vertices adjacent to u in G′ are q, v and w.
Thus, the positions of the other vertices are not affected by the position of u. □
Therefore, for every subgraph of G induced by vertices u, v, w, q, u′ such that deg(u) = 4
and (q, v), (v, w), (u, v), (u,w), (u, q), (u, u′) ∈ E, we have a 2­parametric family of lengths
λ(t, t′) such that the coupler curve Cu′,λ(t,t′) w.r.t. the fixed triangle vuw is independent of t
and t′. Recall that the parameter t′ represents the length of (u, u′), which corresponds to
the radius of the sphere, and the parameter t determines the lengths of (u, v), (u,w) and
(u, p). Now, we aim to find t′ and t such that r3(G,λ(t, t′)) is maximized.

Let us clarify that whereas [13] were also changing the coupler curve, our approach is
different in the sense that the coupler curve is preserved within one step of our method,
while only the position and radius of the sphere corresponding to the removed edge are
changed in order to have as many intersections as possible. In the next step, we pick a
different edge to be removed.
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x
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Cq,λ

xw

yw

Cu′,λ

v uu(t)

w

q

y′q

u′

zq

Figure 5.2: Since the lengths of λu,q and λu,w are changed accordingly to the length of
(u, v) (blued dashed edges), the coupler curves Cq,λ′(t) and Cu′,λ′(t) are independent of t.
The red dashed edge (u, u′) is removed from G.

In order to illustrate the method, let λ be edge lengths of G48 given by

λ1,2 = 1.99993774567597 , λ2,7 = 10.5360917228793 , λ2,3 = 0.99961432208948 ,

λ1,3 = 1.99476987780024 , λ3,7 = 10.5363171636461 , λ3,4 = 1.00368644488060 ,

λ1,4 = 2.00343646098439 , λ4,7 = 10.5357233031495 , λ4,5 = 1.00153014850485 ,

λ1,5 = 2.00289249524296 , λ5,7 = 10.5362736599978 , λ5,6 = 0.99572361653574 ,

λ1,6 = 2.00013424746814 , λ6,7 = 10.5364788463527 , λ2,6 = 1.00198771097407 .

Using Matplotlib by [39], our program [8] can plot the coupler curve of the vertex
v6 of the graph G48\(v2, v6) w.r.t. the fixed triangle v1v2v3, see Figure 5.3 for the out­
put. There are 28 embeddings for λ. Following Lemma 7 for the subgraph given by
(u, v, w, q, u′) = (v2, v3, v1, v7, v6), one can find a position and radius of the sphere corre­
sponding to the removed edge (v2, v6) such that there are 32 intersections. Such edge
lengths are obtained by taking λ1,2 = 4.0534 , λ2,7 = 11.1069 , λ2,6 = 3.8545 , λ2,3 = 4.0519.

Instead of finding suitable parameters for the position and radius of the sphere by looking at
visualizations, we implemented a sampling procedure that tries to maximize the number
of intersections [8]. The inputs of the function sampleToGetMoreEmbd are starting edge
lengths λ and vertices u, v, w, q, u′ satisfying the assumptions of Lemma 7, including the
extra requirement that (u′, w) is an edge. In order to count the real embedding number,
we use the homotopy continuation package phcpy [68] for solving the algebraic systems.

5.2 Classification and Lower Bounds

A first upper bound on the number of embeddings is the mixed volume of systems of
sphere and Cayley­Menger varieties. This bound is crucial for homotopy continuation
system solving, as mentioned before. Let us remark that, in the case of sphere equations
the mixed volume is also equal to the m­Bézout bound almost always (see Section 3.2.1).
On the other hand, in the case of Cayley­Menger varieties these two bounds do not
always coincide. The second natural bound of graph realizations is the number of
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Figure 5.3: The coupler curve Cv6,λ of G48 with the edge v2v6 removed. The 28 red points
are intersections of Cv6,λ with the sphere centered at v2 with the edge lengths λ, whereas
the 32 green ones are for the adjusted edge lengths (illustrated by blue dashed lines).

complex embeddings. The numbers of complex embeddings for all Laman graphs up to
12 vertices are known from [16], while the numbers of complex embeddings of Geiringer
graphs up to 10 vertices were computed by [35]. We computed the complex solutions
of spherical embeddings of Laman graphs up to 8 vertices. For the last part, we were
motivated by a remark of Josef Schicho, who had observed that the numbers of planar
and spherical solutions differ for the Desargues graph.

In order to find parameters that can maximize the number of real embeddings, we applied
the methods described in Section 5.1. Polynomial system solving during sampling was
accomplished mainly via phcpy. We consider an embedding being real if the absolute
value of the imaginary part of every coordinate is less than 10−15. The final results were
verified using Maple’s RootFinding [Isolate]. Our results ameliorate significantly what was
known about the bounds of real embeddings.

5.2.1 Embeddings of Laman Graphs on the plane

The numbers of realizations of all 6­vertex Laman graphs are known [13]. There are four
non­trivial Laman graphs (requiring an H2 move in the last step of their construction­ see
Section 2.1) and the upper bound of real embeddings was computed in [24] for the graph
with the maximal number of complex embeddings. Using stochastic and parametric
methods, we were also able to maximize the number of embeddings for the other three
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7­vertex graph with not trivial number of embeddings, completing a full classification for
all 7­vertex Laman graphs according to their number of real embeddings [8].

L136 L344 L880

Figure 5.4: Laman graphs with maximal numbers of complex embeddings with 8 ≤ |V | ≤
10. We have found tight bounds for |V | = 8 and |V | = 9.

For bigger graphs, we focused on the graphs with the maximal number of complex em­
beddings, see Figure 5.4. The following table summarizes the bound on r2(G) as well as
c2(G) and the mixed volume for the two different algebraic systems. Notice that it shows
that there exist edge lengths such that all embeddings of the 8­vertex graph L136 and of
the 9­vertex graph L344 are real.

|V | 8 9 10
L136 L344 L880

Mixed Volume of sphere eq. 192 512 1536
Mixed Volume of distance eq. 136 344 880

c2(G) 136 344 880
r2(G) ≥ 136 344 860*

Now, we provide edge lengths giving the numbers of real embeddings in the table.

L136 : λ1,2 = 1.000109994 , λ1,4 = 1.000334944 , λ1,8 = 1.000119993 ,

λ2,3 = 1.000174985 , λ2,7 = 1.000379928 , λ3,6 = 1.000459894 , λ3,8 = 1.000099995 ,

λ4,5 = 1.000049999 , λ4,7 = 1.000144989 , λ5,7 = 1.000389924 , λ5,8 = 1.000354937 ,

λ6,7 = 1.000244970 , λ6,8 = 1.000289958 ,

L344 : λ1,4 = 1.00100 , λ1,6 = 1.00046 , λ1,9 = 1.00057 ,

λ2,3 = 1.00058 , λ2,5 = 1.00075 , λ2,8 = 1.00084 , λ3,7 = 1.00073 ,

λ3,9 = 1.00042 , λ4,7 = 1.00096 , λ4,9 = 1.00015 , λ5,7 = 1.00083 ,

λ5,8 = 1.00003 , λ6,7 = 1.00086 , λ6,8 = 1.00008 , λ8,9 = 1.00039 ,

L880 : λ1,4 = 1.0002169 , λ1,8 = 1.0001366 , λ1,10 = 1.0004509 ,

λ2,3 = 1.000763 , λ2,7 = 1.0000575 , λ2,10 = 1.0006078 , λ3,7 = 1.0001763 ,

λ3,9 = 1.00075 , λ4,8 = 1.0008574 , λ4,9 = 1.000536 , λ5,7 = 1.000491 ,

λ5,8 = 1.0002946 , λ5,10 = 1.0006778 , λ6,7 = 1.0004699 , λ6,8 = 1.0002724 ,

λ6,9 = 1.0005141 , λ9,10 = 1.0003913 .
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5.2.1.1 Spherical embeddings of Laman graphs

Maximal numbers of embeddings in S2 have been not studied so far. We attempted to
find edge lengths such that the number of realizations was the same as the number of
complex solutions for graphs that do not have a trivial number of embeddings. We shall
observe again that the c2(G) varies for certain graphs from cS2(G).

We have found parameters such that all the embeddings are real for all non­trivial graphs
with 6 and the 7­vertex graphs with the maximal number of complex embeddings(they can
be found in [8]). The Desargues graph has the maximal number of embeddings among
6­vertex graphs, namely, it can have 32 realizations (instead of 24 on the plane). In the
7­vertex case, there are two non­trivial graphs with 64 realizations (instead of 48 and 56
respectively on the plane),see Figure 5.5. Let us indicate that 64 realizations can be also
achieved by the 3 graphs constructed by applying an H1 move on L24, since H1 doubles
the number of embeddings. Observe that this contrasts the situation of the complex em­
beddings in the plane, since it is known that for |V | ≤ 12 there is always a unique Laman
graph with the maximal number of complex embeddings on the plane among all Laman
graphs with the same number of vertices [16]. We have also found edge lengths that max­
imize the spherical embeddings of L136 (see Figure 5.4). It has 192 real spherical embed­
dings. We remark that there is again another 8­vertex graph with 192 complex spherical
embeddings, but we have found edge lengths with only 136 real spherical embeddings.

L24(Desargues) L48H2 L56 L48H1a L48H1b L48H1c

Figure 5.5: Laman graphs with maximal numbers of spherical embeddings with
6 vertices (L24­ Desargues graph with 32 spherical embeddings) and 7 vertices
(L48H1a,L48H1b,L48H1c,L48H2 and L56­ graphs with 64 spherical embeddings).

This table gives upper bound and the number of real spherical embeddings for all graphs
with 6 ≤ |V | ≤ 8 that have the maximal number of embeddings.
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|V 6 7 7 7 7 7 8
L24 L48H2 L56 L48H1a L48H1b L48H1c L136

Mixed Volume of sphere eq. 32 64 64 64 64 64 192
Mixed Volume of distance eq. 32 64 64 64 64 64 192

cS2(G) 32 64 64 64 64 64 192
rS2(G) 32 64 64 64 64 64 192

We present a list of lengths (using euclidean metric) that give maximal number of realiza­
tions for the non­trivial cases:

L24 : λ1,2 = 1.43 , λ1,4 = 1.39 , λ1,6 = 1.055 ,

λ2,3 = 1.45 , λ2,5 = 1.193 , λ3,4 = 1.388 , λ3,5 = 1.64 ,

λ4,6 = 1.691 , λ5,6 = 1.386 ,

L48H2 : λ1,2 = 1.526433752 , λ1,3 = 1.250599856 , λ1,4 = 1.519868415 ,

λ2,5 = 1.772004515 , λ2,6 = 1.371860051 , λ2,7 = 1.019803903 , λ3,4 = 1.475127113

λ3,7 = 1.363084737 , λ4,6 = 1.314534138 , λ5,6 = 1.754992877 , λ6,7 = 1.054514106 ,

L56 : λ1,2 = 1.921665944 , λ1,3 = 1.3 , λ1,5 = 1.337908816 ,

λ2,5 = 1.058300524 , λ2,6 = 1.306139349 , λ2,7 = 1.468332387 , λ3,4 = 1.2 ,

λ3,7 = 0.6693280212 , λ4,5 = 1.370401401 , λ4,6 = 1.630337388 , λ6,7 = 1.994993734 .

L136 : λ1,2 = 1.69431375697417 , λ1,5 = 1.53147820126884 , λ1,8 = 1.40741112578064 ,

λ2,3 = 1.46514833488809 , λ2,5 = 1.43532284310132 , λ2,7 = 1.3673675423030 , λ3,4 = 1.35543641920214 ,

λ3,6 = 1.49080389256053 , λ4,5 = 1.36622835551227 , λ4,8 = 1.52724607627725 , λ6,7 = 1.23765605522418 .

λ6,8 = 0.871783052046995 , λ7,8 = 1.76892528306539 .

5.2.2 Geiringer graphs

The method we introduced in Section 5.1.2 played a crucial role in increasing the number
of embeddings of Geiringer graphs. We used our method for the only non­trivial graph
with 6 vertices — the cyclohexane G16. It was known that r3(G16) = 16, a result that can
be verified by our method within a few tries with random starting lengths.

The case of |V | = 7 was the first open one. There are twenty trivial 7­vertex Geiringer
graphs and six non­trivial ones. We computed the mixed volumes and the number of
complex embeddings for each one of them. Then, using our code we were able to find
edge lengths that give a full classification of all 7­vertex Geiringer graphs according to
r3(G) [8].

We want to remark again at this point thatG48 was the model for our coupler curve method.
Using our implementation, we were able to find lengths that maximize the number of em­
beddings only after a few iterations. The structure of this graph fits perfectly to our method,
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G48 G160

Figure 5.6: The 7­vertex and 8­vertex graphs with the maximal number of embeddings
(G48 and G160).

since there are 20 subgraphs of G48 given by vertices (u, v, w, q, u′) satisfying the assump­
tion in Lemma 7. Using tree search approach, we obtained edge lengths λ such that
r3(G48,λ) = 48:

λ1,2 = 1.9999, λ1,6 = 2.0001, λ4,5 = 7.0744, λ4,7 = 11.8471,

λ1,3 = 1.9342, λ2,6 = 1.0020, λ5,6 = 4.4449, λ5,7 = 11.2396,

λ1,4 = 5.7963, λ2,3 = 0.5500, d2,7 = 10.5361, λ6,7 = 10.5365 .

λ1,5 = 4.4024, λ3,4 = 5.4247, λ3,7 = 10.5245,

They can be found from the starting edge lengths given in Sec. 5.1.2 with 28 real em­
beddings in only 3 iterations, using the subgraphs (v5, v6, v1, v7, v4), (v4, v3, v1, v7, v5) and
(v3, v2, v1, v7, v4).

We repeated the same procedure for |V | = 8. In that case we can use the H1 doubling
property for 311 graphs, while there are 63 graphs with a non­trivial number of embeddings.
We computed complex bounds for all non­trivial graphs [8]. We subsequently found edge
lengths that increase the number of real embeddings of G160, which is the graph with the
maximal number of complex embeddings c3(G160) = 160. We were able to find parame­
ters λ such that r3(G160,λ) = 132.

The following lengths give 132 real embeddings for G160:

λ1,2 = 1.999, λ2,3 = 1.426, λ3,7 = 10.447, λ5,8 = 4.279,

λ1,3 = 1.568, λ2,6 = 0.879, λ4,5 = 7.278, λ6,8 = 0.398,

λ1,4 = 6.611, λ2,7 = 10.536, λ4,7 = 11.993, λ7,8 = 10.474 .

λ1,5 = 4.402, λ2,8 = 0.847, , λ5,6 = 4.321,

λ1,6 = 1.994, λ3,4 = 6.494, λ5,7 = 11.239,

One may find a full list of Geiringer graphs with 7 and 8 vertices in [8].

5.2.3 Lower bounds

The maximal numbers of real embeddings that we found can serve to build an infinite
class of bigger graphs. These frameworks can give us lower bounds on the maximum
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Table 5.1: Power basis of asymptotic lower bounds for minimally rigid graphs in all em­
bedding spaces treated. The first line contains the existing lower bounds, while the second
one the lower bounds presented here (there were previously no lower bounds for the real
spherical case).

embedding
space

R2 S2 R3

previous 2.3003 ­ 2.5198
new 2.3780 2.5198 2.6553

number of embeddings. To compute the lower bound, we will use the following theorem
that combines caterpillar, fan and generalized fan constructions [35]:

Theorem 13 Let G = (VG, EG) be a generically rigid graph, with a generically rigid sub­
graph G′ = (VG′ , EG′). We construct a rigid graph using l copies of G, where all the copies
have the subgraph G′ in common. The new graph is rigid, has |V | = |VG′|+ l(|VG| − |VG′|)
vertices, and the number of its real embeddings is at least

2(|V |−|VG′ |) mod (|VG|−|VG′ |) · rd(G′) ·
(
rd(G)

rd(G′)

)⌊
|V |−|VG′ |
|VG|−|VG′ |

⌋
.

Remind that for a triangle T we have that r2(T ) = rS2(T ) = 2, while r3(T ) = 1. For Laman
graphs, the best asymptotic bound is derived from L880:

Corollary 6 The maximum number of real embeddings on the plane among Laman
graphs with n vertices is bounded from below by

2(|V |−3) mod 7 · 2 · 430⌊(|V |−3)/7⌋ .

The bound asymptotically behaves as 2.3780|V |.

The previous lower bound in that case was 2.3003|V | by [24].

In the case of spherical embeddings, we may use L24:

Corollary 7 The lower bound for the maximum number of spherical embeddings among
Laman graphs with |V | vertices is

2(|V |−3) mod 7 · 2 · 16⌊(|V |−3)/3⌋ .

This bound asymptotically behaves as 2.5198|V |.

We remark that L48H1a and L48H2, which have the 4­vertex Laman graph as a subgraph,
can give the same asymptotic lower bound. The other 7­vertex graphs with rS2(L) = 64
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can give only 2.3784|V | as a lower bound, while the asymptotic bound from 8­vertex graph
with 192 embeddings is 2.4914|V |.

Finally, using the fact that r3(G160) ≥ 132, we obtain the following result:

Corollary 8 The maximum number of real embeddings of Geiringer graphs with |V | ver­
tices can be bigger than

2(|V |−3) mod 5 132⌊(|V |−3)/5⌋ ,

indicating that r3(|V |) ∈ Ω(2.6553|V |).

The previous lower bound for Geiringer graphs was 2.51984|V | [25, 28]. Using the graph
G48 yields r3(|V |) ∈ Ω(2.6321|V |). Notice that we use a subgraph with one embedding and
not with two, as we did in the cases of Laman graphs. This happens because there is no
tetrahedron as a subgraph of the 8­vertex graphs that could give a better lower bound.

In Table 5.1, we compare the existing asymptotic lower bounds on the maximal real em­
bedding number, with the improvements presented in this chapter.
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6. CONCLUSION AND OPEN QUESTIONS

In this thesis we have developed various methods concerning bounds on the embedding
number of minimially rigid graphs. We presented new methods to compute efficiently the
m­Bézout bound of the complex embedings of minimally rigid graphs using graph orien­
tations and matrix permanents. These bounds are graph­specific. We also compared
our experimental results with existing ones indicating that some classes of graphs have
tight m­Bézout bounds. Motivated by these results, we applied Bernstein’s second theo­
rem in the case of the m­Bézout bound for rigid graphs. Our findings in this topic can be
generalized for every class of polynomial systems that have no zero solutions.

In order to improve general upper bounds on the embedding number, initially we exploited
existing bounds on planar graph orientations and matrix permanents. This led to improve­
ments on the asymptotic upper bounds of the embeddings for planar graphs in dimension
3 and for all graphs for d ≥ 5. Then, we introduced a method that bounds the number
of outdegree constrained eliminations that are related to the m­Bézout bound, as stated
above. This method resulted in a new bound for the embeddings of all minimally rigid
graphs with a given number of vertices, which was generalized as the first non­trivial up­
per bound in the cases of Laman and Geiringer graphs. It also improved bounds in all
dimensions bigger than 3, including our own results.

Finally, we have developed and used efficient methods to maximize the number of real
embeddings of rigid graphs in the case of planar, spherical and spatial embeddings. In this
context a new technique inspired by coupler curves was introduced for Geiringer graphs.
Thesemethods led to a classification of certain Laman andGeiringer graphs up to their real
embedding number and to an improvement of the asymptotic lower bounds on themaximal
number of embeddings. These increased lower bounds combined with the ameliorated
upper bounds found in this thesis, reduce the existing gap between them.

Several open questions rise from our results. First of all, the gap between upper and
lower bounds remain (even in the case of lower bounds on the maximal complex embed­
ding number which is easier to compute and was not treated in this thesis). In this context,
it would be useful to investigate how sharp our upper bound is on the number of pseudo­
graph orientations and, subsequently, on the maximal complex embedding number. Both
of these may require large computational resources.

Besides that, finding the minimal m­Bézout bound requires the computation of bounds up
to all possible choices for a fixed Kd. Thus, it would be convenient to find a method to
select the Kd that attains the minimum without computing its bound. Another issue is that
the elimination process may result to a more efficient algorithm for the computation of the
outdegree­constrained orientations. The worst case scenario of our recursive algorithm is
∼ 2|E|, while the bound on orientations is in the order of ∼ ζ

|V |
d (see Equation 4.10), which

is much smaller.

Regarding the exactness of the m­Bézout bound and the application of Bernstein’s sec­
ond theorem, the first priority would be a possible proof (or refutation) of Conjecture 1.
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This may help to investigate a possible relation between planarity and tight upper bounds,
especially in the case of Geiringer graphs. Another issue is to optimize this method using
the appropriate tools. A first idea is to construct resultant matrices that exploit the multi­
homogeneous structure (see for example [27, 21]). The rank of the matrix could indicate
which zero evaluations have solutions for our systems.

In the case of maximal real embeddings, the next step would be to ameliorate the maximal
real bounds in all cases. One of the issues is the time needed to solve the systems of
equations for bigger graphs, which is multiplied by the fact that more sampling iterations
are necessary. For instance, our result for the 8­vertex Geiringer graph is the best one
obtained from running the coupler curve method for several weeks, with various starting
points. In the case of Laman graphs, we faced the problem that homotopy solvers like
phcpy are not always able to track all solutions when cd(G) is very big (> 1000 solutions
for minimally rigid graphs).
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ABBREVIATIONS ­ ACRONYMS

B­M Brègman­Minc bound

CAD cylindrical algebraic decomposition

CM Cayley­Menger matrix

dof degrees of freedom

H1, H2, H3 Henneberg 1, 2, 3 (resp.)

mBe m­Bézout

MV mixed volume bound

Ε.Α.Γ. ελαχιστικώς γενικά άκαμπτοι γράφοι

Θ.Α.Γ. θεωρία Άκαμπτων Γράφων

Π.Φ. Bézout πολυ­ομογενές φράγμα Bézout
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APPENDIX A. ALGEBRAIC BOUNDS.

In this Appendix we present the main algebraic bounds used in this thesis. These bounds
are established for projective spaces, but can be also applied for affine polynomials. These
are the Bézout bound, the m­Bézout bound and the mixed volume bound (also known
as BKK bound). We also give Bernstein’s second theorem on the exactness of mixed
volumes.

For the rest of this Appendix we will consider square polynomial systems f(x) =
(f1(x), . . . , fm(x)), where x = (x1, x2, . . . , xm) is a vector of m variables f(x) ∈ C[x].

The first (and simplest) bound is the well known Bézout bound. Here we give a version
for 0­dimensional varieties in Cm.

Theorem 14 (Bézout bound) Let αi be the total degree of a polynomial fi ∈ f . Then if
the number of complex roots of f is finite, then it is bounded from above by

m∏
i=1

αi.

This bound is a generalization of the fundamental theorem of algebra. Nevertheless, in
many cases this bound is rather loose. We can have tighter bounds taking advantage of
the particular structure of a polynomial system.

First let us define multihomogeneous polynomial systems that are the basis for the com­
putation of the m­Bézout bound.

Definition 6 (Multihomogeneous polynomial) Let X1 = (x1,1, . . . , x1,d1), X2 =
(x2,1, . . . , x2,d2), . . . , Xn = (xn,1, . . . , xn,dn) be a partition of the affine variables x, with
|Xi| = mi, and m1 + · · ·+mn = m.

Consider that every fi is homogeneous in each variable setXj, with homogenizing variable
xi,0 and multidegree specified by vector αi = (αi,1, αi,2, . . . , αi,n), where αi,j denotes the
degree of fi in Xj. Then f is multihomogeneous of type

(m1, . . . ,mn;α1, . . . ,αn).

Given this definition, the classic theorem from algebraic geometry [62] can be used for the
computation of the m­Bézout bound.

Theorem 15 Consider the multihomogeneous system f(x) defined above. The coeffi­
cient of the monomial Y m1

1 · · ·Y mn
n in the polynomial defined by the product
m∏
i=1

(αi,1 · Y1 + · · ·+ αi,n · Yn). (A.1)

bounds the number of roots of f(x) in Pm1 × · · · × Pmn, where Yi are new symbolic pa­
rameters, and Pmi is the mi­dimensional projective space over C. The bound is tight for
generic coefficients of f(x).
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A more delicate approach uses geometrical tools to establish upper bounds (see details
in [19]).

Definition 7 (Newton Polytope) Let a polynomial

f(x) =
∑
α∈Zm

cα · xα ∈ C[x]

where cα ∈ C∗ are the non­zero coefficients and xα =
m∏
i=1

xαi
i for a vectorα = (α1, . . . , αm).

Then the Newton Polytope of f is the convex hull of the exponent vectors α and will be
denoted with NP(f).

A basic operation that forms a new polytope from two or more old ones is the Minkowski
sum.

Definition 8 Let Q1 and Q2 be two polytopes in Rm. Then the minkowski sum Q1 +Q2 is
a new polytope such that

Q1 +Q2 = {q1 + q2 : q1 ∈ Q1 and q2 ∈ Q2}

Notice that the Minkowski Sum of polytopes lying in complementary subspaces is the
same as the cartesian product of these polytopes.

Minkowski sum is used to define the mixed volume for a collection of polytopes.

Definition 9 Themixed volume of a collection of polytopesQ1, Q2, . . . , Qm ∈ Rm is defined
by the coefficient of the monomial µ1 ·µ2 · · ·µm in the polynomial Volm(µ1Q1+ · · ·+µmQm),
where Volm is the m­dimensional volume and will be denoted by MVm(Q1, . . . , Qm).
An equivalent method to compute the mixed volume is the following formula:

MVm(Q1, . . . , Qm) =
m∑
j=1

(−1)m−j
∑

I⊂{1,2,...,m}
|I|=j

Volm

(∑
i∈I

Qi

)
(A.2)

There is a connection between the mixed volume of Newton Polytopes and the number
of roots for a polynomial in the corresponding toric variety. The toric variety is a projective
variety defined essentially by the Newton Polytopes of the given system and contains the
topological torus (C∗)m as a dense subset. The set­theoretic difference of a toric variety
and (C∗)m is toric infinity in correspondence with projective infinity.

Theorem 16 (BKK theorem [9, 44, 46]) Let f(x) as defined above, and let
(NP(fi))1≤i≤m be the collection of Newton Polytopes for this polynomial system.
Then, if the number of system’s solutions in (C∗)m is finite, it is bounded above by the
mixed volume of these Newton Polytopes.
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Figure A.1: The Newton Polytopes of the polynomials in Example 7

This relation was established by D.Bernshtein, A.Khovanskii and A.Kouchnirenko. There­
fore this bound is known as BKK bound by their initials or simply mixed volume bound.

In general and without paying much attention to the underlying variety, we have the fol­
lowing relations as in [63]:

#real solutions ≤ #complex solutions ≤ mixed volume ≤ m­Bézout ≤ Bézout.

On the other hand, the complexity of computing bounds goes in the opposite direction.
More precisely, the computation of the m­Bézout bound is #P­hard by reduction to the
permanent. The same hardness result holds for mixed volume, although for most polyno­
mial systems the runtime in practice is much bigger than the m­Bézout computation. An
additional problem in the case of the m­Bézout is to discover the optimal variable partition
minimizing this bound for a given polynomial. This problem is not in APX, unless P=NP
[52].

The Newton Polytopes capture the sparseness of the polynomials. In fact the Bézout and
the m­Bézout bound can be also related with polytopes whose mixed volume gives these
bounds. More precisely, the polytopes related to the Bézout bound are simplices, while
the polytopes related to the m­Bézout bound are simplices or products of simplices (see
[55] for details).

Let us give an example of the bounds and their polytopes.

Example 7 We will consider the following polynomial system in two variables.

f1(x1, x2) = x31 + x22 − 3

f2(x1, x2) = x1 + x22x1 + x22 + 5

The Bézout bound of this system of equations is 3 · 3 = 9.

Let us compute the m­Bézout bound for the trivial partition X1 = {x1}, X2 = {x2}. Obvi­
ously |X1| = |X2| = 1, so we need to find the coefficient of Y1 · Y2 in the polynomial

(3Y1 + 2Y2) · (Y1 + 2Y2) = 3Y 2
1 + 8Y1Y2 + 4Y 2

2 ,
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Figure A.2: The Newton Polytope of a dense polynomial with total degree 3.

indicating that the m­Bézout bound is 8.

Now, we will compute the mixed volume. We have

NP(f1) = Conv({(3, 0), (0, 2), (0, 0)}),NP(f2) = Conv({(1, 0), (1, 2), (2, 0), (0, 0)}),

while their Minkowski sum is

NP(f1) + NP(f2) = Conv({(0, 0), (4, 0), (2, 2), (1, 4), (0, 4)})

(see Figure A.1).

Using Equation A.2 we get that the BKK bound is

V ol2(NP(f1) + NP(f2))− V ol2(NP(f1)) = V ol2(NP(f2)) = 8.

It is not a surprise that the BKK bound and the m­Bézout bound coincide. If we study the
structure of the polytope NP(f1) we may see that it is a simplex, so it is related with dense
polynomials and correspond also to both the Bézout and the m­Bézout bound. In the case
of NP(f2) we have the cartesian product of two 1­simplices {(0, 0), (1, 0)}× {(0, 0), (0, 2)},
showing that the multidegree vector (1, 2) of this polynomial is equivalent with the Newton
Polytope. On the other hand a dense polynomial with degree 3 would have as Newton
Polytope the convex hull of a simplex, such that one of the coordinate for at least one vertex
shall be 3, e.g. {(0, 0), (1, 0), (0, 3)}, indicating that the Bézout bound shall be higher (See
Figure A.2).

It is obvious that if the polytopes associated with the Bézout or the m­Bézout bound co­
incide with the Newton Polytopes, then the bounds also coincide. On the other hand this
is not a necessary condition for equal bounds, as in the case of sphere equations (see
Section 3.2).

The exactness of the BKK bound can be verified by Bernstein’s discriminant conditions.
In order to state these conditions we first need the following definition.

Definition 10 (Initial form and face system) Let w be a vector in Rm and f(x) =
∑
α∈A

cα ·

xα be a polynomial in C[x], where A consists of the exponent vectors of monomials with
non­zero coefficients.
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Let A′ be the subset of vectors in A, such that α′ ∈ A′ ⇐⇒ 〈α′, w〉 = min
α∈A

(〈α, w〉).

Then the initial form fw is a polynomial consisting of all the monomials whose exponent
vectors belong in A′:

fw(x) =
∑
α′∈A′

cα′ · xα′
.

Since the initial form fw contains precisely the monomials whose exponent vector min­
imizes the inner product with w and excluding the others, we can relate w to an inner
vector of a face of NP(f). Hence, the algebraic system comprised of initial forms for a
face normal w shall be called face system.

The necessary and sufficient condition of BKK exactness is stated below.

Theorem 17 (Bernstein’s second theorem [9]) Let f be a system of polynomials as de­
fined above

Q =
m∑
i=1

NP(fi) (A.3)

be the Minkowski sum of their Newton Polytopes. The number of solutions of f in (C∗)m

equals exactly its mixed volume (counted with multiplicities) if and only if, for all w ∈ Rm,
such that w is a face normal of Q, the system of equations (fwi )1≤i≤m has no solutions in
(C∗)m.

Let us note that although there is an infinite number of vectors that may appear as inner
normals, Bernstein’s condition can be verified choosing only one inner normal vector for
every different face of Q. This theorem can also verify the exactness of the Bézout or the
m­Bézout bound, if the Minkowski sum of polytopes related to these bounds is taken into
account instead of the Minkowski sum of Newton polytopes (see Equation A.3).
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APPENDIX B. THE COMPUTATION OF THE EMBEDDING NUMBER
USING SPHERE EQUATIONS IN THE ABSENCE OF Kd.

In Section 2.2 we introduce sphere equations and explain that the embedding number is
the number of solutions derived from this system if all the coordinates of a complete graph
in d vertices are fixed, following [28, 35]. Although in dimension 2 there can always be a
fixed edge (or K2), in bigger dimensions this condition is not guaranteed. For example, in
most known cases of Geiringer graphs, there is a fixed triangle, but there exist minimally
rigid graphs with no triangles: K6,4 is the only instance with up to 10 vertices. We have not
constructed as many graphs in bigger dimensions using Henneberg steps, as in dimen­
sions 2 and 3 (see Table 2.1), but we can verify that the graphs with no complete subgraph
Kd are more for d ≥ 4. In this Appendix we will analyze how to compute the embedding
number using sphere equations in the absence of a clique. Note that this case does not
affect the asymptotic bounds presented in Chapter 4 and that all Geiringer graphs treated
in Chapter 5 posses at least one triangle. We also remark that no such clarification is
needed for the Cayley­Menger semialgebraic systems, since in that case the solutions of
the system correspond to distance coordinates and not to usual euclidean ones.

Maxwell’s condition subtracts the dof of trivial motions (rotations and translations) from
the total number of coordinates for an embedding of a graph G(V,E) in Rd, as explained
in Chapter 1. Fixing the number of coordinates corresponding to the dof yields already
a 0−dimensional algebraic system using Edge Equations 1.1, or the sphere equations.
On the other hand, the solutions of such system correspond to multiple embeddings up to
trivial motions. Before explaining that statement we need the following proposition.

Proposition 7 The embedding number of a complete graph in d vertices up to rigid mo­
tions in Rd (or Cd and Sd) is 1.

This proposition is trivial, since a graph Kd can be embedded as a (d − 1)−dimensional
simplex.

Let us now demonstrate how we treat the algebraic system in the case of Laman graphs,
before generalizing this process to higher dimensions. Let K2 be a complete graph with
vertices {u, v}, or simply an edge, and λu,v be an edge labeling. Maxwell’s condition in
dimension 2 indicates that we shall subtract 3 coordinates, so we can set u(0, 0) and v(0, y).
Now it is clear that the y­coordinate of v can have two solutions, that are y = ±λu,v (See
Figure B.1). These solutions evidently correspond to the same embedding, if we factor
out rigid motions. Thus, if we also fix the second coordinate of v, then there is only one
possible embedding for K2 and by fixing the coordinates of that edge in a bigger Laman
graph, the number of solutions of sphere equations is the same as the embedding number.
Notice that the existence of the edge allows us to fix the additional coordinate.

For d = 3, Maxwell’s condition removes 6 dof and the presence of a triangle removes 3
additional degrees of freedom, thus fixing the 9 coordinates of the triangle. If no triangle
exists, 3 vertices, u, v, w , are selected such that 2 of them are the endpoints of an edge
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x

y

u(0, 0)

v(0, λu,v)

v(0,−λu,v)

Figure B.1: Fixing 2 coordinates for vertex u and 1 coordinate for vertex v, there are two
possible embeddings for the latter. Both embeddings are equivalent up to trivial motions
in R2.

(u, v). Then, we use Maxwell’s condition to remove 6 degrees of freedom as follows: first
we define a plane on which all three vertices lie by fixing one of their coordinates e.g.
x = 0 for all three, removing 3 dof, and then we fix the other 2 coordinates of u and 1
more coordinate of v removing the 3 remaining dof. An additional dof is removed using
the edge, fixing the third coordinate of v. Now the first vertices u and v are fixed, while w
is partially fixed. The corresponding algebraic system counts every embedding twice (by
reflection on the plane defined above). Notice that if we had not fixed the third coordinate
of v, then there would be two solutions of the algebraic system for the embedding of the
edge (u, v), as in the 2−dimensional case, so in total this algebraic system would count
every embedding four times.

Generally, if for a minimally rigid graph G(V,E) in d ≥ 3 no Kd exists, a maximal clique
may be fixed with d′ < d vertices and for the rest d−d′ vertices one may fix an appropriate
number of coordinates, thus factoring out rotations and translations according to Maxwell’s
condition. More precisely we can have the following cases:

• d′ fixed vertices v1, . . . , vd′ with no dof.

• d− d′ partially fixed vertices v′1, v′2, . . . , v′d−d′ with d′, d′ +1, · · · , d− 1 dof respectively.

• |V | − d non­fixed vertices u1, . . . , u|V |−d with d dof.

Clearly, d′ ≥ 2 since an edge always exists. Let now S(G, λ,Kd′(ρ)) denote the solutions
of sphere equations for the embedding of a graph in Cd and SR(G, λ,Kd′(ρ)) the real
solutions in Rd, up to a fixed embedding Kd′(ρ) for a generic choice of edge lengths λ.
Then we have the following relations between the number of solutions and the embedding
number:

|S(G, λ,Kd′(ρ))| = 2d−d
′ · cd(G) and |SR(G, λ,Kd′(ρ))| = 2d−d

′ · rd(G,λ) (B.1)

These relations can apply to the computation of a bound on the embeddings using the
methods from Chapter 3 on a system of sphere equations as described above. More
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precisely, let us denote with B(G,Kd′) the orientations of a graph G\E(Kd′) such that the
outdegree of each vertex equals its dof, then the embedding number is bounded by

2|V |−d · B(G,Kd′).

Notice that the number of vertices for the corresponding pseudograph are bounded by the
inequality |V | − d ≤ n ≤ |V | − 2, since n = |V | − d+ d′.

Similarly, we can construct the m­Bézout matrix A by adding blocks of rows associated
to the partially fixed vertices. The number of each block equals to the dof of each one of
these and the bound is computed by the following relation:(

d−d′∏
i=1

1

d′ − 1 + i

)
·
(
2

d!

)|V |−d

· per(A).

In that case, the size of square matrix the A is d · n× d · n, where n is the same as above.
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